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“La ciencia es el máximo control que podemos tener de la realidad.” 

                        Gustavo Bueno Martínez 

 

 

 

“Tiene la ciencia sus hipócritas, no menos que la virtud, y no menos es engañado el vulgo por 

aquéllos que por éstos. Son muchos los indoctos que pasan plaza de sabios.” 

                 Benito Jerónimo Feijoo y Montenegro 

 

 

 

“Cada planta, cada animal, incluso cada complejo minero, cada paisaje, tiene su razón de ser. 

No están a nuestro alcance por puro azar o capricho, sino que forma parte de nosotros 

mismos. El hombre no es un ovni venido de una lejana galaxia; el hombre es un poema tejido 

con la niebla del amanecer, con el color de las flores, con el canto de los pájaros, con el 

aullido del lobo o el rugido del león.” 

     Félix Rodríguez de la Fuente 
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Abstract 
Spatial metabolomics is the discipline that studies the images of the distributions of low 

weight chemical compounds (metabolites) on the surface of biological tissues to unveil 

interactions between molecules. Mass spectrometry imaging (MSI) is currently the principal 

technique to get molecular imaging information for spatial metabolomics. MSI is a label-free 

molecular imaging technology that produces mass spectra preserving the spatial structures of 

tissue samples. This is achieved by ionizing small portions of a sample (a pixel) in a defined 

raster through all its surface, which results in a collection of ion distribution images (registered 

as mass-to-charge ratios (m/z)) over the sample. This thesis is aimed to develop computational 

tools for peak annotation in MSI and in the design of workflows for the statistical and 

multivariate analysis of MSI data, including spatial segmentation. The work carried out in this 

thesis can be clearly separated in two parts. Firstly, the development of an isotope and adduct 

peak annotation tool suited to facilitate the identification of the low mass range compounds. 

Secondly, the development of software tools for data analysis and spatial segmentation based 

on soft clustering for MSI data. All the developed algorithms have been implemented in 

software tools using the R platform, in continuation of the work of the group in the software 

packages rMSI and rMSIproc, since R is open and widely spread across biodata analysts. 

Nevertheless, we complement R code with C++ language to enable efficient memory control 

and faster execution of iterative algorithms. All the tools developed for this thesis are released 

under the general public license (GPL) to facilitate the exchange of ideas and collaboration 

between the MSI community. 

The identification of the molecular formula and/or the chemical structure of the compounds 

in an MSI dataset is very challenging because usually there is only available the m/z exact mass. 

Therefore, new methods for the identifying and reporting molecular annotations in the low 

mass range for spatial metabolomics studies are required. To do so, we first aimed to localize 

which peaks were monoisotopic ions, as the searches on compounds libraries are based on the 

monoisotopic ion of the molecule. Additionally, we aimed to find groups of monoisotopic ions 

differing only with the adduct ion to determine neutral masses for the compounds, reducing the 

number of hits in compound libraries. However, we noticed that many compounds were 

missing in libraries like the Human Metabolome Database, and some of them are only included 

in minority libraries, like specific metabolites of algae. Therefore, developing a tool to match 

libraries into the data was not an option, and by that time the METASPACE tool, which 

successfully uses this strategy, already existed, so we did not want to reinvent the wheel. 

Instead, we opted for a completely new strategy which does not require searching on libraries 

at runtime. We developed a general rule of carbon-based isotropic patterns of the family of 

compounds under interest (metabolites and lipids) and compared it with spectral data. As a 

difference with LC-MS annotation methods, the higher number of observations (i.e., pixels) 

usually found in MSI gives statistical power to the results and allows to use the ratios between 

isotopic peaks as a key variable for monoisotopic peaks annotation. The result of this research 

was the development of the peak annotation tool rMSIannotation. rMSIannotation is useful for 

annotation of compounds and variable reduction strategies; and can be integrated in any low-

weight compounds MSI data analysis workflows. The results show that rMSIannotation 

automatically extracts valuable information from both high (TOF) and ultra-high (FT-ICR) 

resolution spectrometers. The presented algorithm demonstrated a high performance and 

annotation confidence when compared to the established metabolomics MSI annotation 

platform: METASPACE and to the manual annotation approaches. 

The huge number of ions in a MSI requires automatizing the report of ions of interest 

between different regions in spatial metabolomics studies. This is challenging as we had a big 

number of ions at each experiment and different spatial segmentation solutions, which resulted 
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in a big number of combinations of possible results. Additionally, as some ions have very low 

intensity values in some pixels of the clusters, classical parametric statistical tests failed. To 

overcome this we developed a workflow using nonparametric tests and the percentage of pixels 

in which a particular ion is not detected This work resulted in the publication of the R package 

rMSIKeyIon. The tool is very effective at discovering up or down-regulated ions between 

clusters using an unsupervised k-means procedure. The ions selected are the candidates that, 

subsequently, have to be identified. This package is a valuable tool for the untargeted analysis 

of MALDI images and is an important advance in this area because, at present, there are no 

tools available.  

The state of the art of the segmentation techniques used in MSI considers that any pixel 

must be included only in one cluster (hard clustering). This is clearly a limitation, because in 

histology we find many transition regions between histological areas that are not captured by 

the clustering algorithms. Besides, it is known that it is very difficult to assess the performance 

of the hard clustering algorithms. These facts suggested the possibility of ranking the pixels in 

a cluster by similarity to the cluster prototype, with the objective of differentiating between 

pixels localized in homogenous regions and in transition regions from the point of view of 

histological areas. In this regard, we propose a soft/fuzzy clustering approach, a particular 

subset of clustering algorithms that could associate all clusters to a pixel in different degrees. 

We followed the trail of soft clustering in MSI, and we found that the Fuzzy c-means algorithm 

was not used in this context. Therefore, we researched the use of this soft clustering method as 

a possible way of ranking pixels for MSI data. From the study we conclude that fuzzy c-means 

brings additional information to MSI data analysis through the dimension of membership, 

which allows for new ways of interpreting the results compared with hard clustering results. In 

our case, the study of membership through the newly developed PFS (pixel fidelity score) , a 

score to compare membership distributions with different number of clusters, allowed easy 

selection of the pixels more related to a cluster, unveiled morphological regions more 

challenging to detect, and enhanced a tissue type classification workflow in multiple samples 

of a human head and neck cancer dataset. 

In conclusion, the thesis covers the developments on three different directions of the data 

analysis and interpretation of MSI data: peak annotation, ion selection and soft clustering. We 

believe that the developed software tools together with the studies on soft clustering will have 

a positive impact on MSI for spatial metabolomics. 
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1. Spatial Metabolomics 

Spatial metabolomics is the discipline that studies the images of the distributions of low 

weight chemical compounds (metabolites) on the surface of biological tissues to unveil 

interactions between molecules.1 The main objective of spatial metabolomics is to translate and 

expand the knowledge on metabolic pathways, disease dysregulations, microbiota interactions, 

and cell epigenetics over biological tissue surfaces preserving its morphology with the aim to 

isolate and understand the independent role of each  morphological region over the global 

process.2  

The precursors of spatial metabolomics are the classical microscopy technologies: 

histopathology3 and immunohistochemistry.4 These technologies are used to identify cell types 

and morphologies over tissue surfaces using different chemical labels to elaborate clinical 

diagnosis. Their main drawback is that they are only capable of representing the spatial 

distribution of a very limited number of compounds (not including metabolites) and they 

require the application of chemical labels.5 To overcome these drawbacks, label-free molecular 

imaging methods are used. 

Mass spectrometry imaging (MSI) is currently the principal technique to get molecular 

imaging information for spatial metabolomics.2 MSI is a label-free molecular imaging 

technology that produces mass spectra preserving the spatial structures of tissue samples. This 

is achieved by ionizing small portions of a sample (a pixel) in a defined raster through all its 

surface, which results in a collection of ion distribution images (registered as mass-to-charge 

ratios (m/z)) over the sample. After the acquisition, the ions are annotated (putatively assigned 

to one molecule) and in some cases are identified using complementary techniques. Mass 

spectrometry imaging is the ground technique of this thesis, and therefore, in the next section 

there is a description of its process, summarizing all the steps and the elements of the whole 

workflow.  

In recent years, other molecular imaging technologies are being used in combination with 

MSI to overcome some of their drawbacks and expand even more the field of spatial 

metabolomics. Vibrational spectroscopy imaging (VSI) technologies are probably the most 

notable case. VSI is based on the interaction between light beams of different wavelengths and 

a biological tissue. From this interaction, different vibration modes of the molecules are 

registered. The frequency of the vibrations registered at each sampling point (pixel) is 

transduced into molecular fingerprints, which can be used to study the abundance and structure 

of biomolecules like metabolites, lipids, proteins, and nucleic acids. The most commonly used 

VSI methods for spatial metabolomics are Fourier transform infrared spectroscopy (FTIR/IR), 

Raman spectroscopy, surface-enhanced Raman spectroscopy(SERS), and fluorescence 

spectroscopy.6 The interest in combining both sources of spatial metabolomic information has 

found the appearance of a new line of research known as multimodal imaging, the aim of which 

is to directly fusion the data coming from MSI and VSI to compensate for the shortcomings of 

one with the capabilities of the other.7 One of the most common approaches to multimodal 

imaging is scanning completely a tissue sample with an MSI technique and combining it with 

a “zoom in” scan of a morphological element of interest using a VSI technique, provided that 

these techniques allows much higher spatial resolution in the range of optical microscopy.  

Apart from the technologies involved, spatial metabolomics experiments are usually 

classified into two groups according to the prior knowledge the scientist has of expected 

compounds in the sample8: (1) targeted experiments, where the compounds of interest are 

previously known and the goal is to study their spatial distribution, concentration, and 

interaction between them, like in pharmacology; and (2) untargeted experiments, where the 

goal of the study is to unveil the distribution of as many compounds as possible in a tissue 

including chemical unknowns, as a consequence of a biological experiment. 
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Finally, metabolomics is just one of the many pieces of the big puzzle that represents 

systems biology. Therefore, it is common for metabolomics to be combined with other omic 

sciences like proteomics, transcriptomics, and genomics in their classical and spatial 

approaches to answer a biological question.9,10 

2. Mass spectrometry imaging  

2.1. Technology introduction 

MSI is an analytical technique capable of localizing mass spectra over sample surfaces11. 

MSI comprehends a wide range of technologies, each of them targets more efficiently specific 

molecular classes and resolves the sample in different spatial resolutions. MSI instruments 

consist mainly of two parts: the ion source and the mass analyzer.  The ion source ablates small 

parts of the sample (pixels) and promotes the generation of ions. The mass analyzer measures 

the m/z of the ions and composes the spectrum at each sampling point by registering the 

intensity of the m/z measure, which can consist of directly counting ion impacts or measuring 

the magnitude of orbit frequencies. MSI technologies are usually classified according to the 

ion source mounted on the instrument, as ion sources are responsible for the generation of the 

molecular ions and its laser (or ion beam) and optical arrangements determines the spatial 

resolution of the images (the pixel size of the image), two of the most crucial elements that any 

scientist takes into consideration before planning an MSI experiment. The most mature MSI 

ionization methods are Desorption Electrospray Ionization (DESI), Laser Ablation Inductively 

Coupled Plasma (LA-ICP), Secondary Ion Mass Spectrometry (SIMS), and Matrix-Assisted 

Laser Desorption/Ionization (MALDI).12  The work developed on this thesis was mainly 

achieved using MALDI-MSI data. 

2.2. MALDI-MSI 

Between them, MALDI-MSI is the most extended MSI technology due to the flexibility of 

their acquisition methods, which are capable of ionizing a wide range of compounds as 

metabolites, lipids, peptides and proteins, with spatial resolutions that can go down to 10 µm 

and in some specific cases even further.13,14 MALDI-MSI consists of a MALDI ion source, 

which samples the surface of the sample with a pulsating laser (usually UV or IR) generally in 

a vacuum chamber. The ionization process of MALDI sources is considered to be soft, as most 

of the molecules remain intact after the LDI process. Still, in-source fragmentation occurs, 

producing peaks of the ion fragments which overlap with other low weight compound peaks. 

This is especially problematic in spatial metabolomics, as fragments tend to overlap in the mass 

range of the metabolites.15,16 Apart from the instrument itself, MALDI sources require the 

choice and application of a matrix, usually small organic compounds, that assist in the 

desorption and ionization of the analytes from the tissue and are deposited over the tissue by 

spraying and more recently by sublimation17. Figure 1 shows a complete schema of the MALDI 

experiment.  
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Figure 1. MALDI-MSI experiment overview. The process starts by sectioning a tissue, mounting it over an ITO 

glass-slide and coating it with a matrix. Later, the MALDI instruments samples multiple spots with a laser to 

generate the mass spectra. Finally, the spectra are processed, and the resulting data can be visualized and analyzed. 

Original image extracted from Rafols. et al.18  

 

Depending on the kind of matrix, differences in the ionization process will occur including 

the promotion of some adduct elements, different ionization efficiency for different compound 

classes and apparition of clusters of matrix signals or matrix-related fragments in the spectra. 

These effects are determinant in the MSI experiment as they completely condition the 

identification of compounds, especially in the low mass range. To overcome these, in recent 

years inorganic matrices have been proposed as they produce a cleaner background spectrum.18  

The most commonly used MALDI-MSI mass spectrometers are time-of-flight (TOF), a 

Fourier transform ion cyclotron resonance (FTICR), or an Orbitrap mass analyzer, which 

receive the ionic plume and compose the mass-to-charge (m/z) spectra at each sampling point. 

TOF mass analyzers are the most extended for MALDI-MSI and are used in all kinds of 

experiments as they can detect molecular ions in a very extended mass range (from low weight 

chemical compounds to proteins). Additionally, they have higher scan rates and are less 

expensive compared to Orbitrap and FTICR. Since the resolution of the TOF detectors 

increases with the mass, it is most used in peptidomics and proteomics studies. At low mass 

range, the poor resolution of the TOF spectrometers, together with the elevated number of ions 

from in-source fragmentation and the ions coming from the matrix, impedes the identification 

of compounds, since the peaks in the low mass range are highly overlapped. Orbitrap and 

FTICR mass analyzers produce spectra with ultra-high mass resolution, and they perform better 

in the low mass range as their mass resolution increases linearly as the sampled mass decreases, 

which allows them to distinguish better between low mass compounds like metabolites. For 

more details, a complete comparison between mass analyzers and ion sources can be found at 

Chapter 2. 
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2.3. Data processing 

The steps in charge of transforming and organizing the raw data before the analysis and the 

identification of molecular species are known as data processing. The main objective behind 

data processing is to get an ion peak matrix, consisting of a matrix in which the observations 

(pixels) are organized in rows and the ions in columns. The matrix is calculated after several 

processing steps that minimize the undesirable effects that the instrument, the acquisition 

process, or other external factors may introduce to the data. The starting point of data 

processing is the acquisition of the raw data and particularly, the file format in which it is 

stored. Nowadays, the data produced by most of the instruments can be converted to the imzML 

standard19,20, an open standard promoted by the MSI scientific community to facilitate the 

exchange and processing of mass spectrometry imaging data. This is done either by exporting 

the data directly from the instrument into the imzML format, or by using a data format 

converter. The imzML standard defines two structures for the spectral data: the continuous data 

format, in which all the raster positions (pixels of the image) share the same mass axis, and the 

processed data format, in which each pixel has a different mass axis, intended for storing 

already processed data. 

Assuming that the data is stored without any kind of processing, the data processing 

workflow starts with the smoothing and the baseline reduction of all the spectra. Smoothing 

consists of removing high frequency noise from the spectra, while baseline reduction attempts 

to remove the very low frequencies. A common approach for smoothing is using the Savitzky-

Golay filter21, and for baseline reduction the TopHat algorithm.22 Later on, all the mass spectra 

are aligned to compensate for possible peak mass variations during the acquisition between 

pixels. Alignment usually consists of shifting the spectra to minimize the mass error to a 

reference spectrum of calibrants. Additionally, it can be done without any calibrant spectrum 

by maximizing the spectral correlation between pixels or using more advanced methods based 

capable of shifting, contracting and expanding the spectrum.23 Once all the spectra are well 

aligned, a general mass calibration procedure is applied using reference masses to increase the 

overall mass accuracy. Following this step, a peak detection algorithm is used to drastically 

reduce the spectral data to a peak list where only the mass peaks information is retained: m/z 

centroid position, peak intensity, peak shape integrated area and the calculated signal-to-noise 

ratio (SNR). Next, a common m/z axis can be obtained by binning together all the m/z centroids 

for the detected peaks in the spectra. Later, the peaks that were not detected in a pixel are 

usually filled with the integrated value of the processed spectrum in the surroundings of the 

m/z centroid of the peak. All these transformations shape the data in a matrix-like structure in 

which all pixels have an intensity value registered for all the m/z peaks, which allows the 

composition of m/z images using the coordinates of the pixels. Finally, the intensity of all the 

spectra is normalized to share a common intensity scale. This accounts for differences in 

ablation power between pixels during the acquisition and tissue inhomogeneities. The most 

used normalization methods are the Total Ion Count (TIC), the Root Mean Square (RMS) and 

using the logarithm of peak intensities.24 It is important to say that the order or even the 

presence of each processing step described in this section is not mandatory. The workflow 

described in this section is the one that our team follows, which comprehends most of the 

universally followed steps.     

2.4. Data analysis 

Once the data has been processed starts the genuine spatial metabolomic data analysis of the 

tissue. The principal objective of the data analysis is to study the sample metabolism, unveiling 

regions of interest (ROI) over the sample surface and finding which are the key m/z ions 

involved in it. Various statistical tools and multivariate analysis techniques have been used to 
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confront this challenge,25,26 but depending on the experimental approach, two analysis schemes 

are followed: targeted analysis and untargeted analysis.  

If the MSI experiment is conceived as a targeted analysis, the first step usually consists of 

directly localizing the molecules of interest in the data that have been characterized and 

identified previously. This can be done manually manipulating the data searching for the 

specified m/z peaks or can be attempted with automatic peak annotation tools. If the MSI 

experiment is conceived as an untargeted analysis, the first step usually consists of applying a 

dimensionality reduction technique, as the number of m/z features under analysis tends to be 

too large. One way of approaching it is combining m/z features based on statistical criteria. 

This is achieved using machine learning algorithms like Principal Component Analysis 

(PCA)27, Non-Negative Matrix Factorization28, or t-distributed Stochastic Neighbor 

Embedding (t-SNE)29, which transform the multidimensional m/z space into a smaller 

components number space in which the resulting components facilitate the identification of 

spatial morphologies over the sample. The main disadvantage of these methods is that once the 

new components are computed it can be difficult to identify the key m/z features, especially 

when using non-linear methods like the t-SNE. 

After having a reduced number of m/z features under study, their spatial distributions are 

evaluated in both analysis schemes. Depending on the experimental design, the m/z features 

are compared in different regions of interest (ROI’s) within the same tissue, whole tissue 

sections according to its experimental condition classification, or a combination of both 

approaches. The regions in which the intensity levels of the m/z features are compared, can be 

determined in a supervised manner, either directly over the MSI data or using an orthogonal 

imaging technique like histopathology30; or using unsupervised methods like spatial  

segmentation  algorithms. The diverse clustering algorithms used for image segmentation are 

of utmost importance for this task. Clustering algorithms form data groups according to 

similarity scores to reveal spatial structures over the tissue. Most clustering workflows in MSI 

include variations of the k-means algorithm and hierarchical clustering.26 These algorithms 

optimize objective functions using distance metrics like the euclidean or the cosine, and use a 

predefined number of clusters (k-means) or develop a complete dendrogram with different 

numbers of clusters (hierarchical clustering).  

Finally, once specified the ROIs in the form of pixels with different labels, the following 

step is comparing the intensity distribution of all the m/z features of interest. This can be done 

visually, by exploring the distribution of the m/z features over the ROIs; using discriminant 

analysis like univariate tests (t-test, Wilcoxon rank sum test) and Fold change; or multivariate 

methods like partial least squares-discriminant analysis (PLS-DA).31 Once discovered the 

differences between m/z peaks over the ROIs only lacks, for untargeted analysis, the 

identification of the m/z peaks. 

2.5. Peak annotation and identification 

The identification process consists of confidently assign a molecular formula and/or the 

chemical structure to a group of mass peaks. In MSI this is a very challenging process because 

the data only consist of the mass of the peaks. Furthermore, due to the lack of a 

chromatographic step, all compounds ionizes and travel to the mass analyzer simultaneously 

at each sampling point, producing overlapped ion peaks in the spectra. For instance, in liquid 

chromatography-mass spectrometry (LC-MS), the chromatography establishes an order in the 

ionization of compounds by affinity to the chromatographic column, developing an orthogonal 

dimension usually referred to as retention time (RT). Using the RT helps in distinguishing 

between compounds with a similar molecular weight, however ion fragmentation is required 

for absolute confidence.32,33 
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Another limitation is the lack of a controlled and efficient ion fragmentation process in MSI 

instruments. Ion fragmentation is used to break down the molecule in small parts that can be 

associated with common molecular building blocks, like functional groups, due to the energy 

required to break their bounds. There are very few instruments and experimental setups that 

can combine MSI and tandem mass spectrometry (MS/MS) in the same sample. Moreover, as 

all the compounds are ionized at the same time, the MS/MS spectra can get crowded with peaks 

even filtering the ions with a mass window of 1 Da. Additionally, the concentration of the 

precursor is very low compared to most MS/MS methods, as it is limited to the precursors 

localized on the scan area (pixel) and not on a complete sample like LC-MS. Therefore, the 

compound identification using MS/MS is usually done with other samples to later be searched 

in the MSI dataset. 

 Some software tools have been developed to annotate peaks, which is a previous step of 

molecular identification. In this regard, it is important to highlight the METASPACE34 

annotation platform, an online MSI annotation resource that produces molecular annotations 

and contains the biggest repository of MSI datasets with annotations that most of them are 

downloadable. Chapter 2 consists of a complete state of the art of the identification and 

annotation of ion peaks, a revision of the software tools and experimental methods. 

3. Thesis motivation and objectives 

The work presented in this thesis is the result of the research carried out in the Metabolomics 

Interdisciplinary Laboratory (MiL@b) group. MiL@b is a research group from the Department 

of Electronic, Electrical, and Automation Engineering (DEEEA) at the Universitat Rovira i 

Virgili (URV), and the Metabolomics Platform. The Metabolomics Platform is part of the Pere 

Virgili Health Research Institute (IISPV) and CIBER of Diabetes and Metabolic Diseases 

(CIBERDEM).  The principal lines of research of MiL@b are a) signal processing for Nuclear 

Magnetic Resonance (NMR) metabolomics, b) LC-MS and GC-MS metabolomics data 

processing and metabolite identification, c) Toxicology & environmental metabolomics and d) 

Label-free spectrometry imaging for biological applications. This thesis has been developed in 

the context of this latter research area.  

This group delves into all steps of the MSI workflow:  sample preparation and treatment, 

spectra processing, data analysis and biomedical applications. We specialize in matrix dry-

deposition techniques such as sputtering and thin layer thermal evaporation to apply ionization 

promoters on biological samples. We also design nanostructured surfaces for MSI that are 

compatible with Raman Imaging. In terms of instrumentation, the laboratory is equipped with 

a Spectroglyph MALDI source coupled with an Orbitrap Exploris 120, and we have access to 

a Bruker ultrafleXtreme MALDI-TOF. Additionally, we have a cryostat to cut tissue slides and 

a thermal evaporation system able to deposit matrices to tissues by sublimation. 

This thesis started as a continuation of the work in MSI data processing and analysis. This 

work is based on the previous R packages released by the group: rMSI35 and rMSIproc36. These 

packages allow the exploratory analysis and visualization of MSI data and process raw MSI 

spectra, respectively. rMSIproc data processing workflow comprehends all the steps described 

in Section 1.2.3. rMSIproc is compatible with the imzML data format and includes all the steps 

in the spectra processing workflow (noise reduction, label-free alignment, mass calibration, 

peak detection, peak binning, and normalizing). The output of the rMSproc package is a data 

matrix in which the columns represent the m/z peaks and the rows the pixels of an image, which 

we refer as peak matrix. Figure 2 illustrates the different steps of the general MSI pipeline 

followed by rMSI and rMSIproc.  rMSI and rMSIProc packages act as a starting point for this 

thesis, with the aim to increase the functionality of them with the packages developed in this 

thesis.  
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Figure 2. MSI data flow diagram covered by rMSI and rMSIproc environment. Peak annotation and identification, 

and data analysis strategies are the main objective of the thesis. 

 

This thesis is aimed to develop computational tools for peak annotation in MSI and in the 

design of workflows for the statistical and multivariate analysis of MSI data, including spatial 

segmentation. The main objectives of this thesis are: 

 

1. To develop and implement an automatic workflow for the statistical analysis of ion 

abundances distribution in MSI datasets. 

 

This first objective originated from the necessity of automatizing the report of ions of 

interest between different regions within and between images in spatial metabolomics studies. 

This was challenging as we had a big number of ions at each experiment and different spatial 

segmentation solutions, which resulted in a big number of combinations of possible results. 

Additionally, as some ions had very low intensity values in some pixels of the clusters, classical 

parametric statistical tests failed. To overcome this, we developed a workflow using 

nonparametric tests and the percentage of pixels in which a particular ion is not detected This 

work is presented in the third chapter of this thesis and resulted in the publication of the R 

package rMSIKeyIon37. 

 

2. To develop an algorithm for isotopic and adduct ion annotation for MSI datasets in the 

low mass range without using libraries and implement the algorithm in a software tool 

compatible with rMSIproc.  

 

The second objective is aimed at identifying and reporting molecular annotations in the low 

mass range for spatial metabolomics studies. To do so, we first aimed to find the isotopic 

patterns of a molecule to localize which peaks were monoisotopic ions, as the searches on 

compounds libraries are based on the monoisotopic ion of the molecule. Additionally, we 

aimed to find groups of monoisotopic ions differing only with the adduct ion to determine 

neutral masses for the compounds, reducing the number of hits in compound libraries. 

However, we noticed that many compounds were hard to find in libraries like the Human 

Metabolome Database as they are based on LC-MS data, and some compounds depending on 
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the study might not be included in some libraries, like specific metabolites of algae. Therefore, 

developing a tool to match libraries into the data was not an option, and by that time the 

METASPACE tool, which successfully uses this strategy, already existed, so we did not want 

to reinvent the wheel. Instead, we opted for a completely new strategy which does not require 

searching on libraries at runtime. We developed a general rule of carbon-based isotropic 

patterns of the family of compounds under interest (metabolites and lipids) and compared it 

with spectral data. As a difference with LC-MS annotation methods, the higher number of 

observations (i.e., pixels) usually found in MSI gives statistical power to the results and allows 

to use the ratios between isotopic peaks as a key variable for monoisotopic peaks annotation. 

The result of this research was the development of the peak annotation tool rMSIannotation38, 

presented in chapter 4. Moreover, we reasoned that having redundant peaks (isotopic peaks) in 

our peak matrices was detrimental to upcoming statistical analysis, as including many strongly 

correlated peaks could bias clustering procedures and dimensionality reduction techniques by 

overrepresenting their own morphological features.  

 

3. To implement and evaluate the performance of the fuzzy c-means algorithm for the 

spatial segmentation of MSI datasets. 

 

The third objective originated from the state of the art of the segmentation techniques used 

in MSI, which considers that any pixel must be included only in one cluster (hard clustering). 

This is clearly a limitation, because in histology we find many transition regions between 

histological areas that are not captured by the clustering algorithms. Besides, it is known that 

it is very difficult to assess the performance of the hard clustering algorithms. These facts 

suggested the possibility of ranking the pixels in a cluster by similarity to the cluster prototype, 

with the objective of differentiating between pixels localized in homogenous regions and in 

transition regions from the point of view of histological areas. In this regard, we propose a 

soft/fuzzy clustering approach, a particular subset of clustering algorithms that could associate 

all clusters to a pixel in different degrees. We followed the trail of soft clustering in MSI, and 

we found that the Fuzzy c-means algorithm was not used in this context. Therefore, we 

researched the use of this soft clustering method as a possible way of ranking pixels for MSI 

data. The results of this research are presented in chapter five. 

Finally, all the developed algorithms have been implemented in software tools using the R 

platform, in continuations of rMSI and rMSIproc, since R is open and widely spread across 

biodata analysts. Nevertheless, we complement R code with C++ language to enable efficient 

memory control and faster execution of the iterative algorithm. All the tools developed for this 

thesis are released under the general public license (GPL) to facilitate the exchange of ideas 

and collaboration between the MSI community. 

4. Organization of the document 

The thesis is divided into six chapters, which comprehend this introduction, the 

compendium of articles that cover the goals of this thesis, and a final discussion with 

conclusions. Chapter 1 contains a general introduction to spatial metabolomics, a more in-depth 

introduction to MSI, and the motivations, the context, and the objectives of the thesis. Chapter 

2 contains a review article with the state of the art of the identification and annotation of 

compounds in MSI published in Mass Spectrometry Reviews12. This chapter covers the whole 

process of identification using MSI data with special emphasis on the available software and 

the strategies they follow to achieve the identification. Chapter 3 contains the results of the first 

objective. In it the tool rMSIKeyIon, an R package for the automatic filtering of ions based on 

the intensity distribution differences over clusters is presented. Chapter 4 covers the second 
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objective of the thesis and describes the algorithms used for isotope and adduct annotation and 

presents the rMSIannotation software that implements it. Chapter 5 covers the third objective 

exploring the use of fuzzy c-means for MSI data as a criterion for the evaluation of clustering 

results using the information of the pixel membership to the clusters. Finally, Chapter 6 

contains a discussion and the final conclusions on the milestones achieved during this thesis 

over the three main objectives and some perspectives on future work based on them.  

5. References 

1. Petras, D., Jarmusch, A. K. & Dorrestein, P. C. From single cells to our planet—recent 

advances in using mass spectrometry for spatially resolved metabolomics. Current Opinion in 

Chemical Biology vol. 36 24–31 (2017). 

2. Alexandrov, T. Spatial Metabolomics and Imaging Mass Spectrometry in the Age of 

Artificial Intelligence. Annu Rev Biomed Data Sci 3, 61–87 (2020). 

3. Lavis, L. D. Histochemistry: live and in color. J. Histochem. Cytochem. 59, 139–145 

(2011). 

4. Ramos-Vara, J. A. & Miller, M. A. When tissue antigens and antibodies get along: 

revisiting the technical aspects of immunohistochemistry--the red, brown, and blue technique. 

Vet. Pathol. 51, 42–87 (2014). 

5. Alturkistani, H. A., Tashkandi, F. M. & Mohammedsaleh, Z. M. Histological Stains: A 

Literature Review and Case Study. Global Journal of Health Science vol. 8 72 (2015). 

6. Neumann, E. K., Djambazova, K. V., Caprioli, R. M. & Spraggins, J. M. Multimodal 

Imaging Mass Spectrometry: Next Generation Molecular Mapping in Biology and Medicine. 

J. Am. Soc. Mass Spectrom. 31, 2401–2415 (2020). 

7. Iakab, S. A., Ràfols, P., Correig-Blanchar, X. & García-Altares, M. Perspective on 

multimodal imaging techniques coupling mass spectrometry and vibrational spectroscopy: 

Picturing the best of both worlds. Anal. Chem. 93, 6301–6310 (2021). 

8. Roberts, L. D., Souza, A. L., Gerszten, R. E. & Clish, C. B. Targeted metabolomics. 

Curr. Protoc. Mol. Biol. Chapter 30, Unit 30.2.1–24 (2012). 

9. Vailati-Riboni, M., Palombo, V. & Loor, J. J. What Are Omics Sciences? in 

Periparturient Diseases of Dairy Cows 1–7 (Springer International Publishing, 2017). 

10. Boja, E. S., Kinsinger, C. R., Rodriguez, H. & Srinivas, P. Integration of omics sciences 

to advance biology and medicine. Clin. Proteomics 11, 45 (2014). 

11. McDonnell, L. A. & Heeren, R. M. A. Imaging mass spectrometry. Mass Spectrom. 

Rev. 26, 606–643 (2007). 

12. Baquer, G. et al. What are we imaging? Software tools and experimental strategies for 

annotation and identification of small molecules in mass spectrometry imaging. Mass 

Spectrom. Rev. e21794 (2022). 

13. Hansen, R. L. & Lee, Y. J. Overlapping MALDI-Mass Spectrometry Imaging for In-

Parallel MS and MS/MS Data Acquisition without Sacrificing Spatial Resolution. J. Am. Soc. 

Mass Spectrom. 28, 1910–1918 (2017). 

14. Wäldchen, F., Mohr, F., Wagner, A. H. & Heiles, S. Multifunctional Reactive MALDI 

Matrix Enabling High-Lateral Resolution Dual Polarity MS Imaging and Lipid C═C Position-

Resolved MS Imaging. Anal. Chem. 92, 14130–14138 (2020). 

15. Baquer, G. et al. rMSIcleanup: an open-source tool for matrix-related peak annotation 

in mass spectrometry imaging and its application to silver-assisted laser desorption/ionization. 

J. Cheminform. 12, 45 (2020). 

16. Garate, J. et al. Influence of Lipid Fragmentation in the Data Analysis of Imaging Mass 

Spectrometry Experiments. J. Am. Soc. Mass Spectrom. 31, 517–526 (2020). 

UNIVERSITAT ROVIRA I VIRGILI 
PEAK ANNOTATION AND DATA ANALYSIS SOFTWARE TOOLS FOR MASS SPECTROMETRY IMAGING 
Lluc Sementé Fernández 

http://paperpile.com/b/U8tCkK/Dv8R
http://paperpile.com/b/U8tCkK/Dv8R
http://paperpile.com/b/U8tCkK/Dv8R
http://paperpile.com/b/U8tCkK/Dv8R
http://paperpile.com/b/U8tCkK/Dv8R
http://paperpile.com/b/U8tCkK/5soh
http://paperpile.com/b/U8tCkK/5soh
http://paperpile.com/b/U8tCkK/5soh
http://paperpile.com/b/U8tCkK/5soh
http://paperpile.com/b/U8tCkK/5soh
http://paperpile.com/b/U8tCkK/5soh
http://paperpile.com/b/U8tCkK/QNqZ
http://paperpile.com/b/U8tCkK/QNqZ
http://paperpile.com/b/U8tCkK/QNqZ
http://paperpile.com/b/U8tCkK/QNqZ
http://paperpile.com/b/U8tCkK/QNqZ
http://paperpile.com/b/U8tCkK/QNqZ
http://paperpile.com/b/U8tCkK/Mk8O
http://paperpile.com/b/U8tCkK/Mk8O
http://paperpile.com/b/U8tCkK/Mk8O
http://paperpile.com/b/U8tCkK/Mk8O
http://paperpile.com/b/U8tCkK/Mk8O
http://paperpile.com/b/U8tCkK/Mk8O
http://paperpile.com/b/U8tCkK/4jyg
http://paperpile.com/b/U8tCkK/4jyg
http://paperpile.com/b/U8tCkK/4jyg
http://paperpile.com/b/U8tCkK/4jyg
http://paperpile.com/b/U8tCkK/PoWa
http://paperpile.com/b/U8tCkK/PoWa
http://paperpile.com/b/U8tCkK/PoWa
http://paperpile.com/b/U8tCkK/PoWa
http://paperpile.com/b/U8tCkK/PoWa
http://paperpile.com/b/U8tCkK/PoWa
http://paperpile.com/b/U8tCkK/sH7S
http://paperpile.com/b/U8tCkK/sH7S
http://paperpile.com/b/U8tCkK/sH7S
http://paperpile.com/b/U8tCkK/sH7S
http://paperpile.com/b/U8tCkK/sH7S
http://paperpile.com/b/U8tCkK/sH7S
http://paperpile.com/b/U8tCkK/sH7S
http://paperpile.com/b/U8tCkK/rFhw
http://paperpile.com/b/U8tCkK/rFhw
http://paperpile.com/b/U8tCkK/rFhw
http://paperpile.com/b/U8tCkK/rFhw
http://paperpile.com/b/U8tCkK/rFhw
http://paperpile.com/b/U8tCkK/rFhw
http://paperpile.com/b/U8tCkK/ioKR
http://paperpile.com/b/U8tCkK/ioKR
http://paperpile.com/b/U8tCkK/ioKR
http://paperpile.com/b/U8tCkK/ioKR
http://paperpile.com/b/U8tCkK/sIXB
http://paperpile.com/b/U8tCkK/sIXB
http://paperpile.com/b/U8tCkK/sIXB
http://paperpile.com/b/U8tCkK/sIXB
http://paperpile.com/b/U8tCkK/sIXB
http://paperpile.com/b/U8tCkK/sIXB
http://paperpile.com/b/U8tCkK/SK46
http://paperpile.com/b/U8tCkK/SK46
http://paperpile.com/b/U8tCkK/SK46
http://paperpile.com/b/U8tCkK/SK46
http://paperpile.com/b/U8tCkK/SK46
http://paperpile.com/b/U8tCkK/SK46
http://paperpile.com/b/U8tCkK/jCpR
http://paperpile.com/b/U8tCkK/jCpR
http://paperpile.com/b/U8tCkK/jCpR
http://paperpile.com/b/U8tCkK/jCpR
http://paperpile.com/b/U8tCkK/jCpR
http://paperpile.com/b/U8tCkK/jCpR
http://paperpile.com/b/U8tCkK/jCpR
http://paperpile.com/b/U8tCkK/V2Wu
http://paperpile.com/b/U8tCkK/V2Wu
http://paperpile.com/b/U8tCkK/V2Wu
http://paperpile.com/b/U8tCkK/V2Wu
http://paperpile.com/b/U8tCkK/V2Wu
http://paperpile.com/b/U8tCkK/V2Wu
http://paperpile.com/b/U8tCkK/V2Wu
http://paperpile.com/b/U8tCkK/oMJG
http://paperpile.com/b/U8tCkK/oMJG
http://paperpile.com/b/U8tCkK/oMJG
http://paperpile.com/b/U8tCkK/oMJG
http://paperpile.com/b/U8tCkK/oMJG
http://paperpile.com/b/U8tCkK/oMJG
http://paperpile.com/b/U8tCkK/oMJG
http://paperpile.com/b/U8tCkK/Geop
http://paperpile.com/b/U8tCkK/Geop
http://paperpile.com/b/U8tCkK/Geop
http://paperpile.com/b/U8tCkK/Geop
http://paperpile.com/b/U8tCkK/Geop
http://paperpile.com/b/U8tCkK/Geop
http://paperpile.com/b/U8tCkK/Geop
http://paperpile.com/b/U8tCkK/Geop
http://paperpile.com/b/U8tCkK/dpFL
http://paperpile.com/b/U8tCkK/dpFL
http://paperpile.com/b/U8tCkK/dpFL
http://paperpile.com/b/U8tCkK/dpFL
http://paperpile.com/b/U8tCkK/dpFL
http://paperpile.com/b/U8tCkK/dpFL
http://paperpile.com/b/U8tCkK/dpFL
http://paperpile.com/b/U8tCkK/dpFL


35 

 

17. Gemperline, E., Rawson, S. & Li, L. Optimization and comparison of multiple MALDI 

matrix application methods for small molecule mass spectrometric imaging. Anal. Chem. 86, 

10030–10035 (2014). 

18. Ràfols, P. et al. Assessing the potential of sputtered gold nanolayers in mass 

spectrometry imaging for metabolomics applications. PLoS One 13, e0208908 (2018). 

19. Römpp, A. et al. imzML: Imaging Mass Spectrometry Markup Language: A common 

data format for mass spectrometry imaging. Methods Mol. Biol. 696, 205–224 (2011). 

20. Schramm, T. et al. imzML — A common data format for the flexible exchange and 

processing of mass spectrometry imaging data. Journal of Proteomics vol. 75 5106–5110 

(2012). 

21. Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least 

squares procedures. Anal. Chem. 36, 1627–1639 (1964). 

22. van Herk, M. A fast algorithm for local minimum and maximum filters on rectangular 

and octagonal kernels. Pattern Recognit. Lett. 13, 517–521 (1992). 

23. Ràfols, P., Castillo, E. D., Yanes, O., Brezmes, J. & Correig, X. Novel automated 

workflow for spectral alignment and mass calibration in MS imaging using a sputtered Ag 

nanolayer. Anal. Chim. Acta 1022, 61–69 (2018). 

24. Deininger, S.-O. et al. Normalization in MALDI-TOF imaging datasets of proteins: 

practical considerations. Anal. Bioanal. Chem. 401, 167–181 (2011). 

25. Ràfols, P. et al. Signal preprocessing, multivariate analysis and software tools for 

MA(LDI)-TOF mass spectrometry imaging for biological applications. Mass Spectrom. Rev. 

37, 281–306 (2018). 

26. Alexandrov, T. MALDI imaging mass spectrometry: statistical data analysis and 

current computational challenges. BMC Bioinformatics 13 Suppl 16, S11 (2012). 

27. Klerk, L. A., Broersen, A., Fletcher, I. W., van Liere, R. & Heeren, R. M. A. Extended 

data analysis strategies for high resolution imaging MS: New methods to deal with extremely 

large image hyperspectral datasets. Int. J. Mass Spectrom. 260, 222–236 (2007). 

28. Leuschner, J. et al. Supervised non-negative matrix factorization methods for MALDI 

imaging applications. Bioinformatics 35, 1940–1947 (2019). 

29. Abdelmoula, W. M. et al. Data-driven identification of prognostic tumor 

subpopulations using spatially mapped t-SNE of mass spectrometry imaging data. Proc. Natl. 

Acad. Sci. U. S. A. 113, 12244–12249 (2016). 

30. Schwamborn, K. The Importance of Histology and Pathology in Mass Spectrometry 

Imaging. Adv. Cancer Res. 134, 1–26 (2017). 

31. Pérez-Guaita, D., Quintás, G. & Kuligowski, J. Discriminant analysis and feature 

selection in mass spectrometry imaging using constrained repeated random sampling - Cross 

validation (CORRS-CV). Anal. Chim. Acta 1097, 30–36 (2020). 

32. Tada, I. et al. Creating a Reliable Mass Spectral-Retention Time Library for All Ion 

Fragmentation-Based Metabolomics. Metabolites 9, (2019). 

33. Schymanski, E. L. et al. Identifying small molecules via high resolution mass 

spectrometry: communicating confidence. Environ. Sci. Technol. 48, 2097–2098 (2014). 

34. Alexandrov, T. et al. METASPACE: A community-populated knowledge base of 

spatial metabolomes in health and disease. bioRxiv (2019) doi:10.1101/539478. 

35. Ràfols, P. et al. rMSI: an R package for MS imaging data handling and visualization. 

Bioinformatics 33, 2427–2428 (2017). 

36. Ràfols, P. et al. rMSIproc: an R package for mass spectrometry imaging data 

processing. Bioinformatics 36, 3618–3619 (2020). 

37. Del Castillo, E. et al. rMSIKeyIon: An Ion Filtering R Package for Untargeted Analysis 

of Metabolomic LDI-MS Images. Metabolites 9, (2019). 

