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Abstract
The incremental application of supercomputers to offer solutions to complex problems

has motivated the usage of computational modeling tools in drug design pipelines.

Specifically, small low-affinity compounds are modified by including multiple

decorators in the hit-to-lead phase to obtain more potent compounds. Techniques such

as docking provide quick answers on classifying millions of candidates, differentiating

active from inactive, but their accuracies tend to drop when ranking ligand’s potencies.

Expensive methods such as FEP are more precise; however, the time consumption

limitate their application in hit-to-lead campaigns.

This thesis aims to implement and test novel methodologies in a mid computation and

accuracy term, focused on facing hit-to-lead stages. We developed FragPELE, a novel

ligand growing method integrated with PELE, an unconventional Monte Carlo sampling

algorithm. FragPELE introduces a new concept of progressively expanding a small

atom-sized moiety of atoms (fragment) within PELE simulations, adapting the protein

binding site to the newly grown R-group. Structural and scoring benchmarks remarked

accurate geometrical predictions and correlation with relative free energies, with a

reasonable consumption of time and resources. Besides, we combined FragPELE with

the recently developed aquaPELE algorithm to expand fragments on hydrated binding

sites. Results stressed improved accuracies when introducing the mixed implicit/explicit

solvent models integrated within aquaPELE.

Additionally, we participated in a collaborative project with Almirall. We assessed our

FragPELE tool in two prospective hit-to-lead studies. One of them ended with

synthesizing an improved version of the initial hit. On the other, the method showed

good predictive power in classifying non-terminal R-groups on 27 new compounds (not

reported in the literature). Finally, we optimized virtual screening pipelines by

integrating machine learning analysis with simulated data, training, testing, and

validating the designed classification models with external experimental sets. From 785

compounds, Almirall purchased 23 based on our results. Two of them showed inhibition

of the target, one in the nM range of activity.
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Chapter 1. Introduction

1. Motivation: the cost of a new drug

Drug discovery is an extraordinarily costly and lengthy process. Recent studies have

shown that the mean cost of developing a new drug is estimated to be 1.3 billion US$

(Wouters et al., 2020) and, in terms of time, the average is around 12 years (Van

Norman, 2016). These are the general rules for well-characterized diseases with a

reasonably known mechanism. Still, if we move to rare disorders, the numbers are

heartbreaking (approximately four years longer) (Burton et al., 2021). Accordingly with

the United States government, since the application of computer-aided drug design

(CADD), costs have been reduced by around 130 million US$ and by a year of research

time (“Report to Congressional Requesters: New Drug Development—Science,

Business, Regulatory, And Intellectual Property Issues Cited as Hampering Drug

Development Efforts,” 2007). This fact clearly shows the potency of using computers to

enhance drug discovery. Thus, any development or improvement in this field is

becoming a crucial turning point in designing new treatments.

2. Drug design basics

2.1. Biomolecular target: proteins

The central dogma of molecular biology states, “DNA encodes RNA, RNA encodes

protein” (Crick, 1970), meaning that the flow of genetic information starts from the

DNA, passes through the RNA, and ends with proteins. Therefore, proteins are the

biomolecules in charge of applying the information encoded in the genes. They are

involved in a massive variety of roles such as structural scaffolds, hormonal signaling,

catalyzing digestive reactions, muscle contraction and relaxation, transportation, metals

storing, immunological functions, regulate gene expression, among others (Petsko &

Ringe, 2004).
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2. Drug design basics Chapter 1. Introduction

The building blocks to assemble proteins are amino acids. As their name suggests, they

are organic molecules formed by amino (-NH2) and carboxylic (-COOH) functional

groups and a specific side-chain (R-group) (Figure 1.1) that provide their particular

characteristics (A. B. Hughes, 2009).

Figure 1.1. Chemical structure of amino acid (zwitterion state). R = side-chain.

Structurally, proteins are distributed in four levels, as represented on the right side of

Figure 1.2. The primary structure is the linear filament or sequence of amino acids,

encoded by the RNA to synthesize the 21 amino acid types (including selenocysteine)

(Figure 1.2- left side). After the attachment of several amino acids, the filament loses

stability and folds, generating the secondary structure. Here two regular folding patterns

exist. When the chain coils around an axis in the clockwise direction, it causes

ɑ-helices; if it is planar, they are called β-sheets, and the irregular structures attaching

them are loops. At this point, the polypeptide (chain of amino acid monomers) is big

enough to combine the ɑ-helices, β-sheets, and loops to complete the overall folding and

generate domains, the tertiary structure. Here, the whole protein adopts a

three-dimensional shape that looks random and irregular; however, the forces between

amino acids stabilize and create this layout to perform the protein’s specific function.

Sometimes a single polypeptide (monomer or subunit) is insufficient to carry out its

activity. They need to combine multiple subunits to adopt the active conformation,

giving the quaternary structure. For example, the proliferating cell nuclear antigen

(PCNA) is a homotrimer composed of three identical monomers (Figure 1.2, right-side)

(Dieckman et al., 2012). Another well-known example is hemoglobin, a heterotetramer
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2. Drug design basics Chapter 1. Introduction

constituted by two ɑ and two β subunits (four monomers in total) (Robert J. Ouellette,

2018).

Figure 1.2. (left-side) The 21 proteinogenic α-amino acids (including selenocysteine) are

classified according to their chemical properties. Charges are at physiological pH (7.4).

Image created by Dan Cojocari, licensed by CC BY-SA 3.0 (source:

https://commons.wikimedia.org/wiki/File:Amino_acids.png). (right-side) Summary of

protein structure (primary, secondary, tertiary, and quaternary) using the example of

PCNA. (PDB: 1AXC​). Modification from the original image created by Thomas Shafee,

licensed by CC BY 4.0 (source:

https://commons.wikimedia.org/wiki/File:Protein_structure_(full).png)

The 3D surface of the whole protein is full of bumps and pockets. Most of them are just

a consequence of the protein folding, but when a pocket favors the binding with another

molecule with high specificity, we call this region binding site (BS). The molecule that

binds to this area is usually named ligand, which can be of any kind, such as DNA,

RNA, other proteins, hormones, lipids, small compounds, and ions. Then, drugs are

ligands used for therapeutic purposes.
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2. Drug design basics Chapter 1. Introduction

2.2. Protein-ligand binding

2.2.1. Binding sites

Protein BSs are usually concave cavities where the (cognate) ligand tends to allocate

with high specificity. This event triggers a cascade of conformational changes in the

protein that can alter, induce, or block its function or modify the ligand. There are

different types of BSs depending on the effect that their binding produces in the

complex.

Orthosteric sites are pockets where ligands bind to perform protein endogenous action.

Specifically, in enzymes, which are proteins that catalyze chemical reactions, this cavity

is called the active site. When the ligand (substrate) binds there, it induces a chemical

reaction to obtain a new product (Wilson, 2010). For example, kinases are enzymes that

catalyze the donation of a phosphate group from adenosine triphosphate (ATP) to

produce adenosine diphosphate (ADP) and phosphorylate the target-protein molecule.

In some proteins, the binding of the ligand produces a conformational change that

modifies the BS, opening a new pocket that was not present in the apo form (protein

with the ligand unbound), so they are not easily detectable. These cryptic binding sites

or cryptic pockets (Cimermancic et al., 2016) are only detected in holo form (when the

ligand is bound).

Apart, allosteric sites have regulatory functions. The binding of the ligand can increase

or reduce the regular activity of the protein, usually due to a conformational change that

affects protein dynamics (Srinivasan et al., 2014).

2.2.2. Binding kinetics

Binding events are dynamic. Along with time, the ligand will be temporarily within the

BS, and later on, it will unbind, letting it free again to allocate another molecule.

Equation 1.1 describes this process, where P is the protein-free, L is the ligand-free, and

PL is the protein with the BS occupied by the ligand. The binding constant or

association constant (Ka) describes the strength of the binding of the ligand to the

protein, and contrary, the dissociation constant (Kd) indicates its trend to separate
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2. Drug design basics Chapter 1. Introduction

(Cleaves, 2011). Both are obtained from the free protein ([P]), free ligand ([L]), and

complex ([PL]) concentrations (Equations 1.2 and 1.3).

(1.1)

Equation 1.1: Ligand binding equilibrium model.

(1.2) (1.3)𝐾
𝑎

 =  [𝑃𝐿]
[𝑃] · [𝐿] 𝐾

𝑑
=  [𝑃] · [𝐿]

[𝑃𝐿]

Equations 1.2 and 1.3. Description of association constant (Ka) and dissociation constant

(Kd).

The paradigm slightly changes when the protein is an enzyme. In this case, the binding

of the substrate releases the product (Equation 1.4) (Michaelis et al., 2011). Here the

catalytic constant (Kcat) indicates the maximal number of molecules of substrate

converted to product (Roskoski, 2015), and the Michaelis constant (Km) describes the

enzyme/substrate binding.

(1.4)

Equation 1.4. Enzyme kinetics model. E= enzyme; S= substrate; P= product;

Kcat= catalytic constant; Km= Michaelis constant.

2.2.3. Inhibition

Previously, we have talked about ligands in general. Within this diverse group of

molecules, there are inhibitors, a ligand that decreases the regular function of the

protein. Most inhibitors bind to the protein with non-covalent interactions, such as

hydrogen bonds (HBs), electrostatic or hydrophobic forces. Here multiple weak bonds
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2. Drug design basics Chapter 1. Introduction

in combination create a specific and firm binding. These are non-covalent reversible

inhibitors, and there exist different types according to their effect on the protein.

Figure 1.3. Representation of reversible inhibition types.

Competitive inhibitors (Figure 1.3A) are molecules with an affinity towards the

orthosteric site of the biomolecule, preventing the union of the natural target when it is

bound. Most of the inhibitors in this thesis will be competitive ones; however, three

more kinds of inhibition need to be explained.

Uncompetitive inhibitors (Figure 1.3B) bind to the protein-ligand complex, difficulting

the ligand release; therefore, it can only happen in the presence of the ligand.

Differently, non-competitive inhibitors (Figure 1.3C) bind to an allosteric site,

independently of whether the ligand binds or not, producing conformational changes

that affect the activity of the protein but not the union of the ligand to the orthosteric

BS. The last type is the mixed inhibition (Figure 1.3D), combining competitive and

uncompetitive. Here, the ligand can bind to the free enzyme or the bound state, but it

shows more affinity for one of both states.

Figure 1.4 shows kinetics for all reversible inhibition types. In competitive inhibition,

the inhibition constant (Ki) is equal to the Kd of the inhibitor. The lower the Ki, the

greater the binding affinity of the inhibitor, so indirectly, it indicates the strength of the

18



2. Drug design basics Chapter 1. Introduction

binding. Drugs with lower Ki require less concentration to perform the same effect; thus,

in vitro assays try to estimate this constant to compare different inhibitors. Then, Ki can

only be accurately reported as a binding constant when the mechanism of inhibition is

identified.

Figure 1.4. Kinetics schema for the different types of reversible enzyme inhibition. E=

enzyme; S= substrate; P= product; I= inhibitor; Kcat= catalytic constant, Km= Michaelis

constant; Ki= inhibition constant. Notice that mixed inhibition has the equilibrium

displaced towards E or ES state; then, this will depend on the size of ɑ (large to

uncompetitive, small to competitive).

Even though Ki and Kd are precise metrics to evaluate inhibitors’ potency, they are not

always easy to obtain directly (by isothermal titration calorimetry, fluorescence

quenching, or surface plasmon resonance). A more straightforward but less accurate

metric is used for cases that are not affordable to evaluate the Kd, called IC50.

IC50 is the concentration of an inhibitor that halves the enzyme’s activity. It is easier to

compute than Ki, but results are exclusively comparable under the same experimental
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2. Drug design basics Chapter 1. Introduction

conditions (Yung-Chi & Prusoff, 1973). Therefore, this metric is beneficial for

comparing a series of inhibitors in the same laboratory.

Sometimes the protein-ligand binding is reported in energy instead of Ki or Kd,

independent of concentration values. In the following section, we will establish their

relationship.

2.2.4. Relation between kinetics and binding free energies

When a ligand binds into a BS, the bound state is energetically favorable. The ligand

‘prefers’ to be within the protein cavity instead of floating around the solvent.

Thermodynamically, this energetic reward or payment is called binding free energy or

Gibbs free energy (ΔG), defined as the energy difference between the protein-ligand

bound and unbound states. As shown in Equation 1.1, both states are connected by Kd

(or the inverse, Ka) in equilibrium. Thus, ΔG can be related to Kd via Equation 1.5

(Moore, 1973). Notice that Kd is a general term used for substrates; when the ligand is

an inhibitor, this constant changes the name to Ki, which is the dissociation constant of

the inhibitor.

(1.5) Δ𝐺 =  − 𝑅𝑇𝑙𝑛
𝐾

𝑑

𝐶º

Equation 1.5. Relation between binding free energy and equilibrium (dissociation)

constant. ΔG = Gibbs free energy; R = ideal gas constant; T = temperature; Cº = standard

reference concentration (1 mol/L).

Along with this thesis, most of the computational techniques applied in drug discovery

pursue the correct estimation of ΔG to precisely compare different ligands, so the

relationship between binding kinetics and energetic terms is a must to understand the

goal of these methods properly.

2.3. Early drug discovery

Delivering a completely safe, effective, and administrable drug to the market is an

extensive and highly costly process (Van Norman, 2016; Wouters et al., 2020). Early
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2. Drug design basics Chapter 1. Introduction

drug discovery (EDD) screenings are performed to obtain a drug candidate. All their

steps are summarized in Figure 1.5.

Figure 1.5. Schematic representation of EDD phases.

The discovery of any drug begins with intense basic research to identify the

biomolecular mechanism behind the disease of interest. Often, this process starts in an

academic-industrial collaboration environment, where multiple hypotheses of which

biomolecular pathway should be activated or inhibited to solve malfunctions caused by

the disease are evaluated (Emmerich et al., 2021; Everett, 2015; J. P. Hughes et al.,

2011). This initial step of any drug discovery project is called target identification,

which is crucial to know the effect of blocking or activating a specific biomolecule.

Proper targets must be safe, effective, and druggable, among others. F.ex: bioinformatic

and data mining strategies are novel methods that are helping in this step (Yongliang

Yang, S James Adelstein, Amin I Kassis, 2009) .

Once the target is identified, further demonstrations are required to ensure its

involvement in the disease, and this step is named target validation. Multiple in vitro

and in vivo techniques, such as expression profiles, functional analysis, biomarkers, and

cell-based models, are conducted to complete the validation (Hans-Joachim Anders,

2007).

Then, in the hit finding, hundreds of series of low molecular weight (MW) compounds

are screened to produce the activation or inhibition (depending on the aim) of the target

of interest. Here the final goal is to obtain hits, small compounds with low but
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demonstrable activity. High throughput screening (HTS) is the most common strategy,

where large libraries of compounds are directly tested against the target using a complex

assay system (Fox et al., 2006). These studies allow us to get which specific compounds

to bind to the target and give information about which structures and functional groups

are more prone to have activity against the target. Thanks to the advances in

supercomputation, we can use this knowledge to find hit compounds virtually, which is

known as virtual screening (VS). VS has significantly reduced the costs of testing

experimentally expensive libraries of compounds, and it has become a standard tool in

the EDD. For example, 2D-based machine learning techniques can virtually screen a 1

billion molecular library in 24 hours of modest supercomputing resources (Gentile et

al., 2020; Ton et al., 2020).

Once a hit is identified, multiple modifications are added to this initial molecule to

improve its potency. This step is called hit-to-lead (H2L). Usually, it starts with

compounds in the range of micromolar (µM: 10⁻6g/mol) of IC50 to finally increase their

affinity to the nanomolar (nM: 10⁻9g/mol) range, raising its potency to 1000 folds,

approximately.

Researchers would generate a potent compound with high affinity and selectivity

against the target at the end of this step. However, this molecule needs to be optimized

to ensure its absorption, distribution, metabolism, excretion, and toxicity (ADMET)

properties in the body. Large batteries of tests are performed, such as analysis of

solubility and permeability, microsomal stability assays, and examination of CYP450

inhibition, among others. The final goal is to get a compound able to reach the

biomolecular target without being degraded or becoming toxic along the path (van de

Waterbeemd & Gifford, 2003). Luckily, at the end of this long process, a drug candidate

is obtained to continue preclinical research (in vivo animal models).

This thesis is focused on the hit finding and hit-to-lead phases of the EDD under a

computed-based point of view. The following sections will introduce some of the

computational-based methods used to model protein-ligand interactions and predict

which compounds are more prone to hit the target of interest or increase the affinity

against it.
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3. Molecular modeling Chapter 1. Introduction

3. Molecular modeling

Since the mid-nineteenth century, multiple advances have been made in organic

chemistry and structural theory. Decades of research that started from rationalizing

formulas, two-dimensional and three-dimensional draws, and designing ‘favor

configurations’ have resulted in what today is known as molecular modeling (Williams,

1996). Nowadays, this is a general term to refer to any theoretical model or

computational technique to predict molecule behavior (Genheden et al., 2017). In the

past, the most straightforward computations could be done by hand, but when the

system’s complexity increases, computers are mandatory tools, which is the trend when

modeling biomolecules. In this field, molecular modeling offers an extensive toolkit of

highly versatile techniques that can be applied in multiple steps of the drug discovery

process. This thesis will review a few of the most common methodologies and tools for

hit finding and hit-to-lead phases.

3.1. Molecular mechanics and force fields

This section will present physics-based models to describe atoms, providing the

environment to mimic the behavior of molecules in computational modeling techniques.

When dealing with fully atomistic models, we can roughly classify them as molecular

mechanics (MM) or quantum mechanics (QM), depending on the theoretical level of

detail; however, there also exist hybrid models (QM/MM). MM defines atoms as

particles using classical mechanics (Newtonian mechanics), while QM includes a high

description level, including explicit electron particles. Due to the high complexity of

QM calculations, they are costly in computation. Thus, they are usually applied in

particular cases, such as descriptions of enzymatic catalytic processes (Náray-Szabó et

al., 2013).

MM considers atoms as solid spheres linked by covalent bonds modeled as springs.

Each sphere is placed in a coordinate space (internal or Cartesian), provided with a Van

Der Waals (VDW) radius (representing the closest approach between atoms) and

electrostatic charges. All terms are combined through a potential energy function

obtained from the sum of bonded and non-bonded energy terms (Equation 1.6).
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(1.6) 𝐸 =  𝐸
𝑏𝑜𝑛𝑑𝑒𝑑

 +  𝐸
𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑

Equation 1.6. The simplified potential energy function of MM models.

The first term comprises intramolecular or internal interactions between covalently

bound atoms, and it englobes four types of sub-terms: bonded, angles, dihedrals, and

improper dihedrals. All individual sub-terms are expanded in Equation 1.7. Bonds,

angles, and improper dihedrals sub-terms are measured as the harmonic potential

deviation from the equilibrium value (bond length or angles). In contrast, the dihedral

component is represented by a sum of cosine functions with multiplicities. This last

term models steric interactions between atoms separated by three covalent bonds,

known as 1,4 pairs.

(1.7) 𝐸
𝑏𝑜𝑛𝑑𝑒𝑑

=
𝑏𝑜𝑛𝑑𝑠

∑ 𝐾
𝑏
(𝑟 − 𝑟

𝑒𝑞
) 2 +

𝑎𝑛𝑔𝑙𝑒𝑠
∑ 𝐾

θ
(θ − θ

𝑒𝑞
) 2 +

𝑖𝑚𝑝𝑟. 𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠
∑ 𝐾

φ
(φ − φ

𝑒𝑞
) 2 +

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠
∑

, 𝑛
∑  𝐾

ϕ,𝑛
[1 + 𝑐𝑜𝑠(𝑛ϕ

𝑛
− δ

𝑛
)] 

Equation 1.7. Expanded bonded energy term. Kb= bond force constant; r = bond

length; req = equilibrium bond length; KӨ= angle force constant, Ө = angle;

Өeq = equilibrium angle; Kφ= improper dihedral force constant, φ = improper dihedral;

φeq = improper equilibrium dihedral; ϕ = dihedral; Kϕ,n = dihedral amplitude; n =

dihedral multiplicity; δn = dihedral phase.

Two terms constitute the non-bonded energy (Equation 1.8). A Coulomb (electrostatic)

potential models the former. At the same time, the latter applies a Leonard-Jones (L-J)

potential, which is attractive at high distances and becomes repulsive when distances are
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too short (Vanommeslaeghe et al., 2014). Figure 1.6 illustrates all energetic terms

graphically and separately.

(1.8) 𝐸
𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑

=
𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 𝑝𝑎𝑖𝑟𝑠 𝑖𝑗

∑
𝑞

𝑖
𝑞

𝑗

4π𝐷𝑟
𝑖𝑗

+

𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 𝑝𝑎𝑖𝑟𝑠 𝑖𝑗
∑ 4ε

𝑖𝑗
[(

σ
𝑖𝑗

𝑟
𝑖𝑗

) 12 −  (
σ

𝑖𝑗

𝑟
𝑖𝑗

) 6]

Equation 1.8. Expanded nonbonded energy term. qi,qj = partial charges; = Coulomb1
4π𝐷

constant; εij = L-J well depth; 𝜎i,𝜎j = L-J radius; ri,rj = atom-atom distance

Figure 1.6. Illustration of interactions present in molecular mechanics model. Potential

energy functions are also shown. Licensed by CC BY-SA 3.0 (source:

https://commons.wikimedia.org/wiki/File:MM_PEF_3_small.svg)
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Force fields contain the set of constants, distances, charges, and angles needed to

compute all previously mentioned energies. Their design is based on experimental

values or calculations that must be extensively parameterized and validated. There are

dozens of force fields, and each tries to aim its use into a concrete application field.

Among the most common force fields used to parameterize biomolecular environments

we can find AMBER (Maier et al., 2015), CHARMM (Patel & Brooks, 2004;

Vanommeslaeghe et al., 2009), OPLS-AA (Jorgensen et al., 1996; Shivakumar et al.,

2012), GAFF (J. Wang et al., 2004), and GROMOS (Oostenbrink et al., 2004).

In molecular simulations, biomolecules and organic compounds are surrounded by the

solvent, and its influence also needs to be considered. There are two different ways to

model solvent molecules: explicitly and implicitly. Water molecules are directly

included in the model in explicit solvents, showing a more realistic approximation

where interactions between water molecules and the solute (protein, DNA, organic

compounds) can be caught. TIP3P (Price & Brooks, 2004) and SPC (Berendsen et al.,

1987) are the most extensively used explicit models. Even though these methods are

more accurate, adding such a significant amount of molecules to the model is

computationally expensive. In this sense, implicit models are more straightforward

approaches that treat the solvent as a continuous homogeneous polarizable medium,

directly included by adding the term to the potential energy function. This term is called

solvation energy, expanded in Equation 1.9. The polar term is the energy of distributing

the charges of the solute, and the non-polar term is the unfavorable energy needed to

create a cavity to allocate the volume and shape of the solvate (excluded solvent) and

their favorable attractive energy of VDW interactions with the solvent (Levy et al.,

2003). OBC (Onufriev et al., 2004), surface generalized Born model (SGBNP), and its

variable dielectric version (VDGBNP) (Zhu et al., 2007) are some examples of implicit

solvent models.

(1.9) ∆𝐺
𝑠𝑜𝑙𝑣

= ∆𝐺
𝑝𝑜𝑙

 +  ∆𝐺
𝑛𝑝

Equation 1.9. Solvation energy function. ΔGsolv = solvation energy; ΔGpol = polar term;

ΔGnp = non-polar term.
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Combining force field parameters with solvation models allows the calculation of the

system’s potential energy for a specific set of atom coordinates, which is fundamental in

molecular modeling. The following sections will show some of the most relevant

molecular modeling techniques.

3.2. Virtual Screening methods

Virtual screening (VS) methods, similarly to HTS, are usually used in the early stages of

the drug discovery process to enrich libraries with more active compounds. They are

fast enough to perform a quick superficial screening of libraries with thousands of

compounds in just a few hours, substantially reducing experimental time and costs. In

general terms, VS techniques are classified into two major groups: ligand-based or

receptor-based (Gimeno et al., 2019).

Ligand-based VS methods stand on the premise that compounds with similar properties

to the active ones will be more prone to be active. They only need ligands and do not

involve large biomolecules in their calculations; thus, they are significantly faster.

Fingerprint-based (Cereto-Massagué et al., 2015), 3D-shape similarity (Kumar &

Zhang, 2018), electrostatic potential similarity, and ligand-based pharmacophores

(Wermuth et al., 1998) are examples of groups of ligand-based techniques.

