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estat un regal. L’Ivan va aparèixer ben aviat. Un home encuriosit per la ciència
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primers passos al laboratori. Plegats vam haver de superar moments de dificultat i
conjurar-nos per a seguir lluitant per l’objectiu que el Fèlix ens havia encomanat:
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meus tutors dels treballs del DEA, l’Ignasi Pagonabarraga i l’Eduard Vives. Amb
ells vaig aprendre altres maneres de fer ciència que m’han enriquit cient́ıficament
i personal.

Dins mateix de la facultat, he passat molt bones estones rodejat dels companys
de doctorat: el Javi, el Ramon, el Xavi, la Mireia, el Miquel, la Neus, el Rodrigo,



5
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Més enllà de l’àmbit purament acadèmic, vull agrair el suport que he rebut
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Sant Mart́ı de Maldà, 25 d’octubre de 2010





Contents

I Resum de la tesi en català 13
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0.1 Introducció . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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Òptica . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
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Sumari

La biof́ısica molecular és una disciplina cient́ıfica que estudia les biomolècules.
Aquesta disciplina ha experimentat una revolució gràcies al desenvolupament
de les tècniques de manipulació de molècules individuals. Aquestes tècniques
permeten obtenir nous tipus de mesures que complementen les tècniques tra-
dicionals realitzades en volum (és a dir, amb quantitats de molècules de l’or-
dre del mol). Les pinces òptiques són una tècnica experimental que utilitza
la pressió de radiació de la llum per exercir forces en microesferes dielèctri-
ques. Les biomolècules poden enllaçar-se amb aquestes microesferes per tal
de realitzar experiments d’estirament. Les Minipinces són un instrument de
pinces òptiques amb dos làsers contra-propagants que utilitza la conserva-
ció del moment lineal de la llum per tal de mesurar la força exercida sobre
les microesferes. L’instrument té una gran estabilitat i resolució (0.1 pN en
força i 0.5 nm en distància) en les mesures. Les propietats de l’ADN es po-
den estudiar amb les Minipinces a nivell de molècules individuals. L’ADN
és una biomolècula formada per una doble hèlix que emmagatzema la in-
formació genètica de la cèl·lula. Els experiments de ruptura mecànica de
l’ADN consisteixen a separar les dues cadenes mitjançant l’aplicació de força
als extrems de la molècula. En aquest procés, els parells de bases (pb) són
romputs seqüencialment, mostrant una successió de regions cooperatives de
ruptura (RCR) de diferents grandàries (entre 1–100 pb). En un experiment
de ruptura d’ADN, es mesuren les corbes de força vs. distància (CFD) de la
molècula. Aquestes corbes tenen una forma caracteŕıstica de dent de serra
que depèn de la seqüència de la molècula. La CFD s’analitza d’acord amb
una aproximació bayesiana per tal d’inferir la distribució de grandàries de
les RCRs. La precisió experimental no permet observar RCRs de grandàries
inferiors als 10 pb. A més, la ruptura dels parells de bases d’un en un només
es pot assolir si es disposa d’una trampa òptica amb una rigidesa superior als
0.1 N/m. Aquest valor coincideix amb la rigidesa d’un únic nucleòtid d’ADN
i s’ha dedüıt a partir d’un model de joguina espećıficament introdüıt per tal
d’estudiar les distribucions de grandàries de les CFD. Per altra banda, les
CFD es poden predir teòricament mitjançant el model de primers vëıns (PV)
adaptat als experiments de ruptura. El model de PV descriu la reacció d’hi-
bridació de dues cadenes d’ADN. Ajustant les mesures experimentals de les
CFD al model de PV, es poden obtenir les 10 energies de formació a PV amb
una precisió de 0.1 kcal·mol−1 entre 10 mM–1 M de concentració de cations
monovalents. Els resultats mostren que les CFD de ruptura i les tempera-
tures de desnaturalització d’oligonucleòtids es poden descriure correctament
amb una correcció espećıfica de sal per a cadascuna de les 10 energies de
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formació a PV. Per altra banda, la ruptura d’ADN també es pot realitzar a
força controlada. Aquest tipus d’experiments presenten molta histèresi i són
irreversibles. El paisatge d’energia lliure és una eina que ajuda a entendre
aquest tipus d’experiments a força controlada. Finalment, el treball presen-
tat en aquesta tesi es pot estendre per tal de trobar aplicacions pràctiques a
la ruptura de l’ADN, com ara la seqüenciació de l’ADN per aplicació de força,
i la mesura de les propietats termodinàmiques de les molècules en aquelles
condicions en que els experiments de volum no són factibles.



Resum

0.1 Introducció

La ciència no és un catàleg de fenòmens, sinó un marc conceptual per com-
prendre la natura. El grans cient́ıfics són capaços d’unificar les explicacions
dels fenòmens, tal i com Newton va fer en el seu llibre Principia, en què va
unificar la mecànica terrestre i la celeste. El 1928 el qúımic alemany Friede-
rich Wöhler va unificar accidentalment la qúımica i la biologia, en descobrir
que es podia sintetitzar matèria orgànica (urea) a partir de matèria inorgà-
nica. Es varen tardar uns quants anys més a unificar la f́ısica i la biologia
en el que avui coneixem com a biof́ısica. El descobriment de l’estructura en
doble hèlix de l’ADN l’any 1953 [1] es pot considerar com el punt de partida
de la biof́ısica moderna, en què un f́ısic i un biòleg van unir esforços per a
respondre una pregunta cient́ıfica comuna.

0.1.1 Què és la biof́ısica?

La biof́ısica és una disciplina cient́ıfica que utilitza les eines i els mètodes
propis de la f́ısica per estudiar sistemes biològics. La biof́ısica engloba un
ampli rang de sistemes (des de biomolècules fins a ecosistemes, passant per
cèl·lules i individus) i s’interessa per diversos aspectes d’aquests sistemes
(estructura, cinètica, etc.).

Hi ha dues formes d’aproximació a la biof́ısica. La primera és des d’un
punt de vista f́ısic, en la que els f́ısics utilitzen els sistemes biològics per a
descobrir nous fenòmens i lleis f́ısiques. La segona és des d’un punt de vista
biològic, en la que els biòlegs utilitzen tècniques experimentals de la f́ısica i la
matemàtica per a afrontar problemes biològics. Actualment, ambdós punts
de vista estan convergint i els biof́ısics s’han convertit en un nou tipus de
cient́ıfic. Els biof́ısics no pretenen descriure els fenòmens amb el detall que
ho fan els biòlegs ni amb la simplificació idealista del f́ısics. Els biof́ısics tenen
les seves pròpies preguntes cient́ıfiques i busquen les respostes d’acord amb
un mètode que és la fusió dels mètodes propis de la f́ısica i la biologia.
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Les biof́ısica està ı́ntimament relacionada amb altres disciplines com la
bioqúımica, la nanotecnologia i la biomedicina. Avui en dia trobem una
gran interdisciplinarietat i, per tant, les fronteres entre elles no són clares.
En qualsevol cas, la biof́ısica es caracteritza sobretot per l’ús de mesures i
informació quantitativa.

0.1.2 Biof́ısica molecular

La biof́ısica molecular s’ocupa de l’estudi de l’estructura, la funció i la cinè-
tica de les biomolècules. Les biomolècules són els maons que conformen la
vida i n’hi ha de dos tipus: els àcids nucleics (ADN i ARN) i les protëınes
(que inclouen enzims i motors moleculars). Les energies dels enllaços de les
biomolècules són del mateix ordre de magnitud que el bany tèrmic que les
rodeja, és a dir, que les biomolècules estan governades per les fluctuacions
tèrmiques. Una de les qüestions interessants en biof́ısica és entendre com les
biomolècules poden treballar de manera tan eficient immerses en aquestes
condicions.

Alguns dels temes interessants en biof́ısica molecular són el plegament
d’ARN i protëınes, la mecano-qúımica dels motors moleculars, el transport
en canals iònics i les interaccions ADN-protëına. Tot plegat s’estudia amb
combinacions de tècniques pròpies de la bioqúımica, la qúımica i la f́ısica. El
desenvolupament de les tècniques de molècules individuals ha suposat una
nova manera d’enfocar l’exploració de les biomolècules.

0.1.3 Tècniques de molècula individual

Tradicionalment, els experiments en qúımica i biologia s’han realitzat en
volum. Els experiments en volum involucren una gran quantitat de subs-
tància (mols, grams, mil·lilitres) quan es comparen amb una sola molècula
de substància. Les tècniques de molècula individual consisteixen a realitzar
experiments sobre una única molècula [2]. Tenint en compte que a la cèl·lula
hi ha un gran nombre de molècules, es podria pensar que l’estudi d’una única
molècula no pot aportar gran cosa. Això no obstant, les biomolècules tenen
una estructura interna complexa i l’ús de tècniques de molècula individual
aporta molta informació. A diferència de les tècniques de volum, les mesures
no són la mitjana de totes les molècules i es poden fer mesures de desviacions
o distribucions de probabilitat. Per exemple, a nivell de molècula individual
s’ha pogut mesurar la velocitat instantània de motors moleculars, mentre que
en els experiments en volum només es poden mesurar velocitats mitjanes.

El desenvolupament de les tècniques de cadena individual ha empès la
instrumentació, que ha evolucionat extraordinàriament al llarg de la primera
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dècada del segle XXI. Les tècniques de cadena individual més productives han
estat la fluorescència, el microscopi de força atòmica, les pinces magnètiques
i les pinces òptiques. La figura 1 mostra una breu descripció de cadascuna
d’elles.

La recerca en biof́ısica molecular està definitivament lligada a les tècniques
de molècula individual, que segueix evolucionant.

Figura 1: Tècniques de molècula individual. (a) Transmissió d’energia de ressonància
de Förster (FRET). El FRET es basa en la transmissió d’energia entre dos fluoròfors
(donador i acceptor). L’eficiència d’aquesta transmissió depèn de la distància entre aquests
fluoròfors. Es pot utilitzar per detectar el plegament i desplegament d’una molècula.
(b) Microscopi de força atòmica (AFM). L’AFM produeix i mesura les forces aplicades a
una molècula. La força aplicada està directament relacionada amb la flexió d’una palanca
sòlida, l’elasticitat de la qual és coneguda. La flexió de la palanca es mesura mitjançant la
deflexió d’un feix làser reflectit a la palanca. (c) Pinces magnètiques (PM). La molècula
s’enllaça entre una microesfera magnètica i la superf́ıcie d’un cobreobjectes. Les PM
exerceixen força sobre la microesfera quan aquesta se sotmet a la influència d’un camp
magnètic. La força es mesura a partir de la posició de la microesfera. El camp magnètic
es genera mitjançant imants que es poden desplaçar. En alguns casos, els imants també
poden rotar per tal d’exercir un parell de forces. (d) Pinces òptiques. Les pinces òptiques
exerceixen força sobre microesferes dielèctriques utilitzant la pressió de radiació d’un feix
làser. Una descripció més detallada es donarà a la secció següent.
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0.1.4 Termodinàmica de sistemes petits

La termodinàmica de sistemes petits (també coneguda com a dinàmica me-
soscòpica) és un subtema de la f́ısica que s’ocupa d’aquells sistemes que te-
nen una escala entremig dels sistemes microscòpics i els macroscòpics [3].
En aquesta escala d’entremig, el nombre de components del sistema és molt
superior a 1 i molt inferior al nombre d’Avogadro. Aquests sistemes es ca-
racteritzen per les elevades fluctuacions relatives de les seves magnituds ob-
servables. Tradicionalment, les fluctuacions de sistemes macroscòpics (gasos,
imants) han estat molt dif́ıcils de mesurar. Amb el desenvolupament de les
tècniques de molècula individual han aparegut tota una sèrie de sistemes que
presenten fluctuacions rellevants i mesurables.

Els teoremes de fluctuació (TF) han estat i són un dels focus d’atenció de
la termodinàmica de sistemes petits. Aquests teoremes relacionen les propi-
etats d’equilibri d’un sistema amb el treball mecànic realitzat sobre aquest
sistema al llarg de processos de no equilibri [4, 5]. Actualment, en biof́ısi-
ca s’utilitzen els TF per a obtenir les energies de formació de biomolècules.
I, a la vegada, els experiments amb molècules individuals han contribüıt a
ampliar el nostre coneixement sobre els TF.

0.1.5 Sumari del treball presentat en aquesta tesi

El caṕıtol 2 se centra en la descripció de les Minipinces. El caṕıtol 3 mostra
una descripció detallada dels experiments de ruptura d’ADN i els models
que els descriuen. En el caṕıtol 4 es realitza un estudi de les propietats
estad́ıstiques i dels estats metastables observats en els experiments de ruptura
d’ADN. El caṕıtol 5 mostra com extreure energies de formació d’hibridació
a partir dels experiments. El caṕıtol 6 descriu els experiments de ruptura a
força constant. Finalment, el caṕıtol 7 inclou les perspectives futures d’aquest
treball i les conclusions.
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0.2 Pinces òptiques

La llum porta moment lineal associat. Això és el que James Clerk Maxwell
va deduir de les equacions del camp electromagnètic [6]. El principi de con-
servació del moment lineal comporta una transferència de moment quan la
llum interacciona amb la matèria. És a dir, que la matèria experimenta una
força quan interacciona amb la llum. Per descriure aquest fenomen, sovint
es diu que la llum exerceix pressió de radiació sobre la matèria. A nivell
macroscòpic, els efectes d’aquesta força són menyspreables. Això no obstant,
a nivell microscòpic els objectes experimenten efectes observables.

Arthur Ashkin va ser el primer cient́ıfic que va aconseguir controlar l’apli-
cació de la pressió de radiació d’un làser sobre microesferes [7]. Juntament
amb els seus col·laboradors, ell mateix va perfeccionar la tècnica fins a acon-
seguir el confinament de les microesferes en una petita regió de l’espai [8].
Des de llavors, la tècnica es coneix amb el nom de ‘pinces òptiques’. El se-
güent pas va consistir en mesurar les forces exercides per les pinces òptiques.
Entre el muntatges experimentals més reeixits per mesurar forces cal destacar
l’interferometria [9], la detecció de microesferes per v́ıdeo [10] i la deflexió de
llum [11]. Aquest darrer sistema és el que s’utilitza en les Minipinces descrites
en aquesta tesi.

Els avanços recents en pinces òptiques s’han dirigit per una banda cap a
la millora de la resolució, la precisió i l’exactitud de les mesures, i per altra
banda cap a la combinació d’altres tècniques experimentals (per exemple,
pinces òptiques combinades amb fluorescència) [12]. La tendència actual en
pinces òptiques consisteix a implementar múltiples trampes òptiques en un
mateix muntatge experimental, ja que proporciona més versatilitat i millors
mesures en els experiments [13]. Les pinces òptiques hologràfiques són una
innovació prometedora, ja que l’experimentador pot controlar el nombre, la
grandària, la posició i la rigidesa de les trampes òptiques de l’instrument [14].

Les pinces òptiques són una eina molt útil per als biof́ısics, ja que es
tracta d’una tècnica no invasiva que la fa ideal per a treballar amb sistemes
biològics.

0.2.1 Principi d’atrapament òptic

Hi ha diverses teories f́ısiques que descriuen la interacció entre la radiació
i la matèria. En el cas de les pinces òptiques, les equacions clàssiques de
l’electromagnetisme de Maxwell descriuen correctament la interacció entre
la llum del làser i les microesferes dielèctriques. Tot i que la pressió de
radiació és l’única causa de les forces experimentades per la microesfera,
aquestes forces generalment es divideixen entre forces de dispersió i forces
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de gradient. Les forces de dispersió tendeixen a empènyer la microesfera en
la direcció de propagació del làser, mentre que les forces de gradient ho fan
en la direcció que apunta a la regió de màxima intensitat de llum. Si el
feix làser es condiciona correctament (en termes de col·limació, distribució
espacial d’intensitat, aberracions, etc.) és possible controlar la pressió de
radiació que el làser exerceix sobre la microesfera. Una trampa òptica es pot
aconseguir focalitzant un feix làser en una petita regió de l’espai. En aquesta
situació, la microesfera experimenta una força restauradora que tendeix a
empènyer-la a la regió de màxima intensitat de llum, és a dir, al focus del
làser.

En funció de la relació entre la grandària de la microesfera (és a dir, el
diàmetre d) i la longitud d’ona de la radiació làser (λ) es poden diferenciar
tres aproximacions teòriques que descriuen l’atrapament de la microesfera.
És important aclarir que les tres situacions corresponen a casos particulars
de les equacions de Maxwell. En el règim de Mie, la part́ıcula és molt més
gran que la longitud d’ona del làser (d� λ) i la interacció es pot estudiar a
partir de les lleis de l’òptica geomètrica i el traçat de rajos (vegeu la Fig. 2).
En el règim de Rayleigh passa justament el contrari (d� λ) i la microesfera
es tracta com si fos un dipol elèctric puntual que interactua amb un camp
electromagnètic. Per estudiar la interacció en el règim d’entremig (d ≈ λ),
es fa ús de la teoria generalitzada de Lorentz-Mie [15], en la que cal resoldre
un problema d’equacions diferencials amb condicions de contorn.

És suficient tenir en compte el règim de Mie per tal de dissenyar un sis-
tema de mesura de la força. Tot i que els experiments rellevants en biof́ısica
no pertanyen exactament a aquest règim sinó al règim de Lorentz-Mie, s’ha
pogut comprovar emṕıricament que hi ha sistemes experimentals de mesu-
ra de força que pràcticament no depenen de la grandària relativa entre la
microesfera i la longitud d’ona del làser.

0.2.2 Muntatge experimental de les Minipinces

Les minipinces són un instrument de pinces òptiques dissenyat per Steve
Smith [16, 17, 18]. Es tracta d’un prototip compacte de dimensions redüıdes
(uns 30 cm de diàmetre i 40 cm d’alçada) que es pot penjar al sostre amb
una corda elàstica per tal de reduir les vibracions mecàniques de l’edifici que
afecten a les mesures (vegeu la Fig. 3).

Òptica

La trampa òptica es forma mitjançant dos làsers contra-propagants focalit-
zats en el mateix punt amb objectius de microscopi (vegeu la Fig. 4). Els
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Figura 2: Atrapament òptic en el règim de Mie amb un feix làser gaussià focalitzat per
una lent convergent. (a) Microesfera centrada al focus del feix gaussià. La microesfera no
desvia els rajos marginals a and b i no s’exerceix força. (b) Microesfera localitzada en una
posició anterior al focus del làser. Els rajos marginals a i b es desvien de tal manera que
les forces radials es cancel·len i les forces axials se sumen. La llum empeny la microesfera
cap al focus del feix. (c) Microesfera localitzada en una posició posterior al focus del làser.
La força resultant és en sentit oposat a la del panell b. En aquest cas també està dirigida
cap al focus del làser. (d) Microesfera localitzada fora d’eix. Les diferències d’intensitat
entre els rajos centrals i els marginals indueixen una força de recuperació radial dirigida
cap al focus del feix.

Figura 3: Esquema general de les minipinces. Els experiments es realitzen al capçal,
que conté tota l’òptica i es pot penjar al sostre. Els làsers són alimentats pel controlador
dels làsers. El controlador electrònic comunica el capçal i l’ordinador. L’usuari controla
l’experiment a través de l’ordinador. El monitor de TV permet visualitzar l’experiment.

camins òptics d’ambdós làsers són simètrics. Les forces es mesuren a partir
del principi de conservació del moment lineal de la llum. L’estratègia con-
sisteix a recollir tota la llum dispersada per la microesfera i a analitzar la
desviació que ha experimentat mitjançant fotodetectors sensibles a la posició
(PSD). La diferència entre la intensitat de llum incident sobre la microesfera i
la llum emergent dóna una mesura directa de la força que exerceix la trampa
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òptica sobre la microesfera. La trampa òptica es pot posicionar en qualsevol
lloc de l’espai en un rang de 10 µm sobre el pla focal mitjançant un dispositiu
anomenat redireccionador 1. El redireccionador consisteix en una fibra òptica
que pot ser flexionada mecànicament mitjançant actuadors piezoelèctrics. La
posició de la trampa es mesura gràcies a una palanca de llum, que reenvia
part de la llum làser a un fotodetector sensible a la posició. La trampa òptica
es forma dins d’una cambra flúıdica constrüıda a partir de cobreobjectes de
microscopi. És a l’interior d’aquesta cambra on es duen a terme els experi-
ments d’estirament de biomolècules. La cambra conté una micropipeta que
serveix de punt d’ancoratge per a fixar-hi les molècules que se sotmeten a
tensió amb la trampa òptica. La imatge de l’interior de la cambra es projec-
ta sobre una càmera CCD d’acord amb un sistema d’il·luminació Köhler, per
tal que es pugui visualitzar l’experiment que s’està duent a terme.

Figura 4: Sistema òptic de les minipinces (vegeu el text). Els camins òptics dels dos
làsers estan dibuixats en verd i en groc. El camı́ òptic del sistema d’imatge està dibuixat
en blau.

Un dels principals avantatges de les minipinces és que el calibratge de la
força és independent del diàmetre de la microesfera, el seu ı́ndex de refracció,
l’́ındex de refracció del medi que conté la cambra i la potència del làser. Això
facilita molt els experiments, ja que només és necessari calibrar l’instrument
una vegada. A més, el fet de disposar de dos làsers permet realitzar expe-
riments amb doble trampa. Per altra banda, és necessari tenir un molt bon

1En anglès, wiggler.
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alineament entre els dos làser per tal que el sistema funcioni correctament,
la qual cosa dificulta la posada a punt de l’instrument.

Controlador electrònic

El controlador electrònic s’encarrega de l’adquisició de les mesures (força
i localització de la trampa) i del processament de les ordres enviades per
l’experimentador (posicionament de la trampa i de la cambra flúıdica). El
controlador està format per cinc plaques electròniques regulades per micro-
controladors PIC (vegeu la Fig. 5). L’instrument té una resolució temporal
d’1 kHz, 0.1 pN en força i 0.5 nm en distància. La placa principal s’encar-
rega de la transmissió de dades a l’ordinador (mitjançant un port USB) i a
les altres plaques electròniques. Les dues plaques que converteixen la senyal
analògica a digital (una per a cada làser) s’encarreguen de rebre les mesures
de l’instrument i enviar-les a la placa principal. La placa convertidora de
senyal digital a analògica s’encarrega de rebre les ordres de la placa principal
i enviar-les als piezoelèctrics que controlen el redireccionador. La placa dels
motors s’ocupa del posicionament de la cambra flúıdica.

Figura 5: Esquema de les plaques electròniques (vegeu text).

Ordinador

L’ordinador té dues funcions. En primer lloc, s’encarrega de rebre, processar
i emmagatzemar les dades adquirides per la placa principal del controlador
electrònic. Per altra banda, l’ordinador és la interf́ıcie entre l’experimentador
i l’experiment. L’ordinador rep les ordres de l’usuari i les envia a la placa del
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controlador. En un experiment, s’executa l’aplicació ‘lt’, que són les inicials
de Laser Tweezers (pinces òptiques en anglès). Aquesta aplicació va ser
dissenyada per Shane Saxon [19]. La figura 6 mostra una captura de pantalla
de la interf́ıcie gràfica.

Figura 6: Interf́ıcie gràfica de l’aplicació lt. L’experimentador interacciona amb l’instru-
ment mitjançant aquesta interf́ıcie.

0.2.3 Calibratge de l’instrument

Hi ha tres magnituds principals que cal calibrar en les minipinces: el temps,
la força i la distància. La resta de magnituds es calibren a partir d’aquestes
tres. El temps es calibra a partir del rellotge intern dels microcontroladors
de les plaques electròniques. N’hi ha prou amb mesurar amb l’oscil·loscopi el
temps que tarda el microcontrolador a completar un cicle del seu programa
intern. Això dóna el factor de calibratge del temps. La força es pot calibrar
per diferents mètodes. El primer mètode consisteix a utilitzar el principi de
conservació del moment lineal de la llum. Sabent les caracteŕıstiques dels
fotodetectors i mesurant la intensitat del feix làser es pot deduir el factor
de calibratge. El segon mètode consisteix a utilitzar la llei de Stokes, que
relaciona la força d’arrossegament d’una microesfera amb la velocitat del
fluid que la rodeja. El tercer mètode es basa en les fluctuacions de força que
experimenta una part́ıcula browniana sotmesa a una força de recuperació.
I el darrer mètode consisteix a utilitzar un patró. Per exemple, és sabut
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que l’ADN presenta una transició estructural cooperativa a 67 pN de força.
El calibratge de la distància de les palanques de llum es fa a partir de les
especificacions de la plataforma motoritzada. El calibratge de l’instrument
té error d’un 3% aproximadament.

0.2.4 Disseny de nous protocols

Les minipinces estan constrüıdes de tal manera que es poden dissenyar nous
experiments o protocols d’estirament. D’aquesta manera es pot ampliar el
ventall de possibilitats que ofereix l’instrument per tal d’estudiar aspectes
més espećıfics de les biomolècules. Al llarg de la realització d’aquesta tesi
s’han dissenyat diversos nous protocols com el protocol d’oscil·lació (que apli-
ca una força oscil·latòria) o la rampa de força (que augmenta progressivament
la força aplicada).

0.2.5 Conclusions

D’ençà del descobriment de les pinces òptiques, aquesta tècnica ha evolucio-
nat fins a esdevenir una eina clau en biof́ısica. La descripció de la interacció
entre el làser i la microesfera es pot fer a partir de diverses aproximacions.
Les minipinces són un aparell de pinces òptiques que mesura la força a partir
del principi de conservació del moment lineal. L’instrument té un procés de
calibratge ràpid i presenta una alta resolució en força i distància. A més, està
dissenyat de tal manera que permet implementar nous tipus experiments.
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0.3 Ruptura mecànica de l’ADN

El descobriment de l’estructura en doble hèlix de l’ADN l’any 1953 va suposar
la culminació d’un segle de recerca [1]. Finalment es va poder establir la
base f́ısico-qúımica de la genètica mendeliana. En śıntesi, es va acceptar
que la molècula d’ADN era la portadora de la informació genètica i que
aquesta estava codificada en forma de seqüència de bases. L’any 1958, Francis
Crick va formular el dogma central de la biologia molecular, que establia la
forma com es replicava i es transferia la informació genètica de l’ADN a les
protëınes [20].

0.3.1 Estructura de l’ADN

L’ADN és un poĺımer format per la unió de dues cadenes complementàries
de nucleòtids (vegeu la Fig. 7). Cadascun dels nucleòtids està format per
una molècula d’àcid fosfòric, una molècula de desoxiribosa i una base nitro-
genada (que pot ser adenina, citosina, guanina o timina). Una cadena äıllada
presenta l’aspecte d’un esquelet (format per àcid fosfòric i desoxiribosa) en
el qual hi ha enllaçades les bases nitrogenades. L’altra cadena de l’ADN té
la mateixa estructura i està orientada en sentit contrari. Les bases d’una ca-
dena s’enllacen amb les de la cadena complementària per ponts d’hidrogen.
L’adenina sempre s’enllaça amb la timina i la citosina, amb la guanina. Tot
i això, també s’han observat altres combinacions.

Figura 7: Estructura de l’ADN. (a) Representació esquemàtica de la composició de
l’ADN. Hi ha dues cadenes antiparal·leles 5′ → 3′ i 3′ → 5′ enfrontades. Cada cadena
està formada per un esquelet (dibuixat en verd) de sucres (S) i fosfats (P). Enmig hi ha
les bases nitrogenades (A, C, G, T). Les ĺınies cont́ınues representen enllaços covalents,
mentre que les discont́ınues, ponts d’hidrogen. (b) Estructura en doble hèlix de l’ADN.
El dibuix té el mateix codi de colors que el panell a.
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La informació genètica està codificada en la seqüència de bases. Cada
tres bases forma un codó, que es tradueix en un aminoàcid. Els aminoàcids
són els constituents de les protëınes, que són les biomolècules encarregades
de donar l’estructura i la funció a les cèl·lules. D’aquesta manera, llegint la
seqüència de bases de l’ADN la cèl·lula coneix la seqüència d’aminoàcids que
ha de sintetitzar per a produir una protëına concreta.

0.3.2 Ruptura mecànica de l’ADN

Per tal d’accedir a la informació genètica emmagatzemada a l’ADN, la cèl·lula
ha de separar les dues cadenes d’ADN, exposar la seqüència de bases i in-
teraccionar amb elles per tal de llegir-les. El procés de separació de les dues
cadenes implica una ruptura mecànica de les bases. Efectivament, les bases
estan enllaçades per ponts d’hidrogen i cal aplicar força per trencar aquests
enllaços. El procés de ruptura és reversible, de manera que si s’han separat
les dues cadenes d’una molècula d’ADN es poden tornar a unir i formar de
nou la doble hèlix. La cèl·lula disposa de diverses protëınes (helicassa, ADN-
polimerassa) encarregades d’obrir la doble cadena. Per tant, la separació de
les dues cadenes d’ADN és un procés molt habitual dins de la cèl·lula.

La ruptura mecànica de l’ADN s’ha pogut aconseguir in vitro mitjançant
diverses tècniques experimentals, com ara les microagulles [21], el microscopi
de força atòmica [22], les pinces magnètiques [23] i les pinces òptiques [24, 25].
En aquestes tècniques s’aplica força al extrems de la cadena de l’ADN per
tal de separa-les.

Els experiments de ruptura mecànica d’ADN exposats en aquesta tesi
s’han realitzat mitjançant pinces òptiques. Per tal de dur a terme els expe-
riments, s’han sintetitzat dues molècules de llargades diferents, una de 2252
parells de bases (pb) i una de 6828 pb. Les molècules tenen dues manetes
als seus extrems que permeten ancorar-les a les microesferes amb què s’apli-
ca força. Una microesfera està situada a la trampa òptica i l’altra es troba
fixada a la micropipeta per succió d’aire (vegeu la Fig. 8).

Mesures experimentals de ruptura

Els experiments es poden dur a terme o bé controlant la posició de la tram-
pa, o bé controlant la força aplicada sobre la molècula. En un experiment de
ruptura, t́ıpicament es mesura la corba de força vs. distància (CFD). A dis-
tància controlada, es desplaça la trampa òptica, tot augmentant la separació
entre les microesferes. A cada distància es mesura la força exercida (vegeu
la Fig. 9). La CFD resultant té un aspecte de dent de serra, formada per
una successió de pendents i caigudes de força. Els pendents corresponen a la
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Figura 8: (a) Muntatge experimental per a produir la ruptura d’una molècula d’ADN.
El dibuix no és a escala. (b) Aspecte que mostra l’experiment vist amb el monitor de TV.

resposta elàstica de la molècula, mentre que les caigudes de força apareixen
quan s’obren (es trenquen) un grup de parells de bases. Si tot seguit es redu-
eix de nou la distància entre microesferes, les bases es tornen a unir de nou i
la molècula es torna a tancar. A força controlada, la CFD té un aspecte molt
diferent. Quan la força aplicada s’acosta a la força de coexistència (al voltant
d’uns 15 pN), la molècula d’ADN s’obre sobtadament i completa (vegeu la
Fig. 10).

Figura 9: Ruptura d’una molècula d’ADN a distància controlada. (a) Patró en forma de
dent de serra de la CFD. El panell superior (inferior) mostra la CFD per una molècula de
2.2 kpb (6.8 kpb). Les corbes vermella i taronja mostren les dades tal i com són mesurades
per l’instrument. Les corbes negra i blava mostren les dades filtrades amb un ample de
banda d’1 kHz. (b) Esquema que mostra la relació entre la dent de serra i la situació
en què es troba la molècula d’ADN. El pendent es correspon amb la resposta elàstica i la
caiguda de força amb la ruptura de parells de bases. El grup de bases que s’han obert
estan dibuixades en vermell. (c) Cicle complet d’estirament i relaxació. La corba vermella
(blava) mostra la ruptura (reenllaçament) dels parells de bases.
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Figura 10: Ruptura d’una molècula d’ADN a força controlada. La corba vermella (blava)
mostra la CFD de ruptura (reenllaçament). S’ha superposat en gris la CFD a distància
controlada.

0.3.3 Modelització de l’experiment

Els experiments de ruptura mecànica de l’ADN realitzats amb pinces òp-
tiques es poden modelitzar a partir del model de primers vëıns (PV), que
descriu la reacció d’hibridació de cadenes complementàries d’ADN [26, 27].
Els elements elàstics del sistema (trampa òptica, manetes, cadena senzilla)
es modelitzen d’acord amb la llei de Hooke i els models sobre l’elasticitat
dels poĺımers. La figura 11 mostra un esquema representatiu d’aquest model
mesoscòpic. El model permet calcular una predicció de la CFD en equilibri
termodinàmic. Aquest càlcul es realitza a partir de l’expressió de l’energia
total del sistema i el càlcul de la funció de partició. La derivada de la funció
de partició dóna l’expressió de l’equació d’estat. El model també permet
calcular el paisatge d’energia lliure, que resulta molt útil per entendre el me-
canisme de ruptura de l’ADN. El paisatge d’energia lliure és una expressió
que dóna l’energia total del sistema en funció de la posició de la trampa
òptica i del nombre de bases obertes.

0.3.4 Conclusions

L’ADN és probablement la biomolècula més rellevant que es troba en els
sistemes biològics. La seva estructura és apropiada per a emmagatzemar la
informació genètica de la cèl·lula, ja que els parells de bases que codifiquen
les protëınes estan aparellades i protegides a l’interior de l’esquelet de sucres i
fosfats. Per tal d’accedir a les bases, la cèl·lula ha de separar la doble cadena.
Aquest procés es pot produir artificialment mitjançant pinces òptiques. Els
experiments t́ıpicament mesuren CFD que tenen una forma en dent de serra
que depèn de la seqüència de bases de la molècula. El model mesoscòpic
explicat en aquest caṕıtol permet fer prediccions sobre la CFD mesurada
experimentalment.
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Figura 11: Model mesoscòpic. Cada element es representa amb un color diferent. Al
costat de cadascun, es mostra un esbós de la seva contribució energètica
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0.4 Intermediaris metastables en la ruptura

mecànica de l’ADN

El procés de ruptura de l’ADN s’engloba dins la categoria de fenòmens de
fractura, com per exemple els terratrèmols, la magnetització de dominis fer-
romagnètics o l’esquinç d’un full de paper. Aquests fenòmens presenten la
caracteŕıstica dent de serra quan es trenquen, pròpia d’un procés d’acumu-
lació d’energia elàstica que s’allibera sobtadament durant la ruptura. En
l’ADN, cada dent de serra representa la ruptura d’un grup de parells de ba-
ses que són de diverses grandàries. Aquests trencaments s’anomenen regions
cooperatives de ruptura (RCR). Després d’un trencament, la molècula es tro-
ba relaxada fins que es torna a augmentar de nou la força. Aix́ı, la ruptura
de l’ADN amb pinces òptiques es pot entendre com una successió d’estats
intermediaris que cada vegada tenen més parells de bases obertes, fins que la
molècula té les dues cadenes completament separades.

0.4.1 Detecció d’estats intermediaris

A partir de les CFD i utilitzant el model mesoscòpic descrit en la secció 0.3.3,
es pot inferir quantes bases obertes té cadascun dels estats intermediaris que
apareixen en un procés de ruptura. Això es fa mitjançant una aproximació
bayesiana, en què s’analitzen les dades experimentals d’acord amb un criteri
probabiĺıstic. L’estratègia consisteix a determinar per a cada punt experi-
mental (donat per una distància i una força) el nombre de bases obertes
més probable que pot tenir la molècula, d’acord amb la resposta elàstica que
s’espera del sistema (vegeu la Fig. 12).

Aquest procés de classificació es repeteix per tots els punts de la CFD.
D’aquesta manera es pot obtenir un histograma que indica el nombre de
vegades que la molècula es troba en un estat intermediari concret al llarg
de tot el procés de ruptura (vegeu la Fig. 13). L’histograma mostra una
sèrie de pics que indiquen els estats intermediaris. Com més alt és el pic,
més visible i estable és l’estat intermediari. Cada pic pot ajustar-se a una
gaussiana o un conjunt de gaussianes que permeten establir el nombre de pb
de l’estat intermediari. La distància entre els pics de les gaussianes dóna una
mesura del nombre de pb que s’han obert entre un estat i l’altre, és a dir, la
grandària d’una RCR. Després d’identificar totes les RCR de la molècula es
pot construir un histograma de la distribució de grandàries (vegeu la Fig. 14).
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Figura 12: Classificació d’un punt experimental (dibuix no a escala). Per a punt experi-
mental (en blau) de la CFD de ruptura (en vermell), triem la resposta elàstica que passa
més a prop del punt experimental. En aquest cas particular, el més probable és que la
molècula tingui 201 bases obertes a la força i distància indicada pel punt experimental, ja
que és la resposta elàstica que passa més a prop del punt. Altres respostes elàstiques (200
i 202) ja estan més allunyades del punt blau.

Figura 13: Histograma d’estats intermediaris. (a) Classificació de punts. La traça
blava mostra la CFD experimental. La traça vermella mostra el nombre de parells de
bases obertes (n) corresponent a cada punt experimental (l’eix de les y es llegeix al panell
b). (b) Histograma dels valors de n∗ mostrats al panell a. (c) Visualització detallada
de l’histograma (corba taronja) sobreposada amb l’ajust a la suma de gaussianes (corba
cian). (d) Detecció d’una RCR de 87 pb de grandària a partir de la distància entre els
pics de dues gaussianes consecutives.
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l’ADN 35

Figura 14: Distribució de grandàries de les RCR d’una molècula de 2.2 kpb. Les gran-
dàries tenen un rang de 10-90 pb amb una gran quantitat de RCR que tenen entre 20 i
50 pb.

0.4.2 Model de joguina

Per tal d’interpretar els resultats de la distribució de grandàries de les RCR,
hem desenvolupat un model simplificat al model mesoscòpic descrit en la
secció 0.3.3. Aquest model conté els elements mı́nims per a reproduir qua-
litativament les propietats estad́ıstiques de la ruptura de l’ADN (vegeu la
Fig. 15). A més, els càlculs són més senzills i ràpids i permeten explorar
moltes molècules amb seqüències diferents.

Figura 15: Model de joguina. (a) Esquema. El model només contempla la trampa òptica
i l’energia d’hibridació de l’ADN. (b) CFD predita pel model, per a una seqüència de pb
arbitrària. La força mitjana de ruptura està representada amb una ĺınia negra.

0.4.3 Comparació de les distribucions de grandària de
les RCR

La figura 16 mostra la comparació entre les mesures experimentals de les
grandàries de les RCR, la predicció del model mesoscòpic de la secció 0.3.3 i
la predicció del model de joguina. A la vista dels resultats, es pot comprovar
com experimentalment es detecta menys quantitat de RCRs de grandària
inferior als 10 pb que la quantitat predita pels models. Això indica que el
muntatge experimental de les minipinces té una resolució de 10 pb. Per altra



36 Resum de la tesi en català

banda, ambdós models descriuen bé la distribució de grandàries en el cas de
RCR grans.
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Figura 16: (a) Distribució de les grandàries de les RCR per a la seqüència de 2.2 kpb. La
corba vermella mostra les mesures experimentals. La corba verda mostra la predicció del
model de joguina (la zona ombrejada mostra la desviació estàndard per diferents realitza-
cions). La corba blava mostra la distribució predita pel model mesoscòpic. (b) Mateixa
figura per a la seqüència de 6.8 kpb.

Una de les qüestions interessants que sorgeixen és saber quines condicions
experimentals es poden canviar per tal de modificar la distribució de gran-
dàries. El model de joguina prediu que quan s’augmenta la rigidesa de la
trampa òptica disminueix la grandària mitjana de les RCR. A nivell quan-
titatiu, això indica que per tal d’observar RCR d’un sol pb seria necessari
tenir una rigidesa de la trampa òptica de 100 pN/nm. Les minipinces tenen
una rigidesa de 0.08 pN/nm. Per tant estem molt allunyats d’aquest règim i
actualment no seria factible obtenir tal rigidesa amb pinces òptiques. Una ri-
gidesa de 100 pN/nm és t́ıpica del microscopi de força atòmica. Curiosament,
la mı́nima rigidesa de la trampa necessària per obrir els pb de l’ADN d’un
en un es correspon amb el valor de la rigidesa que té una sola base d’ADN
de cadena individual. Això suggereix que l’ADN té les propietats elàstiques
adequades per tal que la maquinària cel·lular pugui produir la ruptura d’un
únic pb de l’ADN si és necessari. Aix́ı s’evita obrir grans quantitats de bases
que poden estar exposades a danys que alterin la informació genètica que
conté l’ADN.

0.4.4 Conclusions

La ruptura de molècules d’ADN a distància controlada presenta una sèrie
d’obertures cooperatives dels parells de bases. Mitjançant un mètode bayesià
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es pot determinar el nombre de parells de bases obertes dels estats interme-
diaris i la grandària de les regions de ruptura. La resolució experimental de
les minipinces situa el ĺımit de detecció a 10 pb, per sota del qual no es poden
detectar obertures de parells de bases. El model de joguina prediu aquestes
obertures i fixa a 0.1 N/m la rigidesa mı́nima que ha de tenir la trampa òp-
tica per tal que la molècula d’ADN s’obri d’una base en una. Aquest valor
coincideix amb la rigidesa d’una sola base de cadena individual d’ADN.
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0.5 Dependència amb la sal de les energies

lliures de formació dels parells de bases

vëıns

El model de primers vëıns (PV) descriu acuradament les energies de forma-
ció de reaccions d’hibridació d’oligonucleòtids (vegeu la Fig. 17). El model
estableix que l’energia de formació d’un parell de bases depèn del propi parell
de bases en qüestió i del primer véı. Tenint en compte que hi ha 4 tipus de
bases, en total s’esperaria que hi hagués 4×4 = 16 possibles combinacions de
primers vëıns. Això no obstant, degut a diverses simetries del problema, el
nombre de combinacions de primers vëıns es redueix a 10. L’any 1998, John
SantaLucia Jr. va establir els valors d’aquestes 10 energies de formació a
partir d’experiments de desnaturalització tèrmica de molècules d’ADN [28].
Des de llavors, aquests valors s’han conegut com els valors unificats d’oligo-
nucleòtids (UO). Aquests valors es poden utilitzar en el model mesoscòpic
descrit en la secció 0.3.3 per tal de predir la CFD d’una seqüència donada.
Si bé la predicció de la forma de dent de serra de la CFD és qualitativament
correcta, a nivell quantitatiu s’observen diferències notables quan es compara
amb la mesura experimental de la CFD mesurada amb les minipinces (vegeu
la Fig. 18). La predicció de la CFD amb els valors UO sobreestima la força
mitjana de ruptura i això s’observa a diferents concentracions de sal. L’ob-
jectiu d’aquest caṕıtol és ajustar els 10 valors de les energies de formació dels
parells de bases (EFPB) d’acord amb el model de PV per tal de descriure
correctament les CFD.

D’acord amb el model mesoscòpic, la CFD no només depèn de les 10
EFPB, sinó que la rigidesa de la trampa, les propietats elàstiques de les ma-
netes i la cadena individual també afecten la CFD. La rigidesa de la trampa
de l’instrument es pot mesurar directament. Les propietats elàstiques de les
manetes són poc rellevants, perquè són molt curtes i gairebé es comporten
com barres ŕıgides. Ara bé, la rigidesa de la cadena individual és impor-
tant, ja que afecta notablement la predicció de la CFD. Per tant, abans de
continuar amb la descripció de l’ajust, és necessari determinar les propietats
elàstiques de la cadena individual.

0.5.1 Resposta elàstica de la cadena individual

La resposta elàstica de la cadena individual s’obté prenent mesures de la
CFD d’una molècula d’ADN de cadena individual de 3000 bases de llarga-
da. Els experiments s’han realitzat en un ampli rang de concentració de sal
(10 mM-1 M [NaCl]) i les corbes obtingudes s’ajusten a models de poĺımers
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Figura 17: Model de PV. (a) Formació de la cadena doble d’ADN. L’energia de formació
(∆g) del parell de bases i depèn d’ell mateix i del primer véı i + 1. Cada parell de bases
contribueix a l’energia total de formació de la cadena doble d’ADN (G(n)). (b) Les 16
combinacions de primers vëıns. Les 12 combinacions ombrejades són simètriques respecte
l’eix antidiagonal. En conclusió, només hi ha 10 energies diferents (6 de simètriques i 4 de
l’antidiagonal).

ideals, com ara el model de cadena lliurement unida (CLU)2 i el model de
comportament de cuc (CDC)3. La figura 19 mostra els resultats. A partir
de 100 mM de [NaCl] les respostes elàstiques experimentals mostren una
desviació respecte la predicció dels models ideals. Això és degut a la forma-
ció d’estructura secundària en la molècula d’ADN, és a dir, hibridacions no
desitjades entre bases. Es tracta d’un fenomen esperat a alta sal. De totes
maneres, ens interessa descriure el comportament ideal del poĺımer i per tant,
els models ideals automàticament exclouen l’efecte de formació d’estructura
secundària.

0.5.2 Ajust de les CFD

Un cop disposem de la resposta elàstica de la cadena individual, podem
procedir amb l’ajust de les 10 EFPB. És important mencionar que l’ajust de
les dades té en compte els efectes de deriva que es produeixen en l’instrument.
Efectivament, els fluxos d’aire i canvis de temperatura del laboratori poden
produir dilatacions en l’instrument que alteren lleugerament les mesures de
distància. En l’ajust, s’introdueix una correcció de la deriva que permet

2En anglès, Freely-Jointed Chain.
3En anglès, Worm-Like Chain.
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Figura 18: Discrepàncies entre els experiments de ruptura i la predicció del model de
PV amb els valors UO. (a) CFD mesurada i filtrada amb un ample de banda d’1 Hz
(corba vermella) i predicció amb els valors UO (corba blava) per a la molècula de 6.8 kpb
a 10 mM [NaCl] de concentració de sal. (b) Seqüència de 6.8 kpb a 1 M [NaCl]. Mateix
codi de colors que al panell a. (c) Dependència de la força mitjana de ruptura amb la
concentració de sal. Punts vermells, mesures experimentals per a la molècula de 6.8 kpb;
corba verda, predicció amb els valors UO; punts blaus, mesures per a la molècula de
2.2 kpb; corba taronja, predicció UO per a la molècula de 2.2 kpb. Els valors s’han
obtingut a partir de la mitjana dels resultats per a sis molècules. Les barres d’error
indiquen l’error en la desviació estàndard entre molècules.

Figura 19: Ajust de la resposta elàstica de la cadena individual. Resposta elàstica d’una
cadena de 3 kb a diferents concentracions de sal. Per a cada sal, es mostren les dades de
tres molècules diferents (taronja, verd i blau). La corba vermella mostra el millor ajust.
Els models són: CLU per [NaCl]≤ 100 mM i CDC for [NaCl]> 100 mM.
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comparar millor les mesures experimentals i la predicció.

L’ajust es realitza minimitzant la diferència de força que hi ha entre les
mesures experimentals i la predicció. Per a fer-ho, és necessari definir una
funció error que es minimitza amb un algoritme Monte Carlo. Aquest algorit-
me consisteix a explorar aleatòriament diverses combinacions de les 10 EFPB
fins a trobar la combinació que minimitza l’error comès. L’algoritme és ro-
bust, no depèn del valor inicial que es dóna a les 10 EFPB i dóna una solució
que millora la predicció de les CFD. L’error de l’algoritme és d’aproximada-
ment 0.05 kcal/mol per a cada energia de formació.

0.5.3 Dependència de les EFPB amb la sal

L’ajust es fa per a cadascuna de les CFD de totes les molècules i totes les
condicions de sal. La figura 20 mostra els resultats obtinguts. D’acord amb
els valors UO, la correcció de sal és homogènia. Això significa que s’aplica
la mateixa correcció de sal per a totes les 10 combinacions de PV. Ara bé, si
s’observen els resultats amb detall (vegeu la Fig. 20) es pot comprovar que una
correcció homogènia no descriu correctament les nostres mesures. Per altra
banda, una correcció heterogènia, en que cada una de les 10 combinacions
de PV té la seva pròpia correcció de sal permet explicar correctament els
resultats.

0.5.4 Predicció de les temperatures de desnaturalitza-
ció d’oligonucleòtids

Per tal de comprovar els resultats que s’han trobat en la secció anterior,
s’utilitza la correcció heterogènia per tal de predir les temperatures de desna-
turalització d’oligonucleòtids. La temperatura de desnaturalització és aque-
lla temperatura en la qual les dues cadenes d’un oligonucleòtid se separen.
Aquesta temperatura depèn de la seqüència de l’oligonucleòtid i es pot predir
a partir del model de PV. Per tant, predir temperatures de desnaturalització
és una manera de comprovar que els nostres resultats són compatibles amb
altres experiments.

Els resultats de la comparació mostren que amb la correcció heterogènia
es prediuen correctament les temperatures de desnaturalització. A més, per a
oligonucleòtids més llargs que 15 pb, la correcció heterogènia funciona millor
que l’homogènia.
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Figura 20: Correccions de sal de les EFPB. Cada panell mostra l’energia d’una combina-
ció de PV. Els punts vermells (blaus) mostren els resultats per a la seqüència de 6.8 kpb
(2.2 kpb); la corba verda mostra la correcció no espećıfica dels valors de UO; la corba
negra mostra l’ajust d’una correcció espećıfica per a cada EFBP.

0.5.5 Conclusions

Els experiments de ruptura mecànica d’ADN proporcionen informació quan-
titativa sobre les propietats termodinàmiques de l’ADN. Les CFD experimen-
tals poden ajustar-se al model mesoscòpic per tal d’obtenir els millors valors
per a cadascuna de les 10 EFPB. L’ajust es realitza amb un algoritme Monte
Carlo. Si aquest ajust es repeteix per a cada molècula i cada condició de
sal es pot obtenir la dependència de les energies amb la concentració de sal.
S’ha comprovat que una correcció heterogènia de sal descriu correctament els
resultats i és compatible amb els resultats dels experiments de desnaturalit-
zació d’oligonucleòtids. La correcció heterogènia de sal pot ser deguda a la
diferent solvatació dels parells de bases de l’ADN o bé a una dependència de
la resposta elàstica de la cadena senzilla d’ADN amb la sal. Els resultats que
es mostren aqúı no permeten discernir entre una hipòtesi o l’altra.
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0.6 Ruptura mecànica de l’ADN a força con-

trolada

En la ruptura mecànica de l’ADN a força controlada s’utilitza un algoritme
de realimentació, de tal manera que la posició de la trampa es corregeix
cont́ınuament per tal que la força exercida sobre la molècula tingui el valor
desitjat. Les minipinces disposen d’un algoritme que corregeix la posició de
la trampa a 4 kHz. Per tant, la força es pot mantenir constant dins d’un
ample de banda de 4 kHz. Això no és suficient per anular les fluctuacions de
força però, en mitjana, la força es manté constant.

Els experiments a força controlada consisteixen a augmentar progressi-
vament la força aplicada sobre l’ADN fins que les dues cadenes d’ADN se
separen. A continuació s’abaixa de nou la força aplicada fins que la molècula
s’hibrida de nou. Els experiments es caracteritzen pel ritme de càrrega, és a
dir, el ritme al que s’augmenta la força aplicada (en piconewtons per segon).

A diferència dels experiments a posició controlada, els experiments a for-
ça controlada presenten una gran irreversibilitat. Efectivament les corbes de
ruptura i de reenllaçament no són iguals com en el cas de posició constant
(vegeu la Fig. 9c). La figura 21a mostra diferents cicles d’estirament i relaxa-
ció a diferents ritmes de càrrega. A mesura que augmenta el ritme de càrrega
la diferència entre l’estirament i la relaxació es fa més notable. L’àrea interior
que deixen els dos processos equival al treball irreversible, és a dir, l’energia
que es perd en forma de dissipació. La figura 21b mostra en escala logaŕıt-
mica el treball dissipat en funció del ritme de càrrega. Resulta interessant
comprovar com, a velocitats de càrrega molt baixes, la dissipació és encara
significativa (∼ 1000 kBT ). Això indica que el procés és molt irreversible a
les escales de temps del laboratori. Per tal de tenir CFD més reversibles seria
necessari reduir molt el ritme de càrrega de l’experiment.

Aquesta irreversibilitat té a veure amb les escales de temps. Efectivament,
la força aplicada sobre la molècula d’ADN canvia molt més ràpidament que
el temps que l’ADN necessita per acomodar-se a la nova força. Això fa
que l’ADN no pugui assolir l’equilibri i presenti aquesta irreversibilitat. El
paisatge d’energia lliure de la molècula permet comprendre el mecanisme
que governa la ruptura. Efectivament, el paisatge d’energia lliure presenta
barreres energètiques considerables, de manera que la molècula pot quedar
atrapada en estats metastables. Les barreres disminueixen la seva alçada
a mesura que augmenta la força fins al punt que la ruptura allibera gran
quantitat d’energia de manera irreversible.
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Figura 21: Experiments a força controlada. (a) Cicles d’estirament i relaxació a diferents
ritmes de càrrega. (Panell inserit) Treball dissipat (area tancada pel cicle d’estirament
i relaxació) vs. ritme de càrrega. (b) Histèresi en escala logaŕıtmica. Mateix gràfic que el
panell inserit en el panell a. La corba cont́ınua tan sols és una guia visual.

0.6.1 Propietats d’escalament de la ruptura

L’any 2002, Lubensky i Nelson varen publicar un extens treball teòric sobre
la ruptura de molècules d’ADN a força controlada [29]. En aquell article es
feia una predicció del nombre de parells de bases que s’obrien a mesura que la
força s’acostava al valor de la força de coexistència (∼ 15 pN). Es tracta d’una
relació en forma de llei de potències que està ı́ntimament relacionada amb els
fenòmens que no presenten una escala caracteŕıstica. En el cas concret que
ens ocupa, aquesta relació indica que la ruptura de l’ADN no té una escala
caracteŕıstica, ja el mecanisme d’obertura de la molècula no depèn de la seva
llargada. És a dir, totes les seqüències, tinguin la llargada que tinguin, s’obren
de la mateixa manera a mesura que ens acostem a la força de coexistència.
A partir dels nostres experiments, es pot comprovar la validesa d’aquesta
predicció (vegeu la Fig. 22). L’ajust és acurat i mostra que la predicció de
Lubensky i Nelson és satisfactòria. En qualsevol cas, caldria comprovar els
resultats per a la molècula de 6.8 kpb.