UNIVERSITAT ROVIRA I VIRGILI 
PEAK ANNOTATION AND DATA ANALYSIS SOFTWARE TOOLS FOR MASS SPECTROMETRY IMAGING 
Lluc Sementé Fernández 

http://paperpile.com/b/U8tCkK/mIYv
http://paperpile.com/b/U8tCkK/mIYv
http://paperpile.com/b/U8tCkK/mIYv
http://paperpile.com/b/U8tCkK/mIYv
http://paperpile.com/b/U8tCkK/mIYv
http://paperpile.com/b/U8tCkK/mIYv
http://paperpile.com/b/U8tCkK/mIYv
http://paperpile.com/b/U8tCkK/V3vN
http://paperpile.com/b/U8tCkK/V3vN
http://paperpile.com/b/U8tCkK/V3vN
http://paperpile.com/b/U8tCkK/V3vN
http://paperpile.com/b/U8tCkK/V3vN
http://paperpile.com/b/U8tCkK/V3vN
http://paperpile.com/b/U8tCkK/V3vN
http://paperpile.com/b/U8tCkK/V3vN
http://paperpile.com/b/U8tCkK/mRAL
http://paperpile.com/b/U8tCkK/mRAL
http://paperpile.com/b/U8tCkK/mRAL
http://paperpile.com/b/U8tCkK/mRAL
http://paperpile.com/b/U8tCkK/mRAL
http://paperpile.com/b/U8tCkK/mRAL
http://paperpile.com/b/U8tCkK/mRAL
http://paperpile.com/b/U8tCkK/mRAL
http://paperpile.com/b/U8tCkK/GK26
http://paperpile.com/b/U8tCkK/GK26
http://paperpile.com/b/U8tCkK/GK26
http://paperpile.com/b/U8tCkK/GK26
http://paperpile.com/b/U8tCkK/GK26
http://paperpile.com/b/U8tCkK/GK26
http://paperpile.com/b/U8tCkK/GK26
http://paperpile.com/b/U8tCkK/LWEs
http://paperpile.com/b/U8tCkK/LWEs
http://paperpile.com/b/U8tCkK/LWEs
http://paperpile.com/b/U8tCkK/LWEs
http://paperpile.com/b/U8tCkK/LWEs
http://paperpile.com/b/U8tCkK/LWEs
http://paperpile.com/b/U8tCkK/SrCq
http://paperpile.com/b/U8tCkK/SrCq
http://paperpile.com/b/U8tCkK/SrCq
http://paperpile.com/b/U8tCkK/SrCq
http://paperpile.com/b/U8tCkK/SrCq
http://paperpile.com/b/U8tCkK/SrCq
http://paperpile.com/b/U8tCkK/9zbf
http://paperpile.com/b/U8tCkK/9zbf
http://paperpile.com/b/U8tCkK/9zbf
http://paperpile.com/b/U8tCkK/9zbf
http://paperpile.com/b/U8tCkK/9zbf
http://paperpile.com/b/U8tCkK/9zbf
http://paperpile.com/b/U8tCkK/9zbf
http://paperpile.com/b/U8tCkK/4WEx
http://paperpile.com/b/U8tCkK/4WEx
http://paperpile.com/b/U8tCkK/4WEx
http://paperpile.com/b/U8tCkK/4WEx
http://paperpile.com/b/U8tCkK/4WEx
http://paperpile.com/b/U8tCkK/4WEx
http://paperpile.com/b/U8tCkK/4WEx
http://paperpile.com/b/U8tCkK/4WEx
http://paperpile.com/b/U8tCkK/212O
http://paperpile.com/b/U8tCkK/212O
http://paperpile.com/b/U8tCkK/212O
http://paperpile.com/b/U8tCkK/212O
http://paperpile.com/b/U8tCkK/212O
http://paperpile.com/b/U8tCkK/212O
http://paperpile.com/b/U8tCkK/212O
http://paperpile.com/b/U8tCkK/212O
http://paperpile.com/b/U8tCkK/212O
http://paperpile.com/b/U8tCkK/izHv
http://paperpile.com/b/U8tCkK/izHv
http://paperpile.com/b/U8tCkK/izHv
http://paperpile.com/b/U8tCkK/izHv
http://paperpile.com/b/U8tCkK/izHv
http://paperpile.com/b/U8tCkK/izHv
http://paperpile.com/b/U8tCkK/4oTg
http://paperpile.com/b/U8tCkK/4oTg
http://paperpile.com/b/U8tCkK/4oTg
http://paperpile.com/b/U8tCkK/4oTg
http://paperpile.com/b/U8tCkK/4oTg
http://paperpile.com/b/U8tCkK/4oTg
http://paperpile.com/b/U8tCkK/4oTg
http://paperpile.com/b/U8tCkK/5D4x
http://paperpile.com/b/U8tCkK/5D4x
http://paperpile.com/b/U8tCkK/5D4x
http://paperpile.com/b/U8tCkK/5D4x
http://paperpile.com/b/U8tCkK/5D4x
http://paperpile.com/b/U8tCkK/5D4x
http://paperpile.com/b/U8tCkK/5D4x
http://paperpile.com/b/U8tCkK/5D4x
http://paperpile.com/b/U8tCkK/KsrF
http://paperpile.com/b/U8tCkK/KsrF
http://paperpile.com/b/U8tCkK/KsrF
http://paperpile.com/b/U8tCkK/KsrF
http://paperpile.com/b/U8tCkK/KsrF
http://paperpile.com/b/U8tCkK/KsrF
http://paperpile.com/b/U8tCkK/KsrF
http://paperpile.com/b/U8tCkK/KsrF
http://paperpile.com/b/U8tCkK/KsrF
http://paperpile.com/b/U8tCkK/uooH
http://paperpile.com/b/U8tCkK/uooH
http://paperpile.com/b/U8tCkK/uooH
http://paperpile.com/b/U8tCkK/uooH
http://paperpile.com/b/U8tCkK/uooH
http://paperpile.com/b/U8tCkK/uooH
http://paperpile.com/b/U8tCkK/j3ji
http://paperpile.com/b/U8tCkK/j3ji
http://paperpile.com/b/U8tCkK/j3ji
http://paperpile.com/b/U8tCkK/j3ji
http://paperpile.com/b/U8tCkK/j3ji
http://paperpile.com/b/U8tCkK/j3ji
http://paperpile.com/b/U8tCkK/j3ji
http://paperpile.com/b/U8tCkK/IIhM
http://paperpile.com/b/U8tCkK/IIhM
http://paperpile.com/b/U8tCkK/IIhM
http://paperpile.com/b/U8tCkK/IIhM
http://paperpile.com/b/U8tCkK/IIhM
http://paperpile.com/b/U8tCkK/IIhM
http://paperpile.com/b/U8tCkK/IIhM
http://paperpile.com/b/U8tCkK/IIhM
http://paperpile.com/b/U8tCkK/Vc3A
http://paperpile.com/b/U8tCkK/Vc3A
http://paperpile.com/b/U8tCkK/Vc3A
http://paperpile.com/b/U8tCkK/Vc3A
http://paperpile.com/b/U8tCkK/Vc3A
http://paperpile.com/b/U8tCkK/Vc3A
http://paperpile.com/b/U8tCkK/Vc3A
http://paperpile.com/b/U8tCkK/Vc3A
http://paperpile.com/b/U8tCkK/EEU7
http://paperpile.com/b/U8tCkK/EEU7
http://paperpile.com/b/U8tCkK/EEU7
http://paperpile.com/b/U8tCkK/EEU7
http://paperpile.com/b/U8tCkK/EEU7
http://paperpile.com/b/U8tCkK/EEU7
http://dx.doi.org/10.1101/539478
http://paperpile.com/b/U8tCkK/EEU7
http://paperpile.com/b/U8tCkK/VoDZ
http://paperpile.com/b/U8tCkK/VoDZ
http://paperpile.com/b/U8tCkK/VoDZ
http://paperpile.com/b/U8tCkK/VoDZ
http://paperpile.com/b/U8tCkK/VoDZ
http://paperpile.com/b/U8tCkK/VoDZ
http://paperpile.com/b/U8tCkK/VoDZ
http://paperpile.com/b/U8tCkK/VoDZ
http://paperpile.com/b/U8tCkK/X3yJ
http://paperpile.com/b/U8tCkK/X3yJ
http://paperpile.com/b/U8tCkK/X3yJ
http://paperpile.com/b/U8tCkK/X3yJ
http://paperpile.com/b/U8tCkK/X3yJ
http://paperpile.com/b/U8tCkK/X3yJ
http://paperpile.com/b/U8tCkK/X3yJ
http://paperpile.com/b/U8tCkK/X3yJ
http://paperpile.com/b/U8tCkK/0P6f
http://paperpile.com/b/U8tCkK/0P6f
http://paperpile.com/b/U8tCkK/0P6f
http://paperpile.com/b/U8tCkK/0P6f
http://paperpile.com/b/U8tCkK/0P6f
http://paperpile.com/b/U8tCkK/0P6f
http://paperpile.com/b/U8tCkK/0P6f
http://paperpile.com/b/U8tCkK/0P6f


36 

 

38. Sementé, L., Baquer, G., García-Altares, M., Correig-Blanchar, X. & Ràfols, P. 

rMSIannotation: A peak annotation tool for mass spectrometry imaging based on the analysis 

of isotopic intensity ratios. Anal. Chim. Acta 1171, 338669 (2021). 
  

UNIVERSITAT ROVIRA I VIRGILI 
PEAK ANNOTATION AND DATA ANALYSIS SOFTWARE TOOLS FOR MASS SPECTROMETRY IMAGING 
Lluc Sementé Fernández 

http://paperpile.com/b/U8tCkK/j1nK
http://paperpile.com/b/U8tCkK/j1nK
http://paperpile.com/b/U8tCkK/j1nK
http://paperpile.com/b/U8tCkK/j1nK
http://paperpile.com/b/U8tCkK/j1nK
http://paperpile.com/b/U8tCkK/j1nK
http://paperpile.com/b/U8tCkK/j1nK


37 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
PEAK ANNOTATION AND DATA ANALYSIS SOFTWARE TOOLS FOR MASS SPECTROMETRY IMAGING 
Lluc Sementé Fernández 



38 

 

CHAPTER 2 

 

What are we imaging? Software tools and experimental 

strategies for annotation and identification of small 

molecules in Mass Spectrometry Imaging  
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Abstract: Mass Spectrometry Imaging (MSI) has become a widespread analytical technique 

to perform non-labeled spatial molecular identification. The Achilles' heel of MSI is the 

annotation and identification of molecular species due to intrinsic limitations of the technique 

(lack of chromatographic separation or the difficulty to apply tandem MS). Successful 

strategies to perform annotation and identification combine extra analytical steps, like using 

orthogonal analytical techniques to identify compounds; with algorithms that integrate the 

spectral and spatial information. In this review, we discuss different experimental strategies 

and bioinformatics tools to annotate and identify compounds in MSI experiments. We target 

strategies and tools for small molecule applications, such as lipidomics and metabolomics. 

First, we explain how sample preparation and the acquisition process influences annotation and 

identification, from sample preservation to the use of orthogonal techniques. Then, we review 

twelve software tools for annotation and identification in MSI. Finally, we offer perspectives 

on two current needs of the MSI community: the adaptation of guidelines for communicating 

confidence levels in identifications; and the creation of a standard format to store and exchange 

annotations and identifications in MSI.  

List of Abbreviations  
CCS - Collision Cross-Section 

DDA - Data Dependent Acquisition 

DESI - Desorption Electrospray Ionization 

ESI - Electrospray ionization 

FDR - False Discovery Rate 

FFPE - Formalin-Fixed Paraffin-Embedded 

FT-IR - Fourier-Transform Infrared 

FTICR - Fourier-transform Ion Cyclotron Resonance 

GC-MS - Gas Chromatography-Mass Spectrometry 

HCD - Higher-energy Collision-induced Dissociation 

IMS - Ion Mobility Spectrometry 

IT - Ion Trap 

KMD - Kendrick Mass Defect 

LA-ICP - Laser Ablation Inductively Coupled Plasma 

LC-MS - Liquid Chromatography-Mass Spectrometry 

LCM - Laser-Capture Microdissection 

m/z - mass to charge 

MALDI - Matrix-Assisted Laser Desorption/Ionization 

MS - Mass Spectrometry 

MS/MS - Tandem Mass Spectrometry 

MSI - Mass Spectrometry Imaging 

NMR - Nuclear Magnetic Resonance 

NP - Nanoparticle 

ROI - Region of Interest 

RT- Retention Time 

SIL - Stable Isotope Labeling 

SIMS - Secondary Ion Mass Spectrometry 

t-MALDI - transmission MALDI 

TOF - Time-Of-Flight 
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1. Introduction: the challenge of annotation and identification in MSI 

Mass Spectrometry Imaging (MSI) is an analytical technique capable of spatially resolving 

the chemical composition of biological tissues (Buchberger et al., 2018). Over recent years, 

MSI has become a key technique in diverse fields such as biochemistry, pharmaceutics, and 

medical diagnostics (Patti, Yanes and Siuzdak, 2012; Vaysse et al., 2017; Ren et al., 2018; 

Schulz et al., 2019). Its use in metabolomics, the study of small molecules in biological 

specimens (Clish, 2015), is of particular interest as metabolites serve a wide variety of 

biological purposes such as structural, signaling, immune modulators, endogenous toxins, and 

environmental sensors (Wishart, 2019).  

To draw meaningful biological and diagnostic conclusions from MSI experiments, the mass 

to charge (m/z) ratios obtained need to be traced back to unique compound identifications. This 

is a non-trivial task considering that spectra in mass spectrometry (MS) are often cluttered with 

signals from isotopes, adducts, in-source fragments, multiple-charges, matrix, and other 

exogenous compounds. It is estimated that monoisotopic endogenous peaks only represent 5% 

of the MS signals in an MSI experiment (Wang et al., 2019). This is particularly challenging 

in metabolomics since matrix signals and in-source fragments are densely concentrated in the 

low mass range (Baquer et al., 2020; Janda et al., 2021). The vast amount of MS signals leaves 

research groups using MSI around the world struggling with the question: “What are we 

detecting in MSI experiments?”. 

Workflows for identification of compounds by other MS-based techniques such as Gas or 

Liquid Chromatography-Mass Spectrometry (GC-MS and LC-MS) mostly rely on 

chromatographic separation, followed by MS analysis and often MS/MS experiments. 

However, these workflows cannot be directly applied to MSI experiments: 

 

1) MSI lacks chromatographic separation: GC-MS and LC-MS use chromatographic 

columns to separate compounds by their chemical properties (such as polarity) (Lisec 

et al., 2006; Pitt, 2009) and use retention times (RT) as complementary information to 

aid compound identification. This information is not available in MSI experiments 

(Amstalden van Hove, Smith and Heeren, 2010; Yagnik, Korte and Lee, 2013; 

Buchberger et al., 2018).  

 

2) Most MSI experiments are only performed in Full MS scan: multiple isobars and 

isomers with different chemical, physical and functional properties can be associated 

with a given monoisotopic mass (Kyle et al., 2016). Tandem mass spectrometry 

(MS/MS) can distinguish them by their fragmentation spectra (McLafferty, 1981). 

Similarly, ion mobility instruments use ion drift times to facilitate the identification of 

isomers (Mesa Sanchez et al., 2020). In MSI it is still not routinary to perform MS/MS 

fragmentation and ion mobility separation on-tissue in an untargeted fashion 

(Amstalden van Hove, Smith and Heeren, 2010; Yagnik, Korte and Lee, 2013; 

Buchberger et al., 2018). 

On the flip side, peak annotation in MSI experiments is statistically more robust given the 

higher number of data points (each pixel contains a unique spectrum). Spatial correlations 

between different ion  MS signals add statistical confidence to ion annotations (Sementé et al., 

2021). 

This complex analytical context calls for well-designed experimental strategies and 

automated software-based solutions to perform robust molecular annotation and identification 

in MSI metabolomics. 

In this review, we explain how each step of the sample preparation and acquisition process 

influences annotation and identification, from artifacts that may be introduced during sample 
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preservation, to the use of orthogonal techniques like LC-MS/MS with the same tissue. Later, 

we discuss how different bioinformatics tools annotate and identify compounds in MSI 

experiments. We specifically target tools for small molecule applications such as lipidomics 

and metabolomics. This review offers an analytical background for the bioinformatician to 

understand the influence of each experimental step on annotation and identification. In turn, 

analytical chemists will discover the possibilities that bioinformatics offers to support 

compound annotation and identification in MSI. We also point out how the MSI community 

struggles to communicate confidence levels for identification and lacks a standard format to 

report annotations and identifications. As a solution, we propose to adopt the 5 Level scheme 

by Schymanski et al. (Schymanski et al., 2014),  and we draft a file format annex to imzML 

based on mzTab-M (Hoffmann et al., 2019) to report annotations and identifications in MSI. 

2. The need for reporting standards in MSI  

2.1. A word about the terms annotation and identification 

According to the Metabolomics Standards Initiative, a non-novel molecule is considered 

“identified” when its experimental data is compared to a standard by at least two types of 

orthogonal data (for instance, RT and MS/MS), while a compound would be considered 

“annotated” if identification is not achieved (Sumner et al., 2007). A common problem in 

metabolomics (Salek et al., 2013) and MSI scientific articles is that the terms annotation and 

identification are sometimes used interchangeably, at times even accompanied by the 

adjectives “putative” or “tentative”. This confusion impedes the comparison of different 

annotation/identification strategies and the interpretation results.  

To seize the impact of this problem in the MSI community, we reviewed the usage of the 

terms “annotation” and “identification” in 58 papers published in the last 5 years (Table S1 in 

supplementary materials) dealing with annotation/identification from several perspectives 

(bioinformatics, experimental protocol, instrumental and application). 

We found that 52% of the papers use the term “identification” to refer to exact mass 

matching at least once (when “annotation” should be used). Moreover, the adjectives “putative” 

and “tentative” are used in 31% of the papers. When they appear, they accompany the terms 

annotation and identification indistinctly to refer to exact mass matching.  

2.2. Adaptation of identification confidence levels for MSI 

Communicating the degree of confidence in compound identification is essential to avoid 

misinterpretation of the results, and to compare identification strategies. While the MSI 

community has its own initiative for improving standardization and reproducibility 

(MALDISTAR, https://www.maldistar.org/), at the moment the aims of this initiative do not 

include the definition of guidelines for reporting the confidence of compound annotation and 

identification. Besides, current reporting standards for mass spectrometry imaging (McDonnell 

et al., 2015; Gustafsson et al., 2018) do not explicitly mention identification confidence levels. 

The 2015 guideline proposed by McDonnell et al. (McDonnell et al., 2015) defines the 

minimum reporting standards for identifications as (1) experimental and theoretical m/z, (2) 

mass tolerance, (3) MS/MS on-tissue, and (4) orthogonal measurements (i.e. LC-MS/MS). 

However, this scheme does not communicate different degrees of confidence in MSI 

identifications and annotations.  

On the other hand, the metabolomics community does have well-accepted guidelines for 

communicating identification confidence based on the four-level system suggested by the 

Metabolomics Standards Initiative in 2007 (Sumner et al., 2007). In 2014, Schymanski et al. 

(Schymanski et al., 2014) proposed a 5 level system to rank levels of confidence in 
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identification: (Level 1) Confirmed structure matched against a reference standard (MS, 

MS/MS, and RT); (Level 2) Probable structure matched against literature or library spectrum 

(MS, MS/MS, and RT); (Level 3) Tentative candidates matched against literature or library 

spectrum (MS, MS/MS, and RT); (Level 4) Unequivocal molecular formula (MS with adduct 

and isotope information); (Level 5) Exact mass (MS). Later, Schrimpe-Rudletge et al. 

(Schrimpe-Rutledge et al., 2016) expanded the model by proposing the use of orthogonal 

techniques, such as Nuclear magnetic resonance (NMR) or ion mobility, to reach level 2 and 

level 3 identifications.  

The scheme of 5 confidence levels used in metabolomics (Schymanski et al., 2014; 

Schrimpe-Rutledge et al., 2016) shown in Supplementary Figure 1 could be adopted to report 

identification confidences in MSI experiments. As the information obtained by MSI is different 

from the data collected by common metabolomics techniques (usually based on 

chromatographic separation), we suggest the adaptation of the 5 level system to report 

identification confidence in MSI experiments as described below. The strategies to achieve the 

different confidence levels mentioned in this section are described in detail in sections III and 

IV.  

Level 1 Confirmed structure: Reporting exact mass, unequivocal molecular formula, and 

a single confirmed structure. At this level, a unique structure is confirmed by comparing all 

experimental data from Levels 2-5 to reference standards. The use of reference standards for 

confirming identifications in MSI may include spotting the standard on the glass slide or 

substrate, on a replicate tissue, or spiking a homogenized replicated tissue. Alternatively, one 

can perform LC-MS/MS measurements of tissue homogenates or microdissection of the tissue 

to compare against standards dissolved in solvents or in tissue extracts (matrix-matched 

comparison). The discrimination of isobaric and isomeric species is one of the major challenges 

of MSI, since it cannot rely of the chromatographic separation of these species. As described 

in a recent review (Bednařík et al., 2022), there are several strategies to discriminate isomers 

in MSI, including ion activation and chemical derivatization, ion mobility spectroscopy, and 

tandem MS analysis directly on tissue, among others.  

Level 2 Probable structure: Reporting exact mass, unequivocal molecular formula, and a 

single possible structure. This level is achieved when only one unambiguous possible structure 

results after following the procedures described in Level 3.   

Level 3 Tentative candidates: Reporting exact mass, unequivocal molecular formula, and 

a list of possible structures. This level requires information complementary to the MS 

measurement that can be obtained using orthogonal data, obtained during the MSI experiment 

(like ion mobility or MS/MS fragmentation) or by orthogonal techniques such as LC-MS/MS 

on homogenized tissues, or complementary molecular imaging techniques. If MS/MS is used, 

the obtained experimental spectra are matched against experimental, in silico or literature 

libraries.  

Level 4 Unequivocal molecular formula: Reporting exact mass and unequivocal 

molecular formula. This requires the integration of MS information such as isotopes, adducts, 

and/or in-source fragments. In MSI, the annotation of isotopes, adducts, and in-source 

fragments benefit from the high number of sampling points over the tissue. The spatial 

correlation of signals (not available in other MS methods) ensures robust Level 4 annotation. 

Level 5 Exact mass of interest: Reporting only the exact mass of the compound, together 

with the mass tolerance of the MSI method. Unable to distinguish between different molecular 

formulas within the mass tolerance of the method. 
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3. Influence of the sample preparation and spectra acquisition procedures for 

molecular annotation and identification 

This section covers the influence of experimental procedures in compound annotation and 

identification in MSI. It describes experimental strategies regarding sample preparation, 

instrumental setups, and combinations of MSI with other techniques. It provides a solid 

analytical background for bioinformaticians working in MSI annotation and identification. For 

a deeper explanation of MSI experimental procedures, the reader is referred to more extensive 

reviews (Amstalden van Hove, Smith and Heeren, 2010; Chatterji and Pich, 2013; Gode and 

Volmer, 2013; Norris and Caprioli, 2013; Buchberger et al., 2018). Table 1 contains a 

compendium of the principal effects in annotation/identification of all the procedures and 

instruments covered in this section. 

3.1 Effects of the sample preparation in MSI annotations and identifications   

Sample preparation is a critical step in any MSI experiment, as it largely influences which 

compounds will be ionized and detected. Proper sample preparation will also reduce ion 

suppression, adduct formation, matrix interferences, and in-source fragmentation. Besides, the 

use of calibrants improves the mass axis calibration and increases the confidence of annotations 

by exact mass.  

3.1.1 Sample preservation 

Sample preservation is the first decision that affects an MSI experiment, as it determines 

what type of compounds will remain in the tissue. There are three main preservation options: 

formalin-fixed paraffin-embedded (FFPE) tissues, fresh-frozen tissues, and formalin-fixed 

frozen tissues. 

FFPE tissues have been the gold standard for the fixation and storage of samples for 

histopathological analyses. FFPE tissues can be preserved at room temperature for years 

without degradation and are easy to section and transport thanks to the wax embedding. 

Nevertheless, paraffine induces ion suppression during the ionization process in MSI, and 

formalin fixation (which cross-links proteins together) hampers the desorption/ionization of 

proteins and peptides. Moreover, both compounds contaminate the spectra by adding more 

signals. Thus, the use of FFPE tissues for MSI requires the removal of the paraffine before MSI 

analysis (by a series of xylene and ethanol washing steps); and the reversal of the cross-linking 

of proteins (by antigen retrieval protocols). These washing steps lead to the loss of lipids and 

metabolites, thus FFPE tissues are better suited for peptide and protein analysis by 

MSI.(Wisztorski et al., 2010; Ly et al., 2016; Hermann et al., 2020) 

Fresh-frozen tissues have the advantage of stopping post-mortem decay (autolysis) without 

using any chemical agent that may induce changes in the tissue. In principle, this allows the 

preservation of all the molecular species in the tissue, thus enabling the detection of 

metabolites, lipids, and proteins. This makes fresh-frozen the standard sample preservation for 

MSI. Nevertheless, fresh-frozen samples are costly to store, as they require -80℃ freezers to 

avoid the rapid deterioration in room temperature. This makes the sample vulnerable to power 

outages and mechanical failures in the closing door. 

Formalin-fixed frozen tissue is a combination of both previous approaches. In this case, the 

sample is fixed by formalin, but it is stored as fresh-frozen tissue without paraffin embedding. 

Heat-induced antigen retrieval protocols can be used to avoid metabolite loss (Groseclose et 

al., 2008), but formalin may reduce the ionization yield of amine-containing lipids, and 

generate [M+HSO4]- adducts (Vos et al., 2019). Using this sample preservation, it is possible 
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to measure compounds in all mass ranges although with lower effectiveness than fresh-frozen 

tissues for the low mass range (Pietrowska et al., 2016). 

3.1.2 On-tissue enzymatic digestion of intact proteins 

MSI analysis of intact proteins is usually restricted to those molecules below 25 kDa 

(although some MALDI matrices like ferulic acid can extend this range (Mainini et al., 2013)), 

thus classical top-down proteomic strategies may not be efficient in MSI. Thus, on-tissue 

enzymatic digestion is included in most protein identification routines, which allow larger 

proteome coverage identification. This bottom-down approach is based on spraying or spotting 

enzymes (usually trypsin) over the tissue to cleave the proteins into their peptides, followed by 

an incubation step (Cillero-Pastor and Heeren, 2014; Diehl et al., 2015). Besides trypsin, other 

enzymes can be used to digest proteins, such as the enzyme peptide-N-glycosidase F for N-

glycan profiling (Drake et al., 2018). Sequencing the detected peptides by common MS/MS 

approaches can help both identify and spatially locate proteins directly on the tissue. Previous 

reviews on protein identification in MSI (Mascini and Heeren, 2012; Ryan, Spraggins and 

Caprioli, 2019) have covered this topic in depth.   

Since the reactions for protein digestion are performed in solution, the tissues need to be 

covered by solvents containing the digestive enzymes, which can lead to the delocalization of 

the peptide products. Solvent-free solutions can avoid peptide delocalization, for instance by 

the use of plasmonic thermal decomposition/digestion  (Zhou and Basile, 2017). This process 

uses continuos wave laser excitation and gold nanoparticles to decompose proteins at known 

locations (C-terminus of aspartic acid and at the N-terminus of cysteine) and since this is a dry 

technique, product peptides retain their original location on the tissue.   

3.1.3 On-tissue chemical derivatization 

Some compounds are difficult to detect using MSI due to their low ionization efficiency, 

ion suppression, low concentration, and/or small molecular weight. Sample preparation steps 

(i.e. the proper matrix selection in MALDI MS or solvent selection in DESI-MS) might 

alleviate this concern. On-tissue chemical derivatization applies reagents over a tissue section 

to modify the chemical structure of specific compounds and enhance their detectability, by 

adding moieties with specific properties. For instance, adding a charged moiety often 

counteracts low ionization efficiency problems. Ion suppression due to low molecular weight 

can also be avoided by the reaction of the target compound and a derivatization molecule, 

which increases the analyte m/z ratio. All these mechanisms alter the detectability of specific 

compounds and therefore, the capacity of annotating and identifying them. Harkin et al. review 

concrete examples of these procedures (Harkin et al., 2021). For instance, pyrylium salts react 

selectively with primary amines in neurotransmitters, thus they can be incorporated into 

matrices (Shariatgorji et al., 2015) or synthesized as bromopyrylium to introduce a distinctive 

isotopic pattern only in targeted neurotransmitters (Shariatgorji et al., 2020).  Additionally, the 

induced epoxidation of peracetic acid has been used to localize the C=C bonds in unsaturated 

fatty acids, allowing the discrimination of isomeric fatty acid (H. Zhang et al., 2021); and 

Giard’s reagent P has been used to label N-glycans in FFPE tissue samples, increasing the 

sensitivity of the tissue samples characterization (H. Zhang et al., 2020). 

Chemical reagents can also be used to promote a specific adduct of relevant biological 

molecules that are present in low concentration in tissues. For instance, Duncan et al. added 

silver ions to the solvent for nanospray desorption electrospray ionization MSI to enhance the 

ionization of prostaglandins as silver adducts, which allowed their monitoring directly on mice 

tissues (Duncan et al., 2018).  
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3.1.4 Matrix selection and deposition in MALDI MSI 

In MALDI MSI, matrices are compounds that assist the desorption/ionization of analytes 

from the tissue. Most common applications use small organic compounds as matrices that are 

either sprayed or sublimated over the tissue (Gemperline, Rawson and Li, 2014). MALDI 

matrix application techniques should ensure good homogeneity of the deposited layer and 

minimize in-tissue compound delocalization to get high-quality images.  

The selection of appropriate matrices and optimization of the deposition method greatly 

affect the outcome of MALDI MSI analysis and the annotation and identification of analytes.   

Matrices may introduce undesired effects that clutter the mass spectra and hamper 

compound annotation, such as matrix clusters, matrix adduct formation, and detector 

saturation. This is a particular issue in the low mass range where matrix-metabolite adducts 

can explain a considerable amount of non-annotated peaks (Janda et al., 2021). Lipidomics and 

metabolomics identification routines are very sensitive to the matrix method used (Fernández 

et al., 2011)(Thomas et al., 2012).  

The selection of the matrix will define the ionization polarity mode. For instance, MALDI 

matrices with an acidic group (like benzoic acid and cinnamic acid derivatives) are mostly used 

in positive ionization mode, while matrices that are basic and contain amino functions tend to 

be used in negative ionization mode. The ionization mode will favor the detection of specific 

compounds, for example, lipids with a polar headgroup like phosphatidylcholines will be 

detected in positive mode, while glycerophosphoinositol will have better ionization yield in 

negative mode (Leopold et al., 2018). To increase the coverage of the lipidome, several 

research groups opt for the use of matrices and acquisition modes that allow dual polarity 

MALDI MSI analysis on the same sample (Kaya et al., 2018; Li et al., 2019; Huang et al., 

2020). 

Developing new matrices is a hot research field in MSI. While classical first-generation 

matrices like alpha-Cyano-4-hydroxycinnamic acid and 2,5-Dihydroxybenzoic acid are still 

widely used, the design of second-generation and reactive matrices (simultaneously a 

derivatization reagent and a matrix) allow the selective desorption/ionization of specific 

analytes. The analytes of interest are detected with higher signal-to-noise ratios and sometimes 

present specific spectra features (such as a distinctive isotopic pattern) that facilitate their 

annotation and identification. Reactive matrices can also aid discriminating between isomeric 

compounds, such as the reactive matrix benzophenone, that serves both as ionization promoter 

and as derivatization reagent to selectively functionalize unsaturated phospholipids (Wäldchen, 

Spengler and Heiles, 2019).  The reviews by Zhou et al. and Calvano et al. provide an excellent 

reference on selective matrices for MSI metabolomics and lipidomics (Calvano et al., 2018; 

Zhou, Fülöp and Hopf, 2021).  

On the other hand,  inorganic nanoparticles (NPs) (of gold and silver, among others), as well 

as some metal-oxides (TiO2, CeO2, etc.), have been proposed as an alternative to organic 

matrices for the analysis of small molecules by MSI (Abdelhamid, no date; Basu et al., 2019). 

They often produce fewer matrix clusters and adducts, leading to a cleaner background 

spectrum. Additionally, their distinctive carbon-free isotopic pattern and easily identifiable 

peaks can serve as internal calibrants during data processing (Nizioł and Ruman, 2013; Ràfols, 

Castillo, et al., 2018; Ràfols, Vilalta, Torres, et al., 2018). 

Matrix deposition is one of the most important sample preparation steps toward the 

production of high-quality ion images.  Researchers use different techniques to apply matrices 

onto the target tissue, including spray (Khatib-Shahidi et al., 2006; Norris et al., 2007) and 

sublimation (Hankin, Barkley and Murphy, 2007; Thomas et al., 2012) for organic matrices, 

and sputtering for NPs (Dufresne et al., 2013; Ràfols, Vilalta, Torres, et al., 2018). The spray 

method is based on applying the matrix solution into the tissue section manually (DeKeyser et 

al., 2007; Ye et al., 2013) or using automated spray devices allowing controllable solvent flow 
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rate and matrix layers number (Mounfield and Garrett, 2012; Gemperline, Rawson and Li, 

2014; Phan et al., 2016). Sublimation is a dry deposition technique (the transition of one 

chemical substance from the solid phase to the gas phase without passing through the 

intermediate liquid phase), in which matrices are sublimated and deposited under reduced 

pressure and specific elevated temperature parameters, leading to the deposition of dry matrix 

layer on tissue target (Hankin, Barkley and Murphy, 2007; Nakamura et al., 2017). However, 

sublimation alone is not sufficient for the ionization of some compound species, such as 

proteins, therefore a re-hydration or re-crystallization step is needed in order to promote the 

integration of these molecules with the matrix crystals (Yang and Caprioli, 2011).  

Sputtering is a thin film deposition process where inorganic NPs or metal-oxide targets 

(such as gold or silver) are bombarded with high-energy ions in a vacuum chamber resulting 

in the condensation of the target atoms on the substrate tissue section as thin layers  (Ogrinc 

Potočnik et al., 2014; Hansen, Dueñas and Lee, 2019). 

3.1.5. Stable Isotope Labeling 

Stable Isotope Labeling (SIL) consists of the synthesis of compounds containing atoms with 

artificial isotopic abundances highly dissimilar to the ones that occur in nature. Common 

isotope labels include 13C, 15N, and deuterium (2H). This technique has many applications in 

several aspects of MSI (Grey et al., 2021) such as tracing of drugs and metabolites (Eckelmann, 

Kusari and Spiteller, 2018; Ellis et al., 2021). Additionally, the labeled compounds introduced 

in the sample can be used as internal standards to  normalize signal intensity  (Chumbley et al., 

2016; Barry et al., 2019)   and provide quantitative results  (Grey et al., 2019). 

For annotation, one of the most relevant applications is SIL MALDI matrices. By 

isotopically labeling the matrix, their background signals can be shifted and uncover relevant 

endogenous signals. Additionally, their distinct isotopic pattern can be exploited to develop 

more robust annotation tools. As an example, Shariatgorji et al. (Shariatgorji et al., 2012) 

managed to shift the matrix peaks by using deuterated CHCA to uncover and annotate several 

neurotransmitters.  

3.2. MSI image acquisition 

Mass spectrometers intrinsically affect the annotation and identification procedures, as they 

determine which species of ions will be generated in the ion source, and the m/z resolving 

power and accuracy. The parts of the mass spectrometer that affect the annotation/identification 

process are the ion source, responsible for the desorption and ionization of the molecules, and 

the mass analyzer, responsible for the determination and counting of the m/z ratio of the ions. 

Figure 1 shows a broad comparison between the main ion sources and mass analyzers. 

3.2.1 Ion source 

The ion source induces the desorption of the analytes from the tissue, and the ionization of 

compounds that will be transferred into the mass analyzer. Depending on the polarity of the 

electrical field applied in the ion source, the ions formed will be positive (usually protonated 

adducts and adducts with cations, such as Na+ and K+) or negative (like deprotonated adducts 

and adducts with anions, such as Cl-). The different technologies result in differences in the 

mass range analyzed, the number of charges of the produced ions, the amount of in-source 

fragments generated, and the sensitivity to detect low concentration compounds. Spatial 

resolution and sensitivity are related concepts, as increasing the spatial resolution results in 
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decreasing the ablated area and therefore, reduces the sensitivity. In MSI, the most used ion 

sources are Matrix-assisted Laser Desorption/Ionization (MALDI), Desorption Electrospray 

Ionization (DESI), Secondary Ion Mass Spectrometry (SIMS) and Laser Ablation Inductively 

Coupled Plasma (LA-ICP).  

MALDI sources ionize the sample using a pulsating laser (usually UV or IR) inside a 

vacuum or low-pressure chamber with the assistance of the previous matrix deposition. The 

laser strikes the sample and generates a plume of charged ions that are directed to the mass 

analyzer. MALDI sources tend to produce low fragmentation and singly charged ions (Karas, 

Glückmann and Schäfer, 2000; Jaskolla and Karas, 2011), which enable the ionization of 

metabolites (‘Compound and metabolite distribution measured by MALDI mass spectrometric 

imaging in whole-body tissue sections’, 2007), lipids (Züllig and Köfeler, 2021), peptides 

(Phillips, Gill and Baxter, 2019) and proteins (‘Ultra-high resolution MALDI-FTICR-MSI 

analysis of intact proteins in mouse and human pancreas tissue’, 2019), and usually achieve 

spatial resolutions in the range of 100 to 10 µm and close to 1 µm with specific setups (Hansen 

and Lee, 2017; Kompauer, Heiles and Spengler, 2017; Wäldchen et al., 2020). In recent years, 

enhanced versions of MALDI sources have been proposed, like MALDI-2 (Soltwisch et al., 

2015; Heijs et al., 2020), which increases the sensitivity of the MALDI source by adding a 

second post-ionization laser  that ionizes the neutral molecules in the ion plume; transmission 

MALDI (t-MALDI) (Trimpin et al., 2009; Zavalin et al., 2012, 2015; Steven et al., 2019), 

which increases the later resolution up to 1 µm and below by changing the laser focus 

geometry; and more recently t-MALDI-2 (Niehaus et al., 2019; Bien et al., 2021; Dreisewerd, 

Bien and Soltwisch, 2022), which combines the benefits of both improved designs. 

DESI sources produce ions at atmospheric pressure conditions directing a spray of charged 

microdroplets directly into the tissue. DESI sources require minimal sample preparation. They 

are commonly used to analyze small molecules and lipids, but bigger compounds like peptides 

and proteins can also be analyzed (Towers et al., 2018), although most solvents used with DESI 

denature proteins, affecting the three-dimensional structure (Hale and Cooper, 2021). 

Typically, DESI sources achieve spatial resolutions in the range of 200 to 20 µm (Ifa et al., 

2007; Claude, Jones and Pringle, 2017; Nguyen et al., 2018; Towers et al., 2018; G. Zhang et 

al., 2020) and are known to produce little fragmentation and singly charged ions (Towers et 

al., 2018).  

SIMS sources bombard samples using an ion beam, ionizing molecules from the sample 

surface and ejecting them into the vacuum environment but, due to the high energy of the beam, 

SIMS sources easily cause the fragmentation of the molecular ions (Yoon and Lee, 2018). 

Currently, SIMIS sources provide the greatest spatial resolution for MSI, reaching the 

nanometer scale (Gamble and Anderton, 2016), but have less sensitivity, as the area ablated is 

lower than other technologies. Applications of SIMS sources are principally focused on small 

metabolites and lipids (Touboul and Brunelle, 2016) and like DESI, require minimal sample 

preparation.  

LA-ICP sources use an inductively heated plasma to atomize molecules ablated from a 

specific region, generating atomic composition maps over the sample. LA-ICP is generally 

used to track metals in biological sections with a spatial resolution between 200 and 10 µm 

(Becker et al., 2011, 2012; Pornwilard et al., 2013; Sabine Becker, 2013). In terms of 

fragmentation, LA-ICP fragments all the compounds in the sample to their atomic composition, 

resulting in null preservation of precursor ions.  

3.2.2 Mass analyzer 

The mass analyzer detects the ions generated by the source, determines the mass-to-charge 

ratio of them, and composes the spectrum at each sample position or pixel of the image. There 
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are three parameters that influence the identification of compounds for each mass analyzer: (1) 

mass range, the lowest and highest m/z that the mass analyzer can detect; (2) mass accuracy, 

the difference between the measured m/z of an ion and the real m/z (usually described in ppm);  

and (3) mass resolution, the ability to distinguish between ions separated by small m/z values, 

often defined as the m/z of a peak divided by the peak width at 10% or 50% of peak height. 

The most common mass analyzers in MSI systems are time-of-flight (TOF), Fourier-transform 

ion cyclotron resonance (FTICR), and Orbitrap. 

TOF mass analyzers are vacuum tubes in which ions travel through an electric field to the 

detector. The longer the tube, the higher the mass resolution of the spectra, as the ions have 

more time to gain distance between them during the flight. Despite this, TOF mass analyzers 

tend to have lower mass resolution compared to other mass analyzers used in MSI, as enhancing 

it implies an increase in the physical size of the whole MSI system and in the sampling time. 

With reflectron set-ups, the mass resolution can be increased, but still lower than other 

analyzers. Moreover, TOFs are very susceptible to temperature changes, as the metal tube may 

suffer expansions and contractions that affect the mass accuracy of sampled ions. On the other 

hand, TOF analyzers do not have a theoretical upper m/z detection limit like other mass 

analyzers (Xian, Hendrickson and Marshall, 2012), and their mass resolution increases within 

the mass range. TOF mass analyzers are extensively used with MALDI ion sources to image 

almost any kind of compounds, with a preference for compounds in the high mass range like 

peptides and proteins, with a typical upper limit of m/z 30,000 (Spengler, 2015). Common set-

ups of TOF mass analyzers are MALDI-TOF, MALDI-TOF/TOF, MALDI-Q-TOF, and TOF-

SIMS. 

FTICR mass analyzers use a magnetic field to resonate the ions into cyclotron orbits and 

transduce the orbiting frequencies into m/z using the Fourier Transform. These mass analyzers 

are built around powerful magnets; the stronger the magnetic field, the greater the mass 

resolution, reaching values of up to 1,600,000 at m/z 400 for a 21T magnet (Bowman et al., 

2020) with mass accuracies below 1 ppm. FTICR mass analyzers are used to analyze all 

families of compounds, but preferably not higher than m/z 3000, as the mass resolution 

decreases as the m/z ratio increases (Almeida et al., 2015) and the magnetic field and sampling 

time required to detect these ions are high. Still, there are examples of high mass protein MSI 

investigations up to m/z 30,000 using a 15T FTICR mass analyzer with a mass accuracy below 

10 ppm and transients close to 4 seconds per pixel (M. Dilillo et al., 2017). Common set-ups 

of FTICR mass analyzers are MALDI-FTICR and DESI-FTICR. 

Orbitrap mass analyzers use electrically charged ion trap cells to excite the ions into orbits. 

The longitudinal movement of the orbits contains the information of the cyclotron frequencies 

of each ion, which can be converted to mass using the Fourier transform. Orbitraps achieve 

high mass resolution values by increasing the electric field. With Orbitraps it is possible to 

analyze a wide range of compounds but, as FTICR, high mass compounds are typically 

excluded as the mass resolution decreases by the square root of the m/z ratio and require long 

sampling times and strong fields to compensate for this (Bielow et al., 2017). Common set-ups 

of Orbitrap mass analyzers are DESI-Orbitrap and MALDI-Orbitrap. 

All mass analyzers are often calibrated before acquisition to obtain accurate m/z 

measurements.  The calibration consists of tuning the electronic parameters of the instrument 

to modify the m/z axis according to different calibration curves build upon measured calibration 

standards. The calibration standards are liquid mixtures of highly purified molecules designed 

for positive and/or negative mode in a particular mass range. Different strategies to obtain 

calibration curves are used depending on the time of the standard application and the mass 

analyzers (Smith et al., 2012). In terms of standard application, internal calibration consists of 

mixing calibration standards directly with the sample of interest, while external calibration 

consists of measuring the standards alone (Muddiman and Oberg, 2005). When FT-ICR or 
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Orbitrap instruments are used, it is convenient to use an abundance dependent calibration curve, 

as different amount of ions inside the ICR cell produce varying frequency shifts, resulting in 

different mass errors at each sampling point (Easterling, Mize and Amster, 1999; Zhang et al., 

2005; Gorshkov et al., 2010). 

3.3. Combinations of MSI with other analytical techniques (Level 2-3 

Identification) 

To ensure high levels of confidence in molecular identification with MSI, a common 

strategy is to examine the tissue with additional or orthogonal techniques (those based on 

fundamentally different principles). LC-MS and tandem mass spectrometry (MS/MS) are the 

most used confirmatory techniques. Recently, ion mobility has been included in commercial 

MSI instruments to provide an additional dimension for metabolite analysis and resolve 

isomers (Meier et al., 2015, 2020; Łącki et al., 2021). Finally, the combination of different 

imaging techniques coupled to MSI has been used to improve the identification process. 

