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Abstract

” You write a book, and it takes you forever, and you make all kinds
of mistakes, and then you finally figure out what you’re doing.
And you go back, and you take out all of the worst mistakes, the
ones that you can find, and you make it look like you knew what
you were doing all along. That’s the final illusion.

— Richard Russo
(Pulitzer awardee, in an interview to WNYC, 2016)

Atomic and optical physics are two fields closely connected by a shared range of
energy scales, and the interactions between them. Atoms represent the most
fundamental components of matter, and interactions with electromagnetic fields are
responsible for many properties used to characterize a material, like the emission
and absorption of radiation by these systems. Over the last decades, this has
allowed us to use light as a tool to access and manipulate the internal states of
atomic systems. Such a quantum control has transformed atoms into one of the
preferred platforms to explore fundamental science, including applications in
quantum information, quantum metrology or, more recently, the realization of
synthetic materials where light can induce interactions that would be difficult to
find intrinsically in real materials.

In the first part of this Thesis, we show how single atoms coupled to a cavity field
can offer unique opportunities as quantum optomechanical devices because of their
small mass and strong interaction with light. In particular, we focus on the
"single-photon strong coupling" regime, where motional displacements on the order
of the zero-point uncertainty are sufficient to shift the cavity resonance frequency by
more than its linewidth. By coupling atomic motion to the narrow cavity-dressed
atomic resonance, we theoretically observe that the scattering properties of single
photons can become highly entangled with the atomic wavefunction, even if the
cavity linewidth is large. This leads to a per-photon motional heating that is
significantly larger than the single-photon recoil energy, as well as
mechanically-induced oscillations that could be observed in the correlations of
state-of-the-art cavity systems.

In the second part of the Thesis, we investigate how synthetic materials built using
light can be harnessed as quantum simulators, defeating the limitations that classical
computers face in the exploration of quantum phenomena. We particularly focus
on ultracold atomic mixtures trapped in optical lattices, where atom-mediated long-
range interactions can provide an enabling tool in the simulation of relevant problems
in condensed matter or quantum chemistry.

First, we show that fermionic atoms in an ultracold gas can act as a mediator,
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giving rise to effective long-range RKKY interactions among other neutral atoms
trapped in an optical lattice. We further propose several experimental knobs to tune
these interactions, which are characterized by the density and dimensionality of the
gas and are accessible in current experimental platforms. We also show that these
knobs open up the exploration of new frustrated regimes where
symmetry-protected topological phases and chiral spin liquids emerge.

Second, we introduce a set of experimental schemes where long-range
interactions are mediated by an additional bosonic species trapped in a
commensurate optical lattice, both in 2D and 3D. In particular, we show that the
interplay with cavity QED can lead to effective Coulomb-like repulsion, which
opens the door to the analog simulation of quantum chemistry problems using
ultracold fermionic atoms as simulated electrons. Apart from explaining the
emergent mechanism, we provide operational conditions for the simulator,
benchmark it with simple atoms and molecules, and analyze how the continuous
limit is approached for increasing optical lattice sizes. Finally, we compare our
results with those of the continuum limit, where conventional quantum chemistry
methods can be evaluated and tested.

In summary, our results show connections between different areas of theoretical
and experimental physics where light-matter interaction can play a dominant role,
and suggest how this can be harnessed to further advance our understanding of
strongly-correlated quantum matter.

Resumen
La física óptica y atómica son dos campos de investigación conectados por un rango
de energías común. El átomo representa el componente más fundamental de la
materia, y su interacción con campos electromagnéticos es responsable de muchas
de las propiedades utilizadas para caracterizar materiales, como por ejemplo la
emisión y absorción de radiación por estos sistemas. Este control a nivel cuántico ha
erigido los átomos como una de las plataformas preferidas para explorar ciencia
fundamental, incluyendo aplicaciones en información cuántica, metrología o, más
recientemente, la fabricación de materiales sintéticos en que la luz es capaz de
inducir interacciones que serían difíciles de encontrar intrínsecamente en materiales
convencionales.

En la primera parte de esta Tesis mostramos cómo un átomo individual acoplado
a una cavidad puede manifestar propiedades optomecánicas a nivel cuántico únicas,
debido a su baja masa y fuerte interacción con la luz. En particular, nos centramos
en el límite de acoplamiento fuerte al nivel de un único fotón, donde un
desplazamiento en el orden de la incertidumbre del punto cero es suficiente para
cambiar la frecuencia de resonancia de la cavidad más allá de su ancho de línea. Al
acoplar este movimiento del átomo a su estrecha resonancia, observamos
teóricamente que la dispersión de fotones individuales queda fuertemente
entrelazada con la función de onda del átomo, incluso cuando la resonancia de la
cavidad es ancha. Como resultado, cada fotón caliente el átomo significativamente
más de lo que se esperaría de su energía de retroceso, y podría manifestarse en
dispositivos actuales en forma de oscilaciones dictadas por el movimiento del
átomo.

En la segunda parte de la Tesis investigamos cómo algunos materiales sintéticos
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fabricados con luz pueden utilizarse como simuladores cuánticos, desafiando así las
limitaciones que los ordenadores clásicos enfrentan actualmente a la hora de
explorar fenómenos cuánticos. En particular, nos centramos en el estudio de mezclas
de átomos ultrafríos atrapados en redes ópticas, donde interacciones de largo
alcance mediadas por estos átomos pueden jugar un papel fundamental en la
simulación de problemas relevantes en materia condensada o química cuántica.

Primero, mostramos que átomos fermiónicos en un gas ultrafrío pueden actuar
como mediadores, dando lugar a interacciones efectivas de largo alcance tipo RKKY
entre átomos neutros atrapados. Asimismo, proponemos diferentes estrategias para
modular estas interacciones a través de la densidad y dimensión del gas, lo que es
experimentalmente accesible en plataformas actuales. Mostramos también que esta
versatilidad permite la exploración de sistemas frustrados, donde aparecen fases
topológicas protegidas por simetría y líquidos quirales de espín.

En segundo lugar, introducimos un conjunto de esquemas experimentales donde
las interacciones de largo alcance son mediadas por una especie bosónica adicional
atrapada en una red óptica, tanto en 2D como en 3D. En particular, mostramos que
la interacción adicional con una cavidad puede dar lugar a una repulsión efectiva
del tipo Coulomb, lo que abre la puerta a simular de manera analógica problemas de
química cuántica, tomando átomos fermiónicos ultrafríos como electrones
simulados. Además de explicar estos mecanismos, derivamos las condiciones
operacionales para el simulador, lo probamos para átomos y moléculas sencillas, y
analizamos cómo se aproxima el límite en el continuo a medida que la red óptica
aumenta. Finalmente, comparamos nuestros resultados con los esperados en el
continuo, donde los métodos utilizados en química cuántica pueden ser evaluados y
puestos a prueba.

En resumen, nuestros resultados dibujan conexiones entre diferentes áreas de la
física teórica y experimental donde la interacción entre la luz y la materia puede jugar
un papel fundamental, y sugerimos cómo esto puede utilizarse para avanzar nuestra
comprensión de la materia cuántica.
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” The problems of chemistry and biology can be greatly helped if our
ability to see what we are doing, and to do things on an atomic
level, is ultimately developed.

— Richard P. Feynman
(Extract from "There is plenty of room at the bottom",

Engineering and Science 23, 22, 1960)
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Chapter 1

Introduction

” When you write, readers judge the significance of your problem
not by the cost you pay, but by the cost they pay if you don’t solve
it. So what you think is a problem they might not. To make your
problem their problem, you must frame it from their point of view,
so that they see its cost to them.

— Wayne C. Booth, et al.
(Extract from "The Craft of Research")

In Nature, systems dominated by the same physical laws behave alike, regardless
how unsimilar they may look at a first glance. While this may look a superfluous
observation, the ability to learn about a complex system by manipulating a more
accessible one has enabled human creations that overcome the technical limitations
of their time. For example, the Catalan architect Antoni Gaudí used inverted models
formed by hundreds of hanging ropes to identify the optimal design for the cathedral
he was projecting. Translating the tension of these ropes into the stress of his arcs,
these forms shaped by nature corresponded to the design that better distributed the
structural loads of his construction, as illustrated in Fig. 1.1(a-b). Decades later, the
German architect Frei Otto relied on the shapes described by soap sheets to identify
the most stable design for the surfaces that would cover the Olympic Stadium of
Munich in 1972. As soap sheets naturally minimize the surface within a defined
contour, the covers unveiled in this manner would be specially stable against any
deformation, as Otto desired [see Fig. 1.1(c-d)]. But these simulations are not only
limited to mechanical systems. For example, fluid equations are also challenging to
solve, and the aerodynamic properties of cars and planes are often tested inside wind
tunnels. Water tanks are also used to better understand the effect that the sea can
have on the shores of city models built at scale.

Coming back to our present day, an architect who is able to compute the
mechanical stress of her building on a desktop computer while visualizes the result
in some virtual reality glasses may point out that some of these artefacts are just a
distant memory of our history. However, still today, humankind faces problems that
are fundamentally elusive to the classical computational capabilities we have. One
of these challenges is the description of reality at very small scales, the one of
electrons, atoms or molecules, which is dominated by the strange laws of quantum
mechanics. Once the state of an electron or an atom is not fully determined, its
computational complexity grows exponentially with the number of elements, which
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(a) (b)

(c) (d)

(e) (f)

H
H

FIGURE 1.1: Example of analog simulators used in architecture (a,c) and quantum physics
(e), together with their simulated counterparts, (b,d), and (f), respectively. (a) Funicular
model developed by Antoni Gaudí for the cript of colonia Güell. (b) Highlight of the archs
found at the Passion façade of Sagrada Familia (Barcelona). (c) Soap sheets subjected to an
external force in some of its points. (d) Covers of the Olympic park of 1972 (Munich). (e)
Two bosonic atoms (white) trapped in an optical lattice and attracted to two optical potentials
(green). (f) Schematic representation of the electronic cloud of a H2 molecule. Credits: (a,b,d,f)

©Wikimedia. (c) ©Frei Otto - Spanning the future.
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soon becomes intractable for our largest classical supercomputers whenever more
than a few hundred atoms are present. It then became obvious in the early 80s that,

” Nature isn’t classical, dammit, and if you want to make a
simulation of nature, you’d better make it quantum mechanical.

— Richard P. Feynman
(Int. J. Theor. Phys. 21, 467, 1982)

This is, unlike the traditional models made of ropes or soap, any physical simulator
we build to better understand the quantum world also needs to behave quantum
mechanically.

Currently, different platforms are used to simulate quantum systems. These
include molecules, ionic atoms, superconducting circuits, quantum dots, diamond
nitrogen vacancies. . . Among these platforms, atomic systems stand out as one of the
preferred ones [7]. The reasons is that these systems have quantized internal degrees
of freedom (electronic levels, nuclear spin...) with high coherence, and many optical
transitions to initialize, engineer, and monitor them [8, 9]. Focusing on the simplest
case of atomic Hydrogen, the energy difference between its lowest energy levels is
∼ 1015 Hz, which is in the order of the visible range of frequencies for light. The
development of laser technologies starting in the late 60s provided coherent sources
of light that awoke the field of quantum optics [10]. First experimental results
revealed that photons in these lasers could hybridize with the internal structure of
an atom. In 1977, Kimble reported non-classical effects on the light re-emitted by a
sodium gas [11] and, one decade later, Rabi oscillations between a cavity photon and
the excitation of atoms in an ensemble were observed [12–15].

This interaction of light with the effective dipole moment of an atom does not
only influence its internal states, but also imparts radiation forces that can
significantly influence its motion [16, 17]. Using sodium atoms, this allowed to
decrease their kinetic energy in 1985 (cooling) [18], or trap them in a reduced region
of space in 1986 [19], which deserved the 1997 Nobel Prize of Physics for Chu,
Philips and Cohen-Tannoudji for the "development of methods to cool and trap atoms
with laser light."

Such a motional control enabled a wide range of technological advances [20]. By
reducing atomic motion, one mitigates the room-temperature Doppler and collision
energy shifts that widens the atomic levels. This reduction of momenta distribution
also allows one to better control the time an ensemble of flying atoms interact with a
fixed laser, which is the enabling mechanism behind the cold-atom fountains
developed in 1989 [21]. The combination of cooling with these interferometry
experiments allowed to measure the |4, 0⟩ ↔ |3, 0⟩ transition of 133Cs with a relative
error smaller than 10−15 (20 times more accurate than previous setups), becoming
the primary standard definition of a second [22]. In 1995, these cooling techniques
were pushed to the limit of condensing an ensemble of bosonic atoms to their
fundamental ground state, the Bose-Einstein condensate, achieving temperatures
below ∼ 1 µK [23, 24]. This soon deserved the 2001 Nobel prize to Ketterle, Cornell
and Wieman "for the achievement of Bose-Einstein condensation in dilute gases of alkali
atoms, and for early fundamental studies of the properties of the condensates."

One could point out that these were effects appearing in ensembles of 105 − 107

atoms, while a quantum control at the single-atom level would be desirable to
simulate challenging quantum problems. Gaining this single-particle control was
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highly non-trivial and, in the early days of quantum mechanics, it was even believed
to be impossible. In the words of Schrödinger,

” We never experiment with just one electron or atom or (small)
molecule. In thought-experiments we sometimes assume that we
do; this invariably entails ridiculous consequences. (. . . ) it is fair
to state that we are not experimenting with single particles any
more than we can raise Ichthyosauria in the zoo.

— Erwin Schrödinger
(J. Phil. Sci 3, 233, 1952)

Interestingly, the developed cooling techniques soon allowed to rise Icthyosauria in
this zoo [25, 26]. Starting with charged particles, individual ions were trapped in the
early 90s by appropriately manipulating the incident electromagnetic fields [27, 28].
It was only one decade later that this control was extended to single neutral
atoms [29], where non-homogeneous electric and/or magnetic fields are used to
distort the atomic energy levels in a position-dependent manner.

Following a bottom-up description, the minimal example of light-matter
interactions is the interplay between a single atom and a single photon. As it will be
introduced in Chapter 2, the probability that an atom absorbs a resonant photon in
free-space gets fundamentally upper bounded because of the finite cross-section of
the atom and the diffraction limit for light [30, 31]. One way to push this interaction
is by introducing the atom in a high-quality optical cavity, where the light-atom
interaction gets enhanced by the number of photon round-trips. As mentioned
above, the cavity field imparts effective forces that modifies atomic motion.
Conversely, the resonance frequency of the cavity also gets modulated by the
position of the atom, which defines an effective refractive index that depends on the
region of the cavity where the atom is placed [32]. As a consequence, atomic
position determines the probability that an incoming photon gets reflected and, with
that, the overall population of the cavity field [33, 34]. In Chapter 3 we will focus on
the resulting interplay between cavity field and atomic motion. In particular, we will
derive optimal driving conditions that maximize this optomechanical coupling, and
analyze experimental signatures that allow us to witness strong optomechanical
effects between a single photon and a single atom.

Continuing the ladder towards synthetic quantum matter generation, the next
goal is gaining the ability to build complex systems formed by several individual
atoms. Nowadays, different techniques allow us to control the trapping of hundreds
of atoms. The first realizations of ordered arrays of atoms with tunable geometries
was enabled by optical lattices created by the interference of multiple-beams [35, 36],
as atoms feel attracted to detuned light. Using holographic techniques,
state-of-the-art dipole traps can engineer the individual trapping of hundreds of
atoms in any arbitrary position of space [37]. The motional control provided by
optical lattices soon allowed to build some of the first atomic quantum simulators,
which addressed problems related to condensed matter physics. In the same
manner that the ropes hung by Gaudí taught him about the arches of his building,
atoms tunneling through different lattice sites simulated simple models about how
electrons move in the lattice potentials described by crystalline structures. This was
the case of the phase transition that had been predicted in the Fermi-Hubbard
model, a minimal description used to describe high-Tc superconductivity [38]. As a
proof-of-principle realization of such control, its bosonic version [39] was
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experimentally realized in 2002 with a 87Rb atom simulator in optical lattices [40]
(see Section 4.4.1), and it was later implemented with fermionic atoms in 2008 [41].

Since then, the field has quickly developed over the last two decades, providing a
deeper understanding of quantum phenomena that defeats the capabilities of
state-of-the-art analytical or numerical methods. This is the case of many-body
problems related to spin physics [42], quantum transport [43, 44] or
thermalization [45–47] that can be addressed by atoms trapped in optical lattices. By
tuning the geometry of these lattices one can induce hexagonal lattices where Dirac
cones can appear [48], or even explore topological phase transitions, like the
Haldane [49] or Harper-Hofstadter models [50]. Beyond this low-energy physics,
the interplay between bosonic and fermionic mixtures [51, 52] can allow us to
engineer artificial Gauge fields, which can address open questions in high-energy
physics [53–55].

The richness of these models arises from the ability of atoms to interact with each
other. Rather than having multiple copies of the same quantum phenomena,
strongly correlated effects appear when the behaviour of each atom is influenced by
the rest of them. The simplest interactions occur when this influence is local, for
example, through collisions with a nearby atom or tunneling to a neighbouring
occupied site of the lattice. Other problems, however, require longer-range
interactions. This is the case of theoretical questions in quantum transport,
thermalization [56], or quantum magnetism [57]. Arguably, one of the holy grails in
this direction is quantum chemistry, where the electrons responsible for the
molecular bounds experience Coulomb repulsion, which decays as 1/r with the
distance. This long-range repulsion for electrons is naturally mediated by the
exchange of virtual photons, and do not have a natural counterpart for neutral
atoms in optical lattices.

The second part of this Thesis is precisely focused on developing strategies to
mediate long-range interactions among neutral atoms trapped in optical lattices.
Our approach focuses on replacing the virtual photon that mediates this interaction
in real life by an additional mediating atomic species, similarly to how architects
also got inspired by nature when designing their simulators. Different
configurations for this additional species lead to a diverse range of scalings for the
mediated potential. These range from exponentially attenuated interactions with an
adjustable decaying length, in the case of the simplest schemes, to effective
long-range Coulomb-like interactions for the most sophisticated setups [see
Fig. 1.1(e-f)]. The toolbox offered by atomic long-range mediated interactions thus
provides an interesting experimental roadmap, where simple configurations allow
us to build simplified toy models where phenomena like frustrated phases of matter,
molecular binding or dissociation can be studied in current devices. Their
realization may well push the experimental state-of-the-art in cold atoms simulators
to the more sophisticated configurations where real-life chemistry could be
simulated in an analog way.

In the same way that the towers that Gaudí designed for the Sagrada Familia with
just some ropes are now lifted under the guidance of the most sophisticated 3D
software, quantum computers will surely follow the lead of analog simulators in the
(hopefully not so distant) future that they admit error correction and a large-scale
production. In the meantime, the advances made by our atomic models may allow
us to keep exploring the quantum world and enable discoveries that, well sure, will
survive beyond the paradigms in computation still to come.
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1.1 Outline of this Thesis

The content of this Thesis is structured in two different parts. Part I focuses on the
motional control of single atoms coupled to an optical cavity. Part II develops
different strategies capable of engineering long-range interactions among atoms
trapped in optical lattices. Each of these parts is preceded by an introductory
chapter (Chapters 2 and 4, respectively) that reviews several theoretical and
background concepts we judge useful to better understand the subsequent parts of
this Thesis. An expert reader in the field may then decide to skip such introductory
chapters and dive directly into the original results of this Thesis, presented in the
remaining Chapters 3, 5, 6 and 7. We now briefly summarize the content of each
chapter,

• Chapter 2 introduces the basic notions of light-matter interaction at the single
atom level. First, we describe how an external light-field can shift the natural
energy levels of an atom and induce effective trapping potentials. Second, we
review the Jaynes-Cummings Hamiltonian that governs the interaction of an
atom with a quantized mode of an optical cavity, and introduce the concept of
cooperativity. Finally, we present the input-output formalism that allows one
to consider the interplay of this system with the environment.

• Chapter 3 shows how single atoms coupled to a cavity can offer unique
opportunities as quantum optomechanical devices because of their small mass
and strong interaction with light. In particular, we focus on the "single-photon
optomechanical strong coupling" regime, where motional displacements on the
order of the zero-point uncertainty are sufficient to shift the cavity resonance
frequency by more than its linewidth. In many cavity QED platforms,
however, this is unfeasible due to the large cavity linewidth. There, we
propose an alternative route in such systems, which instead relies on the
coupling of atomic motion to the much narrower cavity-dressed atomic
resonance frequency. We discuss and optimize the conditions in which the
scattering properties of single photons from the atom-cavity system become
highly entangled with the atomic motional wave function. We also analyze the
prominent observable features of this optomechanical strong coupling. This
includes a per-photon motional heating that is significantly larger than the
single-photon recoil energy, as well as mechanically-induced oscillations in
time of the second-order correlation function of the emitted light.

• Chapter 4 shifts the focus to the study of ultracold atoms trapped in optical
lattices. We first introduce the Bloch formalism that simplifies the analysis of
this system, and review its success in the simulation of condensed matter
problems, starting with the celebrated Bose-Hubbard model. We then motivate
the impact that inducing long-range interactions among these atoms can have
in the simulation of contemporary problems, such as quantum chemistry.
Finally, we review the different strategies that are currently used to access
extended interactions, and discuss the interest of further exploring
atom-mediated interactions that could mimic Coulomb-like electronic
repulsion.

• Chapter 5 shows that fermionic atoms in ultracold atomic mixtures can act as
mediators, giving rise to long-range RKKY interactions characterized by the
dimensionality and density of the fermionic gas. There, we propose several
tuning knobs, accessible in current experimental platforms, that allow us to



1.1. Outline of this Thesis 9

further control the range and shape of the mediated interactions, extending the
existing quantum simulation toolbox. In particular, we include an additional
optical lattice for the fermionic mediator, as well as anisotropic traps to change
its dimensionality in a continuous manner. This allows one to interpolate
between power-law and exponential decays, introducing an effective cutoff for
the interaction range, as well as to tune the relative interaction strengths at
different distances. Finally, we show how this approach allows one to
investigate certain frustrated regimes that were not previously accessible,
where symmetry-protected topological phases as well as chiral spin liquids
emerge.

• In Chapter 6, we propose an analog simulator for discrete two dimensional
quantum chemistry models based on cold atoms in optical lattices. We first
analyze how to simulate simple models, like the discrete versions of H and H+

2 ,
using a single fermionic atom. We then show that a single bosonic atom can
mediate an effective Coulomb repulsion between two fermions, leading to the
analog of molecular hydrogen in two dimensions. We extend this approach
to larger systems by introducing as many mediating atoms as fermions, and
derive the effective repulsion law. In all cases, we analyze how the continuous
limit is approached for increasing optical lattice sizes.

• Chapter 7 presents a new approach to the simulation of three-dimensional
quantum chemistry problems in an analog way. Our method relies on the
careful combination of two technologies: ultra-cold atoms in optical lattices
and cavity QED. In the proposed simulator, fermionic atoms hopping in an
optical potential play the role of electrons, additional optical potentials
provide the nuclear attraction, and a single spin excitation over a Mott
insulator mediates the electronic Coulomb repulsion with the help of a cavity
mode. We also provide the operational conditions of the simulator and
benchmark it with simple two-electron atoms (He) and molecules (H2 and
HeH+).

• In Chapter 8, we finally summarize the main conclusion of this Thesis, and
discuss some of the different research directions that it opens.

Based on the interconnection among different chapters, we propose the following
reading order that we believe can accommodate the different interests of the reader:
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Chapter	1

Chapter	2

Chapter	3 Chapter	4

Chapter	5 Chapter	6

Chapter	7

Chapter	8

Part	I Part	II
Reading	
order

Following this diagram, the content of a given chapter distills from those chapters
represented immediately above. For example, a reader interested in Chapter 7, is
recommended to firstly read through Chapters 1, 2, 4 and 6, so that the different
ideas introduced along the text are naturally presented.

1.2 List of publications.
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Part I

Atom-light interactions
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Chapter 2

Preliminaries I: light-matter
interaction

” Whether you’re a writer, marketer, consultant, or lawyer: Your
work is craft, and if you hone your ability and apply it with
respect and care, then like the skilled wheelwright you can
generate meaning in the daily efforts of your professional life.

— Cal Newport
(Extract from "Deep work")

The interface between atoms and light allows one to access and manipulate their
atomic internal degrees of freedom at the single-atom level. Due to the
non-homogeneous spacing of atomic energy levels, the resulting interplay can also
introduce nonlinearities in the scattered light, as an excited atom cannot absorb
another resonant photon. The resulting quantum control of light and matter has
enabled an enormous advance of fundamental science, including applications in
quantum information [58], like the realization of gates and quantum memories for
light [59]; metrology, like the exploration of fundamental limits using squeezed
atomic states [60]; or, more recently, the realization of synthetic materials where light
can induce exotic properties beyond those usually found in real materials, as it is the
case of topological phenomena [53, 61–64].

This chapter will be devoted to introduce some of the notation and fundamental
results that will vertebrate this Thesis. In particular, Section 2.1 describes how an
external light-field can shift the natural energy levels of an atom, inducing an
effective trapping potential that is proportional to the intensity of the field at each
point of space. At low intensities, this electromagnetic field can be quantized, and
the interaction with light occurs at the level of individual photons. Section 2.2
introduces the Jaynes-Cummings Hamiltonian that governs the interaction between
an individual photon and a single atom, as well as the input-output formalism that
facilitates the analysis of an open system, once the interplay with the environment is
considered.
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2.1 Single-atom coupling to light

As the most simple description of an atom, one can focus on two of its internal levels,
denoted as |↓⟩ and |↑⟩, which are typically referred to as a ground and excited state.
They are separated by energy h̄ω0,

ĤA = h̄ω0 |↑⟩ ⟨↑| . (2.1)

When addressed by a monochromatic laser field of frequency ωl ,

E(r, t) = εE0(r) cos(ωlt) , (2.2)

these levels are connected through an optical dipole transition, where ε is the
polarization vector of the field1.

Since the wavelength of an optical field (in the order of hundreds of nm) is much
longer that the size of the atom (typically a few angstroms), one typically neglects
any spatial variation over the position of the atom ra. In this dipole approximation,
the atom-field interaction reduces to [65],

ĤA-F = −d̂ · E(ra) , (2.3)

where the position re of the fundamental charge defines an effective dipole operator
for the atom, d̂ = −ere. One should note that diagonal terms of the form ⟨↓| d̂ |↓⟩ =
⟨↑| d̂ |↑⟩ = 0 vanish, as there is no change in the parity, and only the term connecting
the two atomic states, d↓↑ = ⟨↓| d̂ |↑⟩, is non-zero for a dipole-allowed transition.

Appropriately choosing its phase, the dipole matrix element can be taken to be
real, so that the dipole operator in this reduced space writes as,

d̂ = d↓↑
(

σ̂ + σ̂†
)

, (2.4)

where σ̂† = |↑⟩ ⟨↓| and σ̂ = |↓⟩ ⟨↑| are the creation and annihilation operators of an
atomic excitation, respectively. After rewriting the electric field of Eq. (2.2) as
E(r, t) = εE0(r)

(
eiωl t + e−iωl t

)
/2 and going to a frame rotating with the laser

frequency, U(t) = e−iωl tσ̂† σ̂, we observe that some of the terms in the atom-field
interaction (2.3) rapidly oscillate as e±i(ω0+ωl)t. Assuming that the two-level
transition is being driven close enough to resonance, |∆| = |ωl − ω0| ≪ ω0 + ωl
(which is consistent with our two-level description), one can follow a rotating wave
approximation and neglect these terms.

The resulting interaction then takes the form,

ĤA-F =
h̄
2

(
Ω∗(ra) σ̂ + Ω(ra) σ̂†

)
, (2.5)

where we define the Rabi frequency as,

Ω(r) ≡ −⟨↓| ε · d̂ |↑⟩ E0(r)
h̄

, (2.6)

1Along this Thesis, we will use bold letters to indicate vectors.
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FIGURE 2.1: Schematic illustration of the energy shift (2.7) experienced by the ground and
excited states of an atom due to an incident red detuned laser (∆ < 0, represented in green)

whose intensity is homogeneous (left) or follows a Gaussian distribution (right).

which characterizes the strength of the interaction between the two-level atom and
the classical field.

2.1.1 Dressed energy-shift

When this interaction is weaker than detuning |Ω(ra)| ≪ |∆|, the atom-field
interaction (2.5) effectively induces a dipole potential for the atom that can be
derived to second order in perturbation theory as [66],

Vdip ≈ h̄|Ω(ra)|2
4∆

(1 − 2σ̂†σ̂) . (2.7)

This shifts the ground and excited states in opposite directions, as represented in
Fig. 2.1.

For an atom in the ground state,
〈
σ̂†σ̂

〉
≈ 0, we observe that the shifted potential

highly depends on the detuning between the laser and the atom.
• For a red detuned laser (∆ < 0), the energy shift is Vdip < 0 and the atom feels

attracted to the bright spots where the intensity field is greater.
• For a blue detuned laser (∆ > 0), the energy shift is Vdip > 0 and those points

of higher intensity fields induce a barrier that repels the atom from there.
While one could naively consider to reduce |∆| to increase the strength of the

mediated trapping potential (2.7), Vdip ∼ I/∆, this would also further enhance the
atomic scattering rate, which scales as Γsc ∼ I/∆2 [66]. Therefore, optical dipole
traps usually operate at large detuning and high intensities to reduce the rate of
atomic spontaneous emission for a certain trapping depth.

Regarding pressure conditions, trapped atoms are also very sensitive to collisions
with the background gas, due to their low mass and typical trap depths. This
motivates the high vacuum needed in typical experiments, where background
pressures below 10−9 mbar are typically used to reduce the collision rate below 1
Hz [36].

Focusing now on the shape of this trapping potential (2.7), this can be engineered
by controlling the intensity profile of the incoming field, I(r) ∝ |Ω(r)|2. Among the
most useful choices followed to trap and manipulate atoms, we find the design of
optical lattices and holographic potentials, which we introduce in the following.
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(a) (b) (c)

FIGURE 2.2: Schematic representation of (a) an optical lattice, (b) an intensity mask, (c) an
holographic potential created by a SLM placed at the focal length of a lens (grey).

Optical lattices

The standing wave interference pattern that appears when a retroreflected laser beam
interferes with itself is one of the simplest strategies to create an intensity profile that
is static over time. In one dimension, this modulates the Rabi frequency as Ω(x) =
Ω0 sin(kx), which results into a trapping potential for the atomic ground-state of the
form,

Vlat(x) = VD sin2(kx) , (2.8)

whose strength depends on detuning following VD = h̄Ω2
0/(4∆), as shown in

Eq. (2.7).
Geometrically, this results into a periodic potential Vlat(x + a) = Vlat(x), whose

lattice spacing is half a wavelength, a = π/k [see Fig. 2.2(a)]. The states and energies
induced in the atomic system can be well described in terms of the Bloch theorem, as
it will be presented in Section 4.2.1. Generalizing these potentials to higher
dimensions, two and three-dimensional lattices can be engineered by
superimposing retroreflected beams in different directions.

Going beyond periodic structures, further techniques allow one to independently
engineer the intensity of the light field at different position. As we will show now,
this offers the ultimate control to design the trapping potential that an atom feels at
each point of space.

Intensity masks

As the trapping potential is directly given by the intensity field [see Eq. (2.7)], one
simple way to modulate the effective profile in one and two-dimensional systems is
by designing an appropriate intensity mask. In this manner, the homogeneous beam
waist of a beam incident from an orthogonal direction gets selectively attenuated in
different positions of space [see Fig. 2.2(b)]. In combination with a subjacent optical
lattice, this allows to tailor the potential induced at each trapping site [67]. This
ability to spatially modulate light can even be adjusted dynamically, which is of
wide interest for problems related to transport or thermalization [43].

While intensity masks offer a good control on 1D and 2D problems, the need to
drive in an orthogonal direction requires a further development for
three-dimensional systems, where holographic techniques can be applied.
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Holographic potentials

The idea behind holographic traps is conceptually simple: a monochromatic laser
beam impinges on a spatial light-modulator (SLM), which imprints a non-uniform
phase pattern on the incident field. The reflected laser beam is then focused with a
high-numerical aperture lens to generate a given intensity pattern in its focal length
[see Fig. 2.2(c)]. Advances in holographic techniques now allow for the non-trivial
design of electric fields with any desired three-dimensional intensity pattern, I(r).
Through numerical procedures, like the Gerchberg-Saxton (GS) algorithm [68], one
can calculate a phase profile that leads to the desired intensity profile.

The resulting high tunability in the induced 3D potential has made it possible to
trap Rydberg atoms in exotic three-dimensional configurations [37], where the
exploration of many-body physics is facilitated by the control in the position of
individual atoms [69, 70]. In Section 4.3.1, we will follow this procedure to calculate
the phase mask that leads to an attractive Coulomb-like potential for neutral atoms.

2.2 Single-atom coupled to a cavity-mode

The weak free-space interaction between photons and an atom is one of the main
challenges one needs to overcome in order to access atomic quantum control using
light. Focusing on the idealized vision of a two-level atom, its scattering length is
given by, σsc = 3λ2/(2π) [71], where λ = 2πc/ω0 is the resonant wavelength. At the
same time, the minimum area, Aeff, in which a light beam can be focused is limited by
diffraction, Aeff ∼ λ2 [30, 31]. This then sets a limit on the probability that an atom in
free space absorbs and rescatters a photon in the beam, P = σsc/Aeff, and state-of-the
art experiments with ions or neutral atoms are typically in the order of P ∼ 0.1 [72].

In order to push this limit, different alternatives have been investigated over the
last decades, including the use of tightly focused beams [30], or working with atomic
ensembles, whose effective scattering probability in the detuned regime is enhanced
by the number of atoms [73]. More recently, nanophotonic structures are being
explored [72], where the use of evanescent fields allows us to go beyond the
diffraction limit of propagating waves.

In this Section, we will focus on another predominant platform that enhances the
interaction between atoms and light: cavity quantum electrodynamics. When the atom
is placed between two mirrors that form a high-finesse optical cavity, the probability
that light interacts with the atom is enhanced by the number of round-trips a photon
can perform before escaping from the cavity, or spontaneously being emitted into
free-space by the atom.

As cavities will play a prominent role in Chapters 3 and 7 of this Thesis, here we
will introduce some key theoretical concepts, and we refer the reader to Refs. [74, 75]
for a more extended introduction.

2.2.1 Jaynes-Cummings hamiltonian

At this point, we are interested in describing the interaction between a two-level atom
and a single mode of the cavity that follows a normalized spatial mode profile f(r).
The uncoupled Hamiltonian reads as,

ĤA + ĤF = h̄ω0 |↑⟩ ⟨↑|+ h̄ωc

(
â† â + 1/2

)
, (2.9)
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where ωc is its resonance frequency and â(†) is the annihilation (creation) operator of
the cavity mode, which follows a bosonic statistics.

The previous classical description of the field in Eq. (2.2) can now be generalized

to its quantization inside the cavity, E(r, t) = −
√

h̄ωc
2ε0

f(r)â(t) + H.c.. The effective
dipole interaction (2.3) now reads as,

ĤA-F = −
√

h̄ωc

2ϵ0

(
σ̂† + σ̂

)
d↓↑

[
f(ra) â + f∗(ra) â†

]
. (2.10)

Considering the rotating-wave approximation and defining the atom-field
coupling term:

h̄g(r) = −
√

h̄ωc

2ϵ0
d↓↑ · f(r) , (2.11)

one arrives to the Jaynes-Cummings (JC) Hamiltonian [76],

ĤJC = h̄ω0 |↑⟩ ⟨↑|+ h̄ωc

(
â† â + 1/2

)
+ h̄g(ra)

(
σ̂† â + σ̂â†

)
, (2.12)

where counter-rotating terms have been neglected.
Note that the spatial mode profile is normalized, i.e.,

∫
dr|f(r)|2 = 1, and the

spatial dependence of this coupling on atomic position can be expressed as
g(r) = g0 f̃ (r), where f̃ (r) is a dimensionless mode profile with maximum modulus
of order one. For a one-dimensional cavity, this can be modeled as a sinusoidal
modulation f̃ (r) ∼ sin(kcx), with wavevector kc. Due to its connection with the
description of a classical field (2.5), g0 is commonly referred to as the single-photon
Rabi frequency.

2.2.2 The detuned Jaynes-Cummings ladder

An interesting observation at this point is that the JC hamiltonian (2.12) is
block-diagonal in sectors of equal number of excitations, Nexc =

〈
â† â
〉
+
〈
σ̂†σ̂

〉
.

Energy shifts within these sectors can then be treated similarly to the semiclassical
description presented in Section 2.1.1.

For this, in the detuned regime |∆| ≫ g(ra), each pair of uncoupled states |n, ↓⟩
and |n − 1, ↑⟩ gets dressed by the atom-cavity coupling and defines new states |n, ↓⟩′
and |n − 1, ↑⟩′ with shifted resonance frequency, En,α = ⟨n, α|′ HJC |n, α⟩′,

En,↓ ≈ nh̄ωc + nh̄
g2(ra)

∆c
, (2.13)

En−1,↑ ≈ h̄ω0 + (n − 1)h̄ωc − nh̄
g2(ra)

∆c
, (2.14)

for ∆c = ωc − ω0. As illustrated in Fig. 2.3, one then obtains a ladder of hybrid
cavity-atom states with shifted energies that highly depend on the strength of g0
and, therefore, on the atomic position inside the cavity. This strong dependence of
the atom-cavity system on the position of the atom will dictate the optomechanical
effects investigated in Chapter 3 that can appear once the emission of the cavity is
considered.
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FIGURE 2.3: Schematic representation of the lowest energy levels of the JC Hamiltonian,

showing up to 2 total excitations. The energy of the dressed eigenstates
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〉′

experience a shift from the uncoupled levels
∣∣∣nph, ↑ / ↓

〉
that depends on the atom-cavity

strength g0. The linewidth of these dressed levels is represented by shaded regions in the
situation γ ≪ κ.

2.2.3 Refined model considering dissipation: cooperativity

Up to this point, we have ignored any dissipative effect related to the coupling of
the atom-cavity system and the rest of modes in the environment. This forces one to
describe the atom-cavity system with a density matrix in order to account for mixed
states. When the coupling to the environment can be described within Born-Markov
conditions [77, 78], the dynamics of the atom-cavity density matrix is then given by
the following master equation,

∂tρ̂ = − i
h̄
[
ĤJC, ρ̂

]
+ κL (â, ρ̂) + γL (σ̂, ρ̂) , (2.15)

where the Lindbladian, L
(
Ô, ρ̂

)
= Ôρ̂Ô† − 1

2
(
Ô†Ôρ̂ + ρ̂Ô†Ô

)
, introduces the

recycling term, Ôρ̂Ô†, needed to preserve the unitarity of the system [79]. Eq. (2.15)
thus describes the evolution of the density matrix ρ̂ accounting for cavity decay,
with rate κ; and atomic emission into modes different from the cavity one, with rate
γ, which associated to jump operators â and σ̂, respectively.

While atomic spontaneous emission γ can be as narrow as a few MHz, cavity
decay is typically several orders of magnitude larger in state-of-the-art experiments.
In addition to the energy-shift described above, the hybridization with the cavity
state further enhances the atomic emission rate, which, in the case of the single
excitation space, |0 ↑⟩′, increases as,

γ̃(ra) ≈ γ + κ
g2(ra)

∆2
c

, (2.16)

Such an enhancement of atomic emission from its free-space value γ is due to the
change of vacuum modes introduced by the cavity, as firstly predicted by Purcell [80]
and experimentally observed with Rydberg atoms [81], and strongly depends on the
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(a) (b) (c)

FIGURE 2.4: Schematic representation of an atom (green) optically coupled to (a) a Fabry-Perot
cavity, (b) a photonic crystal, (c) a fibre cavity.

position of the atom through g(ra). This enhanced emission rate is schematically
represented in Fig. 2.3 in the form of wider coloured lines as g0 increases.

An interesting figure of merit to compare the relevance of this atom-photon
coupling over different cavity systems is the ratio between the energy shift g2

0/∆c
experienced by the dressed atomic state (2.13) and its enhanced atomic linewidth
γ̃ (2.16). Maximizing over ∆c, this ratio receives the name of cooperativity of the
system,

C ≡ g2
0

κγ
, (2.17)

where C ≫ 1 defines the strong coupling condition needed to resolve the dressed
atomic line shift. Interestingly, written in terms of the atomic scattering length,
cooperativity C ∝ Ntripsσsc/Aeff can also be interpreted as the previously discussed
probability of photon-atom interactions, P, now enhanced by the number of round
trips the cavity photon can perform before leaking out the cavity, Ntrips = c/(κL),
where L is the cavity length [72]. While its meaning as a probability of interaction
gets lost in the regime C ≫ 1, it becomes a rather universal parameter to
characterize the quality of cavity QED systems.

2.2.4 Small-volume cavity systems

Designing cavity systems of large cooperativity is desirable for a number of
applications. As we have just motivated, cooperativity characterizes the enhanced
probability of an atom interacting with a photon in the cavity, as well as the ability
to resolve the atomic energy shift caused by this coupling. When two atoms are
coupled to the same cavity mode, cooperativity also defines the error probability of
exchanging a spin-excitation between them [82], which has important implications
in quantum information communication.