The previous methods assist the quick and dirty filtering with millions of compounds.

Eventually, this screening will lead to highly similar compounds, and hopefully, some of

them will also be active. However, ligand-based studies can fail when facing targets

with complex BS or systems with poor binders’ information. At this point, it is essential

to increase computation expenses and include the receptor in calculations.

Protein-ligand docking is the most popular method from receptor-based VS.

3.2.1. Docking

Molecular docking is the gold-standard method used in VS. The aim of these techniques

is to predict the ligand’s best binding mode within the receptor’s BS, which must be

included within a user-selected grid. Figure 1.7 represents a general view of the method.
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Figure 1.7. Illustration of docking method. A) Full view of the receptor, highlighting the

grid (pink square) where the ligand (green compound) will be docked. B) Zoom into the

BS, showing a superimposition of resultant docked poses.

Most of the docking methods follow the same pipeline. First, they generate multiple

protein-ligand poses, and then they assess which of them fits the best by applying

scoring functions (Meng et al., 2011). This approach is more straightforward in rigid

methods, considering receptor and ligand as frozen structures. These cases try to adapt

the given ligand conformation in the target's BS, exploring multiple poses that fit the

available space. Early versions of DOCK (Kuntz et al., 1982), FLOG (Miller et al.,

1994), or even protein-protein docking tools such as FTDOCK (Gabb et al., 1997) use

this rigid approach. This way of thinking is faster but highly limited, as protein-ligand

complexes are dynamic systems, and potentially, this can be the key to the binding

process. In the ideal scenario, they should consider both receptor and ligand as flexible

entities. However, including total flexibility to the receptor is a costly computation that

some software avoids, keeping only the receptor rigid while the ligand is treated as a

flexible structure. AutoDock (Morris et al., 1998), GOLD (Jones et al., 1997), FlexX

(Rarey et al., 1996), and Glide (Friesner et al., 2004a; Halgren et al., 2004) are examples

of this class of tools, showing a good trade-off between accuracy and time-consumption

(S.-Y. Huang, 2018). Closer to including flexibility in the receptor, some docking

techniques allow incorporating multiple receptor conformations, joining all of them and
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attempting to fit the ligand into the ensembled receptor instead of a single conformation

(S.-Y. Huang & Zou, 2007). FlexXE (Claußen et al., 2001), and a later version of

DOCK (Knegtel et al., 1997) are some examples. A different approach that tries to add

flexibility to receptors is induced-fit docking. They partially include this flexibility by

sampling the receptor’s side-chains but fixing backbone atoms. Induced-fit Glide

(Sherman et al., 2006) and AutoDock4.0 (Morris et al., 2009) are two representative

software of this group.

As has been already mentioned, all these methods determine their predictions by

applying scoring functions to rank poses, with the principal goal of discerning active

from inactive ligands. Some use energetic scores based on force fields; others try to fit

empirical data or knowledge-based scorers that have been designed to reproduce

experimental structures. Lastly, some establish consensus functions attempting to

correct every score’s errors (Kitchen et al., 2004).

3.3. Molecular Dynamics

In contrast with the previous method, molecular dynamics (MD) is a complex technique

that provides motion to the system to reach its equilibrium properties and gather

information related to its kinetics.

Since their first application in the late 1950s (Alder & Wainwright, 1957), molecular

dynamics has become one of the most visible and popular simulation methods in recent

years (Hollingsworth & Dror, 2018). The theoretical basis behind MD is more

straightforward than one could think. Any biomolecular system is surrounded by the

solvent, where each atom exerts forces onto others. By solving Newton’s equations of

motion, new atoms' positions can be predicted as a function of time. In each time step,

usually in the range of femtoseconds (fs), all system atoms are potentially propagated,

creating ‘movies’ that show the system’s motion. The high degree of precision and

flexibility they offer allows us to see complex biomolecular phenomenons that are not

even observable experimentally, such as significant conformational changes of proteins

like allosteric effects, translocations, or even folding pathways, which can be replicated

through long MDs (H. Chen et al., 2018; Jang et al., 2002; Renault et al., 2019). One of

the main problems of these techniques is the demand for time and computation
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resources, usually requiring potent graphics processing units (GPU) or multiple central

processing units (CPU). Most biochemical events happen in the range of nanoseconds,

microseconds, or even milliseconds. Thus, as these simulations advance femtosecond by

femtosecond, extensive computing processes can take several days.

In contrast with VS methods, MD simulations are fascinating to perform H2L,

exploring a few modified versions of the hit compound and increasing its potency. Here,

the goal is to simulate full binding events to estimate the ligand’s affinities (for more

details, visit Section 3.5). GROMACS (Abraham et al., 2015), NAMD (Nelson et al.,

1996), Desmond (Bowers et al., 2006), AMBER (Case et al., 2005), CHARMM (Brooks

et al., 2009), or OpenMM (Eastman et al., 2017) are among the most commonly used

MD packages. Even though all these methods are relevant and extensively used, we

have not applied them in this thesis as they are out of scope due to their high

computational cost.

3.4. Monte Carlo Simulations

Monte Carlo comes from a city in Monaco famous for its casinos. This group of

methods has obtained this name because of the roulette game, an elementary generator

of random numbers (“Monte Carlo Method,” 2008). The discovery of MC methods was

attributed to Stanislaw Ulam and John von Neumann (Metropolis & Ulam, 1949), two

researchers that participated in the Manhattan Project to develop the atomic bomb.

During an illness period, Ulam played hundreds of solitaire games, coming up with a

method to estimate winning probabilities. In 1946, he joined the von Neumann team,

and they started to apply this innovative approach to neutron diffusion in fissionable

material (Eckhardt, 1987). In this case, they run all their calculations in ENIAC, the

first programmable computer. These first studies exemplify how probabilistic and

stochastic approaches can solve purely deterministic problems.

The same premise applies to molecular simulations. Herein, multiple protein-ligand

configurations are generated from random perturbations of the system (Fichthorn &

Weinberg, 1991). These perturbations translate and rotate a few groups of atoms, like

ligands. In some methods, perturbations are expanded to the receptor, displacing

backbone atoms or even amino acid side-chains. Resultant configurations must be
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revised according to a given thermodynamic condition, for example, energy (Paquet &

Viktor, 2015). Each transition is assessed by applying a probability-based function such

as a Metropolis criterion (Y. Chen & Roux, 2015), accepting or rejecting the new

protein-ligand configuration. MCPRO (Cabeza de Vaca et al., 2018), ProtoMS

(ProtoMS, n.d.), Faunus (Lund et al., 2008), and PELE (Borrelli et al., 2005) are

prominent examples of MC simulation techniques.

Figure 1.8 illustrates the differences between MD and MC methods in sampling the

potential energy landscape. Rather than providing information on time evolution, the

last methods collect relevant time-independent conformations that could also be

obtained with long MD simulations. In this thesis, we will use PELE, the in-house MC

software from our group. In the following section, we will focus our explanation on this

software.

Figure 1.8. Representation of a potential energy surface sampling around the

conformational space in MC and MD simulations. Structures show representative binding

modes throughout the profile. A modified version of the licensed image by CC BY 4.0.
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(continuation)(source:https://commons.wikimedia.org/wiki/File:Sampling_in_Monte_Carlo_and_molecular_dyna

mics.png). Structures generated with PyMOL (Schrödinger & DeLano, 2018).

3.4.1. PELE

PELE (protein energy landscape exploration) was published in 2005 (Borrelli et al.,

2005), becoming a novel MC method combining steered perturbations with protein

side-chain prediction algorithms and minimization cycles.

The innovation of PELE lies in performing complex movements to increase the

acceptance probability instead of doing smooth and simple perturbations as most

traditional MC methods do. Thus, contrary to others, PELE includes protein structure

prediction algorithms, helping to keep a high acceptance ratio. Figure 1.9 shows a basic

illustration of a PELE step.

Each MC step starts with the perturbation phase by randomly rotating and translating

the ligand. This ligand is not considered a rigid structure; instead, a fixed core is defined

as linked to rotatable side-chains. The ligand displacement is restricted within a

user-centered box of variable size, limiting its perturbation within this space. Then,

multiple protein-ligand conformations are randomly proposed, choosing the one with

the lowest energy. Alternatively, the steering flag can be set to use the same translation

direction in successive steps, increasing the sampling of low probable events. The

ligand is perturbed, so the turn of protein structure is after it. Here an anisotropic

network model (ANM) (Atilgan et al., 2001) is employed on alpha carbons, giving

elasticity to the backbone. This is done by applying a minimization with the

alpha-carbons constrained to a given “normal mode” combination to favor the

reorganization of backbone atoms.

Once the perturbation phase has finished, the relaxation stage begins. Side-chain

prediction techniques are applied around the ligand location (typically 6 Å) to optimize

interactions (such as π-stacking, HBs, electrostatic) by using Jacobson’s et al. algorithm

(Jacobson et al., 2002). Then, the whole system is relaxed with minimization to increase

the acceptance probability, computing and comparing the final energy with the initial

pose to accept/reject the step. When the energy of the new configuration is lower than

the original one, the step will be immediately accepted (Equation 1.10). However, if this
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is not the case, a Metropolis criterion (Metropolis & Ulam, 1949) is employed to

compare the result with a random number (Equation 1.11). By doing so, non-favorable

configurations can also be accepted.

Figure 1.9. Schematic representation of the different stages within a PELE step. Image

author: Image author: Ryoji Takahashi.

Classically, PELE could only use OPLS2005 (Banks et al., 2005; Kaminski et al., 2001)

and AMBER99sbBSC0 (Pérez et al., 2007) force fields, but in the latest version, the

OpenForceField initiative (Qiu et al., n.d.) has been incorporated to the list. OBC
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(Onufriev et al., 2004) and VDGBNP (Zhu et al., 2007) are the two implicit solvent

models that can be used; however, a few essential explicit water molecules can be

placed in the simulation.

(1.10) (1.11) < R∆𝑉 <  0 𝑒
(−∆𝑉/𝐾

β
𝑇)

Equations 1.10 and 1.11. The probability of acceptance within the PELE algorithm. First

and second criterion. ΔV= difference of potential energy between final and initial state;

K𝛃= Boltzmann constant; T = simulation’s temperature; R = random number [0,1].

In the last few years, multiple external packages and improvements to the PELE

algorithm have been incorporated. In 2017 Lecina et al. developed AdaptivePELE, a

method to enhance simulation sampling and reduce the computation demand based on

clustering and spawning algorithms (Lecina et al., 2017). In 2019 and 2020, Gilabert et

al. created PELE-MSM to estimate absolute binding free energies by applying Markov

State Models (Gilabert et al., 2019, 2020). Then, in the same year, a new algorithm to

perturb explicit waters within PELE MC steps was released by Municoy et al. called

aquaPELE (Municoy et al., 2020). They are examples of newly developed methods

around this software.

PELE has been extensively used in multiple fields, such as enzyme engineering studies

(Alejaldre et al., 2020; Gentil et al., 2020; Martínez-Martínez et al., 2018; Roda et al.,

2020; Santiago et al., 2018), drug discovery of small molecules (Carlson et al., 2016;

Gilabert et al., 2018; Grebner et al., 2016; Saen-Oon et al., 2019), or even to predict

protein-protein interactions (Amengual-Rigo et al., 2020).

3.4.2. AquaPELE

In September of 2020, Municoy et al. published the aquaPELE algorithm. The strategy

behind this new implementation is to introduce a new waterMC step routine in the

PELE perturbation phase to explore explicit water molecules within the BS. Perturbable

waters can only move within a user-defined water region (WR), constant in all the

simulations. Additionally, users can specify the number of waters to move and define

subsets to be perturbed together in each MC step.
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Figure 1.10. Illustration of aquaPELE MC step where two water molecules (W1 and W2)

are perturbed. First (panel 2), the ligand (L) is translated and rotated from its original

position (black arrow), ignoring clashes (red lines) with W1 and W2. In the following

steps (panel 3-6), water molecules are perturbed (blue arrows), minimized, and accepted

(green tick), ending with the side-chain prediction (panel 7) that will lead to the final state

(panel 8). Notice that a few protein amino acids have been drawn within the protein

cavity: two glutamine side-chains and the oxygen of a backbone carboxylic group.

Besides, hydrogen bond interactions are represented as yellow dashed lines.
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The general view of the content within an aquaPELE step is summarized in Figure 1.10,

where the central core of the new algorithm is represented on panels 3-6. Here, there are

two explicit waters (W1 and W2) within the subset to be perturbed. In the ligand

perturbation (panel 2), the ligand (L) will be randomly translated and rotated, ignoring

clashes with water molecules. In the same way, the energy computation does not include

these waters, and ligand conformations are evaluated independently from water

positions. After the ligand perturbation, the waterMC step is applied, starting by

individually perturbing the W1 similarly to the ligand (panel 3). Once a new position is

found, the local region around the water molecule is minimized through a truncated

Newton algorithm to get the optimal orientation. This new configuration is assessed by

employing a Metropolis criterion to choose whether to keep the pose (panel 4) or move

back to the initial state. If more than one perturbable water is defined, the same

perturbation-minimization-Metropolis procedure is executed individually for each extra

molecule (W2 in Figure 1.10, panels 5-6). Finally, after the relaxation stage, the step is

completed, including side-chain prediction and the whole system minimization (panels

7-8).

AquaPELE has been extensively tested in multiple hydrate systems, including its ability

to relocate interfacial water molecules that lead to improvements in free energy,

showing a perfect fitting between experimental observations and reported results

(Municoy et al., 2020).

3.5. Estimating binding free energies

We have reviewed molecular modeling techniques to reproduce ligand-protein

configurations by geometrical fitting such as docking or system thermodynamics like in

MD. The information that all these methods provide is interesting to understand the key

elements that contribute to the correct binding mode of the ligand or their dynamics, but

sometimes it is not enough when comparing different candidates. At this point, we need

an accurate metric to estimate the binding strength or inhibition potency, then most of

the previous techniques are used to predict binding free energies.
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3.5.1. Docking scores

Docking aims to identify correct protein-ligand configurations for the given system

quickly. Then, they are extensively used to enrich libraries of compounds by taking the

top score ligands. As mentioned in Section 3.2.1, several scoring functions exist to

assess the generated configurations. Even though they are good at predicting binding

modes, they perform better in one system than in others. Their more superficial

estimations generally fail to distinguish between ligands with no significant differences

in free binding energies (Gilson & Zhou, 2007).

Some have been designed to identify nanomolar compounds instead of micromolar (the

usual goal of VS) or even work with specific target groups. Hence, their performance

depends on how they have been trained or optimized (Cole et al., 2005).

3.5.2. End-point methods

In the trade-off between computation cost and accuracy, this group of techniques scales

a step forward by introducing protein-ligand flexibility. The idea behind end-point free

energy estimations is to use energetic differences between the bound and unbound

states. Molecular mechanics generalized Born surface area and Poisson-Boltzmann

surface area (MMGBSA and MMPBSA) are widely used techniques within this group

(Kollman et al., 2000). Usually, short MD or MC simulations are needed to sample and

estimate the dynamic properties of the system. For each state, the energy is computed by

applying Equation 1.12, finally estimating the free whole system’s energy, subtracting

the mean states of unbound ligand and unbound receptor to their bound complex

(Equation 1.13).

All states can be obtained from a single complex-ligand simulation by deleting the

appropriate atoms to reproduce the ligand-free and protein-free states. Not so common,

by running three individual simulations (only ligand, only receptor, and ligand-receptor)

(Genheden & Ryde, 2015).
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(1.12) 𝐺 = 𝐸
𝑏𝑜𝑛𝑑𝑒𝑑

+ 𝐸
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐

+ 𝐸
𝑣𝑑𝑤

+ 𝐺
𝑝𝑜𝑙𝑎𝑟

+ 𝐺
𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟

− 𝑇𝑆

Equation 1.12. G = state free energy; Ebond = energy bonded terms; Eelectrostatic = energy

electrostatic terms; Evdw = energy VDW terms; Gpolar = polar solvation energy; Gnonpolar =

non-polar solvation energy; T= temperature; S = entropy estimation.

Linear interaction energy (LIE) is another strategy that, contrary to

MMGBSA/MMPBSA, computes the interaction energies between the ligand and its

environment. Only simulations with the complex and the free ligand are performed

(Åqvist et al., 1994).

Regarding computational cost, end-point methods are more expensive than docking

tools but less costly than alchemical methods (explained in the next section).

(1.13) ∆𝐺
𝑏𝑖𝑛𝑑𝑖𝑛𝑔

=  〈𝐺
𝑅𝐿

 − 𝐺
𝐿

− 𝐺
𝑅
〉

Equation 1.13. ΔGbinding = binding free energy; GRL = free energy of ligand-receptor state;

GL = free energy of free ligand state; GR = free energy of free receptor state.

3.5.3. Alchemical methods

Thermodynamically, absolute binding free energy is the difference between two states:

bound and unbound (ligand and protein in the solvent). This energy is independent of

their path, only depending on the initial and final stages. Thus, computing rigorous ΔG

requires converged MD or MC simulations for each state, which is an extraordinarily

long process. Luckily, when comparing congeneric series of ligands, they usually show

slight differences between them (a few atoms or small moieties), and for these cases,

computing the absolute ΔG is not needed. Instead, relative binding free energies (ΔΔG)

can estimate differences between similar ligands (Gilson & Zhou, 2007).

Kirkwood (Kirkwood, 1935) and Zwanzig (Zwanzig, 1954) demonstrated that the ΔΔG

could be computed with alchemical methods. Thermodynamics integration (TI)

(Kirkwood, 1935) and free energy perturbation (FEP) (Zwanzig, 1954) are the two

main techniques within this group. Figure 1.11 summarizes the thermodynamic cycles

that fundamentals these methods, relying on the idea that the conversion of a ligand A
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to a ligand B can be done by connecting multiple non-physical transition microstates.

As both ligands’ initial and final states should be similar, the alchemical transition

(horizontal) would be faster than simulating the unbound to bound transition (vertical).

Figure 1.11. Illustration of the thermodynamic cycle employed in alchemical methods.

Blue boxes around ligands and complexes represent the solvent. Arrow colors emphasize

the time consumption of the process, being green fast and red slow. Then, the relative

binding free energy (ΔΔG) can be estimated by computing the difference of binding free

energy between ΔG2
A-->B and ΔG1

A-->B (horizontally), which tends to be faster than doing it

following the vertical path.

These alchemical microstates are associated with lambda (λ) coefficients that go from λ

zero (ligand A) to λ one (ligand B) with intermediate states (f.e λ=0.1, λ=0.2, λ=0.3,...)

where the properties from one ligand are slowly transformed to another (Cournia et al.,

2017).

Jorgensen group was the first to apply FEP onto MC simulations (Cabeza de Vaca et al.,

2019; Jorgensen & Ravimohan, 1985) to compute relative binding free energies. Since

that moment, FEP calculations have improved considerably. In 2015, a new protocol

called FEP+ (L. Wang et al., 2015) was published. They primarily tested more than 200
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ligands, determining good performance and errors around 1.0 kcal/mol, becoming one

of the gold-standard methods used for H2L.

Although the recent expansion of FEP techniques, they show some limitations. For

instance, they require high-quality input structures, usually coming from co-crystallized

ligands of the series of interest. Additionally, they can only transform one ligand into

another similar, avoiding adding big groups of atoms or even modifying the net charge.

The number of computational resources and time can also be an obstacle. They usually

use GPUs instead of CPUs and require a moderately long simulation time (MDs of 5-20

nanoseconds length per lambda), often not enough to converge in systems with

large-scale protein movements (Cournia et al., 2017), requiring more time for complex

rearrangements. Thanks to recent advances in improving sampling protocols with FEP+,

one perturbation would necessitate around 7.5-9h in 4 x GPUs GTX 1080Ti

(30-36h/GPU) in a middle-size system (Fratev & Sirimulla, 2019). However, the high

expenses in computational resources and licenses are still unaffordable for a big part of

the community. Then, even though they succeed in predicting ΔΔG, all these limitations

restrict their use to particular cases.

3.6. Machine learning

Machine learning (ML) is a game-changer that has presented simple solutions to

complex problems in many fields. These methods aim at turning computer behavior

more similar to human brains; they analyze large amounts of data to learn and perform

any task autonomously. This data usually contains information that can be processed

and interpreted for this algorithm, detecting patterns and relations that humans cannot

even notice. Living in the big data era, we can now access the large volume of public

bioactivity data that are particularly valuable for these techniques (Richter & Ecker,

2015). Public repositories such as PubChem (Kim et al., 2020), ZINC (Irwin &

Shoichet, 2005), DrugBank (Wishart et al., 2006), or ChEMBL (Gaulton et al., 2012)

offer especially valuable data. By exploiting this information, the drug discovery field

has also benefited from the development and application of ML techniques (Dara et al.,

2021; Vamathevan et al., 2019).
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The fine ML model selection will depend on multiple parameters: the dataset size,

performance, complexity, and the nature of the problem to be solved (Metwalli, 2020;

Valdarrama, 2021). They are roughly classified as unsupervised or supervised learning.

The first refers to clustering-based methods that do not require assigned tags in the data,

while the latter demands continuous values (regressors) or categorical labels

(classifiers). Examples of simple ML algorithms are Support Vector Machines, Naive

Bayes, or Random Forest. Deep learning (DL) and Artificial Neural Networks (ANN)

offer a higher complexity level within the ML field. When using layers of neurons, we

refer to ANN, which mathematically activates or inactivates them to “think” like human

brains. When these networks incorporate multiple layers (more than three), we refer to

DL (Mishra & Gupta, 2017). DL and ANN are probably the most popular subbranches

of ML. However, they require more computational resources and more significant

amounts of data than simpler ML models.

Any ML methodology must follow the following steps: 1) collect data; 2) read numeric

descriptors; 3) select the best variables; 4) train, and 5) validate the model

(Fernandez-Lozano et al., 2016). All input data (e.g., images, molecules, human

behavior) must be converted to mathematical values readable by algorithms. Molecular

information can be represented differently depending on the complexity level. Simple

physicochemical descriptors (number of atoms, MW, etc.), 2D structures that encode

chemical, size, and shape information, or complex protein-ligand interaction maps are

examples of data that can be used as molecular descriptors (Carracedo-Reboredo et al.,

2021).

Drug discovery and molecular modeling techniques have incorporated ML algorithms

in recent years. Some docking tools include ML-based models, trained to combine

energy-based predictions, geometry, and chemical information in a single scoring

function (Kinnings et al., 2011). Alternatively, they can be trained to design

target-specific inhibitors (Ekins et al., 2017). Moreover, the application of DL to

quantitative structure-activity relationship (QSAR) studies has notably accelerated

docking-based virtual screenings to screen ultra-large datasets with more than 1 billion

compounds (Gentile et al., 2020).
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Other examples of DL models are generative models. This group of methods can learn

from large drug databases, understand the chemical space, and generate de novo

drug-like compounds (Bian & Xie, 2021). General models will create non-specific

chemical entities. However, the model can be fine-tuned through transfer learning to

focus the generation on the desired hit-target complex (Chenjing Cai, Shiwei Wang,

Youjun Xu, Weilin Zhang, Ke Tang, Qi Ouyang, Luhua Lai, and Jianfeng Pei, 2020).

For example, Variational autoencoders (VAE) (Kingma & Welling, 2013) are

generative models where a neuron layer encodes (encoder) compounds information in a

continuous latent space. Then, another network decodes (decoder) the data to retrieve

new drug-like molecules different from the trained ones (Joo et al., 2020). A schematic

illustration of its structure is shown in Figure 1.12. After training, this latent space can

be manipulated, enabling transfer learning inputs to reward any desired property.

Figure 1.12. VAE structure. Image created by EugenioTL under a license CC BY 4.0

(source: https://commons.wikimedia.org/wiki/File:VAE_Basic.jpg)

AlphaFold (Jumper et al., 2021; Senior et al., 2020) and RoseTTAFold (Baek et al.,

2021) are two famous DL applications that solved one of the most extensive problems

in computational biology of the century, predicting protein folding from its primary

amino acid sequence.

ML has demonstrated to be an excellent versatile problem-solver in many fields,

offering a vast toolbox of robust algorithms. Moderately incorporating them in real drug

discovery frameworks will offer new advantages in designing novel compounds.
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3.7. Ligand growing

In H2L studies, most efforts rely on optimizing the ligand potency (J. P. Hughes et al.,

2011). Medicinal chemists propose modifications of the initial hit to gain extra

interactions with the receptor. These hits are usually ‘grown’ by including new R-groups

or decorators, helping to reach HBs, electrostatic or hydrophobic interactions that favor

the new lead compound (Brown & Boström, 2018).