Multimodal imaging combines non-destructive orthogonal analysis like 

immunohistochemistry, immunofluorescence, or vibrational spectroscopy imaging techniques 

with MSI (Iakab et al., 2021; Tuck et al., 2021).  

3.3.1. MS/MS 

MS/MS uses a combination of ion traps, mass analyzers, and fragmentation chambers to 

measure fragments of molecules and reveal their structure. The typical setup is two consecutive 

mass spectrometers separated by a fragmentation chamber. The first mass spectrometer is in 

charge of recording the ionization product of an ion source that keeps the precursor compounds 

with low fragmentation. Later, some of the precursor ions are directed to a collision chamber 

to achieve a controlled fragmentation. The resulting fragments are registered in a second mass 

analyzer to obtain the fragmentation spectra of all the selected precursors. By knowing the 

precursor m/z value and examining the fragmentation spectrum, it is possible to provide 

hypotheses about the structure of the compound and hence its identification.  

In MSI, MS/MS analysis can be performed in some instruments achieved either by sampling 

consecutive slides in MS/MS mode (Dueñas et al., 2017) or adjacent regions in the same slide 

(Zhan et al., 2021), which can be a problem if there are very localized compounds or limited 

sample material. Common set-ups are based on TOF/TOF and Q-TOF devices, commonly used 

for top-down proteomics (Alam, Kumar and Kamboj, 2012; Ye et al., 2014; Xu et al., 2019). 

To overcome these limitations, new methods have been investigated in recent years. 

Multiplex MSI has achieved to overlap scans of MS and MS/MS in the same place using a 

spiral pattern and proved to be used for 10 μm high-spatial-resolution imaging of maize leaf 

cross-sections in both the high and low mass ranges for a variety of metabolites (Perdian and 

Lee, 2010; Yagnik, Korte and Lee, 2013; Hansen and Lee, 2017). Ellis et al. developed an 

automatic structural identification workflow consisting of parallel acquisition of a MALDI-

Orbitrap instrument with an ion trap (IT)-MS/MS (Ellis et al., 2018). Lanekoff et al. coupled a 

nano-DESI source with a high-resolution Q-Exactive Orbitrap and a Higher-energy Collision-

induced Dissociation (HCD) cell to identify and image isobaric and isomeric species 

combining the MSI and the MS/MS data (Lanekoff et al., 2013). Finally, Fu et al. were able to 

analyze and image by tandem MS the molecular products of natural biosynthesis of rubrynolide 

and rubrenolide in Amazonian trees using a TOF-SIMS and a triple ion focusing time-of-flight 

(TRIFT) analyzer with a precursor selection window of a monoisotopic ion, which allow the 

parallel and lossless collection of MS and MS/MS data (Fu et al., 2018). Tandem MS on tissue 

can help discriminating isomers of lipids due to their differential fragmentation. For instance, 
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(Takeo et al., 2019) used tandem MS (MS3) to   discriminate between structural isomers of 

some steroids, after applying on-tissue chemical derivatization techniques to enhanced their 

ionization efficiency.  

Despite all the efforts, MS/MS is rarely used with MSI data as many commercial instruments 

still do not include this option. Moreover, the concentration of precursors is limited to the area 

covered by the scans, which might be low for some compounds (unless other strategies to 

promote their ionization are considered).  

3.3.2. LC-MS 

LC-MS incorporates chromatographic separation before the mass analyzer. RT allows 

differentiation of the compounds based on criteria other than m/z, like polarity or compound 

size. Most LC-MS systems use tandem MS and can provide fragmentation information on the 

analytes. 

The combination of LC-MS with MSI is one of the most common approaches used to 

identify and spatially visualize a compound in all kinds of metabolomics and lipidomics 

experiments (Garate et al., 2020). The identification workflow usually consists of 

homogenizing some of the tissue samples to identify as many compounds as possible with the 

LC-MS instrument (Baijnath et al., 2016; Shobo et al., 2016; Ntshangase et al., 2019). Later, 

the identified compounds are searched in the MSI spectra by exact mass matching.  

Other approaches combine LC-MS with laser-capture microdissection (LCM), which allows 

the isolation and compound profiling of specific cells or tissue regions of interest (ROIs) 

determined by MSI (Marialaura Dilillo et al., 2017; Dewez et al., 2019). This approach ensures 

that the LC-MS identifications come from the same region in the tissue that was mapped by 

MSI. 

3.3.3. Ion mobility spectrometry 

Ion mobility spectrometry (IMS) is a technology that separates ions according to their size, 

shape, and weight by directing and colliding them into a chamber filled with an inert gas. The 

collision cross-section (CCS) value is computed from the time each ion takes to reach the end 

of the chamber. In combination with MS, IMS can be used as an additional dimension of 

information to resolve isomeric species, improve selectivity, and get structural information of 

compounds, including metabolites (Lapthorn, Pullen and Chowdhry, 2013). Sans et al. 

reviewed an extensive amount of applications and advances combining MSI and IMS for 

biological applications (Sans, Feider and Eberlin, 2018). 

3.3.4. Multimodal molecular imaging 

Other molecular imaging techniques can provide the orthogonal chemical information 

needed to provide structural identification of m/z features  (Porta Siegel et al., 2018). 

Vibrational Spectroscopy Imaging techniques (i.e. Raman and Fourier-Transform Infrared 

(FT-IR)) measure the energy scattering and absorption of different lasers to determine 

functional groups and other chemical features (Harrison and Berry, 2017). This structural 

information is rarely enough to fully resolve isomers, but it can be used to discard candidates 

and achieve Level 3 annotation. As an example, Lasch and Noda (Lasch and Noda, 2017) 

applied Raman, FT-IR, and MSI to study the composition of the hamster brain. They could 

identify and spatially locate several lipids by the spectral correlation between Raman bands 

(for instance, bands 548 and 703 cm–1 for cholesterol) and m/z features (m/z 369.30 for 

[Cholesterol–H2O+H]+).   
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Fluorescence Microscopy techniques enable imaging of specific compounds by labeling 

them with fluorescent probes (Lichtman and Conchello, 2005). Cyclic or multiplexed 

immunofluorescence images the same sample with dozens of different fluorescent probes (Lin 

et al., 2016). Highly selective fluorescent probes (Li, Liu and Wang, 2011; Uslu et al., 2017; 

Dong et al., 2020) can target specific isomers and enable Level 3-2 annotation. For instance, 

Fuch et al. (Fuchs et al., 2018) monitored the biodistribution of the anticancer drug sunitinib 

and its metabolites in rabbit liver tissue using fluorescence to measure the total amount of the 

drug, and MSI to characterize in situ the presence of its metabolites. 

3.4. Validation against reference standards in MSI (Level 1 Identification) 

According to the system for reporting identification confidence in MSI (section 2.2.), to 

achieve Level 1 identification (highest level of confidence), the experimental data (MSI and 

orthogonal technique of choice) has to be matched against a reference standard. One common 

strategy in MSI experiments is to homogenize the tissue, spike it with the reference standard 

of the compound of interest, and measure it with LC-MS/MS (Baijnath et al., 2016; Shobo et 

al., 2016; Ntshangase et al., 2019). Using LCM, the tissue homogenates can be obtained from 

specific tissue ROIs selected by MSI (Marialaura Dilillo et al., 2017; Dewez et al., 2019). 

Nevertheless, even when using LCM, homogenizing the tissue leads to the loss of the spatial 

information provided by MSI. Additionally, due to differences in their ionization, LC-MS/MS 

and MSI data may not be directly comparable (i.e. the analytes of interest may form different 

adducts in each system, etc.). An alternative technique to LCM is liquid extraction surface 

analysis mass spectrometry (LESA-MS), which combines micro-extraction in the liquid phase 

directly from the tissue with nano-electrospray MS. While it is considered a low spatial 

resolution technique (generally aprox. 1mm), it is a valuable complement to high spatial 

resolution techniques (like MALDI-MSI), since it provides additional information for 

identification of compounds in-situ without the need to homogenate the sample. This technique 

has been successfully applied for instance to monitor drugs and drug metabolism on mice 

organs (Eikel et al. 2011; Swales et al. 2015).  

Full confirmation of MSI identifications requires strategies to measure reference standards 

directly in MSI. Most of the developments in this area have been conducted for the study of 

synthetic drugs and their metabolites in-situ (Buck et al., 2015; Groseclose et al., 2015) but 

they are largely applicable to endogenous neurotransmitters (Shariatgorji et al., 2014), 

metabolites (Pirman et al., 2013), lipids (Jadoul et al., 2015), and peptides (Zhang, Kuang and 

Li, 2013). In general there are three strategies (Rzagalinski and Volmer, 2017; Unsihuay, Mesa 

Sanchez and Laskin, 2021): (1) “in-solution” (2) “on/under tissue” and (3) “mimetic tissue”. 

The “in-solution” strategy is the most straightforward of the three, as the standard is spotted 

directly on the substrate next to the sample. This method will inform about isotopic patterns, 

general adducts, matrix adducts, and in-source fragments that can be formed with the analyte 

of interest during the MSI experiment. However, it fails to capture endogenous adduct 

formation and ion suppression effects. As an example, the in-solution strategy was used for 

identifying the drug Erlotinib and its metabolites in rat tissue sections (Signor et al., 2007).  

The “on/under tissue” strategy alleviates these limitations by spotting the standard beneath 

or on top of the tissue. Normally, this is performed on a control tissue, preferably a consecutive 

slice. If allowed by the application (i.e. in synthetic drug applications), the control tissue should 

be blank and not contain the endogenous compound to be compared to the reference standard. 

As a variation of this approach, some studies apply the standard mixed with the MALDI matrix. 

As an example, the “on-tissue” approach has been used to identify  the drug paclitaxel in the 

study of pleural tumors (Giordano et al., 2016), glutathione in ovarian tissue (Nazari et al., 

2018), and raclopride and  SCH 23390 in rat brain tissue (Goodwin et al., 2011). 

UNIVERSITAT ROVIRA I VIRGILI 
PEAK ANNOTATION AND DATA ANALYSIS SOFTWARE TOOLS FOR MASS SPECTROMETRY IMAGING 
Lluc Sementé Fernández 

https://paperpile.com/c/aISt5j/FfJH
https://paperpile.com/c/aISt5j/PhkD
https://paperpile.com/c/aISt5j/PhkD
https://paperpile.com/c/aISt5j/PhkD
https://paperpile.com/c/aISt5j/PhkD
https://paperpile.com/c/aISt5j/nBGs+ZXWg+Y4NJ
https://paperpile.com/c/aISt5j/nBGs+ZXWg+Y4NJ
https://paperpile.com/c/aISt5j/nBGs+ZXWg+Y4NJ
https://paperpile.com/c/aISt5j/nBGs+ZXWg+Y4NJ
https://paperpile.com/c/aISt5j/nBGs+ZXWg+Y4NJ
https://paperpile.com/c/aISt5j/nBGs+ZXWg+Y4NJ
https://paperpile.com/c/aISt5j/LFZI
https://paperpile.com/c/aISt5j/LFZI
https://paperpile.com/c/aISt5j/LFZI
https://paperpile.com/c/aISt5j/HYYF+wvt5+jenN
https://paperpile.com/c/aISt5j/HYYF+wvt5+jenN
https://paperpile.com/c/aISt5j/HYYF+wvt5+jenN
https://paperpile.com/c/aISt5j/HYYF+wvt5+jenN
https://paperpile.com/c/aISt5j/HYYF+wvt5+jenN
https://paperpile.com/c/aISt5j/HYYF+wvt5+jenN
https://paperpile.com/c/aISt5j/HYYF+wvt5+jenN
https://paperpile.com/c/aISt5j/HYYF+wvt5+jenN
https://paperpile.com/c/aISt5j/Ha38+SL6K
https://paperpile.com/c/aISt5j/Ha38+SL6K
https://paperpile.com/c/aISt5j/Ha38+SL6K
https://paperpile.com/c/aISt5j/Ha38+SL6K
https://paperpile.com/c/aISt5j/Ha38+SL6K
https://paperpile.com/c/aISt5j/2T9A+JAZc
https://paperpile.com/c/aISt5j/OT7q+p4Ce
https://paperpile.com/c/aISt5j/OT7q+p4Ce
https://paperpile.com/c/aISt5j/OT7q+p4Ce
https://paperpile.com/c/aISt5j/OT7q+p4Ce
https://paperpile.com/c/aISt5j/OT7q+p4Ce
https://paperpile.com/c/aISt5j/C6qe
https://paperpile.com/c/aISt5j/C6qe
https://paperpile.com/c/aISt5j/C6qe
https://paperpile.com/c/aISt5j/2eFl
https://paperpile.com/c/aISt5j/2eFl
https://paperpile.com/c/aISt5j/2eFl
https://paperpile.com/c/aISt5j/y0Cz
https://paperpile.com/c/aISt5j/y0Cz
https://paperpile.com/c/aISt5j/y0Cz
https://paperpile.com/c/aISt5j/dWM5
https://paperpile.com/c/aISt5j/dWM5
https://paperpile.com/c/aISt5j/7eCW+FILr
https://paperpile.com/c/aISt5j/7eCW+FILr
https://paperpile.com/c/aISt5j/pKtk
https://paperpile.com/c/aISt5j/pKtk
https://paperpile.com/c/aISt5j/pKtk
https://paperpile.com/c/aISt5j/cRfF
https://paperpile.com/c/aISt5j/cRfF
https://paperpile.com/c/aISt5j/cRfF
https://paperpile.com/c/aISt5j/DgZk
https://paperpile.com/c/aISt5j/DgZk
https://paperpile.com/c/aISt5j/DgZk
https://paperpile.com/c/aISt5j/DgZk
https://paperpile.com/c/aISt5j/1iGX
https://paperpile.com/c/aISt5j/1iGX
https://paperpile.com/c/aISt5j/1iGX


53 

 

Finally, the “mimetic tissue” approach relies on homogenizing the tissue and spiking it with 

the standard. This mixture is then deposited on the MSI slice and treated with the same sample 

preparation protocol. This approach provides a more realistic scenario on how the analyte 

behaves during the MSI experiment, as the standard is fully mixed within the sample. One 

drawback is that it fails to capture differences in matrix and suppression effects across 

anatomical regions. The mimetic tissue approach has been successfully used for identifying the 

drugs lapatinib and nevirapine in rat liver (Groseclose and Castellino, 2013), GSH in human 

ocular lens tissue (Grey et al., 2019), and clozapine and norclozapine in rat liver (Barry et al., 

2019). 

4. Bioinformatics strategies for annotation and identification in MSI 

In this section, we discuss automated data processing strategies for annotation and 

identification in MSI. We first start by discussing the importance of preprocessing to ensure 

robust annotation and identification. Later, we provide a wide picture of the basic principles in 

the development of software-based annotation and identification. We close the section with a 

comprehensive comparison of twelve software tools developed in the last 5 years. 

4.1. Data-preprocessing 

Good quality MSI data is crucial to conduct successful molecular annotation and 

identification (Norris et al., 2007). As stated in the previous section, careful analytical design 

is key, as it will set the boundaries of what is possible in compound identification. But even 

when the analytical procedure is carefully designed and executed, variability due to 

experimental factors can worsen data quality. Chemical noise and variations in the intensity 

and exact mass of each MS feature are some of the examples of unwanted experimental 

variability. Additionally, when dealing with large samples and high spatial resolution, MS 

intensities and m/z values can drift during the long acquisition (Ràfols, Vilalta, Brezmes, et al., 

2018).  Proper data preprocessing mitigates these negative effects and enhances the chances of 

correct identification.  

The typical preprocessing workflow includes the following steps: baseline correction, noise 

reduction, spectral alignment, normalization, peak picking, and binning (Ràfols, Vilalta, 

Brezmes, et al., 2018). Depending on the experiment, some steps may be performed in a 

different order or even be omitted. The resulting processed data can come in two forms: (1) 

profile data retains the continuous shape of the spectra, as no peak picking is performed, and 

(2) centroid data only retains certain features of each peak (commonly the m/z and maximum 

intensity value) after peak picking. 

Calibration (a form of spectral alignment) is the most relevant step for annotation and 

identification, as it increases the mass accuracy of the measured m/z. In calibration, a list of 

known m/z values is used to compute a warping function that minimizes the m/z error in the 

MSI dataset. The calibration m/z values can come from reference standards spotted on the plate 

(phosphorus red) (Paine et al., 2019), the matrix or ionization promoter (Ràfols, Castillo, et al., 

2018; Ràfols, Vilalta, Torres, et al., 2018), or well-characterized endogenous compounds (He 

et al., 2019). Additionally, label-free alignment can further improve data quality. In this case, 

a reference spectrum from within the sample is used to minimize the m/z errors between pixels. 

All MSI instrumentation vendors provide in-house software capable of performing to some 

extent this preprocessing pipeline. SCiLS (Trede et al., 2012) by Bruker is one of the most 

widely used commercial solutions. Several open-access alternatives such as MSIReader 

(Robichaud et al., 2013; Bokhart et al., 2018), CARDINAL (Bemis et al., 2015), rMSIproc 

(Ràfols et al., 2020), and MALDIQuant (Gibb and Strimmer, 2012) have gained importance 

over recent years. 
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4.2. Basic software-related principles in annotation and identification of MSI 

Figure 2 shows the general workflow of annotation and identification software tools in MSI. 

Each of the steps increases the level of confidence and relies on different experimental data 

and libraries.  

There are various basic concepts to consider while designing or choosing an annotation tool 

for MSI data. How input data represent each m/z feature, the direction of the flow of 

information between data and libraries, how to match the information in the libraries, and how 

to use the annotation or share them. The following section comments on various of these topics. 

4.2.1 Working with profile vs. centroided data 

Molecular annotation and identification can either be performed on profile or centroided 

spectra. Profile spectra provide richer information: (1) they keep potentially relevant small and 

noisy peaks, (2) they retain peak shape, and (3) they enable overlapped peaks to  be recognized 

and eventually deconvoluted (Polanska et al., 2012). The main problem with data in profile 

mode is the higher computational load, which is oftentimes prohibitive in terms of memory and 

CPU time requirements. For this reason, most annotation and identification software tools work 

on centroided spectra. Centroided mode retains only the most relevant features of a peak (m/z 

and maximum intensity or peak area) to dramatically reduce the size of the dataset, which leads 

to relaxed memory and CPU time requirements. 

4.2.2. Library-centric vs. feature-centric strategies 

There are two general approaches to determine chemical composition in MSI: library-

centric or feature-centric. These approaches are applicable to both annotation (using only exact 

mass matching) and identification (combining MSI with orthogonal techniques and reference 

standards). 

Library-centric approaches match library information to experimental data. For each 

candidate compound in the library, the algorithm will generate an in silico theoretical spectrum 

(with isotopes, adducts, or ion fragments) using the molecular formula, and will determine its 

presence in the sample by matching them against the experimental spectra (usually the mean 

spectra) (Alexandrov and Bartels, 2013; Novák, Škríba and Havlíček, 2020; Tortorella et al., 

2020). These approaches tend to be computationally consuming in terms of time and memory, 

as the algorithm will try to fit all the compounds in the libraries. Besides, the results are limited 

to the compounds existing in the libraries (if the compound does not exist in the library, the 

associated m/z signals will not be annotated).  

Feature-centric approaches look for patterns in the data (adducts, isotopes, or fragments) to 

create several networks of related MS signals. In general, this strategy gathers information from 

the data and tries to construct isotopic patterns of unknown compounds taking into account the 

spatial correlation, the intensity profile, and the mass error between features (Bond et al., 2017; 

Janda et al., 2021; Sementé et al., 2021). This approach also includes using the Kendrick mass 

defect (KMD) to assign families of compounds (Kune et al., 2019). At the end of these 

procedures, some m/z features are confidently annotated as monoisotopic ion candidates, taking 

into account all the information gathered, and can be searched against libraries of compounds. 

These approaches tend to be faster to run but require extra steps to assign compounds to the 

m/z features. Additionally, they are less generalizable, as they make certain assumptions about 

the data that might be specific only to a certain family of compounds, like the shape of the 

isotopic pattern due to the elemental composition; or about the experimental procedure, like 

searching for specific adducts or labeled moieties. 
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4.2.3. Isotopic pattern generation 

Tools that follow the library-centric approach tend to generate the in silico pattern of the 

compounds in the libraries to compare with the spectra. This can be achieved using in-house 

algorithms or with enviPat (Loos et al., 2015), an R-package that generates the profile spectrum 

and the centroids of sum formulas simulating different resolving power; and Rdispo (Böcker 

et al., 2006), an R-package that generates isotopic patterns and elucidates molecular formulas 

for a given mass. 

4.2.4. Match scores 

Regardless of the approach followed (library-centric or feature-centric) all software tools 

rely on several match scores to determine the fitness of each hit. The two main metrics are (1) 

spectral similarity (to compare experimental data against theoretical isotopic ratios, 

fragmentation spectra, or CCS) and (2) spatial similarity (to determine if isotopes, adducts, and 

fragments are colocalized, using the ion images of the tissues). 

The most widely used spectral similarity metrics are Pearson’s correlation (McDonnell et 

al., 2008), and cosine similarity. Smets et al. proposed histogram matching as an alternative 

(Smets et al., 2019). Recently, a new metric inspired by natural language processing algorithms 

(Spec2Vec) (Huber et al., 2021) has been proposed and compared with cosine similarity, 

obtaining better results in library matching fragmented molecules.  

Spatial similarity can be determined using Pearson’s/Spearman’s correlation, cosine 

similarity, hypergeometric similarity measure (Kaddi, Parry and Wang, 2011) or Structural 

Similarity Index (SSIM) (Ekelöf et al., 2018). Ovchinnikova et al. (Ovchinnikova, Stuart, et 

al., 2020) used 2210 ion images ranked by similarity by 42 MSI experts to quantitatively 

compare several spatial similarity metrics. One of the machine learning models (Pi-Model) 

included in their software ColocML obtained the highest performance (0.797 correlation to the 

gold standard) closely followed by cosine similarity (0.794) and Pearson’s correlation (0.788). 

The match score can be further refined using other metrics such as mass error (Sementé et 

al., 2021) or spatial chaos (Palmer et al., 2016; Tortorella et al., 2020). Additionally, the notion 

of False Discovery Rate (FDR) has been used to estimate the confidence of annotations using 

a target-decoy approach in which the resulting molecular formulas are compared with 

impossible adduct formations  (Palmer et al. 2016; Guo et al. 2021). 

There is no consensus on the relationship between different scores or how to unify them. 

Typically, when multiple scores are available, each score is scaled to fit a range of 0 to 1 and 

the product of all scores is taken as a single metric (Baquer et al. 2020; Sementé et al. 2021; 

Tortorella et al. 2020; Palmer et al. 2016). 

4.2.5. Library matching 

Both in annotation and identification, it is crucial to compare the MS signals obtained in the 

experiment to a list of known compounds or references. To obtain the highest degree of 

confidence in annotation, the experimental data must be matched against a reference standard. 

Nevertheless, reference standards are not always available or compatible with the experimental 

workflow of choice. Reference standard matching is particularly challenging in untargeted 

studies, where tens or even hundreds of compounds are analyzed at the same time. To aid 

compound annotation in these cases, several libraries compile and index thousands of previous 

experimental MS and MS/MS measurements of standards from laboratories around the world. 

Libraries offer a reliable, automatable, and easy-to-use substitute to real standards. They can 

be considered compound-centric or spectra-centric, depending on their content.  
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Compound-centric (or metadata-centric) libraries such as HMDB (Wishart et al., 2018), 

ChEBI (Hastings et al., 2016), PubChem (Kim et al., 2019) include information such as the 

monoisotopic mass of the compound, molecular formula, SMILES, Inchy Key, molecular 

structure, and in some cases, other relevant metadata such as compound origin (plant, animal, 

bacterial, etc.) or even metabolic function. This first type of library is mainly useful for exact 

mass matching.  

Spectra-centric libraries store MS and MS/MS spectra of thousands of compounds. 

Identification is obtained by matching experimental data to the spectra in the library. Several 

libraries are available for MS/MS, some examples include METLIN (Smith et al., 2005), NIST 

(Lemmon et al., 2010) and MassBank (Horai et al., 2010). For ion-mobility, the most ambitious 

projects include the Online Collision Cross Section Compendium (Picache et al., 2019) and 

the  AllCCS atlas (Zhou et al., 2020). Most databases in this category have been developed 

with traditional MS technologies in mind (mainly LC-MS and GC-MS) and almost exclusively 

include fragments of the [M+H]+ and [M-H]- adducts. There is a lack of databases of 

experimental spectra acquired by MSI. 

4.2.6 In silico libraries 

With the advent of machine learning and cheminformatics techniques, in silico libraries 

have emerged. They typically generalize from experimental data of pure compounds and rely 

on advanced algorithms to generate relevant information of unknown or unmeasured 

compounds. This can include information such as monoisotopic mass, molecular formula, 

chemical structure and even MS and MS/MS spectra. Some of these in silico tools for tandem 

MS include LipidBlast (Kind et al., 2013), Sirius (Dührkop et al., 2019), MetFrag (Ruttkies et 

al., 2016) and CFM-ID (Djoumbou-Feunang et al., no date). For ion mobility, AllCCS  (Zhou 

et al., 2020) uses machine learning to predict CCS values from SMILES. These tools should 

be carefully evaluated and used in a case-by-case scenario. Blindly trusting them in untargeted 

studies can lead to incorrect annotations. 

One of the main limitations of these libraries for MSI is that they tend to be trained with 

experimental data obtained by LC-MS/MS experiments, where most parental ions are 

fragmented as protonated adducts. Therefore, most common in silico libraries only include 

fragmentation predictions of protonated molecules, which do not represent how other adducts 

fragment (Al-Saad et al. 2003).  In MSI, it is common to obtain different adducts such as 

sodium and potassium, depending on the sample preparation and acquisition, and for some 

species the protonated adduct may not even be detected (Garate et al. 2020).  

4.2.7 Peak Filtering  

Peak annotation results can be used to filter out redundant or not biologically relevant peaks 

from downstream statistical analyses. 

A common peak filtering strategy is deisotoping (Bond et al., 2017; Sementé et al., 2021), 

which consists of localizing monoisotopic peaks in the spectra to remove all the subsequent 

isotopic peaks. This eliminates redundancy in the data, as all the isotopic peaks in a pattern are 

highly correlated and facilitates the posterior identification of the monoisotopic peaks. In this 

same line, another peak filtering strategy is de-adducting, which consists in discovering as 

many adducts as possible for each compound to combine them as a unique feature. The 

identification of adducts is mainly based on the mass difference between them, which could 

lead to the detection of false adducts since there may exist multiple mass differences between 

ions that match with several possible adducts. Additionally, the images produced by adducts 

are not necessarily co-localized among them (like in the case of isotopes) because the natural 
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abundance of the adduct-forming elements over the tissue sample (Hankin et al., 2011) (i.e. 

Na+ or K+ ions) may be not homogeneous and dependent on the tissue type. 

Finally, spectra contain exogenous peaks, (coming from the substrate, the matrix, the 

embedding medium, etc.) that may be desirable to exclude from the analysis. In the ideal case, 

these peaks should be annotated  and  discarded, although sometimes they could be useful for 

calibration purposes, like some inorganic matrix peaks(Ràfols, Vilalta, Torres, et al., 2018). 

Most of the strategies behind annotating these off-sample  ion peaks are based on exact mass 

matches by knowing which compounds are expected to appear in the sample preparation 

(Niedermeyer and Strohalm, 2012; Baquer et al., 2020), but there are also software programs 

that rely on machine learning methods to annotate them (Ovchinnikova, Kovalev, et al., 2020). 

4.2.8. Data sharing and repositories 

Data repositories are an essential tool for data sharing. The vast amount of experimental 

data available allow two main benefits to the community: experimental results are easily 

accessible to the whole community, and the data can be used to validate and develop software 

tools. 

METASPACE (Alexandrov et al., 2019) is the main repository available in MSI. To date, 

METASPACE holds over 6000 experimental studies. Both the experimental data (in .imzML 

(Schramm et al., 2012) format and centroid mode) and resulting annotations using PySM 

(Palmer et al., 2016) can be freely downloaded. 

More generic repositories include Metabolights (Haug et al., 2013) or Metabolomics 

Workbench (Sud et al., 2016). Nevertheless, their coverage of MSI experiments is rather 

limited. Only 50 (0.2% of all entries) and 4 (0.25% of all entries) of their respective entries 

correspond to MSI experiments. 

4.3. Specific software packages 

The MSI community has dedicated their efforts to developing several software tools for the 

compound annotation/identification of MSI data. In this section, we review 12 current software 

tools to guide the readers in selecting the most suitable ones for their application. Table 2 

contains a summary of the main characteristics of each tool including the confidence levels of 

the annotations/identifications they can provide, the target features, the output, and the general 

type of annotation. We have defined three types of annotation: (1) “general annotation” if all 

the peaks in the spectra are targeted; (2) “specific annotation” if specific peaks (e.g. matrix) are 

annotated; and (3) “identification” if MSI is combined with MS/MS or other orthogonal 

techniques. 

4.3.1. Alex123 

Alex123 (Ellis et al., 2018) is a software for the automated identification of lipids. It relies 

on a unique experimental setup multiplexing an FTMS Orbitrap for high-mass resolution MSI 

and an IT-MS/MS for data-dependent acquisition (DDA) on-tissue fragmentation of almost 

every detected m/z value. By alternating the two acquisitions in 20µm steps, they are able to 

effectively determine high-mass MSI and structural information in situ. This tool achieves 

Level 3 and 2 identification confidence. 

They rely on an in-house library that contains more than 430k molecular lipid species and 

their adduct-specific fragments. They use different adducts based on the lipid family. To 

annotate a sum-composition lipid species from the FTMS data, the peak must be present in all 

3 replicates and at least 1 fragment must be detected by IT-MS/MS. To identify the lipid 

species, three conditions must be met: (1) at least 50% of the fragments must be detected, (2) 
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two complementary pairs of fragments (adding to the parental ion) must be detected, and (3) 

the parental ion must be found by FTMS. 

Using the MS data, they managed to annotate 165 unique sum-composition lipid species in 

rat brain tissue. From these sum-compositions, they managed to structurally identify 113 lipid 

species using the parallel IT-MS/MS run. A total of 92% of the identified lipids could be 

validated with HPLC-MS/MS. 

4.3.2. CycloBranch 2 

CycloBranch 2 (Novák, Škríba and Havlíček, 2020) is a standalone software package 

implemented in C++ that can annotate LC-MS, MSI, and MS/MS data independently or 

combine all of them. CycloBranch 2 generates molecular formulas from an input list of 

chemical elements to form a database of compounds, optimized for peptides and some small 

molecules. Later, all the molecules in the database are tested using various rules like the 

nitrogen to oxygen ratio, the Senior’s rules(Kind and Fiehn, 2007) and matching the m/z in an 

experimental input spectrum. Additionally, CycloBranch 2 supports fine isotope structure 

annotation, being able to resolve 34S/13C2 and 41K/13C2 peaks. Moreover, CycloBranch 2 

includes a tool to visualize the annotations over the MSI image combined with multiple 

microscopy or histology images, which can be shifted and adjusted manually to increase the 

overlap between them. The output of the software consists of a list of interactive tables that 

show the annotations over the spectra and images.  

The tool was used to annotate an MSI dataset consisting of a mixture of three commercial 

siderophores standards of bis(methylthio)gliotoxin, ferrioxamine, and triacetylfusarinine C 

ferriform over an ITO glass. Cyclobranch 2 predicted elemental compositions of all three 

compounds reported in at least 50 spectra from a total of 1215. Later, the peaks were searched 

in a library of 709 siderophores and secondary metabolites as a positive control. 

4.3.3. HIT-MAP 

HIT-MAP (Guo et al., 2021)  is an R package that annotates peptides and proteins in high 

mass resolution MSI datasets using peptide mass fingerprint analysis and a scoring system. To 

annotate, HIT-MAP generates a customized local database of digested proteolytic peptides in 

silico from a protein sequence file in FASTA format containing the proteome of the species 

under investigation and a complete in silico digestion framework. Moreover, HIT-MAP 

generates a decoy database to produce FDR-controlled annotations.  

To match the reference database with the experimental data, three principal scores are used. 

First, the number of peaks in the experimental isotopic pattern found in the theoretical pattern, 

discarding those peaks below 2.5% of the most intense isotopic peak; second, the intensity 

profile of the patterns; and third the mass error between peaks. Once a list of annotated peptides 

is generated, protein annotation is achieved by grouping peptides into the target proteins 

computing an FDR. The output of HIT-MAP consists of two sub-folders, one containing all 

the identification data and the other a summary with peptide and protein lists as well as ion 

images. 

4.3.4. LipostarMSI 

LipostarMSI (Tortorella et al., 2020) is a commercial software for targeted and untargeted 

MSI data analysis with automated annotation of lipids, metabolites, and drug metabolites. It 

annotates by accurate m/z ratio matching within user-defined tolerances in libraries of 

compounds like the HMDB or LIPID MAPS. In-house libraries are also supported. Each hit to 

the database is ranked based on a mass score (proximity to the theoretical mass), an isotopic 
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pattern score (compliance to theoretical intensity ratios and mass distances), and chaos score 

(spatial distribution of the m/z density image).  

The software also allows the inclusion of MS/MS data to reach higher levels of confidence 

in identification. Each experimental MS/MS spectra can be compared to fragmentation libraries 

or to in silico fragments produced by a set of proprietary lipid fragmentation rules. In addition 

to the scores used in annotation, a new fragment score is introduced. This score is based on (1) 

the percentage of theoretical fragments found in the experimental data, and (2) the ratio 

between experimental and theoretical fragment intensities. Each theoretical fragment can be 

labeled as “mandatory” or “recommended” either manually or based on user-defined intensity 

thresholds. This allows the fragment score to only focus on relevant fragments. 

The output of the software consists of a list of compounds assigned to each m/z ratio and 

ranked by the LipostarMSI score. Each annotation/identification is color-coded based on the 

confidence of annotation. Green indicates successful structural identification; orange indicates 

the presence of conflicts that need to be manually reviewed and approved; and red indicates 

unsuccessful identification. Finally, after approving correct identifications, all adducts assigned 

to the same compound are merged in a unique identification. 

4.3.5. Mass2adduct 

Mass2adduct (Janda et al., 2021) is an R tool that follows a feature-centric approach to 

automatically annotate common alkali metal adducts, matrix adducts, and isotopes. The tool 

computes the mass difference between all m/z feature pairs available in the dataset and plots 

them in a histogram. The most common mass differences are matched against a list of common 

adducts to determine their identity. Finally, the Pearson’s correlation of each candidate adduct 

to their parental ion is used to discard unlikely adducts. Bonferroni correction and false-

discovery rate analysis based on q-value cutoff are applied to Pearson's correlation values. 

To validate their approach, they conducted on-tissue tandem MS on mouse brain tissue using 

DHB as the matrix. They focused on four pairs of m/z values with a mass difference of 136.016 

Da (DHB-H2O) and found that they showed identical MS/MS fragments. 

They showcase their annotation tool on several tissue types, sources, mass analyzers and 

two matrices (DHB and CHCA). Comparable [M+Na]+ and [M+K]+ adduct frequencies were 

found across tissue types and experimental setups. Abundant matrix peaks were found for DHB 

(up to 30% of the total amount of features). CHCA was less abundant (up to 10% of all 

features). 

As a final validation, they compare their results to METASPACE (Alexandrov et al., 2019). 

Out of the 604 m/z features annotated as matrix adducts by Mass2adduct for a mussel dataset, 

a total of 103 were annotated as metabolites by METASPACE. This highlights that matrix 

adducts can cause false-positive annotations and they should be taken into account for library 

searches. They also conclude that exact mass matching is not enough for identification and the 

use of orthogonal techniques is required. 

4.3.6. massPix 

massPix (Bond et al., 2017) is an R package that combines data analysis functionalities with 

deisotoping and exact mass matching against generated lipid libraries. The deisotoping 

algorithm finds monoisotopic ions (M+0) and removes the first and second isotopes (M+1 and 

M+2) which are within a calculated proportion of M+0. To achieve lipid annotation, first, a 

library of lipids is generated by combining common fatty acids, lipid head-groups and adducts; 

and second, the M+0 ions previously found are matched against the generated library. The 

output consists of various CSV files with annotations. 
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4.3.7. MSKendrickFilter 

MSKendrickFilter (Kune et al., 2019) is a python software capable of exploiting the benefits 

of KMD analysis to classify chemically related compounds in their corresponding families. It 

is based on the conversion of exact mass measurements to a Kendrick Mass (KM) scale (linear 

conversion factor computed with the nominal and exact mass of a reference molecule of 

choice). With this transformation, the mass of the reference molecule -which is usually a 

repeating block in a bigger structure like CH2 in lipids- does not contribute to the decimal part 

of the KM, which contains only information of the other elements of the molecular structure. 

The KMD is later obtained by subtracting the rounded KM from the KM. (Kune et al., 2019) 

Their results show how using CH2 as a reference molecule, different tetraalkylammonium, 

lipids, and lipopeptides families can be identified. When using C2H4O as a reference molecule, 

different polymers groups could be separated. Their results were validated on bacteria 

cocultures and brain tissue sections. 

4.3.8. OffsampleAI 

OffsampleAI (Ovchinnikova, Kovalev, et al., 2020) is an artificial intelligence approach to 

recognize ion images localized outside of the sample (off-sample). The authors initially 

compiled a database of 23,238 ion images from 87 public MSI datasets manually labeled as 

on-sample and off-sample by 5 experts (using a custom web app). This database is used as a 

validation for the three algorithms proposed. The two first methods proposed, the “Spatio-

molecular biclustering method” and the “Molecular co-localization method” rely on the spatial 

correlation between ions and clustering of pixels to identify off-sample ions. The top-

performing method is based on a Deep residual Learning approach trained on part of the gold 

standard. 

4.3.9. pySM (METASPACE) 

Palmer et al. (Palmer et al., 2016) proposed a novel approach to annotate metabolite data in 

MSI with a confidence estimation approach. Using the compound-specific databases selected 

by the user, as well as a list of possible adducts, a list of all possible monoisotopic molecular 

matches is compiled. These molecular matches are then ranked based on the so-called 

metabolite-signal match score (MSM score), a composite score that relies on three metrics: (1) 

the “spatial chaos metric” quantifies the informativeness of the monoisotopic peak (2) the 

“spectral isotope metric” indicates the degree of similarity between the theoretical isotopic 

pattern and the experimental one and (3) the “spatial isotope metric” indicates the degree of 

similarity between the ionic images for all isotopes.  

The MSM score values will depend largely on the sample at hand, making it difficult to 

specify a stable MSM cutoff. This is addressed using an FDR value estimation using a Target-

Decoy approach. The main database with normal adducts is referred to as the Target database 

and it is extended with a Decoy database of the same size. In this case, the decoy is composed 

by randomly selecting an implausible adduct. For each search in the Target database (using 

plausible adducts) a search in the Decoy database is conducted (using implausible adducts). 

All hits, from both the target and the decoy databases, are ranked based on MSM. The number 

of Decoy hits and Target hits above a certain MSM cutoff is used to estimate the FDR. This 

allows converting an MSM cutoff to a much more easily interpretable FDR cutoff. 

pySM is currently integrated in the online annotation platform METASPACE (Alexandrov 

et al., 2019), which allows users to submit high-resolution datasets to be annotated using four 

libraries: CoreMetabolome (an in-house library), HMDB(Wishart et al., 2018), LipidMaps(Sud 

et al., 2007) and SwissLipids(Aimo et al., 2015). Moreover, METASPACE allows sharing the 
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results online by storing all data online, both the MSI data and the annotations, and includes 

options for privacy and teamwork. METASPACE contains nowadays close to 6000 

downloadable MSI datasets, being one of the biggest MSI data repositories in the world. 

4.3.10. ReSCORE METASPACE 

Some strategies try to extract more information from the annotations and identifications 

rather than only speculating with the identity of peaks for MSI datasets. One of them is 

annotation rescoring, which implies a verification step after the initial annotation to increase 

the precision of the workflow. In this line,  Silva et al. (C Silva et al., 2018) applied this strategy 

with METASPACE (Alexandrov et al., 2019) to increase the FDR of the target-decoy 

approach. The strategy consists of various recursive iterations of selecting some of the 

annotations with higher scores from the target set and some annotations from the decoy set to 

train a linear classifier using a collection of 34 features extracted for each annotation. At each 

iteration, the annotations are rescored using the linear classifier until a certain number of 

iterations is reached. The result of this procedure increases the number of annotated compounds 

for a given FDR in METASPACE. 

4.3.11. rMSIannotation 

rMSIannotation (Sementé et al., 2021) is an annotation workflow integrated into the MSI 

processing R package rMSIproc (Ràfols et al., 2020) and implemented in C++. The algorithm 

annotates monoisotopic ions from metabolites and peptides by directly searching in the spectra 

peaks that accomplish three rules: spatial correlation, isotopic mass distance, and intensity 

profile of the isotopic pattern, which can be extracted with confidence thanks to the great 

number of sampling points in an MSI experiment. To avoid direct searches in libraries, 

rMSIannotation uses a previous modelization of the intensity profiles of different compounds 

found in the HMDB (Wishart et al., 2018) and the Peptide Atlas (Desiere, 2006), which allows 

the prediction  of variations in the intensity profile along the m/z axis. After detecting 

monoisotopic peaks, the algorithm groups them creating networks of adducts using spatial 

correlation as a criterion. The output of the algorithm consists of different R structures 

containing all the annotations in tables, information about the isotopic patterns, and the adduct 

networks. Moreover, it retrieves structures to facilitate the inclusion or exclusion of 

monoisotopic and isotopic peaks from the data analysis and there are visualization options 

included in rMSIproc. 

4.3.12. rMSIcleanup 

rMSIcleanup (Baquer et al., 2020) is an R package that annotates matrix-related signals in 

MSI datasets. It annotates them by computing all the theoretical isotopic patterns related to the 

matrix clusters and matching them to the spectra using cluster spectral similarity and intra-

cluster morphological similarity. Moreover, it detects overlapped peaks in the isotopic pattern 

using the clustering algorithm bisecting k-means and based on the correlation of their spatial 

distribution. The output of rMSIcleanup is an R data frame that can be exported in Rdata or 

CSV formats. Additionally, the package produces an informative visual report in PDF with all 

the patterns detected, ion images, and matrix-related annotations. 

5. Extending the imZML format to include annotations and identifications  

The imzML is a data format (Schramm et al., 2012) created to enable the exchange of MSI 

data between different software and instruments. It uses two files linked by a universally unique 

identifier (UUID): (1) an XML file that stores experimental metadata that expands on the 
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HUPO-PSI mzML standard format, and (2) a binary file to store spectral data efficiently. The 

spectral data can be stored in continuous mode, where all pixel MS measurements share the 

same m/z values, or in processed mode, where each pixel has its m/z values. 

The imzML format is currently the gold standard for MSI data storage and sharing. 

Nevertheless, it does not contemplate a standard way of including molecular annotations and 

identifications.  