Conventional Fabry-Perot cavities offer large cooperativities, in the range of C ∼
10 − 100 [see Fig. 2.4(a)]. These values are however hard to push experimentally,
since the achievable mode volume for the light field, Veff, gets lower bounded due to
the penetration of the cavity-mode into the mirror coating. This fundamentally limits
the atom-cavity coupling, g0 ∝ V−1/2

eff , to a few 100 MHz [75]. To circumvent this
limitation, several strategies are currently explored to further reduce the cavity mode
volume in experimental setups where this is not fundamentally limited.
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Nanophotonic structures

Nanophotonic structures offer a rich toolbox to control the propagation of light. One
of the simplest structures is a fibre, whose high-refractive index core, surrounded
by a lower index media (like air), allows the guidance of light through total internal
reflection. In order to respect the diffraction limit Aeff ≳ λ2, a significant evanescent
field extends outside the fibre for sufficiently small fibre core radius, rfibre ≲ λ, which
is attainable using heating-pulling techniques. Red-detuned fields allow to create
attractive forces for atoms, while blue-detuned light (whose evanescent field remains
closer to the fibre), prevents the atom from attaching to its surface [83]. By using
counter-propagating beams, the resulting standing wave induces a periodic trapping
potential for the atoms.

When photons propagating in a nanofibre find a defect, part of the transmitting
light gets scattered at that point. A periodic distribution of defects can then lead to
distinct dispersion relations, where the propagation of frequencies matching this
pattern would be highly suppressed. Exploiting this idea, atoms can be trapped at
the evanescent field of some guided modes tailored by the modulation of a dielectric
material, [see Fig. 2.4(b)]. Their associated mode volumes can defeat the diffraction
limit Veff ≲ λ3, allowing for strong atom-cavity coupling in the range of 10 MHz for
whispering-gallery modes [84] and in the order of GHz [85] for current experiments
using photonic crystal cavities [86]. Despite the narrow atomic linewidth γ ≪ g,
the cavity decay of these systems κ ≳ g sets their current cooperativity in the order
of C ∼ 10. Larger values could be achieved by trapping the atom closer to the
nanophotonic structure. In that case, however, the experimental challenge is how to
defeat the attractive Van-der-Waals forces [87, 88], which sets an experimental
challenge to overcome the Van der Waals forces pulling the atom towards their
surface.

Fibre cavities

Alternatively to this evanescent field trapping, directly coating a mirror surface at
the tip of a fibre offers a refined frontier in cavity design [see Fig. 2.4(c)]. Recent
advances even allow us to 3D print microscopic lenses at the tip [89]. Apart from
facilitating a direct coupling with incoming light without the need of mode-matching
optics, the mode-waist of these fibres (∼ 1µm) is one order of magnitude smaller
than in macroscopic high-finesse cavities, which provides mode volumes that further
approach the diffraction limit [90]. Atom trapping has been proved in these cavities,
with state-of-the-art atom-cavity couplings in the order of several hundreds of MHz
and cooperativities of order 10 [91, 92].

The achievement of experimental cavities with an enhanced atom-cavity coupling
and large cooperativity offers an interesting avenue for research that we investigate
in Chapter 3. In particular, we will analyze how sensitive the output of the cavity
becomes to the position of the atom within the cavity field, and the fundamental
consequences it has on the knowledge of the atomic motional state. In order to relate
the output signal of the cavity to its input field, we now briefly introduce the input-
output formalism widely used in open quantum systems.
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FIGURE 2.5: (a) Schematic representation of an empty cavity that is externally driven with
input field âin and can decay through this driving channel (κ1), or the rest of orthogonal modes
(κ2). (b) Reflectance of an empty cavity (2.20), as a function of laser-cavity detuning ∆c for the

balanced cavity configuration, κ1 = κ2.

2.2.5 Input-output formalism of an empty cavity.

Here, we review the input-output formalism that will allow us to analyze the
reflectance of the cavity system introduced in Chapter 3. For this purpose, we will
consider a two-sided empty cavity driven by a monochromatic input field of
frequency, ωl , where we distinguish the decay rate of the cavity into the port used to
drive the system (κ1), from the decay into transmission or absorption channels (κ2),
so that the total cavity decay rate reads as κ = κ1 + κ2, as illustrated in Fig. 2.5(a).

In particular, the input-output formalism [79, 93] allows us to express the field
leaving the cavity through the channel associated to κ1, âout, in terms of the input
field, âin, as,

âout(t) = âin(t) +
√

κ1 â(t) , (2.18)

which satisfies,
[
âin(t), â†

in(t
′)
]
= δ(t − t′), and â†

in (out) âin (out) has units of photon
number per unit time.

The reflectance of the cavity, R = |r|2, measures which fraction of the incoming
photons gets reflected through the output channel, where r = ⟨âout⟩ / ⟨âin⟩. The
above relation (2.18) allows us to calculate this quantity by solving the
Heisenberg-Langevin equation of motion, ∂t ⟨â⟩ = Tr

(
â ˙̂ρ
)
, which, for the

empty-cavity hamiltonian in the frame of the laser, Ĥc = −h̄∆c â† â, writes as,

∂t ⟨â⟩ = − i
h̄
〈[

â, Ĥc
]〉

− κ

2
⟨â⟩ −√

κ1 ⟨âin⟩ , (2.19)

where ∆c = ωl − ωc is the laser-cavity detuning.
In the steady-state, ∂t ⟨â⟩ = 0, one can relate the cavity field to the input as, ⟨â⟩ =

−i
√

κ1/ (∆c + iκ/2) ⟨âin⟩. The input-output relation (2.18) now allows us to express
the reflectance of the cavity as a function of the driving frequency and cavity losses,

Rempty =

∣∣∣∣1 −
iκ1

∆c + iκ/2

∣∣∣∣
2

. (2.20)

From here, one can observe that the incoming field gets perfectly reflected, R → 1,
for highly detuned driving fields, |∆c| /κ ≫ 1. On the other hand, optimizing over
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∆c, minimum reflectance occurs in resonance, ∆c = 0, where,

Rempty, min =

(
1 − κ1

κ/2

)2
. (2.21)

Interestingly, no reflection is found in resonance for the so-called balanced-cavity
configuration, κ1 = κ2 = κ/2, as represented in Fig. 2.5(b).

2.3 Outlook

In this Chapter, we have introduced how the energy levels of an atom get modified
by the effect of an external field, which can be conveniently used for optical trapping.
In the presence of a cavity, the natural quantization of the cavity mode leads to the
hybridization of the light and matter degrees of freedom, which can be described by
the JC Hamiltonian in Eq. (2.12).

We have also motivated that the strength of this atom-cavity interaction, g(ra), can
highly depend on the position of the atom inside this cavity field. Furthermore, in
systems with a large cooperativity, C = g2

0/(κγ) ≫ 1, the linewidth of the system is
narrow enough to resolve the energy shift of these levels. Following the input-output
description in Eq. (2.18) just presented, we will show in Chapter 3 that the response
of the cavity can then be effectively tuned in (R = 0) or out of resonance (R = 1)
by just changing the position of the atom. This extreme sensitivity of the reflectance
of the cavity to the position of a single atom has important consequences, as not
only does the cavity response depend on the atom, but also the atomic motional state
is influenced by the measurement of a reflected photon. This represents one of the
minimal examples of the rich optomechanical effects that can appear in these systems,
whose impact in state-of-the-art small-volume cavities is investigated in Chapter 3.
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Chapter 3

Single atom and photon
optomechanical strong coupling

” Just because you have an explanation doesn’t mean it’s the best
explanation. Can you eliminate any unnecessary clutter or
complexity? Can you find an entirely different approach that
gives you deeper insight? Prove, prove, and prove again.
Painters, sculptors, and poets do the same thing.

— Paul Lockhart
(Extract from "Measurement")

In this Chapter we introduce cavity optomechanics, an emerging field with
numerous exciting prospects for fundamental science and applications [34, 94].
Generically, such systems are characterized by some mechanical degree of freedom
whose small displacement from the equilibrium position, x0, alters the resonance
frequency of a cavity mode h̄ωc(x)â† â, so that ωc(x) now depends on the position of
a resonator. This displacement, δx = x − x0, can be quantized as δx̂ = xzp(b̂ + b̂†),
where xzp is the mechanical zero-point motion. Expanding ωc(x) to linear order in
δx, one obtains a cubic coupling,

ĤOM = gOM,0 â† â(b̂ + b̂†) , (3.1)

between the operators associated to the annihilation(creation) of a phonon, b̂(†); or a
cavity photon, â(†).

This cubic coupling between the motional and cavity degrees of freedom results
in rich backaction effects once the cavity is driven that include sensing [95–98],
cooling of the mechanical mode [99, 100], generation of squeezed light [101–103] or
the creation of nonreciprocal devices [104]. The intuitive mechanism is illustrated in
Fig. 3.1(a). When the cavity frequency at the equilibrium length is driven in
resonance, the cavity field gets populated and those photons impart a radiation
pressure on the cavity mirror (top). The resulting force pushes the mirror, changing
the length of the cavity and modifying the energy of the cavity mode, ωc(x). If the
system now becomes out-of-resonance with the driving laser, the population of the
cavity decreases (bottom), reducing the radiation force, which returns the mirror to
its equilibrium position. Interestingly, this emission is not instantaneous, but
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FIGURE 3.1: (a) Illustration of an empty cavity with one of its mirrors connected to a spring,
where the displacement from the equilibrium length is δx = x − x0 = 0 (top) and δx > 0
(bottom). A larger population of the cavity mode is schematically represented with a darker
green color. (b) Qualitative dependence of the population of this field,

〈
â† â
〉
, as one modifies

the length of the cavity (lower axis), which changes the detuning with the driving laser,
∆c(x) = ωl − ωc(x) (upper axis).

dictated by the decay time, 1/κ, which defines the optomechanical properties of the
system.

Therefore, a key figure of merit for these applications is the vacuum
optomechanical coupling strength, gOM,0 = (∂ωc/∂x) xzp, given by the product of
the sensitivity of the cavity frequency to position displacements, and the zero-point
motion of the resonator. In particular, the single-photon, single-phonon, strong
coupling regime ensues when gOM,0 exceeds the linewidth of the cavity κ, such that
the optical response and dynamics change drastically at the level of individual
quanta, xzp, as illustrated in Fig. 3.1(b). For example, it has been proposed that the
regime gOM,0/κ ≫ 1 can give rise to quantum optical nonlinearities [105, 106].
While a number of schemes have been proposed to reach this strong coupling
regime [107–111], state-of-the-art optomechanical cavities remain at least two orders
of magnitude away from reaching this regime [112, 113].

To circumvent this situations, optomechanical experiments are typically operated
at strong driving. The cavity operator â → α + δâ then decomposes into a classical
average field α, and a quantum fluctuation δâ, so that the interaction in Eq. (3.1) is
dominated by the term,

ĤOM = gOM(δâ + δâ†)(b̂ + b̂†) , (3.2)

and the effective coupling strength gOM = gOM,0

√
Nph gets enhanced by the

number of average cavity photons, Nph = |α|2 so that, for a sufficiently strong
driving, it can exceeds the cavity linewidth and reach the (non-single photon) strong
coupling regime (gOM ≥ κ). However, one can observe that the resulting linearized
interaction in Eq. (3.2) misses the richness of the original cubic coupling dictated by
optomechanics (3.1). For example, Gaussian states can only be transformed into
other Gaussian states under the evolution of the quadratic interaction in Eq. (3.2).
Current efforts then focus into manifesting the nonlinearities that can appear in the
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single-photon strong coupling regime gOM,0/κ ≫ 1.
To pursue this goal, atoms constitute an interesting candidate as an

optomechanical element, due to their low mass and anomalously large optical
response (i.e. a scattering cross section much larger than its physical size). In an
atomic ensemble, the single-photon coupling strength gets enhanced by the number
of atoms in the detuned regime, entering the strong coupling regime for sufficiently
large ensembles [114–116]. In this Chapter, we show that the single-photon strong
coupling regime can be realistically achieved using just a single atom coupled to a
high-finesse cavity [75, 117–120]. While macroscopic cavity architectures allow for
sufficiently small linewidths to reach the strong coupling regime [121–123], a
number of emerging platforms introduced in Section 2.2.4 focus on achieving small
mode volumes with a prohibitively large linewidth [84, 85, 92, 124–126]. Here, we
show that optomechanical strong coupling effects can nonetheless emerge in these
devices by working in a detuned atom-cavity regime and probing motional
interactions on the narrower dressed atomic resonance of a single atom.

The enabling mechanism is based on the scattering properties of an incoming
photon, which highly depend on its detuning to the dressed resonance frequency,
(2.14), that in turn is sensitive to the atomic position within the cavity field, as
introduced in Section 3.1. As a consequence, in Section 3.2 we will show that a
scattered photon highly entangles with the resulting atomic motional state, carrying
information about its position. This leads to to a per-photon atomic heating larger
than expected from single-photon recoil events and, as a more direct signature, we
observe in Section 3.3 that detection of a reflected photon triggers motion-induced
oscillations in time of the second-order correlation function of reflected light. In
Section 3.4, we will show that these effects are observable in realistic systems, even
for a non-zero initial motional temperature.

3.1 The system

Here we focus on the interaction of a single two-level atom with an optical transition
between ground and excited states |↓⟩, |↑⟩, and a given mode of the electromagnetic
field inside the cavity. The coherent interactions are described by the
Jaynes-Cummings Hamiltonian (2.12),

ĤJC =− (∆ + ∆0)â† â − ∆0σ̂†σ̂

+ g(x̂)
(

σ̂â† + H.c.
)
− iε

(
â† − â

)
,

(3.3)

where ∆ = ω0 − ωc is the energy difference between the bare atomic and cavity
resonance frequencies1. Here, we also allow for an external laser drive of the cavity
with ∆0 = ωl − ω0 representing the laser-atom detuning, and ε the driving
amplitude, which we will generally consider weak enough to only produce a few
excitations. g(x̂) = g0 sin(kc x̂) denotes the position-dependent vacuum Rabi
coupling strength, with kc being the cavity mode wavevector. Importantly, we will
treat the atomic position x̂ as a quantum dynamical degree of freedom, and assume
that the atom is harmonically trapped with frequency ωm and equilibrium position
x0, as schematically illustrated in Fig. 3.2(a). As we introduced before, one can
quantize the atomic motion around this point as δx̂ = x̂ − x0 = xzp(b̂ + b̂†), where

1In the rest of this Chapter, we use the convention that h̄ ≡ 1.
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FIGURE 3.2: (a) A single atom is trapped in a harmonic oscillator potential of frequency ωm
centered at position x0, and coupled to a cavity mode. The cavity mode is externally driven
with input field âin and can decay through this driving channel (κ1), or other undetected routes
(κ2). In addition, the excited atom can spontaneously emit into free space at a rate γ. (b)
Schematic representations of the lowest energy levels of the JC Hamiltonian in the absence of
a drive [analogous to considering ε = 0 and ωl = 0 in (3.3)], showing up to 2 total excitations.
For atomic positions away from the cavity nodes (kcx = 0, π), the frequencies of the dressed

eigenstates
∣∣∣nph, ↑ / ↓

〉′
experience a shift from the uncoupled levels

∣∣∣nph, ↑ / ↓
〉

that depends

on atomic position, ∆̃0 ≈ g2(x)/∆. The linewidth of these dressed levels is represented by
shaded regions in the situation γ ≪ κ explored in this work.

xzp denotes zero-point motion fluctuations, and b̂(†) is the annihilation(creation)
operator of phonons in the trap, Ĥtrap = ωm b̂† b̂.

Further including photonic losses from the cavity with decay rate κ, and atomic
excited state spontaneous emission at a rate γ, one can describe the total evolution of
the density matrix as,

∂tρ̂ = −i
[
ĤJC + Ĥtrap, ρ̂

]
+ κ L (â, ρ̂) + γL

(
e−ikc x̂σ̂, ρ̂

)
. (3.4)

As compared to Eq. (2.15), here the e−ikc x̂ term represents the recoil momentum that
is imparted onto the atom upon spontaneous emission of a photon. Strictly speaking,
the recoil along the x direction is a (non-uniform) random variable between (−kc, kc),
accounting for the possibility of a photon to be emitted in any direction [127]. As
only one atom is present, the free-space direction of the emitted photon does not
influence further interactions in the system and disregarding its angular component
is sufficient to capture the salient physics and heating caused by atomic recoil [128,
129].

Here, we will consider the regime relevant to a number of cavity QED systems,
where κ ≫ γ [84, 85, 126]. In order to access a strong optomechanical coupling,
this motivates working in a detuned atom-cavity regime |∆| ≫ κ, g0 and focusing
on the dressed atom-like excitation branch with narrower linewidth ∼ γ. We will
start by presenting some heuristic arguments to estimate the optimal conditions to
reach this single-photon optomechanical strong coupling, which we will later show
are rigorously correct. To simplify the discussion, we will also start by considering
the case where the atom is initialized in the motional ground state, treating thermal
states in Section 3.4.
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FIGURE 3.3: (a) In the studied configuration, reflectance is tuned to be null when the atom is
placed at the center of the trap x0, with the spatial width of this reflection minimum given by
ℓ. (b) After an incoming photon is scattered, the initial motional wave function |ψ0⟩ is strongly
modified over the length ℓ, to the state |ψr⟩ conditioned on the reflection of a photon, or the

state |ψother⟩ conditioned on scattering into other channels.

3.1.1 Heuristic derivation of strong coupling condition

One can start by considering a static atom with fixed position x. In the absence of a
drive (ε = 0), one can block diagonalize the JC Hamiltonian (3.3) in the total number
of excitations, nexc ≡ σ̂†σ̂ + â† â, as illustrated in Fig. 3.2(b) for up to nexc = 2. In the
limit of large atom-cavity detuning ∆, one of the single-excitation eigenstates |0 ↑⟩′
is mostly an atomic excitation |0 ↑⟩, but with a shifted resonance frequency (2.14),

ω̃0(x) ≈ ω0 +
g2(x)

∆ , and broadened linewidth (2.16), γ̃(x) ≈ γ + κ
g2(x)

∆2 , due to the
interaction with the cavity [130].. We can consider the sensitivity of this resonance
frequency to small (static) displacements δx that, to lowest order, yields a new

resonance frequency ω̃0(x0 + δx) ≈ ω0 +
g2

0
∆

[
sin2(kcx0) + sin(2kcx0) kcδx

]
. The

maximum sensitivity to a displacement δx then occurs halfway between a cavity
node and anti-node, when kcx0 = π/4 [see Fig. 3.2(b)].

Although we take x to be static, one can nonetheless intuitively deduce a single-

photon optomechanical strong coupling parameter, β ≡ g2
0η

∆ γ̃(x0)
, which characterizes

how much the dressed resonance frequency shifts if the atom is displaced by the zero-
point motion, in units of the dressed linewidth. Optimizing over ∆, one observes
that the maximum strong coupling parameter is dictated by the cooperativity of the
system (2.17), C ≡ g2

0/(κγ), as βmax = η
√

C/
√

2, where η ≡ kcxzp is the Lamb-Dicke
parameter.

We now derive the reflection coefficient of a weak monochromatic, coherent input
field, as a function of atomic position. For this, we distinguish the decay rate of the
cavity into the port used to drive the system (κ1), from the decay into transmission or
absorption channels (κ2), so that the total cavity decay rate reads as κ = κ1 + κ2 [see
Fig. 3.2(a)]. In particular, the input-output formalism [79, 93] allows us to express the
field âout leaving the cavity through the channel associated to κ1 in terms of the input
field, âin, through the input-output relation (2.18),

âout(t) = âin(t) +
√

κ1 â(t) . (3.5)

For an atom statically located in position x, one can now define Sr(x) as the
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steady-state reflection coefficient defined by the ratio between output and input
fields [131, 132], which now depends on the coupling to the atom. Following a
derivation analogous to Section 2.2.5, one obtains,

Sr(x) =
⟨âout⟩
⟨âin⟩

≈ 1 − iκ1

∆ + ∆0 + iκ/2 − g(x)2

∆0+iγ/2

, (3.6)

and a corresponding reflectance, R(x) = |Sr(x)|2, as a function of the atomic
position. We observe that in the atomless case (g(x) = 0), this reduces to the
reflectance of an empty cavity shown in Eq. (2.20). Intuitively, efficient
optomechanical coupling requires a large contrast in R(x) when the atom is
displaced from position x0 by a small amount, so that the event of detecting a
reflected photon reveals significant information about the atomic position.
Experimentally, one can optimize this by adjusting the driving frequency, the
atom-cavity detuning, and the coupling to the detection channel, κ1. First, we
choose to drive the atom-like resonance,

∆∗
0 =

g2(x0)

∆∗ . (3.7)

Expanding now the reflectance of the cavity around x0, R(x) = R0 + [(x − x0)/ℓ]2,
one can enforce that the reflectance at position x0 is exactly zero, R0 = 0, so that
detection of a reflected photon ensures that the atom is not placed at that point.
Imposing this, one obtains the optimal detuning,

∆∗ = g(x0)

√
κ1 − κ2

γ
, (3.8)

which corresponds to critical coupling, where the (dressed) atomic excited state

decays equally into the cavity output,
(

κ1
g2(x0)

∆2

)
, and other channels,

(
γ + κ2

g2(x0)
∆2

)
. Maximizing the effective single-photon coupling parameter β as a

function of κ1 for the previous choice of parameters, one obtains κ∗1 = 2κ2 . This in
turn yields the minimum displacement,

ℓ∗/xzp ≡
√

2/
(

η
√

Cin

)
, (3.9)

over which the dressed atomic frequency shifts by γ̃, thus bringing the system off
resonance with respect to the fixed external laser frequency [see Fig. 3.3(a)]. The fact
that ℓ, representing the length scale over which a single photon can discriminate the
atomic position, depends inversely with the square root of the intrinsic cooperativity
Cin ≡ g2

0/
√

κ2γ will play a prominent role in our following discussion. In particular,
we observe that the maximum strong coupling parameter previously defined scales
as β∗ ∼ xzp/ℓ∗.

3.2 Role of the atomic motional wave function

Previously, we have established that if the atom was a perfectly localized point
particle, a photon would be reflected with an amplitude and phase given by Sr(x).
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Intuitively, once the atomic motional state is given by a wave function
|ψ0⟩ =

∫
dx ψ0(x) |x⟩, one might expect that the state upon scattering a single

photon is given by Sr |1r⟩ |ψ0⟩ + Sother |1other⟩ |ψ0⟩, where |1r⟩ denotes a reflected
photon, and |1other⟩ denotes the scattering into some orthogonal channel
(transmission or cavity absorption, see Appendix A.1). While
Sr |1r⟩ |ψ0⟩ = |1r⟩

∫
dx Sr(x)ψ0(x) |x⟩ has the natural meaning that the amplitude

and phase of the reflected photon depends on the atomic position, one can also
observe that the atomic wave function conditioned on the detection of the reflected
photon becomes,

|ψr⟩ =
Sr |ψ0⟩
|Sr |ψ0⟩|

, (3.10)

where Sr |ψ0⟩ =
∫

dx Sr(x)ψ0(x) |x⟩ and the denominator relates to the average
reflectance of the cavity, R ≡ |Sr |ψ0⟩|2 =

∫
dx R(x) |ψ0(x)|2. These results, which

were up to now argued intuitively, can in fact be derived rigorously through an
adiabatic elimination of the cavity degrees of freedom in the unresolved sideband
regime, ωm ≪ γ, κ [123], where the dynamics of the atom-cavity interface is much
faster than the mechanical evolution of the atom inside the trap and Sr defines a
scattering matrix [131, 132] that is diagonal in the position basis (see Appendix A.1).

Intuitively, if the reflectance of the cavity was similar for different atomic
positions, R(x) ≈ R, reflection would reveal no information and the wave function
would remain unaffected by detection, |ψr⟩ ≈ |ψ0⟩. In contrast, if Sr(x) contains any
narrow spatial features, those features are now imprinted onto the atomic wave
function itself. To quantify this, we observe that ℓ sets the characteristic width for
the spatial features imprinted in the wave function [see Fig. 3.3(b)]. For an atom
initially in the ground state of the trap, the effect of detection will then be large
when this critical displacement is smaller than the zero-point motion of the atom,
ℓ ≪ xzp, which corresponds to the strong coupling regime, η

√
Cin ≫ 1.

3.2.1 Unconventional heating

As the initial atomic state |ψ0⟩ is modified by events associated to reflection or
emission in other channels, its mechanical energy departs from the trap ground state
energy. Following the example of Eq. (3.10), one can calculate the average number of
phonons induced by a single incident photon, J = Jr + Jt + Ja, associated to
scattering in the detection channel, cavity transmission/absorption, or atomic
spontaneous emission, respectively, where

Jα = ⟨Sαψ0| b̂† b̂ |Sαψ0⟩ (3.11)

for α ∈ {r, t, a}. Note that for each of these emission mechanisms, Jα then represents
the number of phonons in the resulting atomic state ⟨Sαψ0| b̂† b̂ |Sαψ0⟩ /⟨Sαψ0|Sαψ0⟩,
weighted by the probability that this event occurs, ⟨Sαψ0|Sαψ0⟩.

For conventional scattering from a tightly trapped atom in free space, the
characteristic number of phonons that an incoming photon can excite is
characterized by the ratio between the single-photon recoil energy, ωrec, and the
mechanical frequency of the oscillator. When expressed in terms of the Lamb-Dicke
parameter, this translates to a per-photon increase in phonons of η2 = ωrec/ωm [79].

In our coupled atom-cavity system, this heating effect can now be enhanced.
Based on our previous analysis, we expect that the largest values of J will appear
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FIGURE 3.4: (a) Ratio of the per-photon increase in phonons (J ) of an atom in the cavity
compared to the free-space result η2, for different choices of ∆ and ∆0. Here κ1 = 2κ2
and kcx0 = π/4 (see main text). When not indicated otherwise, parameters compatible
with Ref. [85] are used in the Figures: g0 = 2π × 0.73 GHz, ωm = 2π × 160 kHz, γ =
2π × 6 MHz, κ2 = 2π × 3.9 GHz, η = 0.24. The red dotted line follows a resonant driving with
the dressed atomic frequency (3.7), and the crossed marker indicates the optimal atom-cavity
detuning (3.8). (b) Value of J /η2, maximized over free values of ∆ and ∆0 (orange dashed
line), as compared to the result associated to ∆∗, ∆∗

0 within our effective model (blue line), for
increasing intrinsic cooperativity tuned by varying g0. The red dotted line corresponds to a
master equation simulation of the open system (see main text). Dashed and dotted black lines
follow the scalings J ∼ η2Cin and J ∼ η

√
Cin expected in the regimes η2Cin ≪ 1 (coloured

in green), and η2Cin ≫ 1 (coloured in blue), respectively.

for the choices of cavity-laser and atom-cavity detunings derived in Eqs. (3.7,3.8). To
validate this, in Fig. 3.4(a) we numerically calculate J /η2 for different detunings ∆0
and ∆ in a cavity satisfying κ1 = 2κ2. The rest of the parameters are compatible with
current experimental platforms [85] where one can reach large intrinsic
cooperativities in the order of Cin ∼ 23, and a Lamb-Dicke parameter η ∼ 0.24. In
agreement with our derivation, we observe that a driving frequency in resonance
with the dressed atomic frequency (red dotted line, Eq. (3.7)) corresponds to the
region of larger heating (J ∼ 10η2, associated to lighter colors), and that the
atom-cavity detuning that produces maximal heating is compatible with the
prediction of Eq. (3.8) (crossed marker).

In Fig. 3.4(b) we calculate J /η2 for the choices of ∆0 and ∆ predicted to maximize
optomechanical coupling (Eqs. (3.7,3.8)), but now as a function of the intrinsic
cooperativity Cin by allowing the vacuum Rabi coupling g0 to vary, while
maintaining the rest of the experimental parameters (ωm, γ, κ2, η) as before. We
observe that, for each value of intrinsic cooperativity, the heating that arises at the
optimal parameters ∆∗

0 and ∆∗ (blue line) does match a fully numerical
maximization of the average number of induced phonons over free values of ∆0, ∆
(orange dashed line), quantitatively confirming our analysis.

While these calculations were based on the scattering matrix given in Eq. (3.6) and
Appendix A.1, we additionally validate these results by performing a master
equation simulation of the open system (red dotted line) in a truncated space of up
to 2 photons and 50 phonons, where convergence is observed (see Appendix

Interestingly, we observe that the average number of induced phonons J scales
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differently with the intrinsic cooperativity in the weak (η2Cin ≪ 1) and strong
coupling regimes (η2Cin ≫ 1), which can be understood from the phase φα(x) of the
scattering matrices Sα ∼ eiφα(x) that gets imprinted onto the atomic wave function.
For the optimal parameters (3.7,3.8), we note that up to linear order in δx/xzp the
imprinted phase associated to emission in undriven channels scales linearly as
φt/a(x) ∼ η

√
Cinδx/xzp [see Eq. (A.4)], which corresponds to an added momentum

of η
√

Cin/xzp =
√

2/ℓ. Although Sr(x) cannot be expressed as a phase term, atomic
heating can only depend on the total cavity decay rate κ, and not on the specific
channel contributing to this rate. Thus, as κ1 = 2κ2, it follows that the heating rate
due to reflection is twice that of transmission/absorption, Jr ≈ 2Jt.

Adding these three contributions in the weak-coupling limit, [xzp ≪ ℓ, green
shaded region of Fig. 3.4(b)], the imprinted momentum affects the entire wave
function and the corresponding kinetic energy increase leads to a heating rate of
J≪ ∼ (xzp/ℓ)2 ∼ η2Cin. In contrast, in the strong optomechanical coupling limit
(xzp ≫ ℓ, blue shaded region), the phase imprinting only applies to a small region ℓ
of the entire wave function, where the cavity is actually sensitive to the atomic
position. This leads to a heating rate of J≫ ∼ (xzp/ℓ)2 · (ℓ/xzp) ∼ η

√
Cin, matching

the scalings observed in Fig. 3.4(b) (black dashed and dotted lines, respectively).
The fact that the per-photon heating rate could be one or two orders of magnitude
larger than the expected free space result could be relevant to experiments that
probe around the dressed atomic resonance frequency. Separately, we note that the
enhanced heating of an atomic ensemble has been experimentally observed in a
complementary regime, driving around the dressed cavity resonance of a detuned
atom-cavity system [133].

3.3 Second-order time correlations

We now consider how the strong optomechanical coupling can manifest itself in the
second-order time correlation of the reflected field,

g(2)rr (t) ≡
〈

â†
out(0)â†

out(t)âout(t)âout(0)
〉

〈
â†

out(t)âout(t)
〉 〈

â†
out(0)âout(0)

〉 , (3.12)

which quantifies the relative likelihood of detecting a reflected photon at time t, given
the previous detection of a reflected photon at time t = 0.

We first present an approximate theory, based on the scattering matrix and the
dynamics of the motional wave function following detection of a first reflected
photon, |ψr⟩ [see Eq. (3.10)]. This approach neglects contributions to g(2)rr that arise
from the anharmonicity ∼ ∆ of the JC ladder between 0 → 1 and 1 → 2 excitations
[represented by the red arrows in Fig. 3.2(b)]. We will later show, by comparing with
full master equation simulations, that the scattering matrix captures well important
features of g(2)rr (t) and, in particular, oscillations due to strong optomechanical
coupling. For our previous choice of detunings [(3.7,3.8), ensuring R(x0) = 0], a
central hole is imprinted in the conditional atomic motional state |ψr⟩ [blue wave
function in Fig. 3.5(a)], reducing atomic population at positions where reflection is
more unlikely. Note that some of the other experimental parameters (κ1/κ2 and η)
have been changed relative to previous figures to make the relevant effects more
visible.
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(a) (c)

(d) (f)

(e)

(b)

FIGURE 3.5: (a) Spatial probability distribution |ψr(t)|2 following the detection of a reflected
photon at t = 0, and under the assumption that the subsequent motional wave function only
evolves under the external trapping potential for the configuration η = 0.05, κ1/κ2 = 1.6,
marked with a red cross in Fig. 3.6(a). Later times are indicated by vertical shifts of the
atomic density, and the wave function at times π/ωm and 2π/ωm are coloured in red and
green, respectively. Following Eqs. (3.7, 3.8), ∆0 and ∆ are chosen to satisfy R(x0) = 0. Rest
of parameters as in Fig. 3.4. (b) Schematic representation of |ψr|2 at time t = 0 (blue) and

t = π/ωm (dotted red). (c) Calculation of g(2)rr (t) along this evolution, using the scattering
matrix approach (blue line) and a master equation simulation of the cavity system (orange

dashed line). The inset highlights the fast decay of g(2)rr (t) at initial times revealed by the master
equation (dashed line), compatible with a decay rate ⟨γ̃(x)⟩ (continuous line). (d-f) Analogous

plots to (a-c), now for the case R(x0 + xzp) = 0 (see text).
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To approximate g(2)rr (t), we consider the limit of a weakly driven cavity, such that
the forces associated with the cavity field are negligible compared to the external
trap. The subsequent dynamics of the atomic state are then dominated by the
evolution purely in the trapping potential, |ψr(t)⟩ = e−iĤtrapt |ψr⟩ before further
scattering events occur, as the atomic motion is highly isolated from its
environment. Because of the overall mirror symmetry in |ψr⟩ found for the
discussed configuration, a revival of the wave function appears with periodicity in
time π/ωm as the atomic state evolves [red and green wave functions in Fig. 3.5(a),
see also the illustration in Fig. 3.5(b)].

This time-evolving spatial distribution, combined with the sensitivity of the cavity
response to the position of the atom, should result in a conditional time-dependent
reflectance that manifests in g(2)rr (t) as,

g(2)rr (t) ≈ |Sr |ψr(t)⟩|2
R , (3.13)

which compares the reflectance of the cavity at time t after detection of a reflected
photon to the initial reflectance R of the cavity, considering that intermediate
scattering events are unlikely over the observation time.

In Fig. 3.5(c) (blue curve), we plot the predicted g(2)rr (t) from Eq. (3.13), for the
spatial dynamics illustrated in Fig. 3.5(a). We observe a bunching effect immediately
after detection of the first reflected photon, as detection projects the atomic state into
a configuration compatible with that event. The same cavity response is expected
whenever the state revives, which for the symmetric configuration presented above,
occurs with periodicity π/ωm.

To validate these results in the weakly driven regime, we have also performed a
full master equation simulation of the driven system in Eq. (3.4) for a weak field
input as described in Section 3.2 [orange dashed line in Fig. 3.5(c)]. We observe good
agreement with the results provided by Eq. (3.13) at times t > 1/γ̃. At shorter times,
we note an additional contribution to g(2)rr (t) that can be interpreted from the
anharmonicity ∆ in the JC ladder of a motionless atom [see red arrows in Fig. 3.2(b)].
For large cooperativity, this detuning exceeds the linewidth of the cavity,
∆∗/κ ∼ √

Cin [see Eq. (3.8)], and favours the reflection of two-photon packages. In
order to separate nonlinearities arising from motion versus the two-level structure
itself, it is important to note that any transient feature arising in g(2)rr (0) due to the
(dressed) atomic state will decay at the cavity-enhanced atomic emission rate γ̃, as
we further illustrate in the inset, which is much larger than typical atomic trap
frequencies. Previous work on "single polariton optomechanics" involves adding a
two-level atom as a third degree of freedom to an optomechanical system which
explicitly allows for non-Gaussian states to be generated, [134, 135]. Here, although
we also use an atom, the non-trivial time-dependent features in g(2)rr (t) we observe
beyond t ≳ 1/γ̃ can then be attributable to the single-photon strong coupling
originated from atomic motion, rather than the two-level nature of the atom.

Regarding the significance of these time-dependent oscillations in g(2)rr (t), we
point out that they differ from oscillations in reflection that could be observed, for
example, by applying a classical momentum kick on the atom. In particular, in the
latter case, given an atom originally in a stationary state (such as the motional
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ground state or a thermal state), an additional optical pulse (or a sudden variation in
the trapping field) could induce motional oscillations in the atom. These would be
already visible as temporal oscillations in the cavity output field

〈
â†

out(t)âout(t)
〉
,

given a weak probe input. Note that these oscillations would only be significant if
the kicking pulse contained many photons, given the small recoil energy of a single
photon compared to the trapping frequency. In the presented scheme, the "kick"
comes from the detection of just a single photon and the large conditional change
that it imparts on the motional wave function, which is the essence of strong
single-photon optomechanical coupling. Furthermore, the conditional nature of this
effect causes these oscillations to appear in the higher-order correlation of g(2)rr (t),
rather than the unconditional reflectance itself.

Furthermore, the period of oscillations can be modified by tuning the driving
frequency such that R(x0 + xzp) = 0 (e.g. replacing x0 → x0 + xzp in Eqs. (3.7, 3.8)).
The detection of a reflected photon results in a conditional wave function whose
probability amplitude is increased on one side of the trap, as illustrated in
Fig. 3.5(d). After half a period, this state now oscillates to the opposite side of the
trap [see Fig. 3.5(e)] which, in this configuration, manifests as antibunching
[g(2)rr (π/ωm) < 1], restoring the natural periodicity 2π/ωm of the correlator g(2)rr (t),
as we show in Fig. 3.5(f).

We now discuss the approximate conditions desired to observe large contrast in
the time-dependent oscillations in g(2)rr (t). We begin by noting that our previous
strong coupling conditions, based on achieving an effective length ℓ/xzp as small as

possible [see Eq. (3.9)], do not directly translate into large oscillations in g(2)rr (t). In
particular, large oscillations require a large difference between the unconditional
and conditional reflectances. Note that in the best case scenario, the detection of a
reflected photon completely conditions the atomic wave function to reflect a second
photon, resulting in a conditional reflectance of unity. Thus, one wants to avoid that
this unconditional reflectance is already too close to unity, R → 1. This large
unconditional reflectance would occur, for example, if ℓ/xzp → 0, such that the atom
is effectively never in the narrow spatial width ∼ ℓ where the reflection would differ
from unity, resulting in g(2)rr (0) → 1.

To better interpret how intermediate situations may be optimal, one can explore
a simplified uniform response in reflectance R(x) = 1 − (1 − R0)Θ [ℓ− |x|] for a
homogeneous mechanical state |ψ(x)|2 = (2xzp)−1Θ

[
xzp − |x|

]
; where Θ[x] denotes

the step function that is 1 for x > 0 and 0 otherwise. In this toy model, one obtains
that the maximum value of g(2)rr (0) occurs when ℓ(1 + R0) ∼ xzp, which defines
an optimal (non-zero) length for each choice of R0. The optimal configuration is a
balanced cavity (R0 = 0), where one would desire ℓ ∼ xzp.

To further illustrate this, in Fig. 3.6(a) we calculate the scattering matrix
approximation to g(2)rr (0) (3.13), using the same parameters for g0, γ, and κ2 as in the
experiment of Ref. [85] and Fig. 3.4(a). However, we now allow the Lamb-Dicke
parameter (experimentally tunable through the intensity of the trapping potential)
and the output port decay rate κ1 to vary. Choosing for each set of η and κ1 the
atom-cavity detuning that minimizes R(x0), and driving in resonance with the
dressed atomic frequency for an atom positioned at x0, we heuristically observe that
the largest values of g(2)rr (0) ∼ 3 appear in a region compatible with
ℓ(1 +R0) = 6xzp (red continuous line), which aligns with the intuition built from
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FIGURE 3.6: (a) Scattering matrix calculation of g(2)rr (0) when driving in resonance the dressed
atomic frequency for the configuration R0 = 0 as defined in Eqs. (3.7,3.8), as one varies the
Lamb-Dicke parameter η and the ratio κ1/κ2. For κ1 < κ2, where it is not possible to obtain

R0 = 0, we numerically maximize g(2)rr (0) as a function of ∆. Rest of experimental parameters
as in Fig. 3.4. Red line follows the relation ℓ(1 +R0) = 6xzp, and red marker indicates the
configuration κ1/κ2 = 1.6, η = 0.05 explored in Fig. 3.5. The inset zooms into the region of
ratios κ1/κ2 ≈ 1. (b) For the same parameter choices as (a), we illustrate the overall variation

along a full mechanical oscillation, ∆g(2)rr ≡ maxt g(2)rr (t)− mint g(2)rr (t). (c) Reflectance of this
atom-cavity system as a function of the position of a motionless atom trapped in an harmonic
potential centered at x0 with Lamb-Dicke parameter η = 0.07 and different values of κ1/κ2

(see legend). Coloured area indicates the region |x − x0| < ℓ.

our toy model. In Fig. 3.6(b) we further show the overall variation of g(2)rr (t) along a
full mechanical oscillation, ∆g(2)rr ≡ maxt g(2)rr (t) − mint g(2)rr (t), observing that the
largest values ∆g(2)rr ∼ 2 appear in a region compatible to those with larger g(2)rr (0).

Here, one can also see a sharp change in g(2)rr (0) around κ1 = κ2, that is more
evident as η < 0.1 [see inset in Fig. 3.6(a)]. In this latter regime, the effective atomic
displacement over which the reflectance of the cavity varies ℓ/xzp ∼ (η

√
Cin)

−1

becomes much larger than the characteristic spread of the atomic state and,
therefore, the response of the cavity becomes less sensitive to the position of the
atom, as illustrated in Fig. 3.6(c). For κ1/κ2 ≥ 1, the fact that no reflection occurs for
an atom at the center of the trap (R0 = 0) defines a high relative difference in the
response of R(x) that highly discriminates this central position when a reflected
photon is detected (see blue and purple lines). This translates into a large response
g(2)rr (0) ∼ 2 even if the absolute variation of R(x) along the zero-point motion of the
atom is very reduced as κ1 approaches κ2 (purple line). However, when the cavity
leakage through the undetected channel exceeds the emission in the driven port
(κ1 ≪ κ2) there is no possible choice of atom-cavity detuning that allows for R0 to
vanish (green line, see Eq. (3.8)). As a consequence, the relative difference in
reflectance gets suppressed in this regime, ∆R/R0 ≪ 1, and detection of a reflected
photon barely provides any information about the atomic position, which leads to
the observed values g(2)rr (0) ∼ 1 when η ≪ 1.

