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Abstract

As one of our most successful theories, quantum theory has greatly strengthened our
understanding of nature and significantly advanced technologies. Specifically, quan-
tum effects provide advantages in a broad range of information processing tasks. The
exploration of the interplay of quantum phenomena and information theory is the in-
terdisciplinary field dubbed quantum information theory. Since its inception, quan-
tum information theory has revolutionised our understanding of quantum phenom-
ena and shown that various quantum properties act as resources for performing useful
tasks, such as computation, information transmission, energy extraction, cryptography,
metrology, and information storage. These findings set the stage for the theoretical ap-
proaches termed quantum resource theories, which allow in a mathematically rigorous
fashion to describe a wide range of quantum phenomena. Quantum information theory
identifies several intriguing quantum properties, and quantum resource theories provide
the means to construct the ‘rulers’ to measure these properties operationally. However,
despite their great success in describing ‘static’ quantum phenomena, it was unknown
whether resource theories would be as powerful in their descriptions of physical sys-
tems that ‘evolve in time’, namely, when we consider ‘dynamical’ quantum properties.
Recent results have allowed us to extend quantum resource theories to the dynami-
cal regime, which has already revealed novel links between quantum communication,
quantum memory, and quantum thermodynamics. This thesis aims at substantially
developing this newly-established, interdisciplinary research direction that is called
dynamical resource theories.

The main contributions of the thesis are divided into three parts. The first part
(Chapter 3) focuses on improving our understanding of dynamical resource theories’
general structures. Adopting the resource-theoretical approaches, we formulate ‘the
ability of quantum dynamics to preserve a physical property’ as a dynamical resource.
The resulting framework is called resource preservability theories. We systematically
study their theoretical structures and further explore their applications to communica-
tion and thermodynamics. More specifically, resource preservability theories enable
us to understand the connections between (a) the ability of a quantum dynamics to
keep systems out of thermal equilibrium, (b) the smallest heat bath size needed to ther-
malise all outputs of a quantum dynamics, and (c) the ability of a quantum dynamics
to transmit classical information. This draws one of the first quantitative links between
quantum communication and thermodynamics.

In the second part (Chapter 4), we upgrade our discussion from a single quantum
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dynamics to a collection of local quantum dynamics. In this regime, an important ques-
tion is whether the given local dynamics can be realised simultaneously; namely, as the
marginals of a single, global dynamics. To systematically address this question, we in-
troduce the channel marginal problems (CMPs), which are dynamical generalisations
of the well-known state marginal problems. Using the resource-theoretical approach,
we analyze CMPs’ general solutions via semi-definite programming, which helps us
derive a witness form and operational interpretations of CMPs. Our findings also show
that fundamental principles such as entanglement monogamy and no-cloning theorem
play an essential role in CMPs.

Finally, in the last part (Chapter 5), we consider a specific question that is behind
the structures of dynamical resource theories and channel marginal problems: We ask
whether globally distributed quantum entanglement can survive locally performed ther-
malisation when shared randomness is the only allowed resource to assist the process.
Such a dynamics, whenever it exists, is called entanglement preserving local thermal-
isation (EPLT). We show that EPLTs exist for every nonzero local temperatures and
non-degenerate finite-energy local Hamiltonians. Our findings illustrate the generality
of EPLTs. Moreover, we discuss the physical mechanism behind EPLTs, and our cal-
culation suggests that EPLTs’ existence relies on a ‘speed-up effect’ of thermalisation
that happens locally.

In summary, in this thesis we contribute to the field of dynamical resource theo-
ries by introducing general frameworks to describe quantum resource preservation and
compatibility of local quantum dynamics. Our general results have implications across
quantum physics, quantum communication, thermodynamics of quantum systems, and
causal structures.



Resumen

Siendo una de nuestras teorı́as con más éxito, la teorı́a cuántica ha fortalecido en gran
medida nuestra comprensión de la naturaleza y las tecnologı́as significativamente avan-
zadas. En concreto, los efectos cuánticos traen consigo ventajas en una amplia gama
de tareas de procesamiento de información. La exploración de la interacción de los
fenómenos cuánticos y la teorı́a de la información es el campo interdisciplinario de-
nominado teorı́a cuántica de la información. Desde sus inicios, la teorı́a de la infor-
mación cuántica ha revolucionado nuestra comprensión de los fenómenos cuánticos y
ha demostrado que varias propiedades cuánticas actúan como recursos para realizar tar-
eas útiles, como computación, transmisión de información, extracción de energı́a, crip-
tografı́a, metrologı́a y almacenamiento de información. Estos hallazgos preparan el es-
cenario para los enfoques teóricos denominados teorı́as cuánticas de recursos, que per-
miten describir de manera matemáticamente rigurosa una amplia gama de fenómenos
cuánticos. La teorı́a de la información cuántica identifica varias propiedades cuánticas
intrigantes, y las teorı́as de recursos cuánticos proporcionan los medios para construir
las ”reglas” para medir estas propiedades. Sin embargo, a pesar de su gran éxito en
la descripción de fenómenos cuánticos ”estáticos”, se desconocı́a si las teorı́as de re-
cursos serı́an tan poderosas en sus descripciones de sistemas fı́sicos que ”evolucionan
en el tiempo”, es decir, cuando consideramos las propiedades cuánticas ”dinámicas”.
Los resultados recientes nos han permitido extender las teorı́as cuánticas de recursos
al régimen dinámico, lo que ya ha revelado novedosos vı́nculos entre la comunicación
cuántica, la memoria cuántica y la termodinámica cuántica. Esta tesis tiene como
objetivo desarrollar sustancialmente esta dirección de investigación interdisciplinaria
recientemente establecida que se llama em teorı́as dinámicas de recursos.

Las principales contribuciones de la tesis se dividen en tres partes. La primera parte
(Capı́tulo 3) se enfoca en mejorar nuestra comprensión de las estructuras generales de
las teorı́as dinámicas de recursos. Adoptando los enfoques teóricos de los recursos, for-
mulamos ”la capacidad de la dinámica cuántica para preservar una propiedad fı́sica”
como un recurso dinámico. El marco resultante se denomina teorı́as de conservación
de recursos. Estudiamos sistemáticamente sus estructuras teóricas y exploramos más a
fondo sus aplicaciones en la comunicación y la termodinámica. Más especı́ficamente,
las teorı́as de conservación de recursos nos permiten comprender las conexiones entre
(a) la capacidad de una dinámica cuántica para mantener los sistemas fuera del equi-
librio térmico, (b) el tamaño más pequeño del baño de calor que es necesario para
termalizar todas las salidas de la dinámica cuántica y ( c) la capacidad de la dinámica
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cuántica para transmitir información clásica. Esto dibuja uno de los primeros vı́nculos
cuantitativos entre la comunicación cuántica y la termodinámica.

En la segunda parte (Capı́tulo 4), generalizamos nuestra discusión de una única
dinámica cuántica a una colección de dinámicas cuánticas locales. En este régimen,
una pregunta importante es si la dinámica local dada puede realizarse simultáneamente;
es decir, como los marginales de una única dinámica global. Para abordar sistemáticamente
esta pregunta, presentamos los problemas marginales de canal (CMP), que son gener-
alizaciones dinámicas de los conocidos problemas marginales de estado. Utilizando el
enfoque teórico de recursos, analizamos las soluciones generales de los CMP a través
de lo que se conoce como programación semidefinida, lo que nos ayuda a derivar
una forma de comprobar los CMP y nos da interpretaciones operativas de los mis-
mos. Nuestros hallazgos también muestran que los principios fundamentales como la
monogamia del entrelazamiento y el teorema de no-clonación juegan un papel esencial
en los CMP.

Finalmente, en la última parte (Capı́tulo 5), consideramos una pregunta especı́fica
que está detrás de las estructuras de las teorı́as de recursos dinámicos y los proble-
mas marginales del canal: nos preguntamos si el entrelazamiento cuántico distribuido
globalmente puede sobrevivir a la termalización realizada localmente cuando la aleato-
riedad compartida es el único recurso permitido para ayudar en el proceso. Esa dinámica,
siempre que exista, se denomina entrelazamiento que preserva la termalización local
(EPLT). Demostramos que los EPLT existen para todas las temperaturas locales dis-
tintas de cero y hamiltonianos locales de energı́a finita no degenerados. Nuestros hal-
lazgos ilustran la generalidad de los EPLT. Además, discutimos el mecanismo fı́sico
detrás de los EPLT, y nuestro cálculo sugiere que la existencia de los EPLT se basa en
un ”efecto de aceleración” de la termalización que ocurre localmente.

En resumen, en esta tesis contribuimos al campo de las teorı́as de recursos dinámicos
mediante la introducción de marcos generales para describir la preservación de recur-
sos cuánticos y la compatibilidad de la dinámica cuántica local. Nuestros resultados
generales tienen implicaciones en la fı́sica cuántica, la comunicación cuántica, la ter-
modinámica de los sistemas cuánticos y las estructuras causales.



Resum

Essent una de les nostres teories amb més èxit, la teoria quàntica ha enfortit molt la
nostra comprensió de la natura i les tecnologies significativament avançades. Concreta-
ment, els efectes quàntics proporcionen avantatges en una àmplia gamma de tasques de
processament de la informació. L’exploració de la interacció dels fenòmens quàntics
i la teoria de la informació és el camp interdisciplinari anomenat teoria de la infor-
mació quàntica. Des dels seus inicis, la teoria de la informació quàntica ha revolu-
cionat la nostra comprensió dels fenòmens quàntics i ha demostrat que diverses propi-
etats quàntiques actuen com a recursos per realitzar tasques útils, com ara la com-
putació, la transmissió d’informació, l’extracció d’energia, la criptografia, la metrolo-
gia i l’emmagatzematge d’informació. Aquests descobriments han establert l’escenari
per als enfocaments teòrics que s’anomenen teories de recursos quàntics, i que per-
meten descriure de manera matemàticament rigorosa una àmplia gamma de fenòmens
quàntics. La teoria de la informació quàntica identifica diverses propietats quàntiques
intrigants, i les teories dels recursos quàntics proporcionen els mitjans per construir les
”normes” per mesurar aquestes propietats de manera operativa. Tanmateix, malgrat el
seu gran èxit a l’hora de descriure fenòmens quàntics ”estàtics”, es desconeixia si les
teories dels recursos serien tan poderoses en les seves descripcions de sistemes fı́sics
que ”evolucionen en el temps”, és a dir, quan considerem les propietats quàntiques
”dinàmiques”. Els resultats recents ens han permès estendre les teories dels recursos
quàntics al règim dinàmic, que ja ha revelat vincles novedosos entre la comunicació
quàntica, la memòria quàntica i la termodinàmica quàntica. Aquesta tesi té com a
objectiu desenvolupar substancialment aquesta direcció de recerca interdisciplinària
recentment establerta que s’anomena teories de recursos dinàmics.

Les principals contribucions d’aquesta tesi es divideixen en tres parts. La primera
part (Capı́tol 3) se centra en millorar la nostra comprensió de les estructures generals
de les teories de recursos dinàmics. Adoptant els enfocaments teòrics dels recursos,
formulem ”la capacitat de la dinàmica quàntica de preservar una propietat fı́sica” com
a recurs dinàmic. El marc resultant s’anomena teories de preservabilitat de recur-
sos. Estudiem sistemàticament les seves estructures teòriques i explorem més les seves
aplicacions a la comunicació i la termodinàmica. Més concretament, les teories de la
preservació dels recursos ens permeten entendre les connexions entre (a) la capacitat
d’una dinàmica quàntica per mantenir els sistemes fora de l’equilibri tèrmic, (b) la mida
més petita del bany de calor necessària per termalitzar totes les sortides d’una dinàmica
quàntica i ( c) la capacitat d’una dinàmica quàntica per transmetre informació clàssica.
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Això dibuixa un dels primers vincles quantitatius entre la comunicació quàntica i la
termodinàmica.

A la segona part (Capı́tol 4), anem més enllà de la nostra discussió d’una única
dinàmica quàntica, considerant una col·lecció de dinàmiques quàntiques locals. En
aquest règim, una qüestió important és si la dinàmica local donada es pot realitzar
simultàniament; és a dir, com els marginals d’una única dinàmica global. Per abordar
aquesta qüestió sistemàticament, introduı̈m els problemes marginals de canal (CMP),
que són generalitzacions dinàmiques dels coneguts problemes marginals d’estat. Fent
ús de l’enfocament teòric dels recursos, analitzem les solucions generals dels CMP
mitjançant el que es coneix com a programació semidefinida, que ens ajuda a obtenir
una forma de corroborar els CMP i les seves interpretacions operatives. Els nostres
resultats també mostren que principis fonamentals com la monogàmia d’entrellaçament
i el teorema de no-clonació tenen un paper essencial en els CMP.

Finalment, a l’última part (Capı́tol 5), considerem una qüestió especı́fica que hi
ha darrere de les estructures de les teories dels recursos dinàmics i dels problemes
marginals del canal: ens preguntem si l’entrellaçament quàntic distribuı̈t globalment
pot sobreviure a la termalització realitzada localment quan l’aleatorietat compartida és
l’únic recurs permès per ajudar el procés. Aquesta dinàmica, sempre i quan existeixi,
s’anomena entrellaçament que preserva la termalització local (EPLT). Mostrem que
els EPLT existeixen per a qualsevol temperatura local diferent de zero i hamiltonians
locals d’energia finita no degenerada. Els nostres resultats il·lustren la generalitat dels
EPLT. A més, discutim el mecanisme fı́sic darrere dels EPLT, i el nostre càlcul sug-
gereix que l’existència dels EPLT depèn d’un ”efecte d’acceleració” de la termalització
que es produeix localment.

En resum, en aquesta tesi contribuı̈m al camp de les teories de recursos dinàmics
introduint marcs generals per descriure la preservació dels recursos quàntics i la com-
patibilitat de la dinàmica quàntica local. Els nostres resultats generals tenen implica-
cions en la fı́sica quàntica, la comunicació quàntica, la termodinàmica dels sistemes
quàntics i les estructures causals.
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Chapter 1

Introduction

As one of our most experimentally well-tested theories, quantum theory has greatly
deepened our understanding of nature and significantly advanced technology. It reveals
intriguing phenomena that are not only fundamentally important, but they can also be
understood as resources for performing useful tasks, such as computation, cryptogra-
phy, and information processing. For instance, quantum entanglement enables one to
teleport unknown quantum systems deterministically and faithfully. The connections
between information science and quantum theory have revolutionised our understand-
ing of the latter, opening the door to quantum information theory.

One central goal of quantum information theory is to identify different notions of
‘resources’ in various operational tasks. Since the development of quantum entangle-
ment theory, it was recognised that many quantum phenomena are able to serve as
different types of resources. Consequently, it is of great importance to search for a
general, systematic umbrella covering them all under a single framework. These ef-
forts led to the inception of theoretical approaches dubbed quantum resource theories,
or simply resource theories, which have shown their ability in providing a quantitative
understanding of properties of physical phenomena that do not fit the usual notion of
quantum observable. In other words, quantum information theory and resource theo-
ries provide the ‘rulers’ enabling researchers to measure properties such as entangle-
ment, which, differently from energy, angular momentum, etc., is not associated to any
natural observable.

The resource-theoretic approach [10] has succeeded in quantitatively describing
a broad range of static physical phenomena, such as, but not limited to, entangle-
ment [11], coherence [12], athermality [13], nonlocality [14], and steering [15, 16]. Its
generality and flexibility make it a commonly-used, powerful underpinning of the study
of quantum information theory and related areas. Nevertheless, despite its success in
characterising static quantum phenomena, it was unknown whether it would be as pow-
erful when things start to change in time, namely, when we consider dynamical features
of quantum systems, which play vital roles in the study of, e.g., quantum communica-
tion, quantum memory, and open quantum system. Let us make a concrete example.
The resource-theoretic approach has provided us with an analytical way to quantify
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and compare entanglement contents of different quantum systems. Nevertheless, it
was unclear how the same approach applies to understanding the ability of a quantum
dynamics to maintain entanglement, a property which is indispensable in developing
the theory of quantum memories [17]. Hence, in 2019, researchers started to extend
the applicability of resource theories to the dynamical regime, initiating the active and
thriving direction called dynamical resource theories [18, 19]. This newly-established
direction opens the door for systematic, analytical understandings of dynamical quan-
tum phenomena. For example, it offers a natural platform to study quantum commu-
nication [20, 21, 22], quantum memories [17, 23], and dynamical generalisations of
various static physical properties. The recent progress suggests that significant novel
insights can be obtained by building dynamical resource theories further, just like what
have been gained by studying resource theories of static properties.

With the above motivations, this thesis aims at developing dynamical resource the-
ories, focusing on two major objectives: To generalise the theoretical structure of dy-
namical resource theories, and to investigate their multidisciplinary applications.

1.1 Motivation & Contributions

1.1.1 Resource Preservability Theories and Their Applications
In 2019, Liu-Winter [18] and Liu-Yuan [19] gave the first systematic generalisation of
static resource theories to the dynamical regime, initiating the direction dubbed ‘dy-
namical resource theory’ in the quantum information theory community. Despite the
generality of their approaches, it was still unknown how to use a resource-theoretic
approach to quantitatively understand the ability of a quantum dynamics to preserve
static physical properties (e.g., entanglement, coherence, athermality). An appropri-
ate answer can further provide insights for, e.g., communication and thermodynamics.
This thus motivated us to initiate this research project.

Main Results [2, 3]

We provide the first general and quantitative resource theory of channels’ ability to
maintain, or say to preserve, a given static physical property. The framework is dubbed
resource preservability theory. We systematically investigate its resource-theoretic
structures and various quantifiers. Furthermore, we show that specific quantifiers have
different interpretations in thermodynamics and classical communication.

As applications, we study the connection between resource preservability theory
and classical communication theory. We study classical communication via channels
unable to generate a given static resource. In this setting, a commonly used measure
of classical communication, the so-called one-shot classical capacity, is shown to be
upper bounded by resource preservability quantifiers. As an implication to thermo-
dynamics, the smallest bath needed to thermalise all outputs of a Gibbs-preserving
coherence-annihilating channel provides an upper bound on this channel’s one-shot
classical capacity. In this sense, a connection between thermodynamics and classical
information transmission is established.
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1.1.2 Quantum Channel Marginal Problem

Apart from resources carried by a single state, there are certain resources that are pos-
sessed by a collection of local states of a larger global system. When the underlying
objects are such collections, it is crucial to know whether those local states in a given
collection can exist simultaneously; namely, being the marginals of a single, global
state. If they can, then they are called compatible; otherwise, they are incompatible.
Incompatibility turns out to be a fundamental property in quantum theory, and the study
of its manifestation at the level of states goes under the name of state marginal prob-
lem (SMP) [24, 25]. It is thus both interesting and important to know how to formally
extend the SMP to the dynamical regime.

Main Results [4]

We study the dynamical generalisation of the SMP, entitled channel marginal problem
(CMP): It asks, whether a given set of local dynamics is compatible with a global
dynamics. We provide a complete characterisation of the CMP as well as operational
interpretation in a state discrimination task. Furthermore, our findings identify a gap
between classical and quantum channel marginal problems and show that the CMP is
irreducible to the SMPs.

1.1.3 Entanglement Preserving Local Thermalisation

Thermalisation is the physical process that forces a system to evolve toward thermal
equilibrium with an environment. Being a many-to-one mapping, thermalisation com-
pletely erases the information originally carried by the physical system. On the other
hand, entanglement, as an iconic quantum-informational resource, is known to be frag-
ile and hard to be maintained. Consequently, from a foundational perspective, it is
interesting to understand how thermalisation processes affect entanglement. This mo-
tivates us to ask: Can entanglement survive after thermalisation? An appropriate,
quantitative answer to this question can tell us the fundamental relation between en-
tanglement preservability and the ability to locally thermalise a global system, giving
potential insights to the studies of dynamical resource theory as well as thermalisation
in many-body systems.

Main Results [1]

We answer this question in the positive by showing that for every positive temperature
and non-degenerate local Hamiltonians, there exists a local operations plus pre-shared
randomness channel that can (1) locally thermalise arbitrary global input to the desired
local thermal states, and (2) preserve entanglement for certain global entangled input
states. We call such channels entanglement preserving local thermalisations. In other
words, locally performed thermalisation processes do not necessarily imply that the
resulting global state is not entangled.
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1.2 Outline of The Thesis
We start with Chapter 2, including preliminary notions necessary to understand the
content of this thesis. In Chapter 3, we detail the resource preservability theories [2]
and their applications to communication and thermodynamics [3]. In Chapter 4 we
introduce the channel marginal problems [4]. In Chapter 5, we detail the results related
to entanglement preserving local thermalisation. Finally, we conclude the thesis in
Chapter 6, which also includes outlook and discussions of open questions. Throughout
this thesis, main results are marked in blue.



Chapter 2

Preliminary Notions

2.1 Quantum Theory

We quickly go through some basic notions of quantum theory. A complete introduction
to quantum theory and its role in quantum information theory can be found in textbooks
such as Refs. [26, 27].

Quantum States

The first postulate of quantum theory says that every physical system S has a cor-
responding Hilbert space HS . In this thesis, we always consider finite-dimensional
Hilbert spaces HS ' C

d for some d ∈ N. The physical states of S can be described
by normalised vectors in this Hilbert space: |ψ〉 ∈ HS and 〈ψ|ψ〉 = 1. Here, we
have used the conventional Dirac bra-ket notation; namely, 〈ψ| B |ψ〉† = |ψ〉∗,t and
〈ψ|ψ〉 B tr(|ψ〉〈ψ|) is the inner product (see, e.g., Refs. [26, 27] for details). |ψ〉 called
a pure state, which contains the full knowledge of a system.

Practically, it is not always easy to have access to the whole system. One postulate
asserts that a composite system, e.g., AB, has its Hilbert space as the tensor product of
A and B’s Hilbert space: HA ⊗HB. In such a composite system, it is also vital to know
how to describe part of it. This requires the mathematical description of “ignoring part
of the system,” which is achieved by the partial trace operation. More precisely, in
a composite system AB, the local behavior of a global pure state |ψAB〉 in system A is
given by

trB(|ψAB〉〈ψAB|) B
dB∑

n=1

(IA ⊗ 〈bn|)|ψAB〉〈ψAB|(IA ⊗ |bn〉), (2.1)

where {|bn〉}
dB
n=1 is any orthonormal basis of system B. An important physical message

is that the local behavior of a global pure state is not necessarily pure anymore. In
general, it is a positive semidefinite operators ρ : HS → HS with unit trace tr(ρ) = 1.
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These operators are called mixed states, or simply states. By the spectral decompo-
sition theorem [26], one can diagonalise a state ρ as ρ =

∑d−1
i=0 ai|φi〉〈φi|. From here

one can see that the positivity condition, ρ ≥ 0, means that the eigenvalues ai’s can-
not be negative; the unit-trace condition, tr(ρ) = 1, means the normalisation condition∑

i ai = 1 and there is no missing information of the system. Physically, this a classical
probabilistic mixture of pure states |φi〉’s with probability weights ai’s, which justifies
the name ‘mixed state’.

Throughout this thesis, the notation STATE denotes the set of all states, and STATES

with the subscript is the set of all states of the system S :

STATE B {ρ | ρ ≥ 0, tr(ρ) = 1} ; (2.2)
STATES B {ρ | ρ : HS → HS , ρ ∈ STATE} . (2.3)

Also, we constantly use subscripts to denote the corresponding system. For instance,
by writing ρS we mean a quantum state in STATES . The same convention also applies
to other operators; for example, IS means the identity operator in HS . Finally, we
always use the notation dS to denote the dimension of the Hilbert spaceHS .

Quantum Measurements

Knowing that the physical state of a system is described by a unit-trace positive semidef-
inite operator ρ, quantum theory further prescribes that every physical observable,
such as energy and momentum, can be described by a Hermitian operator, e.g., H =∑N

i=1 Hi|i〉〈i| with 〈i| j〉 = δi j. Given a pure state |ψ〉, the average measurement outcome
of this observable is 〈ψ|H|ψ〉 =

∑N
i=1 |〈ψ|i〉|

2Hi. The postulates of quantum theory tell us
that the collection of projective operators {|i〉〈i|}Ni=1 appropriately characterise this mea-
surement process: with probability |〈ψ|i〉|2 = tr(|ψ〉〈ψ|i〉〈i|) the measurement outcome
reads Hi, and after the measurement the system collapses to the eigenstate |i〉. This is
called a (rank-one) projective measurement.

Similar to the case of pure states, the most general situation is to look at ‘part
of a’ projective measurement. More precisely, in an d dimensional system, projec-
tive measurements are forced to have at most d outcomes; however, one can obtain a
measurement with arbitrarily many outcomes by interacting the system with a larger
environment so that the properties of the former get encoded in the latter, and then
do a projective measurement on the system plus environment. It can be proved that,
in general, a quantum measurement can be characterised by a collection of positive
semidefinite operators {Ei ≥ 0}Ni=1 satisfying

∑N
i=1 Ei = IS . This collection, called a

positive operator-valued measure (POVM), describes a measurement on the state ρ
that returns with probability tr(ρEi) the ith outcome1. From here one can see that pos-
itivity of Ei’s guarantees the positivity of each tr(ρEi), and

∑N
i=1 Ei = IS implies that

when we sum over probabilities, we have
∑

i tr(ρEi) = 1.

