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Abstract

In the deep learning (DL) era, it is possible to generate learning models that
exploit complex relationships from data. In a clinical setting, integrating DL
techniques could accelerate the paradigm shift from evidence-based medicine
to data-driven medicine to support medical decisions. The DL methodologies
may address challenges related to improving predictive models, imputation
of missing information and issues related to the volume of information in
learning tasks. We aim to provide DL-based solutions to such challenges.

First, we use machine learning techniques to address the mortality of patients
in end-stage renal disease (ESRD). Features are found automatically and
then compared with groups of variables chosen by expert staff. Specialized
DL models are used to exploit temporal dependencies in the data. The
integration of a DL approach made it possible to improve the learning models
for this pathology significantly. It also explored how the features encountered
automatically presented perform for the learning models.

Then, we propose an alternative that integrates multiple imputation with the
average latent representation, the so-called average code. The reconstruction
significantly improves. This approach is validated on four clinical datasets,
emphasizing the dataset related to the mortality of patients with acute
kidney disease (AKI). The proposed method was evaluated on two other
datasets widely used in the literature as benchmarks, and presented a better
reconstruction capacity in most of the proposed scenarios.

Finally, low volume and the class imbalance in ESRD is addressed. We offer
a transfer learning solution. It consists of two approaches for increasing
samples and the feature space for ESRD data. Latent spaces of autoencoders
as an information bridge between target and source domain. AKI data is used
as the source domain. As a result, it is obtained that the proposed mechanisms
individually improve the prediction models, but when they are combined
sequentially, they suppose a much more significant improvement.
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Introduction
1

1.1 Motivation

During the last decade, thanks to the arrival of Industry 4.0 (I4.0), artificial
intelligence (AI) has evolved and gained traction in different fields that can
transform our daily lives and society. One of the fields with the most signifi-
cant impact during the adoption of such advances is healthcare [MS19]. It
is estimated that the financial resources designated to the healthcare sector
represent an average world gross domestic product (GDP) of 8%, with an
annual increase of 4% during the last decade [Cha+19]. For the next two
decades, investment is estimated to reach 16% of GDP worldwide. Thus, the
growing interest in data captured in the healthcare sector, advances in com-
munication technologies [APP18], and improvements in computing power
have the potential of leading to a fascinating future where the generation
of new knowledge and evidence-based on AI counteract the morbidity and
mortality of the world’s population.

The most general approach to generating knowledge and optimizing decision-
making in the medical field is established on evidence-based medicine (EBM)
[Sac97]. This paradigm integrates scientific evidence and the expertise of
physicians for the prevention, diagnosis, and treatment of diseases. However,
in clinical practice, many decisions made by health care professionals are
not guided by the best evidence [MMC15] or are based on the experience
of a few experts [Bur+18; Bur+19; Cov+18]. Moreover, the production
and rapid availability of massive digitized data, the heterogeneity of patient
information, and the inability of humans to process the vast amount of data
as a whole have enabled the exploration of machine learning (ML) techniques
that can reinforce EBM.

ML techniques automatically discover the knowledge needed to perform
a learning task to support clinical decision-making. Deep Learning (DL)
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techniques, as part of ML and inspired by the human brain, allow extracting
complex relationships in data. Such representations have the potential to
improve learning tasks in a medical setting. DL has demonstrated exceptional
performances and potential in computer vision [Rus+15], natural language
processing [SVL14] and speech recognition [Hin+12]. Therefore, DL can
play an essential role in the paradigm shift from evidence-based medicine to
data-based medicine.

The benefits of integrating DL solutions in a medical environment are re-
flected in the performance of the learning models and the solution to the
challenges related to the medical pathology data itself. Such challenges
include:

• Improving learning models.

• Addressing the absence of information.

• Managing the heterogeneity of medical records and the volume of
information.

Addressing the first challenge could bring the inclusion of data-based models
for clinical decision support closer. Using as much data as possible, even if it
contains incomplete information, would reduce biases due to eliminating or
substituting constant values in such records. Finally, integrating several data
sources could open the way to learning tasks supported by multihospital data
and improve the generalization of learning models by increasing the volume
of information. Considering these challenges from a DL perspective, we will
address the following research objectives.

1. Improve predictive models using data from pathologies with few pa-
tients and find the mechanisms to combine heterogeneous data based
on DL.

2. Tackle issues related to the quality of clinical data, i.e., data sparsity,
class imbalance, and the treatment of missing values (MV) through DL
techniques.

3. Define mechanisms for transferring knowledge from massive data from
other hospitals to support clinical hypotheses in units with small vol-
umes of information based on DL.
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The potential to address the issues mentioned above by DL has been the
inspiration for this dissertation. This dissertation contributes to studying
DL-based solutions to enhance learning and data-driven problem-solving
tasks in a clinical data environment. This study begins by applying DL
models for mortality prediction for patients in end-stage renal disease (ESRD),
combining heterogeneous clinical data and exploring temporal dependencies.
Then we address the replacement, the so-called imputation, of missing
information, extending a multiple imputation methodology based on latent
representations of data from DL. Finally, transfer learning (TL) approaches
are explored to use massive data from large medical units in order to increase
samples in medical units with a small volume of information. The transfer
of knowledge aims to improve learning models for mortality prediction in
ESRD.

1.2 Outline

This dissertation is structured as follows:

Chapter 2 presents relevant concepts that are necessary for this dissertation.
It describes the data mining process and information related with clinical
data. This chapter describes the most commonly used learning models in
medicine and important performance metrics for this dissertation. Finally,
the DL techniques used in this dissertation and the challenges to be addressed
from a DL perspective are described.

Chapter 3 addresses the first objective of this dissertation. In this application,
heterogeneous clinical data are combined and different groups of variables
are explored together with their temporal dependencies to improve predictive
models of mortality in ESRD patients. Different groups of variables are
explored in this application, some suggested by the expert staff and others
found automatically by ML mechanisms. However, the models generated
with all variables provided better performance at different mortality windows.
The models designed offered a better predictive capacity than those in the
literature, providing evidence that such models can be used to support
medical decisions that can influence the trajectories of a pathology.
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Chapter 4 covers the second research objective. It is addressed the imputation
of MVs, using a multiple imputation (MI) approach. Such an approach is
based on an initial imputation of several copies of the data encoded into
latent representations and combined into an average one, which we refer to
as an average code. Such code is then decoded by the AE and replaces the
missing information. This mechanism is validated with several benchmarks
in the literature, presenting a better construction capacity than other popular
imputation mechanisms.

Chapter 5 continues to address the challenges in clinical data. Thus, a TL
approach is presented to increase the volume of data in mortality prediction
models in ESRD patients. Such increase is carried out in two directions by
increasing the number of samples and the feature space. In this solution,
knowledge was transferred from data related to mortality in AKI patients,
whose source is from first-level hospitals. Thus, the approaches present
a considerable improvement in the learning models in ESRD and allow
combating other subreddits such as sample imbalance since the presented
approach gives the flexibility to carry out the transfer of only imbalanced
samples.

Chapter 6 concludes this PhD’s dissertation with a summary and discussion
of the results obtained. Open lines of research and future work are also
included in this section.

1.3 Research contributions

The main contributions presented in each chapter of this dissertation are
detailed below.

1.3.1 Chapter 3

The main contributions of this chapter are related to the integration and
structuring of several sources of information in the clinical setting to improve
predictive models in ESRD using DL. The contributions have been published
in a journal.
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• E Macias, A Morell, J Serrano, JL Vicario, J Ibeas, ”Mortality prediction
enhancement in end-stage renal disease: A machine learning approach”,
in Informatics in Medicine Unlocked Journal, vol. 19, pp. 100351,
2020.

1.3.2 Chapter 4

This chapter contributes to the study of imputation mechanisms based on DL.
The main results of this research has been published in two conferences and
is under review in a journal.

• E. Macias, G. Boquet, J. Serrano, J. Vicario, J. Ibeas and A. Morel, ”Novel
Imputing Method and Deep Learning Techniques for Early Prediction of
Sepsis in Intensive Care Units,” 2019 Computing in Cardiology (CinC),
2019.

• E. Macias, J. Serrano, J. L. Vicario and A. Morell, ”Novel Imputation
Method Using Average Code from Autoencoders in Clinical Data,” 2020
28th European Signal Processing Conference (EUSIPCO), 2021

• E. Macias, A. Morell, J. Serrano and J. Vicario, ”Multiple Imputation
Using the Average Code from Autoencoders”, in Computer Methods
and Programs in Biomedicine Update, vol. 2, pp. 100053, 2022.

1.3.3 Chapter 5

The contributions in this chapter are part of TL’s novel mechanisms for the
improvement of learning models in a DL-based clinical setting. The work in
this chapter has been presented at a conference and is currently submitted to
MDPI Electronics.

• E. Macias, J. Ibeas, J. Serrano, J. Vicario and A. Morell, ”Transfer
learning and data augmentation for mortality predictive models in
kidney disease”, 2020 28th European Signal Processing Conference
(EUSIPCO), 2021.
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• E. Macias, J. L. Vicario, J. Serrano, J. Ibeas and A. Morell, ”Transfer
learning improving predictive mortality models for patients in end-stage
renal disease”, in Electronics. Submitted, 2022.
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During the PhD period, several collaborations have been carrried out, next
they are listed:
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NEW MODEL DEVELOPED WITH DATA FROM 10.000 PATIENTS OVER
THE LAST 11 YEARS”, Kidney International Reports,. 7, 2022.
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E. Criado, J. Guitart, J. Lopez Vicario, A. Morell, J. Serrano, ”MO766
EARLY ARTERIOVENOUS FISTULA FAILURE PREDICTION WITH AR-
TIFICIAL INTELLIGENCE: A NEW APPROACH WITH CHALLENGING
RESULTS”, Nephrology Dialysis Transplantation 36 (Supplement1),
gfab103. 004, 2021.

• J. Ibeas, E. Lleal, E. Macias, C. Rubiella, A. Morell, J. Serrano, J.
Lopez Vicario, ”SO019 A PREDICTIVE MODEL OF MORTALITY IN
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• J. Ibeas, E. Macias, C. Rubiella, A. Morell, J. Serrano, A. Rodriguez-
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• E Macias, A Morell, J Serrano, JL Vicario, ”Knowledge extraction based
on wavelets and dnn for classification of physiological signals: Arousals
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2018.
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• E Macias, A Morell, J Serrano, JL Vicario, ”Extraction of knowledge of
physiological signals based on deep neural networks”, 4th European
Congress on Cardiology and eHealth, 2017.
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Background
2

This chapter presents an overview of the methods used to extract and generate
knowledge from medical data based on DL. We start by covering the main
components of the knowledge discovery pipeline focusing on medicine. Later,
some challenges related to medical data are discussed. Then, it is reviewed how
AI has evolved from ML to DL. The main ML techniques used in a medical setting
are covered, and finally, the DL methods used in this dissertation are presented
at the end of the chapter.

2.1 Introduction

AI is a term that refers to the use of computers to mimic the cognitive behavior
of humans to learn and solve tasks. The origin of this term was introduced by
John McCarthy in 1956 [MB19]. However, Alan Turing demonstrated earlier,
with his test, the possibility of machines to simulate human behavior. AI arose
with the implementation of systems based on hard-coded rules designed by
experts to solve specific tasks. Such systems were labor-intensive and time-
consuming as expert personnel needed to maintain them and update rules
manually. These types of expert systems were prevalent in the 1980s and
1990s. However, they presented issues dealing with unusual scenarios and
heavily depended on expert personnel. In contrast to such systems, ML, as
part of AI, appears as a field that gives computers the ability to learn without
being explicitly programmed, i.e., learning based on examples. ML has
come to play a leading role in the medical field because it can be integrated
into multiple learning tasks. Among the most applied tasks are prognosis
and diagnosis of diseases. In this way, it is possible to find patterns that
allow determining the trajectories of a patient’s health status, e.g., in the
early prediction of cancer [Coc97; Kon01; Sun+07; EGF11; Mad+13] or to
support survival analysis [Ish+08; Hsi+11; Coo+97; Mot+17].
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Among the most relevant ML frameworks are artificial neural networks (ANN)
and their evolution, DL. Their creation is inspired by the McCulloch Pitts
neuron model, which represents the behavior of neural networks [MP43].
Although ANNs had a promising future in their beginnings, the technological
limitations during the 90s did not allow them to demonstrate the scope they
have reached today. For several decades they entered what is known as the
winter of AI. This period was left behind thanks to the emergence of graphical
processing units (GPU) that enhanced computing capacity, the improvement
of storage and processing, and the vision of research groups such as the
Canadian Institute For Advanced Research (CIFAR) 1 in not abandoning
research on ANNs. As a result, ANNs have demonstrated their potential and
continuous development to reach extremely complex models based on what
is known as DL [GBC16].

In recent years DL has attracted attention in the medical field for its benefits
in terms of volume of information to process, the ability to extract complex
patterns and flexibility of heterogeneous data analysis [Chi+18]. Thus,
different pieces of information collected in a medical environment can be
analyzed individually or be integrated into a DL environment to extract
complex patterns that would be difficult to address by expert staff or other
ML approaches [Yue+20]. Thus, analogous to the evolution of AI towards
DL, EBM is evolving from rule-based systems that are systematically reviewed
and updated by expert personnel to systems supported by massive data that
could soon support clinical decision-making. In the rest of this chapter, we
will discuss the main components of an IA environment, focusing on DL
powered by clinical data.

2.2 Electronic health records and knowledge
discovery

Over the last decade, the digitization of patient health information has
been massively adopted in most developed countries [Blu09; AK19]. It
is estimated that around 96% of primary health care entities in European

1https://cifar.ca/
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Union countries have adopted the collection of information in a digital
format [@Com19]. The analysis and availability of such massive digitization
have the potential to improve the quality, the efficiency of the healthcare
service, and health outcomes of patients [AK19; Shu19]. Such digital records
are called electronic health records (EHR) and are digitized information
of patients’ health follow-up, systematically collected in healthcare entities.
EHRs store sequential information about demographics, laboratory results,
diagnoses, medical history, medication, imaging, physiological signals, and
narrative. They also track information regarding the management and billing
of healthcare entities.

The information collected in EHRs is a combination of data gathered in
clinical repositories whose information can be divided between those EHRs
that have a tuple-wise structure and those that do not. Thus, for those records
stored tuple-wise, each encounter with the healthcare entity generates a tuple
where the patient’s physiological variables are recorded. This information
is stored in a table-like structure where its rows represent encounters and
the columns the variables measured. The other EHRs differ in the format in
which they are stored. These formats usually are stored as text or have time
series structures such as physiological signals, e.g., ECGs, EEGs, or EMG;
2D or 3D medical images such as MRI, CT scans, or ultrasound. However,
these types of EHRs can be transformed tuple-wise under characterization
processes. In this dissertation, we are focused on the analysis of tuple-wise
EHRs.

The analysis of EHRs can improve the understanding of pathologies and
enhance patients’ quality of life and healthcare services. All EHRs are poten-
tially valuable to support the abovementioned benefits in an ML environment.
However, to enable the integration of EHRs into ML or DL solutions, it is
necessary to consider the knowledge discovery based in database (KDD)
process [FPS96] commonly referred to as data mining. Thus, from an iter-
ative process, as shown in Figure 2.1, it is possible to generate knowledge
following the next stages:

• Data integration: this is the process where information from multiple
databases is explored with the expert staff to ensure that the infor-
mation collected is adequate to support the learning task. The data

2.2 Electronic health records and knowledge discovery 11



Fig. 2.1: Knowledge discovery in EHRs as a medical data value chain.

gathered are heterogeneous EHRs because they come from different
sources, and their structure can be variable.

• Selection: it is defined as the process in which data relevant for a
clinical study or clinical trial is taken from clinical databases. At this
stage, it is of utmost importance to have expert knowledge in the field
of study, to know the volume of data and the limitation that clinical data
may have [SS14], to ensure that good quality data and cohorts support
studies. In this stage, different mechanisms are followed to choose the
right information to proceed with a study. Such mechanisms integrates
best practices guidelines [Gof+14; Hip+08; DAg+08b; Rid+07] and
protocols [Moo+15].

• Preprocessing: it is one of the most crucial stages of the KDD process
because of the issues it tackles. Incomplete information, outliers, infor-
mation redundancy, inconsistencies, imbalanced data, among others,
are part of data preprocessing challenges [BIF18; GLD00]. Typical
scenarios where the EHRs contain errors due to the omission of infor-
mation by the patient, errors in the digitization of the information, or
registration of erroneous values of medical equipment are addressed in
this stage. It is estimated that 70-80% of the work in KDD is expended
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at the preprocessing stage [Duh+03; Pér+15]. This stage ensures the
quality and reliability of the data to support medical hypotheses. It
aims to refine the characteristics chosen in the previous step and solve
the drawbacks that the EHRs may have.