The MS community has recognized the importance of storing annotations and 

identifications in a reproducible manner to stimulate data sharing and accountability. This 

interest promoted the creation of several file formats that complement the popular mzML file 

format (Martens et al., 2011), a standard format developed by the HUPO Proteomics Standards 

Initiative (Hermjakob, 2006) to “capture the use of a mass spectrometer, the data generated, 

and the initial processing of that data (to the level of the peak list)”. Although these file formats 

are not compatible with MSI experiments, the current and most relevant formats to store 

annotations and identifications in MS are mzTab, mzTab-M, and mzIdentML. 

mzTab (Griss et al., 2014) was first released in 2014 and it is intended to store only the final 

reported results of an MS proteomics experiment and to provide a simple way to share data 

with MS proteomics repositories. It can contain protein, peptide, and small molecule 

identifications with basic quantitative information. Using the same core as mzTab, a new 

format to better support small molecule experiments was developed by the end of 2019 as the 

20th version of mzTab, the mzTab-M (Hoffmann et al., 2019). This file format is intended to 

extend the concept of mzTab to include more details for quantification, including different 

charge states or adducts, and was developed specifically for experiments on small molecules 

like metabolites and lipids. In the future, mzTab-M might be adopted to create a specific 

version of mzTab for proteomics only (mzTab-P (Salek, 2019)), but at the moment, mzTab 

version 1.0 remains active for proteomics. Both standard file formats are structured as tab-

delimited text files and are intended to share part of the results of an experiment (not all the 

MS data), which make them suitable for searches in libraries and to be the output of library 

searches. The files are structured as big tables of compound identifications with fields like 

database identifier, chemical formula, theoretical neutral mass, adduct ions, and various study 

variables that can be defined by the user. A heading containing metadata and some defining 

words are also included. 

mzIdentML (Jones et al., 2012) is an XML-based format that was first released in August 

2009 and reached the current version 1.2 in March 2017. It is intended for the systematic 

description of polypeptide identification and characterization based upon MS. The format was 

originally named AnalysisXML to encapsulate different computational analyses on proteomics 

performed with mass spectra, but it was decided to split the development into two branches: 

mzIdentML for peptide and protein identification,  and mzQuantML (Walzer et al., 2013), to 

describe quantification experiments. mzIdentML can store MS data by itself, but it is expected 

to be accompanied by an mzML file (there is an mzML unique identifier camp inside 

mzIdentML) containing the complete dataset, as mzIdentML is best suited for results and not 

the complete experiment. Polypeptides identifications can be stored in different ways 

depending on the identification procedure, but the information usually consists of the sequence 

accession, the length of the sequence, information about the enzyme used, and fragmentation 

information among many others. 
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6. Perspectives  

6.1. Identification confidence levels for MSI 

As MSI matures into an analytical technique frequently used in untargeted metabolomic 

studies, the scientific community expects the same level of accuracy and accountability in MSI 

experiments as in studies with LC or GC coupled to MS or NMR. Thus, we propose the 

adoption of the identification confidence levels used in LC-MS metabolomics [19] to the field 

of MSI as described in Section II.B. and Supplementary Figure 1.  

MSI lacks the chromatographic separation available in LC and GC metabolomics, which 

impedes the acquisition of orthogonal information (i.e. RT). Nevertheless, the high number of 

pixels enables image and peak intensity correlations to reliably annotate isotopes, adducts, and 

in-source fragments.  

We are confident that the MSI community, especially in the field of software development 

for annotation and identification, would benefit from this proposal. Firstly, we encourage the 

community to be consistent with the terms annotation and identification. As shown in 

Supplementary Table 1, more than 50% of the papers reviewed used the term identification to 

refer to exact mass matching. Assignments based on only exact mass matching (Level 4-5) 

should be referred to as annotation. “Annotation” should still be used even when using 

orthogonal information to distinguish isomers and isobars (Level 2-3). The term 

“identification” should be used when all experimental data is matched against a reference 

standard (Level 1).  

Secondly, we claim that users of software tools would appreciate a clear indication of the 

level of confidence the tool provides. The list of annotations and identifications produced by 

the software should include a field indicating the level of confidence (Level 1-5). Furthermore, 

we consider that they should also be specified in any accompanying publication. 

The adoption of these guidelines will provide a clear framework to communicate confidence 

in annotation and identification and ensure correct biological interpretation of the results. This 

initiative will also encourage the community to strive for higher identification confidence in 

their studies by adjusting their experimental and software workflows. 

6.2. Incorporation of annotations and identifications to the imzML format 

Table 1 shows that imZML (Schramm et al., 2012) is the default input format in the 

overwhelming majority of software tools for annotation and identification in MSI. This 

indicates the full commitment of the community to the idea of cross-instrument, open protocol, 

and standardized data sharing. The imZML format has been a clear success. At the same time, 

Table 2 also shows a clear disparity of output formats (.csv, xlsx, Rdata, .pdf …). The resulting 

annotations and identifications are usually reported in loosely-defined in-house formats with 

different fields that impede data sharing, integration, and reusability. Thus, we identified an 

imperative need for a standard format to report MSI annotations and identifications easily 

integrable with imZML.  

We have observed that most data formats for MS that contain identifications (mzIdentML 

(Jones et al., 2012), mzTab (Griss et al., 2014), and mzTab-M (Hoffmann et al., 2019)) were 

not designed to contain all the spectral data but as an annex to the mzML (Martens et al., 2011) 

data storing format. Additionally, these data formats answer the needs of specific research 

fields, like proteomics and metabolomics. There is no universal data format to report MSI 

annotations and identifications. 

 

We propose adopting this same strategy to define a new file format to include annotations 

and identifications as an annex to the imzML standard. In particular, we consider that in the 
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field of metabolomics the format mzTab-M should be used as a reference. Each dataset would 

now be described by three key files: the common.ibd and imzML files containing the spectral 

data and a new mzTab-M file containing annotations, identifications, and supporting evidence. 

All these files would be linked using the same Universally Unique Identifier (UUID). The 

mzTab-M file could contain multiple UUIDs in studies with multiple imzML files. Figure 3 

shows a high-level abstraction of the imzML format, the mzTab-M format, and their integration 

by a list of UUIDs. 

mzTab-M is the result of years of collaborative work between the Metabolomics Standards 

Initiative, Proteomics Standards Initiative, and Metabolomics Society. It relies on a well-

defined structure and controlled vocabulary, and it can be read, written, and validated using 

mzTab-M (Hoffmann, Hartler and Ahrends, 2019). It has successfully been adopted by some 

of the main MS annotation software such as Lipid Data Analyzer (Hartler et al., 2011), GNPS 

(Nothias et al., 2020), MS-Dial (Tsugawa et al., 2015), and MetaboAnalyst (Chong et al., 

2018).  

mzTab-M is in plain text, making it visually easy to read and understand. Additionally, its 

tab-separated format, similar to the CSV format, is natively supported in Excel and other 

spreadsheet software. It is therefore a viable alternative to excel and CSV files used in 

publications and statistical programming languages like R. 

The main drawback of mzTab-M is that it relies on a custom structure defined by its own 

specification. We consider that using Extensible Markup Language (XML), a ubiquitous file 

format in all fields of computer science, would offer several advantages. All major 

programming languages and platforms have plenty of reliable tools to read, write and validate 

XML. And its well-defined structure makes it extensible. In the long run, adapting mzTab-M 

to XML ensures a robust adoption by more developers and easier maintenance. We consider 

that one of the priorities when adopting mzTab-M for MSI applications is to redefine it in XML 

format. To ensure ease of access to the annotations and identifications by researchers with a 

lack of coding background the community should develop a converter to the original mzTab-

M tab-separated format.  

Additionally, to adapt it to the field of MSI, part of the controlled vocabulary and fields 

defined by the mzTab-M format would need to be updated or removed. New fields would also 

need to be defined. As an example, all columns regarding RT in the Small Molecule Feature 

table (SMF) should be removed. The general structure of metadata, small molecule table 

(SML), Small Molecule Feature table (SMF), and Small Molecule Evidence table would 

remain unchanged.  

Finally, the most crucial point to take into account is how to include the spatial information 

of the identified compounds. The same MS signal can correspond to different molecules in 

different areas of the tissue, especially when working with low-resolution MS analyzers, like 

peptides with the same m/z belonging to different proteins (Guo et al., 2021). Accounting for 

this phenomenon is a non-trivial task. We suggest including a column to specify the ROI of a 

specific MS feature. The representation and storage of ROIs are not properly solved in MSI 

and multiple vendors and software tools use their own custom-built formats. 

6.3. The future of automatic annotation and identification in MSI 

We have extensively reviewed twelve software tools available between 2016 and 2022 to 

perform automatic identification and annotation of MSI data. Tools specialize in different 

target molecules (i.e. metabolites, lipids, peptides, or proteins), different experimental data (i.e. 

MS, tandem MS, ion mobility or other orthogonal techniques), and different approaches (i.e. 

library-centric or feature centric). Most of the tools available to date only focus on annotation 

and only reach identification level 4 as they rely on exact mass matching. ALEX123 (Ellis et 
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al., 2018), CycloBranch 2 (Novák, Škríba and Havlíček, 2020) and Lipostar (Tortorella et al., 

2020) are the only tools that can consistently provide Level 3 or Level 2 identifications. There 

is a clear need for automatic tools that can provide identifications with a confidence level over 

3. Combining structural information obtained from orthogonal techniques is an important area 

of research that needs to be further explored. 

For a confident identification, it is important to highlight the importance of proper mass 

calibration (Ràfols, Vilalta, Brezmes, et al., 2018), using internal standard compounds or 

matrix peaks, and the use of high-resolution mass analyzers with mass accuracy below 5 ppm. 

The future of automated annotation and identification in MSI relies not only on instrumental 

development but also on creativity in the application of strategies inspired by more established 

MS-based techniques such as LC-MS and GC-MS. We have identified the following challenges 

where software developers have an opportunity to make an impact in the field of annotation 

and identification by MSI: 

● In-source fragmentation 

To date, there is no automatic tool that directly addresses the annotation of in-source 

fragments (fragments generated naturally during ionization or desorption) in MSI. Their correct 

annotation is key, as in-source fragments clutter the spectra and can be wrongfully annotated 

as other parental ions ((Garate et al., 2020)). This is particularly problematic in ion sources like 

SIMS and LA-ICP, but it is still a problem in soft-ionization sources like DESI or MALDI. At 

the same time, if properly dealt with, in-source fragments promise to increase confidence in 

annotation as they can provide insights into the structure of a molecule (much like tandem MS). 

In a recent LC-MS study, Xue et al. (Xue et al., 2020) proposed adjusting the ESI source to 

produce in-source fragmentation patterns comparable to the MS/MS spectra available in  

METLIN (Smith et al., 2005). They found that 90% of 50 mixed metabolites showed in-source 

fragmentation patterns consistent with METLIN. This could lead to potentially high levels of 

confidence (above level 3) only using MS1 data. 

● Exogenous compounds 

Similarly, although several efforts have been presented in recent years (Baquer et al., 2020; 

Ovchinnikova, Kovalev, et al., 2020; Janda et al., 2021), a comprehensive and reliable  tool for 

the annotation of matrix-related signals of all widely used matrices is still missing. The use of 

inorganic matrices limits the presence of matrix fragments in the low range of the spectrum, 

but its use is far from being widespread.  

Another area needing further research is the annotation of exogenous compounds. Various 

MSI workflows contemplate the use of FFPE slides as sampling material but identifying all the 

peaks that originated during the sample processing is still an open issue. Here we see an 

opportunity for researchers to develop software tools dealing with the identification and 

removal of all the peaks related to FFPE, OCT, or other cutting materials, which would require 

an in-depth analysis of the chemical processes produced by the sample processing.  

 

● Stable Isotope Labeling (SIL) annotation 

Following this line, SIL methods for MSI would benefit from the development of annotation 

tools specially designed for targeting different compounds with distinct or artificial isotopic 

patterns. There are various annotation tools for LC-MS data that are able to target SIL 

compounds (Neumann et al., 2014; Capellades et al., 2016; ‘Evaluation of freely available 

software tools for untargeted quantification of 13C isotopic enrichment in cellular metabolome 

from HR-LC/MS data’, 2020). These tools could be used to inspire the development of new 

software for MSI. Even better, contributing to the development of this software to include MSI 
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data would allow combining both LC-MS and MSI SIL methods, which would benefit both 

disciplines and open the door for more collaboration between techniques in the SIL field. 

● Pathways in LC/GC-MS how to apply them in MSI 

Metabolic pathway analysis (a.k.a. metabolic pathway enrichment analysis) compares two 

sample classes (i.e. control vs. treatment or condition vs wildtype) to produce a list of 

dysregulated (upregulated or downregulated) metabolic pathways. Data about metabolic 

pathways is obtained from databases such as KEGG (Kanehisa and Goto, 2000), HMDB 

(Wishart et al., 2018), or BioCyc (Caspi et al., 2014). For each pathway found, the coverage 

percentage is given (the percentage of metabolites in the pathway annotated). For each feature 

annotation, the dysregulation (up or down), fold-change and p-value are given. Additionally, 

an overview of all pathways can be represented in a variety of plots showing overall 

significance (p-value) or metabolite overlap percentage. This process is typically performed on 

the list of annotations but using the mummichog algorithm it can be applied directly to MS 

features. XCMS (Forsberg et al., 2018) and MetaboAnalyst (Chong et al., 2018), two major 

MS metabolomics processing platforms, implement pathway analysis. 

Additionally, to facilitate the generation of hypotheses, several software tools also include 

interactive network explorers. Metaboanalyst (Chong et al., 2018), for example, allows the user 

to show the metabolite annotations on the KEGG (Kanehisa and Goto, 2000) global metabolic 

network and other networks. 

To date, there is no automatic tool that can provide pathway analysis in MSI. Currently, 

pathway analysis in MSI is typically done by (1) running annotation/identification, (2) 

exporting a list of significant metabolites when comparing two ROIs, and (3) conducting 

pathway analysis using non-MSI targeted tools data such as XCMS or MetaboAnalyst. As an 

example, Sun et al. (Sun et al., 2018) followed this approach (using KEGG and 

MetaboAnalyst) to metabolically compare the cortex and medulla in human adult adrenal gland 

samples. Among other pathways, the purine metabolism pathway was upregulated in the 

medulla while the biosynthesis of unsaturated fatty acids was upregulated in the cortex. 

 

● The role of AI and DL in annotation 

 

Finally, we conclude the review by addressing the hot topic on every researcher’s lips: Deep 

Learning (DL). DL has already achieved science-fiction-like results in a wide range of fields 

such as robotics (Sünderhauf et al., 2018), natural language processing (Otter, Medina and 

Kalita, 2021), and medical image processing (Minaee et al., 2021). In recent years, MSI has 

seen some developments in Machine Learning (ML) and DL in applications such as tumor 

classification (Behrmann et al., 2018), clustering (W. Zhang et al., 2021), image registration 

(Race et al., 2021), and peak picking (Abdelmoula et al., 2021). In the field of molecular 

annotation and identification, OffSample AI (Ovchinnikova, Kovalev, et al., 2020) used 

several DL models for the annotation of matrix-related and off-sample MS features. 

Nevertheless, the adoption of these technologies for MSI metabolomics is slow and we seem 

to be missing out on this Artificial Intelligence revolution (‘Why the metabolism field risks 

missing out on the AI revolution’, 2019). The two main drawbacks that are holding the 

community back are (1) the lack of result transparency and accountability, and (2) the lack of 

big data for training. 

MSI is used in fields such as biochemistry, pharmaceutics, and medical diagnostics where 

reliable annotations and identifications are crucial. Since their inception, ML and DL have 

struggled with their inability to transparently justify their learning-based non-linear results 

(black-box problem) (Castelvecchi, 2016). This inherent problem leaves scientists and funding 

bodies unable to fully interpret and trust DL results (von Eschenbach, 2021). There are three 
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strategies to open the black box (Azodi, Tang and Shiu, 2020). In the field of MSI molecular 

annotation and identification, the black-box problem could be mitigated by coupling DL 

models with more traditional score-based methods (i.e. spectral similarity, spatial similarity, 

spectral chaos, FDR estimates, etc.). Only annotations and identifications ranking high in both 

approaches would be accepted automatically, while mismatching annotations and 

identifications would be manually curated by the user. 

The second bottleneck limiting the adoption of DL is the lack of big, labeled, and curated 

sets of MSI data (“ground truth”) needed to train the models (Alexandrov, 2020). Ideally, for 

training DL models, in the task of annotation and identification, we would need thousands of 

MSI datasets with a complete list of Level 1 identifications. Additionally, for the DL model to 

generalize, it should be exposed to enough sample types (specimen, condition, tissue) and 

instrumental setups (ion source, ion mode, and mass analyzer). METASPACE (Ovchinnikova, 

Kovalev, et al., 2020) includes thousands of publicly available datasets, but it does not include 

a complete list of confident annotations. The creation of this ground truth could follow two 

approaches (Alexandrov, 2020). The first approach relies on expert crowdsourcing to manually 

annotate MSI datasets and has successfully been used in MSI to estimate quality (Palmer et al., 

2015), off-sample signals (Ovchinnikova, Kovalev, et al., 2020), and colocalization 

(Ovchinnikova, Stuart, et al., 2020). Nevertheless, expert annotation could prove unfeasible 

and unreliable in the task of molecular annotation and identification. Following the success of 

MS/MS libraries like METLIN (Smith et al., 2005), NIST (Lemmon et al., 2010), or MassBank 

(Horai et al., 2010), the second approach involves the creation of an MSI metabolite spectral 

library using tissue mimetics (or alternative approaches described in Section III..). This is 

certainly one of the biggest challenges ahead for our community, but Deep Learning promises 

to give birth to the next generation of automated tools to answer the question more reliably 

“what are we imaging?”. 
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7. Figures and tables  

 

Figure 1. General comparison of the most widely used ion sources and mass analyzers for MSI. A: Spatial 

resolution, B: Mass range, and C: In-source fragmentation of the four most common ion sources. D: Resolving 

power and mass accuracy and E: Acquisition time of the three most common mass analyzers. F: Acquisition time 

of the four most common ion sources. Adapted with permission from (Evers et al., 2019) (A,B,F), and (Zubarev 

and Makarov, 2013; Ayet San Andrés et al., 2019) (D). Copyright 2022 American Chemical Society. CC-BY 

license https://creativecommons.org/licenses/by/4.0/.  
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Figure 2. General steps in software annotation & identification in MSI experiments 
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Figure 3. Adaptation of mzTab-M format to be compatible with imzML. A list of Unique Universally Identifiers 

(UUIDs) would link multiple imzML files from the same study to a single mzTab-M file containing annotations 

and identifications.  Adapted with permission from (Schramm et al., 2012) and (Hoffmann et al., 2019). Copyright 

2022 Elsevier. CC-BY license https://creativecommons.org/licenses/by/4.0/.  
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Table 1. Summary of the principal effects of experimental steps in compound annotation and identification in 

MSI.  

Procedure Effect in annotation/identification 

Sample preservation 

FFPE tissue ● Severe contamination of the spectra. 

● Requires deparaffinization. 

● Suitable for protein and peptide detection. 

Formalin-fixed 

fresh-frozen 

tissue 

● Formalin may suppress the ionization of amine-containing lipids and 

introduce [M+HSO4]- adducts. 

● Suitable for sampling all families of compounds but less effective 

than fresh-frozen in the low mass range. 

Fresh-frozen 

tissue 

● No chemical changes in the tissue. 

● Risk of shattering and degradation during transport. 

● Suitable for sampling all families of compounds. 

On-tissue sample treatment 

On-tissue 

enzymatic 

digestion 

● Proteins are broken down into their peptides, which are easier to 

ionize and detect than intact proteins. 

● Peptides are used to elucidate possible proteins. 

● Enzymes hydrolyze proteins in specific bonds. 

On-tissue 

chemical 

derivatization 

● Added moieties increase ionization efficiency and the mass of 

targeted compounds. 

Matrix application (Only for MALDI sources) 
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Organic 

matrices 

● Introduce matrix signals in the low mass spectra region and matrix 

adducts. 

● Matrix selection influences which ionization polarity should be used. 

Reactive 

matrices 

● More selective measurement.  

● Act as derivatization agents. 

Isotopically 

labeled matrices 

● Controlled isotopic pattern used to annotate matrix signals and 

matrix-endogenous adducts. 

Inorganic 

matrices 

● Introduce fewer matrix signals. 

● In general, produce more fragmentation peaks.  

● Some inorganic matrix peaks can be used as calibrants. 

Spraying 

matrix deposition 

● Small amount of matrix used. 

● Solvent required for desorption of some molecules (such as proteins). 

● Higher risk of analyte delocalization. 

Sublimation 

matrix deposition 

● More matrix amount required. 

● More homogenous layer and less analyte delocalization. 

Sputtering 

matrix deposition 

● Requires inorganic material. 

● More homogenous layer and less analyte delocalization. 

Stable Isotope Labeling 

SIL Matrices ● Shift matrix signals to uncover endogenous signals. 

● Distinct isotopic pattern that helps annotation. 

Ion Source 

MALDI ● Requires matrix, which might contaminate the spectra. 
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● Board mass range (up to several kDa). 

● Common spatial resolution ranges from 100 to 10 µm. 

● Both ionization polarities (influences type of adducts). 

● MALDI-2 increases sensitivity. 

● t-MALDI increases routine spatial resolution to 1 µm and below. 

DESI ● Minimal sample preparation (dopants may be added to the spray 

solvent).  

● Preference for detecting low molecular weight molecules. 

● Spatial resolution ranges from 200 to 20 µm. 

● Both ionization polarities (influences type of adducts). 

SIMS ● Minimal sample preparation. 

● Suitable for detecting low molecular weight molecules (hard 

ionization). 

● Highest spatial resolution (sub µm). 

● Both ionization polarities (influences type of adducts). 

LA-ICP ● Used to map atomic composition. 

● Spatial resolution ranges from 200 to 10 µm. 

Mass analyzer 

TOF ● Theoretically unlimited mass range. 

● Mass resolution increases as m/z increases.  

● Fastest scan rate. 

FTICR ● Ultra-high mass resolution for low-weight compounds. 

● Mass resolution decreases linearly as m/z increases. 

Orbitrap ● Very-high mass resolution for low-weight compounds. 
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● Mass resolution decreases linearly as m/z increases. 

Combining MSI with other analytical techniques 

MS/MS ● Structural hypothesis using fragments of precursors. 

● Fragmentation patterns may be poor quality or precursor intensity is 

too low. 

● MS/MS libraries mostly contain [M+H]+ fragmentation patterns. 

LC-MS and LC-

MS/MS 

● Most common approach for identification. 

● Chromatographic separation allows better spectra interpretability. 

● Can use homogenization of the sample or other related biofluids. 

● LCM allows the LC-MS analysis of specific tissue regions. 

● Usually, Electrospray Ionization (ESI), may generate different adducts 

than MSI.  

IMS ● CCS can be used to resolve isomeric species and get structural 

information. 

Multimodal 

molecular 

imaging 

● Vibrational spectroscopy can determine functional groups. 

● Fluorescence Microscopy enables labeled imaging. 

● Registration of images is required. 

Reference Standards 

In-solution ● Easy sample preparation. 

● Fails to capture matrix effects, ion suppression effects, and 

endogenous adducts. 

On-tissue ● Easy sample preparation. 

● Captures matrix effects, ion suppression effects, and endogenous 
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adducts. 

● Low extraction efficiency. The standard only interacts with the 

surface. 

Tissue 

mimetics 

● Complex sample preparation. 

● Captures matrix effects, ion suppression effects, and endogenous 

adducts. 

● High extraction efficiency.  

● Loses spatial context. 
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Table 2. Summary of software tools for annotation and identification. 

Name Confidence 
level 

- Annotation type 
- Target features 

-Approach 
- Library 

-Input data format 
-Output 
- Ranking scores 

- Programming 
language 
- Installation 
- License 

Ref. 

Alex123 2-3 - Specific to lipids. 

- On-tissue MS/MS 
fragments 

- Library-centric 

- In-house 

- RAW (Thermo Fisher Scientific) 

- List of identified lipids in 2 levels 
(annotated by exact mass matching and 
identified by MS/MS)  

- (1) Matched fragments percentage 

- Python 

- Install from repository 

- GNU GPL v3.0 

(Ellis et al., 2018) 

CycloBranch 2 2-4 

 

- General identification 
and annotation. 

- Isotopes, adducts and 
molecular formulas. 

- Library-centric 

- In silico library of 
molecular formulas 
tunable by the user. 

- Profile in imzML, mzML and some 
proprietary formats. 

- Interactive windows with tables and 
spectra. 

- (1) Matched fragment count (2) Sum of 
fragment intensities 

- C++ 

- Download and install 
a standalone package. 

- GNU GPL v3.0 

(Novák et al. 
2020) 

HIT-MAP 4 - Specific to peptides 
and proteins. 

- Full isotopic pattern 

- Library-centric 

- In silico library from a 
protein sequence file 
in FASTA format. 

 

- imzML 

- Two sub-folders: one with identification 
data and the other with containing peptide 
and protein lists as well as the 
corresponding ion images 

- (1) Matched peaks percentage (2) RMS 
spectral error (3) Mass error (4) FDR 
(Target-Decoy) 

- R 

- Install from github or 
docker image 

- GNU GPL v3.0 

(Guo et al., 2021)  

LipostarMSI 2-4 - Specific to lipids. 

- Lipids, metabolites, 
and drug metabolites 

- Library-centric 

- HMDB, LIPID MAPS 
and in-house. 

 

- imzML (MSI) and CSV(MS/MS) 

- Interactive windows with tables and 
spectra 

- (1) Matched fragment percentage (2) TIC 
ratio (3) Spatial chaos (4) Mass error 

- Not specified 

- Download and install 
a standalone package. 

- Private Software 

(Tortorella et al., 
2020) 
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Name Confidence 
level 

- Annotation type 
- Target features 

-Approach 
- Library 

-Input data format 
-Output 
- Ranking scores 

- Programming 
language 
- Installation 
- License 

Ref. 

mass2adduct 4 - Specific to metabolite-
matrix adducts. 

- Isotopes, adducts, and 
matrix adducts 

- Feature-centric 

 

- imzML 

- List of adduct masses in the R 
environment 

- (1) Pearson correlation 

- R 

- Install from github 

- GNU GPL v3.0 

(Janda et al., 
2021) 

MassPix 4 - General annotation. 
Specific molecular 
formulas of lipids. 

- Isotopes, adducts and 
molecular formulas. 

- Feature-centric 

 

- Centroid in imzML 

- Tables in CSV format 

- None 

- R 

- Install from github 

- GNU GPL v3.0 

(Bond et al., 
2017) 

MSKendrickFilter 5 - Specific compound 
family annotation. 

- Suggests compound 
family based on KMD 

- Feature-centric 

 

- imzML 

- Images of MS signals classified as a user 
defined compound family. 

- (1) KMD 

- Python 

- Available under 
request to the authors 

- Unlicensed 

(Kune et al., 
2019) 

OffsampleAI 5 - Specific to compounds 
outside of the sample. 

- MS signals outside of 
the sample 

- Feature-centric 

 

- imzML 

- Indication of of-sample ion in data 

- None 

- Python 

- Install from github / 
Built-in functionality in 
METASPACE 

- Apache 2.0 

(Ovchinnikova, et 
al., 2020) 

pySM 
(METASPACE) 

4 - General annotation. 

- Metabolites high-
resolution imaging 

-  Library-centric 

- In-house, HMDB, 
LipidMaps and 
SwissLipids. 

- imzML 

- Tables in CSV format with annotations 
and FDR level of confidence. 

- (1) Weighted Pearson Correlation (2) 
Average difference of normalized 
intensities (3) Spatial chaos (4) FDR 

- Python 

- Install from github/ 
Built-in functionality in 
METASPACE 

- Apache 2.0 

(Palmer et al., 
2016) 
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Name Confidence 
level 

- Annotation type 
- Target features 

-Approach 
- Library 

-Input data format 
-Output 
- Ranking scores 

- Programming 
language 
- Installation 
- License 

Ref. 

ReSCORE 
METASPACE 

4 - General annotation 

- Improve sensitivity of 
annotation of 
metabolites with pySM 

- Feature-centric 

 

- Annotations from pySM 

- CSV table with annotations and q values 

- (1) q-values 

- Python 

- Install from github 

- Apache 2.0 

(C Silva et al., 
2018) 

rMSIannotation 4 - General annotation. 

- Isotopes and adducts 
of metabolites and 
peptides. 

- Feature centric 

- Modeled after HMDB 
and Peptide Atlas 

- imzML 

- R objects containing isotopes and 
adducts. 

- (1) Linear Regression R^2 (2) M+0/M+1 
ratio difference (3) Mass error 

- R/C++ 

- Install from github 

- GNU GPL v3.0 

(Sementé et al., 
2021) 

rMSIcleanup 4 - Specific to matrix 
peaks 

- Matrix-related MS 
signals 

- Library-centric 

- In-house 

- imzML 

- R object containing matrix clusters & PDF 
with spectra, ion images and matrix 
clusters 

- (1) Weighted Pearson’s Correlation (2) 
Exponential of Euclidean distance  

- R 

- Install from github 

- GNU GPL v3.0 

(Baquer et al., 
2020) 
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CHAPTER 3 
 

rMSIKeyIon: an ion filtering R package for untargeted 

analysis of metabolomic LDI-MS images 
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Abstract: Many MALDI-MS imaging experiments make case vs. control studies of 

different tissue regions in order to highlight significant compounds affected by the variables of 

study. This is a challenge because the tissue samples to be compared come from different 

biological entities and therefore exhibit high variability. Moreover, the statistical tests available 

cannot properly compare ion concentrations in two regions of interest (ROIs) within or between 

images. The high correlation between the ion concentrations due to the existence of different 

morphological regions in the tissue means that the common statistical tests used in 

metabolomics experiments cannot be applied.  Another difficulty with the reliability of 

statistical tests is the elevated number of undetected MS ions in a high percentage of pixels.  

In this study, we report a procedure for discovering the most important ions in the 

comparison of a pair of ROIs within or between tissue sections. These ROIs were identified by 

an unsupervised segmentation process, using the popular k-means algorithm. Our ion filtering 

algorithm aims to find the up or down-regulated ions between two ROIs by using a combination 

of three parameters: a) the percentage of pixels in which a particular ion is not detected, b) the 

U Mann Whitney ion concentration test, and c) the ion concentration fold-change. With this 

methodology we found the important ions between the different segments of a mouse brain 

tissue sagittal section and determined some lipid compounds (mainly triacylglycerols and 

phosphatidylcholines) in the liver of mice exposed to thirdhand smoke.  

1. Introduction  

Mass Spectrometry Imaging (MSI) is a label-free analytical technique that can locate 

chemical compounds (metabolites, peptides, lipids or proteins) directly in a biological sample 

and give their concentration for every pixel. The most common analytical strategy is matrix-

assisted laser desorption ionization (MALDI) due to its soft ionization, fast analysis, high 

throughput, versatility, and selectivity [1].  Other techniques like desorption electrospray 

ionization (DESI) are becoming more popular because of the simplicity of their sample 

preparation [2]. MSI is currently used in the fields of drug discovery and toxicology [3], [4]. 

In most experiments, researchers use a targeted strategy, which consists of visualizing and 

(sometimes) quantifying the concentration of a particular compound, or a reduced set of 

compounds throughout the tissue. Many MSI software packages have been released [5]. Even 

though, none of them provides an automated workflow for untargeted MSI applications since 

the end-user must approach each MSI experiment data analysis in its unique manner. 

Besides annotating and identifying the MS ions, one of the main challenges in untargeted 

MSI analysis is to determine the statistically differentiating ions in different ROIs of the same 

tissue section or in different tissues of case vs. control experiments. These key ions could be 

associated with biomarker candidates of disease or treatment efficacy. Previous studies have 

successfully used segmentation processes to find these key ions between clusters [6], [7]. Most 

of these studies identify the key ions associated with a certain region by analyzing the ions that 

most influence the segmentation process. In [8], the authors applied a Nonnegative Matrix 

Factorization multivariate analysis to select a reduced group of lipid MS signals associated 

with the metabolite profile of each component.  The t-test associated with segmentation with 

Spatial Shrunken Centroids can find the enriched and absent MS peaks for a particular region 

in a segmented image [9], [10].  A technique based on deep unsupervised neural networks and 

parametric t-SNE was used to detect metabolic hidden sub-regions [11]. The same algorithm, 

linked to a significance analysis of microarrays (SAM), detected the protein subpopulations 

that can differentiate between t-SNE segments in a dataset of breast cancer samples; 

interestingly, they used the selected ions for a kNN second segmentation step [12]. Gorzolka 

et al. [13] studied the space-time profiling of the barley germination process by carrying out an 

unsupervised joint segmentation of a high number of images and found the ion-associated 
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profile for every segment. The Algorithm for MSI Analysis by Semi-supervised Segmentation 

(AMASS) was used to segment leech embryo samples [14] and there is a complete analysis of 

the ions associated to every region according to its weighting factors. In all these references, 

no statistical significance test was conducted on the key ions found.  

Another common strategy in MSI data analysis is to manually define the ROIs to be 

compared, guided by an annotated histology image [15]–[18]. In general, the ions are selected 

by means of statistical hypothesis testing and the fold change calculation of the ion 

concentrations between ROIs. These parameters are usually represented as volcano plots. By 

way of example, Hong et al. [19] studied the global changes of phospholipids in brain samples 

from a mouse model of Alzheimer disease by performing ANOVA tests of ion concentrations 

in regions of interest. A common problem that MSI has in calculating statistical significance is 

that the p-values are generally extremely low [16]. This is because there are a large number of 

pixels within each ROI, which gives this parameter a low discrimination power.  

Additionally, the statistical hypothesis testing (such as the t-test) fails when applied to 

compare the concentration of an ion between ROI’s. The existence of morphological areas in 

the images is responsible for a high pixel autocorrelation. This violates the assumption of 

observation independence necessary for statistical hypothesis testing. To find statistically 

significant ions between ROIs, Conditional Autoregressive (CAR) models, which consider the 

autocorrelated nature of ion distribution concentration in MS image ROIs, are calculated to 

correct the p-values [20]. Nevertheless, the difficulty of calculating the autocorrelation models 

and the complexity of the computational approach hampers the inclusion of this strategy in a 

MSI workflow.  

Another common situation in MS imaging is the elevated intensity differences of the ion’s 

concentration between pixels, due to the existence of several morphologic regions with 

different metabolic profiles [21] and the ion shielding phenomena which takes place in MSI. It 

is also common to find a high proportion of pixels where a certain ion is not detected, for a 

given signal to noise ratio. This influences to a large extent the calculation of the p-values and 

the fold change.  

In this study, we describe the development of an ion filtering algorithm that is used in a 

workflow for the untargeted analysis of metabolomic MALDI-MS images. The workflow 

consists of a segmentation step, followed by the ion filtering procedure, independent of the 

segmentation process, that detects the up/down regulated ions between image segments. Our 

algorithm calculates and combines three parameters: a) the Mann-Whitney statistical test of the 

ion concentration between segments [22]; b) the fold change in the ion concentration between 

segments; and c) a new parameter that accounts for the proportion of pixels with undetected 

ions between segments. With this methodology, we can find the key ions between any segment 

pair in MSI datasets, from single or multiple tissue sections. We successfully applied this 

workflow to the analysis of mouse brain tissue samples and to study fatty liver disease in mice 

liver tissue samples.  

2. Results 

The rMSIKeyIon package, written in R, is able to find the key ions in a pair of ROI’s within 

or between images. The ions are selected according to the similarity parameters calculated in 

Appendix A and ordered following the contrast parameter, described in Appendix B. In the 

next section we will describe the results of the package in the analysis of a sagittal brain mouse 

sample, which has been segmented by k-means algorithm (section 2.1). In particular, we will 

illustrate the up or down regulated ions resulting from the comparison of two clusters and the 

up/down regulated ions when comparing one cluster with the rest.  
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In section 2.2 we will apply the package in the identification of the fat areas in control liver 

samples and liver samples exposed to third hand smoke (THS).  

2.1 Results of the brain mouse sample 

Figure 1 shows the number of up- and down-regulated ions associated with the comparison 

of one cluster with each of the others (columns 1 to 7) in the segmented image of the brain slice 

tissue of C57BL/6 mouse using the k-means algorithm (n = 7 clusters). In column “All” appear 

the ions that are up-regulated (or down-regulated) in a cluster because of the comparison 

between this cluster and the rest of clusters, called “absolutely up-regulated ions” (or 

“absolutely down-regulated ions”)  

For each cluster comparison, an associated figure gives information about the resulting up- 

or down-regulated ions, and the number of null and non-null parameters defined in the section 

Ion analysis and filtering (see below). The ions on the list are ordered in terms of the value of 

the “contrast parameter”, calculated with Equation B1 in Appendix B.  

 

 

Figure 1. Number of up or down-regulated ions associated with the comparison of one particular cluster with 

each of the others (columns 1 to 7) and the ions that are up-regulated (or down-regulated) in a cluster as a result 

of the comparison between this cluster and the rest of clusters, called “absolutely up-regulated ions” (or 

“absolutely down-regulated ions”). The image is composed of 6898 pixels and the detected ion number is 277. 

The percentile value used for the selection of the ions is 8 % for the null concentration parameter and 10 % for 

the U Mann-Whitney test and for the concentration fold change (FC). The intensity threshold for the ions is 1·10-

3 over the normalized spectra matrix. The lack of symmetry observed in the table is a consequence of the lack of 

symmetry in the distributions considered. 

 

Comparison of C2&C6 

By way of example, the comparison of clusters C2&C6 showed 59 up-regulated ions in C2 

vs. C6 and 76 down-regulated ions in C2 vs. C6. As an example, Figure S1 shows the volcano 

plot of the ions resulting from the comparison of C2 & C6. The ions at the top right and top 

left are selected by the ion filtering algorithm (see the caption to Figure S1 for more details).  

Figure S2.a shows the histogram of the concentration of the up-regulated ion with the highest 

contrast parameter (m/z 198.076) in C6 and Figure S2.b shows the histogram of the up-
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regulated ion (m/z 848.636) in C2 also with the highest contrast parameter. Figure 2a shows 

the segmented brain image (n=7) and Figures 2b and c the concentration intensity plot of the 

ions mentioned above. In these intensity maps, the contrast intensity between both ions and 

clusters is clear, and the intensity of m/z 848.636 is much higher in C2 than in C6 and vice-

versa for m/z 198.076.  

 

Figure 2. (a) Mouse brain segmentation using k-means (n = 7 clusters), (b) Intensity map of ion m/z 848.636 (the 

up-regulated ion in C2 vs C6 with the highest contrasting parameter extracted from the null concentration 

parameter) and (c) Intensity map of ion m/z 198.076, the down-regulated ion with the highest contrast parameter 

after comparing C2 & C6, extracted from the volcano plot.  

 

Absolutely up and down-regulated ions in brain 

According to the results in Figure 1, there are two absolutely up-regulated ions in C2, and 

123 absolutely down-regulated ions in C7. Figure 3 shows the concentration intensity plot of 

the two up-regulated ions (m/z 832,644; m/z and m/z 834,654) in C2 and Figure 4 shows the 

three down-regulated ions (m/z 274,792; m/z 298,811 and m/z 258,822) in C7 with the highest 

contrast parameter. There is an evident similarity between the images of the two up-regulated 

ions for one hand and three down-regulated ones for the other one. A comparison of the images 

in Figure 3 with the distribution of C2 in the brain are clearly similar. And the same is true of 

a comparison of the images in Figure 4 with the distribution of C7 in the brain.  

 

Figure 3. Concentration images of the two absolutely up-regulated ions in C2  
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Figure 4. Concentration images of three absolutely down-regulated ions in C7  

 

2.2 Results of the liver samples 

The methodology used in this article has been applied to the study of non-alcoholic fatty 

liver disease in mice exposed to thirdhand tobacco smoke [23]. We have taken a total of 6 

images from the liver samples (three from a control mouse and three from a THS-exposed 

mouse). The images have been segmented using the k-means algorithm (n = 6 clusters).  

 

 

Figure 5.  Representation of cluster 2 of the 6 liver samples: a) the three analytical replicates of a control mouse 

and b) the three replicates of a THS-exposed mouse.   

 

The results of rMSIKeyIon algorithm showed that cluster 2 (C2) has an elevated number of 

ions in the lipid mass range, that are absolutely up-regulated and we hypothesised that this 
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cluster represents the lipid droplet areas characteristic of the fatty livers (see Figure 5). The 

THS exposed mouse has the largest area while the control animals have the smallest, in 

accordance with Martins-Green et al. [23].  

Table S1 shows the compounds in C2 putatively identified after a manual curation process. 

As can be observed, most of them are putatively identified as TG or phosphatidylcholine. In 

Figure S3 there is the intensity map of the triacylglycerol (50:30), which is highly similar to 

the geometry of C2 

3. Discussion 

Here we developed a new methodology for the untargeted analysis of MS images that can 

be used coupled with any segmentation process and an ion filtering algorithm based on the 

combination of three parameters: a) The ratio of ions with a null concentration between the 

regions, b) the U Mann-Whitney Test, calculated by segregating the non-detected ions from 

the distribution, and c) the fold change between the medians of the distribution (the non-

detected ions were also segregated from the distribution). This methodology has proved to be 

efficient at finding the up/down-expressed ions in an intra-image analysis or in the comparative 

analysis of groups of images. The presented workflow is different to previously released 

software tools due to two main reasons: a) it is flexible and independent to the segmentation 

process, so the ion selection process can be applied to any clustering algorithm or manually 

drawn ROI’s. b) Our methodology provides a completely automated ion filtering approach 

enabling the fast detection of a morphological region characteristic ions. 

The results on the sagittal mouse brain sample show that an unsupervised clustering process 

followed by the rMSIKeyIon algorithm can select the (possible) up/down-regulated ions 

between any pair of clusters, in a holistic approach, and between one cluster and the rest. The 

concentration maps of the selected ions, ordered by the contrast parameter, depicts faithfully 

the morphology of the brain. These ions are probably biologically relevant and could be 

interesting to identify.    

Using the described methodology, we have been able to detect the regions containing the 

lipid droplets in the liver samples from mice exposed to THS. The putative identification of the 

key up-regulated ions in the cluster 2, mainly triglycerides and phosphatidylcholines, confirm 

that THS exposure conducts to the apparition of fatty liver disease in mice [23].  

Untargeted metabolomics data analysis workflows are associated with standard analytical 

platforms (LC-MS, GC-MS and NMR) [24]. These analyses compare the concentrations of 

chemical compounds in a CASE and a CONTROL group in order to discover features that they 

express differently, and which could be used as biomarkers or in biological pathway analysis. 

In general, the number of samples (n) of each experimental group are similar, the distribution 

is normal (for large n values) and the principle of independent measures is assumed. However, 

in spatial metabolomics, the number of samples in every group (i.e. the number of pixels in a 

ROI) is not determined a priori, as in metabolomics studies.  

Untargeted image analysis has two main applications:  

a) The comparison of two regions inside the same tissue section (intra-image analysis) to 

find the relevant ions. This could be used to discover cancer biomarkers by comparing the ion 

profile of the tumorous area with a non-tumorous area from the same sample. In general, the 

areas to be compared are determined by a histopathologist annotating a consecutive tissue 

section. The size of the ROIs in which we will compare the ions is determined manually.  

b) For several reasons the analysis of morphologically equivalent regions in different tissues 

in a case-control experiment is much more complicated. First, the tissue samples to be 

compared between groups are equivalent but not similar because of the biological differences 

between the animals and the intrinsic difficulty of achieving identical tissue sections. 
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Consequently, it is not straightforward to delimit the areas to be compared. The ROIs to be 

compared can be determined by histological annotation (supervised process), or automatically 

by means of a segmentation process (unsupervised process). In both cases, there are not 

established rules, and the following steps in the statistical analysis of the ions between ROI’s 

can be highly affected by this fact.   

In both cases, it is very common to find skewed ion distributions and a high percentage of 

null values, a high degree of autocorrelation between pixels and a very high number of 

observations (pixels). This leads to extremely low p-values when classical parametric or non-

parametric statistical tests are used [25] so these tests are not appropriate for this kind of 

analysis. All the above reasons make the untargeted analysis of images. However, the results 

shown by rMSIKeyIon R package have been revealed to be very useful to find the most 

differential ions between ROI’s. The biological relevance of these ions has been validated in a 

fatty liver study with animal models.  