0.6.2 Conclusions

Encara que la força no és el paràmetre de control natural de les pinces òpti-
ques, es poden realitzar experiments a força controlada mitjançant un algo-
ritme de realimentació. Les CFD a força controlada tenen un aspecte molt
diferent les CFD a distància controlada. Per altra banda, la ruptura a força
controlada presenta una gran irreversibilitat i els cicles d’estirament i relaxa-
ció mostren una elevada histèresi. La molècula d’ADN no té temps suficient
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Figura 22: Propietats d’escalament a la transició de ruptura. La corba vermella mostra
les dades experimentals obtingudes de la ruptura d’una cadena de 2.2 kpb a un ritme
de càrrega de 0.05 pN/s. La corba blava és l’ajust de les dades a la funció predita per
Lubensky i Nelson: m = A/(fc − f)2, on m (0 < m < 1) és la proporció de bases obertes
de la molècula, A és un paràmetre d’ajust i fc ' 19 pN és la força cŕıtica. El panell inserit
mostra les mateixes dades en escala logaŕıtmica.

per assolir l’estat d’equilibri en les escales de temps que dura l’experiment.
El paisatge d’energia lliure permet entendre el mecanisme d’aquest fenomen.
Finalment, s’ha comprovat que els experiments presenten les propietats d’es-
calament que foren predites en aquest tipus de sistema.
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0.7 Perspectives futures i conclusions

La major part dels treballs cient́ıfics s’inicien amb una pregunta. Per tal de
respondre-la cal seguir el mètode cient́ıfic, segons el qual cal recollir proves,
avaluar cŕıticament els resultats i formular conclusions. Sovint, en aquest
procés sorgeixen qüestions i problemes no previstos que cal anar solucionant.
Però en altres ocasions les qüestions queden obertes i cal posposar-les per a
futures investigacions.

En aquesta tesi han sorgit noves preguntes. Algunes s’han hagut de resol-
dre per a prosseguir amb la investigació, com és el cas de la resposta elàstica
de la cadena individual en el caṕıtol 5. D’altres han resultat ser interessants
però es desviaven del focus d’atenció. A continuació, s’enumeren algunes de
les qüestions obertes més rellevants.

Com es poden obtenir les entalpies i entropies de formació dels
parells de bases a partir dels experiments de ruptura?

Els experiments i l’anàlisi de dades del caṕıtol 5 permeten obtenir les energies
de formació dels parells de bases. Però els experiments de ruptura no do-
nen informació sobre les entalpies i entropies d’hibridació. Per tal de mesurar
aquestes quantitats, seria necessari repetir els experiments a una temperatura
diferent. Això comporta seriosos reptes experimentals, ja que la temperatura
produeix dilatacions en l’instrument que modifiquen el camı́ òptic i com-
prometen la qualitat de les mesures. Per tant, seria necessari dissenyar un
sistema experimental que permeti controlar la temperatura. Mesurar l’ental-
pia i l’entropia pot resultar útil en aquelles situacions en què els experiments
de volum (calorimetria, absorció ultraviolada) no són factibles perquè es pro-
dueixen interaccions entre molècules. Els experiments de molècula individual
eviten aquests inconvenients.

Es pot resoldre un model anaĺıtic que descrigui les RCR?

En aquesta tesi s’ha vist que el model mesoscòpic i el model de joguina
donen bons resultats a l’hora de predir el comportament dels experiments de
ruptura. Però aquests models no són anaĺıtics i cal resoldre’ls numèricament.
Això passa perquè el model depèn fortament de la seqüència de bases de
la molècula. Resoldre un model anaĺıtic, que tingui en compte la mitjana
sobre les seqüències, proporcionaria una millor comprensió del fenomen de
ruptura. Aquest tipus de problemes resulten atractius per als f́ısics teòrics
que es dediquen a la f́ısica matemàtica.
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La resposta elàstica de la cadena senzilla d’ADN depèn de la se-
qüència?

En el caṕıtol 5 s’ha vist que una correcció de sal heterogènia descriu millor
els resultats obtinguts. L’origen d’aquesta heterogenëıtat és incert. Alguns
estudis suggereixen que la cadena senzilla d’ADN depèn de la seqüència,
mentre que d’altres suggereixen que és la cadena doble. Respondre aquesta
qüestió seria útil per tots aquells cient́ıfics que treballen amb experiments
que involucren cadenes senzilles d’ADN.

Com es pot seqüenciar l’ADN a partir dels experiments de ruptura?

Seqüenciar una molècula d’ADN consisteix a determinar la seqüència de bases
que la formen. Per a seqüenciar, actualment s’utilitza un mètode bioqúımic
basat en el mètode de Sanger, que es va descobrir l’any 1975 [30]. Aquest
mètode té l’inconvenient que perd eficiència per seqüències més llargues de
500-1000 pb. Els experiments de ruptura podrien, a priori, seqüenciar mo-
lècules d’ADN de grandària indefinida sense perdre eficiència. La raó és
que el temps de ruptura d’una molècula és lineal amb la longitud d’aquesta.
Però per tal d’aconseguir-ho, és necessari replegar la cadena senzilla d’ADN
a mesura que es va alliberant i augmentar significativament la rigidesa de la
trampa, tal i com s’ha establert en el caṕıtol 4. La seqüenciació amb força
és una aplicació interessant dels resultats establerts en aquesta tesi.

Conclusions

La irrupció de la nanociència i la nanotecnologia ha donat una nova empenta
a la instrumentació. Això ha permès que les tècniques de molècula individual
s’hagin desenvolupament de manera extraordinària durant la primera dècada
del segle XXI. Aquest tipus d’experiments han beneficiat a la biof́ısica i han
despertat l’interès de la comunitat cient́ıfica pels sistemes biològics.

Les pinces òptiques és una tècnica que ha recollit gran fruits dins del
camp de la biof́ısica. Aquest sistema experimental resulta molt atractiu per
a realitzar experiments sobre biomolècules perquè es tracta d’una tècnica
no invasiva que proporciona informació quantitativa. Les minipinces són
un muntatge experimental compacte, prećıs i acurat. El seu calibratge és
independent de la major part de paràmetres experimentals, cosa que facilita
molt el treball dels experimentadors. A més, és un instrument versàtil de
manera que es poden ampliar el tipus d’experiments que es poden realitzar.

La molècula d’ADN té un paper central en els éssers vius perquè s’en-
carrega d’emmagatzemar la informació genètica de les cèl·lules. Aquestes
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necessiten separar les dues cadenes que formen la doble hèlix per tal d’acce-
dir als parells de bases que codifiquen les protëınes. La ruptura dels parells
de bases es pot aconseguir in vitro mitjançant les minipinces. Les CFD ob-
tingudes tenen forma de dent de serra i depenen de la seqüència de bases. El
model mesoscòpic basat en el model de primers vëıns descriu correctament
aquestes CFD.

Des d’un punt de vista f́ısic, la ruptura d’ADN és un procés de fractu-
ra. Les CFD mostren regions cooperatives de ruptura. Mitjançant tècniques
d’anàlisi bayesià es poden inferir els estats intermediaris que s’observen du-
rant la ruptura i la grandària de les regions cooperatives, que presenten un
rang de 10-80 pb. El model de joguina és una versió simplificada del model
mesoscòpic que recull les propietats estad́ıstiques bàsiques dels experiments
de ruptura. Els experiments no permeten discriminar RCR menors de 10 pb.
Per altra banda, l’obertura de bases d’una en una es pot aconseguir augmen-
tant la rigidesa de la trampa òptica fins a 100 pN/nm. Curiosament, aquest
valor es correspon amb la rigidesa d’un sol nucleòtid de la cadena senzilla
d’ADN. Això permet a la maquinària cel·lular accedir a la informació genè-
tica d’una base en una base, sense necessitat de tenir un gran nombre de
bases obertes. D’aquesta manera, les bases no s’exposen al solvent i s’eviten
possibles d’anys.

Els valors de les energies lliures UO no descriuen quantitativament les
CFD dels experiments de ruptura. Aquests valors es poden modificar per
tal d’ajustar les mesures experimentals al model mesoscòpic. L’ajust es fa
mitjançant un algoritme Monte Carlo que es mostra robust i dóna soluci-
ons satisfactòries. Els resultats mostren una dependència heterogènia de les
10 EFPB amb la sal. A més, els resultats prediuen correctament les tempe-
ratures de desnaturalització dels oligonucleòtids.

Les minipinces també permeten realitzar experiments a força controlada
mitjançant un algoritme de realimentació. Les CFD a força controlada són
irreversibles a l’escala de temps de l’experiment i sempre presenten histèresi.
El nombre de bases obertes en funció de la força obeeix les lleis d’escalament
predites.

Aquesta tesi s’ha centrat en les propietats estad́ıstiques i termodinàmiques
dels experiments de ruptura d’ADN realitzats amb pinces òptiques. Aquest
estudi ha respost algunes preguntes i n’ha deixat altres d’obertes. El següent
pas és estendre el treball per comprendre les extraordinàries propietats de
l’ADN i trobar aplicacions pràctiques basades en els descobriments exposats
aqúı.
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Summary

Molecular biophysics is a scientific discipline that studies biomolecules. This
discipline has experienced a revolution thanks to the development of single-
molecule techniques. These techniques allows us to obtain new and valuable
information that complements the traditional bulk assays. Optical tweez-
ers is an experimental technique that uses the radiation pressure of light to
exert forces on a tiny dielectric microsphere. Biomolecules can be bonded
to such microspheres in order to perform pulling experiments at the single-
molecule level. Minitweezers is a dual counter-propagating laser tweezers
instrument that measures the force exerted on the microsphere by conserva-
tion of light momentum. The instrument has high stability and resolution
(0.1 pN in force and 0.5 nm in distance) in the measurements. The prop-
erties of the DNA molecule can be studied with the Minitweezers at the
single-molecule level. The DNA is a biomolecule that forms a double helix
that stores the genetic information of the cells. DNA unzipping experiments
consist in pulling apart the two strands of DNA by exerting mechanical forces
on the extremities of the molecule. In such process, base-pairs (bp) are dis-
rupted sequentially, showing a succession of cooperative unzipping regions
(CUR) of different sizes (between 1–100 bp). In a DNA unzipping experi-
ment, we measure the force vs. distance curve (FDC) of the molecule, which
has a characteristic sawtooth-like shape that is sequence-dependent. The
FDC is analyzed with a Bayesian approach to infer the size distribution of
the CURs. The experimental accuracy does not allow to observe CURs of
sizes below 10 bp. Furthermore, the unzipping of one bp at a time can only
be achieved by having an optical trap stiffness value higher than 0.1 N/m,
which corresponds to the stiffness of a single nucleotide of DNA. This has
been deduced from a toy model specifically introduced to study the CUR
size distributions. In addition, the FDCs are theoretically predicted by the
nearest-neighbor (NN) model adapted to unzipping experiments. The NN
model describes the hybridization reaction of two strands of DNA. By fitting
the experimental FDCs to the model, the unique 10 NN bp free energies
are obtained with 0.1 kcal·mol−1 precision between 10 mM–1 M of mono-
valent salt concentration. The results show that the unzipping FDCs and
the melting temperatures of oligos are correctly described with a specific
salt correction for each of the 10 NN bp free energies. Differently from the
previous experiments, the unzipping of DNA can also be performed at con-
trolled force. These last type of experiments exhibit large hysteresis and
irreversibility. The free energy landscape is a tool that helps to understand
the unzipping at controlled force. Finally, the work presented in this thesis
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can be extended to find practical applications of DNA unzipping, such as
sequencing of DNA by force, and measurement of thermodynamic properties
of biomolecules in conditions not accessible by bulk methodologies.
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List of abbreviations

AD anti-digoxigenin
ADC analog to digital converter
AFM atomic force microscopy
API application programming interface
CF controlled force

CUR cooperative unzipping region
DAC digital to analog converter
DFC distance versus force curve
DNA deoxyribonucleic acid

dsDNA double-stranded DNA
FBG fiber Bragg grating
FDC force versus distance curve

FDCf force versus distance curve at controlled force
FDCx force versus distance curve at controlled position

FEC force versus extension curve
FJC freely jointed chain

FRET fluorescence resonance energy transfer
FFT fast Fourier transform

FT fluctuation theorem
GLMT generalized Lorentz-Mie theory

HOT holographic optical tweezers
LOT laser optical tweezers
MC Monte Carlo
MT magnetic tweezers
NA numerical aperture
NN nearest neighbor

NNBP nearest neighbor base pair
PBS polarizing beam-splitter
PIC programmable interface controller
PSD position sensitive detector

PWM pulse width modulation
RNA ribonucleic acid

SA streptavidin
SD steepest descent

SLM spatial light modulator
SME single-molecule experiments
SPI serial peripheral interface

ssDNA single-stranded DNA
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TE transverse electric
TEM transverse electromagnetic

TM transverse magnetic
UO unified oligonucleotide

WLC worm-like chain



La inspiración existe, pero tiene
que encontrarte trabajando.

Pablo Ruiz Picasso (1881-1973)

The scientist is not a person
who gives the right answers, he
is one who asks the right
questions.

Claude Lévi-Strauss (1908-2009)

Chapter 1

Introduction

Most scientists agree that research requires imagination and tenacity. Once
these two virtues are gathered, the discovery of a breakthrough is a matter of
luck. Nevertheless, the history of science is not only made of breakthroughs.
Instead, it is made of discoveries of different importance. Some discoveries
just represent a little expansion of our knowledge. Nowadays, the frontiers
of the science are expanded at the highest rate ever, thanks to millions of
researchers from all over the world. However, science is not a collection of
phenomena. It is also a frame to interpret the results. Therefore, all the little
investigations need to be unified from time to time. Precisely, this is what
great scientists do. For instance, Isaac Newton unified the celestial and the
terrestrial mechanics in his book Principia. Indeed, a new paradigm usually
provides a simplified way to look at phenomena and establishes a landmark
to promote new investigations.

In 1828, the German chemist Friederich Wöhler accidentally unified the
chemistry and the biology with a simple experiment. The experiment con-
sisted in a chemical reaction in which two inorganic substances (silver cyanate
and ammonium chloride) were mixed to produce an organic composite (urea).
At that time, scientists believed that the inanimate (inorganic) matter was
fundamentally different from the living (organic) matter. Wöhler’s discovery
was followed by other experiments supporting his observations. The scien-
tists finally convinced themselves that both types of matter were made of
atoms and there was no intrinsic difference between them. In 1903, the Ger-
man scientist Carl Neuberg coined the word Biochemistry, to refer to a new
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discipline that studied the processes of life (respiration, fermentation, etc.)
from a chemical point of view.

The birth of biophysics was not that straightforward. Instead, it took
decades to clarify whether physics could be used to answer biological ques-
tions [31]. In the mid 19th century, the School of Berlin was a group of scien-
tists who firstly applied physics to the study of living systems. They strongly
believed that physiology (i.e., the functioning of living systems) could be re-
garded as physical phenomena. For instance, Emil DuBois-Reymond mod-
eled the nerves as an electrical system. Another example is Carl Ludwig, who
firstly measured the blood pressure. This scientific discipline was known as
medical physics. However, it remained in standby because the physics of the
19th century could not provide explanations to all phenomena observed. In
1944, Erwin Schrödinger, the Austrian physicist who co-formulated the dy-
namics of quantum systems, wrote an inspiring book entitled What Is Life?
[32]. The book essentially suggested a physical approach to the questions con-
cerning biology. In 1953, Watson and Crick discovered the double-helix struc-
ture of DNA (i.e., one of the most significant molecules in biology) by using
X-ray diffraction (i.e., an experimental technique developed by physicists) [1].
This achievement represents the starting point of modern biophysics, which
mainly focused on the structure and interaction of biomolecules and cells.
Finally, the single-molecule techniques developed during the last decade of
the 20th century represented a new revolution in the field of biophysics [33].

Figure 1.1: Portrait of Friederich Wöhler (1800-1882), who discovered that urea (organic
matter) could be synthesized from inorganic matter (left picture). James Watson and
Francis Crick showing the double-helix structure of DNA in 1953 (right picture).

The aim of this chapter is to focus the object of study of this thesis. We
will overview the questions of interest in biophysics; we will state the scope
of this work within the field of biophysics; and we will summarize the main
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results presented here.

1.1 What is biophysics?

Biophysics is a scientific discipline that uses the tools and the methods of
physics to study biological systems [34, 35]. In other words, biophysics is the
study of physical processes governing the living cells. This general definition
includes a variety of subtopics that focus on a wide range of levels, from
molecular processes to ecological phenomena. Biophysicists also look at sev-
eral aspects of biological systems such as structure, dynamics, mechanisms,
complexity, applications, etc.

Figure 1.2: Some topics in biophysics. (a) Molecular biophysics. Structure of a DNA
polymerase [36]. Picture of Protein Data Bank ID: 1TAU, created with PyMOL software
(DeLano Scientific, 2002). (b) Cellular biophysics. Schematic representation of a cell.
(c) Systems biology. A network of genes and their interaction.

The term biophysics is the result of mixing the words biology and physics.
This suggests that both branches of knowledge are blended into a new disci-
pline. However, the skills required in biology are very different from the ones
required in physics. So the intersection between them is minimal. Indeed,
biology is descriptive and complex, while physics is conceptual and simplistic.
Biology is worried about the details, while physics tends to establish general
laws. How can both ways reconcile?

A traditional answer to this question proposes either a biological or a
physical approach to biophysics [37]. In the first case, physics is the servant
to study a biological problem. Physicists contribute to biology by providing
experimental techniques and mathematical tools. In the second case, the
biologist provides a system that is studied by physicists like any other physical
system. The physicist tries to find and understand new physical phenomena
to establish new concepts and laws. Although the difference between both
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approaches seems fuzzy, there is a central question that clarifies this. Who
benefits from research in biophysics? If the answer is biology, we are facing
a biological approach. Otherwise, this is a physical approach. Let us focus
on two examples.

• The discovery of the double-helix of DNA [1] represented a great step for
biology, that finally unveiled the carrier of genetic information in living
beings. However, no new physics was applied because X-ray diffraction
was known since the beginning of the 20th century. Besides, such dis-
covery did not contribute to physics because no new phenomenon was
discovered. This is an example of a biological approach in which the
knowledge of biology is expanded by physics.

• An opposite example is the experimental verification of the Worm-Like
Chain (WLC) model. The WLC model was developed by Kratky and
Porod in 1949 to describe the elasticity of single semi-flexible polymers
[38]. In 1992, Smith and co-workers pulled and measured the force
vs. distance curve of a single DNA molecule using magnetic tweezers
[39]. They showed that the WLC model predicts the elastic response
of DNA [40]. In this case, a little contribution was made in biology.
The synthesis of DNA was already known and no new biological insight
was gained from the experiments. On the other hand, the experiment
required the development of physical instrumentation (magnetic tweez-
ers) and tested a purely physical model. Here, biology helped physics
to expand its knowledge. This is a physical approach to biophysics.

Still, there are reluctances in the collaboration between physicists and
biologists. Some biologists dislike the simplistic approach of physicists and
prefer not to get rid of details. Some physicists consider that biosystems are
too complicated for calculations. In fact, physicists feel much more attracted
by biology. Indeed, they discover new phenomena where physical laws can
be applied.

Nevertheless, this dual approach to biophysics is being left behind. Uni-
versities from all over the world devote degrees, masters, PhD programs and
professors exclusively to biophysics. Besides, research institutes are created
as a response to the demands of biophysics. All these efforts are changing the
way we look at biophysics. Biophysics is no longer ”physics for biologists” or
”physicals methods applied to biology”. On the contrary, biophysics is a dis-
cipline defined by its own scientific questions [41]. Biophysicists have become
a new kind of researchers. They do not want to explain the biological pro-
cesses in exact detail nor with an ideal model. They face scientific issues by
extracting general laws of biological systems without excessive simplification.
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Biophysics is closely related with other disciplines such as biochemistry,
nanotechnology or biomedicine. The border among them is not sharp. Rather,
there is an overlapping of topics, experimental techniques and theoretical
frameworks. Though, the most significant feature of biophysics is the use of
measurements and quantitative information.

1.2 Molecular biophysics

As mentioned before, biophysics covers a wide range of topics related to
living systems. The object of study includes biomolecules, cells, organisms
and ecosystems. Some studies focus on the structure of the elements such
as proteins, membranes, tissues, etc. Some others focus on the dynamics
such as protein folding, cell motility, self-assembly. Another topic is systems
biology, that focuses on the dynamics of complex systems such as networks
of proteins or population growth.

Molecular biophysics is a sub-topic of biophysics that studies the struc-
ture, function and kinetics of biomolecules. There are two main types of
biomolecules: nucleic acids (DNA and RNA) and proteins, which include
enzymes and molecular motors. Biomolecules are the building blocks of
cells and they are also made of subunits (amino acids, nucleotides). So
biomolecules are located in the middle level within the hierarchy of orga-
nization of the living systems (from atoms to ecosystems). The physical
regime of biomolecules is governed by thermal fluctuations. The typical in-
teractions of biomolecules involve weak bonds such as hydrogen bonds or
Van der Waals forces. These bonds can be broken by thermal fluctuations.
So the properties of biomolecules are determined by bonds that have similar
energies to the ones of the surrounding thermal bath. Here emerges on of the
most interesting questions in molecular biophysics. How can molecules work
embedded in such thermal fluctuations?

Hot topics in molecular biophysics are RNA and protein folding, mechano-
chemistry of molecular motors, ionic channel transportation and DNA-protein
interaction. The range of experimental techniques available is very wide.
Apart from the well known biochemical techniques such as PCR and elec-
trophoresis, biophysicists use X-ray diffraction, calorimetry, nuclear magnetic
resonance, electronic and confocal microscopy among others. Finally, the de-
velopment of single-molecule techniques such as AFM or optical tweezers
have provided a new insight in molecular biophysics. The quantitative mea-
surements obtained with these techniques allow biophysicists to understand
the structure and the function of biomolecules and formulate models to char-
acterize and predict their behavior. This will be discussed in the next section.
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1.3 Single-molecule techniques

Traditionally, the experiments in chemistry and biology have been performed
in bulk. Bulk experiments involve a large amount of substance (moles, grams,
milliliters, etc.). Whatever the experiment is (reaction, measurement, detec-
tion), it is performed on a large collection of molecules. These experiments
show the average behavior of the molecules and they have been used to set
the basis of experimental sciences for centuries.

The detection of single particles has been pursuit by scientists since John
Dalton proposed the modern atomic-molecular theory of matter in 1808.
Physicists have been able to detect photons, electrons and sub-atomic par-
ticles using sensitive detectors (photomultipliers, particle accelerators, etc.).
However, some of the most interesting phenomena in physics are cooperative
and involve lots of particles: phase transitions, Bose-Einstein condensates. So
single-molecule techniques might seem that have little to offer when studying
elementary particles or molecules.

However, biomolecules have internal structure and they show complex be-
havior. So the study of biomolecules benefits from single-molecule techniques
[42]. The key point here is that matter is viewed as the result of gathering
complex individuals. Using single-molecule experiments (SME) the individ-
ual molecules can be manipulated an measured one at a time. The advantage
is that the information is not averaged. Instead, one can measure deviations
from the average bulk behavior and probability distributions. For instance,
biophysicists have been able to measure the step size distribution of molecular
motors; the energy consumption of enzymes; and the kinetics of biochemi-
cal reactions [33]. All these new amount of information complements the
traditional bulk assays.

The first SME in biophysics were performed in the early 1990’s [43]. Block
et al. were able to characterize the movement of kinesin (i.e., a molecular
motor in charge of transportation of substances within the cell) at the single
molecule level using optical tweezers [44]. Later, Finer et al. described the
working of myosin, another molecular motor that drives muscular contrac-
tion [45]. The SME of other molecular motors like F1-ATPase [46] or RNA
polymerase [47] were extensively studied. Among other properties of the mo-
tors, these works measured the step size, the stall force or the efficiency at
different ATP concentrations. All these magnitudes are hardly measured in
bulk. Other SME experiments [2] have focused on the elongational [48] and
torsional [33] elasticity of single DNA molecules and the folding/unfolding
kinetics of RNA [49] and proteins [50].

The development of SME have pushed the instrumentation forward. The
technical devices related with positioning (piezoelectric crystals, motor driven
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stages), detection (position sensitive detectors, high frequency cameras) and
transduction (nanometric cantilevers, magnetic microspheres) have greatly
expanded in the last years. Biochemistry has also standardized protocols
and reactions commonly used in SME (labeling kits, fluorescent tags). The
most productive single-molecule techniques are single-molecule fluorescence,
Atomic Force Microscopy (AFM), Magnetic Tweezers (MT) and Laser Op-
tical Tweezers (LOT). Figure 1.3 shows a brief description of them.

Figure 1.3: Single-molecule techniques. (a) Fluorescence resonance energy transfer
(FRET). FRET is based on the transmission of energy between fluorescent dyes (donor
and acceptor). The efficiency of such transmission depends on the distance between the
dyes. It can be used to detect the folding/unfolding of a molecule. (b) AFM. AFM pro-
duces and measures the forces applied on a molecule (depicted in green). The force applied
is directly related to the bending of a solid state cantilever, whose elasticity is known. The
bending of the cantilever is measured from the deflection of a laser beam reflected on the
cantilever. (c) MT. The molecule is attached between a magnetic bead and the surface of
a cover glass. MT apply forces by immersing the bead in a magnetic field gradient. The
force is measured by determining the position of the bead. The magnetic field is produced
by magnets that can be moved and rotated to exert force and torque on the molecule.
(d) LOT. LOT exerts forces on dielectric beads by using the pressure of radiation of a
laser beam. A detailed description will be given in chapter 2.

SME are continuously evolving. The original pioneering experiments can
be reproduced by most labs and such experiments have become starting
points to study more complex systems. The current trend is to improve
and combine techniques and perform several single-molecule experiments in



62 Introduction

parallel. For instance, optical tweezers initially had one trap. Nowadays,
most of the new constructed optical tweezers have two or more traps [51].

The research in molecular biophysics is definitely tied to single-molecule
techniques.

1.4 Thermodynamics of small systems

The thermodynamics of small systems (also known as mesoscopic dynamics)
is a subtopic of physics that deals with systems that have an intermediate
scale between the microscopic and the macroscopic systems [3]. At this inter-
mediate scale, the typical number of microscopic components of the system
is much larger than 1 but much smaller than Avogadro’s number. A charac-
teristic property of these systems is that the energy exchanged between the
system and the environment is of the same order of magnitude than the en-
ergy fluctuations. As a result, the energy fluctuations of the system contain
valuable and meaningful information.

According to the classical statistical mechanics [52], the relative fluctua-
tions of observable magnitudes decrease as ∼ 1/

√
N , where N is the number

of particles of the system. Traditionally, the fluctuations of macroscopic ther-
modynamic systems (gas, magnet) have been hardly observed (except for the
critical points), due to the large number of particles involved in these systems
(N ∼ 1023). However, the boom of single-molecule techniques have provided
a new collection of experiments that exhibit significant fluctuations. Indeed,
the biomolecules used in these experiments have few degrees of freedom (thou-
sands of atoms). This has been very useful for the physicists interested in the
equilibrium and non-equilibrium thermodynamics of small systems. In fact,
some non-equilibrium theorems have been firstly tested on single-molecule
experiments [53, 54].

Theorists devoted to the thermodynamics of small systems have focused
their attention on the Fluctuation Theorems (FT). The FT relate the equi-
librium properties of a system with the work performed on this system along
irreversible processes. This was initially stated by Jarzynski [5] and gener-
alized by Crooks [4]. The FT allowed to establish generic results (i.e., non-
system dependent) in systems out of equilibrium. Nowadays, the application
of FT in biophysics is quite frequent in order to obtain the free energies of
formation of biomolecules. The experiments with biomolecules have also con-
tributed to expand the FT. In particular, FT have been extended to include
the partial equilibrium, which allows to infer the free energy of formation of
different conformational states of biomolecules [55].

One of the more interesting topics in the thermodynamics of small sys-
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tems are molecular motors of the cell. These systems are strongly affected
by the environment in which they perform their functions (transportation,
polymerization). In fact, thermal fluctuations dominate the behavior of such
motors. In spite of the fluctuations, these motors are still extremely efficient.
How can these systems work properly embedded in such wild conditions? The
single-molecule micro-manipulation techniques shed light into this question
[56].

Figure 1.4: Artistic view of a kinesin at work. Kinesin (in red) is a molecular motor that
carries vesicles of substances (yellow) by walking along the microtubules (violet) located
within the cell.

1.5 Summary of work presented in this thesis

This PhD thesis is about the statistical and thermodynamic properties of
DNA unzipping studied with optical tweezers.

Chapter 2 contains a thorough description of the optical trapping principle
and the Minitweezers instrument used in the experiments reported in this
thesis. The physics laying behind the optical tweezers is explained step by
step. The technical details about the implementation of the instrument are
also given. The maintenance (calibration, design of new protocols) of the
instrument completes the chapter. All the information is complemented in
the appendices.

Chapter 3 focuses on the molecule of DNA. There is an introductory
description of the structure of the DNA. This description sets the basis to
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understand the goal of the unzipping experiments performed with optical
tweezers. Then the chapter describes the unzipping experiments and the
models used to illustrate the phenomena observed.

Chapter 4 is a closer look to the statistical properties of the metastable
states observed during DNA unzipping. The molecule of DNA is viewed as a
system that exhibits cooperative transitions between its intermediate states.
A toy model is developed to simplify and understand this phenomenon. This
model also allows us to predict the experimental conditions under which
sequencing of DNA by mechanical unzipping will be feasible.

Chapter 5 explains in detail how to extract the free energy of formation
of duplexes of DNA from unzipping experiments. This is an original new
approach in which the free energies of the building blocks of DNA (i.e., the
base-pairs) are directly obtained. The chapter describes the analysis of the
experimental data and the theoretical model that is used to reach this goal.
The chapter concludes with a discussion about the salt dependence of free
energies, one of the main conclusions of this thesis.

Chapter 6 is an exploratory study of DNA unzipping at controlled force.
The chapter compares the controlled force experiments with those performed
at controlled position and discusses the origin of the differences between them.
There is also a brief investigation of the causes of the large hysteresis and
irreversibility observed at controlled force.

Finally, chapter 7 sketches some future works and perspectives open by
this thesis and summarizes the main conclusions derived from this PhD thesis.



And God said, “Let there be
light”. And there was light.
And God saw the light, that it
was good; and God divided the
light from the darkness.

Genesis, 1:3-4

Chapter 2

Optical tweezers

Light carries momentum. This is what James Clerk Maxwell deduced from
the equations of the electromagnetism [6]. The conservation of momentum
and energy leads to a transfer of these two quantities from the electromag-
netic field to the physical objects when they interact. Starting from Maxwell
equations, in 1908 Gustav Mie computed the rigorous solution for the electro-
magnetic field of a plane wave diffracted by a homogeneous sphere [57]. Since
then, the dispersion of light by small particles has been known as Mie theory.
Following Mie’s solution, Peter Debye calculated the mechanical force under-
gone by the spherical particle due to the radiation pressure of light [58]. The
effect of the radiation pressure is hardly observed in the macroscopic world.
However, in the microscopic level, the momentum of light might have the
same order of magnitude than the momentum of the microscopic objects. In
this situation, objects undergo forces that produce observable effects.

It was not until 1970 when Arthur Ashkin [7] firstly observed experimen-
tally the interaction between a laser beam and a tiny particle in the labora-
tory. Using one single laser, he could accelerate particles along the direction
of propagation of light. Moreover, combining two counter propagating lasers,
he could trap particles. Ashkin understood that the scattering and gradient
forces that pushed the particle were due to the interaction between the laser
beam and the particle. Ashkin and Dziedzin [59] observed the optical levi-
tation of a transparent particle. In that experiment, the scattering force of
a vertically directed laser beam was canceled by the weight of the particle
and the lateral restoring force was probed. Later, Ashkin [8] and collabora-
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tors observed for the first time the trapping of particles using a single laser
beam. They showed that the gradient force due to the focused laser beam was
higher than the scattering force inducing the trapping of the particle. They
also provided an explanation of trapping based on ray optics and they used
Rayleigh dispersion (which assumes that the particles are much smaller than
the wavelength of the laser) to estimate the trapping condition. Such device
for capturing small dielectric particles has been known as optical tweezers
and it has evolved rapidly to measure and control the applied forces.

The first attempt to measure the forces exerted by an optical trap was
done by Block et al. [60]. They inferred the maximum trapping force at
different laser powers from the viscous drag of a rotating bacterial cell. This
method was initially used in other biophysical experiments [61, 44] but it
could only provide information about the escape force, which limited the de-
sign of the experiment. The instrumentation and the applications evolved
together in the early 90’s. Denk and Webb [62] measured picometer displace-
ments of cells and beads using a phase interferometer. This pioneering work
set the bases of the virtual spring calibration technique widely used later to
measure forces [9]. It provided high bandwidth measurements that allowed
to observe the force fluctuations of a particle located in an optical trap. Kuo
and Sheetz used video detection of beads to measure the forces applied by the
optical tweezers [10]. Webb and co-workers used a photodetector to measure
the light deflected by a particle to measure the roughness of a surface with
nanometer precision [63]. This work inspired the detection of forces by light
deflection [11]. Finally, Simmons et al. measured the forces by projecting
an image of the bead to a quadrant detector [64]. A thorough description of
back focal plane force detection was published in 2006 [65].

The recent advances in optical trapping have focused in two main direc-
tions: 1) improvement of the resolution and accuracy of the instrumentation
and; 2) combination of new manipulation tools with optical tweezers [12].
Instruments with double optical traps are substituting the pioneering setups
that tended to use coverslips and micropipettes as anchor points. The advan-
tages of the double trap geometry are that they reduce the drift effects and
give more information about the thermal noise [13]. Besides, back focal plane
detection has become a standard setup to measure the position of the beads
and the force applied by the optical trap. For instance, Dame and coworkers
were able to create four optical traps by using acousto-optic deflectors [51].
This allowed them to simultaneously pull on two crossed strands of DNA and
study how H-NS proteins link these two molecules of DNA. Another way to
create double optical traps is the so-called time sharing technique [66]. It
consists on switching the position of the laser beam much faster than the
relaxation time of the bead, which effectively produces two optical traps.
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Moreover, it can be used to produce novel optical potentials, i.e., different
from the harmonic potential that induces a restoring force on the bead. Fi-
nally, the holographic optical tweezers (HOT) are a promising innovation in
which the experimentalist can control the number, size, shape and position
of the optical traps [14]. They are produced with spatial light modulators
(SLM) that modify the wavefront of the laser beam and produce a desired
pattern of traps. The main handicap of HOT is the measurement of forces.
Indeed, the scattered light of the beads trapped in several traps cannot be
split. Therefore, the force exerted on each bead cannot be measured inde-
pendently. Besides, dynamical HOT require significant computational time
to generate the holograms. Although successful algorithms have been im-
plemented [67, 68], the repositioning of the optical traps is also limited by
the refreshing time of the SLM (∼ 60 Hz). Nevertheless, the HOT are a
starting point to parallelize single-molecule experiments by producing arrays
of optical traps and manipulate tridimensional biological systems at will.

The hybrid tools combine optical tweezers and other techniques. Bryant
et al. used a rotating micropipette to induce torque on a DNA molecule
[69]. The torque has also been exerted by using rotating magnets and para-
magnetic beads embedded in the surroundings of an optical trap [70]. Stud-
ies of Laguerre-Gaussian laser modes (which are different from the axially
symmetric TEM00 mode) have shown that they carry angular (and linear)
momentum that can be transfered to the bead and induce torque [71, 72].
However, none of the previously mentioned experimental techniques were
able to directly measure the torque exerted on the trapped particles. The
simultaneous exertion and measurement of torque can be achieved by using
cylindrical or birefringent beads (i.e., beads with two indexes of refraction)
[73]. The fast axis of a birefringent particle tends to align with the polar-
ization of the beam. The torque can be directly measured by analyzing the
circular polarization of the outcoming light. Apart from the torque, optical
tweezers have also been combined with other techniques such as nanopores
[74] and fluorescence [75, 76]. Optical tweezers will eventually become a stan-
dard tool for the biophysicist. The noninvasive nature of optical trapping and
its customizability makes it an ideal technique to carry out experiments on
biological systems.

This chapter focuses on the description of the minitweezers, the optical
tweezers instrument used to perform the DNA unzipping experiments de-
tailed on the next chapters. After explaining the physical principles that lie
behind the trapping of particles, we will deepen into the technical details of
the instrument.
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2.1 Optical trapping principle

2.1.1 Physics of optical trapping

There are several theories in physics to describe the interaction between light
and matter: from the very fundamental Quantum Electrodynamics of elec-
trons and photons to the Mie scattering of atmospheric particles. Thus,
there is an appropriate theory for each scale of energy and mass involved in
the interaction. The optical tweezers instruments devoted to experimental
biophysics deal with interactions that are correctly described by classical the-
ories (i.e., Maxwell’s electromagnetism). In this classical regime, the forces
exerted on matter by light are known as radiation pressure. The radiation
pressure is the result of light-matter interaction and includes different phe-
nomena such as absorption or scattering of light. The purpose of an optical
tweezers setup is to control the radiation pressure of light in order to apply
forces on tiny objects.

Although all optical forces exerted on a particle arise from the same
physics, they are usually split into two main contributions: the scattering
force and the gradient force. In both cases, the change in the light momen-
tum is the ultimate responsible of the force exerted on the particle. The
scattering force tends to push the particle along the beam in the direction
of propagation, while the gradient force pushes the objects towards the re-
gions of highest light intensity. If the light is correctly conditioned (in terms
of collimation, intensity, aberration, etc.) the scattering and gradient forces
can be combined to apply controlled forces on the particle. An optical trap
is formed by focusing a laser beam in a small region so that a transparent
particle feels a restoring force that tends to take it to the region of maximum
intensity of light. An optical trap can only be formed if the gradient force
along the optical axis is stronger than the scattering force that pushes the
bead out of the focal point.

There are three main theoretical approaches to the physics of optical
trapping, depending on the ratio between the wavelength λ of the light and
the diameter of the particle d. In the ray optics (or Mie) regime, the particle
is very large compared to the wavelength (d � λ), whereas in the Rayleigh
regime the opposite is true (d� λ). The calculation of optical forces in the
intermediate regime (d ≈ λ) is quite complicated and requires the solution
of the Maxwell’s equations with the appropriate boundary conditions. It can
be achieved by means of the Generalized Lorenz-Mie Theory (GLMT) [15].
Most of the work done with optical tweezers in biophysics falls in this last
case, where infrared lasers have a wavelength of λ ' 0.8-1.2 µm and the
trapped particles are spherical beads of d ' 2-4 µm.
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The ray optics regime

In this regime, the wavelength of the light is much smaller than the typical
dimensions of the object and the electromagnetic properties of radiation can
be neglected (neither diffraction nor undulating effects are considered). This
is the case of experiments in which cells are trapped using infrared lasers
[77, 60]. In the ray optics description, a light beam is decomposed into
individual rays characterized by their intensity and direction that follow the
laws of geometrical optics. The ray tracing of each individual ray across the
surfaces of the object (reflections and refractions) allows to determine the
final direction of the ray and the net change in the linear momentum of light
(see Fig. 2.1a). The overall rate of change of momentum of all rays produces
a force on the object.

Figure 2.1: Ray optics regime. (a) Interaction of a collimated beam with a transparent
particle. The left picture shows the dispersion of light and the distribution of intensities
by reflections and refractions on the particle surface. The right picture shows a schematic
representation of the ray tracing. (b) The left picture shows the optical path of one
incident ray (i) that is reflected (r) and transmitted (t) on the particle. The central
picture shows the directions and magnitudes of the linear momentum associated with the
rays (blue arrows). The right picture shows how, due to the conservation of the linear
momentum, the difference of linear momentum (green arrow) between the incident (~pi)
ray and the sum of the reflected (~pr) and the transmitted (~pt) rays induces a transfer of
linear momentum to the particle (~pb). (c) The linear momentum transferred to the bead
and the resulting force have the same direction (left picture). The right picture shows

the two components of the resulting force: the scattering (~fscat) and the gradient (~fgrad)
forces.
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The resulting force exerted by a single ray of light on a transparent particle
is the result of reflections and refractions of the incident ray (see Fig. 2.1b).
A transparent particle is made of a material that does not absorb light (i.e.,
the index of refraction is a real -not complex- number) but the particle can
reflect and refract light. The linear momentum carried by the incident light
(~pi) is split into the two outcoming rays: the reflected and the transmitted
ray, each one carrying a different amount of linear momentum (~pr and ~pi
respectively). The balance between them is the resulting linear momentum
transferred to the bead ~pb:

~pi = ~pr + ~pt + ~pb

~pb = ~pi − (~pr + ~pt). (2.1)

The amount of linear momentum transferred per unit of time determines the
force applied to the bead (~fb):

d~pb
dt

= ~fb. (2.2)

Usually, the ray reflected on a transparent particle is much weaker compared
to the transmitted ray. So in most cases the reflected ray can be neglected.
The resulting force is usually split into two perpendicular components (see

Fig. 2.1c). The first one is the axial or scattering force (~fscat) and it is parallel
to the original direction of the beam. The second component one is called
radial or gradient force (~fgrad).

The calculation of the force exerted by a beam of light is performed by
repeating the previous computation for all the rays of the beam and sum-
ming their contributions (see Fig. 2.1a). This exerted force can be calculated
numerically [78]. The summation of the radial forces for each ray gives the
total gradient force exerted by the light beam. And so for the total scattering
force. The calculation is strongly dependent of each particular case: position,
collimation, intensity of the laser beam; and position, shape and index of re-
fraction of the particle (see Figure 2.2). Besides, the optical forces depend on
the polarization of the laser beam because the reflectivity and transmissivity
on the surface of the particle are given by the Fresnel reflection and trans-
mission coefficients respectively, which are polarization dependent. Thus,
the calculation is usually performed on circularly polarized light, where the
resulting trapping force is the average of the parallel and perpendicular po-
larizations. The forces calculated in the ray optics regime are independent
of the particle size although we know that this is not true in a typical exper-
imental setup. However, the ray optics regime provides a good qualitative
description of the trapping phenomenon.
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Figure 2.2: Interaction of a spherical particle with a light beam. Only a few rays of the
beam are represented. Inclusion of more rays does not modify the qualitative description.
No reflected rays are considered here. (a) Uniform light beam. The gradient forces of
symmetric rays (a and c) cancel each other. Ray b does not contribute to the total force
because it does not change its direction. Therefore, only the scattering forces contribute.
The resulting force is directed along the propagation of the light beam. (b) Gaussian
light beam with centered particle. Although the intensity of ray b is different from the
ones of rays a and c, the gradient forces of these two rays still cancel each other. Only
the scattering forces contribute to the total force. (c) Gaussian beam with off-centered
particle. The gradient force of ray a is higher than the one of ray c. The resulting gradient
force pushes the particle towards the region of maximum light intensity. The scattering
forces are also present. Therefore the particle tends to align with the axis of the Gaussian
beam (gradient force) and it is accelerated along the beam (scattering force).

In the particular case of a collimated Gaussian laser beam (i.e., a TEM00

mode) interacting with a spherical bead, the scattering force always pushes
the particle along the direction of the beam (see Figs. 2.2b,c). Therefore, the
particle cannot be confined (i.e., trapped) in a desired region of the space.
However, a focused (not collimated) Gaussian beam can be used to trap
the particle. The converging rays of the focused beam are deviated in such
a way that the scattering force can be positive or negative, depending on
the relative position between the center of the particle and the focus of the
laser beam (see Figs. 2.3a,b,c). So an axial restoring force arises and the
particle can be trapped. The more focused the laser beam, the higher the
restoring force. The combination of this new axial restoring force with the
radial one (already induced by the distribution of intensities of a Gaussian
beam) produce a 3-dimensional optical trap (see Fig. 2.3d). So the particle
is trapped by a central restoring force that tends to keep the particle in the
focus of the laser beam. In most optical tweezers setups, the trapping is
achieved by using Gaussian laser beams that overfill the back pupil of high
numerical microscope objectives.
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Figure 2.3: Optical trapping with a focused Gaussian beam. The reflection effects have
been neglected. In all cases, the reflection would just push the particle a little bit along
the direction of propagation of the beam light. (a) A particle centered at the focus of
the Gaussian beam. The marginal rays a and b are not deviated by the particle because
they cross the surface of the particle perpendicularly (this is a consequence of Snell’s law).
No force is exerted on the particle. (b) A particle located before the focus of the laser
beam. The focus is located at the expected crossing point of the rays (where the dashed
lines cross each other). The marginal rays a and b are deviated in such a way that the
radial forces cancel each other and the axial ones push towards the focus of the laser beam.
Other pairs of symmetric rays of the beam have different intensities and also contribute
to the axial total force exerted on the bead. (c) A particle located after the focus of the
laser beam. The force exerted has an opposite direction than in panel b and pulls the
particle towards the focus. (d) A particle located off-axis. The different intensity between
the centered and off-axis rays induce the radial restoring force. Therefore, the particle still
tends to align with the axis of a focused (not collimated) Gaussian beam.

The Rayleigh regime

In this regime, the trapped particle is much smaller than the wavelength of
the light beam. The electromagnetic field is uniform within the particle and
it can be treated as a small spherical dipole. Although very few experiments
in biophysics are done under this regime, it is useful because it provides
simple and separate expressions for the scattering and gradient forces. The
scattering force is the result of the change in light momentum after the inter-
action with the particle, which absorbs and reemits the light in all directions
(according to Rayleigh dispersion). The scattering force of a spherical dipole
in a medium of index of refraction nm is given by [8]:

~Fscat = nm
σI0

c
k̂ (2.3)

where I0 is the intensity of the laser beam, c is the speed of light, k̂ is the
unitary vector that points along the direction of propagation of the light
beam, and σ is the scattering cross section of a Rayleigh particle which in
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the case of a spherical particle of radius r is given by:

σ =
128π5r6

3λ4

(
m2 − 1

m2 + 2

)2

(2.4)

where m is the effective index of the particle (i.e., m = n/nm, the index of the
particle n divided by the index of the medium nm) and λ is the wavelength
of the light. Since the particle is much smaller than the wavelength, only
the spatial distribution of the light intensity (I0(~r)) determines the spatial

distribution of the scattering force (~Fscat(~r)). Therefore, the scattering force
is stronger in those regions where the intensity of light is higher.

The gradient force is due to the Lorentz force acting on the dipole, induced
by the electromagnetic field. The time-averaged gradient force is given by
[8, 79]:

~Fgrad =
2πα

cn2
m

~∇I0 (2.5)

where α is the polarizability of the trapped particle. The polarizability of
a dielectric particle is a magnitude that relates the applied external electric
field ( ~E) and the electric dipole moment (~p) induced on the particle (~p =

α~E). In the case of a isotropic dielectric spherical particle of radius r, the
polarizability is given by the Lorentz-Lorenz formula [80],

α = n2
mr

3

(
m2 − 1

m2 − 2

)
. (2.6)

Equations 2.3 and 2.5 allow us to know the evolution of a Rayleigh particle
illuminated by a light beam. The gradient force pushes the particle towards
the highest light intensity (for m > 1) whereas the scattering force pushes it
along the direction of light propagation. In order to trap particles, the gradi-
ent force along the optical axis must be higher than the scattering force. By
increasing the numerical aperture, higher intensity gradients can be achieved
and stronger gradient forces are exerted on the particle (see Fig. 2.4). This
regime allows us to calculate the force exerted on a dielectric sphere under
illumination of a paraxial Gaussian beam (i.e., a weakly focused beam which
makes a small angle to the optical axis of the system). The strategy consists
in writing the intensity of a Gaussian beam and introducing it in equations
2.3 and 2.5 [81]. Although the prediction of the optical forces fails when the
size of the particle is of the order of the wavelength of the laser beam, the
qualitative description of the optical trap is quite illustrative.
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Figure 2.4: Forces arising in the Rayleigh regime. (a) A collimated Gaussian beam
exerts a gradient (radial) force onto a particle that pushes the particle towards the beam
axis. However, the scattering force pushes the particle in the direction of light. (b) A
tightly focused Gaussian beam develops a strong intensity gradient along the propagation
direction that prevents the particle from being pushed away by the scattering. The result
is a restoring force and the optical trapping of the particle.

Generalized Lorenz-Mie Theory (GLMT)

The physics of the optical tweezers used in the common biological applications
falls between the ray optics and Rayleigh regimes and cannot be described
correctly with the previous approaches. In this intermediate regime, the
computation of forces requires a whole characterization of the laser beam
and the dielectric particle. Since the laser beam is highly focused, it can no
more be described as a paraxial Gaussian beam. Under these conditions, the
electromagnetic field of the laser beam shows its vector character and a scalar
description is no longer valid. Moreover, the dielectric particle interacts with
the incident laser beam and develops internal and scattered electromagnetic
fields. In conclusion, the computation of forces requires the calculation of
the resulting electromagnetic field after the particle has interacted with the
laser beam. To do so, a boundary value problem for the electromagnetic field
equations must be solved.

The solution to this problem was first calculated by Mie [57], who com-
puted the resulting electromagnetic field of a plane monochromatic wave
scattered by a spherical particle. The procedure is to obtain a general solu-
tion for the electromagnetic field equations and then impose the appropriate
boundary conditions [80]. The calculation consists in writing the Maxwell
equations in spherical coordinates and rewrite them in terms of two scalar
fields eΠ and mΠ known as Debye’s potentials. These potentials are two in-
dependent convenient solutions: the transverse electric (TE) field solution,
which has zero radial electric field component; and the transverse magnetic
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(TM) field, which has zero radial magnetic field component. Both potentials
obey a wave differential equation and the solution for iΠ (i = e,m) is ex-
pressed as a linear combination of solutions in spherical coordinates, where
the boundary conditions (continuity of the tangential electric and magnetic
fields over the spherical surface of the particle) have already been imposed.
The final step is to find the coefficients of the general solution that describe
the incident electromagnetic field and obtain the coefficients for the scattered
and internal electromagnetic field. The general solution is expressed in terms
of a dimensionless parameter q = 2πr/λ, where λ is the wavelength of the
light and r is the radius of the trapped particle (see Fig. 2.5).

Figure 2.5: GLMT solution for different values of q obtained from Ref. [82]. A monochro-
matic planar wave polarized along the z axis propagates along the x axis and interacts with
a particle (not depicted) that is located at the center of the diagram. The scattered light
has different angular intensities and polarizations. The red curve shows the intensity of
the scattered light that is parallel to the incident wave; the green curve shows the intensity
of the scattered light that is perpendicular to the incident wave; and the blue line shows
the combination of both (useful when considering circularly polarized light). (a) This
diagram corresponds to q = 0.1, a situation close to the Rayleigh regime (r � λ) where
the scattered light is quite isotropic. (b) q = 1. The scattered light shows an asymmetry
between the forward and backward direction. (c) Diagram observed in the Mie regime
(q = 10), where the backscattering almost vanishes.

The GLMT simply extends the previous calculation (i.e., Mie’s calcula-
tion) to arbitrary incident waves [83] and to arbitrary positions of the particle
[84]. The resulting force that acts on the particle can be determined from
the calculated electromagnetic field. It has to be done by integration of the

Maxwell’s stress tensor
←→
T over a surface A enclosing the particle:

〈~F 〉 =

〈∮
A

←→
T d~a

〉
(2.7)

where d~a is the surface element vector pointing outwards and 〈...〉 represents
a time average. A detailed derivation of equation 2.7 is shown in Appendix A.
The Maxwell’s stress tensor represents the flux of linear momentum of the
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electromagnetic field and it is obtained from:

←→
T ij = ε

(
EiEj −

1

2
δijE

2

)
+

1

µ

(
BiBj −

1

2
δijB

2

)
(2.8)

where Ei is the i-th component of the electric field, Bi is the i-th component
of the magnetic field, ε is the electric permittivity and µ is the magnetic
permeability of the surrounding medium. Following this methodology, the
calculated net radiation force and torque exerted on a spherical particle by
a highly focused Gaussian beam is qualitative consistent with experimental
measurements [85]. However, the quantitative agreement between the theory
and the experiments is unsatisfactory. The origin of such discrepancy is
attributed to several causes: irregular shape or roughness of the particle,
complex index of refraction, bad conditioning of the laser beam, etc. In the
end, the achieved accuracy does not compensate the effort of going through
the calculation. Eventually, the forces exerted by the laser beam must be
determined empirically.

Fortunately, in optical tweezers the restoring force near the focus is pro-
portional to the displacement of the particle from the center of the optical
trap. This linearity allows to define a trap stiffness, which can be used to
determine the applied force by measuring the position of the particle. In
other words, the trap can be treated as a harmonic potential well or a virtual
spring.

Still, there is another way to directly measure optical forces. The method
consists in detecting the difference in the linear momentum of light before
and after it has interacted with the particle. This is explained in the next
section.

2.1.2 Conservation of linear momentum

The conservation of linear momentum is a fundamental principle in physics.
It states that the total linear momentum of an isolated system remains con-
stant. The momentum can be transferred between the different constituents
of the system, provided that the momentum lost by one element is equal
to the momentum gained by another. The principle can also be extended
to open systems. In this case, the net change of momentum of the system
equals the flux of momentum entering minus that exiting the system.

The principle is not only held by interacting particles but also by fields
that carry momentum. Now, a balance equation for the conservation of the
linear momentum can be written for every physical system. Under certain
conditions, the conservation of linear momentum is useful to measure the
forces involved in optical trapping. Starting from the Lorentz force and using
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the Maxwell’s equations, one can write an expression for the conservation of
linear momentum of an object that interacts with an electromagnetic field
within a volume V (see Appendix A for the derivation),

d

dt

(
~Pmech + ~Pfield

)
= ~Φfield (2.9)

where ~Pmech is the linear momentum of the object, ~Pfield is the linear momen-
tum of the electromagnetic field within the volume V and ~Φfield is the flux
of linear momentum carried by an electromagnetic wave across the surface
A that encloses the volume V . The left hand side of the equation accounts
for the overall change of linear momentum inside the volume V and the right
hand side accounts for the net flux of linear momentum than enters the vol-
ume V across the surface A. Figure 2.6a shows an schematic representation of
the three terms of equation 2.9. The time variation of the linear momentum
of the object is the force exerted on it

~F =
d~Pmech

dt
. (2.10)

The total linear momentum of the electromagnetic field can be computed
by summing the density momentum of the field ~g within the volume V (see
Appendix A)

~Pfield =

∫
V

~g · dV =

∫
V

~S

c2
dV (2.11)

where ~S is the Poynting vector calculated from the electromagnetic field ~S =
~E× ~H) and c is the speed of light. The total flux of linear momentum1 ~Φfield

is calculated by summing the Maxwell stress tensor
←→
T over the surface A

~Φfield =

∮
A

←→
T · d~a . (2.12)

The Maxwell’s stress tensor accounts for the flux of electromagnetic linear
momentum per unit of area2 and it is derived from the electromagnetic fields
according to Eq. 2.8.

1Note that a flux of linear momentum has units of force:

[Flux of momentum] ≡ [Momentum]

[Time]
=

[Mass][Velocity]

[Time]
=

[Force][Time]

[Time]
= [Force]

2It has units of pressure:

[Flux of momentum]

[Areal]
=

[Force]

[Area]
= [Pressure]
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By using equations 2.10, 2.11 and 2.12 we can rewrite equation 2.9 as

~F =

∮
A

←→
T · d~a− 1

c2

d

dt

∫
V

~SdV (2.13)

which provides a recipe to calculate the electromagnetic force exerted on an
object from the resulting electromagnetic fields of the interaction.

