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Resum

TESI DOCTORAL
Weighted restricted weak-type extrapolation on classical Lorentz spaces

per SERGI BAENA MIRET

Un resultat important en analisi harmonica és el teorema d’extrapolacié de Rubio de
Francia. En la seva versio original diu que si T' és un operador sublineal que esta acotat en
LPo(v), per a algun py > 11 per cada v € A, llavors T" esta acotat en LP(v) per a qualsevol
p>1liveA,

Ara bé, tot i que el teorema de Rubio de Francia ha demostrat ser molt ttil en la practica,
no permet obtenir estimacions en p = 1. Es per aixo que en [61] es va desenvolupar una
nova teoria d’extrapolacioé per tal de donar una soluci6é a aquest problema, mostrant que les
estimacions ponderades de tipus feble restringit (p, p) per a p > 1 i per a una classe una
mica més gran que A, (denotada per ﬁp) permeten arribar a p = 1.

De fet, en aquesta tesi comencem per veure que el reciproc del resultat anterior també és
cert; és a dir, estudiem les propietats de les acotacions per als operadors 1" que sén de tipus
feble restringit (1, 1) per a pesos en A; i demostrem que aquesta condicié és una condici6
“norma’; ja que és equivalent a estimacions ponderades restringides de tipus feble (p, p) per
a Pesos Ap. Com a conseqiiéncia obtenim, per exemple, acotacions d’operadors que es donen
com a promig d’operadors del tipus anterior.

A més a més, presentem noves estimacions ponderades de tipus restringit en espais de
Lorentz classics per a operadors que satisfan estimacions ponderades de tipus feble restrin-
git (p, p), p = 1, i estenem després aquests resultats a l'extrapolacié limitada i, a més, a
I’extrapolacié multi-variable. Com a resultat, obtenim noves acotacions ponderades d’espais
de Lorentz classics per a operadors importants en 1’analisi harmonica com ara aquests que
satisfan una desigualtat de Fefferman-Stein, multiplicadors de Fourier de tipus Hérmander,
operadors rough, operadors sparse, 'operador de Bochner-Riesz, entre d’altres. A més, a par-
tir de les acotacions anteriors concluim estimacions puntuals per a la reordenada decreixent
d’aquests operadors.

Finalment, també estudiem estimacions de tipus fort sobre espais de Lorentz classics
ponderats.
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Abstract

DOCTORAL DISSERTATION
Weighted restricted weak-type extrapolation on classical Lorentz spaces

by SERGI BAENA MIRET

An important result in Harmonic Analysis is the extrapolation theorem of Rubio de
Francia. In its original version says that if 7" is a sublinear operator that is bounded in
LPo(v), for some py > 1 and every v € A, , then T is bounded in LP(v) for any p > 1 and
veA,.

Although the Rubio de Francia theorem has proven to be very useful in practice, it does
not allow to get estimates at p = 1. That is why in [61] it was developed a new extrapolation
theory in order to give a solution to this issue, showing that weighted restricted weak-type
(p, p) estimates for p > 1 and for an slightly bigger class than A, (denoted by A,) yield
estimates at p = 1.

Indeed, in this thesis we start by seeing that the converse of the previous result is also
true; that is, we study boundedness properties for operators T' that are of restricted weak-
type (1, 1) for weights in A; and we prove that this condition is a “norm” condition since it is
equivalent to weighted restricted weak-type (p, p) for flp weights. As a consequence, we can
obtain, for instance, boundedness for operators which are given as an average of operators
of the above type.

As well, we present new weighted restricted estimates on classical Lorentz spaces for
operators that satisfy weighted restricted weak-type (p, p) estimates, p > 1, extending then
these results to the limited setting and, as well, to the multi-variable setting. As a conse-
quence, we obtain new weighted estimates on classical Lorentz spaces for important operators
in Harmonic Analysis such as operators that satisfy a Fefferman-Stein’s inequality, Fourier
multipliers of Hormander type, rough operators, sparse operators, the Bochner-Riesz oper-
ator, among others. Further, from the previous estimates we prove pointwise estimates for
the decreasing rearrangement of such operators.

Finally, we also study strong-type estimates on weighted classical Lorentz spaces.
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Chapter 1

Introduction

This short chapter is intended to be a brief description of our project. In Section 1.1,
we include general notation and conventions. In Section 1.2, we introduce the starting
point and motivation of this manuscript. To do so, we start with a short review on Rubio
de Francia extrapolation, without going into the details, where we talk about the original
Rubio de Francia theorem, the Hardy-Littlewood maximal operator, the Hilbert transform
and a more recent result based on the Rubio de Francia extrapolation theorem. Further, to
end this section we explain how we have organized this thesis. Finally, in Sections 1.3, 1.4,
1.5 and 1.6 we state the main extrapolation results on this manuscript (which correspond to
Chapters 3, 4, 6 and 7 respectively) and its more interesting consequences.

1.1 Notation and conventions

Let (R, X, 1) be a o-finite nonatomic measure space. In all the thesis we will use the following
notation:

N the set of all natural numbers, not including 0
Z the set of all integers numbers

R the set of all real numbers

R* the set of all positive real numbers

R™ the n-fold product of R

XE the characteristic function of a set E
ZZ”CCZZ;’CZZ the Lebesgue measure

M the set of all y-measurable functions

M the set of all nonnegative p-measurable functions
log the logarithm with base e

inf the infimum

sup the supremum

ess inf the essential infimum

ess sup the essential supremum

C(E) the set of continuous functions on £ < R™
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C.(E)  the set of continuous functions on F < R™ with compact support

CF(E)  the set of k-times differentiable functions on £ < R"

C*(E) the set of infinitely differentiable (or smooth) functions on £ < R™
CP(E) the set of functions of C*(F) on E € R" with compact support

S(E)  the Schwartz space of C*(FE) functions on £ € R™ which decrease rapidly
LP(E)  the Lebesgue space of p € (0, 00) integrable functions on £ < R”

(E) the Lebesgue space of locally integrable functions on F < R™

P the conjugate exponent of p > 1; that is % + z% =1,

Given a p-measurable set | we will use the notation

u(E) = L dp.

Indeed, if p is the Lebesgue measure, then we will simply write |E|.
For a given operator T and real or complex function spaces X and Y endowed with quasi-
norms || - ||y and || - ||y respectively, then T": X — Y will stand for that 7" is well defined on

Y and T
”THX_,Y = sup ” fHY < 0.
rex 1 llx

When X =Y, we will write |||y := ||T||x_x- Further, we will say that X £ Y continuously
if for every f € X, then f € Y and ||Id||y_,y < o, where Id(f) := f (or, what is the same,
I flly < Idllx_v | fllx)- Besides, we will say that T" is a linear operator (resp. sublinear) if
T(f+g)=Tf+Tg (resp. T(f +9g) <Tf + Tg). More generally, given a multi-variable
operator T', we will say that T is a multilinear operator (resp. submultilinear) if is linear
(resp. sublinear) in each variable.

In general, we will work in R™, with n € N. Unless otherwise specified, by a function f we
will mean a real or complex-valued function on R™. If we say that a function is measurable,
but we don’t specify any measure, then it will be with respect to the Lebesgue measure on
R"™. The same applies to a measurable set and also to the expression a.e. (that is, almost
everywhere). By a cube in R™ with side length ¢ > 0, we mean a cube open on the right

Q= z1,21+0) x - x [z, 2, +{)

with sides parallel to the axes and z = (x1,...,2,) € R". As well, we will say that T is the
adjoint operator of the linear operator T' if for every measurable functions f, g,

j TI@a(@)dr = | f@)Tglz)da.

We will call weight a nonnegative locally integrable function in R™. Further, if v is a
weight, then by considering the measure v(z) dz, we will denote for every measurable set E,

v(E) = JE v(x)de.
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Finally, as usual we shall use the symbol A < B to indicate that there exists a universal
positive constant C', independent of all important parameters, such that A < CB. When
A < Band B < A, we will write A ~ B. The constant C' is called the implicit constant.
Usually, we will denote implicit constants by ¢, ¢, ¢/, C, C,orC'. In many occasions, they will
depend on some parameters 7, ..., v, m € N, and if we want to point out that dependence,
we shall do it by using subscripts as A < C,

1.2 Background and Motivation

In Harmonic Analysis, given an operator T, the study of whether
T:LP(R") — LP(R"), for some p > 1,

appears many times. There are many techniques to face these kind of problems and one that
has gained increased attention in the area, as it has proven to be very useful and effective,
is the well-known extrapolation theorem of Rubio de Francia (see [162, 163]). Roughly
speaking, it says that if T" is a sublinear operator which satisfies that for some 1 < pg <
and every weight v € A, (see Definition 2.2.1)

T:L"(v) — LP(v), (1.1)
with constant depending on Hv||ApO, then for any 1 < p < oo and v € A,

T : LP(v) — LP(v), (1.2)
with constant depending on [[v[|, , where

P

oy = ([ 0P )

is the weighted Lebesgue space. Note that, in particular, this is true if we let v = 1 in (1.2),
so LP(R™) estimates follow from weighted L estimates.

The case p = 1 is usually called the endpoint exponent and from (1.1) one can not expect
to obtain (1.2) for it. For example, this is the case of the Hardy-Littlewood maximal operator
M (first introduced by G.H. Hardy and J.E. Littlewood [104]| for n = 1 and then by N.
Wiener [180] for n > 1) defined as

_ L 1 n
Mf<x>_zué,£) |Q| JQ|f(y)|dy7 fELloc<R )7

where the supremum is taken over all cubes of () in R"™ containing x € R". Indeed, it is
known that

M:IP(R") — LP(R"),  Vp> 1,
but M : L*(R") - L'(R") and the only function f € L'(R") for which M f € L'(R") is f = 0
(see for instance [88]). However, if we introduce the weak-L*(R™) space, which is defined by
those functions f such that

I llsn ey = supt € R 2 | (@) > 1}] <
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then from the Chebyshev’s inequality is easy to see that L'(R") < L“*(R™) continuously
and it can be proved that now

M : L'(R™) — LY (R™).

That is also the case of the Hilbert Transform H (first introduced by D. Hilbert [105, 106],
although it was not until 1924 that G.H. Hardy called it Hilbert’s operator due to its con-
tributions to this operator [102, 103]) defined as

Hf() =L hmfl_l TW) 4y fec®R),zeR.

T e—0+ T —y

whenever this limit exists almost everywhere (see for instance [88]).
This naturally arises the question about what could we obtain if we weaken the hypothesis
in (1.1) by
T : LP(v) — LPo®(v),

with LP>®(v) being the weighted Lorentz space of measurable functions such that
1
1 lsn = supto (o & R*: £(2)] > e1)3 < o
>

but it turns out that even in this case, it is not possible to extrapolate until the endpoint
p =1 (just consider, for example, the operator M? := M o M).

That is why in [61] it was developed a new extrapolation theory in order to give a solution
to this issue, where it was needed to introduce the weighted Lorentz spaces LP!(v), p = 1,
defined by those functions f such that

11l ooy = pL v({x e R™: [f(x)] > )7 dt < o

and which satisfy the chain of inclusions L”!(v) € LP(v) < LP*(v) continuously. Further,
the authors also need to consider a bigger class of weights than A, denoted by Ap (see
Definition 2.2.7). Then, its main result reads as follows: if 7" is an operator (not necessarily
sublinear) which satisfies that for some 1 < py < o0 and every weight v € Apo

T : [Pl (v) — LP2®(v), (1.3)

with constant depending on ||v|| Ay then for v € Ay, T is of weighted restricted weak-type
(1,1); that is, for every measurable set £ < R",

ITxEl 1oy < Cov(E), (1.4)

with C, depending on n, py and [Jv||,,. Furthermore, if 7" belongs to the subclass of sublinear
operators called (e,0)-atomic approzimable operators (see Definition 2.3.10) in [61] it was
shown that, in fact, (1.4) holds for every function in L'(v); that is,

T:L'(v) — LY (v), Yo e A,
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with constant depending on [[v| 4, .

Here, we have to point out that one of the main differences between the endpoint p = 1
and the other cases fall on the function space L“*(v). Unlike LP(v) for p > 1, or even
LP®(v) for p > 1, the space LY (v) cannot be normed for any weight v to become a Banach
function space (see Section 2.1.1 for the notion of (quasi)-Banach function spaces). Therefore,
in particular, the previous result allows to obtain boundedness for general operators T' (at
least for characteristic functions) with arrival space the quasi-Banach function space L'*(R")
from boundedness with arrival space the Banach function space LP*(v), forp > 1 and v € Ap.
Indeed, that result is the starting point and motivation of our project, which is organized as
follows.

In Chapter 2 we introduce some notions and definitions, as well as some important (new
and old) results that we will use later on throughout this manuscript based on classical
Lorentz spaces (see Section 2.1), several classes of weights (see Section 2.2) and the Rubio
de Francia extrapolation theory (see Section 2.3).

In Chapter 3 we show that if (1.4) holds then (1.3) holds, so that, indeed, both conditions
are equivalent and we conclude that (1.4) is a “norm” condition although L'*(v) can not
be normed (see Section 3.3). This allows us to get interesting estimates on average opera-
tors, Fourier multipliers (as, for instance, in the context of restriction multipliers), integral
operators and the Bochner-Riesz operator (see Section 3.5).

In Chapter 4 we see that the condition (1.3) also yields restricted weak-type boundedness
on the setting of classical Lorentz spaces and we also generalize it to what is known as limited-
(range) extrapolation (see Section 4.2). Moreover, we also show that having restricted weak-
type boundedness on classical Lorentz spaces for a given sublinear operator 7' is equivalent to
a pointwise estimate on its decreasing rearrangement by a Calderén admissible type operator
(see Section 4.3).

In Chapter 5, we prove new boundedness of important operators in Harmonic Analysis
over classical Lorentz spaces and we also obtain interesting pointwise estimates on its de-
creasing rearrangement. In particular, we study operators that satisfy a Fefferman-Stein’s
inequality (see Section 5.1), Fourier multipliers (see Section 5.2) such as Fourier multipliers
of Hérmander type (see Section 5.2.1), Fourier multipliers that satisfy a Fefferman-Stein’s
type inequality (see Section 5.2.2) and radial Fourier multipliers with a derivative condition
(see Section 5.2.3), rough singular integrals (see Section 5.3), intrinsic square functions (see
Section 5.4), sparse operators (see Section 5.5), the Assani operator (see Section 5.6) and
the Bochner-Riesz operator (see Section 5.7).

In Chapter 6 we prove extrapolation results on classical Lorentz spaces but, this time, for
multi-variable operators based on weighted restricted weak-type estimates (see Section 6.2)
and weighted mixed-type estimates (see Section 6.3). As a consequence, we obtain new
estimates on bilinear Fourier multipliers and multilinear sparse operators (see Section 6.4).

Finally, in Chapter 7 we consider weighted classical Lorentz spaces by assuming (1.1).
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This open a new line of research that could extend the results shown on this project (but
that need new and different techniques that the ones proposed on the previous chapters)
that, undoubtedly, we will be working in the near future.

We now continue to state the main extrapolation results on this thesis and its more
interesting consequences. For technical reasons, in all our extrapolation theorems we require
that the constants in each bound must behave in a nondecreasing way on the constants of
the weights involved. We refer to Chapter 2 for all the notions and definitions.

As far as possible, we have tried to provide precise bibliographic information about all the
known results. Besides, some of the results of this monograph are included in [6, 15, 16, 17].

1.3 Weak-type (1,1) for weights in A;

The main goal of this chapter is to prove that if (1.4) holds then (1.3) does also. The keystone
of its proof consists on a Sawyer-type inequality (which can be found in Lemma 3.2.2) and
the main result can be stated as follows.

Theorem 3.3.1. Assume that for some pair of nonnegative functions (f,g),

9l Loy < el a) 1fll iy, Yue Ay,

with ¢ being a nondecreasing function on [1,00). Then, for every 1 < p < oo,

191 ooy < AN [ oy Vo€ Ap,

where ,
O(r) = Cro(Cor?)rP (1 +logr)? | r>=1,

with Cy and Cy being two positive constants independent of all parameters involved.

This has as a consequence, together with [61, Theorem 2.11], that up to some constants
we have that (1.3) and (1.4) are equivalent (see Corollary 3.3.2). Therefore, we obtain that
(1.4) is a “norm” condition, from which, in particular, we can get restricted weak-type (1, 1)
estimates for average operators of operators satisfying (1.4).

Corollary 3.5.1. Assume that {Tp}y is a family of operators indexed in a probability measure
space such that the average operator

Tuf(@) = [ Tof(@)aPO),  weR

1s well defined and that
Ty : L'(u) — LM (u), Vue Ay,

with constant less than or equal to p(|[ul| 4 ), where ¢ is a positive nondecreasing function
on [1,00). Then, for every measurable set E < R",

ITaxell Lo S P(C [[ull o)1+ loglull 4 )u(E),  Vue Ay
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Moreover, if Ty is a sublinear (e, d)-atomic approzimable operator, then
Ty : L'(u) — LY (u), Vu e Ay,
with constant less than or equal to C1p(Cy ||ull 4, ) |lull 4, (1 + log [[ul] 4, )-

By virtue of Theorem 3.3.1, we also deduce boundedness of Fourier multipliers (see Sec-
tion 3.5.2) and integral operators (see Section 3.5.3), and we completely answer an open
question formulated in [46] about the weighted restricted weak-type (p,p) boundedness of
the Bochner-Riesz By at the critical index A = %71 (see Section 3.5.4).

Moreover, there are some operators for which (1.3) does not hold for every py = 1 but,
at least, it does for a limited range. Hence, our second main result on this chapter consists
on a generalization of Theorem 3.3.1 which contains also those kind of operators and reads
as follows.

Theorem 3.4.1. Assume that for some pair of nonnegative functions (f,g) and for some
1<py<wand < a<l,

191 oo ey < @ (1ull%,) 1l poruay,  Yu€ Au,
with ¢ being a nondecreasing function on [1,0). Then, for any py < p < {2,
||g”LPa°C(v) <V (”U“AP;(MI,W(MJ ||f||va1(v) ) Vv € Ap(a(p),50);
_ 1 _ pl=qa) — _p=p
where a(p) = 1 o Bp) = Gy and
p—pg
1 P ap a(p—pg) 2(p—pg)
U(r)=C (—) %) <02Tpo_p(1_a)> rro—»d-o) (1 4+ logr)” » r=1,
po—p(l —a)

with Cy and Cy being two positive constants independent of all parameters involved.

As a consequence of Theorem 3.4.1 we get new weighted estimates for the Bochner-Riesz
operator By below the critical index; that is, for 0 < \ < ”T_l (see Section 3.5.4).

However, under the hypothesis of Theorem 3.4.1 we observe that although p can be set
to po, it must be strictly less than {#2-. To solve this issue, motivated by (3.4.2) we have
changed the hypothesis of Theorem 3.4.1 so we have obtained the following result.
Theorem 3.4.3. Assume that for some pair of nonnegative functions (f,g) and for some

1<py<owand < a<l,

HQHLPO@O((Mh)a) < On,pma HfHLpo,l((Mh)a) ’ Vh e L}oc(Rn)-
Then, for p = -,

11
Po—

1 P _1\po »
HgHLP@C(ulP%) <(l—a)m Chppa® (HUHZO1 > ||fHLp,1(u1pPO) ; Vu € Ay,

for some nondecreasing function ® on [1,00).
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1.4 Weighted restricted weak-type estimates on A?(w)

We have aimed this chapter to obtain weighted restricted weak-type estimates on the setting
of classical Lorentz spaces. Indeed, the first main result of this section is the following.

Theorem 4.2.2. Let T' be an operator satisfying that for some 1 < pg < 0,
T : [P (v) — LPo(v), Yo e Ay,

with constant less than or equal to go(HvHApO), where ¢ is a positive nondecreasing function
on [1,00). Let 0 < p < o0.

(1) If po = 1, then
T : AP w) — AP*(w), Vwe Bl n B,

with constant less than or equal to Cy ||w|| gr ¢ <C’2 lw]| g )
P [e0]

(11) If po > 1 and T is sublinear, then, for every 0 < q <1,

T : AP (w) — AP (w), Vwe Bl n BY,

C 1 a1
with constant less than or equal to 7 ! |w|| gr max (1, ||w||(;*p°> @ (02 ||w||;°*>
q P o0 (o]

For Theorem 4.2.2 we make a couple of observations.

e Comparing it with the restricted weak-type extrapolation on Lorentz spaces (see [56,
Theorem 3.1] and [61, Corollary 2.15]), we observe that we obtain, in particular, that
for a general operator T, if pgo =1 and p > 1,

T : LP'(R") — LP™(R")
and if py > 1 and T is sublinear, for every 0 < ¢ <1 and p > 1,
T:LYR") — L"*(R") and T : LP'(R") — LP™(R™).
e By means of the Hilbert transform (see (2.2.25)) the condition Bff n B% on the weight

w of Theorem 4.2.2 (i) is sharp in the sense that it can not be found a greater class for
w.

Now, it turns out that for a sublinear operator 7', having for some 0 < ¢ < 1,
T : AY(w) — A (w), Yw e B n BX,

for a suitable control of the norm constant is equivalent to an estimate on the decreasing
rearrangement of 7" by a Calderén admissible type operator (see (4.3.3) for its definition).
Indeed, we have the next result.
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Theorem 4.3.10. Given 0 < g < 1. Let T be a sublinear operator and let ¢ be an admissible
function (see Definition 4.53.1). Then,

T : AV (w) — AV (w), Vw e B ~n BX,

with constant less than or equal to C|w||gr ¢(||w| gz ) if and only if for every locally integrable
function f and for every t > 0,

, U, ds \T o (Pe(ltlog?) . ds
wros (g [ reras) s [ ST s (15)

Besides, while working on the proof Theorem 4.3.10 we realized about that, in fact, we have
also the following result.

Theorem 4.3.15. Given 0 < g < 1. LetT be a sublinear operator and let p be an admissible
function. Then, T : LY (R") — LY*(R") and for every 1 < p < o,

HTXEHLp,oo(Rn) < CQD (p) ’E‘57 VE C R”’

with C independent of p if and only if for every locally integrable function f and everyt > 0,
(1.5) holds.

Therefore, as a consequence of Theorems 4.2.2, 4.3.10 and 4.3.15, we obtain new estimates
on the setting of classical Lorentz spaces and on the decreasing rearrangement for important
operators in Harmonic Analysis such as

e operators that satisfy a Fefferman-Stein’s inequality (see Section 5.1),

radial Fourier multipliers with a derivative condition (see Section 5.2.3),
e rough singular integrals (see Section 5.3),

intrinsic square functions (see Section 5.4),

e the Assani operator (see Section 5.6)
e and the Bochner-Riesz operator (see Section 5.7).

Furthermore, we have managed to extend the above extrapolation results on classical
Lorentz spaces to the limited setting, and then our next main result reads as follows.

Theorem 4.2.5. Let T' be an operator satisfying that for some 1 < pyg < 0 and 0 < o, 5 < 1
(not both identically zero),

T: L) > LP(0), Vo€ Apyas, (L6)

with constant less than or equal to p(||v]|4 with ¢ being a positive nondecreasing
Po

),
i(a,B)
function on [1,00). Let 0 < p < o and set p_ and p; as in (2.3.5).
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(i) Ifpo=10r0<p <1,

T : AP (w) — AP*(w), Ywe BY ~ B}, .

p— P

(i1) If po > 1 and 8 =1 then, for every 0 < q < 1,

T : AP (w) — AP*(w), Ywe BY ~Bj,.

P

For Theorem 4.2.5 we also make a couple of observations.

e If we take w = 1, then w € B} n B}, whenever p_ < p < p,, so as in Theorem 3.4.1,

P— P
we are not able to extrapolate till p = p,.

e We can not expect to get a bigger class of weights than B since, for instance, the

operator M 1 f := M(fp*)p% satisfies (1.6) for pg = p_, « =71 and 8 = 0 (see (2.2.8))
while M. " API(w) — AP (w) holds if and only if w e B (see (2.2.14)).

Further, if we assume a similar hypothesis as in Theorem 3.4.3, then we get the next result.
Theorem 4.2.8. Let T' be an operator satisfying that for some 1 < pg < o0 and 0 < a < 1,
T L ((Mxp)®) — LP*(Mxr)®),  YF <R

with constant less than or equal to C,, p, o. Then, for every 0 < p < o0,

T : AP (w) — AP*(w), vwe B ~ B*, |

PO (I—a)p

1 l-a
ith constant less th lto C o, log [ 1+ "
with constant less than or equal to C, py o Hw||B% og ( ||wHB>:ﬁna>p> ||wHB,,<RpO

PO (I—a)p

In the limited setting, it also turns out that having for a sublinear operator T" and for some
0<g<land1l<p <ps <o,

T : AY(w) — AV (w), Ywe B n B

p2?

for a suitable control of the norm constant is equivalent to an estimate on the decreasing
rearrangement of T by a Calderén admissible type operator. Indeed, we have the next result.

Theorem 4.3.17. Given 0 < ¢ < 1 and 1 < p; < ps < 0. Let T be a sublinear operator
and let ¢ be an admissible function (see Definition 4.3.1). If

T : AV (w) — A (w), Ywe BY n B

27
P1 P
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1
with constant less than or equal to C ||w||BR © <||w||B;< > then, for every locally integrable
2

P
function f and every t > 0, 1

I S\ u ds
_1J 90(1+10g¥)f(3)j7 p2 < 0,

‘1 tr2 Jt s P2
S (tmff 1‘) ’ fos@(lﬂog%)f*()@ — o
. (1+log§) 55 bz =%
(1.7)

Conversely, suppose that (1.7) holds. Then

1
lwllgs  lwlisg, e(lwllsg,), P2 <o,

PL
1

lollz (lollss). P = %

P1

A

|7 A () 1. ()

Besides, while working on the proof Theorem 4.3.17 we realized about that, in fact, we also
have the following result.

Theorem 4.3.22. Given 0 < g <1 and 1 < p; < py < 0. Let T be a sublinear operator
and let @ be an admissible function. If T : LPY1(R™) — LPY*(R™) and for every p; < p < po,

-1
with C' independent of p then (1.7) holds. Conversely, assume that we have (1.7). Then, for

e'Ue'Iﬂy pl < p < pg,
T 17t
||T||Lp,q(Rn)_,Lp,oo(Rn) < C(,D 2_9 — p_2 ,

with C independent of p and where, for x > 1,

o= 7@, <
o= ) i

Therefore, as a consequence of Theorems 4.2.5, 4.3.17 and 4.3.22 we get new estimates on
the setting of classical Lorentz spaces for important operators in Harmonic Analysis such as

e Fourier multipliers of Hérmander type (see Section 5.2.1),

Fourier multipliers that satisfy a Fefferman-Stein’s type inequality (see Section 5.2.2),

rough singular integrals (see Section 5.3),

e sparse operators (see Section 5.5)

and the Bochner-Riesz operator (see Section 5.7).
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1.5 Multi-variable weighted estimates on A?(w)

Continuing the work started in [161], where the author proved multi-variable extrapolation
results for weighted Lorentz spaces, we now consider multi-variable extrapolation on classical
Lorentz spaces.

Our first main result consists on multi-variable restricted weak-type estimates on classical
Lorentz spaces.