1Note that in the notion of POVM, we mainly focus on the statistics of measurement outcomes, rather
than the states the system collapses to.
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Quantum Channels

Finally, the dynamics of a system is given by linear mappings that bring states to states.
Based on the postulates of quantum theory, a closed system in a pure state evolves as
|ψ〉 7→ e−

i
~Ht |ψ〉, where ~ is the Planck’s constant, H is the system Hamiltonian, and t is

time. Since H is Hermitian, the operator e−
i
~Ht is always unitary. In other words, closed

system dynamics are unitary; namely, |ψ〉〈ψ| 7→ U |ψ〉〈ψ|U† with an unitary operator
U.

The dynamics of a system A in contact with an environment B, on the other hand,
can be described as (·)A ⊗ |0B〉〈0B| 7→ UAB[(·)A ⊗ |0〉〈0|B]U†AB, where |0B〉 is a fixed pure
state in B. Then the reduced dynamics in A, i.e., trB′

{
UAB[(·)A ⊗ |0〉〈0|B]U†AB

}
, is not

unitary in general2. Note that B′ is the environment that we want to ignore at the end of
the dynamics, which is not necessarily the same with B. Just like the cases of states and
measurements, we need a notion to describe the local evolution of the global system
AB. Formally, such a dynamics with input system S ′ and output system S is given by
a linear map ES |S ′ : SS ′ → SS called quantum channel, or simply channel, satisfying

• (Complete Positivity)
(
ES |S ′ ⊗ IA|A

)
(ρS ′A) ≥ 0 for every state ρS ′A and ancillary

system A, where IA|A is the identity channel acting on A.

• (Trace Preserving) tr ◦ ES |S ′ (ρS ′ ) = tr(ρS ′ ) for every state ρS ′ .

Let us briefly discuss the physical meaning of complete positivity and trace preserva-
tion. First, in order to describe a physical dynamics, ES |S ′ must map a quantum state
to a quantum state. Furthermore, since it is a physical evolution, it can also only act on
part of a larger system. In other words, when we look at the input and output as S ′A
and S A, respectively, with some external system A, the locally performed dynamics,
represented by ES |S ′⊗IA|A, still needs to make sure the global output will be a quantum
state for every global input state. The “global positivity” is guaranteed by the complete
positivity condition, and the unit-trace is ensured by the trace-preserving condition. Fi-
nally, we remark that linearity is imposed to respect probability rules; namely, when
two states ρ, σ are prepared with probabilities p, 1 − p and sent via a channel E, we
expect the outcome to be the mixture pE(ρ) + (1 − p)E(σ).

In this thesis, we use the notation CPTP to denote the set of all linear completely
positive and trace-preserving maps; namely, all channels. Also, CPTPS |S ′ stands for all
channels from S ′ to S ; that is,

CPTPS |S ′ B {E | E : SS ′ → SS ,E ∈ CPTP} . (2.4)

The subscript S |S ′ denotes an input-output pair, explicitly showing the input and output
systems of a channel. Finally, note that when S ′ = S , we will simply write ES for the
channel.

2Note that one can always purify the state in B, absorb an additional unitary in UAB, and include an
additional partial-trace. Hence, it suffices to always adopt |0〉B as the initial state of B.
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Channel-State Duality

Notably, there is a duality between states and channels, which is given by the Choi-
Jamiołkowski isomorphism [28, 29]. Formally, it is a linear map J : CPTPS |S ′ →

STATES S ′ , where S S ′ denotes a bipartite system consisting of two subsystems S and
S ′. The Choi state of a channel ES |S ′ is hence defined by

J
(
ES |S ′

)
B EJS S ′ B (ES |S ′ ⊗ IS ′ )

(
|Ψ+

S ′S ′〉〈Ψ
+
S ′S ′ |

)
, (2.5)

where

|Ψ+
S ′S ′〉 B

1
√

dS ′

dS ′−1∑
i=0

|ii〉 (2.6)

is maximally entangled in S′S′, which is a bipartite system consisting of two copies of
S′. The inverse map, which brings a bipartite state STATES S ′ to a channel in CPTPS |S ′ ,
is given by

J−1(ρS S ′ ) B dS ′ trS ′
([
IS ⊗ (·)t

S ′
]
ρS S ′

)
, (2.7)

where superscript t denotes the transpose operation with the basis used to defined the
maximally entangled state given in Eq. (2.6). The channel-state duality can then be
summarised by the following theorem, whose proof is given in Appendix A for the
completeness of this thesis:

Theorem 2.1.1. (Choi-Jamiołkowski Isomorphism Theorem [28, 29])

• ρS S ′ ≥ 0 and trS (ρS S ′ ) =
IS ′
dS ′

if and only if J−1(ρS S ′ ) ∈ CPTPS |S ′ .

• J−1 ◦ J(ES |S ′ ) = ES |S ′ for every channel ES |S ′ ∈ CPTPS |S ′ .

Distance Measures

Since quantum states carry the information about physical systems, it is of great impor-
tance to analytically understand how different two quantum states are. One common
solution to this problem in quantum information theory is to adopt the geometrical no-
tion of distance and use it to measure how far away two states are from each other.
Formally, we have the following definition:

Definition 2.1.2. (Generalised State Distance Measure) A non-negative function
D(·, ·) : STATE × STATE → [0,∞] is said to be a generalised distance measure for
states if it satisfies the following two conditions:

• For ρ, σ ∈ STATES , D(ρ, σ) ≥ 0 and equality holds if and only if ρ = σ.

• (Data-Processing Inequality) D[E(ρ),E(σ)] ≤ D(ρ, σ) for every states ρ, σ ∈
STATES ′ and channel E ∈ CPTPS |S ′ .
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Note that it is called a “generalised” distance because it is not required to satisfy
the triangle inequality and it needs not be symmetric. Hence, in general, it is not
a proper distance. Still, it captures two key properties that are relevant in quantum
information theory. First, it is faithful, in the sense that the input states ρ, σ coincide
when, and only when, the function D vanishes. Second, it respects the data-processing
inequality, which intuitively means that after information processing (described by the
channel E), two states can only become less distinguishable.

One way to measure the distance between two states is to adopt relative entropies.
First, the von Neumann entropy of a quantum state ρ is defined by S (ρ) B −tr(ρ log2 ρ).
It characterises the degree of uncertainty, or say the amount of inaccessible information
contained in ρ. This can be further used to compare the difference between two states.
Formally, the quantum relative entropy, or simply relative entropy, of ρ conditioned
on σ is given by S (ρ ‖σ) B tr[ρ(log2 ρ − log2 σ)]. One can prove that this is indeed a
generalised state distance measure. There are other choices of relative entropies, which
will be introduced in later chapters when we need to use them.

Apart from entropic quantities, other commonly-used distance measures are those
induced by operator norms. Here we mention three as examples. For a normal operator
M, ‖ρ − σ‖∞ is a distance measure induced by the sup norm ‖M‖∞ B max|ψ〉 |〈ψ|M|ψ〉|.
The second example is the trace distance 1

2 ‖ρ − σ‖1 induced by the trace norm ‖M‖1 B
tr|M| B tr

√
M†M. Finally, the third one, ‖ρ − σ‖2, is a distance measure induced by

the Hilbert-Schmidt norm ‖M‖2 B
√

tr(M†M).

2.2 Quantum Resource Theories

Entanglement Theory: The First Resource Theory

In the development of quantum information theory, it is both important and useful to
identify advantages in various operational tasks enabled by different quantum effects.
For instance, one can achieve teleportation and superdense coding by consuming en-
tanglement. In these tasks, entanglement acts as a resource. This motivates researchers
to seek a quantitative understanding of it. The outcome, which is called entanglement
theory, is briefly summarised as follows.

The very first step is to know the rigorous definition of entanglement. Formally,
a state is entangled if and only if it cannot be written as a convex mixture of product
pure states, i.e.,

∑
i aiρi ⊗ ηi. This mathematical definition enables one to know, in

principle, whether a given state is entangled or not. However, it turns out that knowing
if there is entanglement is not enough in many relevant situations. In fact, to achieve
perfect teleportation and superdense coding, one not only needs entanglement, but also
maximal entanglement. This means that when we are given several systems, we would
also like to know which one can provide the best performance in a given operational
task. That is, one needs to know how to compare the entanglement content of two
systems. This can be done by an operationally motivated set of channels that cannot
generate entanglement, e.g., local operations plus classical communication (LOCC)
channels. If one can map ρ to σ through one such channel, then we define σ as having
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the entanglement content no greater than ρ. In this sense, all LOCC channels jointly
define a partial order on the set of states, helping us to compare the entanglement
content of quantum states. Still, in many cases, it is convenient and useful if there is a
quantitative way to quantify entanglement. More precisely, we are asking for a way to
use numbers to quantitatively measure the entanglement content of different systems.
This can be done by looking for a real-valued function D satisfying

• (Entanglement Detection) D(ρ) ≥ 0 and D(ρ) = 0 if ρ is not entangled.

• (Entanglement Comparison) D[L(ρ)] ≤ D(ρ) ∀ state ρ and LOCC L.

Any function D equipped with the above two properties can not only detect and com-
pare entanglement contents3, but it also acts as a ruler that quantifies entanglement by
real values [11]. Such functions allow researchers to analytically and numerically un-
derstand entanglement, and are called entanglement monotones or entanglement quan-
tifiers.

From Entanglement to General Quantum Resources

Apart from entanglement, there are various quantum properties providing operational
advantages in different tasks. The success of entanglement theory soon inspired re-
searchers to apply a similar approach to quantitatively understand different quantum
phenomena. By following the same steps, one is able to apply a systematic proce-
dure to formulate a wide range of physical phenomena into quantitative, mathematical
notions. This general approach is now called quantum resource theory, or simply re-
source theory, and it plays a central role in this thesis.

To introduce the resource-theoretic approach, suppose there is a given physical
property. This physical property can be a physical feature shared by some quantum
states, just like entanglement [11], coherence [12], nonlocality [14], etc. Or, alterna-
tively, it can be a property possessed by some quantum dynamics, such as the ability
to maintain entanglement. At a general and abstract level, we simply denote this phys-
ical property as R, and use U to denote the universal set under consideration, i.e., the
set of physical objects that may or may not have R. For instance, when R = bipartite
entanglement, U is the set of bipartite states in the given bipartition.

Similar to the structure of entanglement theory, the very first step to quantitatively
understand R is to formally define it. This can be done by identifying the set of all
physical objects that do not possess R. This set, denoted by FR ⊆ U, is called the free
set. This is the set of free physical objects, and a physical object q ∈ U has the property
R if and only if q < FR.

When one treats R as a resource in certain tasks, usually one not only wants to
know whether a physical object possesses R, but also whether the amounts of R is high
enough to promise advantages in the given task. For instance, when one plans to extract
certain amounts of energy from a given quantum state, the state not only needs to be
out of thermal equilibrium (i.e., athermal), but also needs to be athermal enough to
guarantee a high enough extractable work. Hence, after knowing how to appropriately

3Note that the partial order of LOCC channels is only partially captured by entanglement monotones.
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describe R, the next crucial step is to understand how to compare the resource content
of different physical objects. This can be done by considering operations that cannot
generate the resource R, which are called resource non-generating, or simply R-non-
generating operations. These operations help us to compare resource contents: If we
can use one such operation to map a physical object q to another one r, then we learn
that r cannot be more resourceful than q. We say that an operation ‘cannot generate
R’ when it ‘maps free objects to free objects’. This leads to the following formal
definition:

Definition 2.2.1. (Resource Non-Generating Operations) Given a resource R and
a universal set U, an operation E is called resource non-generating for R, or simply
R-non-generating, if and only if

E(q) ∈ FR ∀ q ∈ FR. (2.8)

We use OR|max to denote the set of all R-non-generating operations.

Similar to entanglement theory, additional physical constraints may be considered
for different purposes, resulting in a subsetOR ⊆ OR|max. Members ofOR are called free
operations of the resource R, and OR|max is the largest possible set of free operations.
Specifying free operations allows us to compare resource content under the given phys-
ical constraints. More precisely, we can compare resource contents of two resourceful
objects only after we have specified OR — before specifying free operations, such an
ordering does not exist. With the above ingredients, a resource theory can be defined
as follows:

Definition 2.2.2. (Resource Theory) A resource theory of R is a pair (FR,OR) con-
sisting of the set of free objects FR ⊆ U and the set of free operations OR ⊆ OR|max.

Once FR is specified, R becomes well-defined; namely, an object q ∈ U is said to
be R-resourceful if and only if q < FR. To explicitly indicate what the resource is, we
sometimes write a resource theory of R as a triplet (R,FR,OR). Here we give an impor-
tant remark. Definition 2.2.2 illustrates one way to formulate a resource theory. It is
also possible to go in the opposite direction; namely, introducing the set of free opera-
tions first, and then identifying ‘all objects that can be prepared by free operations’ as
the set of free objects. For instance, one can first consider LOCC channels as operations
that are free to implement, and then define free states as those that can be prepared by
LOCC channels. The resulting resource, i.e., those that cannot be prepared by LOCC
channels, are entangled states. However, in the recent resource-theoretic studies of
channel resources, it is more intuitive to start with a given set of free objects, which is
usually simple to know, and then discuss possible free operations. This motivates us to
adopt Definition 2.2.2.

Similar to entanglement theory, for a resource theory (R,FR,OR), it is natural to
ask: How to quantify the resource R? One can axiomatically construct measures,
termed resource monotones, that quantify the resource content of R in the same way
that entanglement monotones do for entanglement:
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Definition 2.2.3. (Resource Monotone) For a resource theory (R,FR,OR), a resource
monotone of R, or simply an R-monotone, is a non-negative function QR : U→ [0,∞]
satisfying

• (Resource Detection) QR(q) ≥ 0 and the equality holds if q ∈ FR.

• (Resource Comparison) QR[E(q)] ≤ QR(q) for every q ∈ U and E ∈ OR.

QR is further called faithful when QR(q) = 0 only if q ∈ FR.

An R-monotone is a ruler that can measure R, and different R-monotones give dif-
ferent operational meanings as well as different partial orders of resource content of R
according to the performances in certain operational tasks. An important remark that
should be made here is that different monotones may provide different orderings; that
is, it is common to have two monotones Q1|R,Q2|R of the same resource R such that
Q1|R(q) > Q1|R(r) and Q2|R(q) < Q2|R(r) for some physical objects q, r. Physically, this
is because Q1|R,Q2|R measure R based on performance in different operational tasks, re-
sulting in a different hierarchy. It also means that there is no operation in OR mapping
either q to r or r to q. The two objects are known as incomparable.

Finally, it is worth mentioning that every generalised state distance measure (Defi-
nition 2.1.2) induces a monotone for every state resource:

Theorem 2.2.4. (Distance-Induced Resource Monotone) Given a state resource the-
ory (R,FR,OR) and a generalised distance measure D for states, the function

QD|R(ρ) B inf
η∈FR

D(ρ, η) (2.9)

is an R-monotone. It is also faithful if FR is closed in the topology induced by D 4.

Proof. First, by definition we have QD|R(ρ) ≥ 0 for every ρ ∈ STATE and equality
holds if ρ ∈ FR. Note that if QD|R(ρ) = 0, it means that, by the definition of infimum,
there exists a sequence of free states {ηn}

∞
n=1 ⊆ FR such that D(ρ, ηn) → 0 when n →

∞5. Hence, we can conclude that ρ ∈ FR when FR is closed in the topology induced
by D. This shows the claim of the faithfulness. Finally, the second condition of R
monotone can be seen by using data-processing inequality as follows:

QD|R[E(ρ)] B inf
η∈FR

D[E(ρ), η] ≤ inf
η∈FR

D[E(ρ),E(η)] ≤ inf
η∈FR

D(ρ, η) = QD|R(ρ). (2.10)

Note that this computation holds for every state ρ and free operations E ∈ OR. �

4The topology induced by D on STATES is referred to the set

{∅} ∪ {V | ∀ q ∈ V,∃ δ > 0 s.t.BD(ρ, δ) ⊂ V } ,

where BD(ρ , δ) B {σ ∈ STATES |D(ρ, σ) < δ}. See, e.g., pages 76-78 of Ref. [30].
5One can see that this is also true when FR is a finite set. For example, when we consider the resource

theory of athermality, the only free state (with a given system dimension) is the thermal state γ; namely,
FR = {γ}. Then, in this case, QD|R(ρ) = 0 means that ρ = γ, and one can choose the sequence {ηn}

∞
n=1

satisfying ηn = γ for every n.



Chapter 3

Resource Preservability
Theories and Their Applications

In the development of state resource theories, it is important to estimate the remain-
ing resource after implementing free operations. An appropriate description can reveal
the mechanism of how resources are maintained, or say preserved (see Fig. 3.1 for a
schematic illustration), by allowed physical transformations, which is both foundation-
ally and practically relevant. This motivates us to seek an analytical and quantitative
answer of the following question for a given state resource theory (R,FR,OR):

For a given free operation E ∈ OR, what is its ability to preserve R?

This chapter aims to axiomatically formulate this ability as a channel resource theory
induced by the given state resource theory (R,FR,OR). The resulting theory, termed
resource preservability theory, can be understood as a dynamical generalisation of the
static resource R.

3.1 Formulation
To address the ability of channels to maintain a given state resource, we need to start
with a given state resource theory, which is denoted by (R,F = FR,O = OR) in this
chapter, where we drop the R dependency since most of the time only one state resource
is considered. Because we aim at understanding the ability of a channel to maintain
resources, it makes sense to focus on channels that do not have the ability to generate
them. Consequently, we mainly focus on channels in O unless otherwise stated. To
achieve a analytical study, we have to consider state resource theories satisfying certain
assumptions. Before detailing those assumptions, we need to introduce the following
notion:
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Definition 3.1.1. (Absolutely Free State) For a given state resource theory (R,F ,O),
a free state η̃ ∈ F is said to be an absolutely free state if

η̃ ⊗ η ∈ F ∀ η ∈ F . (3.1)

We denote the set of all absolutely free states by Fabs.

Absolutely free states are those without hidden resources [31, 32]. For example, in
the resource theory of entanglement, all separable states are absolutely free. Neverthe-
less, there are state resources with free states that are not absolutely free1. We note that
Fabs is closed under tensor product, in the sense that η̃1 ⊗ η̃2 ∈ Fabs if η̃1, η̃2 ∈ Fabs.

With the above notion, we can list the basic assumptions imposed in this chapter.

Basic Assumptions 3.1.2. In this chapter, we always consider state resource theories
(R,F ,O) satisfying

(R1) With a given system S , the set of free states F can be written as

F =
⋃
N∈N

F(N), (3.2)

where F(N) ⊆ STATES ⊗N defines the free states in the N-copy system S ⊗N . Simi-
larly, the set of free operations O can be written as

O =
⋃

N,M∈N

O(M|N), (3.3)

where O(M|N) ⊆ CPTPS ⊗M |S ⊗N defines the free operations from S ⊗N to S ⊗M . We
say {S ⊗N}∞N=1 are allowed systems of the given state resource theory.

(R2) For every allowed system S ⊗N , Fabs ∩ STATES ⊗N , ∅ and F(N) is convex.

(R3) Identity channel and partial trace are free operations.

(R4) Tensoring with absolutely free states, i.e., (·) 7→ (·)⊗ η̃ with a given η̃ ∈ Fabs, are
free operations.

(R5) The set of free operations O is closed under tensor products, convex sums, and
compositions. Namely, for every E1,E2 ∈ O, p ∈ [0, 1], we have

E1 ⊗ E2 ∈ O, pE1 + (1 − p)E2 ∈ O, E1 ◦ E2 ∈ O. (3.4)

Let us comment on the physical motivations behind Basic Assumptions 3.1.2. First,
Assumption (R1) is imposed to address multi-copy cases. Intuitively, not every system
is allowed in a given state resource theory. For instance, when R = bipartite entan-
glement and S = a two-qubit system, an allowed system must be a bipartite system
with equal local dimension 2N with some N ∈ N. Also, if R = athermality with the

1This can be seen by the so-called superactivation of nonlocality [33] and steering [34, 35].
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Figure 3.1: We say a channel preserves a state resource if it does not completely destroy
the resource for every inputs. In the figure, each battery icon represents a state. The
heights of colored columns qualitatively represents the resource content. Purple means
that the state is resourceful, and yellow means the opposite. When the channel is a free
operation, we have three possible cases: (a) The channel maintains the resource for
every input. (b) The channel partially degrades the resource content but can still output
some resourceful states. (c) The channel totally destroys the resource for every input.
Here, (a) and (b) are channels with the ability to preserve the resource, but not (c).

thermal state γS , then all allowed systems are S ⊗N for some N ∈ N. Regarding As-
sumption (R2), we expect the existence of states that are free even after combining
with other free states. Furthermore, the convex sums of free states is expected to be
free again. These are phrased as Assumption (R2) for every allowed system in the
given state resource theory. Assumption (R3) originates from the expectation that ‘do-
ing nothing’ and ‘ignoring part of the system’ are both free to implement and unable to
generate the given state resource R. Assumption (R4) guarantees that, for a given initial
resource content, adding an absolutely free state does not generate any extra resource.
Finally, we expect that the simultaneous applications (i.e., tensor product), classical
probabilistic mixture (i.e., convex sum), and sequential applications (i.e., composition)
of free operations are again unable to generate the resource. These lead to Assump-
tion (R5). As expected, Assumption (R5) is commonly shared by many state resource
theories2, including the ones of entanglement, nonlocality, and athermality.

3.1.1 Resource Preservability Theories
With a given state resource theory (R,F ,O) satisfying basic assumptions listed in Def-
inition 3.1.2, we can start to formulate the resource preservability theory induced by it.
We abbreviate the outcome by R-preservability theory once the state resource theory
is given and clear, and we follow Definition 2.2.2 to formulate R-preservability theory
as a resource theory of channels. To this end, the first thing to address is the range of

2 There are cases where Assumption (R5) is violated. To see this, consider the state resource theory of
nonlocality with all nonlocality non-generating channels as the set of free operations. Suppose ρ0 is local
such that ρ⊗2

0 is nonlocal [33], i.e., ρ0’s nonlocality can be superactivated. Then the channel Φρ0 : (·) 7→ ρ0
is nonlocality non-generating, while two copies of it, Φρ0 ⊗ Φρ0 , can always output nonlocal states.
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objects that is considered. As mentioned at the beginning of this chapter, we mainly
focus on channels in O. Using the language of Sec. 2.2, this means that we set U = O

for the resource preservability theory induced by (R,F ,O). To complete the formula-
tion, we still need to specify two sets in this channel resource theory; namely, the one
of free objects, and the one of free operations.

Resource-Annihilating Channels

Intuitively, free objects of R-preservability are those channel that cannot preserve the
resource of any input. Formally, we introduce the following notion:

Definition 3.1.3. (Resource-Annihilating Channels) With a given state resource the-
ory (R,F ,O), resource-annihilating channels of R, or simply R-annihilating channels,
are those in the set

A B {E ∈ O | E(ρ) ∈ F ∀ ρ}. (3.5)

Every channel in O \ A has certain ability to maintain the given resource R. Con-
sequently, channels in O \ A are said to have R-preservability. In this sense, members
of A are the desired free objects of the R-preservability theory. Finally, note that As-
sumption (R5) impliesA is convex.

It is worth mentioning that if the given state resource theory admits the so-called
‘superactivation’ [33, 34, 35], then the induced resource preservability theory could
also inherit this property. This is formally addressed as follows (see Appendix B.1.3
for the proof when we consider the state resource theory of nonlocality):

Lemma 3.1.4. (Superactivation of Resource Preservability) There exist state re-
source theories with a free operation L ∈ A and N ∈ N such that L⊗N < A.

This observation means that, if we aim to formulate resource preservability theories
applicable to a wide range of state resources, we need to respect properties such as
superactivation. This also suggests us to extend the notion of absolutely free states
(Definition 3.1.1) to the dynamical regime:

Definition 3.1.5. (Absolutely Resource Annihilating Channel) Given a state re-
source theory (R,F ,O), we say Λ̃ ∈ A is an absolutely resource annihilating channel
of R, or simply absolutely R-annihilating channel, if

Λ̃ ⊗ Λ ∈ A ∀Λ ∈ A. (3.6)

We denote the set of all such channels byAabs.

In other words, absolutely R-annihilating channels are those whose ability to pre-
serve the resource R cannot be superactivated. As an example, one can actually
show that a channel that is entanglement-annihilating [36] as well as entanglement-
breaking3 [37] must be an absolutely entanglement-annihilating channel (we detail the

3A channel ES is said to be entanglement-breaking if ES ⊗ EA is entanglement-annihilating for every
ancillary system A. It is shown in Ref. [37] that a channel is entanglement-breaking if and only if it is a
measure-and-prepare channel; i.e., a channel of the form

∑
x ρxtr[Ex(·)] with a POVM {Ex} and states ρx’s.
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argument in Appendix B.2). Finally, we observe that

Λ̃ ◦ E ∈ Aabs & E ◦ Λ̃ ∈ Aabs ∀ E ∈ O & Λ̃ ∈ Aabs;

Λ̃S ⊗ Λ̃S ′ ∈ Aabs ∀ Λ̃S , Λ̃S ′ ∈ Aabs. (3.7)

The first line implies that a sequential application of free operations cannot maintain
any resource, even with the assistance of ancillary resource-annihilating channels, if an
absolutely resource-annihilating channel has been applied in the sequence. Also, since
absolutely resource-annihilating channels forbid activation, the second line in Eq. (3.7)
means that simultaneous applications of two such channels still forbid any activation.

