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Prefae
For deades, materials exhibiting the unusual ability of reovering large deforma-tions by means of the shape-memory e�et and superelastiity have attrated agreat interest due to the broad variety of tehnologial appliations. They rangefrom medial devies (stents, heart valve tools, bone anhors, dental arh wires,glass frames, et.), to sensors and atuators (thermostats, ontrol valves) as well asmusular wires in robotis, mehanial aeronauti and underwater ouplings andmany others. The martensiti, stoihiometri Ti-Ni alloy, ommonly known asNitinol, is urrently the most used shape-memory alloy due to its lasting durabil-ity (wear and orrosion resistane), repeatability and bioompatibility. However,nitinol exhibits large hysteresis in stress and temperature and a narrow operatingtemperature range, whih hallenges a further tehnologial development. Look-ing for more appropriate working onditions, many other alloy families exhibitingthese smart properties have been investigated.Alternatively, doping has also been observed to substantially (and often rit-ially) modify the stability regimes of a given alloy from the stoihiometri om-position �as well as many other aspets of the transition�and arises as a goodway to explore and identify new regions of the phase spae that are likely to beuseful to design materials of tehnologial interest. In fat, over the last yearsmany researh e�orts have been foused on o�-stoihiometri and doped alloys.Atually, for deades it has been known that there exists a ritial amount ofdoping�that depends on the spei� alloy�whih leads to the suppression of themartensiti transition. Reent studies in some materials like Ti and Ti-Ni basedalloysand others have revealed that the non-martensiti strutures arising in thenon-transforming omposition regime show glassy features with the lattie strainas the frozen degree of freedom. Fortunately, shape memory e�et and supere-lastiity are also observed to our in this regime. This expands signi�antly thehorizons for new, promising nonmartensiti shape memory alloys.At a mesosopi level, the �nal responsible for the management of the resultingthermomehanial behavior is the ferroelasti transition undergone by the mate-rial. This is mainly mediated by long-range elasti interations between the ellsof the rystallographi lattie. These interations depend on the spei� ell sym-iii



ivmetries as well as on the elasti onstants, whih determine the soft diretions ofthe rystal. Consequently, the elasti interations may be highly anistropi andmay ruially a�et the morphology of the internal mirostrutures. However, thislean desription partially breaks down due to the presene of intrinsi inhomo-geneities, whih put up energy and entropy barriers that ut short the long-rangeorrelations, resulting in a rih behavior landsape. As mentioned, doping arisesas the main experimental tool to introdue deliberately a ertain amount of dis-order in alloys. This general sheme points to the anisotropy and disorder asimportant ingredients in suh systems, whih is the main subjet of this thesis:How these ompeting fators a�et the morphology of strutural patterns andthermodynami behavior in ferroelasti systems.This topi may be plaed within a more general framework onerning theresearh on systems exhibiting spatially inhomogeneous states at the mesosale.In a broad lass of funtional materials (inluding high-temperature superondu-tors, ioni ondutors, olossal magentoresistane manganites, ferromagnets andferroeletris), intrinsi heterogeneities have been observed to play a key role indetermining their properties. Sometimes the presene of disorder even gives riseto fruitful, entirely new properties, absent in pure materials.The thesis is organized as follows: A brief introdution to ferroelasti materials,and in partiular to thermoelasti martensites is given in hapter 1. Chapter 2 isdevoted to desribe the model used in this work. Chapters 3-5 shows the resultsderived from omputer simulations of the model. In partiular, hapter 3 fouseson the morphology of the strain strutures; hapter 4 approahes some aspetsof the thermodynami behavior and in hapter 5 thermomehanial behavior isstudied. Chapter 6 is devoted to a model desribing a magnetoelasti system andshows preliminary results. Chapter 7 summarizes the main results and onlusionsof the thesis. Some theoretial mathematial and other details that an be usefulfor the reader an be found attahed in the appendies.



Notation
Letters in bold-fae type denote vetors
A = C44/C

′: Elasti anisotropy fator
C: Heat apaity
C ′ = 1/2(C11 − C12) ∼ A2: Elasti response assoiated to deviatori strain
C11 + C12 ∼ A1: Bulk modulus
C44 ∼ A3: Shear modulus
σ: Stress �eld
e1: Bulk strain
e2: Deviatori strain: Landau order parameter
e3: Shear strain
FL: Landau free energy
FG: Ginzburg free energy
FGL: Ginzburg-Landau free energy
Fnon-OP: Non-order parameter free energy
Fη: Disorder free energy
Fanis: Magneti anisotropy free energy
Fexh: Heisenberg free energy
Fms Magnetostati energy
Fme Magnetoelasti energy
Fext: Zeeman free energy
f : Energy density
Hd: Magnetostati �eld, demagnetizing �eld
m: Unit magnetization vetorMT: Martensiti transformationOP: Order parameterPBC: Periodi boundary onditionsSMA: Shape memory alloySME: Shape memory e�et
T : Temperature
Tc: Low stability limit of the high temperature phase in the lean limitv



vi
Tc(r): Loal distribution of harateristi temperatures due to disorder oupling
Ti: High stability limit of the low temperature phase in the lean limit
T0: Equilibrium transition temperature in the lean limit
β: Fourth-order Landau oe�ient
γ: sixth-order LAndau oe�ient
η: Disorder variable
κ: Ginzburg oe�ient
ς: Transformed fration
ξ: Correlation length of the disorder
ζ : Disorder amplitude
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Chapter 1
Introdution to ferroelastiity
The ferroelasti transition allowing for superelastiity and the shape-memory ef-fet (SME) [1℄ onsists of a solid-to-solid nondisruptive phase transformation me-diated by an external ontrol parameter suh as temperature or stress1. Uponooling the rystallographi struture of the parent phase beomes unstable giv-ing rise to a spontaneous deformation that entails a loss of symmetry so that thepoint groups of the rystallographi unit ells of the parent and produt phasesful�ll a group-subgroup relationship [2, 3℄. Due to this, the parent phase is oftenalled the high-symmetry or disordered phase whereas the produt phase is alledthe low-symmetry or ordered (i.e. lose-paked) phase. They are also termedas paraelasti and ferroelasti respetively for analogy with ferromagnetism. Bynon-disruptive [4℄�or displaive�transformation we mean that it takes plae by aooperative rearrangement of the atoms of the lattie in suh a way that, despitethat there is a lattie distortion and the rystalline struture hanges, there is noatomi interhange, so that the neighborhood of eah atom remains unalterablefrom the point of view of loal atomi order, atomi bonds and so on. Atomimotion is at the most of the order of the interatomi distanes, so that there isno di�usion2.1Later on it will be seen that multiferrois exhibit transitions indued by other parameterslike a magneti �eld, et.2Sometimes it is referred as military transformation, opposite to ivilian hanges, that aredominated by di�usive proesses. 1



2 Chapter 1. Introdution to ferroelastiity1.1 Self-aommodation: Interfaes and mirostru-tureAs a onsequene of the symmetry breaking, the unit ell of the produt phasemay take multiple equivalent states, alled variants, that have the same rystalstruture but di�er in their mutual orientation. The number of suh di�erentsymmetry-related variants depends on the spei� symmetry of the ell. In parti-ular, suh number is given by the ratio between the number of symmetry elementsin the high-symmetry phase and the number of symmetry elements of the low-symmetry phase [5℄.Usually, nuleation and growth of the produt phase takes plae embeddedwithin a host matrix of the parent phase. At the phase boundaries, the lattiemis�t is aommodated by elasti strain [6℄ that, up to a ertain extent, is ableto hold the ontinuity of the lattie aross the interfaes. However, when thetransformation ontinues, the lattie mismath may inrease in suh a way thatit annot be absorbed any more by keeping deforming the same way. Then, inorder to preserve ohereny, the lattie is fored to deform aording a variantof opposite strain, thus reduing the average deformation �and hene the totalenergy� along the wall. The reurrene of this proess gives rise to a mirostru-ture of alternating variants that is energetially favorable sine sueeds in makingeasier the ontinuity of the displaement �eld. The marosopially undistortedplanes joining the di�erent phases are alled habit planes, and the mehanism bywhih the strain is indued to modulate in order to enable suh invariant planesis alled self-aommodation. Atually, this proess ours not only at the phaseboundaries (para-ferroelasti interfaes) but also at the domain boundaries be-tween di�erent ferroelasti variants. A shemati view of the geometri groundsof self-aomodation is shown in Fig. 1.1 for a square to retangular transition.The modulations of�averaged�vanishing strain manage to spread out well in thebulk of the produt phase due to a knok-on e�et [7℄, whih is the essene of thelong-range nature of the elasti interations. Due to the anisotropi nature of therystallographi ells and to the will of the system of mantaining also a oherent�t of the variants along the domain boundaries, large, anisotropi strutural do-mains arise. Suh long-range multidomain pattern is alled twinning, and eahone of the variants that make it up is alled twin, due to onsisting of at least twoequivalent strain states. Therefore, twinning is not an inherent fat to the phasetransition but the response of the degenerate multi-well struture of the energyto ertain �usual� boundary onditions, i.e. a way for the material to redue itsenergy.Figure 1.2 shows two images of di�erent mirostrutures, belonging to a poly-



1.1. Self-aommodation: Interfaes and mirostruture 3

(a) (b)Figure 1.1: The nuleation of the ferroelasti phase usually takes plae in a surround-ing paraelasti matrix. (a) A single domain is ompletely unfavorable, sine the elastistrain required for the aomodation would be too large. (b) Atually, to minimize theenergy the system takes advantage of the degeneray of the di�erently oriented variantsand aomodates by alternating twins. This mehanism allows for a marosopiallyinvariant plane and zero volume net hange. In partiular, in the square to retangulartransition depited here, the domain boundaries are properly oriented parallel to [11℄diretion due to the spei� rystallographi symmetries. Notie that additional miro-sopi strain is needed to oherently math the di�erent phases in the phase boundariesparallel to [1̄1℄ diretions. This also ontributes to determine the resulting struture.rystalline sample of tetragonal Ni54Mn25Ga21 (a) and a sample of monoliniPb3(VO4)2 (b). In both ases, the mesosopi geometry of the domains is deter-mined by the oherene between twins, whih in turn is strongly in�uened by therystallographi symmetries. In ase (a), tetragonal symmetry leads to paralleltwin bands whereas in (b) monolini symmetry also gives rise to star patterns.Furthermore, it is worth mentioning that twinning allows for a mirosopiallydeformed material that does not exhibit marosopi, net hange of shape, whihis at the origin of the SME. This is shematially shown in (i) and (ii) of Fig. 1.3.Experimentally, it has been observed that twins exhibit a harateristi width lwhih sales well as l ∝ √L, where L is the longitudinal size of the transformedregion [10�12℄. This relationship has been also obtained theoretially as the resultof the energeti ompetition between the interfaial ost of the twin boundariesand the self-aomodation proess that favors a periodi twinning with a largewave number. The lowest-energy on�guration resulting from the balane betweenthese two ontributions onsists preisely of twins of equal width ful�lling therelation above.However, often this is not the ase. The atual mirostruture of a givenferroelasti material depends on the spei� omposition, speimen size, grain



4 Chapter 1. Introdution to ferroelastiity
0.07µm

(a) (b)

Figure 1.2: (a) TEM bright �eld image at room temperature of twinned mirostru-ture with parallel domain boundaries yielded from a ubi-to-tetragonal transition inNi54Mn25Ga21. Extrated from Ref. [8℄. (b) TEM image of a twinned mirostrutureswith parallel bands and star patterns originated from a rhombohedral-to-monolinitransition in Pb3(VO4)2. Extrated from Ref. [9℄.size, history, external onditions, oupling with other magnitudes like magneti�elds, et., and may be of high degree of omplexity. The length sale of twins maygo from few nanometers to tenths of milimeters [13℄. Selfsimilar patterns �twinswithin twins, et.� have also been observed. Polyrystals show also a oexisteneof variants with multiple length sales, et.1.2 The shape memory e�etPerhaps, the most relevant aspet related to ferroelastiity is the so-alled SMEthat refers to the ability of a material to reover its original marosopi shapeupon heating after being notably deformed by applying an external stress �eld. Itis based on the fat that the ferroelasti variants an be easily swithed from oneto another by means of a stress �eld. Again, the rystal takes advantage of thedegenerate multi-well nature of the energy sine domain swithing is an energeti-ally free way for the material to hange its shape, whereas a lattie deformationis ostly. In partiular, upon loading below the transition, the material presents a�rst elasti stage where the rystallographi ells undergo a low reoverable defor-mation so that they beome slightly strethed aording to the spei�ties of the�eld. However, when the stress �eld reahes a ertain value, the system undergoesa large deformation, with strains up to 10%, for instane, in Ti-Ni. If the stress�eld is inreased further, the system retakes (retoma,repren) the elasti regimeuntil reahing the plasti regime, and frature.Atually, what it happens during the high-response stage is that the spei�diretion of the stress �eld favors the oherent growth of one of the variants to thedetriment of the others, by moving the domain boundaries (i.e. energy barriers)



1.2. The shape memory e�et 5existing among them. The growth of the seleted variant entails a orrespondinghange in the marosopi shape of the speimen, that beomes maximum whenit reahes the single variant state. Sine any of the ferroelasti variants is sta-ble at the produt phase, this strutural on�guration survives when the �eld isremoved, thus not reovering the multidomain original state. From this point ofview suh deformation an be labeled as a plasti one. However, it is said to beapparent beause it is not plasti in the usual sense: ideally, there is no reationand/or motion of disloations, et, and the original marosopi shape an bereovered upon heating. Therefore, it has been alled a pseudoplasti deforma-tion. Due to the group-subgroup relationship between the phases, upon heatingany ferroelasti variant transforms bak to the same unique variant of the parentphase. Thus, to a large number of possible multidomain on�gurations and shapesof the produt phase orresponds only a single parent phase on�guration. Thismakes the ferroelasti transition to be rystallographially reversible and allowsfor reovering the original marosopi shape, i.e. the SME. An shemati repre-sentation an be found in Fig. 1.3. Starting from a ferroelasti twinned struture(ii), the marosopi shape an be pseudoplastially deformed upon loading dueto domain swithing (iii). Upon unloading, the system remains unaltered and,�nally, upon heating the paraelasti phase is reahed with the initial shape (i).It must be pointed out that in pratie, although the �nal state is ideallyunique, the retransformation paths that the system an undertake may lead tothe reation of defets that moves the �nal state away from the shape-reoveredone. Then, what is desirable is the forward and bakward transformations tofollow the same path forth and bak. With respet to this, long range order helpsto keep a single path for both diretions of the transition, that results in a smallhysteresis in temperature [14℄.Let us mention the two-way SME (opposite to the one-way SME explainedabove), aording whih upon heating and ooling the system an reover thesame low temperature, twinned mirostruture. This is due to the fat that in theferroelasti phase defets luster at the twin boundaries. Upon heating, twinningdisappears but defets may remain at rest muh more time in suh a way thatupon ooling the lusters of defets at as pinning enters for new twin boundaries,thus resulting in the same previous mirostruture. In fat, samples an be trainedby thermomehanial treatment in order to quenh defets at ertain sites wherenuleation and/or growth of spei� ferroelasti variants our. All this makeseasier the rystallographi reversibility and hene the two-way shape memorye�et. This reversible ooling-heating path orresponds to (i)↔(iii) in Fig. 1.3.
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(i) Austenite (ii) Twinned martensite (iii) Deformed martensite

Macroscopic view

Microscopic viewFigure 1.3: Shemati representation of the mirostrutures that ferroelasti materi-als exhibit under di�erent onditions, aompanied by the orresponding marosopishapes. This allows for the shape-memory e�et and superelastiity.1.3 SuperelastiityThe ferroelasti transformation an be also indued by applying a stress �eld. Theloading proess starting from the paraelasti phase is apparently similar to thatourring from the ferroelasti phase: After the usual elasti regime, the systemundergoes a large deformation until �nally reahing a single variant mirostru-ture. Nevertheless, the underlying mehanisms governing the high-response stageare essentially di�erent. As mentioned in the previous setion, in the ferroelastiphase the mehanism is the domain swithing whereas in the superelasti regimethe material transforms stress-indued to the ferroelasti phase. Note that, in on-trast with the temperature-indued transition, no twinning is obtained as a resultof the stress-indued transition, sine all the rystallographi ells are strained a-ording to the applied stress �eld and no self-aommodation proess takes plae.Fousing on the superelasti behavior, when removing the stress �eld the sys-tem transforms bak to the parent phase so that the unit ell (i.e. the wholesystem) reovers its initial shape. Suh ability is alled pseudoelastiity and,more reently, also superelastiity. In Fig. 1.3, superelastiity orresponds tothe same path as in the ase of the two-way SME [(i)↔(iii)℄ although now thispath is reahed upon loading-unloading. The ritial stresses upon and belowwhih the material undergoes the forward and bakward stress-indued transi-tions respetively are di�erent due to the existene of metastability regimes, sothat the system exhibits hysteresis that beomes larger as the temperature of thezero-stress transition is approahed.



1.4. Inhomogeneities 7It is worth highlighting the ross-sale response between di�erent levels oforganization that play a relevant role in the properties mentioned above. Thus,marosopi properties like SME and superelastiity lie on the mesosale twinnedmirostruture, that in turn is ruially a�eted by the rystallographi symmetryproperties on the moleular sale.
1.4 InhomogeneitiesIn a broad sense, by inhomogeneities we understand any physial magnitude inthe material that is not uniform through it. Up to now, the only example ofspatial heterogeneities in rystals that we have seen is twinning, that omes from�nite-size and shape e�ets and that turns out to be behind the SME that hasmany important appliations [15℄. In fat, spatial inhomogenities in materialsare of great interest sine often they are known to play a ruial role in onfer-ing them relevant and/or useful properties, from both physial and tehnologialpoints of view. Nevertheless, twinning an be interpreted approximately as a uni-form periodi modulation of the strain. In that sense, an intuitive, maybe moreappropriate de�nition of inhomogeneity should inlude the presene of some kindof randomness, i.e. more related to the meaning of disorder. Preisely, as it is wellknown, materials (speially alloys) are haraterized by the presene of intrinsi,random disorder that annot be removed, sine it is a onsequene of imperfetpreparation and treatment of the samples.More spei�ally, strutural inhomogeneities refer to any lattie imperfetionthat move the rystal away from the pure, regular Bravais lattie [16℄. Somelattie points annot be obtained by a translational operation of the Wigner-Seitz ell but they are singularities suh as point defets like impurities omingfrom ompositional �utuations, vaants, interstitial atoms, substitutional atoms,et., line defets like disloations, et. Alloys should be mentioned as one ofthe prominent examples ontaining inherent disorder, in form of ompositional�utuations. Moreover, disorder may be easily inreased by means of hanging theperentage of eah element through o�-stoihiometri omposition or doping withan extra element. Some experimental studies have approahed the distribution ofdoping through the material. It has been found that doping prefers to substitutethose atoms with whih shares more similarities from the point of view of eletronia�nity, size, et., although it is lear that it does not entail any order in thematerial.



8 Chapter 1. Introdution to ferroelastiity1.4.1 E�ets on strutures and thermodynami responsesBesides the mentioned e�et of ating as pinning sites for twin boundaries, thepresene of impurities may of ourse a�et any physial variable, that indeed es-sentially depends diretly on the spei� omposition of the material. In general,disorder has been found to have many di�erent e�ets on materials [17℄. In par-tiular, it is worth mentioning two e�ets whih are of our interest: First, thepresene of impurities may result in a rounding of phase transitions [18℄, movingaway from the sharp ase in the ideal lean limit (i.e. in absene of disorder), andgiving rise to multiphase oexistene well above and below the transition point.Seond, and intimately related to the �rst, disorder may eret loal free-energybarriers in suh a way that the total free-energy of the system an adopt a bumpypro�le with many degenerated and nearly degenerated low-energy states that,however, in general do not orrespond to the global minimum of energy, if it stillexists [17℄. Eventually (and also often), disorder may lead the system to freeze inmetastable states and even exhibit glassy features, as will be seen later.Despite that impurities have a loal harater, the stress �eld that is reatedaround them may a�et global physial magnitudes mediated by long-range in-terations. Atually, a great amount of papers has been devoted to study thein�uene of doping, i.e. o�-stoihiometry omposition in thermodynami prop-erties. In general, it is observed that impurities blur the transition, resulting inanomalies in the spei� heat like softening and shift of the peak towards lowertemperatures, hanges in the baseline, power-law singularities, et. Indeed, a moreaurate sample preparation and annealing results in a derease and even remov-ing of the anomalies. With respet to this, anomalies in Cp have been proposedto be an indiator of the level of dopant in a material. Also, impurities havebeen observed to modify the elasti onstants of the material. As said, materialsan be very sensitive to the presene of impurities, so that the phase diagramsstrongly depend on the level of doping. Slightly hanging the relative weight ofeah element in an alloy an result in a large shift of the transition temperatureor even inhibition of the transformation. Consequently, the onset temperatureabove whih superelastiity may be obtained by applying a stress as well as theonditions under the SME may take plae are ruially a�eted by the spei�omposition of the material [19�24℄.1.4.2 Pretransitional e�etsPretransitional e�et refers to any phenomena ourring in a system that warnsof the proximity of a phase transition. Although the abrupt nature of �rst-ordertransitions is in priniple ontraditory with these e�ets, they are often observed
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44C
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Figure 1.4: (a) and (b): Dependene of C44 and C ′ on temperature in Fe70Pd30.Typially, C ′ softens signi�antly whereas C44 not. This leads to an inrease of theelasti anisotropy A = C44/C
′. From Ref. [27℄. (c) Di�use streakings in seleted areafrom eletron di�ration pattern Ni43.8Mn42.4Ti13.8. (d) Detail of (c). From Ref. [28℄.in SMAs already well above the transformation. Prominent examples are thesoftening of both the TA2 phonon branh3 and C ′ elasti onstant upon ooling [2℄,related to an inipient instability of the parent phase. In fat, this will provide thesystem with easy hannels to develop the onoming transition. 4 In the di�rationpattern, the phonon and C ′ softening leads to di�use sattering [26℄. Softening of

C ′ in Fe-Pd and di�use sattering for Ni-Mn-Ti are shown in Fig. 1.4.A pretransitional e�et involving some strain is termed preursor. The phonons,i.e. random �utuations of the atoms of the lattie, have a typial relaxation timeof the order of 10−12s. This prevents suh �utuations to be observable by any ex-perimental tehnique. However, sometimes these �utuations might ouple withdefets of the lattie, whose lifetime is theoretially unlimited. This ouplingleads to �utuations whose relaxation times are muh longer than the free ones,giving rise to long-lived mirostrutures that are termed embryos. Additionally,the mentioned softening of ertain elasti onstants make suh strain �utuations3Oasionally, at a ertain nonvanishing wave vetor the TA2 phonon branh also showsan anomalous dip, assoiated with satellites in the di�ration pattern [25℄. Moreover, thisdip beomes more pronouned as the transition is approahed. In the some ferroelastis, thesoftening of the anomalous phonon is only partial and is not su�ient to ause the transition,that in this ase is dominated by an homogeneous stress-free distortion. By ontrast, in othersthe transition takes plae preisely when the energy of the anomalous phonon vanishes [5℄.However, the origin of this anomaly still remains unlear.4Some pretransitional e�ets are, however, observed independently of an ourrene of a phasetransition. Whether the suh e�ets announe the transition or simply they our independentlyof it, is atually a urrent disussion. It seems not to obey a general law but to depend on thespei� ase. In general, martensiti transitions do not require pretransitional e�ets but if theyour, the transformation may be a�eted, for instane, in the spei� pathway.



10 Chapter 1. Introdution to ferroelastiityprefer to orrelate aording to the orresponding soft diretions of the rystal.Although the magnitude of the strain is so low that it annot be onsidered as aphase oexistene, the ourring symmetry breaking antiipates the new lattiesymmetries of the produt phase [29℄.Murakami et al. [30℄ have suggested that the morphology and in partiularthe diretionality exhibited by the resulting pretransitional strutural pattern de-pends on the elasti anisotropy fator A of the material. For a ubi system inpartiular, it is de�ned as A = C44/C
′ where C44 and C ′ denote elasti onstantsassoiated to shear and deviatori stresses respetively. Aording to this, it hasbeen observed that materials with low A, like Ti-Ni, exhibit embryos of almostspherial shape (mottled struture) whereas materials with high A are observedto exhibit a typial strutural pattern alled tweed5 [31℄, wih is a modulation inthe strain onsisting of striations parallel to the traes of {110} planes appearingat intervals of few nanometers.6 Cu-Zn-Al, for instane, exhibits tweed only in theviinity of the surfae (not in the bulk as in Ni-Al) and it has been attributed to ahigher A for this region than for the bulk. This is believed to ourr beause theobserved high onentration of atoms of Zn and Al in the surfae might raise thetransition temperature, whih is related to a lower C ′ onstant [32℄. A omparisonbetween the values of the elasti anisotropy between di�erent alloys is given intable 1.1. It an be seen that Ti-Ni and Ti-based alloys show a partiularly lowvalue of A ompared to other alloys. Altough all of them exhibit softening of C ′when dereasing the temperature, tweed is only reported in those alloys with ahigh value of A.It is aepted that, at very high temperatures, due to thermal �utuationstweed appears to be dynami [7, 33℄ in the sense that annot be observed byany imaging tehniques but the di�use streakings in the Bragg peaks reveal theexistene of suh �utuations. As the temperature is lowered, thermal �utuationsderease and tweed an be onsidered to be stati from the point of view of thelaboratory time sale so that it an be aptured [33℄, for instane, by transmissioneletron mirosope (TEM) tehnique. Generally, on further ooling below thetransition point, any pretransitional strain pattern usually evolves toward themore oarsened transformed twinned struture of larger strain. Nevertheless, if,as menioned above, high defet onentration leads to inhibit the ferroelastitransition, the oarsening of the domains is prevented and the pretransitionalpatterns may survive even down to 0 K [34℄.5Tweed refers to the typial sottish textile pattern.6Although the preise periodiity in the tweed struture depends ritially on the imagingonditions, there exists a general agreement in that it is on the sale of ten to hundreds of lattieonstants.



1.5. Martensites 11Alloy Softening of C' A Tweed Ref.Fe70Pd30 yes ∼ 15 yes [27℄Ni62.5Al37.5 yes ∼ 9 yes [30℄Cu-Zn yes ∼ 11 yes [35℄Cu68Zn16Al16 yes ∼ 14 yes [32, 36℄Cu-Al-Ni yes ∼ 13 - [37℄Au-Zn-Cu yes ∼ 12− 20 - [37℄Au-Cd yes ∼ 11− 14 - [37℄Ni2MnGa yes ∼ 23 yes [38, 39℄Ti49.7Pd43.8Cr6.5 - ∼ 3.6 weak [40�42℄Ti50Ni50 yes ∼ 2 no [37℄Ti50Ni48Fe2 yes ∼ 2 no [30℄Ti50Ni40Cu10 yes ∼ 2.4 - [37℄Ti50Ni30Cu20 yes ∼ 2.8 - [37℄Table 1.1: Comparison of elasti anisotropy values for several SMAs (Values nearthe transformation temperature). The existene of softening in C ′ and tweed is alsomentioned, together with the orresponding referenes. Dash symbol means that theorresponding feature is unknown for the spei� alloy (at least to us).1.5 MartensitesMartensites refer to those materials undergoing a di�usionless �rst-order7 stru-tural phase transition that are dominated by a shear or ombination of shears [44℄.Hene, it is lear that they are good andidates to be ferroelasti. In martensitesit is ommon to refer to the high-symmetry phase as austenite and to the low-symmetry one as martensite itself. From the point of view of the magnitude of thespontaneous strain, three lasses of martensites an be identi�ed: M1, M2 and M3involving small, moderate and very large strains respetively. Moderate and largestrains an involve atomi displaements of the order of the unitell dimensionsin suh a way that they an entail important hanges of symmetry. For instane,new symmetry elements an appear that break the group-subgroup relationshipbetween the phases and the transformation loses reversibility. Moreover, in M3martensites the transformation ours explosively (alled the burst e�et [4, 43℄)in suh a way that the transformation is morphologially irreversible. The elastistrains are not able to remove the large internal stresses during the transition butthe material undergoes a notable plasti (i.e. non-reoverable) plasti deformation,with many lattie imperfetions. All this prevents suh lass of martensites fromexhibiting the SME. Instead, in M1 lass the nuleation and growth of martensiti7In fat, a martensiti transition an also be seond order, when, for instane, ouples toother seond order transitions, like ferromagneti transition [43℄.



12 Chapter 1. Introdution to ferroelastiitydomains are observed to our thermoelastially, that means that at eah step ofthe transformation, the system is in thermoelasti equilibrium. It is given by aloal balane between the driving fore originated from the di�erene between freeenergies of the two phases and the elasti energy [45℄. This makes the transitionbe reversible. Suh lass of martensites is preisely that displaying the SME.The martensiti transition (MT) proess ours in sudden jumps, giving riseto an avalanhe-type dynamis. At eah jump the partial transformation oursinstantaneously, in omparison with laboratory time sales. Thermal �utuationsare not the triggering fator leading up to the transition. In order the material tokeep transforming it needs to be ontinuously driven by an external �eld, eitherthe temperature or a mehanial stress. In that sense the temperature ats asan external ontrol parameter. Atually, the long-range harater of the elastiinterations supresses the otherwise deisive role of the ritial �utuations, thusmaking the transition athermal [46℄.The omplete temperature-indued forwardtransition (austenite to martensite) takes plae between two temperatures alledmartensite start (Ms) and martensite �nish (Mf ) whereas the bakward transition(martensite to austenite) ours between the austenite start (As) and austenite�nish (Af ) temperatures.MTs have been observed in a wide range of materials like metals, alloys, eram-is and even biologial systems [13℄. Here we will fous in martensites exhibitingSME like several iron-based alloys, Ti-Ni-based alloys, Heusler alloys, Ni-Al andmany others. For simpliity, from now on, MT will refer exlusively to this lassof martensites exhibiting SME.1.6 Ferrois and multiferroisFerroelastiity shares many features with other phenomena like ferromagnetism[47,48℄ and ferroeletriity [49℄, where magnetization and polarization play the roleof the strain respetively. All of them have in ommon the existene of a physialmagnitude (those just mentioned) whih takes spontaneously nonvanishing valuesbelow a ertain temperature due to the existene of a phase transition from a high-symmetry, disordered phase to a low-symmetry, ordered phase, whih shows long-range patterns suh as magneti/polarized domains, et. These patterns originatefrom a ombination between a degenerated multiwell energy pro�le, long-rangeinterations of dipole-dipole type deaying with distane as 1/r3 and geometrionsiderations of the system suh as the symmetries of the underlying lattie,size and shape e�ets, interfaes, et. It is worth mentioning that the squareroot saling relationship between the domain stripe width and the produt phase



1.6. Ferrois and multiferrois 13size observed in ferroelastis also holds for both ferromagnets and ferroeletris.Moreover, other dynamial-geometrial relations have been found [50℄.Also, at low temperatures the response of suh systems to the onjugatedexternal �eld forms a harateristi �eld-variable hysteresis loop, resulting froman easy domain swithing. Despite the evident di�erenes among these systems8,the interesting parallelisms in their underlying physis make them to be broughttogether under the more general name of ferrois [4℄.It is lear that the mirosopi origin of the di�erent marosopi pysial vari-ables lies in the same underlying briks onsisting of the fundamental eletromag-neti interations It is therefore expetable the various physial magnitudes to beoupled to a ertain extent. Many times this oupling is weak and therefore it islogi to treat suh variables independently as above. However, a strong ouplingamong them is often observed marosopially in suh a way that some materialsexhibit a relevant ross-variable response: for instane, the eletri �eld an a�etthe magnetization as well as the magneti �eld a�ets the polarization, whih isalled magnetoeletri oupling.9 An immediate onsequene of this oupling arethe mixed-variable patterns, and the possibility of ontrolling the orrespondingmarosopi physial properties by di�erent external �elds has led to an impor-tant tehnologial interest.. Magneti twins depend on strutural twins, and vieversa, and, onsequently, a strutural variant an be swithed by a magneti �eld.Magnetostrition [51℄ and the magneti SME [52℄ are hanges in volume and shapeby means of an external magneti �eld. Also, magnetoalori e�et is observedto be enhaned when it is aompanied by a strutural transition. Colossal mag-netoresistane (CMR) e�et [53℄ refers to dramati hanges in ondutivity dueto the presene of a magneti �eld. Materials exhibiting oupling between dif-ferent variables are alled multiferrois [2℄. A visual sheme aounting for thisross-variable response is shown in Fig. 1.5.Many properties in materials have been observed to be very sensitive to thepresene of inhomogeneities, and the ross-variable oupling exhibited by multi-ferrois enhanes onsiderably the range of phenomenology. Nowadays suh inho-mogeneities are even well nourished with the aim of improving known propertiesor disovering novel ones10. It is well known that the gap in semiondutors ap-pears when the system is onveniently doped. CMR only ours when two phases(metal and insulator) are in ompetition [55�57℄. Polar nanoregions signi�antlya�et the strutural properties in relaxor ferroeletris and it has been suggested8Note that, for instane, strain is a seond-rank tensor whereas and magnetization is of �rstrank.9Atually, the magnetoeletri oupling is mediated by strain.10Of ourse, many times this is not the ase, being the disorder an inovenient for the desiredproperties.
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Figure 1.5: Coupling betweendi�erent magnitudes gives rise toa ross-variable response in multi-ferrois. Extrated from Ref. [54℄.to ontribute to the ultrahigh piezoeletri e�et observed in these materials [58℄.Semiondutors, ioni ondutors, high-Tc superondutors, olossal magnetore-sistive (CMR) materials [59, 60℄, ferromagnets [61, 62℄ and ferroeletris [63℄ areonly few examples whose behavior lies in the presene of inhomogeneities.Also, nanosale preursor modulations are not exlusive to ferroelasti systems,but instead they our in a broad lass of ferroi materials inluding ferromag-neti [61℄ and ferroeletri materials [63℄. Thus, ferromagneti nanolusters in theparamagneti phase, alled Gri�ths phase, are known to our in systems withquenhed disorder. [64, 65℄. The spei� symmetry properties of the anisotropydetermine the seleted pattern. High anisotropy pretransitional stripe-like puremagneti patterns, observed for instane in Co-Ni-Al [61℄, have been labelled asmagneti tweed by analogy with strutural tweed [62, 66℄. Cross-hathed magne-toelasti tweed resulting from the oupling between elasti tweed and magnetidegrees of freedom has been also observed [66℄. Moreover, all these pretransitionaltextures are aompanied with anomalies in suseptibilities and other responsefuntions.1.7 Brief introdution to glassesAlthough the glass phenomenon was in priniple far from ferroelastiity, in aseries of reent experiments [20, 34, 67�73℄ glassy behavior has been deteted inthe strain of some ferroelasti martensites and has popularized the term strainglass. Beause of this, here we give a very short overview about glasses.The material historially known as glass has some partiular haraterististhat prevent a onventional, equilibrium thermodynami understanding. Stru-tural glasses [74℄, as they are known among physiists, are materials in the solidstate whih di�ers from rystals in the lak of any long-range order. Instead of



1.7. Brief introdution to glasses 15the typial rystallographi translational symmetry, the atomi arrangement isdisordered; only a short-range order survives due to the hemial bonds with thesurrounding neighbors, but at some atomi distanes the on�guration may beompletely di�erent. Neither a Wigner-Seitz ell nor any Bravais lattie an bede�ned and this results, for instane, in a X-ray di�ration pattern onsistingonly in a few broad peaks [75℄ instead of the typial multiple-narrow-peak pat-tern. Suh glasses are formed by rapid melt quenhing from the liquid phase thatprevents the rystallization and leads to a freezing of an amorphous struture,like superooled liquids. Nevertheless, they mantain all the mehanial propertiesof solids, sine the only degrees of freedom that survive are preisely phonons,whereas rotational and translational motion is arrested.Nowadays, in physial siene, the meaning of glass has been extended to in-lude a wide range of systems that share some general features similar to thoseexplained above. They mainly di�er in the partiular degree of freedom thatfreezes and bloks in a disordered state. For instane, spin glasses [76℄ are systemsin whih the magneti degrees of freedom are anhored in random orientations.In orientational glasses [77℄, translational order exists but the moleules exhibitfrozen, disordered orientations, whereas ferroeletri relaxors [78℄ show stati, ran-dom eletrial dipoles. Other examples are vortex glasses in superonduors [79℄.All of them are haraterized by a high-temperature phase where the degrees offreedom of interest �utuate freely. Moreover, in most ases suh systems undergoa phase transition when dereasing the temperature towards a more ordered state,like liquid-rystal, para-ferromagneti, para-ferroeletri, et. However, underertain onditions, the transition an be supressed and instead of that �utuationsfreeze, leaving the system in a disordered, glass state. Usually, suh a state ismetastable with respet to the true equilibrium, ordered state. The material, thatis said to undergo a glass transition, is not able to reah this equilibrium state sineit is haraterized by a slowing-down dynamis and ergodiity breaking [80℄, whihare assoiated to the dilation of the relaxing time sales. In many ases, relaxingtimes beome in�nite to all intents and purposes and make the system remainforever in the metastable state. This an be explained by a total energy with abumpy pro�le with multiple (nearly) degenerated low-lying states whih makesit di�ult for the system to �nd an optimal way to reah the global minimum.Eventually, this way may not exist or may be thermodynamially unaessible.Curiously, although the phenomenology among these kind of di�erent systemsis very similar, from a thermodynami point of view glasses may have di�erentorigins. Thus, strutural glasses arise as a onsequene of an ultra fast ool-ing, whereas other glasses our due to geometrial frustration [81�83℄, like theparadigmati antiferromagneti triangular lattie. In this ase, all the antifer-romagneti bonds annot be satis�ed simultaneously, i.e. the exhange energy



16 Chapter 1. Introdution to ferroelastiityannot be minimized due to the geometry of the lattie and, hene, the thermo-dynami equilibrium state does not exist. Instead, many spin on�gurations ofvery similar low energy are unlikely to evolve towards little lower states sine itmay imply to �ip spins wih would lead to nonfavorable parallel bonds in otherneighboring regions. On the other hand, and more interestingly, it has beenobserved that phase oexistene may give rise to glassy features due to kinetifreezing [84℄. It is believed that point defets are at the origin of the suh glassybehavior in ferrois when doping, whih links with some omments on inhomo-geneities in Se. 1.4.1. In ontrast with geometrial frustration, here a truethermodynamial phase is likely to exist although it is unaessible due to energyand/or entropy barriers [85℄. Atually, this is our ase here, where glassy behaviorhas been observed in the non-transforming omposition of the martensiti systemTi50−x-Ni50+x for x > 1.5. There the frozen disordered degree of freedom is onlythe lattie deformation11 and hene this glassy system has been alled strain glass.1.8 Shape memory alloys. Fe-Pd and Ti-NiThe type of alloys exhibitng SME is enormous, although all of them an be groupedwithin the huge family of intermetalli alloys; that is, ompounds ontaining two ormore metalli elements, ontaining optionally one or more non-metalli elements,typially some rare earths (La, Pr, Nd, Sm, et.) or even alkalyne elements (Sr,Ca, Ba, et.) forming manganites.12 Here metalli elements also inlude poormetals and metaloids. Thus, we �nd SME in binary alloys like Au-Cd [86℄, Fe-Pt [87℄, Ni-Al [88℄, Cu-Al [89℄, Ti-Pd [90℄, In-Tl [91℄, Cu-Zn [92℄, Ta-Ru and Nb-Ru [93℄, ternary alloys like Cu-Zn-Al [94℄, Au-Cu-Zn [95℄, Cu-Al-(Ni,Be) [96, 97℄,Pd-In-Fe [98℄, Ni-Co-Al [99℄, Ni-Mn-(Sn,In,Ga) [23, 100, 101℄, Ni-Ti-Cu [22℄, Ni-Ga-Fe [102℄, quaternary like Ni-Mn-Ga-(Fe,Co,In) [103�105℄, Ni-Co-Mn-In [24℄,Ni-Al-Mn-Fe, Ni-Fe-Al-B [106℄, Cu-Al-Zn-Mn [107℄, Ti-Hf-Ni-Re [108℄, et.More than 20 years ago a series of papers led by R. Oshima [27,109�113℄ weredevoted to haraterize Fe-Pd SMA. With respet to the famous Ti-Ni alloy, aomplete review from K. Otsuka and X. Ren an be found in Ref. [114℄. In thefollowing we give a omparative brief overview between these two SMA, Fe-Pdand Ti-Ni, that will serve as a summary of the di�erent aspets approahed inthis introdutory hapter. We fous on them beause they show very di�erentpeuliarities that are of our interest:11Note that other glasses mentioned above may show freezing of the lattie deformation butit is usually aompanied by freezing of other degrees of freedom12Manganites are ompounds of the type R1−xMxMnO3, where R is a rare earth and M analkalyne element



1.8. Shape memory alloys. Fe-Pd and Ti-Ni 17
• Fe70Pd30 undergoes a very weak �rst-order phase transition from a ubi totetragonal rystal struture whereas equiatomi TiNi shows a more omplexbehavior, with various possible martensiti transformation paths: B2 →
B19 (→ B19′), B2 → B19′ and B2 → R (→ B19′) where B2, B19, R,
B19′ stand for ubi, orthorhombi, trigonal and monolini rystallographilatties respetively.
• Ti-Ni exhibit a low value of the elasti anisotropy fator, A ∼ 2 whereasFe-Pd has a high value, A ∼ 15. This is onsistent with the fat that Fe-Pd shows the strongly anisotropi pretransitional tweed pattern [112, 113,115, 116℄ whereas Ti-Ni exhibits very rih preursor e�ets but no tweedontrast has been observed. Instead, Ti-Ni shows small domains of theinoming phase down to 5nm of almost spherial shape [34℄. The low valueof A for Ti-Ni omes from the fat that, although C ′ softens as it is usual,
C44 also dereases with dereasing temperature, whih is unusual amongmost of suh alloys [37℄.
• Both Fe-Pd and Ti-Ni show a very high sensitivity on omposition. Fe70Pd30transforms to martensite at T ≃ 257 K whereas in Fe68Pd32 the transitiontemperature drops to 0 K [33℄. Stoihiometri Ti-Ni transforms at T ≃ Kwhereas in Ti48.5Ni50.5 the martensiti transition is suppressed as well [34℄.Doping in both Fe-Pd [117℄ and Ti-Ni [37℄ modi�es signi�antly many as-pets as harateristi temperatures, transformation paths, et. The elastionstants are observed to depend on omposition.
• Ti-Ni is able to reover strains up to ∼ 7−8% by means of SME and SE [19℄and shows high mehanial performanes [118℄ as mentioned in the prefae.In ontrast, Fe-Pd exhibits very poor superelastiity, with strain reovery assmall as 1% or less [119℄.
• Fe-Pd (as well as the ferrous SMAs) shows strong magnetoelasti oupling[52, 120℄ whih leads to giant magnetostrition [51, 121℄ up to 3% and fer-romagneti shape memory e�et [122℄. Instead, in Ti-Ni (whih is para-magneti) no magneti-�eld indued martensiti transitions have been ob-served [123℄ due to a small diferene in magneti moment between austeniteand martensite. It is worth mentioning that, reently, some e�orts [124,125℄have been adressed to design omposites ontaining both Ti-Ni and a ferrousomponent as an attempt of ombining the exellent mehanial propertiesof the former and the fast atuation of the latter.