3.4 Finite temperature

In a real experimental situation, limitations in cooling or atom transport can prevent
the atom from being prepared in its motional ground state. Instead, here we
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FIGURE 3.7: Average number of induced phonons per photon, normalized by the free-space
expectation, J /η2, for an atom in a thermal state ρT associated to temperatures kBT/ωm =
0.01, 1, 3 (see legend), and increasing values of atom-cavity coupling. The rest of parameters
are chosen as in Fig. 3.5(a). We observe that the transition between the weak (J ∝ η2Cin, black
dashed line) and strong coupling limits (J ∝ η

√
Cin, black dotted line) appears at the critical

effective length [ℓ = xT ] marked with coloured arrows.

describe the situation where the motional state is given by a thermal density matrix
at temperature T,

ρ̂T =
e−Ĥtrap/(kBT)

Z
, (3.14)

where kB is the Boltzmann constant and Z = Tr
(

e−Ĥtrap/(kBT)
)

the partition
function. An important consequence is that its steady-state position uncertainty
xT ≡

√
Tr (x̂2ρ̂T) becomes temperature broadened as xT/xzp ≈

√
2nph + 1, where

nph ≡ Tr
(

b̂† b̂ρ̂T

)
is the thermal phonon number that approximates nph ≈ kBT/ωm

in the limit nph ≫ 1.
In analogy to the role played by xzp in the zero-temperature limit, xT represents

the characteristic temperature-dependent length of the system, and strong
optomechanical coupling is expected to occur when xT ∼ ℓ. To illustrate this, in Fig.
3.7 we calculate the average number of additionally induced phonons caused by a
single photon as the intrinsic cooperativity increases, where each contribution can
be obtained from the scattering matrix description as Jα = Tr

(
b̂† b̂ Sαρ̂TS†

α

)
. Note

that phonons already present in the thermal state now need to be subtracted from
the number of phonons in the final conditional state, so that the net number of
phonons added is J = Jr + Jt + Ja − Tr

(
b̂† b̂ ρ̂T

)
. Presenting the calculation for

three different temperatures, we observe for each of them that xT = ℓ (marked with
arrows) defines the crossover, where J changes in scaling from η2Cin to η

√
Cin.

While this transition point occurs at smaller values of η2Cin as temperature is
increased, the magnitude of the strong coupling effect also decreases, as evidenced
by the decreased heating J /η2.
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One can also analyze the effect that temperature has on the second-order
correlations previously discussed. In Fig. 3.8 we use the scattering matrix formalism
to calculate g(2)rr (t) for different initial thermal states. For this, we assume that the
dynamics of the thermal state conditioned to reflection of an initial photon,
ρ̂T,r = Sr ρ̂TS†

r /Tr
(
Sr ρ̂TS†

r
)
, is dominated by the evolution purely in the trapping

potential, ρ̂(t) = e−iĤtraptρ̂eiĤtrapt, so that one can approximate the second-order
correlator as g(2)rr (t) ≈ Tr

(
Sr ρ̂T,r(t)S†

r
)

/Tr
(
Sr ρ̂TS†

r
)
.

The fact that the characteristic width of the state, xT , now depends on
temperature yields some interesting phenomena. First, although Eq. (3.13) was
formally derived assuming a pure initial state, one can see that g(2)rr (0) only in fact
depends on the position probability distribution, suggesting that the purity of the
state is irrelevant. Thus, one might expect g(2)rr (0) to be independent of temperature,
as long as the trapping frequency is adjusted so that the effective Lamb-Dicke
parameter η̃ = ηxT/xzp remains constant. This independence is illustrated in

Fig. 3.8(a), where we plot g(2)rr (0) as a function of temperature and η̃.
However, the thermal nature of the state is expected to play a role in the

subsequent dynamics of g(2)rr (t). To investigate this, in Fig. 3.8(b) we show the
second-order correlation function associated to time t′ = π/(2ωm) (the two reflected
photons are separated by a quarter of the mechanical oscillation period). At this
time delay, we see that g(2)rr (t′) does retain a temperature dependence for fixed η̃,
and tends toward 1 at larger temperatures.

To understand this, note that following the detection of the first reflected photon,
evolution under Ĥtrap during a time t′ = π/(2ωm) causes the position quadrature
to fully transform to momentum, and vice versa. In particular, the spatial width of
this conditioned state at time t′, Tr

(
x̂2ρ̂T,r(t′)

)
/x2

zp, equals the width in momenta
at initial time, Tr

(
p̂2ρ̂T,r(0)

)
/p2

zp, where pzp ≡ 1/(2xzp). On the other hand, the
resulting increase in kinetic energy due to the momentum imparted by detection for
fixed η̃ is given by ∼ ℓ−2 ∼ n−1

ph . This becomes negligible compared to the kinetic

energy of the thermal state ∼ nph. It then follows that Tr
(

p̂2ρ̂T,r(0)
)
≈ Tr

(
p̂2ρ̂T

)
in

the regime nph ≫ 1, which leads to the observed limit g(2)rr (t′) → 1. Thus, by fixing

η̃, the overall variation of g(2)rr (t) in the limit nph ≫ 1 then oscillates between the

result g(2)rr (0) also expected at zero temperature, to the value g(2)rr (t′) ∼ 1 appearing
for nph ≫ 1 after one quarter of the mechanical period, as we plot in Fig. 3.8(c). As a
consequence, higher temperature can in fact lead to greater contrast in the temporal
oscillations of the second-order correlation function.

Finally, in Fig. 3.8(d), we plot g(2)rr (π/ωm) as a function of atom-laser detuning
and temperature. Here, we fix the trapping frequency ωm to yield a
(zero-temperature) Lamb-Dicke parameter of η = 0.05. We observe that after half a
mechanical oscillation, bunching and antibunching occur for driving frequencies
that satisfy the conditions R(x0) = 0 (green dashed line) and R(x0 ± xT) = 0 (red
dotted line), respectively. The latter condition now depends on the temperature of
the state through the temperature-broadened xT , so that driving frequencies
associated to bunching and antibunching separate as the temperature increases.
Taking now the limit of large temperature, we observe that second-order
correlations tend to the Poissonian result g(2)rr = 1 as the change in the wave
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FIGURE 3.8: Value of the second-order time correlation function at times g(2)rr (0) (a) and

g(2)rr [π/(2ωm)] (b), as a function of the temperature T of the initial thermal state and the
effective Lamb-Dicke parameter, η̃ = ηxT/xzp, for fixed coupling ratio κ1/κ2 = 1.6 and the

rest of parameters chosen as in Fig. 3.6. (c) Evolution of g(2)rr (t) associated to five different
values of temperature for the choice of effective Lamb-Dicke parameter η̃ = 0.05. (d) Second-

order time correlations half a mechanical oscillation away from initial detection, g(2)rr (π/ωm),
for different driving frequencies and temperatures of the initial atomic thermal state, and
fixed η = 0.05. Bunching (light yellow) prevails for driving resonant with the atom-like
frequency, [R(x0) = 0] (green-dashed line, Eq. (3.7)), while antibunching (dark blue) appears
for a detuning compatible with [R(x0 ± xT) = 0] (red dotted lines, see text). Calculations are
performed within the scattering matrix model (see main text), observing convergence when
allowing for up to 150 phonons in the explored range of temperatures. The rest of parameters

are chosen as in Fig. 3.4.
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function, restricted to a region ℓ, is less significant when the temperature increases
and the atom is more spread. Still, we note that deviations from the Poissonian
result g(2)rr = 1 of order 40% can be readily observable for phononic occupations in
the order of nph ≈ 7, compatible with Ref. [85].

3.5 Conclusions and outlook

Taking advantage of the narrow linewidth of a single atom, we have shown that it is
possible to reach the single-photon strong coupling regime of optomechanics, even
when the cavity linewidth is prohibitively large. We have shown that this
optomechanical strong coupling can give rise to anomalously large motional
heating, and to motionally-induced oscillations in the second-order correlation
function of the light reflected from the cavity.

From the perspective of utilizing atom-cavity systems to realize coherent
spin-photon interfaces, such as for quantum information processing, our work
shows that there is the possibility to get strongly entangled with other undesired
degrees of freedom, in the form of phonons. It is therefore important to specifically
account for this effect when analyzing and optimizing protocols, especially in
systems with high cooperativity and large spatial variations of the vacuum Rabi
splitting, g(x). On the other hand, such a platform would be unique in enabling the
study of quantum optomechanics in the strong coupling regime. For example, it
would be interesting to investigate how to exploit such systems to realize strongly
non-Gaussian dynamics. Separately, with the possibility to scale atom-cavity
interfaces to multiple atoms and/or cavities [85], it might be possible to observe
interesting strongly correlated optomechanical states at the many-body level [136].
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Part II

Atom-mediated interactions for
cold atoms in optical lattices
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Chapter 4

Preliminaries II: ultracold atoms
in optical lattices

” The problem with surprise is that you have to lay out a trail for
the audience to follow all the while you’re keeping slightly ahead.
You don’t want them to be bored, but neither do you want them to
be confused, and unfortunately there are many ways to do both.

— Stephen Sondheim
(Extract from "Look, I made a hat")

Along the first part of this Thesis, we have illustrated some of the striking
consequences that can appear when light and matter intimately interact with each
other. In particular, Section 2.1.1 described how a strong classical driving field can
manipulate the energy levels of a two-level atom, inducing an energy shift that is
proportional to the intensity of the beam. In Section 4.1 of this Chapter, we illustrate
how this principle can be used to engineer optical lattices. Once atoms are trapped
in such a periodic potential, the resulting band-structure of the spectrum admits a
convenient description based on Bloch theory that we introduce in Section 4.2. In
particular, deep lattices admit a tight-binding description (Section 4.3), where
contact interactions among trapped bosons naturally simulate the local repulsion
described in the Bose-Hubbard (BH) model, which we introduce in Section 4.4. In
Section 4.5 we review different strategies that have been pushed forwards in order
to engineer long-range interactions in this system, and we finally motivate in
Section 4.6 the long-range tunability of interactions that is desired for relevant
simulations in, e.g., analog quantum chemistry, which is the scope of the second part
of this Thesis.

4.1 Optical lattices

An interesting experimental configuration is the one created by two
counterpropagating fields of the same polarization, which create a standing wave
whose amplitude is spatially modulated as I(r) = I0 sin2(kr). Experimentally, such
a superposition can be obtained by retroreflecting the beam with an orthogonal
mirror. For a standing wave formed in the x direction, the wavevector is k = kux,
whose modulus k = 2π/λ is dictated by its wavelength, λ. This induces a periodic
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optical potential perceived by the atom (2.8),

Vlat(x) = VD sin2(k x) , (4.1)

where VD is the depth of the resulting optical lattice, which scales with the intensity
of the beam and atomic detuning as I0/∆, (see Eq. (2.7)).

In the context of atomic trapping, it is the detuning ∆ between the driving
frequency and the atomic transition what determines whether the resulting forces
pull the atom towards the maxima (red-detuned) or the minima (blue-detuned) of
the intensity profile. In either case, atoms reduce their potential energy by being
placed at the minima of the induced potential, which receives the name of sites of the
lattice and are separated by a distance a = λ/2.

4.1.1 Dimensionality

A rich variety of geometries is possible when considering additional incoming
fields. For example, one can extend the one dimensional potential in Eq. 4.1 to two
and three dimensions by adding additional pairs of laser beams on these extra axes.
Interference patterns would however appear if these lasers were coherent with each
other. To prevent this, one can use orthogonal polarization for beams in different
directions or lasers whose polarization axes rotate at different frequencies.
Alternatively, it is also possible to rely on slightly, but sufficiently different driving
frequencies, so that any possible interference pattern disappears when time
averaging [137].

Manipulating the direction, phase, intensity, frequency and polarization of the
incoming beams, one can virtually engineer any desired lattice geometry
(Kagome [138], incommensurate [139], moire [140]...), even dynamically. In
particular, using a sufficiently large confining potential in one direction of a 3D (2D)
optical lattice one can effectively bring all relevant energies of the system below the
energy needed to create an excitation in this trap, effectively creating an array of
independent 2D (1D) lattices. In connection with the periodic potentials appearing
in, e.g., crystalline structures, this offers a clean playground to explore phenomena
associated to condensed matter Hamiltonians. As compared to them, the engineered
optical lattice does not support phononic modes that may distort the potential, and
the presence of defects is negligible.

4.2 Non-interacting particles in periodic lattices

In the following, we will derive a minimal model for the dynamics of atoms trapped
in periodic optical potentials. This simplified description in terms of localized
wavefunctions will allow us to derive most of the salient properties of the system,
and will evidence the close connection between the resulting dynamics and relevant
Hamiltonians appearing in areas such as condensed matter physics.

Indeed, one of the of the main lessons extracted from solid state physics is that
electrons moving in periodic potentials are well described by energy bands. As
opposed to free space, their spectrum is not continuous, but forbidden regions
appear as a consequence of the interaction between the electrons and periodically
distributed atoms of the material. Inspired by this understanding, an analysis based
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(a) (b) (c)

(d) (e) (f)

FIGURE 4.1: (a-c) Dispersion relation of an atom in a periodic potential for increasing depth of
the lattice, s = VD/Erec. (d-f) Lowest energy Bloch function associated to quasimomenta q = 0
(red line). As the lattice depth increases from s = 0 (a,d) to s − 20 (c,f), atomic population
concentrates at the minima of the lattice, represented in dashed grey lines as a reference.
Numerically, it is calculated by expanding V(r) and un,q(r) on its first Fourier components
with momenta α · (2k), for α = −αmax, . . . , αmax [141], and restricting to αmax = 5 already

provides good convergence when only interested for the lowest band.

on Bloch theory can provide a good description of the effects that appear in atoms
trapped in optical lattices.

4.2.1 Bloch functions and band structure

In order to derive these bands, let us characterize the states emerging in the
single-particle sector due to the periodic potential Vlat(r). Since Vlat(r + R) = Vlat(r)
for R = ∑α∈{x,y,z} nαaα, where aα = aαuα, nα ∈ Z, and aα is the lattice spacing in
direction α. Now, we can use the Bloch-theorem to write the single-particle
eigenstates Ĥϕn,q(r) = εn,qϕn,q(r) of Ĥ = −h̄2∇̂2/(2m) + Vlat(x) as follows:

ϕn,q(r) = un,q(r)eiqr , (4.2)

where q is the quasimomentum in the reciprocal space, un,q(r) is a function with the
same periodicity as Vlat(r), and n is denoting the index of the energy band En(q).
Note that quasimomenta is only unique up to a vector of the reciprocal lattice, k,
which allows us to restrict q to the first Brilloin zone.

The properties of these functions are highly determined by the depth of the
potential. This is commonly expressed in terms of the recoil energy of the atom,

Erec =
h̄2k2

2m
, (4.3)
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which defines the kinetic energy imprinted by a single incoming photon, where m is
the atomic mass. The depth of the optical lattice is then typically expressed through
the dimensionless quantity, s = VD/Erec. In Fig. 4.1(a-c) we illustrate the band
structure associated to different potential depths for a 1D sinusoidal potential.

For vanishing depth [(a), s = 0], we observe that there are no gaps and the
spectrum consists of free particles moving in a parabolic dispersion relation defined
by q. As the lattice depth increases (b), this dispersion is no longer quadratic and
increasing gaps appear, reducing the band widths. In the limit of very deep lattices
[(c), s ≫ 1], the spectrum is nearly degenerate in q and energy levels converge to the
discrete levels of a quantum harmonic oscillator localized at each lattice site.

In Fig. 4.1(d-f) we represent the lowest-energy Bloch function for
quasimomentum q = 0. For a vanishing lattice (a), it just corresponds to a free-wave.
As the strength of the optical lattice dominates kinetic energy (b-c), its wavefunction
concentrates around the minima of the lattice, while still being delocalized over the
entire system. Note that for two and three dimensional sinusoidal potentials, the
problem is separable in each direction. Therefore, Bloch functions on each
dimension can be calculated separately, and the energy of the band is the sum of the
independent contributions.

4.2.2 Wannier functions

As we have just observed, atomic wavefunctions concentrate at the potential minima
of the lattice in the limit where the trapping potential depth is much larger than the
recoil energy (s ≫ 1). While Bloch functions (4.2) delocalize over the entire lattice,
it will be useful to introduce a description based on Wannier functions localized in
each lattice site when calculating local properties. The Wannier function of a site j for
the n-th band can be obtained from ϕn,q(r) as follows:

wn,j(r) =
1√
N

∑
q∈BZ

ϕn,q(r)e−ijq (4.4)

where N is the total number of sites and q runs over the first Brillouin zone.
In Fig. 4.2 we represent the Wannier function associated to the lowest energy band.

For small lattice depth (a,b), two side lobes are visible, indicating a non-vanishing
probability of finding the atom in the adjacent site. As depth increases (c), these wings
are exponentially suppressed, reducing the tunneling to adjacent sites and adopting
a Gaussian-like shape centered at individual sites, as it occurs for the eigenfunctions
of a quantum harmonic oscillator.

Let us now remind several properties of these functions:
• Using the properties of the Bloch modes of Eq. (4.2), it can be seen that wn,j(r) =

wn,0(r− j). That is, the Wannier functions between the different sites only differ
on a lattice translation.

• The Wannier functions depends on the choice of the Bloch phase in Eq. (4.2),
but for simple Bravais lattice like the cubic one, it can always be chosen such
that wn,j(r) ∈ R [142, 143].
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(a) (b) (c)

FIGURE 4.2: Wannier function associated to the lowest band of a periodic potential for
increasing depth of the lattice, ranging from s = 0 (a), to s = 20 (c).

• The Wannier functions form a complete basis of space, i.e,
∫

drwn,j(r)wn′ ,j′(r) = δnn′δj,j′ . (4.5)

• As the lattice potential is separable in the three directions, the Wannier function
can be written: wn,j(r) = wn,j(x)wn,j(y)wn,j(z).

• Finally, in the strong-confinement limit, s ≫ 1, atoms only probe the positions
close to the minima. There, the periodic potential (4.1) can be expanded as an
harmonic trap, Vlat(r) = VDπ2r2/d2, where r = |r|. This allows one to obtain
an analytical expression for the Wannier functions in terms of the eigenstates of
an harmonic potential with trapping frequency,

ωt,α =
2
√

VDErec

h̄
, (4.6)

with α = x, y, z, which provides an energy estimate for the energy separation
between the different bands appearing in the structure.

While we have focused so far on a description of non-interacting particles, the
use of Wannier functions can also provide a good description of interacting particles
deeply trapped in optical lattices. In the following, we will introduce the properties
of gases formed by interacting bosons, and the natural tight-binding description that
arises for deep lattices.

4.3 Interacting atoms: Bose-Einstein condensates

When several atoms are trapped in the same lattice, one also needs to consider the
interactions that arise between them. It can be difficult to capture the exact manner
two atoms interact depending on their relative separation. However, in the limit of
low energy finite-range collisions, they can be well characterized by the leading s-
wave scattering amplitude, as. This allows us to describe the physics of the system
by simply adjusting our model to have the same scattering length as the exact atom-
atom interaction [144].
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t

U

FIGURE 4.3: Schematic representation of a 2D optical lattice (blue) where trapped atoms
(white) can tunnel to neighbor sites with rate t, and on-site energy U is associated to the double

occupation of a lattice site.

In the grand canonical ensemble, the Hamiltonian describing bosonic atoms in an
external trapping potential can be written in second quantization as,

Ĥb =
∫

drΨ̂†(r)

(
− h̄2

2m
∇̂2 + Vlat(r) + Vaux(r)

)
Ψ̂(r)

+
2πas h̄2

m

∫
drΨ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)

(4.7)

where Ψ̂†(r) is a bosonic field operator creating an atom in position r and Vaux(r)
denotes any additional external slowly varying potential.

When the gas is trapped in a deep lattice, the projection of this Hamiltonian in the
localized Wannier functions centered at the different sites of the optical lattice leads
to one of the simplest non-trivial models for interacting bosons in a periodic lattice:
the BH Hamiltonian, which we will sequentially introduce in the following.

4.3.1 Tight-binding Hamiltonian for deep lattices

When cold atoms are placed in a sufficiently deep optical lattice, one typically
assumes that the atoms are prepared in their motional ground state and interband
transitions are negligible [38, 39, 145]. In this limit, the atomic field operator Ψ̂(r)
can be expanded as a sum of wavefunctions localized at the sites of the optical
lattice,

Ψ̂(r) = ∑
j

wj(r)b̂j , (4.8)

where we drop the band-index n, and we define the annihilation (creation) operators
b̂(†)j of a bosonic state at site j ∈ Z3, which also obeys commutation rules

[
b̂i, b̂†

j

]
=

δi,j. Projecting the atomic Hamiltonian in this basis, one obtains the second quantized
Hamiltonian [146]:
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Ĥb = −∑
i,j

ti,j b̂†
i b̂j + ∑

i
εjn̂i +

U
2 ∑

i
n̂i (n̂i − 1) , (4.9)

where n̂i = b̂†
i b̂i counts the number of bosonic atoms in state σ placed at the lattice

site i. Regarding the rest of terms, ti,j defines the tunneling between the sites {i, j},
εj a position dependent energy shift caused by the external potential Vaux(r), and U
is the on-site interaction that acts whenever two or more atoms occupy the same site,
as we detail in the following.

Tunneling to neighboring sites

The strength of tunneling amplitude matrix ti,j of Eq. (4.9) is given by1,

ti,j =
∫

dr wi(r)

[
− h̄2

2m
∇̂2 + Vlat(r)

]
wj(r) . (4.10)

In the strong-confinement limit previously discussed, s ≫ 1, Wannier functions
are strongly localized around the minima of the lattice, such that only nearest
neighbour contributions appear in practice. The strength of the nearest neighbour
hopping terms in a regular lattice, t ≡ t⟨i,j⟩, can be estimated by approximating the
Wannier functions as a Gaussian of variance s−1/2k−2 [147], which gives the
result [146],

t ≈ Erec

√
4
π

s3/4e−2
√

s , (4.11)

The kinetic part of the ultra-cold fermionic atoms in optical lattices is then
approximated as,

T̂f = −t ∑
⟨i,j⟩

b̂†
j b̂j , (4.12)

which relates to the width of the lowest Bloch band as 4D t = max ε0,q − min ε0,q,
where D is the dimension of the lattice.

On-site potential

The effect of an external potential Vaux(r) is characterized by a position dependent
shift, εj, proportional to the intensity of the beam at each of the individual lattice
sites. Its expression in terms of the Wannier functions reads as,

εj =
∫

dr|wj(r)|2Vaux(r) . (4.13)

In order to induce the auxiliary potential Vaux(r), one can rely on the intensity-
dependent energy shifts experienced by the atom when shine by a detuned laser.
Retroreflected beams provide periodic potentials (as used to create the optical lattice),

1We set the on-site tunneling term ti,i as the energy reference because it is a constant energy terms in all
sites [146].
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and more complex profiles can be obtained by further engineering the light intensity
at each site of the lattice. As introduced in page 18, this can be achieved for 1D and
2D systems with an intensity mask that filters an homogeneous beam that is shine
orthogonally to the lattice. Digital mirror devices even allow to modulate this mask
over time, providing a high tunability of the induced potential [43]. Such control of
the light intensity at each site of the lattice is however harder to achieve in three-
dimensions, where holographic techniques can be used for this purpose, as we will
describe in Section 7.2.

On-site interaction

Finally, we have the scattering interaction caused by atomic collisions in the same
lattice site that, for a deep lattice, expands as [146],

U =
4πas h̄2

m

∫
dr
∣∣wj(r)

∣∣4 ≈
√

8
π

s3/4kasErec . (4.14)

In the case of collisions between two different types of atoms, the same expression
can be derived by replacing the corresponding interspecies scattering length and
reduced mass. Note that the scattering length as can be either a positive or negative
variable [148, 149]. This defines situations where atoms will favourably spread over
different lattice sites (as > 0) or will tend to condensate at the same minima (as < 0).
Feshbach resonances further allow one to experimentally control both the sign and
amplitude of as by using an external magnetic field, B [150],

as = abg

(
1 − ∆s

B − B0

)
. (4.15)

Here, abg denotes the background scattering length, and ∆s and B0 are the resonance
width and position, respectively, which can be determined experimentally for each
pair of colliding atoms.

4.4 Quantum simulators

At this point, one could argue that typical distances in solid-state crystals are of the
order of 0.1 nm, while the sites spacing of optical lattices are usually in the order
of µm. Also, atoms are much heavier than electrons. As a consequence, in order to
map the electronic properties occurring in solid-state at temperatures of hundreds of
Kelvin, one needs to cool atoms below a few nK [151, 152]. Remarkably, thanks to the
advances in atomic cooling, control and measurement techniques that we reviewed
in Chapter 2, single atoms are nowadays easier to observe and manipulate than single
electrons are, offering a rich platform to explore problems arising from diverse fields,
ranging from condensed matter [40] to high-energy physics [51, 153] or quantum
thermalization [154].
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4.4.1 Bose-Hubbard Hamiltonian

Historically, simulating the BH model [39],

Ĥb = −t ∑
⟨i,j⟩

b̂†
i b̂j + ∑

i
εjn̂i +

U
2 ∑

i
n̂i (n̂i − 1) , (4.16)

was the first experimental success of cold atoms in optical lattices [40], as it naturally
maps to the tight-binding Hamiltonian (4.9) of a repulsive Bose gas in a homogeneous
optical lattice.

The competition between the repulsive interaction and the kinetic term of the
Hamiltonian leads to a phase transition that was originally studied for the
superfluid-insulator transition in liquid helium [155]. On the one hand, a Bose gas is
a superfluid that presents long-range coherence. Once in an optical lattice, the
restriction of the bosonic dynamics to a nearest-neighbor tunneling leads to a
non-trivial situation that distinguishes between two phases.

Superfluid phase

In the limit where tunneling dominates over atom-atom interactions (t ≫ U), the
energy of the system is minimized when all N atoms independently occupy an
extended state. This leads to the delocalized single-particle product state,

|ΨSF⟩U=0 ∝

(
M

∑
i=1

b̂†
i

)N

|0⟩ , (4.17)

that spreads over all M lattice sites and is characterized by long-range phase
coherence.

Mott-insulating phase

As the interaction forces dominate (U ≫ t), fluctuations in the occupation number
become energetically unfavourable, and the lowest energy-state is reached for an
homogeneous fixed occupation of every lattice site. For a commensurate filling
n = N/M, this corresponds to,

|ΨMI⟩t=0 ∝
M

∏
i=1

(
b̂†

i

)n
|0⟩ . (4.18)

The critical ratio U/J where this phase transition occurs has been theoretically
analyzed [39, 155] and experimentally observed [40], and is proportional the number
of first-neighbours in the lattice. When compared to the gapless superfluid phase,
one interesting property of the Mott phase is that an energy gap ∼ U opens as one
crosses the quantum critical point, separating |ΨMI⟩t=0 from any uneven occupation
of the lattice sites.

Starting from a superfluid configuration, the Mott-insulating phase can be
experimentally prepared by adiabatically increasing the depth of the optical lattice
up to values in the order of s ∼ 20 [40]. A relevant configuration in our work will be
the unitary occupation of the lattice n = 1, where the number of trapped atoms
matches the amount of available lattice sites. While imperfections may appear
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during its preparation (empty or double-occupied sites), current experiments are
able to achieve unitary fillings of order 99.9% [156].

4.4.2 Generalized Bose-Hubbard models

Current research focuses on extending this successful implementation of the BH
model to richer scenarios also accessible in optical lattices. Among others, these
investigations include,

• Different dimensional systems. By increasing the depth of the lattice in a
particular direction, one can restrict the problem into a 2D or 1D scenario [157,
158], where different transition points are expected. Other exotic geometries
can also been considered by wisely choosing the beams configuration,
including triangular [159–162], Kagome lattices [138, 163, 164] or
honeycomb [165] lattices, which allows one to simulate particular crystalline
structures where, e.g. Dirac points appear [48, 166].

• Disordered systems. Disorder plays a core role in condensed matter, as can
prevent the appearance of long-range coherence in the system. This is
responsible for effects like the Anderson localization of otherwise superfluid
extended states. The engineering of random optical potentials [167, 168] or
additional incommensurate ones [139, 169] allows one to explore the
transitions between the localized states originated from Anderson localization,
and those expected in the Mott insulating phase as the trapping depth
increases [170].

• Internal structure of the atom. The atomic internal state can determine its
trapping depths (and, therefore, tunneling rate), as well as the atom-atom
interactions [171]. This defines effective spin Hamiltonians where quantum
problems related to magnetism [172, 173], quantum dynamics [174, 175] or
lattice gauge theories [51, 153] can be simulated.

• Extended BH models Another interesting generalization of Hubbard models is
the engineering of atom-atom interactions that extend beyond nearest-neighbor
sites, which will be the scope of the second part of this Thesis. In the next
Section, we will further motivate its interest, and review some of the strategies
followed in state-of-the-art experiments to obtain extended interactions.

4.5 Long-range interactions among trapped atoms

While interactions among atoms sitting in different sites are exponentially
suppressed in the case of highly localized Wannier functions (s ≫ 1), different
mechanisms can lead to longer-range interactions. The range and scaling of these
interactions can lead to the appearance of metastable states, modifying not only the
spectrum, but also the stability of these phases. For example, nearest-neighbor
couplings can stabilize checker-board patterns, associated to fractional filling
factors [176, 177]. Long-range interactions between ultra-cold atoms are also known
to be the source of many exotic many-body phenomena. These include new
magnetic [178, 179] or supersolid phases [180–182] that can exist in extended
Hubbard models, as well as topologically ordered states [63, 183], or roton
spectra [184, 185], that can appear when long-range interactions are tuned.
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FIGURE 4.4: (a) Schematic representation of two dipoles separated by distance r, and forming
an angle θi with the line that separates them. (b) 2D array of dipoles oriented with angle
θi = π/2 from the plane that contains them. (c) 1D array of dipoles aligned with the common

axis, θi = 0.

Long-range interactions in Bose-Fermi mixtures have allowed the observation of
soliton trains [186–189], or quantum droplets, originated from the balance between
attractive long-range (dipolar) and repulsive contact interactions [190, 191], which
have also been observed with purely contact interactions [192]. As we will show in
Chapters 6 and 7 of this Thesis, long-range interactions experienced by fermionic
atoms can also be harnessed to build analog quantum chemistry simulators [1–3].
Unfortunately, these interactions do not appear naturally between neutral atoms,
since they generally interact through the (local) elastic collisions introduced in
Eq. (4.14). This is the reason why finding ways to engineer and control such
long-range atomic interactions is one of the most pressing issues in atomic physics
nowadays. Here, we review some of the strategies experimentally available and
motivate the approach introduced in the rest of this Thesis.

4.5.1 Dipole interactions

Atoms and molecules with a permanent dipole moment (electric or magnetic) interact
with each other through dipole-dipole potentials of the form [193],

V(r1, r2) =
VDD

r3 (cos θ12 − 3 cos θ1 cos θ2) , (4.19)

where r ≡ |r1 − r2| is the distance between the two particles and θ12 = θ1 − θ2
represents the angle difference between the two dipoles, where θi is the angle
formed by the dipole and the line connecting their centers [see Fig. 4.4(a)].

While the overall potential scales as ∼ r−3, these anisotropic interactions highly
depend on the relative orientation of the dipoles. Homogeneous interactions can still
be identified in some reduced geometries. For example, atoms in a plane with their
dipole moment equally oriented normally to the plane experience an homogeneous
repulsive potential VDD/r3 [see Fig. 4.4(b)]. Similarly, atoms in a one-dimensional
array with dipolar moments aligned with their common axis attract each other with
a potential, 2VDD/r3 [see Fig. 4.4(c)].
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The strength of these interactions is determined by the dipole moments involved,
VDD = µ1µ2/(4πε0), whose magnitude highly depends on the physical origin of the
dipole [194], as we will discuss now.

Polar molecules

In heteronuclear molecules, one can find permanent electric dipole moments in the
order of a few Debyes (µ ∼ 1D ∼ 10−30 C· m). This leads to dipole interactions that
can exceed typical scattering forces in cold atomic gases by two orders of
magnitudes. Current techniques enable to cool down molecules to ultralow
temperatures, which has been a longstanding challenge due to the complexity of the
molecular internal structure introduced by its rotational and vibrational
modes [195]. At the same time, these additional degrees of freedom, combined with
the tunability accessible in optical lattices and the non-linearity introduced by
long-range interactions, offer promising perspectives for their use in quantum
simulation and computation [196].

Paramagnetic atoms

Atomic species like Cr or Dy can have large magnetic moments of order 5 µB in the
presence of a magnetic field. While these magnetic forces are typically weaker than
electric dipole or contact interactions [197], the interplay with optical lattices at large
filling allows for non-negligible effects, where magnetic dipole exchange enters as an
additional degree of freedom. Using 52Cr [198, 199] or 168Er [200], the role played by
the spin axis and long-range interactions has been explored in many-body problems,
such as the extended BH model.

Rydberg atoms

Atoms in a largely excited state typically have their valence electron hundreds of
Amstrongs away from their nuclei. This induces a large electric dipole that scales
quadratically with the principal quantum number n of this electron, which results
into dipole interactions VDD ∝ n4 [201]. The resulting energy shift caused by the
dipolar potential once a Rydberg atom is populated can prevent a second atom from
getting excited within a range of influence in the order of 10 µm. This is the,
so-called, Rydberg blockade radius [202]. For dense atomic clouds, hundreds of
atoms fit within this blockade radius, and such a strong nonlinear behaviour offer
interesting possibilities in the construction of quantum gates [203, 204],
memories [205, 206] or single-photon sources [207]. Its combination with optical
lattices [208, 209] or tweezers [69] allows one to further control the atomic positions
enabling the simulation of fundamental many-body models.

The main source of decoherence introduced by this Rydberg mechanism is the
reduced lifetime of the Rydberg states, of the order of 100s µs. A way of overcoming
this limitation is the use of Rydberg dressing techniques which are currently being
pursued experimentally [210].

4.5.2 Ionic systems

While in this Thesis we will focus on manipulating neutral atoms, it is worth
mentioning the interesting physics that appears when an ensemble of ions is cooled



4.5. Long-range interactions among trapped atoms 59

to temperatures below mK. Being charged particles, strong electrostatic forces can be
imparted through external electric field. However, Gauss’s law prevents a stable ion
trap from being based on static electromagnetic fields (Earnshaw’s theorem). This
can been circumvented by other trapping techniques. For example Paul traps rely
on time-averaged oscillating electric fields, while Penning traps uses a combination
of electric and magnetic fields [27, 28]. Once at equilibrium, this trapping potential
is balanced by the Coulomb repulsion between the ions, defining crystal structures
whose collective vibrational modes describe a quantum motional degree of freedom
widely used for quantum simulation. Increasing the trapping force in one or two of
the directions, one can further constrain the trapped ensemble, so that 1D or 2D
crystal of hundreds of atoms are formed. The coupling between the internal state of
these ions to the motional degrees of freedom of the crystal leads to an effective
spin-spin interactions, ∑i,j Ji,jσ̂

†
i σ̂j, that exhibits a long-range scaling Ji,j ∝ |ri − rj|−α

with a power-law that can be tuned between values 0 < α < 3 [211, 212]. Such an
experimental tunability allows one to study the role that long-range interactions can
have in quantum phenomena ranging from quantum magnetism [57] to quantum
transport or thermalization [56].

Ions in optical lattices

Going beyond this common trapping, optical dipole traps have recently been
adapted to ions [213]. In this scenario, Coulomb forces are typically orders of
magnitude larger than optical forces, and any stray electric field needs to be detected
and compensated [214]. The extension to optical lattices benefits from the scalability
and versatility of these platforms [215], and allows to defeat the temperature limits
imposed by micromotion in electrostatic traps [216], while still allowing for trapping
lifetimes of 3 s nowadays [217], comparable to atoms under similar conditions.

Because of strong Coulomb repulsion, ions in optical lattices are typically separate
by many sites [218], and the interplay of this long-range interaction with a periodic
potential can lead to a quantum phase transition [219]. The motional control of these
ions also constitutes an interesting platform for digital quantum simulation [220,
221] and, choosing a common lattice spacing, hybrid ion-atom systems can also be
engineered [222]. Introducing this ionic array in an optical cavity, further allows to
engineer the range of the arising interactions through photon-mediated effects [223],
as we will introduce in the following.

4.5.3 Engineered photon-mediated interactions

One of the first lessons in electromagnetism is that a virtual photon exchanged
between two charged particles can induce a long-range interaction between them.
The more separated they are, the more unlikely it is for this mediating photon to
propagate from one particle to the other, which translates into Coulomb forces that
decay with the distance and whose scaling highly depends on the media the
mediator propagates through.

Regarding neutral atoms, photons emitted by an excited state rarely interact with
another atom before decaying into free-space, which is the origin of weak Van-der-
Waals forces, ∼ r−6. However, by controlling the environment atoms are coupled to,
one can manipulate this process, enhancing the probability that an emitted photon
reaches other atoms and gaining a rich tunability of the resulting interactions [72].
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(a) (b) (c)

FIGURE 4.5: Schematic representation of the atom-atom interaction mediated by (a) an optical
fibre, (b) a photonic crystal, (c) a Fabry-Perot cavity.

Some of the structures previously introduced can then be used to mediate atom-atom
interactions.

Nanophotonic structures

As introduced in Sec. 2.2.4, atoms coupled to the evanescent field of a nanophotonic
structure can defeat the diffraction limit, offering an interesting opportunity for
light-matter coupling and, therefore, atom-atom interactions mediated by light [see
Fig. 4.5(a)]. Being trapped so close to its surface (typically ∼ 200 nm), the decay of
an atom into a fibre can in principle represent ∼ 30% of the total atomic emission
[224], while ratios one order of magnitude smaller are found in current
experiments [225, 226]. This decay allows for an effective infinite-range spin-spin
interaction that is dictated by the separation between atoms in positions xi and xj

through the phase accumulated by the mediating photon, ∝ exp(ik0|xi − xj|)σ̂†
j σ̂i,

where k0 is the wavevector that better couples to the atomic transition [227]. This is
responsible for collective effects, including superradiant emission or nearly perfect
reflectance of the fibre, which is highly influenced by the accumulated phase
between the atoms [228–230].

Some of the challenges of this interaction is that coherent spin exchange cannot be
decoupled from collective dissipative processes. Applications in quantum
information or quantum simulation would highly benefit from the ability to further
engineer the dispersion relation of these fibres, which is one of the main
opportunities offered by photonic crystals once a periodic distribution of defects is
tailored [see Fig. 4.5(b)]. Similarly to electrons propagating in periodic materials, the
resulting dispersion relation shows a rich band structure, with band-gap frequencies
at which photons cannot propagate [231]. This offers an interesting perspective from
the point-of-view of mediated interactions. For atomic transitions tuned inside a
band-gap of the structure, photon propagation inside the crystal is overall
exponentially suppressed. When this frequency is close enough to the band-edge, a
significant propagation between nearby atoms is still possible before these
exponential tales appear [88, 232], allowing for an effective spin-spin exchange
interaction over long distances where fundamental many-body problems can be
addressed [233].

Optical cavities

Among the long-range interactions mediated by photons, we should finally point to
the infinite-range interactions appearing in optical cavities [see Fig. 4.5(c)]. As
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introduced in Section 2.2, the numerous round-trip photons experience in
high-cooperativity cavities allow one to effectively couple all atoms dressed by a
cavity mode. The combination with optical lattices allows one to explore the
competition between short-range interactions caused by on-site collision and the
long-range interaction mediated by the cavity mode, where collective effects can
stabilize self-organized supersolid phases [234]. Recently, the interplay of this
infinite-range interaction with a magnetic field gradient aligned along the cavity
axis has enabled further tuning the distance-dependence of interactions in
motionally fixed atomic arrays by temporally modulating the intensity of the drive
field [235], which opens a new avenue for quantum simulation.

4.6 Outlook: towards long-range interactions mediated
by atoms

In Table 4.1 we summarize the different strategies introduced in Section 4.5 to
induce long-range interactions among atoms trapped in optical potentials. Their
scaling ranges from the all-to-all forces present in cavities, to exponentially
suppressed interactions for atoms tuned at the band-gap of photonic crystals. The
strength of these atom-atom interactions at an optical distance of 500 nm is also
diverse, ranging from a few Hz for the case of weak dipole interactions appearing in
paramagnetic atoms, to several GHz in the case of strong Rydberg or ionic forces.

Interactions Scaling Nearest-neighbor
strength V1/h

Dipole interactions
Polar molecules ∼ r−3 ∼ 1 kHz
Paramagnetic
atoms

∼ r−3 ∼ 1 Hz [200]

Rydberg atoms ∼ r−3 ∼ 0.1 GHz (n = 20)
∼ 100 GHz (n = 40)
[201]

Ionic interactions
Ion-ion ∼ r−1 ∼ 100 GHz
Ion-neutral atom ∼ r−4 ∼ 100 Hz [222]

Photon-mediated
Optical nanofibre sin(kr) ∼ 0.1-1 MHz [226]
Photonic crystals ∼ 10 MHz [85]
Optical cavities sin(kr) ∼ 0.1 − 1 KHz [235]

TABLE 4.1: Summary of the long-range scalings presented in Section 4.5 for different mediating
mechanisms. The nearest-neighbor strength is estimated for an interatomic separation of 500

nm.

