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Prefa
e
For de
ades, materials exhibiting the unusual ability of re
overing large deforma-tions by means of the shape-memory e�e
t and superelasti
ity have attra
ted agreat interest due to the broad variety of te
hnologi
al appli
ations. They rangefrom medi
al devi
es (stents, heart valve tools, bone an
hors, dental ar
h wires,glass frames, et
.), to sensors and a
tuators (thermostats, 
ontrol valves) as well asmus
ular wires in roboti
s, me
hani
al aeronauti
 and underwater 
ouplings andmany others. The martensiti
, stoi
hiometri
 Ti-Ni alloy, 
ommonly known asNitinol, is 
urrently the most used shape-memory alloy due to its lasting durabil-ity (wear and 
orrosion resistan
e), repeatability and bio
ompatibility. However,nitinol exhibits large hysteresis in stress and temperature and a narrow operatingtemperature range, whi
h 
hallenges a further te
hnologi
al development. Look-ing for more appropriate working 
onditions, many other alloy families exhibitingthese smart properties have been investigated.Alternatively, doping has also been observed to substantially (and often 
rit-i
ally) modify the stability regimes of a given alloy from the stoi
hiometri
 
om-position �as well as many other aspe
ts of the transition�and arises as a goodway to explore and identify new regions of the phase spa
e that are likely to beuseful to design materials of te
hnologi
al interest. In fa
t, over the last yearsmany resear
h e�orts have been fo
used on o�-stoi
hiometri
 and doped alloys.A
tually, for de
ades it has been known that there exists a 
riti
al amount ofdoping�that depends on the spe
i�
 alloy�whi
h leads to the suppression of themartensiti
 transition. Re
ent studies in some materials like Ti and Ti-Ni basedalloysand others have revealed that the non-martensiti
 stru
tures arising in thenon-transforming 
omposition regime show glassy features with the latti
e strainas the frozen degree of freedom. Fortunately, shape memory e�e
t and supere-lasti
ity are also observed to o

ur in this regime. This expands signi�
antly thehorizons for new, promising nonmartensiti
 shape memory alloys.At a mesos
opi
 level, the �nal responsible for the management of the resultingthermome
hani
al behavior is the ferroelasti
 transition undergone by the mate-rial. This is mainly mediated by long-range elasti
 intera
tions between the 
ellsof the 
rystallographi
 latti
e. These intera
tions depend on the spe
i�
 
ell sym-iii



ivmetries as well as on the elasti
 
onstants, whi
h determine the soft dire
tions ofthe 
rystal. Consequently, the elasti
 intera
tions may be highly anistropi
 andmay 
ru
ially a�e
t the morphology of the internal mi
rostru
tures. However, this
lean des
ription partially breaks down due to the presen
e of intrinsi
 inhomo-geneities, whi
h put up energy and entropy barriers that 
ut short the long-range
orrelations, resulting in a ri
h behavior lands
ape. As mentioned, doping arisesas the main experimental tool to introdu
e deliberately a 
ertain amount of dis-order in alloys. This general s
heme points to the anisotropy and disorder asimportant ingredients in su
h systems, whi
h is the main subje
t of this thesis:How these 
ompeting fa
tors a�e
t the morphology of stru
tural patterns andthermodynami
 behavior in ferroelasti
 systems.This topi
 may be pla
ed within a more general framework 
on
erning theresear
h on systems exhibiting spatially inhomogeneous states at the mesos
ale.In a broad 
lass of fun
tional materials (in
luding high-temperature super
ondu
-tors, ioni
 
ondu
tors, 
olossal magentoresistan
e manganites, ferromagnets andferroele
tri
s), intrinsi
 heterogeneities have been observed to play a key role indetermining their properties. Sometimes the presen
e of disorder even gives riseto fruitful, entirely new properties, absent in pure materials.The thesis is organized as follows: A brief introdu
tion to ferroelasti
 materials,and in parti
ular to thermoelasti
 martensites is given in 
hapter 1. Chapter 2 isdevoted to des
ribe the model used in this work. Chapters 3-5 shows the resultsderived from 
omputer simulations of the model. In parti
ular, 
hapter 3 fo
useson the morphology of the strain stru
tures; 
hapter 4 approa
hes some aspe
tsof the thermodynami
 behavior and in 
hapter 5 thermome
hani
al behavior isstudied. Chapter 6 is devoted to a model des
ribing a magnetoelasti
 system andshows preliminary results. Chapter 7 summarizes the main results and 
on
lusionsof the thesis. Some theoreti
al mathemati
al and other details that 
an be usefulfor the reader 
an be found atta
hed in the appendi
es.



Notation
Letters in bold-fa
e type denote ve
tors
A = C44/C

′: Elasti
 anisotropy fa
tor
C: Heat 
apa
ity
C ′ = 1/2(C11 − C12) ∼ A2: Elasti
 response asso
iated to deviatori
 strain
C11 + C12 ∼ A1: Bulk modulus
C44 ∼ A3: Shear modulus
σ: Stress �eld
e1: Bulk strain
e2: Deviatori
 strain: Landau order parameter
e3: Shear strain
FL: Landau free energy
FG: Ginzburg free energy
FGL: Ginzburg-Landau free energy
Fnon-OP: Non-order parameter free energy
Fη: Disorder free energy
Fanis: Magneti
 anisotropy free energy
Fex
h: Heisenberg free energy
Fms Magnetostati
 energy
Fme Magnetoelasti
 energy
Fext: Zeeman free energy
f : Energy density
Hd: Magnetostati
 �eld, demagnetizing �eld
m: Unit magnetization ve
torMT: Martensiti
 transformationOP: Order parameterPBC: Periodi
 boundary 
onditionsSMA: Shape memory alloySME: Shape memory e�e
t
T : Temperature
Tc: Low stability limit of the high temperature phase in the 
lean limitv



vi
Tc(r): Lo
al distribution of 
hara
teristi
 temperatures due to disorder 
oupling
Ti: High stability limit of the low temperature phase in the 
lean limit
T0: Equilibrium transition temperature in the 
lean limit
β: Fourth-order Landau 
oe�
ient
γ: sixth-order LAndau 
oe�
ient
η: Disorder variable
κ: Ginzburg 
oe�
ient
ς: Transformed fra
tion
ξ: Correlation length of the disorder
ζ : Disorder amplitude
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Chapter 1
Introdu
tion to ferroelasti
ity
The ferroelasti
 transition allowing for superelasti
ity and the shape-memory ef-fe
t (SME) [1℄ 
onsists of a solid-to-solid nondisruptive phase transformation me-diated by an external 
ontrol parameter su
h as temperature or stress1. Upon
ooling the 
rystallographi
 stru
ture of the parent phase be
omes unstable giv-ing rise to a spontaneous deformation that entails a loss of symmetry so that thepoint groups of the 
rystallographi
 unit 
ells of the parent and produ
t phasesful�ll a group-subgroup relationship [2, 3℄. Due to this, the parent phase is often
alled the high-symmetry or disordered phase whereas the produ
t phase is 
alledthe low-symmetry or ordered (i.e. 
lose-pa
ked) phase. They are also termedas paraelasti
 and ferroelasti
 respe
tively for analogy with ferromagnetism. Bynon-disruptive [4℄�or displa
ive�transformation we mean that it takes pla
e by a
ooperative rearrangement of the atoms of the latti
e in su
h a way that, despitethat there is a latti
e distortion and the 
rystalline stru
ture 
hanges, there is noatomi
 inter
hange, so that the neighborhood of ea
h atom remains unalterablefrom the point of view of lo
al atomi
 order, atomi
 bonds and so on. Atomi
motion is at the most of the order of the interatomi
 distan
es, so that there isno di�usion2.1Later on it will be seen that multiferroi
s exhibit transitions indu
ed by other parameterslike a magneti
 �eld, et
.2Sometimes it is referred as military transformation, opposite to 
ivilian 
hanges, that aredominated by di�usive pro
esses. 1



2 Chapter 1. Introdu
tion to ferroelasti
ity1.1 Self-a

ommodation: Interfa
es and mi
rostru
-tureAs a 
onsequen
e of the symmetry breaking, the unit 
ell of the produ
t phasemay take multiple equivalent states, 
alled variants, that have the same 
rystalstru
ture but di�er in their mutual orientation. The number of su
h di�erentsymmetry-related variants depends on the spe
i�
 symmetry of the 
ell. In parti
-ular, su
h number is given by the ratio between the number of symmetry elementsin the high-symmetry phase and the number of symmetry elements of the low-symmetry phase [5℄.Usually, nu
leation and growth of the produ
t phase takes pla
e embeddedwithin a host matrix of the parent phase. At the phase boundaries, the latti
emis�t is a

ommodated by elasti
 strain [6℄ that, up to a 
ertain extent, is ableto hold the 
ontinuity of the latti
e a
ross the interfa
es. However, when thetransformation 
ontinues, the latti
e mismat
h may in
rease in su
h a way thatit 
annot be absorbed any more by keeping deforming the same way. Then, inorder to preserve 
oheren
y, the latti
e is for
ed to deform a

ording a variantof opposite strain, thus redu
ing the average deformation �and hen
e the totalenergy� along the wall. The re
urren
e of this pro
ess gives rise to a mi
rostru
-ture of alternating variants that is energeti
ally favorable sin
e su

eeds in makingeasier the 
ontinuity of the displa
ement �eld. The ma
ros
opi
ally undistortedplanes joining the di�erent phases are 
alled habit planes, and the me
hanism bywhi
h the strain is indu
ed to modulate in order to enable su
h invariant planesis 
alled self-a

ommodation. A
tually, this pro
ess o

urs not only at the phaseboundaries (para-ferroelasti
 interfa
es) but also at the domain boundaries be-tween di�erent ferroelasti
 variants. A s
hemati
 view of the geometri
 groundsof self-a

omodation is shown in Fig. 1.1 for a square to re
tangular transition.The modulations of�averaged�vanishing strain manage to spread out well in thebulk of the produ
t phase due to a kno
k-on e�e
t [7℄, whi
h is the essen
e of thelong-range nature of the elasti
 intera
tions. Due to the anisotropi
 nature of the
rystallographi
 
ells and to the will of the system of mantaining also a 
oherent�t of the variants along the domain boundaries, large, anisotropi
 stru
tural do-mains arise. Su
h long-range multidomain pattern is 
alled twinning, and ea
hone of the variants that make it up is 
alled twin, due to 
onsisting of at least twoequivalent strain states. Therefore, twinning is not an inherent fa
t to the phasetransition but the response of the degenerate multi-well stru
ture of the energyto 
ertain �usual� boundary 
onditions, i.e. a way for the material to redu
e itsenergy.Figure 1.2 shows two images of di�erent mi
rostru
tures, belonging to a poly-



1.1. Self-a

ommodation: Interfa
es and mi
rostru
ture 3

(a) (b)Figure 1.1: The nu
leation of the ferroelasti
 phase usually takes pla
e in a surround-ing paraelasti
 matrix. (a) A single domain is 
ompletely unfavorable, sin
e the elasti
strain required for the a

omodation would be too large. (b) A
tually, to minimize theenergy the system takes advantage of the degenera
y of the di�erently oriented variantsand a

omodates by alternating twins. This me
hanism allows for a ma
ros
opi
allyinvariant plane and zero volume net 
hange. In parti
ular, in the square to re
tangulartransition depi
ted here, the domain boundaries are properly oriented parallel to [11℄dire
tion due to the spe
i�
 
rystallographi
 symmetries. Noti
e that additional mi
ro-s
opi
 strain is needed to 
oherently mat
h the di�erent phases in the phase boundariesparallel to [1̄1℄ dire
tions. This also 
ontributes to determine the resulting stru
ture.
rystalline sample of tetragonal Ni54Mn25Ga21 (a) and a sample of mono
lini
Pb3(VO4)2 (b). In both 
ases, the mesos
opi
 geometry of the domains is deter-mined by the 
oheren
e between twins, whi
h in turn is strongly in�uen
ed by the
rystallographi
 symmetries. In 
ase (a), tetragonal symmetry leads to paralleltwin bands whereas in (b) mono
lini
 symmetry also gives rise to star patterns.Furthermore, it is worth mentioning that twinning allows for a mi
ros
opi
allydeformed material that does not exhibit ma
ros
opi
, net 
hange of shape, whi
his at the origin of the SME. This is s
hemati
ally shown in (i) and (ii) of Fig. 1.3.Experimentally, it has been observed that twins exhibit a 
hara
teristi
 width lwhi
h s
ales well as l ∝ √L, where L is the longitudinal size of the transformedregion [10�12℄. This relationship has been also obtained theoreti
ally as the resultof the energeti
 
ompetition between the interfa
ial 
ost of the twin boundariesand the self-a

omodation pro
ess that favors a periodi
 twinning with a largewave number. The lowest-energy 
on�guration resulting from the balan
e betweenthese two 
ontributions 
onsists pre
isely of twins of equal width ful�lling therelation above.However, often this is not the 
ase. The a
tual mi
rostru
ture of a givenferroelasti
 material depends on the spe
i�
 
omposition, spe
imen size, grain



4 Chapter 1. Introdu
tion to ferroelasti
ity
0.07µm

(a) (b)

Figure 1.2: (a) TEM bright �eld image at room temperature of twinned mi
rostru
-ture with parallel domain boundaries yielded from a 
ubi
-to-tetragonal transition inNi54Mn25Ga21. Extra
ted from Ref. [8℄. (b) TEM image of a twinned mi
rostru
tureswith parallel bands and star patterns originated from a rhombohedral-to-mono
lini
transition in Pb3(VO4)2. Extra
ted from Ref. [9℄.size, history, external 
onditions, 
oupling with other magnitudes like magneti
�elds, et
., and may be of high degree of 
omplexity. The length s
ale of twins maygo from few nanometers to tenths of milimeters [13℄. Selfsimilar patterns �twinswithin twins, et
.� have also been observed. Poly
rystals show also a 
oexisten
eof variants with multiple length s
ales, et
.1.2 The shape memory e�e
tPerhaps, the most relevant aspe
t related to ferroelasti
ity is the so-
alled SMEthat refers to the ability of a material to re
over its original ma
ros
opi
 shapeupon heating after being notably deformed by applying an external stress �eld. Itis based on the fa
t that the ferroelasti
 variants 
an be easily swit
hed from oneto another by means of a stress �eld. Again, the 
rystal takes advantage of thedegenerate multi-well nature of the energy sin
e domain swit
hing is an energeti-
ally free way for the material to 
hange its shape, whereas a latti
e deformationis 
ostly. In parti
ular, upon loading below the transition, the material presents a�rst elasti
 stage where the 
rystallographi
 
ells undergo a low re
overable defor-mation so that they be
ome slightly stret
hed a

ording to the spe
i�ties of the�eld. However, when the stress �eld rea
hes a 
ertain value, the system undergoesa large deformation, with strains up to 10%, for instan
e, in Ti-Ni. If the stress�eld is in
reased further, the system retakes (retoma,repren) the elasti
 regimeuntil rea
hing the plasti
 regime, and fra
ture.A
tually, what it happens during the high-response stage is that the spe
i�
dire
tion of the stress �eld favors the 
oherent growth of one of the variants to thedetriment of the others, by moving the domain boundaries (i.e. energy barriers)
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t 5existing among them. The growth of the sele
ted variant entails a 
orresponding
hange in the ma
rosopi
 shape of the spe
imen, that be
omes maximum whenit rea
hes the single variant state. Sin
e any of the ferroelasti
 variants is sta-ble at the produ
t phase, this stru
tural 
on�guration survives when the �eld isremoved, thus not re
overing the multidomain original state. From this point ofview su
h deformation 
an be labeled as a plasti
 one. However, it is said to beapparent be
ause it is not plasti
 in the usual sense: ideally, there is no 
reationand/or motion of dislo
ations, et
, and the original ma
ros
opi
 shape 
an bere
overed upon heating. Therefore, it has been 
alled a pseudoplasti
 deforma-tion. Due to the group-subgroup relationship between the phases, upon heatingany ferroelasti
 variant transforms ba
k to the same unique variant of the parentphase. Thus, to a large number of possible multidomain 
on�gurations and shapesof the produ
t phase 
orresponds only a single parent phase 
on�guration. Thismakes the ferroelasti
 transition to be 
rystallographi
ally reversible and allowsfor re
overing the original ma
ros
opi
 shape, i.e. the SME. An s
hemati
 repre-sentation 
an be found in Fig. 1.3. Starting from a ferroelasti
 twinned stru
ture(ii), the ma
ros
opi
 shape 
an be pseudoplasti
ally deformed upon loading dueto domain swit
hing (iii). Upon unloading, the system remains unaltered and,�nally, upon heating the paraelasti
 phase is rea
hed with the initial shape (i).It must be pointed out that in pra
ti
e, although the �nal state is ideallyunique, the retransformation paths that the system 
an undertake may lead tothe 
reation of defe
ts that moves the �nal state away from the shape-re
overedone. Then, what is desirable is the forward and ba
kward transformations tofollow the same path forth and ba
k. With respe
t to this, long range order helpsto keep a single path for both dire
tions of the transition, that results in a smallhysteresis in temperature [14℄.Let us mention the two-way SME (opposite to the one-way SME explainedabove), a

ording whi
h upon heating and 
ooling the system 
an re
over thesame low temperature, twinned mi
rostru
ture. This is due to the fa
t that in theferroelasti
 phase defe
ts 
luster at the twin boundaries. Upon heating, twinningdisappears but defe
ts may remain at rest mu
h more time in su
h a way thatupon 
ooling the 
lusters of defe
ts a
t as pinning 
enters for new twin boundaries,thus resulting in the same previous mi
rostru
ture. In fa
t, samples 
an be trainedby thermome
hani
al treatment in order to quen
h defe
ts at 
ertain sites wherenu
leation and/or growth of spe
i�
 ferroelasti
 variants o

ur. All this makeseasier the 
rystallographi
 reversibility and hen
e the two-way shape memorye�e
t. This reversible 
ooling-heating path 
orresponds to (i)↔(iii) in Fig. 1.3.
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(i) Austenite (ii) Twinned martensite (iii) Deformed martensite

Macroscopic view

Microscopic viewFigure 1.3: S
hemati
 representation of the mi
rostru
tures that ferroelasti
 materi-als exhibit under di�erent 
onditions, a

ompanied by the 
orresponding ma
ros
opi
shapes. This allows for the shape-memory e�e
t and superelasti
ity.1.3 Superelasti
ityThe ferroelasti
 transformation 
an be also indu
ed by applying a stress �eld. Theloading pro
ess starting from the paraelasti
 phase is apparently similar to thato

urring from the ferroelasti
 phase: After the usual elasti
 regime, the systemundergoes a large deformation until �nally rea
hing a single variant mi
rostru
-ture. Nevertheless, the underlying me
hanisms governing the high-response stageare essentially di�erent. As mentioned in the previous se
tion, in the ferroelasti
phase the me
hanism is the domain swit
hing whereas in the superelasti
 regimethe material transforms stress-indu
ed to the ferroelasti
 phase. Note that, in 
on-trast with the temperature-indu
ed transition, no twinning is obtained as a resultof the stress-indu
ed transition, sin
e all the 
rystallographi
 
ells are strained a
-
ording to the applied stress �eld and no self-a

ommodation pro
ess takes pla
e.Fo
using on the superelasti
 behavior, when removing the stress �eld the sys-tem transforms ba
k to the parent phase so that the unit 
ell (i.e. the wholesystem) re
overs its initial shape. Su
h ability is 
alled pseudoelasti
ity and,more re
ently, also superelasti
ity. In Fig. 1.3, superelasti
ity 
orresponds tothe same path as in the 
ase of the two-way SME [(i)↔(iii)℄ although now thispath is rea
hed upon loading-unloading. The 
riti
al stresses upon and belowwhi
h the material undergoes the forward and ba
kward stress-indu
ed transi-tions respe
tively are di�erent due to the existen
e of metastability regimes, sothat the system exhibits hysteresis that be
omes larger as the temperature of thezero-stress transition is approa
hed.



1.4. Inhomogeneities 7It is worth highlighting the 
ross-s
ale response between di�erent levels oforganization that play a relevant role in the properties mentioned above. Thus,ma
ros
opi
 properties like SME and superelasti
ity lie on the mesos
ale twinnedmi
rostru
ture, that in turn is 
ru
ially a�e
ted by the 
rystallographi
 symmetryproperties on the mole
ular s
ale.
1.4 InhomogeneitiesIn a broad sense, by inhomogeneities we understand any physi
al magnitude inthe material that is not uniform through it. Up to now, the only example ofspatial heterogeneities in 
rystals that we have seen is twinning, that 
omes from�nite-size and shape e�e
ts and that turns out to be behind the SME that hasmany important appli
ations [15℄. In fa
t, spatial inhomogenities in materialsare of great interest sin
e often they are known to play a 
ru
ial role in 
onfer-ing them relevant and/or useful properties, from both physi
al and te
hnologi
alpoints of view. Nevertheless, twinning 
an be interpreted approximately as a uni-form periodi
 modulation of the strain. In that sense, an intuitive, maybe moreappropriate de�nition of inhomogeneity should in
lude the presen
e of some kindof randomness, i.e. more related to the meaning of disorder. Pre
isely, as it is wellknown, materials (spe
ially alloys) are 
hara
terized by the presen
e of intrinsi
,random disorder that 
annot be removed, sin
e it is a 
onsequen
e of imperfe
tpreparation and treatment of the samples.More spe
i�
ally, stru
tural inhomogeneities refer to any latti
e imperfe
tionthat move the 
rystal away from the pure, regular Bravais latti
e [16℄. Somelatti
e points 
annot be obtained by a translational operation of the Wigner-Seitz 
ell but they are singularities su
h as point defe
ts like impurities 
omingfrom 
ompositional �u
tuations, va
ants, interstitial atoms, substitutional atoms,et
., line defe
ts like dislo
ations, et
. Alloys should be mentioned as one ofthe prominent examples 
ontaining inherent disorder, in form of 
ompositional�u
tuations. Moreover, disorder may be easily in
reased by means of 
hanging theper
entage of ea
h element through o�-stoi
hiometri
 
omposition or doping withan extra element. Some experimental studies have approa
hed the distribution ofdoping through the material. It has been found that doping prefers to substitutethose atoms with whi
h shares more similarities from the point of view of ele
troni
a�nity, size, et
., although it is 
lear that it does not entail any order in thematerial.
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tion to ferroelasti
ity1.4.1 E�e
ts on stru
tures and thermodynami
 responsesBesides the mentioned e�e
t of a
ting as pinning sites for twin boundaries, thepresen
e of impurities may of 
ourse a�e
t any physi
al variable, that indeed es-sentially depends dire
tly on the spe
i�
 
omposition of the material. In general,disorder has been found to have many di�erent e�e
ts on materials [17℄. In par-ti
ular, it is worth mentioning two e�e
ts whi
h are of our interest: First, thepresen
e of impurities may result in a rounding of phase transitions [18℄, movingaway from the sharp 
ase in the ideal 
lean limit (i.e. in absen
e of disorder), andgiving rise to multiphase 
oexisten
e well above and below the transition point.Se
ond, and intimately related to the �rst, disorder may ere
t lo
al free-energybarriers in su
h a way that the total free-energy of the system 
an adopt a bumpypro�le with many degenerated and nearly degenerated low-energy states that,however, in general do not 
orrespond to the global minimum of energy, if it stillexists [17℄. Eventually (and also often), disorder may lead the system to freeze inmetastable states and even exhibit glassy features, as will be seen later.Despite that impurities have a lo
al 
hara
ter, the stress �eld that is 
reatedaround them may a�e
t global physi
al magnitudes mediated by long-range in-tera
tions. A
tually, a great amount of papers has been devoted to study thein�uen
e of doping, i.e. o�-stoi
hiometry 
omposition in thermodynami
 prop-erties. In general, it is observed that impurities blur the transition, resulting inanomalies in the spe
i�
 heat like softening and shift of the peak towards lowertemperatures, 
hanges in the baseline, power-law singularities, et
. Indeed, a morea

urate sample preparation and annealing results in a de
rease and even remov-ing of the anomalies. With respe
t to this, anomalies in Cp have been proposedto be an indi
ator of the level of dopant in a material. Also, impurities havebeen observed to modify the elasti
 
onstants of the material. As said, materials
an be very sensitive to the presen
e of impurities, so that the phase diagramsstrongly depend on the level of doping. Slightly 
hanging the relative weight ofea
h element in an alloy 
an result in a large shift of the transition temperatureor even inhibition of the transformation. Consequently, the onset temperatureabove whi
h superelasti
ity may be obtained by applying a stress as well as the
onditions under the SME may take pla
e are 
ru
ially a�e
ted by the spe
i�

omposition of the material [19�24℄.1.4.2 Pretransitional e�e
tsPretransitional e�e
t refers to any phenomena o

urring in a system that warnsof the proximity of a phase transition. Although the abrupt nature of �rst-ordertransitions is in prin
iple 
ontradi
tory with these e�e
ts, they are often observed



1.4. Inhomogeneities 9
44C

C’

Figure 1.4: (a) and (b): Dependen
e of C44 and C ′ on temperature in Fe70Pd30.Typi
ally, C ′ softens signi�
antly whereas C44 not. This leads to an in
rease of theelasti
 anisotropy A = C44/C
′. From Ref. [27℄. (c) Di�use streakings in sele
ted areafrom ele
tron di�ra
tion pattern Ni43.8Mn42.4Ti13.8. (d) Detail of (c). From Ref. [28℄.in SMAs already well above the transformation. Prominent examples are thesoftening of both the TA2 phonon bran
h3 and C ′ elasti
 
onstant upon 
ooling [2℄,related to an in
ipient instability of the parent phase. In fa
t, this will provide thesystem with easy 
hannels to develop the on
oming transition. 4 In the di�ra
tionpattern, the phonon and C ′ softening leads to di�use s
attering [26℄. Softening of

C ′ in Fe-Pd and di�use s
attering for Ni-Mn-Ti are shown in Fig. 1.4.A pretransitional e�e
t involving some strain is termed pre
ursor. The phonons,i.e. random �u
tuations of the atoms of the latti
e, have a typi
al relaxation timeof the order of 10−12s. This prevents su
h �u
tuations to be observable by any ex-perimental te
hnique. However, sometimes these �u
tuations might 
ouple withdefe
ts of the latti
e, whose lifetime is theoreti
ally unlimited. This 
ouplingleads to �u
tuations whose relaxation times are mu
h longer than the free ones,giving rise to long-lived mi
rostru
tures that are termed embryos. Additionally,the mentioned softening of 
ertain elasti
 
onstants make su
h strain �u
tuations3O

asionally, at a 
ertain nonvanishing wave ve
tor the TA2 phonon bran
h also showsan anomalous dip, asso
iated with satellites in the di�ra
tion pattern [25℄. Moreover, thisdip be
omes more pronoun
ed as the transition is approa
hed. In the some ferroelasti
s, thesoftening of the anomalous phonon is only partial and is not su�
ient to 
ause the transition,that in this 
ase is dominated by an homogeneous stress-free distortion. By 
ontrast, in othersthe transition takes pla
e pre
isely when the energy of the anomalous phonon vanishes [5℄.However, the origin of this anomaly still remains un
lear.4Some pretransitional e�e
ts are, however, observed independently of an o

urren
e of a phasetransition. Whether the su
h e�e
ts announ
e the transition or simply they o

ur independentlyof it, is a
tually a 
urrent dis
ussion. It seems not to obey a general law but to depend on thespe
i�
 
ase. In general, martensiti
 transitions do not require pretransitional e�e
ts but if theyo

ur, the transformation may be a�e
ted, for instan
e, in the spe
i�
 pathway.
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tion to ferroelasti
ityprefer to 
orrelate a

ording to the 
orresponding soft dire
tions of the 
rystal.Although the magnitude of the strain is so low that it 
annot be 
onsidered as aphase 
oexisten
e, the o

urring symmetry breaking anti
ipates the new latti
esymmetries of the produ
t phase [29℄.Murakami et al. [30℄ have suggested that the morphology and in parti
ularthe dire
tionality exhibited by the resulting pretransitional stru
tural pattern de-pends on the elasti
 anisotropy fa
tor A of the material. For a 
ubi
 system inparti
ular, it is de�ned as A = C44/C
′ where C44 and C ′ denote elasti
 
onstantsasso
iated to shear and deviatori
 stresses respe
tively. A

ording to this, it hasbeen observed that materials with low A, like Ti-Ni, exhibit embryos of almostspheri
al shape (mottled stru
ture) whereas materials with high A are observedto exhibit a typi
al stru
tural pattern 
alled tweed5 [31℄, wi
h is a modulation inthe strain 
onsisting of striations parallel to the tra
es of {110} planes appearingat intervals of few nanometers.6 Cu-Zn-Al, for instan
e, exhibits tweed only in thevi
inity of the surfa
e (not in the bulk as in Ni-Al) and it has been attributed to ahigher A for this region than for the bulk. This is believed to o

urr be
ause theobserved high 
on
entration of atoms of Zn and Al in the surfa
e might raise thetransition temperature, whi
h is related to a lower C ′ 
onstant [32℄. A 
omparisonbetween the values of the elasti
 anisotropy between di�erent alloys is given intable 1.1. It 
an be seen that Ti-Ni and Ti-based alloys show a parti
ularly lowvalue of A 
ompared to other alloys. Altough all of them exhibit softening of C ′when de
reasing the temperature, tweed is only reported in those alloys with ahigh value of A.It is a

epted that, at very high temperatures, due to thermal �u
tuationstweed appears to be dynami
 [7, 33℄ in the sense that 
annot be observed byany imaging te
hniques but the di�use streakings in the Bragg peaks reveal theexisten
e of su
h �u
tuations. As the temperature is lowered, thermal �u
tuationsde
rease and tweed 
an be 
onsidered to be stati
 from the point of view of thelaboratory time s
ale so that it 
an be 
aptured [33℄, for instan
e, by transmissionele
tron mi
ros
ope (TEM) te
hnique. Generally, on further 
ooling below thetransition point, any pretransitional strain pattern usually evolves toward themore 
oarsened transformed twinned stru
ture of larger strain. Nevertheless, if,as menioned above, high defe
t 
on
entration leads to inhibit the ferroelasti
transition, the 
oarsening of the domains is prevented and the pretransitionalpatterns may survive even down to 0 K [34℄.5Tweed refers to the typi
al s
ottish textile pattern.6Although the pre
ise periodi
ity in the tweed stru
ture depends 
riti
ally on the imaging
onditions, there exists a general agreement in that it is on the s
ale of ten to hundreds of latti
e
onstants.



1.5. Martensites 11Alloy Softening of C' A Tweed Ref.Fe70Pd30 yes ∼ 15 yes [27℄Ni62.5Al37.5 yes ∼ 9 yes [30℄Cu-Zn yes ∼ 11 yes [35℄Cu68Zn16Al16 yes ∼ 14 yes [32, 36℄Cu-Al-Ni yes ∼ 13 - [37℄Au-Zn-Cu yes ∼ 12− 20 - [37℄Au-Cd yes ∼ 11− 14 - [37℄Ni2MnGa yes ∼ 23 yes [38, 39℄Ti49.7Pd43.8Cr6.5 - ∼ 3.6 weak [40�42℄Ti50Ni50 yes ∼ 2 no [37℄Ti50Ni48Fe2 yes ∼ 2 no [30℄Ti50Ni40Cu10 yes ∼ 2.4 - [37℄Ti50Ni30Cu20 yes ∼ 2.8 - [37℄Table 1.1: Comparison of elasti
 anisotropy values for several SMAs (Values nearthe transformation temperature). The existen
e of softening in C ′ and tweed is alsomentioned, together with the 
orresponding referen
es. Dash symbol means that the
orresponding feature is unknown for the spe
i�
 alloy (at least to us).1.5 MartensitesMartensites refer to those materials undergoing a di�usionless �rst-order7 stru
-tural phase transition that are dominated by a shear or 
ombination of shears [44℄.Hen
e, it is 
lear that they are good 
andidates to be ferroelasti
. In martensitesit is 
ommon to refer to the high-symmetry phase as austenite and to the low-symmetry one as martensite itself. From the point of view of the magnitude of thespontaneous strain, three 
lasses of martensites 
an be identi�ed: M1, M2 and M3involving small, moderate and very large strains respe
tively. Moderate and largestrains 
an involve atomi
 displa
ements of the order of the unit
ell dimensionsin su
h a way that they 
an entail important 
hanges of symmetry. For instan
e,new symmetry elements 
an appear that break the group-subgroup relationshipbetween the phases and the transformation loses reversibility. Moreover, in M3martensites the transformation o

urs explosively (
alled the burst e�e
t [4, 43℄)in su
h a way that the transformation is morphologi
ally irreversible. The elasti
strains are not able to remove the large internal stresses during the transition butthe material undergoes a notable plasti
 (i.e. non-re
overable) plasti
 deformation,with many latti
e imperfe
tions. All this prevents su
h 
lass of martensites fromexhibiting the SME. Instead, in M1 
lass the nu
leation and growth of martensiti
7In fa
t, a martensiti
 transition 
an also be se
ond order, when, for instan
e, 
ouples toother se
ond order transitions, like ferromagneti
 transition [43℄.
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tion to ferroelasti
itydomains are observed to o

ur thermoelasti
ally, that means that at ea
h step ofthe transformation, the system is in thermoelasti
 equilibrium. It is given by alo
al balan
e between the driving for
e originated from the di�eren
e between freeenergies of the two phases and the elasti
 energy [45℄. This makes the transitionbe reversible. Su
h 
lass of martensites is pre
isely that displaying the SME.The martensiti
 transition (MT) pro
ess o

urs in sudden jumps, giving riseto an avalan
he-type dynami
s. At ea
h jump the partial transformation o

ursinstantaneously, in 
omparison with laboratory time s
ales. Thermal �u
tuationsare not the triggering fa
tor leading up to the transition. In order the material tokeep transforming it needs to be 
ontinuously driven by an external �eld, eitherthe temperature or a me
hani
al stress. In that sense the temperature a
ts asan external 
ontrol parameter. A
tually, the long-range 
hara
ter of the elasti
intera
tions supresses the otherwise de
isive role of the 
riti
al �u
tuations, thusmaking the transition athermal [46℄.The 
omplete temperature-indu
ed forwardtransition (austenite to martensite) takes pla
e between two temperatures 
alledmartensite start (Ms) and martensite �nish (Mf ) whereas the ba
kward transition(martensite to austenite) o

urs between the austenite start (As) and austenite�nish (Af ) temperatures.MTs have been observed in a wide range of materials like metals, alloys, 
eram-i
s and even biologi
al systems [13℄. Here we will fo
us in martensites exhibitingSME like several iron-based alloys, Ti-Ni-based alloys, Heusler alloys, Ni-Al andmany others. For simpli
ity, from now on, MT will refer ex
lusively to this 
lassof martensites exhibiting SME.1.6 Ferroi
s and multiferroi
sFerroelasti
ity shares many features with other phenomena like ferromagnetism[47,48℄ and ferroele
tri
ity [49℄, where magnetization and polarization play the roleof the strain respe
tively. All of them have in 
ommon the existen
e of a physi
almagnitude (those just mentioned) whi
h takes spontaneously nonvanishing valuesbelow a 
ertain temperature due to the existen
e of a phase transition from a high-symmetry, disordered phase to a low-symmetry, ordered phase, whi
h shows long-range patterns su
h as magneti
/polarized domains, et
. These patterns originatefrom a 
ombination between a degenerated multiwell energy pro�le, long-rangeintera
tions of dipole-dipole type de
aying with distan
e as 1/r3 and geometri

onsiderations of the system su
h as the symmetries of the underlying latti
e,size and shape e�e
ts, interfa
es, et
. It is worth mentioning that the squareroot s
aling relationship between the domain stripe width and the produ
t phase
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s and multiferroi
s 13size observed in ferroelasti
s also holds for both ferromagnets and ferroele
tri
s.Moreover, other dynami
al-geometri
al relations have been found [50℄.Also, at low temperatures the response of su
h systems to the 
onjugatedexternal �eld forms a 
hara
teristi
 �eld-variable hysteresis loop, resulting froman easy domain swit
hing. Despite the evident di�eren
es among these systems8,the interesting parallelisms in their underlying physi
s make them to be broughttogether under the more general name of ferroi
s [4℄.It is 
lear that the mi
ros
opi
 origin of the di�erent ma
ros
opi
 pysi
al vari-ables lies in the same underlying bri
ks 
onsisting of the fundamental ele
tromag-neti
 intera
tions It is therefore expe
table the various physi
al magnitudes to be
oupled to a 
ertain extent. Many times this 
oupling is weak and therefore it islogi
 to treat su
h variables independently as above. However, a strong 
ouplingamong them is often observed ma
ros
opi
ally in su
h a way that some materialsexhibit a relevant 
ross-variable response: for instan
e, the ele
tri
 �eld 
an a�e
tthe magnetization as well as the magneti
 �eld a�e
ts the polarization, whi
h is
alled magnetoele
tri
 
oupling.9 An immediate 
onsequen
e of this 
oupling arethe mixed-variable patterns, and the possibility of 
ontrolling the 
orrespondingma
ros
opi
 physi
al properties by di�erent external �elds has led to an impor-tant te
hnologi
al interest.. Magneti
 twins depend on stru
tural twins, and vi
eversa, and, 
onsequently, a stru
tural variant 
an be swit
hed by a magneti
 �eld.Magnetostri
tion [51℄ and the magneti
 SME [52℄ are 
hanges in volume and shapeby means of an external magneti
 �eld. Also, magneto
alori
 e�e
t is observedto be enhan
ed when it is a

ompanied by a stru
tural transition. Colossal mag-netoresistan
e (CMR) e�e
t [53℄ refers to dramati
 
hanges in 
ondu
tivity dueto the presen
e of a magneti
 �eld. Materials exhibiting 
oupling between dif-ferent variables are 
alled multiferroi
s [2℄. A visual s
heme a

ounting for this
ross-variable response is shown in Fig. 1.5.Many properties in materials have been observed to be very sensitive to thepresen
e of inhomogeneities, and the 
ross-variable 
oupling exhibited by multi-ferroi
s enhan
es 
onsiderably the range of phenomenology. Nowadays su
h inho-mogeneities are even well nourished with the aim of improving known propertiesor dis
overing novel ones10. It is well known that the gap in semi
ondu
tors ap-pears when the system is 
onveniently doped. CMR only o

urs when two phases(metal and insulator) are in 
ompetition [55�57℄. Polar nanoregions signi�
antlya�e
t the stru
tural properties in relaxor ferroele
tri
s and it has been suggested8Note that, for instan
e, strain is a se
ond-rank tensor whereas and magnetization is of �rstrank.9A
tually, the magnetoele
tri
 
oupling is mediated by strain.10Of 
ourse, many times this is not the 
ase, being the disorder an in
ovenient for the desiredproperties.
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Figure 1.5: Coupling betweendi�erent magnitudes gives rise toa 
ross-variable response in multi-ferroi
s. Extra
ted from Ref. [54℄.to 
ontribute to the ultrahigh piezoele
tri
 e�e
t observed in these materials [58℄.Semi
ondu
tors, ioni
 
ondu
tors, high-Tc super
ondu
tors, 
olossal magnetore-sistive (CMR) materials [59, 60℄, ferromagnets [61, 62℄ and ferroele
tri
s [63℄ areonly few examples whose behavior lies in the presen
e of inhomogeneities.Also, nanos
ale pre
ursor modulations are not ex
lusive to ferroelasti
 systems,but instead they o

ur in a broad 
lass of ferroi
 materials in
luding ferromag-neti
 [61℄ and ferroele
tri
 materials [63℄. Thus, ferromagneti
 nano
lusters in theparamagneti
 phase, 
alled Gri�ths phase, are known to o

ur in systems withquen
hed disorder. [64, 65℄. The spe
i�
 symmetry properties of the anisotropydetermine the sele
ted pattern. High anisotropy pretransitional stripe-like puremagneti
 patterns, observed for instan
e in Co-Ni-Al [61℄, have been labelled asmagneti
 tweed by analogy with stru
tural tweed [62, 66℄. Cross-hat
hed magne-toelasti
 tweed resulting from the 
oupling between elasti
 tweed and magneti
degrees of freedom has been also observed [66℄. Moreover, all these pretransitionaltextures are a

ompanied with anomalies in sus
eptibilities and other responsefun
tions.1.7 Brief introdu
tion to glassesAlthough the glass phenomenon was in prin
iple far from ferroelasti
ity, in aseries of re
ent experiments [20, 34, 67�73℄ glassy behavior has been dete
ted inthe strain of some ferroelasti
 martensites and has popularized the term strainglass. Be
ause of this, here we give a very short overview about glasses.The material histori
ally known as glass has some parti
ular 
hara
teristi
sthat prevent a 
onventional, equilibrium thermodynami
 understanding. Stru
-tural glasses [74℄, as they are known among physi
ists, are materials in the solidstate whi
h di�ers from 
rystals in the la
k of any long-range order. Instead of



1.7. Brief introdu
tion to glasses 15the typi
al 
rystallographi
 translational symmetry, the atomi
 arrangement isdisordered; only a short-range order survives due to the 
hemi
al bonds with thesurrounding neighbors, but at some atomi
 distan
es the 
on�guration may be
ompletely di�erent. Neither a Wigner-Seitz 
ell nor any Bravais latti
e 
an bede�ned and this results, for instan
e, in a X-ray di�ra
tion pattern 
onsistingonly in a few broad peaks [75℄ instead of the typi
al multiple-narrow-peak pat-tern. Su
h glasses are formed by rapid melt quen
hing from the liquid phase thatprevents the 
rystallization and leads to a freezing of an amorphous stru
ture,like super
ooled liquids. Nevertheless, they mantain all the me
hani
al propertiesof solids, sin
e the only degrees of freedom that survive are pre
isely phonons,whereas rotational and translational motion is arrested.Nowadays, in physi
al s
ien
e, the meaning of glass has been extended to in-
lude a wide range of systems that share some general features similar to thoseexplained above. They mainly di�er in the parti
ular degree of freedom thatfreezes and blo
ks in a disordered state. For instan
e, spin glasses [76℄ are systemsin whi
h the magneti
 degrees of freedom are an
hored in random orientations.In orientational glasses [77℄, translational order exists but the mole
ules exhibitfrozen, disordered orientations, whereas ferroele
tri
 relaxors [78℄ show stati
, ran-dom ele
tri
al dipoles. Other examples are vortex glasses in super
ondu
ors [79℄.All of them are 
hara
terized by a high-temperature phase where the degrees offreedom of interest �u
tuate freely. Moreover, in most 
ases su
h systems undergoa phase transition when de
reasing the temperature towards a more ordered state,like liquid-
rystal, para-ferromagneti
, para-ferroele
tri
, et
. However, under
ertain 
onditions, the transition 
an be supressed and instead of that �u
tuationsfreeze, leaving the system in a disordered, glass state. Usually, su
h a state ismetastable with respe
t to the true equilibrium, ordered state. The material, thatis said to undergo a glass transition, is not able to rea
h this equilibrium state sin
eit is 
hara
terized by a slowing-down dynami
s and ergodi
ity breaking [80℄, whi
hare asso
iated to the dilation of the relaxing time s
ales. In many 
ases, relaxingtimes be
ome in�nite to all intents and purposes and make the system remainforever in the metastable state. This 
an be explained by a total energy with abumpy pro�le with multiple (nearly) degenerated low-lying states whi
h makesit di�
ult for the system to �nd an optimal way to rea
h the global minimum.Eventually, this way may not exist or may be thermodynami
ally una

essible.Curiously, although the phenomenology among these kind of di�erent systemsis very similar, from a thermodynami
 point of view glasses may have di�erentorigins. Thus, stru
tural glasses arise as a 
onsequen
e of an ultra fast 
ool-ing, whereas other glasses o

ur due to geometri
al frustration [81�83℄, like theparadigmati
 antiferromagneti
 triangular latti
e. In this 
ase, all the antifer-romagneti
 bonds 
annot be satis�ed simultaneously, i.e. the ex
hange energy
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tion to ferroelasti
ity
annot be minimized due to the geometry of the latti
e and, hen
e, the thermo-dynami
 equilibrium state does not exist. Instead, many spin 
on�gurations ofvery similar low energy are unlikely to evolve towards little lower states sin
e itmay imply to �ip spins wi
h would lead to nonfavorable parallel bonds in otherneighboring regions. On the other hand, and more interestingly, it has beenobserved that phase 
oexisten
e may give rise to glassy features due to kineti
freezing [84℄. It is believed that point defe
ts are at the origin of the su
h glassybehavior in ferroi
s when doping, whi
h links with some 
omments on inhomo-geneities in Se
. 1.4.1. In 
ontrast with geometri
al frustration, here a truethermodynami
al phase is likely to exist although it is una

essible due to energyand/or entropy barriers [85℄. A
tually, this is our 
ase here, where glassy behaviorhas been observed in the non-transforming 
omposition of the martensiti
 systemTi50−x-Ni50+x for x > 1.5. There the frozen disordered degree of freedom is onlythe latti
e deformation11 and hen
e this glassy system has been 
alled strain glass.1.8 Shape memory alloys. Fe-Pd and Ti-NiThe type of alloys exhibitng SME is enormous, although all of them 
an be groupedwithin the huge family of intermetalli
 alloys; that is, 
ompounds 
ontaining two ormore metalli
 elements, 
ontaining optionally one or more non-metalli
 elements,typi
ally some rare earths (La, Pr, Nd, Sm, et
.) or even alkalyne elements (Sr,Ca, Ba, et
.) forming manganites.12 Here metalli
 elements also in
lude poormetals and metaloids. Thus, we �nd SME in binary alloys like Au-Cd [86℄, Fe-Pt [87℄, Ni-Al [88℄, Cu-Al [89℄, Ti-Pd [90℄, In-Tl [91℄, Cu-Zn [92℄, Ta-Ru and Nb-Ru [93℄, ternary alloys like Cu-Zn-Al [94℄, Au-Cu-Zn [95℄, Cu-Al-(Ni,Be) [96, 97℄,Pd-In-Fe [98℄, Ni-Co-Al [99℄, Ni-Mn-(Sn,In,Ga) [23, 100, 101℄, Ni-Ti-Cu [22℄, Ni-Ga-Fe [102℄, quaternary like Ni-Mn-Ga-(Fe,Co,In) [103�105℄, Ni-Co-Mn-In [24℄,Ni-Al-Mn-Fe, Ni-Fe-Al-B [106℄, Cu-Al-Zn-Mn [107℄, Ti-Hf-Ni-Re [108℄, et
.More than 20 years ago a series of papers led by R. Oshima [27,109�113℄ weredevoted to 
hara
terize Fe-Pd SMA. With respe
t to the famous Ti-Ni alloy, a
omplete review from K. Otsuka and X. Ren 
an be found in Ref. [114℄. In thefollowing we give a 
omparative brief overview between these two SMA, Fe-Pdand Ti-Ni, that will serve as a summary of the di�erent aspe
ts approa
hed inthis introdu
tory 
hapter. We fo
us on them be
ause they show very di�erentpe
uliarities that are of our interest:11Note that other glasses mentioned above may show freezing of the latti
e deformation butit is usually a

ompanied by freezing of other degrees of freedom12Manganites are 
ompounds of the type R1−xMxMnO3, where R is a rare earth and M analkalyne element
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• Fe70Pd30 undergoes a very weak �rst-order phase transition from a 
ubi
 totetragonal 
rystal stru
ture whereas equiatomi
 TiNi shows a more 
omplexbehavior, with various possible martensiti
 transformation paths: B2 →
B19 (→ B19′), B2 → B19′ and B2 → R (→ B19′) where B2, B19, R,
B19′ stand for 
ubi
, orthorhombi
, trigonal and mono
lini
 
rystallographi
latti
es respe
tively.
• Ti-Ni exhibit a low value of the elasti
 anisotropy fa
tor, A ∼ 2 whereasFe-Pd has a high value, A ∼ 15. This is 
onsistent with the fa
t that Fe-Pd shows the strongly anisotropi
 pretransitional tweed pattern [112, 113,115, 116℄ whereas Ti-Ni exhibits very ri
h pre
ursor e�e
ts but no tweed
ontrast has been observed. Instead, Ti-Ni shows small domains of thein
oming phase down to 5nm of almost spheri
al shape [34℄. The low valueof A for Ti-Ni 
omes from the fa
t that, although C ′ softens as it is usual,
C44 also de
reases with de
reasing temperature, whi
h is unusual amongmost of su
h alloys [37℄.
• Both Fe-Pd and Ti-Ni show a very high sensitivity on 
omposition. Fe70Pd30transforms to martensite at T ≃ 257 K whereas in Fe68Pd32 the transitiontemperature drops to 0 K [33℄. Stoi
hiometri
 Ti-Ni transforms at T ≃ Kwhereas in Ti48.5Ni50.5 the martensiti
 transition is suppressed as well [34℄.Doping in both Fe-Pd [117℄ and Ti-Ni [37℄ modi�es signi�
antly many as-pe
ts as 
hara
teristi
 temperatures, transformation paths, et
. The elasti

onstants are observed to depend on 
omposition.
• Ti-Ni is able to re
over strains up to ∼ 7−8% by means of SME and SE [19℄and shows high me
hani
al performan
es [118℄ as mentioned in the prefa
e.In 
ontrast, Fe-Pd exhibits very poor superelasti
ity, with strain re
overy assmall as 1% or less [119℄.
• Fe-Pd (as well as the ferrous SMAs) shows strong magnetoelasti
 
oupling[52, 120℄ whi
h leads to giant magnetostri
tion [51, 121℄ up to 3% and fer-romagneti
 shape memory e�e
t [122℄. Instead, in Ti-Ni (whi
h is para-magneti
) no magneti
-�eld indu
ed martensiti
 transitions have been ob-served [123℄ due to a small diferen
e in magneti
 moment between austeniteand martensite. It is worth mentioning that, re
ently, some e�orts [124,125℄have been adressed to design 
omposites 
ontaining both Ti-Ni and a ferrous
omponent as an attempt of 
ombining the ex
ellent me
hani
al propertiesof the former and the fast a
tuation of the latter.