• Transformation: the data are consolidated into standard formats suit-
able for learning algorithms. This process is usually carried out through
information mappings. Mapping elements from a source base to the
target is performed to capture transformations. Figure 2.2 shows an ex-
ample where diagnoses coded with the international code of diagnoses
version 9 (ICD9) are transformed to a table of some diagnoses where
the presence or not, 1 and 0, of a series of diagnoses in the encounters
of a given patient are included. Other transformations that data can
have are related to extracting valuable features from the same data.
Dimensionality reduction eliminates attributes or by resorting to data
representations in different spaces, e.g., using principal component
analysis (PCA).

Patient_id D_ad C_Diag_1 C_Diag_2 C_Diag_3 C_Diag_4
14785899
14785899
14785899
14785899

13/12/11
02/06/08
07/01/14
17/10/14

I351 250.40 585.5 V45.1
I6529 428.0 I4891 250.40
707.19 858 V45.1 Z8611
I2510 I472 I120

Patient_id D_ad ARTERIOPATHY CARDIOPATHY DIABETES INFECTION
14785899

14785899

14785899

14785899

13/12/11

02/06/08

07/01/14

17/10/14

0 1 0
0 0 1 0

1 0 1 1
0 1 1 0

0

Fig. 2.2: Transforming ICD9 codes to categorical attributes.

• Data mining: it is often used as a synonym for KDD, which is the
process where intelligent mechanisms are applied to find practical and
sometimes hidden patterns in data. Algorithms including association
rules, classification, clustering, prediction, and pattern evaluation are
usually used at this stage. For this dissertation, DL models are the focus
of this stage.

• Interpretation: in this step, the patterns and rules are evaluated and
interpreted through metrics specific to the data mining task. This step
focuses on the understanding and usefulness of the model found in the
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data mining stage. An iterative feedback process is used to enrich the
previous steps from this stage.

The ultimate goal of KDD is the generation of knowledge. In this dissertation,
the knowledge extraction mechanisms are based on DL techniques. Before we
address them, it is necessary to understand the data and the main challenges
at the preprocessing and transformation levels, to ensure that data quality is
not a constraint for the models’ performance.

2.2.1 Attributes in EHRs

Data are categorized into structured, semi-structured, and unstructured. The
structured ones are those that follow a well-defined scheme. These schemes
follow a table format where rows collect a set of attributes, organized in
columns, of the data set. A dataset structure can be seen in Fig. 2.3. In
a medical environment, the patient’s encounters with the health entity are
collected in each row. The columns refer to the attributes measured during
such encounters. In this dissertation, attributes, characteristics, and features
refer to the same concept. The second category refers to data with no
predefined schema or identifiable structure. Examples of this type of EHRs
include medical images, video, clinical notes, and audio. Semi-structured
data is data that uses a self-describing schema such as XML or JSON files.

Attributes

Samples

Values for a given encounter in a given attribute

Fig. 2.3: Example of dataset with structure data.
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In this dissertation, we will focus on structured data. Let us consider how
to distinguish the attributes between dependent and independent ones. The
values of dependent attributes are affected by other ones. Independent
attributes do not release their values in other ones. This distinction is helpful
in the data preprocessing stage as highly correlated attributes can be reduced
or in the data mining stage as predictions of dependent variables can be
made based on the independent ones.

On the other hand, they can be separated as numerical and categorical based
on the attribute values. Numerical ones include real values with an order
and a distance relation. In contrast, categorical attributes are those that have
a symbolic representation. For instance, in a medical environment, the sex of
a patient or the stage of chronic kidney disease (CKD) are some categories
that represent information. In this type of representation, attributes take
values in a finite range of possibilities. Categorical attributes are divided into
nominal and ordinal attributes. If the attribute does not have a defined order,
they are nominal. In contrast, ordinal attributes implicit a defined order. As
an example, we can again take CKD. In this case, we can take the stage of the
disease in a patient as an ordinal attribute because it represents the severity
of the disease. The last way to distinguish the variables is their behavior
concerning time. Those data that do not change over time are considered
static data, while those that vary are called dynamic or temporal data. This
type of data collects the evolution of patients’ physiological attributes in a
clinical setting.

2.2.2 Structuring and transforming EHRs

After knowing the structure and type of data used for the experiments, it is
possible to apply different techniques to ensure that the learning models are
fed with information in the correct format and to ensure that attributes are
transformed to the same range of values so that their magnitude does not
add bias to experiments. Thus, mechanisms such as data normalization and
coding of categorical variables enable achieving the above.
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Normalization

Normalizing the data involves scaling the features to a fixed range of values
without loss of information. Scaling to a common range prevents variables
with significant differences in their values from biasing learning models.
Thus, there are several ways to normalize the data. Among them is to
normalize according to the minimum and maximum values and according to
the standard distribution, Eq. 2.1 and Eq. 2.2, respectively.

xinorm = xi − µi
σi

, (2.1)

where xi ∈ Rn,1 is a feature of a dataset X ∈ Rn,f , with n samples and f

features. µi and σi are the mean and the standard deviation of xi.

xinorm = xi −min (xi)
max (xi)−min (xi)

, (2.2)

where max (xi) and min (xi) are the maximum and minimum value of xi.

Encoding categorical attributes

Categorical variables must be transformed into numerical values so that
learning models can use them. This process is known as categorical encoding
and has two main approaches. The first one, labeling encoding, encodes
ordinal categories with string labels to integer values. The second category
handles nominal variables so that each category generates a binary variable
where 0 represents the absence and 1 the presence of the variable, this
approach is also called one-hot encoding. Fig. 2.4 shows an illustration of
such approaches.

2.2.3 Challenges related to data

To carry out any process of knowledge generation driven by data, it is
necessary to know in detail the challenges we face in different aspects related
to applications and the data itself. In a medical environment, there are
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Fig. 2.4: Example of categorical coding in EHRs.

challenges associated with dealing with low-volume applications, integrating
heterogeneous data sources, and missing data imputation to improve learning
models.

Missing information

One of the most common issues in clinical data is missing information. This
lack of information may be due to several factors, such as erroneous readings
in medical measurement equipment, lack of data entry or errors in data
collection by medical personnel, missing information due to the regularity
in the collection of variables, integration of heterogeneous data in the EHR,
among others. Fig. 2.5 illustrates the imputation pipeline.

The occurrence of MVs is inherent in a medical setting. Understanding their
source of generation and structure allows us to use existing information to
impute MVs. Let us consider the types of MVs. Its relationship with the
data attributes can characterize them. MVs are classified based on three
mechanisms [Rub76]: missing completely at random (MCAR), missing at
random (MAR), and missing not at random (MNAR). MCAR refers to the
fact that the appearance of the MVs does not depend on the data itself;
missingness appears as a random process. Forgetting to include patient
attributes is considered an MCAR since it does not rely on the patient or the
missing attribute. MAR refers to the fact that the appearance of MVs depends
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Data 
imputation

Missing values

Fig. 2.5: Imputation process for EHRs.

partially on the observed data but not on the missing information. The abrupt
stop in measuring temperature in a patient whose health condition worsens
in an intensive care unit (ICU) is an example of this type of MVs. In this case,
the appearance of MVs in temperature depends directly on a variable that
indicates the patient’s state in the ICU. Finally, MVs are classified as MNAR
when directly related to their values. For instance, a depression survey is
more likely not to be answered by patients with depression.

Volume of information

Although there is a growing movement towards the massive collection and
integration of data from healthcare entities, most have a limited volume of in-
formation when studying pathologies individually. For instance, a nephrology
unit of a tertiary hospital may have information on a cohort of fewer than
300 patients [Mac+20]. Such a challenge in volume opens up the possibility
of exploring mechanisms for knowledge transfer among healthcare entities
to support those that do not have a significant volume of data. Thus, it is
necessary to take advantage of diverse sources of information to strengthen
learning models in pathologies with few data. Therefore, several mechanisms
allow the integration of other data sources through a paradigm known as TL.
Fig. 2.6 shows an illustration of a TL process.

TL uses the knowledge gained from one domain in another. The domain
from which such knowledge is extracted is known as the source domain and
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Fig. 2.6: Transfer learning process in healthcare.

the one that uses it to reinforce learning tasks is known as the target domain.
TL has been used in other fields to support image and text classification tasks.
However, in the medical field, it is still in its infancy.

In the field of TL what to transfer, how to transfer and when to transfer are
the research questions in this field. What to transfer refers to the part of the
decided knowledge that could be transferred between the domains. Once
the first question is covered, the second question is addressed to define the
algorithms’ mechanisms to transfer knowledge. Finally, when to transfer will
be based on the transferred knowledge’s contribution to a learning task. If
this contribution outperforms the learning task, it is known as positive TL, in
contrast to having negative TL.

On the other hand, TL is categorized as inductive, transductive, and unsu-
pervised. For the first category, the target task is different for both domains,
whether the data come from the same domain. In contrast, the task is the
same in transductive TL, but the data differ. The target task is different
for unsupervised TL but related to source one. This type of TL is used to
solve unsupervised learning tasks such as clustering or feature reduction
in the target domain. This dissertation will focus on inductive TL to tackle
the challenge of sample volume and sample imbalance in a source domain,
supported by data derivated from kidney diseases. This topic will be further
discussed in Chapter 5.
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2.3 Learning from data

As Aristotle first stated in his Treatise on Anima, we are a tabula rasa; we
learn according to our experience. Similarly, so do ML models. Tom Mitchell
defined ML formally as follows: A computer program is said to learn from
experience E with respect to some task T and some performance measure P, if
its performance on T, as measured by P, improves with experience E. Thus, ML
learns from experience and improves its performances as it learns. Learning
is a process of looking for knowledge through experience.

ML’s advances in medicine are related to analyzing data and discovering
new patterns. The spectrum of applications in which ML techniques are
used is broad. These include disease identification and classification[Fer+19;
Dil+19], drug discovery [Kom+18], disease trajectory prediction [Har+19],
medical imaging, personalized medicine [Frö+18; HJ14], among others
[He+19]. Let us now consider the main components of ML and their evolu-
tion up to the integration of DL models.

2.3.1 Learning tasks

Learning tasks are those hypotheses that are supported by data. In the
medical field, the design of these tasks is refined by expert knowledge and
the definition of their objectives is not usually a trivial task. For example,
let’s consider a cohort of 1500 patients from a sleep unit of a tertiary hospital.
Each patient in their sleep study has at least 7 hours of recording of different
physiological signals. From these data, a diverse medical hypotheses can be
generated to learn tasks such as detecting arousals, classifying sleep phases,
and determining positive pressure to treat sleep apnea.

The learning process in ML can be classified as supervised, unsupervised,
semi-supervised, and reinforcement learning. In supervised learning, mod-
els contain a target or label to which a set of input attributes are adapted
through a mathematical mapping between input and output called a model.
In contrast, unsupervised learning does not have a defined target. Instead,
it looks for patterns within attributes that allow projecting this information
to lower-dimensional spaces or finding clusters. Semi-supervised learning
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combines labeled data with unlabeled data to find common hidden structures
among these data sets to improve a learning task. Finally, reinforcement
learning models are based on teaching an agent to choose an action that al-
lows it to maximize rewards. In this dissertation, we will focus on supervised
and unsupervised models.

In the supervised learning paradigm, two main tasks stand out, classification
and regression. In classification a learning model is expected to find the
category to which a set of data X ∈ Rs,f , with s samples and f features,
belong to. To solve this task, the learning model generates a function f (·)
that maps examples x(i) ∈ R1,f to a class y(i), i.e., y(i) = f

(
x(i),θ

)
, where θ

contains the parameters of the model. For regression, the learning task is
similar, with the difference that the output is not a category but a numerical
value. Fig. 2.7 presents a graphical representation of three of the mentioned
task.

New sample

RegressionClassification Clusters

Fig. 2.7: Graphical representation of learning tasks.

2.3.2 Learning capacity: overfitting vs underfitting

The learning capacity of an ML model is usually evaluated through its com-
plexity and factors such as underfitting and overfitting. Thus, before generat-
ing an ML model, the dataset is usually separated for training and test data.
The first set is used to generate a learning model validated on new data. This
validation is the initial concern of the learning models since the goal is to
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get similar performance in test data as in the training ones. This process
is known as model generalization and is defined as the ability of a model
to perform correctly on new data. Thus, a model f (X,θ) is trained, which
objective is to find the proper parameters θ that reduce the error between its
predictions and the real target. The quality of the approximations is carried
out through the computation of a loss function L (y, f (X,θ)). L measures
the difference between the actual value and the output of the learning model
in the presence of an input.

On the other hand, ML models are often exposed to underfitting and overfit-
ting issues. Underfitting produces a low performance in training and test sets.
The learning models are very simple compared to the complexity of the data
and the learning task. In contrast, overfitting involves a complex model that
fits the training data well but fails to generalize the test data. Such issues
are often tackled using different approaches. One is to use learning models
whose parameters have sufficient capacity to fit the data. For example, a
linear model would not be adequate to deal with the data in Fig. 2.8, it
would present underfitting problems. For overfitting, it is possible to increase
the data sample to improve the generalization of the learning models. In
the clinical setting, this is not commonly achievable as the data volumes of
medical units are usually small.

Model complexity

Er
ro

r

Underfitting Overfitting

Training data

Test data

x x x

y

Underfitting Balanced Overfitting

Fig. 2.8: Underfitting and overfitting issuees for ML models.

Another way to counteract overfitting problems is by penalizing the parame-
ters of the learning model by adding a term to the loss function. L1 and L2
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regularizations penalize these parameters, although they are used also for
linear model, they will be covered in detail in the section dedicated to DL.

Finally, to better measure the performance of learning models, approaches
such as k-fold cross-validation can be applied. The data are divided into k
groups, each of them contains its training and test data. Then k models are
trained with each group, and their average performance will be that of the
model. This approach can be seen in Fig. 2.9.

Training
1 2 3 4 …

Test
k-1 k

1 2 3 4 … k-1 k

1 2 3 4 … k-1 k

1 2 3 4 … k-1 k
…

1 2 3 4 … k-1 k

Fold 1

Fold 2

Fold 3

Fold 4

Fold k

…

Fig. 2.9: K-folds cross-validation.

2.3.3 Metrics to measure performance in learning models

In order to choose an appropriate learning model, it is necessary to define
metrics that allow us to compare the different options we have to approach
our learning task. Thus, the evaluation of such models is carried out through
a performance measure that will depend on the type of learning we wish to
address.

Classification

For classification purposes, we usually use a confusion matrix (see Table. 2.1)
that allows us to separate the classified samples into four groups:

• True positives (TP): samples that are classified correctly in the positive
class;
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• False positives (FP): samples that are classified as positive samples, but
the real class is negative;

• False negatives (FN): samples classified as negative but with a real
target in the positive class;

• True negatives (TN): are the negative samples that are classified cor-
rectly to the same outcome.

Tab. 2.1: Confusion matrix.

True condition
Prediction Positive Negative Total
Positive TP FP T+
Negative FN TN T−
Total D+ D−

The performance measures that can be computed from this matrix are accu-
racy,

Accuracy = TP + TN

TP + FP + FN + TN
(2.3)

which measures the overall performance of the classifier; the precision or
positive predicted value (PPR),

PPR = TP

TP + FP
= TP

T+
(2.4)

which indicates the percentage of correct positive samples that the classifier
labelled as positive; sensitivity, recall or true positive rate (TPR),

TPR = TP

TP + FN
= TP

D+
(2.5)

which indicates the percentage of positive samples that were correctly labeled
by the classifier; the specificity or true negative value (TNV)

TNV = TN

FP + TN
= TN

D−
(2.6)
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which indicates the percentage of samples labeled as negative and belonging
to that class; F1 score,

F1 = PPV · TPR
PPV + TPR

(2.7)

which is a combination of precision and recall.

Another metric that usually provides relevant information on the performance
of classification models is the receiver operation characteristic (ROC). ROC is
the graphical representation of the behavior of the sensitivity and specificity
of a classifier as a function of a decision threshold. The metric associated with
the ROC is the area under the curve (AUROC), whose values vary from 0 to
1, with 1 being a perfect classification and 0.5 the performance of a random
classifier. Fig. 2.10 shows what a ROC looks like with three different models.
It can be seen that model A is better than B and C. In a clinical setting,
the expert must decide which threshold value is appropriate, relying on the
learning task so that he/she can give more importance to the specificity in
the detection of pathology than to its sensitivity.

A
B

C

1-1-Specificity

Se
ns

itiv
ity

Fig. 2.10: ROC curve.

Regresion

When it is required to measure the performance of a model in the prediction
of quantitative values, the root means squared error (RMSE) is usually used.

2.3 Learning from data 25



The RMSE (Eq. 2.8 ) measures the error between the prediction of a set of
data as a function of its prediction.

RMSE =

√√√√ 1
N

N∑
i=1
‖yi − y′i‖

2 (2.8)

with a dataset of N samples, yi the actual value and y′i the predicted one.

