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Preface

For decades, materials exhibiting the unusual ability of recovering large deforma-
tions by means of the shape-memory effect and superelasticity have attracted a
great interest due to the broad variety of technological applications. They range
from medical devices (stents, heart valve tools, bone anchors, dental arch wires,
glass frames, etc.), to sensors and actuators (thermostats, control valves) as well as
muscular wires in robotics, mechanical aeronautic and underwater couplings and
many others. The martensitic, stoichiometric Ti-Ni alloy, commonly known as
Nitinol, is currently the most used shape-memory alloy due to its lasting durabil-
ity (wear and corrosion resistance), repeatability and biocompatibility. However,
nitinol exhibits large hysteresis in stress and temperature and a narrow operating
temperature range, which challenges a further technological development. Look-
ing for more appropriate working conditions, many other alloy families exhibiting
these smart properties have been investigated.

Alternatively, doping has also been observed to substantially (and often crit-
ically) modify the stability regimes of a given alloy from the stoichiometric com-
position as well as many other aspects of the transition and arises as a good
way to explore and identify new regions of the phase space that are likely to be
useful to design materials of technological interest. In fact, over the last years
many research efforts have been focused on off-stoichiometric and doped alloys.
Actually, for decades it has been known that there exists a critical amount of
doping that depends on the specific alloy which leads to the suppression of the
martensitic transition. Recent studies in some materials like Ti and Ti-Ni based
alloysand others have revealed that the non-martensitic structures arising in the
non-transforming composition regime show glassy features with the lattice strain
as the frozen degree of freedom. Fortunately, shape memory effect and supere-
lasticity are also observed to occur in this regime. This expands significantly the
horizons for new, promising nonmartensitic shape memory alloys.

At a mesoscopic level, the final responsible for the management of the resulting
thermomechanical behavior is the ferroelastic transition undergone by the mate-
rial. This is mainly mediated by long-range elastic interactions between the cells
of the crystallographic lattice. These interactions depend on the specific cell sym-
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metries as well as on the elastic constants, which determine the soft directions of
the crystal. Consequently, the elastic interactions may be highly anistropic and
may crucially affect the morphology of the internal microstructures. However, this
clean description partially breaks down due to the presence of intrinsic inhomo-
geneities, which put up energy and entropy barriers that cut short the long-range
correlations, resulting in a rich behavior landscape. As mentioned, doping arises
as the main experimental tool to introduce deliberately a certain amount of dis-
order in alloys. This general scheme points to the anisotropy and disorder as
important ingredients in such systems, which is the main subject of this thesis:
How these competing factors affect the morphology of structural patterns and
thermodynamic behavior in ferroelastic systems.

This topic may be placed within a more general framework concerning the
research on systems exhibiting spatially inhomogeneous states at the mesoscale.
In a broad class of functional materials (including high-temperature superconduc-
tors, ionic conductors, colossal magentoresistance manganites, ferromagnets and
ferroelectrics), intrinsic heterogeneities have been observed to play a key role in
determining their properties. Sometimes the presence of disorder even gives rise
to fruitful, entirely new properties, absent in pure materials.

The thesis is organized as follows: A brief introduction to ferroelastic materials,
and in particular to thermoelastic martensites is given in chapter 1. Chapter 2 is
devoted to describe the model used in this work. Chapters 3-5 shows the results
derived from computer simulations of the model. In particular, chapter 3 focuses
on the morphology of the strain structures; chapter 4 approaches some aspects
of the thermodynamic behavior and in chapter 5 thermomechanical behavior is
studied. Chapter 6 is devoted to a model describing a magnetoelastic system and
shows preliminary results. Chapter 7 summarizes the main results and conclusions
of the thesis. Some theoretical mathematical and other details that can be useful
for the reader can be found attached in the appendices.



Notation

Letters in bold-face type denote vectors

A = C44/C": Elastic anisotropy factor

C: Heat capacity

C" =1/2(Cy; — C4) ~ Ag: Elastic response associated to deviatoric strain
Cyy + Cia ~ Ay Bulk modulus

Cyy ~ As: Shear modulus

o: Stress field

e1: Bulk strain

eo: Deviatoric strain: Landau order parameter
e3: Shear strain

Fy: Landau free energy

Fg: Ginzburg free energy

Fg1: Ginzburg-Landau free energy

Foon.op: Non-order parameter free energy

F,: Disorder free energy

Finis: Magnetic anisotropy free energy

Foxen: Heisenberg free energy

Fs Magnetostatic energy

F.. Magnetoelastic energy

Foxi: Zeeman free energy

f: Energy density

Hg: Magnetostatic field, demagnetizing field
m: Unit magnetization vector

MT: Martensitic transformation

OP: Order parameter

PBC: Periodic boundary conditions

SMA: Shape memory alloy

SME: Shape memory effect

T Temperature

T.: Low stability limit of the high temperature phase in the clean limit
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T.(r): Local distribution of characteristic temperatures due to disorder coupling
T;: High stability limit of the low temperature phase in the clean limit

To: Equilibrium transition temperature in the clean limit

: Fourth-order Landau coefficient

: sixth-order LAndau coefficient

Disorder variable

: Ginzburg coefficient

Transformed fraction

Correlation length of the disorder

IIYIMmn Fm 3 2

: Disorder amplitude
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Chapter 1

Introduction to ferroelasticity

The ferroelastic transition allowing for superelasticity and the shape-memory ef-
fect (SME) |1] consists of a solid-to-solid nondisruptive phase transformation me-

!, Upon

diated by an external control parameter such as temperature or stress
cooling the crystallographic structure of the parent phase becomes unstable giv-
ing rise to a spontaneous deformation that entails a loss of symmetry so that the
point groups of the crystallographic unit cells of the parent and product phases
fulfill a group-subgroup relationship [2,3]|. Due to this, the parent phase is often
called the high-symmetry or disordered phase whereas the product phase is called
the low-symmetry or ordered (i.e. close-packed) phase. They are also termed
as paraelastic and ferroelastic respectively for analogy with ferromagnetism. By
non-disruptive |4|-or displacive—transformation we mean that it takes place by a
cooperative rearrangement, of the atoms of the lattice in such a way that, despite
that there is a lattice distortion and the crystalline structure changes, there is no
atomic interchange, so that the neighborhood of each atom remains unalterable
from the point of view of local atomic order, atomic bonds and so on. Atomic
motion is at the most of the order of the interatomic distances, so that there is

no diffusion?.

ILater on it will be seen that multiferroics exhibit transitions induced by other parameters
like a magnetic field, etc.

2Sometimes it is referred as military transformation, opposite to civilian changes, that are
dominated by diffusive processes.
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1.1 Self-accommodation: Interfaces and microstruc-

ture

As a consequence of the symmetry breaking, the unit cell of the product phase
may take multiple equivalent states, called variants, that have the same crystal
structure but differ in their mutual orientation. The number of such different
symmetry-related variants depends on the specific symmetry of the cell. In partic-
ular, such number is given by the ratio between the number of symmetry elements
in the high-symmetry phase and the number of symmetry elements of the low-
symmetry phase [5].

Usually, nucleation and growth of the product phase takes place embedded
within a host matrix of the parent phase. At the phase boundaries, the lattice
misfit is accommodated by elastic strain [6] that, up to a certain extent, is able
to hold the continuity of the lattice across the interfaces. However, when the
transformation continues, the lattice mismatch may increase in such a way that
it cannot be absorbed any more by keeping deforming the same way. Then, in
order to preserve coherency, the lattice is forced to deform according a variant
of opposite strain, thus reducing the average deformation and hence the total
energy along the wall. The recurrence of this process gives rise to a microstruc-
ture of alternating variants that is energetically favorable since succeeds in making
easier the continuity of the displacement field. The macroscopically undistorted
planes joining the different phases are called habit planes, and the mechanism by
which the strain is induced to modulate in order to enable such invariant planes
is called self-accommodation. Actually, this process occurs not only at the phase
boundaries (para-ferroelastic interfaces) but also at the domain boundaries be-
tween different ferroelastic variants. A schematic view of the geometric grounds
of self-accomodation is shown in Fig. 1.1 for a square to rectangular transition.
The modulations of averaged vanishing strain manage to spread out well in the
bulk of the product phase due to a knock-on effect [7], which is the essence of the
long-range nature of the elastic interactions. Due to the anisotropic nature of the
crystallographic cells and to the will of the system of mantaining also a coherent
fit of the variants along the domain boundaries, large, anisotropic structural do-
mains arise. Such long-range multidomain pattern is called twinning, and each
one of the variants that make it up is called twin, due to consisting of at least two
equivalent strain states. Therefore, twinning is not an inherent fact to the phase
transition but the response of the degenerate multi-well structure of the energy
to certain usual boundary conditions, i.e. a way for the material to reduce its
energy.

Figure 1.2 shows two images of different microstructures, belonging to a poly-
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Figure 1.1: The nucleation of the ferroelastic phase usually takes place in a surround-
ing paraelastic matrix. (a) A single domain is completely unfavorable, since the elastic
strain required for the accomodation would be too large. (b) Actually, to minimize the
energy the system takes advantage of the degeneracy of the differently oriented variants
and accomodates by alternating twins. This mechanism allows for a macroscopically
invariant plane and zero volume net change. In particular, in the square to rectangular
transition depicted here, the domain boundaries are properly oriented parallel to [11]
direction due to the specific crystallographic symmetries. Notice that additional micro-
scopic strain is needed to coherently match the different phases in the phase boundaries
parallel to [11] directions. This also contributes to determine the resulting structure.

crystalline sample of tetragonal NisyMnosGag; (a) and a sample of monoclinic
Pb3(VOy)s (b). In both cases, the mesoscopic geometry of the domains is deter-
mined by the coherence between twins, which in turn is strongly influenced by the
crystallographic symmetries. In case (a), tetragonal symmetry leads to parallel
twin bands whereas in (b) monoclinic symmetry also gives rise to star patterns.

Furthermore, it is worth mentioning that twinning allows for a microscopically
deformed material that does not exhibit macroscopic, net change of shape, which
is at the origin of the SME. This is schematically shown in (i) and (ii) of Fig. 1.3.
Experimentally, it has been observed that twins exhibit a characteristic width [
which scales well as [ \/f, where L is the longitudinal size of the transformed
region [10 12]. This relationship has been also obtained theoretically as the result
of the energetic competition between the interfacial cost of the twin boundaries
and the self-accomodation process that favors a periodic twinning with a large
wave number. The lowest-energy configuration resulting from the balance between
these two contributions consists precisely of twins of equal width fulfilling the
relation above.

However, often this is not the case. The actual microstructure of a given
ferroelastic material depends on the specific composition, specimen size, grain
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Figure 1.2: (a) TEM bright field image at room temperature of twinned microstruc-

ture with parallel domain boundaries yielded from a cubic-to-tetragonal transition in

NiggMngsGag;. Extracted from Ref. [8]. (b) TEM image of a twinned microstructures

with parallel bands and star patterns originated from a rhombohedral-to-monoclinic
transition in Pb3(VOy)2. Extracted from Ref. [9].

size, history, external conditions, coupling with other magnitudes like magnetic
fields, etc., and may be of high degree of complexity. The length scale of twins may
go from few nanometers to tenths of milimeters [13|. Selfsimilar patterns —twins
within twins, etc. have also been observed. Polycrystals show also a coexistence
of variants with multiple length scales, etc.

1.2 The shape memory effect

Perhaps, the most relevant aspect related to ferroelasticity is the so-called SME
that refers to the ability of a material to recover its original macroscopic shape
upon heating after being notably deformed by applying an external stress field. It
is based on the fact that the ferroelastic variants can be easily switched from one
to another by means of a stress field. Again, the crystal takes advantage of the
degenerate multi-well nature of the energy since domain switching is an energeti-
cally free way for the material to change its shape, whereas a lattice deformation
is costly. In particular, upon loading below the transition, the material presents a
first elastic stage where the crystallographic cells undergo a low recoverable defor-
mation so that they become slightly stretched according to the specifities of the
field. However, when the stress field reaches a certain value, the system undergoes
a large deformation, with strains up to 10%, for instance, in Ti-Ni. If the stress
field is increased further, the system retakes (retoma,repren) the elastic regime
until reaching the plastic regime, and fracture.

Actually, what it happens during the high-response stage is that the specific
direction of the stress field favors the coherent growth of one of the variants to the
detriment of the others, by moving the domain boundaries (i.e. energy barriers)
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existing among them. The growth of the selected variant entails a corresponding
change in the macrosopic shape of the specimen, that becomes maximum when
it reaches the single variant state. Since any of the ferroelastic variants is sta-
ble at the product phase, this structural configuration survives when the field is
removed, thus not recovering the multidomain original state. From this point of
view such deformation can be labeled as a plastic one. However, it is said to be
apparent because it is not plastic in the usual sense: ideally, there is no creation
and /or motion of dislocations, etc, and the original macroscopic shape can be
recovered upon heating. Therefore, it has been called a pseudoplastic deforma-
tion. Due to the group-subgroup relationship between the phases, upon heating
any ferroelastic variant transforms back to the same unique variant of the parent
phase. Thus, to a large number of possible multidomain configurations and shapes
of the product phase corresponds only a single parent phase configuration. This
makes the ferroelastic transition to be crystallographically reversible and allows
for recovering the original macroscopic shape, i.e. the SME. An schematic repre-
sentation can be found in Fig. 1.3. Starting from a ferroelastic twinned structure
(ii), the macroscopic shape can be pseudoplastically deformed upon loading due
to domain switching (iii). Upon unloading, the system remains unaltered and,
finally, upon heating the paraelastic phase is reached with the initial shape (i).

It must be pointed out that in practice, although the final state is ideally
unique, the retransformation paths that the system can undertake may lead to
the creation of defects that moves the final state away from the shape-recovered
one. Then, what is desirable is the forward and backward transformations to
follow the same path forth and back. With respect to this, long range order helps
to keep a single path for both directions of the transition, that results in a small
hysteresis in temperature |14].

Let us mention the two-way SME (opposite to the one-way SME explained
above), according which upon heating and cooling the system can recover the
same low temperature, twinned microstructure. This is due to the fact that in the
ferroelastic phase defects cluster at the twin boundaries. Upon heating, twinning
disappears but defects may remain at rest much more time in such a way that
upon cooling the clusters of defects act as pinning centers for new twin boundaries,
thus resulting in the same previous microstructure. In fact, samples can be trained
by thermomechanical treatment in order to quench defects at certain sites where
nucleation and/or growth of specific ferroelastic variants occur. All this makes
easier the crystallographic reversibility and hence the two-way shape memory
effect. This reversible cooling-heating path corresponds to (i)« (iii) in Fig. 1.3.
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(i) Austenite (if) Twinned martensite  (iii) Deformed martensite

Macroscopic view

Microscopic view

Figure 1.3: Schematic representation of the microstructures that ferroelastic materi-
als exhibit under different conditions, accompanied by the corresponding macroscopic
shapes. This allows for the shape-memory effect and superelasticity.

1.3 Superelasticity

The ferroelastic transformation can be also induced by applying a stress field. The
loading process starting from the paraelastic phase is apparently similar to that
occurring from the ferroelastic phase: After the usual elastic regime, the system
undergoes a large deformation until finally reaching a single variant microstruc-
ture. Nevertheless, the underlying mechanisms governing the high-response stage
are essentially different. As mentioned in the previous section, in the ferroelastic
phase the mechanism is the domain switching whereas in the superelastic regime
the material transforms stress-induced to the ferroelastic phase. Note that, in con-
trast with the temperature-induced transition, no twinning is obtained as a result
of the stress-induced transition, since all the crystallographic cells are strained ac-
cording to the applied stress field and no self-accommodation process takes place.

Focusing on the superelastic behavior, when removing the stress field the sys-
tem transforms back to the parent phase so that the unit cell (i.e. the whole
system) recovers its initial shape. Such ability is called pseudoelasticity and,
more recently, also superelasticity. In Fig. 1.3, superelasticity corresponds to
the same path as in the case of the two-way SME |(i)«(iii)] although now this
path is reached upon loading-unloading. The critical stresses upon and below
which the material undergoes the forward and backward stress-induced transi-
tions respectively are different due to the existence of metastability regimes, so
that the system exhibits hysteresis that becomes larger as the temperature of the
zero-stress transition is approached.
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It is worth highlighting the cross-scale response between different levels of
organization that play a relevant role in the properties mentioned above. Thus,
macroscopic properties like SME and superelasticity lie on the mesoscale twinned
microstructure, that in turn is crucially affected by the crystallographic symmetry
properties on the molecular scale.

1.4 Inhomogeneities

In a broad sense, by inhomogeneities we understand any physical magnitude in
the material that is not uniform through it. Up to now, the only example of
spatial heterogeneities in crystals that we have seen is twinning, that comes from
finite-size and shape effects and that turns out to be behind the SME that has
many important applications [15]. In fact, spatial inhomogenities in materials
are of great interest since often they are known to play a crucial role in confer-
ing them relevant and/or useful properties, from both physical and technological
points of view. Nevertheless, twinning can be interpreted approximately as a uni-
form periodic modulation of the strain. In that sense, an intuitive, maybe more
appropriate definition of inhomogeneity should include the presence of some kind
of randomness, i.e. more related to the meaning of disorder. Precisely, as it is well
known, materials (specially alloys) are characterized by the presence of intrinsic,
random disorder that cannot be removed, since it is a consequence of imperfect
preparation and treatment of the samples.

More specifically, structural inhomogeneities refer to any lattice imperfection
that move the crystal away from the pure, regular Bravais lattice [16]. Some
lattice points cannot be obtained by a translational operation of the Wigner-
Seitz cell but they are singularities such as point defects like impurities coming
from compositional fluctuations, vacants, interstitial atoms, substitutional atoms,
etc., line defects like dislocations, etc. Alloys should be mentioned as one of
the prominent examples containing inherent disorder, in form of compositional
fluctuations. Moreover, disorder may be easily increased by means of changing the
percentage of each element through off-stoichiometric composition or doping with
an extra element. Some experimental studies have approached the distribution of
doping through the material. It has been found that doping prefers to substitute
those atoms with which shares more similarities from the point of view of electronic
affinity, size, etc., although it is clear that it does not entail any order in the
material.
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1.4.1 Effects on structures and thermodynamic responses

Besides the mentioned effect of acting as pinning sites for twin boundaries, the
presence of impurities may of course affect any physical variable, that indeed es-
sentially depends directly on the specific composition of the material. In general,
disorder has been found to have many different effects on materials [17|. In par-
ticular, it is worth mentioning two effects which are of our interest: First, the
presence of impurities may result in a rounding of phase transitions [18], moving
away from the sharp case in the ideal clean limit (i.e. in absence of disorder), and
giving rise to multiphase coexistence well above and below the transition point.
Second, and intimately related to the first, disorder may erect local free-energy
barriers in such a way that the total free-energy of the system can adopt a bumpy
profile with many degenerated and nearly degenerated low-energy states that,
however, in general do not correspond to the global minimum of energy, if it still
exists [17]. Eventually (and also often), disorder may lead the system to freeze in
metastable states and even exhibit glassy features, as will be seen later.

Despite that impurities have a local character, the stress field that is created
around them may affect global physical magnitudes mediated by long-range in-
teractions. Actually, a great amount of papers has been devoted to study the
influence of doping, i.e. off-stoichiometry composition in thermodynamic prop-
erties. In general, it is observed that impurities blur the transition, resulting in
anomalies in the specific heat like softening and shift of the peak towards lower
temperatures, changes in the baseline, power-law singularities, etc. Indeed, a more
accurate sample preparation and annealing results in a decrease and even remov-
ing of the anomalies. With respect to this, anomalies in (), have been proposed
to be an indicator of the level of dopant in a material. Also, impurities have
been observed to modify the elastic constants of the material. As said, materials
can be very sensitive to the presence of impurities, so that the phase diagrams
strongly depend on the level of doping. Slightly changing the relative weight of
each element in an alloy can result in a large shift of the transition temperature
or even inhibition of the transformation. Consequently, the onset temperature
above which superelasticity may be obtained by applying a stress as well as the
conditions under the SME may take place are crucially affected by the specific
composition of the material [19 24].

1.4.2 Pretransitional effects

Pretransitional effect refers to any phenomena occurring in a system that warns
of the proximity of a phase transition. Although the abrupt nature of first-order
transitions is in principle contradictory with these effects, they are often observed
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Figure 1.4: (a) and (b): Dependence of Cyy and C’ on temperature in FeygPdsg.
Typically, C’ softens significantly whereas Cyq not. This leads to an increase of the
elastic anisotropy A = Cy4/C’. From Ref. [27|. (¢) Diffuse streakings in selected area
from electron diffraction pattern NigzgMnys 4Ti138. (d) Detail of (¢). From Ref. |28|.

in SMAs already well above the transformation. Prominent examples are the
softening of both the T'A, phonon branch?® and C” elastic constant upon cooling |2],
related to an incipient instability of the parent phase. In fact, this will provide the
system with easy channels to develop the oncoming transition. * In the diffraction
pattern, the phonon and C’ softening leads to diffuse scattering [26]. Softening of
C' in Fe-Pd and diffuse scattering for Ni-Mn-Ti are shown in Fig. 1.4.

A pretransitional effect involving some strain is termed precursor. The phonons,
i.e. random fluctuations of the atoms of the lattice, have a typical relaxation time
of the order of 107!?s. This prevents such fluctuations to be observable by any ex-
perimental technique. However, sometimes these fluctuations might couple with
defects of the lattice, whose lifetime is theoretically unlimited. This coupling
leads to fluctuations whose relaxation times are much longer than the free ones,
giving rise to long-lived microstructures that are termed embryos. Additionally,
the mentioned softening of certain elastic constants make such strain fluctuations

3Qccasionally, at a certain nonvanishing wave vector the T'A; phonon branch also shows
an anomalous dip, associated with satellites in the diffraction pattern [25]. Moreover, this
dip becomes more pronounced as the transition is approached. In the some ferroelastics, the
softening of the anomalous phonon is only partial and is not sufficient to cause the transition,
that in this case is dominated by an homogeneous stress-free distortion. By contrast, in others
the transition takes place precisely when the energy of the anomalous phonon vanishes [5].
However, the origin of this anomaly still remains unclear.

4Some pretransitional effects are, however, observed independently of an occurrence of a phase
transition. Whether the such effects announce the transition or simply they occur independently
of it, is actually a current discussion. It seems not to obey a general law but to depend on the
specific case. In general, martensitic transitions do not require pretransitional effects but if they
occur, the transformation may be affected, for instance, in the specific pathway.
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prefer to correlate according to the corresponding soft directions of the crystal.
Although the magnitude of the strain is so low that it cannot be considered as a
phase coexistence, the occurring symmetry breaking anticipates the new lattice
symmetries of the product phase [29].

Murakami et al. [30] have suggested that the morphology and in particular
the directionality exhibited by the resulting pretransitional structural pattern de-
pends on the elastic anisotropy factor A of the material. For a cubic system in
particular, it is defined as A = Cyy/C” where Cyy and C” denote elastic constants
associated to shear and deviatoric stresses respectively. According to this, it has
been observed that materials with low A, like Ti-Ni, exhibit embryos of almost
spherical shape (mottled structure) whereas materials with high 4 are observed
to exhibit a typical structural pattern called tweed® |31|, wich is a modulation in
the strain consisting of striations parallel to the traces of {110} planes appearing
at intervals of few nanometers.® Cu-Zn-Al, for instance, exhibits tweed only in the
vicinity of the surface (not in the bulk as in Ni-Al) and it has been attributed to a
higher A for this region than for the bulk. This is believed to occurr because the
observed high concentration of atoms of Zn and Al in the surface might raise the
transition temperature, which is related to a lower C” constant |32]|. A comparison
between the values of the elastic anisotropy between different alloys is given in
table 1.1. It can be seen that Ti-Ni and Ti-based alloys show a particularly low
value of A compared to other alloys. Altough all of them exhibit softening of C’
when decreasing the temperature, tweed is only reported in those alloys with a
high value of A.

It is accepted that, at very high temperatures, due to thermal fluctuations
tweed appears to be dynamic [7,33] in the sense that cannot be observed by
any imaging techniques but the diffuse streakings in the Bragg peaks reveal the
existence of such fluctuations. As the temperature is lowered, thermal fluctuations
decrease and tweed can be considered to be static from the point of view of the
laboratory time scale so that it can be captured |33, for instance, by transmission
electron microscope (TEM) technique. Generally, on further cooling below the
transition point, any pretransitional strain pattern usually evolves toward the
more coarsened transformed twinned structure of larger strain. Nevertheless, if,
as menioned above, high defect concentration leads to inhibit the ferroelastic
transition, the coarsening of the domains is prevented and the pretransitional
patterns may survive even down to 0 K [34].

5 Tweed refers to the typical scottish textile pattern.

6 Although the precise periodicity in the tweed structure depends critically on the imaging
conditions, there exists a general agreement in that it is on the scale of ten to hundreds of lattice
constants.
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Alloy Softening of C’ A Tweed  Ref.
Fe,oPdsg yes ~ 15 yes [27]
Nigo 5Al57 5 yes ~9 yes [30]
Cu-Zn yes ~ 11 yes [35]
CuggZnigAlig yes ~ 14 yes [32, 36]
Cu-Al-Ni yes ~ 13 - [37]
Au-Zn-Cu yes ~12—-20 - [37]
Au-Cd yes ~11—-14 - [37]
NioMnGa yes ~ 23 yes (38,39
Tigg 7Pdy35Crg 5 - ~ 3.6 weak  [40 42]
TisoNis yes ~ 2 no [37]
TisoNiygFe, yes ~ 2 no [30]
Ti50NiggCuyg yes ~ 2.4 - [37]
TisoNizoCusg yes ~ 2.8 - [37]

Table 1.1: Comparison of elastic anisotropy values for several SMAs (Values near
the transformation temperature). The existence of softening in C’ and tweed is also
mentioned, together with the corresponding references. Dash symbol means that the

corresponding feature is unknown for the specific alloy (at least to us).

1.5 Martensites

Martensites refer to those materials undergoing a diffusionless first-order” struc-
tural phase transition that are dominated by a shear or combination of shears [44].
Hence, it is clear that they are good candidates to be ferroelastic. In martensites
it is common to refer to the high-symmetry phase as austenite and to the low-
symmetry one as martensite itself. From the point of view of the magnitude of the
spontaneous strain, three classes of martensites can be identified: M1, M2 and M3
involving small, moderate and very large strains respectively. Moderate and large
strains can involve atomic displacements of the order of the unitcell dimensions
in such a way that they can entail important changes of symmetry. For instance,
new symmetry elements can appear that break the group-subgroup relationship
between the phases and the transformation loses reversibility. Moreover, in M3
martensites the transformation occurs explosively (called the burst effect [4,43])
in such a way that the transformation is morphologically irreversible. The elastic
strains are not able to remove the large internal stresses during the transition but
the material undergoes a notable plastic (i.e. non-recoverable) plastic deformation,
with many lattice imperfections. All this prevents such class of martensites from
exhibiting the SME. Instead, in M1 class the nucleation and growth of martensitic

"In fact, a martensitic transition can also be second order, when, for instance, couples to
other second order transitions, like ferromagnetic transition [43].
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domains are observed to occur thermoelastically, that means that at each step of
the transformation, the system is in thermoelastic equilibrium. It is given by a
local balance between the driving force originated from the difference between free
energies of the two phases and the elastic energy [45]. This makes the transition
be reversible. Such class of martensites is precisely that displaying the SME.

The martensitic transition (MT) process occurs in sudden jumps, giving rise
to an avalanche-type dynamics. At each jump the partial transformation occurs
instantaneously, in comparison with laboratory time scales. Thermal fluctuations
are not the triggering factor leading up to the transition. In order the material to
keep transforming it needs to be continuously driven by an external field, either
the temperature or a mechanical stress. In that sense the temperature acts as
an external control parameter. Actually, the long-range character of the elastic
interactions supresses the otherwise decisive role of the critical fluctuations, thus
making the transition athermal [46].The complete temperature-induced forward
transition (austenite to martensite) takes place between two temperatures called
martensite start (M) and martensite finish (M) whereas the backward transition
(martensite to austenite) occurs between the austenite start (As) and austenite
finish (Ay) temperatures.

MTs have been observed in a wide range of materials like metals, alloys, ceram-
ics and even biological systems [13]. Here we will focus in martensites exhibiting
SME like several iron-based alloys, Ti-Ni-based alloys, Heusler alloys, Ni-Al and
many others. For simplicity, from now on, MT will refer exclusively to this class
of martensites exhibiting SME.

1.6 Ferroics and multiferroics

Ferroelasticity shares many features with other phenomena like ferromagnetism
[47,48] and ferroelectricity [49], where magnetization and polarization play the role
of the strain respectively. All of them have in common the existence of a physical
magnitude (those just mentioned) which takes spontaneously nonvanishing values
below a certain temperature due to the existence of a phase transition from a high-
symmetry, disordered phase to a low-symmetry, ordered phase, which shows long-
range patterns such as magnetic/polarized domains, etc. These patterns originate
from a combination between a degenerated multiwell energy profile, long-range
interactions of dipole-dipole type decaying with distance as 1/r® and geometric
considerations of the system such as the symmetries of the underlying lattice,
size and shape effects, interfaces, etc. It is worth mentioning that the square
root scaling relationship between the domain stripe width and the product phase
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size observed in ferroelastics also holds for both ferromagnets and ferroelectrics.
Moreover, other dynamical-geometrical relations have been found [50].

Also, at low temperatures the response of such systems to the conjugated
external field forms a characteristic field-variable hysteresis loop, resulting from
an easy domain switching. Despite the evident differences among these systems®,
the interesting parallelisms in their underlying physics make them to be brought
together under the more general name of ferroics |4].

It is clear that the microscopic origin of the different macroscopic pysical vari-
ables lies in the same underlying bricks consisting of the fundamental electromag-
netic interactions It is therefore expectable the various physical magnitudes to be
coupled to a certain extent. Many times this coupling is weak and therefore it is
logic to treat such variables independently as above. However, a strong coupling
among them is often observed macroscopically in such a way that some materials
exhibit a relevant cross-variable response: for instance, the electric field can affect
the magnetization as well as the magnetic field affects the polarization, which is
called magnetoelectric coupling.? An immediate consequence of this coupling are
the mixed-variable patterns, and the possibility of controlling the corresponding
macroscopic physical properties by different external fields has led to an impor-
tant technological interest.. Magnetic twins depend on structural twins, and vice
versa, and, consequently, a structural variant can be switched by a magnetic field.
Magnetostriction |51] and the magnetic SME |52] are changes in volume and shape
by means of an external magnetic field. Also, magnetocaloric effect is observed
to be enhanced when it is accompanied by a structural transition. Colossal mag-
netoresistance (CMR) effect [53] refers to dramatic changes in conductivity due
to the presence of a magnetic field. Materials exhibiting coupling between dif-
ferent variables are called multiferroics [2]. A visual scheme accounting for this
cross-variable response is shown in Fig. 1.5.

Many properties in materials have been observed to be very sensitive to the
presence of inhomogeneities, and the cross-variable coupling exhibited by multi-
ferroics enhances considerably the range of phenomenology. Nowadays such inho-
mogeneities are even well nourished with the aim of improving known properties
or discovering novel ones'’. It is well known that the gap in semiconductors ap-
pears when the system is conveniently doped. CMR only occurs when two phases
(metal and insulator) are in competition [55 57|. Polar nanoregions significantly
affect the structural properties in relaxor ferroelectrics and it has been suggested

8Note that, for instance, strain is a second-rank tensor whereas and magnetization is of first
rank.

9 Actually, the magnetoelectric coupling is mediated by strain.

190f course, many times this is not the case, being the disorder an incovenient for the desired
properties.
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Figure 1.5: Coupling between
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to contribute to the ultrahigh piezoelectric effect observed in these materials |58|.
Semiconductors, ionic conductors, high-T,. superconductors, colossal magnetore-
sistive (CMR) materials [59, 60], ferromagnets [61,62] and ferroelectrics [63] are
only few examples whose behavior lies in the presence of inhomogeneities.

Also, nanoscale precursor modulations are not exclusive to ferroelastic systems,
but instead they occur in a broad class of ferroic materials including ferromag-
netic |61] and ferroelectric materials |63]. Thus, ferromagnetic nanoclusters in the
paramagnetic phase, called Griffiths phase, are known to occur in systems with
quenched disorder. [64,65]. The specific symmetry properties of the anisotropy
determine the selected pattern. High anisotropy pretransitional stripe-like pure
magnetic patterns, observed for instance in Co-Ni-Al |61], have been labelled as
magnetic tweed by analogy with structural tweed [62,66|. Cross-hatched magne-
toelastic tweed resulting from the coupling between elastic tweed and magnetic
degrees of freedom has been also observed [66]. Moreover, all these pretransitional
textures are accompanied with anomalies in susceptibilities and other response
functions.

1.7 Brief introduction to glasses

Although the glass phenomenon was in principle far from ferroelasticity, in a
series of recent experiments [20,34,67 73| glassy behavior has been detected in
the strain of some ferroelastic martensites and has popularized the term strain
glass. Because of this, here we give a very short overview about glasses.

The material historically known as glass has some particular characteristics
that prevent a conventional, equilibrium thermodynamic understanding. Struc-
tural glasses |74], as they are known among physicists, are materials in the solid
state which differs from crystals in the lack of any long-range order. Instead of
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the typical crystallographic translational symmetry, the atomic arrangement is
disordered; only a short-range order survives due to the chemical bonds with the
surrounding neighbors, but at some atomic distances the configuration may be
completely different. Neither a Wigner-Seitz cell nor any Bravais lattice can be
defined and this results, for instance, in a X-ray diffraction pattern consisting
only in a few broad peaks |75] instead of the typical multiple-narrow-peak pat-
tern. Such glasses are formed by rapid melt quenching from the liquid phase that
prevents the crystallization and leads to a freezing of an amorphous structure,
like supercooled liquids. Nevertheless, they mantain all the mechanical properties
of solids, since the only degrees of freedom that survive are precisely phonons,
whereas rotational and translational motion is arrested.

Nowadays, in physical science, the meaning of glass has been extended to in-
clude a wide range of systems that share some general features similar to those
explained above. They mainly differ in the particular degree of freedom that
freezes and blocks in a disordered state. For instance, spin glasses [76] are systems
in which the magnetic degrees of freedom are anchored in random orientations.
In orientational glasses [77], translational order exists but the molecules exhibit
frozen, disordered orientations, whereas ferroelectric relaxors [78] show static, ran-
dom electrical dipoles. Other examples are vortex glasses in superconducors |79|.

All of them are characterized by a high-temperature phase where the degrees of
freedom of interest fluctuate freely. Moreover, in most cases such systems undergo
a phase transition when decreasing the temperature towards a more ordered state,
like liquid-crystal, para-ferromagnetic, para-ferroelectric, etc. However, under
certain conditions, the transition can be supressed and instead of that fluctuations
freeze, leaving the system in a disordered, glass state. Usually, such a state is
metastable with respect to the true equilibrium, ordered state. The material, that
is said to undergo a glass transition, is not able to reach this equilibrium state since
it is characterized by a slowing-down dynamics and ergodicity breaking [80|, which
are associated to the dilation of the relaxing time scales. In many cases, relaxing
times become infinite to all intents and purposes and make the system remain
forever in the metastable state. This can be explained by a total energy with a
bumpy profile with multiple (nearly) degenerated low-lying states which makes
it difficult for the system to find an optimal way to reach the global minimum.
Eventually, this way may not exist or may be thermodynamically unaccessible.

Curiously, although the phenomenology among these kind of different systems
is very similar, from a thermodynamic point of view glasses may have different
origins. Thus, structural glasses arise as a consequence of an ultra fast cool-
ing, whereas other glasses occur due to geometrical frustration [81 83|, like the
paradigmatic antiferromagnetic triangular lattice. In this case, all the antifer-
romagnetic bonds cannot be satisfied simultaneously, i.e. the exchange energy
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cannot be minimized due to the geometry of the lattice and, hence, the thermo-
dynamic equilibrium state does not exist. Instead, many spin configurations of
very similar low energy are unlikely to evolve towards little lower states since it
may imply to flip spins wich would lead to nonfavorable parallel bonds in other
neighboring regions. On the other hand, and more interestingly, it has been
observed that phase coexistence may give rise to glassy features due to kinetic
freezing [84|. It is believed that point defects are at the origin of the such glassy
behavior in ferroics when doping, which links with some comments on inhomo-
geneities in Sec. 1.4.1. In contrast with geometrical frustration, here a true
thermodynamical phase is likely to exist although it is unaccessible due to energy
and /or entropy barriers [85]. Actually, this is our case here, where glassy behavior
has been observed in the non-transforming composition of the martensitic system
Ti50_,-Nisgy, for > 1.5. There the frozen disordered degree of freedom is only
the lattice deformation'' and hence this glassy system has been called strain glass.