Assuming that the electromagnetic field is stationary within the volume
V (i.e., all the temporal dependence is due to the complex phase exp(iωt)),
the second term of the right side vanishes if a temporal average is performed.
The resulting expression is equal to Eq. 2.7. Under these conditions, equation
2.9 can be rewritten as,

~F = ~Φfield (2.14)

which is a simple expression for the conservation of light momentum (we
do not write the temporal average 〈...〉). The force exerted on a particle is
equal to the stationary flux of linear momentum carried by the interacting
electromagnetic field. In the next section it is described how to measure the
flux of linear momentum.

Figure 2.6: Conservation of light momentum. (a) The surface A encloses the volume
V where the radiation interacts with the material object. The net flux of momentum
~Φfield that enters/exits the volume is equal to the change in the linear momentum of the

internal radiation (~Pfield) plus the change in the linear momentum (i.e., the force) of the

objects (~Pmech). (b) In a stationary state, the total flux of linear momentum of light (i.e.,
~Sin − ~Sout) that crosses the surface A is equal to the force applied to the object.

2.1.3 Measurement of linear momentum

In this section, we will assume that the diameter of the particle d is larger
than the wavelength λ of the electromagnetic field (i.e., the laser light). Thus
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the system falls into the ray optics regime (see Sec. 2.1.1) and the laser can
be visualized as a bundle of rays that interact with the particle [86]. It
allows us to calculate the Maxwell Stress Tensor by an alternative way. A
priori, one might think that the results of this section are only valid when the
Mie regime is valid. However, it has been check empirically that an optical
tweezers instrument built under these assumptions still works properly when
the approximation is not fulfilled [86, 16].

As deduced from the previous section, the force exerted on an object
by an electromagnetic field is equal to the net flux of linear momentum that
enters the object (Eq. 2.14). The net momentum flux that crosses the surface

A can be written as an integral sum of the density of flux momentum3 ~φfield

of the electromagnetic wave, provided the elements of surface da are normal
to ~φfield,

~Φfield =

∮
A

~φfield da . (2.15)

We ended the previous section with the problem of measuring the total flux
of momentum and now we are facing the problem of measuring the density
of flux momentum. It seems we did not make much progress. However, in
the ray optics regime, the laser light has a defined direction of propagation
and the wave can be decomposed into rays. It allows us to write the density
of flux momentum of a light wave as (see Appendix B)

~φfield =
nm
c
~S (2.16)

where nm is the index of refraction of the surrounding medium, c is the speed
of light and ~S is the Poynting vector. Equation 2.16 is quite relevant, since
the temporal average value of the Poynting vector 〈~S〉 is the intensity4 of the
light I and it can be directly measured by a photodetector. Note that what
we have done up to now is to write the Maxwell stress tensor for the ray
optics regime (Eq. 2.16 is a restricted version of Eq. 2.8 and Eq. 2.15 is the
analogous of Eq. 2.12).

Finally, combining equations 2.16, 2.15 and 2.14 we can write the total
optical force exerted on an object as

~F =
nm
c

∮
A

~S da (2.17)

3It has units of pressure:

[Density of flux momentum] ≡ [Flux momentum]

[Area]
=

[Force]

[Area]
= [Pressure]

4It has units of [Power]/[Area].
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where the integral is extended on a surface A surrounding the object. ~S and
the surface A must be perpendicular because Eq. 2.16 is a heuristic calcu-
lation of the Maxwell Stress Tensor that does not include the off-diagonal
elements. The off-diagonal elements produce shear stresses that act parallel
to the surface and they do not contribute to the total force if the surface of
integration is perpendicular to the direction of the momentum flux. Finally,
the Poynting vector has two contributions ~S = ~Sin − ~Sout that correspond to
the light entering (~Sin) and the light leaving (~Sout) the volume enclosed in
the surface A (see Fig. 2.6b).

2.1.4 A force transducer

A transducer is a device that transforms a physical magnitude into another.
In this section, we describe a transducer that converts the intensity of light
〈~S〉 into a force ~F according to equation 2.17. We also consider that the
transducer operates under the two following experimental conditions (see
Fig. 2.7a):

(i) The incoming laser light 〈~Sin〉 is a focused spherical wave.

(ii) The outcoming light 〈~Sout〉 is spherical and emanates from the focus of
the incoming light, where the trapped particle is also located.

Figure 2.7: (a) The collimated light of the laser (in red) is focused by an objective
(blue lens) producing a spherical converging beam. A particle is located at the focus and
the light is scattered in all directions. The outcoming light is a diverging spherical wave.
(b) Spherical coordinates and element of area.

The first condition can be easily achieved by focusing a collimated laser
beam with a lens. The second condition is achieved when the outcoming light
is observed far away from the source. It can be shown from the GLMT (see
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Sec. 2.1.1) that the scattered wave has no radial components (therefore it is
a spherical wave) in the so-called radiation zone, where the distance to the

particle is much larger than the wavelength (|~R| � λ). Both conditions allow
us to set the origin of coordinates at the focal point of the laser and write
the intensity of light in terms of the spherical coordinates 〈~S(r, θ, ϕ)〉. Since
the incoming and outcoming lights are spherical, we can define the angular
intensity distribution of light5 (see Fig. 2.7b)

I(θ, ϕ) r̂

r2
= 〈~S(r, θ, ϕ)〉 (2.18)

which is independent of the radius r of observation (r̂ is a unit vector from
the focus). Introducing Eq. 2.18 into Eq. 2.17 we can write

~F =
nm
c

∮
A

I(θ, ϕ)
(
ı̂ sin θ cosϕ+ ̂ sin θ sinϕ+ k̂ cos θ

)
dΩ (2.19)

where the differential of area (da = r2dΩ) and the unit vector (r̂ = ı̂ sin θ cosϕ+
̂ sin θ sinϕ + k̂ cos θ) have been expressed in spherical coordinates. Again,
I(θ, ϕ) is positive for rays entering the trap and negative for rays leaving
it. The measurement of I(θ, ϕ) cannot be done directly from the emanating
rays. It is necessary the project the angular distribution of intensities into
a planar photodetector D, which can be achieved by using a condenser lens
(see Fig. 2.8a). In a perfect condenser lens of focal length f , there is a uni-
vocal relation between the direction of a ray that emanates from the focus
of the lens and the position of the ray at the image principal focal plane P
(see Fig. 2.8a). This relationship is known as the Abbe sine condition and it
is given by

ρ = fnm sin θ (2.20)

where ρ is the radial distance of the ray to the optical axis at the principal
plane, nm is the index of refraction of the medium, and θ is the angle of the
emanating ray. On the other hand, if all the light is collected by the condenser
lens, the conservation of the energy establishes a relationship between the
total power of light that emanates from the focus and the power of light
collected by the lens ∮

A

I(θ, ϕ) dΩ =

∫
P

E(ρ, ϕ)da′

I(θ, ϕ) dΩ = E(ρ, ϕ)da′ (2.21)

5The angular intensity distribution of light has units of [Power]/[Solid angle]. As the
spherical wave propagates, the total power of light is distributed on a spherical surface
of area A = 4πr2. Thus, the total amount of power P is independent of r and so it is

constant: P =
∫
~S(r, θ, ϕ) · d~a =

∫ ( I(θ,ϕ)r̂
r2

)
·
(
r2 sin θ dθdφ r̂

)
=
∫
I(θ, ϕ)dΩ, where r̂

(r̂ · r̂ = 1) is the radial unitary vector and dΩ = sin θ dθ dφ is the element of solid angle.
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where E(ρ, ϕ) and da′ = ρ dρ dϕ are the irradiance6 and the element of area
at the image focal plane, respectively. In Section 2.2.1 it is shown that the
focusing lens is also useful to collect the backscattered light. Therefore, the
integral sum over the image principal plane P of the condenser lens is ex-
tended to the image principal plane of the focusing lens, too. By introducing
Eqs. 2.21 and 2.20 into Eq. 2.19 we can write the expression for the force as:

~F =
1

c

∫
P

E(ρ, ϕ)

ı̂ ρ
f

cosϕ+ ̂
ρ

f
sinϕ+ k̂ nm

√
1−

(
ρ

fnm

)2
 ρ dρ dϕ

(2.22)
where the integration is now taken over the surface of the image principal
plane (P ). Note that the resulting prefactor in the calculation of the z force
is obtained from Eq. 2.20

cos θ =
√

1− sin2 θ =

√
1−

(
ρ

fnm

)2

. (2.23)

Figure 2.8: (a) Projection of the scattered light onto a photodetector. An incoming ray
(in gray) is focused by the left lens and scattered by the particle. The outcoming ray is
collected by the condenser lens (A) and redirected to a photodetector D. Actually, the
condenser lens produces a change of coordinates, from spherical (θ, ϕ) to cylindrical (ρ, ϕ).
(b) Measurement of axial (z) force. The attenuator has a transmission profile that looks
like a bull’s eye. An axial ray is fully transmitted to the photodetector. An off-axis ray,
suffers an attenuation and its intensity is lower when it arrives at the photodetector.

Now, the forces exerted on the x and y directions (radial force) can be
inferred from the measurement of a photodetector placed at the image prin-
cipal plane P . A Position Sensitive Detector (PSD) is a device that pro-
duces two output signals (Dx,Dy) proportional to the irradiance of the light

6The irradiance has units of [Power]/[Area]. It is a magnitude equivalent to the inten-
sity.
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(E(x, y)) weighted by the relative position from the center of the detector
(x/RD,y/RD) according to

Dx = Ψ

∫
D

E(x, y)
x

RD

da′ = Ψ

∫
E(ρ, ϕ)

ρ cosϕ

RD

da′

Dy = Ψ

∫
D

E(x, y)
y

RD

da′ = Ψ

∫
E(ρ, ϕ)

ρ sinϕ

RD

da′ (2.24)

where Ψ is the sensitivity of the detector, RD is the effective radius of the
detector and the integrals are over the surface (D) of the detector (see Ap-
pendix C). Combining Eqs. 2.24 and 2.22 we can write the force in terms of
the response of the detector

Fx =
DxRD

cΨf

Fy =
DyRD

cΨf
(2.25)

The force exerted on the z axis (axial force) can be measured provided
that the irradiance of light is weighted by the factor of Eq. 2.23. It can
be achieved by placing an attenuator in front of a photodetector with a
transmission profile given by Eq. 2.23 (see Fig. 2.8b). The output signal of
the photodetector is given by

Dz = Ψ

∫
D

E(θ, ϕ)

√
1−

(
ρ

nmf

)2

da′ (2.26)

and the z force can be written as

Fz =
Dznm
cΨ

(2.27)

Eqs. 2.25 allow us to directly measure the transverse force (on the x-
y plane) of a trapped particle, provided that all the scattered light can be
collected. What is relevant from these expressions is that calibration does not
depend on the refractive index of the medium (nm), the radius of the particle
nor the laser power. The factors involved in Eqs. 2.25 are constant in a
typical experimental setup (RD, f , Ψ). On the contrary, the measurement
of the axial force in Eq. 2.27 depends on the refractive index of the medium
and this dependency cannot be avoided. However, the error in the z force
is smaller that 0.25% when the refractive index of the medium changes from
nm = 1.334 (pure water) to nm = 1.343 (1 M NaCl buffer).
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2.2 The Minitweezers experimental setup

Most of the optical tweezers setups are based on modified commercial micro-
scopes to which a laser beam is introduced in the optical path to produce
an optical trap [79]. Minitweezers is the name given by its inventor, Steve
Smith, to the experimental setup used in this work [16, 17, 18]. This setup is
a miniaturized evolution of previous instruments and achieves better stability
and resolution in the measurements. Its compactness allows to hang it from
the ceiling and isolate the instrument to prevent that vibrations and air flows
affect the experiments. Minitweezers measure force by conservation of light
momentum according to the ideas developed in Section 2.1.4. Therefore, the
instrument was designed not only to produce an optical trap, but also to col-
lect all the light emerging from the interaction between the laser light and the
trapped particle. It requires the use of two microscope objectives: one to fo-
cus the laser beam and the other one to work as a condenser that collects the
outcoming light. Thus, Minitweezers look like two microscopes facing each
other with a common focal point. The most relevant innovation, though,
is the steering of the laser beam, which is performed using a device called
wiggler. The wiggler redirects the laser beam and repositions the optical
trap by using piezoelectric crystals that provide high reliability and stability.
The optical system is enclosed in the so-called head (see Figure 2.9). The
control of the instrument and the measurement of signal is performed with
customized electronic boards (the electronic controller) that use PIC micro-
controllers. The experimentalist also interacts with the instrument with a
Mac computer (also known as the host computer), which communicates with
the electronic boards through a USB port. The following sections describe
the parts of the experimental setup.

2.2.1 Optics

The formation of an optical trap using a single-beam laser requires focusing
the laser with high Numerical Aperture (NA) so that the gradient force com-
pensates the scattering force (see Section 2.1.1). Under this condition, it is
very difficult to collect all the deflected light that emerges from the optical
trap. Thus it is not possible to perform a measurement of force based on the
change of the linear momentum of the light. The Minitweezers consist of two
counter-propagating infrared laser beams that form a single optical trap. The
advantage of using counter-propagating beams is that the scattering forces
cancel out. This allows to reduce the NA of the lasers (i.e., the diameter of
the laser beam) and all the exiting light can be collected. Now, the use of
two low-NA laser beams with high-NA focusing lenses is the key to collect
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Figure 2.9: General scheme. The experiments are performed in the head, which contains
all the optics. The lasers are powered by the laser controller. The electronic controller
communicates the head and the host computer. The user interacts with the experiment
by means of the host computer. The TV screen allows to visualize the experiment.

and measure the change in the light momentum.

Apart from having a calibration independent of several experimental con-
ditions (bead size, index of refraction, etc.) there are other advantages in the
double-beam optical trap. First, the laser beams do not need to be highly
focused, which minimizes the effect of spherical aberration of the lenses. A
lens with spherical aberration focuses the marginal rays of a laser beam more
tightly than the rays near the optical axis, which produces a blurred focal
point. Since the intensity of a low NA laser beam is concentrated near the
optical axis, such beam is less affected by spherical aberration. Moreover, a
low focused beam has a longer focal distance, which makes possible to fo-
cus the laser beam deeper inside the fluidics chamber. It allows to reduce
the hydrodynamic effects of the boundaries of the fluidics chamber (i.e., the
coverslips) on the particle trapped in the optical trap. Apart from the op-
tical considerations, the use of low focused lasers reduces the heating of the
medium by infrared absorption. Another advantage is that the instrument
can operate in the two-traps mode. On the other hand, the double-beam
is quite difficult to implement because it requires an accurate alignment of
the laser beams. In fact, small misalignments produce optical traps that
induce non-uniform forces on the trapped particles. An accurate alignment
is achieved by electronically assisted feedbacks. Feedbacks such as autoalign
read the PSD measurements and lightly reposition the optical traps in order
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to cancel any misalignment between the focuses of the laser beams.

Optical schematics

The schematics of optics of the Minitweezers is symmetric for each laser.
Both lasers share part of the optical path but are produced, controlled and
measured independently. This section describes the optics of one laser and
it is assumed that the other one has a symmetric schematics if it is not
mentioned. Following, the different optical parts are described along with
Fig. 2.10.

Figure 2.10: Optical schematics (see text). The optical paths of the lasers are depicted
in green and yellow. The optical path of the imaging system is depicted in blue.

1. Generation and conditioning of the laser beam. A near-infrared
laser diode of 845 nm wavelength is used to generate the optical trap.
This is a suitable wavelength because the absorption of near-infrared
radiation is quite low for water, which is the medium at which the
experiments are performed. This prevents the heating of the sample.
The laser diode (Lumix LU0845M200) is a single-mode fiber-coupled
device of 200 mW of power that produces the fundamental transverse
electromagnetic mode (TEM00). The TEM00 mode has a Gaussian
profile and it is linearly polarized. The intensity of the laser beams and
the temperature of the laser diodes are controlled by an independent
laser power supply (Appendix C.1). The laser diode is connected to an
optical fiber that feed power to the wiggler.



2.2. Optics 87

2. Beam steering and position detection. The wiggler is a mechanical
device that uses piezoelectric crystals to gently push the tip of the
optical fiber and redirect the laser beam at will (Appendix C.2). The
tip of the fiber can be repositioned throughout the perpendicular plane
to the direction of propagation of the laser beam but not along this
direction. This is useful to form the optical trap at different locations.
About 8% of the the light emerging from the tip of the optical fiber is
split by using a pellicle beam-splitter to form a light-lever that measures
the position of the beam. The beam of the light-lever is projected
to a Position Sensitive Detector (PSD) (see Appendix C.3) by means
of a refocusing aspherical lens (aspherical lenses allow to focus highly
diverging beams without introducing aberrations). The 92% of the
remaining light is collimated by using a lens and it is introduced into
the optical axis by using a Polarizing Beam-Splitter (PBS) that selects
the horizontally polarized light to form the optical trap.

3. Formation of the optical trap. Once the light is into the opti-
cal path, a quarter-wave plate produces circular polarization before
the beam is focused by a water-immersion microscope objective with
NA=1.2 (Olympus UPLSAPO 60×W). The circular polarization en-
sures that the light scattered is an average between parallel and per-
pendicular polarized light (see Figure 2.5). By doing this, we ensure
that the force exerted on the trapped particle will not depend on the
polarization of the incident light. The exiting light is collected by the
opposite objective and it is converted to vertically polarized light by
another quarter-wave plate. The vertically polarized light can be ex-
tracted from the optical path using two PBSs and one relay lens that
redirect the light to the PSD that measure the intensity of the beam.
The first PBS is common to the other laser beam and performs a double
task: 1) Redirects the vertically polarized light to the second PBS and
2) Introduces the other laser beam coming from the wiggler into the
optical path. The second PBS projects the vertically polarized light
to the photodetectors. So, the use of quarter-wave plates ensures that
the light coming from the two laser beams do not interact with each
other and they are correctly guided along their optical paths from the
wiggler to the photodetectors. Moreover, the circularly polarized light
guarantees that the light reflected from the particle is not returned to
the wiggler but is reflected to the opposite photodetector.

4. Detection and measurement of light. The light redirected to the
photodetectors is split into two parts using a (non-polarizing) beam-
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splitter. One part is redirected to a PSD (OSI Optoelectronics, DL-10)
(see Appendix C.3) that measures the deflection of the beam in the
transverse direction, which is a measurement of the transverse force
(i.e., the x and y forces). The other part is redirected to a bullseye filter
and measured with a photo-diode (OSI Optoelectronics, PIN-10DI).
The bullseye is a realization of the attenuator described in Figure 2.8b
and it has the right profile to measure the force along the longitudinal
axis, i.e., the z axis force.

5. Imaging system. A blue LED (wavelength 470 nm) and a CCD
camera (Watec WAT-902H3 SUPREME EIA) are used to form a mi-
croscope to view the experiment (trapped particles and pipette). The
light of the LED is expanded with a lens to produce a Köhler illumi-
nation system at the focal plane of the laser beams so that the field of
view is uniformly illuminated. At the other side of the optical path,
a lens projects the image of the focal plane to the CCD camera. The
CCD camera is monochrome and it is visible and near-infrared sensi-
tive, which permits to view both the experiment (i.e., the micropipette,
the beads, etc.) and the laser beams. The intensity of the laser beam
is so high that it saturates the CCD camera and the image on the TV
monitor looks completely blank. Under these conditions, the elements
of the fluidics chamber such as the micropipette cannot be observed
and the experimentalist is not able to carry out the experiments. To
solve this problem, an infrared filter is placed in the front camera. It
prevents the laser spots from reaching the CCD camera but it lets the
blue light of the LED pass. It allows to clearly see the micropipette, the
beads and the dispenser tubes of the fluidics chamber. This is necessary
to carry out the experiments.

6. Fluidics chamber. Optical trapping is done in a fludics chamber that
is homemade with two microscope coverslips sealed with a nescofilm
gasket in between. The gasket is cut to form channels in order to
introduce and guide the particles into the chamber. The dimensions
of the chamber are 24 mm×60 mm×200 µm and it also contains a
micropipette to grab particles by suction (see Appendix C.4). The
chamber is held by a motorized xyz stage with fine positioning control
(< 0.5 µm) and it is placed between the two microscope objectives,
where the optical trap is formed.
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Ray tracing

Although in our case geometrical optics does not describe optical trapping
correctly, it provides a qualitative understanding of the phenomenon. Ray
tracing is useful to depict the manner in which the instrument measures dis-
tances (light-lever), radial forces (force PSD) and axial forces (Iris). Indeed,
each combination of these 3 independent magnitudes produce a different ray
tracing, which can be measured with the photodetectors. Figure 2.11 shows
the ray tracing of six elementary situations and the corresponding reading of
the detectors.

Figure 2.11: Ray tracing (see text). Only the marginal rays of one of the lasers are
depicted. Some prisms and mirrors are not shown and all the lenses are assumed to be
thin. The optical fiber is only shown in the top panel a. Pictures are not to scale. Leg-
end: Asph=Aspherical lens; Obj1=objective 1 (focuser); Obj2=objective 2 (condenser);
Coll=collimating lens; Pel=pellicle beamsplitter; Fib=optical fiber. The light travels from
the optical fiber (left) to the detectors (right). The crosses in the optical path indicate
the focal points of the lenses. The Coll and the Obj1 lenses form and infinite system
(i.e., their focuses coincide and the light beam is parallel), as well as the Obj2 and the
Relay lenses. The arrow next to the bead indicates the application of an external force.
(a) Centered optical trap. (Top) Zero force. (Middle) Application of a radial external
force (Fy). (Bottom) Application of an axial external force (Fz). (b) Optical trap at a
different position. Note that the measurement of Fz is affected by that of Fy. Indeed, a
y force induces a deflection on the outcoming light that hits the Iris detector off-axis. So
the bullseye does not attenuate the laser beam radially and the reading of Fz is lightly
biased.

When the optical trap is centered and no force is applied, the laser beam
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hits the center of the detectors and their readings are zero (see top panel in
Fig. 2.11a). By applying a radial external force (Fy), the outcoming light
from the bead is still parallel with zero angle, but it is off-axis (see middle
panel in Fig. 2.11a). In this case, the force PSD measures a deflection while
the light-lever and the Iris measure the same as in the top panel. Note that
the fact that the objective 1 is underfilled allows to collect all the deflected
light in objective 2. Finally, when applying an axial external force (Fz),
the outcoming light has a larger diameter, which is detected by the Iris (see
bottom panel in Fig. 2.11a). In this situation, the beam hits the center of
the force PSD and its reading is zero, as expected. If the force was applied
in the opposite direction, the Iris would detect a smaller beam diameter.
Generally speaking, the z force is detected from the change in the laser beam
diameter. In figure 2.11b it is shown the same ray tracing than before, but
with the optical trap located at a different position. When the optical trap is
no longer centered (i.e., the wiggler redirects the light to another direction)
the laser beam after the collimating lens is still parallel, but it has an angle
with respect to the optical axis. The force readings in the upper panel of
Fig. 2.11b are the same than in panel a but now the light-lever is off-axis,
indicating the different position of the optical trap. The same criteria applies
to the middle and bottom panels.

It is important to say that the distances between the optical elements
(lenses and detectors) must be accurately adjusted. In fact, small misalign-
ments induce artifacts in the measurement of position and force. For instance,
if the force PSD was located too close (or too far) from the relay lens, the
reading of force would depend on the position of the optical trap.

Summing up, the optical system is aligned so that the position of the
optical trap is related to the angle between the collimated beam and the
optical axis. In contrast, the offset of the outcoming beam is related to the
radial force and the diameter of such beam is related to the axial force. Since
each detector is only sensitive to one of these properties of the beam (angle,
offset and diameter), the three magnitudes can be measured separately.

2.2.2 Electronic controller

The electronic boards are the elements that communicate the head of the
instrument with the host computer. They perform two main tasks. The
first one is the acquisition and conditioning of the signal coming from the
photodetectors that measure the force and the position of the optical trap.
The second one is the processing of orders given by the host computer to
the wigglers and the motorized stage. Additionally, the feedback algorithms
that perform the constant force or position protocols are also run in the
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microprocessors of the electronic boards. The stack of boards is powered by
power supplies that provide +5 V tension for the digital electronics, ±15 V for
the analog electronics, ±12 V for the motors and +150 V for the piezoelectric
crystals.

The boards combine analog and digital signal processing and each of
them is devoted to a specific function. The electronic boards are set on
a stack and they follow a hierarchical structure based on the head. There
are 5 intercommunicated boards but 2 of them are identical (see Fig. 2.12).
Following there is a description of each of them.

Figure 2.12: Electronics schematics (see text).

Main board. The main board is devoted to communication and data pro-
cessing. It contains one USB transceiver and 3 microprocessors (Mi-
crochip PIC18F6520). The first microprocessor called ComPic controls
the communication between the USB and the other pics. The other
two microprocessors called TrapPics (A and B) control the two opti-
cal traps of the head. They read the data from the ADC board, send
orders to the DCA board and perform the feedback algorithms. The
three pics are intercommunicated with parallel buses and the ComPic
is also connected with the MotorPic, located at the motor board.

Analog to Digital Converter (ADC) board. There are two identical and
independent ADC boards, one for each optical trap (A and B). The
ADC board receives the analog data from the PSDs (position and
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force) and converts them into a digital signal. The ADC board has
a sub-board called Pre-amplification (or Preamp) board that receives
the 4 analog current signals (the 4 electrodes) from one PSD and con-
verts them into 3 voltage signals: the x and y position and the total
intensity (or PSDSum) of the beam. These 3 signals are converted
into digital units by an AD converter. The ADC board is connected
to its corresponding TrapPic in the Main board by a Serial Peripheral
Interface (SPI) bus.

Digital to Analog Converter (DAC) board. This board receives the or-
ders from the TrapPics in the main board and sends a voltage to the
piezoelectric crystals of the wigglers to position the optical trap. It has
a DA converter that communicates with the TrapPics via SPI. The DA
converter outputs a voltage that is stabilized by 4 Operational Ampli-
fiers (op-amps) that keep the 4 piezos (x and y for traps A and B) at
the desired voltage.

Motor board. The motor board controls the motorized stage. It has a mi-
croprocessor (MotorPic) that communicates with the ComPic in the
main board via SPI. The MotorPic has two main functions. The first
one consists in moving the 3 motors of the xyz stage using 3 indepen-
dent H-bridges. These are chips that allow to invert the direction of
movement of the motor. The velocity of the motor is controlled by the
Pulse Width Modulation (PWM) module of the MotorPic, which sends
pulses of voltage of different frequencies to the motor. This allows to
accurately control the amount of power given to the motor. The second
function of the MotorPic is to measure the position of the motors. Each
motor (Thorlabs Z606) has a shaft encoder that turns with the screw
and sends pulses to a 24-bit counter. The counter reads the pulses
and indicates the relative rotation of the motor, which is given in a
24 bit binary number. So the MotorPic reads this number to measure
the position of the motor. It allows the MotorPic to perform feedback
protocols such as Goto functions, in which the motor is running until
a certain position is reached. Finally, the MotorPic also controls the
blue LED that illuminates the optical system.

The digital processing of data is mainly performed by the 4 microcon-
trollers (ComPic, 2 TrapPics and MotorPic). A microcontroller (PIC) is a
small processor capable of performing multiple tasks, including mathemati-
cal operations, time management, analog to digital conversions, parallel and
serial communication and data storage. The list of operations that a PIC has
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Parameter Value

Analog data bandwidth ∼1 MHz
PIC internal clock 10 MHz

Sampling rate 4 kHz
Feedback running frequency 4 kHz

Digital data bandwidth 1 kHz
16-bit data channels psdX, psdY, psdSUM, iris

leverX, leverY, leverSUM
32-bit data channels motorX, motorY, motorZ
ADC force resolution > 0.01 pN

Maximum detectable force < 400 pN
ADC distance resolution > 0.1 nm

Maximum detectable distance < 12 µm
Piezo update frequency 4 kHz
Wiggler relaxation time <1 ms

Table 2.1: Specifications of the electronic controller.

to perform is known as firmware and it is written in standard C or assem-
bly coding languages. The firmware is compiled and burn into the internal
memory of the PIC. Appendix C.5 contains an expanded description of the
firmware and connections of the PICs in each electronic board.

Table 2.1 summarizes the most relevant characteristics of the electronic
controller.

2.2.3 Host

The host is the name given to the computer and to the software that allows
the user to interact with the experiment. The main tasks of the host are to
receive and save the data from the electronics controller and give orders to
it. The host software is an application called “lt” (for “Laser Tweezers”) and
it was designed by Shane Saxon to provide a simple and efficient interface
to the user [19]. It runs on a Mac computer and it is compiled with Xcode
for Mac OSX 10.4 (Tiger). New versions of lt also run on updated versions
of Mac OSX. The software was developed using Carbon, i.e., an Apple’s
Application Programming Interface (API). The code was written in C pro-
gramming language and uses OpenGL libraries for the graphics display. The
application is designed in layers of increasing level of programming so that
the basic tasks are available to expand the features of the software. This way,
new experimental protocols can be efficiently implemented. As mentioned,
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the communication between the host computer and the controller is done by
USB. Therefore, the instrument does not need to be linked to a specific com-
puter. Instead, the host computer can be easily substituted by connecting
the USB port to another computer, provided that the FTDI driver [87] is
installed on it.

The lt software is an event-driven application with other internal threads
that execute periodic tasks (communication, rendering). In other words, the
application is continuously receiving and rendering data from the electronic
controller until an event is triggered (e.g. a mouse click) and executed. All
the variables of the application are grouped into a large data structure that
is available to every subroutine of the code by passing the pointer to that
structure. The mouse is mainly used to control the instrument (traps, motors,
protocols) and the keyboard for the graphical display. A detailed description
of the code run by the computer is explained in Appendix C.6. Figure 2.13
shows a screenshot of the user interface.

Figure 2.13: The user interface of the lt application. The experimentalist interacts with
the instrument by means of this interface.

2.3 Calibration

In all instruments the raw data measured by the sensors (i.e., transducers
or detectors) has to be converted into physical magnitudes. The process of
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inference of such conversion is known as calibration. The calibration can be
performed in either two ways: 1) by comparing a known magnitude of one
physical process with the measurement of the instrument or 2) by establishing
a conversion relation with another calibrated instrument.

The calibration of the Minitweezers involves three independent magni-
tudes: time, distance and force. The rest of magnitudes (e.g. pulling rate,
motor velocity, etc.) measured by the instrument are obtained from combi-
nations of those three ones. One interesting aspect of the optical tweezers is
that the calibration of the force can be performed in different ways, allowing
to cross-check the calibration procedures. During the following explanation,
we use square brackets [. . . ] to represent measured and converted magnitudes,
and bare symbols for calibration factors and offsets.

2.3.1 Time

The measurement of time relies on an internal clock of the MainPic. The
PIC sends a packet of data periodically to the USB transceiver at a frequency
of 4 kHz (see Appendix C). One of the variables included in the packet is
the CycleCount. It is a 32-bit number that increases one unit every time the
MainPic completes a loop. Therefore, one unit of CycleCount represents a
lapse of time of 1/4 kHz = 250 µs. The host computer performs the following
operation to calculate the time,

[Time] = [CycleCount] /Frequency (2.28)

where [Time] is the time in seconds and Frequency is the calibration factor
(Frequency = 4000). Nevertheless, it is useful to perform a check with an
oscilloscope. The frequency can be directly measured by connecting the probe
of the oscilloscope to any wire of the parallel bus that communicates the three
PICs in the main board (see Fig. 2.12). If the instrument works properly,
the signal of the wire must be periodic with a frequency of 4 kHz. The error
in the calibration of time directly depends on the error of the internal clock
of the MainPic. The relative error of the oscillation frequency (i.e., ∆f/f0)
is lower than 50 ppm, which is more than enough for the applications that
we are interested in.

2.3.2 Distance

The distance has to be calibrated on two different devices: the motors and
the light-levers. The calibration of the light-levers relies on the calibration
of motors.
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Motor

According to the specifications of the motor (Thorlabs Z606), the shaft en-
coder produces 48 pulses per revolution of the motor. Depending on the
direction of the motor, each pulse increases or decreases by one unit the
number stored in the 24-bit counter (see Appendix C). Moreover, there is a
reduction of 256:1, which means that 256 revolutions of the motor produce
1 revolution of the screw that moves the xyz-stage. Finally, 1 revolution of
the screw retracts or extends the screw by 0.05 µm. So, the conversion factor
between distance and pulses can be calculated as follows,

48 pulses

1 motor rev.
× 256 motor rev.

1 screw rev.
× 1 screw rev.

0.05µm
= 245760

pulses

µm

Now, the host computer performs the following operation to calculate the
position of the motor,

[MotorPosX] = [CounterX] / 245760 (2.29)

where [MotorPosX] is the position of the motor X in micrometers, [CounterX]
is the number of pulses stored in the 24-bit counter. The same conversion is
applied to the Y and Z motors. It is important to note that the calibration
factor (245760) is only fixed by the specifications of the motor. However,
the calibration factor can be verified by using an alternative method. The
idea consists in making some marks to a fluidics chamber (by scratching it,
or introducing fragments of micropipette) and measure the distance between
them using a microscope and a micro-ruler. Then, the chamber is mounted on
the optical tweezers and the distances measured by the motors are compared
with the distances measured with the microscope. The discrepancy between
both methods is lower than 0.5%.

Finally, it is important to mention that the shaft encoders show large
errors in the measurement of short distances (< 0.5 µm) but they are very
linear at large distances. This is due to the backlash of the motor, which
is an irregular response of the motor to a voltage pulse. The origin of this
phenomenon is the gap between the gear of the motor and the gear of the
screw. In other words, the shaft encoder detects movement when the screw is
not rotating yet. Therefore, the larger the distance measured by the motor,
the lower the relative error.

Light-lever

The calibration of the light-lever position sensor is done using the motors
that move the xyz-stage. A trapped microsphere is held fixed at the tip of
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the micropipette and the optical trap follows the position of the microsphere
by keeping the total force equal to zero using a force feedback mechanism
(Fig. 2.14a). As the pipette is gently moved, the trap follows the center of the
bead to maintain the preset zero force. Although the force is not calibrated
yet, the light-lever calibration protocol is still valid because we only expect
that the traps follow the movement of the microsphere, no matter what
actual force is being applied. In order to make the reading of the light-
lever independent of the total power of the optical trap, the deflection of
the PSD [TrapALeverY] is normalized by the total power received by the
PSD [TrapALeverSum]. It allows to establish a linear relation between the
position of the motor (already calibrated) and the reading of the light-lever
according to,

[MotorPosY] =
[TrapALeverY]

[TrapALeverSum]
×Dy (2.30)

where Dy is the calibration factor for trap A in the y direction. Figure 2.14b,c
shows the linear fit of the measured data, whose slope is the calibration factor.
There are also deviations from the linear regime at the ends of the range
due to non-linearities of the PSDs at the borders. They are not relevant,
though, since most of the experiments are performed at the central regions
of the PSDs. The same procedure is repeated for the x axis and for trap B.
This calibration protocol provides slightly different calibration factors (less
than 3%) depending on the direction in which the motor is moving, due to
the backslash of the motor. The average of them is used as the calibration
factor.

In the end, the host software converts the raw data from ad units into
nanometers according to the following relation,

[A-DistY] =
[TrapALeverY]

[TrapALeverSum]
×Dy (2.31)

2.3.3 Force

As mentioned before, the calibration of force can be performed by different
methods that allow to check the process. According to the experimental
setup (Fig. 2.10), the instrument detects the change in the light momentum
of the laser beams that form the optical trap, which allows us to directly
measure the force accurately. There is a linear relation (see Eqs. 2.25 and
2.27) between the PSD reading and the actual force exerted on the bead by
the optical trap, which can be written as
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Figure 2.14: Calibration of light-lever (see text). (a) Calibration protocol. The mi-
cropipette is moved up and down (blue arrow) to calibrate the y distance and left and
right (orange arrow) to calibrate the x distance. The gray square (side length of 11 µm)
shows the range of the piezos. (b) Calibration of y distance for trap A. The horizontal
axis shows the value of the normalized deflection of the light-lever in ad units given by
[TrapALeverY]/[TrapALeverSum]. The black curve is obtained moving the trap up and
down. Green line shows the linear fit when the bead is moved downwards and red line,
when moved upwards. The vertical black trace is the backlash of the motor. (c) Calibra-
tion of y distance for trap B.

[ForceY] = [PSDy]×My +Oy (2.32)

where [ForceY] is the actual force on the y axis in pN, [PSDy] = [TrapAPsdY] +
[TrapBPsdY] is the sum of the readings of the PSDs of both traps in the y
direction, My is the calibration factor and Oy is a force offset, already cor-
rected by the data acquisition board. The offset allows to make the reading
of the [PSDy]=0 if the spot of the laser beam does not perfectly hit the
center of the PSD detector when no force is applied. The value of My is
independent of the trap power and the calibration protocols can be repeated
at different laser powers as an extra test. It is important to mention that,
unlike the measurement of distance, the force measurements are not normal-
ized by the total power received. It is what makes the difference between a
power-dependent magnitude (force) and a power-independent one (distance).
Here we only show the method used in force calibration for the y axis. The
same procedure applies to x and z axis. Three different methods were used
to calibrate the PSD that measures the force.
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Light-momentum

The calibration of the instrument can be performed from first principles,
by measuring the optical parameters of the experimental setup. Indeed,
Eqs. 2.25 and 2.27 require the knowledge of f (the objective focal length),
RD (the effective radius of the PSD chip) and Ψ (the power sensitivity of
the PSD). The specification of the objective allows to obtain f from the
quotient between the tube length of the microscope (usually equal to 160 mm)
and the magnification of the objective (equal to ×60). It gives a value of
f = 2.66 mm which can also be checked experimentally [16]. The value
of RD is also given by the specifications of the detector but it has to be
corrected due to magnification introduced by the relay lens (RD ' 2.25 mm).
This value can also be experimentally checked [16]. Ψ is a magnitude that
relates the PSD detector output current [PsdSum] to the light intensity at
the trap focus P according to Ψ = [PsdSUM]/P . This value has to include
the attenuation effects of all the optical elements (objectives, beam splitters,
prisms). Then the power at the focus P is estimated as the geometric mean
of the light intensity of the laser beam at the entrance (Pin) and exit (Pout)
of the objectives according to P =

√
Pin · Pout. This estimation is correct if

an exponential attenuation is assumed. The intensity is measured with an
optical power meter (Thorlabs PM30-130).

Power spectrum of force

A microsphere suspended in water and located in an optical trap can be
studied from the point of view of a Brownian particle submitted to a harmonic
potential. The dynamics of this system is governed by a Langevin equation
that allows to characterize the power spectrum of the thermal forces that act
on the particle. In the case of an overdamped particle in a harmonic potential,
the power density of force is expected to follow a Lorentzian distribution
according to

SFy(ν) = 〈Fy · F ∗y 〉 =
2kkBTωc
ω2
c + (2πν)2

(2.33)

where SFy is the force power density of the y force, ν is the frequency, Fy is the
Fourier transform of the y force, k is the trap stiffness in the y direction, kB is
the Boltzmann constant, T is the temperature and ωc is the corner frequency
which is given by ωc = k/γ, where γ is the drag coefficient of the bead in
distilled water. The drag coefficient for spherical particles at low Reynolds
number regime can be calculated according to γ = 6πηR, where η is the
viscosity of the surrounding fluid and R is the bead radius. Equation 2.33
can be used to obtain the calibration factor by comparing the theoretical
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prediction and the experimental power spectrum.
The experimental power spectrum is obtained from a measurement of

30 seconds of Brownian PSDy signal of a trapped microsphere in distilled
water at low laser power (see Fig. 2.15a) in order to have a low corner fre-
quency. The data pairs (time vs. force) are split into 1.0-second windows and
the Fast Fourier Transform (FFT) is applied to them. The square modulus
of the FFT is computed and averaged over all windows, therefore obtaining
an estimation of the experimental power spectrum SPSDy (see Fig. 2.15b,c).
The spectrum is fit to a Lorentzian according to the following expression,

SPSDy(ν) = 〈PSDy · PSD∗y〉 =
A

B + (2πν)2
(2.34)

where A and B are fitting parameters. By using the relation given by
Eq. 2.32, Eqs. 2.33 and 2.34 can be related according to

SFy(ν) = M2
y · SPSDy(ν)

2kkBTωc
ω2
c + (2πν)2

=
M2

y · A
B + (2πν)2

(2.35)

which gives the calibration factor (My) and the trap stiffness (k) from the
fitting parameters

2kkBTωc = M2
yA

ω2
c = B

}
My =

√
2kBTγB/A

k = γ
√
B

}
(2.36)

where kBT = 4.11 pN·nm at 25 ◦C, γ = 2.67 · 10−5 pN·s·nm−1 for a micro-
sphere of diameter 2R = 3.00 ± 0.05 µm (polystyrene beads for calibration
from Spherotech, Libertyville, IL) surrounded by distilled water of viscosity
η = 8.9 · 10−4 Pa·s (= 8.9 · 10−10 pN·s·nm−2).

The two force calibration factors extracted from the power spectra mea-
sured at two different laser powers differed less than 1%. The stiffness of the
weak trap was k = 3.22 ± 0.05 pN·µm−1, while k = 6.20 ± 0.07 pN·µm−1

for the stronger trap. The trap stiffness can also be deduced from the force
fluctuations (i.e., the PSDy reading) of the previous measured time series,
without knowing the viscosity of water. The fluctuation-dissipation relation
for a trapped particle can be written as:

〈F 2
y 〉 = k · kBT (2.37)

where 〈F 2
y 〉 is the variance of the y force. Combining Eqs. 2.32 and 2.37 it is

possible to obtain an expression for the trap stiffness given by
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Figure 2.15: Calibration of force. (a) 1 second window of force reading (raw data from
PSDs) versus time of two trapped particles. The red (blue) trace shows the force reading
for a particle trapped in a stiff (soft) trap. (b) Noise power density for the previous
recordings. (c) Noise power density in log-log scale and Lorentzian fits. Green curve
shows the Lorentzian fit for the stiffer trap (red spectrum) and cyan curve shows the
Lorentzian fit for the softer trap (blue spectrum). (d) Force vs. elongation of a particle
stuck at the tip of the micropipette. The slope of the linear region of the red curve is the
trap stiffness (slope of green curve). Analogous curves for the softer trap (blue and cyan
curves). (e) Stokes law calibration. Orange dots show the experimental measurements and
the blue curve depicts the linear fit. The drag force (y axis) is obtained from the velocity
of the motor (v) and using the Stokes law (F = 6πηRv). The slope of the linear fit is the
calibration factor.

k =
M2

y · 〈PSD2
y〉

kBT
(2.38)

where 〈PSD2
y〉 is the variation of PSD in the y direction and My is the

calibration factor obtained from Eq. 2.36. The values obtained were k =
3.26 pN·µnm−1 for the soft trap and k = 6.15 pN·µm−1 for the stiff trap,
which represents an error of 1.5%.

A last check can be performed to measure the stiffness using another
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independent method (see Fig. 2.15d) which does not use the force noise. A
bead is stuck at the tip of the micropipette. The optical trap is aligned in the
center of the bead and short displacements of the optical trap are performed
while recording the force vs. trap displacement and keeping the micropipette
at fixed position. The slope of the linear region of this curve is the trap
stiffness. The values of the stiffness obtained were k = 3.200±0.002 pN·µm−1

for the soft trap and k = 6.28±0.02 pN·µm−1 for the stiff trap. These values
differ by less than 1.5% with respect to the power spectrum method.

Stokes law

This is the most straightforward method to calibrate the force. The host
software has a specific protocol to perform this calibration and it is convenient
to periodically check the calibration factors. The analysis of data is also fast
and efficient.

The Stokes law establishes a linear relationship between the drag force
exerted on a particle Fy and the speed at which this particle is moving in a
viscous fluid v. It is given by the following expression,

Fy = 6πηRv (2.39)

where η and R have already been defined previously. In order to use the
Stokes law to calibrate the force, a microsphere is trapped and the whole
fluidics chamber is moved at a fixed speed using the motorized stage along
the y direction. This process is repeated at different motor speeds and a
collection of speed vs. force measurements are collected. The drag force can
be deduced from the speed of the motor (which is given by the position of
the shaft encoder along time) and Eq. 2.39. Figure 2.15e shows the linear
relation between the drag force and the PSDy reading, whose slope is the
calibration factor. It is obtained after averaging 40 different beads and it
agreed within 2% with the previous method.

A final test to the calibration force is the reproducibility of some well-
established experiments. The overstretching transition of half λ-DNA is com-
monly accepted to occur at 67 pN at 500 mM [NaCl] [48] (see Fig. 2.16a).
This referential value of force is measured when performing the experiments
with the calibrated instrument. Similarly, the unzipping of the cosL end of
λ-DNA shows a characteristic FEC. Such FEC can be reproduced by differ-
ent optical tweezers instruments provided that all them are well calibrated
(see Fig. 2.16b).
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Figure 2.16: Calibration tests. (a) FEC of a half λ-DNA (red curve). The overstretching
plateau occurs at 67 pN. (b) Measurements of unzipping in two optical tweezers instru-
ments. Black curve shows the unzipping data measured with one instrument. Red, blue
and green curves show the data of 3 different molecules obtained with another instrument.

2.4 Design of new protocols

A protocol is a type of experiment defined by the instructions that the in-
strument has to perform. The minitweezers can control the position and
the force of the optical trap with a feedback. A protocol is defined by the
steps that the instrument has to automatically perform on a molecule. For
instance, one of the most common protocols is a pulling experiment. It con-
sists on moving the optical trap up and down at a constant rate so that the
molecule undergoes cycles of stretching and relaxing. Another protocol is
the constant force protocol, in which the molecule is held at a constant force.
This is achieved by means of a force feedback that corrects the position of
the optical trap to keep constant the force exerted on the molecule.

The firmware and software of the instrument was designed so that new
protocols can easily be implemented. Indeed, most of the essential routines
and functions that perform the elementary steps are available to the user.
Thus, a new protocol does not need to be designed from scratch. Instead,
users can gather pieces of already coded subroutines to create their own
protocol.

Here we have to distinguish between two types of new protocols. The
first one only involves coding the software and it is easier to implement.
The second one is more demanding and, apart from the software, it requires
to code the firmware of the PICs. The advantage of coding the PICs is the
update frequency. Indeed, the software of the Mac can update the instrument
at 60 Hz, while the firmware of the PICs, at 4 kHz. Depending on the
requirements of the experiment, one type of protocol will be preferred over
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the other. Appendix D shows a detailed description of the steps to be followed
to code a new protocol.

Figure 2.17 shows data obtained with five different protocols designed
during the realization of this PhD thesis:

Double trap pulling protocol. This protocol assumes that each counter-
propagating laser is used as an independent optical trap. Therefore,
two beads located at two optical traps are used to pull on a molecule.
The traps can move simultaneously or one respect to the other (see
Fig. 2.17a).

Oscillation protocol. This protocol produces an oscillation of the force or
the position of the optical trap. The frequency and the amplitude of
the oscillation can be adjusted (see Fig. 2.17b). This is useful to study
the stochastic resonance of single molecules [88].

Force jump protocol. This protocol is a combination of two already exist-
ing ones. It consists in a pulling experiment followed by a constant force
protocol at a different arbitrary force (see Fig. 2.17c). The misfolding
dynamics of DNA hairpins can be studied with this protocol.

Force ramp protocol. It is a pulling experiment in which the force ap-
plied to the molecule is increased at a constant loading rate. Instead
of constantly changing the position of the optical trap, this protocol
continuously increases the force by running a force feedback. The com-
parison between a force ramp protocol and a regular pulling protocol
gives relevant information about the thermodynamics of small systems.
This protocol was designed to carry out the work described in chapter 6.

Pulling protocol coded in the firmware. It is a standard pulling proto-
col in which the molecule is stretched and relaxed by moving the trap
up and down. The advantage is that the update frequency of the PICs
is 4 kHz and the position vs. time does not exhibit steps at high pulling
speeds (see Fig. 2.17d).

2.5 Conclusions

Since the discovery of the optical tweezers, the accuracy of the instrumenta-
tion and the number of applications have multiplied. The research in molecu-
lar biophysics has gone hand in hand with the development of optical tweezers
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Figure 2.17: New designed protocols. (a) Unzipping of DNA with a double trap pulling
protocol. The FDCs of the traps (red and orange) are measured simultaneously. Except for
thermal fluctuations, the forces are equal and opposite. (b) Oscillation protocol applied
to a DNA hairpin. The force oscillates between 14 and 15.4 pN (red curve) according
to a square wave of frequency 0.4 Hz. The position of the optical trap (blue curve) is
continuously adjusted by the force feedback algorithm. (c) Force jump protocol applied
to a DNA hairpin. A pulling protocol of pulling rate 30 nm/s is followed by a constant
force protocol of force 14.5 pN. (d) Position vs. time curves of two pulling protocols at
a pulling rate of 950 nm/s. The blue (magenta) curve shows the output of the protocol
performed by the PIC (host computer).

during the last 20 years. What is more, optical tweezers have become a stan-
dard tool for the biophysicists. The future will bring us the combination of
optical tweezers with other techniques, the parallelization of experiments and
the refinement of manipulation.

The optical trapping of particles can be described from different comple-
mentary theories. None of them is quantitatively accurate, but they provide
satisfactory approaches to the problem. The minitweezers is an instrument
designed to produce optical traps and measure the force using the conserva-
tion of light momentum. This is a stable instrument that has high resolution
and accuracy thanks to its size and compactness.

The acquisition of data and the control of the instrument is performed
with customized electronic boards based on PIC microcontrollers. The ad-
vantage of using PICs is that the feedback algorithms such as constant force
can be implemented at high bandwidth compared to other optical tweezers
instruments.
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Besides, the user interface was designed for a Mac computer, which is
intuitive and easy to use. The instrument was conceived to be used by
several experimentalists working on different topics. So the calibration only
needs to be done once to make the instrument available to all users. The
host application also allows to design and implement new protocols easily.

The research described in the next chapters of this PhD thesis was based
on the experiments performed with the minitweezers instrument. Under-
standing the working of the instrument has been a key stone to set up the
experiments and analyze the data.

The information contained in this chapter and its appendixes is part of the
know-how of the Small Biosystems Lab. It has been included in this thesis in
order to make it available to everyone as a useful reference for future studies.



Why are we here? What’s life
all about? Is God really real, or
is there some doubt? [...] Or are
we just simply spiraling coils of
self-replicating DNA?

Monty Python’s
The Meaning of Life (1983)

Chapter 3

DNA unzipping

The discovery of DNA and its relation with the transmission of the genetic
information was a process that took almost a century. The research involved
many scientists with different backgrounds. All this prolonged investigation
led to one of the most beautiful scientific achievements of the 20th century:
the central dogma of molecular biology. Formulated by Francis Crick in 1958
[20], it eventually gave a physico-chemical basis to Mendelian genetics.

In 1865, Gregor Mendel set the foundations of genetics. He postulated the
existence of genes as the basic units of heredity. So he established the rules of
the heredity without knowing its physico-chemical basis. In 1869, Friedrich
Miescher reported the existence of a new substance (nowadays known as
nucleic acids) in the nucleus of the cells. Latter in 1882 Walther Flemming
discovered the mitosis (i.e., the eukaryotic cell division) and the chromosomes.
However, it was not until 1902 when two scientists (Theodor Boveri and
Walter Sutton) independently identified the chromosomes as the carriers of
the genetic information. This idea was experimentally verified by Thomas
Morgan in 1910. Latter, the investigations focused on the composition of
the chromosomes. In 1919, Phoebus Levene discovered that the nucleic acids
were composed of nucleotides. However, he thought that the nucleotides
were too simple to carry all the genetic information. At that time, most
biologists believed that the proteins of the chromosomes were the carriers of
the heredity. In 1944, the Avery-MacLeod-McCarty experiment –which was
a revised version of Griffith experiment (1928)– concluded that DNA was the
actual carrier of genes. The experiment consisted in mixing living avirulent

107



108 DNA unzipping

bacteria with a large inoculum of lethal heat-killed cells and injecting it into
mice. The experimentalists understood that the DNA was the substance
that induced the transformation of the avirulent bacteria into the lethal ones,
which produced the death of the mice. In the early 1950’s, Erwin Chargaff
discovered that the amount of guanine in DNA is equal to cytosine and the
amount of adenine is equal to thymine. He established the two so-called
Chargaff’s rules that helped to predict the base-pairing and the structure of
DNA. In 1953, Watson and Crick [1] proposed the double helix structure of
DNA, using a X-ray image taken by Rosalind Franklin. All this period of
investigations concluded in 1968, when Khorana, Holley and Nirenberg were
awarded with the Nobel prize for their discovery of the genetic code.

Since then, molecular biology has experienced a tremendous development.
The processes of the cell have been explored in great detail and our knowl-
edge about them is nowadays enormous. Nevertheless, the central dogma of
molecular biology is still valid. It summarizes the very essential molecular
mechanisms related to the flow of the genetic information.

Although some RNA (such as ribozymes) perform important cellular func-
tions, generally speaking the proteins are the biomolecules that determine the
structure and the function of each cell: different cells have different proteins.
All proteins are made from a sequence of 20 different elementary compo-
nents called aminoacids. So each cell is capable of producing its proteins by
gathering and bonding the correct sequence of aminoacids. The sequence of
aminoacids to produce one protein is coded in the DNA. Now, the DNA is a
biomolecule composed of a sequence of 4 types of nucleotides. Each group of
3 nucleotides codes for one amino acid and this is the ultimate physical sup-
port of the genetic information. Figure 3.1 shows how the genetic information
is transferred from the DNA to RNA in order to build the proteins.

Figure 3.1: Central dogma of molecular biology [89]. The DNA stores the genetic
information. Replication is the process by which this information is duplicated during the
cell division. Transcription consists in the synthesis of a sequence of RNA from DNA.
Finally, translation is the process by which proteins are synthesized according to the
sequence of the RNA transcript. Translation is then carried out by ribosomes.
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DNA forms a double helix that must be split for the cellular machinery to
access the genetic information coded in the bases. Cells have specific molec-
ular complexes to carry out such tasks. For instance DNA polymerases and
their associated proteins are in charge of DNA replication. Similarly, RNA
polymerases perform the transcription of DNA into RNA. During the last
decades of the 20th century, scientists were able to reproduce these processes
in vitro. Besides, the development of single-molecule techniques allowed them
to directly manipulate and study these processes.

This chapter focuses on the process of DNA unzipping by force. DNA
unzipping essentially consists in pulling apart the two strands of DNA by ex-
erting mechanical forces on the extremities of the molecule. After describing
the structure of DNA, this chapter focuses on the unzipping experiments and
the models introduced to understand them.