Free Operations of Resource Preservability

Now it remains to identify free operations of R-preservability with a given state re-
source theory (R,F ,O). To this end, the first thing to know is how to map channels to
channels. The general structure of such a mapping, called super-channels, are [38, 39]:

E 7→ M ◦ (E ⊗ IA) ◦ N , (3.8)

where A is an ancillary system, andM,N are some pre-processing and post-processing
channels. This means that a general way to manipulate a quantum dynamics is to adopt
operations before and after the given dynamics. With this notion in hand, one option of
free operations is to consider all super-channels that mapA intoA, which corresponds
to the role of ‘OR|max’ in Definition 2.2.2. However, it is unclear whether they map O
into O, as O is the universal set of the R-preservability theory. This means these super-
channels would not be valid free operations for R-preservability. For instance, when
R = bipartite entanglement and O = local operations channels, the superchannel that
always output a state preparation channel of a non-product separable state is invalid.

Due to the above observation, we try to impose physical conditions on Eq. (3.8)
and obtain free operations of resource preservability theories. First, we expect that free
operations of R-preservability cannot generate ‘the ability to generate R’. This suggests
that all steps in Eq. (3.8) should be members of O; that is, N ,M ∈ O. Furthermore,
when both N ,M are identity channels, the ancillary identity channel IA in Eq. (3.8)
may provide artificial R-preservability. Since free operations of R-preservability can-
not generate R-preservability, we expect the ancillary system A should not maintain
any resource R. This motivates us to replace IA in Eq. (3.8) by an appropriate, alter-
native channel. Concerning the existence of superactivation properties discussed in the
previous section (see also Appendix B.1), we impose the condition that the process
in the ancillary system A is an absolutely R-annihilating channel in Aabs. The above
discussions can be summarised as follows:

Definition 3.1.6. (Free Operations of Resource Preservability Theories) Given a
state resource theory (R,F ,O), free operations of the resource preservability theory
induced by (R,F ,O) are mappings F : O → O of the form

F(E) B Λ+ ◦
(
E ⊗ Λ̃A

)
◦ Λ−, (3.9)

where Λ+,Λ− ∈ O and Λ̃A ∈ Aabs.
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Note that asking Λ+,Λ− to be R-annihilating trivialise the setting, and one can
check thatF(Λ) ∈ A if Λ ∈ A. We use the notation F to denote the set of superchannels
satisfying Eq. (3.9) with the given state resource theory (R,F ,O) (note that we again
ignore the R dependency). Then the corresponding resource preservability theory can
be written as, using the language of Definition 2.2.2,

(R-preservability,A, F).

3.2 Resource Preservability Monotones
As shown in Theorem 2.2.4, one natural way to measure the resource content of an
object is to measure its distance from the free set. Such a geometrical intuition also
applies to resource preservability theories, and we need to extend the notion of state
distance to the dynamical regime. Suppose D is a general state distance measure de-
fined in Definition 2.1.2, then we define the following function:

DR(ES ,ΛS ) B sup
A;ρS A,Λ̃A∈Aabs

D
[
(ES ⊗ Λ̃A)(ρS A), (ΛS ⊗ Λ̃A)(ρS A)

]
; (3.10)

Geometrically, this is a distance between ES and ΛS that is adjusted by absolutely
resource-annihilating channels. Note that the maximisation is taken over all ancillary
system A with allowed system dimensions [see Assumption (R1) in Basic Assump-
tions 3.1.2 and the discussion below]. Now we state the following main result. In what
follows, we say a set of channels C is closed under D if for any sequence {Λk}

∞
k=1 ⊆ C

satisfying limk→∞ supρ D[E(ρ),Λk(ρ)] = 0, we have E ∈ C.

Main Theorem 3.2.1. (Distance-Induced Resource Preservability Monotones) Con-
sider a state resource theory (R,F ,O) satisfying Basic Assumptions 3.1.2 and D a
generalised state distance measure as in Definition 2.1.2. Define

PD|R(ES ) B inf
ΛS ∈A

DR(ES ,ΛS ). (3.11)

Then we have

1. PD|R(E) ≥ 0 and PD|R(E) = 0 if E ∈ A. When A is closed under D, we further
have PD|R(E) = 0 if and only if E ∈ A.

2. PD|R[F(E)] ≤ PD|R(E) for every channel E and free super-channel F ∈ F.

3. PD|R(E ⊗ E′) ≥ PD|R(E) for every E,E′ ∈ O. The equality holds if E′ ∈ Aabs.

Theorem 3.2.1 implies that, for every generalised state distance measure D, the
function PD|R is a monotone of the resource theory (R-preservability, A, F) according
to Definition 2.2.3. Furthermore, condition 3 is an additional property of resource
preservability monotones induced by distance measures. Note that condition 2 actually
works for every channel, including those outside the set O. This is useful when one
needs to consider the smooth version of resource preservability monotones.
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Proof. In the proof, we adopt the notation supA B supA;ρS A,Λ̃A∈Aabs
.

Proof of Condition 1.– The first part holds automatically due to the definition. It
suffices to prove the faithfulness condition. Suppose we have PD|R(E) = 0 for a given
channel E. By definition, this means that, by considering the one-dimensional ancillary
system, infΛS ∈A supρ D[E(ρ),ΛS (ρ)] = 0. Consequently, by the definition of infimum,
there exists a sequence {Λk}

∞
k=1 ⊆ A such that limk→∞ supρ D[E(ρ),Λk(ρ)] = 0. If

A is closed under D, this implies E ∈ A. This proves that PD|R is faithful; namely,
PD|R(E) = 0 if and only if E ∈ A.

Proof of Condition 2.– For a given channel ES and a free operation of resource
preservability (Definition 3.1.6) F : ES 7→ Λ+ ◦ (ES ⊗ Λ̃B) ◦ Λ− with Λ+,Λ− ∈ O and
Λ̃B ∈ Aabs, direct computation shows that:

PD|R[F(ES )] = inf
ΛS ′∈A

sup
A

D
[
(F(ES ) ⊗ Λ̃A)(ρS ′A), (ΛS ′ ⊗ Λ̃A)(ρS ′A)

]
≤ inf

ΛS B∈A
sup

A
D

{
(F(ES ) ⊗ Λ̃A)(ρS ′A),

[
(Λ+ ◦ ΛS B ◦ Λ−) ⊗ Λ̃A

]
(ρS ′A)

}
≤ inf

ΛS B∈A
sup

A
D

{[
(ES ⊗ Λ̃B ⊗ Λ̃A) ◦ (Λ− ⊗ IA)

]
(ρS ′A),

[
(ΛS B ⊗ Λ̃A) ◦ (Λ− ⊗ IA)

]
(ρS ′A)

}
≤ inf

ΛS B∈A
sup

A
D

[
(ES ⊗ Λ̃B ⊗ Λ̃A)(ρS BA), (ΛS B ⊗ Λ̃A)(ρS BA)

]
≤ inf

ΛS ∈A
sup

A
D

[
(ES ⊗ Λ̃B ⊗ Λ̃A)(ρS BA), (ΛS ⊗ Λ̃B ⊗ Λ̃A)(ρS BA)

]
≤ inf

ΛS ∈A
sup

A
D

[
(ES ⊗ Λ̃A)(ρS A), (ΛS ⊗ Λ̃A)(ρS A)

]
= PD|R(ES ). (3.12)

The second line is because Λ+ ◦ ΛS B ◦ Λ− ∈ A [Assumption (R5)]. The third line
is due to data-processing inequality of D (Definition 2.1.2). The fifth line is due to
ΛS ⊗ Λ̃B ∈ A (Definition 3.1.5). The sixth line is because of Eq. (3.7).

Proof of Condition 3.– Direct computation shows that

PD|R(ES ⊗ ES ′ ) = inf
ΛS S ′∈A

sup
A

D
[
(ES ⊗ ES ′ ⊗ Λ̃A)(ρS S ′A), (ΛS S ′ ⊗ Λ̃A)(ρS S ′A)

]
≥ inf

ΛS S ′∈A
sup

A
D

[
(ES ⊗ ES ′ ⊗ Λ̃A)(ρS A ⊗ η̃S ′ ), (ΛS S ′ ⊗ Λ̃A)(ρS A ⊗ η̃S ′ )

]
≥ inf

ΛS S ′∈A
sup

A
D

{
(ES ⊗ Λ̃A)(ρS A), trS ′

[
(ΛS S ′ ⊗ Λ̃A)(ρS A ⊗ η̃S ′ )

]}
≥ inf

ΛS ∈A
sup

A
D

[
(ES ⊗ Λ̃A)(ρS A), (ΛS ⊗ Λ̃A)(ρS A)

]
= PD|R(ES ). (3.13)

In the second line, we pick an absolutely free state η̃S ′ ∈ Fabs, which is possible due
to Assumption (R2). The third line is because of the data-processing inequality of D.
In the last line, we use the fact that trS ′ ◦ ΛS S ′ [(·) ⊗ η̃S ′ ] is an R-annihilating channel
[Assumptions (R3), (R4), and (R5)].
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To show the equality, for a given Λ̃S ′ ∈ Aabs, one can compute that:

PD|R(ES ⊗ Λ̃S ′ ) = inf
ΛS S ′∈A

sup
A

D
[
(ES ⊗ Λ̃S ′ ⊗ Λ̃A)(ρS S ′A), (ΛS S ′ ⊗ Λ̃A)(ρS S ′A)

]
≤ inf

ΛS ∈A
sup

A
D

[
(ES ⊗ Λ̃S ′ ⊗ Λ̃A)(ρS S ′A), (ΛS ⊗ Λ̃S ′ ⊗ Λ̃A)(ρS S ′A)

]
≤ inf

ΛS ∈A
sup

A
D

[
(ES ⊗ Λ̃A)(ρS A), (ΛS ⊗ Λ̃A)(ρS A)

]
= PD|R(ES ), (3.14)

which is because ΛS ⊗ Λ̃S ′ ∈ Aabs with the fixed Λ̃S ′ and Λ̃S ′ ⊗ Λ̃A ∈ Aabs [Eq. (3.7)].
�

3.2.1 Resource Preservability Robustness
Theorem 3.2.1 provides a general characterisation of resource preservability mono-
tones induced by generalised state distance measure. When specific distance measures
are considered, one is able to extract different physical implications. As an explicit
example, we focus on a generalised state distance measure that is relevant in various
operational tasks: Formally, the max-relative entropy of a state ρ conditioned on an-
other state σ is defined by [40]:

Dmax(ρ‖σ) B log2 inf{λ ≥ 1 | ρ ≤ λσ}. (3.15)

Note that we adopt the convention notion inf ∅ B +∞. To interpret max-relative en-
tropy physically, let us rewrite it as

Dmax(ρ‖σ) = − log2 sup {p ∈ [0, 1] | pρ + (1 − p)η = σ, η ∈ STATE} . (3.16)

From here, one can observe that Dmax(ρ‖σ) represents the minimal amount of noise, in
terms of the probability weighting (1 − p) in front of the noise term η, needed to mix
with ρ in order to realise the state σ. Now, we note that [40]

• For every states ρ, σ, Dmax(ρ‖σ) ≥ 0, and the equality holds if and only if ρ = σ.

• (Data-processing inequality) Dmax[E(ρ)‖E(σ)] ≤ Dmax(ρ‖σ) for every channels
E and states ρ, σ.

Hence, by Definition 2.1.2, it is a generalised state distance measure. Applying Theo-
rem 3.2.1, we learn that the function PDmax is a resource preservability monotone with
any state resource theory (R,F ,O) satisfying Basic Assumptions 3.1.2. To understand
its physical meaning, one can rewrite it as (see Appendix B.3)

PDmax |R(E) = inf
Λ∈A
− log2 sup

{
p ∈ [0, 1]

∣∣∣∣∣ 1
1 − p

(Λ − pE) ⊗ Λ̃A ∈ CPTP ∀A & Λ̃A ∈ Aabs

}
.

(3.17)

Hence, PDmax |R(E) is the minimal amount of noise needed to turn E into resource-
annihilating under extensions with every possible Λ̃A ∈ Aabs. PDmax |R is a robustness-
like measure and, therefore, we call it resource preservability robustness in this thesis.
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Note that resource-annihilating channels achievable by adding the smallest amount
of noise to E can be interpreted as E’s ‘resource-annihilating counterparts’. Namely,
they are some channels Λ ∈ A such that DR

max(E‖Λ) = PDmax |R(E). Geometrically, they
are the resource-annihilating channels ‘closest to E’ when we use DR

max to measure the
distance between channels. When a given error κ > 0 is allowed, we formally define
them as the following set [recall the notation from Eq. (3.10)]:

A(κ;E) B
{
Λ ∈ A

∣∣∣ ∣∣∣DR
max(E‖Λ) − PDmax |R(E)

∣∣∣ ≤ κ} . (3.18)

Members of A(κ;E) are resource-annihilating channels that are closest to E, up to the
given error κ. We call them resourceless versions of E up to the error κ, and use the
notation ΛE ∈ A(κ;E) to emphasise their dependence on E.

3.3 Implications and Applications
It turns out that the resource preservability robustness is able to provide applications
and implications to classical communication, thermodynamics, and their connections,
which we detail in the following sections. As the first application, the resource preserv-
ability robustness can be used to estimate the ability to transmit classical information.
In order to state the formal result, we briefly recap the relevant ingredient from classical
communication theory.

3.3.1 Applications to Classical Communication
Classical Communication Through Quantum Channels

Classical information can be described by a set of integers {m}M−1
m=0 , where M is the total

number of possible classical messages. Intuitively, if one can use physical processes
to reliably send messages to another agent, the sender is able to communicate with the
receiver. The aim is to analytically describe how to do so via a quantum dynamics, or
say a quantum channel, E. To this end, the sender needs to first encode the classical
information into a set of quantum states {ρm}

M−1
m=0 in the input space of the channel E.

Then E can act on those states and proceed with the transformation. In the output space
of E, the receiver has to decode the classical information. This can be done by applying
a POVM {Em}

M−1
m=0 (Sec. 2.1). If the receiver’s measurement outcome coincides with the

label of classical message initially encoded by the sender, the transmission is success-
ful. Define an M-code as ΘM = ({ρ}M−1

m=0 , {Em}
M−1
m=0 ). To quantitatively understand E’s

ability to transmit classical information in this scenario, a commonly used measure, the
one-shot classical capacity of E with error ε, can be defined as (see, e.g., Ref. [41]):

Cε
(1)(E) B max

{
log2 M | ∃ΘM , ps(ΘM ,E) ≥ 1 − ε

}
, (3.19)

where

ps(ΘM ,E) B
1
M

M−1∑
m=0

tr
[
EmE(ρm)

]
(3.20)

is the average success probability of the transmission via E with the M-code ΘM .



22 Resource Preservability Theories and Their Applications

Bounds On the Classical Capacity

To estimate the one-shot classical capacity subject to non-vanishing errors, we need to
appropriately “smooth” the resource preservability robustness. Formally, with a given
error δ ≥ 0, the smoothed version of PD|R(E) is defined by

Pδ
D|R(E) B inf

‖E−E′‖�≤2δ
PD|R(E′). (3.21)

It smooths the original optimisation over all channels E′ close to E, and

‖ES ‖� B sup
A,ρS A

‖(ES ⊗ IA)(ρS A)‖1 (3.22)

is the diamond norm. Finally, define

Γκ(E) B log2 inf
ΛE∈A(κ;E)

sup
ΘM

M−1∑
m=0

tr
[
EmΛE(ρm)

]
, (3.23)

where supΘM
maximises over every natural number M and M-code ΘM . 2Γκ(E) is related

to the highest number of discriminable states at the output space of every resourceless
version of E, up to the error κ 4. Similar to Eq. (3.21), we define its smoothed version
as Γδκ(E) B sup‖E−E′‖�≤2δ Γκ(E′). Then one can show the following result, serving as a
connection between classical communication and resource preservability theory:

Main Theorem 3.3.1. (Resource Preservability and One-Shot Classical Capacity)
Given a state resource theory (R,F ,O) satisfying Basic Assumptions 3.1.2 and ε, δ ≥
0 & 0 < κ < 1 satisfying ε + δ < 1, then for every E ∈ O we have

Cε
(1)(E) ≤ Pδ

Dmax |R(E) + Γδκ(E) + log2
2κ

1 − ε − δ
. (3.24)

Proof. Consider a channel E′ satisfying ‖E − E′‖� ≤ 2δ and a given error κ > 0. Then
for every resourceless version ΛE

′

∈ A(κ;E′) [recall from Eq. (3.18)], there exists a
positive map P such that (see Lemma B.3.2 in Appendix B)

P ⊗ Λ̃A is a positive map ∀A & Λ̃A ∈ Aabs & E′ + P = 2DR
max

(
E′‖ΛE

′
)
ΛE

′

. (3.25)

Now, with a given M-code ΘM = ({ρm}
M−1
m=0 , {Em}

M−1
m=0 ), we have [recall the definition

and notation from Eqs. (3.10) and (3.20)]:

ps
(
ΘM ,E

′) =
2DR

max

(
E′‖ΛE

′
)

M

M−1∑
m=0

tr
[
EmΛE

′

(ρm)
]
−

1
M

M−1∑
m=0

tr
[
EmP(ρm)

]
≤

2[PDmax |R(E′)+κ]

M
sup
ΘM′

M′−1∑
m=0

tr
[
E′mΛE

′

(ρ′m)
]
, (3.26)

4Note that Eq. (3.23) is not a minimisation over one-shot classical capacities of R-annihilating channels
ΛE ∈ A(κ;E).
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where the facts that ΛE
′

∈ A(κ,E′) and tr
[
EmP(ρm)

]
≥ 0 for all m imply the in-

equality, and supΘM′
maximises over every natural number M′ and M′-code ΘM′ =

({ρ′m}
M′−1
m=0 , {E

′
m}

M′−1
m=0 ). This is true for every ΛN

′

∈ ON
R (κ,E′), and we conclude that:

ps
(
ΘM ,E

′) ≤ 1
M
× 2[PDmax |R(E′)+Γκ(E′)+κ]. (3.27)

Now, using the estimate supρ sup0≤E≤I 2tr[E(N ′ − N)(ρ)] ≤ ‖N ′ − N‖� [20] for arbi-
trary channels N ,N ′, we note that

∣∣∣ps
(
ΘM ,E

′) − ps (ΘM ,E)
∣∣∣ =

∣∣∣∣∣∣∣ 1
M

M−1∑
m=0

tr
[
Em(E′ − E)(ρm)

]∣∣∣∣∣∣∣ ≤ 1
2

∥∥∥E′ − E∥∥∥
�
. (3.28)

Hence, for every channel E′ satisfying ‖E − E′‖� ≤ 2δ and M-code ΘM achieving
ps (ΘM ,E) ≥ 1 − ε, we have

1 − ε ≤ ps (ΘM ,E) ≤ ps
(
ΘM ,E

′) + δ ≤
1
M
× 2[PDmax |R(E′)+Γκ(E′)+κ] + δ. (3.29)

In other words, for every given ε, δ ≥ 0 & 0 < κ < 1 satisfying ε + δ < 1 we have

Cε
(1)(E) ≤ log2

1
1 − ε − δ

+ κ + inf
‖E−E′‖�≤2δ

[
PDmax |R(E′) + Γκ(E′)

]
≤ log2

2κ

1 − ε − δ
+ inf
‖E−E′‖�≤2δ

PDmax |R(E′) + Γδκ(E), (3.30)

and the result follows. �

The upper bound in Theorem 3.3.1 contains two terms: Pδ
Dmax |R

(E) is the contri-
bution from E’s ability to maintain R, and Γδκ(E) is the highest amount of classical
information that can be carried by every resourceless version of E. To illustrate the
connection between resource preservability theory and classical communication, let us
rewrite the upper bound as Cε

(1)(E) − Γδκ(N) . PDmax |R(E), up to an one-shot error term
containing ε, δ, κ. Then the term ‘Cε

(1)(E)−Γδκ(E)’ is related to the amount of transmissi-
ble classical information viaN’s ability to preserve R. As expected, it is quantitatively
controlled by the resource preservability of E.

We remark that when the optimal amount of classical information can be encoded
into free states, the optimal capacity should be attainable by channels without resource
preservability. Consequently, resource preservability robustness cannot upper bound
classical capacity solely, and Theorem 3.3.1 is consistent with this fact with the help of
Γδκ(E). Concerning tightness, up to one-shot error terms, the inequality is tight, since it
is saturated by all state preparation channels of free states; namely, (·) 7→ η with η ∈ F .
As an alternative instance to saturate the bound, consider a d-dimensional system with
R = coherence. Then the dephasing channel (·) 7→

∑d
i=1 |i〉〈i| · |i〉〈i| saturates the upper

bound with value log2 d. Finally, we note that Γδκ(E) largely depends on the given
state resource theory. In certain cases, it can be explicitly estimated, and the upper
bound can be simplified. As a simple example, when R = the athermality with the
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thermal state γ (see next section for further detail), γ is the only free state and we have
Γκ(E) = 0 ∀ E, κ.

Finally, we remark that although Theorem 3.3.1 is stated for resource-preservability
theories, the technique adopted in the proof should be able to be extended to other
resource theory of channels as long as appropriate assumptions are imposed (e.g., Basic
Assumptions 3.1.2). We leave this to the future research.

3.3.2 Applications to Thermodynamics
In this section, we move to the regime of thermodynamics. As we demonstrate below,
the ability to keep a system out of thermal equilibrium can be naturally linked to the
bath needed for thermalisation. Before stating the main result, we first recap relevant
ingredients, including the formulation of the state resource theory of thermodynamics,
and the definition of thermalisation bath.

Resource Theory of Thermodynamics

We briefly recap the state resource theory of thermodynamics; namely, the one of ather-
mality. More in-dept introductions can be found in, e.g., Refs. [13, 42, 43, 44], and here
we simply mention ingredients relevant to this thesis. Athermality depicts the status of
a system out of thermal equilibrium. For a given system S with dimension d, the
unique free state in this state resource theory is the thermal equilibrium state, or say
the thermal state. With a given system Hamiltonian HS and temperature T , the thermal
state is uniquely given by

γ =
e−βHS

tr(e−βHS )
, (3.31)

where β = 1
kBT is the inverse temperature and kB is the Boltzmann constant. It is also

possible to allow composite systems in this resource theory. In this case, all allowed
systems are S ⊗k [recall Assumption (R1) in Definition 3.1.2], and all free states in this
resource theory read γ⊗N with some N ∈ N. In this thesis, we adopt Gibbs-preserving
channels as the free operations of this state resource theory. They are channels E map
thermal states to thermal states:

E(γ⊗N) = γ⊗M , (3.32)

where dN and dM are the input and output dimensions, respectively. Physically, they
are dynamics unable to drive thermal equilibrium away from equilibrium. In the lan-
guage of Sec. 2.2, they form the largest possible set of free operations; namely, Oγ|max.
Finally, as mentioned previously, ‘R = γ’ denotes the athermality induced by a given
thermal state γ.

Thermalisation Bath Size

In order to address baths for thermalisation, we adopt the thermalisation model pro-
posed by Ref. [45]. A brief introduction is given in this section, and we refer readers to
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the original article for further details. Consider a system S with Hilbert spaceHS and a
bath system B with Hilbert spaceH⊗(n−1)

S (n ∈ N is a natural number). The bath system
is assumed to possess a given, well-defined temperature T . Moreover, in this model,
the bath system has the Hamiltonian HB =

∑n−1
i=1 I1 ⊗ ... ⊗ Ii−1 ⊗ HS ⊗ Ii+1 ⊗ ... ⊗ In−1,

where HS is the Hamiltonian of the given system S . Let γ be the thermal state associ-
ated with T and HS , as defined in Eq. (3.31). Then the bath is assumed to initially be in
the state γ⊗(n−1). Our aim now is to understand how large the bath needs to be in order
to successfully thermalise the system S. To this end, a global channel LS B : S B→ S B
is said to ε-thermalise the system S in the state ρS if [45]∥∥∥∥LS B

[
ρS ⊗ γ

⊗(n−1)
]
− γ⊗n

∥∥∥∥
1
≤ ε. (3.33)

In this definition, thermalisation of a state in S means that there is a channel that can
map the system plus a global bath, namely, S B, to a global thermal state.

In the present model, the system-bath interaction for thermalisation is modeled by
the following master equation [45]:

∂ρS B(t)
∂t

=
∑

k

λk

[
U(k)

S BρS B(t)U(k),†
S B − ρS B(t)

]
, (3.34)

where ρS B(t) is the state of the global system S B at time t, U(k)
S B is a unitary opera-

tor acting on the global system satisfying [U(k)
S B,HS + HB] = 0 (that is, it is energy-

preserving), and λk is the rate for U(k)
S B to happen5. Each unitary U(k)

S B models an elastic
collision between certain subsystems in S B. Hence, not every channel is allowed in
this thermalisation model. For instance, one cannot simply discard the original input
state and prepare a global thermal state in S B. We refer the readers to Ref. [45] for the
complete framework.