1.8 Shape memory alloys. Fe-Pd and Ti-Ni

The type of alloys exhibitng SME is enormous, although all of them can be grouped
within the huge family of intermetallic alloys; that is, compounds containing two or
more metallic elements, containing optionally one or more non-metallic elements,
typically some rare earths (La, Pr, Nd, Sm, etc.) or even alkalyne elements (Sr,
Ca, Ba, etc.) forming manganites.'? Here metallic elements also include poor
metals and metaloids. Thus, we find SME in binary alloys like Au-Cd [86], Fe-
Pt 87|, Ni-Al [88|, Cu-Al [89], Ti-Pd [90], In-T1 [91|, Cu-Zn [92], Ta-Ru and Nb-
Ru [93|, ternary alloys like Cu-Zn-Al |94], Au-Cu-Zn [95], Cu-Al-(Ni,Be) |96,97],
Pd-In-Fe [98], Ni-Co-Al [99], Ni-Mn-(Sn,In,Ga) [23,100,101], Ni-Ti-Cu [22], Ni-
Ga-Fe [102], quaternary like Ni-Mn-Ga-(Fe,Co,In) [103 105], Ni-Co-Mn-In [24],
Ni-Al-Mn-Fe, Ni-Fe-Al-B [106], Cu-Al-Zn-Mn [107], Ti-Hf-Ni-Re |108], etc.

More than 20 years ago a series of papers led by R. Oshima [27,109-113| were
devoted to characterize Fe-Pd SMA. With respect to the famous Ti-Ni alloy, a
complete review from K. Otsuka and X. Ren can be found in Ref. [114]. In the
following we give a comparative brief overview between these two SMA, Fe-Pd
and Ti-Ni, that will serve as a summary of the different aspects approached in
this introductory chapter. We focus on them because they show very different
peculiarities that are of our interest:

Note that other glasses mentioned above may show freezing of the lattice deformation but
it is usually accompanied by freezing of other degrees of freedom

12Manganites are compounds of the type R;_,M,MnOs3;, where R is a rare earth and M an
alkalyne element
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e Fe,oPd3y undergoes a very weak first-order phase transition from a cubic to
tetragonal crystal structure whereas equiatomic TiNi shows a more complex
behavior, with various possible martensitic transformation paths: B2 —
B19 (— B19Y), B2 — B19 and B2 — R (— B1Y') where B2, B19, R,
B19' stand for cubic, orthorhombic, trigonal and monoclinic crystallographic
lattices respectively.

e Ti-Ni exhibit a low value of the elastic anisotropy factor, A ~ 2 whereas
Fe-Pd has a high value, A ~ 15. This is consistent with the fact that Fe-
Pd shows the strongly anisotropic pretransitional tweed pattern [112,113,
115,116| whereas Ti-Ni exhibits very rich precursor effects but no tweed
contrast has been observed. Instead, Ti-Ni shows small domains of the
incoming phase down to 5nm of almost spherical shape [34]. The low value
of A for Ti-Ni comes from the fact that, although C” softens as it is usual,
Cy4 also decreases with decreasing temperature, which is unusual among
most of such alloys [37].

e Both Fe-Pd and Ti-Ni show a very high sensitivity on composition. Fe;qPd3
transforms to martensite at 7" ~ 257 K whereas in FeggPdss the transition
temperature drops to 0 K [33]. Stoichiometric Ti-Ni transforms at 7' ~ K
whereas in Tiss 5Niso5 the martensitic transition is suppressed as well [34].
Doping in both Fe-Pd |[117| and Ti-Ni [37] modifies significantly many as-
pects as characteristic temperatures, transformation paths, etc. The elastic
constants are observed to depend on composition.

e Ti-Niis able to recover strains up to ~ 7—8% by means of SME and SE [19]
and shows high mechanical performances [118] as mentioned in the preface.
In contrast, Fe-Pd exhibits very poor superelasticity, with strain recovery as
small as 1% or less [119].

e Fe-Pd (as well as the ferrous SMAs) shows strong magnetoelastic coupling
[52,120] which leads to giant magnetostriction [51,121] up to 3% and fer-
romagnetic shape memory effect [122]. Instead, in Ti-Ni (which is para-
magnetic) no magnetic-field induced martensitic transitions have been ob-
served [123| due to a small diference in magnetic moment between austenite
and martensite. It is worth mentioning that, recently, some efforts [124,125]
have been adressed to design composites containing both Ti-Ni and a ferrous
component as an attempt of combining the excellent mechanical properties
of the former and the fast actuation of the latter.






Chapter 2

Elastic model

Modeling of ferroelastic martensites has been adressed from decades. Although
a displacement-based picture has been eventually used [126], most of efforts have
point at the strain field as the natural variable, suitable to describe deformations
on solids. Eshelby [127] was the first in approaching the problem of the equilibrium
strain of an inclusion within an undeformed matrix by means of microelasticity.
The stresses that appear relax thus creating the stress-free strain field in the
inclusion and in the surrounding matrix, given by the condition of mechanical
equilibrium in the stress field.! He pointed out that that problem could be solved
by a sequence of simple operations. However, an analytical solution could be found
only in a few simple cases. As keystone, Khachaturyan [128] proposed a method
based on the decomposition of the elastic strain field in a macroscopic strain
and an internal strain which took advantage of the Fourier transform properties.
Toghether with some elastic energy considerations, this theory gave rise to some
important results, as the fact that, in general, the inclusion is strained as necessary
to provide a crystallographically coherent match to the matrix in its habit plane.
This confines the elastic energy and elastic strain to the inclusion and makes the
habit plane a strain-free junction. Khachaturyan easily connected this with the
martensitic transformation (MT), which simultaneously was also approached by
Roitburd |129] in a very similar way. Khachaturyan also succeeded in explaining
the periodicity of the twin patterns to depend on the width of the transformed
region, finding the experimentally observed square root scaling law [130]. Later on,
this phase-field microelasticity-based theory [131]| has been widely used to model
other phenomena related to martensites as, for instance, stress-strain behavior in
polycrystalline materials [132| and the ferromagnetic SME |133].

!The mechanical equilibrium is given by the Cauchy’s first law or, more generally, generalized
Hooke’s law which is simply the Newton’s second law applied to elasticity in a continuous, solid
media. We recall that an introduction to the linear theory of elasticity can be found in App.
A1, in which the Hooke’s law is described in eq. (A.8).

19
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Earlier, Wechsler [134] developed the crystallographic theory of martensite,
according to which the alternation of thin strips of different crystallographic vari-
ants of the transformed product(twins) allows for invariant planes, as it has been
mentioned in chapter 1. This non-linear crystallographic theory has the advan-
tage of automatically accounting for finite strains and rotations but, instead, it
does not involve energy considerations as the linear elastic model of Khachatu-
ryan and Roitburd does, and which, in some cases, become necessary. Ball &
James [135] developed a model which approximately put together the advantages
of both crystallographic and linear elastic theories. It was based on a nonlinear
elastic free energy that was invariant with respect to rotations and crystallographic
symmetries.

The first detailed analytical description of the SME by means of the Landau
theory is due to Falk [136], who also realized that the Landau free energy could be
rescaled in such a way that no free parameters remained in the model. Later, he
also introduced a gradient (Ginzburg) term to make an analytical study of the in-
terfaces [137]. The large flexibility of the Ginzburg-Landau (GL) theory due to its
partial phenomenological nature has been used to approach a wide variety of prob-
lems in a simple manner. Elastic solitons were studied by Jacobs [138] and later by
Barsch and Krumhansl [139] using a GL model including long-range interactions.
GL models including long-range interactions coming from St. Vénant compat-
ibility constraints [140 142| have been successful in modeling a wide variety of
problems, including three-dimensional structures [143], different group-subgroup
transitions (like square to rectangular, triangular to rectangular [144|, tetragonal
to orthorhombic, monoclinic and triclinic transformations [145]), star patterns
like in Fig. 1.2, inertial, Langrange-Rayleigh type dynamics [144|, etc. A three-
dimensional Landau model including more realistic, inertial dynamics as well as
the strain as the control variable by means of a multiple order parameter free en-
ergy has focused on the dynamical evolution of strain-induced stress-strain behav-
ior [146]. Another quite refined phase-field Landau model allows for a quantitative
characterization pf stress-strain relations by means of all temperature-dependent
thermomechanical properties of both phases such as second and third order elastic
constants, transformation strain independent of stress and temperature, and little
temperature dependence of hysteresis [147,148|. Recently, spin-based approaches
to the Landau model have also been proposed [46,85,149]. Other models have
also focused on diverse aspects of the SME [150 152].

The model used in this thesis is based on a GL free energy extended to in-
clude both long-range anisotropic interactions coming from compatibility, and
disorder coupling to the strain through the harmonic coefficient. Such a model
contains the four required ingredients to perform simulations of a system under-
going a MT and exhibiting pretransitional phenomena and effects coming from
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inhomogeneities in general. These are the following: (i) Temperature-depending
free energy to account for the transition, which are provided by the Landau free
energy.(ii) Interfacial energy and (iii) long-range anisotropic interactions giving
rise to domain boundaries. And (iv) quenched-in random disorder allowing for
inhomogeneities. In the following sections these four terms constituting the model
are described in detail. Last one is devoted to numerical details and some other
comments.

2.1 Landau free energy

The Landau theory [153] is a phenomenological theory that attempts to describe
phase transitions. It is lacking in microscopic basis, so that it does not take into
account the level of atomic interactions, thus moving away from atomistic models.
Instead, it is based on a coarse-graining of the system in order to place the length
scale in a mesoscopic level?. According to this theory, during the phase transition
the given system usually suffers a symmetry breaking, going from a high-symmetry
—disordered— phase towards a low-simmetry —ordered— phase. Associated with
the symmetry breaking an order parameter (OP) can be defined® in such a way
that vanishes above the transition and takes non-zero values below it. Examples
of OP are difference of densities in liquid-vapor transitions?, magnetization and
polarization in ferromagnetic and ferroelectric materials respectively, some strain
tensor components in structural transitions, etc. Landau theory was first proposed
to describe the transformation near the transition temperature, i.e. for small
values of the OP, but later it has been widely used to describe the transition in an
extended temperature interval so that the OP can take relatively large values. All
this ensures that a full thermodynamic treatment is indeed appropiate, giving rise
to mean field results. This theory is based on the assumption that near equilibrium
the Landau free energy of the system —denoted by Fj— is analytical, continuous
and differentiable®, and can be written in a functional form as an expansion in
power series of the OP ¢ about ¢ = 0. Accordingly, F}, can be expressed as
follows:

N A
R(&:T,0) = Fuy + Y =6 (21)
i=1

2This will be discussed with more detail at the end of this chapter.

3More than a single OP may be used if required.

4Nevertheless, there is no symmetry breaking in this case

®Note that, since F}, is analytic, continuous and differentiable also in the transition point, it
cannot take into account the singularities of diverging thermodynamical potentials and therefore
it is not able no reproduce the actual critical exponents, etc.
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where T" denotes the temperature and 1) the conjugated field of the OP ¢ whereas
the coefficients A; are suposed to be analytic functions of T" and 1. The role
of T and 1 is fundamentally different from that of ¢. Indeed, T and v are
state variables that can take any pair of independent values, thus characterizing
other state variables like thermodynamical potentials, etc. Actually, they are
external control parameters that can induce the transition. Instead, ¢ takes only
meaningful values when Fj, is minimum. There, F}, becomes a function only of T
and ¢ and coincides with a particular termodynamical potential, depending on the
specific case. The expression for F}, in eq. 2.1 is versatile enough to characterize
a considerable wide range of phase transitions.

If we deal with a spatially extended, continuous system, the OP ¢ is a spatial
field ¢(r). Then, F], denotes the total energy of the system and can be calculated
as an integral of the Landau free-energy density f over the whole system: F' =
Jq, flo(r)]dr, where f takes the same expression as in eq. 2.1 with the additional
spatial dependence given through the field ¢(r), and, in general, through the
coefficients A;(r).

Symmetry adapted strains

Our aim consists of modeling a first-order, cubic-to-tetragonal M'T. However, given
that many times the important acoustic waves and, consequently, the related
inhomogeneous strain fluctuations of interest are observed not to occur in 3D but
in subspaces of lower dimensionality |5], the modeling can be confined to the same
subspaces. This is indeed the case of some cubic-to-tetragonal MTs, where the
transformation may be performed in the rectangular cross section of the tetragonal
phase, giving rise to an effective 2D square-to-rectangular transition. Obviously,
this makes easier the code and improves the computation time, without loss of
generality. On the other hand, it should be pointed out that a pure 2D model
seems not to be appropriate to perform simulations for thin films since the presence
of free surfaces are relevant for the possible modulations of the strain. Actually,
surface relaxations may cause important bendings in the third dimension like, for
instance, tunnel and tent-like structures, etc. [13].

Within this framework, it is more convenient to work with the so-called sym-
metry adapted strains as the natural, irreducible deformations that a square can
undergo. In a system with square symmetry, the elastic modulus tensor has only
three different nonvanishing elastic constants: C4;, Ci2 and Cyy. By diagonalizing
this matrix we find the eigenvalues to be Ay = C11 + Cha, Ay = C11 — C1p = 2C7
and Az = 4Cyy, that are elastic constants associated, respectively, with the bulk
modulus and deviatoric and shear modes. The corresponding eigenvectors are the
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\ Figure 2.1: Symmetry adapted
83 .:I strains: ey, eo and e3 stand for the

shear, deviatoric and bulk strains.

symmetry adapted strains, that, in terms of the strain tensor components ¢;; are:

1 1
€1 = —(E:C:c‘l’e )a €y = —(E:c:c—E ), €3 = €, (2.2)
\/5 vy NG vy y

where ey is the compressional strain, that accounts for deformations of volume
not shape, ey is the deviatoric strain (also called diagonal shear), accounting for
deformations with no change of angles and e3 is the shear strain, acting parallel
to the sides of the square. The opposite relations are:
V2 V2
€rp = 7(61 + 62), €yy = 7(61 — 62) (23)
A schematic represention of ey, e; and es is shown in Fig. 2.1. Thus, any defor-
mation can be expressed in terms of these three symmetry adapted strains. As
can be seen, the appropriate OP for the square-to-rectangular transition is the
deviatoric strain e,.

The existence of two energetically equivalent variants in the ordered phase (in
2D the two possible rectangle orientations, as can be seen in Fig. 2.1) imposes the
symmetry F (e3) = F}.(—ez). This toghether with the requirement of nonlineari-
ties accounting for the transition lead to the following Landau free energy density

fLi

Fulealr)) = 22630) + Db + Lesio) (2.4)

where it can be easily proved that it must be fulfilled § < 0 and ~ > 0, whereas
A, is a sign-variable function of T', that can be written as Ay = ap (T —T.). Here
T, is a metastability limit as will be seen below. In fact, Ay is called the harmonic
coefficient, since it corresponds to the generalized Hooke’s law of elasticity, which
describes the harmonic motion [154]. Hence, as seen previously, Ay can be ex-
pressed in terms of second order elastic constants®: A, = C;; — Oy = 2C". Note

6Note that the expression may vary (and indeed it does) depending on the dimensionality of
the system.
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that the dependence of A5 on temperature makes C’ partially soften upon cooling
as it is commonly observed in SMAs in the pretransitional regime.

Temperature-induced transition

Carrying out a simple mathematical analysis” of fi in eq. (2.4) one obtains
the stability values for the strain e, = 0 and e; = £{3/(2y) + [(3/(27))* —
Ay /7]Y/23/2 = fe); and the following stability limits:

33 332

To=1.+— T, =T.4+ — 2.5
0 +167 +47 (2.5)

where T, is the low stability limit of the high-T phase, T; is the high stability limit
of the low T phase and T is the equilibrium transition temperature.

Obviously, e; = 0 corresponds to the unstrained -non-transformed-, square
phase whereas e; = +e); corresponds to the rectangular, strained -transformed-
phase, each sign corresponding to one of the two possible orientational variants.
Figure 2.2 shows the evolution of the triple well structure of fi (es) as function
of T. At T > T;, f. presents a single minimum at e; = 0, i.e. the system is in
the high symmetry, square phase. When T is decreased below T; (Ty < T < T;),
the global miminum remains at es = 0 but two local minima appear at e; =
+eys, meaning that the low-symmetry phase is metastable. At T" = Tj the three
minima are of equal energy, thus setting the equilibrium transition temperature.
At T, < T < Ty the global minima are observed at e; = 4+¢e); and the minimum
at es = 0 is now local, corresponding to the metastability regime of the high-T
phase. Finally, at T" < T, this minimum disappears and only the two minima
ey = tey remain. Figure 2.3 shows the equilibrium (continuous line) and maximal
metastable (dashed line) values of ey as function of T'. It reveals the discontinuity
of the OP during the transformation and phase coexistence, due to the first order
character of the transition. It also allows for hysteresis, latent heat, etc.

Stress-induced transition

The Landau model is also appropriate to describe isothermal transitions induced
by applying the conjugated, external stress field 0. The total free energy in the
presence of a stress field o comes from the corresponding Legendre transformation
of fu:

frole2) = fu(e2) + oes (2.6)

"A phase will be stable if and only if it corresponds to a minimum of the free energy density

fr.- This results from imposing the requirements g—g =0 and af;f" ‘ >0
2lezy

e
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Figure 2.2: fi(e2) for different values of
temperature T'. Since the vertical scale is
not conserved in the figure when varying T,
in order to make clear the relative size of
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the higher contiguous 7" are drawn. Instead,
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different axis.

Figure 2.3: Dependence on temperature T’
of equilibrium (continuous line) and maxi-
mal metastable (dashed line) values of es.
Arrows specify the directions of the trajec-
tories in 7', either heating or cooling.
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The presence of the stress field deforms the free-energy structure in such a way
that, beyond the usual elastic regime, also accounts for the interesting thermo-
mechanical phenomena described in Chap. 1, such as superelasticity and pseudo-
plasticity, the latter giving rise to the Shape Memory Effect. Profiles of f, , for
different values of o at different temperatures are shown in Fig. 2.4. Case (a) lead
to superelastic behavior whereas (¢) and (d) show pseudoplasticity. Case (b) is
susceptible to show either superelasticity or pseudoplasticity since in the asbence
of the stress field the ferroelastic phase remains metastable.

I.
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Figure 2.4: fi , for different values of o and 7.

We now proceed analogously to the T-induced transitions and carry out a
stability analysis of fi, ,(e2). It has to be computed numerically since it has no
analytical solution. Figure 2.5 shows the dependence of ey at the minima of
fr.0(e2) as function of T. We can also analyze the dependence of the minima
of e; on o, which is shown at three different temperatures in Figure 2.6. Here,
o is displayed in the y-axis for better comparison with the usual strain-induced
stress-strain experiments. Continuous line indicates the equilibrium trajectory
and dashed lines are the maximal metastability regime. Case (a): Below the
transition, the system shows pseudoplastic behavior, since the strain cannot be
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Figure 2.6: Different mechanical behavior at three different increasing temperatures.

recovered® when removing the stress. However, the system is susceptible to exhibit

SME upon heating. Case (b) corresponds to an intermediate regime whithin which

both pseudoelastic and superelastic behavior could be observed, depending on the

specific return path followed by the system. Case (¢) shows superelastic behavior.

2.2 Ginzburg energy

A system undergoing a MT typically achieves a multivariant phase, with the

presence of domain boundaries, i.e. interfaces separating the different variants.

Experimentally domain boundaries are often observed to be rather sharp, in the

range of at the most few interatomic distances [13|. Instead, although interfaces

are energetically unfavorable in an spatially extended homogeneous Landau sys-

tem,” the continuous and differentiable nature of the free-energy leads to smooth

8Recall that in this case the initial strain is zero due to the self-accomodation process leading

to a domain microstructure with no macroscopic net change.

91n the interfaces, the strain field must take values that are locally unstable: A continuous and

differentiable domain boundary (as it is in the Landau model) separating variants of equilibrium
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interfaces, with a certain width in the mesoscopic scale. Ginzburg proposed an
extra energetic penalty for variations of the OP fq = g|V62|2. Thus, any inter-
face results in an extra energetic cost that results in sharper interfaces than in
the absence of fg which is closer to experiments. In fact, it can be proved that
the energetic cost of the interphases due to the Ginzburg energy is equal to that
of the homogeneous contribution [155]. For a more compact notation, we define

far = fi + fa.

2.3 Long-range anisotropic interactions

In addition to the OP deviatoric strain, the other symmetry-adapted strains e;
and e may appear as a consequence of the transition in order to make easier the
coherent match between different crystallographic cells, corresponding to either
different variants or different phases. Moreover, since the stable, low-temperature
crystallographic cells come from a pure OP (i.e. deviatoric) deformation (in our
cubic-to-tetragonal transition), the non-OP contributions must be energetically
costly and therefore the domain boundaries must adopt the morphology that
minimizes this contribution. Then, since they are non-OP of the transformation
and thus their contribution is assumed to be small, they are taken into account
only up to the harmonic term. Thus we can write:
A o As

fnon—OP = 761 + 763 (27)

Similar to the harmonic coefficient A5, A; and A3 may also be expressed as func-
tion of elastic constants: A; = Ci1 + C1o and Az = 4C)yy, being both A; and Az
positive which confirms that this contribution is indeed unfavorable. The total free
energy density can be then written as fr(eq, s, e3) = far(€2) + fuonop(€1, €2, €3).
As it is shown in App. A, the three symmetry adapted strains eq, e; and e3 are
obtained as derivatives of the same underlying 2-dimensional displacement field
u = (uy,uy), which are the two true degrees of freedom of the system. Conse-
quently, the strain components are not independent but are linked through the
Saint-Vénant compatibility condition'® [140], that ensures that the transforma-
tion is defect-free, thus mantaining the lattice integrity. This leads to express
foon-op in terms of e; and ey and, hence, fr(eq,ey), where we have eliminated the
dependence of the total free energy on e;. Moreover, we consider that e; takes
at any time the values that minimize the total free energy, so that we impose the

strain es = +ejr and e; = —ejps must include points with all the possible values in between,
that therefore do not correspond to the equilibrium values es = +ey,.

19The mathematical details of the Saint-Vénant compatibility condition can be found in App.

A.
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ofr

condition 5
€1

= 0. This allows us to get a final expression for f,,,.op in terms
only of es:

Joon-op(€2) = /@(r)U(r —1')ey(r')dr’ (2.8)

where the kernel U(r —r’) goes as ~ cos(4[0 — '] /r?) in 2D'". The integral in the
free-energy density contribution f,o..op reveals that this term is non-local since
relates any two cells in the system by means of the kernel U. The 1/r? falloff
indicates that it is long-ranged whereas the cos makes f,,,.op vanish for values
0 = +45deg. This can be easily seen in Fourier space, where the free-energy

density takes the following form'?:

_ Az (k?c B k;)z 2 _ 2
Jron-op (kg ky) = 7(A3/A1) K18 (kxl{:y)zle2(k)| = V(k)|ea(k)| (2.9)

This expression makes clear why cross-hatched correlations along the diagonals
k, = *xk, are favored. Such correlations are more likely and stronger for larger
values of A3 whereas, formally, they vanish when A3 — 0.!* We point out that
such correlations are at the origin of the diagonal interfaces of both tweed textures
and martensitic twins. Kernels U(r —1’) and the corresponding Fourier transform
V (k) are shown in Fig. 2.7(a) and (b) respectively, where A3/A; and Ajz are
taken to be A3/A; = 2 and A3 = 2. It is of interest to state specifically the
relation between the parameter A3 and the elastic anisotropy factor A, which we
recall that for a cubic system it is defined as A = Cyy/C". Taking into account the
expressions relating C” and Cyy with the parameters of the model (which have been
given previously), we find that A can be written as A = A3/2A5. Given that A,
is a function of temperature, at constant temperature A3 and A are proportional.
Thus, variations on the elastic anisotropy factor (which is one of the main targets
of this work) can be carried out through variations on Az. As seen above, this
entails modifying the strength of the long-range interactions. In the following,
we analyze in depth the effects of variations in the parameters appearing on the

kernel V' (k).

From the expression above we can see that, regardless of the value of A;
(provided that A; # 0), an increase in the value of A3 results in an increase of the
non-OP free energy contribution, which in turn favors the diagonal correlations.
Moreover, in Fig. 2.8 we plot the kernel V (k) for two different values of the

factor A3/A;y: (a) As/A; = 20 and (b) A3/A; = 0.2. We have set A3 = 4.54.

HThe power of r does depend on the dimensionalilty of the system.

12The mathematical details of the calculi can be found in App. A.

3Note that fuon.op also vanishes for A; = 0, although this formal limit is uninteresting as it
will be seen below.

1 This is easier to see if we divide both the denominator and the numerator by As.
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Figure 2.8: Kernel of the non-OP free-energy density in reciprocal space V (k) for two
values of A3/Ay: (a) As/A1 = 0.2 and (b) A3/A; = 20. Here, A3 = 4.54 in both cases.

It can be seen that the structure of the potential remains robust with respect to
changes in this factor. However, as A3/A; decreases, the decay in the off-diagonal
directions becomes more abrupt since the value of the kernel in these directions
increases. Notice the significant difference on the vertical scale. It means that,
for a given value of the weight Az of the kernel V(k), (diagonal) tweed textures
and twin boundaries are favored more and more as the value of the factor A3/A;
is decreased. This also occurs when, for a given value of A3/A;, the value of Aj is
increased. This has been further checked through simulations with different values
of this ratio, which will be shown when convenient, in Sec. 3. Consequently, we can
control the weigth of the long-range interactions (and consequently the magnitude
of the elastic anisotropy factor A at a given temperature) through variations only
in the parameter Az but simultaneously keeping constant the ratio A3/A; = 2.

2.4 Quenched-in disorder

Effects of inhomogeneities in SMA have been approached from diverse points of
view. In Refs. [156,157|, the spatial variation of either the stress field of defects
or chemical driving force accounts for athermal friction in the evolution of stress-
induced martensitic variants. The introduction of thermal fluctuations has suc-
ceeded in obtaining the dynamic tweed, either as a pretransitional effect itself 7]
or a low-temperature transient state before evolving towards the more ordered
structure [158]. Assuming the disorder to have a much larger lifetime than any
process involving elastic mechanisms, like phonon relaxation (which is of the order
of ~ 107'25) and other slower time scales like boundary movements, and consid-
ering that no difussion is expected in such systems, the role of inhomogeneities in
causing precursors was studied also by Becquart et al. [159] through the presence
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of static perturbing fields. They observed that an ordered field did not produced
tweed, but it was obtained through a random field. It supports the idea that the
random nature of inhomogeneities intrinsic to materials is a necessary condition
for such pretransitional textures to develop. Also Khachaturyan modeled tweed
with static disorder [160].

It is well known that the composition is a statistically fluctuating random
variable in alloys, which varies locally from on site to another. Altough these
variations are in general slightly, the high sensitivity of the transition temperature
on the specific concentration of each element observed in many SMAs led Kartha
et al. to think about a variable local transition temperature. For instance, in
the case of FeyoPdsg, regions with slightly higher (lower) concentration of Pd
than the average value (30%at.) would lead to a lower (higher) local transition
temperature'®. Thus, in the context of Landau, they proposed a static, spatially
random, fluctuating field coupling to the strain through the harmonic coefficient,
which led to a distribution of local transition temperatures. This, together with
long-range anisotropic interactions, enabled them to obtain static tweed.

Here we essentially adopt this scheme, and introduce the following distorting
field:

fIn(e)] = FFn(r)es(r) (2.10)

where 7(r) is a random variable, gaussian distributed with zero mean and spatially
correlated by means of an exponential pair correlation function.

A

(n(r)n(x')) = Gl —x'|) = e Ve

2

_n_
and g(n) = ﬁce 2. Here, ¢ is the correlation length. The amplitude A of the
correlation function is related to the standard deviation of the Gaussian distribu-

tion so that ¢ = ,/%. The proof of this relation is given in App. A.3.3.

Note that this kind of coupling has the effect of producing a distribution of local
characteristic temperatures, so that we can define local stability limits Tc(r) =
T. + n(r) and Ti(r) = T; + n(r) and equilibrium temperatures Ty(r) = Ty +
n(r). For simplicity, we rename T,(r) as T.(r), and correspondingly the other
characteristic temperatures. To avoid confusion T.(r) with the Landau T, the
spatial dependence will be always stated specifically. This enables local regions
of the high temperature phase to be locally stable below T, and vice versa, which
are separated by free energy barriers. Since T.(r) is exponentially correlated,
it gives rise to islands of similar local stability limits, that will act either as
pinning sites for nucleation and growth of martensite (and which are at the origin

15We recall that an increase in the average concentration of Pd leads to a decrease in the
transition temperature of the sample
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of premartensitic strain modulations) or as retainning sites for austenite upon
cooling®® (and for martensite upon heating). For a given value of ¢ much lower
than the simulation cell size, these islands are short-ranged at high temperatures
and grow progressively as the temperature is decreased. Obviously, the higher
the value of £ the larger the size of the island. On the other hand, at a given T
and &, the higher disorder intensity ¢ the larger the system fraction that will be
unstable. Hence, this will increase the onset temperature of the precursor regime.
Moreover, a higher ¢ also enhances the mean local unstability of the system,
which will favor the stability of the precursor structures. Since statistically the
mean value (1) vanishes, disorder favors equally both phases with respect the
equilibrium transition temperature in the clean limit (7j). Consequently, higher
values of ( gives rise to higher energy barriers. This is analyzed in depth in the
following. Before going into this issue, it should be pointed out that the fact that
(n) = 0 is not in agreement with experimental results, which indicate that doping
entails a destabilization of the martensite so that the transition takes place at
lower temperatures, as commented in Sec. 1.4.1. However, a nonvanishing value
of (n) does not give rise to new qualitative findings, but only would shift all the
phenomenology to be observed around the specific new value T, + (n).

Discretization of disorder: Effects of £ and (

The disorder variable n(r) has been defined above as a variable in the continuum,
as the Landau theory essentially is. As seen, n(r) contains two free parameters:
the amplitude of the gaussian distribution'” ¢ and the correlation length &. Theo-
retically they would completely determine the specific profile of 7(r) in any region
of the space. However, for computational purposes, 7(r) needs to be discretized
in the coarse-grained mesh. The discretization procedure introduces a new pa-
rameter A which corresponds to the length of the unit cell of the system, that is
defined as A = L/N, where L is the linear size of the square simulation cell, and
N? is the total number of unit cells contained in the simulation cell. In principle,
as the discretization premises state, the discretization of the space should be as
fine as not to affect the simulation results. It means that A must be chosen in a
range within which variations of its specific value does not entail any change in
the results in order to be consistent with the theory. If it happens, the value of
the A is too large and must be diminished. In the case of our model, tests have
been carried out to check it and it has been observed that the value of A below

16This simple analysis does not take into account the long-range interactions, that also affect
the stability of each system site.

1"The mean value of the distribution () has been set to zero and it is not taken into account
here.
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Figure 2.9: (a) Schematic profile of the local distribution of the characteristic temper-
ature T, in the continuous and discretized spaces. (b) Real profile of T.r for two values
of the discretization parameter.

which results do not change depends on the specific value of . In particular, the
higher ( the lower the required A. Since this thesis refers to the behavior of the
system for different values of ( it is important to go depth into this aspect. By
looking with detail at the nature of the dependence of the results on A for a given
¢, this dependence may be valid here and, in fact, leads to relevant results.

First, we analyze the dependence of the specific profile of the disorder on the
discretization parameter A. The definition of n(r) in the continuum leads to a
smooth profile of T,(r), such that the difference T.(r) — T.(r’) between any two
points r and r’ tends to zero as the distance between the points r—r’ tends to zero.
However, the discretization of the space introduces a minimum distance between
nearest neighbor sites, which is precisely A. Consequently, T.(r) — T.(r') does
not vanish between the nearest neighbor cells but take finite values. They can be
arbitrarily defined, for instance, as AT,.(r) = T.(i,7) — T.(i — 1, j). Figure 2.9(a)
shows a schematic, theoretical profile of T,.(r) in a given segment of the space. It
is clearly seen that in the continuous case (continuous curve) T.(r) take an infinite
set of values that give rise to vanishing local differences of T, (r) between infinitely
close points. Instead, if the space is discretized in a mesh with discretization
parameter A, T.(r) takes the values only at the black dots, giving rise to finite
AT,(r). If now we use a new discretization parameter A’ = 2A (white dots), the
resulting AT (r) will be larger on average, as it is schematically indicated by the
vertical arrows. This can also be seen in Fig. 2.9(b).

Since T,(r) contributes to the total energy profile of the system, say E(r), the
high of AT,(r) plays a key role in determining the height of finite local energy
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barriers AE(r). The precise relationship between both AT,(r) and AE(r) cannot
be derived easily due to the presence of long-range elastic interactions. However,
from a given value of AT,(r), the pure relaxational dynamics used in the model is
observed to be unable to overcome the resulting AE(r). In short, the kinetics of
the system, that is crucial for the final stabilized structures, is directly (critically)
affected by the finite nature of the discretized disorder variable, that in turn
depends on the discretization parameter.

In fact, some of the relevant results, as mentioned, come out precisely from
the fact that disorder leads to finite energy barriers. In other words, the impor-
tant property that disorder must have is that it precisely does give rise to such
finite AT,(r)’s in order to show the desired behavior. Thus, the disorder may be
redefined as a discrete variable with all the properties mentioned above, but that
is, indeed, independent of the discretization parameter. The dependence may be
absorbed by reformulating the correlation length & in units of the discretization
parameter, and letting £ without any physical meaning. Then, the dependence of
AT,.(r) on £ must be analyzed.

The dependence of the mean value of AT,(r), denoted by (AT.(r)) on both ¢
and ¢ is shown in Fig. 2.10(a) and (b) and respectively. It can be deduced that
variations on & shift the behavior in the parameters’ space, in such a way that the
lower ¢ the larger ¢ required to obtain similar behavior. Looking at the slope of
the curves, the dependence of (AT.(r)) on £ is strong only for relatively low values
of £ and high values of (. With respect to this, simulations for the more critical
value £ = 10, which is lower than that used in most of the simulations ({ = 20),
have been carried out in order to check the effect of variations in this parameter.
These results will be shown later when convenient but in any case they do not
affect qualitetively the findings and conclusions of the work. Consequently, from
now on, £ is kept constant and the study of the effect of the disorder will be carried
out as function of the amplitude (.

2.5 Total free energy

Summarizing the previous sections, the total free energy of the system can be
written as the sum of the following contributions: Fr = Fy, + Fg + F,, + Fon-op-
More explicitly:

Fr={ [%T (T —T,+n(r))es(r)? — §e2(r)4 + %62(1')6 + §|Ve2(r)|2} dr

2.11)
A (k3 -k3)" 2 (
+2(27§)2 f |iﬁ_l;)(ka2c+k%)2y+8ka2ck% |62(k)| dk
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Figure 2.10: Mean finite local differences of T,(r), denoted by (T.(r)), as a function of
¢ for different valuees of ¢ (a) and vice versa (b).

The system consists of a 2-dimensional continuous lattice with square symmetry.
The numerical implementation requires the discretization of the expression above
on a mesh. Numerical details can be found in App. A.

2.6 Numerical details and other comments

Parameters

The material parameters that we use in the simulations are taken from experi-
mental data for FezoPds [33] and can be found in App. C in S.I. and reduced
units. The aim of this thesis is to explore the thermodynamic behavior of the
model in the parameters’ space, in particular the effect of the anisotropy factor
(through variations in the coefficient A3) and the amplitude (standard deviation
() of the disorder distribution.

In fact, Falk [136] showed that the Landau free-energy has no free parameters
but temperature. Moreover, we have seen that variations on the ratio A3/A; as
well as on the correlation length of the disorder do no lead to new phenomenology.
Therefore, beyond the primordial experimental justifications given in the previous
chapter pointing to these parameters as important factors in ferroelastic systems,
the region of the parameters’ space of this model that gives rise to qualitative ther-
modynamic behavior with physical relevance can be approximately reduced to the
two-dimensional subspace determined by the two parameters A; and (. Variations
of disorder should be understood as airising from compositional changes, doping
or quenching effects. Concerning the elastic anisotropy A, significant variations
necessarily entail changing the material.
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Although a quantitative analysis of the ferroelastic properties is beyond the
scope of this thesis, it is worth noting that the parameter values used here give
rise to quantitative results that in general are in reasonable (and often notably)
agreement with experimental observations. Despite that the simulations are shown
in reduced units for simplicity, in some cases the values of the magnitudes have
been specified in physical units in order to highlight such quantitative agreement,
which gives additional support to our simulation results.

Relaxational dynamics

Stabilized configurations are obtained by minimizing the total free energy Fr given
in eq. (2.11). This is carried out by means of pure relaxational (overdamped)
dynamics which consists of applying the following dynamical equation over all the
unit cells of the system'®

dey(r) by
ot dey(r) (2.12)

As seen, no fluctuations have to be taken into account, since almost all martensitic

transitions are athermal. In discretized form, eo(t + At) = ey(t) — %At. Here,
time is meaningless since we are not interested in intermediate but final stabilized

static in our time scale configurations, At is chosen as large as possible in
order to optimize the computation time. To avoid numerical problems, it may be
modified depending on the particular characteristics of each simulation. Usually,
its order of magnitude is of At ~ 1072, We consider that a configuration has been

stabilized when /- (ex(t + At) — ex(t)/AT)? = |/~ Z(%At)Q < 107" where
the sum is over all the unit cells of the system. According to eq. (2.12) derivatives
of Fr must be calculated. This is shown in detail in App. A.3.2.