2.3.4 Data driven methods in medicine

In recent years, the methods most widely used by the research community are
linked to the performance they offer for the data and the benefits to address
their inherent problems. Thus, several surveys reflect on the performance
of models that can use the non-linear relationships that may exist in the
data [FP+17; Jia+17; WLR19; Dar+20]. Such studies highlight that the
most popular techniques within the scientific community are support vector
machine (SVM) and ANN, followed by logistic regressions and random forest
(RF). The following is a brief description of the mentioned ML techniques.

SVM

SVM is a method commonly used in classification problems that is based on
defining a separable space that allows to distinguish classes based on the
computation of hyperplanes and maximization of their margin or distance
between hyperplanes [CV95]. The learning process starts with a dataset with
its labels,

(x1, y1) , . . . , (xN , yN) , yi ∈ {−1, 1} (2.9)

and the optimal hyperplane that distinguish classes,

w · x− b = 0. (2.10)
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Fig. 2.11 shows the two dimensional representation of this hyperplane with
other two that represent the margin,

w · x− b = −1, w · x− b = 1. (2.11)

The idea behind SVM is to maximize the the margin, the distance between
both auxiliary hyperplanes, so that the regions to which the samples belong
are as separate as possible and that their respective space is very well defined
to classify the samples. Then, from any of the expressions in Eq. 2.12 can
be found that based the distance can be expressed as d = 1

‖w‖ . Finally, w is
minimize to maximize the distance, with the constrain,

yi (w · xi − b) ≥ 1, ∀i = 1, . . . , N. (2.12)

These two types of constraints (for yi = 1 and yi = −1) are to ensure that
each class of points lies on one side of the dotted lines. The points that are
right on the border are called supporting vectors and hence the name SVM.

x1

x2

Margin

x-
x+

Fig. 2.11: SVM for two features.

The optimization problem for SVM uses Lagrange multipliers to find the
parameters w and b,

L (w, b, α) = 1
2wT ·w−

N∑
i=1

αi (yi (w · xi − b)− 1) , (2.13)
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∂L

∂w
= 0→ w =

N∑
i=1

αiyixi (2.14)

∂L

∂b
= 0→

N∑
i=1

αiyi = 0 (2.15)

where αi are the lagragians multipliers.

The inequality constraint of Eq. 2.12 is transformed to equality and then
verified to meet the karush-Kuhn-Tucker (KKT) conditions [GT12], in order
to find the parameters in the optimization, i.e.,

αi ≥ 0, (2.16)

αi [yi (w · xi + b)− 1] = 0. (2.17)

Then, by replacing Eq. 2.14 and Eq. 2.15 in Eq. 2.13, it is possible to find the
dual problem [CV95] that allows maximizing the Lagrangian subject to the
dual variables being positive, that is normally solve using sequential minimal
optimization [Pla98].

LD =
N∑
i=1

αi −
1
2
∑
i,j

αiαjyiyjxixj. (2.18)

Then, b is found based on the values for αi in Eq. 2.17 solving the equation

(
N∑
i=1

αiyixi · x
)

+ b = 0. (2.19)

Finally, the samples are classified using a sign function that separate the
classes, i.e.,

f (z) = sign (w · z + b) = sign

(
N∑
i=1

αiyixi · z + b

)
. (2.20)
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Decision trees

Decision trees are diagrams of logical constructs based on data. They are
based on consecutive rules that allow separating a set of data X to its
respective target y with the minimum error. Thus, taking as an example the
decision tree in Fig. 2.12, it has its origin in the root (top of the tree). Such
node is the parent of the subsequent nodes, the so-called children nodes,
where based on a condition, it is decided if the node ends up in a class
(decision node) or continues propagating to the tree’s leaves. The right side
of Fig. 2.12 shows how the zones are separated according to the decision
threshold in the decision nodes.

 x1<-2
x1>9

YesNo

NoYes

No Yes
x2<-8

x1

x2

Fig. 2.12: Decision tree.

The learning mechanism of decision trees is based on the computation of the
entropy of the parent nodes and the information gain [Qui14] contributed
by the child nodes. Thus, the process starts by calculating the total entropy
of the data on the target dataset,

E (y) =
C∑
i=1
−pilog2pi, (2.21)

where pi is the probability of a sample of a class i in the dataset. Then, the
entropy of children nodes are computed for each attribute as a function of
the target, i.e, E (y|xi). Once such entropies are computed, the information
gain (IG) is computed for each attribute as
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IG (y,xi) = E (y)− E (y|xi) . (2.22)

The feature that makes the IG smaller will be the one that decreases the
uncertainty in the system and will serve as the new parent node for the
following child nodes of the tree. This process is repeated for each feature of
the dataset. Those nodes with the highest information gain will be the new
parent nodes. The tree continues branching until each node reaches a zero
entropy value or a fixed one to become a decision node.

Random forest (RF)

RF is an ensemble method, which refers to models that work together to solve
a learning task. Thus, RF is a collection of decision trees working together. On
top of decision trees, RF offers several features. The first one is called bagging
and consists of using parallel learning models to solve a common learning
task, see Fig. 3.3. For RF, this mechanism is executed using N decision trees
with N datasets previously randomly separated. Thus, under a consensus
mechanism, the outcome of the learning task is decided by a majority vote.
The bagging mechanism reduces the overfitting problem caused by training a
single decision tree that learns the training data, while a more robust model
is achieved with bagging. However, some of the attributes of these subsets
may be overemphasized, and the trees may be highly correlated if they share
the same features. To avoid this issue, the samples and the features of the
dataset are separated in subspaces for each of the decision trees. Thus, it is
possible to restrict the decision trees to randomly use a maximum number of
attributes for the learning task.

Another important feature offered by RF is that the importance of attributes
can be found. This is achieved under different mechanisms that measure the
performance contribution of the characteristics within each tree that make
up the RF.Among the most used mechanisms are the measure of impurity
of the nodes by entropy or by finding the importance of the attributes from
the computation of the GINI index [NKW18].The importance of variables is
measured according to how much they have served to reduce the impurity in
the division of the tree where they have been used. Then it is necessary to
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Fig. 2.13: Random forest using bagging mechanism to decide the outcome in a
learning task.

average by weighting by the samples affected in the divisions involved and
over how many divisions the variable is involved throughout all the trees of
the RF.

2.3.5 DL models

DL models refer to specialized architectures based on ANN. The concept of
deep is given by the number of hidden layers an ANN has, it is considered
deep with more than two hidden layers. The ANN architecture is usually
chosen based on the learning task to be addressed. Although most applica-
tions are based on ANNs with simple architectures in the medical field, other
architectures may generalize better if there is a considerable amount of data.
For temporal dependencies, recurrent neural networks (RNN) [RHW86a] are
able to exploit temporal relationships in the data. AEs [RHW85] specializes
in unsupervised learning and explores complex data representations in latent
spaces. Other architectures out of this dissertation’s scope are convolutional
neural networks (CNN) [LB+95] that take advantage of spatial relationships,
generative adversarial neural networks (GAN) [Goo+14] are used to gen-
erate synthetic samples based on adversarial players, among others. Before
going in-depth into the study of each architecture, let us consider how ANNs
work and the advantage they bring over other learning methods.
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ANN

ANNs make it possible to exploit non-linear and often very complex relation-
ships that are difficult to solve by other learning models. To see this effect,
let us take a practical example of the effectiveness of a drug dose on the
health condition of a set of patients. Thus, in Figure 2.14, it can be seen that
at small and high doses of the drug, it does not affect the patient’s condition,
while at a medium dose, it will affect it. If we wanted to model the efficacy
behavior as a function of dose with linear models such as linear regression,
we would not find a straight line that would allow us to model the entire
data set. In contrast, ANNs can fit these relationships and generate a function
like the one on the right side of the figure and complete the learning task.
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Fig. 2.14: Linear models behavior vs ANN behavior.

Structure: an ANN is composed of L+ 1 layers (l = 0, . . . , L), where l = 0
represents the input layer, Nl neurons per layer, and the interconnections
between neurons of consecutive layers are called weights. The graphical
representation of an ANN can be seen in Fig. 2.15.

The goal of ANN is, given a set of N input examples x(n), where n = 1, ..., N
and its corresponding classification targets y = [y1,n, . . . , yc,n], to learn the
best non-linear model that maps the input to its respective target. Thus,
driven by a considerable number of training samples, an ANN can learn
an optimized non-linear function in an iterative process to minimize the
input and output error. Samples are first presented through the input layer,

32 Chapter 2 Background



1

x1

x2

xn

a11
a12

a1h1

2

2

a2h2

a2

a1

yk

y1

Input layer
Hidden layer 1 Hidden layer 2

Output layer

2

2

Fig. 2.15: Structure of ANN.

whose neurons connect with one or more hidden layers, and they link to the
output layer where the result of the model is obtained. The output of the i-th
neuron at the l-th layer (the so-called activation) is the linear combination
of the outputs at the previous layer, taking into account the weights of such
connections, and modified by a specific non-linear function f(·), usually the
sigmoid, the hyperbolic tangent or the Rectified Linear Unit (ReLU). In other
words,

alj = f

Nl−1∑
i=0

wl−1
i,j a

l−1
i

 (2.23)

where wl−1
i,j is the weight that connects the i-th activation at layer l − 1 to

the input of the j-th neuron at layer l. Note that al0 = 1 in all layers except
the output layer to consider the bias term. Some activation functions are
presented in Fig. 2.16. Because these functions are non-linear, interaction
throughout the ANN allows complex relationships within the data to be
explored.

At the output layer, activations are usually normalized (e.g., softmax) so that
the resulting values take a value between 0 and 1. They can be interpreted
as a probability estimation; for example, yk represents the probability that
the input example belongs to the k-th class.
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Fig. 2.16: Activation functions.

Training: this process is carried out in an iterative process where the net-
work weights are adjusted to minimize a cost function that measures the
error between predictions and the corresponding true values. As a starting
point, let’s consider cross-entropy as the loss function,

L = − 1
N

∑
x

∑
k

[
yklog

(
aLk
)

+ (1− yk) log
(
1− aLk

)]
(2.24)

where N is the total of samples, yk is the kth outcome (ground truth) and aLk
the predictive value from the ANN at the output layer L.

The learning process in ANN is based on gradient descent [RHW86b] and
back-propagation [Wer94]. Thus, from variations in the ANN’s weights, the
cost function is aimed to move towards a minimum, as shown in Fig. 2.17.

Thus, this process starts by initializing the ANN weights randomly. Then,
the inputs are propagated along with the ANN until they reach its output.
At the output layer, the loss function is computed, and from this point, the
back-propagation algorithm starts. Algorithm. 1 shows how the weights of
the ANN are updated based on the propagation of the gradient of the loss
function. The process starts with the calculation of the gradients for all the
activations a(l) for each layer l, starting from the output layer to the first
hidden layer. In this process the network parameters vary according to the
gradients in order to reduce the error.
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Cost function Cost function

Fig. 2.17: Gradient descent.

This process is repeated until a minimum, not necessarily absolute, is
achieved in the loss function. Thus, in every iteration, the parameters
of the network are updated following the expression

Θ′ = Θ− α∇ΘL, (2.25)

where Θ contains all the parameters of the ANN and α is the hyperparameter
called learning rate and represents how fast the cost function will move to-
wards a minimum. If this parameter is very large, the learning model will not
reach a minimum, but if it is very small, it may take a long time to reach some
minimum in the loss function. To combat these effects, techniques are often
applied where this parameter is adapted during training. Some algorithms
accelerate the learning process by dynamically changing α. Adaptive moment
estimation (ADAM) [KB14] is one of the best performing approaches for this
task.

On the other hand, it is common to have problems of overfitting, which
happens when the network does not learn a model from the underlying data
but memorizes the individual examples. To solve them, regularization mech-
anisms that penalize ANN weights or prevent the network from memorizing
training data are commonly used. A common way to reduce this effect is
applying L2 weight regularization [KH92], a quadratic penalty function is
added to the weight, i.e. (2.24) is modified to
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Algorithm 1 Back-propagation algorithm
Input: y′, L (y′,y)

1 After forward propagation, compute the gradient on the output layer:

g← ∇y′L (y′,y)

2 for l =l, l-1, . . . , 1 do:

Compute the gradient on the layer‘s output into a gradient into the pre-
nonlinearity activation:

g← ∇a(l)L = g� f ′
(
a(l)

)
Compute the gradient on weights and bias
∇b(l)L = g
∇W(l)L = gh(l−1)>

Propagate the gradients w.r.t. the next lower-level hidden layer’s activa-
tions:
g← ∇hl−1L = W(l)>g

L′ = L+ λ

2N

L∑
l=1

Nl−1∑
i=1

Nl∑
j

(
wli,j

)2
(2.26)

With L2 regularization, controlled by λ, we limit the adaptation capacity of
the network by penalizing large weights.

RNN

RNNs are a family of ANNs specializing in processing data with temporal
sequences. In this type of architecture, the processed data considers the
history of data that the network has already seen. This is achieved by adding
internal memories in the network structure where the information is stored
and used in future iterations in the learning process. Although RNNs offer
better performance on sequential data, they are usually limited to short-term
time dependencies. The drawback above has to be considered in a clinical
environment because many pathologies are chronic and depend on past
events. Moreover, classical RNNs present issues related to the explosion and
vanishing of the gradient that updates the weights. In such a process, the
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weights are not updated or grow too much. Thus, RNNs evolved towards
Long short-term memory (LSTM) to solve such problems.

LSTM: are networks that were designed to solve the drawbacks of RNNs.
The temporal dependencies in LSTMs are controlled by mechanisms that
emphasize the sequence information flowing through the network. Thus, the
central components of LSTMs are the cell state ct, the hidden or previous
state ht, and its gates. The structure of the network can be seen in Fig. 2.18.
It shows three types of gates, the forget gate ft, the input gate it, and the
output gate ot. The cell state is transporting the information considered
relevant by the gates.
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Fig. 2.18: LSTM cell, σ is the sigmoid activation function.

The cell gates are neural networks with fixed activation functions responsible
for processing sequential information. Based on their activation function,
they can distinguish the relevance of new data entering the cell. The core
idea is to combine the information from the gates in ct. The forget gate
indicates which information from the combination of the previous state, ht,
and the input, xt, is discarded based on the sigmoid function. If the value is
near 0, then it is not relevant for ct. Then, new information is added to ct
through the combination of two gates, it, which decides the information to
updated and the candidate values, c′t. Finally, ct is updated, and the output is
a filtered version of the cell gate modulated.
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AE

An AE is a type of ANN that replicates input data x to the output of the
network x′ with a minimum error. This mechanism allows extracting the
most representative relationships from the data in its latent spaces, the so-
called codes. AEs have an encoding function, fθ (·), which is the portion of
the ANN that extracts knowledge in its codes h = fθ (x), and the decoding
function, gθ′ (·), in charge of reconstructing the input, x′ = gθ′ (h). The
components of an AE can be appreciated in Fig. 5.2.

Code
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Fig. 2.19: Structure of an autoencoder with three hidden layers.

The learning mechanism of an AE follows the same as a standard ANN, except
that the loss function varies. In this case, the RMSE is computed as

L =

√√√√ 1
N

N∑
i=1
‖xi − x′i‖

2, (2.27)

where xi represents a sample i and N is the total samples in a dataset.

2.4 Chapter summary

This chapter reviewed the components related to clinical data analysis. The
mechanisms of clinical data manipulation in a KDD environment were ad-
dressed. Within this framework, we delved into the challenges associated
with clinical data. These challenges are related to the volume of information
and missing records in the data. Later on, the most widely used ML-based
knowledge extraction mechanisms in the clinical environment were pre-
sented and those specialized in DL were discussed in more detail. In the
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following chapters, we will show how these ML approaches can be used to
solve the challenges posed by focusing on chronic kidney disease to get closer
to data-driven medicine. Specifically, we will discuss the improvement of
mortality prediction models in ESRD patients, present a DL-based imputation
mechanism, and finally, a framework to perform TL and support mortality
prediction in ESRD.
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Enhancing Mortality
Predictive in End-Stage
Renal Disease by means
of Deep Leaning

3

In this chapter, we begin to study the predictive models of mortality in ESRD and
the influence of the application of DL on them. Thus, we started with collecting
data from a nephrology unit and integrated various sources of information to
generate a dataset. These include historical diagnoses, laboratory tests, and data
from hemodialysis (HD) sessions. Thus, by combining these data with ML and
DL techniques, we aim to improve the predictors of mortality for this pathology.
We had a cohort of 261 patients and their temporal evolution throughout
CKD. In this way, we exploit the predictive capacity of temporal dependencies
through LSTM networks. Their performance is compared with learning models
fed with different groups of attributes, with the twofold purpose of comparing
the performance of groups of attributes chosen by the expert staff and those
found by an ML approach such as recursive feature elimination (RFE). With
this study, we have identified subsets of variables that perform very similarly to
the use of all of them and allow us to identify which factors may have the most
significant influence on mortality. Mortality predictors based on DL provide
evidence that predictors based on EBM can be improved by combining different
data sources and taking advantage of temporal relationships through LSTM
networks. The main contributions of this chapter are as follows:

• ML approaches can reveal causal relationships in variables not explored
before by the expert staff.