Now, let Cn be the set of all channels S B→ S B that can be generated by the model
Eq. (3.34) with a bath systemH⊗(n−1)

S and a realisation time t. Cn then characterises all
allowed physical transformations in the present thermalisation model with a given size
of the bath n. From here, one can introduce the following quantity [45]:

nε(ρS ) B inf{n ∈ N | ∃LS B ∈ Cn s.t. Eq. (3.33) holds}. (3.35)

nε(ρS ) − 1 is the smallest number of copies the bath system needs to possess in or-
der to ε-thermalise the given state ρS in the present model. In other words, nε(ρS )
quantitatively describes the smallest size of the bath needed to thermalise ρS .

It turns out that this concept can be directly generalised to channels. For a channel
E : S → S , define the thermalisation bath size of a channel E as

Bε(E) B sup
ρ

nε[E(ρ)] − 1, (3.36)

which maximises over all the smallest bath sizes among all outputs of E. Bε(E) can
be understood as the smallest bath size needed to ε-thermalise all outputs of E in the

5One can see this by checking Eqs. (A2) and (A3) in Appendix A of Ref. [45], which imply that U(k)
SB

occurs according to a Poisson distribution with mean value λkt.
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given thermalisation model. Finally, before detailing the main result, we mention a
core assumption made in Ref. [45]:

Definition 3.3.2. (Energy Subspace Condition [45]) A given Hamiltonian H with
energy levels {Ei}

d
i=1 is said to satisfy the energy subspace condition if for every natural

number M ∈ N and every pair of different vectors {~m , ~m′} ⊂ (N ∪ {0})d satisfying∑d
i=1 mi =

∑d
i=1 m′i = M, we have

∑d
i=1 miEi ,

∑d
i=1 m′i Ei.

The energy subspace condition ensures that the energy levels cannot be integer
multiples of each other. Consequently, energy degeneracy is also forbidden.

Thermalisation Bath Size and Athermality Preservability

First, we need to recall the main result of Ref. [45]. To do so, we define the smoothed
version of max-relative entropy as [recall Eq. (3.15)]

Dε
max(ρ‖σ) B inf

1
2 ‖ρ

′−ρ‖1≤ε
Dmax(ρ′‖σ). (3.37)

Suppose again that γ is the thermal state associated with the given temperature T and
system Hamiltonian HS . Then we have the following thermodynamic interpretation of
max-relative entropy from Ref. [45]:

Theorem 3.3.3. (Thermodynamic Meaning of Max-Relative Entropy [45]) For a
given state ρS , we have

nε(ρS ) ≤
1
ε2 2Dmax(ρS ‖γ) + 1. (3.38)

Moreover, if the system Hamiltonian HS satisfies the energy subspace condition given
in Definition 3.3.2 and ρS is energy-incoherent, i.e., diagonal in the energy eigenbasis
of HS , then we also have

D
√
ε

max(ρS ‖γ) ≤ log2 nε(ρS ). (3.39)

Before proving the main result of this section, we need one more lemma to address
the continuity of the max-relative entropy. In a finite dimensional case, we say a state
is full-rank if it has only positive eigenvalues; that is, its support is the whole Hilbert
space. Then one can show that:

Lemma 3.3.4. (Bounding Max-Relative Entropy By Trace Norm) Given three states
ρ, ρ′, σ, where σ is full-rank. Then we have

∣∣∣2Dmax(ρ′‖σ) − 2Dmax(ρ‖σ)
∣∣∣ ≤ ‖ρ − ρ′‖1

pmin(σ)
, (3.40)

where pmin(σ) is the smallest eigenvalue of σ.
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Proof. Define the set L(ρ‖σ) B {λ ≥ 1 | ρ ≤ λσ}. Then the max-relative entropy
[Eq. (3.15)] reads Dmax(ρ‖σ) = infλ∈L(ρ‖σ) log2 λ. Now we observe that λ ∈ L(ρ‖σ) if
and only if λσ − ρ ≥ 0, which is true if and only if

inf
|φ〉
〈φ|(λσ − ρ)|φ〉 ≥ 0. (3.41)

This means that, for any λ ∈ L(ρ‖σ),

inf
|φ〉
〈φ|(λσ − ρ)|φ〉 = inf

|φ〉

[
〈φ|(λσ − ρ′)|φ〉 + 〈φ|(ρ′ − ρ)|φ〉

]
≥ inf
|φ〉
〈φ|(λσ − ρ′)|φ〉 + inf

|φ〉
〈φ|(ρ′ − ρ)|φ〉 ≥ inf

|φ〉
〈φ|(λσ − ρ′)|φ〉 −

∥∥∥ρ − ρ′∥∥∥1 , (3.42)

where we have used the relation (recall that ‖·‖∞ B sup|ψ〉 |〈ψ| · |ψ〉| and ‖·‖∞ ≤ ‖·‖1)

inf
|φ〉
〈φ|(ρ′ − ρ)|φ〉 = − sup

|φ〉

〈φ|(ρ − ρ′)|φ〉 ≥ −
∥∥∥ρ − ρ′∥∥∥

∞
≥ −

∥∥∥ρ − ρ′∥∥∥1 . (3.43)

Since the argument works when we exchange the roles of ρ and ρ′, we conclude that∣∣∣∣∣inf
|φ〉
〈φ|(λσ − ρ′)|φ〉 − inf

|φ〉
〈φ|(λσ − ρ)|φ〉

∣∣∣∣∣ ≤ ∥∥∥ρ − ρ′∥∥∥1 . (3.44)

Consequently, for a given λ ∈ L(ρ‖σ),

0 ≤ inf
|φ〉
〈φ|(λσ − ρ)|φ〉 ≤ inf

|φ〉
〈φ|(λσ − ρ′)|φ〉 +

∥∥∥ρ − ρ′∥∥∥1

= inf
|φ〉
〈φ|

[(
λ +
‖ρ − ρ′‖1
〈φ|σ|φ〉

)
σ − ρ′

]
|φ〉 ≤ inf

|φ〉
〈φ|

[(
λ +
‖ρ − ρ′‖1
pmin(σ)

)
σ − ρ′

]
|φ〉. (3.45)

Note that 〈φ|σ|φ〉 > 0 since σ is full-rank and hence has only strictly positive eigen-
values. Also, 〈φ|σ|φ〉 ≥ pmin(σ) = inf |ψ〉〈ψ|σ|ψ〉 for all |φ〉. This computation implies
λ +

‖ρ−ρ′‖1
pmin(σ) ∈ L(ρ′‖σ) whenever λ ∈ L(ρ‖σ) [recall Eq. (3.41)]. Hence, we have

2Dmax(ρ′‖σ) = inf
λ∈L(ρ′‖σ)

λ ≤ inf
λ∈L(ρ‖σ)

(
λ +
‖ρ − ρ′‖1
pmin(σ)

)
= 2Dmax(ρ‖σ) +

‖ρ − ρ′‖1
pmin(σ)

. (3.46)

Then the desired bound follows by exchanging the roles of ρ and ρ′. �

We remark that Lemma 3.3.4 implies that the function 2Dmax(·‖σ) is Lipschitz con-
tinuous when σ is full-rank. Now we present the main result of this section, which is
a dynamical generalisation of Theorem 3.3.3. In what follows, a channel is said to be
coherence-annihilating if it only outputs states diagonal in the given energy eigenbasis
corresponding to a given Hamiltonian. Also, recall again that pmin(P) is the smallest
eigenvalue of the operator P.
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Main Theorem 3.3.5. (Athermality Preservability and Thermalisation Bath) Given
a Gibbs-preserving map E and 0 ≤ ε < 1. Then we have

Bε(E) ≤
1
ε2 2PDmax |γ(E). (3.47)

Moreover, if the thermal state γ is full-rank, E is coherence-annihilating, and the sys-
tem Hamiltonian HS satisfies the energy subspace condition given in Definition 3.3.2,
then we have

2PDmax |γ(E) ≤ Bε(E) +
2
√
ε

pmin(γ)
+ 1. (3.48)

Proof. First, in the state resource theory of athermality with the thermal state γ in S ,
we haveA = Aabs (R = γ), which only contains state preparation channels of thermal
state of the form γ⊗N , where N ∈ N is some natural number. Then, with R = γ and a
channel E having S as its input system, direct computation shows

PDmax |γ(E) B inf
ΛS∈A

sup
A;ρS A,Λ̃A∈Aabs

Dmax

[
(E ⊗ Λ̃A)(ρS A)

∥∥∥(ΛS ⊗ Λ̃A)(ρS A)
]

= sup
A;ρS A

Dmax[(E ⊗ ΦγA )(ρS A)‖Φγ⊗γA (ρS A)]

= sup
A;ρS

Dmax[E(ρS ) ⊗ γA‖γ ⊗ γA] = sup
ρ

Dmax[E(ρ)‖γ]. (3.49)

Note that the ancillary systems A’s must be of allowed system dimension [Assump-
tion (R1)], meaning that A’s can only be S ⊗N with N ∈ N [see also the comment below
Eq. (3.10)]. To see the last equality, note that for any operator K and any positive op-
erator E, K ≥ 0 if and only if K ⊗ E ≥ 0. This implies Dmax(ρ⊗ η‖σ⊗ η) = Dmax(ρ‖σ)
for all states ρ, σ, η. Combining Eq. (3.49) with Theorem 3.3.3 and Eq. (3.36), we
conclude the bound Eq. (3.47):

Bε(E) B sup
ρ

nε[E(ρ)] − 1 ≤ sup
ρ

1
ε2 2Dmax[E(ρ)‖γ] =

1
ε2 2PDmax |γ(E). (3.50)

To show Eq. (3.48), we apply Theorem 3.3.3 and Lemma 3.3.4 to conclude

1 + Bε(E) B sup
ρ

nε[E(ρ)] ≥ sup
ρ

2D
√
ε

max[E(ρ)‖γ] = sup
ρ

inf
1
2 ‖ρ

′−E(ρ)‖1≤
√
ε
2Dmax(ρ′‖γ)

≥ sup
ρ

(
2Dmax[E(ρ)‖γ] −

2
√
ε

pmin(γ)

)
= 2PDmax |γ(E) −

2
√
ε

pmin(γ)
, (3.51)

and the proof is completed. �

As expected, the thermalisation bath size of a Gibbs-preserving channel E, i.e.,
Bε(E), can measure how robust the channel is against thermalisation effect. Equa-
tion (3.47) tells us that the weaker the channel is at maintaining athermality, the smaller
the bath needed to thermalise all its output. Theorem 3.3.5 provides a link to connect
the ability to preserve athermality and the resource needed to thermalise all outputs of
a given quantum dynamics. It also gives to the athermality preservability robustness a
thermodynamic interpretation in the context of thermalisation.
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3.3.3 Connecting Thermodynamics and Classical Communication
As the last application of resource preservability theories, we combine Theorem 3.3.1
and Theorem 3.3.5 to bridge classical communication and thermodynamics. To this
end, we need the following lemma that connects classical communication, resource
preservability theories, and thermodynamic properties:

Lemma 3.3.6. (Athermality Bound Lemma) Consider a given state resource theory
(R,F ,O) satisfying Basic Assumptions 3.1.2, 0 ≤ ε < 1 & 0 < κ < 1, and a full-rank
thermal state γ. For a Gibbs-preserving E ∈ O and every ΛE ∈ A(κ;E), we have

Cε
(1)(E) ≤ PDmax |R(E) + PDmax |γ

(
ΛE

)
+ log2

2κ

1 − ε
. (3.52)

Proof. Equation (3.49) implies that PDmax |γ(E) = supρ Dmax[E(ρ)‖γ]. This means E(ρ) ≤
2PDmax |γ(E)γ ∀ρ, which further means that

Γκ(E) B log2 inf
ΛE∈A(κ;E)

sup
ΘM

M−1∑
m=0

tr
[
EmΛE(ρm)

]
≤ log2 inf

ΛE∈A(κ;E)
2PDmax |γ(ΛE) sup

ΘM

M−1∑
m=0

tr (Emγ) = inf
ΛE∈A(κ;E)

PDmax |γ

(
ΛE

)
, (3.53)

and the result follows from Theorem 3.3.1. �

Lemma 3.3.6 tells us that the ability of a Gibbs-preserving E ∈ O to transmit classi-
cal information is limited by its ability to maintain R, plus the ability of its resourceless
version (to R) to maintain athermality. Using this lemma, we are in position to show
the main result of this section. In what follows, ‘R = Coh’ denotes coherence with re-
spect to the energy eigenbasis of the given system Hamiltonian that induces the thermal
state, andAR=Coh(κ,E) denotes the set defined in Eq. (3.18) when we set R = Coh.

Main Theorem 3.3.7. (Thermalisation and Classical Communication) Consider
0 ≤ ε, δ < 1 & 0 < κ < 1 and a full-rank thermal state γ. Assume the system
Hamiltonian satisfies the energy subspace condition given in Definition 3.3.2. Then
for any Gibbs-preserving channel E of γ that is also coherence non-generating, that is,
E ∈ Oγ|max ∩ OCoh|max, we have

Cε
(1)(E) ≤PDmax |Coh(E) + log2

Bδγ (
ΛE

)
+

2
√
δ

pmin(γ)
+ 1

 + log2
2κ

1 − ε
(3.54)

for every ΛE ∈ AR=Coh(κ,E).

Proof. Setting R = Coh in Lemma 3.3.6 leads to

Cε
(1)(E) ≤ PDmax |Coh(E) + PDmax |γ

(
ΛE

)
+ log2

2κ

1 − ε
(3.55)
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for every ΛE ∈ AR=Coh(κ,E). Since ΛE is coherence-annihilating, a direct application
of Theorem 3.3.5 implies that

Cε
(1)(E) ≤ PDmax |Coh(E) + log2

Bδγ(ΛN ) +
2
√
δ

pmin(γ)
+ 1

 + log2
2κ

1 − ε
, (3.56)

which completes the proof. �

Theorem 3.3.7 illustrates how dynamical resource theories connect a thermody-
namic property and a measure in the classical communication theory. To illustrate
the physical meaning of this result, let us first focus on the special case when E is
coherence-annihilating; namely, E ∈ A with R = Coh (recall Definition 3.1.3). Then
one can choose E = ΛE and κ = 0 in Theorem 3.3.7. In this case, if N can transmit a
high amount of classical information [i.e., the left-hand-side of Eq. (3.54) is high], it
necessarily requires a large bath to thermalise all its outputs [i.e., the right-hand-side of
Eq. (3.54) is forced to be high]. On the other hand, if E only need a small thermalisation
bath, it unavoidably has a weak ability to transmit classical information. Theorem 3.3.7
provides a quantitative description of this qualitative intuition; furthermore, it suggests
the following physical message in the present setting:

If a channel can transmit n bits of classical information, then thermalising its output
requires a bath size at least 2n − 1, up to one-shot error terms.

In other words, thermalisation bath size is a thermodynamic prerequisite needed to
transmit classical information. When E is able to preserve coherence, interestingly, the
prerequisite to transmit classical information becomes a hybrid term, containing the
thermalisation bath size of N’s incoherent version, i.e., ΛE ∈ AR=Coh(κ,E), plus the
ability of E to maintain coherence. Namely, it is a combination of a thermodynamic
property of E’s ‘classical counterpart’, and the quantum effect maintained by E. In
this sense, we interpret Theorem 3.3.7 as a connection between thermodynamics and
classical communication.

Note that, as expected, state preparation channels of the given thermal state cannot
transmit any amount of classical information, since there is no need to have any bath for
thermalisation. This means that the inequality in Theorem 3.3.7 is tight. Still, the in-
equality cannot be saturated in general, and it is natural to ask whether one can improve
this bound by using different entropy quantities and alternative thermodynamic prop-
erties. This is in fact achievable by adopting the so-called hypothesis testing relative
entropy–using this entropy measure, one is able to connect one-shot classical capacity
with an one-shot work extraction task. Since these results are beyond the scope of this
thesis, we refer the readers to Ref. [9] for further details.



Chapter 4

Quantum Channel Marginal
Problem

A fundamental question in the study of quantum theory is whether a given set of local
states are compatible with a global one; namely, can the former be the marginals of
a single, global state? This kind of questions are known as quantum marginal prob-
lems, or state marginal problems (SMPs) in this thesis. A well-known example of
SMPs is the 2-body N-representability problem asking which 2-body reduced states
can be marginals of a global state of N particles. This problem is motivated by finding
ground states of 2-body Hamiltonians (see, e.g., [24, 25]). Due to its relevance, SMPs
have been studied in many different contexts, such as entanglement detection [99, 47],
nonlocality detection [48, 49], and efficient measurement construction strategies for
estimating marginal states [50, 51, 52]. SMPs are only concerned with static proper-
ties carried by states, and we aim at understanding how compatibility between local
and global physical descriptions extends to the dynamical regime. Namely, our major
objective is

To seek a natural dynamical generalisation of SMPs.

4.1 Formulation

To extend SMPs to the dynamical regime, the very first step is to formally know what
SMPs are (see also Fig. 4.1):

Definition 4.1.1. (State Marginal Problems) Consider a global system S and a set
of local states {ρX}X∈Λ, where Λ is a collection of subsystems X of S and each ρX is a
state in the system X. Then a state marginal problem (SMP) asks whether there exists
a global state ρS in S compatible with all of them, that is,

∃ ρS ∈ STATES such that trS \X(ρS ) = ρX ∀ X ∈ Λ. (4.1)
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Figure 4.1: A state marginal problem (Definition 4.1.1) asks whether a given set of
local states (e.g., ρAB, ρBC) are marginal states of a global state (ρABC).

An immediate observation is that SMPs always have a trivial solution via tensor
product if marginals do not overlap, i.e., ρS =

⊗
X∈Λ ρX . Hence, SMPs become much

more interesting and non-trivial in the overlapping regions. For SMPs to be well-posed
in the overlapping cases, ρX’s must be compatible in the overlapping regions; namely,
their reduced states must be equal. Formally, these are called local compatibility con-
ditions:

trX\(X∩Y)(ρX) = trY\(X∩Y)(ρY ) ∀ X,Y ∈ Λ. (4.2)

Note that local compatibility are necessary and easy to verify but, unfortunately, not
sufficient to guarantee solutions to SMPs.

4.1.1 Channel Marginal Problems

To formulate the dynamical version of SMPs, one may be tempted to define it as fol-
lows: given a set of local channels {EX}X∈Λ, where Λ is a collection of subsystems X
of S and each EX is a channel acting as X → X, the dynamical version of SMP asks
whether there exists a global channel ES compatible with all of them. To formalise this
compatibility condition, however, is not obvious because the concept of marginals for
channels is not as clear as that for states. In fact, being an input-output process, the ex-
istence of well-defined marginals for a dynamics needs to satisfy certain no-signaling
conditions. To see this, consider the classical case first. A dynamical map from the
inputs S ′ = {s′i} to the outputs S = {s j} is given by a so-called stochastic matrix PS |S ′ ,
which is simply a matrix whose element (i, j) is a conditional transition probability
from state i to j. Given X′ ⊂ S ′ and X ⊂ S , PS |S ′ has a well-defined marginal from X′

to X, or simply a reduced map PX|X′ , if and only if for every input probability distribu-
tion pS′ we have

PX|X′
∑

s′i∈S
′\X′

pS ′ =
∑

si∈S \X

PS |S ′ pS ′ , (4.3)

where PB|A pA B
∑

a1,...,ak
Pb1,...,bk |a1,...,ak pa1,...,ak . In fact, this is equivalent to the condition

that the map PS |S ′ is no-signaling from S ′ \X′ to X; that is,
∑

si∈S \X PS |S ′ is independent
of the input in S ′ \ X′. Equation (4.3) has a clear generalisation in the quantum regime:
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Figure 4.2: Commutation diagram used to define the marginal channel in a subsystem
(Definition 4.1.2). For a local input coming from part of a global input, trB(ρAB), the
marginal channel TrB|B(EAB) of a global channel EAB needs to map it to the marginal
state of the global output, trB[EAB(ρAB)]. Note that, unlike the case for states, the
marginal of a channel does not always exist.

Definition 4.1.2. (Marginal Channels) Given a global channel ES |S ′ and subsystems
X′ ⊆ S ′, X ⊆ S , ES|S′ is said to have a well-defined marginal channel from X′ to X, or
reduced channel EX|X′ , if for every state ρS ′

EX|X′ ◦ trS ′\X′ (ρS ′ ) = trS \X ◦ ES |S ′ (ρS ′ ). (4.4)

On the other hand, a local channel EX|X′ and a global channel ES |S ′ are called com-
patible if they can achieve Eq. (4.4).

See Fig. 4.2 for a brief illustration. If Eq. (4.4) holds, we denote the marginal
channel by the following notation

TrS \X|S ′\X′ (ES |S ′ ) B EX|X′ . (4.5)

Interestingly, we obtain Eq. (4.4) once we quantise inputs and outputs of no-signaling
correlations in Eq. (4.3). Channels satisfying Eq. (4.4) are known in the literature as
semi-causal channels in X with respect to S ′ \ X′ or no-signaling from S ′ \ X′ to
X [53, 54, 55, 56]. In fact, these channels are also equivalent to quantum dynamics
achievable by one-way communication from X′ to S \ X [54], also known as semi-
localisable channels in X.

It has been shown [53, 54, 55, 56, 57, 58] that Eq. (4.4) can equivalently be ex-
pressed in terms of Choi states [Eq. (2.5)] as follows:

Lemma 4.1.3. (Compatibility Lemma) ES |S ′ is compatible with EX|X′ if and only if

trS \X

(
E
J

S S ′

)
= E

J

XX′ ⊗
IS ′\X′

dS ′\X′
. (4.6)

Proof. For every input state ρX′ in X′, one can use Eq. (2.7) to write EX|X′ (ρX′ ) =

dX′ trX′ [(IX ⊗ ρt
X′ )E

J

XX′ ], where (·)t is the transpose map. This means

1
dS ′

trS \X ◦ ES |S ′ (ρS ′ ) = trS \X ◦ trS ′
[(
IS ⊗ ρ

t
S ′
)
E
J

S S ′

]
= trS ′

[(
IX ⊗ ρ

t
S ′
)

trS \X

(
E
J

S S ′

)]
.

(4.7)
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On the other hand, we have

1
dX′
EX|X′ ◦ trS ′\X′ (ρS ′ ) = trX′

{[
IX ⊗

(
trS ′\X′ (ρS ′ )

)t
]
E
J

XX′

}
= trS ′

[(
IX ⊗ ρ

t
S ′
) (
E
J

XX′ ⊗ IS ′\X′
)]
,

(4.8)

where we use the identity trA(ρAB)t = trA(ρt
AB) 1. Since dX′dS ′\X′ = dS ′ , we learn that

Eq. (4.6) ensures that ES |S ′ is compatible with EX|X′ .
To show the necessity, note that EX|X′ ◦ trS ′\X′ (ρS ′ ) = trS \X ◦ ES |S ′ (ρS ′ ) implies

trS \X

(
E
J

S S ′

)
=

[(
EX|X′ ◦ trS ′\X′

)
⊗ IS ′

]
(Ψ+

S ′S ′ ) = E
J

XX′ ⊗
IS ′\X′

dS ′\X′
. (4.9)

This completes the proof. �

With the above notion of marginal channels, we are now in the position to formally
state the dynamical generalisation of SMPs, termed channel marginal problems:

Definition 4.1.4. (Channel Marginal Problems) Consider global systems S ′, S and
a set of local channels {EX|X′ }X|X′∈Λ, where Λ B {X|X′} is a collection of input-output
pairs with X′ ⊆ S ′, X ⊆ S . Then a channel marginal problem (CMP) asks whether
there exists a global channel ES |S ′ compatible with all of them, that is,

∃ ES |S ′ ∈ CPTPS |S ′ such that TrS \X|S ′\X′ (ES |S ′ ) = EX|X′ ∀ X|X′ ∈ Λ. (4.10)

We say the collection {EX|X′ }X|X′∈Λ is compatible if there exists at least one global chan-
nel ES |S ′ achieving Eq. (4.10).

See also Fig. 4.3. With this definition, the analogies between CMP and SMP are
clear. Similar to the case of SMPs, when the systems X’s and X′’s are non-overlapping,
CMPs have a trivial solution, which is the product channel

⊗
X|X′∈Λ EX|X′ . When over-

lapping marginals are considered, we again need to first verify whether CMPs are
well-posed. This includes checking whether the overlapping channels coincide in the
common region. In analogy to Eq. (4.2), for every X|X′,Y |Y ′ ∈ Λ we need,

TrX\Y |X′\Y ′ (EX|X′ ) = TrY\X|Y ′\X′ (EY |Y ′ ). (4.11)

As for states, a set of channels {EX|X′ }X|X′∈Λ satisfying this condition is said to be locally
compatible. In fact, applying Lemma 4.1.3 to X,Y and X ∩ Y (and hence also X′,Y ′

and X′ ∩ Y ′) shows a characterisation for this condition:

Lemma 4.1.5. (Local Compatibility Lemma) If EX|X′ and EY |Y ′ are compatible, then
they are also locally compatible; namely,

TrX\Y |X′\Y ′ (EX|X′ ) = TrY\X|Y ′\X′ (EY |Y ′ ). (4.12)
1 To see this identity, we write ρAB =

∑
i jkl fi j|kl |i〉〈 j|A ⊗ |k〉〈l|B, where {|i〉A}i and {|k〉B} j are

the bases for the definition of the transpose map (·)t . Then direct computation shows trA(ρAB)t =(∑
n
∑

i jkl fi j|kl〈n|i〉A〈 j|n〉A × |k〉〈l|B
)t

=
∑

nkl fnn|kl |l〉〈k|B = trA
(∑

i jkl fi j|kl | j〉〈i|A ⊗ |l〉〈k|B
)

= trA(ρt
AB).
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Figure 4.3: A channel marginal problem (Definition 4.1.4) asks whether a given set of
local channels (e.g., EAB,EBC) are marginal channels of a global channel (EABC).