Chapter 2Elasti
 model
Modeling of ferroelasti
 martensites has been adressed from de
ades. Althougha displa
ement-based pi
ture has been eventually used [126℄, most of e�orts havepoint at the strain �eld as the natural variable, suitable to des
ribe deformationson solids. Eshelby [127℄ was the �rst in approa
hing the problem of the equilibriumstrain of an in
lusion within an undeformed matrix by means of mi
roelasti
ity.The stresses that appear relax thus 
reating the stress-free strain �eld in thein
lusion and in the surrounding matrix, given by the 
ondition of me
hani
alequilibrium in the stress �eld.1 He pointed out that that problem 
ould be solvedby a sequen
e of simple operations. However, an analyti
al solution 
ould be foundonly in a few simple 
ases. As keystone, Kha
haturyan [128℄ proposed a methodbased on the de
omposition of the elasti
 strain �eld in a ma
ros
opi
 strainand an internal strain whi
h took advantage of the Fourier transform properties.Toghether with some elasti
 energy 
onsiderations, this theory gave rise to someimportant results, as the fa
t that, in general, the in
lusion is strained as ne
essaryto provide a 
rystallographi
ally 
oherent mat
h to the matrix in its habit plane.This 
on�nes the elasti
 energy and elasti
 strain to the in
lusion and makes thehabit plane a strain-free jun
tion. Kha
haturyan easily 
onne
ted this with themartensiti
 transformation (MT), whi
h simultaneously was also approa
hed byRoitburd [129℄ in a very similar way. Kha
haturyan also su

eeded in explainingthe periodi
ity of the twin patterns to depend on the width of the transformedregion, �nding the experimentally observed square root s
aling law [130℄. Later on,this phase-�eld mi
roelasti
ity-based theory [131℄ has been widely used to modelother phenomena related to martensites as, for instan
e, stress-strain behavior inpoly
rystalline materials [132℄ and the ferromagneti
 SME [133℄.1The me
hani
al equilibrium is given by the Cau
hy's �rst law or, more generally, generalizedHooke's law whi
h is simply the Newton's se
ond law applied to elasti
ity in a 
ontinuous, solidmedia. We re
all that an introdu
tion to the linear theory of elasti
ity 
an be found in App.A.1, in whi
h the Hooke's law is des
ribed in eq. (A.8).19



20 Chapter 2. Elasti
 modelEarlier, We
hsler [134℄ developed the 
rystallographi
 theory of martensite,a

ording to whi
h the alternation of thin strips of di�erent 
rystallographi
 vari-ants of the transformed produ
t(twins) allows for invariant planes, as it has beenmentioned in 
hapter 1. This non-linear 
rystallographi
 theory has the advan-tage of automati
ally a

ounting for �nite strains and rotations but, instead, itdoes not involve energy 
onsiderations as the linear elasti
 model of Kha
hatu-ryan and Roitburd does, and whi
h, in some 
ases, be
ome ne
essary. Ball &James [135℄ developed a model whi
h approximately put together the advantagesof both 
rystallographi
 and linear elasti
 theories. It was based on a nonlinearelasti
 free energy that was invariant with respe
t to rotations and 
rystallographi
symmetries.The �rst detailed analyti
al des
ription of the SME by means of the Landautheory is due to Falk [136℄, who also realized that the Landau free energy 
ould beres
aled in su
h a way that no free parameters remained in the model. Later, healso introdu
ed a gradient (Ginzburg) term to make an analyti
al study of the in-terfa
es [137℄. The large �exibility of the Ginzburg-Landau (GL) theory due to itspartial phenomenologi
al nature has been used to approa
h a wide variety of prob-lems in a simple manner. Elasti
 solitons were studied by Ja
obs [138℄ and later byBars
h and Krumhansl [139℄ using a GL model in
luding long-range intera
tions.GL models in
luding long-range intera
tions 
oming from St. Vénant 
ompat-ibility 
onstraints [140�142℄ have been su

essful in modeling a wide variety ofproblems, in
luding three-dimensional stru
tures [143℄, di�erent group-subgrouptransitions (like square to re
tangular, triangular to re
tangular [144℄, tetragonalto orthorhombi
, mono
lini
 and tri
lini
 transformations [145℄), star patternslike in Fig. 1.2, inertial, Langrange-Rayleigh type dynami
s [144℄, et
. A three-dimensional Landau model in
luding more realisti
, inertial dynami
s as well asthe strain as the 
ontrol variable by means of a multiple order parameter free en-ergy has fo
used on the dynami
al evolution of strain-indu
ed stress-strain behav-ior [146℄. Another quite re�ned phase-�eld Landau model allows for a quantitative
hara
terization pf stress-strain relations by means of all temperature-dependentthermome
hani
al properties of both phases su
h as se
ond and third order elasti

onstants, transformation strain independent of stress and temperature, and littletemperature dependen
e of hysteresis [147,148℄. Re
ently, spin-based approa
hesto the Landau model have also been proposed [46, 85, 149℄. Other models havealso fo
used on diverse aspe
ts of the SME [150�152℄.The model used in this thesis is based on a GL free energy extended to in-
lude both long-range anisotropi
 intera
tions 
oming from 
ompatibility, anddisorder 
oupling to the strain through the harmoni
 
oe�
ient. Su
h a model
ontains the four required ingredients to perform simulations of a system under-going a MT and exhibiting pretransitional phenomena and e�e
ts 
oming from



2.1. Landau free energy 21inhomogeneities in general. These are the following: (i) Temperature-dependingfree energy to a

ount for the transition, whi
h are provided by the Landau freeenergy.(ii) Interfa
ial energy and (iii) long-range anisotropi
 intera
tions givingrise to domain boundaries. And (iv) quen
hed-in random disorder allowing forinhomogeneities. In the following se
tions these four terms 
onstituting the modelare des
ribed in detail. Last one is devoted to numeri
al details and some other
omments.2.1 Landau free energyThe Landau theory [153℄ is a phenomenologi
al theory that attempts to des
ribephase transitions. It is la
king in mi
ros
opi
 basis, so that it does not take intoa

ount the level of atomi
 intera
tions, thus moving away from atomisti
 models.Instead, it is based on a 
oarse-graining of the system in order to pla
e the lengths
ale in a mesos
opi
 level2. A

ording to this theory, during the phase transitionthe given system usually su�ers a symmetry breaking, going from a high-symmetry�disordered� phase towards a low-simmetry �ordered� phase. Asso
iated withthe symmetry breaking an order parameter (OP) 
an be de�ned3 in su
h a waythat vanishes above the transition and takes non-zero values below it. Examplesof OP are di�eren
e of densities in liquid-vapor transitions4, magnetization andpolarization in ferromagneti
 and ferroele
tri
 materials respe
tively, some straintensor 
omponents in stru
tural transitions, et
. Landau theory was �rst proposedto des
ribe the transformation near the transition temperature, i.e. for smallvalues of the OP, but later it has been widely used to des
ribe the transition in anextended temperature interval so that the OP 
an take relatively large values. Allthis ensures that a full thermodynami
 treatment is indeed appropiate, giving riseto mean �eld results. This theory is based on the assumption that near equilibriumthe Landau free energy of the system �denoted by FL� is analyti
al, 
ontinuousand di�erentiable5, and 
an be written in a fun
tional form as an expansion inpower series of the OP φ about φ = 0. A

ordingly, FL 
an be expressed asfollows:
FL(φ;T, ψ) = FL0

+

N∑

i=1

Ai
i
φi (2.1)2This will be dis
ussed with more detail at the end of this 
hapter.3More than a single OP may be used if required.4Nevertheless, there is no symmetry breaking in this 
ase5Note that, sin
e FL is analyti
, 
ontinuous and di�erentiable also in the transition point, it
annot take into a

ount the singularities of diverging thermodynami
al potentials and thereforeit is not able no reprodu
e the a
tual 
riti
al exponents, et
.
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 modelwhere T denotes the temperature and ψ the 
onjugated �eld of the OP φ whereasthe 
oe�
ients Ai are suposed to be analyti
 fun
tions of T and ψ. The roleof T and ψ is fundamentally di�erent from that of φ. Indeed, T and ψ arestate variables that 
an take any pair of independent values, thus 
hara
terizingother state variables like thermodynami
al potentials, et
. A
tually, they areexternal 
ontrol parameters that 
an indu
e the transition. Instead, φ takes onlymeaningful values when FL is minimum. There, FL be
omes a fun
tion only of Tand ψ and 
oin
ides with a parti
ular termodynami
al potential, depending on thespe
i�
 
ase. The expression for FL in eq. 2.1 is versatile enough to 
hara
terizea 
onsiderable wide range of phase transitions.If we deal with a spatially extended, 
ontinuous system, the OP φ is a spatial�eld φ(r). Then, FL denotes the total energy of the system and 
an be 
al
ulatedas an integral of the Landau free-energy density f over the whole system: F =
∫

Ω
f [φ(r)]dr, where f takes the same expression as in eq. 2.1 with the additionalspatial dependen
e given through the �eld φ(r), and, in general, through the
oe�
ients Ai(r).Symmetry adapted strainsOur aim 
onsists of modeling a �rst-order, 
ubi
-to-tetragonal MT. However, giventhat many times the important a
ousti
 waves and, 
onsequently, the relatedinhomogeneous strain �u
tuations of interest are observed not to o

ur in 3D butin subspa
es of lower dimensionality [5℄, the modeling 
an be 
on�ned to the samesubspa
es. This is indeed the 
ase of some 
ubi
-to-tetragonal MTs, where thetransformation may be performed in the re
tangular 
ross se
tion of the tetragonalphase, giving rise to an e�e
tive 2D square-to-re
tangular transition. Obviously,this makes easier the 
ode and improves the 
omputation time, without loss ofgenerality. On the other hand, it should be pointed out that a pure 2D modelseems not to be appropriate to perform simulations for thin �lms sin
e the presen
eof free surfa
es are relevant for the possible modulations of the strain. A
tually,surfa
e relaxations may 
ause important bendings in the third dimension like, forinstan
e, tunnel and tent-like stru
tures, et
. [13℄.Within this framework, it is more 
onvenient to work with the so-
alled sym-metry adapted strains as the natural, irredu
ible deformations that a square 
anundergo. In a system with square symmetry, the elasti
 modulus tensor has onlythree di�erent nonvanishing elasti
 
onstants: C11, C12 and C44. By diagonalizingthis matrix we �nd the eigenvalues to be A1 = C11 + C12, A2 = C11 − C12 ≡ 2C ′and A3 = 4C44, that are elasti
 
onstants asso
iated, respe
tively, with the bulkmodulus and deviatori
 and shear modes. The 
orresponding eigenve
tors are the
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Figure 2.1: Symmetry adaptedstrains: e1, e2 and e3 stand for theshear, deviatori
 and bulk strains.symmetry adapted strains, that, in terms of the strain tensor 
omponents ǫij are:
e1 =

1√
2
(ǫxx + ǫyy), e2 =

1√
2
(ǫxx − ǫyy), e3 = ǫxy (2.2)where e1 is the 
ompressional strain, that a

ounts for deformations of volumenot shape, e2 is the deviatori
 strain (also 
alled diagonal shear), a

ounting fordeformations with no 
hange of angles and e3 is the shear strain, a
ting parallelto the sides of the square. The opposite relations are:

ǫxx =

√
2

2
(e1 + e2), ǫyy =

√
2

2
(e1 − e2) (2.3)A s
hemati
 represention of e1, e2 and e3 is shown in Fig. 2.1. Thus, any defor-mation 
an be expressed in terms of these three symmetry adapted strains. As
an be seen, the appropriate OP for the square-to-re
tangular transition is thedeviatori
 strain e2.The existen
e of two energeti
ally equivalent variants in the ordered phase (in2D the two possible re
tangle orientations, as 
an be seen in Fig. 2.1) imposes thesymmetry FL(e2) = FL(−e2). This toghether with the requirement of nonlineari-ties a

ounting for the transition lead to the following Landau free energy density

fL:
fL(e2(r)) =

A2

2
e22(r) +

β

4
e42(r) +

γ

6
e62(r) (2.4)where it 
an be easily proved that it must be ful�lled β < 0 and γ > 0, whereas

A2 is a sign-variable fun
tion of T , that 
an be written as A2 = αT (T −Tc). Here
Tc is a metastability limit as will be seen below. In fa
t, A2 is 
alled the harmoni

oe�
ient, sin
e it 
orresponds to the generalized Hooke's law of elasti
ity, whi
hdes
ribes the harmoni
 motion [154℄. Hen
e, as seen previously, A2 
an be ex-pressed in terms of se
ond order elasti
 
onstants6: A2 = C11 − C12 = 2C ′. Note6Note that the expression may vary (and indeed it does) depending on the dimensionality ofthe system.
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 modelthat the dependen
e of A2 on temperature makes C ′ partially soften upon 
oolingas it is 
ommonly observed in SMAs in the pretransitional regime.Temperature-indu
ed transitionCarrying out a simple mathemati
al analysis7 of fL in eq. (2.4) one obtainsthe stability values for the strain e2 = 0 and e2 = ±{β/(2γ) + [(β/(2γ))2 −
A2/γ]

1/2}1/2 ≡ ±eM and the following stability limits:
T0 = Tc +

3β2

16γ
Ti = Tc +

3β2

4γ
(2.5)where Tc is the low stability limit of the high-T phase, Ti is the high stability limitof the low T phase and T0 is the equilibrium transition temperature.Obviously, e2 = 0 
orresponds to the unstrained -non-transformed-, squarephase whereas e2 = ±eM 
orresponds to the re
tangular, strained -transformed-phase, ea
h sign 
orresponding to one of the two possible orientational variants.Figure 2.2 shows the evolution of the triple well stru
ture of fL(e2) as fun
tionof T . At T > Ti, fL presents a single minimum at e2 = 0, i.e. the system is inthe high symmetry, square phase. When T is de
reased below Ti (T0 < T < Ti),the global miminum remains at e2 = 0 but two lo
al minima appear at e2 =

±eM , meaning that the low-symmetry phase is metastable. At T = T0 the threeminima are of equal energy, thus setting the equilibrium transition temperature.At Tc < T < T0 the global minima are observed at e2 = ±eM and the minimumat e2 = 0 is now lo
al, 
orresponding to the metastability regime of the high-Tphase. Finally, at T < Tc, this minimum disappears and only the two minima
e2 = ±eM remain. Figure 2.3 shows the equilibrium (
ontinuous line) and maximalmetastable (dashed line) values of e2 as fun
tion of T . It reveals the dis
ontinuityof the OP during the transformation and phase 
oexisten
e, due to the �rst order
hara
ter of the transition. It also allows for hysteresis, latent heat, et
.Stress-indu
ed transitionThe Landau model is also appropriate to des
ribe isothermal transitions indu
edby applying the 
onjugated, external stress �eld σ. The total free energy in thepresen
e of a stress �eld σ 
omes from the 
orresponding Legendre transformationof fL:

fL,σ(e2) = fL(e2) + σe2 (2.6)7A phase will be stable if and only if it 
orresponds to a minimum of the free energy density
fL. This results from imposing the requirements ∂fL

∂e2

|e20
= 0 and ∂2fL

∂e2

2
|e20

> 0
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 modelThe presen
e of the stress �eld deforms the free-energy stru
ture in su
h a waythat, beyond the usual elasti
 regime, also a

ounts for the interesting thermo-me
hani
al phenomena des
ribed in Chap. 1, su
h as superelasti
ity and pseudo-plasti
ity, the latter giving rise to the Shape Memory E�e
t. Pro�les of fL,σ fordi�erent values of σ at di�erent temperatures are shown in Fig. 2.4. Case (a) leadto superelasti
 behavior whereas (c) and (d) show pseudoplasti
ity. Case (b) issus
eptible to show either superelasti
ity or pseudoplasti
ity sin
e in the asben
eof the stress �eld the ferroelasti
 phase remains metastable.
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Figure 2.4: fL,σ for di�erent values of σ and T .We now pro
eed analogously to the T -indu
ed transitions and 
arry out astability analysis of fL,σ(e2). It has to be 
omputed numeri
ally sin
e it has noanalyti
al solution. Figure 2.5 shows the dependen
e of e2 at the minima of
fL,σ(e2) as fun
tion of T . We 
an also analyze the dependen
e of the minimaof e2 on σ, whi
h is shown at three di�erent temperatures in Figure 2.6. Here,
σ is displayed in the y-axis for better 
omparison with the usual strain-indu
edstress-strain experiments. Continuous line indi
ates the equilibrium traje
toryand dashed lines are the maximal metastability regime. Case (a): Below thetransition, the system shows pseudoplasti
 behavior, sin
e the strain 
annot be
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tion of T at 
onstant σ >

0. The maximal hysteresis area is redu
edand shifted to higher T as σ is in
reased.Here, T σ
c and T σ

i retain the 
orrespondingmeanings of stability limits but take di�er-ent (non-analyti
) values that those in eq.2.5. The same is also valid for the transitiontemperature T σ
0 .
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Figure 2.6: Di�erent me
hani
al behavior at three di�erent in
reasing temperatures.re
overed8 when removing the stress. However, the system is sus
eptible to exhibitSME upon heating. Case (b) 
orresponds to an intermediate regime whithin whi
hboth pseudoelasti
 and superelasti
 behavior 
ould be observed, depending on thespe
i�
 return path followed by the system. Case (c) shows superelasti
 behavior.
2.2 Ginzburg energyA system undergoing a MT typi
ally a
hieves a multivariant phase, with thepresen
e of domain boundaries, i.e. interfa
es separating the di�erent variants.Experimentally domain boundaries are often observed to be rather sharp, in therange of at the most few interatomi
 distan
es [13℄. Instead, although interfa
esare energeti
ally unfavorable in an spatially extended homogeneous Landau sys-tem,9 the 
ontinuous and di�erentiable nature of the free-energy leads to smooth8Re
all that in this 
ase the initial strain is zero due to the self-a

omodation pro
ess leadingto a domain mi
rostru
ture with no ma
ros
opi
 net 
hange.9In the interfa
es, the strain �eld must take values that are lo
ally unstable: A 
ontinuous anddi�erentiable domain boundary (as it is in the Landau model) separating variants of equilibrium
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 modelinterfa
es, with a 
ertain width in the mesos
opi
 s
ale. Ginzburg proposed anextra energeti
 penalty for variations of the OP fG = κ
2
|∇e2|2. Thus, any inter-fa
e results in an extra energeti
 
ost that results in sharper interfa
es than inthe absen
e of fG whi
h is 
loser to experiments. In fa
t, it 
an be proved thatthe energeti
 
ost of the interphases due to the Ginzburg energy is equal to thatof the homogeneous 
ontribution [155℄. For a more 
ompa
t notation, we de�ne

fGL = fL + fG.2.3 Long-range anisotropi
 intera
tionsIn addition to the OP deviatori
 strain, the other symmetry-adapted strains e1and e3 may appear as a 
onsequen
e of the transition in order to make easier the
oherent mat
h between di�erent 
rystallographi
 
ells, 
orresponding to eitherdi�erent variants or di�erent phases. Moreover, sin
e the stable, low-temperature
rystallographi
 
ells 
ome from a pure OP (i.e. deviatori
) deformation (in our
ubi
-to-tetragonal transition), the non-OP 
ontributions must be energeti
ally
ostly and therefore the domain boundaries must adopt the morphology thatminimizes this 
ontribution. Then, sin
e they are non-OP of the transformationand thus their 
ontribution is assumed to be small, they are taken into a

ountonly up to the harmoni
 term. Thus we 
an write:
fnon-OP =

A1

2
e21 +

A3

2
e23 (2.7)Similar to the harmoni
 
oe�
ient A2, A1 and A3 may also be expressed as fun
-tion of elasti
 
onstants: A1 = C11 + C12 and A3 = 4C44, being both A1 and A3positive whi
h 
on�rms that this 
ontribution is indeed unfavorable. The total freeenergy density 
an be then written as fT(e1, e2, e3) = fGL(e2) + fnon-OP(e1, e2, e3).As it is shown in App. A, the three symmetry adapted strains e1, e2 and e3 areobtained as derivatives of the same underlying 2-dimensional displa
ement �eld

u = (ux, uy), whi
h are the two true degrees of freedom of the system. Conse-quently, the strain 
omponents are not independent but are linked through theSaint-Vénant 
ompatibility 
ondition10 [140℄, that ensures that the transforma-tion is defe
t-free, thus mantaining the latti
e integrity. This leads to express
fnon-OP in terms of e1 and e2 and, hen
e, fT(e1, e2), where we have eliminated thedependen
e of the total free energy on e3. Moreover, we 
onsider that e1 takesat any time the values that minimize the total free energy, so that we impose thestrain e2 = +eM and e2 = −eM must in
lude points with all the possible values in between,that therefore do not 
orrespond to the equilibrium values e2 = ±eM .10The mathemati
al details of the Saint-Vénant 
ompatibility 
ondition 
an be found in App.A.
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ondition ∂fT
∂e1

= 0. This allows us to get a �nal expression for fnon-OP in termsonly of e2:
fnon-OP(e2) =

∫

e2(r)U(r− r
′)e2(r

′)dr′ (2.8)where the kernel U(r− r
′) goes as ∼ cos(4[θ− θ′]/r2) in 2D11. The integral in thefree-energy density 
ontribution fnon-OP reveals that this term is non-lo
al sin
erelates any two 
ells in the system by means of the kernel U . The 1/r2 fallo�indi
ates that it is long-ranged whereas the cos makes fnon-OP vanish for values

θ = ±45 deg. This 
an be easily seen in Fourier spa
e, where the free-energydensity takes the following form12:
fnon-OP(kx, ky) =

A3

2

(
k2
x − k2

y

)2

(A3/A1) k4 + 8 (kxky)
2 |e2(k)|2 = V (k)|e2(k)|2 (2.9)This expression makes 
lear why 
ross-hat
hed 
orrelations along the diagonals

kx = ±ky are favored. Su
h 
orrelations are more likely and stronger for largervalues of A3 whereas, formally, they vanish when A3 → 0.13 We point out thatsu
h 
orrelations are at the origin of the diagonal interfa
es of both tweed texturesand martensiti
 twins. Kernels U(r−r
′) and the 
orresponding Fourier transform

V (k) are shown in Fig. 2.7(a) and (b) respe
tively, where A3/A1 and A3 aretaken to be A3/A1 = 2 and A3 = 2. It is of interest to state spe
i�
ally therelation between the parameter A3 and the elasti
 anisotropy fa
tor A, whi
h were
all that for a 
ubi
 system it is de�ned as A = C44/C
′. Taking into a

ount theexpressions relating C ′ and C44 with the parameters of the model (whi
h have beengiven previously), we �nd that A 
an be written as A = A3/2A2. Given that A2is a fun
tion of temperature, at 
onstant temperature A3 and A are proportional.Thus, variations on the elasti
 anisotropy fa
tor (whi
h is one of the main targetsof this work) 
an be 
arried out through variations on A3. As seen above, thisentails modifying the strength of the long-range intera
tions. In the following,we analyze in depth the e�e
ts of variations in the parameters appearing on thekernel V (k).From the expression above we 
an see that, regardless of the value of A1(provided that A1 6= 0), an in
rease in the value of A3 results in an in
rease of thenon-OP free energy 
ontribution, whi
h in turn favors the diagonal 
orrelations.14Moreover, in Fig. 2.8 we plot the kernel V (k) for two di�erent values of thefa
tor A3/A1: (a) A3/A1 = 20 and (b) A3/A1 = 0.2. We have set A3 = 4.54.11The power of r does depend on the dimensionalilty of the system.12The mathemati
al details of the 
al
uli 
an be found in App. A.13Note that fnon-OP also vanishes for A1 = 0, although this formal limit is uninteresting as itwill be seen below.14This is easier to see if we divide both the denominator and the numerator by A3.



30 Chapter 2. Elasti
 model

Figure 2.7: Kernel ofthe non-OP free-energydensity in real (a) and re-
ipro
al (b) spa
es. Thepreferred diagonal di-re
tions 
an be 
learlyappre
iated.

x yV(k  ,k  )

U(x,y)a)

b)
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Figure 2.8: Kernel of the non-OP free-energy density in re
ipro
al spa
e V (k) for twovalues of A3/A1: (a) A3/A1 = 0.2 and (b) A3/A1 = 20. Here, A3 = 4.54 in both 
ases.It 
an be seen that the stru
ture of the potential remains robust with respe
t to
hanges in this fa
tor. However, as A3/A1 de
reases, the de
ay in the o�-diagonaldire
tions be
omes more abrupt sin
e the value of the kernel in these dire
tionsin
reases. Noti
e the signi�
ant di�eren
e on the verti
al s
ale. It means that,for a given value of the weight A3 of the kernel V (k), (diagonal) tweed texturesand twin boundaries are favored more and more as the value of the fa
tor A3/A1is de
reased. This also o

urs when, for a given value of A3/A1, the value of A3 isin
reased. This has been further 
he
ked through simulations with di�erent valuesof this ratio, whi
h will be shown when 
onvenient, in Se
. 3. Consequently, we 
an
ontrol the weigth of the long-range intera
tions (and 
onsequently the magnitudeof the elasti
 anisotropy fa
tor A at a given temperature) through variations onlyin the parameter A3 but simultaneously keeping 
onstant the ratio A3/A1 = 2.2.4 Quen
hed-in disorderE�e
ts of inhomogeneities in SMA have been approa
hed from diverse points ofview. In Refs. [156, 157℄, the spatial variation of either the stress �eld of defe
tsor 
hemi
al driving for
e a

ounts for athermal fri
tion in the evolution of stress-indu
ed martensiti
 variants. The introdu
tion of thermal �u
tuations has su
-
eeded in obtaining the dynami
 tweed, either as a pretransitional e�e
t itself [7℄or a low-temperature transient state before evolving towards the more orderedstru
ture [158℄. Assuming the disorder to have a mu
h larger lifetime than anypro
ess involving elasti
 me
hanisms, like phonon relaxation (whi
h is of the orderof ∼ 10−12s) and other slower time s
ales like boundary movements, and 
onsid-ering that no difussion is expe
ted in su
h systems, the role of inhomogeneities in
ausing pre
ursors was studied also by Be
quart et al. [159℄ through the presen
e
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 modelof stati
 perturbing �elds. They observed that an ordered �eld did not produ
edtweed, but it was obtained through a random �eld. It supports the idea that therandom nature of inhomogeneities intrinsi
 to materials is a ne
essary 
onditionfor su
h pretransitional textures to develop. Also Kha
haturyan modeled tweedwith stati
 disorder [160℄.It is well known that the 
omposition is a statisti
ally �u
tuating randomvariable in alloys, whi
h varies lo
ally from on site to another. Altough thesevariations are in general slightly, the high sensitivity of the transition temperatureon the spe
i�
 
on
entration of ea
h element observed in many SMAs led Karthaet al. to think about a variable lo
al transition temperature. For instan
e, inthe 
ase of Fe70Pd30, regions with slightly higher (lower) 
on
entration of Pdthan the average value (30%at.) would lead to a lower (higher) lo
al transitiontemperature15. Thus, in the 
ontext of Landau, they proposed a stati
, spatiallyrandom, �u
tuating �eld 
oupling to the strain through the harmoni
 
oe�
ient,whi
h led to a distribution of lo
al transition temperatures. This, together withlong-range anisotropi
 intera
tions, enabled them to obtain stati
 tweed.Here we essentially adopt this s
heme, and introdu
e the following distorting�eld:
f [η(r)] =

αT
2
η(r)e22(r) (2.10)where η(r) is a random variable, gaussian distributed with zero mean and spatially
orrelated by means of an exponential pair 
orrelation fun
tion.

〈η(r)η(r′)〉 = G(|r− r
′|) =

A

2π
e−|r−r′|/ξand g(η) = 1√

2πζ
e
− η2

2ζ2 . Here, ξ is the 
orrelation length. The amplitude A of the
orrelation fun
tion is related to the standard deviation of the Gaussian distribu-tion so that ζ =
√

A
2π
. The proof of this relation is given in App. A.3.3.Note that this kind of 
oupling has the e�e
t of produ
ing a distribution of lo
al
hara
teristi
 temperatures, so that we 
an de�ne lo
al stability limits T̃c(r) =

Tc + η(r) and T̃i(r) = Ti + η(r) and equilibrium temperatures T̃0(r) = T0 +

η(r). For simpli
ity, we rename T̃c(r) as Tc(r), and 
orrespondingly the other
hara
teristi
 temperatures. To avoid 
onfusion Tc(r) with the Landau Tc, thespatial dependen
e will be always stated spe
i�
ally. This enables lo
al regionsof the high temperature phase to be lo
ally stable below Tc and vi
e versa, whi
hare separated by free energy barriers. Sin
e Tc(r) is exponentially 
orrelated,it gives rise to islands of similar lo
al stability limits, that will a
t either aspinning sites for nu
leation and growth of martensite (and whi
h are at the origin15We re
all that an in
rease in the average 
on
entration of Pd leads to a de
rease in thetransition temperature of the sample
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hed-in disorder 33of premartensiti
 strain modulations) or as retainning sites for austenite upon
ooling16 (and for martensite upon heating). For a given value of ξ mu
h lowerthan the simulation 
ell size, these islands are short-ranged at high temperaturesand grow progressively as the temperature is de
reased. Obviously, the higherthe value of ξ the larger the size of the island. On the other hand, at a given Tand ξ, the higher disorder intensity ζ the larger the system fra
tion that will beunstable. Hen
e, this will in
rease the onset temperature of the pre
ursor regime.Moreover, a higher ζ also enhan
es the mean lo
al unstability of the system,whi
h will favor the stability of the pre
ursor stru
tures. Sin
e statisti
ally themean value 〈η〉 vanishes, disorder favors equally both phases with respe
t theequilibrium transition temperature in the 
lean limit (T0). Consequently, highervalues of ζ gives rise to higher energy barriers. This is analyzed in depth in thefollowing. Before going into this issue, it should be pointed out that the fa
t that
〈η〉 = 0 is not in agreement with experimental results, whi
h indi
ate that dopingentails a destabilization of the martensite so that the transition takes pla
e atlower temperatures, as 
ommented in Se
. 1.4.1. However, a nonvanishing valueof 〈η〉 does not give rise to new qualitative �ndings, but only would shift all thephenomenology to be observed around the spe
i�
 new value Tc + 〈η〉.Dis
retization of disorder: E�e
ts of ξ and ζThe disorder variable η(r) has been de�ned above as a variable in the 
ontinuum,as the Landau theory essentially is. As seen, η(r) 
ontains two free parameters:the amplitude of the gaussian distribution17 ζ and the 
orrelation length ξ. Theo-reti
ally they would 
ompletely determine the spe
i�
 pro�le of η(r) in any regionof the spa
e. However, for 
omputational purposes, η(r) needs to be dis
retizedin the 
oarse-grained mesh. The dis
retization pro
edure introdu
es a new pa-rameter Λ whi
h 
orresponds to the length of the unit 
ell of the system, that isde�ned as Λ = L/N , where L is the linear size of the square simulation 
ell, and
N2 is the total number of unit 
ells 
ontained in the simulation 
ell. In prin
iple,as the dis
retization premises state, the dis
retization of the spa
e should be as�ne as not to a�e
t the simulation results. It means that Λ must be 
hosen in arange within whi
h variations of its spe
i�
 value does not entail any 
hange inthe results in order to be 
onsistent with the theory. If it happens, the value ofthe Λ is too large and must be diminished. In the 
ase of our model, tests havebeen 
arried out to 
he
k it and it has been observed that the value of Λ below16This simple analysis does not take into a

ount the long-range intera
tions, that also a�e
tthe stability of ea
h system site.17The mean value of the distribution 〈η〉 has been set to zero and it is not taken into a

ounthere.
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ΛFigure 2.9: (a) S
hemati
 pro�le of the lo
al distribution of the 
hara
teristi
 temper-ature Tc in the 
ontinuous and dis
retized spa
es. (b) Real pro�le of Tcr for two valuesof the dis
retization parameter.whi
h results do not 
hange depends on the spe
i�
 value of ζ . In parti
ular, thehigher ζ the lower the required Λ. Sin
e this thesis refers to the behavior of thesystem for di�erent values of ζ it is important to go depth into this aspe
t. Bylooking with detail at the nature of the dependen
e of the results on Λ for a given
ζ , this dependen
e may be valid here and, in fa
t, leads to relevant results.First, we analyze the dependen
e of the spe
i�
 pro�le of the disorder on thedis
retization parameter Λ. The de�nition of η(r) in the 
ontinuum leads to asmooth pro�le of Tc(r), su
h that the di�eren
e Tc(r) − Tc(r′) between any twopoints r and r

′ tends to zero as the distan
e between the points r−r
′ tends to zero.However, the dis
retization of the spa
e introdu
es a minimum distan
e betweennearest neighbor sites, whi
h is pre
isely Λ. Consequently, Tc(r) − Tc(r

′) doesnot vanish between the nearest neighbor 
ells but take �nite values. They 
an bearbitrarily de�ned, for instan
e, as ∆Tc(r) = Tc(i, j)− Tc(i− 1, j). Figure 2.9(a)shows a s
hemati
, theoreti
al pro�le of Tc(r) in a given segment of the spa
e. Itis 
learly seen that in the 
ontinuous 
ase (
ontinuous 
urve) Tc(r) take an in�niteset of values that give rise to vanishing lo
al di�eren
es of Tc(r) between in�nitely
lose points. Instead, if the spa
e is dis
retized in a mesh with dis
retizationparameter Λ, Tc(r) takes the values only at the bla
k dots, giving rise to �nite
∆Tc(r). If now we use a new dis
retization parameter Λ′ = 2Λ (white dots), theresulting ∆T ′

c(r) will be larger on average, as it is s
hemati
ally indi
ated by theverti
al arrows. This 
an also be seen in Fig. 2.9(b).Sin
e Tc(r) 
ontributes to the total energy pro�le of the system, say E(r), thehigh of ∆Tc(r) plays a key role in determining the height of �nite lo
al energy
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ise relationship between both ∆Tc(r) and ∆E(r) 
annotbe derived easily due to the presen
e of long-range elasti
 intera
tions. However,from a given value of ∆Tc(r), the pure relaxational dynami
s used in the model isobserved to be unable to over
ome the resulting ∆E(r). In short, the kineti
s ofthe system, that is 
ru
ial for the �nal stabilized stru
tures, is dire
tly (
riti
ally)a�e
ted by the �nite nature of the dis
retized disorder variable, that in turndepends on the dis
retization parameter.In fa
t, some of the relevant results, as mentioned, 
ome out pre
isely fromthe fa
t that disorder leads to �nite energy barriers. In other words, the impor-tant property that disorder must have is that it pre
isely does give rise to su
h�nite ∆Tc(r)'s in order to show the desired behavior. Thus, the disorder may berede�ned as a dis
rete variable with all the properties mentioned above, but thatis, indeed, independent of the dis
retization parameter. The dependen
e may beabsorbed by reformulating the 
orrelation length ξ in units of the dis
retizationparameter, and letting ξ without any physi
al meaning. Then, the dependen
e of
∆Tc(r) on ξ must be analyzed.The dependen
e of the mean value of ∆Tc(r), denoted by 〈∆Tc(r)〉 on both ζand ξ is shown in Fig. 2.10(a) and (b) and respe
tively. It 
an be dedu
ed thatvariations on ξ shift the behavior in the parameters' spa
e, in su
h a way that thelower ξ the larger ζ required to obtain similar behavior. Looking at the slope ofthe 
urves, the dependen
e of 〈∆Tc(r)〉 on ξ is strong only for relatively low valuesof ξ and high values of ζ . With respe
t to this, simulations for the more 
riti
alvalue ξ = 10, whi
h is lower than that used in most of the simulations (ξ = 20),have been 
arried out in order to 
he
k the e�e
t of variations in this parameter.These results will be shown later when 
onvenient but in any 
ase they do nota�e
t qualitetively the �ndings and 
on
lusions of the work. Consequently, fromnow on, ξ is kept 
onstant and the study of the e�e
t of the disorder will be 
arriedout as fun
tion of the amplitude ζ .2.5 Total free energySummarizing the previous se
tions, the total free energy of the system 
an bewritten as the sum of the following 
ontributions: FT = FL + FG + Fη + Fnon-OP.More expli
itly:
FT =

∫ [
αT
2

(T − Tc + η(r)) e2(r)
2 − β

4
e2(r)

4 + γ
6
e2(r)

6 + κ
2
|∇e2(r)|2

]
dr

+ A3

2(2π)2

∫
[

(k2
x−k2

y)
2

A3

A1
(k2

x+k2
y)2+8k2

xk
2
y

]

|e2(k)|2dk
(2.11)
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Figure 2.10: Mean �nite lo
al di�eren
es of Tc(r), denoted by 〈Tc(r)〉, as a fun
tion of
ζ for di�erent valuees of ξ (a) and vi
e versa (b).The system 
onsists of a 2-dimensional 
ontinuous latti
e with square symmetry.The numeri
al implementation requires the dis
retization of the expression aboveon a mesh. Numeri
al details 
an be found in App. A.2.6 Numeri
al details and other 
ommentsParametersThe material parameters that we use in the simulations are taken from experi-mental data for Fe70Pd30 [33℄ and 
an be found in App. C in S.I. and redu
edunits. The aim of this thesis is to explore the thermodynami
 behavior of themodel in the parameters' spa
e, in parti
ular the e�e
t of the anisotropy fa
tor(through variations in the 
oe�
ient A3) and the amplitude (standard deviation

ζ) of the disorder distribution.In fa
t, Falk [136℄ showed that the Landau free-energy has no free parametersbut temperature. Moreover, we have seen that variations on the ratio A3/A1 aswell as on the 
orrelation length of the disorder do no lead to new phenomenology.Therefore, beyond the primordial experimental justi�
ations given in the previous
hapter pointing to these parameters as important fa
tors in ferroelasti
 systems,the region of the parameters' spa
e of this model that gives rise to qualitative ther-modynami
 behavior with physi
al relevan
e 
an be approximately redu
ed to thetwo-dimensional subspa
e determined by the two parameters A3 and ζ . Variationsof disorder should be understood as airising from 
ompositional 
hanges, dopingor quen
hing e�e
ts. Con
erning the elasti
 anisotropy A, signi�
ant variationsne
essarily entail 
hanging the material.



2.6. Numeri
al details and other 
omments 37Although a quantitative analysis of the ferroelasti
 properties is beyond thes
ope of this thesis, it is worth noting that the parameter values used here giverise to quantitative results that in general are in reasonable (and often notably)agreement with experimental observations. Despite that the simulations are shownin redu
ed units for simpli
ity, in some 
ases the values of the magnitudes havebeen spe
i�ed in physi
al units in order to highlight su
h quantitative agreement,whi
h gives additional support to our simulation results.Relaxational dynami
sStabilized 
on�gurations are obtained by minimizing the total free energy FT givenin eq. (2.11). This is 
arried out by means of pure relaxational (overdamped)dynami
s whi
h 
onsists of applying the following dynami
al equation over all theunit 
ells of the system18
∂e2(r)

∂t
= − δFT

δe2(r)
(2.12)As seen, no �u
tuations have to be taken into a

ount, sin
e almost all martensiti
transitions are athermal. In dis
retized form, e2(t + ∆t) = e2(t) − δFT

δe2
∆t. Here,time is meaningless sin
e we are not interested in intermediate but �nal stabilized�stati
 in our time s
ale� 
on�gurations, ∆t is 
hosen as large as possible inorder to optimize the 
omputation time. To avoid numeri
al problems, it may bemodi�ed depending on the parti
ular 
hara
teristi
s of ea
h simulation. Usually,its order of magnitude is of ∆t ∼ 10−2. We 
onsider that a 
on�guration has beenstabilized when √∑(e2(t+ ∆t)− e2(t)/∆T )2 =

√
1
N

∑
( δFT
δe2

∆t)2 < 10−14, wherethe sum is over all the unit 
ells of the system. A

ording to eq. (2.12) derivativesof FT must be 
al
ulated. This is shown in detail in App. A.3.2.Metastability and equilibriumThe true equilibrium state 
an be derived through a simple analysis from theminimization of the total free energy of the system. At temperatures low enough,all the 
ells in the sytem transform to the ferroelasti
 phase. Landau poten-tial is doubly degenerated, whi
h allows for multivariant 
oexisten
e. Long-rangeanisotropi
 intera
tions lead this 
oexisten
e to adopt modulated stru
tures alongthe diagonal dire
tions, but do not sele
t any spe
i�
 wave ve
tor for su
h mod-ulations due to the existen
e of periodi
 boundary 
onditions. Then, Ginzburgenergy favors a low number of interfa
es, making the global minimum be a single18It is easy to see that re
ursive appli
ation of eq. 2.12 brings the system to de
rease progres-sively its energy: ∂F
∂t

= δF
δe2

∂e2

∂t
and then, substituting eq. 2.12 one obtains ∂F

∂t
= −

(
δF
δe2

)2

< 0.
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 modeldomain. By de�nition, su
h a 
on�guration la
ks of internal mi
rostru
ture andhen
e it is inappropriate to study stru
tural patterns and asso
iated thermody-nami
 behavior.However, the overdamped dynami
s is not able to over
ome �nite free-energybarriers.19. In our 
ase, this allows for stabilized metastable states. This is of ourinterest be
ause typi
ally the system ends up stabilizing in twinned stru
tures orglassy states, and the single domain is only rarely rea
hed.Nevertheless, it should be pointed out that the obtained twins exhibit randomwidths instead of the 
hara
teristi
 width a

ording to the square root s
alinglaw observed in experiments. We re
all that the real internal mi
rostru
tureemerges from the existen
e of an habit plane, i.e. from size and shape e�e
ts.The absen
e of su
h a 
hara
teristi
 width in our simulation results 
omes fromthe fa
t that the system is in�nite, sin
e we have imposed periodi
 boundary
onditions in our simulation 
ell. A
tually, this does not prevent us from studyingmany aspe
ts of ferroelasti
ity, although the analysis of domain sizes does requiresu
h a 
hara
teristi
 width. Sin
e the latter is also of our interest, modi�
ationswill be 
arried out in the present model, by means of spe
i�
 disorder �elds oradditional energeti
 terms, whi
h will be dis
ussed in detail in Se
. 3.4.Computational detailsThe algorithm used to perform the Fourier transforms is the so-
alled FFTW (FastFourier Transform in the West) [161℄ and, in our 
ase, it has been shown to be ofthe order of ten times faster than that in Ref. [162℄, that is the book of referen
efor Fortran 
odes. Typi
ally, simulations have been 
arried out in a square latti
eof linear size L = 103u.l., dis
retized onto a 512×512 mesh. O

asionally, this mayhave been modi�ed and it will be indi
ated. Periodi
 boundary 
onditions havebeen used in order to 
ompute the non-OP 
ontribution in Fourier spa
e. It has
onsiderably 
ut down the 
ost of 
omputation time, sin
e for a system of N 
ells,the 
omputation of the FnonOP in real spa
e requires a 
omputation time of theorder of ∼ N2 whereas in re
ipro
al spa
e the order is only ∼ N logN . Averageshave been 
arried out over independent realizations of the disorder. The initialstate depends on the 
hara
teristi
s of the spe
i�
 simulations. For instan
e, theinitial 
on�guration in quen
h-type simulations as well as in simulations startingfrom a high temperature state 
onsist of a random strain, Gaussian distributedwith zero mean and standard deviation equal to 10−6.19Stri
tly speaking, this only holds in the 
ontinuum. In dis
retized form, there exists a lowbut �nite treshold for the barriers that 
an be over
ome by this type of dynami
s.



2.6. Numeri
al details and other 
omments 39Representation of the 
on�gurationsThe fully relaxed 
on�gurations obtained by solving numeri
ally the model areshown in snapshots of the strain �eld e2(r). It is worth noting that the start-ing point of the model is the strain tensor. In that sense, the Ginzburg-Landaufree-energy density fGL is independent from the de�nition of the strain tensor
omponents in terms of the displa
ement �eld u(r). That is to say, fGL doesnot depend on whether linear or nonlinear elasti
ity is used, and only the repre-sentation of the 
on�gurations in terms of u(r) for
es one to 
hoose the spe
i�
dependen
e of e2 on u(r). Instead, this is not the 
ase of the nonOP 
ontribu-tion, i.e. the long-range intera
tions, sin
e they partially 
ome from the SaintVénant 
ompatibility 
ondition, whi
h is indeed derived by using the linear de�-nition of elasti
ity. Then, in order to represent the 
on�guration in terms of thedispla
ement �eld, it should be used the linear de�nition of elasti
ity.





Chapter 3Stru
turesIn this 
hapter we study the stru
tural patterns resulting from solving numeri-
ally the model presented in the previous 
hapter. In parti
ular, we address thein�uen
e of the anisotropy and disorder on the stru
tures, and their evolution intemperature. To 
hara
terize the morphology the 
on�gurations, the lo
al straindistribution, domain wall pro�les and di�ra
tion patterns have been analyzed.Surfa
e e�e
ts are also dis
ussed and implemented in several ways, and used to
al
ulate the domain size distribution.3.1 Anisotropy vs. disorder. A simple analysisLong-range anisotropi
 intera
tions and lo
al disorder intera
t in a 
omplex way.They often have 
on�i
ting interests although sometimes they 
ooperate su

ess-fully as it is the 
ase of pretransitional tweed textures. To go depth into theunderstanding of this interplay it may help to do the following simple exer
ise.We design an ideal system 
ontaining only an isolated square region of homoge-neous disorder and analyze systemati
ally the patterns that appear for di�erentvalues of A3. The homogeneous disordered region is 
hara
terized by the width ofthe window D and the intensity of the disorder Tc(r ∈ D) ≡ I. The distributionand a snapshot of the resulting Tc(r) are shown in Fig. 3.1 in the upper pannels ofea
h 
ase (a)− (d). Con
erning these 
ases, note that the width of the disorderedwindow in
reases from top (I = 1.7) to bottom (I = 1.9) whereas the disorderintensity D in
reases from left D = 10 to right D = 30. The lower pannels inea
h 
ase show the relaxed strain pro�les along the diagonal dire
tion for di�erentvalues of the anisotropy. At the right side of ea
h 
ase, a series of snapshots ofthe 
orresponding 
on�gurations (in 
olor) is shown.First of all, we re
all that in absen
e of long-range intera
tions the austeniteis unstable inside the disordered regions. Then, sin
e the free energy density is41
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tureslo
al, the strain takes the values e2 = 0 and e2 = ±eM outside and inside thedisordered region respe
tively, regardless of the values of D and I. As long-rangeintera
tions are introdu
ed, this s
heme 
hanges. Let us �rst fo
us on 
ase (a).As long as the value A3 is low enough, the disorder dominates the kineti
s ofthe system and inside the disordered region the strain e2 adopts approximately aGaussian pro�le, only slightly deviating from the value eM and exhibiting tails ofvery small amplitude that de
ay outside the disordered region. However, above a
ertain 
riti
al value of A3, the anisotropy is the dominant fa
tor and the long-range intera
tions do not allow the disordered region to deform. Instead, theymake the strain to approximately vanish over all the spa
ethus giving rise to ahomogeneous stru
ture. Consequently, one 
an dedu
e that a strong anisotropy
ontributes to the stability of the thermodynami
 phase of the system.Di�erent behavior is observed in (b)− (d) 
ases. Here, two di�erent 
rossovers
an be identi�ed. As in 
ase (a), low values of A3 give rise to the Gaussian-likestrain pro�le whereas high values lead to a homogeneous stru
ture everywherein the system, as mentioned above. Nevertheless, for intermediate values of A3a new phenomenon arises as a 
onsequen
e of the balan
e between anisotropyand disorder, whi
h 
onsists of diagonal, wavy modulations of the strain insidethe disordered region. Su
h modulations are at the origin of the pretransitional
ross-hat
hed tweed. As 
an be seen in the �gure, the 
riti
al values of A3 dependon both the width D and the intensity I of the disordered region. The larger thewidth D, the higher A3 needed to inhibit the deformation. Moreover, the largerthe width D, the lower A3 needed to modulate the strain. Therefore, as the width
D in
reases, the intermediate regime exhibiting modulations of the strain alsoin
reases. The same holds for the intensity I of the disordered region.In other words, for a given value of the anisotropy fa
tor, the unstable regionsare allowed to deform provided they have a minimum size (D) , that in turn dependon the degree of instability (I). Below su
h minimum size, anisotropi
 long-range intera
tions are able to stabilize the disordered region by 
orrelating it withthe surrounding austenite-stable system. Moreover, tweed modulations require aminimum value of A3 to o

ur, below whi
h only homogeneously distorted regionsarise.Although this is a simpli�
ation of the 
on�guration that will be used in therelevant simulations, it 
aptures the essen
e of how the system rea
ts to the pres-en
e of both long-range anisotropi
 intera
tions and lo
al disorder. The disorderde�ned in the model produ
es a distribution of lo
al transition temperatures thatare exponentially 
orrelated. Therefore, although it is a purely lo
al term, at agiven temperature T su
h 
orrelations lead to a set of Landau-unstable islandswith a parti
ular mean size. Inside a given island, the degree of instability (i.e.the di�eren
e Tcr−T ) is spatially variable, and the maximum instability is pla
ed
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tures. Temperature dependen
e 43typi
ally 
lose to the 
enter of the island. When T is de
reased, the degree of in-stability as well as the mean size of the islands in
rease. In this sense, at a giventemperature when the standard deviation ζ of the disorder is in
reased both themean size and the degree of instability of the islands in
rease. Instead, the 
or-relation length only a�e
ts the mean size of the regions and not the degree ofinstability.
3.2 E�e
t of anisotropy on the stru
tures. Tem-perature dependen
eIn this se
tion we perform simulations of the full model, and the obtained straintextures and their dependen
e on temperature T are shown and des
ribed as afun
tion of temperature A3 and ζ . First we limit ourselves to variations on A3.Figure 3.2 shows snapshots of representative 
on�gurations obtained as a fun
tionof T for three di�erent values of A3. At the right side of ea
h 
on�guration wehave plotted the lo
al strain distribution averaged over 10 di�erent realizationsof the disorder. In the high-temperature phase and for the three values of A3 thedistribution is single peaked around zero strain. In spite of some di�eren
es, whende
reasing T this peak evolves towards a two-peak distribution 
orresponding tothe two possible equilibrium values of the OP, 
orresponding to the two degener-ated low-T variants. Nevertheless, only for the largest value of A3 [
olumn (I)℄ the
on�guration shows the 
hara
teristi
 twinned martensiti
 stru
ture. This is 
on-sistent with the fa
t that for a given value of T the anisotropy A de
reases fromleft to right and the system loses dire
tionality when de
reasing the value of A3.Interestingly, for the smallest value of A3 [
olumn (III)℄ we obtain a nano
lusterphase separated state. Tweed textures 
an be observed in 
ase (I) at intermediatetemperatures above the phase transition Tt ≃ 1 whereas 
ase (III) exhibits almost
ir
ular domains.A three-peaks regime is observed around the transition in the three 
ases,indi
ating phase 
oexisten
e a

ording to the �rst order 
hara
ter of the transition.As the anisotropy is lowered, this regime gradually widens in temperature. It is
onsequen
e of the presen
e of disorder, that makes some regions of the high-Tphase to be stable well below the transition point. Of 
ourse, the 
ontrary alsoholds: Some regions of the low-T phase may be stable well above the transitionpoint.
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Figure 3.1: In ea
h of the 
ases (a)-(d), strain pro�les along the diagonal are shownfor di�erent values of the anisotropy (A3), for a system without disorder but a 
enteredsquare window of variable width D and intensity I: (a) D = 10, I = 1.7; (b) D = 30,
I = 1.7; (c) D = 10, I = 1.9; (d) D = 30, I = 1.9. Above the strain pro�les in ea
h
ase, the 
orresponding disorder pro�les are depi
ted, i.e. Tc(r) with a snapshot of thezone of the system 
ontaining the disorder window. At the right side of ea
h 
ase, aseries of snapshots of the 
orresponding pro�le's 
on�gurations are shown. The pro�lesin the small insets [
ases (a)-(c)℄ are an enlargement of the area en
losed in the dashedbox. The strain is so small that, a
tually, has no physi
al meaning.
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Figure 3.2: Snapshots of sele
ted 
on�gurations and lo
al strain distribution, for threedi�erent values of A3, as a fun
tion of T . The elasti
 anisotropy A de
reases from leftto right and the temperature from top to bottom.
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Figure 3.3: Illustrativephase diagram for
A3/A1 = 0.2 and
A3/A1 = 20, for di�er-ent values of A3 andtemperature T .
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E�e
t of variations in the ratio A3/A1In order to further 
he
k that variations in the ratio A3/A1 do no entail any quali-tative 
hange of our �ndings, in Fig. 3.3 we show similar �gures to Fig. 3.2, where
A3/A1 = 0.2 and A3/A1 = 20 have been used respe
tively. By 
omparing them, it
an be seen that larger ratios need higher values of A3 in order to reprodu
e thesame stru
tural patterns. Spe
i�
ally, a de
rease (in
rease) of an order of magni-tude in the ratio A3/A1 needs a de
rease (in
rease) of an order of magnitude inthe value of A3. For instan
e, the lowest set of values {A3/A1, A3} for whi
h atwinned stru
ture is observed at T = 0.5 are {0.2, 0.5}, {2, 4.54} and {20, 45}.
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ursor texturesTo 
ompare the simulation results obtained in Fig. 3.2 with real premartensiti
nanostru
tures we show in Fig. 3.4a tweed 
ontrast in Ni-Al, whose anisotropyis high (A ∼ 9). Simulation results (b) of a system with high A shows a verysimilar pattern above the transition. The length s
ale approximates very well toexperiments and, if not indi
ated, all the snapshots in the thesis keep the sameproportion as in this 
ase.Figures 3.4(c)-(e) show a series of images of Ti50Ni48Fe2 in the premartensiti
regime upon 
ooling. We re
all that the mottled stru
ture has been suggested toappear due to the low anisotropy value (A ∼ 2) [30℄, whi
h is in agreement withsimulation results at high temperatures for low anisotropy in Fig. 3.2. Sin
e, uponfurther 
ooling, Ti50Ni48Fe2 transforms to twinned martensite, it is in 
orrespon-den
e to the intermediate value A3 = 0.5. Moreover, this high-temperature seriesshow that the premartensiti
 mottled-like domains progressively be
ome visibleas the temperature is lowered from (c) to (e). This phenomenon is obtained alsoin our simulations in Fig. 3.2 shown previously. All this is observed to o