Ligand growing strategies are prevalent within the fragment-based drug design (FBDD).

The initial scaffold is a hit compound of low molecular MW with residual potency,

so-called fragments. These compounds are linked, merged, or grown to increase their

potency to the nM range. Here it is crucial to obtain experimental 3D information,

commonly coming from X-rays, to choose the proper building blocks for FBDD

(Erlanson et al., 2016; Murray & Rees, 2009).

As mentioned in this thesis, molecular modeling technologies provide computational

solutions to drug design problems. This fact is not different when exploring R-groups

around a molecular core or scaffold. Here, instead of screening large libraries with

millions of compounds, fragment libraries are frequently used; contrary to regular high

throughput virtual screening (HTVS), the average size for a fragment library is far

smaller (usually <1000 fragments) (Trevizani et al., 2017). A wide variety of techniques

can be applied to handle this problem. Moreover, researchers typically customize

libraries’ content according to their purpose. They can include fragments to favor a

specific synthetic pathway or be enriched with certain functional groups (carboxylic

acids, amines), or a property (electrophilicity, hydrophobicity), or optimizing libraries

against a concrete target such as kinases (Kidd et al., 2018). Thus, libraries’ right design

and application onto the proper hit are critical in fragment growing screenings.

A quick and straightforward strategy is combining different reactive fragments around

the scaffold X-ray crystal structure, building hundreds of new molecules to dock them

later. BOMB (Jorgensen, 2009) or CombiGlide from Schrödinger (an extension from

Glide) can handle this approach (Schrödinger, 2019).
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The fragment selection can be unguided or directed by structural-based rules, such as

pharmacophoric approaches, or by applying geometrical constraints to the scaffold

(Schulz et al., 2018). Similar strategies such as the abovementioned generative models

have become more prevalent in recent years (Vamathevan et al., 2019). These methods

are beneficial to enriching fragment libraries with more prone to bind compounds, but

all of them are usually assessed by docking at the end of the day.

An additional strategy to create new ligands is applying de novo algorithms that start

from a seed core/scaffold already placed in the BS instead of building molecules from

scratch. Plenty of programs offer this kind of strategy. Among the most widely used

software, we find LUDI (Böhm, 1992), LigBuilder 2.0 (Yuan et al., 2011), and

Autogrow 3.0 (Durrant et al., 2013). Others focus their efforts on tracking the synthetic

feasibility, such as SYNOPSIS (Vinkers et al., 2003) and NAOMINext (Sommer et al.,

2019). Most of them consider a rigid representation of the BS, which severely affects

the generation of high-quality structural models and binding energy predictions for the

grown derivatives (Schneider & Fechner, 2005).

Decorating these chemical scaffolds is not an easy task. Despite having rich and

accurate 3D structures, the role of the receptor motion and the solvent are vital factors

that can interfere with the predictions of this group of methods. The typical case that

exemplifies this phenomenon is the epidermal growth factor receptor (EGFR). The

first-generation ligand gefitinib (Rawluk & Waller, 2018) shows good inhibition levels,

but after decorating it, they improved it by creating the second-generation ligand

lapatinib (Voigtlaender et al., 2018). Looking at 3D structures, the bound conformation

of lapatinib was audibly distinct from gefitinib. Unexpectedly, the addition of a bulky

group led to the opening of a cryptic sub-cavity, not detectable in the unbound state.

As exemplified above, incorporating receptor flexibility can be essential when

expanding R-groups. Several methods have been developed with this goal in mind,

LEA3D (Douguet et al., 2005), SkelGen (Dean et al., 2006), and OpenGrowth (Chéron

et al., 2016), where ligand and local side chains are sampled to take into account the

dynamics of the BS.
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All previously mentioned methods show a common factor. They can handle, propose or

select R-group modifications according to some rules. Despite doing so, they usually

require to be coupled to molecular docking or simulations to generate proper geometries

or affinities estimations. Even though rigid/flexible docking or end-point

approximations have not been designed for this purpose, they can be applied afterward

to predict binding modes and binding energies. More rigorously, alchemical methods

can mutate and expand small R-groups, providing accurate and reliable relative binding

free energies. However, as we have seen in Section 3.5.3, these techniques show some

limitations regarding computational cost and can only handle a series of similar ligands.

Thus, after reviewing various ligand growing approaches, there is an empty gap in the

literature between the expensive alchemical free energy methods and the quick standard

docking-based techniques. We hypothesize that the PELE MC method could offer an

excellent accuracy-cost balance for exploring middle-size libraries (100-1.000) of

compounds. With this idea in mind, during my Master's thesis, we started the

development of a novel fragment growing strategy couple to PELE, called FragPELE,

whose first fully functional version was released during the first year of the Ph.D.
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Chapter 2. Objectives
This thesis aims to develop and apply new computational strategies focused on

improving the accuracy-time consumption trade-off for hit-to-lead studies. We also

aimed to collaborate in real drug design projects involving both stages, VS and H2L,

put our methods to test, and design new strategies to face prospective drug discovery

projects. These objectives could be split into smaller ones:

I. Complete the development of FragPELE; our novel ligand growing method

focused on hit-to-lead studies. The technique must be validated through

retrospective studies to fill the empty gap between fast docking-based techniques

and the expensive alchemical methods.

II. Use and improve the previous method by detecting and solving errors, adding

additional functionalities, automatized, user-friendly protocols, and coupling

them with fragment libraries.

III. Collaborate in real industrial and academic drug design projects, proposing

new virtual screening strategies and also applying our recently developed ligand

growing software. If it is possible, contribute to the finding of a new hit or lead

compound.

The following chapters will show the main results obtained from this thesis, also

describing all the methodology employed and the newly developed algorithms.

Chapter 3 will first introduce FragPELE, the new ligand growing method designed to

tackle hit-to-lead studies. It will follow the validation studies of this initial software,

comparing its performance with other gold-standard methods (Glide SP,

InducedFit-Glide, MMGBSA, and FEP+). Second, we will assess the ability of

FragPELE to displace buried waters and score compounds in hydrated systems,

combining this technology with the recently released aquaPELE (Municoy et al., 2020).

In Chapter 4, we will show the methods used and results of the SilicoDerm project, in

this case, an industrial collaboration with Almirall company. For confidentiality
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purposes, compounds and structures of this section will be anonymized, focusing the

report on the methodology.
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Chapter 3. FragPELE: dynamic

ligand growing within a binding site
H2L studies rely on hit optimization to improve binding affinities for their biological

target. As discussed in Chapter 1 (Section 3.5 and 3.7), providing fast and accurate

answers to induced-fit protein-ligand binding remains challenging. Thus, we introduce

FragPELE, a promising strategy to explore R-group expansion while tracking BS

induced-fit effects with acceptable time consumption. The development of this

technique was initialized in my Master’s thesis, but it was finally published in the JCIM

journal (Perez et al., 2020) in my first Ph.D. year. Section 1 will include and adapt some

passages quoted from this article.

1. FragPELE algorithm

1.1. The method

FragPELE is a ligand growing algorithm that slightly expands variable-sized fragments

onto the user-selected site. Protein motion and side-chains are sampled during the

process to adapt the cavity to the newly added moiety. This effect is produced by

employing a Python layer that orchestrates on top of PELE software (for more

information, visit Section 3.4.1 from Chapter 1) by combining ProDy (Bakan et al.,

2011), BioPython (Cock et al., 2009), and pandas (McKinney & Others, 2011) external

libraries.

The design of the algorithm relies on the idea of automatically growing one or several

R-groups onto a well-defined protein-hit complex (preferably coming from an X-ray

structure). Based on AdaptivePELE (Lecina et al., 2017), this method also links

consecutive PELE simulations, called growing steps (GS). Similarly but simpler to

alchemical methods (Cournia et al., 2017), GS represents transition microstates where

the original ligand is slowly transformed into another. At the same time, efficient system
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rearrangements are done by incorporating normal modes to displace the backbone,

side-chain sampling, and minimization procedures.

A global view of the strategy followed by the FragPELE algorithm is shown in Figure

3.1, which involves several parts: preparation, fragment linkage, fragment reduction,

fragment growing, and sampling/scoring.

Preparation. As mentioned, FragPELE intends to grow fragments onto the same hit,

scaffold, or core molecule. Users must provide PDB files containing reliable

protein-ligand complexes, previously solving protonation and any structural issue

(missing atoms, loops, multiple occupancies). Ions, cofactors, and explicit water

molecules can be added as part of the receptor. In the same way, users must include

fragment molecules to grow (fully protonated) in separate PDB files. Finally, the user

can fill a tabular input file with instructions on which fragments to connect to which

growing site and which atoms. In the initial version, the considered growing sites are

only the heavy atoms bound to terminal hydrogen that will be replaced for an entire

fragment.

Fragment linkage. This stage links the given fragment with the chemical scaffold onto

the user-specified growing site. The previously mentioned tabular file contains the pairs

of atoms to connect (one from the scaffold and the other from the fragment). This

linkage is performed by obtaining the bond vectors formed between the heavy atom and

its bound hydrogen for both fragment and scaffold to join them later and superimpose

its coordinates (see Figure 3.2, A to B). Subsequently, hydrogen atoms will be erased to

create a covalent bond. If any of the chosen heavy atoms present more than one

hydrogen bond, the user can select which one to use, controlling then the enantiomeric

form of the new ligand. If not specified, the algorithm automatically selects the

hydrogen of the scaffold that will produce fewer clashes with the protein. Alternatively,

for these cases where the user wants to grow something on a heavy atom without any

hydrogen bond, this atom can be easily replaced manually.
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Figure 3.1. Overview of FragPELE pipeline. The yellow circle underlines the heavy

atoms connected in the fragment linkage. Reprinted (adapted) with permission from

(Perez et al., 2020). Copyright 2020 American Chemical Society.

It will not be surprising that the abrupt addition of the fragment would lead to

intramolecular clashes with the core of the molecule. Under this scenario, the algorithm

includes an intramolecular clashes detector that rotates 10 degrees along the new bond

axis until locating a more favorable position without collisions. If it does not find any

favorable solution, the resolution is increased to 1 degree, raising an error after turning

the 360º.
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The new fragment is linked in the input complex file at the end of this stage. Besides, in

another PDB file, the new ligand is stored to use the topology later to calculate the

parameters of the force field.

Figure 3.2. Representation of the growth of a methyl onto a benzene core. Carbons are

depicted in green and hydrogens in gray. Initially, (A) the fragment and the core are

separated as two isolated entities; (B) the fragment is placed by aligning and erasing the

hydrogens that create the new bond. Finally, (C) the fragment is miniaturized and ready

to be grown along with the fragment growing phase. Reprinted (adapted) with permission

from (Perez et al., 2020). Copyright 2020 American Chemical Society.

Fragment reduction. This step reduces some force field parameters (FFP) for the

fragment’s atoms and its geometry in the protein-ligand complex. Going into detail, the

specific FFP being reduced are the L-J radii (𝜎), partial charges (q), and the equilibrium

bonding distance (req) for each bond with fragment atoms (see Section 3.1 from Chapter

1). The calculation is differently applied for each parameter. The initial L-J radii (𝜎o)

and partial charges (qo) are computed following Equations 3.1 and 3.2. Notice that this

reduction in non-bonded parameters aims to keep the whole fragment with a

hydrogen-like volume and distribute its charge (qH) among the fragment atoms. For the

initial equilibrium bonding distances (ro), Equation 3.3 is applied for all fragment’s

bonds, except the one which connects with the scaffold (rlink), using Equation 3.4

instead.
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(3.1) σo = (3.2) qo =σ
𝐿+1

𝑞𝐻
𝐿+1( )𝑁

Equations 3.1 and 3.2. Obtention of initial non-bonding parameters. 𝜎o = initial L-J radii;

qo = initial partial charge; 𝜎 = original L-J radii; qH = hydrogen replaced charge;

L = total GS to be performed; N = number of fragment’s atoms.

(3.3) ro = (3.4) rlink =𝑟
𝐿+1 𝑟𝐻 + 𝑟−𝑟𝐻

𝐿+1

Equations 3.3 and 3.4. obtention of initial bonding parameters. ro = initial equilibrium

bonding distance; r = original equilibrium bonding distance; L = total GS; rlink =

equilibrium bonding distance involving scaffold-fragment linking atoms; rH =

equilibrium distance between hydrogen replaced and scaffold atom.

The distance between the miniaturized fragment and the core atoms is expanded through

all equations compared to other bonds to avoid intramolecular clashes when initializing

the simulation. At the same time, the charge of the replaced hydrogen atom is spread

and proportionally reduced by the number of GS to imitate the electrostatics of the

original hydrogen atom. Notice that this charge is spread and reduced to avoid artifacts.

Accordingly, a default value of 10 GS is chosen, which provides a good balance

between smooth and fast-growing, and avoids large perturbations in the hydrogen-like

volume caused by too low or too high L. Angles and dihedrals parameters are kept

constant.

Before starting the next stage, the fragment atom coordinates are geometrically

modified by reducing all bond distances (vector modules), also following Equation 3.3.

Fragment growing. By combining the concepts of enhanced sampling introduced by

AdaptivePELE (Lecina et al., 2017) and alchemical perturbative methods (Zwanzig,

1954), the new fragment is grown in a series of GS. Multiple parallel PELE simulations

are executed at each GS after progressively increasing the FFP (miniaturized in the

previous step). An initial GS 0 is executed before modifying the FFP from the fragment

reduction stage to adapt the system. Afterward, they are linearly expanded in the next

GS, applying Equations 3.5 and 3.6. Figure 3.3 shows a visual example of this schema.
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(3.5) λ = (3.6) Xstep = λX1
𝐿−𝑆 +1

Equations 3.5 and 3.6. FFP linear increase. L = total GS; S = current GS; Xstep = any

FFP for the current GS; X = any original FFP.

After each GS, the resulting structures are clustered by protein-ligand contact maps

(using a distance threshold between any atom from an amino acid and the ligand of 3 Å)

using a k-means algorithm to enhance the variability of poses. Five clusters are

generated by default, and the poses with the lowest interaction energy are spawned to

initialize the next GS. PELE calculates the interaction energy values by subtracting the

energy of the ligand and the energy of the receptor, both isolated, to the energy of its

complex: E(PL) - E(L) - E(P). MM models (see Section 3.1 from Chapter 1) are the

basis of this energy function, considering bonding, non-bonding, and solvation terms

(Equation 3.7). In summary, the fragment growing is an iterative process where the

output of the previous GS is the input for the next one, chaining then successive

simulation rounds until the size of the fragment reaches the original values.

(3.7) 𝐸 = 𝐸
𝑏𝑜𝑛𝑑

+ 𝐸
𝑎𝑛𝑔𝑙𝑒

+ 𝐸
𝑡𝑜𝑟𝑠𝑖𝑜𝑛

+  

𝐸
𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 

+ 𝐸 
𝑣𝑑𝑤

+ 𝐸 
𝑒𝑙𝑒

+  

∆𝐺
𝑠𝑜𝑙𝑣,𝑝𝑜𝑙

+ ∆𝐺
𝑠𝑜𝑙𝑣,𝑝𝑒𝑛𝑎𝑙𝑡𝑦

 +  𝐸
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

Equation 3.7. PELE energy function. E = energy; ΔG = free energy.

Sampling simulation. Once the fragment is fully grown (at the end of the last GS), a

more extended simulation of 20 MC steps is executed to better explore the new

protein-ligand conformations and score them. This general score is the average of the 25

percent poses with the lowest interaction energies from the whole simulation.
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Figure 3.3. Example of chlorophenyl fragment growing with FragPELE onto an

amino-indazole in 10 GS. The inset shows structures and FFP values for each panel’s

aromatic carbon (CA). 𝜎 = L-J radii; q = partial charge; r = equilibrium bonding

distance. Reprinted (adapted) with permission from (Perez et al., 2020). Copyright 2020

American Chemical Society.

FragPELE uses OPLS2005 (Banks et al., 2005; Kaminski et al., 2001) force field and

VDGBNP (Zhu et al., 2007) implicit solvent model. The standard protocol consists of

10 GS (+ 1 of equilibration, called GS 0), containing each 47 independent MC

simulations of 6 PELE steps (282 poses/GS) and a final sampling simulation of 20 steps

(940 poses). These simulations are configured with low translations (0.05-0.10 Å) and

rotations (0.02-0.05 radians), allowing only displacements within a spherical box of 4 Å

around the initial center of mass of the ligand to perturb the system slightly.

Additionally, positional constraints onto explicit waters (when needed) are mandatory in

this version.

Two main tests have been carried out to validate the method. First, we evaluated the

capacity to reproduce X-ray crystal structures accurately. Second, we also studied the

ability of FragPELE to predict experimental binding affinities for congeneric series of

compounds.

55

https://paperpile.com/c/KisYB7/vJMd


1. FragPELE algorithm Chapter 3. FragPELE

1.2. Structural validation

This structural benchmark evaluates whether FragPELE can reproduce native X-ray

crystal structures when expanding fragments in different scenarios. For this purpose, a

total of thirteen systems were studied; one was explicitly considered to capture cryptic

sub-pockets opening.

System preparation. All structures with missing side-chains were corrected using the

3D builder from Maestro (Schrödinger, 2018), followed by energy minimization of

these residues with OPLS2005 (Jorgensen et al., 1996) force field and the implicit SGB

solvent (Gallicchio et al., 2002). Systems were prepared with Protein Preparation

Wizard (Sastry et al., 2013) from Schrödinger, including analysis and H-bond

optimization using PROPKA (Olsson et al., 2011) at pH 7.

1.2.1. Self-growing

The initial validation consisted of simply growing a part of a molecule that had been

previously removed from original crystals. We called this concept self-growing.

Systems and methods. Simulations were initialized from the X-ray with the remaining

scaffold (after deleting the fragment part) situated in the BS. Later, the subtracted

moiety will be grown again to reproduce the original pose. To achieve this goal, three

well-known systems with available crystallographic data were chosen from Steinbrecher

et al. FEP+ Benchmark studies (Steinbrecher et al., 2015): (a) Major Urinary Protein

(MUP-I) in complex with sec-butyl-thiazoline (PDB code: 1I06) (Timm et al., 2001), (b)

p38α kinase or mitogen-activated protein kinase 14 (MAPK14) co-crystallized with

3-(benzyloxy)pyridin-2-amine (PDB code: 1W7H) (Hartshorn et al., 2005), (c) Bacterial

DNA ligase in complex with an azaindazol (PDB code: 4CC6) (Howard et al., 2013).

Fragments were deleted and replaced by a hydrogen atom by using Maestro software

(Schrödinger, 2018). In Table 3.1, 2D structures of all ligands are depicted, highlighting

the fragment (deleted) part for each one. In DNA ligase and p38, two tests were

performed, one keeping structural waters and the other without them, while in MUP-I,

we could only test with no waters due to the hydrophobicity of its BS.
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Table 3.1. Summary of the systems used in the self-growing. The fragments to be grown with a

FragPELE simulation are brown, while the scaffold remains black. Reprinted (adapted) with

permission from (Perez et al., 2020). Copyright 2020 American Chemical Society.

System PDB ID Resolution (Å) Ligand

MUP-I 1I06 1.9

p38 kinase 1W7H 2.2

DNA Ligase 4CC6 2.01

Standard FragPELE simulations were run, and results were assessed by comparing the

root mean square deviation (RMSD) of the ligand heavy atoms for the lowest binding

energy pose with its original crystal structure (pre-aligning alpha carbons). Three

different groups of heavy atoms were employed in RMSD calculations: core, fragment,

and whole molecule atoms.

Results. RMSD results are summarized in Table 3.2. All three systems showed values

under 2 Å, retrieving the native-like conformation for all molecule parts, fragments, and

core. However, close attention must be paid to hydrated BS. When we do not include

explicit waters in the calculation, the RMSD values slightly increase. Results on p38

suggest that the ligand tends to occupy the steric space left by the removed waters,
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despite no further interactions being gained (Figure 3.4). Lastly, results from DNA

ligase (4CC6) (Figure 3.5) demonstrate, at least in this simple test, that FragPELE can

recover native interactions when growing large fragments (14 heavy atoms size). Here

the trifluoride moiety of the fragment interacts with the surrounding hydrophobic

residues quickly.

Table 3.2. Self-growing results in the core, fragment, and total heavy atom RMSD. Reprinted

(adapted) with permission from (Perez et al., 2020). Copyright 2020 American Chemical

Society.

System
PDB

code(s)
Waters in
simulation

RMSD
core (Å)

RMSD
fragment

(Å)

Total
RMSD

(Å)
Figure

Self-
growing

MUP-I 1I06 No 1.58 1.37 1.49 -

p38 1W7H
No 2.53 2.46 2.51 3.4-upper

Yes 1.96 1.54 1.80 3.4-bottom

DNA
ligase

4CC6
No 2.28 2.04 2.15 -

Yes 1.23 1.59 1.46 3.5

1.2.2. Cross-growing

The second structural validation consisted of growing one or more fragments onto a

crystallographic protein-scaffold complex and trying to reproduce the poses of a second

X-ray containing the full-size new ligand (sharing the same scaffold). We named this

concept cross-growing.

Systems and methods. In this case, we used four systems, from which we had at least

two different crystal structures: one co-crystallized with the core ligand and at least a

second one that could be generated by expanding an R-group onto the first. These four

targets are T4 lysozyme, p38 kinase, tyrosine-protein kinase JAK-II (all three obtained

from (Steinbrecher et al., 2015)), and the beta-secretase I (BACE). Table 3.3 depicts the

ligands for all systems. Most systems do not include explicit water molecules, except

BACE for the transition from 4DJU to 4DJW to gain a specific water-ligand interaction

through the fragment grown.
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Table 3.3. Systems used in cross-growing. We reproduce the ligands by growing fragments onto

X-ray structures with co-crystallized scaffolds. In p38 kinase, the scaffold was generated by

removing the brown parts of the molecule (from the self-growing benchmark, see Table 3.1).

Reprinted (adapted) with permission from (Perez et al., 2020). Copyright 2020 American

Chemical Society.
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Figure 3.4. Growth of a phenyl with (below) and without (above) waters to reproduce

PDB 1W7H. The distance between the model and the X-ray is reduced when including

water molecules (red arrows). Created with PyMOL (Schrödinger & DeLano, 2018).

Reprinted (adapted) with permission from (Perez et al., 2020). Copyright 2020 American

Chemical Society.
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Identical to the previous analysis, standard FragPELE simulations were run, and RMSD

values were computed onto the second X-rays to assess the quality of the results. Also,

critical protein-ligand interactions of the native structure were compared with the ones

found in the structures retrieved from FragPELE simulations.

Results. RMSD results are seen in Table 3.4. All values fall below 2 Å, excluding p38

kinase. A closer look at the lowest interaction energies structures for this system (Figure

3.6) revealed that naphthyl moiety rotated almost 180º, increasing the RMSD of this

fragment. As illustrated in Figure 3.6, the addition of the fragment produces a

displacement of K53 towards an essential pi-cation interaction. Despite the high RMSD

value of 2.69 Å against 1WBW, K53 still conserves the specific lysine-glutamine lock

of kinases.

Table 3.4. Cross-growing results in the core, fragment, and total heavy atom RMSD. Reprinted

(adapted) with permission from (Perez et al., 2020). Copyright 2020 American Chemical

Society.

Protein
PDB

code(s)
Waters in
simulation

RMSD
core (Å)

RMSD
fragment

(Å)

Total
RMSD

(Å)
Figure

Cross-

growing

Lysozyme
181Ll to

184L
No 0.34 1.1 0.75 -

p38
1W7H to

1WBW
No 1.38 3.46 2.69 3.6

JAK-II
3E62 to

3E63
No 0.47 1.67 1.08 3.7

BACE

4DJU to

4DJV
No 0.79 0.96 0.84 -

4DJU to

4DJW
Yes 1.02 0.41 0.92 3.8

4DJX to

4DJY
No 1 1.34 1.05 -
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Figure 3.5. Growing of the fragment onto the core to reproduce PDB 4CC6. Yellow

dashed lines highlight the interactions between the surrounding residues of the receptor

and the trifluoride of the fragment. Created with PyMOL (Schrödinger & DeLano, 2018).

Reprinted (adapted) with permission from (Perez et al., 2020). Copyright 2020 American

Chemical Society.