Proof. To see this, we redefine the systems as A = X \ Y , B = X ∩ Y , C = Y \ X, and
S = A ∪ B ∪C (similar definitions apply to A′, B′,C′, S ′). Now, suppose that EX|X′ =

EAB|A′B′ and EY |Y ′ = EBC|B′C′ are compatible, then there exists a global channel ES |S ′

such that TrC|C′ (ES |S ′ ) = EAB|A′B′ and TrA|A′ (ES |S ′ ) = EBC|B′C′ . Then Lemma 4.1.3
implies that trA

(
E
J

XX′

)
⊗
IC′
dC′

= trAC

(
E
J

S S ′

)
= trC

(
E
J

YY ′

)
⊗
IA′
dA′
. Tracing out the system

C′ and using Lemma 4.1.3 again, we learn that EX|X′ is compatible with a channel
in B|B′ [TrX\Y |X′\Y ′ (EX|X′ )] with the Choi state trCC′

(
E
J

YY ′

)
= trACA′C′

(
E
J

S S ′

)
. Simi-

larly, by tracing out A′, one can show that EY |Y ′ is compatible with a channel in B|B′

[TrY\X|Y ′\X′ (EY |Y ′ )] with the same Choi state trAA′
(
E
J

XX′

)
= trACA′C′

(
E
J

S S ′

)
. �

As a remark on Definition 4.1.4, by using Lemma 4.1.3 it is clear that CMPs can
be rephrased via Choi states as SMPs with overlapping marginals, but the formulation
involves an additional tensor product structure taking into account the quantum non-
signaling constraints associated to the dynamical problem (see Lemma 4.6). Hence,
the CMP is not equivalent to the SMP for the Choi states. However, in the special case
of broadcasting compatibility that will be discussed later, where all X′ coincide with
the input global system S ′, the ‘tensor identity’ parts in Lemma 4.1.3 disappear. In this
special case, CMPs reduces to SMPs for Choi states, recovering the result of Ref. [59].

Now we showcase how the CMPs include as special cases several problems con-
sidered before in the studies of quantum information theory and physics. Consider the
case where all X′ coincide with S ′; that is, Λ = {X|S ′}. In this case, the no-signaling
condition in Definition 4.1.2 trivialises, and, consequently, the global channels ES |S ′

automatically have well-defined marginals EX|S ′ . CMPs then reduces to the question of
the existence of a global channel ES |S ′ such that trS \X◦ES |S ′ = EX|S ′ ∀ X. This is known
as broadcasting (in)compatibility, which is a notion that has been studied extensively as
a natural generalisation of measurement (in)compatibility [59, 60, 61, 62, 63, 64, 65].
When the channels under consideration are identity channels, the non-existence of a
global channel is the well-known no-broadcasting theorem [66]. Next, consider the
case where X′i = Xi = ABi, where all Bi’s are isomorphic. Given identical channels
EABi , the CMP asks whether there exists an extension to a global channel EAB1...Bn . This
notion of channel extendibility was recently introduced to extend the state extendibility
to the dynamical regime. Also, it has been used in the studies of quantum communica-
tion scenarios [67] and testing symmetries on a quantum computer [68].
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Finally, before proceeding to quantitatively study channel incompatibility, we spec-
ify notations. From now on, we denote the vector of local channels defining a given
CMP by E B {EX|X′ }X|X′∈Λ. We say that E is compatible whenever the corresponding
CMP has a solution; that is, there exists a global channel ES |S ′ compatible with each
EX|X′ in E . The set of compatible local channels is denoted by C.

4.2 Channel Incompatibility Robustness

To quantitatively understand dynamical incompatibility, a suitable measure is needed.
Following an approach similar to the one adopted in Sec. 3.2.1, we introduce a ro-
bustness measure, dubbed channel incompatibility robustness, which gives an efficient
solution to CMPs and provides a quantitative measure of incompatibility:

R(E) B max {λ ∈ [0, 1] | λE + (1 − λ)N ∈ C} , (4.13)

where the maximisation runs over vectors of local channels N = {NX|X′ }X|X′∈Λ. Note
that the linear combination of E ,N is defined component-wise, i.e., aE + bN B
{aEX|X′ + bNX|X′ }X|X′∈Λ. Channel incompatibility robustness serves as a measure of in-
compatibility in the following sense: R(E) = 1 if and only if E ∈ C, meaning that
the CMP for E admits a solution. Furthermore, a value R < 1 can detect instances
in which the local compatibility condition is not sufficient to ensure the existence of a
global channel, and we refer the reader to Sec. 4.3.1 for examples.

Note that being locally incompatible does not imply R = 0. For example, in a
3-qubit setting, consider

E
J

AA′BB′ = |00〉〈00|AB ⊗
IA′B′

4
& E

J

CC′BB′ = |11〉〈11|CB ⊗
IC′B′

4
, (4.14)

which are not locally compatible in B. However, by considering the noise channels

N
J

AA′BB′ = |01〉〈01|AB ⊗
IA′B′

4
& N

J

CC′BB′ = |10〉〈10|CB ⊗
IC′B′

4
, (4.15)

one can check that 1
2E
J

XX′BB′+
1
2N

J

XX′BB′ (X = A,C) is the marginal of the global 3-qubit
channel, whose Choi state is

|0〉〈0|A ⊗
IB
2
⊗ |1〉〈1|C ⊗

IA′B′C′

8
. (4.16)

Hence, they have R ≥ 0.5 even though they are not locally compatible.
Importantly, one can show that the computation of the channel incompatibility

robustness is a semi-definite program (SDP) (see, e.g., Ref. [27]). This means that
channel incompatibility robustness not only provides an analytical way to understand
CMPs, but also admit a numerically feasible form. Before stating the main result, we
briefly go through the basic formulation of SDP in the following section.
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4.2.1 Semi-Definite Program: A Brief Introduction
SDP is a central tool, both analytically and numerically, in the study of quantum
information theory. An SDP contains two formulations, named the primal and the
dual problems, respectively. Usually, the study of the dual SDP can provide insights
about operational interpretations of the problems under consideration. Formally, from
Ref. [27], one can write the primal problem of an SDP as follows:

max
V

〈V, A〉

s.t. Φ(V) = B; Ψ(V) ≤ C; V ≥ 0.
(4.17)

Here, both Ψ and Φ are hermitian-preserving linear maps, A, B,C are fixed operators,
and V is the variable (which is again an operator in general). The corresponding dual
problem is (see, e.g., Sec. 1.2.3 in Ref. [27])

min
H,W

〈H, B〉 + 〈W,C〉

s.t. Φ†(H) + Ψ†(W) ≥ A; H† = H; W ≥ 0,
(4.18)

Again, H,W are variables, which are operators. Now, it is important and useful to
know when the primal and the dual SDPs output the same optimum. This is called
strong duality, which is guaranteed when (i) the primal problem Eq. (4.17) is finite and
feasible (i.e., ∃V ≥ 0 satisfying Φ(V) = B,Ψ(V) ≤ C); (ii) the dual problem Eq. (4.17)
is strictly feasible (i.e., ∃W > 0,H† = H statisfying Φ†(H) + Ψ†(W) > A). These are
the so-called Slater’s conditions (see Theorem 1.18 in Ref. [27]).

4.2.2 Channel Incompatibility Robustness As An SDP
Now we state the following result, which explicitly provides the SDP form of the chan-
nel incompatibility robustness defined in Eq. (4.13):

Main Theorem 4.2.1. (SDP Form of Channel Incompatibility Robustness) For ev-
ery E , its channel incompatibility robustness R(E) is the solution of the following SDP

max
ρS S ′ ,λ

λ

s.t. ρS S ′ ≥ 0; trS (ρS S ′ ) =
IS ′

dS ′
; λ ∈ [0, 1];

trS \X(ρS S ′ ) ≥ λE
J

XX′ ⊗
IS ′\X′

dS ′\X′
∀ X|X′ ∈ Λ;

trS \X(ρS S ′ ) = trS S ′\XX′ (ρS S ′ ) ⊗
IS ′\X′

dS ′\X′
∀ X|X′ ∈ Λ.

(4.19)

Proof. By definition Eq. (4.13), R(E) is the solution of the following maximisation

max
N ,L,λ

λ

s.t. L ∈ C; λ ∈ [0, 1]; N : vector of channels; λE + (1 − λ)N = L,
(4.20)
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where the last condition holds if and only if λEJXX′+(1−λ)NJXX′ = L
J

XX′ ∀ X|X′ ∈ Λ. By
Lemma 4.1.3, there exists a global channel LS |S ′ such that trS \X

(
L
J

S S ′

)
= L

J

XX′ ⊗
IS ′\X′

dS ′\X′

∀ X|X′ ∈ Λ. From here we learn that

trS \X

(
L
J

S S ′

)
=

[
λEJXX′ + (1 − λ)NJXX′

]
⊗
IS ′\X′

dS ′\X′
∀ X|X′ ∈ Λ. (4.21)

This means, for every X|X′ ∈ Λ, we have

trS \X

(
L
J

S S ′

)
≥ λEJXX′ ⊗

IS ′\X′

dS ′\X′
;

trS \X

(
L
J

S S ′

)
= trS S ′\XX′

(
L
J

S S ′

)
⊗
IS ′\X′

dS ′\X′
;

trS

(
L
J

S S ′

)
= trX

(
L
J

XX′ ⊗
IS ′\X′

dS ′\X′

)
=
IS ′

dS ′
. (4.22)

Hence, when (N ,L, λ) is feasible for Eq. (4.20), the pair
(
L
J

SS′ , λ
)

is feasible for
Eq. (4.19).

Conversely, if the pair (ρS S ′ , λ) is feasible for Eq. (4.19), then the state ρS S ′ =

L
J

S S ′ is a Choi state of a global channel LS |S ′ (·) B dS ′ trS ′
{
[IS ⊗ (·)T ]ρS S ′

}
[see

Eq. (2.7); also, note that the first condition in Eq. (4.19) implies trS(ρSS′ ) =
IS′
dS′

].
By Lemma 4.1.3 and the last condition in Eq. (4.19), the global channel LS |S ′ has
a well-defined marginal in each X|X′ ∈ Λ, denoted by LX|X′ , with Choi state LJXX′ =

trS S ′\XX′ (ρS S ′ ) . Tracing out S ′ \ X′ in the second condition in Eq. (4.19), we obtain

L
J

XX′ − λE
J

XX′ ≥ 0. (4.23)

On the other hand, sinceLJXX′ and EJXX′ are both Choi states, we learn that, when λ < 1,

1
1 − λ

trX

(
L
J

XX′ − λE
J

XX′

)
=
IX′

dX′
. (4.24)

Equations (4.23) and (4.24) imply that 1
1−λ

(
L
J

XX′ − λE
J

XX′

)
is a legal Choi state for

every λ < 1. In other words, Hence, 1
1−λ

(
LX|X′ − λEX|X′

)
is a channel from X′ to X

when λ < 1. For each X|X′ ∈ Λ, by defining the channel

NX|X′ B
1

1 − λ
(
LX|X′ − λEX|X′

)
if λ < 1 & NX|X′ : arbitrary if λ = 1, (4.25)

we have LX|X′ = λEX|X′ + (1 − λ)NX|X′ ∀ X|X′ ∈ Λ. From here we conclude that the
pair

(
{NX|X′ }X|X′∈Λ, {LX|X′ }X|X′∈Λ, λ

)
is feasible for Eq. (4.20) for every (ρS S ′ , λ) that is

feasible for Eq. (4.19). Thus, the two optimisation problems Eqs. (4.20) and (4.19)
have the same optimum. �

Theorem 4.2.1 provides a general and quantitative strategy to tackle CMPs. Be-
ing an SDP form, it is numerically feasible at least for small systems. The solution to
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the SDP also returns the global physical process that best approximates the marginal
channels in E . As a remark, in the broadcasting scenario (X′ = S ′), the channel incom-
patibility robustness recovers as a special case the consistent robustness introduced in
Ref. [59] and Theorem 1 in the same article.

4.2.3 Dual Problem of Channel Incompatibility Robustness
After proving that the channel incompatibility robustness can be cast into an SDP, we
now study its dual form. In what follows, when an operator is written as V (X)

Y |W , it means
that it is acting on the system X with dependency on the input-output pair Y |W.

Lemma 4.2.2. (Duel Channel Incompatibility Robustness) The dual of Eq. (4.19) is

min
w,HS′ ,

{
H(XS ′ )

X|X′

}
,
{
W (XS ′ )

X|X′

} tr(HS ′ )
dS ′

+ w

s.t. f
(
HS ′ ,

{
H(XS ′)

X|X′

}
,
{
W (XS ′)

X|X′

})
≥ 0;

w +
∑

X|X′∈Λ

tr
[
W (XS ′)

X|X′

(
E
J

XX′ ⊗
IS ′\X′

dS ′\X′

)]
≥ 1;

H(XS ′),†
X|X′ = H(XS ′)

X|X′ ∀ X|X′ ∈ Λ; H†S ′ = HS ′ ;

W (XS ′)
X|X′ ≥ 0 ∀ X|X′ ∈ Λ; w ≥ 0,

(4.26)

where

f
(
HS ′ ,

{
H(XS ′)

X|X′

}
,
{
W (XS ′)

X|X′

})
B

IS ⊗ HS ′ +
∑

X|X′∈Λ

(
H(XS ′)

X|X′ − trS ′\X′
(
H(XS ′)

X|X′

)
⊗
IS ′\X′

dS ′\X′
−W (XS ′)

X|X′

)
⊗ IS \X . (4.27)

Also, strong duality holds; namely, Eq. (4.19) and (4.26) have the same optimum.

Proof. The first step is to write Eq. (4.19) in the standard form of SDP. In what follows,
we use the notation L(X) to denote the set of all linear maps on X. Then let V B
ρS S ′ ⊕ λ and A B 0 ⊕ 1, both in L(S S ′) ⊕ R, such that 〈V, A〉 B tr(V†A) = λ. Note

that the direct sum operation is defined as x ⊕ y B
(
x ·

· y

)
, where the off-diagonal

terms are irrelevant to the definition. 〈V, A〉 is the objective function for the standard
form that will be detailed soon. The feasible set can be characterised by defining the
following functions: Φ B

(⊕
X|X′∈Λ ΦX|X′

)
⊕ Φ0 and Ψ B

(⊕
X|X′∈Λ ΨX|X′

)
⊕ Ψ0. For

each X|X′ ∈ Λ we have

ΦX|X′ (V) B trS \X(ρS S ′ ) − trS S ′\XX′ (ρS S ′ ) ⊗
IS ′\X′

dS ′\X′
; (4.28)

Φ0(V) B trS (ρS S ′ ); (4.29)

ΨX|X′ (V) B λEJXX′ ⊗
IS ′\X′

dS ′\X′
− trS \X (ρS S ′ ) ; (4.30)

Ψ0(V) B λ, (4.31)
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where ΦX|X′ : L(S S ′)⊕R→ L(XS ′), Φ0 : L(S S ′)⊕R→ L(S ′), ΨX|X′ : L(S S ′)⊕R→
L(XS ′), and Ψ0 : L(S S ′) ⊕ R → R. As one can check, all of them are hermitian-
preserving linear maps. Now we further choose

B B

 ⊕
X|X′∈Λ

0XS ′

 ⊕ IS ′dS ′
; C B

 ⊕
X|X′∈Λ

0XS ′

 ⊕ 1. (4.32)

Gathering all the above ingredients, Eq. (4.19) can be rewritten as the standard form of
SDP as in Eq. (4.17). From Eq. (4.18), its dual problem reads

min
H,W

〈H, B〉 + 〈W,C〉

s.t. Φ†(H) + Ψ†(W) ≥ A; H† = H; W ≥ 0,
(4.33)

where

H =

 ⊕
X|X′∈Λ

H(XS ′)
X|X′

 ⊕ HS ′ ∈

 ⊕
X|X′∈Λ

L(XS ′)

 ⊕ L(S′); (4.34)

W =

 ⊕
X|X′∈Λ

W (XS ′)
X|X′

 ⊕ w ∈

 ⊕
X|X′∈Λ

L(XS ′)

 ⊕ R. (4.35)

Now it remains to find Φ† and Ψ† to complete the proof. First, we note that

〈Φ†(H),V〉 =

〈 ⊕
X|X′∈Λ

H(XS ′)
X|X′

 ⊕ HS ′ ,

 ⊕
X|X′∈Λ

ΦX|X′ (V)

 ⊕ Φ0(V)
〉

= 〈HS ′ ,Φ0(V)〉 +
∑

X|X′∈Λ

〈
H(XS ′)

X|X′ ,ΦX|X′ (V)
〉

=

〈
Φ
†

0(HS ′ ) +
∑

X|X′∈Λ

Φ
†

X|X′

(
H(XS ′)

X|X′

)
,V

〉
.

(4.36)

This means Φ†(H) = Φ
†

0(HS ′ )+
∑

X|X′∈Λ Φ
†

X|X′

(
H(XS ′)

X|X′

)
, and, similarly, Ψ†(W) = Ψ

†

0(w)+∑
X|X′∈Λ Ψ

†

X|X′

(
W (XS ′)

X|X′

)
. Consequently, it suffices to find the adjoint of each ΦX|X′ , Φ0,

ΨX|X′ , and Ψ0 separately. Direct computation shows 〈Φ†0(HS ′ ),V〉 = tr
[
HS ′ trS (ρS S ′ )

]
=

〈(IS ⊗ HS ′ )⊕0,V〉, which implies that Φ
†

0(HS ′ ) = (IS ⊗ HS ′ )⊕0. For a given X|X′ ∈ Λ,
we have

〈Φ
†

X|X′

(
H(XS ′)

X|X′

)
,V〉 =

〈
H(XS ′)

X|X′ , trS \X(ρS S ′ ) − trS S ′\XX′ (ρS S ′ ) ⊗
IS ′\X′

dS ′\X′

〉

= tr
[
(H(XS ′)

X|X′ ⊗ IS \X)ρS S ′
]
− tr


 trS ′\X′

(
H(XS ′)

X|X′

)
dS ′\X′

⊗ IS S ′\XX′

 ρS S ′


=

〈H(XS ′)
X|X′ ⊗ IS \X −

trS ′\X′
(
H(XS ′)

X|X′

)
dS ′\X′

⊗ IS S ′\XX′

 ⊕ 0,V
〉
. (4.37)
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From here we learn that Φ
†

X|X′ (H
(XS ′)
X|X′ ) =

[(
H(XS ′)

X|X′ − trS ′\X′
(
H(XS ′)

X|X′

)
⊗
IS ′\X′

dS ′\X′

)
⊗ IS \X

]
⊕ 0.

On the other hand, we have 〈Ψ†0(w),V〉 = wλ and hence Ψ
†

0(w) = 0 ⊕ w. Also, for a
given X|X′ ∈ Λ, we have

〈Ψ
†

X|X′ (W
(XS ′)
X|X′ ),V〉 =

〈
W (XS ′)

X|X′ , λE
J

XX′ ⊗
IS ′\X′

dS ′\X′
− trS \X (ρS S ′ )

〉
= λtr

[
W (XS ′)

X|X′

(
E
J

XX′ ⊗
IS ′\X′

dS ′\X′

)]
− tr

[(
W (XS ′)

X|X′ ⊗ IS \X
)
ρS S ′

]
=

〈(
−W (XS ′)

X|X′ ⊗ IS \X
)
⊕ tr

[
W (XS ′)

X|X′

(
E
J

XX′ ⊗
IS ′\X′

dS ′\X′

)]
,V

〉
, (4.38)

meaning that

Ψ
†

X|X′ (W
(XS ′)
X|X′ ) =

(
−W (XS ′)

X|X′ ⊗ IS \X
)
⊕ tr

[
W (XS ′)

X|X′

(
E
J

XX′ ⊗
IS ′\X′

dS ′\X′

)]
. (4.39)

Combining everything in Eq. (4.18), one is able to obtain the desired form, i.e., the one
in Eq. (4.26). Finally, note that the primal problem Eq. (4.17) is finite and feasible [27]
by taking ρS S ′ =

IS S ′

dS S ′
and λ = 0. Also, the dual is strictly feasible [27] by taking any

H(XS ′)
X|X′ Hermitian, W (XS ′)

X|X′ > 0, and HS ′ = hIS ′ for h > 0,w > 0 large enough. By
Slater’s conditions (Theorem 1.18 in Ref. [27]), strong duality holds. �

4.2.4 Channel Incompatibility Witness
The dual of channel incompatibility robustness (Lemma 4.2.2) leads to a simple oper-
ational interpretation of channel incompatibility robustness [Eq. (4.13)], helping us to
single out the physical meaning behind incompatibility of quantum dynamics. In fact,
one is able to use it to derive a necessary and sufficient characterisation of channel in-
comaptibility through an operational witness; that is, an operational method to certify
the existence of the given quantum resource. For instance, an entanglement witness is
an operator W such that tr(Wρ) ≥ 0 if ρ is separable, and tr(Wρ) < 0 for some ρ. To
proceed, we need to prove a lemma first. Let EJ B {EJXX′ }X|X′∈Λ be the vector of Choi
states of the channels in E . Also, for a set of operators A B {AX|X′ }X|X′∈Λ, where AX|X′

is in X|X′, we define
〈
A,EJ

〉
B

∑
X|X′∈Λ tr

(
AX|X′E

J

XX′

)
.

Lemma 4.2.3. (Channel Incompatibility Witness via Choi States) E is incompatible
if and only if there exists a set of positive operators H B {HX|X′ }X|X′∈Λ such that〈

H ,EJ
〉
> max

L∈C

〈
H ,LJ

〉
. (4.40)

Proof. it suffices to show that incompatibility implies Eq. (4.40). First, we note that
when

{
W (XS ′)

X|X′

}
X|X′∈Λ

and w satisfy the second constraint in Eq. (4.26), we have w ≥

1 −
∑

X|X′∈Λ tr
[
W (XS ′)

X|X′

(
E
J

XX′ ⊗
IS ′\X′

dS ′\X′

)]
. Then Lemma 4.2.2 and strong duality jointly
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imply that R(E) is lower bounded by

min
HS′ ,

{
H(XS ′ )

X|X′

}
,
{
W (XS ′ )

X|X′

} tr(HS′ )
dS ′

+ 1 −
∑

X|X′∈Λ

tr
[
W (XS ′)

X|X′

(
E
J

XX′ ⊗
IS ′\X′

dS ′\X′

)]
s.t. f

(
HS ′ ,

{
H(XS ′)

X|X′

}
,
{
W (XS ′)

X|X′

})
≥ 0; W (XS ′)

X|X′ ≥ 0 ∀ X|X′ ∈ Λ;

H(XS ′),†
X|X′ = H(XS ′)

X|X′ ∀ X|X′ ∈ Λ; H†S ′ = HS ′ .

(4.41)

Note that since the objective function becomes independent of w, the second constraint
in Eq. (4.26) always holds and hence can be removed. Now we note that

tr(HS ′ )
dS ′

= max
L∈C

tr
[
(IS ⊗ HS ′ )L

J

S S ′

]
≥ max

L∈C

∑
X|X′∈Λ

tr
[((
−H(XS ′)

X|X′ + trS ′\X′
(
H(XS ′)

X|X′

)
⊗
IS ′\X′

dS ′\X′
+ W (XS ′)

X|X′

)
⊗ IS \X

)
L
J

S S ′

]

= max
L∈C

∑
X|X′∈Λ

tr
[(
−H(XS ′)

X|X′ + trS ′\X′
(
H(XS ′)

X|X′

)
⊗
IS ′\X′

dS ′\X′
+ W (XS ′)

X|X′

) (
L
J

XX′ ⊗
IS ′\X′

dS ′\X′

)]

= max
L∈C

∑
X|X′∈Λ

tr
[
W (XS ′)

X|X′

(
L
J

XX′ ⊗
IS ′\X′

dS ′\X′

)]
. (4.42)

In the first line LJS S ′ denotes the Choi state of a global channel LS|S′ compatible with
L = {LX|X′ }X|X′∈Λ, and the equality follows from the property of a Choi state [Eq. (2.5)].
The inequality in the second line is due to the first constraint in Eq. (4.26). The third
line is due to Lemma 4.1.3, and the last line is because of the equality:

tr
[
H(XS ′)

X|X′

(
L
J

XX′ ⊗
IS ′\X′

dS ′\X′

)]
= tr

[
trS ′\X′

(
H(XS ′)

X|X′

)
⊗
IS ′\X′

dS ′\X′

(
L
J

XX′ ⊗
IS ′\X′

dS ′\X′

)]
. (4.43)

From here we conclude that the channel incompatibility robustness R(E) is lower
bounded by

min{
W (XS ′ )

X|X′

} 1 −
∑

X|X′∈Λ

tr
[
W (XS ′)

X|X′

(
E
J

XX′ ⊗
IS ′\X′

dS ′\X′

)]

+ max
L∈C

∑
X|X′∈Λ

tr
[
W (XS ′)

X|X′

(
L
J

XX′ ⊗
IS ′\X′

dS ′\X′

)]
s.t. W (XS ′)

X|X′ ≥ 0 ∀ X|X′ ∈ Λ.