3.1 Structure of DNA

The structure of biomolecules (including proteins and all nucleic acids) has
been traditionally divided into four levels [90]. The primary structure indi-
cates the chemical composition of the molecule, i.e., the atoms and the co-
valent bonds between them (see Fig. 3.2). DNA is a polymeric chain whose
monomers are nucleotides [91]. A nucleotide (see Fig. 3.2a) is composed of
one molecule of phosphoric acid, one molecule of 2′-deoxyribose (which is a
cyclic pentose sugar) and a nitrogenous base (that can be adenine, cytosine,
guanine or thymine). The phosphoric acid is bonded to the 5th carbon of
the 2′-deoxyribose and the nitrogenous base, to the 1st one (see Fig. 3.2b).
Two nucleotides are bonded each other by a phosphodiester bond between
the phosphoric group of the first nucleotide and the 3rd carbon of the second
nucleotide. The concatenation of nucleotides forms a phosphate-deoxyribose
backbone from where the sequence of bases are linked (see Fig. 3.2c). The
resulting structure has asymmetric ends (5′ and 3′) and the polynucleotide
has a direction. The 5′ end has a terminal phosphate group and the 3′ end a
terminal hydroxyl group. In general, the primary structure of DNA is usually
given as a sequence of bases in the direction 5′ → 3′.

The secondary structure of a biomolecule (see Fig. 3.3) is the result of
non-covalent interactions (e.g., hydrogen bonds, hydrophobic interactions)
between the atoms of the primary structure [92]. In the case of DNA, the
secondary structure leads to the hybridization of two complementary and
anti-parallel strands of DNA (i.e., a 5′ → 3′ strand paired with a 3′ → 5′

one). In the canonical base pairing, the bases of the two strands pair each
other according to Watson-Crick rules: adenine is paired with thymine by two



110 DNA unzipping

Figure 3.2: Primary structure of DNA. (a) Chemical components of a nucleotide.
(b) Nucleotide. (c) Polynucleotide.

hydrogen bonds and cytosine is paired with guanine by three hydrogen bonds
(see Fig. 3.3a). The hydrogen bonds only give specificity to the base pairing.
The stacking interaction between consecutive base-pairs is what stabilizes
the hybridized structure. Stacking is an intermolecular interaction observed
in aromatic molecules that tend to arrange them in a pile (see Fig. 3.3b).
There are two forces that stabilize base stacking: the hydrophobicity of the
aromatic rings of the bases and the London dispersion of the dipoles (induced
in the bases). Stacking forces are different for each combination of base-pair.
In general, a stack of purines (adenine and guanine) is stronger than a stack
of pyrimidines (cytosine and thymine). Apart from Watson-Crick base-pairs,
there are also other motifs (such as loops or bulges) that can contribute to
the thermodynamic stability of the secondary structure.

The tertiary structure of a biomolecule shows the spatial localization of
atoms, i.e., the three-dimensional structure of the molecule. In the case of the
DNA, the two strands form a double-helix [92](see Fig. 3.4). The backbones
of the two anti-parallel strands face each other and twist themselves along
the central axis of the molecule. The bases of one strand are paired with
the complementary ones and they are localized in the cavity left between the
two backbones. The outer envelope of the double helix is not cylindrically
smooth. Instead, it exhibits two helical grooves: the major and the minor
groove, which have different width and depth. As a result, the proteins that
bind to DNA tend to interact with the major groove, since the base-pairs are
more accessible. There are different kinds of double helices characterized by
their geometric properties such as the tilt angle of the bases or the interphos-
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Figure 3.3: Secondary structure of DNA. (a) Hybridization of two antiparallel strands of
DNA. The straight lines represent covalent bonds, while the discontinuous ones represent
hydrogen bonds. (b) Stacking of four bases.

phate distance. The most common structures are the A-DNA (see Fig. 3.4a)
and the B-DNA (see Fig. 3.4b), which both are right-handed double helices.
In physiological conditions, DNA is found in the B form, while RNA is found
in the A form. The A-DNA has a tilt angle of 20◦, a base rise of 0.26 nm
and a pitch of 11 bases per turn, while the values for the B-DNA are -3.6◦,
0.34 nm and 10 bases per turn, respectively. The element that determines the
difference between A-DNA and B-DNA is the sugar puckering (see Fig. 3.4c).
Indeed, the 2′-deoxyribose is a cyclic molecule whose atoms do not lie in the
same plane. In general, the 2nd (C2′) and the 3rd (C3′) carbons of the de-
oxyribose are out of the plane determined by the C1′ , C4′ carbons and the
oxygen. C2′ and C3′ can be found in two mutually exclusive conformations.
In the C2′-endo conformation, the 2nd carbon is above the plane of the sugar
while the 3rd carbon is below. In the C3′-endo conformation, the location
of C2′ and C3′ carbons is inverted. Since the acid phosphoric is bonded to
C3′ , the C3′-endo conformation has a shorter interphosphate distance (i.e.,
the distance between the phosphates of two consecutive nucleotides) than the
C2′-endo conformation. Accordingly, the C3′-endo conformation is observed
in the A-DNA and the C2′-endo conformation in the B-DNA. A different
structure is Z-DNA, which is a left-handed double helix. There are some
evidences that the Z form is a biologically relevant structure. There is an-
other significant DNA structure: the S-DNA. It is a stretched double-helix
with a large tilt angle and a low pitch. The S-DNA is postulated to have
been observed after over-stretching the B-DNA and it was discovered us-
ing single-molecule techniques [48, 93]. However, this interpretation is now
compromised [94].
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Figure 3.4: Tertiary structure of DNA (data obtained from [95]). (a) A-DNA. The
phosphate-deoxyribose backbone is represented in green; adenine in red; cytosine in blue;
guanine in orange; and thymine in yellow. (b) B-DNA. (c) Sugar puckering. The upper
picture shows the chemical formula of the 2′-deoxyribose. The lower pictures show the
two possible sugar pucker conformations.

Finally, the quaternary structure of a biomolecule is the assembly of dif-
ferent tertiary structures. This is quite relevant in proteins that form large
complexes. In the case of eukaryotic DNA, the quaternary structure is called
chromatin (see Fig. 3.5) [96]. The chromatin is a combination of DNA and
essentially histones (i.e., a type of protein) that build complex structures
that assemble to form the chromosomes. Chromatin is formed when DNA
is wrapped around the histones and packed. A few single-molecule studies
have studied nucleosome formation [97].

Figure 3.5: Quaternary structure of DNA (from top to bottom). The DNA is wrapped
around the histones (proteins depicted in red). The histones are packed to form a helix
(depicted in pink). Another super-helix is formed (depicted in yellow) which is the basic
constituent of the chromosomes (depicted in blue).

What is the importance of the DNA structure? Charles Darwin sug-
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gested in 1859 that natural selection is the key mechanism in the evolution
of the species [98]. Similar ideas have been exported to other systems [99].
Biomolecules have been exposed to natural selection for millions of years.
Therefore, the structure of nucleic acids and proteins has evolved to be ca-
pable of performing specific biological functions in an efficient way.

In the particular case of DNA, the double helix structure has several
advantages. Here we enumerate some of the most relevant. First, genetic
information is coded twice in the two complementary strands. This allows
to safely store the information and check for errors during the replication
process. Second, the external backbone protects the internal base-pairs (the
ultimate carrier of the genetic information) from irreversible damage. Third,
the lineal arrangement of the bases along the longitudinal axis of the DNA
allows proteins to directly access to any fragment of the sequence. Fourth, the
process of splitting and rejoining the two strands of DNA is reversible. This
permits to carry out the replication and the transcription of DNA without
damaging the original molecule. Finally, the double helix is a semi-flexible
polymer that can be stretched, bended and twisted. As a result, the DNA can
be compacted by forming super-structures (nucleosomes and chromosomes)
that wrap the DNA around the histones.

3.2 Mechanical unzipping of DNA

In a very simplified view of life, all cells react to external impulses (food,
heat) by performing some specific tasks (digest, crawl). All these specific
tasks are carried out by proteins (enzymes, molecular motors). So cells need
to continuously access to the genetic information stored in the sequence of
DNA to synthesize proteins. Cell division is another example of a process
that requires to access to the genetic information. In order to read the DNA
sequence, the two strands of DNA must be split apart so that the cellular
machinery can interact with the bases that code the instructions. For instance
during replication, helicases are the proteins responsible of separating the two
strands of DNA. The process of strand separation carried out by proteins was
reproduced in vitro in the last decades of the 20th century [100]. Recently it
has been studied at the single-molecule level [101, 102, 103].

The strand separation of DNA can also be produced in vitro without the
proteins of the cell. This can be achieved by using an external agent such as
temperature, chemical agents or force. Mechanical melting is a process that
consists in pulling apart (i.e., unzipping) the two strands of a double-stranded
DNA (dsDNA) molecule until the base pairs that hold the DNA duplex
together are disrupted and two single-stranded DNA (ssDNA) molecules are
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obtained. The term unzipping presumes that the DNA molecule is pulled
from the 3′ and the 5′ extremities of one end of the molecule. The process of
unzipping has its opposite: the rezipping. Indeed when the force is released,
the DNA molecule tends to return to its native state, i.e., completely folded.

The mechanical separation of DNA was initially explored by pulling the
DNA from its 5′ extremities using an Atomic Force Microscopy (AFM) [104,
105]. The shear stress induced on the strands produced sudden disruptions
of the base-pairs. The first unzipping of single molecules of DNA was carried
out by Bockelmann and coworkers in 1997 using microneedles [106, 21, 107].
Inspired by a previous experiment [108], they tethered the DNA molecule be-
tween a coverslip and a movable glass microneedle, which allowed to measure
the force by calibrating the deformation of the microneedle (see Fig. 3.6a).
Mechanical unzipping was monitored by simultaneously measuring the dis-
placement of the glass microneedle and the force applied on the molecule.
The resulting force vs. extension curve (FEC) revealed a reproducible pat-
tern which was correlated with the local content of Guanine and Cytosine
(GC) along the DNA sequence. In particular, more force was required to
unzip regions with high GC content as compared to regions with high AT
content. Besides, the energies measured were compatible with the melting
experiments performed in bulk [109]. Latter, Rief et al. were able to produce
the overstretching and the unzipping of DNA in the same experiment using
AFM (see Fig. 3.6b) [22, 110]. These experiments were a direct proof that
the base-pairing forces in DNA were sequence specific. In 2001, Liphardt
et al. [49] unzipped short RNA hairpins and observed coexistence and hop-
ping between folded and unfolded states using optical tweezers. In a new
improved experiment (see Fig. 3.6c), Bockelmann et al. repeated the DNA
unzipping with optical tweezers [24]. Optical tweezers provided much more
spatial and temporal resolution as well as a higher trap stiffness compared
to glass microneedles. The unzipping experiments showed hopping between
intermediate states and the experimental FEC was qualitatively reproduced
by a mesoscopic model based on the Nearest-Neighbor model for nucleic
acids [27, 26]. Still, the unzipping/rezipping curves showed some irrepro-
ducibility due to experimental drift, non-equilibrium effects (hysteresis) and
statistical variation. A similar work done by the same group [111] showed
that the unzipping experiments performed at high pulling speed deviated
significantly from the quasistatic ones. They attributed such deviation to
rotational drag effects. In 2003, Danilowicz et al. [23] unzipped DNA at
constant force using magnetic tweezers (see Fig. 3.6d). The process showed a
succession of breakages of base-pairs, typical of first order phase transitions.
Since then, unzipping experiments have been the focus of attention of some
studies [112, 113]. Unzipping has also been used as a tool to explore other
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processes of the cell such as the protein-DNA interaction [114] or the trans-
lation of proteins observed in single ribosomes [115]. Besides, the theoretical
studies have also focused their attention on different particular aspects of the
unzipping experiments such as the scaling properties [29], the kinetics [116]
or the problem of sequencing DNA by force [117].

Figure 3.6: Unzipping of DNA with different techniques. (a) Microneedles [106].
(b) AFM [22]. (c) Optical tweezers [24]. (d) Magnetic tweezers [23].

3.2.1 Unzipping experiments

DNA unzipping can be performed in two different ways: 1) at controlled
position or 2) at controlled force. The first one consists in separating both
strands and applying whatever force is required to disrupt the bases. It is
a sequential process and the disruption (i.e., opening) of bases occurs pro-
gressively. The second one consists in increasing the force applied to the
strands of the molecule. In this protocol, all the base pairs of the DNA are
suddenly disrupted when a critical force is reached. Depending on the exper-
imental setup, the process of unzipping will be of one kind or the other. All
these experiments can be performed at different speeds, which will determine
whether the process is out of equilibrium or quasistatic.

One of the most important features of optical tweezers is that it allows to
control and measure the extension of the DNA and the force applied to its
ends. The possibility of measuring the force during the unzipping gives a lot
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of information about the process. The typical forces exerted by an optical
trap are of the order of magnitude of the critical force required to unzip
the DNA molecule. Moreover, feedback algorithms are able to control the
force at 4 kHz frequency. So both types of unzipping experiments (controlled
position or controlled force) can be performed with optical tweezers.

In order to unzip DNA, the synthesized molecular constructs are attached
to two homogeneous beads made of polystyrene that have an index of re-
fraction of n = 1.51. One bead is a Streptavidin (SA) coated microsphere
(2.0-2.9 µm; G. Kisker GbR, Products for Biotechnology). The other bead
is a protein G microsphere (3.0-3.4 µm; Spherotech, Libertyville, IL) coated
with anti-digoxigenin (AD) polyclonal antibodies (Roche Applied Science).
The SA bead bonds to the biotin-labeled handle of the molecular construct,
while the AD bead bonds to the other handle, which is labeled with digoxi-
genins. The rest of the elements of the molecular construct (ssDNA, dsDNA,
loop) do not stick to polystyrene beads. This assures that unzipping exper-
iments are not affected by unintended interactions. The SA bead is usually
fixed at the tip of the micropipette by air suction, while the AD bead is
captured in the optical trap (see Fig. 3.7).

Figure 3.7: Experimental setup to unzip the DNA molecular constructs. Picture not to
scale.

3.2.2 Experimental setup to unzip DNA molecules

Unzipping experiments using optical tweezers consist of two steps: 1) syn-
thesis and preparation of the samples to be pulled and 2) attachment of the
molecule between the two beads. The procedures to synthesize DNA, RNA
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or proteins are very different. Thus, the synthesis of the molecule depends
on the type of molecule to be pulled. Section 3.2.3 describes how the DNA
molecules to be unzipped are synthesized in the lab.

1. The preparation of DNA molecules for pulling requires the incubation
of the synthesized DNA molecules with the coated AD beads. This
process consists in mixing the DNA molecules with beads in a ratio of
approximately one bead per molecule. The incubation time is between
15-30 minutes at room temperature. During this time, the digoxigenin
labeled handles of the DNA molecules are bonded to the antidigoxi-
genins that coat the beads. The sample is diluted and introduced in
the upper channel of the fluidics chamber (see Fig. C.5 in Appendix
C.4). Another sample is prepared by diluting a certain amount of SA
beads in buffer. This second preparation is inserted in the lower chan-
nel of the fluidics chamber (Fig. C.5). The central channel is then
loaded with the corresponding buffer at which the pulling experiment
is performed.

2. The tethering or connection of the molecule between two beads is car-
ried out within the fluidics chamber. First, a SA bead is trapped at
the exit of the bearing tube of the lower channel. With the help of
the optical trap, the bead is located and immobilized at the tip of the
micropipette by air suction. Second, an AD bead (already incubated
with DNA) is trapped at the exit of the bearing tube of the upper chan-
nel. Finally, the beads are brought close to each other until a tether
between the SA bead an the biotin labeled handle of the DNA sample
is achieved (see Fig. 3.8).

At this point, the optical trap measures a force when the beads are sep-
arated and the system is ready to start the DNA unzipping experiments.

3.2.3 Synthesis of DNA molecules

The unzipping of long molecules of DNA requires the design and synthesis
of molecular constructs that can be pulled with optical tweezers. Optical
tweezers use beads to apply forces on the molecules. Therefore, the DNA
molecules have to be synthesized with labeled ends, so that the DNA can be
bonded to the beads. In our case, the labels must be positioned in the 3′ and
5′ extremities of the handles.

The synthesis of DNA constructs involves a series of simple steps such as
cleavage, electrophoresis or annealing among others. Protocols to carry out
these steps are commercially available and are highly efficient. Our protocol
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Figure 3.8: Screenshots that show the formation of an attachment between the molecular
construct and the beads in the fluidics chamber. (a) Trapping of a SA bead. (b) Im-
mobilization of the SA bead at the tip of the micropipette. (c) Trapping of a AD bead.
(d) Tethering of the molecule between the two beads.

of synthesis starts from λ-DNA molecules which is then cut into several frag-
ments. Latter, the desired fragments are selected and the labeled handles are
added. Two different sequences of DNA have been used in our experiments.
The first one has a length of 6.8 kbp and the second one has 2.2 kbp. In
what follows, we describe the procedure to synthesize the 6.8 kbp sequence.

6.8 kbp sequence

A 6770 bp insert DNA is isolated by gel extraction of a BamHI digestion of
λ phage DNA (see Fig. 3.9). Two short handles of 29 bps and one tetraloop
(5′-ACTA-3′) are ligated to the insert that has the λ cosR end and a BamHI
sticky end. To construct the DNA handles, an oligonucleotide (previously
modified at its 3′ end with several digoxigenins using DIG Oligonucleotide
Tailing Kit, 2nd Generation, Roche Applied Science) is hybridized with a
second 5′ biotin-modified oligonucleotide giving a DNA construction with
one cohesive end complementary to cosR and two 29 nucleotide long ssDNA
at the other end. These two ssDNA have the same sequence and they are
hybridized with a third oligonucleotide, which is complementary to them,
resulting in two dsDNA handles. This construction is attached to the insert
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DNA by a ligation reaction. A fourth self-complementary oligonucleotide,
which forms a loop in one extreme and a cohesive BamHI end at the other,
is ligated to the BamHI sticky end of the insert DNA. The DNA is kept in
aqueous buffer containing 10 mM Tris-HCl (pH 7.5) and 1 mM EDTA. See
Appendix E for the detailed sequence.

 DNA 48 kb

Digestion by

endonuclease

BamHI

cosL

cosR

5’ 5’

Target 

BamHI

Target 

BamHI

cosR

 DNA 6770 bp

Biotin

Digoxigenins

cosR

target 

BamHI

 DNA of 6.83 kb for unzipping

Figure 3.9: Synthesis of the 6.8 kbp sequence.

2.2 kbp sequence

The protocol of synthesis is similar to the previous one. The 2.2 kbp construct
is obtained taking the 2215 bp fragment from a SphI digestion of λ-DNA.
The same two short handles and tetraloop used for the 6.8 kbp DNA are used
for the 2.2 kbp construct, with the following exceptions: the two handles are
hybridized to the 2215 bp DNA through the cosL cohesive end of λ DNA,
and the tetraloop is added to the insert DNA using the SphI sticky end (see
Fig. 3.10). See Appendix E for the detailed sequence.

3.2.4 Experimental data of unzipping experiments

Once the molecule has been tethered between the two beads, the unzipping
experiment can start. There are two types of unzipping experiments: con-
trolled position and controlled force. The natural way to produce unzipping
with optical tweezers is at controlled position. The reason is that the posi-
tion of the optical trap is a parameter that we directly control by changing
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 DNA 48 kb
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SphI

Target 

SphI
cosL

cosL

cosR
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Target 
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 DNA 2.2 kb
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target 
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 DNA of 2.25 kb for unzipping

Figure 3.10: Synthesis of the 2.2 kbp sequence.

the voltage of the piezos. Instead, the controlled force experiments require
the activation of a force feedback. The process of unzipping looks different if
the experiment is performed at controlled position or force. Thus, the data
measured with the instrument depends on the type of experiment.

Controlled position experiments

In the controlled position experiments, the optical trap is moved relative to
the micropipette and the distance between the two beads increases. The
separation of the beads induces a force on the handles of the DNA molecular
construct, which is transmitted to the unzipping fork of the DNA. When the
force is high enough (∼ 15 pN), the base-pairs cannot withstand the force and
suddenly break. The breakage of a group of bases release a certain amount
of ssDNA, which increases the total length of the molecular construct. This
reduces the force exerted on the ends of the molecule. When the separation
between the traps is increased again, this very same process is repeated and
more base-pairs are open until the two strands of the molecule are completely
disrupted. Once this situation is reached, the loop keeps the two strands
linked and the molecule exhibits the elastic response of the ssDNA (last part
of the FDC). On the other hand, if the beads are brought close one to each
other, the base-pairs of the DNA molecule tend to close and the molecule is
rezipped.

During all this unzipping/rezipping process, the instrument simultane-
ously measures the position (i.e., the so-called distance) of the optical trap
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and the force applied to the ends of the molecule. These two magnitudes are
usually represented together in a Force vs. Distance Curve (FDC). The typ-
ical FDC of an unzipping experiment exhibits a sawtooth pattern, which is
composed of a series of slopes and sudden decreases in force (see Fig. 3.11a).
The slopes correspond to the elastic response of the molecule as it is being
pulled. The sudden force decrements (also known as force rips) correspond to
the breakage of base-pairs (see Fig. 3.11b). The slopes and force rips of the
sawtooth have different shapes, widths and heights and they depend on the
DNA sequence. Different sequences have different sawtooth patterns. The
pulling speed is the rate (in nanometers per second) at which the beads are
pulled apart. At slow pulling rate, the unzipping and rezipping processes are
almost quasistatic and their FDC overlap, except for some unavoidable hys-
teresis when opening the loop (see Fig. 3.11c). At fast pulling rate, the force
rips exhibit hysteresis, the process is no longer quasistatic and the unzipping
and rezipping patterns differ significantly.

Figure 3.11: Unzipping of a DNA molecule at controlled position. (a) Sawtooth pattern
of the FDC. Upper (lower) panel shows the FDC of a 2.2 kbp (6.8 kbp) sequence. Red and
orange curves show the raw data. Black and blue curves show the filtered data at 1 Hz
bandwidth. (b) The slope of the sawtooth corresponds to the elastic response whereas the
force rip corresponds to the opening of base pairs. The group of bases that are disrupted
in the force rip are depicted in red. (c) A quasistatic cycle of pulling/relaxing. Red (blue)
curve shows the unzipping (rezipping).

Controlled force

The unzipping experiments at controlled force consist in continuously increas-
ing the force applied at the ends of the DNA molecule until it disrupts at a
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critical force. The disruption is much more abrupt than in the controlled po-
sition unzipping. In other words, the number of broken base-pairs increases
dramatically as we reach the critical force. Indeed, within a range of 2 pN
of force the molecule changes its state: from completely closed base-pairs to
completely open.

The FDC measured in this kind of experiments is quite different from the
ones obtained at controlled position. Its shape is different and it no longer
exhibits a sawtooth pattern. Instead, it is a monotonically increasing step
function, so the force and distance always increase together (see Fig. 3.12).
The rezipping at controlled force is observed when the force applied to the
molecule is released. The shape of the function is very similar but a large
hysteresis is observed. Differently from the previous experiments, the hys-
teresis in the controlled force experiments cannot be reduced at will because
the process is never quasistatic.

Figure 3.12: Unzipping of a DNA molecule at controlled force. Red (blue) curve shows
unzipping (rezipping) FDC. The unzipping FDC at controlled position has been superim-
posed in gray.

3.3 The Nearest-Neighbor model

The Nearest-Neighbor (NN) model for DNA was developed to predict the free
energy of formation (hereafter, simply referred as energy) of a double helix
of DNA starting from two complementary strands of DNA [26, 27]. The
model has been extended to include all possible secondary structures that
can be formed with a single strand. The NN model assumes that the ssDNA
is already formed (i.e., the phosphate backbone is already formed) and only
base-pairing interactions are taken into account. The model predicts the
formation energy of all the possible secondary structures we can form with
the given sequence, but it does not predict the state of minimum energy (i.e.,
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the native state). In order to find the native state, it is necessary to search
the less energetic state among all possible secondary structures [118]. This
requires the implementation of optimization algorithms such as Mfold that
use the NN model to minimize the energy of a given sequence of ssDNA [119].

The basic idea of the NN model is that the base-pairing energy of two
complementary bases only depends on the base itself and on the first neighbor
located in the same strand. This allows to separate the computation of the
global energy into many contributions called motifs (see Fig. 3.13a). Each
motif represents a possible pairing of bases and the total energy of a state is
given by the sum of the energies of different motifs. The energy of a given
motif includes three main contributions: 1) the hydrogen bonds between
bases, 2) the stacking interaction between consecutive bases and 3) the loss
of entropy (see Fig. 3.13b).

Figure 3.13: NN model. (a) Duplex formation. The formation energy (∆g) of the base
pair i depends on itself and on the NN base pair i + 1. Each base pair contributes to
the total formation energy of the duplex (G(n)). (b) Interactions between bases. The
hydrogen bonds between complementary bases, the stacking interactions and the loss of
entropy (not depicted) constitute the free energy of one base pair. (c) The 16 NNBP
motifs. The 12 highlighted motifs are symmetric with respect to the anti-diagonal. Each
motif has the same energy than its symmetric. In the end, there are 10 different energies
(6 symmetric + 4 anti-diagonal).

If the NN model is restricted to Watson-Crick base pairs, the number
of possible motifs is dramatically reduced. Since DNA has four types of
bases and the interaction involves the nearest neighbor, we end up with
4× 4 = 16 different possible motifs. However, 6 pairs of them must have the
same formation energy due to symmetry reasons (see Fig. 3.13c). Indeed,
one given ssDNA determines the sequence of its complementary strand if we
are restricted to Watson-Crick base pairs. This means that the energy of the
duplex can be computed either knowing one strand or the other and the value
of the energy must be the same in both cases, which imposes 6 restrictions.
Therefore, only 10 different energy values define the free energy of formation
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of Watson-Crick sequences of DNA.

The NN model has been largely investigated in calorimetry and UV ab-
sorbance experiments. Calorimetry measurements allows us to infer the en-
thalpy and entropy of formation of chemical substances by measuring the
heat absorbed or emitted by a vessel that contains the reactive substances
while the temperature is increased. In particular, it is possible to isolate the
contribution of each motif by gathering calorimetric experiments performed
on several sequences of DNA. In the end, a table of enthalpies and entropies
for each motif can be obtained.

3.3.1 Thermodynamics of DNA duplex formation

As mentioned before, the NN model allows us to compute the thermody-
namic properties of DNA duplex formation starting from the enthalpies and
entropies of the elementary motifs that constitute all possible Watson-Crick
sequences of DNA. This section describes how to calculate these magnitudes.

The sequence of an N -base ssDNA (σi) is given from the 5′ end to the 3′

one, where i=1 is the base located at the 5′ end, i=N is the base located at the
3′ one. σi can take four different values (σ = {A,C,G, T}). The standard
enthalpy of hybridization of such sequence (∆H0) with its complementary
strand can be calculated according to,

∆H0 = ∆Hinit +
N−1∑
i=1

∆h0(σi, σi+1) (3.1)

where ∆Hinit is the initiation term that depends on the ends of the sequence
(i = 1, N); ∆h0 is the formation energy of Watson-Crick motifs and it de-
pends on the nearest neighbor (σi, σi+1 ∈ {AA,AC, . . . , TT}); and the sum
is extended over all NN base pairs. The notation is usually simplified by
assuming that the i+ 1 base is already known from the sequence. Thus, the
arguments of ∆h0 can be removed,

∆H0 = ∆Hinit +
N−1∑
i=1

∆h0
i (3.2)

where ∆h0
i is the enthalpy of formation of the motif (σi, σi+1). Similarly, the

entropy contribution (∆S0
i ) in the hybridization reaction can be computed

according to

∆S0 = ∆Sinit +
N−1∑
i=1

∆s0
i (3.3)
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Term Motif ∆H◦ ∆S◦

Constant contribution All 0.2 -5.6

A/T penalty

5′-A...-3′

2.2 6.9
5′-T...-3′

5′-...A-3′

5′-...T-3′

TA penalty
5′-TA...-3′

-0.4 0.5
5′-...TA-3′

Table 3.1: Initiation terms. The contributions are not mutually exclusive. It means that
they are added to the total ∆H◦ and ∆S◦ for each motif of the oligo. For instance, the
sequence 5′-TA...C-3′ will have the following initiation term for the enthalpy: ∆Hinit =
0.2 + ∆h0

A/T + ∆h0
TA. Enthalpies are given in kcal/mol and entropies, in cal/mol·K.

where ∆Sinit is the initiation term and ∆s0
i is the entropy of formation of the

motif σiσi+1.

The last bases of the sequence do not have a complete stacking interaction
because they only have one neighbor. This is why the NN model has to
introduce the initiation term. This term always adds a constant contribution,
which is sequence independent. Moreover, a variable contribution has to
be added depending on the type of bases located at the ends: an extra
contribution of ∆h0

A/T and ∆s0
A/T must be added if the sequence starts with

a 5′-A...-3′ or 5′-T...-3′; or ends with a 5′-...A-3′ or 5′-...T-3′. If the molecule
has both motifs (start and end) the contribution has to be counted twice.
Moreover, if the molecule specifically starts with 5′-TA...-3′ or ends with
5′-...TA-3′, there is another extra contribution of ∆h0

TA and ∆s0
TA to the

initiation terms. Table 3.1 summarizes all these cases.

In general, ∆H0
i and ∆S0

i are considered to be temperature independent,
meaning that the change in heat capacity can be neglected (∆Cp = 0). This
allows to compute the free energy of formation (∆G0),

∆G0 = ∆H0 − T∆S0 (3.4)

where T is the temperature at which the free energy is calculated. Following
the same scheme, it is also possible to define the free energy of formation
(∆g0

i ) of one NN motif according to

∆g0
i = ∆h0

i − T∆s0
i . (3.5)
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3.3.2 Melting temperatures

The melting temperature of a DNA hairpin is defined as the temperature
at which half of the molecules are in the native state (i.e., the double helix
state) and half are denaturated (i.e., the two strands are split). It is implicitly
assumed that the hybridization of the molecule is well described by a two-
state model, in which the base-pairs are either fully bonded or disrupted (no
partial disruption of bases is considered). This model is convenient for oligos
shorter than 100 bp and the predicted melting temperatures deviate from
the experimental measurements if the DNA is longer (the so-called polymeric
DNA).

The NN model is widely used to predict melting temperatures of DNA
duplexes. In order to predict melting temperatures, the enthalpy (Eq. 3.2)
and the entropy (Eq. 3.3) of formation of the DNA hairpin must be known.
The melting temperature of a non-self-complementary duplex1 is deduced
from the the equation that relates the equilibrium constant with the free
energy of formation of the hairpin,

∆G = ∆G0 +RT lnK (3.6)

where ∆G is the free energy of formation of the hairpin at the desired experi-
mental conditions, ∆G0 is the standard free energy calculated with Eq. 3.4, R
is the gas constant, T is the temperature and K is the equilibrium constant.
The hybridization reaction can be written as

ssDNA1+ssDNA2 
 dsDNA (3.7)

where ssDNA1 and ssDNA2 are the two complementary strands and dsDNA is
the hybridized duplex. The equilibrium constant of the hybridization reaction
is given by,

K =
[dsDNA]

[ssDNA1] · [ssDNA2]
(3.8)

where [ssDNA1], [ssDNA2] and [dsDNA] are the concentrations (in molar
units M=mols·l−1) of the single strands and the duplex, respectively. By
definition, the melting temperature is the one in which [dsDNA] = [ssDNA1]
= [ssDNA2]. If the sample has a total concentration of strands equal to cT ,
it is expected that at the melting temperature the strands will be distributed
according to,

ssDNA1 + ssDNA2 
 dsDNA
cT = x + x + 2x

(3.9)

1A non-self-complementary duplex is an oligo which cannot hybridize with itself. For
instance, 5′-ATCGCGAT-3′ is self-complementary.
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where x is the concentration of strands at equilibrium (the concentration
of strands is double for [dsDNA]). From this, we deduce that cT = 4x at
the melting temperature and the concentrations are equal to [ssDNA1] =
[ssDNA2] = [dsDNA] = cT/4. Note that one molecule of dsDNA contributes
twice to the total concentration of ssDNA, so we have

cT = [ssDNA1] + [ssDNA2] + 2 × [dsDNA]
= cT/4 + cT/4 + 2 × cT/4 .

(3.10)

By introducing these concentrations into Eq. 3.8 we find K = (cT/4)−1 at
equilibrium. At the melting temperature (Tm) the hybridization reaction is
in equilibrium, so ∆G = 0. Considering this and introducing Eq. 3.4 into
Eq. 3.6 it is possible to write,

0 ≡ ∆G = ∆H0 − Tm∆S0 +RTm ln (cT/4)−1 (3.11)

which leads to the following result after solving for Tm:

Tm =
∆H0

∆S0 +R ln[cT/4]
(3.12)

3.3.3 Salt dependence

The prediction of melting temperatures is commonly done at standard con-
ditions, which means that the concentration of salt is [NaCl]=1 M. However,
this prediction can be extended when the hybridization reaction is performed
at a different concentration of salt. According to the studies of calorimetry,
the entropy is the only thermodynamic magnitude that depends on the salt
due to rearrangements of the cloud of counterions along the DNA. This is
deduced from the melting experiments performed on oligos, in which the en-
thalpy is directly obtained from the slope of the van’t Hoff equation [120].
The results for several molecules show no significant enthalpic differences
at different salt concentrations [121], meaning that the enthalpy is salt-
independent. So, the salt correction only affects the entropy. The values
of ∆s0

i that enter in Eq. 3.3 must be substituted by ∆si according to

∆si([Na+]) = ∆s0
i +

mi(T )

T
ln[Na+] (3.13)

where ∆si([Na+]) is the formation entropy of motif i at a salt concentration
of [Na+], T is the temperature and mi(T ) is a pre-factor that corrects for the
salt and it is temperature-dependent. Although mi depends on T , the whole
prefactor mi(T )/T is temperature independent. Therefore, mi(T ) is linear
with T .
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In general, the values of mi do not need to be identical for all the NN
motifs. However, in the studies of calorimetry they are taken to be all the
same at first approach, and their value is mi = 0.114 kcal·mol−1·K−1 at
T = 310 K [28]. On the other hand, the salt correction does not apply to
the initiation term (∆Sinit) of Eq. 3.3. After introducing the salt correction,
Eq. 3.12 can be rewritten as

Tm =
∆H0

∆S0 +
∑N−1

i=1
mi(T )
T

ln[Na+] +R ln[cT/4]
(3.14)

where the new term in the denominator is a summation that rolls over all the
bases of the sequence. Strictly speaking, the summation should be done for
the number of phosphates of the DNA, divided by two [28]. In our case, it is
identical to the number of base pairs of the molecular construct. Again, the
prefactor mi(T )/T is temperature independent and the value of T at which
it is measured is not important.

3.4 Modeling of experimental setup

In order to understand the mechanism of the unzipping process it is useful
to have a model that reproduces the physics behind the experiments. A
description of the experiment can be done at several degrees of accuracy:
from an atomistic description to mesoscopic models. In general, each model
focuses on a particular aspect of the experiments: thermodynamics, kinetics,
scaling properties, etc. The aim of this section is to develop a mesoscopic
model to study the thermodynamics of the DNA [112]. The model describes
separately the different constituents of the experimental setup by using other
submodels such as the NN model (described in the previous section) and the
models for the elasticity of polymers. The standard techniques of statistical
mechanics can be applied to the model in order to compute the partition
function, the free energy landscape and the equation of state of the system.

In most macroscopic thermodynamic systems (e.g., ideal gas) the com-
putation of the equation of state can be performed in different statistical
ensembles (microcanonical, canonical, grand canonical). In principle, the re-
sult should not depend on the ensemble selected to perform the calculation
if we take the thermodynamic limit. In the case of the DNA, the calculation
of the thermodynamic properties of the model can be done in two ensem-
bles: controlled position (also known as mixed [122, 112] or isometric [123])
ensemble and controlled force (also known as isotensional [123]) ensemble
(see Fig. 3.14). In DNA unzipping, though, the resulting equation of state
depends on the ensemble. The differences between them are due to the finite
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size effects. Following, there are two separate descriptions of the model, one
for each ensemble.

Figure 3.14: Ensembles. (a) Controlled position ensemble. The total distance (xtot)
between the anchor point and the center of the optical trap is held constant. The position
of the bead (xb) in the optical trap fluctuates and so does the applied force f (k is the trap
stiffness). (b) Controlled force ensemble. The force is controlled by keeping constant the
position of the bead in the optical trap (xb). In order to do so, the total distance of the
system (xtot) must be corrected by a feedback. Therefore, xtot fluctuates. This ensemble
can also be implemented by applying a uniform field of force as in magnetic tweezers.

3.4.1 Controlled position

The position of the center of the optical trap is the control parameter that
characterizes the controlled position ensemble. In this ensemble, the posi-
tion of the trap is fixed and the force applied to the ends of the molecular
construct fluctuates. The equation of state of the system in this ensemble
can be experimentally reproduced by measuring the average force exerted on
the molecular construct for each fixed position of the optical trap. The nat-
ural thermodynamic potential of this ensemble is the Helmholtz free energy,
which is expressed in terms of the extensive variable (the distance) and the
temperature. Therefore the energetic contributions of the model have to be
expressed in terms of distances (or extensions).

The description of the molecule is split into three different parts: the
handles, the open base pairs (which are in the form of single stranded DNA)
and the closed base-pairs (see Fig. 3.15). We also have to take into account
the effect of the optical trap. The bead in the optical trap is modeled by a
Hookean spring,

f = kxb (3.15)

where f is the force applied, k is the measured stiffness of the optical trap and
xb is the elongation of the bead from the center of the trap. So, the potential
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energy of the bead in the optical trap Eb is described by a harmonic potential

Eb =
1

2
kx2

b . (3.16)

Figure 3.15: Mesoscopic model. Each element is represented using a different color. A
sketch of the free energy contribution is also shown for each element.

We use the NN model to describe the free energy of formation of the DNA
duplex. The free energy required to open n base pairs is given by the sum of
the free energies required to open each consecutive nearest-neighbor pair,

GDNA(n) = −
n∑
i=0

εi (3.17)

where GDNA(n) is the free energy of the hairpin when n bps are disrupted and
εi is the free energy of formation of the bp i. The values of εi are negatively
defined (because the base-pairing is a spontaneous reaction) and they are
identical to ∆gi (see Eq. 3.5 for a definition of ∆g0

i in standard conditions).
The resulting function GDNA(n) is positively defined and monotonically in-
creasing with n (see Fig. 3.15). So, the energy is minimum and equal to 0
when all the base pairs are closed (GDNA(0) = 0) and it is maximum when
all base pairs are open (GDNA(N) =

∑N
i=1 εi). The free energy of the duplex

depends on the sequence of base pairs. An extra free energy contribution is
included in the model to account for the disruption of the end loop when all
the base pairs are open (i.e., n = N).
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Elastic models for polymers are used to describe the elasticity of the
handles and the ssDNA released during the unzipping process. The handles
are dsDNA and they are modeled using the force vs. extension curve of a
Worm-Like Chain (WLC)

fh(xh) =
kBT

4lp

((
1− xh

L0

)−2

− 1 + 4
xh
L0

)
(3.18)

where kB is the Boltzmann constant and T is the temperature, lp is the
persistence length and L0 is the contour length. The elastic free energy of
the handles (Gh(xh)) is obtained by integrating the previous expression (see
Appendix F for further details) according to

Gh(xh) =

∫ xh

0

fh(x
′) dx′ (3.19)

where x′ is a dummy variable. The ssDNA is modeled using either a WLC or
a Freely-Jointed Chain (FJC) model. Depending on the salt concentration of
the experiment, one model or the other describes better the elastic response
of the ssDNA. In the case of the FJC model, the following equation gives the
extension vs. force curve,

xs(f, n) = nd ·
(

coth

(
bf

kBT

)
− kBT

bf

)
(3.20)

where kB is the Boltzmann constant and T is the temperature, b is the Kuhn
length, n is the number of bases and d is the interphosphate distance of the
ssDNA. The product L0 = n × d is the contour length of the molecule. It
is convenient to write the explicit dependence on n in Eq. 3.20 because n is
not a parameter but a variable that changes during unzipping. Again, the
elastic free energy of the ssDNA is obtained by integrating the force versus
molecular extension. However, in Eq. 3.20 f is the independent variable
so the calculation of Gs(xs, n) requires the inversion of xs(f, n). It can be
avoided by performing an integration by parts (see Appendix F) according
to

Gs(xs, n) =

∫ xs

0

fs(x
′, n) dx′ = f · xs(f, n)−

∫ f

0

xs(f
′, n) df ′ (3.21)

where f ′ is a dummy variable and the limits of integration are related by
xs = xs(f, n). The total free energy of the global system (Gtot) is given by
the sum of all free energy contributions,

Gtot(xtot, n) = Eb(xb) + 2Gh(xh) + 2Gs(xs, n) +GDNA(n) (3.22)
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where xtot is the total extension of the system. The energy of the handles
and the ssDNA has to be counted twice because there are two handles and
two fragments of released ssDNA. Eventually, the total free energy of the
system is completely determined by the number of open base pairs and the
total distance (xtot), which is given the by sum of the extensions of all the
elements

xtot(f, n) = xb(f) + 2xh(f) + 2xs(f, n) (3.23)

where xb and xs are obtained directly from Eq. 3.15 and 3.20 respectively
and xh requires to invert Eq. 3.18 numerically. The extension of the elastic
elements only depend on the force f applied to the ends of the molecular
construct. By doing this we are implicitly assuming that xb, xh and xs are
in local equilibrium and they do not fluctuate. A more accurate calcula-
tion requires to let the forces applied to the ends of each element fluctuate.
However, such calculation is more complex and it does not introduce any
appreciable difference in the final result. Appendix G discusses this issue in
more detail.

Besides, the extension of the ssDNA in Eq. 3.23 depends on the number
of open base pairs n. Additionally, constant terms might also contribute to
the total extension of the system (e.g., the bead diameters or the width of the
DNA duplex). The thermodynamic properties of the model are not affected
if these are neglected, though.

In the end, the calculation of the total energy at a given total extension
xtot and number of open base pairs n requires to solve f in Eq. 3.23 by using
Eqs. 3.15, 3.18 and 3.20. Once the equilibrium force of the system is known,
it can be used to recover the extension of each element and calculate the total
energy of the system. Therefore, Eqs. 3.22 and 3.23 form a system of two
coupled equations that determine the force and the total energy of the system.

Free energy landscape

The free energy landscape (also called potential of mean force) is the total
energy of the system Gtot(xtot, n) (see Eq. 3.22) as a function of two variables:
xtot and n. These variables are defined between 0 < xtot < +∞ and 0 < n <
N , whereN is the total number of base pairs of the DNA molecule. The shape
of this function can be explored by keeping one variable constant and letting
the other vary. By fixing the value of n, we obtain a family of curves that give
the free energy landscape of the system at different positions of the optical
trap (see Fig. 3.16a). Each curve has an energy offset at xtot = 0 nm as given
by GDNA(n) and an elastic contribution that is monotonically increasing with
xtot. This specific shape makes that every curve crosses with all the others
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and they alternate the minimum value of the energy as xtot is increased.
Therefore, there is not a value of n for which Gtot is minimum for all values
of xtot. Instead, there is an envelope curve that switches between all the
functions that have minimum energy for each value of xtot. Apart from them,
there are several values of n for which their corresponding function is never
a minimum, so they do not contribute to the envelope. They correspond
to states with n open base pairs that are never observed during unzipping
experiments because they have a high free energy. They might be detected in
some cases if the difference between them and the states of minimum energy
is a few kBT , so thermal fluctuations make possible to explore those states.

Figure 3.16: (a) Free energy landscape of a 2.2 kbp molecule at different values of fixed
n. The black curve shows the minimum of energy for all values of xtot. (b) Equilibrium
of energies in a force rip. Left (right) picture shows the molecule with n1 (n2) open base-
pairs. The total energy of the system in both states (n1 and n2) is equal but the internal
energies (elastic and free energies) are distributed differently. The central graphic shows
the total free energy of both states. The energies of these two states are identical when
the force rip is produced (black dot).

Figure 3.16b shows the balance of the energetic terms when the DNA
molecule is about to undergo a cooperative opening of base pairs. The system
is originally at a state with n1 open base pairs. When xtot is increased, the
elastic energy is also increased until the total energy of the system at n1 is
equal to the energy at n2 (n1 < n2). This situation indicates the coexistence
of the two states. Although the total energy of both states n1 and n2 is
equal, the internal balance of the energetic terms (formation energy + elastic
energy) is different. When xtot is increased more, the state n2 becomes more
stable. Although the opening of base pairs increases the energy of the system,
the released ssDNA relaxes the system and reduces the elastic energy. The
global balance is that n2 has a lower energy than n1. So the unzipping at
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constant position is governed by two energetic terms that are balanced by
changing the number of open base pairs.

The free energy landscape can also be computed by fixing xtot and ex-
ploring Gtot for different values of n (see Fig. 3.17a). At a given xtot, the
landscape has a parabolic shape when coarse grained. When the function
is explored in deeper detail, the landscape is rough with a global minimum
surrounded by other local minima that are separated by energy barriers (see
Fig. 3.17b). Now, at a fixed xtot, the system can jump between these min-
ima by thermal fluctuations, provided that the energetic differences between
them is of the order of the thermal bath energy. This phenomenon is known
as hopping and it is observed in unzipping experiments.

Figure 3.17: Free energy landscape of a 2.2 kbp molecule at fixed xtot. (a) Coarse grained
profile for different values of xtot. At a fixed total distance, the energy landscape shows a
minimum of energy, which is assumed to be the most probable states. (b) Detailed view
where the roughness of the free energy landscape can be appreciated. The global minimum
(pointed with an arrow) is surrounded by other local minima that may coexist with it.

Force vs. Distance Curve at T = 0

The FDC at T = 0 is the equation of state of the system when no thermal
fluctuations are considered. The system is always assumed to be in the state
of minimum energy (as in any other thermodynamic system studied at T = 0)
and the dynamics of the system is deterministic.

For each given xtot there is one (or two) values of n that minimize the
total energy of the system Gtot(xtot, n). It defines a discontinuous function
n∗(xtot) that allows us to write an expression for the minimum energy of the
system (Gmin) at a given value of xtot (see Fig. 3.18),

Gmin(xtot) = Gtot(xtot, n
∗(xtot)) (3.24)
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Figure 3.18: Blue curve shows the minimum free energy vs. xtot, Gmin(xtot). Red curve
shows the number of open base-pairs vs. xtot, n

∗(xtot).

As mentioned before, Gmin is the envelope function of the free energy
landscape Gtot that minimizes its value. The FDC at T = 0 is obtained by
computing the derivative of Eq. 3.24 according to,

fm(xtot) =
∂ Gmin(xtot)

∂xtot

. (3.25)

At each coexistence point, the derivative of the function Gmin is not well
defined because it switches between two functions from the energy landscape
that are not smoothly connected. Therefore, the function fm(xtot) shows
discontinuities at the coexistence points. Precisely, these points represent
the force rips observed in the experimental FDC when an opening of base
pairs is produced.

Partition function and equilibrium FDC

Starting from Eq. 3.22, the partition function of the system Z(xtot) can be
calculated by summing over all the possible states of the system (0 < n < N ,
where N is the total number of base pairs of the DNA) weighted with the
Boltzmann factor

Z(xtot) =
N∑
n=0

exp

(
−Gtot(xtot, n)

kBT

)
. (3.26)

From this expression, the equilibrium force vs. distance curve can be calcu-
lated according to

f(xtot) = −kBT
∂ lnZ(xtot)

∂xtot

. (3.27)
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Figure 3.19: Blue curve, FDC at T = 0 according to Eq. 3.25. Red curve, equilibrium
FDC according to Eq. 3.27. The inset shows a zoomed region where the smoothness of
the equilibrium FDC contrasts with the abrupt FDC calculated at T = 0.

The resulting FDC calculated with Eq. 3.27 is very similar to the one calcu-
lated with Eq. 3.25. The main difference is that Eq. 3.27 is continuous and
differentiable. The thermal fluctuations allow the system to explore states
with more energy than the minimum so that the partition function Z(xtot)
is smooth.

The computation of the FDC for a given sequence is straightforward but it
requires the use of numerical calculus. The exponential function in Eq. 3.26
has to be performed on values of Gtot that are larger and larger as xtot

increases. Appendix H shows how to deal with this issue.

3.4.2 Controlled force

In the controlled force ensemble, the force applied to the ends of the molecu-
lar construct is the control parameter and the total extension of the system is
the magnitude that fluctuates. The natural thermodynamic potential of this
ensemble is the Gibbs free energy, which is expressed in terms of the intensive
variable (the force) and the temperature. The model is identical to the model
described previously in the controlled position ensemble, but the expressions
for the energies are different. Here we will follow the same description as in
the previous section. The Lengendre transform converts one thermodynamic
potential into the other. Using this transformation, the energetic contribu-
tions calculated at controlled position ensemble can be converted into the
suitable expressions for the controlled force ensemble.

Let GX(x, T ) be the free energy (i.e., the Helmholtz free energy) of an
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elastic system defined by (x, f, T ) in the control position ensemble (i.e., fixed
position and temperature). The differential form of this energy is given by

dGX(x, T ) = f dx− S dT . (3.28)

Now let GF (f, T ) be the corresponding free energy (i.e., the Gibbs free en-
ergy) of the same system at the controlled force ensemble (i.e., fixed force
and temperature). The relation between the two thermodynamic potentials
is given by GF = GX − fx, which allows us to write

dGF (f, T ) = dGX(x, T )− d (fx) = f dx− S dT − f dx− x df
= −S dT − x df . (3.29)

Now it is possible to calculate the free energy of an elastic element in the
controlled force ensemble by evaluating the integral of Eq. 3.29 at constant
temperature (dT = 0) according to,

GF (f) = −
∫ f

0

x(f ′) df ′ (3.30)

where GF is the elastic free energy, f is the force at which the energy is eval-
uated, x(f ′) is the extension vs. force curve and f ′ is the integration dummy
variable. Eqs. 3.16, 3.19 and 3.21 are the (Helmholtz) elastic free energies
(referred to as GX(x) in the new notation introduced in this section) of the
bead, the handles and the ssDNA, respectively, in the controlled position
ensemble. Now, we want to calculate the (Gibbs) free energy of each of them
(i.e., GF (f)) to proceed with the calculations in the controlled force ensem-
ble, so we will apply Eq. 3.30 on all them. From now on, we will neglect the
superscript F in GF and we will understand that G must be read as the free
energy in the controlled force ensemble.

The potential energy of the bead in the optical trap is given by

Eb(f) = −f
2

2k
. (3.31)

The calculation of the elastic energy of the handles involves the evaluation
of the following integral Gh(f) = −

∫ f
0
xh(f

′) df ′ which has to be integrated
by parts according to

Gh(f) =

∫ xh

0

fh(x
′) dx′ − fxh (3.32)

where fh(x
′) is given by Eq. 3.18 and the integration limits are related by

f = fh(xh).
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In the case of the ssDNA, the free energy is directly given by

Gs(f, n) = −
∫ f

0

xs(f
′, n) df ′ (3.33)

where xs(f
′, n) is given in Eq. 3.20. The total energy of the system at con-

trolled force is given by the sum of the elastic contributions (Eqs. 3.31, 3.32,
3.33) and the formation energy of the DNA (Eq. 3.17) according to

Gtot(f, n) = Eb(f) + 2Gh(f) + 2Gs(f, n) +GDNA(n) (3.34)

and the total extension of the system is again given by Eq. 3.23

xtot(f, n) = xb(f) + 2xh(f) + 2xs(f, n) . (3.35)

From these two expressions it is possible to extract the properties of the
DNA unzipping at controlled force as we did in the previous section with the
controlled position ensemble.

Free energy landscape

Although Eqs. 3.22 and 3.34 have a similar functional form, the resulting
expressions are different. The free energy landscape at controlled force can
be calculated by fixing the value of f and giving values to n in Eq. 3.34 (see
Fig. 3.20). Similar but slightly different aspects and details are emphasized
by the free energy landscape of the system at controlled force. In this case,
the force induces a net tilt in the free energy landscape. From this descrip-
tion, we can deduce that there is a coexistence force that induces no net tilt
in the free energy landscape. Under this situation, there are a lot of minima
along the molecule that coexist and may be observed. If the force is fur-
ther increased, a net tilt appears, the states with higher number of broken
bonds become more stable and the molecule starts to unzip. On the con-
trary, if the force is reduced respect to the coexistence value, the molecule
is rezipped. Interestingly, the tilt can be adjusted by tunning the constant
force applied on the molecule. So the evolution of the energy landscape as
the force is increased is different from the evolution when the position of the
trap is displaced. In the first case, the number of open of base pairs suddenly
increases at the coexistence force because the stability of the minima changes
abruptly. Precisely, this behavior is observed in the unzipping experiments
at controlled force (see Chapter 6).

Another property of the free energy landscape calculated at fixed force
is that at each given force there is always a global minimum separated by
energetic barriers from other local minima. These energetic barriers can
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be much higher than the thermal energy unit, kBT . This implies that the
system can be trapped in a metastable state for long periods of time before
it is capable of finding the way to decay to the state of minimum energy.

Figure 3.20: Free energy landscape of a 2.2 kbp molecule at controlled force for three
different values of the force. There is a coexistence force (f = 16.5 pN) at which the net
tilt of the landscape is zero. In this situation, many states with different number of open
base-pairs coexist.

Distance vs. Force Curve (DFC) at T = 0

In the controlled force ensemble, the force is the independent variable and
the position is the dependent one, so the equation of state is inverted as com-
pared with the equation of state obtained in the controlled position ensemble.
The calculation of the equation of state without considering the fluctuations
requires to find the minimum of Eq. 3.34 with respect to n for each value of
f according to

Gmin(f) = Gtot(f, n
∗) = min

n
(Gtot(f, n)) (3.36)

which allows to compute the DFC according to

xtot(f) = −∂Gmin(f)

∂f
. (3.37)

This equation has discontinuities at the coexistence forces (see Fig. 3.21) but
it does not show the force rips given by Eq. 3.25.

Partition function and equilibrium DFC

Again, assuming that all the elastic elements of the model are in mechanical
and thermal equilibrium, the equilibrium force is the same for all them and
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Figure 3.21: The axis in the DFCs have been inverted to look similar to the ones shown
in Fig. 3.19. Blue curve, DFC at T = 0 according to Eq. 3.37. Red curve, equilibrium
FDC according to Eq. 3.39. The inset shows a zoomed region where the smoothness of
the equilibrium FDC contrasts with the abrupt FDC calculated at T = 0.

the extensions are univocally determined by the force. We can calculate the
partition function Z(f) by summing over all the intermediate states,

Z(f) =
N∑
n=0

exp

(
−Gtot(f, n)

kBT

)
(3.38)

and the resulting DFC is given by (see Fig. 3.21)

xtot(f) = kBT
∂ lnZ(f)

∂f
. (3.39)

3.5 Conclusions

The DNA is probably the most relevant biomolecule in living systems. Its
structure allows it to carry out the tasks devoted to the storage, copy and
transmission of the genetic information hardcopied into the base-pairs. In
order to have access to the sequence, the two strands of DNA have to be
split apart, in a process called unzipping. Cells have a specific machinery
to produce the unzipping of DNA, whenever it is necessary. Nevertheless,
the unzipping of DNA can be produced artificially by using single-molecule
techniques such as optical tweezers. These experiments provide information
about the thermodynamics and the kinetics of DNA duplex formation.