The second part of this Thesis will be devoted to engineer in a lattice atom-atom
forces capable of simulating the electronic repulsion present in a chemical bound. As
we will see, this translates into a number of requirements,

• The simulated atoms should be fermionic to emulate the statistics of electronic
systems.

• These atoms should be able to tunnel from one lattice site to another to mimic
the electron dynamics.
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• Every pair of atoms should repel each other following a long-range Coulomb-
like scaling that decays inversely with their separation, as 1/r.

• In order to mimic the natural ratios between the kinetic and repulsive energy
of electrons within a finite lattice, the strength of this repulsion needs to be
comparable to the tunneling rate, which is typically in the order ∼ 100 kHz.

One can see, however, that none of the systems above satisfies all these
conditions. Only ions provide the correct Coulomb-like scaling, but their strong
repulsive forces highly exceeds the kinetic energy-scales of atoms trapped in optical
lattices, and ordered arrays beyond 1D have not yet been reached. Driven strategies
of cavity systems, such as Ref. [235], may lead to the desired scaling by considering
an appropriate choice of the input field, but the tunneling responsible for the
fermionic dynamics is not present in such system.

In the second part of this Thesis, we will investigate whether contact interactions
with an additional atomic species can mediate long-range interactions among
trapped atoms that satisfy the four desired features presented above. In particular,

• In Chapter 5, the additional atomic species will be a Fermi gas trapped in an
harmonic potential, which leads to an oscillatory effective potential that can be
highly tuned by both the geometry of the trap or the use of additional laser
fields.

• In Chapter 6, we will consider additional bosonic atoms trapped in an optical
lattice as a mediator. By appropriately accessing some of its internal levels,
we will show that different effective interactions can be obtained, ranging from
polynomially decaying to an exponential scaling with a tunable decay length.

• In Chapter 7, we will show that the infinite range interactions that can be
mediated by an additional cavity leads to an effective Coulomb-like repulsive
potential that satisfies the four conditions needed for electronic simulation. We
will derive the equivalence between this system and electronic configurations
in chemistry, and numerically benchmark its performance with simple
molecular configurations.
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Chapter 5

Tunable long-range interactions
mediated by a Fermi gas

” Fui distraída todo el camino, pensando en que siempre se mueve
uno en el mismo círculo de personas por más vueltas que parezca
dar.

— Carmen Laforet
(Extract from "Nada")

We have just introduced how the exchange of mediating particles can lead to the
long-range interactions that appear in nature. Here we explore the orthogonal
direction that consists in using fermionic atoms in atomic mixtures as
mediators [178, 180, 181, 185, 188, 236–244]. Such fermion-mediated interactions
have been predicted [178, 241, 245] to lead to the Ruderman-Kittel-Kasuya-Yosida
(RKKY)-type interactions appearing in solids [246–248], which have a power-law,
oscillating nature, fixed by the dimensionality and density of the Fermi gas. With
the recent experimental observation of these interactions [188, 243], a timely
question that has been scarcely explored [185] is how they can be further tuned to
explore new phenomenology with them.

In this Chapter, we take advantage of the flexibility offered by ultracold atomic
platforms to control the range and shape of long-range fermion-mediated
interactions, going beyond the conventional RKKY ones encountered in solid-state
systems. This allows us to design a quantum simulation toolbox that can be used to
prepare, for instance, frustrated phases that are not accessible using other
approaches. This Chapter is organized as follows. First, in Section 5.1 we review
how to derive the effective fermion-mediated RKKY interactions for a Fermi-Bose
mixture of ultracold atoms. In Section 5.2, we introduce an additional optical
potential for the Fermi gas and show how the range of the interactions can be
interpolated from a power law to an exponential decay by tuning the ratio between
the periodic potential and the confining harmonic trap. This also allows one to select
the ratios between interactions at different distances within a non-vanishing range.
We then show how, for a hardcore bosonic chain immersed in the fermionic cloud,
the resulting interactions can be used to prepare frustrated phases with non-trivial
topological properties. Finally, we consider in Section 5.3 an extra tuning knob by
continuously changing the dimensionality of the cloud using different trapping
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FIGURE 5.1: (a) Two bosonic atoms (white) separated by distance r and trapped in an optical
lattice (red) experience an effective long-range interaction mediated by a Fermi gas trapped in
an harmonic potential (blue). (b) The contact Bose-Fermi interactions (gb f ) virtually populates
the conduction band of the Fermi gas. (c) An additional oscillatory potential induces a gap
between the valence and conduction gap, exponentially damping the mediated interactions.
(d) By controlling the strength of the trapping potential in an orthogonal direction, ωz/ωx, one
can continuously tune the dimension of the Fermi gas from 1D to 2D, introducing additional

modulating frequencies as will be shown in Fig. 5.4.

intensities in each spatial direction. As we will illustrate, this control allows one to
further tune the interaction ratios.

5.1 Effective fermion-mediated interactions

Let us consider an atomic mixture as depicted in Fig. 5.1(a), where one species
corresponds to non-interacting spinless fermions trapped by an harmonic potential,

V(x, y, z) =
m f

2

[
ω2

xx2 + ω2
yy2 + ω2

z z2
]

. (5.1)

The fermionic Hamiltonian reads as, Ĥ f = ∑n εn ĉ†
n ĉn, where ĉ(†)n is the (creation)

annihilation operators associated with the n-th eigenstate of this oscillator, with
energy εn. For concreteness, we assume that the other atomic species is bosonic and
it is trapped in an optical lattice, Vlat(r), with fixed lattice spacing d. While Pauli
blocking prevents s-wave interactions among spin-polarized fermion, one can still
account for boson-boson and boson-fermion collisions. This leads to a bosonic
Hamiltonian of the form,

Ĥb =
∫

dr ϕ̂†(r)

(
−h̄2

2mb
∇2 + Vlat(r)

)
ϕ̂(r) + gbb

∫
drϕ̂†(r)ϕ̂†(r)ϕ̂(r)ϕ̂(r) , (5.2)
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and a Bose-Fermi density-density interaction,

ĤI = gb f

∫
drϕ̂†(r)ψ̂†(r)ϕ̂(r)ψ̂(r) (5.3)

where the field operator ϕ̂(r) [ψ̂(r)] describes the annihilation of a boson [fermion]
and gbb(gb f ) is the bosonic (interspecies) coupling constant, which is experimentally
tunable through magnetic Feshbach resonances [see Eq. (4.15)].

Below the Fermi temperature, the N fermionic atoms are occupying all states up
to the Fermi energy, εF = εN , and the state can then be written as |Ω⟩ = ∏N

n=1 ĉ†
n |0⟩.

In the regime where fermionic timescales are much faster than the bosonic ones and
their interaction is weak, one can take Ĥ0 = Ĥb + Ĥ f as the unperturbed Hamiltonian
and ĤI as a perturbation, obtaining an effective potential for the bosons [178],

Ĥeff = εF + Ĥb + G
∫∫

drdr′Fr,r′ ϕ̂
†(r)ϕ̂†(r′)ϕ̂(r)ϕ̂(r′) , (5.4)

where G = 2m f g2
b f k4

F/h̄2 and xzp = [h̄/(2mωx)]1/2. Here, the last term arises from

the second-order perturbation ∑m ̸=i
∣∣⟨m| ĤI |i⟩

∣∣2 /(Em − εF), where the initial state
|i⟩ = |Ω⟩ |{rb}⟩ belongs to the ground-state manifold of Ĥ0 for bosonic atoms
placed in positions {rb}, and |m⟩ = ĉ†

m ĉn |Ω⟩ |{rb}⟩ is a particle-hole excited state
outside the manifold, with energy Em. Note that due to the conservation of
fermionic parity, fermions need to be exchanged twice to generate a potential, unlike
photons, which can be exchanged only once. This has important implications for the
sign and shape of Fr,r′ [249]. Interestingly, this mediated potential only depends on
the bosonic separation Fr,r′ ≈ F (|r − r′|).

Numerically, this perturbative sum is calculated by considering all possible
combinations of hole and particle states that are below and above the Fermi energy,
respectively. For a Fermi gas with N atoms trapped in a 1D harmonic potential of
frequency ωx, this can be numerically calculated as,

F1D(r) = 2
N−1

∑
m=0

Λ

∑
n=N

φm(0)φn(0)φn(r/xzp)φm(r/xzp)

n − m
, (5.5)

where Λ is the upper numerical cutoff for energies in the conduction band, and we
observe convergence of the infinite sum for Λ ≈ 4N. Here, φn(x) denotes the
wavefunction of the n-th eigenstate of the trap in position x, whose energy for a
harmonic trap is En = (n + 1/2)h̄ωx, and is dictated by [250],

φn(x) =
e−(x/2)2

(2π)1/4
Hn(x/

√
2)√

2nn!
, (5.6)

where Hn(x) denotes the Hermite polynomial of order n. To simplify this calculation
for high orders n, one can observe in Eq. (5.5) that these wavefunctions only need
to be evaluated at the position of the mediated atoms. To facilitate this, one can
rely on a recurrence relation that reduces the calculation of φn(x) for a given n to
the evaluation of the lowest order ones. Defining Rn(x) = Hn(x/

√
2)/

√
2nn! one
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has [251],

R0(x) = 1 ,

R1(x) =
√

2x ,

Rn+1(x) =
√

2
n + 1

xRn(x)−
√

n
n + 1

Rn−1(x) .

(5.7)

This numerical calculation can be directly extended to the 2D case by considering
the appropriate energies and states. Since it will be useful to interpret the results of
this Chapter, let us now review here the properties of a free Fermi gas with energy

dispersion ε0
k = h̄2|k|2

2m f
, which provides a first approximation in the limit N ≫ 1.

Analytical expressions in this limit can be found in all spatial dimensions [247, 252,
253]. For example, in the one-dimensional case (Nωx ≪ ωy,z), F(r) expands in the
limit kFr ≫ 1 as [252]:

F1D(r) ∝
−1
kFr

(
cos (2kFr) +

sin (2kFr)
2kFr

)
, (5.8)

whereas in the two-dimensional case (ωx = ωz ≪ ωy/N), it expands as [253]:

F2D(r) ∝ − 1
k2

Fr2

(
sin(2kFr)− cos(2kFr)

4kFr

)
. (5.9)

In both dimensions, interactions share some common features: i) the
fermion-mediated interactions are attractive in the limit r → 0, regardless of the sign
of gb f . The mean-field intuition is that, for gb f > (<)0, the Fermi gas tends to avoid
(be attracted to) the bosons, reducing (increasing) the fermionic density, and thus,
the bosons feel more attracted to this place. ii) Asymptotically, they lead to longer
range interactions ∼ r−1 (1D) and ∼ r−2 (2D) than dipolar ones (∼ r−3). iii) The
interactions oscillate with an effective length inversely proportional to the Fermi
momentum, kF =

√
2m f εF. Thus, choosing the wavevector of the bosonic optical

lattice potential kL, one can induce (anti-)ferromagnetic interactions if kL = (2)kF, or
incommensurate ones (kL/kF ∈ I).

For a sufficiently deep optical lattice for the bosons, only its lowest motional band
gets populated. Wannier functions wj(r) centered at the lattice sites j become a
convenient description for the bosonic fields, ϕ̂(r) = ∑j wj(r)b̂j. Projecting in this
basis the effective Hamiltonian (5.4), one obtains an extended BH model,

Ĥeff = −tb ∑
⟨j,j′⟩

b̂†
j b̂j′ +

Ub
2 ∑

j
n̂b

j (n̂
b
j − 1) + ∑

j,j′
υj,j′ n̂

b
j n̂b

j′ , (5.10)

with nearest-neighbor tunneling strength tb and on-site interaction
Ub = gbb

∫
dr
∣∣wj(r)

∣∣4, where tb, max|υj,j′ | ≪ h̄ωx,y,z to satisfy the previous

perturbative treatment. Here, b̂(†)j are the (creation) annihilation operators of a

bosonic atom on site j, n̂b
j = b̂†

j b̂j is the bosonic number operator, and the effective
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FIGURE 5.2: (a) Effective potential between two atoms in one dimension mediated by a Fermi
gas trapped in an harmonic trap with (green) and without (red) an extra periodic trap of
strength Vp/Vh = 400. Markers indicate the oscillation maxima. (b) Value of the maxima for
increasing values of Vp/Vh from 0 (green) to 500 (yellow). The inset shows the decay length ℓ
of a fitted Yukawa interaction, ∼ exp[−kFr/(πℓ)]/r. (c-d) Strength of the second υ2/υ1 (c) and
third υ3/υ1 (d) neighbour interactions as a function of Vp/Vh and the effective lattice spacing
kFd. Here, the bosonic Wannier function wj(r) is approximated by a Gaussian distribution
with, xwidth/d = 0.17, consistent with a lattice wavelength λ = 784.7 nm for 87Rb [254] (see

the main text).

potential υj,j′ terms can be obtained from the perturbed potential (5.4) as,

υj,j′ = G
∫∫

drdr′ F
(
|r − r′|

) ∣∣wj(r)
∣∣2
∣∣∣wj′(r

′)
∣∣∣
2

. (5.11)

5.2 Knob I: additional trapping potential

We now show how the range of the effective interactions can be controlled by
adding a periodic potential Vp sin2(kpx) to the previous fermionic trap in the 1D
case, V(x) = Vh · (x/xzp)2, where Vh = h̄ωx/4, as illustrated in Fig. 5.1(c). In the
following, we fix the number of fermionic atoms, while we vary the ratio Vp/Vh by
modifying the depth of the periodic potential. It is expected that a value of Vp ̸= 0
opens up a gap in the energy dispersion of the fermionic excitations, introducing a
cutoff in the interaction range if the Fermi energy lies within the band gap [see
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Fig. 5.1(b)]. This is guaranteed by choosing an appropriate wavevector kp for the
fermionic optical lattice, so that the oscillatory potential maximally hybridizes with
the highest occupied state. As this N-th eigenstate of the quantum harmonic
oscillator has N − 1 nodes extended over an average width

√
⟨x2⟩ ∼

√
Nxzp, this

translates into the scaling kpxzp ∼
√

N.
Along the Figures in this Chapter, we have considered parameters compatible

with an atomic mixture of fermionic 6Li and bosonic 87Rb [255]. In particular, we
consider a Lithium Fermi gas formed by N = 200 atoms optically trapped with
frequency ωx = 2π × 200 Hz, whose associated Fermi temperature is
TF ∼ 1µK [242]. Rubidium atoms are trapped in an optical lattice with wavelength
λ = 784.7 nm and an optical depth that is 12 times larger than recoil energy.
Temperatures in the order of T ∼ 100 nK are experimentally accessible [242], and
they only populate the motional ground-state of each lattice site, as required by the
tight-binding description. Approximating the resulting Wannier function as a
Gaussian, the associated width corresponds to 0.17 times the lattice spacing,
d = λ/2 [254]. As desired, this leads to a tunneling rate that is one order of
magnitude smaller than the fermionic trapping frequency ωx, and the associated
tunneling time ∼ 10 ms allows for hundreds of tunnelling events during the typical
coherence times of these experiments. The coherence length for the fermionic
system can be estimated as Lcoh = h̄vs/(kBT) ∼ 10 µm [256], which allows the
mediating process to take place over ∼ 20 sites of the lattice. Here, vs = h̄kF/mf
denotes the sound velocity for phonons at the Fermi level, and longer coherence
lengths could be achieved by further reducing the temperature.

In Fig. 5.2(a), we show the fermion-mediated interaction appearing in a 1D Fermi
gas for two values of Vp/Vh corresponding to the pure harmonic case (Vp/Vh = 0,
dashed green) and a ratio Vp/Vh = 400 (solid red). We observe how the periodic
potential tends to (exponentially) cut the range of the interaction, inducing a purely
positive potential for distances kFr > 2. In Fig. 5.2(b), we plot the maximum relative
values of the fermion-mediated interactions at the oscillations for increasing values
of Vp/Vh, where it is more evident the transition from a power-law decay for small
Vp/Vh, to an exponentially decaying Yukawa-like interaction when Vp/Vh is large.
We can therefore control the effective interaction range, given by the exponential
decay length ℓ, which is exponentially reduced by Vp/Vh, as ℓ ∼ e−αVp/Vh (inset).

Besides, playing with the effective lattice separation of the bosonic species kFd
(which can be controlled through the frequency of the harmonic trap, adjusting kp
accordingly), one can identify diverse choices of induced interactions, as we
illustrate in Figs. 5.2 (c-d). There, we see for example that there are regions for Vp/Vh
and kFd (coloured in white) where the potential for the nearest and next-nearest
neighbours coincide υ2 ≈ υ1, while interactions among longer distance atoms are
very weak, υ3/υ1 ≈ 0. This is important because such potentials can be the source of
frustrated quantum many-body phases, as we explain below.

5.2.1 Quantum simulation of frustrated phases

To illustrate the last point, we analyze the phase diagram of a 1D chain of hardcore
bosons (Ub/tb → ∞) whose interactions are mediated by a 1D Fermi gas. The
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different phases can be distinguished using the structure factor,

S(q) =
1
L2 ∑

i,j
⟨δn̂b

i δn̂b
j ⟩eiq(ri−rj), (5.12)

where δn̂b
i = n̂b

i − ρ and ρ = 1/L ∑i⟨n̂b
i ⟩ is the bosonic density.

Using a density-matrix renormalization group (DMRG) algorithm [257] with fixed
bond dimension D = 200, we calculate the ground state of a periodic chain with
L = 60 sites and half-occupation, ρ = 1/2. The choice of parameters in Fig. 5.3 is
consistent with the state-of-the-art Bose-Fermi mixtures [242, 243] detailed above. In
particular, the interaction among the two atomic species is characterized by a
scattering length abf ∼ 25 aB [255], which can be externally controlled through
Feshbach resonances. This allows for mediated interactions of order, |υ1|+ |υ2| ∼ tb,
as needed for the model studied in this section.

Fig. 5.3(b) shows how, for Vp/Vh = 0, S(q) develops a clear peak at a certain value
q0 that varies with kFd. The value at the peak Smax = S(q0) can be used as an order
parameter, revealing in this case a staircase structure where every step corresponds
to a charge density wave (CDW) phase with long-range order in the atomic density.
For each of them, the order is characterized by the momentum q0, and we labeled
these phases as CDWq. As an example, we depict in Fig. 5.3(a) the real-space density
for CDWπ . In Fig. 5.3(c), we can observe how the situation changes as we increase
the value of Vp/Vh. If the amplitude of the periodic potential is sufficiently large, a
disordered phase emerges between the different CDWq phases, where S(q) vanishes
at all momenta. This is an example of a frustrated phase [258], where the density
order melts due to quantum fluctuations enhanced by competing interactions in a
region where the different density orders are close in energy. Instead, a bond order
develops [Fig. 5.3(a)], characterized by a non-zero value of the order parameter
B = 1/L ∑j(−1)j⟨B̂j⟩, with B̂j = b̂†

j b̂j+1 + H.c. (Fig. 5.3(e)). This bond-order wave
(BOW) is a strongly-correlated phase that cannot be accessed through the
conventional RKKY interactions [181], since it requires comparable nearest and
next-nearest neighbor interactions, while further-range interactions should vanish.
This guarantees, in particular, that the classical energies corresponding to CDWπ

and CDWπ/2 patterns are similar, thus enhancing frustration, while keeping the
energy of CDWq much higher. While this situation can be achieved for spinfull
fermions with dipolar interactions [259], spinless particles require υ2/υ1 ≈ 0.5 [260],
which is achieved here by varying the amplitude of the periodic potential, Vp, as
shown previously. Similarly to the fermionic case [259], here the BOW phase
possesses non-trivial topological properties. These are characterized by both a
non-zero quantized value of the Berry phase [261] [Fig. 5.3(d)], calculated here
through from the entanglement spectrum as explained in Ref. [262], and the
emergence of localized protected states at the boundaries [Fig. 5.3(f)]. We note that
similar topological effects are observed in non-frustrated BOW phases induced
instead by dynamical optical lattices [263–269].

5.3 Knob II: dimensionality of the mediator

Let us finally provide another way of tuning the interactions that is unique of atomic
systems, enabled by the possibility to control the effective dimensionality of the



70 Chapter 5. Tunable long-range interactions mediated by a Fermi gas

(a)

(b) (c)

(d) (e)

(f)

FIGURE 5.3: (a) Real-space configuration of the CDWπ (left), where spheres of different sizes
correspond to an alternating atomic occupation, and frustrated BOW (right) with a dimerized
bond structure. (b) S(q) as a function of kFd for a chain with L = 60 sites and bosonic density
ρ = 1/2, for Vp = 0. The phase diagram presents a staircase structure, where every step
corresponds to a CDWq characterized by a peak in S(q). (c) Value of S at the peak, Smax as
a function of kFd and Vp/Vh, showing how the CDW orders melt for sufficiently large values
of Vp/Vh, giving rise to a frustrated BOW. (d) Smax and Berry phase γ as a function of kFd
for Vp/Vh = 680, showing the non-trivial topological nature of the BOW phase. Real-space
configuration of the BOW phase for L = 40, showing (e) dimerized bonds and (f) localized
edge-states at the boundaries. Parameters as in Fig. 5.2. DMRG calculations are courtesy of D.

González-Cuadra, as part of the collaboration in Ref. [4].
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FIGURE 5.4: (a) Mediated potential F(r) as a function of the anisotropy ratio ωz/(Nωx) and
effective atomic separation kFr. Repulsive (attractive) forces are represented in red (blue). (b-
d) Value of F(r) for three anisotropy ratios (blue) indicated in (a) with black dashed lines,
compared to the expected analytical results (5.8,5.9) (orange). (e) Cosine transform of F(r) as
a function of ωz/(Nωx), where the dotted lines correspond to the frequencies 2kF (red) and k̃1
(white). (f,g) Relation between the nearest-neighbor potentials υ1,2,3 of a kagome lattice with
lattice spacing d, as a function of ωz/(ωx N) and kFd. Dashed contour follows υ1 = 0. Here we

took N = 250 and the rest of the parameters as in Fig. 5.2.

fermionic gas. In particular, by superimposing three independent standing-wave
potentials, each ωi in Eq. (5.1) can be controlled independently for the three
orthogonal directions by modifying their intensity [see Fig. 5.1(d)]. Starting from
ωx = ωy = ωz and increasing ωy, one can go smoothly from a 3D fermionic gas to
an effective 2D one for ωx,z ≪ ωy/N [157, 158]. Similarly, increasing ωz connects the
2D and the 1D case. Since the power-law exponent of F(r) depends on the
dimension D as 1/rD, one expects that this method interpolates between different
integer values.

Let us now explore the effect of this dimensional crossover in the effective
interactions F(r) for the two-to-one dimensional transition, while we maintain the
bosons in 1D. Fig. 5.4(a) shows F(r) as a function of the anisotropy ratio ωz/(ωx N)
and kFd, together with some cuts at the 1D / intermediate / 2D regimes in
Figs. 5.4(b-d). Note that the dependence on N is introduced because the crossover is
expected in the limit ωz/ωx ∼ N, where the energy of the highest-energy state in
the x-direction is not enough to induce an excitation in the z-axis, and the interaction
becomes effectively 1D. We observe that the interpolation is more intricate than
initially expected. While in the limits ωz/(ωx N) ≫ (≪)1 one recovers the expected
1D (2D) RKKY-type interactions, the intermediate dimensions acquire additional
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beating oscillations due to the presence of different harmonics in the potentials. This
is more evident in Fig. 5.4(e), where we plot the corresponding cosine transform
F̃(k). The frequency 2kF appears in all intermediate dimensions and, through a
careful analysis, we observe that additional frequencies appear associated to discrete
values k̃n = 2kF[1 − nωz/(ωx N)]. The larger the value of ωz/ωx, the smaller is the
contribution associated to smaller frequencies (as longer effective lengths that
cannot fit the constrained direction vanish). In particular, in the range
ωz/(ωx N) ∈ (0.1, 1/3), only contributions associated to k̃0 and k̃1 are dominant,
leading to a smooth beating between the two frequencies in the potential, as we fit in
Fig. 5.4(c) (dashed line).

Despite the apparent complexity of the fermion-mediated interactions within this
dimensional crossover, they might lead to the appearance of novel many-body
phases difficult to obtain otherwise. For example, recent works have shown how
chiral spin liquids can appear for hardcore bosons in kagome lattices with
long-range interactions where the second and third neighbor terms are similar and
the nearest neighbor interaction cancels, i.e., (υ2 ≈ υ3 and υ1 = 0) [179], a regime
that is typically hard to access with conventional approaches. In Fig. 5.4(f,g), we
make a search whether such regime would be accessible through this dimensional
crossover and find that, indeed, there are configurations where υ1 ≈ 0 (see contour
line), while υ2 ≈ υ3 (green marker). Although further analysis is required, specially
to account for the effect of further-range interactions in the phase diagram, our
results show a promising avenue to investigate magnetic frustration and spin
liquids states in 2D ultracold atomic mixtures using the emergent tunable
long-range interactions.

5.4 Conclusions

In this Chapter, we have provided two strategies to control fermion-mediated
interactions in ultracold atomic mixtures by modifying the fermionic confinement
potential. First, we have added an extra periodic potential to open a gap in the
fermionic band. Then, we have continuously modified the effective dimension of the
fermionic gas by using anisotropic traps. In both cases, we have characterized the
emergent long-range interactions, obtaining a very versatile control over their range
and shape. Finally, we have considered different examples where this extended
quantum simulation toolbox can lead to the exploration of frustrated quantum
many-body phases that are not easily accessible with other approaches. Given the
recent experiments in this direction [188, 243], and the relatively simple tools that
our proposal demands, we expect these results to be relevant for near-future
experiments on the topic.
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Chapter 6

Toy-model simulators for
quantum chemistry in 2D

” A clerk stands on top of the shelf with a wheeled base that is kept
at the center of the sphere. After we set up the model universe
to correspond to the current state of the real universe, the motion
of the model thereafter should be an accurate simulation of the
future, including the motion of the sun. After the clerk records
the movements of the sun, we will have a precise calendar. This is
the dream of hundreds of civilizations before us.

— Cixin Liu
(Extract from "The Three-Body Problem")

6.1 Introduction

Solving quantum chemistry problems, which generally imply obtaining the ground
state energy of many electrons interacting with both the nuclei and among
themselves through Coulomb interactions, is an extremely challenging task. Even if
one considers the nuclei positions {Rα}Nn

α=1 fixed due to their larger mass (the
Born-Oppenheimer approximation, BO), and focuses only on the electronic degrees
of freedom, these problems still involve many interacting electrons, whose
associated Hilbert space grows exponentially with the number of electrons (Ne).

One way to circumvent this exponential explosion [270] consists in using the
electron density instead of the wavefunction. For instance, DFT [271, 272] has
enabled a better description and understanding of both static [273–276] and
dynamic [277] properties of a large variety of molecules. The capability of such
computational methods, whose main challenge is to address electronic correlations,
are however sometimes hard to assess. Educated guesses of such functionals have
already allowed one to study the properties of large molecules [278]. Unfortunately,
there is no unambiguous path for improving these functionals [279–289], which are
known to fail in certain regimes [279].

A complementary route consists in projecting the quantum chemistry Hamiltonian
in a basis set [290, 291] with a finite number of elements No. The typical choices
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for the basis are linear combinations of atomic orbitals with Slater- or Gaussian-type
radial components. These methods generally provide good accuracies with small No.
However, the quality of the solution ultimately depends on the basis choice. On top
of that, the Hilbert space of the projected Hamiltonian still grows exponentially with
No, which complicates their solution if large basis sets are required, especially for
non-equilibrium situations.

In parallel to these developments, the last few years have witnessed the
emergence of an alternative route to study chemistry problems based on using
quantum systems to perform the computation. This idea was first proposed by
Feynman as a way of preventing the exponential explosion of resources of quantum
many-body problems [270], formalized later by Lloyd [292], and first exported into
the quantum chemistry realm by Aspuru-Guzik et al [293]. First algorithms used
Gaussian orbital sets and phase-estimation methods to obtain ground-state
molecular energies [294]. Despite the initial pessimistic scaling of the gate
complexity with the number of orbitals (polynomial, but with a large
exponent [295]), recent improvements through the use of more efficient
algorithms [296] or different basis sets, e.g., plane-waves [297–299], have reduced
significantly the gate scaling complexity. Since these algorithms typically assume
fault-tolerant quantum computers that will not be available in the near-future, in the
last years there has also been an intense effort on hybrid variational approaches
more suitable for current noisy quantum computers [300–304]. However, these will
be ultimately limited by the available ansätze that can be obtained with current
devices, as well as on the optimization procedure [305, 306].

The previously described efforts (see Ref. [307] for an introductory review) fall
into what is called the digital quantum simulation framework, in which the
fermionic problem is mapped into qubits and the Hamiltonian evolution is
performed stroboscopically. Here, we will introduce a complementary route to
study these problems, showing how to simulate in an analog way the quantum
chemistry Hamiltonian using a discretized space (or grid) basis representation [308].
These representations have been generally less used in the literature due to the large
basis sets required to obtain accurate results. However, they have recently
experienced a renewed interest [309–311] due to their better suitability for DMRG
methods [312]. In our case, we will use this grid representation because it is well
suited for describing fermions trapped in optical lattice potentials, where the
fermionic space is naturally discretized in the different trapping minima of the
potential.

As introduced in Chapter 4, simulators based on ultracold atoms have already
addressed condensed matter questions that the most advanced classical computers
cannot compute [43, 45]. In all these addressed problems, the key feature is that their
interactions are either local or short-range, which is ideally suited for the existing
simulators. On the contrary, analog simulation of quantum chemistry now requires
engineering long-range (Coulomb) interactions between fermionic particles, and no
system has been identified so far fulfilling such requirement. This is why current
efforts concentrate in digital simulation.

In this Chapter, we propose and analyze a scheme for analog quantum chemistry
simulation that can be implemented with present technology. Our approach uses
ultracold atoms to address lattice models, where the electron-electron interaction
can take different forms. While not exactly reproducing all aspects of the real
quantum chemistry scenario, this simulator still retains the most relevant
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ingredients, enabling the observation of the most representative phenomena in
quantum chemistry. Furthermore, it offers a suitable platform to benchmark
computational methods in that field. In particular, it allows us to extend the
benchmarking offered by DMRG beyond 1D. Previous analog simulators based on
fermionic atoms trapped in optical lattices have been proposed to emulate the
molecular potentials of benzene-like molecules [313] or simulate ultrafast dynamics
in strong-fields [314, 315]. In contrast to them, the presented proposal allows us to
go beyond the local interactions naturally found in cold atoms, simulating the
non-local fermionic repulsion that appears in typical quantum chemistry problems.

This Chapter is structured as follows:
• In Section 6.2, we introduce the different parts of the quantum chemistry

Hamiltonians projected in finite basis sets. We discuss both the grid basis
representation that we use in our analog simulation and the widely-used
combination of atomic orbitals, emphasizing the similarities and the
differences between these two approaches.

• In Section 6.3, we review how to obtain the single-particle parts of the
quantum chemistry Hamiltonian. This is, the kinetic term and nuclear
attraction of fermionic atoms in an optical lattice.

• In Section 6.4, we start by presenting the trivial situation of a single fermion
moving in an attractive Coulomb-like potential, which allows us to introduce a
natural definition of the Rydberg energy and Bohr radius in 2D.

• In Section 6.5, we then analyze different strategies to obtain an effective
repulsion between the fermionic atoms.

• Finally, in Section 6.6, we summarize our findings and point to further
directions of work, some of which will be explored in Chapter 7.

6.2 Discrete basis sets: atomic orbitals vs. grid basis

Problems in quantum chemistry typically require to either calculate the electronic
structure of a complex molecule in equilibrium, Ĥe |Ψ⟩e = Ee |Ψ⟩e, or its
time-evolution in an out-of-equilibrium situation: i∂t |Ψ(t)⟩e = Ĥe |Ψ(t)⟩e. These
problems are generally operated using the BO approximation where each nucleus is
classically treated as a fixed particle of charge Zαe. The BO-electronic Hamiltonian
for a molecule with Ne electrons and a given nuclei configuration {Rα}Nn

α=1 reads as,
Ĥc

e = Ĥc
kin + Ĥc

nuc + Ĥc
e−e, where1,

Ĥc
kin = − h̄2

2me
∑

j
∇̂2

j , (6.1)

Ĥc
nuc = − e2

4πε0

Nn

∑
α=1

ZαVC(r̂j, Rα) , (6.2)

Ĥc
e−e =

e2

8πε0

Ne

∑
i ̸=j=1

VC(ri, rj) , (6.3)

1Here, upper-index, c, is used to distinguish this continuum electronic Hamiltonian from the discretized
terms later appearing in the simulator.
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where, me, and e denote the electronic mass and charge, respectively, and ε0 is the
vacuum permittivity. Here VC(r1, r2) = 1

|r1−r2| is the pair-wise Coulomb potential

between the charged particles (electrons and nuclei), and, Ĥc
1 = Ĥc

kin + Ĥc
nuc, is the

single-electron part of the Hamiltonian, which contains both the electron kinetic
energy (6.1) and the electron-nuclei attraction (6.2), whereas Eq. (6.3) corresponds to
the electron-electron repulsion. When discussing chemistry parameters, the natural
unit of length is conveniently given by the Bohr Radius, a0 = (4πε0h̄2)/(mee2), and
the unit of energy is the Hartree energy2, Eh = h̄2/(mea2

0).
Since the molecular electrons are indistinguishable (up to the spin degree of

freedom), for computational purposes it is typically more convenient to write a
second-quantized version of the Hamiltonian that already takes into account the
fermionic statistics of the particle. There is a general recipe to do it [250, 316]: first,
one needs a set of single-particle states B = {|ϕi⟩}, that can be used to define an
abstract Hilbert space of states |n1, n2, . . . ⟩, denoting that there are ni electrons
occupying the i-th single-particle states. With these states, one can then define
annihilation(creation) operators, ĉ(†)i that denote the annihilation(creation) of a
fermionic particle in the i-th single-particle state. This labelling already accounts for
the different spin states and the fermionic statistics of the particle through their
anticommutation rules: {ĉi, ĉ†

j } = δij, and {ĉi, ĉj} = {ĉ†
i , ĉ†

j } = 0. With these
operators, one can define the field operators,

Ψ̂(r) = ∑
i

ϕi(r)ĉi , (6.4a)

Ψ̂†(r) = ∑
i

ϕ∗
i (r)ĉ

†
i , (6.4b)

which can be used to write the Hamiltonian in the following form:

Ĥe =
∫

drΨ̂†(r) Ĥc
1 Ψ̂(r) +

1
2

∫∫
drdr′Ψ̂†(r)Ψ̂†(r′) Ĥc

e−e Ψ̂(r′)Ψ̂(r) . (6.5)

If the basis B of single-particle states is complete (i.e., it is infinite dimensional), the
mapping between the first-quantized Hamiltonian of Eqs. (6.1-6.3) and the
second-quantized one of Eq. (6.5) would be exact. However, this is generally not
practical since the associated Hilbert space will still be infinite. For these reasons, the
typical approach consists in projecting the Hamiltonian in the subspace spanned by
the tensor product of a finite-dimensional discrete basis set, Bt, and solving the
problem within that subspace. The prototypical bases chosen are built out of (linear
combinations) of atomic orbitals centered around the nuclei position, labeled as
linear combination of atomic orbitals (LCAO) basis sets [290]. However, for our
analog quantum chemistry simulation it will be more adequate to use an alternative
representation based on a grid discretization of the continuum in a finite set of
points. In what follows, we discuss how the second-quantized electronic
Hamiltonian looks in both cases, and highlight their main differences.

2For comparison, note that the Hartree energy is twice the Rydberg energy, Ry.
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6.2.1 Linear combination of atomic orbitals.

Here, the basis set is composed of No(> Ne) single-particle (orthonormal) atomic
orbitals, Bt = {|ϕi⟩}No

i=1, so that the Hamiltonian reads as,

ĤLCAO
e =

No

∑
i,j=1

tij ĉ†
i ĉj +

No

∑
i,j.k,l=1

Vijkl

2
ĉ†

i ĉ†
j ĉl ĉk , (6.6)

where the parameters of the discrete Hamiltonian tij and Vijkl can be computed from
Eqs. (6.1-6.3) using the real space representation of the orbitals, ϕi(r) = ⟨r|ϕi⟩, as
follows:

tij =
∫

drϕ∗
i (r) Ĥc

1 ϕj(r) , (6.7a)

Vijkl =
∫∫

drdr′ϕ∗
i (r)ϕ

∗
j (r

′) Ĥc
e−e ϕl(r

′)ϕk(r) , (6.7b)

The number of tij and Vijkl parameters scales with the size of the Bt basis as N2
o

and N4
o , respectively, while their value depends on the particular states chosen.

Convenient choices widely-used in quantum chemistry are linear combinations of
Gaussian or exponential type-orbitals localized around the nuclei [290, 291]. The
former are particularly appealing since the properties of Gaussian functions can
simplify substantially the calculations of tij, Vijkl , which can become a bottleneck if
large basis sets are required.

An advantage of this approach is that the number of orbitals required typically
scales proportionally with Ne. Besides, it is a variational method that provides an
unambiguous path to reach the true ground state energy by increasing No. This is
why these representations have been the most popular ones in current approaches
for digital quantum simulation [307]. On the down side, the accuracy of the solution
will depend on the particular molecular structure, since the basis sets are composed
of functions with fixed asymptotic decays that might not be suitable to, e.g., describe
diffuse molecules [317–322].

6.2.2 Local or grid-discretized basis.

This option consists in writing the continuum Hamiltonian Ĥe in grid points, whose
coordinates write as j = (jx, jy, jz), for jx,y,z ∈ Z. To do it, one can approximate the
derivatives of the kinetic energy term in Eq. (6.1) by finite-differences, and evaluate
the potentials at the grid points [291, 308]. This ultimately results in a
second-quantized Hamiltonian, Ĥgrid

e , with the following shape,

Ĥgrid
e = − ∑

i,j,σ
Ji,j ĉ†

i,σ ĉj,σ (6.8a)

−
Nn

∑
n=1

∑
j,σ

Vnuc(j, Rn)ĉ†
j,σ ĉj,σ (6.8b)

+
1
2 ∑

i,j,σ,σ′
Ve-e(i, j)ĉ†

i,σ ĉ†
j,σ′ ĉi,σ ĉj,σ′ , (6.8c)
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where ĉ(†)j,σ are now the local operators creating an electron with spin σ at site
position j, satisfying the fermionic commutation rules stated above. The kinetic
energy coefficients Ji,j (6.8a) depend on the expansion order chosen to approximate
the Laplacian, and decay with the separation between sites |j − i|. Along this Thesis,
we will use the simplest finite difference formula for the second order derivative:

d2 f (x)
dx2 ≈ f (x + a)− 2 f (x) + f (x − a)

a2 , (6.9)

which means that only nearest neighbour hoppings (and on-site energy) will appear
in the kinetic energy term of Eq. (6.8a), and Ji,j ≡ 0 for the rest of the hopping terms.
Here, a, denotes the spacing between the discretized points. The nuclei-attraction
term Vnuc (6.8b) induces a position-dependent energy shift on the discretized
electron orbitals coming from the attraction of the nuclei. Finally, the
electron-electron repulsion Ve-e (6.8c) translates into long-range density-density
interactions between the localized fermionic states. In the limit where N → ∞ and
a → 0, the Hamiltonian Ĥgrid

e (6.8a-6.8c) converges to the continuum one, Ĥc
e

(6.1-6.3).
This method typically requires larger basis sets to obtain accurate results [308]

compared to LCAO ones. However, the number of interaction terms Vel(n, m) scales
quadratically with the size of the basis because only density-density interaction
terms appear. This can yield dramatic improvements when applying tensor-network
methods, which motivates the renewed interest they have experienced in the last
years [309–311]. Besides, from the analog quantum simulation perspective, such
density-density interactions appear more naturally than the four-index interactions
appearing in LCAO approaches.

A potential disadvantage is that these methods are generally not variational. That
is, increasing No might sometimes yield a larger energy than the one of smaller basis
sets. This has been identified as a problem of underestimation for the kinetic energy
when using the finite-difference approximation of the derivatives (6.9) [323].
However, there are constructive ways of making the kinetic operator variational
using different approximations of the kinetic energy [323]. Along Chapters 6 and 7,
however, we will stick to the simple finite-difference formula of Eq. (6.9) because of
its simplicity.

In what follows, we explain how to simulate the different parts of the quantum
chemistry Hamiltonian projected in a grid basis using ultra-cold atoms trapped in
optical lattices. The reason for choosing this platform is that fermionic atoms with (at
least) two internal atomic states can be used to describe electrons without the need
to encode these operators into qubits, simplifying the Hamiltonian simulation, as
already pointed out in earlier proposals [313–315]. We start by considering the single-
particle part of the Hamiltonian in Section 6.3. In Section 6.4, we particularize it to
the 2D case, and then we explain how to obtain the electron repulsion in Section 6.5.