(4.44)

Since the objective function is independent of HS ′ ,
{
H(XS ′)

X|X′

}
X|X′∈Λ

, the first constraint
in Eq. (4.41) is dropped because it always holds with an appropriately selected HS ′ .
When E is incompatible, i.e., R(E) < 1, there exist positive operators W (XS ′)

X|X′ such that

max
L∈C

∑
X|X′∈Λ

tr
[
W (XS ′)

X|X′

(
L
J

XX′ ⊗
IS ′\X′

dS ′\X′

)]
<

∑
X|X′∈Λ

tr
[
W (XS ′)

X|X′

(
E
J

XX′ ⊗
IS ′\X′

dS ′\X′

)]
. (4.45)
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Finally, let H̃X|X′ B
trS ′\X′

(
W (XS ′)

X|X′

)
dS ′\X′

, which is again positive. The above inequality implies

max
L∈C

∑
X|X′∈Λ

tr
(
H̃X|X′L

J

XX′

)
<

∑
X|X′∈Λ

tr
(
H̃X|X′E

J

XX′

)
, (4.46)

and the proof is completed. �

Lemma 4.2.3 gives a witness form for channel incompatibility in terms of local
channels’ Choi states. It can be understood as the dynamical version of the state in-
compatibility witness given by Ref. [69]. However, intuitively, one may expect the
possibility to define witnesses in terms of channels, rather than their Choi states. This
can be done by applying Proposition 7 in Ref. [17], which is formally stated as follows:

Theorem 4.2.4. [17] WAB is a hermitian operator acting on a bipartite system AB.
Then there exist states ξ(i) in A, ρ( j) in B, and real numbers ωi j such that WAB =∑

i, j ωi jξ
(i),t ⊗ ρ( j),t, where (·)t is the transpose operation. Also, the number of nonzero

ωi j is at most d2
min + 3, where dmin is the smallest system dimension among A, B.

Then we have the following result, serving as a witness of channel incompatibility:

Main Theorem 4.2.5. (Channel Incompatibility Witness) E is incompatible if and
only if for every X|X′ ∈ Λ there exist Hermitian operators {H(i)

X|X′ }
NΛ

i=1 in X and states

{ρ(i)
X|X′ }

NΛ

i=1 in X′ such that, with NΛ B
(
maxX|X′∈Λ{dX , dX′ }

)2
+ 3,∑

X|X′,i

tr
[
H(i)

X|X′EX|X′
(
ρ(i)

X|X′

)]
> max

L∈C

∑
X|X′,i

tr
[
H(i)

X|X′LX|X′
(
ρ(i)

X|X′

)]
. (4.47)

Proof. For every E and {HX|X′ }X|X′∈Λ with H†X|X′ = HX|X′ in the system XX′, Theo-

rem 4.2.4 implies the existences of states ξ(i)
X|X′ in X, ρ( j)

X|X′ in X′, and real numbers

{ω
(i j)
X|X′ }

NX|X′

i, j=1 [we can choose NX|X′ ≤ (min{dX , dX′ })2 + 3 for every X|X′ ∈ Λ], such that

∑
X|X′∈Λ

tr
(
HX|X′E

J

XX′

)
=

∑
X|X′∈Λ

NX|X′∑
i, j=1

ω
(i j)
X|X′ tr

[(
ξ(i),t

X|X′ ⊗ ρ
( j),t
X|X′

)
(EX|X′ ⊗ IX′ )

(
|Ψ+

X′X′〉〈Ψ
+
X′X′ |

)]
=

∑
X|X′∈Λ

NX|X′∑
i, j=1

ω
(i j)
X|X′

dX′
tr

[
ξ(i),t

X|X′EX|X′
(
ρ

( j)
X|X′

)]
=

∑
X|X′∈Λ

NX|X′∑
j=1

tr
[
E( j)

X|X′EX|X′
(
ρ

( j)
X|X′

)]
, (4.48)

where E( j)
X|X′ B

∑NX|X′

i=1
ω

(i j)
X|X′

dX′
ξ(i),t

X|X′ is again a Hermitian operator in X. The result fol-
lows by using Lemma 4.2.3, and noticing that for every X|X′ we have that NX|X′ ≤

(min{dX , dX′ })2 + 3 ≤
(
maxX|X′∈Λ{dX , dX′ }

)2
+ 3. �

4.3 Implications and Applications

4.3.1 Local Compatibility Does Not Imply Compatibility
As we mentioned previously, there exist locally compatible channels [Eq. (4.11)] that
are actually incompatible. Here we provide examples in a tripartite setting ABC with
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A ' A′ ' C ' C′ and B ' B′. In what follows, |φXBB′〉 is a pure state satisfying the
condition trXB(|φXBB′〉〈φXBB′ |) =

IB′
dB′

2. Define a channel MXB through its Choi state
(X = A,C; recall that EX = EX|X′ when X = X′):

M
J

XX′BB′ B |φXBB′〉〈φXBB′ | ⊗
IX′

dX′
, (4.49)

Then, by construction, MAB and MCB are locally compatible; i.e., TrA|A′ (MAB) =

TrC|C′ (MCB). On the other hand, using Lemma 4.2.3, one can show that

Lemma 4.3.1. (Locally Compatible Incompatibility Lemma) MAB and MCB are
incompatible if and only if |φXBB′〉 is non-product in the X vs. BB′ bipartition.

Proof. To show the sufficiency, suppose |φXBB′〉 = |φ〉X ⊗ |ξ〉BB′ is product in X vs. BB′

bipartition. Then by Lemma 4.1.3 (S = ABC) EJS S ′ = |φ〉〈φ|A⊗|φ〉〈φ|C ⊗|ξ〉〈ξ|BB′ ⊗
IA′C′
dA′C′

is the Choi state of a global channel compatible with {MAB,MCB}.
To show the necessity, consider the Hermitian operators HXB|X′B′ B dX′M

J

XX′BB′

(X = A,C). Then we have

max
L∈C

[
tr

(
HAB|A′B′L

J

AA′BB′

)
+ tr

(
HCB|C′B′L

J

CC′BB′

)]
≤ max

ρS S ′
tr

[
(|φABB′〉〈φABB′ | ⊗ IA′CC′ + |φCBB′〉〈φCBB′ | ⊗ IAA′C′ ) ρS S ′

]
≤ 2, (4.50)

where the last inequality is saturated if and only if there exists a state ρABB′C such that
tr

[
(|φABB′〉〈φABB′ | ⊗ IC) ρABB′C

]
= 1 = tr

[
(|φCBB′〉〈φCBB′ | ⊗ IA) ρABB′C

]
. This is true if

and only if trC(ρABB′C) = |φABB′〉〈φABB′ | and trA(ρABB′C) = |φCBB′〉〈φCBB′ |. Now, by
entanglement monogamy [70] (see also Ref. [71]), it is impossible for such ρABB′C

to exist when |φXBB′〉 is non-product in X vs. BB′ bipartition. Since, by assumption,
|φXBB′〉 is non-product, we conclude that

max
L∈C

[
tr

(
HAB|A′B′L

J

AA′BB′

)
+ tr

(
HCB|C′B′L

J

CC′BB′

)]
< 2. (4.51)

On the other hand, a direct computation shows that

tr
(
HAB|A′B′M

J

AA′BB′

)
+ tr

(
HCB|C′B′M

J

CC′BB′

)
= 2. (4.52)

Using Lemma 4.2.3, the desired result follows. �

A potential physical explanation behind this result is entanglement monogamy [70],
which suggests that it is impossible to clone quantum correlations; i.e., the mapping
|ψAB〉 7→ |ψABC〉 such that |ψAB〉 = |ψBC〉 is possible only when |ψAB〉 is product in the
A vs. B bipartition.

2Here, we use subscripts to indicate the same state distributed among different local systems.
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Remarks on the Optimal Universal Cloning Machine

As a special case, consider |φXBB′〉 = 1
√

2
(|000〉XBB′ + |111〉XBB′ ) = |GHZXBB′〉 [72] in

Eq. (4.49). Then we have

MXB(·) B CNOTXB [|0〉〈0|X ⊗ trX(·)] , (4.53)

where CNOTXB : |i〉X ⊗ | j〉B 7→ |(i + j)mod 2〉X ⊗ | j〉B is a qubit CNOT-gate. In this case,
MAB can be realised by B (i) implementing a CNOT gate between their incoming qubit
and an extra ancillary qubit prepared in the state |0〉 (controlled on the former) and (ii)
sending the ancillary qubit to A, who uses it as their output. However, this channel is
incompatible with MCB, since the SDP in Theorem 4.2.1 returns R({MAB,MCB}) =

0.75. From here, a natural question is to ask:

Is the global channel achieving this optimal value achieved by optimal quantum
cloning at the input B and distributing it to A and C?

In fact, the SDP in Theorem 4.2.1 can also numerically return such a global channel,
and it is indeed related to quantum cloning. Formally, an optimal universal cloning
machine that clones arbitrary states in X into AC is a unitary operator acting as [73]

|0〉X ⊗ |00〉CM 7→

√
2
3
|001〉ACM −

√
1
3
|ψ+〉AC ⊗ |0〉M; (4.54)

|1〉X ⊗ |00〉CM 7→ −

√
2
3
|110〉ACM +

√
1
3
|ψ+〉AC ⊗ |1〉M . (4.55)

where |ψ+〉 B
1
√

2
(|10〉 + |01〉) and M is an ancillary system ( denoting the “machine”)

that will be dropped in the end. Let CAC|X : X → AC denote the map obtained by
tracing out M after the above cloning unitary. Then, numerically, the following global
channel is returned by the SDP in Theorem 4.2.1:

M̃ABC(·) B (CAC|X ⊗ IB) ◦ CNOTXB[|0〉〈0|X ⊗ trAC(·)]. (4.56)

It can be understood as follows: B gets an input state, takes an ancillary system X
initially prepared in |0〉X , and performs a CNOTXB controlled on B. Then B applies the
optimal universal cloning machine (CAC|X) to X and sends one copy to A and one to C.
Finally, we remark that the local noise model can also be found explicitly.

4.3.2 CMP Is Irreducible to SMPs

One may conjecture that channel compatibility of E = {EX|X′ } can be reduced to the
state compatibility of the image states {EX|X′ (ρX′ )} for every set of compatible inputs
{ρX′ }. Namely, one may be tempted to ask:

Can the CMP be reduced to SMPs for the image states of local channels?
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Perhaps unexpectedly, we can disprove this conjecture by constructing a family of
counterexamples. Consider a bipartite state ωXB′ satisfying (1) ωXB′ is not 2-extendible
with respect to B′ [67, 74]; (2) trX(ωXB′ ) =

IB′
dB′

. Also, define a channel WXB :
XB→ XB whose Choi state reads

W
J

XX′BB′ B σB ⊗ ωXB′ ⊗
IX′

dX′
, (4.57)

where σB is a fixed (but arbitrarily chosen) state in B. Then we can prove that:

Lemma 4.3.2. (CMP Is Not Reducible To SMPs) The channelWXB satisfies

1. {WAB,WCB} is locally compatible but incompatible.

2. {WAB(ηAB),WCB(ηCB)} is a compatible pair of states for every locally compat-
ible pair of input states {ηAB, ηCB}.

Proof. First, since locally in B both WAB,WCB are the state preparation channel of
σB, they are locally compatible. Now, assume by contradiction that the set {WAB,WCB}

is compatible, then there exists a global channel whose Choi state contains a 2-extension
of the state ωXB′ , resulting in a contradiction. The first claim is proved. To prove the
second claim, we note that for any given set of locally compatible states {ηAB, ηCB}

with marginal trA(ηAB) = trC(ηCB) = κ, we have that, for X = A,C, WXB(ηXB) =

ΩX|B(κ)⊗σB,where ΩX|B : B→ X is a channel with Choi state Ω
J

XB′ = ωXB′ . These two
image states are always compatible with the tripartite state ΩA|B(κ)⊗σB ⊗ΩC|B(κ). �

Lemma 4.3.2 illustrates the fact that channel incompatibility cannot be always de-
tected from incompatibility of local channels’ image states, thereby disproving the
previously-mentioned conjecture.

Remarks On No-Cloning Theorem

Here we consider a special case of Lemma 4.3.2, which connects the CMP and no-
cloning theorem. Take the bipartite channel

KXB(·) B SWAP [|0〉〈0|X ⊗ trX(·)] , (4.58)

where SWAP : |i j〉 7→ | ji〉 is the swap operation. This channel has the Choi state
K
J

XX′BB′ = |Ψ+
XB′〉〈Ψ

+
XB′ | ⊗ |0〉〈0|B ⊗

IX′
dX′

[recall from Eq. (2.6) the definition of a maxi-
mally entangled state]. Hence, Lemma 4.3.2 implies that {KAB,KCB} is a counterexam-
ple to the above-mentioned conjecture. In fact, it is rewarding to see the following al-
ternative proof for this special case. First, by contradiction, suppose that there was a tri-
partite channelKABC simultaneously realisingKAB andKCB. By considering all inputs
of the form |ψ〉〈ψ|B⊗|00〉〈00|AC , this tripartite channelKABC realises |ψ〉 7→ |ψ〉⊗ |ψ〉, in
violation of the no-cloning theorem [73, 75]. Hence,KABC cannot exist. Still, for every
compatible input pair {ρAB, ρCB} with marginal in B as σ = trA(ρAB) = trC(ρBC), the
image states under {KAB,KCB} read {σA ⊗ |0〉〈0|B, |0〉〈0|B ⊗ σC}, which are compatible
with the tripartite stateσA⊗|0〉〈0|B⊗σC . Hence, we again conclude that incompatibility
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of local channels cannot be always detected from incompatibility of their image states,
and a potential physical mechanism behind is the well-known no-cloning theorem.
Note that this also means that channel incompatibility is not equivalent to violation of
entanglement monogamy [70] for the image states of local channels.

4.3.3 Gap Between Classical and Quantum CMPs
Previous sections have demonstrated the existence of non-trivial examples of quantum
channel incompatibility in the AB/BC scenario. Remarkably, such an incompatibility
structure never occurs classically. In fact, given two classical channels (i.e., stochastic
matrices) PAB|XY , PBC|YW with a well-defined marginal PB|Y in B|Y , the CMP always
has a solution, which is the following global classical channel

PABC|XYW =
PAB|XY PBC|YW

PB|Y
, (4.59)

as one can show by taking the corresponding marginals 3. A natural question at this
point is:

Is the gap between classical and quantum CMPs simply due to the fact that the former
is always trivial?

that is, are classical CMPs simply decided by local compatibility? The following exam-
ple shows that this is not the case. Take a Popescu-Rohrlich box [76, 77], also known
as PR-box, on AB, which is given by: PAB|XY = 1

2 if A ⊕ B = XY and 0 otherwise,
where all random variables are bits. Similarly, define PR-boxes in AC and BC. One
can check that all marginals are well-defined and coincide on A, B and C. Now, one
can show that there doe not exist any joint classical channel PABC|XYW compatible with
all of them. To show this, by contradiction, suppose it does. Then since all its 2-party
marginals are well-defined, one can show that this joint classical channel PABC|XYW

must be a no-signaling distribution. However, it is known that the PR-box cannot be
shared without violating no-signaling condition [78]. Consequently, PABC|XYW cannot
exist. This proves that classical CMPs are not trivial either, but they are structurally
different from the quantum CMPs4.

4.3.4 Operational Advantage in State Discrimination Tasks
Finally, we can also relate CMPs to discrimination tasks, demonstrating operational
advantages of channel incompatibility–namely, in such a task, channel incompatibility
can be treated as a resource. We introduce the following tasks, termed ensemble state
discrimination task. Given Λ, consider a scenario where we have an agent for each
systems X and X′. With probability pX|X′ , the input-output pair X|X′ is announced,

3 Write PAB|XY (·) =
∑

a,b,x,y P(ab|xy)|ab〉〈ab|〈xy| · |xy〉 with a probability distribution {P(ab|xy)}. Similar
for PBC|YW with {P(bc|yw)} and PB|Y with {P(b|y)} satisfying

∑
c P(bc|yw) = P(b|y) =

∑
a P(ab|xy). Then

PAB|XY , PBC|YW are compatible via a global classical channel PABC|XYW with {P(ab|xy)P(bc|yw)/P(b|y)}.
4In fact, dynamical incompatibility in the classical regime is a consequence of loops [79], which are not

required in the quantum domain.
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and the agent in X′ is given a set of states {ρ(i)
X|X′ }i sent with probabilities {q(i)

X|X′ }i (i.e.,

q(i)
X|X′ ≥ 0 and

∑
i q(i)

X|X′ = 1). The agent in X′ needs to send them to the agent in X via an
arbitrary channel EX|X′ . After the agent in X receives the states, they need to perform a
discriminating measurement described by the POVM M(i)

X|X′ (recall Sec. 2.1). The agent

then guesses that the state originally sent was ρ(i)
X|X′ in case of measurement outcome i.

Setting D B
(
{pX|X′ }, {q

(i)
X|X′ , ρ

(i)
X|X′ }, {M

(i)
X|X′ }

)
, which denotes a specific task, the cor-

responding success probability in the task D reads

P(D,E) B
∑
X|X′

pX|X′
∑

i

q(i)
X|X′ tr

[
M(i)

X|X′EX|X′
(
ρ(i)

X|X′

)]
. (4.60)

To avoid trivial scenarios, we further consider discrimination tasks D in which the
weights are all strictly positive, i.e., pX|X′ > 0, q(i)

X|X′ > 0,M(i)
X|X′ > 0 ∀ i ∀ X|X′. Such

a task D is called strictly positive. Then channel incompatibility is equivalent to an
advantage in an ensemble state discrimination task (note that the subscripts of the fol-
lowing Hermitian operators and local states are showing the dependency on the input-
output pair X|X′ rather than the system they belong to):

Main Theorem 4.3.3. (Advantage in Ensemble State Discrimination Tasks) For
every E , the following two statements are equivalent:

1. For every X|X′ ∈ Λ there exist Hermitian operators
{
H(i)

X|X′

}N

i=1
in X and states{

ρ(i)
X|X′

}N

i=1
in X′, where N ∈ N is independent of X|X′, such that

∑
X|X′∈Λ

N∑
i=1

tr
[
H(i)

X|X′EX|X′
(
ρ(i)

X|X′

)]
> max

L∈C

∑
X|X′∈Λ

N∑
i=1

tr
[
H(i)

X|X′LX|X′
(
ρ(i)

X|X′

)]
. (4.61)

2. There exists a strictly positive D such that P(D,E) > maxL∈C P(D,L).

In other words, E is incompatible if and only if there exists a strictly positive ensemble
state discrimination task D such that

P(D,E) > max
L∈C

P(D,L). (4.62)

Proof. Since Statement 2 implies Statement 1 with the Hermitian operator H(i)
X|X′ B

pX|X′q
(i)
X|X′M

(i)
X|X′ ≥ 0, it remains to show the opposite direction. As the first step, we

note that Statement 1 holds if and only if

∑
X|X′∈Λ

N∑
i=1

tr
[
κ × (H(i)

X|X′ + ∆
(i)
X|X′ IX)EX|X′

(
ρ(i)

X|X′

)]
> max

L∈C

∑
X|X′∈Λ

N∑
i=1

tr
[
κ × (H(i)

X|X′ + ∆
(i)
X|X′ IX)LX|X′

(
ρ(i)

X|X′

)]
, (4.63)
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for every κ > 0 and real numbers {∆(i)
X|X′ }. This is because EX|X′ ’s are trace-preserving,

and
∑

i,X|X′ tr
[
∆

(i)
X|X′ IX × EX|X′

(
ρ(i)

X|X′

)]
=

∑
i,X|X′ ∆

(i)
X|X′ is a fixed real number. Now, let

W (i)
X|X′ B κ

(
H(i)

X|X′ + ∆
(i)
X|X′ IX

)
, which is a Hermitian operator in X with dependency on

X|X′. Then we can choose κ,∆(i)
X|X′ such that W (i)

X|X′ > 0 and
∑N

i=1 W (i)
X|X′ < IX for every

i, X|X′. This means that, for each X|X′, {W (i)
X|X′ }

N
i=1 can be interpreted as part of a POVM.

Then Statement 1 implies that there exists a set of states {ρ(i)
X|X′ } such that

∑
X|X′∈Λ

N∑
i=1

tr
[
W (i)

X|X′EX|X′
(
ρ(i)

X|X′

)]
> max

L∈C

∑
X|X′∈Λ

N∑
i=1

tr
[
W (i)

X|X′LX|X′
(
ρ(i)

X|X′

)]
. (4.64)

Now, consider the task D =
(
{pX|X′ }, {q

(i)
X|X′ , σ

(i)
X|X′ }, {M

(i)
X|X′ }

)
given by (what follows

holds for every X|X′; also, the subscript now denotes the dependency on X|X′ rather
than the systems they live in):

pX|X′ =
1
|Λ|

; (4.65)

q(i)
X|X′ =

1 − ε
N

if i = 1, ...,N & q(N+1)
X|X′ = ε; (4.66)

σ(i)
X|X′ = ρ(i)

X|X′ if i = 1, ...,N & σ(N+1)
X|X′ = ηX|X′ ; (4.67)

M(i)
X|X′ = W (i)

X|X′ if i = 1, ...,N & M(N+1)
X|X′ = IX −

N∑
i=1

M(i)
X|X′ , (4.68)

where ε ∈ [0, 1] is a real number whose range will be set later, and ηX|X′ ’s are states in
X′ that can be chosen arbitrarily (but they still depend on X|X′). Then one can check
that {M(i)

X|X′ }
N+1
i=1 is a POVM in the output system X for every X|X′ ∈ Λ, which means D

is an ensemble state discrimination tasks. Also, D is strictly positive once 0 < ε < 1.
For any set of channels N = {NX|X′ }X|X′∈Λ, we write

P(D,N ) = P̃(N ) + ε × Γ(N ), (4.69)

where

P̃(N ) B
1

N |Λ|

∑
X|X′∈Λ

N∑
i=1

tr
[
W (i)

X|X′NX|X′
(
ρ(i)

X|X′

)]
; (4.70)

Γ(N ) B
1
|Λ|

∑
X|X′∈Λ

tr IX − N∑
i=1

W (i)
X|X′

NX|X′ (ηX|X′ )

 − 1
N

N∑
i=1

tr
[
W (i)

X|X′NX|X′ (ρ
(i)
X|X′ )

] .
(4.71)

Equation (4.64) implies that P̃(E) = ∆ + maxL∈C P̃(L) for some ∆ > 0, which further
means

max
L∈C

P(D,L) ≤ max
L∈C

P̃(L) + ε ×max
L∈C

Γ(L)

= P̃(E) − ∆ + ε ×max
L∈C

Γ(L) = P(D,E) − ∆ + ε ×
[
max
L∈C

Γ(L) − Γ(E)
]
, (4.72)
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Set ∆′ B maxL∈C Γ(L) − Γ(E), which is finite since Γ is bounded. Then we conclude
that maxL∈C P(D,L) ≤ P(D,E) − ∆ + ε∆′. If ∆′ ≤ 0, then maxL∈C P(D,L) < P(D,E)
∀ε ∈ [0, 1]. If ∆′ > 0, take ε < min

{
∆
∆′
, 1

}
which gives maxL∈C P(D,L) < P(D,E). �

As a remark, such operational advantages in ensemble state discrimination tasks
can be extended to a general dynamical resource theory setups recently investigated in,
e.g., Ref. [18, 19]. Setting X′ = S ′ for every member in Λ, Theorem 4.3.3 implies that
every set of broadcast incompatible channels gives an advantage over compatible ones
in some ensemble state discrimination tasks. This recovers results from Refs. [60, 80].
Also, in the particular case of quantum-to-classical channels, Theorem 4.3.3 recovers
results on the discrimination advantages of incompatible measurements [61, 81, 82].



Chapter 5

Entanglement Preserving Local
Thermalisation

As one of the most representative resources in quantum information science, entan-
glement is at the basis of quantum advantages in various operational tasks such as
metrology [83], cryptography [84], communication [85], computation [86], and quan-
tum therodynamics [90, 91, 87, 88, 89]. While being a powerful resource, it often does
not survive interactions with an external environment. Consequently, it is crucial to
know whether entanglement can be maintained by certain classes of dynamics. From
a thermodynamic perspective, one important class is thermalisation, which describes
the evolution of states toward thermal equilibrium. Formally, a channel is called a full
thermalisation if it maps every input state to a fixed output state – the thermal state.
While entanglement is distributed at spatially separated locations, thermalisation often
acts locally and is known to destroy quantum correlations. This motivates us to ask:

Can globally distributed entanglement survive locally performed full thermalisation?

Ultimately, it is a fundamental question concerning the structure of quantum theory,
specifically about the interplay between subsystem thermalisation and quantum corre-
lations.

5.1 Formulation
One way to formalise this question is as follows. Suppose two agents in a bipartite
system AB are restricted to perform local operations plus shared randomness (LOSR)
channels in AB, which takes the form

EAB =

∫
(Eλ,A ⊗ Eλ,B)pλdλ, (5.1)

with pλ ≥ 0 and
∫

dλpλ = 1 is a probability distribution and Eλ,A,Eλ,B are local chan-
nels in A, B, respectively, with λ dependency. Physically, an LOSR channel can be
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realised as follows: At the beginning of the operation, two local agents share classical
randomness, e.g., a third party samples λ and distributes the outcomes to them accord-
ing to the probability pλ. Each λ corresponds to a specific local channel, i.e., Eλ,A,Eλ,B.
The local agents apply the corresponding local channels conditioned on the received λ.