• The massive use of attributes together with DL approaches improves
predictive models of mortality in ESRD.
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• The integration of a ML pipeline may lead to a paradigm shift in
analyzing predictive factors for mortality in ESRD.

3.1 Introduction

CKD represents an epidemiological problem, USA 11% and Spain 9.2% in
the adult population [Mar+14]. According to the World Health Organization
(WHO), it has an indirect impact on the morbidity and mortality of the
global population, increasing the mortality risk of the deadliest diseases
[LTS18; RK15]. CKD is closely related to cardiovascular (CV) risk, which is
responsible for the highest mortality, especially on the ESRD, where death
from CV is one of the leading causes [Mar+14].

The most widely used way to detect the risk of suffering these kinds of
pathologies is based on EBM, which is translated into best practice guidelines,
such as the American Heart Association/American College of Cardiology (AC-
C/AHA)[Gof+14], QRISK2 [Hip+08], Framingham [DAg+08a], or Reynolds
[Rid+07]. They are based on assuming linear relationships between risk
factors and events. Nevertheless, applying more sophisticated algorithms
that use non-linear relationships and offer better performance in predictive
models is still an open issue.

Thus, in the era of ML and DL, it is possible to generate complex models
supported by large amounts of data [DO02; AAQ17]. Moreover, large-scale
studies have begun to be described with ML to establish a prognosis of mor-
tality in the general population using routine clinical data [Mil+19; Ros+16;
Çel+14; Wan+15]. However, those that exist in ESRD use approaches based
on classical statistics [Mau+08; Bed+00; Liu+10; Cou+09] and some of
them present a doubtful benefit [Ote+12].

There are few studies where ML techniques are applied to CKD. Salekin
[SS16], and Abdullah [Alm+19] detect CKD using different classifiers (SVM,
k-Nearest Neighbors, RF and ANN), Doi [Doi+15] trains logistic regression
to predict mortality in patients starting with hemodialysis, and Titapiccolo
[Ion+13] stratifies cardiovascular risk with RF. Predictive models of mortality
using ML are even scarcer in the ESRD population. Akbilgic [Akb+19] used
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RF to predict mortality from one month to one year with an AUROC of
0.736. Thus, it is observed that there is a considerable margin for applying
techniques that can benefit from both data complexity and the evolution of
the patient’s disease in ESRD for the improvement of mortality models and
thus be able to support medical decisions that are reflected in the trajectory
of the disease.

This chapter aims to present an exploratory analysis of the potential of DL by
exploring heterogeneous variables and exploiting the follow-up of patients
in ESRD through LSTM-ANN to improve predictive models of mortality.
The predictive capacity of several collections of variables is explored. Such
groups are chosen by the expert staff and automatically by ML techniques
to evaluate the incidence of such features for learning models. This study
also takes advantage of the number of samples generated by the continuous
monitoring of patients to propose predictive models of short-term mortality,
which have not yet achieved an AUROC higher than 0.736. This study points
to the potential benefits of ML approaches to assessing the medical staff with
ESRD patients. It encourages the development of more robust models using
specialized ANNs as a predictive mechanism.

3.2 Materials and methods

This retrospective study was carried out on a homogenous cohort of 1178
HD patients from a single center with a reference population of almost half
a million inhabitants. Of 1178, it was possible to extract information from
537 deceased patients, and of these, 261 provided the necessary data. These
data were taken from the Information System of the Parc Tauli University
Hospital, from the HD Unit at the Nephrology Department from 2007 to 2018.
This project passed through the ethics committee (Code 2018/508) and was
subsequently anonymized, following the usual protocol. Inclusion criteria
was being of legal age (> 18years). The available data include diagnoses,
laboratory tests, and variables from HD sessions. The exposure period was
from the moment the patient’s information was registered in ESRD in the
hospital’s information system until the patient’s death.
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The predictive capacity of the data was exploited using the temporal de-
pendencies that the follow-up of patients may have. Thus, a KDD process
was followed, selecting the data by the expert staff, then the attributes were
preprocessed, and finally, the predictive models were generated in two stages.
Due to its easy-to-tune and computational cost, the first one uses RF to find
the most important variables and set a baseline performance for more sophis-
ticated algorithms. The second stage has the twofold purpose of exploiting
temporal dependencies through LSTMs and analyzing the impact of sets of
variables, including the ones found in the previous stage, groups of variables
chosen by the expert staff, and using all the available ones. All the necessary
steps to carry out the prediction of mortality for patients in ESRD can be seen
in Fig. 3.1 and are described below.
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Fig. 3.1: Framework for developing predictive models in ESRD, G11 to G33 refer
to set of variables ranked by their importance based on the expert staff
experience. In pre-processing stage some features were generated based
on 1-hot encoded for categorical features.

3.2.1 Data selection

Variables from the history of diagnoses, laboratory tests, HD sessions, and
demographics are used to develop the predictive models. The outcome to
predict is the mortality of patients. The variables are filtered based on their
percentage of MV. Variables with more than 43.2% of MVs are discarded.
Thus, the selected features can be appreciated in Table 3.1. Next are described
the most relevant sources of information for this study.
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Tab. 3.1: Selected variables from the data sources. The outcome is coded according
to the death date of the patient. SBP and DBP refer to systolic and diastolic
blood pressure, HR to heart rate and Temp to temperature.

Laboratory tests hemodialysis Diagnoses
Calcium Acc weight Arteriopathy
Creatinine Average flow Cardiopathy
Ferritin Blood vol dia Diabetes
Glucose DBP post HD Enteropathy
Haemoglobin DBP pre HD Fracture
Haemoglobin Dry weight Haemorrhage
HDL cholesterol HD time Hepatopathy
Hematocrit HR post HD Hypertension
Iron HR pre HD Infection
KTV Hypotension Neoplasia
LDL cholesterol SBP post HD Pneumopathy
leucocytes SBP pre HD
Lymphocytes Temp post HD
Monocyts Temp pre HD Demographics
Neutrophil Vascular access Age
Phosphorus Sex
Platelets
Potassium
PTH Outcome
Reticulocytes Months to decease
Sodium
Total cholesterol
Total proteins
Triglycerides
Urea

Diagnoses

Diagnoses refers to the historical hospital admissions that a patient has
had. Each entry is associated with some particular diagnoses determined
by examinations and evaluations of medical staff, which is encoded using
ICD-9.
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Laboratory

Laboratory tests are all the associated attributes collected from hematology,
biochemistry, or some ESRD-related hormones. Such samples are stored as
laboratory events. Some of them are taken with more or less periodicity. For
instance, the most regular is the hemoglobin, measured every month, while
proteins and PTH are measured every four months. Other measurements like
immunology or tumor markers are taken more exceptionally.

HD variables

HD variables are commonly taken during the HD sessions, 3-4 per week.
Some variables are recorded at the beginning and the end of the HD session.
Registered information includes the type of vascular access, duration of
the session, episodes of hypotension, and other variables taken from the
hemodialysis machine, such as dry weight, temperature, systolic and diastolic
blood pressure, heart rate, and average flow, among others.

3.2.2 Data pre-processing

In general, as mentioned in the previous chapter, EHRs rarely have an
appropriate format for feeding learning models. Thus, it is necessary to carry
out exploration and preprocessing of such records to optimize the knowledge
extracted from them. The aforementioned is carried out through the cleaning
and imputation of MVs. Below are the problems found in the samples.

• Data structure;

• Incorrect values in variables;

• MVs.

Initially, the information has to be structured. Thus, based on expert knowl-
edge, the diagnoses were grouped into 11 general ones. Then, they were
categorically encoded so that they became new variables for the final data
set. In Fig. 3.2, this transformation can be appreciated. Then, the three
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information sources are combined based on the measured data. Finally, the
follow-up of patients was summarized into one-month records, i.e., using the
mean of variables in case of having more than one sample per month.

Patient_id D_ad C_Diag_1 C_Diag_2 C_Diag_3 C_Diag_4
14785899
14785899
14785899
14785899

13/12/11
02/06/08
07/01/14
17/10/14

I351 250.40 585.5 V45.1
I6529 428.0 I4891 250.40
707.19 858 V45.1 Z8611
I2510 I472 I120

Patient_id D_ad ARTERIOPATHY CARDIOPATHY DIABETES INFECTION
14785899

14785899

14785899

14785899

13/12/11

02/06/08

07/01/14

17/10/14

0 1 0
0 0 1 0

1 0 1 1
0 1 1 0

0

Fig. 3.2: Initially, each entry is associated with a series of diagnoses. In the new
scheme, the most important diagnoses are selected and coded using one-
hot encoding.

To correct the outliers and impute MVs, the acceptable ranges of the variables
in laboratory tests and HD sessions were decided by the expert staff. Outliers
of variables are identified and replaced with MVs to avoid losing the rest of
the information of encounters with the MVs. Then, they are processed in two
stages. The first one is based on the individual imputation of the variables
of each patient using second-order interpolations to preserve trends in the
evolution of the patient. MVs are imputed for patients without samples in
some variables in the second stage based on average values of the respective
attribute from patients in training set without MVs.

3.2.3 Learning models

Models in the literature dedicated to the study of CKDs have been shown to
have performance that can be improved. RF is the best performing algorithm
in this type of cohort. However, those learning algorithms do not consider
the temporal component that exists in the evolution of the pathology. Thus,
RF is used to establish baseline performance and also quantifies the features’
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importance for the final predictor. Then, LSTM-ANN is applied to benefit
from the temporal component mentioned above.

Feature selection-RF

RF combines predictions based on decision trees [BL01]. They are trained
with random subsets of data Dn. Branches of the decision trees are generated
based on the calculation of the impurity of their features through the Gini
index,

G(Dn) = 1−
m∑
i=1

pi
2 (3.1)

where m is the number of classes (2 in our case, dead or alive), and pi is the
relative frequency of class i in a given branch of the tree. Initially, G(Dn) is
calculated for all the possible combinations of features and for finding the
value used to split the tree’s branches. Then, the combination that achieves
the lowest value of G(Dn) is chosen as it represents the best possible value
in Dn at the classification nodes in the tree. The same procedure is repeated
in subsequent branches up to a specified depth. In an RF approach, several
trees are computed and fed with subsets of the data. Finally, the outcome
produced by most of the trees is taken as the final decision (see Fig. 3.3).

Data Randomize

Class decision

D1

T1

1. Random 
     samples

2. Build
decision trees

3. Combine 
           decision trees

D2

T2

Dn

T3

Fig. 3.3: Random forest data flow, at the end the class decision is made by voting
of each tree.
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On the other hand, as was explained for the entropy in decision trees, the Gini
index allows quantifying the importance of the features. This characteristic
is used in this work to find the most relevant variables, more robustly, for
predictors by combining a recursive feature elimination (RFE) [DME18]
approach with RF. The traditional way to find the importance of features
is to relate them individually with the outcome without considering the
interactions between variables. RFE solves this issue by generating several
predictors iteratively. Thus, in each iteration, a predictor offers a performance
measurement and the ranking of features. In the next iteration, the less
important feature is eliminated and the new predictor will yield another
performance and a new ranking, and so on.

Predictive model-LSTM

In the case of the prediction of mortality of patients in ESRD, the objective
is to classify data collected during a period of ndata months to be able to
determine if the patient will be alive or not after npred months. Thus, driven
by a considerable number of training samples, an ANN can learn an optimized
non-linear function in an iterative process to minimize the input and output
error. Thus, to carry out mortality prediction in ESRD, LSTMs are used to
exploit temporal dependencies in the follow-up of the patients. LSTMs are
fed with concatenated vectors that contain the evolution of n months, and
the prediction is carried out to p months. Fig. 3.4 illustrates the follow-up
of a patient during m months, from the first encounter with the hospital’s
system to the deceased event. The follow-up is structured into samples,
taking information of n months of evolution. Then, using the timestamp of
the samples and date of deceased, d in the figure, the moths to the death
event of the structured samples are computed. Thus, the binary target of the
generated data depends on the prediction range using the rule,

f(td) =

0, if td > p

1, otherwise
(3.2)

where p is the prediction range, td is the time to the death event. ’0’ and ’1’
indicate the class sample, alive and deceased, respectively.

3.2 Materials and methods 49



S1 S2 Sn-1

S2 S3 Sn

Sm-n Sm-n+1 Sm-2

Sm-n+1 Sm-n+2 Sm-1

Sn

Sn+1

Sm-1

Sm

Si Si+1 Si+n-2 Si+n-1

Structured samples Months to death (td)
d-n

d-(n+1)

d-(m-1)
d-m

d-(n+i-1)

S1 S2 Si Sm

Death 
event

1 2 ii-1 m-1 m dHD treatment—>
(months)

Samples of follow-up of a patient in ESRD

Fig. 3.4: Sample structuring from follow-up of a patient with m months in HD
treatment to the death event, d.

3.3 Results

The samples for this analysis were extracted from 261 patients. Table 3.2
shows the description of the population. Because the duration of HD treat-
ment varies across the cohort, each patient generates a different number of
monthly samples. In total, 8394 samples were extracted. Thus, mortality is
predicted to 1, 2, 3, 6 and 12 months in this work. Then, five datasets with
the same data but different targets, after applying the transformation in Eq.
4.1, are generated. Fig. 3.5 shows the mortality trajectories for patients in
the training and test sets.

For models development, patients were split into training and test sets (80-
20%). The training set was divided into 5-folds for cross-validation, see
Fig. 3.6. This approach makes it possible to find the hyperparameters for
RFE-RF and LSTMs. Such parameters are the ones that can be calibrated
manually. For RFE-RF, the number of trees, depth of the decision trees
and splitting criteria. For LSTMs, the number of cells, neurons per cell, LR,
among others. Then, with the hyperparameters fixed, the parameters of the
network (weights of the LSTMs) are computed and five different models,
M1,M2, . . . ,M5 in Fig. 3.6, from the 5-folds, are obtained as a result. The
evaluation is done in the initial test set.
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Tab. 3.2: Cohort description. Variable Samples/Patient contains the information
about the number of samples that the patients generate. For diagnoses,
Number of patients column represents the total of patients with a specific
diagnose. VA refers to vascular access, SBP and DBP to systolic and
diastolic blood pressure.

Feature Units Patients MV (% ) Mean Std Min Max
Age Years - 0.0 71.41 10.69 24.00 91.00
Sex (Women) - 104 0.0 - - - -
Sex (Men) - 157 0.0 - - - -
Samples/Patient - - - 26 22 1 116
Calcium mg/dL 261 10.8 9.10 0.69 6.30 13.00
Creatinine mg/dL 261 25.0 6.80 2.30 0.30 15.50
Ferritin ng/mL 261 28.1 472.1 368.32 8.10 6590.00
Glucose mg/dL 261 25.7 123.30 67.85 13.00 1370.00
Haemoglobin g/L 261 29.2 6.21 1.26 4.10 13.60
HDL cholesterol mg/dL 261 18.3 43.73 14.60 4.40 115.60
Hematocrit L/L 261 1.0 349.990 0.04 0.17 0.49
Hemoglobin g/L 261 1.1 111.69 14.21 46.00 161.00
Iron µg/dL 261 38.1 59.44 26.70 10.00 340.00
KTV mL/min 261 17.3 1.43 0.28 0.42 02.09
LDL cholesterol mg/dL 261 18.9 83.40 33.20 8.00 240.00
Leucocytes x109/L 261 1.0 7.63 4.97 1.25 11.3
Lymphocytes x109/L 261 5.8 1.50 0.76 0.22 12.74
Monocyts x109/L 261 5.8 0.56 0.22 0.03 2.69
Neutrophil x109/L 261 5.8 5.24 2.29 0.22 7.25
Phosphorus mg/dL 261 26.1 4.33 1.39 0.20 11.80
Platelets x109/L 261 1.1 223.37 83.17 14.40 1067.00
Potassium mEq/L 261 35.0 4.95 0.80 0.30 8.90
PTH pg/mL 261 28.3 228.05 189.17 6.00 3264.00
Reticulocytes x109/L 261 28.4 5.37 2.69 0.23 35.23
Sodium mEq/L 261 31.5 138.66 3.59 121.00 198.00
Total cholesterol mg/dL 261 38.1 149.98 39.41 45.00 432.00
Total proteins g/L 261 27.6 66.02 6.84 28.5 96.00
Triglycerides mg/dL 261 18.1 140.49 107.92 20.00 2673.00
Urea mg/dL 261 43.2 102.40 51.12 20.20 317.20
Accumulative weight Kg 261 21.7 1.95 0.77 -3.05 4.44
Average flow mL/min 261 16.2 290.28 34.48 200.00 414.55
Blood vol dia mL/min 261 12.0 65.08 10.52 40.00 98.43
DBP post HD mmHg 261 10.4 65.34 10.22 40.00 105.61
DBP pre HD mmHg 261 10.5 64.44 10.62 40.00 106.08
Dry weight Kg 261 0.9 66.78 15.24 31.29 149.63
HD session time Hours 261 0.0 3.73 0.35 3.50 7.30
HR post HD BPM 261 10.6 75.59 11.49 41.00 122.00
HR pre HD BPM 261 6.6 73.19 10.57 42.00 121.17
Hypotension Cases/month 261 0.0 2 4 0 24
SBP post HD mmHg 261 13.3 138.11 22.7 57.00 205.00
SBP pre HD mmHg 261 6.3 137.31 22.19 56.07 218.60
Temp post HD ◦C 261 16.9 35.58 0.33 33.00 38.20
Temp pre HD ◦C 261 11.6 35.52 0.34 33.85 38.00
Arteriopathy - 177 0.0 - - - -
Cardiopathy - 241 0.0 - - - -
Diabetes - 204 0.0 - - - -
Enteropathy - 94 0.0 - - - -
Fracture - 9 0.0 - - - -
Hemorrhague - 6 0.0 - - - -
Hepatopathy - 18 0.0 - - - -
Hypertension - 223 0.0 - - - -
Infection - 102 0.0 - - - -
Neoplasia - 79 0.0 - - - -
Pneumopathy - 115 0.0 - - - -
VA (AVF) - 168 0.0 - - -
VA (Catheter) - 164 0.0 - - - -
VA (Graft) - 6 0.0 - - - -
Mortality Months - 0.0 25.52 21.89 1.00 116.00
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Fig. 3.5: Kaplan Meier mortality model for training and test set.
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Fig. 3.6: Cross validation with 5-folds. Test Data is only used when the hyperpa-
rameters are found.