Figure 3.6. Lowest interaction energy structure from the growing of naphthyl (purple)

and amino fragments from the core of 1W7H (orange) to reproduce the crystal structure
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(continuation) 1WBW (in green). The addition of the naphthyl displaces K53 to allow

the pi-cation interaction, favoring the contact between K53 and E71 (present in the

crystal). Subsequently, the amino fragment's addition creates a second interaction with

H107. Thus, all native interactions present in 1WBW were recovered. Created with

PyMOL (Schrödinger & DeLano, 2018). Reprinted (adapted) with permission from

(Perez et al., 2020). Copyright 2020 American Chemical Society.

For JAK-II, when growing a phenyl onto the scaffold of 3E62 (Figure 3.7), the

side-chain prediction algorithm relocated the aspartic acid to accommodate the

six-membered ring, showing a full-ligand RMSD of 1.08 Å against the X-ray. Finally, in

the BACE system, for the transition from 4DJV to 4DJW, we could recover a crucial

interaction between the fragment and crystallographic structural water (Figure 3.8).

Gaining this interaction locks the conformation of the ligand and favors enthalpically

the position of the explicit water.

Figure 3.7. Growth of a phenyl onto the initial crystal 3E62 , where D994 accommodates

the insertion of the fragment. Created with PyMOL (Schrödinger & DeLano, 2018).

Reprinted (adapted) with permission from (Perez et al., 2020). Copyright 2020 American

Chemical Society.
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Figure 3.8. Model (orange) of 4DJW (green) by growing a fragment onto 4DJU. Notice

how the model reproduces the interaction with the water molecule present in both crystal

and model. Created with PyMOL (Schrödinger & DeLano, 2018). Reprinted (adapted)

with permission from (Perez et al., 2020). Copyright 2020 American Chemical Society.

1.2.3. Cryptic sub-pockets

Our next structural consisted of checking the ability of FragPELE to identify hidden

cavities close to the orthosteric site. This concept is called cryptic sub-pockets, as they

only open up in the presence of ligands with particular R-groups. Lapatinib and

gefitinib drugs are two popular inhibitors of the epidermal growth factor receptor

(EGFR), which plays an essential role in carcinogenesis (Expression of EGFR in

Cancer - Summary - the Human Protein Atlas, n.d.; Uhlén et al., 2015). Specifically,

lapatinib is known to show a slower dissociation rate than gefitinib due to the

differences in how they bind (Bilancia et al., 2007). At the same time, we sought to

target a novel-induced cavity next to the ATP BS.

Systems and methods. Simulations were focused on the development of the

second-generation inhibitor lapatinib (PDB code: 1XKK) (Wood et al., 2004) by

extending the first-generation inhibitor gefitinib (PDB code: 4WKQ). A

solvent-exposed R-group is generally used to modify the ADME properties of the drug,

64

https://paperpile.com/c/KisYB7/lKhk
https://paperpile.com/c/KisYB7/vJMd
https://paperpile.com/c/KisYB7/ZxRi+vyFV
https://paperpile.com/c/KisYB7/ZxRi+vyFV
https://paperpile.com/c/KisYB7/x7gL
https://paperpile.com/c/KisYB7/rLF3


1. FragPELE algorithm Chapter 3. FragPELE

which are not relevant for the present study (see Table 3.5). Thus, to accelerate the

simulation time, we decided to delete this region from the gefitinib scaffold with too

many rotatable bonds, given that sampling all possible conformations would take much

unnecessary computational time.

Table 3.5. Data of the system used in the cryptic sub-pockets benchmark. Brown colored

solvent-exposed moieties were replaced for hydrogen atoms and were not included in the

simulations. Reprinted (adapted) with permission from (Perez et al., 2020). Copyright 2020

American Chemical Society.

To assess results, we focus the analysis on two side-chains lining the sub-pocket region,

M766 and F856. As observed in crystal structures, the former must move aside to let

enough space to place the bulky fluoro-phenyl, and the latter is stabilizing a crucial pi-pi

interaction with this fragment.

Results. In Figure 3.9, we show FragPELE resultant binding mode. It is observed how

the ligand displaces M766 and simultaneously orients F856 closer to the grown

fragment to reproduce the pi-pi stacking interaction.

As seen in Figure 3.10, all amino acids initially lining close to the fragment in lapatinib

X-ray are also present in the model. The pi-pi stack between F856 is not represented

because of the flip of 180º of the ring (Figure 3.11), which interposes the fluorine atom;

however, centroid distances (5.7 Å) and angles (54º) are close to suitable conditions for

this kind of interaction. Notice in Figure 3.11 that the allocation of the new fragment is
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mainly done by side-chain displacements and not for large movements in the backbone

(alpha-helix in this case).

Figure 3.9. Generation of lapatinib from gefitinib. Model onto the initial protein-ligand

complex. M766 moves aside, placing the fragment and F856 re-orients to catch a possible

interaction with the aromatic group. Created with Maestro (Schrödinger, 2018). Reprinted

(adapted) with permission from (Perez et al., 2020). Copyright 2020 American Chemical

Society.
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Figure 3.10. Interaction diagrams of lapatinib crystal (A) and the model built with

FragPELE (B). Amino acids at 4.5 Å are represented in different colors: green for

hydrophobic, glycines in gray, positively charged in dark-blue, negatively charged in red,

and polar amino acids in blue. Arrows and lines show interactions: green for pi-pi

stacking, H-bonds in purple, and halogen bonds in orange. Groups of amino acid lining

fragments were colored to compare A and B. Notice that the model fragment is flipped
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(continuation) 180º in comparison with the X-ray. Created with Interaction Diagram of

Maestro (Schrödinger, 2018). Reprinted (adapted) with permission from (Perez et al.,

2020). Copyright 2020 American Chemical Society.

Figure 3.11. Modeling of 4WKQ (lapatinib). This figure complements the information

given in Figure 3.10. Created with Maestro (Schrödinger, 2018). Reprinted (adapted)

with permission from (Perez et al., 2020). Copyright 2020 American Chemical Society.

1.2.4. Growing bulky R-groups

In the final test, we tried to evaluate the reliability when growing a fragment that

decreases the binding affinity of its precursor. This study was performed to verify that

FragPELE does not create false positives when growing a bulky R-group.

Systems and methods. We tested growing a small series of MAPK p38 inhibitors whose

IC50s were available for all analogs (Table 3.6), but only one had crystal structure

available (1A9U) (Z. Wang et al., 1998). The experimental series was obtained from

CHEMBL (Gaulton et al., 2012) (CHEMBL71403 (Chang et al., 2001),

CHEMBL69929 (Liverton et al., 1999)), where we checked that the members had a

wide range of IC50 values. Two fragments confer higher potency (low nM), whereas the

other presents lower affinity (low μM) than the reference. This system deals with a
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prototypical ATP-competitive kinase inhibitor, anchoring a heterocycle to the central

hinge residue (in this case, M109) through an H-bond (Howard et al., 2014).

We hypothesize that the less potent ligands within the series have too bulky R-group,

which cannot fit. To verify this, we retrieved structures from FragPELE simulations to

compare them to the initial pose of the only analog whose single X-ray structure is

available.

Results. Predicted binding poses are shown in Figure 3.12, where it is observed that the

addition of cyclohexane promoted the displacement of the ligand outside the cavity

(yellow model of Figure 3.12), breaking the canonical hinge interaction with M109 (a

backbone interaction). The other two ligands kept this contact, which is well known to

contribute to a substantial part of the binding affinity. We suggest that the cyclohexane

ring is too big to fit into the ATP BS correctly, causing a decrease in binding potency

due to these steric effects. However, as no X-ray structure is provided, this fact cannot

be ultimately proven.

Table 3.6. Summary of the systems used to rationalize binding affinities. In brown, it represents

the part of the ligand that has been deleted. Reprinted (adapted) with permission from (Perez et

al., 2020). Copyright 2020 American Chemical Society.
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Figure 3.12. Growing of several fragments to create three different inhibitors of p38 type

II. 1A9U (purple) and CHEMBL69929 (blue) are binders with significantly higher

affinity, and CHEMBL71403 (yellow) is the lowest affinity one. In gray, it represents the

position of the scaffold pose, derived from crystal 1A9U after deleting the fluorine and

methanesulfonyl groups. Created with PyMOL (Schrödinger & DeLano, 2018).

Reprinted (adapted) with permission from (Perez et al., 2020). Copyright 2020 American

Chemical Society.

1.2.5. Protein motion

Although it was not our primary goal, our analysis focused on protein motion. To know

the perturbation level of protein atoms, we compared retrieved structures from

FragPELE simulations with the original crystals. We have obtained low RMSD values

for those systems with lower mobility (MUP-1, DNA ligase, BACE, and lysozyme) and

higher ones in kinases (p38 and JAK-II), which have more flexibility (Table 3.7).

However, all protein RMSD were relatively low (between 1.16 and 4.67Å), so we could

consider that mainly side-chain rearrangements were fundamental to reproducing ligand

poses.
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Table 3.7. Heavy atom RMSDs of the protein (backbone + side-chains) for the models against

crystals. Reprinted (adapted) with permission from (Perez et al., 2020). Copyright 2020

American Chemical Society.

System PDB code(s) Waters in simulation Protein RMSD (Å)

Self-growing

MUP-I 1i06 No 1.56

p38 1w7h
No 4.67

Yes 3.31

DNA ligase 4cc6
No 1.68

Yes 1.45

Cross-growing

Lysozyme 181l to 184l No 2.91

p38 1w7h to 1wbw No 3.28

JAK-II 3e62 to 3e63 No 3.87

BACE

4dju to 4djv No 1.55

4dju to 4djw Yes 1.52

4djx to 4djy No 1.16

1.3. Growing and scoring

As a final step, we assessed whether the interaction energies generated for the grown

R-groups could be used to rank molecules in a H2L stage. PELE’s interaction energy

usually discriminates against similar-sized ligands to the same target. Thus, we

hypothesize that they may work when scoring ligands with a common structural

scaffold; we also expect differences in entropic terms to be minor compared to the

change in enthalpy.

The chosen benchmark involves the FEP+ original study (Steinbrecher et al., 2015),

which allowed us to compare our technique with Glide, MMGBSA, and FEP+. The

structural validation indicated that FragPELE could accurately predict the ligand-bound

geometry within a BS after R-group growth, even in cases where significant heavy atom
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gains are involved. Hence, this study assessed the accuracy of FragPELE at growing

and scoring fragments and if the software falls midway between the accurate but

expensive FEP and the cheap but sometimes inexact docking algorithms.

Systems and methods. We evaluated our software performance at growing and scoring

fragments in five systems on the previously mentioned benchmark (Steinbrecher et al.,

2015): T4 Lysozyme, DNA ligase, MUP-I, JAK-II, and p38. These systems were

carefully chosen for variable fragment sizes, BS characteristics, and MW. We discarded

those cases where the molecule was not amenable to R-group growing methodologies,

such as molecules constituted by single rings or alchemical transformations of heavy

atoms of the core. To see the ligands list visit Appendix A. Standard Induced-Fit Glide

(Schrödinger, 2018) calculations with an OPLS3 force field (Harder et al., 2016) were

run, and our results were compared to FEP+, Glide SP docking, and MMGBSA directly

provided in the benchmark paper (Steinbrecher et al., 2015). FragPELE simulations

were run following the same protocol as in the structural benchmark.

Results were evaluated by computing the coefficient of determination (R²) between the

predicted and the experimental values. This metric will determine the proportion of

variability in the predicted values explained from the experimental ones, giving the

goodness of fit between both. Therefore, we would know whether an estimator is

helpful in ranking the ligands independently of its ability to predict absolute free

energies. They range from 0 to 1, one meaning perfect fitness between variables.

Results. A complete view of the correlation results is illustrated in Table 3.8, and

individual correlation plots are shown in Appendix B section. The correlations obtained

with FragPELE are moderately worse than FEP+ for lysozyme, DNA ligase, and JAK-II

systems. Our method contrives FEP+ in MUP-I and, surprisingly, outperforms FEP+ in

the p38 results. Moreover, our results are substantially better than Glide SP scores for

almost all systems, as the latter does not account for side-chain flexibility. However, for

p38 and lysozyme, which have a low MW correlation, Glide (SP and Induced-Fit) and

MMGBSA perform poorly, while FragPELE and FEP+ obtain good correlation values.

Finally, all methods struggle for JAK-II (0.32 MW correlation), with only FEP+

achieving an acceptable correlation (0.64).
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One-tailed paired t-tests (threshold %5) were computed using the SciPy python package

(Virtanen et al., 2020), taking R² for each system as observables. Results confirmed that

FragPELE predictions higher correlate with experimental values than GlideSP, Glide

Induced-fit or either MMGBSA (default and flexible) (p-values 0.046, 0.0048, 0.048,

0.01 < 0.05, respectively), but non-significant differences were reported in FEP+

(p-value = 0.726 > 0.05). When applying left-sided t-test comparing FragPELE with

FEP+, non-significant differences were observed (p-value = 0.274 > 0.05), suggesting

that  FEP+ does not outperform FragPELE.

Table 3.8. Coefficient of determinations between experimental data and different scoring

approaches from FEP+ benchmark of Steinbrecher et al., FragPELE, and Induced-Fit Glide.

Reprinted (adapted) with permission from (Perez et al., 2020). Copyright 2020 American

Chemical Society.

System
PDB
code

R²
FragPELE

R²
FEP+*

R²
Glide
SP**

R²
Glide

Induced
- fit

R²
MMGBSA
default**

R²
MMGBSA
flexible**

R²
MW

Lysozyme 181L 0.64 0.79 0.32 0.28 0.40 0.3 0.32

DNA
ligase

4CC5 0.88 0.98 0.36 0.75 0.01 0.36 0.92

MUP-I 1I06 0.96 0.94 0.92 0.84 0.86 0.75 0.93

JAK-II 3E62 0.48 0.64 0.50 0.19 0.50 0.21 0.32

p38 1W7H 0.87 0.69 0.09 0.50 0.01 0 0.63

* R² recomputed with predicted values from Steinbrecher et.al.

** R² directly extracted from original FEP+ benchmark.

Regarding computing time, FragPELE spends an average of one hour per fragment on

48 Intel Xeon Platinum 8160 processors and can be quickly executed on any CPU

cluster. Thus, its computational cost falls midway between FEP and docking but still

tracking for the dynamics of the ligand-protein system.

We could validate the FragPELE method to perform dynamic fragment growing through

the structural and scoring benchmarks, assessing its potential for predicting binding

geometries and affinities. A further discussion about the technique will be expanded in

its correspondent section in the Discussion chapter.
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Additionally, this initial version still presents some limitations, such as only expanding

from hydrogen, not modifying FFP solvent parameters along with fragment growing

stage, and only R-group addition through single bonding. After their application in

several drug design projects, errors were solved, and new functionalities arose. More

details regarding this topic are discussed in Appendix C.

2. Growing on hydrated sites

The effect of water molecules in hydrated binding sites can play a crucial role in

defining cavity interactions. Hence, they must be considered in drug discovery studies

(Ichihara et al., 2014). Herein, waters usually coordinate key protein-protein or

protein-ligand HBs, which are fundamental to stabilizing the substrate binding.

Several hit-to-lead campaigns aim to modify hit compounds to displace water molecules

and gain these indispensable new interactions, improving ligands' potency (Abel et al.,

2008; Barillari et al., 2007; J. M. Chen et al., 1998; Michel et al., 2009). In the previous

section (Section 1, Chapter 3), FragPELE has been presented as a promising ligand

growing tool to predict binding geometries and score the newly grown fragments

accurately; however, growing fragments on hydrated sites was still an unfinished

business. The method performed worse when not considering explicit waters from

hydrated systems, with the limitation of fixing them through position constraints when

included. The recent release of aquaPELE (Municoy et al., 2020) (Section 3.4.2 of

Chapter 1), a new PELE version that includes MC steps following a mixed

implicit/explicit solvent model, could be the ideal solution for FragPELE simulations to

face hydrated systems, allowing the displacement and relocation of explicit water

molecules while the ligand is expanded. Therefore, we combined both tools and

assessed their ability to displace or keep explicit water molecules, enhancing the

prediction when facing hydrated BS. Similarly to FragPELE’s benchmarks, we divided

them into two parts: structurally and scoring assessments. Additionally, all the work

described within this section has been in collaboration with Ignasi Puch during his

Master thesis.
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2.1. Structural validation with explicit waters

This structural study aims to evaluate the ability to relocate buried explicit water

molecules when growing fragments on hydrate cavities, assessing the predicted poses

for ligand and displaced water molecules.

2.1.1. Methods

Benchmark design and preparation. Ten structural tests were designed, where the

growth of a fragment onto an initial X-ray structure led to the second crystallographic

structure. For these tests, five variated and structurally well-defined receptors with

hydrated BS were selected: heat shock protein 90-alpha (HSP90),

bromodomain-containing protein 4 (BRD4), TATA-Box binding protein associated

factor 1 (TAF1), sialic acid-binding periplasmic protein (SiaP), and the checkpoint

kinase 1 (CHK1). Figure 3.13 shows the set of chosen systems for this structural

benchmark. A-D and O-R (Kung et al., 2011; Woodhead et al., 2010) are binders of

HSP90, E-F (Nittinger et al., 2019) of BRD4, G-I (Nittinger et al., 2019) of TAF1, J-L

(Darby et al., 2019) of SiaP, and M-N (Foloppe et al., 2006) of CHK1. Systems A to N

were considered positive tests (waters abandon the cavity).

We also aimed to prove that not all water molecules abandon the cavity after growing a

fragment on the initial scaffold. Unfortunately, in the literature, we could not find any

co-crystallized system where the growth of a fragment does not displace explicit waters.

Consequently, the last group (O-R) was virtually designed and rationalized as the

control group. In the O-P test, we proposed the addition of hydrophilic hydroxyl

fragments onto 3RLQ (A), trying to stabilize the water molecule (A248) of the X-ray

instead of the methyl group from 3RLR (B). Then, in Q-R, we performed a self-growing

exercise to see if both water molecules (A1 and A3) stayed in place, interacting with the

fragment after re-growing it.

75

https://paperpile.com/c/KisYB7/pAZU+XeCt
https://paperpile.com/c/KisYB7/GQkE
https://paperpile.com/c/KisYB7/GQkE
https://paperpile.com/c/KisYB7/QvWy
https://paperpile.com/c/KisYB7/XLWA


2. Growing on hydrated sites Chapter 3. FragPELE

Figure 3.13. 2D illustration for the systems considered in the structural benchmark (A to

R). Next to each label, the PDB code of the X-ray crystal is indicated. One or more new

compounds are created from the initial structure by growing a single fragment. Arrows
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(continuation) represent these transitions, showing the differences in free energy or

IC50s between each pair. Notice that most of the explicit water molecules (labeled

according to the PDB file information) are entirely displaced by the fragment grown

(A-N), except for the two last systems (O-R). P and Q, highlighted with an asterisk (*),

are modified versions of the X-ray.

For each pair of protein-ligand complexes (indicated with arrows in Figure 3.13), the

initial X-ray was utilized as input structure for aquaPELE and FragPELE simulations.

Crystals with missing side-chains were introduced with the 3D Builder tool of Maestro,

running then a local minimization on these residues with the OPLS2005 force field

(Banks et al., 2005; Kaminski et al., 2001) and implicit solvent SGB (Gallicchio et al.,

2002). Systems were prepared with Protein Preparation Wizard (Sastry et al., 2013),

deleting all explicit water molecules further than 5 Å of any ligand atom. The definition

of protonation states and its H-bonds optimization was done with PROPKA (Olsson et

al., 2011) at the crystallization pH for each system.

First, a control simulation with aquaPELE was run to evaluate the algorithm's reliability

in finding hydration sites and good ligand positions. When preparing the waters of these

complexes, solvent-exposed explicit waters were removed, keeping only buried ones

stabilizing crucial protein-protein interactions or the ligand-protein interface. We fixed

these water molecules whose location is well-known, except those prone to be displaced

when growing a bulky fragment onto the scaffold, defining them as waters to be

perturbed. Perturbable waters were manually moved to a new random location at ~2.5 Å

of distance from their original site to avoid any bias toward initial structures. Water

regions were defined case by case, centering the spherical box close to the growing site.

The radii were big enough to let waters explore the whole BS and partially reach

solvent-exposed regions. With this configuration, we expected that perturbable waters

could find the most suitable place to stay within the cavity or the solvent when any

favorable location is not found. Figure 3.14 shows an illustrative example of the water

selection strategy.
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Figure 3.14. Water selection example (PDB code: 3RLQ). Solvent-exposed and

non-relevant water molecules (in black) will be deleted from the system, keeping and

fixing the ones that stabilize ligand-protein or protein-protein interactions (in red). The

explicit waters around the growing direction (purple arrow) will be perturbed in

aquaPELE simulation (yellow spheres); thus, to avoid biases, they had to be displaced

(orange arrows) to a new random position (orange spheres). Created with Maestro

(Schrödinger, 2018).

Finally, both techniques (aquaPELE and FragPELE) were combined with growing the

desired fragment in each pair of initial-final crystal structures. We used the same initial

structure and configuration as the previous simulation to compare the results.

Simulation configuration. AquaPELE simulations were configured to explore the

variable ligand conformations and hydrate sites within the receptor BS. We performed

47 parallel simulations of 400 MC steps (18.800 total steps). Ligand’s translations and

rotations were respectively set to 0.25-0.5 Å and 0.1-0.05 radians, defining its

perturbation box centered on the ligand’s center of mass with a radius of 4 Å (similarly
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to the standard FragPELE configuration). Fix explicit water molecules were determined

case by case considering the characteristics of each receptor's cavity (structural role,

protein-ligand coordination, water networks). Table 3.9 shows which explicit waters

were fixed for each system.

Table 3.9. Fixed waters for each system, accordingly identified as in PDB files.

Systems PDB scaffold Fixed waters IDs

HSP90 3RLQ 1, 237, 243, 258, 313

2XAB 2118, 2155

3RLP* 6, 230, 240, 244, 261, 274, 292, 297, 310, 311, 336, 370,
372

BRD4 5I80 352, 364

TAF1 5I29 1832, 1882

SiaP 2V4C 2016, 2037, 2088, 2109, 2110, 2198, 2226, 2228, 2251,
2253, 2343, 2344,  2345

CHK 2C3L -

Regarding aquaPELE configuration, water regions were set according to the geometry

of each BS (centered in the growing site and big enough to reach solvent-exposed

regions and the entire cavity). Herein, two explicit water molecules were perturbed, the

minimum amount recommended to permit interaction networks between them. We also

applied the best-reported water perturbation parameters of aquaPELE (Municoy et al.,

2020) (temperature of acceptance of 5000K, 100000 steric trials, and randomly

alternating translations of 4-2 Å).

The same aquaPELE configuration was used in the simulations of FragPELE 3.0 (see

Appendix C). The growth was done in 10 GS of 6 MC steps, using the Soft-core

protocol (defined in Appendix C section), with strong minimizations in the early first

half of the phase (and then relaxed). The sampling simulation consisted of 400 MC

steps, comparable with the initial control simulation.
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Both aquaPELE and FragPELE simulations were run utilizing the OPLS2005 force field

(Banks et al., 2005; Kaminski et al., 2001). Additionally, the implicit part of the mix

solvent model used for aquaPELE was parameterized by employing the variant

dielectric version of the SGB implicit solvent model (VDGBNP) (Zhu et al., 2007).

Simulation analysis. PELE simulations provide thousands of different accepted

protein-ligand conformations, including multiple positions for the perturbed water

molecules. Thus, a ligand and water clustering analysis has been performed on the

protein-ligand 3D structures retrieved from simulations to find the essential binding

modes and hydration sites. This analysis strategy has been stated in Municoy et al.’s

work (Municoy et al., 2020); however, we will shortly summarize it in the following

lines. Initially, the three-dimensional space is discretized with a clustering mean-shift

algorithm from the Scikit-learn library (Pedregosa et al., 2011), which defines the

coordinates of the heavy atoms as centroids. The algorithm computes the weighted

mean given a set of points N(x) and a λ window size (Equation 3.8), where K (xi - x) is a

flat window function with a fixed bandwidth with the form stated in Equation 3.9. This

bandwidth will define the distance between clusters.

(3.8) 𝑚(𝑥) =  Σ
𝑥

𝑖
∈ 𝑁(𝑥)

 𝐾(𝑥
𝑖
 −  𝑥) 𝑥

𝑖
 /  Σ

𝑥
𝑖
∈ 𝑁(𝑥)

 𝐾(𝑥
𝑖
 −  𝑥)

Equation 3.8. Mean-shift computation.

(3.9)

Equation 3.9. Definition of K(x) function.