4. Materials and methods  

4.1 Materials 

Indium tin oxide (ITO)-coated glass slides were obtained from Bruker Daltonics (Bremen, 

Germany). The gold target used for sputtering coating was obtained from Kurt J. Lesker 

Company (Hastings, England) with a purity grade higher than 99.995%. HPLC grade xylene 

was supplied by Sigma-Aldrich (Steinheim, Germany) and ethanol (96% purity) was supplied 

by Scharlau (Sentmenat, Spain). 

4.2 Methods 

4.2.1 Sample preparation 

Mice models were developed at the Department of Molecular, Cell and Systems Biology at 

the University of California Riverside [23]. Animal experimental protocols were approved by 

the University of California, Riverside, Institutional Animal Care and Use Committee 

(IACUC). The suitability of the workflow presented here to determine significant ions between 

ROIs from the same tissue was tested in a brain sample from a 6-month-old C57BL/6 mouse 

feed with a standard chow diet (percent calories: 58% carbohydrates, 28.5% protein, and 13.5% 

fat). To test the suitability of the method in different tissue sections in a case vs. control 

experiment, we used liver samples from mice exposed to thirdhand tobacco smoke (THS) – the 

residual particles and gases from tobacco smoke that remain in dust and surfaces – from 

weaning (three weeks of age) to 24 weeks, without exposure to SHS at any time during the 

study, and compared them with liver samples of mice that had not been exposed to THS 

(control group) [26]. Brain and liver samples were snap frozen at -80°C after collection and 

stored and shipped at this temperature until analysis. 

For MSI acquisition, the tissues were sectioned at -20°C in slices 10 µm thick using a Leica 

CM-1950 cryostat (Leica Biosystems Nussloch GmbH) located at the Centre for Omics 

Sciences (COS) of the Rovira i Virgili University and mounted on indium-tin oxide-coated 

(ITO) slides by directly placing the glass slide onto the section at ambient temperature. To 

remove residual humidity, samples were dried in a desiccator under vacuum for 15 minutes 

after tissue mounting.  
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4.2.2 Deposition of Au nanolayers for LDI-MS imaging 

Gold nanolayers were deposited on the 10 µm tissue sections using an ATC Orion 8-HV 

sputtering system (AJA International, N. Scituate, MA, USA) [27]. Briefly, an argon 

atmosphere with a pressure of 30 mTor was used to create the plasma in the gun. The working 

distance of the plate was set to 35 mm. Sputtering conditions for MS were ambient temperature, 

and RF mode at 60 W for 50 s. The argon ion current was adjusted to 20 mL min-1. 

4.2.3 LDI-MS acquisition 

One image of a sagittal brain tissue section and six liver tissue sections (3 slices from a 

control animal and 3 sections from a THS-exposed animal) were acquired using a MALDI 

TOF/TOF UltrafleXtreme instrument with SmartBeam II Nd:YAG/355 nm laser from Bruker 

Daltonics, also at the COS facilities. Raster sizes of 80 and 20 µm were used for the brain and 

liver tissue sections, respectively. The TOF spectrometer operated in reflectron positive mode 

with the digitizer set at a sample rate of 1.25 GHz in a mass range between 70 and 1.200 Da. 

The spectrometer was calibrated prior to tissue image acquisitions using [Au]+ cluster MS 

peaks as internal mass references [27].  

4.2.4 MSI data processing and image segmentation 

The MSI data acquired with Bruker’s FlexImaging 3.0 software was exported to XMASS 

data format using instrument manufacturer software packages (FlexImaging and Compass 

export). The raw data was loaded using the in-house rMSI package [28]. This package provides 

a data storage format based on segmented matrices and optimized for processing large MSI 

datasets in R language. Next, we applied our complete MSI pre-processing workflow 

consisting of spectral smoothing, alignment, mass recalibration, peak detection, and peak 

binning [29] with the default parameters: Savitzky-Golay kernel size of 7, peak detection 

threshold SNR of 5 and peak binning tolerance of 6 scans with 5% filter. At this point we 

obtained a peak matrix object of each MSI dataset: the brain tissue sagittal section and the liver 

tissue sections. These peak matrix objects are highly reduced, robust and accurate 

representations of all the MSI data, and can be used to perform complex statistical analyses on 

the huge amount of data generated in the MSI experiment. ROIs were generated by means of a 

k-means process. Finally, we applied the rMSIKeyIon workflow using the peak matrices as the 

input data.  

4.2.5 Ion analysis and filtering  

The procedure used for identifying statistically different ions compared the concentration 

distributions of the ions in all possible pairs of ROIs in which the tissue (or tissues) had been 

segmented. 

In general, the total number of pixels in each ROI is different and the probability density 

function of the ion concentrations is not normal. We used the U Mann-Whitney test [30] 

because it can test the null hypothesis (both sets of samples come from the same distribution) 

of two non-normal distributions that have a different number of observations.  

In addition, in non-normal distributions of different sample sizes, there is usually a singular 

element: in some ROIs there is a considerable possibility that the distribution of some ions will 

have small concentration values. Fig. S4 represents the percentage of non-detected ions in the 

segmented brain image, using the k-means algorithm with n= 7 clusters. It can be observed that 

for some clusters (i.e cluster 7) the percentage is very high.  

For purposes of illustration, Figure S5 shows two synthetic histograms with samples taken 

from normal distributions, with different average values, to which significant amounts of null 
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values have been added. In total, there are 200 samples for both cases. Both distributions appear 

to be very different, and the Mann-Witney test yields a very high p-value (0.38). The idea we 

have worked on here is to segregate the values obtained from non-detected ions (nulls) from 

the rest of the distribution so that they can be treated separately. Thus, we obtain a very small 

p-value (of the order of 1e-43). On the other hand, the % of null values in each ROI also 

provides valuable information. For these reasons, we decided to segregate the null values from 

the ion matrix and use them to calculate a parameter (null concentration parameter), as will be 

explained below.  

The calculation of the null concentration parameter, and the non-null parameters (U Mann 

Whitney distribution and fold change) are described in Appendix A.  

Once the ions had been selected using the two procedures described above, they were 

ordered in terms of the contrast generated by every ion between one ROI and the set of other 

ROIs. The procedure is described in Appendix B. 

The ion filtering algorithm described in this section has been implemented in the R package 

named rMSIkeyIons, accessible at (https://github.com/LlucSF/rMSIKeyIon). The software’s 

source code was written in C++ and requires the GSL library. Later, it was ported to R using 

the Rcpp R package. As input, the function requires an rMSIproc peak matrix, a previously 

calculated segmentation, and the percentiles for each parameter, and as output, the function 

returns a list containing the ions for each comparison between all pair of clusters and the data 

related with those ions. 

4.2.6 Metabolite identification 

The obtained list of up regulated lipids for mice liver samples in Cluster 2 was matched with 

the HMDB 4.0 [31] database within a tolerance of 20 ppm and the possible ion adducts: H, Na, 

K and NH4. Results were filtered using the biological information of molecules provided by 

the HMDB, thus metabolites with no biological origin or not likely to be found in the liver 

were discarded. 

5. Conclusions 

In this study we have developed the ion filtering R package rMSIkeyIon. It is open source, 

publicly available and based on the combination of three parameters: the non-detected ion 

concentration ratio, the Mann-Whitney ion concentration test and the fold change in the ion 

concentration. We demonstrated that our tool is very effective at discovering up or down-

regulated ions between clusters using an unsupervised k-means procedure. The ions selected 

are the candidates that subsequently have to be identified. This package is a valuable tool for 

the untargeted analysis of MALDI images and is an important advance in this area because, at 

present, there are no tools available.   

6. References 

[1] M. Karas and F. Hillenkamp, “Laser desorption ionization of proteins with molecular 

masses exceeding 10,000 daltons,” Anal. Chem., vol. 60, no. 20, pp. 2299–2301, Oct. 1988. 

[2] J. M. Wiseman, D. R. Ifa, Q. Song, and R. G. Cooks, “Tissue Imaging at Atmospheric 

Pressure Using Desorption Electrospray Ionization (DESI) Mass Spectrometry,” Angew. 

Chemie Int. Ed., vol. 45, no. 43, pp. 7188–7192, Nov. 2006. 

[3] L. Morosi, M. Zucchetti, M. D’Incalci, and E. Davoli, “Imaging mass spectrometry: 

challenges in visualization of drug distribution in solid tumors.,” Curr. Opin. Pharmacol., vol. 

13, no. 5, pp. 807–12, Oct. 2013. 

UNIVERSITAT ROVIRA I VIRGILI 
PEAK ANNOTATION AND DATA ANALYSIS SOFTWARE TOOLS FOR MASS SPECTROMETRY IMAGING 
Lluc Sementé Fernández 



107 

 

[4] T. Greer, R. Sturm, and L. Li, “Mass spectrometry imaging for drugs and metabolites,” 

J. Proteomics, vol. 74, no. 12, pp. 2617–2631, Nov. 2011. 

[5] P. Ràfols et al., “Signal preprocessing, multivariate analysis and software tools for 

MA(LDI)-TOF mass spectrometry imaging for biological applications,” Mass Spectrom. Rev., 

vol. 37, no. 3, pp. 281–306, May 2018. 

[6] T. Alexandrov, “MALDI imaging mass spectrometry: statistical data analysis and 

current computational challenges.,” BMC Bioinformatics, vol. 13 Suppl 1, no. Suppl 16, p. S11, 

2012. 

[7] E. A. Jones, S.-O. Deininger, P. C. W. Hogendoorn, A. M. Deelder, and L. A. 

McDonnell, “Imaging mass spectrometry statistical analysis.,” J. Proteomics, vol. 75, no. 16, 

pp. 4962–89, Aug. 2012. 

[8] D. Y. Lee et al., “Resolving brain regions using nanostructure initiator mass 

spectrometry imaging of phospholipids.,” Integr. Biol. (Camb)., vol. 4, no. 6, pp. 693–9, Jun. 

2012. 

[9] K. D. Bemis et al., “Probabilistic Segmentation of Mass Spectrometry (MS) Images 

Helps Select Important Ions and Characterize Confidence in the Resulting Segments,” Mol. 

Cell. Proteomics, vol. 15, no. 5, pp. 1761–1772, 2016. 

[10] K. D. Bemis et al., “Cardinal: an R package for statistical analysis of mass 

spectrometry-based imaging experiments,” Bioinformatics, vol. 31, no. 14, pp. 2418–2420, Jul. 

2015. 

[11] P. Inglese et al., “Deep learning and 3D-DESI imaging reveal the hidden metabolic 

heterogeneity of cancer,” Chem. Sci., vol. 8, pp. 3500–3511, 2017. 

[12] W. M. Abdelmoula et al., Data-driven identification of prognostic tumor 

subpopulations using spatially mapped t-SNE of mass spectrometry imaging data, vol. 113, no. 

43. 2016. 

[13] K. Gorzolka, J. Kölling, T. W. Nattkemper, and K. Niehaus, “Spatio-Temporal 

metabolite profiling of the barley germination process by MALDI MS imaging,” PLoS One, 

vol. 11, no. 3, pp. 1–25, 2016. 

[14] J. Bruand et al., “AMASS: algorithm for MSI analysis by semi-supervised 

segmentation.,” J. Proteome Res., vol. 10, no. 10, pp. 4734–43, Oct. 2011. 

[15] E. Moreno-Gordaliza et al., “Lipid imaging for visualizing cilastatin amelioration of 

cisplatin-induced nephrotoxicity,” J. Lipid Res., vol. 59, no. 9, pp. 1561–1574, 2018. 

[16] Y. Yajima et al., “Region of Interest analysis using mass spectrometry imaging of 

mitochondrial and sarcomeric proteins in acute cardiac infarction tissue,” Sci. Rep., vol. 8, no. 

1, pp. 1–10, 2018. 

[17] X. Wang, J. Han, D. B. Hardie, J. Yang, J. Pan, and C. H. Borchers, “Metabolomic 

profiling of prostate cancer by matrix assisted laser desorption/ionization-Fourier transform 

ion cyclotron resonance mass spectrometry imaging using Matrix Coating Assisted by an 

Electric Field (MCAEF),” Biochim. Biophys. Acta - Proteins Proteomics, vol. 1865, no. 7, pp. 

755–767, 2017. 

[18] Y. Otsuka, S. Satoh, J. Naito, M. Kyogaku, and H. Hashimoto, “Visualization of cancer-

related chemical components in mouse pancreas tissue by tapping-mode scanning probe 

electrospray ionization mass spectrometry,” J. Mass Spectrom., vol. 50, no. 10, pp. 1157–1162, 

2015. 

[19] J. H. Hong et al., “Global changes of phospholipids identified by MALDI imaging mass 

spectrometry in a mouse model of Alzheimer’s disease,” J. Lipid Res., vol. 57, no. 1, pp. 36–

45, Jan. 2016. 

[20] A. Cassese et al., “Spatial Autocorrelation in Mass Spectrometry Imaging,” Anal. 

Chem., vol. 88, no. 11, pp. 5871–5878, 2016. 

UNIVERSITAT ROVIRA I VIRGILI 
PEAK ANNOTATION AND DATA ANALYSIS SOFTWARE TOOLS FOR MASS SPECTROMETRY IMAGING 
Lluc Sementé Fernández 



108 

 

[21] I. Chernyavsky, S. Nikolenko, F. von Eggeling, T. Alexandrov, and M. Becker, 

“Analysis and Interpretation of Imaging Mass Spectrometry Data by Clustering Mass-to-

Charge Images According to Their Spatial Similarity,” Anal. Chem., vol. 85, no. 23, pp. 11189–

11195, 2013. 

[22] H. B. Mann and D. R. Whitney, “On a Test of Whether one of Two Random Variables 

is Stochastically Larger than the Other,” Ann. Math. Stat., vol. 18, no. 1, pp. 50–60, Mar. 1947. 

[23] M. Martins-Green et al., “Cigarette smoke toxins deposited on surfaces: Implications 

for human health,” PLoS One, vol. 9, no. 1, pp. 1–12, 2014. 

[24] G. J. Patti, O. Yanes, and G. Siuzdak, “Metabolomics: the apogee of the omics trilogy,” 

Nat. Rev. Mol. Cell Biol., vol. 13, no. 4, pp. 263–269, Mar. 2012. 

[25] M. W. Fagerland, “t-tests, non-parametric tests, and large studies—a paradox of 

statistical practice?,” BMC Med. Res. Methodol., vol. 12, no. 1, p. 78, Dec. 2012. 

[26] N. Adhami, S. R. Starck, C. Flores, and M. M. Green, “A health threat to bystanders 

living in the homes of smokers: How smoke toxins deposited on surfaces can cause insulin 

resistance,” PLoS One, vol. 11, no. 3, pp. 1–19, 2016. 

[27] P. Ràfols et al., “Assessing the potential of sputtered gold nanolayers in mass 

spectrometry imaging for metabolomics applications,” PLoS One, vol. 13, no. 12, p. e0208908, 

Dec. 2018. 

[28] P. Ràfols et al., “rMSI: an R package for MS imaging data handling and visualization,” 

Bioinformatics, vol. 33, no. 15, Mar. 2017. 

[29] P. Ràfols, E. del Castillo, O. Yanes, J. Brezmes, and X. Correig, “Novel automated 

workflow for spectral alignment and mass calibration in MS imaging using a sputtered Ag 

nanolayer,” Anal. Chim. Acta, vol. 1022, pp. 61–69, Aug. 2018. 

[30] M. Statistics, “On a Test of Whether one of Two Random Variables is Stochastically 

Larger than the Other Author ( s ): H . B . Mann and D . R . Whitney Source : The Annals of 

Mathematical Statistics , Vol . 18 , No . 1 ( Mar ., 1947 ), pp . 50-60 Published by : Institute,” 

vol. 18, no. 1, pp. 50–60, 2019. 

[31] D. S. Wishart et al., “HMDB 4.0: The human metabolome database for 2018,” Nucleic 

Acids Res., vol. 46, no. D1, pp. D608–D617, 2018. 

[32] T. D. Mak, E. C. Laiakis, M. Goudarzi, and A. J. Fornace, “MetaboLyzer: A Novel 

Statistical Workflow for Analyzing Postprocessed LC–MS Metabolomics Data,” Anal. Chem., 

vol. 86, no. 1, pp. 506–513, Jan. 2014. 
 

7. Supporting Information  

 7.1 Calculation of the similarity parameters between ROIs 

To determine the ions that are expressed differently in two given ROIs, we calculate three 

parameters:  

 

The null concentration parameter (Z parameter) 

The 𝑍𝑖𝑗𝑘 parameter is calculated according to Eq. A1:  

  

𝑍𝑖𝑗𝑘 =

𝑁𝑧𝑖𝑗

𝑁𝑗
𝑁𝑧𝑖𝑘

𝑁𝑘

   ∀ 𝑖 ∈ 𝐼;   ∀ 𝑗, 𝑘 ∈  𝑆𝑝     Eq. A1 

 

where 𝑍𝑖𝑗𝑘  is the parameter that accounts for the null values (i.e. the non-detected values) of 

the i ion when comparing the j and k ROIs; 𝑁𝑧𝑖𝑗 and 𝑁𝑧𝑖𝑘 are the number of pixels with null 
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values of the i ion in j and k ROIs, respectively; 𝑁𝑗 and 𝑁𝑘 are the total number of ROI pixels 

in j and k, respectively; I is the set of ions and Sp is the set of ROIs.  

 

The equation calculates the ratio between the null values of a particular ion in the two ROIs. 

A value of 𝑍𝑖𝑗𝑘 > 𝑍ℎ𝑖𝑔ℎ (𝑍ℎ𝑖𝑔ℎ being a positive value greater than 1) means that the i ion is 

more expressed in k ROI than in j ROI, while 𝑍𝑖𝑗𝑘 < 𝑍𝑙𝑜𝑤 (𝑍𝑙𝑜𝑤 being a positive value much 

lower than 1) means that the i ion is less expressed in k ROI than in j ROI. 

 

The importance of this parameter is assessed in Figure S4. For clusters 1 to 7, we plotted, 

the percentage of pixels that have null concentration for every ion.  

The 𝑍ℎ𝑖𝑔ℎ and 𝑍𝑙𝑜𝑤   values are calculated by following these steps:  

The Z values of all ions, for all cluster-pairs, are calculated according to Eq. A1 

An ordered rank list of all the Z values is created. 

𝑍𝑙𝑜𝑤   is determined considering that this value is a certain percentile PZ of the rank list of Z 

values. 

𝑍ℎ𝑖𝑔ℎ is determined considering that this value is a certain percentile 100 - PZ of the rank 

list of Z values. 

 

Non-null concentration parameters (V parameters) 

Provided that the distribution of the ions concentration is non-normal, we considered the U 

Mann-Whitney test and the concentration fold change (FC) between two ROIs, as a non-null 

concentration parameter.  

 

Generally speaking, if Nj and Nk are high, the random variable U can be regarded as normally 

distributed [30]. The 𝑈𝑖𝑗𝑘 parameter is then normalized following Eq. A2:  

 

𝑉𝑖𝑗𝑘 =
𝑈𝑖𝑗𝑘−𝑚𝑢

𝜎𝑢
     Eq.A2 

 

where 𝑚𝑢 and 𝜎𝑢 are the average and standard deviation of 𝑈𝑖𝑗𝑘 and 𝑉𝑖𝑗𝑘 is a random 

variable with a normalized Gaussian distribution. If V has values close to 1 the similarity 

between the distributions is high, while values close to zero indicate disparate distributions. 

The value obtained for V indicates the similarity between the distributions of two ROIs for an 

ion.  

 

Another parameter often used to compare sets of magnitudes is the fold change, defined as 

the ion median concentration quotient between two ROIs (Eq. A3):  

 

𝐹𝐶𝑖𝑗𝑘 =
𝑀𝑖𝑗

𝑀𝑖𝑘
     Eq. A3 

 

where 𝑀𝑖𝑗 is the distribution median of the i ion in j ROI and 𝑀𝑖𝑘 is the same for k ROI. For 

every i ion, the 𝐹𝐶𝑖𝑗𝑘 parameter is calculated between the j and k ROIs.  

For a pair of ROIs, a Volcano plot [32] can be drawn from the V and FC parameters. In this 

representation, the position occupied by the ions is important: the ions located in the top corners 

generate very different distributions in the two ROIs. The ions at the top left are under-

expressed (𝑉𝑖𝑗𝑘 < 𝑉ℎ𝑖𝑔ℎ   &  𝐹𝑐𝑖𝑗𝑘 < 𝐹𝑐𝑙𝑜𝑤) and the ions at the top right are over-expressed 

(𝑉𝑖𝑗𝑘 < 𝑉ℎ𝑖𝑔ℎ   &  𝐹𝑐𝑖𝑗𝑘 > 𝐹𝑐ℎ𝑖𝑔ℎ).  
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The values 𝑉ℎ𝑖𝑔ℎ, 𝐹𝑐ℎ𝑖𝑔ℎ and 𝐹𝑐𝑙𝑜𝑤 are calculated following the same steps as for 𝑍ℎ𝑖𝑔ℎ and 

𝑍𝑙𝑜𝑤 , but with a difference in the percentile value. The ions located in the areas of interest must 

satisfy the probability of being within a range associated with two random variables; that is to 

say: 

 

 𝑃[𝑉𝑖𝑗𝑘 ≤ 𝑉ℎ𝑖𝑔ℎ, 𝐹𝑐𝑖𝑗𝑘 ≤ 𝐹𝑐𝑙𝑜𝑤] for under-expressed ions and 𝑃[𝑉𝑖𝑗𝑘 ≤ 𝑉ℎ𝑖𝑔ℎ, 𝐹𝑐𝑖𝑗𝑘 ≥

𝐹𝑐ℎ𝑖𝑔ℎ] for over-expressed ions. Assuming that these are independent random variables, we 

obtain 𝑃[𝑉𝑖𝑗𝑘 ≤ 𝑉ℎ𝑖𝑔ℎ] = 𝑃[𝐹𝑐𝑖𝑗𝑘 ≤ 𝐹𝑐𝑙𝑜𝑤] = 𝑃[𝐹𝑐𝑖𝑗𝑘 ≥ 𝐹𝑐ℎ𝑖𝑔ℎ] = √𝑃𝑧/100. That is, the 

percentile that must be used to determine the cutoff values in the volcano plot should be 𝑃𝑉 =

10 ∗ √𝑃𝑍 

 

7.2 Determination of the discriminating figure values and generation of the 

discriminant ions lists 

The contrast parameter 𝐶𝑖𝑗|𝑆𝑝
 of the i ion between the j ROI and all the ROIs (set 𝑆𝑝) is 

calculated according to Eq. B1: 

 

 

                  𝐶𝑖𝑗|𝑆𝑝
=

1

𝑁𝑗
∑ 𝑚𝑖𝑝

𝑗𝑁𝑗
𝑝=1

1

𝑁
∑ ∑ 𝑚𝑖𝑝

𝑘𝑁𝑘
𝑝=1

𝑁𝑆𝑝
𝑘=0

                Eq. B1 

 

  

 

where N are the total number of pixels in 𝑆𝑝, 𝑁𝑗 and 𝑁𝑘 are the number of pixels in the j and k 

ROI’s respectively. 𝑁𝑆𝑝
 is the total number of ROIs in set 𝑆𝑝,  𝑚𝑖𝑝

𝑗
 and 𝑚𝑖𝑝

𝑘  are the magnitude 

of the i ion in pixel p of the j and k ROI, respectively. The list is ordered according to the 𝐶𝑖𝑗|𝑆𝑝
, 

assuming that high values mean high contrast and vice-versa.   
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CHAPTER 4 

 

rMSIannotation: a peak annotation tool for mass 

spectrometry imaging based on the analysis of isotopic 

intensity ratios 
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ABSTRACT: Mass spectrometry imaging (MSI) consist of spatially located spectra with 

thousands of peaks. Only a fraction of these peaks corresponds to unique monoisotopic peaks, 

as mass spectra include isotopes, adducts and fragments of compounds. Current peak 

annotation solutions depend on matching MS features to compounds libraries. We present 

rMSIannotation, a peak annotation algorithm to annotate carbon isotopes and adducts in 

metabolomics and lipidomics imaging mass spectrometry datasets without using supporting 

libraries. rMSIannotation measures and evaluates the intensity ratio between carbon isotopic 

peaks and models their distribution across the m/z axis of the compounds in the Human 

Metabolome Database. Monoisotopic peak selection is based on the isotopic likelihood score 

(ILS) made of three components: image morphology correlation, validation of isotopic 

intensity ratios, and peak centroid mass deviation. rMSIannotation proposes pairs of peaks that 

can be adducts based on three scores:  isotopic pattern coherence, image correlation and mass 

error. We validated rMSIannotation with three MALDI-MSI datasets which were manually 

annotated by experts, and compared the annotations obtained with rMSIannotation and with 

the METASPACE annotation platform. rMSIannotation replicated more than 90% of the 

manual annotation reported in FT-ICR datasets and expanded the list of annotated compounds 

with additional monoisotopic peaks and neutral masses. Finally, we evaluated isotopic peak 

annotation as a data reduction method for MSI by comparing the results of PCA and k-means 

segmentation before and after removing non-monoisotopic peaks. The results show that 

monoisotopic peaks retain most of the biologic variance in the dataset. 

1. Introduction 

Mass spectrometry imaging (MSI) is a technique that can spatially resolve the chemical 

composition of a variety of bio-samples, including animal and plant tissues, to reveal their 

biological mechanisms.1–3 An MSI dataset consists of a collection of mass spectra localized in 

the pixels of an image. Raw mass spectra need to be processed to reduce the variance 

introduced during acquisition (electronic noise, mass drifts, intensity fluctuations, etc.).4 The 

information in a processed dataset consists of spatially resolved discrete m/z features, which 

undergo data analysis steps such as multivariate statistics and compound identification to 

obtain biological knowledge.5–7  

Mass spectrometry dataset contains redundant information, since a single chemical compound 

generates multiple peaks, which can be attributed to isotopes, adducts, fragments, and different 

ionization states. Therefore, the redundant variables in the dataset tend to enlarge the data size 

and hinder statistical analysis.8 Reducing this redundancy to obtain statistically relevant 

variables is crucial to unveiling biological knowledge.9–11   

In this study, we define peak annotation as the process of automatically grouping all peaks 

related to the same molecule, and the ion species to which they correspond.11–13 This involves 

labeling carbon monoisotopic (M+0) and isotopic ions (M+1, M+2, etc.), adducts of the same 

compounds ([M+Na]+, [M+K]+, etc.) and, when possible, assigning putative molecular classes 

with the Kendrick mass defect.14,15 Besides, a neutral monoisotopic mass can be determined if 

two or more adducts can be annotated for a given compound. This allows the assignment of 

molecular formulas with higher confidence. Peak annotation is an essential step prior to peak 

identification, which consists in searching the annotated peaks in libraries of chemical 

compounds to assign them a putative chemical formula and name using MS data and 

confirming each assignment through MSn data and orthogonal techniques.16  

Moreover, peak annotation algorithms are reliable variable selection approaches and greatly 

facilitate the identification process. Annotation ideally allows unifying all peaks coming from 
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the same compound, reducing the number of statistical variables to only one independent 

variable per compound. 

Peak annotation algorithms are more established in LC-MS-based experiments than in MSI. 

Although LC-MS and MSI have different data structure and content, some peak annotation 

strategies in LC-MS can be adapted to MSI datasets. Notable examples are: 

(1) R package CAMERA11 annotates carbon isotopes, adducts, and fragments in a peak list 

by first grouping peaks by peak shape correlation, retention time similarity and correlation 

across samples, and then by checking M+1/M+0 isotopic ratios, and adduct distances. Ratios 

between M+0 and M+1 isotopes are computationally pre-established.   

(2) R package CliqueMS17 annotates adducts using the similarity between coelution profiles 

and a similarity network based on the natural frequency of adduct formation observed in real 

samples.  

(3) R package Astream18 annotates isotopes, fragments, and adducts by using intensity 

correlations across samples, retention time differences, and expected m/z differences.  

In MSI there is no chromatographic separation before ionization and ions frequently overlap, 

even with high resolving power spectrometers (> 20,000). Since MSI is an imaging technique, 

spatial correlation methods can be used to increase peak annotation confidence. To our 

knowledge, only two annotation tools have been developed specifically for MSI applications: 

(1) R package MassPix19 annotates M+0, M+1 and M+2 isotopes by searching for intensity 

ratios between peaks below user defined ratios. After deisotoping, it searches for the m/z of 

M+0 peaks in a self-developed library of lipids to tentatively annotate and identify them. 

MassPix does not consider spatial information or colocalization among isotopic ion images.  

(2) METASPACE annotation platform20 is an online annotation tool in which users upload 

their MSI datasets to be annotated. Its annotation workflow consists of generating isotopic 

patterns from metabolites databases and matching them with the experimental MSI data using 

three different metrics: spatial chaos measure, spatial isotope measure and spectral isotope 

measure. Matches with an overall score higher than a threshold are then given a false discovery 

rate score based on a target-decoy approach.21 The results of this workflow are pairs of 

matching adducts and formulae, which lead to tentative m/z identifications. On the downside, 

it is important to notice that METASPACE requires to uploads datasets with a high mass 

accuracy (<3 ppm) and a resolving power over 70k (m/z 200) for reliable results. In addition, 

METASPACE may be impractical for large experiments since datasets must be uploaded 

through the internet. Finally, despite having METASPACE ’s source code available, it still 

suffers from the black box effect where users are restricted to visualize the annotation results 

and are not able to finely control/adapt the annotation tool themselves. 

Both MassPix and METASPACE use generated isotopic patterns from libraries of 

metabolites, which restrict the annotation to compounds already reported in the libraries. To 

overcome this limitation, we propose rMSIannotation, a new annotation tool based on library-

free criteria optimized for compounds below 1200 Da, included in the MSI data processing R 

package rMSIproc.22 rMSIannotation takes advantage of the high number of pixels in an MSI 

dataset to annotate carbon-based isotopes with single and multiple charges using three scores: 

(1) image morphology, which considers the colocalization among related m/z ion images, (2) 

isotopic pattern profile, which asserts the plausibility of isotopic ratios given an m/z ratio and 

(3) centroid mass deviation, which evaluates the theoretical distance of carbon isotopic 

patterns. Additionally, monoisotopic ions found by the algorithm are compared with theoretical 

mass distances of adducts to generate tentative neutral masses. The algorithm has been tested 

and validated using in silico datasets, experimental datasets with manual identifications and by 

comparing the annotations produced by rMSIannotation with the results provided by 

METASPACE. Users can freely access and/or contribute to rMSIproc at 

<https://github.com/prafols/rMSIproc>. 
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2. Materials and methods 

2.1 Imaging datasets  

Three published datasets were used to test the algorithm: (1) a MALDI-TOF dataset 

consisting of bovine ovarian follicles23, (2) a MALDI-FT-ICR dataset consisting of a bloom-

forming alga during infection24 and (3) a MALDI-FT-ICR dataset consisting of coronal 12 µm-

thick brain sections of adult wild-type C57 mice.20 

2.1.1 MALDI-TOF dataset 

The MALDI-TOF dataset consists of a collection of bovine ovarian follicles.23 The dataset 

was kindly provided by the authors. Details of sample preparation and data acquisition can be 

found in the original paper. The authors identified 43 metabolites in the MSI dataset by first, 

analyzing lipid extracts from the follicular cells with high-resolution LC-MS and direct 

infusion MS/MS structural analyses and second, searching the identifications in the MSI 

dataset. The raw data was exported to imzML format using Bruker FlexImaging software and 

the dataset was then processed using the rMSIproc processing workflow.22 The processing 

pipeline consisted of: (1) smoothing by Savitzky-Golay using a kernel size of 7, (2) spectra 

alignment with two iterations, a 400 ppm max shift, an oversampling of 2 and references for 

low, mid and high of 0, 0.5 and 0.8, (3) mass calibration using previously identified peaks (m/z 

524.372, m/z 760.586 and m/z 824.557) and (4) peak-picking with an SNR threshold set to 5, 

a peak detector window of 12, a peak oversampling of 10, a binning tolerance of 5 scans and a 

binning filter of 0.05. The result was a peak matrix with a total of 235 peaks and 15293 pixels 

within the m/z range between 100 and 1200. 

2.1.2 MALDI-FT-ICR dataset 1 

The MALDI-FT-ICR dataset 1 consists of a bloom-forming alga (Emiliana huxleyi) during 

infection with a virus.24 The dataset was available from MetaboLights25 stored in the study with 

reference MTBLS769. Details of sample preparation and data acquisition can be found in the 

original paper, in which the authors identified 37 metabolites using LC-MS and LC-MS/MS in 

lipidomic experiments performed in liquid cultures. The raw data was exported to imzML 

format using Bruker FlexImaging and the dataset was then processed using rMSIproc. The 

processing pipeline consisted of: (1) smoothing by Savitzky-Golay using a kernel size of 7, (2) 

a spectra alignment with two iterations, a 300 ppms max shift, an oversampling of 2 and 

references for low, mid and high of 0, 0.5 and 1, (3) mass calibration using four previously 

identified peaks (m/z 689.5024, m/z 749.5153, m/z 802.5469, m/z 826.6199 and m/z 902.5782) 

to facilitate the comparison of the results and (4) peak-picking with an SNR threshold set to 

20, a detector window of 10, an oversampling of 10, a binning tolerance of 6 scans and a 

binning filter of 0.05. The result was a peak matrix with a total of 4047 peaks and 10517 pixels 

within the m/z range of 100 to 1200. 

2.1.3 MALDI-FT-ICR dataset 2 

The MALDI-FT-ICR dataset 2 consists of four coronal 12 µm-thick brain sections of an adult 

wild-type C57 mice.20 The dataset was available from MetaboLights25 stored in the study with 

reference number MTBLS313. Details of sample preparation and data acquisition can be found 

in the original paper. In the original work, the dataset consisted of ten sections of two different 

animals. In this work, we used four sections out of five from the first animal as the data for one 
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section was missing. The authors annotated 35 molecules for the first animal using the 

METASPACE platform and validated 16 representative annotations with LC-MS/MS.  

The data was obtained from individual imzML files in processed mode containing the peaks 

list of each section, which was transformed to rMSIproc’s peak matrix format using a mass 

binning of 10 ppms and a bin filter of 1%.  After that, the four peak matrices were combined in 

a single dataset using rMSIproc’s processing pipeline. The resulting peak matrix contained 

1011 peaks and 53241 pixels within a mass range from m/z 100 to m/z 1180. 

2.2 Description of the algorithm 

 The algorithm consists of two modules: isotope annotation and adduct annotation. The 

isotope annotation module detects pairs of isotope candidates and computes the isotopic 

detection metrics for all the peaks in the dataset. The adduct annotation module use the 

information generated by the isotope annotation module and proposes pairs of peaks that could 

be adducts of the same compound. Lastly, all the annotations generated are organized in three 

groups: two groups for the adduct module, differentiated by the amount of information gathered 

during the annotation; and one for the isotope module containing information on the 

monoisotopic ions. Supplementary Figure S9 shows a flow diagram of the algorithm. 

2.2.1 Input data format 

 Raw spectra undergo rMSIproc’s processing workflow,22 which consists of spectral 

smoothing, spectral alignment, mass re-calibration, peak picking, and peak binning of all the 

pixels in the image. The result of this workflow is a peak matrix, in which pixels of the image 

are arranged in rows, m/z features are arranged in columns and the m/z axis is shared between 

all pixels. 

The annotation algorithm uses the rMSIproc peak matrix format as input. Alternatively, 

rMSIproc can create a peak matrix from an imzML file already centroided by third-party 

software. However, it is recommended to use raw data in profile mode to take full advantage 

of the complete rMSIproc processing workflow. 

2.2.2 Isotope annotation 

First, all m/z features in the peak matrix are assumed to be M+0 ions and, for all of them, a 

list of possible M+1 candidates is generated looking for peaks at a mass distance of 1.00336 

Da within a user-defined windows (depending on the spectral resolution of the MS analyzer), 

expressed in number of raw spectra data points. We prefer to specify this mass distance in data 

points instead of ppm since it provides a more constant metric thought all the mass range. 

Alternatively, if spectral data is not available in profile mode, the mass tolerance can be 

specified in ppm. The mass distance is divided by the charge number, if isotopes of ions with 

multiple charges are being searched for. 

Next, the m/z features with one M+1 candidate or more are evaluated pairwise with the 

isotopic likelihood score (ILS) which was developed in-house and consists of the combination 

of three different scores: 1) the image morphology score, 2) the isotopic pattern profile score 

and 3) the centroid mass deviation score. Before computation, the pixels with zero value are 

removed pairwise from both m/z features to increase the discriminant power of the score. 

1. The image morphology score considers that m/z features belonging to the same isotopic 

pattern are colocalized. We estimate colocalization by least squares regression between the 

intensities of M+0 and the M+1 candidate across all the pixels using the coefficient of 

determination (R2). Ions are colocalized if the coefficient is close to 1. 
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2. The isotopic pattern profile score examines the relationship between the experimental and 

the theoretical M+1/M+0 intensity ratios. The experimental intensity ratio is defined as the 

slope of a linear model produced by least squares regression between the M+0 and the M+1 

candidate intensities. The theoretical intensity ratio is calculated inputting the m/z of the 

monoisotopic candidate to a self-developed carbon isotopic ratio model (CIR model). The 

carbon isotopic ratio model contains the distribution of carbon isotopes intensities ratios across 

the m/z axis up to m/z 1200 and delivers the most probable intensity ratio for a given peak mass 

(see section 1 of supplementary information). Lastly, the experimental and theoretical intensity 

ratios are subtracted and fitted in a Gaussian score function which preserves the expected 

variability of the carbon isotopic ratio model. The score gets close to one as the measured 

intensity ratio of a pair of peaks is more likely to result from an actual isotopic profile. 

3. The centroid mass deviation score compares the experimental mass distance between M+0 

and its M+1 with the theoretical mass distance between carbon isotopes (considering the 

charge). The user defines the error tolerance for the mass deviation, which can be introduced 

in ppms or number of data points. The score gets close to one as the error tolerance reduces. 

The three scores are multiplied to calculate the ILS. The pairs of m/z features with an ILS 

greater than the user-defined threshold constitute a monoisotopic/isotopic peak pair. Once all 

the true M+0 m/z features have been found, the full procedure is repeated to evaluate the M+N 

candidates for all the M+0 m/z features until no more candidates are found or N has reached 

the maximum number of iterations. The number of isotopes (N) to search for is a user-defined 

parameter. 

2.2.3 Adduct annotation 

 The algorithm searches for pairs of ions (discarding the features annotated as isotopes) whose 

mass difference fits with a candidate adduct ([M+H]+, [M+Na]+, [M+K]+, user-defined adducts, 

and neutral losses) within a mass tolerance in ppms to generate putative neutral masses. For 

each pair of adduct ions, the algorithm calculates three scores to guide the user to select the 

more probable adduct pairs. The scores are: 

1. Isotopic pattern coherence. When two monoisotopic ions are adducts of the same 

compound, their M+1/M+0 intensity ratio should be the same (unless the ion forming the 

adduct contains carbon, which would slightly modify the isotopic pattern). This is calculated 

as the standard error of the mean M+1/M+0 intensity ratios of both monoisotopic ions. Small 

standard error of the mean indicates good isotopic pattern coherence. 

2. Correlation between the two ions intensities using Pearson’s R. We assume that adducts of 

the same compound exhibit some degree of colocalization. It is expected to obtain less degree 

of colocalization between adducts peaks than between isotopes peaks due to salts 

concentrations variations related to tissue morphology. Nevertheless, the ion images between 

adducts of the same compound should be still similar and very rarely show complementary 

spatial distributions.  

3. Mass error between the M+0 peaks and their putative neutral mass. The neutral mass is 

calculated by subtracting the molecular mass of each adduct ion and averaging the resulting 

neutral masses. Small mass errors indicate a precise putative neutral mass assignation. 

The algorithm allows each m/z feature to be part of different adduct pairs (e.g., an [M+Na]+ 

ion can be paired with an [M+H]+ ion and with an [M+K]+ ion) and even labeled as different 

adducts in different pairs (e.g., an ion can be labeled as [M+Na]+ in one pair and as [M+K]+ in 

a different pair). The calculated scores of each annotation are stored along with each adduct 

pair, which enables the user post-evaluation of all possible adducts pairs to select the most 

feasible annotations. The user is the responsible to choose/validate the more feasible 

annotations provided by the algorithm. 
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Finally, the adduct annotation module generates a list with the neutral masses and its 

annotation scores, facilitating the search in compound libraries for tentative identification. 

2.2.4 Feature annotation groups and output information 

The annotations are divided into three groups (A, B and C) depending on the information 

available to reliably annotate each m/z feature. 

Group ‘A’ contains neutral masses from pairs of M+0 ions cataloged as adducts, where at 

least one isotope is identified for every M+0 ion. The three scores described for adducts can be 

computed for all these pairs. 

Group ‘B’ contains neutral masses from pairs of ions in which, one ion is an M+0, but not the 

other. The isotopic information is not available for the second ion since the algorithm failed to 

assign the corresponding M+1 peak. Therefore, isotopic pattern coherence cannot be computed 

in this annotation group. 

Group ‘C’ contains the m/z ratios of all M+0 annotated ions. Ions only reported in group C 

are, therefore, annotated as M+0, but their adduct identity is unknown. This group consists of 

a summary of the isotope annotation module, in which ILS is the key quality parameter. 

The output of rMSIannotation consists of the annotations in groups A, B and C (which can be 

exported as CSV files); the computations of the ILS for all candidates during isotope 

annotation, and two vectors of the monoisotopic and isotopic ions. The vectors of monoisotopic 

and isotopic ions can be used to filter the peak matrix to remove the isotopic peaks, or to work 

with only the monoisotopic ions found. 

3. Results  

First, we tested the performance of rMSIannotation using two in silico MSI datasets. The 

datasets were developed simulating TOF and FT-ICR mass analyzers experiment in which we 

know a priori the identity of all the m/z features. Section 2 of supplementary information 

contains the detailed procedure. Then, we used different ILS thresholds with the in silico 

datasets to test the performance of rMSIannotation’s criteria and to obtain optimal ILS 

thresholds. The optimal ratios found were 0.55 to 0.7 for TOF datasets and 0.7 to 0.8 for FT-

ICR datasets. Next, we compared the number of coinciding annotations produced by sweeping 

the ILS threshold in a range of 0.2 to 0.9 for the MALDI-TOF dataset and MALDI-FT-ICR 

dataset 1. This allowed us to determine whether the optimal ILS thresholds obtained with the 

in silico dataset were applicable to experimental data. The results show that the number of 

annotations provided by rMSIannotation coinciding with the manual annotations decreases 

slowly as we increase the ILS threshold until it reaches the optimal thresholds (Figure S5). 

After this point, the number of coinciding annotations drastically decreases. This suggests that 

the optimal ILS thresholds obtained in silico are applicable experimental data and can be setup 

as default parameter values.  Refer to Section 3 of supplementary information for the complete 

study. 

Second, we annotated using rMSIannotation three experimental datasets acquired with TOF 

and FT-ICR mass analyzers from papers that reported manually identified compounds.  We 

compared the reported annotations with the ones generated by rMSIannotation. Later, we 

compared the annotations of rMSIannotation with the results obtained using METASPACE 

annotation platform on the FT-ICR datasets. 

Finally, we evaluated the effects of retaining only M+0 ions during the post-processing of 

MSI datasets, using principal component analysis (PCA) and k-means clustering.  
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3.1 MALDI-TOF annotation results 

The MALDI-TOF dataset consists of a collection of bovine ovarian follicle tissues in which 

the authors identified 43 metabolites (see Figure 1). After the raw data had been processed, the 

peak matrix was fed to the annotation algorithm. The parameters used were: isotope search up 

to M+3, isotope mass tolerance in data points mode and up to 4 data points (~100 ppms at m/z 

800 for this dataset), ILS threshold set to 0.6 and default [M+K]+, [M+H]+ and [M+Na]+ 

adducts searched for within a window of 30 ppm. 

With these parameters, rMSIannotation generated 16 putative neutral masses in group A and 

22 in group B, and found a total of 42 monoisotopic ions in group C. All the annotations of 

each group are presented in Supplementary Table S1, S2 and S3. 