Chapter 2Elasti model
Modeling of ferroelasti martensites has been adressed from deades. Althougha displaement-based piture has been eventually used [126℄, most of e�orts havepoint at the strain �eld as the natural variable, suitable to desribe deformationson solids. Eshelby [127℄ was the �rst in approahing the problem of the equilibriumstrain of an inlusion within an undeformed matrix by means of miroelastiity.The stresses that appear relax thus reating the stress-free strain �eld in theinlusion and in the surrounding matrix, given by the ondition of mehanialequilibrium in the stress �eld.1 He pointed out that that problem ould be solvedby a sequene of simple operations. However, an analytial solution ould be foundonly in a few simple ases. As keystone, Khahaturyan [128℄ proposed a methodbased on the deomposition of the elasti strain �eld in a marosopi strainand an internal strain whih took advantage of the Fourier transform properties.Toghether with some elasti energy onsiderations, this theory gave rise to someimportant results, as the fat that, in general, the inlusion is strained as neessaryto provide a rystallographially oherent math to the matrix in its habit plane.This on�nes the elasti energy and elasti strain to the inlusion and makes thehabit plane a strain-free juntion. Khahaturyan easily onneted this with themartensiti transformation (MT), whih simultaneously was also approahed byRoitburd [129℄ in a very similar way. Khahaturyan also sueeded in explainingthe periodiity of the twin patterns to depend on the width of the transformedregion, �nding the experimentally observed square root saling law [130℄. Later on,this phase-�eld miroelastiity-based theory [131℄ has been widely used to modelother phenomena related to martensites as, for instane, stress-strain behavior inpolyrystalline materials [132℄ and the ferromagneti SME [133℄.1The mehanial equilibrium is given by the Cauhy's �rst law or, more generally, generalizedHooke's law whih is simply the Newton's seond law applied to elastiity in a ontinuous, solidmedia. We reall that an introdution to the linear theory of elastiity an be found in App.A.1, in whih the Hooke's law is desribed in eq. (A.8).19



20 Chapter 2. Elasti modelEarlier, Wehsler [134℄ developed the rystallographi theory of martensite,aording to whih the alternation of thin strips of di�erent rystallographi vari-ants of the transformed produt(twins) allows for invariant planes, as it has beenmentioned in hapter 1. This non-linear rystallographi theory has the advan-tage of automatially aounting for �nite strains and rotations but, instead, itdoes not involve energy onsiderations as the linear elasti model of Khahatu-ryan and Roitburd does, and whih, in some ases, beome neessary. Ball &James [135℄ developed a model whih approximately put together the advantagesof both rystallographi and linear elasti theories. It was based on a nonlinearelasti free energy that was invariant with respet to rotations and rystallographisymmetries.The �rst detailed analytial desription of the SME by means of the Landautheory is due to Falk [136℄, who also realized that the Landau free energy ould beresaled in suh a way that no free parameters remained in the model. Later, healso introdued a gradient (Ginzburg) term to make an analytial study of the in-terfaes [137℄. The large �exibility of the Ginzburg-Landau (GL) theory due to itspartial phenomenologial nature has been used to approah a wide variety of prob-lems in a simple manner. Elasti solitons were studied by Jaobs [138℄ and later byBarsh and Krumhansl [139℄ using a GL model inluding long-range interations.GL models inluding long-range interations oming from St. Vénant ompat-ibility onstraints [140�142℄ have been suessful in modeling a wide variety ofproblems, inluding three-dimensional strutures [143℄, di�erent group-subgrouptransitions (like square to retangular, triangular to retangular [144℄, tetragonalto orthorhombi, monolini and trilini transformations [145℄), star patternslike in Fig. 1.2, inertial, Langrange-Rayleigh type dynamis [144℄, et. A three-dimensional Landau model inluding more realisti, inertial dynamis as well asthe strain as the ontrol variable by means of a multiple order parameter free en-ergy has foused on the dynamial evolution of strain-indued stress-strain behav-ior [146℄. Another quite re�ned phase-�eld Landau model allows for a quantitativeharaterization pf stress-strain relations by means of all temperature-dependentthermomehanial properties of both phases suh as seond and third order elastionstants, transformation strain independent of stress and temperature, and littletemperature dependene of hysteresis [147,148℄. Reently, spin-based approahesto the Landau model have also been proposed [46, 85, 149℄. Other models havealso foused on diverse aspets of the SME [150�152℄.The model used in this thesis is based on a GL free energy extended to in-lude both long-range anisotropi interations oming from ompatibility, anddisorder oupling to the strain through the harmoni oe�ient. Suh a modelontains the four required ingredients to perform simulations of a system under-going a MT and exhibiting pretransitional phenomena and e�ets oming from



2.1. Landau free energy 21inhomogeneities in general. These are the following: (i) Temperature-dependingfree energy to aount for the transition, whih are provided by the Landau freeenergy.(ii) Interfaial energy and (iii) long-range anisotropi interations givingrise to domain boundaries. And (iv) quenhed-in random disorder allowing forinhomogeneities. In the following setions these four terms onstituting the modelare desribed in detail. Last one is devoted to numerial details and some otheromments.2.1 Landau free energyThe Landau theory [153℄ is a phenomenologial theory that attempts to desribephase transitions. It is laking in mirosopi basis, so that it does not take intoaount the level of atomi interations, thus moving away from atomisti models.Instead, it is based on a oarse-graining of the system in order to plae the lengthsale in a mesosopi level2. Aording to this theory, during the phase transitionthe given system usually su�ers a symmetry breaking, going from a high-symmetry�disordered� phase towards a low-simmetry �ordered� phase. Assoiated withthe symmetry breaking an order parameter (OP) an be de�ned3 in suh a waythat vanishes above the transition and takes non-zero values below it. Examplesof OP are di�erene of densities in liquid-vapor transitions4, magnetization andpolarization in ferromagneti and ferroeletri materials respetively, some straintensor omponents in strutural transitions, et. Landau theory was �rst proposedto desribe the transformation near the transition temperature, i.e. for smallvalues of the OP, but later it has been widely used to desribe the transition in anextended temperature interval so that the OP an take relatively large values. Allthis ensures that a full thermodynami treatment is indeed appropiate, giving riseto mean �eld results. This theory is based on the assumption that near equilibriumthe Landau free energy of the system �denoted by FL� is analytial, ontinuousand di�erentiable5, and an be written in a funtional form as an expansion inpower series of the OP φ about φ = 0. Aordingly, FL an be expressed asfollows:
FL(φ;T, ψ) = FL0

+

N∑

i=1

Ai
i
φi (2.1)2This will be disussed with more detail at the end of this hapter.3More than a single OP may be used if required.4Nevertheless, there is no symmetry breaking in this ase5Note that, sine FL is analyti, ontinuous and di�erentiable also in the transition point, itannot take into aount the singularities of diverging thermodynamial potentials and thereforeit is not able no reprodue the atual ritial exponents, et.



22 Chapter 2. Elasti modelwhere T denotes the temperature and ψ the onjugated �eld of the OP φ whereasthe oe�ients Ai are suposed to be analyti funtions of T and ψ. The roleof T and ψ is fundamentally di�erent from that of φ. Indeed, T and ψ arestate variables that an take any pair of independent values, thus haraterizingother state variables like thermodynamial potentials, et. Atually, they areexternal ontrol parameters that an indue the transition. Instead, φ takes onlymeaningful values when FL is minimum. There, FL beomes a funtion only of Tand ψ and oinides with a partiular termodynamial potential, depending on thespei� ase. The expression for FL in eq. 2.1 is versatile enough to haraterizea onsiderable wide range of phase transitions.If we deal with a spatially extended, ontinuous system, the OP φ is a spatial�eld φ(r). Then, FL denotes the total energy of the system and an be alulatedas an integral of the Landau free-energy density f over the whole system: F =
∫

Ω
f [φ(r)]dr, where f takes the same expression as in eq. 2.1 with the additionalspatial dependene given through the �eld φ(r), and, in general, through theoe�ients Ai(r).Symmetry adapted strainsOur aim onsists of modeling a �rst-order, ubi-to-tetragonal MT. However, giventhat many times the important aousti waves and, onsequently, the relatedinhomogeneous strain �utuations of interest are observed not to our in 3D butin subspaes of lower dimensionality [5℄, the modeling an be on�ned to the samesubspaes. This is indeed the ase of some ubi-to-tetragonal MTs, where thetransformation may be performed in the retangular ross setion of the tetragonalphase, giving rise to an e�etive 2D square-to-retangular transition. Obviously,this makes easier the ode and improves the omputation time, without loss ofgenerality. On the other hand, it should be pointed out that a pure 2D modelseems not to be appropriate to perform simulations for thin �lms sine the preseneof free surfaes are relevant for the possible modulations of the strain. Atually,surfae relaxations may ause important bendings in the third dimension like, forinstane, tunnel and tent-like strutures, et. [13℄.Within this framework, it is more onvenient to work with the so-alled sym-metry adapted strains as the natural, irreduible deformations that a square anundergo. In a system with square symmetry, the elasti modulus tensor has onlythree di�erent nonvanishing elasti onstants: C11, C12 and C44. By diagonalizingthis matrix we �nd the eigenvalues to be A1 = C11 + C12, A2 = C11 − C12 ≡ 2C ′and A3 = 4C44, that are elasti onstants assoiated, respetively, with the bulkmodulus and deviatori and shear modes. The orresponding eigenvetors are the
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Figure 2.1: Symmetry adaptedstrains: e1, e2 and e3 stand for theshear, deviatori and bulk strains.symmetry adapted strains, that, in terms of the strain tensor omponents ǫij are:
e1 =

1√
2
(ǫxx + ǫyy), e2 =

1√
2
(ǫxx − ǫyy), e3 = ǫxy (2.2)where e1 is the ompressional strain, that aounts for deformations of volumenot shape, e2 is the deviatori strain (also alled diagonal shear), aounting fordeformations with no hange of angles and e3 is the shear strain, ating parallelto the sides of the square. The opposite relations are:

ǫxx =

√
2

2
(e1 + e2), ǫyy =

√
2

2
(e1 − e2) (2.3)A shemati represention of e1, e2 and e3 is shown in Fig. 2.1. Thus, any defor-mation an be expressed in terms of these three symmetry adapted strains. Asan be seen, the appropriate OP for the square-to-retangular transition is thedeviatori strain e2.The existene of two energetially equivalent variants in the ordered phase (in2D the two possible retangle orientations, as an be seen in Fig. 2.1) imposes thesymmetry FL(e2) = FL(−e2). This toghether with the requirement of nonlineari-ties aounting for the transition lead to the following Landau free energy density

fL:
fL(e2(r)) =

A2

2
e22(r) +

β

4
e42(r) +

γ

6
e62(r) (2.4)where it an be easily proved that it must be ful�lled β < 0 and γ > 0, whereas

A2 is a sign-variable funtion of T , that an be written as A2 = αT (T −Tc). Here
Tc is a metastability limit as will be seen below. In fat, A2 is alled the harmonioe�ient, sine it orresponds to the generalized Hooke's law of elastiity, whihdesribes the harmoni motion [154℄. Hene, as seen previously, A2 an be ex-pressed in terms of seond order elasti onstants6: A2 = C11 − C12 = 2C ′. Note6Note that the expression may vary (and indeed it does) depending on the dimensionality ofthe system.



24 Chapter 2. Elasti modelthat the dependene of A2 on temperature makes C ′ partially soften upon oolingas it is ommonly observed in SMAs in the pretransitional regime.Temperature-indued transitionCarrying out a simple mathematial analysis7 of fL in eq. (2.4) one obtainsthe stability values for the strain e2 = 0 and e2 = ±{β/(2γ) + [(β/(2γ))2 −
A2/γ]

1/2}1/2 ≡ ±eM and the following stability limits:
T0 = Tc +

3β2

16γ
Ti = Tc +

3β2

4γ
(2.5)where Tc is the low stability limit of the high-T phase, Ti is the high stability limitof the low T phase and T0 is the equilibrium transition temperature.Obviously, e2 = 0 orresponds to the unstrained -non-transformed-, squarephase whereas e2 = ±eM orresponds to the retangular, strained -transformed-phase, eah sign orresponding to one of the two possible orientational variants.Figure 2.2 shows the evolution of the triple well struture of fL(e2) as funtionof T . At T > Ti, fL presents a single minimum at e2 = 0, i.e. the system is inthe high symmetry, square phase. When T is dereased below Ti (T0 < T < Ti),the global miminum remains at e2 = 0 but two loal minima appear at e2 =

±eM , meaning that the low-symmetry phase is metastable. At T = T0 the threeminima are of equal energy, thus setting the equilibrium transition temperature.At Tc < T < T0 the global minima are observed at e2 = ±eM and the minimumat e2 = 0 is now loal, orresponding to the metastability regime of the high-Tphase. Finally, at T < Tc, this minimum disappears and only the two minima
e2 = ±eM remain. Figure 2.3 shows the equilibrium (ontinuous line) and maximalmetastable (dashed line) values of e2 as funtion of T . It reveals the disontinuityof the OP during the transformation and phase oexistene, due to the �rst orderharater of the transition. It also allows for hysteresis, latent heat, et.Stress-indued transitionThe Landau model is also appropriate to desribe isothermal transitions induedby applying the onjugated, external stress �eld σ. The total free energy in thepresene of a stress �eld σ omes from the orresponding Legendre transformationof fL:

fL,σ(e2) = fL(e2) + σe2 (2.6)7A phase will be stable if and only if it orresponds to a minimum of the free energy density
fL. This results from imposing the requirements ∂fL

∂e2

|e20
= 0 and ∂2fL

∂e2

2
|e20

> 0
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26 Chapter 2. Elasti modelThe presene of the stress �eld deforms the free-energy struture in suh a waythat, beyond the usual elasti regime, also aounts for the interesting thermo-mehanial phenomena desribed in Chap. 1, suh as superelastiity and pseudo-plastiity, the latter giving rise to the Shape Memory E�et. Pro�les of fL,σ fordi�erent values of σ at di�erent temperatures are shown in Fig. 2.4. Case (a) leadto superelasti behavior whereas (c) and (d) show pseudoplastiity. Case (b) issuseptible to show either superelastiity or pseudoplastiity sine in the asbeneof the stress �eld the ferroelasti phase remains metastable.
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Figure 2.4: fL,σ for di�erent values of σ and T .We now proeed analogously to the T -indued transitions and arry out astability analysis of fL,σ(e2). It has to be omputed numerially sine it has noanalytial solution. Figure 2.5 shows the dependene of e2 at the minima of
fL,σ(e2) as funtion of T . We an also analyze the dependene of the minimaof e2 on σ, whih is shown at three di�erent temperatures in Figure 2.6. Here,
σ is displayed in the y-axis for better omparison with the usual strain-induedstress-strain experiments. Continuous line indiates the equilibrium trajetoryand dashed lines are the maximal metastability regime. Case (a): Below thetransition, the system shows pseudoplasti behavior, sine the strain annot be



2.2. Ginzburg energy 27

0,5 1 1,5 2
T

0

0,01

0,02

0,03

0,04

0,05

0,06

st
ra

in

σ>0

T=T
c

σ

T=T
0

σ

T=T
i

σ Figure 2.5: Evolution of e2 at the minimaof fL,σ(e2) as funtion of T at onstant σ >

0. The maximal hysteresis area is reduedand shifted to higher T as σ is inreased.Here, T σ
c and T σ

i retain the orrespondingmeanings of stability limits but take di�er-ent (non-analyti) values that those in eq.2.5. The same is also valid for the transitiontemperature T σ
0 .

0 0,02 0,04
strain

0

0,01

0,02

0,03

0,04

st
re

ss

0 0,02 0,04
strain

0 0,02 0,04
strain

a)     T < T
0

b)  T
0
 < T < T

i
c)     T

i
 < T

Figure 2.6: Di�erent mehanial behavior at three di�erent inreasing temperatures.reovered8 when removing the stress. However, the system is suseptible to exhibitSME upon heating. Case (b) orresponds to an intermediate regime whithin whihboth pseudoelasti and superelasti behavior ould be observed, depending on thespei� return path followed by the system. Case (c) shows superelasti behavior.
2.2 Ginzburg energyA system undergoing a MT typially ahieves a multivariant phase, with thepresene of domain boundaries, i.e. interfaes separating the di�erent variants.Experimentally domain boundaries are often observed to be rather sharp, in therange of at the most few interatomi distanes [13℄. Instead, although interfaesare energetially unfavorable in an spatially extended homogeneous Landau sys-tem,9 the ontinuous and di�erentiable nature of the free-energy leads to smooth8Reall that in this ase the initial strain is zero due to the self-aomodation proess leadingto a domain mirostruture with no marosopi net hange.9In the interfaes, the strain �eld must take values that are loally unstable: A ontinuous anddi�erentiable domain boundary (as it is in the Landau model) separating variants of equilibrium



28 Chapter 2. Elasti modelinterfaes, with a ertain width in the mesosopi sale. Ginzburg proposed anextra energeti penalty for variations of the OP fG = κ
2
|∇e2|2. Thus, any inter-fae results in an extra energeti ost that results in sharper interfaes than inthe absene of fG whih is loser to experiments. In fat, it an be proved thatthe energeti ost of the interphases due to the Ginzburg energy is equal to thatof the homogeneous ontribution [155℄. For a more ompat notation, we de�ne

fGL = fL + fG.2.3 Long-range anisotropi interationsIn addition to the OP deviatori strain, the other symmetry-adapted strains e1and e3 may appear as a onsequene of the transition in order to make easier theoherent math between di�erent rystallographi ells, orresponding to eitherdi�erent variants or di�erent phases. Moreover, sine the stable, low-temperaturerystallographi ells ome from a pure OP (i.e. deviatori) deformation (in ourubi-to-tetragonal transition), the non-OP ontributions must be energetiallyostly and therefore the domain boundaries must adopt the morphology thatminimizes this ontribution. Then, sine they are non-OP of the transformationand thus their ontribution is assumed to be small, they are taken into aountonly up to the harmoni term. Thus we an write:
fnon-OP =

A1

2
e21 +

A3

2
e23 (2.7)Similar to the harmoni oe�ient A2, A1 and A3 may also be expressed as fun-tion of elasti onstants: A1 = C11 + C12 and A3 = 4C44, being both A1 and A3positive whih on�rms that this ontribution is indeed unfavorable. The total freeenergy density an be then written as fT(e1, e2, e3) = fGL(e2) + fnon-OP(e1, e2, e3).As it is shown in App. A, the three symmetry adapted strains e1, e2 and e3 areobtained as derivatives of the same underlying 2-dimensional displaement �eld

u = (ux, uy), whih are the two true degrees of freedom of the system. Conse-quently, the strain omponents are not independent but are linked through theSaint-Vénant ompatibility ondition10 [140℄, that ensures that the transforma-tion is defet-free, thus mantaining the lattie integrity. This leads to express
fnon-OP in terms of e1 and e2 and, hene, fT(e1, e2), where we have eliminated thedependene of the total free energy on e3. Moreover, we onsider that e1 takesat any time the values that minimize the total free energy, so that we impose thestrain e2 = +eM and e2 = −eM must inlude points with all the possible values in between,that therefore do not orrespond to the equilibrium values e2 = ±eM .10The mathematial details of the Saint-Vénant ompatibility ondition an be found in App.A.



2.3. Long-range anisotropi interations 29ondition ∂fT
∂e1

= 0. This allows us to get a �nal expression for fnon-OP in termsonly of e2:
fnon-OP(e2) =

∫

e2(r)U(r− r
′)e2(r

′)dr′ (2.8)where the kernel U(r− r
′) goes as ∼ cos(4[θ− θ′]/r2) in 2D11. The integral in thefree-energy density ontribution fnon-OP reveals that this term is non-loal sinerelates any two ells in the system by means of the kernel U . The 1/r2 fallo�indiates that it is long-ranged whereas the cos makes fnon-OP vanish for values

θ = ±45 deg. This an be easily seen in Fourier spae, where the free-energydensity takes the following form12:
fnon-OP(kx, ky) =

A3

2

(
k2
x − k2

y

)2

(A3/A1) k4 + 8 (kxky)
2 |e2(k)|2 = V (k)|e2(k)|2 (2.9)This expression makes lear why ross-hathed orrelations along the diagonals

kx = ±ky are favored. Suh orrelations are more likely and stronger for largervalues of A3 whereas, formally, they vanish when A3 → 0.13 We point out thatsuh orrelations are at the origin of the diagonal interfaes of both tweed texturesand martensiti twins. Kernels U(r−r
′) and the orresponding Fourier transform

V (k) are shown in Fig. 2.7(a) and (b) respetively, where A3/A1 and A3 aretaken to be A3/A1 = 2 and A3 = 2. It is of interest to state spei�ally therelation between the parameter A3 and the elasti anisotropy fator A, whih wereall that for a ubi system it is de�ned as A = C44/C
′. Taking into aount theexpressions relating C ′ and C44 with the parameters of the model (whih have beengiven previously), we �nd that A an be written as A = A3/2A2. Given that A2is a funtion of temperature, at onstant temperature A3 and A are proportional.Thus, variations on the elasti anisotropy fator (whih is one of the main targetsof this work) an be arried out through variations on A3. As seen above, thisentails modifying the strength of the long-range interations. In the following,we analyze in depth the e�ets of variations in the parameters appearing on thekernel V (k).From the expression above we an see that, regardless of the value of A1(provided that A1 6= 0), an inrease in the value of A3 results in an inrease of thenon-OP free energy ontribution, whih in turn favors the diagonal orrelations.14Moreover, in Fig. 2.8 we plot the kernel V (k) for two di�erent values of thefator A3/A1: (a) A3/A1 = 20 and (b) A3/A1 = 0.2. We have set A3 = 4.54.11The power of r does depend on the dimensionalilty of the system.12The mathematial details of the aluli an be found in App. A.13Note that fnon-OP also vanishes for A1 = 0, although this formal limit is uninteresting as itwill be seen below.14This is easier to see if we divide both the denominator and the numerator by A3.
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Figure 2.7: Kernel ofthe non-OP free-energydensity in real (a) and re-iproal (b) spaes. Thepreferred diagonal di-retions an be learlyappreiated.
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Figure 2.8: Kernel of the non-OP free-energy density in reiproal spae V (k) for twovalues of A3/A1: (a) A3/A1 = 0.2 and (b) A3/A1 = 20. Here, A3 = 4.54 in both ases.It an be seen that the struture of the potential remains robust with respet tohanges in this fator. However, as A3/A1 dereases, the deay in the o�-diagonaldiretions beomes more abrupt sine the value of the kernel in these diretionsinreases. Notie the signi�ant di�erene on the vertial sale. It means that,for a given value of the weight A3 of the kernel V (k), (diagonal) tweed texturesand twin boundaries are favored more and more as the value of the fator A3/A1is dereased. This also ours when, for a given value of A3/A1, the value of A3 isinreased. This has been further heked through simulations with di�erent valuesof this ratio, whih will be shown when onvenient, in Se. 3. Consequently, we anontrol the weigth of the long-range interations (and onsequently the magnitudeof the elasti anisotropy fator A at a given temperature) through variations onlyin the parameter A3 but simultaneously keeping onstant the ratio A3/A1 = 2.2.4 Quenhed-in disorderE�ets of inhomogeneities in SMA have been approahed from diverse points ofview. In Refs. [156, 157℄, the spatial variation of either the stress �eld of defetsor hemial driving fore aounts for athermal frition in the evolution of stress-indued martensiti variants. The introdution of thermal �utuations has su-eeded in obtaining the dynami tweed, either as a pretransitional e�et itself [7℄or a low-temperature transient state before evolving towards the more orderedstruture [158℄. Assuming the disorder to have a muh larger lifetime than anyproess involving elasti mehanisms, like phonon relaxation (whih is of the orderof ∼ 10−12s) and other slower time sales like boundary movements, and onsid-ering that no difussion is expeted in suh systems, the role of inhomogeneities inausing preursors was studied also by Bequart et al. [159℄ through the presene



32 Chapter 2. Elasti modelof stati perturbing �elds. They observed that an ordered �eld did not produedtweed, but it was obtained through a random �eld. It supports the idea that therandom nature of inhomogeneities intrinsi to materials is a neessary onditionfor suh pretransitional textures to develop. Also Khahaturyan modeled tweedwith stati disorder [160℄.It is well known that the omposition is a statistially �utuating randomvariable in alloys, whih varies loally from on site to another. Altough thesevariations are in general slightly, the high sensitivity of the transition temperatureon the spei� onentration of eah element observed in many SMAs led Karthaet al. to think about a variable loal transition temperature. For instane, inthe ase of Fe70Pd30, regions with slightly higher (lower) onentration of Pdthan the average value (30%at.) would lead to a lower (higher) loal transitiontemperature15. Thus, in the ontext of Landau, they proposed a stati, spatiallyrandom, �utuating �eld oupling to the strain through the harmoni oe�ient,whih led to a distribution of loal transition temperatures. This, together withlong-range anisotropi interations, enabled them to obtain stati tweed.Here we essentially adopt this sheme, and introdue the following distorting�eld:
f [η(r)] =

αT
2
η(r)e22(r) (2.10)where η(r) is a random variable, gaussian distributed with zero mean and spatiallyorrelated by means of an exponential pair orrelation funtion.

〈η(r)η(r′)〉 = G(|r− r
′|) =

A

2π
e−|r−r′|/ξand g(η) = 1√

2πζ
e
− η2

2ζ2 . Here, ξ is the orrelation length. The amplitude A of theorrelation funtion is related to the standard deviation of the Gaussian distribu-tion so that ζ =
√

A
2π
. The proof of this relation is given in App. A.3.3.Note that this kind of oupling has the e�et of produing a distribution of loalharateristi temperatures, so that we an de�ne loal stability limits T̃c(r) =

Tc + η(r) and T̃i(r) = Ti + η(r) and equilibrium temperatures T̃0(r) = T0 +

η(r). For simpliity, we rename T̃c(r) as Tc(r), and orrespondingly the otherharateristi temperatures. To avoid onfusion Tc(r) with the Landau Tc, thespatial dependene will be always stated spei�ally. This enables loal regionsof the high temperature phase to be loally stable below Tc and vie versa, whihare separated by free energy barriers. Sine Tc(r) is exponentially orrelated,it gives rise to islands of similar loal stability limits, that will at either aspinning sites for nuleation and growth of martensite (and whih are at the origin15We reall that an inrease in the average onentration of Pd leads to a derease in thetransition temperature of the sample



2.4. Quenhed-in disorder 33of premartensiti strain modulations) or as retainning sites for austenite uponooling16 (and for martensite upon heating). For a given value of ξ muh lowerthan the simulation ell size, these islands are short-ranged at high temperaturesand grow progressively as the temperature is dereased. Obviously, the higherthe value of ξ the larger the size of the island. On the other hand, at a given Tand ξ, the higher disorder intensity ζ the larger the system fration that will beunstable. Hene, this will inrease the onset temperature of the preursor regime.Moreover, a higher ζ also enhanes the mean loal unstability of the system,whih will favor the stability of the preursor strutures. Sine statistially themean value 〈η〉 vanishes, disorder favors equally both phases with respet theequilibrium transition temperature in the lean limit (T0). Consequently, highervalues of ζ gives rise to higher energy barriers. This is analyzed in depth in thefollowing. Before going into this issue, it should be pointed out that the fat that
〈η〉 = 0 is not in agreement with experimental results, whih indiate that dopingentails a destabilization of the martensite so that the transition takes plae atlower temperatures, as ommented in Se. 1.4.1. However, a nonvanishing valueof 〈η〉 does not give rise to new qualitative �ndings, but only would shift all thephenomenology to be observed around the spei� new value Tc + 〈η〉.Disretization of disorder: E�ets of ξ and ζThe disorder variable η(r) has been de�ned above as a variable in the ontinuum,as the Landau theory essentially is. As seen, η(r) ontains two free parameters:the amplitude of the gaussian distribution17 ζ and the orrelation length ξ. Theo-retially they would ompletely determine the spei� pro�le of η(r) in any regionof the spae. However, for omputational purposes, η(r) needs to be disretizedin the oarse-grained mesh. The disretization proedure introdues a new pa-rameter Λ whih orresponds to the length of the unit ell of the system, that isde�ned as Λ = L/N , where L is the linear size of the square simulation ell, and
N2 is the total number of unit ells ontained in the simulation ell. In priniple,as the disretization premises state, the disretization of the spae should be as�ne as not to a�et the simulation results. It means that Λ must be hosen in arange within whih variations of its spei� value does not entail any hange inthe results in order to be onsistent with the theory. If it happens, the value ofthe Λ is too large and must be diminished. In the ase of our model, tests havebeen arried out to hek it and it has been observed that the value of Λ below16This simple analysis does not take into aount the long-range interations, that also a�etthe stability of eah system site.17The mean value of the distribution 〈η〉 has been set to zero and it is not taken into aounthere.



34 Chapter 2. Elasti model

430 440 450 460 470 480
r

0

1

2

T
c(r

)
2048x2048; dicretization parameter a
512*512; dicretization parameter a’=4a

r(  )Tc∆

r(  )Tc∆ ’

r(  )Tc

ra’a

(a)
(b)

Λ

Λ
Λ

Λ
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′ tends to zero as the distane between the points r−r
′ tends to zero.However, the disretization of the spae introdues a minimum distane betweennearest neighbor sites, whih is preisely Λ. Consequently, Tc(r) − Tc(r

′) doesnot vanish between the nearest neighbor ells but take �nite values. They an bearbitrarily de�ned, for instane, as ∆Tc(r) = Tc(i, j)− Tc(i− 1, j). Figure 2.9(a)shows a shemati, theoretial pro�le of Tc(r) in a given segment of the spae. Itis learly seen that in the ontinuous ase (ontinuous urve) Tc(r) take an in�niteset of values that give rise to vanishing loal di�erenes of Tc(r) between in�nitelylose points. Instead, if the spae is disretized in a mesh with disretizationparameter Λ, Tc(r) takes the values only at the blak dots, giving rise to �nite
∆Tc(r). If now we use a new disretization parameter Λ′ = 2Λ (white dots), theresulting ∆T ′

c(r) will be larger on average, as it is shematially indiated by thevertial arrows. This an also be seen in Fig. 2.9(b).Sine Tc(r) ontributes to the total energy pro�le of the system, say E(r), thehigh of ∆Tc(r) plays a key role in determining the height of �nite loal energy



2.5. Total free energy 35barriers ∆E(r). The preise relationship between both ∆Tc(r) and ∆E(r) annotbe derived easily due to the presene of long-range elasti interations. However,from a given value of ∆Tc(r), the pure relaxational dynamis used in the model isobserved to be unable to overome the resulting ∆E(r). In short, the kinetis ofthe system, that is ruial for the �nal stabilized strutures, is diretly (ritially)a�eted by the �nite nature of the disretized disorder variable, that in turndepends on the disretization parameter.In fat, some of the relevant results, as mentioned, ome out preisely fromthe fat that disorder leads to �nite energy barriers. In other words, the impor-tant property that disorder must have is that it preisely does give rise to suh�nite ∆Tc(r)'s in order to show the desired behavior. Thus, the disorder may berede�ned as a disrete variable with all the properties mentioned above, but thatis, indeed, independent of the disretization parameter. The dependene may beabsorbed by reformulating the orrelation length ξ in units of the disretizationparameter, and letting ξ without any physial meaning. Then, the dependene of
∆Tc(r) on ξ must be analyzed.The dependene of the mean value of ∆Tc(r), denoted by 〈∆Tc(r)〉 on both ζand ξ is shown in Fig. 2.10(a) and (b) and respetively. It an be dedued thatvariations on ξ shift the behavior in the parameters' spae, in suh a way that thelower ξ the larger ζ required to obtain similar behavior. Looking at the slope ofthe urves, the dependene of 〈∆Tc(r)〉 on ξ is strong only for relatively low valuesof ξ and high values of ζ . With respet to this, simulations for the more ritialvalue ξ = 10, whih is lower than that used in most of the simulations (ξ = 20),have been arried out in order to hek the e�et of variations in this parameter.These results will be shown later when onvenient but in any ase they do nota�et qualitetively the �ndings and onlusions of the work. Consequently, fromnow on, ξ is kept onstant and the study of the e�et of the disorder will be arriedout as funtion of the amplitude ζ .2.5 Total free energySummarizing the previous setions, the total free energy of the system an bewritten as the sum of the following ontributions: FT = FL + FG + Fη + Fnon-OP.More expliitly:
FT =

∫ [
αT
2

(T − Tc + η(r)) e2(r)
2 − β

4
e2(r)

4 + γ
6
e2(r)

6 + κ
2
|∇e2(r)|2

]
dr
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2(2π)2
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]
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Figure 2.10: Mean �nite loal di�erenes of Tc(r), denoted by 〈Tc(r)〉, as a funtion of
ζ for di�erent valuees of ξ (a) and vie versa (b).The system onsists of a 2-dimensional ontinuous lattie with square symmetry.The numerial implementation requires the disretization of the expression aboveon a mesh. Numerial details an be found in App. A.2.6 Numerial details and other ommentsParametersThe material parameters that we use in the simulations are taken from experi-mental data for Fe70Pd30 [33℄ and an be found in App. C in S.I. and reduedunits. The aim of this thesis is to explore the thermodynami behavior of themodel in the parameters' spae, in partiular the e�et of the anisotropy fator(through variations in the oe�ient A3) and the amplitude (standard deviation

ζ) of the disorder distribution.In fat, Falk [136℄ showed that the Landau free-energy has no free parametersbut temperature. Moreover, we have seen that variations on the ratio A3/A1 aswell as on the orrelation length of the disorder do no lead to new phenomenology.Therefore, beyond the primordial experimental justi�ations given in the previoushapter pointing to these parameters as important fators in ferroelasti systems,the region of the parameters' spae of this model that gives rise to qualitative ther-modynami behavior with physial relevane an be approximately redued to thetwo-dimensional subspae determined by the two parameters A3 and ζ . Variationsof disorder should be understood as airising from ompositional hanges, dopingor quenhing e�ets. Conerning the elasti anisotropy A, signi�ant variationsneessarily entail hanging the material.



2.6. Numerial details and other omments 37Although a quantitative analysis of the ferroelasti properties is beyond thesope of this thesis, it is worth noting that the parameter values used here giverise to quantitative results that in general are in reasonable (and often notably)agreement with experimental observations. Despite that the simulations are shownin redued units for simpliity, in some ases the values of the magnitudes havebeen spei�ed in physial units in order to highlight suh quantitative agreement,whih gives additional support to our simulation results.Relaxational dynamisStabilized on�gurations are obtained by minimizing the total free energy FT givenin eq. (2.11). This is arried out by means of pure relaxational (overdamped)dynamis whih onsists of applying the following dynamial equation over all theunit ells of the system18
∂e2(r)

∂t
= − δFT

δe2(r)
(2.12)As seen, no �utuations have to be taken into aount, sine almost all martensititransitions are athermal. In disretized form, e2(t + ∆t) = e2(t) − δFT

δe2
∆t. Here,time is meaningless sine we are not interested in intermediate but �nal stabilized�stati in our time sale� on�gurations, ∆t is hosen as large as possible inorder to optimize the omputation time. To avoid numerial problems, it may bemodi�ed depending on the partiular harateristis of eah simulation. Usually,its order of magnitude is of ∆t ∼ 10−2. We onsider that a on�guration has beenstabilized when √∑(e2(t+ ∆t)− e2(t)/∆T )2 =

√
1
N

∑
( δFT
δe2

∆t)2 < 10−14, wherethe sum is over all the unit ells of the system. Aording to eq. (2.12) derivativesof FT must be alulated. This is shown in detail in App. A.3.2.Metastability and equilibriumThe true equilibrium state an be derived through a simple analysis from theminimization of the total free energy of the system. At temperatures low enough,all the ells in the sytem transform to the ferroelasti phase. Landau poten-tial is doubly degenerated, whih allows for multivariant oexistene. Long-rangeanisotropi interations lead this oexistene to adopt modulated strutures alongthe diagonal diretions, but do not selet any spei� wave vetor for suh mod-ulations due to the existene of periodi boundary onditions. Then, Ginzburgenergy favors a low number of interfaes, making the global minimum be a single18It is easy to see that reursive appliation of eq. 2.12 brings the system to derease progres-sively its energy: ∂F
∂t

= δF
δe2

∂e2

∂t
and then, substituting eq. 2.12 one obtains ∂F

∂t
= −

(
δF
δe2

)2

< 0.



38 Chapter 2. Elasti modeldomain. By de�nition, suh a on�guration laks of internal mirostruture andhene it is inappropriate to study strutural patterns and assoiated thermody-nami behavior.However, the overdamped dynamis is not able to overome �nite free-energybarriers.19. In our ase, this allows for stabilized metastable states. This is of ourinterest beause typially the system ends up stabilizing in twinned strutures orglassy states, and the single domain is only rarely reahed.Nevertheless, it should be pointed out that the obtained twins exhibit randomwidths instead of the harateristi width aording to the square root salinglaw observed in experiments. We reall that the real internal mirostrutureemerges from the existene of an habit plane, i.e. from size and shape e�ets.The absene of suh a harateristi width in our simulation results omes fromthe fat that the system is in�nite, sine we have imposed periodi boundaryonditions in our simulation ell. Atually, this does not prevent us from studyingmany aspets of ferroelastiity, although the analysis of domain sizes does requiresuh a harateristi width. Sine the latter is also of our interest, modi�ationswill be arried out in the present model, by means of spei� disorder �elds oradditional energeti terms, whih will be disussed in detail in Se. 3.4.Computational detailsThe algorithm used to perform the Fourier transforms is the so-alled FFTW (FastFourier Transform in the West) [161℄ and, in our ase, it has been shown to be ofthe order of ten times faster than that in Ref. [162℄, that is the book of referenefor Fortran odes. Typially, simulations have been arried out in a square lattieof linear size L = 103u.l., disretized onto a 512×512 mesh. Oasionally, this mayhave been modi�ed and it will be indiated. Periodi boundary onditions havebeen used in order to ompute the non-OP ontribution in Fourier spae. It hasonsiderably ut down the ost of omputation time, sine for a system of N ells,the omputation of the FnonOP in real spae requires a omputation time of theorder of ∼ N2 whereas in reiproal spae the order is only ∼ N logN . Averageshave been arried out over independent realizations of the disorder. The initialstate depends on the harateristis of the spei� simulations. For instane, theinitial on�guration in quenh-type simulations as well as in simulations startingfrom a high temperature state onsist of a random strain, Gaussian distributedwith zero mean and standard deviation equal to 10−6.19Stritly speaking, this only holds in the ontinuum. In disretized form, there exists a lowbut �nite treshold for the barriers that an be overome by this type of dynamis.