Theorem 6.2.2. Set m > 1 and let T be an operator satisfying that for some exponents
1<p1,. oy, pm <0 and}lj:pile...Jrﬁ;

T+ LP2 () x -+ x LPmol(vy,) — L2 (PPt P/pmy, Vo e Al i=1,....m,

with constant less than or equal to ¢ <||v1||AR voeos lvmll ar ), where o : [1,00)™ — (0, 00) is
P1 Pm
a nondecreasing function in each variable. Then, for all exponents 0 < q1,...,qn < 0 and
L1 ... 4L
E T @ + + qm’
1
T : A1 (wy) x -+ % Aqm’ﬁ(wm) — AP (w), Vw; e BEnBE, i=1,....m,
a a
where w is a weight such that W < W™ --- Wi . Moreover, if T is a submultilinear operator
and min{py, ..., pm} > m, then, for every 0 <r < %,
T : A" (wy) x - x A" (w,,) — AT (w), Yw; € BqRi NBy, i=1,...,m.

Let us make some observations for Theorem 6.2.2.

e An important key in the proof of Theorem 6.2.2 consists on obtaining restricted
weak-type boundedness on classical Lorentz spaces of the m-fold product of Hardy-
Littlewood maximal operator (see Theorem 6.1.1).

e If m = 1, we recover Theorem 4.2.2 although now in the hypothesis we have v € Af

instead of v € Ap. However, this is not a big deal since Ap c Af (indeed, whether the
equality of both classes hold or if the inclusion is strict is still an open question) and
all examples that we study work for weights in the (a priori) bigger class Af.

o If we let w = w?" .. w¥™ since ¢; > ¢ for every i = 1,...,m, by virtue of the

Holder’s inequality;,
W(t) < WY (1) ... Wdm(t), vt >0,
so that Theorem 6.2.2 also holds for this w.

e If py=---=p, =1, then we obtain that
T : A (w) x -+ x AP (w,,) — AT (w), Vw; e BEnBY, i=1,....m,
with constant less than or equal to

m
O (lorllag oo Fomlog ) | ol

(see Remark 6.2.3).
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As a consequence of Theorem 6.2.2, we obtain new multi-variable restricted weak-type esti-
mates on the setting of classical Lorentz spaces for multilinear sparse operators (see Section
6.4.2).

Our second main result consists on two-variable mixed-type estimates on classical Lorentz
spaces.

Theorem 6.3.2. Let T' be an operator satisfying that for some exponents 1 < pi,ps < o0

1_ 1 1
(mdp p1+p2’

T o LP(vy) x P2 (vg) — LP2(0Pb?), Yo € Ay, vy e AR (1.8)
with constant less than or equal to ¢ <HU1HAP1 Nval] ar ), where o : [1,0)* — (0,90) is a
p2

nondecreasing function in each variable. Then, for every exponents 0 < qi,q2 < 0 and

1_ 1,1
q*q1+q2’

T A% (wy) x A7 (wy) — A® (w), Yy € By B, wy € BE A B,

a4 4
with w being such that W < W W,2. Moreover, if T is a submultilinear operator and
min{py, po} > 2, then, for every 0 <r < %,

T : A" (wq) x A®"(wy) — AT*(w), Vw; € By, N Bk, wy € Bl 0 B,
As before, for Theorem 6.3.2 we also make a couple of observations.

e In this case we need to impose that both exponents p; and p, to be greater than 1.
In fact, we just need to ask that ps > 1 since, indeed, the case p; = 1 is handled by
Theorem 6.2.2. That is due to the fact that one of the steps of the proof of Theorem
6.3.2 consists on translating the hypothesis (1.8) to the diagonal setting (i.e., to p; = p2)
and it is unknown at the present how to extrapolate from p, = 1 to a greater exponent
and it is not possible to extrapolate from p; > 1 to 1.

o If py = py = py > 1, then we obtain that
T A% (wy) x A% (wy) — A% (w), Yy € By  BY, wy € BY ~ B2,

with constant less than or equal to

max 1,%) 27% (pofl)min(l,i) %
Clwillp,, lwall g & { lwnll g llwnlls, Nwal g ) -

As a consequence of Theorem 6.3.2, we obtain new mixed-type estimates on the setting of
classical Lorentz spaces for bilinear Fourier multipliers (see Section 6.4.1).
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1.6 Further results: weighted strong-type estimates on
A (w)

Finally, this last chapter is aimed to develop a new extrapolation result but now on the more
general spaces AP (w), in order to serve as an example for a future research on this type of
extrapolation. In that line, it was already known the following important result (see [83]).

Theorem 7.1.1. Assume that for some pair of nonnegative functions (f,g) and for some
1 < Po < 90O,

(J _g(z)o(z) dx> g < e(l[vll4,,) (L fz)Pu(x) dm) " . Yve A, (1.9)

where ¢ is a nondecreasing function on [1,00). Let X be a r.i. Banach function space and
let u e Ay such that

M : X(u) — X(u) and M X (u) — X' (u).
Then,
9llxy < Crp (CollMalq) 1M ) 1

Indeed, taking X = AP(w), for p > 1, it was already known when X is a Banach function space
(see [57, 166]) and when M : AP (w) — AP(w) holds (see [58]). Hence, in order to make use
of Theorem 7.1.1 we have applied every effort to prove whenever M, : (A2 (w))" — (A2 (w))’
is true, so we have obtained the following result.

Theorem 7.2.3. Given u € Ay. For every 0 < p < o0,
M (AL (w) — (AL (w))",  Vwe By(u) n B,
Therefore, as a consequence of Theorem 7.2.3 we get the next extrapolation result.

Corollary 7.3.1. Assume that for some pair of nonnegative functions (f,g) and for some
1 <py <o, (1.9) holds. Let 1 < p <o and u € Ay. Then,

||9||Az(w) < Cip (02 ||M;||(Ag(w))’ ||M||iog_(qlﬂ)> ||f||A5(w) ) Vw e By(u) N B

For Corollary 7.3.1 we should make some observations.

e The case 0 < p < 1, where AP(w) is not a Banach function space (see, for instance,
[172]) can also be settled. Indeed, arguing as in the proof of Theorem 7.1.1 for
X = AP(w), and using that A?(w) = (Al(w))”, in addition to that, by means of The-
orem 2.3.1, we can consider py as big as we want, it can be seen that Corollary 7.3.1
also holds for this range of p (although with a different constant) since Theorem 7.2.3
is also true for those exponents.

e Operators such as Fourier multipliers of Hérmander type (see Section 5.2.1), rough
singular integrals (see Section 5.3), intrinsic square functions (see Section 5.4), sparse
operators (see Section 5.5), the Bochner-Riesz operator (see Section 5.7), among others
satisfy (1.9) so we can obtain estimates on the setting of weighted classical Lorentz
spaces for all of them.



Chapter 2

Preliminars

We devote this chapter to introduce some notions and definitions, as well as some im-
portant results that we will use later on throughout this thesis. Among them, we will talk
about classical Lorentz spaces (Section 2.1) and different classes of weights (Section 2.2).
Finally, we will make a review of known results on extrapolation, from the oldest to the
newest (Section 2.3).

We will provide references for all the results for which it is easy to refer to a source and
we will provide proofs for those which are new or that we were unable to find its proof.

2.1 Classical Lorentz spaces

In this section, we present some basic concepts about classical Lorentz spaces. We start
by recalling well known facts about rearrangement invariant Banach (and quasi-Banach)
function spaces (Section 2.1.1) so that then we can ease the introduction of the definition
and properties of the classical Lorentz spaces (Section 2.1.2) in addition to its associate space
(Section 2.1.3). This section is not intended to be exhaustive.

2.1.1 R.i. (quasi)-Banach function spaces

We start by gathering some known basic facts about rearrangement invariant Banach and
quasi-Banach function spaces (for a complete account we refer to [23]).

Let (R, %, ) be a o-finite nonatomic measure space. A Banach function norm p is a
mapping p : M* — [0, 0] such that the following properties hold:

(i) p(f) =0 f =0 pae;

(ii) p(af) = ap(f), for a = 0;

(iii) p(f +9) < p(f) + p(9);
)
)

(iv) if 0 < f < g p-ace., then p(f) < p(g):

(v) if 0 < f, / f pae., then p(fn) 7 p(f);

15
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(vi) if E is a measurable set such that u(E) < o, then p(xg) < o0 and §, fdu < Cpp(f)
for some constant 0 < C'r < o0, depending on E and p, but independent of f.

The collection X = X(p) defined by

X={feM:p(f]) <o}

is called a Banach function space. If for each f € X we define || f||x = p(|f]), then (X, ||-||x)
becomes a Banach function space. Besides, by means of a function norm p, we can define its
associate norm p' : M+ — [0, 0] by

p'(f) =sap UR fgdp:ge M™,p(g) < 1} :

which is itself a function norm. This allows us to define the associate space of X = X(p) to be
the Banach function space X' = X(p') (see [23, Ch. 1 - Theorem 2.2]). Further, X = X" with
equality of norms (see [23, Ch. 1 - Theorem 2.7]) and, by definition, it follows the following
estimate known as Holder’s Inequality:

| 1ol < 151l
R
The distribution function py of a measurable function f is

pi(y) = pre R:[f(x)| >y}, y=0,

and, when dy = dz, we denote it by Af(y). A function norm p is called rearrangement
invariant (r.i. in short) if p(f) = p(g) for every pair of functions f and g that satisfy
pr(y) = pg(y) for every y > 0. In this case, we say that X = X(p) is a r.i. Banach function
space and it follows that X' is also a r.i. Banach function space.

The decreasing rearrangement of f is the function f* defined on (0, 0) by

frt) =inf{y > 0:pur(y) <t}, =0,

and satisfy Ap«(y) = ps(y) for every y > 0. This allows to obtain a representation of X on
(R*,dt) (see |23, Ch. 2 - Theorem 4.10]) as follows: there exists a r.i. Banach function space
X over (R*,dt) such that f e X if and only if f* € X with

\W&=WWw=sw.Lf%wWMt

llgllxr <1

Moreover, the associate space X' of X is represented in the same way by the associate space
X of X with ||l = II/* -

Now we define the Boyd indices of a r.i. Banach function space. These indices were
introduced by Boyd in a series of papers [29, 30, 31, 32, 33|. First, the dilatation operator is
E.f(s) = f(st), for s,t > 0 and f € M. Then, if we set hx(t) = ||E1| 5 for t >0, the Boyd
indices are defined as follows (see, for instance, |23, Ch. 3 - Definition 5.12] and [107]): the
lower Boyd index Px is

log hx (t log hx (t
Bx = sup og x(): lim 28 x(t)
o<t<1 logt t—>ot logt
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and the upper Boyd index ayx is

ax = sup ————> = lim ———~
= 0r logt t-o  logt

and they satisfy 0 < Ox < ax < 1. Further, the relationship between the Boyd indices of X
and X' is the following: ayx = 1 — fx and By = 1 — ax.

In general, when restricted to a r.i. Banach function space X in (R",dx), it is possible
to define a weighted version of X. Take u being a weight (that is, u is a nonnegative locally
integrable function) and consider the measure space (R", u(z) dz). The distribution function
and the decreasing rearrangement with respect to u are given by

AN(y) =u({z eR":[f(z)] >y});  fi(t) =inf{y = 0: A}(y) < t}.

Then the weighted version of the space X can be defined as

X(u) = {f e M| filIx < o},

with the norm associated to it || f|[x.,) = [|f[lx- Hence, by construction, X(u) is a Banach
function space built over M (R", u(x) dx) with associate space X(u)" = X'(u), so that

oy = 162l = s [ fiai0y = s | 1f@a(o)ute) dr

91l x(w) llgllx(uy<1

Finally, we deal with the r.i. quasi-Banach function spaces. To do so, we define a quasi-
Banach function norm similar as we did for the Banach function norm but with a weaker
version of property (iii); that is,

(iii’) p(f +g) < C(p(f) + p(g)), for some C' > 1

Then, the definition of r.i. quasi-Banach function space follows the same lines as the one
for the Banach function spaces but with this new function norm. However, the constant
in (iii") forces several changes in the properties of the space. That is why we consider r.i.
quasi-Banach function spaces that are p-convex for some 0 < p < 1 (see [116]) which are
those such that

*

is a r.i. Banach function space. In particular, using that || f||y = ||| f|?

X7, then

f(ux;(f nrf<x>\prg<x>|dx)’l’=”g (J Forgoa) . i)

and all the notions of r.i. Banach function spaces can be extended to r.i. quasi-Banach
function spaces through (2.1.1). (We refer to [100, 146] for more details on this topic.)

v ={feM: Iy =

1
I”

and that (X%)” =

x
Sl
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2.1.2 The AP(w) spaces

The classical Lorentz spaces AP(w) (called like this to distinguish them from the Lorentz
spaces LP7(R™)) were introduced and studied by Lorentz in [142, 143] for the measure space
((0,£), dr) and ¢ < oo. They are rearrangement invariant and generalize the L?(R™) Lebesgue
spaces and LP?(R") (see |23, 99| for more details on Lebesgue and Lorentz spaces)

Given a weight w in RT (that is, w € LL _(R") is nonnegative), denote W (¢ So

t > 0. For 0 < p < o0, the classical Lorentz spaces AP(w) are defined as the set of measurable
functions f such that

e = ([ £07ut dt) -

Example 2.1.1. (1) If w = 1, we recover the Lebesgue spaces AP(1) = LP(R").

Loopyp_lW (Ar(y) dy>; < .

(2) If 0 < p,q < o0 and w = t» ', we retrieve the Lorentz spaces A%(w) = LP4(R).

Furthermore, we observe that || f|| AP(w) = 1] Lr(w)- Lhis allows us to extend the previous
definition to the space AP (w) by || f{| xpua(y = 1/ ppau) for every 0 < p < o0and 0 < g < 0
(see [58]); that is AP(w) consists of all the measurable functions f that satisfy

1 | apau) = <f FEOW () w(t) dt)é = (

for 0 < ¢ < o0, and

1 llner gy = SUDW(0)7 (1) = supyW (As()) > < o0.

y>0

[ oo dt) " <o,

0

Observe that, direct from the definition, for 0 < p, g < oo,

1
q P
oo = 1l and ||f||Ap,m(w):(]—j) T (2.12)

where @(t) = W(t)» ‘w(t), t > 0 (see [58, Remark 2.2.6]). Therefore, every Lorentz space
as defined here reduces to AP(w) and its “weak version” AP*(w). Besides, one elementary
property of the Lorentz spaces is that AP%(w) € AP% (w) continuously for 0 < go < ¢1 <
(see [41] for more information on embeddings between Lorentz spaces).

Moreover, although the spaces AP(w) are not necessarily Banach function spaces, at least
when w € Ay (that is, W(2t) < CW(t), for every t > 0 and where C' > 0 is independent
of t) for every 0 < p < o0, AP(w) and AP*(w) are quasi-Banach function spaces. Further,
since AP(w) = (A'(w))” and AP*(w) = (AV*(w))”, these spaces are also p-convex. For more
details on these topics, we refer the reader to [58, Chapter 2| (see also [55]).

Besides, given a weight u in R (that is, u € L{ (R") is nonnegative) it can also be defined
a weighted version of the classical Lorentz spaces, denoted by AP (w) = (AP%(w)) (u), as the
set of all measurable functions f such that || f|[yna) = [ | spaqu) < o0 Hence, if w = 1 we
recover the weighted Lorentz spaces AP(1) = LP9(u) and if u = 1 we get again the classical
Lorentz spaces Ay (w) = AP9(w).

Finally, whenever AP*(w) is a Banach function space, we have the following result for
submultilinear operators that satisfy a weighted restricted weak-type estimate.
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Proposition 2.1.2. Let m > 1, exponents 0 < p,p1,...,pm < 00, weights w,wy, ..., W, €
Ay such that w; ¢ LY(RT), i =1,...,m, and weights u,uy, ..., U, in R". Suppose that T is a
submultilinear operator and AP*(w) is a Banach function space under the norm || - ||Zg,ao(w).
If
% = L n
T (X1, X pe iy < O] [Wilwi ()7, VEi, ..., En <R,
i=1
then
T : APV (wy) x o x AP w,, ) — AR (w) (2.1.3)
with constant less than or equal to pl..(fypm-

Proof. Assume first that m = 1. Since w; ¢ L*(R") but w; € Ay, the simple functions with
support in a set of finite measure are dense in AZV!(wy) (see [58, Theorem 2.3.12]). Then,
since AP"*(w) is a Banach function space under the norm || - H;k\ﬁm(w) and T is sublinear, is
enough to prove that (2.1.3) holds for positive simple function with support in a set of finite
measure. Hence, without loss of generality, let F} be sets that form an increasing sequence
FycFc- - < F withu(F) <o andlet a; > 0,5 =1,...,[, so that

l l
f= Z ajxr, = fo, = Z @5 X(0,u1(Fy)]
j=1 j=1

and
l

z
(w) S 2 ) S CZ a;Wi(ui (Fy))r

J=1 J=1

E C
:_Z%J X0 () (W ()7 wi(t)dt = = fllazy ) -

Now, assume that the result is true for each 1 < m < k, for some k > 1, and let us see that
it also holds for m = k+1. Fixsets Es, ..., E, SR and let T} = T(-, Xg,,- - -, X&,, ), Which
satisfies

ul 1 1
||T1XF||ZZ’°°(w) <C (H Wz(“z(ﬂ))’”) Wi (ui (F))7r, VF < R™
i=2

Hence, by the induction hypothesis, for every locally integrable function f,

C (15 1
1T f 1 Rne () < o <H Wz’(uz’(Ez'))’”) 1A Azt ) (2.1.4)
i=2
Since the sets Fy, ..., F,, were arbitrary, if we now fix some locally integrable function f
and set To = T(f, -,..., ), then (2.1.4) can be rewritten as

. C m . .
1T2(XEzs - - s XE) Az () < o 1At o HWi(W(Ei))”% VEy, ..., Em < RY,

0 (2.1.3) follows by making use again of the induction hypothesis.



20 Chapter 2. Preliminars

Remark 2.1.3. When w,wy,...,w, = 1 and p > 1, it is well known that there exists a

function norm |||, ) such that

p

|| ) “Lp,oo(v) S || ) ||(p,oo,v) < E ” ) ||Lp,oo(v)

with which LP*(v) is a Banach function space (see [23, Ch. 4 - Theorem 4.6]). Hence, by
Proposition 2.1.2, if

T (XErs - X | oor ) c]‘[uz )%, VEi,... E. R
then
T : P (uy) x -+ x LP™ (u,,) — LP%(u)
with constant (_L.
p—1)p1--Pm

2.1.3 The associate space (Ap(w))'

The associate space of the classical Lorentz spaces have been widely studied in [58, Chapter
2] (see also [166]). Indeed, it turns out that whenever A?(w) is a quasi-Banach function space
(that is, w € Ay) then (AP(w))’ is a Banach function space [58, Theorem 2.4.4].

For every 0 < p < o0, the associate space (AP(w))’ is defined to be the set of measurable
functions f such that

= s [ i@e@lde= s [ rodne @)

llgllap (wy<1 911 AP (wy<1 YO

From (2.1.5), the authors described in [58, Theorem 2.4.7| the associate space (AP(w))’
in terms of the mazimal function

(1) ff 1> 0,

and identified when they are the trivial space (see [58, Theorem 2.4.9]). Indeed:
(i) If 0 < p < 1, then

t
ooy = SU (1), 2.1.6
HfH(A (w)) t>£) W(t)%f (t) ( )
and (AP(w)) # {0} if and only if
t
sup < 0. (2.1.7)
0<t<1 W( )

(ii) If p> 1 and w ¢ L*(RY),

=

o = ([ e wirsuma)”, (218

0

and (AP(w))" # {0} if and only if

Ll <WL@)])/_1 dt < . (2.1.9)
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2.2 Several classes of weights

This section is aimed to describe the classes of weights that we will use in the following
chapters and that, in fact, characterize the weighted strong-type and weak-type boundedness
of the Hardy-Littlewood maximal operator and the Hilbert transform. We will distinguish
between weights in R™ (Section 2.2.1) that will be related to weighted Lebesgue and Lorentz
spaces, and weights in Rt (Sections 2.2.2, 2.2.3 and 2.2.4) that will be related to classical
Lorentz spaces. Further, we will study some properties and technical lemmas involving these
classes of weights which will be important on the next chapters.

2.2.1 A, A and 4,

Given a weight v in R™, B. Muckenhoupt [148] showed that, for n = 1, the characterization
of the weighted strong-type boundedness for 1 < p < oo is given by

M : LP(v) — LP(v) — ve A,

(see Definition 2.2.1 below) while it is known to be false for p = 1. Later, R. Coifman and
C. Fefferman |73] extended it to higher dimensions, and, by a weighted norm inequality due
to C. Fefferman and E.M. Stein [94], it was also seen that, for 1 < p < o, the A, class
characterizes the weighted weak-type boundedness, that is

M : LP(v) - LP®(v) — ve A,

Now, for the Hilbert Transform H,in [111] R. Hunt, B. Muckenhoupt and R. Wheeden,
characterized the weighted strong-type boundedness for 1 < p < o by

H:LP(v) — L*(v) — ve A,

and the same condition also characterizes the weighted weak-type boundedness for 1 < p <
0. (For more details on both operators, we refer the reader to [88, 99].)

Definition 2.2.1. Given 1 < p < o0, we say that v e A, if

1 1 1 p-l
ol = sup (@ L) (@ va ) < 4o,

where the supremum is taken over all cubes () in R". For p = 1, we say that v € A; if
Mu(z) < Cu(x), a.e. r € R",
and the infimum of all such constants C' is denoted by [[v]| , -

In particular, we should mention the work of S. Buckley [35] (see also [127]), who proved
that

11 L 1
M| oy < Cop'#pr” [0l (for p>1) and  [[M|| ) prooy < Cn llvll4, (for p = 1).
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Example 2.2.2. For —n < v < n(p—1), and v = 0 if p = 1, then v(z) = |z|” is an A,
weight.

Direct from the definition, and by means of the Holder’s inequality, it holds that if v € A,,
then v € A, where 1 < p < g < o0. Hence, in view of the inclusions of the A, weights, it is
natural to denote

A= | 4 (2.2.1)
1<p<
This class first appeared in [73| and [149], and can be characterized (see for instance |88,
Corollary 7.6]) by those weights v for which there exists 6 € (0, 1) such that

Q] ) " o(E)
sup | — < 0,
B<Q (!E |/ (@)
where the supremum is taken over all cubes ) and all measurable sets E < Q). (See |91, 95,
97, 110] for more details on this class of weights.)

Note that if v € A, then v is non-integrable. Indeed, let £ = [0, 1]" and Q,,, = [—m, m]",
m = 1. Then there exists € (0, 1) such that

v(@m)

1)

and by taking the limit when m tends to infinity we get that [|v]| ;1 ga) = .

Further, similar as in (2.2.1), we can write A, = U1<q<p A, for every 1 < p < o0, since
the weights belonging into the A, class of weights satisfy the important property that there
exists some € = £(p,v) > 0 (which decreases to 0 as ||v[|, grows to infinity) such that (see
[158, Corollary 8.1|)

ved, .  with ol <277 vl

(see also [74, 88, 98]). Equivalently, there exists a decreasing function @, on [1, 00) satisfying
1 < ®,(r) < p for every r > 1, lim, o, ®,(r) = 1 and

ve A with o]l 4 <27l - (2.2.2)

p

p
Fp (vl a,) s—l—
PR Ap ®p(vlla,)

Another property that we want to recall is called Jones’ factorization: every A, weight can
be factored as the product of two A; weights. It was first conjectured by B. Muckenhoupt
[150] at the Williamstown conference in 1979, and proved by P. Jones [117] at the same
conference. Later, R. Coifman, P. Jones and J.L. Rubio de Francia gave a simpler proof of
it in [72).

Proposition 2.2.3 (Jones’ factorization). If v € A, then there exist vy,v; € Ay such that
v = vuy P. Moreover, given 1 < q <p < o, ifvg € A, and v, € Ay then vov! ™" € A, and

HUOU?_p”AP < lvoll a, llvn -

Finally, let us state some well known facts of the class A;:
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(i) For every wg,v; € A; and any 0 < 0 < 1, by means of the Holder’s inequality, then
vovi € Ay with
_ 5 1-5
HUSU% 6“,41 < Jvolly, llvills,” -

(i) ([88, Theorem 7.7]) A weight u belongs to A; if and only if there exists f € L .(R")
and K such that K, K—! e L*(R") satisfying that, for some 0 < ¢ < 1,

u(z) = K(z)(Mf(z))°, a.e. v €R",
where L*(R™) consists of all measurable functions f such that

||f||oo = ||f“Loo(Rn) = eSSSU_pf < 00.

(iii) (|56, Lemma 2.12|) For every f € L. _(R"), every v € A; and 0 < ¢ < 1, then
(M f)ov'=% e A} with

< lWla (2.2.3)

6, 1-6
e, <

(iv) ([158, Lemma 5.1]) If 1 <t <1+ W, then
1
v'e Ay with HthAl < vl y, - (2.2.4)

Now we define, for 0 < § < 1,
5 n
Msf =M (If17°)" 11177 € Lo (RY). (2:2.5)
Hence, easy computations show that for % <p< o,
Ms : LP(v) — LP(v) — ve As, €A

Besides, when % < p < o the same happens for the weighted weak-type boundedness Mj :
LP(v) — LP™(v). This, together with Proposition 2.2.3, motivates the following subclass of
the A, weights (for more details see [59]).

Definition 2.2.4. Given 1 < p <o and 0 < o, f < 1, we say that v € A, p) if there exist

Vg, v1 € Ay such that v = vgvf“"’). Moreover, for v € Ap, (4, we define

1 —1 1—
Wla, s = 1nf{||v0||jl o570 1y = g p)}.

Observe that then, for 0 < § < 1 and
Proposition 2.2.3, we have that Ay )

<p <o, A = Ap;(L%)' Further, from

A, and, indeed, A, S A, with ||U||Ap <

)

[

||U‘|Ap(a ,,- Besides, ifao>0and qg=1+ g(p — 1), v € Ap(ap if and only if v/ € A, with

1014, 0 = N0,
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In [70, 119], it was characterized the following weighted restricted weak-type boundedness
for 1 < p < oo:
M : [P (v) — LP*(v) — vE Af,

where Af‘ is the restricted A, class of weights (see Definition 2.2.5 below). Further, for every
p = 1, it turns out that v e Af is equivalent to the weighted estimate

RS

IMXE ooy < Co(E)?,  VECSR™ (2.2.6)
As well, for 1 < p < o0,
H : [P (v) — LP*(v) = ve A,

which can be seen, for instance, as a consequence of the pointwise domination of Calderén-
Zygmund operators by the sparse operators (see [123]) since it is not so difficult to check
that the sparse operators (see Section 5.5 for its definition) satisfy such estimate for every
p > 1. In fact, is actually true for any operator with such control, not just for the Hilbert
transform.

Definition 2.2.5 ([61]). Given 1 < p < o, we say that v e Al if

£ (U(Q))p
v =sup — | —= | < o,
g =32 1 o)
where the supremum is taken over all cubes () and all measurable sets F < Q).

In particular, in [119] it was seen that
||M||LF71('U)_>LP,OO(U) ~ ||U||A£z . (2.2.7)

Example 2.2.6. For —n <y < n(p— 1) then v(z) = [z|" is an A* weight.

When p = 1, this class coincides with A; = AE. Further, for p > 1, the relation of the Af’
with the A, weights is the following [61]: for every ¢ > p, A, < Af ¢ A, with

1

1
[0l 4, = V15 and 0]l ag < llvllZ, -

Now, it is known that (see [88, Theorem 7.7]) for 0 < 6§ < 1, (M f)° € A;, while this is
not true for § = 1. In particular, by means of Proposition 2.2.3, vo(M f)°(=P) € A, for every
vg € Ay but vo(M [f)'"? ¢ A,. However, it does belong to the Af class of weights (see |61,
Corollary 2.8|). This fact raises the question of whether every weight in Aﬁ can be written
in this way, which motivates the definition of the (a priori) subclass of weights for which this
factorization holds.