6.3 Simulating single-particle Hamiltonian in optical
lattices

Fermionic atoms hopping in a deep optical lattice naturally follow a grid description
associated to the sites of the lattice, whose mapping to the discretized quantum
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FIGURE 6.1: Fermionic atoms, playing the role of electrons, are trapped in a periodic 2D cubic
potential. Their hopping simulates the kinetic energy term of the electrons, and they are subject

to additional optical potentials which emulate the nuclear interaction.

chemistry Hamiltonian in Eq. (6.8) is explored in the following. Similarly to the
bosonic system introduced in Section 4.3, the dynamics of ultra-cold fermionic
atoms trapped in an optical lattice can be described by a second-quantized
Hamiltonian. Following the techniques introduced in Section 4.2, one typically
assumes that the atoms are prepared in the motional ground state of each trapping
minimum, and that interband transitions are negligible [38, 39, 145]. With these
assumptions, the field operators Ψ̂ f (r) can be expanded in terms of Wannier
functions centered at each lattice site (see Section 4.2.2),

Ψ̂ f (r) = ∑
j,σ

wj(r) f̂j,σ , (6.10)

where we define the annihilation(creation) operators f̂ (†)j,σ of a fermionic state with

spin σ at site j, which also obey anti-commutation rules { f̂i,σ, f̂ †
j,σ′} = δi,jδσ,σ′ . With

these operators, the second-quantized Hamiltonian (4.9) for the fermions, Ĥ f , can be
expressed as,

Ĥ f = Ĥkin + Ĥnuc , (6.11)

which accounts for the tunneling of the fermionic atoms to neighbor sites, and the
on-site interaction with an external potential (see Fig. 6.1). In what follows, we
analyze both terms, and explain how to make them match exactly those of the
quantum chemistry Hamiltonian Ĥgrid

e , corresponding to Eqs. (6.8a)-(6.8b),
respectively.
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6.3.1 Electron kinetic energy

Particularizing Eq. (6.7a) to the basis of Wannier functions, the kinetic part of the
ultra-cold fermionic atoms in a deep optical lattices is approximated as a nearest-
neighbour tunneling,

Ĥkin = −t f ∑
⟨i,j⟩,σ

f̂ †
i,σ f̂j,σ , (6.12)

where the kinetic term t f is dictated by the depth of the optical lattice (4.11). This
gives exactly the electron kinetic energy terms of Eq. (6.8a) using the finite-difference
approximation of the derivative of Eq. (6.9), up to a constant energy shift 2t f that
commutes with the complete Hamiltonian and can be substracted. Note that, because
of the larger effective mass of the fermions compared to the real electron systems,
this dynamics will occur at a much slower timescale (ms) compared to electronic
systems (fs). This can facilitate the observation of real-time dynamics of the simulated
chemical processes, something very difficult to do in real chemistry systems.

6.3.2 Nuclear attraction

Following the BO approximation, we consider that the electronic dynamics is much
faster than the nuclear one, such that their equations can be decoupled. Then, we
desire that these fermionic atoms are subjected to an external potential that induces
the attraction to Nnuc "nuclei" that we consider placed in fixed positions" {Rn}n=1...Nn
during the calculation of the electronic Hamiltonian. This allows us to induce them
with an on-site interaction of the form,

Ĥn({Rn}) = −
Nnuc

∑
n=1

∑
j,σ

ZnV(|j − Rn|) f̂ †
j,σ f̂j,σ , (6.13)

where Zn is the atomic number of nucleus n, and V(r) is the attractive nuclear
potential.

In 2D lattices, this potential can be obtained by combining the light shift induced
by an external laser orthogonal to the lattice and a fully programmable intensity
mask (4.13), such that εj = Vaux(j) = ∑n ZnV(|j − rn|). This can be obtained, e.g., by
using a digital mirror device (shown in grey in Fig. 6.2) [43], as introduced in
Section 2.1.1. This externally induced potential can eventually mimic the effect of
inner-shell electrons as well. In order to prevent the divergence in the origin,
positions Rn of the nuclei are shifted half a site from the lattice nodes in the y
direction. For consistency of our model, the maximum energy difference between
the different sites, that is of the order ∆εmax = ZmaxV0, should be much smaller than
the trapping depth (2.8), VD, of the overall potential ∆εmax ≪ VD, such that the
tunnelings t f are not affected by it. We also need ∆εmax ≪ h̄ωt, so that it does not
create interband transitions (see [324–327] where similar effects were considered due
to the existence of confinement potentials). Both limits can be satisfied in the regime
of parameters we are interested in.
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FIGURE 6.2: Fermionic atoms (white) play the role of the molecular electrons. They hop in a 2D
lattice (red), where the nuclear potential is imprinted (blue). For a single simulated electron,
this pattern can lead to, e.g., atomic hydrogen ((a), one nucleus) or H+

2 ((b), two nuclei). For
more than one fermionic atom, two different schemes are proposed to mediate an effective

repulsion between them.

6.4 Two-dimensional simulators

For the sake of clarity, we will now discuss several scenarios, with increasing
experimental difficulty, for the simulation of quantum chemistry problems in 2D
discrete lattices of size N × N. We start with simple one-electron systems: the
analogous of the hydrogen atom, and the H+

2 molecule. Then, we show how to
simulate two electron problems, here exemplified by the H2 molecule. Finally, we
show how these systems can be scaled-up to more electrons, although with a
different dependence of the repulsion with the distance.

6.4.1 A single electron

We consider now the simplest situation of simulating atomic hydrogen. To begin
with, we consider the attractive Coulomb potential on its standard form3, Vnuc(j) =
V0/|j|, for moderate finite lattice sizes and a unique nucleus, Z1 = 1, centered in the
lattice site R1 = (⌊N/2⌋, ⌊N/2⌋+ 1/2). The reason for choosing this case is two fold:
first, it can be simulated directly using the Hamiltonian of Eq. (6.13) imposing Nn = 1,
since one does not require the electron interactions. Second, it is fully understood
analytically in the continuum limit, which allows us to easily benchmark our results
and define the natural units of our system.

In order to gain intuition, one can compare this discretized Hamiltonian to the
continuum limit, where an analytical solution is also known in 2D [328]. As a
consequence of the reduced dimensionality, electrons get closer to the nuclei than in

the 3D case [329], and energy levels correspond to E∗
n =

−Ry(2D)

(n−1/2)2 , for n = 1, 2, . . . In

3We assume that the lattice and nuclei positions are normalized to the lattice constant a, such that V0
has units of energy.
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FIGURE 6.3: (a) Lower part of the spectrum for the discretized 2D atomic hydrogen
Hamiltonian in Eq. (6.11) for different values of the effective Bohr radius t f /V0, calculated
through exact diagonalization (ED, see Appendix B.3.1). For clarity, only the lowest-energy
state is shown for the energy levels n = 1, 2, 3. As more lattice sites are involved in the
simulation (t f /V0 increases), the spectrum approaches the value in the continuum (horizontal
lines for n = 1, 2, 3). This is valid up to a critical Bohr-radius in which finite-size effects become
relevant and the solution deviates from this behaviour. This critical value appears earlier for
smaller sizes (N = 40 for crossed markers) than for bigger systems (N = 80, coloured marker,
and N = 200, edged marker). (b) The energy difference ∆E between the ground-state of the
discretized Hamiltonian in Eq. (6.11), and the one in the continuum decreases polynomially
before finite-size effects become relevant. Larger system sizes can follow this scaling up to

more precise solutions. Dashed line follows the scaling (t f /V0)
−1.

that limit, one can also identify,

a(2D)
0 /a = t f /V0 and Ry(2D) = V2

0 /t f , (6.14)

which are the equivalent Bohr radius (a0), and Rydberg energy (Ry), for the 2D
discrete model4. The first ultimately determines the size of the orbitals and thus
how the continuum limit is recovered. In particular, it is needed that the orbitals fit
in the lattice (to avoid finite size effects), and that this Bohr radius occupies several
lattice sites (to reduce discretization errors). This leads to the following conditions,

1 ≪ t f /V0 ≪ N . (6.15)

By controlling at will this ratio with the lasers creating the optical potentials
(t f /V0), one can effectively choose the Bohr radius of the discrete Hydrogen atom
(a0/a) and, consequently, of the simulated molecules when more nuclei are present.
This will be an important asset of our simulation toolbox since it will allow one to
minimize the errors coming from discretization and finite-size effects. In Fig 6.3(a)
we show the lower part of the spectrum for the discretized Hamiltonian (6.11) for
different values of t f /V0 and N. First, we observe that we have quantized levels,

4As compared to the three-dimensional case studied in Chapter 7, Ry(2D) = 4Ry(3D), and 2a(2D)
0 =

a(3D)
0 . Along the rest of this Chapter, we will omit the (2D) labelling.



6.4. Two-dimensional simulators 83

and thus the discrete model qualitatively reproduces the continuous one. In fact,
this can be observed with small lattices (N = 40).

From this calculation, we observe several features of the grid discretized basis
that we are choosing to represent the quantum chemistry Hamiltonian. For example,
when a0/a ≲ 1, all the states deviate from the expected energy. This is not
surprising because in this regime, all the fermionic density is expected to
concentrate around one trapping minimum, such that discretization effects become
large. In the opposite regime, when the Bohr radius becomes comparable with
system size, a0/a ∼ N, the energies also deviate from the continuum result, since
the discrete Hydrogen atom does not fit in our system. Only in the intermediate
regime one can minimize both errors and approximate well the correct energy. Note,
however, that the optimal range of a0/a depends on the particular orbital
considered. For example, the ground state s orbital (n = 1) is more sensitive to
discretization effects since it has a larger fraction of atomic density close to the
nucleus, while larger orbitals are more sensitive to finite size effects because their
spatial extension grows with n.

In Fig. 6.3(b) we observe that the discretized solutions of the Hamiltonian approach
the analytical result following the scaling,

∆E
Ry

∝
V0

t f
. (6.16)

To analyze this effect, it is useful to have some insights on how the discretization of
the space affects the convergence to the continuum solution. A back-of-the-envelope
dimensional analysis can be presented for the 2D case, where we consider the
ground-state electronic wave-function, ψ0(r) = a−1

0

√
2/πe−r/a0 . For the two main

sources of discretization errors, the calculation of the energy terms is based on
integrals that are discretized as a Riemann sum. The difference between this sum
and the continuum limit is defined to first order by the second derivative of the
integrand. For the Coulomb term, this reads as, V0 ∑j ∂2

x
(
|ψ(rj)|2/r

)
. This sum does

not converge in the continuum limit for the 2D case, and the leading order error
corresponds to the diverging term, that is dictated by our choice of the cutoff for the
position closest to the nuclei. Normalizing by the Rydberg energy, this error terms

scales as
(

t f /V0

)−1
in 2D. As we numerically observe in Fig. 6.3(b), this dominates

the scaling of the 2D setup when the effective Bohr radius increases.
Let us now explore a system with a single fermion and two equal nuclei, Z1,2 = 1,

separated by d/a lattice sites, j1,2 = (⌊N/2 ± d/(2a)⌋, ⌊N/2⌋+ 1/2), i.e. the analog
of H+

2 . This internuclear separation measured in number of lattice sites can be
directly expressed in terms of the Bohr radius as d/a0 = (d/a) · (V0/t f ), and
therefore compared to tabulated values [330]. In Fig. 6.4(a) we plot the energy of the
ground state as a function of the distance. We obtain a molecular potential, as it is
expected for H+

2 , already for the moderate size N = 40. Increasing t f /V0 favors
accuracy, up to the point where finite-size effects appear. At this point the difference
in energies to the continuum (dashed line) deviates from the aforementioned scaling

∆E ∝
(

t f /V0

)−1
, which identifies the optimal configuration for our finite system

and a given choice of d/a0. In Fig. 6.4(b) we illustrate this effect by showing that a
given internuclear separation d/a0, can be calculated with different values of integer
lattice-site separations d/a by tuning the effective Bohr radius a0/a accordingly. In
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FIGURE 6.4: (a) Ground-state energy of the 2D hydrogen cation (H+
2 ) for different lattice sizes

N and internuclear distance d/a0 (see Text for the optimal choice of the lattice separation).
The inset zooms into separation close to equilibrium. Dashed line (black crosses in the inset)
follows an accurate solution for this 2D cation [330]. (b) Ground-state energy of H+

2 calculated
for fixed d/a0 = 1 and increasing effective Bohr radius t f /V0. The energy of the calculated
ground-state decreases up to a critical size at which finite-size effects appear. This critical size
is larger for bigger lattice sizes. In the inset, the difference in energies to the tabulated value
−1.41 Ry (black dashed line) reveals the scaling (t f /V0)

−1 (red dashed line). Markers represent
the same sizes as in (a).

Chapter 7 we will introduce and error mitigation strategy that further allows us to
increase the precision of measurements limited by finite size effects.

6.5 Simulating electron repulsion in 2D optical lattices

Let us now explore the non-trivial situation where two fermionic atoms emulate two
electrons and the interelectronic repulsion between them needs to be mediated. This
is the most complicated part of the simulation since it requires to describe
long-range density-density interactions between ultra-cold fermionic atoms, whose
interactions are typically local. That is, they only interact when their wavefunctions
overlap significantly (i.e., same site). The key idea consists in using an auxiliary
atomic species trapped together with the fermions such that the long-range
interactions are effectively mediated by it. For concreteness, we assume to be in the
regime where on-site interactions between the fermions are negligible5 and this
auxiliary atom to be a boson, although this will not play a big role for the physics
that will be discussed along this Chapter. These auxiliary atoms need to be trapped
in an optical lattice of similar wavelength than the one of the fermions6, and it
should be able to interact locally with the fermions through on-site collisions. These
are described by a Hamiltonain [see Eq. (4.14)]:

Ĥf−aux = U ∑
j

f̂ †
j f̂j b̂†

j b̂j , (6.17)

5This regime, U = 0, can be obtained by, e.g., tuning the scattering length using Feshbach resonances
[see Eq. (4.15)].

6It would also be sufficient that the period of the auxiliary atom lattice is larger and commensurate with
the fermionic one.
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where b̂(†)j is the annihilation(creation) operator associated to the bosonic atoms at
the j site. We consider that the bosonic optical lattice can have a different size than
the fermionic one, i.e., having NM lattice sites per side. These atoms will have an
internal dynamics described by a mediator Hamiltonian, Ĥaux, which depends on
the particular optical lattice configuration chosen, and ultimately determines the
effective interactions induced in the fermionic atoms. Thus, the idea consists in
properly engineering Ĥaux such that the effective fermionic interactions lead to the
desired long-range potential,

Ĥe-e = ∑
i,j

V(|i − j|) f̂ †
i f̂i f̂ †

j f̂j , (6.18)

where the particular shape of V(|i − j|) depends on the chosen
scheme/configuration.

For notational simplicity from now on, we will omit the fermionic spin degree
of freedom in f̂j, but since the fermion-auxiliary atom interactions in Eq. (6.21) are
assumed to be equal for both spin states, so will be the effective fermionic repulsion.

6.5.1 General formalism

Our approach to calculate the effective fermionic interactions is based on the
separation of energy scales between the fermionic dynamics, Ĥ f , and the rest of the
Hamiltonian, Ĥ f−aux + Ĥaux. In particular, we will assume that
||Ĥ f || ≪ ||Ĥ f−aux + Ĥaux||, such that we can consider the fermions fixed in the
auxiliary atomic timescales. Thus, if we have Ne fermions placed in positions
{j} ≡ j1, . . . , jNe we can make the following ansatz for the full atomic mixture
wavefunction,

∣∣∣Ψ f−aux ({j})
〉
= |j1, . . . , jNe⟩ f ⊗ |φ(j1, . . . , jNe)⟩aux . (6.19)

In this way, one can first solve the problem for the auxiliary atoms degrees of freedom
within a fixed fermionic configuration {ji}Ne

i=1:
[

Ĥ f−aux({j}) + Ĥaux

] ∣∣∣φm,{j}
〉

aux
= Em,aux({j})

∣∣∣φm,{j}
〉

aux
, (6.20)

where the index m denotes the possible eigenstates within the same fermionic
configuration, and where Ĥ f−aux({j} (6.21) reads as,

Ĥ f−aux({j} = U ∑
{j}

b̂†
ji

b̂ji . (6.21)

Note that ∑{j} indicates a sum now only over the fermionic positions.
Once the auxiliary atom problem of Eq. (6.20) is solved, we divide the bosonic

Hilbert space for each fermionic configuration distinguishing between the
contribution of one of the eigenstates,

∣∣∣φs,{j}
〉

aux
with eigenenergy Es,aux({j}), and

the rest of states, which we label as
∣∣∣φ⊥

m,{j}
〉

aux
, with m = 1, . . . , NM − 1. Here,

NM = ND
M indicates the number of mediating atoms in a D-dimensional regular

optical lattice. Then, one can calculate the effective fermionic Hamiltonian resulting
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from the dressing of such particular eigenstate
∣∣∣φs,{j}

〉
aux

by projecting in this space
all possible fermionic configurations. The resulting effective Hamiltonian for the
fermions reads as,

Ĥeff = ∑
all{j}

〈
φs,{j}

∣∣∣
[

Ĥ f + Ĥ f−aux + Ĥaux

] ∣∣∣φs,{j}
〉

aux

≈ −t fF ∑
⟨i,j⟩

f̂ †
i f̂j −

Nn

∑
α=1

∑
j

ZαV0

|j − Rα|
f̂ †
j f̂j ++ ∑

all{j}
Es,aux({j}) |{j}⟩ ⟨{j}| ,

(6.22)

where we see how the auxiliary atomic state has two effects over the fermionic
Hamiltonian. First, the fermionic kinetic energy gets renormalized by the
Franck-Condon coefficient:

F = ⟨φs,{j}
∣∣∣φs,{i}

〉
aux

. (6.23)

This is, the overlap between the bosonic states for two fermionic configurations
{j}, {i} in which all the fermions have the same position, except one that is
displaced to a nearest neighbour position. As we will see, F can be considered
independent of the particular position occupied by the fermions.

Second, and more importantly, a position-dependent energy-term which, in
principle, depends on all the fermion positions, being therefore 2Ne-body operator.
However, when Es,aux({j}) can be written as a sum of pairwise contributions, i.e.,

Es,aux({j}) =
Ne

∑
m,n=1,
m ̸=n

V(jm − jn) , (6.24)

so that the term of Eq. (6.22) reduces to a density-density operator,

Ĥeff ≈ Ĥ f +
Ne

∑
m,n=1,
m ̸=n

V(jm − jn) f̂ †
jm

f̂ †
jn

f̂jm f̂jn , (6.25)

which would mimic the Coulomb potential found in the quantum chemistry
Hamiltonian of Eq. (6.3) if V(jm − jn) = V0/|jm − jn|, with V0 > 0 in order to be
repulsive.

In the following, we will present two different schemes aimed at inducing an
effective long-range repulsion among fermions trapped in a 2D lattice. These simple
schemes will later be instrumental in Chapter 7 to obtain an effective Coulomb-like
repulsion in 3D. There, we will apply this same general formalism and discuss in
greater detail the conditions needed for this derivation to be valid, as well as
candidate experimental implementations.

6.5.2 Scheme I: a single bosonic mediator

First, we start with a simple scheme where we use an additional bosonic atom
trapped in an optical lattice potential with the same geometry as the fermions. In
this scheme, we only consider one of the bosonic internal states, |b⟩ and, as they
coexist in the same lattice sites, elastic scattering processes between the bosonic and
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FIGURE 6.5: (a) A single atom (green) is used. It tunnels with constant tb through a lattice with
the same spacing as the fermionic one. There is an on-site repulsion with strength U when the
mediating atom occupies the same site as the fermion. (b) We use as many mediating atoms
as electrons need to be simulated (2 in the case of the figure). The on-site repulsion with the
fermions now appears in a different internal level b, whose tunneling is slower as compared
to level a, using a state-dependent lattice. Both levels are coherently coupled with coupling

constant g.

fermionic atoms occupying the same position can induce an on-site repulsion U, as
in Eq. (6.17). This boson is also allowed to tunnel at a rate tb to nearest-neighboring
sites [see Fig. 6.5(a)],

ĤI,aux = −tb ∑
⟨i,j⟩

b̂†
i b̂j , (6.26)

where b̂(†)j represents the annihilation(creation) of auxiliary atoms at positions j, and
tb is their effective tunneling amplitude to the nearest neighbouring site.

Note that this Hamiltonian can be easily diagonalized in momentum space by
introducing periodic boundary conditions, so that ĤI,aux reads as,

ĤI,aux = ∑
k

ωk b̂†
k b̂k , (6.27)

where b̂†
k = 1

(2π)D/2 ∑j b̂†
j eikj, and b̂k = 1

(2π)D/2 ∑j b̂je−ikj, are the atomic creation

and annihilation operators in momentum space, and ωk = −2tb ∑α=x,y cos(kα) their
corresponding eigenenergies for a given momentum vector k = (kx, ky) in units of
a−1, with kα ∈

{
2jπ/NM for j = 1 . . . NM

}
, and α ∈ {x, y}.

For the purpose of this section, we will focus on a single auxiliary atom present in
the lattice. In this case, one can write an ansatz for its wavefunction

∣∣∣φm,{j}
〉

aux
=

∑k φm,{j}(k)b̂†
k |vac⟩ that can be used to find their corresponding eigenenergies,


U ∑

{j}
b̂†

j b̂j + ĤI,aux



∣∣∣φm,{j}

〉
aux

= Em({j})
∣∣∣φm,{j}

〉
aux

. (6.28)

In what follows, we analyze first the case of having a single fermion in the system
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where we will see the emergence of a bound state of the auxiliary atom around the
fermionic position [331–333].

Single boson localized around one fermion

If only a single fermion is present at the system at position j0, then Eq. (6.28) leads to
the following equation:

ωk φI,j0(k) + U φI,j0(0) = EI,B φI,j0(k) , (6.29)

where φI,j0(j) = N−1
M ∑k e−ikj φI,j0(k) describes the single boson localized around the

fermion and its bound state energy EI,B is determined by

U−1 =
1

NM
∑
k

1
EI,B − ωk

, (6.30)

which has a bound-state solution for the auxiliary atom whose energy lies above
the scattering spectrum, i.e., EI,B > 4tb. Its associated wavefunction in the position
representation,

∣∣φI,j0

〉
= ∑r φI,j0(r) b̂†

r reads as,

φI,j0(r) =
1

NM
√
N ∑

k

eik·(r−j0)

EI,B − ωk
, (6.31)

with N = 1
NM

∑k
1

(EI,B−ωk)
2 , where we have used the normalization relation,

1
NM

∑k
∣∣φI,j0(k)

∣∣2 = 1, and NM = ND
M denotes the number of sites in the optical

lattice of the mediator.
The resulting effective Hamiltonian can now be mapped into the general

expression of Eq. (6.22) by projecting on the bound state energy surface.
Interestingly, the overlap of the bosonic bound states defines the effective
Franck-Condon coefficient (6.23),

F =
1

NmN ∑
k

e−ikx

(EI,B − ωk)2 , (6.32)

of the bound boson-fermion pair, which renormalizes the original fermionic
tunneling t f . Since the only effect of this term is to renormalize the kinetic energy,
we will omit the tilde labelling throughout this Chapter, t̃ f = t fF → t f .

Single boson localized around two fermions

Let us now explain what occurs in the case where two fermions are placed at positions
{j1, j2}. Solving the time-independent Schrödinger Eq. (6.28), one obtains,

ωk φλ,j1,2(k) + C1e−ikj1 + C2e−ikj2 = Eλ φλ,j1,2(k), (6.33)

with parameters, Cα = U
N ∑k eikjα φλ(k) . Here, one can find not only one, but two

bound-state solutions, i.e., with energies E±({j}) > 4tb, and whose wavefunction in
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(a) (b)

FIGURE 6.6: (a) Energy of the single-boson bound state described by the first scheme Eq. (6.26)
as the number of sites |j12| = d/a separating two fermions is modified. Here, we use an
imaginary time evolution method (ITE, see Appendix B.3.2 for details). Dashed lines follow the
scaling VI,0/(d/a). (b) Ground state energy of the simulated Hamiltonian for H2 for different

lattice sizes and the effective potential VI(d).

momentum space reads as,

φ±,j1,2(k) ∝
e−ikj1 ± e−ikj2

E±({j})− ωk
. (6.34)

When transforming these expressions into real space, one can see that they
correspond to the combination of states localized around the fermionic positions
{j}. However, as explained in the previous section [see Eq. (6.24)], what governs the
effective induced interaction between fermions is the spatial dependence of the
eigenenergies E±({j}), which can be calculated from,

U−1 =
1

NM
∑
k

1 ± eik·j12

EI±({j})− ωk
, (6.35)

where j12 = j1 − j2. The shape of this energy depends on both the
symmetric/antisymmetric character of the wavefunction, and whether the solution
is found above/below the scattering spectrum (ωk), which can be tuned by
modifying U/tb. By numerical inspection, we observe that to obtain a repulsive
interaction we must use the symmetric state and tune the parameters such that
EI+({j}) > ωk. Equating (6.30) and (6.35), the energy of the symmetric bound-state
can be expressed as,

EI,+({j}) ≈ EI,B + VI(j12) , (6.36)

where EI,B is the bound-state energy associated to a single fermion [see Eq. (6.30)]
and,

VI(j12) ≈
1

NBNM
∑
k

eikj12

EI,B − ωk
. (6.37)
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For separations |j12| ≪ 0.06 e2πtb/U ≪ N, the resulting effective spatial dependence
VI(j12) admits an approximate solution in 2D (see Appendix B.1),

V2D
I (d) ≈ V2D

I,0 / |j12| , (6.38)

where V2D
I,0 ≈ 6.4e−2πtb/Utb. This simple scheme then mediates an effective

repulsion between the two fermionic atoms that scales with their separation as
1/ |j1 − j2|, matching the dependence of the distance of 3D molecular interactions,
but now restricted to 2D, as we also mimic for the nuclear potential7. We illustrate
the spatial dependence of this potential and its effect in the 2D H2 molecule in
Figs. 6.6(a-b), respectively. There, one can observe molecular potentials even for
relatively small lattices and assess the error. The continuum limit is obtained in a
regime similar to the H+

2 molecule case. Let us also mention here that when tb > 0,
there is an additional checkerboard phase pattern in the spatial dependence VI(j12)
that appears because the closer energy modes of the upper band-edge of ωk have
±π-momenta. Therefore, if one wants the fermion not to be sensitive to it, we
require the spacing of the auxiliary atom lattice to be half the one of the fermions.
Another option consists on working with an excited energy band that shows
tb < 0 [334], so that this checkerboard phase pattern does not appear.

As one increases the number of fermionic atoms, one can however see that this
mediated pairwise repulsion does not hold when more than two fermions are
present. To reach this scalability for Ne > 2, let us now introduce a second scheme
for the bosonic mediator.

6.5.3 Scheme II: Ne bosonic mediators

One of the problems of the previous proposal is the impossibility of independently
tuning the strength and range of the interactions, since there is only a single tunable
parameter (U/tb). Here, we will show how to harness the latest advances in state-
dependent optical lattices [335–339] to gain that tunability. This proposal is scalable,
at the price of modifying the scaling of the repulsive interaction.

The idea consists of assuming that one can engineer two very different potentials
for two long-lived states of the auxiliary atoms that we label as a and b (see Fig. 6.5(b)
for a scheme), such that when the atoms are in state b, they tunnel at a much slower
rate, tb, than when they are in state a, i.e., ta ≫ tb. These states can be either the
hyperfine states of an Alkali specie, or the metastable excited states of alkaline-earth
ones, as we will detail more in Section 7.6. What is important is that these states can
be coherently coupled either through a two-photon Raman transition or a direct one
with effective coupling amplitude g and detuning ∆. Like this, the global internal
dynamics for the auxiliary atom is described by the following Hamiltonian:

ĤII,aux =∆ ∑
j

b̂†
j b̂j − ta ∑

⟨i,j⟩
â†

i âj + g ∑
j
(b̂†

j âj + H.c.)

− tb ∑
⟨i,j⟩

b̂†
i b̂j +

W
2 ∑

j
b̂†

j b̂†
j b̂j b̂j .

(6.39)

7Note that this choice of nuclear potential differs from the one encountered in a flatland world, in which
Coulomb’s law leads to interactions that scale as ∝ log(r).
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(a) (b)

FIGURE 6.7: (a) Calculation of the repulsion mediated by the second scheme (6.39) between
two fixed fermions separated d/a sites (markers), using ITE. Dashed lines follows the
analytical approximation of Eq. (6.40). Edged markers corresponds to N = 80 and coloured
ones to N = 40. Here, U = 4.1 ta. (b) Molecular potential for a "pseudomolecule" of hydrogen,
where both nuclear attraction and electronic repulsion follow the exponential scaling (6.40).

Here, edged markers represent N = 60, coloured ones N = 30, and LII/a =
(
2
√

δII/ta
)−1.

Using this Hamiltonian, one can solve again Eq. (6.28) for two fermions in a
configuration {j}, but now replacing ĤI,aux → ĤII,aux. Still, if one increased the
number of fermionic atoms in the lattice while maintaining a single mediating
boson, one would see that not all interactions among pairs of fermions are equally
weighted, precluding scalability. Intuitively, it is more favourable for the mediating
atom to localize among the pair of fermions that are closer to each other, rather than
in an equal superposition, so that not all interaction are equally considered. We will
provide more evidence in Section 7.4.3 for a 3D example.

To prevent this effect, here we include as many mediating bosonic atoms as
electrons need to be simulated [see Fig. 6.5(b)]. In particular, we are interested in the
regime in which both levels are weakly coupled g ≪ ∆, and when the atomic states
trapped in the a lattice hop faster than in any of the other levels [339]: ta ≫ tb ≫ t f ,
which to trace-out the effect of the mediating atoms and write an effective
Hamiltonian for the fermions (6.25). By using as many bosonic atoms as fermions,
the hard-core boson repulsion, W ≫ tb, leads to a bound state in which all fermionic
sites are equally occupied, getting a configuration in which the repulsion among
each pair of atoms is equally weighted, as required by Eq. (6.18). For this
configuration, the pair-wise mediated interaction scales as,

V2D
II (d) ≈ V2D

II,0 e−2d
√

δII/(a
√

ta) , (6.40)

for d
√

δII/(a
√

ta) ≫ 1, where V2D
II,0 ≈ g4

8πt2
aδII

, and δII = U − 4ta + O
(

g2/∆
)
, (see

Appendix B.2).
While this exponential scaling differs from the molecular Hamiltonian observed

in nature, the model already captures the key features of the interactions appearing
in molecular chemistry: nuclear attraction and electronic repulsion. It is then
expected to reveal some of the features of chemical systems, including their
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electronic correlations. In Fig. 6.7(a), we show the effective repulsive potential
induced by the second scheme for different values of detuning δII, which is tunable
and can be used to control the characteristic length of the interaction. This repulsion
can then delocalize over several sites and allows one to design non-local
interactions. In Fig. 6.7(b), we illustrate the effect that this modified effective
repulsion controlled by δII has on two fermionic atoms hopping in the lattice, whose
dependence on the distance is also mimicked by the tunable attractive nuclear
interaction. This leads to a molecular potential of a "pseudomolecule" of hydrogen,
where the bonding length and dissociation limit are observed.

6.6 Conclusions and outlook

To sum up, in this Chapter we have shown how ultracold atoms moving in 2D
optical lattices can be used to simulate simplified models for quantum chemistry in
today’s experimental setups. We have observed that early experiments with a few
simulating atoms can pursue the timely goal of describing the simplest discretized
versions of an atom and a molecule, with repulsive interactions that are
experimentally accessible with state-of-the-art setups. Such simulators open up a
number of possibilities for further research. First, they provide an experimental
platform for which numerical methods used in quantum chemistry can be adapted
and benchmarked. Lessons learnt from these simulators, could then be transferred
back into improved algorithms for quantum chemistry. Second, one of the main
challenges of these discretized 2D simulators is that their solutions approach the
continuum result slower than in the 3D case. Fully characterizing this scaling may
well lead to improved protocols that are less sensitive to the system size. In fact, we
will introduce some of these protocols in the next Chapter, where we extend these
schemes to three dimensions.
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Chapter 7

Towards 3D analog quantum
chemistry simulation

” True originality consists in returning to the origin. Those who
seek out the laws of Nature in order to fashion new works
collaborate with the Creator. Those who copy do not.

— Antoni Gaudí
(Catalan architect, 1852-1926)

In this Chapter, we show how to extend the previous two-dimensional toy
simulations for quantum chemistry to a three-dimensional simulator that mimics
both the attractive and repulsive forces appearing in real-life chemistry. For this
purpose, we bridge two paradigmatic systems, namely, ultra-cold atoms in optical
lattices [133, 145, 338] and cavity QED [95, 114, 340–342]. The key ingredient to
mediate the required long-range Coulomb-like interaction is to trap another atomic
species in the Mott insulator regime, with several internal states such that its spin
excitations mediate effective forces between the simulated electrons. While the setup
is discrete and finite, we show that precise results can be obtained for simple
molecules with moderate lattice sizes.

7.1 Introduction

As introduced in Section 6.1, one of the main goals of quantum chemistry is to
obtain the low energy behaviour of Ne electrons and several nuclei when the
positions, Rα, of the nuclei are fixed. Using a cubic discretization in real space
associated to the N = N3 sites of a cubic optical lattice, the electronic Hamiltonian to
solve contains the three terms, Ĥqc = Ĥkin + Ĥnuc + Ĥe−e, associated to the kinetic
energy of the electrons (6.12), their attraction to the nuclei (6.13) and
electron-electron repulsion (6.18), respectively. In 3D, the connection of the
length/energy scales of the discrete Hamiltonian Ĥqc and the continuum
three-dimensional one is now given by,

a(3D)
0 /a = 2t f /V0 and Ry(3D) = V2

0 /(4t f ) , (7.1)
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where a(3D)
0 , a and R(3D)

y are the Bohr radius, lattice spacing, and Rydberg energy,
respectively1. Thus, for the simulator to work, one needs to be in a regime,

(a) 1 ≪ 2t f /V0 ≪ N/N1/3
e ,

such that the first inequality prevents discretization effects, and the second
guarantees that the molecule fits in the volume of the simulator.

Following the discussion in Section 6.3, our three-dimensional simulator will be
based in the following ingredients: i) cold spin-polarized fermionic atoms hopping
in a 3D optical potential to play the role of electrons [145]. In particular, we consider
spinless fermions, and the spin degree of freedom can be included using an extra
internal level [343]. ii) Additional potentials to emulate the nuclei attraction. Since
this is a single-particle Hamiltonian, it can be created through optical Stark-Shifts
with an adequate spatial modulation. For example, in Section 7.2 we show that one
can use holographic techniques with judiciously optimized phase masks to engineer
a Coulomb-like spatial potential at the fermionic positions in 3D. In Section 7.3, we
further analyze the errors associated to the discretization and finite-size of the lattice,
and present a strategy that helps mitigating those limitations. iii) The most difficult
part is to simulate Ĥe-e (6.18), since it involves repulsive interactions between the
fermions with a 1/r dependence. Inspired by how virtual photons mediate Coulomb
interactions in QED, in Section 7.4 we extend the strategies introduced in Chapter 6
to mediate effective repulsion between the simulated fermions, now in 3D. We show
that a spin excitation of another atomic species forming a Mott insulator can mediate
the desired Coulomb forces between fermions. We devote Section 7.5 to benchmark
the simulation of simple atoms and molecules (He, H2 and HeH+), and analyze the
role of finite-size effects for state-of-the-art lattice sizes. In Section 7.6, we finally
discuss some practical issues about the implementation of these ideas.

7.2 Nuclear attraction

Following Section 6.3.2, the nuclear attraction term Ĥnuc can be simulated by a
position dependent shift εj, whose expression in terms of the Wannier functions
reads as (4.13),

εj =
∫

dr|wj(r)|2Vaux(r) ≈ Vaux(j) . (7.2)

Thus, in order to match the nuclear attraction term of the quantum chemistry
Hamiltonian in Eq. (6.2), we just require that Vaux(r) has the shape of the nuclear
Coulomb attraction, at least, at the optical lattice minima j where the fermions can
hop. To obtain that, one can add a red-detuned spatially shaped electric field beam,
Eα(r), for each of the nuclei we want to simulate, such that the induced light-shift
generates an optical potential with the shape,

Vaux(j) = −
Nn

∑
α=1

|Eα(j)|2
δα

≈ −
Nn

∑
α=1

ZαV0

|j − Rα|
, (7.3)

1Note that different factors appear when compared to the 2D case (6.14) due to the additional third
dimension. In the rest of this Chapter, we will omit the (3D) label.
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FIGURE 7.1: (a) Schematic representation of the holographic approach. A monochromatic laser
beam with wavelength λ f is reflected into a spatial light-modulator (SLM) which imprints a
complex phase pattern in a two-dimensional grid with N f × N f sampling points. A lens creates
a 3D Fourier hologram in a volume around its focal point where the fermionic optical lattice
of N × N × N sites and spacing a is placed. The minimum distance in which the electric field
can be modulated in the 3D hologram, a f , depends on the optical properties of the setup, but
it is always lower-bounded by the diffraction limit of light a f ≥ λ f /2. As shown in Ref. [344],
intensity of the field at each point is determined by the Fourier Transform of the phase mask
in the corresponding direction. (b) Linear cut of one of the calculated electric field amplitude
at the center of the lattice after the iteration process of the GS algorithm for refining factors
R f ∈ (1− 4) (see text for definition). Green line follows the desired Coulomb potential, V0/|r|,
and different markers are used for each refining factor, as indicated in the inset. Inset shows

the average normalized error for 30 random initializations of the algorithm.

where V0 is the overall energy scale of the potential controlled by the intensity of the
laser and/or detuning δα.

The non-trivial part here consists in obtaining the electric fields Eα(r) with the
desired intensity pattern, |Eα(r)|2, as the intensity masks introduced in the 2D case
(see Section 6.3.2) cannot be directly extended to three dimensions. One alternative
is harnessing the advances in 3D holographic techniques that allow one to shape the
electromagnetic field in a given volume by imprinting complex phase patterns in
a two-dimensional grid and using Fourier optics to propagate them to the position
of the optical lattice [345]. These 3D holograms have already enabled, for example,
trapping Rydberg atoms in exotic three-dimensional (3D) configurations [37].

As introduced in Section 2.1.1, holographic techniques allow one to engineer three-
dimensional intensity patterns at will [345]. For this, a monochromatic laser beam
with wavelength λ f is shine into a SLM that imprints a non-uniform phase pattern
in a grid with N f × N f pixels. As schematized in Fig. 7.1(a), the reflected laser field
is then focused with a high-numerical aperture lens to generate the desired potential.
The minimum spatial resolution (a f ) in which the electric field can be modulated
depends on both the optical setup and the wavelength of the incident laser λ f , but
it will always be lower bounded by the diffraction limit of light a f ≥ λ f /2. This
motivates the use of high numerical aperture lenses [31, 346, 347] to reduce the waist
of the holographic beam. We will label as R f = a/a f to the ratio between the inter-
atomic distance in the optical lattice and the spatial resolution of the hologram.

The first step to design 3D holograms consists in finding the appropriate phase
pattern that should be imprinted in the N f × N f grid of the SLM to obtain the
desired electric field intensity. Fortunately, there are many constructive algorithms
to do it [348–350]. Inspired by the original GS algorithm [68, 344, 351, 352], here we
follow the one of Ref. [344], which is adapted to modulating 3D electric fields in
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discrete points of space. This algorithm initially starts by a random set of phases in
the N f × N f grid, and then iteratively looks for a solution that both approximates a
given intensity pattern at the fermionic positions, V0

j , with the only restriction of
satisfying Maxwell’s equations. That is, the k−components of the beam of
monochromatic light λ f need to lie in the Ewald sphere of radius k f = 2π/λ f . The
convergence of the solution can be monitored using the dimensionless factor:

ϵ =
1
N ∑

j

∣∣∣∣∣
Vj − V0

j

V0
j

∣∣∣∣∣ , (7.4)

where Vj is the electric field intensity in position j obtained at an iteration of the
algorithm and V0

j the targeted one. A key element for the convergence of the
algorithm is the number of sampling points N f of the grid, which for simplicity we
will assume to be proportional to the number of optical lattice positions N f = R f N,
choosing R f as the proportionality factor. Like this, if R f > 1 the hologram can find
solutions where the electric field intensity is modulated also within the fermionic
positions, which will facilitate the convergence of the algorithm.