First, we compared the adduct ions found in groups A and B with the adduct ions from the 

original publication. This was done by searching in groups A and B for the exact masses of the 

compounds identified. Then, we searched for monoisotopic ions without adduct annotation in 

group C. Table 1 shows the monoisotopic ions found by rMSIannotation that coincide with 

those identified in the original work. The ions in group C that also appear in groups A or B 

(annotated as monoisotopic ions) display its ILS value 

We annotated as monoisotopic 23 of the ions in the list of 43 provided by the authors in the 

original study (see Figure 1). There are three causes explaining why the other 20 ions provided 

by the authors were not annotated as monoisotopic ions by rMSIannotation: (1) the peak 

picking algorithm detected only the M+0 ion due to low intensity of the subsequent isotopes; 

(2) all the ions of the compound have an intensity group below the S/N ratio, and (3) 

overlapping isotopic patterns of isobaric species which could not be properly resolved by the 

mass analyzer. Causes 1 and 2 are related to the presence of only one peak per compound in 

the MSI dataset as the provided identifications were obtained using LC-MS and direct infusion 

MS/MS. In addition, we further analyzed the case of overlapping with in silico overlapping 

isotopic patterns with different resolving power to determine how it affects rMSIannotation 

(section 4 of supplementary information). The results show that, rMSIannotation is tolerant to 

some extend of peak overlapping and the resulting annotation depend on the two overlapped 

compounds abundance ratios and on the spectral resolving power. As expected, a higher 

resolving power increases the annotation performance, but even when lowering the resolving 

power the algorithm still provides reliable results by annotating peak in the isotopic pattern 

(M+1, M+2…) only when isotopic ratio criteria is met. Therefore, monoisotopic peaks (M+0) 

highly overlapped with the M+1 peak of another molecule will not be annotated as part of an 

isotopic pattern of the former molecule. Supplementary Table S4 shows which category applies 

to the non-annotated ions and Supplementary Figures S10, S11 and S12 show examples of each 

group defined above, respectively. It is worth mentioning that some of the non-annotated ions 

could have been annotated by reducing the SNR in the preprocessing steps of the datasets 

although uninformative noisy peaks may be introduced hampering the subsequent data 

analysis.  

Lastly, we used the Human metabolome database26 and Lipid maps27 to putatively identify 

the ions annotated by rMSIannotation that had not been identified in the original paper. We 

identified 1 neutral mass with a mass error below 30 ppms that belonged to the CHCA molecule 

used as matrix (we found 9 common adduct ions by hand in group C), and 4 more monoisotopic 

masses, resulting in 13 new monoisotopic ions identified. Supplementary Table S5 shows the 

putative name and molecular formula for the 4 monoisotopic masses in group C (CHCA related 

annotations are excluded). 
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3.2 MALDI-FT-ICR annotation results  

The MALDI-FT-ICR dataset 1 consists of a bloom-forming alga (Emiliana huxleyi) analyzed 

during a viral infection.24 The authors of the original paper identified 37 metabolites. The 

algorithm parameters used were: isotope search up to M+3, isotope mass tolerance in ppm 

mode up to 10 ppms, ILS threshold set to 0.7 and [M+K]+, [M+H]+ and [M+Na]+ adducts 

searched up to a maximum of 5 ppm mass tolerance. 

With these parameters, rMSIannotation generated 31 putative neutral masses in group A and 

95 putative neutral masses in group B, and found a total of 187 monoisotopic ions in group C. 

All the annotations of each group are presented in Supplementary Table S6, S7 and S8.  

Considering all the matching annotations, we found 28 ions on the list of 37 provided by the 

authors of the original study (Figure 1) and, we obtained 2 additional adducts for two of the 

compounds in the original work annotation list. Table 2 shows all the coinciding annotations.  

We observed that in this dataset several M+1 peaks (and subsequent isotopes) have some pixels 

with null value due to the data reduction mode for FT-ICR raw data which automatically 

discarded low intensity signals. This produces a bias in the isotopic pattern profile score which 

can increase or decrease the real ILS score. To solve this problem, the algorithm is designed to 

discard pairwise pixels with null values to ensure proper linear modelization. Supplementary 

Figure S13 shows the example of ion m/z 826.620 corresponding to compound DGCC 40:7, in 

which the ILS is 0.877 if null pixels are included and 0.984 if null pixels are discarded. 

rMSIannotation was not able to annotate 9 of the manually identified compounds because of 

their low intensity. This means that the M+1 and subsequent isotopes were not present in the 

peak matrix or there were too many null pixels to be properly corrected by the algorithm. 

Supplementary Table S9 shows these compounds and Supplementary Figure S14 shows the 

case of ions m/z 826.640 and m/z 812.622.  

Various compound libraries were used to tentatively assign the new annotations generated by 

rMSIannotation not reported in the original work. Supplementary Table S10 shows the putative 

names and molecular formulae assigned to 19 monoisotopic masses, according to METLIN,28 

Lipid Maps27 and Dictionary of Natural Products.29 It is worth mentioning that rMSIannotation 

helped to find different adducts of common alkenones produced by Emiliana huxleyi.30,31 

Additionally, we submitted the MALDI-FT-ICR dataset 1 to METASPACE to compare its 

performance against rMSIannotation. Table 3 lists all the manually identified compounds by 

the authors of the datasets and shows which ions were annotated by rMSIannotation and/or 

METASPACE. In case of METASPACE, we show the results for FDR 10%, which are 

showcased as the default results in the online platform, and the results for FDR 20%. The 

libraries selected in METASPACE were the Human Metabolome Database, Lipid Maps and 

Chemical Entities of Biological Interest. For FDR 10%, taking as a reference the manually 

identified compounds, METASPACE found 12 coinciding monoisotopic ions, and for FDR 

20% found 20, which is less than the 28 found by rMSIannotation.  

To further compare the performance of rMSIannotation with the METASPACE annotation 

platform, we tested rMSIannotation with the MALDI-FT-ICR dataset 2, consisting of four 

coronal brain sections of two adult wild-type C57 mice, which were previously annotated by 

the authors of METASPACE, reporting 31 compounds. The parameters used with 

rMSIannotation for the MALDI-FT-ICR dataset 2 were: ILS threshold set to 0.7, isotope mass 

tolerance in ppm mode up to 5 ppms and [M+K]+, [M+H]+ and [M+Na]+ adducts searched up 

to a maximum of 5 ppm mass tolerance.  rMSIannotation was able to putatively identify all the 

31 compounds annotated using METASPACE. Moreover, rMSIannotation found 202 

monoisotopic ions in group C and a total of 263 neutral masses combining groups A and B. 

Table 4 show the lists of the 31 annotated ions, together with its ILS values. We obtained ILS 

values over 0.9 for every annotated compound indicating high confidence in the annotation and 

confirming the original METASPCAE results. 
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3.3 Effect of reducing variables to monoisotopic ions in multivariate analysis  

In section 3.2 we have shown the ability of rMSIanotation to identify monoisotopic ions and, 

thereby, to annotate the isotopes which carries redundant information. There are also many 

peaks that are not annotated that could correspond to overlapped peaks, matrix derived peaks, 

etc. In this section, we used Principal Component Analysis (PCA) and image segmentation to 

verify whether discarding the redundant peaks corresponding to the molecules isotopic pattern 

would represent a significant loss of biological information.  

We standardized the data and then we compared the PCA scores of the complete dataset with 

the PCA scores of a reduced version of the dataset containing only monoisotopic ions. This 

involves selecting 17.87% (42 out of 235) of the variables for the TOF dataset and 4.62% (187 

out of 4047) of the variables for the FT-ICR dataset 1. We compared the images produced by 

the three principal components on the tissue in each case. We compared the spatial structures 

displayed in the principal component images of the complete and the reduced datasets by 

computing its similarity using Pearson’s R correlation. For the TOF dataset the correlations 

were:  R = 0.99 (PC1), R = 0.96 (PC2), and R = 0.90 (PC3); for the FT-ICR dataset 1 the 

correlations were: R = 0.91 (PC1), R = -0.87 (PC2), R = 0.90 (PC3). In both cases, the principal 

components exhibit a very similar distribution. Figure 2 shows the images of the first three 

principal components encoded in RGB color space for each studied case. As it can be seen, the 

tissue morphology is preserved in the reduced dataset.  

Next, we analyzed the importance of monoisotopic peaks in the loadings of the first two 

principal components. Figure 3 shows the loadings of PC1 and PC2 of all m/z features on both 

peak matrices and distinguishes between monoisotopes, isotopes and non-annotated ions. The 

monoisotopic ions tend to have larger loadings on the PCA, indicating that the variance is 

mainly led by monoisotopic peaks. 

Finally, we also analyzed the extent to which monoisotopic peaks influence a segmentation 

process. To this end, we applied the k-means algorithm to the datasets with all the peaks, and 

with only the monoisotopic ions. The number of clusters was selected to suit the morphology 

of the tissues. Figure 4 shows the results of this procedure. The clusters have the same pixel 

distribution for both datasets, which indicates that the monoisotopic peaks have a predominant 

role in establishing the centers of the clustering. 

4. Discussion  

The annotation of low molecular weight compounds (below 1200 Da) in MSI datasets still 

has some limitations. As shown in MALDI-TOF annotation results, datasets acquired with TOF 

mass spectrometers with a resolving power less than 30,000 tend to suffer from overlapping 

peaks (i.e. isobaric species with very similar mass do not resolve completely). This problem 

can still arise, although to a much lesser extent, with high resolving power MS analyzers. For 

instance, if the M+0 peak of a compound A overlaps the M+1 peak of another compound B, 

the ILS of the M+0 peak of compound B decreases, making it difficult to annotate 

(supplementary information, section 4). Moreover, when both compounds are co-localized in 

the same regions of the tissue, the overlapping is harder to detect as peak picking cannot find 

pixels where both peaks are well resolved.  These cases could be addressed with peak 

deconvolution algorithms, which would split all the isotopic ions from overlapping peaks 

increasing the scores of peak picking algorithms and generating more annotations. At the same 

time, peak deconvolution algorithms could benefit from previous peak annotation results by 

searching for overlapped peaks for which the peak annotation algorithm has previously failed. 

This would reduce the load of the overall process.  As far as we know, no deconvolution 
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algorithms have been reported with this exclusive purpose in the context of MSI, which could 

be a line of further work. We presume that overlapping is one of the reasons why METASPACE 

encourages users to submit ultra-high-resolution datasets.  

Adduct annotation is a problem that is harder to address than isotope annotation. First, there 

are no general rules applicable to the intensity ratios between M+0 adduct ions, since adduct 

generation depends on experimental conditions.17 Some compounds tend to ionize better with 

one specific adduct32, but this still depends heavily on the sample preparation and the matrix 

applied. Second, the mass distances between adducts may be like mass distances between 

different compounds or neutral loses. For example, the mass of the ammonium cation is 18.034 

Da, which is very close to the mass of a neutral loss of water (18.011 Da). And third, the 

colocalization of adducts of the same compound can be affected by the natural abundance of 

the adduct elements, for instance, some structures in the brain tissue have a high intrinsic 

concentration of potassium which can affect the distribution of potassium adducts across the 

tissue and their intensity in comparison to other adducts.33 Therefore, we rely on correlations 

between adduct ions to assess to likelihood of a set of peaks to originate from the same chemical 

compound. These limitations result in adduct annotations being less reliable than isotope 

annotations. To address this, the rMSIannotation strategy consists in presenting to the user all 

the possible annotations with its scores to facilitate a manually guided confirmation of the 

results. 

In the presented FT-ICR dataset 1, rMSIannotation found more coinciding annotations with 

the original paper than METASPACE. For the FT-ICR dataset 2, we were able to replicate the 

previous METASPACE annotations. These results could be attributed to the differences in the 

isotope annotation criteria. METASPACE annotations are based on isotopic patterns generated 

using libraries, reducing the possible annotations to the compounds available in those libraries. 

This limits the annotation of MSI experiment from understudied organisms like microalgae and 

precludes compound discovery.  On the other hand, rMSIannotation measures and validates 

isotope peaks intensity using intrinsic chemical information, common for all organic 

compounds, without relying on compound libraries. Moreover, the output of rMSIannotation 

can be easily integrated in custom R scripts to filter ions and select the non-redundant features 

to approach the bio-statistical analysis more reliably.      

We also investigated the isotope annotation module as a variable selection method by 

retaining only monoisotopic peaks. The results show that monoisotopic peaks play a 

predominant role (i.e. a considerable weight in the loadings) in determining the result of a PCA 

(Figure 2 and 3), and in establishing the centers of a common clustering procedure like k-means 

(Figure 4). This is probably because monoisotopic peaks have more intensity than their isotopes 

(this only applies to molecules with fewer than 93 carbon atoms) and that annotated 

monoisotopic peaks tend to have larger intensities than non-annotated monoisotopic peaks. 

This suggests that the PCA analysis is mainly driven by monoisotopic peaks, whereas the rest 

of MS signals are just introducing redundancy to the data.32  

5. Conclusion 

We presented rMSIannotation, a software tool that annotates carbon isotopes and adducts for 

MSI dataset in the low mass range. rMSIannotation is useful for putative identification of 

compounds and variable reduction strategies; and can be integrated in any low-weight 

compounds MSI data analysis workflows. The results show that rMSIannotation automatically 

extracts valuable information from both high (TOF) and ultra-high (FT-ICR) resolution 

spectrometers. The presented algorithm demonstrated a high performance and annotation 

confidence when compared to the established metabolomics MSI annotation platform: 

METASPACE and to the manual annotation approaches.  
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The tool is integrated into the MSI processing R package rMSIproc 

<https://github.com/prafols/rMSIproc>, which processes and annotates data within the same 

software environment. This expands the possibilities of MSI data analysis for biological 

research by reducing data processing and manual inspection time. 
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7. Tables and Figures 

 
Table 1. Coinciding annotations of MALDI-TOF dataset between rMSIannotation and author’s manual identifications. 

Name 
 

Formula Adduct m/z 
Mass error 

(ppm) 

Annotation 

group 
ILS 

Phosphocholine  C5H15NO4P [M]+ 184.141 364.560 C 0.842 

LPC 16a:0  C24H50NO7P [M+H]+ 496.367 54.866 A 0.848 

LPC 16a:0  C24H50NO7P [M+Na]+ 518.348 50.717 B --- 

LPC 18a:1  C26H52NO7P [M+H]+ 522.387 60.460 B 0.812 

LPC 18a:0  C26H54NO7P [M+H]+ 524.372 1.781 C 0.746 

LPC 16a:0  C24H50NO7P [M+K]+ 534.318 41.833 A 0.662 

LPC 18a:1  C26H52NO7P [M+Na]+ 544.363 47.099 B --- 

LPC 18a:1  C26H52NO7P [M+K]+ 560.338 47.653 B --- 

SM(d18:1/C16:0)  C39H79N2O6P [M+H]+ 703.576 1.632 B --- 

SM(d18:1/C16:0)  C39H79N2O6P [M+Na]+ 725.543 19.014 A 0.853 

PC 32a:0  C40H80NO8P [M+H]+ 734.562 10.116 A 0.866 

SM(d18:1/C16:0)  C39H79N2O6P [M+K]+ 741.510 27.960 A 0.916 

PC 32a:0  C40H80NO8P [M+Na]+ 756.526 33.542 A 0.672 

PC 34a:2  C42H80NO8P [M+H]+ 758.548 28.253 B 0.705 

PC 34a:1  C42H82NO8P [M+H]+ 760.574 14.569 A 0.829 

PC 32a:0  C40H80NO8P [M+K]+ 772.508 22.411 A 0.641 

PC 34a:2  C42H80NO8P [M+Na]+ 780.537 18.418 B --- 

PC 34a:1  C42H82NO8P [M+Na]+ 782.539 35.814 A 0.877 

PC 36a:2  C44H84NO8P [M+H]+ 786.585 19.999 A 0.692 

PC 34a:2  C42H80NO8P [M+K]+ 796.522 4.159 B --- 

PC 34a:1  C42H82NO8P [M+K]+ 798.517 30.009 A 0.866 

PC 36a:2  C44H84NO8P [M+Na]+ 808.555 34.229 B --- 

PC 36a:2  C44H84NO8P [M+K]+ 824.530 32.277 A 0.642 

*A missing ILS value correspond to ions where the isotopic pattern could not be annotated and are exclusively in group B.  

 

Table 2. Coinciding annotations of MALDI-FT-ICR dataset 1 between rMSIannotation and author’s manual 

identifications. 

Name Formula Adduct m/z Mass error (ppm) Annotation group ILS 

Sulfonioglycerolipid 28:0 C38H72O8S [M+H]+ 689.502 0.710 C 0.959 

Sulfonioglycerolipid 30:0 C40H76O8S [M+H]+ 717.534 0.382 C 0.935 

DGCC 36:6 C46H77NO8 [M+H]+ 772.573 0.653 C 0.996 

PC 36:6 C44H76NO8P [M+H]+ 778.538 1.732 C 0.955 

DGCC 37:6 C47H79NO8 [M+H]+ 786.588 1.376 C 0.992 

Sulfonioglycerolipid 36:6 C46H76O8S [M+H]+ 789.533 1.125 C 0.984 

PDPT 36:6 C44H75O8PS [M+H]+ 795.500 1.167 C 0.972 

TG 46:1 C49H92O6 [M+Na]+ 799.679 1.309 C 0.943 

PDPT 37:6 C45H77O8PS [M+H]+ 809.516 1.472 C 0.836 

Sulfonioglycerolipid 38:6 C48H80O8S [M+H]+ 817.565 0.784 C 0.975 

PDPT 38:6 C46H79O8PS [M+H]+ 823.530 1.524 C 0.941 

DGCC 40:7 C50H83NO8 [M+H]+ 826.620 0.632 C 0.984 

TG 48:1 C51H96O6 [M+Na]+ 827.710 1.148 C 0.919 

PC 40:7 C48H82NO8P [M+H]+ 832.585 1.183 C 0.767 

Sulfonioglycerolipid 40:7 C50H82O8S [M+H]+ 843.579 3.861 C 0.879 

TG 50:6 C53H90O6 [M+Na]+ 845.664 0.376 C 0.735 

PDPT 40:7 C48H81O8PS [M+H]+ 849.547 0.663 C 0.971 

TG 50:2 C53H98O6 [M+Na]+ 853.726 1.619 C 0.805 

PC 44:12 C52H80NO8P [M+H]+ 878.570 0.524 C 0.968 

PDPT 42:9 C50H81O8PS [M+H]+ 895.530 1.899 C 0.856 

TG 54:7 C57H96O6 [M+Na]+ 899.710 1.531 B 0.966 

BLL 44:12 C54H79NO10 [M+H]+ 902.578 0.264 C 0.796 

TG 56:7 C59H100O6 [M+H]+ 905.759 0.295 B --- 

TG 54:7 C57H96O6 [M+K]+ 915.685 1.256 B --- 

TG 56:7 C59H100O6 [M+Na]+ 927.742 1.311 B 0.899 

TG 58:16 C61H86O6 [M+Na]+ 937.634 0.080 C 0.910 

TG 58:12 C61H94O6 [M+Na]+ 945.695 1.332 C 0.883 

TG 58:11 C61H96O6 [M+Na]+ 947.711 0.458 C 0.907 

TG 58:10 C61H98O6 [M+Na]+ 949.727 1.332 C 0.914 

TG 58:9 C61H100O6 [M+Na]+ 951.743 1.310 C 0.888 

*A missing ILS value correspond to ions where the isotopic pattern could not be annotated and are exclusively in group B.  
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Table 3. Coinciding annotations of MALDI-FT-ICR dataset 1 between rMSIannotation and METASPACE. 

Formula Adduct m/z 
METASPACE 

(FDR 10%) 

METASPACE 

(FDR 20%) 
rMSIannotation 

C38H72O8S [M+H]+ 689.502 - - x 

C40H76O8S [M+H]+ 717.534 - - x 

C40H77O8PS [M+H]+ 749.515 - x - 

C46H77NO8 [M+H]+ 772.573 - - x 

C44H76NO8P [M+H]+ 778.538 x x x 

C47H79NO8 [M+H]+ 786.588 - - x 

C46H76O8S [M+H]+ 789.533 - x x 

C44H75O8PS [M+H]+ 795.501 x x x 

C49H92O6 [M+Na]+ 799.679 x x x 

C46H75NO10 [M+H]+ 802.547 - - - 

C45H77O8PS [M+H]+ 809.516 x x x 

C44H87NO10 [M+Na]+ 812.622 - - - 

C50H94O6 [M+Na]+ 813.695 x x - 

C48H80O8S [M+H]+ 817.565 - - x 

C46H79O8PS [M+H]+ 823.533 x x x 

C45H87NO10 [M+Na]+ 824.622 - - - 

C50H83NO8 [M+H]+ 826.620 - - x 

C45H89NO10 [M+Na]+ 826.640 - - - 

C51H96O6 [M+Na]+ 827.712 x x x 

C48H82NO8P [M+H]+ 832.585 - - x 

C50H82O8S [M+H]+ 843.579 - - x 

C53H90O6 [M+Na]+ 845.664 - x x 

C48H81O8PS [M+H]+ 849.547 x x x 

C53H98O6 [M+Na]+ 853.726 - x x 

C53H100O6 [M+Na]+ 855.746 - - - 

C52H80NO8P [M+H]+ 878.569 x x x 

C49H91NO11 [M+Na]+ 892.649 - - - 

C50H81O8PS [M+H]+ 895.531 - x x 

C57H96O6 [M+Na]+ 899.712 x x x 

C54H79NO10 [M+H]+ 902.578 - - x 

C59H100O6 [M+H]+ 905.759 - x x 

C57H108O6 [M+Na]+ 911.804 - - - 

C57H96O6 [M+K]+ 915.685 - - x 

C59H100O6 [M+Na]+ 927.742 x x x 

C61H86O6 [M+Na]+ 937.634 - - x 

C61H94O6 [M+Na]+ 945.695 - x x 

C61H96O6 [M+Na]+ 947.711 - x x 

C61H98O6 [M+Na]+ 949.727 x x x 

C61H100O6 [M+Na]+ 951.743 - x x 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
PEAK ANNOTATION AND DATA ANALYSIS SOFTWARE TOOLS FOR MASS SPECTROMETRY IMAGING 
Lluc Sementé Fernández 



129 

 

Table 4. Coinciding annotations of MALDI-FT-ICR dataset 2 between rMSIannotation and METASPACE. 

Formula Adduct m/z rMSIannotation ILS  

C35H66O4 [M+H]+ 551.503 x 0.977 

C37H68O4 [M+H]+ 577.519 x 0.975 

C28H33O14 [M+Na]+ 616.176 x 0.988 

C37H71O8P [M+Na]+ 697.478 x 0.938 

C37H71O8P [M+K]+ 713.452 x 0.965 

C39H73O8P [M+Na]+ 723.494 x 0.957 

C41H83N2O6P [M+H]+ 731.606 x 0.909 

C40H80NO8P [M+H]+ 734.569 x 0.988 

C39H73O8P [M+K]+ 739.468 x 0.951 

C39H79N2O6P [M+K]+ 741.531 x 0.963 

C41H82NO8P [M+H]+ 748.585 x 0.979 

C41H83N2O6P [M+Na]+ 753.588 x 0.976 

C40H80NO8P [M+Na]+ 756.551 x 0.977 

C42H84NO8P [M+H]+ 762.601 X 0.962 

C41H83N2O6P [M+K]+ 769.562 x 0.982 

C43H74NO7P [M+Na]+ 770.510 x 0.912 

C40H78NO8P [M+K]+ 770.510 x (isobaric) 0.912 

C43H76NO7P [M+Na]+ 772.525 x 0.967 

C40H80NO8P [M+K]+ 772.525 x (isobaric) 0.967 

C42H84NO8P [M+Na]+ 784.583 x 0.924 

C45H76NO7P [M+Na]+ 796.525 x 0.896 

C42H80NO8P [M+K]+ 796.525 x (isobaric) 0.896 

C45H80NO7P [M+Na]+ 800.557 x 0.797 

C42H84NO8P [M+K]+ 800.557 x (isobaric) 0.797 

C43H78NO8P [M+K]+ 806.510 x 0.921 

C44H80NO8P [M+K]+ 820.525 x 0.968 

C44H84NO8P [M+K]+ 824.557 x 0.950 

C44H86NO8P [M+K]+ 826.572 x 0.970 

C45H78NO8P [M+K]+ 830.510 x 0.942 

C46H84NO8P [M+Na]+ 832.583 x 0.937 

C46H80NO8P [M+K]+ 844.525 x 0.968 

C46H82NO8P [M+K]+ 846.541 x 0.919 

C46H84NO8P [M+K]+ 848.557 x 0.958 

C48H91NO8 [M+K]+ 848.638 x 0.959 

C48H84NO8P [M+K]+ 872.557 x 0.933 

 

 

 

 
Figure 1. Diagrams representing the number of identifications reported by the authors of the datasets, the number 

of M+0 annotations produced by rMSIannotation in group C and the number of coinciding and new putative 

compound annotations found using rMSIannotation. 
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Figure 2. Representation of the first three principal components on the tissue in RGB. Red channel for PC1, green 

channel for PC2 and blue channel for PC3. a) TOF dataset with all the peaks. b) TOF dataset with only annotated 

monoisotopic peaks. c) FT-ICR dataset with all the peaks. d) FT-ICR with only annotated monoisotopic peaks. 

 

 

 

Figure 3. a) Loadings of PC1 and PC2 of the TOF dataset b) Loadings of PC1 and PC2 of the FT-ICR datasets. 

Every point in the graphs represents an m/z feature in the datasets. Green points represent the peaks annotated as 

monoisotopic, blue points are peaks annotated as isotopes (M+1, M+2, etc.) and red points are peaks that have 

not been annotated by rMSIannotation. 
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Figure 4. a) k-means clustering of the TOF dataset with all peaks with k = 3. b) k-means clustering of the TOF 

dataset with only the monoisotopic ions with k = 3. c) k-means clustering of the FT-ICR dataset with all peaks 

with k = 4. d) k-means clustering of the FT-ICR dataset with only the monoisotopic ions with k = 4. 

7. Supporting information 

7.1. Carbon isotopic ratio (CIR) model  

The natural abundance of carbon isotopes is 98.98% for 12C and 1.11% for 13C . This 

produces unique isotopic patterns related with the number of carbon atoms and, hence, the 

molecular weight. In order to calculate the isotopic pattern score (see Section 3.2), a reference 

for the M+1/M+0 intensity ratio needs to be generated to evaluate the experimental ratio 

between isotopic and monoisotopic candidate peaks. To do so, a carbon isotopic ratio (CIR) 

model is derived, which explains the overall tendency in intensity ratios between isotopes and 

their monoisotopic peaks in terms of their molecular weight (in Da). If the ions detected are 

single charged, the CIR model produces a theoretical reference of M+0/M+1 ratio for a given 

molecular weight.  

The CIR model was derived using all the molecules in the Human Metabolome Database 

(HMDB) with a molecular weight below 1200 Da. Figure S1 shows the M+1/M+0 isotope 

intensity ratios versus the monoisotopic neutral mass of all molecules in the HMDB, where 

each point represents a single molecular formula. There is a clear positive linear relationship 

between both variables, as carbon atoms are the main building block in organic compounds.  
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Figure S1. Scatter plot representing the monoisotopic molecular weight of metabolites included in HMDB (below 

m/z 1200) against the M+1/M+0 intensity ratio. Each point in the image represents a unique molecular formula. 

The blue line indicates the best fit of the model.  

Using this information, a linear model was inferred to calculate an expected M+N/M+0 

intensity ratio given an m/z of a mono-charged ion. For N = 1, the relationship between 

M+1/M+0 intensity ratio and molecular weight is linear. The model follows the equation: 

𝑀 + 1 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝑀 + 0 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
= 7.02 · 10−4 · 𝑚/𝑧 − 0.03851 

7.2. In silico dataset 

An in silico dataset was developed with the aim to provide a ground truth for testing the 

algorithm developed. The dataset was designed to display similar characteristics of a real MSI 

dataset:  

1) several m/z signals, some of which are correlated as they simulate to be produced by the 

same compounds; 2) a defined morphology caused by signals at different intensities; 3) spatial 

noise; and 4) variations in the m/z axis.1) The theoretical isotopic pattern of 7 organic 

molecules was generated using the enviPat software1. The chemical formulas of the seven 

molecules were: C38H72O8S, C40H77O8PS, C45H120, C49H92O6, C50H83NO8, C52H80NO8P and 

C61H96O6. For each molecule, four carbon isotopes (M+0 to M+3) of a single adduct ([M+H]+, 

[M+Na]+ or [M+K]+) were generated. To challenge the algorithm, a false peak was added 1 Da 

before all M+0 peaks. This allows the algorithm to compute a score for all the real peaks of the 

patterns. Also, two out of seven molecules were given extra adducts, one consisting of [M+Na]+ 

and [M+K]+, and the other [M+H]+, [M+Na]+ and [M+K]+. So there was a total of 49 peaks. 

2) A brain image of 258717 pixels was constructed by taking the morphology of a mouse 

brain image from the Brain Atlas2 as a reference. The brain was segmented into 11 regions. All 

the peaks from the 7 molecules were placed in the regions at different concentrations to 

preserve the theoretical isotopic patterns and produce clear differences between regions. Figure 
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S2 shows the mean spectrum of the 11 regions in the brain along with the molecular formula 

of the simulated compounds.  

3) Seven (one per molecule) simplex noise patterns (using the R package ambient3) were 

added to all the peaks from the same molecule to generate spatial structures similar to 

biological tissue morphologies. Also, two different levels of Gaussian noise, with standard 

deviations of 0.05 and 0.01, were applied to each individual peak to create two slightly different 

matrices: one simulating experiments using a TOF mass analyzer (noisier) and the other a FT-

ICR (less noisy). The Gaussian noise applied produces differences in the isotopic patterns 

between pixels and results in more heterogeneous regions.  

4) Different levels of mass shift were added to the mass axis of both peak matrices using 

normal noise to simulate differences in mass accuracy between mass analyzers. For the TOF 

dataset the mass shift had a standard deviation of 20 ppms while for the FT-ICR the standard 

deviation was 5 ppms.  

The resulting peak matrices of this process had 49 m/z features as columns, and 258717 

pixels as rows. Although the number of m/z features is smaller than in a real dataset, the 

purpose of this matrix was not to accurately reproduce a real dataset but to provide a ground 

truth with which to test the criteria developed. Figure S3 illustrates several steps of the process. 

 

Figure S2. Representation of the in silico isotopic patterns of the seven molecules for each of the eleven 

regions  
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Figure S3. a) Brain segmented into 11 regions used as support for the in silico data b) Intensity representation of 

the in silico ion m/z 659.942. The up-regulated and down-regulated regions are distinguishable, and the simplex 

noise pattern generates globular structures all over the image. c) Scatter plot of the intensity of one the M+0 ions 

against its M+1 intensity from both peak matrices. Each point represents a pixel of the image. Different levels of 

noise were consistently applied through all the pixels in an attempt to simulate the performance of different mass 

analyzers. d) Box plot of the mass deviation introduced into the mass axis of the peak matrices. This mass 

indetermination represents the difference in the performance of peak picking algorithms with TOF and FT-ICR 

mass analyzers.   

7.3. ILS threshold optimization 

In order to determine the ILS optimal threshold to detect the maximum number of real 

monoisotopic peaks without introducing artifacts and to evaluate the robustness of 

rMSIannotation, we worked on in silico datasets plus experimental MSI data. In this section 

we will outline the procedure that we implemented for ILS threshold determination. The 

development of the in silico datasets is shown in section 2 of the supplementary materials and 

the experimental datasets are introduced in section 2 of the main article and explored in section 

4 of the main article.The in silico datasets were analyzed using ROC curve analysis and the 

Matthews correlation coefficient (MCC) as a measure of the quality of binary classifiers⁠.4 To 

create the ROC curve, we ranged the ILS threshold from 0 to 1 in 200 steps. For each score 

value, we calculated its confusion matrix: a matrix that summarizes the number of correct and 

incorrect predictions that the algorithm can make on a set of test data for which the true values 

are known (i.e. the in silico dataset). The confusion matrix has four types of observations: true 

positives (TP), true negatives (TN), false positives (FP) and false negatives (FN), which are 

necessary for defining precision (TP/(TP+FP)) and MCC.Figure S4 summarizes the 

performance tests of the annotation algorithm. Solid lines represent the FT-ICR in silico peak 
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matrix and dashed lines the TOF in silico peak matrix. The recommended ILS threshold is 

reached when MCC (red line) and precision (blue line) coincide at 1, which means that there 

are no misclassified peaks. The recommended ILS threshold for the in silico TOF database is 

in the range 0.55~0.7, and for in silico FT-ICR it is in the range 0.7~0.8. A higher threshold 

will ensure more robust annotations (precision keeps scoring 1) at the expense of reducing the 

number of annotated peaks (represented by decreasing MCC). These results show that, in real 

datasets, the optimal threshold will depend on the resolving power of the instrument. We 

recommend thresholds of 0.55~0.7 for TOF datasets and 0.7~0.8 for FT-ICR datasets as 

starting points. 

 

Figure S4. Analysis of recommended Isotopic likelihood score thresholds for the in silico FT-ICR (solid line) and 

TOF (dashed line) peak matrix using precision (TruePositives/(TruePositives+FalsePositives)) and Matthews 

correlation coefficient (MCC). Optimal thresholds are in the range 0.55~0.7 for TOF datasets and in the range 

0.7~0.8 for FT-ICR datasets. 

After evaluating this result, we tested thresholds between 0.2 and 1 in steps of 0.05 for the 

experimental datasets. For each threshold, we compared the ions considered to be 

monoisotopes by the algorithm with those identified by the authors of the datasets. Figure S5 

shows the number of coinciding annotations for each dataset at each threshold. The results 

show that, in both cases, the number of coinciding annotations remains constant close to the 

recommended thresholds and rapidly decreases after them. Low thresholds values produce 

more annotations with less confidence, whereas higher thresholds give us more reliable results 

but less annotated peaks.  
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Figure S5. Analysis of Isotopic likelihood score threshold for the experimental datasets. a) TOF dataset. b) FT-

ICR dataset 1. In both cases, the number of coinciding annotations starts to decrease around the recommended 

thresholds found with the in silico datasets.  

7.4. Overlapping isotopic patterns  

To investigate how rMSIannotation responds to overlapping isotopic patterns, we have 

studied in silico the case of two molecules detected in the TOF dataset with failed annotations 

due to overlap: phosphatidylcholine(32a:1) with molecular formula [C40H78NO8P+Na]+ and 

m/z 754.5357, and sphingomyelin(d18:1/C17:0) with molecular formula [C40H81N2O6P + K]+ 

and m/z 755.5464 (from now on, molecule A and B). The monoisotopic peak (M+0) of 

molecule B and the M+1 peak of molecule A overlaps, with a difference in the m/z ratio of 

0.0073 Da. Peaks M+1 peak of molecule B and M+2 peak of molecule A also overlaps. To 

generate the spectra we used enviPat 1 in three different resolving powers: 40k, 120k and 240k, 

with abundance rations between molecules from 0 to 2; this is the abundance of molecule B 

over molecule A. Later, we peak picked the in silico spectra and obtained a peak list in which 

we computed the Isotope likelihood score (ILS) for the pairs of peaks with the m/z ratio closest 

to the theoretic isotopic pattern. In a real experiment, if there are big differences between the 

spatial distribution of molecules A and B, the peak picking algorithm could probably detect the 

overlapped peaks as individuals, since one molecule could be detected in a region and the other 

in a different one, as the spectra in those regions are not overlapped. Nevertheless, in this in 

silico analysis we considered the worst-case-scenario with a base morphology score of 0.95, in 

which both molecules exhibit the same morphology. 

Figures S6 to S8 show the results of this procedure for different resolving powers. The top 

panel of the figures display the isotopic patterns profiles for both molecules and the resulting 

overlap. Rows represent different peaks and columns represent discrete values of the 

abundance ratio between molecules. First row represents the M+0  peak of molecule A, second 

row the M+0 peak of molecule B overlapped with the M+1 peak of molecule A and third row, 

the overlap between the M+1 peak of molecule B and the M+2 peaks of molecule A. The 

bottom panel shows how ILS is affected by changes in the abundance ratio between molecules 

for both monoisotopic peaks and how the deformation of the profile affects the peak picking 

algorithm, reducing or increasing the m/z ratio difference in ppms from the theoretic value for 

each peak. For resolving powers below 120k the peaks are completely overlapped, allowing 

the simultaneous annotation of both compounds only in a narrow range of abundance ratios. 

Figure S6 shows the results for a resolving power of 40k in which, rMSIannotation annotates 

both compounds in the range of abundance ratios of 0.2 to 0.4. For resolving powers near 120k, 

the range of abundances for simultaneous annotation increases. Figure S7 shows the results for 

a resolving power of 120k in which, rMSIannotation annotates both compounds in the range 
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of abundance ratios of 0.2 to 1. For resolving power higher than 120k, the simultaneous 

annotation of both molecules is possible in a bigger abundance ratio range. Figure S8 shows 

the results for a resolving power of 240k in which, rMSIannotation annotates both compounds 

for the complete range of abundance ratios tested. To summarize, rMSIannotation can annotate 

overlapping compounds in a range of abundance ratio between the overlapping compounds 

which depends on the resolving power of the dataset. As the resolving power increases, the 

range of abundance ratio for simultaneous annotation also increases and, in case of being 

outside of this ranges, the compound with a higher relative intensity will be the one annotated. 
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Figure S6. Analysis of in silico overlapping isotopic patterns with a resolving power of 40k. Top panel displays 

the profile of the peaks for each molecule and for the overlap. Bottom panel displays isotopic likelihood score and 

m/z ratio ppm error to the theoretic value for each peak. In the graphics, A refers to ion [C40H78NO8P+Na]+ and B 

refers to ion [C40H81N2O6P + K]+. In this case, the overlapping allows the annotation of both compounds (ILS > 

0.6, for low resolving power datasets) only in the range of abundance ration from 0.2 to 0.4 approximately. 
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Figure S7. Analysis of in silico overlapping isotopic patterns with a resolving power of 120k. Top panel displays 

the profile of the peaks for each molecule and for the overlap. Bottom panel displays isotopic likelihood score and 

m/z ratio ppm error to the theoretic value for each peak. In the graphics A refers to ion [C40H78NO8P+Na]+ and 

B refers to ion [C40H81N2O6P + K]+. In this case, the resolving power allows for the annotation of both 

compounds for the range of abundance ratio from 0.2 to 1. After that, the deformation on the peak shape A+1 due 

to the increase of abundance of peak B+0 hides the peak A+1. 
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Figure S8. Analysis of in silico overlapping isotopic patterns with a resolving power of 240k. Top panel displays 

the profile of the peaks for each molecule and for the overlap. Bottom panel displays isotopic likelihood score and 

m/z ratio ppm error to the theoretic value for each peak. In the graphics A refers to ion [C40H78NO8P+Na]+ and 

B refers to ion [C40H81N2O6P + K]+. In this case, the resolving power allows the annotation of both compounds 

in the complete abundance ratio range.  
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7.5. Supplementary Figures 

 

Figure S9. Flow diagram of the peak annotation algorithm rMSIannotation. Rounded objects refer to data 

structures and rectangles to algorithmic processes.  

 

Figure S10. TOF dataset peak m/z 520.34 (red) cannot be labeled as M+0 by the algorithm because the 

processing parameters discarded peak m/z 521.34 (green) because it has SNR < 5 
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Figure S11. TOF dataset peaks m/z 706.54 (red) and m/z 707.54 (green) cannot be evaluated because neither of 

the ions has SNR > 5.  
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Figure S12. Overlapping of compounds SM(d18:1/C18:0) (exact neutral mass 730.5988 Da) and PC 32a:1 (exact 

neutral mass 731.5465 Da) of the TOF dataset. Peak m/z 753.588 (red) is the [M+Na]+ monoisotopic ion of 

SM(d18:1/C18:0) which cannot be labeled as a monoisotopic ion because the M+1 peak in m/z 754.53 m/z (green) 

overlaps with the [M+Na]+ monoisotopic ion of PC 32a:1 which, at the same time, cannot be labeled as 

monoisotopic because peak m/z 755.54 (blue) has not enough SNR.  
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Figure S13. a) Intensity map of M+0 m/z 826.620 of the FT-ICR dataset. b) Intensity map of M+1 m/z 827.624 

of the FT-ICR dataset. c) Scatter plot of M+0 and M+1 ions without null pixel correction. The scatter plot shows 

that there are some pixels in the M+1 ion which have zero intensity due to the low intensity of this compound in 

some pixels of the sample. This produces bad linear modeling of the slope and correlation, which worsens the 

results of the isotopic likelihood test. d) Scatter plot of M+0 and M+1 ions after removing the pixels with zero 

intensity. Removing them leads to a better modeling of the data: the linearity increases, and the isotopic 

likelihood test results are better. The large number of observations in an MSI experiment means that some 

observations from the original data can be discarded without losing predictive power. 