ur inthe pre
ursor regime in other alloys like stoi
hiometri
 Ti-Ni and Ni-ri
h Ti-Ni.Strain pro�lesThe analysis of the strain pro�les of the 
on�gurations 
an give additional infor-mation whi
h 
annot be extra
ted from simply looking at snapshots. For thispurpose, we refer again to the 
on�gurations shown previously in Fig. 3.2. Inparti
ular the strain pro�les of an arbitrary se
tion of the stru
tures for the 
asesof high (I) and low value (III) of A3 are depi
ted in Fig. 3.5. Their evolutionin temperature helps in the understanding of the dynami
s resulting from theinterplay between anisotropy and disorder. For the high value A3 = 4.54, someshort-ranged, tiny modulations arise at high temperature T . As T is de
reased,they gradually in
rease in number, intensity, and range, 
orresponding to tweedpatterns just above the transition temperature T h 1. This is 
onsequen
e offair play between anisotropy and disorder, sin
e both 
ontribute essentially to theresulting stru
ture. Instead, at low T , no signature of the modulations observedat high T survive but the pro�le be
omes high-strained and long-ranged sin
ethe system is purely dominated by the long-range anisotropi
 intera
tions. Theyare able to indu
e large motion of twin boundaries, eventually eliminating somedomains and 
oarsening others.For A3 = 0.05 the evolution is 
ompletely di�erent, sin
e it is mainly di
-tated by the presen
e of disorder. At high T , islands of strain are observed,with either positive or negative sign, but do not exhibit modulated (sign-variable)
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Figure 3.4: (a) Pretransitional tweed pattern in Ni63Al37, whose anisotropy is A ∼ 9.TEM bright �eld image extra
ted from Ref. [26℄. (b) Simulated tweed, with high A,whi
h agrees with (a) also in the length s
ale. (c)-(e) A 
ooling series showing pre-martensiti
 mottled stru
tures in Ti50Ni48Fe2, with A ∼ 2. Dark-�eld images extra
tedfrom Ref. [30℄.
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Figure 3.5: Evolution of the strain pro�le of an arbitrary se
tion when the temperatureis de
reased, for high and low values of the anisotropy.strains within any island. On
e the spe
i�
 variant is 
hosen in a parti
ular trans-formable region during the initial nu
leation pro
ess, it is not able to swit
h to theanother variant by de
reasing T , but it will remain in the given variant forever.The domain only 
an grow in
orporating new non-transformed zones to the givendomain. Otherwise, if a domain wall separates two transformed regions 
orre-sponding to the two di�erent variants, the wall 
annot move at all, but remainstati
. Hen
e, the stru
ture at low T strongly depends on the high-T 
on�gurationand on the spe
i�
 evolution of the lo
al stability given by the spe
i�
 
on�gura-tion of disorder. Consequently, it 
an be dedu
ed that the system freezes due tothe quen
hed-in disorder in metastable states, sin
e, as it will be seen later, theenergy is higher than that of a twinned stru
ture.Non-OP strainsIt is interesting to look at the non-OP e1 and e3, that 
an be 
al
ulated from e2 bymeans of eq. A.31 and eq. A.20. An example of snapshots of their 
on�gurationsand pro�les of an arbitrary se
tion of them are shown in eq. 3.6, in the tweedregime (a) as well as in the twinned phase (b). As indi
ated, the magnitude
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turesof the pro�les of both e1 and e3 have been enhan
ed four times to improve the
omparison with the OP e2. The 
olor of the snapshots has been also adapted tobetter observe the stru
tures. As 
an be easily seen in (a), they mainly 
on
entratein the smooth interfa
es of the 
ross-hat
hed modulations. This is more di�
ult tosee in the pro�les in (b) be
ause the presen
e of disorder makes the strain �u
tuatesharply inside the twin variants themselves, and it leads to a �u
tuating pro�lealong the whole se
tion of the system. However, by looking with detail at the
orresponding snapshots of e1 and e3, �ne straight lines 
an be observed along thetwin boundaries, superposed to the random, isotropi
 �u
tuating spots due to thedisorder. The fa
t that the non-OP strains 
on
entrate in the interfa
es 
on�rms(i) that these deformations appear to make easier the 
oherent �t between the 
ellsof di�erent variants along the domain boundaries, and (ii) that it is pre
isely theminimization of these strains whi
h determine the morphology of the boundaries.1
3.3 E�e
t of anisotropy and disorder at low tem-peraturesDisorder e�e
tsIn the previous Fig. 3.2 the inhibition of martensiti
 twins at low temperatureshas been 
arried out by de
reasing the value of A3. Here, in Fig. 3.7(a)-(b) weshow that for a given value of A3 whi
h shows no tweed in the pre
ursor regime,but twinned martensite below the transition [
ase (a)℄, twins 
an be suppressed byin
reasing the amount of disorder ζ , and, instead, the mottled stru
ture survivesdown to low temperatures [
ase(b)℄. This is in agreement with the experimentalresults in Ti1−x-Ni1+x as shown in the images (c)-(d). Upon 
ooling stoi
hiometri
Ti-Ni exhibits a pretransitional mottled stru
ture before undergoing a martensiti
transition. When the 
ontent of Ni is in
reased at the expense of Ti atoms, thetransition temperature de
reases and �nally it is suppressed for Ti48.5-Ni51.5 [34℄.Then, mottled patterns survive down to 0 K. This also o

urs in iron-doped Ti-Ni [30, 163℄.1In other models that only allow for deformations 
orresponding to order-parameter strains,the proper orientations of the domain boundaries are obtained automati
ally [131℄. This o

ursbe
ause these orientations are the only 
rystallographi
 way to mat
h geometri
ally the 
ells
orresponding to di�erent, pure variants. In our model, the minimization of su
h strains isneeded to obtain the proper orientations. Moreover, the minimization of the energy asso
iatedto disorder 
an lead to stabilize other morphologies, resulting in a ri
h lands
ape whi
h is of ourinterest.
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Figure 3.6: Symmetry adapted strains: Se
tion pro�les (above) and snapshots (below)of (a) tweed and (b) twins. Non-OP strains e1 and e3 have been enhan
ed four times todistinguish their pro�les opposite to the OP e2. Gradients of the OP entail an in
reasein the non-OP 
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Figure 3.7: (a)-(b) For a set of values {ζ,A3} the system shows premartensiti
 mottled stru
ture whi
h transforms to twinned martensiteupon 
ooling. If the amount of disorder ζ is in
reased, twins are inhibited. (c)-(d) Experimental TEM images in Ni-ri
h Ti-Ni extra
tedfrom Ref. [34℄. (c) Transforming 
omposition. (d) High Nontransforming 
omposition.
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t of anisotropy and disorder at low temperatures 53Anisotropy and disorder e�e
tsIn the following we fo
us on the e�e
t of anisotropy and disorder in the stru
-tures at low temperatures. In �gure 3.8 we show snapshots of sele
ted stru
turalpatterns at T = 0.5 (< Tc, i.e. well inside the low-temperature regime) and fordi�erent values of A3 and ζ . In order to highlight the di�eren
es among the 
on�g-urations, at their right side we have plotted the di�ra
tion patterns, 
orrespondingto the intensity of the Fourier transform2 |F(e2)|2, averaged over 20 independentrealizations of disorder. Several overall trends 
an be identi�ed in Fig. 3.8:(i) From left to right the texture loses dire
tionality as re�e
ted in the di�ra
-tion pattern, that 
hanges from a 
ross-hat
hed to a 
ir
ular shape. This is 
on-sistent with de
reasing anisotropy.(ii) From bottom to top the domain size de
reases, 
onsistent with the in
reaseof ζ and the asso
iated energy barriers. This is 
on�rmed by the widening of thedi�ra
tion pattern towards higher values of the wave ve
tor.(iii) Twin boundaries exist only for relatively low values of ζ . A
tually, as weshall demonstrate later, they appear for the values of disorder below a 
riti
al ζ∗,whi
h in turn depends on A3 in su
h a way that the higher A3 the higher ζ∗.(iv) Cross-hat
hed patterns are obtained for high values of both A3 and ζ ,. forhigh values of A3, whereas a mottled stru
ture appears for low values of A3.(v) Finally, for the lowest value A3 = 0.05, mottled stru
tures are observed.In fa
t, only for very low values of ζ the pattern shows some dire
tionality.We noti
e that, although tweed and mottled stru
tures are 
hara
teristi
 of thepre
ursor regime, as seen in Fig. 3.2, in the present 
ase they 
orrespond to low-temperature stru
tures. A
tually this is not surprising sin
e the amount of disor-der suppresses the martensiti
 transition and the otherwise pretransitional stru
-tures survive down to very low temperatures. It is worth mentioning that theseresults are in 
omplete agreement with experiments in a wide range of alloys. Forinstan
e, super
ondu
ting YBa2Cu3O7−δ undergoes a tetragonal-to-orthorhombi
ferroelasti
 transition, showing tweed patterns above the transition and twinningin the ferroelasti
 phase. When it is doped with either with Al, Fe [164, 165℄ orCo [166℄ at the expense of Cu the twin spa
ing is redu
ed progressively. Finally,there exists a 
riti
al amount above whi
h the transition is suppressed and tweedis observed at low temperatures instead of twinning. In the 
ase of low-anisotropysystems, whi
h show a mottled stru
ture, it has been analyzed in detail in Fig.3.7(c)-(d).2An expression for the Fourier transform 
an be found in App. B.1.
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Figure 3.8: Illustrative phase diagram at low temperature (T = 0.5) for di�erent valuesof A3 (∼ elasti
 anisotropy A) and disorder intensity ζ. Ea
h 
on�guration is shownwith its 
orresponding Fourier-transformed intensity F(e2)
2.
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ts 553.4 Finite size e�e
tsAs dis
ussed in Se
. 1, one of the most intriguing features of martensites 
on
ernsthe strain 
on�guration at the habit planes, whi
h mat
h austeniti
 and marten-siti
 phases. It is 
ommonly known that the notion of su
h well lo
alized, invariantinterfa
es is often at the origin of the self-a

ommodation pro
ess 
onsisting ofminimizing the energy by taking advantage of the multiple degenerated minima.It gives rise to strain modulations in these planes that spread out in the marten-siti
 bulk due the long-range nature of the elasti
 intera
tions, and 
onsequently,a multidomain mi
rostru
ture is 
reated. Moreover, it is well known that su
hmodulations are 
hara
terized by a 
hara
teristi
 wave length, i.e. a twin width
λ that is related to the size of the embedded martensiti
 grain D a

ording to
λ ∼

√
D. This problem has been addressed su

essfully, by means of mi
roelas-ti
ity [130℄, displa
ement �eld pi
ture [167℄, et
. However, a full understanding ofthis problem in the 
ontext of Landau was la
king.In the model presented in Chap. 2 the existen
e of a habit plane was not takeninto a

ount, sin
e periodi
 boundary 
onditions were imposed. A
tually, theobserved twinned mi
rostru
ture was 
onsequen
e of metastable states stabilizedby the dynami
s and the long-range anisotropi
 intera
tions, rather than a truethermodynami
 equilibrium 
on�guration. Indeed, no 
hara
teristi
 twin lengthwas identi�able, but a large range of widths of similar probability of o

urring.3.4.1 Habit planeWithin a Ginzburg-Landau framework we study the boundary problem of a semi-in�nite martensite domain in an austenite host matrix, �nding the strain andstress �elds mat
hing the austenite-martensite interfa
e (habit plane). The 
al-
ulation is huge and was 
arried out mainly by Mar
el Porta. It is inspired inthe previous works 
arried out by Horovitz et al. [167℄ and Shenoy et al. [168℄.Here it is presented an outline of the approa
h and results, that attempts toavoid mathemati
al details3. Starting from the previous model presented here inthe absen
e of disorder, new boundary 
onditions are imposed. Instead of be-ing periodi
 in both axis, in the x axis we de�ne a transformable strip of �nitewidth L whi
h borders in both sides on a region for
ed to remain in the austen-ite phase by means of a harmoni
 free energy in the symmetry adapted strains:

faus = A1

2
e21 + A(T−Tc)

2
e22 + A3

2
e23. Periodi
 boundary 
onditions are used in the yaxis.3Full work 
an be found in M. Porta et al., Phys. Rev. B 79, 214117 (2009).
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turesThe general pro
edure is as follows: First, the strain �eld in the austeniteregion is determined by imposing me
hani
al equilibrium ∇·σ = 0 (that is equiv-alent to minimize the energy), elasti
 
ompatibility and the requirement that thestrain �eld must vanish far from the habit plane. The latter 
ondition togetherwith the periodi
 boundary 
onditions in the y axis lead to transform the abovementioned equations by Lapla
e in the x dire
tion and Fourier in the y dire
tion,whi
h ensures de
aying and periodi
 strain �elds in the respe
tive dire
tions. Theresulting free energy in the austenite is a nonlo
al fun
tion of the order-parameter(OP) strain �eld e2 in the habit planes only, and 
ontains a Fourier kernel 1/|ky|.This kernel guarantees the habit plane to be invariant, i.e. the strain vanisheson average along this plane. The expressions for the non-OP strains e1 and e3 aswell as ∂xe1 are obtained in terms of the OP e2 in the habit plane as well as its
x-derivatives. It allows to obtain an expression for the non-OP free-energy of themartensiti
 bulk in terms of the OP e2 
ontaining the fa
tor (k2

x − k2
y)

2, whi
hfavors modulations of the OP with ky = ±kx. Also, it is found that it s
ales as
∼ 1/|ky|, indu
ing the formation of narrow twins. Sin
e this s
aling means thatthe non-OP free energy is an in
reasing fun
tion of the wavelength, the spe
i�
twin width will be given by a balan
e between this term and the Ginzburg term,that attempts to remove any interfa
e. Simulation results show that the equi-librium twin width λ ful�lls the experimentally observed relationship λ ∼

√
L.The full strain �elds e1, e2 and e2 are 
hara
terized both in the martensite and inthe austenite. Also, the size of the transformable region appears to be 
ru
ial indetermining the resulting equilibrium stru
ture. A
tually, there exists a minimumlength for the nu
leation of twinned martensite, whi
h in
reases with tempera-ture and diverges as T approa
hes the transition temperature of Landau. In thissize regime, a 
he
ker-board pattern that alternates parent and produ
t phases isstabilized instead of diagonal twins. The e�e
t of the shape of a �nite martensitein
lusion (�nite in x and y dire
tions instead of �nite only in x) on the resultingpattern has been also studied.3.4.2 Simulating austeniteThis method 
onsists in simulating expli
itly a surrounding austenite matrix. Itis 
arried out by means of de�ning in a half the system an austenite stabilitylimit Tc well below any temperature T in order to strongly stabilize the austen-ite phase from the point of view of Landau. This is equivalent to de�ne a freeenergy purely harmoni
 in the OP in the austenite region, whi
h was done inthe analyti
al previous method. Periodi
 boundary 
onditions are maintained inboth axis. This method su

eeds in rea
hing the main target that is to obtain anhabit plane along whi
h the total strain vanishes by modulating it with a narrow
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Figure 3.9: Low temperature 
on�gurations showing half austenite (left side) and halftwinned martensite (right side) for di�erent values of anisotropy and disorder. Twinwidth in
reases as anisotropy is de
reased. Disorder does not a�e
t twin width dire
tly,but may break domains whi
h in turn does a�e
t the domain size.distribution of low wavelengths, whi
h 
ontrasts with what obtained previously.Figure 3.9 shows snapshots of the simulation 
ell at low temperatures for di�erentvalues of anisotropy and disorder. It 
an be seen that in all 
ases one half of thesystem is retained in the austenite phase. This naturally imposes the requirementof a globally invariant habit plane, whi
h leads the system to exhibit the sameproportion of the di�erent martensiti
 variants along this plane. Mediated bythe long-range anisotropi
 intera
tions, long thin twins with a similar width areformed. Moreover, it 
an be observed that the strain �eld de
ays in the austenite,
onsistently with the previous analyti
al method.The spe
i�
 value of the anisotropy a�e
ts the resulting twin width, in agree-ment with the fa
t that the 
onstant of proportionality of the s
aling relation
λ ∼

√
L 
ontains elasti
 
onstants related to the anisotropy fa
tor [167℄. Inparti
ular, a lower value of A3 results in a broader twin width. Domain sizedistributions will be analyzed in detail later.It is worth noting that high values of disorder make break down long twins intosmall regions with di�erently oriented twins. It is observed that the smaller theregion the narrower the twin width, whi
h is in agreement with the s
aling relationabove λ ∼ √L. Note that in the regions surrounded by other twinned regions,the appropriate modulation length of twins 
omes from domain boundaries andthe austenite region (the left half side of the snapshots) has no e�e
t in it. This is
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turesimportant sin
e it highlights the fa
t that the notion of invariant plane, either inphase boundaries or domain boundaries, is inherent in the original model. Thus,to attain the 
orre
t modulation the unique additional 
ondition that is required toin
lude in the model is the existen
e of a plane separating two phases or di�erentlyoriented twins, but, on
e su
h a plane exists, the energeti
 ingredients needed toform thin twins are already in
luded in the initial model. In fa
t, this phenomenonwas already observed in a di�erent 
ontext in the 
ase of tweed. Indeed, tweedgrains emerged initially in regions where Tc was higher than the surroundingaustenite matrix, leading to a natural (
rosshat
hed) modulation that minimizedthe total strain along the austenite-tweed interfa
e.Domain size distributionNow we attempt to 
hara
terize the stru
tures through the domain size distribu-tions. This analysis requires surfa
es e�e
ts giving rise to the right twin widths.Sin
e the method of simulating austenite do not entail additional 
oding, the 
om-putation 
ost is equivalent to the usual model from the point of view of storageand time. Therefore, we have 
hosen this method to systemati
ally 
ompute theevolution of the domain size distribution from the high- to the low-temperatureregime for di�erent values of anisotropy and disorder, whi
h is of 
ru
ial interestfor the purposes of this thesis. Figure 3.10 shows the domain size distributionfor the same values of ζ and A3 as in Fig. 3.8 and for three di�erent tempera-tures: T = 1.5 (> T0 > Tc), T = 1.0 (= Tc) and T = 0.5 (< Tc). For relativelyhigh anisotropy and small ζ values�martensiti
 systems, in the small �gures atthe bottom left 
orner�tweed pre
ursor is found at high T with a 
hara
teristi
length that 
hanges towards the 
hara
teristi
 length of twins when undergoingthe martensiti
 transition.4 Instead, when ζ is high enough to blo
k twin for-mation, the 
hara
teristi
 domain size at high-T survives when T is lowered wellbelow the transition. Domains are not allowed to grow due to the presen
e ofrelatively high levels of disorder but freeze thus rendering the system to an
hor inmetastable states. A
tually, these states show glassy features, that will be shownin ZFC/FC experiments in 
hapter 4. Anti
ipating these results, glassy stateshave been indi
ated in the �gure to make 
lear the general lands
ape. Note thatthe minimum value of ζ required to inhibit twins in
reases when the value of A3in
reases.4The distributions showing a large 
hara
teristi
 length are mu
h less peaked (and hen
ebroader) mainly due to two reasons: In one hand, when the twin width in
reases, the numberof twins de
reases and this entails a distribution whi
h is statisti
ally more poor. Se
ond, whenthe twin width is 
onsiderable large, 
ompared to the simulation 
ell size, periodi
 boundary
onditions may play an undesirable key role in determining the twin width.
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Figure 3.10: Domain size distribution for di�erent values of σ and A3 and for threedi�erent temperatures: at the parent phase (T = 1.5), near the transition temperature(T = 1.0) and in the martensiti
 phase (T = 0.5). The 
orresponding patterns arespe
i�ed in the unambiguous 
ases. Frozen states are obtained in those 
ases wherethe 
hara
teristi
 domain sizes do not 
hange by de
reasing T but retain the high-Tstru
tures down to low T . Same verti
al s
ale (in units that normalize the distribution)applies to all 
ases and therefore it does not need to be spe
i�ed.
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turesChe
kerboard patternTaking advantage from this easy method to simulate austeniti
 boundary 
ondi-tions, we analyze qualitatively the e�e
t of small sizes in the stru
tures. This isshown in Fig. 3.11. The initial 
on�guration (a) 
onsists of a half the systemlying in the austenite phase and the another half in the martensite. Then, wepro
eed to de
rease the martensiti
 region by 
hanging the 
on�guration of Tc(r)in su
h a way that we set Tc(r) = 0 in a narrow strip at the austenite-martensiteinterfa
e, and we let the system relax again. We repeat this pro
edure progres-sively as it is shown in sele
ted snapshots (b)-(f). We have done that for twodi�erent temperatures, T = 0.5 and T = 0.9. It 
an be observed that whenthe size of the martensiti
 region is de
reased below a 
ertain value, twinningis no longer observed but a 
he
ker-board pattern. This is in qualitative agree-ment with simulation results in Se
. 3.4.1 where su
h patterns are referred to aslatti
e martensite. There, we re
all that a free-energy 
ontribution was derivedanalyti
ally from imposing �nite size e�e
ts. Hen
e, that was a physi
ally moremeaningful method. Instead, the 
urrent method arises as powerful due to itssimpli
ity and reveals that 
he
kerboard stru
tures are already 
ontained in theoriginal model.It must be noted that, due to the presen
e of disorder Tc(r), the 
he
ker-board pattern is observed to be inhomogeneous and/or dis
ontinuous along themartensiti
 strip. This is also in agreement with results in Se
. 3.4.1, where adependen
e of the pattern on temperature is observed. Fo
using at T = 0.9 in Fig.3.11, in (d) the 
he
kerboard pattern starts to appear and 
oexist simultaneouslywith twin boundaries. As the strip is progressively redu
ed, the 
he
kerboardgrows to the detriment of twinning [(e)℄. This trend is also observed at T = 0.5although, as expe
ted, the martensite appears to be more stable. Note that themorphology of the de
aying strain �elds in the austenite (whi
h are larger in strainand range at lower temperatures), also shows the twin-
he
kerboard 
rossover.Che
kerboard strain stru
tures have been observed experimentally in de
om-posing metal alloys (Co-Pt [169℄, AuCu(-Pt,-Ag) [170℄, et
.) and in oxide 
erami
s(ZMnGa04 [171℄, (Nd2/3−xLi3x)TiO3 [172℄, et
.), although, in general, they are notasso
iated to the 
on�nement of the strain �eld.3.4.3 Phenomenologi
al long-range potentialPrevious to the analyti
al work explained in Se
. 3.4.1, Shenoy et al. [168℄ pro-posed a free-energy 
ontribution 
oming from the existen
e of a habit plane. An-ti
ipating the full kernel found subsequently, that term already 
ontained the
∼ 1/|ky| fa
tor, essential for 
apturing the s
aling resulting from the free-energy
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Figure 3.11:minimization in
luding both martensiti
 and austeniti
 regions. Motivated by thisidea, we introdu
ed a phenomenologi
al term in the free energy with a unique ker-nel that goes as ∼ 1/|ky|. Mathemati
ally:
FS = Cs

∫

dx

∫
1

|ky|
|ẽ2(x, ky)|2dky, (3.1)where ẽ2(x, ky) is a Fourier transform of the OP strain e2(x, y) only in the ydire
tion5. Here Cs is the 
onstant of proportionality of this 
ontribution. Aspointed out before, su
h a kernel makes the di�erent martensiti
 variants existin the same proportion (self-a

omodation), leading to a zero net strain, i.e. ama
ros
opi
ally invariant habit plane. Otherwise, a non-vanishing 
ontributionof e2(ky = 0) would remain, whi
h would make the energy term ∼ 1/|ky| diverge.This free-energy 
ontribution in
reases with the wavelength of the strain mod-ulations. Thus, it favors a stru
ture of narrow twins. Given that the Ginzburgenergy penalizes the interfa
es (i.e. prefers k = 0), the equilibrium 
on�gura-tion will be given by a balan
e between these two terms, and approa
hes theequal-width twinning. Sin
e this term emerges from habit plane e�e
ts, it will bereferred to as the surfa
e potential, in 
ontrast to the potential 
oming from bulk
ompatibility. A
tually, our simulation 
ell has periodi
 boundary 
onditions,whi
h leads to an in�nite system. Nevertheless, the surfa
e potential introdu
es5Dis
retization and derivatives of this term, whi
h are ne
essary for the dynami
s, 
an befound in App. A
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turesan e�e
tive, �nite size L, whi
h is given through the weight Cs. Sin
e this termis purely phenomenologi
, the value of Cs is arbitrarily 
hosen. In fa
t, its 
hoi
ewill determine this e�e
tive size L in su
h a way that, larger values of Cs entailnarrower twins whi
h means lower sizes L. The other way round, for Cs → 0 weobtain L → ∞ that means a single domain, and we re
over the original model.Before going into the simulation results, it should be noted that the 
ompu-tational 
ost of this term is large. Therefore the linear system size has to bediminished to 500l0, dis
retized on a 256×256 mesh. Moreover, disorder is Gaus-sian 
orrelated (instead of exponentially 
orrelated)6 sin
e in this 
ase it has beenobserved to be faster in stabilizing the 
on�gurations.We explore the spa
e of 
on�gurations for some values of the 
oe�
ient Cs.We have also studied the e�e
t of varying the 
orrelation length of the disorder
ξ, sin
e it a�e
ts dire
tly the lo
al stability islands, in order to look for possiblee�e
ts of it on the typi
al twin width. Figure 3.12 shows two sets of snapshotsof 
on�gurations 
orresponding to high (a) and low (b) temperatures. In ea
h setof snapshots, the 
orrelation length ξ in
reases from left to right and the surfa
eweigth Cs in
reases from top to bottom. The 
ase Cs = 0 is in
luded to 
omparethe results with those obtained previously, in the absen
e of the surfa
e potential.In order to highlight the e�e
t of Cs the disorder 
on�guration is the same for all
ases with the same ξ.As 
an be seen, in 
ase (a) Cs appears not to have relevant e�e
ts on theobtained 
on�gurations. This o

urs due to the fa
t explained in the previousse
tion: The presen
e of disorder in the austenite gives rise to regions withinwhi
h the martensite phase is stable. Sin
e su
h regions are of �nite size, theybehave as �nite martensite domains, thus trying to vanish the global strain atthe boundaries that, in fa
t, a
t as habit planes. This for
es the strain to bemodulated inside these regions, leading to tweed textures. The length of su
hmodulations 
oming from the real surfa
e e�e
ts in disordered regions dominateover the phenomenologi
al surfa
e potential. Hen
e, no e�e
ts of it are appre
iablein this temperature range. In that sense, 
ross-hat
hed tweed modulations alsomake the surfa
e free energy be small. Due to the same reason, these pre
ursorstru
tures strongly depend on the value of ξ, sin
e it partially7 determines the sizeof the regions with high Tc(r). More spe
i�
ally, as it is in
reased, the modulationlength of the pre
ursor domains in
reases, in agreement with the s
aling law λ ∼√
L.6A study in a very similar magneti
 model 
on
erning the e�e
t of the parti
ular fun
tionalform of the 
orrelation fun
tion on the disorder has been shown that su
h spe
i�ties do nota�e
t the obtained stru
ture.7Let us re
all that the disorder is 
ompletely determined by ξ and the disorder amplitude ζ.
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Figure 3.12: Snapshots of sele
ted 
on�gurations in
luding 1/|ky | potential as a fun
-tion of the weigth Cs and the 
orrelation length of the disorder ξ, at two temperatures:(a) well above and (b) well below the transition. In (a), tweed textures are not a�e
tedby the phenomenologi
al potential but by the spe
i�
 value of ξ: The high the ξ thelarger the strain modulation. In 
ontrast with that, twinned stru
tures in (b) are nota�e
ted by ξ but by Cs: The higher the Cs the smaller the twin width.Instead, the opposite behavior is observed in the martensiti
 phase [
ase (b)℄.The obtained twinned stru
ture does not depend on the 
orrelation length and,in general, on the disorder 
on�guration. It was already observed in the absen
eof the surfa
e potential in Se
. 3.4.2, sin
e twinning was originated from strongdiagonal 
orrelations between 
ells, over
oming the barriers ere
ted by disorder.8On the other hand, as it is expe
ted, the typi
al twin width de
reases with thesurfa
e 
oe�
ient Cs.Domain size distributionWe also address the analysis of the domain size distribution through the methodof the surfa
e potential ∼ 1/|ky|. Here the value for the 
orrelation length is setto ξ = 20l0 and will be kept 
onstant. We re
all that, if not indi
ated expli
itly,the values for A3 and ζ are set to A3 = 4.54 and ζ ≃ 0.3. We then pro
eed tostudy the evolution in temperature of the 
hara
teristi
 lengths of the patternsfor two values of the 
oe�
ient Cs, Cs = 0.1 and Cs = 0.01. Results are shown inFig. 3.13.8A
tually, as obtained in Se
. 3.3 there exists a treshold for the disorder amplitude ζ abovewhi
h it is able to inhibit the martensiti
 transformation but below whi
h disorder has indeedlittle e�e
t on twinning features.
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turesLet us fo
us �rst on the value Cs = 0.1. At high temperatures a peak isobserved at small lengths whi
h 
orresponds to tweed modulations (indi
ated bythe dahsed line), and is mainly determined by the 
hara
teristi
s of the disorder, ashas been dis
ussed previously. When T is de
reased, the domain size distributionbroadens, due to the widening of the modulation length whi
h is 
onsistent withan enlargement of the disordered regions. At the same time, new regions arisethat keep on nourishing small wavelengths. Although in the 
oexisten
e region thefuture twins 
an already be dis
erned, the shorter wavelength of tweed still breaksthem and no twinning signature 
an be appre
iated in the domain size distribution.It is just below the transition, when the twins are 
learly formed, that a ratherdi�erent, mu
h broader distribution 
an be observed. It 
an be regarded as thesum of two 
ontributions: one 
orresponding to some small wavelengths that stillsurvive (as the one observed at high T ), and the other 
oming from the twin width(indi
ated by the dotted line). This is in agreement with the �rst-order 
hara
terof the transition whi
h allows for phase 
oexisten
e around the transition point.When the system is 
ooled further, only the twin 
ontribution remains, whi
hgives rise to a single, narrow peak 
on�rming the existen
e of a 
hara
teristi
twin width. It is important to re
all that this peak would not appear when thesurfa
e potential is removed, but the resulting twins exhibit widths in a very wideregion that spreads out from small sizes up to the simulation 
ell size (whi
h
orresponds to the single domain).
Similar trends may be observed in the evolution in temperature for Cs = 0.01.The 
hara
teristi
 length of tweed (that naturally 
oin
ides with that for Cs = 0.1)evolves towards the mu
h larger 
hara
teristi
 length of twins, that in this 
aseis larger than that for Cs = 0.1. Due to the absen
e of a 
lear peak in thedistribution (due to the same reasons as in broad distributions in Fig. 3.10)dotted line has been omitted in this 
ase. In a very similar magneti
 model,
onsisting of a two-well Landau potential extended to in
lude quen
hed disorder
oupling to the harmoni
 term and long-range dipolar intera
tions, a similar studywas 
arried out where a single peak of small size was observed at high tempertures
orresponding to magneti
 tweed, and a single peak of larger size was observedat low T 
orresponding to magneti
 twins. However, opposite to the elasti
 
ase,
oexisten
e of the peaks was not observed at any temperature, whi
h 
orroboratesthe se
ond-order 
hara
ter of the transition, that makes the OP to transform
ontinuously from one phase to the another, thus preventing a 
oexisten
e region.
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Figure 3.13: Evolution in tem-perature of the domain size dis-tribution in a martensiti
 systemfor two di�erent values of the 
o-e�
ient Cs. Typi
al tweed lengthobserved at high temperatures,is indi
ated by the dashed lineswhereas the dotted line points atthe typi
al twin width (dottedline is ommited for Cs = 0.01 dueto the ambiguous broad distribu-tion). It is worth noting that 
o-existen
e of peaks is 
learly ob-served 
lose to the transition for
Cs = 0.1.
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tures3.5 NeedlesIt is worth looking at the morphology that appears when di�erent twin laminates(polytwinning) meet perpendi
ular to ea
h other. A domain rea
hing a domainboundary perpendi
ularly typi
ally a

omodates by taking a needle-like shape
lose to the boundary if the two perpendi
ular domains are of the same orien-tational variant [173℄. Our original model also a

ounts for this phenomenon,although perpendi
ular domains do not o

ur often be
ause twinning typi
ally
orrelates the whole system a

ording to a single dire
tion. However, �nite sizee�e
ts mentioned in the previous se
tion allow for a more ri
h internal twinnedstru
ture, with twins in both diagonal dire
tions. This may give rise to per-pendi
ular jun
tions and hen
e, needles 
an be observed. We have sele
ted twolow-temperature snapshots whi
h 
learly exhibits this morphology. Both experi-mental [(a)-(d)℄ and simulated [(e)-(f)℄ twins with needles are shown in Fig. 3.14.Case (e) in
orporates surfa
e e�e
ts through the phenomenologi
al potential and
ase (f) through the method of simulating austenite.9 Moreover, when movingaway from the perpendi
ular jun
tions, needles often widen and even join otherneedles thus forming a broader and broader twin domain. This may give rise toself-similar patterns [174℄. Some other times needles die before be
oming true,long-range twins. Both phenomena 
an be observed experimentally in 
ase (a)and (c) of Fig. 3.14. Case (f) shows a simulated 
on�guration exhibiting bothjoined and dead needles.

9We remark that �nite size e�e
ts are not needed for this phenomenon to o

ur, but theyare introdu
ed to make easier the formation of domain walls joining perpendi
ularly.
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(a) (b) (c) (d)

(e) (f)

Figure 3.14: Experimental images [(a)-(d)℄ and simulation snapshots [(e)-(f)℄ exhibit-ing needle-like domain walls in perpendi
ular jun
tions. (a) Opti
al mi
rograph of Cu-Al-Ni has been extra
ted from Ref. [13℄. (b), (c) and (d) show TEM images of Y-Ba-Cu-O, extra
ted from Ref. [5℄. (e) This 
on�guration has been obtained by in
luding thesurfa
e potential ∼ 1/|ky |. Linear system size of (e) is 500l0 dis
retized on a 256 × 256mesh. Snapshot in (f) is a 1000l0 × 1000l0 se
tion of a larger system of linear size of
4000l0 dis
retized on a 2048 × 2048 grid whi
h in
ludes the simulated austenite region.This is the reason why (f) does not exhibit periodi
 boundary 
onditions.





Chapter 4Thermodynami
 properties
4.1 Heat 
apa
ity and transformed fra
tionThis 
hapter is devoted the study of the thermodynami
 behavior that underlythe stru
tures shown in the previous 
hapter. First, the behavior of the heat
apa
ity C has been studied as fun
tion of the parameter A3, whi
h we re
allthat, at 
onstant T , it is proportional to the elasti
 anisotropy fa
tor A. Theheat 
apa
ity C 
an be obtained a

ording to the well known relation with theHelmoltz free energyF : C = −T∂2F/∂T 2. In our 
ase, the Helmoltz free energy
orresponds to the total free energy of the model FT.In order to reprodu
e the standard experimental pro
edure, the simulationshave been 
arried out upon 
ooling from the high-temperature phase (T = 1.62)down to well below the low-T phase (T = 0.3), with a step of ∆T = −0.02. Forthe spe
i�
 value of the disorder used in these simulations (ζ = 0.32) the range of
T is wide enough to 
omprise almost all the lo
al stability limits Tc(r)s and thus
apture all the relevant features in the heat 
apa
ity. From 10 to 40 independentseeds (depending on the �u
tuations of C, that in turn depend on the value of A3)have been used in the average of the 
urve. However, this has been insu�
ient to
ompletely remove the irregularities without thermodynami
 meaning and furthersmoothing has been ne
essary by �tting ea
h point of the 
urve by a parabola withthe 
losest eight temperatures (four of higher T and four lower). This pro
edurehas left approximately only the relevant behavior, whi
h was dete
ted previouslyby analyzing di�erent independent groups of seeds.The similarities observed between the �rst derivative of the free energy F ′ =

∂F/∂T and the transformed area fra
tion ς inspired us to 
ompute the �rst deriva-tive of the latter ς ′ = ∂ς/∂T , to 
ompare it with the heat 
apa
ity C. The trans-formed fra
tion ς has been spe
i�
ally 
omputed as the fra
tion of the system69
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 propertieswith a strain e2 su
h that: |e2| > 1
2

√
1
N

∑

i,j e
2
2(i, j). In order to follow the samepro
edure as in the 
omputation of C, ς ′ has been smoothed by �tting ea
h pointof the 
urve with the 
losest four points, sin
e it is a �rst derivative (instead of ase
ond derivative as in the 
ase of C) of the original data.First we have performed simulations both upon 
ooling from the high-T phaseand upon heating from the low-T phase. The resulting 
urves for C are shownin the top right panel in Fig. 4.1 for the value A3 = 1.0. It 
an be observedthat the 
ooling 
urve exhibits a peak shifted to temperatures lower than thetransition temperature T0 ≃ 1.03 in the 
lean limit. Instead, the peak in theheating 
urve is shifted to higher temperatures. Hen
e, one 
an dedu
e that thesepeaks 
orresponds to metastability limits of the phases. Moreover, in both 
asesthe position of the peak 
oin
ides with the position of the peak observed in the�rst derivative of the transformed fra
tion dς/dT , whi
h is shown in the bottomright panel. This gives 
on�den
e about the robustness of the results. The free-energy density f and the transformed fra
tion ς are displayed for 
ompletenessin the upper left and lower left panels respe
tively. The 
urves of ς upon 
oolingand heating are very 
lose to ea
h other indi
ating little hysteresis, whi
h is inagreement with the weak 
hara
ter of the �rst-order martensiti
 transition (MT)undergone by Fe-Pd, from whi
h we have taken the material parameters used inthis model. The wide temperature range whithin whi
h the transition o

urs isdue to the presen
e of disorder.Given that we know from the previous Fig. 4.1 that the peak is related to ametastability limit, to save 
omputation time, from now on we restri
t ourselvesto the 
omputation of the 
ooling 
urves. In Fig. 4.2 we extend the 
omparisonbetween the heat 
apa
ity C and the transformed fra
tion ς to three di�erentvalues of A3: (I) A3 = 4.54, (II) A3 = 0.50 and (III) A3 = 0.05. The temperaturedependen
e of both the free energy density f and the heat 
apa
ity C are shownin the upper panels whereas the lower panels show ς and ς ′. One 
an see that inall 
ases both C and ς display anomalies at the same values of T , thus supportingsu
h anomalies as robust behavior.For the highest value of A3 [
ase (I)℄, C shows a broad bump and a sharp peakaround T ≤ 1. The bump is asso
iated with the development of tweed pre
ursorswhereas the peak is the signature of the stru
tural transition. In 
ase (II), C showsa smoother and lower peak than 
an be observed over the bump at T ≃ 0.75. Aspointed above, su
h a peak is related to the low temperature stability limit ofthe high temperature phase. This is in agreement with the small peak 
enteredat zero observed in the lo
al strain distribution below T ∼ 0.75 shown in Fig.3.2. In 
ase (III) only the smooth bump asso
iated with nano
lusters of the phaseseparated pattern is observed. In any 
ase, noti
e that some amount of the high
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Figure 4.1: The free-energy density f and the transformed fra
tion ς for A3 = 1.0 aredisplayed in the upper left and lower left panels respe
tively whereas the heat 
apa
ity
C and dς/dT are shown in the upper right and lower right panels respe
tively, bothupon 
ooling and heating.temperature phase remains down to very low temperature ("retained austenite",see Fig. 3.2).We now pro
eed to 
ompute systemati
ally the heat 
apa
ity C as a fun
tionof A3 in order to visualize the dependen
e of the anomalies on it. Figure 4.3 showsthe behavior of C for several values of A3 ranging from A3 = 0 to A3 = 10. Theobserved general trends are those des
ribed above and the peak shifts to lowertemperatures as A3 de
reases. Noti
e that only for values of A3 ≥ 1 the peak 
anbe asso
iated to the stru
tural transition, a

ompanied with the development oflong range order (twinned stru
ture). For values of A3 ≤ 1 the peak is asso
iatedto the the stability limit of the high temperature phase and rapidly goes to zeroas A3 → 0. We emphasize that 
omparable anomalies have been found experi-mentally [163℄ in Ni-Ti(Fe) alloys, where an in
rease in Fe 
ontent diminishes andshifts the peak in C to lower temperatures. In parti
ular, it is found that for 6at.%Fe, no signature of peak in C is observed and the transition is suppressed. It isshown in Fig. 4.4(a). The same o

urs in Ti-Pd(Cr) [70℄: when Pd is substitutedby Cr the peak softens and shifts to lower temperatures. For 10 at.%Cr no MTis observed. This is shown in Fig. 4.4(b).The peak temperature of C in Fig. 4.3 as a fun
tion of A3 has been plottedin Fig. 4.5a and it 
an be regarded as a phase diagram. The region under the
urve indi
ates the values of temperature and A3 by whi
h twinned martensite
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Figure 4.2: Upper panels: Temperature behavior of the free energy density f (rightaxis) and the heat 
apa
ity C (left axis) for three di�erent values of A3. Lower panels:Temperature behavior of the transformed fra
tion ξ (right axis) and ξ′ = dξ/dT (leftaxis). Dotted lines in (I) are guides to the eyes intended to di�erentiate between thetwo underlying 
ontributions: Inhomogeneous textures and stru
tural transition.
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Figure 4.3: Heat 
apa
ity C as a fun
tion of T for di�erent values of A3. The 
hara
-teristi
 peak shifts, diminishes, and �nally disappears as A3 is de
reased. For the sakeof 
larity the 
urves are su

essively shifted. Arrows indi
ate the position of the peakfor ea
h value of A3
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Figure 4.4: (a) Heat 
apa
ity for Ti-Ni(Fe) measured by using a relaxation method in aphysi
al properties measurement system (quantum design), extra
ted from Ref. [163℄. (b)DSC measurements of the heat 
apa
ity of Ti-Pd(Cr), extra
ted from [70℄ respe
tively.
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Figure 4.5: (a) Temperature of the peak of C as a fun
tion of A3, extra
ted fromFig. 4.3. (b) and (c) Phase diagrams of Ti50−x-Ni50+x (extra
ted from Ref. [34℄) andFexPd1−x (extra
ted from Ref. [112℄) respe
tively.is obtained whereas the region in whi
h the 
urve vanishes indi
ates that no MTtakes pla
e. A
tually, this is qualitatively very similar to those obtained in realmaterials when varying 
omposition. As examples, in Fig. 4.5b we show thephase diagrams of Ti50−x-Ni50+x and Fe1−xPdx. These results 
on�rm the generals
heme given by the stru
tures observed in Chap. 3.We re
all that the mean value of the lo
al low stability limit 〈Tc(r)〉 ≃ 1 iskept 
onstant and the shift of the peak (to low T upon 
ooling and to high T uponheating) 
orresponds to an in
rease of the hysteresis, i.e. to a de
rease in the Mstemperature and an in
rease in As. Instead, experimentally the de
rease o

ursin both Ms and As temperatures, whi
h re�e
ts an unstabilization of the marten-siti
 phase. This is 
orroborated by signatures in other quantities like resistivity.Con
erning this issue, few 
omments should be pointed out: As mentioned above,simulations upon heating that show the shift of the peak to high temperatureshave been 
arried out only for one value of A3 (A3 = 1), whi
h gives rise to long-range twins. Although the mathemati
al reasons 
on
erning the lo
al stabilitylimits are apparently 
lear, the shift of the peak to high T appears to be smallerthan the shift to lower T . Similarly, it is also not sure that intermediate values ofthe anisotropy�whi
h give rise to broken twins and still show a peak in C� wouldshow a shift of the peak to high temperatures upon heating analogous to that



4.2. Elasti
 response C ′ 75observed upon 
ooling. Additional simulation results should be needed to takeout 
onvin
ent 
on
lusions with respe
t to that.We want remark that the suppression of the transition observed in experimentswhen varying the alloy 
omposition is qualitatively reprodu
ed by our simulations.Moreover, it is expe
ted that the suppression may also o

ur by in
reasing thedisorder for a given 
onstant A3, whi
h will be 
loser to experiments, instead ofde
reasing the anisotropy for a given value of the disorder as it has been donehere.Maybe the most relevant point 
on
erning these simulation results is that thesuppression of the transition o

urs due to the fa
t that the system is retainedin a metastable state. Again, it is known from the fa
t that 〈Tc(r)〉 ≃ 1 is kept
onstant and therefore, at low temperatures the thermodynami
 equilibrium stateis the martensite, whi
h will be 
on�rmed in the next se
tions through the 
al-
ulation of other thermodynami
 quantities and simulation experiments. In realalloys, the general lands
ape is un
lear. First, the phase diagrams of alloys (likethose shown here in Fig. 4.5(b)) are not thermodynami
 phase diagrams, althoughit is not spe
i�
ally stated. In fa
t, it is widely believed that the unstabilization ofthe martensite drops down to 0 K. However, re
ent dis
overies in some Ti-basedalloys (like o�-stoi
hiometri
 Ti-Ni [67℄ and Ti-Pd-Cr [70℄) have pointed out to themartensiti
 phase fa
t as the true thermodynami
 phase at low temperatures andtherefore the stabilized nontwinned stru
tures upon 
ooling are indeed metastable.They are based on the fa
t that the stru
tures observed in the nontransformingregime exhibit shape memory e�e
t. We re
all that su
h alloys exhibit a verylow anisotropy value and the metastable stru
tures are 
orrespondingly almostisotropi
, as mentioned in Chap. 3. As far as we now, similar experiments inother alloys with high anisotropy (and exhibiting tweed 
ontrast at low tempera-tures) have not been published yet and it remains as an open question. This willbe dis
ussed in Chap. 5 and 7. Next se
tions are devoted to 
on�rm the sup-pression of the transition, the metastability of su
h low-temperature states andto 
hara
terize the kineti
 behavior.4.2 Elasti
 response C ′The elasti
 response C ′ of the system to an external, 
onstant stress �eld has beenstudied. The 
omputation has been 
arried out in two ways: Upon 
ooling andupon quen
hing. The former method 
onsists of the following steps:(i) Starting from a high temperature (T = 2) stabilized 
on�guration, a 
onstantstress �eld σ h 2.5 · 10−9 is applied in one dire
tion until the system rea
hes anew stabilized 
on�guration of total strain e+2 (T ).
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 properties(ii) Then, the stress �eld is reversed to the opposite dire
tion, −σ and we let thesystem relax again to another stable state of total strain e−2 (T ).(iii) The elasti
 response at the given temperatures is then 
al
ulated as C ′ =

σ/(e+2 (T )− e−2 (T )).(iv) The stress �eld is removed and the temperature is de
reased ∆T = −0.01.Then, at this new temperature, the system evolves towards a stable state andthe 
y
le starts again: the stress �eld σ is applied, et
. Instead, in order to
ompute C ′ upon quen
hing the pro
edure is the same from (i) to (iii), but thestarting 
on�guration at ea
h temperature is independent from ea
h other, andhas been obtained by relaxing to the desired temperature from a disordered state.The temperatures have been 
hosen at intervals of ∆T = 0.02 and ∆T = 0.03(T = 2, 1.97, 1.95.1.92,et
.)The behavior of C ′ for A3 = 4.54 and A3 = 0.05 is shown in Fig. 4.6(a).For ea
h one of these values, 
urves obtained upon 
ooling and quen
hing appearto be very similar to ea
h other, thus indi
ating the robustness of the behavior.Again, a large number of seeds have been needed to get smooth enough 
urves.Unfortunately, the 
omputational 
ost of C ′ has been very high in time. Therefore,additional simulations for other values of A3 and/or disorder, that would be ofinterest, have not been 
arried out. For A3 = 4.54, the pronoun
ed dip of the
urve 
learly 
on�rms the existen
e of a phase transition. In addition, similarto the behavior observed in C 
urves, a �at region lies in the temperature range
1.0 . T . 1.25 that 
oin
ides with the pre
ursor (tweed) region. Instead, for
A3 = 0.05, the dip amplitude be
omes mu
h lower so that the 
urve and thus thetransition broadens. Similar qualitative results have experimentally been obtainedin the elasti
 response when varying the 
omposition in Ni-ri
h Ni50+xTi50−x alloys[34℄, whi
h are shown in Fig. 4.6(b). As the 
ontent of Ni in
reases above x ≥ 1.5,the 
urve �atens signi�
antly, whi
h is 
onsistent with the suppression of themartensiti
 transition for this 
omposition regime.4.3 Energy analysis: MetastabilityIn order to 
ompare the relative stability of the relaxed stru
tures, in Fig. 4.7we show the behavior of the free-energy density f averaged over 40 realizations ofdisorder as a fun
tion of both ζ and A3. The upper panels show the dependen
eof f on ζ for the same three values of A3 as in Fig. 2. Filled symbols havebeen obtained by gradually de
reasing ζ with ∆ζ = −0.02 from the highest value
ζ = 0.98, for whi
h metastable states exist. A
tually, we have 
he
ked that theyare very 
lose to those obtained independently and shown in Fig. 3.8, i.e., thosethat 
an be observed experimentally. On the 
ontrary, empty symbols have been
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Figure 4.6: (a) Elasti
 response for two di�erent values of A3, whi
h are in qual-itative agreement with (b) experimental measurements of the a
 storage modulus inTi50−xNiTi50+x, x = 1, 1.5, 2, extra
ted from Ref. [34℄obtained by in
reasing gradually, starting from the lowest value ζ = 0.08. Atthis low value, twins are easily formed and, on
e 
reated, they survive despitethe in
rease in ζ . Consistently, one 
an observe that f is always lower in the
ζ-in
reasing 
urve than in the ζ-de
reasing one. A
tually, the former may be
onsidered as the free energy of the global minimum and any deviation between thetwo 
urves provides a measure of the degree of metastability of the latter. In fa
t,the existen
e of su
h global minimum proves that the origin of the metastabilityis kineti
, as opposed to geometri
ally frustrated systems like the paradigmati
antiferromagneti
 triangle. Additional arguments 
on�rming this kineti
 originwill be given in the next se
tion. As a general trend, in both 
urves the totalfree energy de
reases with in
reasing ζ . This is be
ause the Landau free-energy
ontribution (here represented by the dashed lines) prevails over the other terms(Ginzburg and long-range anisotropi
 terms) and de
reases as ζ in
reases. This
an be dedu
ed easily as follows: the regions with T − Tc(r) > 0 are stable inthe austenite phase, and their free energy vanishes regardless of the magnitude of
|T − Tc(r)|. Instead, the regions with T − Tc(r) < 0 are stable in the martensitephase, and their free energy de
reases as the value |T − Tc(r)| in
reases. Then,an in
rease in the value of ζ in
reases the amplitud of the distribution Tc(r) andthere will exist more regions with a high value of |T − Tc(r)|. Consequently, thefree energy will de
rease.Interestingly, fo
using on the ζ-de
reasing 
urve, f exhibits an anomaly arounda parti
ular value of ζ (denoted by an arrow) whi
h depends on A3. This ispre
isely the 
riti
al disorder ζ∗(A3) above whi
h the formation of long-rangetwins is inhibited. Indeed, the deviation of f from the free energy of the globalminimum in
reases remarkably for ζ > ζ∗. This is a signature of the degree ofmetastability of the nontwinned states. For 
ompleteness, in Fig. 4.7(d) we have
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al
ulated the dependen
e of f on A3 for two di�erent values of ζ at intervals
∆A3 = 0.05 from A3 = 0.0 up to A3 = 5.0. Smooth of the 
urves has beenne
essary to extra
t the thermodynami
ally relevant behavior. Again, f revealsthe existen
e of an anomaly around a 
riti
al value of A3 (denoted by an arrow)whi
h depends on ζ and A3. Twins are only observed for A3 > A∗