2.6. Numerial details and other omments 39Representation of the on�gurationsThe fully relaxed on�gurations obtained by solving numerially the model areshown in snapshots of the strain �eld e2(r). It is worth noting that the start-ing point of the model is the strain tensor. In that sense, the Ginzburg-Landaufree-energy density fGL is independent from the de�nition of the strain tensoromponents in terms of the displaement �eld u(r). That is to say, fGL doesnot depend on whether linear or nonlinear elastiity is used, and only the repre-sentation of the on�gurations in terms of u(r) fores one to hoose the spei�dependene of e2 on u(r). Instead, this is not the ase of the nonOP ontribu-tion, i.e. the long-range interations, sine they partially ome from the SaintVénant ompatibility ondition, whih is indeed derived by using the linear de�-nition of elastiity. Then, in order to represent the on�guration in terms of thedisplaement �eld, it should be used the linear de�nition of elastiity.





Chapter 3StruturesIn this hapter we study the strutural patterns resulting from solving numeri-ally the model presented in the previous hapter. In partiular, we address thein�uene of the anisotropy and disorder on the strutures, and their evolution intemperature. To haraterize the morphology the on�gurations, the loal straindistribution, domain wall pro�les and di�ration patterns have been analyzed.Surfae e�ets are also disussed and implemented in several ways, and used toalulate the domain size distribution.3.1 Anisotropy vs. disorder. A simple analysisLong-range anisotropi interations and loal disorder interat in a omplex way.They often have on�iting interests although sometimes they ooperate suess-fully as it is the ase of pretransitional tweed textures. To go depth into theunderstanding of this interplay it may help to do the following simple exerise.We design an ideal system ontaining only an isolated square region of homoge-neous disorder and analyze systematially the patterns that appear for di�erentvalues of A3. The homogeneous disordered region is haraterized by the width ofthe window D and the intensity of the disorder Tc(r ∈ D) ≡ I. The distributionand a snapshot of the resulting Tc(r) are shown in Fig. 3.1 in the upper pannels ofeah ase (a)− (d). Conerning these ases, note that the width of the disorderedwindow inreases from top (I = 1.7) to bottom (I = 1.9) whereas the disorderintensity D inreases from left D = 10 to right D = 30. The lower pannels ineah ase show the relaxed strain pro�les along the diagonal diretion for di�erentvalues of the anisotropy. At the right side of eah ase, a series of snapshots ofthe orresponding on�gurations (in olor) is shown.First of all, we reall that in absene of long-range interations the austeniteis unstable inside the disordered regions. Then, sine the free energy density is41



42 Chapter 3. Struturesloal, the strain takes the values e2 = 0 and e2 = ±eM outside and inside thedisordered region respetively, regardless of the values of D and I. As long-rangeinterations are introdued, this sheme hanges. Let us �rst fous on ase (a).As long as the value A3 is low enough, the disorder dominates the kinetis ofthe system and inside the disordered region the strain e2 adopts approximately aGaussian pro�le, only slightly deviating from the value eM and exhibiting tails ofvery small amplitude that deay outside the disordered region. However, above aertain ritial value of A3, the anisotropy is the dominant fator and the long-range interations do not allow the disordered region to deform. Instead, theymake the strain to approximately vanish over all the spaethus giving rise to ahomogeneous struture. Consequently, one an dedue that a strong anisotropyontributes to the stability of the thermodynami phase of the system.Di�erent behavior is observed in (b)− (d) ases. Here, two di�erent rossoversan be identi�ed. As in ase (a), low values of A3 give rise to the Gaussian-likestrain pro�le whereas high values lead to a homogeneous struture everywherein the system, as mentioned above. Nevertheless, for intermediate values of A3a new phenomenon arises as a onsequene of the balane between anisotropyand disorder, whih onsists of diagonal, wavy modulations of the strain insidethe disordered region. Suh modulations are at the origin of the pretransitionalross-hathed tweed. As an be seen in the �gure, the ritial values of A3 dependon both the width D and the intensity I of the disordered region. The larger thewidth D, the higher A3 needed to inhibit the deformation. Moreover, the largerthe width D, the lower A3 needed to modulate the strain. Therefore, as the width
D inreases, the intermediate regime exhibiting modulations of the strain alsoinreases. The same holds for the intensity I of the disordered region.In other words, for a given value of the anisotropy fator, the unstable regionsare allowed to deform provided they have a minimum size (D) , that in turn dependon the degree of instability (I). Below suh minimum size, anisotropi long-range interations are able to stabilize the disordered region by orrelating it withthe surrounding austenite-stable system. Moreover, tweed modulations require aminimum value of A3 to our, below whih only homogeneously distorted regionsarise.Although this is a simpli�ation of the on�guration that will be used in therelevant simulations, it aptures the essene of how the system reats to the pres-ene of both long-range anisotropi interations and loal disorder. The disorderde�ned in the model produes a distribution of loal transition temperatures thatare exponentially orrelated. Therefore, although it is a purely loal term, at agiven temperature T suh orrelations lead to a set of Landau-unstable islandswith a partiular mean size. Inside a given island, the degree of instability (i.e.the di�erene Tcr−T ) is spatially variable, and the maximum instability is plaed



3.2. E�et of anisotropy on the strutures. Temperature dependene 43typially lose to the enter of the island. When T is dereased, the degree of in-stability as well as the mean size of the islands inrease. In this sense, at a giventemperature when the standard deviation ζ of the disorder is inreased both themean size and the degree of instability of the islands inrease. Instead, the or-relation length only a�ets the mean size of the regions and not the degree ofinstability.
3.2 E�et of anisotropy on the strutures. Tem-perature dependeneIn this setion we perform simulations of the full model, and the obtained straintextures and their dependene on temperature T are shown and desribed as afuntion of temperature A3 and ζ . First we limit ourselves to variations on A3.Figure 3.2 shows snapshots of representative on�gurations obtained as a funtionof T for three di�erent values of A3. At the right side of eah on�guration wehave plotted the loal strain distribution averaged over 10 di�erent realizationsof the disorder. In the high-temperature phase and for the three values of A3 thedistribution is single peaked around zero strain. In spite of some di�erenes, whendereasing T this peak evolves towards a two-peak distribution orresponding tothe two possible equilibrium values of the OP, orresponding to the two degener-ated low-T variants. Nevertheless, only for the largest value of A3 [olumn (I)℄ theon�guration shows the harateristi twinned martensiti struture. This is on-sistent with the fat that for a given value of T the anisotropy A dereases fromleft to right and the system loses diretionality when dereasing the value of A3.Interestingly, for the smallest value of A3 [olumn (III)℄ we obtain a nanolusterphase separated state. Tweed textures an be observed in ase (I) at intermediatetemperatures above the phase transition Tt ≃ 1 whereas ase (III) exhibits almostirular domains.A three-peaks regime is observed around the transition in the three ases,indiating phase oexistene aording to the �rst order harater of the transition.As the anisotropy is lowered, this regime gradually widens in temperature. It isonsequene of the presene of disorder, that makes some regions of the high-Tphase to be stable well below the transition point. Of ourse, the ontrary alsoholds: Some regions of the low-T phase may be stable well above the transitionpoint.
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Figure 3.1: In eah of the ases (a)-(d), strain pro�les along the diagonal are shownfor di�erent values of the anisotropy (A3), for a system without disorder but a enteredsquare window of variable width D and intensity I: (a) D = 10, I = 1.7; (b) D = 30,
I = 1.7; (c) D = 10, I = 1.9; (d) D = 30, I = 1.9. Above the strain pro�les in eahase, the orresponding disorder pro�les are depited, i.e. Tc(r) with a snapshot of thezone of the system ontaining the disorder window. At the right side of eah ase, aseries of snapshots of the orresponding pro�le's on�gurations are shown. The pro�lesin the small insets [ases (a)-(c)℄ are an enlargement of the area enlosed in the dashedbox. The strain is so small that, atually, has no physial meaning.
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Figure 3.2: Snapshots of seleted on�gurations and loal strain distribution, for threedi�erent values of A3, as a funtion of T . The elasti anisotropy A dereases from leftto right and the temperature from top to bottom.
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Figure 3.3: Illustrativephase diagram for
A3/A1 = 0.2 and
A3/A1 = 20, for di�er-ent values of A3 andtemperature T .
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E�et of variations in the ratio A3/A1In order to further hek that variations in the ratio A3/A1 do no entail any quali-tative hange of our �ndings, in Fig. 3.3 we show similar �gures to Fig. 3.2, where
A3/A1 = 0.2 and A3/A1 = 20 have been used respetively. By omparing them, itan be seen that larger ratios need higher values of A3 in order to reprodue thesame strutural patterns. Spei�ally, a derease (inrease) of an order of magni-tude in the ratio A3/A1 needs a derease (inrease) of an order of magnitude inthe value of A3. For instane, the lowest set of values {A3/A1, A3} for whih atwinned struture is observed at T = 0.5 are {0.2, 0.5}, {2, 4.54} and {20, 45}.



3.2. E�et of anisotropy on the strutures. Temperature dependene 47Preursor texturesTo ompare the simulation results obtained in Fig. 3.2 with real premartensitinanostrutures we show in Fig. 3.4a tweed ontrast in Ni-Al, whose anisotropyis high (A ∼ 9). Simulation results (b) of a system with high A shows a verysimilar pattern above the transition. The length sale approximates very well toexperiments and, if not indiated, all the snapshots in the thesis keep the sameproportion as in this ase.Figures 3.4(c)-(e) show a series of images of Ti50Ni48Fe2 in the premartensitiregime upon ooling. We reall that the mottled struture has been suggested toappear due to the low anisotropy value (A ∼ 2) [30℄, whih is in agreement withsimulation results at high temperatures for low anisotropy in Fig. 3.2. Sine, uponfurther ooling, Ti50Ni48Fe2 transforms to twinned martensite, it is in orrespon-dene to the intermediate value A3 = 0.5. Moreover, this high-temperature seriesshow that the premartensiti mottled-like domains progressively beome visibleas the temperature is lowered from (c) to (e). This phenomenon is obtained alsoin our simulations in Fig. 3.2 shown previously. All this is observed to our inthe preursor regime in other alloys like stoihiometri Ti-Ni and Ni-rih Ti-Ni.Strain pro�lesThe analysis of the strain pro�les of the on�gurations an give additional infor-mation whih annot be extrated from simply looking at snapshots. For thispurpose, we refer again to the on�gurations shown previously in Fig. 3.2. Inpartiular the strain pro�les of an arbitrary setion of the strutures for the asesof high (I) and low value (III) of A3 are depited in Fig. 3.5. Their evolutionin temperature helps in the understanding of the dynamis resulting from theinterplay between anisotropy and disorder. For the high value A3 = 4.54, someshort-ranged, tiny modulations arise at high temperature T . As T is dereased,they gradually inrease in number, intensity, and range, orresponding to tweedpatterns just above the transition temperature T h 1. This is onsequene offair play between anisotropy and disorder, sine both ontribute essentially to theresulting struture. Instead, at low T , no signature of the modulations observedat high T survive but the pro�le beomes high-strained and long-ranged sinethe system is purely dominated by the long-range anisotropi interations. Theyare able to indue large motion of twin boundaries, eventually eliminating somedomains and oarsening others.For A3 = 0.05 the evolution is ompletely di�erent, sine it is mainly di-tated by the presene of disorder. At high T , islands of strain are observed,with either positive or negative sign, but do not exhibit modulated (sign-variable)
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50 nm

(a)
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Figure 3.4: (a) Pretransitional tweed pattern in Ni63Al37, whose anisotropy is A ∼ 9.TEM bright �eld image extrated from Ref. [26℄. (b) Simulated tweed, with high A,whih agrees with (a) also in the length sale. (c)-(e) A ooling series showing pre-martensiti mottled strutures in Ti50Ni48Fe2, with A ∼ 2. Dark-�eld images extratedfrom Ref. [30℄.
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Figure 3.5: Evolution of the strain pro�le of an arbitrary setion when the temperatureis dereased, for high and low values of the anisotropy.strains within any island. One the spei� variant is hosen in a partiular trans-formable region during the initial nuleation proess, it is not able to swith to theanother variant by dereasing T , but it will remain in the given variant forever.The domain only an grow inorporating new non-transformed zones to the givendomain. Otherwise, if a domain wall separates two transformed regions orre-sponding to the two di�erent variants, the wall annot move at all, but remainstati. Hene, the struture at low T strongly depends on the high-T on�gurationand on the spei� evolution of the loal stability given by the spei� on�gura-tion of disorder. Consequently, it an be dedued that the system freezes due tothe quenhed-in disorder in metastable states, sine, as it will be seen later, theenergy is higher than that of a twinned struture.Non-OP strainsIt is interesting to look at the non-OP e1 and e3, that an be alulated from e2 bymeans of eq. A.31 and eq. A.20. An example of snapshots of their on�gurationsand pro�les of an arbitrary setion of them are shown in eq. 3.6, in the tweedregime (a) as well as in the twinned phase (b). As indiated, the magnitude



50 Chapter 3. Struturesof the pro�les of both e1 and e3 have been enhaned four times to improve theomparison with the OP e2. The olor of the snapshots has been also adapted tobetter observe the strutures. As an be easily seen in (a), they mainly onentratein the smooth interfaes of the ross-hathed modulations. This is more di�ult tosee in the pro�les in (b) beause the presene of disorder makes the strain �utuatesharply inside the twin variants themselves, and it leads to a �utuating pro�lealong the whole setion of the system. However, by looking with detail at theorresponding snapshots of e1 and e3, �ne straight lines an be observed along thetwin boundaries, superposed to the random, isotropi �utuating spots due to thedisorder. The fat that the non-OP strains onentrate in the interfaes on�rms(i) that these deformations appear to make easier the oherent �t between the ellsof di�erent variants along the domain boundaries, and (ii) that it is preisely theminimization of these strains whih determine the morphology of the boundaries.1
3.3 E�et of anisotropy and disorder at low tem-peraturesDisorder e�etsIn the previous Fig. 3.2 the inhibition of martensiti twins at low temperatureshas been arried out by dereasing the value of A3. Here, in Fig. 3.7(a)-(b) weshow that for a given value of A3 whih shows no tweed in the preursor regime,but twinned martensite below the transition [ase (a)℄, twins an be suppressed byinreasing the amount of disorder ζ , and, instead, the mottled struture survivesdown to low temperatures [ase(b)℄. This is in agreement with the experimentalresults in Ti1−x-Ni1+x as shown in the images (c)-(d). Upon ooling stoihiometriTi-Ni exhibits a pretransitional mottled struture before undergoing a martensititransition. When the ontent of Ni is inreased at the expense of Ti atoms, thetransition temperature dereases and �nally it is suppressed for Ti48.5-Ni51.5 [34℄.Then, mottled patterns survive down to 0 K. This also ours in iron-doped Ti-Ni [30, 163℄.1In other models that only allow for deformations orresponding to order-parameter strains,the proper orientations of the domain boundaries are obtained automatially [131℄. This oursbeause these orientations are the only rystallographi way to math geometrially the ellsorresponding to di�erent, pure variants. In our model, the minimization of suh strains isneeded to obtain the proper orientations. Moreover, the minimization of the energy assoiatedto disorder an lead to stabilize other morphologies, resulting in a rih landsape whih is of ourinterest.
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Figure 3.6: Symmetry adapted strains: Setion pro�les (above) and snapshots (below)of (a) tweed and (b) twins. Non-OP strains e1 and e3 have been enhaned four times todistinguish their pro�les opposite to the OP e2. Gradients of the OP entail an inreasein the non-OP ontribution.
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Figure 3.7: (a)-(b) For a set of values {ζ,A3} the system shows premartensiti mottled struture whih transforms to twinned martensiteupon ooling. If the amount of disorder ζ is inreased, twins are inhibited. (c)-(d) Experimental TEM images in Ni-rih Ti-Ni extratedfrom Ref. [34℄. (c) Transforming omposition. (d) High Nontransforming omposition.



3.3. E�et of anisotropy and disorder at low temperatures 53Anisotropy and disorder e�etsIn the following we fous on the e�et of anisotropy and disorder in the stru-tures at low temperatures. In �gure 3.8 we show snapshots of seleted struturalpatterns at T = 0.5 (< Tc, i.e. well inside the low-temperature regime) and fordi�erent values of A3 and ζ . In order to highlight the di�erenes among the on�g-urations, at their right side we have plotted the di�ration patterns, orrespondingto the intensity of the Fourier transform2 |F(e2)|2, averaged over 20 independentrealizations of disorder. Several overall trends an be identi�ed in Fig. 3.8:(i) From left to right the texture loses diretionality as re�eted in the di�ra-tion pattern, that hanges from a ross-hathed to a irular shape. This is on-sistent with dereasing anisotropy.(ii) From bottom to top the domain size dereases, onsistent with the inreaseof ζ and the assoiated energy barriers. This is on�rmed by the widening of thedi�ration pattern towards higher values of the wave vetor.(iii) Twin boundaries exist only for relatively low values of ζ . Atually, as weshall demonstrate later, they appear for the values of disorder below a ritial ζ∗,whih in turn depends on A3 in suh a way that the higher A3 the higher ζ∗.(iv) Cross-hathed patterns are obtained for high values of both A3 and ζ ,. forhigh values of A3, whereas a mottled struture appears for low values of A3.(v) Finally, for the lowest value A3 = 0.05, mottled strutures are observed.In fat, only for very low values of ζ the pattern shows some diretionality.We notie that, although tweed and mottled strutures are harateristi of thepreursor regime, as seen in Fig. 3.2, in the present ase they orrespond to low-temperature strutures. Atually this is not surprising sine the amount of disor-der suppresses the martensiti transition and the otherwise pretransitional stru-tures survive down to very low temperatures. It is worth mentioning that theseresults are in omplete agreement with experiments in a wide range of alloys. Forinstane, superonduting YBa2Cu3O7−δ undergoes a tetragonal-to-orthorhombiferroelasti transition, showing tweed patterns above the transition and twinningin the ferroelasti phase. When it is doped with either with Al, Fe [164, 165℄ orCo [166℄ at the expense of Cu the twin spaing is redued progressively. Finally,there exists a ritial amount above whih the transition is suppressed and tweedis observed at low temperatures instead of twinning. In the ase of low-anisotropysystems, whih show a mottled struture, it has been analyzed in detail in Fig.3.7(c)-(d).2An expression for the Fourier transform an be found in App. B.1.
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Figure 3.8: Illustrative phase diagram at low temperature (T = 0.5) for di�erent valuesof A3 (∼ elasti anisotropy A) and disorder intensity ζ. Eah on�guration is shownwith its orresponding Fourier-transformed intensity F(e2)
2.



3.4. Finite size e�ets 553.4 Finite size e�etsAs disussed in Se. 1, one of the most intriguing features of martensites onernsthe strain on�guration at the habit planes, whih math austeniti and marten-siti phases. It is ommonly known that the notion of suh well loalized, invariantinterfaes is often at the origin of the self-aommodation proess onsisting ofminimizing the energy by taking advantage of the multiple degenerated minima.It gives rise to strain modulations in these planes that spread out in the marten-siti bulk due the long-range nature of the elasti interations, and onsequently,a multidomain mirostruture is reated. Moreover, it is well known that suhmodulations are haraterized by a harateristi wave length, i.e. a twin width
λ that is related to the size of the embedded martensiti grain D aording to
λ ∼

√
D. This problem has been addressed suessfully, by means of miroelas-tiity [130℄, displaement �eld piture [167℄, et. However, a full understanding ofthis problem in the ontext of Landau was laking.In the model presented in Chap. 2 the existene of a habit plane was not takeninto aount, sine periodi boundary onditions were imposed. Atually, theobserved twinned mirostruture was onsequene of metastable states stabilizedby the dynamis and the long-range anisotropi interations, rather than a truethermodynami equilibrium on�guration. Indeed, no harateristi twin lengthwas identi�able, but a large range of widths of similar probability of ourring.3.4.1 Habit planeWithin a Ginzburg-Landau framework we study the boundary problem of a semi-in�nite martensite domain in an austenite host matrix, �nding the strain andstress �elds mathing the austenite-martensite interfae (habit plane). The al-ulation is huge and was arried out mainly by Marel Porta. It is inspired inthe previous works arried out by Horovitz et al. [167℄ and Shenoy et al. [168℄.Here it is presented an outline of the approah and results, that attempts toavoid mathematial details3. Starting from the previous model presented here inthe absene of disorder, new boundary onditions are imposed. Instead of be-ing periodi in both axis, in the x axis we de�ne a transformable strip of �nitewidth L whih borders in both sides on a region fored to remain in the austen-ite phase by means of a harmoni free energy in the symmetry adapted strains:

faus = A1

2
e21 + A(T−Tc)

2
e22 + A3

2
e23. Periodi boundary onditions are used in the yaxis.3Full work an be found in M. Porta et al., Phys. Rev. B 79, 214117 (2009).



56 Chapter 3. StruturesThe general proedure is as follows: First, the strain �eld in the austeniteregion is determined by imposing mehanial equilibrium ∇·σ = 0 (that is equiv-alent to minimize the energy), elasti ompatibility and the requirement that thestrain �eld must vanish far from the habit plane. The latter ondition togetherwith the periodi boundary onditions in the y axis lead to transform the abovementioned equations by Laplae in the x diretion and Fourier in the y diretion,whih ensures deaying and periodi strain �elds in the respetive diretions. Theresulting free energy in the austenite is a nonloal funtion of the order-parameter(OP) strain �eld e2 in the habit planes only, and ontains a Fourier kernel 1/|ky|.This kernel guarantees the habit plane to be invariant, i.e. the strain vanisheson average along this plane. The expressions for the non-OP strains e1 and e3 aswell as ∂xe1 are obtained in terms of the OP e2 in the habit plane as well as its
x-derivatives. It allows to obtain an expression for the non-OP free-energy of themartensiti bulk in terms of the OP e2 ontaining the fator (k2

x − k2
y)

2, whihfavors modulations of the OP with ky = ±kx. Also, it is found that it sales as
∼ 1/|ky|, induing the formation of narrow twins. Sine this saling means thatthe non-OP free energy is an inreasing funtion of the wavelength, the spei�twin width will be given by a balane between this term and the Ginzburg term,that attempts to remove any interfae. Simulation results show that the equi-librium twin width λ ful�lls the experimentally observed relationship λ ∼

√
L.The full strain �elds e1, e2 and e2 are haraterized both in the martensite and inthe austenite. Also, the size of the transformable region appears to be ruial indetermining the resulting equilibrium struture. Atually, there exists a minimumlength for the nuleation of twinned martensite, whih inreases with tempera-ture and diverges as T approahes the transition temperature of Landau. In thissize regime, a heker-board pattern that alternates parent and produt phases isstabilized instead of diagonal twins. The e�et of the shape of a �nite martensiteinlusion (�nite in x and y diretions instead of �nite only in x) on the resultingpattern has been also studied.3.4.2 Simulating austeniteThis method onsists in simulating expliitly a surrounding austenite matrix. Itis arried out by means of de�ning in a half the system an austenite stabilitylimit Tc well below any temperature T in order to strongly stabilize the austen-ite phase from the point of view of Landau. This is equivalent to de�ne a freeenergy purely harmoni in the OP in the austenite region, whih was done inthe analytial previous method. Periodi boundary onditions are maintained inboth axis. This method sueeds in reahing the main target that is to obtain anhabit plane along whih the total strain vanishes by modulating it with a narrow
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3A  = 0.5 3A  = 0.053A  = 4.54

ζ = 0.5

ζ = 0.32

ζ = 0.1

Figure 3.9: Low temperature on�gurations showing half austenite (left side) and halftwinned martensite (right side) for di�erent values of anisotropy and disorder. Twinwidth inreases as anisotropy is dereased. Disorder does not a�et twin width diretly,but may break domains whih in turn does a�et the domain size.distribution of low wavelengths, whih ontrasts with what obtained previously.Figure 3.9 shows snapshots of the simulation ell at low temperatures for di�erentvalues of anisotropy and disorder. It an be seen that in all ases one half of thesystem is retained in the austenite phase. This naturally imposes the requirementof a globally invariant habit plane, whih leads the system to exhibit the sameproportion of the di�erent martensiti variants along this plane. Mediated bythe long-range anisotropi interations, long thin twins with a similar width areformed. Moreover, it an be observed that the strain �eld deays in the austenite,onsistently with the previous analytial method.The spei� value of the anisotropy a�ets the resulting twin width, in agree-ment with the fat that the onstant of proportionality of the saling relation
λ ∼

√
L ontains elasti onstants related to the anisotropy fator [167℄. Inpartiular, a lower value of A3 results in a broader twin width. Domain sizedistributions will be analyzed in detail later.It is worth noting that high values of disorder make break down long twins intosmall regions with di�erently oriented twins. It is observed that the smaller theregion the narrower the twin width, whih is in agreement with the saling relationabove λ ∼ √L. Note that in the regions surrounded by other twinned regions,the appropriate modulation length of twins omes from domain boundaries andthe austenite region (the left half side of the snapshots) has no e�et in it. This is



58 Chapter 3. Struturesimportant sine it highlights the fat that the notion of invariant plane, either inphase boundaries or domain boundaries, is inherent in the original model. Thus,to attain the orret modulation the unique additional ondition that is required toinlude in the model is the existene of a plane separating two phases or di�erentlyoriented twins, but, one suh a plane exists, the energeti ingredients needed toform thin twins are already inluded in the initial model. In fat, this phenomenonwas already observed in a di�erent ontext in the ase of tweed. Indeed, tweedgrains emerged initially in regions where Tc was higher than the surroundingaustenite matrix, leading to a natural (rosshathed) modulation that minimizedthe total strain along the austenite-tweed interfae.Domain size distributionNow we attempt to haraterize the strutures through the domain size distribu-tions. This analysis requires surfaes e�ets giving rise to the right twin widths.Sine the method of simulating austenite do not entail additional oding, the om-putation ost is equivalent to the usual model from the point of view of storageand time. Therefore, we have hosen this method to systematially ompute theevolution of the domain size distribution from the high- to the low-temperatureregime for di�erent values of anisotropy and disorder, whih is of ruial interestfor the purposes of this thesis. Figure 3.10 shows the domain size distributionfor the same values of ζ and A3 as in Fig. 3.8 and for three di�erent tempera-tures: T = 1.5 (> T0 > Tc), T = 1.0 (= Tc) and T = 0.5 (< Tc). For relativelyhigh anisotropy and small ζ values�martensiti systems, in the small �gures atthe bottom left orner�tweed preursor is found at high T with a harateristilength that hanges towards the harateristi length of twins when undergoingthe martensiti transition.4 Instead, when ζ is high enough to blok twin for-mation, the harateristi domain size at high-T survives when T is lowered wellbelow the transition. Domains are not allowed to grow due to the presene ofrelatively high levels of disorder but freeze thus rendering the system to anhor inmetastable states. Atually, these states show glassy features, that will be shownin ZFC/FC experiments in hapter 4. Antiipating these results, glassy stateshave been indiated in the �gure to make lear the general landsape. Note thatthe minimum value of ζ required to inhibit twins inreases when the value of A3inreases.4The distributions showing a large harateristi length are muh less peaked (and henebroader) mainly due to two reasons: In one hand, when the twin width inreases, the numberof twins dereases and this entails a distribution whih is statistially more poor. Seond, whenthe twin width is onsiderable large, ompared to the simulation ell size, periodi boundaryonditions may play an undesirable key role in determining the twin width.
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Figure 3.10: Domain size distribution for di�erent values of σ and A3 and for threedi�erent temperatures: at the parent phase (T = 1.5), near the transition temperature(T = 1.0) and in the martensiti phase (T = 0.5). The orresponding patterns arespei�ed in the unambiguous ases. Frozen states are obtained in those ases wherethe harateristi domain sizes do not hange by dereasing T but retain the high-Tstrutures down to low T . Same vertial sale (in units that normalize the distribution)applies to all ases and therefore it does not need to be spei�ed.



60 Chapter 3. StruturesChekerboard patternTaking advantage from this easy method to simulate austeniti boundary ondi-tions, we analyze qualitatively the e�et of small sizes in the strutures. This isshown in Fig. 3.11. The initial on�guration (a) onsists of a half the systemlying in the austenite phase and the another half in the martensite. Then, weproeed to derease the martensiti region by hanging the on�guration of Tc(r)in suh a way that we set Tc(r) = 0 in a narrow strip at the austenite-martensiteinterfae, and we let the system relax again. We repeat this proedure progres-sively as it is shown in seleted snapshots (b)-(f). We have done that for twodi�erent temperatures, T = 0.5 and T = 0.9. It an be observed that whenthe size of the martensiti region is dereased below a ertain value, twinningis no longer observed but a heker-board pattern. This is in qualitative agree-ment with simulation results in Se. 3.4.1 where suh patterns are referred to aslattie martensite. There, we reall that a free-energy ontribution was derivedanalytially from imposing �nite size e�ets. Hene, that was a physially moremeaningful method. Instead, the urrent method arises as powerful due to itssimpliity and reveals that hekerboard strutures are already ontained in theoriginal model.It must be noted that, due to the presene of disorder Tc(r), the heker-board pattern is observed to be inhomogeneous and/or disontinuous along themartensiti strip. This is also in agreement with results in Se. 3.4.1, where adependene of the pattern on temperature is observed. Fousing at T = 0.9 in Fig.3.11, in (d) the hekerboard pattern starts to appear and oexist simultaneouslywith twin boundaries. As the strip is progressively redued, the hekerboardgrows to the detriment of twinning [(e)℄. This trend is also observed at T = 0.5although, as expeted, the martensite appears to be more stable. Note that themorphology of the deaying strain �elds in the austenite (whih are larger in strainand range at lower temperatures), also shows the twin-hekerboard rossover.Chekerboard strain strutures have been observed experimentally in deom-posing metal alloys (Co-Pt [169℄, AuCu(-Pt,-Ag) [170℄, et.) and in oxide eramis(ZMnGa04 [171℄, (Nd2/3−xLi3x)TiO3 [172℄, et.), although, in general, they are notassoiated to the on�nement of the strain �eld.3.4.3 Phenomenologial long-range potentialPrevious to the analytial work explained in Se. 3.4.1, Shenoy et al. [168℄ pro-posed a free-energy ontribution oming from the existene of a habit plane. An-tiipating the full kernel found subsequently, that term already ontained the
∼ 1/|ky| fator, essential for apturing the saling resulting from the free-energy
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Figure 3.11:minimization inluding both martensiti and austeniti regions. Motivated by thisidea, we introdued a phenomenologial term in the free energy with a unique ker-nel that goes as ∼ 1/|ky|. Mathematially:
FS = Cs

∫

dx

∫
1

|ky|
|ẽ2(x, ky)|2dky, (3.1)where ẽ2(x, ky) is a Fourier transform of the OP strain e2(x, y) only in the ydiretion5. Here Cs is the onstant of proportionality of this ontribution. Aspointed out before, suh a kernel makes the di�erent martensiti variants existin the same proportion (self-aomodation), leading to a zero net strain, i.e. amarosopially invariant habit plane. Otherwise, a non-vanishing ontributionof e2(ky = 0) would remain, whih would make the energy term ∼ 1/|ky| diverge.This free-energy ontribution inreases with the wavelength of the strain mod-ulations. Thus, it favors a struture of narrow twins. Given that the Ginzburgenergy penalizes the interfaes (i.e. prefers k = 0), the equilibrium on�gura-tion will be given by a balane between these two terms, and approahes theequal-width twinning. Sine this term emerges from habit plane e�ets, it will bereferred to as the surfae potential, in ontrast to the potential oming from bulkompatibility. Atually, our simulation ell has periodi boundary onditions,whih leads to an in�nite system. Nevertheless, the surfae potential introdues5Disretization and derivatives of this term, whih are neessary for the dynamis, an befound in App. A



62 Chapter 3. Struturesan e�etive, �nite size L, whih is given through the weight Cs. Sine this termis purely phenomenologi, the value of Cs is arbitrarily hosen. In fat, its hoiewill determine this e�etive size L in suh a way that, larger values of Cs entailnarrower twins whih means lower sizes L. The other way round, for Cs → 0 weobtain L → ∞ that means a single domain, and we reover the original model.Before going into the simulation results, it should be noted that the ompu-tational ost of this term is large. Therefore the linear system size has to bediminished to 500l0, disretized on a 256×256 mesh. Moreover, disorder is Gaus-sian orrelated (instead of exponentially orrelated)6 sine in this ase it has beenobserved to be faster in stabilizing the on�gurations.We explore the spae of on�gurations for some values of the oe�ient Cs.We have also studied the e�et of varying the orrelation length of the disorder
ξ, sine it a�ets diretly the loal stability islands, in order to look for possiblee�ets of it on the typial twin width. Figure 3.12 shows two sets of snapshotsof on�gurations orresponding to high (a) and low (b) temperatures. In eah setof snapshots, the orrelation length ξ inreases from left to right and the surfaeweigth Cs inreases from top to bottom. The ase Cs = 0 is inluded to omparethe results with those obtained previously, in the absene of the surfae potential.In order to highlight the e�et of Cs the disorder on�guration is the same for allases with the same ξ.As an be seen, in ase (a) Cs appears not to have relevant e�ets on theobtained on�gurations. This ours due to the fat explained in the previoussetion: The presene of disorder in the austenite gives rise to regions withinwhih the martensite phase is stable. Sine suh regions are of �nite size, theybehave as �nite martensite domains, thus trying to vanish the global strain atthe boundaries that, in fat, at as habit planes. This fores the strain to bemodulated inside these regions, leading to tweed textures. The length of suhmodulations oming from the real surfae e�ets in disordered regions dominateover the phenomenologial surfae potential. Hene, no e�ets of it are appreiablein this temperature range. In that sense, ross-hathed tweed modulations alsomake the surfae free energy be small. Due to the same reason, these preursorstrutures strongly depend on the value of ξ, sine it partially7 determines the sizeof the regions with high Tc(r). More spei�ally, as it is inreased, the modulationlength of the preursor domains inreases, in agreement with the saling law λ ∼√
L.6A study in a very similar magneti model onerning the e�et of the partiular funtionalform of the orrelation funtion on the disorder has been shown that suh spei�ties do nota�et the obtained struture.7Let us reall that the disorder is ompletely determined by ξ and the disorder amplitude ζ.
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0a)   T > T 0b)   T < T

Figure 3.12: Snapshots of seleted on�gurations inluding 1/|ky | potential as a fun-tion of the weigth Cs and the orrelation length of the disorder ξ, at two temperatures:(a) well above and (b) well below the transition. In (a), tweed textures are not a�etedby the phenomenologial potential but by the spei� value of ξ: The high the ξ thelarger the strain modulation. In ontrast with that, twinned strutures in (b) are nota�eted by ξ but by Cs: The higher the Cs the smaller the twin width.Instead, the opposite behavior is observed in the martensiti phase [ase (b)℄.The obtained twinned struture does not depend on the orrelation length and,in general, on the disorder on�guration. It was already observed in the abseneof the surfae potential in Se. 3.4.2, sine twinning was originated from strongdiagonal orrelations between ells, overoming the barriers ereted by disorder.8On the other hand, as it is expeted, the typial twin width dereases with thesurfae oe�ient Cs.Domain size distributionWe also address the analysis of the domain size distribution through the methodof the surfae potential ∼ 1/|ky|. Here the value for the orrelation length is setto ξ = 20l0 and will be kept onstant. We reall that, if not indiated expliitly,the values for A3 and ζ are set to A3 = 4.54 and ζ ≃ 0.3. We then proeed tostudy the evolution in temperature of the harateristi lengths of the patternsfor two values of the oe�ient Cs, Cs = 0.1 and Cs = 0.01. Results are shown inFig. 3.13.8Atually, as obtained in Se. 3.3 there exists a treshold for the disorder amplitude ζ abovewhih it is able to inhibit the martensiti transformation but below whih disorder has indeedlittle e�et on twinning features.



64 Chapter 3. StruturesLet us fous �rst on the value Cs = 0.1. At high temperatures a peak isobserved at small lengths whih orresponds to tweed modulations (indiated bythe dahsed line), and is mainly determined by the harateristis of the disorder, ashas been disussed previously. When T is dereased, the domain size distributionbroadens, due to the widening of the modulation length whih is onsistent withan enlargement of the disordered regions. At the same time, new regions arisethat keep on nourishing small wavelengths. Although in the oexistene region thefuture twins an already be diserned, the shorter wavelength of tweed still breaksthem and no twinning signature an be appreiated in the domain size distribution.It is just below the transition, when the twins are learly formed, that a ratherdi�erent, muh broader distribution an be observed. It an be regarded as thesum of two ontributions: one orresponding to some small wavelengths that stillsurvive (as the one observed at high T ), and the other oming from the twin width(indiated by the dotted line). This is in agreement with the �rst-order haraterof the transition whih allows for phase oexistene around the transition point.When the system is ooled further, only the twin ontribution remains, whihgives rise to a single, narrow peak on�rming the existene of a harateristitwin width. It is important to reall that this peak would not appear when thesurfae potential is removed, but the resulting twins exhibit widths in a very wideregion that spreads out from small sizes up to the simulation ell size (whihorresponds to the single domain).
Similar trends may be observed in the evolution in temperature for Cs = 0.01.The harateristi length of tweed (that naturally oinides with that for Cs = 0.1)evolves towards the muh larger harateristi length of twins, that in this aseis larger than that for Cs = 0.1. Due to the absene of a lear peak in thedistribution (due to the same reasons as in broad distributions in Fig. 3.10)dotted line has been omitted in this ase. In a very similar magneti model,onsisting of a two-well Landau potential extended to inlude quenhed disorderoupling to the harmoni term and long-range dipolar interations, a similar studywas arried out where a single peak of small size was observed at high temperturesorresponding to magneti tweed, and a single peak of larger size was observedat low T orresponding to magneti twins. However, opposite to the elasti ase,oexistene of the peaks was not observed at any temperature, whih orroboratesthe seond-order harater of the transition, that makes the OP to transformontinuously from one phase to the another, thus preventing a oexistene region.
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Figure 3.13: Evolution in tem-perature of the domain size dis-tribution in a martensiti systemfor two di�erent values of the o-e�ient Cs. Typial tweed lengthobserved at high temperatures,is indiated by the dashed lineswhereas the dotted line points atthe typial twin width (dottedline is ommited for Cs = 0.01 dueto the ambiguous broad distribu-tion). It is worth noting that o-existene of peaks is learly ob-served lose to the transition for
Cs = 0.1.



66 Chapter 3. Strutures3.5 NeedlesIt is worth looking at the morphology that appears when di�erent twin laminates(polytwinning) meet perpendiular to eah other. A domain reahing a domainboundary perpendiularly typially aomodates by taking a needle-like shapelose to the boundary if the two perpendiular domains are of the same orien-tational variant [173℄. Our original model also aounts for this phenomenon,although perpendiular domains do not our often beause twinning typiallyorrelates the whole system aording to a single diretion. However, �nite sizee�ets mentioned in the previous setion allow for a more rih internal twinnedstruture, with twins in both diagonal diretions. This may give rise to per-pendiular juntions and hene, needles an be observed. We have seleted twolow-temperature snapshots whih learly exhibits this morphology. Both experi-mental [(a)-(d)℄ and simulated [(e)-(f)℄ twins with needles are shown in Fig. 3.14.Case (e) inorporates surfae e�ets through the phenomenologial potential andase (f) through the method of simulating austenite.9 Moreover, when movingaway from the perpendiular juntions, needles often widen and even join otherneedles thus forming a broader and broader twin domain. This may give rise toself-similar patterns [174℄. Some other times needles die before beoming true,long-range twins. Both phenomena an be observed experimentally in ase (a)and (c) of Fig. 3.14. Case (f) shows a simulated on�guration exhibiting bothjoined and dead needles.