The unzipping of DNA using optical tweezers can be easily reproduced
thanks to the great advance in molecular biology tools. DNA molecules can
be synthesized with the required features in order to be pulled with optical
tweezers (handles, loops, etc.).
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The FDC is the characteristic measurement obtained with optical tweez-
ers. Since the FDC is sequence-dependent, the FDC is a fingerprint of the
DNA molecule. The FDC can be obtained with controlled position or con-
trolled force protocols, which induce a different behavior in the opening of
base-pairs. At controlled position, the NN model combined with a mesoscopic
description of the other elements of the experiment (optical trap, handles,
etc.) is able to accurately describe the quasistatic unzipping of DNA. Such
mesoscopic model is quite versatile offering new insights on the physical phe-
nomenon of unzipping. One interesting magnitude that can be calculated is
the free energy landscape, which allows us to illustrate the unzipping mech-
anism.

Next chapters use the model and the methodology explained here to ex-
tract relevant information from DNA unzipping experiments. The results
shown in those chapters reinforce the statements made here.





When individuals join in a
cooperative venture, the power
generated far exceeds what they
could have accomplished acting
individually.

Richard Buckminster Fuller (1895-1983)

Chapter 4

Metastable intermediates in
DNA unzipping

From a pure physical point of view, the unzipping of DNA can be regarded
as a process of fracture, in which the strength applied to the two strands
produces the disruption of the base-pairs [124]. The FDC of unzipping has
similar properties to the Barkhausen noise observed in the magnetization
of ferromagnetic domains, paper tearing or earthquakes. The characteristic
fingerprint in all of these cases is the sawtooth-like signal. The slopes of
the sawtooth pattern correspond to the accumulation of energy (elasticity),
while the drops in the signal are related to the release of energy (break-
age). Bonnott and coworkers [125] have measured stress vs. strain curves on
martensitic materials that look very similar to the FDC of DNA unzipping,
showing that both phenomena exhibit the typical properties of fracture. Sim-
ilarly, sawtooth-like FDCs have been observed in pulling experiments of gold
nanowires with scanning tunneling microscopy [126]. In one of his articles
about DNA unzipping with microneedles, Bockelmann et al. already identi-
fied the stick-slip motion (i.e., slopes and drops) of the unzipping fork, which
is a characteristic signature of the cracking effects.

The unzipping of DNA can be studied globally, considering the succession
of opening base-pairs as part of a whole process of fracture. The detailed
information about the local effects is neglected and the relevant conclusions
focus on the statistical properties of the intermediate states. In this approach,
the DNA molecule is regarded as a disordered statistical system due to the

143
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randomness of the base-pair sequence. A theoretical work by Lubensky and
Nelson [29] explored the statistical properties of DNA unzipping at constant
force, based on the experimental results of their collaborators [23]. One of
the main results of that paper was the calculation of the size of the opening
fork as the mean unzipping force is approached.

This chapter focuses on the statistical properties of the metastable inter-
mediate states observed in DNA unzipping experiments at controlled posi-
tion. The study allows us to deepen into the intrinsic mechanism that induces
the opening of base pairs. Besides, the analysis of the experimental data is
accompanied with the development of a toy model that contains the essen-
tial ingredients needed to reproduce the unzipping process. It is useful to
establish what are the experimental conditions that permit to break up the
metastable states that are observed during the unzipping into single base-pair
events. Eventually, this might be useful to set the basis for sequencing DNA
by force, a potentially interesting application in the field of biotechnology.
A limiting factor in unzipping is the accuracy at which individual base pairs
along the DNA can be resolved. Indeed, the unzipping process, even if car-
ried out reversibly (i.e., infinitely slowly), shows a progression of cooperative
unzipping/rezipping transitions that involve groups of base pairs of different
sizes. These Cooperatively Unzipping Regions (CURs) of base pairs breath
in an all-or-none fashion hindering details about the individual base pairs
participating in such transitions. Here it is shown a Bayesian technique use-
ful to extract as much information as possible from the noisy experimental
data.

The treatment of the experimental data that exhibits CURs is comple-
mented with a toy model. This model captures the very essential ingredients
that reproduce the unzipping FDCs and the properties of the CURs. The
advantage of such model with respect to the mesoscopic model introduced
in the previous chapter is that with the toy model it is easier and faster
to extract statistical properties of CURs. Indeed, it is computationally less
demanding and the simulations of unzipping experiments can be extended
to thousands of different sequences. This gives valuable information about
the dependence of the CURs on the experimental conditions (trap stiffness,
base-pair energies, etc.).

To sum up, here we will treat the DNA unzipping of long molecules as a
whole phenomenon.
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4.1 Detection of intermediate states

As described in the previous chapter, the quasistatic unzipping of DNA at
controlled position is performed by moving the center of the optical trap at
a very low speed (∼10 nm/s). Along these experiments, the dsDNA is pro-
gressively converted into ssDNA through a succession of intermediate states
corresponding to the successive opening of the CURs. In these intermedi-
ate states, the DNA molecule is partially open. The molecule remains in
this state if the distance between the two beads is not modified. If this
distance is being increased, we can measure the FDC. The experimentally
measured FDC shows a sawtooth-like pattern that alternates force rips and
gentle slopes (see Fig. 4.1a). Slopes correspond to the elastic response of
the molecule while the force rips correspond to the opening of groups of
base-pairs. These openings are called CURs (see Fig. 4.1b).

The number of open base-pairs of a CUR is variable: It ranges from
5-10 base-pairs up to 80-100 and it depends on the sequence of the DNA
molecule and the specific region that is being unzipped. The size of a CUR
can be inferred from the difference of slopes that precede and follow a given
force rip. However, the slopes can be hardly isolated because the experimen-
tal FDC exhibits noise (see Fig. 4.1b). The force fluctuations of the elements
of the system (bead, handles) might be confused with the different forces at
which the two intermediate states of the DNA duplex coexist. A classifica-
tion by hand of the experimental points might lead to a biased interpretation
of slopes and rips due to the human intervention. In order to avoid this, we
adopt a Bayesian approach.

A Bayesian approach consists in using the probability inferred from the
experimental data to accept or reject a hypothesis. In our particular case,
the experimental data is first classified into intermediate states. Then, the
most stable of them are identified as metastable states. Finally, the regions
between each pair of consecutive metastable states are identified as CURs.
Once this is achieved, the unzipping of DNA can be studied in terms of a
new statistical object: the CUR size distribution.

Next section describes how to extract the experimental metastable states
according to the Bayesian inference.

4.1.1 Bayesian analysis of FDCs

The classification of the experimental data into intermediate states is based
on the elastic response of the system (the molecular construct plus the bead
in the optical trap), which is given by the mesoscopic model described in
Section 3.4. So each experimental data point (distance,force) is associated
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a b

Figure 4.1: Intermediate states in experimental data. (a) Unzipping of a 2.2 kbp se-
quence. The raw experimental data is depicted in red and filtered data at 1 Hz bandwidth,
in green. The yellow (blue) curve shows the elastic response of the system when all (no)
base pairs are open. (b) Zoomed region. Same color code as in panel a. From left
to right, the blue curves correspond to the elastic response of intermediate states with
0,19,70,123,142 open base pairs. Except for the force fluctuations, the slopes of the exper-
imental data lie on the partial elastic responses of the system. Note that the number of
open base pairs of the system is no longer clear for distances larger than 450 nm, where the
force fluctuations are as large as the difference in force between the slopes of the coexisting
intermediate states. Filtering data with a low-pass filter could be a solution. However,
the force rips are smoothed and the hopping transitions are averaged out.

to the most probable intermediate state that is compatible with the elastic
properties of the system. This way, each point belongs to a state.

For convenience, here we reproduce the expression (Eq. 3.23) that de-
termines the elastic response of system when the DNA molecule is at the
intermediate state In where n bases are open,

xtot(f, n) = xb(f) + 2xh(f) + 2xs(f, n) (4.1)

where xtot is the total distance of the system, xb is the position of the bead,
xh is the extension of one handle and xs is the extension of one strand of
ssDNA. All these terms depend on the force applied f at the ends of the
system. Note that this equation is a FDC defined for the intermediate state
In.

Now, we will use Eq. 4.1 differently from Sec. 3.4. Here we consider the
partial elastic response of a system with fixed number of open base pairs,
so that the energetic contribution of the base pairs is irrelevant. Therefore,
Eq. 4.1 can be understood as the expression of a family of curves passing
through the coordinates origin and characterized by a parameter n. In un-
zipping experiments, the number of open base pairs varies while the rest of
the properties of the system remain unchanged (trap stiffness, elasticity of
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handles). So, as the molecule is being unzipped, we observe fragments of
these curves (slopes) connected by force rips. In other words, an unzipping
FDC is a piecewise-defined function of Eq. 4.1.

Since n is what changes the elastic properties of the system, it can be used
to classify the experimental points into states. For each experimental data
point along the FDC, (x, f), the intermediate state In∗ that passes closest to
that point for a fixed force f is determined by

|x− xtot(n
∗, f)| = min

n
(|x− xtot(n, f)|) (4.2)

where xtot(n, f) is given by Eq. 4.1. The function min ensures that n∗ is the
state that has the FDC that passes closest to the experimental point. In this
way, each experimental data point (x, f) is associated to a unique value of
n∗ (see Fig. 4.2). Note that the experimental points have force fluctuations
but Eq. 4.2 does not. It means that some points are incorrectly classified
because force fluctuations are confused with different values of n. However,
the overall outcome of the Bayesian approach shows its usefulness after all
the experimental points are classified.

300 400 500 600
Distance (nm)

10

12

14

16

18

Fo
rc

e 
(p

N
)

200 202

201

Figure 4.2: Classification of one experimental point (picture not to scale). For one
experimental point (blue dot) of the unzipping data (red trace), we scan the elastic response
of the system for different values of n (black curves) and select the one that passes close
to it (blue curve). In this particular case, the experimental point is associated with an
intermediate state of n = 201 open base pairs.

The use of Eqs. 4.1 and 4.2 to classify the experimental points requires the
determination of some elastic parameters from the experimental data. Most
of them are obtained by fitting the elastic response of the fully extended
molecule (see yellow curve in Fig. 4.1a) to Eq. 4.1, because we know that the
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number of open base pairs is n = 2252 in this part of the FDC. The stiffness
of the trap k ' 60-80 pN·µm−1 is determined by performing measurements
of the force vs. displacement when a bead is held fixed at the tip of the
micropipette (see Fig. 2.15d). The parameters of the handles are taken from
the established elastic properties of long dsDNA molecule [48]: lp = 50 nm
and L0 = m× d = 9.86 nm, where m = 29 is the number of base pairs of the
handles and d = 0.34 nm is the interphosphate distance. Finally, the elastic
parameters of the ssDNA are obtained by least-square non-linear fitting. The
Kuhn length of the ssDNA is found to be b ' 1.20 nm (see Table 5.1). Among
all the elements of the experimental setup, the dsDNA handles are those that
do not modify appreciably the FDCs due to their large rigidity. Since the
measurement of distances in the instrument is relative, it is also necessary to
fit a global shift in Eq. 4.1 that determines the zero of distance.

4.1.2 Statistical inference of intermediate states

The association of each experimental point with its most probable inter-
mediate state is repeated for all the points along the unzipping FDC (see
Fig. 4.3a). The result is a list of numbers {n∗} that indicate all the metastable
states through which the molecule passes during the process of unzipping.

A histogram built from all values n∗ results in a series of sharp peaks
that can be identified with the many intermediate states In (see Fig. 4.3b).
The histogram contains information about the stability of the intermediate
states: the higher the peak, the higher the stability of that state. It has
already been shown that the more stable states are related with higher GC
content in the sequence [102].

The histogram can be fit to a sum of Gaussians each one characterized
by its mean, variance and statistical weight (see Fig. 4.3c). The mean of
each Gaussian indicates the number of open base pairs of that intermediate
state. Other conditions such as the released ssDNA and the stability of the
state determine the variance and the weight of the Gaussian. In general,
a Gaussian distribution is sufficient to fit one peak. However, some peaks
require the contribution of two or more Gaussians to be correctly fit. So this
method allows to distinguish intermediate states that have similar number of
open base pairs (about ' 5-10 base pairs at the beginning of the unzipping).

Note that as the unzipping goes on, the peaks of the histogram look
smoother and it is more difficult to differentiate intermediate states. This is
due to the release of ssDNA as the DNA molecule is being unzipped. Indeed,
the changes in the unzipping fork must be transmitted to the optical trap in
order to be detected. So the opening of a CUR decreases the tension along the
molecular construct and the optical trap detects a drop of force. A stiff tether
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transmits the force towards the optical trap better than a compliant one. The
reason is that a compliant connection can absorb the elastic energy released
in the unzipping without hardly changing its extension. Therefore, as the
ssDNA is released during unzipping, the amplitude of the sawtooth pattern
decreases, the force signal is blurred and the histogram of intermediate states
shows smoother peaks.

Figure 4.3: Histogram of intermediate states. (a) Classification of points. Blue trace
shows the experimental FDC. Red trace shows the number of open base pairs n∗ cor-
responding to each experimental data point (y-axis of this curve is shown in panel b).
Although the curve is noisy, the plateaus indicate metastable states. (b) Histogram of
the values for n∗ shown in panel a. (c) Detailed view of the histogram (orange curve)
overlapped with the fit to a sum of Gaussians (cyan curve). (d) Detection of a CUR
of size 87 bp from the distance between two consecutive Gaussians centered at 1741 and
1828 open base-pairs.

4.1.3 CUR size distribution

The CUR size distribution is the function that relates the size of one CUR
with the probability of being observed during the unzipping experiment. The
size of all the CURs observed in the unzipping of one molecule is obtained by
calculating the difference of the means (in base pairs) between consecutive
Gaussians (see Fig. 4.3d). The histogram of all the CUR sizes gives the
experimental distribution of CUR sizes (see Fig. 4.4).
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Figure 4.4: Experimental CUR size distribution for the 2.2 kbp sequence. Sizes range
from a few base pairs up to 90 bp with a maximum number of detected CUR sizes between
20 and 50 bp.

4.1.4 Results

The previously method of analysis has been applied to several molecules of
6.8 and 2.2 kbp. In particular, the FDC of 6 molecules of each length have
been measured and analyzed. Figure 4.5 shows complete FDC of some of
them. Since the unzipping curves are obtained at very low pulling rates,
the process is quasistatic and the FDCs resemble each other. This is quite
relevant because it indicates that the position and the size of the CURs
are reproducible and they only depend on the sequence, emphasizing the
reliability of the approach.

The histograms of metastable states are also very similar among them
because they are obtained from FDCs that resemble each other. Figure 4.6
shows some of the obtained histograms for the 6.8 kbp sequence. Finally,
Fig. 4.7 shows the average histograms and the Gaussian fits for the 2.2 and
the 6.8 kbp sequences.

The resulting distribution of CUR sizes will be discussed in Sec. 4.3 to-
gether with the theoretically predicted histograms.

4.2 Toy model

The cooperative dynamics of DNA unzipping at low pulling regimes has been
described as a stick-slip motion elsewhere [24]. The opening of base pairs dur-
ing the unzipping process is produced through a series of avalanches between
stable intermediate states that have different number of open base pairs. We
want to describe the most relevant properties of avalanche dynamics in terms
of a simple model that reproduces the statistical properties of DNA unzip-
ping. We have developed a toy model, simpler than the one described in
section 3.4, that captures the essential behavior of DNA unzipping.



4.2 Toy model 151

500 1000 1500 2000 2500
Distance (nm)

14

16

18

20

Fo
rc

e 
(p

N
)

1000 2000 3000 4000 5000 6000 7000
Distance (nm)

14

16

18

20

Fo
rc

e 
(p

N
)

2.2 kbp sequence

6.8 kbp sequence

Figure 4.5: Experimental FDC of 3 molecules corresponding to the 2.2 kbp sequence
(upper panel) and the 6.8 kbp sequence (lower panel). Since the raw data is too noisy, the
data has been filtered with a low-pass running-average filter with a bandwidth of 1 Hz to
clearly see the traces.
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Figure 4.6: Histograms of intermediate states for six different molecules of 6.8 kbp. They
are depicted in red, green, blue, magenta, orange and dark green. Although the height of
each peak is different for the six histograms, the position of the peak is almost the same
(±10 bp). The histograms for the 2.2 kbp molecules have similar reproducibility.



152 Metastable intermediates in DNA unzipping

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500
n (bp)

0

100

200

Co
un

ts

0 500 1000 1500 2000
n (bp)

0

100

200
Co

un
ts

a

b

Figure 4.7: CUR size distributions. (a) Histogram of the intermediate states for the
2.2 kbp DNA sequence. Blue curve shows the experimentally measured histogram. Red
curve shows the fit to a sum of Gaussians. (b) Histogram of intermediate states for the
6.8 kbp sequence. Same color code as in panel a.

In this toy model (see Fig. 4.8a), the energy of bead in the optical trap is
also assumed to be quadratic (see Eq. 3.16). However, no elastic contributions
of the molecular construct are taken into account and only the free energy
of formation of the DNA duplex is considered (see Eq. 3.17). Summing the
two energy contributions of the model we end up with:

E(xb, n) =
1

2
kx2

b −
n∑
i=1

εi (4.3)

where E(xb, n) is the total energy of the system, k is the stiffness of the optical
trap, xb is the position of the bead in the optical trap and εi are the NN
energies of the DNA hairpin. In the toy model, the energy of the DNA is no
longer given by a specific sequence. Instead, we will consider that the NNBP
energies are Gaussian distributed N (µ, σ), with mean µ = 〈εi〉 and standard
deviation σ = σεi . Since the released ssDNA is taken as inextensible, its
extension (xs) is given by xs = 2dn, where d is the interphosphate distance,
n is the number of open bps and the factor 2 stands for the two strands of
ssDNA. By using the relation xb = xtot− 2dn, the total energy of the system
can be rewritten as:

E(xtot, n) =
1

2
k(xtot − 2dn)2 −

n∑
i

εi . (4.4)

At fixed xtot, the system will tend to occupy the state (n∗) that minimizes the
total energy of the system, i.e., E(xtot, n

∗) ≤ E(xtot, n),∀n. Therefore, it is
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possible to define the function n∗(xtot) (see Fig. 4.8c). Combining this func-
tion with Eq. 4.4 we can obtain E(xtot, n

∗(xtot)) = Em(xtot) (see Fig. 4.8b),
which gives the FDC (Fig. 4.8d) according to,

f(xtot) =
∂Em(xtot)

∂xtot

. (4.5)

The final shape of the FDC depends on the values given to εi, (i = 0, N) in
Eq. 4.4. Therefore, for each realization of {εi} there is a univocal FDC. The
FDCs obtained from this model reproduces the formal sawtooth pattern that
is experimentally observed. Moreover, the opening of base pairs is discontin-
uous and the size of the opening is not constant, but shows a distribution of
sizes.

Figure 4.8: Toy model. (a) Scheme. (b) Minimum energy vs. distance, Em(xtot), for
one realization (red curve) of a 103 base-pair long sequence. The following parameters have
been used: k = 60 pN·µm−1, d = 0.59 nm, µ = −1.6 kcal·mol−1, σ = 3.20 kcal·mol−1.
(c) Open base pairs vs. distance, n∗(xtot), depicted in blue. Inset shows a detailed view
of the step function. (d) FDC, f(xtot), depicted in green. The average behavior of the
system is shown in black in panels b,c,d (see Sec. 4.2.1).

4.2.1 Approximate solution

If the disorder of the DNA energies (εi) is neglected, Eq. 4.4 can be rewritten
as

E(xtot, n) ' 1

2
k(xtot − 2dn)2 − µn (4.6)

where µ = 〈εi〉. By minimizing this expression with respect to xtot, we
immediately get the following result for the number of open base pairs:

n∗(xtot) =
1

2d

(
xtot +

µ

2dk

)
(4.7)
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which allows to express the minimum energy of the system as

Em(xtot) = − µ

2d

(
xtot +

µ

4kd

)
(4.8)

and obtain the FDC after calculating the derivative

f = − µ

2d
(4.9)

The three previous expressions capture the dependence of the averaged num-
ber of open bps, energy and force on the external parameters. The solutions
to this approximation are smooth expressions that collect the average be-
havior of the system over an ensemble of sequences (i.e., realizations of the
disorder). Indeed, the bases open in a continuous fashion, the energy is
linear with xtot and the unzipping force is constant. The black curves in
Figs. 4.8b,c,d show the approximated solution superimposed on one disorder
realization. Interestingly enough, the toy model predicts a plateau of force
whose value is only determined by formation energy of the base pairing (µ)
and the properties of the ssDNA (d), and it is independent of the number of
bases of the DNA (N).

4.2.2 Height of the force rips

As seen in Eq. 4.9, there is a mean unzipping force defined by the mean value
of the NNBP energies. However, a single realization of the model shows slopes
and force rips around the mean average force (see Fig. 4.8d), which reflect
the discontinuous opening of base pairs. The height of the force rips (i.e., the
amplitudes of the sawtooth pattern) depend on the standard deviation σεi of
the energies and on the trap stiffness k (see Fig. 4.9). An interesting result
is the fact that the stiffness of the trap directly affects the opening of base
pairs. Therefore, the resolution in base pairs that can be observed during
unzipping is partially determined by the stiffness. This feature of the model
is quite relevant and it can be used to establish the experimental conditions
that would allow to sequence the DNA through unzipping experiments.

4.2.3 CUR size distribution

Equation 4.7 is useful to describe the average number of open base pairs.
However, for each realization of the energies, εi, the function n∗(xtot) is a
discontinuous function and has to be numerically calculated (see Fig. 4.10a
black curve). Each discontinuity represents an opening of base pairs, i.e., a
CUR. The size of a CUR is the difference of the number of open base pairs



4.2. CUR size distribution 155

0 500 1000 1500 20000
5

10
15
20

Fo
rc

e 
(p

N
)

0 500 1000 1500 20000
5

10
15
20

0 500 1000 1500 2000
Distance (nm)

0
5

10
15
20

Fo
rc

e 
(p

N
)

0 500 1000 1500 2000
Distance (nm)

0
5

10
15
20

Low  ! High  !

Low k

High k

Figure 4.9: FDC for different values of the experimental parameters. The heights of
the force rips depend on the standard deviation σεi and on the trap stiffness k. Low
σεi = 0.1 kcal·mol−1, high σεi = 1.0 kcal·mol−1, low k = 0.02 pN·nm−1 and high k =
0.5 pN·nm1. Note that the mean unzipping force is independent of σεi and k.

between two states. This way, we can calculate the size of the CUR from the
n∗(xtot) function by extracting the step size of the discontinuities (Fig. 4.10a,
red curve). A distribution of CUR sizes can be obtained for one realization
(Fig. 4.10b, blue curve, inset).
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Figure 4.10: CUR size distribution. (a) Black curve shows the number of open base pairs
for one sequence of 103 base pairs (k = 0.06 pN·nm−1, a = 0.59 nm, µ = −1.6 kcal·mol−1

and σεi =0.44 kcal·mol−1). Red curve shows the size of the CURs. (b) CUR size distri-
bution.

The average distribution of CUR sizes can be obtained by simulating ran-
dom realizations, calculating the CUR size distribution for each realization
of the disorder and averaging over them. By varying the parameters of the
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model along a wide range we observe how the shape of the CUR size dis-
tribution depends on them. Generally speaking, we have observed that the
shape of the CUR size distribution is independent of the mean NNBP energy
(µ). It mostly depends on the standard deviation of the NNBP energies σεi
and on the trap stiffness k. Figure 4.11 shows these dependencies for a model
with the following parameters: d = 0.59 nm, µ = −1.6 kcal·mol−1 simulated
for a 104 bp long sequence over 104 realizations of the disorder.

Figure 4.11: Average CUR size distributions plotted in log-log scale. (a) For different
values of σεi at fixed k = 60 pN·µm−1. (b) For different values of k at fixed σεi =
3.20 kcal·mol−1. The black curves show the fits of all the distributions to Eq. 4.10.

4.2.4 Fit of CUR size distributions

The analytical solution for the CUR size distributions is a problem that
has not been solved yet. Although this calculation can be performed in the
unzipping at controlled force [29], it is not that straightforward at controlled
position. The computation requires extra efforts and it is not the primary goal
of this section. Instead, an empirical expression for the CUR size distribution
is provided in order to capture the qualitative dependence of the distribution
with the tunable parameters of the model.

The CUR size distributions are well fit by an expression both in linear
and log-log scale. It is a power law with a super-exponential cutoff:

P (n) = An−B exp
(
−(n/nc)

C
)

(4.10)

where P (n) is the probability of observing a CUR of size n; A,B,C and nc
(cutoff size) are positive fitting parameters. All the distributions obtained
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from the simulations with the toy model are fit to Eq. 4.10 (see black curves
in Fig. 4.11).

Figure 4.12 shows the dependence of the fit parameters with σεi and k.
The cutoff parameter nc gives an idea of the maximum size of the CURs.
It has a physical meaning and can be understood as the parameter that
indicates the width of the CUR size distribution: the higher the value of nc
the wider the distribution. As expected, the value of nc increases with the
amount of disorder σεi (see Fig. 4.12a, panel nc) because the NN energies are
more dispersed and the intermediate states show more variety of open base
pairs. However, what is interesting from the simulations is that the value of
nc can be reduced at will by increasing k. In fact, there is a limit in which
nc collapses down to 1 when k ≥ 100 pN·nm−1 (see Fig. 4.12b, panel nc),
indicating that all CUR sizes are of size 1. Under this circumstances, the
mechanical unzipping of DNA is done one base-pair at a time and establishes
and interesting limit for the experimental conditions that would allow to
sequence DNA by force.

Figure 4.12: Fit parameters vs. toy model parameters. (a) Dependence on σεi at
k = 60 pN·µm−1. (b) Dependence on k at σεi = 3.20 kcal·mol−1.

4.2.5 Variability of CUR size distributions

Up to now, we have only explored the average CUR size distributions of the
toy model and nothing has been said about their variability for different real-
izations. Although this variability should vanish for infinitely long sequences
(CUR size distributions are self-averaging in the thermodynamic limit) there
are large fluctuations for finite length molecules. This variability can be de-
termined from the same simulations of the toy model that have been used in
the previous sections. Now, for all the realizations we do not only calculate
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the average CUR size distribution but the standard deviation of the distri-
bution at each value of n. So if we have a collection of distributions obtained
from nr realizations, {Pi(n)} i=1,. . . ,nr, we can compute the average distri-
bution 〈P (n)〉 and the standard deviation of the distribution σP (n) according
to (see Fig. 4.13),

〈P (n)〉 =
1

nr

nr∑
i=1

Pi(n)

〈P (n)2〉 =
1

nr

nr∑
i=1

Pi(n)2

σP (n) =
√
〈P (n)2〉 − 〈P (n)〉2 . (4.11)

4.3 Comparison of CUR size distributions and

discussion

At this point, we want to compare the CUR size distributions obtained from
the unzipping experiments with the ones obtained with the toy model. The
goal is to see if the toy model is capable of reproducing the statistical prop-
erties of the unzipping mechanism, search the causes of the differences and
use the model to determine the best experimental conditions to extract in-
formation from the DNA unzipping.

How much can the toy model predict the experimental results? The ex-
perimentally obtained CUR size distributions for both molecular constructs
are shown in red in Fig. 4.14. The fit of these distributions to Eq. 4.10 are
also shown in green in Fig. 4.14. Considering k = 60 pN·µm−1 (equal to the
stiffness of the trap that we can measure independently) and d = 0.59 nm
(interphosphate distance for ssDNA), the parameters that best fit the ex-
perimental histograms for the 2.2 kbp sequence and their corresponding toy
model parameters are

A = 0.058
B = 0.42
C = 2.95
nc = 69

 =⇒
{
µ = −2.80 kcal ·mol−1

σ = 2.2 kcal ·mol−1 (4.12)

The resulting CUR size distribution P (n) is shown in green in Fig. 4.14a.
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Figure 4.13: CUR size distributions calculated with the toy model. Upper (lower) panel
shows the results for a 2252 (6838 bp) sequence. The black curve shows a CUR size dis-
tribution averaged over nr = 104 realizations. The green region represents the upper and
lower limits of the error bars that correspond to the standard deviation of those realiza-
tions. Red, blue and orange curves show 3 different realizations. Note the large deviations
from the average histogram due to the finite length of the sequences. Simulations were
performed with the following parameters: k = 60 pN·µm−1, µ = −1.6 kcal·mol−1 and
σ = 3.2 kcal·mol−1.

For the 6.8 kbp sequence we find

A = 0.050
B = 0.43
C = 3.0
nc = 91

 =⇒
{
µ = −2.80 kcal ·mol−1

σ = 3.3 kcal ·mol−1 (4.13)

and the fit is shown in green in Fig. 4.14b. The values of µ and σ are not far
from the actual mean and standard deviation of the energies of the nearest
neighbor model for DNA,

µ = −1.60 kcal ·mol−1

σ = 0.44 kcal ·mol−1 .
(4.14)
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Having not included the elastic effects of the ssDNA in the toy model we
should not expect a good match between the fitting and the experimental
values.
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Figure 4.14: (a) Distribution of CUR sizes for the 2.2 kbp sequence. Red curve shows
the experimentally measured distribution. Green curve shows the distribution predicted
by the toy model and the shaded area shows the standard deviation from different se-
quence realizations of the same length. Blue curve shows the distribution predicted by the
mesoscopic model for DNA. (b) Distribution of CUR sizes for the 6.8 kbp sequence. Same
color code as in panel a. (Inset of d) Threshold size nthr as a function of the number of
open bps n. The dashed line is a linear fit, nthr = 9.1 + 0.01n.

However, there are two clear differences between the experimental and the
predicted CUR size distributions. First, the experimental size distributions
are not smooth but have a rough shape. We already know that this is a finite
size effect described in Sec. 4.2.5. The distribution is smoother for the 6.8 kbp
sequence because the sequence is longer, there is more statistics and the
resulting CUR size distribution is better averaged. The second difference is
that the toy model predicts a large fraction of CURs of size smaller than 10 bp
that are not experimentally observed. There might be two explanations to
this: 1) the toy model predicts small CURs that experimentally do not exist
or 2) the method to detect metastable states is not capable of discriminating
CURs smaller than 10 bps.

To better understand this, we can compute the CUR size distributions
(depicted in blue in Fig. 4.14) with the mesoscopic model described in Sec. 3.4.1.
Again, we find that the model predicts much more small CURs than we ex-
perimentally observe. Assuming that the model is correct, we conclude that
the small CURs occur but the method of analysis has a limiting resolution
of about ∼10 bp. In other words, for every large CUR detected experimen-
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tally, the model predicts two (or more) small distributions. This limitation
is due to the fact that the Bayesian analysis (Sec. 4.1) is not capable of
distinguishing between force fluctuations and transitions between metastable
states separated by less than 10 bp. A priori, it should be possible to do the
pulling experiments at lower pulling rates and collect much more statistics.
This would permit to have a better signal-to-noise ratio and discriminate the
smaller metastable states. However, these experiments are much more diffi-
cult to carry out because the DNA molecule spends more time stretched and
it breaks much more frequently before a whole pulling cycle can be completed.

Apart from these previous considerations, there is another issue that af-
fects the discrimination of nearby metastable states. A quick look at Fig. 4.7
shows that histograms become smoother (i.e., the peaks are less sharp) as
the molecule is progressively unzipped. The increased compliance of the
molecular setup as ssDNA is released markedly decreases the resolution in
discriminating intermediates (see the last paragraph of section 4.1.2 for a de-
tailed explanation of this effect). In particular, for the 6.8 kbp construct we
find that along the first 1500 bp of the hairpin only 30% of the total number
of CURs smaller than 10 bp are detected, whereas beyond that limit no CUR
smaller than that size is detected. If the threshold size nthr is defined as the
size of the CUR above which 50% of the predicted CUR are experimentally
detected we find that nthr increases linearly with the number of open bps, es-
tablishing a limit around 10 bp for the smallest CUR size that we can detect
(Fig. 4.14b, inset).

Now let us focus on the other side of the distribution (large CUR sizes).
The three CUR size distributions in Fig. 4.14 are long tailed distributions,
which indicate that large CURs occur with finite probability. Unfortunately,
large sized CUR hinder their internal DNA sequence, limiting the possibility
of unzipping one base-pair at a time, which would permit to sequence the
DNA. Under what experimental conditions is it possible to break up large
sized CUR into individual bps? Only by applying local force on the opening
fork (thereby avoiding the large compliance of the molecular setup) and by
increasing the stiffness of the probe might be possible to shrink CUR size
distributions down to a single base-pair [117]. Figs. 4.15a, 4.15b show how
the CUR size distributions shrink and the largest CUR size decreases as the
stiffness increases. Its value should be around 50-100 pN·nm−1 for all CUR
sizes to collapse into a single bp. Remarkably enough this number is close
to the stiffness value expected for an individual DNA nucleotide stretched at
the unzipping force. Any probe more rigid than that will not do better.

Similarly to the problem of atomic friction we can define a parameter η
(defined as the ratio between the rigidities of substrate and cantilever) that
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controls the transition from stick-slip to continuous motion [127]. For DNA
unzipping we have

η =
|µ|
kd2

(4.15)

where µ is the average free energy of formation of a single bp, k is the probe
stiffness and d is the interphosphate distance. The value η = 1 determines
the boundary where all CURs are of size equal to one bp (η < 1). In our
experiments we have η ' 500 and to reach the boundary limit η = 1 we should
have k ∼ 100 pN·nm−1 consistently with what is shown in Figs 4.15a, 4.15d.
Interestingly enough, the boundary limit of such stiffness is very similar to
the expected stiffness of one ssDNA base. The stiffness of one nucleotide
is the derivative of the Force vs. Extension Curve (Eq. 3.20) for the Freely
Jointed Chain (FJC) model (see Appendix F), which is given by:

ks(f) =

[
n · d

(
− b

kBT
cosech2

(
bf

kBT

)
+
kBT

bf 2

)]−1

(4.16)

where ks(f) is the stiffness at force f , n is the number of open base-pairs,
d is the interphosphate distance, kB is the Boltzmann constant, T is the
temperature and b is the Kuhn length. Using the following values for the
parameters: b = 1.2 nm, d = 0.59 nm, kBT=4.11 pN·nm and applying
Eq. 4.16 to one single nucleotide (n = 1) we get a stiffness of ks = 113 pN/nm
at f = 15 pN and ks = 127 pN/nm at f = 16 pN. It is remarkable that
the elastic properties of ssDNA lie just at the boundary to allow for one
bp discrimination. This suggests that the ssDNA has the correct elastic
properties so that the DNA machinery can read the base-pairs one at a
time, without having to expose hundreds of base-pairs to the solvent, thereby
reducing the risk of damage.

4.4 Conclusions

The unzipping of DNA at controlled position exhibits cooperative openings
of base-pairs (called CURs) as the distance between the two beads is in-
creased. These CURs show characteristic statistical properties that depend
on the sequence of the DNA and the parameters of the experiments (e.g.,
trap stiffness).

We have developed a Bayesian approach to extract the statistical prop-
erties of CURs directly from the experimental data. Such analysis can be
extended to other systems (such as proteins or RNA) that show intermedi-
ate states in the unfolding process. The obtained histogram of intermediate
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Figure 4.15: (a) CUR size distributions in log-log scale for some values of k using the toy
model. Data plotted with points shows the CUR size distribution for the 6.8 kbp sequence.
Data plotted with lines, shows the average CUR size distribution over 104 realizations
(k=60 pN·µm−1, d = 0.59 nm, µ=-1.6 kcal·mol−1, σ=0.5 kcal·mol−1). (b) The fit of the
average CUR size distributions in panel a to Eq. 4.10 give the cutoff size nc. It decreases
like nc ' k−2/3. Blue curve shows nc vs. k. Red curve shows the maximum CUR size
(nmax) predicted by the toy model for the 6.8 kbp sequence. For k > 100 pN·nm−1, both
curves level off to CUR sizes of 1 bp.

states is a sign of the molecule and contains valuable information about the
stability and the coexistence of these metastable states.

The properties of the CURs can be described by a simplified toy model
that captures the essential features of the unzipping. The advantage of the
toy model is that the calculations are easy to implement and the compu-
tational time required for the calculations is dramatically reduced. This is
useful to intensively explore the predictions of the unzipping properties for
different situations: trap stiffness, NNBP variances, sequences, etc. The re-
sults predicted by the toy model compare well with the experimental data
obtained from unzipping.

The detection of intermediate states using the Bayesian analysis is blurred
by the thermal noise of the experimental data. In our experimental con-
ditions, the CURs smaller than ∼10 bp are hardly detected. Below this
boundary, the fluctuations in force due to the thermal noise cannot be dis-
tinguished from the fluctuations due to the coexistence of states. A priori,
this limit could be reduced down to 1 bp by collecting more accurate exper-
imental data and finding the characteristic signature of each type of noise
(correlation, spectrum, bandwidth).

The CUR size of the experimental unzipping is affected by the release of
ssDNA. As the molecule is being unzipped, the amount of ssDNA between the
unzipping fork and the optical trap increases. These reduces the compliance
of the tether and the capability to distinguish between intermediate states is
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less clear. The unzipping of a DNA molecule one base-pair at a time requires
a minimum stiffness of 100 pN/nm (= 0.1 N/m). This could be achieved
by applying local force on the unzipping fork, avoiding the accumulation of
ssDNA that transmits the force to the optical trap.

Interestingly enough, the minimum stiffness required to unzip one base-
pair at a time coincides with the expected stiffness of one single base of
the ssDNA. On the other hand, the stiffness of the proteins that directly
pull on DNA (e.g., helicases) or read the sequence (e.g., polymerases) can
be assumed to be very large (proteins are very rigid objects) compared to
the stiffness of a single base-pair. Therefore, the stiffness of the proteins are
not a limiting factor to unzip DNA molecules one base-pair at a time. It is
remarkable that ssDNA has the minimum required elastic properties so that
the genetic information encoded in DNA can be accessed by the replication
and transcription machinery.

To sum up, the unzipping of DNA one base-pair at a time could be
used to infer the sequence of an unknown DNA fragment. This could be
experimentally achieved by increasing the stiffness of the probe, applying
local force to the unzipping fork and improving the Bayesian analysis to
distinguish the thermal force fluctuations from the force fluctuations due to
the coexistence of states.



Doutez toujours de vous-mêmes,
jusqu’à ce que les données ne
laissent aucun doute.

Louis Pasteur (1822-1895)

Chapter 5

Salt dependence of
nearest-neighbor base-pair free
energies

Nowadays, many biological applications require an accurate calculation of the
free energy of formation of nucleic acids. The prediction of secondary struc-
tures is important in a wide range of fields such as self-assembled structures in
DNA origami [128, 129]; achievement of high selectivity in the hybridization
of synthetic DNAs [130]; antigene targeting and siRNA design [131]; char-
acterization of translocating motion of enzymes that mechanically disrupt
nucleic acids [102]; prediction of non-native states (e.g., RNA misfolding)
[132]; and DNA guided crystallization of colloids [133].

The Nearest-Neighbor (NN) model for DNA thermodynamics described
in Sec. 3.3 was developed in the early 1960’s [26]. Since then, this model has
been successfully applied to predict the free energy of secondary structures in
nucleic acids. The main premise of the model is simple: the total free energy
change to form a double helix can be written as the sum of the base-pair inter-
actions (which depend on the base-pair itself and on the nearest-neighbor).
This means that two fragments of DNA that have different sequences will
generally have different free energies of formation. It is important to note
that the model does not include the energetic values of the NN interactions.
The values of these energies are called Nearest-Neighbor Base-Pair (NNBP)
energies and they must be determined from experiments.

165



166 Salt dependence of nearest-neighbor base-pair free energies

The estimates of the NNBP energies have been traditionally obtained
from thermal denaturation experiments of DNA oligonucleotides [134, 135].
These experiments consist on heating a sample of a DNA oligo, measuring
the melting temperature and inferring the thermodynamic properties of the
molecules (enthalpy and entropy). In 1998, John SantaLucia Jr. gathered
the experimental data from several labs (including his own) and provided a
set of unified NNBP energies that best fit all the results [28]. Since then,
these Unified Oligonucleotide (UO) energies have been considered the most
reliable estimates and have been widely used as a reference. What is more,
the validity of the NN model and the UO energies have exceeded the bound-
aries of melting experiments and they have been tested in single-molecule
techniques. During the first decade of the 21st century, most of the works
done on force denaturation experiments of nucleic acids used these values
with satisfactory results [49, 24, 116, 136, 113]. Indeed, the UO values have
become a referent to model the single-molecule experiments (see Sec. 3.4)
because they reproduce quite well the force vs. extension curves of unfold-
ing/refolding experiments of DNA and RNA molecules.

The UO energies are given at standard conditions (25◦C and 1 M [NaCl])
and a few correction formulas are available to extend the values of the ener-
gies to other experimental conditions (temperature and salt concentration).
However, some discrepancies appear when comparing the UO predictions
with the single-molecule pulling experiments at different salt concentrations.
For instance, at low salt concentration (10 mM [NaCl]), the measured mean
unzipping force is ∼12 pN, while the force predicted by the UO energies is
∼13 pN. This is a significant discrepancy since the force resolution of the
instrument is 0.1 pN.

The origin of this discrepancy is attributed to the differences in the as-
sumptions and the treatment of data in both types of experiments. In melting
experiments, the DNA duplexes are assumed to melt in a two-state fashion
(all or none; hybridized or denaturated). This is acceptable for short oligos
(less than ∼ 20 bp) but the two-state assumption fails as the length of the
duplex increases. So, the longer oligos exhibit intermediate states where the
DNA duplex is partially melted. This is the reason why there are two sets
of NNBP energies inferred from melting experiments: one for the oligomers
and one for the polymers [28]. The description of the unzipping experiments
on DNA also has its own assumptions (elasticity of ssDNA, linearity of the
optical trap, etc.). Nevertheless, unzipping experiments do not distinguish
between the unfolding of oligonucleotides and polynucleotides. This is a use-
ful feature because the NNBP energies are unique for all the DNAs of any
length. The key point here is that single-molecule techniques allow one to
control and monitor the denaturated state of the molecule along a full reac-
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tion coordinate, without having to rely on a two-state model.

Up to now, we know that the NNBP energies given by the melting ex-
periments are not capable of reproducing the unzipping experiments. Here
emerges an interesting question. What are the values of the NNBP energies
that quantitatively describe the DNA unzipping experiments? Can we ex-
tract them from our own experimental data? Since we have the data and we
have the model, in order to extract the energies, we just need to tune the
parameters to make the model fit the data.

This chapter describes how to infer the NNBP energies of DNA from
unzipping experiments performed on optical tweezers. Here we develop the
mathematical tool that allows us to reach this goal. The strategy consists in:
1) measuring the FDC of unzipping; 2) determining the elastic response of
the ssDNA; 3) using the model described in Sec. 3.4 to compute the theoret-
ical FDC; and 4) fit the experimental FDC to the theoretical one to obtain
the NNBP parameters. The advantage of this technique is that it and can
extended to a wide variety of conditions (salt concentration, pH, tempera-
ture) and molecules (RNA, proteins such as helical repeats like the leucine
zipper [137]).

5.1 Discrepancies between melting and un-

zipping experiments

As previously said, the mesoscopic model (see Sec. 3.4) with the UO NNBP
energies provides a prediction of the unzipping FDC that does not quantita-
tively reproduce the experimental FDCs. Figures 5.1a,b show the compari-
son. Note that the sawtooth pattern is well reproduced by the model, in the
sense that the number of slopes and force rips coincide with the experimental
measurements. However, there is an evident difference in the mean unzip-
ping force: the UO prediction overestimates this value. Moreover, there is
a misalignment between the positions of the slopes and the force rips. Such
differences cannot be attributed to calibration errors.

Figure 5.1c shows the comparison of the mean unzipping force for several
salt concentrations of the buffer (10 mM [NaCl] - 1 M [NaCl]). This discrep-
ancy between the UO prediction and the unzipping experiments is systematic
at all salts. Besides, the sign of such discrepancy is the same for both DNA
sequences.

The fit of the NNBP energies can make the mesoscopic model quanti-
tatively match the experimental FDC. In order to do so, the FDC of a few
molecules is measured at different salt concentrations. Each FDC is fit to the
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model and the resulting NNBP energies are averaged over all the molecules to
give a final estimation of the energies at each salt. From these results, we can
infer the rules to correct the NNBP energies at different salt concentrations.

In order to proceed with the fit of the FDCs, we must take into account
several considerations. Next section discusses all them.
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Figure 5.1: Discrepancies between the unzipping measurements and the UO theoreti-
cal prediction. (a) FDC measured and filtered at 1 Hz bandwidth (red curve) and UO
prediction (blue curve) for a 6.8 kbp sequence at 10 mM [NaCl]. (b) 6.8 kbp sequence
at 1 M [NaCl]. Same color code as in panel a. (c) Dependence of mean unzipping force
with salt concentration. Red points, experimental measurements for the 6.8 kbp sequence;
green curve, UO prediction for the 6.8 kbp sequence; blue points, experimental measure-
ments for the 2.2 kbp sequence; orange curve, UO prediction for the 2.2 kbp sequence.
The values for the 6.8 kbp and the 2.2 kbp molecules have been obtained after averaging
over six molecules. Error bars are determined from the standard error among different
molecules.
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5.2 Parameters defining the theoretical FDC

The theoretical FDC computed in Sec. 3.4.1 requires the knowledge of several
(theoretical and empirical) parameters. The equations that determine the
total extension (Eq. 3.23) and the total energy (Eq. 3.22) implicitly depend
on:

• The stiffness of the optical trap. A stiffer trap (see Sec. 4.2.2)
entails a FDC with smaller and numerous force rips, while the rips of a
softer trap are larger and and less frequent. This parameter appreciably
changes the global shape of the FDC when its value is changed by orders
of magnitude. In our particular case, the stiffness of the optical trap is
restricted to 60− 80 pN/µm. Therefore, this parameter hardly affects
the shape of the FDC (see Fig. 5.2a). The stiffness of the optical trap
is obtained by immobilizing a bead at the tip of the micropipette and
measuring the force vs. elongation (see Fig. 2.15d).

• The persistence length and the contour length of the dsDNA
handles. The dsDNA handles are very short and short polymers are
very rigid. In general, a polymer can be treated as a rigid rod when its
persistence length is higher than its contour length. The accepted value
of the persistence length for long molecules of dsDNA is ∼ 50 nm [48],
while the contour length of the handles (i.e., their length) is < 10 nm.
Even if the actual persistence length of short molecules of dsDNA is
lower that 50 nm, the handles will actually behave like rigid rods. Rigid
rods fully transmit the forces along their ends. So the high rigidity of
the dsDNA hardly affects the FDC (see Fig. 5.2b).

• The persistence (or Kuhn) length and the contour length of
the released ssDNA. The elastic properties of the ssDNA strongly
affect the mean unzipping force of the FDC. The parameters that define
these elastic properties are not well defined and there are experimental
evidences that they are sequence dependent in ssRNA [138]. In our
unzipping experiments, the ssDNA is so important because it is an el-
ement that transmits the force from the unzipping fork to the handles
(and the optical trap). Besides, it is not a static element. Instead, it
increases its contour length as the molecule is being unzipped. Apart
from that, the ssDNA is a soft polymer compared to dsDNA, so its per-
sistence length is one order of magnitude lower (∼ 1.5 nm). In ssDNA,
the misprediction of the persistence length has dramatic consequences
(see Fig. 5.2c). Indeed, a 10% difference in the persistence length of
the ssDNA induces a difference of 1 pN in the mean unzipping force.
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• The NNBP energies. The values of the energies affect the over-
all shape of the FDC. The mean unzipping force of the FDC can
be increased (decreased) by globally increasing (decreasing) the ab-
solute value of the NNBP energies. An average 10% correction in the
NNBP energies introduces a difference of ∼1.3 pN in the mean unzip-
ping force (see Fig. 5.2d). Besides, the local shape of the sawtooth
pattern (heights of the rips and lengths of the slopes) change when the
relative values among the NNBP energies are modified. The depen-
dence of the FDC on the NNBP is non-linear. This means that the
relative changes on the NNBP energies have unpredictable effects on
the shape of the FDC. According to the NN model (see Sec. 3.3) there
are 10 independent NNBP energies.

An extra energy parameter is required to take into account the effect of
the end loop. It basically increases or decreases the height of the last
rip of the FDC.

In order to obtain an estimation of the NNBP, all the other parameters
must be fixed. The stiffness of the optical trap and the elastic properties
of the handles can be determined easily. However, some experiments must
be carried out in order to determine the elastic properties of the ssDNA.
Apart from this, there are two more issues that have to be addressed before
proceeding with the fit of the NNBP. The following sections deal with them.

5.2.1 Elastic response of the ssDNA

The mean unzipping force of DNA depends on the elastic properties of the
ssDNA according to the following explanation. Let us assume that the ss-
DNA is more rigid than usual. At the same force, a more rigid ssDNA is
capable of storing less elastic energy (Eb = f 2/2k, see Eq. 3.16). Therefore,
the force needed to acumulate enough elastic energy to break the base-pairs
of the duplex increases. Thus, the elastic properties of ssDNA entering in
Eq. 3.22 strongly determine the mean unzipping force of the FDC. In gen-
eral, the elastic response of the ssDNA is basically determined by its stiffness
(which is controlled by the persistence or Kuhn length) and the contour
length (which is controlled by the interphosphate distance and the number
of released bases).

A priori, one might think that the elastic parameters of the ssDNA are
well-known and fixed. However, these values depend on the type of buffer
at which the experiments are performed. It is crucial to know the elastic
response of the ssDNA at forces below 20 pN because this is the range of
forces at which unzipping is observed. Precisely at these forces it is more
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Figure 5.2: Dependence of the theoretical FDC on the experimental parameters for the
2.2 kbp sequence. (a) Trap stiffness. The three cases have the same mean unzipping
force, so the curves have been displaced vertically ±2 pN for convenience. There are no
significant differences between the 60 and the 80 pN/µm curves. However if the trap is
orders of magnitude stiffer, the sawtooth pattern is appreciably different at short distances.
As the ssDNA is released, the effective stiffness of the system decreases and the FDC looks
like the other two cases. (b) Elasticity of the handles. The persistence length (lp) of the
dsDNA hardly changes the shape of the FDC (< 0.05 pN). (c) Elasticity of the ssDNA.
The Kuhn length (b) of the ssDNA (which is directly related with the rigidity) changes
the mean unzipping force. The higher the rigidity, the lower the unzipping force. (d)
NNBP energies. A global increment or decrement of the NNBP energies modifies the
mean unzipping force.

difficult to extract the ideal elastic response because the ssDNA tends to rezip
and form secondary structures. So we need to measure a partial property of
the experiment (ssDNA elasticity) that is hidden by the proper experiment
(DNA unzipping).

The structure of the molecular construct used in our experiments helps
to solve this problem. Indeed, the end loop added to the DNA duplex (see
Sec. 3.2.3 and Appendix E) prevents the total separation of the two strands of
DNA. When all the base pairs are disrupted, the molecular construct looks
like a ssDNA molecule that can be pulled to obtain the elastic response.
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However, it is only possible to measure the elasticity of the ssDNA after
the molecule has been completely unzipped, i.e., for force values higher than
20 pN. Yet we face the problem that different models and different values for
the elastic parameters are compatible with the same curve above 20 pN, but
they show very different properties for forces below 20 pN. So the problem
persists.

The easiest solution then is to synthesize a fragment of ssDNA and per-
form pulling experiments on it. Since this fragment has a random sequence,
the formation of secondary structure is minimized and we can observe the
elastic response of the ssDNA at low forces. We carried out pulling exper-
iments with a 3 kbp piece of ssDNA from λ-DNA (see Appendix I for the
details about the synthesis). In contrast to the molecular constructs for un-
zipping, this 3 kbp sequence is not self-complementary and it forms less sec-
ondary structure at low forces. The measured FDCs are converted to Force
vs. Extension Curves (FECs) in which the force applied is depicted versus
the extension of the ssDNA molecule xm (rather than the relative position
of the trap xtot). The transformation from one to type of curve to another
is performed point by point. So each point (xtot, f) is converted into a point
(xm, f) by subtracting the elongation of the bead to the total distance of the
system according to

xm = xtot −
f

k
(5.1)

where f is the force measured and k is the stiffness of the optical trap (see
Fig. 5.3a,b). The resulting FEC is fit to a FJC or a WLC (Fig. 5.3a,b).
The fitting parameters are the Kuhn length (b) or the persistence length (lp)
depending on the model, and the interphosphate distance (d). The FEC is
forced to pass through the point (xm, f) = (0, 0), while the number of bases is
fixed to n = 3000 (see Appendix I). It has also been checked that the obtained
elastic properties of the ssDNA match the last part of the unzipping FDC,
when the molecule is fully extended (see Fig. 5.3c,d).

Both the FJC and the WLC models are similar but have some differences
at low forces. The WLC model correctly fits the ssDNA elastic response for
salt concentrations below 100 mM [NaCl]. Above this value, FDCs develop a
plateau at low forces that cannot be reproduced by the ideal models (FJC or
WLC). Figure 5.3 shows the fits of the FEC of ssDNA at different salt con-
centrations. As the salt concentration increases, the matching between the
experimental FEC and the model is worse. The problem is the appearance
of a force plateau above 100 mM [NaCl]. Such force plateau is related to the
formation of secondary structures (self-hybridization) in ssDNA [139]. How
can we determine the elastic response of the ssDNA at high salt concentra-
tion? At 100 mM [NaCl] we find that FJC fits better than WLC. At salt
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concentrations higher than 100 mM [NaCl], it is reasonable to assume that
the ideal elastic response of the ssDNA is given by the FJC model, without
considering the force plateau. So we fit the FEC to a WLC above 15 pN,
because no secondary structure survives at this force. Indeed, above 15 pN,
the FJC model fits data better.

Summing up, Fig. 5.3e shows the FEC at different salt conditions and the
best fit to each of them and Table 5.1 shows the values of parameters for the
best model at each salt.