Metastability and equilibrium

The true equilibrium state can be derived through a simple analysis from the
minimization of the total free energy of the system. At temperatures low enough,
all the cells in the sytem transform to the ferroelastic phase. Landau poten-
tial is doubly degenerated, which allows for multivariant coexistence. Long-range
anisotropic interactions lead this coexistence to adopt modulated structures along
the diagonal directions, but do not select any specific wave vector for such mod-
ulations due to the existence of periodic boundary conditions. Then, Ginzburg
energy favors a low number of interfaces, making the global minimum be a single

181t is easy to see that recursive application of eq. 2.12 brings the system to decrease progres-

2
sively its energy: %—f = %% and then, substituting eq. 2.12 one obtains %—I; = — (5—F> < 0.

582
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domain. By definition, such a configuration lacks of internal microstructure and
hence it is inappropriate to study structural patterns and associated thermody-
namic behavior.

However, the overdamped dynamics is not able to overcome finite free-energy
barriers.!?. In our case, this allows for stabilized metastable states. This is of our
interest because typically the system ends up stabilizing in twinned structures or
glassy states, and the single domain is only rarely reached.

Nevertheless, it should be pointed out that the obtained twins exhibit random
widths instead of the characteristic width according to the square root scaling
law observed in experiments. We recall that the real internal microstructure
emerges from the existence of an habit plane, i.e. from size and shape effects.
The absence of such a characteristic width in our simulation results comes from
the fact that the system is infinite, since we have imposed periodic boundary
conditions in our simulation cell. Actually, this does not prevent us from studying
many aspects of ferroelasticity, although the analysis of domain sizes does require
such a characteristic width. Since the latter is also of our interest, modifications
will be carried out in the present model, by means of specific disorder fields or
additional energetic terms, which will be discussed in detail in Sec. 3.4.

Computational details

The algorithm used to perform the Fourier transforms is the so-called FFTW (Fast
Fourier Transform in the West) [161]| and, in our case, it has been shown to be of
the order of ten times faster than that in Ref. [162|, that is the book of reference
for Fortran codes. Typically, simulations have been carried out in a square lattice
of linear size L = 103u.l., discretized onto a 512 x 512 mesh. Occasionally, this may
have been modified and it will be indicated. Periodic boundary conditions have
been used in order to compute the non-OP contribution in Fourier space. It has
considerably cut down the cost of computation time, since for a system of N cells,
the computation of the I}, ,0p in real space requires a computation time of the
order of ~ N? whereas in reciprocal space the order is only ~ N log N. Averages
have been carried out over independent realizations of the disorder. The initial
state depends on the characteristics of the specific simulations. For instance, the
initial configuration in quench-type simulations as well as in simulations starting
from a high temperature state consist of a random strain, Gaussian distributed
with zero mean and standard deviation equal to 107¢.

19Gtrictly speaking, this only holds in the continuum. In discretized form, there exists a low
but finite treshold for the barriers that can be overcome by this type of dynamics.



2.6. Numerical details and other comments 39

Representation of the configurations

The fully relaxed configurations obtained by solving numerically the model are
shown in snapshots of the strain field ey(r). It is worth noting that the start-
ing point of the model is the strain tensor. In that sense, the Ginzburg-Landau
free-energy density fqr, is independent from the definition of the strain tensor
components in terms of the displacement field u(r). That is to say, fq does
not depend on whether linear or nonlinear elasticity is used, and only the repre-
sentation of the configurations in terms of u(r) forces one to choose the specific
dependence of ey on u(r). Instead, this is not the case of the nonOP contribu-
tion, i.e. the long-range interactions, since they partially come from the Saint
Vénant compatibility condition, which is indeed derived by using the linear defi-
nition of elasticity. Then, in order to represent the configuration in terms of the
displacement field, it should be used the linear definition of elasticity.






Chapter 3

Structures

In this chapter we study the structural patterns resulting from solving numeri-
cally the model presented in the previous chapter. In particular, we address the
influence of the anisotropy and disorder on the structures, and their evolution in
temperature. To characterize the morphology the configurations, the local strain
distribution, domain wall profiles and diffraction patterns have been analyzed.
Surface effects are also discussed and implemented in several ways, and used to
calculate the domain size distribution.

3.1 Anisotropy vs. disorder. A simple analysis

Long-range anisotropic interactions and local disorder interact in a complex way.
They often have conflicting interests although sometimes they cooperate success-
fully as it is the case of pretransitional tweed textures. To go depth into the
understanding of this interplay it may help to do the following simple exercise.
We design an ideal system containing only an isolated square region of homoge-
neous disorder and analyze systematically the patterns that appear for different
values of A3. The homogeneous disordered region is characterized by the width of
the window D and the intensity of the disorder T.(r € D) = I. The distribution
and a snapshot of the resulting 7. (r) are shown in Fig. 3.1 in the upper pannels of
each case (a) — (d). Concerning these cases, note that the width of the disordered
window increases from top (I = 1.7) to bottom (I = 1.9) whereas the disorder
intensity D increases from left D = 10 to right D = 30. The lower pannels in
each case show the relaxed strain profiles along the diagonal direction for different
values of the anisotropy. At the right side of each case, a series of snapshots of
the corresponding configurations (in color) is shown.

First of all, we recall that in absence of long-range interactions the austenite
is unstable inside the disordered regions. Then, since the free energy density is

41
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local, the strain takes the values e; = 0 and e; = =€), outside and inside the
disordered region respectively, regardless of the values of D and I. As long-range
interactions are introduced, this scheme changes. Let us first focus on case (a).
As long as the value Aj is low enough, the disorder dominates the kinetics of
the system and inside the disordered region the strain e; adopts approximately a
Gaussian profile, only slightly deviating from the value e;; and exhibiting tails of
very small amplitude that decay outside the disordered region. However, above a
certain critical value of As, the anisotropy is the dominant factor and the long-
range interactions do not allow the disordered region to deform. Instead, they
make the strain to approximately vanish over all the spacethus giving rise to a
homogeneous structure. Consequently, one can deduce that a strong anisotropy
contributes to the stability of the thermodynamic phase of the system.

Different behavior is observed in (b) — (d) cases. Here, two different crossovers
can be identified. As in case (a), low values of A3 give rise to the Gaussian-like
strain profile whereas high values lead to a homogeneous structure everywhere
in the system, as mentioned above. Nevertheless, for intermediate values of Aj
a new phenomenon arises as a consequence of the balance between anisotropy
and disorder, which consists of diagonal, wavy modulations of the strain inside
the disordered region. Such modulations are at the origin of the pretransitional
cross-hatched tweed. As can be seen in the figure, the critical values of A3z depend
on both the width D and the intensity [ of the disordered region. The larger the
width D, the higher A3 needed to inhibit the deformation. Moreover, the larger
the width D, the lower A3 needed to modulate the strain. Therefore, as the width
D increases, the intermediate regime exhibiting modulations of the strain also
increases. The same holds for the intensity I of the disordered region.

In other words, for a given value of the anisotropy factor, the unstable regions
are allowed to deform provided they have a minimum size (D) , that in turn depend
on the degree of instability (/). Below such minimum size, anisotropic long-
range interactions are able to stabilize the disordered region by correlating it with
the surrounding austenite-stable system. Moreover, tweed modulations require a
minimum value of A3 to occur, below which only homogeneously distorted regions
arise.

Although this is a simplification of the configuration that will be used in the
relevant simulations, it captures the essence of how the system reacts to the pres-
ence of both long-range anisotropic interactions and local disorder. The disorder
defined in the model produces a distribution of local transition temperatures that
are exponentially correlated. Therefore, although it is a purely local term, at a
given temperature 7' such correlations lead to a set of Landau-unstable islands
with a particular mean size. Inside a given island, the degree of instability (i.e.
the difference T,r —T') is spatially variable, and the maximum instability is placed
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typically close to the center of the island. When T is decreased, the degree of in-
stability as well as the mean size of the islands increase. In this sense, at a given
temperature when the standard deviation ¢ of the disorder is increased both the
mean size and the degree of instability of the islands increase. Instead, the cor-
relation length only affects the mean size of the regions and not the degree of
instability.

3.2 Effect of anisotropy on the structures. Tem-
perature dependence

In this section we perform simulations of the full model, and the obtained strain
textures and their dependence on temperature 1" are shown and described as a
function of temperature A3 and (. First we limit ourselves to variations on Aj.
Figure 3.2 shows snapshots of representative configurations obtained as a function
of T for three different values of As. At the right side of each configuration we
have plotted the local strain distribution averaged over 10 different realizations
of the disorder. In the high-temperature phase and for the three values of A3 the
distribution is single peaked around zero strain. In spite of some differences, when
decreasing T" this peak evolves towards a two-peak distribution corresponding to
the two possible equilibrium values of the OP, corresponding to the two degener-
ated low-T" variants. Nevertheless, only for the largest value of Az |[column (I)| the
configuration shows the characteristic twinned martensitic structure. This is con-
sistent with the fact that for a given value of T the anisotropy A decreases from
left to right and the system loses directionality when decreasing the value of Aj.
Interestingly, for the smallest value of Az [column (III)| we obtain a nanocluster
phase separated state. Tweed textures can be observed in case (I) at intermediate
temperatures above the phase transition 7; ~ 1 whereas case (IIT) exhibits almost
circular domains.

A three-peaks regime is observed around the transition in the three cases,
indicating phase coexistence according to the first order character of the transition.
As the anisotropy is lowered, this regime gradually widens in temperature. It is
consequence of the presence of disorder, that makes some regions of the high-T
phase to be stable well below the transition point. Of course, the contrary also
holds: Some regions of the low-T" phase may be stable well above the transition
point.
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Figure 3.1: In each of the cases (a)-(d), strain profiles along the diagonal are shown
for different values of the anisotropy (As), for a system without disorder but a centered
square window of variable width D and intensity I: (a) D = 10, I = 1.7; (b) D = 30,
I =17 (¢) D=10,1=1.9; (d) D =30, I =1.9. Above the strain profiles in each
case, the corresponding disorder profiles are depicted, i.e. T.(r) with a snapshot of the
zone of the system containing the disorder window. At the right side of each case, a
series of snapshots of the corresponding profile’s configurations are shown. The profiles
in the small insets [cases (a)-(c)| are an enlargement of the area enclosed in the dashed

box. The strain is so small that, actually, has no physical meaning.
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Figure 3.2: Snapshots of selected configurations and local strain distribution, for three
different values of Az, as a function of 7. The elastic anisotropy A decreases from left
to right and the temperature from top to bottom.
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In order to further check that variations in the ratio A3/A; do no entail any quali-

tative change of our findings, in Fig. 3.3 we show similar figures to Fig. 3.2, where
A3z/A; = 0.2 and A3/A; = 20 have been used respectively. By comparing them, it
can be seen that larger ratios need higher values of A3 in order to reproduce the
same structural patterns. Specifically, a decrease (increase) of an order of magni-
tude in the ratio A3/A; needs a decrease (increase) of an order of magnitude in
the value of As. For instance, the lowest set of values {A3/A;, A3} for which a
twinned structure is observed at 7' = 0.5 are {0.2,0.5}, {2,4.54} and {20,45}.
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Precursor textures

To compare the simulation results obtained in Fig. 3.2 with real premartensitic
nanostructures we show in Fig. 3.4a tweed contrast in Ni-Al, whose anisotropy
is high (A ~ 9). Simulation results (b) of a system with high A shows a very
similar pattern above the transition. The length scale approximates very well to
experiments and, if not indicated, all the snapshots in the thesis keep the same
proportion as in this case.

Figures 3.4(c)-(e) show a series of images of TisgNisgFes in the premartensitic
regime upon cooling. We recall that the mottled structure has been suggested to
appear due to the low anisotropy value (A ~ 2) [30], which is in agreement with
simulation results at high temperatures for low anisotropy in Fig. 3.2. Since, upon
further cooling, TisgNisgFes transforms to twinned martensite, it is in correspon-
dence to the intermediate value A3 = 0.5. Moreover, this high-temperature series
show that the premartensitic mottled-like domains progressively become visible
as the temperature is lowered from (¢) to (e). This phenomenon is obtained also
in our simulations in Fig. 3.2 shown previously. All this is observed to occur in
the precursor regime in other alloys like stoichiometric Ti-Ni and Ni-rich Ti-Ni.

Strain profiles

The analysis of the strain profiles of the configurations can give additional infor-
mation which cannot be extracted from simply looking at snapshots. For this
purpose, we refer again to the configurations shown previously in Fig. 3.2. In
particular the strain profiles of an arbitrary section of the structures for the cases
of high (I) and low value (III) of A3 are depicted in Fig. 3.5. Their evolution
in temperature helps in the understanding of the dynamics resulting from the
interplay between anisotropy and disorder. For the high value A3 = 4.54, some
short-ranged, tiny modulations arise at high temperature 7. As T is decreased,
they gradually increase in number, intensity, and range, corresponding to tweed
patterns just above the transition temperature 7' =~ 1. This is consequence of
fair play between anisotropy and disorder, since both contribute essentially to the
resulting structure. Instead, at low 7', no signature of the modulations observed
at high T survive but the profile becomes high-strained and long-ranged since
the system is purely dominated by the long-range anisotropic interactions. They
are able to induce large motion of twin boundaries, eventually eliminating some
domains and coarsening others.

For A; = 0.05 the evolution is completely different, since it is mainly dic-
tated by the presence of disorder. At high T, islands of strain are observed,
with either positive or negative sign, but do not exhibit modulated (sign-variable)
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Figure 3.4: (a) Pretransitional tweed pattern in NiggzAls7, whose anisotropy is A ~ 9.

TEM bright field image extracted from Ref. [26]. (b) Simulated tweed, with high A,

which agrees with (a) also in the length scale. (c¢)-(e) A cooling series showing pre-

martensitic mottled structures in TisgNiggFes, with A ~ 2. Dark-field images extracted
from Ref. [30].
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Figure 3.5: Evolution of the strain profile of an arbitrary section when the temperature
is decreased, for high and low values of the anisotropy.

strains within any island. Once the specific variant is chosen in a particular trans-
formable region during the initial nucleation process, it is not able to switch to the
another variant by decreasing 7', but it will remain in the given variant forever.
The domain only can grow incorporating new non-transformed zones to the given
domain. Otherwise, if a domain wall separates two transformed regions corre-
sponding to the two different variants, the wall cannot move at all, but remain
static. Hence, the structure at low 7" strongly depends on the high-T" configuration
and on the specific evolution of the local stability given by the specific configura-
tion of disorder. Consequently, it can be deduced that the system freezes due to
the quenched-in disorder in metastable states, since, as it will be seen later, the
energy is higher than that of a twinned structure.

Non-OP strains

It is interesting to look at the non-OP e; and e3, that can be calculated from ey by
means of eq. A.31 and eq. A.20. An example of snapshots of their configurations
and profiles of an arbitrary section of them are shown in eq. 3.6, in the tweed
regime (a) as well as in the twinned phase (b). As indicated, the magnitude
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of the profiles of both e; and e3 have been enhanced four times to improve the
comparison with the OP ey. The color of the snapshots has been also adapted to
better observe the structures. As can be easily seen in (a), they mainly concentrate
in the smooth interfaces of the cross-hatched modulations. This is more difficult to
see in the profiles in (b) because the presence of disorder makes the strain fluctuate
sharply inside the twin variants themselves, and it leads to a fluctuating profile
along the whole section of the system. However, by looking with detail at the
corresponding snapshots of e; and e3, fine straight lines can be observed along the
twin boundaries, superposed to the random, isotropic fluctuating spots due to the
disorder. The fact that the non-OP strains concentrate in the interfaces confirms
(i) that these deformations appear to make easier the coherent fit between the cells
of different variants along the domain boundaries, and (ii) that it is precisely the
minimization of these strains which determine the morphology of the boundaries.!

3.3 Effect of anisotropy and disorder at low tem-

peratures

Disorder effects

In the previous Fig. 3.2 the inhibition of martensitic twins at low temperatures
has been carried out by decreasing the value of A;. Here, in Fig. 3.7(a)-(b) we
show that for a given value of A3 which shows no tweed in the precursor regime,
but twinned martensite below the transition [case (a)], twins can be suppressed by
increasing the amount of disorder (, and, instead, the mottled structure survives
down to low temperatures [case(b)]. This is in agreement with the experimental
results in Ti;_,-Nij 4, as shown in the images (¢)-(d). Upon cooling stoichiometric
Ti-Ni exhibits a pretransitional mottled structure before undergoing a martensitic
transition. When the content of Ni is increased at the expense of Ti atoms, the
transition temperature decreases and finally it is suppressed for Tiyg 5-Nis 5 [34].
Then, mottled patterns survive down to 0 K. This also occurs in iron-doped Ti-
Ni |30, 163].

'In other models that only allow for deformations corresponding to order-parameter strains,
the proper orientations of the domain boundaries are obtained automatically [131]. This occurs
because these orientations are the only crystallographic way to match geometrically the cells
corresponding to different, pure variants. In our model, the minimization of such strains is
needed to obtain the proper orientations. Moreover, the minimization of the energy associated
to disorder can lead to stabilize other morphologies, resulting in a rich landscape which is of our
interest,.
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Anisotropy and disorder effects

In the following we focus on the effect of anisotropy and disorder in the struc-
tures at low temperatures. In figure 3.8 we show snapshots of selected structural
patterns at 7' = 0.5 (< Ty, i.e. well inside the low-temperature regime) and for
different values of Az and (. In order to highlight the differences among the config-
urations, at their right side we have plotted the diffraction patterns, corresponding
to the intensity of the Fourier transform? |F(es)|?, averaged over 20 independent

realizations of disorder. Several overall trends can be identified in Fig. 3.8:

(i) From left to right the texture loses directionality as reflected in the diffrac-
tion pattern, that changes from a cross-hatched to a circular shape. This is con-
sistent with decreasing anisotropy.

(ii) From bottom to top the domain size decreases, consistent with the increase
of ¢ and the associated energy barriers. This is confirmed by the widening of the
diffraction pattern towards higher values of the wave vector.

(iii) Twin boundaries exist only for relatively low values of (. Actually, as we
shall demonstrate later, they appear for the values of disorder below a critical (¥,
which in turn depends on Az in such a way that the higher As the higher *.

(iv) Cross-hatched patterns are obtained for high values of both A3 and (,. for
high values of As, whereas a mottled structure appears for low values of As.

(v) Finally, for the lowest value A3 = 0.05, mottled structures are observed.
In fact, only for very low values of ( the pattern shows some directionality.

We notice that, although tweed and mottled structures are characteristic of the
precursor regime, as seen in Fig. 3.2, in the present case they correspond to low-
temperature structures. Actually this is not surprising since the amount of disor-
der suppresses the martensitic transition and the otherwise pretransitional struc-
tures survive down to very low temperatures. It is worth mentioning that these
results are in complete agreement with experiments in a wide range of alloys. For
instance, superconducting YBay,CuzO7_s undergoes a tetragonal-to-orthorhombic
ferroelastic transition, showing tweed patterns above the transition and twinning
in the ferroelastic phase. When it is doped with either with Al, Fe |164, 165| or
Co [166] at the expense of Cu the twin spacing is reduced progressively. Finally,
there exists a critical amount above which the transition is suppressed and tweed
is observed at low temperatures instead of twinning. In the case of low-anisotropy
systems, which show a mottled structure, it has been analyzed in detail in Fig.

3.7(c)-(d).

2An expression for the Fourier transform can be found in App. B.1.
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Figure 3.8: Illustrative phase diagram at low temperature (7" = 0.5) for different values

of Ag (~ elastic anisotropy A) and disorder intensity (. Fach configuration is shown

with its corresponding Fourier-transformed intensity F(es)?.
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3.4 Finite size effects

As discussed in Sec. 1, one of the most intriguing features of martensites concerns
the strain configuration at the habit planes, which match austenitic and marten-
sitic phases. It is commonly known that the notion of such well localized, invariant
interfaces is often at the origin of the self-accommodation process consisting of
minimizing the energy by taking advantage of the multiple degenerated minima.
It gives rise to strain modulations in these planes that spread out in the marten-
sitic bulk due the long-range nature of the elastic interactions, and consequently,
a multidomain microstructure is created. Moreover, it is well known that such
modulations are characterized by a characteristic wave length, i.e. a twin width
A that is related to the size of the embedded martensitic grain D according to
A ~ v/D. This problem has been addressed successfully, by means of microelas-
ticity [130], displacement field picture [167], etc. However, a full understanding of
this problem in the context of Landau was lacking.

In the model presented in Chap. 2 the existence of a habit plane was not taken
into account, since periodic boundary conditions were imposed. Actually, the
observed twinned microstructure was consequence of metastable states stabilized
by the dynamics and the long-range anisotropic interactions, rather than a true
thermodynamic equilibrium configuration. Indeed, no characteristic twin length
was identifiable, but a large range of widths of similar probability of occurring.

3.4.1 Habit plane

Within a Ginzburg-Landau framework we study the boundary problem of a semi-
infinite martensite domain in an austenite host matrix, finding the strain and
stress fields matching the austenite-martensite interface (habit plane). The cal-
culation is huge and was carried out mainly by Marcel Porta. It is inspired in
the previous works carried out by Horovitz et al. [167] and Shenoy et al. [168].
Here it is presented an outline of the approach and results, that attempts to
avoid mathematical details®. Starting from the previous model presented here in
the absence of disorder, new boundary conditions are imposed. Instead of be-
ing periodic in both axis, in the x axis we define a transformable strip of finite
width L which borders in both sides on a region forced to remain in the austen-
ite phase by means of a harmonic free energy in the symmetry adapted strains:
Jaus = %6% + weg + %eg. Periodic boundary conditions are used in the y
axis.

3Full work can be found in M. Porta et al., Phys. Rev. B 79, 214117 (2009).
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The general procedure is as follows: First, the strain field in the austenite
region is determined by imposing mechanical equilibrium V -o = 0 (that is equiv-
alent to minimize the energy), elastic compatibility and the requirement that the
strain field must vanish far from the habit plane. The latter condition together
with the periodic boundary conditions in the y axis lead to transform the above
mentioned equations by Laplace in the z direction and Fourier in the y direction,
which ensures decaying and periodic strain fields in the respective directions. The
resulting free energy in the austenite is a nonlocal function of the order-parameter
(OP) strain field e, in the habit planes only, and contains a Fourier kernel 1/|k,|.
This kernel guarantees the habit plane to be invariant, i.e. the strain vanishes
on average along this plane. The expressions for the non-OP strains e; and e3 as
well as d,e; are obtained in terms of the OP ey in the habit plane as well as its
x-derivatives. It allows to obtain an expression for the non-OP free-energy of the
martensitic bulk in terms of the OP e, containing the factor (k2 — k7)?, which
favors modulations of the OP with k, = £k,. Also, it is found that it scales as
~ 1/|k,|, inducing the formation of narrow twins. Since this scaling means that
the non-OP free energy is an increasing function of the wavelength, the specific
twin width will be given by a balance between this term and the Ginzburg term,
that attempts to remove any interface. Simulation results show that the equi-
librium twin width X fulfills the experimentally observed relationship A\ ~ /L.
The full strain fields e, e5 and ey are characterized both in the martensite and in
the austenite. Also, the size of the transformable region appears to be crucial in
determining the resulting equilibrium structure. Actually, there exists a minimum
length for the nucleation of twinned martensite, which increases with tempera-
ture and diverges as T" approaches the transition temperature of Landau. In this
size regime, a checker-board pattern that alternates parent and product phases is
stabilized instead of diagonal twins. The effect of the shape of a finite martensite
inclusion (finite in = and y directions instead of finite only in x) on the resulting
pattern has been also studied.

3.4.2 Simulating austenite

This method consists in simulating explicitly a surrounding austenite matrix. It
is carried out by means of defining in a half the system an austenite stability
limit 7, well below any temperature 7' in order to strongly stabilize the austen-
ite phase from the point of view of Landau. This is equivalent to define a free
energy purely harmonic in the OP in the austenite region, which was done in
the analytical previous method. Periodic boundary conditions are maintained in
both axis. This method succeeds in reaching the main target that is to obtain an
habit plane along which the total strain vanishes by modulating it with a narrow
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Figure 3.9: Low temperature configurations showing half austenite (left side) and half

twinned martensite (right side) for different values of anisotropy and disorder. Twin

width increases as anisotropy is decreased. Disorder does not affect twin width directly,
but may break domains which in turn does affect the domain size.

distribution of low wavelengths, which contrasts with what obtained previously.
Figure 3.9 shows snapshots of the simulation cell at low temperatures for different
values of anisotropy and disorder. It can be seen that in all cases one half of the
system is retained in the austenite phase. This naturally imposes the requirement
of a globally invariant habit plane, which leads the system to exhibit the same
proportion of the different martensitic variants along this plane. Mediated by
the long-range anisotropic interactions, long thin twins with a similar width are
formed. Moreover, it can be observed that the strain field decays in the austenite,
consistently with the previous analytical method.

The specific value of the anisotropy affects the resulting twin width, in agree-
ment with the fact that the constant of proportionality of the scaling relation
A ~ VL contains elastic constants related to the anisotropy factor [167]. In
particular, a lower value of As results in a broader twin width. Domain size
distributions will be analyzed in detail later.

It is worth noting that high values of disorder make break down long twins into
small regions with differently oriented twins. It is observed that the smaller the
region the narrower the twin width, which is in agreement with the scaling relation
above A\ ~ /L. Note that in the regions surrounded by other twinned regions,
the appropriate modulation length of twins comes from domain boundaries and
the austenite region (the left half side of the snapshots) has no effect in it. This is
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important since it highlights the fact that the notion of invariant plane, either in
phase boundaries or domain boundaries, is inherent in the original model. Thus,
to attain the correct modulation the unique additional condition that is required to
include in the model is the existence of a plane separating two phases or differently
oriented twins, but, once such a plane exists, the energetic ingredients needed to
form thin twins are already included in the initial model. In fact, this phenomenon
was already observed in a different context in the case of tweed. Indeed, tweed
grains emerged initially in regions where 7T, was higher than the surrounding
austenite matrix, leading to a natural (crosshatched) modulation that minimized
the total strain along the austenite-tweed interface.

Domain size distribution

Now we attempt to characterize the structures through the domain size distribu-
tions. This analysis requires surfaces effects giving rise to the right twin widths.
Since the method of simulating austenite do not entail additional coding, the com-
putation cost is equivalent to the usual model from the point of view of storage
and time. Therefore, we have chosen this method to systematically compute the
evolution of the domain size distribution from the high- to the low-temperature
regime for different values of anisotropy and disorder, which is of crucial interest
for the purposes of this thesis. Figure 3.10 shows the domain size distribution
for the same values of ( and A3 as in Fig. 3.8 and for three different tempera-
tures: 7= 1.5 (> Ty > 1,), T = 1.0 (= T.) and T = 0.5 (< T.). For relatively
high anisotropy and small ¢ values—martensitic systems, in the small figures at
the bottom left corner—tweed precursor is found at high 7" with a characteristic
length that changes towards the characteristic length of twins when undergoing
the martensitic transition.® Instead, when ¢ is high enough to block twin for-
mation, the characteristic domain size at high-7T" survives when T is lowered well
below the transition. Domains are not allowed to grow due to the presence of
relatively high levels of disorder but freeze thus rendering the system to anchor in
metastable states. Actually, these states show glassy features, that will be shown
in ZFC/FC experiments in chapter 4. Anticipating these results, glassy states
have been indicated in the figure to make clear the general landscape. Note that
the minimum value of ¢ required to inhibit twins increases when the value of Az
increases.

4The distributions showing a large characteristic length are much less peaked (and hence
broader) mainly due to two reasons: In one hand, when the twin width increases, the number
of twins decreases and this entails a distribution which is statistically more poor. Second, when
the twin width is considerable large, compared to the simulation cell size, periodic boundary
conditions may play an undesirable key role in determining the twin width.
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Figure 3.10: Domain size distribution for different values of ¢ and A3 and for three

different temperatures: at the parent phase (7" = 1.5), near the transition temperature

(T = 1.0) and in the martensitic phase (T" = 0.5). The corresponding patterns are

specified in the unambiguous cases. Frozen states are obtained in those cases where

the characteristic domain sizes do not change by decreasing T but retain the high-T

structures down to low 7". Same vertical scale (in units that normalize the distribution)
applies to all cases and therefore it does not need to be specified.
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Checkerboard pattern

Taking advantage from this easy method to simulate austenitic boundary condi-
tions, we analyze qualitatively the effect of small sizes in the structures. This is
shown in Fig. 3.11. The initial configuration (a) consists of a half the system
lying in the austenite phase and the another half in the martensite. Then, we
proceed to decrease the martensitic region by changing the configuration of 7,(r)
in such a way that we set T.(r) = 0 in a narrow strip at the austenite-martensite
interface, and we let the system relax again. We repeat this procedure progres-
sively as it is shown in selected snapshots (b)-(f). We have done that for two
different temperatures, 7' = 0.5 and T = 0.9. It can be observed that when
the size of the martensitic region is decreased below a certain value, twinning
is no longer observed but a checker-board pattern. This is in qualitative agree-
ment with simulation results in Sec. 3.4.1 where such patterns are referred to as
lattice martensite. There, we recall that a free-energy contribution was derived
analytically from imposing finite size effects. Hence, that was a physically more
meaningful method. Instead, the current method arises as powerful due to its
simplicity and reveals that checkerboard structures are already contained in the
original model.

It must be noted that, due to the presence of disorder T.(r), the checker-
board pattern is observed to be inhomogeneous and/or discontinuous along the
martensitic strip. This is also in agreement with results in Sec. 3.4.1, where a
dependence of the pattern on temperature is observed. Focusing at 7' = 0.9 in Fig.
3.11, in (d) the checkerboard pattern starts to appear and coexist simultaneously
with twin boundaries. As the strip is progressively reduced, the checkerboard
grows to the detriment of twinning [(e)]. This trend is also observed at T' = 0.5
although, as expected, the martensite appears to be more stable. Note that the
morphology of the decaying strain fields in the austenite (which are larger in strain
and range at lower temperatures), also shows the twin-checkerboard crossover.

Checkerboard strain structures have been observed experimentally in decom-
posing metal alloys (Co-Pt [169], AuCu(-Pt,-Ag) [170], etc.) and in oxide ceramics
(ZMnGa0, [171], (Ndy3-,Lis,) TiO5 [172], etc.), although, in general, they are not
associated to the confinement of the strain field.

3.4.3 Phenomenological long-range potential

Previous to the analytical work explained in Sec. 3.4.1, Shenoy et al. [168] pro-
posed a free-energy contribution coming from the existence of a habit plane. An-
ticipating the full kernel found subsequently, that term already contained the
~ 1/|k,| factor, essential for capturing the scaling resulting from the free-energy
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minimization including both martensitic and austenitic regions. Motivated by this
idea, we introduced a phenomenological term in the free energy with a unique ker-
nel that goes as ~ 1/|k,|. Mathematically:

1
) :C’s/dx/m@(x, k)Pdk, . (3.1)
)

where éy(z, k,) is a Fourier transform of the OP strain ey(x,y) only in the y

direction®

. Here Cj is the constant of proportionality of this contribution. As
pointed out before, such a kernel makes the different martensitic variants exist
in the same proportion (self-accomodation), leading to a zero net strain, i.e. a
macroscopically invariant habit plane. Otherwise, a non-vanishing contribution

of e3(k, = 0) would remain, which would make the energy term ~ 1/|k,| diverge.

This free-energy contribution increases with the wavelength of the strain mod-
ulations. Thus, it favors a structure of narrow twins. Given that the Ginzburg
energy penalizes the interfaces (i.e. prefers k = 0), the equilibrium configura-
tion will be given by a balance between these two terms, and approaches the
equal-width twinning. Since this term emerges from habit plane effects, it will be
referred to as the surface potential, in contrast to the potential coming from bulk
compatibility. Actually, our simulation cell has periodic boundary conditions,
which leads to an infinite system. Nevertheless, the surface potential introduces

®Discretization and derivatives of this term, which are necessary for the dynamics, can be
found in App. A
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an effective, finite size £, which is given through the weight C,. Since this term
is purely phenomenologic, the value of Cy is arbitrarily chosen. In fact, its choice
will determine this effective size £ in such a way that, larger values of C entail
narrower twins which means lower sizes £. The other way round, for Cy — 0 we
obtain £ — oo that means a single domain, and we recover the original model.

Before going into the simulation results, it should be noted that the compu-
tational cost of this term is large. Therefore the linear system size has to be
diminished to 500[y, discretized on a 256 x 256 mesh. Moreover, disorder is Gaus-
sian correlated (instead of exponentially correlated)® since in this case it has been
observed to be faster in stabilizing the configurations.

We explore the space of configurations for some values of the coefficient C,.
We have also studied the effect of varying the correlation length of the disorder
&, since it affects directly the local stability islands, in order to look for possible
effects of it on the typical twin width. Figure 3.12 shows two sets of snapshots
of configurations corresponding to high (a) and low (b) temperatures. In each set
of snapshots, the correlation length £ increases from left to right and the surface
weigth C increases from top to bottom. The case Cs = 0 is included to compare
the results with those obtained previously, in the absence of the surface potential.
In order to highlight the effect of C the disorder configuration is the same for all
cases with the same &.

As can be seen, in case (a) Cs appears not to have relevant effects on the
obtained configurations. This occurs due to the fact explained in the previous
section: The presence of disorder in the austenite gives rise to regions within
which the martensite phase is stable. Since such regions are of finite size, they
behave as finite martensite domains, thus trying to vanish the global strain at
the boundaries that, in fact, act as habit planes. This forces the strain to be
modulated inside these regions, leading to tweed textures. The length of such
modulations coming from the real surface effects in disordered regions dominate
over the phenomenological surface potential. Hence, no effects of it are appreciable
in this temperature range. In that sense, cross-hatched tweed modulations also
make the surface free energy be small. Due to the same reason, these precursor
structures strongly depend on the value of £, since it partially” determines the size
of the regions with high 7,(r). More specifically, as it is increased, the modulation
length of the precursor domains increases, in agreement with the scaling law \ ~

VL.

6A study in a very similar magnetic model concerning the effect of the particular functional
form of the correlation function on the disorder has been shown that such specifities do not
affect the obtained structure.

"Let us recall that the disorder is completely determined by & and the disorder amplitude ¢.
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Figure 3.12: Snapshots of selected configurations including 1/|k,| potential as a func-
tion of the weigth C and the correlation length of the disorder &, at two temperatures:
(a) well above and (b) well below the transition. In (a), tweed textures are not affected
by the phenomenological potential but by the specific value of &: The high the £ the
larger the strain modulation. In contrast with that, twinned structures in (b) are not
affected by & but by Cy: The higher the Cy the smaller the twin width.

Instead, the opposite behavior is observed in the martensitic phase [case (b)].
The obtained twinned structure does not depend on the correlation length and,
in general, on the disorder configuration. It was already observed in the absence
of the surface potential in Sec. 3.4.2, since twinning was originated from strong
diagonal correlations between cells, overcoming the barriers erected by disorder.®
On the other hand, as it is expected, the typical twin width decreases with the
surface coefficient Cj.

Domain size distribution

We also address the analysis of the domain size distribution through the method
of the surface potential ~ 1/|k,|. Here the value for the correlation length is set
to & = 20y and will be kept constant. We recall that, if not indicated explicitly,
the values for Az and ( are set to A3 = 4.54 and { ~ 0.3. We then proceed to
study the evolution in temperature of the characteristic lengths of the patterns
for two values of the coefficient C, Cy = 0.1 and C; = 0.01. Results are shown in
Fig. 3.13.

8 Actually, as obtained in Sec. 3.3 there exists a treshold for the disorder amplitude ¢ above
which it is able to inhibit the martensitic transformation but below which disorder has indeed
little effect on twinning features.
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Let us focus first on the value Cy = 0.1. At high temperatures a peak is
observed at small lengths which corresponds to tweed modulations (indicated by
the dahsed line), and is mainly determined by the characteristics of the disorder, as
has been discussed previously. When T is decreased, the domain size distribution
broadens, due to the widening of the modulation length which is consistent with
an enlargement of the disordered regions. At the same time, new regions arise
that keep on nourishing small wavelengths. Although in the coexistence region the
future twins can already be discerned, the shorter wavelength of tweed still breaks
them and no twinning signature can be appreciated in the domain size distribution.
It is just below the transition, when the twins are clearly formed, that a rather
different, much broader distribution can be observed. It can be regarded as the
sum of two contributions: one corresponding to some small wavelengths that still
survive (as the one observed at high T), and the other coming from the twin width
(indicated by the dotted line). This is in agreement with the first-order character
of the transition which allows for phase coexistence around the transition point.
When the system is cooled further, only the twin contribution remains, which
gives rise to a single, narrow peak confirming the existence of a characteristic
twin width. It is important to recall that this peak would not appear when the
surface potential is removed, but the resulting twins exhibit widths in a very wide
region that spreads out from small sizes up to the simulation cell size (which
corresponds to the single domain).