9We remark that �nite size e�ets are not needed for this phenomenon to our, but theyare introdued to make easier the formation of domain walls joining perpendiularly.
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(a) (b) (c) (d)

(e) (f)

Figure 3.14: Experimental images [(a)-(d)℄ and simulation snapshots [(e)-(f)℄ exhibit-ing needle-like domain walls in perpendiular juntions. (a) Optial mirograph of Cu-Al-Ni has been extrated from Ref. [13℄. (b), (c) and (d) show TEM images of Y-Ba-Cu-O, extrated from Ref. [5℄. (e) This on�guration has been obtained by inluding thesurfae potential ∼ 1/|ky |. Linear system size of (e) is 500l0 disretized on a 256 × 256mesh. Snapshot in (f) is a 1000l0 × 1000l0 setion of a larger system of linear size of
4000l0 disretized on a 2048 × 2048 grid whih inludes the simulated austenite region.This is the reason why (f) does not exhibit periodi boundary onditions.





Chapter 4Thermodynami properties
4.1 Heat apaity and transformed frationThis hapter is devoted the study of the thermodynami behavior that underlythe strutures shown in the previous hapter. First, the behavior of the heatapaity C has been studied as funtion of the parameter A3, whih we reallthat, at onstant T , it is proportional to the elasti anisotropy fator A. Theheat apaity C an be obtained aording to the well known relation with theHelmoltz free energyF : C = −T∂2F/∂T 2. In our ase, the Helmoltz free energyorresponds to the total free energy of the model FT.In order to reprodue the standard experimental proedure, the simulationshave been arried out upon ooling from the high-temperature phase (T = 1.62)down to well below the low-T phase (T = 0.3), with a step of ∆T = −0.02. Forthe spei� value of the disorder used in these simulations (ζ = 0.32) the range of
T is wide enough to omprise almost all the loal stability limits Tc(r)s and thusapture all the relevant features in the heat apaity. From 10 to 40 independentseeds (depending on the �utuations of C, that in turn depend on the value of A3)have been used in the average of the urve. However, this has been insu�ient toompletely remove the irregularities without thermodynami meaning and furthersmoothing has been neessary by �tting eah point of the urve by a parabola withthe losest eight temperatures (four of higher T and four lower). This proedurehas left approximately only the relevant behavior, whih was deteted previouslyby analyzing di�erent independent groups of seeds.The similarities observed between the �rst derivative of the free energy F ′ =

∂F/∂T and the transformed area fration ς inspired us to ompute the �rst deriva-tive of the latter ς ′ = ∂ς/∂T , to ompare it with the heat apaity C. The trans-formed fration ς has been spei�ally omputed as the fration of the system69



70 Chapter 4. Thermodynami propertieswith a strain e2 suh that: |e2| > 1
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2(i, j). In order to follow the sameproedure as in the omputation of C, ς ′ has been smoothed by �tting eah pointof the urve with the losest four points, sine it is a �rst derivative (instead of aseond derivative as in the ase of C) of the original data.First we have performed simulations both upon ooling from the high-T phaseand upon heating from the low-T phase. The resulting urves for C are shownin the top right panel in Fig. 4.1 for the value A3 = 1.0. It an be observedthat the ooling urve exhibits a peak shifted to temperatures lower than thetransition temperature T0 ≃ 1.03 in the lean limit. Instead, the peak in theheating urve is shifted to higher temperatures. Hene, one an dedue that thesepeaks orresponds to metastability limits of the phases. Moreover, in both asesthe position of the peak oinides with the position of the peak observed in the�rst derivative of the transformed fration dς/dT , whih is shown in the bottomright panel. This gives on�dene about the robustness of the results. The free-energy density f and the transformed fration ς are displayed for ompletenessin the upper left and lower left panels respetively. The urves of ς upon oolingand heating are very lose to eah other indiating little hysteresis, whih is inagreement with the weak harater of the �rst-order martensiti transition (MT)undergone by Fe-Pd, from whih we have taken the material parameters used inthis model. The wide temperature range whithin whih the transition ours isdue to the presene of disorder.Given that we know from the previous Fig. 4.1 that the peak is related to ametastability limit, to save omputation time, from now on we restrit ourselvesto the omputation of the ooling urves. In Fig. 4.2 we extend the omparisonbetween the heat apaity C and the transformed fration ς to three di�erentvalues of A3: (I) A3 = 4.54, (II) A3 = 0.50 and (III) A3 = 0.05. The temperaturedependene of both the free energy density f and the heat apaity C are shownin the upper panels whereas the lower panels show ς and ς ′. One an see that inall ases both C and ς display anomalies at the same values of T , thus supportingsuh anomalies as robust behavior.For the highest value of A3 [ase (I)℄, C shows a broad bump and a sharp peakaround T ≤ 1. The bump is assoiated with the development of tweed preursorswhereas the peak is the signature of the strutural transition. In ase (II), C showsa smoother and lower peak than an be observed over the bump at T ≃ 0.75. Aspointed above, suh a peak is related to the low temperature stability limit ofthe high temperature phase. This is in agreement with the small peak enteredat zero observed in the loal strain distribution below T ∼ 0.75 shown in Fig.3.2. In ase (III) only the smooth bump assoiated with nanolusters of the phaseseparated pattern is observed. In any ase, notie that some amount of the high
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Figure 4.1: The free-energy density f and the transformed fration ς for A3 = 1.0 aredisplayed in the upper left and lower left panels respetively whereas the heat apaity
C and dς/dT are shown in the upper right and lower right panels respetively, bothupon ooling and heating.temperature phase remains down to very low temperature ("retained austenite",see Fig. 3.2).We now proeed to ompute systematially the heat apaity C as a funtionof A3 in order to visualize the dependene of the anomalies on it. Figure 4.3 showsthe behavior of C for several values of A3 ranging from A3 = 0 to A3 = 10. Theobserved general trends are those desribed above and the peak shifts to lowertemperatures as A3 dereases. Notie that only for values of A3 ≥ 1 the peak anbe assoiated to the strutural transition, aompanied with the development oflong range order (twinned struture). For values of A3 ≤ 1 the peak is assoiatedto the the stability limit of the high temperature phase and rapidly goes to zeroas A3 → 0. We emphasize that omparable anomalies have been found experi-mentally [163℄ in Ni-Ti(Fe) alloys, where an inrease in Fe ontent diminishes andshifts the peak in C to lower temperatures. In partiular, it is found that for 6at.%Fe, no signature of peak in C is observed and the transition is suppressed. It isshown in Fig. 4.4(a). The same ours in Ti-Pd(Cr) [70℄: when Pd is substitutedby Cr the peak softens and shifts to lower temperatures. For 10 at.%Cr no MTis observed. This is shown in Fig. 4.4(b).The peak temperature of C in Fig. 4.3 as a funtion of A3 has been plottedin Fig. 4.5a and it an be regarded as a phase diagram. The region under theurve indiates the values of temperature and A3 by whih twinned martensite
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Figure 4.2: Upper panels: Temperature behavior of the free energy density f (rightaxis) and the heat apaity C (left axis) for three di�erent values of A3. Lower panels:Temperature behavior of the transformed fration ξ (right axis) and ξ′ = dξ/dT (leftaxis). Dotted lines in (I) are guides to the eyes intended to di�erentiate between thetwo underlying ontributions: Inhomogeneous textures and strutural transition.



4.1. Heat apaity and transformed fration 73

0.5 1 1.5
Temperature

0

0.5

1

1.5

2

2.5
C

 (
x1

03 )

A
3
=0

0.05
0.25
0.50

0.75
1.0
2.50
4.54
10.0
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Figure 4.4: (a) Heat apaity for Ti-Ni(Fe) measured by using a relaxation method in aphysial properties measurement system (quantum design), extrated from Ref. [163℄. (b)DSC measurements of the heat apaity of Ti-Pd(Cr), extrated from [70℄ respetively.
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Figure 4.5: (a) Temperature of the peak of C as a funtion of A3, extrated fromFig. 4.3. (b) and (c) Phase diagrams of Ti50−x-Ni50+x (extrated from Ref. [34℄) andFexPd1−x (extrated from Ref. [112℄) respetively.is obtained whereas the region in whih the urve vanishes indiates that no MTtakes plae. Atually, this is qualitatively very similar to those obtained in realmaterials when varying omposition. As examples, in Fig. 4.5b we show thephase diagrams of Ti50−x-Ni50+x and Fe1−xPdx. These results on�rm the generalsheme given by the strutures observed in Chap. 3.We reall that the mean value of the loal low stability limit 〈Tc(r)〉 ≃ 1 iskept onstant and the shift of the peak (to low T upon ooling and to high T uponheating) orresponds to an inrease of the hysteresis, i.e. to a derease in the Mstemperature and an inrease in As. Instead, experimentally the derease oursin both Ms and As temperatures, whih re�ets an unstabilization of the marten-siti phase. This is orroborated by signatures in other quantities like resistivity.Conerning this issue, few omments should be pointed out: As mentioned above,simulations upon heating that show the shift of the peak to high temperatureshave been arried out only for one value of A3 (A3 = 1), whih gives rise to long-range twins. Although the mathematial reasons onerning the loal stabilitylimits are apparently lear, the shift of the peak to high T appears to be smallerthan the shift to lower T . Similarly, it is also not sure that intermediate values ofthe anisotropy�whih give rise to broken twins and still show a peak in C� wouldshow a shift of the peak to high temperatures upon heating analogous to that



4.2. Elasti response C ′ 75observed upon ooling. Additional simulation results should be needed to takeout onvinent onlusions with respet to that.We want remark that the suppression of the transition observed in experimentswhen varying the alloy omposition is qualitatively reprodued by our simulations.Moreover, it is expeted that the suppression may also our by inreasing thedisorder for a given onstant A3, whih will be loser to experiments, instead ofdereasing the anisotropy for a given value of the disorder as it has been donehere.Maybe the most relevant point onerning these simulation results is that thesuppression of the transition ours due to the fat that the system is retainedin a metastable state. Again, it is known from the fat that 〈Tc(r)〉 ≃ 1 is keptonstant and therefore, at low temperatures the thermodynami equilibrium stateis the martensite, whih will be on�rmed in the next setions through the al-ulation of other thermodynami quantities and simulation experiments. In realalloys, the general landsape is unlear. First, the phase diagrams of alloys (likethose shown here in Fig. 4.5(b)) are not thermodynami phase diagrams, althoughit is not spei�ally stated. In fat, it is widely believed that the unstabilization ofthe martensite drops down to 0 K. However, reent disoveries in some Ti-basedalloys (like o�-stoihiometri Ti-Ni [67℄ and Ti-Pd-Cr [70℄) have pointed out to themartensiti phase fat as the true thermodynami phase at low temperatures andtherefore the stabilized nontwinned strutures upon ooling are indeed metastable.They are based on the fat that the strutures observed in the nontransformingregime exhibit shape memory e�et. We reall that suh alloys exhibit a verylow anisotropy value and the metastable strutures are orrespondingly almostisotropi, as mentioned in Chap. 3. As far as we now, similar experiments inother alloys with high anisotropy (and exhibiting tweed ontrast at low tempera-tures) have not been published yet and it remains as an open question. This willbe disussed in Chap. 5 and 7. Next setions are devoted to on�rm the sup-pression of the transition, the metastability of suh low-temperature states andto haraterize the kineti behavior.4.2 Elasti response C ′The elasti response C ′ of the system to an external, onstant stress �eld has beenstudied. The omputation has been arried out in two ways: Upon ooling andupon quenhing. The former method onsists of the following steps:(i) Starting from a high temperature (T = 2) stabilized on�guration, a onstantstress �eld σ h 2.5 · 10−9 is applied in one diretion until the system reahes anew stabilized on�guration of total strain e+2 (T ).



76 Chapter 4. Thermodynami properties(ii) Then, the stress �eld is reversed to the opposite diretion, −σ and we let thesystem relax again to another stable state of total strain e−2 (T ).(iii) The elasti response at the given temperatures is then alulated as C ′ =

σ/(e+2 (T )− e−2 (T )).(iv) The stress �eld is removed and the temperature is dereased ∆T = −0.01.Then, at this new temperature, the system evolves towards a stable state andthe yle starts again: the stress �eld σ is applied, et. Instead, in order toompute C ′ upon quenhing the proedure is the same from (i) to (iii), but thestarting on�guration at eah temperature is independent from eah other, andhas been obtained by relaxing to the desired temperature from a disordered state.The temperatures have been hosen at intervals of ∆T = 0.02 and ∆T = 0.03(T = 2, 1.97, 1.95.1.92,et.)The behavior of C ′ for A3 = 4.54 and A3 = 0.05 is shown in Fig. 4.6(a).For eah one of these values, urves obtained upon ooling and quenhing appearto be very similar to eah other, thus indiating the robustness of the behavior.Again, a large number of seeds have been needed to get smooth enough urves.Unfortunately, the omputational ost of C ′ has been very high in time. Therefore,additional simulations for other values of A3 and/or disorder, that would be ofinterest, have not been arried out. For A3 = 4.54, the pronouned dip of theurve learly on�rms the existene of a phase transition. In addition, similarto the behavior observed in C urves, a �at region lies in the temperature range
1.0 . T . 1.25 that oinides with the preursor (tweed) region. Instead, for
A3 = 0.05, the dip amplitude beomes muh lower so that the urve and thus thetransition broadens. Similar qualitative results have experimentally been obtainedin the elasti response when varying the omposition in Ni-rih Ni50+xTi50−x alloys[34℄, whih are shown in Fig. 4.6(b). As the ontent of Ni inreases above x ≥ 1.5,the urve �atens signi�antly, whih is onsistent with the suppression of themartensiti transition for this omposition regime.4.3 Energy analysis: MetastabilityIn order to ompare the relative stability of the relaxed strutures, in Fig. 4.7we show the behavior of the free-energy density f averaged over 40 realizations ofdisorder as a funtion of both ζ and A3. The upper panels show the dependeneof f on ζ for the same three values of A3 as in Fig. 2. Filled symbols havebeen obtained by gradually dereasing ζ with ∆ζ = −0.02 from the highest value
ζ = 0.98, for whih metastable states exist. Atually, we have heked that theyare very lose to those obtained independently and shown in Fig. 3.8, i.e., thosethat an be observed experimentally. On the ontrary, empty symbols have been
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Figure 4.6: (a) Elasti response for two di�erent values of A3, whih are in qual-itative agreement with (b) experimental measurements of the a storage modulus inTi50−xNiTi50+x, x = 1, 1.5, 2, extrated from Ref. [34℄obtained by inreasing gradually, starting from the lowest value ζ = 0.08. Atthis low value, twins are easily formed and, one reated, they survive despitethe inrease in ζ . Consistently, one an observe that f is always lower in the
ζ-inreasing urve than in the ζ-dereasing one. Atually, the former may beonsidered as the free energy of the global minimum and any deviation between thetwo urves provides a measure of the degree of metastability of the latter. In fat,the existene of suh global minimum proves that the origin of the metastabilityis kineti, as opposed to geometrially frustrated systems like the paradigmatiantiferromagneti triangle. Additional arguments on�rming this kineti originwill be given in the next setion. As a general trend, in both urves the totalfree energy dereases with inreasing ζ . This is beause the Landau free-energyontribution (here represented by the dashed lines) prevails over the other terms(Ginzburg and long-range anisotropi terms) and dereases as ζ inreases. Thisan be dedued easily as follows: the regions with T − Tc(r) > 0 are stable inthe austenite phase, and their free energy vanishes regardless of the magnitude of
|T − Tc(r)|. Instead, the regions with T − Tc(r) < 0 are stable in the martensitephase, and their free energy dereases as the value |T − Tc(r)| inreases. Then,an inrease in the value of ζ inreases the amplitud of the distribution Tc(r) andthere will exist more regions with a high value of |T − Tc(r)|. Consequently, thefree energy will derease.Interestingly, fousing on the ζ-dereasing urve, f exhibits an anomaly arounda partiular value of ζ (denoted by an arrow) whih depends on A3. This ispreisely the ritial disorder ζ∗(A3) above whih the formation of long-rangetwins is inhibited. Indeed, the deviation of f from the free energy of the globalminimum inreases remarkably for ζ > ζ∗. This is a signature of the degree ofmetastability of the nontwinned states. For ompleteness, in Fig. 4.7(d) we have



78 Chapter 4. Thermodynami propertiesalulated the dependene of f on A3 for two di�erent values of ζ at intervals
∆A3 = 0.05 from A3 = 0.0 up to A3 = 5.0. Smooth of the urves has beenneessary to extrat the thermodynamially relevant behavior. Again, f revealsthe existene of an anomaly around a ritial value of A3 (denoted by an arrow)whih depends on ζ and A3. Twins are only observed for A3 > A∗

3 . Similar toases (a)-(c), for A3 < A∗
3 the system is no longer able to reah the twinned state,resulting in an inrease in f and therefore of metastability. All these features areonsistent with the on�gurations observed in Fig. 3.8.4.4 Zero-�eld-ooling/�eld-ooling simulation ex-perimentsUp to this point, we have foused on several response funtions suh as the heatapaity or the elasti response that show that, indeed, for su�ient levels of disor-der, the MT is suppressed, in agreement with many experimental results. Also, wehave studied the large metastability assoiated with untwinned low-temperatureon�gurations. Related with the suppression of the MT and the orrespondingmetastable states, it seems natural to ask oneself whether the stabilized on�g-urations have any relation with glassy systems. In the ase of Ti-Ni, one of theexperiments performed in Ref. [68℄ that is indiative of glassy behavior is the so-alled zero-�eld-ooling/�eld-ooling (ZFC/FC) experiment. Suh experimentswere �rst arried out in magneti systems to detet possible spin glasses [175,176℄and later they have been also applied, for instane, to ferroeletri relaxors [78℄.They have in ommon that ZFC/FC experiments show glassy features in statesexhibiting phase oexistene. For instane, in Pr1−xTbxMn2Ge2, they reveal thepinning of ferromagneti regions (with rystal struture L21) due to antiferromag-neti surrounding areas (struture B2) and vie versa [84℄. Thus, in order to detetpossible glassy behavior in our system, we have performed ZFC/FC simulationexperiments, whose proedure is explained in the following setion.Proedure for ZFC/FC experimentsZFC/FC experiments onsist of four steps:(i) Starting from a high temperature state the system is freely ooled down to alow temperature state.(ii) Then, a low stress �eld is applied and the system is heated again up to thehigh temperature state. The resulting strain urve as a funtion of temperatureis the so-alled Zero-Field-Cooling urve.
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Figure 4.7: [(a)-(c)℄ Averaged free-energy density f as a funtion of ζ for three di�erentvalues of A3. Filled symbols are obtained starting from the highest value ζ = 0.98and gradually dereasing ζ whereas empty symbols have been obtained by inreasing ζstarting from the lowest value ζ = 0.08. Arrows indiate the values of ζ below whih twinformation is allowed. Dashed lines indiate just the Landau free-energy ontribution.(d) f as a funtion of A3 for two di�erent values of ζ. Arrows point to the ritial valueof A3 above whih twins exist.



80 Chapter 4. Thermodynami properties(iii) the system is ooled again with the presene of the stress �eld.(iv) Finally, the system is heated again, giving rise to the Field-Cooling urve.The four steps are displayed in Fig. 4.8. The upper �gures show a shematievolution of temperature and stress �eld in the orresponding steps. In partiular,we have used Tmin = 0.02, Tmin = 1.62, σ0 = 2.5 ·10−3 and the temperature step is
∆T = 0.02. In the lower �gures, two examples of the strain response as funtionof temperature are expliitly shown in the four stages. One is a high anisoptroy(A3 = 4.54) system and the another has low anisotropy (A3 = 0.05). In the �rststage, both systems show a slightly inrease in the strain as they are ooled. Thisours beause the fration of one of the martensiti variants is higher than thefration of the another variant, thus leading to a non-vanishing net strain due tothe absene of �nite size e�ets. However, it has no relevane in what onernsthe ZFC/FC results. The seond stage, whih orresponds to the ZFC urve, isof ruial importane. The stress �eld indues the growth of a seleted variantat the expense of the another, thus inreasing onsiderably the total strain. Thespei� growing path is a signature of the dynamis followed by the system, and,as it an be observed, is di�erent for the two di�erent values of A3. For the highvalue (A3 = 4.54), the strain inreases rapidly, easily reahing the single domainon�guration just when the stress is applied, that orresponds to the equilibriumstate. On the ontrary, for the low value (A3 = 0.05), the strain inreases ratherslowly and the system needs to be heated to higher temperatures �and hene takesa longer time� to reah the single domain on�guration, as it is indiated by theregion enlosed by a dotted border. At that point it is important to note that theapplied stress �eld must be low enough [177℄, otherwise, high stresses would beable to indue an easy, rapid domain growth of the seleted variant and a swithingof the other domains regardless of the anisotropy and the disorder values and anundistinguishable behavior would be obtained for all ases. One the equilibrium,single domain on�guration is reahed, the total strain evolves mainly aordingto Landau, drawing a monotonially dereasing urve with inreasing T , with alarger slope in the region where the ferroelasti transition takes plae. In thethird and fourth stages, a similar behavior is observed in both ases, in whih thesystem follows similar ooling and heating paths, with the maximum total strainat the lowest temperature.Relevant information an be extrated from the omparison between the ZFCand FC urves. Deviations among them indiate that the behavior is history-dependent, and has been related to a loss of ergodiity [68℄ and glassy behavior.What an be lear observed from ZFC/FC urves in the lower panels of Fig. (4.8)is that for the high anisotropy value (A3 = 4.54) ZFC and FC urves oinidewhereas for the low value (A3 = 0.05) they deviate in the region enlosed by thedotted line. This is indiative of kineti freezing.
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Figure 4.9: The ZFC urves for di�erentvalues of elasti anisotropy A3, for ζ ≃ 0.3. 0 0.5 1 1.5
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Figure 4.10: (a) ZFC/FC urves obtained in simulation experiments for the value
A3 = 0.05 and ζ ≃ 0.3. (b) ZFC/FC experiments in Ti48.5-Ni51.5, extrated fromRef. [68℄.ResultsFigure 4.9 shows ZFC simulations for di�erent values of A3 and keeping ζ ≃ 0.3onstant. For A3 = 0.05 the urve represents an elasti behavior that deviatesfrom the FC urve below the peak temperature, whih is indiative of glassybehavior. As expeted, our simulations in Fig. 4.9 show that this behavior pro-gressively disappears for inreasing values of A3. This trend indeed orresponds toan inrease in the elasti anisotropy A and favors the development of long-rangeorder. For omparison both ZFC and FC urves for this value of A3 are shown inFig. 4.10 This is in very good agreement with experimental results in Ni51.5Ti48.5shown Fig. 4.10(b) mentioned above. Figure 4.11 shows the ZFC urves obtainedfor di�erent values of ζ and A3. Here the FC urves have been omitted for larityand their behavior is in all ases very similar to those in Fig. 4.8. In the three ases(a)-(c) one observes that glassy behavior is obtained for values of ζ above a ritialvalue that exatly oinides with that obtained previously from the behavior of
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Figure 4.11: ZFC urves for di�erent values of A3 and ζ. Vertial arrows indiateprogressively inreasing values of ζ.
f in Fig 4.7. We an then onlude that metastability observed in Fig. 4.7 doesindiate glassy states. A omparison with Fig. 4.9 reveals that, indeed, similar ef-fets are obtained either by reduing anisotropy or inreasing disorder. Moreover,some small but important di�erenes an still be observed between these ases.Fousing, on the value A3 = 4.54 [ase (a)℄, the ZFC urve is more �at than forlower values of A3 [ases (b) and (c)℄, indiating a more bloked dynamis thatprevents the system from reahing the FC urve. The low stress �eld is not ableto make the system evolve smoothly toward the monovariant state. Instead, somesmall sharp jumps are observed due to the sudden orrelations of di�erent brokendomains of a partiular variant seleted by the stress �eld. After a ertain numberof jumps, the system does reah the monovariant state and thus the FC urve. Inthat sense, the same fator (i.e., the anisotropy) that for ζ < ζ∗(A3) enables thesystem to form long-range twinned strutures, for ζ > ζ∗(A3), however, ausesa higher degree of freezing than for lower values of (A3). Atually, this an berelated to the behavior of f in Fig. 4.7(a)-(c), where it an be observed thatin the glassy regime [ζ > ζ∗(A3)℄, the degree of metastability i.e., the larger thedeviation from the free energy in the global minimum inreases with A3 whereasin the twinned regime [ζ < ζ∗(A3)℄ all the urves approximately oinide.In priniple one ould expet the appearane of domains to be deliberate dueto surviving long range interations, although weak or partially bloked by thepresene of disorder. In that sense, long range anisotropi interations would notbe able to indue a strong diretionality in the domain struture due to disorder,but would establish a partiular short range distribution of non-diretional do-mains by promoting the seletion of a partiular variant for eah domain duringits evolutions. This seletion ould depend on the surrounding on�guration ofdomain variants due to a possible tendeny toward global strain minimization.Then, by dereasing the temperature, the orresponding growth of these domains
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√
A3.the temperature at whih e2(FC)− e2(ZFC) ≃ 3 · 10−4%. Figure 4.13(a) showsthe splitting temperatures Ts as a funtion of disorder and for di�erent values ofanisotropy. For martensite twinned strutures Ts drops to zero whereas in theglassy regime Ts inreases with ζ . Also, for a given value of disorder, the higherthe anisotropy the lower the Ts. Moreover, for low values of anisotropy, Ts showsa regular behavior onstant slope whereas at high values of A3, the Ts dependenebeomes more irregular, onsistent with the jumping behavior mentioned above.The disorder values at whih Ts vanishes indiate that the ZFC deviation glassybehavior starts to arise. Figure 4.13(b) displays the rossover behavior in terms ofritial values for the model parameters A3. Cirles are taken from the vanishing

Ts in Fig. 4.13(a) whereas rosses are taken from the arrows in Fig. 4.7. We havefound that suh a rossover behaves approximately as ζ∗ ∼ √A3 indiated by theurve. It is worth noting that the behavior of the heat apaity C oinides withsuh rossover: The existene of the peak is related with the twinning, non-glassyregime whereas the suppression of the peak orresponds to the glassy behavior.4.6 Variations on the disorder's orrelation lengthIn Se. 2.4 we have seen that the spei� orrelation length ξ of the disordera�ets the energy barriers present in the model, whih an in�uene the behaviorof the system. To analyze the magnitude of this e�et, we have performed somesimulations with a value of ξ (ξ = 10) lower than that used previously, that
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Figure 4.14: (a) Free energy f as a funtion of the parameter A3 for two values of ζ.(b) f as a funtion of the disorder intensity ζ for two values of A3. The value for theorrelation length of the disorder is ξ = 10 in all ases.inreases the energy barriers. In partiular, in Fig. 4.14 we have studied themetastability of the on�gurations at low temperatures by alulating the totalfree energy f as a funtion of both anistropy and disorder intensity, analogouslyto results shown in Fig. 4.7. The general behavior of f as well as the spei�values of anisotropy (A∗
3λ=10

) and disorder (ζ∗λ=10) by whih it is observed a drastihange in the free energy, are very similar to those observed in Fig. 4.7.We have also performed simulations of the ZFC/FC experiments for ξ = 10and we have found that the limiting values of A3 and ζ that start to exhibit asplitting between ZFC and FC urves (and hene glassy behavior) are very similarto ZFC/FC results for the previous value of ξ (ξ = 20) shown in Fig. 4.11 (inpartiular {A3, ζ} = {4.54, 0.7}, {1.0, 0.35}, {0.50, 0.3}). They are depited in Fig.4.15. It is worth noting that they oinide with the previous Fig. 4.11 both ingeneral trends and spei� peuliarities.From the results above we an state that variations on ξ do not ontribute toany additional physial insights and give us on�dene about the robustness ofthe results obtained previously.4.7 Crossover at high temperaturesMotivated by the rossover found at low temperatures when varying A3 fromtwinned martensite to rami�ed droplets, we ask ourselves if similar behavior existsat high temperatures between pretransitional strutures, from tweed to mottledstruture. Thus, we have performed simulations of the model for many di�erentvalues of A3 (from A3 = 0 to A3 = 10 (ζ ≃ 0.3) with intervals ∆A3 = 0.05) at twodi�erent high temperatures in the preursor regime (T = 1.25, 1.5). Results areshown in Fig. 4.16, where the free-energy density f averaged over 7 independent
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Figure 4.16: Free-energy density f and response funtion −A3d
2f/dA2

3 as a funtionof A3 at two di�erent high temperatures in the preursor regime.realizations of the disorder is shown toghether with the orresponding responsefuntion1 −A3d
2f/dA2

3. In all ases the behavior does not exhibit anomalies: nodrasti hanges are obtained in the behavior of f and no peak is obtained for theresponse funtion. Consequently, we an onlude that there is no rossover athigh temperatures.
1We have alulated the response funtion aording to this expression in analogy with theheat apaity, where the temperature plays the role of the parameter A3





Chapter 5Thermomehanial behavior
In this setion we study the thermomehanial behavior of the system when ap-plying and removing an external stress �eld. In partiular, we analyze the shapememory e�et (SME) and superelasti behavior.Sine the stress-free stability is ruial for the �nal unloaded strutures, itmay be useful to reall the harateristi temperatures that result from a simplestability analysis of the Landau potential. With Tc being the low stability limit ofthe high-temperature phase, the equilibrium transition temperature is T0 = Tc +
3β2

16γ
and the high stability limit of the low-temperature phase Ti = Tc+

3β2

4γ
. Takinginto aount the athermal harater of the transition [46℄, we expet the system toshow pseudoplastiity (whih an give rise to SME) below Ti, when the martensitephase is stable or metastable, and superelastiity above Ti, when the martensitephase is unstable. However, in the presene of disorder and onsidering long-rangeanisotropi interations the transition path determining the stress-strain behaviormay be di�erent. We still expet the system to exhibit superelastiity well above

Ti, and pseudoplastiity well below T0, but the stress-strain behavior may bepartiularly di�erent from the lean-limit sheme in the martensite metastabilityregime, i.e T0 < T < Ti, and lose to it. Thus, we fous the study of the stress-strain behavior in this temperature range.Usually, in stress-strain experiments the variable under ontrol is the strainand therefore stress-strain urves show the strain as the independent variable, inthe x-axis. Beause we are used to this representation we �nd appropriate tomantain the representation with the strain in the x-axis, although we performstress-driven transitions [178℄.Before going into the results, it should be pointed out that the value of β hasbeen dereased to β = −103 to broaden the temperature ranges. Consequently,here T0 = 1.38 and Ti = 1.51, and the values of disorder and anisotropy are notin diret orrespondene to those previously used. We an easily map their values89



90 Chapter 5. Thermomehanial behaviorto the ones used in previous hapters by resaling the model with β2. In thatsense, high and low values of anisotropy and disorder are always relative to eahother. In any ase this does not a�et the qualitative results and therefore theonlusions.5.1 Shape-memory e�et5.1.1 PreliminariesThe SME is related to the internal twinned mirostruture resulting from theself-aommodation proess whih allows for a martensiti phase with no maro-sopi hange of shape (nor volume). Upon loading, the sample may undergo apermanent deformation, sine it remains unhanged when the stress �eld is re-moved. However, the system an reover the initial shape upon heating up totemperatures above the transition.Now we fous on the twinned martensite as the starting point for the SME. Inpratie, the martensite nuleates within an austenite matrix, with the presene ofhabit planes (phase boundaries) and domain boundaries that make the martensiteadopt a twinned struture. At the end of the transformation of a given sample,the whole sample is in the martensiti phase. At that point, the external bordersof the martensiti phase are free surfaes, whih means that they do not needto be invariant sine the phase boundaries do not exist any more1. However,one formed, the existing mirostrutures survive, provided that the sample isneither loaded beyond the elasti regime nor heated above the transformationtemperature.Therefore, to perform simulations of the SME, a realisti mirostruture (i.e.twinning giving rise to a zero net strain) is needed. In the following onsiderationswe limit ourselves to the ase of A3 = 4.54 and ζ = 0.1. In the original modelexplained in Chap. 2, the ground state of the free-energy at low temperaturesorresponds to a single variant, although typially, broad twins arise as long-livedmetastable states, with a low number of domain boundaries. In any ase, thetypial stabilized on�guration does not ful�ll the property of zero global strainand hene, �nite size e�ets are required. As onsidered in Se. 3.4, to take theminto aount we reall that we an proeed two di�erent ways: (A) by applyinga potential with the Fourier kernel 1/|ky| or (B) by diretly simulating an habitplane by imposing a vanishing Tc(r) in the region whih is desired to be retainedin the austenite phase. One the desired zero net strain on�guration is obtained,1This does not our in twins emerging from domain boundaries.
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Figure 5.1: Evolution of the total strain of a single on�guration, aompanied bysnapshots of the on�guration at a given step. The initial low-temperature square on-�guration onsists of half austenite and half martensite. As the low-Tc region is graduallyredued, the martensite region inreases. When almost the whole system is transformedto martensite, the twins widen, thus hanging the struture signi�antly.�nite size e�ets must be removed prior to apply the stress �eld. Otherwise,the loading urve would be biased sine a �titious, extra driving fore wouldat against the applied �eld, attempting to keep the twins unaltered in order tomantain the habit plane invariant. Consequently, the required stress for domainswithing would be higher than the expeted. However, in the simulations it istypially obtained that when removing �nite size e�ets from the system, the thintwins are not able to hold but they beome oarse, with the resulting on�gurationof non-vanishing net strain, whih is not appropriate to perform simulations ofthe SME. We now analyze eah ase separately. Using the method A we just haveto remove the additional potential from the fully relaxed on�guration and let thesystem relax again before loading. Using method B we use two di�erent ways toremove surfae e�ets. In one hand, we may redue progressively the region where
Tc vanishes (that is the austenite region), thus allowing more zones to transformto martensite. It is shown in Fig. 5.1. When the austenite is ompletely removed,the twins are no longer thin but also beome oarse and the system does notful�ll any more the ondition of zero net strain. Atually, this ours beforeompletely removing the austenite region, but when it is small enough in orderthe twins to onnet overoming the arti�ial habit planes (and thus eliminatingthem) due to the periodi boundary onditions (PBC). On the other hand weselet a martensiti square region from the initial on�guration and let it relax.This is shown in Fig. 5.2. Typially, it is observed that the thin twins disappearagain [ase (I)℄. Few lari�ations should be pointed out for ompleteness: First,oasionally, thin twins may hold after removing the �nite size e�ets, although it
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Figure 5.2: Starting from a low-temperature on�guration with an austeniteregion (left), a martensiti square region(denoted by the dashed boxes) is relaxedindependently (right). Typially, twinsbroaden [ase (I)℄, although oasionally,thin twinning may hold [(II)℄.

(I)

(II)

does not our typially. This is shown in ase (II) of Fig. 5.2 for the method B,although it has been also obtained in ase A. Seond, it is important to remarkthat in method B, PBC play an ative role in determining the mirostruture, byrestriting the possible twin on�gurations. Notie that, in ase (b), these e�etsan be even more important, sine PBC are imposed in areas where they didnot exist previously. However, this does not neessarily lead to broader twins, sothat we an onlude that the hanges in the mirostruture in the sense of twinbroadening are indeed due to the absene of �nite size e�ets, and PBC does nota�et signi�antly the twin width.Therefore, unfortunately we �nally have had to shelve the previous methods,ame bak to the original model and resort to a statistial (thermodynami) av-eraging of on�gurations of non-vanishing net strain to obtain the desired e�et.However, even in this ase it was di�ult to obtain a zero averaged total strain,beause the dispersion of the total strains of single on�gurations is very large.Indeed, the typial total strains move around 1 − 3% and, even often they maytake values up to ∼ 5% whih orresponds to a single domain. As an example,after running 200 independent seeds, the averaged total strain was still around
1%. Additionally, sine loading, unloading and heating urves had to be om-puted for eah independent seed, another strategy was needed in order to saveomputation time and data storage. Then, we proeeded the following way: Wetook a given initial on�guration and applied the transformation e2(r) = −e2(r)so that we hange the sign of the strain everywhere in the system. Reall thatthe free-energy density of the system is symmetri with respet to e2, i.e., it isinvariant under this transformation, so we ould do that without modifying theloal and thermodynami stability of the on�guration. This way we made sure toget a zero net averaged strain in the initial loading urve. The loading, unloadingand heating urves were then omputed independently. The fat that the stress�eld was always applied in the same diretion entails that both set of urves arenot neessarily orrelated. To further redue the orrelations, we repeated this



5.1. Shape-memory e�et 93proedure for 50 independent seeds and averaged over the resulting 100 urves.As an inonvenient, the details of the partiular urves were smoothed, but weheked that the required stress for domain swithing σy (for yielding stress) wasalmost independent of the disorder seed. Therefore, it an be identi�ed with theaveraged value.5.1.2 ResultsTo illustrate the SME, in Fig. 5.3 we show the (σ − e2 − T ) urves obtainedfor di�erent values of A3 and ζ . Case (I) orresponds to {A3, ζ} = {0.05, 0.13},ase (II) to {4.54, 0.13}, ase (III) to {0.05, 0.04} and ase (IV) to {4.54, 0.04}.Arrows in the external margins point towards inreasing values of A3 and ζ forlarity. The system is �rst loaded at T = 0.7 (< Tc) until the single domain stateis reahed. Then, it is unloaded and �nally heated up to a temperature abovethe transition. The stress inrements (and derements) are ∆σ ≃ 7 · 10−4 andthe temperature step is ∆T = 0.02. Snapshots show representative on�gurationsat a given value of (σ, e2, T ). They have been labeled to make lear the orderof the sequene. Fousing on the (σ − e2) urve at T = 0.7 (< Tc), in the fourases pseudoplasti behavior is observed. However, eah urve exhibits spei�peuliarities. When A is inreased and/or ζ dereased, the ritial stress neededfor domain swithing inreases. The high value of A [(II) and (IV)℄ shows initialtwinned states whereas low A values do not allow the system to form twins,but rami�ed droplets of typial domain size that derease with ζ (This has beenanalyzed in Chap. 3). It has been heked that by ontinuing to inrease thedisorder, even the highest value of A is not enough to indue twin formation. Itis important to remark that the on�guration of low value of A and high ζ [(I)℄exhibits glassy behavior in ZFC/FC simulation experiments. Of ourse, for allases upon unloading the strain is not reovered but the single domain state ismaintained, sine in this temperature regime any ferroelasti variant is stable.However, upon heating the system undergoes the reverse transformation, endingin a zero net strain and thus reovering the initial marosopi shape (SME).Some di�erenes are observed between the various heating urves. In fat, theydi�er in a way analogous to that in the orresponding loading urves mentionedabove, from the point of view of sharpness of the pro�les.



94
Chapter5.Thermomehanialbehavior

Anisotropy

(v)

(iii)

(iv)

(vi)

(i)

(ii)

(i) (i)

(i)

(ii)

(ii)

(ii)

(iii)

(iii)

(vi)

(v)

(iv)

(iv)

(iv)

(iii)

(II)

(IV)

(I)

(III)

D
isorder

(v)
0.02

0

0.04

0
0.02

0.04

0
0.02

0.04

0.02
0.04

0

Figure 5.3: Stress-strain-temperature urves for di�erent values of A3 and ζ, giving rise to the SME. The partiular values for ases(I)-(IV) are respetively: {A3, ζ} = {0.05, 0.13}, {4.54, 0.13}, {0.05, 0.04} and {4.54, 0.04}. The SME an be appreiated in the fat thatthe initial and �nal net strains are equal (i.e. both vanish), although the orresponding internal mirostrutures are essentially di�erent.