Figure 5.3: Fit of the elastic response of ssDNA. (a,b) Elastic response of the ssDNA
at 10 mM [NaCl] and 1 M [NaCl], respectively. The panels show the conversion of FDCs
(black curves) into FECs (red curves) for the 3 kb ssDNA molecule (yellow arrows indicate
the direction of the conversion). The green curves show the fit of the FEC to the ideal
models (WLC or FJC). (c,d) Predicted FDC for the fully unzipped molecule (orange
curve) superimposed on the experimental unzipping FDC (blue curve) at 10 mM [NaCl]
and 1 M [NaCl], respectively. (e) Elastic response of a 3 kb ssDNA molecule at various
salt concentrations. For each salt, the raw data of three different molecules are shown
(orange, green and blue curves). Red curve shows the best fit to the elastic model. The
models are: FJC for [NaCl]≤ 100 mM and WLC for [NaCl]> 100 mM.
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WLC model FJC model
d = 0.665 nm d = 0.59 nm

Salt [NaCl] lp (nm) b (nm)
10 mM 1.14 (0.1) -
25 mM 0.93 (0.1) -
50 mM 0.88 (0.1) -
100 mM - 1.37 (0.1)
250 mM - 1.25 (0.1)
500 mM - 1.20 (0.1)
1000 mM - 1.10 (0.1)

Table 5.1: Elastic parameters of ssDNA at different salt concentration. d is the inter-
phosphate distance for each model, lp is the persistence length of the WLC and b is the
Kuhn length of the FJC. The mean values were obtained after averaging over 5 molecules
for each salt, except for 25 mM and 100 mM that were averaged over 4 molecules and for
50 mM that were averaged over 3.

5.2.2 Drift and shift function

The drift of the instrument is one of the major problems in single molecule
experiments. The drift is a low frequency systematic deviation of measure-
ments due to macroscopic effects. In the case of the minitweezers, the drift
is mainly due to dilatations or contractions of the instrument produced by
local changes of temperature or air flows in the room. The drift might be
responsible of several effects such as the change in the relative position be-
tween the micropipette and the optical trap or the distortion of the optical
path.

The importance of drift depends on the kind of the experiment and the
protocol used. The unzipping experiments are performed at very low pulling
speeds (typically around 10 nm/s), so measuring a whole unzipping/rezipping
FDC may take 10 minutes or longer. Therefore it is useful to model the drift
in order to remove its effects and extract accurate estimates for the NNBP
energies. In order to do so, we introduce into the model a shift function that
locally corrects the position of the trap along the FDC (see Appendix J).
The final goal of the shift function is to make the slopes and force rips of the
experimental and the theoretical FDC match each other. This leads to an
improved match between the theoretical and the experimental FDCs.

The shift function is defined by equidistant control points that define a set
of cubic splines. The shape of the shift function can be modified by tunning
the location and the local shift of each of these control points. Appendix J
describes in further detail the issues related with this function.
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The shift function has a very important property: It is completely un-
correlated with the NNBP energies. Indeed, the shift function can be intro-
duced into the mesoscopic model without affecting the NNBP energy values.
Therefore, in the complete model, the shift function controls the horizontal
matching between both curves (i.e., the distance) and the NNBP energies
control the vertical matching (i.e., the force). The result is that an improved
agreement between the experimental and the theoretical unzipping FDCs is
achieved (see Fig. 5.4).
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Figure 5.4: Effect of the shift function on the theoretical FDC. Blue curve shows the
experimental FDC measured on a 6 kbp sequence. (a) Red curve shows the FDC predicted
by the mesoscopic model without the shift function. (b) The inclusion of the shift function
locally shifts each rip and the matching is better.

Although each molecule has its own shift function, these have similar
shapes (see Fig. 5.5). We have checked that the undulations of the shift
function are not an artifact of the spline interpolation (see Appendix J).
The undulations remain when the number of control points of the shift func-
tion is increased. The net shift observed in some curves (around ∼100 nm)
might be explained by improper calibration of the distance (around 4%). The
undulations observed in the shift function might be due to non-linearities in
the light-lever (i.e., trap position) measurements or interference fringes in the
lenses or in the pellicle located along the optical path to the PSDs. The undu-
lations in the shift function might also be correlated with the DNA sequence
as emerges from the fact that undulations observed in different molecules
of the same sequence appear at nearby positions. This might indicate new
effects in the unzipping curves not accounted for in the NN model (e.g., the
presence of next nearest-neighbor corrections).

It has also been checked whether the correction introduced by the shift
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Figure 5.5: Shift function. The figure shows the shift function for a few 6.8 kbp molecules
at different salt conditions. The inset shows the shift function for different molecules of
2.2 kbp at 500 mM [NaCl] (=red) and 1 M [NaCl] (=green). The gray shaded region
corresponds to trap positions where DNA is fully unzipped. In this region, the local shift
nearly vanishes.

function could be explained by a dependence of the Kuhn length on the
contour length. Such dependence has not ever been reported. Yet it is in-
teresting to evaluate the consequences of such hypothetic dependence. By
letting the Kuhn length depend on the number of open base pairs, the po-
sition of the theoretical and experimental slopes and rips match each other
if the Kuhn length increases as the contour length decreases. However this
matching occurs at the price of an increasing average mean unzipping force
as the molecule unzips and the ssDNA is released, an effect which is not ex-
perimentally observed. We conclude that the shift function is probably due
to instrumental drift superimposed to imperfect calibration of the distance
and non-linear optical effects.

5.2.3 Free energy of the end loop

The end loop of the molecule is a group of 4 bases that forms a different
structure from the Watson-Crick base-pairs. The loop is a motif in which
the backbone of the ssDNA molecule bends and twists itself. This induces a
change in the orientation of the backbone that permits the formation of the
DNA duplex (see Fig. 5.6a). The loop is quite useful in unzipping/rezipping
experiments because the two strands of DNA are not completely split apart
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after unzipping, which facilitates the rezipping. Moreover, the end loop allows
us to measure the elastic response of a ssDNA above ∼ 15 pN, which is an
important piece of information to infer the NNBP energies from unzipping
experiments (see Fig. 5.3c,d).

The free energy formation of the loop gets contributions from the bending
energy, the stacking of the bases in the loop and the loss of entropy of the
ssDNA. The energy formation of the loop is positive, meaning that the loop
is an unstable structure at zero force. Upon decreasing the total extension,
the formation of complementary base pairs along the sequence reduces the
total energy of the molecule and the loop can be formed.

The effect of the loop is appreciated only in the last rip of the FDC.
It introduces a correction to the free energy of the fully extended ssDNA
molecule and modifies the force at which the last rip is observed (Fig. 5.6b).

Figure 5.6: End loop. (a) The formation of the end loop involves the bending and
twisting of the sugar-phosphate backbone of the DNA (depicted in blue). The four bases of
the tetraloop (depicted in green) cannot form Watson-Crick base-pairs and the free energy
of formation is positive (the loop is unstable). (b) Effect of the loop contribution on the
FDC. The free energy of the loop modifies the shape of the theoretical FDC only at the last
rip just before the elastic response of the full ssDNA is observed. The black curve is the
experimental FDC. All other curves show theoretical FDCs with different values of εloop.
Red curve, best fit with εloop = 2.27 kcal·mol−1; magenta curve, εloop = 0.0 kcal·mol−1;
green curve, εloop = 1.00 kcal·mol−1; blue curve, εloop = 2.00 kcal·mol−1 and orange curve,
εloop = 3.00 kcal·mol−1.

5.3 Fit of FDCs

The values of the NNBP energies mostly define the location and the height
of the force rips. If these values are modified, the shape of the FDC changes
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dramatically. So if we consider that the other parameters (trap stiffness,
elastic properties of ssDNA) are known and fixed, it is possible to state that
the FDC only depends on the 10 NNBP energies εi (i=1,. . . ,10) and on the
free energy of the end loop εloop.

The question that we want to address here is how to modify the values
of εi in order to obtain a theoretical FDC that is as close as possible to the
experimentally measured one. In order to do so, it is necessary to perform a
fit by using the Least-Square approach. This method consists in defining an
error function E(ε1, . . . , ε10, εloop) that is the sum of the squared differences
between a measured value and a theoretical value of the FDC according to

E(ε1, . . . , ε10, εloop) =
1

N

N∑
i=0

(
f exp
i − f the

i (ε1, . . . , ε10, εloop)
)2

(5.2)

where N is the number of experimental points in the FDC, f exp
i is the exper-

imental equilibrium force and f the
i (ε1, . . . , ε10, εloop) is the theoretically calcu-

lated FDC according to the model. Obviously, the values of f exp
i and f the

i

are calculated at the same total extension of the system xtot.
The theoretical FDC is calculated in equilibrium, which assumes that the

bandwidth of our measurements is 0 Hz. The experimental data is filtered
at a bandwidth of 1 Hz. If data is filtered at higher frequencies (>1 Hz),
the hopping between intermediate states is observed and the experimental
FDC does not compare well with the theoretical FDC at equilibrium. If the
data is filtered at lower frequencies (<1 Hz), the force rips are smoothed and
hopping transitions are averaged out. Appendix K explains why the (filtered)
experimental FDC can be compared with the theoretical FDC.

The best values for the NNBP energies can be inferred by minimizing
the mean squared error (i.e., the error function) between the experimental
and theoretical FDCs. The complex dependence of the FDC with the NNBP
energies and the large dimensional space spanned by the 10 NNBP energies
makes the minimization a difficult optimization problem. In general, we have
to minimize Eq. 5.2 which is a 11-dimensional function whose error landscape
is unknown. There are several techniques to minimize the error function but
not all of them are equally efficient.

We have tested two standard methods: 1) a steepest descent approach
and 2) a Monte Carlo approach. The first one involves the numerical calcu-
lation of the first derivatives of the error function, which makes the method
very straightforward but computationally inefficient. Indeed, each step of the
steepest descend method leads to the solution that minimizes the error func-
tion. However, each step of the calculation requires 10 times more of time
due to the calculation of the derivatives. On the contrary, the Monte Carlo
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method involves a random search for optimal solutions in the space of param-
eters which turns out to be faster, although less accurate that the steepest
descent method (see Fig. 5.7). So the minimization was finally performed
with a Monte Carlo method.
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Figure 5.7: Optimization methods. Plot of the error function versus the computation
time (MC=Monte Carlo; SD=Steepest Decent). Although the SD methods take less steps,
the time spent in each step is much longer because the computation of the derivatives are
much time consuming. The MC method allows to define different protocols depending of
how the fictive temperature that controls the minimization is varied.

5.3.1 Monte Carlo optimization

In the Monte Carlo (MC) optimization we start from an initial guess for the
energies εi (i=1,. . . ,10,loop) and do a random walk in the space of parameters
in order to minimize the error function defined in Eq. 5.2. All MC techniques
require the introduction of a fictive temperature that controls how the space
of parameters is explored. This method is just a standard Simulated An-
nealing optimization algorithm [140] adapted to our particular problem that
speeds up considerably the time to find the minimum as compared to stan-
dard Steepest Descent algorithms. The MC optimization is composed of the
following steps:

1. Initial guess. The error function is initially evaluated with the UO
energies. We start from the unified values to enforce the system to
explore the basin of attraction of these values.



180 Salt dependence of nearest-neighbor base-pair free energies

2. Quench algorithm. The system is allowed to evolve until the total
error reaches a minimum. This stage involves several steps. First, a
random variation of the NNBP energies is proposed. The set of new
energies is accepted if the new calculated value of the error function
decreases and the process is repeated. If the error function increases,
the set of energies is rejected and a new energy values are proposed.
When the acceptance ratio of the proposed steps is lower than 3%, the
system is considered to have newly reached a minimum. This method
is essentially a steepest descent algorithm with the advantage that the
free energy derivatives need not be calculated (see Fig. 5.8a).

3. Heat-quench algorithm. Once the system has found the first min-
imum, we start another MC search to explore other solutions in the
vicinity of the minimum. Here we have to define a fictive temperature
T to accept or reject the proposed NNBP energies. Each new proposal
is accepted or rejected using a Metropolis algorithm. According to the
Metropolis algorithm, a move is always accepted if ∆E < 0 (where ∆E
is the change in the error after the proposal). If ∆E > 0, a random
number r from a standard uniform distribution r ∈ U(0, 1) is generated
and the move accepted if e−∆E/T > r and rejected if e−∆E/T < r.

During the heat-quench algorithm, the system is heated up to a large
fictive temperature until the error is 50% higher than the error of the
first minimum. Afterwards, the system is quenched until the acceptance
ratio of steps is lower than 3%. This procedure is repeated many times.
The multiple solutions found after the initial minimum allow us to
estimate the error in the NNBP energies (see Fig. 5.8b). The possible
values for the NNBP energies are Gaussian distributed in a region of
width approximately equal to 0.05 kcal·mol−1 (see Fig. 5.8c).

The error landscape defined by Eq. 5.2 is not rough and there is no neces-
sity to use a MC algorithm. Nevertheless, we find that the MC optimization
with the heat-quench scheme is computationally more efficient (i.e., faster)
than other optimization algorithms and other fictive temperature schemes
(see Figs. 5.7 and 5.9). The analysis revealed that the optimization algo-
rithm is robust and leads to the same solution when the initial conditions
are modified, as will be shown in the next section. Different molecules and
different sequences converge to energy values that are clustered around the
same value. Appendix L describes in further details the errors in the MC
optimization.
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Figure 5.8: Monte Carlo optimization. (a) Quench algorithm. Evolution of the error
function of different molecules during the quenching minimization. The main figure shows
a log-log plot where the mean quadratic error decreases down close to 0.01 pN2. The inset
figure shows a linear plot of the same evolution. (b) Heat-quench algorithm. Evolution
of the error during the heat-quench algorithm. (c) Histograms of solutions for one repre-
sentative molecule obtained using the heat-quench algorithm. Each color represents one
NNBP parameter and its Gaussian fit profile. Optimal solutions correspond to the most
probable values of the distribution.

5.3.2 Independence of initial conditions

The optimization algorithm gives the same solution within 0.05 kcal·mol−1

when the initial conditions are modified. A detailed study of the optimization
algorithm has been carried out in order to check that the final solution does
not depend on the initial conditions given to the algorithm.

An ensemble of initial conditions have been selected from the values of the
different labs that were unified by SantaLucia [28] (see Fig. 5.10a). The FDCs
predicted by the different energy values are depicted in Fig. 5.10c. Here we
can observe how an overestimation (underestimation) in the absolute value
of the NNBP energies leads to an overestimation (underestimation) of the
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Figure 5.9: Temperature schedules. Upper panel shows the evolution of the error for
a linear schedule (red curve) and a heat-quench algorithm (blue curve). The inset shows
a zoomed region of the heat-quench algorithm. Note the rapid error decrease of the
heat-quench algorithm. The lower panel shows the evolution of the temperature for each
schedule.

mean unzipping force. The same elastic properties (ssDNA, handles and
optical trap) have been used in all cases. Figure 5.10b shows the optimal
values of the NNBP energies for the ensemble of initial conditions. All the
NNBP energies have an error smaller than 0.1 kcal·mol−1.

The optimization algorithm converges to essentially the same solution
when starting from various initial conditions because the error bars of the
different solutions obtained for each initial condition overlap with each other.
Figure 5.10d shows the final theoretically predicted FDCs obtained when us-
ing the optimal values of the NNBP energies obtained for each initial condi-
tion. The different FDCs are indistinguishable and they reproduce quantita-
tively the experimental FDC.
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Figure 5.10: Dependence on initial conditions taken from bulk measurements [28]. (a)
Ensemble of initial conditions that we tested. Data was obtained from SantaLucia [28]
and it was corrected according to temperature (298 K) and salt conditions (1 M [NaCl]) of
our experiments. Cyan points, values of Benight; red points, values of Blake; green points,
values of Breslauer; blue points, values of Gotoh; orange points, values of SantaLucia;
magenta points, values of Sugimoto; yellow points, values of Vologodskii; black curve, our
fit values. (b) Solutions found after the fitting algorithm for the different initial conditions.
Same color code as in panel a. The heterogeneous ensemble of initial conditions has
converged to similar values for all the NNBP energies that differ by less than 0.1 kcal·mol−1.
(c) FDCs obtained using the NNBP energies from the different initial conditions. The
color code is the same as in panel a. The black curve shows our fit FDC. Some of the
initial conditions (Gotoh and SantaLucia) are compatible with the experimental FDC.
(d) FDCs obtained using the optimal NNBP energies obtained for each initial condition.
Experimental and optimal FDCs differ by less than 0.1 pN throughout the molecule.

5.4 Salt dependence and thermodynamic prop-

erties of NNBP interactions

Up to now, we have seen how to extract the NNBP energies from an unzipping
FDC. This section describes how this process can be repeated for several
molecules and several salt conditions in order to extract conclusions about
the salt dependence of the NNBP free energies, enthalpies and entropies.

The unzipping experiments have been performed at 7 different salt con-
ditions for the 6.8 kbp sequence and at two salt conditions for the 2.2 kbp
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sequence. All them are quasistatic pulling experiments from which the equi-
librium FDC can be obtained (see Fig. 5.11). At each salt condition, the
experiment has been repeated for several molecules. The Monte Carlo opti-
mization method has also been applied to fit all the collected experimental
data to the model. The result is a collection of 10 NNBP energies (plus
the loop contribution) for each salt condition and for each molecule. The
error can be estimated from the averages between the individual molecules
measured at each salt.

The best-fit energy parameters reduce the error between the measured
FDC and the theoretical prediction (see Fig. 5.12a,b). That is, they give
improved agreement between the experimental and the theoretical unzipping
FDCs as compared with the UO values. Figures 5.12c,d show the average
value and the standard error of the NNBP obtained for the 6.8 kbp sequence
and the UO prediction for the NNBP energies at 10 mM and 1 M [NaCl].
It is interesting that some of the new values are in good agreement with
the results given by SantaLucia [28] (e.g., CA/GT and AT/TA motifs) while
others differ significantly (e.g., AA/TT and GA/CT at 10 mM NaCl and
AC/TG and CC/GG at 1 M NaCl).

According to the UO salt correction, the NNBP energies are extrapolated
homogeneously (i.e., the same salt correction is taken for all base-stack com-
binations) from standard salt conditions (1 M [NaCl]) down to lower salt
concentrations (e.g., 50 mM) (see Sec. 3.3.3). However, such correction does
not predict the observed unzipping force at low salt, especially for certain
NNBP such as AA/TT or GA/CT.
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Figure 5.11: FDCs at various monovalent salt concentrations ([Mon+]=[Na+]+[Tris+],
[Tris+]=18 mM). Black curve [Na+]=10 mM, red curve [Na+]=25 mM, green curve
[Na+]=50 mM, blue curve [Na+]=100 mM, magenta curve [Na+]=250 mM, cyan curve
[Na+]=500 mM, orange curve [Na+]=1 M.
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Figure 5.12: Salt dependencies. (a,b) FDCs for the 6.8 kbp sequence at 10 mM NaCl
(panel a) and 1 M NaCl (panel b). Black curve, experimental measurements; blue curve,
UO prediction; red curve, our fit; magenta curve, elastic response of the fully unzipped
molecule. The theoretical FDC is calculated in equilibrium, which assumes that the band-
width is 0 Hz and the experimental data is filtered at bandwidth 1 Hz. If data is filtered
at higher frequencies (>1 Hz), hopping between states is observed and the experimental
FDC does not compare well with the theoretical FDC at equilibrium. If data is filtered
at lower frequencies (<1 Hz), the force rips are smoothed and hopping transitions are
averaged out. (c,d) NNBP energies and comparison with UO values at 10 mM [NaCl]
(panel c) and 1 M [NaCl] (panel d). The following notation is used for NNBP: AG/TC
denotes 5′-AG-3′ paired with 5′-CT-3′. Black points, UO values; red points, values for the
6.8 kbp molecule; blue points, values for the 2.2 kbp molecule. The values for the 6.8 kbp
and the 2.2 kbp molecules have been obtained after averaging over six molecules. Error
bars are determined from the standard error among different molecules.

A heterogeneous (sequence specific) salt correction could provide con-
sistent results with the experiments. Such deviations are not unexpected,
given the differences in solvation between specific nucleotides and salt ions
[141, 142]. However the effect has never been quantified. With this goal in
mind, we apply the fitting algorithm to extract NNBP energies for data taken
at many salt concentrations (see Fig. 5.13 red points). We find compatible
NNBP energies between the two molecules (Fig. 5.13 blue dots).

As mentioned in Sec. 3.3.3 the UO prediction uses a non-specific salt
correction for the different NNBP energies. Equation 3.13 gives the entropy
correction of the NNBP for salt conditions different from 1 M [NaCl], which
can be combined with Eq. 3.5 to write and expression for the free energy of
formation of the NNBP at any salt concentration according to:

εi([Mon+]) = ε0i −m · ln([Mon+]) (5.3)

where εi([Mon+]) is the energy of formation of the i th NNBP (i=1,. . . ,10)



186 Salt dependence of nearest-neighbor base-pair free energies

at a monovalent salt concentration of [Mon+] (expressed in molar units),
ε0i is the NNBP energy at 298 K, 1 M monovalent salt and m is the non-
specific prefactor equal to m = 0.110 kcal·mol−1 at 298 K (see Fig. 5.13,
green lines) [28, 118]. The monovalent salt concentration [Mon+] accounts
for the total amount of ions with charge +1 that are in the buffer. In the
case of the TE buffer at which the unzipping experiments are performed,
the total concentration of monovalent ions is given by two contributions: the
[Na+] ions and the [Tris+] ones, which is [Tris+] = 18 mM at pH = 7.5.

Figure 5.13: Salt corrections of the NNBP energies. Each panel shows the energy of a
different NNBP parameter. Red (blue) points are the experimental results for the 6.8 kbp
(2.2 kbp) sequence; green curve, UO non-specific salt correction; black curve, fit to Eq. 5.3
with adjustable parameters mi (i=1,. . . ,10,loop) and ε0i .

To define a heterogeneous salt correction within this scheme, it is only
necessary to establish 10 sequence-specific prefactors mi to be used with the
same logarithmic dependence as shown in Eq. 5.3. Thus we fit all NNBP en-
ergies using NNBP-dependent parameters mi (i=1,. . . ,10,loop) and ε0i . The
fits to each NNBP are shown in Fig. 5.13 (black lines) and the resulting fit pa-
rameters (ε0i andmi) are listed in Table 5.2. There we observe that the salt de-
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NNBP 6.8 kbp 2.2 kbp UO ε0i mi

AA/TT -1.21 (0.02) -1.18 (0.01) -1.27 -1.23 (0.01) 0.145 (0.006)
AC/TG -1.46 (0.04) -1.48 (0.10) -1.71 -1.49 (0.05) 0.10 (0.02)
AG/TC -1.35 (0.07) -1.24 (0.04) -1.53 -1.36 (0.03) 0.070 (0.014)
AT/TA -1.15 (0.06) -1.02 (0.05) -1.12 -1.17 (0.04) 0.12 (0.02)
CA/GT -1.61 (0.07) -1.54 (0.05) -1.72 -1.66 (0.05) 0.09 (0.02)
CC/GG -1.85 (0.02) -1.82 (0.02) -2.08 -1.93 (0.04) 0.06 (0.02)
CG/GC -2.27 (0.06) -2.29 (0.10) -2.50 -2.37 (0.09) 0.13 (0.04)
GA/CT -1.40 (0.07) -1.63 (0.04) -1.57 -1.47 (0.05) 0.15 (0.02)
GC/CG -2.30 (0.06) -2.43 (0.10) -2.53 -2.36 (0.04) 0.08 (0.02)
TA/AT -0.84 (0.08) -0.87 (0.06) -0.84 -0.84 (0.05) 0.09 (0.02)
Loop 2.30 (0.06) 2.46 (0.09) 2.68 2.43 (0.05) -

Table 5.2: 6.8 kbp (2.2 kbp) are the NNBP energies (in kcal·mol−1) obtained from the
averaged results for the two sequences (standard error in parenthesis) at 1 M [NaCl]. UO
are the values extracted from ref. [28]. ε0i and mi are the standard energies and prefactors
obtained from the fits shown in Fig. 5.13. These values are used in Eq. 5.3 to extrapolate
the NNBP energies to other salt concentrations.

pendence of some NNBP parameters is well described by the UO non-specific
correction (e.g., AT/TA and CA/GT) but most of them are better fit with
some correction in parameters ε0i and mi (e.g., AA/TT,AC/TG,AG/TC).

Interestingly enough, a fit of the previous data with homogeneous salt
correction (i.e., one single value m for all the NNBP energies) gives a value
of m = 0.104 kcal·mol−1, which is very similar to the value reported by San-
taLucia [28]: m = 0.114 kcal·mol−1. However, the root mean square error
of a homogeneous fit is twice the error of a heterogeneous fit. Already with
naked eye, it is possible to observe clear discrepancies in the slopes of some
NNBP motifs (such as AA/TT, AG/TC, GA/CT) with a homogeneous salt
correction (green curves in Fig. 5.13). Therefore, the use of a heterogeneous
salt correction is worth, given the improvement in the fit. This is discussed
in Sec. 5.5.

5.4.1 Inference of NNBP enthalpies and entropies

The unzipping experiments provide direct measurements of the free ener-
gies (εi) and the salt corrections (mi) at T = 298 K for all the NNBP motifs
(i = 1, . . . , 10), but no information about the enthalpy (∆hi) and the entropy
(∆si) is provided. In order to infer these two magnitudes, we should perform
more unzipping experiments at different temperatures an apply Eq. 3.5. At
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present this cannot be achieved with the minitweezers experimental setup
because the temperature cannot be controlled at will. The changes in tem-
perature dramatically affect the optics of the instrument, which introduces
undesirable drift effects that compromise the resolution of the experiment.

However, combining the results from unzipping experiments with the mea-
surements of melting temperatures of several oligos obtained by optical melt-
ing experiments [143] we can infer the enthalpies and the entropies. In order
to do so, we define an error function χ2 that accounts for the mean squared
error between the experimental melting temperatures [143] (T exp

i ) and the
predicted (T pred

i ) ones for N = 460 different oligos and salt conditions,

χ2(∆h1, . . . ,∆h10) =
1

N

N∑
i

(
T exp
i − T pred

i (∆h1, . . . ,∆h10)
)2

(5.4)

where ∆hi (i = 1, . . . , 10) are the NNBP enthalpies and T pred
i are obtained

according to Eq. 3.14 derived from the NN model. The NNBP entropies are
fixed by 10 constraints that relate the free energies, the enthalpies and the
entropies according to

εi = ∆hi − T∆si =⇒ ∆si =
∆hi − εi

T
(5.5)

where i = 1, . . . , 10; εi (= ∆gi) are the experimentally measured free energies
with unzipping experiments and T = 298 K. Here, the enthalpies are fitting
parameters that fix the entropies. Therefore the enthalpies and the entropies
are fully correlated (their correlation coefficients are equal to 1).

The error function (Eq. 5.4) is minimized with respect to the 10 enthalpies
using a steepest descent algorithm that rapidly converges to the same solution
when starting from different initial conditions. Table 5.3 contains the best
fit values for the enthalpies and the entropies which are compatible with the
UO values. Appendix M describes how the error of the fitting parameters
was estimated.

5.4.2 Prediction of melting temperatures

The aim of this section is to check how well the new thermodynamic values
(see Table 5.3) work to predict the melting temperatures of oligonucleotides
under various salt conditions. However, it has to be admitted that the con-
frontation of our results with the melting temperature of oligos is not the
best way to show the reliability of the new NNBP energies. The reason is
that most published sets of NNBP values obtained with different calorimetric
or optical methods agree within 2◦C (in average), revealing that the melting
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Method UO values Force measurements
NNBP εi ∆hi ∆si mi εi ∆hi ∆si mi

AA/TT -1.28 -7.9 -22.2 0.114 -1.23 -7.28 (0.3) -20.28 (1.2) 0.145
AC/TG -1.72 -8.4 -22.4 0.114 -1.49 -5.80 (0.3) -14.46 (1.3) 0.099
AG/TC -1.54 -7.8 -21.0 0.114 -1.36 -5.21 (0.3) -12.89 (1.2) 0.070
AT/TA -1.12 -7.2 -20.4 0.114 -1.17 -4.63 (0.6) -11.62 (2.1) 0.117
CA/GT -1.73 -8.5 -22.7 0.114 -1.66 -8.96 (0.3) -24.48 (1.2) 0.091
CC/GG -2.07 -8.0 -19.9 0.114 -1.93 -8.57 (0.3) -22.30 (1.2) 0.063
CG/GC -2.49 -10.6 -27.2 0.114 -2.37 -9.66 (0.5) -24.43 (2.1) 0.132
GA/CT -1.58 -8.2 -22.2 0.114 -1.47 -8.16 (0.3) -22.46 (1.3) 0.155
GC/CG -2.53 -9.8 -24.4 0.114 -2.36 -10.10 (0.5) -25.96 (1.8) 0.079
TA/AT -0.85 -7.2 -21.3 0.114 -0.84 -8.31 (0.6) -25.06 (2.1) 0.091

Table 5.3: Free energies and enthalpies given in kcal·mol−1; entropies given in
cal·mol−1·K−1. Left block of columns show the UO values at standard conditions (25◦C
and 1 M [NaCl]). Right block of columns show the thermodynamic values inferred from
our unzipping experiments. The values in parenthesis indicate the estimation of the error
(see Appendix M).

temperature is not necessarily a very robust indicator. In fact, the fit of the
melting temperatures in Eq. 5.4 provides a better estimation for the melting
temperatures than for enthalpies and entropies, which are the relevant mag-
nitudes. The melting temperature is probably not the best estimator, but we
do not have any other experimental observable with which we can infer and
compare our results. In the end, we are inferring the important magnitudes
(enthalpies and entropies) by means of a derived magnitude (melting temper-
ature) that is compatible with large variations of such important magnitudes
(enthalpies and entropies).

Moreover, there seems to be a circular reasoning here. If our thermody-
namics values (enthalpies and entropies) are obtained after fitting the melting
temperatures, our thermodynamic values will obviously predict the melting
temperatures well. However, our fit does not necessarily lead to good melting
temperature predictions (i.e., within 2◦C). Indeed, our results might have led
to a solution where the root mean squared error in Eq. 5.4 was much higher
than the accepted experimental error in melting experiments (2◦C). Fortu-
nately, this is not the case and our thermodynamic values predict the melting
temperatures of ref. [143] with an average error of 1.90◦C.

What is more, we have checked that if our found NNBP energies (εi) in-
crease only by 0.15 kcal·mol−1 (i.e., slightly beyond the standard error of the
NNBP values) the standard deviation error for temperature melting predic-
tion goes from 2◦C up to 5− 6◦C. So, if we had obtained the NNBP energies
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with a systematic error of 0.15 kcal·mol−1 we could never have predicted the
melting temperatures within the 2◦C accuracy.

Once these preliminary issues have been addressed, let us focus on the
prediction of the melting temperatures. Using our new thermodynamic values
(Table 5.3 and Eq. 3.14), we calculate the melting temperatures of 92 oligos
at 5 different salt conditions and compare our results with melting data taken
from Owczarzy et al. [143]. Figure 5.14a illustrates how, in general, the UO
values predict the melting temperatures better (average error of 1.53 ◦C) than
our values (average error of 1.90 ◦C). The good news here is that our results
are compatible and agree with the melting experiments. A deep look into the
results reveals that our values work better for oligos longer than 15 bp (see
Fig. 5.14b). Indeed, the UO prediction has an average error of 1.5 ◦C, while
our values, 1.3 ◦C. All these results and their explanations will be discussed
in the next section.

5.5 Discussion of results

5.5.1 Regarding the heterogeneous salt correction

The single molecule force unzipping experiments allowed us to extract the
DNA base pair free energies at various salt concentrations. The heteroge-
neous salt correction found in our measurements is a remarkable result and
it could be due to electrostatic effects. The NNBP formed as a combination of
purine-purine or pyrimidine-pyrimidine (5′-YY-3′ or 5′-RR-3′, i.e., AA/TT,
AG/TC, CC/GG, GA/CT) differ most from the UO homogeneous salt cor-
rection than mixed purine-pyrimidine combinations (5′-RY-3′ and 5′-YR-3′).
A difference between these combinations can be observed in how charges
(e.g., hydrogen bond acceptor and donor groups) are distributed along the
major groove of the double helix. The latter have charged groups that tend
to be uniformly distributed between the two strands along the major groove,
whereas the former have donor and acceptor groups unevenly distributed
between the two strands. The specific salt correction found in our measure-
ments could be consequence of how monovalent cations bind the two strands
along the major groove. There are precedents to such results. Sugimoto and
collaborators [144] have reported that cation binding is correlated to duplex
stability. Computer simulations have identified acceptor groups in guanine
(N7′ ,O6′) and adenine (N7′) as preferential cation binding sites [145]. Our
experimentally determined specific salt corrections might be interpreted as a
corroboration of such hypothesis.

An alternative explanation could be that the heterogeneity of the salt cor-
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Figure 5.14: Prediction of melting temperatures. Comparison of melting tempera-
tures for the 92 oligos ranging from 10 to 30 bp reported in ref. [143]. (a) Predicted
versus experimentally measured melting temperatures at 5 salt conditions ([Na+] =
69, 119, 220, 621, 1020 mM). The values obtained from unzipping have less error at higher
temperatures (corresponding to longer oligos). (b) Prediction at 69 mM [NaCl] (left panel)
and 1.02 M [NaCl] (right panel). Black lines are the experimentally measured melting tem-
peratures, green line is the UO prediction and red line our prediction from unzipping data.
Note that unzipping experiments predict the melting temperatures better above 15 bp,
while the UO prediction works fine below this length.

rection is consequence of sequence specific elastic properties of the ssDNA.
Previous studies of ssDNA elasticity [48] have shown how the contour length
of the ssDNA gradually increases from low to high forces suggesting a confor-
mational transition of the sugar pucker that goes from the A-form (C3′-endo)
to the B-form (C2′-endo) at high forces (see Sec. 3.1 and Fig. 3.4c for a de-
tailed description of the sugar puckering). A similar phenomenon has been
reported in recent studies of homopolymeric RNA sequences [138] that reveal
conformational transitions under tension (in the form of force plateaus) in
poly-C and poly-A sequences but not for poly-U sequences (studies for poly-
G sequences were not available). For random ssDNA sequences one might
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expect that such specific effects are averaged out and a gradual A→B tran-
sition is observed. Conformational transition effects are also observed in the
elastic measurements of ssDNA when varying the salt. As shown in Table 5.1,
the value of the interphosphate distance increases when decreasing the salt
(it changes from 0.59 nm at high salts to 0.67 nm at low salts) suggesting a
similar sugar pucker (B→A) conformational transition for the ssDNA. How
this consideration could affect the interpretation of the heterogeneous salt
correction? In other words, might it be possible that the contribution of
each pair of stacked bases to the Kuhn length is different? This result has
never been reported before in any experimental study of the ssDNA elastic-
ity [48, 139]. It represents a completely different interpretation of the salt
dependence and there is no reason why such hypothesis should be rejected.
In order to determine the dependence of the Kuhn length with the sequence,
it would be necessary to perform a detailed study of the elastic properties of
periodic ssDNA sequences along the lines of what has been recently reported
for homopolymeric RNA sequences [138]. A detailed investigation should be
carried out for homopolymeric DNA sequences containing all possible combi-
nations of stacking bases. Candidate sequences should be poly-dA, poly-dC,
poly-dT and other periodic sequences such as poly-(dA-p-dT), poly-(dA-p-
dT-p-dC). In the end, the Kuhn length associated to each combination of
stacked bases (16 in total) could be written as a constant value plus a base
(or sequence) dependent correction. Although an exhaustive research of the
elastic response of different ssDNA sequences would shed light into this issue,
this is beyond the scope of the present work.

5.5.2 About the prediction of melting temperatures

Why do our free energy numbers predict fairly well melting temperatures
of oligos longer than 15 bp but do worse for shorter ones? Discrepancies
between predicted and measured melting temperature for short oligos have
been already reported in bulk measurements [146] and attributed to dif-
ferences in analytical methods used to extract melting temperatures. For
instance, there are a few definitions of the melting temperature that not al-
ways coincide: maximum heat capacity of the sample, maximum derivative
of UV absorbance, etc. Another possible explanation is that short oligos
(< 15 bp) might not have the double helix perfectly formed and the forma-
tion energies involved in the duplex are slightly different from the energies for
longer sequences (i.e., typical boundary effects of small systems). Although
there is no conclusive answer to this question, it is worth underlining that
UO free energy values are obtained in order to correctly predict the melting
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temperatures for all oligo lengths. This might lead to error compensation
between the melting temperature data sets corresponding to short and long
oligos. Let us stress that with increasing length, the prediction of melting
temperatures is more tolerant of errors in the details of the NNBP energies,
where sequence effects are averaged out. In addition, deviations from the bi-
molecular model (Eq. 3.14) arise for sequences with n ≥ 20, as their melting
process begins to shift toward pseudo-monomolecular behavior [120]. Still,
our predicted melting temperatures for oligos with n ≥ 20 agree well for the
sequences reported in ref. [143].

5.6 Conclusions

The mesoscopic model (that uses the NN model) with the UO energies quali-
tatively describes the FDC of DNA unzipping experiments. At a quantitative
level, the UO energies overestimate the mean unzipping force, especially at
low salt concentration.

In order to reach a quantitative agreement between the experiments and
the mesoscopic model, it has to be completed with: 1) an accurate model for
the ssDNA elasticity, 2) an empiric model to correct the experimental drift
and 3) a specific contribution for the end loop.

The NNBP energies can be fit to match the mesoscopic model with the
experimental FDC. A Monte Carlo fit of the data gives rapid and accurate
estimations of the NNBP energies. The fit is robust and provides acceptable
confidence intervals for the energies.

The extension of the experiments and the Monte Carlo fit to several
molecules and salt concentrations provides valuable information about the
salt dependence of the NNBP energies. A homogeneous salt correction does
not describe the results found. Instead, a sequence-specific salt correction
offers a more trustworthy rule.

The heterogeneous salt correction might be justified by two different ex-
planations: 1) the differences in solvation between the specific nucleotides
and monovalent ions at different salt concentrations or; 2) the differences in
the elastic response of the bases of the ssDNA at different salt concentra-
tions. Specific experiments should be carried out to discern between the two
possibilities.

The unzipping experiments do not provide the enthalpies and the en-
tropies of formation of the NNBP elements. However, the unzipping and
melting experiments can be combined to obtain an estimation of these ther-
modynamic magnitudes.

Although melting and unzipping experiments are based on disruption
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processes triggered by different external agents (temperature and force re-
spectively), the agreement between the thermodynamic magnitudes is re-
markable. Both types of experiments are correctly described by the NN
model.

The thermodynamic magnitudes obtained with the unzipping experi-
ments not only predict the melting temperatures well but also improve the
melting temperature prediction as compared to the UO prediction for oli-
gos longer than 15 bp. The misprediction of melting temperatures for short
oligos might be due to underestimated boundary effects.

The unzipping experiments provide an alternative determination of the
NNBP parameters in which the folding/unfolding transition does not need
to be two-state. Besides, instead of several short oligos of different sequence,
one long molecule is sufficient to infer the NNBP energies.

The main limitations of the method exposed are the strong dependence
of the results on the elastic response of the ssDNA and the impossibility to
determine the bimolecular initiation factors.

The unzipping approach can be extended to extract free energies, en-
tropies and enthalpies in DNA and RNA structures under different solvent
and salt conditions. The method can be also applied to extract free energies
of other structural motifs in DNAs (e.g., sequence dependent loops, bulges,
mismatches, junctions). The enthalpies and the entropies can be directly
extracted from unzipping experiments performed at different temperatures.
The force methods make possible to extract free energies in conditions not ac-
cessible to bulk methods (such as the dsRNA that hydrolyzes in the presence
of magnesium in melting experiments). Another extension of the method
can be used to obtain the binding free energies of DNAs and RNAs bound
to proteins, where the proteins denaturalize below the dissociation melting
transition. Finally, this method could be also useful in cases where molecular
aggregation and other collective effects in bulk preclude accurate free energy
measurements.

This methodology can serve as a basis to search for long-range context
effects (e.g., 2nd-nearest and 3rd-nearest interactions) in DNA. This might
be especially interesting in those regions along the sequence where the NN
model seems to fail.

Summing up, this chapter establishes a novel methodology to obtain ther-
modynamic information from single-molecule experiments.



When in doubt, use brute force.

Ken Thompson (1943)

Chapter 6

Unzipping of DNA at
controlled force

A significant group of techniques in biophysics are capable of applying forces
to individual molecules. Some of them directly control the force such as the
magnetic tweezers. Some others apply forces by means of indirect control
parameters such as the optical tweezers. Apparently, there should be no
difference between both kinds of techniques. However, the control parameter
determines what magnitude is fixed (force or extension) and what magnitude
fluctuates (extension or force, respectively), while establishing the type of
experiments that can be performed. Recent theoretical studies have shown
the inequivalence between statistical ensembles for the elasticity of polymers
[123]. The question that emerges here is whether this inequivalence can be
observed experimentally.

Detailed studies of DNA unzipping at Controlled Force (CF) have been
carried out with magnetic tweezers [23]. The results show how unzipping
is always a non-equilibrium process with dissipation of energy that leads
to large hysteresis cycles [147]. These experiments have been accompanied
with theoretical studies of the process that shed light into the phenomenon
[29]. On the other side, the unzipping experiments at Controlled Position
(CP) [24, 148, 25] have been capable of obtaining more information from
the internal structure of the DNA molecule. So, the published works on
DNA unzipping use different experimental techniques, different molecular
constructs and different instruments. How the unzipping processes compare

195
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when the only difference is in the choice of the control parameter?

This chapter describes how optical tweezers combined with a high band-
width force feedback are capable of measuring the FDCs of the same molec-
ular construct at CP and CF. The experimental data measured at CF can
be analyzed with the tools developed up to now. In the end, we are able
to directly compare the differences between one type of experiments and the
other and determine the origin of the inequivalence of ensembles.

The work presented in this chapter is exploratory and descriptive and
the obtained results have to be considered preliminary. Nevertheless, they
raise interesting questions about DNA unzipping, disordered systems and
non-equilibrium thermodynamics. The open questions exposed here will be
answered in the future with more experiments and calculations.

6.1 Controlled force experiments in optical

tweezers

The control of force in optical tweezers is usually achieved by two different
methods. The first one consists in setting up a feedback that corrects the
position of the optical trap so that the position of the bead with respect
to the center of the optical trap (and so the force) is always constant in
average (see Fig. 3.14b). This method requires the use of analog or digital
electronic feedbacks that always have a limited bandwidth. The bandwidth
of a feedback is measured in Hertz and it indicates the maximum number of
times the position of the trap can be corrected per unit of time. For instance,
a force feedback of 100 Hz indicates that the position of the optical trap can
be corrected 100 times per second. Ideally, the CF experiments should be
done at infinite bandwidth.

The second method is called force-clamp and it was developed by Block
and coworkers [149]. It consists in locating the bead in the region of the opti-
cal trap where it is about to escape. The bead undergoes a constant force in a
local region with zero stiffness, which is an effective infinite bandwidth force
feedback. The main disadvantage of this method is that the force is constant
only on short ranges of extensions (about 100 nm). So the method is useful
to exert forces on short DNA hairpins (< 100 bp) but it is not possible to
perform unzipping experiments of long DNA molecules because the opening
of base pairs moves the bead away from the region of zero stiffness.

There is a third technique not developed yet that consists in forming a
uniform gradient of laser light in a confined region where the bead would al-
ways undergo the same force. Apart from the TEM00, other laser modes such
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as Laguerre-Gaussian [72] or Bessel [150] have been used to trap particles.
However, a practical laser beam with a uniform gradient of light intensity
has never been produced.

The experiments described in the present chapter are performed with the
first method, i.e., with a finite bandwidth force feedback.

6.1.1 Force feedback

The force feedback of the instrument follows a proportional protocol (see
Eq. C.2) that corrects the position of the optical trap to keep the force con-
stant. The feedback runs at 4 kHz but the natural bandwidth of the wiggler
is about ∼ 2 kHz [19]. It means that the electronic controller can give or-
ders faster than the time spent by the wiggler to reposition the optical trap.
Strictly speaking, the bandwidth of the wiggler limits the chances to perform
unzipping at CF. In addition, the thermal force spectrum of a polystyrene
bead surrounded by distilled water in a trap stiffness of ∼75 pN·µm−1 has a
corner frequency of about 1 kHz. Our force feedback has a similar bandwidth
and it is not capable of canceling out the noise of the thermal forces. Nev-
ertheless, we are not really interested in having the thermal forces constant.
Instead, we want to control the force when the opening of base pairs is pro-
duced during unzipping, which is a phenomenon that occurs at a time scale
of 1 s (=1 Hz). Because of the difference in time scales, the force feedback is
useful to perform our experiments.

Figure 6.1 shows the typical measurements in a CF unzipping experiment
performed on a 2.2 kbp sequence. These experiments are characterized by
the loading rate, which is 0.05 pN·s−1 in this particular example. The force is
the control parameter that increases monotonically while the distance evolves
according to the opening of base pairs of the DNA molecule. We compare
the new measurements with a previous ones with controlled trap position.

6.1.2 Unzipping/Rezipping cycles at controlled force

The optical tweezers instrument is capable of producing DNA unzipping and
rezipping at CF within an acceptable bandwidth. Figure 6.2 shows a full
cycle of unzipping/rezipping of a 2.2 kbp sequence. The experiment is ready
to start when the DNA molecular construct is stretched between two beads in
the optical tweezers. Depending on how much the DNA is frayed (fraying is
the melting of DNA in the extremities), the molecule might have some open
base pairs at the beginning. In this particular case, we set the unzipping fork
at a region in which the molecule has about ∼100 open base pairs. When
the pulling protocol starts, the force increases at the indicated loading rate.
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Figure 6.1: Data from a CF pulling experiment. (a) Force vs. time (upper panel) and
Distance vs. time (lower panel). The force is increased monotonically at a loading rate
of 0.05 pN/s (red curve) until the molecule is fully unzipped (i.e., converted into ssDNA).
Then, the loading rate is increased up to 2 pN/s (magenta curve) to pull the released
ssDNA. Even at high loading rates, the pulling of ssDNA is reversible. So the loading rate
is increased in order to reduce the time spent in the pulling cycle. During the rezipping,
the force is decreased at -2 pN/s (cyan curve) and at -0.05 pN/s (blue curve). The distance
suddenly increases (decreases) when a group of bases is unzipped (rezipped). Note that
the force feedback is not capable of reducing the fluctuations of the thermal noise. The
force undergoes some bumps during the opening of base pairs due to the finite bandwidth
of the force feedback. (b) Resulting FDC of previous measurement. This is a typical FDC
at controlled force that exhibits an appreciable cycle of hysteresis.

As the force increases, the distance increases exhibiting sudden horizontal
hops. The resulting FDC monotonically increases and the force never retracts
(except for some thermal fluctuations). Once the DNA molecule is fully open,
the elastic response of the ssDNA is measured just like in the CP protocol.
When the maximum force is reached, the loading rate is inverted and the
force starts to decrease (rezipping). The measured elastic response of the
ssDNA during the rezipping is almost identical to the unzipping. However,
during the rezipping the closing of base pairs starts at lower forces than
the opening of base pairs during the unzipping. As the force decreases, the
extension of the molecule is reduced (and so the distance) until returning to
the original starting point of the unzipping.

The most prominent characteristic of these unzipping/rezipping curves
measured in one single cycle of pulling is the fact that they do not overlap,
so a whole pulling cycle shows hysteresis. The hysteresis is one of the main
indicators of irreversibility in thermodynamical processes. The area enclosed
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Figure 6.2: Full cycle of a CF unzipping/rezipping experiment of a 2.2 kbp sequence per-
formed at a loading rate of 0.05 pN/s. Red (green) curve shows the unzipping (rezipping)
at CF. The blue curve shows the expected equilibrium FDC at CF. We have superimposed
the FDC at CP (in black) and the elastic response of the ssDNA (in orange).

between the two unzipping/rezipping curves is equivalent to the work dissi-
pated by the system during the whole cycle. This means that although the
process has been carried out at a very low loading rate it is not reversible.

The time spent in a pulling cycle is not enough to equilibrate the system
and obtain the equilibrium FDC. According to the Kramers theory [151, 152],
the time scale τ to overcome an energetic barrier of height ∆E is given by:

τ ≈ τ0 exp (∆E/kBT ) (6.1)

where τ0 ≈ 10−7 s is the microscopic time at which the base-pairs breath
(i.e., open and close) [136, 23], kB is the Boltzmann constant and T is the
temperature. The highest barriers at the coexistence force are of the order
of 25-30 kBT , which gives a mean passage time between hours and weeks.
In principle, if we perform a CF pulling experiment slow enough, we should
be able to obtain the equilibrium FDC. However, this is not experimentally
feasible, because the time spent in such experiment would be extremely large
and the pulling experiment could be ruined by several issues such as the
breakage of the tether or the unavoidable long term drift.

Figure 6.2 also shows the predicted theoretical Force vs. Distance Curve
at Controlled Force (FDCf ) according to the calculations of Sec. 3.4.2. The
difference between the experimental and theoretical FDCf is extremely sig-
nificant. It is another evidence that the CF experiments cannot be performed
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quasistatically at the laboratory time scale.
There is a major difference between the CF experiments and the CP

experiments. For the latter, the equilibrium FDC can be obtained just by re-
ducing the pulling speed down to reasonable values. At first sight, one can see
that the FDC at CP (FDCx) lies between the unzipping and rezipping FDCs
at controlled force. Although both curves have radically different shapes, the
mean unzipping force is around ∼16.5 pN in both cases. What is more, there
seems to be a way to relate one type of curve with the other. Note that the
FDCf follows the slopes of the FDCx until a force rip is achieved. At this
point, the FDCf increases its extension until it intercepts the next slope of
the FDCx. This process is repeated until no slope is intercepted and the
molecule is fully extended showing the elastic response of the ssDNA. Simi-
larly, the rezipping FDCf has a symmetric relation with the FDCx. Somehow,
the experimental FDCf that we can measure are the envelope curves of the
FDCx.

6.1.3 Hysteresis

In general, relaxation processes in non-equilibrium systems are characterized
by the intrinsic relaxation time (τ0) of the system and the external charac-
teristic time at which the system is driven (τext). In the case of the DNA
unzipping at CF, there is an intrinsic relaxation time that indicates the aver-
age time the molecule needs to reach the thermal equilibrium and an external
time related with the loading rate of the pulling experiment. The hysteresis
is a phenomenon that appears when the driven rate is faster than the re-
laxation time of the system (τext � τ0). In this situation, the system gets
stuck in metastable states because it is not capable of reacting fast enough
to the changes induced by the external control parameter. This phenomenon
is specially observed in systems with rough free energy landscapes (e.g., dis-
ordered or glassy systems) that have energetic barriers much higher than the
thermal noise. Under this circumstances, the barriers prevent the system to
explore the other regions of the free energy landscape.

Here we are precisely facing this effect. In the CF unzipping experiments,
the rate of change of the force, although very slow to our lab time scale, is
much faster than the relaxation time of the DNA molecule. The slowest
feasible experimental unzipping/rezipping cycles do not reproduce the equi-
librium FDC. And even if we further reduce the pulling rate, there is no
guarantee that we will be able to obtain it. In fact, the relaxation time of
a system depends exponentially on the height of the typical energy barriers
involved, which is about 20-30 kBT at the coexistence force (see Fig. 3.20).
So there are firm reasons to believe that the equilibrium FDCf will be ob-
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tained after performing pulling experiments that last orders of magnitude
much longer than the ones described here (see Eq. 6.1 and the corresponding
discussion for an estimation of the time required).

So far, we have focused on the experiments performed at low pulling rates.
Considering that we will obtain similar results by decreasing the loading rate,
we can start looking at the other side. By increasing the loading rate, the
irreversibility of the process increases. The cycles of hysteresis become wider
and the total amount of dissipated work increases. Figure 6.3a shows several
unzipping/rezipping cycles at different loading rates and the corresponding
area of the cycles of hysteresis. The unzipping of DNA at CF has already
been studied for short hairpins [153, 154] and a linear relation between the
dissipated work and the loading rate has been found in the limit of slow load-
ing rates. Moreover, the dissipated work tends to zero when the time spent
in the pulling tends to infinity (zero pulling rate). However, in our case this
does not hold, at least for the range of loading rates explored (0.05–5 pN·s−1).
In fact, the dissipated work tends to saturate at a value of ' 1000 kBT .
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Figure 6.3: Hysteresis. (a) Pulling cycles at different loading rates. (Inset) Dissipated
work (area enclosed by the cycle) vs. loading rate. (b) Hysteresis in logarithmic scale.
Same graph as the inset in panel a. The continuous curve is just a visual guide.

Figure 6.3b shows a logarithmic representation of the loading rate, which
is indicative of the trend of the dissipated work at very low loading rates.
According to this, the pulling rate must be decreased orders of magnitude to
let the system equilibrate and reduce the dissipated work down to zero. A
detailed study of the free energy landscape of the system would give valuable
information about the energetic barriers that cannot be surpassed during an
unzipping process at CF.
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6.2 Detection of metastable intermediate states

Using the same analysis technique developed in Sec. 4.1, here we identify
and classify the experimental points measured in the FDCf into the most
probable state to which they might belong. This gives us information about
the intermediate states observed during the unzipping at CF.

As a short reminder, the analysis consists in: 1) determine the origin of
coordinates of the FDC by using the elastic response of the ssDNA when the
molecule is fully open; 2) calculate the family of curves that give the elastic
response of the partially unzipped molecule with n open base pairs and 3)
associate each experimental point with the curve n that passes closest to this
point. Finally, a histogram is computed with the list of associated states.
The peaks of the histogram (see Fig. 6.4) indicate the metastable states in
which the molecule is retained during the unzipping.
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Figure 6.4: Histogram of intermediate states at CF of a 2.2 kbp sequence un-
zipped/rezipped at a loading rate of 0.05 pN·s−1.

As expected from the clear differences between the FDCf and the FDCx,
the histograms of intermediate states are also significantly different (compare
Figs. 6.4 and 4.7a). Here, the number of intermediate states is much lower
and they are much more localized at the beginning of the molecule during
unzipping, and at the end of the molecule during rezipping. Indeed, the sizes
of opening base pairs are smaller and they are concentrated at the beginning
of the FDCf . Summing up, we get less information from the sequence of
DNA.

6.2.1 Free energy landscape

Once the intermediate states are identified, we can explore the localization
of these states in the free energy landscape. The free energy landscape is
calculated according to the tools exposed in Sec. 3.4.2. The force applied to
the DNA molecule induces a tilt in the free energy landscape that tends to
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progressively decrease the energies of the states with a large number of open
base pairs. The result is that the system is more stable for larger values of n
as the force is increased.

Figure 6.5a shows the free energy landscape computed at a fixed force,
together with the metastable states detected during unzipping according to
the analysis of the previous section (see also Fig. 6.4). These states are
localized at the beginning of the molecule and the separation between them
increases as the molecule is unzipped. What is the characteristic property of
these states that we observe during the unzipping? Why do we observe these
states and not the other ones? The answer is not straightforward because
there is no general theory to study the kinetics of systems that exhibit rough
landscapes.