Now, suppose that each local agent holds a system with local Hamiltonian HX ,
where we write X = A, B, and the total Hamiltonian is HA ⊗ IB + IA ⊗HB; namely, there
is no interaction between A, B. By means of local processes and pre-shared classical
resources (i.e., LOSR channels), they want to fully thermalise their local systems to
some local environment temperatures TA and TB, respectively. Recall from Eq. (3.31)
that γX = e−βX HX

tr(e−βX HX ) is the definition of a thermal state in X, where βX = 1
kBTX

is the
inverse temperature and kB is the Boltzmann constant. Then we can state the main
definition as follows:

Definition 5.1.1. (Local Thermalisation) A channel EAB acting on AB is called a
local thermalisation to a pair of thermal states (γA, γB) if

1. EAB is an LOSR channel.

2. trAEAB(ρAB) = γB and trBEAB(ρAB) = γA, for every ρAB.

Namely, a local thermalisation is an LOSR channel in AB whose marginal chan-
nels in A, B are both exist full thermalisation channels. This also means that a local
thermalisation is local in two senses: It is a channel involving local actions that locally
thermalises every input. We further say a local thermalisation EAB is an entanglement
preserving local thermalisation (EPLT) if, furthermore, there exists some input ρAB

such that the output EAB(ρAB) is entangled. In other words, an EPLT is a local thermal-
isation with non-vanishing entanglement preservability.

Note that dropping either of the two conditions trivialises the dynamical question.
If we drop condition 1, any channel can be used, including state preparation channels
of entangled locally thermal states (see, e.g., Ref. [91]). Also, dropping condition 2
means that the existence of entangled locally thermal states and the identity channel
would trivially satisfy the requirements. On the other hand, one may ask whether
we could strengthen condition 1 by asking EAB to be a local operation without shared
randomness. However, as expected, no correlation can be preserved in this case:

Lemma 5.1.2. (Product Local Thermalisation Is Trivial) Any product local ther-
malisation to (γA, γB) coincides with the state preparation channel (·) 7→ γA ⊗ γB.

Proof. Suppose EAB = EA ⊗ EB is a product local thermalisation. Then EX is identical
to the state preparation channel (·) 7→ γX , which is entanglement-breaking [37]. This
means (1) (EA⊗EB)◦ (EA⊗EB) = EA⊗EB and (2) EAB(ρAB) = (EA⊗EB)(ρAB) is always
separable for every ρAB. Hence, for an arbitrary ρAB, we can write (EA ⊗ EB)(ρAB) =∑

i fiρi
A ⊗ ρ

i
B for some fi ≥ 0,

∑
i fi = 1, and direct computation shows that

EAB(ρAB) = (EA ⊗ EB) ◦ (EA ⊗ EB)(ρAB) = (EA ⊗ EB)(
∑

i

fiρi
A ⊗ ρ

i
B) = γA ⊗ γB,

(5.2)

which completes the proof. �
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Figure 5.1: Information-theoretic formulation. In this formulation, we ask whether
entanglement can survive after an LOSR channel that is locally indistinguishable from
a full thermalisation process.

Hence, the simplest EPLT, if it exists, must exploit shared randomness to preserve
entanglement during a local thermalisation. Our main question is then as follows:

Do EPLTs exist?

See also Fig. 5.1 for a schematic interpretation. Here, we ask if classical correla-
tions/shared randomness alone allow for the preservation of entanglement in thermali-
sations.

5.1.1 Existence of EPLT

We now turn to the existence of EPLT at every positive local temperatures. From now
on, we assume equal finite local dimension d, no degeneracies, and finite energies.
First, we need to recall the (U ⊗ U∗)-twirling operation [92, 93], which is defined by

TAB(ρAB) B
∫

(U ⊗ U∗)ρAB(U ⊗ U∗)†dU, (5.3)

where the integration is taken over the group of unitary operators in dimension d with
the Haar measure dU. Operationally, twirling results from the application of coor-
dinated random local unitaries, turning local systems into maximally entropic states
while still partially maintaining correlations between them. An important property of
the twirling operation is that its output is always an isotropic state [93] [recall from
Eq. (2.6) the definition of maximally entangled states]:

ρiso(p) B p|Ψ+
AB〉〈Ψ

+
AB| + (1 − p)

IAB

d2 , (5.4)

where p ∈ [− 1
d2−1 , 1] due to the positivity of quantum states. TAB can preserve en-

tanglement since 〈Ψ+
AB|TAB(·)|Ψ+

AB〉 = 〈Ψ+
AB| · |Ψ

+
AB〉 [93] together with the fact that an

isotropic state ρiso is entangled if and only if 〈Ψ+
AB|ρiso|Ψ

+
AB〉 >

1
d [93]. Hence, TAB(ρAB)

is entangled if and only if 〈Ψ+
AB|ρAB|Ψ

+
AB〉 >

1
d .
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Lemma 5.1.3. (Local Thermalisation Lemma) Define the following channel in AB:

EεAB(·) B D(1−ε)
ηεA⊗η

ε
B
◦ TAB(·), (5.5)

where

D
p
σ(·) B pσ + (1 − p)IAB(·) (5.6)

and, for X = A, B,

ηεX B γX +
ε

1 − ε

(
γX −

IX
d

)
. (5.7)

Then EεAB is a local thermalisation to (γA, γB) for all 0 ≤ ε ≤ ε∗ B dPmin, where Pmin
is the smallest eigenvalue among γA and γB.

Proof. First, the definition of ηεX implies that EεAB locally behaves as a full thermal-
isation. This is because trA ◦ E

ε
AB(·) = (1 − ε)ηεB + ε IBd = γA, and the same by ex-

changing A and B. It remains to show that EεAB is an LOSR channel, which means
that it suffices to prove that ηεX is a state when ε falls into the prescribed region.
Write γX =

∑d−1
n=0 PX

n |n〉〈n|X with 1 ≥ PX
0 ≥ PX

1 ≥ ... ≥ PX
d−1 ≥ 0. Then we have

ηεX =
∑d−1

n=0 QX
n |n〉〈n| with

QX
n =

1
1 − ε

PX
n −

ε

d(1 − ε)
. (5.8)

Since ε ≤ 1, we have the hierarchy QX
0 ≥ QX

1 ≥ ... ≥ QX
d−1 and the normalisation

condition
∑d−1

n=0 QX
n = 1. This means that it suffices to impose QX

d−1 ≥ 0 to make sure
ηεX is a state, which leads to the desired range 0 ≤ ε ≤ ε∗ B dPmin. �

With the above lemma in hand, we are in the position to answer our central ques-
tion: (note again that we only consider finite-energy Hamiltonians):

Main Theorem 5.1.4. (Existence of EPLTs) Eε∗AB is an EPLT to (γA, γB) for all local
temperatures TA,TB > 0.

Proof. It suffices to show that the output state is entangled when the input state is
|Ψ+

AB〉. To this end, we adopt the positive partial transpose (PPT) criterion [94, 95] to
detect the entanglement of the output. Again, write ηεX =

∑d−1
n=0 QX

n |n〉〈n|; then we have

E
ε∗
AB(|Ψ+

AB〉〈Ψ
+
AB|) = ε∗|Ψ

+
AB〉〈Ψ

+
AB| + (1 − ε∗)

d−1∑
n,m=0

QA
n QB

m|nm〉〈nm|

=

d−1∑
n,m=0

[
ε∗
d
|nn〉〈mm| + (1 − ε∗)QA

n QB
m|nm〉〈nm|

]
. (5.9)
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Taking the partial transpose on B gives

d−1∑
n,m=0

[
ε∗
d
|nm〉〈mn| + (1 − ε∗)QA

n QB
m|nm〉〈nm|

]
=

⊕
n,m

Mnm

 ⊕ D, (5.10)

where

Mnm B

(
(1 − ε∗)QA

n QB
m

ε∗
d

ε∗
d (1 − ε∗)QA

mQB
n

)
, (5.11)

and D B
⊕d−1

n=0

[
ε∗
d + (1 − ε∗)QA

n QB
n

]
is the contribution of the diagonal terms. To see

that the output is entangled, it suffices to show that there exists a negative eigenvalue
of at least one Mnm. Note that QA

d−1 = 0 when we substitute ε = ε∗ = dPmin in
Eq. (5.8) (without loss of generality, we assume Pmin = PA

d−1). This means that, for
every m < d − 1, we have

Md−1,m =

(
0 ε∗

d
ε∗
d (1 − ε∗)QA

mQB
d−1

)
, (5.12)

which has a negative eigenvalue if the off-diagonal terms are positive; namely, when
ε∗ > 0. This completes the proof. �

Theorem 5.1.4 shows the existence of EPLT in the most general case for bipartite
systems, apart from the special case of TA = 0 or TB = 0. Note that we have ε∗ → 1
and Eε∗AB → T when TA,TB → +∞. Hence. the twirling operation is an EPLT with
infinite local temperatures or fully degenerate local Hamiltonians. In this sense, EεAB
can be treated as a finite temperature extension of the twirling operation.

Theorem 5.1.4 leaves out only the case TA = TB = 01, which we treat separately
here. We separately consider two cases, depending on whether or not there is any
ground-state degeneracy on the systems. In the latter case, the corresponding local
thermal state is given by the unique pure ground state of the local Hamiltonian. Then
one can immediately conclude that no entanglement can be preserved, because a pure
state cannot be correlated with any other system. Hence, no EPLT exists in such a
case. On the other hand, if both local systems admit ground-state degeneracy, then
EPLTs exist even when TA = TB = 0. The idea is to perform the twirling operation
in the ground energy subspace. To illustrate the idea, consider the following protocol,
where we assume two-fold ground state degeneracy on both local systems: In X, where
X = A, B, consider the POVM {ΠX

0 , IX − ΠX
0 }, where ΠX

0 B
∑

g=0,1 |0, g〉〈0, g|X is the
projector onto the ground energy subspace, g is a degeneracy index, and {|0, g〉}g=0,1
span the ground energy subspace of the local Hamiltonian HX . The first step of the
protocol is to measure {ΠA

0 , IA − ΠA
0 } ⊗ {Π

B
0 , IB − ΠB

0 }. For each local agent, if the
outcome reads ΠX

0 , nothing is done; on the other had, if the outcome reads IX − ΠX
0 ,

then the agent discards the original input and prepares ΠX
0

2 . The second step of the
protocol is to use shared randomness to achieve a twirling operation on the ground

1The case when, e.g., TA = 0 and TB > 0 can be addressed in a similar way.
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energy subspace, denoted by T 0
AB. Formally, the channel corresponding to the above

protocol is T 0
AB ◦ (LA⊗LB), whereLX(·) B ΠX

0 (·)ΠX
0 +Φ ΠX

0
2

[(IX−ΠX
0 )(·)(IX−ΠX

0 )] and

Φρ : (·) 7→ ρ is the state preparation channel of ρ. This protocol indeed gives a local
thermalisation because the output states have, independently of the input, marginal
ΠX

0
2 in X, which is the desired thermal state in this case. Finally, the entanglement

preservation can be seen by choosing the input state as 1
√

2
(|0, 0〉A ⊗ |0, 0〉B + |0, 1〉A ⊗

|0, 1〉B), which is invariant under the whole protocol. This confirms that EPLTs exist in
all nontrivial scenarios.

5.1.2 Alternative Formulation

So far we have analysed the information-theoretic formulation (Fig. 5.1), and it turns
out that our central question admits an equivalent, thermodynamic reformulation as
follows. Suppose an unknown input state is distributed to two agents in a bipartite sys-
tem AB. We assume that the agents neither share additional quantum resources, such as
another entangled state, nor can they communicate with each other. Each of them has
access to a local heat bath, and we allow for the two baths to be classically correlated
across the bipartition. Each party thermalises their half of the (unknown) input state by
coupling their local systems to their local baths. Then our central question reads

Can entanglement survive when local systems A and B are both fully thermalised?

Schematically, this formulation depicts two local systems interacting with their indi-
vidual heat baths and the thermalising. The heat baths do not interact between them,
but can share some initial classical correlations. The resulting dynamics can hence be
characterised as follows:

Definition 5.1.5. A channel CAB acting on a bipartite system AB is called a local bath
thermalisation to (γA, γB) if

1. CAB(ρAB) = trA′B′
[
VAA′ ⊗VBB′ (ρAB ⊗ γA′B′ )

]
, whereVXX′ (·) B UXX′ (·)U

†

XX′ are
local unitary dynamics on XX′ and γA′B′ is a separable thermal state.

2. trA ◦ CAB(ρAB) = γB and trBCAB(ρAB) = γA for all ρAB.

The above-defined channel CAB is further called an entanglement preserving local
bath thermalisation if there exists some state ρAB such that CAB(ρAB) is entangled. The
above notion illustrates the thermodynamic formulation, and the alternative form of
our central question is:

Do entanglement preserving local bath thermalisations exist?

The following result allows us to rephrase the results in this alternative formulation:

Main Theorem 5.1.6. (Thermodynamic Formulation) A bipartite channel is a local
bath thermalisation if and only if it is a local thermalisation.
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Figure 5.2: Thermodynamic formulation. In this formulation, we ask whether en-
tanglement can survive after subsystem thermalisations are achieved by coupling to
classically correlated heat baths.

Proof. Note that every local bath thermalisation is by definition a local thermalisation,
so it remains to prove the inverse statement. To this end, first, we recall that all LOSR
channels in AB are in the convex hull of the set of all product channels. Being em-
bedded in a finite Euclidean space, Carathéodory theorem implies that for each LOSR
channel EAB, there exists a finite set of product channels and a probability distribution,
{Ei

A ⊗ E
i
B, pi > 0}Di=1, such that EAB =

∑D
i=1 pi(Ei

A ⊗ E
i
B), where D only depends on

the local dimensions. Then, for a given i and X = A, B, the Stinespring dilation theo-
rem [96] guarantees the existence of an ancillary system X′i with dimension d2 and a

unitary operator UXX′i acting on XX′i such that Ei
X(·) = trX′i

{
UXX′i

[
(·) ⊗ |0〉〈0|X′i

]
U†XX′i

}
.

Since X′i ' C
d2

for all i, we simply choose them to be the same Hilbert space, de-
noted by X′ ' Cd2

, and write the corresponding unitary operator as U i
XX′ . Then we

have EAB(·) = trA′B′

{∑D
i=1 pi

(
U i

AA′ ⊗ U i
BB′

)
[(·) ⊗ |00〉〈00|A′B′ ]

(
U i

AA′ ⊗ U i
BB′

)†}
. De-

fine a Hilbert spaceHD B span {|i〉}Di=1 and introduce two additional ancillary systems
A′′ ' HD, B′′ ' HD, we conclude that

EAB(·) =

trA′B′A′′B′′

(VAA′A′′ ⊗ VBB′B′′ )

(·) ⊗ |00〉〈00|A′B′ ⊗
D∑

i=1

pi|ii〉〈ii|A′′B′′

 (VAA′A′′ ⊗ VBB′B′′ )†
 ,

(5.13)

where VXX′X′′ B
∑

i U i
XX′⊗|i〉〈i|X′′ is a unitary operator acting on XX′X′′. The separable

state
∑D

i=1 pi|ii〉〈ii|A′′B′′ is full rank, hence it can be treated as a thermal state in A′′B′′

by an appropriate choice of the Hamiltonian. �

See Fig. 5.2 for a schematic interpretation. Theorem 5.1.6 shows that, as it is in-
tuitive, the set of local bath thermalisations coincides with the set of local thermalisa-
tions. It implies that if two local agents perform local interactions with a thermal bath
that fully thermalise their local states for every input, then even knowing that the bath
has no entanglement across the bipartition, they still cannot conclude that their shared
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output is separable. In other words, classical correlations alone in the bath can allow
for the entanglement preservation even after locally performed full thermalisation. We
note that Lemma 5.1.2 and Theorem 5.1.6 imply that no entanglement preserving local
bath thermalisation exists if we restrict γA′B′ = γA′⊗γB′ in the setting of Theorem 5.1.6;
namely, if we remove the classical correlation in the bath.

5.2 Mechanism
Given the existence of EPLT, it is then natural and important to ask:

What is the mechanism behind EPLT?

To answer this question, we introduce another family of EPLTs and use it to study the
underlying physical mechanism:

Λ
(εA,εB)
AB B

[
D

(1−εA)
η
εA
A
⊗D

(1−εB)
η
εB
B

]
◦ T , (5.14)

where Dp
σ is defined in Eq. (5.6). The same proof shows that Λ(εA,εB) is a local ther-

malisation to (γA, γB) for all 0 ≤ εX ≤ dPX
min, where PX

min is the smallest eigenvalue
of γX. Eq. (5.14) has a clear thermodynamic interpretation. First, local agents A and
B perform the twirling operation. Then, they perform a sudden quench of the local
system Hamiltonians HX 7→ HεX

X (that is, energies are tuned, but not the eigenstates),
with ηεX

X ∝ e−HεX
X /kBTX . At this point, by thermal contact with their local environments,

they let their local system undergo a partial thermalisation2,

Pt
γ(·) B e−

t
τγ (·) +

(
1 − e−

t
τγ

)
γ, (5.15)

where τγ ∈ (0,∞) is the thermalisation time scale corresponding to the thermal state
γ. Note that Pt

γ = D
p
γ with p = 1 − e

−t
τγ , and hence Dp

γ can be realised by a partial
thermalisation. Finally, they quench their Hamiltonians back to HX , and the local states
are always γX , i.e., A and B both have fully thermalised their local systems. However,
entanglement can survive once local thermality is reached. This is in contrast to what
happens if local agents each let their local systems fully thermalise to an independent
bath according to Eq. (5.15): In this case, local thermality is reached only when the
global state is γA⊗γB. This observation suggests that, by taking the EPLT of Eq. (5.14)
as a model, the existence of ELPTs potentially rely on a ‘local speed-up’ of the full
thermalisation process. Roughly speaking, we want to show that such an EPLT can
thermalise the local system X = A, B to γX at a time instance t1 that is strictly smaller
than the time instance t2 for a partial thermalisation model to thermalise X to γX .

To gather evidence for this intuition, first we note from Eq. (5.15) that a partial
thermalisation takes infinite time to fully thermalise the subsystem to γX . On the other

2The partial thermalisation model can be derived from collision models [97] and can be seen as a partic-
ular realisation of the Davies dynamical semigroup [98].
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hand, the local behavior of Eq. (5.14) on X is a random unitary followed by an incom-
plete partial thermalisation with the completion time t = −τηεXX

ln εX , which is always
finite. Hence, we conclude that the subsystem thermalisation is faster in the EPLT
scheme when the time to implement random unitaries is finite.

One may, however, suspect that in practice the exact twirling operation requires
again infinite time. Let us show that the same speed-up argument holds even when one
accounts for the time needed to implement the twirling operation. In fact, with a finite
number N of unitaries, one can realise an approximation T (N)

AB of the twirling operation
TAB with an exponentially good precision in N [99]. The completion time of this
approximation is NtU , with tU the time necessary to perform a single unitary. Hence, as
long as tU is sufficiently small compared with the typical time scale of thermalisation
τγX , δ > 0 is small enough, and N is large enough, we expect a shorter time in the
EPLT thermalisation scheme compared with the partial thermalisation described by
Eq. (5.15). In fact, we are able to show an analytical result. Before proving it, we
still need a lemma describing a finite-time one-shot approximate implementation of
the twirling operation, which is detailed in the following section.

5.2.1 Approximating the Twirling Operation
To approximate the twirling operation TAB, we consider its implementation by means
of a finite sequence of unitaries, as introduced in Ref. [99],

T
(N)
U
B

N∏
k=1

Tk, (5.16)

with

Tk(·) B
1
2
IAB(·) +

1
2

(Uk ⊗ U∗k )(·)(Uk ⊗ U∗k )†, (5.17)

where each Uk represents a random unitary and U = (U1, ...,UN) is a vector of ran-
dom variables. Setting ‖E‖∞ B supρ ‖E(ρ)‖∞ for a given channel E, it was proven in
Ref. [99] that 〈∥∥∥TAB − T

(N)
U

∥∥∥2

∞

〉
<

1
2N , (5.18)

where 〈(·)〉 B
∫

(·)dU1dU2...dUN is the average over the Haar measure. In order to
establish the speed-up result, we give a more detailed version of the result in Ref. [99]
by assessing the probability that a given realisation of T (N)

U
is close to TAB:

Lemma 5.2.1. (Twirling Implementation Lemma) For every λ > 0, we have

Prob
(∥∥∥TAB − T

(N)
U

∥∥∥2

∞
−

1
2N > λ

)
<

1
λ22N . (5.19)

Proof. This lemma can be seen by applying Chebyshev’s inequality on the random
variable

∥∥∥TAB − T
(N)
U

∥∥∥2

∞
, whose variance can be shown to be upper bounded by 1

2N . To
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see this, we let ∆ B
∥∥∥TAB − T

(N)
U

∥∥∥2

∞
. Then direct computation shows〈

(∆ − 〈∆〉)2
〉

=
〈
∆2

〉
− 〈∆〉2 ≤

〈
∆2

〉
≤

〈∥∥∥TAB − T
(N)
U

∥∥∥2

2

〉
<

1
2N , (5.20)

where ‖E‖2 B supρ ‖E(ρ)‖2 for the Hilbert-Schmidt norm ‖·‖2, and the last inequality

is due to the relation
〈∥∥∥∥(TAB − T

(N)
U

)
(ρ)

∥∥∥∥2

2

〉
= 1

2N

(
‖ρ‖22 − ‖TAB(ρ)‖22

)
< 1

2N given by
Eq. (22) in Ref. [99]. Hence, it remains to check the applicability of Chebyshev’s
inequality, which requires the given random variable to be integrable. It suffices to
show the continuity of

∥∥∥TAB − T
(N)
U

∥∥∥
∞

in the argument U = (U1, ...,UN) with respect
to the metric dN defined by dN(U ,V ) B

∑N
i=1 ‖Ui − Vi‖∞. To this end, consider a given

pair of sequences of unitaries U and V . Using the notationsUi(·) B (Ui ⊗U∗i )(·)(Ui ⊗

U∗i )†,Vi(·) B (Vi ⊗ V∗i )(·)(Vi ⊗ V∗i )†, we learn that

∣∣∣∥∥∥TAB − T
(N)
U

∥∥∥
∞
−

∥∥∥TAB − T
(N)
V

∥∥∥
∞

∣∣∣ ≤ ∥∥∥T (N)
U
− T

(N)
V

∥∥∥
∞
≤

1
2N

∑
s

∥∥∥∥∥∥∥
js∏

i=1

Usi −

js∏
i=1

Vsi

∥∥∥∥∥∥∥
∞

,

(5.21)

where we repeatedly used the triangle inequality and the summation
∑

s is over all the
possible strings of ordered indices s = {s1, s2, ..., s js } ⊆ {1, 2, ...,N} with js ≤ N. Since∥∥∥∥∥∥∥

js∏
i=1

Usi −

js∏
i=1

Vsi

∥∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥∥Us js
◦

js−1∏
i=1

Usi −Vs js
◦

js−1∏
i=1

Vsi

∥∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥∥Us js
◦

 js−1∏
i=1

Usi −

js−1∏
i=1

Vsi


∥∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥∥(Us js
−Vs js

)
◦

js−1∏
i=1

Vsi

∥∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥∥
js−1∏
i=1

Usi −

js−1∏
i=1

Vsi

∥∥∥∥∥∥∥
∞

+
∥∥∥Us js

−Vs js

∥∥∥
∞
, (5.22)

we conclude that
∥∥∥∥∏ js

i=1Usi −
∏ js

i=1Vsi

∥∥∥∥
∞
≤

∑ js
i=1

∥∥∥Usi −Vsi

∥∥∥
∞
. The continuity in the

argument U in the metric dN thus follows from the following computation

‖Ui −Vi‖∞

≤
∥∥∥(Ui ⊗ U∗i − Vi ⊗ V∗i )ρ(Ui ⊗ U∗i )†

∥∥∥
∞

+
∥∥∥−(Vi ⊗ V∗i )ρ(Vi ⊗ V∗i − Ui ⊗ U∗i )†

∥∥∥
∞

≤ 2
∥∥∥Ui ⊗ U∗i − Vi ⊗ V∗i

∥∥∥
∞

≤ 2(‖Ui ⊗ I‖∞‖I ⊗ (U∗i − V∗i )‖∞ + ‖(Ui − Vi) ⊗ I‖∞‖I ⊗ V∗i ‖∞) = 4 ‖Ui − Vi‖∞ ,
(5.23)

where in the first step we added and subtracted (Vi ⊗ V∗i )ρ(Ui ⊗ U∗i )† and used the
triangle inequality; in the second step, we used the fact that for any two linear operators
C and D, ‖CD‖∞ ≤ ‖C‖∞ ‖D‖∞ (submultiplicativity); in the third step, we added and
subtracted Ui ⊗ V∗i and again used the triangle inequality and submultiplicativity; and
in the last step we used ‖C ⊗ I‖∞ = ‖C‖∞. �
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The above lemma implies that, for an arbitrarily small λ, with probability 1 −
O(λ−2e−N), the realisation T (N)

U
is λ + O(e−N) close to T .