First, the clustering of the ligand binding modes was performed with the

aforementioned mean-shift algorithm, using, in this case, a bandwidth of 2.5 Å,

assigning then a specific cluster to every snapshot of the simulation. Second, to define

the hydration sites of each ligand pose, a new round of clustering was applied to water

molecules for each of the defined ligand clusters. Similarly, these molecules were
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iteratively clustered with the mean-shift algorithm but defined a smaller bandwidth of

1.5 Å to imitate the atomic radii of a water molecule. Cluster densities (⍴) are calculated

by comparing the most populated cluster to the population of each cluster with Equation

3.10, where Ni is the number of times that a water molecule landed in cluster i. In

contrast, Nmax is the maximum number of times a water molecule has landed in any

cluster. This definition makes the density always have values between 0 and 1.

Moreover, the ligand heavy atoms' RMSD against the reference X-ray (see Figure 3.13)

was computed for each pose in the simulation, together with interaction energies.

(3.10) ⍴ =  𝑁
𝑖
/𝑁

𝑚𝑎𝑥

Equation 3.10. Water density equation.

This study evaluated both the ability to predict ligand poses and hydrated sites. We

selected the most populated ligand cluster of each aquaPELE or FragPELE to compare

their RMSD values and the density of water molecules with the reference X-ray.

2.1.2. Results

Ligand poses. Energy profiles (Figure 1D from Appendix D) have revealed that the

most populated clusters are generally the ones with the lowest RMSDs, as is

summarized in Figure 3.15. These clusters coincide with the lowest energetic ones,

proving that PELE’s energy function can correctly score X-ray-like conformations. The

only exception to the rule is system D, where the two most populated clusters are very

close in terms of energy and RMSD.

Structurally, most of the selected clusters kept the mean of RMSDs around 1 Å, except

in systems D, F, and N, which had higher values but below 2.5 Å in all of them. These

higher RMSD conformations are not surprising when facing cavities with parts of the

ligand close to solvent-exposed regions, as in systems D and F, where part of the

scaffold has been slightly moved to the solvent as a consequence of the inner fragment

expansion. Contrary, the explanation for the high RMSDs in the system N is the

allocation of the growth fragment in a large empty pocket. It can quickly flip and adopt

multiple conformations, giving; as a result, these high and wide ranges of values.
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Figure 3.15. Ligand clusters RSMD distribution. The boxplot represents the most

populated cluster, while blue lines show the mean RMSD values for the other clusters.

PDB codes and their assigned letters correspond to the panels in Figure 3.13. The

blue-labeled identify the results from only aquaPELE simulations and green-labeled the

combination of aquaPELE and FragPELE methods.

Hydrated sites. The waters of the most populated ligand cluster resulting from the

above analysis were clustered. Water densities were calculated using Equation 3.10, and

distances from their original site were also obtained. All results are shown in Table 3.10.

In the HSP (1) (panel A of Figure 3.13), we pursue the displacement of two water

molecules, A249 and A286, that were not present in the growth ligand (panel B of

Figure 3.13). In this case, a water region of 10 Å radii had to be set to let the water

molecules migrate to the solvent. The water clusters in the first aquaPELE simulation

predict the most populated cluster halfway between the positions of the two X-ray

locations of the water molecules (Table 3.10). Even though the hydration site was

predicted correctly, finding a density of 1.0 (100% of the time, there is a water molecule
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within), we observed only one water cluster instead of two. This fact is explained due to

the moderately large bandwidth set in the clustering analysis (λ= 1.5 Å), which led to

obtaining only one site, but whether this value is reduced, two sites arise. To explain

these results, we checked electron density maps (Appendix E, Figure E1). We observed

three close contacts of A249 with amino acids, while A286 only interacted with one of

them. Additionally, the electronic cloud is bigger in A249 than in A286. This

information hypothesizes that A249 is a more stable hydrated site than A286, which

seems more transitory (Appendix E, Figure E1).

When the methyl group was expanded, the cluster was displaced, getting closer to the

A249 position (Δrcc = 1.13 Å), and its density shrank too (Δρ= -0.45), predicting,

therefore, an apparent reduction in the water molecule’s presence and getting rid of the

hypothesized lowly stable water molecule (A286) (Table 3.10).

In the second HSP90 system, the same radii size of 10 Å was set. Here, aquaPELE

simulations precisely predict the position of both explicit waters, showing short

distances between crystallographic and predicted pose and high densities (ρ=1.0 and

0.68) (Table 3.10). Only one water molecule was completely displaced when growing

the fragment, while A2115 stayed. In 2XJG X-ray, the space of A2246 is occupied by

the growth fragment, whereas the displacement of A2115 is not evident (Appendix E,

Figure E2).

BRD4 required an expansion of the water region to 10.5 Å in order to reach the solvent.

Its BS shows a complex network of water molecules buried in the growth direction,

composed of four waters (A320, A331, A333, and A360) (Figure E3, Appendix E).

AquaPELE densities for the water sites of interest (A319 and A336) were lowered by

0.67 and 0.13 (Table 3.10). The algorithm could also predict the previously mentioned

network, with densities of 1.0, 0.1, 0.85, and 0.23, respectively (Figure E3, Appendix

E); it revealed lower densities in A319 and A336 than in the HSP systems (Table 3.10).

Moreover, the growth of the fragment vanished both molecules and predicted at the

same time the new distribution of the waters' network (A305, A341, A350, A351, and

A414 with rcc = 1.03, 0.58, 0.38, 0.93, and 1.24 Å and ρ = 1.0, 0.14, 0.22, 0.24 and 0.19

respectively) (Figure E3, Appendix E).
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Table 3.10. Structural comparison between X-ray hydrated sites and simulated water clusters.

Checkmark (✓) indicates a distance below 1 Å between the average coordinates of the oxygen

atom (from the water molecule) and its crystallographic pose (Δrcc < 1 Å). A single cluster was

detected for both explicit waters when one density extends over two different water IDs (i.e.,

HSP90 (1), A249, and A286: ρ= 1.0). Notice that the last column shows the difference in

density (Δρ) in contrast with the only aquaPELE simulation (ρ).

Likewise, in TAF1, we also encountered a network of water molecules near the growing

area (Figure E4 of Appendix E), obtaining a reduced density of the waters of interest (ρ

= 0.09 and 0.49). By utilizing radii of 10 Å, the simulation predicted two other water

clusters belonging to the cited crystallographic water network: A1833 (ρ = 1.0 and rcc =

0.62 Å) and A1952 (ρ = 0.26 and rcc = 0.64 Å). When growing the first fragment the
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cluster density sank to negligible values (ρ = 0.03 and 0.05) and three crystallographic

water locations were predicted at once: A1815, 1859 and 1867 with ρ = 0.08, 1.0 and

0.4, and rcc = 0.57, 0.88, and 0.84 Å respectively (Figure E4 of Appendix E). The growth

of the second fragment displaced A1891 while the other persisted with a residual

density of 0.13. Again, the three same explicit water poses were predicted (the names

are changed to A1808, A1812, and A1817), obtaining densities of 0.08, 1.0, and 0.4;

and rcc of 0.21, 0.74, and 0.63 Å, respectively (Figure E4 of Appendix E).

SiaP WT was considered one of the most challenging systems due to its holo-structure,

making it difficult to access the bulk solvent. Moreover, its BS was extremely

hydrophilic, possessing many water molecules surrounding the ligand (Figure E5 of

Appendix E). The radii of the water region had to be set to 12 Å to reach the solvent,

being the largest one in all simulations. Even though the goal was only to move one

water molecule, two were added to form HBs networks. AquaPELE results showed a

low-density cluster (ρ= 0.07), probably due to the high number of hydrated sites around

the ligand. However, six water sites within the BS were predicted (A2011, A2017,

A2021, A2113, A2192, and A2212 with ρ= 0.60, 0.13, 1.0, 0.07, 0.33, and 0.05; and rcc

= 0.73, 0.70, 0.48, 0.75, 0.46, and 0.74 Å respectively) (Figure E5 of Appendix E). The

growth of the first fragment fully displaced the perturbable water A2346, finding a

network of three water molecules around it (A328, A347, and A362 with ρ= 1.0, 0.32,

and 0.68; and rcc = 0.56, 0.61, and 0.36 Å) (Figure E5 of Appendix E). Similarly, when

growing the second fragment, the residual cluster disappeared, and the position of the

four water molecules network was also predicted (A2009, A2019, A2104, and A2227

with ρ= 1.0, 0.23, 0.22, and 0.30; and rcc = 1.49, 0.51, 1.01, and 1.33 Å, respectively)

(Figure E5 of Appendix E).

The last case, CHK1, presented a set of relevant properties that make it a challenging

system: an exposed BS, the largest fragment, and the most significant number of

molecules to perturb (4). Due to the wide-open BS, the water region radii had to be set

to 11 Å. AquaPELE simulations predicted two relevant water clusters: one close to

A2056 (ρ= 0.25, rcc= 0.18 Å) and another in between of A2056 and A2127 ( ρ= 1.0,

and rcc= 2.24 and 1.3 Å and respectively) (Figure E6, Appendix E). The growth of the

big-sized fragment made the cluster less populated disappear and remarkably reduced
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the density of the second one to 0.09, pushing the clusters with higher populations to

solvent-exposed areas.

Control systems. The first control study consisted of using the HSP (1) system (X-ray

3RLQ) to expand a hydrophilic fragment (hydroxyl) instead of the already tested

hydrophobic methyl moiety. As the aquaPELE simulation was already computed in the

previous-mentioned test, we only executed the growing part using identical

configuration parameters. Results correctly identify a cluster of waters close to the

A249, keeping the same density value as we found in the aquaPELE simulation. Hence,

the explicit water stayed and was not displaced. Additionally, at 1.21 Å of distance from

A286, a new cluster of water molecules appeared, but its density was residual (ρ= 0.03).

This result revealed that our method could displace or not the water molecules

depending on the physicochemical properties of the grown fragment.

In the second control, we performed a self-growing exercise to assess whether our

algorithm can preserve the position of water molecules (and reproduce the X-ray

structure) after growing a fragment close to them. Here, we also use a water region with

a radius of 10 Å. AquaPELE simulations identified two hydrated sites tight to A1 (rcc=

0.26 Å) and A3 (rcc= 0.46 Å) with ρ= 1.0 and 0.8, respectively. Interestingly, the same

sites were suitably recognized when growing the fragment, but the cluster’s density

close to A3 was boosted to 0.97 (A1 rcc= 0.36 Å; A3 rcc= 0.19 Å). Thus, the allocation

of explicit waters of the original X-ray (3RLQ) was nicely reproduced.

2.2. Growing and scoring on hydrated systems

2.2.1. Methods

Benchmark design and preparation. In this second part, we performed a growing and

scoring exercise on three congeneric series of HSP90 inhibitors with known

experimental binding affinities. However, only a few of them had available X-ray

structures. Figure 3.16 defined a common structural scaffold (S1, S2, and S3) for each

series, and then, to assemble the complete set of molecules, we grew different

substituents on R1, R2, R3, and R4 sites (Tables 3.11). Scaffold structures were

constructed from an X-ray that contained the shared substructure by replacing R-groups
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with hydrogen atoms. S1 series was initialized from 3RLP X-ray (compound Kung-7),

S2 series from 3RLQ (compound Kung-13), and S3 from 2XAB. Systems were

prepared identically than in the structural section (visit Section 2.1.1 of Chapter 3).

Figure 3.16. HSP90 common scaffolds for the three series of inhibitors used in the

scoring benchmark. S1 and S2 series were obtained from Kung et al., and S3 from

Woodhead et al. studies (Kung et al., 2011; Woodhead et al., 2010). The content of R1,

R2, R3, and R4 moieties for each series are specified in Tables 3.11.

Simulation configuration. To properly analyze the effect of the explicit waters on

FragPELE predictions, three different simulation conditions were employed: no explicit

waters (NW), with fixed waters (FW), and also perturbing the water molecules close to

the region of growth with the aquaPELE algorithm (W). The same criteria from the

previous section were utilized to choose the explicit waters to keep fixed.

AquaPELE simulations were prepared following the exact configuration of the

structural section by selecting two perturbable water molecules, but, in this case, as we

were not interested in structures, simulations started from their crystallographic pose.

When more than one fragment has to be grown to construct the entire compound, we

run intermediate growing simulations to add R-groups until only one substituent is

missing. These intermediate simulations pretend to be faster than regular FragPELE

growing, aiming to grow the R-group quickly with a reduced sampling (the latest

simulation will be the explorative one). Here, the fragment is placed at 33% of its final

size, starting in the second GS and finalizing at the fifth. Ligand translation and
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rotations (perturbation) are suppressed, allowing only side-chain prediction and

energetic minimizations to keep the scaffold in a similar position to the original one but

permitting at the same time the expansion of substituent. Compounds that shared the

same R-group (and scaffold) were joined together to run solely one intermediate

simulation and reduce the number of calculations. The growth of the last R-group was

performed following the standard FragPELE protocol (explained in the previous

section) but lowering the number of MC sampling steps to 50 (instead of 400). Our

interest is to explore the energies and not the hydrated sites. Consequently, based on the

first FragPELE scoring benchmark, we consider that a sampling of 2350 MC steps (50 x

47 parallel simulations) produced enough data to get valid predictions in a reasonable

computation time.

In the S1 series, chlorides and oxymethyl fragments were grown onto different positions

of the scaffold’s benzene ring (visit Figure 3.16 and Tables 3.11). Waters surrounding

the other rings were fixed when involving the protocols W and FW. Differently, in

protocol W, explicit waters close to the growing regions were defined as perturbable. In

the S2 series, we focused the fragment’s growth on another region, close to the

pyrrolo(2,3-d)pyrimidine ring. Therefore, waters neighboring this area were mobile

while the waters close to the benzene ring were fixed. Lastly, in S3, just a single water

molecule that coordinated a ligand-protein interaction was fixed. The complete list of

fixed and perturbable water molecules for each system is reported in Table 3.12.

Tables 3.11. Calculated ΔG from experimental Ki‘s from Kung et al. and Woodhead et al.

studies (Kung et al., 2011; Woodhead et al., 2010). Values were obtained applying the formula

ΔG = RT·ln(Ki), where T=298K.

S1

Compound R1 R2 R3 ΔG (kcal/mol)

Kung-4 OCH3 H H -6.95

Kung-5 OCH3 Cl H -7.59

Kung-6 Cl Cl H -8.80

Kung-7 Cl Cl OCH3 -9.34
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S2

Compound R1 R2 ΔG (kcal/mol)

Kung-10 COCH3 H -9.13

Kung-11 F H -9.13

Kung-12 Cl H -9.13

Kung-13 CN H -10.08

Kung-14 H CH3 -7.77

Kung-15 Cl CH3 -9.54

Kung-16 CN CH3 -10.25

Kung-17 CN CH2CH3 -10.66

S3

Compound R1 R2 R3 R4 ΔG (kcal/mol)

Woodhead-2 isopropyl H H H -12.63

Woodhead-5 isopropyl H H CH3 -10.66

Woodhead-6 CH2CH3 H H H -11.85

Woodhead-7 cyclopropyl H H H -11.44

Woodhead-8 sec-butyl H H H -11.61

Woodhead-9 tert-butyl H H H -12.26

Woodhead-10 Cl H H H -11.44

Woodhead-11 isopropyl H F H ND

Woodhead-12 isopropyl F H H ND
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Tables 3.12. Fixed and perturbable waters for each series (S1, S2, and S3).

Series Fixed waters IDs Perturbable waters IDs

S1 A1, A3, A4, A244 A6, A261

S2 A237, A258, A313 A249, A286

S3 A2118 A2115, A2246

Score calculations. Simulation results were analyzed following the same clustering

strategy as in the structural section (described above). We computed six scoring criteria

based on PELE’s interaction energies to determine which one correlates the best with

experimental energies. On the one hand, the cluster selection was based on the lowest

energy value: (1) the percentile 5 of interaction energies (P5), (2) the percentile 25

(P25), and the mean interaction energy (MBE). We used the reported energy value as a

scorer in all of them. On the other hand, we based the clustering selection on population

instead of energies, using the same energies calculations: the percentile 5 (POP5), the

percentile 25 (POP25), and mean interaction energy (POPMBE).

2.2.2. Results

Scoring results from structural free energies. Systems from the structural benchmark

not only reported X-rays but changes in binding energies (free energies) and IC50

values were included (Figure 3.13). Even though it was not the primary intent of these

simulations, we drew on them to assess whether our scores could correctly predict or

not their energetic differences.

The six scores were computed for the growth of 5 fragments (A to B, C to D, J to K, J to

L, and M to N, as labeled in Figure 3.13) from the simulations that combined FragPELE

with the aquaPELE algorithm. BRD4 and TAF1 were discarded from the analysis to

make the results comparable, as they reported changes in IC50 instead of ΔΔG.

Correlations between experimental free energies and the predicted values are

summarized in Table 3.13. Results showed an adequate predictive power for all scoring

methods, with R² above 0.8. Nevertheless, the sample size of these predictions is

relatively small, and consequently, we can not extract reliable conclusions. In the next
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section, we will extend these symbolic results on a more extensive set and compare the

calculations with or without aquaPELE and how it enhances by using merely the

implicit solvent approach.

Table 3.13. Correlation between experimental free energies from the structural set and predicted

data (six scores, see Score calculations of Methods section). These values were computed with

an n=5.

Scoring method r R²

P5 0.91* 0.83*

P25 0.99* 0.98*

MBE 0.96* 0.92*

POP5 0.91* 0.83*

POP25 0.93* 0.86*

POPMBE 0.91* 0.83*

* p-value < 0.05 (t-test). Significative association
between experimental and predicted values.

Scoring results from the S1, S2, and S3 series. The correlation between experimental

and predicted free energies for the S1, S2, and S3 series by employing the three

experimental conditions (W, FW, and NW) is summarized in Tables 3.14.

S1 series reported the best results, with Pearson's correlation close to 1. Notably,

incorporating water molecules into the simulation (W or FW) improved the quality of

the predictions compared with the NW protocol. The best correlations were obtained by

integrating FragPELE with aquaPELE and scoring with the POP5; still, P5, P25, and

POP25 showed similarly good performances (Tables 3.14, S1).

In the S2 series, the same pattern can be observed: protocols including explicit waters

(W and FW) outperform the ones without them (NW) (Tables 3.14, S2). The best score

is reported in the FW protocol (scoring method MBE). However, r values can quickly

drop, indicating a high variability depending on how the cluster is selected, and actually,

the significance of the correlation can be affected. In this case, choosing the scorer

cluster by population reported a lower and non-significant correlation than using
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energetic criteria (Table 3.14, S2). Contrary, W protocol results are more stable than FW

and NW since the correlation variance is also higher.

Tables 3.14. Correlation between experimental calculated free energies and predicted data by

applying the six scores (see Score calculations section) in the S1, S2, and S3 congeneric series.

Protocols used: W) aquaPELE+FragPELE, FW) FragPELE with explicit waters fixed, NW)

FragPELE without explicit waters (only implicit solvent).

S1 (n=4)

Scoring method r (W) r (FW) r (NW)

P5 0.98* 0.96* 0.71

P25 0.97* 0.93 0.72

MBE 0.92 0.91 0.75

POP5 0.99* 0.96* 0.76

POP25 0.97* 0.93 0.78

POPMBE 0.92 0.91 0.76

Original 0.55 0.35 0.52

S2 (n=8)

Scoring method r (W) r (FW) r (NW)

P5 0.78* 0.75* 0.65

P25 0.72* 0.83* 0.58

MBE 0.78* 0.84* 0.80*

POP5 0.76* 0.61 0.63

POP25 0.73* 0.63 0.50

POPMBE 0.73* 0.61 0.48

Original 0.78* 0.82* 0.77*
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S3 (n=7)

Scoring method r (W) r (FW) r (NW)

P5 0.58 0.39 0.24

P25 0.46 0.29 0.31

MBE 0.48 0.30 0.27

POP5 0.58 0.32 0.31

POP25 0.44 0.20 0.31

POPMBE 0.50 0.16 0.22

Original 0.51 0.26 0.27

* p-value < 0.05 (t-test). Significative association between experimental
and predicted values.

The S3 series showed the lowest correlation compared with the previous two but

followed the same trend: perturbing water molecules retrieve the best results. As only

one water molecule was fixed, differences between perturbing (W) and not perturbing

them (FW and NW) are more prominent than in the previous two series (Tables 3.14).

However, in this case, including aquaPELE has not been enough to correlate predicted

and experimental values accurately (Tables 3.14, S3).

Looking at Figure 3.17, one can quickly observe the general view of the results

depending on the scoring method and the protocol employed. According to the results

mentioned above, it is clear that in hydrated systems, the best strategy is fixing crucial

waters and perturbing the ones closer to the region of growth (W). Additionally, this

protocol is the most stable in terms of scoring (Figure 3.17). When looking at the

deviation depending on the scoring method used, the W protocol showed a standard

deviation of only 0.03. In contrast, the other two protocols, FW and NW, have a higher

dispersion (0.06 and 0.04, respectively). FW results are slightly worse than W, but both

are audibly outperforming NW (Figure 3.17); therefore, these results highlight the

importance of keeping track of explicit water molecules in molecular simulations and

their effect on the prediction’s trustworthiness.
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Regarding scoring methods, both P5 and MBE reported the highest averages computed

by combining all protocols (Figure 3.17). Still, when perturbing water molecules, the

best way to compute the score is using the 5th percentile of interaction energies and

selecting the cluster by any of both criteria, population or energy, as the most populated

cluster coincides with the one with the lowest energies. This rule is not followed when

waters are not perturbed, and subsequently, the correlation drops when selecting clusters

by population (POP25 and POPMBE) (Figure 3.17). In those cases, it is recommended

to pick clusters by energy instead.

Figure 3.17. Average Pearson’s correlation (r) for each protocol type (W, FW, and NW)

and scoring methods (P5, P25, MBE, POP5, POP25, and POPMBE). Notice that in P5

and MBE (the two highest), the average ± standard deviation is indicated. No error bars

are shown to help the graph's visualization.

To confirm that the combination of techniques improves our correlations equally to the

previous benchmark, we computed one-tailed paired t-tests (threshold %5) with the

SciPy python package (Virtanen et al., 2020) using the Pearson correlations for each
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system as samples. This test confirmed that the inclusion of water molecules, combining

FragPELE with aquaPELE, results in a higher correlation with experimental values than

using simply FragPELE with implicit solvent models (p-value = 0.029 <0.05).

With the results of this study, integrating both in-house FragPELE and aquaPELE

methods, we can better characterize ligand potencies in a less labor-intensive and

time-consuming strategy than using them individually.
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Chapter 4. SilicoDerm: an industrial

drug discovery project
In 2018 started SilicoDerm, a collaborative project between the pharmaceutical

company Almirall and our team, the Electronic and Atomic Protein Modeling (EAPM)

group from Barcelona Supercomputing Center (BSC). The main goal of this research

was to develop and optimize new VS techniques to identify potent compounds to treat

dermatological inflammatory diseases.

In January of 2019, I got involved in the project to pursue one of the main objectives of

this thesis: participate in an actual drug design project devising new VS strategies and

test the recently developed ligand growing software.

Due to the confidentiality of this project, we cannot publish identifiers, names of the

targets, or 2D or 3D images that could provide information on the structure of any

molecule studied. Thus, anonymized labels will be used to correctly identify receptors,

ligands, or any confidential data.

1. Precedents

This project is based on studying two different targets from the kinases family, labeled

as Kinase 1 and Kinase 2. Recognizing specific low MW binders for these receptors is

still challenging compared with other targets of the same family. In VS campaigns,

researchers screen millions of compounds, and after several filters, experts visually

inspect and manually choose the desired molecules for further in vitro testing. This

project aims at a new protocol to optimize VS methods by applying advanced

induced-fit simulation techniques on a subset of compounds (~1000) pre-selected from

regular docking-based HTVS. After this process, we expect to enrich the activity range

of the top 50-100 compounds. I joined this already running project by applying

FragPELE in a H2L exercise in Kinase 1. Later on, we participated in the second target,

Kinase 2, from scratch.
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2. FragPELE on Kinase 1

Complementing the initial screening performed on Kinase 1, we used FragPELE to

optimize the compound Q1-694. This high-affinity candidate came from a previous

study performed by Almirall, where its experimental affinity (IC50=6nM) and binding

mode were determined. Thus, our collaborators provided as starting structure a

co-crystallized X-ray to later grow several molecular decorators with FragPELE and try

to increase its affinity against Kinase 1.