Nevertheless, we can suggest a heuristic explanation. These metastable
states are separated by energy barriers that decrease their height as the force
increases. At the beginning of the pulling (i.e., low forces), the tilt of the
landscape induced by the force strongly affects the energy of the states with
a few open base-pairs. This induces transitions between the initial states,
characterized by the opening of a few base-pairs. As the force increases, the
tilt reduces the energy of the states with a larger number of open base-pairs.
The transitions then become less frequent and the number of open base-pairs
in each transition increases significantly.

This very same effect is observed during the rezipping but in the opposite
sense (see Fig. 6.5b). Initially we observe fast and small transitions between
the states with a large number of open base-pairs. As the force decreases, the
transitions become larger and less frequent until the molecule is completely
folded.

This mechanism prevents the system to explore all the free energy land-
scape at the theoretical equilibrium force. This is the reason why we always
observe hysteresis in CF experiments performed at the lab time scale.

6.3 Scaling properties of unzipping

In 2002, Lubensky and Nelson published an extensive theoretical study of
DNA unzipping at constant force [29]. Starting from a mesoscopic model,
their work treated the unzipping of DNA as a phase transition. They pro-
vided the scaling properties of the system and the expected critical exponents
at the coexistence (i.e., critical or mean) unzipping force.

One year latter, Lubensky and Nelson also contributed as co-authors in
an experimental work carried out by Danilowicz et al. [23]. The unzipping of
DNA was performed with magnetic tweezers and the results were compared
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Figure 6.5: Location of intermediate states in the free energy landscape for the 2.2 kbp
sequence. (a) Free energy landscape (green curve) and localization of intermediate states
observed during unzipping (red marks) at CF. The landscape has been calculated at the
coexistence force, f = 16.5 pN. Note that more metastable states are detected at the
beginning of the molecule. The arrow indicates the succession of observed states. (b) Same
graphic for rezipping. The observed intermediate states are depicted in blue.

with a coarse-grained model that qualitatively predicted the experimental
observations. However, the resolution of the instrument was not good enough
to compare the data with the theoretical results calculated one year earlier.

According to the calculations of Lubensky and Nelson, the number of
open base-pairs as the exerted force approaches the critical force goes like,

〈m〉 =
〈 n
N

〉
∼ 1

(fc − f)2
(6.2)

where n is the number of open base-pairs, N is the total number of base-pairs
of the molecule, 〈· · · 〉 indicates the average over the statistical ensemble, · · ·
indicates the average over realizations of the sequence, fc is the critical force
and f is the force exerted on the molecule. This calculation is valid of a
random heteropolymer. The 2.2 kbp sequence is a random heteropolymer,
because the sequence of base-pairs can be considered random (with 4 different
types of bases in the sequence). Lubensky and Nelson obtained a different
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law for homopolymers (i.e., with only one type of base-pair) which is given
by: 〈m〉 ∼ (fc − f)−1

The detection of metastable states in Sec. 6.2 allows us to determine the
number of open base-pairs of each experimental point of the FDCf . Since
we know the total number of base-pairs of the molecule (N = 2252) we can
obtain an experimental estimation of the curve defined in Eq. 6.2, i.e., a curve
of 〈m〉 vs. f (see Fig. 6.6).

Figure 6.6: Scaling properties at the unzipping transition. The red curve shows the
experimental data obtained from the unzipping of a 2.2 kbp sequence at a loading rate of
0.05 pN/s. The blue curve is the fit of the experimental data to the following function:
m = A/(fc − f)2, with fc ' 19 pN. The inset shows the same data in log-log scale.

The fit of the experimental data to Eq. 6.2 is satisfactory. A priori, we
should not expect a perfect agreement. The reason is that Eq. 6.6 was pre-
dicted in equilibrium and averaged over realizations, while the experiments
are not performed in equilibrium and we only have one sequence. Besides,
the 2.2 kbp sequence is far from being an infinite molecule in which the ther-
modynamic prediction can be applied. So the fact that the parameter that
fits the data (fc ' 19 pN) is significantly higher than the actual critical force
(fc = 16.5 pN) might indicate that we are comparing non-equilibrium data
with an equilibrium prediction. This result must be corroborated with more
experiments performed on longer sequences.
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6.4 Conclusions

Although force is not the natural control parameter in the minitweezers, we
can perform unzipping experiments of DNA at controlled force by using a
force feedback. The bandwidth of the force feedback is wide enough to keep
the force constant while the DNA molecule undergoes transitions between
metastable states. The force feedback, though, cannot follow the fluctuations
of the force induced by the thermal motion.

The unzipping FDCf differs significantly from the FDCx. The FDCf is a
step-like monotonically increasing function and does not exhibit the typical
sawtooth pattern of the FDCx. Even at a very low loading rate, the unzipping
and rezipping FDCf do not overlap each other. The unzipping/rezipping
cycles are not quasistatic at the timescale of the lab and they always exhibit
hysteresis. The hysteresis has a minimal value and it increases with the
loading rate. The minimal value corresponds to the slowest loading rate that
is experimentally feasible in the instrument.

The irreversibility of the pulling experiments at controlled force is due
to the height of the energetic barriers of the energy landscape. In a pulling
experiment, the system does not have enough time to overpass such ener-
getic barriers, which means that the entire distribution of energy states is
not correctly sampled and full equilibrium cannot be reached. The num-
ber of metastable states detected in experiments is lower (and the barriers
are larger) at controlled force as compared to controlled position. Besides, at
controlled force the metastable states observed during unzipping are different
from the ones observed during rezipping.

The unzipping at controlled force starts with small and frequent transi-
tions between metastable states. As the force increases and the base-pairs are
being disrupted, the transitions become larger and less frequent. This effect
can be understood by looking at the free energy landscape. The progressive
tilt of the free energy explains these transitions. The rezipping also shows
this behavior.

Although the molecule is far from being an extensive thermodynamic
system and the experiments are not quasistatic, the measurements verify the
prediction of the number of open base-pairs vs. the force exerted.



Science is always wrong. It
never solves a problem without
creating ten more.

George Bernard Shaw (1856-1950)

What today started as a science
fiction novel, tomorrow will end
as a news report.

Arthur Charles Clarke (1917-2008)

Chapter 7

Future perspectives and
Conclusions

Future perspectives

Most scientific works start with a main question. The strategy required to
answer such question is well established by the scientific method. This in-
volves the finding of evidences, a rigorous and critical evaluation of the results
and the formulation of conclusions. However, this process usually opens new
questions. Some of them cannot be avoided and must be addressed to reach
the final goal. Some others are out of the scope of the research and they are
left open for future investigations. This fact is specially marked in experi-
mental sciences. Sometimes, the results of the experiments are unexpected
and the investigations must focus on issues initially not predicted. This is
what science is about: answering one question leads to another one.

A lot of new questions have emerged during the realization of this PhD
thesis. Some of them were crucial and they had to be addressed. For instance,
the measurement of the elastic response of the ssDNA in Chapter 5 was an
unexpected experiment. Such experiment became essential to complete the
data analysis. So the main question forced to answer secondary questions.
Apart from that, new questions that have not been addressed have emerged.
Following, there is a summary of the most relevant of them.

207



208 Future perspectives and Conclusions

How to infer the NNBP enthalpies and entropies from unzipping
experiments?

Chapter 5 has shown in detail how to perform the experiments and analyze
the data to obtain the free energy of formation of the NNBP motifs. As
pointed out there, there is no way to extract the enthalpies and the entropies
from the unzipping experiments. The solution is to repeat the experiments
at a different temperature. However, this is not an easy task. After having
developed all the methodology to analyze the data, the challenge seems to
be purely experimental.

In 2005 Mao et al. [155] showed that the fluidics chamber developed
convective flows when it was heated locally. The convection is mainly due to
differences in the temperature throughout the fluidics chamber. In SME, this
is really inconvenient because the flows of fluid might exert significant forces
on the molecules being pulled. From that work, it was clear that the chamber
has to be heated (or cooled) uniformly. They used copper jackets to cover
the microscope objectives and keep all the fluidics chamber at a constant
temperature. The temperature could be controlled between 8.4 and 45.6◦C
and the DNA was overstretched at different temperatures.

In our case, the accuracy in the force measurements is an essential point.
Indeed, the relative error committed in the overstretching of DNA is much
lower than the one committed in unzipping. Besides, our aim is to quan-
titatively measure the enthalpies and entropies at the single-molecule level.
So the temperature of the fluidics chamber must be very homogeneous and
stable.

One solution is to increase the whole temperature of the room (provided
that the experimentalist can hold such temperature). This would ensure that
the room, the instrument and the fluidics chamber are at the same temper-
ature and the convective flows are avoided. However, this is not feasible nor
efficient. The best way is to control the temperature of the fluidics chamber
and all the surrounding area, including the objectives and the air in between.
This would require to enclose the optical path with an isolating box and flow
air into it at the desired temperature. A priori, this seems a good strategy.
Nevertheless, there might be some issues related with the optical alignment
of the instrument such as changes in the index of refraction of the air or
dilatation of the aluminum supports that hold the detectors.

Successful unzipping experiments at different temperatures might open
the door to a new methodology to measure enthalpies and entropies of bio-
molecules. This could establish unzipping as a standard technique that would
complement the traditional bulk methods, such as calorimetry or UV ab-
sorbance. What is more, unzipping experiments could provide information
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at conditions not accessible by bulk experiments.

Is there an analytical model to describe the CURs?

The statistical properties of DNA unzipping are sequence dependent (open-
ing of base-pairs, force rips, FDC, etc.). From a physical point of view, it is
annoying to study a system that is sequence dependent. Indeed, understand-
ing a physical phenomenon from a generic model is much more gratifying.
The reason is that it provides information about the global behavior of the
system without having to look into the details.

Lubensky and Nelson [29] did a great work in which they were able to
describe the unzipping of DNA at controlled force. This work uses mathemat-
ical tools to proceed with analytical calculations. The idea of studying hard
theoretical problems has always fascinated the physicists. These problems
require a combination of imagination and mathematical capabilities. From
a physical point of view, the conclusions of these works are usually bright
and beautiful. Sometimes the predictions found cannot be experimentally
tested. For instance, the relaxation time in glassy or frustrated systems is so
large that few experiments can be designed to probe the longest timescales.
Nevertheless, it is worth exploring these problems because the mathematical
machinery developed is useful and can be applied to other fields.

One interesting question that emerges from Chapter 3 is whether the dis-
tribution of CUR sizes can be calculated analytically. In similar problems,
this quantity is computed in equilibrium and averaged over realizations, i.e.,
over sequences. An analytical expression would be useful to compare unzip-
ping with other physical phenomena.

Does the ssDNA have a sequence-dependent elastic response?

An unsolved question in Chapter 5 is the origin of the heterogeneous salt
dependence of the NNBP energies. There we discussed two main causes: 1)
the different solvation of the dsDNA base-pairs or 2) the sequence-dependent
elastic response of ssDNA. Concerning its elasticity, the ssDNA is still an
unknown polymer. The pioneering literature measured the elastic response
of long ssDNA molecules and gave the parameters of the models that fit the
data. However, the elasticity of ssDNA depends on the salt conditions of the
buffer. Moreover, the persistence (or Kuhn) length of the ssDNA is of the
same order of magnitude than the typical interphosphate distance (i.e., the
size of the monomers). So there is a strong correlation between these two
parameters and the fit of experimental data is not conclusive yet.

From these results, it is worth checking whether the salt dependence of
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the NNBP energies is due to the elastic properties of ssDNA. This hypothesis
implies that the elastic response of the ssDNA is sequence dependent. In
order to test the validity of this idea and quantify the salt dependence, it
would be necessary to perform pulling experiments on several sequences of
ssDNA as we did in Chapter 5. By gathering the information from the
experiments, averaging over molecules and considering the possible formation
of secondary structure we could possibly answer this question.

Knowing the elastic properties of the dsDNA has been really useful since
they were established. The reason is that dsDNA has been widely used as
a molecular handle in many SME. Similarly, in case the elastic response of
ssDNA is sequence-dependent, most biophysicists working on DNA or DNA-
protein interaction would benefit from the determination of these parameters.

How can we sequence DNA from unzipping experiments?

Sequencing a given molecule of DNA consists in determining the primary
structure (i.e., the sequence of base-pairs or nucleotides) of such molecule.
This is an important procedure in biology and it has been the nucleus of
the Human Genome Project, completed in 2003. Among other applications,
sequencing permits to identify genes or compare two samples of genetic ma-
terial.

The sequencing of DNA has been performed with Sanger method since
its implementation in 1975 [30, 156]. This is a biochemical technique that
uses a polymerase to elongate the DNA molecules of the sample and chain-
terminator nucleotides, which are chemically modified and they terminate
the elongation. In the end, the DNA molecules of the sample have different
lengths, depending on the random incorporation of terminating nucleotides.
Besides, these terminating nucleotides are fluorescent (they used to be ra-
dioactive in Sanger original method) and they have a different glowing color
depending on the type of base (A,C,G,T). The fragments of DNA are sepa-
rated by size using electrophoresis and the last nucleotide of each of them is
identified according to its glowing color.

The Sanger method has been improved and nowadays the sequencing
of DNA is almost automatic. However, the method has a limitation. The
main handicap is that it is efficient for fragments of DNA smaller than 500-
1000 nucleotides. Longer sequences must be split into fragments, sequenced
and reassembled to establish the original order. Nowadays, the assembling
of fragments is the most time consuming task. The assembly is also the
limiting step in the so-called next-generation sequencing methods (such as
MPSS, pyrosequencing) developed in the 1990’s.

The single molecule unzipping experiments could be used as an alter-
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native method to sequence DNA molecules. The strategy would consist in
performing pulling experiments according to Chapter 3 and analyzing the
FDC according to Chapter 5. The underlying principle of this idea is that
each base-pair disrupts at a different force. So as the molecule is being un-
zipped, the force applied to break one base-pair can be used to infer the type
of base-pair. However, as we have seen in Chapter 4, the unzipping of DNA
exhibits a series of CURs that hide the sequence of bases. So the experi-
mental setup has to focus on how to produce the unzipping of one base-pair
at a time. This requires two conditions: 1) apply local force on the unzip-
ping fork, avoiding the accumulation of released ssDNA and 2) have a probe
stiffness larger than 100 pN/nm.

A priori a larger stiffness can be obtained by increasing the power of the
laser that produces the optical trap. However, the effect of a high intensity
laser on the fluidics chamber or the DNA should be tested. The stiffness of
an optical trap can also be increased with the leverage technique [157], in
which the bead leans and rolls over the coverslip. The bead works as a lever
that amplifies the force applied by the optical trap. A higher stiffness can
also be achieved with other single-molecule techniques that apply forces, such
as the AFM. The application of local force is somehow more complicated to
implement. The key point here is how to retract the ssDNA released during
unzipping. While the unzipping of DNA with nanopores already has this
advantage [158], the optical tweezers setup has not. Although some strate-
gies (such as wrapping the ssDNA around the bead) could be designed to
overcome this handicap, a good way is to use a helicase. In this experimental
setup, the helicase would be bounded to be bead in a such a manner that
the helicase slides along the released ssDNA an the force is always exerted
at the unzipping fork.

The main advantage of sequencing by force is that it would be faster.
Indeed, the time spent would be linear with the length of the DNA molecule.
Besides, the amount of chemicals used is not length dependent, which might
reduce the cost of sequencing. The sequencing by force would be included in
the group of third generation sequencing techniques, based on single-molecule
techniques.

Other interesting issues

Regarding instrumentation, it is worth to consolidate the double optical trap
setup in the Minitweezers (see Fig. 2.17a). Besides, the research of better
algorithms might be useful to produce more efficient experimental protocols
(e.g., constant force). The current trends in SME demand higher bandwidth
and sampling rates in data acquisition, which allows the experimentalist to
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get much more information from the measured fluctuations.
Although the biochemistry in DNA unzipping is well established, it is

worth to test other protocols in order to improve the strength of the bonds
between the probes (i.e., beads) and the samples (i.e., DNA). Stronger bonds
make the experiments last longer and allow to apply more complex protocols
(e.g., force jumps, high pulling rates, etc.) without breaking the tether.

An interesting measurement not performed yet is the dependence of the
CUR size distribution with the laser power (i.e., the trap stiffness). It would
shed light into the unzipping of DNA seen as a fracture phenomenon. It is
also good to extend the unzipping experiments to other sequences such as
homopolymers or palindromes.

Currently, the analysis of a FDC to obtain the NNBP energies requires
intensive human supervision. The analysis of data could be improved an
automatized to find the values of the fitting parameters much more efficiently.
Apart from that, it would be useful to design an application similar to Mfold
to calculate experimental FDCs of given sequences of DNA at different salt
conditions. This certainly would be a valuable tool for the experimentalists
working on DNA unzipping.

Finally, the unzipping experiments at constant force have to be extended
to the 6.8 kbp sequence in order to gain insight and complete the whole
picture sketched in Chapter 6.
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Conclusions

The boom of nanoscience and nanotechnology has pushed the instrumenta-
tion forward. The experimental setups have been developed so intensively
that the single-molecule experiments have now become standard techniques.
Such experiments represent a new way to observe, measure and get informa-
tion from nature. The control and measuring devices are more accurate and
precise every day. This allows the scientists to observe, explore and quan-
tify processes that some years ago were considered too complex. Thanks
to the single-molecule techniques, biophysics has experienced a revolution.
The traditional experiments performed in bulk have been repeated at the
single-molecule level, which has revealed the extraordinary capabilities of
the cellular machinery. All these advances have established biophysics as a
scientific discipline, different from biology and physics; with its own topics,
concerns and issues.

Optical tweezers were initially developed by physicists who were fasci-
nated by the radiation pressure of light. Biophysicists soon foresaw the use-
ful applications of optical tweezers to manipulate tiny objects. The range
of forces measured and exerted by optical tweezers is suitable to carry out
experiments with biomolecules. Optical tweezers is a clean and non-invasive
technique which also allows to do experiments in vivo. The Minitweezers
is an optical tweezers experimental setup characterized by its compactness,
stability, accuracy and user-friendliness. The optical trap is generally formed
with two counter propagating lasers and a micropipette is used as an anchor
point. The force is measured by conservation of light momentum and the
distances are measured with light-levers. The calibration is independent of
most experimental parameters (e.g., laser power, bead size) so that it only
has to be done once. The Minitweezers were designed to be easily customized.
Therefore, new experimental pulling protocols can be easily implemented and
the already existing ones can be modified and expanded.

The molecule of DNA has a central role in life: It stores the genetic in-
formation. The central dogma of molecular biology states the general flow of
genetic information in life (replication and transcription of DNA, and trans-
lation of RNA). The double-helix structure of DNA preserves the base-pairs
located in between, which are the physical carriers of genetic information.
The cellular machinery needs to disrupt the hydrogen-bonds that hold the
base-pairs together in order to read the sequence of bases. Similarly, me-
chanical unzipping of DNA consists in pulling on the two strands of DNA
from the same end in order to split them apart. Unzipping can be performed
with several single-molecule manipulation techniques (microneedles, AFM,
magnetic tweezers). Optical tweezers can produce unzipping at controlled
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position or at controlled force, which give different experimental measure-
ments. At controlled position the FDC exhibits a sawtooth pattern, whose
slopes correspond to the stretching of ssDNA and the force rips correspond
to the disruption of base-pairs. At controlled force, the base-pairs are dis-
rupted in large groups and the FDC is a monotonically increasing function.
In both cases, the FDC is sequence-dependent. The NN model describes the
hybridization reaction of two strands that form a duplex of dsDNA. Such
model can be completed with elastic models of polymers to describe the un-
zipping experiments. The so-called mesoscopic model provides a prediction
of the FDC, an estimation of the free energy landscape and the number of
open base-pairs as the DNA is unzipped.

From a physical point of view, the unzipping of DNA can be studied as a
cracking phenomenon. Here, the details about the sequence of the molecule
are less relevant. The attention is focused on the statistical properties of
the metastable states observed during unzipping. A Bayesian approach has
been developed in order to infer the number of open base-pairs of the inter-
mediate states observed during unzipping. This allows us to calculate the
size of the unzipping regions. The distribution of sizes depends on the ex-
perimental conditions (trap stiffness, NNBP free energies). The sizes range
from 10-80 bp and the smaller ones are more frequent than larger ones. The
experimental accuracy does not allow to observe all regions of sizes below
10 bp. On the other hand, the effective trap stiffness must be much higher
to observe single bp openings of large unzipping regions. The toy model is
capable of reproducing the statistical properties of unzipping with the min-
imal necessary elements. The model predicts and qualitatively reproduces
the experimental distribution of sizes. The unzipping of one base-pair at a
time can only be achieved by applying local force on the unzipping fork and
by having a trap stiffness value higher than 100 pN/nm. The stiffness of a
ssDNA nucleotide coincides with this value, which is a remarkable property
of DNA that allows the cellular machinery to access the genetic information
one base-pair at a time.

The NNBP free energies obtained from temperature melting experiments
cannot quantitatively reproduce the FDC obtained from DNA unzipping ex-
periments. The discrepancies are markedly significant at low salt concentra-
tion. The unzipping experiments performed on DNA can be used to extract
the formation free energy of NNBP motifs. The experimental data can be
fit to the mesoscopic model in order to determine the values of the NNBP
energies. The model has to be completed with an accurate description of
the elastic properties of the ssDNA, a shift function that corrects the in-
strumental drift and the specific free energy formation of the end loop. The
fit is performed with a Monte Carlo optimization algorithm that provides
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the values of the fitting parameters rapidly and robustly. Differently from
the UO rules, the resulting NNBP energies at all salt concentrations are
well described by a heterogeneous salt correction. Such dependency can be
attributed to the different solvation of the base-pairs, or to the sequence-
dependent elastic response of the ssDNA. The unzipping experiments cannot
provide the enthalpies and entropies of the NNBP motifs nor the initiation
factors. However, the enthalpies and entropies can be inferred by fitting the
melting temperatures of oligonucleotides. The results show that the new val-
ues of the NNBP energies correctly describe both the melting and unzipping
experiments. Furthermore, the new NNBP energies predict the melting tem-
peratures of oligos longer than 15 bp better than the UO NNBP energies.
This methodology can be extended to other experimental conditions in which
the melting experiments cannot be applied. For instance, in a melting ex-
periment RNA is hydrolyzed by magnesium when the temperature increases.
The unzipping of RNA would circumvent such problem. In the end, the
NN model is capable of describing the disruption and hybridization of nu-
cleic acids, no matter what external agent (temperature or force) triggers the
reaction.

The Minitweezers experimental setup can also be used to perform unzip-
ping experiments at controlled force using a force feedback. The bandwidth
of the force feedback is not high enough to keep the force constant in the
presence of thermal fluctuations. Nevertheless, the average force is kept con-
stant while the DNA molecule undergoes the opening of base-pairs. The
experimental FDCx is significantly different from the FDCf and the latter
always exhibits hysteresis at the timescale of the measurements. The hystere-
sis is not suppressed at the lowest feasible loading rate and increases with the
loading rate. The mesoscopic model cannot predict the experimental FDCf

well, because this is not a quasistatic measurement. The intermediate states
observed at controlled force are different from the ones observed at controlled
position. At controlled force, there are small openings of base-pairs in the
beginning of the unzipping and large openings in the end. This is a con-
sequence of the tilt of the free energy landscape induced by the force. An
analysis of the intermediate states shows that the number of open base-pairs
vs. force follow the theoretically predicted scaling properties.

This thesis has focused on the statistical and thermodynamic properties
of DNA unzipping measured with optical tweezers. This study has answered
some questions and has open new ones. The next step is to extend the
work to comprehend the remarkable properties of DNA, and to find practical
applications based on the achievements exposed here.
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Appendix A

The Maxwell Stress Tensor

The Maxwell equations of the electromagnetism provide a frame in which
the interaction between radiation and matter can be studied from a classi-
cal point of view. It allow us to understand what are the mechanisms that
make possible the optical trapping of particles. Here, we will develop the
general theory of radiation-matter interaction starting from the principle of
conservation of momentum combined with the Maxwell equations [159]. The
derivation is done for radiation and matter that interact in the vacuum. The
obtained expressions can be extended to other homogeneous and isotropic
dielectric mediums by substituting the electric permittivity (ε0) and the mag-
netic permeability (µ0) of the vacuum by the actual values of the medium
(ε, µ).

The total electromagnetic force ~F that acts on a charged particle is given
by the Lorentz force [159]

~F =
d~p

dt
= q

(
~E + ~v × ~B

)
(A.1)

where q is the charge of the particle, ~v is the velocity of the particle and ~E
and ~B are the electric and magnetic fields.

If we sum the contribution of all the particles contained in the volume V
we can write the total force (∆~F ) acting on the volume,

∆~F =

∫
V

(
ρ ~E + ρ~v × ~B

)
dV (A.2)

where ρ is the charge density and ~J = ρ~v is the current density vector.
We can also define the force acting on a tiny volume,

d~F =
(
ρ ~E + ~J × ~B

)
dV (A.3)
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that allow us to define the force per unit volume as,

~f =
d~F

dV
=
(
ρ ~E + ~J × ~B

)
(A.4)

At this point, we can use the two following Maxwell equations (Poisson

and Maxwell-Ampère equations) to eliminate ρ and ~J ,

ρ = ε0

(
~∇ · ~E

)
~J =

1

µ0

~∇× ~B − ε0
∂ ~E

∂t
(A.5)

and write the density of force in terms of the electromagnetic fields,

~f = ε0

(
~∇ · ~E

)
~E +

(
1

µ0

~∇× ~B − ε0
∂ ~E

∂t

)
× ~B

= ε0

(
~∇ · ~E

)
~E +

1

µ0

(
~∇× ~B

)
× ~B − ε0

∂ ~E

∂t
× ~B . (A.6)

We want to group the time dependent contributions. We note that using
the product derivative rule and another Maxwell equation (Maxwell-Faraday

equation)
(
−∂ ~B

∂t
= ~∇× ~E

)
we can write the last term as,

∂ ~E

∂t
× ~B =

∂
(
~E × ~B

)
∂t

− ~E × ∂ ~B

∂t

=
∂
(
~E × ~B

)
∂t

+ ~E ×
(
~∇× ~E

)
= µ0

∂~S

∂t
+ ~E ×

(
~∇× ~E

)
= µ0

∂~S

∂t
−
(
~∇× ~E

)
× ~E (A.7)

where we have used the definition of the Poynting vector ~S = 1
µ0

(
~E × ~B

)
.

The second terms of equations A.6 and A.7 are the cross product of the
curl of a vector with itself, which can be written as:(

~∇× ~B
)
× ~B =

(
~B · ~∇

)
~B − 1

2
~∇ ~B2(

~∇× ~E
)
× ~E =

(
~E · ~∇

)
~E − 1

2
~∇ ~E2 . (A.8)
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Substituting A.8 into A.6 and A.7, and A.7 into A.6 we have

~f = ε0

[
~E
(
~∇ · ~E

)
+
(
~E · ~∇

)
~E
]

+
1

µ0

[
~B
(
~∇ · ~B

)
+
(
~B · ~∇

)
~B
]

−~∇
(
ε0
2
~E2 +

1

2µ0

~B2

)
− 1

c2

∂~S

∂t
. (A.9)

An extra term proportional to ~∇ · ~B = 0 that vanishes has been added to
make the expression look more symmetric. Here it is convenient to introduce

the Maxwell Stress Tensor
←→
T ,

←→
T ij = ε0

(
EiEj −

1

2
δijE

2

)
+

1

µ0

(
BiBj −

1

2
δijB

2

)
. (A.10)

The component Tij of the tensor is the flux (i.e., the time rate of change) of
the i component of the electromagnetic momentum across the plane j. The

tensor has units of pressure. The diagonal elements
←→
T ii represent a force

acting in a direction that is perpendicular to the surface. The off-diagonal

elements
←→
T ij(i 6= j) represent a shear stress, acting in a direction that is

parallel to the surface. All the terms in A.9 except the last one are exactly
the divergence of the Maxwell Stress tensor. Using this notation, the force
density can be written in a simpler manner,

~f = ~∇ ·
←→
T − 1

c2

∂~S

∂t
. (A.11)

This equation is the local version of the conservation law of momentum and it
holds in every region of the space. If we now want to calculate the total force
acting on a material system of volume V enclosed in a boundary surface A
that interacts with the electromagnetic field we can integrate equation A.11
and write,

~F =

∫
V

(
~∇ ·
←→
T − 1

c2

∂~S

∂t

)
dV

~F =

∮
A

←→
T · d~a− d

dt

1

c2

∫
V

~SdV (A.12)

where we have used the Gauss’ theorem to convert a volume integral into
a surface one (d~a is the normal element of area). Now we can identify the
three terms of the previous equation and give physical meaning to them.
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The first term is the total force acting on volume V and can be written
as ~F = d~Pmech/dt, where ~Pmech is the mechanical linear momentum of the
system enclosed in V . On the other hand, the last term can be identified as
the derivative of the total electromagnetic momentum ~Pfield in the volume V ,

~Pfield =
1

c2

∫
V

~SdV . (A.13)

Putting everything together we can write,

d~Pmech

dt
=

∮
A

←→
T · d~a− d~Pfield

dt
(A.14)

and grouping the time-dependent terms it can be expressed as a conservation
law

d

dt

(
~Pmech + ~Pfield

)
=

∮
A

←→
T · d~a . (A.15)

The right term of the equation accounts for the flux of momentum across the
surface A into the volume V . In other words, it is the time rate of change
of electromagnetic momentum inside the volume V . This flux acts on the
combined system of particles and fields. The left hand side of the equation
accounts for the changes in the linear momentum of the particles and the
electromagnetic field. Thus it is a balance equation. It stands that what gets
into volume V (i.e., right hand side) affects whatever was inside (i.e., left
hand side).

The experimental setup described in section 2.2.1 was designed to measure
forces using the conservation of linear momentum. The force exerted by a
laser beam on a particle can be measured starting from equation A.15.
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Electromagnetic density of flux
momentum

The flux momentum is a physical magnitude that represents the amount of
linear momentum that crosses a surface. The density of such magnitude
can be defined locally in space by means of a vector field. The density of
flux momentum of an electromagnetic field is defined in all the regions of the
space where the electromagnetic field is present. The Maxwell’s Stress tensor
is the rigorous expression for the density of electromagnetic flux momentum
and is given in Eq. A.10. This appendix shows a less formal way to derive
the Maxwell’s Stress tensor in order to provide a more intuitive meaning of
such quantity.

The density of flux momentum of a plane wave

A plane electromagnetic wave exerts a Lorentz force on a charged particle.
The direction of such force depends on the speed of such particle. In general,
the movement of the particle will be a combination of circular motion and
linear drift, i.e., similar to an helical trajectory. The linear drift suggests
that there is a net flux of linear momentum from the plane wave to the
particle. Therefore, a plane wave propagating along one direction carries a
linear momentum directed along the same direction, which can be transfered
to material objects. The Maxwell’s Stress tensor quantifies the flux of such
linear momentum and the calculation is quite straightforward in this case. A
plane wave only has contributions in the direction of wave propagation. The
electric field of a polarized plane wave in the y axis propagating in vacuum
along the z direction can be written as

~E(x, y, z, t) = ̂Ey = ̂E0e
i(kz−ωt) (B.1)
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where E0 is the amplitude of the electric field, k = 2π/λ is the wave number,
ω = kc is the angular frequency and c is the speed of light. The corresponding
magnetic field is given by

~B(x, y, z) = ı̂Bx = ı̂B0e
i(kz−ωt) (B.2)

where B0 = E0/c according to Maxwell equations. The calculation of the
Maxwell’s Stress tensor can be done using Eq. A.10

←→
T ij = ε0

(
EiEj −

1

2
δijE

2

)
+

1

µ0

(
BiBj −

1

2
δijB

2

)

= ε0


 0
Ey
0

(0 Ey 0
)
− 1

2
E2
y

1 0 0
0 1 0
0 0 1

+

+
1

µ0


Bx

0
0

(Bx 0 0
)
− 1

2
B2
x

1 0 0
0 1 0
0 0 1


= ε0


0 0 0

0 E2
y 0

0 0 0

−
E2

y/2 0 0
0 E2

y/2 0
0 0 E2

y/2

+

+
1

µ0


B2

x 0 0
0 0 0
0 0 0

−
B2

x/2 0 0
0 B2

x/2 0
0 0 B2

x/2


= ε0

−E2
y/2 0 0

0 E2
y/2 0

0 0 −E2
y/2

+

+
1

µ0

B2
x/2 0 0
0 −B2

x/2 0
0 0 −B2

x/2


=

− ε0
2
E2
y + 1

2µ0
B2
x 0 0

0 ε0
2
E2
y − 1

2µ0
B2
x 0

0 0 − ε0
2
E2
y − 1

2µ0
B2
x

 . (B.3)

Now, by substituting Ex and By according to Eqs. B.1 and B.2 and knowing
that E0 = B0c and c−2 = ε0µ0 the Maxwell’s Stress tensor can be written as

←→
T ij =

0 0 0
0 0 0
0 0 −ε0E2

x

 . (B.4)
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Note that all the components of the stress tensor vanish but one. It is a
diagonal component that represents the density flux of momentum along the
direction of propagation of the plane wave. If we perform the product of the
stress tensor with a differential area element that is perpendicular to that
tensor d~a = da k̂, then we obtain the flux of electromagnetic moment (i.e.,
the force) across this surface

d~F = d~Φfield =
←→
T ij · d~a

=

0 0 0
0 0 0
0 0 −ε0E2

x

 ·
 0

0
da


= −ε0E2

x · da k̂ . (B.5)

If we divide both sides of the previous equation by the area, we can define a
density of flux momentum

φfield =
dΦfield

da
= −ε0E2

x · k̂ . (B.6)

Now we can recall the definition of the Poynting vector ~S = ~E × ~H that in
the case of a plane wave has the following expression:

~S =
1

µ0

~E × ~B =
1

µ0

ExBy (̂ı× ̂)

=
1

µ0

ExBy k̂ =
1

µ0

Ex
Ex
c
k̂

= ε0cE
2
x k̂ (B.7)

and rewrite Eq. B.6 as

~φfield =
~S

c
(B.8)

which is equivalent to the definition of the density of flux momentum given
in Eq. 2.16.

To sum up, the density of flux momentum across a surface perpendicular
to the direction of propagation of light can be written in terms of the Poynting
vector. This result can be used to calculate the Maxwell’s Stress tensor of
electromagnetic fields in the ray optics regime, in which the wave can be seen
as a bundle of rays, characterized by their Poynting vector.
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The density of flux momentum of a spherical

wave

The previous calculation of the flux momentum can be extended to spherical
waves. The electric and magnetic field of the most simple spherical wave that
verifies Maxwell equations is given by

~E(r) = −1

r
E0e

i(kr−ωt)θ̂ = Eθθ̂

~B(r) = −1

r
B0e

i(kr−ωt)ϕ̂ = Eϕϕ̂ (B.9)

where r is the distance to the origin of coordinates and θ̂ and ϕ̂ are the unitary
vectors in spherical coordinates. The amplitudes of the electric and magnetic
field are related according to E0 = cB0. Eqs. B.9 represent a diverging
spherical wave that emanates from the origin of coordinates. At every time,
the amplitude of the wave decreases with the inverse of the distance to the
origin (∼ r−1), but the energy of the wavefront is spread over a spherical
surface of area 4πr2. This is consistent with the principle of conservation of
energy, since the energy per unit of area (i.e., the intensity) of the wave is
proportional to the square of the amplitude. Indeed, the calculation of the
Poynting vector can be done in spherical coordinates

~S =
1

µ0

~E × ~B

=
1

µ0

EθBϕ · θ̂ × ϕ̂

= cε0E
2
θ r̂

=
cε0E

2
0

r2
r̂ (B.10)

where the explicit temporal dependence has been omitted (e2i(kr−ωt)). Note
that the intensity is radial and follows an inversely square law. The total
power of the wave (L) is given by the sum of the intensity over an arbitrary
surface, and L is independent of such surface. In the case of a spherical
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surface A, the total power is independent of the radius:

L =

∫
A

~S · d~a

= cε0E
2
0

∫
A

1

r2
r̂d~a

= cε0E
2
0

∫
A

1

r2
r̂ · r2r̂dΩ

= cε0E
2
0

∫
A

dΩ

= 4πcε0E
2
0 (B.11)

where d~a = r2r̂dΩ is the surface element of a spherical shell.
The calculation of the Maxwell Stress tensor can also be done in spherical

coordinates. Here we use a more convenient notation to write the components
of a tensor. The component êiej represents the tensor product between the

two unitary vectors ei ⊗ ej, with ei, ej = {r̂, θ̂, ϕ̂}.

←→
T = ε0

(
Eθθ̂ ⊗ Eθθ̂ −

1

2

(
r̂r + θ̂θ + ϕ̂ϕ

)
E2
θ

)
+

+
1

µ0

(
Bϕϕ̂⊗Bϕϕ̂−

1

2

(
r̂r + θ̂θ + ϕ̂ϕ

)
B2
ϕ

)
= ε0

(
E2
θ θ̂θ −

1

2
E2
θ

(
r̂r + θ̂θ + ϕ̂ϕ

))
+

+
1

µ0

(
B2
ϕϕ̂ϕ−

1

2
B2
ϕ

(
r̂r + θ̂θ + ϕ̂ϕ

))
=

(
−ε0

2
E2
θ −

1

2µ0

B2
ϕ

)
r̂r +

(
ε0
2
E2
θ −

1

2µ0

B2
ϕ

)
θ̂θ +

(
−ε0

2
E2
θ +

1

2µ0

B2
ϕ

)
ϕ̂ϕ .

(B.12)

The components θ̂θ and ϕ̂ϕ vanish, because Bϕ = Eθ/c and µ−1
0 = ε0c

2.
The only surviving term is the pressure along the radial direction, which
coincides with the direction of propagation of the radiation.

←→
T = −ε0E2

θ r̂r . (B.13)

Physical interpretation of flux momentum

The Poynting vector ~S is a physical magnitude that represents the local flux
of electromagnetic energy. Assuming that an electromagnetic field can be
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described as a flux of photons, one can write

~S = Eρ~c (B.14)

where E = ~ω is the energy of one photon and ρ and ~c are the density and
the speed of photons respectively. The flux of momentum can be calculated
similarly. The momentum of a photon (p) can be obtained from the rela-
tivistic expression for the kinetic energy of one particle E =

√
m2c4 + p2c2,

where m is the mass of the particle. A photon has zero mass (m = 0) and
the resulting expression is

E = pc (B.15)

and the density of flux momentum can be expressed in terms of the previous
relations according to

~φfield = pρ~c

=
E

c
ρ~c =

Eρ~c

c

=
~S

c
. (B.16)

Thus we have informally justified Eq. 2.16
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Experimental setup

This appendix describes in further detail some aspects of the experimental
setup.

C.1 Laser diode

The Lumix LU045M200 is a laser diode mounted on a 14-pin butterfly chip
and connected to a single-mode optical fiber (see Fig. C.1). It has a power
of 200 mW and a wavelength of 845 nm. The optical fiber has a Fiber Bragg
Grating (FBG) that filters the light to produce a better monochromatic wave.
Apart from the laser diode, the chip also has a photodiode, a thermistor and
a Thermoelectric Cooler (TEC). The photodiode measures the intensity of
light that is produced into the optical resonator cavity of the laser. The
thermistor measures the temperature of the laser and the TEC is a device
that uses the Peltier effect to refrigerate the laser chip. The laser diode
is driven at constant current by a laser diode controller (Thorlabs IP500),
which also displays the instantaneous intensity of the laser radiation read
by the photodiode. A TEC controller (Thorlabs TCM1000T) controls the
temperature of the laser by reading it from the thermistor and performing
a proportional/integral (PI) feedback on the TEC. There is one laser driver
and one TEC controller for each laser and they are assembled in the so called
laser controller box.

C.2 The wiggler

The wiggler (see Fig. C.2a) consists of two concentric brass tubes fixed to a
solid block. An optical fiber is located and fixed along the inner tube and
remains straight. One side of the fiber is feed by the laser diode and the other
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Figure C.1: Laser diode mount. Only 8 pins of the butterfly chip are needed to measure
and control the intensity and the temperature of the laser diode. The controllers (intensity
and temperature) read the signals and perform the feedbacks.

one is bare. This side protrudes from the inner and outer tubes and exposes
its tip, which delivers the laser light to the optical path. The extreme of the
outer tube is glued with the fiber and the inner tube fixes a pivot point. Two
perpendicular piezoelectric actuators push the outer tube in a hard spherical
enlargement located in the middle of the tube, inducing a tilt at the fiber
that changes the direction at which the light emerges from the tip of the
optical fiber. In the end, the wiggler has a high frequency response (>2 kHz)
and a position range of about 11 µm after the displacement is amplified by
the microscope objective.

The diverging beam that comes out from the tip of the fiber has a Numer-
ical Aperture (NA) of 0.12 and it is located at the focal plane of a collimating
lens of focal length f = 20.0 mm that projects the parallel light to the mi-
croscope objective, which refocuses the light to form the optical trap (see
Fig. C.2b).

C.3 Position Sensitive Detector (PSD)

A PSD is an optoelectronic device that provides an analog output current
proportional to the displacement of the centroid of a light spot that hits
the sensitive area of the device. Essentially, a PSD is a PIN diode that is
sandwiched between two conductive layers connected to 4 electrodes, two by
two (see Fig. C.3a). The top layer electrodes measure the position of the spot
in the x direction and the other two ones measure the y direction. The diode
usually operates in reverse biased mode: the P layer is kept at a negative
voltage and the N layer, at a positive. When a photon hits the intrinsic
(intermediate) layer of the diode, it produces a pair of hole-electron (see
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Figure C.2: The wiggler. (a) When the piezo (green prism) pushes the spherical en-
largement, the outer tube also pushes the optical fiber at the glued point. Since the inner
tube remains straight, the optical fiber is bended at the pivot point and the light can be
redirected. (b) A different bending of the optical fiber (only represented from the pivot
point) translates into a different position of the optical trap. According to the definition
of Numerical Aperture (NA) NA = n sin θm (where n is the index of refraction of the
medium and θm is the marginal ray) the half-angle of the cone of light that emerges from
an optical fiber with NA=0.12 is 6.9 ◦. The beam expands until it reaches a diameter of
φ = 4.83 mm (tan θm = (φ/2)/f , where f = 20 mm is the focal length of the collimating
lens) before it enters the collimating lens. The entrance pupil of the objective is about
11 mm, so the laser beam is underfilling the objective.

Fig. C.3b) that travel in opposite directions towards the conductive layers.
Since there is a large amount of photons in a laser beam, a lot of pairs
hole-electron are produced. The excess of charge in the conductors induce
a current in the electrodes (see Fig. C.3c). The current of each electrode
is proportional to the distance between the spot of light and the electrode.
Therefore, the signals of the electrodes can be combined to infer the location
of the light spot. If we consider a light beam that hits the sensitive area
S of the PSD detector we can write the following relationships between the
irradiance of the light (E(x, y)) and the output signal of the PSD,

Ileft − Iright ∝
∫
S

xE(x, y) · dS

Itop − Ibottom ∝
∫
S

y E(x, y) · dS

Ileft + Iright = Itop + Ibottom ∝
∫
S

E(x, y) · dS (C.1)

where Ileft, Iright, Itop, Ibottom are the currents of the electrodes and dS is the
differential of surface. The differences of current between the electrodes pro-
vide the averaged position of the light spot, while the addition of currents
provide the total power of light. The addition and subtraction of currents
and the application of a constant voltage to the electrodes is performed by
using analog electronics in the Preamp board.
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Figure C.3: Position Sensitive Detector. (a) Design of a PSD. (b) Side view of a
PSD. Interaction with light, production of a pair hole-electron and traveling towards the
electrodes. (c) Front view of a PSD. The currents produced in the electrodes depend on
the position at which the light spot hits the detector.

C.4 Fluidics chamber

Figure C.4a shows the three layers of materials that have to be assembled in
order to build a fluidics chamber. Using a laser engraver, 6 holes are made
in the front coverslip, where the samples are introduced (and removed) into
the chamber. The same laser engraver is used to make the channels in the
nescofilm layer. A micropipette and two dispenser (or bearing) tubes are also
sandwiched between the front coverslip and the nescofilm gasket.

Figure C.4b shows the sealed chamber after the nescofilm has been heated
and melted at 119 ◦C. A zoomed view of the central channel (red frame) shows
the disposition of the inner tubes. The micropipette is oriented vertically.
The bearing tubes connect the upper and lower channels with the central ones
and they are oriented diagonally. The samples introduced in these channels
reach the central one by flowing along the bearing tubes.

Figure C.4: Fluidics chamber. (a) Assembly. (b) Dimensions, final appearance of the
chamber and zoomed region of the central channel.
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Figure C.5 shows how the chamber is mounted in the black frame, which
is moved by the xyz-stage. The buffer is introduced into the central channel
by means of a large syringe that pushes the buffer stored into the bottle. Two
independent small syringes (blue needles) filled with the samples (beads and
molecules) are connected to the upper and lower channels. The 3 channels
are drained with the opposite holes and the wasted buffer and samples are
stored in the trash bottle. The micropipette is connected to another syringe
(red needle) filled with air, which is used to immobilize a bead at the tip of
the micropipette by suction of air.

Figure C.5: Tubing of fluidics chamber. The samples flow from left to right.

C.5 Electronic controller

This section describes in further detail the schematics of the electronic con-
troller and the algorithms run by the PICs (see [19] for the exact design). It is
convenient to split the description into two parts. The first one only explains
the connection between the boards and the devices and the communication
between them, i.e., the hardware. The second one, focuses into the firmware,
i.e., the software, which is only in the PICs. The main and motor boards use
the PIC18F6520 microcontroller, which is a 64-pin surface mount chip. The
pins are grouped in ports that allow the communication with other devices.
Some of these ports have modules that perform specific tasks such as AD
conversion or Pulse Width Modulation.
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Hardware

In what follows we describe the internal structure of each board. See 2.12 for
a global description of the electronic controller.

• Main board (see Fig. C.6). The ComPic is connected to the TrapPics
by two ports. Port E controls the flow of data and the Port F is
a custom parallel bus devoted to data transfer. Similarly, Port A is
used to control the communication between the ComPic and the USB
transceiver (DLP-USB245M-G) and the Port D is an 8-bit parallel bus
used to write and read data. The 3 PICs use the port C to communicate
with other chips of the electronic board via an SPI module. By using
the SPI, the ComPic communicates with the MotorPic. The TrapPics
communicate with the AD and DA converters. The Chip Select (CS)
pin controls the communication. Finally, the Port B is used to burn and
debug the firmware in the PICs with an In-Circuit Debugger (ICD).

Figure C.6: Main board schematics.

• Preamp board (see Fig. C.7a). The current provided by the 4 elec-
trodes of the PSD is converted into a voltage by using operational am-
plifiers that work as current-to-voltage converters. The current from
the IRIS detector is also converted into voltage. The converted voltages
from the PSD are combined to obtain the desired signal: subtraction
gives the deflections (DX and DY) and addition gives the total power
(SUM or PSDSUM). There are 2 Preamp boards per trap: one for
position PSD and one for the force PSD.

• ADC board (see Fig. C.7b). The signals that come from the Preamp
board are stabilized and filtered by using voltage followers and RC
analog filters (1 kHz bandwidth) before their enter the AD converter
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chip (Allegro MAX1168). It is a 16-bit 8-channel (although 7 channels
are used only) converter that communicates with the TrapPic located
at the main board via SPI bus.

Figure C.7: (a) Preamp board. (b) ADC board. The bottom right channel of the ADC
is not used.

• Motor board (see Fig. C.8). This board has a complex combination
of analog driving of motors (H-bridges), digital control of motor limits
using logical gates (TTL technology) and digital processing of data
(MotorPic and counters). The 3 motors are driven independently by
3 H-bridges located in two chips (one chip is shared by the y and z
motors). The H-bridges provide the power to the motors in the correct
polarity in order to make them rotate in one direction or the other. The
direction and the speed of the motors is controlled by the MotorPic by
means of Ports A and G respectively. The output of Port G is a Pulse
Width Modulation signal that drives the motors. Between the motors
and the MotorPic there are logical circuits (TTL protection made with
AND, NOR and NOT gates) that prevent the breakage of the motors
by disconnecting the H-bridge when the limit switches are exceeded.
The MotorPic also reads the status of the limit switches in Port F. The
shaft encoders of the motors send their pulses to three 24-bit counters,
one for each motor. The MotorPic reads and controls the data from
the counters by means of the Ports E and D respectively. Port C is
used to power the blue LED that illuminates the optical path and to
communicate with the ComPic in the main board. Finally, Port B is
used by the ICD to burn the firmware as in the PICs of the main board.

• DAC board (see Fig. C.9). This board is shared by the two traps.
There are two independent digital to analog converters (Texas Inst
DAC8534IP) that communicate with the TrapPics via SPI. The analog
output voltage from the DAC is send to 4 op-amps that amplify the
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Figure C.8: Motor board.

voltage to a range between 0-150 V. The voltage is applied to the piezos
of the wigglers that reposition the two optical traps in the x and y
direction.

Figure C.9: DAC board.

Firmware

Following, there is a description of the algorithms run by the 4 PICs of the
board. The two TrapPics run the same code.

• ComPic algorithm (see Fig. C.10). The initialization of the PIC
consists in setting up the ports and the variables. The main loop of
the firmware (left scheme) continuously communicates with the USB
transceiver, sending data and receiving orders from the host. A 4 kHz
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timer interrupt is enabled before entering the main loop. So, the in-
terrupt is triggered every 250 µs and the ComPic runs the instructions
shown on the right scheme. The ComPic works as the master PIC
that synchronizes the communication between the TrapPics and the
MotorPic.

Figure C.10: ComPic algorithm.

• TrapPic algorithm (see Fig. C.11). After initializing the code, the
TrapPic sends the order to start a new conversion to the AD converter.
The watchdog timer is a routine that reboots the PIC if it is not called,
which automatically prevents possible code crashes. At this point, the
TrapPic waits until the ComPic enters the interrupt subroutine and
starts the interchange of data and orders. After processing the orders,
the TrapPic performs the selected feedback. Other feedbacks allow to
implement custom designed protocols such as oscillation or fast move-
ment of the traps. Once the new position of the trap is calculated, it
is written to the DAC and a new loop starts.

• MotorPic algorithm (see Fig. C.12). After setting up the 24-bit
counter chips, the MotorPic enters the main loop. The MotorPic sends
the value of the counter to the ComPic and receives the commands that
it has to execute. The most relevant commands involve the movement
of the motors. The control of the speed of the motor is also done by
the MotorPic. The Time Out subroutine stops the motors in case a
Goto command is not able to reach the target and prevents the ever-
lasting movement of the motors. Finally, in the Goto check the motor
is stopped if it has reached the desired position and the MotorPic starts
another loop.
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Figure C.11: TrapPic algorithm.

Figure C.12: MotorPic algorithm.

Data structures

The digital data processed by the PICs is organized into packets that are in-
terchanged between them, and between the ComPic and the USB transceiver.
There are three types of data depending on their length: the 8-bit, 16-bit and
32-bit numbers. The first ones are status variables, while the second ones are
physical magnitudes (PSDs, piezo voltage). The third ones are used by the
MotorPic. Following there is a list of the more relevant variables contained
in the structures of data in the PICs.

• mode. It is a 8-bit variable that holds the working mode of the Trap-
Pic. Depending on its value, the TrapPic works in manual mode or
performs some type of feedback such as constant position, constant
force or autoalign.
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• gain and rateDivider. These are two 8-bit variables that are used to
perform the feedback algorithms. A feedback is a routine that changes
an output controlled variable to produce a desired value (target) to an
uncontrolled input variable. For instance, the position of the optical
trap (output) can be changed in order to produce a desired force (input
variable). All the feedbacks perform the following loop:

Onew = Oold + (Itarget − Iactual)×G (C.2)

where Onew is the new value that the output variable will have after
the calculation, Oold is the value that the output variable had before
the calculation, Itarget is the desired value for the input magnitude,
Iactual is the actual value of the input magnitude and G is a tunable
parameter called Gain. This algorithm is named proportional, since
the correction in the output variable is proportional to the difference
between the actual and the target values of the input magnitude. The
Gain controls the response to this difference and it has to be tunned.
Large gains produce large responses that might lead to oscillations.
Low gains might lead to slow responses that never reach the target
value. Finally, the rate divider is another control variable that allows
to skip the algorithm every once in a while, in order to produce more
stable feedbacks. It also has to be tunned.

• psdX, psdY, psdSum, iris, leverX, leverY, leverSum. These are
16-bit variables that hold the data from the photodetectors and there is
one set of them for each TrapPic. They can take values between 0-65535
in adu. The variables that represent deflections (psdX, leverY, etc.)
can be positive or negative. As a convention, the middle value 32768 is
taken as 0, so that positive (negative) values are larger (smaller) that
this value. All these variables are sent to the host that has to perform
the conversion to physical magnitudes after the calibration procedure.

• piezoX, piezoY. There are two of these 16-bit variables for each Trap-
Pic. They represent the voltage of the piezo crystals of the wiggler.
There is a conversion between the 0-65535 adu units and the 0-150 V
applied to the piezos.

• positionX, positionY, positionZ. These are three 32-bit variables
used by the MotorPic. These variables hold the values of the 24-bit
counters and permit to infer the position of the motor. They must be
so long in order to cover the whole range of the motors.
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C.6 Host software

The lt application allows the user to interact with the experiment and save
the measured data. Following, there is a description of the software.

Files

The code of lt application is split into different C source and header files.
The most relevant files are the following:

• main.c It is the main file present in all C programs. It calls the
routines that set up the variables and the USB port, and it starts the
main loop that catches the events of the application by running the
function RunApplicationEventLoop().

• ltdata.c and ltdata.h These two files define the structure of data
that contains the variables used by the code, as well as the routines
that initiate and give the default values to the variables. The main
structure of data is called Data which has several substructures such
as,

– Control, which holds the variables related to the event handling
(e.g., keymap, mouse sensitivity, etc.);

– Instrument, which contains all the status variables of the instru-
ment (calibration factors, running protocol);

– Quicktime, which stores all the experimental data (distance, force);

– FileData, which holds the data file parameters (file name, writing
speed);

• ltcontrol.c and ltcontrol.h These files contain the routines that allow
the application to communicate with the electronic controller, run the
experimental protocols and dispatch the events. The most important
routine is ControlEvent().

• ltosx.c and ltosx.h These files contain the Mac OSX functions that
set up the event-handling of the application. The application has two
types of events: 1) triggered by the user or 2) triggered by a timer. The
first kind of event is handled by routines such as AppEventHandler(),
while IdleTimer() is an example of the second kind.

• ltopengl.c and ltopengl.h All the OpenGL windows that plot data
and their rendering are defined here. Each window has its own data
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structure called RecContext (for recreation context) and the rendering
is performed by the routine DrawGL().