5.2. Superelastiity 955.2 SuperelastiityAfter the analysis of the SME, and in partiular the stress-strain (σ−e2) urves for
T < Tc, we now proeed to study the mehanial behavior at temperatures above
Tc. Figure 5.4 shows an inreasing-T series [(a) to (e)℄ of stress-strain urves. Foreah value of T , the same set of values of A3 and ζ of Fig. 5.3 are used in theorresponding ases (I)-(IV). For a referene framework, the analytial behaviororresponding to the homogeneous Landau free energy is also depited. Dashedlines orrespond to the thermodynami equilibrium behavior whereas dotted linesdenote the maximal metastability regimes. Conerning the temperature evolutionof the σ− e2 urves the expeted behavior is observed for eah ase. Pseudoplas-tiity is obtained at low T and then it evolves toward the superelasti regime when
T is inreased.Regardless of the di�erenes due to temperature regimes, several ommonfeatures an be extrated:(i) Case (IV) shows a sharp, lean stress-indued transition whereas in (I) thetransition takes plae smoothly and gradually. (II) and (III) exhibit intermediatebehavior.(ii) In (I) and (IV) pseudoplasti behavior is observed up to temperatures higherthan in (II) and (III), although the underlying behaviors are very di�erent.(iii) (IV) shows the highest transition stress whereas the lowest is observed in (I).(II) and (III) show similar intermediate values.(iv) In the superelasti regime regime, the bakward transition ours at lowerstresses in (IV) than in the other ases.(v) Combining features (ii) and (iii), it results in a high hysteresis area in (IV)and lower ones for the other ases.From all this, we an remark that the e�et of dereasing anisotropy (fromright to left) is similar to an inrease in the disorder (from down to up), that isonsistent with the results obtained in the previous hapter. Atually, all thesetrends are intimately related, as will be disussed below.DisussionOften, long-range and loal e�ets ompete and have opposite onsequenes. Theformer ontributes to the ohesion of the system by orrelating di�erent remotessites of the lattie. Instead, the latter often tries to sreen the former and to splitthe system into unorrelated piees. In that sense, high anisotropy values (thatinrease the strength of the long-range interations) and/or low disorder favorthe stability of eah of the thermodynami phases. It results in a sudden, sharptransition, as it is revealed by the �at plateau in the (σ − e2) urves in Fig. 5.4.
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Figure 5.4: Stress-strain urves for di�erent values of A3 and ζ in di�erent temperatureregimes. The same set of values {A3, ζ} as those in Fig. 5.3 are used in the orrespondingases (I)-(IV).



5.2. Superelastiity 97Also, in the paraelasti (i.e. austenite) phase, the larger the anisotropy and/orthe lower the disorder, the larger the ritial stress �eld needed to overome suhinterations and thus to arry out the ferroelasti transition. The opposite holdsfor the reverse transition: as already mentioned, the larger the anisotropy valuesand/or the lower the disorder, the more stable is the ferroelasti phase and hene,the lower the level of stress at whih the system transforms bak to the austenite.From this, it follows that there are two main onsequenes: �rst, large values ofanisotropy and/or low values of disorder result in a larger hysteresis area. Seond,the pseudoplasti behavior is observed at higher temperatures.On the other hand, low values of anisotropy and/or high values of disorderresult in a deoupling of the di�erent parts of the system, that may behave un-orrelated from eah other. Consequently, the stability beomes short-ranged andthe notion of a phase stability for the whole system does not have a meaning anymore. We then observe a set of di�erent, independent ritial stresses ating inwell de�ned regions, i.e. a spatial distribution of ritial stresses. It leads to agradual, smooth transition of the system that starts with the lowest ritial stress,orresponding to the transformation of the most unstable region. By inreasingthe stress �eld, the system keeps on transforming progressively in moderately sta-ble regions and �nishes with the highest ritial stress that transforms the moststable zone. Hene, it is not unusual that, at a given temperature, some regionswhose stress-free paraelasti stability is weak�or even metastable�, may remainanhored in the ferroelasti phase when the stress �eld is ompletely removed,either in a weakly stable or metastable state. This is the reason why the totalstrain is not fully but only partially reovered.Stress-strain regimes in the parameter spaeFigure 5.5 qualitatively displays the di�erent stress-strain regimes in the parame-ter spae (T,A3, ζ), whih has been derived from the results in the �gures above.Nontrivial behavior is obtained. The dark gray and white regions orrespond tothe superelasti and pseudoplasti regimes, respetively. In the region in-between(light gray) partial strain reovery is obtained. As an be seen, for large A andlow ζ [(IV) in σ − e2 urves℄, this light gray region is very small2. Indeed, thesystem exhibits either pure pseudoplasti or pure superelasti behavior. If wenow inrease ζ [(II)℄ or derease A [(III)℄ the system starts to exhibit (partial)2Let us point out that the origin of the axes does not neessarily orrespond to vanishinganisotropy and disorder. Atually, in the limit of no disorder, no partial pseudoelastiity an beobserved, i.e. no lear gray area exists. Hene, in the zero-disorder plane the dashed lines meet,thus removing this region. It has not been done this way sine the dependene of the regimesas funtion of A for low values of disorder is more learly depited as in Fig. 5.5.



98 Chapter 5. Thermomehanial behaviorsuperelastiity in a region where pseudoplastiity was obtained previously [i.e. in(IV)℄. However, if we now proeed to derease A and inrease ζ simultaneously,the partial superelasti region spreads out into both the previous pseudoplastiand pure superelasti regions.The largest superelasti regime is ahieved when disorder and anisotropy haveomparable strength, i.e. neither dominates the other but the behavior is theresult of a situation of a balane between both fators. In the simulation resultsit is observed when A3 and ζ values are either both low or both high, as an beseen in Fig. 5.5 and, more spei�ally, in (II) and (III) of Fig. 5.4.In short, disorder may shift the superelasti regime either to higher or lowertemperatures depending on the strength of the elasti anisotropy fator, and on-versely. This results in a wide range of mehanial responses, whih, interestingly,is also observed experimentally.
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DisorderFigure 5.5: Di�erent mehanial regimes of the system expressed shematially in theparameter spae (T,A3, ζ)Comparison with experimentsIt is worth reminding that the spei� omposition has been observed to ruiallydetermine the stability regimes of a given SMA, as well as other harateristisof tehnologial importane. In this sense, the tuning of the alloys by means ofeither varying the omposition or doping has been performed over deades. As an



5.3. Transition and yielding stresses 99example, in Ti50−xNi50+x the temperature separating superelasti and pseudoplas-ti regimes dereases drastially when the omposition is varied from x = 0.6 [19℄to x = 1.5 [20℄. Similarly, many other alloys like Au-Cd [21℄, Ti-Ni-Cu [22℄,Ni-Co-Mn-In [24℄, Ni-Mn-Ga [23℄, et. have been observed to exhibit hanges inthe transition stress, hysteresis area, perentage of strain reovery, temperatureregimes and partiular shape of the stress-strain urves when varying the relativeonentration of the onstitutive elements. Interestingly, reent researh [179�181℄has been foused on exploring di�erent ompositions of some alloys [in partiular,of Ti-Ni-(Cu-Pd-Pt-Au)℄ to �nd the spei� omposition that shows the smallesthysteresis width, whih is of tehnologial interest.The rih landsape o�ered by our model may aount for all this phenomenol-ogy, and therefore is in general agreement with the behavior observed in thesealloys. More spei�vally, for instane, our �ndings are qualitatively similar to ex-periments in Ni-Co-Mn-In [24℄ showing that, at a given temperature, they hangefrom pseudoplasti to partial superelasti and �nally to pure superelasti behaviorwhen the In ontent is inreased at the expense of Mn. Also, by looking at theexperimental results in Ti-Ni-Cu [22℄ one an notie that our simulations agreewith the derease in the hysteresis area when the ontent of Cu is inreased. Tofurther illustrate this omparison, in Fig. 5.6 we show experimental results on-erning the strain-indued stress-strain behavior in o�-stoihiometri Ni-Mn-Gafor two di�erent ompositions [23℄. It an be observed that slight variations in theomposition entail hanges in the onset temperature of the superelasti regime.In partiular as the omposition is more far from the stoihiometry, this onset isobserved at higher temperatures, whih is onsistent with our results.5.3 Transition and yielding stressesFigure 5.7 displays the transition stresses, σt, as a funtion of temperature (linkedsymbols)3. At high temperatures, where superelasti behavior is observed, σt or-responds to the required level of stress for the ferroelasti transition to our.The relation between σt and T is desribed, in general, by the Clausius-Clapeyronequation [182℄: dσ/dT = ∆S(T )/∆ǫ(T ). Here S is the entropy and ǫ the strain.In partiular, in all ases we obtain a linear dependene, whih is indeed experi-mentally observed in martensites [13,19�21,23,102,183℄. Straight lines of onstantslope of 0.5 are displayed for omparison between di�erent ases. Nevertheless, itis observed that inreasing the amount of disorder or lowering anisotropy results3For larity, not all the σ− e2 urves from whih the ritial stresses have been extrated areshown here.
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Figure 5.6: Strain-indued stress-strain behavior at di�erent temperatures for two dif-ferent ompositions of Ni-Mn-Ga alloy: Alloy 1 orresponds to Ni51.1Mn26.6Ga20.3 andalloy 2 to Ni51.2Mn31.1Ga17.7. The latter is more far than the former from the stoihio-metri omposition Ni50Mn25Ga25, and shows a shift of onset of the superelasti regimeto higher temperatures. Our model is qualitatively onsistent with suh a behavior.Extrated from Ref. [23℄.in lower transition stresses, as mentioned above. When the transition tempera-ture is approahed, the slope of the urve dereases. Below the transition, theyielding stress, σy, does not indue a transition but it is responsible for the do-main wall motion and growth of the seleted martensiti variant. It is observedthat σy inreases with dereasing temperature, also in qualitative agreement withexperiments [13, 19�21, 102℄. These di�erent regimes our due to the Landauontribution in the free energy. The presene of long-range interations and disor-der do not modify this general piture but introdue spei� ways for the systemto behave. For omparison, the σt orresponding to the Landau global minimumis depited with a dashed line whereas the σt orresponding to the maximummetastability regime is represented by a dotted line. As an be seen, the slope ofthe urves in both Clausius-Clapeyron and pseudoplasti regimes approximateswell to the maximal metastability regime than to the equilibrium one.Nevertheless, the transition stress in Ti-Ni-Cu is observed to inrease with Cuontent whereas our model shows a derease of the transition stress when theamount of disorder is inreased. Doping has been shown to inrease the transitionstress also in Ti-Ni when adding o�-stoihiometri Ni ontent [19,20℄. Our resultsalso ome into on�it with these experiments, sine they show that the slope ofthe urve hanges when hanging omposition.Instead, our simulations agree with other strain-indued σ−e2 simulations [146℄where the transition stress was observed to derease with the size of a singledefet, in aordane with the known fat that defets may at as pinning sites
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Figure 5.7: Symbols: transition (right) and yielding (left) stresses as a funtion oftemperature for di�erent values of anisotropy and disorder. Straight lines with sameslope are guide to the eye. Dashed and dotted lines orrespond to equilibrium andmaximum metastability regimes of the Landau ontribution to the free energy.for nuleation and growth of martensite.5.4 Elastoalori e�etThe elastoalori e�et is the mehanial analogue of the magnetoalori e�et[184℄. It is related to the isothermal hange of entropy or to the adiabati hangeof temperature that takes plae in the system when an external stress is applied orremoved. As in the magnetoalori ase, large e�ets are expeted in the viinityof �rst-order phase transitions where large entropy hanges our [183℄. Here, thestudy of the elastoalori e�et is interesting sine it summarizes the informationrelated to the temperature dependene of stress-strain behavior. It has beenquanti�ed by means of an isothermal stress-indued entropy hange whih hasbeen omputed from the σ − e2 urves as follows: Aording to thermodynamis[16℄:
dS =

(
∂S

∂σ

)

T

dσ +

(
∂S

∂T

)

σ

dT (5.1)During an isothermal proess the seond term on the right-hand side vanishes,and the total entropy hange an be alulated as the following integral:
∆S(0→ σ) =

∫ σ

0
(∂S/∂σ) dσ =

∫ σ

0
(∂e2/∂T ) dσ

≃ 1
∆T

{∫ σ

0
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0
e2(T, σ)dσ

}
.

(5.2)
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Figure 5.8: Set of stress-strain urves orresponding to a single realization of disorderfor two di�erent values of A3. Ten independent seeds have been used to ompute theelastoalori e�et for eah value of A3.It should be noted that for an ideal �rst-order transition ourring in equilibrium,this entropy hange should oinide with the di�erene of entropy between the twophases. Here, due to the existene of disorder the transition extends over a broadrange. Therefore the obtained behavior will di�er from this simple behavior.Simulation results are shown in Fig. 5.9. Although the σ − e2 urves of thetwo ases are signi�antly di�erent (as an be appreiated in Fig. 5.8), the re-sulting stress-indued entropy hange is similar. The peaks are plaed in di�erentpositions and the tails show di�erent behavior but the area under the urve re-mains essentially onstant. Moreover, the Landau ontribution to the free energyis represented by a dashed line. As an be seen, the presene of disorder (bothontinuous lines) results in a rounding and derease of the peak with respet tothe Landau ontribution.Although the magnetoalori e�et is quite di�erent from the elasti analoguepresented here, very similar Landau theory based models have been used to per-form simulations in ferromagneti systems. Suh models are known to be sensitiveto disorder [18℄ and dipolar interations in a similar way to that presented here.For instane, in Ref. [185℄, it was found that the presene of disorder resultedin a derease of the magnetoalori peak, ompared to the homogeneous ase,whih agrees with our results. Enouraged by this, we further emphasize theomparison with magnetoalori experiments in [186℄ Gd5(SixGe1−x)4, where aninrease of x results in a shift of the ritial stress and the Clausius-Clapeyronslope is approximately independent of doping, whih would be onsistent with ourresults.
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Chapter 6The magnetoelasti model
6.1 IntrodutionMultiferrois were brie�y introdued in Chapter 1 as materials that exhibit aross-variable, ferroi response. For instane, sometimes polarization an be on-trolled by a stress �eld, and an eletri �eld an a�et the struture. Undoubtedly,they attrat a lot of interest sine expand the horizons in tehnologial applia-tions. Maybe, the magnetoelasti oupling arises as one of the most importanttopis in this �eld, leadind to interesting phenomena. The Ferromagneti ShapeMemory e�et [76℄ (FSME) allows for shape reovery due to induing the stru-tural transformation by means of a magneti �eld instead of stress. Reently, theMetamagneti SME has also been reported [24℄ where the original shape is reov-ered from magneti-�eld-indued bakward transformation. The mangetoalorie�et [184℄, onsisting in isothermal entropy hanges or, more interestingly, in adi-abati temperature hanges due to the presene of an external magneti �eld, hasbeen observed to onsiderably inrease its magnitude in the viinity of a struturalphase transition, whih is of tehnologial importane for ooling appliations.The inverse magnetoalori e�et has been also reently disovered [187℄. Magne-tostrition e�ets [51℄, whih onsists in showing magneti-�eld indued volumehanges are another onsequene of the oupling between elasti and magnetidegrees of freedom. Other aspets have been also adressed [188℄.Miromagnetism has been widely used to model the magnetization in magne-toelasti systems. Elastiity has been taken into aount by means of, for instane,Khahaturyan's miroelastiity [133, 189℄ and Landau theory [190, 191℄. In thishapter we develop a magnetoelasti model based on an extension of the previouspure elasti Landau-based model, that inludes magneti degrees of freedom aswell as a oupling between magneti and strain variables. Before going into modeldetails, it is important to point out that, as will be seen, from the elasti point105



106 Chapter 6. The magnetoelasti modelof view, the model allows the rystallographi lattie to undergo a ferroelastiMartensiti Transition (MT), that an be indued either upon ooling or by ap-plying a stress or magneti external �eld. Instead, the temperature does not playany role for the magneti degrees of freedom, but the magnetization of the lattieis assumed to remain at all times in the ferromagneti phase, well below the Curietemperature1.Modeling of the magneti energy is presented in Se. 6.2.1. In Se. 6.2.2 themagnetoelasti oupling is desribed and the elasti part brie�y reviewed. In Se.6.3 the dynamis onerning both the magneti and elasti degrees of freedom isdesribed. Finally, Se. 6.4 presents preliminary results of the model.
6.2 EnergyThe performane of the magneti degrees of freedom is arried out by means ofthe theory of miromagnetism [192℄, aording to whih, the magnetization ofthe system is desribed by a three dimensional ontinuous vetorial (spin) �eld,that will be denoted by M(r). We an write m = M/Ms, where Ms is thesaturation magnetization and m = (mx, my, mz) is the unit magnetization vetor,that must ful�ll |m| = 1. This desription is known to apply to both atomistiand mesosopi sales. On the other hand, The elasti part is desribed by theextended Ginzburg-Landau model explained in Chapter 2, with the deviatoristrain e2 as the order parameter (OP).Note that, although the elasti part is purely 2D, the 2D magneti modelallows the spins to have the third omponent mz , that is out-of-plane. This isdue to the intrinsi 3D nature of the theory of miromagnetism (involving urloperators, et.). However, the third omponent may be fored to remain in the2D plane in several ways, suh as introduing an extra anisotropi term penalizingthis omponent. In fat, as will be seen, the magnetoelasti oupling itself doesstrongly fore mz to vanish at all times. Nevertheless, a diret onsequene of the3D real world is that no internal magneti in-plane mirostruture is needed forthe magneti lines to lose, sine they an lose in the third dimension. Instead, apure 2D magneti system must indeed exhibit a 2D magneti domains struturein order the lines to lose. This an be easily seen in Fig. 6.1 where both asesare displayed.1If wanted, the temperature should be introdued as thermal �utuations by means of the�utuation-dissipation theorem as it will be brie�y mentioned later.
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a)

b)

c)

Figure 6.1: (a) A pure 2D magneti system requires internal mirostruture for themagneti lines to lose. (b)-(c) In a 3D world, no in-plane magneti domains are neededsine the mangeti lines an lose in the third dimension, either by means of a 3Dmangeti struture (b) or freely (c).6.2.1 Magneti energyIn a solid magneti body the magneti energy an be deomposed as a sum of thefollowing ontributions:
Fm = Fan + Fexh + Fms + Fext, (6.1)Here, Fan is the anisotropi energy, that aounts for the interation of the mag-netization with the underlying anisotropi, rystallographi lattie. This leads thespins to have preferred, soft spei� diretions to point at. In a ubi system thisterm takes the following form:

Fan =

∫

[K1(mx
2my

2 +mx
2mz

2 +my
2mz

2) +K2mx
2my

2mz
2]dV (6.2)where K1 and K2 are the magnetorystalline anisotropy onstants. This potentialhas eight minima at m = (±1/

√
3,±1/

√
3,±1/

√
3). A projetion of it, is shownin Fig. 6.2 as a funtion of mx and my. Hene, this term will favor the diagonaldiretions.Note that, indeed, this term already performs a magnetostrutural oupling,sine it desribes how the magnetization is a�eted by the rystallographi sym-metry elements. However, up to now, no deformations of the lattie are takeninto aount. In that sense, by the moment K1 and K2 are kept onstant so thatwe annot talk about magnetoelasti oupling. Preisely, as will be seen , the
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ym

xmFigure 6.2: Projetion of the mangeti anisotropi energy in the {mx,my} plane: Fourwells at (±1/
√

2,±1/
√

2
) show that diagonal diretions are favoredmagnetoelasti oupling will be introdued by suposing K1 and K2 as funtion ofthe strain and alulating derivatives.The term Fexh in eq. (6.1) orresponds to the energy of the exhange inter-ation. It takes into aount interations between nearest neighbors in the samethread of thought of the Heisenberg model2. In a ontinuous model, it an beexpressed through derivatives as:

Fexh = A
∫

[(∂xmx)
2 + (∂ymx)

2 + (∂zmx)
2 + (∂xmy)

2 + (∂ymy)
2 + (∂zmy)

2

+(∂xmz)
2 + (∂ymz)

2 + (∂zmz)
2]dV (6.3)where we have used the ompat notation ∂imj = ∂mj/∂i, with i = x, y, z. Here

A is the exhange sti�ness onstant, that is negative (positive) for a ferromagneti(antiferromagneti) system. In our ferromagneti ase, this interation will try tokeep the spins parallel to eah other.In addition to the previous loal interation, eah spin is a�eted by any otherspin in the system due to the long-range, dipolar interation. Thus, the magne-tization in the whole body, given by the spei�, total spin on�guration, reatesthe so-alled demagnetizing or magnetostati �eld, whih in turn ats over eahindividual spin. It is important to note that this �eld is responsible for the ful-�llment of the Maxwell equation ∇ · B = 0, that essentially fores the magneti2This term is often alled the Heisenberg energy.



6.2. Energy 109lines to form losed loops, i.e. to prevent the existene of magneti monopoles.This may strongly depend on the spei� shape of the speimen and it is at theorigin of magneti domains, vorties, [47℄ et.The orresponding magnetostati energy an be expressed in several ways as:
Fms = −1

2
µ0Ms

∫

Ω

Hd ·mdV = −1

2
µ0Ms

∫

Ω

(∇ ·M(r))φ(r)dV =
1

2
µ0

∫

ℜ
H2
ddV,(6.4)where µ0 is the permeability of the free spae, Hd is the above mentioned demag-netizing �eld (whih is also a vetorial �eld) and Ω and ℜ refer to the sample andto all the spae respetively. The knowledge of Hd requires an integral involvingthe magnetization over the whole system that, when introdued in eq. (6.4), is atthe origin of the long-range harater of the magnetostati term. The resultingdouble integral entails di�ulties and large omputation time (∼ N2), leadingto many e�orts devoted to optimize its alulation [193, 194℄. Here the alula-tion is arried out in Fourier spae, that improves onsiderably the required time(∼ N logN), similarly to the long-range elasti interations explained in Chap.2. In order not to interrupt the line of argument regarding this model, a detailedexplanation of the omputation onerning this term an be found in App. B.2.Here we only point out that the ontribution orresponding to the wave vetor

k = 0 is a singularity in the Fourier expression and hene is not taken into aount(and set to zero). Therefore, the single domain on�guration is not spei�allypenalized by this term. This an be easily seen from the fat that the omputationin Fourier spae requires periodi boundary onditions, whih lead to an in�nitesystem size and, onsequently, to the absene of �nite size and shape e�ets whihare at the origin of magneti domains. We reall that a similar problem arose inthe elasti ase. Also, here some methos will be explored to e�etively aountfor �nite size and shape.Finally Fext is the interation energy between the magnetization and the ex-ternal �eld:
Fext = −µ0Ms

∫

Hex ·mdV (6.5)
6.2.2 Magnetoelasti oupling and elasti energyAs mentioned in Se. 6.2.1, the anisotropi magneti term denoted by Fan [eq.(6.2)℄ aounts for the spei� spatial distribution of the spins, that obviously isin diret orrespondene with the underlying rystallographi lattie, with whihshares the same symmetries. In partiular, the lattie has square symmetry. How-ever, sine the mangetorystalline anisotropy parameters K1 and K2 are onstant,
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Favorable configurations Unfavorable configurationsEnergy

Easy axes:

Anisotropy

Magnetostatic

External field

Exchange

Figure 6.3: Favorable and unfavorable spin on�gurations with respet to eah ener-geti ontribution.
Fan always refers to the square symmetry and does not take into aount new sim-metries arising from any deformation of the lattie. Preisely, we are interestedin studying the e�ets of elasti deformations in the magneti lattie, and theother way round, i.e. how mangnetism may a�et the rystallographi lattie.Therefore, a new ontribution in the free energy, termed magnetoelasti energy,is required to aounts for these e�ets.Then, from now on we assume that the lattie where the spins are loatedundergoes a square-to-retangular MT. It entails a symmetry loss of the elastilattie and, orrespondingly, of the spin lattie, that results in a hange in thesoft magneti diretions, given by the anisotropi magneti term. Following Kit-tel [195℄, we assume that this hange is small (as it ours in real materials) andtherefore we may alulate the new magneti anisotropi term as a Taylor expan-sion around the equilibrium value given by the undistorted lattie, thus obtaining
F ′an = Fan+Fme. Here Fme refers to the free energy of the magnetoelasti ouplingemerging from the derivatives of Fan in the Taylor expansion. Taking also intoaount symmetry-allowed requirements, it gives rise to the following expressionfor Fme:

Fme =

∫ (
B1√
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x +m2
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B1√
2
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m2
x −m2
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e2 +B2mxmye3

)

dr (6.6)



6.3. Dynamis 111We reall that the elasti free-energy density an be written as follows:
fel =

A1

2
e21 +

A3

2
e23 +

A2

2
e22 −

β

4
e42 +

γ

6
e62 +

κ

2
(∇e2) (6.7)Note that Fel and Fme terms depend on the three symmetry-allowed strains e1, e2and e3. As seen in Chap. 2 they are not independent but they are related by theSaint-Vénant ompatibility equation, so that we an express the free energy interms of only two of them, say, for instane, e1 and the OP e2. We then minimizethe total free energy with respet to e1 and obtain an expression for the freeenergy only in terms of e2. Note that now, in addition to the term Fel we have toinlude the magnetoelasti ontribution Fme in the energy minimization, sine italso ontains the variables e1, e2 and e3. The mathematial details an be foundin App. B. The �nal expression for Fme beomes:
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(6.8)where Ac1(k) and Ac3(k) are funtions that only depend on k and are de�ned ineq. (B.52), and F(f(r)) stands for the Fourier Transformation of a given funtion
f(r). On the other hand, the �nal expression for the elasti part only oinideswith that one found in eq. (2.9) in Chap. 2.6.3 DynamisThe aim of the model is the study of stabilized states, whih in this ase onsistof magnetization and strain on�gurations that minimize the magneti and elas-ti energies respetively. On one hand, the miromagneti dynamial equationmakes the magnetization evolve aording to the Landau-Lifshitz-Gilbert (LLG)equation:

(1 + α2)
∂M

∂t
= −γ0M×He� − γ0α

Ms
M× (M×He�) (6.9)As an be seen, the right side of the equation onsists of two ontributions. Firstterm omes from the onservation of the angular momentum, foring the spins tomake a preessional motion [196℄ around an e�etive magneti �eld He�. There-fore, γ is the gyromagneti ratio. The seond term is a purely phenomenologialdamping term [197℄, that has been observed experimentally but not dedued fromatomisti basis, whih makes redue the preession of the spins up to reah a statistate of minimum energy. Here α is a dimensionless damping onstant. From mi-romagneti arguments, the e�etive �eld an be alulated as He� = −Ms

µ0

∂F
∂M

.



112 Chapter 6. The magnetoelasti modelIn App. B.5.2 it is shown that this equation onserves the modulus of eah spin.Figure 6.3 shows the spin on�gurations that minimize and maximize eah ener-geti ontribution. The balane between the terms, whih of ourse depends onthe orresponding weights, will determine the �nal spin on�guration. On theother hand, the stabilized on�guration of the strain is reahed by means of apure relaxational dynamis as shown in Chap. 2: ∂e2
∂t

= − δF
δe2

. It is worth notingthat the magnetoelasti oupling ontributes to both dynamis, whih gives riseto the desired orrelations between the strain and magnetization on�gurations,that is magnetoelasti behavior. The detailed mathematial alulation of boththe elasti and magneti energy derivatives an be found in B.4. The parametervalues and model units an be found in App. C.It must be pointed out that, although the LLG equation allows to analyze themagneti dynami behavior, the magnetoelasti oupling links both the miro-magneti and elasti dynamis and, sine the latter is not realisti, it prevents usthe study of the dynami evolution and we fous only on stati on�gurations.In order to integrate the eq. (B.54) we have tested Euler and Runge-Kuttafourth order (RK4). If interested only in reahing the minimum of energy, Euleris good enough and faster than RK4. When studying the dynamis of the system,RK4 should be better. A detailed study about that has not been arried out.6.4 Preliminary resultsMiromagnetis in spherial oordinatesAs seen, in the miromagneti theory the spins are lassial vetors m with on-stant modulus |m| =onst. As disussed previously, this is onsidered by theLLG equation, sine it is easy to see that this vetorial equation keeps |m| on-stant. Aording to the formulation in artesian oordinates presented there, wedeal with a vetor of three omponents (mx, my, mz), and therefore LLG equa-tion beomes a set of three equations, one for eah omponent. Moreover, theonservation of the modulus |m| is automatially imposed by LLG equation butwhen it is implemented numerially, this ondition is violated very slightly, andthe error aumulates due to the reursive iterations of the LLG equation and maybeome too large. Hene, the initial small error must be orreted every ertainsmall number of iterations by normalizing the spin vetors. Therefore it seemsnatural to deal with spherial oordinates (mr, mθ, mφ), whih makes easier thenumerial integration sine it imposes automatially the ondition of modulusonstant through the identity mr = 1. Moreover, it leads to deal only with twoomponents, (mθ, mφ) and the LLG equation beomes a set of only two equations.



6.4. Preliminary results 113Motivated by this argument, we have onverted the model to spherial variables,�rst in artesian oordinates, and seond in spherial oordinates, whose mathe-matial details are presented in the following. Sadly, the �nal expressions involvetrigonometri expressions like sinus, osinus, et. in suh a way that, althoughthe mathematial form is simpler, the spherial version is more ostly from theomputation point of view than the artesian one. Consequently, we have �nallyused the latter oordinates.It is worth mentioning that a two-dimensional version of the LLG equationhas been developed elsewhere [198, 199℄ for systems within whih the spins areon�ned to preess in a plane, due to anisotropy fores or whatever. In this ase,the spins are expressed in spherial oordinates and the LLG is expressed in a verysimple form, whih makes sure a faster omputation time and an appropriate puretwo-dimensional magnetoelasti system.Pure magneti evolutionAs a �rst hek of the model we analyze the pure magneti ontribution. Adynamial evolution of the magnetization in a 32 × 32 square lattie with peri-odi boundary onditions is shown in Figures3 6.4 and 6.5. The on�gurationsshow the projetion of the spin vetors in the xy-plane. Starting from a randomon�guration [shown in (a)℄, the spins rapidly look for aligning with the nearestneighbors [(b)℄. The loal diretionality of the alignment di�ers from one regionto another, whih indues the formation of (embrioni) vorties (favored by themagnetostati energy) in the regions inbetween [(c)-(d)℄ and other smooth inter-faes [200℄. The onsolidation of suh vorties may give rise to asymmetri Blohwalls [(e)-(h)℄ [201�203℄. Simultaneously, vorties an merge or disappear, me-diated by the spin �ip in the z (out-of-plane)-diretion, [(f)-(i)℄. Other vortiesmay appear although the system evolves to a globally more ordered on�gura-tion. After a while all the vorties have disappeared, all the spins being almostparallel [(j)℄. Then, the spin preession beomes more visible as an be seen inthe fat that in (j) the dominant omponent is the vertial whereas in (k) it isthe horizontal. This highlights the preession around the diagonal diretion, as�nally it does our [(l)℄. It an be seen that the stabilized state onsists of asingle domain on�guration with the spins pointing to a diagonal diretion. Asseen above, this on�guration is favored by the magnetorystalline anisotropy andthe exhange energy.The absene of magneti domains an be explained mathematially by the lowsimulation ell size together with the periodi boundary onditions leading to an3The time intervals between the spin on�gurations in the series is not homogeneous, butthey are hosen to highlight spei� magneti states.
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Figure 6.4: Spin �eld evolution I.
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Figure 6.5: Spin �eld evolution II.



116 Chapter 6. The magnetoelasti model

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30
 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30
 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30
 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30
 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30
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Figure 6.6: Stabilized on�gurations for di�erent values of the sti�ness onstant A.e�etive in�nite system size whih, therefore, does not take into aount �nitesize and shape e�ets. We reall that the existene of magneti domains is theresult of an energeti balane between the long-range magnetostati interationsand the exhange ontribution when �nite size and shape e�ets are taken intoaount. This balane is the magneti analogous to the elasti ase, where domainsarise as a ompromise between long-range elasti interations and the Ginzburgenergy. Moreover, the magnetostati e�ets are more important as the system sizeinreases, whereas the exhange e�ets beome important in small-size systems.Hene, the fat that the simulation ell is muh lower than the system size (whihis mathematially in�nite) annot be given as a physial argument for the abseneof magneti domains.To obtain a magneti multidomain struture we have explored two simplemethods: On one hand, we have arried out some simulations with a low value ofthe exhange, sti�ness onstant A to show that in this ase, magneti multidomainon�guration stabilize. This is shown in Fig. 6.6. We an see that the lower valueof A the smaller the domain size (and hene the larger the number of domains).We an also appreiate that neighbor domains never onsist of spins of one domainpointing to the spins of the another(→←). Instead, they onsist of perpendiularspins (↑→) or spins perpendiular to the modulation of the magnetization (↑↓).



6.4. Preliminary results 117If we now modify the simulation ell size, it is observed that the higher thedomain size the higher the value A below whih multidomain struture appears.This is observed in Fig. 6.7(a) where, for a value of the sti�ness onstant A = 10−6,a 128× 128 spin lattie shows two magneti domains. Note that for this value of
A, a 32 × 32 spin lattie does not show magneti domains but a single domain,as it is shown in Fig. 6.6(f). For larity, eah spin in the 128× 128 snapshot isthe average over 16 nearest neighbor spins. However, it must be noted that thevalue of the sti�ness onstant is in any ase muh lower that the nominal valuefor Fe-Pd, so that the system size that should be used to obtain a multidomainon�guration with this real value is expeted to be too large for omputationalpurposes.On the other hand, the seond method to obtain a multidomain on�gurationonsists of introduing an additional ondition for the spins in the lattie that playsthe role of an e�etive shape for the system. For instane, we an impose extraenergeti penalties for the averages of both the x- and y-spin omponents overall the ells of the system denoted as 〈mx〉 and 〈my〉 respetively. Thus, if thesepenalties are high enough, the on�gurations whose 〈mx〉 and 〈mx〉 vanish beomefavorable. Suh on�gurations must ontain at least two magneti domains withspins pointing to opposite diretions. Figure 6.7(b) show a 64× 64 multidomainmagneti on�guration stabilized by means of introduing suh penalties. Here,eah spin in the snapshot is the average over 4 nearest neighbor spins.In fat, this additional term an be interpreted as aounting for the modula-tions orresponding to the wave vetor k = 0, whih, as pointed out in Se. 6.2.1,is not taken into aount by the Fourier expression used to ompute the long-rangemagnetostati �eld. As explained in App. B.2.3 it an be introdued through thedemagnetizing fator whih depends on the spei� shape of the system.Magnetoelasti resultsOne we have heked that the magneti part works as expeted, we performsimulations of the full magnetoelasti model. Simulation results show that themagnetoelasti oupling is strong for Fe-Pd. In the martensiti phase the sta-bilized states show typial strain on�gurations and the magnetization stabilizesaording to the strain. Consequently, the magneti domains are subjeted to theelasti domains. The pure magneti terms turn out to be less relevant than themagnetoelasti oupling, although they determine �ne details like the width ofthe walls. In the austenite phase, the oupling vanishes beause the strain is zero(in the absene of preursors) and magnetization may evolve as in pure magnetisystems analyzed above.
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Figure 6.7: Stabilized multidomain strutures either by using a large 128×128 spin lat-tie (a) or through penalizing the nonvanishing averages of the x- and y-spin omponentsin a 64× 64 spin lattie (b).All this an be observed in Fig. 6.8, where we have used the method of simulat-ing austenite desribed in Se. 3.4.2 to obtain �ne twinning in the transformableregion for a 512 × 512 ells system, with linear size L = 103. In partiular, (a)shows the strain on�guration, whih indeed is similar to those obtained in Se.3.4.2. Sine the system size is very large, the representation of the spin �eld hasbeen detailed in two snapshots for larity. In (b) the absolute magnitude of the
x-omponent of the magnetization |mx(r)| is shown (the darker the region thehigher the x-omponent) whereas in (c) we an observe a projetion of the spinsin the xy-plane, where eah spin is the average over 36 nearest neighbor spins.Both snapshots show learly that in the martensiti phase, the magnetizationform twins aording to elasti twins. Also, in the austenite phase, mangetizationevolves freely towards a on�guration onsisting of a region where the magnetiza-tion points to a diagonal diretion aording to the magnetorystalline anisotropy,and a vortex formed elsewhere. Note that the enter of the vortex in (b) is notin the irle but in the white (blue) strip just below it. This is logial sine thespins in the enter of a vortex lying in the xy-plane point to the z-diretion (out-of-plane) and hene they have no x-omponent. It an be also observed that thedeaying �elds in the austenite also a�et the magnetization.



6.4. Preliminary results 119

 0

 100

 200

 300

 400

 500

 0  100  200  300  400  500

(a) (b)

(c)

Figure 6.8:





Chapter 7Summary and onlusions
In this thesis we have approahed the problem of ompeting interations betweenanisotropy and disorder in ferroelasti martensites. Motivated by experimentalevidene whih points to these two parameters to play a deisive role in the result-ing ferroelasti behavior, we have perfomed simulations by means of a Ginzburg-Landau model extended to inlude long-range interations and disorder. Themodel has been shown to be powerful enough to aount for a wide variety ofphenomena like harateristis of the mirostruture, thermodynami behaviorand thermomehanial properties. Beyond the interest as basi, theoretial re-searh, this work onerns an issue of many tehnologial relevane as dopingin SMAs. Besides the great amount of historial literature about this subjet,due to the reent publiation of relevant papers in important physial magazines,it has emerged as a urrent experimental utting researh. Our results are, ingeneral, in good qualitative agreement with many experiments in di�erent alloyfamilies and thus provides a simple, uni�ed framework whih allows to go depthinto the understanding of ferroelastis. In the following, we highlight the mainresults/aomplishments/ahievements of this thesis and propose some improve-ments for the model. Finally, we also summarize the theoretial onlusions andpropose some future experimental work.Main Results� Quenhed-in disorder is a neessary ingredient for pretransitional textures to ex-ist. In systems with high anisotropy, disorder ooperates with long-range anisotropiinterations giving rise to a middle-range ross-hathed pattern, the so-alledtweed, whih has been widely observed in experiments. By middle-range mod-ulation we mean that the length sale assoiated to tweed onsiderably overomesthe typial length sale of disorder but is notably smaller than the harateristitwin size. In ontrast with that, systems with low anisotropy exhibit short-range121



122 Chapter 7. Summary and onlusionspretransitional textures of almost spherial shape (mottled struture), whih havebeen experimentally observed in Ti-Ni-based systems. Indeed, suh alloys arepartiularly haraterized by a very low anisotropy value.� For relative small amounts of disorder, upon ooling the system transformsto the martensiti phase, being the arising twinned strutures ompletely unor-related with the high temperature pretransitional patterns. Corret twin width isobtained by introduing an extra energeti ontribution derived from surfae ef-fets, i.e. of imposing the existene of an habit plane. Phenomenologial methodshave also sueed in yielding the orret length sale. Other important featuresof the twinned mirostruture, like needles, have been also reprodued.� For a given value of the anisotropy, as the amount of disorder is inreased,the ferroelasti transition is rounded, shifted to low temperatures and �nally sup-pressed, whih is revealed by the orresponding smoothing, shift and suppressionof the peak in the heat apaity C, and by a notable �atening in the elasti re-sponse C ′. This is in very good agreement with experiments that analyze thebehavior of C as a funtion of the relative onentration of the elements in agiven alloy family. The higher the value of the anisotropy the higher the amountof disorder needed to inhibit the transition.� When the transition is suppressed, both tweed and mottled strutures areretained at low temperatures. This is experimentally observed when inreasingdoping in SMAs. These low temperature patterns di�er from those at high tem-perature in the sense that show a degree of freeezing that is revealed by ZFC/FCsimulation experiments, where ZFC and FC urves split. This deviation, whih isindiative of glassy behavior, is partiularly important in the low anisotropy ase,whereas it is rather small in the high anisotropy ase. ZFC/FC results are also invery good agreement with experiments in low anisotropy alloys. No experimentalresults in high anisotropy systems are available. By looking at the energy of thesefrozen strutures, we have deteted that they are metastable states, in ontrastwith the similar strutures in the preursor regime, where they seem to be thermo-dynamially stable. Simulations with zero anisotropy show unorrelated emergingdomains, whih suggest that frustration is not at the origin of the glassy behaviorbut this ours due to kineti freezing beause of the ompetition among growingdomains. Thus, the thermodynami stable state exist but it is unaessible.� Thermomehanial properties have been analyzed. Stress-strain urves showa very rih, nontrivial phenomenology as a onsequene of anisotropy and disorder.Variations in their values result in hanges in the transition stress, hysteresisarea, transition dynamis and temperature ranges where pseudoplastiity andsuperelastiity regimes are observed. However, the response of the system maybe in opposite diretions depending on the value of the two parameters. In some



123ases the disorder favors superelastiity whereas in some others ases preventsit. This two-fold e�et of the disorder has been observed experimentally. Thefollowing general trends may be also reognized: As expeted, superelastiityhas been observed at high temperatures. The Clausius-Clapeyron relationship islinear, whih is in agreement with experimental observations in many di�erentmartensiti systems when varying doping. It is worth mentioning that the SMEhas been obtained not only in twinned martensite but also in the glassy system,whih is in agreement with experiments. To summarize stress-strain properties,the elastoalori e�et has been studied.Model Improvements� The model may be improved in several ways: A more realisti, inertial dynamismay be inluded, whih would introdue the time as an external parameter to betaken into aount, and would allow for important simulations like frequeny-dependene of the elasti response, from whih we an extrat Volger-Fülherrelations related to glassy behavior, ooling rate-dependent simulations, yling,aging, et. Moreover, due to the phenomenologial nature of disorder, any tuningof it would be welome to get loser to experiments.� Regarding the magnetoelasti model, it would be interesting to explore thewide range of phenomena like magneti domains, stress(magneti)-indued mag-neti (strain) domain swithing, ferromagneti SME, magneti textures in thepremartensiti regime, et. Beyond this, freezing of the spins indued by frozenstrains ould also be studied in the ase of large disorder.Theoretial Conlusions and Proposed ExperimentsUp to date, the suppression of the transition due to hanges in omposition hasbeen experimentally assoiated with an intrinsi thermodynami instability ofthe martensite. However, mehanial-indued transitions in the nonmartensiti,glassy Ti-Ni-based alloys point to the nontwinned martensiti state to be atuallythermodynamially (meta)stable, sine upon unloading the martensiti phase isretained. This is further revealed by di�ration experiments. Our simulationresults support this �nding. It would be interesting to explore the possibility ofthe two-way SME through thermomehanial treatment, whose existene wouldreinfore this argument. Moreover, the fat that these alloys exhibit SME impliesthat the nontwinned martensite, after being stabilized through loading-unloadingproesses, undergoes a temperature-indued bakward transition upon heatingwhih allows the sample to reover the initial shape. With respet to this, itwould also be of interest to hek the existene of the orresponding peak in the



124 Chapter 7. Summary and onlusionsheat apaity and other thermodynami signatures of the transition in magnitudeslike resistivity and elasti response.On the other hand, sine the strain glass state has been only observed in verylow anisotropy systems, a ouple of additional questions proposals still ome toour mind, omplementary those above: First, does glassy features also our inhigh anisotropy systems at high amounts of doping? In other words, are the tweedtextures observed in high anisotropy materials a glassy state when obtained at lowtemperatures in the nontransforming omposition regime? Analogous to the lowanisotropy ase, this ould be tested through ZFC/FC experiments and others.To further ompare tweed with the mottled glassy state, at least one importantquestion remains unanswered: Why is the martensiti phase unaessible underertain onditions? is it due to a thermodynamial instability, or is it due to akineti freezing, whih gives rise to the glassy state? Diretly related to that, wean also ask ourselves wether suh a system also exhibits SME or not.Answers to all these questions would help to go deeper into the understandingof the intringuing mehanisms governing these systems, and perhaps we would beable address a fundamental question onerning this thesis: Does the anisotropyplay any role in determining the observed behavior?