Definition 2.2.7 ([56, 61]). Given 1 < p < o0, we say that v € A, if there exist vy € A; and
f € L. (R") such that v = vo(M f)'P. Moreover, for v € A, we define

loc

1
[v]l 4, = inf {H"Uonh tv = UO(Mf)l—p} .
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A

Although the classes A, ¢ A, = Al (with [|v| 4 < [0 4,) need not be the same in general,
it holds that

Ay = - 4= U A~

1<p< 1<p<wo 1<p<w

Now when willing to study the operator M; (see (2.2.5)) easy computations show that
for <p< o,
M; . LP'(v) — LP™(v) — vE Agy c Af. (2.2.8)

This motivates the following subclass of the /Alp class of weights:

Definition 2.2.8 (|51]). Given 1 < p < o0 and 0 < «, f < 1, we say that v € Ap;(a”g) if there

exist vg € A; and f € LL_(R") such that v = v§(M f)?1=P). Moreover, for v € flp;(a,@) we
define

”UHAP;(M) inf {Hv Hm . Ug‘(Mf)ﬂ(lfp)} '

Observe that then, for 0 < § < 1 and % <p< oo, A(;p = flp,(l spo1y Further, we have that

»p—1

Ap;(Ll) = A, and, indeed, Ap;(awg) c A, with ||U||Ap < ||U||Ap;(a,5)-

2.2.2 B, and Bf

Given a weight w in Rt. M.A. Arifio and B. Muckenhoupt [10] characterized the weighted
strong-type boundedness on classical Lorentz spaces AP(w) of the Hardy-Littlewood maximal
operator for every 1 < p < o by

M : AP(w) — AP(w) — w e B,

(see Definition 2.2.9 below). Moreover, in [153], C.J. Neugebauer saw that the same holds
for the corresponding weighted weak-type boundedness; that is, for every 1 < p < o,

M : AP(w) — AP (w) — w e By,

which implies that the weighted strong-type and the weak-type boundedness are equivalent
in that range of p. Later, in [54], M.J. Carro and J. Soria characterized the weighted strong-
type boundedness in the case 0 < p < 1 with the B, class of weights as well. Besides,
the authors observe that the B, class of weights was sufficient for the weighted weak-type
boundedness on this range of p, but not necessary.

Definition 2.2.9. Given 0 < p < o0, we say that w € B, if

b, = (1577 | (3) wrr) <=

Examples 2.2. 10 (1) Let v > 0, then w(t) = 7~ € B, if and only if v < p. Moreover,
|wllp, = 5% In particular, 1 € B, for every p > 1.

(2) Let a > 0. Then, w(t) = X0, (t) € By if and only if p > 1. Moreover, in that case,

lwlip, = 35
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(3) Let 0 < v < p and let ® be a decreasing function. Then, w(t) = ®(t)t7~! € B, since
for every t > 0,

0 o0 (b 1 t
tpf W) gy - tpf ) g« L o < 2 [ wir)ar
t t

P rp=H p—7 =7k

so that [lw|, < &

p—’

Proposition 2.2.11 ([10, 34, 54]). Given 0 < p < . Ifw € B, then

max l,l)
1Ml < ol

Similar as for the A, weights, the B, weights also satisfies the p — ¢ property (see, for
instance, [58, Corollary 3.3.4|). In particular, following the estimates used in [153, Theo-
rem 2.5|, at least for p > 1 and for w € B,, taking ¢ = m it can be seen that

P
lwllg, . < wlg, - (2.2.9)

Further, the B, weights also follows a chain of inclusion in the sense that B, & B,, for
every 0 < p < g < o, so that it is natural to denote

Indeed, it is known that w € By if and only if w € Ay (see [64]) which, in turn, is equiv-
alent to A?(w) and AP*(w) being quasi-Banach function spaces (see Section 2.1.2 for this
notions). Further, although for 0 < p < 1, AP(w) is never a Banach function space (see [172,
Remark 3.2]) for p > 1, AP(w) is a Banach function space when w € B,, and the reciprocal
is also true whenever p > 1 (see [166]), while for every 0 < p < oo, that w € B, is equivalent
to AP*(w) being a Banach function space (see [172]).

Now, for p = 1 we observe that even though A'(1) = L'(R") is a Banach function space,
the weight w = 1 does not belong to B;. Hence, in order to characterize when Al(w) is a
Banach function space is needed a bigger class than By. In [57], M.J. Carro, A. Garcia del
Almo and J. Soria proved that this condition is fulfilled by the restricted B; class of weights
BI.

Definition 2.2.12. Given 0 < p < o0, we say that w e Bf if

D=

W (t
ol e = sup A0
P 0<r<t tW(r)

S

In particular, w € B;f is said to be a p quasi-concave function.

Contrary to the B, weights, there is no p — ¢ property in the Bf class. Indeed, if we take
w(t) = t*~' € B, then w € B} if and only if ¢ > p.

Examples 2.2.13. (1) Let v > 0, then w(t) = t7~' € B}t if and only if v < p. Moreover,
[wl[gr = 1.
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(2) Let a > 0. Then, w(t) = x(0,0)(t) € Bff if and only if p > 1. Moreover, in that case,
"

One of the important properties of these weights is that for 0 < p < 1, the B;f class of
weights characterizes the weighted weak-type boundedness of the Hardy-Littlewood maximal
operator (see |54, Theorem 3.3 (b)] and [57, Theorem 2.3|]) and, in that case,

IM | p oy aro oy S Nl g - (2.2.10)
Further, similar as for the Aﬁ weights in (2.2.6), it turns out that w € Bf is equivalent to

1 n
IM Xl oy < CW(|E])7, VE < R, (2.2.11)

for every 0 < p < 0.
Now, we observe that

M : AP (w) — AP*(w) — M : A () — AV*(w),
with @ = WP~lw (see (2.1.2)) and, clearly,
el = Nl 2212)

Thus,
M : AP w) »> AP (w) <= weBff <= weBf (2.2.13)
and, from (2.2.10), [|M|[ 100 —nreo@w) < ||w||B§. Moreover, from (2.2.11) and (2.2.13), for

every 0 < 0 < 1,
M;s : APH(w) — AP*(w) <= we B}, (2.2.14)

: 5
with ||M5||Ap71(w)—>AP700(w) < Hw“Bi'

The relation of the B/ with the B, weights is the following [153]: for every 0 < p < ¢ < o0,
B, ¢ Bl' ¢ B, with

q

1
Nl and gy S ol (22.15)

lwllp, <
Further, we have already seen how the weights w and @ are related in the Bﬁ class of weights
(see (2.2.12)), and it is also interesting to know what happen in the class of weights B,,.

Lemma 2.2.14. Let 0 < p,q < . If w e By, then w = W tw e B, with

1
) lolly, . 0<p<1,
lills, < § O,
lollge', p>1

Proof. First assume that 0 < p < 1. Then, integrating by parts we obtain that

dr

0 t q 1 - o
f <;) u?(r)dréHwHEqPW(t)—i—qpth Wi 0 (2.2.16)
t t

=
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with W being the primitive of @w. Hence, using the Minkowski’s inequality we observe that,
for every t > 0,

f W 7’1+‘1 <TW() + (f (;)qu(r) dr); < lwllf, W(t), (2.2.17)

1
so that putting together (2.2.16) and (2.2.17), we deduce that ||w|[5 < [lw|3, -
Now take 1 < p < oo. If we set € = ﬁ by (2.2.9) and (2.2. 15) we get that w e BY__

”d\>—‘

with ||w||BR 2 S ||wH}3/q(§p_5). Therefore, we get that for every ¢ > 0,

’d\
hSA

1 * W(T) dr 1 1 ~ 141 -
J Wir r1+‘1 B Jt [rqp—s] it S c “wHng,, W(t) < ||w||]’§qp Wi(t), (2.2.18)

and the desired result follows by putting together (2.2.16) and (2.2.18).

AL

O

As a consequence, for p > 1, if w € B, and w ¢ L'(R™) then, from Lemma 2.2.14 we get
that @ = W? 2w € B, and, in that case, since W ~ W#~! in account of [172, Theorem
2.5], (2.1.9) holds and, thus (Ap( ) # {0} Further, observe that for 0 < p <1, if w € BF,
then clearly (2.1.7) holds, so we deduce that (AP(w))" # {0}, while for p > 1, it is not true in
general (just take w = t?~! € B/"\ B, with which (2.1.9) does not hold). Moreover, for every
0 <p<owandwe B, (AP (w)) # {0}.

Finally, to end this section we show a technical lemma that will be useful later.

Lemma 2.2.15. Given 0 <p <, 0<¢<1 and w e Bf,

1
a\° £
elonior < (2) Mollgg —Zr vB R
p " W(E[)?
Further, if p> 1 and w € B, is such that w ¢ L'(R"),
|E| n
Il oy < s, . vEcRe

RN
W(lE)?
Proof. First, let @ = W» ‘w. Hence, by means of (2.1.6),

1 1
g\*  min(t|E|) (q) |E|
Xl (Araq)y = 11X oy =\~ ) swp——=—<(—] |w ‘
|| E”(qu( )) || EH(Aq( ) <p) +>0 W(t)% p H ”B‘}’% W(\ED%

we obtain that (see (2.1.8) and (2.2.9))

Finally, taking ¢ = W
Byp
1

el oo \( ) dt>#+|E|(|:V‘V”ff))pfdt);

- fiE (%) Wy G Du@ydr |+ -7 —2

W™ W (|ED)
2wl T2 217 E 2
<@-07 (i, [2-1)7 +1) —E <, 2L
6 W(ED)? W(E])?
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2.2.3 B, B; and B:f

Given a weight w in R*. The boundedness of the Hardy-Littlewood maximal operator from
(AP(w))" to itself is fully characterized by means of the Boyd indices. Given a r.i. Banach
function space X on R", the Lorentz-Shimogaki theorem (see [144, 170] and [23, Ch.3 -
Theorem 5.17|) asserts that

M: X—->X — ax < 1.
Therefore, since ax = 1 — fx,
M:X =X — Bx > 0.

In 2007, A.K. Lerner and C. Pérez [134] generalized the Lorentz-Shimogaki theorem for
every quasi-Banach function space, not necessarily rearrangement invariant. Further, in [4,
Proposition 2.6] it was seen that Sar,) > 0 is equivalent to w € BZ (see Definition 2.2.16
below). Therefore, putting all together yield that for every 0 < p < o0 and w € A, (so that
AP(w) is a quasi-Banach function space)

M : (AP(w)) — (AP(w))’ — w e BE. (2.2.19)

Besides, it is known [166] that the weighted strong-type boundedness of the Hilbert
transform for 0 < p < o is characterized by

H : AP(w) — AP(w) — we B,n Bj. (2.2.20)

Furthermore, in [3] it was proved that the corresponding characterization of the weighted
weak-type boundedness, for p > 1, is given by the same condition, while for 0 < p < 1 [166]
it holds that

H : AP (w) - AP" (w) = w e Bf N BX. (2.2.21)

Definition 2.2.16 (|154]). We say that w € B% if

1 ' " (T)
Wl gx = SU dr < 0.
H HBOC t>](;)) W(t> J;) r

Examples 2.2.17. (1) If v > 0 then "' € B with Jwl| gz = %

(2) If w is a weight such that there exists some 0 <y < 1 and some 0 < p < o0 satisfying
1
that W (t)»¢7~! is increasing, then w € BX.

(3) For every a > 0, x(0,0) ¢ B%. In fact, if w e L'(R,) then w ¢ B%.
Now, recall that [23, Ch. 3 - Theorem 3.8|

(Mf)*(t) ~ f*(t) = %f FEr)dr = PF(), V>0, (2.2.22)
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where P is known to be the Hardy operator. Then, the class of weights B appears naturally
when studying the boundedness of the adjoint of the Hardy operator defined as

_ fo ) g, 1>0, fe M, (2.2.23)

between LY. (w) and LP(w) (see [23] for more details on these operators).

Indeed, keeping track on constants, in [8, Theorem 4| (or [154, Theorem 3.3| for p > 1)
it was proved that for 0 < p < oo,

Q: I8 (w) - [P(w) <«  we B (2.2.24)

and ||Q||Lg (w)—Lr(w) < ||l gz, which allows us to obtain an specific control of the norm
constant of (2.2.19).

Proposition 2.2.18. Let w e B n Ay. Then, for every 0 < p < o0,
||M||(Ap(w))/ S ||w||B;g-
Proof. Applying the definition of associate space, for every f e (A? (w))’,
o0
(Mf)*(t)h(t) dt
HMfH(Ap(w))’ = sup M f(z)h(z) dz = sup SOOO T
7]l Ap () <1 IR hl (SO h(t)Pw(t )dt)f’
o PR  F0Q() e
A T =
(S hPw(tydt)r (57 h(Pw(t) dt)”

where in the last estimate we have used the Holder’s inequality and the proper control of
||Q||L§ec(w)—>LP(w) by ||w||ng- =

T S [wll gz (11l arqyy »

In particular, for w = WP~ 1y,
M: (AP (w) — (AP (w)) = M:(A'(@) - (A (@) <= w@e B,
so we should study when w € BX.

Lemma 2.2.19. Let w e BX. Then, for every 0 < p < o0 and w = W%_lw,

) 1 (W)
[@] gx = sup T J )" 4 < max(1, p) [[w]| s -
P

t>0 W(t)

Proof. First, since W is an increasing function, for every 0 < p < 1,

1
dr < |[w]zs W(t)F,  t>0.

¢ H ¢
W) g < wigys [ 0
0 T

So let us consider the case p > 1. Hence, for every ¢t > 0, using integration by parts and the
definition of BZ ,

Lt@dmwa)élfwf dr + 2 JW (T)Lr@dd

< plwlgy W(t).
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Hence, as a direct consequence of Proposition 2.2.18 and Lemma 2.2.19, we obtain the
following result:

Proposition 2.2.20. Let w e B n Ay. Then, for every 0 < p < o0,
||M||(Ap,1(w))’ S ||7~U||B;'=O :

Furthermore, from Lemma 2.2.19 and (2.2.21) we also deduce that

H : AP (w) — AP (w) — we B n Bj. (2.2.25)
Finally, observe that if w e BX, for every 0 <r <t
t W (s
W (r)log (—) J log ( ) s)ds = J ds < [Jw|| gz W(t).
r 0
So, let W : (0,0) — (0,0) be the increasing submultiplicative function defined as
= W (t) W (px)
Wi =Sup{—:0<t<us}= sup . 2.2.26
( ) W(S) z€[0,00) W(QZ) ( )
Therefore, we get that
— 1\ !
Wip) < llwl g <1og —) : V0 < p < 1. (2.2.27)
I
Lemma 2.2.21. If w e B then
W) < p"'s% VO < p < 1.

Proof. Let pg = e Ils  Since W is submultiplicative, by (2.2.27) and induction on
ke Nu {0} we get that

W () < (W(po))" < (é)k _ (ug)wl'ss;_

Now take p € (0,1) and choose k € N U {0} such that uf™ < o < puk. Then, since W is
increasing,

W(n) < W(ng) < (MS) eHwHBfuko <ep elpy
O

At this point, for a given 0 < § < 1, consider the operator M;s (see (2.2.5)). Hence, on
account of (2.2.22), the Minkowski’s inequality and [58, Lemma 2.4],

Ml 0 ~ PP < [ PO =@, 0 (2229)
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where P1 is the generalized Hardy operator, while the converse estimate in (2.2.28) is false
in general (see |21, Theorem 3|). The adjoint operator of Py is

Q1 tl 11-5 f f PR t> 07 f € M+; (2229)

and is called the adjoint of the generalized Hardy operator P% (see 23] for more details on

theses operators).
Then, arguing as in Proposition 2.2.18, we obtain that

Q1 Li(w) = LP(w) = Ms: (A" (w)) — (A7 (w))", (2.2.30)

with [|Ms]] xo HQ sy @l the boundedness of the left-hand side of
w)—LP(w

(2.2.30) is known to be characterlzed by we B* | (see [125, 154]).
(1-d)p

Definition 2.2.22. Given 0 < p < o0, we say that w e B} if

1
1 (Y/t\?
HwHBg = Stl>110) W@ L <;> w(r)dr < .

1
Example 2.2.23. If v > —, then t"~! € B¥ with |Jw]| g+ = 7.
p D

Proposition 2.2.24. Given 0 < < 1.

(1) [125, Theorem 2.2] If 0 <p < 1,

L7, (w)—LP (w)

(1) [154, Theorem 3.1] If 1 < p < o,

1
1= Ly, (w)—>Lr(w)

Hence, as a direct consequence of (2.2.30) and Proposition 2.2.24, we obtain the following
result:

Proposition 2.2.25. Given 0 <p<ow and 0 <d < 1. Ifwe B* , then

(1-d)p

5 max l
M5l gy © s o[ 5)
1—4 1

(1-6)p

Now, similar as for the B, weights, the B} weights satisfy the chain of inclusions B < B,

g > p, and also satisfy the p — ¢ property (see, for instance, [125, Theorem 4.3] or [145,
Lemma 4 (2)]). In fact, following the estimates used in [154, Theorem 3.2|, at least for p > 1
and for w € By, taking € = m it can be seen that
P

lwllgs < llwll gy - (2.2.31)
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Hence, in particular, the B; class of weights can also be written as the union of the By for

0 < g < p; that is
B:= | B
0<g<p

Further, it is also known that for p > 1,

Q1 LE  (w) — LP™(w) — we B*, |
= (1-9)p

while this is not the case for 0 < p < 1 (see for instance [8, 50]).

Definition 2.2.26. Given 0 < p < o0, we say that w € B;R if

tW(r)?P
[l pgn = sup )

< Q0.
O<r<t TW(t)p

Contrary to the By class of weights, there is no p — & property in the B;R class. Indeed,

if we take w(t) = tle B3, then w e B if and only if ¢ > p. Besides, for this class of
weights we have that for every 0 < p < 1,

Q1 <
H 1-6 Lgcc(w)—lﬂ’voo(w)

(see [8, Theorem 1]).
1
Example 2.2.27. If v > > then 77! € By with [[w| grs = 1.

Easy computations show that the B} and B;‘R classes of weights are related as follows:
for every 0 < p < ¢ < oo, then BX* ¢ B} < B with

1 q )
lwll e < llwll gy < —— lwlyn - (2.2.32)

Further, these both classes increases to B as the following result shows:

Proposition 2.2.28. For every 0 < p < «, BX* < BZ with [wl gz < log <1 + ||U}||B;1<R>.

B:= ) Bi= |J B"

O0<p<oo O0<p<oo

Moreover,

Proof. First, given 0 < ¢ < o0 and w = Wl (so that W = qW%) due to Proposi-
tion 2.2.19,

L (W) 1 1 (W)
[wll gz = sup — J Wir) dr < max (1,—) sup T J Wir) dr | .
© t>0 W(t)q 0 T q =0 W(t)a 0 r

Hence, if w € BX® we obtain

1 L 1 [t "
Hw”BS"o S max (17 _) [wl] Fur (SUP — rav ! d?") = pmax (1, q) [[w]| Fr ,
q p t>0 tar Jo »
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and taking the infimum on ¢ > 0 yields the first part of the statement.

Further, it was seen in [2, Lemma 2.6] that w € B, is equivalent to the existence of some
po € (0,1) such that Wi(ug) < 1 (see (2.2.26) for the definition of W). Moreover, arguing
similar as in [2, Lemma 2.7], it can be seen that w € By is equivalent to the existence of
some 111 € (0,1) such that W () < uy'”.

Hence, take w € BX. Then, there exists some ug € (0,1) and £ € (0,1 — ) so that
W) < 1—e. Then, for p = 1108“0) > 1, it holds that W () < 1—¢ = uo/p, which implies
that w € By.

0
Now, in particular, if @w = W'/P~1w, we have already seen in Proposition 2.2.25 that
we B* — M; : (AP (w))/ — (AP (w))/,
(1-9)p
so we should study when w € B*
(1-6)p
Lemma 2.2.29. Let 0 < p,q < o0. If we BY then w = W w e By with
P
1
lwlls , 0<p<1,
~ p
lollgs <4 .7,
lwllgs p>1
p
Proof. First assume that 0 < p < 1. Then, integrating by parts we obtain that
Y to
q q 1
f (—) w(r) dr 42 f W (r)» t>0, (2.2.33)
o \r

with W being the primitive of @. Hence, using the Minkowski’s inequality we observe that

f W(r (Lt (;)Zw(r) dr); < ]% Hw”% Wi(t), t>0, (2.2.34)

1

so that putting together (2.2.33) and (2.2.34), we deduce that HtDHB;‘ < Hw||§§.

"d\>—‘

Now take 1 < p < o0. If weset € = , by (2.2.31) and (2.2.32) we get that w € B _

Ty

»

with HwHBa;R [|w|| 5 (@ 297 Therefore, for every ¢ > 0,
P p
1 o FTW(r) > dr 1 1 1 141 s
W p =t D 1+l 1 < 11 ||wHB>}!< W(t)l’ < ||w||B>}; W<t)7
0 LTra-pe ro a4 a-pe q—pe q > %
(2.2.35)

so, putting together (2.2.33) and (2.2.35) yields the desired result.
[



2.2. Several classes of weights 35

Hence, as a direct consequence of Proposition 2.2.25 and Lemma 2.2.29, we obtain the
following result:

Proposition 2.2.30. Given 0 <d <1 and 0 <p <oo. Ifwe B* , , then

(a- 5)17
1
o Tl 0<p<l,
1Msll (spayy = 77— A
=0l a=-o 7wl p>1

[E=n

However, when restricted to characteristic functions, we can consider weights on the
bigger class B*f

(1-8)p

Proposition 2.2.31. Given 0 <d <1 and 0 <p < . Ifwe B*® | then

(1— 5)p

IMsxFll (p1(wyy S 108 (1 + [wl ger, ) ol IxFl gy VE SR

(I-0)p aT=sp 5)

Proof. First, from (2.1.6) and Propositions 2.2.19 and 2.2.28, we have that

t
" t
J(Mmﬂ(ﬂWSWM% sup ——
t>0 W(t) P

t
< log {1+ [[w] gen, sup T (Msxr)™ (t) | -
aap ) \ 120 W(t)»

(Msxr)* (t)>

M y A su
[ Msx Pl pp1 () t>10) Wit )

(2.2.36)
Now, due to (2.2.22),
t . t  (min(t, |[F))\°
sup + (Msxr)™ (t) ~ sup T < (t.] |))
=0 W (t) =0 W (t) t
t s t1_6
=max | sup —,|F|° sup (2.2.37)
o<t<|F| W(t)#» e=|F| W (t )
<l e I = A e
w *R sup 1 = |[|w *R XFl(Ap.L(w)) >
B(1 o \0<t<|F| W(t)ll’ B(1 = (i)
so that the desired result follows by putting together (2.2.36) and (2.2.37).
O]
Finally, given w € B¥ = B:", we have that,
— 1
W(n) < |lwllps w7, V0 < p < 1, (2.2.38)

so that as a consequence, we have the following result.
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Lemma 2.2.32. Let 1 <p <oo. Ifwe B}, then

1 1
7+7
P BTl

W (1) < el g L Wo<p<l.

Proof. First of all, we know that if w € By, taking e = we have that HwHB;:g < [[wl 5

b
4||w
ool

(see (2.2.31)). Hence, from (2.2.38) we obtain that for every 0 < u < 1,

1 1
7+7
P 4””“’“3;‘

— 1
Wp) < lwllpx _pr= < llwllpzp

2.2.4 B.n B and BY n B

p1 P1
Recall that for the characterization of the boundedness of the Hilbert transform H over
classical Lorentz spaces (see (2.2.20) and (2.2.21)) is needed that the weight w belong not
just in one class of weights but in the intersection of two. Indeed, in Sections 4.2.2 and
4.3.4, w is going to belong in the intersection of two classes of weights, which will be either
B.1 n By, or the bigger class B} n By, for some 0 < p; < o0 and 0 < py < @, so it is

P1 r1
natural to ask when these intersection classes are non empty.

Proposition 2.2.33. If p1 < py then B1 n B}, # . Otherwise, B% A By =.
p1 P1

Proof. First observe that t7~' € B1 n By whenever p% < v < p. Hence, if p; < po then

P1
B. n Bj, # &, and the same must hold for the bigger class Bf n Bg,.
P1 P1

On the other side, if w € B and p; < oo then

P1

p2

t s P t
J (f) w(r)dr = W) J w(r>p1 dr, t >0, (2.2.39)
o \7 ”w”Bi o W(r)e:

and the right-hand side of (2.2.39) blows up when p; > py, so that, in that case, B1 n By, =
p1
BY nBi =@
p1

Remark 2.2.34. B1 n B% # & # B% n B%.
P1 71

In particular, from Proposition 2.2.33 we deduce that the power functions are examples
of weights belonging in these intersection classes. Here, we give some more:

Examples 2.2.35. (1) If w(t) = "' then

1 1
weB1 <<= ~y<— and weBf — ~y<= (2.2.40)
P1 h P1 b
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%pl and ”wHBIi = 1. Moreover,

with Jufly, = 1=
p1

P1

1
weB, < ~y>— and weB; <<= >0 (2.2.41)
D2

with 1]y, = 2 and ]y = 2
2

(2) Set for every me N and 0 < v < 1,

1 m
Wiy (1) = (1 + log, ;) ) t > 0.

By induction on m, it is easy to see that for every ps > p;, then w,, 1 € BE ~ B*

e - b2
with

<L) () e

(3) Similarly, if we set for every m e N and 0 < v < 1,

—1 and |

w 1 1
m,— m,—
H 'p1 BPi 'p1

p1

Wy (t) = (1 +log, t)"" 771 t > 0.

~ R .
Then, for every py > py, Wiy, 1 € B n B, with
r1

<1 and HID 1
-

< [ D1P2 ] (m + 1)™*L,

|
P2 — D1

m. L
'p1 I BR

r1

*
By,

In particular, for every 0 < v < 1 and m € N, we have the following continuous embed-
dings,

A (w,, ) € AT = L%’l(R”) < AY (D), for every 0 < ¢ < o0.

Further, if we denote by f ~| meaning that f is a quasi-decreasing function and by f ~1
when — f is quasi-decreasing, we obtain the following interpretation of the weights:

t t
we B1n B — 35>0sz()%i and Mf()mT,
P1 2 ——-—€ —-—+te
tr tp2
and
Wit Wt
weBimB;; — S)ml and Je > 0: 1(3 ~1,
p1 tp1 tp2 T

where we are assuming that piQ = 0 when py = 0.
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2.3 The Rubio de Francia extrapolation

In this section we gather some known Rubio de Francia extrapolation results related with
weighted Lebesgue and Lorentz spaces. We will begin with the original Rubio de Francia
theorem (Section 2.3.1) and continue with more recent versions of it based on r.i. spaces
extrapolation (Section 2.3.2) and limited extrapolation (Section 2.3.3), all of them assum-
ing weighted strong-type estimates. Finally, we will study some extensions stemmed from
weighted restricted weak-type estimates (Section 2.3.4).

2.3.1 The original Rubio de Francia extrapolation

An important property of the A, weights is the extrapolation theorem of Rubio de Francia.
It was announced [162] in 1982 and given [163] in 1984 with a detailed proof, both by J.L.
Rubio de Francia. In its original version, reads as follows: if 7" is a sublinear operator which
satisfies the weighted strong-type boundedness

T: LP(v) — L (v), Yve Ay, (2.3.1)
for some 1 < py < oo and with constant depending on ||v|| Apy then for any 1 < p < oo,
T : LP(v) — LP(v), Yo e A, (2.3.2)

with constant depending on [lv||, . Note that, in particular, this is true if we let po = 2

in (2.3.1) and v = 1 in (2.3.2), so for instance LP(R™) estimates follow from weighted L?
estimates. This led A. Cordoba [96] to assert that “there are not LP(R™) spaces, only weighted
L?”. Since then, many results concerning this topic have been studied (see, for example,
(60, 83, 84, 89)]).