Similar trends may be observed in the evolution in temperature for Cy = 0.01.
The characteristic length of tweed (that naturally coincides with that for Cy = 0.1)
evolves towards the much larger characteristic length of twins, that in this case
is larger than that for Cs = 0.1. Due to the absence of a clear peak in the
distribution (due to the same reasons as in broad distributions in Fig. 3.10)
dotted line has been omitted in this case. In a very similar magnetic model,
consisting of a two-well Landau potential extended to include quenched disorder
coupling to the harmonic term and long-range dipolar interactions, a similar study
was carried out where a single peak of small size was observed at high tempertures
corresponding to magnetic tweed, and a single peak of larger size was observed
at low T corresponding to magnetic twins. However, opposite to the elastic case,
coexistence of the peaks was not observed at any temperature, which corroborates
the second-order character of the transition, that makes the OP to transform
continuously from one phase to the another, thus preventing a coexistence region.
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Figure 3.13: Evolution in tem-
perature of the domain size dis-
tribution in a martensitic system
for two different values of the co-
efficient Cy. Typical tweed length
observed at high temperatures,
is indicated by the dashed lines
whereas the dotted line points at
the typical twin width (dotted
line is ommited for Cy = 0.01 due
to the ambiguous broad distribu-
tion). It is worth noting that co-
existence of peaks is clearly ob-
served close to the transition for
Cs =0.1.
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3.5 Needles

It is worth looking at the morphology that appears when different twin laminates
(polytwinning) meet perpendicular to each other. A domain reaching a domain
boundary perpendicularly typically accomodates by taking a needle-like shape
close to the boundary if the two perpendicular domains are of the same orien-
tational variant [173]. Our original model also accounts for this phenomenon,
although perpendicular domains do not occur often because twinning typically
correlates the whole system according to a single direction. However, finite size
effects mentioned in the previous section allow for a more rich internal twinned
structure, with twins in both diagonal directions. This may give rise to per-
pendicular junctions and hence, needles can be observed. We have selected two
low-temperature snapshots which clearly exhibits this morphology. Both experi-
mental |(a)-(d)| and simulated [(e)-(f)| twins with needles are shown in Fig. 3.14.
Case (e) incorporates surface effects through the phenomenological potential and
case (f) through the method of simulating austenite.” Moreover, when moving
away from the perpendicular junctions, needles often widen and even join other
needles thus forming a broader and broader twin domain. This may give rise to
self-similar patterns [174]. Some other times needles die before becoming true,
long-range twins. Both phenomena can be observed experimentally in case (a)
and (c) of Fig. 3.14. Case (f) shows a simulated configuration exhibiting both
joined and dead needles.

9We remark that finite size effects are not needed for this phenomenon to occur, but they
are introduced to make easier the formation of domain walls joining perpendicularly.
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Figure 3.14: Experimental images |(a)-(d)| and simulation snapshots [(e)-(f)] exhibit-
ing needle-like domain walls in perpendicular junctions. (a) Optical micrograph of Cu-
Al-Ni has been extracted from Ref. [13]. (b), (¢) and (d) show TEM images of Y-Ba-Cu-
O, extracted from Ref. [5]. (e) This configuration has been obtained by including the
surface potential ~ 1/|k,|. Linear system size of (e) is 5001y discretized on a 256 x 256
mesh. Snapshot in (f) is a 1000ly x 1000ly section of a larger system of linear size of
4000ly discretized on a 2048 x 2048 grid which includes the simulated austenite region.
This is the reason why (f) does not exhibit periodic boundary conditions.






Chapter 4

Thermodynamic properties

4.1 Heat capacity and transformed fraction

This chapter is devoted the study of the thermodynamic behavior that underly
the structures shown in the previous chapter. First, the behavior of the heat
capacity C has been studied as function of the parameter Az, which we recall
that, at constant 7', it is proportional to the elastic anisotropy factor A. The
heat capacity C can be obtained according to the well known relation with the
Helmoltz free energyF: C = —T9*F/0T?. In our case, the Helmoltz free energy
corresponds to the total free energy of the model Fr.

In order to reproduce the standard experimental procedure, the simulations
have been carried out upon cooling from the high-temperature phase (7' = 1.62)
down to well below the low-T phase (7" = 0.3), with a step of AT = —0.02. For
the specific value of the disorder used in these simulations ({ = 0.32) the range of
T is wide enough to comprise almost all the local stability limits 7.(r)s and thus
capture all the relevant features in the heat capacity. From 10 to 40 independent
seeds (depending on the fluctuations of C, that in turn depend on the value of Aj3)
have been used in the average of the curve. However, this has been insufficient to
completely remove the irregularities without thermodynamic meaning and further
smoothing has been necessary by fitting each point of the curve by a parabola with
the closest eight temperatures (four of higher 7" and four lower). This procedure
has left approximately only the relevant behavior, which was detected previously
by analyzing different independent groups of seeds.

The similarities observed between the first derivative of the free energy F’' =
OF/OT and the transformed area fraction ¢ inspired us to compute the first deriva-
tive of the latter ¢ = ds/JT, to compare it with the heat capacity C. The trans-
formed fraction ¢ has been specifically computed as the fraction of the system

69
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with a strain e, such that: [eo] > 1,/+ > 65(i,7). In order to follow the same
procedure as in the computation of C, ¢ has been smoothed by fitting each point
of the curve with the closest four points, since it is a first derivative (instead of a
second derivative as in the case of C) of the original data.

First we have performed simulations both upon cooling from the high-T" phase
and upon heating from the low-7" phase. The resulting curves for C are shown
in the top right panel in Fig. 4.1 for the value A3 = 1.0. It can be observed
that the cooling curve exhibits a peak shifted to temperatures lower than the
transition temperature 7, ~ 1.03 in the clean limit. Instead, the peak in the
heating curve is shifted to higher temperatures. Hence, one can deduce that these
peaks corresponds to metastability limits of the phases. Moreover, in both cases
the position of the peak coincides with the position of the peak observed in the
first derivative of the transformed fraction ds/dT, which is shown in the bottom
right panel. This gives confidence about the robustness of the results. The free-
energy density f and the transformed fraction ¢ are displayed for completeness
in the upper left and lower left panels respectively. The curves of ¢ upon cooling
and heating are very close to each other indicating little hysteresis, which is in
agreement with the weak character of the first-order martensitic transition (MT)
undergone by Fe-Pd, from which we have taken the material parameters used in
this model. The wide temperature range whithin which the transition occurs is
due to the presence of disorder.

Given that we know from the previous Fig. 4.1 that the peak is related to a
metastability limit, to save computation time, from now on we restrict ourselves
to the computation of the cooling curves. In Fig. 4.2 we extend the comparison
between the heat capacity C and the transformed fraction ¢ to three different
values of As: (I) A3 = 4.54, (II) A3 = 0.50 and (III) A3 = 0.05. The temperature
dependence of both the free energy density f and the heat capacity C are shown
in the upper panels whereas the lower panels show ¢ and ¢’. One can see that in
all cases both C and ¢ display anomalies at the same values of T', thus supporting
such anomalies as robust behavior.

For the highest value of Aj [case (I)], C shows a broad bump and a sharp peak
around 7" < 1. The bump is associated with the development of tweed precursors
whereas the peak is the signature of the structural transition. In case (II), C shows
a smoother and lower peak than can be observed over the bump at T" ~ 0.75. As
pointed above, such a peak is related to the low temperature stability limit of
the high temperature phase. This is in agreement with the small peak centered
at zero observed in the local strain distribution below 7" ~ 0.75 shown in Fig.
3.2. In case (III) only the smooth bump associated with nanoclusters of the phase
separated pattern is observed. In any case, notice that some amount of the high
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Figure 4.1: The free-energy density f and the transformed fraction ¢ for As = 1.0 are

displayed in the upper left and lower left panels respectively whereas the heat capacity

C and d¢/dT are shown in the upper right and lower right panels respectively, both
upon cooling and heating.

temperature phase remains down to very low temperature ("retained austenite",
see Fig. 3.2).

We now proceed to compute systematically the heat capacity C as a function
of As in order to visualize the dependence of the anomalies on it. Figure 4.3 shows
the behavior of C for several values of Az ranging from As; = 0 to A3 = 10. The
observed general trends are those described above and the peak shifts to lower
temperatures as Az decreases. Notice that only for values of A3 > 1 the peak can
be associated to the structural transition, accompanied with the development of
long range order (twinned structure). For values of A3 <1 the peak is associated
to the the stability limit of the high temperature phase and rapidly goes to zero
as A; — 0. We emphasize that comparable anomalies have been found experi-
mentally [163] in Ni-Ti(Fe) alloys, where an increase in Fe content diminishes and
shifts the peak in C to lower temperatures. In particular, it is found that for 6
at.%Fe, no signature of peak in C is observed and the transition is suppressed. It is
shown in Fig. 4.4(a). The same occurs in Ti-Pd(Cr) |70]: when Pd is substituted
by Cr the peak softens and shifts to lower temperatures. For 10 at.%Cr no MT
is observed. This is shown in Fig. 4.4(b).

The peak temperature of C in Fig. 4.3 as a function of A3 has been plotted
in Fig. 4.5a and it can be regarded as a phase diagram. The region under the
curve indicates the values of temperature and Az by which twinned martensite
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Figure 4.2: Upper panels: Temperature behavior of the free energy density f (right
axis) and the heat capacity C (left axis) for three different values of As. Lower panels:
Temperature behavior of the transformed fraction £ (right axis) and & = d¢/dT (left
axis). Dotted lines in (I) are guides to the eyes intended to differentiate between the
two underlying contributions: Inhomogeneous textures and structural transition.
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Figure 4.3: Heat capacity C as a function of T for different values of As. The charac-
teristic peak shifts, diminishes, and finally disappears as Az is decreased. For the sake
of clarity the curves are successively shifted. Arrows indicate the position of the peak

for each value of Aj
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Figure 4.4: (a) Heat capacity for Ti-Ni(Fe) measured by using a relaxation method in a
physical properties measurement system (quantum design), extracted from Ref. [163]. (b)
DSC measurements of the heat capacity of Ti-Pd(Cr), extracted from |70] respectively.
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Figure 4.5: (a) Temperature of the peak of C as a function of As, extracted from
Fig. 4.3. (b) and (c¢) Phase diagrams of Tiso_,-Niso4, (extracted from Ref. [34]) and
Fe,Pd;_, (extracted from Ref. [112]) respectively.

is obtained whereas the region in which the curve vanishes indicates that no MT
takes place. Actually, this is qualitatively very similar to those obtained in real
materials when varying composition. As examples, in Fig. 4.5b we show the
phase diagrams of Tisy_,-Nisos, and Fe;_,Pd,. These results confirm the general
scheme given by the structures observed in Chap. 3.

We recall that the mean value of the local low stability limit (7,(r)) ~ 1 is
kept constant and the shift of the peak (to low 7" upon cooling and to high 7" upon
heating) corresponds to an increase of the hysteresis, i.e. to a decrease in the M,
temperature and an increase in A,. Instead, experimentally the decrease occurs
in both M, and A, temperatures, which reflects an unstabilization of the marten-
sitic phase. This is corroborated by signatures in other quantities like resistivity.
Concerning this issue, few comments should be pointed out: As mentioned above,
simulations upon heating that show the shift of the peak to high temperatures
have been carried out only for one value of Az (A3 = 1), which gives rise to long-
range twins. Although the mathematical reasons concerning the local stability
limits are apparently clear, the shift of the peak to high T" appears to be smaller
than the shift to lower T". Similarly, it is also not sure that intermediate values of
the anisotropy which give rise to broken twins and still show a peak in C would
show a shift of the peak to high temperatures upon heating analogous to that
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observed upon cooling. Additional simulation results should be needed to take
out convincent conclusions with respect to that.

We want remark that the suppression of the transition observed in experiments
when varying the alloy composition is qualitatively reproduced by our simulations.
Moreover, it is expected that the suppression may also occur by increasing the
disorder for a given constant As, which will be closer to experiments, instead of
decreasing the anisotropy for a given value of the disorder as it has been done
here.

Maybe the most relevant point concerning these simulation results is that the
suppression of the transition occurs due to the fact that the system is retained
in a metastable state. Again, it is known from the fact that (T.(r)) ~ 1 is kept
constant and therefore, at low temperatures the thermodynamic equilibrium state
is the martensite, which will be confirmed in the next sections through the cal-
culation of other thermodynamic quantities and simulation experiments. In real
alloys, the general landscape is unclear. First, the phase diagrams of alloys (like
those shown here in Fig. 4.5(b)) are not thermodynamic phase diagrams, although
it is not specifically stated. In fact, it is widely believed that the unstabilization of
the martensite drops down to 0 K. However, recent discoveries in some Ti-based
alloys (like off-stoichiometric Ti-Ni [67] and Ti-Pd-Cr [70]) have pointed out to the
martensitic phase fact as the true thermodynamic phase at low temperatures and
therefore the stabilized nontwinned structures upon cooling are indeed metastable.
They are based on the fact that the structures observed in the nontransforming
regime exhibit shape memory effect. We recall that such alloys exhibit a very
low anisotropy value and the metastable structures are correspondingly almost
isotropic, as mentioned in Chap. 3. As far as we now, similar experiments in
other alloys with high anisotropy (and exhibiting tweed contrast at low tempera-
tures) have not been published yet and it remains as an open question. This will
be discussed in Chap. 5 and 7. Next sections are devoted to confirm the sup-
pression of the transition, the metastability of such low-temperature states and
to characterize the kinetic behavior.

4.2 Elastic response C'

The elastic response C” of the system to an external, constant stress field has been
studied. The computation has been carried out in two ways: Upon cooling and
upon quenching. The former method consists of the following steps:

(i) Starting from a high temperature (7' = 2) stabilized configuration, a constant
stress field o =~ 2.5 - 1077 is applied in one direction until the system reaches a
new stabilized configuration of total strain e; (7).
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(ii) Then, the stress field is reversed to the opposite direction, —o and we let the
system relax again to another stable state of total strain e; (7).

(iii) The elastic response at the given temperatures is then calculated as C" =
o/(e3(T) — e (T)).

(iv) The stress field is removed and the temperature is decreased AT = —0.01.

Then, at this new temperature, the system evolves towards a stable state and
the cycle starts again: the stress field o is applied, etc. Instead, in order to
compute C’ upon quenching the procedure is the same from (i) to (iii), but the
starting configuration at each temperature is independent from each other, and
has been obtained by relaxing to the desired temperature from a disordered state.
The temperatures have been chosen at intervals of AT = 0.02 and AT = 0.03
(T'=2,1.97,1.95.1.92 etc.)

The behavior of C" for A3 = 4.54 and A3 = 0.05 is shown in Fig. 4.6(a).
For each one of these values, curves obtained upon cooling and quenching appear
to be very similar to each other, thus indicating the robustness of the behavior.
Again, a large number of seeds have been needed to get smooth enough curves.
Unfortunately, the computational cost of C” has been very high in time. Therefore,
additional simulations for other values of A3 and/or disorder, that would be of
interest, have not been carried out. For A3 = 4.54, the pronounced dip of the
curve clearly confirms the existence of a phase transition. In addition, similar
to the behavior observed in C curves, a flat region lies in the temperature range
1.0 < T < 1.25 that coincides with the precursor (tweed) region. Instead, for
A3 = 0.05, the dip amplitude becomes much lower so that the curve and thus the
transition broadens. Similar qualitative results have experimentally been obtained
in the elastic response when varying the composition in Ni-rich Ni5g, . Ti5o_, alloys
[34], which are shown in Fig. 4.6(b). As the content of Ni increases above z > 1.5,
the curve flatens significantly, which is consistent with the suppression of the
martensitic transition for this composition regime.

4.3 Energy analysis: Metastability

In order to compare the relative stability of the relaxed structures, in Fig. 4.7
we show the behavior of the free-energy density f averaged over 40 realizations of
disorder as a function of both ( and As. The upper panels show the dependence
of f on ( for the same three values of Az as in Fig. 2. Filled symbols have
been obtained by gradually decreasing ¢ with A = —0.02 from the highest value
¢ = 0.98, for which metastable states exist. Actually, we have checked that they
are very close to those obtained independently and shown in Fig. 3.8, i.e., those
that can be observed experimentally. On the contrary, empty symbols have been
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Figure 4.6: (a) Elastic response for two different values of Az, which are in qual-
itative agreement with (b) experimental measurements of the ac storage modulus in
Tis0—xNiTi5044, = 1,1.5,2, extracted from Ref. [34]

obtained by increasing gradually, starting from the lowest value ( = 0.08. At
this low value, twins are easily formed and, once created, they survive despite
the increase in (. Consistently, one can observe that f is always lower in the
(-increasing curve than in the (-decreasing one. Actually, the former may be
considered as the free energy of the global minimum and any deviation between the
two curves provides a measure of the degree of metastability of the latter. In fact,
the existence of such global minimum proves that the origin of the metastability
is kinetic, as opposed to geometrically frustrated systems like the paradigmatic
antiferromagnetic triangle. Additional arguments confirming this kinetic origin
will be given in the next section. As a general trend, in both curves the total
free energy decreases with increasing (. This is because the Landau free-energy
contribution (here represented by the dashed lines) prevails over the other terms
(Ginzburg and long-range anisotropic terms) and decreases as ( increases. This
can be deduced easily as follows: the regions with 7" — Ti.(r) > 0 are stable in
the austenite phase, and their free energy vanishes regardless of the magnitude of
|T" — T.(r)|. Instead, the regions with 7" — T,(r) < 0 are stable in the martensite
phase, and their free energy decreases as the value |T" — T.(r)| increases. Then,
an increase in the value of ( increases the amplitud of the distribution T'¢(r) and
there will exist more regions with a high value of |T'— T.(r)|. Consequently, the
free energy will decrease.

Interestingly, focusing on the (-decreasing curve, f exhibits an anomaly around
a particular value of ¢ (denoted by an arrow) which depends on Az. This is
precisely the critical disorder (*(As) above which the formation of long-range
twins is inhibited. Indeed, the deviation of f from the free energy of the global
minimum increases remarkably for ¢ > (*. This is a signature of the degree of
metastability of the nontwinned states. For completeness, in Fig. 4.7(d) we have
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calculated the dependence of f on Aj for two different values of ( at intervals
AA; = 0.05 from Az = 0.0 up to A3 = 5.0. Smooth of the curves has been
necessary to extract the thermodynamically relevant behavior. Again, f reveals
the existence of an anomaly around a critical value of A3 (denoted by an arrow)
which depends on ¢ and As. Twins are only observed for A3 > A% . Similar to
cases (a)-(c), for A3 < Aj the system is no longer able to reach the twinned state,
resulting in an increase in f and therefore of metastability. All these features are
consistent with the configurations observed in Fig. 3.8.

4.4 Zero-field-cooling/field-cooling simulation ex-

periments

Up to this point, we have focused on several response functions such as the heat
capacity or the elastic response that show that, indeed, for sufficient levels of disor-
der, the MT is suppressed, in agreement with many experimental results. Also, we
have studied the large metastability associated with untwinned low-temperature
configurations. Related with the suppression of the M'T and the corresponding
metastable states, it seems natural to ask oneself whether the stabilized config-
urations have any relation with glassy systems. In the case of Ti-Ni, one of the
experiments performed in Ref. [68] that is indicative of glassy behavior is the so-
called zero-field-cooling/field-cooling (ZFC/FC) experiment. Such experiments
were first carried out in magnetic systems to detect possible spin glasses [175,176|
and later they have been also applied, for instance, to ferroelectric relaxors [78].
They have in common that ZFC/FC experiments show glassy features in states
exhibiting phase coexistence. For instance, in Pr;_,Tb,MnyGe,, they reveal the
pinning of ferromagnetic regions (with crystal structure L2;) due to antiferromag-
netic surrounding areas (structure B2) and vice versa [84]. Thus, in order to detect
possible glassy behavior in our system, we have performed ZFC/FC simulation
experiments, whose procedure is explained in the following section.

Procedure for ZFC/FC experiments

ZFC/FC experiments consist of four steps:

(i) Starting from a high temperature state the system is freely cooled down to a
low temperature state.

(ii) Then, a low stress field is applied and the system is heated again up to the
high temperature state. The resulting strain curve as a function of temperature
is the so-called Zero-Field-Cooling curve.
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Figure 4.7: [(a)-(c)| Averaged free-energy density f as a function of ¢ for three different
values of As. Filled symbols are obtained starting from the highest value ¢ = 0.98
and gradually decreasing ¢ whereas empty symbols have been obtained by increasing ¢
starting from the lowest value ¢ = 0.08. Arrows indicate the values of ( below which twin
formation is allowed. Dashed lines indicate just the Landau free-energy contribution.
(d) f as a function of Ag for two different values of . Arrows point to the critical value

of A3 above which twins exist.
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(iii) the system is cooled again with the presence of the stress field.
(iv) Finally, the system is heated again, giving rise to the Field-Cooling curve.

The four steps are displayed in Fig. 4.8. The upper figures show a schematic
evolution of temperature and stress field in the corresponding steps. In particular,
we have used Thin = 0.02, Tiin = 1.62, 0 = 2.5-1072 and the temperature step is
AT = 0.02. In the lower figures, two examples of the strain response as function
of temperature are explicitly shown in the four stages. One is a high anisoptroy
(A3 = 4.54) system and the another has low anisotropy (As = 0.05). In the first
stage, both systems show a slightly increase in the strain as they are cooled. This
occurs because the fraction of one of the martensitic variants is higher than the
fraction of the another variant, thus leading to a non-vanishing net strain due to
the absence of finite size effects. However, it has no relevance in what concerns
the ZFC/FC results. The second stage, which corresponds to the ZFC curve, is
of crucial importance. The stress field induces the growth of a selected variant
at the expense of the another, thus increasing considerably the total strain. The
specific growing path is a signature of the dynamics followed by the system, and,
as it can be observed, is different for the two different values of A3. For the high
value (As = 4.54), the strain increases rapidly, easily reaching the single domain
configuration just when the stress is applied, that corresponds to the equilibrium
state. On the contrary, for the low value (A3 = 0.05), the strain increases rather
slowly and the system needs to be heated to higher temperatures and hence takes
a longer time to reach the single domain configuration, as it is indicated by the
region enclosed by a dotted border. At that point it is important to note that the
applied stress field must be low enough [177|, otherwise, high stresses would be
able to induce an easy, rapid domain growth of the selected variant and a switching
of the other domains regardless of the anisotropy and the disorder values and an
undistinguishable behavior would be obtained for all cases. Once the equilibrium,
single domain configuration is reached, the total strain evolves mainly according
to Landau, drawing a monotonically decreasing curve with increasing 7', with a
larger slope in the region where the ferroelastic transition takes place. In the
third and fourth stages, a similar behavior is observed in both cases, in which the
system follows similar cooling and heating paths, with the maximum total strain
at the lowest temperature.

Relevant information can be extracted from the comparison between the ZFC
and FC curves. Deviations among them indicate that the behavior is history-
dependent, and has been related to a loss of ergodicity [68] and glassy behavior.
What can be clear observed from ZFC/FC curves in the lower panels of Fig. (4.8)
is that for the high anisotropy value (A3 = 4.54) ZFC and FC curves coincide
whereas for the low value (A3 = 0.05) they deviate in the region enclosed by the
dotted line. This is indicative of kinetic freezing.
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Figure 4.10: (a) ZFC/FC curves obtained in simulation experiments for the value
As = 0.05 and ¢ ~ 0.3. (b) ZFC/FC experiments in Tisg5-Nis1 5, extracted from
Ref. [68].

Results

Figure 4.9 shows ZFC simulations for different values of A3 and keeping ( ~ 0.3
constant. For A; = 0.05 the curve represents an elastic behavior that deviates
from the FC curve below the peak temperature, which is indicative of glassy
behavior. As expected, our simulations in Fig. 4.9 show that this behavior pro-
gressively disappears for increasing values of As. This trend indeed corresponds to
an increase in the elastic anisotropy A and favors the development of long-range
order. For comparison both ZFC and FC curves for this value of A3 are shown in
Fig. 4.10 This is in very good agreement with experimental results in Nis; 5Ti4g 5
shown Fig. 4.10(b) mentioned above. Figure 4.11 shows the ZFC curves obtained
for different values of ( and Az. Here the FC curves have been omitted for clarity
and their behavior is in all cases very similar to those in Fig. 4.8. In the three cases
(a)-(c) one observes that glassy behavior is obtained for values of ¢ above a critical
value that exactly coincides with that obtained previously from the behavior of
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f in Fig 4.7. We can then conclude that metastability observed in Fig. 4.7 does
indicate glassy states. A comparison with Fig. 4.9 reveals that, indeed, similar ef-
fects are obtained either by reducing anisotropy or increasing disorder. Moreover,
some small but important differences can still be observed between these cases.
Focusing, on the value A3 = 4.54 [case (a)], the ZFC curve is more flat than for
lower values of Az [cases (b) and (c¢)|, indicating a more blocked dynamics that
prevents the system from reaching the FC curve. The low stress field is not able
to make the system evolve smoothly toward the monovariant state. Instead, some
small sharp jumps are observed due to the sudden correlations of different broken
domains of a particular variant selected by the stress field. After a certain number
of jumps, the system does reach the monovariant state and thus the FC curve. In
that sense, the same factor (i.e., the anisotropy) that for { < (*(As) enables the
system to form long-range twinned structures, for ¢ > (*(As), however, causes
a higher degree of freezing than for lower values of (As). Actually, this can be
related to the behavior of f in Fig. 4.7(a)-(c), where it can be observed that
in the glassy regime |[( > (*(A3)], the degree of metastability i.e., the larger the
deviation from the free energy in the global minimum increases with A3 whereas
in the twinned regime | < (*(As3)| all the curves approximately coincide.

In principle one could expect the appearance of domains to be deliberate due
to surviving long range interactions, although weak or partially blocked by the
presence of disorder. In that sense, long range anisotropic interactions would not
be able to induce a strong directionality in the domain structure due to disorder,
but would establish a particular short range distribution of non-directional do-
mains by promoting the selection of a particular variant for each domain during
its evolutions. This selection could depend on the surrounding configuration of
domain variants due to a possible tendency toward global strain minimization.
Then, by decreasing the temperature, the corresponding growth of these domains
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Figure 4.12: Pair correlation G(r) between domains of the same variant. The decay is
a measure of the characteristic domain size, which depends on the value of A3, among
others. More interestingly, note that the correlations stabilize around 0.5 indicating that
the probability of nucleating a particular variant at any distance (obviously excluding
short distances which still belong to the domain of origin) does not depend on the variant.

would create a low temperature configuration with a particular disordered domain
distribution that would be geometrically frustrated [81], since the system would
not be able to achieve the minimum of energy due to the thermodynamic reasons
mentioned above.

However, simulations with strictly zero anisotropy, and thus with no long range
effects also show glassy behavior. Since in the absence of long range interactions
the total free energy becomes local, no energetic reasons persist to promote the
selection of a particular variant in different emerging domains, but it occurs inde-
pendently from each other. This supports the idea that the origin of the glassy
behavior is a kinetic freezing and excludes the hypothesis of geometrical frus-
tration. At that point we have checked that emerging domains at high T are
uncorrelated in the sense that the selected variant is independent from the vari-
ants of the other domains. This is shown in Fig. 4.12 for two cases showing glassy
behavior, in particular corresponding to A3 = 0 and A3 = 0.05 (¢ ~ 0.3 in both
cases). Placing in a given domain 1, both curves show that given a second domain
2 placed at a distance r from domain 1, the probability that domain 2 belongs to
the same variant of 1 is 0.5, and hence equal to the probability for domain 2 to
belong to the another variant.

4.5 Crossover behavior in anisotropy and disorder

We call T the temperature at which ZFC and FC curves split. More precisely, in
order to be consistent in the computation of T, it has been defined arbitrarily as
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Figure 4.13: (a) Splitting temperature (75) as a function of disorder for different values

of anisotropy. (b) Points indicate the crossover behavior in the material parameters.

Glassy behavior is obtained for high values of disorder with respect to anisotropy and

for low values of anisotropy with respect to disorder. Circles correspond to the vanishing

Ts in (a) whereas crosses correspond to the arrows in Fig. 4.7. The continuous line is
the function ¢* ~ \/As.

the temperature at which e;(FC) — eo( ZFC) =~ 3 - 1071%. Figure 4.13(a) shows
the splitting temperatures Ty as a function of disorder and for different values of
anisotropy. For martensite twinned structures 7 drops to zero whereas in the
glassy regime T increases with (. Also, for a given value of disorder, the higher
the anisotropy the lower the T,. Moreover, for low values of anisotropy, 7T shows
a regular behavior constant slope whereas at high values of A3, the T, dependence
becomes more irregular, consistent with the jumping behavior mentioned above.
The disorder values at which T vanishes indicate that the ZFC deviation glassy
behavior starts to arise. Figure 4.13(b) displays the crossover behavior in terms of
critical values for the model parameters Az. Circles are taken from the vanishing
T in Fig. 4.13(a) whereas crosses are taken from the arrows in Fig. 4.7. We have
found that such a crossover behaves approximately as (* ~ /A3 indicated by the
curve. It is worth noting that the behavior of the heat capacity C coincides with
such crossover: The existence of the peak is related with the twinning, non-glassy
regime whereas the suppression of the peak corresponds to the glassy behavior.

4.6 Variations on the disorder’s correlation length

In Sec. 2.4 we have seen that the specific correlation length ¢ of the disorder
affects the energy barriers present in the model, which can influence the behavior
of the system. To analyze the magnitude of this effect, we have performed some
simulations with a value of ¢ (£ = 10) lower than that used previously, that
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Figure 4.14: (a) Free energy f as a function of the parameter As for two values of (.
(b) f as a function of the disorder intensity ¢ for two values of As. The value for the
correlation length of the disorder is & = 10 in all cases.

increases the energy barriers. In particular, in Fig. 4.14 we have studied the
metastability of the configurations at low temperatures by calculating the total
free energy f as a function of both anistropy and disorder intensity, analogously
to results shown in Fig. 4.7. The general behavior of f as well as the specific
values of anisotropy (A3, _ ) and disorder ((3_,y) by which it is observed a drastic
change in the free energy, are very similar to those observed in Fig. 4.7.

We have also performed simulations of the ZFC/FC experiments for £ = 10
and we have found that the limiting values of Az and ( that start to exhibit a
splitting between ZFC and FC curves (and hence glassy behavior) are very similar
to ZFC/FC results for the previous value of £ (¢ = 20) shown in Fig. 4.11 (in
particular { A3, (} = {4.54,0.7},{1.0,0.35}, {0.50,0.3}). They are depicted in Fig.
4.15. It is worth noting that they coincide with the previous Fig. 4.11 both in
general trends and specific peculiarities.

From the results above we can state that variations on £ do not contribute to
any additional physical insights and give us confidence about the robustness of
the results obtained previously.

4.7 Crossover at high temperatures

Motivated by the crossover found at low temperatures when varying As from
twinned martensite to ramified droplets, we ask ourselves if similar behavior exists
at high temperatures between pretransitional structures, from tweed to mottled
structure. Thus, we have performed simulations of the model for many different
values of Az (from A3 = 0 to A3 = 10 (¢ ~ 0.3) with intervals AA; = 0.05) at two
different high temperatures in the precursor regime (7' = 1.25, 1.5). Results are
shown in Fig. 4.16, where the free-energy density f averaged over 7 independent
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Figure 4.16: Free-energy density f and response function —Azd?f/dA% as a function
of Ag at two different high temperatures in the precursor regime.

realizations of the disorder is shown toghether with the corresponding response
function' —Asd?f/dAZ%. In all cases the behavior does not exhibit anomalies: no
drastic changes are obtained in the behavior of f and no peak is obtained for the
response function. Consequently, we can conclude that there is no crossover at
high temperatures.

!'We have calculated the response function according to this expression in analogy with the
heat capacity, where the temperature plays the role of the parameter As






Chapter 5

Thermomechanical behavior

In this section we study the thermomechanical behavior of the system when ap-
plying and removing an external stress field. In particular, we analyze the shape
memory effect (SME) and superelastic behavior.

Since the stress-free stability is crucial for the final unloaded structures, it
may be useful to recall the characteristic temperatures that result from a simple
stability analysis of the Landau potential. With 7, being the low stability limit of
the high-temperature phase, the equilibrium transition temperature is Ty = T, +
% and the high stability limit of the low-temperature phase T; = T0+%. Taking
into account the athermal character of the transition [46], we expect the system to
show pseudoplasticity (which can give rise to SME) below T}, when the martensite
phase is stable or metastable, and superelasticity above T;, when the martensite
phase is unstable. However, in the presence of disorder and considering long-range
anisotropic interactions the transition path determining the stress-strain behavior
may be different. We still expect the system to exhibit superelasticity well above
T;, and pseudoplasticity well below Ty, but the stress-strain behavior may be
particularly different from the clean-limit scheme in the martensite metastability
regime, i.e Ty < T < T;, and close to it. Thus, we focus the study of the stress-
strain behavior in this temperature range.

Usually, in stress-strain experiments the variable under control is the strain
and therefore stress-strain curves show the strain as the independent variable, in
the z-axis. Because we are used to this representation we find appropriate to
mantain the representation with the strain in the z-axis, although we perform
stress-driven transitions [178|.

Before going into the results, it should be pointed out that the value of § has
been decreased to 3 = —10? to broaden the temperature ranges. Consequently,
here Ty = 1.38 and T; = 1.51, and the values of disorder and anisotropy are not
in direct correspondence to those previously used. We can easily map their values

89
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to the ones used in previous chapters by rescaling the model with 32. In that
sense, high and low values of anisotropy and disorder are always relative to each
other. In any case this does not affect the qualitative results and therefore the
conclusions.

5.1 Shape-memory effect

5.1.1 Preliminaries

The SME is related to the internal twinned microstructure resulting from the
self~accommodation process which allows for a martensitic phase with no macro-
scopic change of shape (nor volume). Upon loading, the sample may undergo a
permanent deformation, since it remains unchanged when the stress field is re-
moved. However, the system can recover the initial shape upon heating up to
temperatures above the transition.

Now we focus on the twinned martensite as the starting point for the SME. In
practice, the martensite nucleates within an austenite matrix, with the presence of
habit planes (phase boundaries) and domain boundaries that make the martensite
adopt a twinned structure. At the end of the transformation of a given sample,
the whole sample is in the martensitic phase. At that point, the external borders
of the martensitic phase are free surfaces, which means that they do not need
to be invariant since the phase boundaries do not exist any more'. However,
once formed, the existing microstructures survive, provided that the sample is
neither loaded beyond the elastic regime nor heated above the transformation
temperature.

Therefore, to perform simulations of the SME, a realistic microstructure (i.e.
twinning giving rise to a zero net strain) is needed. In the following considerations
we limit ourselves to the case of A3 = 4.54 and ¢ = 0.1. In the original model
explained in Chap. 2, the ground state of the free-energy at low temperatures
corresponds to a single variant, although typically, broad twins arise as long-lived
metastable states, with a low number of domain boundaries. In any case, the
typical stabilized configuration does not fulfill the property of zero global strain
and hence, finite size effects are required. As considered in Sec. 3.4, to take them
into account we recall that we can proceed two different ways: (A) by applying
a potential with the Fourier kernel 1/|k,| or (B) by directly simulating an habit
plane by imposing a vanishing 7.(r) in the region which is desired to be retained
in the austenite phase. Once the desired zero net strain configuration is obtained,

! This does not occur in twins emerging from domain boundaries.
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Figure 5.1: Evolution of the total strain of a single configuration, accompanied by

snapshots of the configuration at a given step. The initial low-temperature square con-

figuration consists of half austenite and half martensite. As the low-T region is gradually

reduced, the martensite region increases. When almost the whole system is transformed
to martensite, the twins widen, thus changing the structure significantly.

finite size effects must be removed prior to apply the stress field. Otherwise,
the loading curve would be biased since a fictitious, extra driving force would
act against the applied field, attempting to keep the twins unaltered in order to
mantain the habit plane invariant. Consequently, the required stress for domain
switching would be higher than the expected. However, in the simulations it is
typically obtained that when removing finite size effects from the system, the thin
twins are not able to hold but they become coarse, with the resulting configuration
of non-vanishing net strain, which is not appropriate to perform simulations of
the SME. We now analyze each case separately. Using the method A we just have
to remove the additional potential from the fully relaxed configuration and let the
system relax again before loading. Using method B we use two different ways to
remove surface effects. In one hand, we may reduce progressively the region where
T. vanishes (that is the austenite region), thus allowing more zones to transform
to martensite. It is shown in Fig. 5.1. When the austenite is completely removed,
the twins are no longer thin but also become coarse and the system does not
fulfill any more the condition of zero net strain. Actually, this occurs before
completely removing the austenite region, but when it is small enough in order
the twins to connect overcoming the artificial habit planes (and thus eliminating
them) due to the periodic boundary conditions (PBC). On the other hand we
select a martensitic square region from the initial configuration and let it relax.
This is shown in Fig. 5.2. Typically, it is observed that the thin twins disappear
again [case (I)]. Few clarifications should be pointed out for completeness: First,
occasionally, thin twins may hold after removing the finite size effects, although it
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0

Figure 5.2: Starting from a low-
temperature configuration with an austenite
region (left), a martensitic square region
(denoted by the dashed boxes) is relaxed
independently (right).  Typically, twins (1
broaden [case (I)], although occasionally,

thin twinning may hold [(IT)].

does not occur typically. This is shown in case (II) of Fig. 5.2 for the method B,
although it has been also obtained in case A. Second, it is important to remark
that in method B, PBC play an active role in determining the microstructure, by
restricting the possible twin configurations. Notice that, in case (b), these effects
can be even more important, since PBC are imposed in areas where they did
not exist previously. However, this does not necessarily lead to broader twins, so
that we can conclude that the changes in the microstructure in the sense of twin
broadening are indeed due to the absence of finite size effects, and PBC does not
affect significantly the twin width.