3 . Similar to
ases (a)-(c), for A3 < A∗
3 the system is no longer able to rea
h the twinned state,resulting in an in
rease in f and therefore of metastability. All these features are
onsistent with the 
on�gurations observed in Fig. 3.8.4.4 Zero-�eld-
ooling/�eld-
ooling simulation ex-perimentsUp to this point, we have fo
used on several response fun
tions su
h as the heat
apa
ity or the elasti
 response that show that, indeed, for su�
ient levels of disor-der, the MT is suppressed, in agreement with many experimental results. Also, wehave studied the large metastability asso
iated with untwinned low-temperature
on�gurations. Related with the suppression of the MT and the 
orrespondingmetastable states, it seems natural to ask oneself whether the stabilized 
on�g-urations have any relation with glassy systems. In the 
ase of Ti-Ni, one of theexperiments performed in Ref. [68℄ that is indi
ative of glassy behavior is the so-
alled zero-�eld-
ooling/�eld-
ooling (ZFC/FC) experiment. Su
h experimentswere �rst 
arried out in magneti
 systems to dete
t possible spin glasses [175,176℄and later they have been also applied, for instan
e, to ferroele
tri
 relaxors [78℄.They have in 
ommon that ZFC/FC experiments show glassy features in statesexhibiting phase 
oexisten
e. For instan
e, in Pr1−xTbxMn2Ge2, they reveal thepinning of ferromagneti
 regions (with 
rystal stru
ture L21) due to antiferromag-neti
 surrounding areas (stru
ture B2) and vi
e versa [84℄. Thus, in order to dete
tpossible glassy behavior in our system, we have performed ZFC/FC simulationexperiments, whose pro
edure is explained in the following se
tion.Pro
edure for ZFC/FC experimentsZFC/FC experiments 
onsist of four steps:(i) Starting from a high temperature state the system is freely 
ooled down to alow temperature state.(ii) Then, a low stress �eld is applied and the system is heated again up to thehigh temperature state. The resulting strain 
urve as a fun
tion of temperatureis the so-
alled Zero-Field-Cooling 
urve.
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Figure 4.7: [(a)-(c)℄ Averaged free-energy density f as a fun
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reasing ζ whereas empty symbols have been obtained by in
reasing ζstarting from the lowest value ζ = 0.08. Arrows indi
ate the values of ζ below whi
h twinformation is allowed. Dashed lines indi
ate just the Landau free-energy 
ontribution.(d) f as a fun
tion of A3 for two di�erent values of ζ. Arrows point to the 
riti
al valueof A3 above whi
h twins exist.
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 properties(iii) the system is 
ooled again with the presen
e of the stress �eld.(iv) Finally, the system is heated again, giving rise to the Field-Cooling 
urve.The four steps are displayed in Fig. 4.8. The upper �gures show a s
hemati
evolution of temperature and stress �eld in the 
orresponding steps. In parti
ular,we have used Tmin = 0.02, Tmin = 1.62, σ0 = 2.5 ·10−3 and the temperature step is
∆T = 0.02. In the lower �gures, two examples of the strain response as fun
tionof temperature are expli
itly shown in the four stages. One is a high anisoptroy(A3 = 4.54) system and the another has low anisotropy (A3 = 0.05). In the �rststage, both systems show a slightly in
rease in the strain as they are 
ooled. Thiso

urs be
ause the fra
tion of one of the martensiti
 variants is higher than thefra
tion of the another variant, thus leading to a non-vanishing net strain due tothe absen
e of �nite size e�e
ts. However, it has no relevan
e in what 
on
ernsthe ZFC/FC results. The se
ond stage, whi
h 
orresponds to the ZFC 
urve, isof 
ru
ial importan
e. The stress �eld indu
es the growth of a sele
ted variantat the expense of the another, thus in
reasing 
onsiderably the total strain. Thespe
i�
 growing path is a signature of the dynami
s followed by the system, and,as it 
an be observed, is di�erent for the two di�erent values of A3. For the highvalue (A3 = 4.54), the strain in
reases rapidly, easily rea
hing the single domain
on�guration just when the stress is applied, that 
orresponds to the equilibriumstate. On the 
ontrary, for the low value (A3 = 0.05), the strain in
reases ratherslowly and the system needs to be heated to higher temperatures �and hen
e takesa longer time� to rea
h the single domain 
on�guration, as it is indi
ated by theregion en
losed by a dotted border. At that point it is important to note that theapplied stress �eld must be low enough [177℄, otherwise, high stresses would beable to indu
e an easy, rapid domain growth of the sele
ted variant and a swit
hingof the other domains regardless of the anisotropy and the disorder values and anundistinguishable behavior would be obtained for all 
ases. On
e the equilibrium,single domain 
on�guration is rea
hed, the total strain evolves mainly a

ordingto Landau, drawing a monotoni
ally de
reasing 
urve with in
reasing T , with alarger slope in the region where the ferroelasti
 transition takes pla
e. In thethird and fourth stages, a similar behavior is observed in both 
ases, in whi
h thesystem follows similar 
ooling and heating paths, with the maximum total strainat the lowest temperature.Relevant information 
an be extra
ted from the 
omparison between the ZFCand FC 
urves. Deviations among them indi
ate that the behavior is history-dependent, and has been related to a loss of ergodi
ity [68℄ and glassy behavior.What 
an be 
lear observed from ZFC/FC 
urves in the lower panels of Fig. (4.8)is that for the high anisotropy value (A3 = 4.54) ZFC and FC 
urves 
oin
idewhereas for the low value (A3 = 0.05) they deviate in the region en
losed by thedotted line. This is indi
ative of kineti
 freezing.
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 representation of the pro
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Figure 4.9: The ZFC 
urves for di�erentvalues of elasti
 anisotropy A3, for ζ ≃ 0.3. 0 0.5 1 1.5
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Figure 4.10: (a) ZFC/FC 
urves obtained in simulation experiments for the value
A3 = 0.05 and ζ ≃ 0.3. (b) ZFC/FC experiments in Ti48.5-Ni51.5, extra
ted fromRef. [68℄.ResultsFigure 4.9 shows ZFC simulations for di�erent values of A3 and keeping ζ ≃ 0.3
onstant. For A3 = 0.05 the 
urve represents an elasti
 behavior that deviatesfrom the FC 
urve below the peak temperature, whi
h is indi
ative of glassybehavior. As expe
ted, our simulations in Fig. 4.9 show that this behavior pro-gressively disappears for in
reasing values of A3. This trend indeed 
orresponds toan in
rease in the elasti
 anisotropy A and favors the development of long-rangeorder. For 
omparison both ZFC and FC 
urves for this value of A3 are shown inFig. 4.10 This is in very good agreement with experimental results in Ni51.5Ti48.5shown Fig. 4.10(b) mentioned above. Figure 4.11 shows the ZFC 
urves obtainedfor di�erent values of ζ and A3. Here the FC 
urves have been omitted for 
larityand their behavior is in all 
ases very similar to those in Fig. 4.8. In the three 
ases(a)-(c) one observes that glassy behavior is obtained for values of ζ above a 
riti
alvalue that exa
tly 
oin
ides with that obtained previously from the behavior of
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Figure 4.11: ZFC 
urves for di�erent values of A3 and ζ. Verti
al arrows indi
ateprogressively in
reasing values of ζ.
f in Fig 4.7. We 
an then 
on
lude that metastability observed in Fig. 4.7 doesindi
ate glassy states. A 
omparison with Fig. 4.9 reveals that, indeed, similar ef-fe
ts are obtained either by redu
ing anisotropy or in
reasing disorder. Moreover,some small but important di�eren
es 
an still be observed between these 
ases.Fo
using, on the value A3 = 4.54 [
ase (a)℄, the ZFC 
urve is more �at than forlower values of A3 [
ases (b) and (c)℄, indi
ating a more blo
ked dynami
s thatprevents the system from rea
hing the FC 
urve. The low stress �eld is not ableto make the system evolve smoothly toward the monovariant state. Instead, somesmall sharp jumps are observed due to the sudden 
orrelations of di�erent brokendomains of a parti
ular variant sele
ted by the stress �eld. After a 
ertain numberof jumps, the system does rea
h the monovariant state and thus the FC 
urve. Inthat sense, the same fa
tor (i.e., the anisotropy) that for ζ < ζ∗(A3) enables thesystem to form long-range twinned stru
tures, for ζ > ζ∗(A3), however, 
ausesa higher degree of freezing than for lower values of (A3). A
tually, this 
an berelated to the behavior of f in Fig. 4.7(a)-(c), where it 
an be observed thatin the glassy regime [ζ > ζ∗(A3)℄, the degree of metastability i.e., the larger thedeviation from the free energy in the global minimum in
reases with A3 whereasin the twinned regime [ζ < ζ∗(A3)℄ all the 
urves approximately 
oin
ide.In prin
iple one 
ould expe
t the appearan
e of domains to be deliberate dueto surviving long range intera
tions, although weak or partially blo
ked by thepresen
e of disorder. In that sense, long range anisotropi
 intera
tions would notbe able to indu
e a strong dire
tionality in the domain stru
ture due to disorder,but would establish a parti
ular short range distribution of non-dire
tional do-mains by promoting the sele
tion of a parti
ular variant for ea
h domain duringits evolutions. This sele
tion 
ould depend on the surrounding 
on�guration ofdomain variants due to a possible tenden
y toward global strain minimization.Then, by de
reasing the temperature, the 
orresponding growth of these domains
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Figure 4.12: Pair 
orrelation G(r) between domains of the same variant. The de
ay isa measure of the 
hara
teristi
 domain size, whi
h depends on the value of A3, amongothers. More interestingly, note that the 
orrelations stabilize around 0.5 indi
ating thatthe probability of nu
leating a parti
ular variant at any distan
e (obviously ex
ludingshort distan
es whi
h still belong to the domain of origin) does not depend on the variant.would 
reate a low temperature 
on�guration with a parti
ular disordered domaindistribution that would be geometri
ally frustrated [81℄, sin
e the system wouldnot be able to a
hieve the minimum of energy due to the thermodynami
 reasonsmentioned above.However, simulations with stri
tly zero anisotropy, and thus with no long rangee�e
ts also show glassy behavior. Sin
e in the absen
e of long range intera
tionsthe total free energy be
omes lo
al, no energeti
 reasons persist to promote thesele
tion of a parti
ular variant in di�erent emerging domains, but it o

urs inde-pendently from ea
h other. This supports the idea that the origin of the glassybehavior is a kineti
 freezing and ex
ludes the hypothesis of geometri
al frus-tration. At that point we have 
he
ked that emerging domains at high T areun
orrelated in the sense that the sele
ted variant is independent from the vari-ants of the other domains. This is shown in Fig. 4.12 for two 
ases showing glassybehavior, in parti
ular 
orresponding to A3 = 0 and A3 = 0.05 (ζ ≃ 0.3 in both
ases). Pla
ing in a given domain 1, both 
urves show that given a se
ond domain2 pla
ed at a distan
e r from domain 1, the probability that domain 2 belongs tothe same variant of 1 is 0.5, and hen
e equal to the probability for domain 2 tobelong to the another variant.4.5 Crossover behavior in anisotropy and disorderWe 
all Ts the temperature at whi
h ZFC and FC 
urves split. More pre
isely, inorder to be 
onsistent in the 
omputation of Ts, it has been de�ned arbitrarily as
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Figure 4.13: (a) Splitting temperature (Ts) as a fun
tion of disorder for di�erent valuesof anisotropy. (b) Points indi
ate the 
rossover behavior in the material parameters.Glassy behavior is obtained for high values of disorder with respe
t to anisotropy andfor low values of anisotropy with respe
t to disorder. Cir
les 
orrespond to the vanishing
Ts in (a) whereas 
rosses 
orrespond to the arrows in Fig. 4.7. The 
ontinuous line isthe fun
tion ζ∗ ∼

√
A3.the temperature at whi
h e2(FC)− e2(ZFC) ≃ 3 · 10−4%. Figure 4.13(a) showsthe splitting temperatures Ts as a fun
tion of disorder and for di�erent values ofanisotropy. For martensite twinned stru
tures Ts drops to zero whereas in theglassy regime Ts in
reases with ζ . Also, for a given value of disorder, the higherthe anisotropy the lower the Ts. Moreover, for low values of anisotropy, Ts showsa regular behavior 
onstant slope whereas at high values of A3, the Ts dependen
ebe
omes more irregular, 
onsistent with the jumping behavior mentioned above.The disorder values at whi
h Ts vanishes indi
ate that the ZFC deviation glassybehavior starts to arise. Figure 4.13(b) displays the 
rossover behavior in terms of
riti
al values for the model parameters A3. Cir
les are taken from the vanishing

Ts in Fig. 4.13(a) whereas 
rosses are taken from the arrows in Fig. 4.7. We havefound that su
h a 
rossover behaves approximately as ζ∗ ∼ √A3 indi
ated by the
urve. It is worth noting that the behavior of the heat 
apa
ity C 
oin
ides withsu
h 
rossover: The existen
e of the peak is related with the twinning, non-glassyregime whereas the suppression of the peak 
orresponds to the glassy behavior.4.6 Variations on the disorder's 
orrelation lengthIn Se
. 2.4 we have seen that the spe
i�
 
orrelation length ξ of the disordera�e
ts the energy barriers present in the model, whi
h 
an in�uen
e the behaviorof the system. To analyze the magnitude of this e�e
t, we have performed somesimulations with a value of ξ (ξ = 10) lower than that used previously, that
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Figure 4.14: (a) Free energy f as a fun
tion of the parameter A3 for two values of ζ.(b) f as a fun
tion of the disorder intensity ζ for two values of A3. The value for the
orrelation length of the disorder is ξ = 10 in all 
ases.in
reases the energy barriers. In parti
ular, in Fig. 4.14 we have studied themetastability of the 
on�gurations at low temperatures by 
al
ulating the totalfree energy f as a fun
tion of both anistropy and disorder intensity, analogouslyto results shown in Fig. 4.7. The general behavior of f as well as the spe
i�
values of anisotropy (A∗
3λ=10

) and disorder (ζ∗λ=10) by whi
h it is observed a drasti

hange in the free energy, are very similar to those observed in Fig. 4.7.We have also performed simulations of the ZFC/FC experiments for ξ = 10and we have found that the limiting values of A3 and ζ that start to exhibit asplitting between ZFC and FC 
urves (and hen
e glassy behavior) are very similarto ZFC/FC results for the previous value of ξ (ξ = 20) shown in Fig. 4.11 (inparti
ular {A3, ζ} = {4.54, 0.7}, {1.0, 0.35}, {0.50, 0.3}). They are depi
ted in Fig.4.15. It is worth noting that they 
oin
ide with the previous Fig. 4.11 both ingeneral trends and spe
i�
 pe
uliarities.From the results above we 
an state that variations on ξ do not 
ontribute toany additional physi
al insights and give us 
on�den
e about the robustness ofthe results obtained previously.4.7 Crossover at high temperaturesMotivated by the 
rossover found at low temperatures when varying A3 fromtwinned martensite to rami�ed droplets, we ask ourselves if similar behavior existsat high temperatures between pretransitional stru
tures, from tweed to mottledstru
ture. Thus, we have performed simulations of the model for many di�erentvalues of A3 (from A3 = 0 to A3 = 10 (ζ ≃ 0.3) with intervals ∆A3 = 0.05) at twodi�erent high temperatures in the pre
ursor regime (T = 1.25, 1.5). Results areshown in Fig. 4.16, where the free-energy density f averaged over 7 independent
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Figure 4.16: Free-energy density f and response fun
tion −A3d
2f/dA2

3 as a fun
tionof A3 at two di�erent high temperatures in the pre
ursor regime.realizations of the disorder is shown toghether with the 
orresponding responsefun
tion1 −A3d
2f/dA2

3. In all 
ases the behavior does not exhibit anomalies: nodrasti
 
hanges are obtained in the behavior of f and no peak is obtained for theresponse fun
tion. Consequently, we 
an 
on
lude that there is no 
rossover athigh temperatures.
1We have 
al
ulated the response fun
tion a

ording to this expression in analogy with theheat 
apa
ity, where the temperature plays the role of the parameter A3





Chapter 5Thermome
hani
al behavior
In this se
tion we study the thermome
hani
al behavior of the system when ap-plying and removing an external stress �eld. In parti
ular, we analyze the shapememory e�e
t (SME) and superelasti
 behavior.Sin
e the stress-free stability is 
ru
ial for the �nal unloaded stru
tures, itmay be useful to re
all the 
hara
teristi
 temperatures that result from a simplestability analysis of the Landau potential. With Tc being the low stability limit ofthe high-temperature phase, the equilibrium transition temperature is T0 = Tc +
3β2

16γ
and the high stability limit of the low-temperature phase Ti = Tc+

3β2

4γ
. Takinginto a

ount the athermal 
hara
ter of the transition [46℄, we expe
t the system toshow pseudoplasti
ity (whi
h 
an give rise to SME) below Ti, when the martensitephase is stable or metastable, and superelasti
ity above Ti, when the martensitephase is unstable. However, in the presen
e of disorder and 
onsidering long-rangeanisotropi
 intera
tions the transition path determining the stress-strain behaviormay be di�erent. We still expe
t the system to exhibit superelasti
ity well above

Ti, and pseudoplasti
ity well below T0, but the stress-strain behavior may beparti
ularly di�erent from the 
lean-limit s
heme in the martensite metastabilityregime, i.e T0 < T < Ti, and 
lose to it. Thus, we fo
us the study of the stress-strain behavior in this temperature range.Usually, in stress-strain experiments the variable under 
ontrol is the strainand therefore stress-strain 
urves show the strain as the independent variable, inthe x-axis. Be
ause we are used to this representation we �nd appropriate tomantain the representation with the strain in the x-axis, although we performstress-driven transitions [178℄.Before going into the results, it should be pointed out that the value of β hasbeen de
reased to β = −103 to broaden the temperature ranges. Consequently,here T0 = 1.38 and Ti = 1.51, and the values of disorder and anisotropy are notin dire
t 
orresponden
e to those previously used. We 
an easily map their values89
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hani
al behaviorto the ones used in previous 
hapters by res
aling the model with β2. In thatsense, high and low values of anisotropy and disorder are always relative to ea
hother. In any 
ase this does not a�e
t the qualitative results and therefore the
on
lusions.5.1 Shape-memory e�e
t5.1.1 PreliminariesThe SME is related to the internal twinned mi
rostru
ture resulting from theself-a

ommodation pro
ess whi
h allows for a martensiti
 phase with no ma
ro-s
opi
 
hange of shape (nor volume). Upon loading, the sample may undergo apermanent deformation, sin
e it remains un
hanged when the stress �eld is re-moved. However, the system 
an re
over the initial shape upon heating up totemperatures above the transition.Now we fo
us on the twinned martensite as the starting point for the SME. Inpra
ti
e, the martensite nu
leates within an austenite matrix, with the presen
e ofhabit planes (phase boundaries) and domain boundaries that make the martensiteadopt a twinned stru
ture. At the end of the transformation of a given sample,the whole sample is in the martensiti
 phase. At that point, the external bordersof the martensiti
 phase are free surfa
es, whi
h means that they do not needto be invariant sin
e the phase boundaries do not exist any more1. However,on
e formed, the existing mi
rostru
tures survive, provided that the sample isneither loaded beyond the elasti
 regime nor heated above the transformationtemperature.Therefore, to perform simulations of the SME, a realisti
 mi
rostru
ture (i.e.twinning giving rise to a zero net strain) is needed. In the following 
onsiderationswe limit ourselves to the 
ase of A3 = 4.54 and ζ = 0.1. In the original modelexplained in Chap. 2, the ground state of the free-energy at low temperatures
orresponds to a single variant, although typi
ally, broad twins arise as long-livedmetastable states, with a low number of domain boundaries. In any 
ase, thetypi
al stabilized 
on�guration does not ful�ll the property of zero global strainand hen
e, �nite size e�e
ts are required. As 
onsidered in Se
. 3.4, to take theminto a

ount we re
all that we 
an pro
eed two di�erent ways: (A) by applyinga potential with the Fourier kernel 1/|ky| or (B) by dire
tly simulating an habitplane by imposing a vanishing Tc(r) in the region whi
h is desired to be retainedin the austenite phase. On
e the desired zero net strain 
on�guration is obtained,1This does not o

ur in twins emerging from domain boundaries.
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Figure 5.1: Evolution of the total strain of a single 
on�guration, a

ompanied bysnapshots of the 
on�guration at a given step. The initial low-temperature square 
on-�guration 
onsists of half austenite and half martensite. As the low-Tc region is graduallyredu
ed, the martensite region in
reases. When almost the whole system is transformedto martensite, the twins widen, thus 
hanging the stru
ture signi�
antly.�nite size e�e
ts must be removed prior to apply the stress �eld. Otherwise,the loading 
urve would be biased sin
e a �
titious, extra driving for
e woulda
t against the applied �eld, attempting to keep the twins unaltered in order tomantain the habit plane invariant. Consequently, the required stress for domainswit
hing would be higher than the expe
ted. However, in the simulations it istypi
ally obtained that when removing �nite size e�e
ts from the system, the thintwins are not able to hold but they be
ome 
oarse, with the resulting 
on�gurationof non-vanishing net strain, whi
h is not appropriate to perform simulations ofthe SME. We now analyze ea
h 
ase separately. Using the method A we just haveto remove the additional potential from the fully relaxed 
on�guration and let thesystem relax again before loading. Using method B we use two di�erent ways toremove surfa
e e�e
ts. In one hand, we may redu
e progressively the region where
Tc vanishes (that is the austenite region), thus allowing more zones to transformto martensite. It is shown in Fig. 5.1. When the austenite is 
ompletely removed,the twins are no longer thin but also be
ome 
oarse and the system does notful�ll any more the 
ondition of zero net strain. A
tually, this o

urs before
ompletely removing the austenite region, but when it is small enough in orderthe twins to 
onne
t over
oming the arti�
ial habit planes (and thus eliminatingthem) due to the periodi
 boundary 
onditions (PBC). On the other hand wesele
t a martensiti
 square region from the initial 
on�guration and let it relax.This is shown in Fig. 5.2. Typi
ally, it is observed that the thin twins disappearagain [
ase (I)℄. Few 
lari�
ations should be pointed out for 
ompleteness: First,o

asionally, thin twins may hold after removing the �nite size e�e
ts, although it
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Figure 5.2: Starting from a low-temperature 
on�guration with an austeniteregion (left), a martensiti
 square region(denoted by the dashed boxes) is relaxedindependently (right). Typi
ally, twinsbroaden [
ase (I)℄, although o

asionally,thin twinning may hold [(II)℄.

(I)

(II)

does not o

ur typi
ally. This is shown in 
ase (II) of Fig. 5.2 for the method B,although it has been also obtained in 
ase A. Se
ond, it is important to remarkthat in method B, PBC play an a
tive role in determining the mi
rostru
ture, byrestri
ting the possible twin 
on�gurations. Noti
e that, in 
ase (b), these e�e
ts
an be even more important, sin
e PBC are imposed in areas where they didnot exist previously. However, this does not ne
essarily lead to broader twins, sothat we 
an 
on
lude that the 
hanges in the mi
rostru
ture in the sense of twinbroadening are indeed due to the absen
e of �nite size e�e
ts, and PBC does nota�e
t signi�
antly the twin width.Therefore, unfortunately we �nally have had to shelve the previous methods,
ame ba
k to the original model and resort to a statisti
al (thermodynami
) av-eraging of 
on�gurations of non-vanishing net strain to obtain the desired e�e
t.However, even in this 
ase it was di�
ult to obtain a zero averaged total strain,be
ause the dispersion of the total strains of single 
on�gurations is very large.Indeed, the typi
al total strains move around 1 − 3% and, even often they maytake values up to ∼ 5% whi
h 
orresponds to a single domain. As an example,after running 200 independent seeds, the averaged total strain was still around
1%. Additionally, sin
e loading, unloading and heating 
urves had to be 
om-puted for ea
h independent seed, another strategy was needed in order to save
omputation time and data storage. Then, we pro
eeded the following way: Wetook a given initial 
on�guration and applied the transformation e2(r) = −e2(r)so that we 
hange the sign of the strain everywhere in the system. Re
all thatthe free-energy density of the system is symmetri
 with respe
t to e2, i.e., it isinvariant under this transformation, so we 
ould do that without modifying thelo
al and thermodynami
 stability of the 
on�guration. This way we made sure toget a zero net averaged strain in the initial loading 
urve. The loading, unloadingand heating 
urves were then 
omputed independently. The fa
t that the stress�eld was always applied in the same dire
tion entails that both set of 
urves arenot ne
essarily 
orrelated. To further redu
e the 
orrelations, we repeated this
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t 93pro
edure for 50 independent seeds and averaged over the resulting 100 
urves.As an in
onvenient, the details of the parti
ular 
urves were smoothed, but we
he
ked that the required stress for domain swit
hing σy (for yielding stress) wasalmost independent of the disorder seed. Therefore, it 
an be identi�ed with theaveraged value.5.1.2 ResultsTo illustrate the SME, in Fig. 5.3 we show the (σ − e2 − T ) 
urves obtainedfor di�erent values of A3 and ζ . Case (I) 
orresponds to {A3, ζ} = {0.05, 0.13},
ase (II) to {4.54, 0.13}, 
ase (III) to {0.05, 0.04} and 
ase (IV) to {4.54, 0.04}.Arrows in the external margins point towards in
reasing values of A3 and ζ for
larity. The system is �rst loaded at T = 0.7 (< Tc) until the single domain stateis rea
hed. Then, it is unloaded and �nally heated up to a temperature abovethe transition. The stress in
rements (and de
rements) are ∆σ ≃ 7 · 10−4 andthe temperature step is ∆T = 0.02. Snapshots show representative 
on�gurationsat a given value of (σ, e2, T ). They have been labeled to make 
lear the orderof the sequen
e. Fo
using on the (σ − e2) 
urve at T = 0.7 (< Tc), in the four
ases pseudoplasti
 behavior is observed. However, ea
h 
urve exhibits spe
i�
pe
uliarities. When A is in
reased and/or ζ de
reased, the 
riti
al stress neededfor domain swit
hing in
reases. The high value of A [(II) and (IV)℄ shows initialtwinned states whereas low A values do not allow the system to form twins,but rami�ed droplets of typi
al domain size that de
rease with ζ (This has beenanalyzed in Chap. 3). It has been 
he
ked that by 
ontinuing to in
rease thedisorder, even the highest value of A is not enough to indu
e twin formation. Itis important to remark that the 
on�guration of low value of A and high ζ [(I)℄exhibits glassy behavior in ZFC/FC simulation experiments. Of 
ourse, for all
ases upon unloading the strain is not re
overed but the single domain state ismaintained, sin
e in this temperature regime any ferroelasti
 variant is stable.However, upon heating the system undergoes the reverse transformation, endingin a zero net strain and thus re
overing the initial ma
ros
opi
 shape (SME).Some di�eren
es are observed between the various heating 
urves. In fa
t, theydi�er in a way analogous to that in the 
orresponding loading 
urves mentionedabove, from the point of view of sharpness of the pro�les.
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Figure 5.3: Stress-strain-temperature 
urves for di�erent values of A3 and ζ, giving rise to the SME. The parti
ular values for 
ases(I)-(IV) are respe
tively: {A3, ζ} = {0.05, 0.13}, {4.54, 0.13}, {0.05, 0.04} and {4.54, 0.04}. The SME 
an be appre
iated in the fa
t thatthe initial and �nal net strains are equal (i.e. both vanish), although the 
orresponding internal mi
rostru
tures are essentially di�erent.



5.2. Superelasti
ity 955.2 Superelasti
ityAfter the analysis of the SME, and in parti
ular the stress-strain (σ−e2) 
urves for
T < Tc, we now pro
eed to study the me
hani
al behavior at temperatures above
Tc. Figure 5.4 shows an in
reasing-T series [(a) to (e)℄ of stress-strain 
urves. Forea
h value of T , the same set of values of A3 and ζ of Fig. 5.3 are used in the
orresponding 
ases (I)-(IV). For a referen
e framework, the analyti
al behavior
orresponding to the homogeneous Landau free energy is also depi
ted. Dashedlines 
orrespond to the thermodynami
 equilibrium behavior whereas dotted linesdenote the maximal metastability regimes. Con
erning the temperature evolutionof the σ− e2 
urves the expe
ted behavior is observed for ea
h 
ase. Pseudoplas-ti
ity is obtained at low T and then it evolves toward the superelasti
 regime when
T is in
reased.Regardless of the di�eren
es due to temperature regimes, several 
ommonfeatures 
an be extra
ted:(i) Case (IV) shows a sharp, 
lean stress-indu
ed transition whereas in (I) thetransition takes pla
e smoothly and gradually. (II) and (III) exhibit intermediatebehavior.(ii) In (I) and (IV) pseudoplasti
 behavior is observed up to temperatures higherthan in (II) and (III), although the underlying behaviors are very di�erent.(iii) (IV) shows the highest transition stress whereas the lowest is observed in (I).(II) and (III) show similar intermediate values.(iv) In the superelasti
 regime regime, the ba
kward transition o

urs at lowerstresses in (IV) than in the other 
ases.(v) Combining features (ii) and (iii), it results in a high hysteresis area in (IV)and lower ones for the other 
ases.From all this, we 
an remark that the e�e
t of de
reasing anisotropy (fromright to left) is similar to an in
rease in the disorder (from down to up), that is
onsistent with the results obtained in the previous 
hapter. A
tually, all thesetrends are intimately related, as will be dis
ussed below.Dis
ussionOften, long-range and lo
al e�e
ts 
ompete and have opposite 
onsequen
es. Theformer 
ontributes to the 
ohesion of the system by 
orrelating di�erent remotessites of the latti
e. Instead, the latter often tries to s
reen the former and to splitthe system into un
orrelated pie
es. In that sense, high anisotropy values (thatin
rease the strength of the long-range intera
tions) and/or low disorder favorthe stability of ea
h of the thermodynami
 phases. It results in a sudden, sharptransition, as it is revealed by the �at plateau in the (σ − e2) 
urves in Fig. 5.4.
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Figure 5.4: Stress-strain 
urves for di�erent values of A3 and ζ in di�erent temperatureregimes. The same set of values {A3, ζ} as those in Fig. 5.3 are used in the 
orresponding
ases (I)-(IV).



5.2. Superelasti
ity 97Also, in the paraelasti
 (i.e. austenite) phase, the larger the anisotropy and/orthe lower the disorder, the larger the 
riti
al stress �eld needed to over
ome su
hintera
tions and thus to 
arry out the ferroelasti
 transition. The opposite holdsfor the reverse transition: as already mentioned, the larger the anisotropy valuesand/or the lower the disorder, the more stable is the ferroelasti
 phase and hen
e,the lower the level of stress at whi
h the system transforms ba
k to the austenite.From this, it follows that there are two main 
onsequen
es: �rst, large values ofanisotropy and/or low values of disorder result in a larger hysteresis area. Se
ond,the pseudoplasti
 behavior is observed at higher temperatures.On the other hand, low values of anisotropy and/or high values of disorderresult in a de
oupling of the di�erent parts of the system, that may behave un-
orrelated from ea
h other. Consequently, the stability be
omes short-ranged andthe notion of a phase stability for the whole system does not have a meaning anymore. We then observe a set of di�erent, independent 
riti
al stresses a
ting inwell de�ned regions, i.e. a spatial distribution of 
riti
al stresses. It leads to agradual, smooth transition of the system that starts with the lowest 
riti
al stress,
orresponding to the transformation of the most unstable region. By in
reasingthe stress �eld, the system keeps on transforming progressively in moderately sta-ble regions and �nishes with the highest 
riti
al stress that transforms the moststable zone. Hen
e, it is not unusual that, at a given temperature, some regionswhose stress-free paraelasti
 stability is weak�or even metastable�, may remainan
hored in the ferroelasti
 phase when the stress �eld is 
ompletely removed,either in a weakly stable or metastable state. This is the reason why the totalstrain is not fully but only partially re
overed.Stress-strain regimes in the parameter spa
eFigure 5.5 qualitatively displays the di�erent stress-strain regimes in the parame-ter spa
e (T,A3, ζ), whi
h has been derived from the results in the �gures above.Nontrivial behavior is obtained. The dark gray and white regions 
orrespond tothe superelasti
 and pseudoplasti
 regimes, respe
tively. In the region in-between(light gray) partial strain re
overy is obtained. As 
an be seen, for large A andlow ζ [(IV) in σ − e2 
urves℄, this light gray region is very small2. Indeed, thesystem exhibits either pure pseudoplasti
 or pure superelasti
 behavior. If wenow in
rease ζ [(II)℄ or de
rease A [(III)℄ the system starts to exhibit (partial)2Let us point out that the origin of the axes does not ne
essarily 
orrespond to vanishinganisotropy and disorder. A
tually, in the limit of no disorder, no partial pseudoelasti
ity 
an beobserved, i.e. no 
lear gray area exists. Hen
e, in the zero-disorder plane the dashed lines meet,thus removing this region. It has not been done this way sin
e the dependen
e of the regimesas fun
tion of A for low values of disorder is more 
learly depi
ted as in Fig. 5.5.
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hani
al behaviorsuperelasti
ity in a region where pseudoplasti
ity was obtained previously [i.e. in(IV)℄. However, if we now pro
eed to de
rease A and in
rease ζ simultaneously,the partial superelasti
 region spreads out into both the previous pseudoplasti
and pure superelasti
 regions.The largest superelasti
 regime is a
hieved when disorder and anisotropy have
omparable strength, i.e. neither dominates the other but the behavior is theresult of a situation of a balan
e between both fa
tors. In the simulation resultsit is observed when A3 and ζ values are either both low or both high, as 
an beseen in Fig. 5.5 and, more spe
i�
ally, in (II) and (III) of Fig. 5.4.In short, disorder may shift the superelasti
 regime either to higher or lowertemperatures depending on the strength of the elasti
 anisotropy fa
tor, and 
on-versely. This results in a wide range of me
hani
al responses, whi
h, interestingly,is also observed experimentally.
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DisorderFigure 5.5: Di�erent me
hani
al regimes of the system expressed s
hemati
ally in theparameter spa
e (T,A3, ζ)Comparison with experimentsIt is worth reminding that the spe
i�
 
omposition has been observed to 
ru
iallydetermine the stability regimes of a given SMA, as well as other 
hara
teristi
sof te
hnologi
al importan
e. In this sense, the tuning of the alloys by means ofeither varying the 
omposition or doping has been performed over de
ades. As an



5.3. Transition and yielding stresses 99example, in Ti50−xNi50+x the temperature separating superelasti
 and pseudoplas-ti
 regimes de
reases drasti
ally when the 
omposition is varied from x = 0.6 [19℄to x = 1.5 [20℄. Similarly, many other alloys like Au-Cd [21℄, Ti-Ni-Cu [22℄,Ni-Co-Mn-In [24℄, Ni-Mn-Ga [23℄, et
. have been observed to exhibit 
hanges inthe transition stress, hysteresis area, per
entage of strain re
overy, temperatureregimes and parti
ular shape of the stress-strain 
urves when varying the relative
on
entration of the 
onstitutive elements. Interestingly, re
ent resear
h [179�181℄has been fo
used on exploring di�erent 
ompositions of some alloys [in parti
ular,of Ti-Ni-(Cu-Pd-Pt-Au)℄ to �nd the spe
i�
 
omposition that shows the smallesthysteresis width, whi
h is of te
hnologi
al interest.The ri
h lands
ape o�ered by our model may a

ount for all this phenomenol-ogy, and therefore is in general agreement with the behavior observed in thesealloys. More spe
i�
vally, for instan
e, our �ndings are qualitatively similar to ex-periments in Ni-Co-Mn-In [24℄ showing that, at a given temperature, they 
hangefrom pseudoplasti
 to partial superelasti
 and �nally to pure superelasti
 behaviorwhen the In 
ontent is in
reased at the expense of Mn. Also, by looking at theexperimental results in Ti-Ni-Cu [22℄ one 
an noti
e that our simulations agreewith the de
rease in the hysteresis area when the 
ontent of Cu is in
reased. Tofurther illustrate this 
omparison, in Fig. 5.6 we show experimental results 
on-
erning the strain-indu
ed stress-strain behavior in o�-stoi
hiometri
 Ni-Mn-Gafor two di�erent 
ompositions [23℄. It 
an be observed that slight variations in the
omposition entail 
hanges in the onset temperature of the superelasti
 regime.In parti
ular as the 
omposition is more far from the stoi
hiometry, this onset isobserved at higher temperatures, whi
h is 
onsistent with our results.5.3 Transition and yielding stressesFigure 5.7 displays the transition stresses, σt, as a fun
tion of temperature (linkedsymbols)3. At high temperatures, where superelasti
 behavior is observed, σt 
or-responds to the required level of stress for the ferroelasti
 transition to o

ur.The relation between σt and T is des
ribed, in general, by the Clausius-Clapeyronequation [182℄: dσ/dT = ∆S(T )/∆ǫ(T ). Here S is the entropy and ǫ the strain.In parti
ular, in all 
ases we obtain a linear dependen
e, whi
h is indeed experi-mentally observed in martensites [13,19�21,23,102,183℄. Straight lines of 
onstantslope of 0.5 are displayed for 
omparison between di�erent 
ases. Nevertheless, itis observed that in
reasing the amount of disorder or lowering anisotropy results3For 
larity, not all the σ− e2 
urves from whi
h the 
riti
al stresses have been extra
ted areshown here.
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Figure 5.6: Strain-indu
ed stress-strain behavior at di�erent temperatures for two dif-ferent 
ompositions of Ni-Mn-Ga alloy: Alloy 1 
orresponds to Ni51.1Mn26.6Ga20.3 andalloy 2 to Ni51.2Mn31.1Ga17.7. The latter is more far than the former from the stoi
hio-metri
 
omposition Ni50Mn25Ga25, and shows a shift of onset of the superelasti
 regimeto higher temperatures. Our model is qualitatively 
onsistent with su
h a behavior.Extra
ted from Ref. [23℄.in lower transition stresses, as mentioned above. When the transition tempera-ture is approa
hed, the slope of the 
urve de
reases. Below the transition, theyielding stress, σy, does not indu
e a transition but it is responsible for the do-main wall motion and growth of the sele
ted martensiti
 variant. It is observedthat σy in
reases with de
reasing temperature, also in qualitative agreement withexperiments [13, 19�21, 102℄. These di�erent regimes o

ur due to the Landau
ontribution in the free energy. The presen
e of long-range intera
tions and disor-der do not modify this general pi
ture but introdu
e spe
i�
 ways for the systemto behave. For 
omparison, the σt 
orresponding to the Landau global minimumis depi
ted with a dashed line whereas the σt 
orresponding to the maximummetastability regime is represented by a dotted line. As 
an be seen, the slope ofthe 
urves in both Clausius-Clapeyron and pseudoplasti
 regimes approximateswell to the maximal metastability regime than to the equilibrium one.Nevertheless, the transition stress in Ti-Ni-Cu is observed to in
rease with Cu
ontent whereas our model shows a de
rease of the transition stress when theamount of disorder is in
reased. Doping has been shown to in
rease the transitionstress also in Ti-Ni when adding o�-stoi
hiometri
 Ni 
ontent [19,20℄. Our resultsalso 
ome into 
on�i
t with these experiments, sin
e they show that the slope ofthe 
urve 
hanges when 
hanging 
omposition.Instead, our simulations agree with other strain-indu
ed σ−e2 simulations [146℄where the transition stress was observed to de
rease with the size of a singledefe
t, in a

ordan
e with the known fa
t that defe
ts may a
t as pinning sites
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tion oftemperature for di�erent values of anisotropy and disorder. Straight lines with sameslope are guide to the eye. Dashed and dotted lines 
orrespond to equilibrium andmaximum metastability regimes of the Landau 
ontribution to the free energy.for nu
leation and growth of martensite.5.4 Elasto
alori
 e�e
tThe elasto
alori
 e�e
t is the me
hani
al analogue of the magneto
alori
 e�e
t[184℄. It is related to the isothermal 
hange of entropy or to the adiabati
 
hangeof temperature that takes pla
e in the system when an external stress is applied orremoved. As in the magneto
alori
 
ase, large e�e
ts are expe
ted in the vi
inityof �rst-order phase transitions where large entropy 
hanges o

ur [183℄. Here, thestudy of the elasto
alori
 e�e
t is interesting sin
e it summarizes the informationrelated to the temperature dependen
e of stress-strain behavior. It has beenquanti�ed by means of an isothermal stress-indu
ed entropy 
hange whi
h hasbeen 
omputed from the σ − e2 
urves as follows: A

ording to thermodynami
s[16℄:
dS =

(
∂S

∂σ

)

T

dσ +

(
∂S

∂T

)

σ

dT (5.1)During an isothermal pro
ess the se
ond term on the right-hand side vanishes,and the total entropy 
hange 
an be 
al
ulated as the following integral:
∆S(0→ σ) =

∫ σ

0
(∂S/∂σ) dσ =

∫ σ

0
(∂e2/∂T ) dσ

≃ 1
∆T

{∫ σ

0
e2(T + ∆T, σ)dσ −

∫ σ

0
e2(T, σ)dσ

}
.

(5.2)
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Figure 5.8: Set of stress-strain 
urves 
orresponding to a single realization of disorderfor two di�erent values of A3. Ten independent seeds have been used to 
ompute theelasto
alori
 e�e
t for ea
h value of A3.It should be noted that for an ideal �rst-order transition o

urring in equilibrium,this entropy 
hange should 
oin
ide with the di�eren
e of entropy between the twophases. Here, due to the existen
e of disorder the transition extends over a broadrange. Therefore the obtained behavior will di�er from this simple behavior.Simulation results are shown in Fig. 5.9. Although the σ − e2 
urves of thetwo 
ases are signi�
antly di�erent (as 
an be appre
iated in Fig. 5.8), the re-sulting stress-indu
ed entropy 
hange is similar. The peaks are pla
ed in di�erentpositions and the tails show di�erent behavior but the area under the 
urve re-mains essentially 
onstant. Moreover, the Landau 
ontribution to the free energyis represented by a dashed line. As 
an be seen, the presen
e of disorder (both
ontinuous lines) results in a rounding and de
rease of the peak with respe
t tothe Landau 
ontribution.Although the magneto
alori
 e�e
t is quite di�erent from the elasti
 analoguepresented here, very similar Landau theory based models have been used to per-form simulations in ferromagneti
 systems. Su
h models are known to be sensitiveto disorder [18℄ and dipolar intera
tions in a similar way to that presented here.For instan
e, in Ref. [185℄, it was found that the presen
e of disorder resultedin a de
rease of the magneto
alori
 peak, 
ompared to the homogeneous 
ase,whi
h agrees with our results. En
ouraged by this, we further emphasize the
omparison with magneto
alori
 experiments in [186℄ Gd5(SixGe1−x)4, where anin
rease of x results in a shift of the 
riti
al stress and the Clausius-Clapeyronslope is approximately independent of doping, whi
h would be 
onsistent with ourresults.
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Chapter 6The magnetoelasti
 model
6.1 Introdu
tionMultiferroi
s were brie�y introdu
ed in Chapter 1 as materials that exhibit a
ross-variable, ferroi
 response. For instan
e, sometimes polarization 
an be 
on-trolled by a stress �eld, and an ele
tri
 �eld 
an a�e
t the stru
ture. Undoubtedly,they attra
t a lot of interest sin
e expand the horizons in te
hnologi
al appli
a-tions. Maybe, the magnetoelasti
 
oupling arises as one of the most importanttopi
s in this �eld, leadind to interesting phenomena. The Ferromagneti
 ShapeMemory e�e
t [76℄ (FSME) allows for shape re
overy due to indu
ing the stru
-tural transformation by means of a magneti
 �eld instead of stress. Re
ently, theMetamagneti
 SME has also been reported [24℄ where the original shape is re
ov-ered from magneti
-�eld-indu
ed ba
kward transformation. The mangeto
alori
e�e
t [184℄, 
onsisting in isothermal entropy 
hanges or, more interestingly, in adi-abati
 temperature 
hanges due to the presen
e of an external magneti
 �eld, hasbeen observed to 
onsiderably in
rease its magnitude in the vi
inity of a stru
turalphase transition, whi
h is of te
hnologi
al importan
e for 
ooling appli
ations.The inverse magneto
alori
 e�e
t has been also re
ently dis
overed [187℄. Magne-tostri
tion e�e
ts [51℄, whi
h 
onsists in showing magneti
-�eld indu
ed volume
hanges are another 
onsequen
e of the 
oupling between elasti
 and magneti
degrees of freedom. Other aspe
ts have been also adressed [188℄.Mi
romagnetism has been widely used to model the magnetization in magne-toelasti
 systems. Elasti
ity has been taken into a

ount by means of, for instan
e,Kha
haturyan's mi
roelasti
ity [133, 189℄ and Landau theory [190, 191℄. In this
hapter we develop a magnetoelasti
 model based on an extension of the previouspure elasti
 Landau-based model, that in
ludes magneti
 degrees of freedom aswell as a 
oupling between magneti
 and strain variables. Before going into modeldetails, it is important to point out that, as will be seen, from the elasti
 point105



106 Chapter 6. The magnetoelasti
 modelof view, the model allows the 
rystallographi
 latti
e to undergo a ferroelasti
Martensiti
 Transition (MT), that 
an be indu
ed either upon 
ooling or by ap-plying a stress or magneti
 external �eld. Instead, the temperature does not playany role for the magneti
 degrees of freedom, but the magnetization of the latti
eis assumed to remain at all times in the ferromagneti
 phase, well below the Curietemperature1.Modeling of the magneti
 energy is presented in Se
. 6.2.1. In Se
. 6.2.2 themagnetoelasti
 
oupling is des
ribed and the elasti
 part brie�y reviewed. In Se
.6.3 the dynami
s 
on
erning both the magneti
 and elasti
 degrees of freedom isdes
ribed. Finally, Se
. 6.4 presents preliminary results of the model.
6.2 EnergyThe performan
e of the magneti
 degrees of freedom is 
arried out by means ofthe theory of mi
romagnetism [192℄, a

ording to whi
h, the magnetization ofthe system is des
ribed by a three dimensional 
ontinuous ve
torial (spin) �eld,that will be denoted by M(r). We 
an write m = M/Ms, where Ms is thesaturation magnetization and m = (mx, my, mz) is the unit magnetization ve
tor,that must ful�ll |m| = 1. This des
ription is known to apply to both atomisti
and mesos
opi
 s
ales. On the other hand, The elasti
 part is des
ribed by theextended Ginzburg-Landau model explained in Chapter 2, with the deviatori
strain e2 as the order parameter (OP).Note that, although the elasti
 part is purely 2D, the 2D magneti
 modelallows the spins to have the third 
omponent mz , that is out-of-plane. This isdue to the intrinsi
 3D nature of the theory of mi
romagnetism (involving 
urloperators, et
.). However, the third 
omponent may be for
ed to remain in the2D plane in several ways, su
h as introdu
ing an extra anisotropi
 term penalizingthis 
omponent. In fa
t, as will be seen, the magnetoelasti
 
oupling itself doesstrongly for
e mz to vanish at all times. Nevertheless, a dire
t 
onsequen
e of the3D real world is that no internal magneti
 in-plane mi
rostru
ture is needed forthe magneti
 lines to 
lose, sin
e they 
an 
lose in the third dimension. Instead, apure 2D magneti
 system must indeed exhibit a 2D magneti
 domains stru
turein order the lines to 
lose. This 
an be easily seen in Fig. 6.1 where both 
asesare displayed.1If wanted, the temperature should be introdu
ed as thermal �u
tuations by means of the�u
tuation-dissipation theorem as it will be brie�y mentioned later.
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a)

b)

c)

Figure 6.1: (a) A pure 2D magneti
 system requires internal mi
rostru
ture for themagneti
 lines to 
lose. (b)-(c) In a 3D world, no in-plane magneti
 domains are neededsin
e the mangeti
 lines 
an 
lose in the third dimension, either by means of a 3Dmangeti
 stru
ture (b) or freely (c).6.2.1 Magneti
 energyIn a solid magneti
 body the magneti
 energy 
an be de
omposed as a sum of thefollowing 
ontributions:
Fm = Fan + Fex
h + Fms + Fext, (6.1)Here, Fan is the anisotropi
 energy, that a

ounts for the intera
tion of the mag-netization with the underlying anisotropi
, 
rystallographi
 latti
e. This leads thespins to have preferred, soft spe
i�
 dire
tions to point at. In a 
ubi
 system thisterm takes the following form:

Fan =

∫

[K1(mx
2my

2 +mx
2mz

2 +my
2mz

2) +K2mx
2my

2mz
2]dV (6.2)where K1 and K2 are the magneto
rystalline anisotropy 
onstants. This potentialhas eight minima at m = (±1/

√
3,±1/

√
3,±1/

√
3). A proje
tion of it, is shownin Fig. 6.2 as a fun
tion of mx and my. Hen
e, this term will favor the diagonaldire
tions.Note that, indeed, this term already performs a magnetostru
tural 
oupling,sin
e it des
ribes how the magnetization is a�e
ted by the 
rystallographi
 sym-metry elements. However, up to now, no deformations of the latti
e are takeninto a

ount. In that sense, by the moment K1 and K2 are kept 
onstant so thatwe 
annot talk about magnetoelasti
 
oupling. Pre
isely, as will be seen , the
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ym

xmFigure 6.2: Proje
tion of the mangeti
 anisotropi
 energy in the {mx,my} plane: Fourwells at (±1/
√

2,±1/
√

2
) show that diagonal dire
tions are favoredmagnetoelasti
 
oupling will be introdu
ed by suposing K1 and K2 as fun
tion ofthe strain and 
al
ulating derivatives.The term Fex
h in eq. (6.1) 
orresponds to the energy of the ex
hange inter-a
tion. It takes into a

ount intera
tions between nearest neighbors in the samethread of thought of the Heisenberg model2. In a 
ontinuous model, it 
an beexpressed through derivatives as:

Fex
h = A
∫

[(∂xmx)
2 + (∂ymx)

2 + (∂zmx)
2 + (∂xmy)

2 + (∂ymy)
2 + (∂zmy)

2

+(∂xmz)
2 + (∂ymz)

2 + (∂zmz)
2]dV (6.3)where we have used the 
ompa
t notation ∂imj = ∂mj/∂i, with i = x, y, z. Here

A is the ex
hange sti�ness 
onstant, that is negative (positive) for a ferromagneti
(antiferromagneti
) system. In our ferromagneti
 
ase, this intera
tion will try tokeep the spins parallel to ea
h other.In addition to the previous lo
al intera
tion, ea
h spin is a�e
ted by any otherspin in the system due to the long-range, dipolar intera
tion. Thus, the magne-tization in the whole body, given by the spe
i�
, total spin 
on�guration, 
reatesthe so-
alled demagnetizing or magnetostati
 �eld, whi
h in turn a
ts over ea
hindividual spin. It is important to note that this �eld is responsible for the ful-�llment of the Maxwell equation ∇ · B = 0, that essentially for
es the magneti
2This term is often 
alled the Heisenberg energy.