To estimate the performance of the classifiers in the test set, AUROC was used.
It measures the area under the graphic representation of the general accuracy,
showing the variation of the sensitivity and specificity of a binary classifier
when the decision threshold varies. The metric takes values between 0 and
1, with 1 corresponding to the perfect classifier.

3.3.1 Feature selection-RF

Our first experiment studies the importance of groups of features. One of
them is the group found by combining RF with the RFE approach. The
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optimal hyperparameters for RF were 103 trees, maximum depth of 3, using
the Gini index for splitting the nodes and calculating the importance of
features. For the RFE approach, the 5-folds were used to find the best
features more robustly. With the approach, it was found that 42 features
offered the best performance for all the predictors. AUROCs of 0.737, 0.714,
0.712, 0.668 and 0.615 were the baseline performance predicting mortality
to 1, 2, 3, 6 and 12 months, respectively. Fig. 3.7 illustrate the AUROC as a
function of the number of considered features for the prediction of mortality
to one month.

Fig. 3.7: Recursive feature selection, with 5-folds cross-validation, using RF as
learning model.

The features not considered by RF-RFE were: cardiopathy, enteropathy,
haemorrhage, hepatopathy, hypertension, neoplasia, pneumopathy, fracture,
infection, and the type of vascular access.

3.3.2 Predictive model-LSTM

In the second experiment, we consider a more powerful model based on
LSTMs. After parameter optimization, we found that the best configuration
was using an LSTM with two cells and with 750 and 500 units, respectively.
We used ADAM optimizer with LR = 0.001 and L2 regularization with
λ = 0.001. Then, the LSTM approach is evaluated in several groups of
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variables chosen by the experience of the expert staff, the group of variables
found by RFE-RF, and all the available ones. Table 3.3 shows the importance
level of both laboratory and HD variables as determined by the experience of
the hospital expert staff.

Tab. 3.3: Ranking of features chosen by the experience of the expert. Their impor-
tance are marked from 1 to 3, being 3 the less important features. VA
refers to vascular access.

Laboratory Importance HD variables Importance
Calcium 1 HD time 3
Creatinine 3 HR post HD 1
Ferritin 2 HR pre HD 1
Glucose 3 Hypotension 1
Haemoglobin 1 SBP post HD 1
HDL cholesterol 2 SBP pre HD 1
Iron 3 Temp post HD 3
KTV 1 Temp pre HD 3
LDL cholesterol 2 VA (AVF) 1
Leucocytes 2 VA (Catheter) 1
Lymphocytes 2 VA (Graft) 1
Monocytes 2
Neutrophil 2
Phosphorus 1
Platelets 3
Potassium 2
PTH 1
Reticulocytes 2
Sodium 1
Total cholesterol 2
Total proteins 3
Triglycerides 2
Urea 1

Fig. 3.8 shows ROC curves comparing the groups of variables using four
months to feed the LSTM and predicting mortality to 1 month. As an
illustration, Group 12 considers laboratory variables with an importance
label of 1 and HD session variables with an importance level of 2, and
Group RFE refers to the ones found by RFE-RF. Note that diagnosis variables
(11 in total) are included in all cases. In this figure, we can see how the
performance offered by the models fed with the variables found by the
RFE-RF approach is enhanced once the LSTMS-ANN is applied.
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Finally, in Fig. 3.9 we test the performance of our algorithm by considering:
i) all variables; ii) HD data only and iii) diagnosis and laboratory data only.

Fig. 3.8: Performance comparison between best features found by RFE-RF, the
combinations of features chosen by expert staff and using all the available
information. Group 11 is inferred from the combination of the most
important analytics with the most important HD variables to Group 33,
the least significant ones.

Fig. 3.9: Comparison of performance using laboratory tests and diagnoses, all the
available variables and just variables taken during hemodialysis sessions.
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3.4 Discussion

This chapter explored how DL can help in the study of ESRD. After the
experiments conducted, in this case, focused on the evaluation of mortality,
the lessons learned are: i) we can improve model accuracy w.r.t. the other
works in the literature; ii) including knowledge expert not always leads to
better models and iii) solutions can guide the research in a specific field by
revealing possible causal relations not explored before, possibly far from
human intuition. Table 3.4, includes a performance comparison in terms
of AUROC with the existing solutions in the literature. Although one-year
mortality does not exceed that stated in the literature, the improvement
in short-term mortality grows to 4% if we reduce the prediction time to 3
months. When we compared our approach to these other works, we realized
that we combined three sources of data, i.e., diagnosis, laboratory and HD
data, being not the case in the available works. Most of them use either
laboratory and diagnosis data or HD session data. Fig. 3.9 shows that the
inclusion of all variables improves the AUROC at least by 11% in AUROC.

Tab. 3.4: Comparison methods in literature with proposed one.

Reference Mortality Population Prediction algorithm AUROC (CI 95%)
[Mau+08] 1 year 5738 Logistic regression 0.670 (0.668-0.675)
[Akb+19] 1 month 27615 Random forest 0.736 (0.715-0.757)

3 months 0.764 (0.754-0.774)
6 months 0.760 (0.747-0.775)
1 year 0.757 (0.746-0.769)

[Wag+11] 3 years 5447 Cox 0.730 (0.700-0.760)
7-12 months proportional 0.698 (0.679-0.717)
13-18 months hazards 0.717 (0.696-0.737)
19-24 months 0.670 (0.646-0.694)

[Iss+14] 3-36 months 62 Hazard ratio 0.696
Proposed 1 month 261 LSTM 0.873 (0.871-0.876)
approach 2 months 0.813 (0.811-0.815)

3 months 0.798 (0.796-0.800)
6 months 0.752 (0.751-0.753)
1 year 0.720 (0.703-0.737)

In order to study how considering knowledge expert influences the perfor-
mance of algorithms, expert staff labeled HD and laboratory data according
to their importance level, being 1 the highest level and 3 the lowest (see
Table 3.3). Accordingly, in Fig. 3.8 we tested our model with several com-
binations of the subsets of variables. We could expect to achieve the best
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possible performance by using level 1 laboratory data together with level 1
HD variables, i.e., Group 11 (recall that diagnostic data is included in all
cases). However, the performance achieved is similar to Group 33, and the
inclusion of all variables boosts the AUROC value in 9%. In other words,
expert knowledge is undoubtedly relevant, but it is also important to explore
beyond it.

Finally, ML approaches can also help the research of physicians by revealing
causal relations possibly not explored before. In Fig. 3.7, we tested how
an automatic feature selection tool such as RFE may help. In this case, 42
features gave us the best classification performance using an RF approach,
where the majority of the diagnoses were excluded. When we consider this
selection as input to our LSTM solution, the performance is close to the best
one, obtained with all the features. Therefore, physicians can explore the
subset of variables selected, reduce or increase it as far as performance is
sustained (see Fig. 3.7) and investigate the importance and effects of the
chosen features. However, it should be noted that RF-RFE did not considered
most of the diagnoses or the type of vascular access. This evidence could
suggest that those not considered important variables could lead to new
medical research.

3.5 Conclusions

The work presented in this chapter demonstrates the potential of the massive
use of variables and ML techniques to improve predictive mortality models in
ESRD. We designed a baseline predictor and feature selector using an RFE-RF
approach. Then we improve it using LSTM strategy that exploits temporal
dependencies in the data. We conclude that thanks to considering diagnostic
variables and laboratory and HD session data, we could improve performance
in predicting mortality in the ESRD patient by at least 4% w.r.t. existing works
for short-term mortality. Furthermore, results show that expert knowledge
contributes to the analysis, but we shall not limit our algorithms to it. In
our experiment, the best performance achieved by the groups chosen does
not exceed the RF-RFE. Therefore, ML methods like the ones explored here
can provide feedback to the experts, improve our knowledge, and lead to a
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change in the paradigm in the analysis of predictive factors in mortality in
ESRD.
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Multiple Imputation
Using the Average Code
from Autoencoders

4

In this chapter, we cover the second challenge of this dissertation, which is related
to the imputation of MVs in clinical data. For this purpose, we group 4 clinical
datasets with different pathologies widely used in the literature and two others
that are frequently used as benchmarks in an imputation environment. The new
imputation alternative proposed in this chapter integrates a classical MI-based
approach within a DL environment. This concept integrates MI within the latent
spaces of an EA, where what we call the average code is computed. This code
is used to reconstruct non-existing information better. This mechanism makes
it possible to decrease the bias generated by the imputation of non-existing
information. With this proposal, a better reconstruction of the different data
sets has been demonstrated.

The main contributions of this chapter are as follows:

• Provide a novel alternative to compute a more robust representation of
latent spaces by computing an average latent representation.

• Integrate the MI paradigm into latent spaces of deep ANN.

• Improve the imputation of missing values by computing the average
code for datasets independently from the volume of data.
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4.1 Introduction

Missing information is inherent to data used in pattern recognition, data
mining, and machine learning applications. The presence of MV affects the
quality of such applications and may add biases to experiments [Gia+18].
In the clinical domain, this is a recurrent problem. Electronic health records
such as laboratory tests, clinical observations and bedside monitoring usually
present MVs in their registers. The integration of such data, the omission
of information by patients, data acquisition equipment errors, and measure-
ments with different sampling periods are the most representative sources of
MVs in the medical domain [Cis+13; Mir+16].

The alternatives to handle this issue include removing records with MVs
and applying methods to estimate them. The first option is known as com-
plete case analysis and is commonly used in clinical studies [Cis+13]. This
approach has the drawback of considerably reducing the amount of data,
adding bias to the experiments since it analyses only the complete exam-
ples in the dataset [Ste+09]. In contrast, imputation attempts to replace
missing information with the twofold purpose of extracting knowledge from
incomplete examples and reducing bias in clinical studies [Ste+09].

Imputation methods replace the MVs considering either one value or multiple
estimates for an MV. Relying on imputing by one value underestimates the
variance and does not consider data uncertainty [CR89; Ste+09]. Moreover,
MI [CR89] was designed to address this concern by considering several
estimates for a single MV. However, the challenge in MI lies in the choice
of the estimative model [GW18]. Statistical models for MI are based on
estimates that consider only linear relationships in the data. In several
scenarios, they cannot handle large datasets and are limited when there are
different types of data and MVs patterns. In contrast, such limitations may
be exploited by methods based on DL.

DL techniques have shown an exceptional ability to exploit complex rela-
tionships in large datasets [Chi+18]. Such relationships are extracted in
latent representations in the hidden layers of ANN. Promising methods in
imputation in the literature are based on GANs [Goo+14; YJV18] and AEs
[BM17; Mac+19; GW18]. However, since GANs are based on two competing
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ANN, they are difficult to tune and often present convergence problems
[AKK19]. In contrast, AEs learn unsupervised functions that encode the input
into a latent representation of data and then use a decoder function that
reconstructs such representation to match the input. This mechanism makes
it possible to extract the most relevant information from the data, even from
those examples that present MVs. Thus, it is necessary to carry out an initial
imputation to include such examples. Most authors use a constant value to
perform this initial imputation without considering that the learning models
can memorize the data they were fitted with. Thus, choosing adequate values
to perform this initial imputation is a challenge to minimize the bias they
add.

On the other hand, the application of AEs, jointly with the MI approach, has
shown promising imputation solutions [GW18]. In the method proposed in
[GW18], several copies of the data are estimated by AEs. The MI mechanism
is applied once the AE reconstructs the latent representations. Thus, moti-
vated by the ability to extract knowledge that AEs have and the inclusion of
uncertainty that MI provides, in this chapter, we present a novel alternative to
impute MVs based on the adoption of the MI paradigm into latent representa-
tions of data through AEs. This integration allows the combination of several
latent representations of the data into the so-called average code (AVG code).
This combination generates a more robust representation of data. Once the
AVG code is decoded and missing information is better imputed, the complete
information may support learning tasks in specific domains.

4.2 Methods

This section presents all the necessary components to carry out the proposed
method. Initially, the imputation problem is formally introduced, followed
by the description of MI and the learning models on which the proposed
method is based. Finally, the proposed method is presented.
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4.2.1 Imputation problem

Let X ∈ Rs,f be a dataset, with s = 1, . . . , S examples and f = 1, . . . , F
features. The elements of X are denoted by xs,f . Each sample is de-
noted by xs = [xs,1, xs,2, . . . , xs,f , . . . , xs,F ]. Then, a MV indicator ms =
[ms,1,ms,2, . . . ,ms,f , . . . ,ms,F ] is associated to the examples xs and tracks
the registers that are missing. Each element of matrix M is constructed as
follows:

ms,f =

1, if xs,f is missing

0, if xs,f is observed.
(4.1)

Thus, X can be divided into two components, observed and missing data,
Xobs and Xmiss, respectively. Xobs contains examples without MVs in their
features, while those examples with MVs are stored in Xmiss. Imputation
aims to find a function, f (·), that best estimates MVs in Xmiss, which in
turn minimizes bias added by the inclusion of information that did not exist
before. This function can be generated based only on the Xobs or by including
also Xmiss in its estimation. The first case considers the distribution of the
observed data, and the MVs of Xmiss are replaced by values that best fit
such distributions. When Xmiss is included for the computation of f (·), it is
necessary to perform an initial imputation. This imputation replaces MVs
and works as seed values that change iteratively in the training process for
the imputation model.

Including examples with MVs adds robustness to the models because it is
possible to extract knowledge that is directly linked to the appearance and
generation of MVs in the dataset. Fig. 4.1 illustrates the imputation problem
in two stages. The first one is the generation of the function f (·). An initial
imputation is performed to compute the function that best fits the data. In
the second stage, f (·) is applied in new data X∗ and imputes their MVs. In
summary, a robust imputation should include information from the examples
with MVs and an adequate imputation model that minimizes bias in the
experiments.
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Fig. 4.1: Imputation scheme. The initial imputation is necessary to fit the model
that reconstructs missing information.

4.2.2 Multiple imputation

MI creates several versions of a data set that are used to improve a single
imputation. Each version may contain different estimates for the MVs. This
imputation paradigm addresses the problem of uncertainty that exists when
imputing an MV with a single estimation. The mechanisms to find imputation
functions follow the same process mentioned in the imputation problem. In
this case, N versions of the data are generated, and the initial imputation
replaces MVs with slightly different values. Then, N imputation models
generate estimates that are finally grouped and estimate the MVs of the
dataset.

4.3 Proposed method

Motivated by the ability to represent complex relationships that AEs have
and the solution that MI presents to handle the uncertainty problem, we
propose to compute the AVG code of an AE as a mechanism for enhancing
imputation. In our approach, we reinterpret the solution proposed in the
work entitled Multiple Imputation using Denoising Autoencoder (MIDA)
[GW18], by integrating MI in the latent spaces of an AE instead of at the
output layer of the AE, as in MIDA. The proposed method consists of two
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stages, the training of an AE and the imputation mechanism based on the
AVG code.