In fact, it is known that the operator 7" plays no role.

Theorem 2.3.1 ([89]). Assume that for some pair of nonnegative functions (f,g) and for
some 1 < pg < o0,

(J glz)u(z) d:c) " <e(lvlla,) <L f(x)Pou(x) dm) " . Ywed,,  (233)

where ¢ is a nondecreasing function on [1,00). Then, for all 1 < p < o,

(Jn g(x)Pv(z) dx>; < O([[oll,) (Ln Fl@)Po(z) dx) " Ve A,

where

CI)(T) _ 0180 <02rmax(17ppo:1l)> , r>1. (234)

Besides, for a general operator T' it can also be deduced an extrapolation result in the
weighted weak-type setting (see [83, Chapter 2.2]) which reads as follows:
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Corollary 2.3.2. Given an operator T', suppose that for some 1 < pg < o0,
T:LP(v) — LPo(v), Vv e Ay,

with constant less than or equal to ¢(|v]a4,,), where ¢ is a positive nondecreasing function
n [1,00). Then, for every 1 < p < oo,

T : LP(v) — LP*(v), Yu e A,

with constant less than or equal to ®([[v]l, ), where ® is as in (2.3.4).

2.3.2 The Rubio de Francia extrapolation on r.i. spaces

In [82, Theorem 3.1|, the authors were able to extend Theorem 2.3.1 for r.i. Banach function
spaces (see also [83, Theorem 4.10]). Here we state a different version of it involving the
maximal operator M instead of the Boyd indices (as it is done in [79, Theorem 10.1]) and
where we keep track of the constants.

Theorem 2.3.3. Assume that for some pair of nonnegative functions (f,g) and for some
1 < py < o, (2.3.3) holds. Further, let X be a r.i. Banach function space such that M : X —
X and M : X' — X'. Then,

lgllx < Cro(Ca | M [l 1M 1Fl1x

Indeed, the proof of Theorem 2.3.3 (as also the one for Theorem 2.3.1) relies on the con-
struction of an A; weight based on an iteration algorithm introduced in [163] by J.L. Rubio
de Francia, now known as Rubio de Francia algorithm: let X be a r.i. Banach function space
so that M : X — X and given h € L{, (R"), then

0¢]
MF*h
Z xreR",
i (2 HMHx)
satisfy that |h(x)| < Rh(z), |RR| 4, < 2| M|y and ||Rh||ly < 2]|h[lx, where M* denotes the

k-th iteration of M and M°h(z) = |h(x)|

2.3.3 The limited Rubio de Francia extrapolation

There are some operators T' for which (2.3.1) does not hold for some py = 1. As a conse-
quence, they are not bounded even for one p > 1 on LP(v) for every v € A,, so the results
studied before do not apply to this kind of operators. However, it can be seen that they
are bounded in the smaller class A, (4,3 (see Definition 2.2.4) with «, 3 € [0,1] (see, for
instance, |14, 51, 59, 83, 89]) and, as a consequence, one can get weighted estimates with
weights in a subclass of A, where now the exponent p does not varies in the whole range
(1,00) but in an interval whose endpoints depend on the triple (po; «, 3).
Given 1 < pg < 0 and 0 < «, 8 < 1, let us define

Do
1—«

/
and p = Po

b+ =

e <or po = %) , (2.3.5)
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where p, = wifa=1and p_. =1if §=1. Then, 1 < p_ < p; < o and we can associate
to every p_ < p < p; the indices

_ P+ D n _ PP
a(p) = o and  B(p) -1

so that 0 < a(p),B(p) < 1, py. = #@, P = #5@) and a(py) = «, B(py) = 5. Although
it seems natural to start with some fixed triple (po; cv, 5), alternatively, we could take the
endpoints p_ and p, as the original data.

Hence, following the proofs of [59, Theorem 2.7| and [89, Theorem 7.1], and keeping track
on their respective constants, the weighted limited strong-type extrapolation can be stated

in this way:

Theorem 2.3.4 ([14]). Assume that for some pair of nonnegative functions (f,g), for some
1 <pyo<wand0<a,B<1 (not both identically zero) we have

19l soy < U0l I W iy 0 € Apga,

where ¢ is a nondecreasing function on [1,0). Then, for p € (p_,py) holds that

max(p+ ) 7 Po—P—

9]l 1oy < Crep (C'z ||UHAP;(Q(::5_(Z)) o )> 11l ooy » Vv € Ap(a(p),8())-

Remark 2.3.5. A weight v belongs to the reverse Hélder class RH, if for every measurable
cube QQ < R™,
1
(%

v(r) < U|(c§2\) ae re€Q, q= om0,

(see, for instance, [14, 83]) while for ¢ = 1 then RHy = Ay. It is known (see [115, (P6)])
that v e A, n RH, if and only if v1 € A, with g, = q(p — 1) + 1 so that

1
v(z)4 dx) T 2 <o,

o

Apo;(a,ﬂ) = A% N RH(piy, a >0,

PO

and, for a =0, it can be seen that, as well, Ay = Ara N RHy. Indeed, Theorem 2.3.4

was first proved in [1/] where the authors considered this intersection class of weights instead
of Apgi(a,)-

2.3.4 The restricted Rubio de Francia extrapolation

Although py can be set to 1 in Corollary 2.3.2, it is not possible, in general, to extrapolate
till the endpoint p = 1 (take just T' = M o M, the composition of two Hardy-Littlewood
maximal operators, or see, for instance, [157] where a counterexample is given in the case
of commutators). It is fair to say, though, that the original purpose of this result was to
deduce estimates on LP(R") for p > 1 just from weighted L? estimates. However, in the
recent papers [56, 61], a Rubio de Francia extrapolation theory for operators satisfying a
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weighted restricted weak-type boundedness for the class of weights ﬁp (see Definition 2.2.7)
has been developed. The main advantage of this new class of weights is that allows to obtain
boundedness estimates at the endpoint p = 1.

In particular, in [61, Theorem 2.11] the authors shown the following:

Theorem 2.3.6. Let 1 < pg < 0 and let T be an operator. Assume that
T : [Pt (v) — LPoP(v), Yue Ay, (2.3.6)

with constant less than or equal to SO(HUHAPO): where @ is a positive nondecreasing function

on [1,00). Then, for every measurable set E < R™ there exists a constant C > 0 independent
of E such that

1—-L 1
ITXE| L1 < Clul 4, ¢ <|u|ﬁ°1> u(E), Yu e Aj. (2.3.7)

Now, for simplicity, whenever an operator T satisfies that for every measurable set E and
for some weight wu,
ITxE] L) < Cuu(E),

we shall say that
T : Ly (u) — LY (u), (2.3.8)

with constant less than or equal to C,,.

Remark 2.3.7. We should emphasize here that the operator T need not to be sublinear.
Howewver, if it is sublinear then it was proved in [171] that

T : Ly (u) — L (u)

15 equivalent to have
T : B*(u) — L"*(u)

B*(u) = {fe/\/l:f:o)\;ﬁ(t) <1+10g%> clt<oo}7

which can be endowed with a quasi-norm.

where

Remark 2.3.8. The complete result that T is of weighted weak-type (1,1) for every weight
u € Ay (i.e., that the estimate in (2.3.7) holds for every f € L*(u)) is, in general, false (see
[61, Remark 2.12]), even if T is a sublinear operator.

However, it was proved in [61, Theorem 3.5] that, for a quite smaller class of operators,
(2.3.7) does hold for every f € L'(u), paying the price of adding one more power of [juf ,,
on the norm constant.

Definition 2.3.9. Given § > 0, a function a € L'(R") is called a d-atom if it satisfies the
following properties:

(i) §zna(z)de =0, and
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(i) there exists a cube @ < R™ such that |Q| < § and supp a < Q.

Definition 2.3.10. A sublinear operator T is called (g, d)-atomic if, for every € > 0, there
exists 0 > 0 satisfying that
| Talzr o)+ rerey < €lal,

for every d-atom a. Further, T is said to be (g,0)-atomic approximable if there exists a
sequence {1}}; of (¢,d)-atomic operators such that, for every measurable set £ < R", then
|Tixe| < |Txg| and, for every f € L'(R™) such that ||f], < 1,

Tf(2)| < liminf [T} f(z)],
J

for almost every x € R™.

Examples 2.3.11. In [44], the author showed that for sublinear operators, the property of
being (e, §)-atomic is not a strong one. For instance, if

Tflx)=K=f(x)=| Kly—=2)f(y)dy, 1eR",

Rn

with K € LP(R") for some 1 < p < oo, then T is (g, 0)-atomic. Further, if

T*f(x) = sup

JeN

K./ (9) dy‘, reR"

RTL
with
lim [K;(,y) — K;( )| 1 ey 2o ey = 0,

y—
then T* is (g, 0)-atomic approximable (in particular, standard maximal Calderon-Zygmund
operators are of this type). In general,

T*f(x)=sup|7}f(m)|, zeR",

where {7}}, is a sequence of (g, d)-atomic, is also (e, d)-atomic approximable and the same
holds for

=

J

i) = (S msar)’, eer

with ¢ € [1,00) and
Tf(x) = > .T;f(z), xeR"
J
(We refer the reader to [44, 61| for more examples.)

Theorem 2.3.12 ([61]). Let T' be a sublinear (e, 0)-atomic approxzimable operator and let
u € Al. ]f
T : Ly (u) — LY (u),

with constant less than or equal to C, > 0, then
T: L'(u) — LY (u)

with constant less than or equal to 2"C\|lul 4, -
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Therefore, as a consequence of Theorems 2.3.6 and 2.3.12 we have the following result.

Corollary 2.3.13. Let 1 < py < o and let T be a sublinear (g,0)-atomic approximable
operator. Assume that (2.3.6) holds. Then,

T:L'(u) — LY (u), Yu e Ay,
91 1
with constant less than or equal to Cul 4, ™ ¢ <||u||fﬂ>

Moreover, from Theorem 2.3.6 and [56, Theorem 3.1], it is known that if for a sublinear
operator T there exists some 1 < py < o0 so that T satisfies (2.3.6), then, for every 1 < p < o0,

T:LPY(v) — LP®(v),  YoveA, (2.3.9)

but it remained as an open question what happens when py = 1, until now (see Theo-
rem 3.3.1). Indeed, there are many operators in Harmonic Analysis for which the weighted
weak-type (1,1) boundedness for every weight in A; has been proved [61, 112, 122, 135, 140,
178], and hence, as a consequence of the classical Rubio de Francia extrapolation theory (see
Corollary 2.3.2) it was known that they are also bounded in LP(v) for every v € A,; but, in
general, (2.3.9) has been unknown for many examples.

Further, according with the limited setting, for a general operator 7' it can also be deduced
an extrapolation result in the weighted weak-type setting of Theorem 2.3.4 by following the
same lines on the proof of [83, Chapter 2.2]; that is, if for some py = 1

T : LP°(v) — LPo%(v), Vv € Apgi(anp)s
with constant less than or equal to go(HUHAp ( m)’ then for every p_ <p < p4,
0i(a,
T:LP(v) — LP*(v), Vv € Api(a(p).B8p))-

However, even when p_ > 1, in this case is neither possible, in general, to extrapolate till the
endpoint p = p_ (see, for instance, [118| where a counterexample was given in the case of the
disc multiplier when restricted to radial functions) and the same happens for the endpoint
P =D+

Nevertheless, in [51, Theorem 3.7| the authors were able to obtain an estimate in the end-
point p_ by assuming that the operators satisfy a weighted restricted weak-type boundedness
for the class of weights flp;(aﬁ) (see Definition 2.2.8).
Theorem 2.3.14 ([51]). Let 1 < pg < 0, 0 < a, B < 1 (not both identically zero) and let T
be a sublinear operator. Assume that

T: LY (v) — LP(v),  Yve Ay ap), (2.3.10)

with constant less than or equal to ¢(||v| i, , where @ is a positive nondecreasing function

on [1,00). Then:

0;(a,8) )
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(1) If p- > 1,
T: Lt (u?)) — L7 (u*)) | Vue A, (2.3.11)

with constant less than or equal to ﬁ®p7(||u||j(lp’)), and where ®, is a positive
nondecreasing function on [1,00).

(i) If p- =1,
T: L'% (u®)) — L (ue@)) | Yue Ay, (2.3.12)

with constant less than or equal to <I>1(||u||z(lp_)). In particular,

T: Ly (u*®)) — L8 (u®-)) Yu e A.

Here, in Theorem 3.4.1, we will see that, in fact, assuming that (2.3.10) holds, we can
extrapolate until any p_ < p < p,; that is,

T:LPY(v) — LP®(W), Y€ Apawp)sw): (2.3.13)

To do so, we will make use of Theorem 2.3.14 since then, by assuming that either (2.3.11)
or (2.3.12) are satisfied, we will extrapolate from weighted estimates of restricted weak-
type (p—,p_) to (2.3.13). Indeed, there are many operators in Harmonic Analysis for which
the weighted restricted weak-type (p—,p—) boundedness for every weight in A, .(ap_),0) has
been proved (see [87, 120, 122, 140]) but, in general, (2.3.13) has been unknown for many
examples.



Chapter 3

Weak-type (1, 1) for weights in A;

This chapter is aimed to the study of boundedness properties for operators 1" that are of
weighted restricted weak-type (1, 1) in the sense that there exists C' > 0 such that, for every
measurable set £ < R”,

|TxEl e < Colufa)u(E),  Vue Ay
Indeed, we will prove that this condition is a “norm” condition since it is equivalent to
T : LP'(v) — LP™(v), Yue A,

As a consequence, we can obtain estimates for operators which are given as an average of
operators of the above type. To do so, we begin in Section 3.1 by motivating and introducing
the problem we want to address. In fact, we study a particular case of average operators
consisting on Fourier multipliers with the multiplier being a right-continuous bounded varia-
tion function. Further, in Section 3.2 we prove what is going to be the keystone of our main
results and which consists on a Sawyer-type inequality. Then, we will prove our main results
in Sections 3.3 and 3.4 respectively. Indeed, we will see that, for a general operator T,

“TXEHLlOC(u) S ’LL(E), — T: Lp’1<v) e Lp,ﬁ(”)»
VE < R" ue A, Vl<p<oo,ve A,

and, for some pp > 1 and 0 < a < 1,

1
ITXEN rocouey < (W) (E)70, { T: LP(v) — LP*(v),
VE CR", ue A, Vpo <p < %5, v € Apal) 6m)):

respectively, and both equivalences for a suitable control of the constants. This will yield
interesting weighted estimates that have been unknown up to know for many operators
such as averaging operators, Fourier multipliers, integral operators and the Bochner-Riesz
operator (see Section 3.5).

The results of this chapter are included in [17].

45
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3.1 Average operators and Fourier multipliers

Let {Ty}¢ be a family of operators indexed in a probability measure space such that
Ty : LY(R") — L"*(R") (3.1.1)

with norm less than or equal to a uniform constant C'. What can we say about the bound-
edness of the average operator

Tuf(@) = [ Tof@dP(e),  xcR"

whenever is well defined? The following trivial example shows that, at first sight, nothing of
interest can be concluded: for 0 < 0 < 1, set

Tof(x) = ﬂﬂf”jy v (0,1)

so clearly Tj satisfies (3.1.1) with C' = 2, but
1

Taf(z) = L Tof(x)df = o, Vo e (0,1).

However, things change completely, and this is one of the main goals of this chapter, if
we assume that
Ty: L'(u) — LY®(u),  Yue A,

Let us start with a very simple and motivating example. To do so, we need to introduce
some classical definitions (see |88, Chapter 3| and [164, Chapter 8|).
Let

f& = fl@e™™=tde, ¢eR,
Rn

be the Fourier transform of a function f € L* (R). Given a function m € L*(R), we define a
bounded operator T}, on L*(R) (called Fourier multiplier) by

e~

Taf(€) =m(©)f(),  EeR feL*R),
and m is called a multiplier. Examples of multipliers are the bounded variation functions.

Definition 3.1.1. Given a function m : R — R, we say that m is of bounded variation if
N
V(m) = supz im(z;) — m(x;_1)| < o,
i=1

where the supremum is taken over all N and over all possible choices of xg, ..., zy such that
—0 <xp<x1 <+ <xy <0, and where V(m) is called the total variation of m.
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Now, let m be a bounded variation function on R that is right-continuous at every point
z € R and lim, , o, m(x) = 0. If we denote by dm the Lebesgue-Stieltjes measure associated
with m, we can write (see, for instance, |88, Corollary 3.8])

m© = [ ant) = [ xno@im®) = [ xom@am@,  veer
and dm is a finite measure since
dm| = | fdm(t) = V(m) < .
Hence, if we consider the Fourier multiplier operator
T,(@) = | m©f @i zeR

for every Schwartz function f (i.e., f € S(R)), a formal computation shows that

Tof(z) = LHtf(x)dm(t), VreR,

where

Hyf(z) = Ty, f(z) = f fe)Pm=de,  weR.

Now, H, is essentially a Hilbert transform operator (since H f = T, f with m(§) = —isgn¢,
¢ € R) because

sgn(é —t) +1

X(t,oo)(g) =T 5 VéeR.

Thus, since for every p > 1,

H,: LP(R) - LP(R),
we have, using the Minkowski’s integral inequality and the density of the Schwartz functions
on LP(R), that every right-continuous bounded variation function such that lim, , ,, m(x) =
0 is a Fourier multiplier on L”(R) for every p > 1. However, even though we also have

H,: L*(R) — L"*(R),

we cannot deduce (at least not immediately) that the same boundedness holds for 7T, due
to the lack of the Minkowski’s integral inequality for the space LV*(R).
Indeed, the main theorem of this chapter (see Theorem 3.3.1) will show that since

Hy : LY(u) — LY (u), Yu e Ay,

with constant less than or equal to C' |lu|l,, (1 +log [|ull4,) (see [136]) with C' independent
of t € R, then
Tyt Lo (u) — LY (u), Vu e A, (3.1.2)

with constant less than or equal to C|dm/| Jull ,, (1 +1og [lull4,)? (see (2.3.8) for the notation
used in (3.1.2)). Certainly, (3.1.2) will be consequence of the fact that the converse of
Theorem 2.3.6 is also true, that is

T: Lyp(u) — LY (u), VYue A — T: P v) — L (v), Yve ﬁpo.

As a consequence, we will obtain the following results.
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Corollary 3.1.2. Let m be a bounded variation function on R that is right-continuous at
every point x € R and lim,_, o, m(x) = 0. Then,

Tyt L (u) — LY (u), Yu e Ay,
with constant less than or equal to C|dm)| Jull 4, (1 +log [Jull 4,)*

Corollary 3.1.3. Let ¢ = (¢;); € (*(R) (that is, illpnry == 255 lej| < 90) and let {T}}; be
such that
T; : L' (u) — LY (u), Yu e Ay,

with constant less than or equal to p(|[ul| 4 ), where ¢ is a positive nondecreasing function
on [1,00). Then,
chTj : L (u) — LY (u), Yu e Ay,

J

with constant less than or equal to Ct ¢y gy p(C2 [ull 4, ) (1 + log [|ull 4, )-

3.2 A Sawyer-type inequality

“Sawyer-type inequalities” is a terminology coined in the paper [81], where the authors prove

that
H T(fv)

< 1l 2wy » Vue Ay and v € Ay or uv € Ay,

L1 (uv)
where T is either the Hardy-Littlewood maximal operator or a linear Calderén-Zygmund
operator. This result extends some questions previously considered by B. Muckenhoupt and
R. Wheeden in [152], and gives an affirmative answer for a conjecture formulated by E.
Sawyer in [165], concerning the Hilbert transform. These kind of problems were advertised
by B. Muckenhoupt in [151] and have been widely studied since then (see [56, 139, 141, 155,
156, 159, 160]).

In this section, we will study one of such estimates for weights belonging in the restricted
class of weights Ap. First, to do so, we need the following result.
Lemma 3.2.1. Let1 <p < o and v € /Alp. Take ]% <0 <1 and set uy = (Mh)(p_l)oﬂ
Then,

Gpl

My, - L1 () — Lad1™(v), (3.2.1)

with constant less than or equal to

oy 5
1-— p(l — 9) Ap ’

and where .
Miof(e) = s o | 1FGwo) s,z R
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Proof. Observe that since v € A,, then v is a doubling weight with constant A, < Cy o]l -
P

Therefore, according to [56, Lemma 2.2 (i)], (3.2.1) is bounded with constant less than or

equal to
01)/71
o B) (w(Q)\ %
Cy |v]|%®V 0p' | su o < ;
1|| ||AP p Eg% U/O(Q) U(E)

where the supremum is taken over all cubes () and all measurable sets £ < (). Now, given
a cube () and a measurable set F < @),

9p/—1

) () () <o ()
<v<E> 7] Q) wm| <l g

and, as well, due to [56, Lemma 2.5],

op’—1

() <|@\>e<z’?—w 6Cs
sup = < ———,
Beq uo(Q) \|E| 1—p(1-0)
which yields the desired result. O]

Now, we proceed to state which will be the cornerstone of the proof of our main results
in this chapter. It was proved in |56, Lemma 2.6] for the case 6 = 1 and the extension to
other 0’s has been fundamental.

Lemma 3.2.2. Let 1 < p < o0 and let v = (Mh)'"Pu € ﬁp. Take 0 and § so that % <0<
§ <1 and set vy = (Mh)*"Pu’. Then, for every measurable set E < R™ we have

1
o

)M < Cn,p,é),é(u)U(E)p ’

Vg

Lplvw(v)

where

p2 0 26—%
Cnpals) = <<p—1>2<5_e><e—§>2) bellas ™ (3.22)

Proof. Observe that by virtue of the Kolmogorov’s inequality [85] with 1 < ¢’ = % <p,itis
enough to prove that
1

sup ;< L(Mh(x))@—l)(q’—l) (M(;(XE(Mh)l_pue)(x))q/dx)q < Copos(w)v(E)

e

FcRn® ’U( F ) d 7
Then, using the Fefferman-Stein’s inequality [94], since ¢’ > 1, we obtain that

L(Mhu»@-”@’-” (M (x (M) Pu) () da

/
< %
0q — 1

| Q@) M (aa) ) (o)
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Now, since ug = (Mh)P~D@ 1) ¢ A; by means of (2.2.3) we have that, for every z € F
and every cube () 3 z in R”,

u(Q)
|Q|fXFUO ) dy < 258 0] Moy (xr) () < l[uoll 4, uo(a) M, (xr) ()

1
T1-(p-1(¢ 1)

(3.2.3)

u()(x)Muo (XF)(:E)

Hence, taking the supremum over all cubes @) € R” such that @ 3 z in (3.2.3), with x € E,
we deduce that
| e O T e e
E

1
Tl-(p-D(g -1

L My () (@)o(z) da.

Therefore, since ¢’ = %, the inequality we want to prove will hold if we see that

(f Moo (xF)(x)v(2) d:z:)e < ((5 0)(1 - - (1—6)>)" Co os(u)o(FY7

ECR”

or equivalently,

1

p(l — 6))) Cn,p7975(U)$U(F)1_TF’/.

<(5— 0)(1(5_9

1
sup ———— | M,,(xr)(z)v(z)dr <
e s | e @pete) o <

ECRn?

(3.2.4)

Finally, using again the Kolmogorov’s inequality in (3.2.4), it is enough to prove that

/ 0 /

6
M,, : Lﬂp’pfl’l(v) — Lﬂp’pfl’oo(v)
with constant less than or equal to

((5 0)(1 —

B

r(1 —9))) Coos(u)

According to Lemma 3.2.1, this will happen if

9p 50

2 2(0p’ —1)

p

<(p—1)2(5—9)(1_p(1_9))2> ull 4,7

from which the desired result follows by taking C,, ,¢s(u) as in (3.2.2).

Cn,p,@,& (U) Z
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3.3 Weighted restricted weak-type (1,1)

We are now ready to state and prove our first main result in this chapter.

Theorem 3.3.1. Assume that for some pair of nonnegative functions (f, g),

191l 1oy < Pl a) 1 fll iy, Vue Ay, (3.3.1)

with ¢ being a nondecreasing function on [1,00). Then, for every 1 < p < o,

19l ooy < RUONZ) N f 1oy, Vv €A,
where )
®(r) = Cro(Cor?)r?~' (1 + logr)? | r=1, (3.3.2)

with C7 and Cy being two positive constants independent of all parameters involved.

Proof. Let h e L (R") and u € A; so that v = (Mh)*Pu e A\p. Further, let us take

loc

1 1—-6
—<f<1, d=1-—-" and vg = (Mh)'Pu’,
Y t
where t = 1 + m satisfies u’ € Ay with |[u'l| ; < [lull,, (see (2.2.4)). Then, § <6 <1

and, by (2.2.3), for every measurable set F' < R™,

OHUHA1

o = Ms(xpvg)u' ™" = M(xpvy Y’ (u')' ™ € Ay, luol,, < =35

Hence, taking y > 0 and F' = {x : g(x) > y} so that v(F) = A}(y), by hypothesis we
obtain that

YA (y) = yf

{z:9(2)>y}

<o () [ s @) s

(Ctull 4, A Msxvo)(z)
o (o) [ s e g

_ (Ctllully, \ [ Maxr)
Rl 1-6 (o

mww<ytmuwm@WW”m

(3.3.3)

11l o) »
L' (v)
where in the last estimate we have used the Holder’s inequality for Lorentz spaces with
respect to the measure v(z) dx.
Now, by virtue of Lemma 3.2.2,

e

u 1
H% S Cpos(Wv(F)7 = Crpps(u)Ag(y)

LP/’OO(U)
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Therefore, observe that if A\j(y) < oo for every y > 0, then we can divide by )\Z(y)ﬁ the
left-hand side of (3.3.3), so taking the supremum over all y > 0, in particular, we obtain
that

Ct
9 = sl ( g ) Wl

Otherwise, for each N € N, let gy = gxB(o,n)- Then,
X, () < 0(BO.N) <0, Wy >0,

and the pair of functions gy and f satisfies also (3.3.1), so that arguing as above but now
with gy instead of g we obtain that, for every N € N,

) Ot full,,
||9N||Lp,oo(v) X Cn,p,e,é(u)‘zp 1— ||f||Lp ()

and so the same result hold for g by taking the supremum over all N € N.
Finally, concerning about the constant C), g 5(u), we observe that

2 202

_ p "l
Const®) = (i g 1y ;) i

~ P’ ’ 30—2
T\ p-120-06)(0- Iy g,

Therefore, letting

1 1
0=—|14——-—], 1< R< o,
4 ( (p+ 1)R)
then
5 3p2\ » (1 5ror) S
P ( ) R (p+DR &
Cnpos(u) (W) |IU||A1 ] 70 < Rv IIU||A1 ||U||A1

Furthermore, with the same choice of 6,

Ct [|ull 5, .
® (ﬁ) S @ (C HUHA1> :

Thus, the result follows by setting R = 1 + log ||lu||,, and then taking the infimum on

|| 4, over all the possible representations of v € A,. O
Therefore, by virtue of Theorems 2.3.6 and 3.3.1, the next result follows directly:
Corollary 3.3.2. Given an operator T. If
T : Ly (u) — LY (u), Yu e Ay, (3.3.4)

with constant less than or equal to ¢(||ull,,), where ¢ is a positive nondecreasing function
n [1,00), then, for every 1 < p < oo and every measurable set E < R™,

ITXEl Loy < P04, )0(E)7, Vv e Ay, (3.3.5)

where @ is as in (3.3.2). Further, if (3.3.5) holds for every 1 < p < o, then we have (3.3.4)
but now with the norm constant less than or equal to C1p(Cy [|ull 4, ).