2.1. Methods

FragPELE validation on X-ray. Initially, we structurally validated FragPELE (version

1.0) for the current target by performing a self-growing onto Q1-694 crystal. The crystal

was prepared by executing Protein Preparation Wizard from the Schrödinger package

(Sastry et al., 2013), including missing side-chains and preserving explicit water

molecules around the ligand BS (5 Å beyond the ligand center of mass). Hydrogens

were incorporated, and H-bonds optimized with PROPKA (Olsson et al., 2011) at 7 pH.

The general structure of the ATP BS of any kinase can be observed in Figure 4.1. Most

of the inhibitors are designed to settle this site, maintaining the HBs with the hinge

region between the two lobes of the kinase (D. Huang et al., 2010; Kedika &

Udugamasooriya, 2018).

In our case, to perform the self-growing exercise, we selected as a scaffold the warhead

region of Q1-694 that was interacting with the hinge region, which is key to stabilizing

the binding mode. Then, a fragment of 9 heavy atoms was removed to grow it.

FragPELE simulations were configured following the standard protocol: 10 GS,

containing 47 independent MC simulations of 6 PELE steps, box size of 4 Å radii,

translations of 0.10-0.05 Å, and rotations of 0.05-0.02 radians, and a final sampling

simulation of 20 PELE steps.

RMSD of the ligand heavy atoms for the lowest binding energy pose was compared

against the X-ray structure. Fragment, scaffold, and total RMSD values were 1.13 Å,

2.14 Å, and 1.82 Å, respectively, not showing significant structural differences between

model and crystal. Additionally, all hinge and fragment interactions were conserved
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after in our model, so we decided to move ahead and perform a second retrospective

study to assess FragPELE’s scores.

Figure 4.1. Binding of ATP to kinase EGFR. Dotted lines showed the ATP-hinge

interaction. Image licensed by CC BY-SA 4.0 (source:

https://commons.wikimedia.org/wiki/File:Binding_of_ATP_to_kinase_active_site_of_EG

FR.svg)

Experimental series for the retrospective study. The experimental series consisted of 28

ligands from Almirall with known IC50 values. According to the distribution of their

R-groups, compounds could be classified into three different subseries. These schematic

views can be seen in Figure 4.2, where they all share a common scaffold region.

However, series 2 included two functional groups as part of the scaffold, one not present

in series 1 (“Group 2”) and the other not shown in series 3 (“Group 1”). Growing sites

were set in different regions depending on the series, as stated with the R symbol in

Figure 4.2. IC50 values were converted to pIC50 (logarithmic scale) to compare with

energy values. The range of activities of the two first sets was relatively narrow:

7.28-7.51 in the first and 7.92-9-14 in the second, and slightly larger in the third one:

6.07-8.55 (with two of them inactive) in the third. A different view of these distributions
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can be observed in Figure 4.3. Obtaining good correlations considering these tiny

ranges was a challenging task when treating them separately.

Figure 4.2. Schematic representation of the fragment’s distribution in Almirall’s

congeneric series. Notice that the growing site in each series was identified with the R.

Figure 4.3. Distribution of experimental pIC50 values for the three sets of inhibitors for

Kinase 1.

Ligand Q1-694 followed the identical distribution of R-groups as the series 1; then, the

scaffold pose of this X-ray was employed to grow the different fragments onto it.
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FragPELE simulations. We propose multiple initial states for FragPELE simulations:

(1) from X-ray with explicit waters, (2) from the lowest binding energy pose with

explicit waters, (3) from X-ray without explicit waters, (4) from the lowest binding

energy pose without explicit waters. We run three replicas changing the random number

generator seed for each initial condition, accounting for 12 simulations per ligand. To

generate the initial structures, we first deleted the R1 region from the Q1-694 X-ray to

create the structures coming from the X-ray. Second, we run a short PELE simulation of

20 MC steps with low translation and rotations to minimize the previous structure,

picking the lowest interaction energy pose. This simulation was done to rectify the

crystallographic binding mode, as the distance to reach the essential interaction with the

hinge was too large. The resultant pose with the interaction recovered was the input

structure in series 1 (initial states 2 and 4) and 3 (by removing Group 1). Notice that

series 3 contained two different growing sites; therefore, two successive FragPELE

simulations should be executed, employing the structure recovered from the first

simulation as input for the second one.

We run standard FragPELE simulations configured with low translation and rotations of

the scaffold region. Fragments of the R1 growing site were grown, building all ligands

from series 1. The lowest interaction energy pose obtained for the ligand whose R1

group matched with Group 2 was used as the scaffold pose for the second series and the

X-ray (which also contained Group 2). Due to the closeness between the fixed waters

and the R2 growing site, we had to erase these molecules from the model to avoid

fragment-water collisions (limitation of FragPELE 1.0). To determine the effect of water

molecules in the system, we compared results with and without explicit waters for series

1, where we observed no differences (R²=0.996). Thus, we moved forward without

water molecules (6 simulations per ligand).

2.2. Results

We did not observe significant differences between simulations beginning from X-ray or

minimized poses, so we computed the mean and standard deviation for the six replicas

of each ligand. Results were compared and correlated with experimental and plotted in

Figure 4.4. The figure shows that Pearson correlation coefficients were low or even
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negative when computing them individually for series with tiny ranges (series 1 and 2).

In series 3, where the range of activities is more extended than the others, we got a

better correlation (however, not significant due to the poor number of samples). We

determined that series 2 were overscored due to larger fragments, some of them

including positive charges, making them non-comparable.

Figure 4.4. Scatter plot comparing FragPELE scores against experimental pIC50 values

for the three series of ligands for the Kinase 1.

Furthermore, inactive compounds were also scored as low-affinity compounds, showing

values of -64,5 ± 1,5 and -69,4 ± 2,97 kcal/mol. Finding false positives is quite familiar

with FragPELE protocol, where ligands barely move and cannot abandon the BS.

However, this fact is compensated mainly by the lower score values.

Considering the results obtained in series 3, we apply the protocol in a prospective

study. Herein, 56 fragments proposed by Almirall were grown onto the R1 site of the

X-ray scaffold structure. Results were compared with the score obtained in the X-ray

self-growing simulations, as the experimental pIC50 was known (IC50 of 6.1nM; pIC50

of 8.19). Then, all scores obtained were normalized and interpolated according to the

self-growing score, computing the predicted pIC50 (Equation 4.1). A global view of the
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results is seen in Figure 4.5. Notice that positively charged tautomers of f1, f1S, and

f1R, showed overscored results, revealing consistency with the aforementioned

validation.

(4.1) 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝐼𝐶50 = 𝑋𝑟𝑎𝑦 𝑝𝐼𝐶50 · 𝑆𝑐𝑜𝑟𝑒 𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡
𝑆𝑐𝑜𝑟𝑒 𝑋𝑟𝑎𝑦

The top 10 compounds were selected and sent to Almirall to consider their synthesis.

Four of them were synthesized and experimentally assayed, showing IC50 values of

1100nM for f1, 26nM for f6, 120nM for 17, and 1.5nM for 96, being this last one four

times more active than the original hit.

Figure 4.5. Predicted pIC50 values (score) based on FragPELE scores for each proposed

fragment. The black line delimits the score of the crystal self-growing. Dotted circles

indicate the compounds selected to synthesize. Fragments f1R and f1S were positively

charged tautomeric forms of the fragment f1, and consequently, these values are

overscored. Notice that error bars represent the standard error of the mean (SEM).
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3. Study of Kinase 2

From what we learned from the Kinase 1 study, where we basically involved an induced

fit protocol on top of Glide docked results, we required a new strategy to optimize the

screening against the new target Kinase 2. Unlike Kinase 1, in Kinase 2, there is plenty

of public information available, including X-ray structures and experimental inhibition

data. Two public co-crystallized protein-ligand X-rays were selected to proceed with

this study, labeling them Xray 1 and Xray 2. The former has the activation loop missing,

while the latter includes this part but shows a slightly narrower ATP binding site. Some

clues about these structural differences can be observed in Figure 4.6. The following

section will expand the new target-specific VS optimized protocol developed for Kinase

2.

Figure 4.6. Xray 1 and Xray 2 structural differences. Overlapping white balls have been

included for difficulting the Xray’s identification. Created with PyMOL (Schrödinger &

DeLano, 2018).
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3.1. Machine learning on optimizing virtual screening pipelines

This exercise's final goal is to optimize VS pipelines by enriching our predictions

through machine learning methods to identify higher affinity hit compounds than

regular VS approaches. Herein, we developed a slightly different approach from the

exercise performed for Kinase 1. In this case, taking advantage of all available

knowledge and experimental data for the Kinase 2, we thought of developing a

target-specific machine-learning-based analysis tool to classify between low (or

inactive) and highly active compounds. The design of this VS pipeline consisted of

several steps that we will explain in detail in the following lines.

3.1.1. Methods

Data collection. Six sets were obtained from ATP BS assays on Kinase 2, reported in

CHEMBL (Gaulton et al., 2012, 2016) database (version April 2020). They were

selected trying to reduce as much as possible the differences between experimental IC50

values (picking experiments from the same laboratory, with similar conditions) in order

to minimize the errors associated with their values. Due to the lack of data from similar

sources, we were forced to mix at least two different conditions. After cleaning

duplicates, we compiled 302 compounds that were enriched with 24 different ligands

supplied by Almirall. Compounds with non-exact IC50, labeled with > 20µM or >

50µM in the assays, were assumed inactive. Therefore, the final set was formed by 20

inactive and 306 actives, and its pIC50 distribution is shown in Figure 4.7.

Systems preparation. Xray 1 and Xray 2 were prepared with Protein Preparation Wizard

(Sastry et al., 2013), analyzing and optimizing H-bonds with PROPKA (Olsson et al.,

2011) at pH 7. All explicit waters and ions were deleted from the system. Given that the

hinge amino acids compose a hydrogen acceptor-donor-acceptor pattern, we require

ligands showing the complementary sequence (acceptor-donor-acceptor). Thus, Epik's

(Greenwood et al., 2010) algorithm from the Schrödinger package was used to forge all

possible ligands stereoisomers in solution, and protonation states with two consecutive

donor, or acceptor atoms, placed in the same direction, were discarded to allow the

correct hydrogen-bonding pattern to interact with the hinge. After applying this filter,

the state with the lowest energetic penalty was picked for each ligand.
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Figure 4.7. pIC50 values distribution of the 306 active compounds.

Initial screening. Ligands were docked using Glide SP (Friesner et al., 2004b;

Schrödinger, 2018) onto both receptors. The center of both grids was set in the central

amino acid of the hinge, with 20 Å of diameter (default value). Additionally, we

imposed constraints on the HBs of the hinge. Two dockings were executed following

two criteria; fitting at least one constraint (1-HB-constrained) or two

(2-HB-constrained). The output was configured to write only one pose (from 5). The

results between 1-HB-constrained and 2-HB-constrained groups were compared,

selecting the pose with the lowest Glide score for each protein-ligand complex.

PELE refinement. Structures from docking’s results interacted with the kinase hinge

due to the docking constraints. Then, the previously selected poses were used as the

initial one for a short induced-fit simulation with AdaptivePELE (Lecina et al., 2017).

The configuration of this protocol consists of 3 epochs of 100 PELE steps, only

allowing movements of the ligand within a small box of 4 Å radii from the ligand center

of mass. Translations and rotations were set to 1-0.5 Å and 0.25-0.1, respectively. After

each epoch, poses are clusterized by ligand RMSD values following a k-means

algorithm. The structures are spawned inversely proportional to the population of each

cluster, selecting more structures from the less populated clusters to initialize the new
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epoch. Besides, an epsilon of 0.25 towards interaction energies was set (the lowest

interaction energies spawn 25% of the poses of the new epoch). This cluster and

spawning strategy enhances the best poses but also explores potential new (less

populated) binding poses. This protocol required 32 processor units, running then in

each epoch 32 independent PELE simulations (one per processor).

Filtering. At the end of the simulation, thousands of new ligand-protein conformations

are generated. We hypothesized that its correct analysis is a clue step to understanding

the binding properties of each ligand. Therefore, we followed several rounds of filtering

and a final clustering step.

First, HBs were computed using a modified MDtraj (McGibbon et al., 2015) hydrogen

bond identification algorithm based on Baker-Hubbard criteria (Baker & Hubbard,

1984). This algorithm sets three criteria to identify HBs: a cutoff angle theta > 120º, a

distance < 2.5Å between hydrogen donor and acceptor atoms, and be present in at least

10% of the snapshots of the trajectory. As we aimed to compute hydrogen bond

frequencies, we excluded the last criteria and independently applied the other two to

each step of trajectories. Afterward, we filtered out all poses that did not fit at least two

of the three key HBs with the hinge. After that, we applied an energetic selection to

keep only the poses with the 25% lowest interaction energies values. Finally, a k-means

clustering by RMSD of the ligand (bandwidth of 2.5Å) is employed in the remaining

structures. The pose with the lowest interaction energy is selected as a representative

structure of the cluster. However, the lowest interaction energy is selected when more

than one cluster per simulation is obtained. A plot example of this filtering process can

be seen in Figure 4.8.

Metrics collection. From all the previous analyses, we thought of several properties that

could be obtained for each protein-ligand complex to define or provide information on

the system. Thus, we collected them as descriptors for each system. From the selected

docking pose, we used the glide score. From the simulation, we took: the total number

of accepted PELE steps, the mean total energy and interaction energy for all the steps of

the simulation, the number of poses fittin 2HBs with the hinge, the size of the selected

cluster, the minimum and the mean interaction energy of the poses within the selected

cluster, the mean amount of successive steps interacting with the central hydrogen bond
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of the hinge; named as central mean resilience. Then, we could also extract relevant

information from the ligand itself: MW, number of heavy atoms, and number of

rotatable bonds.

Figure 4.8. Scatter plot showing the results of the filtering of an AdaptivePELE

simulation. Each dot represents a single pose, and colors illustrate the poses selected after

applying filtering layers. Notice that upper filtering criteria englobe the ones below (F.ex:

green dots also have passed the H bond filter).

Machine learning pipeline. Due to the size of the available experimental data and the

inaccuracies of the IC50 values, we decided to build a straightforward classification

model to distinguish between high and low activity ligands for the Kinase 2. We used

Pandas (McKinney & Others, 2011) and Scikit-learn (Pedregosa et al., 2011) python

packages to design the ML pipeline. Therefore, we use all the descriptors mentioned

above for the entire dataset of compounds (CHEMBL and Almirall sets) to train and test

the model. Ligands with pIC50 >= 6.5 were classified as highly active (174 ligands) and

the others as low active (132 ligands).
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Figure 4.9. Correlation matrix between features in Xray 1 model. The numbers within

squares represent Pearson’s coefficients.

Before starting the training of any ML classifier, datasets were previously cleaned by

transforming any NaN value into zeroes. Additionally, a feature ranking analysis is

needed to know which of the available descriptors/features work better to classify

between the two groups. We first tested the most common normalization algorithms

(Normalizer, StandardScaler, RobustScaler, and MinMaxScaler) onto a fixed classifier

model. We used the RandomForestRegressor, which can rank the features according to

their importance; thus, we can obtain the ranking of features depending on the

normalization procedure applied. Additionally, all features were correlated against all,

building a pairwise correlation matrix of Pearson’s coefficients (Figure 4.9). The highly

correlated feature groups (>0.7 or <-0.7) must be filtered to reduce the model noise by

picking only one of them per group. Then, after filtering them, in Xray 1 and Xray 2
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datasets, we selected and ranked features shown in Figure 4.10 and Figure 4.11,

respectively.

Figure 4.10. Feature ranking for Xray 1 dataset.

Figure 4.11. Feature ranking for Xray 2 dataset.
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To optimize and train the model, the whole dataset must be split into training (75%) and

testing (25%) subsets. The former fits the model to predict labeled values, learn from

the data, and optimize its parameters. The latter is needed to assess the trained model

and provide an unbiased evaluation. Therefore, this subset must be only used in the

definitive deployed model. The training accuracy can be improved through

cross-validation (15-fold cross-validation). The set is split N times (15 in our case) into

different subsets and then evaluated in each iteration. The sub-test set is changed in

every iteration, and subsequently, the whole training set is used to test the model

performance. In the end, the average value between all iterations is computed to assess

the model’s performance. A schematic view of this split pipeline is represented in

Figure 4.12.

First, we picked normalization and classification models that best fit our testing set. We

executed several training rounds by testing all normalization methods versus all

classifiers and assessing each combination with cross-validation. For each result, we

computed the mean accuracy (fraction of right classified samples), precision [true

positives / (true positives + false positives)], recall [true positives / (true positives +

false negatives)], and f1-score [2 · (precision * recall) / (precision + recall)].

Figure 4.12. Schematic representation of the dataset splitting in ML pipelines,

specifically when applying cross-validation.
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The combination with the best f1-score average in the cross-validation was selected to

proceed with the hyperparameter tuning of the model by utilizing a grid search

approach. This type of algorithm performs an exhaustive search of a subset of specified

hyperparameters lists, testing all combinations through cross-validation and

automatically selecting the one with the best scores. Thus, we could obtain a completely

optimized and trained classifier model for a given set.

In order to select the best number of features for Xray 1 and Xray 2 models, we run the

previous pipeline iteratively by removing the lowest-ranked feature. For each round, we

computed the 15-fold cross-validation f1-scores mean, picking then, for each Xray, the

model with the highest number of features with a mean f1-score higher than 0.6. Xray 1.

Results are reported in Table F1 and Figure F1, as well Xray 2 results are shown in

Table F2 and Figure F2 of Appendix F.

Thus, we selected the best model with the top 4 ranked features for Xray 1 and the top 5

for Xray 2. Both models used K-Nearest Neighbor (KNN) classifiers. However, Xray 1

was normalized with the StandardScaler method, while the Xray 2 model employed the

MinMaxScaler, being both models trained similarly. Finally, they were assessed onto

the training set, computing confusion matrices, accuracies, precisions, recalls, and

f1-scores.

After selecting all models, we also wanted to check the predictive power of those

models with a mean f1-score higher than 0.6 that was previously discarded. These test

results were included in Tables F1 and F2. Herein we can observe that even though a

docking-based trained model retrieved f1-scores higher than 0.6 in the cross-validation

exercise, this value drops when testing in a different set, suspecting that single-feature

trained models can lead to overfitting (Table F1).

Lastly, a simpler model based on Morgan fingerprints (circular fingerprints) was trained

following the previously defined pipeline. In contrast with the other models, these

fingerprints store the 2D structure of the ligand in a series of binary digits (Rogers &

Hahn, 2010). Then, the model was trained by utilizing these features to distinguish

between high-active and low-active compounds. In this case, the best-selected classifier

was a Random Forest.
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3.1.2. Results

Cross-validation and test results are summarized in Table 4.1. Surprisingly, the best

model results were obtained based on Morgan fingerprints with a high f1-score of 0.86.

Xray 1 model outperformed the Xray 2; however, it showed an f1-score of 0.68, clearly

below the straightforward fingerprint-based model. As fingerprints only consider the

ligand 2D structure, we suspected high overfitting in the model, making it

non-generalizable to any external set slightly different from the trained one. Almirall

provided us with a completely new small set of 16 unique compounds with known

activities to prove this theory. Then, we followed the same simulation pipeline and

applied the three previously trained models to the new set. Importantly, the

fingerprint-based model dropped its performance significantly, while the other models

kept similar values (Table 4.2). In addition, and somehow surprisingly, we observed a

correlation between the probability of belonging to the high-active group (computed by

the model) and experimental pIC50s in Xray 1 and 2 models, showing R² of 0.17 and

0.12, respectively. Even though these are not splendid values, in the Xray 1, a clear

outlier is breaking the correlation. When removed from the computation, it remarkably

increases the R² to 0.48 (see Figure 4.13).

Table 4.1. Cross-validation and test results for the selected machine learning model.

Model Cross-validation (mean ± standard error) Test

Acc. Pre. Rec. F1 Acc. Pre. Rec. F1

Morgan
FP

0.82±0.024 0.84±0.026 0.78±0.027 0.79±0.028 0.87 0.89 0.85 0.86

Xray 1 0.65±0.028 0.62±0.036 0.62±0.030 0.61±0.034 0.68 0.68 0.68 0.68

Xray 2 0.65±0.027 0.65±0.028 0.65±0.028 0.64±0.028 0.68 0.62 0.64 0.63

The small size of the external set made us suspect that the results could be

serendipitous. Thus, we decided to observe if the correlation of the Xray 1 model was

also present in the test set. As the data collection section mentioned, we categorized

those compounds with IC50 > 20µM or > 50µM as inactive. In order to include these

compounds in the calculation and not induce an extreme bimodal dispersion of pIC50s,
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we assigned them a value of 3 (mM range). Additionally, we compute the correlation

between the four individual features and pIC50s. Figure 4.14 shows the results of this

reanalysis. None of the individual descriptors correlated with experimental values;

however, some showed residual classification power. For instance, the mean IE and the

size of the selected cluster could roughly distinguish some inactive from high-active

candidates. Even though none of these descriptors correlated, the combined model’s

score improved the classification and correlation power with an R² of 0.218 (p = 0.

0491 < 0.05).

Table 4.2. Almirall’s internal set classification results.

Model Accuracy Precision Recall F1-score

Morgan FP 0,56 0,5 0,57 0,53

Xray 1 0,75 0,75 0,75 0,75

Xray 2 0,75 0,75 0,75 0,75

Moving to a prospective scenario, Almirall's collaborators executed a VS task on Xray

1. From 7 million compounds of the ZINC library, they were filtered by drug-like and

non-toxicity features, getting 1.8 million compounds. Afterward, they ran the first run

of dockings of these compounds with HTVS Glide on the Xray 1 to preselect 64.894

ligands, and later, they executed a second run with SP Glide applying H-bonds

constraints, selecting only those hits with docking scores below -8. In the end, they

provided us with these 785 commercially available ligands to run our optimization

protocol. We executed dockings and PELE refinement and collected all the metrics to

run the machine learning analysis, providing a complete summary containing each

descriptor and machine learning model probabilities. Almirall picked 32 compounds

from these results, but only 23 were available for the experimental assays. They

experimentally assessed IC50 values through ADP-GLOTM kinase assays, obtaining two

hit compounds; one with an IC50 of 4μM (MW ~ 340g/mol) and the other of 140nM

(MW~ 267g/mol). The enzymatic activities for the top 10 compounds are reported in

Table 4.3. Additionally, a general view of all individual descriptors for Xray 1

simulations that defined active and inactive compounds can be seen in Appendix F,
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Figure F3. Q2-866 does not stand out in terms of energy (docking score, mean IE) but

shows a higher ranking in cluster size (poses interacting with the hinge) and mean

resilience interaction with the kinase hinge. Contrary, all Q2-672 descriptors fall around

the average. Interestingly, following the cluster-like classification and non-linear

behavior of the KNN algorithm, the ML model assigned a high probability of being

active.

Figure 4.13. External set testing results. Correlation between the probability of belonging

to the ‘high active’ group and pIC50. The red quadrant represents the wrong-classified

samples, and the green the right-classified ones. Notice that the bottom-right graph tries

to show the effect in the correlation of erasing a single point.
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Figure 4.14. Scatter plots of the test set results for the four individual descriptors (top)

and the model probability (bottom) against experimental pIC50 values. The red quadrant

represents the wrong-classified samples and the green the right-classified ones.

Horizontal lines set the limit between both classes.
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Table 4.3. Reported enzymatic assays result for ADP-GLOTM assay by Almirall.

Compound enzymatic activity Xray 1 model
probabilities

%inh 1μM %inh 10μM %inh 40μM IC50 (μM)

Q2-866 43 88 100 0.140 0.809

Q2-672 33 80 95 4.1 1

Q2-784 1 13 -2 >40 0.836

Q2-953 -3 11 24 >40 0.434

Q2-198 2 10 18 >40 0.407

Q2-028 -3 3 7 >40 0.582

Q2-772 -5 2 -4 >40 1

Q2-420 -16 -2 17 >40 0.443

Q2-749 -3 -5 -11 >40 0.829

Q2-831 2 -6 13 >40 0.634

3.2. Hit-to-lead with FragPELE

To end SilicoDerm, we performed a H2L study on Kinase 2 by applying FragPELE

code. Our collaborators supplied a new X-ray structure co-crystallized with a hit

compound to optimize through fragment growing. Herein, Almirall designed a new

series of ligands that contained a modified version of the original scaffold X-ray. Three

different growing positions were proposed, and for each position, a series of fragments

containing a specific functional group, having then three sets: 18 pyridine, 22 alkyl, and

19 aromatic fragments. A general schema of this scenario is represented in Figure 4.15.