6.2. Energy 109lines to form 
losed loops, i.e. to prevent the existen
e of magneti
 monopoles.This may strongly depend on the spe
i�
 shape of the spe
imen and it is at theorigin of magneti
 domains, vorti
es, [47℄ et
.The 
orresponding magnetostati
 energy 
an be expressed in several ways as:
Fms = −1

2
µ0Ms

∫

Ω

Hd ·mdV = −1

2
µ0Ms

∫

Ω

(∇ ·M(r))φ(r)dV =
1

2
µ0

∫

ℜ
H2
ddV,(6.4)where µ0 is the permeability of the free spa
e, Hd is the above mentioned demag-netizing �eld (whi
h is also a ve
torial �eld) and Ω and ℜ refer to the sample andto all the spa
e respe
tively. The knowledge of Hd requires an integral involvingthe magnetization over the whole system that, when introdu
ed in eq. (6.4), is atthe origin of the long-range 
hara
ter of the magnetostati
 term. The resultingdouble integral entails di�
ulties and large 
omputation time (∼ N2), leadingto many e�orts devoted to optimize its 
al
ulation [193, 194℄. Here the 
al
ula-tion is 
arried out in Fourier spa
e, that improves 
onsiderably the required time(∼ N logN), similarly to the long-range elasti
 intera
tions explained in Chap.2. In order not to interrupt the line of argument regarding this model, a detailedexplanation of the 
omputation 
on
erning this term 
an be found in App. B.2.Here we only point out that the 
ontribution 
orresponding to the wave ve
tor

k = 0 is a singularity in the Fourier expression and hen
e is not taken into a

ount(and set to zero). Therefore, the single domain 
on�guration is not spe
i�
allypenalized by this term. This 
an be easily seen from the fa
t that the 
omputationin Fourier spa
e requires periodi
 boundary 
onditions, whi
h lead to an in�nitesystem size and, 
onsequently, to the absen
e of �nite size and shape e�e
ts whi
hare at the origin of magneti
 domains. We re
all that a similar problem arose inthe elasti
 
ase. Also, here some methos will be explored to e�e
tively a

ountfor �nite size and shape.Finally Fext is the intera
tion energy between the magnetization and the ex-ternal �eld:
Fext = −µ0Ms

∫

Hex ·mdV (6.5)
6.2.2 Magnetoelasti
 
oupling and elasti
 energyAs mentioned in Se
. 6.2.1, the anisotropi
 magneti
 term denoted by Fan [eq.(6.2)℄ a

ounts for the spe
i�
 spatial distribution of the spins, that obviously isin dire
t 
orresponden
e with the underlying 
rystallographi
 latti
e, with whi
hshares the same symmetries. In parti
ular, the latti
e has square symmetry. How-ever, sin
e the mangeto
rystalline anisotropy parameters K1 and K2 are 
onstant,
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Favorable configurations Unfavorable configurationsEnergy

Easy axes:

Anisotropy

Magnetostatic

External field

Exchange

Figure 6.3: Favorable and unfavorable spin 
on�gurations with respe
t to ea
h ener-geti
 
ontribution.
Fan always refers to the square symmetry and does not take into a

ount new sim-metries arising from any deformation of the latti
e. Pre
isely, we are interestedin studying the e�e
ts of elasti
 deformations in the magneti
 latti
e, and theother way round, i.e. how mangnetism may a�e
t the 
rystallographi
 latti
e.Therefore, a new 
ontribution in the free energy, termed magnetoelasti
 energy,is required to a

ounts for these e�e
ts.Then, from now on we assume that the latti
e where the spins are lo
atedundergoes a square-to-re
tangular MT. It entails a symmetry loss of the elasti
latti
e and, 
orrespondingly, of the spin latti
e, that results in a 
hange in thesoft magneti
 dire
tions, given by the anisotropi
 magneti
 term. Following Kit-tel [195℄, we assume that this 
hange is small (as it o

urs in real materials) andtherefore we may 
al
ulate the new magneti
 anisotropi
 term as a Taylor expan-sion around the equilibrium value given by the undistorted latti
e, thus obtaining
F ′an = Fan+Fme. Here Fme refers to the free energy of the magnetoelasti
 
ouplingemerging from the derivatives of Fan in the Taylor expansion. Taking also intoa

ount symmetry-allowed requirements, it gives rise to the following expressionfor Fme:

Fme =

∫ (
B1√

2

(
m2
x +m2

y

)
e1 +

B1√
2

(
m2
x −m2

y

)
e2 +B2mxmye3

)

dr (6.6)



6.3. Dynami
s 111We re
all that the elasti
 free-energy density 
an be written as follows:
fel =

A1

2
e21 +

A3

2
e23 +

A2

2
e22 −

β

4
e42 +

γ

6
e62 +

κ

2
(∇e2) (6.7)Note that Fel and Fme terms depend on the three symmetry-allowed strains e1, e2and e3. As seen in Chap. 2 they are not independent but they are related by theSaint-Vénant 
ompatibility equation, so that we 
an express the free energy interms of only two of them, say, for instan
e, e1 and the OP e2. We then minimizethe total free energy with respe
t to e1 and obtain an expression for the freeenergy only in terms of e2. Note that now, in addition to the term Fel we have toin
lude the magnetoelasti
 
ontribution Fme in the energy minimization, sin
e italso 
ontains the variables e1, e2 and e3. The mathemati
al details 
an be foundin App. B. The �nal expression for Fme be
omes:

Fme = B1√
2

∫ [
m2
x(r)−m

2
y(r)

]
e2(r)dr

+ 1
(2π)2

B1√
2

∫
Ac1(k)e2(k)dkF (m2

x(r)−m2
y(r)

)

− 1
(2π)2

B2

2
√

2

∫
Ac3(k)e2(k)dkF (mx(r)my(r))

(6.8)where Ac1(k) and Ac3(k) are fun
tions that only depend on k and are de�ned ineq. (B.52), and F(f(r)) stands for the Fourier Transformation of a given fun
tion
f(r). On the other hand, the �nal expression for the elasti
 part only 
oin
ideswith that one found in eq. (2.9) in Chap. 2.6.3 Dynami
sThe aim of the model is the study of stabilized states, whi
h in this 
ase 
onsistof magnetization and strain 
on�gurations that minimize the magneti
 and elas-ti
 energies respe
tively. On one hand, the mi
romagneti
 dynami
al equationmakes the magnetization evolve a

ording to the Landau-Lifshitz-Gilbert (LLG)equation:

(1 + α2)
∂M

∂t
= −γ0M×He� − γ0α

Ms
M× (M×He�) (6.9)As 
an be seen, the right side of the equation 
onsists of two 
ontributions. Firstterm 
omes from the 
onservation of the angular momentum, for
ing the spins tomake a pre
essional motion [196℄ around an e�e
tive magneti
 �eld He�. There-fore, γ is the gyromagneti
 ratio. The se
ond term is a purely phenomenologi
aldamping term [197℄, that has been observed experimentally but not dedu
ed fromatomisti
 basis, whi
h makes redu
e the pre
ession of the spins up to rea
h a stati
state of minimum energy. Here α is a dimensionless damping 
onstant. From mi-
romagneti
 arguments, the e�e
tive �eld 
an be 
al
ulated as He� = −Ms

µ0

∂F
∂M

.
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 modelIn App. B.5.2 it is shown that this equation 
onserves the modulus of ea
h spin.Figure 6.3 shows the spin 
on�gurations that minimize and maximize ea
h ener-geti
 
ontribution. The balan
e between the terms, whi
h of 
ourse depends onthe 
orresponding weights, will determine the �nal spin 
on�guration. On theother hand, the stabilized 
on�guration of the strain is rea
hed by means of apure relaxational dynami
s as shown in Chap. 2: ∂e2
∂t

= − δF
δe2

. It is worth notingthat the magnetoelasti
 
oupling 
ontributes to both dynami
s, whi
h gives riseto the desired 
orrelations between the strain and magnetization 
on�gurations,that is magnetoelasti
 behavior. The detailed mathemati
al 
al
ulation of boththe elasti
 and magneti
 energy derivatives 
an be found in B.4. The parametervalues and model units 
an be found in App. C.It must be pointed out that, although the LLG equation allows to analyze themagneti
 dynami
 behavior, the magnetoelasti
 
oupling links both the mi
ro-magneti
 and elasti
 dynami
s and, sin
e the latter is not realisti
, it prevents usthe study of the dynami
 evolution and we fo
us only on stati
 
on�gurations.In order to integrate the eq. (B.54) we have tested Euler and Runge-Kuttafourth order (RK4). If interested only in rea
hing the minimum of energy, Euleris good enough and faster than RK4. When studying the dynami
s of the system,RK4 should be better. A detailed study about that has not been 
arried out.6.4 Preliminary resultsMi
romagneti
s in spheri
al 
oordinatesAs seen, in the mi
romagneti
 theory the spins are 
lassi
al ve
tors m with 
on-stant modulus |m| =
onst. As dis
ussed previously, this is 
onsidered by theLLG equation, sin
e it is easy to see that this ve
torial equation keeps |m| 
on-stant. A

ording to the formulation in 
artesian 
oordinates presented there, wedeal with a ve
tor of three 
omponents (mx, my, mz), and therefore LLG equa-tion be
omes a set of three equations, one for ea
h 
omponent. Moreover, the
onservation of the modulus |m| is automati
ally imposed by LLG equation butwhen it is implemented numeri
ally, this 
ondition is violated very slightly, andthe error a
umulates due to the re
ursive iterations of the LLG equation and maybe
ome too large. Hen
e, the initial small error must be 
orre
ted every 
ertainsmall number of iterations by normalizing the spin ve
tors. Therefore it seemsnatural to deal with spheri
al 
oordinates (mr, mθ, mφ), whi
h makes easier thenumeri
al integration sin
e it imposes automati
ally the 
ondition of modulus
onstant through the identity mr = 1. Moreover, it leads to deal only with two
omponents, (mθ, mφ) and the LLG equation be
omes a set of only two equations.



6.4. Preliminary results 113Motivated by this argument, we have 
onverted the model to spheri
al variables,�rst in 
artesian 
oordinates, and se
ond in spheri
al 
oordinates, whose mathe-mati
al details are presented in the following. Sadly, the �nal expressions involvetrigonometri
 expressions like sinus, 
osinus, et
. in su
h a way that, althoughthe mathemati
al form is simpler, the spheri
al version is more 
ostly from the
omputation point of view than the 
artesian one. Consequently, we have �nallyused the latter 
oordinates.It is worth mentioning that a two-dimensional version of the LLG equationhas been developed elsewhere [198, 199℄ for systems within whi
h the spins are
on�ned to pre
ess in a plane, due to anisotropy for
es or whatever. In this 
ase,the spins are expressed in spheri
al 
oordinates and the LLG is expressed in a verysimple form, whi
h makes sure a faster 
omputation time and an appropriate puretwo-dimensional magnetoelasti
 system.Pure magneti
 evolutionAs a �rst 
he
k of the model we analyze the pure magneti
 
ontribution. Adynami
al evolution of the magnetization in a 32 × 32 square latti
e with peri-odi
 boundary 
onditions is shown in Figures3 6.4 and 6.5. The 
on�gurationsshow the proje
tion of the spin ve
tors in the xy-plane. Starting from a random
on�guration [shown in (a)℄, the spins rapidly look for aligning with the nearestneighbors [(b)℄. The lo
al dire
tionality of the alignment di�ers from one regionto another, whi
h indu
es the formation of (embrioni
) vorti
es (favored by themagnetostati
 energy) in the regions inbetween [(c)-(d)℄ and other smooth inter-fa
es [200℄. The 
onsolidation of su
h vorti
es may give rise to asymmetri
 Blo
hwalls [(e)-(h)℄ [201�203℄. Simultaneously, vorti
es 
an merge or disappear, me-diated by the spin �ip in the z (out-of-plane)-dire
tion, [(f)-(i)℄. Other vorti
esmay appear although the system evolves to a globally more ordered 
on�gura-tion. After a while all the vorti
es have disappeared, all the spins being almostparallel [(j)℄. Then, the spin pre
ession be
omes more visible as 
an be seen inthe fa
t that in (j) the dominant 
omponent is the verti
al whereas in (k) it isthe horizontal. This highlights the pre
ession around the diagonal dire
tion, as�nally it does o

ur [(l)℄. It 
an be seen that the stabilized state 
onsists of asingle domain 
on�guration with the spins pointing to a diagonal dire
tion. Asseen above, this 
on�guration is favored by the magneto
rystalline anisotropy andthe ex
hange energy.The absen
e of magneti
 domains 
an be explained mathemati
ally by the lowsimulation 
ell size together with the periodi
 boundary 
onditions leading to an3The time intervals between the spin 
on�gurations in the series is not homogeneous, butthey are 
hosen to highlight spe
i�
 magneti
 states.
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Figure 6.4: Spin �eld evolution I.
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Figure 6.5: Spin �eld evolution II.
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Figure 6.6: Stabilized 
on�gurations for di�erent values of the sti�ness 
onstant A.e�e
tive in�nite system size whi
h, therefore, does not take into a

ount �nitesize and shape e�e
ts. We re
all that the existen
e of magneti
 domains is theresult of an energeti
 balan
e between the long-range magnetostati
 intera
tionsand the ex
hange 
ontribution when �nite size and shape e�e
ts are taken intoa

ount. This balan
e is the magneti
 analogous to the elasti
 
ase, where domainsarise as a 
ompromise between long-range elasti
 intera
tions and the Ginzburgenergy. Moreover, the magnetostati
 e�e
ts are more important as the system sizein
reases, whereas the ex
hange e�e
ts be
ome important in small-size systems.Hen
e, the fa
t that the simulation 
ell is mu
h lower than the system size (whi
his mathemati
ally in�nite) 
annot be given as a physi
al argument for the absen
eof magneti
 domains.To obtain a magneti
 multidomain stru
ture we have explored two simplemethods: On one hand, we have 
arried out some simulations with a low value ofthe ex
hange, sti�ness 
onstant A to show that in this 
ase, magneti
 multidomain
on�guration stabilize. This is shown in Fig. 6.6. We 
an see that the lower valueof A the smaller the domain size (and hen
e the larger the number of domains).We 
an also appre
iate that neighbor domains never 
onsist of spins of one domainpointing to the spins of the another(→←). Instead, they 
onsist of perpendi
ularspins (↑→) or spins perpendi
ular to the modulation of the magnetization (↑↓).



6.4. Preliminary results 117If we now modify the simulation 
ell size, it is observed that the higher thedomain size the higher the value A below whi
h multidomain stru
ture appears.This is observed in Fig. 6.7(a) where, for a value of the sti�ness 
onstant A = 10−6,a 128× 128 spin latti
e shows two magneti
 domains. Note that for this value of
A, a 32 × 32 spin latti
e does not show magneti
 domains but a single domain,as it is shown in Fig. 6.6(f). For 
larity, ea
h spin in the 128× 128 snapshot isthe average over 16 nearest neighbor spins. However, it must be noted that thevalue of the sti�ness 
onstant is in any 
ase mu
h lower that the nominal valuefor Fe-Pd, so that the system size that should be used to obtain a multidomain
on�guration with this real value is expe
ted to be too large for 
omputationalpurposes.On the other hand, the se
ond method to obtain a multidomain 
on�guration
onsists of introdu
ing an additional 
ondition for the spins in the latti
e that playsthe role of an e�e
tive shape for the system. For instan
e, we 
an impose extraenergeti
 penalties for the averages of both the x- and y-spin 
omponents overall the 
ells of the system denoted as 〈mx〉 and 〈my〉 respe
tively. Thus, if thesepenalties are high enough, the 
on�gurations whose 〈mx〉 and 〈mx〉 vanish be
omefavorable. Su
h 
on�gurations must 
ontain at least two magneti
 domains withspins pointing to opposite dire
tions. Figure 6.7(b) show a 64× 64 multidomainmagneti
 
on�guration stabilized by means of introdu
ing su
h penalties. Here,ea
h spin in the snapshot is the average over 4 nearest neighbor spins.In fa
t, this additional term 
an be interpreted as a

ounting for the modula-tions 
orresponding to the wave ve
tor k = 0, whi
h, as pointed out in Se
. 6.2.1,is not taken into a

ount by the Fourier expression used to 
ompute the long-rangemagnetostati
 �eld. As explained in App. B.2.3 it 
an be introdu
ed through thedemagnetizing fa
tor whi
h depends on the spe
i�
 shape of the system.Magnetoelasti
 resultsOn
e we have 
he
ked that the magneti
 part works as expe
ted, we performsimulations of the full magnetoelasti
 model. Simulation results show that themagnetoelasti
 
oupling is strong for Fe-Pd. In the martensiti
 phase the sta-bilized states show typi
al strain 
on�gurations and the magnetization stabilizesa

ording to the strain. Consequently, the magneti
 domains are subje
ted to theelasti
 domains. The pure magneti
 terms turn out to be less relevant than themagnetoelasti
 
oupling, although they determine �ne details like the width ofthe walls. In the austenite phase, the 
oupling vanishes be
ause the strain is zero(in the absen
e of pre
ursors) and magnetization may evolve as in pure magneti
systems analyzed above.
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Figure 6.7: Stabilized multidomain stru
tures either by using a large 128×128 spin lat-ti
e (a) or through penalizing the nonvanishing averages of the x- and y-spin 
omponentsin a 64× 64 spin latti
e (b).All this 
an be observed in Fig. 6.8, where we have used the method of simulat-ing austenite des
ribed in Se
. 3.4.2 to obtain �ne twinning in the transformableregion for a 512 × 512 
ells system, with linear size L = 103. In parti
ular, (a)shows the strain 
on�guration, whi
h indeed is similar to those obtained in Se
.3.4.2. Sin
e the system size is very large, the representation of the spin �eld hasbeen detailed in two snapshots for 
larity. In (b) the absolute magnitude of the
x-
omponent of the magnetization |mx(r)| is shown (the darker the region thehigher the x-
omponent) whereas in (c) we 
an observe a proje
tion of the spinsin the xy-plane, where ea
h spin is the average over 36 nearest neighbor spins.Both snapshots show 
learly that in the martensiti
 phase, the magnetizationform twins a

ording to elasti
 twins. Also, in the austenite phase, mangetizationevolves freely towards a 
on�guration 
onsisting of a region where the magnetiza-tion points to a diagonal dire
tion a

ording to the magneto
rystalline anisotropy,and a vortex formed elsewhere. Note that the 
enter of the vortex in (b) is notin the 
ir
le but in the white (blue) strip just below it. This is logi
al sin
e thespins in the 
enter of a vortex lying in the xy-plane point to the z-dire
tion (out-of-plane) and hen
e they have no x-
omponent. It 
an be also observed that thede
aying �elds in the austenite also a�e
t the magnetization.
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Figure 6.8:





Chapter 7Summary and 
on
lusions
In this thesis we have approa
hed the problem of 
ompeting intera
tions betweenanisotropy and disorder in ferroelasti
 martensites. Motivated by experimentaleviden
e whi
h points to these two parameters to play a de
isive role in the result-ing ferroelasti
 behavior, we have perfomed simulations by means of a Ginzburg-Landau model extended to in
lude long-range intera
tions and disorder. Themodel has been shown to be powerful enough to a

ount for a wide variety ofphenomena like 
hara
teristi
s of the mi
rostru
ture, thermodynami
 behaviorand thermome
hani
al properties. Beyond the interest as basi
, theoreti
al re-sear
h, this work 
on
erns an issue of many te
hnologi
al relevan
e as dopingin SMAs. Besides the great amount of histori
al literature about this subje
t,due to the re
ent publi
ation of relevant papers in important physi
al magazines,it has emerged as a 
urrent experimental 
utting resear
h. Our results are, ingeneral, in good qualitative agreement with many experiments in di�erent alloyfamilies and thus provides a simple, uni�ed framework whi
h allows to go depthinto the understanding of ferroelasti
s. In the following, we highlight the mainresults/a

omplishments/a
hievements of this thesis and propose some improve-ments for the model. Finally, we also summarize the theoreti
al 
on
lusions andpropose some future experimental work.Main Results� Quen
hed-in disorder is a ne
essary ingredient for pretransitional textures to ex-ist. In systems with high anisotropy, disorder 
ooperates with long-range anisotropi
intera
tions giving rise to a middle-range 
ross-hat
hed pattern, the so-
alledtweed, whi
h has been widely observed in experiments. By middle-range mod-ulation we mean that the length s
ale asso
iated to tweed 
onsiderably over
omesthe typi
al length s
ale of disorder but is notably smaller than the 
hara
teristi
twin size. In 
ontrast with that, systems with low anisotropy exhibit short-range121



122 Chapter 7. Summary and 
on
lusionspretransitional textures of almost spheri
al shape (mottled stru
ture), whi
h havebeen experimentally observed in Ti-Ni-based systems. Indeed, su
h alloys areparti
ularly 
hara
terized by a very low anisotropy value.� For relative small amounts of disorder, upon 
ooling the system transformsto the martensiti
 phase, being the arising twinned stru
tures 
ompletely un
or-related with the high temperature pretransitional patterns. Corre
t twin width isobtained by introdu
ing an extra energeti
 
ontribution derived from surfa
e ef-fe
ts, i.e. of imposing the existen
e of an habit plane. Phenomenologi
al methodshave also su

eed in yielding the 
orre
t length s
ale. Other important featuresof the twinned mi
rostru
ture, like needles, have been also reprodu
ed.� For a given value of the anisotropy, as the amount of disorder is in
reased,the ferroelasti
 transition is rounded, shifted to low temperatures and �nally sup-pressed, whi
h is revealed by the 
orresponding smoothing, shift and suppressionof the peak in the heat 
apa
ity C, and by a notable �atening in the elasti
 re-sponse C ′. This is in very good agreement with experiments that analyze thebehavior of C as a fun
tion of the relative 
on
entration of the elements in agiven alloy family. The higher the value of the anisotropy the higher the amountof disorder needed to inhibit the transition.� When the transition is suppressed, both tweed and mottled stru
tures areretained at low temperatures. This is experimentally observed when in
reasingdoping in SMAs. These low temperature patterns di�er from those at high tem-perature in the sense that show a degree of freeezing that is revealed by ZFC/FCsimulation experiments, where ZFC and FC 
urves split. This deviation, whi
h isindi
ative of glassy behavior, is parti
ularly important in the low anisotropy 
ase,whereas it is rather small in the high anisotropy 
ase. ZFC/FC results are also invery good agreement with experiments in low anisotropy alloys. No experimentalresults in high anisotropy systems are available. By looking at the energy of thesefrozen stru
tures, we have dete
ted that they are metastable states, in 
ontrastwith the similar stru
tures in the pre
ursor regime, where they seem to be thermo-dynami
ally stable. Simulations with zero anisotropy show un
orrelated emergingdomains, whi
h suggest that frustration is not at the origin of the glassy behaviorbut this o

urs due to kineti
 freezing be
ause of the 
ompetition among growingdomains. Thus, the thermodynami
 stable state exist but it is una

essible.� Thermome
hani
al properties have been analyzed. Stress-strain 
urves showa very ri
h, nontrivial phenomenology as a 
onsequen
e of anisotropy and disorder.Variations in their values result in 
hanges in the transition stress, hysteresisarea, transition dynami
s and temperature ranges where pseudoplasti
ity andsuperelasti
ity regimes are observed. However, the response of the system maybe in opposite dire
tions depending on the value of the two parameters. In some
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ases the disorder favors superelasti
ity whereas in some others 
ases preventsit. This two-fold e�e
t of the disorder has been observed experimentally. Thefollowing general trends may be also re
ognized: As expe
ted, superelasti
ityhas been observed at high temperatures. The Clausius-Clapeyron relationship islinear, whi
h is in agreement with experimental observations in many di�erentmartensiti
 systems when varying doping. It is worth mentioning that the SMEhas been obtained not only in twinned martensite but also in the glassy system,whi
h is in agreement with experiments. To summarize stress-strain properties,the elasto
alori
 e�e
t has been studied.Model Improvements� The model may be improved in several ways: A more realisti
, inertial dynami
smay be in
luded, whi
h would introdu
e the time as an external parameter to betaken into a

ount, and would allow for important simulations like frequen
y-dependen
e of the elasti
 response, from whi
h we 
an extra
t Volger-Fül
herrelations related to glassy behavior, 
ooling rate-dependent simulations, 
y
ling,aging, et
. Moreover, due to the phenomenologi
al nature of disorder, any tuningof it would be wel
ome to get 
loser to experiments.� Regarding the magnetoelasti
 model, it would be interesting to explore thewide range of phenomena like magneti
 domains, stress(magneti
)-indu
ed mag-neti
 (strain) domain swit
hing, ferromagneti
 SME, magneti
 textures in thepremartensiti
 regime, et
. Beyond this, freezing of the spins indu
ed by frozenstrains 
ould also be studied in the 
ase of large disorder.Theoreti
al Con
lusions and Proposed ExperimentsUp to date, the suppression of the transition due to 
hanges in 
omposition hasbeen experimentally asso
iated with an intrinsi
 thermodynami
 instability ofthe martensite. However, me
hani
al-indu
ed transitions in the nonmartensiti
,glassy Ti-Ni-based alloys point to the nontwinned martensiti
 state to be a
tuallythermodynami
ally (meta)stable, sin
e upon unloading the martensiti
 phase isretained. This is further revealed by di�ra
tion experiments. Our simulationresults support this �nding. It would be interesting to explore the possibility ofthe two-way SME through thermome
hani
al treatment, whose existen
e wouldreinfor
e this argument. Moreover, the fa
t that these alloys exhibit SME impliesthat the nontwinned martensite, after being stabilized through loading-unloadingpro
esses, undergoes a temperature-indu
ed ba
kward transition upon heatingwhi
h allows the sample to re
over the initial shape. With respe
t to this, itwould also be of interest to 
he
k the existen
e of the 
orresponding peak in the
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on
lusionsheat 
apa
ity and other thermodynami
 signatures of the transition in magnitudeslike resistivity and elasti
 response.On the other hand, sin
e the strain glass state has been only observed in verylow anisotropy systems, a 
ouple of additional questions proposals still 
ome toour mind, 
omplementary those above: First, does glassy features also o

ur inhigh anisotropy systems at high amounts of doping? In other words, are the tweedtextures observed in high anisotropy materials a glassy state when obtained at lowtemperatures in the nontransforming 
omposition regime? Analogous to the lowanisotropy 
ase, this 
ould be tested through ZFC/FC experiments and others.To further 
ompare tweed with the mottled glassy state, at least one importantquestion remains unanswered: Why is the martensiti
 phase una

essible under
ertain 
onditions? is it due to a thermodynami
al instability, or is it due to akineti
 freezing, whi
h gives rise to the glassy state? Dire
tly related to that, we
an also ask ourselves wether su
h a system also exhibits SME or not.Answers to all these questions would help to go deeper into the understandingof the intringuing me
hanisms governing these systems, and perhaps we would beable address a fundamental question 
on
erning this thesis: Does the anisotropyplay any role in determining the observed behavior?



Chapter 8Resum
Des de fa temps s'ha anat observant que els materials que exhibeixen estats es-paialment inhomogenis a l'es
ala mesos
òpi
a poden presentar propietats noves iinteressants des del punt de vista te
nològi
 i fonamental. Dins de l'ampli ven-tall dels materials fun
ionals, podem 
itar super
ondu
tors d'alta temperatura,manganites exhibint magnetoresistèn
ia 
olossal, 
ondu
tors iòni
s i ferroi
s engeneral 
om a exemples de sistemes en els que les inhomogeneitats juguen unpaper 
ru
ial a l'hora de determinar-ne les seves propietats.En parti
ular, els materials ferroi
s són sistemes que es 
ara
teritzen per unatransi
ió de fase induïda per temperatura, en la que una magnitud físi
a s'ordenaespontàniament donant llo
 a una mesoestru
tura interna típi
ament multido-mini. Aquesta autoorganitza
ió sorgeix de la 
ombina
ió entre tres fa
tors: unper�l energéti
 
onsistent en varis pous degenerats (variants o twins en anglès),l'existèn
ia d'unes for
es de llarg abast de tipus dipolar i efe
tes de forma i tamany�nit. La transi
ió també pot ser induïda per l'apli
a
ió d'un 
amp extern. Aixímateix, la fase ordenada es 
ara
teritza pel fet que les diferents variants podenser 
onvertides d'una a una altra fà
ilment per mitjà d'un 
amp extern, donantllo
 a una sèrie de parti
ularitats 
om el 
i
le d'histèresi, amb l'existèn
ia d'un
amp 
oer
itiu, et
.Els exemples paradigmàti
s de materials ferroi
s són els sistemes ferromag-nèti
s, ferroelè
tri
s i ferroelàsti
s, on la magnetitza
ió, la polaritza
ió i la de-forma
ió són les magnituds físiques de rellevàn
ia respe
tivament. Cal posar demanifest l'existèn
ia de materials multiferroi
s, 
om per exemple magnetoelàsti
so magnetoelè
tri
s, on l'a
oblament entre les diferents magnituds és important.Això dóna llo
 a una resposta 
reuada signi�
ativa entre una variable i el 
amp
onjugat d'una altra, que permet una fenomenologia variada amb importants apli-
a
ions te
nològiques.Aquest estudi es fo
alitza en els materials ferroelàsti
s, en els que durant la125
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ió apareix una deforma
ió de la xarxa 
ristal·lina, que 
anvia d'estru
turade tal manera que els pro
essos dominants són displa
ius i no hi ha difusió d'àtomsper la xarxa. Típi
ament les 
el.les unitat de les dues fases mantenen una rela
ióde grup-subgrup, 
osa que dóna llo
 a l'existèn
ia de més d'una variant orienta-
ional. Usualment, la fase ferroelàsti
a nu
lea dins d'una matriu paraelàsti
a.La multipli
itat de les variants orienta
ionals permet que l'en
aix de la in
lusióemergent i posterior 
reixement de la fase ferroelàsti
a no sigui dramàti
a per lamatriu mare des del punt de vista de la deforma
i`ó sinó que té llo
 mantenintel pla que forma la frontera entre fases (pla d'hàbit) ma
ros
òpi
ament invari-ant, mitjançant l'alternança de les men
ionades variants. L'efe
te dominó, que ésl'essèn
ia del llarg abast de les intera

ions elàstiques, fa que aquesta alternançaes propagui dins el volum de la fase martensita, donant llo
 d'aquesta maneraa una estru
tura interna de dominis orienta
ionals. De fet la modula
ió ι de ladeforma
ió segueix una llei del tipus l ∝ √L.Léxistèn
ia d'aquesta mi
roestru
tura permet dos fenòmens importants: enprimer llo
, la superelasti
itat, que 
onsisteix en el fet que el sistema pot deformar-se més enllà del llindar elàsti
 mitjançant l'apli
a
ió d'un esforç que indueixila transi
ió ferroelàsti
a, amb la 
onseqüent apari
ió d'una úni
a variant, sele
-
ionada per les espe
i�tats del 
amp. Quan s'elimina l'esforç, el material pateix latransforma
ió inversa i re
upera així la seva forma original. En segon llo
, trobeml'efe
te de memòria de forma (SME), que es basa en el fet que el material mantéla seva forma original ma
ros
òpi
a quan pateix la transi
ió al disminuir la tem-peratura grà
ies a l'estru
tura multidomini. L'apli
a
ió d'un esforç a aquesta faseordenada provo
a el 
reixement de la variant afavorida pel 
amp en detriment deles altres i la 
onseqüent deforma
ió del sistema. El potserior es
alfament de lamostra provo
a la transi
ió inversa i, per tant, la re
upera
ió de la forma origi-nal. Entre els materials ferroelàsti
s 
al desta
ar les martensites termoelàstiques,que poden re
uperar deforma
ions de gairebé �ns al 10%, i que tenen importantsapli
a
ions te
nològiques 
om a a
tuadors, sensors, vàlvules de 
ontrol, et
. en
amps molt diversos que van des de l'aeronàuti
a a la medi
ina. Com a exemplesde martensites termoelàstiques trobem multitud d'aliatges intermetàl·li
s, entreels que desta
arem el Ti-Ni per la seva rellevàn
ia te
nològi
a, i aliatges basats enTi i Ti-Ni. Cal desta
ar també l'efe
te de memòria de forma magneti
a (FSME)en materials magnetoelàsti
s 
itats abans, on un 
amp magnèti
 juga el paper del
amp d'esforços. Aquí podem men
ionar el Fe-Pd.Com s'ha dit, en aquests sistemes la transi
ió està dominada per for
es elàs-tiques de llarg abast, que a la vegada depenen fortament de les simetries espe
í-�ques de la xarxa així 
om de les 
onstants elàstiques, que determinen les dire
-
ions toves del 
ristall. Per tant, aquestes for
es poden ser altament anisotròpiques,i poden afe
tar de manera 
ru
ial la morfologia de les mesoestru
tures internes.



127Tanmateix, aquesta des
rip
ió es veu alterada per la presèn
ia d'inhomogeneïtats,
om les �u
tua
ions 
omposi
ionals intrínsiques a qualsevol aliatge. Aquest des-ordre intrínse
 pot erigir barreres d'energia i entropia de tal manera que podenapantallar les 
orrela
ions de llarg abast. És àmpliament sabut, per exemple,que desvia
ions de l'estequiometria en aliatges així 
om el doping (que típi
amentporten a un augment de les �u
tua
ions 
omposi
ionals respe
te els aliatges origi-nals), introdueix varia
ions molt signi�
atives en els rangs de temperatura i esforçen els que s'observen el SME i la superelasti
itat així 
om la histèresi, 
osa que ésmolt important per al disseny d'aliatges amb mem`oria de forma, que ne
essitenrègims operatius determinats. Per això hi ha una quantitat de literatura exper-imental molt important que 
on
erneix les propietats termoelàstiques en fun
ióde la 
omposi
ió. De manera més fonamental, també s'observen anomalies en re-spostes termodinàmiques 
om la 
apa
itat 
alorí�
a, la resistivitat, 
anvis en les
onstants elàstiques, et
. Cal men
ionar les estru
tures pretransi
ionals 
om eltweed que resulten de la 
oopera
ió entre la presèn
ia d'inhomogeneïtats i les for
esanisotròpiques de llarg abast. El present estudi es fo
alitza pre
isament en l'anàlisinumèri
 de l'efe
te de l'anisotropia i el desordre en les estru
tures i respostes ter-modinàmiques en sistemes ferroelàsti
s. S'utilitza una extensió d'un model deGinzburg-Landau que in
lou desordre i intera

ions de llarg abast anisotròpiques.ModelD'a
ord amb la teoria de l'elasti
itat, qualsevol deforma
ió d'un sistema ambsimetria quadrada es pot expressar 
om a 
ombina
ió de tres deforma
ions fon-amentals (més una rota
ió), que són les deforma
ions de volum (e1), deviatòri
a(e2) i de 
isalla (e3). En parti
ular, el nostre obje
tiu és modelar un sistemaque pateix una transi
ió de simetria quadrada a re
tangular. que és el 
as bidi-mensional 
orresponent a la transi
ió real de 
úbi
a a tetragonal. Per tant,la deforma
ió de transforma
ió és la deviatòri
a, que esdevindrà el paràmetred'ordre (OP) de l'energia lliure de Ginzburg-Landau. Les 
onsidera
ions d'unatransi
ió de primer ordre i de simetria de paritat duu a la següent expressió:
FGL(e2) =

∫
(αT (T − Tc)e22(r)− β

4
e42(r) + γ

6
e62(r) + |∇e2(r)|2)dr.A la introdu

ió s'ha 
omentat que els aliatges mostren una sensibilitat moltgran de la temperatura de transforma
ió a la 
omposi
ió espe
í�
a del material.Aquest fet, juntament amb les �u
tua
ions 
omposi
ionals inherents als aliatges,re
olza la introdu

ió del desordre 
om un 
amp aleatori �u
tuant a
oblant-sea l'OP a través del terme harmòni
, ja que el 
oe�
ient d'aquest terme deter-mina par
ialment les temperatures 
ara
terístiques de la transi
ió. En parti
ularel 
amp ve des
rit per una variable aleatòria η(r), distribuida gaussianament i
orrela
ionada espaialment segons una fun
ió de 
orrela
ió a parelles exponen
ial.



128 Chapter 8. ResumEls paràmetres que determinen la variable η(r) són, per tant, la mitjana µ i ladesvia
ió estàndard ζ de la distribu
ió i la longitud de 
orrela
ió ξ. En un altremodel molt similar a l'a
tual, s'ha observat que les estru
tures de dominis són moltrobustes respe
te la fun
ionalitat espe
í�
a de la distribu
ió i 
orrela
ió del des-ordre. Així mateix, és evident que el valor de µ només desplaça la fenomenologiaal voltant del valor es
ollit, però no aporta resultats qualitativament diferents.La dis
retitza
ió del desordre, ne
essària per a la implementa
ió numèri
a enla malla de simula
ió, introdueix diferèn
ies �nites en les temperatures 
ara
terís-tiques de les 
el.les veïnes, que determinen de manera 
ru
ial les barreres lo
alsd'energia lliure. Ja que els valors de ζ i ξ varien sensiblement aquestes diferén-
ies, són sus
eptibles d'afe
tar de manera rellevant els resultats obtinguts. Detotes maneres, s'observa que el 
omportament del sistema és bastant robust re-spe
te varia
ions en ξ i en 
ap 
as dóna llo
 a resultats qualitatius diferents queels obtinguts al variar el valor de ζ . Per tant, ξ es deixarà 
onstant i l'estudi enfun
ió del desordre es durà a terme només en fun
ió de ζ .Addi
ionalment, s'afegeix una 
ontribu
ió energèti
a d'ordre harmòni
 de lesdeforma
ions que no 
orresponen a l'OP, és a dir, de volum i 
isalla (Fnon-OP(e1, e3) =
∫ (

A1

2
e21(r) + A3

2
e23(r)

)
dr), on A1 i A3 estan rela
ionats amb els mòduls de volumi 
isalla respe
tivament. Donat que en 2 dimensions els graus de llibertat realssón úni
ament dos, des
rits pel 
amp de desplaçaments, les tres deforma
ions

e1, e2 i e3 estan lligades per mitjà de la 
ondi
ió de 
ompatibilitat de Saint Vé-nant, que és una equa
ió que garanteix la integritat de la xarxa. Això possibilitaes
riure l'energia lliure total en termes només de l'OP i d'una de les deforma-
ions e1 o e3 (per exemple, FT(e1, e2) = FGL(e2) + Fnon-OP(e1, e2)). Si, a més amés, minimitzem l'energia lliure total FT respe
te e1, obtenim una 
ondi
ió ad-di
ional que ens permet obtenir una expressió per FT només en termes de l'OP.L'expressió resultant per Fnon-OP(e2) és no lo
al a l'espai real: Fnon-OP(e2) =
∫
dr
∫
e2(r)U(r−r

′)e2(r
′)dr′, però esdevé lo
al a l'espai de Fourier: Fnon-OP(e2) =

A3

2

∫
V (k)ẽ2(k)dk, amb un kernel V (k) que posa de manifest l'anisotropia d'aquestesintera

ions: V (k) =

(k2
x−k2

y)2

A3

A1
k4+8k2

xk
2
y

. Efe
tivament, aquest terme es minimitza quan ladeforma
ió deviatòri
a es modula segons les dire

ions diagonals respe
te els eixos
ristal·logrà�
s de la fase quadrada, i expli
a per tant les modula
ions 
reuadesobservades experimentalment en les textures pretransi
ionals tipus tweed així 
omla morfologia lineal de les fronteres entre dominis dels twins i les jun
ions perpen-di
ulars en mono
ristalls.D'altra banda, es pot demostrar que en realitat V (k) = V (k/k), és a dir, noafavoreix 
ap longitud d'ona sinó que només sele

iona la dire

ió de les mod-ula
ions. De fet, aquesta 
ara
terísti
a no s'ajusta a la realitat, ja que resultade no tenir en 
ompte 
ondi
ions de mida �nita de la martensita, 
osa que, 
om



129s'ha 
omentat anteriorment, és essen
ial per l'apari
ió de dominis amb una mod-ula
ió determinada. Tanmateix, la 
onsidera
ió de mida in�nita és ne
essària perpoder obtenir una expressió tan senzilla per Fnon-OP(e2). Això permet, mitjançant
ondi
ions periòdiques de 
ontorn, un 
àl
ul 
omputa
ional molt més ràpid i ambuna mida de 
el·la de simula
ió superior (ordre N logN , on N és el nombre de
el·les unitat) que no pas el temps que 
omportaria el 
àl
ul no lo
al a l'espaireal (d'ordre N2). En qualsevol 
as, això tampo
 resulta fonamental per les es-tru
tures obtingudes des del punt de vista del nostre interès, ja que la dinàmi
autilitzada al model és purament relaxa
ional i això dóna llo
 a l'estabilitza
iód'estats metaestables, amb interfases entre dominis orientades diagonalment. Caldir, no obstant, que s'han dedi
at part dels esforços d'aquest treball a l'estudi depossibles mètodes per introduir efe
tes de mida �nita.S'ha estudiat la dependèn
ia de les for
es de llarg abast així 
om el 
om-portament del sistema en fun
ió d'A3 i del quo
ient A3/A1, ja que són 
oe�-
ients que apareixen en la intera

ió de llarg abast. La fenomenologia que s'obtéal variar A3/A1 és qualitativament equivalent a la obtinguda al variar A3. Pertant, deixarem A3/A1 
onstant. És important remar
ar el fet que A3 i el fa
tord'anisotropia elàsti
a són propor
ionals a temperatura 
onstant. Aquesta rela
ióposa en evidèn
ia el fet que l'anisotropia està dire
tament rela
ionada amb el pesdel terme de llarg abast. Així, podem analitzar l'efe
te de l'anisotropia introduïntvaria
ions en el paràmetre A3.ResultatsEn primer llo
 es fa una anàlisi de la morfologia de les estru
tures que s'obtenen endiverses situa
ions. Per valors alts de l'anisotropia i valors intermitjos de desordre,s'observa tweed pretransitional, que evolu
iona 
ap a dominis twin quan la tem-peratura disminueix per sota la transi
ió. A mesura que el valor de l'anisotropiadisminueix, les estru
tures pretransi
ionals perden dire

ionalitat i els twins estrenquen. Per sota d'un llindar deixa d'observar-se modula
ió en la deforma
iói les estru
tures són bàsi
ament en forma de gotes gairebé esfèriques. Al dis-minuir la temperatura, van apareixent noves gotes i les ja existents evolu
ionenpo
, només augmentant una mi
a la seva mida. Experimentalment també s'ha ob-servat una dependèn
ia similar de les estru
tures pretransi
ionals a l'anisotropia.Així, materials amb alta anisotropia 
om el Fe-Pd i el Ni-Al exhibeixen tweedmentre que aliatges amb baixa anisotropia 
om el Ti-Ni i el Ti-Ni dopat amb Fepresenten una estru
tura pretransi
ional de gotes.Una fenomenologia similar es pot obtenir mantenint una anisotropia 
onstanti variant el desordre. Un augment de la intensitat del desordre és equivalent a



130 Chapter 8. Resumdisminuir l'anisotropia i a l'inrevés. Per valors intermitjos d'anisotropia i de des-ordre, ja no s'obté tweed en el règim pretransi
ional però es poden seguir obteninttwins (semitren
ats) a baixa temperatura. Quan s'augmenta el desordre, els twinsdeixen de formar-se i l'estru
tura pretransi
ional es manté �ns a baixa temper-atura. Si l'anisotropia és gran la intensitat de desordre ne
essària per inhibir laforma
ió és 
onseqüentment més gran. La inhibi
ió dels twins i la supervivèn
iade les estru
tures premartensítiques a baixa temperatura s'ha observat en moltsaliatges al 
anviar la 
omposi
ió relativa dels elements 
onstituents o a . D'aquestamanera, el Ti1−xNi1+x no mostra twins per x > 1.5, sinó que l'estru
tura de goteses manté �ns a 0 K. El super
ondu
tor Y-Ba-Cu-0 mostra tweed pretransi
ional,però quan es dopa amb Co o Fe en detriment de Cu per sobre d'un 
ert llindar,el tweed també sobreviu �ns a 0 K.Les estru
tures s'han 
ara
teritzat per diferents mètodes: s'ha 
al
ulat la dis-tribu
ió de la deforma
ió lo
al, la intensitat de la transformada de Fourier, queestà rela
ionada amb el patró de difra

ió i �nalment s'ha mesurat la mida dels do-minis. Per poder dur a terme aquest últim 
àl
ul, s'han hagut d'introduir efe
tesde mida �nita que, 
om s'ha 
omentat a la introdu

ió, és la responsable de lalongitud 
ara
terísti
a de l'estru
tura de dominis. Per a aquest propòsit s'hanutilitzat tres mètodes diferents: en primer llo
, mitjançant un 
àl
ul analíti
 rig-orós s'ha derivat el poten
ial real que afe
ta la martensita 
om a 
onseqüèn
ia deminimitzar l'energia 
orresponent a un sistema 
onsistent en una martensita en-voltada d'una matriu d'austenita. Aquest nou poten
ial in
lou el kernel anterior
V (k) i un de nou que es pot aproximar a 1/|k|, essent k el ve
tor d'ones de lamodula
ió de la deforma
ió. Això afavoreix longituds de modula
ió petites. Unbalanç entre el terme de Ginzburg i aquest nou kernel permet la obten
ió de lallei d'es
ala l ∝ √L men
ionada anteriorment. També s'ha estudiat els efe
tes demida petita, i s'ha obtingut que per sota d'un 
erta mida de la zona sus
eptiblede nu
lear la martensita, el twinning s'inhibeix i en el seu llo
 apareix un patró enforma de quadrí
ula, que alterna dominis de variants martensítiques amb dominisde fase austenita.Aquesta mateixa fenomenologia s'ha obtingut introduïnt els efe
ts de superfí-
ie d'una manera menys físi
a però molt més simple: a través d'una distribu
ióde desordre (és a dir, de temperatures 
ara
terístiques) que obligui una zona delsistema a romandre a la fase mare. Aquest mètode té l'avantatge que no és més
ostós des del punt de vista 
omputa
ional i en permet l'ús sistemàti
 pel 
àl-
ul de les mides dels dominis i la seva evolu
ió en temperatura per varis valorsde l'anisotropia i el desordre. Consistentment amb les simula
ions ini
ials delmodel en aquests termes, i també amb resultats que es des
riuen més endavant,s'observa que per valors baixos d'anisotropia respe
te del desordre, la mida de lesgotes gairebé no evolu
iona en temperatura sinó que es 
ongelen, de tal manera



131que les estru
tures del sistema a baixa temperatura vénen determinades en granmesura pels patrons pretransi
ionals. Això evidentment no passa quan la fase debaixa temperatura presenta twins, ja que típi
ament aquests tenen una longitud
ara
terísti
a més gran que les textures premartensítiques, ja siguin tipus tweedo en forma de gotes. Bàsi
ament, la mida dels twins és independent de les 
ara
-terístiques del desordre mentre que en el tweed i sobretot en les gotes, el desordrehi juga un paper fonamental.L'últim mètode utilitzat per obtenir una estru
tura de dominis amb longitud
ara
terísti
a ha 
onsistit en la introdu

ió d'un poten
ial fenomenològi
 ambun kernel tipus 1/|k|, que és en essèn
ia el mateix que prèviament s'ha derivatanalíti
ament. S'han 
omprovat alguns aspe
tes dels 
omentats anteriorment.Cal men
ionar que els dos últims mètodes han permès l'apari
ió de twinstren
ats a alta anisotropia. Això dóna llo
 a jun
ions perpendi
ulars, on s'observaque els dominis es deformen en forma d'agulles. A mesura que ens allunyem de lesjun
ions, les agulles o bé desapareixen o bé s'eixamplen per donar llo
s a twins dellarg abast. Aquests detalls de les estru
tures també s'han observat àmpliamenten experiments.Per 
orroborar els efe
tes de l'anisotropia i el desordre en el sistema, s'hananalitzat diverses fun
ions resposta. En primer llo
, hem determinat la 
apa
itat
alorí�
a C en fun
ió de l'anisotropia. Per valors alts d'A, C presenta un pi
abrupte 
orresponent a la transi
ió, i una anomalia en forma de gep 
orresponent ales estru
tures premartensítiques. Quan l'anisotropia disminueix, el pi
 es suavitzai es desplaça 
ap a baixes temperatures. Finalment, per valors molt baixos d'Ael pi
 se suprimeix. Aquest desplaçament 
ap a baixes temperatures és degutal fet que les simula
ions s'han fet refredant per tal de seguir el pro
edimentexperimental habitual. Simula
ions addi
ionals dutes a terme es
alfant mostrenun un desplaçament del pi
 
ap a altes temperatures, indi
ant que el pi
 
orrespona límits d'estabilitat. Paral·lelament, el 
àl
ul de la primera derivada de la fra

iótransformada mostra un pi
 amb una dependèn
ia en l'anisotropia molt similar alpi
 en C, 
osa que és una mostra de la robustesa del pi
. Aquest 
omportamentdel pi
 en C s'ha vist experimentalment en molts aliatges 
om el Ti-Ni, Ti-Ni-Fe, Ti-Pd-Cr, i d'altres, al augmentar el grau de desordre. La supressió del pi
indi
a la supressió de la transi
ió martensíti
a, fet que ja havia estat anun
iatestru
turalment per la absèn
ia de twins indi
ada anteriorment, tant en les nostressimula
ions 
om en els experiments.També s'ha 
al
ulat la resposta elàsti
a del sistema per dos valors de l'anisotropia,i, d'a
ord amb experiments en Ti-Ni, la supressió de la transi
ió martensíti
a re-sulta en un aplanament de la 
orba respe
te la forma que presenta transi
ió.Els resultats anteriors ens porten a fer una anàlisi de l'energia de les estru
tures



132 Chapter 8. Resumobtingudes, per tal de saber si 
orresponen a l'equilibri termodinàmi
 o són estatsmetaestables. L'equilibri termondinàmi
 ens el dóna l'energia lliure de Landauamb presèn
ia de desordre. Així, es troba que l'energia del sistema és molt properaa l'equilibri per valors d'anisotropia i desordre que permeten la froma
ió de twins,mentre que quan s'inhibeix la seva apari
ió l'energia és notablement més gran quela d'equilibri, indi
ant que les estru
tures són metaestables.Motivats pels re
ents experiments en Ti-Ni que analitzen la supressió de latransi
ió martensíti
a des del punt de vista del 
omportament dinàmi
 tipusvidriós, s'han dut a terme simula
ions de l'experiment zero-�eld-
ooling/�eld-
ooling (ZFC/FC). En aquest experiment el material se sotmet a 4 pro
essos
onse
utius: (a) refredament sense 
amp, (b) es
alfament amb 
amp, (c) refreda-ment amb 
amp i (d) es
alfament amb 
amp. L'evolu
ió de la deforma
ió entemperatura durant el pro
és (b) dóna llo
 a la 
orba anomenada ZFC i l'evolu
iódurant el pro
és (d) s'anomena 
orba FC. Desvia
ions entre ambdues 
orbes (queo
orren sempre a baix temperatura) són indi
atives de dinámi
a 
ongelada, i pertant, de sistema vidriós. En el Ti-Ni, la desvia
ió s'observa per la mateixa 
om-posi
ió que inhibeix la transi
ió. Basat en aquest i altres experiments, els autorsetiqueten aquest tipus de sistemes 
om a strain glass (vidre de deforma
ió).Bàsi
amet s'ha observat que en els sistemes que presenten transi
ió estru
turalabrupta amb twins 
orrela
ionant tot el sistema les 
orbes ZFC i FC 
oin
ideixenen tot el seu re
orregut. A mesura que la transi
ió es va suavitztant i els twins es
omen
en a tren
ar, la 
orba ZFC es 
omença a desviar de la FC. La desvia
ió es-devé signi�
ativa per valors relativament alts del desordre respe
te de l'anisotropiaque porten a la supressió de la transi
ió. Una vegada més, aquests resultats es-tan qualitativament d'a
ord amb els experiments en Ti-Ni. També, és importantremar
ar que la desvia
ió entre les 
orbes ZFC/FC s'obté tant a l'augmentar eldesordre per sobre d'un 
ert llindar ζ∗ 
om per disminuir l'anisotropia per sotad'un 
ert valor 
ríti
 A∗
3. Per saber si aquest 
omportament prové de 
erta frus-tra
ió geomètri
a en el sistema hem realitzat dos 
àl
uls. Per una banda, hem vistque no hi ha 
orrela
ions entre les variants espe
í�ques que adopten els dominisen els seus estats ini
ials. És a dir, que les variants se sele

ionen de maneraaleatòria. D'altra banda, hem 
omprovat que en absèn
ia total de for
es de llargabast també hi ha desvia
ió entre les 
orbes ZFC i FC. D'a
ord amb això podem
on
luir que el 
omportament vidriós no resulta de frustra
ió geomètri
a sinó queés un problema més aviat 
inèti
.Els valors 
ríti
s del desordre (o de l'anisotropia) que porten a la supressió dela transi
ió i a un 
ongelament de les estru
tures són 
onsistents entre les diferentsmagnituds i simula
ions que hem dut a terme: la 
apa
itat 
alorí�
a, l'anàlisi dela metaestabilitat de l'energia, les 
orbes ZFC/FC, et
. Donat que el valor de ζ∗depèn d'A3 i a l'inrevés, podem esbossar en l'espai de paràmetres (Anisotropia,



133Desordre) la regió on s'obté 
omportament vidriós i la regió on s'observa transi
ió,amb dominis tipus twin.Finalment, s'han analitzat el 
omportament esforç-deforma
ió induït per es-forç. En parti
ular, s'ha estudiat el SME i la superelasti
itat per dos valorsd'anisotropia i dos de desordre. Els valors espe
í�
s d'aquests paràmetres són im-portants per determinar l'estru
tura �na d'aquestes 
orbes. S'ha trobat un ventallmolt ampli de 
omportaments, amb 
anvis en els rangs de temperatura en els ques'observen l'SME i la superelasti
itat, 
anvis en l'esforç ne
essari per induir o béla transforma
ió, o bé el 
reixement dels dominis de la variant sele

ionada, 
anvisen l'àrea d'histèresi, el per
entatge de re
upera
ió de la deforma
ió, la suavitat deles 
orbes, et
. Aquesta fenomenologia tan ri
a s'ha observat també experimental-ment quan es varia la 
omposi
ió espe
i�
a d'un aliatge en 
on
ret o es dopa ambun element addi
ional. Exemples en són el Ti-Ni, Au-Cd, Ti-Ni-Cu, Ni-Mn-Ga,Ni-Co-Mn-In, et
. En parti
ular s'ha obtingut que els rangs de temperatura en elsque s'observa el SME i la superelasti
itat depenen no trivialment dels paràmetres.El rang superelasiti
 esdevé màxim quan els valors d'anisotropia i de desordretenen una força 
omparable i ni un ni l'altre dominen la dinàmi
a del sistema, sinóque és resultat d'un balanç entre els dos. La histèresi de la transi
�'o és màximaper valors grans d'anisotropia i petits de desordre, 
osa que també afavoreix unatransi
ió abrupta.Tanmateix, s'ha obtingut que la dependèn
ia de l'esforç de transforma
ió enfun
ió de la temperatura, que ve des
rita per l'equa
ió de Clausius-Clapeyron, éslineal i que el pendent de la re
ta no depèn dels valors parti
ulars d'anisotropiai desordre. En efe
te, experiments en diversos aliatges 
om per exemple el Ti-Ni, Au-Cd, Ni-Mn-Ga, Cu-Zn-Al, Ni-Ga-Fe, et
. mostren que aquesta rela
ió éslineal 
reixent en les martensites. S'ha de dir, no obstant, que en el 
as del Ti-Ni elpendent depèn de la 
omposi
ió espe
í�
a, fet que 
ontradiu els nostres resultats.A la fase de baixa temperatura, l'esforç ne
essari per fer 
reixer els dominis 
reixa mesura que la temperatura de
reix, fet que també s'observa experimentalment.Per 
ompletar l'estudi termome
àni
 s'ha 
al
ulat l'efe
te elasto
alòri
 que ésl'anàleg me
àni
 del ben 
onegut efe
te magneto
alòri
. Està rela
ionat amb el
anvi isoterm d'entropia o amb el 
anvi adiabàti
 de temperatura que el sistemapateix quan se li apli
a o se li retira un esforç. Aquest efe
te es veu augmentaten la proximitat d'una transi
ió de fase de primer ordre, que dóna llo
 a grans
anvis d'entropia. En el nostre model s'observa que la forma de la 
orba del
anvi d'entropia en fun
ió de la temperatura 
anvia lleugerament al modi�
ar laanisotropia peró la magnitud del 
anvi d'entropia es manté prà
ti
ament 
onstant.Cal men
ionar que s'ha dedi
at un temps a l'elabora
ió d'un model magne-toelàsti
, que in
lou graus de llibertat magnèti
s i elàsti
s que estan a
oblats



134 Chapter 8. Resumentre sí, permetent fenòmens 
om l'efe
te de memòria de forma ferromagnèti
.S'utilitza la teoria mi
romagnèti
a segons la qual la magnetitza
ió evolu
ionad'a
ord amb l'equa
ió de Landau-Lifshitz-Gilbert, que in
lou un terme de pre-
essió i un d'amortigua
ió. L'energia del sistema in
lou un terme d'anisotropia
ristal.lina, un terme d'inter
anvi, un terme magnetostàti
 i un possible termed'intera

ió amb un 
amp magnèti
 extern. Addi
ionalment s'hi afegeix un termeenergèti
 
orresponent a l'a
oblament magnetoelàsti
.El terme que 
omporta més problemes és el magnetostàti
, ja que és no lo
ali depèn fortament de la mida i forma del sistema. El fet que nosaltres util-itzem 
ondi
ions periòdiques de 
ontorn afavoreix un 
àl
ul ràpid d'aquest termea l'espai de Fourier i dóna llo
 a una dinàmi
a realista del 
amp d'spins. Noobstant, aquest mètode no 'a
onsegueix estabilitzar una estru
tura de dominis,sinó que el sistema a
aba evolu
ionant 
ap al monodomini, afavorit pel 
oe�
ientd'inter
anvi. Com a alternativa per obtenir una estru
tura multidomini es dis-minueix notablement el 
oe�
ient d'inter
anvi (que afavoreix el monodomini) i/os'introdueix un terme que penalitzi el monodomini a mode d'efe
tes de forma imida �nita.Es presenten resultats preliminars de l'evolu
ió purament magnèti
a, mostrantl'apari
ió de vortexs, parets de Blo
h, de Néel, de Blo
h asimètriques, el movimentde pre
essió al voltant de la dire

ió sele

ionada per l'anisotropia 
ristal.lina, et
.La introdu

ió dels graus de llibertat elàsti
s es duu a terme mitjançant elmodel purament elàsti
 utilitzat anteriorment. Amb aquest model ens hem quedatgairebé a les portes de poder 
omençar a treure resultats.