Therefore, unfortunately we finally have had to shelve the previous methods,
came back to the original model and resort to a statistical (thermodynamic) av-
eraging of configurations of non-vanishing net strain to obtain the desired effect.
However, even in this case it was difficult to obtain a zero averaged total strain,
because the dispersion of the total strains of single configurations is very large.
Indeed, the typical total strains move around 1 — 3% and, even often they may
take values up to ~ 5% which corresponds to a single domain. As an example,
after running 200 independent seeds, the averaged total strain was still around
1%. Additionally, since loading, unloading and heating curves had to be com-
puted for each independent seed, another strategy was needed in order to save
computation time and data storage. Then, we proceeded the following way: We
took a given initial configuration and applied the transformation ey(r) = —es(r)
so that we change the sign of the strain everywhere in the system. Recall that
the free-energy density of the system is symmetric with respect to es, i.e., it is
invariant under this transformation, so we could do that without modifying the
local and thermodynamic stability of the configuration. This way we made sure to
get a zero net averaged strain in the initial loading curve. The loading, unloading
and heating curves were then computed independently. The fact that the stress
field was always applied in the same direction entails that both set of curves are
not necessarily correlated. To further reduce the correlations, we repeated this
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procedure for 50 independent seeds and averaged over the resulting 100 curves.
As an inconvenient, the details of the particular curves were smoothed, but we
checked that the required stress for domain switching o, (for yielding stress) was
almost independent of the disorder seed. Therefore, it can be identified with the
averaged value.

5.1.2 Results

To illustrate the SME, in Fig. 5.3 we show the (0 — ey — T') curves obtained
for different values of A3 and (. Case (I) corresponds to {A4s,(} = {0.05,0.13},
case (II) to {4.54,0.13}, case (III) to {0.05,0.04} and case (IV) to {4.54,0.04}.
Arrows in the external margins point towards increasing values of A3 and ( for
clarity. The system is first loaded at T'= 0.7 (< T.) until the single domain state
is reached. Then, it is unloaded and finally heated up to a temperature above
the transition. The stress increments (and decrements) are Ao ~ 7 -107* and
the temperature step is AT = 0.02. Snapshots show representative configurations
at a given value of (0,es,T). They have been labeled to make clear the order
of the sequence. Focusing on the (o — e3) curve at 7' = 0.7 (< T.), in the four
cases pseudoplastic behavior is observed. However, each curve exhibits specific
peculiarities. When A is increased and/or ¢ decreased, the critical stress needed
for domain switching increases. The high value of A [(II) and (IV)] shows initial
twinned states whereas low 4 values do not allow the system to form twins,
but ramified droplets of typical domain size that decrease with ¢ (This has been
analyzed in Chap. 3). It has been checked that by continuing to increase the
disorder, even the highest value of A is not enough to induce twin formation. It
is important to remark that the configuration of low value of 4 and high ¢ [(I)]
exhibits glassy behavior in ZFC/FC simulation experiments. Of course, for all
cases upon unloading the strain is not recovered but the single domain state is
maintained, since in this temperature regime any ferroelastic variant is stable.
However, upon heating the system undergoes the reverse transformation, ending
in a zero net strain and thus recovering the initial macroscopic shape (SME).
Some differences are observed between the various heating curves. In fact, they
differ in a way analogous to that in the corresponding loading curves mentioned
above, from the point of view of sharpness of the profiles.
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Figure 5.3: Stress-strain-temperature curves for different values of A3 and (, giving rise to the SME. The particular values for cases
(I)-(IV) are respectively: {As,(} = {0.05,0.13}, {4.54,0.13}, {0.05,0.04} and {4.54,0.04}. The SME can be appreciated in the fact that
the initial and final net strains are equal (i.e. both vanish), although the corresponding internal microstructures are essentially different.
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5.2 Superelasticity

After the analysis of the SME, and in particular the stress-strain (o —ez) curves for
T < T,., we now proceed to study the mechanical behavior at temperatures above
T.. Figure 5.4 shows an increasing-T series [(a) to (e)| of stress-strain curves. For
each value of T, the same set of values of A3 and ( of Fig. 5.3 are used in the
corresponding cases (I)-(IV). For a reference framework, the analytical behavior
corresponding to the homogeneous Landau free energy is also depicted. Dashed
lines correspond to the thermodynamic equilibrium behavior whereas dotted lines
denote the maximal metastability regimes. Concerning the temperature evolution
of the 0 — ey curves the expected behavior is observed for each case. Pseudoplas-
ticity is obtained at low 7" and then it evolves toward the superelastic regime when
T is increased.

Regardless of the differences due to temperature regimes, several common
features can be extracted:
(i) Case (IV) shows a sharp, clean stress-induced transition whereas in (I) the
transition takes place smoothly and gradually. (IT) and (I1T) exhibit intermediate
behavior.
(ii) In (I) and (IV) pseudoplastic behavior is observed up to temperatures higher
than in (II) and (III), although the underlying behaviors are very different.
(iii) (IV) shows the highest transition stress whereas the lowest is observed in (I).
(IT) and (III) show similar intermediate values.
(iv) In the superelastic regime regime, the backward transition occurs at lower
stresses in (IV) than in the other cases.
(v) Combining features (ii) and (iii), it results in a high hysteresis area in (IV)
and lower ones for the other cases.

From all this, we can remark that the effect of decreasing anisotropy (from
right to left) is similar to an increase in the disorder (from down to up), that is
consistent with the results obtained in the previous chapter. Actually, all these
trends are intimately related, as will be discussed below.

Discussion

Often, long-range and local effects compete and have opposite consequences. The
former contributes to the cohesion of the system by correlating different remotes
sites of the lattice. Instead, the latter often tries to screen the former and to split
the system into uncorrelated pieces. In that sense, high anisotropy values (that
increase the strength of the long-range interactions) and/or low disorder favor
the stability of each of the thermodynamic phases. It results in a sudden, sharp
transition, as it is revealed by the flat plateau in the (0 — ey) curves in Fig. 5.4.
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Figure 5.4: Stress-strain curves for different values of A3 and ( in different temperature
regimes. The same set of values { A3, (} as those in Fig. 5.3 are used in the corresponding
cases (I)-(IV).
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Also, in the paraelastic (i.e. austenite) phase, the larger the anisotropy and/or
the lower the disorder, the larger the critical stress field needed to overcome such
interactions and thus to carry out the ferroelastic transition. The opposite holds
for the reverse transition: as already mentioned, the larger the anisotropy values
and/or the lower the disorder, the more stable is the ferroelastic phase and hence,
the lower the level of stress at which the system transforms back to the austenite.
From this, it follows that there are two main consequences: first, large values of
anisotropy and /or low values of disorder result in a larger hysteresis area. Second,
the pseudoplastic behavior is observed at higher temperatures.

On the other hand, low values of anisotropy and/or high values of disorder
result in a decoupling of the different parts of the system, that may behave un-
correlated from each other. Consequently, the stability becomes short-ranged and
the notion of a phase stability for the whole system does not have a meaning any
more. We then observe a set of different, independent critical stresses acting in
well defined regions, i.e. a spatial distribution of critical stresses. It leads to a
gradual, smooth transition of the system that starts with the lowest critical stress,
corresponding to the transformation of the most unstable region. By increasing
the stress field, the system keeps on transforming progressively in moderately sta-
ble regions and finishes with the highest critical stress that transforms the most
stable zone. Hence, it is not unusual that, at a given temperature, some regions
whose stress-free paraelastic stability is weak or even metastable , may remain
anchored in the ferroelastic phase when the stress field is completely removed,
either in a weakly stable or metastable state. This is the reason why the total
strain is not fully but only partially recovered.

Stress-strain regimes in the parameter space

Figure 5.5 qualitatively displays the different stress-strain regimes in the parame-
ter space (T, As, (), which has been derived from the results in the figures above.
Nontrivial behavior is obtained. The dark gray and white regions correspond to
the superelastic and pseudoplastic regimes, respectively. In the region in-between
(light gray) partial strain recovery is obtained. As can be seen, for large A4 and
low ¢ |(IV) in 0 — ey curves|, this light gray region is very small?. Indeed, the
system exhibits either pure pseudoplastic or pure superelastic behavior. If we
now increase ¢ [(IT)] or decrease A [(IIT)] the system starts to exhibit (partial)

2Let us point out that the origin of the axes does not necessarily correspond to vanishing
anisotropy and disorder. Actually, in the limit of no disorder, no partial pseudoelasticity can be
observed, i.e. no clear gray area exists. Hence, in the zero-disorder plane the dashed lines meet,
thus removing this region. It has not been done this way since the dependence of the regimes
as function of A for low values of disorder is more clearly depicted as in Fig. 5.5.
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superelasticity in a region where pseudoplasticity was obtained previously [i.e. in
(IV)|. However, if we now proceed to decrease A and increase ¢ simultaneously,
the partial superelastic region spreads out into both the previous pseudoplastic

and pure superelastic regions.

The largest superelastic regime is achieved when disorder and anisotropy have
comparable strength, i.e. neither dominates the other but the behavior is the
result of a situation of a balance between both factors. In the simulation results
it is observed when Az and ( values are either both low or both high, as can be
seen in Fig. 5.5 and, more specifically, in (II) and (III) of Fig. 5.4.

In short, disorder may shift the superelastic regime either to higher or lower
temperatures depending on the strength of the elastic anisotropy factor, and con-
versely. This results in a wide range of mechanical responses, which, interestingly,

is also observed experimentally.

Anisotropy

PSEUDO-

PLASTICITY SUPER-
ELASTICITY

Temperature

Figure 5.5: Different mechanical regimes of the system expressed schematically in the
parameter space (T, As, ()

Comparison with experiments

It is worth reminding that the specific composition has been observed to crucially
determine the stability regimes of a given SMA, as well as other characteristics
of technological importance. In this sense, the tuning of the alloys by means of
either varying the composition or doping has been performed over decades. As an
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example, in Ti5o_,Nisg,, the temperature separating superelastic and pseudoplas-
tic regimes decreases drastically when the composition is varied from = = 0.6 |19]
to = 1.5 [20]. Similarly, many other alloys like Au-Cd [21], Ti-Ni-Cu [22],
Ni-Co-Mn-In [24], Ni-Mn-Ga [23], etc. have been observed to exhibit changes in
the transition stress, hysteresis area, percentage of strain recovery, temperature
regimes and particular shape of the stress-strain curves when varying the relative
concentration of the constitutive elements. Interestingly, recent research [179-181]
has been focused on exploring different compositions of some alloys |in particular,
of Ti-Ni-(Cu-Pd-Pt-Au)] to find the specific composition that shows the smallest
hysteresis width, which is of technological interest.

The rich landscape offered by our model may account for all this phenomenol-
ogy, and therefore is in general agreement with the behavior observed in these
alloys. More specificvally, for instance, our findings are qualitatively similar to ex-
periments in Ni-Co-Mn-In [24| showing that, at a given temperature, they change
from pseudoplastic to partial superelastic and finally to pure superelastic behavior
when the In content is increased at the expense of Mn. Also, by looking at the
experimental results in Ti-Ni-Cu [22| one can notice that our simulations agree
with the decrease in the hysteresis area when the content of Cu is increased. To
further illustrate this comparison, in Fig. 5.6 we show experimental results con-
cerning the strain-induced stress-strain behavior in off-stoichiometric Ni-Mn-Ga
for two different compositions [23|. It can be observed that slight variations in the
composition entail changes in the onset temperature of the superelastic regime.
In particular as the composition is more far from the stoichiometry, this onset is
observed at higher temperatures, which is consistent with our results.

5.3 Transition and yielding stresses

Figure 5.7 displays the transition stresses, oy, as a function of temperature (linked
symbols)?. At high temperatures, where superelastic behavior is observed, o; cor-
responds to the required level of stress for the ferroelastic transition to occur.
The relation between o; and T is described, in general, by the Clausius-Clapeyron
equation [182|: do/dT = AS(T)/Ae(T). Here S is the entropy and € the strain.
In particular, in all cases we obtain a linear dependence, which is indeed experi-
mentally observed in martensites [13,19-21,23,102,183|. Straight lines of constant
slope of 0.5 are displayed for comparison between different cases. Nevertheless, it
is observed that increasing the amount of disorder or lowering anisotropy results

3For clarity, not all the o — e5 curves from which the critical stresses have been extracted are
shown here.
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Figure 5.6: Strain-induced stress-strain behavior at different temperatures for two dif-

ferent compositions of Ni-Mn-Ga alloy: Alloy 1 corresponds to Nisj.1Mnsg¢Gagg s and

alloy 2 to Nis; oMns;1Gagr7. The latter is more far than the former from the stoichio-

metric composition NisgMngs;Gags, and shows a shift of onset of the superelastic regime

to higher temperatures. Our model is qualitatively consistent with such a behavior.
Extracted from Ref. [23].

in lower transition stresses, as mentioned above. When the transition tempera-
ture is approached, the slope of the curve decreases. Below the transition, the
yielding stress, o,, does not induce a transition but it is responsible for the do-
main wall motion and growth of the selected martensitic variant. It is observed
that o, increases with decreasing temperature, also in qualitative agreement with
experiments [13,19-21,102|. These different regimes occur due to the Landau
contribution in the free energy. The presence of long-range interactions and disor-
der do not modify this general picture but introduce specific ways for the system
to behave. For comparison, the g, corresponding to the Landau global minimum
is depicted with a dashed line whereas the o, corresponding to the maximum
metastability regime is represented by a dotted line. As can be seen, the slope of
the curves in both Clausius-Clapeyron and pseudoplastic regimes approximates
well to the maximal metastability regime than to the equilibrium one.

Nevertheless, the transition stress in Ti-Ni-Cu is observed to increase with Cu
content whereas our model shows a decrease of the transition stress when the
amount of disorder is increased. Doping has been shown to increase the transition
stress also in Ti-Ni when adding off-stoichiometric Ni content [19,20]. Our results
also come into conflict with these experiments, since they show that the slope of
the curve changes when changing composition.

Instead, our simulations agree with other strain-induced o —ey simulations [146|
where the transition stress was observed to decrease with the size of a single
defect, in accordance with the known fact that defects may act as pinning sites
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for nucleation and growth of martensite.

5.4 Elastocaloric effect

The elastocaloric effect is the mechanical analogue of the magnetocaloric effect
[184]. It is related to the isothermal change of entropy or to the adiabatic change
of temperature that takes place in the system when an external stress is applied or
removed. As in the magnetocaloric case, large effects are expected in the vicinity
of first-order phase transitions where large entropy changes occur [183|. Here, the
study of the elastocaloric effect is interesting since it summarizes the information
related to the temperature dependence of stress-strain behavior. It has been
quantified by means of an isothermal stress-induced entropy change which has
been computed from the o — ey curves as follows: According to thermodynamics

[16]:
5= (%) aoe (%) -

During an isothermal process the second term on the right-hand side vanishes,
and the total entropy change can be calculated as the following integral:

AS(0 — o) =[] (0S/00)do = [} (dey/OT) do

B . (5.2)
~ L A{ [T ea(T + AT, 0)do — [ ex(T,0)do} .
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Figure 5.8: Set of stress-strain curves corresponding to a single realization of disorder
for two different values of A3. Ten independent seeds have been used to compute the
elastocaloric effect for each value of Ag.

It should be noted that for an ideal first-order transition occurring in equilibrium,
this entropy change should coincide with the difference of entropy between the two
phases. Here, due to the existence of disorder the transition extends over a broad
range. Therefore the obtained behavior will differ from this simple behavior.

Simulation results are shown in Fig. 5.9. Although the o — ey curves of the
two cases are significantly different (as can be appreciated in Fig. 5.8), the re-
sulting stress-induced entropy change is similar. The peaks are placed in different
positions and the tails show different behavior but the area under the curve re-
mains essentially constant. Moreover, the Landau contribution to the free energy
is represented by a dashed line. As can be seen, the presence of disorder (both
continuous lines) results in a rounding and decrease of the peak with respect to
the Landau contribution.

Although the magnetocaloric effect is quite different from the elastic analogue
presented here, very similar Landau theory based models have been used to per-
form simulations in ferromagnetic systems. Such models are known to be sensitive
to disorder [18] and dipolar interactions in a similar way to that presented here.
For instance, in Ref. [185], it was found that the presence of disorder resulted
in a decrease of the magnetocaloric peak, compared to the homogeneous case,
which agrees with our results. Encouraged by this, we further emphasize the
comparison with magnetocaloric experiments in |186| Gds(Si,Ge;_,)4, where an
increase of x results in a shift of the critical stress and the Clausius-Clapeyron
slope is approximately independent of doping, which would be consistent with our
results.
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different values of the applied stress and for different anisotropy values. Dashed line

corresponds to the Landau contribution to the free energy.






Chapter 6

The magnetoelastic model

6.1 Introduction

Multiferroics were briefly introduced in Chapter 1 as materials that exhibit a
cross-variable, ferroic response. For instance, sometimes polarization can be con-
trolled by a stress field, and an electric field can affect the structure. Undoubtedly,
they attract a lot of interest since expand the horizons in technological applica-
tions. Maybe, the magnetoelastic coupling arises as one of the most important
topics in this field, leadind to interesting phenomena. The Ferromagnetic Shape
Memory effect [76] (FSME) allows for shape recovery due to inducing the struc-
tural transformation by means of a magnetic field instead of stress. Recently, the
Metamagnetic SME has also been reported |24| where the original shape is recov-
ered from magnetic-field-induced backward transformation. The mangetocaloric
effect [184], consisting in isothermal entropy changes or, more interestingly, in adi-
abatic temperature changes due to the presence of an external magnetic field, has
been observed to considerably increase its magnitude in the vicinity of a structural
phase transition, which is of technological importance for cooling applications.
The inverse magnetocaloric effect has been also recently discovered [187]. Magne-
tostriction effects [51], which consists in showing magnetic-field induced volume
changes are another consequence of the coupling between elastic and magnetic
degrees of freedom. Other aspects have been also adressed |188].

Micromagnetism has been widely used to model the magnetization in magne-
toelastic systems. Elasticity has been taken into account by means of, for instance,
Khachaturyan’s microelasticity [133,189] and Landau theory [190,191]. In this
chapter we develop a magnetoelastic model based on an extension of the previous
pure elastic Landau-based model, that includes magnetic degrees of freedom as
well as a coupling between magnetic and strain variables. Before going into model
details, it is important to point out that, as will be seen, from the elastic point
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of view, the model allows the crystallographic lattice to undergo a ferroelastic
Martensitic Transition (MT), that can be induced either upon cooling or by ap-
plying a stress or magnetic external field. Instead, the temperature does not play
any role for the magnetic degrees of freedom, but the magnetization of the lattice
is assumed to remain at all times in the ferromagnetic phase, well below the Curie
temperaturel.

Modeling of the magnetic energy is presented in Sec. 6.2.1. In Sec. 6.2.2 the
magnetoelastic coupling is described and the elastic part briefly reviewed. In Sec.
6.3 the dynamics concerning both the magnetic and elastic degrees of freedom is
described. Finally, Sec. 6.4 presents preliminary results of the model.

6.2 Energy

The performance of the magnetic degrees of freedom is carried out by means of
the theory of micromagnetism [192|, according to which, the magnetization of
the system is described by a three dimensional continuous vectorial (spin) field,
that will be denoted by M(r). We can write m = M/M,, where M; is the
saturation magnetization and m = (m,, m,, m,) is the unit magnetization vector,
that must fulfill |m| = 1. This description is known to apply to both atomistic
and mesoscopic scales. On the other hand, The elastic part is described by the
extended Ginzburg-Landau model explained in Chapter 2, with the deviatoric
strain ey as the order parameter (OP).

Note that, although the elastic part is purely 2D, the 2D magnetic model
allows the spins to have the third component m,, that is out-of-plane. This is
due to the intrinsic 3D nature of the theory of micromagnetism (involving curl
operators, etc.). However, the third component may be forced to remain in the
2D plane in several ways, such as introducing an extra anisotropic term penalizing
this component. In fact, as will be seen, the magnetoelastic coupling itself does
strongly force m, to vanish at all times. Nevertheless, a direct consequence of the
3D real world is that no internal magnetic in-plane microstructure is needed for
the magnetic lines to close, since they can close in the third dimension. Instead, a
pure 2D magnetic system must indeed exhibit a 2D magnetic domains structure
in order the lines to close. This can be easily seen in Fig. 6.1 where both cases
are displayed.

ITf wanted, the temperature should be introduced as thermal fluctuations by means of the
fluctuation-dissipation theorem as it will be briefly mentioned later.
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Figure 6.1: (a) A pure 2D magnetic system requires internal microstructure for the

magnetic lines to close. (b)-(¢) In a 3D world, no in-plane magnetic domains are needed

since the mangetic lines can close in the third dimension, either by means of a 3D
mangetic structure (b) or freely (c).

6.2.1 Magnetic energy

In a solid magnetic body the magnetic energy can be decomposed as a sum of the
following contributions:

Fm:Fan+FeXCh+Fms+Fexta (61)

Here, F,, is the anisotropic energy, that accounts for the interaction of the mag-
netization with the underlying anisotropic, crystallographic lattice. This leads the
spins to have preferred, soft specific directions to point at. In a cubic system this
term takes the following form:

Fon = /[K1 (ma*my? +m,*m.” +m,*m.?) + Kym,*m,*m.*|dV (6.2)

where K and K5 are the magnetocrystalline anisotropy constants. This potential
has eight minima at m = (£1//3,41/v/3,£1/4/3). A projection of it, is shown
in Fig. 6.2 as a function of m, and m,. Hence, this term will favor the diagonal
directions.

Note that, indeed, this term already performs a magnetostructural coupling,
since it describes how the magnetization is affected by the crystallographic sym-
metry elements. However, up to now, no deformations of the lattice are taken
into account. In that sense, by the moment K; and K, are kept constant so that
we cannot talk about magnetoelastic coupling. Precisely, as will be seen , the
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Figure 6.2: Projection of the mangetic anisotropic energy in the {m,, m,} plane: Four
wells at (£1/v/2,4+1/v/2) show that diagonal directions are favored

magnetoelastic coupling will be introduced by suposing K; and K5 as function of
the strain and calculating derivatives.

The term Feyen in eq. (6.1) corresponds to the energy of the exchange inter-
action. It takes into account interactions between nearest neighbors in the same
thread of thought of the Heisenberg model?. In a continuous model, it can be
expressed through derivatives as:

Foxen = A [[(0emy)? + (0ymae)? + (0.my)? + (9,my)? + (9,m,)? + (90.my)?

+(0,m.)? + (0,m.)* + (9.m,)?]dV
(6.3)
where we have used the compact notation d;m; = Om;/0i, with i = x,y, z. Here
A is the exchange stiffness constant, that is negative (positive) for a ferromagnetic
(antiferromagnetic) system. In our ferromagnetic case, this interaction will try to
keep the spins parallel to each other.

In addition to the previous local interaction, each spin is affected by any other
spin in the system due to the long-range, dipolar interaction. Thus, the magne-
tization in the whole body, given by the specific, total spin configuration, creates
the so-called demagnetizing or magnetostatic field, which in turn acts over each
individual spin. It is important to note that this field is responsible for the ful-
fillment of the Maxwell equation V - B = 0, that essentially forces the magnetic

2This term is often called the Heisenberg energy.
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lines to form closed loops, i.e. to prevent the existence of magnetic monopoles.
This may strongly depend on the specific shape of the specimen and it is at the
origin of magnetic domains, vortices, [47] etc.

The corresponding magnetostatic energy can be expressed in several ways as:

Fos =~ oM, | HaomaV = Sy, [ (VM) o0V = S [ Hiav.
2 Q 2 0 20w

(6.4)
where p is the permeability of the free space, H, is the above mentioned demag-
netizing field (which is also a vectorial field) and 2 and R refer to the sample and
to all the space respectively. The knowledge of H; requires an integral involving
the magnetization over the whole system that, when introduced in eq. (6.4), is at
the origin of the long-range character of the magnetostatic term. The resulting
double integral entails difficulties and large computation time (~ N?), leading
to many efforts devoted to optimize its calculation [193,194|. Here the calcula-
tion is carried out in Fourier space, that improves considerably the required time
(~ Nlog N), similarly to the long-range elastic interactions explained in Chap.
2. In order not to interrupt the line of argument regarding this model, a detailed
explanation of the computation concerning this term can be found in App. B.2.
Here we only point out that the contribution corresponding to the wave vector
k = 0 is a singularity in the Fourier expression and hence is not taken into account
(and set to zero). Therefore, the single domain configuration is not specifically
penalized by this term. This can be easily seen from the fact that the computation
in Fourier space requires periodic boundary conditions, which lead to an infinite
system size and, consequently, to the absence of finite size and shape effects which
are at the origin of magnetic domains. We recall that a similar problem arose in
the elastic case. Also, here some methos will be explored to effectively account
for finite size and shape.

Finally Fiy is the interaction energy between the magnetization and the ex-
ternal field:

Foxe = — oM, / H,, - mdV (6.5)

6.2.2 Magnetoelastic coupling and elastic energy

As mentioned in Sec. 6.2.1, the anisotropic magnetic term denoted by Fj, |eq.
(6.2)| accounts for the specific spatial distribution of the spins, that obviously is
in direct correspondence with the underlying crystallographic lattice, with which
shares the same symmetries. In particular, the lattice has square symmetry. How-
ever, since the mangetocrystalline anisotropy parameters K, and K, are constant,
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Figure 6.3: Favorable and unfavorable spin configurations with respect to each ener-
getic contribution.

F,, always refers to the square symmetry and does not take into account new sim-
metries arising from any deformation of the lattice. Precisely, we are interested
in studying the effects of elastic deformations in the magnetic lattice, and the
other way round, i.e. how mangnetism may affect the crystallographic lattice.
Therefore, a new contribution in the free energy, termed magnetoelastic energy,
is required to accounts for these effects.

Then, from now on we assume that the lattice where the spins are located
undergoes a square-to-rectangular MT. It entails a symmetry loss of the elastic
lattice and, correspondingly, of the spin lattice, that results in a change in the
soft magnetic directions, given by the anisotropic magnetic term. Following Kit-
tel [195], we assume that this change is small (as it occurs in real materials) and
therefore we may calculate the new magnetic anisotropic term as a Taylor expan-
sion around the equilibrium value given by the undistorted lattice, thus obtaining
F! = Fun+ Fie. Here Fi refers to the free energy of the magnetoelastic coupling
emerging from the derivatives of F,, in the Taylor expansion. Taking also into
account symmetry-allowed requirements, it gives rise to the following expression
for Fle:

By

By
Fne = / (ﬁ ( 2+ mz) e+ ﬁ (mi — mZ) es + Bgmzmyeg) dr (6.6)
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We recall that the elastic free-energy density can be written as follows:

A A
216%4-—3 €3+

fa = :

%eg f ¢+ 268 + = (Ve) (6.7)
Note that Iy and Fj, terms depend on the three symmetry-allowed strains eq, ey
and e3. As seen in Chap. 2 they are not independent but they are related by the
Saint-Vénant compatibility equation, so that we can express the free energy in
terms of only two of them, say, for instance, e; and the OP e;. We then minimize
the total free energy with respect to e; and obtain an expression for the free
energy only in terms of e;. Note that now, in addition to the term F,; we have to
include the magnetoelastic contribution £}, in the energy minimization, since it
also contains the variables eq, es and e3. The mathematical details can be found
in App. B. The final expression for F},, becomes:

f [m2(r) —m2(r)] ey(r)dr
+(27r fAcl (k)ez(k)dkF (m2(r) — m2(r)) (6.8)

Y

ﬁm [ Acy(k)ea(k)dKF (my(r)m,(r))

where A., (k) and A, (k) are functions that only depend on k and are defined in
eq. (B.52), and F(f(r)) stands for the Fourier Transformation of a given function
f(r). On the other hand, the final expression for the elastic part only coincides
with that one found in eq. (2.9) in Chap. 2.

6.3 Dynamics

The aim of the model is the study of stabilized states, which in this case consist
of magnetization and strain configurations that minimize the magnetic and elas-
tic energies respectively. On one hand, the micromagnetic dynamical equation
makes the magnetization evolve according to the Landau-Lifshitz-Gilbert (LLG)

equation:

oM Yol
— oM x Ho —
ot ToVE X et =

As can be seen, the right side of the equation consists of two contributions. First

(1+a2) 2> M x (M x Heg) (6.9)

term comes from the conservation of the angular momentum, forcing the spins to
make a precessional motion |[196| around an effective magnetic field Heg. There-
fore, 7 is the gyromagnetic ratio. The second term is a purely phenomenological
damping term [197]|, that has been observed experimentally but not deduced from
atomistic basis, which makes reduce the precession of the spins up to reach a static
state of minimum energy. Here « is a dimensionless damping constant. From mi-
cromagnetic arguments, the effective field can be calculated as Heg = —
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In App. B.5.2 it is shown that this equation conserves the modulus of each spin.
Figure 6.3 shows the spin configurations that minimize and maximize each ener-
getic contribution. The balance between the terms, which of course depends on
the corresponding weights, will determine the final spin configuration. On the

other hand, the stabilized configuration of the strain is reached by means of a

_SF
deo

that the magnetoelastic coupling contributes to both dynamics, which gives rise

pure relaxational dynamics as shown in Chap. 2: % = . It is worth noting
to the desired correlations between the strain and magnetization configurations,
that is magnetoelastic behavior. The detailed mathematical calculation of both
the elastic and magnetic energy derivatives can be found in B.4. The parameter
values and model units can be found in App. C.

It must be pointed out that, although the LL.G equation allows to analyze the
magnetic dynamic behavior, the magnetoelastic coupling links both the micro-
magnetic and elastic dynamics and, since the latter is not realistic, it prevents us
the study of the dynamic evolution and we focus only on static configurations.

In order to integrate the eq. (B.54) we have tested Euler and Runge-Kutta
fourth order (RK4). If interested only in reaching the minimum of energy, Euler
is good enough and faster than RK4. When studying the dynamics of the system,
RK4 should be better. A detailed study about that has not been carried out.

6.4 Preliminary results

Micromagnetics in spherical coordinates

As seen, in the micromagnetic theory the spins are classical vectors m with con-
stant modulus |m| =const. As discussed previously, this is considered by the
LLG equation, since it is easy to see that this vectorial equation keeps |m| con-
stant. According to the formulation in cartesian coordinates presented there, we
deal with a vector of three components (m,,m,,m.), and therefore LLG equa-
tion becomes a set of three equations, one for each component. Moreover, the
conservation of the modulus |m| is automatically imposed by LLG equation but
when it is implemented numerically, this condition is violated very slightly, and
the error acumulates due to the recursive iterations of the LLG equation and may
become too large. Hence, the initial small error must be corrected every certain
small number of iterations by normalizing the spin vectors. Therefore it seems
natural to deal with spherical coordinates (m,.,mgy, m), which makes easier the
numerical integration since it imposes automatically the condition of modulus
constant through the identity m, = 1. Moreover, it leads to deal only with two
components, (mg, my) and the LLG equation becomes a set of only two equations.
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Motivated by this argument, we have converted the model to spherical variables,
first in cartesian coordinates, and second in spherical coordinates, whose mathe-
matical details are presented in the following. Sadly, the final expressions involve
trigonometric expressions like sinus, cosinus, etc. in such a way that, although
the mathematical form is simpler, the spherical version is more costly from the
computation point of view than the cartesian one. Consequently, we have finally
used the latter coordinates.

It is worth mentioning that a two-dimensional version of the LLG equation
has been developed elsewhere [198,199] for systems within which the spins are
confined to precess in a plane, due to anisotropy forces or whatever. In this case,
the spins are expressed in spherical coordinates and the LLG is expressed in a very
simple form, which makes sure a faster computation time and an appropriate pure
two-dimensional magnetoelastic system.

Pure magnetic evolution

As a first check of the model we analyze the pure magnetic contribution. A
dynamical evolution of the magnetization in a 32 x 32 square lattice with peri-
odic boundary conditions is shown in Figures® 6.4 and 6.5. The configurations
show the projection of the spin vectors in the zy-plane. Starting from a random
configuration [shown in (a)|, the spins rapidly look for aligning with the nearest
neighbors [(b)]. The local directionality of the alignment differs from one region
to another, which induces the formation of (embrionic) vortices (favored by the
magnetostatic energy) in the regions inbetween [(c)-(d)| and other smooth inter-
faces |200|. The consolidation of such vortices may give rise to asymmetric Bloch
walls |(e)-(h)| [201-203]. Simultaneously, vortices can merge or disappear, me-
diated by the spin flip in the z (out-of-plane)-direction, [(f)-(i)]. Other vortices
may appear although the system evolves to a globally more ordered configura-
tion. After a while all the vortices have disappeared, all the spins being almost
parallel |(7)]. Then, the spin precession becomes more visible as can be seen in
the fact that in (j) the dominant component is the vertical whereas in (k) it is
the horizontal. This highlights the precession around the diagonal direction, as
finally it does occur [(I)]. It can be seen that the stabilized state consists of a
single domain configuration with the spins pointing to a diagonal direction. As
seen above, this configuration is favored by the magnetocrystalline anisotropy and
the exchange energy.

The absence of magnetic domains can be explained mathematically by the low
simulation cell size together with the periodic boundary conditions leading to an

3The time intervals between the spin configurations in the series is not homogeneous, but
they are chosen to highlight specific magnetic states.
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Figure 6.4: Spin field evolution I.
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Figure 6.5: Spin field evolution II.
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Figure 6.6: Stabilized configurations for different values of the stiffness constant A.

effective infinite system size which, therefore, does not take into account finite
size and shape effects. We recall that the existence of magnetic domains is the
result of an energetic balance between the long-range magnetostatic interactions
and the exchange contribution when finite size and shape effects are taken into
account. This balance is the magnetic analogous to the elastic case, where domains
arise as a compromise between long-range elastic interactions and the Ginzburg
energy. Moreover, the magnetostatic effects are more important as the system size
increases, whereas the exchange effects become important in small-size systems.
Hence, the fact that the simulation cell is much lower than the system size (which
is mathematically infinite) cannot be given as a physical argument for the absence
of magnetic domains.

To obtain a magnetic multidomain structure we have explored two simple
methods: On one hand, we have carried out some simulations with a low value of
the exchange, stiffness constant A to show that in this case, magnetic multidomain
configuration stabilize. This is shown in Fig. 6.6. We can see that the lower value
of A the smaller the domain size (and hence the larger the number of domains).
We can also appreciate that neighbor domains never consist of spins of one domain
pointing to the spins of the another(—+«). Instead, they consist of perpendicular
spins (T—) or spins perpendicular to the modulation of the magnetization (T]).
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If we now modify the simulation cell size, it is observed that the higher the
domain size the higher the value A below which multidomain structure appears.
This is observed in Fig. 6.7(a) where, for a value of the stiffness constant A = 107,
a 128 x 128 spin lattice shows two magnetic domains. Note that for this value of
A, a 32 x 32 spin lattice does not show magnetic domains but a single domain,
as it is shown in Fig. 6.6(f). For clarity, each spin in the 128 x 128 snapshot is
the average over 16 nearest neighbor spins. However, it must be noted that the
value of the stiffness constant is in any case much lower that the nominal value
for Fe-Pd, so that the system size that should be used to obtain a multidomain
configuration with this real value is expected to be too large for computational
purposes.

On the other hand, the second method to obtain a multidomain configuration
consists of introducing an additional condition for the spins in the lattice that plays
the role of an effective shape for the system. For instance, we can impose extra
energetic penalties for the averages of both the z- and y-spin components over
all the cells of the system denoted as (m,) and (m,) respectively. Thus, if these
penalties are high enough, the configurations whose (m,) and (m,) vanish become
favorable. Such configurations must contain at least two magnetic domains with
spins pointing to opposite directions. Figure 6.7(b) show a 64 x 64 multidomain
magnetic configuration stabilized by means of introducing such penalties. Here,
each spin in the snapshot is the average over 4 nearest neighbor spins.

In fact, this additional term can be interpreted as accounting for the modula-
tions corresponding to the wave vector k = 0, which, as pointed out in Sec. 6.2.1,
is not taken into account by the Fourier expression used to compute the long-range
magnetostatic field. As explained in App. B.2.3 it can be introduced through the
demagnetizing factor which depends on the specific shape of the system.

Magnetoelastic results

Once we have checked that the magnetic part works as expected, we perform
simulations of the full magnetoelastic model. Simulation results show that the
magnetoelastic coupling is strong for Fe-Pd. In the martensitic phase the sta-
bilized states show typical strain configurations and the magnetization stabilizes
according to the strain. Consequently, the magnetic domains are subjected to the
elastic domains. The pure magnetic terms turn out to be less relevant than the
magnetoelastic coupling, although they determine fine details like the width of
the walls. In the austenite phase, the coupling vanishes because the strain is zero
(in the absence of precursors) and magnetization may evolve as in pure magnetic
systems analyzed above.
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Figure 6.7: Stabilized multidomain structures either by using a large 128 x 128 spin lat-

tice (a) or through penalizing the nonvanishing averages of the x- and y-spin components
in a 64 x 64 spin lattice (b).