Chapter 8Resum
Des de fa temps s'ha anat observant que els materials que exhibeixen estats es-paialment inhomogenis a l'esala mesosòpia poden presentar propietats noves iinteressants des del punt de vista tenològi i fonamental. Dins de l'ampli ven-tall dels materials funionals, podem itar superondutors d'alta temperatura,manganites exhibint magnetoresistènia olossal, ondutors iònis i ferrois engeneral om a exemples de sistemes en els que les inhomogeneitats juguen unpaper ruial a l'hora de determinar-ne les seves propietats.En partiular, els materials ferrois són sistemes que es arateritzen per unatransiió de fase induïda per temperatura, en la que una magnitud físia s'ordenaespontàniament donant llo a una mesoestrutura interna típiament multido-mini. Aquesta autoorganitzaió sorgeix de la ombinaió entre tres fators: unper�l energéti onsistent en varis pous degenerats (variants o twins en anglès),l'existènia d'unes fores de llarg abast de tipus dipolar i efetes de forma i tamany�nit. La transiió també pot ser induïda per l'apliaió d'un amp extern. Aixímateix, la fase ordenada es arateritza pel fet que les diferents variants podenser onvertides d'una a una altra fàilment per mitjà d'un amp extern, donantllo a una sèrie de partiularitats om el ile d'histèresi, amb l'existènia d'unamp oeritiu, et.Els exemples paradigmàtis de materials ferrois són els sistemes ferromag-nètis, ferroelètris i ferroelàstis, on la magnetitzaió, la polaritzaió i la de-formaió són les magnituds físiques de rellevània respetivament. Cal posar demanifest l'existènia de materials multiferrois, om per exemple magnetoelàstiso magnetoelètris, on l'aoblament entre les diferents magnituds és important.Això dóna llo a una resposta reuada signi�ativa entre una variable i el amponjugat d'una altra, que permet una fenomenologia variada amb importants apli-aions tenològiques.Aquest estudi es foalitza en els materials ferroelàstis, en els que durant la125



126 Chapter 8. Resumtransiió apareix una deformaió de la xarxa ristal·lina, que anvia d'estruturade tal manera que els proessos dominants són displaius i no hi ha difusió d'àtomsper la xarxa. Típiament les el.les unitat de les dues fases mantenen una relaióde grup-subgrup, osa que dóna llo a l'existènia de més d'una variant orienta-ional. Usualment, la fase ferroelàstia nulea dins d'una matriu paraelàstia.La multipliitat de les variants orientaionals permet que l'enaix de la inlusióemergent i posterior reixement de la fase ferroelàstia no sigui dramàtia per lamatriu mare des del punt de vista de la deformai`ó sinó que té llo mantenintel pla que forma la frontera entre fases (pla d'hàbit) marosòpiament invari-ant, mitjançant l'alternança de les menionades variants. L'efete dominó, que ésl'essènia del llarg abast de les interaions elàstiques, fa que aquesta alternançaes propagui dins el volum de la fase martensita, donant llo d'aquesta maneraa una estrutura interna de dominis orientaionals. De fet la modulaió ι de ladeformaió segueix una llei del tipus l ∝ √L.Léxistènia d'aquesta miroestrutura permet dos fenòmens importants: enprimer llo, la superelastiitat, que onsisteix en el fet que el sistema pot deformar-se més enllà del llindar elàsti mitjançant l'apliaió d'un esforç que indueixila transiió ferroelàstia, amb la onseqüent apariió d'una únia variant, sele-ionada per les espei�tats del amp. Quan s'elimina l'esforç, el material pateix latransformaió inversa i reupera així la seva forma original. En segon llo, trobeml'efete de memòria de forma (SME), que es basa en el fet que el material mantéla seva forma original marosòpia quan pateix la transiió al disminuir la tem-peratura gràies a l'estrutura multidomini. L'apliaió d'un esforç a aquesta faseordenada provoa el reixement de la variant afavorida pel amp en detriment deles altres i la onseqüent deformaió del sistema. El potserior esalfament de lamostra provoa la transiió inversa i, per tant, la reuperaió de la forma origi-nal. Entre els materials ferroelàstis al destaar les martensites termoelàstiques,que poden reuperar deformaions de gairebé �ns al 10%, i que tenen importantsapliaions tenològiques om a atuadors, sensors, vàlvules de ontrol, et. enamps molt diversos que van des de l'aeronàutia a la mediina. Com a exemplesde martensites termoelàstiques trobem multitud d'aliatges intermetàl·lis, entreels que destaarem el Ti-Ni per la seva rellevània tenològia, i aliatges basats enTi i Ti-Ni. Cal destaar també l'efete de memòria de forma magnetia (FSME)en materials magnetoelàstis itats abans, on un amp magnèti juga el paper delamp d'esforços. Aquí podem menionar el Fe-Pd.Com s'ha dit, en aquests sistemes la transiió està dominada per fores elàs-tiques de llarg abast, que a la vegada depenen fortament de les simetries espeí-�ques de la xarxa així om de les onstants elàstiques, que determinen les dire-ions toves del ristall. Per tant, aquestes fores poden ser altament anisotròpiques,i poden afetar de manera ruial la morfologia de les mesoestrutures internes.



127Tanmateix, aquesta desripió es veu alterada per la presènia d'inhomogeneïtats,om les �utuaions omposiionals intrínsiques a qualsevol aliatge. Aquest des-ordre intrínse pot erigir barreres d'energia i entropia de tal manera que podenapantallar les orrelaions de llarg abast. És àmpliament sabut, per exemple,que desviaions de l'estequiometria en aliatges així om el doping (que típiamentporten a un augment de les �utuaions omposiionals respete els aliatges origi-nals), introdueix variaions molt signi�atives en els rangs de temperatura i esforçen els que s'observen el SME i la superelastiitat així om la histèresi, osa que ésmolt important per al disseny d'aliatges amb mem`oria de forma, que neessitenrègims operatius determinats. Per això hi ha una quantitat de literatura exper-imental molt important que onerneix les propietats termoelàstiques en funióde la omposiió. De manera més fonamental, també s'observen anomalies en re-spostes termodinàmiques om la apaitat alorí�a, la resistivitat, anvis en lesonstants elàstiques, et. Cal menionar les estrutures pretransiionals om eltweed que resulten de la ooperaió entre la presènia d'inhomogeneïtats i les foresanisotròpiques de llarg abast. El present estudi es foalitza preisament en l'anàlisinumèri de l'efete de l'anisotropia i el desordre en les estrutures i respostes ter-modinàmiques en sistemes ferroelàstis. S'utilitza una extensió d'un model deGinzburg-Landau que inlou desordre i interaions de llarg abast anisotròpiques.ModelD'aord amb la teoria de l'elastiitat, qualsevol deformaió d'un sistema ambsimetria quadrada es pot expressar om a ombinaió de tres deformaions fon-amentals (més una rotaió), que són les deformaions de volum (e1), deviatòria(e2) i de isalla (e3). En partiular, el nostre objetiu és modelar un sistemaque pateix una transiió de simetria quadrada a retangular. que és el as bidi-mensional orresponent a la transiió real de úbia a tetragonal. Per tant,la deformaió de transformaió és la deviatòria, que esdevindrà el paràmetred'ordre (OP) de l'energia lliure de Ginzburg-Landau. Les onsideraions d'unatransiió de primer ordre i de simetria de paritat duu a la següent expressió:
FGL(e2) =

∫
(αT (T − Tc)e22(r)− β

4
e42(r) + γ

6
e62(r) + |∇e2(r)|2)dr.A la introduió s'ha omentat que els aliatges mostren una sensibilitat moltgran de la temperatura de transformaió a la omposiió espeí�a del material.Aquest fet, juntament amb les �utuaions omposiionals inherents als aliatges,reolza la introduió del desordre om un amp aleatori �utuant aoblant-sea l'OP a través del terme harmòni, ja que el oe�ient d'aquest terme deter-mina parialment les temperatures araterístiques de la transiió. En partiularel amp ve desrit per una variable aleatòria η(r), distribuida gaussianament iorrelaionada espaialment segons una funió de orrelaió a parelles exponenial.



128 Chapter 8. ResumEls paràmetres que determinen la variable η(r) són, per tant, la mitjana µ i ladesviaió estàndard ζ de la distribuió i la longitud de orrelaió ξ. En un altremodel molt similar a l'atual, s'ha observat que les estrutures de dominis són moltrobustes respete la funionalitat espeí�a de la distribuió i orrelaió del des-ordre. Així mateix, és evident que el valor de µ només desplaça la fenomenologiaal voltant del valor esollit, però no aporta resultats qualitativament diferents.La disretitzaió del desordre, neessària per a la implementaió numèria enla malla de simulaió, introdueix diferènies �nites en les temperatures araterís-tiques de les el.les veïnes, que determinen de manera ruial les barreres loalsd'energia lliure. Ja que els valors de ζ i ξ varien sensiblement aquestes diferén-ies, són suseptibles d'afetar de manera rellevant els resultats obtinguts. Detotes maneres, s'observa que el omportament del sistema és bastant robust re-spete variaions en ξ i en ap as dóna llo a resultats qualitatius diferents queels obtinguts al variar el valor de ζ . Per tant, ξ es deixarà onstant i l'estudi enfunió del desordre es durà a terme només en funió de ζ .Addiionalment, s'afegeix una ontribuió energètia d'ordre harmòni de lesdeformaions que no orresponen a l'OP, és a dir, de volum i isalla (Fnon-OP(e1, e3) =
∫ (

A1

2
e21(r) + A3

2
e23(r)

)
dr), on A1 i A3 estan relaionats amb els mòduls de volumi isalla respetivament. Donat que en 2 dimensions els graus de llibertat realssón úniament dos, desrits pel amp de desplaçaments, les tres deformaions

e1, e2 i e3 estan lligades per mitjà de la ondiió de ompatibilitat de Saint Vé-nant, que és una equaió que garanteix la integritat de la xarxa. Això possibilitaesriure l'energia lliure total en termes només de l'OP i d'una de les deforma-ions e1 o e3 (per exemple, FT(e1, e2) = FGL(e2) + Fnon-OP(e1, e2)). Si, a més amés, minimitzem l'energia lliure total FT respete e1, obtenim una ondiió ad-diional que ens permet obtenir una expressió per FT només en termes de l'OP.L'expressió resultant per Fnon-OP(e2) és no loal a l'espai real: Fnon-OP(e2) =
∫
dr
∫
e2(r)U(r−r

′)e2(r
′)dr′, però esdevé loal a l'espai de Fourier: Fnon-OP(e2) =

A3

2

∫
V (k)ẽ2(k)dk, amb un kernel V (k) que posa de manifest l'anisotropia d'aquestesinteraions: V (k) =

(k2
x−k2

y)2

A3

A1
k4+8k2

xk
2
y

. Efetivament, aquest terme es minimitza quan ladeformaió deviatòria es modula segons les direions diagonals respete els eixosristal·logrà�s de la fase quadrada, i explia per tant les modulaions reuadesobservades experimentalment en les textures pretransiionals tipus tweed així omla morfologia lineal de les fronteres entre dominis dels twins i les junions perpen-diulars en monoristalls.D'altra banda, es pot demostrar que en realitat V (k) = V (k/k), és a dir, noafavoreix ap longitud d'ona sinó que només seleiona la direió de les mod-ulaions. De fet, aquesta araterístia no s'ajusta a la realitat, ja que resultade no tenir en ompte ondiions de mida �nita de la martensita, osa que, om



129s'ha omentat anteriorment, és essenial per l'apariió de dominis amb una mod-ulaió determinada. Tanmateix, la onsideraió de mida in�nita és neessària perpoder obtenir una expressió tan senzilla per Fnon-OP(e2). Això permet, mitjançantondiions periòdiques de ontorn, un àlul omputaional molt més ràpid i ambuna mida de el·la de simulaió superior (ordre N logN , on N és el nombre deel·les unitat) que no pas el temps que omportaria el àlul no loal a l'espaireal (d'ordre N2). En qualsevol as, això tampo resulta fonamental per les es-trutures obtingudes des del punt de vista del nostre interès, ja que la dinàmiautilitzada al model és purament relaxaional i això dóna llo a l'estabilitzaiód'estats metaestables, amb interfases entre dominis orientades diagonalment. Caldir, no obstant, que s'han dediat part dels esforços d'aquest treball a l'estudi depossibles mètodes per introduir efetes de mida �nita.S'ha estudiat la dependènia de les fores de llarg abast així om el om-portament del sistema en funió d'A3 i del quoient A3/A1, ja que són oe�-ients que apareixen en la interaió de llarg abast. La fenomenologia que s'obtéal variar A3/A1 és qualitativament equivalent a la obtinguda al variar A3. Pertant, deixarem A3/A1 onstant. És important remarar el fet que A3 i el fatord'anisotropia elàstia són proporionals a temperatura onstant. Aquesta relaióposa en evidènia el fet que l'anisotropia està diretament relaionada amb el pesdel terme de llarg abast. Així, podem analitzar l'efete de l'anisotropia introduïntvariaions en el paràmetre A3.ResultatsEn primer llo es fa una anàlisi de la morfologia de les estrutures que s'obtenen endiverses situaions. Per valors alts de l'anisotropia i valors intermitjos de desordre,s'observa tweed pretransitional, que evoluiona ap a dominis twin quan la tem-peratura disminueix per sota la transiió. A mesura que el valor de l'anisotropiadisminueix, les estrutures pretransiionals perden direionalitat i els twins estrenquen. Per sota d'un llindar deixa d'observar-se modulaió en la deformaiói les estrutures són bàsiament en forma de gotes gairebé esfèriques. Al dis-minuir la temperatura, van apareixent noves gotes i les ja existents evoluionenpo, només augmentant una mia la seva mida. Experimentalment també s'ha ob-servat una dependènia similar de les estrutures pretransiionals a l'anisotropia.Així, materials amb alta anisotropia om el Fe-Pd i el Ni-Al exhibeixen tweedmentre que aliatges amb baixa anisotropia om el Ti-Ni i el Ti-Ni dopat amb Fepresenten una estrutura pretransiional de gotes.Una fenomenologia similar es pot obtenir mantenint una anisotropia onstanti variant el desordre. Un augment de la intensitat del desordre és equivalent a



130 Chapter 8. Resumdisminuir l'anisotropia i a l'inrevés. Per valors intermitjos d'anisotropia i de des-ordre, ja no s'obté tweed en el règim pretransiional però es poden seguir obteninttwins (semitrenats) a baixa temperatura. Quan s'augmenta el desordre, els twinsdeixen de formar-se i l'estrutura pretransiional es manté �ns a baixa temper-atura. Si l'anisotropia és gran la intensitat de desordre neessària per inhibir laformaió és onseqüentment més gran. La inhibiió dels twins i la supervivèniade les estrutures premartensítiques a baixa temperatura s'ha observat en moltsaliatges al anviar la omposiió relativa dels elements onstituents o a . D'aquestamanera, el Ti1−xNi1+x no mostra twins per x > 1.5, sinó que l'estrutura de goteses manté �ns a 0 K. El superondutor Y-Ba-Cu-0 mostra tweed pretransiional,però quan es dopa amb Co o Fe en detriment de Cu per sobre d'un ert llindar,el tweed també sobreviu �ns a 0 K.Les estrutures s'han arateritzat per diferents mètodes: s'ha alulat la dis-tribuió de la deformaió loal, la intensitat de la transformada de Fourier, queestà relaionada amb el patró de difraió i �nalment s'ha mesurat la mida dels do-minis. Per poder dur a terme aquest últim àlul, s'han hagut d'introduir efetesde mida �nita que, om s'ha omentat a la introduió, és la responsable de lalongitud araterístia de l'estrutura de dominis. Per a aquest propòsit s'hanutilitzat tres mètodes diferents: en primer llo, mitjançant un àlul analíti rig-orós s'ha derivat el potenial real que afeta la martensita om a onseqüènia deminimitzar l'energia orresponent a un sistema onsistent en una martensita en-voltada d'una matriu d'austenita. Aquest nou potenial inlou el kernel anterior
V (k) i un de nou que es pot aproximar a 1/|k|, essent k el vetor d'ones de lamodulaió de la deformaió. Això afavoreix longituds de modulaió petites. Unbalanç entre el terme de Ginzburg i aquest nou kernel permet la obtenió de lallei d'esala l ∝ √L menionada anteriorment. També s'ha estudiat els efetes demida petita, i s'ha obtingut que per sota d'un erta mida de la zona suseptiblede nulear la martensita, el twinning s'inhibeix i en el seu llo apareix un patró enforma de quadríula, que alterna dominis de variants martensítiques amb dominisde fase austenita.Aquesta mateixa fenomenologia s'ha obtingut introduïnt els efets de superfí-ie d'una manera menys físia però molt més simple: a través d'una distribuióde desordre (és a dir, de temperatures araterístiques) que obligui una zona delsistema a romandre a la fase mare. Aquest mètode té l'avantatge que no és mésostós des del punt de vista omputaional i en permet l'ús sistemàti pel àl-ul de les mides dels dominis i la seva evoluió en temperatura per varis valorsde l'anisotropia i el desordre. Consistentment amb les simulaions iniials delmodel en aquests termes, i també amb resultats que es desriuen més endavant,s'observa que per valors baixos d'anisotropia respete del desordre, la mida de lesgotes gairebé no evoluiona en temperatura sinó que es ongelen, de tal manera



131que les estrutures del sistema a baixa temperatura vénen determinades en granmesura pels patrons pretransiionals. Això evidentment no passa quan la fase debaixa temperatura presenta twins, ja que típiament aquests tenen una longitudaraterístia més gran que les textures premartensítiques, ja siguin tipus tweedo en forma de gotes. Bàsiament, la mida dels twins és independent de les ara-terístiques del desordre mentre que en el tweed i sobretot en les gotes, el desordrehi juga un paper fonamental.L'últim mètode utilitzat per obtenir una estrutura de dominis amb longitudaraterístia ha onsistit en la introduió d'un potenial fenomenològi ambun kernel tipus 1/|k|, que és en essènia el mateix que prèviament s'ha derivatanalítiament. S'han omprovat alguns aspetes dels omentats anteriorment.Cal menionar que els dos últims mètodes han permès l'apariió de twinstrenats a alta anisotropia. Això dóna llo a junions perpendiulars, on s'observaque els dominis es deformen en forma d'agulles. A mesura que ens allunyem de lesjunions, les agulles o bé desapareixen o bé s'eixamplen per donar llos a twins dellarg abast. Aquests detalls de les estrutures també s'han observat àmpliamenten experiments.Per orroborar els efetes de l'anisotropia i el desordre en el sistema, s'hananalitzat diverses funions resposta. En primer llo, hem determinat la apaitatalorí�a C en funió de l'anisotropia. Per valors alts d'A, C presenta un piabrupte orresponent a la transiió, i una anomalia en forma de gep orresponent ales estrutures premartensítiques. Quan l'anisotropia disminueix, el pi es suavitzai es desplaça ap a baixes temperatures. Finalment, per valors molt baixos d'Ael pi se suprimeix. Aquest desplaçament ap a baixes temperatures és degutal fet que les simulaions s'han fet refredant per tal de seguir el proedimentexperimental habitual. Simulaions addiionals dutes a terme esalfant mostrenun un desplaçament del pi ap a altes temperatures, indiant que el pi orrespona límits d'estabilitat. Paral·lelament, el àlul de la primera derivada de la fraiótransformada mostra un pi amb una dependènia en l'anisotropia molt similar alpi en C, osa que és una mostra de la robustesa del pi. Aquest omportamentdel pi en C s'ha vist experimentalment en molts aliatges om el Ti-Ni, Ti-Ni-Fe, Ti-Pd-Cr, i d'altres, al augmentar el grau de desordre. La supressió del piindia la supressió de la transiió martensítia, fet que ja havia estat anuniatestruturalment per la absènia de twins indiada anteriorment, tant en les nostressimulaions om en els experiments.També s'ha alulat la resposta elàstia del sistema per dos valors de l'anisotropia,i, d'aord amb experiments en Ti-Ni, la supressió de la transiió martensítia re-sulta en un aplanament de la orba respete la forma que presenta transiió.Els resultats anteriors ens porten a fer una anàlisi de l'energia de les estrutures



132 Chapter 8. Resumobtingudes, per tal de saber si orresponen a l'equilibri termodinàmi o són estatsmetaestables. L'equilibri termondinàmi ens el dóna l'energia lliure de Landauamb presènia de desordre. Així, es troba que l'energia del sistema és molt properaa l'equilibri per valors d'anisotropia i desordre que permeten la fromaió de twins,mentre que quan s'inhibeix la seva apariió l'energia és notablement més gran quela d'equilibri, indiant que les estrutures són metaestables.Motivats pels reents experiments en Ti-Ni que analitzen la supressió de latransiió martensítia des del punt de vista del omportament dinàmi tipusvidriós, s'han dut a terme simulaions de l'experiment zero-�eld-ooling/�eld-ooling (ZFC/FC). En aquest experiment el material se sotmet a 4 proessosonseutius: (a) refredament sense amp, (b) esalfament amb amp, (c) refreda-ment amb amp i (d) esalfament amb amp. L'evoluió de la deformaió entemperatura durant el proés (b) dóna llo a la orba anomenada ZFC i l'evoluiódurant el proés (d) s'anomena orba FC. Desviaions entre ambdues orbes (queoorren sempre a baix temperatura) són indiatives de dinámia ongelada, i pertant, de sistema vidriós. En el Ti-Ni, la desviaió s'observa per la mateixa om-posiió que inhibeix la transiió. Basat en aquest i altres experiments, els autorsetiqueten aquest tipus de sistemes om a strain glass (vidre de deformaió).Bàsiamet s'ha observat que en els sistemes que presenten transiió estruturalabrupta amb twins orrelaionant tot el sistema les orbes ZFC i FC oinideixenen tot el seu reorregut. A mesura que la transiió es va suavitztant i els twins esomenen a trenar, la orba ZFC es omença a desviar de la FC. La desviaió es-devé signi�ativa per valors relativament alts del desordre respete de l'anisotropiaque porten a la supressió de la transiió. Una vegada més, aquests resultats es-tan qualitativament d'aord amb els experiments en Ti-Ni. També, és importantremarar que la desviaió entre les orbes ZFC/FC s'obté tant a l'augmentar eldesordre per sobre d'un ert llindar ζ∗ om per disminuir l'anisotropia per sotad'un ert valor ríti A∗
3. Per saber si aquest omportament prové de erta frus-traió geomètria en el sistema hem realitzat dos àluls. Per una banda, hem vistque no hi ha orrelaions entre les variants espeí�ques que adopten els dominisen els seus estats iniials. És a dir, que les variants se seleionen de maneraaleatòria. D'altra banda, hem omprovat que en absènia total de fores de llargabast també hi ha desviaió entre les orbes ZFC i FC. D'aord amb això podemonluir que el omportament vidriós no resulta de frustraió geomètria sinó queés un problema més aviat inèti.Els valors rítis del desordre (o de l'anisotropia) que porten a la supressió dela transiió i a un ongelament de les estrutures són onsistents entre les diferentsmagnituds i simulaions que hem dut a terme: la apaitat alorí�a, l'anàlisi dela metaestabilitat de l'energia, les orbes ZFC/FC, et. Donat que el valor de ζ∗depèn d'A3 i a l'inrevés, podem esbossar en l'espai de paràmetres (Anisotropia,



133Desordre) la regió on s'obté omportament vidriós i la regió on s'observa transiió,amb dominis tipus twin.Finalment, s'han analitzat el omportament esforç-deformaió induït per es-forç. En partiular, s'ha estudiat el SME i la superelastiitat per dos valorsd'anisotropia i dos de desordre. Els valors espeí�s d'aquests paràmetres són im-portants per determinar l'estrutura �na d'aquestes orbes. S'ha trobat un ventallmolt ampli de omportaments, amb anvis en els rangs de temperatura en els ques'observen l'SME i la superelastiitat, anvis en l'esforç neessari per induir o béla transformaió, o bé el reixement dels dominis de la variant seleionada, anvisen l'àrea d'histèresi, el perentatge de reuperaió de la deformaió, la suavitat deles orbes, et. Aquesta fenomenologia tan ria s'ha observat també experimental-ment quan es varia la omposiió espei�a d'un aliatge en onret o es dopa ambun element addiional. Exemples en són el Ti-Ni, Au-Cd, Ti-Ni-Cu, Ni-Mn-Ga,Ni-Co-Mn-In, et. En partiular s'ha obtingut que els rangs de temperatura en elsque s'observa el SME i la superelastiitat depenen no trivialment dels paràmetres.El rang superelasiti esdevé màxim quan els valors d'anisotropia i de desordretenen una força omparable i ni un ni l'altre dominen la dinàmia del sistema, sinóque és resultat d'un balanç entre els dos. La histèresi de la transi�'o és màximaper valors grans d'anisotropia i petits de desordre, osa que també afavoreix unatransiió abrupta.Tanmateix, s'ha obtingut que la dependènia de l'esforç de transformaió enfunió de la temperatura, que ve desrita per l'equaió de Clausius-Clapeyron, éslineal i que el pendent de la reta no depèn dels valors partiulars d'anisotropiai desordre. En efete, experiments en diversos aliatges om per exemple el Ti-Ni, Au-Cd, Ni-Mn-Ga, Cu-Zn-Al, Ni-Ga-Fe, et. mostren que aquesta relaió éslineal reixent en les martensites. S'ha de dir, no obstant, que en el as del Ti-Ni elpendent depèn de la omposiió espeí�a, fet que ontradiu els nostres resultats.A la fase de baixa temperatura, l'esforç neessari per fer reixer els dominis reixa mesura que la temperatura dereix, fet que també s'observa experimentalment.Per ompletar l'estudi termomeàni s'ha alulat l'efete elastoalòri que ésl'anàleg meàni del ben onegut efete magnetoalòri. Està relaionat amb elanvi isoterm d'entropia o amb el anvi adiabàti de temperatura que el sistemapateix quan se li aplia o se li retira un esforç. Aquest efete es veu augmentaten la proximitat d'una transiió de fase de primer ordre, que dóna llo a gransanvis d'entropia. En el nostre model s'observa que la forma de la orba delanvi d'entropia en funió de la temperatura anvia lleugerament al modi�ar laanisotropia peró la magnitud del anvi d'entropia es manté pràtiament onstant.Cal menionar que s'ha dediat un temps a l'elaboraió d'un model magne-toelàsti, que inlou graus de llibertat magnètis i elàstis que estan aoblats



134 Chapter 8. Resumentre sí, permetent fenòmens om l'efete de memòria de forma ferromagnèti.S'utilitza la teoria miromagnètia segons la qual la magnetitzaió evoluionad'aord amb l'equaió de Landau-Lifshitz-Gilbert, que inlou un terme de pre-essió i un d'amortiguaió. L'energia del sistema inlou un terme d'anisotropiaristal.lina, un terme d'interanvi, un terme magnetostàti i un possible termed'interaió amb un amp magnèti extern. Addiionalment s'hi afegeix un termeenergèti orresponent a l'aoblament magnetoelàsti.El terme que omporta més problemes és el magnetostàti, ja que és no loali depèn fortament de la mida i forma del sistema. El fet que nosaltres util-itzem ondiions periòdiques de ontorn afavoreix un àlul ràpid d'aquest termea l'espai de Fourier i dóna llo a una dinàmia realista del amp d'spins. Noobstant, aquest mètode no 'aonsegueix estabilitzar una estrutura de dominis,sinó que el sistema aaba evoluionant ap al monodomini, afavorit pel oe�ientd'interanvi. Com a alternativa per obtenir una estrutura multidomini es dis-minueix notablement el oe�ient d'interanvi (que afavoreix el monodomini) i/os'introdueix un terme que penalitzi el monodomini a mode d'efetes de forma imida �nita.Es presenten resultats preliminars de l'evoluió purament magnètia, mostrantl'apariió de vortexs, parets de Bloh, de Néel, de Bloh asimètriques, el movimentde preessió al voltant de la direió seleionada per l'anisotropia ristal.lina, et.La introduió dels graus de llibertat elàstis es duu a terme mitjançant elmodel purament elàsti utilitzat anteriorment. Amb aquest model ens hem quedatgairebé a les portes de poder omençar a treure resultats.



Appendix ANotes about the elasti model
A.1 Introdution to the theory of elastiityHere some basis onepts about the theory of elastiity [154℄ are brie�y submit-ted. In partiular, linear elastiity deals with solid bodies regarded as ontinuousmedia that undergo small hanges in shape and volume.A.1.1 Strain and stress tensorsIn general, a deformation of a body entails the displaement of any point init. Suh motion an be mathematially desribed by the so-alled displaementvetor, u = r

′− r, where r and r
′ refer to the position of a partiular point beforeand after the deformation respetively. Supose now that the distane betweentwo very lose points in the non-deformed body dl2 = dr2. After the deformation,the orresponding distane will be dl′2 = dr′2 = (dr + du)2. Being u = {ui} and

r = {xi} then du = (∂ui/∂xk) dxk. Thus, dl′ an be written as:
dl′2 = dl2 + 2

∑

ik

∂ui
∂xk

dxidxk +
∑

ikl

∂ui
∂xk

∂ui
∂xl

dxkdxl (A.1)that, after some rearrangements an be rewritten as dl′2 = dl2 + 2
∑

ik ǫikdxidxkwhere ǫik is the strain tensor, de�ned as:
ǫik =

1

2

(

∂ui
∂xk

+
∂uk
∂xi

+
∑

l

∂ul
∂xi

∂ul
∂xk

) (A.2)It an be easily seen that ǫik is symmetrial and hene has only six di�erentomponents. Sine linear elastiity onsiders only small deformations, the last135



136 Appendix A. Notes about the elasti modelterm in eq. (A.2) an be negleted, so we obtain:
ǫik ≃

1

2

(
∂ui
∂xk

+
∂uk
∂xi

) (A.3)Considering a general deformation eij suh that eij = ∂ui/∂uj (and hene ǫij =

1/2(eij + eji)) it is easy to see that it an be expressed as the ombination of apure strain ǫij and a rotation ωij [16℄, sine we an write eij = ǫij + ωij, where
ωij = 1/2(eij − eji). This an be graphially seen in �gure A.1. Let us onsider
Figure A.1: A general deformation an be deomposed as the sum between a purestrain plus a rotation.now an volume element dV of a body undergoing a deformation in absene ofexternal body-fores1. Sine the internal volume fores anel by the Newton'sthird law, the total fore F =

∫
fdV ating on it an be understood as the sumof the fores ating on the surfae of dV , let us say dS. Due to the divergenetheorem, F an be expressed as the integral of the divergene of a tensor of ranktwo over the surfae dS delimiting dV . Thus, if fi is the i-omponent of the foreper unit volume,
fi =

∑

k

∂σik
∂xk

(A.4)so that
F =

∫

fdV =

∫
∑

k

∂σik
∂xk

dS (A.5)where σik is alled stress tensor.A.1.2 The elasti modulus tensor and the Hooke's lawThe free energy of a deformed body an be written as
F =

1

2

∑

ijkl

Cijklǫijǫkl (A.6)1Here body-fores refer to fores suh as gravity, wih are volume fores that at to the wholebody.



A.2. Non-order parameter energy: Long-range elasti interations 137where Cijkl is a tensor of rank four alled elasti modulus tensor (or elasti on-stants tensor) that, sine ǫij is symmetrial, ful�lls Cijkl = Cjikl = Cijlk = Cklij.From this it an be dedued that at the most there are only 21 di�erent om-ponents for Cijkl. This leads to an alternative notation, alled Voigt notation,aording to whih only two subindies are needed: xx → 1, yy → 2, zz → 3,
yz → 4, xz → 5 and xy → 6. This is the notation used in this thesis. In fat, fora rystal with additional symmetries, the number of omponents of Cijkl is stillredued. For instane, ubi symmetry has only three di�erent elasti onstants,with the following orresponding energy:

F = 1
2
Cxxxx

(
ǫ2xx + ǫ2yy + ǫ2zz

)
+ Cxxyy(ǫxxǫyy + ǫxxǫzz + ǫyyǫzz)

+2Cxyxy
(
ǫ2xy + ǫxz + ǫyz

) (A.7)Sine σij = ∂F/∂ǫij , the stress tensor is related to the strain tensor by means ofthe elasti ontants tensor:
σij =

∑

kl

∂F

∂ǫij
Cijklǫkl (A.8)that is alled Hooke's law2. Reall that this is valid only for small deformations,i.e. for linear elastiity.A.2 Non-order parameter energy: Long-range elas-ti interationsIn this setion we �rst examine in detail the ompatibility onstraints that link thethree symmetry adapted strains and derive the spei� mathematial expressionfor a square system in 2 dimensions. Then, we present the mathematial detailsthat allow to onvert the expression for the long-range anisotropi interationsfrom a nonorder parameter (nonOP), nonloal expression in real spae to a loalexpression in Fourier spae as a funtion of the order parameter (OP) only. Themethod onsists basially of taking advantage of two additional mathematialexpressions linking e1, e2 and e3: One is preisely the Saint Vénant ompatibilityequation and the another omes from energy minimization priniples. This willbe shown in Se. A.2.2.2Eq. (A.8) is the orresponding general law for a extended solid body to the well knownHooke's law for a spring, F = −kx where k is the elasti onstant of the spring. Also, theenergy of a spring is E = − 1

2
kx2, in orrespondene with eq. (A.6).



138 Appendix A. Notes about the elasti modelA.2.1 St. Vénant ompatibility onditionsThe six di�erent omponents of the 3-dimensional strain tensor ǫij are not in-dependent, sine they have been de�ned from the underlying displaement �eld
u that has only three di�erent omponents, i.e. the "true" degrees of freedom.Hene, there must exist some onstraints that link the di�erent omponents of ǫij .These are alled St. Vénant ompatibility onditions [140℄, that in 3 dimensionsan be expressed in the following ompat notation:Inǫ(r) ≡ ∇× [∇× ǫ(r)]⊤ = 0 (A.9)In what follows the orresponding 2D equations are dedued. Let's onsider

du = dux(x, y)̂ı+ duy(x, y)̂⇒ u(r) =

∫ r

r0

du (A.10)Sine this integral annot depend on the ontour joining r0 and r:
dux =

∂ux
∂x

dx+
∂ux
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=
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(A.11)and similar for uy. Using the strain tensor notation:
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(A.12)
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) (A.14)Adding the two last equations:
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(A.15)So �nally
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(A.16)This relation stablish a unique relation between ǫ and u(r). In terms of thesymmetry adapted strains:
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A.2. Non-order parameter energy: Long-range elasti interations 139A.2.2 Energy minimizationThe total free energy of the pure elasti model is expressed in terms of the sym-metry adapted strains e1, e2 and e3:
FT = FnonOP(e1(r), e3(r)) + F (e2(r)) (A.18)where
FnonOP =

∫ (
A1

2
e21(r) +

A3

2
e23(r)

)

dr (A.19)Due to the elasti ompatibility relation explained above, one of the strains anbe expressed in terms of the other two. Sine the elasti ompatibility equation isa partial di�erential equation, the Fourier transform of eq. A.17 allows to expresseasily e3 in terms of e1 and e2:
e3(k) =
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2kxky
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2kxky
e2(k) (A.20)First we need to express eq. (A.19) in Fourier spae and then we will be ableto introdue eq. (A.20). Therefore we fous on the term ∫

e21(r)dr: Makingthe inverse Fourier transform of e1(r) we an express it as a funtion of e1(k):
e1(r) = 1/(2π)2

∫
eik·re1(k)dk. Thus, the integral an be expressed as:
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(A.21)and similarly for the integral ∫ e3(r)dr. Then, eq. (A.19) an be expressed as:
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e3(k)e3(−k)dk (A.22)Now we introdue eq. (A.20):
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(A.23)Sine e1(k) is a omplex variable we an do e1(k) = x(k)+ iy(k). Then, e1(−k) =

e∗(k) = x(k) − iy(k) and e1(k)e1(−k) = x2(k) + y2(k). Rearranging terms, wean rewrite the energy this way:
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140 Appendix A. Notes about the elasti modelwhere g(e2) = 1
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e2(k)e2(−k)dk is a funtion whih depends onlyon e2. To simplify this expression we de�ne the following funtions:
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y (A.25)Using these de�nitions we an write the energy as follows:

FnonOP =
∫

[Q2(k) (x2(k) + y2(k)) +Q3(k) ((x(k) + iy(k))e2(−k)

+(x(k)− iy(k))e2(k))] dk + g(e2)
(A.26)Now we have the energy in terms only of e1 and e2. Considering that e1 evolves insuh a way that minimizes the free energy, we proeed to minimize the previousexpression with respet to e1. Consequently, we will be able to express e1 in termsof e2. In order to do that we have to minimize the energy with respet to the real(x) and imaginary part (y) of e1:

δFnonOP =

∫
∂FnonOP
∂e1(k”)

δe1(k”)dk” =

∫ [
∂FnonOP
∂x(k”)

δx(k”) +
∂FnonOP
∂y(k”)

δy(k”)

]

dk” = 0(A.27)Doing so, and taking into aount that ∂g(e2)/∂e1 = 0 we get
δFnonOP =

∫
dk”

∫
dk{[2Q2(k)x(k) +Q3(k) (e2(−k) + e2(k))] δ(k− k”)δx(k”)

+ [2Q2(k)y(k) + iQ3(k) (e2(−k)− e2(k))] δ(k− k”)δy(k”)} (A.28)First, e2(−k) + e2(k) = 2ℜ(e2(k)) and i (e2(−k) + e2(k) = 2ℑ(e2(k)). Seond,the δ(k − k”) will anihilate the integral over k. As δx(k”) and δy(k”) are anyvariation of the respetive variables and δFnonOP = 0, the oe�ients of thesevariations must vanish separately, i.e.:
2Q2(k)x(k) + 2Q3(k)ℜ(e2(k)) = 0

2Q2(k)y(k) + 2Q3(k)ℑ(e2(k)) = 0
(A.29)where we have renamed the remaining variable (k”) as k. Now, we an isolate

x(k) and y(k):
x(k) =

−Q3(k)ℜ(e2(k))

Q2(k)
; y(k) =

−Q3(k)ℑ(e2(k))

Q2(k)
(A.30)Sine e1(k) = x(k) + iy(k) we an write:

e1(k) = −Q3(k)ℜ(e2(k))
Q2(k)

+ i−Q3(k)ℑ(e2(k))
Q2(k)

= −Q3(k)
Q2(k)

(ℜ(e2(k)) + iℑ(e2(k))) = −Q3(k)
Q2(k)

e2(k)
(A.31)



A.3. Numerial details 141Finally, we an write the ontribution of the non-order parameter to the totalenergy in terms of the desired variable e2 as:
FnonOP =

∫
[Q2e1(k)e1(−k) +Q3 (e1(k)e2(−k) + e1(−k)e2(k))]dk

+ 1
(2π)2

A3

16

∫ (k2
x−k2

y)2

(kxky)2
e2(k)e2(−k)dk

(A.32)
=
∫ [Q2

3
(k)

Q2(k)
e2(k)e2(−k)− 2

Q2

3
(k)

Q2(k)
e2(k)e2(−k) + 1

(2π)2
A3

16

(k2
x−k2

y)2

(kxky)2
e2(k)e2(−k)

]

dk(A.33)
=

∫ (

−Q
2
3(k)

Q2(k)
+

1

(2π)2

A3

16

(k2
x − k2

y)
2

(kxky)2

)

e2(k)e2(−k)dk (A.34)Taking into aount the de�ntions of Qj(k), j = 2, 3, and simplifying terms, weget the �nal expression for the non-order parameter ontribution to the energy:
FnonOP =

1

(2π)2

A3

2

∫ (
k2
x − k2

y

)2

(

8k2
xk

2
y + A3

A1
(k2
x + k2

y)
2
)e2(k)e2(−k)dk (A.35)A.3 Numerial detailsFor ompleteness, in Se. A.3.1 we present the disretized expressions for thefree energy that we have used for numerial omputation. Moreover, from theseexpressions we have been able to alulate the funtional derivatives of the freeenergy that are required for the pure relaxational dynamis used in the model.Aording to this dynamis, ∂e2

∂t
= − δFT

δe2
, where FT = FL + FG + FnonOP + Fη.This is done in Se. A.3.2. Finally, in Se. A.3.3 we present the mathematialmethod used to build the disorder funtion, whih is Gaussian distributed and itis spatially orrelated by means of a exponential pair orrelation funtion.A.3.1 Disretization of the free energyWe reall that FL, FG and FnonOP stand for the Landau, Ginzburg and non-orderparameter energeti ontributions respetively. In the following expressions wewill use i, j, k, l,m, n for real spae variables and p, q for Fourier variables.