Appendix ANotes about the elasti
 model
A.1 Introdu
tion to the theory of elasti
ityHere some basi
s 
on
epts about the theory of elasti
ity [154℄ are brie�y submit-ted. In parti
ular, linear elasti
ity deals with solid bodies regarded as 
ontinuousmedia that undergo small 
hanges in shape and volume.A.1.1 Strain and stress tensorsIn general, a deformation of a body entails the displa
ement of any point init. Su
h motion 
an be mathemati
ally des
ribed by the so-
alled displa
ementve
tor, u = r

′− r, where r and r
′ refer to the position of a parti
ular point beforeand after the deformation respe
tively. Supose now that the distan
e betweentwo very 
lose points in the non-deformed body dl2 = dr2. After the deformation,the 
orresponding distan
e will be dl′2 = dr′2 = (dr + du)2. Being u = {ui} and

r = {xi} then du = (∂ui/∂xk) dxk. Thus, dl′ 
an be written as:
dl′2 = dl2 + 2

∑

ik

∂ui
∂xk

dxidxk +
∑

ikl

∂ui
∂xk

∂ui
∂xl

dxkdxl (A.1)that, after some rearrangements 
an be rewritten as dl′2 = dl2 + 2
∑

ik ǫikdxidxkwhere ǫik is the strain tensor, de�ned as:
ǫik =

1

2

(

∂ui
∂xk

+
∂uk
∂xi

+
∑

l

∂ul
∂xi

∂ul
∂xk

) (A.2)It 
an be easily seen that ǫik is symmetri
al and hen
e has only six di�erent
omponents. Sin
e linear elasti
ity 
onsiders only small deformations, the last135



136 Appendix A. Notes about the elasti
 modelterm in eq. (A.2) 
an be negle
ted, so we obtain:
ǫik ≃

1

2

(
∂ui
∂xk

+
∂uk
∂xi

) (A.3)Considering a general deformation eij su
h that eij = ∂ui/∂uj (and hen
e ǫij =

1/2(eij + eji)) it is easy to see that it 
an be expressed as the 
ombination of apure strain ǫij and a rotation ωij [16℄, sin
e we 
an write eij = ǫij + ωij, where
ωij = 1/2(eij − eji). This 
an be graphi
ally seen in �gure A.1. Let us 
onsider
Figure A.1: A general deformation 
an be de
omposed as the sum between a purestrain plus a rotation.now an volume element dV of a body undergoing a deformation in absen
e ofexternal body-for
es1. Sin
e the internal volume for
es 
an
el by the Newton'sthird law, the total for
e F =

∫
fdV a
ting on it 
an be understood as the sumof the for
es a
ting on the surfa
e of dV , let us say dS. Due to the divergen
etheorem, F 
an be expressed as the integral of the divergen
e of a tensor of ranktwo over the surfa
e dS delimiting dV . Thus, if fi is the i-
omponent of the for
eper unit volume,
fi =

∑

k

∂σik
∂xk

(A.4)so that
F =

∫

fdV =

∫
∑

k

∂σik
∂xk

dS (A.5)where σik is 
alled stress tensor.A.1.2 The elasti
 modulus tensor and the Hooke's lawThe free energy of a deformed body 
an be written as
F =

1

2

∑

ijkl

Cijklǫijǫkl (A.6)1Here body-for
es refer to for
es su
h as gravity, wi
h are volume for
es that a
t to the wholebody.



A.2. Non-order parameter energy: Long-range elasti
 intera
tions 137where Cijkl is a tensor of rank four 
alled elasti
 modulus tensor (or elasti
 
on-stants tensor) that, sin
e ǫij is symmetri
al, ful�lls Cijkl = Cjikl = Cijlk = Cklij.From this it 
an be dedu
ed that at the most there are only 21 di�erent 
om-ponents for Cijkl. This leads to an alternative notation, 
alled Voigt notation,a

ording to whi
h only two subindi
es are needed: xx → 1, yy → 2, zz → 3,
yz → 4, xz → 5 and xy → 6. This is the notation used in this thesis. In fa
t, fora 
rystal with additional symmetries, the number of 
omponents of Cijkl is stillredu
ed. For instan
e, 
ubi
 symmetry has only three di�erent elasti
 
onstants,with the following 
orresponding energy:

F = 1
2
Cxxxx

(
ǫ2xx + ǫ2yy + ǫ2zz

)
+ Cxxyy(ǫxxǫyy + ǫxxǫzz + ǫyyǫzz)

+2Cxyxy
(
ǫ2xy + ǫxz + ǫyz

) (A.7)Sin
e σij = ∂F/∂ǫij , the stress tensor is related to the strain tensor by means ofthe elasti
 
ontants tensor:
σij =

∑

kl

∂F

∂ǫij
Cijklǫkl (A.8)that is 
alled Hooke's law2. Re
all that this is valid only for small deformations,i.e. for linear elasti
ity.A.2 Non-order parameter energy: Long-range elas-ti
 intera
tionsIn this se
tion we �rst examine in detail the 
ompatibility 
onstraints that link thethree symmetry adapted strains and derive the spe
i�
 mathemati
al expressionfor a square system in 2 dimensions. Then, we present the mathemati
al detailsthat allow to 
onvert the expression for the long-range anisotropi
 intera
tionsfrom a nonorder parameter (nonOP), nonlo
al expression in real spa
e to a lo
alexpression in Fourier spa
e as a fun
tion of the order parameter (OP) only. Themethod 
onsists basi
ally of taking advantage of two additional mathemati
alexpressions linking e1, e2 and e3: One is pre
isely the Saint Vénant 
ompatibilityequation and the another 
omes from energy minimization prin
iples. This willbe shown in Se
. A.2.2.2Eq. (A.8) is the 
orresponding general law for a extended solid body to the well knownHooke's law for a spring, F = −kx where k is the elasti
 
onstant of the spring. Also, theenergy of a spring is E = − 1

2
kx2, in 
orresponden
e with eq. (A.6).
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 modelA.2.1 St. Vénant 
ompatibility 
onditionsThe six di�erent 
omponents of the 3-dimensional strain tensor ǫij are not in-dependent, sin
e they have been de�ned from the underlying displa
ement �eld
u that has only three di�erent 
omponents, i.e. the "true" degrees of freedom.Hen
e, there must exist some 
onstraints that link the di�erent 
omponents of ǫij .These are 
alled St. Vénant 
ompatibility 
onditions [140℄, that in 3 dimensions
an be expressed in the following 
ompa
t notation:In
ǫ(r) ≡ ∇× [∇× ǫ(r)]⊤ = 0 (A.9)In what follows the 
orresponding 2D equations are dedu
ed. Let's 
onsider

du = dux(x, y)̂ı+ duy(x, y)̂⇒ u(r) =

∫ r

r0

du (A.10)Sin
e this integral 
annot depend on the 
ontour joining r0 and r:
dux =

∂ux
∂x

dx+
∂ux
∂y

dy;
∂2ux
∂y∂x

=
∂2ux
∂x∂y

(A.11)and similar for uy. Using the strain tensor notation:
ǫxx =

∂ux
∂x

ǫyy =
∂uy
∂y

2ǫxy =
∂ux
∂y

+
∂uy
∂x

(A.12)
∂
∂y

(
∂ux

∂x

)
= ∂ǫxx

∂y
= ∂

∂x

(
∂ux

∂y

)

= 2∂ǫxy

∂x
− ∂2uy

∂x2

∂
∂x

(
∂uy

∂y

)

= ∂ǫyy

∂x
= ∂

∂y

(
∂uy

∂x

)

= 2∂ǫxy

∂y
− ∂2ux

∂y2

(A.13)
∂2ǫxx
∂y2

= 2
∂2ǫxy
∂x∂y

− ∂2

∂x∂y

(
∂uy
∂x

)

;
∂2ǫyy
∂x2

= 2
∂2ǫxy
∂x∂y

− ∂2

∂x∂y

(
∂ux
∂y

) (A.14)Adding the two last equations:
∂2ǫxx
∂y2

+
∂2ǫyy
∂x2

= 4
∂2ǫxy
∂x∂y

− ∂2

∂x∂y

(
∂ux
∂uy

+
∂uy
∂x

)

︸ ︷︷ ︸

2ǫxy

(A.15)So �nally
∂2ǫxx
∂y2

+
∂2ǫyy
∂x2

= 2
∂2ǫxy
∂x∂y

(A.16)This relation stablish a unique relation between ǫ and u(r). In terms of thesymmetry adapted strains:
√

2

2

(
∂2

∂x2
+

∂2

∂y2

)

e1 −
√

2

2

(
∂2

∂x2
− ∂2

∂y2

)

e2 = 2
∂2e3
∂x∂y

(A.17)
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 intera
tions 139A.2.2 Energy minimizationThe total free energy of the pure elasti
 model is expressed in terms of the sym-metry adapted strains e1, e2 and e3:
FT = FnonOP(e1(r), e3(r)) + F (e2(r)) (A.18)where
FnonOP =

∫ (
A1

2
e21(r) +

A3

2
e23(r)

)

dr (A.19)Due to the elasti
 
ompatibility relation explained above, one of the strains 
anbe expressed in terms of the other two. Sin
e the elasti
 
ompatibility equation isa partial di�erential equation, the Fourier transform of eq. A.17 allows to expresseasily e3 in terms of e1 and e2:
e3(k) =

(k2
x + k2

y)

2
√

2kxky
e1(k)−

(k2
x − k2

y)

2
√

2kxky
e2(k) (A.20)First we need to express eq. (A.19) in Fourier spa
e and then we will be ableto introdu
e eq. (A.20). Therefore we fo
us on the term ∫

e21(r)dr: Makingthe inverse Fourier transform of e1(r) we 
an express it as a fun
tion of e1(k):
e1(r) = 1/(2π)2

∫
eik·re1(k)dk. Thus, the integral 
an be expressed as:

∫
e21(r)dr = 1

(2π)4

∫
dr
∫
eik·re1(k)dk

∫
eik

′·re1(k
′)dk′

= 1
(2π)4

∫
e1(k)dk

∫
e1(k

′)dk′ ∫ ei(k+k′)·rdr

= 1
(2π)4

∫
e1(k)dk

∫
e1(k

′)dk′(2π)2δ(k + k
′) = 1

(2π)2

∫
e1(k)e1(−k)dk,

(A.21)and similarly for the integral ∫ e3(r)dr. Then, eq. (A.19) 
an be expressed as:
FnonOP =

A1

2

1

(2π)2

∫

e1(k)e1(−k)dk +
A3

2

1

(2π)2

∫

e3(k)e3(−k)dk (A.22)Now we introdu
e eq. (A.20):
FnonOP = 1

(2π)2

∫ [
A1

2
e1(k)e1(−k) + A3

2

(
(k2

x+k2
y)

2
√

2kxky
e1(k)− (k2

x−k2
y)

2
√

2kxky
e2(k)

)

·

·
(

(k2
x+k2

y)

2
√

2kxky
e1(−k

′)− (k2
x−k2

y)

2
√

2kxky
e2(−k)

)]

dk
(A.23)Sin
e e1(k) is a 
omplex variable we 
an do e1(k) = x(k)+ iy(k). Then, e1(−k) =

e∗(k) = x(k) − iy(k) and e1(k)e1(−k) = x2(k) + y2(k). Rearranging terms, we
an rewrite the energy this way:
FnonOP =

∫ [
1

(2π)2

(
A1

2
+ A3

16

(k2
x+k2

y)2

k2
xk

2
y

)

(x2(k) + y2(k))

− 1
(2π)2

A3

16

(k2
x+k2

y)(k2
x−k2

y)

k2
xk

2
y

((x(k) + iy(k))e2(−k) + (x(k)− iy(k))e2(k))
]

dk + g(e2)(A.24)
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 modelwhere g(e2) = 1
(2π)2

A3

16

∫ (k2
x−k2

y)2

(kxky)2
e2(k)e2(−k)dk is a fun
tion whi
h depends onlyon e2. To simplify this expression we de�ne the following fun
tions:

Q2(k) ≡ 1

(2π)2

A1

2
+
A3

16

(k2
x + k2

y)
2

k2
xk

2
y

; Q3(k) ≡ − 1

(2π)2

A3

16

(k2
x + k2

y)(k
2
x − k2

y)

k2
xk

2
y (A.25)Using these de�nitions we 
an write the energy as follows:

FnonOP =
∫

[Q2(k) (x2(k) + y2(k)) +Q3(k) ((x(k) + iy(k))e2(−k)

+(x(k)− iy(k))e2(k))] dk + g(e2)
(A.26)Now we have the energy in terms only of e1 and e2. Considering that e1 evolves insu
h a way that minimizes the free energy, we pro
eed to minimize the previousexpression with respe
t to e1. Consequently, we will be able to express e1 in termsof e2. In order to do that we have to minimize the energy with respe
t to the real(x) and imaginary part (y) of e1:

δFnonOP =

∫
∂FnonOP
∂e1(k”)

δe1(k”)dk” =

∫ [
∂FnonOP
∂x(k”)

δx(k”) +
∂FnonOP
∂y(k”)

δy(k”)

]

dk” = 0(A.27)Doing so, and taking into a

ount that ∂g(e2)/∂e1 = 0 we get
δFnonOP =

∫
dk”

∫
dk{[2Q2(k)x(k) +Q3(k) (e2(−k) + e2(k))] δ(k− k”)δx(k”)

+ [2Q2(k)y(k) + iQ3(k) (e2(−k)− e2(k))] δ(k− k”)δy(k”)} (A.28)First, e2(−k) + e2(k) = 2ℜ(e2(k)) and i (e2(−k) + e2(k) = 2ℑ(e2(k)). Se
ond,the δ(k − k”) will anihilate the integral over k. As δx(k”) and δy(k”) are anyvariation of the respe
tive variables and δFnonOP = 0, the 
oe�
ients of thesevariations must vanish separately, i.e.:
2Q2(k)x(k) + 2Q3(k)ℜ(e2(k)) = 0

2Q2(k)y(k) + 2Q3(k)ℑ(e2(k)) = 0
(A.29)where we have renamed the remaining variable (k”) as k. Now, we 
an isolate

x(k) and y(k):
x(k) =

−Q3(k)ℜ(e2(k))

Q2(k)
; y(k) =

−Q3(k)ℑ(e2(k))

Q2(k)
(A.30)Sin
e e1(k) = x(k) + iy(k) we 
an write:

e1(k) = −Q3(k)ℜ(e2(k))
Q2(k)

+ i−Q3(k)ℑ(e2(k))
Q2(k)

= −Q3(k)
Q2(k)

(ℜ(e2(k)) + iℑ(e2(k))) = −Q3(k)
Q2(k)

e2(k)
(A.31)



A.3. Numeri
al details 141Finally, we 
an write the 
ontribution of the non-order parameter to the totalenergy in terms of the desired variable e2 as:
FnonOP =

∫
[Q2e1(k)e1(−k) +Q3 (e1(k)e2(−k) + e1(−k)e2(k))]dk

+ 1
(2π)2

A3

16

∫ (k2
x−k2

y)2

(kxky)2
e2(k)e2(−k)dk

(A.32)
=
∫ [Q2

3
(k)

Q2(k)
e2(k)e2(−k)− 2

Q2

3
(k)

Q2(k)
e2(k)e2(−k) + 1

(2π)2
A3

16

(k2
x−k2

y)2

(kxky)2
e2(k)e2(−k)

]

dk(A.33)
=

∫ (

−Q
2
3(k)

Q2(k)
+

1

(2π)2

A3

16

(k2
x − k2

y)
2

(kxky)2

)

e2(k)e2(−k)dk (A.34)Taking into a

ount the de�ntions of Qj(k), j = 2, 3, and simplifying terms, weget the �nal expression for the non-order parameter 
ontribution to the energy:
FnonOP =

1

(2π)2

A3

2

∫ (
k2
x − k2

y

)2

(

8k2
xk

2
y + A3

A1
(k2
x + k2

y)
2
)e2(k)e2(−k)dk (A.35)A.3 Numeri
al detailsFor 
ompleteness, in Se
. A.3.1 we present the dis
retized expressions for thefree energy that we have used for numeri
al 
omputation. Moreover, from theseexpressions we have been able to 
al
ulate the fun
tional derivatives of the freeenergy that are required for the pure relaxational dynami
s used in the model.A

ording to this dynami
s, ∂e2

∂t
= − δFT

δe2
, where FT = FL + FG + FnonOP + Fη.This is done in Se
. A.3.2. Finally, in Se
. A.3.3 we present the mathemati
almethod used to build the disorder fun
tion, whi
h is Gaussian distributed and itis spatially 
orrelated by means of a exponential pair 
orrelation fun
tion.A.3.1 Dis
retization of the free energyWe re
all that FL, FG and FnonOP stand for the Landau, Ginzburg and non-orderparameter energeti
 
ontributions respe
tively. In the following expressions wewill use i, j, k, l,m, n for real spa
e variables and p, q for Fourier variables.

FL =

Nx∑

i=1

a

Ny∑

j=1

a

(
A2

2
e22(i, j)−

β

4
e42(i, j) +

γ

6
e62(i, j)

) (A.36)
FG =

κ

2

Nx∑

i=1

a

Ny∑

j=1

a

((
e2(i+ 1, j)− e2(i, j)

a

)2

+

(
e2(i, j + 1)− e2(i, j)

a

)2
)(A.37)
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 model
FnonOP =

1

(2π)2

1

2

Nx−1∑

p=0

2π

aNx

Ny−1
∑

q=0

2π

aNy

A3

((
2π
aNx

p
)2

−
(

2π
aNy

q
)2
)2

e2(p, q)e2(−p,−q)

A3

A1

((
2π
aNx

p
)2

+
(

2π
aNy

q
)2
)2

+ 8
(

2π
aNx

p 2π
aNy

q
)2(A.38)Moreover, the dis
retization of the phenomenologi
 surfa
e potential FS used inSe
. ?? leads to:

FS = Cs

Nx∑

i=1

a

Ny−1
∑

q=0

2π

aNy

1
2π
aNy
|q|e2(i, q)e2(i,−q) (A.39)A.3.2 Relaxational dynami
s: Energy derivativesLandau term:

δFL
δe2(k,l)

= a2
∑Nx

i=1

∑Ny

j=1 (A2e2(i, j)δi,kδj,l − βe2(i, j)3δi,kδj,l + γe2(i, j)
5δi,kδj,l)

= a2 (A2e2(k, l)− βe2(k, l)3 + γe2(k, l)
5) (A.40)Ginzburg energy:

δFG
δe2(k,l)

= a2 κ
2

∑Nx

i=1

∑Ny

j=1

(
2
a2

(e2(i+ 1, j)− e2(i, j)) (δi+1,kδj,l − δi,kδj,l)

+ 2
a2

(e2(i, j + 1)− e2(i, j)) (δi,kδj+1,l − δi,kδj,l)
)

= κ (4e2(k, l)− e2(k + 1, l)− e2(k − 1, l)− e2(k, l + 1)− e2(k, l − 1))

(A.41)Long-range anisotropi
 energy:
δFnonOP
δe2(r)

= 1
(2π)2

∑Nx−1
p=0

∑Ny−1
q=0

1
2

(
2π
aNx

)(
2π
aNy

)

U (k)
(
∂e2(k)
∂e2(r)

e∗2(k) + e2(k)
∂e∗

2
(k)

∂e2(r)

)

= 1
(2π)2

∑Nx−1
p=0

∑Ny−1
q=0

1
2

(
2π
aNx

)(
2π
aNy

)

U (k) ·

·
[

∂
∂e2(r)

(∑

r′ a
2eik·r

′

e2(r
′)
)
e∗2(k) + e2(k) ∂

∂e2(r)

(∑

r′′ a
2e−ik·r

′′

e2(r
′′)
)]

= 1
(2π)2

∑Nx−1
p=0

∑Ny−1
q=0

1
2

(
2π
aNx

)(
2π
aNy

)

U (k) ·

·
[(∑

r′ a
2eik·r

′

δr,r′
)
e∗2(k) + e2(k)

(∑

r′′ a
2eik·r

′′

δr,r′′
)]

= 1
(2π)2

∑Nx−1
p=0

∑Ny−1
q=0

1
2

(
2π
aNx

)(
2π
aNy

)

U (k) ·
(
a2eik·re∗2(k) + e2(k)a2e−ik·r

)

= a2

(2π)2

∑Nx−1
p=0

∑Ny−1
q=0

1
2

(
2π
aNx

)(
2π
aNy

)

eik·rU (k) e∗2 (k)

+ a2

(2π)2

∑Nx−1
p=0

∑Ny−1
q=0

1
2

(
2π
aNx

)(
2π
aNy

)

e−ik·rU (k) e2 (k) , (A.42)



A.3. Numeri
al details 143where we have used the notation δr,r′ = δi,kδj,l, with r = (i, j) and r
′ = (k, l) and

δi,k is the usual Krone
ker delta. We have also used k = (p, q) and
U(k) = U(p, q) = A3

((
2π
aNx

p
)2

−
(

2π
aNy

q
)2
)2

A3

A1

((
2π
aNx

p
)2

+
(

2π
aNy

q
)2
)2

+ 8
(

2π
aNx

p 2π
aNy

q
)2

(A.43)Sin
e U (k) = U (−k) and e∗2 (k) = e2 (−k) we make the 
hange of variables
k→ −k in the �rst summation so that the two summations be
ome identi
al:

δFnonOP
δe2(i,j)

= a2

(2π)2

∑Nx−1
p=0

∑Ny−1
q=0

(
2π
aNx

)(
2π
aNy

)

e−i(p,q)·(i,j)U (p, q) e2 (p, q)

= a2
F
−1 [U (k)φ (k) ;k] ,

(A.44)where F
−1 stands for the inverse Fourier transform with respe
t the variable k.We re
all that e2(i, j) and e2(p, q) belong to real and Fourier spa
e respe
tively.Finally, we 
al
ulate in a very similar way the derivatives of the phenomeno-logi
 potential FS. We denote g(ky) = g(q) = 1

2π
aNy

|q|

δFS
δe2(x,y)

= Cs
∑Nx

i=1 a
∑Ny−1

q=0
2π
aNy

g(ky)
(
∂e2(x′,ky)
∂e2(x,y)

e2(x
′,−ky) + e2(x

′, ky)
∂e2(x′,−ky)
∂e2(x,y)

)

= Cs
∑Nx

i=1 a
∑Ny−1

q=0
2π
aNy

g(ky)
[

∂
∂e2(x,y)

(
∑

y′ ae
ikyy′e2(x

′, y′)
)

e2(x
′,−ky)

+e2(x
′, ky)

∂
∂e2(x,y)

(
∑

y′′ ae
−ikyy′′e2(x

′, y′′)
)]

= Cs
∑Nx

i=1 a
∑Ny−1

q=0
2π
aNy

g(ky)
[(
∑

y′ ae
ikyy′δx,x′δy,y′

)

e2(x
′,−ky)

+e2(x
′, ky)

(
∑

y′′ ae
−ikyy′′δx,x′δy,y′′

)]

= Csa
∑Ny−1

q=0
2π
aNy

g(ky)
[
aeikyye2(x,−ky) + e2(x, ky)ae

−ikyy
]

= Csa
∑Ny−1

q=0
2π
aNy

g(ky)ae
ikyye2(x,−ky) + Csa

∑Ny−1
q=0

2π
aNy

g(ky)e2(x, ky)ae
−ikyy(A.45)We now make the 
hange of variables ky → ky in the �rst summation. Takinginto a

ount that g(ky) = g(−ky) we get the �nal expression:

δFS
δe2(m,n)

= Csa

Ny−1
∑

q=0

2π

aNy
g(q)ae−iqne2(m, q) = Csa2πF

−1[g(q)e2(m, q); q](A.46)Sin
e the 
oe�
ient Cs is arbitrary, it 
an absorb the other remaining fa
tors.
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 modelA.3.3 Spatially 
orrelated quen
hed-in disorderA random variable η (r) Gaussian distributed and spatially 
orrelated by means ofan exponential pair 
orrelation fun
tion is desired. That is to say, mathemati
ally:
〈η(r)η(r′)〉 = G(|r− r

′|) =
A

2πλ2
e−|r−r′|/λand g(η) = 1√

2πζ
e
− η2

2ζ2 where ζ stands for the standard deviation of the Gaussiandistribution. Then, η(r) may be built as follows:
η(k) = α

√

G(k) (A.47)where α is a random variable Gaussian distributed with zero mean and unit vari-an
e, i.e. g(α) = N(0, 1) and G(k) is the Fourier transform of G(|r − r
′|). Theinverse Fourier transform provides η(r) with the required 
hara
teristi
s3.This 
an be easily seen sin
e the auto
orrelation is G(0) = 〈η(r)2〉 = A

2πλ2 . Then,sin
e 〈η(r)〉 = 0, ζ =
√

〈η(r)2〉 − 〈η(r)〉2 =
√

A
2πλ2 .

3The way of generating a random variable of su
h 
hara
teristi
s (eq. A.47) 
an be generalizedto any distribution and pair 
orrelation fun
tion [204℄.



Appendix B
Notes about the magnetoelasti
model
B.1 Dis
rete Fourier transformWe have seen that the magnetoelasti
 model involves three long-range energeti

ontributions, 
oming from the pure elasti
, pure magneti
 and magnetoelasti
energies. The nonlo
al 
hara
ter of these terms is given through the fa
t that theparti
ular value of the deviatori
 strain/magnetization at ea
h point of the bodydepends on the 
on�guration of the strain/magnetization in the whole body. Thisentails the 
omputation of a double integral, that is of the order of N2, where Nis the number of the unit 
ells of the simulation 
ell. It is una

eptable from thepoint of view of the 
omputation time. Lu
kily, the order of N2 
an be redu
edto N logN by reformulating the nonlo
al expressions in real spa
e as lo
al ex-pressions in Fourier spa
e. However, the numeri
al implementation of the Fourierexpressions may be nontrivial due to the dis
retization pro
ess. In the 
ase of thepure elasti
 long-range intera
tions, the parti
ular expression ful�lls some sym-metry properties that make avoid any problem and therefore, this has not been
ommented previously. Instead, in the 
ase of long-range intera
tions 
oming fromthe magnetoelasti
 
oupling term as well as the magnetostati
 �eld, Fourier trans-forms 
aused these unexpe
ted problems that made us reformulate the method of
omputing su
h terms. In the �rst two se
tions of this appendix we analyze thesenumeri
al problems. In this se
tion we de�ne the dis
rete Fourier transform andshow that there are some properties of the 
ontinuous Fourier transform that maybe extrapolated to dis
rete spa
e only under 
ertain 
onditions. In the se
ondse
tion we approa
h the dis
rete 
omputation of the magnetostati
 �eld.First of all, we de�ne the 
ontinuous Fourier transform in one dimension for145



146 Appendix B. Notes about the magnetoelasti
 modelsimpli
ity, although it 
an be easily rewritten in more dimensions.F [f(x); k] ≡ f(k) ≡
∫ ∞

−∞
e−ikxf(x)dx (B.1)and its inverse F−1 [f(k); x] ≡ f(x) ≡ 1

2π

∫ ∞

−∞
eikxf(k)dk (B.2)However, for numeri
al purposes we work in a dis
rete real spa
e, 
onsistingof N 
ells, whose positions may be de�ned as: x = aj; j = 0 . . . , N − 1 where

a is the dis
retization parameter. Here, sin
e N is �nite, the Fourier transformautomati
ally imposes periodi
 boundary 
onditions. Then, in real spa
e, thetotal system 
onsists of an in�nite number of 
opies of the simulation 
ell, that inturn 
ontains N unit 
ells. The 
orresponding re
ipro
al spa
e is in�nite, with adis
rete set of k values, taking the values k = 2π
L
l; l = 0, . . ., where L = aN is thesize of the simulation 
ell. However, the relevant information 
an be restri
ted tothe First Brillouin Zone, from whi
h the whole Fourier spa
e 
an be reprodu
ed.Then, the relevant values for k are k = 2π

L
l; l = 0, . . . , N − 1.In this framework, we will asso
iate j variable with real spa
e and l variablewith the re
ipro
al spa
e. Now let us de�ne the dis
retized Fourier transform as:F [f(j); l] ≡ f(l) ≡
N−1∑

j=0

e−i
2π
N
ljf(j)a (B.3)and its inverse F−1 [f(l); j] ≡ f(j) ≡ 1

L

N−1∑

l=0

ei
2π
N
ljf(l) (B.4)On
e de�ned these transformations, we are prepared to 
he
k rigorously a 
oupleof properties of the 
ontinuous Fourier transform in dis
retized form.B.1.1 Fourier transform of a shifted fun
tionIf we make a simple 
hange of variables x = x′ + b and we introdu
e it in thede�nition of the Fourier transform we get:F [f(x); k] ≡ f(k) =

∫∞
−∞ e−ik(x

′+b)f(x′ + b)dx′ = e−ikb
∫∞
−∞ e−ikx

′

f(x′ + b)dx′(B.5)where we 
an rename x′ as x. On the other hand, a

ording to the de�nition eq.(B.1) we have: F [f(x+ b); k] ≡
∫ ∞

−∞
e−ikxf(x+ b)dx (B.6)



B.1. Dis
rete Fourier transform 147Comparing last two equations we have thatF [f(x+ b); k] = eikbF [f(x); k] (B.7)We now verify whether this relation is also ful�lled in dis
retized form: Pro
eedingthe same way, �rst we make the 
hange of variables j = j′ +n: We 
an do that as
n su

essives 
hanges of variables j = j′ + 1, so let us do it with this last 
hangeof variables:
f(l) = e−i

2π
N
l(
∑N−2

j′=−1 e
−i 2π

N
lj′f(j′ + 1))a = e−i

2π
N
l
∑N−2

j′=0 e
−i 2π

N
lj′f(j′ + 1)

+ei
2π
N
lf(0) + e−i

2π
N
l(N−1)f(N)− e−i 2π

N
l(N−1)f(N))a

(B.8)Taking into a

ount periodi
 boundary 
onditions, we have that f(0) = f(N),and we get
f(l) = e−i

2π
N
la
∑N−1

j′=0 e
−i 2π

N
lj′f(j′ + 1) + af(N)(1− e−i2πl) (B.9)As e−i2πl = 1 ∀l ∈ Z, last term vanishes and we get:

f(l) = e−i
2π
N
la

N−1∑

j′=0

e−i
2π
N
lj′f(j′ + 1) (B.10)Being F [f(j + 1); l] = a

N−1∑

j′=0

e−i
2π
N
lj′f(j′ + 1) (B.11)we get the relation we were looking for:F [f(j + 1); l] = ei

2π
N
lf(l) (B.12)that is the dis
retized form of eq. (B.7), for b = 1. Note that it is valid whenshifting the fun
tion to another positions belonging to the dis
rete spa
e, but it isnot valid when the fun
tion is shifted to a position out of the dis
rete spa
e, forinstan
e j = j′+n/2. It o

urs, for example, when 
omputing �rst derivatives of adis
rete fun
tion with forward or ba
kward di�eren
es. In these 
ases, derivativesare 
omputed in the middle points between two nearest neighbours, i.e. out ofthe dis
rete latti
e, and, if dealing in Fourier spa
e, they 
annot be shifted tothe original latti
e by means of this relation. We �nd this kind of problem when
omputing the divergen
e of the magnetization in order to get the magnetostati
�eld.



148 Appendix B. Notes about the magnetoelasti
 modelB.1.2 Fourier transform of a derivativeAgain we will show a problem arising when 
omputing derivatives with �nite dif-feren
es methods. These are only approximations of �rst (forward and ba
kwarddi�eren
es), se
ond (
entered di�eren
es) or higher order in a taylor expansionto the 
ontinuous derivatives. Hen
e, this feature makes that the well knownproperty of the 
ontinuous fourier transform of a derivative,F[∂xf(x); k] = ikf(k) (B.13)is stri
tly not valid in dis
retized form, but only an approximation. Let us see itfor the 
ase when 
omputing a �rst derivative with forward di�eren
es. We de�ne:
∂f(j)

∂j
≡ f(j + 1)− f(j)

a
(B.14)Hen
e, F [∂f(j)

∂j
; l

]

=
1

a
(F [f(j + 1); l]− F [f(j); l]) (B.15)As we have seen above, we 
an express the �rst Fourier transform as:F [f(j + 1); l] = ei

2π
N
lf(l) (B.16)so we get: F [∂f(j)

∂j
; l

]

=
1

a
f(l)

(

ei
2π
N
l − 1

) (B.17)Comparing with eq. (B.13), where k = 2π
L
l we have:

1
a

(

ei
2π
N
l − 1

)

= i2π
L
l ⇒ ei

2π
N
l = 1 + i2π

N
l (B.18)One 
an see that this is just a Taylor expansion up to the �rst order of the expo-nential fun
tion, valid for 2π

L
l ≪ 1→ l ≪ 1, that means long wave lengths, that isan approximation to the 
ontinuum. Indeed, the 
ontinuum does not allow sharp
hanges in f (in our 
ase the magnetization, for instan
e an antiferromagneti

on�guration) but they have to be smooth (the interfa
es must have a 
ertainwidth).B.2 Magnetostati
 energyB.2.1 Mathemati
al expressions for the magnetostati
 en-ergyThe 
omputation of the magnetostati
 term has been obje
t of intense resear
hdue to its intrinsi
 di�
ulty. It may be expressed in multiple ways, ea
h one



B.2. Magnetostati
 energy 149giving rise to its own range of ways to solve it. We have explored some of them inorder to get a general overview and thus 
riterium to de
ide whi
h one is the most
onvenient in ea
h 
ase. Here we review some analyti
al and numeri
al aspe
ts
on
erning this term. From B = µ0(H+M) and from Maxwell equation∇·B = 0,we get ∇ ·H = −∇ ·M. From Maxwell equation ∇×H = 0, we get H = −∇φThen, we obtain the so-
alled the Poisson equation:
∆φ = ∇ ·M (B.19)This is the equation we have to solve. On
e we have φ, by means of eq. (B.33) weget Hd and hen
e we get the magnetostati
 energy. To solve eq. (B.19) we will gointo Fourier spa
e. Making use of the property F [∂xf(x)] = ikf(k) this equationtransforms into:

φ(k) = −iMs
kxmx(k) + kymy(k) + kzmz(k)

k2
x + k2

y + k2
z

(B.20)Using H = −∇φ and eq. (B.20) we 
an rewrite the magnetostati
 energy thisway:
Fms = −1

2
µ0

∫
Hd(r)M(r)dr

= 1
2
µ0

∫ (∂φ(r)
∂x

Mx(r) + ∂φ(r)
∂y

My(r) + ∂φ(r)
∂z

Mz(r)
)

dr

= 1
2
µ0

∫
dr(Mx(r)

∂
∂x

∫
eikrφ(k)dk +My(r)

∂
∂y

∫
eikrφ(k)dk

+Mz(r)
∂
∂z

∫
eikrφ(k)dk)

= i
2
µ0

∫
dr(Mx(r)

∫
kxe

ikrφ(k)dk +My(r)
∫
kye

ikrφ(k)dk

+Mz(r)
∫
kze

ikrφ(k)dk)

= i
2
µ0

∫
dkφ(k)(kx

∫
Mx(r)e

ikrdr + ky
∫
My(r)e

ikrdr + kz
∫
Mz(r)e

ikrdr)

= i
2
µ0

∫
dkφ(k) (kxMx(−k) + kyMy(−k) + kzMz(−k))

= µ0

2

∫
dkφ(k)φ(−k)

(
k2
x + k2

y + k2
z

)
= µ0

2

∫
dk|φ(k)|2 (k2) (B.21)or

Fms =
µ0

2

∫

dk
|kxMx(k) + kyMy(k) + kzMz(k)|2

(
k2
x + k2

y + k2
z

) =
µ0

2

∫

dk|M(k)
k

k
|2 (B.22)This expression for the magnetostati
 energy shows two important features: Fms ≥

0 always and Fms only depends on the dire
tion of k, not on its modulus. Fmswill vanish if the magnetization is perpendi
ular to the modulations, no matterwi
h wave length have. Then, the ground state will be a single domain be
ausethe ex
hange term prefers no interfa
es. This s
heme 
hanges when dealing withnon periodi
 boundary 
onditions.



150 Appendix B. Notes about the magnetoelasti
 modelB.2.2 Computation of the magnetostati
 �eldThere are several ways to solve it, as for example by means of �nite di�eren
esmethod. Doing things this way we 
an �nd two main problems, one of storageand another of 
omputation speed. Let's dis
uss it. In dis
rete form, using �nitedi�eren
es the eq. (B.19) takes the following form:
φ(i+ 1, j) + φ(i− 1, j) + φ(i, j + 1)

+φ(i, j − 1)− 4φ(i, j)

= 1
a
(Mx(i+ 1, j)−Mx(i, j) +My(i, j + 1)−My(i, j))

(B.23)We will have su
h an equation for every (i, j), so we will have Nx×Ny equations.We 
an express this array of equations as a matrix equation: Ax = b where
A is a matrix and b and x are ve
tors. In our 
ase, b ≡ ∇ ·M and x ≡ φso they are ve
tors of size Nx × Ny. A represents the ∆ operator and has asize of (Nx × Ny) × (Nx × Ny). Here we �nd the �rst problem: the size of thematrix A be
omes too large for sizes of the system of our interest (for instan
e,
Nx = Ny = 512). There is a way of avoiding this problem. The point is that Ahas only a small amount of non-zero matrix elements (sparse matrix), so we onlyhave to store them. On
e we have Ax = b, a way of solving this equation is doing
x = A−1b but we 
annot 
ompute the inverse A−1 be
ause this is not a sparsematrix but has many non-zero matrix elements and hen
e we 
annot store them.The way of solving this problem is to �nd the solution of the matrix equationnot by 
omputing A−1 but with iterative methods, like the bi
onjugate gradientmethod or the su

essive overrelaxation with Chevishev a

eleration [162℄. Theseiterative methods involve too large 
omputation times for our interests, so we willnot use them.As we have already said, we will solve the eq. (B.19) in Fourier spa
e. Fol-lowing [133℄ we 
an do that as explained in eq. (B.20) but this way we �nd thefollowing problem with the k in the �rst Brillouin zone border: sin
e φ(r) is real,due to the properties of the fourier transform, ℜ[φ(k)] must be even and ℑ[φ(k)]must be odd. Obviously, we also know that M(r) is real, so ℜ[M(k)] is evenand ℑ[M(k)] is odd. Then, we 
onstru
t φ with M(k) and k from eq. (B.20).
f(k) = k is of 
ourse an odd fun
tion, so M(k) ·k will have the real part odd andthe imaginary part even. Then, multiplying it by i we will have what we wanted,that is the real part even and the imaginary odd. Let's write this matemati
ally:
M(r) ∈ R ⇒

{ ℜ[M(−k)] = ℜ[M(k)]

ℑ[M(−k)] = −ℑ[M(k)]
⇒

{ℜ[M(−k)(−k)] = −ℜ[M(k)k]

ℑ[M(−k)(−k)] = ℑ[M(k)k](B.24)
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 energy 151
⇒

{ ℜ[iM(−k)(−k)] = ℜ[iM(k)k]

ℑ[iM(−k)(−k)] = −ℑ[iM(k)k]
(B.25)Then,

φ = −iM(k)k

k2
⇒
{ ℜ[φ(−k)] = ℜ[φ(k)]

ℑ[φ(−k)] = −ℑ[φ(k)]
⇒ φ(r) ∈ R (B.26)that is what we want. It only shows us that everything is 
onsistent. Problemsarise when we dis
retize these expressions and impose periodi
 boundary 
ondi-tions. At the border of the �rst Brillouin zone. At kx = π/a, for instan
e, weknow from the eq. (B.20) that

φ(k) = −iMs

π
a
mx(k) + kymy(k)
(
π
a

)2
+ k2

y

(B.27)and at kx = −π/a
φ(k) = −iMs

−π
a
mx(k) + kymy(k)
(
π
a

)2
+ k2

y

(B.28)
⇒ φ(−π/a, ky) 6= φ(π/a, ky), but periodi
 boundary 
onditions imply that
φ(−π/a, ky) = φ(π/a, ky), so we have a problem. The way to solve it, is makingthe term Mxkx vanish at kx = ±π/a. Similarly, the term Myky must vanishat ky = ±π/a. It is like averaging the kmax 
ontribution and it makes thatthe magnetostati
 �eld due to this modulation is not well 
omputed. This kind ofproblem always arises when dealing with odd fun
tions of k and periodi
 boundary
onditions. We will �nd it again when 
omputing the magnetoelasti
 term.A way of avoiding this problem is to 
ompute �rst the ∇ ·M(r) in real spa
eand then to 
ompute the fourier transform of it. Then, the s
alar potential 
anbe written as:

φ(k) = −F [∇ ·M(r)]

k2
x + k2

y

(B.29)This way we do not have to 
ompute any odd fun
tion of k but we �nd the samekind of problem but in real spa
e. Using forward di�eren
es,
∇ ·M(r) =

1

a
(mx(i+ 1, j)−mx(i, j) +my(i, j + 1)−my(i, j)) (B.30)The problem is that ∂xmx(r) and ∂ymy(r) are 
omputed in di�erent middle pointsof the latti
e ((i+ 1/2, j) and (i, j + 1/2) respe
tively). Of 
ourse with ba
kwarddi�eren
es we would �nd the same problem. Then, we are multiplying and addingthings at di�erents points like they were at the same. Be
ause of that, the twodi�erent (but obviously equivalent) ways to 
ompute Fms, shown in eq. (6.4),do not give the same result. As explained in the appendix, we 
annot use phasefa
tors in fourier spa
e to shift these points ((i + 1/2, j) and (i, j + 1/2)) to the



152 Appendix B. Notes about the magnetoelasti
 modeloriginal latti
e (i, j) pre
isely be
ause these points do not belong to the latti
e,i.e. the shifted length is not a whole number but a half ((i+ b, j) 
an be shiftedto (i, j) if and only if b ∈ Z).The simplest way of solving it, is 
omputing∇·M(r) with 
entered di�eren
es,so this way we will 
ompute both derivatives at the same point, but we will notbe able to distinguish modulations 
orresponding to the shortest wave lengthpossible in the system, i.e. the maximum k. We then �nd the same problem wehad when 
omputing φ with eq. (B.20). Due to that we will use another way to
ompute ∇·M(r) in real spa
e, that avoids ea
h problem of forward and 
entereddi�eren
es. This is the way used by Berkov et al. [205℄ and 
onsists in whatfollows: if we 
onsider, for instan
e, that our spins are lo
ated at the nodes of ourlatti
e, i.e. at the 
orners of our 
ells, ∇ ·M(r) is 
omputed in the 
enter of the
ells as an average of the derivatives of the magnetization at the 
orrespondingfour 
orners of that 
ell, like being a sour
e or a sink of magnetization in its
orners. Matemati
ally, it 
an be expressed like this:
(∇ ·M(i, j)) (i− 1

2
, j − 1

2
) = − 1

2a
(mx(i, j)

−mx(i− 1, j) +mx(i, j − 1)−mx(i− 1, j − 1)

+my(i, j)−my(i, j − 1) +my(i− 1, j)−my(i− 1, j − 1))

(B.31)This way we will 
al
ulate the s
alar potential also at the 
enter of the 
ells (points
(i− 1

2
, j− 1

2
)). Using the same de�nition in eq. (B.33) in order to 
ompute the mag-netostati
 �eld at the 
orners of the 
ells (points (i, j)), where the magnetizationis lo
ated, we get:

Hdx(i, j) = − 1
2a

(φ(i+ 1
2
, j + 1

2
)− φ(i− 1

2
, j + 1

2
)

+φ(i+ 1
2
, j − 1

2
) + φ(i− 1

2
, j − 1

2
))

Hdy(i, j) = − 1
2a

(φ(i+ 1
2
, j + 1

2
)− φ(i+ 1

2
, j − 1

2
)

+φ(i− 1
2
, j + 1

2
) + φ(i− 1

2
, j − 1

2
))

(B.32)
Then, whatever de�nition we use to 
ompute Fms in eq. (6.4) we get the sameresult be
ause we are always multiplying fa
tors at the same points of the latti
eand, hen
e, doing things in the right way.B.2.3 The demagnetizing fa
torA general solution for eq. B.19 is [47℄:

φ(r) =
Ms

4π

[∫

V

−∇ ·m(r′)

|r− r′| dV ′ +

∫

S

m(r′) · n(r′)

|r− r′| dS ′
] (B.33)



B.3. Non-order parameter energy: Long-range elasti
 and magnetoelasti
 intera
tions153where n is a ve
tor perpendi
ular to the surfa
e. The �rst and the se
ond terms
orrespond to the 
ontribution due to the volume and surfa
e 
harge densitiesrespe
tively (∇·m andm·n may be 
onsidered 'magneti
 
harges'). An alternativemethod to solve eq. (B.19) is in Fourier spa
e, as done in eq. (B.20). However, thisequation is useful only to solve the volume part, sin
e the surfa
e part 
orrespondsto the 
ontribution of k = 0 and it is a singularity in eq. (B.20). In otherwords, we may separate the magnetizing in two di�erent 
ontributions: M(r) =

M + δM(r), where M stands for the average magnetization of the system and
δM(r) 
orresponds to the lo
al variations with respe
t to M. In Fourier spa
e weare only able to 
ompute the demagnetizing �eld due to the heterogeneous part
δM(r).When the magnetization is uniform in the whole body, ∇ ·m(r) = 0 and the�rst term in eq. (B.33) vanishes. Then, by using H = −∇φ , the demagnetizing�eld due to the remaining term 
an be expressed as Hd(r) = N(r−r

′)M(r′), where
N(r−r

′) is a tensor 
alled 'demagnetizing fa
tor', that 
onsists of an integral overthe surfa
e of the body that only depends on its shape. For 
ertain regular shapes,like ellipses, it has an analyti
al expression.This reasoning may be also applied independently to ea
h 
ell of the sys-tem [206, 207℄. Indeed, a 
oarse-grained latti
e often 
onsists of an array of 
ellswhithin whi
h the magnetization is assumed to be uniform. Hen
e, we may 
om-pute the demagnetizing fa
tor N for ea
h 
ell. If the 
ells are of equal shape,as it is often the 
ase1 we have to 
ompute N only on
e, and then dedu
e Hdfrom Hd(r) =
∑

r′ N(r− r
′)M(r′), where the sum is over all the 
ells of the sys-tem. This is a 
onvolution (order N2 in 
omputation time) that, if using periodi
boundary 
onditions, 
an be transformed to a s
alar produ
t in Fourier spa
e(order N logN).B.3 Non-order parameter energy: Long-range elas-ti
 and magnetoelasti
 intera
tionsIn the pure elasti
 model, long-range intera
tions arose from applying the SaintVénant 
ompatibility equation and energy minimization to the non-order parame-ter symmetry adapted strains e1 and e3. In the magnetoelasti
 model, in additionto the pure elasti
 
ontribution, the magnetoelasti
 
oupling 
ontains an addi-tional 
ontribution of e1 and e3. This entails that the energy minimization withrespe
t to e1 wi
h is 
arried out after applying the 
ompatibility 
onstraint mustbe re
al
ulated in order to in
orporate the magnetoelasti
 term. Here we give the1This is not the 
ase of �nite elements method.