3.4. Weighted restricted weak-type (p_,p_) 53

Further, if 7" is a sublinear (e, d)-atomic approximable operator (see Definition 2.3.9)
then, by means of Theorem 2.3.12, Corollary 3.3.2 can be improved in this wise:

Corollary 3.3.3. Let T be a sublinear (e,d)-atomic approximable operator. If
T:L'(u) — LY (u), Yu e Ay, (3.3.6)

with constant less than or equal to ¢(||ul| 4,), where ¢ is a positive nondecreasing function on
[1,00), then, for every 1 < p < w0,

T:LPYv) — LP®(v),  Yve A, (3.3.7)

with constant less than or equal to ®(||v]|l; ) and where ® is as in (3.3.2). Further, if
(3.3.7) holds for every 1 < p < o, then we have (3.3.6) with constant less than or equal
to Ct[|ul] 5, o(Cafull4,)-

3.4 Weighted restricted weak-type (p_,p_)

Now, we continue by stating and proving our second main result in this chapter.

Theorem 3.4.1. Assume that for some pair of nonnegative functions (f,g) and for some
1<py<wand < a <1,

HgHLPom(ua) <@ (||U||fh) HfHLPOJ(Ua) ) Vu e A,
with ¢ being a nondecreasing function on [1,0). Then, for any po < p < =,
19l ey < (10l o mi ) I s V0 € Ancaterson,
_ 1 _ p(l=qa) _ _p—p
where a(p) = 1 oo Bp) = JEHy and
1 = (v=r)
P « a(p— 2(p—
U(r)=Cy (—) © <C’27‘P0*P<pl*a)) rPo-pC o) (1 +logr) o , r>=1,
po—p(1—«a)

with C7 and Cy being two positive constants independent of all parameters involved.

Proof. Let h e LL_(R") and u € A; so that v = (Mh)?P)1=P)yaP) ¢ /Alp;(a(p)ﬁ(p)). Further,

loc

take t = 1+ W so that u' € Ay with [[u’]|, < [Jull 4, (see (2.2.4)) and, since ¢ > 1,
1

p—po  o—alp) <ta—a(p) :a_w<a.

p  l-al)  t—oalp) t — a(p)

Hence, we can take

P — Do <0<ta—oz(p)

vg = (Mh B1=p) g a(p)d with )
(Mh) p t —a(p)



54 Chapter 3. Weak-type (1,1) for weights in A,

Besides, since a(p) < «, letting

5:1—We(0,1),

then 0 < ad < 1 and, by (2.2.3), for every measurable set F' < R™,

1

a(p)(1-6)\a a5 b nies O||u||A1
up = (Mas(xrvg)u )® =M (XFU; ) W)= e Ay, fuoll, < AL

1—-9

Hence, taking y > 0 and F' = {z : g(z) > y} so that v(F) = \/(y), by hypothesis we
obtain that

N = |

v(z)dr < yp“f Mas(xrve) (z)u(z) P dg = yPo N (y)
{z:g9(z)>y} F

1 Po
* 70
< ¢ (Jluolls,)"™ [pof (J Mos(xr0g) (2)u(z)*®1-0) dm) dz]
0 \Jy@s=2

C HUHA ]a)m M 6(XFU9) [ 0 1 Do
< —t e As 7 / D J X{f(z)>z pop dZ:|
7 q 1—6 R S N L s> }Hm,l(v)
Mas(XFve)

%w(rhwmu]vm
a(p)(1—0)
where in the penultimate estimate we have used the Holder’s inequality for Lorentz spaces

with respect to the measure v(z) dz. )
Now, since f(p)(1 —p) =1— L then ve Ar and, by virtue of Lemma 3.2.2,
Po

Vg )

AMWJW%W’

pP—PQ —Po

Ma X v v P—Po
HM Cn,lﬁ,fﬂs(u))\g(y) P
Vo "

<Cs

S
>
Q
(%)
—~

I
SN—

e
—~

ki
S~—

s

|

L(%)/’“(U)
so arguing (if necessary) with gy = gxp(o,n) as we did in the proof of Theorem 3.3.1 and
taking the supremum over all y > 0, in particular, we obtain that
L ~ a
19050y S Con 2 ps(@ 0 (€ 1l ) 11

Finally, concerning about the constant OPL’Q,O“;(U), we observe that
0

2 20— Q(P_pO)

Po

0
p
Chrpa = —
#yes(t) (@—nm«w_exa—%%w)'M“

( P? ) | ||3972(P*P0)
< - Uil 4 ro )
ol a)0 -5 ) e

so the behaviour of the constant C,, » 4 .5(u) follows similar as in the proof of Theorem 3.3.1.
Po
]
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Therefore, by virtue of Theorems 2.3.14 and 3.4.1, the next result follows directly.

Corollary 3.4.2. Let 1 < py < 0, 0 < «, 8 < 1 (not both identically zero) and let T' be a
sublinear operator satisfying

T:LPY(v) — LP®(v),  Yve Ay ap), (3.4.1)

with constant less than or equal to ¢(||v]| 4 where @ is a positive nondecreasing function

);
P0; (e, B)
n [1,00). Then, for every p_ < p < py (with p_ and py as in (2.3.5)) but p > 1,

T : LY (v) — LP*(v), Yo € Apiatr) 8))s
with constant less than or equal to Iﬁq)p (HUHAp»(a(p) B(p))) , where @, is a positive nondecreas-
ing function on [1,00). Further, if p_ =1, then for every 0 < q < 1,

T LM ue®) - Lh9e®) Yue Ay,
with constant less than or equal to %]q:)q (HUHZ?)), where i)q 1S a positive nondecreasing
function on [1,0).

Even though we have shown that, in particular, is possible to extrapolate from any pq till
all p e [p_,p), is important to point out that we have not been able to reach the exponent
p+ (at least when this should be possible, that is, p, < o). However, we also observe that
po could be set to p; (this is the case when a = 0) and in that case (3.4.1) reduces to

T : LPoY(MR)PA=Po)y — [P0 (N h)PEA=PO)Y, Vhe L. (R"), (3.4.2)

where we should note that for these kind of weights,

‘ (M h)P=po)

H N = 1. Hence
Apo;(Oyﬁ) ’

motivated by (3.4.2) we have the following.

Theorem 3.4.3. Assume that for some pair of nonnegative functions (f,g) and for some
I1<py<wand <a <1,

HQHLPO@O((Mh)a) < On,pma HfHLpo,l((Mh)a) ’ Vh e Lloc(Rn)-
Then, for p = -,

1

Y (P a A
HgHpr<u Po) < (1 _Oé) 20 Chp po,ax HUHAl HfHLpl( - >> Vu e Ay,

for some nondecreasing function ® on [1,00).

Proof. Take v = u' "7 for u € A;. Let y > 0 and define F = {x € R": g(x) > y} so that
v(F) = A\;(y). Then, by hypothesis,

Po

A(y) = Lv(x) dr < JF M, (xrv)(z) dz < CY’I’L,&

ypo

|f||Lpo 1 (Ma(xFv))
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where M, (xrpv) = M (XFU_%>

Now, due to the Holder’s inequality for Lorentz spaces with respect to the measure
v(x) dx,

M, (xFv) ||7o [~ L
fl 1ro, o < || , Po X{f@>= ", dz
CLTERETAORY) ra E L L e
1 1
o |[M () |
= (1*&) Po _ P ||f||Lp,1(v)v
u Po
L1 (v)

and, since u 7 = v/u, by means of [81, Theorem 1.3 and Remark 2.2] (see also [160]) there
exists a nondecreasing function ® on [1,0) such that

1

1 1

po—1 Z—1\ro P o 1_1
o gy < (1= )56 <I><Hu||i’ﬁ ) NS 1l

Therefore, putting all together and arguing (if necessary) with gy = gxpo,n) as we did
in the proof of Theorem 3.3.1, we obtain that

11

po—1 P _1\po P
<(1=a) 7 Cpppa® (HUHZ? ) 11210y »

hSA

YAy (y)

so that the result follows by taking the supremum on y > 0.

3.5 Applications

In this section, we present some applications for our extrapolation results previously intro-
duced in this chapter. In particular, in Section 3.5.1 we will study the average operators
that appeared on Section 3.1. Further, in Section 3.5.2 we will work with Fourier multipliers
while in Section 3.5.3 we will focus on integral operators, where we will see that both, in fact,
can be handled as particular cases of average operators. Finally, we will deal in Section 3.5.4
with the Bochner-Riesz operator. Indeed, similar estimates could be obtained for a large
list of operators such as Fourier multipliers of Hérmander type (see Section 5.2.1), rough
singular integrals (see Section 5.3), intrinsic square functions (see Section 5.4), among many
others.

3.5.1 Average operators

Corollary 3.5.1. Assume that {Tp}y is a family of operators indexed in a probability measure
space such that the average operator

Tif(@) = [ Tof@dP(o), xR,
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is well defined and that
Ty : L'(u) — LY (u), Vu e A, (3.5.1)

with constant less than or equal to p(|[ul| 4 ), where ¢ is a positive nondecreasing function
on [1,00). Then,
Ty : Ly (u) — LY (u), Vu e Ay, (3.5.2)

with constant less than or equal to Cyp(Coy|lul| 4, )(1 + log ||lull4,). Moreover, if Ta is a
sublinear (g, 0)-atomic approzimable operator, then

Ty : L'(u) — L (u), Vu e Ay, (3.5.3)
with constant less than or equal to Cyp(Chy [l 4, ) [Jwll 4, (1 +log [lull 4,)-

Proof. Set 1 < p < oo. Using Theorem 3.3.1, we have that (3.5.1) implies
Ty : LP'(v) — LP*(v),  Yve A,

with norm less than or equal to ®(||vf ; ). Now, recall that LP*(v) is a Banach function

space since there exists a norm |- [, ., ) so that

p,00,v
b
[ lzoe ) < Ml ooy < 577 1 llimncey -

Hence, by the Minkowski’s integral inequality (see |20, Theorem 4.4] and [167, Proposition
2.1]) T4 satisfies that, for every 1 < p < o0,

Ty : LPY(v) — LP*(v), Vue A,

with norm less than or equal to -55®(|[v[|; ). Therefore, using Theorem 2.3.6 the desired

result (3.5.2) follows by taking the infimum in p > 1. Finally, (3.5.3) is just a consequence
of Theorem 2.3.12. ]

In particular, the next results stated in the introduction follow:

Proof of Corollary 3.1.2. This result is just a direct consequence of Corollary 3.5.1 since

W_}mHt} is a family of operators indexed in a probability measure. [
t

Proof of Corollary 3.1.3. This result is just a direct consequence of Corollary 3.5.1 since

WTJ is a family of operators indexed in the counting probability measure. O
1(R) j

3.5.2 Fourier multipliers

Our first application for Fourier multipliers is in the context of restriction multipliers from
Rtk to R, for some k > 1. First, we say that m € L®(R") is normalized if

limz/JAj «m(z) = m(x), Yz e R",
J

where for each j, ¥;(z) = ¢(z/j), and ¢ € C*(R"), ¢ =0 and \|1/}|]L1(Rn) = 1.
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It is easy to see that then for every Lebesgue point x of m, lim; 171} »m(z) = m(x). In
particular, every continuous and bounded function is normalized.

Before going into details, we first need the following density result about weighted Lorentz
spaces.

Lemma 3.5.2. Given p > 1 and a weight v in R™. Then, C*(R™) n LP!(v) is dense in
P (v).

Proof. The proof follows the same lines as [63, Lemma 2.2| with the necessary modifications.
First, since finite linear combinations of characteristic functions of measurable sets £ < R"
with finite measure are dense in L!(v) (see |99, Theorem 1.4.13]) it is enough to see that
we can approximate yz by any function in C*(R") n LP!(v) under the norm in LP!(v).

In turn, we may assume that F is bounded (so that, v(E) < ) and contained in an open
ball B sufficiently large (since xg, — xg in LP!(v) with Ey = E n B(0,k), where B(0, k)
denotes the n-th dimensional open ball of center 0 and radius k).

Now, given ¢ > 0. Since vyp € L'(R"), there exists § > 0 such that if A € R" is a
measurable set satisfying |A| < ¢ then v(A n B) < €. So let U be an open set and K a
compact set, both in R™, such that K € F < U < B and |U\ K| < 6, and let h € C(R")
be a function with values in [0,1] such that |xg(z) — h(z)| < xv\x(z) (see [76, Theorem
2.6.1]). Then

e = Pll oy < [Pl agy = o(U\K)» <,

as desired.
O

Proposition 3.5.3. Let k > 1 and assume that a normalized function m € L*(R""*) satisfies
that

Ty o LY (u) — LY (u), Yu e A (R™),
with constant less than or equal to p(|[ul| 4 ), where ¢ is a positive nondecreasing function

on [1,00). Let ¢ € L*(R*) and define

mola) = | mle.polndy. xR

Then,
T, L (v) — LY (v), Yov e Ay (R™),

with constant less than or equal to C1p(Cy ||v]| 4,) [[v]| 4, (1 + log[[v]| ,,)-

Proof. Take v € A;(R™) and define u = v ® xgr, so that

uw: R*"xRF SR,
(z,y) = u(z,y) =v(),

satisfies u € A;(R"™*) with |[ul,, < [lv|l,,. Then, T,, : L'(u) — L“*(u) and, by [52,
Theorem 4.4] (where here is used that m is normalized),

Ton(y) : L' (0) = LY (v), Yy e R¥,
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with

Sup T |y prooy = Nl 1Tl ry ooy < M0l 2Cl0lLa,)-
Y

Now, take f € C(R"). Then, for every y € R* we have that m(-,y)f € L*(R") and, as
well, m,f € L*(R™), so that, by the properties of the Fourier transform,

~

T @) = (mCp)f) (2) and T, flo) = (mef)*(2),  VaeR",

where for every g € L'(R"),

i) = | g©emerds aerr,

is the inverse Fourier transform of the function g. Hence, by Fubini’s theorem,

Ty f() = | mg(€)f(§)e”m ™ de = . (L

R

m(&,y)é(y) dy) f&)e*m =< de

k

- [ ([ memi@ecae) ar = [ T fiarot

and the result follows as in Corollary 3.5.1 together with the density of LP!(v) by functions
in CX(R™) n L' (v) (see Lemma 3.5.2).
O

For our next application, we observe that if || T, || 1o gy po(rey < |||, for some 1 < p <
o0, then by iteration

||ij||Lp(Rn)—>LP(R") < HmHjoo’ VjeN,

where m/ stands for the j-th power of m. However, this may not be the case when dealing
with boundedness between the spaces L!(R") and LY*(R"), since, in general, we can not
iterate the operator. Our next application gives a necessary condition for this to happen.

Proposition 3.5.4. Assume that m € L*(R") satisfies that for every j =1,
T+ L' (u) — LY (u), Vu e A,

with constant less than or equal to C ||m|’, o(llull 4,) uniformly in j, where ¢ is a positive
nondecreasing function on [1,00). Then if

F={zeR" : m(z) = ||m].,},

we have that
Typ : Ly (u) — LY (u), Yu e A,

with constant less than or equal to Crp(Cy |lull 4, ) (1 + log [[ul] 4, )-
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Proof. Fix r € (0,1) and define

" Z( Il )j e

Hence, observe that since for almost every x € R", |[rm(xz)| < ||m/||,,, then

1—r

_ @)
1 =1

my(x) = Xr(x), a.e. € R".

oo}

Now, take f € CX(R"). Then, due to the properties of the Fourier transform we have
that m, f € L*(R"). Further, by means of the dominated convergence theorem we get that
for every 0 <r <1,

1,80 = (mof) (@)= 0=n) | z

T]j f VIO s = (1) T H] T f(2),

(6) 2mix-& df

IImIIJ

for every x € R", and as well,

T, f(x) = | mp(§)f (e C dE — Xp(€)f(§)e >4 de = Ty, f(x),  VreR"
R™ r— R”
Therefore, taking ¢; = 7 and T; = WTW’ the result follows as in Corollary 3.1.3

together with the density of LP!(v) by functions in C(R") n LP!(v) (see Lemma 3.5.2) and
the Fatou’s Lemma.
[

3.5.3 Integral operators

Let us now consider the operator

Tf(x) = o K(z,y)f(y)dy,  xeR",

where the integral kernel K satisfies some size condition of the form |K(z,y)| < |z —y|™.

Proposition 3.5.5. Assume that, for every s > 0,
i@ = Kensod, e
T—Y|=8

satisfies that
T, : Li(u) — LY (u), Yu e Ay,
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with constant less than or equal to (||ull 4, ), where ¢ is a positive nondecreasing func-
tion on [1,00). Then, if ¢ is a right-continuous bounded variation function on (0,00) with
lim, o+ ¢(z) = 0, we have that

Tof(z) = | K(z,y)é(lzr —yl)f(y)dy,  zeR",

Rm
satisfies that
Ty : Ly (u) — LY (u), Yue A;.

Proof. We observe that, by hypothesis,

|z—y]
o1z — o) = j J(s)ds, ¢ e LI(R™,

and hence, for every x € R” and every € > 0, by Fubini’s theorem, we have that

(j S @)dy) #(s)ds = fo T.f(2)(s) ds,

oe]

T,f(x) — ()T f () = f

0

is an average operator, and so the result follows by Corollary 3.5.1 and letting ¢ tend to
Z€r0. O]

3.5.4 The Bochner-Riesz operator

Let n > 1 and A > 0. The Bochner-Riesz operator is defined as

BAJ(€) = (1—1¢P)) f(9),  €eRn

These operators were first introduced by S. Bochner in [25] and, since then, they have been
widely studied (see [28, 40, 59, 66, 98, 120, 175, 178]).

The case A = 0 corresponds to the disc multiplier which is unbounded in L?(R") if n > 2
and p # 2 (see [93]). Indeed, in that case, the disc multiplier S,, := By is defined by

(Snh)E) = oo (©)f(€),  €eR,

where B(0,1) = {x € R" : |z| < 1} denote the n-th dimensional open ball of center 0 and
radius 1.

When A > 5= it is well known that B, is controlled by the Hardy-Littlewood maximal
operator M. As a consequence, all weighted inequalities for M are also satisfied by By, so
that in this case,

||B/\f||Lp,oc(v) S HUHA;;% ||f”LP>1(1;) ’ Vv e A§7

(see (2.2.7)). The value A = 252 is called the critical index. In this case, X.L. Shi and Q.Y.
Sun [169] proved that B is bounded in LP(v) for every 1 < p < o0 and v € A,. The

unweighted weak-type inequality for p = 1 was first settled by M. Christ [68], who showed
that Bu_y is bounded from LY(R") to L»*(R™), and the corresponding weighted weak-type

mequahty was obtained by A. Vargas in [178], where she proved that Bn 1 is bounded

from L'(v) to L"*(v) for every v € A;. Further, in [140] the authors gave the following
quantitative result:
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Proposition 3.5.6. Letn > 1. Then,

Bua : L'u) — LY (u), Yu e Ay,

2
with constant less than or equal to |[ul|, logy(C ||ull ,, + 1).

Thereby, by virtue of Theorem 3.3.1, we completely answer the open question formulated
in [46] about the weighted restricted weak-type (p, p) boundedness of Banl .

Corollary 3.5.7. Let n > 1. Then, for every 1 < p < o0,
B L (v) — LP™(v), Vue A,

3p—1

1+2
P71+ log o] 5,1

with constant less than or equal to C'||v||

Below the critical index, that is 0 < A < ”T_l, B, is not bounded in LP(R") for the whole
range 1 < p < oo. For instance, in dimension n = 2, L. Carleson and P. Sjolin [40] proved
that B, is bounded in LP(R?) if and only if p > 1 and

1 1 1
A>max | 2|— — =|— = ,0 1,
p 2 2

4 4
31ox PSS 1 ox

or equivalently, 0 < A < % and

Moreover, A. Seeger [168| showed that the corresponding unweighted weak-type inequality
at the endpoint

By : L7 (R?) — L5 (R?) (3.5.4)

also holds.

For higher dimensions it is already well known that B, is not bounded in LP(R") for
p < %55 or p = —— (see for instance [88, Theorem 8.15] or [98, Proposition 5.2.3]).

Furthermore, it was conjectured the following:

Conjecture 3.5.8 (Bochner-Riesz Conjecture). By is bounded in LP(R™) if p > 1 and

1 1 1
)\>)\(p)=max(n 2—)—5‘—5,0),
or equivalently, for 0 < A\ < ”T’l and
2n 2n
_ _ 3.5.5
ntl+2x P n—1-2x (3:5:5)

However, the Bochner-Riesz conjecture only has been partially answered and the best
results known up to now are currently due to Bourgain and Guth [28] (see also Lee [126]).
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n—1

We summarize it here: let 0 < A < "7 and p in the range of (3.5.5), if ¢ = max(p,p’)
satisfies

( 2(4n + 3)
2 n=0(mod 3),
2n +1
>4 — =2 d3
q < n— 1 ) n (I'IlO )7
4(n+1) B
[ 2= "=2(med3),
then the Bochner-Riesz Conjecture holds
Further, under the condition ( < A < %= the corresponding unweighted weak-type
inequality at the endpoint
By : L7135 (R") — Lﬁm")m (3.5.6)
was settled by M. Christ [67] and extended to A = z7=55 by T. Tao [175], while it remains
unknown for the range 0 < A < 2(7:1 +11) This is the often—called endpoint Bochner-Riesz

conjecture (see [176]) and we observe that if it holds for some A, then by duality (since B, is
essentially self-adjoint) and interpolation, the Bochner-Riesz conjecture is also true for such
A and any p in the range of (3.5.5).

Moreover, in two recent papers [120, 124], new weighted estimates for B) have been
proved using the fact that the Bochner-Riesz operator can be dominated by sparse type
operators. As far as we know, these are the best weighted estimates known for every n > 2,
together with the results for the (2, 2)-strong type inequality in [59, 66].

Proposition 3.5.9 ([120]). Let n =2 and 0 < X\ < 1. Then,

4 2)\ _4 _2X
By L3v2x (u3+2x | —» L3320 ust2x ), Vu e Ala

A(T+4N)
with constant less than or equal to ¢(n, \) HuHA6+4A .

Proposition 3.5.10 ([66]). Let n > 2 and <A< 2L Then

2( +1)

B)\ L2 ( 1+2)\> N LQ (U%> ’ Yu e A17

1422
with constant less than or equal to ¢ (||u||A1" ), where ¢ is a positive nondecreasing function

n [1,00).

Therefore, as a consequence of Theorem 3.4.1, we present some new weighted estimates
for the Bochner-Riesz operator below the critical index.

Corollary 3.5.11. Let n =2 and 0 < X\ < 5. For every 575; <p <3
B)\ Lp’ ( ) Lp’oo(v), Yv e A (4 3p (3+2)\)p— 4)

> 4(p-1)

n—1_
Now, let n > 2 and Tt D <)\<— For every 2 < p<m,

By: P (0) > L), We A, )

2n ’2(p—1)
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Chapter 4

Weighted restricted weak-type estimates
on AP(w)

We dedicate this chapter to prove weighted restricted weak-type estimates on classical
Lorentz spaces (AP(w) for 0 < p < o). We start in Section 4.1 by introducing known
results about boundedness of operators on classical Lorentz spaces and also by motivating
the weighted restricted weak-type estimates that we will study. Indeed, in Section 4.2 we
will make use of the theory of Rubio de Francia extrapolation (see Section 2.3) to study
boundedness of operators from AP (w) to AP*(w), and we will also adapt the ideas that we
will use there to the limited setting. Finally, in Section 4.3, we will see that, in fact, weighted
restricted weak-type estimates on classical Lorentz spaces for sublinear operators 7' (even in
the limited setting) are equivalent to pointwise estimates on the decreasing rearrangement
of T by a Calderon admissible type operator (see Sections 4.3.1 and 4.3.2). Besides, we will
figure it out that weighted restricted weak-type estimates on classical Lorentz spaces, actually
follow from unweighted restricted weak-type estimates on Lorentz spaces for a suitable control
of the norm operator constant.

The results of this chapter are included in [6, 15, 16].

4.1 An introduction about boundedness on A?(w)

There are many results in the literature about boundedness of operators on A”(w) or even
on r.i. spaces. For instance, let us just mention the classical paper [166] including the case
of the Hilbert transform and Riesz transforms, and a recent one [92] which contains a rather
complete list of papers on this topic, among which we should include |2, 30, 71].

Now, the operators that appear on the references mentioned above have one important
property in common: they all satisfy that for some (and hence for all) 1 < py < o0,

T : LP(v) — L (v), Yve Ay, (4.1.1)

with constant less than or equal to ¢([v] 4, ), where ¢ is a positive nondecreasing function
on [1, ), so that they all fulfill the hypothesis of Theorem 2.3.3 for g = |T'h| and f = |h| €
LPo(v). Actually, that theorem is very useful to prove the boundedness of operators for which

65
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condition (4.1.1) has been widely studied, while this is not the case in other contexts such
as, for example, of classical Lorentz spaces or more generally r.i. spaces. Let us explain,
as an example, the case of the sparse operators Ag introduced by A.K. Lerner in [132] (see
Section 5.5) which have become very useful since they dominate many operators such as
Calderén-Zygmund operators. Since Ag are known to satisfy (4.1.1), Theorem 2.3.3 implies
that, for example, if we consider classical Lorentz spaces whenever are Banach function
spaces (that is, for we B, if 1 <p <o or we B if p=1) and if

M : AP(w) — AP(w) and M : (AP(w)) — (AP(w))’, (4.1.2)

then we have that
As : AP (w) — AP(w).

On many occasions the difficulty to apply Theorem 2.3.3 to a concrete space X is precisely
to characterize when (4.1.2) holds for X. In the case of X = AP(w) it has been already settled
that the boundedness of M over AP (w) is characterized by B, (see Section 2.2.2) while the
boundedness of M over (A? (w))" is done by B (see Section 2.2.3) so we can concluded that,
for p > 1,

we B, n B} = As : AP(w) — AP(w).

In fact, the same result is true for every operator 1" satisfying (4.1.1) and this condition is
sharp (in the sense that it can not be found a greater class for w) by means of the Hilbert
transform (see (2.2.20)). However, up to now we have just considered p > 1 since Theorem
2.3.3 concerns the case of Banach function spaces. But, what can we say if 0 < p < 1 (where
AP(w) is “at most” a quasi-Banach function space)? Moreover, in the case p = 1, it is known
that

As: LY(R") — L**(R"),

and this case is not covered by Theorem 2.3.3, since it is known that (4.1.1) does not imply,
in general, the unweighted weak-type boundedness of 7' from L!'(R") into L“*(R"™) (see
Remark 2.3.8). Nevertheless, in Theorem 2.3.6 is stated that if we assume a slightly stronger
condition on T'; that is, for 1 < py < 0,

T : [P (v) — LPo®(v), Yue Ay, (4.1.3)

with constant less than or equal to ¢(||v]| Apo)’ where ¢ is a positive nondecreasing function
on [1,0), which is satisfied by the sparse operators (among many others) then we can arrive,
at least for characteristic functions, to the endpoint p = 1.