 

Fig S14. a) M+0 peak m/z 826.640 (the small one) and M+1 m/z 827.643 mean spectrum regions. b) M+0 peak 

m/z 812.622 and M+1 ion m/z 813.625 mean spectrum regions. In both cases, the M+1 peak does not appear in 

the peak matrix so the algorithm cannot evaluate them. 
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7.6. Supplementary Tables 

Table. S1 Annotations produced by rMSIannotation in group A for the TOF dataset 

Neutral 

mass (Da) 
Adducts 

Adduct 1 

mass (m/z) 

Adduct 2 

mass (m/z) 

Intensity 

ratio 

Intensity 

ratio Std. Error 
Correlation 

Mass error 

(ppms) 

189.114 [M+Na]+ & [M+H]+ 212.106 190.120 0.137 0.067 0.838 25.269 

211.101 [M+K]+ & [M+H]+ 250.067 212.106 0.066 0.004 0.933 22.176 

227.074 [M+K]+ & [M+Na]+ 266.035 250.067 0.064 0.002 0.983 27.230 

227.079 [M+Na]+ & [M+H]+ 250.067 228.088 0.062 0.001 0.944 13.801 

378.149 [M+K]+ & [M+H]+ 417.113 379.158 0.189 0.053 0.731 0.981 

438.071 [M+K]+ & [M+Na]+ 477.037 461.058 0.169 0.001 0.945 12.397 

495.357 [M+K]+ & [M+H]+ 534.318 496.367 0.203 0.006 0.863 9.558 

649.040 [M+K]+ & [M+Na]+ 688.002 672.031 0.386 0.009 0.909 4.558 

702.550 [M+K]+ & [M+Na]+ 741.510 725.543 0.407 0.036 0.945 9.243 

733.540 [M+K]+ & [M+Na]+ 772.508 756.526 0.368 0.001 0.849 10.747 

733.545 [M+Na]+ & [M+H]+ 756.526 734.562 0.403 0.033 0.819 24.233 

733.549 [M+K]+ & [M+H]+ 772.508 734.562 0.402 0.034 0.804 13.485 

759.552 [M+K]+ & [M+Na]+ 798.517 782.539 0.437 0.001 0.939 5.764 

759.558 [M+Na]+ & [M+H]+ 782.539 760.574 0.402 0.033 0.855 21.943 

759.560 [M+K]+ & [M+H]+ 798.517 760.574 0.404 0.035 0.835 16.179 

785.572 [M+K]+ & [M+H]+ 824.530 786.585 0.434 0.030 0.745 13.158 

 

Table. S2 Annotations produced by rMSIannotation in group B for the TOF dataset 

Neutral mass (Da) Adducts 
Adduct 1 mass 

(m/z) 

Adduct 2 mass 

(m/z) 
Correlation 

Mass 

error (ppms) 

183.132 [M+H]+ & [M+Na]+ 184.141 206.121 0.864 10.223 

183.134 [M+H]+ & [M+K]+ 184.141 222.099 0.824 16.182 

211.099 [M+H]+ & [M+Na]+ 212.106 234.089 0.940 5.311 

211.101 [M+K]+ & [M+Na]+ 250.067 234.089 0.978 16.866 

334.163 [M+H]+ & [M+Na]+ 335.167 357.156 0.652 19.583 

400.117 [M+H]+ & [M+Na]+ 401.125 423.107 0.851 0.297 

400.122 [M+H]+ & [M+K]+ 401.125 439.090 0.889 24.868 

416.103 [M+H]+ & [M+Na]+ 417.113 439.090 0.905 10.700 

422.095 [M+K]+ & [M+Na]+ 461.058 445.086 0.913 4.682 

422.097 [M+K]+ & [M+H]+ 461.058 423.107 0.809 10.768 

438.078 [M+K]+ & [M+H]+ 477.037 439.090 0.853 20.421 

454.048 [M+Na]+ & [M+H]+ 477.037 455.056 0.826 1.246 

495.357 [M+K]+ & [M+Na]+ 534.318 518.349 0.879 9.114 

495.359 [M+H]+ & [M+Na]+ 496.367 518.349 0.839 0.445 

521.376 [M+H]+ & [M+Na]+ 522.387 544.364 0.775 10.22 

521.377 [M+H]+ & [M+K]+ 522.387 560.338 0.799 9.130 

633.071 [M+K]+ & [M+Na]+ 672.031 656.063 0.814 8.881 

702.561 [M+Na]+ & [M+H]+ 725.543 703.576 0.830 21.654 

757.544 [M+H]+ & [M+Na]+ 758.548 780.537 0.718 9.593 

757.550 [M+H]+ & [M+K]+ 758.548 796.523 0.755 24.617 

785.566 [M+K]+ & [M+Na]+ 824.530 808.555 0.767 1.385 

785.571 [M+H]+ & [M+Na]+ 786.585 808.555 0.750 14.543 
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Table. S3 Annotations produced by rMSIannotation in group C for the TOF dataset 

Monoisotopic 

mass (m/z) 
ILS Isotopic intensity ratio 

172.113 0.957 0.134 

184.140 0.842 0.073 

184.265 0.603 0.306 

190.119 0.865 0.204 

212.106 0.967 0.070 

228.088 0.950 0.061 

250.066 0.923 0.062 

266.034 0.893 0.065 

294.145 0.958 0.128 

335.167 0.933 0.135 

379.157 0.977 0.241 

379.914 0.888 0.139 

401.124 0.876 0.166 

417.113 0.781 0.136 

428.420 0.719 0.219 

461.058 0.774 0.170 

477.037 0.756 0.167 

496.366 0.848 0.197 

522.386 0.812 0.239 

524.391 0.746 0.230 

534.318 0.662 0.208 

578.431 0.799 0.428 

635.018 0.686 0.427 

635.031 0.706 0.433 

635.117 0.605 0.367 

672.031 0.843 0.376 

676.779 0.933 0.437 

688.002 0.829 0.395 

692.720 0.879 0.430 

725.542 0.853 0.371 

733.711 0.739 0.458 

734.562 0.866 0.435 

741.510 0.916 0.443 

749.617 0.772 0.394 

756.526 0.672 0.369 

758.548 0.705 0.397 

760.573 0.829 0.369 

772.508 0.641 0.367 

782.539 0.877 0.435 

786.584 0.692 0.404 

798.517 0.866 0.438 

824.530 0.642 0.464 
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Table. S4 Ions manually annotated in the original publication but not found in group C during the annotation 

procedure due to: (1) the M+1 peak is not in the peak matrix, (2) M+0 and M+1 are not in the peak matrix and (3) 

peak overlap. (*) Although the algorithm found the monoisotopic peak of choline and evaluated it with a good 

morphology score and isotopic pattern profile score (both above 0.9), the mass error score is very low (0.55) 

resulting in a final score of 0.53. This kind of problem is common with TOF mass analyzers in the low m/z ratio 

range, where mass accuracy decreases exponentially. 

Name Molecular formula Adduct Exact 

mass (m/z) 
Misclassification group 

Choline (*) C5H14NO [M+H]+ 104.173 * 

LPC 16a:0 C24H50NO7P [M+Na]+ 518.348 1 

LPC 18a:2 C26H50NO7P [M+H]+ 520.340 1 

LPC 20a:4 C28H50NO7P [M+H]+ 544.340 1 

LPC 18a:1 C26H52NO7P [M+K]+ 560.311 1 

SM(d18:1/C16:0) C39H80N2O6P [M+H]+ 703.575 1 

PC 30a:0 C38H76NO8P [M+H]+ 706.539 2 

PC 32a:1 C40H78NO8P [M+H]+ 732.554 1 

PC 33a:1 C41H80NO8P [M+H]+ 746.570 2 

PC 33a:0 C41H82NO8P [M+H]+ 748.585 2 

SM(d18:1/C18:0) C41H83N2O6P [M+Na]+ 753.588 3 

PC 32a:1 C40H78NO8P [M+Na]+ 754.535 1-3 

SM(d18:1/C17:0) C40H81N2O6P [M+K]+ 755.546 2 

PC 33a:1 C41H80NO8P [M+Na]+ 768.551 2-3 

SM(d18:1/C18:0) C41H83N2O6P [M+K]+ 769.562 3 

PC 33a:0 C41H82NO8P [M+Na]+ 770.567 1 

PE 38:1 C43H84NO8P [M+H]+ 774.601 2 

PC 34a:2 C42H80NO8P [M+Na]+ 780.551 1 

PC 34a:0 C42H84NO8P [M+Na]+ 784.582 1 

PC 36a:1 C44H86NO8P [M+H]+ 788.616 1 

PC 35a:2 C43H82NO8P [M+Na]+ 794.567 2 

PC 35a:1 C43H84NO8P [M+Na]+ 796.582 1 

PC 36a:3 C44H82NO8P [M+Na]+ 806.567 2 

PC 36a:2 C44H84NO8P [M+Na]+ 808.582 1 

PC 36a:1 C44H86NO8P [M+Na]+ 810.598 1 

PC 36:0 C44H88NO8P [M+Na]+ 812.614 2 

PC 36a:3 C44H82NO8P [M+K]+ 822.584 2 

PC 36a:1 C44H86NO8P [M+K]+ 826.572 1  
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Table S5. Putative name and molecular formula for some compounds annotated by rMSIannotation in group C. 

m/z  Adduct  Molecular formula Mass error (ppm) Name  

428.420  [M+H]+  C26H53NO3 25 Cer(26:0)  

578.431  [M+K]+  C30H60NO7P 27 LPC(22:1)  

733.711  [M+H-H2O]+  C48H94O5 5 DG(45:0)  

749.617  [M+Na]+  C47H82O5 15 DG(44:5)  

 

Table. S6 Annotations produced by rMSIannotation in group A for the FT-ICR dataset 1 

Neutral 

mass (Da) 
Adducts 

Adduct 1 mass 

(m/z) 

Adduct 2 mass 

(m/z) 

Intensity 

ratio mean 

Intensity 

ratio Std. Error 
Correlation 

Mass error 

(ppms) 

312.182 [M+Na]+ & [M+H]+ 335.171 313.189 0.190 0.0088 0.159 0.576 

312.182 [M+K]+ & [M+Na]+ 351.145 335.171 0.185 0.0035 0.644 0.558 

312.182 [M+K]+ & [M+H]+ 351.145 313.189 0.194 0.0052 -0.170 1.134 

528.526 [M+K]+ & [M+Na]+ 567.490 551.516 0.355 0.0120 0.184 0.057 

530.542 [M+K]+ & [M+Na]+ 569.506 553.531 0.368 0.0146 0.394 0.797 

544.558 [M+K]+ & [M+Na]+ 583.521 567.547 0.379 0.0129 0.482 0.082 

602.226 [M+Na]+ & [M+H]+ 625.216 603.234 0.314 0.0251 0.599 0.220 

624.367 [M+Na]+ & [M+H]+ 647.357 625.375 0.413 0.0015 0.758 0.372 

624.367 [M+K]+ & [M+Na]+ 663.331 647.357 0.398 0.0135 0.869 0.700 

624.367 [M+K]+ & [M+H]+ 663.331 625.375 0.399 0.0150 0.486 0.328 

624.378 [M+Na]+ & [M+H]+ 647.368 625.385 0.435 0.0242 0.491 1.189 

642.206 [M+Na]+ & [M+H]+ 665.196 643.214 0.358 0.0027 0.562 0.788 

709.586 [M+Na]+ & [M+H]+ 732.576 710.593 0.407 0.0180 0.829 0.307 

716.525 [M+K]+ & [M+H]+ 755.489 717.534 0.451 0.0322 0.898 1.199 

840.711 [M+Na]+ & [M+H]+ 863.701 841.719 0.584 0.0033 0.568 0.207 

842.727 [M+Na]+ & [M+H]+ 865.717 843.735 0.605 0.0005 0.620 0.037 

852.720 [M+Na]+ & [M+H]+ 875.712 853.727 0.511 0.0134 0.858 3.437 

854.725 [M+Na]+ & [M+H]+ 877.715 855.733 0.558 0.0104 0.526 0.322 

856.742 [M+Na]+ & [M+H]+ 879.732 857.750 0.610 0.0053 0.651 0.289 

870.565 [M+K]+ & [M+H]+ 909.530 871.573 0.704 0.0364 0.242 1.416 

870.565 [M+Na]+ & [M+H]+ 893.556 871.573 0.751 0.0101 0.829 1.277 

870.566 [M+K]+ & [M+Na]+ 909.530 893.556 0.714 0.0466 0.849 0.139 

876.721 [M+K]+ & [M+Na]+ 915.685 899.711 0.584 0.0270 0.842 0.368 

880.752 [M+Na]+ & [M+H]+ 903.744 881.758 0.580 0.0170 0.614 3.758 

904.752 [M+Na]+ & [M+H]+ 927.743 905.759 0.597 0.0087 0.497 1.755 

926.736 [M+Na]+ & [M+H]+ 949.727 927.743 0.615 0.0273 0.191 2.885 

954.390 [M+Na]+ & [M+H]+ 977.379 955.398 0.576 0.0581 0.327 0.491 

1052.645 [M+K]+ & [M+Na]+ 1091.613 1075.639 0.569 0.0076 0.863 0.571 

1088.878 [M+Na]+ & [M+H]+ 1111.863 1089.880 0.628 0.0197 0.147 1.121 

1102.666 [M+K]+ & [M+Na]+ 1141.630 1125.656 0.592 0.0052 0.882 0.755 

1116.904 [M+Na]+ & [M+H]+ 1139.894 1117.912 0.657 0.0510 0.235 0.808 
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Table. S7 Annotations produced by rMSIannotation in group B for the FT-ICR dataset 1 

Neutral mass (Da) Adducts 
Adduct 1 

mass (m/z) 

Adduct 2 

mass (m/z) 
Correlation 

Mass 

error (ppms) 

154.022 [M+Na]+ & [M+H]+ 177.012 155.030 -0.030 0.010 

154.023 [M+Na]+ & [M+H]+ 177.012 155.031 0.354 4.658 

176.005 [M+H]+ & [M+Na]+ 177.012 198.995 0.346 4.337 

274.205 [M+Na]+ & [M+H]+ 297.194 275.213 0.305 3.365 

289.191 [M+Na]+ & [M+H]+ 312.181 290.198 -0.152 4.682 

289.191 [M+Na]+ & [M+H]+ 312.181 290.198 -0.112 4.638 

289.191 [M+Na]+ & [M+H]+ 312.181 290.198 -0.106 3.625 

289.192 [M+Na]+ & [M+H]+ 312.181 290.200 -0.167 1.756 

290.199 [M+Na]+ & [M+H]+ 313.189 291.206 -0.079 3.517 

290.200 [M+Na]+ & [M+H]+ 313.189 291.209 -0.393 4.321 

401.266 [M+H]+ & [M+Na]+ 402.274 424.256 0.791 0.271 

424.197 [M+H]+ & [M+Na]+ 425.206 447.186 0.938 3.728 

446.223 [M+H]+ & [M+K]+ 447.230 485.186 0.935 0.621 

446.223 [M+H]+ & [M+Na]+ 447.230 469.212 0.823 0.481 

448.198 [M+H]+ & [M+Na]+ 449.206 471.188 0.302 0.612 

450.214 [M+H]+ & [M+Na]+ 451.222 473.204 0.394 0.017 

464.193 [M+H]+ & [M+Na]+ 465.201 487.183 0.185 0.015 

464.193 [M+H]+ & [M+K]+ 465.201 503.157 0.942 0.309 

465.201 [M+Na]+ & [M+K]+ 488.191 504.165 0.311 0.149 

480.189 [M+H]+ & [M+Na]+ 481.196 503.178 -0.034 0.583 

487.183 [M+H]+ & [M+Na]+ 488.191 510.173 0.483 0.297 

487.183 [M+H]+ & [M+K]+ 488.191 526.147 -0.177 0.813 

512.278 [M+H]+ & [M+Na]+ 513.286 535.268 0.798 0.641 

514.294 [M+H]+ & [M+Na]+ 515.302 537.283 0.560 1.055 

528.526 [M+K]+ & [M+H]+ 567.490 529.533 0.802 1.215 

528.526 [M+Na]+ & [M+H]+ 551.516 529.533 0.547 1.158 

530.542 [M+Na]+ & [M+H]+ 553.531 531.550 0.553 0.069 

530.542 [M+K]+ & [M+H]+ 569.506 531.550 0.796 0.728 

537.283 [M+H]+ & [M+K]+ 538.291 576.247 0.074 0.024 

542.542 [M+Na]+ & [M+K]+ 565.532 581.506 0.183 0.040 

542.542 [M+Na]+ & [M+H]+ 565.532 543.550 0.627 0.077 

544.557 [M+K]+ & [M+H]+ 583.521 545.565 0.775 0.641 

544.557 [M+Na]+ & [M+H]+ 567.547 545.565 0.579 0.723 

558.417 [M+K]+ & [M+Na]+ 597.380 581.408 0.065 3.086 

572.481 [M+Na]+ & [M+H]+ 595.472 573.487 0.501 4.632 

587.405 [M+K]+ & [M+H]+ 626.368 588.413 0.344 0.480 

592.268 [M+H]+ & [M+Na]+ 593.276 615.258 0.178 0.876 

600.368 [M+H]+ & [M+Na]+ 601.375 623.358 0.286 3.065 

600.512 [M+Na]+ & [M+H]+ 623.503 601.519 0.353 4.154 

602.226 [M+Na]+ & [M+K]+ 625.216 641.190 0.480 0.488 

602.226 [M+H]+ & [M+K]+ 603.234 641.190 0.226 0.268 

612.475 [M+Na]+ & [M+K]+ 635.465 651.439 0.180 0.114 

622.497 [M+H]+ & [M+Na]+ 623.503 645.488 0.093 3.928 

624.208 [M+H]+ & [M+Na]+ 625.216 647.198 0.463 0.308 

624.208 [M+H]+ & [M+K]+ 625.216 663.172 -0.060 0.504 

624.378 [M+H]+ & [M+K]+ 625.385 663.343 0.156 3.137 
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624.379 [M+Na]+ & [M+K]+ 647.368 663.343 0.448 1.948 

625.360 [M+H]+ & [M+Na]+ 626.368 648.349 0.735 1.408 

640.362 [M+H]+ & [M+Na]+ 641.370 663.351 0.663 0.857 

654.342 [M+H]+ & [M+Na]+ 655.350 677.331 0.243 1.483 

709.586 [M+H]+ & [M+K]+ 710.593 748.550 0.755 1.243 

709.586 [M+Na]+ & [M+K]+ 732.576 748.550 0.971 0.936 

712.507 [M+Na]+ & [M+K]+ 735.496 751.470 0.974 0.283 

732.473 [M+Na]+ & [M+K]+ 755.463 771.437 0.983 0.028 

738.243 [M+H]+ & [M+Na]+ 739.251 761.232 0.103 0.318 

766.466 [M+Na]+ & [M+K]+ 789.455 805.430 0.981 0.488 

776.379 [M+H]+ & [M+Na]+ 777.387 799.368 0.754 0.409 

776.689 [M+Na]+ & [M+K]+ 799.679 815.653 0.982 0.211 

777.531 [M+H]+ & [M+Na]+ 778.539 800.520 0.762 1.574 

778.223 [M+H]+ & [M+Na]+ 779.231 801.213 0.494 0.070 

794.492 [M+H]+ & [M+Na]+ 795.500 817.482 0.466 0.424 

804.721 [M+Na]+ & [M+K]+ 827.711 843.685 0.975 0.073 

816.558 [M+H]+ & [M+Na]+ 817.565 839.548 0.122 0.534 

826.705 [M+H]+ & [M+Na]+ 827.711 849.696 0.201 4.368 

830.737 [M+Na]+ & [M+K]+ 853.727 869.701 0.980 0.417 

848.540 [M+H]+ & [M+Na]+ 849.547 871.531 -0.044 3.293 

848.604 [M+K]+ & [M+Na]+ 887.570 871.593 0.864 3.653 

850.704 [M+Na]+ & [M+H]+ 873.695 851.712 0.894 1.079 

865.609 [M+K]+ & [M+Na]+ 904.572 888.599 0.964 1.384 

874.705 [M+H]+ & [M+Na]+ 875.712 897.696 0.928 2.456 

876.722 [M+K]+ & [M+H]+ 915.685 877.732 0.007 3.005 

876.723 [M+Na]+ & [M+H]+ 899.711 877.732 -0.344 2.637 

877.562 [M+H]+ & [M+Na]+ 878.570 900.551 0.634 1.480 

878.723 [M+H]+ & [M+Na]+ 879.732 901.712 0.313 1.967 

878.740 [M+Na]+ & [M+H]+ 901.729 879.749 0.420 2.408 

892.550 [M+H]+ & [M+K]+ 893.556 931.516 0.049 4.799 

893.807 [M+H]+ & [M+Na]+ 894.813 916.799 0.904 4.294 

903.564 [M+H]+ & [M+Na]+ 904.572 926.554 0.696 0.010 

904.751 [M+H]+ & [M+K]+ 905.759 943.715 0.834 0.224 

904.752 [M+Na]+ & [M+K]+ 927.743 943.715 0.225 1.531 

908.524 [M+H]+ & [M+Na]+ 909.530 931.516 0.713 4.582 

914.643 [M+Na]+ & [M+K]+ 937.634 953.605 0.288 2.582 

922.705 [M+Na]+ & [M+K]+ 945.696 961.668 0.394 2.001 

924.722 [M+Na]+ & [M+K]+ 947.711 963.687 0.345 1.603 

926.736 [M+H]+ & [M+K]+ 927.743 965.702 -0.375 3.178 

926.738 [M+Na]+ & [M+K]+ 949.727 965.702 0.271 0.293 

928.519 [M+Na]+ & [M+K]+ 951.509 967.482 -0.220 1.070 

950.736 [M+H]+ & [M+Na]+ 951.743 973.726 0.599 1.083 

972.229 [M+H]+ & [M+Na]+ 973.236 995.218 0.358 0.030 

1100.657 [M+Na]+ & [M+K]+ 1123.649 1139.614 -0.128 0.712 

1142.927 [M+H]+ & [M+Na]+ 1143.923 1165.910 0.266 0.434 

1182.753 [M+Na]+ & [M+H]+ 1205.744 1183.757 -0.331 0.548 

1188.903 [M+Na]+ & [M+H]+ 1211.893 1189.912 0.188 0.388 

1216.935 [M+Na]+ & [M+H]+ 1239.926 1217.942 0.243 1.603 

1238.919 [M+H]+ & [M+Na]+ 1239.926 1261.910 0.533 1.425 
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Table. S8 Annotations produced by rMSIannotation in group C for the FT-ICR dataset 1 

Monoisotopic 

mass (m/z) 
ILS 

Isotopic 

intensity 

ratio 

177.012 0.726 0.062 

208.459 0.753 0.008 

273.037 0.734 0.116 

297.194 0.746 0.185 

312.181 0.936 0.226 

312.686 0.873 0.082 

313.189 0.955 0.198 

332.329 0.862 0.232 

335.171 0.790 0.181 

351.145 0.804 0.188 

360.361 0.845 0.230 

402.274 0.915 0.244 

425.206 0.941 0.255 

435.785 0.833 0.137 

447.230 0.717 0.217 

449.206 0.880 0.269 

451.222 0.731 0.237 

465.201 0.777 0.247 

481.196 0.936 0.271 

488.191 0.804 0.250 

513.286 0.778 0.279 

514.293 0.937 0.311 

515.302 0.805 0.302 

530.493 0.706 0.277 

535.429 0.796 0.302 

538.291 0.747 0.274 

549.488 0.756 0.323 

551.516 0.898 0.367 

553.531 0.920 0.382 

558.524 0.937 0.389 

565.532 0.854 0.359 

567.490 0.827 0.343 

567.547 0.923 0.391 

569.506 0.862 0.353 

581.399 0.951 0.405 

583.521 0.865 0.366 

584.540 0.919 0.392 

585.223 0.845 0.314 

586.556 0.926 0.402 

591.878 0.749 0.299 

593.276 0.913 0.326 

595.472 0.826 0.382 

597.380 0.716 0.314 

601.375 0.724 0.298 

603.234 0.783 0.289 

612.571 0.923 0.408 

623.503 0.731 0.364 

625.216 0.881 0.339 

625.375 0.995 0.414 

625.385 0.887 0.459 
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626.368 0.723 0.248 

635.465 0.815 0.365 

641.370 0.847 0.364 

643.214 0.885 0.360 

647.357 0.989 0.411 

647.368 0.832 0.411 

649.519 0.784 0.397 

655.350 0.776 0.319 

661.053 0.790 0.362 

663.331 0.938 0.384 

665.196 0.816 0.354 

667.313 0.854 0.346 

672.541 0.853 0.384 

689.502 0.959 0.401 

695.468 0.791 0.344 

695.504 0.844 0.430 

700.573 0.798 0.370 

703.518 0.769 0.360 

710.593 0.906 0.425 

717.415 0.803 0.400 

717.534 0.935 0.418 

723.499 0.703 0.343 

726.588 0.861 0.387 

732.576 0.829 0.389 

735.496 0.714 0.405 

737.392 0.718 0.367 

739.251 0.825 0.370 

743.550 0.827 0.405 

755.463 0.938 0.431 

755.489 0.940 0.483 

761.392 0.835 0.419 

772.573 0.996 0.501 

777.387 0.865 0.422 

778.539 0.955 0.468 

779.231 0.758 0.422 

786.588 0.992 0.505 

789.455 0.802 0.429 

789.534 0.984 0.505 

789.550 0.766 0.406 

793.381 0.733 0.394 

795.500 0.972 0.474 

797.069 0.873 0.482 

797.241 0.902 0.477 

799.679 0.943 0.498 

800.376 0.885 0.452 

800.604 0.961 0.505 

803.550 0.883 0.532 

809.516 0.836 0.435 

811.553 0.833 0.613 

817.565 0.976 0.516 

821.594 0.700 0.428 

823.366 0.806 0.424 

823.531 0.941 0.469 

826.620 0.984 0.535 
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827.711 0.919 0.511 

830.579 0.928 0.518 

832.585 0.767 0.491 

837.062 0.949 0.535 

841.205 0.921 0.473 

841.719 0.927 0.587 

843.581 0.879 0.509 

843.735 0.924 0.605 

845.664 0.735 0.450 

849.547 0.971 0.519 

851.554 0.826 0.465 

853.727 0.805 0.497 

855.733 0.900 0.568 

857.750 0.933 0.615 

859.540 0.785 0.430 

863.701 0.934 0.580 

865.717 0.943 0.604 

866.782 0.973 0.552 

871.573 0.730 0.740 

872.603 0.953 0.595 

873.695 0.845 0.510 

875.712 0.891 0.524 

877.715 0.884 0.547 

878.570 0.968 0.567 

879.732 0.950 0.604 

880.798 0.861 0.525 

881.758 0.929 0.597 

887.570 0.875 0.583 

893.556 0.704 0.761 

894.813 0.964 0.582 

895.531 0.858 0.509 

899.711 0.966 0.610 

901.729 0.829 0.608 

902.578 0.796 0.511 

903.744 0.870 0.563 

904.572 0.846 0.543 

905.461 0.899 0.573 

905.759 0.912 0.605 

908.589 0.720 0.477 

909.530 0.864 0.667 

913.587 0.736 0.453 

915.685 0.871 0.556 

920.829 0.860 0.549 

922.845 0.701 0.480 

927.743 0.899 0.587 

937.400 0.751 0.495 

937.634 0.910 0.603 

945.696 0.883 0.609 

947.711 0.907 0.633 

949.727 0.914 0.642 

951.509 0.882 0.537 

951.743 0.888 0.624 

953.759 0.927 0.646 

955.398 0.969 0.634 
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959.542 0.921 0.592 

966.812 0.884 0.613 

973.236 0.921 0.638 

977.379 0.750 0.518 

978.907 0.736 0.530 

993.574 0.737 0.541 

1008.595 0.718 0.761 

1025.600 0.889 0.668 

1035.624 0.853 0.608 

1045.726 0.949 0.695 

1075.639 0.831 0.577 

1089.880 0.834 0.607 

1091.413 0.872 0.691 

1091.613 0.729 0.561 

1111.863 0.841 0.647 

1113.555 0.784 0.657 

1117.912 0.799 0.606 

1123.640 0.718 0.582 

1125.656 0.776 0.596 

1131.393 0.732 0.665 

1139.894 0.898 0.708 

1141.630 0.726 0.586 

1143.928 0.875 0.811 

1161.616 0.815 0.828 

1205.740 0.702 0.916 

1211.895 0.741 0.691 

1213.712 0.800 0.665 

1237.909 0.769 0.814 

1239.926 0.717 0.708 

 

Supplementary Table S9. Ions not found by the annotation algorithm that were manually annotated in the 

original publication for the FT-ICR dataset 1. The M+1 ion of most of them does not appear in the peak matrix or 

there are too many null pixels to be corrected.  

Name Molecular formula Adduct Exact mass (Da) 

PDPT 32:1 C40H77O8PS [M+H] + 749.515 

BLL 36:6 (*) C46H75NO10 [M+H]+ 802.547 

vGSL-like (t16:0/h22:0) C44H87NO10 [M+Na]+ 812.622 

TAG 47:1 C50H94O6 [M+Na]+ 813.695 

vGSL (t17:0/h22:1) C45H87NO10 [M+Na]+ 824.622 

vGSL (t17:0/h22:0) C45H89NO10 [M+Na]+ 826.640 

TAG 50:1 C53H100O6 [M+Na]+ 855.746 

sGSL d18:2 C49H91NO11 [M+Na]+ 892.649 

TAG 54:1 C57H108O6 [M+Na]+ 911.804 
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Supplementary Table. S10 Putative name and molecular formula for some compounds annotated by 

rMSIannotation. (*) Common alkenones specific of Emiliana huxleyi. The annotation level indicates the table 

from which the annotated adduct was found.  

m/z Adduct ILS 

Annotation 

group 

Molecular 

 formula 

Mass 

error (ppm) 

Putative  

annotation 

297.194 [M+Na]+ 0.746 B C17H26N2O 3 Alkaloid 

313.189 [M+H]+ 0.955 A C19H24N2O2 4 Alkaloid 

335.171 [M+Na]+ 0.790 A C19H24N2O2 5 Alkaloid 

351.145 [M+K]+ 0.804 A C19H24N2O2 3 Alkaloid 

513.286 [M+H]+ 0.778 B C30H40O7 3 Terpenoid 

515.302 [M+H]+ 0.805 B C30H42O7 4 Terpenoid 

535.268 [M+Na]+ -- B C30H40O7 3 Terpenoid 

(*) 553.531 [M+Na]+ 0.920 A C37H70O 2 Heptatriacontadien 

(*) 565.532 [M+Na]+ 0.854 B C38H70O 2 Octratriacontadienone   

(*) 567.547 [M+Na]+ 0.923 B C38H72O 1 Octratriacontadienone   

(*) 569.506 [M+K]+ 0.862 A C37H70O 1 Heptatriacontadien 

581.399 [M+H]+ 0.951 C C40H52O3 1 Carotenoid 

(*) 583.521 [M+K]+ 0.865 A C38H72O 1 Octratriacontadienone   

585.223 [M+K]+ 0.845 C C33H38O7 2 Xanthone 

635.465 [M+Na]+ 0.815 B C39H64O5 
1 DG(36:6) 

735.496 [M+Na]+ 0.714 B C47H68O5 1 DG(44:12) 

751.471 [M+K]+ -- B C47H68O5 1 DG(44:12) 

865.717 [M+Na]+ 0.943 A C50H82O8S 4 Sulfoglycerolipid(40:7) 

843.735 [M+H]+ 0.924 A C50H82O8S 4 Sulfoglycerolipid(40:7) 
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CHAPTER 5 

 

Fuzzy c-means improves the evaluation of segmentation 

processes in mass spectrometry imaging 
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Abstract: Objective. Mass spectrometry imaging (MSI) produces molecular images of 

biological tissues by localizing mass spectra over their surface. The images are used to study 

the distribution of molecules in different regions of the sample to extract information on disease 

dysregulations, cell epigenetics or drug localization.   Multiple hard clustering algorithms have 

been used to define regions of interest over the sample. But it is common to observe molecular 

images with fluctuations in intensity inside and between regions, pointing to soft transitions 

between regions. Therefore, the use of soft clustering methods capable of representing these 

transitions is required. Methods. We combine the soft clustering algorithm fuzzy c-means and 

MSI data to represent the transitions between clusters and present a new score to evaluate 

different clustering results. Results. We study the effects of the algorithm's parameters on MSI 

data. We develop a workflow to analyze multiple human cancer samples using the new score. 

Which allows us to see the transition between different tissue types and clusters associated with 

cancer and healthy tissue. Significance. Soft clustering algorithms allow to unveil and represent 

the transitions between different tissue types in a spatial segmentation analysis of MSI data, 

which result in clusters more closely related to how biologic tissue types are interconnected. 

1. Introduction 

The organs that constitute animal bodies are composed of a variety of biological tissues that 

by themselves are very heterogeneous, as they are formed by diverse cell types. Thus, various 

families of compounds like small molecules, lipids, and proteins are distributed differently 

across the several morphological structures that form the tissues. In recent years, mass 

spectrometry imaging (MSI) has become an invaluable tool [1], [2] to unveil the spatial 

distribution of molecules directly on biological tissues by producing ion images with spatial 

resolutions down to 1 µm[3]–[6]. For each sampling point (pixel), a spectrum contains 

information on the abundance of typically hundreds or thousands of ions desorbed from the 

tissue. An ion image is generated by visualizing the intensity values of the ion at each pixel. 

One of the most usual approaches to combining the information from all ion images is spatial 

segmentation, which categorizes the spectral data into a certain number of regions or segments 

localized on the tissue. Studying the differences in molecular signatures between segments can 

lead to the discovery of specific biomarkers for pathologies or intrinsic differences between 

tissue regions and even cell types, which is a common scenario in studies related to cancer, like 

tumor margins of tumor classification[7]. In many cases, regions of interest (ROI) are defined 

by correspondence with histological annotations of consecutive samples. However, the 

unsupervised definition of segments based on spectral similarity is an alternative method in 

case of lacking histologically defined ROIs. To do so, the most common approach is applying 

clustering methods. 

Clustering methods are unsupervised machine learning procedures that find groups of data 

with common characteristics using similarity metrics. The most widespread segmentation 

methods in MSI are k-means[8], [9] and hierarchical clustering[10]–[13], due to their 

simplicity and coverage in different programming languages and software packages. Both 

algorithms are based on assigning each pixel to a unique cluster by comparing them using 

various metrics, like euclidean distance, the cosine similarity, or Pearson correlation. K-means 

groups the data in a user-defined number of clusters maximizing the distance between cluster 

centroids, while hierarchical clustering develops a complete dendrogram of different numbers 

of clusters by grouping or splitting previous steps in the dendrogram. For instance, these 

algorithms have been used widely in the study of cancer[14]–[17], and plant metabolism[18]–

[20].  
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Ideally, all the segments in the tissue constitute groups of strongly related pixels. But, as the 

sampling beam in MSI typically cannot be focused down to the level of single cells, different 

types of cells are averaged at each pixel during the acquisition. This issue might lead to pixels 

where various types of cells coexist in different proportions and therefore, assigning each pixel 

to only one segment might lead to a wrong interpretation of the data. This is a severe limitation 

for clustering methods, and specific algorithms need to be used to handle the problem. The 

clustering methods that are able to assign multiple clusters to one pixel are known as soft (or 

fuzzy) clustering methods. Although most clustering methods used in MSI data are based on 

hard clustering methods, research on soft clustering for MSI led to some innovative 

developments. The most notable example is the clustering framework implemented in the R 

package Cardinal[21] combining spatially aware clustering[9], statistical regularization[22], 

[23], and probabilistic clustering[24]. Also, a two-step workflow based on probabilistic 

clustering and smoothing using Latent Dirichlet Allocation and Markov random field was 

proposed by Chernyavsk et al.[25]. More recently, spatial-DGMM (Dirichlet Gaussian Mixture 

Model) [26] was presented, combining GMM and spatially aware clustering. All these methods 

use probabilistic clustering, which assesses the probability of a pixel belonging to a cluster. 

These probabilities could be used to study the soft borders between clusters, but the principal 

results of these methods end up assigning a unique cluster to each pixel. 

Still, there are more soft clustering algorithms used in different fields of image processing 

suitable for MSI: The simplest soft clustering method, both theoretically and in hardware 

resource consumption, is Fuzzy c-means (FCM)[27], [28], which originated from the extension 

of the classical k-means algorithm to fuzzy sets. Fuzzy sets allow pixels to belong to all clusters 

in different degrees of membership. The membership displays the distance of a pixel to each 

of the cluster centroids. Pixels with high membership to a cluster will have a spectrum like that 

of the centroid of the cluster, and low membership values to the other clusters. Like k-means, 

the number of clusters to determine and the distance metric used to evaluate similarity 

fundamentally affect the results. FCM also introduces the “fuzzifier”, usually labeled as m. The 

fuzzifier is a number higher than 1 that shapes the membership curve. Values close to 1 produce 

clusters with high membership pixels and almost no overlap, while bigger values reduce the 

overall membership of the clusters and produce more fuzziness between clusters. Controlling 

this parameter is a key aspect of FCM, but no definitive consensus has been reached on 

choosing an optimal value, and traditionally, 2 is considered to be the standard value for some 

authors, as it tends to group centroids close to the geometrical center of the data[29]–[34]. 

Supplementary figure 1 shows examples of membership curves using different values of the 

fuzzifier.  

In MSI there are only a few published works involving the use of FCM. Jones et al. 

combined multiple statistical analyses, including FCM, to study the heterogeneity of 

myxofibrosarcoma[35]. In their work, FCM was one further piece of a combined workflow and 

the only stated information is the use of the euclidean distance and the selection of a fuzzifier 

of 1.25 (which was the default value in the employed Matlab method). The authors concluded 

that combining five independent multivariate methods provided an accurate summary of the 

spatio-chemical heterogeneity of myxofibrosarcoma. Sakari et al. did an exploratory study of 

the performance of different MSI workflows using FCM and K-means[36]. In their article, they 

evaluated the effects of different distance metrics on k-means: euclidean, city-block, cosine, 

and correlation; and the use of principal component analysis (PCA) before clustering to 

transform the m/z features into principal components. To do so, they used two MALDI-MSI 

datasets of mouse brain tissue from different spatial perspectives (sagittal and coronal) 

clusterized into 2 to 10 clusters to compute the Calinski-Harabasz (CH) clustering quality index 

and the correlation of the clusters with the manual annotation of 21 ion images representing 

predominant spatial patterns. For FCM with euclidean distance (the only tested setting), they 
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conclude that using PCA to reduce variables had limited effects on the cluster localization and 

shape. Regarding the CH index, they observed that 2 clusters produce the highest values in 

most workflows and associate it with the differentiation between tissue and non-tissue. 

Moreover, they observed that the CH index is biased towards the euclidean distance, as the 

euclidean distance minimizes the within-cluster sum of squares. The authors recommended 

exploring more cluster validity indexes, but multiple opinions in the MSI community consider 

that these indexes are not of much interest for MSI data as they estimate mathematically 

optimal solutions that do not need to go according to the biology of a tissue[37], [38]. In the 

end, the authors conclude that limited results were achieved for FCM and more investigation 

is required. 

Following these investigations, we here explore the benefits of FCM in MSI using the 

dimension of membership to a cluster for every pixel. We apply FCM to three MSI datasets to 

observe the effects over the membership that different distance metrics, fuzzifiers, and spatial 

resolutions have in different MSI data analysis procedures. Moreover, we propose a new score 

to compare the distribution of the membership between clustering results and to select the most 

representative pixels of a cluster. Finally, we propose a semi-supervised workflow combining 

FCM and histologically defined ROIs to study human cancer samples. 

2. Materials & Methods 

Indium tin oxide (ITO)-coated glass slides were obtained from Bruker Daltonics (Bremen, 

Germany). The gold-target used for sputtering coating was obtained from Kurt J. Lesker 

Company (Hastings, England) with a purity grade higher than 99.995%. HPLC grade xylene 

was supplied by Sigma–Aldrich (Steinheim, Germany), and ethanol (96% purity) was supplied 

by Scharlau (Sentmenat, Spain).  

2.1. MSI datasets 

To explore the use of soft clustering, we have selected three different datasets. The first 

consists of a MALDI-TOF dataset of sagittal cut of a complete mouse brain. With this dataset, 

we study how the membership of the clusters is affected using different distance metrics, 

fuzzifiers, and the number of clusters. The second consists of a MALDI-Orbitrap dataset of 

two samples of the mouse cerebellum sampled with different pixel sizes. With this dataset, we 

study the effects that different spatial resolutions have on the membership of soft clusters. The 

third consists of a MALDI-TOF dataset of six human head and neck cancer samples. With this 

dataset, we implement a workflow for the analysis of MSI datasets using soft clustering and 

study the heterogeneity in tumoral tissue and the role of transition tissue between tumoral and 

healthy tissue. 

2.1.1. MALDI-TOF sagittal mouse brain  

The dataset consists of one sagittal slide of a complete mouse brain. Complete details on 

sample preparation and mice model handling can be found in the article by del Castillo et 

al.[39]. The sample was sectioned from fresh-frozen material in slices 10 µm thick using a 

Leica CM-1950 cryostat (Leica Biosystems, Nussloch, Germany) and mounted on ITO slides. 

Gold nanolayers were deposited on the 10 µm tissue sections using an ATC Orion 8-HV 

sputtering system (AJA International, N. Scituate, MA, USA) following the procedures 

described by Ràfols et al.[40] The slide was measured using a MALDI TOF/TOF 

UltrafleXtreme instrument with SmartBeam II Nd:YAG/355 nm laser from Bruker Daltonics 

with a spatial resolution of 80 µm. Acquisitions were carried out using the medium and large 

laser spot size settings, operated at 2 kHz at an attenuated power of 60%, collecting a total of 
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500 shots per pixel. The TOF spectrometer operated in reflectron positive mode with the 

digitizer set at a sample rate of 1.25 GHz in a mass range between m/z 70 and 1200.  

2.1.2. MALDI-Orbitrap mouse cerebellum  

The sample was sectioned from OCT-embedded material in slices 10 µm thick using a Leica 

CM-1950 cryostat (Leica Biosystems, Nussloch, Germany) and mounted on ITO slides and 

coated with Au as described by Ràfols et al.[40]. The samples were measured with MALDI-

MSI using a dual-ion funnel/dual MALDI/ESI Injector (Spectroglyph, Kennewick, WA) 

coupled to a Q Exactive Plus Orbitrap (Thermo Fisher Scientific, Bremen, Germany), as 

described by Bednařík el al.[41] The in-source pressure was set to 7 mbar of N2. A frequency-

tripled q-switched Nd:YLF laser (Explorer OEM, Spectra-Physics, Mountain View, CA; 

emission wavelength: 349 nm; repetition rate: 300 Hz; resulting pulse width: ~10 ns) was 

operated with a pulse energy of about 50% above the ablation threshold. The laser beam was 

focused to an effective spot size of ~10 μm in diameter. The dataset consists of two samples of 

the mouse cerebellum, one of them measured with a pixel-to-pixel step size of 50 µm (MC50) 

and the other with 10 µm (MC10). The orbitrap mass analyzer was operated with a mass 

resolving power (FWHM) of 140,000 (@m/z 200) and a fixed “injection time” of 500 ms, 

resulting in data acquisition rates of 1.9 pixels per second. The “AGC target” was disabled. 

Experiments were controlled by XCalibur (2.8.SP1 Build 2806, Thermo Fisher Scientific) and 

MALDI Injector (ver. 1.3.1.0, Spectroglyph) software. 

2.1.3. MALDI-TOF human head and neck cancer 

The dataset consists of six human tissue samples with head and neck cancer extracted from 

the same patient with the approval of the Institutional Review Board (IRB) of Hospital Clínic 

de Barcelona (FIS PI18/0844). Two of them contain tumoral cells and are categorized as 

tumoral tissue (S1 and S2, analytical replicates), two are close biopsies of the tumoral region 

and are categorized as a transition between tumoral and healthy tissue (S3 and S4), and two are 

healthy tissue (S5 and S6). The samples were sliced from fresh-frozen material, coated with 

Gold nanolayers, and measured using a MALDI-TOF UltrafleXtreme with SmartBeam II 

Nd:YAG/355 nm laser from Bruker Daltonics in the positive mode in the mass range of m/z 

400 to 1200 as described by Ràfols et al.[40]. 

2.2. MSI data processing 

For each dataset, the raw data were converted to imzML and processed using the default 

parameters of rMSIproc[42]. The processing workflow consisted of smoothing, alignment, 

mass calibration using known gold clusters peaks, peak picking, and peak binning, resulting in 

peak matrices. Peak matrices represent pixels as rows and m/z features as columns, so that each 

row is the peak-picked spectrum of a pixel, and each column is the intensity image of an m/z 

feature. Later, the off-sample and hotspot pixels were removed using TIC and RMS filters. 

Only the peaks corresponding to monoisotopic ions found by rMSIannotation[43] were 

retained for the two mouse datasets to work with fewer variables. For the human dataset we 

discarded only the isotopes to keep as many relevant ions for the classification as possible. 

Next, we removed all the ions with a median value of zero in the remaining pixels to discard 

columns representing off-sample ions and the pixels were normalized by TIC in the case of 

TOF and by RMS in the case of Orbitrap, as using RMS normalization on TOF amplifies the 

noise greater than the TIC normalization [44]. Finally, all data were standardized to allow all 

ions in different intensity and variance levels to contribute equally to the spatial segmentation 

of the sample using FCM. 
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2.3. Fuzzy c-means and pixel fidelity score 

FCM is a soft clustering method that works in iterative steps in which the cluster centroids 

are calculated by weighing all the pixels (𝑛) by their membership to the clusters. Internally, 

FCM contains two main structures: the centroid matrix, which contains the spectral centroid of 

the clusters; and the membership matrix, which contains the membership of pixels to clusters 

and can be understood as the spatial centroid of the clusters in MSI. Given a specific number 

of clusters (𝑐), the membership (𝑢 𝑖𝑘) of a pixel (𝑘) to a cluster (𝑖) is computed using the 

distance (𝑑) between the pixel spectrum and the centroid of the cluster divided by the sum of 

all the distances between the pixel and all the centroids (𝑗). This ratio is raised by a factor that 

includes the fuzzifier (𝑚), which increases the degree of fuzziness of the clusters and is usually 

set to 2 by default [33], [34]. This produces membership values between 0 and 1 and the sum 

of all the memberships of a pixel adds up to 1. Equation 1 represents the membership definition 

of FCM. 