Learning model

For the knowledge extraction process, an AE is trained. The dimension of
the latent representations is smaller than the dimension of the input data.
This stage differs considerably compared to MIDA. N AEs are trained in
MIDA, and in our approach, just one is used to perform the learning task. To
carry out the initial imputation, MIDA uses the average value to impute MVs.
Imputing with constant values may cause conflicts in generalization for the
learning model. The model may memorize the values with which the MVs
were initially imputed. To solve this issue, we carry out the initial imputation
based on random values that follow the distribution of the attributes of the
observed values in the training data.

Additionally, as a regularization mechanism, the imputing values are changed
in every epoch of the training process. The most representative categories
are used as imputers for categorical variables, and these change in every
epoch. An epoch is when the entire training sample is passed forward and
backward through the AE only once. This iterative variation is carried out
with the twofold purpose of preventing the models from memorizing the
imputing data and guaranteeing a more robust representation of the data in
the codes. Finally, the encoder and decoder are extracted from the trained
AE. Fig. 4.2 illustrates the initial stage of the proposed method.

Imputation

At this stage, the MI approach is integrated into the latent space of the trained
AE. The proposed method differs from the usual MI because the combination
of information is not performed at the end of the estimation of the MVs,
but in the latent space of the AE, as illustrated in Fig. 4.3. To perform the
imputation on new data, Xtest, it is necessary to generate different copies
of randomly imputed data. This imputation follows the same mechanism
as the initial imputation described for the previous learning process. Then,
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Fig. 4.2: Learning process of the proposed method. Missing values (MV) replace-
ment mask contains the location of MVs in Xtrain and it is used to preserve
the observed values of Xtrain and replace the MVs with values estimated
by the AE.

the encoder function of the trained AE generates the codes. These codes are
combined into an AVG code as follows,

c̄ = 1
N

N∑
i=1

ci. (4.2)

The decoding function is applied to the AVG code. The final reconstruction,
X′test, is the mixture of the observed data and the data that are tracked by
the MV indicator.

4.4 Results

Six datasets have been used to test the imputation capacity of the AVG code.
Diabetes, breast cancer, and liver datasets have been extracted from the
UCI repository [DG17]. Spam and letter datasets have been included as
they are widely used as benchmark datasets to evaluate imputation methods.
Finally, in the datasets, we have included data extracted from the MIMIC-III
database [Joh+16a] and that is related to CKD. From this massive database,
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training data and X’test is the reconstruction considering a missing values
(MV) replacement mask that contains the location of MVs in Xtest and it
is used to preserve the observed values of Xtest and replace the MVs with
values estimated by the decoder function.

those patients with acute kidney injury (AKI) were filtered based on the kid-
ney disease improving global outcomes (KDIGO) clinical practice guideline
[Ink+14]. All mentioned datasets have a mixture of categorical and continu-
ous attributes. Table. 4.1 shows the dimension and amount of attributes of
the datasets.

Tab. 4.1: Dataset used to compare the performance of the imputation mechanisms.

Dataset Examples Attributes
Diabetes 442 10
Breast cancer 569 30
Liver 579 9
Spam 4601 57
Letter 20000 16
AKI 56274 8

4.4.1 Experiments

The performance of the AVG code was compared with two imputation meth-
ods from the state-of-the-art, imputing MVs with MIDA and using an imputa-
tion alternative based on GANs [YJV18]. The imputation capacity of each
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model is measured by computing the RMSE in the imputation stage for each
model. The comparison of the three methods is carried out using the same
data with 5-fold cross-validation. The same data for training and testing
for the three methods ensure that the results are fair and generalizable to
different data subsets.

The architecture and the hyperparameters used to train the state-of-the-art
imputation models are proposed in such works. AEs have been trained with
two hidden layers of F/2 and F/4 units for the AVG code, where F is the
number of attributes of a specific data set. The inputs are standardized
between 0 and 1 to facilitate the convergence of the models. To speed up the
training, ADAM [KB15] optimizer was used with an LR = 0.001. A dropout
[Sri+14] of 0.1 was applied as a regularizer to the hidden layers in the AEs.
In addition to using conventional regularizers, early stopping [Pre12] was
used to prevent the learning model from being overtrained and stop the
training process when a model stopped learning.

The imputation capacity of the AVG code is evaluated in scenarios where
the patterns of MVs vary. MVs are synthetically generated since the datasets
do not contain MVs. To provide a wide range of comparisons, part of the
information is eliminated in the experiments to generate MVs with ratios
ranging from 10-60%. Ten copies of the data have been used and imputed
with random values to generate the AVG codes of the experiments. Next, the
mechanisms used to generate the synthetic MVs are covered.

MCAR

The first experiment, it is evaluated how the random appearance of MVs
affects imputation. For this case, MVs are synthetically generated, varying
the percentage of MVs from 10-60%. Such a scenario is the most typical in
real-life datasets. In Fig. 4.4 it can be appreciated that the AVG code has a
lower reconstruction error than state-of-the-art solutions. Additionally, it can
be seen that the models based on GANs are very volatile to the change in the
MV rate with MCAR.
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Fig. 4.4: Comparison of imputation mechanisms with missing complete at random
missing values, varying the missing value rate for the available datasets.

MAR

For the appearance of MVs following the MAR mechanism, the proposed
method is evaluated in a scenario more closely to a clinical environment. The
appearance of MVs is not a random process. There is a dependency between
attributes and MVs. According to the value of one or several attributes, MVs
appear in other ones. The recommendations in [San+19] have been followed
to emulate the generation of this type of MVs. In this case, the registers in
the selected features, where MVs are synthetically generated, are deleted
based on lower values of an observed feature. For this experiment, rates of
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MVs vary from 10-60%, corresponding to a number of variables from 10-60%
of the total of attributes for each dataset. To illustrate the experiment, let’s
consider the Spam dataset. The experiment starts with 10% of MVs in 6
attributes, then 20% of MVs in 12 attributes and so on.

In Fig. 4.5 it can be appreciated that the solution based on GANs has a volatile
behavior in most of the datasets. However, it showed a better performance
dealing with attributes with 10% of MVs. The proposed approach for 10%
of MVs shows a weak performance for the datasets with few examples. For
the rest of them, the AVG code solution has an overall better performance
than MIDA and GANs. For the Cancer dataset, the MIDA solution has a better
performance than the proposed approach. For the rest of the evaluations, the
proposed approach showed better performance than GAN and compared with
MIDA, for a range of MVs from 20-50% the proposed approach presented a
better performance. Just for the datasets with more examples and 60% of
MVs MIDA is competitive with the AVG code.

MNAR

To generate MVs following an MNAR mechanism, we followed the recom-
mendations in [San+19]. In this case, the generation of the synthetic MVs
is based on the variable itself. The recommendations suggest that the lower
values of the variables are deleted. The rate of MVs vary from 10-60% and
these MVs appears in 10-60% of the chosen attributes, as in MAR.

In Fig. 4.6 it can be appreciated that the AVG code shows a competitive per-
formance with GANs for datasets with few examples and MV rates between
20-40%. The AVG code presents an overall better performance for the rest of
the datasets, standing out among those datasets with more examples.

4.5 Discussion

In this work, a new alternative was proposed to impute MVs based on the
integration of a MI in the latent spaces of an AE and the AVG code’s computa-
tion. The AVG code combined the information from complex representations
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Fig. 4.5: Comparison of the imputation methods in missing at random, varying the
missing value rate.

of data in latent spaces. The comparative results can be separated into two
groups based on the dimension of the datasets. The first collection groups
are the breast cancer, diabetes, and liver datasets, and the other three are
grouped because they contain many more examples than the first group.
Table. 4.2 shows the gain in RMSE the AVG code has over its competitors in
all the performed experiments. This gain is computed based on the relation
between the RMSE of the competitors and the AVG code, e.g. for GANs,

GGAN = RMSEGAN
RMSEAV G

. (4.3)
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Fig. 4.6: Comparison of the imputation methods in missing not at random, varying
the missing value rate.

For the experiment with MCAR values, the AVG code has an outstanding
performance compared to its competitors. For the first collection of datasets,
the AVG code offered a better reconstructive capacity in 97% of the evalu-
ated cases. Compared with MIDA, the reconstructive error of the proposed
method had a gain in 1.17± 0.07. Compared to GAN, the AVG code had an
improvement of 1.12± 0.09. For the second group of datasets, the AVG code
outperformed in all the evaluated cases compared with its competitors. With
MIDA, the gain in RMSE was 1.04 ± 0.03. For GAN, the proposed method
outperforms in 1.45± 0.40 in RMSE.
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Tab. 4.2: Reconstructive gain using AVG codes compared to MIDA and GANs.

MV rate Cancer Diabetes Liver Spam Letter AKI
GAN MIDA GAN MIDA GAN MIDA GAN MIDA GAN MIDA GAN MIDA

MNAR 0.1 0.99 1.11 1.20 1.19 1.13 1.19 1.08 1.06 1.16 1.09 1.21 1.04
0.2 1.02 1.12 1.20 1.19 1.11 1.28 1.09 1.05 1.20 1.08 1.29 1.03
0.3 1.02 1.11 1.28 1.26 1.11 1.23 1.17 1.04 1.43 1.07 1.29 1.02
0.4 1.02 1.09 1.23 1.21 1.09 1.25 1.42 1.03 1.84 1.06 1.46 1.02
0.5 1.04 1.05 1.23 1.20 1.05 1.22 1.38 1.02 2.28 1.05 1.53 1.01
0.6 1.03 1.02 1.21 1.18 1.01 1.18 1.08 1.00 2.44 1.04 1.79 1.01

MAR 0.1 0.65 0.90 0.53 1.46 0.39 1.01 0.99 1.00 1.34 1.13 1.05 1.01
0.2 0.90 0.98 1.50 1.60 1.35 1.13 1.81 1.00 1.03 1.12 1.15 1.01
0.3 0.99 0.97 1.14 1.04 1.04 1.27 1.62 0.99 1.56 1.07 1.11 1.01
0.4 1.18 0.94 1.15 1.15 1.28 1.28 2.16 0.99 2.77 1.03 1.27 1.15
0.5 1.30 0.95 1.23 1.22 1.33 1.34 1.03 0.98 2.68 1.02 1.34 1.02
0.6 1.26 0.92 1.30 1.26 1.46 1.47 1.20 0.97 2.66 1.01 1.35 1.01

MNAR 0.1 0.84 1.12 0.79 1.70 1.00 2.62 1.90 0.97 0.70 0.91 0.89 1.33
0.2 1.17 1.34 0.78 2.46 0.95 2.03 2.43 1.05 0.98 1.21 1.12 1.33
0.3 1.58 1.44 0.84 2.28 1.14 2.21 1.50 0.92 1.49 1.21 1.21 1.22
0.4 1.58 1.51 0.95 2.32 0.91 2.27 2.28 0.90 1.66 1.16 1.23 1.08
0.5 1.79 1.50 1.30 2.24 0.79 1.67 2.40 1.00 1.30 1.01 1.01 1.15
0.6 1.72 1.48 1.31 2.22 0.79 1.96 2.97 1.00 1.49 1.06 1.02 1,02

For the experiments with MAR values, for both groups of datasets, the pro-
posed method outperformed in 69% and 81% of the experiments, respectively.
The gain in reconstruction concerning GAN was 1.27± 0.13, while for MIDA,
it was 1.27± 0.18. The proposed method is sensitive to low MVs ratios with
datasets with few examples. This concern may be due to an under-fitting
issue in the training of the AEs in both MIDA and AVG code. In the second
group of datasets, the AVG code outperformed GAN 1.60±0.61 and 1.27±0.13
compared to MIDA. Although GAN presents better reconstruction when there
are few MVs (10%) for datasets with few examples, the AVG code has a better
reconstruction error when increasing the MV rate. For the second group of
datasets and at most MV rates, the AVG code is robust enough to improve
the performance of MIDA and, in a few cases, have similar performance.

In the last experiment, it was appreciated that the AVG code had similar
behavior to MAR. In this case, the proposed method outperforms 72% and
81% of the experiments for the first and second groups of datasets, respec-
tively. With this type of MVs, in the first group of datasets, it was possible to
improve the reconstructive capacity with a gain of 1.45± 0.28 and 1.91± 0.44
for GAN and MIDA, respectively. The second group of datasets showed an
improvement of 1.67± 0.60 and 1.13± 0.12 for GAN and MIDA, respectively.
This MV mechanism showed to be more suitable for GANs than MIDA and
competitive with the proposed method for the first group of datasets. For the
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second one, the AVG code outperformed for most of the cases, being more
representative for Spam and AKI.

4.6 Conclusions

In this work, the capacity to reconstruct missing information based on the
computation of the AVG code from an AE was presented. The imputation
capacity of a novel mechanism was evaluated that integrated a MI paradigm
into the latent representation of information extracted by deep ANNs. The
AVG code has a sufficiently robust imputation capacity to replace MVs to
different MV rates and under several MV patterns, such as MCAR, MAR
and MNAR. The AVG code demonstrated to maintain a low reconstruction
error with different percentages of MVs. The variation used in the proposed
approach, based on the training of an AE and the integration of MI in the
latent space, revealed that the AVG code is adequate for high ratios of
missing values, and the rest of the scenarios, its performance is not far from
the best solutions. In conclusion, the work presented in this chapter is a
solution with low algorithmic complexity that provides considerable benefits
when reconstructing missing information. Finally, the integration of classical
mechanisms such as MI to the latent spaces of a DL-based solution adds
performance and robustness benefits compared to other literature methods
based on deep learning.
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Improving Mortality
Predictive Models for
Patients in ESRD: A
Transfer Learning
Approach

5

This chapter addresses the challenge of TL between healthcare entities to support
learning tasks in those with low data volumes. Thus, two TL mechanisms are
proposed in this chapter. They are based on sample and feature space augmen-
tation. We start this chapter by introducing the topic of TL in medicine. Then
we provide a background in the TL field, and finally, we present the proposed
framework. The proposed framework is evaluated in predicting mortality in
patients in ESRD, transferring information related to the mortality of patients
with acute kidney injury from the massive database MIMIC-III. The proposed
approach is compared with other TL mechanisms, showing an improvement of 6-
11% in previous mortality predictive models. The integration of TL approaches
into learning tasks in pathologies with data volume issues could encourage
data-based medicine in a clinical setting.

The main contributions of this chapter are as follows:

• Explore the benefits of using a DL approach to TL in the clinical setting.

• Improve predictive models of mortality in ESRD patients by incorporat-
ing knowledge from a more extensive data set.

• Tackle the class imbalance issue through a solution based on TL.
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• Propose a novel approach that uses the similarity of latent representa-
tions as a TL mechanism for feature augmentation.

5.1 Introduction

In the era of Big Data, DL is becoming a fundamental piece in the paradigm
shift from evidence-based medicine to data-based medicine [Chi+18]. The
increased availability of information, storage and processing capacity, and
DL’s capability to exploit complex relationships has allowed DL to significantly
impact medical applications supported by Big Data [Pic+21]. Although
the adoption of technologies that enable the collection of high volume of
data in a clinical setting is growing, most medical centers do not have the
infrastructure or the volume of patients to benefit from the learning capacity
of DL [Yu+19]. Thus, integrating information from multiple health centers
could significantly improve learning tasks in pathologies usually supported
by a small volume of data. Implementing strategies for transferring data
among domains could trigger DL solutions in a clinical setting and bring us
closer to adopting data-based analysis for supporting clinical decisions.

The process of adapting and transferring knowledge among domains is known
as TL [PY10]. The interest in TL in the medical field is increasing. In EHR,
such as clinical images and biosignals, DL integration in a TL environment is
proving to be an option that provides remarkable benefits [Lop+21; Lv+21;
Cho+21; Shi+21]. Due to the capacity to exploit complex relationships
that data may have and the data structures in such applications, e.g., spatial
dependencies or time series, specialized ANN are commonly used. In such
applications, the common TL approach pre-trains an ANN with data from
one domain. Then the learned parameters are extracted for later use in
applications in other domains [Maq+19; Byr+20; Mar+10]. However,
this kind of approach is not suitable for data that contains heterogeneous
structures because the procedure mentioned above constrains the input to
be similar across domains. That is the case for applications that use other
types of EHRs, like those that collect medical measurements of patients in
a tabular way. Although there are solutions that incorporate such data into
TL approaches [Des+17; EVM20], they use statistical analysis that does not

76 Chapter 5 Improving Mortality Predictive Models for Patients in ESRD:
A Transfer Learning Approach



exploit complex relationships that the data may have. Thus, alternatives that
include DL in TL solutions in pathologies with the type mentioned above
data are still an open issue.