The purpose of this chapter is to study, assuming that 7" satisfies (4.1.3), even for py = 1,
what conditions do we need on w in order to deduce weighted restricted weak-type bound-
edness on classical Lorentz spaces; that is,

T : AP (w) — AP (w), for some 0 < ¢ <1, (4.1.4)

where the exponent ¢ < 1 appears for that operators for which the unweighted weak-type
boundedness from L!'(R") into L*(R™) holds just for characteristic functions. To do so, we
will use an extrapolation argument based on an estimate on the distribution function of the
operator acting to any measurable function of A”?(w) (see Section 4.2.1).
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Besides, we will see that, in particular, under the suitable conditions of w and if T is
sublinear, (4.1.4) is going to be equivalent to an estimate on the decreasing rearrangement
of T' (see Section 4.3.3) which reads as follow: for every locally integrable function f,

(Tf)*(t)g(thﬂf*(s)q );—l—ftm(l—l—log;)1<p<1+log§>f*(s)%, Vi >0,

for some admissible function ¢ (see Definition 4.3.1) which is going to be related with the ¢
that controls the constant of (4.1.3) (i.e., with the behaviour of the weight norm). Although
to assume that condition on ¢ could seem (a priori) to be restrictive, a lot of operators satisfy
(4.1.3) with ¢ being a power function or even the product between a power function and the
composition of the positive part of logarithms, and all these cases are admissible functions.
Furthermore, we will show that actually, in order to have (4.1.4) we just have to impose that
for every py > 1,

ds
sl—a

T:LMRY - DR and [ Txallpeen < eou(B),  VECR™.

These kind of pointwise estimates for the decreasing rearrangement are very interesting since
obviously it have, as a consequence, boundedness properties of such operators on rearrange-
ment invariant spaces (for more details, we refer to [23]). In particular, it will allow us to
obtain a different approach (from using extrapolation) in order to get weighted restricted
weak-type estimates on classical Lorentz spaces.

Now, if we consider the Bochner-Riesz operator B, (see Section 3.5.4) below the critical
index (that is, 0 < A < 251) then it is known that B) is not bounded in LP(R") for the
whole range 1 < p < oo (see [88, 98]) and the same happens when studying the boundedness
between LP''(R™) and LP*(R™), so there is not even one py > 1 such that (4.1.3) could hold.
However, it is true for a subclass of the APO weights (see Definition 2.2.8) that is, there exists
some py > 1 and some «, 3 € [0,1] (not both identically zero) such that

T:LPY(v) — LP(0), Yo € Ayiap)- (4.1.5)

This type of weighted inequalities are also satisfied by other operators such as the Hérmander
Fourier multipliers m € M (s,[) with [ < n (see Section 5.2.1) among many others. We will
adapt the ideas used on the results above mentioned for operators satisfying (4.1.3) (which
as we have already said are included on Sections 4.2.1 and 4.3.3) to take into account also
the operators that even though do not satisfy (4.1.3) they do (4.1.5), so that we will obtain
weighted restricted weak-type estimates on classical Lorentz spaces for these cases as well
(see Sections 4.2.2 and 4.3.4).

4.2 Weighted restricted weak-type estimates by extrap-
olation on A?(w)

There are some results involving extrapolation aimed to obtain weighted estimates on clas-
sical Lorentz spaces [60, 84].

In this section, we use the extrapolation theory to obtain new results about weighted
restricted weak-type estimates on AP(w) (see Section 4.2.1) and we adapt it to deduce also
weighted estimates on the limited setting (see Section 4.2.2).



68 Chapter 4. Weighted restricted weak-type estimates on AP(w)

4.2.1 Weighted restricted weak-type extrapolation

Our first goal is to study the operators for which there exists some py > 1 such that
T : [P (v) — LPo(v), Yo e Ay,

and see for which conditions on p and w the corresponding weighted weak-type estimate on
classical Lorentz spaces holds. First, let us see a technical result.

Lemma 4.2.1. Given the exponents 0 < By < 1,1 < pyg <0, 0<qy < po and 0 < p < 0.
Define

p1=p(Bo + (1= Bo)po) and @ = Z—Z(ﬁo + (1 = Bo)po),

and take f € APv9 (w). Ifv = (M f)%0=PO)h for some h e (AP (w))', then f e LPo%(v) with

Po
Bt <2 ()™ 11 0 P

Proof. First, we observe that, for every ¢ > 0, if z € {|f(x)| > ¢} then
Mf(x ),30 (1-po) < |f(x >|50(1*p0) < tPo1=po)

Hence,

0 ) e a0
e e (j v(:v)da:) d
0 {If(=)|>1}
o0 2—0 S
< Pof gt (J h(:l:)d:c) dt
0 (@0
Po

90 a0
< 118l w1 ) (pof " It @i0 3 ) df) :

where in the last estimate we have used the Holder’s inequality for classical Lorentz spaces.
Finally, we see that

qO

. 1 b0 w (% 1
f 2 X s @16 At ) dE = PP f W (g ()7 dt = P o o
0 0
from which the desired result follows.
O
Now, we state and prove our first main result in this section.
Theorem 4.2.2. Let T be an operator satisfying that for some 1 < py < o0,
T: LY v) — LP*(v),  Yoe Ay, (4.2.1)

with constant less than or equal to gp(||v||Ap0), where @ is a positive nondecreasing function
n[1,00). Let 0 < p < c0.
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(1) If po = 1, then
T : APHw) — AP*(w), Vwe Bl n B},

with constant less than or equal to Cy ||w|| gr ¢ (C’g l|w| 5= )
P [e¢]

(11) If po > 1 and T is sublinear, then, for every 0 < q <1,

T : AP (w) — AP*(w), Vwe Bl n BY,

¢, - .
gy ma (1wl ) o (Ca ol ).

Proof. First, by means of Proposition 2.2.20 we can define, for every measurable set F' < R",

with constant less than or equal to 1

o0
RXF Z ) 5 r e R"™

Then,

(1) xr(z) < Rxr(x),
(2) 1RxFll4, <2[M | pprqwy < llwllps,

_2 ]
(3) ||RXF||(Ap,1(w)) 2 Ixrll (AP1(w)) S — [wll pr 1
=yl W(IF[)»

)

where on the right-hand side of (3) we have used Lemma 2.2.15.
Let y > 0 and set F' = {z € R* : |Tf(z)| > y}, so that |F| = Ars(y). Then,

v=(Mf)"PRxp e Ay, (4.2.2)

and, by hypothesis,

Mﬂw=J M<xwww+f Ryr(z) de
{Tf(x)|>y} {Tf(z)|>y, M f(z)<vy}
Po
10 (Jloll,, )
)

so that by means of Lemma 4.2.1 (with ¢y = o = 1 and h = Rxp) together with property
(3) of R,

- yPO
<mmeWM—jv@m<mme T
F

Y

AP (HUHAPOYO A (y)
|w|l gr (2l (4.2.3)

Mr(y) < Ap(y) + ——
Y W (Arp(y))e A ()
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1
Further, since w € BJf and A" (w) = AP'(w) continuously,

1 1
sup yW (Anir(v9))? = — M [l ppoo () IIMIIBR =[£Il

y>0 Y AP Po (w)

Therefore, observe that if Ar(y) < oo for every y > 0, then it is possible to divide by
Arf(y) in (4.2.3) so that taking the supremum over all y > 0, in particular, we conclude that

L e
1T flarenuy = lwll gz max <;,7”° 1<p<||v||Ap> )||f||Ap A

and taking the infimum in v > 0 yields that

IT ooy < Nl o (1015, ) 171

AP Po

1
o < lollogo (ClolE 17l ) 422)

where in the last estimate we have used the definition of v and property (2) of R. Otherwise,
for each N e N, let Tvf = |T f|xB(o,n). Then,

Arys(y) < [B(O,N)| <0, ¥y >0,

and Ty satisfies also (4.2.1), so that arguing as above but now with T instead of T" we
obtain that, for every N € N,

1
i Flri < ol ¢ (€ Tl ) 1615,

and so the same result hold for 1" by taking the supremum over all N € N.
Finally, if pg = 1, (i) follows directly from (4.2.4). For (ii), we observe that if 0 < ¢ < -

then AP4(w) = A" %(w) continuously and the result also follows. Otherwise, if we take
pio < ¢ < 1, we have from [61, Corollary 2.15| that

T: Lol (v) — L™ (v), Vue A,

1
q
1
e (cm).
q

Therefore, arguing as above but with (4.2.5) instead of (4.2.1), we obtain the desired result
with constant

(4.2.5)

with constant less than or equal to

Ch o 0
[w]| g lwllsy™ ¢ ( Callwlizy ) -
1—gq *

]

Remark 4.2.3. By means of the Hilbert transform (see (2.2.25)) the condition Bff n B on
the weight w of Theorem 4.2.2 (i) is sharp in the sense that it can not be found a greater
class for w.
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As a consequence of Theorem 4.2.2, we have the next result.

Corollary 4.2.4. Let T' be a sublinear operator satisfying (4.2.1). Given 0 < p < o and
0 <r <o, then
T : AP (w) — AP"(w), Yw e B, n B,

Proof. Observe that if w € B, n B, there exists some ¢ > 0 such that w € Bff_s n BX
(see (2.2.9)) and, of course, w € Bf,_ n BZ. Hence, by virtue of Theorem 4.2.2, for some
0<qg<l,

T : NP5 w) — AP=5%(w) and T : NPT (w) — AP (w),

and the result follows by interpolation on classical Lorentz spaces [58, Theorem 2.6.5].
O

4.2.2 Weighted limited restricted weak-type extrapolation

Our next goal is to show that a similar result as in Section 4.2.1 holds true when dealing
with weighted limited restricted weak-type estimates.

Theorem 4.2.5. Let T' be an operator satisfying that for some 1 < py < w0 and 0 < o, f < 1
(not both identically zero),

T:LPYv) — LP®(v),  Yve Ay ap), (4.2.6)

with constant less than or equal to o(]|v]| Ay with ¢ being a positive nondecreasing
N

)
(e,8)
function on [1,00). Let 0 < p < o0 and set p_ and p; as in (2.3.5).

(1) Ifpo=10r0< <1,

T : AP (w) — AP*(w), Ywe BY ~B}.. (4.2.7)

(i1) If po > 1 and =1 then, for every 0 < q < 1,

T : AP (w) — AP (w), Ywe BY ~ B, .

Proof. Taking @ = WYP~, from Lemmas 2.2.19 and 2.2.29, and the definition of B% | we

have that
we B} n B}, — we B nB;,
P P P
so, together with (2.1.2), we can assume that p = 1. Further, we claim that (4.2.6) can
be changed to this new assumption: for every 0 < ¢ < 1 (if pp > 1 and § = 1) or ¢ = 1

(otherwise) then
T : [P=9(u®P-)) — [P=* (@) Wy e Ay, (4.2.8)

with constant less than or equal to @(Huﬂzgp ‘))7 where ¢ is a positive nondecreasing function
on [1,00). Indeed, if pg = 1 or =0 (so that pp = p_) then ¢ = 1 and @ = . Otherwise, if
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po>1land 0 < B <1 (so, as well, p_ > 1) we just have to make use of Theorem 2.3.14 so

g=1and ¢ = ﬁ@p,. However, if pg > 1 and =1 (so p_ = 1) for every 0 < ¢ < 1, by

virtue of Corollary 3.4.2 we get that (4.2.8) holds with ¢ = %ﬂ]éq.
Therefore, assume (4.2.8), take p = 1 and let w € BE n By . Since p; = #Ep_), by

means of Propositions 2.2.20 and 2.2.30 (where we are assuming that for a(p_) = 1 then
py = ) we can define, for every measurable set F' < R",

RXF(x) = Z k/a(p—)’ reR )
k=0
2 Ma _ 1 !
(I
where Mgy = M (|- |1/a(p—))a(p_). Then,
(1) xr(z) < Rxr(z)*®-),
Jully, . 0<a(p) <1,

2) || Rxrl5") < 2| M, '3
(2) I xrllay | (p"H(Apl’l(w)> {\\w|\3§0> a(p-) =1,

3) (| (Bxe)? H< ) <2l ey < 2 el %

where on the right-hand side of (3) we have used Lemma 2.2.15.
Let y > 0 and set F' = {z € R* : |Tf(z)| > y}, so that |F| = Ars(y). Then, by
hypothesis,

Y= App(y) < ypj Ryp(z)*")de < ¢ <||RXF||Z(1P_ ) [ - 171 ((Ryp)*2-)) °
{T f(z)|>y}
(4.2.9)

Hence, by means of Lemma 4.2.1 (with pg =p_, g0 =¢q, 5o =0, p = pi_ and h = (Ryp)*®-))
and the property (3) of R,

~ alp-)\P~ A (y)
v rr) < el @ (IRxeI5) Towr = MR

p—

so arguing (if necessary) with Ty f = |Tf|xB,n) as we did in the proof of Theorem 4.2.2
and taking the supremum over all y > 0, in particular, we obtain that that,

ITF ooy = ||wuBR & (IRXEIEE ) 1 v

and the desired result follows by the property (2) of R and the fact that ¢ is nondecreasing,.
]
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Remark 4.2.6. If po = 1 or f = 0 in (4.2.6) (that is, po = p_) then we get that (4.2.7)

holds with constant less than or equal to Cy Hle/po | Collwlpx , where
70 W
PO
gp(xp), O<a<land0<p<1,
— (p+1)
plx) = © (xpo 5 ) , O<a<1landp>1, (4.2.10)
@(x% a=1,
for every x =1 (here we are letting ( o5 = ® fora=1).

Remark 4.2.7. (i) We can not expect to get a bigger class of weights than B since, for
instance, the operator M 1 satisfies (4.2.6) forpo =p_, a =1 and =0 (see (2.2.8))
while M 1 : AP (w) — AP®(w) holds if and only if w e BE  (see (2.2.14)).

(ii) Since p_ < p,, we obtain that by Proposition 2.2.33, the class B, i1 N B3, 1s nonempty.

Further, if we take w = 1, then w € B N B§+ whenever p, < p < py, SO as in

Theorem 3.4.1, we are not able to e:ptmpolate till P =7py.

Nevertheless, if we assume a similar hypothesis as in Theorem 3.4.3, then we get the next
result:

Theorem 4.2.8. Let T' be an operator satisfying that for some 1 < pg < o0 and 0 < a < 1,
T L2 (Mxp)®) — L (Mye)?),  YF S RY,
with constant less than or equal to C,, p, o. Then, for every 0 < p < o0,

T : AP (w) — AP*(w), vwe BE n B*%,

0 (1—a)p

Y

11—«
with constant less than or equal to Cy, ;4 Hw|| log | 1+ ||w|| g#r |wl| gor
p() = P

(I—a)p (1—a)p

Proof. The proof is analogous to the one for Theorem 4.2.5 (since in this case pg and p_ coin-
cide) but with the following modification: in (4.2.9), instead of using the weight (Ryz)*®-)
we consider (Myr)® which, by means of Proposition 2.2.31, it also satisfies property (3) of
R (although with a different constant). O

Remark 4.2.9. If we take w = 1, then w € B N B’,’if whenever p_ < p < py, and in this

case we are able to extrapolate till the endpomt Py SO as we did in Theorem 3.4.5.
Finally, as a consequence of Theorem 4.2.5, we have the next result.

Corollary 4.2.10. Let T be a sublinear operator satisfying (4.2.6). Given 0 < p < c© and
0<r <o, then
T : AP (w) — AP"(w), Vwe Br n Bi, .
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Proof. Observe that if w € B» n B3, , there exists some ¢ > 0 such that w e BY¥ . n B%,
2 P+

p pP— p—¢
(see (2.2.9)) and w € BE,. n B%, (see (2.2.31)). Hence, by virtue of Theorem 4.2.5, for some
O < q < 17 P— pte

T : NP2 (w) — AP75%(w) and T AP (w) — APTE%(w),

and the result follows by interpolation on classical Lorentz spaces [58, Theorem 2.6.5].
O

Remark 4.2.11. Recall that Ay can be written as Aro N RH(&)/ (see Remark 2.3.5)

PO
so we have found interesting that this intersection class of weights keep some symmetry with

the class of weights BPL N B}, .
- P

4.3 Weighted restricted weak-type estimates by point-
wise estimates on AP(w)

For a given sublinear operator T, there are many results involving pointwise estimates on
the decreasing rearrangement of T'f from which it can be obtained boundedness results on
r.i. spaces (see |7, 18, 23, 36, 43, 48, 49, 92]).

Indeed, in Section 4.3.3 we will see that the fact that a sublinear operator T' satisfies
weighted restricted weak-type estimates on classical Lorentz spaces as in Theorem 4.2.2,
where in this case we will need to assume that ¢ is an admissible function (see Section 4.3.1),
is equivalent to a pointwise estimate on (7'f)* by a Calderén admissible type operator (see
Section 4.3.2). Further, in Section 4.3.4 we will show that a similar result holds in the limited
setting.

In particular, we will obtain an extrapolation result between weighted restricted weak-
type estimates on classical Lorentz spaces. For instance, results of this type but for weighted
strong-type estimates have been studied in [47].

4.3.1 Admissible functions

There are many interesting operators in Harmonic Analysis satisfying that for some py > 1,

T : [Pt (v) — LPo(v), Yve AR

Po’

with constant less than or equal to C'|v||;r, k& € N. However, on some occasions the
Po

behaviour of the constant has been improved from, let us say, |[v||sk for some € > 0, to an
PO
expression of the form ¢(||v|| 4= ) where ¢ is not a power function. This is, for example, the
PO

case when T is a Calderén-Zygmund operator, where for py = 1 the best function ¢ known
up to now is p(t) = t(1 + log™ t) (see [136]).

In order to cover this important class of operators we will introduce the concept of
admissible function.
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Definition 4.3.1. A function ¢ : [1,00] — [1, 0] is called admissible if satisfies that p(1) = 1
and that there exist some vy,7; > 0 such that

/
Yo PO o s (4.3.1)

o)
Observe that (4.3.1) implies that for every z > 1,

(i) o(x) is increasing,
(ii) max{@iy(f) , 1} < p(x),

(iii) 27 < p(x) < a7

Besides, since for every z,y > 1,

log p(zy) = f

1

T Ty

(log)'(s) ds + f (log ¢)'(s)ds < log ¢(x) + 71 logy,

xT

it also holds that
o(zry) < y"o(z), Vo, y = 1. (4.3.2)

Examples 4.3.2. (1) If ¢ and ¢; are admissible functions, then ¢ = @ is an admis-
sible function. Further, ¢ = ¢ o ¢ (i.e., ¢ is the composition of ¢q and 1) is also an
admissible function.

(2) Given vy > 0 and ; > 0, the function
o(x) = 27°(1 + logz)™, x =1,

is admissible. In particular, given k € N, if we define for every x > 1,

) 1+ logx, if k=1,
g T =
&) 1+ log (log(k,l) x), it k>1,

then, for v > 0 and 74, ..., = 0, the function

\Y
\t—‘

pla) = | [ (logyz)". =

-
Il >
— :]

is also admissible.

The next lemmas are simple computations for admissible functions which shall be fun-
damental later on.

Lemma 4.3.3. Given 0 <p < . Ifr =1 then

" d
J ¢(1+logs) 11 %gp(l+logr)r%—1, p < o,
1 S P

[ 41088 o1 41009 T x (141080 1, p e
1
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Proof. Assume first that p = o0. Hence, taking z = 1 4 log s and using that ¢'(x) ~ M,
x

we get that

1+logr
J @ dr ~ [gp(x)]}“ogr = go(l + log 7") —1.
1

Now suppose that p < co. Then, taking again x = 1 + log s and integrating by parts, we
deduce that

1+logr o1

1+logr o1
f o(x)e » dr=p <g0(1 + log r)r% — 1) — pf ¢'(x)e v dx,
1

1

so that
1+logr . )
J [@@j+4W%xﬂ€7iiﬂzp<¢ﬂf%bgﬂr5_1>'
1

Finally, the result plainly follows from the fact that p(z) + pyp’(x) ~ ¢(x) for every z > 1.
[

Lemma 4.3.4. Given 1 < p < 0. There exists some X\ > 1 depending only on ¢ (and on p
when that is finite) such that for every t > 0 and r = M,

© s\ ds r 1
<p(1+logz) z_lmgp(lJrlog;) T p < 00,

r S ror

* s\ ! s dswgo(1+log§) 1 B

Proof. Consider the function

s 1
—p (1 + log ;) —

1
S p

) p < w?
9(s) = s\ ! s\ 1
—(1+log—> go<1+log—>—, p = 0.
t t/ s

Then, straightforward computations show that there exists some A > 1 depending only on
¢ (and on p when that is finite) such that for every s > At,

© (1 + log f) 21

s D <X,
g},)(s) ~ . tils T .
<1+log¥> g0<1+log¥>8—2, p =0
Thus, since lim g,(s) = 0, the result follows for every r > At. O

§—00

Lemma 4.3.5. Givenz € R and 0 < < 1. Then

inf “Hevr <
%mﬂww )

prer, if © <0,
p et (l+x), ifx>0.



4.3. Weighted restricted weak-type estimates by pointwise estimates on AP(w) 7

Proof. If x < 0, the infimum is attained at y = p. On the other hand, if x > 0, we take
y = p/(1 + ). Finally, the desired result follows by (4.3.2). O

Lemma 4.3.6. For everyy > 1,

sup @(z)e v < max {1, <%)w} o(y).

z€[1,00)

Proof. First, if x <y then p(x)e /¥ < ¢(y). Otherwise, by means of (4.3.2),

p(x)e v < (g)” e vp(y) < max {1, (%)%} (y).

4.3.2 Calderén admissible type operators

Given 1 < py,ps < 0, 1 < g1 < p1, ¢1 < 0, and let ¢ be an admissible function. We define
for every nonnegative measurable function f and every t > 0,

- (& [0 )

= (1+1og ) 7)< P <0,
sz,wf(t) = 0 P 5 ds B
ft <1+10g¥) gp(l—klog;) f(s)?, Py = 0O

with pil = 0 if py = o0. Then, the Calderon admissible type operators are defined as

Spraippf @) = Poy gy f() + Qpy o f (1), t>0. (4.3.3)

In particular, if p; = ¢; = 1, p» = 00, and ¢(x) = x, we recover the Calderén operator [23]

Strwaf(t) = Sf(t) = Pf(t) +Qf(t),  t>0,

where P and () are respectively the Hardy operator and its adjoint (see (2.2.22) and (2.2.23)).
Besides, if p; = %, @1 =1land ps = = 5, 0 < 0 < 1, we recover the generalized Hardy operator
Py and its adjoint @ 1 seen in (2.2.28) and (2.2.29).

We observe that, in general,

Spranef (1 (j F (st

* ds
f @ (1 +1logs) fst) ——, p2 <,
) +¢ s " (4.3.4)
J‘oogo(1+log3) ; ds
1

1+logs f(s)?, P2 = %
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Lemma 4.3.7. Let 1 < py,ps < 0 and 0 < g < 1. For every positive simple function f with
bounded support,

Spr 102, (F) 7 (8) = Spr 190 (7)) < 2571571 e (F)E),  VE>0.
Proof. By (4.3.4), clearly Sy, 1p,,,(f*) is a decreasing function. Then, it holds that

SP1717P27<P(f*)**(t> =P (Sp1717p27s0(f*)) (t), vt >0,
so that by Fubini’s theorem we deduce that

P (Sp1,17p2,¢(f*)) (t) = Sp1,1,p2,(p(f**>(t)7 vt > 0.

-Q\»—‘

Now consider ag,...,a, > 0 and the sets with finite measure F} € Fy < --- < F,,, € R",
so that
f= Z a; X and (then) fr= Z a;(xr)" = Z ajX[o,|E;)- (4.3.5)
j=1 j=1 j=1

Hence, since for every simple function yr (F' < R™) with finite measure we have

Spitpe(XF)™)(E) < 2q_1571 (X)), vt >0,

and since by means of the reverse Minkowski’s inequality (0 < ¢ < 1) we also have that for
every nonnegative measurable functions fi, fa,

(fl + f2)( ) = P17 7;[,2750]01(75) + Sm

a

»-Q\»—t

’p2,@f2(t), YVt > 0,

71

Q=

l
q
we obtain that for every t > 0,

m

St a0 = D 43S 1 (0) ™)) < 2570 Y a8 14, (O, )*)(0)

Jj=1 Jj=1

4.3.3 Weighted restricted weak-type estimates and decreasing re-
arrangement estimates

Let us first see an easy proposition which helps to motivate what follows:
Proposition 4.3.8. Let T' be an operator satisfying that
T : AV (w) — AV (w), Yw e B, (4.3.6)

with constant less than or equal to ¢(||w| gr). Then, for every locally integrable function f

and for every t > 0,
o 1 o g 05
40 = o) (5 [ 7o

(Tf)*(t) < ()P q)q. (4.3.7)
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Proof. The hypothesis implies that, for every w € BF,
- 1
(T )W) < e(llwl pr) U SQIW()‘f(S»qu) ,  Vt>0.
0
Hence, since
Apx (s)

WAL (5)) = W(hps(s)) = j

w(r)dr = f w(r)dr = Ay (s), Vs >0,
0 {f*(r)>s}

in particular, taking w = x[o4 € Bf* (so that [w[|pr = 1) we get Nfx = Apry,, and

<Tf>*<t><@(fsquf*xm,txs)qu)é:wl) (3 [ reer ) i > 0,

0
where in the last equality we have used Fubini’s theorem. ]

ds
sl—a

Remark 4.3.9. (i) If an operator T satisfies (4.3.7), we have that (4.3.6) holds with con-
stant less than or equal to Cp(1) |wllgr and hence we can conclude that, under the
hypothesis of the previous theorem,

71 v uysio oy < Cmim (w0 (Il )

for some positive constant C independent of w.

(1) We also observe that the operator T plays no role and hence the same can be formulated
for couples of functions (f,g) in the following sense:

190 ascoquy < ¢ (Il ) 1 laray s Ywe BE,

implies that

ds
q

sl=

1
> , vVt > 0.

Taking into account Theorem 4.2.2, our next goal is to include the hypothesis w € B in
its statement.

70 <o) (5 [ o

Theorem 4.3.10. Given 0 < g < 1. Let T be a sublinear operator and let ¢ be an admissible
function (see Definition 4.5.1). Then,

T : A" (w) — AV (w), YwBf n B, (4.3.8)

with constant less than or equal to Cl|w||gr @(||wl|px ) if and only if for every locally integrable
function f and for every t > 0,

P = (tl j sy );+ f Tolltlogd) gds g

TH*(t) <
(TH*®) = si—a 1+log$ s

Q=
Q=
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Proof. We will first prove that if f = xr with F' € R" a measurable set of finite measure,
then

(TXF)*(t) $ SLLOOW((XF)*)(t)7 Yt > 0. (4310)

Indeed, using our hypothesis with w(t) = 7" 0 < v < 1, due to (2.2.40) and (2.2.41),
we get that

a0 <o) (B e (13.11)

Taking the infimum in ~ € (0, 1], and using Lemma 4.3.5 we obtain that

F F
(Txr)* () < <u> X(1Fle0) () + ¢ (1 + log %) X, F)(t), vt > 0,

t
and by Lemma 4.3.3, for every ¢t > 0,

ey < [ourds [ (1) e (1 ion?) o

0 t

= 51’17oo,<p((XF)*)(t)7

so that (4.3.10) holds.

Now, the proof of (4.3.9) for an arbitrary locally integrable function f follows the same
lines as the proof of |23, Ch. 3 - Theorem 4.7|. For the sake of completeness, we include
the computations for f being a positive simple function with bounded support adapted to
our case. Consider f as in (4.3.5). Using what we have already proved for characteristic
functions, together with the sublinearity of T', we get that for every t > 0,

(T f)y=*( Za] Z (511,00, (( ((xr)™ )™ (1)

J=1

(51 1o, (Z a;X[o,|Fy |)>> (1) = S11,0m,0(f7)(2).