FL =

Nx∑

i=1

a

Ny∑

j=1

a

(
A2

2
e22(i, j)−

β

4
e42(i, j) +

γ

6
e62(i, j)

) (A.36)
FG =

κ

2

Nx∑

i=1

a

Ny∑

j=1

a

((
e2(i+ 1, j)− e2(i, j)

a

)2

+

(
e2(i, j + 1)− e2(i, j)

a

)2
)(A.37)
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FnonOP =

1

(2π)2

1

2

Nx−1∑

p=0

2π

aNx

Ny−1
∑

q=0

2π

aNy

A3

((
2π
aNx

p
)2

−
(

2π
aNy

q
)2
)2

e2(p, q)e2(−p,−q)

A3

A1

((
2π
aNx

p
)2

+
(

2π
aNy

q
)2
)2

+ 8
(

2π
aNx

p 2π
aNy

q
)2(A.38)Moreover, the disretization of the phenomenologi surfae potential FS used inSe. ?? leads to:

FS = Cs

Nx∑

i=1

a

Ny−1
∑

q=0

2π

aNy

1
2π
aNy
|q|e2(i, q)e2(i,−q) (A.39)A.3.2 Relaxational dynamis: Energy derivativesLandau term:

δFL
δe2(k,l)

= a2
∑Nx

i=1

∑Ny

j=1 (A2e2(i, j)δi,kδj,l − βe2(i, j)3δi,kδj,l + γe2(i, j)
5δi,kδj,l)

= a2 (A2e2(k, l)− βe2(k, l)3 + γe2(k, l)
5) (A.40)Ginzburg energy:

δFG
δe2(k,l)

= a2 κ
2

∑Nx

i=1

∑Ny

j=1

(
2
a2

(e2(i+ 1, j)− e2(i, j)) (δi+1,kδj,l − δi,kδj,l)

+ 2
a2

(e2(i, j + 1)− e2(i, j)) (δi,kδj+1,l − δi,kδj,l)
)

= κ (4e2(k, l)− e2(k + 1, l)− e2(k − 1, l)− e2(k, l + 1)− e2(k, l − 1))

(A.41)Long-range anisotropi energy:
δFnonOP
δe2(r)

= 1
(2π)2

∑Nx−1
p=0

∑Ny−1
q=0

1
2

(
2π
aNx

)(
2π
aNy

)

U (k)
(
∂e2(k)
∂e2(r)

e∗2(k) + e2(k)
∂e∗

2
(k)

∂e2(r)

)

= 1
(2π)2

∑Nx−1
p=0

∑Ny−1
q=0

1
2

(
2π
aNx

)(
2π
aNy

)

U (k) ·

·
[

∂
∂e2(r)

(∑

r′ a
2eik·r

′

e2(r
′)
)
e∗2(k) + e2(k) ∂

∂e2(r)

(∑

r′′ a
2e−ik·r

′′

e2(r
′′)
)]

= 1
(2π)2

∑Nx−1
p=0

∑Ny−1
q=0

1
2

(
2π
aNx

)(
2π
aNy

)

U (k) ·

·
[(∑

r′ a
2eik·r

′

δr,r′
)
e∗2(k) + e2(k)

(∑

r′′ a
2eik·r

′′

δr,r′′
)]

= 1
(2π)2

∑Nx−1
p=0

∑Ny−1
q=0

1
2

(
2π
aNx

)(
2π
aNy

)

U (k) ·
(
a2eik·re∗2(k) + e2(k)a2e−ik·r

)

= a2

(2π)2

∑Nx−1
p=0

∑Ny−1
q=0

1
2

(
2π
aNx

)(
2π
aNy

)

eik·rU (k) e∗2 (k)

+ a2

(2π)2

∑Nx−1
p=0

∑Ny−1
q=0

1
2

(
2π
aNx

)(
2π
aNy

)

e−ik·rU (k) e2 (k) , (A.42)



A.3. Numerial details 143where we have used the notation δr,r′ = δi,kδj,l, with r = (i, j) and r
′ = (k, l) and

δi,k is the usual Kroneker delta. We have also used k = (p, q) and
U(k) = U(p, q) = A3

((
2π
aNx

p
)2

−
(

2π
aNy

q
)2
)2

A3

A1

((
2π
aNx

p
)2

+
(

2π
aNy

q
)2
)2

+ 8
(

2π
aNx

p 2π
aNy

q
)2

(A.43)Sine U (k) = U (−k) and e∗2 (k) = e2 (−k) we make the hange of variables
k→ −k in the �rst summation so that the two summations beome idential:

δFnonOP
δe2(i,j)

= a2

(2π)2

∑Nx−1
p=0

∑Ny−1
q=0

(
2π
aNx

)(
2π
aNy

)

e−i(p,q)·(i,j)U (p, q) e2 (p, q)

= a2
F
−1 [U (k)φ (k) ;k] ,

(A.44)where F
−1 stands for the inverse Fourier transform with respet the variable k.We reall that e2(i, j) and e2(p, q) belong to real and Fourier spae respetively.Finally, we alulate in a very similar way the derivatives of the phenomeno-logi potential FS. We denote g(ky) = g(q) = 1

2π
aNy

|q|

δFS
δe2(x,y)

= Cs
∑Nx

i=1 a
∑Ny−1

q=0
2π
aNy

g(ky)
(
∂e2(x′,ky)
∂e2(x,y)

e2(x
′,−ky) + e2(x

′, ky)
∂e2(x′,−ky)
∂e2(x,y)

)

= Cs
∑Nx

i=1 a
∑Ny−1

q=0
2π
aNy

g(ky)
[

∂
∂e2(x,y)

(
∑

y′ ae
ikyy′e2(x

′, y′)
)

e2(x
′,−ky)

+e2(x
′, ky)

∂
∂e2(x,y)

(
∑

y′′ ae
−ikyy′′e2(x

′, y′′)
)]

= Cs
∑Nx

i=1 a
∑Ny−1

q=0
2π
aNy

g(ky)
[(
∑

y′ ae
ikyy′δx,x′δy,y′

)

e2(x
′,−ky)

+e2(x
′, ky)

(
∑

y′′ ae
−ikyy′′δx,x′δy,y′′

)]

= Csa
∑Ny−1

q=0
2π
aNy

g(ky)
[
aeikyye2(x,−ky) + e2(x, ky)ae

−ikyy
]

= Csa
∑Ny−1

q=0
2π
aNy

g(ky)ae
ikyye2(x,−ky) + Csa

∑Ny−1
q=0

2π
aNy

g(ky)e2(x, ky)ae
−ikyy(A.45)We now make the hange of variables ky → ky in the �rst summation. Takinginto aount that g(ky) = g(−ky) we get the �nal expression:

δFS
δe2(m,n)

= Csa

Ny−1
∑

q=0

2π

aNy
g(q)ae−iqne2(m, q) = Csa2πF

−1[g(q)e2(m, q); q](A.46)Sine the oe�ient Cs is arbitrary, it an absorb the other remaining fators.



144 Appendix A. Notes about the elasti modelA.3.3 Spatially orrelated quenhed-in disorderA random variable η (r) Gaussian distributed and spatially orrelated by means ofan exponential pair orrelation funtion is desired. That is to say, mathematially:
〈η(r)η(r′)〉 = G(|r− r

′|) =
A

2πλ2
e−|r−r′|/λand g(η) = 1√

2πζ
e
− η2

2ζ2 where ζ stands for the standard deviation of the Gaussiandistribution. Then, η(r) may be built as follows:
η(k) = α

√

G(k) (A.47)where α is a random variable Gaussian distributed with zero mean and unit vari-ane, i.e. g(α) = N(0, 1) and G(k) is the Fourier transform of G(|r − r
′|). Theinverse Fourier transform provides η(r) with the required harateristis3.This an be easily seen sine the autoorrelation is G(0) = 〈η(r)2〉 = A

2πλ2 . Then,sine 〈η(r)〉 = 0, ζ =
√

〈η(r)2〉 − 〈η(r)〉2 =
√

A
2πλ2 .

3The way of generating a random variable of suh harateristis (eq. A.47) an be generalizedto any distribution and pair orrelation funtion [204℄.



Appendix B
Notes about the magnetoelastimodel
B.1 Disrete Fourier transformWe have seen that the magnetoelasti model involves three long-range energetiontributions, oming from the pure elasti, pure magneti and magnetoelastienergies. The nonloal harater of these terms is given through the fat that thepartiular value of the deviatori strain/magnetization at eah point of the bodydepends on the on�guration of the strain/magnetization in the whole body. Thisentails the omputation of a double integral, that is of the order of N2, where Nis the number of the unit ells of the simulation ell. It is unaeptable from thepoint of view of the omputation time. Lukily, the order of N2 an be reduedto N logN by reformulating the nonloal expressions in real spae as loal ex-pressions in Fourier spae. However, the numerial implementation of the Fourierexpressions may be nontrivial due to the disretization proess. In the ase of thepure elasti long-range interations, the partiular expression ful�lls some sym-metry properties that make avoid any problem and therefore, this has not beenommented previously. Instead, in the ase of long-range interations oming fromthe magnetoelasti oupling term as well as the magnetostati �eld, Fourier trans-forms aused these unexpeted problems that made us reformulate the method ofomputing suh terms. In the �rst two setions of this appendix we analyze thesenumerial problems. In this setion we de�ne the disrete Fourier transform andshow that there are some properties of the ontinuous Fourier transform that maybe extrapolated to disrete spae only under ertain onditions. In the seondsetion we approah the disrete omputation of the magnetostati �eld.First of all, we de�ne the ontinuous Fourier transform in one dimension for145



146 Appendix B. Notes about the magnetoelasti modelsimpliity, although it an be easily rewritten in more dimensions.F [f(x); k] ≡ f(k) ≡
∫ ∞

−∞
e−ikxf(x)dx (B.1)and its inverse F−1 [f(k); x] ≡ f(x) ≡ 1

2π

∫ ∞

−∞
eikxf(k)dk (B.2)However, for numerial purposes we work in a disrete real spae, onsistingof N ells, whose positions may be de�ned as: x = aj; j = 0 . . . , N − 1 where

a is the disretization parameter. Here, sine N is �nite, the Fourier transformautomatially imposes periodi boundary onditions. Then, in real spae, thetotal system onsists of an in�nite number of opies of the simulation ell, that inturn ontains N unit ells. The orresponding reiproal spae is in�nite, with adisrete set of k values, taking the values k = 2π
L
l; l = 0, . . ., where L = aN is thesize of the simulation ell. However, the relevant information an be restrited tothe First Brillouin Zone, from whih the whole Fourier spae an be reprodued.Then, the relevant values for k are k = 2π

L
l; l = 0, . . . , N − 1.In this framework, we will assoiate j variable with real spae and l variablewith the reiproal spae. Now let us de�ne the disretized Fourier transform as:F [f(j); l] ≡ f(l) ≡
N−1∑

j=0

e−i
2π
N
ljf(j)a (B.3)and its inverse F−1 [f(l); j] ≡ f(j) ≡ 1

L

N−1∑

l=0

ei
2π
N
ljf(l) (B.4)One de�ned these transformations, we are prepared to hek rigorously a oupleof properties of the ontinuous Fourier transform in disretized form.B.1.1 Fourier transform of a shifted funtionIf we make a simple hange of variables x = x′ + b and we introdue it in thede�nition of the Fourier transform we get:F [f(x); k] ≡ f(k) =

∫∞
−∞ e−ik(x

′+b)f(x′ + b)dx′ = e−ikb
∫∞
−∞ e−ikx

′

f(x′ + b)dx′(B.5)where we an rename x′ as x. On the other hand, aording to the de�nition eq.(B.1) we have: F [f(x+ b); k] ≡
∫ ∞

−∞
e−ikxf(x+ b)dx (B.6)



B.1. Disrete Fourier transform 147Comparing last two equations we have thatF [f(x+ b); k] = eikbF [f(x); k] (B.7)We now verify whether this relation is also ful�lled in disretized form: Proeedingthe same way, �rst we make the hange of variables j = j′ +n: We an do that as
n suessives hanges of variables j = j′ + 1, so let us do it with this last hangeof variables:
f(l) = e−i

2π
N
l(
∑N−2

j′=−1 e
−i 2π

N
lj′f(j′ + 1))a = e−i

2π
N
l
∑N−2

j′=0 e
−i 2π

N
lj′f(j′ + 1)

+ei
2π
N
lf(0) + e−i

2π
N
l(N−1)f(N)− e−i 2π

N
l(N−1)f(N))a

(B.8)Taking into aount periodi boundary onditions, we have that f(0) = f(N),and we get
f(l) = e−i

2π
N
la
∑N−1

j′=0 e
−i 2π

N
lj′f(j′ + 1) + af(N)(1− e−i2πl) (B.9)As e−i2πl = 1 ∀l ∈ Z, last term vanishes and we get:

f(l) = e−i
2π
N
la

N−1∑

j′=0

e−i
2π
N
lj′f(j′ + 1) (B.10)Being F [f(j + 1); l] = a

N−1∑

j′=0

e−i
2π
N
lj′f(j′ + 1) (B.11)we get the relation we were looking for:F [f(j + 1); l] = ei

2π
N
lf(l) (B.12)that is the disretized form of eq. (B.7), for b = 1. Note that it is valid whenshifting the funtion to another positions belonging to the disrete spae, but it isnot valid when the funtion is shifted to a position out of the disrete spae, forinstane j = j′+n/2. It ours, for example, when omputing �rst derivatives of adisrete funtion with forward or bakward di�erenes. In these ases, derivativesare omputed in the middle points between two nearest neighbours, i.e. out ofthe disrete lattie, and, if dealing in Fourier spae, they annot be shifted tothe original lattie by means of this relation. We �nd this kind of problem whenomputing the divergene of the magnetization in order to get the magnetostati�eld.



148 Appendix B. Notes about the magnetoelasti modelB.1.2 Fourier transform of a derivativeAgain we will show a problem arising when omputing derivatives with �nite dif-ferenes methods. These are only approximations of �rst (forward and bakwarddi�erenes), seond (entered di�erenes) or higher order in a taylor expansionto the ontinuous derivatives. Hene, this feature makes that the well knownproperty of the ontinuous fourier transform of a derivative,F[∂xf(x); k] = ikf(k) (B.13)is stritly not valid in disretized form, but only an approximation. Let us see itfor the ase when omputing a �rst derivative with forward di�erenes. We de�ne:
∂f(j)

∂j
≡ f(j + 1)− f(j)

a
(B.14)Hene, F [∂f(j)

∂j
; l

]

=
1

a
(F [f(j + 1); l]− F [f(j); l]) (B.15)As we have seen above, we an express the �rst Fourier transform as:F [f(j + 1); l] = ei

2π
N
lf(l) (B.16)so we get: F [∂f(j)

∂j
; l

]

=
1

a
f(l)

(

ei
2π
N
l − 1

) (B.17)Comparing with eq. (B.13), where k = 2π
L
l we have:

1
a

(

ei
2π
N
l − 1

)

= i2π
L
l ⇒ ei

2π
N
l = 1 + i2π

N
l (B.18)One an see that this is just a Taylor expansion up to the �rst order of the expo-nential funtion, valid for 2π

L
l ≪ 1→ l ≪ 1, that means long wave lengths, that isan approximation to the ontinuum. Indeed, the ontinuum does not allow sharphanges in f (in our ase the magnetization, for instane an antiferromagnetion�guration) but they have to be smooth (the interfaes must have a ertainwidth).B.2 Magnetostati energyB.2.1 Mathematial expressions for the magnetostati en-ergyThe omputation of the magnetostati term has been objet of intense researhdue to its intrinsi di�ulty. It may be expressed in multiple ways, eah one



B.2. Magnetostati energy 149giving rise to its own range of ways to solve it. We have explored some of them inorder to get a general overview and thus riterium to deide whih one is the mostonvenient in eah ase. Here we review some analytial and numerial aspetsonerning this term. From B = µ0(H+M) and from Maxwell equation∇·B = 0,we get ∇ ·H = −∇ ·M. From Maxwell equation ∇×H = 0, we get H = −∇φThen, we obtain the so-alled the Poisson equation:
∆φ = ∇ ·M (B.19)This is the equation we have to solve. One we have φ, by means of eq. (B.33) weget Hd and hene we get the magnetostati energy. To solve eq. (B.19) we will gointo Fourier spae. Making use of the property F [∂xf(x)] = ikf(k) this equationtransforms into:

φ(k) = −iMs
kxmx(k) + kymy(k) + kzmz(k)

k2
x + k2

y + k2
z

(B.20)Using H = −∇φ and eq. (B.20) we an rewrite the magnetostati energy thisway:
Fms = −1

2
µ0

∫
Hd(r)M(r)dr

= 1
2
µ0

∫ (∂φ(r)
∂x

Mx(r) + ∂φ(r)
∂y

My(r) + ∂φ(r)
∂z

Mz(r)
)

dr
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2
µ0

∫
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∂
∂x

∫
eikrφ(k)dk +My(r)

∂
∂y

∫
eikrφ(k)dk
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∂
∂z

∫
eikrφ(k)dk)

= i
2
µ0

∫
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kxe

ikrφ(k)dk +My(r)
∫
kye

ikrφ(k)dk

+Mz(r)
∫
kze

ikrφ(k)dk)

= i
2
µ0

∫
dkφ(k)(kx

∫
Mx(r)e

ikrdr + ky
∫
My(r)e

ikrdr + kz
∫
Mz(r)e

ikrdr)

= i
2
µ0

∫
dkφ(k) (kxMx(−k) + kyMy(−k) + kzMz(−k))

= µ0

2

∫
dkφ(k)φ(−k)

(
k2
x + k2

y + k2
z

)
= µ0

2

∫
dk|φ(k)|2 (k2) (B.21)or

Fms =
µ0

2

∫

dk
|kxMx(k) + kyMy(k) + kzMz(k)|2

(
k2
x + k2

y + k2
z

) =
µ0

2

∫

dk|M(k)
k

k
|2 (B.22)This expression for the magnetostati energy shows two important features: Fms ≥

0 always and Fms only depends on the diretion of k, not on its modulus. Fmswill vanish if the magnetization is perpendiular to the modulations, no matterwih wave length have. Then, the ground state will be a single domain beausethe exhange term prefers no interfaes. This sheme hanges when dealing withnon periodi boundary onditions.



150 Appendix B. Notes about the magnetoelasti modelB.2.2 Computation of the magnetostati �eldThere are several ways to solve it, as for example by means of �nite di�erenesmethod. Doing things this way we an �nd two main problems, one of storageand another of omputation speed. Let's disuss it. In disrete form, using �nitedi�erenes the eq. (B.19) takes the following form:
φ(i+ 1, j) + φ(i− 1, j) + φ(i, j + 1)

+φ(i, j − 1)− 4φ(i, j)

= 1
a
(Mx(i+ 1, j)−Mx(i, j) +My(i, j + 1)−My(i, j))

(B.23)We will have suh an equation for every (i, j), so we will have Nx×Ny equations.We an express this array of equations as a matrix equation: Ax = b where
A is a matrix and b and x are vetors. In our ase, b ≡ ∇ ·M and x ≡ φso they are vetors of size Nx × Ny. A represents the ∆ operator and has asize of (Nx × Ny) × (Nx × Ny). Here we �nd the �rst problem: the size of thematrix A beomes too large for sizes of the system of our interest (for instane,
Nx = Ny = 512). There is a way of avoiding this problem. The point is that Ahas only a small amount of non-zero matrix elements (sparse matrix), so we onlyhave to store them. One we have Ax = b, a way of solving this equation is doing
x = A−1b but we annot ompute the inverse A−1 beause this is not a sparsematrix but has many non-zero matrix elements and hene we annot store them.The way of solving this problem is to �nd the solution of the matrix equationnot by omputing A−1 but with iterative methods, like the bionjugate gradientmethod or the suessive overrelaxation with Chevishev aeleration [162℄. Theseiterative methods involve too large omputation times for our interests, so we willnot use them.As we have already said, we will solve the eq. (B.19) in Fourier spae. Fol-lowing [133℄ we an do that as explained in eq. (B.20) but this way we �nd thefollowing problem with the k in the �rst Brillouin zone border: sine φ(r) is real,due to the properties of the fourier transform, ℜ[φ(k)] must be even and ℑ[φ(k)]must be odd. Obviously, we also know that M(r) is real, so ℜ[M(k)] is evenand ℑ[M(k)] is odd. Then, we onstrut φ with M(k) and k from eq. (B.20).
f(k) = k is of ourse an odd funtion, so M(k) ·k will have the real part odd andthe imaginary part even. Then, multiplying it by i we will have what we wanted,that is the real part even and the imaginary odd. Let's write this matematially:
M(r) ∈ R ⇒

{ ℜ[M(−k)] = ℜ[M(k)]

ℑ[M(−k)] = −ℑ[M(k)]
⇒

{ℜ[M(−k)(−k)] = −ℜ[M(k)k]

ℑ[M(−k)(−k)] = ℑ[M(k)k](B.24)
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⇒

{ ℜ[iM(−k)(−k)] = ℜ[iM(k)k]

ℑ[iM(−k)(−k)] = −ℑ[iM(k)k]
(B.25)Then,

φ = −iM(k)k

k2
⇒
{ ℜ[φ(−k)] = ℜ[φ(k)]

ℑ[φ(−k)] = −ℑ[φ(k)]
⇒ φ(r) ∈ R (B.26)that is what we want. It only shows us that everything is onsistent. Problemsarise when we disretize these expressions and impose periodi boundary ondi-tions. At the border of the �rst Brillouin zone. At kx = π/a, for instane, weknow from the eq. (B.20) that

φ(k) = −iMs

π
a
mx(k) + kymy(k)
(
π
a

)2
+ k2

y

(B.27)and at kx = −π/a
φ(k) = −iMs

−π
a
mx(k) + kymy(k)
(
π
a

)2
+ k2

y

(B.28)
⇒ φ(−π/a, ky) 6= φ(π/a, ky), but periodi boundary onditions imply that
φ(−π/a, ky) = φ(π/a, ky), so we have a problem. The way to solve it, is makingthe term Mxkx vanish at kx = ±π/a. Similarly, the term Myky must vanishat ky = ±π/a. It is like averaging the kmax ontribution and it makes thatthe magnetostati �eld due to this modulation is not well omputed. This kind ofproblem always arises when dealing with odd funtions of k and periodi boundaryonditions. We will �nd it again when omputing the magnetoelasti term.A way of avoiding this problem is to ompute �rst the ∇ ·M(r) in real spaeand then to ompute the fourier transform of it. Then, the salar potential anbe written as:

φ(k) = −F [∇ ·M(r)]

k2
x + k2

y

(B.29)This way we do not have to ompute any odd funtion of k but we �nd the samekind of problem but in real spae. Using forward di�erenes,
∇ ·M(r) =

1

a
(mx(i+ 1, j)−mx(i, j) +my(i, j + 1)−my(i, j)) (B.30)The problem is that ∂xmx(r) and ∂ymy(r) are omputed in di�erent middle pointsof the lattie ((i+ 1/2, j) and (i, j + 1/2) respetively). Of ourse with bakwarddi�erenes we would �nd the same problem. Then, we are multiplying and addingthings at di�erents points like they were at the same. Beause of that, the twodi�erent (but obviously equivalent) ways to ompute Fms, shown in eq. (6.4),do not give the same result. As explained in the appendix, we annot use phasefators in fourier spae to shift these points ((i + 1/2, j) and (i, j + 1/2)) to the



152 Appendix B. Notes about the magnetoelasti modeloriginal lattie (i, j) preisely beause these points do not belong to the lattie,i.e. the shifted length is not a whole number but a half ((i+ b, j) an be shiftedto (i, j) if and only if b ∈ Z).The simplest way of solving it, is omputing∇·M(r) with entered di�erenes,so this way we will ompute both derivatives at the same point, but we will notbe able to distinguish modulations orresponding to the shortest wave lengthpossible in the system, i.e. the maximum k. We then �nd the same problem wehad when omputing φ with eq. (B.20). Due to that we will use another way toompute ∇·M(r) in real spae, that avoids eah problem of forward and entereddi�erenes. This is the way used by Berkov et al. [205℄ and onsists in whatfollows: if we onsider, for instane, that our spins are loated at the nodes of ourlattie, i.e. at the orners of our ells, ∇ ·M(r) is omputed in the enter of theells as an average of the derivatives of the magnetization at the orrespondingfour orners of that ell, like being a soure or a sink of magnetization in itsorners. Matematially, it an be expressed like this:
(∇ ·M(i, j)) (i− 1

2
, j − 1

2
) = − 1

2a
(mx(i, j)

−mx(i− 1, j) +mx(i, j − 1)−mx(i− 1, j − 1)

+my(i, j)−my(i, j − 1) +my(i− 1, j)−my(i− 1, j − 1))

(B.31)This way we will alulate the salar potential also at the enter of the ells (points
(i− 1

2
, j− 1

2
)). Using the same de�nition in eq. (B.33) in order to ompute the mag-netostati �eld at the orners of the ells (points (i, j)), where the magnetizationis loated, we get:

Hdx(i, j) = − 1
2a

(φ(i+ 1
2
, j + 1

2
)− φ(i− 1

2
, j + 1

2
)

+φ(i+ 1
2
, j − 1

2
) + φ(i− 1

2
, j − 1

2
))

Hdy(i, j) = − 1
2a

(φ(i+ 1
2
, j + 1

2
)− φ(i+ 1

2
, j − 1

2
)

+φ(i− 1
2
, j + 1

2
) + φ(i− 1

2
, j − 1

2
))

(B.32)
Then, whatever de�nition we use to ompute Fms in eq. (6.4) we get the sameresult beause we are always multiplying fators at the same points of the lattieand, hene, doing things in the right way.B.2.3 The demagnetizing fatorA general solution for eq. B.19 is [47℄:

φ(r) =
Ms

4π

[∫

V

−∇ ·m(r′)

|r− r′| dV ′ +

∫

S

m(r′) · n(r′)

|r− r′| dS ′
] (B.33)



B.3. Non-order parameter energy: Long-range elasti and magnetoelasti interations153where n is a vetor perpendiular to the surfae. The �rst and the seond termsorrespond to the ontribution due to the volume and surfae harge densitiesrespetively (∇·m andm·n may be onsidered 'magneti harges'). An alternativemethod to solve eq. (B.19) is in Fourier spae, as done in eq. (B.20). However, thisequation is useful only to solve the volume part, sine the surfae part orrespondsto the ontribution of k = 0 and it is a singularity in eq. (B.20). In otherwords, we may separate the magnetizing in two di�erent ontributions: M(r) =

M + δM(r), where M stands for the average magnetization of the system and
δM(r) orresponds to the loal variations with respet to M. In Fourier spae weare only able to ompute the demagnetizing �eld due to the heterogeneous part
δM(r).When the magnetization is uniform in the whole body, ∇ ·m(r) = 0 and the�rst term in eq. (B.33) vanishes. Then, by using H = −∇φ , the demagnetizing�eld due to the remaining term an be expressed as Hd(r) = N(r−r

′)M(r′), where
N(r−r

′) is a tensor alled 'demagnetizing fator', that onsists of an integral overthe surfae of the body that only depends on its shape. For ertain regular shapes,like ellipses, it has an analytial expression.This reasoning may be also applied independently to eah ell of the sys-tem [206, 207℄. Indeed, a oarse-grained lattie often onsists of an array of ellswhithin whih the magnetization is assumed to be uniform. Hene, we may om-pute the demagnetizing fator N for eah ell. If the ells are of equal shape,as it is often the ase1 we have to ompute N only one, and then dedue Hdfrom Hd(r) =
∑

r′ N(r− r
′)M(r′), where the sum is over all the ells of the sys-tem. This is a onvolution (order N2 in omputation time) that, if using periodiboundary onditions, an be transformed to a salar produt in Fourier spae(order N logN).B.3 Non-order parameter energy: Long-range elas-ti and magnetoelasti interationsIn the pure elasti model, long-range interations arose from applying the SaintVénant ompatibility equation and energy minimization to the non-order parame-ter symmetry adapted strains e1 and e3. In the magnetoelasti model, in additionto the pure elasti ontribution, the magnetoelasti oupling ontains an addi-tional ontribution of e1 and e3. This entails that the energy minimization withrespet to e1 wih is arried out after applying the ompatibility onstraint mustbe realulated in order to inorporate the magnetoelasti term. Here we give the1This is not the ase of �nite elements method.



154 Appendix B. Notes about the magnetoelasti modelmathematial details of the alulation. Atually, we shall see that the depen-dene of e1 and e3 with respet to the OP e2 is the same as in the pure elastimodel. We will derive also the mathematial expression for the magnetoelastioupling in Fourier spae.Sine we will be interested in deriving Fme + F el with respet to e1 in orderto minimize the free energy, we fous only on the non-OP ontribution, i.e. termsontaining only e1 and e3. From now on, we will make expliit wether the strainvariables belong to the real (r) or Fourier (k) spae, sine we will deal with bothspaes. Instead, the magnetization m will remain in the real spae all the time.However, for the sake of larity, we also will make expliit its dependene. Thus,we reover the mathematial expression for the non-order parameter free energy:
FnonOP =

∫ [
B1√

2
(m2

x(r) +m2
y(r))e1(r) +B2mx(r)my(r)e3(r)

+A1

2
e21(r) + A3

2
e23(r)

]
dr

(B.34)We now rewrite the Saint-Vénant ompatibility equation in Fourier spae andexpress e3 in terms of e1 and e2:
e3(k) =

(k2
x + k2

y)

2
√

2kxky
e1(k)−

(k2
x − k2

y)

2
√

2kxky
e2(k) (B.35)Then, we introdue this expression for e3 in the non-OP ontribution FnonOP [eq.(B.34)℄ that, onsequently, will beome a funtion only of e1 and the OP e2.

FnonOP =
∫ [

B1√
2
(m2

x(r) +m2
y(r))e1(r) + A1

2
e21(r)

+B2mx(r)my(r)
1

(2π)2

∫
eikre3(k)dk

+A3

2
1

(2π)4

∫
eikre3(k)dk

∫
eik

′re3(k
′)dk′

]

dr

(B.36)
=
∫ [

B1√
2

(
m2
x(r) +m2

y(r)
)
e1(r) + A1

2
e21(r)

+mx(r)my(r)
B2

(2π)2

∫
eikr

(
(k2

x+k2
y)

2
√

2kxky
e1(k)− (k2

x−k2
y)

2
√

2kxky
e2(k)

)

dk

+ A3

2(2π)4

∫
eikr

(
(k2

x+k2
y)

2
√

2kxky
e1(k)− (k2

x−k2
y)

2
√

2kxky
e2(k)

)

dk·

·
∫
eik

′r

(
(k′2x +k′2y )

2
√

2k′xk
′

y

e1(k
′)− (k′2x −k′2y )

2
√

2k′xk
′

y

e2(k
′)
)

dk′
]

dr

(B.37)
Now we make fourier transforms of e1(r), i.e. e1(r) = 1/(2π)2

∫
eikre1(k)dk andhange the order of the integrals. As in Se. A.2.2 we also use the fat that
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∫
eir(k+k′)dr = (2π)2δ(k + k

′). As e1(k) is a omplex variable we an do e1(k) =

x(k) + iy(k), and, rearranging terms, we an rewrite the energy this way:
FnonOP =

∫ [
1

(2π)2

(
B1√

2

∫
eikr(m2

x(r) +m2
y(r))dr

+B2

∫
eikrmx(r)my(r)dr

(k2
x+k2

y)

2
√

2kxky

)

(x(k) + iy(k))

+ 1
(2π)2

(
A1

2
+ A3

16

(k2
x+k2

y)2

k2
xk

2
y

)

(x2(k) + y2(k))

− 1
(2π)2

A3

16

(k2
x+k2

y)(k2
x−k2

y)

k2
xk

2
y

((x(k) + iy(k))e2(−k)

+(x(k)− iy(k))e2(k))] dk + FnonOP(e2)

(B.38)
where FnonOP(e2) is a funtion depending only on e2. To simplify this expressionwe de�ne the following funtions:
Q1(k) ≡ 1

(2π)2

∫
eikr

(
B1√

2
(m2

x(r) +m2
y(r)) + B2

2
√

2

(k2
x+k2

y)

kxky
mx(r)my(r)

)

dr

Q2(k) ≡ 1
(2π)2

(
A1

2
+ A3

16

(k2
x+k2

y)2

k2
xk

2
y

)

Q3(k) ≡ − 1
(2π)2

A3

16

(k2
x+k2

y)(k2
x−k2

y)

k2
xk

2
y

(B.39)Using these de�nitions we an rewrite the energy as follows:
FnonOP =

∫
[Q1 (k)(x(k) + iy(k)) +Q2(k) (x2(k) + y2(k))

+Q3(k) ((x(k) + iy(k))e2(−k) + (x(k)− iy(k))e2(k))] dk + FnonOP(e2)
(B.40)So now we have the energy in terms only of e1 and e2. As we only want to performsimulations of e2 we will minimize the energy with respet to e1, so we will be ableto express e1 in terms of e2. In order to do that we have to minimize the energywith respet to the real (x) and imaginary part (y) of e1:

δFnonOP =
∫

∂FnonOP
∂e1(k”)

δe1(k”)dk”

=
∫ [

∂FnonOP
∂x(k”)

δx(k”) + ∂FnonOP
∂y(k”)

δy(k”)
]

dk” = 0
(B.41)Now we arry out these derivatives. Note that ∂FnonOP(e2)/∂e1 = 0. We get

δFnonOP =
∫
dk”

∫
dk{[Q1(k) + 2Q2(k)x(k)

+Q3(k) (e2(−k) + e2(k))] δ(k− k”)δx(k”)

+ [iQ1(k) + 2Q2(k)y(k) + iQ3(k) (e2(−k)− e2(k))] δ(k− k”)δy(k”)}
(B.42)First, e2(−k)+e2(k) = 2ℜ(e2(k)) and i (e2(−k) + e2(k) = 2ℑ(e2(k)). Seond, the

δ(k−k”) will anihilate the integral over k. As δx(k”) and δy(k”) are any variation



156 Appendix B. Notes about the magnetoelasti modelof the respetive variables and δFnop = 0, the oe�ients of these variations mustvanish independently, i.e.:
Q1(k) + 2Q2(k)x(k) + 2Q3(k)ℜ(e2(k)) = 0 (B.43)
iQ1(k) + 2Q2(k)y(k) + 2Q3(k)ℑ(e2(k)) = 0 (B.44)where we have renamed the remaining variable (k”) as k. Now, we an isolate

x(k) and y(k):
x(k) =

−Q1(k)− 2Q3(k)ℜ(e2(k))

2Q2(k)
(B.45)

y(k) =
−iQ1(k)− 2Q3(k)ℑ(e2(k))

2Q2(k)
(B.46)As e1(k) = x(k) + iy(k) we an write:

e1(k) = −Q1(k)−2Q3(k)ℜ(e2(k))
2Q2(k)

+ i−iQ1(k)−2Q3(k)ℑ(e2(k))
2Q2(k)

= 1
2Q2(k)

[−Q1(k)− 2Q3(k)ℜ(e2(k)) +Q1(k)− 2iQ3(k)ℑ(e2(k))]

= −Q3(k)
Q2(k)

(ℜ(e2(k)) + iℑ(e2(k))) = −Q3(k)
Q2(k)

e2(k)

(B.47)that is the same result that we obtained for the pure elasti ase, i.e. withouttaking into aount the magnetoelasti oupling. Finally, we an write the on-tribution of the non-order parameter to the total energy in terms of the desiredvariables m and e2 as:
FnonOP =

∫
[Q1e1(k) +Q2e1(k)e1(−k) +Q3 (e1(k)e2(−k) + e1(−k)e2(k))]dk

− 1
(2π)2

B2

2
√

2

∫ (k2
x−k2

y)

kxky
e2(k)dk

∫
eikrmx(r)my(r)dr + 1

(2π)2
A3

16

∫ (k2
x−k2

y)2

(kxky)2
e2(k)e2(−k)dk(B.48)

=
∫ [

−Q3(k)Q1(k)
Q2(k)

e2(k) +
Q2

3
(k)

Q2(k)
e2(k)e2(−k)− 2

Q2

3
(k)

Q2(k)
e2(k)e2(−k)

+ 1
(2π)2

A3

16

(k2
x−k2

y)2

(kxky)2
e2(k)e2(−k)− 1

(2π)2
B2

2
√

2

(k2
x−k2

y)

kxky
e2(k)

∫
eikrmx(r)my(r)dr

]

dk(B.49)
=
∫ [(

−Q2

3
(k)

Q2(k)
+ 1

(2π)2
A3

16

(k2
x−k2

y)2

(kxky)2

)

e2(k)e2(−k)

−
(
Q3(k)Q1(k)

Q2(k)
+ 1

(2π)2
B2

2
√

2

(k2
x−k2

y)

kxky

∫
eikrmx(r)my(r)dr

)

e2(k)
]

dk
(B.50)Taking into aount the de�ntions of Qj(k), j = 1, 2, 3, and simplifying terms, weget the �nal expression for the non-order parameter ontribution to the energy:

FnonOP = 1
(2π)2

∫ (k2
x−k2

y)
“

8k2
xk

2
y+

A3

A1
(k2

x+k2
y)2

”

{
A3(k2

x−k2
y)

2
e2(k)e2(−k)

+

[
A3(k2

x+k2
y)

A1

B1√
2

∫
eikr

(
m2
x(r) +m2

y(r)
)
dr

−8kxky
B2

2
√

2

∫
eikr (mx(r)my(r)) dr

]

e2(k)
}

dk

(B.51)



B.4. Magnetoelasti dynamis 157The �rst term oinides with the long-range interation obtained in the pureelasti ase and the seond one is an extra ontribution due to the magnetoelastioupling. To simplify expressions we will use the following de�nitions:
Ac1(k) ≡ A3(k2

x−k2
y)(k2

x+k2
y)

A1

“

8k2
xk

2
y+

A3

A1
(k2

x+k2
y)2

”

Ac2(k) ≡ A3(k2
x−k2

y)
2

2
“

8k2
xk

2
y+

A3

A1
(k2

x+k2
y)2

”

Ac3(k) ≡ − 8(k2
x−k2

y)kxky
“

8k2
xk

2
y+

A3

A1
(k2

x+k2
y)2

”

(B.52)
Therefore, the non-OP free energy an be written as follows:
FnonOP = 1

(2π)2

∫ {

Ac2(k)e2(k)e2(−k) +
[

Ac1(k)B1√
2

∫
eikr

(
m2
x(r) +m2

y(r)
)
dr

+Ac3(k) B2

2
√

2

∫
eikr (mx(r)my(r)) dr

]

e2(k)
}

dk (B.53)B.4 Magnetoelasti dynamisThe dynamis of the magnetoelasti model onerns the evolution of both themagnetization m and the deviatori strain e2. As mentioned in Chap. 6, theformer evolves aording to the LLG equation and the latter aording to a purerelaxational dynamis. Sine the dynami equations lead to the on�guration of
m(r) and e2(r) that minimize of the total energy, both equations involve funtionalderivatives of the energy with respet to the orresponding variable. Here we givethe mathematial details of the alulation of suh derivatives.B.4.1 Magneti dynamisWe an rewrite eq. 6.9 in a dimensionless form [133℄:

∂m

∂τ
= −m× he� − αm× (m× he�) (B.54)where

he� =
He�
Ms

; τ =
γ0Ms

1 + α2
t (B.55)From energy minimization arguments, it an be dedued that he� an be ex-pressed as [208℄

he� = − 1

µ0

∂F

∂M
= − 1

µ0Ms

∂F

∂m
(B.56)
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∂m

=
(

∂F
∂mx

, ∂F
∂my

, ∂F
∂mz

). Introduing eq. 6.1 we get
he� = − 1

µ0Ms

(
∂Fan
∂m

+ ∂Fexh
∂m

+ ∂Fms
∂m

+ ∂Fext
∂m

+ ∂Fme
∂m

)

= han + hexh + hms + hext + hme (B.57)where han, hexh, hms, hext and hext orrespond to the e�etive �elds due to theanisotropi, exhange, magnetostati, external and magnetoelasti terms respe-tively. They an be expressed as:
han = − 2

µ0M2
s

[
mxK1

(
m2
y +m2

z

)
+K2m

2
ym

2
z, myK1 (m2

x +m2
z) +K2m

2
xm

2
z,

mzK1

(
m2
x +m2

y

)
+K2m

2
xm

2
y

] (B.58)
hexh =

2A

µ0M2
s

(∂xxm + ∂yym + ∂zzm) (B.59)
hms =

1

Ms
Hd (B.60)

hext =
1

Ms
Hext (B.61)The alulation of han, hexh and hext is straightforward. The alulation hms ismore laborious and an be found in Se. B.2.The ontribution of the magnetoelasti term to the e�etive �eld is:

he� = − 1

µ0M2
s

∂fme
∂m

(B.62)In omponents:
he�x(r) = − 1

µ0M2
s

∂fme
∂mx(r)

= − 1
µ0M2

s

[
B1√

2
2mx(r)e2(r) + 1

(2π)2
B1√

2
2mx(r)

∫
eikrAc1e2(k)dk

+ 1
(2π)2

B2

2
√

2
my(r)

∫
eikrAc3e2(k)dk

] (B.63)
he�y

(r) = − 1
µ0M2

s

∂fme
∂my(r)

= − 1
µ0M2

s

[

−B1√
2
2my(r)e2(r) + 1

(2π)2
B1√

2
2my(r)

∫
eikrAc1e2(k)dk

+ 1
(2π)2

B2

2
√

2
mx(r)

∫
eikrAc3e2(k)dk

] (B.64)Although our model deals with spins of three omponents, the magnetoelastioupling inludes only mx and my beause mz should ouple with ǫzj, being j =

x, y, z and the elasti part, in two dimensions, does not inlude these strain tensoromponents. Hene, he�z(r) = 0.