154 Appendix B. Notes about the magnetoelasti
 modelmathemati
al details of the 
al
ulation. A
tually, we shall see that the depen-den
e of e1 and e3 with respe
t to the OP e2 is the same as in the pure elasti
model. We will derive also the mathemati
al expression for the magnetoelasti

oupling in Fourier spa
e.Sin
e we will be interested in deriving Fme + F el with respe
t to e1 in orderto minimize the free energy, we fo
us only on the non-OP 
ontribution, i.e. terms
ontaining only e1 and e3. From now on, we will make expli
it wether the strainvariables belong to the real (r) or Fourier (k) spa
e, sin
e we will deal with bothspa
es. Instead, the magnetization m will remain in the real spa
e all the time.However, for the sake of 
larity, we also will make expli
it its dependen
e. Thus,we re
over the mathemati
al expression for the non-order parameter free energy:
FnonOP =

∫ [
B1√

2
(m2

x(r) +m2
y(r))e1(r) +B2mx(r)my(r)e3(r)

+A1

2
e21(r) + A3

2
e23(r)

]
dr

(B.34)We now rewrite the Saint-Vénant 
ompatibility equation in Fourier spa
e andexpress e3 in terms of e1 and e2:
e3(k) =

(k2
x + k2

y)

2
√

2kxky
e1(k)−

(k2
x − k2

y)

2
√

2kxky
e2(k) (B.35)Then, we introdu
e this expression for e3 in the non-OP 
ontribution FnonOP [eq.(B.34)℄ that, 
onsequently, will be
ome a fun
tion only of e1 and the OP e2.

FnonOP =
∫ [

B1√
2
(m2

x(r) +m2
y(r))e1(r) + A1

2
e21(r)

+B2mx(r)my(r)
1

(2π)2

∫
eikre3(k)dk

+A3

2
1

(2π)4

∫
eikre3(k)dk

∫
eik

′re3(k
′)dk′

]

dr

(B.36)
=
∫ [

B1√
2

(
m2
x(r) +m2

y(r)
)
e1(r) + A1

2
e21(r)

+mx(r)my(r)
B2

(2π)2

∫
eikr

(
(k2

x+k2
y)

2
√

2kxky
e1(k)− (k2

x−k2
y)

2
√

2kxky
e2(k)

)

dk

+ A3

2(2π)4

∫
eikr

(
(k2

x+k2
y)

2
√

2kxky
e1(k)− (k2

x−k2
y)

2
√

2kxky
e2(k)

)

dk·

·
∫
eik

′r

(
(k′2x +k′2y )

2
√

2k′xk
′

y

e1(k
′)− (k′2x −k′2y )

2
√

2k′xk
′

y

e2(k
′)
)

dk′
]

dr

(B.37)
Now we make fourier transforms of e1(r), i.e. e1(r) = 1/(2π)2

∫
eikre1(k)dk and
hange the order of the integrals. As in Se
. A.2.2 we also use the fa
t that
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 intera
tions155
∫
eir(k+k′)dr = (2π)2δ(k + k

′). As e1(k) is a 
omplex variable we 
an do e1(k) =

x(k) + iy(k), and, rearranging terms, we 
an rewrite the energy this way:
FnonOP =

∫ [
1

(2π)2

(
B1√

2

∫
eikr(m2

x(r) +m2
y(r))dr

+B2

∫
eikrmx(r)my(r)dr

(k2
x+k2

y)

2
√

2kxky

)

(x(k) + iy(k))

+ 1
(2π)2

(
A1

2
+ A3

16

(k2
x+k2

y)2

k2
xk

2
y

)

(x2(k) + y2(k))

− 1
(2π)2

A3

16

(k2
x+k2

y)(k2
x−k2

y)

k2
xk

2
y

((x(k) + iy(k))e2(−k)

+(x(k)− iy(k))e2(k))] dk + FnonOP(e2)

(B.38)
where FnonOP(e2) is a fun
tion depending only on e2. To simplify this expressionwe de�ne the following fun
tions:
Q1(k) ≡ 1

(2π)2

∫
eikr

(
B1√

2
(m2

x(r) +m2
y(r)) + B2

2
√

2

(k2
x+k2

y)

kxky
mx(r)my(r)

)

dr

Q2(k) ≡ 1
(2π)2

(
A1

2
+ A3

16

(k2
x+k2

y)2

k2
xk

2
y

)

Q3(k) ≡ − 1
(2π)2

A3

16

(k2
x+k2

y)(k2
x−k2

y)

k2
xk

2
y

(B.39)Using these de�nitions we 
an rewrite the energy as follows:
FnonOP =

∫
[Q1 (k)(x(k) + iy(k)) +Q2(k) (x2(k) + y2(k))

+Q3(k) ((x(k) + iy(k))e2(−k) + (x(k)− iy(k))e2(k))] dk + FnonOP(e2)
(B.40)So now we have the energy in terms only of e1 and e2. As we only want to performsimulations of e2 we will minimize the energy with respe
t to e1, so we will be ableto express e1 in terms of e2. In order to do that we have to minimize the energywith respe
t to the real (x) and imaginary part (y) of e1:

δFnonOP =
∫

∂FnonOP
∂e1(k”)

δe1(k”)dk”

=
∫ [

∂FnonOP
∂x(k”)

δx(k”) + ∂FnonOP
∂y(k”)

δy(k”)
]

dk” = 0
(B.41)Now we 
arry out these derivatives. Note that ∂FnonOP(e2)/∂e1 = 0. We get

δFnonOP =
∫
dk”

∫
dk{[Q1(k) + 2Q2(k)x(k)

+Q3(k) (e2(−k) + e2(k))] δ(k− k”)δx(k”)

+ [iQ1(k) + 2Q2(k)y(k) + iQ3(k) (e2(−k)− e2(k))] δ(k− k”)δy(k”)}
(B.42)First, e2(−k)+e2(k) = 2ℜ(e2(k)) and i (e2(−k) + e2(k) = 2ℑ(e2(k)). Se
ond, the

δ(k−k”) will anihilate the integral over k. As δx(k”) and δy(k”) are any variation
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 modelof the respe
tive variables and δFnop = 0, the 
oe�
ients of these variations mustvanish independently, i.e.:
Q1(k) + 2Q2(k)x(k) + 2Q3(k)ℜ(e2(k)) = 0 (B.43)
iQ1(k) + 2Q2(k)y(k) + 2Q3(k)ℑ(e2(k)) = 0 (B.44)where we have renamed the remaining variable (k”) as k. Now, we 
an isolate

x(k) and y(k):
x(k) =

−Q1(k)− 2Q3(k)ℜ(e2(k))

2Q2(k)
(B.45)

y(k) =
−iQ1(k)− 2Q3(k)ℑ(e2(k))

2Q2(k)
(B.46)As e1(k) = x(k) + iy(k) we 
an write:

e1(k) = −Q1(k)−2Q3(k)ℜ(e2(k))
2Q2(k)

+ i−iQ1(k)−2Q3(k)ℑ(e2(k))
2Q2(k)

= 1
2Q2(k)

[−Q1(k)− 2Q3(k)ℜ(e2(k)) +Q1(k)− 2iQ3(k)ℑ(e2(k))]

= −Q3(k)
Q2(k)

(ℜ(e2(k)) + iℑ(e2(k))) = −Q3(k)
Q2(k)

e2(k)

(B.47)that is the same result that we obtained for the pure elasti
 
ase, i.e. withouttaking into a

ount the magnetoelasti
 
oupling. Finally, we 
an write the 
on-tribution of the non-order parameter to the total energy in terms of the desiredvariables m and e2 as:
FnonOP =

∫
[Q1e1(k) +Q2e1(k)e1(−k) +Q3 (e1(k)e2(−k) + e1(−k)e2(k))]dk

− 1
(2π)2

B2

2
√

2

∫ (k2
x−k2

y)

kxky
e2(k)dk

∫
eikrmx(r)my(r)dr + 1

(2π)2
A3

16

∫ (k2
x−k2

y)2

(kxky)2
e2(k)e2(−k)dk(B.48)

=
∫ [

−Q3(k)Q1(k)
Q2(k)

e2(k) +
Q2

3
(k)

Q2(k)
e2(k)e2(−k)− 2

Q2

3
(k)

Q2(k)
e2(k)e2(−k)

+ 1
(2π)2

A3

16

(k2
x−k2

y)2

(kxky)2
e2(k)e2(−k)− 1

(2π)2
B2

2
√

2

(k2
x−k2

y)

kxky
e2(k)

∫
eikrmx(r)my(r)dr

]

dk(B.49)
=
∫ [(

−Q2

3
(k)

Q2(k)
+ 1

(2π)2
A3

16

(k2
x−k2

y)2

(kxky)2

)

e2(k)e2(−k)

−
(
Q3(k)Q1(k)

Q2(k)
+ 1

(2π)2
B2

2
√

2

(k2
x−k2

y)

kxky

∫
eikrmx(r)my(r)dr

)

e2(k)
]

dk
(B.50)Taking into a

ount the de�ntions of Qj(k), j = 1, 2, 3, and simplifying terms, weget the �nal expression for the non-order parameter 
ontribution to the energy:

FnonOP = 1
(2π)2

∫ (k2
x−k2

y)
“

8k2
xk

2
y+

A3

A1
(k2

x+k2
y)2

”

{
A3(k2

x−k2
y)

2
e2(k)e2(−k)

+

[
A3(k2

x+k2
y)

A1

B1√
2

∫
eikr

(
m2
x(r) +m2

y(r)
)
dr

−8kxky
B2

2
√

2

∫
eikr (mx(r)my(r)) dr

]

e2(k)
}

dk

(B.51)



B.4. Magnetoelasti
 dynami
s 157The �rst term 
oin
ides with the long-range intera
tion obtained in the pureelasti
 
ase and the se
ond one is an extra 
ontribution due to the magnetoelasti

oupling. To simplify expressions we will use the following de�nitions:
Ac1(k) ≡ A3(k2

x−k2
y)(k2

x+k2
y)

A1

“

8k2
xk

2
y+

A3

A1
(k2

x+k2
y)2

”

Ac2(k) ≡ A3(k2
x−k2

y)
2

2
“

8k2
xk

2
y+

A3

A1
(k2

x+k2
y)2

”

Ac3(k) ≡ − 8(k2
x−k2

y)kxky
“

8k2
xk

2
y+

A3

A1
(k2

x+k2
y)2

”

(B.52)
Therefore, the non-OP free energy 
an be written as follows:
FnonOP = 1

(2π)2

∫ {

Ac2(k)e2(k)e2(−k) +
[

Ac1(k)B1√
2

∫
eikr

(
m2
x(r) +m2

y(r)
)
dr

+Ac3(k) B2

2
√

2

∫
eikr (mx(r)my(r)) dr

]

e2(k)
}

dk (B.53)B.4 Magnetoelasti
 dynami
sThe dynami
s of the magnetoelasti
 model 
on
erns the evolution of both themagnetization m and the deviatori
 strain e2. As mentioned in Chap. 6, theformer evolves a

ording to the LLG equation and the latter a

ording to a purerelaxational dynami
s. Sin
e the dynami
 equations lead to the 
on�guration of
m(r) and e2(r) that minimize of the total energy, both equations involve fun
tionalderivatives of the energy with respe
t to the 
orresponding variable. Here we givethe mathemati
al details of the 
al
ulation of su
h derivatives.B.4.1 Magneti
 dynami
sWe 
an rewrite eq. 6.9 in a dimensionless form [133℄:

∂m

∂τ
= −m× he� − αm× (m× he�) (B.54)where

he� =
He�
Ms

; τ =
γ0Ms

1 + α2
t (B.55)From energy minimization arguments, it 
an be dedu
ed that he� 
an be ex-pressed as [208℄

he� = − 1

µ0

∂F

∂M
= − 1

µ0Ms

∂F

∂m
(B.56)
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 modelwhere ∂F
∂m

=
(

∂F
∂mx

, ∂F
∂my

, ∂F
∂mz

). Introdu
ing eq. 6.1 we get
he� = − 1

µ0Ms

(
∂Fan
∂m

+ ∂Fex
h
∂m

+ ∂Fms
∂m

+ ∂Fext
∂m

+ ∂Fme
∂m

)

= han + hex
h + hms + hext + hme (B.57)where han, hex
h, hms, hext and hext 
orrespond to the e�e
tive �elds due to theanisotropi
, ex
hange, magnetostati
, external and magnetoelasti
 terms respe
-tively. They 
an be expressed as:
han = − 2

µ0M2
s

[
mxK1

(
m2
y +m2

z

)
+K2m

2
ym

2
z, myK1 (m2

x +m2
z) +K2m

2
xm

2
z,

mzK1

(
m2
x +m2

y

)
+K2m

2
xm

2
y

] (B.58)
hex
h =

2A

µ0M2
s

(∂xxm + ∂yym + ∂zzm) (B.59)
hms =

1

Ms
Hd (B.60)

hext =
1

Ms
Hext (B.61)The 
al
ulation of han, hex
h and hext is straightforward. The 
al
ulation hms ismore laborious and 
an be found in Se
. B.2.The 
ontribution of the magnetoelasti
 term to the e�e
tive �eld is:

he� = − 1

µ0M2
s

∂fme
∂m

(B.62)In 
omponents:
he�x(r) = − 1

µ0M2
s

∂fme
∂mx(r)

= − 1
µ0M2

s

[
B1√

2
2mx(r)e2(r) + 1

(2π)2
B1√

2
2mx(r)

∫
eikrAc1e2(k)dk

+ 1
(2π)2

B2

2
√

2
my(r)

∫
eikrAc3e2(k)dk

] (B.63)
he�y

(r) = − 1
µ0M2

s

∂fme
∂my(r)

= − 1
µ0M2

s

[

−B1√
2
2my(r)e2(r) + 1

(2π)2
B1√

2
2my(r)

∫
eikrAc1e2(k)dk

+ 1
(2π)2

B2

2
√

2
mx(r)

∫
eikrAc3e2(k)dk

] (B.64)Although our model deals with spins of three 
omponents, the magnetoelasti

oupling in
ludes only mx and my be
ause mz should 
ouple with ǫzj, being j =

x, y, z and the elasti
 part, in two dimensions, does not in
lude these strain tensor
omponents. Hen
e, he�z(r) = 0.



B.5. Mi
romagneti
s in spheri
al variables 159B.4.2 Elasti
 dynami
sThe dynami
s used for the elasti
 evolution is the same as in Chapter ??, i.e.purely relaxational: ∂e2
∂τ

= − δF
δe2

. The fun
tional derivatives 
on
erning de pureelasti
 part ( δFe
δe2

) have been already 
omputed in Se
. A.3.2. In addition, herewe have the 
ontribution 
oming from the magnetoelasti
 
oupling ( δFme
δe2

) , whose
al
ulation is shown below. Let us start rewriting eq. (6.8) more expli
itly:
Fme = B1√

2

∫ (
m2
x(r)−m2

y(r)
)
e2(r)dr

+ 1
(2π)2

∫
Ac1(k)e2(k)dkB1√

2

∫
eikr

(
m2
x(r) +m2

y(r)
)
dr

+ 1
(2π)2

∫
Ac3(k)e2(k)dk B2

2
√

2

∫
eikr (mx(r)my(r)) dr

(B.65)In order to take derivatives of e2(r)) we have to express e2(k)) as a Fourier trans-form of e2(r)):
Fme = B1√

2

∫ (
m2
x(r)−m2

y(r)
)
e2(r)dr

+ 1
(2π)2

∫
Ac1(k)dk

∫
e−ikr”e2(r”)dr”B1√

2

∫
eikr

(
m2
x(r) +m2

y(r)
)
dr

+ 1
(2π)2

∫
Ac3(k)dk

∫
e−ikr”e2(r”)dr” B2

2
√

2

∫
eikr (mx(r)my(r)) dr

(B.66)Now we 
an take derivatives:
δFme
δe2(r′)

= B1√
2

∫ (
m2
x(r)−m2

y(r)
)
δ(r− r

′)dr

+ 1
(2π)2

∫
Ac1(k)dk

∫
e−ikr”δ(r”− r

′)dr” · B1√
2

∫
eikr

(
m2
x(r) +m2

y(r)
)
dr

+ 1
(2π)2

∫
Ac3(k)dk

∫
e−ikr”δ(r”− r

′)dr” · B2

2
√

2

∫
eikrmx(r)my(r)dr =

(B.67)
B1√

2

(
m2
x(r)−m2

y(r)
)

+ 1
(2π)2

∫
e−ikr′Ac1(k)dkB1√

2

∫
eikr

(
m2
x(r) +m2

y(r)
)
dr

+ 1
(2π)2

∫
e−ikr′Ac3(k)dk B2

2
√

2

∫
eikrmx(r)my(r)dr (B.68)Finally, making the 
hange k→ −k, we get:

δFme
δe2(r′)

= B1√
2

(
m2
x(r)−m2

y(r)
)

+B1√
2
F−1

[
Ac1F (m2

x(r) +m2
y(r)

)]
+ B2

2
√

2
F−1 [Ac3F (mx(r)my(r))]

(B.69)where F−1 denotes the inverse Fourier transformation.B.5 Mi
romagneti
s in spheri
al variablesAs mentioned in 
hapter 6, the spheri
al 
oordinates seem to be the naturalframework within whi
h develop the mi
romagneti
 model. Here the mathemati-
al details 
on
erning the LLG dynami
s in these 
oordinates 
an be found. We
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Figure B.1: Cartesian and spheri-
al 
oordinates: Variables and baseve
tors

e

e

e

z

θ

φ

r

y
x

φ

θ

r

k

i

j

have a spin ve
tor (mx, my, mz). We re
all the spheri
al to 
artesian 
hange ofvariables:
mx = r cos θ sinφ; my = r sin θ sinφ; mz = r cos φ (B.70)where instead of (mr, mθ, mφ) we have denoted (r, θ, φ) for simpli
ity. Cartesianto spheri
al 
oordinates:
r =

√
m2
x +m2

y +m2
z; θ =







arctan
(
my

mx

)

mx > 0
π
2
sgn(my) x = 0

π + arctan
(
my

mx

)

mx < 0

;

φ =







arctan

(√
m2

x+m2
y

mz

)

mz > 0

π
2

mz = 0

π + arctan

(√
m2

x+m2
y

mz

)

mz < 0

(B.71)
Base ve
tors:

ı̂ = cos θ sinφêr + cos θ cos φêφ − sin θêθ
̂ = sin θ sinφêr + sin θ cosφêφ + cos θêθ

k̂ = cosφêr − sinφêφ

(B.72)The relations between the variables and between the base ve
tors of 
artesian andspheri
al 
oordinates 
an be easily derived from Fig. B.1.B.5.1 Cartesian 
oordinatesOur �rst attempt 
onsists of �nding the full mathemati
al expression of the LLGequation in spheri
al variables with respe
t to 
artesian 
oordinates. As starting



B.5. Mi
romagneti
s in spheri
al variables 161point we re
all the LLG dynami
 equation:
∂m

∂τ
= −m× he� − αm× (m× he�) (B.73)Let us write expli
itly the se
ond and third terms:

m× he� =

∣
∣
∣
∣
∣
∣
∣

ı̂ ̂ k̂

mx my mz

he�x he�y he�z ∣∣∣∣∣∣∣ = (myhe�z −mzhe�y )̂ı+ (mzhe�x −mxhe�z)̂
+(mxhe�y −myhe�x)k̂ (B.74)Third term:

m× (m× he�) = [my(mxhe�y −myhe�x)−mz(mzhe�x −mxhe�z)] ı̂
+ [mz(myhe�z −mzhe�y)−mx(mxhe�y −myhe�x)] ̂
+ [mx(mzhe�x −mxhe�z)−my(myhe�z −mzhe�y)] k̂ (B.75)Now we 
an write LLG equation in 
omponents:

∂mx

∂τ
= −(myhe�z −mzhe�y)− α [my(mxhe�y −myhe�x)−mz(mzhe�x −mxhe�z)]

∂my

∂τ
= −(mzhe�x −mxhe�z)− α [mz(myhe�z −mzhe�y)−mx(mxhe�y −myhe�x)]

∂mz

∂τ
= −(mxhe�y −myhe�x)− α [mx(mzhe�x −mxhe�z)−my(myhe�z −mzhe�y)](B.76)We make the following 
hange of variables:

m = (mx, my, mz) = (cos θ sin φ, sin θ sin φ, cosφ) (B.77)We 
ompute now the left side of the LLG equation:
∂mx

∂τ
= ∂(cos θ sinφ)

∂τ
= − sin θ sinφ ∂θ

∂τ
+ cos θ cosφ∂φ

∂τ

∂my

∂τ
= ∂(sin θ sinφ)

∂τ
= cos θ sinφ ∂θ

∂τ
+ sin θ cos φ∂φ

∂τ

∂mz

∂τ
= ∂(cosφ)

∂τ
= − sinφ∂φ

∂τ

(B.78)Thus, the LLG equation in new variables be
omes: Component x:
− sin θ sinφ ∂θ

∂τ
+ cos θ cosφ∂φ

∂τ
= −(sin θ sinφhz − cosφhy)

−α[sin θ sinφ(cosθ sinφhy − sin θ sin φhx)− cosφ(cosφhx − cos θ sinφhz)](B.79)Component y:
cos θ sinφ ∂θ

∂τ
+ sin θ cos φ∂φ

∂τ
= −(cos φhx − cos θ sinφhz)

−α[cos φ(sinθ sinφhz − cos φhy)− cos θ sinφ(cos θ sinφhy − sin θ sin φhx)](B.80)
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 modelComponent z:
− sinφ∂φ

∂τ
= −(cos θ sin φhy − sin θ sinφhx)

−α[cos θ sinφ(cosφhx − cos θ sinφhz)− sin θ sinφ(sin θ sinφhz − cosφhy)](B.81)Now we divide eq. B.81 over (− sinφ):
∂φ
∂τ

= cos θhy − sin θhx + α[cos θ(cosφhx − cos θ sinφhz)

− sin θ(sin θ sin φhz − cosφhy)]
(B.82)Rearranging terms we get the dynami
 equation for φ:

∂φ

∂τ
= cos θhy − sin θhx + α[cosφ(cos θhx + sin θhy)− sin φhz] (B.83)We 
an also obtain the expression above by multiplying eq. B.79 by cos θ and eq.B.80 by sin θ and adding up the resulting equations.Now we multiply eq. B.79 by (− sin θ) and eq. B.80 by cos θ. Then, we add thetwo resulting equations. At the left hand side of the equation we get:

sin2 θ sinφ
∂θ

∂τ
− sin θ cos θ cos φ

∂φ

∂τ
+ cos2 θ sin φ

∂θ

∂τ
+ cos θ sin θ cosφ

∂φ

∂τ
= sinφ

∂θ

∂τ(B.84)At the right hand side of the equation we obtain:
(sin2 θ sinφhz − sin θ cosφhy) + α[sin2 θ sinφ(cosθ sinφhy − sin θ sinφhx)

− sin θ cosφ(cosφhx − cos θ sinφhz)]− (cos θ cosφhx − cos2 θ sinφhz)

−α[cos θ cosφ(sinθ sin φhz − cosφhy)− cos2 θ sinφ(cos θ sinφhy − sin θ sin φhx)]

= sin φhz − cosφ(sin θhy + cos θhx)

+α[sin2 φ(cos θhy − sin θhx) + cos2 φ(cos θhy − sin θhx)]

= sin φhz − cosφ(sin θhy + cos θhx) + α(cos θhy − sin θhx) (B.85)Hen
e, the dynami
 equation for θ is:
∂θ

∂τ
= hz − cotφ(sin θhy + cos θhx) + α csc φ(cos θhy − sin θhx) (B.86)



B.5. Mi
romagneti
s in spheri
al variables 163B.5.2 Spheri
al 
oordinatesFirst we 
al
ulate m in the spheri
al base:
m = mxı̂+my ̂+mzk̂ = cos θ sin φ(cos θ sin φêr + cos θ cosφêφ − sin θêθ)

+ sin θ sinφ(sin θ sinφêr + sin θ cosφêφ + cos θêθ) + cos θ(cosφêr − sinφêφ)

= (cos2 θ sin2 φ+ sin2 θ sin2 φ+ cos2 φ)êr+

(cos2 θ sinφ cosφ+ sin2 θ sinφ cosφ− cos φ sinφ)êφ+

(− cos θ sinφ sin θ + sin θ sin φ cos θ)êθ = êr (B.87)Thus, as expe
ted, m = (1, 0, 0) in spheri
al 
oordinates. Now, we write anyve
tor h = (hx, hy, hz) = (rh cos θh sin φh, rh sin θh sin φh, rh cos φh) with respe
t tothe base ve
tors {êr, êθ, êφ}:
h = hxı̂+ hy ̂+ hzk̂ == rh cos θh sinφh(cos θ sinφêr + cos θ cos φêφ − sin θêθ)

+rh sin θh sin φh(sin θ sin φêr + sin θ cosφêφ + cos θêθ)

+rh cos φh(cosφêr − sinφêφ)

= rh [sinφh sinφ cos(θh − θ) + cosφh cosφ] êr + rh sinφh sin(θh − θ)êθ+
+rh [sinφh cos φ cos(θh − θ)− cos φh sinφ] êφ = (hr, hθ, hφ) (B.88)In spheri
al 
oordinates the se
ond and third terms of LLG equation are expressedas:

m× he� = −hφêθ + hθêφ; m× (m× he�) = −hθ êθ − hφêφ (B.89)The �rst term of LLG equation 
an be numeri
ally 
al
ulated to the �rst orderas:
∂m

∂τ
≃ mt+∆t −mt

∆τ
=

(mr, mθ, mφ)− (1, 0, 0)

∆τ
(B.90)Then, LLG equation expressed in the spheri
al 
oordinate system takes the fol-lowing form:

(mr, mθ, mφ) = (1, 0, 0)− [(0,−hφ, hθ) + α(0,−hθ,−hφ)] ∆τ (B.91)In 
omponents:
mr = 1 mθ = (hφ + αhθ)∆τ mφ = (hθ + αhφ)∆τ, (B.92)where it 
an be seen from the radial 
omponent that LLG equation automati-
ally keeps the modulus of the spin 
onstant. Now we pro
eed to 
al
ulate thespe
i�
 expression for the e�e
tive �eld. For this we need to rewrite in spheri
al
oordinates every energeti
 
ontribution, whi
h is done in the following.



164 Appendix B. Notes about the magnetoelasti
 modelEx
hange �eld (I):Let us re
all the 
ontinuous and dis
rete expression in 
artesian 
oordinates:
hex
h = 2A

µ0M2
s

[(
∂2mx

∂x2 + ∂2mx

∂y2

)

ı̂+ +
(
∂2my

∂x2 + ∂2my

∂y2

)

̂+
(
∂2mz

∂x2 + ∂2mz

∂y2

)

k̂
]

= 2A
µ0M2

s
[(mx(i+ 1, j) +mx(i− 1, j) +mx(i, j + 1)+

+mx(i, j − 1)− 4mx(i, j))̂ı+

+(my(i+ 1, j) +my(i− 1, j) +my(i, j + 1) +my(i, j − 1)− 4my(i, j))̂+

+(mz(i+ 1, j) +mz(i− 1, j) +mz(i, j + 1) +mz(i, j − 1)− 4mz(i, j))k̂
](B.93)At this point, it 
an be helpful to re
all that mx, my, mz are the 
omponents ofa given spin, and therefore the value of the 
omponents are given with respe
t tothe origin of the given spin. These 
omponents are being 
al
ulated in spheri
al
oordinates. Moreover, in our system we have a ve
torial �eld, that is a �eldof spins ea
h one lo
ated in a 
ell of a square latti
e. Sin
e the 
oordinates ofthe 
ells and the 
omponents of the spins are independent, it is more 
onvenientthe 
oordinates of the 
ells to be kept in 
artesian 
oordinates (x, y, z). A

ord-ing to this, we will make expli
it the 
artesian spatial dependen
e of the spin
omponents, either in 
artesian 
oordinates (mx(x, y, ), my(x, y), mz(x, y)) or inspheri
al ones (r(x, y), θ(x, y), φ(x, y)). In a dis
retized mesh (x, y)→ (i, j) where

i, j ∈ N . Note that, although the spins are 3-dimensional ve
tors, the latti
e isonly 2-dimensional, so that the z-
omponent is not taken into a

ount and all thederivatives ∂/∂z, ∂2/∂z2 will vanish.Now we may 
ome ba
k to the mathemati
al 
al
ulus. Using eq. B.70 andB.72:
hex
h = 2A

µ0M2
s

[(A1 cos θ(i, j) sinφ(i, j)

+A2 sin θ(i, j) sinφ(i, j) + A3 cosφ(i, j)) êr + (−A1 sin θ(i, j) + A2 cos θ(i, j)) êθ

+ (A1 cos θ(i, j) cosφ(i, j) + A2 sin θ(i, j) cosφ(i, j)− −A3 sinφ(i, j)) êφ](B.94)where
A1 = cos θ(i+ 1, j) sinφ(i+ 1, j) + cos θ(i− 1, j) sinφ(i− 1, j)

+ cos θ(i, j + 1) sinφ(i, j + 1) + cos θ(i, j − 1) sinφ(i, j − 1)− 4 cos θ(i, j) sinφ(i, j)

A2 = sin θ(i+ 1, j) sinφ(i+ 1, j) + sin θ(i− 1, j) sinφ(i− 1, j)

+ sin θ(i, j + 1) sinφ(i, j + 1) + sin θ(i, j − 1) sinφ(i, j − 1)− 4 sin θ(i, j) sinφ(i, j)

A3 = cosφ(i+ 1, j) + cosφ(i− 1, j) + cos φ(i, j + 1) + cosφ(i, j − 1)− 4 cosφ(i, j)(B.95)



B.5. Mi
romagneti
s in spheri
al variables 165Introdu
ing eq. B.95 in eq. B.94, we get in 
omponents:Component êr:
A1 cos θ(i, j) sinφ(i, j) + A2 sin θ(i, j) sinφ(i, j) + A3 cosφ(i, j)

= sin φ(i, j) [sinφ(i+ 1, j) cos (θ(i+ 1, j)− θ(i, j))
+ sinφ(i− 1, j) cos (θ(i− 1, j)− θ(i, j)) + sinφ(i, j + 1) cos (θ(i, j + 1)− θ(i, j))

+ sinφ(i, j − 1) cos (θ(i, j − 1)− θ(i, j))]
+ cosφ(i, j)(cosφ(i+ 1, j) + cos φ(i− 1, j) + cosφ(i, j + 1) + cosφ(i, j − 1))− 4(B.96)Component êθ:

−A1 sin θ(i, j) + A2 cos θ(i, j) =

sin φ(i+ 1, j)[cos θ(i, j) sin θ(i+ 1, j)− cos θ(i+ 1, j) sin θ(i, j)]

+ sinφ(i− 1, j)[cos θ(i, j) sin θ(i− 1, j)− cos θ(i− 1, j) sin θ(i, j)]

+ sinφ(i, j + 1)[cos θ(i, j) sin θ(i, j + 1)− cos θ(i, j + 1) sin θ(i, j)]

+ sinφ(i, j − 1)[cos θ(i, j) sin θ(i, j − 1)− cos θ(i, j − 1) sin θ(i, j)]

+4 cos θ(i, j) sin θ(i, j) sinφ(i, j)− 4 cos θ(i, j) sin θ(i, j) sinφ(i, j) =

= sinφ(i+ 1, j) sin (θ(i+ 1, j)− θ(i, j)) + sin φ(i− 1, j) sin (θ(i− 1, j)− θ(i, j))
+ sinφ(i, j + 1) sin (θ(i, j + 1)− θ(i, j)) + sinφ(i, j − 1) sin (θ(i, j − 1)− θ(i, j))(B.97)Component êφ:

A1 cos θ(i, j) cosφ(i, j) + A2 sin θ(i, j) cosφ(i, j)− A3 sinφ(i, j)

= cos φ(i, j) [sinφ(i+ 1, j) cos (θ(i+ 1, j)− θ(i, j))
+ sinφ(i− 1, j) cos (θ(i− 1, j)− θ(i, j)) + sin φ(i, j + 1) cos (θ(i, j + 1)− θ(i, j))

+ sinφ(i, j − 1) cos (θ(i, j − 1)− θ(i, j))]
− sinφ(i, j)(cosφ(i+ 1, j) + cosφ(i− 1, j) + cosφ(i, j + 1) + cosφ(i, j − 1))(B.98)
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 modelEx
hange �eld (II):Now we 
ompute the ex
hange �eld another way. Starting from B.93:
∂2mxi

∂x2

j

= ∂
∂xj

(
∂mxi

∂xj

)

= ∂
∂xj

(
∂mxi

∂θ
∂θ
∂xj

+
∂mxi

∂φ
∂φ
∂xj

)

=
∂2mxi

∂xj∂θ
∂θ
∂xj

+
∂mxi

∂θ
∂2θ
∂x2

j

+
∂2mxi

∂xj∂φ
∂φ
∂xj

+
∂mxi

∂φ
∂2φ
∂x2

j

=
∂2mxi

∂θ2

(
∂θ
∂xj

)2

+
∂2mxi

∂φ∂θ
∂φ
∂xj

∂θ
∂xj

+
∂mxi

∂θ
∂2θ
∂x2

j

+
∂2mxi

∂φ2

(
∂φ
∂xj

)2

+
∂2mxi

∂θ∂φ
∂θ
∂xj

∂φ
∂xj

+
∂mxi

∂φ
∂2φ
∂x2

j(B.99)where i, j = 1, 2, 3 and x1,2,3 = x, y, z respe
tively. As mentioned previously, wehave ∂mxi
/∂z = 0. Now let's 
ompute the derivatives: For mx = cos θ sin φ:

∂mx

∂θ
= − sin θ sin φ; ∂mx

∂φ
= cos θ cosφ

∂2mx

∂θ2
= ∂2mx

∂φ2 = − cos θ sin φ; ∂2mx

∂θ∂φ
= ∂2mx

∂φ∂θ
= − sin θ cosφ

(B.100)For my = sin θ sin φ:
∂my

∂θ
= cos θ sin φ; ∂my

∂φ
= sin θ cos φ

∂2my

∂θ2
= ∂2mx

∂φ2 = − sin θ sin φ; ∂2my

∂θ∂φ
= ∂2my

∂φ∂θ
= cos θ cos φ

(B.101)For mz = cosφ:
∂mz

∂θ
= ∂2mz

∂θ2
= ∂2mz

∂θ∂φ
= ∂2mz

∂φ∂θ
= 0

∂mz

∂φ
= − sinφ; ∂2mz

∂φ2 = − cosφ
(B.102)Let's name

hxi
=

(
∂2mxi

∂x2
+
∂2mxi

∂y2

) (B.103)Then, using eq. B.72 we 
an rewrite eq. B.93 as follows:
hex
h = 2A

µ0M2
s

[

hxı̂+ hy ̂+ hzk̂
]

= 2A
µ0M2

s
[(hx cos θ sinφ+ hy sin θ sinφ+ hz cosφ) êr

+ (hx(− sin θ) + hy cos θ) êθ + (hx cos θ cosφ+ hy sin θ cos φ− hz sinφ) êφ](B.104)
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al variables 167Component êr:
hx cos θ sinφ+ hy sin θ sin φ+ hz cosφ =

[
(
∂θ
∂x

)2
+
(
∂θ
∂y

)2

+
(
∂φ
∂x

)2
+
(
∂φ
∂y

)2
]

·

·
(

cos θ sinφ∂
2mx

∂θ2
+ sin θ sin φ∂

2my

∂θ2
+ cosφ∂

2mz

∂θ2

)

+
[
∂2θ
∂x2 + ∂2θ

∂y2

]

·
(

cos θ sinφ∂mx

∂θ
+ sin θ sinφ∂my

∂θ
+ cosφ∂mz

∂θ

)

+
[
∂2φ
∂x2 + ∂2φ

∂y2

]

·
(

cos θ sinφ∂mx

∂φ
+ sin θ sin φ∂my

∂φ
+ cos φ∂mz

∂φ

)

+2
[
∂θ
∂x

∂φ
∂x

+ ∂θ
∂y

∂φ
∂y

]

·
(

cos θ sinφ∂
2mx

∂θ∂φ
+ sin θ sin φ∂

2my

∂θ∂φ
+ cosφ∂

2mz

∂θ∂φ

)

= −
(
(
∂θ
∂x

)2
+
(
∂θ
∂y

)2

+
(
∂φ
∂x

)2
+
(
∂φ
∂y

)2
) (B.105)Component êθ:

− sin θhx + cos θhy =

[
(
∂θ
∂x

)2
+
(
∂θ
∂y

)2

+
(
∂φ
∂x

)2
+
(
∂φ
∂y

)2
]

·
(

− sin θ ∂
2mx

∂θ2
+ cos θ ∂

2my

∂θ2

)

+
[
∂2θ
∂x2 + ∂2θ

∂y2

]

·
(

− sin θ ∂mx

∂θ
+ cos θ ∂my

∂θ

)

+
[
∂2φ
∂x2 + ∂2φ

∂y2

]

·
(

− sin θ ∂mx

∂φ
+ cos θ ∂my

∂φ

)

+2
[
∂θ
∂x

∂φ
∂x

+ ∂θ
∂y

∂φ
∂y

]

·
(

− sin θ ∂
2mx

∂θ∂φ
+ cos θ ∂

2my

∂θ∂φ

)

= sinφ
(
∂2θ
∂x2 + ∂2θ

∂y2

)

+ 2 cosφ
(
∂θ
∂x

∂φ
∂x

+ ∂θ
∂y

∂φ
∂y

) (B.106)Component êφ:
hx cos θ cosφ+ hy sin θ cosφ− hz sin φ =

[
(
∂θ
∂x

)2
+
(
∂θ
∂y

)2

+
(
∂φ
∂x

)2
+
(
∂φ
∂y

)2
]

·

·
(

cos θ cosφ∂
2mx

∂θ2
+ sin θ cosφ∂

2my

∂θ2
− sinφ∂

2mz

∂θ2

)

+

+
[
∂2θ
∂x2 + ∂2θ

∂y2

]

·
(

cos θ cosφ∂mx

∂θ
+ sin θ cosφ∂my

∂θ
− sin φ∂mz

∂θ

)

+
[
∂2φ
∂x2 + ∂2φ

∂y2

]

·
(

cos θ cosφ∂mx

∂φ
+ sin θ cosφ∂my

∂φ
− sinφ∂mz

∂φ

)

+2
[
∂θ
∂x

∂φ
∂x

+ ∂θ
∂y

∂φ
∂y

]

·
(

cos θ cosφ∂
2mx

∂θ∂φ
+ sin θ cos φ∂

2my

∂θ∂φ
− sinφ∂

2mz

∂θ∂φ

)

=
(
∂2φ
∂x2 + ∂2φ

∂y2

)(B.107)Anisotropi
 �eld:In 
artesian 
oordinates:
han = − 2

µ0M2
s
(mx

(
K1

(
m2
y +m2

z

)
+K2m

2
ym

2
z

)
,

my (K1 (m2
x +m2

z) +K2m
2
xm

2
z) , mz

(
K1

(
m2
x +m2

y

)
+K2m

2
xm

2
y

)
)

(B.108)
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 modelIn spheri
al variables, using eq. B.70 and B.72:Component êr:
hanr = − 2

µ0M2
s

[
K12(cos2 φ sin2 φ+ sin4 φ sin2 θ cos2 θ)

+K23 sin2 θ cos2 θ sin4 φ cos2 φ
]

= − 2
µ0M2

s

[
K1

2
(sin2 2φ+ sin4 φ sin2 2θ) +K2

3
4
sin2 2θ sin2 2φ sin2 φ

]

(B.109)Component êθ:
hanθ = − 2

µ0M2
s

[
K1 sin3 φ(sin θ cos3 θ − sin3 θ cos θ)

+K2 sin3 φ cos2 φ(sin θ cos3 θ − sin3 θ cos θ)
]

= −2 sin3 φ
µ0M2

s

[
K1

4
sin 4θ + K2 cos2 φ

4
sin 4θ

]

= − sin3 φ sin 4θ
2µ0M2

s
[K1 +K2 cos2 φ]

(B.110)Component êφ
hanφ = − 2

µ0M2
s

[
K1(sin θ cos3 θ − sin3 θ cos θ + 2 cosφ sin3 φ sin2 θ cos2 θ)

+K2 sin2 θ cos2 θ sin3 φ cosφ(3 cos2 φ− 1)
]

= − 2
µ0M2

s

[
K1

1
4
sin 4θ +1

4
sin2 2θ

(
1
4
(sin 2φ− 1

2
sin 4φ)(2K1 −K2) + 3K2

8
sin3 2φ

)](B.111)Magnetostati
 �eld:The magnetostati
 �eld in 
artesian 
oordinates is 
omputed this way:
hd = −∇ψ
∇ · hd = −∇ ·m

}

⇒ ∆ψ = ∇ ·m⇒ ψ(k) = −F[∇ ·m(r)]

k2
x + k2

y

(B.112)where ψ denotes the s
alar potential and F a Fourier Transform. In 2D ∇ ·m is:
∇ ·m =

∂mx

∂x
+
∂my

∂y
(B.113)In dis
retized form:

(∇ ·m) (i− 1
2
, j − 1

2
) = mx(i, j)−mx(i− 1, j) +mx(i, j − 1)−mx(i− 1, j − 1)

+my(i, j)−my(i, j − 1) +my(i− 1, j)−my(i− 1, j − 1) (B.114)Finally, using B.112 we get the demagnetizing �eld:
hdx(i, j) = − 1

2a
(ψ(i+ 1

2
, j + 1

2
)− ψ(i− 1

2
, j + 1

2
)

+ψ(i+ 1
2
, j − 1

2
) + ψ(i− 1

2
, j − 1

2
))

hdy(i, j) = − 1
2a

(ψ(i+ 1
2
, j + 1

2
)− ψ(i+ 1

2
, j − 1

2
)

+ψ(i− 1
2
, j + 1

2
) + ψ(i− 1

2
, j − 1

2
))

(B.115)
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romagneti
s in spheri
al variables 169Eq. B.113 in spheri
al variables:
∇ ·m = ∂(cos θ sinφ)

∂x
+ ∂(sin θ sinφ)

∂y

= sin θ sinφ ∂θ
∂x

+ cos θ cosφ∂φ
∂x

+ cos θ sin φ ∂θ
∂y

+ sin θ cosφ∂φ
∂y

(B.116)In dis
retized form, we also want (∇ ·m) (i− 1
2
, j − 1

2
). Then,

∂θ

∂x
= θ(i, j)− θ(i− 1, j) + θ(i, j − 1)− θ(i− 1, j − 1) (B.117)and similarly for ∂θ/∂y, ∂φ/∂y and ∂φ/∂y. For the same purpose, sin θ, cos θ,

sinφ and cos φ must be 
omputed at the 
enter of ea
h 
ell, i.e. as an average ofthe magnetization at the four 
orners of ea
h 
ell. For instan
e:
sin θ(i− 1

2
, j − 1

2
) = 1

4
(sin θ(i, j) + sin θ(i− 1, j)

+ sin θ(i, j − 1) + sin θ(i− 1, j − 1))
(B.118)On
e done that, then we get the s
alar potential ψ via fourier transform. Finally,we 
an get the demagnetizing �eld:

hd = −∂ψ
∂x
ı̂− ∂ψ

∂y
̂ = −

[

sin φ
(

cos θ ∂ψ
∂x

+ sin θ ∂ψ
∂y

)

êr

+
(

− sin θ ∂ψ
∂x

+ cos θ ∂ψ
∂y

)

êθ + cosφ
(

cos θ ∂ψ
∂x

+ sin θ ∂ψ
∂y

)

êφ

] (B.119)Magnetoelasti
 part (I): Magneti
 dynami
sIn 
artesian 
oordinates:
hme = − 1

µ0M2
s a

2 [((A+B)mx + Cmy) ı̂ + ((−A+B)my + Cmx) ̂] (B.120)where
A =

2B1√
2

; B =
2B1√

2
F−1 [Ac1(k)e2(k)] ; C =

B2

2
√

2
F−1 [Ac3(k)e2(k)](B.121)Then, in spheri
al 
oordinates:

hme = − 1
µ0M2

s a
2

[
sin2 φ (A cos 2θ +B + C sin 2θ) êr

+ sinφ (C cos 2θ − A sin 2θ) êθ +1
2
sin 2φ (A cos 2θ +B + C sin 2θ) êφ

] (B.122)Magnetoelasti
 part (II): Elasti
 dynami
sThe elasti
 part 
ontains the follow expressions:
m2
x −m2

y = sin2 φ cos 2θ; m2
x +m2

y = sin2 φ; mxmy =
1

2
sin2 φ sin 2θ(B.123)
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 modelB.6 Thermal �u
tuationsWe 
an also add a noisy term in the dynami
s in order to take into a

ount thethermal �u
tuations by means of the �u
tuation-dissipation theorem. As thisterm will be added to the e�e
tive �eld (he�total = he� + hth), like a random �eld,it will multiply the magnetization, so it will be treated like multipli
ative noise.Following S
holz [209℄, we 
an write this random �eld as:
hth(r) =

υ(r)

Ms

√

2αkBT

(1 + α2)µ0a3dτ
(B.124)Here υη(r) is a random vairable, gaussian distributed, with zero mean and unitvarian
e. T is the temperature, kB is the Boltzmann 
onstant and dτ is the timestep. The other parameters have been already de�ned.



Appendix C
Parameters values and model units
In this appendix we expose in detail the parameter values and the redu
ed unitsused in the models explained before. Sin
e, a
tually, the magnetoelasti
 modelis an extension of the elasti
 Landau-based model, the former in
ludes all theparameters of the latter and, therefore, we present all of them together. Thematerial parameters that we 
hose for the simulations are taken from experimentaldata for Fe70Pd30 [33, 122℄.Elasti
 parametersFirst we fo
us on the pure elasti
 part. We have four independent magnitudesthat are for
e (N), length (m) and temperature (K). We will use the the straingradient 
oe�
ient κ to de�ne the units of for
e (u.f.): κ = 3.5306 ·10−9N = 1u.f.We use Tc to de�ne the temperature units (u.T.): Tc = 257K = 1u.T. We use αTto de�ne the units of length (u.l.):

αT = 2.4 · 108N/(m2K) = 1(u.f.)/((u.l.)2(u.T.))

⇒ 1u.l. ≡ l0 =
√

1u.f.m2K
1u.T.2.4·108N

=
√

3.5306·10−9Nm2K
257K2.4·108N

= 2.3925 · 10−10m
(C.1)The value for the standard deviation of the disorder variable η, that is the disorderamplitude ζ has been 
hosen in su
h a way that the system approximately exhibitstweed up to 100 K above the transition point, as it is stated in Ref. [33℄. Moreover,the 
orrelation length ξ is 
hosen a

ording to the 
hara
teristi
 length of thetweed modulation. This quantitative agreement between experimental tweed inFe-Pd and our simulations, whi
h has been shown in Chap. 3. The values ofthe other parameters in the model units 
an be easily derived from the relationsabove. They 
an be found in table C.1.171



172 Appendix C. Parameters values and model unitsMagneti
 and magnetoelasti
 parametersWe use Ms to de�ne the units of 
urrent intensity (u.i.):
Ms = 1.08 · 106

A/m = 1u.i./1u.l.⇒ 1u.i. = 1.08 · 106(A/m) · u.l.
= 1.08 · 106

A/m · 2.3925 · 10−10m = 2.5839 · 10−4
A

(C.2)The ex
hange parameter A has been estimated in the following way: what wehave done is to 
ompare the form of the Heisenber hamiltonian and the form ofthe ex
hange term of the mi
romagneti
 model, in order to get a relation betweenthe intera
tion 
onstant J of the Heisenberg model and our ex
hange parameter
A. We 
an obtain J through the Curie temperature TCurie1 by means of the exa
tsolution of Ising model in 2D. Let's show it matemati
ally: The hamiltonian ofthe Heisenberg model is the following:

H = −J
∑

<i,j>

mi ·mj (C.3)where i, j are the positions of the spins in a latti
e. Rewriting mi · mj =
1
2

(
m

2
i + m

2
j − (mi −mj)

2
) in the hamiltonian, and taking into a

ount thatm

2
i =

1 we get:
H = J

∑

<i,j>

(

−1 +
1

2
(mi −mj)

2

) (C.4)Now we shift the origin of energy to absorb the 
onstant in the hamiltonian. Wethen obtain:
H =

J

2

∑

<i,j>

(mi −mj)
2 (C.5)Multiplying and dividing by a′2 and a′3 (where a is the distan
e between spins)we get:

H =
Ja′2

2a′3

∑

<i,j>

(
mi −mj

a′

)2

a′3 (C.6)Comparing with the dis
retized expression of the ex
hange term, we get A =

J/2a′. We also know the exa
t solution of the Ising model in 2D, J = kBTCurie/4so we 
an obtain A from A = kBTCurie/8a
′, where for Fe70Pd30 TCurie ∼ 750K.In our model the latti
e 
onstant of the material and the unit 
ell size are of thesame order of magnitude. Therefore, we 
an 
hoose a to take one of both values.The resulting A is of the same order of magnitude of the experimental values ofanother similar materials [210�215℄: A ∼ 10−12 − 10−13J/m.1We denote the Curie temperature as TCurie in order to avoid 
onfusion with the low stabilitylimit of the high temperature phase of the martensiti
 transition Tc.