Further, since Sy 100, (f*)**

(4.3.12)

S11 oo, (f**) (see Lemma 4.3.7) we finally obtain that
(Tf)™(t) <
Fix t > 0 and consider the set £ = {z € R" : f(x) > f*(¢)}. Then, define for z € R",
g(x) = (f(@) = f*®)xe(x)  and  h(z) = f*{O)xe() + f(@)xp(z),  (4.3.14)
so we have that
gr(r)=(f*(r) = f*@®)"  and  A*(r) =min{f*(r), f* (&)},  Vr>0.

Since w = 1 belong to Bf n B%, the corresponding unweighted weak-type inequality leads

to
o () < ([ o ) < (e ) <

oo (S)NE),  VE>0. (4.3.13)

1
17

Q=

(f9)(t).  (4.3.15)

Q=
Q=
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On the other hand, using (4.3.13) we get

(Th)™ () < S1 150, (B7)(t) = P11 (R*)(t) + Qoo (W) () P11 (f*)(8) + Qoo (W7 (1),
where the last estimate holds because h*(r) = f*(t) for every r € [0,f] and f*(t) <
P11 (f*)(t). Besides, for simplicity on the notation, we consider the auxiliary function

cﬁg ) =& @) for x> 1. By Fubini’s theorem,
Qusth)0) = [ 5 (1+1082) 1) Z = o) [ (75 (1+1082) & ) ar
+fo (F <1+log ) i5> ) dr = X1 + Lo,

r

-
-

1
q

Q
-Q\
Q=
Q|

(4.3.16)

On the one hand, the first integral does not depend on ¢. Indeed, by the change of variable
Yy= S/tv

L~ s\ ds « dy
L= S(1+log2) S )dr=(]| $(1+logy) =) = -
1 fo (L go( + ogt> 82>dr (L ¢ (1+ logy) yQ) Clp) <

On the other hand, given any A > 1 we observe that

ngf(fgo(ulog )is)f*(r)drzﬁ/\t<f:o (1+1og )d—z)f(r)dr
([ e resd) L) rear

The first part can be handled as we did for /;. Indeed, using that f* is decreasing we get

ft (F (1+log )is) £*(r) dr f*T(t)ft (f (1+logy);l )dr C(P)Af* (1),

For the second part, by Lemma 4.3.4 we know that there exists some A\ = A(¢) > 1 such

that " y )
J @(1+10g§>—8%—@<1+10gf>.
t) s> r t

r

N

Therefore, with such A,

f: (wa@ﬂog )i5>f*(r>d7"Sﬁﬂ“k’g%)ﬁ(”@

T A r
In conclusion, putting I; and I5 together we obtain that

QuiW)(B) < F0) + | F(1+10g7) 1) == = F1(1) + Quos ().
t
Thus, bringing all together, using again that f*(¢t) < P: 1(f*)(¢), and since t > 0 is

q

Q|

arbitrary we obtain that

(Tf)*(t) < (Tg)* (%) + (Th)** (g) < St 1)), vt > 0. (4.3.17)

Q=

1
q’
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Conversely, suppose that

(TF)*(#) £ 51100, (F) () = P11 (f*) () + Quop(f7)(1), V>0,

Q=
Q=

1
757

and take w € Bff n B%. Then, since A" (w) < A'(w) continuously, if we set w = ¢W9 lw
we have that

1
q
Ltliec(w)A)Ll’ao('J)) + ’lQOO,¢"LéCC(w)_>L1,w(w) . (4.3.18)

IT sy ooy < [[Prs

The operators P1 ; and Qs , have the form
L

a0 Q0

Pévlf(t)zf It ) f(s)ds  and Qo f(t) = f ko(t, s)f(s)ds, Vit >0,

0 0

where the kernels are

1 1 1 s\ 1 s
ki(t,s) = t_qX[O’t)(s)sl_— and ko(t,s) = (1 + log ;) © (1 + log Z) Xt,00) (),

a s
for every t,s > 0. So, using [54, Theorem 3.3], the norm in (4.3.18) can be estimated by
1
Aj + Ag,, where

Ay, = sup (sup (
t>0 \ >0

with W, = W and Wy =W.
Now note that if 0 < r < ¢t then we have

T 1 T
J ku(t, s)ds = - (f>q and f ko (t, 5) ds = 0,

0 q \t 0

JT kit s)ds> m(r)—l) Wi(t), i=1,2,

0

while if r > ¢, by Lemma 4.3.3, we obtain

T 1 T
f ki(t,s)ds = -  and f ko(t, ) ds < ¢ (1 + log f) .
0 q t

As a consequence we have that

t>0 \O0<r<t

Auy > [sup (sup (5) W ) wio| < e

and

t
Ap, <sup <supg0 (1 +10g£> Wi )) :

t>0 r>t

Further, if © = t/r < 1, then by Lemma 2.2.21,
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so that,

1 ejjw —z/(el|w
Ay, < sup (w (1 log _> el ||B§O>> < sup (ipa)e~™/Wa2)
L

n<l r>1

Finally, by Lemma 4.3.6 and the estimate (4.3.2), we obtain that

Ap, S pleflwllpy) < e(lwlips),

and, since [|w|[gr , ¢([|w] gz ) = 1, we arrive to the desired result

TN avaquwyarooqwy = lwllpr e([wllps)-
O

Remark 4.3.11. Observe that the sublinearity of T' is just used in (4.3.12), so if we have
(4.3.9) for T being a general operator, we will also obtain the boundedness in (4.3.8).

As a first consequence of Theorem 4.3.10, we have the following result.

Corollary 4.3.12. Given 0 < q < 1. Let T be a sublinear operator and let ¢ be an admissible
function. Then, for some 0 < p < 0,

T : AP (w) — AP*(w), Vwe Bl n BY, (4.3.19)

with constant less than or equal to C ||w|| gr ¢(||w]| gz ) if and only if for every locally integrable
function f and for every t > 0, (4.3.9) holds.

Proof. Recall that AP4(w) = AY(%) and AP®(w) = AY((1/p)w), for @ = WP~ Lw (see
(2.1.2)). Thus, since [[w| gz = [|[w]lpr and [lw||gs ~ [[@] gz (see Lemma 2.2.19) the result
follows by means of Theorem 4.3.10. [

Remark 4.3.13. Observe that by virtue of Corollary 4.5.12, if we have for some 0 < p < o
that (4.3.19) holds then, indeed, it does also for every p > 0.

Besides, from Theorem 4.2.2 and Corollary 4.3.12, we deduce the next result.

Corollary 4.3.14. Let T be a sublinear operator satisfying that for some 1 < pg < 0,
T : [Pt (v) — LPoP(v), Yo e Ay,
with constant less than or equal to go(HUHAPO), where ¢ is an admissible function.
(i) If po = 1, for every locally integrable function f,

(TF)*(t) < S11,0e(fF)(), vt > 0.

(11) If po > 1, for every 0 < q <1 and every locally integrable function f,

—_

(Tf) () s

,00,0q (f*)<t); VYt > 07

q
with ¢,(r) = max (1,9361_%) ) (:E%>, x> 1.
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Finally, to end this section, we want to point out that in order to prove that (4.3.8)
implies (4.3.9) we just have used power weights (see (4.3.11) and (4.3.15)). Hence, actually
we only need to assume that 7' : AY(w;) — AY*(w;) and

ITX 6l 1m0y € 0l (sl g ) WHAIED, VB < RY,

where w,(t) = ¢771, for 0 < v < 1. Further, we observe that for these weights,

1 7
AL — [ Lapn . = _- W. =
(w1) = LM(R™), I ||A1v00(w7) ~ I ||L%’w(R”) ) “{(t) ~

and C ||w7||B{g e(llwy [l gz ) = Co(y™1). Thus, Theorem 4.3.10 can be written in the following
equivalent way.

Theorem 4.3.15. Given 0 < g < 1. Let T be a sublinear operator and let ¢ be an admissible
function. Then, T : LY(R™) — LY*(R") and for every 1 < p < o0,

1 n
HTXEHLp,oc(Rn) < C(p (p) ’E|p7 VE <R ,

with C independent of p if and only if for every locally integrable function f and everyt > 0,
(4.3.9) holds.

Furthermore, as a consequence of Theorem 4.3.15, we have the following result.

Corollary 4.3.16. Given 0 < ¢ < 1 and a sublinear operator T. If T : L*4(R") — L“*(R")
and there exists pg > 1 such that for some admissible function @ and for every measurable
set E < R™,

ITX 6l ey < 9 (o, ) (EYS, Vo€ Ay, (4.3.20)
then, for every locally integrable function f and for everyt > 0, (4.3.9) holds.

Proof. Setting w = 1, actually the proof of Theorem 4.2.2 can be adapted to consider (4.3.20)
instead of (4.2.1) as hypothesis. In fact, taking in (4.2.2) the weight v = (R'f)!"" Rxr € A,,,
where

/ ZOO MFf(x)
}% = )
f@) = UM oo geny)*

and keeping track of the constants involved, it can be seen that, for every 1 < p < o0,

reR",

po—1
o y , )
ITXE ] oony < C 1M 2 oy # (IM IS ey [M o) BV, VE < R,

with C independent of p.
Now, easy computations show that ||MHL,,,OO(Rn)_)Lp,OO(Rn) < C,p/, so that, for every p > 2,

1 n
ITXEl ppomey < ¢ (P) |ElP,  VE < R™ (4.3.21)

Besides, from interpolation between the unweighted restricted weak-type (1,1) and (2,2)
estimates of T" for characteristic functions (see, for instance, [88, 174]) we obtain that (4.3.21)
also holds for 1 < p < 2, and the desired result follows directly from Theorem 4.3.15. ]
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4.3.4 Weighted limited restricted weak-type estimates and decreas-
ing rearrangement estimates

The next step is to consider the nonempty subclass B n B, < B ~ B% (for p; < py) so

that we obtain the following generalization of Theoren:14.3.10.

Theorem 4.3.17. Given 0 < g < 1 and 1 < p; < py < 0. Let T be a sublinear operator
and let ¢ be an admissible function (see Definition 4.3.1). If

T : AV (w) — AV (w), Yw e B N B

p2?

(4.3.22)

1
with constant less than or equal to C ||w||BR © (||w||B;<2> then, for every locally integrable

Pl
function f and every t > 0,

(T () S Sou 14y o)1)

1
aP

1 [~ d
1J @(Hlog;)f*(S)Ti, p2 < 0,

1 t ds % tr2 Jt s P2
= [ — *l)\ —— +
(tpql L /() sl_pql) © v (1 + log f) «, \ ds
——f (5) —, P2 = 0.
¢ (1 + log ;) s
(4.3.23)

Conversely, suppose that (T f)*(t) < Se 1, (f*)(t), for every t > 0. Then

2|3
Qe

1
||w||f§11i [wll sz, e(l[wllpz), P2 <0,
T Ava () At0 () S e
lwllgr e(lwlss), ps = 0

PL

Proof. First, assume that (4.3.22) holds. Note that by (2.2.40) and (2.2.41), w(t) = t771

belongs to B n By, for every v € (p% p—] Hence, using our hypothesis, we obtain that for
p1

every measurable set F,

morose([-a] ) (F) - [so (B (7). wso
(4.3.24)

with 4 = v — p%' Hence, taking the infimum in 7 € < , p% — 17—2] and using Lemma 4.3.5 we
get that

(Txe)" (1) < (@) g X(Bl0) (1) + ¢ <1 + log u) (@> Xo,e)(t), V>0,

t t
so that by Lemma 4.3.3,

(Txe)" () < Spiapmexe)* (),  VE>0.
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The desired result for positive simple functions with bounded support follows the same
lines as the proof of the necessity of Theorem 4.3.10 with few modifications. First of all, we
consider a positive simple function like the one in (4.3.5). Hence, as in (4.3.12), using what
we have already proved for characteristic functions together with the sublinearity of 1" and
Lemma 4.3.7, we obtain that

(TF)™(t) < Su 1, (f)D), >0, (4.3.25)

1
So fix t > 0 and take functions g and h from f defined as in (4.3.14). Since the weight

1_
w(r) =re "isin Bf n Bg,, the corresponding weighted weak-type inequality leads to
P1

()<
<mf i ) = P (/)(1).

On the other hand, using (4.3.25) for h instead of f we get
HR*)(t) = Pn

P2 21 1 (R7)(8) + Qo (W) (1)
( () + Qpy o (M7)(1),

where the last estimate holds because h*(r) = f*(t) for every r € [0,t] and due to the
estimate f*(t) < P 1(f*)(t). Besides, arguing as we did to bound (4.3.16), but now with

the auxiliary function

[ ror d—)

(4.3.26)

(Th)™(t ) S

’E‘Q
m\»-
Q=

»-Q\»—t

we deduce that
Qpao(P*) () S f*(t) + Qoo (f)(t) < Pa

so putting all together, and since ¢ > 0 is arbitrary, the result follows as in (4.3.17).

Conversely, assume that (Tf)*(t) < Sq 1 p2¢(f*)(t), for every t > 0, and take w €
Bf n Bj,. Hence, arguing as in the proof of the sufficiency of Theorem 4.3.10, we have that
p1

Hsz wHLl —LL%®(w Aq +Ak2,

1
q
ITssatwrnrinter < [Poal, o) s

where @ = ¢W % 'w and

Ay, = sup (sup (J k;(t, s)ds> VVi(r)_l) Wi(t), i=1,2,
t>0 r>0

0
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with Wy = W, Wy = W and
o (1+1log2) /s\m
1 UL 8) (595 )

1 t
Fa(t,s) = — . haltos) =
69) = exonl®) o RS =9 1)

=0
S(l + log %) X[t,oo)(s)a D2 )

for every t,s > 0.
First suppose that ps < co. Hence, if 0 < r < t then we have

f ki(t,s)ds = b <C>H and J ko(t,s)ds = 0,
0 q \t 0
while if r > ¢, by Lemma 4.3.3, we obtain

JT ki(t,s)ds = % and JT ko(t,s)ds < ¢ (1 + log %) <%>P12 :

0

As a consequence we have that

1 q a
Ay, ~ [sup < sup (—) " W(T’)_l) W(t)] < ”ngllia

t>0 Oo<r<t

and

ey < sup (supe (14106 ) (5)7 ).

Hence, if p = t/r < 1, then by Lemma 2.2.32,

1
dpaflwll 5%
Bpy |

(r)pé Wi(t) 2 W(pr)

t) W)W

t < g

Therefore

1\ e
A, < [Jwl|pz sup (gp (1 + log —) NMH lB?fg) < |lwl gz sup (gp(aj)e el le’v“z) .
2 n<l M 2 2>1
Finally, by Lemma 4.3.6 and the inequality (4.3.2) we obtain that
Ap, < lwllgg, e (4p2llwllsg,) < lwllsg e (lwllg ),

and, since ||lw|zr ||w||B;;2<p( ||U)HB;<2 ) =1, we arrive to the desired result
1

1
1Tl pvaw)nr o) S lwll5a 1wllsg, e (llwllgs ).

p1

If po = o0, the proof is a combination of the proof for the case ps < oo and the proof of
the sufficiency in Theorem 4.3.10. [
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Remark 4.3.18. Observe that the sublinearity of T is just used in (4.3.25), so if we have
(4.3.23) for T being a general operator, we will also obtain the boundedness in (4.3.22).

As a first consequence, similar as for Corollary 4.3.12, but now making use of Lemma
2.2.29, we have the following result.

Corollary 4.3.19. Given 0 < g <1 and 1 < p; < pa < 0. Let T be a sublinear operator
and let ¢ be an admissible function. If for every 0 < p < o0,

T : AP (w) — AP*(w), Ywe BY n B}y, (4.3.27)
p1 P

1

with constant less than or equal to C Hw||BR go(HwHB;2 ), then, for every locally integrable
:D1 2

function f and every t > 0,

(Z) pr2 < O,
(TF)* (1) < Son s

(i) while if py = o0, (Tf)*(t) < Sex 1 50, (F*)(2).
Conversely, suppose that (T f)*(t) < Sew 1, (f*)(t), for every t > 0. Then,

il
q

-Q\»—‘

(Z) pr2 < O,

v (v 0<p<l
; do(),  0<pen
[T\ spaqwysarow) < lwllgn Eollwllps, ), Ep(z) =
(w) (w) BI; 2 b P x%H(p (x%-&-l) l<p<om,

=[S

1
(1) while if py = 0, |T|araqw)—arew) < [lwllge e(llwllss)-
iy
Remark 4.3.20. Observe that by virtue of Corollary 4.5.19, if we have for some 0 < p < o
that (4.3.27) holds then, indeed, it does also for every p > 0.

Besides, from Theorems 4.2.5 and 4.3.17, Remark 4.2.6 and observing that, given an

admissible function ¢, the function @ as in (4.2.10) is also an admissible function, we deduce
the next result.

Corollary 4.3.21. Let T be a sublinear operator such that, for some 1 < py < o© and
O<a<l,

T : LPot (u®) — L% (u®), Vu € Ay,

with constant less than or equal to @(||ully,), where o is an admissible function. Then, for
every locally integrable function f andt > 0,

(TF)* () < Sy, 2o 5(7)(2)
_f ) ds +%f¢(1+log§)f*(s>%’

tpo s Po t Po S Po

with
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Finally, to end this section, we want to point out that in order to prove that (4.3.22)
implies (4.3.23) we just have used power weights (see (4.3.24) and (4.3.26)). Hence, similar
as we did in Theorem 4.3.15, we have that Theorem 4.3.17 can be written in the following
equivalent way.

Theorem 4.3.22. Given 0 < g < 1 and 1 < p; < py < 0. Let T be a sublinear operator
and let ¢ be an admissible function. If T : LP*»9(R") — LPY*(R™) and for every py < p < pa,

ITxll <¢ [1 1]_1 Bl», VYEcR"
X p,00 n)y X (p - — - p’ — 5
Fllzre(re) b D2

with C' independent of p then, for every locally integrable function f and for every t > 0,
(4.3.23) holds. Conversely, assume that we have (4.3.23). Then, for every p; < p < pa,

1 1717t
Ly P— CS@([E_p_z] )

with C independent of p and where, for x > 1,

~ _ Z'QD(CE), P2 < 0,
o= { S

Remark 4.3.23. Ifp>1 and 0 < g < 1, then that T : LP%(R") — L»*(R™) is equivalent to
T : LPY(R™) — L»®(R™) (see Remark 2.1.3). Therefore, ifpl > 1 and we have (4.3.22) for
some 0 < g < 1, taking power weights w,(t) = 771, for <7< 1, due to Theorem 4.53.22
we also have it for ¢ = 1 (although for a different constant) This is interesting by itself

since A4 (w) may not be a Banach function space for every w € B n By, and we can not
P1
argue as in Proposition 2.1.2.

It is known that if for 1 < p; < py < o we have both T : LP*(R") — LP1*(R") and
T : LP»(R") — LP>*(R") then (see [23, Ch. 4 - Theorem 4.11]) we get that for every locally
integrable function f and every t > 0,

(T 0) S Sy ()0 = 1 | ) S |-
1
Now observe that we have obtained weaker estimates in Theorem 4.3.22 since we have allowed
p to be p1 but not py (just as close as we want). Thus, it would be natural to consider the case
where we allow p to be ps (for ps < o) and not p;. Indeed, this was exactly the motivation
and what it was studied in |7].

This kind of results belong to the Yano’s and Zygmund extrapolation theory (see |9, 11,
42, 43, 182, 183]). However, we want to emphasize here that, contrary to what happens
in the proof of Yano’s and Zygmund’s results, where the function f is decomposed on an
infinite sum of functions f,, we have used a simple proof that follows the ideas of [23, Ch. 3
- Theorem 4.7|, where the function f is decomposed as the sum of just two functions.
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Chapter 5

Boundedness of operators on AP(w)

We focus this chapter to apply the results obtained in Chapter 4 to some important op-
erators in Harmonic Analysis, so that we will obtain interesting boundedness on the setting
of the classical Lorentz spaces together with unknown estimates on the decreasing rearrange-
ment of such operators. In particular, we will study operators that satisfy a Fefferman-Stein’s
inequality (see Section 5.1), Fourier multipliers (see Section 5.2) such as Fourier multipliers
of Hérmander type (see Section 5.2.1), Fourier multipliers that satisfy a Fefferman-Stein’s
type inequality (see Section 5.2.2) and radial Fourier multipliers with a derivative condition
(see Section 5.2.3), rough singular integrals (see Section 5.3), intrinsic square functions (see
Section 5.4), sparse operators (see Section 5.5), the Assani operator (see Section 5.6) and
the Bochner-Riesz operator (see Section 5.7).

Some of the results of this chapter are included in [6, 15, 16].

5.1 Fefferman-Stein’s inequality
An operator T is said to satisfy a Fefferman-Stein’s inequality [94] if
J u(z)der < J|f(:1:)\]\/[u(:c)d:c, for every weight w. (5.1.1)
{ITf(x)[>y}
Clearly, for an operator satisfying (5.1.1) we have that

T:L'(u) — LY (u), Yu e Ay,

with constant less than or equal to C'|[ul| , (that is, with a linear norm constant).
This is the case (among many others operators) of the area function [65] defined by

1
2

s = ([ WadrpowE) . eer
where

0 0 0 0 cpt
Yt <ay17 2w’ By &t) an () (2 \yP)nTH’ (y,t) e R}

As a consequence of Theorem 4.2.2 and Corollary 4.3.14, we get the following result.

91
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Corollary 5.1.1. Let T be an operator satisfying a Fefferman-Stein’s inequality. For every
0<p< oo,
T : AP w) — AP*(w), Vwe Bl' n BY,

with constant less than or equal to C ||lw| gr ||w| gz . Further, if T is sublinear, for every
P 0
locally integrable function f and for every t > 0,

wrrw sy [ roas [ oS

5.2 Fourier multipliers

Recall that given m € L*(R™), then T,, is a Fourier multiplier if, for every Schwartz function
f (that is, f € S(R")),

T f(€) =m(©)f(€), €eR",

and m is called a multiplier (see Section 3.1).

5.2.1 Fourier multipliers of Hormander type

Given n > 1, let us use the standard notation |a| = a3 + -+ + «a,, for a multi-index o =
(aq,...,04) € (NuU{0})" and if z € R",

A
oxr) — o0x8  Oxon’

Given k € N such that k > 2,1 < s < 2 and m : R — R be a bounded function in

C*(R™\{0}), we say that m satisfies the Hormander condition with respect to s and k, and
denote it by m € HC(s, k), if
a «
(&) m(x)

sup RloI=% (J
R>0 R<|z|<2R

Then, the Fourier multipliers operators of Hormander type are those defined by

1
s 1
dx) < oo, la| < k.

T.f(€) =m()f(€), EeRm,

where m € HC(s, k). The classical Hormander theorem (see for example [99, Theorem 6.2.7])
says that when s = 2, T, is bounded in LP(R") for 1 < p < oo and satisfies the unweighted
weak-type (1, 1) inequality whenever m € HC(2, k). The generalization of the condition to
1 < s < 2 was introduced in [37], where the authors see that for a given m € HC(s, k) need
k> 2. 1In [108, 121, 177], the authors introduce power weights to the problem, and later in
[122, Theorem 1], it was proved for A, weights.

Proposition 5.2.1 ([122]). Let 1 <5 <2, 2 <k <mn, ke N, and m € HC(s,k). Then,
there exists a positive nondecreasing function ¢ on [1,00) such that
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(i) . A
T, : L' <vﬁ> — LM (’W> ; Vv e Ay,
with constant less than or equal to ¢ (HUHZ/:L>;

(i1) and if k <mn,
T, : L (v) > L¥(v),  Yve A,

with constant less than or equal to ¢ ([|v]] ,)-

We should mention that although the boundedness results of Proposition 5.2.1 are known,
the behaviour of the function ¢ (that is nondecreasing) has not been written explicitly
anywhere, and since we want to make use of Theorem 4.2.5, we need such behaviour. That
is why we will dedicate what follows to keep track of the constants of the weights involved
on the previous results to find the desired behaviour of .

With that aim in mind, following the ideas of [109, 122|, we will work with a truncation
Ky of the kernel K, where K = m. To do so, we take ¢ € C*(R") to be a nonnegative
function supported in {3 < |z| < 2} and we select, for each j € Z, ¢;(-) = ¢(277 ), that

satisfy
Z ;i(z) = Z 0(279z) =1, Vo # 0.
JjeZ JjeZ
Now, for each j € Z, set
mj(x) = m(z)p;(r),  xeR"

so that my; is supported in {27! < |z| < 271} and
m(zx) = ij(x), Vo # 0.
jeZ
Besides, define for all j € Z, k; = Tvnj and let, for any N € N and every z € R”,

N

my(z) = ) my(x) and Ky(z) = (m™)Y(z) = Z k().

j=—N
Hence, it follows that |[m" || < |lm||,, and that
m™ (z) — m(x), Va # 0.

At this point, we present some technical lemmas that will help us to pursue in our
goal, where we have been keeping track of their respectively constants involved. First, as a
consequence of [122, Lemma 1] it can be derived the following estimate for weights in A;.

Lemma 5.2.2. Let 1 <s<2, 2 <k<n,keN, andme HC(s,k). Let Q be a cube and
take yg and Dg to be its center an diameter respectively. Then, for everyy € Q) and N € N,

Ch.sk ”UHAl (
kO([|v] 4,) —n

ess infv(a:)) , Yve A

f Kn(z —y) — Knle - yo)lo(e) de <
‘%—yQ|>2DQ :EEQ

uniformly on N, where ® is a decreasing function on [1,00) defined by

n+sk n 1 2n n
0] = mi — (1 — > 1.
(z) mm( o k[ +2”“x]’2k—1)>k’ v
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Further, we will also need two estimates involving the Fefferman-Stein mazimal operator
M# (also known as sharp mazimal operator) defined for every f e Li _(R") as

ME (@) —z‘;s\@yﬂf (TMQWZ)

where the supremum is taken over all cubes () with sides parallel to the axes containing the
point = (see |88, 158]).
The first estimate is a consequence of [129, Theorem 1.1].

dy,  zeR", (5.2.1)

Lemma 5.2.3. For every f € L;, (R"),
1M fll sy < Collolgy (M7 oy e o A

On the other side, following the proof of [122, Estimate (3.1)] we also have the next
result.