B.5. Miromagnetis in spherial variables 159B.4.2 Elasti dynamisThe dynamis used for the elasti evolution is the same as in Chapter ??, i.e.purely relaxational: ∂e2
∂τ

= − δF
δe2

. The funtional derivatives onerning de pureelasti part ( δFe
δe2

) have been already omputed in Se. A.3.2. In addition, herewe have the ontribution oming from the magnetoelasti oupling ( δFme
δe2

) , whosealulation is shown below. Let us start rewriting eq. (6.8) more expliitly:
Fme = B1√

2

∫ (
m2
x(r)−m2

y(r)
)
e2(r)dr

+ 1
(2π)2

∫
Ac1(k)e2(k)dkB1√

2

∫
eikr

(
m2
x(r) +m2

y(r)
)
dr

+ 1
(2π)2

∫
Ac3(k)e2(k)dk B2

2
√

2

∫
eikr (mx(r)my(r)) dr

(B.65)In order to take derivatives of e2(r)) we have to express e2(k)) as a Fourier trans-form of e2(r)):
Fme = B1√

2

∫ (
m2
x(r)−m2

y(r)
)
e2(r)dr

+ 1
(2π)2

∫
Ac1(k)dk

∫
e−ikr”e2(r”)dr”B1√

2

∫
eikr

(
m2
x(r) +m2

y(r)
)
dr

+ 1
(2π)2

∫
Ac3(k)dk

∫
e−ikr”e2(r”)dr” B2

2
√

2

∫
eikr (mx(r)my(r)) dr

(B.66)Now we an take derivatives:
δFme
δe2(r′)

= B1√
2

∫ (
m2
x(r)−m2

y(r)
)
δ(r− r

′)dr

+ 1
(2π)2

∫
Ac1(k)dk

∫
e−ikr”δ(r”− r

′)dr” · B1√
2

∫
eikr

(
m2
x(r) +m2

y(r)
)
dr

+ 1
(2π)2

∫
Ac3(k)dk

∫
e−ikr”δ(r”− r

′)dr” · B2

2
√

2

∫
eikrmx(r)my(r)dr =

(B.67)
B1√

2

(
m2
x(r)−m2

y(r)
)

+ 1
(2π)2

∫
e−ikr′Ac1(k)dkB1√

2

∫
eikr

(
m2
x(r) +m2

y(r)
)
dr

+ 1
(2π)2

∫
e−ikr′Ac3(k)dk B2

2
√

2

∫
eikrmx(r)my(r)dr (B.68)Finally, making the hange k→ −k, we get:

δFme
δe2(r′)

= B1√
2

(
m2
x(r)−m2

y(r)
)

+B1√
2
F−1

[
Ac1F (m2

x(r) +m2
y(r)

)]
+ B2

2
√

2
F−1 [Ac3F (mx(r)my(r))]

(B.69)where F−1 denotes the inverse Fourier transformation.B.5 Miromagnetis in spherial variablesAs mentioned in hapter 6, the spherial oordinates seem to be the naturalframework within whih develop the miromagneti model. Here the mathemati-al details onerning the LLG dynamis in these oordinates an be found. We
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Figure B.1: Cartesian and spheri-al oordinates: Variables and basevetors
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have a spin vetor (mx, my, mz). We reall the spherial to artesian hange ofvariables:
mx = r cos θ sinφ; my = r sin θ sinφ; mz = r cos φ (B.70)where instead of (mr, mθ, mφ) we have denoted (r, θ, φ) for simpliity. Cartesianto spherial oordinates:
r =

√
m2
x +m2

y +m2
z; θ =







arctan
(
my

mx

)

mx > 0
π
2
sgn(my) x = 0

π + arctan
(
my

mx

)

mx < 0

;

φ =







arctan

(√
m2

x+m2
y

mz

)

mz > 0

π
2

mz = 0

π + arctan

(√
m2

x+m2
y

mz

)

mz < 0

(B.71)
Base vetors:

ı̂ = cos θ sinφêr + cos θ cos φêφ − sin θêθ
̂ = sin θ sinφêr + sin θ cosφêφ + cos θêθ

k̂ = cosφêr − sinφêφ

(B.72)The relations between the variables and between the base vetors of artesian andspherial oordinates an be easily derived from Fig. B.1.B.5.1 Cartesian oordinatesOur �rst attempt onsists of �nding the full mathematial expression of the LLGequation in spherial variables with respet to artesian oordinates. As starting
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∂m

∂τ
= −m× he� − αm× (m× he�) (B.73)Let us write expliitly the seond and third terms:

m× he� =

∣
∣
∣
∣
∣
∣
∣

ı̂ ̂ k̂

mx my mz

he�x he�y he�z ∣∣∣∣∣∣∣ = (myhe�z −mzhe�y )̂ı+ (mzhe�x −mxhe�z)̂
+(mxhe�y −myhe�x)k̂ (B.74)Third term:

m× (m× he�) = [my(mxhe�y −myhe�x)−mz(mzhe�x −mxhe�z)] ı̂
+ [mz(myhe�z −mzhe�y)−mx(mxhe�y −myhe�x)] ̂
+ [mx(mzhe�x −mxhe�z)−my(myhe�z −mzhe�y)] k̂ (B.75)Now we an write LLG equation in omponents:

∂mx

∂τ
= −(myhe�z −mzhe�y)− α [my(mxhe�y −myhe�x)−mz(mzhe�x −mxhe�z)]

∂my

∂τ
= −(mzhe�x −mxhe�z)− α [mz(myhe�z −mzhe�y)−mx(mxhe�y −myhe�x)]

∂mz

∂τ
= −(mxhe�y −myhe�x)− α [mx(mzhe�x −mxhe�z)−my(myhe�z −mzhe�y)](B.76)We make the following hange of variables:

m = (mx, my, mz) = (cos θ sin φ, sin θ sin φ, cosφ) (B.77)We ompute now the left side of the LLG equation:
∂mx

∂τ
= ∂(cos θ sinφ)

∂τ
= − sin θ sinφ ∂θ

∂τ
+ cos θ cosφ∂φ

∂τ

∂my

∂τ
= ∂(sin θ sinφ)

∂τ
= cos θ sinφ ∂θ

∂τ
+ sin θ cos φ∂φ

∂τ

∂mz

∂τ
= ∂(cosφ)

∂τ
= − sinφ∂φ

∂τ

(B.78)Thus, the LLG equation in new variables beomes: Component x:
− sin θ sinφ ∂θ

∂τ
+ cos θ cosφ∂φ

∂τ
= −(sin θ sinφhz − cosφhy)

−α[sin θ sinφ(cosθ sinφhy − sin θ sin φhx)− cosφ(cosφhx − cos θ sinφhz)](B.79)Component y:
cos θ sinφ ∂θ

∂τ
+ sin θ cos φ∂φ

∂τ
= −(cos φhx − cos θ sinφhz)

−α[cos φ(sinθ sinφhz − cos φhy)− cos θ sinφ(cos θ sinφhy − sin θ sin φhx)](B.80)
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− sinφ∂φ

∂τ
= −(cos θ sin φhy − sin θ sinφhx)

−α[cos θ sinφ(cosφhx − cos θ sinφhz)− sin θ sinφ(sin θ sinφhz − cosφhy)](B.81)Now we divide eq. B.81 over (− sinφ):
∂φ
∂τ

= cos θhy − sin θhx + α[cos θ(cosφhx − cos θ sinφhz)

− sin θ(sin θ sin φhz − cosφhy)]
(B.82)Rearranging terms we get the dynami equation for φ:

∂φ

∂τ
= cos θhy − sin θhx + α[cosφ(cos θhx + sin θhy)− sin φhz] (B.83)We an also obtain the expression above by multiplying eq. B.79 by cos θ and eq.B.80 by sin θ and adding up the resulting equations.Now we multiply eq. B.79 by (− sin θ) and eq. B.80 by cos θ. Then, we add thetwo resulting equations. At the left hand side of the equation we get:

sin2 θ sinφ
∂θ

∂τ
− sin θ cos θ cos φ

∂φ

∂τ
+ cos2 θ sin φ

∂θ

∂τ
+ cos θ sin θ cosφ

∂φ

∂τ
= sinφ

∂θ

∂τ(B.84)At the right hand side of the equation we obtain:
(sin2 θ sinφhz − sin θ cosφhy) + α[sin2 θ sinφ(cosθ sinφhy − sin θ sinφhx)

− sin θ cosφ(cosφhx − cos θ sinφhz)]− (cos θ cosφhx − cos2 θ sinφhz)

−α[cos θ cosφ(sinθ sin φhz − cosφhy)− cos2 θ sinφ(cos θ sinφhy − sin θ sin φhx)]

= sin φhz − cosφ(sin θhy + cos θhx)

+α[sin2 φ(cos θhy − sin θhx) + cos2 φ(cos θhy − sin θhx)]

= sin φhz − cosφ(sin θhy + cos θhx) + α(cos θhy − sin θhx) (B.85)Hene, the dynami equation for θ is:
∂θ

∂τ
= hz − cotφ(sin θhy + cos θhx) + α csc φ(cos θhy − sin θhx) (B.86)



B.5. Miromagnetis in spherial variables 163B.5.2 Spherial oordinatesFirst we alulate m in the spherial base:
m = mxı̂+my ̂+mzk̂ = cos θ sin φ(cos θ sin φêr + cos θ cosφêφ − sin θêθ)

+ sin θ sinφ(sin θ sinφêr + sin θ cosφêφ + cos θêθ) + cos θ(cosφêr − sinφêφ)

= (cos2 θ sin2 φ+ sin2 θ sin2 φ+ cos2 φ)êr+

(cos2 θ sinφ cosφ+ sin2 θ sinφ cosφ− cos φ sinφ)êφ+

(− cos θ sinφ sin θ + sin θ sin φ cos θ)êθ = êr (B.87)Thus, as expeted, m = (1, 0, 0) in spherial oordinates. Now, we write anyvetor h = (hx, hy, hz) = (rh cos θh sin φh, rh sin θh sin φh, rh cos φh) with respet tothe base vetors {êr, êθ, êφ}:
h = hxı̂+ hy ̂+ hzk̂ == rh cos θh sinφh(cos θ sinφêr + cos θ cos φêφ − sin θêθ)

+rh sin θh sin φh(sin θ sin φêr + sin θ cosφêφ + cos θêθ)

+rh cos φh(cosφêr − sinφêφ)

= rh [sinφh sinφ cos(θh − θ) + cosφh cosφ] êr + rh sinφh sin(θh − θ)êθ+
+rh [sinφh cos φ cos(θh − θ)− cos φh sinφ] êφ = (hr, hθ, hφ) (B.88)In spherial oordinates the seond and third terms of LLG equation are expressedas:

m× he� = −hφêθ + hθêφ; m× (m× he�) = −hθ êθ − hφêφ (B.89)The �rst term of LLG equation an be numerially alulated to the �rst orderas:
∂m

∂τ
≃ mt+∆t −mt

∆τ
=

(mr, mθ, mφ)− (1, 0, 0)

∆τ
(B.90)Then, LLG equation expressed in the spherial oordinate system takes the fol-lowing form:

(mr, mθ, mφ) = (1, 0, 0)− [(0,−hφ, hθ) + α(0,−hθ,−hφ)] ∆τ (B.91)In omponents:
mr = 1 mθ = (hφ + αhθ)∆τ mφ = (hθ + αhφ)∆τ, (B.92)where it an be seen from the radial omponent that LLG equation automati-ally keeps the modulus of the spin onstant. Now we proeed to alulate thespei� expression for the e�etive �eld. For this we need to rewrite in spherialoordinates every energeti ontribution, whih is done in the following.



164 Appendix B. Notes about the magnetoelasti modelExhange �eld (I):Let us reall the ontinuous and disrete expression in artesian oordinates:
hexh = 2A

µ0M2
s

[(
∂2mx

∂x2 + ∂2mx

∂y2

)

ı̂+ +
(
∂2my

∂x2 + ∂2my

∂y2

)

̂+
(
∂2mz

∂x2 + ∂2mz

∂y2

)

k̂
]

= 2A
µ0M2

s
[(mx(i+ 1, j) +mx(i− 1, j) +mx(i, j + 1)+

+mx(i, j − 1)− 4mx(i, j))̂ı+

+(my(i+ 1, j) +my(i− 1, j) +my(i, j + 1) +my(i, j − 1)− 4my(i, j))̂+

+(mz(i+ 1, j) +mz(i− 1, j) +mz(i, j + 1) +mz(i, j − 1)− 4mz(i, j))k̂
](B.93)At this point, it an be helpful to reall that mx, my, mz are the omponents ofa given spin, and therefore the value of the omponents are given with respet tothe origin of the given spin. These omponents are being alulated in spherialoordinates. Moreover, in our system we have a vetorial �eld, that is a �eldof spins eah one loated in a ell of a square lattie. Sine the oordinates ofthe ells and the omponents of the spins are independent, it is more onvenientthe oordinates of the ells to be kept in artesian oordinates (x, y, z). Aord-ing to this, we will make expliit the artesian spatial dependene of the spinomponents, either in artesian oordinates (mx(x, y, ), my(x, y), mz(x, y)) or inspherial ones (r(x, y), θ(x, y), φ(x, y)). In a disretized mesh (x, y)→ (i, j) where

i, j ∈ N . Note that, although the spins are 3-dimensional vetors, the lattie isonly 2-dimensional, so that the z-omponent is not taken into aount and all thederivatives ∂/∂z, ∂2/∂z2 will vanish.Now we may ome bak to the mathematial alulus. Using eq. B.70 andB.72:
hexh = 2A

µ0M2
s

[(A1 cos θ(i, j) sinφ(i, j)

+A2 sin θ(i, j) sinφ(i, j) + A3 cosφ(i, j)) êr + (−A1 sin θ(i, j) + A2 cos θ(i, j)) êθ

+ (A1 cos θ(i, j) cosφ(i, j) + A2 sin θ(i, j) cosφ(i, j)− −A3 sinφ(i, j)) êφ](B.94)where
A1 = cos θ(i+ 1, j) sinφ(i+ 1, j) + cos θ(i− 1, j) sinφ(i− 1, j)

+ cos θ(i, j + 1) sinφ(i, j + 1) + cos θ(i, j − 1) sinφ(i, j − 1)− 4 cos θ(i, j) sinφ(i, j)

A2 = sin θ(i+ 1, j) sinφ(i+ 1, j) + sin θ(i− 1, j) sinφ(i− 1, j)

+ sin θ(i, j + 1) sinφ(i, j + 1) + sin θ(i, j − 1) sinφ(i, j − 1)− 4 sin θ(i, j) sinφ(i, j)

A3 = cosφ(i+ 1, j) + cosφ(i− 1, j) + cos φ(i, j + 1) + cosφ(i, j − 1)− 4 cosφ(i, j)(B.95)



B.5. Miromagnetis in spherial variables 165Introduing eq. B.95 in eq. B.94, we get in omponents:Component êr:
A1 cos θ(i, j) sinφ(i, j) + A2 sin θ(i, j) sinφ(i, j) + A3 cosφ(i, j)

= sin φ(i, j) [sinφ(i+ 1, j) cos (θ(i+ 1, j)− θ(i, j))
+ sinφ(i− 1, j) cos (θ(i− 1, j)− θ(i, j)) + sinφ(i, j + 1) cos (θ(i, j + 1)− θ(i, j))

+ sinφ(i, j − 1) cos (θ(i, j − 1)− θ(i, j))]
+ cosφ(i, j)(cosφ(i+ 1, j) + cos φ(i− 1, j) + cosφ(i, j + 1) + cosφ(i, j − 1))− 4(B.96)Component êθ:

−A1 sin θ(i, j) + A2 cos θ(i, j) =

sin φ(i+ 1, j)[cos θ(i, j) sin θ(i+ 1, j)− cos θ(i+ 1, j) sin θ(i, j)]

+ sinφ(i− 1, j)[cos θ(i, j) sin θ(i− 1, j)− cos θ(i− 1, j) sin θ(i, j)]

+ sinφ(i, j + 1)[cos θ(i, j) sin θ(i, j + 1)− cos θ(i, j + 1) sin θ(i, j)]

+ sinφ(i, j − 1)[cos θ(i, j) sin θ(i, j − 1)− cos θ(i, j − 1) sin θ(i, j)]

+4 cos θ(i, j) sin θ(i, j) sinφ(i, j)− 4 cos θ(i, j) sin θ(i, j) sinφ(i, j) =

= sinφ(i+ 1, j) sin (θ(i+ 1, j)− θ(i, j)) + sin φ(i− 1, j) sin (θ(i− 1, j)− θ(i, j))
+ sinφ(i, j + 1) sin (θ(i, j + 1)− θ(i, j)) + sinφ(i, j − 1) sin (θ(i, j − 1)− θ(i, j))(B.97)Component êφ:

A1 cos θ(i, j) cosφ(i, j) + A2 sin θ(i, j) cosφ(i, j)− A3 sinφ(i, j)

= cos φ(i, j) [sinφ(i+ 1, j) cos (θ(i+ 1, j)− θ(i, j))
+ sinφ(i− 1, j) cos (θ(i− 1, j)− θ(i, j)) + sin φ(i, j + 1) cos (θ(i, j + 1)− θ(i, j))

+ sinφ(i, j − 1) cos (θ(i, j − 1)− θ(i, j))]
− sinφ(i, j)(cosφ(i+ 1, j) + cosφ(i− 1, j) + cosφ(i, j + 1) + cosφ(i, j − 1))(B.98)



166 Appendix B. Notes about the magnetoelasti modelExhange �eld (II):Now we ompute the exhange �eld another way. Starting from B.93:
∂2mxi

∂x2

j

= ∂
∂xj

(
∂mxi

∂xj

)

= ∂
∂xj

(
∂mxi

∂θ
∂θ
∂xj

+
∂mxi

∂φ
∂φ
∂xj

)

=
∂2mxi

∂xj∂θ
∂θ
∂xj

+
∂mxi

∂θ
∂2θ
∂x2

j

+
∂2mxi

∂xj∂φ
∂φ
∂xj

+
∂mxi

∂φ
∂2φ
∂x2

j

=
∂2mxi

∂θ2

(
∂θ
∂xj

)2

+
∂2mxi

∂φ∂θ
∂φ
∂xj

∂θ
∂xj

+
∂mxi

∂θ
∂2θ
∂x2

j

+
∂2mxi

∂φ2

(
∂φ
∂xj

)2

+
∂2mxi

∂θ∂φ
∂θ
∂xj

∂φ
∂xj

+
∂mxi

∂φ
∂2φ
∂x2

j(B.99)where i, j = 1, 2, 3 and x1,2,3 = x, y, z respetively. As mentioned previously, wehave ∂mxi
/∂z = 0. Now let's ompute the derivatives: For mx = cos θ sin φ:

∂mx

∂θ
= − sin θ sin φ; ∂mx

∂φ
= cos θ cosφ

∂2mx

∂θ2
= ∂2mx

∂φ2 = − cos θ sin φ; ∂2mx

∂θ∂φ
= ∂2mx

∂φ∂θ
= − sin θ cosφ

(B.100)For my = sin θ sin φ:
∂my

∂θ
= cos θ sin φ; ∂my

∂φ
= sin θ cos φ

∂2my

∂θ2
= ∂2mx

∂φ2 = − sin θ sin φ; ∂2my

∂θ∂φ
= ∂2my

∂φ∂θ
= cos θ cos φ

(B.101)For mz = cosφ:
∂mz

∂θ
= ∂2mz

∂θ2
= ∂2mz

∂θ∂φ
= ∂2mz

∂φ∂θ
= 0

∂mz

∂φ
= − sinφ; ∂2mz

∂φ2 = − cosφ
(B.102)Let's name

hxi
=

(
∂2mxi

∂x2
+
∂2mxi

∂y2

) (B.103)Then, using eq. B.72 we an rewrite eq. B.93 as follows:
hexh = 2A

µ0M2
s

[

hxı̂+ hy ̂+ hzk̂
]

= 2A
µ0M2

s
[(hx cos θ sinφ+ hy sin θ sinφ+ hz cosφ) êr

+ (hx(− sin θ) + hy cos θ) êθ + (hx cos θ cosφ+ hy sin θ cos φ− hz sinφ) êφ](B.104)
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hx cos θ sinφ+ hy sin θ sin φ+ hz cosφ =

[
(
∂θ
∂x

)2
+
(
∂θ
∂y

)2

+
(
∂φ
∂x

)2
+
(
∂φ
∂y

)2
]

·

·
(

cos θ sinφ∂
2mx

∂θ2
+ sin θ sin φ∂

2my

∂θ2
+ cosφ∂

2mz

∂θ2

)

+
[
∂2θ
∂x2 + ∂2θ

∂y2

]

·
(

cos θ sinφ∂mx

∂θ
+ sin θ sinφ∂my

∂θ
+ cosφ∂mz

∂θ

)

+
[
∂2φ
∂x2 + ∂2φ

∂y2

]

·
(

cos θ sinφ∂mx

∂φ
+ sin θ sin φ∂my

∂φ
+ cos φ∂mz

∂φ

)

+2
[
∂θ
∂x

∂φ
∂x

+ ∂θ
∂y

∂φ
∂y

]

·
(

cos θ sinφ∂
2mx

∂θ∂φ
+ sin θ sin φ∂

2my

∂θ∂φ
+ cosφ∂

2mz

∂θ∂φ

)

= −
(
(
∂θ
∂x

)2
+
(
∂θ
∂y

)2

+
(
∂φ
∂x

)2
+
(
∂φ
∂y

)2
) (B.105)Component êθ:

− sin θhx + cos θhy =

[
(
∂θ
∂x

)2
+
(
∂θ
∂y

)2

+
(
∂φ
∂x

)2
+
(
∂φ
∂y

)2
]

·
(

− sin θ ∂
2mx

∂θ2
+ cos θ ∂

2my

∂θ2

)

+
[
∂2θ
∂x2 + ∂2θ

∂y2

]

·
(

− sin θ ∂mx

∂θ
+ cos θ ∂my

∂θ

)

+
[
∂2φ
∂x2 + ∂2φ

∂y2

]

·
(

− sin θ ∂mx

∂φ
+ cos θ ∂my

∂φ

)

+2
[
∂θ
∂x

∂φ
∂x

+ ∂θ
∂y

∂φ
∂y

]

·
(

− sin θ ∂
2mx

∂θ∂φ
+ cos θ ∂

2my

∂θ∂φ

)

= sinφ
(
∂2θ
∂x2 + ∂2θ

∂y2

)

+ 2 cosφ
(
∂θ
∂x

∂φ
∂x

+ ∂θ
∂y

∂φ
∂y

) (B.106)Component êφ:
hx cos θ cosφ+ hy sin θ cosφ− hz sin φ =

[
(
∂θ
∂x

)2
+
(
∂θ
∂y

)2

+
(
∂φ
∂x

)2
+
(
∂φ
∂y

)2
]

·

·
(

cos θ cosφ∂
2mx

∂θ2
+ sin θ cosφ∂

2my

∂θ2
− sinφ∂

2mz

∂θ2

)

+

+
[
∂2θ
∂x2 + ∂2θ

∂y2

]

·
(

cos θ cosφ∂mx

∂θ
+ sin θ cosφ∂my

∂θ
− sin φ∂mz

∂θ

)

+
[
∂2φ
∂x2 + ∂2φ

∂y2

]

·
(

cos θ cosφ∂mx

∂φ
+ sin θ cosφ∂my

∂φ
− sinφ∂mz

∂φ

)

+2
[
∂θ
∂x

∂φ
∂x

+ ∂θ
∂y

∂φ
∂y

]

·
(

cos θ cosφ∂
2mx

∂θ∂φ
+ sin θ cos φ∂

2my

∂θ∂φ
− sinφ∂

2mz

∂θ∂φ

)

=
(
∂2φ
∂x2 + ∂2φ

∂y2

)(B.107)Anisotropi �eld:In artesian oordinates:
han = − 2

µ0M2
s
(mx

(
K1

(
m2
y +m2

z

)
+K2m

2
ym

2
z

)
,

my (K1 (m2
x +m2

z) +K2m
2
xm

2
z) , mz

(
K1

(
m2
x +m2

y

)
+K2m

2
xm

2
y

)
)

(B.108)



168 Appendix B. Notes about the magnetoelasti modelIn spherial variables, using eq. B.70 and B.72:Component êr:
hanr = − 2

µ0M2
s

[
K12(cos2 φ sin2 φ+ sin4 φ sin2 θ cos2 θ)

+K23 sin2 θ cos2 θ sin4 φ cos2 φ
]

= − 2
µ0M2

s

[
K1

2
(sin2 2φ+ sin4 φ sin2 2θ) +K2

3
4
sin2 2θ sin2 2φ sin2 φ

]

(B.109)Component êθ:
hanθ = − 2

µ0M2
s

[
K1 sin3 φ(sin θ cos3 θ − sin3 θ cos θ)

+K2 sin3 φ cos2 φ(sin θ cos3 θ − sin3 θ cos θ)
]

= −2 sin3 φ
µ0M2

s

[
K1

4
sin 4θ + K2 cos2 φ

4
sin 4θ

]

= − sin3 φ sin 4θ
2µ0M2

s
[K1 +K2 cos2 φ]

(B.110)Component êφ
hanφ = − 2

µ0M2
s

[
K1(sin θ cos3 θ − sin3 θ cos θ + 2 cosφ sin3 φ sin2 θ cos2 θ)

+K2 sin2 θ cos2 θ sin3 φ cosφ(3 cos2 φ− 1)
]

= − 2
µ0M2

s

[
K1

1
4
sin 4θ +1

4
sin2 2θ

(
1
4
(sin 2φ− 1

2
sin 4φ)(2K1 −K2) + 3K2

8
sin3 2φ

)](B.111)Magnetostati �eld:The magnetostati �eld in artesian oordinates is omputed this way:
hd = −∇ψ
∇ · hd = −∇ ·m

}

⇒ ∆ψ = ∇ ·m⇒ ψ(k) = −F[∇ ·m(r)]

k2
x + k2

y

(B.112)where ψ denotes the salar potential and F a Fourier Transform. In 2D ∇ ·m is:
∇ ·m =

∂mx

∂x
+
∂my

∂y
(B.113)In disretized form:

(∇ ·m) (i− 1
2
, j − 1

2
) = mx(i, j)−mx(i− 1, j) +mx(i, j − 1)−mx(i− 1, j − 1)

+my(i, j)−my(i, j − 1) +my(i− 1, j)−my(i− 1, j − 1) (B.114)Finally, using B.112 we get the demagnetizing �eld:
hdx(i, j) = − 1

2a
(ψ(i+ 1

2
, j + 1

2
)− ψ(i− 1

2
, j + 1

2
)

+ψ(i+ 1
2
, j − 1

2
) + ψ(i− 1

2
, j − 1

2
))

hdy(i, j) = − 1
2a

(ψ(i+ 1
2
, j + 1

2
)− ψ(i+ 1

2
, j − 1

2
)

+ψ(i− 1
2
, j + 1

2
) + ψ(i− 1

2
, j − 1

2
))

(B.115)



B.5. Miromagnetis in spherial variables 169Eq. B.113 in spherial variables:
∇ ·m = ∂(cos θ sinφ)

∂x
+ ∂(sin θ sinφ)

∂y

= sin θ sinφ ∂θ
∂x

+ cos θ cosφ∂φ
∂x

+ cos θ sin φ ∂θ
∂y

+ sin θ cosφ∂φ
∂y

(B.116)In disretized form, we also want (∇ ·m) (i− 1
2
, j − 1

2
). Then,

∂θ

∂x
= θ(i, j)− θ(i− 1, j) + θ(i, j − 1)− θ(i− 1, j − 1) (B.117)and similarly for ∂θ/∂y, ∂φ/∂y and ∂φ/∂y. For the same purpose, sin θ, cos θ,

sinφ and cos φ must be omputed at the enter of eah ell, i.e. as an average ofthe magnetization at the four orners of eah ell. For instane:
sin θ(i− 1

2
, j − 1

2
) = 1

4
(sin θ(i, j) + sin θ(i− 1, j)

+ sin θ(i, j − 1) + sin θ(i− 1, j − 1))
(B.118)One done that, then we get the salar potential ψ via fourier transform. Finally,we an get the demagnetizing �eld:

hd = −∂ψ
∂x
ı̂− ∂ψ

∂y
̂ = −

[

sin φ
(

cos θ ∂ψ
∂x

+ sin θ ∂ψ
∂y

)

êr

+
(

− sin θ ∂ψ
∂x

+ cos θ ∂ψ
∂y

)

êθ + cosφ
(

cos θ ∂ψ
∂x

+ sin θ ∂ψ
∂y

)

êφ

] (B.119)Magnetoelasti part (I): Magneti dynamisIn artesian oordinates:
hme = − 1

µ0M2
s a

2 [((A+B)mx + Cmy) ı̂ + ((−A+B)my + Cmx) ̂] (B.120)where
A =

2B1√
2

; B =
2B1√

2
F−1 [Ac1(k)e2(k)] ; C =

B2

2
√

2
F−1 [Ac3(k)e2(k)](B.121)Then, in spherial oordinates:

hme = − 1
µ0M2

s a
2

[
sin2 φ (A cos 2θ +B + C sin 2θ) êr

+ sinφ (C cos 2θ − A sin 2θ) êθ +1
2
sin 2φ (A cos 2θ +B + C sin 2θ) êφ

] (B.122)Magnetoelasti part (II): Elasti dynamisThe elasti part ontains the follow expressions:
m2
x −m2

y = sin2 φ cos 2θ; m2
x +m2

y = sin2 φ; mxmy =
1

2
sin2 φ sin 2θ(B.123)



170 Appendix B. Notes about the magnetoelasti modelB.6 Thermal �utuationsWe an also add a noisy term in the dynamis in order to take into aount thethermal �utuations by means of the �utuation-dissipation theorem. As thisterm will be added to the e�etive �eld (he�total = he� + hth), like a random �eld,it will multiply the magnetization, so it will be treated like multipliative noise.Following Sholz [209℄, we an write this random �eld as:
hth(r) =

υ(r)

Ms

√

2αkBT

(1 + α2)µ0a3dτ
(B.124)Here υη(r) is a random vairable, gaussian distributed, with zero mean and unitvariane. T is the temperature, kB is the Boltzmann onstant and dτ is the timestep. The other parameters have been already de�ned.



Appendix C
Parameters values and model units
In this appendix we expose in detail the parameter values and the redued unitsused in the models explained before. Sine, atually, the magnetoelasti modelis an extension of the elasti Landau-based model, the former inludes all theparameters of the latter and, therefore, we present all of them together. Thematerial parameters that we hose for the simulations are taken from experimentaldata for Fe70Pd30 [33, 122℄.Elasti parametersFirst we fous on the pure elasti part. We have four independent magnitudesthat are fore (N), length (m) and temperature (K). We will use the the straingradient oe�ient κ to de�ne the units of fore (u.f.): κ = 3.5306 ·10−9N = 1u.f.We use Tc to de�ne the temperature units (u.T.): Tc = 257K = 1u.T. We use αTto de�ne the units of length (u.l.):

αT = 2.4 · 108N/(m2K) = 1(u.f.)/((u.l.)2(u.T.))

⇒ 1u.l. ≡ l0 =
√

1u.f.m2K
1u.T.2.4·108N

=
√

3.5306·10−9Nm2K
257K2.4·108N

= 2.3925 · 10−10m
(C.1)The value for the standard deviation of the disorder variable η, that is the disorderamplitude ζ has been hosen in suh a way that the system approximately exhibitstweed up to 100 K above the transition point, as it is stated in Ref. [33℄. Moreover,the orrelation length ξ is hosen aording to the harateristi length of thetweed modulation. This quantitative agreement between experimental tweed inFe-Pd and our simulations, whih has been shown in Chap. 3. The values ofthe other parameters in the model units an be easily derived from the relationsabove. They an be found in table C.1.171



172 Appendix C. Parameters values and model unitsMagneti and magnetoelasti parametersWe use Ms to de�ne the units of urrent intensity (u.i.):
Ms = 1.08 · 106

A/m = 1u.i./1u.l.⇒ 1u.i. = 1.08 · 106(A/m) · u.l.
= 1.08 · 106

A/m · 2.3925 · 10−10m = 2.5839 · 10−4
A

(C.2)The exhange parameter A has been estimated in the following way: what wehave done is to ompare the form of the Heisenber hamiltonian and the form ofthe exhange term of the miromagneti model, in order to get a relation betweenthe interation onstant J of the Heisenberg model and our exhange parameter
A. We an obtain J through the Curie temperature TCurie1 by means of the exatsolution of Ising model in 2D. Let's show it matematially: The hamiltonian ofthe Heisenberg model is the following:

H = −J
∑

<i,j>

mi ·mj (C.3)where i, j are the positions of the spins in a lattie. Rewriting mi · mj =
1
2

(
m

2
i + m

2
j − (mi −mj)

2
) in the hamiltonian, and taking into aount thatm

2
i =

1 we get:
H = J

∑

<i,j>

(

−1 +
1

2
(mi −mj)

2

) (C.4)Now we shift the origin of energy to absorb the onstant in the hamiltonian. Wethen obtain:
H =

J

2

∑

<i,j>

(mi −mj)
2 (C.5)Multiplying and dividing by a′2 and a′3 (where a is the distane between spins)we get:

H =
Ja′2

2a′3

∑

<i,j>

(
mi −mj

a′

)2

a′3 (C.6)Comparing with the disretized expression of the exhange term, we get A =

J/2a′. We also know the exat solution of the Ising model in 2D, J = kBTCurie/4so we an obtain A from A = kBTCurie/8a
′, where for Fe70Pd30 TCurie ∼ 750K.In our model the lattie onstant of the material and the unit ell size are of thesame order of magnitude. Therefore, we an hoose a to take one of both values.The resulting A is of the same order of magnitude of the experimental values ofanother similar materials [210�215℄: A ∼ 10−12 − 10−13J/m.1We denote the Curie temperature as TCurie in order to avoid onfusion with the low stabilitylimit of the high temperature phase of the martensiti transition Tc.



173Experimental parameters λ111 and λ100 are related to the magnetoelasti ou-pling parameters B1 and B2 through the following relations:
λ100 = −2

3
B1

A2
λ111 = −1

3
B2

A3
(C.7)Let also remember a ouple of onstants used in this model:

µ0 = 4π · 10−7N/A2; kB = 1.3806503 · 10−23N/(m ·K) (C.8)In table C.1 we summarize the values of all the parameters in S.I. units andin redued units, together with the orresponding mathematial symbols.



174
AppendixC.Parametersvaluesandmodelunits

Magnitude Symbol Numerial value (S.I. units) Numerial value (Model units)Deviatori elasti onstant αT 2.4 · 108N/(m2K) 1(u.f.)/((u.l.)2(u.T.))Shear elasti onstant A3 28 · 1010 N/m2 4.5396(u.f.)/(u.l.)2Bulk Modulus A1 14 · 1010N/m2 2.2698(u.f.)/(u.l.)2Low stability limit of the high-T phase Tc 257 1(u.T.)4th order Landau oe�ient β 1, 7 · 1013N/m2 275.62(u.f.)/(u.l.)26th order Landau oe�ient γ 3 · 1016N/m2 4.864 · 105(u.f.)/(u.l.)2Ginzburg oe�ient κ 3.5306 · 10−9N 1(u.f.)Disorder's orrelation length ξ 4.785 · 10−10m 20(u.l.)Disorder's standard deviation ζ 83.3K 0.324(u.T.)Unit ell length Λ 4.55 · 10−10m 1.9(u.l.)Saturation magnetization Ms 1.08 · 106A/m 1(u.i.)/(u.l.)Magnetorystalline anisotropy onstant K1 −5.2 · 102 N/m2 −8.106 · 10−9u.f./(u.l.)2Magnetorystalline anisotropy onstant K2 −6.6 · 104 N/m2 −1.07 · 10−6u.f./(u.l.)2Magnetoelasti oupling parameter λ100 2 · 10−4 2 · 10−4Magnetoelasti oupling parameter λ111 8 · 10−5 8 · 10−5Exhange parameter A 10−12 − 10−13 N/m2 3 · (10−4 − 10−5) u.f./(u.l.)2Vauum permeability µ0 4π · 10−7N/A2 4π · 1.891 · 10−6u.f./(u.i.)2Bolzmann onstant kB 1.3806503 · 10−23N/(m·K) 42.006486 · 10−4(u.f.)(u.l.)/(u.T.)Table C.1: Symbols and values in S.I. and redued units of the parameters of the model.
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