• ltFileIO.c and ltFileIO.h All the routines related to the input and
output files are defined here. Output files are mainly data and comment
files. Input files are the calibration file and preferences file (i.e., user
defined). The routine ltFileIO() does all these tasks.

• ltposix.c and ltposix.h These files contain the routines that use the
POSIX library to set up a thread that communicates with the USB
port (i.e., the electronic controller). The most important routine is the
InstrumentTask().

• main.nib It is a Mac specific file that contains the information to
create the graphical interface of the applications (menu bar, windows,
etc.).

Algorithm

The application starts by setting up the variables, functions and routines
required for the correct acquisition of data and the dispatch of events (see
Fig. C.13). The variables are initialized in InitData() and the menu bar and
the graphical interface are set in InitNib(). Afterwards, the event handlers
are initialized in InitEvents() which calls two different handlers. The first
one is AppEventHandler() and it is responsible to catch the user events and
send them to ControlEvent() where they are dispatched. The second one
is IdleTime() which is triggered every 1/60 Hz and performs periodic tasks
such as writing data files (ltFileIO()) and moving the piezos according to
the different protocols (AutoMovePiezos()). The InitControl() routine creates
the default windows (trap and motor windows, oscilloscope, PSDs, etc.) and
starts the thread that opens the USB port to communicate with the electronic
controller (InstrumentTask()). Once all the initialization has been completed,
the algorithm enters the RunApplicationEventLoop() which keeps running the
application until the user quits.

The ControlEvent() is one of the central routines and it performs two types
of tasks: 1) give orders to the instrument (e.g., center traps, motor gotos)
by calling CommandInstrument() (the orders will be send in the next call of
InstrumentTask()) and 2) create and setup windows by calling MakeWindow().
The windows can be either of two types: dialog windows and OpenGL win-
dows. The first ones allow to modify the parameters of the protocols and
the routine UtilityWindow() sets up the event handlers of them. The second
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ones are graphical windows that display the data measured by the instru-
ment. The routine GraphWindow() creates and installs two different types of
event handlers on these windows: 1) a timer event (timerContextCB()) that
refreshes the graphics at a frequency of 60 Hz by using the DrawGL() routine
and 2) a keyboard event (graphKeyEventHandler()) that allows to control the
properties of the graph (zoom, shift, rotation, etc.).

To sum up, the application continuously runs a central loop that catches
and dispatches all the possible events, which are managed by several event
handlers that report to that loop. The events include user actions (keyboard,
mouse) and periodic tasks (graphical rendering, pulling protocols). Besides,
a parallel thread communicates with the instrument by using the USB port.
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Figure C.13: Host algorithm (see text). The boxes represent the most important routines
of the lt application. Each box indicates the name of the routine, a brief description of it
and the file where it is defined. Horizontal and vertical arrows indicate the natural flow of
the algorithm. Tilted arrows indicate the routines that report events to the main loop.





Appendix D

Design of new protocols

This appendix describes the recipe to be followed in order to implement a
new protocol. A new protocol can be executed by the host computer or the
electronic boards. In both cases, the host algorithm has to be coded and only
in the last case, the PICs firmware has to be recoded. In the first section of
this appendix we show how to modify the host algorithm. In the second one,
we show how to code the PICs. It is not necessary to understand the whole
host algorithm (see the section Host Software in Appendix C) to be able to
code a new protocol.

Coding the host algorithm

Most of the tasks performed by the host algorithm (communication, graphical
rendering, event handler, etc.) do not need to be modified when designing a
new protocol. So the user only has to expand a little piece of code to write a
new protocol. There are two different steps in the designing process: 1) the
algorithm of the protocol itself (what the instrument has to do) and 2) the
integration of the algorithm in the user interface of the lt application. The
first one involves control theory and the algorithm has to be written in C.
Thus, the algorithm has to include the orders to read the inputs (time, force,
position, limits); take decisions (decrease force, switch direction, etc.); and
send orders to the instrument (move trap, move motor, etc.). This first step
of the design depends on the type of protocol to be implemented. The second
step, i.e., the integration on the application, is common for all protocols. It is
only necessary to prepare the graphical interface (buttons, sliders, windows
of parameters) and the events (start/stop protocol).
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1. Writing the protocol

The instructions that the protocol has to execute are written in a C function.
So we have to create a function that contains all the orders for our new
designed protocol. For instance, AutoMovePiezos(), Oscillate(), ForceRamp()
are names of functions that perform a specific protocol. These functions are
located in the ltcontrol.c file and predefined in the ltcontrol.h header file. The
ControlTimer() function is responsible for calling the protocol algorithms 60
times per second. Therefore, a IF statement has to be added in ControlTimer()
to call our new designed function when it is activated by the user.

The algorithm of the new protocol has to be designed considering that it
will be called (and run) at 60 Hz. The following example shows the pseu-
docode to produce a pulling protocol at constant pulling rate.

IF <forceLimit> OR <positionLimit> TRUE

<pullingRate> = - <pullingRate>;

<newPosition> = ( <previousTime> - <Time> ) * <pullingRate>;

<previousTime> = <Time>;

The protocol algorithm will have direct access to all the data structure
that contains the information about the status of the instrument (time, force,
motor and trap position, etc.). On the other hand, the CommandInstrument()
function is the most important function to give orders to the instrument such
as set the feedback algorithms (autoalign, constant force, passive mode),
move the motors (gotos, motor speed), move the traps (set the piezos output
voltage), etc.

So the protocol is written in a function that reads the status of the in-
strument and gives orders at 60 Hz.

2. Integration of the protocol into the algorithm

In general, the integration of the protocol needs: 1) a start/stop control and
2) a dialog window to introduce the parameters of the protocol. In order to
do so, several modifications of the code have to be done.

1. Creation of new variables.

• Define all the additional variables required to hold the parameters
of the protocol (e.g., speed, force limit, waiting time, etc.) in the
structure data->instrument located at the file ltdata.h.

• In case these new defined variables need default values, initialize
them in the function InitInstrument() located at the file ltdata.h.
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• Define an event variable that starts the protocol in the enumera-
tion of events located in the file ltcontrol.h.

• Define an event variable that opens the dialog window. This vari-
able has to be included in the enumerated list of window events
located in the file ltcontrol.h.

2. Changes in the nib file. The main.nib file contains the information about
the user interface, which can be easily modified using the application
Interface Builder. The nib file has to be modified in order to include the
new graphical objects (e.g., windows, buttons, sliders, text boxes, etc.)
required to control the protocol.

• The graphical interface is organized so that all the start/stop con-
trols of the protocols are located in a radio button. So a new
option in the radio button that selects our new designed protocol
has to be created.

• Create the graphical design of the dialog window (labels, text
boxes, enter button, etc.) where the user introduces the values of
the parameters of the protocol.

3. Changes in already existing functions.

• Define mouse clicks that activate the protocol as a new case in the
AppEventHandler() function located in the ltosx.c.

• Define mouse clicks that make the dialog window as a new case in
the AppEventHandler() function located in the ltosx.c.

• Include the instructions to make the dialog window in the UtilityWindow()
function in the ltosx.c file. The instructions are: 1) read and cre-
ate the window from the nib file, 2) install the event handler, 3)
show the window, and 4) dispose other windows.

• Include the calling of the protocol algorithm in the ControlTimer()
function in the ltcontrol.c file.

• Include the event that creates the dialog window in the ControlEvent()
function in the ltcontrol.c file.

• Include the event that starts the protocol in the ControlEvent()
function in the ltcontrol.c file. Other automatic orders that have
to be simultaneously started along with the protocol (e.g., write
a comment, switch writing speed, etc.) are included here.

4. Definition of new functions.
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• Define the get values dialog function in the ltosx.c file. This func-
tion reads the values of the parameters located in the text boxes
of the dialog window and stores them in the variables defined in
the data->instrument structure. This function is activated when
the protocol starts or the enter button is pushed.

• Define the update dialog function in the ltosx.c file. This func-
tion reads the values stored in the data->instrument structure and
updates the dialog box accordingly.

• Define the event handler (i.e., a C function) for the dialog window
in the ltosx.c file. This function detects the events produced within
the window and calls the two previous functions to get or update
the values.

After all these changes have been made to the code, this has to be recom-
piled in order to make them functional.

Coding the firmware of the PICs

As mentioned before, the implementation of a protocol in the PICs re-
quires to modify the host software too. Once the start/stop event and
the dialog window are created we have to focus on the firmware. In other
words, when we modify the firmware we are expanding the capabilities of
the CommandInstrument(). This function has a few options but they are very
complete to design any protocol. It might be possible that we need some op-
tions not included in this function. When this happens, it is time to modify
the firmware.

In general, only the TrapPic firmware will have to be modified. Both
TrapPics have information of the position of the optical trap and the force
applied and they are capable of giving orders to the DA converters that
finally move the piezos. So the TrapPics have the inputs, the outputs and
the computational requirements to perform a protocol.

Figure C.11 shows a scheme of the TrapPic algorithm. A new protocol is
introduced as a Feedback routine that the TrapPic runs when it is activated.
It requires coding in C, compiling and burning the firmware into the PICs.
The following example shows the pseudocode of a pulling protocol imple-
mented in the TrapPic. It is much more elementary than the host algorithm.
In this case, the voltage applied to the piezo (voltagePiezoY) is increased by
a fixed amount (deltaV) one of every certain cycles (skipMove). The control
of force limits and directions is performed by the host algorithm.
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IF <skipMove> TRUE

<voltagePiezoY> = <voltagePiezoY>;

ELSE

<voltagePiezoY> = <voltagePiezoY> + <deltaV>;





Appendix E

Sequences of DNA constructs

6.8 kbp sequence

The target of the BamHI restriction enzyme is 5′-ggatccc-3′ and cleaves the
λ-DNA at several points. The target we are interested in is located be-
tween the bases 41732-41738 of λ-DNA (see Fig. E.1a). The loop is a single
oligonucleotide that folds in such a manner that exposes its BamHI end (see
Fig. E.1b). The handles are synthesized from 3 different oligonucleotides.
Two of them hybridize leaving a sticky end that is complementary to the
cosR end of λ-DNA (orange and magenta oligos in Fig. E.1c) and another
one completes the handles (violet oligo in Fig. E.1c).
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Figure E.1: 6.8 kb sequence. (a) Fragment of λ-DNA. The position of the base in λ-DNA
is indicated with a number next to it. Red highlighted sequence is the BamHI target. The
blue square shows how the enzyme cleaves the target. The green square shows the cosR
end sequence. (b) Loop. (c) Handles.



252 Sequences of DNA constructs

2.2 kbp sequence

Similarly, the target of the SphI restriction enzyme is 5′-gcatgc-3′. The di-
gestion of the target located between the bases 2212-2217 of λ-DNA (see
Fig. E.2a) produces a fragment of DNA of ≈ 2.2 kbp. As in the 6.8 kbp
sequence, the loop is a single oligonucleotide that exposes its SphI end (see
Fig. E.2b). The combination of three different oligonucleotides produce the
handles, which form the cosL end (see in Fig. E.2c).
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Figure E.2: 2.2 kbp sequence. (a) Fragment of λ-DNA. (b) Loop. (c) Handles.
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Elastic energy of polymers

Polymers are chemical substances formed by the union of single subunits
(called monomers) in a chain. Here, we will focus on the study of the elasticity
of linear polymers, that can be treated as 1-dimensional chains. The model
is treated from the point of view of statistical physics and the goal of this
section is to characterize the elastic energy and the equation of state of the
polymer.

Worm Like Chain (WLC) model

The WLC model is used to describe the elastic response of semi-flexible poly-
mers. The main property of these polymers is that some energy is required
to bend them. The model assumes that the polymer is a continuous rod
with a characteristic bending energy. The persistence length (lp) is the only
parameter that controls the flexibility of the polymer. The other impor-
tant parameter is the contour length (L0) that determines the length of the
polymer chain.

The exact solution of the model requires to solve a transcendental equa-
tion numerically. However, Marko & Siggia [40] proposed the following ap-
proximated solution for the Force vs. Extension Curve in the WLC model

f(x) =
kBT

4lp

((
1− x

L0

)−2

− 1 + 4
x

L0

)
(F.1)

where f is the force applied and the ends of the polymer, x is the molecular
extension, kB is the Boltzmann constant and T is the temperature. This
equation was derived after calculating the partition function of the model,
computing its free energy and approximating the equation of state. However,
this equation of state does not come from the actual free energy. So if we
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want to know the free energy G(x) of this expression, we need to calculate
its integral which is

G(x) =

∫ x

0

f(x′) dx =

=
kBTL0

4lp

((
1− x

L0

)−1

− 1− x

L0

+ 2

(
x

L0

)2
)

. (F.2)

This expression is consistent with Eq. F.1 because the elastic free energy is
G = 0 when the extension of the polymer is x = 0, i.e., when no force is
applied at the ends of the polymer.

There are two main extensions of this model [160]. The first one involves
polynomial corrections to Eq. F.1 up to order O(x/L0)7 so that the equation
of state is as close as possible to the exact solution. In the case of dsDNA, this
correction permits to fit the measured FEC with the same relative error at all
range of forces. The second one involves an enthalpic correction that allows
the contour length of the polymer to increase at high stretching forces. It
enters in Eq. F.1 as a stretch modulus and it converts the vertical asymptote
located at x = L0 into an oblique one.

In our unzipping problem, though, these two corrections are not neces-
sary. We are interested in the elastic energy of the handles, so the total area
under the FDC is hardly affected by the polynomial correction. Moreover,
the unzipping of DNA occurs below 20 pN, where the effect of the enthalpic
correction is small. Indeed, using the enthalpic correction to fit the FEC
at low forces (<20-25 pN) induces some instability in the values of the fit-
ting parameters. In particular, the persistence length increases whereas the
stretch modulus decreases [161].

Freely Jointed Chain (FJC) model

This is the simplest model for the elasticity of polymers. It assumes that
the polymer is made of rigid monomers of length b (also known as the Kuhn
length) connected by junctions that are free to rotate and they do not interact
with each other. The contour length of the polymer (L0) is determined by
the number of monomers N so that L0 = Nb. It is a suitable model for
flexible polymers and the elastic response is purely entropic.

The problem can be mapped to a paramagnetic system, where the mag-
netization is the analogous to the extension and the external magnetic field
is the analogous to the force. Differently from the WLC model, the equation
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of state can be calculated exactly and it is given by,

x(f) = L0 ·
(

coth

(
bf

kBT

)
− kBT

bf

)
(F.3)

were x is the extension, f is the force applied, kB is the Boltzmann constant
and T is the temperature. Strictly speaking, L0 = Nb where b is the Kuhn
length. However, the resulting FEC does not describe correctly the experi-
mental data. In order to fit the data, this model (Eq. F.3) is used by taking
L0 = Nd where d is the distance between monomers and b is the Kuhn length
(different from d).

The free energy of the model can also be calculated by integration of
Eq. F.3. Note that the equation of state is given in terms of the extension
vs. the force, so the calculation of the free energy requires an integration
by parts (see Sec. 3.4.2 for further details). Here we focus on the integral of
Eq. F.3 which is given by,

G(f) =

∫ f

0

x(f ′) df =

=
kBTL0

b

[
ln

(
sinh

bf

kBT

)
− ln

bf

kBT

]
. (F.4)

For completeness, here we write the free energy of the FJC at controlled
position

G(x) = xf −
∫ f

0

x(f ′) df =

= xf − kBTL0

b

[
ln

(
sinh

bf

kBT

)
− ln

bf

kBT

]
(F.5)

where x = x(f) according to Eq. F.3.





Appendix G

Elastic fluctuations in the
mesoscopic model

In order to obtain a full description of the model that includes the effects of
the elastic fluctuations of the polymers, we have to split the contribution of
the handles and the ssDNA, so that they can have independent lengths (see
Fig. G.1).

Figure G.1: Full model. Each element is treated indepentdently.

The total energy of the system is then written as,

Gtot(xh1 , xs1 , xs2 , xh2 , xb, n) = Gh1(xh1) +Gs1(xs1 , n) +GDNA(n)

+ Gs2(xs2 , n) +Gh2(xh2) + Eb(xb)

(G.1)

where the explicit dependencies of the handles are given by Eq. F.2; either
Eq. F.2 or Eq. F.5 give the dependency of the ssDNA; Eq. 3.17 gives the free
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energy of the duplex and Eq. 3.16 gives the energy of the bead in the optical
trap. The total extension of the system is the control parameter and it can
be written as

xtot = xh1 + xs1 + φDNA + xs2 + xh2 + φ/2 + xb (G.2)

where φDNA is the diameter of the DNA duplex and φ is the diameter of
the bead. The partition function can be calculated by summing over all the
possible states of the system according to

Z(xtot) =
N∑
n=0

∫
R5≥0

e−β Gtot(xh1 , xs1 , xs2 , xh2 , xb, n)|xtot · dxh1dxs1dxs2dxh2dxb

(G.3)
where the integral is extended over all positive values of the extensions
xh1 , xs1 , xs2 , xh2 and xb; provided that Eq. G.2 is fulfilled. Now, the cal-
culation of this integral is quite complex because the extensions in Eq. G.3
are restricted by Eq. G.2, so they are not independent variables. Our goal is
to write the total free energy of the system in terms of independent variables
that can be integrated separately. So we can define a new set of positively
defined variables x1, x2, x3 and x4 (see Fig. G.1) that indicate the position of
the ends of the elastic elements, which are related to the extensions according
to the following relations:

xh1 = x1

xs1 = x2 − x1

xs2 = x3 − x2 − φDNA

xh2 = x4 − φ/2− x3

xb = xtot − x4

(G.4)

and allow us to rewrite Eq. G.1 as

Gtot(x1, x2, x3, x4, xtot, n) = Gh1(x1) +Gs1(x2 − x1, n) +

+ GDNA(n) +Gs2(x3 − x2 − φDNA, n) +

+ Gh2(x4 − φ/2− x3) + Eb(xtot − x4) (G.5)

Now the total energy of the system can be calculated for different extensions
of the elements without affecting the total extension of the system. For
instance, we can give different values to x1 that modify the extensions of xh1
and xs1 without changing the value of xtot. Now, the partition function can
be calculated by integrating over the new variables of the elements according
to

Z(xtot) =
N∑
n=0

∫
R4

e−βGtot(x1, x2, x3, x4, xtot, n) · dx1 dx2 dx3 dx4 (G.6)
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where the integral is extended over all values of −∞ < xi < +∞, i =
1, . . . , 4 while keeping the value of xtot constant. Note that Eqs. G.4 define
a set of limits of integration for the new variables that do not coincide with
the ones used in Eq. G.6. Nevertheless, we extend the limits of integration
of the newly defined variables over all the space. We can do this because
the contribution to the integral vanishes for large extensions, due to the
exponential dependence of the energy. The advantage of such approximation
is that we will have to perform Gaussian integrals, which are easy to calculate
when the limits of integration expand over all the space.

For each value of xtot and n, there is always a combination of (x1, x2, x3, x4)
that minimizes the total energy in Eq. G.5. It is convenient to define this
global minimum as Gmin(xtot, n) because it allows to perform the integral by
using a saddle-point approximation. If we define ~x = (x1, x2, x3, x4) as the
vector that contains all the variables, we can perform a Taylor expansion of
Eq. G.5 around the minimum ~xm of Gtot(~x, xtot, n) up to order O(~x− ~xmin)2

according to,

Gtot(~x, xtot, n) ' Gmin(xtot, n) + ~∇~xGtot(~x, xtot, n)
∣∣∣
~xmin

· (~x− ~xmin)

+
1

2
(~x− ~xmin)T ·H

(
Gtot(~x, xtot, n)

)
~xmin

· (~x− ~xmin)

(G.7)

where (~x − ~xmin)T stands for the transposed vector and H is the Hessian
matrix calculated at fixed xtot and n. Formally, the Hessian matrix is a
quadratic form that acts over the vector (~x− ~xmin) and its transposed (~x−
~xmin)T and returns the change in Gtot. Note that the variables of the function
are ~x, while xtot and n are fixed parameters. Since the Taylor expansion has
been performed around the minimum, the gradient (i.e., first derivative) of
the function vanishes and the second term in the right side of Eq. G.7 does
not contribute.

In order to obtain the Hessian matrix, we have to calculate all the second
order derivatives of Eq. G.1. The first derivatives of elastic energy terms give
forces and the second derivatives give stiffnesses. So for the first derivatives
of Eq. G.5 we can write

∂ Gtot(~x)

∂x1

∣∣∣∣
xtot,n

=
∂ (Gh1(x1) +Gs1(x2 − x1))

∂x1

= fh1(x1)− fs1(x2 − x1)

∂ Gtot(~x)

∂x2

∣∣∣∣
xtot,n

=
∂ (Gs1(x2 − x1) +Gs2(x3 − x2 − φDNA))

∂x2
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= fs1(x2 − x1)− fs2(x3 − x2 − φDNA)

∂ Gtot(~x)

∂x3

∣∣∣∣
xtot,n

=
∂ (Gs2(x3 − x2 − φDNA) +Gh2(x4 − φ/2− x3))

∂x3

= fs2(x3 − x2 − φDNA)− fh2(x4 − φ/2− x3)

∂ Gtot(~x)

∂x4

∣∣∣∣
xtot,n

=
∂ (Gh2(x4 − φ/2− x3) + Eb(xtot − x4))

∂x4

= fh2(x4 − φ/2− x3)− fb(xtot − x4) (G.8)

where fi(xi) i = h1, s1, h2, s2 are the FEC of the elastic elements and the
explicit dependencies of Gtot on xtot and n have not been written. The
components of the Hessian matrix will be given by

H (Gtot(~x)) =



∂2Gtot

∂x2
1

∂2Gtot

∂x1∂x2

∂2Gtot

∂x1∂x3

∂2Gtot

∂x1∂x4

∂2Gtot

∂x2∂x1

∂2Gtot

∂x2
2

∂2Gtot

∂x2∂x3

∂2Gtot

∂x2∂x4

∂2Gtot

∂x3∂x1

∂2Gtot

∂x3∂x2

∂2Gtot

∂x2
3

∂2Gtot

∂x3∂x4

∂2Gtot

∂x4∂x1

∂2Gtot

∂x4∂x2

∂2Gtot

∂x4∂x3

∂2Gtot

∂x2
4


(G.9)

which can be computed from Eqs. G.8 according to

h11 =
∂2Gtot(~x)

∂x2
1

∣∣∣∣
xtot,n

=
∂

∂x1

(
∂Gtot

∂x1

)
=

∂

∂x1

(
fh1(x1)− fs1(x2 − x1)

)
= kh1(x1) + ks1(x2 − x1)

= kh1(xh1) + ks1(xs1)

h21 =
∂2Gtot(~x)

∂x2∂x1

∣∣∣∣
xtot,n

=
∂

∂x2

(
∂Gtot

∂x1

)
=

∂

∂x2

(
fh1(x1)− fs1(x2 − x1)

)
= −ks1(x2 − x1)

= −ks1(xs1)
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h22 =
∂2Gtot(~x)

∂x2
2

∣∣∣∣
xtot,n

=
∂

∂x2

(
∂Gtot

∂x2

)
=

∂

∂x2

(
fs1(x2 − x1)− fs2(x3 − x2 − φDNA)

)
= ks1(x2 − x1) + ks2(x3 − x2 − φDNA)

= ks1(xs1) + ks2(xs2)

h12 =
∂2Gtot(~x)

∂x1∂x2

∣∣∣∣
xtot,n

=
∂

∂x1

(
∂Gtot

∂x2

)
=

∂

∂x1

(
fs1(x2 − x1)− fs2(x3 − x2 − φDNA)

)
= −ks1(x2 − x1)

= −ks1(xs1)

h32 =
∂2Gtot(~x)

∂x3∂x2

∣∣∣∣
xtot,n

=
∂

∂x3

(
∂Gtot

∂x2

)
=

∂

∂x3

(
fs1(x2 − x1)− fs2(x3 − x2 − φDNA)

)
= −ks2(x3 − x2 − φDNA)

= −ks2(xs2)

h33 =
∂2Gtot(~x)

∂x2
3

∣∣∣∣
xtot,n

=
∂

∂x3

(
∂Gtot

∂x3

)
=

∂

∂x3

(
fs2(x3 − x2 − φDNA)− fh2(x4 − φ/2− x3)

)
= ks2(x3 − x2 − φDNA) + kh2(x4 − φ/2− x3)

= ks2(xs2) + kh2(xh2)

h23 =
∂2Gtot(~x)

∂x2∂x3

∣∣∣∣
xtot,n

=
∂

∂x2

(
∂Gtot

∂x3

)
=

∂

∂x2

(
fs2(x3 − x2 − φDNA)− fh2(x4 − φ/2− x3)

)
= −ks2(x3 − x2 − φDNA)

= −ks2(xs2)
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h43 =
∂2Gtot(~x)

∂x4∂x3

∣∣∣∣
xtot,n

=
∂

∂x4

(
∂Gtot

∂x3

)
=

∂

∂x4

(
fs2(x3 − x2 − φDNA)− fh2(x4 − φ/2− x3)

)
= −kh2(x4 − φ/2− x3)

= −kh2(xh2)

h44 =
∂2Gtot(~x)

∂x2
4

∣∣∣∣
xtot,n

=
∂

∂x4

(
∂Gtot

∂x4

)
=

∂

∂x4

(
fh2(x4 − φ/2− x3)− fb(xtot − x4)

)
= kh2(x4 − φ/2− x3) + kb(xtot − x4)

= kh2(xh2) + kb(xb)

h34 =
∂2Gtot(~x)

∂x3∂x4

∣∣∣∣
xtot,n

=
∂

∂x3

(
∂Gtot

∂x3

)
=

∂

∂x3

(
fh2(x4 − φ/2− x3)− fb(xtot − x4)

)
= −kh2(x4 − φ/2− x3)

= −kh2(xh2) (G.10)

where ki(xi) (i = h1, s1, s2, h2, b) are the stiffnesses of the elastic components
(handles, ssDNA and optical trap) and the variables xi (i = 1, . . . , 4) have
been written in terms of the extensions again. All the other components of the
Hessian matrix (h13, h14, h24, h31, h41, h42) vanish because the first derivative
does not depend on the the variable that is being derivated in second order.
For instance, h14 = 0 because ∂Gtot(~x)

∂x4
does not depend on x1. Note that all

second derivatives are symmetric (hij = hji), as expected in a function that
has continuous second partial derivatives. Now the Hessian matrix can be
written as

H (Gtot(~x)) =


h11 h12 0 0
h21 h22 h23 0
0 h32 h33 h34

0 0 h43 h44

 (G.11)

and its determinant is equal to

det H (Gtot(~x)) = h11h22h33h44 − h11h22h34h43 − h11h23h32h44

−h12h21h33h44 + h12h21h34h43 (G.12)
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which will be necessary to compute the integral. At this point it is important
to remember that the components of the Hessian matrix (and so the deter-
minant) depend on xtot and n and the calculation of the stiffnesses (i.e., the
second order derivatives) is performed at fixed values of xtot and n.

Now we recall the Taylor expansion written in Eq. G.7 and we introduce
it into the calculation of the partition function in Eq. G.6 to obtain the
following expression,

Z(xtot) =
N∑
n=0

∫
R4

e−βGtot(x1, x2, x3, x4, xtot, n) · dx1 dx2 dx3 dx4

'
N∑
n=0

∫
R4

e
−β
(
Gmin(xtot, n) + 1

2
(~x− ~xmin)T ·H · (~x− ~xmin)

)
· d~x

where the gradient of Gtot(~x) vanishes because we are expanding around the
minimum. Now we can perform the integral of the quadratic contribution
according to

Z(xtot) =
N∑
n=0

e−βGmin(xtot, n)
∫
R4

e−
β
2
(~x− ~xmin)T ·H · (~x− ~xmin) · d~x

=
N∑
n=0

e−βGmin(xtot, n)
∫
R4

e−
β
2
~y TH~y · d~y

=
N∑
n=0

e−βGmin(xtot, n)

√(
2π

β

)4
1

det H(xtot, n)

=
N∑
n=0

(
2π

β

)2 [
det H(xtot, n)

]−1/2
e−βGmin(xtot, n) (G.13)

where we have applied a change of variable (~x − ~xmin) → ~y that keeps the
same integration limits and allows to perform the Gaussian integration by
computing the determinant of the Hessian matrix.

So, in order to calculate the partition function of the whole model we
have proceed as follows:

1. Fix a value of xtot at which Z(xtot) will be calculated.

2. For this fixed value of xtot, we have to find the total energy for all the
values of n. It requires to solve the transcendental equation G.2 for
fixed values of xtot and n, find the extensions of all the elastic elements
and introduce them into Eq. G.1.
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3. For each value of n (at the same fixed value of xtot), we have to calculate
the Hessian matrix according to Eqs. G.10 and compute its determi-
nant, given by Eq. G.12.

4. Once we have all the values of Gmin(xtot, n) and det H(xtot, n) from
steps 2 and 3 respectively for all values of n, we have to multiply them
and sum over n according to Eq. G.13.

5. Go back to step 1 to calculate Z(xtot) at another value of xtot.

Once the partition function is calculated at all desired values of xtot, the
equation of state is obtained after derivating it according to Eq. 3.27,

f(xtot) = −kBT
∂ lnZ(xtot)

∂xtot

(G.14)

Figure G.2 shows the correction introduced in the calculation of the FDC
when considering the elasticity of the elements that constitute the whole
model. Note that the differences are less than 0.05 pN. Therefore the effort to
compute all the second derivatives of the Hessian matrix does not compensate
the improvement in the computation of the FDC, which is lower than the
experimental resolution of the experiments. However, this effect is important
when the length of the handles is longer and they no longer behave like rigid
rods.
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Figure G.2: FDCs for the simplified and full models. Red curve shows the simplified
model described in Sec. 3.4.1. Blue curve shows the full model described here in Ap-
pendix G.



Appendix H

Numerical calculation of the
FDC

The calculation of the FDC has to be performed numerically due to the length
of the DNA sequence. The computation of the DNA energy (Eq. 3.17) is a
simple sum of terms that extends over all the base pairs of the molecular
construct. So this large summation must be done numerically. Apart from
that, the exponential terms that enter the partition function have a wide
range of orders of magnitude and they must be treated correctly.

The partition function is a function of the distance (i.e., the total exten-
sion) xtot, which is a variable that has to be discretized in order to calculate
the value of Z at each position. The distance is divided into m equidistant
points xi, i = 0, . . . ,m separated by a distance ∆x (see Fig. H.1). A value of
∆x = 5 nm is enough for our calculations. The details of the calculated FDC
are missed for higher values of ∆x and lower values of it do not improve the
calculation.

Figure H.1: Discretization of the distance.

Now, for each value of xi we have to find the minimum of Eq. 3.22 with
respect to n. In order to do this, we have to solve Eq. 3.23 for all values
of n according to xi = xtot(f, n), compute the energies and get the value
n∗i that minimizes the energy at fixed xi. Equation 3.23 is a trascendental
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equation and it can be solved numerically by using the Newton’s method.
This method gives the equilibrium force f of the system after few interations
(no more than 10 to obtain a numerical estimation of f with a relative error
smaller than 10−5) of the following expression

fnew = fold −
xtot(f, n)− xi
x′tot(f, n)

(H.1)

where fnew and fold are the previous and the posterior values obtained from
the iteration, respectively; xtot(f, n) is Eq. 3.23 evaluated at f and n; and
x′tot(f, n) = ∂

∂f
xtot(f, n) is its derivative with respect to f . An initial guess

of f = 0 ensures the convergence of the solution because the first and second
derivatives of function xtot have positive values for all values of f > 0, which
fulfills the Newton’s method conditions (see Fig. H.2).

Figure H.2: Newton’s method. Red curve shows the approximate elastic response of
the system for n = 4000 and trap stiffness k = 80 pN·µm−1 according to xtot(f, n) −
xi. The value of xi = 4000 determines the origin ordinate. The first iteration of the
Newton’s method starts at (f, xtot − xi)=(0,−4000) and after some steps it converges to
the solution (f, xtot − xi)=(14, 0). Since the first and second derivatives of xtot(f, n)− xi
are monotonically decreasing for any value of xi > 0, f > 0 and n, the shape of the function
is very similar to the one depicted here. Therefore, the evolution of the iterations has a
similar pattern and the Newton’s method always converges when starting from f = 0.

Once we have the combination of values (xi, n
∗
i ) we can now calculate

the minimum energy Gmin(xi) = Gtot(xi, n
∗
i ) according to Eq. 3.22. The
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discretized Eq. 3.27 can be written as

f(xi) = −kBT
lnZ(xi+1)− lnZ(xi)

xi+1 − xi

= −kBT
lnZ(xi+1)− lnZ(xi)

∆x

= −kBT
∆x

ln
Z(xi+1)

Z(xi)
(H.2)

where the partition functions have to be calculated according to

Z(xi) =
N∑
n=0

exp

(
−Gtot(xi, n)

kBT

)
(H.3)

The problem with this equation is that the values of Gtot(xi, n) become larger
as the value of xi increases. When these energies are introduced in the
exponential, the value of Z(xi) can be orders of magnitude smaller than 1.

Therefore the quotient Z(xi+1)
Z(xi)

of Eq. H.2 is numerically less accurate for large
values of xi. The result is a loss of accuracy in the calculation of the FDC as
xi increases.

This problem can be fixed by taking advantage of the calculated value of
Gmin(xi). The idea consists in rewriting the partition function with all the
energies referred to this state. So we have,

Z(xi) =
N∑
n=0

exp

(
−Gtot(xi, n)

kBT

)

=
N∑
n=0

exp

(
−Gtot(xi, n)−Gmin(xi) +Gmin(xi)

kBT

)

= exp

(
−Gmin(xi)

kBT

) N∑
n=0

exp

(
−Gtot(xi, n)−Gmin(xi)

kBT

)
Z(xi) = e−βGmin(xi) · Z̃(xi) (H.4)

where

Z̃(xi) =
N∑
n=0

exp
[
−β
(
Gtot(xi, n)−Gmin(xi)

)]
(H.5)

is the partition function calculated with an energy offset given by the state
of minimum energy at fixed xi. Equation H.4 can be introduced into Eq. H.2
to obtain

f(xi) = −kBT
∆x

ln
Z(xi+1)

Z(xi)
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= −kBT
∆x

ln
e−βGmin(xi+1)Z̃(xi+1)

e−βGmin(xi)Z̃(xi)

= −kBT
∆x

[
ln
e−βGmin(xi+1)

e−βGmin(xi)
+ ln

Z̃(xi+1)

Z̃(xi)

]

f(xi) = −kBT
∆x

[
β
(
Gmin(xi)−Gmin(xi+1)

)
+ ln

Z̃(xi+1)

Z̃(xi)

]
(H.6)

where Gmin(xi), Gmin(xi+1), Z̃(xi+1) and Z̃(xi) can be easily calculated nu-
merically.

To sum up, the numerical calculation of the FDC requires the following
steps,

1. Discretize the distance with equidistant values xi.

2. For each value of xi, calculate the energies Gtot(xi, n) for all the values
of n by solving Eq. H.1.

3. Among the previously calculated energies, find the value of n∗i that
minimizes the energy for each value of xi. This energy is calledGmin(xi).

4. For each value of xi, calculate Z̃(xi) according to Eq. H.5

5. For each value of xi, calculate f(xi) according to Eq. H.6.
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Synthesis of ssDNA

A 3 kb ssDNA molecular construct was obtained by pH denaturation (strand
separation) of a 3 kb dsDNA (see Fig. I.1). The dsDNA was obtained from
PCR amplification of a ∼3 kbp fragment of λ-DNA. One of the primers
used in the process was already labeled with Biotin. The resulting product
was cleaved with the endonuclease XbaI producing a cohesive end. Another
24 base oligonucleotide (previously labeled with several digoxigenins at its
3′ end by using terminal transferase) was hybridized with a second 20-base
long oligonucleotide giving a DNA construction with one cohesive end com-
plementary to XbaI. Both products were annealed and ligated resulting in
one 3 kbp dsDNA molecule.

To produce ssDNA, the molecular construct was incubated with Strepa-
vidin coated beads for 30 min at room temperature in a volume of 15 µl of
10 mM TE buffer. Afterwards, 35 µl of 0.1 M [NaOH] were added in order
to cause the separation (i.e., denaturation) of the strands. After 30 min,
the sample was centrifuged. The white precipitate of beads and ssDNA was
re-suspended in TE buffer. The second attachment with the antidigoxigenin
beads was achieved in the fluidics chamber with the help of the micropipette
(see Sec. 3.2.2).
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 DNA 48 kb

cosL

cosR

5’
5’

XbaI

Biotin

PCR

Digestion by

endonuclease XbaI

XbaI

Digoxigenins

5’
5’

3 kb dsDNA molecule for stretching

Annealing

Figure I.1: Synthesis of the 3 kb dsDNA. The resulting dsDNA is obtained after pH
denaturation. The ssDNA molecule can be stretched between two coated beads, since the
Biotin and Digoxigenins labels are located on the same strand.



Appendix J

Shift function

The experimental FDC measurements are force vs. trap position as measured
by the light-levers. The unzipping/zipping curves contain reproducible and
recognizable landmarks (i.e., slopes and rips) which indicate the true position
of the trap. Therefore it is possible to to take advantage of these landmarks
to correct for the instrumental drift. Correction for drift is introduced in
terms of a shift function s(xtot) which is built in several steps. Due to its
relevance for data analysis we describe the steps in some detail:

• Step 1. Since the distance xtot of the FDC is a relative (not abso-
lute) magnitude, we firstly determine the origin of coordinates of the
experimental FDC (see blue arrow in Fig. J.1a). In order to do so, we
fit the last part of the experimental FDC (black and yellow curves in
Fig. J.1a) that correspond to the stretching of the ssDNA when the
hairpin is fully unzipped.

• Step 2. Having fixed the origin of coordinates we calculate the pre-
dicted FDC by using the Unified Oligonucleotide (UO) NNBP energies.
It is shown in red (Fig. J.1a,b). The qualitative behavior is acceptable
(all force rips are reproduced). However, the predicted mean unzipping
force is higher than the value found experimentally and the force rips
are not located at the correct position.

• Step 3. Next we generate a FDC with NNBP energies lower than
the UO values until the mean unzipping forces of the predicted and the
experimental FDC coincide. What we typically do is multiplying all the
10 UO NNBP energies by a factor (e.g., 0.95). The new NNBP energies
have an absolute value 8-10% lower than the UO NNBP energies. The
resulting FDC with these new energies is shown in green in Fig. J.1b
(in this particular case we took εNew

i = 0.92 · εUO
i ). Although the mean
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unzipping force of the green and black curves is nearly the same, there
is a misalignment between the rips along the distance axis. Moreover,
there are discrepancies between the predicted and measured heights
of the force rips. As we will see below, the shift function will correct
the horizontal misalignments and the NNBP energies will correct the
discrepancies along the force axis.

• Step 4. We now introduce a shift function that uses the slopes of the
sawtooth pattern of the FDC as landmark points to locally correct the
distance to align the experimental data with the theoretical prediction.
First, we want to know the approximate shape of the shift function and
latter we will refine it. This is done by looking for some characteristic
slopes of the sawtooth pattern along the FDC and measuring the local
shift that would make the two slopes (theoretical and experimental)
superimpose. Figure J.1c shows zoomed regions of the FDC and the
blue arrows indicate the local shift that should be introduced in each
slope to correct the FDC. The orange dots shown in the upper panel
of Fig. J.1d depict the local shifts vs. the relative distance that have
been obtained for the landmark points. These orange dots represent
a discrete sampled version of an ideal shift function that would super-
impose the predicted and the experimental FDC. Because these dots
are not equidistant, we use cubic splines to interpolate a continuous
curve every three landmark points. The resulting interpolated function
that describes the local shift for any relative distance is shown in violet.
Note that the violet curve passes through all the orange dots.

• Step 5. Starting from the cubic splines interpolation of the shift func-
tion that we have found (violet curve in upper panel Fig. J.1d) we can
define new equidistant points (yellow dots in lower panel Fig. J.1)d)
that define the same shift function. The yellow equidistant points are
separated 100 nm. We call these yellow points Control points.

• Step 6. We now introduce the shift function into the calculation of the
theoretical FDC. The results are shown in Fig. J.1e. Again, the black
curve is the experimental FDC, the green curve is the predicted FDC
without the local shift correction and the magenta curve is the predicted
FDC with the local shift function obtained previously. Note that the
magenta and green curves are identical, except for local contractions
and dilatations of the magenta curve. The slopes of the magenta and
the black curves now coincide. Still, the NNBP energies must be fit to
make the height of the rips between the theoretical and experimental
curve coincident.
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• Step 7. At this point we start the Monte Carlo fitting algorithm.
At each Monte Carlo step we propose new values for the 10 NNBP
energies and we also adjust the shift function in order to superimpose
the theoretical and experimentally measured FDCs. The shift function
is adjusted by modifying the values of the control points (yellow dots
in lower panel of Fig. J.1)d). The horizontal position of the yellow
points is always the same (e.g., the yellow dots located at Relative
Distance = -1000 nm will always be located there). What we change
when we adjust the shift function is the value of each point (e.g., the
yellow dot located at Relative Distance = -1000 nm may change its
shift value from -54 to -20 nm). During the Monte Carlo optimizing
procedure the shift function modifies its shape as the NNBP energies
are modified. The results are shown in Fig. J.1f. Black curves show
snapshots of the evolution of the shift function during the optimization
process from the initial shape (red curve). The green curve shows the
final shift function (the control points are not depicted in Fig. J.1f,
only the interpolated shift function). When we finally calculate the
theoretical FDC using the optimal shift function and the optimal NNBP
energies we get the maximum overlap between the theoretical prediction
and the experimental FDC. Black curve in upper panel in Fig. J.1g is
the experimental FDC and red curve is the predicted FDC after having
fit the NNBP energies and the shift function. The correction for drift
has now finished. The optimal shift function is also shown in the right
panel in Fig. J.1g.
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Figure J.1: Fit of the shift function. (a) Steps 1 and 2. (b) Steps 2 and 3. (c) Step 4.
(d) Steps 4 and 5. (e) Step 6. (f) Step 7. (g) Step 7.



Appendix K

Sampling of energy states
distribution

By definition, the magnitudes required to calculate a mean squarred error
(between a theoretical prediction and an experimental measurement) must
be the same. Therefore, we must be sure that the experimental FDC (f exp

i )
that enters Eq. 5.2 is the same magnitude than the theoretical FDC (f the

i ).
According to our calculations, the theoretical FDC is in equilibrium. How
do we know that the experimental (i.e., measured) FDC is an estimation
of the equilibrium FDC too? This appendix describes how the unzipping
experiments at low pulling rate are capable of sampling the entire distribution
(or at least the most significant part of it) of energy states of the DNA
molecule, which is a prerequisite for calculating ensemble averages, partition
functions and thermodynamic parameters such as the equilibrium FDC.

Let us discuss the states of DNA that have higher energy than the min-
imum. In unzipping experiments, the position of the unzipping fork (see
Fig. K.1a) exhibits thermally induced fluctuations in such a way that the
system can explore higher free energy states. Such fluctuations represent
the first kind of excitations in the system and will be discussed in the next
paragraphs. However there is a second kind of excitation: breathing fluctu-
ations. The breathing is the spontaneous opening and closing of base pairs
produced in the dsDNA, far away from the unzipping fork (see Fig. K.1b).
During this process, the DNA explores states of higher free energy while the
unzipping fork is kept at the same position. So the breathing does not in-
duce any change in the position of the unzipping fork. Consequently, we are
not able to distinguish the breathing in our unzipping experiments because
breathing fluctuations are not coupled to the reaction coordinate that we
measure, i.e., the molecular extension, and should have a small effect on the
measured FDC. Note that breathing fluctuations are expected to be relevant
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Figure K.1: (a) Opening fork. (b) Breathing.

only at high enough temperatures. While the inclusion of breathing fluctu-
ations should be considered at high enough temperatures their contribution
at 25◦C is expected to be minimal. The fact that our model reproduces very
well the experimental FDC supports this conclusion.

Now let us focus on the fluctuations of the unzipping fork. The unzipping
of DNA is performed so slow that the system has enough time to reach the
equilibrium at every fixed distance along the pulling protocol. Figure K.2a
shows a fragment of the FDC in a region where 3 states (each one with a
different number of open base pairs) of the 2.2 kbp molecule coexist (n1 =
1193, n2 = 1248 and n3 = 1300). Figure K.2b shows the hopping in force due
to the transitions that occur between these 3 states. The slow pulling rate
guarantees that the hopping transitions are measured during unzipping (i.e.,
many hopping events take place while the molecule is slowly unzipped). The
filtering of the raw FDC data at 1 Hz (black curve in Fig. K.2a) produces a
reasonably good estimation of the equilibrium FDC. It is also important to
remark that the unzipping and rezipping curves are reversible (see Fig. 3.11c).
This supports the idea that the unzipping process is quasistatic and correctly
samples the energy states.

In general, the hopping frequency between coexistent states is around
∼ 10− 50 Hz and the area of coexistence extends over 40 nm of distance
(see Fig. K.2b). At a pulling rate of 10 nm/s, we can measure around
10− 40 transitions, which in most cases is sufficient to obtain a good es-
timation of the FDC after averaging out the raw data at a bandwidth of
1 Hz.

Figure K.3a shows the free energy landscape of one molecule at different
fixed distances, which is given by G(xtot, n) in Eq. 3.22. A detailed view of
the free energy landscape (see Fig. K.3b) shows that it is a rough function
and its coarse grained shape is parabolic. It means that for each value of xtot

there is always a state of minimum global energy surrounded by other states
of higher free energies (see Fig. K.3b). Although there are lots of states in
the phase space, in the experiments we only observe those states that differ
in free energy by less than ∼ 5 kBT with respect to the state of minimum
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Figure K.2: Coexistence of states. (a) Left panel shows the measured FDC for the
2.2 kbp sequence. Right panel shows the fragment of the FDC (framed in the left panel)
where 3 states coexist. Red curve shows the raw data and black curve shows the data
filtered at 1 Hz. (b) Red curve shows the force vs. time of the previous fragment where
the transitions between these 3 states can be observed. The blue lines indicate the average
forces corresponding to each of these 3 states.

free energy. So the hopping transitions described in Fig. K.2b are between
states that have similar free energies. Outside this range of free energies,
the higher energetic states are rarely observed and their contribution to the
equilibrium FDC is negligible.

Summing up, the temperature of the experiment (so low that the breath-
ing is neglegible), the slow pulling rate and the shape of the free energy
landscape ensure us that we explore higher energetic states (within a range
of ∼ 5 kBT with respect to the global minimum) during the unzipping pro-
cess. Therefore, the experimental FDC filtered at 1 Hz is a good estimation
of the equilibrium FDC.
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Figure K.3: Free energy landscape for the 2.2 kbp sequence at fixed distance. (a) The
parabolic-like shape of the free energy landscape around the minima can be identified in
a coarse grained view of what in truth is a rough landscape (see zoomed part of the land-
scape). Black, orange, green, blue, yellow, magenta and red curves show the free energy
landscape at xtot = 0, 350, 500, 750, 1000, 1250 and 1455 nm, respectively. (b) Zoomed
region of the free energy landscape at the distance in which the 3 states of Fig. K.2 coexist.
The blue arrows indicate the minima that correspond to these states. The highlighted gray
area shows an energy range of 5 kBT .



Appendix L

Error estimation in the Monte
Carlo optimization

This aim of this appendix is to clarify which are the sources of errors in the
estimates of the NNBP values when applying the MC optimization. There
are three kinds of errors at different levels that we will denote as σ1, σ2

and σ3:

1. The first error σ1 comes from the fitting algorithm. The uncertain-
ties of the estimated NNBP energies (σεi) indicate how much the error
function (E(ε1, . . . , ε10, εloop) see Eq. 5.2) changes when the fitting pa-
rameters εi are varied around the minimum. For instance, a variation
of the AA/TT motif (δε1) around the minimum (see Fig. L.1) produces
a larger change in the error function than a variation of the TA/AT
motif (δε10). This indicates that the uncertainty of AA/TT is lower
than that of TA/AT. The curvature of the minimum in each direction
εi gives the uncertainty. There is a different set of σεi uncertainties
for each fit (i.e., each molecule). A quantitative evaluation of the un-
certainty of the NNBP parameters requires the evaluation of the χ2

function for each FDC (i.e., each fit), which is given by:

χ2(~ε) =
N∑
i=1

(
fi − f(xi;~ε)

σy

)2

(L.1)

where N is the number of experimental points of the FDC; xi and fi are
the position and the force measurements, respectively; ~ε is the vector of
fitting parameters {εi}, i = 1, . . . , 10,loop; f(xi;~ε) is the theoretically
predicted FDC according to the model (see Sec. 3.4.1); and σy is the ex-
perimental error of the force measurements performed with the optical
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tweezers. The resolution of the instrument is taken as σy = 0.1 pN. The
uncertainty of the fit parameters is given by the following expression
[162]:

σεi =
√
Cii (L.2)

where Cii are the diagonal elements of the variance-covariance matrix
Cij. In a non-linear least square fit, this matrix can be obtained from
Cij = 2 ·H−1

ij , where H−1
ij is the inverse of the Hessian matrix

Hij =
∂2 χ2(~εm)

∂εi ∂εj
(L.3)

of χ2(~ε) evaluated at the point ~εm that minimizes the error. Note that
the error function and the χ2 function are related by a constant factor,
χ2(~ε) = (N/σ2

y) · E(~ε), so their Hessians are related by one constant
factor, as well. The calculation of σεi is quite straightforward and it
gives values between 0.003− 0.015 kcal·mol−1. These values represent
the first type of error that we call σ1. Note that the Hessian ma-
trix evaluated at the minima found with the heat-quench algorithm is
very similar to the Hessian matrix evaluated at the minimum, which
means that the curvature is almost the same in all heat-quench minima.
Therefore the error of the fit (σ1) takes the same value within a region
of ±0.1 kcal·mol−1.

2. The second error comes from the dispersion of the heat-quench minima.
As we saw previously, there are several minima corresponding to differ-
ent possible solutions (each solution being a set of 10 NNBP energies)
for the same molecule. The values of the NNBP energies correspond-
ing to the different solutions are Gaussian distributed (see Fig. 5.8c)
and the average standard deviation is about 0.05 kcal·mol−1. All these
considerations result in a second typical error σ2 = 0.05 kcal·mol−1.

3. Finally, the third error corresponds to the molecular heterogeneity in-
trinsic to single molecule experiments. Such heterogeneity results in a
variability of solutions among different molecules. Indeed, the FDCs
of the molecules are never identical and this variability leads to dif-
ferences in the values of the NNBP energies. This variability is the
major source of error in the estimation of our results. The error bars in
Figs. 5.12c,d and 5.13 indicate the standard error of the mean, which is
around 0.1 kcal·mol−1 on average. This is what finally determines the
statistical error of our analysis, σ3 = 0.1 kcal·mol−1.
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Figure L.1: Error function (see Eq. 5.2) around the minimum for small variations of
some NNBP energies. Blue dots show the error function evaluated at different values
of εi. Orange curves show the quadratic fits around the minimum according to E(ε) =
c/2 · (ε − ε0)2 + E0, where c, ε0 and E0 are fitting parameters. Red crosses show the
solutions found with the MC algorithm, which differ by less than 0.05 kcal·mol−1 with
respect to the minimum. Note that the values of the curvatures (c) of the error function
are different for each NNBP parameter. The curvature allows us to estimate the error of
the fitting parameters. We have checked that the curvature of the quadratic fit (i.e., the
value of the parameter c) for each NNBP parameter coincides with the diagonal elements
of the Hessian matrix (Eq. L.3), which give the curvature of the error function in the
11-dimensional space.

Since the major source of errors is the variability of the results from
molecule to molecule, we simply report this last error in the manuscript.
Because σ3 > σ2 > σ1 we can safely conclude that the propagation of the
errors of the heat-quench algorithm will not increase the final value of the
error bar.





Appendix M

Error estimation in the
enthalpy and entropy inference

Here we provide and estimation of the error (σ∆hi) of the 10 parameters
∆h0

i (i = 1, . . . , 10) involved in the fit of Eq. 5.4. We simplify the notation
by writing the ∆h0

i (i = 1, . . . , 10) values given in Table 5.3 in vectorial

form according to ~∆hm, where the subscript m stands for minimum. Note
that ~∆hm minimizes the χ2( ~∆h) error function (Eq. 5.4). By definition,

the first derivatives of χ2( ~∆h) with respect to ∆~h vanish at the minimum

(~∇ · χ2(∆~hm) = 0). So we can write a Taylor expansion of χ2( ~∆h) around
~∆hm up to second order:

χ2(∆~hm + δ ~∆h) ' χ2( ~∆hm) +
1

2
δ ~∆h

T
·H
(
χ2( ~∆hm)

)
· δ ~∆h (M.1)

where δ ~∆h is a variation of the ~∆hm vector and H
(
χ2( ~∆hm)

)
is the Hessian

matrix of second derivaties

Hij =
∂2 χ2(∆h0

1, . . . ,∆h
0
10)

∂∆h0
i ∂∆h0

j

(M.2)

evaluated at the minimum ~∆hm. After fitting Eq. 5.4, the estimation of
χ2( ~∆hm) = 1.74 (in units of squared Celsius degrees ◦C2) is lower than the
typical experimental error in melting experiments, which is 2◦C (i.e., χ2 = 4).

So there is a range of ~∆h values around the minimum ~∆hm that still predict
the melting energies within an average error of 2◦C. This range of values is
what determines the error in the estimation of ~∆hm.

Following this criterion, we look for the variations around the minimum
(δ ~∆h) that produce a quadratic error of 4◦C2. We divide this quadratic
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error into the 10 fitting parameters (∆h0
i i = 1, . . . , 10) and the 10 related

ones (∆s0
i i = 1, . . . , 10). So we look for each δ∆hi that induces an error of

4◦C2/20 = 0.2◦C2. Now, introducing χ2( ~∆hm + δ ~∆h) = 4 and χ2( ~∆hm) =

1.74 (divided by 20 parameters) into Eq. M.1 and isolating δ ~∆h, we get one
expression to estimate the errors of the 10 fitting parameters:

δ∆hi = σ∆hi =

√√√√2 · (4− 1.74)/20

Hii

(
χ2( ~∆hm)

) =

√√√√ 0.226

Hii

(
χ2( ~∆hm)

) , i = 1, . . . , 10

(M.3)
which gives values between 0.3 − 0.6 kcal·mol−1 (see Table 5.3). Now, the
error in the estimation of the entropies (σ∆si) can be obtained from error
propagation of Eq. 5.5:

σ∆si =
1

T
(σ∆hi + σ∆εi) i = 1, . . . , 10 (M.4)

where T = 298.15 K is the temperature and σ∆εi are the experimental er-
rors of our estimated NNBP energies from the unzipping measurements (Ta-
ble 5.2). The errors range between 1.2− 2.2 cal/mol·K (Table 5.3).
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