3.2.1. Methods

The original X-ray structure was prepared with Protein Preparation Wizard (Sastry et

al., 2013), including the hydrogens and optimizing their orientation with PROPKA

(Olsson et al., 2011) at 7 pH. Explicit water molecules were removed from the system.

Then, the new scaffold was manually forged by modifying the X-ray ligand with the 3D

builder from Maestro (Schrödinger, 2018), replacing two chemical structures with

others similar to the original ones (see Figure 4.15). After this change, we executed the
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same PELE refinement simulation protocol we used in the VS study (see the previous

section) to readapt the system to the new scaffold. The pose with the lowest interaction

energy was retrieved as the starting core complex in FragPELE simulations.

Figure 4.15. Schematic view of the ligand shapes for the H2L study in Kinase 2. For

anonymization purposes, square and circular shapes hide the chemical structures. Each

color represents a static chemical structure, while Rs identify the different growing sites.

Fragments were prepared with the Epik algorithm (Greenwood et al., 2010) of

Schröringer’s LigPrep software, creating all possible tautomer and enantiomeric forms

for each compound.

Many of the generated fragments contained one or more chiral centers. As errors were

reported when growing fragments with several enantiomeric forms, we developed

FragPELE 3.0.0 (see Appendix C) to face this study. Simulations began from a lambda

value of 0.25, meaning we instantly place a fragment with 25% of its final size to

reduce computation. The growing stage was executed utilizing the new Softcore-like

mode in 6 GS, increasing the minimization convergence criteria to 0.01 RMS in the first

half of the growing stage and relaxing it to 0.1 in the second half. For those fragments

containing chiral centers, dihedrals constraints were applied in the first half of the

growing to keep the enantiomer state invariable in the early growing process. Besides,
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based on other projects’ experience, the sampling of the final simulation was extended

to 50 PELE steps instead of 20.

Alkyl and aromatic series were constructed in a single growing simulation. In contrast,

pyrimidines required two consecutive runs (the inner fragment and the constant terminal

group). The lowest interaction energy pose from the first simulation was picked as input

for the second one. The FragPELE simulations took around 1 hour and 30 minutes in 48

processor units per fragment.

3.2.2. Results

Based on the previous simulation results, Almirall synthesized 35 new compounds not

reported in the literature as Kinase 2 inhibitors. Tables 4.4, 4.5, and 4.6 show the

reported inhibition activities and FragPELE scores for the alkyl, aromatic, and

pyrimidines series.

Table 4.4. Enzymatic inhibitions and FragPELE scores for the Aklyl series. Rows with scores >

-80 kcal/mol are colored in darker gray. False-positives or false-negatives are in red.

Compound (state) FragPELE score (kcal/mol) Enzymatic inhibition, IC50 (nM)

11-Alkyl (1) -103.00 0.7

4-Alkyl (1) -94.68 7.5

19-Alkyl (4) -86.39 33

13-Alkyl -71.89 430

1-Alkyl (2) -65.65 130

22-Alkyl (2) -65.17 130

17-Alkyl -64.72 550

9-Alkyl (1) -63.94 13

3-Alkyl -63.64 330

10-Alkyl -62.76 11

5-Alkyl -62.76 400

8-Alkyl -62.58 210

21-Alkyl -62.19 440

7-Alkyl -62.00 32

119



3. Study of Kinase 2 Chapter 4. SilicoDerm

Table 4.5. Enzymatic inhibitions and FragPELE scores for the Aromatic series. Rows with

scores > -80 kcal/mol are colored in darker gray. False-positives or false-negatives are in red.

Compound (state) FragPELE score (kcal/mol) Enzymatic inhibition, IC50 (nM)

16-Ar (1) -106.71 1.2

13-Ar -106.22 2.1

17-Ar -104.54 180

12-Ar (1) -104.13 14

1-Ar (1) -102.42 0.69

11-Ar -101.99 3.9

16-Ar (2) -101.46 1.2

7-Ar -100.66 2

8-Ar -99.77 4.4

3-Ar -99.21 42

2-Ar -98.94 3

19-Ar (2) -97.89 13

14-Ar -96.21 14

18-Ar -95.16 61

9-Ar (1) -94.10 44

10-Ar (2) -92.05 0.9

4-Ar -80.49 180

Table 4.6. Enzymatic inhibitions and FragPELE scores for the Pyridine series. Rows with

scores > -80 kcal/mol are colored in darker gray. False-positives or false-negatives are in red.

Compound (state) FragPELE score (kcal/mol) Enzymatic inhibition, IC50 (nM)

18-Pir -102,58 4,2

1-Pir -101,05 690

2-Pir -95,71 440

16-Pir (1) -93,61 1,6

9-Pir (2) -92,98 1,7

17-Pir -91,38 5,9

6-Pir -73,95 1,9

10-Pir (1) -71,32 1,7

15-Pir intramolecular clashes 910
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Figure 4.16. Correlation between experimental pIC50 and FragPELE scores for the

different series of fragments.

In the alkyl and aromatic series, the top-scored compounds (< -80 kcal/mol) showed

inhibition values lower than 50 nM (excepting 3 cases). At the same time, the

compounds with lower scores ( > -80 kcal/mol) usually reported lower activity values.

However, when moving to the pyridines series, the percentage of false negatives and

false positives is significantly increased. For further evaluation, FragPELE scores were

correlated with the pIC50 of the experimentally tested compounds, showing an overall

R² of 0.274. However, it rises to 0.438 when neglecting the pyridine series (Figure

4.16).
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Chapter 5. Discussion

1. Total flexibility to predict binding poses with FragPELE

The results reported in this thesis suggested that applying our new algorithm to PELE

has created a dynamic ligand growing tool that accommodates the receptor to the

expanded molecular moiety. Self-growing and cross-growing results, which implied the

reconfiguration of the receptor to the new molecule, showed good correlations between

crystallographic and predicted geometries (Tables 3.2 and 3.3). Even though the model

could not perfectly fit the reference structure in some cases, the native-like interactions

were recovered (Figure 3.6).

Our first structural benchmark highlighted that our method only retrieved low RMSD

values when water molecules were fixed on hydrated systems (Table 3.2).

Consequently, facing prospective studies required previous knowledge of the positions

of these waters. In this scenario, our method does not permit dynamically expanding

R-groups on regions with explicit waters. Subsequently, these waters had to be deleted

from these systems (reducing the accuracy of our predictions and losing the ability to

relocate them after expanding the fragment). Crucial explicit waters can quickly be

resolved by visually inspecting X-ray structures or using specific software such as

WaterMap (Abel et al., 2008), which can provide insights into the water positions on

these systems. Thanks to the recent development of aquaPELE, we could integrate both

techniques and solve FragPELE obstacles (discussed below).

Reported results on the EGFR system suggested that FragPELE seems to be a promising

tool for opening cryptic sub-cavities on binding sites through fragment growing. In this

case, the repositioning of side-chains combined with a short displacement of backbone

atoms was enough to produce the induced-fit effect to allocate the expanded moiety. In

more complex systems which require larger backbone displacements, in principle, the

protein perturbation performed within the PELE algorithm would be capable of

readapting the receptor conformation and opening closed cavities. However, modeling

the conformational changes produced by the ligand binding and the subsequent cryptic
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pocket opening is still challenging. Opening cryptic cavities on apo structures is usually

computed with long standard MDs (μs timescale) (Ode et al., 2012). Despite the

considerable time consumption, it does not guarantee correctly modeling the holo

conformation (Oleinikovas et al., 2016). In this case, we do not require to simulate the

whole apo-holo transition, as FragPELE will start growing from bound conformations.

In this sense, our study is more focused on small sub-cavities close to the native BS.

Regardless of our anecdotic success, we must be cautious with our results, and further

efforts should be made to widely benchmark and confirm FragPELE’s technology.

After all these retrospective tests growing R-groups onto well-characterized

protein-ligand complexes, which shared a common scaffold, one could think that

FragPELE does always keep the scaffold of the molecule highly constrained and

stationary along with simulations. The study performed on MAPK p38 inhibitors

analogs hints that our strategy will not constantly adapt the receptor to give space to the

new fragment, rearranging the whole ligand and even losing canonical interactions

when needed (Figure 3.12). We cannot thoroughly check the quality of the predicted

binding mode due to the lack of structural data. However, interestingly, the only model

with a completely different ligand pose matches the one with lower affinity (Figure

3.12).

Reproducing X-ray structures is an important feature that can help medicinal chemists

to see the effect of adding new chemical groups to the hit compound and guide the

design of the lead compound. However, structural information cannot quickly determine

which fragment will be more suitable for the studied BS when analyzing hundreds of

modifications. The following section will discuss this topic based on our results.

2. Binding affinities and scoring

Developing appropriate scoring functions to rank ligand’s affinities remains a

challenging task. This thesis applied PELE’s interaction energy as the leading scorer in

more than 200 structurally diverse ligands distributed in eight targets of different

families. Our first scoring benchmark (Chapter 3, Section 1.3) indicated that FEP+

outperformed FragPELE slightly regarding accuracy when ranking systems where the
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MW correlation is lower than 0.5. However, both perform similarly when the gain of

further interactions (additional mass) between fragment and receptor accounts for the

affinity change. These results could indicate that our more straightforward technique

accurately describes enthalpic contributions. We remind here that our simple score is the

mean of the lowest 25% force field interaction energies poses (see Chapter 3, Section

1.1). A significant source of error might come from the lack of explicit solvent and

entropic effects (both explicitly considered in FEP techniques).

Our interaction-energy-based score is different from FEP; we do not aim at computing

absolute differences of binding free energies. PELE’s energy values are overestimated

as they were not designed for this purpose. Nevertheless, this score seems to help in

evaluating relative differences in binding free energies in congeneric series of ligands

sharing a common scaffold. Following this line, the results reported in the SilicoDerm

project (Figure 4.15) also support this idea where we retrieved good predictions (R² =

0.44) in the Kinase 2 when moving out the set of internal pyrimidines. Furthermore, the

study performed in Kinase 1 showed a clear overscoring on charged fragments (series 2

in Figure 4.4), making their scores not comparable to neutral compounds and reporting

then similar limitations of other methods such as alchemical methods.

3. Effect of explicit waters

The proper study of protein-ligand interactions usually relies on water molecules, and

therefore achieving reliable computational models depends on including

explicit/implicit solvent models. Our first structural benchmark on FragPELE using the

implicit VDGBNP model denoted lower correlation with crystallographic data when not

fixing explicit water molecules on hydrate systems. In order to reduce our method

limitations, we designed a new benchmark focused on hydrated systems. Herein, the

introduction of aquaPELE on FragPELE reported low ligand heavy-atoms RMSD

distributions (around 1 Å) in 6 out of 8 systems (Figure 3.15) and an excellent ability to

diminish the presence of explicit waters after expanding fragments known to displace

them (Table 3.10). Referring to this last point, finding crystallographic structures where

the water molecule stands after adding a fragment pointing to a buried cavity was

impossible for us. Consequently, we were forced to rationally design negative controls
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to exemplify that the algorithm only will move out the unfavorable and keep the

energetically stable waters.

One of the most important goals of this second study was to determine if adding the

mixed implicit/explicit solvent model of the aquaPELE algorithm to FragPELE

simulations could improve binding affinity predictions. In this scenario, we also faced

the challenging expansion of multiple R-groups in two, three, and four different sites.

Consequently, we successfully applied a new, faster, and more plain simulation to add

intermediate R-groups, and in parallel, we also extended simulations testing the

behavior of FragPELE’s 3.0 protocol. Herein we could apply the new Softcore-like

growing mode, reducing the number of growing steps and extending the sampling

simulation. Results obtained in two out of three congeneric series showed a sufficient

predictive power (Figure 3.17) (NW, POP5 scorer, averaged r > 0.63), except for the

most chemically diverse series, where we grew fragments in 4 different positions and as

one could expect correlations dropped. Indeed, when introducing the aquaPELE

algorithm, the correlations between experimental and predicted energies notably

improved in all three series, especially in series 3 (Figure 3.17), passing from low

correlated to acceptable values.

Even though this hybrid approach could potentially enhance binding affinity and water

displacement predictions, it is also true that the current method lacks metrics to rank the

entropic contributions and apply proper energy corrections. Here more efforts are

needed to compute water entropic terms from PELE MC simulations. Furthermore, in

contrast with other methods, aquaPELE follows an approach where explicit water is not

spawned or deleted from the system, and therefore they must go somewhere within the

box. In this sense, defining box sizes long enough to reach solvent-exposed regions

seems a reasonable and realistic strategy to discard these unfavorable water molecules.

Currently, setting these parameters is still a task for the user. It depends on the

properties of the BS; in the future, automatizing the box selection could be an exciting

feature to add.
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4. FragPELE: growing and sampling

FragPELE is a ligand growing approach coupled to PELE, and subsequently, along with

the simulation, several MC steps (samples of protein-ligand poses) are taking place. In

this context, our method uses PELE simulations to recreate protein-ligand states in two

different key processes: the fragment growing and the sampling simulation. First, we

will extend the discussion to the former.

In the fragment growing step, the FFP of the ligand are modified to create non-realistic

physical states to convert the original scaffold onto another ligand with a fragment

attached. We called GS to these steps, and given its parallelism with alchemical

methods, we also referred to a lambda (λ) value associated with these microstates. We

want to clearly state that differently from other alchemical techniques such as FEP,

FragPELE’s intermediate microstates do not pretend to sample and track the energetic

path along with the multiple states (from ligand A to ligand B). Contrary, our method

follows a more straightforward approach consisting of just a few PELE steps (6 by

default in the latest implementation) to create stable poses quickly and, whenever

possible, accommodate the receptor to the new extended ligand. Therefore, when

perturbing (jumping to the next GS step) systems, the most crucial fact is to avoid

inducing microstates with highly unbalanced energy terms that could produce atomic

clashes and structures with wrong chemical configurations. After extensively using

FragPELE, we proposed up to three different growing protocols (visit Appendix C). In

this context, in the hit-to-lead campaign of the Kinase 2 in the SilicoDerm project, the

application of the new Softcore-like protocol improved the ratio of correct simulations

in fragments containing chiral centers. Moreover, following this research line,

FragPELE code prepares the ground for further implementations of more accurate

alchemical transitions coupled with PELE software.

As we have highlighted several times in this thesis, the first version of FragPELE

followed a simple scoring function: the mean interaction energy of the 25% lowest

energy samples. According to our first results, this calculation could be enough to rank a

congeneric series of ligands. However, a MC simulation can easily generate thousands

of protein-ligand conformations. Depending on the system's complexity, this simple
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energy-based cutoff can capture very different binding modes and, therefore, neglect

relevant information.

Including water molecules in our second benchmark led to a higher degree of variety of

conformations, given that multiple water positions can be detected for each

protein-ligand conformation. Being aware of this possible source of error, in aquaPELE

simulations, it is recommended to use a clustering-based analysis (already reported in

aquaPELE paper) (Municoy et al., 2020). By doing so, one can efficiently identify

different binding modes (see Appendix D) and then compute energies of similar

protein-ligand conformations, not only energy-filtering-based. Then, we could quickly

obtain groups of similar poses and collect population and energy data from them by

applying this strategy. As a general rule, for the studied systems, clusters with lower

interaction energies (or even more population) correspond to structures closer to the

crystallographic pose (Appendix D). Thus, as discussed in section 2.2.2 of Chapter 3,

we explored different methods to identify top clusters (population or energy) and

scoring methods (P5, P25, or mean). Most of the scorers followed a similar trend;

however, following the structural data, better results are retrieved when selecting

clusters based on interaction energy and picking only the 5% of samples with lower

values (Figure 3.17). Finally, as expected, a slightly better experimental-predicted

correlation in the studied systems was obtained using clustering-based than the

whole-simulation analysis employed in the original score of FragPELE (Tables 3.11).

5. Importance of automatizing in drug design studies

Repeating a hundred times fundamental tasks, such as moving files, can become an

absolute nightmare without an automatic way to do it. Luckily, no immense

efforts/knowledge is needed to move thousands of files in a row, but things get more

complicated when facing molecular modeling simulations in drug discovery projects.

Following this line, running many such jobs is impossible if non-efforts are made in

automatization. Even though the long time it takes for developers to create tools

automatable (a feature that is usually taken for granted), in our opinion, not enough

importance is attributed in some papers. Thus, when designing any new software,

developers must consider this fact. One can create the best modeling tool, but when
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users cannot easily automate their usage, it becomes a pain to set everything up to run it,

which will ruin the method’s applicability.

It is not strictly stressed along with the thesis (as this is not scientific content by itself),

but considerable development labors have been made to improve the automatization of

FragPELE from the original version 1.0 to 3.0. Given any library of fragments, the

software is prepared to set up all the files and execute all simulations independently. As

a result of this implementation, we could quickly grow more than a hundred fragments

to face future drug discovery projects (such as SilicoDerm). Additionally, FragPELE

code allows being run through PELE Platform

(https://nostrumbiodiscovery.github.io/pele_platform/index.html) software, a recently

developed external wrapper to improve even more the user-friendliness of all

PELE-associated technologies.

In conclusion, the developing tasks are done to automatize further and adapt all codes to

make them parallelizable and easy to use. This task has “invisibly” increased the

method's efficacy, granting its implementation to quickly assess multiple fragments in

drug discovery projects.

6. Prospective hit-to-lead with FragPELE

Regarding current H2L campaigns, our cooperation with Almirall in the SilicoDerm

project has been an ideal scenario to test FragPELE’s predictions blindly. This

FragPELE-guided analysis in Kinase 1 resulted in synthesizing 4 compounds from the

top 10 scored. Herein, 4 of the 4 tested compounds were hits, but only one showed

better activity than the original hit. Truchon and Bayly published the most recent study

that we found to value our results in 2007. They reported a hit discovery ratio between

1% and 40% of prospective VS campaigns (Truchon & Bayly, 2007), and unfortunately,

we could not find updated numbers focused on hit-to-lead campaigns. However, as we

only had experimental data for these 4, our results could be considered an anecdotic

success of FragPELE; however, showing good predictive behavior in H2L campaigns.

When designing scientific software, researchers initially benchmark and test the

developed methods with just well-known datasets. Usually, when this software starts to
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be massively used in many different scenarios, novel problems and weaknesses arise. In

fact, in the H2L campaign of the Kinase 2, we had to deal with this situation. Growing

fragments with chiral centers resulted in simulations with mixed R/S enantiomeric

states. This property of FragPELE could be explored to be used as a selector of the

most-probable enantiomeric state; instead, we decided to correct the method to keep the

original state and assess the results based on the user-defined input.

Consequently, new functions and protocols were implemented in FragPELE (visit

FragPELE 3.0.0 of Appendix C) to confront this issue and solve this limitation. The

number of GS was diminished to 6 (instead of 10) due to the augmented computation

time (especially the first half of the growing phase) produced by a stronger

minimization. Additionally, the sampling simulation was extended to 50 steps taking

advantage of the reduction of GS to further explore the system with the full-sized ligand

in a similar amount of computation.

Overall, the predictive power reported in this study is consistent with the previous

results from the more extensive congeneric series of the kinase family in the original

FragPELE paper (Figure 4.16, B4 and B5), stepping up the goodness of the method to

face hit-to-lead campaigns. However, the two-steps growth in the pyridine series has

raised a weakness in the technique, as it has not been designed for this goal: replacing

non-terminal groups by expanding an intermediate fragment can critically sink the

predictions (Figure 4.16). Creating new techniques to directly add similar fragments

given a reference structure and optimizing the RMSD to imitate the original volume

occupied by the molecule would be an exciting feature that would reduce the

computation time and be useful for scaffold hopping.

Finally, applying FragPELE to a real-world problem has been an enriching experience

that prepares methods to face scenarios that, sometimes, in a fully-academic

environment, would have never been tuned. Many unexpected errors, ideas, or new

automatization pipelines come to users' minds. For this reason, covering all the needs

that the program should have, makes the software solid and reliable to face future drug

discovery projects. As a note for the reader, FragPELE is currently being used in

(multiple) different industrial projects by Nostrum Biodiscovery and has even

successfully been used in a cloud (Amazon Cloud) implementation.
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7. Optimizing virtual screening pipelines through machine

learning algorithms

VS campaigns usually rely on computationally testing millions of compounds by

employing fast methods such as molecular docking to identify, at least, a few

compounds with low MW and low affinity (mM-μM range). Luckily, some targets have

multiple hits already detected. All this information around the binding mode, such as

critical interactions, shape, physicochemical properties, or any other relevant data, can

be helpful in designing more selective and potent compounds. Therefore, following the

H2L context, we proposed optimizing VS pipelines by taking advantage of all this

available data to obtain more potent inhibitors than standard methods.

Even though the 2D information of all known inhibitors is useful in QSAR studies can

also be limiting in highly dynamic targets, such as kinases. Accordingly, in this thesis,

we proposed integrating molecular simulations data to simple machine learning

classifiers to retrieve compounds with high activity on the Kinase 2. Subsequently,

including simulated data could enhance pipelines’ performance.

Other groups have already successfully tried this kind of approach in the past years,

integrating fingerprints and MD in the ABL1 kinase (Spyrakis et al., 2015) by clustering

relevant conformations and classifying the compounds by linear discriminant analysis.

However, this work was more focused on enhancing the hit discovery rates and not

improving the affinity of the compounds. To this end, instead of creating the usual two

classes for VS, active/inactive, we decided to classify compounds in high/low activity

(adding the inactive compounds in the low activity group), expecting to yield hits with

higher potency.

By applying our pipeline, we could determine that combining multiple types of

descriptors (ligand-based, docking scores, and simulation-based) could increase the

classification power than using single scores in most drug discovery projects (Table F1

and F2). It also seems to show a higher applicability domain and to be less prone to

suffer from overfitting than other 2D-based methods such as FingerPrints (Table 4.2 and

Figure 4.13).
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After all this retrospective analysis, the technique was employed in a prospective study,

and as a result, from 23 assayed compounds, 2 were active (8.7%). Considering the

normal potency range of the hit discovery phase (100nM-5µM) (J. P. Hughes et al.,

2011), both compounds fall within. However, the 140nM is close to the upper limit.

Given their small size, the further optimization of these molecules is likely feasible,

showing the potential to become real drug candidates.

In the VS executed with Glide by Almirall collaborators, these hits were ranked in

positions 441 (140nM) and 688 (4.1 µM), while our predictions reported high

probabilities of being highly active (Table 4.3 and Figure F3). However, one must be

aware that the selection of compounds by Almirall was not purely based on the machine

learning scores. They evaluated all individual metrics, selecting then the compounds

also based on their expertise, price, and market availability. Considering this fact and

the lack of data of all the non-assayed compounds, thoroughly evaluating its ability on

these results would be pure speculation. Distinctly, we can ensure that computed

features and machine learning-based scores assisted Almirall in selecting these

compounds.

More groups are starting to use machine learning-based techniques to enrich virtual

screening pipelines (Gupta & Zhou, 2021); not surprising given the success observed in

other close fields, such as protein structure predictions with AlphaFold (Jumper et al.,

2021). Given the increase of knowledge and the better accessibility to data, in our

opinion, implementing strategies including machine learning algorithms could guide the

future of VS.

8. The humanity behind machine learning

Generally speaking, machine learning algorithms are sometimes considered magic,

programs that automatically can be trained and quickly score any given data, but this is

far from reality. Algorithms learn from multiple tries and errors in the training stage.

Human intervention must smartly prepare the data, select the most suitable algorithm,

and accurately parameterize the machine learning pipeline. Curating the input data or

selecting suitable descriptors are crucial steps to make a difference. Most of them are
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purely dependent on the data, but others are not. In this section, we want to briefly

discuss all the different human decisions that could have changed the outcome of our

pipeline.

Firstly, we decided to build a two-classes classifier instead of a multi-class or a

regressor. Machine learning algorithms require data to be trained appropriately. Due to

the lack of information (very common in the drug discovery field), we picked the

simplest model but guaranteed that the data would be enough. Second, we set an

arbitrary threshold (pIC50 = 6.5) to distinguish between low and high active

compounds. This value falls close to the median of our distribution, cutting it into

approximately two halves of similar size. This decision can lead to misclassifying

compounds around the limit due to the intrinsic experimental errors and differences

between laboratories.