In Fig. 7.1(b) we plot the result of applying this algorithm [344] for several (integer)
values of R f for the case of a single nucleus at the central position of the lattice. That
is, when V0

j should have a Coulomb shape potential around the origin2. We apply the
GS algorithm to find the phase mask for a given (integer) R f until the improvement
of the relative error ϵ from one iteration to the next is below 10−4. Then, we plot in the
main panel a linear cut of the 3D electric field amplitude at the final iteration Vj (with
markers) compared to the targeted one V0

j (in solid green line), and its corresponding
relative error ϵ in the inset. In purple squares we plot the case R f = 1 where we
observe that the agreement with the desired potential leads to a final error above
10%. However, as we increase the number of sampling points N f using larger R f ,
the algorithm is able to find better solutions, as clearly indicated by the decrease of
the final relative error as R f increases. For example, with R f = 4 (blue crosses),
the potential finally obtained captures the desired intensity profile at the positions of
the fermions, obtaining a normalized relative error of ϵ ≈ 0.02. The most obvious
way to increase R f consists in either increasing the optical lattice period or using
smaller wavelengths for the focused holographic laser. One option is to use alkaline-
earth atoms which have a level structure that combines telecom transitions with ultra-
violet (400 nm) ones (1.4 µm) [353], although we recognize that going to large R f
will be experimentally challenging and will require the use of innovative ideas, e.g.,
developing novel tweezers techniques [31]. For this reason, in Section 7.3 we will
discuss the impact of imperfect potential in the precision of the simulators, showing
how already ε ∼ 0.1 can provide energy errors smaller than 1% for the simplest case
of atomic hydrogen.
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FIGURE 7.2: (a) Lowest-energy states for a cubic lattice of N = 100. of the continuum (dashed
black lines) and the discrete Hydrogen atom Hamiltonian Ĥ f (color markers), associated to
the principle quantum number n = 1, 2, 3. Their energy depends on the effective Bohr radius.
Once atomic orbitals occupy more than a single site, a0/a > 1, the spectrum approaches the
analytical result En = Ry/n2 (dashed lines), up to a critical size for which the finiteness of the
lattice becomes relevant. For n = 1, these finite-size effects appear at around a0/a ≈ 10 for the
present size. Inset, shows the difference between the calculated and analytic energy associated
to these curves. Dashed line follows the scaling expected from discretization effects, shown
in Eq. (7.6). (b) Axial cut in the central positions of the lattice is represented for the first 9
eigenstates of Ĥqc for t f /V0 = 2, N = 150. (c) Appropriately choosing the Bohr radius, we
show how the same orbital can be obtained with N = 1000 (up, t f /V0 = 150) or N = 20

(down, t f /V0 = 3), where the discretization of the system is more noticeable.
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7.3 Errors: discretization, finite-size, and mitigation
strategies

Up to now, we have shown that the dynamics of ultra-cold fermionic atoms in deep
optical lattices (s ≫ 1), and with an appropriate shaping of Vaux(r) can mimic the
single-particle part of the chemistry Hamiltonian (6.11),

Ĥ f = −t f ∑
⟨i,j⟩

f̂ †
i f̂j −

Nn

∑
α=1

∑
j

ZαV0

|j − Rα|
f̂ †
j f̂j . (7.5)

Before showing how to simulate the electron repulsion part of the 3D quantum
chemistry interactions in Eq. (6.18), in this section we will further provide intuition on
how the chemistry energies and length scales translate into the cold-atom simulation,
and which are the errors appearing due to two competing mechanisms: discretization
and finite size effects, taking as a case of study the Hydrogen atom. Identifying the
discretized [see Eq. (7.5)] and continuum Hamiltonians [see Eqs. 6.1-6.3)], one obtains
the natural correspondence of units shown in Eq. (7.1). There, we see that the effective
Bohr radius in units of the lattice constant a0/a, is defined by the ratio t f /V0. In order
to illustrate it, we plot in Fig. 7.2 the lowest energy spectrum of the discrete Hydrogen
atom as a function of the effective Bohr radius a0/a. The black dashed lines are the
expected energies in the continuum Hamiltonian, i.e., En = Ry/n2, whereas in the
different colors are the different numerical energies for a fixed system size of N = 100
sites.

As we discussed for the 2D case in Fig. 6.3, here we see that by increasing the ratio
t f /V0 and making the lattice larger, one approaches the continuum limit (dashed
line), as intuitively expected. The optimal choice of t f /V0 does however depend on
the atomic state one wants to represent. This dependence of the convergence to the
continuum limit on the particular atomic and molecular orbital will be a
commonplace of this method, and it also occurs for other basis representations [291].
In spite of this, by analyzing the sources of errors one can extract some general
conclusions that can provide valuable information when performing the
experiments:

• Discretization effects. Analyzing numerically the convergence to the correct
result in Rydberg units: ∆E = |E − E∞| (see inset in Fig. 7.2), we found an
heuristic scaling of the error given by:

∆Edis
Ry

∝
(

a
a0

)2
∝

(
V0

t f

)2

, (7.6)

where the proportionality factor depends on the particular orbital studied. The
observed quadratic scaling is more favourable than the one encountered in the

2D case,
(

V0/t f

)−1
(6.16). This can be justified by considering the errors

introduced by the discretization of the derivative and the integrals in the

2As done previously, we always consider that the nuclei are centered in a position separated half-a-
lattice constant away from the lattice sites to avoid the divergent behaviour. This will introduce an error
in our simulation, as we will consider more in detail in the next subsection.
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(b)(a)

guess

FIGURE 7.3: (a) Ground state of the discretized Atomic Hamiltonian depicted in Fig. 7.2, for
different values of the effective Bohr radius and N = 250. Inset: example of the fitting of the
energy difference to the continuum value ∆E = E − E∞, following a polynomial regression
of the form ∆E/Ry = c · (a0/a)b for fitting parameters, c and b. In this example we have
chosen the continuum value E∞ to be 1Ry. The best candidate for the value in the continuum
needs to be calculated, as one generally does not know it a priori. (b) More systematically, here
we show the standard deviation σ in the determination of the fitting parameter b for different
candidate values of Eguess. We identify the best choice of Eguess/Ry as the one with the smallest
deviation, E∞. In this simple example, one extrapolates the numerical result E∞ = 0.9998Ry
(see inset), for the energy of 1s orbital. This is, a precision of 0.01% for this simple scenario,
gaining one order of magnitude with respect to the precision one can directly achieve before

finite-size effects appear.

kinetic and potential energy term, respectively, leading both to the same
scaling presented in Eq. (7.6) (see Appendix C.1).

• Finite size effects. These errors can be associated to the part of the electron
density that cannot be fitted within our system size. Since the Hydrogen
orbitals decay exponentially with the principal quantum number n, one can
estimate that the errors due to finite size effect decay exponentially with the
ratio between the system size and the size of the orbitals, i.e.., ∝ e−Na/(na0).

Even though these estimates were based on the Hydrogen atom, one can already
extract important conclusions for the simulation of larger molecules. On the one
hand, one can estimate the error scaling with electron density. Since each level with
principal quantum number n can fit 2n2 electrons, an atom/molecule with Ne

electrons is expected to occupy a maximum quantum number nmax ∝ N1/3
e , such

that its estimated size will be ∼ N1/3
e a0/a sites. Thus, following Eq. (7.6), the

discretization errors for such distances will scale with ∆Edis/Ry ∝ ρ2/3
e , where

ρe = Ne/N is the electron density.
On the other hand, we can design an extrapolation method to obtain the energies

with accuracies beyond the particular system size chosen and, importantly, without
an a priori knowledge of the exact result. We illustrate the method in Fig. 7.3 for the
ground state of Hydrogen, and in Section 7.5 we apply it as well to the case of
multi-electron systems. The key steps go as follows: first, one calculates (or
measures in the case of an experiment) the ground state energy for a fixed system



100 Chapter 7. Towards 3D analog quantum chemistry simulation

FIGURE 7.4: Ground-state energy of the 3D Hydrogen-like Hamiltonian for increasing values
of the average normalized error of the nuclear potential, ε. 30 random iterations are considered
for each choice of ε, showing the average value (dashed line) and standard deviation (coloured
region). Inset: the relative error in the resulting energy follows a linear scaling with the

normalized nuclear potential error, ∆E/E ≈ 0.06ε (red line). Parameters: N = 60, t f /V0 = 1.

size N and for several ratios a0/a (panel a). Then, one defines
∆E/Ry = (E − Eguess)/Ry for several values of Eguess (panel b) and fit the resulting
function to a polynomial regression ∆E/Ry = c(a0/a)b, with free fitting parameters
b and c. We identify the right choice of the guess energy as the one with smallest
standard deviation σ (panel c), that we will say it is the one of the continuum limit
E∞ ≡ Eguess(σmin). Using this procedure for a system size N = 250, we obtain
E∞ = 0.9998Ry, which is one order of magnitude better than the result one would
obtain without extrapolation for this size (i.e., directly looking at the minimum
value of E for that system size). For completeness, we also check that this value of
E∞ also leads to an exponent factor compatible with b = −2 (not shown), which is
the error scaling consistent with Eq. (7.6). In Section 7.5, this will be the criterion
used to identify the best estimation for atomic and molecular energies beyond the
discretization of the lattice.

In addition to the errors caused by discretization and finite size effects, in Fig. 7.4
we further benchmark energy deviations in the Hydrogen ground-sate caused by a
relative normal error ε in the induced nuclear potential (see Section 7.2). For lattice
size N = 60, we observe that ε ∼ 0.1 (compatible with R f = 2 in Fig. 7.1), already
provides an accuracy in the retrieved energy of order 1%.

7.4 Simulating electron repulsion in 3D optical lattices

In what follows, we will make use of the general formalism previously introduced
in Section 6.5.1. First, we will devote Section 7.4.1 to motivate how working
conditions can be derived from it. Next, in Sections 7.4.2 and 7.4.3 we will extend to
3D the two simplified setups previously introduced in Section 6.4, which will result
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FIGURE 7.5: Schemes presented in this Chapter, to induce repulsion among fermionc cold
atoms (white) trapped in a three-dimensional optical lattice (red, pictorically represented in a
lower dimension for simplicity). (a) In Scheme I (Section 7.4.2), repulsion is induced by a single
mediating atom (green) in a given internal state |b⟩. This mediating atom tunnels with rate
tb, and experiences an on-site interaction with occupying the same lattice site as the fermionic
atom. This induces a non-Coulomb and non-scalable repulsion for more than two fermionic
atoms. (b) In Scheme II (Section 7.4.3), one relies on a second internal level of the mediating
atom to reach the Coulomb-like potential. Both levels |a⟩ and |b⟩ are coupled with rate g,
and tunneling rate depends on their state. (c) In Scheme III (Section 7.4.4) we use a different
approach to achieve the Coulomb repulsion among an arbitrary number of atoms. Here, rather
than a single atom, the mediating species is in a Mott phase, with exactly one atom occupation
per site (translucent gray). While these atoms are fixed, an atomic excitation (coloured blue)
|A⟩ can propagate to a neighboring site through magnetic exchange. They are also coupled
with rate g to another internal level |B⟩, that is subject to a Raman-assisted cavity-mediated

collective interaction, Jc, and a on-site repulsion U with fermionic atoms.

in slightly different repulsive potentials from the targeted one. Extending the
discussion of the previous Chapter, a complete proposal is discussed in Section 7.4.4,
where we also derive and numerically benchmark its perturbative working
conditions. The motivation for this incremental discussion is two-fold: first, it allows
one to understand the role of all the ingredients required in the final proposal;
second, even though the models discussed in Sections 7.4.2 and 7.4.3 do not provide
a fully scalable Coulomb-like interaction, they can be used as simpler, but still
meaningful, experiments that can simulate chemistry-like behaviour and guide the
way to the full proposal.

7.4.1 Working conditions for the general formalism

Previously, we introduced in Section 6.5.1 a general formalism to describe how the
energy of the auxiliary species Es,aux({j}) depends on the position of the fermions,
{j}, as it creates a bound-state, |φs({j}⟩aux, around them as a consequence of a contact
interaction, Ĥf-aux (6.21). Let us now summarize then the conditions to achieve the
needed fermionic repulsion:
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• There should be one eigenstate |φs({j}⟩aux from the Hamiltonian of Eq. (6.20),
whose energy can be written as:

Es,aux({j}) =
Ne

∑
m,n=1,
m ̸=n

V0

|jm − jn|
, (7.7)

where V0 > 0 determines the strength of the effective repulsion between the
electrons.

• For self-consistency, |φs({j}⟩aux needs to be the dominant state of the Hilbert
space of the auxiliary atoms dressing the fermionic configuration {j}, so that
the total state writes as |Ψ⟩ = ∑{j} ψ({j}) |{j}⟩ f |φs({j}⟩aux. Also, the different
parts of the Hamiltonian (Ĥ f , Ĥf-aux,Ĥaux) should not couple significantly this
state to the orthogonal ones

∣∣φ⊥
m({r}

〉
aux of any given fermionic configuration.

This means that, if any of the Hamiltonian parts Ĥα connect |φs({j}⟩aux to an
state

∣∣φ⊥
m({r}

〉
aux, the transition should be prevented by a large enough energy

gap between them, denoted by ∆m,r. Like this, we can upper-bound the error
introduced by such couplings using perturbation theory:

εα = ∑
all{r}

∑
m

∣∣∣∣∣∣
f ⟨{r}|aux

〈
φ⊥

m,{r}

∣∣∣ Ĥα

∣∣Ψ
〉

∆m,r

∣∣∣∣∣∣

2

, (7.8)

which should of course satisfy:

εα ≪ 1 , (7.9)

for all α = f, f − aux, aux. This provides a second working condition for the
dynamics to be governed by the effective fermionic repulsion Hamiltonian of
Eq. (6.18).

In what follows, we will introduce sequentially the different schemes for the
interaction of the mediating atoms in 3D, Ĥaux, until we obtain the desired
repulsive, pair-wise, Coulomb potential between the fermionic atoms. If not
particularly interested in the details, the reader may skip this part and jump into the
resulting Yukawa-like potential of Eq. (7.43), as well as the working conditions (b-d)
summarized in page 115.

7.4.2 Scheme I: Repulsion mediated by single atoms: non-Coulomb
& non-scalable

Let us assume initially the simplest level configuration for the auxiliary atomic state.
That is, it has only a single ground state level subject to an optical potential with the
same geometry as the fermionic one, NM = N3

M sites, but with different tunneling
rate [see Fig. 7.5(a)]. The resulting auxiliary Hamiltonian in this case reads as
Eq. (6.26),

ĤI,aux = −tb ∑
⟨i,j⟩

b̂†
i b̂j , (7.10)
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r

r

FIGURE 7.6: Radial wavefunction of the mediating auxiliary atom placed at j0/a =
⌊NM/2⌋ [1, 1, 1] for lattice size NM = 100, 200 and U = 4tb. Displacements are studied in
the x-axis, j = j0 + [r, 0, 0]. Dashed line follows the Yukawa potential in Eq. (7.11). Shaded
region indicates the region r/a ≤ LI where Coulomb potential applies. Here, LI is calculated

using Eq. (7.12).

Extending to 3D the derivation in Section 6.5.2, we will see how this bound state can
mediate a repulsive interaction when two or more fermions are hopping in a three-
dimensional lattice that, unfortunately, does not have the correct spatial dependence
presented in Eq. (7.7).

Single fermion

In this fist scheme, one can obtain a closed expression for the bosonic bound-state
as in Eq. (6.31). Taking the continuum limit, NM → ∞, to replace the summation
by an integral, and making a quadratic expansion of the energy dispersion around
the band-edges (see Appendix C.2.1), one obtains an analytical expression for the
wavefunction that reads in 3D as,

φB,j0(r) ∝
e−|j−j0|a/LI

|j − j0|
. (7.11)

That is, a Yukawa-type localization around the fermionic position j0 with a
localization length given by LI/a =

√
EI,B/tb − 6 that, to leading order in tb/U,

reads as (see Appendix C.2.2),

LI/a = (3.176 − 4πtb/U)−1 . (7.12)

Interestingly, this localization length can be tuned with the experimental parameters,
i.e., changing U/tb, and be made very large. In particular, the bound state can display
a 1/r shape over the whole fermionic lattice as long as LI/a ≫ N.

These analytical formulae can be numerically benchmarked by solving Eq. (6.31)
for the case of a single fermion and a finite 3D lattice size. This is done in Fig. 7.6



104 Chapter 7. Towards 3D analog quantum chemistry simulation

where we plot the spatial dependence of the numerically obtained wavefunction for
two different system sizes: NM = 100 and NM = 200, represented with filled and
empty circles, respectively, together with the Yukawa shape (in dashed black)
predicted from Eq. (7.11). We have chosen U/tb = 4 such that the expected length is
LI/a ≈ 29, indicated by the shaded red region of the figure. From this figure we can
extract two conclusions: first, the spatial wavefunction displays, as expected from
Eq. (7.11), an approximate 1/r decay for short distances, i.e., r < LI (shaded red
area). Second, for larger distances the spatial wavefunction follows the Yukawa
shape of Eq. (7.11) until it becomes closer to the border. Thus, to observe the 1/r
decay for the whole fermionic space we require that N ≪ LI/a ≪ NM.

An additional condition comes from reducing the coupling to non-orthogonal
states, i.e., the condition of Eq. (7.9). In this case, only Ĥ f contributes as follows,

ε f = ∑
m

∣∣∣∣∣
t f ⟨φ⊥

m,j0+1|φB,j0⟩
∆m,j0+1,j0

∣∣∣∣∣

2

≤
t2

f

NBNM
∑
k

1

(EI,B − ωk)
4 (7.13)

such that the condition ε f ≪ 1 translates into,

t f /tb ≪ (a/LI)
2 , (7.14)

providing the working condition that guarantees the separation of energy scales
between the fermionic and auxiliary atom dynamics. Here, j0 + 1 denotes a
nearest-neighbor of j0, and we have made use of the calculations in Appendix C.2.2.
This energy separation guarantees that the auxiliary atom will immediately follow
the fermion as it hops through the lattice. As we already explained in the previous
section, this auxiliary atom dressing renormalizes as well the fermion hopping by
the Franck-Condon coefficient [see Eq. (6.23)]. For the nearest-neighbour hoppings,
that are the only non-negligible ones in this case, this coefficient reads

FI = ⟨φB,j0+1|φB,j0⟩ ≈ e−a/LI (7.15)

so that the fermionic hopping is less affected the more delocalized the auxiliary atom
wavefunction is.

Two fermions

When two fermions are present at positions {j1, j2}, the energy of the auxiliary
bound-state depends on their separation, j12 = j1 − j2, as in Eq. (6.37)

VI(j12) ≈
1

NBNM
∑
k

eikj12

EI,B − ωk
, (7.16)

which is the term that induces a position-dependent interaction between the
fermions [see Eq. (7.7)]. Note as well the similarity between VI(j12) and the
bound-state wavefunction of the single-fermion case (Eq. (6.31)). Thus, we can also
take the continuum limit of this expression to transform the sums into integrals and
make a parabolic expansion of ωk to obtain an analytical formula of VI(j12). In the
long-distance limit, that is, when |j12| ≫ LI/a, the potential shows the same Yukawa
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FIGURE 7.7: Comparison between the numerical calculation of VI(d) obtained from equating
Eqs. (6.30) and (6.35) (round markers), as compared to the analytical expansions (7.17) (dashed
lined) and (7.18) (dotted-dashed line), valid in the regimes d/LI ≪ 1 (coloured region) and

d/LI ≫ 1, respectively. Parameters: NM = 120.

shape,

VI,>(j12) = VI,>(|j12|) ≈
2atb

|j12| · LI
e−|j12|a/LI . (7.17)

Unfortunately, in the opposite limit, i.e., |j12| ≪ LI/a, where the shape should
display the desired 1/|j12| profile, Eq. (7.16) expands as (see Appendix C.2.2),

VI,<(j12)/tb ≈ 0.322
|j12|2

+
0.724a
|j12| · LI

. (7.18)

In Fig. 7.7, these analytical expressions are numerically benchmarked by solving
the bosonic Hamiltonian (6.28) in a finite system for two fermions separated by an
increasing number of sites, and two different values of LI. There, we observe how the
energy spatial decay never displays the desired 1/|j12| scaling but rather the 1/|j12|2
predicted by Eq. (7.18). The intuition behind this limitation is that we do not have
enough tunable parameters since U/tb controls both the strength and the range of
the interaction (LI). Thus, when LI is tuned to be large enough, the correction to the
energy E±({j}) is so strong that it induces a different spatial dependence from the
1/r shape.

For completeness, let us also mention that as the two fermions separate, the
auxiliary atom wavefunction approximates a superposition of the single-boson
density of Eq. (6.31) centered at each position, such that the Franck-Condon
coefficient of Eq. (6.23) approximates as FI ≈ 0.5

(
1 + e−a/LI

)
. Additionally to the

error in Eq. (7.13) caused by the coupling to states in the band due to Ĥ f , the
condition on t f /tb derived for the single fermion case now includes an additional
contribution given by Eq. (7.9) due to the coupling to the antisymmetric
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bound-state. This additional contribution reads as,
∣∣∣∣∣

t f ⟨φ−(j1+1,j2)|φ+(j1,j2)⟩
E+ (j1, j2)− E− (j1 + 1, j2)

∣∣∣∣∣

2

≈
∣∣∣∣
t f (1 −FI)

4VI(d)

∣∣∣∣
2

≪ 1 , (7.19)

where, for d/a ≫ 1, we have approximated
⟨φ− (j1 + 1, j2) |φ+ (j1, j2)⟩ ≈ 0.5 (1 −FI). From the definition of the
Franck-Condon coefficient [see Eq. (7.15)], in the limit LI/a ≫ 1, this can be
approximated as 0.5a/LI. We observe that since the gap between the symmetric and
antisymmetric state is given by 2VI(|j12|), the condition becomes more demanding
as the two fermions separate, since VI(|j12| → ∞) → 0.

Ensuring that the symmetry of state is preserved irrespective of the fermionic
positions will be one of the main motivations to introduce the cavity-assisted
hoppings required for the model discussed in Section 7.4.4.

More than two fermions

Although we have just showed in the previous section that this auxiliary atom
configuration will not be able to deliver the desired Coulomb potential for two
fermions, let us here consider the general situation with N f fermions to see that an
additional complication arises, that is, that the eigenenergy E+({j}) does not
correspond to a pair-wise sum. Instead, the auxiliary atomic excitation tends to
localize more strongly around those fermions closer to each other, making the
proposal non-scalable. To illustrate this effect, in Fig. 7.8 we plot an example of a
numerically calculated energy E+({j}) when three fermions are placed in a
triangular geometry and move the distance of one of them such that it goes from an
equilateral configuration to an isosceles one. We plot the ratio between the
population in the fermionic sites at the apex of the triangle, compared to one of the
positions of the base (η in the figure). There, we observe that the population only
becomes equal in the equilateral superposition.

Having identified the problems associated to this simple auxiliary atom
configuration, in the next subsections we will show how, by adding complexity to
the internal dynamics of the auxiliary atom, one can solve these limitations.

7.4.3 Scheme II: Repulsion mediated by atoms subject to
state-dependent potentials: Coulomb but non-scalable

To further tune the strength and range of the interactions, we now consider the
second mediating scheme described in Eq. (6.39). For this, we use two long-lived
energy levels of the mediator, that we call a and b, separated by an energy difference
∆. Level b experiences an on-site repulsion U when occupying the same site as a
fermion, while the atoms in level a live on a shallow lattice that allows them to move
with tunneling rate ta. Both levels are coupled through a Raman (or direct)
transition of strength g [see Fig. 7.5(b)].

As compared to the previous derivation in Section 6.5.3, here we consider that
only one auxiliary atom is present (rather than having as many mediating atoms as
fermions). One can then write the following ansatz for the auxiliary atom
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s

FIGURE 7.8: Asymmetry between the population of the bound state of Hamiltonian for a
configuration of three simulating atoms. Here we choose an isosceles distribution, of fixed base
s/a, and variable height d/a (see inserted scheme). Continuous line follow the ground state
obtained with exact diagonalization for different values of d/a. η denotes the ratio between
the population of the bath in the apex site, and one of the vertices of the base. A value 1,
indicating the desired symmetric superposition between the three atoms, is only achieved in
the equilateral configuration (red cross). Panels show axial cuts of the population in bath b for
geometrical configurations d/a = 6, 14, and 30 (from left to right). Qualitatively, one observes
that the symmetric superposition at the three vertices is less enforced as triangle sides become

more unequal. (Parameters: LI/a = 10, s/a = 6, NM = 120).

wavefunction:

|φII,m({j})⟩aux = ∑
k

(
φa

m,{j}(k)â†
k + φb

m,{j}(k)b̂
†
k

)
|vac⟩ . (7.20)

Under these conditions, we find that there is again a symmetric bound state in bath
b localized around the fermions, whose associated eigenenergy EII,+(j) leads to
repulsive spatially-dependent interactions. Since tb ≪ ta, the spatial dependence is
dominated by the hopping in the a-bath. In order to obtain an analytical expression
for EII,+(j), we will further assume that g ≪ ta and that tb = 0. Note that even if one
takes originally tb = 0, one does still obtain an effective tunnelling through the a
bath given by tb ≈ g2ta/∆2, that we will neglect to get the analytical expression.
These assumptions allow us to obtain EII,+(j) using second-order perturbation
theory. For two fermions, this leads to,

EII,+({j}) ≈ E(2)
II,B +

g2

NM
∑
k

eik·j12

E(0)
II,B − ωII,k

, (7.21)

where ωII,k = −2ta ∑α=x,y,z cos(kα) is the energy-dispersion ruling the propagation

of the a modes, and E(0)
II,B = U + ∆, E(2)

II,B = E(0)
II,B + g2

N ∑k
1

E(0)
II,B−ωII,k

are the bound-state

energies for the single-fermion case in this atomic configuration calculated to 0-th/2-
nd order, respectively (see Appendix C.2.3 for more details on the calculation).

As we did for the previous model, one can obtain a formula for the spatial
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FIGURE 7.9: Effective Yukawa-type length obtained from fitting the exponentially decaying
wavefunction in bath a (shaded marker), and the state energy, (EII,B/ta − 6)−1/2, (contoured
marker) for different values of on-site interaction U/ta. Dashed lines follow the leading-order

approximation L(0)
II /a =

(
E(0)

II,B/ta − 6
)−1/2

, and the dotted line indicates the critical coupling
strength g/ta when second-order corrections in the population a-modes are 1% larger than the

leading order. Here, NM = 100.

dependence by taking the continuum limit of (7.21) and expanding ωk around its
band-edges. This yields to,

VII(j1,2) = EII,+(j1,2)− E(2)
II,B ≈ VII

e−|j12|a/L(0)
II

|j12|
, (7.22)

where VII = g2/(4πta) is the strength of the repulsive interaction, and L(0)
II /a =(

E(0)
II,B/ta − 6

)−1/2
is its range, which can be calculated from the 0-th order energy

expression (see Fig. 7.9 and the discussion below it).
From Eq. (7.22) we can already see that this atomic configuration solves one of

the problems of the previous proposal of section 7.4.2, that is, that now one can tune
independently the strength VII and its range LII. This enables going to a regime where
LII is bigger than the fermionic system size, i.e., LII ≫ N, while still keeping the 1/r-
dependence such that the two-fermion repulsion has a truly Coulomb-like shape in
all space.

Now, let us see the working conditions, based on the discussion around Eq. (7.9),
where this effective repulsion works.

• Let us first bound the corrections introduced by the fermion hopping
Hamiltonian Ĥ f . Focusing on the two-fermion case, these contributions are:

ε f =

∣∣∣∣
t f

U

∣∣∣∣
2
+

∣∣∣∣
a

LII

t f

4VII(d)

∣∣∣∣
2
≪ 1 , (7.23)

where the first term corresponds to the coupling to states b̂†
j |vac⟩ in positions

not occupied by a fermion, and the second term corresponds to the
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antisymmetric state whose population in level b is approximately(
b̂†

j1
− b̂†

j2

)
/
√

2 |vac⟩, analogously to Eq. (7.19). As it occurred in the previous
model, ensuring the right symmetry for the mediating state becomes more
demanding as the two fermions separate. From the definition of the
Bohr-radius [see Eq. (7.1)], larger orbital sizes require to increase the effective
length of the Yukawa potential so that, in the worst-case-scenario where the
fermions are maximally separated, (a0/a) (Na/LII) ≪ 1 is still satisfied.

• The correction introduced by ĤII,aux can be bounded by (see Appendix C.2.3 for
details):

εaux ≤ VIILII

taa
≪ 1 , (7.24)

which guarantees that the population in the a modes remains small, such that
the second-order expansion used in Eq. (7.21) holds.

• Besides, as aforementioned, it is desirable that the localization length LII is
independent of the particular fermionic configuration. However, by solving
numerically Eq. (6.28) with ĤII,aux for a single fermion, we find that the length
of the bound state, which will afterwards mediate the interaction, can depend
on the ratio g/ta, and thus on VII(d). This is shown explicitly in Fig. 7.9 where
we plot the LII obtained by a numerical fitting of the bound-state shape as a
function of g/ta and for several U/ta, and compare it with L(0)

II (dashed black

lines). There, we observe how indeed L(0)
II matches well the numerically

obtained value until a critical g/ta where it starts to deviate. We numerically
observe that LII deviates significantly from L(0)

II , when the population in
a-mode deviates from its first-order expansion terms (in dashed black). Using
that intuition, we can then estimate the conditions for the LII-independence of
parameters by imposing that the higher-order terms in the a-modes are
smaller than the first order ones, which yields the following inequality (see
Appendix C.2.3)

VII/ta ≪ (a/LII)
2 (7.25)

From an energy perspective, we see that this bound obtained from the
population of atoms in level a, dictates that the mediated repulsion,
EII,+({j}) − E(2)

II,B, needs to be smaller than the energy-gap, E(2)
II,B/ta − 6,

defining L(0)
II . This condition also ensures that the higher-order corrections to

the bound-state energy dependent on the fermionic configuration can be
neglected.

Under these conditions, this experimental setup allows us to simulate faithfully a
quantum chemistry interaction for two-electron problems. Unfortunately, this
proposal inherits the same problems of scalability than the previous one: when more
than two fermions are present, the bound state tends to localize more strongly in the
position of the closest ones (remember Fig. 7.8), and EII,+ cannot be written as a
pairwise potential. In the 2D case, this was solved by considering as many
mediating atoms are fermions in the lattice (Section 6.5.3). However, the resulting
pairwise repulsion would not lead to the desired Coulomb-like potential in 3D. In
the next section, we will then consider a different approach based on cavity-assisted
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interactions.

7.4.4 Scheme III: Repulsion mediated by atomic spin excitations
and cavity assisted transitions

Here, we finally introduce all the ingredients required to obtain the repulsive,
pair-wise, 1/r, potential needed for quantum chemistry simulation. The previous
analysis of the simplified setups will allow us for a more intuitive understanding of
the role of the different elements, and we will numerically benchmark through exact
calculations the working conditions of the simulator. This proposal requires [see
Fig. 7.5(c)]:

• Three long-lived states that we label as a, b, c, subject to different
state-dependent potentials, such that they can only hop when they are in the a
state.

• The auxiliary atoms should be initialized in a Mott-insulating state
|Mott⟩ = ∏i ĉ†

i |vac⟩ with unit filling. Like this, instead of working with
atomic excitations directly, as we did in the previous two subsections, the
second-quantized operators Âj, B̂j will denote single-spin excitations over the
Mott-state, i.e.,

Â†
j |Mott⟩ =

(
∏
i ̸=j

ĉ†
i

)
â†

j |vac⟩ , (7.26a)

B̂†
j |Mott⟩ =

(
∏
i ̸=j

ĉ†
i

)
b̂†

j |vac⟩ , (7.26b)

• We also demand controllable cavity-assisted transitions that can be engineered
to transfer excitations between levels c and b [340, 354, 355]. These transitions
induce a long-range interaction term, Jc/NM, where we already include
explicitly the inverse volume dependence of the cavity-assisted couplings.
Besides, we still keep the local Raman assisted transitions between the a and b
levels already used in section 7.4.3, with strength g and detuning ∆.

Summing up all these ingredients, the internal dynamics of the auxiliary atoms
will be ruled by the following Hamiltonian,

ĤIII,aux =
Jc

NM
∑
i,j

B̂†
i B̂j + ∆ ∑

j
B̂†

j B̂j + JA ∑
⟨i,j⟩

Â†
i Âj + g ∑

j
(Â†

j B̂j + H.c.) , (7.27)

where JA is the super-exchange coupling strength, which can be tuned from positive
to negative [356, 357] and here will be considered to be JA > 0. Note that, apart
from the first term describing cavity-assisted transitions, this Hamiltonian for the
spin excitation is formally identical to the mediating Hamiltonian ĤII,aux of Eq. (6.39).

Derivation of the effective potential

To show the scalability of the proposal, we study directly the case when Ne fermions
are present in the system with positions {j} = {j1, . . . , jNe}. Inspired by the previous
sections, we study the fermion interaction induced when only a single spin
excitation is present in the system, which is initially symmetrically distributed
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among all fermionic positions:

∣∣∣φ(0)
+

〉
=

1√
Ne

∑
{j}

B̂†
j |Mott⟩ . (7.28)

From Eq. (7.27), it can be shown that the commutator
[ĤIII,aux , ∑i

(
B̂†

i Bi + Â†
i Ai
)
] = 0, such that the number of spin excitations in this

Hamiltonian is conserved, allowing us to remain in the single excitation subspace of
the Hamiltonian ĤIII,aux. Thus, all the possible wavefunctions are captured by the
following ansatz,

|φIII,m({j})⟩aux = ∑
k

(
φA

m,{j}(k)Â†
k + φB

m,{j}(k)B̂†
k

)
|Mott⟩ . (7.29)

Then, in order to obtain an analytical expression of the energy of the symmetric
configuration EIII,+({j}) including the energy shift of the fermions, Ĥ f−aux({j}) +
ĤIII,aux, we apply perturbation theory using:

Ĥ0 = ∆ ∑
j

B̂†
j B̂j + U ∑

{j}
B̂†

j B̂j , (7.30)

as the unperturbed Hamiltonian. At this level, there is a degeneracy of the order of
the number of fermions, that the cavity will break. Then, we include

Ĥcav =
Jc

NM
∑
i,j

B̂†
i B̂j , (7.31)

ĤA = JA ∑
⟨i,j⟩

Â†
i Âj + g ∑

j
(Â†

j B̂j + H.c.) , (7.32)

as the two perturbations over it. Using perturbation theory, we find that the
eigenenergy of the unperturbed state

∣∣∣φ(0)
+

〉
, with energy

Ĥ0

∣∣∣φ(0)
+

〉
= E(0)

III,B

∣∣∣φ(0)
+

〉
= (U + ∆)

∣∣∣φ(0)
+

〉
, is perturbed to first order by the Ĥcav

leading to: E(1)
III,B = U + ∆ + ρM Jc, where ρM = Ne/NM is the fermionic density. The

cavity then breaks the degeneracy between the symmetric/antisymmetric
wavefunctions, creating an energy difference ρM Jc between them. To the next order,
ĤA leads to an additional correction of the energy, which introduces the desired
spatial dependence,

E(2)
III,+({j}) ≈ E(1)

III,B +
g2

Ne

1
NM

∑
k

∣∣eik·j1 + . . . + eik·jNe
∣∣2

E(1)
III,B − ωIII,k

, (7.33)

where ωIII,k = 2JA ∑α=x,y,z cos(kα) is the eigenenergy of the Hamiltonian
JA ∑⟨i,j⟩ Â†

i Âj using periodic boundary conditions. In that equation, we observe that
ĤA delocalizes the auxiliary A-spin excitations providing the position dependent
part of E(2)

III,+({j}), which can be broken into a constant and a sum of pair-wise
contributions that have the same shape as the one in Eq. (7.21). In the continuum
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limit, NM → ∞, the pair-wise contributions can again be written as an integral that
yields:

E(2)
III,+({j}) ≈ E(2)

III,B + VIII ∑
i,j

e−|i−j|a/LIII

|i − j| , (7.34)

where, to second order, E(2)
III,B = E(1)

III,B + g2

N ∑k
1

E(0,1)
III,B −ωk

. Here, LIII is the effective

length of the Yukawa-Type potential, now given by, LIII = a
(

E(1)
III,B/JA − 6

)
, and

VIII =
g2

2π JA Ne
its strength (see Appendix C.2.4).

Working conditions

For self-consistency in the derivation of E(2)
III,+({j}), in Eq. (7.34), we must impose

that the corrections to the unperturbed state,
∣∣∣φ(0)

+

〉
, due to different elements of the

Hamiltonian are small [Eq. (7.9)]. We introduce these contributions one by one:
• The cavity Hamiltonian Ĥcav tends to delocalize the auxiliary atomic

excitations beyond the fermion positions, which does not occur when the
fermion-auxiliary atom interaction is large enough. Using Eq. (7.9), we find
that the cavity-mediated population of other symmetric states rather than∣∣∣φ(0)

+

〉
is upper bounded by:

εcav =

∣∣∣∣
√

ρM Jc

U − Jc

∣∣∣∣
2

, (7.35)

such that one sufficient condition to satisfy εcav ≪ 1 is:

Jc ≪ U . (7.36)

This is numerically confirmed in Fig. 7.10(a), where we study the triangular
fermionic configuration discussed in Fig. 7.8 using now the Hamiltonian
Ĥ f−aux({j}) + ĤIII,aux. For illustration, we plot the weight of the
wavefunctions in the fermionic positions, i.e., W = ∑i∈{j} |φA

m,{j}(i)|2 (black
dashed line), as a function of Jc/JA for a fixed U and for several values of g/J.
There, we observe that W ≈ 1 when Eq. (7.36) is satisfied, irrespective of the
particular choice of the rest of parameters.

• As it occurred in subsection 7.4.3, the hoppings in ĤA connect
∣∣∣φ(0)

+

〉
with two

different set of states: (i) it dresses it with some population in the A-modes; and
(ii) it takes it out of the symmetric sector. One can upper bound the corrections
due to these two processes by εA = εA,i + εA,ii, where:

εA,i =
g2

NeNM
∑
k

∣∣∣∣∣∣
eik·j1 + . . . + eik·jNe

E(0)
II,B − ωI I,k

∣∣∣∣∣∣

2

≤ g2LIII

8πaJ2
A

Ne ≪ 1 , (7.37)

assuming the desired condition d/LIII ≪ 1 for any pair of fermions, so that the
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FIGURE 7.10: (a) Exact diagonalization calculation of the bound state associated to
Hamiltonian (7.27) for three fermions in the isosceles configuration illustrated in Fig. 7.8. We
represent the ratio η between the population in bath a of the fermion at the apex of the triangle,
and one vertex of the base, as a function of the cavity coupling strength. The no-cavity limit
(Jc/JA = 0) is determined by the fermionic geometry and effective length LIII/a. As the cavity
interaction increases, inequality (7.39) defines the lower cavity strength limit at which the
population of the bath is equal for each of the fermionic positions. The black dotted line shows
the total population of atoms in level A at the position of the three vertices (W as defined in
the main text), which is close to 1 for Jc < U, and quickly decays to an uniform distribution
among all sites when the cavity interaction dominates the on-site interaction with the fermion
Jc > U. Inset: population of bath a for different values of cavity interaction. Note in the last
inset that all the bath is equally populated when the cavity strength overpasses the on-site
interaction U. Parameters: U = 2JA, ∆c = 10JA, NM = 160, s/a = 6, d/a = 24. (b) Population
of the mediating atom ground-state on contributions not corresponding to the leading-order
ground-state,

(
B̂j1 + B̂j2

)
f̂j1 f̂j2 /

√
2, for any combination of j1, j2 (contoured marker), see main

text. Here we use an exact diagonalization of the ground-state energy for a minimal model
where two fermions are hopping on a 1D lattice, are attracted by two nuclei separated 8
lattice sites, repel each other with an effective potential V0/d (being d the interfermionic
separation) and experience an on-site interaction U with a bosonic species connected to a
cavity mode (i.e. the terms associated to the fermionic dynamics and population in state b
of the Hamiltonian (7.27)). Plus markers show the total population of the antisymmetric states
of the form

(
B̂j1 − B̂j2

)
f̂j1 f̂j2 /

√
2 and coloured markers the population of sites not occupied

by the fermions, B̂j f̂j1 f̂j2 for j /∈ {j1, j2}. These are compared to the scaling predicted by the
first-order analytical predictions given by Eq. (7.39) (red dashed line) and Eq. (7.35) (dotted
line), respectively. Note that the dynamics in level a is not included in this minimal model.

Parameters: N = 50, V0 = 1/4JA, U = 4000JA.
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Coulomb scaling prevails over the exponential decay. One observes that the
final inequality scales as g2/J2

A ≲ a/LIII, similarly to the two-fermion condition
we encountered in the previous scheme [see Eq. (7.24)].
The other contribution coming from the antisymmetric states is prevented by
the energy gap between the symmetric/antisymmetric sector induced by the
cavity-assisted transitions (ρM Jc), and it can be upper bounded by,

εA,ii =

(
VIII

ρM Jc

)2
G({j}) , (7.38)

where G({j}) is a function that solely depends on the particular fermionic
configuration (see Appendix C.2.4). Interestingly, G({j}) ≡ 0 in the case where
all the fermions are equally spaced or when there are only two fermions, while
in general it can always be upper-bounded by |G({j})| ≤ (Ne/2 − 1). Then,
the inequality to be satisfied when many fermions are present reads as,

εA,ii ≤
(

VIII

ρM Jc

)2 Ne

2
≪ 1 . (7.39)

This condition is also numerically benchmarked for the triangular configuration
of three fermions represented in Fig. 7.10(a). As in Fig. 7.8, we plot the ratio of
the weight of the wavefunction in the basis positions compared to the apex (η,
see scheme in Fig. 7.8), showing how they only become equal in the limit when
Eq. (7.39) is satisfied.

• Besides, an extra condition appears to avoid that Ĥ f connects the mediating
state with the rest of the subspace [see Eqs. (7.8-7.9)]. We can upper bound this
contribution coming from the antisymmetric distribution of spin excitations at
the fermionic positions by (see Appendix C.2.4),

ε f ≈
a

LIIINe

( t f

ρM Jc

)2
≪ 1 . (7.40)

Testing this inequality numerically in a three-dimensional model is an
outstanding challenge as it involves the three-dimensional Hilbert space of
both the fermion and spin excitations in the a and b levels. Instead, in
Fig. 7.10(b), we test Eq. (7.40) in a minimal model of two fermions hopping in a
1D lattice for different values of the cavity coupling Jc. We observe a
qualitative good agreement with the scaling ∝ (t f /Jc)2 before the error
introduced by an excessive cavity strength appears [Eq. (7.35)].