Transferring knowledge from high volume data sources to small datasets
would allow DL to enhance learning tasks and be used to address class
imbalance issues. This effect occurs because of the sudden changes in the
patient’s health condition. The volume of information generated for such
events is smaller than the one associated with the rest of the follow-up.
This effect commonly occurs in pathology prediction [Mac+19], rare event
detection [Mac+18] or mortality prediction [Hai+17]. In Chapter 3, it
was addressed the mortality prediction for patients in ESRD, however data
imbalance was evidenced in the data due to minority of samples for the
follow-up belong to the class deceased. There was a data imbalance in the
range of 76-94%. Those issues cause low generalization of the learning
models on the imbalanced samples, resulting in models whose performance
is not acceptable for incorporation into clinical practice.

This chapter present a TL framework that uses information from a massive
data source for supporting tasks in pathologies with a small data volume.
The framework consists of two TL mechanisms used for sample and feature
space augmentation in a target domain. AE are used to link both domains as
a knowledge extraction mechanism. From AEs, codes are used as information
bridges. For the sample increasing mechanism, they are used to create a
feature mapping matrix used to transfer samples for a source domain to the
target one. For the feature space augmentation, the TL mechanism is based
on the computation of the average of the most similar codes of the target
with the ones generated in the source domain. This TL framework is used to
improve mortality prediction models in patients in ESRD. Volume and data
imbalance issues are tackled with information extracted from patients with
AKI from the massive database MIMIC-III. According to our knowledge, this
is the first solution that integrates ANNs into a TL framework for solving
learning tasks for kidney diseases.
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5.2 Materials and methods

This section contains the necessary components to support the proposed
TL framework. Classic AEs are the backbone of the knowledge extraction
in the proposed framework. Moreover, two extensions of AEs widely used
in the TL field are also addressed because they are used for performance
comparison with the proposed method. Then, a method that has inspired
part of the proposed framework is briefly explained. Finally, the problem that
the methods can address is formally defined. Next, the necessary components
to address the proposed TL framework are described.

5.2.1 Autoencoders

Thanks to the capabilities of an AE, it is possible to replicate the input at the
output of the ANN and to obtain the latent spaces as described in Chapter 2.
Thus, the encoder acts as a mapping function fθ that transforms the input
x into codes h. Then codes are mapped back to reconstruction using the
decoder function gθ′ . Figure. 5.1 shows a recall of a simple AE, a deep one
and their components.

AE

h

x'x

!f !g '

Deep AE

h = f (x) = s( Wx + b)!
x' = g  (x) = s( W'h + b')!'

!g
(1)

!g  
(2)

f (1)

!1 1 2
' '

h

x x'

f (2)

!2

Fig. 5.1: Structure of single and multi layer AE.

Other alternatives that have shown outstanding performance using AEs in a
TL environment are based on the application of stacked denoising AEs (SDA)
[Vin+10] and its extension marginalized SDA (mSDA) [Che+12]. For the
SDA, denoising AEs (DA) are trained. This type of AEs minimize the error
between the input and a corrupted version, hence its name. To create the
stack of DA, n DAs are trained. The first DA is trained with the corrupted
version of the input, the second DA takes as input the code of the previous
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DA, and so on, as is shown in the left side of Fig. 5.2. The training of each
level follows the same process as a normal AE. At the end of the n trainings,
the respective codes are used to create the final stacking that is shown in the
right side of Fig. 5.2.

SDA

h2

!f !g '

̃h1 h1'
(2) (2)

h3

!f !g '
̃h2 h2'
(3) (3)

h1= s(W1)

mSDA

h2= s(W2)

h3= s(W3)

x'x
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̃h1 h1'
W2

̃h2 h2'
W3

̃

h1

x'x

!f !g '

̃

h1 h2
h3

x x'

Final architecture
Level 1

Level 2

Level 3

Fig. 5.2: SDA, mSDA and how their latent representations are used to create the
final stacked.

On the other hand, the term marginalized in mSDA refers to the addition of
noise to the inputs xi in the iterations of the training process, e.g., different
examples may be corrupted in every iteration. Thus, taking this into account,
the cost function is transformed to

L = 1
NM

M∑
j=1

N∑
i=1

∥∥∥xi − x′i,j
∥∥∥2
, (5.1)

where x′i,j represents the jth corrupted version of xi.

Then, with X = [x1, . . . ,xn] ∈ Rdxn, its m-times repeated versions X =
[X, . . . ,X] and its corrupted version X̃, Eq. 5.1 is reduced as

L = tr
[(

X−WX̃
)> (

X−WX̃
)]
, (5.2)

and its minimization solution can be expressed as,

W = PQ−1 with Q = X̃X̃
>

and P = XX̃. (5.3)
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With a large m, i.e., m → ∞, the bias estimation is reduced but the com-
putational cost increases. To mitigate this issue, mSDA includes corruption
probability p to a vector probability q = [1− p, . . . 1− p, 1] ∈ Rd+1. qi rep-
resents the probability of a feature i surviving the corruption. Thus the
expectation for Eq. 5.3 can be computed and W can be expressed as fol-
lows,

W = E [P]E [Q]−1 with E [P]i,j = Si,jqj, S = XX> and, (5.4)

E [Q]i,j =

Si,jqjqj ifi 6= j

Si,jqi otherwise.
(5.5)

With W, nonlinear function s is applied, then nonlinear features can be
extracted as h = s (Wx). Such nonlinear functions may include tangent
hyperbolic (tanh), sigmoid or Rectified Linear Unit (ReLU).

5.2.2 Hybrid heterogeneous transfer learning

The so-called Hybrid Heterogeneous Transfer Learning (HHTL) proposed
in [ZPT19] is a TL framework for transferring knowledge between two
heterogeneous domains using mSDAs. HHTL solves a learning task related
to labelling samples from one domain using information from the other
one. The target domain is defined as DT = {(xTi

,yTi
)}n2
i=1 and the source

domain as DS = {xSi
}n1
i=1, where xSi

∈ RdSx1 and xTi
∈ RdT x1 are the data

and yTi labels; n1 and n2 the total of samples and dS and dT their features.
The information to be transferred is the hidden representations extracted
from mSDAs for each domain. mSDAs are trained in both domains with
k (k = 1, . . . , K) hidden layers as is illustrated in Fig. 5.3. Then, latent
representations HS,1, . . . ,HS,k and HT,1, . . . ,HT,k are extracted and then
related through mapping matrices, Gk, as is shown in Fig. 5.3. These
matrices acts as TL bridges for the hidden representations in both domains.
To find each Gk, they minimize the objective,

min
Gk

‖HS,k −GkHT,k‖2 + λ ‖Gk‖2 . (5.6)
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Once Gk is computed, new samples X∗S along with its hidden represen-
tations H∗S,k can be transferred to DT , i.e., H∗S→T,k = GkH∗S,k. S → T

refers to the transfer from DS to DT . Then, to solve the learning task,
they create a new feature space with the hidden representations of DT ,
i.e., ZT =

[
H>T,1 . . .H>T,k

]>
. Then, a classifier {(ZT ,yT )} is trained. With

the latent transferred representations, a similar feature space ZS→T =[(
H∗S→T,1

)>
. . .
(
H∗S→T,k

)>]>
is created. Finally, with the trained classifier

they predict over ZS→T the labels for DS samples.

Part of the sample augmentation for the proposed approach is based on the
computation of Gk, with the difference that we only use it to relate the codes
of the AEs and not the rest of the latent representations of each hidden layer.
Hence we compute a single G.

Source Target

XS = HS,1 

HS,2

HS,k

HT,1 = XT

HT,2

HT,k

G1

G2

Gk

Fig. 5.3: HHTL for transferring hidden representations, H, between source and
target domain. H are extracted from trained mSDAs.

5.2.3 Problem definition

Given a set of labelled data from the source and target domains, DS =
{(xSi

,ySi)}
n1
i=1 and DT = {(xTi

,yTi)}
n2
i=1, respectively, where xSi

∈ RdSx1 and
xTi
∈ RdT x1 are the data and ySi and yTi their labels; n1 and n2 the total of

samples and dS and dT their features. The aim of TL in this chapter is to
improve the learning task in DT with information from DS. The transfer
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of knowledge is carried out by managing codes of trained AEs from both
domains in two manners. The first on follow the next steps:

• Transfer samples from one domain to another through the computation
of a feature mapping matrix G, as in HHTL.

• Maps codes from one domain to the other one using G.

• Transfer a sample x∗S to DT through Gh∗S, where h∗S is the code of x∗S.

The second mechanism attempts to increase the feature space of DT with
the average of the most similar codes, computed by a similarity metric, the
euclidean distance between the codes, that compare each code from DT with
the entire set of codes from DS. The increase in samples and features may
reinforce the learning task in DT . Fig. 5.4 shows a scheme of the mechanisms
that are used to enhance the learning task in DT .

5.3 Proposed method

The proposed approach is motivated by the availability of massive sources
of medical data and the potential benefits of integrating them to encourage
the adoption of data-based medicine. This integration makes it possible
to exploit the learning capacity that DL has on massive data. Thus, two
TL mechanisms are proposed to enhance the performance in learning tasks
in a clinical environment. Specifically, the predictive capacity of mortality
predictors for patients in ESRD will be evaluated using a TL framework. It
is proposed to apply TL approaches to increase both samples and feature
space in DT using information from DS. As mentioned previously, such
mechanisms may tackle class imbalance issues to improve the predictive
capacity of the previous mortality models in ESRD.

In the proposed framework, both domains contain labeled samples. AEs are
used to extract data representation into their codes for sample and feature
space augmentation. Thus, the framework relies on two main components:
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Fig. 5.4: Scheme of proposed method for transfer of samples between domains and
feature space augmentation to support learning tasks in the target domain.
HHTLM refers to the modified version of Hybrid Heterogeneous Transfer
Learning and TLVA to transfer learning based on average codes.

• Sample augmentation using a mapping matrix G, encoder and decoder
functions in both domains to transfer and reconstruct codes from DS

in DT .

• Feature space augmentation based on the computation of the average
of the most similar codes.
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5.3.1 Sample augmentation-TLCO

For augmenting samples in DT , a three-stage TL mechanism is used. Initially,
from both domains, AEs are trained, and the codes are extracted to compute
a mapping matrix G, as in HHTL. It is worth mentioning that, unlike HHTL,
in our approach, we reinforce knowledge transfer by considering the recon-
struction of the codes of one domain using the decoders of the other domain.
We refer to this method as TL by codes or TLCO. In a second stage, G is
used to transfer codes from DS. Thus, H∗S, produced by data X∗S in DS are
first transferred to DT . Then, the decoder function in DT reconstructs the
transferred codes in such a domain. The parameters of the decoder function
of trained AEs in each domain allow the reconstruction of their codes. The
decoders in the opposite domains and the mapping matrix between the codes
can be used as a reinforcement mechanism for cross-domain knowledge
transfer. Once the samples are reconstructed, they are used to increase DT .
This last step allows for tackling the class-imbalance issue. Fig. 5.5 illustrates
how this TL mechanism is carried out using datasets from kidney diseases. It
is also provided the detailed steps of the proposed method in Algorithm 2.
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Fig. 5.5: Scheme of proposed method for transfer of samples between domains and
the support of a learning task in the target domain using TLCO.

5.3.2 Feature space augmentation-TLAV

For feature space augmentation, the TL mechanism is based on the computa-
tion of averaging the most similar codes from DS to codes in DT . We refer

84 Chapter 5 Improving Mortality Predictive Models for Patients in ESRD:
A Transfer Learning Approach



Algorithm 2 Increasing samples using TLCO
Input: Data from both domains, λ = 0.001: DS = {(xSi

, ySi
)}n1
i=1, DT =

{(xTi
, yTi

)}n2
i=1

3 Train AEs with XS and XT . Extract encoder (e) and decoder (d) functions
from both domains, and the latent representations-codes Z: ZS = eS (XS),

X′S = dS (ZS)
ZT = eT (XT ), X′T = dT (ZT );

4 Learn heterogeneous feature mapping G:

min
G
‖ZS −GZT‖2 + λ ‖G‖2;

5 Augment samples in DT with samples from DS:

X∗S→T = G>X∗S
X∗T = [XT X∗S→T ] ,y∗T = [yT yS]

Note: S → T refers to the transfer from DS to DT .

6 Train a classifier f with {(X∗T ,y∗T )}

Output: Classifier f

as average code or AV Gcodes. They increase features for every sample in DT .
We refer to this approach as TL by AV Gcodes or TLAV. As the information that
best represents the data after AEs’ training is encapsulated in their codes, this
approach uses the AV Gcodes as extra features that may enhance the predictive
capacity of learning models.

The proposed method is summarized into three stages (see Fig. 5.6). Initially,
AEs are trained in both domains, and their codes are compared. For TLAV, it
is hypothesized that similar codes represent similar information even from
different domains. Thus, every code from DT is compared with all the codes
from DS. The Euclidean distance is computed as a similarity metric for the
comparison (see Eq. 5.7). Then, the most similar codes are filtered based
on a similarity threshold, ε, that indicates the percentage of the most similar
codes. Based on ε, sets of n3 (as in Fig. 5.6) codes from DS are extracted for
each code in DT . Then, in the second stage, the codes’ sets are summarized
in their average to find a more robust representation. Finally, the AV Gcodes

are merged, then concatenated to the samples in DT and finally, such new
feature space is used to perform the learning task in DT .
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d (hS,hT) =
√√√√ n∑
i=1

(hSi − hT i)2. (5.7)
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Fig. 5.6: Scheme of proposed method for transferring AV Gcodes from DS to DT

using TLAV.

5.4 Experimental setup

In this section, all the necessary components and the evaluation of the
proposed TL framework in predictive mortality models for patients in ESRD
are presented. Initially we describe the datasets where the TL mechanisms
are evaluated. Then, in order to compare the benefits of the proposed
framework, a modified version of HHTL is used as competitor for sample
augmentation and feature space augmentation. At the end of the section, the
experiments performed and their respective evaluations are presented.

5.4.1 Datasets

For this work, they are used two datasets related to kidney disease. The
learning tasks in both datasets is related to mortality prediction, one for the
follow-up of patients in ESRD and the another one for patients with AKI in
ICU. The objective is to improve mortality predictive models for patients in
ESRD with data from patients with AKI. Next, they are described in detail.
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ESRD: Information for DT is part of a previous study for predicting mortal-
ity in ESRD patients [Mac+20]. These data were taken from the Informa-
tion System of the Parc Tauli University Hospital, from the Haemodialysis
(HD) Unit at the Nephrology Department from 2007 to 2018. Data transfer
passed through the ethics committee (Code 2018/508) and subsequently
anonymised following the usual protocol. In such study, information from the
follow-up of 261 patients in ESRD from the beginning of the haemodialysis
treatment until the deceased event, were collected. The feature space include
a mixture of categorical and continuous measurements from laboratory test,
diagnoses and variables measured during the haemodialysis sessions. In total,
there are 53 features. During their follow-up, such patients have generated
8229 samples. Four datasets were generated based on the date of death of
the patients, hence the mortality models have labels associated to 1, 2, 3 and
6 months before the death event.

AKI: The dataset for DS has been extracted from MIMIC-III database
[Joh+16b]. Such massive database contains information from more than
40000 patients in ICU. From MIMIC-III, patients with AKI were filtered based
on the kidney disease improving global outcomes (KDIGO) clinical practice
guideline [Ink+14]. Information from 4152 patients with 31 features were
extracted. The total of samples in such cohort contains more than 125000
samples. Their follow-up includes demographics, diagnoses, laboratory tests,
physiological measurements during the ICU stay and the in-hospital mortality
label.

5.4.2 Experimental results

In evaluating the predictive capacity of the TL mechanisms in the mortality
models for patients in ESRD, several experiments are defined based on the
way of transferring knowledge. As AEs are the backbone of the proposed
TL framework, we initially compared the performance of a deep AE with an
mSDA applying TLCO and TLVA. Then, we compare the methods with HHTL.
HHTL is modified in this work for sample and feature space augmentation.
Next, the setup mSDA and HHTL is listed:
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• Deep AE vs. mSDA: we designed a baseline to choose which type of AE
better suits the data. We train deep AEs with two hidden layers for the
encoder and decoder functions. Then a two-level mSDA is trained. The
codes are extracted from the deep AE to perform TLCO and TLAV. For
mSDA, the hidden representations from the second level are extracted
as codes, and TLCO and TLAV are applied to them.

• HHTL: HHTL has been widely compared with other approaches in
the TL literature, showing a better performance than its competitors
[ZPT19]. The modified versions of HHTL, for sample and feature space
augmentation are based on the management of the hidden represen-
tations for the levels of the trained mSDAs. As stated in 5.2.2, such
hidden representations are extracted from hidden layers to create new
feature spaces,

ZT =
[
H>T,1 . . .H>T,K

]>
, and ZS→T =

[(
H∗S→T,1

)>
. . .
(
H∗S→T,k

)>]>
,

(5.8)
then sample augmentation is carried out adding samples from AKI to
ESRD in their respective new feature space, i.e., Zsamples = [ZT ; ZS→T ].
As HHTL is a method to transfer samples, for feature space augmen-
tation, as in the proposed approach, we use averages of most similar
hidden representations from ZS→T to augment ZT , i.e., Zfeatures =
[ZT AVGZS→T

].