173Experimental parameters λ111 and λ100 are related to the magnetoelasti
 
ou-pling parameters B1 and B2 through the following relations:
λ100 = −2

3
B1

A2
λ111 = −1

3
B2

A3
(C.7)Let also remember a 
ouple of 
onstants used in this model:

µ0 = 4π · 10−7N/A2; kB = 1.3806503 · 10−23N/(m ·K) (C.8)In table C.1 we summarize the values of all the parameters in S.I. units andin redu
ed units, together with the 
orresponding mathemati
al symbols.
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Magnitude Symbol Numeri
al value (S.I. units) Numeri
al value (Model units)Deviatori
 elasti
 
onstant αT 2.4 · 108N/(m2K) 1(u.f.)/((u.l.)2(u.T.))Shear elasti
 
onstant A3 28 · 1010 N/m2 4.5396(u.f.)/(u.l.)2Bulk Modulus A1 14 · 1010N/m2 2.2698(u.f.)/(u.l.)2Low stability limit of the high-T phase Tc 257 1(u.T.)4th order Landau 
oe�
ient β 1, 7 · 1013N/m2 275.62(u.f.)/(u.l.)26th order Landau 
oe�
ient γ 3 · 1016N/m2 4.864 · 105(u.f.)/(u.l.)2Ginzburg 
oe�
ient κ 3.5306 · 10−9N 1(u.f.)Disorder's 
orrelation length ξ 4.785 · 10−10m 20(u.l.)Disorder's standard deviation ζ 83.3K 0.324(u.T.)Unit 
ell length Λ 4.55 · 10−10m 1.9(u.l.)Saturation magnetization Ms 1.08 · 106A/m 1(u.i.)/(u.l.)Magneto
rystalline anisotropy 
onstant K1 −5.2 · 102 N/m2 −8.106 · 10−9u.f./(u.l.)2Magneto
rystalline anisotropy 
onstant K2 −6.6 · 104 N/m2 −1.07 · 10−6u.f./(u.l.)2Magnetoelasti
 
oupling parameter λ100 2 · 10−4 2 · 10−4Magnetoelasti
 
oupling parameter λ111 8 · 10−5 8 · 10−5Ex
hange parameter A 10−12 − 10−13 N/m2 3 · (10−4 − 10−5) u.f./(u.l.)2Va
uum permeability µ0 4π · 10−7N/A2 4π · 1.891 · 10−6u.f./(u.i.)2Bolzmann 
onstant kB 1.3806503 · 10−23N/(m·K) 42.006486 · 10−4(u.f.)(u.l.)/(u.T.)Table C.1: Symbols and values in S.I. and redu
ed units of the parameters of the model.



Referen
es
[1℄ S. Miyazaki and K. Otsuka, �Development of shape memory alloys�, ISIJ Int.29(5), 353�377 (1989).[2℄ A. Planes, L. Mañosa and A. Saxena, Magnetism and Stru
ture in Fun
-tional Materials (Springer, Berlin, 2005).[3℄ A. Saxena and G. Bars
h, �Latti
e dynami
s representation theory versusisotropy subgroup method with appli
ation to M−

5 mode instability in CsCl stru
-ture�, Phase Transitions 46, 89�142 (1994).[4℄ V. K. Wadhawan, Introdu
tion to ferroi
 materials (Gordon and Brea
hS
ien
e Publishers, Amsterdam, 2000).[5℄ E. K. Salje, Phase transitions in ferroelasti
 and 
o-elasti
 
rystals (Cam-bridge University Press, Cambridge, 1990).[6℄ A. Kha
haturyan, �Domain stru
ture in martensiti
 transformation�, Trans.Mat. Res. So
. Jpn. 18B, 799�808 (1994).[7℄ A. Bratkovsky, V. H. S.C. Marais and E. Salje, �The theory of �u
tuationsand texture embryos in stru
tural phase transitions mediated by strain�, J. Phys.:Condens. Matter 6, 3678�3696 (1994).[8℄ Y. Ma, C. Jiang, G. Feng and H. Xu, �Thermal stability of the Ni54Mn25Ga21Heusler alloy with high temperature transformation�, S
r. Mater. 48, 365�369(2003).[9℄ C. Manolikas and S. Amelin
kx, �Phase transitions in ferroelasti
 lead orto-vanadate as observed by means of ele
tron mi
ros
opy and ele
tron di�ra
tion(I). Stati
 observations�, Phys. Stat. Sol. A 60, 607�617 (1980).[10℄ G. Arlt, D. Hennings and G. de With, �Diele
tri
 properties of �ne-grainedbarium titanate 
erami
s�, J. Appl. Phys. 58(4), 1619�1625 (1985).175



176 REFERENCES[11℄ L. S. Chumbley, J. D. Verhoeven, M. R. Kim, A. L. Cornelius andM. J. Kramer, �Measurement and 
orrelation of opti
al and TEM twins inY1Ba2Cu3O7−δ�, IEEE Trans. Magn. 25(2), 2337�2340 (1989).[12℄ T. Roy and T. E. Mit
hell, �Twin boundary energies in Y1Ba2Cu3O7−δ andLa2Cu04�, Phil. Mag. A 63(2), 225�232 (1991).[13℄ K. Batta
harya, Mi
rostru
ture of martensite (Oxforfd University Press,New York, USA, 2003).[14℄ M. Ahlers, �The martensiti
 transformation: Me
hanisms and stabilities�, un-published.[15℄ Shape Memory Materials, edited by K. Otsuka and C. M. Wayman (Cam-bridge University Press, Cambridge, UK, 1998).[16℄ J. Nye, Physi
al properties of 
rystals (Oxford University Press, London,UK, 1957).[17℄ A. Millis, �Towards a 
lassi�
ation of the e�e
ts of disorder on material proper-ties�, Solid State Commun. 126, 3�8 (2003).[18℄ Y. Imry and M. Wortis, �In�uen
e of quen
hed impurities on �rst-order phasetransitions�, Phys. Rev. B 19(7), 3580�3585 (1979).[19℄ S. Miyazaki, K. Otsuka and Y. Suzuki, �Transformation pseudoelasti
ity anddeformation behavior in a Ti-50.6at%Ni alloy�, S
r. Metall. 15(3), 287�292(1981).[20℄ Y. Wang, X. Ren, K. Otsuka and A. Saxena, �Temperature-stress phase dia-gram of strain glass Ti48.5Ni51.5�, A
ta Mater. 56(12), 2885�2896 (2008).[21℄ N. Nakanishi, T. Mori, S. Miura, Y. Murakami and S. Ka
hi, �Pseudoelasti
ityin Au-Cd thermoelasti
 martensite�, Phil. Mag. 28(2), 277�292 (1973).[22℄ T.-H. Nam, J.-H. Kim, T.-Y. Kim, Y.-K. Lee and Y.-W. Kim, �Superelasti
ityof Ti-Ni-Cu alloy ribbons fabri
ated by melt spinning�, J. Mat. S
i. Lett. 21,1851�1853 (2002).[23℄ V. A. Chernenko, V. L'vov, J. Pons and E. Cesari, �Superelasti
ity in hightemperature Ni-Mn-Ga alloys�, J. Appl. Phys. 93, 2394�2399 (2003).[24℄ R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Ki-takami, A. F. K. Oikawa, T. Kanomata and K. Ishida, �Magneti
-�eld-indu
edshape re
overy by reverse phase transformation�, Nature Lett. 439(23), 957�960 (2006).



REFERENCES 177[25℄ S. M. Shapiro, B. X. Yang, Y. Noda, L. E. Tanner and D. S
hryvers,�Neutron-s
attering and ele
tron-mi
ros
opy studies of the premartensiti
 phe-nomena in NixAl100−x alloys�, Phys. Rev. B 44, 9301 (1991).[26℄ S. M. Shapiro, J. Z. Larese, Y. Noda, S. C. Moss and L. E. Tanner, �Neutrons
attering study of premartensiti
 behavior in Ni-Al alloys�, Phys. Rev. Lett.57(25), 3199�3202 (1986).[27℄ S. Muto, R. Oshima and F. Fujita, �Elasti
 softening and elasti
 strain energy
onsideration in the f.
.
.�f.
.t. transformation of Fe-Pd alloys�, A
ta Metall.Mater. 38(4), 685�694 (1990).[28℄ D. S
hryvers, D. E. Lahjouji, B. Slootmaekers and P. L. Potapov, �HREMinvestigation of martensite pre
ursor e�e
ts and sta
king sequen
es in Ni-Mn-Tialloys�, S
r. Mater. 35(10), 1235�1241 (1996).[29℄ J. A. Krumhansl and Y. Yamada, �Some new aspe
ts of �rst-order displa
ivephase transformations: martensites�, Mater. S
i. Eng. A 127, 167 (1990).[30℄ Y. Murakami, H. Shibuya and D. Shindo, �Pre
ursor e�e
ts of martensiti
transformations in Ti-based alloys studied by ele
tron mi
ros
opy with energy�ltering�, J. Mi
ros
. 203, 22�33 (2001).[31℄ L. Tanner, A. Pelton and R. Gronsky, �The 
hara
terization of pretransfor-mation morphologies: Periodi
 strain modulations�, J. Phys. (Paris) Colloq.43(C4), 169�172 (1982).[32℄ G. V. Tendeloo, M. Chandrasekaran and F. C. Lovey, �Modulated mi
rostru
-tures in β Cu-Zn-Al�, Metall. Trans. A 17A, 2153�2161 (1986).[33℄ S. Kartha, J. A. Krumhansl, J. P. Sethna and L. K. Wi
kham, �Disorder-driven pretransitional tweed pattern in martensiti
 transformations�, Phys. Rev.B 52(2), 803�822 (1995).[34℄ S. Sarkar, X. Ren and K. Otsuka, �Eviden
e for Strain Glass in the Ferroelasti
-Martensiti
 System Ti50−xNi50+x�, Phys. Rev. Lett. 95(20), 205702-1�205702-4 (2005).[35℄ I. M. Robertson and C. M. Wayman, �Tweed mi
rostru
tures III. Origin of thetweed 
ontrast in β and γ Ni-Al alloys�, Phil. Mag. A 48(4), 629�647 (1983).[36℄ A. Planes, L. M. nosa and E. Vives, �Vibrational behavior of b

 Cu-basedshape-memory alloys 
lose to the martensiti
 transition�, Phys. Rev. B 53(6),3039�3046 (1996).



178 REFERENCES[37℄ X. Ren, N. Miura, J. Zhang, K. Otsuka, K. Tanaka, M. Koiwa, T. Suzuki,Y. Chumlyakov and M. Asai, �A 
omparative study of elasti
 
onstants of Ti-Ni-based alloys prior to martensiti
 transformation�, Mat. S
i. Eng. A 312,196�206 (2001).[38℄ J. Worgull, E. Petti and J. Trivisonno, �Behavior of the elasti
 properties nearan intermediate phase transition in Ni2MnGa�, Phys. Rev. B 54(22), 15695�15699 (1996).[39℄ E. Cesari, V. A. Chernenko, V. V. Kokorin, J. Pons and C. Seguí, �Internalfri
tion asso
iated with the stru
tural phase transformations in Ni-Mn-Ga alloys�,A
ta Mater. 45(3), 999�1004 (1997).[40℄ S. M. Shapiro, G. Xu, B. L. Winn, D. L. S
hlagel, T. Lograsso and R.Erwin, �Anomalous phonon behavior in the high-temperature shape-memory alloyTi50Pd50−xCrx�, Phys. Rev. B 76(5), 054305-1�054305-8 (2007).[41℄ S. M. Shapiro, B. L. Winn, D. L. S
hlagel, T. Lograsso and R. Er-win, �Phonon pre
ursors to the high temperature martensiti
 transformation inTi50Pd42Cr8�, J. Phys. IV Fran
e 112, 1047�1050 (2003).[42℄ A. J. S
hwartz and L. E. Tanner, �Phase transformations and phase relationsin the TiPd-Cr pseudobinary system I. Experimental observations�, S
r. Metall.Mater. 32(5), 675�680 (1995).[43℄ Z. Nishiyama, Martensiti
 Transformation (A
ademi
 press, London, UK,1978).[44℄ M. Ahlers, �The martensiti
 transformation: Me
hanisms and 
rystallography�,Phil. Mag. A 82(6), 1093�1114 (2002).[45℄ A. Planes and L. Mañosa, �Vibrational Properties of Shape-Memory Alloys�,Solid State Phys. 55, 159�267 (2001).[46℄ F. Pérez-Re
he, E. Vives, L. Mañosa and A. Planes, �Athermal Chara
terof Stru
tural Phase Transitions�, Phys. Rev. Lett. 87(19), 195701-1�195701-4(2001).[47℄ A. Hubert and R. S
hafer, Magneti
 domains. The analysis of magneti
mi
rostru
tures (Springer, Berlin, 1998).[48℄ D. Jiles, �Re
ent advan
es and future dire
tions in magneti
 materials�, A
taMater. 51(19), 5907�5939 (2003).[49℄ F. Saurenba
h and B. D. Terris, �Imaging of ferroele
tri
 domain walls by for
emi
ros
opy�, Appl. Phys. Lett. 56(17), 1703�1705 (1990).



REFERENCES 179[50℄ J. F. S
ott, �Nanoferroele
tri
s: stati
s and dynami
s�, J. Phys.: Condens.Matter 18(17), R361�R386 (2006).[51℄ R. James and M. Wuttig, �Magnetostri
tion of martensite�, Phil. Mag. A 77,1273�1299 (1998).[52℄ T. Fukuda, T. Sakamoto, T. Kakeshita, T. Takeu
hi and K. Kishio, �Re-arrangement of Martensite Variants in Iron-Based Ferromagneti
 Shape MemoryAlloys under Magneti
 Field�, Mater. Trans. 45(2), 188�192 (2004).[53℄ M. Uehara, S. Mori, C. Chen and S.-W. Cheong, �Per
olative phase separationunderlies 
olossal magnetoresistan
e in mixed-valent manganites�, Nature 399,560�563 (1999).[54℄ N. A. Spaldin and M. Fiebig, �The renaissan
e of magnetoele
tri
 multiferroi
s�,S
ien
e 309, 391�392 (2005).[55℄ E. Dagotto, �Open questions in CMR manganites, relevan
e of 
lustered statesand analogies with other 
ompounds in
luding 
uprates�, New J. Phys. 7, 1�28(2005).[56℄ K. Ahn, T. Lookman and A. Bishop, �Strain-indu
ed metal-insulator phase
oexisten
e in perovskite manganites�, Nature 428, 401�404 (2004).[57℄ A. Moreo, M. Mayr, A. Feiguin, S. Yunoki and E. Dagotto, �Giant 
luster 
o-existen
e in doped manganites and other 
ompounds�, Phys. Rev. Lett. 84(24),5568�5571 (2000).[58℄ G. Xu, J. Wen, C. Sto
k and P. Gehring, �Phase instability indu
ed by polarnanoregions in a relaxor ferroele
tri
 system�, Nature Mat. 7, 562�566 (2008).[59℄ E. Dagotto, �Complexity in Strongly Correlated Ele
troni
 Systems�, S
ien
e309(5732), 257�262 (2005).[60℄ A. Bishop, T. Lookman, A. Saxena and S. Shenoy, �Elasti
ity-driven nanos
aletexturing in 
omplex ele
troni
 materials�, Europhys. Lett. 63(2), 289�295(2003).[61℄ Y. Murakami, D. Shindo, K. Oikawa, R. Kainuma and K. Ishida, �Mag-neti
 domain stru
tures in Co-Ni-Al shape memory alloys studied by Lorentzmi
ros
opy and ele
tron holography�, A
ta Mater. 50(8), 2173�2184 (2002).[62℄ M. Porta, T. Castán, A. Planes and A. Saxena, �Pre
ursor nanos
ale modu-lations in ferromagnets: Modeling and thermodynami
 
hara
terization�, Phys.Rev. B 72(5), 054111 (2005).



180 REFERENCES[63℄ N. Mathur and P. Littlewood, �Nanote
hnology: The third way�, Nature Ma-terials 3(4), 207�209 (2004).[64℄ R. B. Gri�ths, �Nonanalyti
 behavior above the 
riti
al point in a random Isingferromagnet�, Phys. Rev. Lett. 23, 17�19 (1969).[65℄ J. Deisenhofer, D. Braak, H.-A. K. von Nidda, J. Hemberger, R. Eremina,V. Ivanshin, A. Balbashov, G.Jug, A. Loidl, T. Kimura and Y. Tokura,�Observation of a Gri�ths phase in paramagneti
 La1−xSrxMnO3�, Phys. Rev.Lett. 95(25), 257202-1�257202-4 (2005).[66℄ A. Saxena, T. Castán, A. Planes, M. Porta, Y. Kishi, T. A. Lograsso, D.Viehland, M. Wuttig and M. De Graef, �Origin of Magneti
 and Magnetoelasti
Tweedlike Pre
ursor Modulations in Ferroi
 Materials�, Phys. Rev. Lett. 92(19),197203-1�197203-4 (2004).[67℄ Y. Wang, X. Ren and K. Otsuka, �Shape Memory E�e
t and Superelasti
ity ina Strain Glass Alloy�, Phys. Rev. Lett 97(22), 225703-1�225703-4 (2006).[68℄ Y. Wang, X. Ren, K. Otsuka and A. Saxena, �Eviden
e for broken ergodi
ityin strain glass�, Phys. Rev. B 76(13), 132201-1�132201-4 (2007).[69℄ Y. Wang, X. Ren and K. Otsuka, �Strain Glasss: Glassy Martensite�, Mater.S
i. Forum 583(22), 67�84 (2008).[70℄ Y. Zhou, D. Xue, X. Ding, K. Otsuka, J. Sun and X. Ren, �High temperaturestrain glass in Ti50(Pd50−xCrx) alloy and the asso
iated shape memory e�e
t andsuperelasti
ity�, Appl. Phys. Lett. 95, 151906-1�151906-3 (2009).[71℄ X. Ren, Y. Wang, Y. Zhou, Z. Zhang, D. Wang, G. Fan, K. Otsuka, T.Suzuki, Y. Ji, J. Zhang, Y. Tian, S. Hou and X. Ding, �Strain glass in ferroe-lasti
 systems�premartensiti
 tweed vs. strain glass�, unpublished.[72℄ Z. Zhang, Y. Wang, D. Wang, Y. Zhou, K. Otsuka and X. Ren, �Strain glassphase diagram of Ti50−xNi50+x�, unpublished.[73℄ Y. Zhou, D. Xue, X. Ding, Y. Wang, J. Zhang, Z. Zhang, K. Otsuka, J. Sunand X. Ren, �Strain glass in doped Ti50(Ni50−xDx)(D=Co, Cr, Mn) alloys. Impli-
ation for the generality of strain glass in defe
t-
ontaining ferroelasti
 systems�,unpublished.[74℄ C. Angell, �Formation of Glasses from Liquids and Biopolymers�, S
ien
e 267,1924�1935 (1995).[75℄ C. Kittel, Introdu
tion to solid state physi
s, 8 ed. (Wiley, New York, USA,2005).



REFERENCES 181[76℄ J. M. D. Coey and P. W. Readman, �New spin stru
ture in an amorphous ferri
gel�, Nature 246, 476�478 (1973).[77℄ R. Brand, P. Lunkenheimer and A. Loidl, �Relaxation dynami
s in plasti

rystals�, J. Chem. Phys. 116, 10386�10401 (2002).[78℄ D. Viehland, J. F. Li, S. J. Jang, L. E. Cross and M. Wuttig, �Glassy polar-ization behavior of relaxor ferroele
tri
s�, Phys. Rev. B 46, 8013�8017 (1992).[79℄ C. Dekker, W. Eidelloth and R. H. Ko
h, �Measurement of the Exponent
µ in the Low-Temperature Phase of Y Ba2Cu3O7−δ Films in a Magneti
 Field:Dire
t Eviden
e for a Vortex-Glass Phase�, Phys. Rev. Lett. 68(22), 3347�3350(1992).[80℄ C. Angell, �Entropy, Fragility, "lands
apes" and the glass transition�, in Complexbehaviour of glassy systems (Springer Berlin, Heidelberg, 1997), vol. 492,Chap. 1, pp. 1�21.[81℄ R. Moessner and P. Ramirez, �Geometri
al Frustration�, Physi
s today 59,24�29 (2006).[82℄ Y. Han, Y. Shokef, A. Alsayed, P. Yunker, T. Lubesnky and A. Yodh,�Geometri
 frustration in bu
kled 
olloidal monolayers�, Nature 456, 898�903(2008).[83℄ R. Wang, C. Nisoli, R. Freitas, J. Li, W. M
Conville, B. Cooley, M. Lund,N. Samarth, C. Leighton, V. Crespi and P. S
hi�er, �Arti�
ial 'spin i
e' in ageometri
ally frustrated latti
e of nanos
ale ferromagneti
 islands�, Nature 439,303�306 (2006).[84℄ E. Duman, M. A
et, Y. Elerman, A. Elmali and E. Wasserman, �Magneti
 in-tera
tions in Pr1−xTbxMn2Ge2�, J. Magn. Magn. Mater. 238(1), 11�21 (2002).[85℄ S. Shenoy and T. Lookman, �Strain pseudospins with power-law intera
tions:Glassy textures of a 
ooled 
oupled-map latti
e�, Phys. Rev. B 78(14), 144103-1�144103-17 (2008).[86℄ A. Olander, �The 
rystal stru
ture of AuCd�, Zeits
hrift Für Kristallographie83(1/2), 145�148 (1932).[87℄ S. Muto, R. Oshima and F. Fujita, �Ele
tron mi
ros
ope study on martensiti
transformations in Fe-Pt alloys: General features of internal stru
ture�, Metall.Mater. Trans. 19(11), 2723�2731 (1988).[88℄ K. Jee, P. Potapov, S. Song and M. Shin, �Shape memory e�e
t in NiAl andNiMn-based alloys�, S
r. Mater. 36(2), 207�212 (1997).



182 REFERENCES[89℄ H. Tas, L. Delaey and A. Deruyttere, �Stress indu
ed phase transformationsand the shape memory e�e
t in β1
′ 
opper-aluminum martensite�, S
r. Metall.5(12), 1117�1124 (1971).[90℄ M. Nishida, T. Hara, Y. Morizono, A. Ikeya, H. Kijima and A. Chiba,�Transmission ele
tron mi
ros
opy of twins in martensite in Ti-Pd shape memoryalloy�, A
ta Mater. 45(11), 4847�4853 (1997).[91℄ Z. Basinki and J. Christian, �Crystallography of deformation by twin boundarymovements in indium-thallium alloys�, A
ta Metall. 2, 101�116 (1954).[92℄ T. S
hroeder and C. Wayman, �Pseudoelasti
 e�e
ts in Cu-Zn single 
rystals�,A
ta Metall. 27, 405�417 (1979).[93℄ R. Fonda, H. Jones and R. Vandemeer, �The shape memory e�e
t in equiatomi
TaRu and NbRu alloys�, S
r. Metall. 39(8), 1031�1037 (1998).[94℄ G. Bar
elo, R. Rapa
ioli and M. Ahlers, �The rubber e�e
t in Cu-Zn-Al marten-site�, S
r. Metall. 12, 1069�1074 (1978).[95℄ S. Miura, S. Maeda and N. Nakanishi, �Pseudoelasti
ity in Au-Cu-Zn thermoe-lasti
 martensite�, Phil. Mag. 30, 565�581 (1974).[96℄ H. Sakamoto, Y. Kijima, K. Shimizu and K. Otsuka, �Twinning pseudoelas-ti
ity 
aused by 
y
li
 stress in a single 
rystal Cu-Al-Ni alloy�, S
r. Metall. 15,281�285 (1981).[97℄ S. Belkahla, H. Flores-Zuñiga and G. Guenin, �Elaboration and 
hara
teriza-tion of new low temperature shape memory Cu-Al-Be alloys�, Mater. S
i. Eng.169(1-2), 119�124 (1993).[98℄ H. Ishikawa, Y. Sutou, T. Omori, K. Oikawa, K. Ishida, A. Yoshikawa, R.Umetsu and R. Kainuma, �Pd-In-Fe shape memory alloy�, App. Phys. Lett.90, 261906-1�261906-3 (2007).[99℄ J. Dadda, H. J. Maier, I. Karaman and Y. I. Chumlyakov, �Cy
li
 deformationand austenite stabilization in Co35Ni35Al30 single 
rystalline high-temperatureshape memory alloys�, A
ta Mater. 57(20), 6123�6134 (2009).[100℄ T. Krenke, M. A
et, E. F. Wassermann, X. Moya, L. Mañosa and A. Planes,�Martensiti
 transitions and the nature of ferromagnetism in the austeniti
 andmartensiti
 states of Ni-Mn-Sn alloys�, Phys. Rev. B 72(1), 014412-1�014412-9(2005).



REFERENCES 183[101℄ T. Krenke, M. A
et, E. F. Wassermann, X. Moya, L. Mañosa and A. Planes,�Ferromagnetism in the austeniti
 and martensiti
 states of Ni-Mn-In alloys�,Phys. Rev. B 73(17), 174413-1�174413-10 (2006).[102℄ Y. Sutou, N. Kamiya, T. Omori, R. Kainuma, K. Ishida and K. Oikawa,�Stress-strain 
hara
teristi
s in Ni-Ga-Fe ferromagneti
 shape memory alloys�,Appl. Phys. Lett. 84(8), 1275�1277 (2004).[103℄ Z. H. Liu, M. Zhang, W. Q. Wang, W. H. Wang, J. L. Chen and G. H. Wu,�Magneti
 properties and martensiti
 transformation in quaternary Heusler alloyof NiMnFeGa�, J. Appl. Phys. 92(9), 5006�5010 (2002).[104℄ M. Ohtsuka, M. Matsumoto and K. Itagaki, �E�e
t of iron and 
obalt additionon magneti
 and shape memory properties of Ni2MnGa sputtered �lms�, Mater.S
i. Eng. 438�440, 935�939 (2006).[105℄ M. Khan, I. Dubenko, S. Stadler and N. Ali, �Magneti
 and stru
tural phasetransitions in Heusler type alloys Ni2MnGa1−xInx�, J. Phys.: Condens. Matter16, 5259�5266 (2004).[106℄ J. Juárez-Islas, R. Pérez and S. Savage, �HREM studies of rapidly solidi�edNi-Fe-Al-B shape memory alloys�, Mater. lett. 14(1), 1�6 (1992).[107℄ P. Sittner, V. Novák and N. Zárubová, �Martensiti
 transformations in [001℄CuAlZnMn single 
rystals�, A
ta. Mater. 46(4), 1265�1281 (1998).[108℄ F. Dalle, A. Pasko, P. Vermaut, V. Kolomytsev, P. O
hin and R. Portier,�Melt-spun ribbons of Ti-Hf-Ni-Re shape memory alloys: �rst investigations�, S
r.Mater. 43(4), 331�335 (2000).[109℄ T. Sohmura, R. Oshima and F. Fujita, �Thermoelasti
 FFC-FCT martensiti
transformation in Fe-Pd alloy�, S
r. Metall. 14(8), 855�856 (1980).[110℄ R. Oshima, �Su

essive martensiti
 transformations in Fe-Pd alloys�, S
r. Metall.15(8), 829�833 (1981).[111℄ M. Sugiyama, S. Harada and R. Oshima, �Change in young's modulus of ther-moelasti
 martensite Fe-Pd alloys�, S
r. Metall. 19(3), 315�317 (1985).[112℄ R. Oshima, M. Sugiyama and F. Fujita, �Tweed stru
tures asso
iated with F

-F
t transformations in Fe-Pd alloys�, Metall. Mater. Trans. A 19(4), 803�810(1988).[113℄ S. Muto, S. Takeda and R. Oshima, �Analysis of latti
e modulations in thetweed stru
ture of an Fe-Pd alloy by image pro
essing of a high-resolution ele
tronmi
rograph�, Jpn. J. Appl. Phys. 29(10), 2066�2071 (1990).



184 REFERENCES[114℄ K. Otsuka and X. Ren, �Physi
al metallurgy of Ti-Ni-based shape memory al-loys�, Prog. Mater. S
i. 50(5), 511�678 (2005).[115℄ H. Seto, Y. Noda and Y. Yamada, �Pre
ursor Phenomena at Martensiti
 PhaseTransition in Fe-Pd Alloy. I. Two-Tetragonal-Mixed Phase and Crest-Riding-Periodon�, J. Phys. So
. Jpn. 59, 965�977 (1990).[116℄ H. Seto, Y. Noda and Y. Yamada, �Pre
ursor Phenomena at Martensiti
 PhaseTransition in Fe-Pd Alloy. II. Di�use S
attering and Embryoni
 Flu
tuations�, J.Phys. So
. Jpn. 59, 978�986 (1990).[117℄ V. Sán
hez-Alar
os, V. Re
arte, J. I. Pérez-Landazábal, C. Gómez-Polo,V. A. Chernenko and M. A. González, �Reversible and irreversible martensiti
transformations in Fe-Pd and Fe-Pd-Co alloys�, Eur. Phys. J. 158(1), 107�112(2008).[118℄ S. Shabalovskaya, �Surfa
e, 
orrosion and bio
ompatibility aspe
ts of nitinol asan implant material�, Bio-Med. Mater. Engin. 12, 69�109 (2002).[119℄ H. Kato, Y. Liang and M. Taya, �Stress-indu
ed FCC/FCT phase transforma-tion in Fe-Pd alloy�, S
r. Mater. 46, 471�475 (2002).[120℄ T. Wada, Y. Liang, H. Kato, T. Tagawa, M. Taya and T.Mori, �Stru
tural
hange and straining in Fe-Pd poly
rystals by magneti
 �eld�, Mat. S
i. Eng. A361, 75�82 (2003).[121℄ T. Kakeshita and K. Ullakko, �Giant Magnetostri
tion in Ferromagneti
 Shape-Memory Alloys�, MRS Bull. 27(2), 105�109 (2002).[122℄ J. Cui, T. W. Shield and R. D. James, �Phase transformation and magneti
anisotropy of an iron-palladium ferromagneti
 shape-memory alloy�, A
ta Mater.52(1), 35�47 (2004).[123℄ T. Kakeshita and T.Fukuda, �Magneti
 �eld-indu
ed martensiti
 transforma-tions in some ferrous alloys�, Trans. Mat. Res. So
. Jpn. 25(2), 475�480 (2000).[124℄ S. Gururaja, M. Taya and Y. S. Kang, �Design of ferromagneti
 shape memoryalloy 
omposite made of Fe and TiNi parti
les�, J. Appl. Phys. 102(6), 064910-1�6 (2007).[125℄ Y. M. T. Tagawa, T. Wada and M. Taya, �Design of ferromagneti
 shapememory alloy 
omposites based on TiNi for robust and fast a
tuators�, in SmartStru
tures and Materials 2002: A
tive Materials: Behavior and Me
hani
s,edited by C. S. Lyn
h (Pro
. SPIE, San Diego, CA, USA, 2002), vol. 4699,pp. 172�181.



REFERENCES 185[126℄ G. Bars
h, B. Horovitz and J. Krumhansl, �Dynami
s of twin boundaries inmartensites�, Phys. Rev. Lett. 59, 1251�1254 (1987).[127℄ J. Eshelby, �The Determination of the Elasti
 Field of an Ellipsoidal In
lusion,and Related Problems�, Pro
. R. So
. Lond. A 241, 376�396 (1957).[128℄ A. G. Kha
haturyan, The Theory of Stru
tural Transformations in Solids(Wiley, New York, 1983).[129℄ A. Roitburd, �The domain stru
ture of 
rystals formed in the solid state�, Sov.Phys. Solid State 10(12), 2870�2876 (1969).[130℄ A. G. Kha
haturyan and G. A. Shatalov, �Theory of ma
ros
opi
 periodi
ityfor a phase transition in the solid state�, Sov. Phys. JETP 29, 557�661 (1969).[131℄ A. Artemev, Y. jin and A. G. Kha
haturyan, �Three-dimensional phase�eld model of proper martensiti
 transformation�, A
ta mater. 49, 1165�1177(2001).[132℄ Y. Jin, A. Artemev and A. G. Kha
haturyan, �Three-dimensional phase �eldmodel of low-symmetry martensiti
 transformation in poly
rystal: Simuation of
ζ ′2 martensite in AuCd alloys�, A
ta mater. 49, 2309�2320 (2001).[133℄ J. Zhang and L. Chen, �Phase-�eld mi
roelasti
ity theory and mi
romag-neti
 simulations of domain stru
tures in giant magnetostri
tive materials�, A
taMater. 53(9), 2845�2855 (2005).[134℄ M. We
hsler, D. Lieberman and T. Read, �On the theory of the formation ofmartensite�, Trans. Metall. So
. AIME 197, 1503�1515 (1953).[135℄ J. Ball and R. James, �Fine phase mixtures as minimizers of energy�, Ar
h.ration. Me
h. Analysis 100, 13�52 (1987).[136℄ F. Falk, �Model free energy, me
hani
s, and themordynami
s of shape memoryalloys�, A
ta Metall. 28, 1773�1780 (1980).[137℄ F. Falk, �Ginzburg-Landau Theory of Stati
 Domain Walls in Shape-MemoryAlloys�, Z. Phys. B 51, 177�185 (1983).[138℄ A. Ja
obs, �Solitons of the square-re
tangular martensiti
 transition�, Phys. Rev.B 31, 5984�5989 (1985).[139℄ G. Bars
h and J. Krumhansl, �Nonlinear and nonlo
al 
ontinuum model oftransformation pre
ursors in martensites�, Metall. Trans. A 19(4), 761�775(1988).



186 REFERENCES[140℄ A. Saxena and T. Lookman, in Handbook of materials modeling, edited byS. Yip (Springer, Berlin, 2005), pp. 2143�2155.[141℄ P. Podio-Guidugli, �The 
ompatibility 
onstraint in linear elasti
ity�, J. Elas.59, 393-398 (2000).[142℄ W. Kerr, M. Killough, A. Saxena, P. Swart and A. Bishop, �Role of elas-ti
 
ompatibility in martensiti
 texture evolution�, Phase Trans. 69, 247�270(1999).[143℄ K. Rasmussen, T. Lookman, A. Saxena, A. Bishop, R. Albers and S. Shenoy,�Three-dimensional elasti
 
ompatibility and varieties of twins in martensites�,Phys. Rev. Lett. 87, 055704-1�055704-4 (2001).[144℄ T. Lookman, S. Shenoy, K. Rasmussen, A. Saxena and A. Bishop, �Ferroelas-ti
 dynami
s and strain 
ompatibility�, Phys. Rev. B 67, 024114-1�024114-27(2003).[145℄ A. Saxena, T. Lookman, A. Bishop and S. Shenoy, in Pro
. Intrinsi
 multi-s
ale stru
ture and dynami
s in 
omplex ele
troni
 oxides (World S
ienti�
Publishing Co. Pte. Ltd., Singapore, 2003), pp. 84�97.[146℄ R. Ahluwalia, T. Lookman and A. Saxena, �Dynami
 strain loading of Cubi
to Tetragonal Martensites�, A
ta Mater. 54(8), 2109�2120 (2006).[147℄ V. I. Levitas and D. L. Preston, �Three-dimensional Landau the-ory for multivariant stress-indu
ed martensiti
 phase transformations. I.Austenite↔martensite�, Phys. Rev. B 66, 134206-1�134206-9 (2002).[148℄ V. I. Levitas and D. L. Preston, �Three-dimensional Landau theory for multi-variant stress-indu
ed martensiti
 phase transformations. II. Multivariant phasetransformations and stress spa
e analysis�, Phys. Rev. B 66, 134207-1�134207-15 (2002).[149℄ D. Sherrington, �A simple spin glass perspe
tive on martensiti
 shape-memoryalloys�, J. Phys.: Condens. Matter 20(30), 304213-1�5 (2008).[150℄ K. Tanaka, F. Nishimura, T. Hayashi, H. Tobushi and C. Lex
ellent, �Phe-nomenologi
al analysis on subloops and 
y
li
 behavior in shape memory alloysunder me
hani
al and/or thermal loads�, Me
h. Mater. 19, 281�292 (1995).[151℄ W. Yan, C. H. Wang, X. P. Zhang and Y. W. Mai, �Theoreti
al modellingof the e�e
t of plasti
ity on reverse transformation in superelasti
 shape memoryalloys�, Mat. S
i. Eng. A 354, 146�157 (2003).



REFERENCES 187[152℄ C. Maletta, A. Falvo, F. Furgiuele and J. N. Reddy, �A phenomenologi-
al model for superelasti
ity in NiTi alloys�, Smart Mat. Str. 18, 025005-1�9(2009).[153℄ A. Bru
e and R. Cowley, Stru
tural Phase Transitions (Taylor and Fran
is,London, 1981).[154℄ L. D. Landau and E. M. Lifshitz, Theory of Elasti
ity (Pergamon Press,Oxford, 1986).[155℄ A. Bray, �Theory of phase ordering kineti
s�, Adv. Phys. 43, 357�459 (1994).[156℄ V. I. Levitas and D. W. Lee, �Athermal resistan
e to interfa
e motion in thephase-�eld theory of mi
rostru
ture evolution�, Phys. Rev. Lett. 99, 245701-1�245701-4 (2007).[157℄ V. I. Levitas, D. W. Lee and D. L. Preston, �Interfa
e propagation and mi-
rostru
ture evolution in phase �eld models of stress-indu
ed martensiti
 phasetransformations�, Int. J. Plast. 26, 395�422 (2010).[158℄ T. I
hitsubo, K. Tanaka, M. Koiwa and Y. Yamazaki, �Kineti
s of 
ubi
 totetragonal transformation under external �eld by the time-dependent Ginzburg-Landau approa
h�, Phys. Rev. B 62(9), 5435-5441 (2000).[159℄ C. Be
quart, P. Clapp and J. Rifkin, �Mole
ular-dynami
s simulation of tweedstru
ture and the ω phase in Ni-Al�, Phys. Rev. B 48(1), 6�13 (1993).[160℄ S. Semenovskaya and A. G. Kha
haturyan, �Coherent stru
tural transforma-tions in random 
rystalline systems�, A
ta Mater. 45, 4367�4384 (1997).[161℄ URL: http://www.�tw.org/.[162℄ W. Press, S. Teukolsky, W. Vettering and B. Flannery, Numeri
al re
ipes inFortran (Cambridge University Press, New York, USA, 1992).[163℄ M.-S. Choi, T. Fukuda and T. Kakeshita, �Anomalies in resistivity, magneti
sus
eptibility and spe
i�
 heat in iron-doped Ti-Ni shape memory alloys�, S
r.Mater. 53(7), 869�873 (2005).[164℄ S. Semenovskaya, Y. Zhu, M. Suenaga and A. G. Kha
haturyan, �Twin andtweed mi
rostru
tures in YBa2Cu3O7−δ doped by trivalent 
ations�, Phys. Rev.B 47(18), 12182�12189 (1993).[165℄ Y. Xu, M. Suenaga, J. Tafto, R. Sabatini, A. Moodenbaugh andP. Zolliker, �Mi
rostru
ture, latti
e parameters, and super
ondu
tivity ofYBa2(Cu1−xFex)3O7−δ for 0 ≤ x ≤ 0.33�, Phys. Rev. B 39(10), 6667�6680(1989).



188 REFERENCES[166℄ W. S
hmahl, A. Putnis, E. Salje, P. Freeman, A. Graeme-Barber, R. Jones,K. Singh, J. Blunt, P. Edwards, J. Loram and K. Mirza, �Twin formation andstru
tural modulations in orthorombi
 and tetragonal YBa2(Cu1−xCox)3O7−δ�,Phil. Mag. Lett. 60(6), 241�248 (1989).[167℄ B. Horovitz, G. Bars
h and J.A.Krumhansl, �Twin bands in martensites: Stat-i
s and dynami
s�, Phys. Rev. B 43, 1021�1033 (1991).[168℄ S. Shenoy, T. Lookman, A. Saxena and A. Bishop, �Martensiti
 textures:Multis
ale 
onsequen
es of elasti
 
ompatibility�, Phys. Rev. B 60, R12537�R12541 (1999).[169℄ C. Leroux, A. Loiseau, G. Broddin and G. V. Tendeloo, �Ele
tron mi
ros
opystudy of the 
oherent two-phase mixtures L10 +L12 in Co-Pt alloys�, Phil. Mag.B 64, 57�82 (1991).[170℄ K. I. U. and, �Stru
tural aspe
ts of AuCu I or AuCu II and a 
uboidal blo
k
on�guration of f

 disordered phase in AuCu-Pt and AuCu-Ag pseudobinaryalloys�, Mater. S
i. Eng. A 203, 154�164 (1995).[171℄ S. Yeo, Y. Horibe, S. Mori, C. M. Tseng, C. H. Chen, A. G. Kha
haturyan,C. L. Zhang and S. W. Cheong, �Solid state sel-assembly of nano
he
kerboards�,Appl. Phys. Lett. 89, 233120 (2006).[172℄ B. S. Guilton and P. K. Davies, �Nano-
hessboard superlatti
es formed by spon-taneous phase separation in oxides�, Nature Mater. 6, 586�591 (2007).[173℄ E. Salje and Y. Ishibashi, �Mesos
opi
 stru
tures in ferroelasti
 
rystals: nee-dle twins and right-angled domains�, J. Phys.: Condens. Matter 8(44), 8477(1996).[174℄ A. Saxena, S. R. Shenoy, A. R. Bishop, Y. Wu and T. Lookman, �Hierar
hi
almi
rostru
ture in stru
tural phase transitions�, Phase transitions 67, 481�498(1998).[175℄ S. Nagata, P. Keesom and H.R.Harrison, �Low-d
-�eld sus
eptibility of CuMnspin glass�, Phys. Rev. B 19(3), 1633�1638 (1979).[176℄ B. Martínez, X. Obradors, L. Bal
ells, A. Rouret and C. Monty, �Low tem-perature surfa
e spin-glass transition in γ-Fe2O3 nanoparti
les�, Phys. Rev. Lett.80(1), 181�184 (1998).[177℄ V. Canella and J. Mydosh, �Magneti
 ordering in Gold-Iron Alloys�, Phys. Rev.B 6, 4220�4237 (1976).



REFERENCES 189[178℄ E. Bonnot, R. Romero, X. Illa, L. Mañosa, A. Planes and E. Vives, �Hys-teresis in a system driven by either generalized for
e or displa
ement variables:Martensiti
 phase transition in single-
rystalline Cu-Al-Zn�, Phys. Rev. B 76,064105-1�064105-5 (2007).[179℄ J. Cui, Y. Chu, O. Famodu, Y.Furuya, J. Hattri
k-Simpers, R. James, A.Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang and I. Takeu
hi, �Combinato-rial sear
h of thermoelasti
 shape-memory alloys with extremely small hysteresiswidth�, Nature Mat. 5, 286�290 (2006).[180℄ Z. Zhang, R. James and S. Müller, �Energy barriers and hysteresis in martensiti
phase transformations�, A
ta Mater. 57, 4332�4352 (2009).[181℄ R. Delville, S. Kasinathan, Z. Zhang, J. V. Humbee
k, R. D. James andD. S
hryvers, �Transimission ele
tron mi
ros
opy study of phase 
ompatibility inlow hysteresis shape memory alloys�, Phil. Mag. 90(1-4), 177-195 (2010).[182℄ M. W. Zemansky and R. H. Dittman, Calor y termodinámi
a (M
Graw-Hill,Madrid, 1984).[183℄ E. Bonnot, R. Romero, L. Mañosa, E. Vives and A. Planes, �Elasto
alori
 Ef-fe
t Asso
iated with the Martensiti
 Transition in Shape-Memory Alloys�, Phys.Rev. Lett. 100(12), 125901-1�125901-4 (2008).[184℄ A. Tishin, �Magneto
alori
 e�e
t in the vi
inity of magneti
 phase transitions�,in Handbook of Magneti
 Materials, edited by K. Bus
how (Elsevier S
ien
e,Amsterdam, 1998), vol. 12.[185℄ A. Romanov and V. Silin, Phys. Met. Metallogr. 83, 111 (1997).[186℄ F. Casanova, A. Labarta, X. Batlle, J. Mar
os, L. Mañosa, A. Planes and S.de Brion, �E�e
t of a magneti
 �eld on the magnetostru
tural phase transitionin Gd5(SixGe1−x)4�, Phys. Rev. B 69(10), 104416-1�104416-7 (2004).[187℄ T. Krenke, E. Duman, M. A
et, E. Wassermann, X. Moya, L. Mañosa andA. Planes, �Inverse magneto
alori
 e�e
t in ferromagneti
 Ni-Mn-Sn alloys�, Nat.Mat. Lett. 4, 450�454 (2005).[188℄ T. Kakeshita, T. Fukuda and T. Takeu
hi, �Magneto-me
hani
al evaluation fortwinning plane movement driven by magneti
 �eld in erromagneti
 shape memoryalloys�, Mater. S
i. Eng. A 438�440, 12�17 (206).[189℄ Y. Zhu and G. Dui, �Mi
rome
hani
al modeling of the stress-indu
ed superelasti
strain in magneti
 shape memory alloy�, Me
h. Mater. 39, 1025�1034 (2007).



190 REFERENCES[190℄ P. P. Wu, X. Q. Ma, J. X. Zhang and L. Q. Chen, �Phase-�eld simulations ofstress-strain behavior in ferromagneti
 shape memory alloy Ni2MnGa�, J. Appl.Phys. 104(7), 073906-1�073906-5 (2008).[191℄ N. I. Glavatska, A. A. Rudenko, I. N. Glavatskiy and V. A. L'vov, �Statisti
almodel of magnetostrain e�e
t in martensite�, J. Magn. Magn. Mater. 265, 142�151 (2003).[192℄ A. Morrish, The physi
al prin
iples of magnetism (Wiley, New York, USA,1995).[193℄ J. Fidler and T. S
hre�, �Mi
romagneti
 modelling�the 
urrent state of the art�,J. Phys. D: Appl Phys 33, R135�156 (2000).[194℄ R. M
Mi
hael, M. Donahue, D. Porter and J. Ei
ke, �Comparison of magne-tostati
 �eld 
al
ulation methods on two-dimensional square grids as applied to ami
romagneti
 standard problem�, J. Appl. Phys. 85(8), 5816�5818 (1999).[195℄ C. Kittel, �Physi
al Theory of Ferromagneti
 Domains�, Rev. Mod. Phys. 21(4),541�583 (1949).[196℄ J. Deuts
h and A. Berger, �Spin pre
ession and avalan
hes�, Phys. Rev. Lett.99, 027207-1�027207-4 (2007).[197℄ S. Iwata, S. Isomura, S. Shiomi and S. U
hiyama, �Dependen
e of wall dynam-i
s on damping 
onstant in bubble �lms�, IEEE Trans. Magn. 18(6), 1343�1345(1982).[198℄ T. O'Dell, Ferromagnetodynami
s: The dynami
s of mangeti
 bubbles, do-mains and domain walls (John Wiley and Sons, New York, USA, 1981).[199℄ C. M. A. Capella and F. Otto, �Wave-type dynami
s in ferromagneti
 thin �lmsand the motion of Néel walls�, Nonlinearity 20, 2519�2537 (2007).[200℄ K. Fabian, A. Kir
hner, W. Williams, F. Heider and T. Leibl, �Three-dimensional mi
romagneti
 
al
ulations for magnetite using FFT�, Geophys. J.Int. 124, 89�104 (1996).[201℄ A. E. Labonte, �Two-dimensional Blo
h-type domain walls in ferromagneti
�lms�, J. Appl. Phys. 40(6), 2450 (1969).[202℄ S. W. Yuan and H. N. Bertram, �Domain-wall dynami
 transitions in thin�lms�, Phys. Rev. B 44(22), 12395�12405 (1991).



REFERENCES 191[203℄ L. G. Korzunin, B. N. Filippov, F. A. Kassan-Ogly and I. Chaikovsky, �Anovel type of domain walls with two-dimensional magnetization distribution inmagneti
 triaxial �lms�, J. Magn. Magn. Mater. 298, 1�6 (2006).[204℄ J. Gar
ía-Ojalvo and J. San
ho, Noise in spatially extended systems(Springer, New York, 1999).[205℄ D. Berkov, K. Ramstö

k and A. Hubert, �Solving Mi
romagneti
 Problems.Towards an Optimal Numeri
al Method�, Phys. Stat. Sol. A 137(1), 207�225(1993).[206℄ S. Yuan and H. Bertram, �Fast adaptive algorithms for mi
romagneti
s�, IEEETrans. Magn. 28(5), 2031�2036 (1992).[207℄ N. Hayashi, K. Saito and Y. Nakatani, �Cal
ulation of demagnetizing �elddistribution based on Fast Fourier Transform of 
onvolution�, Jpn. J. Appl. Phys.35(12A), 6065�6073 (1996).[208℄ A. Aharoni, Introdu
tion to the theory of ferromagnetism (Clarendon Press,Oxford, 1996).[209℄ W. S
holz, �Mi
romagneti
 simulation of thermally a
tivated swit
hing in �neparti
les�, Ph.D. Thesis, Wien, 1999.[210℄ S. Chikazumi and N. Imamura, �Computer 
al
ulation of fanning spin stru
turein magneti
 thin �lms and determination of ex
hange sti�ness 
onstant�, Cze
h.J. Phys. B 21(4�5), 537�540 (1971).[211℄ M. Ondris and Z. Frait, �Ferromagneti
 resonan
e in thin permalloy �lms�,Cze
h. J. Phys. B 11(12), 883�885 (1961).[212℄ J. Atulasimha, �Chara
terization and modeling of the magnetome
hani
al behav-ior of iron-gallium alloys�, Ph.D. Thesis, Univ. Maryland, Maryland, 2006.[213℄ J. Weston, A. Butera, T. Lograsso, M. Shamsuzzoha, I. Zana, G. Zangariand J. Barnard, �Fabri
ation and 
hara
terization of Fe81Ga19 thin �lms�, IEEETrans. Magn. 38(5), 2832�2834 (2002).[214℄ P. Hong and G. Olson, �Magneti
 origin of the latti
e instability of FePd alloys�,J. Magn. Magn. Mat. 129(2�3), 191�199 (1994).[215℄ M. Hansen, Constitution of binary alloys, 2nd ed. (M
Graw-Hill, New York,USA, 1958).



192 REFERENCESPubli
ations
• M. Porta, T. Castán, P. Lloveras, A. Planes and A. Saxena, Spatially 
or-related disorder in self-organized pre
ursor magneti
 nanostru
tures Phys.Rev. B 76, 054432 (2007).
• P.Lloveras, T. Castán, M. Porta, A. Planes and A. Saxena, In�uen
e ofElasti
 Anisotropy on Stru
tural Nanos
ale Textures, Phys. Rev. Lett 100,165707 (2008).
• M. Porta, T. Castán, P. Lloveras, T. Lookman, A. Saxena and S.R. Shenoy,Interfa
es in ferroelasti
s: Fringing �elds, mi
rostru
ture, and size andshape e�e
ts, Phys. Rev. B 79, 214117 (2009).
• P.Lloveras, T. Castán, M. Porta, A. Planes and A. Saxena, Glassy behaviorin martensites: Interplay between elasti
 anisotropy and disorder in zero-�eld-
ooling/�eld-
ooling simulation experiments, Phys. Rev. B 80, 054107(2009).
• X. Ren, Y. Wang, K. Otsuka, P. Lloveras, T. Castán, M. Porta, A. Planesand A. Saxena, Ferroelasti
 nanostru
tures and nanos
ale transitions: Fer-roi
s with point defe
ts, MRS Bull. 34, 838 (2009).
• P.Lloveras, T. Castán, M. Porta, A. Planes and A. Saxena, Thermodynami
sof stress-indu
ed ferroelasti
 transitions: In�uen
e of anisotropy and disor-der, Phys. Rev. B, to be published.


	PLM_COVER
	tesi