• Also, as it occurred in the previous section, there is an additional condition to
force that LIII does not vary depending on the fermionic configuration, as this
will imply that the effective repulsive potential will change as the fermions
hop into the lattice. Making an energy argument analogous to the derivation
used in Eq. (7.25), one would desire

∣∣∣EIII,+ − E(1)
III,B

∣∣∣ ≪ (a/LIII)
2 JA. This bound

will highly depend on the particular fermionic configuration. An (unrealistic)
upper bound for electronic repulsion would correspond to the case where all
fermions are as close to each other as they can be, while respecting their
fermionic character. In the limit of many simulated electrons, this scales as
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VIIIN5/3
e ≪ (a/LIII)

2 JA. This, however, does not make use of the entire
allowed space for the fermions. A more realistic bound should take into
consideration that fermions will distribute over the entire lattice for the
optimal simulation. One can then approximate the repulsive energy as∣∣∣EIII,+ − E(1)

III,B

∣∣∣ ≈ VIII
21/3 (Ne − 1)2/3 ∑j ρ(j)4/3, where ρ(j) denotes the fermionic

density in site j. This estimation can then be particularized for any
atomic/molecular level of interest. As a back-of-the-envelope calculation,
considering an homogeneous density ρ(r) ≈ ρe, one obtains,

VIII

21/3 (Ne − 1)2/3 N4/3
e /N ≪ (a/LIII)

2 JA . (7.41)

The left-hand side of this estimation corresponds to the repulsion of an
homogeneous distribution of Ne atoms in a cubic lattice of N sites per side.
Intuitively, one can see that its scaling ∝ N2

e /N corresponds to the previous
unrealistic scaling N5/3

e of a cubic array of distance 1, corrected by the new
characteristic length, N1/3

e /N, when all the lattice is occupied.
• Finally, there is an additional condition that only involves the localization

length LIII of the Yukawa-type potential and the sizes of the
fermionic/auxiliary atom lattice. That is,

N ≪ LIII/a ≪ NM , (7.42)

whose intuition is clear: the length of the Yukawa potential has to be larger than
the number of sites of the fermionic optical lattice (N), such that the fermions
repel with a 1/r-scaling, but smaller than the auxiliary atomic optical lattice, in
order not to be distorted by finite size effects. In particular, one can relax the
condition of Eq. (7.41), aimed to ensure that the effective length in the Yukawa
potential is constant regardless the fermionic configuration, and impose instead
that the smallest and largest of them are contained within this range [N, NM].

Final potential and conditions

In summary, after the elimination of the cavity mode and Mott insulator described in
Eq. (7.27), the effective interaction mediated by this scheme III describes a fermion-
fermion potential (7.34) that follows a Yukawa form [358] with a constant energy shift
C:

V(r) ≈ C +
V0

r/a
e−r/L , (7.43)

where L/a =
√

J/(U + ∆ + ρM Jc − 6J) is the localization length, which can be tuned

with ∆, and V0 = g2

2π JNe
is the strength of the potential repulsion. Here, ρM = Ne/NM

and we omit the, III, labelling from now on. This mapping between the simulator and
the grid representation of the quantum chemistry Hamiltonian holds as long as,

(b) Jc ≪ U ,

(c) t f ≪ JcρM, and V0
√

Ne ≪ JcρM ,

(d) V0 N2
e ≪ JAN (a/L)2 .



116 Chapter 7. Towards 3D analog quantum chemistry simulation

Here, condition (b) enforces that the a excitation localizes symmetrically only
around the position of the fermions (7.36); (c) guarantees that neither the tunneling
of the fermions (7.39) nor the interaction with the b-excitations (7.40) spoils the
effective interaction; and (d) ensures that the Yukawa potential does not depend on
the fermionic positions (7.41). Furthermore, to obtain a truly Coulomb repulsion, the
length L must be larger than the fermionic lattice of size N, but smaller than the
Mott insulator size. This is, the condition (7.42):

(e) N ≪ L/a < NM.

When all (a-e) inequalities are satisfied, the exact solution in the continuum limit
is recovered for N → ∞. Thus, we can conclude that the finite size of the simulator is
what ultimately limits the precision of the simulation.

7.5 Numerical benchmark of the 3D analog simulator

After having explained how to simulate all the elements of the quantum chemistry
Hamiltonian in a grid basis representation [Eqs. (6.12, 6.13 6.18)], here we illustrate
the performance of our simulator for two-electron systems for moderate system sizes
using numerical simulations. In particular, we study in detail the simulation of the He
atom (subsection 7.5.1), which we will use to illustrate how to explore the physics of
different spin symmetry sectors; and the H2 and HeH+ molecules (subsection 7.5.3)
to illustrate molecular physics for the case of equal and unequal nuclei charges.

For this purpose, we will use directly the effective repulsion in Eq. (6.18), with an
effective potential V(i − j) = V0/|i − j| given by Eq. (7.43) in the limit where the
simulator conditions are satisfied. Despite the apparent simplicity of the problem,
obtaining the ground state energy of Ĥeff for two fermions with, e.g., exact
diagonalization methods, poses already an outstanding challenge since the number
of single-particle states in a grid basis scales with the number of fermionic lattice
sites N. To obtain the results that we will show in the next subsections, we have then
adopted an approach reminiscent of Hartree-Fock (HF) methods, where the
Hamiltonian is projected in a basis that combines atomic states calculated from the
single-particle problem, together with electronic orbitals that interact with an
average charge caused by the rest of electrons (see Appendix C.3 for more details).
Let us remark that these are just numerical limitations to benchmark the simulator,
that would be free from these calculations details.

7.5.1 He atom

The first system we consider is the case of the He atom. This corresponds to a
system with a single nucleus with Z1 = 2, such that one just requires a single
spatially-shaped laser beam to mimic the nuclear potential, and two simulated
electrons [see Fig. 7.11(a)]. Let us note that since Ĥeff does not couple the position
and spin degree of freedom, one can solve independently the problems where the
spin degrees of freedom are in a singlet (antisymmetric) or triplet states (symmetric),
which will result in spatially symmetric/antisymmetric wavefunctions, traditionally
labeled as para- and orthohelium, respectively.

In Fig. 7.12(a,b) we plot the ground state energy of the He atom as a function of
the effective Bohr radius presented in Eq. (7.1). Note that there is no closed solution
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(a) (b) d

FIGURE 7.11: (a) Configurations corresponding to the simulation of atomic He, where a
nuclear potential centered in the lattice is induced using holographic techniques 4.3.1, and
two fermionic atoms trapped in the lattice play the role of two electrons. (b) The configuration
is modified to simulate HeH+, where one tailors the attraction due to to the distinct Hydrogen

(left) and Helium (right) nuclear charges, separated, in this scheme, by d/a = 3 sites.

(a) (b)

FIGURE 7.12: Ground state energy energy of the discretized Hamiltonian associated to atomic
He, in the ortho (a), and parahelium sectors (b). Following the extrapolation method, dashed
lines indicate the values E∞

para,He = −5.79 Ry and E∞
ortho,He = −4.31 Ry, respectively, for which

the scaling of the energy error as (a0/a)−2 is observed (insets). Round (crossed) markers
correspond to N = 100 (N = 75).

even for this very simple system, and our simulator, which is compared to
numerical results with no relativistic or QED corrections [359]. Furthermore, we use
the extrapolation strategy explained in Section 7.3 based on the scaling of the error
∆E/Ry ∝ (a0/d)−2 to obtain the expected energy that will come out from the
simulation, yielding E∞

para,He = −5.79 Ry, and E∞
ortho,He = −4.31 Ry. Their relative

error to the tabulated values [359], −4.3504 Ry and −5.8074 Ry, is therefore of 0.3%
and 0.9%, respectively, for the benchmarking done with a system of size N = 100.
Note that the bigger error corresponds to orthohelium, whose orbitals are larger and
thus, more affected by the discretization of the lattice.

7.5.2 Hydrogen molecule

One of the features of interest in molecular physics is the molecular potential. That
is, how the ground state energy of the molecule varies as a function of the distance d
between the nuclei. This curve already provides useful information, such as its
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FIGURE 7.13: (a) Energy of the single-excitation bound state of Hamiltonian in Eq. (7.27) for
two fixed fermions as a function of their separation, r. We choose ∆ = 2J, NM = 200, Jc = J,
such that (a-e) inequalities are satisfied. The Yukawa potential of Eq. (7.43) corresponding
to each configuration of parameters is plotted with dashed lines. (b) We use this effective
interaction to calculate the molecular potential associated to an analog simulator of H2 of
size N = 75. For each internuclear separation, we choose t f /V0 giving optimal accuracy
(see Supplementary Information section 3), ranging from t f /V0 = 4.2 to t f /V0 = 2.3 in
the dissociation limit (dotted line). Molecular orbitals are included in the projective basis
until convergence is observed. For a Coulomb potential (blue dots), the result agrees with
an accurate solution in the nonrelativistic regime [360, 361] (dashed line). As L decreases,
the exponential decay in the Yukawa potential prevails, underestimating Coulomb repulsion
and lowering the molecular potential. (c) This underestimation of the repulsive potential is
stressed when violating N ≪ L/a (see inset). (d) Changing the ratio between the amplitude
of the nearest-neighbor electronic and nuclear potentials, F, one can explore artificial repulsive
interactions that form pseudomolecules in more relaxed experimental conditions. The dotted

line here represents the limit of zero-repulsion in the absence of a mediating excitation.
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FIGURE 7.14: Molecular potential of HeH+ as a function of the lattice size calculated for a finite
lattice of N = 75 (coloured markers) and N = 100 (contoured markers). Crossed markers
follow the mitigation strategy using these sizes, and described in Section 7.3. Black dashed
line follows the molecular potential beyond discretization numerically calculated [362]. Inset

zooms around the position of the minimum.

equilibrium molecular position (if any) as well as its dissociation energy. In our
simulator, in order to always maintain the nuclei half a site away from the nodes of
the lattice (to avoid a divergent value of the potential) we choose integer values of
d/a.

In Fig. 7.13 we analyze the accuracy for the simplest molecule, H2. First, we
compute exactly the energy of the spin excitation that mediates the fermionic
repulsion, as a function of the interfermionic separation [see Fig. 7.13(a)]. We show
that it reproduces the 1/r behavior over a wide range of values of g/J and L. In
Fig. 7.13(b) we compute the molecular potential with N = 75 by using a Yukawa
electronic potential with different lengths L. We observe excellent qualitative
agreement for all L’s considered in the figure, and a quantitative matching when
L/a ≫ N. Remarkably, even if L/a ≲ N, valuable information can still be extracted
by adjusting other experimental parameters, as shown in Fig. 7.13(d). This
illustrates how one can increase the strength of the electron repulsion V0 to
compensate the underestimation of the potential at long distances, and obtain a
pseudomolecular potential that is qualitatively similar to the one expected with
Coulomb interactions, as represented in Fig. 7.14.

7.5.3 HeH+ molecule

Now, we study the two-electron molecule He+-H, which has two nuclei, one with
charge Z1 = 1 (the one corresponding to the H atom) and another one with Z2 = 2
(the one corresponding to the He cation). Thus, the simulator requires two spatially-
shaped laser beams, one with twice the intensity of the other, such that its induced
potential is twice as big [see Fig. 7.11(b)].
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In Fig. 7.14 we plot the molecular potential that could be obtained with our
simulator for two different system sizes N = 75 and N = 100. As we did before, for
each value of d/a0, we choose the optimal discrete Bohr radius, a0/a, using the
extrapolation strategy introduced in Section 7.3. Notice that this molecular potential
needs to include nuclear repulsion, and its minimum corresponds to the distance at
equilibrium. The energy at this point, E∞

min,HeH+ = −5.95 Ry, which is in agreement
with the numerical value −5.95740408 Ry reported in Ref. [362]. As the separation
increases, we observe that the error of the finite simulator increases, since the
finiteness of the lattice is more restrictive when more sites need to separate the
nuclear position. We also observe that the continuum result obtained with the
mitigation approach still tends to the dissociation limit corresponding to
ortho-Helium, discussed in the Section 7.5.1.

7.6 Experimental implementation

Here, we provide further details and candidates for the experimental implementation
of some of the key ingredients of the proposal introduced in Section 7.4.4.

7.6.1 Candidate atomic species

This proposal is based on the interplay between two atomic species: (i) Fermionic
atoms: they have two internal levels, which play the role of the electronic spin. (ii)
Mediating atoms: they must have three levels available: |0⟩ for the ground state in
the Mott insulator; |b⟩ with the spin excitation; |a⟩ with the state that tunnels and
induces the effective repulsion.

Over the last years, many atomic species have been trapped, condensed, and used
in experiments with optical lattices. For illustration, let us give a particular example
based on fermionic and bosonic alkaline-earth atoms. These atoms offer a rich
internal structure, with long-lived excited metastable states 3P0 and 3P2. As a
particular choice, one can consider 87Sr as a simulator for electrons. Its nuclear spin
is I = 9/2 and, similarly to Ref. [343], one can encode the spin of the simulated
electron into nuclear states, |↑⟩ ≡

∣∣1S0, mI = −9/2
〉

and |↓⟩ ≡
∣∣1S0, mI = −7/2

〉
.

This information is therefore protected from the electronic transitions used in the
rest of the proposal.

One can now use one of its bosonic isotopes, 88Sr for the mediating atoms [363].
We assign the long-lived states 1S0, 3P0, and 3P2 as levels |0⟩, |b⟩, and |a⟩,
respectively. Since there exists a magic wavelength that makes the trapping of the
states S and one of the P equal, it is possible to choose nearby frequencies that
provide basically the same lattice period for all states with the appropriate
conditions [339]. Apart from that, an additional laser driving the 1S0 level off
resonance can be used to induce the external potential (with the holographic
techniques explained in the previous chapters). Note that the isotope shift is
sufficiently large in those atoms so that this can be negligible even in the case that
the level 1S0 is chosen as |0⟩. The cavity can be tuned close to the 3P0 → 3S1
resonance, without affecting the other states, and two-photon Raman transitions can
couple the levels 3P0 and 3P2 appropriately. Also, note that having nuclear spin 0 is
not a problem in this case, as the mediated electronic repulsion is spin-independent.
By choosing an isotope of Sr, an optical lattice with the same spacing can be
engineered at the bosonic state 1S0, with similar choices to the fermionic atoms.
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FIGURE 7.15: Schematic correspondence between the lowest-energy metastable states of 87Sr
and 88Sr, as compared to the relevant energy levels of the hoping fermions and mediating

atoms of the Mott, respectively.

Furthermore, the lattice depth and spacing in 3P2 can be independently controlled
by, e.g., using magic wavelengths [364], and its scattering length can be tuned using,
e.g., non-resonant light [365].

Apart from alkaline-earth atoms, there are interesting experiments with fermionic
and bosonic mixtures of Alkali atoms with similar (or displaced) potentials, for
instance, in Refs. [366, 367]. Moreover, there are on-going experiments with
fermionic 6Li and bosonic 23Na atoms to simulate dynamical gauge fields [368]. An
advantage is that 6Li has spin 1/2 in the ground state and thus act as a spin-full
electron. Another alternative is to use mixtures of two types of atomic elements, e.g.,
Li-Yb, as it is also being pursued in experiments with optical lattices [369–371].

7.6.2 Measurement

From the chemistry perspective, all relevant quantities can be expressed in terms of
the fermionic density. This is for example the key idea used in DFT methods [272].
One possibility then consists on performing a 3D spatial tomography of the Ne
electron and reconstruct the fermionic density. This is very complex in practice, but
with gas microscope techniques (see Ref. [372], for instance) could be feasible.

An alternative would be measuring the energy of the system. In addition to
constructing molecular potentials, scanning the energy at different nuclear
configurations can provide additional information, such as the value of molecular
forces (Hellmann-Feynman theorem [290]). For this, three elements need to be
simultaneously measured: the kinetic energy ⟨K⟩, the nuclear attraction ⟨Vnuc⟩, and
the electronic repulsion ⟨Ve-e⟩; such that the total energy writes as
E = ⟨K⟩ + ⟨Vnuc⟩ + ⟨Ve-e⟩. Using sudden quenches of the Hamiltonian, such
contributions can be independently converted into kinetic energy. One can then
perform a time of flight measurement of the fermionic atoms expelled from the
lattice, using for example ionization or fluorescence techniques. As one can observe,
the measured quantities will not correspond to eigenstates of the original
Hamiltonian and this will give some variance in the measurement proportional to
the number of fermions. One could then repeat this procedure to gain statistically
significance. Once the equilibrium point of the molecular potential is identified, the
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procedure can also be highly simplified as only measuring ⟨K⟩ is needed to read the
total energy at that point, based on the virial theorem for molecules [373].

7.6.3 Experimental considerations

A reliable simulation of the quantum chemistry Hamiltonian needs that our
simulator, described by Eq. 6.22, satisfies a set of inequalities (a-e). We are however
aware that there will be other experimental imperfections that may impose extra
conditions and that will have to be analyzed in detail to optimize the performance of
the simulation. Among the more relevant ones are:

• Finite temperature leads to thermal fluctuations which may spoil the
simulation. Thus, these fluctuations will lead to defects in the Mott insulator
(see below), and may also influence the internal states of the atoms. The latter,
however, can typically be very well controlled in atomic systems as we just
need the atoms to be initially in a polarized state, which is reasonably easy to
prepare [374].

• Dephasing can be originated by fluctuations in the transitions or due to
gravitational or magnetic fields (as internal levels are being used). This would
spoil the potential of the system as a quantum simulator. However, the first
effect is small in the case of microwave or Raman transitions, and the second
and third can be controlled in the conditions already used for condensed
matter simulations [43, 45].

• Inexact fermionic filling. Since fermions play the role of electrons, an inexact
number of fermionic atoms hopping in the lattice translates into an erroneous
effective charge in the simulated molecule. These errors can be possibly post-
selected by measuring the number of fermionic atoms after the simulation is
performed.

• Defects in the Mott insulator. The absence of Mott particles in a given lattice
site will locally modify the effective fermion potential. Fermions hopping to
this site cannot mediate its repulsive interaction through spin-excitations,
perturbing the simulated molecular orbital around this position. Importantly,
the defects will not affect the potential far from the fermion such that the final
performance of the simulation will scale with the density of defects rather than
their number.

• Spatial inhomogeneities of cavity coupling. In the final simulator
Hamiltonian of Eq. (7.27), we have assumed that the |b⟩-excitations couple
homogeneously to the cavity mode. In general, there might be some
inhomogeneities that translates in a Hamiltonian:

Jc

NM
∑
i,j

Ji,j B̂†
i B̂j . (7.44)

The fluctuations of Ji,j around 1 will induce an extra decoherence timescale,
Γc,inh, that must be smaller than our simulator parameters as well. In state-of-
the-art experiments, optical cavities at visible wavelengths and cavity mode-
waist of ∼ 500 µm are already available [375–377], which would roughly allow
for ∼ 104 local minima of the standing wave sitting in a homogeneous region.

• Cavity & atom losses. Even though the cavity-induced interactions are
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mediated by a virtual population of photons, cavity decay introduces extra
decoherence into the system due to the emission of these virtual photons.
Moreover, the atomic excited states, also virtually populated, may as well
decay into free space, introducing losses. The decay time of these excitations
then needs to be larger than the slower tunneling time, κ, γ ≫ t f , which,
following condition (e), sets a lower bound for the cooperativity of the cavity
QED system, introduced in Section 2.2.3.

• Three-body losses. Since we have fermions and there can be at most one atom
per lattice site, these type of losses should be small.

From these qualitative arguments, we see that most of the possible errors of the
simulation are either already under control in current experiments [43, 45] or scale in
an intensive way as the ratio between the number of simulated electrons and the
number of available sites in the simulator.

7.7 Conclusion and outlook

Summing up, in this Chapter we have shown how to simulate 3D quantum
chemistry Hamiltonians in an analog fashion using ultra-cold fermionic atoms in
optical lattices. In particular, we have sequentially introduced several results, such
as: i) A discussion of the physics of the holographic potentials required to obtain the
nuclear attraction term. ii) The introduction of several setups to obtain fermionic
repulsion that runs from Coulomb-like in the most sophisticated configuration to an
exponential scaling (with a controllable decay length). Still these simpler schemes,
where the emergent interactions are not fully Coulomb-like, can already be used as
intermediate, but meaningful, experiments to observe chemistry-like behaviour, and
to benchmark existing numerical algorithms. iii) An extrapolation strategy which
allows us to obtain the expected energies in the continuum limit beyond the
limitations imposed by the finite size of the simulator and, importantly, without an a
priori knowledge of the expected energy. This approach could also guide other
systems simulating chemistry problems in a lattice. iv) A numerical benchmark of
the working conditions of the simulator. v) An illustration of the simulator
capabilities for two-electron systems like the He atom or the H2 and HeH+

molecules. vi) Finally, a candidate experimental implementation.
We emphasize again that some of the elements and conditions required in this

proposal are beyond the state-of-the-art, as it requires the combination of
technologies that have only been built independently of each other so far. However,
the rapid progress of analog quantum simulation may well lead to the realization of
the present ideas in the near future, motivated by its potential impact in the
determination of chemical structures, the understanding of reaction mechanisms, or
the development of molecular electronics. We then expect that the results in this
Chapter can stimulate both theoretical and experimental research, even before the
realization of a fully-fledged analog simulator for quantum chemistry.
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Chapter 8

Conclusions and perspectives

” One never notices what has been done; one can only see what
remains to be done.

— Marie Skłodowska Curie
(Letter to her brother, 1894)

Throughout this Thesis, we have analyzed different scenarios where light changes
the natural interactions atoms have in free space. In particular, we have investigated
some of the interesting opportunities it offers in the simulation of quantum problems
related to condensed matter physics and quantum chemistry.

Following a bottom-up approach, the first part of this Thesis has focused on
investigating this light-matter interplay at the minimal level of a single photon and a
single atom. In particular, Chapter 3 reveals that single-photon strong
optomechanical effects are attainable in contemporary single-atom experiments, and
could manifest as an increased heating rate due to the leaked information about the
position of the atom, as well as mechanically-induced oscillations of the
second-order correlation function for emitted light.

The second-part of the Thesis has continued with the analysis of neutral atoms
trapped in an optical lattice. Going beyond the contact interactions that naturally
appear in this platform, we have introduced different strategies to induce
long-range interactions mediated by an additional atomic species in the form of a
Fermi gas (Chapter 5), individual bosonic atoms (Chapters 6 and 7) or a Mott
insulator (Chapter 7). For each of them, we have considered the application of these
mediated forces in the simulation of quantum problems that range from
bond-ordering in condensed matter (Section. 5.2.1), to molecular dissociation in
quantum chemistry (Section 7.5.2).

Taking this work as a basis, there are many interesting directions that one can
pursue. A particularly appealing one in the near-term is to continue simplifying the
ingredients required for the realization of mediated long-range repulsion among
neutral atoms, even at the cost of not simulating real materials or chemical
interactions. In this second direction, Fig. 8.1 provides a tentative roadmap of
experiments with increasing complexity (as moving to the bottom right of the table)
towards complete analog chemistry simulation. For instance, first experiments
could be performed with spinless fermions in one and two spatial dimensions.
Another simplification might come from non-Coulomb nuclear potentials, e.g., in
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FIGURE 8.1: Schematic representation of the simplifications that can be considered for the
different interactions of the system. The lowest line (c,f,i,l) corresponds to the full proposal
in Chapter 7, leading to the chemical interactions we observe in nature. Chemistry in lower
dimensions could be considered by restricting the optical lattice in such directions (a,b). The
holographically created Coulomb potential could be replaced by, e.g., the Gaussian profile of a
focused laser (d), giving a different scaling for electron-nuclei attraction. In 1D and 2D lattices
one can also rely on an intensity mask (e). First implementations with single atoms (g) would
allow to observe simple electronic orbitals (such as the energy levels of Hydrogen) with no
need to mediate repulsion. For only two atoms (h) one does not need the symmetrizing effect
of the cavity when mediating the Coulomb repulsion with the Mott insulator (k). Different
scalings for repulsion can also be explored in more simplified setups, such as using a single

boson that hops on the lattice and has on-site interaction with the fermionic atoms (j).
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form of a Gaussian, which does not require holographic techniques; or by using
simpler schemes to obtain the fermionic potential, e.g., using a single boson instead
of a Mott insulator, and without a cavity. The latter still provides an effective
repulsion between two fermions. With these simplifications, there is a clear pathway
from state-of-the-art setups towards more challenging experimental setups based on
progress in technology. Most importantly, in all these intermediate
proof-of-principle setups one could already observe molecular-like potentials,
dissociation, and other basic phenomena in chemistry. Besides, such experiments
can also prove valuable to benchmark various numerical techniques, and trigger the
development of new theoretical methods. This would allow us to reach a deeper
understanding of the problems that appear in chemistry and which are challenging
to test with classical computers.

We also envision that the methods developed in Chapter 6 and 7 to engineer
non-local interactions in ultra-cold atoms can be exported to explore other
phenomena where such interactions play a role, like in long-range enhanced
topological superconductors [378]. In this quest, we have also developed strategies
to encode a non-local Hamiltonian into a discretized cold-atom simulator, as well as
to mitigate finite-size effects, that can be readily exported to other platforms where
long-range interactions become accessible, as it could be the case of recent
experiments with semiconductor quantum dots [379].

Focusing on the chemistry perspective, a relevant opportunity unveils for the
study of dynamical processes, such as chemical reactions or photo-assisted
chemistry [380–382], which are typically numerically very hard, and where the
slower timescales of lattice-trapped atoms and the excellent imaging techniques
could provide real-time access to the wavefunction properties. Also, there is the
possibility of tuning the effective fermion interaction by using, e.g., a different
bound state to mediate attractive interactions. This would allow one to simulate
chemistry beyond the BO approximation by including another atomic species that
plays the role of the nuclei, opening the door to relevant challenges in chemistry, as
it is the study of conical intersections when degenerate nuclear configuration are
present [383, 384].

To sum up, and ending with the quote that opened this Thesis: "The problems of
chemistry and biology can be greatly helped ��@@if [now that] our ability to see what we are
doing, and to do things on an atomic level, is ultimately developed."
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Appendix A

Additional notes on Chapter 3

A.1 Scattering approach for a single atom

In Eq. (3.6), we have provided the relation between the reflected and input fields for
a coherently, weakly driven cavity and when the atom is placed in a fixed
position [93]. Here, we will show that Eq. (3.6) relates to the scattering matrix for an
atom whose motion constitutes a dynamical degree of freedom [131, 132]. In
particular, we consider a situation where the joint cavity-atom-motional system is in
its ground state |0c ↓⟩ |ψ0⟩, and a single monochromatic photon of frequency ωl (or
corresponding detuning ∆0) is sent in. The S-matrix formally provides the
transformation from the total input state |Ψin⟩ = |0c ↓⟩ |ψ0⟩ |1in⟩, to the output state
at infinite time, |Ψout⟩ = S |Ψin⟩. For the output, we take into account that the input
photon could have been emitted through a detectable reflection channel with rate κ1
(|1r⟩), undetectable cavity channels (transmission or loss) with rate κ2 (|1t⟩), or
spontaneously decayed with rate γ after exciting the atom (|1a⟩). As the total energy
of the system is conserved, the frequency of the output photon carries information
about any possible change in the phononic state of the atom. To suppress any effect
arising from this additional entanglement, we consider that the implemented
detection scheme is not frequency-resolving. We also focus on the unresolved
sideband regime, ωm ≪ γ, κ, where the characteristic time-scale of the
optomechanical interaction between the cavity and the internal state of the atom is
much faster than the atomic dynamics inside the mechanical trap, which allows to
describe the response of the cavity as effectively diagonal in the atomic position
basis.

For an atom fixed in position x, the input photon then scatters as,

S(x) |1in⟩ = Sr(x) |1r⟩+ St(x) |1t⟩+ Sa(x) |1a⟩ , (A.1)

which obey the relation |Sr(x)|2 + |St(x)|2 + |Sa(x)|2 = 1 to conserve the norm of
the scattered state. To calculate these components, each of the matrix elements can be
expressed in terms of the eigenvectors, |β(x)⟩, and eigenvalues, λβ(x), of the effective
(non-Hermitian) atom-cavity Hamiltonian Ĥeff(x) = −(∆ + ∆0 + iκ/2)â† â − (∆0 +
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iγ/2)σ̂†σ̂ + g(x)
(
σ̂â† + σ̂† â

)
as,

Sr(x) = 1 + iκ1 ∑
β

⟨1c ↓ |β(x)⟩ 1
λβ(x)

⟨β∗(x)|1c ↓⟩ ,

St(x) = i
√

κ1κ2 ∑
β

⟨1c ↓ |β(x)⟩ 1
λβ(x)

⟨β∗(x)|1c ↓⟩ ,

Sa(x) = i
√

κ1γeikcx ∑
β

⟨0c ↑ |β(x)⟩ 1
λβ(x)

⟨β∗(x)|1c ↓⟩ ,

(A.2)

which requires the orthogonality relation ⟨β∗(x)|β(x)⟩ = 1 due to the
non-Hermitian nature of the Hamiltonian. To calculate these scattering elements,
one can note that this Hamiltonian is block-diagonal and, given the single-photon
input, one can restrict to the relevant subspace spanned by states |0c, ↑⟩ |1c, ↓⟩.
Projecting there, one gets,

Sr(x) = 1 − iκ1

∆0 + ∆ + iκ/2 − g(x)2

∆0+iγ/2

,

St(x) =
−i

√
κ1κ2

∆0 + ∆ + iκ/2 − g(x)2

∆0+iγ/2

,

Sa(x) =
−i

√
κ1γ

∆0 + ∆ + iκ/2 − g(x)2

∆0+iγ/2

g(x)eikcx

∆0 + iγ/2
.

(A.3)

This leads to the scattering elements Sα(x) associated to the different possible routes
the input photon could eventually decay through, α ∈ {r, t, a}. A more rigorous
derivation based on Nakajima-Zwanzig leading to an analogous result can be found
in [123].

If one now considers the atom to be initially in a superposition of different locations
inside the cavity, |ψ0⟩ =

∫
dx ψ0(x) |x⟩, the probability of decaying in either of the

emission channels is given by, |Sα |ψ0⟩|2 =
∫

dx |Sα(x)|2 |ψ0(x)|2 and, if a photon |1α⟩
was detected in either of these channels, the measurement then projects the atomic
wave function into the conditional state, |ψα⟩ = Sα |ψ0⟩ / |Sα |ψ0⟩|.

To get a better intuition on how the scattering matrices depend on atomic position,
one can investigate these equations in the limit Cin ≫ 1 for the optimal choice of
parameters motivated in the main text (3.7,3.8), and κ1 = 2κ2. Then, expanding Sα to
linear order in δx = x − x0, one finds,

Sr(x) ≈ −i
η
√

Cin√
2

δx
xzp

,

St(x) ≈ − 1√
2

(
1 + i

η
√

Cin√
2

δx
xzp

)
,

Sa(x) ≈ 1√
2

[
1 + i

(
η
√

Cin√
2

+ η

)
δx
xzp

]
,

(A.4)
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which are valid for |δx| ≪ ℓ. In the opposite limit, |δx| ≫ ℓ, the cavity becomes out of
resonance and one recovers perfect reflectance: |Sr(x)| → 1 and |St(x)| , |Sa(x)| → 0.

Numerically, one can directly calculate the mechanical energy of the atomic state
conditioned to detection, |ψr⟩ (3.10), by transforming to a phonon basis
|ψr⟩ = ∑n βn |n⟩, and calculating the expected number of phonons, H = ∑nm

n n |βn|2,
which already accounts for both the kinetic and potential terms of the trap
Hamiltonian. This is the approach followed in Fig. 3.4(a), where up to nm =50
phonons are involved in the calculation and the initial spatial interval
(−10xzp, 10xzp) is discretized in 1000 divisions.

For the calculation of second order correlations g(2)rr (t) in Eq. (3.13), we operate
in the Schrödinger picture, where the projected state is evolved in time as |ψr(t)⟩ =
∑n e−inωmtβn |n⟩. Transforming back to a position basis one can use the scattering
matrix to express the result as, g(2)rr (t) = |Sr |ψr(t)⟩|2 /R.

A.2 Master equation simulation

To calculate the master equation in Eq. (3.4) for an open system, we operate in the
Schrödinger picture the variation of the density matrix, ∂tρ̂, associated to both the
atom and cavity. The numerical strategy is as follows:

• We start with an initial density matrix ρ̂(t0), corresponding to a pure state with
no excitations in the system (cavity photon, atomic phonon or internal
excitation).

• The differential equation (3.4) is numerically evolved in time using a fourth
order Runge-Kutta interpolation method.

• We evolve in time until a steady state ρ̂ss is observed. For this purpose, we
monitor over time the expected values of â and σ̂, and iterate until oscillations
are smaller than 1%. We additionally check by comparing this value to the
steady state mean-field solution (not presented here).

One can use this approach for the benchmark in Fig. 3.4(b), where we calculate
the average number of induced phonons caused by an incident photon once the
system reaches the steady state. Using input-ouput relations analogous to Eq. (3.5)
and normalizing by the number of incoming photons, we approximate the three
contributions as,

Jr/t = κ1/2Tr
(

b̂† b̂ âρ̂ss â†
)

/
〈

â†
in âin

〉
, (A.5)

J0 = γTr
(

b̂† b̂ σ̂ρ̂ssσ̂†
)

/
〈

â†
in âin

〉
. (A.6)

Adding them up (red dotted line), we observe good agreement wit the scattering
matrix prediction (continuous line).

We can also use this approach to analyze the second-order time correlations,
g(2)rr (t), introduced in Eq. (3.12), which can be calculated using the description of Eq.
(3.13) for the open system. From the perspective of the density matrix, expected
values can be calculated as

〈
Ô
〉
(ti) = Tr

(
Ôρ̂(ti)

)
. For the correlator of interest, we

observe that
〈

â†
out(0)â†

out(t)âout(t)âout(0)
〉
= Tr

(
âout(t)âout(0)ρ̂â†

out(0)â†
out(t)

)
. In the
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Schrödinger picture, we encode this time dependence in the density matrix as
follows:

• Once the steady-state is reached, we calculate the projected matrix associated
to detection at time 0,

ρ̂r(0) = âoutρ̂SS â†
out/Tr

(
âoutρ̂SS â†

out

)
, (A.7)

where the denominator in Eq. (3.12) is calculated as
〈

â†
out(t)âout(t)

〉
=
〈

â†
out(0)âout(0)

〉
= Tr

(
âoutρ̂SS â†

out

)
.

• To calculate the numerator, the new density matrix ρ̂r(0) is evolved to time t,
using the same evolution procedure used before. At this point, the resulting
matrix is projected again, so that

〈
â†

out(0)â†
out(t)âout(t)âout(0)

〉
= Tr

(
âoutρ̂r(t)â†

out

)
· Tr

(
âoutρ̂SS â†

out

)
.

This approach is used to calculate the second-order correlations pictured in Fig.
3.5(b,d) with dashed lines.
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Appendix B

Additional notes on Chapter 6

In this Appendix, we will focus on the calculations associated to the two-dimensional
simulator.

B.1 Scheme I: bound-state energy

To solve the bound-state energy of a boson localized by two fermionic atoms, one
needs to find a common solution for Eqs. (6.30) and (6.35),

1
NM

∑
k

1
EI,B − ωk

=
1

NM
∑
k

1 ± eik·j12

E±({j})− ωk
. (B.1)

This equation admits a solution given by a recurrence relation on j12 [385]. Using
the expansions derived in Section B.1.1 and B.1.2, one gets for d/a ≪ 1/

√
δB/tb),

δup = E+ − 4tb ≈ 2
√

δBtb
|j12|

e−γ , (B.2)

where δB = EB,I − 4tb ≈ 25e−4πtb/Utb , and γ ≈ 0.577 . . . is the Euler-Mascheroni
constant. This simple model then provides an effective repulsion between the two
fermions that scales as δup(d)/tb ∝ VI,0/|j12| with VI,0 = 27/2e−γ−2πtb/Utb.

From the expansion in Section B.1.2 one sees that the characteristic length of the
bound states is LI/a ≈ (δB/tb)

−1/2. For the previous expansions in (B.2) to be valid,
one needs to satisfy the regime |j12| = d/a ≪ LI/a. To prevent finite size effects, it
is also necessary, that LI/a ≪ NM. To illustrate this, in Fig. B.1 we observe that this
expansion for δB/tb is valid for U/tb > 1, so that LI/a ≪ NM = 100. In Fig. B.2 we
also confirm that for this size, the scaling 1/d is maintained for d/a ≪ 10, so that
d/a ≪ LI/a.
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(a) (b)

FIGURE B.1: Single-fermion bound state energy (EB,I) as a function of the fermion-boson
interaction U, as compared to the solution dictated by (6.30). Markers represent the ED
calculation, while Σ(z, 0) is evaluated using the analytical solution (B.3) (red dashed line) and
the approximation (B.4) (blue dotted line). Inset shows the energy separation to the band edge,

δB = EB,I − 4tb. Here, NM = 100 and finite-size effects appear for U/tb ≲ 1.

B.1.1 Calculation of the integral in Eq. (6.30)

Defining the energy and length units tb ≡ 1, a ≡ 1 in the coming sections, we need to
calculate,

Σ(z, 0) =
1

NM
∑
k

1
z − ωk

.

One can find an analytical solution [385],

Σ(z, 0) = 2 K [4/z] /(πz) , (B.3)

where K[m] =
∫ π/2

0 dθ
(
1 − m2 sin2(θ)

)−1/2
is the complete elliptic integral of the

first kind for |m| ≤ 1 [251]. For values z = 4 + δ close to the band-gap (δ > 0 and
|δ| ≪ 1), one can define,

Σ(z, 0) ≈ (5 log 2 − log δ)/(4π) +O
(

δ2
)

. (B.4)

B.1.2 Calculation of the integral in Eq. (6.35)

Now, we are interested in the calculation of,

Σ(z, j) =
1

NM
∑
k

eikj

z − ω(k)
. (B.5)

In the limit kj ≫ 1, we can expand the dispersion relation for frequencies close to
the upper band-edge, [(kx, ky) = (π, π)]. Taking the translation k̃x,y ≡ −π + kx,y,
we expand ω(k̃) ≈ 4 − k̃2, and extend the integration domain to infinite. Note that
the numerator eikj prevents the otherwise divergent integral, and the frequency shift
introduces a sign factor, eiπ|j|, that does not enter in the mediated potentials for the
strategies presented in this Letter. Without loss of generality, we align vector r in the
z-axis, and use spherical units,

Σ(z, j) = eiπ|j|K0

[
|j|
√

z − 4
]

/(2π) , (B.6)
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where Kn[x] is the modified Bessel function of the second kind [251]. For small
arguments (0 < x ≪ 1), one finds,

K0[x] ≈ − log(x/2)− γ . (B.7)

B.2 Scheme II: Mediating atoms with two long-lived
states

Let us now derive the effective potential mediated by scheme II (6.39), for g/∆ ≪ 1
and Ne fermions occupying fixed positions j1 . . . jNe . Intuitively, mediating atoms
localize around the fermionic positions, and double occupations are prevented by
the hard-core boson interaction W ≫ U. This then creates a bound-state in which
each mediating atom localizes in a different fermionic position. As compared to the
previous scheme, hopping from one fermion to the others now becomes a fourth-
order process in the coupling g between the two atomic metastable states, as the
movement of two mediating atoms is needed.

In particular, we are interested in the regime in which states a and b of the
mediating atoms are weakly coupled g/∆ ≪ 1, and atoms in level a hop in a lattice
much more shallow than the rest: t f ≪ tb ≪ ta. This allows us to trace-out the effect
of the mediating atom, writing an effective Hamiltonian for the fermions,
∑ij V(|i − j|) f †

i f †
j fi fj using perturbation theory. For this, let us separate the bosonic

interactions, ĤII,B = Ĥf-aux + ĤII,aux (6.39), as ĤII,B = Ĥ0 + ĤI , where

Ĥ0 =∆ ∑
j

a†
j aj − tb ∑

⟨i,j⟩
b†

i bj − ta ∑
⟨i,j⟩

a†
i aj + U ∑

j
b†

j bj f †
j fj +

W
2 ∑

j
b†

j b†
j bjbj ,

ĤI =g ∑
i
(b†

j aj + H.c.) .
(B.8)

In particular, we are interested in the energy correction of the zero-order ground-
state

∣∣∣ψ(0)
II,B

〉
= ∏Ne

i=1 b†
ji
|0⟩, that depends on the fermionic positions. For this, we need

to expand the perturbed Hamiltonian. One can see that only even orders enter the
calculation, and expanding to fourth order,

EII,B |ψII,B⟩ ≈
(

Ĥ0 + ĤI
1

E − Ĥ0
ĤI

+ ĤI
1

E − Ĥ0
ĤI

1
E − Ĥ0

ĤI
1

E − Ĥ0
ĤI

)
|ψII,B⟩ ,

(B.9)

one gets the equation,

EII,B = NeU + Ne
g2

NM
∑
k

1
EII,B/Ne − ∆ − ωk

+
2g4

N2
M

Ne

∑
m ̸=n=1

∑
k,q

1 + ei(k−q)(jm−jn)

(EII,B/Ne − ∆ − ωk)
2 (EII,B/Ne − ∆ − ωq

) .
(B.10)

This latter term originates from the pairwise repulsion introduced by the
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(a) (b)

FIGURE B.2: (a) This initial value V0 is calculated for different choices of bosonic-fermionic
interaction U, and compared to the approximation (B.2). In this equation, the value of δB is
calculated using the exact solution (B.3) (red dashed line), and using ED (blue dotted line).
For the numerical calculation, NM = 100. (b) Numerical evaluation of (B.5) for NM = 100
(markers), as compared to the analytical solution in the continuum (B.6)(red dashed line) and

approximation (B.7) (blue dotted line). Here, δ/ta = 0.002.

fourth-order correction of two mediating atoms swapping the fermionic position
they localize around. This then leads to an effective pairwise potential,
∑Ne

m ̸=n=1 VII(|jm − jn)|) f †
j1

f †
j2

fj1 fj2 (6.25), where

VII(j12) ≈
2g4

N2
M

(
∑
k

eikj12

(EII,B/Ne − ∆ − ωk)
2

)(
∑
q

e−iqj12

EII,B/Ne − ∆ − ωq

)
. (B.11)

These two independent sums can be calculated as in Section B.1.2. Note that the
alternating sign derived in Section B.1.2 cancels after the double product eikre−iqr.