All this can be observed in Fig. 6.8, where we have used the method of simulat-
ing austenite described in Sec. 3.4.2 to obtain fine twinning in the transformable
region for a 512 x 512 cells system, with linear size L = 103. In particular, (a)
shows the strain configuration, which indeed is similar to those obtained in Sec.
3.4.2. Since the system size is very large, the representation of the spin field has
been detailed in two snapshots for clarity. In (b) the absolute magnitude of the
x-component of the magnetization |m,(r)| is shown (the darker the region the
higher the z-component) whereas in

—~

¢) we can observe a projection of the spins
in the zy-plane, where each spin is the average over 36 nearest neighbor spins.
Both snapshots show clearly that in the martensitic phase, the magnetization
form twins according to elastic twins. Also, in the austenite phase, mangetization
evolves freely towards a configuration consisting of a region where the magnetiza-
tion points to a diagonal direction according to the magnetocrystalline anisotropy,
and a vortex formed elsewhere. Note that the center of the vortex in (b) is not
in the circle but in the white (blue) strip just below it. This is logical since the
spins in the center of a vortex lying in the xy-plane point to the z-direction (out-
of-plane) and hence they have no x-component. It can be also observed that the
decaying fields in the austenite also affect the magnetization.
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Chapter 7

Summary and conclusions

In this thesis we have approached the problem of competing interactions between
anisotropy and disorder in ferroelastic martensites. Motivated by experimental
evidence which points to these two parameters to play a decisive role in the result-
ing ferroelastic behavior, we have perfomed simulations by means of a Ginzburg-
Landau model extended to include long-range interactions and disorder. The
model has been shown to be powerful enough to account for a wide variety of
phenomena like characteristics of the microstructure, thermodynamic behavior
and thermomechanical properties. Beyond the interest as basic, theoretical re-
search, this work concerns an issue of many technological relevance as doping
in SMAs. Besides the great amount of historical literature about this subject,
due to the recent publication of relevant papers in important physical magazines,
it has emerged as a current experimental cutting research. Our results are, in
general, in good qualitative agreement with many experiments in different alloy
families and thus provides a simple, unified framework which allows to go depth
into the understanding of ferroelastics. In the following, we highlight the main
results/accomplishments/achievements of this thesis and propose some improve-
ments for the model. Finally, we also summarize the theoretical conclusions and
propose some future experimental work.

Main Results

Quenched-in disorder is a necessary ingredient for pretransitional textures to ex-
ist. In systems with high anisotropy, disorder cooperates with long-range anisotropic
interactions giving rise to a middle-range cross-hatched pattern, the so-called
tweed, which has been widely observed in experiments. By middle-range mod-
ulation we mean that the length scale associated to tweed considerably overcomes
the typical length scale of disorder but is notably smaller than the characteristic
twin size. In contrast with that, systems with low anisotropy exhibit short-range
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pretransitional textures of almost spherical shape (mottled structure), which have
been experimentally observed in Ti-Ni-based systems. Indeed, such alloys are
particularly characterized by a very low anisotropy value.

— For relative small amounts of disorder, upon cooling the system transforms
to the martensitic phase, being the arising twinned structures completely uncor-
related with the high temperature pretransitional patterns. Correct twin width is
obtained by introducing an extra energetic contribution derived from surface ef-
fects, i.e. of imposing the existence of an habit plane. Phenomenological methods
have also succeed in yielding the correct length scale. Other important features
of the twinned microstructure, like needles, have been also reproduced.

For a given value of the anisotropy, as the amount of disorder is increased,
the ferroelastic transition is rounded, shifted to low temperatures and finally sup-
pressed, which is revealed by the corresponding smoothing, shift and suppression
of the peak in the heat capacity C', and by a notable flatening in the elastic re-
sponse C’. This is in very good agreement with experiments that analyze the
behavior of C' as a function of the relative concentration of the elements in a
given alloy family. The higher the value of the anisotropy the higher the amount
of disorder needed to inhibit the transition.

— When the transition is suppressed, both tweed and mottled structures are
retained at low temperatures. This is experimentally observed when increasing
doping in SMAs. These low temperature patterns differ from those at high tem-
perature in the sense that show a degree of freeezing that is revealed by ZFC/FC
simulation experiments, where ZFC and FC curves split. This deviation, which is
indicative of glassy behavior, is particularly important in the low anisotropy case,
whereas it is rather small in the high anisotropy case. ZFC/FC results are also in
very good agreement with experiments in low anisotropy alloys. No experimental
results in high anisotropy systems are available. By looking at the energy of these
frozen structures, we have detected that they are metastable states, in contrast
with the similar structures in the precursor regime, where they seem to be thermo-
dynamically stable. Simulations with zero anisotropy show uncorrelated emerging
domains, which suggest that frustration is not at the origin of the glassy behavior
but this occurs due to kinetic freezing because of the competition among growing
domains. Thus, the thermodynamic stable state exist but it is unaccessible.

— Thermomechanical properties have been analyzed. Stress-strain curves show
a very rich, nontrivial phenomenology as a consequence of anisotropy and disorder.
Variations in their values result in changes in the transition stress, hysteresis
area, transition dynamics and temperature ranges where pseudoplasticity and
superelasticity regimes are observed. However, the response of the system may
be in opposite directions depending on the value of the two parameters. In some
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cases the disorder favors superelasticity whereas in some others cases prevents
it. This two-fold effect of the disorder has been observed experimentally. The
following general trends may be also recognized: As expected, superelasticity
has been observed at high temperatures. The Clausius-Clapeyron relationship is
linear, which is in agreement with experimental observations in many different
martensitic systems when varying doping. It is worth mentioning that the SME
has been obtained not only in twinned martensite but also in the glassy system,
which is in agreement with experiments. To summarize stress-strain properties,
the elastocaloric effect has been studied.

Model Improvements

— The model may be improved in several ways: A more realistic, inertial dynamics
may be included, which would introduce the time as an external parameter to be
taken into account, and would allow for important simulations like frequency-
dependence of the elastic response, from which we can extract Volger-Fiilcher
relations related to glassy behavior, cooling rate-dependent simulations, cycling,
aging, etc. Moreover, due to the phenomenological nature of disorder, any tuning
of it would be welcome to get closer to experiments.

Regarding the magnetoelastic model, it would be interesting to explore the
wide range of phenomena like magnetic domains, stress(magnetic)-induced mag-
netic (strain) domain switching, ferromagnetic SME, magnetic textures in the
premartensitic regime, etc. Beyond this, freezing of the spins induced by frozen
strains could also be studied in the case of large disorder.

Theoretical Conclusions and Proposed Experiments

Up to date, the suppression of the transition due to changes in composition has
been experimentally associated with an intrinsic thermodynamic instability of
the martensite. However, mechanical-induced transitions in the nonmartensitic,
glassy Ti-Ni-based alloys point to the nontwinned martensitic state to be actually
thermodynamically (meta)stable, since upon unloading the martensitic phase is
retained. This is further revealed by diffraction experiments. Our simulation
results support this finding. It would be interesting to explore the possibility of
the two-way SME through thermomechanical treatment, whose existence would
reinforce this argument. Moreover, the fact that these alloys exhibit SME implies
that the nontwinned martensite, after being stabilized through loading-unloading
processes, undergoes a temperature-induced backward transition upon heating
which allows the sample to recover the initial shape. With respect to this, it
would also be of interest to check the existence of the corresponding peak in the
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heat capacity and other thermodynamic signatures of the transition in magnitudes
like resistivity and elastic response.

On the other hand, since the strain glass state has been only observed in very
low anisotropy systems, a couple of additional questions proposals still come to
our mind, complementary those above: First, does glassy features also occur in
high anisotropy systems at high amounts of doping? In other words, are the tweed
textures observed in high anisotropy materials a glassy state when obtained at low
temperatures in the nontransforming composition regime? Analogous to the low
anisotropy case, this could be tested through ZFC/FC experiments and others.
To further compare tweed with the mottled glassy state, at least one important
question remains unanswered: Why is the martensitic phase unaccessible under
certain conditions? is it due to a thermodynamical instability, or is it due to a
kinetic freezing, which gives rise to the glassy state?” Directly related to that, we
can also ask ourselves wether such a system also exhibits SME or not.

Answers to all these questions would help to go deeper into the understanding
of the intringuing mechanisms governing these systems, and perhaps we would be
able address a fundamental question concerning this thesis: Does the anisotropy
play any role in determining the observed behavior?



Chapter 8

Resum

Des de fa temps s’ha anat observant que els materials que exhibeixen estats es-
paialment inhomogenis a I’escala mesoscopica poden presentar propietats noves i
interessants des del punt de vista tecnologic i fonamental. Dins de 'ampli ven-
tall dels materials funcionals, podem citar superconductors d’alta temperatura,
manganites exhibint magnetoresisténcia colossal, conductors ionics i ferroics en
general com a exemples de sistemes en els que les inhomogeneitats juguen un
paper crucial a ’hora de determinar-ne les seves propietats.

En particular, els materials ferroics son sistemes que es caracteritzen per una
transicio de fase induida per temperatura, en la que una magnitud fisica s’ordena
espontaniament donant lloc a una mesoestructura interna tipicament multido-
mini. Aquesta autoorganitzacié sorgeix de la combinaci6 entre tres factors: un
perfil energétic consistent en varis pous degenerats (variants o twins en anglés),
Iexisténcia d'unes forces de llarg abast de tipus dipolar i efectes de forma i tamany
finit. La transici6 també pot ser induida per I'aplicaci6 d’'un camp extern. Aixi
mateix, la fase ordenada es caracteritza pel fet que les diferents variants poden
ser convertides d’'una a una altra facilment per mitja d’'un camp extern, donant
lloc a una série de particularitats com el cicle d’histéresi, amb l'existéncia d’un
camp coercitiu, etc.

Els exemples paradigmatics de materials ferroics son els sistemes ferromag-
nétics, ferroeléctrics i ferroelastics, on la magnetitzacio, la polaritzacio i la de-
formaci6 son les magnituds fisiques de rellevancia respectivament. Cal posar de
manifest I'existéncia de materials multiferroics, com per exemple magnetoelastics
o magnetoeléctrics, on 'acoblament entre les diferents magnituds és important.
Aixo dona lloc a una resposta creuada significativa entre una variable i el camp
conjugat d’una altra, que permet una fenomenologia variada amb importants apli-
cacions tecnologiques.

Aquest estudi es focalitza en els materials ferroelastics, en els que durant la
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transicié apareix una deformacié de la xarxa cristal-lina, que canvia d’estructura
de tal manera que els processos dominants sén displacius i no hi ha difusié d’atoms
per la xarxa. Tipicament les cel.les unitat de les dues fases mantenen una relacio
de grup-subgrup, cosa que dona lloc a I'existéncia de més d'una variant orienta-
cional. Usualment, la fase ferroelastica nuclea dins d’'una matriu paraelastica.
La multiplicitat de les variants orientacionals permet que 'encaix de la inclusio
emergent i posterior creixement de la fase ferroelastica no sigui dramatica per la
matriu mare des del punt de vista de la deformaci‘é siné que té lloc mantenint
el pla que forma la frontera entre fases (pla d’habit) macroscopicament invari-
ant, mitjancant I’alternanca de les mencionades variants. L’efecte domino, que és
I'esséncia del llarg abast de les interaccions elastiques, fa que aquesta alternanca
es propagui dins el volum de la fase martensita, donant lloc d’aquesta manera
a una estructura interna de dominis orientacionals. De fet la modulacié ¢ de la
deformacio segueix una llei del tipus [ < /L.

Léxisténcia d’aquesta microestructura permet dos fenomens importants: en
primer lloc, la superelasticitat, que consisteix en el fet que el sistema pot deformar-
se més enlla del llindar elastic mitjancant I'aplicaci6 d’un esfor¢ que indueixi
la transicié ferroelastica, amb la conseqiient aparicié6 d’una tnica variant, selec-
cionada per les especifitats del camp. Quan s’elimina I'esforg, el material pateix la
transformacio inversa i recupera aixi la seva forma original. En segon lloc, trobem
'efecte de memoria de forma (SME), que es basa en el fet que el material manté
la seva forma original macroscopica quan pateix la transici6 al disminuir la tem-
peratura gracies a I’estructura multidomini. L’aplicacié d’'un esfor¢ a aquesta fase
ordenada provoca el creixement de la variant afavorida pel camp en detriment de
les altres i la conseqiient deformacié del sistema. El potserior escalfament de la
mostra provoca la transici¢ inversa i, per tant, la recuperacio de la forma origi-
nal. Entre els materials ferroelastics cal destacar les martensites termoelastiques,
que poden recuperar deformacions de gairebé fins al 10%, i que tenen importants
aplicacions tecnologiques com a actuadors, sensors, valvules de control, etc. en
camps molt diversos que van des de I'aeronautica a la medicina. Com a exemples
de martensites termoelastiques trobem multitud d’aliatges intermetal-lics, entre
els que destacarem el Ti-Ni per la seva rellevancia tecnologica, i aliatges basats en
Ti i Ti-Ni. Cal destacar també I'efecte de memoria de forma magnetica (FSME)
en materials magnetoelastics citats abans, on un camp magnétic juga el paper del
camp d’esforcos. Aqui podem mencionar el Fe-Pd.

Com s’ha dit, en aquests sistemes la transicio esta dominada per forces elas-
tiques de llarg abast, que a la vegada depenen fortament de les simetries especi-
fiques de la xarxa aixi com de les constants elastiques, que determinen les direc-
cions toves del cristall. Per tant, aquestes forces poden ser altament anisotropiques,
i poden afectar de manera crucial la morfologia de les mesoestructures internes.
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Tanmateix, aquesta descripcio es veu alterada per la preséncia d’inhomogeneitats,
com les fluctuacions composicionals intrinsiques a qualsevol aliatge. Aquest des-
ordre intrinsec pot erigir barreres d’energia i entropia de tal manera que poden
apantallar les correlacions de llarg abast. Es ampliament sabut, per exemple,
que desviacions de I'estequiometria en aliatges aixi com el doping (que tipicament
porten a un augment de les fluctuacions composicionals respecte els aliatges origi-
nals), introdueix variacions molt significatives en els rangs de temperatura i esforg
en els que s’observen el SME i la superelasticitat aixi com la histéresi, cosa que és
molt important per al disseny d’aliatges amb mem‘oria de forma, que necessiten
régims operatius determinats. Per aixo hi ha una quantitat de literatura exper-
imental molt important que concerneix les propietats termoelastiques en funcio
de la composicié. De manera més fonamental, també s’observen anomalies en re-
spostes termodinamiques com la capacitat calorifica, la resistivitat, canvis en les
constants elastiques, etc. Cal mencionar les estructures pretransicionals com el
tweed que resulten de la cooperacio entre la preséncia d’inhomogeneitats i les forces
anisotropiques de llarg abast. El present estudi es focalitza precisament en I'analisi
numeéric de 'efecte de I’anisotropia i el desordre en les estructures i respostes ter-
modinamiques en sistemes ferroelastics. S’utilitza una extensi6 d’un model de
Ginzburg-Landau que inclou desordre i interaccions de llarg abast anisotropiques.

Model

D’acord amb la teoria de I'elasticitat, qualsevol deformacié d’'un sistema amb
simetria quadrada es pot expressar com a combinaci6 de tres deformacions fon-
amentals (més una rotacio), que son les deformacions de volum (e;), deviatorica
(e2) i de cisalla (e3). En particular, el nostre objectiu és modelar un sistema
que pateix una transicid de simetria quadrada a rectangular. que és el cas bidi-
mensional corresponent a la transici6 real de cibica a tetragonal. Per tant,
la deformacio de transformacio és la deviatorica, que esdevindra el parametre
d’ordre (OP) de lenergia lliure de Ginzburg-Landau. Les consideracions d’una
transicié de primer ordre i de simetria de paritat duu a la segiient expressio:
Fa(es) = [(ar(T = T.)e3(r) — Fes(r) + Fe5(r) + [Veo(r)[*)dr.

A la introduccié s’ha comentat que els aliatges mostren una sensibilitat molt
gran de la temperatura de transformacio a la composicié especifica del material.
Aquest fet, juntament amb les fluctuacions composicionals inherents als aliatges,
recolza la introduccié del desordre com un camp aleatori fluctuant acoblant-se
a I’'OP a través del terme harmonic, ja que el coefficient d’aquest terme deter-
mina parcialment les temperatures caracteristiques de la transici6. En particular
el camp ve descrit per una variable aleatoria n(r), distribuida gaussianament i
correlacionada espaialment segons una funcié de correlacio a parelles exponencial.
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Els parametres que determinen la variable n(r) son, per tant, la mitjana p i la
desviacié estandard (¢ de la distribucié i la longitud de correlacié €. En un altre
model molt similar a I’actual, s’ha observat que les estructures de dominis sé6n molt
robustes respecte la funcionalitat especifica de la distribuci6 i correlacié del des-
ordre. Aixi mateix, és evident que el valor de u només desplaca la fenomenologia
al voltant del valor escollit, pero no aporta resultats qualitativament diferents.

La discretitzacio del desordre, necessaria per a la implementacié numeérica en
la malla de simulaci6, introdueix diferéncies finites en les temperatures caracteris-
tiques de les cel.les veines, que determinen de manera crucial les barreres locals
d’energia lliure. Ja que els valors de ¢ i £ varien sensiblement aquestes diferén-
cies, son susceptibles d’afectar de manera rellevant els resultats obtinguts. De
totes maneres, s’observa que el comportament del sistema és bastant robust re-
specte variacions en £ i en cap cas dona lloc a resultats qualitatius diferents que
els obtinguts al variar el valor de (. Per tant, £ es deixara constant i 'estudi en
funcié del desordre es dura a terme només en funci6 de (.

Addicionalment, s’afegeix una contribucioé energética d’ordre harmonic de les
deformacions que no corresponen a I’OP, és a dir, de volum i cisalla (Fon.op (€1, €3) =
i (%e%(r) + %eg(r)) dr), on A; i A; estan relacionats amb els moduls de volum
i cisalla respectivament. Donat que en 2 dimensions els graus de llibertat reals
son unicament dos, descrits pel camp de desplacaments, les tres deformacions
e1, eg 1 ez estan lligades per mitja de la condicié de compatibilitat de Saint Vé-
nant, que és una equacié que garanteix la integritat de la xarxa. Aixo possibilita
escriure l’energia lliure total en termes només de I’OP i d’una de les deforma-
cions e; 0 eg (per exemple, Fr(eq,es) = Fgr(es) + Fhonop(€1,€2)). Si, a més a
meés, minimitzem l'energia lliure total [ respecte e;, obtenim una condici6 ad-
dicional que ens permet obtenir una expressiéo per Fr només en termes de I’OP.
L’expressio resultant per Fio.op(e2) és no local a Pespai real: Fo,.0p(€2) =
[ dr [ ea(r)U(r —r')es(r")dr’, pero esdevé local a 'espai de Fourier: Fyon op(e2) =

43 [V (k)éa(k)dk, amb un kernel V (k) que posa de manifest I'anisotropia d’aquestes
(k2 —k3)®
3 A4 8k2k2

deformacio deviatorica es modula segons les direccions diagonals respecte els eixos

interaccions: V (k) = Efectivament, aquest terme es minimitza quan la

cristal-lografics de la fase quadrada, i explica per tant les modulacions creuades
observades experimentalment en les textures pretransicionals tipus tweed aixi com
la morfologia lineal de les fronteres entre dominis dels twins i les juncions perpen-
diculars en monocristalls.

D’altra banda, es pot demostrar que en realitat V(k) = V(k/k), és a dir, no
afavoreix cap longitud d’ona siné que només selecciona la direcci6 de les mod-
ulacions. De fet, aquesta caracteristica no s’ajusta a la realitat, ja que resulta
de no tenir en compte condicions de mida finita de la martensita, cosa que, com



129

s’ha comentat anteriorment, és essencial per I'aparicié6 de dominis amb una mod-
ulaci6 determinada. Tanmateix, la consideracidé de mida infinita és necessaria per
poder obtenir una expressio tan senzilla per Fio_op(e2). Aixd permet, mitjancant
condicions periodiques de contorn, un calcul computacional molt més rapid i amb
una mida de cel-la de simulacié superior (ordre Nlog N, on N és el nombre de
cel-les unitat) que no pas el temps que comportaria el calcul no local a 'espai
real (d’ordre N?). En qualsevol cas, aix0 tampoc resulta fonamental per les es-
tructures obtingudes des del punt de vista del nostre interés, ja que la dinamica
utilitzada al model és purament relaxacional i aix0 doéna lloc a 'estabilitzacio
d’estats metaestables, amb interfases entre dominis orientades diagonalment. Cal
dir, no obstant, que s’han dedicat part dels esforcos d’aquest treball a 'estudi de
possibles métodes per introduir efectes de mida finita.

S’ha estudiat la dependéncia de les forces de llarg abast aixi com el com-
portament del sistema en funci6 d’As i del quocient Az/A;, ja que son coefi-
cients que apareixen en la interaccié de llarg abast. La fenomenologia que s’obté
al variar A3/A; és qualitativament equivalent a la obtinguda al variar Az. Per
tant, deixarem As/A; constant. FEs important remarcar el fet que As i el factor
d’anisotropia elastica son proporcionals a temperatura constant. Aquesta relacié
posa en evidéncia el fet que 'anisotropia esta directament relacionada amb el pes
del terme de llarg abast. Aixi, podem analitzar 'efecte de I'anisotropia introduint
variacions en el parametre As.

Resultats

En primer lloc es fa una analisi de la morfologia de les estructures que s’obtenen en
diverses situacions. Per valors alts de I'anisotropia i valors intermitjos de desordre,
s’observa tweed pretransitional, que evoluciona cap a dominis twin quan la tem-
peratura disminueix per sota la transicidé. A mesura que el valor de ’anisotropia
disminueix, les estructures pretransicionals perden direccionalitat i els twins es
trenquen. Per sota d’'un llindar deixa d’observar-se modulaci6 en la deformacio
i les estructures son basicament en forma de gotes gairebé esfériques. Al dis-
minuir la temperatura, van apareixent noves gotes i les ja existents evolucionen
poc, només augmentant una mica la seva mida. Experimentalment també s’ha ob-
servat una dependéncia similar de les estructures pretransicionals a ’anisotropia.
Aixi, materials amb alta anisotropia com el Fe-Pd i el Ni-Al exhibeixen tweed
mentre que aliatges amb baixa anisotropia com el Ti-Ni i el Ti-Ni dopat amb Fe
presenten una estructura pretransicional de gotes.

Una fenomenologia similar es pot obtenir mantenint una anisotropia constant
i variant el desordre. Un augment de la intensitat del desordre és equivalent a
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disminuir ’anisotropia i a I'inrevés. Per valors intermitjos d’anisotropia i de des-
ordre, ja no s’obté tweed en el régim pretransicional pero es poden seguir obtenint
twins (semitrencats) a baixa temperatura. Quan s’augmenta el desordre, els twins
deixen de formar-se i 'estructura pretransicional es manté fins a baixa temper-
atura. Si 'anisotropia és gran la intensitat de desordre necessaria per inhibir la
formaci6 és conseqiientment més gran. La inhibicié dels twins i la supervivéncia
de les estructures premartensitiques a baixa temperatura s’ha observat en molts
aliatges al canviar la composici6 relativa dels elements constituents o a . D’aquesta
manera, el Ti;_,Ni;, no mostra twins per x > 1.5, sin6 que l'estructura de gotes
es manté fins a 0 K. El superconductor Y-Ba-Cu-0 mostra tweed pretransicional,
perd quan es dopa amb Co o Fe en detriment de Cu per sobre d’un cert llindar,
el tweed també sobreviu fins a 0 K.

Les estructures s’han caracteritzat per diferents métodes: s’ha calculat la dis-
tribucié de la deformaci6 local, la intensitat de la transformada de Fourier, que
esta relacionada amb el patro de difraccié i finalment s’ha mesurat la mida dels do-
minis. Per poder dur a terme aquest ultim calcul, s"Than hagut d’introduir efectes
de mida finita que, com s’ha comentat a la introduccio, és la responsable de la
longitud caracteristica de l'estructura de dominis. Per a aquest proposit s’han
utilitzat tres meétodes diferents: en primer lloc, mitjancant un calcul analitic rig-
oros s’ha derivat el potencial real que afecta la martensita com a conseqiiéncia de
minimitzar I'energia corresponent a un sistema consistent en una martensita en-
voltada d’'una matriu d’austenita. Aquest nou potencial inclou el kernel anterior
V(k) i un de nou que es pot aproximar a 1/|k|, essent k el vector d’ones de la
modulaci6 de la deformacio. Aixo afavoreix longituds de modulacié petites. Un
balang entre el terme de Ginzburg i aquest nou kernel permet la obtenci6 de la
llei d’escala [ o< v/L mencionada anteriorment. També s’ha estudiat els efectes de
mida petita, i s’ha obtingut que per sota d’un certa mida de la zona susceptible
de nuclear la martensita, el twinning s’inhibeix i en el seu lloc apareix un patré en
forma de quadricula, que alterna dominis de variants martensitiques amb dominis
de fase austenita.

Aquesta mateixa fenomenologia s’ha obtingut introduint els efects de superfi-
cie d’'una manera menys fisica perd molt més simple: a través d’una distribucio
de desordre (és a dir, de temperatures caracteristiques) que obligui una zona del
sistema a romandre a la fase mare. Aquest métode té 'avantatge que no és més
costos des del punt de vista computacional i en permet 1's sistematic pel cal-
cul de les mides dels dominis i la seva evolucié en temperatura per varis valors
de D'anisotropia i el desordre. Consistentment amb les simulacions inicials del
model en aquests termes, i també amb resultats que es descriuen més endavant,
s’observa que per valors baixos d’anisotropia respecte del desordre, la mida de les
gotes gairebé no evoluciona en temperatura sind que es congelen, de tal manera
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que les estructures del sistema a baixa temperatura vénen determinades en gran
mesura pels patrons pretransicionals. Aixo evidentment no passa quan la fase de
baixa temperatura presenta twins, ja que tipicament aquests tenen una longitud
caracteristica més gran que les textures premartensitiques, ja siguin tipus tweed
o en forma de gotes. Basicament, la mida dels twins és independent de les carac-
teristiques del desordre mentre que en el tweed i sobretot en les gotes, el desordre
hi juga un paper fonamental.

L'altim métode utilitzat per obtenir una estructura de dominis amb longitud
caracteristica ha consistit en la introduccié6 d’un potencial fenomenologic amb
un kernel tipus 1/|k|, que és en esséncia el mateix que préviament s’ha derivat
analiticament. S’han comprovat alguns aspectes dels comentats anteriorment.

Cal mencionar que els dos tltims métodes han permés 'aparicié de twins
trencats a alta anisotropia. Aixo déna lloc a juncions perpendiculars, on s’observa
que els dominis es deformen en forma d’agulles. A mesura que ens allunyem de les
juncions, les agulles o bé desapareixen o bé s’eixamplen per donar llocs a twins de
llarg abast. Aquests detalls de les estructures també s’han observat ampliament
en experiments.

Per corroborar els efectes de 1’anisotropia i el desordre en el sistema, s’han
analitzat diverses funcions resposta. En primer lloc, hem determinat la capacitat
calorifica C' en funci6é de 'anisotropia. Per valors alts d’ A, C' presenta un pic
abrupte corresponent a la transicio, i una anomalia en forma de gep corresponent a
les estructures premartensitiques. Quan l'anisotropia disminueix, el pic es suavitza
i es desplaca cap a baixes temperatures. Finalment, per valors molt baixos d’A
el pic se suprimeix. Aquest desplacament cap a baixes temperatures és degut
al fet que les simulacions s’han fet refredant per tal de seguir el procediment
experimental habitual. Simulacions addicionals dutes a terme escalfant mostren
un un desplacament del pic cap a altes temperatures, indicant que el pic correspon
a limits d’estabilitat. Paral-lelament, el calcul de la primera derivada de la fraccio
transformada mostra un pic amb una dependéncia en ’anisotropia molt similar al
pic en C, cosa que és una mostra de la robustesa del pic. Aquest comportament
del pic en C s’ha vist experimentalment en molts aliatges com el Ti-Ni, Ti-Ni-
Fe, Ti-Pd-Cr, i d’altres, al augmentar el grau de desordre. La supressio del pic
indica la supressio de la transici6 martensitica, fet que ja havia estat anunciat
estructuralment per la abséncia de twins indicada anteriorment, tant en les nostres
simulacions com en els experiments.

També s’ha calculat la resposta elastica del sistema per dos valors de ’anisotropia,
i, d’acord amb experiments en Ti-Ni, la supressio de la transicié6 martensitica re-
sulta en un aplanament de la corba respecte la forma que presenta transicio.

Els resultats anteriors ens porten a fer una analisi de I’energia de les estructures
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obtingudes, per tal de saber si corresponen a l'equilibri termodinamic o son estats
metaestables. L’equilibri termondinamic ens el dona I’energia lliure de Landau
amb preséncia de desordre. Aixi, es troba que I’energia del sistema és molt propera
a ’equilibri per valors d’anisotropia i desordre que permeten la fromacié de twins,
mentre que quan s'inhibeix la seva aparici6 I'energia és notablement més gran que
la d’equilibri, indicant que les estructures sé6n metaestables.

Motivats pels recents experiments en Ti-Ni que analitzen la supressio de la
transicié martensitica des del punt de vista del comportament dinamic tipus
vidrios, s’han dut a terme simulacions de 'experiment zero-field-cooling/field-
cooling (ZFC/FC). En aquest experiment el material se sotmet a 4 processos
consecutius: (a) refredament sense camp, (b) escalfament amb camp, (¢) refreda-
ment amb camp i (d) escalfament amb camp. L’evolucio de la deformaci6 en
temperatura durant el procés (b) dona lloc a la corba anomenada ZFC i 'evolucio
durant el procés (d) s’anomena corba FC. Desviacions entre ambdues corbes (que
ocorren sempre a baix temperatura) son indicatives de dindmica congelada, i per
tant, de sistema vidrids. En el Ti-Ni, la desviacié s’observa per la mateixa com-
posicio que inhibeix la transicié. Basat en aquest i altres experiments, els autors
etiqueten aquest tipus de sistemes com a strain glass (vidre de deformacio).

Basicamet s’ha observat que en els sistemes que presenten transicié estructural
abrupta amb twins correlacionant tot el sistema les corbes ZFC i FC coincideixen
en tot el seu recorregut. A mesura que la transici6 es va suavitztant i els twins es
comencen a trencar, la corba ZFC es comenca a desviar de la FC. La desviaci6 es-
devé significativa per valors relativament alts del desordre respecte de ’anisotropia
que porten a la supressio de la transici6. Una vegada més, aquests resultats es-
tan qualitativament d’acord amb els experiments en Ti-Ni. També, és important
remarcar que la desviacio entre les corbes ZFC/FC s’obté tant a 'augmentar el
desordre per sobre d’un cert llindar ¢* com per disminuir ’anisotropia per sota
d’un cert valor critic A3. Per saber si aquest comportament prové de certa frus-
tracid geométrica en el sistema hem realitzat dos calculs. Per una banda, hem vist
que no hi ha correlacions entre les variants especifiques que adopten els dominis
en els seus estats inicials. Es a dir, que les variants se seleccionen de manera
aleatoria. D’altra banda, hem comprovat que en abséncia total de forces de llarg
abast també hi ha desviacié entre les corbes ZFC i FC. D’acord amb aixo podem
concluir que el comportament vidriés no resulta de frustracié geométrica sind que
és un problema meés aviat cinétic.

Els valors critics del desordre (o de 'anisotropia) que porten a la supressio de
la transicio i a un congelament de les estructures son consistents entre les diferents
magnituds i simulacions que hem dut a terme: la capacitat calorifica, I’analisi de
la metaestabilitat de I’energia, les corbes ZFC/FC, etc. Donat que el valor de *
depén d’As i a l'inrevés, podem esbossar en l'espai de parametres (Anisotropia,
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Desordre) la regio on s’obté comportament vidrios i la regié on s’observa transicio,
amb dominis tipus twin.

Finalment, s’han analitzat el comportament esfor¢-deformacio induit per es-
for¢. En particular, s’ha estudiat el SME i la superelasticitat per dos valors
d’anisotropia i dos de desordre. Els valors especifics d’aquests parametres son im-
portants per determinar I'estructura fina d’aquestes corbes. S’ha trobat un ventall
molt ampli de comportaments, amb canvis en els rangs de temperatura en els que
s'observen I’'SME i la superelasticitat, canvis en 1’esfor¢ necessari per induir o bé
la transformacio, o bé el creixement dels dominis de la variant seleccionada, canvis
en I’area d’histéresi, el percentatge de recuperacio de la deformacio, la suavitat de
les corbes, etc. Aquesta fenomenologia tan rica s’ha observat també experimental-
ment quan es varia la composicid especifica d'un aliatge en concret o es dopa amb
un element addicional. Exemples en sén el Ti-Ni, Au-Cd, Ti-Ni-Cu, Ni-Mn-Ga,
Ni-Co-Mn-In, etc. En particular s’ha obtingut que els rangs de temperatura en els
que s’observa el SME i la superelasticitat depenen no trivialment dels parametres.

El rang superelasitic esdevé maxim quan els valors d’anisotropia i de desordre
tenen una for¢a comparable i ni un ni ’altre dominen la dinamica del sistema, sin6
que és resultat d’un balanc entre els dos. La histéresi de la transici’o és maxima
per valors grans d’anisotropia i petits de desordre, cosa que també afavoreix una
transicié abrupta.

Tanmateix, s’ha obtingut que la dependéncia de I'esfor¢ de transformaci6 en
funcio de la temperatura, que ve descrita per ’equacio de Clausius-Clapeyron, és
lineal i que el pendent de la recta no depén dels valors particulars d’anisotropia
i desordre. En efecte, experiments en diversos aliatges com per exemple el Ti-
Ni, Au-Cd, Ni-Mn-Ga, Cu-Zn-Al, Ni-Ga-Fe, etc. mostren que aquesta relacié és
lineal creixent en les martensites. S’ha de dir, no obstant, que en el cas del Ti-Ni el
pendent depén de la composicio especifica, fet que contradiu els nostres resultats.
A la fase de baixa temperatura, I’esfor¢ necessari per fer creixer els dominis creix
a mesura que la temperatura decreix, fet que també s’observa experimentalment.

Per completar I'estudi termomecanic s’ha calculat 'efecte elastocaloric que és
I’analeg mecanic del ben conegut efecte magnetocaloric. Esta relacionat amb el
canvi isoterm d’entropia o amb el canvi adiabatic de temperatura que el sistema
pateix quan se li aplica o se li retira un esfor¢. Aquest efecte es veu augmentat
en la proximitat d’una transici6 de fase de primer ordre, que doéna lloc a grans
canvis d’entropia. En el nostre model s'observa que la forma de la corba del
canvi d’entropia en funci6 de la temperatura canvia lleugerament al modificar la
anisotropia per6 la magnitud del canvi d’entropia es manté practicament constant.

Cal mencionar que s’ha dedicat un temps a l'elaboraci6 d’'un model magne-
toelastic, que inclou graus de llibertat magnétics i elastics que estan acoblats
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entre si, permetent fenomens com l'efecte de memoria de forma ferromagnétic.
S’utilitza la teoria micromagnética segons la qual la magnetitzacié evoluciona
d’acord amb l'equaci6 de Landau-Lifshitz-Gilbert, que inclou un terme de pre-
cessid i un d’amortiguaci6. L’energia del sistema inclou un terme d’anisotropia
cristal.lina, un terme d’intercanvi, un terme magnetostatic i un possible terme
d’interacci6 amb un camp magnétic extern. Addicionalment s’hi afegeix un terme
energeétic corresponent a l’acoblament magnetoelastic.

El terme que comporta més problemes és el magnetostatic, ja que és no local
i depén fortament de la mida i forma del sistema. El fet que nosaltres util-
itzem condicions periodiques de contorn afavoreix un calcul rapid d’aquest terme
a l'espai de Fourier i dona lloc a una dinamica realista del camp d’spins. No
obstant, aquest métode no 'aconsegueix estabilitzar una estructura de dominis,
sind que el sistema acaba evolucionant cap al monodomini, afavorit pel coeficient
d’intercanvi. Com a alternativa per obtenir una estructura multidomini es dis-
minueix notablement el coeficient d’intercanvi (que afavoreix el monodomini) i/o
s'introdueix un terme que penalitzi el monodomini a mode d’efectes de forma i
mida finita.

Es presenten resultats preliminars de ’evolucié purament magnética, mostrant
I’aparici6 de vortexs, parets de Bloch, de Néel, de Bloch asimétriques, el moviment
de precessio al voltant de la direcci6 seleccionada per I’anisotropia cristal.lina, etc.

La introduccié dels graus de llibertat elastics es duu a terme mitjancant el
model purament elastic utilitzat anteriorment. Amb aquest model ens hem quedat
gairebé a les portes de poder comencar a treure resultats.



Appendix A

Notes about the elastic model

A.1 Introduction to the theory of elasticity

Here some basics concepts about the theory of elasticity [154] are briefly submit-
ted. In particular, linear elasticity deals with solid bodies regarded as continuous
media that undergo small changes in shape and volume.