The performance of the experiments is evaluated on the learning task in ESRD.
The AUROC is used as a metric to find the best models in the experiments.
Recalling that AUROC relates the sensitivity and specificity of a classifier. Its
values lie between 0 and 1, with 1 being the perfect classifier and 0.5 as
a random one. The baseline performance and classifiers used in this work
are based on long short-term memory ANNs, used in Chapter 3 for every
short term mortality horizons. All the reported experiments used 5-folds for
cross-validation. Two sets of experiments have been defined to determine
the performance of the proposed methods.
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TLCO-Sample augmentation

In ESRD data, the class imbalance varies according to the mortality horizon.
Information on how the sample labels are computed can be found in the
previous study [Mac+20]. Table. 5.1 shows the class imbalance caused by
each mortality horizon. To implement TLCO, initially, AEs with two hidden
layers are trained for both datasets. Then, their codes are extracted. The
hyperbolic tangent (Tanh) activation function is used for the hidden layers
and the Sigmoid for the output layer in AKI. For the ESRD dataset, rectified
linear unit (ReLU) activation function for hidden layers and Sigmoid at the
output layer were used. Dropout of 0.1 and batch normalization were applied
in the hidden layers of the AEs to avoid overfitting. Once the AEs are trained,
the mapping matrix G is generated using codes from both domains. Then,
the codes from AKI are transferred to the latent space of the ESRD domain
using G. Finally, transformation is reconstructed using the decoding function
of the trained AE in ESRD. For mSDA, a Tanh was used as a non-linear
function to compute the codes. Next, three experiments are listed to find the
best performance for the mortality predictors.

Tab. 5.1: Imbalance of samples for the prediction of mortality in patients in ESRD.
Class 0 and Class 1 refer to samples in alive and deceased classes, re-
spectively.

Mortality Class 0 Class 1 Imbalance (%)
1 7734 495 93.6
2 7488 741 90.1
3 7251 978 86.5
6 6632 1597 75.9

• Code dimension: the dimensions of codes in both domains are evalu-
ated to find a high-level representation of the data that allows us to
transfer valuable information. Thus, the combination of dimensions
that presents the best overall performance for the prediction task is
empirically found. In Fig. 5.7 (a), it is denoted the dimension of the
codes for the deep AE in AKI and ESRD as S ∗, and T ∗, where ∗ refers
to the dimensions of the code, e.g., S 30 T 40 refers to the combina-
tion of having trained AEs with codes of dimension 30 and 40 for AKI
and ESRD, respectively. It is also shown the performance of mSDA.
Moreover, it should be noted that in mSDA, the dimension of the codes
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has the same input data dimension, which is why only one predictor is
observed for mSDA in the figure. Also, it can be appreciated that most
of the combinations present a higher performance than the baseline
one. Although mSDA outperforms better than most predictors, the deep
AE with 30 and 80 codes in AKI and ESRD offers a better predictive
capacity than mSDA.

• Sample augmentation in ESRD: this experiment evaluates how the
increase of samples in the training set affects the predictive models
of mortality in ESRD. For this experiment, three possible scenarios
were defined. Initially, the data imbalance in ESRD is intentionally
increased. Thus, only Class 0 in AKI samples are transferred to the
ESRD training set. This transfer is carried out to evaluate whether
an adverse effect is linked to the increase in data imbalance. In the
second scenario, the training set samples are increased, but only those
that belong to AKI Class 1 are transferred. In this case, the aim is to
balance the imbalanced class. Finally, in a third scenario, both classes
are transferred from AKI to ESRD. Therefore, we evaluate both the
effect of the increase in samples and the reduction of data imbalance
in the predictive models. Table. 5.2 shows how the data imbalance
varies for each scenario. In Fig. 5.7 (b), it can be appreciated that
increasing samples in the training set of the ESRD data does not imply,
in most of the scenarios, a deterioration in the predictive models. On
the other hand, when the number of samples increases, the learning
models present a better predictive capacity considering the imbalance
ratio.

• Comparing with HHTL: to evaluate the performance of HHTL, the num-
ber of transferred samples was adjusted following the third scenario
in the previous experiment. Thus, in Fig. 5.7 (c) it can be appreciated
that although HHTL for upsampling or HHTL4S improves the base
predictive models, it has a lower performance than that found by deep
AE.
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(a) (b)

(c)
Fig. 5.7: Comparison results transferring samples from AKI to ESRD using TLCO. (a)

shows the performance of mSDA and TLCO modifying dimension of codes
in source (S) and target (T) domains. (b) shows three possible scenarios
to tackle data imbalance in ESRD. (c) compare proposed solution with
HHTL.

Tab. 5.2: Imbalance in ESRD generated by increasing training samples in ESRD
from AKI. Scenario 1, 2 and 3 refer to the transfer of samples from the
Class 0, 1 and combining both classes, respectively.

2*Mortality Generated data imbalance (%)
Scenario 1 Scenario 2 Scenario 3

1 95.2 73.4 80.0
2 92.6 69.2 77.1
3 90.1 74.9 74.2
6 82.7 52.3 65.7
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TLAV-Feature space augmentation

In the performance evaluation of TLAV, the same hyperparameters for train-
ing AEs as in TLCO are used for TLAV and its competitors. With TLAV, the
augmented feature space is based on the computation of AV Gcodes. As a
recall, such AV Gcodes are computed based on the comparison of each code in
ESRD with all the codes in AKI. Each comparison generates a set of codes
that are filtered by a similarity threshold (ε) and summarized into AV Gcodes.
Parametric analysis and comparison with mSDA configuration and HHTL for
feature augmentation (HHTL4F) are carried out. Thus, three experiments
were carried out to find the best models to enhance the learning task in ESRD.
They are explained below.

• Code dimension: the first parameter that controls the behavior of TLAV
is the dimension of the codes (dim h). This parameter reflects the
ability of AEs to represent information in latent spaces under the TL
methodology of TLAV. In this experiment, ε is set to 0.4. Fig. 5.8(a)
shows scenarios where the input information is compressed or dispersed
according to the value of dim h. It can be appreciated that bottleneck
type deep AEs offer better overall performance than sparse type deep
AEs. The best solution is the one with dim h = 10.

• Tuning similarity threshold (ε): with Euclidean distances from ESRD
and AKI codes, a proportion of these codes is chosen using ε. ε controls
the amount of more similar AKI codes used to compute the average
one. Once every set of codes from AKI are extracted, their AV Gcodes

are computed and used to increase the feature space for each ESRD
sample. Table. 5.3 shows the performance of the predictive models
varying ε. It can be appreciated that increasing the number of codes for
the computation of their average reflects a slight improvement in the
predictive models. However, from an ε of 0.3 or 0.4, more codes do not
imply a considerable increase in the predictive models. Compared with
its competitors, TLAV based on deep AEs presents a better performance
when more codes are included for the average computation. Using the
three methods, taking 40% of the most similar AKI codes for each ESRD
code presents the most balanced performance for mortality prediction.
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Tab. 5.3: Comparison results applying TLAV with mSDA and HHTL4F using
AV Gcodes concept and varying similarity threshold ε. In bold the best
predictive models for each mortality horizon.

Mortality
ε TL method 1 2 3 6

mSDA 0.857 0.839 0.816 0.761
0.01 HHTL4F 0.878 0.824 0.820 0.757

TLAV 0.887 0.849 0.816 0.758
mSDA 0.856 0.840 0.809 0.761

0.1 HHTL4F 0.879 0.831 0.818 0.759
TLAV 0.891 0.854 0.816 0.763
mSDA 0.859 0.834 0.811 0.760

0.2 HHTL4F 0.891 0.834 0.819 0.758
TLAV 0.901 0.857 0.820 0.761
mSDA 0.863 0.841 0.820 0.760

0.3 HHTL4F 0.895 0.837 0.822 0.758
TLAV 0.906 0.860 0.823 0.765
mSDA 0.877 0.842 0.819 0.758

0.4 HHTL4F 0.894 0.835 0.821 0.760
TLAV 0.909 0.862 0.823 0.763
mSDA 0.875 0.842 0.818 0.759

0.5 HHTL4F 0.891 0.836 0.819 0.759
TLAV 0.904 0.861 0.821 0.765

TLAV with deep AEs is the best option to increase the feature space in
ESRD.

TLAV-HHTLM

In the last experiment, TLAV is combined with TLCO. Such combination
is performed in a cascade way. The parameters that control TLCO and
TLVA are found in previous experiments. Thus, in the first stage, the ESRD
feature space increases using TLAV. Then, TLCO is applied to this new
version of ESRD to increase the number of samples. Table. 5.4 presents the
performance of the combination, compared to the literature methods and
the best predictors by TLAV and TLCO separately. It can be seen that the
combination of the two proposed methods has a considerable influence on
the performance of the predictive models for short-term mortality.
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Fig. 5.8: Evaluation of TLAV changing the dimension of the codes.

5.5 Discussion

This chapter has explored a novel TL alternative based on sample and feature
space augmentation based on TLCO and TLVA. Information was transferred
from a massive data source and improved predictive mortality models in
ESRD patients. The transferred information was extracted in the codes of
both domains. It was shown that transferring knowledge from another data
source directly improves the learning models using codes from AEs. The
conducted experiments have shown that deep AEs extract better complex
relationships for the available domains than mSDAs.

For the experiments related sample augmentation, it was found that TLCO
provided an improvement, from 2-5% in AUROC, when both classes are
transferred from AKI. It was evidenced that increasing just the imbalance in
most models does not deteriorate the predictions’ performance. Reducing
data imbalance provides a considerable improvement for the learning models,

Tab. 5.4: Final comparison of the proposed TL framework. TLAV-TLCO is the
cascade version of the TL proposed methods.

Mortality Baseline TLCO TLAV TLAV-HHTLM
1 0.873 0.891 0.909 0.939
2 0.813 0.845 0.862 0.909
3 0.798 0.838 0.823 0.853
6 0.752 0.778 0.765 0.764
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although the predictive ability in the data increases considerably when both
classes are included in the upsampling.

For the case of feature space augmentation, it was evidenced that increasing
the information in ESRD with the AV Gcodes improves the performance of
the learning models even when other alternatives such as mSDA or HHTL
are used. Moreover, TLAV was shown to generalize better than TLCO in
predictive models for a 2-month mortality horizon. It was evidenced that
the dominant parameter that controlled the performance of the learning
models was the dimension of the codes. In the case of threshold ε, from the
inclusion of 40% of the codes from AKI, it is enough to guarantee an increase
in performance among 2-6% compared to the baseline models.

Finally, the results obtained showed that the proposed framework can im-
prove the predictive capacity of mortality models in ESRD and that they can
be complementary to each other. If these two are combined, the performance
of these models increases considerably (6-11%). Such improvements in the
performance of the mortality predictors could imply incorporating this type
of solution into clinical setting brings us closer to incorporating data-driven
solutions to support medical staff in the early detection of events such as
mortality.

5.6 Conclusions

In this chapter, a TL learning approach for knowledge transfer between het-
erogeneous domains in a clinical setting has been proposed. This Framework
has been designed to improve predictive models of mortality in ESRD patients,
based on knowledge transfer of AKI patients from the massive MIMIC-III
database. The proposed mechanisms were based on the manipulation of AEs
codes. Samples were transferred and the feature space for ESRD data was
increased. Conducted experiments have shown that the proposed framework
performs better than other approaches in the literature. Using deep AEs
codes for knowledge transfer is a considerable improvement in learning
models. The proposed framework was shown to combat data imbalance on
its way to improving predictive models. The combination of upsampling and
feature space was shown to significantly improve the models by applying
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these two solutions individually. The implementation of TL-based solutions
in a clinical setting brings us closer to incorporating data-driven solutions to
support medical staff in the early detection of events such as mortality.
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Conclusions and future
work

6

In this PhD dissertation we have explored and proposed several mechanisms
for extracting knowledge from clinical data based on DL techniques. The
main focus of this dissertation was related to the improvement of learning
models in a known clinical environment, tackling inherent data issues such
as missing information, imbalanced data, and low data volume.

First, we considered the improvement of mortality predictors for ESRD
patients in a nephrology unit from a tertiary hospital. For such cohort of
patients, we were able to improve the mortality prediction and we evaluated
how different groups of variables that influenced the performance of the
learning models. We then focused on addressing two main problems inherent
to a clinical environment. In the first one, we addressed the challenge of MV
imputation using a hybrid MI with a DL approach. As a second challenge, we
focused on a TL environment to transfer knowledge from a level 1 health unit
to the health unit collecting ESRD data and thus tackling various drawbacks in
that cohort. In the following, we address the conclusions of this dissertation
and some open issues to address as future work.

6.1 Conclusions

After motivating this thesis, in Chapter 2 we covered the necessary compo-
nents to address the research objectives of this dissertation.

Chapter 3 was dedicated to mortality models in ESRD patients. This chapter
integrated various data sources and evaluated their impact on learning
models at different mortality windows. In addition, we evaluated several
groups of variables to compare whether the groups chosen by the expert
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staff were adequate for the learning models or whether it was possible to
extract more knowledge through an ML approach such as RFE. As a result,
we found that this approach distinguished the most relevant variables for the
learning models and its performance was close to the model that used the
entire feature space. This could allow expert staff to consider variables that
were not previously taken into account for EBM-based models and open up
new possibilities for risk factors research in this population. For temporal
dependencies, we also found that although the performance of the models
was better than the state-of-the-art, increasing the prediction window made
the imbalance of samples more critical. Thus, the performance of the models
decreased. In conclusion, we found that there is space for improvement
in data-driven learning models, and such enhancements may be the key to
changing the paradigm from EBM to data-based medicine.

Chapter 4 addresses one of the most common challenges in an ML environ-
ment, the lack of registers in data examples. In this chapter, we provided a hy-
brid approach that combined MI with the latent spaces of AEs to impute MVs.
The presented approach showed that this novel integration improved the
reconstruction of missing information at several MV ratios. Reconstruction
using the AVG code was also robust to different MV generation mechanisms,
such as MCARs, MARs and MNARs. In addition, we validated the proposed
method with literature benchmarks. We found that it offers competent per-
formances and is better than those methods with which it was compared in
many scenarios. Regarding CKD, considering that this dataset had many more
samples than the other clinical datasets, the proposed method performed
better than its competitors in 16/17 cases. Thus, we conclude that the AVG
code is a validated alternative that offers a significant reconstruction capacity
to methods in the literature.

Chapter 5 is an extension of the work carried out in Chapter 3. This chapter
addresses the issues encountered in the mortality prediction task for patients
in ESRD. The challenges derived from this application were related to the
volume of information and the imbalance of the classes. TL supported by DL
tackled both challenges. We proposed TLCO for sample augmentation and
TLAV for increasing the feature space in the target domain. We support the
task in such domain with data related to AKI from MIMIC-III. We used the
experience gained in Chapter 3 to define 4-month time windows and LSTM
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parameters that best fit the data. AEs were used as information bridges for
the transfer of knowledge, where the idea of the AVG code was taken up for
TLAV. Both approaches offered gain in mortality prediction that surpassed
the models in Chapter 3. This improvement was optimized once the proposed
mechanisms were cascaded, going from 0.87 to a performance of 0.94 in
AUROC. Finally, the proposals offered in terms of knowledge transfer between
heterogeneous clinical data sources can serve as a basis for supporting clinical
hypotheses based on multiple health entities.

6.2 Future work

The work performed in this Ph.D. dissertation can be extrapolated to patholo-
gies structurally similar to those addressed in Chapter 3 and 4:

The future work of this dissertation can be divided into two components:
experiments that remain to be validated and the long-term future of the
findings of this dissertation. The pending experiments are listed below:

• Validate the predictive models of mortality in a prospective cohort of
patients belonging to the renal unit of the ESRD data;

• Evaluate the incidence of the application of AVG code to the variables
that were excluded, due to the number of VMs, in the study of mortality
in ESRD patients;

• Consolidate and apply a pipeline that contemplates all the mechanisms
offered in this dissertation to improve learning models in ESRD patients.

The long-term future contributions of this dissertation are related to the inte-
gration of the proposed approaches to other pathologies and the large-scale
application of the proposed mechanisms. In particular, we will pursue:

• To use the knowledge generated in the study of kidney-related patholo-
gies on a larger scale of patients, i.e., access regional databases to study
similar pathologies on a larger scale;
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• To integrate LSTM networks in the latent spaces of the AEs in order to
explore temporal relationships in the data and evaluate their effective-
ness in terms of information reconstruction with data with this type of
dependencies, as in the case of mortality in ESRD;

• To incorporate regional data from Catalonia with the dual purpose of
preparing both data to transfer knowledge between different sources
and transfer mechanisms that support clinical hypotheses and propose
generalized learning models supported by massive data sources
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