Using that ∂xK0[x] = −K1[x], one obtains, VII(r) ≈ 2g4

(2π)2 K0
[
r
√

δII
] r

2
√

δII
K1
[
r
√

δII
]

,

which, to lowest order in the regime r
√

δII > 1, scales as,

VII(r) ≈
g4

8πδII
e−2r

√
δII . (B.12)

This then leads to a pairwise repulsion between the fermionic atoms that decays
exponentially with their separation, following a decay length LII ≡

(
2
√

δII
)−1/2. In

Fig. 6.7(a), we approximate δII to second order as

δII ≈ δ + E(2)
II,B(δ)/Ne , (B.13)

where E(2)
II,B(δ) approximates the second order correction in (B.10) as,

E(2)
II,B(δ) = Ne

g2

NM
∑
k

1
U − ∆ − ωk

, (B.14)

which can be expanded as in (B.4).
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B.3 Numerical methods

Here we provide further details about the numerical methods used in the figures of
Chapter 6.

B.3.1 Exact diagonalization

Once the kinetic term is approximated as a nearest-neighbor hopping term (6.12),
the Hamiltonian can be conveniently written in a position basis and the ground-state
obtained using ED.

In Fig. 6.3 we use this approach to calculate the energies λn associated to the
lowest part of the spectrum of Hamiltonian (6.11) for different choices of the ratio
t f /V0. These energies are shifted to correct the shift induced by the nearest-neighbor
approximation, ω(k) ≈ 1 − k2/2. The result is divided by the Rydberg energy; this
is, En/Ry =

[
λn + Ne · (2t f )

]
/(V2

0 /t f ) where, in this case Ne = 1. The same
strategy is applied to calculate the fermionic potential in Fig. 6.4(a), where only one
mediating atom is involved.

This approach is also used in Fig. 6.4(a) to calculate the ground-state energy of an
hydrogen cation for a given internuclear separation d/a0. In addition to the
previous shift, nuclear repulsion V0/(d/a) needs to be included before expressing
the result in Rydberg energies. Similarly to the atomic case, for a fixed interatomic
distance, accuracy improves by increasing the effective Bohr radius a0/a = t f /V0,
up to the point in which finite-size effects become relevant. The number of lattice
sites separating the nuclear positions d/a is then adjusted accordingly, identifying
the optimal separation value as the one giving the lowest ground-state energy (see
Fig. 6.4(b)).

The same strategy is followed to obtain the ground state energy of H2 in
Fig. 6.6(b). The main difference is that now Ne = 2, and further simplifications can
be made taking into consideration the fermionic statistics. As each fermion can
occupy NM sites which, together with the fermionics statistic { fi, f †

j } = δi,j leads to
a Hilbert space of space of size NM(NM − 1)/2. ED is also used in 6.6(b) to calculate
the effective potential mediated by a single bosons, for fixed fermionic positions
separated by d/a sites and centered in the lattice.

The exponential decaying potential explored in Fig. 6.7(b), requires a more careful
analysis, as the natural rescalings to the Bohr radius and Rydberg energy does not
apply now. In particular, three parameters can be independently tuned: the fermionic
hopping t f , the interacting potential V0 and the decay length LII/a. As compared to
the previous case, one can remap V0 → V2

0 /t f and LII → LIIt f /V0, so that the final
result is still dimensionless when normalizing the energies by the previous definition
of Bohr radius V2

0 /t f . As an illustration, in this Figure 6.7(b), LII/a = 5 is chosen,
and t f /V0 is fixed as the ratio providing maximum accuracy for the atomic case (one
fermion an one nuclei) hopping in a lattice of side ⌊NM/2⌋, so that the dissociation
limit is properly captured. Modifying the separation d/a between nuclear positions
then allows one to scan the different internuclear separations d/a0 = (d/a) · (V0/t f )
for this fixed value of t f /V0.
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B.3.2 Imaginary time evolution (ITE)

For the calculation of the effective potential mediated by the two metastable levels
of atoms in 6.7(a), we use ITE. This is a useful strategy to numerically obtain the
ground state of a gapped Hamiltonian with purely positive eigenvalues, and
consists on iteratively evolving an initially random state as, e−H·t. After each
iteration the resulting state is normalized, and the contribution of the excited states
is mostly reduced.

In more detail, one of the advantages of this method is that rather than writing the
entire evolution operator O(N2

M), one can choose to work in a diagonal basis, so
that only O(NM) terms are needed to describe the state at each point in time. From
the computational perspective, this is specially useful when facing the
multielectronic case. In principle, to calculate the interaction among Nb-bosons one
would need a state with (NM)Nb entries. Using ED, one would need to write the
Hamiltonian, of size (NM)Nb × (NM)Nb . In contrast, evolving the state in ITE only
needs to store the diagonal terms [with size (NM)Nb ], once the state is expressed in a
basis that commutes with the terms of the Hamiltonian. For our particular case, this
corresponds to the position representation for the on-site interactions, and
momentum representation for the kinetic term. The Hamiltonian Ĥnuc is already
diagonal in position basis, and one can define a momentum basis,

f †
k(b

†
k) =

1

(2π)D/2 ∑
j

e−ikj f †
j (b

†
j ) . (B.15)

The kinetic terms reads as Hkin = ∑k ωk, f f †
k fk, where

ωk, f = −2t f
[
cos(kx) + cos(ky)

]
is the dispersion relation. This induces a periodic

boundary condition in the lattice, which does not affect the calculation as long as
finite-size effects are prevented. To confirm that is the case, for each choice of
parameters we check that the same result is obtained for the single-boson case using
ED, evidencing that boundary conditions are not affecting the result.

To calculate the ITE of Hamiltonian (6.39), a constant energy shift is added to H
during the calculation to make all the spectrum positive, which is later subtracted
at the end of the calculation. To evaluate the operation, ψ(t) = e−Htψ(0) we use a
Suzuki-Trotter [386] expansion of the first kind, dividing the evolution in n steps as
e−Ht ≈ ∏n−1

k=1 e−H∆t +O (∆t), and tk = k · ∆t/t. For each of these steps, we calculate

e−H∆tψ(tk) ≈ IFFT
[
e−ĤK∆t FFT

(
e−ĤR∆te−ĤI ∆tψ(tk−1

)]
+O

(
∆t2
)

, (B.16)

where (I)FFT indicates the (inverse) fast Fourier transformation, and normalize the
resulting state. Here, ĤR denote the terms that are diagonal in the position basis,
and ĤK the ones in momentum basis. ĤI denotes the coupling term, whose
exponential can be directly calculated noting that,

e−g(a†
j bj+H.c.)∆t

= cosh(g∆t)(a†
j aj + b†

j bj) − sinh(g∆t)(a†
j bj + H.c.). We iterate this

procedure until the overlap between ψ(tk−1) and ψ(tk) is smaller than 10−5. We
initialize the algorithm with a random state for the smallest value of t f /V0, and use
this converged solution as the initial state for the next configuration of t f /V0.

In this second scheme, Ne atoms with two long-lived states are used to mediate
the interaction among Ne fermions. For a given fermionic configuration, we desire
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a b

FIGURE B.3: (a) Bound-state energy dependence for 3 bosons affected by 3 fermionic atoms
occupying fixed positions describing an isosceles triangle of basis 4 sites, and variable height,
d/a. Contour markers refer to the full basis in which 3 bosonic atoms can simultaneously
occupy level a, and full markers refer to the truncated basis (see Text). Dashed line is described
by the solution in Eq. (B.11). (b) Occupation of state a for a height of 6 sites. Parameters:

N = 16, δ/ta = g/ta = 0.3.

to numerically calculate the bound state, and compare it to the analytical expansion
previously introduced in Eq. (B.11). For this calculation, we use the ITE method
(Section B.3.2), where now, each of the Ne mediating atoms can occupy any of the 2
levels at any of the NM lattice sites, which a priori accounts for states of size
(2NM)Ne . To reduce this space, we assume that |g/(U − ∆)| ≪ 1, so that we only
consider the population of level b in those sites where they interact with the
fermions; and |W/U| ≫ 1, so that two mediating atoms in level b do not coexist in
the same lattice site. For a configuration of 2 (3) fermions in sites r, s(, t), and given
the indistinguishability of the mediating atoms, we can further reduce the Hilbert
space to states written in the basis collected in Tables I and II.

Within this basis, in Fig. 6.6 we calculate how the energy of the bosonic ground-
state energy E(d) depends on their separation d between two fermionic atoms fixed
in lattice sites [N/2 − d/2, N/2] and [N/2 + d/2, N/2], following the same strategy
used in the previous case for Ne = 2. In the case Ne = 3, we observe that the biggest
demand on computational memory corresponds to describing processes in which
the three mediating atoms simultaneously populate the a-level. Such processes scale
as [g/(U − δ)]6 in perturbation theory, and are subleading when compared to the
second-order terms. Therefore, truncating 0 ≤ Na ≤ 2 would allow to push the
calculation at a marginal error (see Table II).

To confirm this intuition, in Fig. B.3(a) we use ITE to calculate the bosonic bound
state for 3 fermions describing a triangular isosceles configuration. For moderate
sizes (N = 16), we compare the numerical result given by this truncated space to
the one obtained for the total basis, including three mediating bosons in level a. As
desired, we observe that (1) the truncation to the space with up to 2 excitations in
state a does not modify the solution, and (2) the scaling is in agreement with the
calculation for a pairwise repulsion given by (B.12).
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Nb Na State Size
2 0 b†

r b†
s |0⟩ 1

1 1 b†
r a†

m|0⟩ 2NMb†
s a†

m|0⟩
0 2 a†

ma†
n|0⟩ NM(NM + 1)/2

TABLE B.1: Basis used to describe states in which Nb of the two mediating atoms occupy level
b in the fermionic sites r, s, and Na atoms are in level a for any choice of sites m, n, in the lattice

of size NM × NM.

Nb Na State Size
3 0 b†

r b†
s b†

t |0⟩ 1

2 1
b†

r b†
s a†

m|0⟩
3NMb†

s b†
t a†

m|0⟩
b†

t b†
r a†

m|0⟩

1 2
b†

r a†
ma†

n|0⟩
3NM(NM + 1)/2b†

s a†
ma†

n|0⟩
b†

t a†
ma†

n|0⟩
0 3 a†

ma†
na†

p|0⟩ (NM + 2)(NM + 1)NM/6

TABLE B.2: Similarly to Table I, here we define the basis associated to Nb of the three mediating
atoms occupying level b in the fermionic sites r, s, t, and Na atoms being in level a for any
choice of sites m, n, p, in the lattice of size NM × NM. The truncated basis described in the Text

corresponds to neglecting to states in the last row.
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Additional notes on Chapter 7

C.1 Discretization error scaling in 3D

This discretization inherent to our lattice approach gives rise to certain errors that
need to be considered and vanish in the infinite-size limit. Here we estimate the
errors related to (i) the discretization of the integral appearing in the Coulomb term,
and (ii) the discretization of the Laplacian appearing in the kinetic term.

C.1.1 Discretization of the integrals

The calculation of expected energies over the continuum limit are based on integrals
on the entire real space. The discretization of the lattice, however, transforms these
integrals into a finite sum of terms, introducing an error that vanishes in the limit
of infinite sites. This effect is closely related to the definition of a Riemann integral
evaluated at mid-point values, mj = j + (0.5, 0.5, 0.5), written in the units of the
lattice spacing. Its error is given by,

∆Int =

∣∣∣∣∣
∫

ds f (s)− a3 ∑
j

f (mj)

∣∣∣∣∣ ≈
a2

24

∫
ds
[

fxx(s) + fyy(s) + fzz(s)
]

, (C.1)

where fαβ(x) = ∂α∂β f (x). A back-of-the-envelope calculation could be illustrative in
this case. We focus on the integrals for the Coulomb potential, f (r) = |ψnℓ(r)|2 ·V(r),
for Hydrogen atomic orbitals, ψnℓ(r) ∝ gnℓ(r/a0) · exp(−nr/a0); being gnℓ an (n− 1)-
degree polynomial. Rescaling coordinates the lattice units, r → ra0, one has

∆(C)
Int ≡ V0

a3
∫

dr ∂2

∂x2

[
g2

nℓ(r) · exp(−2nr)/r
]

a3
0
∫

dr g2
nℓ(r) · exp(−2nr)

∝ V0 (a/a0)
3 .

Expressing this in Rydberg units, one gets the scaling,

∆(C)
Int /Ry ∝

(
V0/t f

)2
. (C.2)

The precise constant accompanying this scaling is a geometrical factor, characteristic
of each atomic orbital.
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C.1.2 Approximation of the kinetic term

In the discrete Hamiltonian, the kinetic term is approximated as a first-neighbor
hopping term. One can estimate the error in this approximation from the next order
terms of the expansion of ∇2 f , that correspond to a4

12

[
∂4

x f (r) + ∂4
y f (r) + ∂4

z f (r)
]
.

Again, one can make an estimation on how this error of the kinetic term scales
with the atomic units, and therefore with the size of the system. Using the Hydrogen
wavefunctions used before, one gets,

∆(L)
lin ≡ t f

a4
∫

ds gnℓ(r) exp(−r/n) · ∂4

∂x4 [gnℓ(r) exp(−nr)]

a4
0
∫

dr g2
nℓ(r) · exp(−2nr)

∝ t f (a/a0)
4 .

Expressing this result in atomic units, one obtains the leading correction for the final
error in energies,

∆(L)
lin /Ry ∝

(
V0/t f

)2
. (C.3)

Interestingly, both effects lead to the heuristic scaling ∝
(

V0/t f

)2
for discretization

error that we numerically observe in Fig. 7.2.

C.2 Details on the perturbative analysis in Section 7.4.

Here, we complete the details on the derivation of the bounds presented in the main
text. In our derivation, one is interested in finding the mediating species in the state
providing repulsion. Following the approach introduced in Eq. (7.8), our bound will
arise from the coupling of this state to other orthogonal ones, and the energy gap
between them, εα = ∑all{r} ∑m ε̄α

(
φ⊥

m,{r}
)

, with

ε̄α

(
φ⊥

m,{r}
)
=

∣∣∣∣∣∣
f ⟨{j}|aux

〈
φ⊥

m,{r}

∣∣∣ Ĥα |Ψ⟩
∆m,r,j

∣∣∣∣∣∣

2

. (C.4)

C.2.1 Useful analytical expressions

Here, we first derive the analytical expressions of certain integrals that appear several
times in the calculations of the error bounds and mediated potential. In the three-
dimensional continuum limit, these expressions are of the form,

Σ(z, r) =
1

(2π)3

∫

D
dk

eik·r

z − ω(k)
, (C.5)

for D = [−π, π]⊗3, and ω(k) = 2tb
[
cos(kx) + cos(ky) + cos(kz)

]
(we assume tb ≡ 1

from now on), that, for example, governs the shape of the single-fermion bound-state
wavefunction. Other expressions that appear are of the type,

g(z, r) =
1

(2π)3

∫

D
dk

eik·r

[z − ω(k)]2
, (C.6)
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that governs the Franck-Condon coefficient in the same situation. Note that the latter
is related to Σ(z, r) by a derivative: g(z, r) = −∂zΣ(z, r). Remarkably, in the limit k ·
r ≫ 1, one can expand the dispersion relation around their band-edges, ω(k) ≈ 6 −
k2, and extend the integration domains to infinite to obtain an analytical expression:

Σ(z, r) =
1

(2π)2

∫ π

0
dθ
∫ ∞

0
dk

eik·r cos θ

(z − 6) + k2 k2 sin θ

=
1

(2π)2

∫ 1

−1
ds
∫ ∞

0
dk

eik·rs

(z − 6) + k2 k2 =
−i

r(2π)2

∫ ∞

0
dk

eik·r − e−ik·r

(z − 6) + k2 k

=
−i

r(2π)2

∫ ∞

−∞
dk

eik·r

(z − 6) + k2 =
1

4πr
e−r

√
z−6 .

(C.7)

Note that for r = [0, 0, 0] the integral does not converge, because we have
artificially introduced a divergence by expanding the domain of integration to
infinite. A way of renormalizing consists in artificially introducing an exponential
cut-off e−kΛ with Λ → 0, such that,

Σ(z, 0) =
1

2π2

∫ ∞

0
dk

k2e−kΛ

(z − 6) + k2 =
1

2π2Λ
−

√
z − 6
4π

. (C.8)

However, in lattice systems this cutoff appears naturally, and one can analytically
obtain an expression for Σ(z, 0) [387, 388],

Σ(z, 0) ≈ 0.253 −
√

z − 6
4π

. (C.9)

Once we have the analytical expansions of Σ(z, r) it is straightforward to obtain
the higher order terms, e.g., g(z, r) as follows,

g(z, r) = −∂zΣ(z, r) =
1

8π
√

z − 6
e−r

√
z−6 . (C.10)

C.2.2 Scheme I: Repulsion mediated by single atoms

In the single-fermion case of Scheme I, the maximum ratio between the hopping of
the fermionic and mediating species was obtained in Eq. (7.14) from the coupling to
the scattering states of the mediating atom when the fermion hops:

∑
m

ε̄ f

(
φ⊥

m,j0+1

)
≤ t2

f ∑
k

∣∣∣∣∣
b̂k
∣∣φB,j0

〉

EI,B − ωk

∣∣∣∣∣

2

≪ 1 .

Note that in the three-dimensional lattice, the sum to nearest neighbors
introduces a factor 6, that we have omitted along the text to focus on the scalings.
Without loss of generality, we can consider j0 to be the origin of coordinates.
Replacing the wavefunction (6.31) in momentum-space, one obtains∣∣∣b̂k
∣∣φB,j0

〉∣∣∣
2
= 1/

[
N NM (EI,B − ωk)

2
]
. By considering the expression (C.10), and its

second derivative, one obtains the inequality (7.14).
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As we see, moving to momentum space simplifies the calculation of F1 in
Eq. (7.15),

⟨φB,j0+1|φB,j0⟩ =
1

N NM
∑
k

eikz

(EI,B − ωk)
2 = e−a/LI , (C.11)

where we have made use of Eq. (C.10).
Moving now to the two-fermion case, one can relate Eqs. (6.30) and (6.35) to obtain,

1
NM

∑
k

1
EI,B − ωk

=
1

NM
∑
k

1 + eik·j12

E+({j})− ωk
, (C.12)

and then replacing the expression (C.7) and (C.8) leads to:

−
√

EI,B/tb − 6 = −
√

E+(|j12|)/tb − 6 +
e−|j12|

√
E+(d)/tb−6

|j12|
. (C.13)

Here, we need to separate the discussion in two different regimes.
• In the case |j12| ≫ LI/a the latter term in (C.13) is dominated by the

exponential decay, and one can expand to lowest order the effective repulsive
potential VI,>(j12) in Eq. (7.17) by replacing E+(d) ≈ EI,B in the exponential.

• In the regime |j12| ≪ LI/a that simplification is, however, not possible. A
general expansion of Eq. (C.13) in this regime corresponds to,

VI,<(j12) =
γ2

|j12|2
+

2γ

1 + γ

a
|j12|LI

+
O
[
(|j12|a/LI)

2
]

|j12|2
, (C.14)

with γ ≈ 0.567. This leads to Eq. (7.18).
In this exponential regime, we now need to bound the undesirable coupling to the

antisymmetric state due to the fermionic hopping, ε̄ f

(
φ−(j1+1,j2)

)
. From the bound-

state wavefunction of Eq. (6.34), neglecting terms exponentially suppressed by the
distance, we obtain:

⟨φ−,(j1+1,j2)|φ+,(j1,j2)⟩ ≈
1

2NBNM
∑
k

1 − eikz

(EI,B − ωk)
2 ≈ 1 −F1

2
.

Within this regime, we can replace in the denominator
E+ (j1, j2)− E− (j1 + 1, j2) ≈ 2VI (|j12|), which leads to the result stated in Eq. (7.19).

C.2.3 Scheme II: Repulsion mediated by atoms subject to
state-dependent potentials

As detailed in the main text, in this scheme to gain tunability we included a second
level in the mediating species. To analyze its effect, we can separate the total
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Hamiltonian into the unperturbed (Ĥ0) and perturbed (Ĥ1) terms,

Ĥ0 =∆ ∑
j

b̂†
j b̂j + U ∑

ji∈{j}
b̂†

ji
b̂ji − ta ∑

⟨i,j⟩
â†

i âj − tb ∑
⟨i,j⟩

b̂†
i b̂j ,

Ĥ1 =g ∑
j
(b̂†

j âj + H.c.) .
(C.15)

To lowest order, and assuming that tb is negligible, the ground state of Ĥ0

corresponds to
∣∣∣φ(0)

II,+

〉
= (b̂†

j1
+ b̂†

j2
)/

√
2 |0⟩, with energy E(0)

II,+ = U + ∆. The effective
repulsion enters then as a second-order contribution in perturbation theory,

E(2)
II,+ =

∣∣∣⟨vac|âkĤ1|φ(0)
II,+⟩

∣∣∣
2

E(0)
II,+ − ωII,k

=
g2

2NM
∑
k

∣∣eik·j1 + eik·j2
∣∣2

E(0)
II,+ − ωII,k

=
g2

NM
∑
k

1

E(0)
II,+ − ωII,k

+
g2

NM
∑
k

eik(j1−j2)

E(0)
II,+ − ωII,k

,

(C.16)

which is the expression written in Eq. (7.21).
To higher order, |φII,+⟩ will also have contribution in level a of the form, |φII,+⟩ =∣∣∣φ(0)
II,+

〉
+ αk âk |0⟩. To make this perturbative expansion valid, Eq. (7.24) bounds the

first-order contributions as follows:

εaux = ∑
k

∣∣∣α(0)k

∣∣∣
2
= ∑

k

∣∣∣∣∣∣
⟨vac|âkĤ1|φ(0)

II,+⟩
E(0)

II,+ − ωII,k

∣∣∣∣∣∣

2

≈ g2

2NM
∑
k

∣∣∣∣∣∣
eik·j1 + eik·j2

E(0)
II,+ − ωIIk

∣∣∣∣∣∣

2

≤ 2g2

NM
∑
k

1
(

E(0)
II,+ − ωIIk

)2 =
VIILII

taa
.

(C.17)

While non-dominant, this population is relevant as it is responsible for the
induced repulsion. To make the effective length independent on the particular
fermionic configuration, in the derivation of Eq. (7.25), we have bounded the
next-order contribution to this population. Exploring the next non-negligible order,
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we obtain,

∑
k

∣∣∣α(0)k + α
(3)
k

∣∣∣
2
=∑

k

∣∣∣∣∣∣∣

⟨vac|âkĤ1|φ(0)
II,+⟩

E(0)
II,+ − ωII,k

+ ∑
q

∣∣∣⟨vac|âqĤ1|φ(0)
II,+⟩

∣∣∣
2
⟨vac|âkĤ1|φ(0)

II,+⟩(
E(0)

II,+ − ωII,k

) (
E(0)

II,+ − ωII,q

)

×

 1

E(0)
II,+ − ωII,k

+
1

2
(

E(0)
II,+ − ωII,q

)



∣∣∣∣∣∣

2

≈εaux + ∑
k

∣∣∣⟨vac|âkĤ1|φ(0)
II,+⟩

∣∣∣
2

(
E(0)

II,+ − ωII,k

)3 ∑
q

∣∣∣⟨vac|âqĤ1|φ(0)
II,+⟩

∣∣∣
2

(
E(0)

II,+ − ωII,q

) + . . .

≈VIILII

taa
+

VIILII

taa

(
gLII

4taa

)2
+ . . . ,

(C.18)

where, in the right hand side, we have applied Eqs. (C.9) and (C.10) and omitted

higher order terms in
(

gLII
4taa

)2
. In Fig. 7.9 we observed that imposing now that the

second term in Eq. (C.18) is smaller than the first one, e.g., using a ratio
(

gLII
4taa

)2
= 0.01

(dotted line), allows for a constant definition of LII for any fermionic configuration.

C.2.4 Scheme III: Repulsion mediated by atomic spin excitations
and cavity assisted transitions

In this final scheme, we include a cavity interaction to ensure a pairwise effective
repulsion when more than two fermions are included in the system. There are several
errors one should account for:

• The cavity also couples the unperturbed state
∣∣∣ϕ(0)

+

〉
= 1√

Ne
∑{j} B̂†

j |Mott⟩, to
the other symmetric state in positions not occupied by the fermions,

1√
NM−Ne

∑r/∈{j} B̂†
r |Mott⟩. The coupling between them has intensity

Jc

√
Ne
(

NM − Ne
)
/NM, and the energy difference is U −

(
1 − 2Ne/NM

)
Jc.

Therefore, the error of Eq. (7.35) one needs to bound is,

εcav =

∣∣∣∣∣∣
Jc

√
Ne
(

NM − Ne
)
/NM

U −
(
1 − 2Ne/NM

)
Jc

∣∣∣∣∣∣

2

≈
∣∣∣∣∣

Jc
√

Ne/NM
U − Jc

∣∣∣∣∣

2

(C.19)

for Ne ≪ NM.
• Even if the cavity does not couple this state with other antisymmetric ones, this

can still occur as a consequence of coupling ĤA. For Jc ≪ U, the relevant energy
gap corresponds to U, which separates the excitation of state B in atoms placed
at fermionic position, against unoccupied positions. Therefore, now we focus
on the Ne − 1 orthogonal states, that are also orthogonal to

∣∣∣ϕ(0)
+

〉
, and can be

written as
∣∣∣ϕ(0)

⊥,m

〉
= ∑r∈{j} λm,r B̂†

r |Mott⟩, with energy U + ∆, and satisfying
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∑r∈{j} λm,r = 0 and ∑r∈{j} |λm,r|2 = 1 for every m = 1 . . . Ne − 1. The error due
to the coupling to these states reads as,

εA,ii = ∑
m

ε̄A

(∣∣∣ϕ(0)
⊥,m

〉)
= ∑

m

∣∣∣∣∣∣∑k
⟨ϕ(0)

⊥,m|ĤA Â†
k|Mott⟩⟨Mott|ÂkĤA|ϕ(0)

+ ⟩
(

E(1)
III,B − ωIII,k

) (
E(1)

III,B − U − ∆
)

∣∣∣∣∣∣

2

=

(
g2

ρM Jc

)2 1
Ne

∑
m

∣∣∣∣∣∣
1

NM
∑
k

fk(m)

E(1)
III,B − ωIII,k

∣∣∣∣∣∣

2

. (C.20)

where fk(m) = ∑s,r∈{s};r ̸=s λm,seik(j−r) accounts for the relative distances
weighted by the components of the states involved. To upper-bound this sum,
it translates after integration into,

∑
m

∣∣∣∣∣
1

NM
∑
k

fk(m)

Es − ωk

∣∣∣∣∣

2

≈ ∑
m

∣∣∣∣∣∣ ∑
s∈{j}

∑
r∈{j};r ̸=s

λm,sxsr

∣∣∣∣∣∣

2

,

where xsr =
1

4π JA
a

|s−r| ∈ 1
4π JA

(0, 1]. To give a base-independent argument, one
can simply reformulate the sum to express it in terms of the symmetric state
which, in the basis

{
B̂†

j1
|Mott⟩ , . . . , B̂†

jNe
|Mott⟩

}
, writes as λs = (1 . . . 1) /

√
Ne.

Then,

Ne∆2[y] = ∑
m

∣∣∣∣∣∣ ∑
s∈{j}

∑
r∈{j};r ̸=s

λm,sxsr

∣∣∣∣∣∣

2

= ∑
m
|⟨1|X|λm⟩|2 = |X |1⟩|2 − |⟨1|X|λs⟩|2

= ∑
s∈{j}


 ∑

r∈{j};r ̸=s
xsr




2

− 1
Ne


 ∑

s∈{j}
∑

r∈{j};r ̸=s
xsr




2

,

(C.21)

where (X)sr = xsr, and λm =
(

λm,j1 . . . λm,jNe

)
. The right hand side of the

previous equation corresponds to Ne times the variance of an homogeneous
distribution of variables ys = ∑r∈{j};r ̸=s xsr, with s ∈ {j}. It is therefore null
when all fermions are equidistant, and the upper-bound is reached in the worst-
case scenario of two fermions at distance 1 and the rest at infinite separation
from each other. In this most-unfavourable situation, the latter expression reads

as, (2 − 4/Ne) (4π JA)
−2 ≈

[
2 (2π JA)

2
]−1

. This contribution is therefore null
for the two-fermion case. For many fermions it reduces the condition to εA,ii =(

VIII
ρM Jc

)2
G({j}) ≪ 1 with,

G({j}) = (2π JANe)
2 ∆2[y] ≪ Ne/2 , (C.22)

as used in Eq. (7.39). The population of antisymmetric states in positions not
occupied by the fermions is already bounded with these conditions.
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• One should also note that the fermionic hopping can also couple to symmetric
to the antisymmetric states. This leads to an additional error that can be
bounded by:

ε f = ∑
m

ε̄ f

(∣∣∣ϕ(0)
⊥,m

〉)
≈ ∑

m

∣∣∣∣∣∣
t f

⟨ϕ(0)
⊥,m,{j+1}|ϕ

(0)
+,{j}⟩

ρM Jc

∣∣∣∣∣∣

2

=

( t f

ρM Jc

)2 (
1 −

∣∣∣⟨ϕ(0)
+,{j+1}|ϕ

(0)
+,{j}⟩

∣∣∣
2
)

=

( t f

ρM Jc

)2 (
1 − Ne − 1 +FIII

Ne

)
≈
( t f

ρM Jc

)2 a
LIIINe

≪ 1

(C.23)

which corresponds to inequality (7.40). Note that we have assumed that the
nearest neighbor in {j + 1} is not occupied by a fermion, which is valid in the
limit ρM ≪ 1. In the last approximation, we have focused on the regime
L/III/a ≫ 1 where the Coulomb interaction dominates the Yukawa potential.
This allows for a more relaxed condition than the one obtained when the effect
of the Franck-Condon coefficient is neglected, as considered in [1].

C.3 Numerical methods for multi-electronic systems.

In this section, we first give more details on how we choose the simulator parameters
to plot the figures of the manuscript, and explain the numerical methods employed
for the two-electron wavefunction calculation.

C.3.1 A Hartree-Fock approximation

As compared to the single electron problem, ED involving two-fermions in a N × N ×
N lattice is out of reach for our computational resources. To numerically capture both
the geometry of the atom[molecule] and the interactions with other electrons in our
analog simulator, we project the discretized fermionic Hamiltonian Ĥe in Eqs. (6.8a-
6.8c), on a set of atomic[molecular] orbitals {ϕi}n

i=1 composed of two types of orbitals:
• Single-electron orbitals, corresponding to the n first lowest energy eigenstates

of a single electron attracted to the same nuclear configuration. That means
only the terms in Eqs. (6.8a) and (6.8b) in Ĥe.

• Electronic orbitals that interact with an average-charge caused by the rest of
electrons. For the case of two-electrons that we benchmark in this work, these
HF-like orbitals are iteratively calculated by adding to the nuclear and kinetic
terms in Eqs. (6.8a) and (6.8b) the repulsion due to the lowest-energy state
obtained in the previous iteration given by Eq. (6.8c).

Combining both sets of orbitals, the total basis is orthogonalized using
Gram-Schmidt algorithm. The projected fermionic Hamiltonian then reads as,

ĤP =
n

∑
i,j,r,s=1

hijrs
∣∣ϕi ϕj

〉
⟨ϕr ϕs| , (C.24)
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where
∣∣ϕi ϕj

〉
denotes the product state |ϕi⟩ ⊗

∣∣ϕj
〉

and hijrs =
〈
ϕi ϕj

∣∣ Ĥeff |ϕr ϕs⟩,
similarly to the LCAO approach introduced in Section 6.2.1.

The success of this strategy now depends on how accurately the orbitals in this set
can describe the interactions in the Hamiltonian. We then choose a basis composed by
single-fermion states of H+

2 calculated with ED, together with more orbitals obtained
using a HF approximation [342]. This is, starting with the ground state obtained for
a single fermion, we iterate the equation,

(
Ĥ1 |ϕ⟩

)i
+ ∑

j

(
ϕj
)2

V12(|j − i|) ϕi = λ ϕi , (C.25)

until convergence is reached. In this way, orbitals interact with a mean charge
induced by the rest of fermionic atoms in the lattice, while we neglect the exchange
interaction.

Once we have built an approximated basis, we need to project the Hamiltonian
Ĥqc into the basis. The terms associated to the kinetic energy and nuclear
interactions are easily projected, as they only depend on single fermionic orbitals,〈

ϕi ϕj
∣∣ Ĥ1 |ϕr ϕs⟩ = δjs ⟨ϕi| Ĥ1 |ϕr⟩ + δir

〈
ϕj
∣∣ Ĥ1 |ϕs⟩. The lattice imposes a natural

cutoff (7.33), corresponding to V(0) ≈ πV0, and the main difficulty comes from
calculating terms associated to e-e interactions, Ĥe-e. At a first glimpse, they involve
a sum of N6 coordinates,

∑
r1,r2

V(r1 − r2)ϕi(r1)ϕr(r1)ϕj(r2)ϕs(r2) , (C.26)

where, V(r) = V0/ |r|. In the reciprocal space, however, this sum simplifies as

〈
ϕi ϕj

∣∣ Ĥe-e |ϕr ϕs⟩ = ∑
k

Ṽ(k) · ˜(ϕi · ϕr)(k) · ˜(ϕj · ϕs
)
(−k) , (C.27)

and only N3 terms are involved, speeding-up the calculation. Here f̃ denotes the
Fourier transform of function f . In principle, this induces periodic boundary
conditions in the system, which are undesirable as fermions would interact along
the minimum distance measured on the periodic lattice, overestimating e-e
interactions. To solve this issue, we double the size of the system before calculating
the Fourier transform, and impose null probability of occupying these artificial
positions. Fourier transforms are obtained using a Discrete Fast Fourier Algorithm.

This last calculation is the bottleneck from the computational time perspective
and, at the expense of memory, we initially store the FFT for each of the n(n + 1)/2
product of pairs of molecular orbitals, so that the transformation is not
unnecessarily repeated. It is also useful to note that not every term hijrs needs to be
calculated, due to the symmetries of the Hamiltonian. For example,
h1123 = h1132 = h2311 = h3211. In practice, this reduces the calculated terms from n4

to n2(n2 + 3)/4 independent terms, where n is the number of molecular orbitals in
the projected basis. For Figure 7.13(b), we observed that convergence in energies to
the order of the discretization effects was reached for 15 HF orbitals and 15
low-energy H+

2 states. This corresponds to n = 30, 203175 independent terms, and
approximately 8h of total computational time in a 2.20 GHz CPU.
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The mean charge interaction in the HF calculation can also been rewritten as,

∑
j

(
ϕj
)2

V12(|i − j|) · ϕi = ⟨ϕ|F−1
(

Ṽ(k) · ϕ̃2(−k)
)
⟩ , (C.28)

where F−1 denotes the inverse Fourier transform. We should emphasize that this
projection on a single-particle basis is just a numerical strategy that enables us to
numerically benchmark the model, but does not have any impact on the experimental
implementation of the proposed analog simulator.

In the following, we illustrate the application of this approach to the species
benchmarked in the main text: atomic Helium, and molecular H2 and HeH+.

C.3.2 Numerical benchkmarking of atomic Helium

In the case of Helium, one can explore the ortho-, and parahelium ground-states by
restricting the projected Hamiltonian (6.25) to the corresponding symmetry sectors.
As para(ortho)helium is characterized by a(n) (anti)symmetric spin configuration,
their spatial configuration needs to be antisymmetric(symmetric) due to their
fermionic character. While this will be naturally ensured by the fermionic nature of
our atomic simulator, the computation cost of the numerical calculation gets
simplified by imposing these symmetries. In particular, one can define the reduced
Hamiltonian

Ĥe
∣∣
para(ortho) =

n

∑
i,r

n

∑
j≥i,s≥r

hpara(ortho)
ijrs

∣∣∣∣ϕi ϕj
〉〉para(ortho) ⟨⟨ϕr ϕs||para(ortho) , (C.29)

where
∣∣∣∣ϕi ϕj

〉〉para(ortho)
=

[∣∣ϕi ϕj
〉
+ (−)

∣∣ϕj ϕi
〉]

/
√

2, and

hpara(ortho)
ijrs = hijrs + (−)hjirs, where we have used the identity, hijrs = hjisr.

We should emphasize that this projection on a single-particle basis is just a
numerical strategy that enables us to numerically benchmark the model, but does
not have any impact on the experimental implementation of the proposed analog
simulator.

In Fig. C.1(a), we analyze the convergence of result by calculating plot the lowest
energy of He atoms as a function of the type and number of orbitals included in the
basis. As expected, orbitals obtained using the HF approach (coloured round
markers) diminish more easily the ground-state energy than single electron orbitals
(crossed markers). A combination of both basis (contoured round markers) show the
greatest reduction. For the convergence of the results shown along the text, we have
chosen 30 orbitals: 15 coming from the single electron calculation, and 15 obtained
with the described HF method, which show energy variations smaller than the
energy error provided.

C.3.3 Numerical benchkmarking of H2

To plot the molecular potential of Fig. 7.13(b), that is, to calculate the electronic
energy, E(d) as a function of the internuclear distance d, we center the nuclear
potential in positions r1 = (m − ⌈d/(2a)⌉ , m + 1/2, m) and
r2 = (m + ⌊d/(2a)⌋ , m + 1/2, m) and obtain the ground state energy using the
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(a) (b)

FIGURE C.1: (a) Numerical benchmarking for the ground-state energy of He for an increasing
number of orbitals in the projective basis for the example of tunneling rate, t f /V0 = 6 and
N = 75. In particular, we compare the lowest energy of the projected Hamiltonian for basis
composed of the n lowest-energy single-electron orbitals of He+ (crossed markers), HF orbitals
constructed as described in this section (coloured round markers), or a combination of the n-th
first of them (contoured round markers). (b) We repeat this analysis for the lowest-energy of
HeH+, for an internuclear distance d/a0 = 1.5 simulated with a separation of d/a = 15 sites,

and N = 75.

numerical methods explained in the next Section. Since two electrons are involved,
the extracted energy is now shifted by 12t f , and finally written in atomic units.
Notice also that, since we use spinless fermions, we have to restrict to the symmetric
subspace of the electronic problem so that we can compare the results to those of the
H2 molecule, which is formed for two spins of opposite sign.

As it happens in the atomic case, accuracy increases as the Bohr radius grows up
to a critical value at which finite-size effects are relevant. However, the optimal
choice of the Bohr radius now depends on the number of lattice sites that separate
the nuclei. To identify this critical Bohr radius at which the finiteness of the lattice
N = 75 compromises the accuracy, we use the following procedure. First, for a given
internuclear separation d/a0 we solve the electronic structure for nuclear potentials
separated a number of lattice sites d/a ranging between 1 and 30, increasing the
Bohr radius accordingly, t f /V0 = (d/a)/(2d/a0). The same calculation is repeated
for a bigger system size, N = 100. Both lattices provide compatible results as long as
finite-size effects are not important. The point where both curves deviate
corresponds to an approximate optimal t f /V0, that provides maximum accuracy for
the lattice size considered, e.g., N = 75 in our case. In practice, we choose the point
at which finite-size energy deviations are one order of magnitude smaller than the
discretization error (see Fig. C.2). Fitting these values for each internuclear
separation d/a, we choose t f /V0 = 4.2 − d/a · 0.065, i.e., as the nuclei are more
separated, the border of the system linearly approaches, needing to reduce the Bohr
radius accordingly.

C.3.4 Numerical benchkmarking of molecular HHe+

In this case, the chosen Bohr-radius a0/a modifies the effective internuclear
separation d/a0. To explore the effect of discretization, for a given physical distance
d/a0, we then modify the nuclear separation d/a taking integer values, and adjust
the effective Bohr-radius a0/a accordingly. In Fig. 7.14, this process is repeated for
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critical  
Bohr radius

(a) (b)

tf/V0 tf/V0

FIGURE C.2: (a) For each internuclear separation d/a0, we benchmark separations on the
lattice d/a ranging from 1 to 30 sites, tuning the Bohr radius, a0/a, accordingly. In the figure,
d = 1.4a0, close to the equilibrium distance. Similarly to what happened in the atomic case
(see Fig. 7.2(a)), the calculated potential polynomially approaches the exact solution (dashed
line) as the effective Bohr radius increases, up to the point in which finite size effects appear.
To calculate this optimal t f /V0, we repeat the calculation for a bigger system, and detect the
point where both curves depart. (b) To identify this point, we fit the energy of the largest lattice

to a universal scaling m
(

t f /V0

)−2
+ n, (dashed line). For N = 75 and a nuclear separation

of 1.4a0, the critical point (indicated by the arrow) corresponds to t f /V0 ≈ 3.5, providing an
expected precision of 10−2 Ry in the energy of the minimum potential at this given distance.

lattice sizes N = 75 and N = 100, and the extrapolation method is then used to
extract the best estimation of the ground-state energy in the continuum from our
Hamiltonian in the lattice for each value of d/a0.

As it occurred in the case of He, a single-electron base obtained from a HF
approach is used to solve the discretized molecular Hamiltonian in a a projected
basis. In Fig. C.1(b) we benchmark its convergence with the number of orbitals,
observing energy variations smaller than the energy error for the choice of 15
orbitals using the single electron calculation, and 15 obtained with the described HF
method.
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