A.1.1 Strain and stress tensors

In general, a deformation of a body entails the displacement of any point in
it. Such motion can be mathematically described by the so-called displacement
vector, u = r’ —r, where r and r’ refer to the position of a particular point before
and after the deformation respectively. Supose now that the distance between
two very close points in the non-deformed body di? = dr?. After the deformation,
the corresponding distance will be dI’> = dr’> = (dr 4 du)®. Being u = {u;} and
r = {z;} then du = (Ju;/0xy) dxy. Thus, dl’ can be written as:

Ou,; Ouy
2 242 § § L Al
dl’”” = dl* + dz sdxy + az'k o, dxydx; (A1)

that, after some rearrangements can be rewritten as di” = di* + 2", e;pda;dzy,
where ¢, is the strain tensor, defined as:

L[ Oup | Ouy, Ou; Ouy
k=3 (8:@ * ox; o Zl: Ox; a—zk> (4.2)

It can be easily seen that ¢; is symmetrical and hence has only six different
components. Since linear elasticity considers only small deformations, the last
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term in eq. (A.2) can be neglected, so we obtain:

€k % <8ui + 8uk) (A.3)

ox,  Ox;

Considering a general deformation e;; such that e;; = Ju;/Ou; (and hence ¢; =
1/2(e;j + €j;)) it is easy to see that it can be expressed as the combination of a
pure strain €; and a rotation w;; [16], since we can write e;; = €;; + w;;, where
wij = 1/2(e;; — ej;). This can be graphically seen in figure A.1. Let us consider

General deformation = pure strain 4+  rotation

e, ,=1/2(e+e;))

1/2(ey-ep;)

£=1/20e reyy)

Figure A.1: A general deformation can be decomposed as the sum between a pure
strain plus a rotation.

now an volume element dV of a body undergoing a deformation in absence of
external body-forces'. Since the internal volume forces cancel by the Newton’s
third law, the total force F = [fdV acting on it can be understood as the sum
of the forces acting on the surface of dV, let us say dS. Due to the divergence
theorem, F can be expressed as the integral of the divergence of a tensor of rank
two over the surface dS delimiting dV'. Thus, if f; is the i-component of the force

f= 3 o (A4)
k

per unit volume,

8:):k
so that

0oy,
F= [ fdV = dS A5

where oy, is called stress tensor.

A.1.2 The elastic modulus tensor and the Hooke’s law

The free energy of a deformed body can be written as

1
F = 5 zk:l C’i]—klei]—ekl (A6)
)

'Here body-forces refer to forces such as gravity, wich are volume forces that act to the whole
body.
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where Cjji is a tensor of rank four called elastic modulus tensor (or elastic con-
stants tensor) that, since ¢;; is symmetrical, fulfills Cjjp = Cjir = Cijie = Chaij-
From this it can be deduced that at the most there are only 21 different com-
ponents for Cjj;. This leads to an alternative notation, called Voigt notation,
according to which only two subindices are needed: xx — 1, yy — 2, 2z — 3,
yz — 4, vz — 5 and xy — 6. This is the notation used in this thesis. In fact, for
a crystal with additional symmetries, the number of components of Cjj;y; is still
reduced. For instance, cubic symmetry has only three different elastic constants,
with the following corresponding energy:

F= %Cfmm (Eix + 632/y + Egz) + Crayy(€ca€yy + €ra€az + Eyy€sz) (A7)
+2C 2y (eiy + €., + eyz)

Since 0;; = 0F/0¢;;, the stress tensor is related to the strain tensor by means of
the elastic contants tensor:

OF

—Cy; A8
8% C]kl@cl ( )

aij =
kl

that is called Hooke’s law?. Recall that this is valid only for small deformations,
i.e. for linear elasticity.

A.2 Non-order parameter energy: Long-range elas-

tic interactions

In this section we first examine in detail the compatibility constraints that link the
three symmetry adapted strains and derive the specific mathematical expression
for a square system in 2 dimensions. Then, we present the mathematical details
that allow to convert the expression for the long-range anisotropic interactions
from a nonorder parameter (nonOP), nonlocal expression in real space to a local
expression in Fourier space as a function of the order parameter (OP) only. The
method consists basically of taking advantage of two additional mathematical
expressions linking e, es and es3: One is precisely the Saint Vénant compatibility
equation and the another comes from energy minimization principles. This will
be shown in Sec. A.2.2.

2Eq. (A.8) is the corresponding general law for a extended solid body to the well known
Hooke’s law for a spring, F = —kx where k is the elastic constant of the spring. Also, the
energy of a spring is F = —%kxz, in correspondence with eq. (A.6).
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A.2.1 St. Vénant compatibility conditions

The six different components of the 3-dimensional strain tensor ¢;; are not in-
dependent, since they have been defined from the underlying displacement field
u that has only three different components, i.e. the "true" degrees of freedom.
Hence, there must exist some constraints that link the different components of ¢;;.
These are called St. Vénant compatibility conditions [140], that in 3 dimensions
can be expressed in the following compact notation:

Ince(r) =V x [V x €(r)]" =0 (A.9)

In what follows the corresponding 2D equations are deduced. Let’s consider

du = duy(z,y)i + duy(x,y)) = u(r) = / du (A.10)

ro

Since this integral cannot depend on the contour joining ry and r:

ou ou 0*u 0%u
du, = —2dv + —=dy; L = “ A1l
“ or " + oy 4 Oyor  Oxdy ( )
and similar for u,. Using the strain tensor notation:
Ou, Ou,, ou, Ou
or = €y = =226, = — + —2 A12
v = 5r W= 9y " 5y T (A-12)
9 (Bug) _ Begs _ 9 (Oux ) _ 9By _ OPuy
8_y(8x)_8—y_%<8y)_28x_8x2
(A.13)

286961; _ 82%
Oy Oy?

0%€1 B 2826903; B 9? Ouy '\ 826yy B 2826% B 0? ou, (A.14)
oy2  T0xdy  Oxoy \ Oz )’ ox2  “0xdy  Oxdy \ Oy '
Adding the two last equations:

Pl
/N
Q
< Lﬁ
~——
|
Qv‘ ¥
Tle
|
glo
/N
Q
HE
~—
Il

D%e %€,y D%e 0* (Ou, Ou
2 =4 Ty A5
02 T oxr ~ “ozoy  oxdy <auy * ax) (A.15)
€y
So finally
2 2 2
Dere ey 06y (A16)

Oy? ox2 T 0xdy
This relation stablish a unique relation between e and u(r). In terms of the
symmetry adapted strains:

V2 [ 9? 0? V2 [ 9? 0? 0es
St ap)o % (G ap) =20y O
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A.2.2 Energy minimization

The total free energy of the pure elastic model is expressed in terms of the sym-
metry adapted strains e;, es and es:

FT = Fnonop(el (I‘), 63([’)) + F(eg(r)) (A18)

where

Funor = [ (et + e ) an (4.19)

Due to the elastic compatibility relation explained above, one of the strains can
be expressed in terms of the other two. Since the elastic compatibility equation is
a partial differential equation, the Fourier transform of eq. A.17 allows to express
easily e in terms of e; and es:
2 2 2 2
eall) = Lt h) g - )
2\/§kxk‘y Qﬂkxky

First we need to express eq. (A.19) in Fourier space and then we will be able

(A.20)

to introduce eq. (A.20). Therefore we focus on the term [ ef(r)dr: Making
the inverse Fourier transform of e;(r) we can express it as a function of e;(k):
ei1(r) =1/(27)? [ e™~e;(k)dk. Thus, the integral can be expressed as:

[ €e(r)dr = ﬁ [dr [e*Te (k)dk [ e* Te; (K )dK'

= Gy [ei(k)dk [ e (K)dk' [ KT dy (A.21)
= ﬁ f61(k>dkfel(k,)dk/(2ﬂ'>2(5(k_|_k/) = ﬁ fel(k)el(_k>dk’

and similarly for the integral [ es(r)dr. Then, eq. (A.19) can be expressed as:

A1 Ag 1
Fonor = 5 / er(ler (M)l + / es(K)es(—K)dk  (A.22)

Now we introduce eq. (A.20):

(k24+k2) (k2-k2)
Fronor = i [ | Ares(K)en(—k) + 4 (3502 e(k) — 3P es(K))
(k24+k2) (k2-k2) (A.23)
: <2ﬁkxzyel(_k') — N%zy e2(—k))} dk

Since e1(k) is a complex variable we can do e;(k) = z(k)+iy(k). Then, e;(—k) =
e*(k) = z(k) — iy(k) and e;(k)e;(—k) = z*(k) + y?(k). Rearranging terms, we
can rewrite the energy this way:

k2 1k2)?
Fuonor = [ |k (4 + 5505 ) (@200 + 42(K)
k2+k2)(k2—k2 . )
— o 2 SR ((5(0¢) + iy ())en(—K) + (k) — (k) ea(K)) | dk + gles)
(A.24)
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1 A (k3—k7)?
B2 16 (kaky)? e2(k)

on ey. To simplify this expression we define the following functions:

where g(eg) = ea(—k)dk is a function which depends only

1A Ay (KR B 1 Ay (B2 +EH (K2 — K2
e I T = R T
(A.25)
Using these definitions we can write the energy as follows:
Fronor = [1@2(k) (¢%(k) + y*(k)) + Qs(k) ((z(k) + iy(k))ea(—k) (A.26)

+a(k) —iy(k))ea(k))] dk + g(e2)

Now we have the energy in terms only of e; and e;. Considering that e; evolves in
such a way that minimizes the free energy, we proceed to minimize the previous
expression with respect to e;. Consequently, we will be able to express e; in terms
of e5. In order to do that we have to minimize the energy with respect to the real
() and imaginary part (y) of e;:

OFnon 5 ) aF’non o) 8FHOH ” 9
OFuonop = | - (k?,‘;a e (k7)dk” = / [Wk,?;éx(k )+Wk,?;5y(k) dk” = 0
(A.27)

Doing so, and taking into account that dg(es)/0e; = 0 we get

§Fuonor = [ dK” [ dk{[2Q2(k)z(k) + Q3(k) (ea(—k) + e2(k))] d(k — k" )oz(k”)

+[2Qa(k)y(k) +iQ3(k) (e2(—k) — e2(k))] 6(k — k™)oy(k™)}
(A.28)
First, ea(—k) + ea(k) = 2R(ea2(k)) and i (ea(—k) + ez(k) = 23(ea(k)). Second,
the 0(k — k”) will anihilate the integral over k. As dz(k”) and dy(k”) are any
variation of the respective variables and 0F,,.op = 0, the coeficients of these
variations must vanish separately, i.e.:

2Q2 (k) (k) + 2Qs(k)R(ea(k))
2Q2(k)y (k) + 2Q3(k)SI(ez(k))

where we have renamed the remaining variable (k”) as k. Now, we can isolate
z(k) and y(k):

o —Q?,(k)éﬁ(ﬁ’z(k))_
W= 0w

Since e;(k) = z(k) + iy(k) we can write:

! A.29
0 (4.29)

y(k) 0:(%)

—Qs3(k)RN(e2(k . —Q3(k)S(ea(k
er(k) = QS(QZ(ISQ( D4y Q3<Q>a£)z< )

= — 2 (R(es(k)) + iS(es(k))) = =2 es (k)

(A.31)
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Finally, we can write the contribution of the non-order parameter to the total
energy in terms of the desired variable e, as:

FnonOP = I[Q2€1(k) (_ ) + Q3 (el(k)e2(_k) + 61(_k)62(k>>]dk

(k2—k2)?

(A.32)
(kak )2 €9 (k)e2(—k)dk

+ @2 16

3 2 2_7.2\2
:f [Qg(k)ez(k)@(_k)_282&;€2(k)62(—k)—|— 1 &(k:p ky) 62(1{)62(—1{)] dk

(A.33)
k) 1 Ay (k2—k2)?
AN 6 K)es(—k)dk A.34
/ ( Q) T @R 16 (k) 2R (A-34)
Taking into account the defintions of Q;(k), j = 2,3, and simplifying terms, we

get the final expression for the non-order parameter contribution to the energy:

k2~ k2
Foonop = ! Qé/ (K y) ea(k)es(—k)dk (A.35)
Cm? 2 ) (sk2wz + 420k + 12)?)

A.3 Numerical details

For completeness, in Sec. A.3.1 we present the discretized expressions for the
free energy that we have used for numerical computation. Moreover, from these
expressions we have been able to calculate the functional derivatives of the free
energy that are required for the pure relaxational dynamics used in the model.
According to this dynamics, % = 5%, where Fr = Fy, + Fg + Fionop + Iy

This is done in Sec. A.3.2. Finally, in Sec. A.3.3 we present the mathematical
method used to build the disorder function, which is Gaussian distributed and it

is spatially correlated by means of a exponential pair correlation function.

A.3.1 Discretization of the free energy

We recall that F}, Fg and Fyo,op stand for the Landau, Ginzburg and non-order
parameter energetic contributions respectively. In the following expressions we
will use i, 7, k, [, m,n for real space variables and p, ¢ for Fourier variables.

ac Ny

Z Z (ée% (4, 7) /Zeg‘(z',j) + %eg(z’,j)) (A.36)

=1 =1

i Z(( i+~ <i,j>)2+(ezu,jﬂi—ez(i,j)f)

- (A.37)
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2 2\ 2
No—1 o Ny—1 o ((fﬁﬁp) - (fTWUQ) ) ea(p, q)ea(—p, —q)
As

aN, 2 2\ 2 2
T () &)) s
(A.38)

Moreover, the discretization of the phenomenologic surface potential Fs used in
Sec. 77 leads to:

Ny Ny_l

R=C3 e o o Q,TH ealig)eai. ) (A.39)

A.3.2 Relaxational dynamics: Energy derivatives

Landau term:

5;21(?};1 = Z Z] 1 (Asea(i,5)0;0;, — Bea(i, 7)30; k051 + vea (i, )0 105,)
= a® (Agea(k, 1) — Bea(k, 1)* + veq(k, 1)°)

(A.40)
Ginzburg energy:

% = a2§ 21\;1 Z;Vyl ( (e2(i+1,7) —e2(i, 7)) (8ir1.6051 — 0i k1)
+2% (e2(i, 5 + 1) — ea(i, 5)) (65 405410 — 65 x51)) (A.41)
1) —

= Ii(4€2( (l{? +1 l) - 62(1{3 - 1, l) — 62(1{?,1—'— 1) - 62(1{3,1 — 1))

Long-range anisotropic energy:
e = o St Tt 3 () (35) U 00 (F05es00 + a0 3365 )
= e e (2) () v
- [aefm (2 a%“"f’ez(r’)) e5(k) + e2(k) 5.0 (30,0 a%e™™ r"eg(r”))]
= e S () (fw“) U o)
- [(z P 5 0) E4(K) + ea() (S @265, 0)]
= o T T (5@;) (&) U0 (@e*res(i) + ealkyate )
=g Y (&) (F) U e 1o
oo St St 3 (3%) (35) U M ea ()

(A.42)
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where we have used the notation 0y, = 0;40,;, with r = (4, j) and v’ = (k,[) and
d;k is the usual Kronecker delta. We have also used k = (p, ¢) and

(CRCT)
() (30)) s

Since U (k) = U (—k) and €} (k) = ez (—k) we make the change of variables
k — —k in the first summation so that the two summations become identical:

(A.43)

2
alNg paN q)

N,—1 Ny—1 ™ —i (2,5
65122??313 = &n? E Do <aNac) (ﬁ) eI (pg) e (1, 4)

Y

(A.44)
= 2FL[U (k) 6 (k)1 .

where F~! stands for the inverse Fourier transform with respect the variable k.
We recall that es(i,j) and ex(p, ¢) belong to real and Fourier space respectively.

Finally, we calculate in a very similar way the derivatives of the phenomeno-
logic potential Fs. We denote g(k,) = g(¢) = Q_%M
aNy

§F Ny—1 orn Oea(z’ k Oes(z’ ,—k
5oy = Cs S ay st o9k )(aié(wg)ez(x',—ky) +62(x’,ky)7§e(2(m,y)y)>

e Btk [ (B e ) it
et bt (e i )]
=C, >0 ZNy_l a27r g(ky) [(Z  aey 52@’53;7@/’) es(', —ky)

+e9 ($/> ky) (Zy// ae—ikyy"éxxlé%y//)}
=C aZNy ! a%(} g(ky) [ae™Ves(z, —ky) + ea(z, ky)ae™*vY]
a5 Zglhyactres(s,—k,) + Cua 55" Zoglly)eala, by)ae
(A.45)

We now make the change of variables k, — k, in the first summation. Taking
into account that g(k,) = g(—k,) we get the final expression:

Ny—1

O F 2 .
— 5 __C.a Z i g(q)ae™ey(m, q) = Csa27F ' [g(q)ea(m, q); q

dex(m, n)
(A.46)

Since the coefficient Cj is arbitrary, it can absorb the other remaining factors.
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A.3.3 Spatially correlated quenched-in disorder

A random variable n) (r) Gaussian distributed and spatially correlated by means of
an exponential pair correlation function is desired. That is to say, mathematically:

(n(r)n(r)) = G(lr — ') = %e—lr—r’l/k

2

and g(n) = ﬁce_;? where ¢ stands for the standard deviation of the Gaussian
distribution. Then, n(r) may be built as follows:

(k) = a/G (k) (A.47)

where « is a random variable Gaussian distributed with zero mean and unit vari-
ance, i.e. g(a) = N(0,1) and G(k) is the Fourier transform of G(|r — 1’|). The
inverse Fourier transform provides n(r) with the required characteristics®.

This can be easily seen since the autocorrelation is G(0) = (n(r)?) = 525. Then,

since (7(r)) =0, ¢ =/ (n(0)2) = (1)) = /52 ﬂ

3The way of generating a random variable of such characteristics (eq. A.47) can be generalized
to any distribution and pair correlation function [204].
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Notes about the magnetoelastic
model

B.1 Discrete Fourier transform

We have seen that the magnetoelastic model involves three long-range energetic
contributions, coming from the pure elastic, pure magnetic and magnetoelastic
energies. The nonlocal character of these terms is given through the fact that the
particular value of the deviatoric strain/magnetization at each point of the body
depends on the configuration of the strain/magnetization in the whole body. This
entails the computation of a double integral, that is of the order of N?, where N
is the number of the unit cells of the simulation cell. It is unacceptable from the
point of view of the computation time. Luckily, the order of N? can be reduced
to Nlog N by reformulating the nonlocal expressions in real space as local ex-
pressions in Fourier space. However, the numerical implementation of the Fourier
expressions may be nontrivial due to the discretization process. In the case of the
pure elastic long-range interactions, the particular expression fulfills some sym-
metry properties that make avoid any problem and therefore, this has not been
commented previously. Instead, in the case of long-range interactions coming from
the magnetoelastic coupling term as well as the magnetostatic field, Fourier trans-
forms caused these unexpected problems that made us reformulate the method of
computing such terms. In the first two sections of this appendix we analyze these
numerical problems. In this section we define the discrete Fourier transform and
show that there are some properties of the continuous Fourier transform that may
be extrapolated to discrete space only under certain conditions. In the second
section we approach the discrete computation of the magnetostatic field.

First of all, we define the continuous Fourier transform in one dimension for
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simplicity, although it can be easily rewritten in more dimensions.

FIf(2): k] = f(k) = / e () da (B.1)

and its inverse

oo
P = S = 5 [ (B2

However, for numerical purposes we work in a discrete real space, consisting
of N cells, whose positions may be defined as: + =aj; j=0...,N —1 where
a is the discretization parameter. Here, since N is finite, the Fourier transform
automatically imposes periodic boundary conditions. Then, in real space, the
total system consists of an infinite number of copies of the simulation cell, that in
turn contains N unit cells. The corresponding reciprocal space is infinite, with a
discrete set of k values, taking the values k = 2%1; [=0,..., where L = aN is the
size of the simulation cell. However, the relevant information can be restricted to
the First Brillouin Zone, from which the whole Fourier space can be reproduced.

Then, the relevant values for k are k = 27”[; [=0,...,N—1.

In this framework, we will associate j variable with real space and [ variable
with the reciprocal space. Now let us define the discretized Fourier transform as:

N
FLAGH =) =) e "9 f(j)a (B.3)
§=0
and its inverse N
F A 4] = 1) = z g () (B.4)

Once defined these transformations, we are prepared to check rigorously a couple
of properties of the continuous Fourier transform in discretized form.

B.1.1 Fourier transform of a shifted function

If we make a simple change of variables x = 2/ + b and we introduce it in the
definition of the Fourier transform we get:

FIf(z)k] = f(k) = [72 e @0 f(of 4 b)da’ = e~ [* e~ f(2/ + b)da’
(B.5)
where we can rename 2’ as . On the other hand, according to the definition eq.
(B.1) we have:

o0

F[f(x+b);k]z/_ ek f (o + b)da (B.6)

o0
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Comparing last two equations we have that
FIf(2+0); k] = ¢™F [f(2); k] (B.7)

We now verify whether this relation is also fulfilled in discretized form: Proceeding
the same way, first we make the change of variables j = j'+mn: We can do that as
n successives changes of variables j = j' + 1, so let us do it with this last change
of variables:

F) = e FUSN 2 e R (1 +1))a = e IR SN2 e IR F (5 4 1)

4o FL(0) 4 RN F(N) — e I f(N) .

Taking into account periodic boundary conditions, we have that f(0) = f(V),
and we get

1) = e Fa YN (4 ) +af (N)(1—e ) (B)

As e = 1 VI € Z, last term vanishes and we get:

)=e" NaZe U+ 1) (B.10)
Being
N-1 o
FIAG+ Dl =ad e ¥ f(j'+1) (B.11)
/=0

we get the relation we were looking for:

FLAG+ 1)1 = R () (B.12)

that is the discretized form of eq. (B.7), for b = 1. Note that it is valid when
shifting the function to another positions belonging to the discrete space, but it is
not valid when the function is shifted to a position out of the discrete space, for
instance j = j'+n/2. It occurs, for example, when computing first derivatives of a
discrete function with forward or backward differences. In these cases, derivatives
are computed in the middle points between two nearest neighbours, i.e. out of
the discrete lattice, and, if dealing in Fourier space, they cannot be shifted to
the original lattice by means of this relation. We find this kind of problem when
computing the divergence of the magnetization in order to get the magnetostatic
field.
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B.1.2 Fourier transform of a derivative

Again we will show a problem arising when computing derivatives with finite dif-
ferences methods. These are only approximations of first (forward and backward
differences), second (centered differences) or higher order in a taylor expansion
to the continuous derivatives. Hence, this feature makes that the well known
property of the continuous fourier transform of a derivative,

FIO.f(2): k] = ik f (k) (B.13)

is strictly not valid in discretized form, but only an approximation. Let us see it
for the case when computing a first derivative with forward differences. We define:

01G) _ fG+1) = f0)

5 - (B.14)
Hence, |
| 280] = LG+ 0 = L)) (B.15)
As we have seen above, we can express the first Fourier transform as:
FIFG+ 150 = % 7) (B.16)
so we get:

PO by e

Comparing with eq. (B.13), where k = 2”[ we have:
é<€'N —1)—Z—l:>€ —1_’_1%1 (B].S)

One can see that this is just a Taylor expansion up to the first order of the expo-
nential function, valid for %’Tl < 1 — [ < 1, that means long wave lengths, that is
an approximation to the continuum. Indeed, the continuum does not allow sharp
changes in f (in our case the magnetization, for instance an antiferromagnetic
configuration) but they have to be smooth (the interfaces must have a certain
width).

B.2 Magnetostatic energy

B.2.1 Mathematical expressions for the magnetostatic en-
ergy

The computation of the magnetostatic term has been object of intense research
due to its intrinsic difficulty. It may be expressed in multiple ways, each one



B.2. Magnetostatic energy 149

giving rise to its own range of ways to solve it. We have explored some of them in
order to get a general overview and thus criterium to decide which one is the most
convenient in each case. Here we review some analytical and numerical aspects
concerning this term. From B = po(H+M) and from Maxwell equation V-B = 0,
we get V-H = —V - M. From Maxwell equation V x H =0, we get H = —-V¢
Then, we obtain the so-called the Poisson equation:

Ap =V -M (B.19)

This is the equation we have to solve. Once we have ¢, by means of eq. (B.33) we
get Hy and hence we get the magnetostatic energy. To solve eq. (B.19) we will go
into Fourier space. Making use of the property F [0, f(z)] = ik f(k) this equation
transforms into:

- kemy (k) + kymy (k) + Eom, (k)
k) = —iM, Ty
o) = i K2 K2+ k2

(B.20)

Using H = —V¢ and eq. (B.20) we can rewrite the magnetostatic energy this
way:

Fis = —30 [ Ha(r)M(r)dr
= Lyto J (220, (x) + 200, (x) + 2N (r)) i

= g0 [ dr(M(r) 7 [ €™ o(k)dk + M, (r) 5 [ ™ o(k)dk
+M.(r) L [ e*¢(k)dk)

= Lo [ dr(M,(r) [ kee™ o(k)dk + M,(r) [ ke™ ¢(k)dk
+M,(r) [ k.e* ¢p(k)dk)

= Lpo [ dko(k)(ky [ My(r)e™ dr + k, [ M,(r)e™*dr + k. [ M.(r)e’*dr)
= S0 [ dkg(k) (ke My (=K) + ky My (—K) + k.M. (k)
=13 [ dko(k)p(—k) (k + & +k2) = 12 [ dk[o(k)[* (k?)

(B.21)

ot [ 00 + kM0 + kM. (o)

Ho k2
= — [ dk|M(k)-- B.22
2 (k2 + k2 + k2) 2/ Mozl (B.22)

This expression for the magnetostatic energy shows two important features: Fj,q >
0 always and Fi,s only depends on the direction of k, not on its modulus. Fjq
will vanish if the magnetization is perpendicular to the modulations, no matter
wich wave length have. Then, the ground state will be a single domain because
the exchange term prefers no interfaces. This scheme changes when dealing with
non periodic boundary conditions.
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B.2.2 Computation of the magnetostatic field

There are several ways to solve it, as for example by means of finite differences
method. Doing things this way we can find two main problems, one of storage
and another of computation speed. Let’s discuss it. In discrete form, using finite
differences the eq. (B.19) takes the following form:

Pi+1,7) + (i —1,5) + (i, j + 1)
+(i,j — 1) — 46(i, ) (B.23)
= i(Mx(Z _'_ 17.]) - Mx(zv.]> + My(lvj _'_ 1) - My(zv.]>>

We will have such an equation for every (i, ), so we will have N, x N, equations.
We can express this array of equations as a matrix equation: Ax = b where
A is a matrix and b and z are vectors. In our case, b = V-M and =z = ¢
so they are vectors of size N, x N,. A represents the A operator and has a
size of (N, x N,) x (N, x N,). Here we find the first problem: the size of the
matrix A becomes too large for sizes of the system of our interest (for instance,
N, = N, = 512). There is a way of avoiding this problem. The point is that A
has only a small amount of non-zero matrix elements (sparse matrix), so we only
have to store them. Once we have Ax = b, a way of solving this equation is doing
x = A7'b but we cannot compute the inverse A~ because this is not a sparse
matrix but has many non-zero matrix elements and hence we cannot store them.
The way of solving this problem is to find the solution of the matrix equation
not by computing A~! but with iterative methods, like the biconjugate gradient
method or the successive overrelaxation with Chevishev acceleration [162|. These
iterative methods involve too large computation times for our interests, so we will
not use them.

As we have already said, we will solve the eq. (B.19) in Fourier space. Fol-
lowing [133] we can do that as explained in eq. (B.20) but this way we find the
following problem with the k in the first Brillouin zone border: since ¢(r) is real,
due to the properties of the fourier transform, R[¢ (k)] must be even and J[¢p(k)]
must be odd. Obviously, we also know that M(r) is real, so R[M(k)] is even
and $[M(k)] is odd. Then, we construct ¢ with M(k) and k from eq. (B.20).
f(k) = k is of course an odd function, so M(k) - k will have the real part odd and
the imaginary part even. Then, multiplying it by ¢ we will have what we wanted,
that is the real part even and the imaginary odd. Let’s write this matematically:
MipeR - { ORI RN (AR 1) = RAOK

SIM(=k)(=k)] = I[M(k)K]
(B.24)
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REM(-k)(=k)] = R[iM(k)K]
N {%[ZM(—k)(—k)] = —Q[iM(k)K] (B.25)
Then,
_ Mok [ Rlo(—k)] = R[o(K)] )
= k2 = {S[qﬁ(_k)] = —S[p(k)] = ¢(r)eR (B.26)

that is what we want. It only shows us that everything is consistent. Problems
arise when we discretize these expressions and impose periodic boundary condi-
tions. At the border of the first Brillouin zone. At k, = 7/a, for instance, we
know from the eq. (B.20) that

o) = i (B.27)
and at k, = —7/a
o(k) = i, _Emm((;likljgmy(k) (B.29)

=  ¢(—7/a,k,) # ¢(r/a,k,), but periodic boundary conditions imply that
¢(—m/a, ky) = ¢(m/a, k), so we have a problem. The way to solve it, is making
the term Mk, vanish at k, = *m/a. Similarly, the term Mk, must vanish
at k, = £m/a. It is like averaging the k,,,, contribution and it makes that
the magnetostatic field due to this modulation is not well computed. This kind of
problem always arises when dealing with odd functions of k and periodic boundary
conditions. We will find it again when computing the magnetoelastic term.

A way of avoiding this problem is to compute first the V - M(r) in real space
and then to compute the fourier transform of it. Then, the scalar potential can
be written as:

_FIV-M(r)]
k2 + k2

This way we do not have to compute any odd function of k but we find the same

b(k) = (B.29)

kind of problem but in real space. Using forward differences,
VM) = (i 1) me )+ my G+ 1) = my(i,7) (B30)

The problem is that 9,m,(r) and d,m,(r) are computed in different middle points
of the lattice ((i +1/2,7) and (i, j 4+ 1/2) respectively). Of course with backward
differences we would find the same problem. Then, we are multiplying and adding
things at differents points like they were at the same. Because of that, the two
different (but obviously equivalent) ways to compute F,,, shown in eq. (6.4),
do not give the same result. As explained in the appendix, we cannot use phase
factors in fourier space to shift these points ((i + 1/2, ) and (4,7 + 1/2)) to the
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original lattice (i, 7) precisely because these points do not belong to the lattice,
i.e. the shifted length is not a whole number but a half ((i 4+ b, j) can be shifted
to (i,7) if and only if b € Z).

The simplest way of solving it, is computing V-M(r) with centered differences,
so this way we will compute both derivatives at the same point, but we will not
be able to distinguish modulations corresponding to the shortest wave length
possible in the system, i.e. the maximum k. We then find the same problem we
had when computing ¢ with eq. (B.20). Due to that we will use another way to
compute V- M(r) in real space, that avoids each problem of forward and centered
differences. This is the way used by Berkov et al. |205] and consists in what
follows: if we consider, for instance, that our spins are located at the nodes of our
lattice, i.e. at the corners of our cells, V - M(r) is computed in the center of the
cells as an average of the derivatives of the magnetization at the corresponding
four corners of that cell, like being a source or a sink of magnetization in its
corners. Matematically, it can be expressed like this:

(V ’ M(Z>])) (Z - %a] - %) - _%(mx(za‘])
+my (i, 5) —my(i,7 — 1) +my(i —1,7) —my,(i —1,j — 1))
This way we will calculate the scalar potential also at the center of the cells (points
(i—3,7—3%)). Using the same definition in eq. (B.33) in order to compute the mag-

netostatic field at the corners of the cells (points (7, j)), where the magnetization
is located, we get:

Hy(i,7) = —5=(0(i + 5,7 +3) —o(i — 5,7+ 3)
+o(i+ 5.0 —5) + 06— 5.5~ 3))
Hy(i,5) = =55 (0(i + 5,7 +5) = oli + 5,5 — 3)
+o(i — 5,7 +3) + (i — 5,5 —3))

(B.32)

Then, whatever definition we use to compute F,,s in eq. (6.4) we get the same
result because we are always multiplying factors at the same points of the lattice
and, hence, doing things in the right way.

B.2.3 The demagnetizing factor

A general solution for eq. B.19 is [47]:

sy 2 [ T [0 ) g

T A r —r/| r'|
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where n is a vector perpendicular to the surface. The first and the second terms
correspond to the contribution due to the volume and surface charge densities
respectively (V-m and m-n may be considered 'magnetic charges’). An alternative
method to solve eq. (B.19) is in Fourier space, as done in eq. (B.20). However, this
equation is useful only to solve the volume part, since the surface part corresponds
to the contribution of k = 0 and it is a singularity in eq. (B.20). In other
words, we may separate the magnetizing in two different contributions: M(r) =
M + dM(r), where M stands for the average magnetization of the system and
dM(r) corresponds to the local variations with respect to M. In Fourier space we
are only able to compute the demagnetizing field due to the heterogeneous part
IM(r).

When the magnetization is uniform in the whole body, V - m(r) = 0 and the
first term in eq. (B.33) vanishes. Then, by using H = —V¢ , the demagnetizing
field due to the remaining term can be expressed as Hy(r) = N(r—r') M (r’), where
N(r—1') is a tensor called '"demagnetizing factor’, that consists of an integral over
the surface of the body that only depends on its shape. For certain regular shapes,
like ellipses, it has an analytical expression.

This reasoning may be also applied independently to each cell of the sys-
tem [206,207|. Indeed, a coarse-grained lattice often consists of an array of cells
whithin which the magnetization is assumed to be uniform. Hence, we may com-
pute the demagnetizing factor N for each cell. If the cells are of equal shape,
as it is often the case' we have to compute N only once, and then deduce Hy
from Hgy(r) = >, N(r — r')M(r’), where the sum is over all the cells of the sys-
tem. This is a convolution (order N? in computation time) that, if using periodic
boundary conditions, can be transformed to a scalar product in Fourier space

(order Nlog N).

B.3 Non-order parameter energy: Long-range elas-

tic and magnetoelastic interactions

In the pure elastic model, long-range interactions arose from applying the Saint
Vénant compatibility equation and energy minimization to the non-order parame-
ter symmetry adapted strains e; and e3. In the magnetoelastic model, in addition
to the pure elastic contribution, the magnetoelastic coupling contains an addi-
tional contribution of e; and e3. This entails that the energy minimization with
respect to e; wich is carried out after applying the compatibility constraint must
be recalculated in order to incorporate the magnetoelastic term. Here we give the

I This is not the case of finite elements method.
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mathematical details of the calculation. Actually, we shall see that the depen-
dence of e; and es with respect to the OP e, is the same as in the pure elastic
model. We will derive also the mathematical expression for the magnetoelastic
coupling in Fourier space.

Since we will be interested in deriving F},. + Fel with respect to e; in order
to minimize the free energy, we focus only on the non-OP contribution, i.e. terms
containing only e; and e3. From now on, we will make explicit wether the strain
variables belong to the real (r) or Fourier (k) space, since we will deal with both
spaces. Instead, the magnetization m will remain in the real space all the time.
However, for the sake of clarity, we also will make explicit its dependence. Thus,
we recover the mathematical expression for the non-order parameter free energy:

Fronop = [ | Z5(m3(x) + m2(x))es(r) + Bam (r)m, (r)es(r)

(B.34)
+4Le3(r) + 42e3(r)] dr

We now rewrite the Saint-Vénant compatibility equation in Fourier space and
express ez in terms of e; and es:

(K2 + k2) (k2 — k2)
2v/2k, k, erllo) = 2v/2k, k,

Then, we introduce this expression for ez in the non-OP contribution F,0p |eq.

es(k) = e2(k) (B.35)

(B.34)| that, consequently, will become a function only of e; and the OP es.