 

𝑢𝑖𝑘  =  (∑(
𝑑𝑖𝑘

𝑑𝑗𝑘
)

2
𝑚−1

𝑐

𝑗=1

)−1                            (1) 

          

For this work, we have implemented our version of the Fuzzy c-means algorithm in an R 

package using C++ and Rcpp[45], as we were not able to process MSI datasets with other tested 

packages in R, like ppclust[46] and fclust[47], due to the maximum number of observation 

allowed. The code is available through github (github/LlucSF/fcmR). The clustering algorithm 

can be initialized by selecting the number of clusters, or using ROIs labels for each pixel, which 

assign a cluster to each ROI and compute the first centroids considering the maximum 

membership of the pixel to the ROI. Using ROIs generally reduces the number of iterations the 

algorithms need to converge, resulting in faster executions. Other parameters that can be 

modified are: 1) the number of clusters, 2) the maximum number of iterations, 3) the minimum 

number of iterations before checking stop conditions, 4) the fuzzifier (value of m), to control 

how abrupt the transition between clusters can be (supplementary figure 1); and 5) the epsilon, 

the difference in the objective function between iterations accepted as the convergence of the 

algorithm. In order to evaluate the influence of different distance metrics, we implemented the 

Euclidean and the cosine distance following the formulas of Smets et al.[48]. 

Additionally, to compare the membership values of results with different numbers of 

clusters, we have developed the pixel fidelity score (PFS), which is automatically computed in 

our implementation of FCM. The PFS is computed at pixel level and quantifies the degree of 

dependency of a pixel to a unique cluster in a range between zero and one. The PFS reaches 

one when a pixel is a centroid pixel, a theoretical situation in which a pixel and a cluster 

centroid share the same spectrum and therefore, the pixel only has membership for that cluster 

(Eq. 2).  On the other hand, the PFS reaches zero when a pixel is an unclassified pixel, a 

situation of a pixel with the same value of membership for all clusters (3). Therefore, clusters 

with high PFS pixels have limited spatial overlap with other clusters, as the pixels belong 

strongly to that cluster; while clusters with pixels with low PFS pixels have pixels shared 

between clusters, and hence they overlap in the space. 

 

 𝜇𝑐𝑝(𝑐)  = (1 , 0 , . . . , 0)                                                  (2) 

𝜇∅(𝑐)  = (1/𝑐 , 1/𝑐 , . . . , 1/𝑐)                                       (3) 

 

The PFS is defined as the Euclidean distance (𝑑) between the memberships of a pixel (2) 

and the membership of the unclassified pixel (3) divided by a normalization coefficient, which 
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corresponds to the distance between the unclassified pixel and the centroid pixel (4). This takes 

into account the maximum distance between any pixel and the unclassified pixel for any given 

number of clusters and ensures that the PFS always ranges from zero to one. 

 

 

𝑃𝐹𝑆 =
𝑑(𝜇𝑘(𝑐), 𝜇∅(𝑐))

 𝑑(𝜇𝑐𝑝(𝑐), 𝜇∅(𝑐))
=

𝑑(𝜇𝑘(𝑐), 𝜇∅(𝑐))

 √
𝑐 − 1

𝑐

         (4) 

3.Results 

3.1.   Colocalization of m/z features and clusters 

Estimating which m/z features are more closely related to each ROI is one of the main 

interests of the spatial segmentation of MSI data, as it allows comparing the molecular 

signature of the ROIs. In the case of clustering methods, it can be done by comparing the 

centroids of the cluster, but if the data has received many transformations before clustering, 

like normalization or scaling operations, it can be complicated to extrapolate the comparisons 

to the original data due to, for example, negative values and differences in the intensity scale. 

An alternative approach is computing Pearson's correlation of the image produced by an m/z 

feature of interest and the binary image of a cluster, where pixels assigned to a cluster have an 

intensity value of one and all the others of zero. This approach can be reconsidered in terms of 

soft clustering by comparing m/z features to the distribution of the membership to a cluster 

which we refer to as membership maps. Hard clustering membership maps produce images 

where only the region assigned to the cluster has intensity values (0 and 1), whereas, in soft 

clustering membership maps, the information on the transitions between clusters is added in a 

complete scale of values between 0 and 1. Figure 1 shows the intensity map of ion m/z 850.658, 

the clustering results with four clusters (fuzzifier set to 2 and using the Euclidean distance), 

and the hard and soft membership maps. We observe that the ion is colocalized with cluster 3, 

as is the cluster with highest numerical correlation. Using the hard membership map we obtain 

a correlation of 0.792, and using the soft membership map the value increases up to 0.870.  

To see the differences in correlation depending on the FCM parameters, we performed 

Pearson's correlation between all the images of m/z features and the hard and soft membership 

maps using different fuzzifiers, distance metrics, and numbers of clusters over the sagittal 

mouse brain. Supplementary figure 2 summarizes the effects of all these parameters on the 

correlation. In general, using soft membership maps increases the correlation for any number 

of clusters and distance metrics, but the size of the increase depends on the fuzzifier. Fuzzifiers 

close to 1 produce membership maps that only keep strongly related pixels in them, like in hard 

membership maps, and therefore the correlations are similar between the hard and soft 

membership maps. On the other hand, fuzzifiers with higher values include a representation of 

the transitions and overlaps between clusters, increasing the correlation between clusters and 

m/z features. In terms of the distance metric, the Euclidean distance experiences a greater 

increase in the correlation than the cosine distance using soft membership maps. The increases 

in mean correlation (the increase between the tendency lines in supplementary figure 2) using 

fuzzifiers of 2, 1.5, 1.25, and 1.1 are, for the cosine distance, 15.93%, 7.22%, 3.6%, 1.5%; and 

for the Euclidean distance 30.76%, 14.46%, 6.9%, and 2.5% respectively. Finally, the cosine 

distance achieves higher correlations than the Euclidean distance for clustering results with a 

small number of clusters, while the opposite happens for the Euclidean distance. In conclusion, 

soft membership maps are more beneficial in determining colocalization than hard membership 
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maps as the correlation value between the m/z feature image and the colocalized cluster tends 

to be higher. 

 

 

 
Figure 1. a) Intensity image of ion m/z 850.658. b) Clustering result using four clusters, Euclidean distance, and 

fuzzifier set to 2. The membership is displayed in the plot using the transparency of the colors. c) Hard membership 

map of cluster 3 consisting only of zeros and ones. d) Soft membership map of cluster 3 with a complete scale 

between 0 and 1. 
 

3.2.  Study of the membership distribution of clusters using the PFS 

Using the distribution of the PFS over multiple clustering results, we illustrated the 

combined effects of the parameters of FCM in the membership distribution of the clusters. 

Supplementary figure 3 shows the distribution of the PFS with different distance metrics, 

fuzzifiers, and the number of clusters for the sagittal mouse brain. First, we observe that as the 

fuzzifier increases, the median PFS tends to decrease for all the other parameters, increasing 

the spatial overlap between clusters as expected by the definition of the fuzzifier. Second, we 

observe that as the number of clusters increases, the median PFS tends to decrease and 

decreases more as higher is the fuzzifier used. And third, the cosine distance tends to form 

clusters with higher PFS than the Euclidean distance and with less dispersion, except when 

combining fuzzifier values close to two and more than three clusters. Then, the cosine distance 

still produces a higher PFS median than the Euclidean distance but higher dispersion as well. 

These three conclusions summarize the combined behavior of the three parameters over the 

membership distribution of clustering results, which should be considered in adjusting the FCM 

to specific workflows. 

Additionally, we use the PFS to compare the membership distribution of each cluster in 

multiple clustering results. Supplementary figure 4 shows different clustering results of the 

sagittal mouse brain with two to seven clusters using the cosine distance and fuzzifier set to 1.5 

as an example. Using this representation, we observe that, with two clusters there is almost no 
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overlap between the two clusters, which indicates that the ion composition and/or the intensity 

levels of the ions are very different between the two regions and explains most of the variability 

of the tissue. With three clusters we observe that the previous cluster 2 remains stationary as 

the new cluster 1, while the previous cluster 1 is now split between the new clusters 2 and 3, 

but with lower PFS density, indicating that the overlap between clusters 2 and 3 is greater than 

between them and cluster 1. For the five-cluster result, we see that one of the clusters represents 

the same region as cluster 2 in the two-cluster result, while the other clusters overlap each other 

in different regions as the PFS distribution indicates. As we keep increasing the number of 

clusters, the overlap between clusters tends to increase in most regions of the tissue. This 

analysis allows visualizing which clusters occupy regions with more specific ionic 

composition, and which are more heterogeneous. 

Finally, in MSI it is common to compare clusters pairwise to assess which ions are up-

regulated or down-regulated in different morphologies. Usually, only a random subset of the 

total number of pixels is used as the number of pixels per cluster tends to be high, which 

produces p-values out of the scale. But, as we have shown in membership maps and PFS 

distributions, not all pixels are equally related to the cluster. Therefore, randomly selecting 

pixels does not discriminate between pixels. To solve this, we propose to use PFS as a pixel-

selection criterion before comparing clusters. For a given clustering result, the pixels with a 

PFS value lower than a threshold are discarded before comparing groups by random sampling 

the remaining pixels. For this purpose, using PFS is more convenient than using the raw 

membership value, as it always ranges between zero and one, while the minimum membership 

for a pixel to be assigned to a cluster depends on the total number of clusters. For instance, 

Supplementary figure 5 compares the effects of removing pixels with PFS below 0.95 and of 

removing randomly the same number of pixels in the sagittal mouse brain with four clusters, 

cosine distance, fuzzifier set to 1.5, and comparing clusters 2 and 3 in a volcano plot. We 

observe a general reduction of the significance of the ions for both procedures, which is a 

natural consequence of the decrease in the number of observations, but using PFS as criteria, 

the significance of the test is higher than randomly removing pixels. Moreover, using PFS we 

observe a general increase in the fold change, whereas removing random pixels does not affect 

it. The same situation is observed in different clustering results and comparing different 

clusters. This result shows that PFS is useful in selecting pixels strongly related to a cluster, 

which leads to comparisons between clusters using pixels more representative of the 

differences between cluster centroids. 

3.3. Effects of the Spatial Resolution on Soft Clustering Results 

The spatial resolution, usually defined as the lateral length of a pixel, influences the amount 

of tissue averaged per sampling point in multiple-shoots acquisitions. Therefore, low spatial 

resolution datasets have a higher chance of pixels with mixed cell types. To study the effects 

of the spatial resolution on FCM results, we use two datasets of a mouse cerebellum with spatial 

resolutions of 10 µm and 50 µm. The cerebellum consists of two principal parts, the white 

matter, and the cerebellar cortex. At the same time, the cerebellar cortex is made up of three 

layers: the molecular layer, the Purkinje layer, and the granular layer [49]. The transition 

between several histological regions in the cerebellum is abrupt, making the cerebellum tissue 

an ideal sample to study the influence of the spatial resolution in the soft clustering, especially 

in the frontier between regions. We clustered both datasets with four clusters trying to replicate 

the cytoarchitecture of the tissue, and set the fuzzifier to 2, to promote shared pixels between 

clusters. We segmented the image using the cosine distance, as it tends to produce a better 

correlation between clusters and m/z features with a low number of clusters. Figure 2 shows 

the results of both datasets and the PFS distribution of each cluster.  
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We observe that overall, the four clusters occupy the same regions in both datasets but have 

slightly different PFS distributions in some clusters. First, cluster 1 (green) is located on the 

white matter and has the highest PFS values and similar dispersion in both datasets. The high 

PFS values in both datasets of the white matter indicate that it is a very homogeneous region 

in terms of lipid composition and intensity levels compared with the other regions. Second, 

cluster 2 (purple) is in the granular layer and has lower PFS values in the 10 µm dataset than 

in the 50 µm dataset. This indicates that FCM detects more heterogeneity in the granular layer 

with increased spatial information compared to the other clusters. This can be caused by the 

increased specificity in the acquisition of the pixels. Third, clusters 3 (orange) and 4 (yellow), 

located on the molecular layer and mixed with the pia mater, have slightly different levels of 

PFS. In the 10 µm dataset, cluster 4 has higher PFS values and less dispersion, while cluster 3 

has slightly lower PFS values, compared with the 50 µm dataset. This may be a consequence 

once more of the increased spatial information, as the specificity of pixels allows a better 

representation of the frontiers between clusters 3 and 4 in the 10 µm dataset as can be seen in 

the PFS map of the 10 µm dataset in figure 2. 

 

 
Figure 2. a) Clustering result of the 50 µm dataset. b) PFS map of the 50 µm dataset. c) Clustering result of the 

10 µm dataset. d) PFS map of the 10 µm dataset. e) PFS distribution of each cluster using the Euclidean and the 

cosine distances of the 10 µm and 50 µm datasets. 

  

UNIVERSITAT ROVIRA I VIRGILI 
PEAK ANNOTATION AND DATA ANALYSIS SOFTWARE TOOLS FOR MASS SPECTROMETRY IMAGING 
Lluc Sementé Fernández 



168 

 

Regarding the cytoarchitecture of the cerebellum, with four clusters we achieved a clear 

distinction between the white matter and the granular layer in clusters 1 and 2; and we saw a 

mix of the molecular layer and the pia mater in clusters 3 and 4. At the same time, FCM was 

not able to form an independent cluster for the Purkinje layer in any of the datasets. But we can 

see it indirectly in the PFS maps as a frontier of pixels between clusters 1 and 2 with very low 

PFS values. This frontier is easier to see in the 10 µm dataset, as the clusters 1-4 are better 

defined and can clearly be distinguished from these pixels of the Purkinje layer. We tried to 

increase the number of clusters to detect this specific region, but we could not achieve a good 

segmentation of it, which may be a consequence of the small number of pixels under this 

condition compared to other regions in the datasets. Additionally, this frontier is very difficult 

to see using membership maps, as it is the result of combining the low membership values of 

all the clusters. All these results point to a general preference for increased spatial resolution, 

as it helps in assessing heterogeneity in clusters, and shows the utility of PFS maps in 

discovering small structures hard to cluster, something impossible to achieve with hard 

clustering methods.  

3.4.  Semi-Supervised Segmentation Workflow of Head and Neck Cancer 

Samples 

We have developed a semi-supervised soft clustering workflow to study how FCM assigns 

membership to the transition regions of the head and neck cancer dataset using the distinction 

between tumoral and healthy tissue as input. The workflow is semi-supervised in two different 

ways: using histologically defined ROIs and including a feature selection step. The workflow 

starts by clustering the tumoral samples (S1 and S2) to obtain a cluster that can be associated 

with the tumoral cells. This is determined manually by comparing the clustering results with 

ROIs annotated by a histopathologist over a replicate of slide S2, which splits the tumor 

samples into tumor epithelium and stroma regions. We use 2 clusters to distinguish between 

these regions in the clustering. After obtaining the cluster, we remove the pixels of the cluster 

with low PFS, to avoid pixels shared between clusters. From the remaining pixels, we selected 

the m/z features that have more discriminative power between the tumoral pixels in slides S1 

and S2, and the samples containing healthy tissue (S5 and S6) using receiver operating 

characteristic (ROC) curves. For each m/z feature, we elaborate the ROC curve and compute 

the area under the curve (AUC). The m/z features that have an AUC higher than 0.9 or lower 

than 0.1 are used in the clustering analysis of the whole dataset. This procedure ensures that 

the clustering of all the samples together will focus on studying the spatial distribution of the 

m/z features with more discriminative power between healthy and tumoral pixels and will not 

follow other morphological structures promoted by other m/z features. For the clustering of all 

the samples, we set the fuzzifier to 2 and used the cosine distance to soften the border between 

clusters. Starting with the tumoral samples (S1 and S2), figure 3 shows the clustering results 

and the PFS over samples S1 and S2 using two clusters and the microscopy image of a 

consecutive tissue sample on slide S2.  

We observe that cluster 1 occupies most of the regions annotated as tumor epithelium, while 

cluster 2 is located in the stroma and other regions. Also, the PFS images reveal a sharp frontier 

between clusters, which indicates big differences between tissue types and limited overlap. 

Following, we used the pixels of cluster 1 with PFS higher than 0.7, which is a value close to 

the median of the cluster, and all the pixels of the healthy samples (S5 and S6) to select the m/z 

feature with more discriminative power using ROC curves. Supplementary figure 6 shows the 

pixels from cluster 1 used for the ROC curve analysis and the effect that removing them has 

over a volcano plot, which replicates the results presented over the sagittal mouse brain dataset. 

With the ROC curve analysis, we selected 27 m/z features, which were used in the clustering 
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of all tissue samples and clustered all the tissue sections with two clusters. Figure 4 shows the 

clustering result for the whole dataset and the PFS distribution of each cluster at each tissue 

type.  

 

 
 

Figure 3. a) Clustering result of samples S1 and S2 using two clusters and fuzzifier set to 2. b) PFS map of 

samples S1 and S2. c) Optical H&E-stained image of a slide consecutive to S2.  

 
 

 
Figure 4. a) Clustering result of all the tissues using two clusters, the cosine distance and fuzzifier set to 2. b) PFS 

distribution per cluster and per tissue type of the clustering results of all the samples.  
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We see that cluster 1 is located mostly in the tumor samples and cluster 2 in the healthy 

samples, both with high values of PFS. The transition samples have pixels from both clusters 

with similar levels of PFS while the other four samples have very low values of PFS from the 

opposite cluster. This indicates that pixels in the transition samples are more heterogeneous 

compared to the tumor and healthy samples, resulting in a bigger overlap between clusters in 

the region. Also, in the healthy samples, we observe bigger PFS dispersion in cluster 1 than in 

cluster 2, which may be related to clustering together the tumor epithelium and the stroma in 

samples S1 and S2. This can be seen in the membership of cluster 1 over the tumor samples, 

where most of the regions with lower membership were annotated as stroma by the 

histopathologist. Finally, the workflow has successfully focused on the differences between 

tumor and healthy samples, and indicated regions closely related to the tumor in the transition 

samples. This is clearly exposed in the progression of PFS in both clusters across the different 

sample types and cancer progression. 

4. Discussion 

In this work, we have applied FCM to MSI datasets and studied the effects of the parameters 

in different applications. One of the main results computed by FCM is the membership matrix, 

in which rows represent pixels of the MSI experiment, columns represent the clusters, and the 

values represent the membership of a pixel to one of the clusters. In MSI, these values can be 

plotted over the tissue morphology to visualize which regions are more related to one cluster, 

increasing the interpretability of the results. Moreover, an enhanced clustering image can be 

obtained by plotting in colors the cluster with the highest membership for each pixel and 

including the membership as the transparency of the image. Using these images, it is possible 

to localize, in the morphology of the tissue, the pixels with a spectrum closer to the cluster 

centroid. Additionally, FCM enables the assessment of spatial overlap between clusters by 

correlating the membership maps of each cluster, as the membership matrix can be understood 

as the spatial centroids of the cluster. We have used this idea to enhance the colocalization of 

m/z features with membership maps and obtained higher correlations than using hard clustering 

masks, as hard clustering masks only indicate where the cluster is predominant. This increase 

in correlation is important as it allows a safer automatic discard of low correlation m/z features. 

Moreover, it indicates that soft membership maps better represent the structures behind the 

combination of the m/z features over the tissue compared to hard membership maps.  

Regarding the combination of the fuzzifier, the distance metrics, and the number of clusters, 

we have observed a general decreasing tendency of the membership of the pixels when 

increasing the fuzzifier and the number of clusters. Additionally, the cosine distance formed 

clusters with higher membership than the Euclidean distance. But we think that there is no 

standard choice of parameters and, like most tools in MSI, requires the expertise and hypothesis 

of the data analyst to select the appropriate parameters in each experiment. For instance, the 

choice of fuzzifier influences the degree of overlap between clusters, and high levels of overlap 

might be of interest in studies related to samples with mixed tissue types or conditions like 

tumor margin classification. 

Nevertheless, to study the combined effects of the parameters we have developed the PFS 

as a tool for the detection of regions where different clusters are expressed. We have used the 

PFS to compare the membership distribution between clusters, filter out pixels with low PFS 

values before comparing clusters to improve random sampling processes, and detect 

morphological structures not included in any of the clusters. It is also very important to notice 

that low PFS pixels do not always mean that the pixels contain a combination of different tissue 

types. It can also indicate that the pixels have a different molecular signature compared to the 

other clusters and therefore, they need an independent cluster. Sometimes the algorithm is not 
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capable of clustering these pixels alone, because their condition represents a small percentage 

of the total variance of the dataset or because there are a small number of pixels under the 

condition compared to the whole dataset. In these cases, increasing the number of clusters may 

be adverse, as it can result in splitting regions into too many clusters. We think this is the case 

in the mouse cerebellum dataset, where we showed that the Purkinje layer did not form an 

independent cluster but, thanks to the increased spatial resolution, we detected a low PFS area 

between the granular and the molecular layer, which can be associated with the Purkinje layer. 

Although the cluster localization was approximately the same between different spatial 

resolutions, the possibility of clearly distinguishing regions where the clustering misclassified 

pixels adds value in interpreting the results. Therefore, we showed that increasing spatial 

resolution is beneficial for the performance of clustering algorithms. 

Finally, the combination of histologically defined ROIs and FCM in a two-step workflow 

allowed us to better interpret the results of the head and neck cancer dataset, in understanding 

the role of the transition samples. Thanks to this, we could select the specific m/z features that 

contain more information on the distinction between tumor and healthy samples and expand 

the clustering criterion over the other samples, leading to the discovery of mixed regions on 

the transition samples using the PFS distribution. We think that this is the main benefit of soft 

clustering methods over hard methods, as knowing the degree of overlap between clusters at 

different tissue samples allows us to classify the results using two criteria: cluster assignment 

and membership/PFS distribution. 

5. Conclusion 

FCM brings additional information to MSI data analysis through the dimension of 

membership, which allows for new ways of interpreting the results compared with hard 

clustering results. In our case, the study of membership through the newly developed PFS 

allowed easy selection of the pixels more related to a cluster, unveiled morphological regions 

more challenging to detect, and enhanced a tissue type classification workflow in multiple 

samples of a human head and neck cancer dataset.  

We expect this work to contribute to attracting interest in soft clustering methods for the 

spatial segmentation of MSI data. Future lines of research could be study the use of bisecting 

k-means guided by the membership of the clusters; developing a notion of membership more 

intrinsically related to how biologic features spatially overlap each other in MSI; distinguishing 

the low PFS pixels that are a mixture of tissues from pixels that are not well classified; and 

trying new soft clustering algorithms used in other fields of image processing.  
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7. Supplementary figures 

 

 
Supplementary figure 1. Membership curve of FCM using different fuzzifiers. The y-axis represents the 

membership of a pixel to a cluster. The x-axis represents, between 0 and 1, the dynamic range of the 

multidimensional distance between the pixel and cluster centroid; being 0 the closest and 1 the farthest. Fuzzifier 

values close to 1 create sharp borders between clusters, quickly changing between high membership and low 

membership, while values higher than 2 soften the borders between clusters. 
 

 

 
Supplementary figure 2. Colocalization between m/z features and cluster membership map images under the 

influence of the fuzzifier (rows), distance metric (columns), type of membership map, and the number of clusters. 

The tendency lines indicate the mean correlation for each case. 
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Supplementary figure 3. Boxplot of the effects of the fuzzifier (columns), distance metric, and the number of 

clusters over the PFS. The distribution represents the PFS of all the pixels of the image at each subset of 

parameters.  
 

 

 

 

 

 

 
Supplementary figure 4. Morphological representation of six clustering results of the mouse cerebellum and the 

PFS distribution of the clusters at each clustering result.  
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Supplementary figure 5. Volcano plot of the sagittal mouse brain comparing clusters two and three from the 

four-cluster result using the cosine distance and fuzzifier set to 1.5. The color scale indicates which pixels are 

used to compare clusters. The total number of pixels removed in both procedures is the same. The arrows indicate 

how the fold changes and the significance of an m/z feature change after removing pixels using each method.  
 

 

 

 

 

 

 

 

 
Supplementary figure 6. a) Clustering result of samples S1 and S2 with all the pixels (top) and with only pixels 

with a PFS greater than 0.7. b) Volcano plot of samples S1 and S2 before and after removing pixels with PFS 

below 0.7. We observe a general increase in the absolute value of the FC and a reduction in statistical significance 

like in the sagittal mouse brain. 
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CHAPTER 6 
 

Final discussion and conclusions 
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The work included in this doctoral thesis can be clearly separated in two parts.  

Firstly, the development of an isotope and adduct peak annotation tool suited to facilitate 

the identification of the low mass range compounds. We can now easily find monoisotopic ions 

in our MSI datasets thanks to the rMSIannotation software package.  

Secondly, the development of software tools for data analysis and spatial segmentation 

based on soft clustering for MSI data. In this thesis, we have developed tools and 

methodologies to search for significant ions (rMSIKeyIon software package) and for the soft 

clustering of tissues (Fuzzy c-means algorithm).  

We believe that the goals proposed in this thesis have been successfully accomplished since 

we have developed and validated tools that attempt to solve part of these problems. Still, 

multiple challenges remain open and future lines of research can be proposed.  

1. Peak annotation: a necessary step for ion identification of MSI data 

The relationship between ions and their localization over a tissue section allow the discovery 

of spatial features on the sample but, without molecular identity, the work remains incomplete 

and can only be considered as cytoarchitecture, not spatial metabolomics. Therefore, the 

identification of metabolites is the most important step in any spatial metabolomics study. 

However, the identification of metabolites in MSI has multiple challenges to overcome in terms 

of spectral acquisition and bioinformatic strategies.  

Starting with the spectral acquisition, the principal drawback of MSI for the identification 

of metabolites is the simultaneous ionization of all the compounds at each sampling point, 

which produces a chain of negative effects. It starts with the simultaneous in-source 

fragmentation of many compounds, complicating the connection between parental ions and 

fragments, and producing a superpopulation of ions in the low mass range (metabolites). The 

superpopulation of fragment ions makes the identification of the metabolites difficult, 

especially in the low mass range. Comparing the situation with LC-MS spectra, in which the 

signals are associated with a m/z and retention time, the confusion between fragments and 

parental ions in MSI is harder to solve. But, even using LC-MS, for untargeted analysis, da 

Silva et al. estimated that only 1,8% of the spectra can be annotated1, associating the term “dark 

metabolome” to refer to all the unknown signals.  

Ion superpopulation in MALDI-MSI also happens due to the presence of matrix ions in the 

spectra, as organic matrices (the most widely used) have high fragmentation and adduct 

formation rate.2,3 The existence of this so high number of ions results in many of them sharing 

very close m/z values. Even using high resolution mass analyzers most of them are hard to split 

in different peaks resulting in overlapping peaks. Moreover, this not only happens with 

fragments and some small metabolites but can also occur with parental ions of different 

molecules. This problem can be addressed in some extend depositing inorganic matrices, like 

gold nanoparticles.4,5 Most inorganic matrices produce cleaner spectra than organic matrices 

and have carbon-free isotopic patterns, which can be used to easily identify their signal 

background, but tend to enhance the fragmentation of analytes in the tissue.  

Overlapping peaks is a challenging problem specially in MALDI-TOF datasets for spatial 

metabolomics, as the mass resolution of most TOF detectors is not high enough in the low mass 

range of the spectra to resolve them. Additionally, overlapping peaks usually pass without 

notice leading to erroneous annotations by distorting the real m/z and intensity of the 

compound. During the development and validation of the rMSIannotation software for isotope 

and adduct annotation we found that many of the confidently identified compounds in the 

MALDI-TOF dataset, suffer from overlap.  For instance, we found overlap in the isotopic 

patterns of the sodium adduct of phosphatidylcholine (32a:1), with molecular formula 

[C40H78NO8P+Na]+ and m/z 754.535; and the potassium ion of sphingomyelin (d18:1/C17:0) 
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with molecular formula [C40H81N2O6P+K]+ and m/z 755.546. Their monoisotopic and first 

isotope ions have differences in m/z of 0.0073 Da (9 ppm), which could not be resolved by the 

used TOF analyzer6. Using this example we studied how overlapping affected our algorithm 

using in silico patterns at different mass resolutions and abundance ratios between ions. The 

conclusions of the study determined that rMSIannotation can annotate some pairs of 

overlapped compounds depending on the abundance ratio of the compounds and the mass 

resolution of the peaks. As far as we know, this is the first time a peak annotation tool has been 

tested over overlapped peaks and proven to annotate them. We did not check the results for 

more than two overlapping ions, but we assume that the situation gets more challenging in this 

case. Additionally, in MALDI-TOF datasets, this same case of overlap in even smaller ions 

would result in lower annotation possibilities as the mass resolution decreases. These two facts, 

in-source fragmentation, and peak overlap between others, like mass accuracy, are important 

reasons for changing MALDI-TOF instruments for MALDI-Orbitrap or MALDI-FT-ICR 

instruments in spatial metabolomics experiments, as they suffer less their bad effects. 

A line of research attempting to solve this problem could be the spectral deconvolution of 

the overlapped peaks based on lineshape fitting algorithms, a technique often used in NMR 

spectra.7 The mission of these algorithms in MSI could be first, assess the mass resolution 

profile of the experiment (the variation of mass resolution over the m/z axis), later, localize 

mass ranges where the spectra present abnormally wide peaks according to the expected mass 

resolution, and finally, try to solve the fitting problem of different peak shapes in the mass 

range in conflict. In some spatial regions, some of the overlapped peaks may appear isolated in 

the spectra, which could help in deconvoluting the spectra. Some works proposed an alternative 

approach to detect overlapping peaks by decomposing the whole MSI spectra into Gaussian 

Mixture Models (GMM).8,9 The main drawback of this method is setting the initial conditions 

of the algorithm for fitting such a big number of components, and the apparition of non-spectral 

peaks due to artifacts of the algorithm, which require special processing to detect and discard 

all of them. Finally, we purpose a new approach based on the peak annotation scores provided 

by the rMSIannotation algorithm. The scores contain information on why a peak has not been 

assigned to an isotopic pattern and this information can be used to detect overlapped peaks by, 

for instance, comparing the correlations and the expected isotopic intensity ratios of an 

annotated isotopic pattern to different adduct distances. This information could be used to 

initiate a second iteration of data processing targeted on the spectral regions where the peak 

annotation algorithm has scored low with parameters aiming to split overlapped peaks. We 

consider this an interesting line of research to follow.   

Metabolite annotation and identification is also a challenge in terms of bioinformatic 

strategies. The challenge originates from the kind of information produced in an MSI 

experiment, which consist basically of m/z values (exact mass) with intensities localized over 

a two-dimensional surface. Therefore, compared with other MS methods like LC-MS, we have 

a very limited source of information regarding ion identity. There are some works trying to 

expand the m/z information combining MS scans with MS/MS scans over the same tissue 

sample but with the limitations of the available tissue material and the low concentration of 

precursor.10 On the other hand, MSI benefits from a huge number of sampling points, which is 

one of the most valuable features of MSI experiments compared to other MS methods that 

enhance multiple tools. For instance, image correlation is a common procedure in most peak 

annotation tools for MSI that benefits from having more observations. During the development 

of rMSIannotation we recognized this opportunity and used it in multiple ways. We used it to 

correlate isotope ion images, as their spatial distribution must be almost the same, and to 

precisely determine the intensity ratio between monoisotopic and isotopic ions, extracted using 

linear models and used to determine the number of carbon atoms of the compounds, which as 

far as we know, we are the first to implement. The annotation of isotope ions benefits more of 
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these strategies compared with the annotation of adduct ions. First, the image correlation 

between adducts is not as strong as in the case of isotopes because is affected by the natural 

abundance distribution of elements in the tissues (i.e. K+, Na+, etc.)11 and by the homogeneity 

of the matrix application3. And second, there are no rules regarding the intensity ratios between 

monoisotopic ions with different adducts that need to be tested. 

The gold standard for peak annotation algorithms in MSI metabolomics datasets is the 

METASPACE12 platform, based on fitting spectral library models. High resolution spectral 

data with high mass accuracy is required by METASPACE to achieve confident annotation to 

minimize the chance of overlapped peaks and minimize the mass errors. We opted for a 

radically different approach, consisting of annotating the isotopes and the adducts with only 

the acquired spectra. Once the monoisotopic peaks have been determined, the molecular 

annotation is done by searching externally in exact mass libraries. The principal novelty of our 

approach was the modeling of the HMDB13 into one equation which relates the m/z of a 

monoisotopic ion with a range of common isotopic intensity ratios for the metabolites close to 

the m/z. This, together with the possibility of extracting very precisely the intensity ratios 

between isotopes using the huge number of pixels allow for a fast annotation of MSI datasets 

in the format of peak matrix. Developing such mathematical models could be a completely new 

line of research. Extending the modeling to more families of compounds and subgroups would 

result in a collection of multiple equations working together. With the equations and some 

heuristics (for instance, only allowing to test models that cover the mass range of the m/z of 

interest), the algorithm would compute multiple scores and reduce the number of candidate 

annotations. However, even with all the possible bioinformatic efforts, measurements of the 

same sample with an orthogonal technique (like MS/MS or ion mobility) are required to 

validate a molecular annotation.14  

2. Ion selection strategies in MSI 

The development of this thesis has covered many aspects of the untargeted analysis of MSI 

data. One important topic has been finding, between the huge number of ions, those that 

contribute more to the answers of a MSI study. For that, we have used two different strategies 

based on different criteria. The first, is a method to select the ions with a higher contrast 

between predefined regions using statistical criteria, and the second, is a method to detect the 

monoisotopic ions in the spectra using chemometric criteria. Both approaches are meant to 

facilitate the discovery of relevant molecular signatures by reducing the number of variables 

under study and therefore, are expected to be combined.  

The first strategy, implemented through rMSIKeyIon, selects the ions with the highest 

contrast between predefined regions evaluating statistical significance. The main drawback of 

this method is MSI data present multiple incompatibilities with statistical hypothesis testing 

overall. First, most intensities of the ions do not follow a normal distribution, requiring data 

transformations or the use of non-parametric tests like rank sum tests. Additionally, using the 

enormous amount of data points in most MSI datasets produces extremely low p-values. 

Therefore, the use of random sampling before applying tests is recommended. But the 

difference between the spectra of pixels of the same region can be very important, as multiple 

ion distributions overlap each other, resulting in tests with less statistical power if the pixels of 

a region are not chosen carefully. During the development of rMSIKeyIon we noticed this 

problem and included a metric to account for it consisting in the percentage of pixels an ion 

does not appear in a ROI. After identifying the empty pixels of an ion in the ROI, they are 

removed before computing p-values and FC to not bias the real difference between regions. 

Clustering algorithms like k-means tend to produce this type of ROIs (clusters in terms of 

clustering algorithms) and is one of the main reasons to pursue workflows including soft 
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clustering methods. Moreover, statistical hypothesis tests require p-value adjustment for 

simultaneous testing, being this more restrictive as bigger is the number of ions under 

investigation. Finally, MSI data suffers from spatial autocorrelation, which violates the 

assumption of independence between pixels.15 The pixel autocorrelation appears due to the 

interconnected nature of tissue morphologies and due to experimental artifacts (the acquisition 

of a pixels affects the acquisition of its neighborhood). For instance, in MALDI-MSI is required 

the application of a matrix, which can delocalize some compounds and promote their ionization 

over regions where they were not naturally present. Moreover, laser oversampling during the 

acquisition transfers information from one pixel to their vicinity by having an ablation diameter 

bigger than the pixel size. Conditional Autoregressive Model (CAR) has been proposed to 

account for spatial autocorrelation, decreasing the number of significant features after applying 

it. However, the main drawbacks of this method are the need for extensive computational 

resources and determining the range of the neighborhood of a pixel.15  

Discarding ions should not be of major concern in MSI, as experiments consist of a huge 

number of redundant ions which difficult the elaboration of conclusions due to the ‘curse of 

dimensionality’, responsible of reducing the accuracy of various statistical methods like 

distance metrics in high-dimensional spaces.16 The second strategy, implemented through 

rMSIannotation, uses chemometric information to attempt to annotate as many ions in isotopic 

patterns, which are the principal source of redundancy. As all the ions in an isotopic pattern 

express the same information (unless the experiment includes isotope labeling or measures 

precise isotope fluctuations), the most intense peak should be the only included in the analysis. 

we have shown in chapter 4 that monoisotopic ions produce almost identical results by spatial 

segmentation and component analysis as with including all the other ions, indicating that most 

of the tissue morphology is retained by only a few ions and that a huge number of ions contain 

redundant information for the data analysis. This is not a problem in metabolomics, as the most 

intense peak corresponds to the monoisotopic, but with other molecules with more than 94 

carbon atoms, like peptides this is not the case, and the peak selected should be the highest in 

the isotopic pattern. This could be addressed using the relationship between carbon atoms of a 

molecule and the m/z value of it. 

 The study of isotopic patterns also leads to the fact that the number of peaks per molecule 

is not the same for all molecules. The number of isotopic peaks of a molecule in a spectrum 

increases with the m/z of the monoisotopic ion. Therefore, the morphology of molecules with 

more peaks will have more votes on upcoming multivariate procedures, with the possibility of 

hiding some morphological structures due to peak underrepresentation. A line of research to 

attempt to solve this problem could be transforming the ion space into the molecule space, 

where all the ions coming from the same molecule are grouped in unique variables. The main 

problem of this is the fluctuations in morphologies influenced by the adduct elements. 

Currently is not clear how to remove the adduct natural abundance effect.11 Other 

interfering  ions like ion fragments and matrix adducts have been proposed to be removed to 

enhance statistical analysis following the same strategy.17 Finally, depending on the study 

goals, removing identified ions of compounds that are known to not influence the biological 

problem under study could also be beneficial. 

3. Soft clustering as the future of the spatial segmentation of MSI data 

We have explored the use of soft/fuzzy clustering for the spatial segmentation of MSI data, 

particularly, the fuzzy c-means algorithm. The principal necessity for this is distinguishing 

between pixels inside a cluster by their similarity to the cluster centroid. Most ions do not have 

a spatial distribution that ends abruptly in a specific region but progressively fades transitioning 

to other tissue morphologies. This indicates that some regions may contain a mixture of 
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different tissue type, and with soft clustering we attempt to represent better this phenomenon 

than with hard clustering. In chapter 5 we have shown that, by identifying and removing 

transition pixels from the ROIs before comparing them, resulted in higher fold changes and 

better significance testing, which reinforces the argument of transition pixels between clusters. 

Some previous works have noticed this and applied soft clustering to MSI data. For instance, 

Bemis et al. developed a clustering framework combining spatially aware clustering, statistical 

regularization, and probabilistic segmentation,18 The main drawback of the tool is that it has 

many abstract parameters to tune, and not only soft clustering is involved in the results, which 

limits the possibilities of studying only its effects. This is one of the reasons for studying the 

applicability of simpler soft clustering algorithms like the fuzzy c-means in MSI.  

In our work, we have used the standard definition of membership to a cluster of fuzzy c-

means, but a future line of research could be a definition of membership that considers how 

MSI data acquisition translates the interconnection between tissue types, and the effects of the 

autocorrelation between pixels. For instance, the spatial resolution and the amount of tissue 

sampled per area unit are key elements in unveiling the transitions between regions in detail. 

By defining a new score of pixel fidelity to a unique cluster we were able to study the effects 

of the algorithm's parameters and more importantly, reveal regions impossible to cluster with 

fuzzy c-means under normal circumstances. This was the case of a very specific region in the 

cerebellum studied in chapter 5. Even though we could not replicate the identification of the 

structure of the Purkinje layer by increasing the number of clusters, being able to notice 

secondary structures like this, shows how beneficial having a membership dimension is for the 

evaluation of clustering results. The soft clustering methods used in the future for MSI should 

account for these regions, which we suspect to be small groups of pixels sharing a particular 

condition. Clustering algorithms allowing very different cluster sizes (number of pixels per 

cluster) can contribute to the solution of this problem.  

Hard clustering visual evaluation of results is usually limited to replicate structures found 

in histopathologic images. Histopathological imaging structures are always desirable to look 

for in an MSI experiment due to the bast amount of knowledge behind them,19 but molecular 

imaging methods should attempt to reveal other structures complementary to histopathology. 

Additionally, it is difficult to assess how many of the structures should be possible to cluster at 

the same time. This leads to the problem of the determination of the optimal number of clusters, 

which is still very challenging, but we think we have shaded some light upon it. Using 

membership to try to determine when a clustering result has a most optimal solution provides 

an additional criterion to help on the number of clusters decision and in the overall assessment 

of clustering quality. These possibilities are the most beneficial points of soft clustering 

algorithms compared to their hard clustering alternatives. Still, from our investigation we 

conclude that multiple morphologies can coexist within the same tissue section. Depending on 

the ions included in an unsupervised spatial segmentation procedure, some of the morphologies 

will dominate over the others in the results. This can lead to interferences between 

morphologies, making the decision of a correct number of clusters ambiguous. Therefore, 

mechanisms of accounting for all the morphologies present in a tissue section should be used 

to improve the selection of the number of clusters.20 An idea is establishing a hierarchy between 

morphologies based on the overall intensity of the distribution and the number of peaks 

representing them, with the aim of normalizing them to a common scale before clustering. But 

at the end, the unsupervised spatial segmentation of a MSI dataset does not have a unique 

solution as it includes a variety of biological questions. Therefore, only a supervised or semi-

supervised spatial segmentation, targeting a specific condition (known molecule signatures or 

ROIs), can attempt to find a ‘correct’ number of clusters.  
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4. Conclusions 

 

Conclusion 1: rMSIKeyIon contributes to the untargeted analysis of ion distribution in MSI 

datasets with ROIs. 

 

The first objective of this thesis involved the development of an automatic workflow for the 

statistical analysis of ion abundancy distributions in MSI datasets. This has been achieved with 

the development of the R package rMSIKeyIon, based on the combination of three parameters: 

the non-detected ion concentration ratio, the Mann–Whitney U ion concentration test, and the 

FC in the ion concentration. The tool discovers automatically up and down-regulated ions 

between previously defined ROIs. The ions found by rMSIKeyIon are the ones of most interest 

to be identified, as they are responsible of the main variations between molecular signatures of 

different regions.  

 

Conclusion 2: rMSIannotation is an excellent peak annotation tool for MSI experiments in 

the low mass range and offers the benefits of a new approach based on modeling libraries of 

compounds. 

 

The second objective of this thesis involved the peak annotation of MSI datasets in the low 

mass range. To accomplish it, we have developed rMSIannotation, a tool that annotates carbon 

isotopes and adducts easily integrable in any MSI workflow. At the same time, we have 

developed and proven useful a new approach to compound annotation based on modeling 

libraries. The results of rMSIannotation show that our approach can automatically extract 

valuable information from both high (TOF) and ultra-high (FT-ICR) resolution spectrometers. 

The presented algorithm demonstrated a high performance and annotation confidence when 

compared to the established metabolomics MSI annotation platform METASPACE and to 

manual annotation approaches. Additionally, the annotations produced by rMSIannotation can 

be used in variable reduction strategies. 

 

Conclusion 3: rMSIannotation can be used as a method for finding redundant features 

(isotopes) and discarding them before the analysis of MSI data. 

 

We studied the effects of removing redundant data by only keeping annotated peaks. Our 

findings show that most information is retained by the monoisotopic peaks and therefore, 

removing isotopes and other non-annotated features can be beneficial in untargeted analysis. 

rMSIannotation facilitates this process by detailing the annotation of each peak and facilitating 

the data manipulation of them. This procedure can be combined with other variable reduction 

procedure based on different criteria.  

 

Conclusion 4: The Fuzzy c-means algorithm allows a better evaluation of spatial 

segmentation results of MSI dataset using the membership to the clusters. 

 

The third objective of this thesis aimed to evaluate the performance of the soft clustering 

algorithm fuzzy c-means with MSI datasets. We have shown that the study of membership 

defined by fuzzy c-means allows for new ways of interpreting the results compared with hard 

clustering results. In our case, we have approached the study of the membership through the 

newly developed PFS, which allows an easy selection of the pixels more related to a cluster. 

Thanks to the score, we were able to unveil morphological regions hidden behind more ion-

rich regions and enhance a multi-sample tissue type classification workflow using a human 
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head and neck cancer dataset. From our work we anticipate soft clustering to be an 

indispensable tool for the spatial segmentation of MSI datasets. 
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