For this reason, when the amount of data is enough, it is recommended to include an

intermediate class in between. Unfortunately, this was not our case, so we had assumed

this possible source of error. Third, we collected just a few ligand-based properties,

docking scores, and descriptors from PELE simulations that we thought were relevant to

distinguishing low from high active compounds. However, there is an almost infinite

number of metrics that we could have included in the model. Fourth, the selection of the

normalization method, classification model, and feature selection are also steps

susceptible to human intervention and the evaluation metric (f1-score, accuracy). There

is no clear roadmap in the field, so we decided to create a list with the most common

normalizers and classifiers and test all of them, selecting the one that retrieved a higher

outcome.

In conclusion, the human effort behind any machine learning pipeline is sometimes vast

and invisible. Data analysts experts in machine learning have further knowledge in the

field. They know how to easily prepare every step to select the most suitable algorithm

and train the models. For non-expert users (and sometimes also for experts), several

rounds of trial and error must be done to parameterize all the pipelines and avoid falling

into common pitfalls (f.ex. do not normalize, nor split the data). Due to these errors, the

models obtained are usually overfitted, being more than good within the testing set but

completely useless when applied to different sets. Researchers must be cautious with
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this kind of results, and in case of doubt, it is recommendable testing the model in a

completely different external set to provide some insights into the natural quality of the

model.

9. Strengths, limitations and opportunities of the current

techniques

In most of this thesis, we tackled the design of a computational tool to model the effect

of expanding decorators on a molecular scaffold. The truth is that in the previous

decade, many other programs have been designed to shed some light on the ligand

growing field, such as Autogrow3.0, LigBuilder2.0, OpenGrowth or NAOMINext,

among others (Chéron et al., 2016; Durrant et al., 2013; Sommer et al., 2019; Yuan et

al., 2011). Most of them put efforts into quickly predicting which of the infinite

decorators available in the chemical space best fits the target system and subsequently

show more weaknesses in their energetic predictions (usually docking-based).

When virtually facing H2L campaigns, the quality of the predictions is critical, but the

speed of computation is also a limiting feature. Docking tools allow for fastly testing

from hundreds-thousands to millions of compounds, so they become the ideal software

to use when there is limited information about which chemical groups are more prone to

bind. Their predictions tend to fail more than in highly demanding computation

techniques, and in this sense, alchemical methods such as FEP reported higher

accuracies in predicting relative binding free energies. Even though several efforts have

been recently made to speed up the computation time through GPU-based

implementations (H. Chen et al., 2020), the calculation is still highly demanding. This

time scale permits testing just a few modifications in a reasonable amount of time,

which can be highly limiting when screening a small library of R-groups. One could

think that end-point methods such as MMGBSA should fall between fast docking and

the expensive FEP, but counterintuitively their performance is not higher than the

former and below the latter (Table 3.8). With this concern, this thesis developed a novel

ligand growing methodology called FragPELE. Structural and scoring benchmark

results show potential dual use of the technique to accurately reproduce protein-bound

native-like geometries and provide reasonable free binding energies predictions for the
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studied systems. As discussed in Chapter 3, FragPELE calculations take around 1h per

fragment on 48 computing cores (about one processor in Mare Nostrum IV

supercomputer) with the designed protocol. This time can fluctuate from 20 minutes to

3 hours, depending on the size of the whole complex, the number of atoms in the

fragment, or also the effort needed to adapt the protein to the new fragment; however,

this time scale is still significantly lower than the computationally intensive FEP.

Even though the positive and goodness of the results reported with FragPELE, the type

of targets and the chemical diversity proved is too small yet to get strong statements

compared with other popular tools such as Glide or FEP+. In contrast to alchemical

methods, FragPELE should be able to extensively screen around 1000 modifications in

a week in a CPUs cluster of 288 processor units, which is not a big deal with the current

high-performance computing resources available. This trade-off makes our method a

suitable tool to test R-groups from a small/middle size library of fragments in an

acceptable time scale and possibly fill this empty gap in the literature. The more people

use the software, the better it will become, and along the time, it will also increase its

reliability.

It is essential to be aware that FragPELE allows only partially to explore the chemical

space. Combining N fragments, with N growth sites of the scaffold, with N linking

atoms of the fragment gives, as a result, infinite new molecules. Therefore, an accurate

preselection of better fragment candidates, preferably done by expert medicinal

chemists, is still necessary. Further work must be done to smartly preselect which

modifications will have higher probabilities of improving the initial compound. For

example, a brilliant strategy would be using any of the previously mentioned

docking-based methods to pick the best-scored modifications and our method later.

Another option could be to design slightly less accurate but faster versions of the

current algorithm to filter and reduce the number of molecules to apply FragPELE

simulations later. In fact, in collaboration with Laura Malo from Guallar’s lab, we have

already developed the first version of this algorithm, named FragHop. The method was

successfully applied to pre-select 5-10 fragments (from a library of thousands) per

subpocket in a wide multiple-pocket BS. Combining it with new generative machine
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learning models would be an innovative pipeline to automatically compose and assess

novel chemical structures.

FragPELE’s methodology would open a new window of opportunities applicable to

other molecules and not just small drugs. For instance, the same strategy could be easily

extended to side chains to automatically mutate and dynamically allocate new amino

acids within protein binding sites. This application could be helpful in the enzyme

engineering field and the design of short peptidic inhibitors. Additionally, as

abovementioned, putting more computation efforts into analyzing and trying to reduce

the perturbation of the system in the transitory alchemical microstates would result in a

novel MC-based FEP method, with hopefully higher correlated predictions. Given all

the potential alternative uses of the method, we encourage future scientists to do more

research on this technique to make the most of it.

Furthermore, in the final stage of the thesis, we also approached the design of a new VS

method based on machine learning pipelines focused on enriching the activity of the

predicted compounds. This technique offers the opportunity to profit from the available

knowledge and optimize the VS towards the target of interest. Its application into

commercially available compounds helped identify two true inhibitors. However, the

results of this commercial set highlighted a drop in the classification power of the

method (Table 4.3). The model was prepared to distinguish between high and low

active, including only 20 inactive compounds in the set. Therefore, the training was

mainly done with active compounds and probably falling on a non-realistic

active/inactive balance. Even though the model was applied on an enriched set (prone to

be active), most of them should be non-active, and subsequently, the algorithm failed to

detect them. Still, finding 2 active from 23 tested ligands is a high hit discovery rate that

can be considered a remarkable success of the method.

Another limitation of this technique relies on the target applicability. On the one hand,

we require a well-studied target, with many reported inhibitors needed to train the

model. On the other hand, we would need good quality datasets. Databases like

CHEMBL (Gaulton et al., 2012) only provide an acceptable amount of data in IC50s,

usually in various laboratories and under different experimental conditions. In this

scenario, discretizing the data and classifying them is an excellent approach to reducing
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errors due to the experimental conditions. Additionally, most of these compounds are

just known to inhibit the target, but the mechanism is still unknown (do they bind in the

same cavity? or are they allosteric inhibitors?). All these experimental uncertainties add

noise to models, negatively affecting the predictions.

For this reason, wasting time cleaning the data as much as possible is a must to improve

the outcome of any trained model. Moreover, for future scenarios, enriching the training

with a large set of decoys/inactive compounds and training a three-classes classifier

(high, low, inactive) could prevent false positives when applying the model on a set of

compounds with a shallow hit rate. Adding descriptors to the model could be another

source of improvement. For example, adding more ligand-based descriptors such as

logP values or individual descriptors from Glide docking (internal energy, ligand

efficiency, glide lipo), or even trying to gather more descriptors from PELE simulations

(distribution of solvent accessible surface areas), collecting then differents sets of

metrics depending on the inhibition mechanism of the target. By refining all these steps,

the method should be easily extrapolated to other well-known target families.
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Chapter 6. Conclusions
The conclusions extracted from this thesis are:

● FragPELE showed good correlations with crystallographic data and ligand

affinities in multi-type benchmarks in many targets. FragPELE’s free energy

predictions performed similarly to FEP and outperformed Glide, filling the

empty gap in the ligand growing literature between the accurate but

computationally expensive alchemical methods and the fast but less exact

docking.

● The original version showed some limitations solved along with the

development of this thesis, and new functions have been made available to

users.

● AquaPELE algorithm has solved FragPELE’s impediments on hydrated growing

regions, showing better performances when combining both techniques.

Additionally, ligand poses’ clusterization can help identify hydrated sites and

scoring tasks.

● Applying FragPELE in the SilicoDerm project, in a drug discovery campaign in

collaboration with Almirall company, has been an exhaustive test with various

chemical structures. Our predictions in Kinase 1 ended up synthesizing a

compound with a gain of the potency of 4 folds. In Kinase 2, the synthesis of 35

compounds assisted by FragPELE revealed good correlations with experimental

predictions only when expanding terminal R-groups and losing performance

when modifying scaffolds. Developing alternative methodologies to address

scaffold hoping could provide more insights into these predictions.

● The innovative usage of machine learning tools to combine multiple-source data

(ligand-based properties and molecular simulation) assisted in finding two hit

compounds. We believe that this methodology is promising to be extended to

other targets after further refinements.
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Appendices

Appendix A

Experimental values from Steinbrecher et al. (Steinbrecher et al.,

2015), used for the Growing and Scoring benchmark of

FragPELE.

Table A1. Experimental values for T4 Lysozyme (181L)

Ligand R1 ΔGºExp

[kcal/mol]

LYS.1 butyl -6,66

LYS.3 methyl -5.48

LYS.4 1,2-methyl -4.57

LYS.5 1,3-methyl -4.63

LYS.6 1,4-methyl -4.72

LYS.7 1-ethyl,2-methyl -4.53

LYS.8 1-ethyl,3-methyl -5.08

LYS.9 1-ethyl,4-methyl -5.38

LYS.10 propyl -6.51

LYS.11 isobutyl -6.44

LYS 12 ethyl -5.72
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Table A2. Experimental data for DNA ligase (4CC5 from 2 to 8 and 4CC6 from 10 to 11)

Ligand R1 R2
ΔGºExp

[kcal/mol]

DNA.2 Cl CH -6.5

DNA.4 OMe CH -5.3

DNA.5 Me CH -5.25

DNA.6 cyclo-butyl CH -5.83

DNA.7 CF2CH3 CH -6.38

DNA.8 CF3 CH -6.54

DNA.10 NHCH2CHOH CH -9.05

DNA.11 NHCH2CHOH N -10.67
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Table A3. Experimental values for MUP-I (1I06)

Ligand R1
ΔGºExp

[kcal/mol]

MUP.1 S-sec-butyl -8.42

MUP.2 R-sec-butyl -8.42

MUP.3 iso-butyl -9.09

MUP.4 n-propyl -8.2

MUP.5 iso-propyl -7.85

MUP.6 ethyl -6.96

MUP.7 methyl -5.64
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Table A4. Experimental results for JAK-II (3E62 from 1 to 10 and 3E63 from 11 to 18)

Ligand R1 ΔGºExp

[kcal/mol]

JAK.1 5-Br -5.99

JAK.2 5-Phenyl -7.91

JAK.3 6-Phenyl -5.24

JAK.4 5-(3-Pyrazolyl) -6.86

JAK.5 5-(4-Pyridyl) -7.79

JAK.6 5-[4-(3,5-Dimethyl)isoxazolyl] -6.2

JAK.7 5-[5-(2,4-Dimethyl)thiazolyl] -8.86

JAK.8 5-(2-Chlorophenyl) -8.77

JAK.9 5-(3-Chlorophenyl) -8.36

JAK.10 5-[6-Chloro(2-pyridyl)] -7.14

JAK.11 3-SO2NHtBu -7.43

JAK.12 4-SO2NHtBu -9.7

JAK.13 4-CONHtBu -7.79

JAK.14 4-NHCONHtBu -7.38

JAK.15 4-SO2Ethyl -8.33

JAK.16 4-SO2NHtBu, 7-Cl -8.07

JAK.17 4-SO2NHtBu, 7-Me -8.34

JAK.18 4-SO2NHtBu, 2-Cl -10.11
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Table A5. Experimental results for p38 (1W7H)

Ligand R1 R2 R3
ΔGºExp

[kcal/mol]

P38.1 NH2 H phenyl -3.94

P38.2 H H phenyl -4.09

P38.3 NH2 H 2,6-dichloro-phenyl -5.4

P38.4 NH2 H 1-naphthyl -5.94

P38.5 H ethanol-amine 2,6-dichloro-phenyl -5.04

P38.6 H 1,1-dimethyl-ethanolamine 2,6-dichloro-phenyl -6.3
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Appendix B

Scatter plots of experimental values vs. energy predictions in

Growing and Scoring benchmark of FragPELE.

Figure B1. Correlation between experimental ΔGº values and FragPELE results for Lysozyme.
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Figure B2. Correlation between experimental ΔGº values and FragPELE results

for DNA ligase

Figure B3. Correlation between experimental ΔGº values and FragPELE results for MUP-I.
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Figure B4. Correlation between experimental ΔGº values and FragPELE results for JAK-II.

Figure B5. Correlation between experimental ΔGº values and FragPELE results for p38.
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Appendix C

Changes in FragPELE protocol after its first published version

As mentioned in Section 1 from Chapter 3, the initial version of FragPELE showed

several limitations that have been solved throughout their use in drug discovery

projects. Here we will summarize which modifications the algorithm has suffered in

their major releases.

FragPELE 2.0

When growing fragments in some systems, users reported clashing simulations because

of intramolecular contacts between the scaffold and fragment part. Thus, we propose

some changes to tackle this issue:

Inclusion of parameters modification in the fragment growing stage. Initially, the

algorithm only changed 𝜎 (VDW radii), partial charges, and bonding equilibrium

distance. In this version, ε (VDW well deep) and solvent parameters (atomic radii to

calculate surface and solvent accessible surface areas, alpha and gamma parameters for

nonpolar models) are also grown, editing all non-bonding parameters.

Addition of ‘allLinear’ growing procedure. Instead of distributing the hydrogen charge

among fragment atoms in the GS0, this charge is treated following the same equation

for all FFP, being Xo the initial value for any FFP and X the final value:

𝑋
𝑜

=  𝑋
𝐿+1

Set the final equilibrium distance of the scaffold-fragment linking bond. Instead of

expanding while growing the bonding distance of the linking bond, the new algorithm

directly places the final distance to move away from the fragment (to avoid non-desired

intramolecular contacts). Both previous changes are illustrated in Figure C1.
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Figure C1. Schematic representation of the FFP treatment in the transition from GS0 to

GS1 in FragPELE1.0 and FragPELE2.0. Differences in size between GS0 and GS1

illustrate the growth of bond lengths and VDW radius.

“Grow” the scaffold atoms in synchrony with the fragment. Adding a fragment to the

core molecule can change the environment close to these atoms, significantly affecting

the distribution of charges. Then, the algorithm reads the FFP of the core atoms in the

initial structure (without the fragment) and compares them with the final one (including

the fragment). Then, these scaffold parameters will be slightly transformed from the

initial to the final state while growing.

By applying these modifications, the number of successful simulations was substantially

increased without affecting the performance (re-tested with MUP-I congeneric series

showing an R² of 0.94) (see Section 1.3 from Chapter 3).

Other new functionalities were developed to make the software more user-friendly:

Growing onto heavy atoms instead of hydrogens. Users can grow fragments onto a

heavy atom without requiring a hydrogen atom bound to it. The algorithm automatically

replaces the linked atom (element independent) for the whole fragment, setting a new

distance extracted from a library of bonding distances (Libretexts, 2015).

Bond-like selection. Following the same trend, users can pick any pair of atoms

involved in a covalent bond (excepting cyclic regions) to be replaced for the new
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scaffold-fragment linking bond. Consequently, the branch of atoms after the selected

bond will be immediately deleted (see Figure C2). Notice that this procedure also can

be employed to select fragment bonds.

Figure C2. Schematic illustration of bond-like selection in FragPELE 2.0. After the

selected bond, the new amino fragment replaces all connected atoms (in green).

Coupling fragments through double-triple bonding. The algorithm detects the selected

bond type of the fragment atom, assigning the same type (single, double, or triple) to the

newly formed covalent bond. For every extra bond, a free-hydrogen atom bonded to the

scaffold linker is erased to not overcome the maximum number of bonds accepted by

the atom. If no free-hydrogens are bonded to this atom, the algorithm will raise an

exception. Additionally, the new bonding distance will be corrected according to their

type for the proper generation of FFP.

Automatic preparation of libraries of fragments with LibPrep. This new software aims

to facilitate the processing of molecules to run FragPELE towards a library of

fragments. It requires an SDF file containing one or multiple 3D fragments (prepared),

and it will automatically prepare all the files to grow them onto the desired scaffold

atom. Code available in: https://github.com/carlesperez94/lib_prep

FragPELE 3.0

After extensively using the new version of FragPELE in multiple studies, we found

some weaknesses. In this case, a few simulations have shown terminal atoms (normally

hydrogens) adopting incorrect dihedrals conformations. Additionally, we detected
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mixed enantiomers within the same sampling simulation when expanding fragments

with chiral centers. We hypothesize that this situation could be originated due to

instabilities produced by the partial charges of the miniaturized fragment in the very

early stages of the growing procedure when the van der Waals radii are reduced, and

there is not enough repulsion to wrong configurations as well chirality inversions. To

address this problem, we proposed a few modifications:

The addition of a ‘Softcore-like’ growing procedure. Inspired by the softcore potentials

applied in FEP (Lee et al., 2020), we keep null charges in the first half of the fragment

growing phase, adding them in the second half. Moreover, charges are incorporated

exponentially while the other terms are increased linearly (see Figure C3). Take in mind

that the charges of the scaffold atoms will be fixed until modifying the charges of the

fragment.

Figure C3. Graphical example to illustrate the FFP parameter changes in the softcore-like

growing protocol of FragPELE.

Strengthen minimization in early growing steps. We suspected that the standard

minimization performed in each growing step could not readapt the geometry of

wrongly positioned atoms. Thus, the convergence criteria of the Truncated Newton

minimizer (minimum RSM) of PELE in the first half of the growing process is
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strengthened from the default value of 0.25 to 0.01 (kcal/mol/Å)² and then relaxed to

0.1 (kcal/mol/Å)² in the second half.

By combining both previous strategies, wrong dihedrals conformations were

corrected. However, a third update was required to solve chirality issues:

Include harmonic constraints on dihedrals involved in chiral centers. Constraints

were set in minimizations to keep fixed dihedrals only in the first half of the growing

stage.

After applying all these changes, we repeated the MUP-I series to re-assess the

predictive score, showing an R² of 0.95, also increasing the time per fragment to

around 15 minutes as a consequence of increasing the minimization convergence

criteria. However, we think spending more time per step is worth it if we reduce the

amount of wrong miniaturized fragment conformations. Besides, extra new

functionalities have been incorporated in FragPELE 3.0:

Starting simulations from any (0 to 1) lambda value. This change has been designed

to save computation time in systems with open cavities or free space in the growing

direction. Users can start simulations from any lambda value between 0 to 1,

initializing from the GS closest to the defined value. Consequently, the initial size of

the fragment will be proportional to the assigned lambda value.

Compatibility with OpenForceField. FragPELE allows using the new Open Force

Field initiative (Lim et al., 2020), which was recently included in PELE too.

Covalent FragPELE. Fragments can be grown now onto amino acid side-chains or

any covalently bound ligand. Users must specify the protein chain and the residue

number where they want to attach the fragment. This functionality opens a new door

to fastly screening of covalently bound ligands (previously assuming the reactivity of

a specific warhead) and even mutate side-chains of amino acids (useful in

protein-protein and enzyme engineering studies with PELE).

175

https://paperpile.com/c/KisYB7/H8SHP


176



Appendices. Appendix D

Appendix D

Energy profiles of Growing on hydrated systems study

(combining aquaPELE and FragPELE)
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Figures D1. Energy profiles from the structural validation with explicit waters (Section

2.1 of Chapter 3). PDB codes and their assigned letters refer to the ones in Figure 3.13.

Clusters have been colored and sorted alphabetically from the most populated cluster to

the least, being the red the most populated cluster.
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Supplementary figures of structural validation of AquaPELE and

FragPELE algorithm.

Figure E1. Electron density maps of 3RLQ X-ray. (left-side) Image centered in A249 and

(right-side) centered in A286. Blue dashed lines show atom-atom interactions, while blue

clouds around atoms represent the density map. Image created with Mol*Viewer (Sehnal

et al., 2021).

Figure E2. HSP90 (2). Explicit displaceable waters (in red) of the X-ray 2XAB (in

orange), superimposed onto 2XJG (in green). A2246 is close to the growth methyl, while

A2215 is quite far. Density results for each water cluster are also shown. Created
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(continuation) with Maestro (Schrödinger, 2018). For each water position, blue labels

show the water cluster densities of the aquaPELE simulation, and the green label shows

the same densities after combining aquaPELE with FragPELE.

Figure E3. BRD4. Explicit displaceable waters (in red) of the X-ray 5I80 (in blue),

superimposed onto 5I88 (in green). Crystallographic water positions are also shown and

labeled according to the X-ray information. Notice that there is a buried complex network

of water molecules close to the growing direction. For each water position, blue labels

show the water cluster densities of the aquaPELE simulation, and the green label shows

the same densities after combining aquaPELE with FragPELE. Created with Maestro

(Schrödinger, 2018).

182

https://paperpile.com/c/KisYB7/sYtN
https://paperpile.com/c/KisYB7/sYtN


Appendices. Appendix E

Figure E4. TAF1. Explicit displaceable waters (in red) of the X-ray 5I29 (in blue),

superimposed onto 5I1Q (in green) and 6BQD (in pink). Crystallographic water positions

are also shown and labeled according to the X-ray information. Notice that there is also a

complex network of water molecules close to the growing direction. Created with

Maestro (Schrödinger, 2018). For each water position, blue labels show the water cluster

densities of the aquaPELE simulation, and the green labels the same densities after

combining aquaPELE with FragPELE to grow the first fragment (5I1Q), and pink for the

second fragment (6BQD).
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Figure E5. SiaP WT. Explicit displaceable waters (in red) of the X-ray 2V4C (in blue),

superimposed onto 3B50 (in green) and 2WYK (in pink). Crystallographic water

positions are also shown. Due to many water molecules, only the molecules detected in

the clustering analysis and the perturbable water density were labeled. Created with

Maestro (Schrödinger, 2018). For each water position, blue labels show the water clusters

of the aquaPELE simulation, and the green labels show the same densities after

combining aquaPELE with FragPELE to grow the first fragment (3B50), and pink for the

second fragment (2WYK).
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Figure E6. CHK1. Explicit displaceable waters (in red) of the X-ray 2C3L (in blue),

superimposed onto 2C3K (in green). Notice that the fragment size is the largest one of the

whole set, implying the displacement of 4 water molecules. For each water position, blue

labels show the water cluster densities of the aquaPELE simulation, and the green labels

show the same densities after combining aquaPELE with FragPELE. Only two major

clusters were detected, one of them between A2052 and A2127. Created with Maestro

(Schrödinger, 2018).
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Appendix F

Supplementary figures of the VS pipeline based on ML methods

Table F1. Mean F1-scores, standard deviation (SD), and test results for the 15 fold-CV in

the Xray 1 machine learning model. Note: the test was only computed when the mean

F1-score was higher than 0.60 (green colored).

Xray 1 F1 score
standard
deviation standard error Test

5 features 0,562 0,127 0,0327 nan

4 features 0,608 0,130 0,0335 0,68

3 features 0,478 0,113 0,0292 nan

2 features 0,637 0,122 0,0314 0,65

1 feature (docking) 0,606 0,120 0,031 0,46

1 feature (MET
resilience) 0,55 0,120 0,0309 nan

Figure F1. Distribution of the mean F1-scores ± standard deviation for 15-folds

cross-validation results in the Xray 1 machine learning model.
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Table F2. Mean F1-scores, standard deviation (SD), and test results for the 15 fold-CV in

the Xray 2 machine learning model. Note: test was only computed when the mean

F1-score was higher than 0.60 (green colored).

Xray 2 F1 score
standard
deviation standard error Test

5 features 0,645 0,108 0,0278 0,63

4 features 0,636 0,121 0,0312 0,67

3 features 0,641 0,110 0,0284 0,64

2 features 0,581 0,174 0,0448 nan

1 feature (docking) 0,567 0,143 0,0369 nan

1 feature (MET
resilience) 0,495 0,130 0,0335 nan

Figure F2. Distribution of the mean F1-scores ± standard deviation for 15-folds

cross-validation results in the Xray 2 machine learning model.
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Figure F3. Individual features and probability distribution for commercial set results in

Xray 1. Vertical lines show the position of the 23 compounds experimentally tested.

Green and orange lines correspond to active compounds and gray to inactive.
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