Fronop = [ | Z5(m3(x) + m2(r))es (r) + 4 e3(r)
+B2mx(r)my(r)(2% [ e*res(k)dk (B.36)
ey (K)dk [ ey (K)dK | dr

3
2

- [% (m2(r) +m2(r)) e (r) + Ate3(r)

ik (2 1k3) (K2 —k3)
g (1), ()27 [ e (e, (1) — St ey(k) ) die

ike (k4K k2—k2 B.37
e [ % (8558019 - ém Leall) e B
iK'r (k/2+k/2 ;2
’ f e 8 (2\/74:’ k’ (k/) 2\fk:’ k:’ (k,)> dk,:| dr
Now we make fourier transforms of e;(r), i.e. ei(r) = 1/(27)? [ e e;(k)dk and

change the order of the integrals. As in Sec. A.2.2 we also use the fact that
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[ et dr = (27)25(k + k'). As e;(k) is a complex variable we can do e; (k) =
x(k) +iy(k), and, rearranging terms, we can rewrite the energy this way:
Fronor = [ | (25 J €% (m2(x) + m2(x))dr

+B, [ e m, (r)m ()drz(ljfzkk)>(:c(k)+iy(k))

k2 +k
ke (4 + 25 (0 + (1) (B.39)
2 2 2 2
LA (et h)Ue b)) (k) + iy (K))ea(—K)

T (2m)2 k2k2

+(a(k) —iy(k))ea (k)] dk + Fronop (€2)

where Fo,0p(e2) is a function depending only on es. To simplify this expression
we define the following functions:

ikr (B p (KE+k
Qu(k) = gk [ e (Bp(m2(x) + m2(x) + L5 E 5 m, (r)m, (x) ) dr

_ (k3+K3)?
Q2(k) = (271r)2 <% + 48 ey ) (B.39)

k2 4+k2) (k2 —k2

Qs(k) = _(2i)2?_§( = Ig?zgch -

Using these definitions we can rewrite the energy as follows:

Fronor = [1@Q1 (K)(x(k) + iy (k)) + Qa(k) (*(k) + y*(k))

+Qu(I) () + #yK))es () + (2(8) = iy ))ea10)] b+ Foor(ez)

So now we have the energy in terms only of e; and e;. As we only want to perform
simulations of e5 we will minimize the energy with respect to ey, so we will be able
to express e; in terms of e;. In order to do that we have to minimize the energy
with respect to the real (z) and imaginary part (y) of e;:

5 Fsonor = [ 2Limer e, (1) dk

. (B.41)
= J | S 0a(k) + e oy (k)| dk” = 0

Now we carry out these derivatives. Note that OF,o,op(e2)/0e; = 0. We get

5FnonOP = f dk” f dk{ Ql k) + 2@2(k)x(k>
£Qu(K) (ea(—K) + ea(1))] 60k — K)3r(") (B.43)
+[1Q1 (k) + 2Q2(k)y (k) +iQs(k) (e2(—k) — ez(k))[ 0 (k — k”)doy(k”)}

First, ea(—k)+ea(k) = 2R(ea(k)) and i (ea(—k) + ea(k) = 23(ea(k)). Second, the
d(k—k”) will anihilate the integral over k. As dz(k”) and dy(k”) are any variation
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of the respective variables and 0 F,,,, = 0, the coeficients of these variations must
vanish independently, i.e.:

Q1(k) + 2Qa(k)z(k) + 2Q3(k)R(e2(k)) = 0 (B.43)
iQ1(k) +2Qa(k)y(k) + 2Q3(k)S(e2(k)) =0 (B.44)

where we have renamed the remaining variable (k”) as k. Now, we can isolate
z(k) and y(k):
—@Q1(k) — 2Qs(k)R(e2(k))

z(k) = 20a(K) (B.45)

As e (k) = (k) + iy(k) we can write:

- k)—2 k)R(e2(k . —1 k)—2 k)S(e2 (k
er (k) = Q1(k) 2QQ;((k)) (e2(k)) 44 Q1( )2QQ23(§<)) (e2(k))

= 2@2 7 [—Q1(k) — 2Q3(k)R(e2(k)) + Qu(k) — 2iQ3(k)S(e2(k))] (B.47)

= — 209 (R(ea(k)) + S (ea(K))) = — L ea (k)

that is the same result that we obtained for the pure elastic case, i.e. without

taking into account the magnetoelastic coupling. Finally, we can write the con-
tribution of the non-order parameter to the total energy in terms of the desired
variables m and ey as:

Franor = [1@1e1(k) + Quer (Ker (—k) + Qs (e (K)ea(—k) + 1 (~K)ea(K)) dk
L [ SR o) () dk [ ™ my (r)my (e)dr + gl e [ SR (1) en(—k)dk
(B.48)

T Qa(k) Q2(k) Q2(k) 2

kz—ky k2 kz) ikr
+ 271)2%((@/6;32 es(k)es(—k) — (271r) 2?_}( o, e2(k) Je™ mx(r)my(r)dr] dk

- f [ Qs(k)Q1(k) 2(k) + Qg(k)@(k)@(—k) - QQg’(k)ﬁ’ (k)ﬁ’z(_k)

(B.49)
_ Q3(k) 1 Ay (k3—K5)?
=/ [(‘@3(1{) T @2 16 (hky 2 ) ez(k)ea(—k) ( |
B.50
k k (k2 ikr
~ (LB 1y B BB [ ek, ()m, (r)dr ) ex(K)| di
Taking into account the defintions of Q;(k), j = 1,2, 3, and simplifying terms, we

get the final expression for the non-order parameter contribution to the energy:

_ 1 (k2-k) As (k3—kj)
FnonOP — @2 f <8k2k2+£(:2+k2)2) 5 Y 62(k)62(_k)

N [Ag (k2+K2) fe’k‘" ( r) 4 m?

Ay

(r)) dr (B.51)

—8k kyw— [ ™ (my(r)m,(r)) dr

| S
@
)
=

——
S
~
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The first term coincides with the long-range interaction obtained in the pure
elastic case and the second one is an extra contribution due to the magnetoelastic
coupling. To simplify expressions we will use the following definitions:

Ag (k5 —K7 ) (k3417

Ae (k) = (8k2k2+22 (h2+42)?)
As(k2-k2)?
A = Y
ex(k) 2(8K2k2 4542 (K2 +42)%) (B.52)
2 12
A, (k) = — 8(k2—k2)koky

(3k2k2+43 (2+K2)2)
Therefore, the non-OP free energy can be written as follows:
Fronor = e | { Acs(K)ea()ea(—K) + [ A, (K) By [ € (m2(x) + m3(x)) dr

+ A, (k) 22 [ €™ (my (r)m, (r)) dr] 62(k)} dk

B.4 Magnetoelastic dynamics

The dynamics of the magnetoelastic model concerns the evolution of both the
magnetization m and the deviatoric strain e;. As mentioned in Chap. 6, the
former evolves according to the LLG equation and the latter according to a pure
relaxational dynamics. Since the dynamic equations lead to the configuration of
m(r) and e (r) that minimize of the total energy, both equations involve functional
derivatives of the energy with respect to the corresponding variable. Here we give
the mathematical details of the calculation of such derivatives.

B.4.1 Magnetic dynamics

We can rewrite eq. 6.9 in a dimensionless form [133]:

0
om —m X heg — am X (m X heg) (B.54)
or
where - M
e YoV
hey = —o2 = t B.55
SV Tt (B:55)

From energy minimization arguments, it can be deduced that heg can be ex-

pressed as [208]
1 OF 1 OF

he = —_— = —
! o OM poMs Om

(B.56)
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oF _ (oF 9F OF .
where - = <6mx, Dy 6m2). Introducing eq. 6.1 we get

— 1 8Fan aF‘exch 8Fms 8Fext 6E119
hEH T uoMs ( om + om + om + Om + om )
(B.57)

= han + hexch + hms + hext + hme

where h,,, hecen, hng, hey and hey; correspond to the effective fields due to the
anisotropic, exchange, magnetostatic, external and magnetoelastic terms respec-
tively. They can be expressed as:

h,, = ——MO?V[? [mo K1 (m2 +m?2) + Kym2m?2, m, Ky (m2 +m?) + Kym2m2,

m. Ky (m2 +m?2) + Kym2m?]

(B.58)
24
hegen = MO—MSQ((?Mm + Oyym + 0., m) (B.59)
By = ——H (B.60)
ms — Ms d .
how — —H (B.61)
ext — Ms ext .

The calculation of hy,, heyen and hgy is straightforward. The calculation h,,g is
more laborious and can be found in Sec. B.2.

The contribution of the magnetoelastic term to the effective field is:

1 Ofme
hes = — B.62
. ,u()Ms2 om ( )
In components:
heg, (r) = _Mo}\/ff aiiﬂ&) = _uo}\/lf [%27’]11,([')62([') + ﬁ%me(r) [ e*r A, ea(k)dk
—l—ﬁ%my(r) feikrAc?,eQ(k)dk}
(B.63)

hert, (¥) = ~ i oty = iz [_%27%(1“)62(1?) + mp A2my (1) [ e A e (k)dk
oty e () [ e Ay ea(K)dk|
(B.64)
Although our model deals with spins of three components, the magnetoelastic
coupling includes only m, and m, because m, should couple with ¢,;, being j =
x,1, z and the elastic part, in two dimensions, does not include these strain tensor
components. Hence, heg, (r) = 0.
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B.4.2 Elastic dynamics

The dynamics used for the elastic evolution is the same as in Chapter 77, i.e.

purely relaxational: % = —gTF. The functional derivatives concerning de pure

elastic part (‘5Fe) have been already computed in Sec. A.3.2. In addition, here

we have the contribution coming from the magnetoelastic coupling (‘5(1;“2“’) , whose

calculation is shown below. Let us start rewriting eq. (6.8) more explicitly:
= &f (m(r —m2(r)) eg(r)dr
+ame [ Aa&)ea(K)dk 5 [ ™ (mi(r) + mj(r)) dr (B.65)
+ﬁ [ Acy(k)e (k)dk Do [ekr mm(r)my(r))dr

In order to take derivatives of es(r)) we have to express es(k)) as a Fourier trans-
form of ey(r)):

= %f (m2 r) —m2(r)) eg(r)dr
—i—ﬁ [ Ae (K)dk [ e * " ey(x7)dr” Bt fe““( ) +m2(r)) dr (B.66)
—I—ﬁ [ Aey(k)dk [ e eg(r”)dr” B2 felkr mx( r)m,(r)) dr
Now we can take derivatives:
6(2585’) = % [ (mi(r) - mz(r)) 5(r — r’)dr
—l—(2 [ A (k)dk [ e ™ §(r” — r')dr” - felkr( ) +m(r)) dr (B.67)
W [ A (k)dk [ e~ §(r” —1')dr” - m fe’krmm(r)my(r)dr =

7 (mi(r) = mi(v)) + gz [ € Ag (K)dk 7% [ € (m(r) + mi(r)) dr
—l—(2 [ ek ACB(k)dk By felkrmx( m y(r)dr
(B.68)
Finally, making the change k — —k, we get:
Jil:(re) = % (m2(r) = m2(r))
SBE [AGF (2 ) + ()] + 25 A o) ()

where F~! denotes the inverse Fourier transformation.

B.5 Micromagnetics in spherical variables

As mentioned in chapter 6, the spherical coordinates seem to be the natural
framework within which develop the micromagnetic model. Here the mathemati-
cal details concerning the LLG dynamics in these coordinates can be found. We
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€

Figure B.1: Cartesian and spheri-

@

cal coordinates: Variables and base

vectors i

have a spin vector (m,,m,,m,). We recall the spherical to cartesian change of
variables:

m, = r cos f sin ¢; m, = rsinf sin ¢; m, =rcos¢  (B.70)

where instead of (m,., mg, mg) we have denoted (r,0, ¢) for simplicity. Cartesian
to spherical coordinates:

arctan <%) my > 0

r=\/mZ+m2+m 0 =< Zsgn(my) r=0

I

T + arctan (%) my, <0

s B.71
arctan (%) ( )

m, >0

ASE
I
B

m, =0

A/ m24+m?2
T + arctan (%) m, <0

z

Base vectors:
cos 0 sin ¢é, + cos 0 cos péy — sin Oéy

;=
) = sin @ sin ¢é, + sinf cos péy + cos féy (B.72)
k = cos ¢é, — sin ¢éy
The relations between the variables and between the base vectors of cartesian and
spherical coordinates can be easily derived from Fig. B.1.

B.5.1 Cartesian coordinates

Our first attempt consists of finding the full mathematical expression of the LLG
equation in spherical variables with respect to cartesian coordinates. As starting
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point we recall the LLLG dynamic equation:

0
a—m — —m X hg — am x (m x hg) (B.73)
-
Let us write explicitly the second and third terms:
i 7k
m X heff - my my m, - (myheffz - mzheffy)i + (mzheff:c - mxheffz)j

heffm heﬂy heffz

+ (mm heffy — my heﬂx)]%

(B.74)
Third term:
m X (m X heg) = [my(myhery — Myhems) — me(Mzhere — myher.)] @
+ [m, (myhet, — myhety) — Mg (Myhey — Myhetz)] ] (B.75)
+ [y (Mehets — Mahez) — My (My b — mhery)] k
Now we can write LLG equation in components:
O — —(myhe: — Mzhery) — & [My(Mahery — Myhes) — M (Mzhee — Mohe:)]
W = — (M hegre — Moherts) — & [Ma(Myhers — Mhemy) — Mo (Myhemy — myheg,)]
Oz — —(mghery — Myhefiz) — & Mg (Mzheiz — Mahes=) — My (Myhez — mhegy )]
(B.76)
We make the following change of variables:
m = (my, my, m,) = (cos #sin ¢, sin #sin ¢, cos ¢) (B.77)
We compute now the left side of the LLLG equation:
agn: = w = —sin@singb% + cos@cosgb%
88% = w = cos 0 sin p92 +sin900s¢g—f_’ (B.78)
O = A5 = —sin g
Thus, the LLG equation in new variables becomes: Component x:
— sin # sin qﬁ% + cos 6 cos gbg—f = —(sin @ sin ph, — cos phy)
—a[sin 0 sin ¢(cosb sin ph,, — sin O sin ph, ) — cos ¢(cos ph, — cos O sin ph., )]
(B.79)
Component y:
cos 6 sin qﬁ% + sin 6 cos (b% = —(cos ¢h, — cosOsin ¢h,)

—a/[cos ¢(sinb sin ph, — cos ph,) — cos 8 sin ¢(cos O sin Ph,, — sin @ sin ph,,)]
(B.80)
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Component z:

—sin gb% = —(cos @ sin ph, — sin fsin ph,,)

—a/[cos 8 sin ¢(cosph, — cos @ sin ¢h,) — sin @ sin ¢(sin 0 sin ph, — cos ¢h,)]
(B.81)
Now we divide eq. B.81 over (—sin ¢):

g—f = cos Ohy, — sin Oh, + afcos O(cos phy, — cos O sin ph.) (B.82)
— sin f(sin 0 sin ¢h, — cos dh, )] |

Rearranging terms we get the dynamic equation for ¢:

% = cos Oh, — sin Oh, + a[cos ¢(cos Oh,, + sin Oh,,) — sin ¢h,] (B.83)

We can also obtain the expression above by multiplying eq. B.79 by cos and eq.
B.80 by sin # and adding up the resulting equations.

Now we multiply eq. B.79 by (—sinf) and eq. B.80 by cosf. Then, we add the
two resulting equations. At the left hand side of the equation we get:

00 0 00 0 00
sin? § sin ¢p— — sin 0 cos 6 cos ¢—¢ + cos® O sin p— + cos O sin § cos ¢—¢ = sin p—
or or or or ot
(B.84)
At the right hand side of the equation we obtain:

(sin? @ sin ¢h, — sin @ cos ph,) + afsin” @ sin ¢(cosd sin ph,, — sin § sin Gh.,)

— sin 6 cos ¢(cos ph, — cos O sin ¢h. )] — (cos 0 cos ph, — cos? O sin h.,)
—afcos 0 cos ¢(sinf sin ph, — cos ph,) — cos? 0 sin ¢(cos 0 sin ph,, — sin @ sin Gh, )]
= sin ¢h, — cos ¢(sin Oh,, + cos Oh,)
+alsin? ¢(cos Oh, — sin Oh,) + cos? ¢(cos Oh, — sin Oh,,)]

= sin ¢h, — cos ¢(sin Oh, + cos Oh,) + a(cos Oh, — sin 6h,)
(B.85)

Hence, the dynamic equation for @ is:

00

5 h, — cot ¢(sin Oh,, + cos Oh,) + a csc ¢(cos Oh,, — sin Oh,,) (B.86)
-
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B.5.2 Spherical coordinates

First we calculate m in the spherical base:

~

m = my? + myj + m.k = cos 0 sin ¢(cos 6 sin ¢é, + cos 6 cos péy — sin féy)
+ sin 6 sin ¢(sin 0 sin ¢é,. + sin 6 cos ¢pé, + cos fég) + cos B(cos pé, — sin pé )
= (cos? #sin® ¢ + sin? fsin® ¢ + cos? ¢)é,+
(cos? 0 sin ¢ cos ¢ + sin” 0 sin ¢ cos ¢ — cos ¢ sin ¢)éy+

(—cos@sin¢gsinf + sinfsin ¢ cosd)éy = é,
(B.87)
Thus, as expected, m = (1,0,0) in spherical coordinates. Now, we write any
vector h = (hy, hy, h,) = (), cos 0, sin ¢y, 7, sin Oy, sin ¢y, rj, cos ¢,) with respect to
the base vectors {é,, €y, €4}

h = h,t + hyj+ h.k == 1}, cos 0}, sin ¢n(cos 0 sin ¢pé, + cos 0 cos pé, — sin Oéy)
+rp, sin 0, sin ¢, (sin 0 sin e, + sin 0 cos pé s + cos Héy)
+7p, €OS ¢y, (COs Ppé, — sin ¢é,)
= 1y, [sin ¢y, sin ¢ cos(6, — €) + cos ¢y, cos @] €, + rp, sin ¢y, sin(0, — 0)ég+
+ryp, [sin ¢y, cos ¢ cos(By, — 0) — cos ¢y sin @) e, = (hy, hg, hy)
(B.88)

In spherical coordinates the second and third terms of LLG equation are expressed
as:

m X hyg = —h¢é9 + h9é¢; m X (m X heff) = —hyéy — h¢é¢ (B89)

The first term of LLG equation can be numerically calculated to the first order

as:

om mya—my (Mg, mg,my) — (1,0,0)
- _ B.
or AT AT (B.90)

Then, LLG equation expressed in the spherical coordinate system takes the fol-

lowing form:
(my.,mg,mg) = (1,0,0) — [(0, —hgy, hg) + a(0, —hg, —hy)] AT (B.91)
In components:
m, =1 mg = (hy + ahg) AT my = (hg + ahy) AT, (B.92)

where it can be seen from the radial component that LLG equation automati-
cally keeps the modulus of the spin constant. Now we proceed to calculate the
specific expression for the effective field. For this we need to rewrite in spherical
coordinates every energetic contribution, which is done in the following.
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Exchange field (I):
Let us recall the continuous and discrete expression in cartesian coordinates:
2 2 N 82 82 R 2 5 N
b = gy [ (G + G ) i+ (e + ) 7+ (G + G ) B

= 2 [ma(i+ 1,5) + ma(i = 1,5) + ma(i,j + 1)+

+(my(i+1,7) +my(i —1,5) +my(i,5 + 1) +my(i,j — 1) —4m, (4, 5)) 1+

~

(B.93)
At this point, it can be helpful to recall that m,, m,, m. are the components of
a given spin, and therefore the value of the components are given with respect to
the origin of the given spin. These components are being calculated in spherical
coordinates. Moreover, in our system we have a vectorial field, that is a field
of spins each one located in a cell of a square lattice. Since the coordinates of
the cells and the components of the spins are independent, it is more convenient
the coordinates of the cells to be kept in cartesian coordinates (z,y, z). Accord-
ing to this, we will make explicit the cartesian spatial dependence of the spin
components, either in cartesian coordinates (my(x,y, ), my(z,y), m.(x,y)) or in
spherical ones (r(x,y),0(x,y), ¢(x,y)). In a discretized mesh (x,y) — (i, j) where
1,7 € N. Note that, although the spins are 3-dimensional vectors, the lattice is
only 2-dimensional, so that the z-component is not taken into account and all the
derivatives 0/0z, 0*/9z* will vanish.

Now we may come back to the mathematical calculus. Using eq. B.70 and
B.72:

hexen = uf—lj\élf [(Ay cosB(i, ) sino(i, )
+Aysin6(i, j) sin (i, ) + Az cos ¢(4, j)) €, + (—Aysin (i, j) + Az cos0(3, j)) éq
+ (Ay cosb(i, j) cos (i, j) + AgsinB(i, j) cos @(i, j)— —Assind(i, j)) €y
(B.94)

where
Ay =cosO(i+1,5)sinp(i +1,75) +cosf(i — 1,7)sinp(i — 1,7)
+cosf(i,j+ 1)sineg(i,j+ 1)+ cos (i, j — 1)sinp(i, j — 1) — 4dcos (i, j) sin ¢(i, )
Ay =sinf(i+1,7)sing(i+1,7) +sinf(i —1,7)sino(i — 1, 5)
+sind(i, 7+ 1)sing(i,j + 1) +sin@(i,j — 1)sing(i,j — 1) — 4sin (7, j) sin ¢(4, j)
As=cosp(i+1,7)+cosop(i—1,7)+coso(i,j+ 1)+ cosd(i,j — 1) — 4dcosp(i, )
(B.95)
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Introducing eq. B.95 in eq. B.94, we get in components:
Component é,.:

AqcosO(i,7)sing(i, j) + Aysin (i, j) sin ¢ (i, 7) + Az cos ¢(i, 7)
= sin ¢(i, j) [sin (i + 1,7) cos (0(i + 1,7) — 0(i, 7))
+sing(i —1,7) cos (0(i — 1,7) — 0(4,j)) +sing(i, j + 1) cos (6(4,5 + 1) — 6(7, 7))
+sing(i,5 — 1) cos (0(i,5 — 1) — 0(i,7))]
+cosd(i,j)(cosp(i+1,7) +cosp(i — 1,5) +cosd(i,j+ 1)+ cosp(i,j — 1)) —4

(B.96)
Component éy:

—A;sinb(i, j) + Ay cos6(i, j) =
sin (i + 1, j)[cos@(i, j)sin@(i + 1, 5) — cos (i + 1, 7) sin6(3, j)]

+sing(i — 1,7)[cos0(i,j)sinf(i — 1,7) — cos (i — 1, j) sin (3, j)]

+sin ¢(i, j + 1)[cos O(i, j) sin (i, j + 1) — cos (i, 7 + 1) sin (7, j)]

+sin (i, j — 1)[cosO(i, j)sin (i, j — 1) — cos (i, j — 1) sin6(3, j)]

+4 cosO(i, j)sin (i, j)sin p(i, j) —4dcos (i, j)sin (i, j)sino(i, j) =

=sing(i+ 1,7)sin(0(i +1,7) —0(i, 7)) +sing(i — 1,4)sin (0(i — 1, 4) — 6(3, J))
+sing(i,j+ 1)sin (0(i, 7+ 1) — 0(4,7)) +sino(i,j — 1) sin (6(,j — 1) — 0(4, 5))
(B.97)

Component é4:

Ay cos (i, j)coso(i,j) + Agsin (i, j) cos (i, j) — Assin d(i, )
=cos¢(i,7) [sing(i + 1,7) cos (0(i + 1,7) — 0(3, 7))
+sing(i —1,7)cos (0(i — 1,7) — 0(i,j)) +sinp(i, 5+ 1) cos (0(, j + 1) — 0(3, 7))
+sin (i, 5 — 1) cos (0(i,5 — 1) — 0(i,7))]
—sin (i, 7)(cosp(i + 1,7) + cos p(i — 1,7) +cos p(i, j + 1) + cos (i, j — 1))
(B.98)
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Exchange field (II):

Now we compute the exchange field another way. Starting from B.93:

Pma, 9 (Oma;\ _ 9 (9ma; 99 Oma; dp
8:(:? T Oy O T Oxy 00 Oxj 0¢ Ox;

o azmzi 50 Oma; @ + azmzi ¢ + Omaz; §2¢

T 0x;00 Ox; a0 890? 0x;0¢ Ox; P 81‘?
_ Oy (00\* Oy 09 00 | Oms g2 | Pmay (06\P| Pme, 00 0p | Oma; 0%
002 O 0000 Oxj O o0 895? 0> O 000¢ Oxj Ox; O¢p 8:(:?

(B.99)
where 7,5 = 1,2,3 and x123 = x,y, 2 respectively. As mentioned previously, we

have Om,,/0z = 0. Now let’s compute the derivatives: For m, = cosfsin ¢:

Omy

55~ = — sinfsin ¢; 85;9” = cos f cos ¢
2 2 . 2 2 i (B.IOU)
O = % = — cos fsin ¢; O — e — —sin 6 cos ¢
For m, = sin @ sin ¢:
~55 = cos 0sin ¢; g = sin cos ¢
52 2 o 92 o2 (B.101)
i = aagé”” = — sin @ sin ¢; 000 = g8 = cosfcos ¢
For m, = cos ¢:
om, _ Pm, _ Pm. _ Pm. _ 0
06 — 007 ~ 0006 0406
B.102
Im: — — sin ¢; Pme — _ cos ¢ ( )
6¢ ) 6¢2
Let’s name
Pm,,  0?m,,
he, = T B.103
o ( Ox? oy? ( )

Then, using eq. B.72 we can rewrite eq. B.93 as follows:

hey, = uoz—]é[z [hxi + hy) + hzl%} = Mfﬁz [(hy cosOsin ¢ + hysinfsin ¢ + h, cos @) €,
+ (hy(—sin @) + hy, cos ) ég + (hy cos € cos ¢ + hy sinf cos ¢ — h, sin @) é4]

(B.104)



B.5. Micromagnetics in spherical variables 167

Component é,:

hy cos@sin ¢ + hy sin@sin ¢ + h, cos ¢ = [(%)2_'_ (8_y> 4+ ( ) n (_(5) }

99
oz
: 82777,95 o7 my 8 mz
- ( cos O sin ¢ Z75" +sm€sm¢ 892 + cos ¢% g

+ [g_:cg +g ] . (COSQSIH(bamz —|—Sll’l€SlH¢ 90 +C08¢amz)
+ [% + %} . (Cgsesln(bamz +sm€sm¢ Y+ cos (bamZ)
) Mg s
) [%aﬁ + g—a—d’] : (cos@smgb‘ge% +sm981n¢aga + Cos¢gea¢>

(G () @+ (%))
(B.105)

Component éy:
‘ _ L(o0N2 . (00 | (06)\2 % 1 5%m,

—sin 0h, + cos 0h, = {(%) + <8_y) + (%) + <8—y> | —sin 0%;3 + cos §2 892
+ [giﬁ + gze} : <— sin@% +cos€ag;y) + [gi‘f + B2 } . <— sin@agf; +cos€ag;y)

90 0 | 96 0 _ 92ma 92m
+2 |:8:c8x+8y8y] ( 81n9898¢+c089898;>

—smgb(gngL )+2cos¢(gzgf+gzg—i>
(B.106)

Component é4:

hy cos 0 cos ¢ 4 hy sinf cos ¢ — h, sin ¢ = [(%)2 + <g_z>2 + (%)2 + (g—i)z] .

2 . 2 . 2
. (cos 0 cos ¢88221‘ + sin f cos ¢88;r2by — sin qbaag;fz ) +

2 . om
72] . (cos@cosgbag;” + sin 6 cos p—5" —smgbamZ>

B)
2 P
g—y‘é’} : (cos@cos gbam” + sin 6 cos ¢ 752 W sin gbamz)

2 . 8%m . 2m, \ 2 2
+2 [a—fcg—i + g—yg—z] (cos@cos ¢—%98¢ + sin 0 cos ¢—aea; — sin (75?99&;5) = (% + g—y‘é’)
(B.107)
Anisotropic field:
In cartesian coordinates:
h,, = — (m, (K m +m +K2mm
o (e (£ ( ) ) (B.108)

my (Ky (m2 +m?2) + Kom2m?2) ,m. (Ky (m2 +m2) + Kym2m?))
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In spherical variables, using eq. B.70 and B.72:
Component é,:

Pany = —ﬁ [K12(cos2 ¢ sin? ¢ + sin* ¢ sin”  cos? 0)
+ K>3 sin” f cos? 0 sin’ ¢ cos? ¢ (B.109)
= — uo?\@ [£L(sin® 2¢ + sin” ¢ sin® 20) +K>2 sin® 260 sin® 2¢ sin” ¢|

Component éy:
hano = _MOL]V[? (K1 sin® ¢(sin 6 cos® 6 — sin® § cos )

+ K> sin® ¢ cos? ¢(sin 6 cos® § — sin® 6 cos 0)] (B.110)

2sin® ¢ | K1 Kacos?¢ in3 ¢ sin 46
— 2 [ gin 49 + K220 i 49| — SIS [y 1 [, cos? o]

Component é
hang = _uo—?\dﬁ [K/(sinf cos® @ — sin® § cos 6 + 2 cos ¢ sin® ¢ sin® 6 cos? )
+ Ky sin? 0 cos? 0 sin® ¢ cos ¢(3 cos® ¢ — 1)}
= ——25 [K1+sin4f +5sin® 20 ((sin2¢ — §sin4¢) (2K, — Ks) + 252 sin® 20) |

po M2
(B.111)
Magnetostatic field:
The magnetostatic field in cartesian coordinates is computed this way:
h, = -V FIV -
#szv-m;»w(k):—% (B.112)
V-hy=-V-m ki + Kk

where 1) denotes the scalar potential and F a Fourier Transform. In 2D V - m is:

om,  0m,
‘m = B.11
V-m e + o ( 3)

In discretized form:
(V ’ m) (Z - %a] - %) = mx(za]) - m:c(z - 17]) +mx(l>] - 1) - mx(l - 1)] - 1)
+my(i,7) —my(i,j — 1) +my(i —1,j) —my(i — 1,5 — 1)

(B.114)
Finally, using B.112 we get the demagnetizing field:
hdm(l>]) = _ﬁ(w(l + %a] + %) - w(l - %a] + %)
(B.115)

ha, (i) = =52 (Wi + 5.5 +3) =i+ 5.5 — 3)
FO(i = 5.5 +3) + (i~ 5,5~ 3)
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Eq. B.113 in spherical variables:

. _ O(cosOsing) O(sinOsin ¢)
V-m= Ox + Oy

B.116
—smﬁsnub —i—(:08(9(:os¢8 +cos«951n¢ +Sin9(:os¢g—z ( )
In discretized form, we also want (V-m) (i — 1, j — 1). Then,
0
0 001.5) — 0= 1.3) + 000, 1)~ 0 — 1,5~ 1) (B.117)
x

and similarly for 00/0y, 0¢/0y and 0¢/dy. For the same purpose, sinf, cosb,
sin ¢ and cos ¢ must be computed at the center of each cell, i.e. as an average of
the magnetization at the four corners of each cell. For instance:

sm@z——, — = L(sin@(i,§) +sinO(i — 1,
( j—3)=1(sin0(i, 5) (i—1,7) (B.118)
+sinf(i,j — 1) +sinf(i — 1,5 — 1))

Once done that, then we get the scalar potential ¢ via fourier transform. Finally,
we can get the demagnetizing field:
hy = -2 — 25— _ [sin¢ <cos€?)—f + sinﬁg—j) ér

(B.119)
+ <— sin Qg—f + cos 9%—2’) g + cos ¢ <cos Qg—f + sin 9%—2’) éqJ

Magnetoelastic part (I): Magnetic dynamics

In cartesian coordinates:

hie = — e [((A+ B)mg + Cmy) i + ((=A+ B)ym, +Cmy)jl - (B.120)

where
2By B 2B,
V2’ V2

By

A= WG

AL (Kea(K)]; O = =F T A (K)ea(K))]

(B.121)
Then, in spherical coordinates:

h,. = i M2a2 [81:(12 ¢ (Acos20+ B+ Csin20)eé,

B.122
+sin ¢ (C'cos 20 — Asin26) ég +1 sin2¢ (Acos 20 + B + C'sin 26) é4] ( )
Magnetoelastic part (II): Elastic dynamics
The elastic part contains the follow expressions:
1
m2 — mz = sin? ¢ cos 20; m2 + mz = sin? ¢; MMy = 5 sin” ¢ sin 26

(B.123)
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B.6 Thermal fluctuations

We can also add a noisy term in the dynamics in order to take into account the
thermal fluctuations by means of the fluctuation-dissipation theorem. As this
term will be added to the effective field (heg,,,,, = hes + hin ), like a random field,
it will multiply the magnetization, so it will be treated like multiplicative noise.

Following Scholz |209], we can write this random field as:

v(r) 20kgT
= B.124
hth(r) Ms \/(1 + Of2) /.L()ang ( )

Here vn(r) is a random vairable, gaussian distributed, with zero mean and unit
variance. 1" is the temperature, kg is the Boltzmann constant and dr is the time
step. The other parameters have been already defined.



Appendix C

Parameters values and model units

In this appendix we expose in detail the parameter values and the reduced units
used in the models explained before. Since, actually, the magnetoelastic model
is an extension of the elastic Landau-based model, the former includes all the
parameters of the latter and, therefore, we present all of them together. The
material parameters that we chose for the simulations are taken from experimental
data for FezPdsy [33,122].

Elastic parameters

First we focus on the pure elastic part. We have four independent magnitudes
that are force (N), length (m) and temperature (K). We will use the the strain
gradient coeficient x to define the units of force (u.f.): k = 3.5306-107°N = lu.f.
We use T, to define the temperature units (u.7.): T, = 257K = 1u.T. We use ar
to define the units of length (w.l.):

ar =2.4-105N/(m*K) = 1(u.f.)/((uw.l.)*(w.T.))

_ _ lufm?K  _ [3.530610-9Nm2K _ _10-10
= lul. =1l = \/1u.T.2.4-108N = \/ ssTkediN | = 2:3925-107%m

(C.1)

The value for the standard deviation of the disorder variable 7, that is the disorder
amplitude ¢ has been chosen in such a way that the system approximately exhibits
tweed up to 100 K above the transition point, as it is stated in Ref. [33]. Moreover,
the correlation length & is chosen according to the characteristic length of the
tweed modulation. This quantitative agreement between experimental tweed in
Fe-Pd and our simulations, which has been shown in Chap. 3. The values of
the other parameters in the model units can be easily derived from the relations
above. They can be found in table C.1.

171



172 Appendix C. Parameters values and model units

Magnetic and magnetoelastic parameters

We use M; to define the units of current intensity (u.:.):

M, =1.08-10°A/m = lu.i./lu.l. = lu.i. = 1.08 - 105(A/m) - u.L.

C.2
= 1.08 - 10°A/m - 2.3925 - 10~ "9m = 2.5839 - 10~*A (C2)

The exchange parameter A has been estimated in the following way: what we
have done is to compare the form of the Heisenber hamiltonian and the form of
the exchange term of the micromagnetic model, in order to get a relation between
the interaction constant J of the Heisenberg model and our exchange parameter
A. We can obtain J through the Curie temperature Tpy.' by means of the exact
solution of Ising model in 2D. Let’s show it matematically: The hamiltonian of
the Heisenberg model is the following:

H=-J]) m; m, (C.3)
<i,j>
where 4,7 are the positions of the spins in a lattice. Rewriting m; - m; =
5 (m? + m? — (m; — m;)?) in the hamiltonian, and taking into account that m? =
1 we get:
1
H=JY (-1 + 5 (m; mj)2> (C.4)
<i,j>
Now we shift the origin of energy to absorb the constant in the hamiltonian. We
then obtain:

H= % S (m; — my)? (C.5)

<,j>

Multiplying and dividing by a” and a”® (where a is the distance between spins)

Ja” 3 (H) s (C.6)

we get:

= 2&'3 a’
<i,7>

Comparing with the discretized expression of the exchange term, we get A =
J/2a’. We also know the exact solution of the Ising model in 2D, J = kgTyrie/4
so we can obtain A from A = kgTurie/8a’, where for FeqgPdsy Toyrie ~ TH0K.
In our model the lattice constant of the material and the unit cell size are of the
same order of magnitude. Therefore, we can choose a to take one of both values.

The resulting A is of the same order of magnitude of the experimental values of
another similar materials [210-215]: A ~ 10712 — 107137 /m.

'We denote the Curie temperature as Toyre in order to avoid confusion with the low stability
limit of the high temperature phase of the martensitic transition 7.
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Experimental parameters A\j;; and Ao are related to the magnetoelastic cou-
pling parameters By and By through the following relations:

Aloo = —%% Al = —%% (C.7)
Let also remember a couple of constants used in this model:
o = 4m - 107N /A%, kg = 1.3806503 - 107*N/(m - K) (C.8)

In table C.1 we summarize the values of all the parameters in S.I. units and
in reduced units, together with the corresponding mathematical symbols.



Magnitude Symbol | Numerical value (S.I. units) ‘ Numerical value (Model units) ‘

Deviatoric elastic constant ar 2.4 - 108N /(m?K) 1T(u.f)/((u.l)?(u.T.))

Shear elastic constant A 28 - 10'° N /m? 4.5396(u.f.)/(u.l.)?
Bulk Modulus Ay 14 - 10'°N /m? 2.2698(u.f.)/(u.1.)?
Low stability limit of the high-7" phase T. 257 1(u.T.)
4th order Landau coefficient ¢ 1,7 -10"N/m? 275.62(u.f.)/(u.1.)?
6th order Landau coefficient 0 3 - 101N /m? 4.864 - 10°(u.f.) /(u.1.)?
Ginzburg coefficient K 3.5306 - 107°N 1(u.f)
Disorder’s correlation length 13 4.785 - 107 1%m 20(u.1.)
Disorder’s standard deviation ¢ 83.3K 0.324(u.T.)
Unit cell length A 4.55-107%m 1.9(u.l.)

Saturation magnetization M, 1.08 - 10°A/m 1(ui.)/(u.l.)
Magnetocrystalline anisotropy constant K, —5.2-10* N/m? —8.106 - 10~ %u.f. /(u.1.)?
Magnetocrystalline anisotropy constant K, —6.6 - 10* N/m? —1.07 - 107%u.f. /(u.1.)?

Magnetoelastic coupling parameter A100 2.1074 2.1074
Magnetoelastic coupling parameter A1l 8-107° 8-107°
Exchange parameter A 1072 — 10713 N/m? 3-(107* = 107°) u.f./(u.l.)?
Vacuum permeability Lo 47 - 107N /A2 47 -1.891 - 107 %u.f. /(u.i.)?
Bolzmann constant kg 1.3806503 - 107N /(m-K) | 42.006486 - 10~*(u.f.)(u.l.) /(u.T.)

Table C.1: Symbols and values in S.I. and reduced units of the parameters of the model.

VLT
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