5.2.2 Local Speed-Up Effect

Now we are in the position to prove the local thermalisation speed-up result. To for-
mally state the result, We define the following notations: In the subsystem X, we con-
sider the following implementation of EPLT:

Λ
(N,ttotal)
X = P

tX

η
dPX

min
X

◦ T
(N)
U ,X , (5.24)

where T (N)
U ,X B

∏N
k=1

(
trAB\X ◦ Tk

)
, Pt

γ(·) B e−
t
τγ (·) +

(
1 − e−

t
τγ

)
γ is the partial thermal-

isation model defined in Eq. (5.15), and ηεX B γX + ε
1−ε

(
γX −

IX
d

)
is defined in Eq. (5.7).

The total time to implement this channel, i.e., ttotal, reads

ttotal = tX + N × tU , (5.25)

where tU is the time to implement each Tk. In what follows, we say a channel Λ fully
δ-thermalises a state ρ to a thermal state γ if ‖Λ(ρ) − γ‖∞ < δ. Also, dxe is the smallest
integer larger than x.

Main Theorem 5.2.2. (Mechanism of EPLTs) Let γX be the thermal state with X =

A, B. If

τγX > tU ×
8

ln 2
≈ tU × 11.5416, (5.26)

then for every ρX , γX and p∗ ∈ (0, 1), there exists δ′ > 0 such that for every δ ∈ (0, δ′):

1. there exists an integer

Nδ B

8 log2
d2PX

min

√
2

δ

 (5.27)

and a time t1 such that Λ
(Nδ,t1)
X δ-thermalises ρX to γX with success probability

1 −

 δ

d2PX
min

√
2

4

, (5.28)

which can be chosen to be larger than p∗.

2. Pt
γX

fully δ-thermalises ρX to γX only if t ≥ t2.

3. t1 < t2.
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To interpret the above theorem, note that t1 is the total time for the EPLT model
given in Eq. (5.24) to δ-thermalise a local system. On the other hand, t2 is the minimal
time for the partial thermalisation model Eq. (5.15) to δ-thermalise the same local
system. The strict inequality t1 < t2 suggests that, with the imposed assumptions,
EPLT scheme provides a thermalisation faster than the partial thermalisation model. In
this sense, a potential physical mechanism behind the existence of EPLTs is the local
speed-up of thermalisation processes.

Proof. We use the shortcut notation ηX for the state ηdPX
min

X . To get an explicit estimate
on time, we take λ = 2−

N
4 and use Lemma 5.2.1. By noting that tX = −τηX ln dPX

min, we
start with the computation of the local state,∥∥∥Λ(N,ttotal)

X (ρX) − γX

∥∥∥
∞

=
∥∥∥∥PtX

ηX
◦ T

(N)
U ,X(ρX) − γX

∥∥∥∥
∞

=
∥∥∥∥dPX

minT
(N)
U ,X(ρX) +

(
1 − dPX

min

)
ηX − γX

∥∥∥∥
∞

= dPX
min

∥∥∥∥∥T (N)
U ,X(ρX) −

IX
d

∥∥∥∥∥
∞

≤ d2PX
min

∥∥∥T (N)
U
− T

∥∥∥
∞
< d2PX

min

√
2 × 2−

N
8 , (5.29)

which holds with probability 1 − 2−
N
2 . The first inequality follows from the relations

‖trY (·)‖∞ ≤ ‖trY (·)‖1 ≤ ‖·‖1 ≤ d ‖·‖∞ and ‖E(ρ)‖∞ ≤ ‖E‖∞. The second inequality is due
to the estimate

√
λ + 2−N <

√
2λ =

√
2 × 2−

N
8 . The above computation means that

for any given δ ∈ (0, 1), there exists a sufficiently large N = Nδ to let the above upper
bound be smaller than δ. In other words, this choice of N ensures full δ-thermalisation
of every local input ρX with the success probability 1 − 2−

N
2 . It suffices to take N = Nδ

as the one defined in Eq. (5.27).
Now, consider a given δ ∈ (0, 1) and a given local input state ρX . Then, tX =

−τηX ln dPX
min and Nδ gives us the following total time to implement the channel Λ

(Nδ,t1)
X :

t1 = tX + NδtU = τηX ln
1

dPX
min

+ NδtU . (5.30)

If local agents in A and B simply leave their local systems in contact with local inde-
pendent baths, the partial thermalisation model fully δ-thermalises the local state ρX in
a time

t2 = τγX ln
‖ρX − γX‖∞

δ
. (5.31)

Combining Eqs. (5.27), (5.30), and (5.31), we learn that t1 < t2, with probability 1 −
2−

Nδ
2 , if 0 < τγX ln ‖ρX−γX‖∞

δ
+ τηX ln (dPX

min) − NδtU . This is true if

‖ρX − γX‖∞ > f × δ
(
1− tU

τγX
8

ln 2

)
, (5.32)

where f B (dPX
min)−

τηX
τγX e

tU
τγX

(
d2PX

min

√
2
) tU
τγX

8
ln 2 is a constant in δ. Note that f is finite for

all possible values of τηX
τγX

. Hence, when the exponent of δ in Eq. (5.32) is positive, it
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is always possible to find a small enough δ to achieve Eq. (5.32). Specifically, suppose
Eq. (5.26) is satisfied. Then, for any given ρX , γX , a successful implementation of
twirling operation demonstrates t1 < t2 (i.e., a speed-up effect) for every δ > 0 small
enough, where the success probability is precisely given by Eq. (5.28). �

In most cases we have tU � τγX . Hence, δ-thermalisation with small enough δ
is faster in the EPLT scheme than in the partial thermalisation model, even taking
into account the time to implement random unitaries. Theorem 5.2.2 means that for
any ρX , γX and δ > 0 small enough, the EPLT scheme achieves a speed-up of δ-
thermalisation with probability 1 − O(δ4) whenever Eq. (5.26) holds. In practice, the
thermalisation time scale τγX is often much longer than the time scale tU of applying a
single unitary operator. Consequently, Eq. (5.26) holds in various physical settings.

We conclude the discussion by providing an example. Suppose τηX = τγX = 100tU ,
which means it is possible to establish the speed-up. If one sets Pmin = 2

d2 and δ = 10−3,
then we have N = 92 [from Eq. (5.27)]. This means we have speed-up for all ρX , γX

satisfying ‖ρX − γX‖∞ > d×0.00126 with success probability of implementation higher
than 1 − 10−13.



64 Entanglement Preserving Local Thermalisation



Chapter 6

Conclusion

This thesis aims at unifying and bridging various dynamical quantum phenomena by
the resource-theoretic approach. This includes ‘resource preservability theories’, a dy-
namical resource theory framework to describe the ability to preserve a given static
quantum property, such as entanglement, coherence, athermality, and nonlocality. It
also includes ‘quantum channel marginal problems’, a framework to describe local be-
haviours of global quantum dynamics which includes, e.g., state marginal problem,
channel extendibiltiy, and causal channels, as particular cases. As applications, re-
source preservability theories allow us to reveal a thermodynamic criterion underlying
transmitting classical information, providing a quantitative link between communica-
tion and thermodynamics. Also, quantum channel marginal problems highlight the
relations between marginal problems of quantum states, classical channels, and quan-
tum channels, demonstrating the importance of fundamental quantum principles such
as entanglement monogamy and no-cloning theorem but also showing the irreducibil-
ity of dynamical problems to static ones. Our findings suggest that significant novel
insights can be obtained by developing and building dynamical resource theories fur-
ther. In this chapter, we briefly mention several on-going/future directions, including
results that are relevant to this thesis, while not forming part of it.

Thermodynamic Criterion of Transmitting Information

As proved in Chapter 3, one can build a quantitative connection between a thermo-
dynamic property and a classical communication task. This motivates us to ask: Can
we upgrade the connection into an equivalence relation? Namely, can we equate the
performances of two operational tasks, one from thermodynamics, and one from com-
munication theory? Such an equivalence relation can potentially help us to uncover
a quantitative thermodynamic description of classical information transmission, and
vice versa. It turns out that, as reported in our recent pre-print [9], we proved such an
equivalence relation between a wide range of classical communication scenarios and
work extraction tasks. This recent progress motivates us to explore the following two
research topics:
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• The Roles of Thermodynamics in Quantum Communication.– Findings of
this thesis and Ref. [9] provide quantitative links between tasks in communica-
tion and thermodynamics. Treating them as a bridge, it is interesting to know
whether one is able to use thermodynamic approaches to tackle questions in the
study of quantum communication theory. In particular, it is foundationally rel-
evant to know whether thermodynamic principles play a key role in quantum
communication.

• Communication Cost of Thermodynamic Tasks.– Findings of this thesis and
Ref. [9] provide a potential platform to study the ‘classical communication cost’
of different thermodynamic tasks. The findings can potentially uncover the role
of information transmission in thermodynamics.

Channel Resource Theories + Channel Marginal Problems

From the structural perspective of quantum resource theories, it is important to know
whether a single framework can cover ‘resource theory of channels’ and ‘channel
marginal problems’ simultaneously. In our recent pre-print [8], we have introduced
a unified framework, dubbed resource marginal problems, to include resource theory
of states, state marginal problems, resource theory of channels, and channel marginal
problems at the same time. We provide a systematic approach to obtain robustness
measures, witness form, and operational advantages in discrimination tasks. Based on
this work, it is then interesting to explore the following topic:

• Transitivity of General Quantum Resources.– In our recent pre-print [7], we
study the entanglement transitivity problem, whose simplest form can be seen
in a tripartite setting ABC: For two compatible entangled states ρAB, ρBC , is it
true that every global state ρABC compatible with them must have an entangled
marginal state in AC? Questions of this kind can be cast into a resource marginal
problem, and it is interesting to know how to generalise such questions to the
dynamical regime, and what kinds of operational advantages can be guaranteed
when entanglement is transitive. Also, since entanglement is just one of the
many quantum resources, it is natural to ask whether such a transitivity prob-
lem can be generalised to arbitrary quantum resources. This gives rise to the
future project aiming at understanding transitivity properties of both static and
dynamical quantum resources.



Appendix A

Proofs for Chapter 2

A.1 Properties of Choi States
First, we need the following lemma:

Lemma A.1.1. (ES |S ′⊗IS ′ )
(
|Ψ+

S ′S ′〉〈Ψ
+
S ′S ′ |

)
≥ 0 if and only if ES |S ′ is complete positive.

Proof. First, note that ES |S ′ ⊗ IA is a positive map if and only if we have that

tr
[
ηS A(ES |S ′ ⊗ IA)(ρS ′A)

]
≥ 0 ∀ ρS ′A ∈ STATES ′A, ηS A ∈ STATES A. (A.1)

Now, direct computation shows:

tr
[
ηS A(ES |S ′ ⊗ IA)(ρS ′A)

]
= dS ′ tr

[
(ηS A ⊗ IS ′ )(ES |S ′ ⊗ IAS ′ )[(ρS ′A ⊗ IS ′ )(IA ⊗ |Ψ+

S ′S ′〉〈Ψ
+
S ′S ′ |)]

]
= dS ′dAtr

[
(ηS A ⊗ IS ′A)(ES |S ′ ⊗ IAS ′A)[(ρS ′A ⊗ IS ′A)(|Ψ+

AA〉〈Ψ
+
AA| ⊗ |Ψ

+
S ′S ′〉〈Ψ

+
S ′S ′ |)]

]
= dS ′dAtr

[
(ηS A ⊗ ρ

t
S ′A)[|Ψ+

AA〉〈Ψ
+
AA| ⊗ (ES |S ′ ⊗ IS ′ )(|Ψ+

S ′S ′〉〈Ψ
+
S ′S ′ |)]

]
, (A.2)

where we have inserted maximally entangled states on S ′S ′ and AA in the first and
the second equalities; in the last line, we have used the property (ρS ′A ⊗ IS ′A)|Ψ+

AA〉 ⊗

|ΨS ′S ′〉 = (IS ′A ⊗ ρ
t
S ′A)|Ψ+

AA〉 ⊗ |ΨS ′S ′〉, where (·)t is the transpose operation. From here
we conclude that Eq. (A.1) holds if (ES |S ′ ⊗ IS ′ )

(
|Ψ+

S ′S ′〉〈Ψ
+
S ′S ′ |

)
≥ 0. �

Proof of Theorem 2.1.1

Proof. For a state ρS S ′ satisfying trS (ρS S ′ ) =
IS ′
dS ′

, let us write LS |S ′ (·) = J−1(ρS S ′ ).
Then we need to show that LS |S ′ is a channel. First, one can see that

tr ◦ LS |S ′ (·)S ′ = dS ′ tr
([
IS ⊗ (·)t

S ′
]
ρS S ′

)
= dS ′ tr

[
(·)t

S ′ trS (ρS S ′ )
]

= tr(·)S ′ . (A.3)

This means LS |S ′ is trace-preserving. Also, the complete positivity is guaranteed by
Lemma A.1.1. From here we learn that for a channel ES |S ′ , the positivity of EJS |S ′ cor-
responds to the complete positivity of the channel, and the condition that its marginal
in the system S ′ is identical to IS ′dS ′

corresponds to the trace-preserving condition. �
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Appendix B

Proofs and Remarks for
Chapter 3

B.1 Activation Properties of Resource Preservability

B.1.1 Resource Theory of Nonlocality
To demonstrate the activation property of resource preservability, we need to briefly
recap the definition of nonlocality and its corresponding state resource theory [14],
which is denoted by R = NL in this section.

Recap of Bell Nonlocality

To begin with, recall that a bipartite probability distribution P B {P(ab|xy)}a,b,x,y s said
to admit a local hidden variable (LHV) model, denoted by P ∈ LHV, if

P(ab|xy) =

∫
P(a|x, λ)P(b|y, λ)pλdλ (B.1)

for some variable λ and probability distributions {pλ}, {P(a|x, λ)}, {P(b|y, λ)}. With this
notion, we say a bipartite state ρAB in AB is local if for every set of local POVMs
{Ea|x}a,x in A (with

∑
a Ea|x = IA ∀ x) and {Eb|y}b,y in B (with

∑
b Eb|y = IB ∀ y), there

exists a probability distribution P LHV ∈ LHV such that tr
[
(Ea|x ⊗ Eb|y)ρAB

]
= PLHV

ab|xy.
In other words, a state is local if all statistics induced by it with local POVMs are
indistinguishable from LHV models. States that are not local are said to be nonlocal–
each of them can violate a so-called Bell inequality. More precisely, every collection
of real numbers B B {Bab|xy} induces a Bell inequality which reads∑

a,b,x,y

Bab|xytr
[
(Ea|x ⊗ Eb|y)ρAB

]
≤ max

P ∈LHV

∑
a,b,x,y

P(ab|xy)Bab|xy. (B.2)

Its violation can witness the existence of quantumness. From now on, we use the
notation LOCALAB to denote all local states in the bipartite system AB.
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Nonlocality As A State Resource

With the above notions, one is able to define nonlocality as a state resource theory. In
this resource theory, we consider all bipartite states with equal local dimensions d⊗k,
where k ∈ N is a positive integer, and d ∈ N is the minimal possible system dimension
under consideration. Within this setting, free states are all local states; namely, let S
be an d dimensional system, then

FR=NL =
⋃
k∈N

LOCAL(S S )⊗k . (B.3)

To define free operations, we use local operations plus shared randomness (LOSR)
channels (see, e.g., Ref. [17]). Formally, an LOSR channel acting on a bipartite system
AB is defined to take the following form:

EAB =

∫
(Eλ,A ⊗ Eλ,B)pλdλ, (B.4)

where {pλ} is some probability distribution and Eλ,A,Eλ,B are local channels in A, B,
respectively, with λ dependency. Now we note the following observation:

Lemma B.1.1. LOSR channels map local states to local states.

Proof. For a given LOSR channel EAB, we have

tr
[
(Ea|x ⊗ Eb|y)EAB(ρAB)

]
=

∫
tr

[
(Ea|x ⊗ Eb|y)(Eλ,A ⊗ Eλ,B)(ρAB)

]
pλdλ

=

∫
tr

{[
E
†

λ,A(Ea|x) ⊗ E†λ,B(Eb|y)
]

(ρAB)
}

pλdλ, (B.5)

Since E† is unital (i.e., maps identity operator to identity operator) if E is a channel,
we learn thatE†λ,A(Ea|x) and E†λ,B(Eb|y) again form local sets of POVMs. Since ρAB is

local, we conclude that the probability distribution tr
{[
E
†

λ,A(Ea|x) ⊗ E†λ,B(Eb|y)
]

(ρAB)
}

must admit a LHV model, and the result follows. �

The above lemma shows that all LOSR channels form a suitable set of free opera-
tions for nonlocality, which is adopted in the rest of this section; namely, we consider

OR=NL = {all LOSR channels}. (B.6)

B.1.2 Superactivation of Nonlocality
To demonstrate the activation property of nonlocality preservability, it remains to recall
a phenomenon called superactivation, which is proved for nonlocality [33] and gener-
alised to quantum steering [34, 35]. Formally, in a bipartite system AB with equal local
dimension d, a local state ρAB is said to admit superactivation of nonlocality if there
exists a finite integer k ∈ N such that ρ⊗k

AB is nonlocal in the A⊗k vs. B⊗k bipartition with
equal local dimension dk. Notably, it is shown that ρ⊗k

AB is nonlocal for some k ∈ N
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if its fully entangled fraction (FEF) is higher than 1
d [100], where the FEF is defined

by [101, 102] [recall from Eq. (2.6) the definition of a maximally entangled state]:

FEF(ρAB) B max
UB
〈Ψ+

AB|
(
IA ⊗ U†B

)
ρAB (IA ⊗ UB) |Ψ+

AB〉, (B.7)

where the maximisation is taken over all unitary operator UB in B. Note that It is
equivalent to maximising over all maximally entangled states in AB.

To see superactivation of nonlocality indeed exists, we still need to use the (U⊗U∗)-
twirling operation on AB [92, 93], which is defined in Eq. (5.3), and we restate it here:

TAB(·) B
∫

(U ⊗ U∗)(·)AB(U ⊗ U∗)†dU, (B.8)

where the integration is taken over the group of d × d unitary operators with the Haar
measure dU. One can directly check that TAB is by definition an LOSR channel,
thereby being a free operation of nonlocality. Other direct observations are

• TAB maintains the overlap with the maximally entangled state; namely, we have
〈Ψ+

AB|TAB(·)|Ψ+
d 〉 = 〈Ψ+

AB| · |Ψ
+
AB〉.

• TAB only outputs isotropic states [93] [which is defined in Eq. (5.4)]; namely,
ρiso(p) B p|Ψ+

AB〉〈Ψ
+
AB| + (1 − p) IAB

d2 . p ∈
[
− 1

d2−1 , 1
]

due to positivity of states.

Now, if we choose the parameter p such that (1) ρiso(p) cannot have its FEF larger than
the threshold for nonlocality [14], meaning that ρiso(p) is thus local; and (2) ρiso(p) has
its FEF larger than 1

d , then any such isotropic state can demonstrate superactivation of
nonlocality. More precisely, when we choose [14, 103]

1
d + 1

< p <
(d − 1)(d−1)(3d − 1)

(d + 1)dd , (B.9)

then the above two conditions are guaranteed. This shows the existence of superacti-
vation of nonlocality.

B.1.3 Superactivation of Nonlocality Preservability
Now we are in the position to construct an example to demonstrate that nonlocality
preservability can be superactivated, which is also the proof of Lemma 3.1.4:
Proof of Lemma 3.1.4. In AB with equal local dimension d, consider the following
channel:

T̃AB(·) B p̃TAB(·) + (1 − p̃)
IAB

d2 , (B.10)

and we choose p̃ from the interval Eq. (B.9). By construction, T̃AB is thus a LOSR
channel that can only output local states in AB. This means T̃AB ∈ O

N
NL; that is, it is

resource-annihilating (Definition 3.1.3). When the input state is |Ψ+
AB〉, T̃AB(|Ψ+

AB〉〈Ψ
+
AB|)

is an entangled isotropic state ρiso( p̃) with the parameter p̃ lying in the interval Eq. (B.9),
thereby admitting superactivation of nonlocality. From here we conclude that there ex-
ists a natural number k ∈ N such that T̃ ⊗k

AB

(
|Ψ+

AB〉〈Ψ
+
AB|
⊗k

)
=

[
T̃AB

(
|Ψ+

AB〉〈Ψ
+
AB|

)]⊗k
is

nonlocal in A⊗k vs. B⊗k bipartition. In other words, we have that T̃ ⊗k < ON
NL. �
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B.2 Absolutely Resource-Annihilating Channels
Fact B.2.1. If a bipartite channel is entanglement-annihilating and entanglement-
breaking, then it is absolutely entanglement-annihilating.

Proof. We rewrite this channel as EA1B1 , which is in the bipartite system A1B1. Then
it suffices to show that there is no entanglement in the A vs. B bipartition of the out-
put of EA1B1 ⊗ ΛA2B2 for any entanglement-annihilating channel ΛA2B2 in the bipartite
system A2B2. Since EA1B1 is entanglement-breaking, EA1B1 ⊗ IA2B2 is entanglement-
annihilating in the 1 vs. 2 bipartition. In other words, no entanglement in the 1 vs. 2
bipartition after EA1B1 ⊗ ΛA2B2 , meaning that the global output is always of the form∑

i αiρi|A1B1 ⊗ ηi|A2B2 with some probability weights αi and states ρi|A1B1 in A1B1 and
ηi|A2B2 in A2B2. From here we observe that the remaining possibility for the preserved
entanglement are in subsystems A1B1 and A2B2. Now we note that both EA1B1 and
ΛA2B2 are entanglement-annihilating in the A vs. B bipartition, implying that no entan-
glement can exist in A1B1 and A2B2. This shows that the output is separable. �

B.3 Remarks on Resource Preservability Robustness
We start with a lemma that helps us to characterise the resource preservability robust-
ness. In what follows, Λ̃A always denotes an absolutely R-annihilating channel (i.e., in
Aabs).

Lemma B.3.1. Given two channels N and E, then we have

sup
Λ̃A,ρS A

inf
{
λ ≥ 1 | 0 ≤ [(λE − N) ⊗ Λ̃A](ρS A)

}
= inf

{
λ ≥ 1 | 0 ≤ [(λE − N) ⊗ Λ̃A](ρS A) ∀A, Λ̃A, ρS A

}
. (B.11)

Proof. Let LA B
{
λ ≥ 1 | 0 ≤ [(λE − N) ⊗ Λ̃A](ρS A)

}
, where A B (A, Λ̃A, ρS A). Then

in Eq. (B.11) the left-hand-side can be rewritten as supA inf{λ ≥ 1 | λ ∈ LA}, and
the right-hand-side reads inf {λ ≥ 1 | λ ∈

⋂
ALA} . The inequality “≤” follows since⋂

ALA ⊆ LA′ for all A′. To show the opposite direction, consider an arbitrary natural
number k ∈ N. Then there exist Ak and λk ∈ LAk such that

inf
{
λ | λ ∈ LAk

}
≤ sup

A
inf{λ ≥ 1 | λ ∈ LA} < inf

{
λ | λ ∈ LAk

}
+

1
k

; (B.12)

λk −
1
k
< inf

{
λ | λ ∈ LAk

}
≤ λk. (B.13)

This implies that inf{λ | λ ∈ LA} < λk + 1
k for all A, which means λk + 1

k ∈
⋂

ALA.
Hence, we conclude that

inf

λ | λ ∈⋂
A

LA

 ≤ λk +
1
k
≤ inf

{
λ | λ ∈ LAk

}
+

2
k
≤ sup

A
inf{λ | λ ∈ LA} +

2
k
,

(B.14)

and the desired claim follows by considering every possible k ∈ N. �
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Combining Eq. (3.15) and Lemma B.3.1, we have the following characterisation:

DR
max(N‖E) B sup

A,Λ̃A,ρS A

Dmax

[
(N ⊗ Λ̃A)(ρS A) ‖ (E ⊗ Λ̃A)(ρSA)

]
B log2 sup

A,Λ̃A,ρS A

inf
{
λ ≥ 1 | 0 ≤ [(λE − N) ⊗ Λ̃A](ρS A)

}
= log2 inf

{
λ ≥ 0 | (λE − N) ⊗ Λ̃A is a positive map ∀A, Λ̃A

}
. (B.15)

A direct observation from Eq. (B.15) is the following lemma:

Lemma B.3.2.
(
2DR

max(N‖E)E − N
)
⊗ Λ̃A is a positive map ∀A, Λ̃A.

Proof. Suppose the opposite was correct. Then there exists an ancillary system A∗,
an absolutely resource-annihilating channel Λ̃A∗ , and two states ρSA∗ , |φ〉 such that
〈φ|

(
2DR

max(N‖E)E − N
)
⊗ Λ̃A∗ (ρS A∗ )|φ〉 < 0. Nevertheless, due to Eq. (B.15), we have

〈φ|
(
2[DR

max(N‖E)+ 1
k ]E − N

)
⊗ Λ̃A∗ (ρS A∗ )|φ〉 ≥ 0 ∀ k ∈ N. (B.16)

This leads to a contradiction when k → ∞. �

Finally, we note the following alternative form of the resource preservability ro-
bustness, which directly implies Eq. (3.17):

PDmax |R(E) = log2 inf
Λ∈A

inf
{
λ ≥ 1 | (λΛ − E) ⊗ Λ̃A is a positive map ∀A, Λ̃A

}
. (B.17)
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