Lemma 5.2.4. Let 1 < s <2, 2 <k <n,keN, andme HC(s, k). Take } <1 <
min (k 175)‘ Then, for every f € L}, (R™) and every N € N,

On,s,k:
(s=r)(rk—n)3n—r(k—-1)) -

M#(Ky = f)(z) <

uniformly on N and where M, f = M(|f]")+.
At this point, we are now ready to settle our main goal in this section:

Proof of Proposition 5.2.1. First, to prove (i) (and, as we will see below, also (ii)) we just

need to see that
T, : L* (v) — L* (v), Vo e Az, (5.2.2)

with constant less than or equal to ¥ (HUH A%), with W being a nonincreasing function

n [1,00), since then the proof will follow by means of standard techniques based on the
Calderén-Zygmund decomposition of a function f € L'(R™) n L (v*/™), together with the fact

that v € A; is doubling with constant controlled by C HUHZ/1 " and, as well, Lemma 5.2.2
(see [122, pp. 354-356]).
So let us see (5.2.2). Take v € A2 and define

D,
ntsk o % <HU”AI)
2k T2k —1’ k ’

. 3
r=min | —
27

with @2 being a decreasing function on [1,00) as in (2.2.2). Hence,

% <7 < min (kil’é) and  veAs with HUHA% s HUHA%'
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Thus, due to Lemmas 5.2.3 and 5.2.4,

1

KN * fllp2w) < HU”A% [M*(Ky =+ )] o) < k=) HUHA%
1

1 z 4
< k=) HUHA% 1/l 2y = k=) HUHA% 11 220y »

le‘

L2(v)

3—
2

uniformly on N. Therefore, arguing as in [122, Remark 2|, we obtain (5.2.2) by taking

$4

Now, in order to prove (ii) we will make use of an interpolation argument. First, we shall
note that by means of extrapolation (see for instance [89, Theorem 7.1|) for every < p < 2,

T o LP (v) — LP (v), VYo e Apk, (5.2.3)

with constant less than or equal to

Ch
vy HUHAﬂ = Cn ¥ WHUHAﬂ :

Hence, assume that k < n and fix 1 < py < 7. Let m be the complex conjugate of m, so

that fn = Ty is the adjoint operator of T}, and m satisfies the same estimates as m. Then,
since n < 2k, we have that pj > 7 and by duality together with (5.2.3),

||TmeLp0(Rn) = sup f(@)Tmg(z) dr < HfHLPo(R”) .
|9\Lp6<Rn)<1 R

Further, take v € A; and set

: 1 n(2 — po) )
t=min | 1+ , > 1,
( 20+ [0l 4, " 2(n — Kpo)

so that v* € Ay with [[o']|,, < [Jvll,, (see (2.2.4)). Take § = ¢, vo = 1, v; = v and

n npy
— <p = < 2
AR - t(n — kpo)

Hence, taking into account (5.2.3),

1 4
ol o < B (10l ) % i Il

n

1
S (t — 1)8(r1k —n)? HUHil = O([|v]] 4,),

with

20 9% 2%k —1’ k

, <3 n+sk  2n ”‘I’if(H"UHAl))
r1 = min 5 )
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so that ® is a nondecreasing function on [1,00). Therefore, by interpolation with change of
measure (see, for instance, [23, Theorem 3.6])

T, : L% (v) — L% (v)

with constant less than or equal to

1
t

Ce(|Jvll4,)* < max (1, 2(||v]4,)) -
O

Therefore, as a consequence of Theorem 4.2.5, together with Proposition 5.2.1, we get
the following result.

Corollary 5.2.5. Let 1 < s <2, 2 <k <n, ke N, and m € HC(s,k). For every
0<p< oo,

T, : AP (w) — AP2(w),  Vwe (Bﬁ,jk A B;';) o (Bf A B* . ) .

(n—k)p

5.2.2 Fourier multipliers with a Fefferman-Stein’s type inequality

It has been of great interest to identify, when possible, for which maximal operators M the
operator Ty, satisfies a Fefferman-Stein’s type inequality in L*(R™) of the form

J T f (2)Pu(z) doe < J |f(2)|* Mu(z) dz, for every weight u,

n

(see for instance |24, 66, 77, 78, 88, 173]). In particular, we present the following interesting
case:

Proposition 5.2.6 ([24]). If m : R — R is a bounded function which is uniformly of bounded

variation on dyadic intervals; that is

sup f im/(€)] d§ < oo, (5.2.4)
R>0 JR<|¢|<2R

then, for every locally integrable function f,

J T f () ?u(x J |f(z) M u(z) do for every weight u,

where M7™ = M o---o M is the 7-fold composition of M with itself.
\f_/
7

Hence, if m : R — R is a bounded function satisfying (5.2.4), then
T : L*'(u) — L**(u), Yu e Ay,

with constant less than or equal to C HuHZ1 and, as a consequence of Theorem 4.2.5, Re-
mark 4.2.6 and Corollary 4.3.21, we obtain the following result.
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Corollary 5.2.7. Let m : R — R be a bounded function satisfying (5.2.4). For every
0<p< oo,

T, : AP (w) — APZ(w), Yw e BgmB:O,
1/2

R
BP
2

with constant less than or equal to C'||wl| ||w||;,§<O Further, for every locally integrable

function f and every t > 0,
ds
S

G 05 [ 05+ [T (1r10e2) 560

In this context of Fourier multipliers, let us now consider, for each vy,7v; € R, the class
C(70,71) of functions m : R — R for which

supp(m) < {¢ : [§ = 1}, sup [EM m(&)] < oo,
€
and
sup sup R“J im/(€)] d§ < oo,
R0>1 [C[R2R], {(I)=R—70+1 +r

where I denotes any interval of R.

Proposition 5.2.8 ([24]). Let 79,71 € R such that 9 = 27y and 9 -71 > 0 or v = 75 = 0.
If m € C(y0,71) then, for every locally integrable function f,

JR T f () Pu(z) do < CL |f(z)]2M° ([M5 (u%)]?&) (x)dx, for every weight u,

where we are assuming that % =1 forvyy=v =0.

Therefore, under the hypothesis of the previous result,
21 (21 2,00 (21
T, : L~ (u“/0>—>L’ <uw0>, Yu e Ay,

with constant less than or equal to

6 109y
Gy (70102%) lull &’ 5 7% > 27,7 71 >0,

Cs HuH,lqll ) Yo = 271,

so that as a consequence of Theorem 4.2.5, Remark 4.2.6 and Corollary 4.3.21, we have the
following results.

Corollary 5.2.9. Let 79,71 € R such that o > 2v1 and vy - 71 > 0, and let m € C(7o,71)-
For every 0 < p < o0,

T, - AP (w) — AP*(w), Yw e Bg N B* 5,

(vo—27v1)p
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with constant less than or equal to

10

; ||w||g* oy 0<p<l,
o Yo ||w||% Go-2p
Yo —2m BgR olet)
[wl| g , p>1
279
(vo—271)p

Further, for every locally integrable function f and every t > 0,
* 5\ 10 ds
(T J f*(s pra ey J <1+10g¥> f(8) =5
t2 t 270 t S 27
Corollary 5.2.10. Let v € R and m € C(2v,). For every 0 < p < o0,
T, s AP (w) — APP(w), Yw e Bg N BX,

1/2 ’

with constant less than or equal to C |lw|| 4z ]wH . Further, for every locally integrable

function f and every t > 0,

(T Jf ;+J <1+log;>1of*(s)%.

Finally, given a € R, the Sobolev space L?(R") is defined as the set of measurable functions
f such that (1 + |- |>)2f € L?>(R™) and, in that case, its norm is defined by

Il zggeny = [+ 1+ )2 F]

L2(R")

Proposition 5.2.11 ([88]). Given a > % and m € LZ(R"), then

J T f(z)Pu(z) do < CJ |f(z)]?Mu(z) d, for every weight u,
where the constant C' is independent of u.
Hence, if @ > 2 and m € LZ(R"),
T : L*Y(u) — L**(u), Yu € Ay,

with constant less than or equal to C [luf|,, and, as a consequence of Theorem 4.2.5, Re-
mark 4.2.6 and Corollary 4.3.21, we obtain the following result.

Corollary 5.2.12. Gien a > % and m € LZ(R"). For every 0 < p < 0,
T : AP (w) — AP*(w), Yw e Bg N BX,

with constant less than or equal to C ||w|| |wl[gx . Further, for every locally integrable

?
function [ and every t > 0,

@W@$$LF®§+fF@%.
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5.2.3 Radial Fourier multipliers with a derivative condition

Given a multiplier m, we say that T}, is a radial Fourier multiplier if m is a radial function;
that is m(§) = mo(|£]), Y€ € R™, for some function my : [0,0) — R.

In this section, we will study a particular case where the fractional derivative of some
order of the multiplier m satisfies some constrains.

One can define fractional derivatives in multiple ways. However, the definition that we
will need is in the sense of Weyl: given 0 < 6 < 1 and r > 0, we define the truncated

fractional integral of order 1 — § for f e L{ _(R) by
1

— | (s—1)°f(s)ds, t<r,
')y =< I'(1=9) f "
0, t>=r,
for every t € R, with I' being the Gamma function
ee}
[(y) = J 2~ te " du, y > 0.
0

Moreover, if o = [a] + § > 0, with [a] being its integer part and ¢ its fractional part, we
define the fractional derivative of f of order o by

d\ d
Df(t) = — (E) lim —I'7%f(t), teR,
whenever the limit and the derivatives exist.

Proposition 5.2.13 ([46]). Fizn > 2 and o = 5. Let m € L*(0,%0) n C(0, %) which
vanishes at infinity and satisfies that

D Im e ACy., Vi=1,...,[a],
with AC),. being the space of functions that are absolutely continuous on every compact subset
of (0,00). Then, if D*m exists and ®(t) = t*~1D*m(t) € L*(0,0), the operator T, defined
by

T.f(€) = m([€P)f(€), &R, (5.2.5)
satisfies that

T, : L' (v) — LY (v), Yu e Ay,
with constant less than or equal to C || ®| 11 o) HuH?41

Therefore, as a consequence of Theorem 4.2.2 and Corollary 4.3.14, we get the following
result.

Corollary 5.2.14. Fiz n > 2 and o = 2+ Let m € L*(0,00) n C(0,0) satisfying the

hypotheses of Proposition 5.2.138 and let T,, be defined as (5.2.5). For every 0 < p < o0,
T : AP w) — AP*(w), Vwe BlY n B,

with constant less than or equal to C'||P|| 11 o Wl pr |wl|% . Further, for every locally
’ P 0
integrable function f and for everyt >0,

(TF)*(t) < %Ltf*(s)dsqLLw (1+1og§)4f*(s)§

S
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5.3 Rough singular integrals

Let n > 1 and denote S"™! = {x € R" : |z| = 1} the n-th dimensional sphere with center 0
and radius 1. Given Q € L®(S"™!) a positive homogeneous function of degree zero such that

J i Q(z)dx = 0, (5.3.1)

the rough singular integral is defined by
y dy .. y dy
Tgf(fﬂ):p-vj Q(—) flx—y) - = lim Q(—) flr—y)
re \ Y] yl" =0t Dy \ Iyl [yl

whenever this limit exists. This operator was first introduced by Calderén and Zygmund
who proved that (see [38, 39]) Ty is bounded in LP(R™) if the even part of Q belongs to
Llog, L(R™) and its odd part belongs to L'(R™). Since then, this operator has been widely
studied (see |68, 69, 178]). In [90], J. Duoandikoetxea and J.L. Rubio de Francia proved,
for p > 1, its weighted strong-type (p,p) boundedness for every weight in the Muckenhoupt
class A, later improved in [87], [114] and [179]. Further, in [140, Theorem 1.6] the authors
obtained the following result.

Proposition 5.3.1. Let n > 1 and Q € L*(S"1) satisfying (5.3.1). Then,
Tao : L*(v) — L**(v), Vo € As,
with constant less than or equal to HUHZI.
Therefore, together with its corresponding unweighted weak-type (1, 1) estimate; that is
To : L'(R™) — LY (R™),

(see, for instance, [122, 140, 178]) as a consequence of Corollaries 4.3.12 and 4.3.16, we get
the following result.

Corollary 5.3.2. Letn > 1 and Q € L®(S"™1) satisfying (5.3.1). For every 0 < p < o,
T : AP (w) — AP®(w), Vwe B n BY,
with constant less than or equal to C||w|| gr ||w||1293<C Further, for every locally integrable
function f and for everyt > 0,
. (., * S\ s dS
Tty (@ 7 [ s+ [ (1e108) 1)
0 ¢

In [87, Theorem 5|, the authors considered 2 € LI(S"!), for 1 < ¢ < o0, and proved the

following result.

Proposition 5.3.3 ([87]). Let n > 1, ¢ > 1 and Q € L4(S"') satisfying (5.3.1). Then,
there exists a positive nondecreasing function ¢ on [1,00) such that

To: L7 (v) — LY (v), Yo e Ay,

S .

with constant less than or equal to ¢ ([|v]| ,,).



5.3. Rough singular integrals 101

We should mention that although the boundedness result of Proposition 5.3.3 is known,
the behaviour of the function ¢ (that is nondecreasing) has not been written explicitly
anywhere, and since we want to make use of Theorem 4.2.5, we need such behaviour. Hence,
as we did for the Fourier multipliers of Hormander type (see Section 5.2.1) we will dedicate
what follows to find the desired behaviour on ¢.

To do so, we refer to |75, Corollary A.1], where it was considered the case that € belongs
to the Orlicz-Lorentz space L%!log L(S"™1), ¢ > 1, with norm

1

1_ 1
1920 a1 10 Lsn1) = J Q*(t)ta 110g¥ dt < .

0

Besides, in [140, Corollary 1.15] it was proved the following result.

Proposition 5.3.4. Letn > 1, ¢ > 1 and Q € L9 log L(S" 1) satisfying (5.3.1). Then, for
every p > ¢,

d (p—1

/
p 1)
1Tl < €0 9]0 10g et 2 (q—) () ol Vo A

Now observe that, indeed, we can avoid the Lorentz norm in the statement of Proposition
5.3.4 by appealing to the continuous embeddings L9(S"!) € L9 log L(S™!) for all ¢ > 1
and 0 < € < g — 1, since by means of the Hélder’s inequality,

1 1 L
(1 q C
190 0t tog sty < 1201 sy (j 17 (7 1>log;dt) < 10y - (6:32)

Therefore, we are now ready to settle our first main goal in this section:

Proof of Proposition 5.3.3. First, we will see that for p > ¢/,

T : LP(v) — LP(v), Yo e Ay, (5.3.3)
with constant less than or equal to ¢, 4(||v]| 4,), Where ¢,  is a positive nondecreasing function
on [1, ).

Let 0 < e < q—p' so that p > (¢ — ¢)’. Then, by Proposition 5.3.4 and (5.3.2), we have
that for every v € Ay,

/ ’
p (qff)(p*})
ITolingy % (0= D WUin-cs gy ( 2y ) (et 5
”QHLQ(Sn—l) ( p2 ) _aq
< cnq)i—=—7 ||v .
= \@aw-1-p) @07

g7
2 )

In particular, for € =

p 29
UL (Cnq) =" [[v]| 4,
p(p—1)3 20/ (r=1)
(p—q)3 (cng) 7= HUHA1 = ‘PP,q(HUHAl)a

1Tall Loy < 120 ogsn1y

S 1€ pasn1y



102 Chapter 5. Boundedness of operators on AP(w)

so that we obtain (5.3.3).

Now, in order to prove Proposition 5.3.3 we will make use of an interpolation argument.

qg+1 ¢ +1
27 2

by duality (since Ty, is, essentially, self-adjoint) we obtain that

Hence, fix 1 < py = min< ) (so that py < min(q,q’)). Therefore, from (5.3.3) and

HTQ || LPO (v) < Cn,q,pO'

Further, take v € A; and set

1 2q' —
t=min<1—|— i , q, p0>>1
2ol 5, " 2(¢" = po)

so that v" € Ay with [[o']|, < [Jv]l,, (see (2.2.4)). Moreover, let 0 = 1, vg = 1, v; = v and

a'Po

— 1 <.
q —t(q" — po)

q¢ <pi:i=

Hence, from (5.3.3) we get

pipr —1)° ey
1Tolli oy = g (I1lla,) = 19 cann) =03 (en0) 77 vl

24'(2¢'~1)

(qu) (t=1)(a'~po)
S 1€ Logsny B [0][4, =2 @ql[v]l.4,);

where @, is a nondecreasing function on [1,00). Therefore, by interpolation with change of
measure (see, for instance, |23, Theorem 3.6)|),

1ol ) S Pallvll4,)t < max (L, 2q(][v]l4,)) -
]

Therefore, as a consequence of Theorem 4.2.5 and Proposition 5.3.3, we get the following
result.

Corollary 5.3.5. Let n > 1, ¢ > 1 and Q € LY(S"') satisfying (5.3.1). For every 0 < p <
0

)

T : AP (w) — AP®(w), Yw e Bg N B

Furthermore, if we assume that €2 also satisfies the L9-Dini condition; that is

Jl o) < b0 with  w(y) = sup (L 0(p) — Q(x)yqda>  534)

0 Yy lol<y

where the supremum is taken over all rotations p of S"™! and where |p| = sup,cgn—1 |pr — |,
in [122, Theorem 4| it was shown the following result.
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Proposition 5.3.6 ([122]). Let n > 1, ¢ > 1 and Q € LY(S"') satisfying (5.3.1) and the
L9-Dini condition (5.3.4). Then, there exists a positive nondecreasing function ¢ on [1,00)
such that ) )

To: L! (127) — L'* (117) , Vv e Ay,

1
with constant less than or equal to ¢ (Hv”j{l)

Remark 5.3.7. As in Proposition 5.3.3, the behaviour of ¢ in Proposition 5.3.6 is unknown.
However, to see that ¢ is a nondecreasing function on [1,00) follows the same lines as the
one for Proposition 5.2.1 (i) except for few modifications due to the different kernel, and it
is based in [122, Lemma 5] instead of [122, Lemma 1] and it makes use of (5.3.3) (forp =2

and weights Vi € A, ) instead of (5.2.2).

Therefore, as a consequence of Theorem 4.2.5 and Proposition 5.3.6, we get the following
result.

Corollary 5.3.8. Letn > 1, ¢ > 1 and Q € LY(S"Y) satisfying (5.3.1) and the Li-Dini
condition (5.3.4). For 0 <p < o0,

To : A (w) — AP*(w), Yw e (Bg N B;"O) U <Bf N B%) :

5.4 Intrinsic square functions

For 0 < o < 1, let C,, be the family of functions ¢ supported in B(0, 1) (the n-th dimensional
open ball of center 0 and radius 1) such that

J ¢(x)dr =0 and lp(z) — p(2)| < |z —2'|*, Va,z’ e R™
B(0,1)
Then, given f € LL _(R"), set
Aaf(y.8) = swp (G0« Ny, 0) € R,
e «@

where we are using ¢; to denote the usual L'(R") dilatation of ¢; that is ¢;(z) = t7"¢ ().
The intrinsic square function (of order «) introduced by M. Wilson in [181] is defined by

Gof@) = ([ a0 0PEs) . wery
Ta(z) t

with T (z) = {(y,t) : |x — y| < at}. In [130] it was proved that

1
||G04f||L3('U) g ||/U||343 ||f||L3(U)’ V/U e A37

and using the extrapolation of Rubio de Francia (see Theorem 2.3.1) it was obtained that,
for every 1 < p < o0,

100.&)((%7L

1Gaflny < 11T iy, Vo Ay
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and the exponent max (%, zﬁ) is the best possible (see [128]). Moreover, in [61, 181] it was

shown that G, also satisfies the weighted weak-type (1,1) inequality

HGOéfHleOO(v) S ||U||211 ||f||L1(v) ) Vve A

Therefore, as a consequence of Theorem 4.2.2 and Corollary 4.3.14, we get the following
result.

Corollary 5.4.1. Let 0 < a < 1. For every 0 < p < o0,
Go 1 APH(w) — AP®(w), Vwe Bl n BY,

5/2

g - Further, for every locally integrable

with constant less than or equal to C ||w||zr ||w]|
D
function f and for everyt > 0,

. (., © S\32 . ds
(G )5 | FHe)ds+ | (1+1082)7 f(9) 2
t Jo ¢ t s
Remark 5.4.2. In [181] was proved that G, dominates pointwise (modulo constant) oper-
ators such as the Lusin area integral, the Littlewood-Paley g-function and the continuous
square function (see also [61]). Therefore, analogous results as in Corollary 5.4.1 can be
derived for those operators as well.

5.5 Sparse operators

These operators have become very popular due to their role in the often-called A, conjecture
consisting in proving that if 7" is a Calderén-Zygmund operator then

ITHll 2wy = 0llay £l 2y, Vo Ao

This result was first obtained by T.P. Hytonen [113] and then simplified by A.K. Lerner
[131, 132], who proved that the norm of a Calderén-Zygmund operator in a Banach function
space X is dominated by the supremum of the norm in X of all the possible sparse operators,
and then proved that every sparse operator is bounded in L?(v) for every weight v € Ay with
sharp constant.

Let us give the precise definition. First, a general dyadic grid D is a collection of cubes
in R™ satisfying the following properties:

(i) For any cube Q € D, its side length is 2* for some k € Z.
(ii) Every two cubes in D are either disjoint or one is wholly contained in the other.

(iii) If Dy < D is the subfamily of cubes formed by the cubes of exactly side length 2%,
k € Z, then D, form a partition of R™.
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Hence, let 0 <7 < 1 and let D be a family of dyadic cubes. A collection of cubes § € D is
called n-sparse if one can choose pairwise disjoint measurable sets Eg < @ with |Eg| = 1|Q),
where @ € S (see [88, 133] for more details). Hence, given a n-sparse family of cubes S < D
and let 1 < r < oo, the r-sparse operator A, s corresponding to the family S is defined by

A, sf(z) = Qze;s <|712| JQ If(y)l’"dy) % Xq(z),  xzeR™

When r = 1, we recover the classical sparse operator denoted by As = A; s (see [132]).

Proposition 5.5.1 ([112]|). The sparse operator As satisfies

s fllproowy < IWlla, log (L+N10ll4) 1fllrey > Yo e A (5.5.1)

In [136] the same bound was proved for a Calderén-Zygmund operator and in [137] the
authors showed that this last result was sharp. Hence, using the domination property of the
Calderon-Zygmund operators by sparse operators, it can be concluded that (5.5.1) is also
sharp. We thank A.K. Lerner for this information.

Further, for p > 1, the r-sparse operator also satisfies weighted restricted weak-type (p, p)
estimates. Indeed, the proof follows by duality and using the same ideas as in [61, Theorem
4.1] with the necessary modifications (see also [45, Corollary 3.2]).

Proposition 5.5.2. Given r > 1, for everyp =1, p > 1,

qu e r+p
[Arsfll Loy < p—pl ol 1oy, Voe A, (5.5.2)

Therefore, as a consequence of Corollaries 4.3.14 and 4.3.21, and by means of Proposi-
tions 5.5.1 and 5.5.2, we can get estimates on the decreasing rearrangement of A, s. However,
due to the weight constants involved in (5.5.1) and (5.5.2) are not linear, that estimates are
far from being sharp.

Indeed, one can easily compute the norm from LP(R"™) to LP*(R"™) directly, using the
standard duality technique: given r > 1, for every p > r and a measurable function f €
Lp(Rn)7

p
A gy < 2 [ Asr@lgwas,
p llgll

Lr', 1<R”>

and, by taking such a function g, since || M|, gn) < cop, then

[ Astnteiar= 5 (i ], |f<y>|7"dy)i J, o

< }]Qzesww (ﬁ Lmy)rdy)% f 9(x)|d

<M @) Mgy 1\|M(!f!)|!p

77 R Lr® (Rn

— ||f||

Mgl s ey

Q

Plgllr @y < —PIfllorny

L% T (R7) 7



106 Chapter 5. Boundedness of operators on AP(w)

so we obtain that, in particular,

Cnr 1 n
HAr,SXEHLp,oo(Rn) < mp\fﬂp, VE < R™ (5.5.3)

Further, if r = 1, we can estimate (5.5.3) for every p > 2 by
20

HATSXE”Lpoc Rn) VE Rn,

so that due to interpolation between the unweighted restricted (1,1) and (2,2) estimates of
A, s for characteristic functions (see, for instance, [88, 174]) we have that for 1 < p < 2, the
corresponding constant norm of the unweighted restricted (p,p) estimate for characteristic
functions is also linear on p.

Therefore, as a consequence of Theorem 4.3.22, we get the following result.

Corollary 5.5.3. Given r = 1. For every locally integrable function f and everyt > 0,

(Arsf)* f A ?i + fo f*(s) % (5.5.4)

Now, it is known (see [22] and [23, Ch. 3 - Theorem 4.7|) that, for every locally integrable
function f,

0= redse [ oS @, v

for some ¢ being an equimeasurable function with f and where H is the Hilbert trans-

form. Hence, by the pointwise domination of the Hilbert transform by Sparse operators, we

conclude that the estimate in (5.5.4), at least for r = 1, is sharp for the sparse operator Ags.
Finally, by means of Corollaries 5.5.3, 4.3.12 and 4.3.19, we obtain the following result.

Corollary 5.5.4. Givenr > 1. For every 0 < p < 0,

T : AP w) — AP®(w), Yw e B? N BE,

1
with constant less than or equal to C [|wl| L [[w|| s -
j2 [oe]

5.6 The Assani operator

There is a very interesting operator, named Assani operator after being introduced in [13]
by one of their authors, which is related with the Return time theorem of Bourgain [27] (see
[12, 13] for a very interesting review on this topic) and so, as well, with the ergodic theory:
branch of mathematics that studies statistical properties of deterministic dynamical systems
that has its origins on the work of Boltzmann [26] in statistical mechanics problems (for
more details see [147]).
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The Assani operator is defined as

. Hf(-);<<_o,a':>(') er
L1 (0,1)

where, for every locally integrable function f,
I llzreo1) = supy {z € (0,1) = [F(2)] > y}].
y>

This operator satisfies two important properties:

(i) For every 0 < ¢ < 1,
A: LYM(R) — LY (R). (5.6.1)

This boundedness was obtained in [62] and, as a consequence, it was proved that the
space L1(R) satisfies the Return Time Property for the Tail, while this is not the case
for L'(R) (see [13]) since A does not satisfy the unweighted weak-type (1, 1) inequality;
that is

A: LYR) - LY (R).

(ii) For every measurable set E € R, Ayg < Mxg, and all the restricted weighted inequal-
ities satisfied by M also holds for A. In particular, let p > 1 and v € Aﬁ. Further, take
f € LP!(v) and define

Ei={zeR":27" < |f(z) < 2'}, VieZ,

and f; = fxg. Then, since A is sublinear on disjointly supported functions and
monotone, we have that

x) <2Afi(x) <22iAin(:v), VreR,

€2 1€eZ
so that
p i i
HAfHLp@C( \ 22 ()<—22 ()
p— zeZ p 1eZ
1
Lol D 20(E) 5 2 follgg Y f o ({If] > 1)}

€z €z

1

1 1
- el Lv({m > 1))} di =

T 1 laz 11l o o)

Therefore, as a consequence of Theorem 4.2.2 we get the following result.
Corollary 5.6.1. Let 0 < g < 1. Then, for every 0 < p < o0,
A AP (w) — AP (w), Vwe B n BX,

with constant less than or equal to (Cp s

|wll gp 1wl
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Hence, observe that in the case w = 1, we recover the boundedness for every 0 < ¢ < 1
of (5.6.1), so again we obtain that L'9(R) satisfies the Return Time Property for the Tail.
On the other hand, it is an interesting open question in the area whether the space

1
Llogloglog L = A! (1 + log <1 + log (1 + log —))) : (5.6.2)

satisfies this property. Hence, it will be very interesting to study for which weights w the
Assani operator is bounded from A'(w) to A»*(w). Indeed, since for w € By then AM*(w)
is a Banach function space, from Proposition 2.1.2 we deduce that

A A (w) — AV (w), Ywe By n BE.

However, (5.6.2) is neither covered for this class of weights, since

1
w(t) =1+ log <1 + log (1 + log ;)) e (BM\B,) n B%.

5.7 The Bochner-Riesz operator

Let n > 1 and A > 0. Recall that the Bochner-Riesz operator By (see Section 3.5.4) above
the critical index (that is, for A > 1) is controlled by the Hardy-Littlewood maximal
operator M. Hence, for every locally integrable function f and for every ¢ > 0,

B[ 16
(see (2.2.22)) and, for any 0 < p < oo,
By : AP (w) — AP*(w), Vwe BY,

with constant less than or equal to C' ||w|| zr (see (2.2.13)).
D
Now, at the critical index, in [140, Theorem 1.6] the authors obtained the following
quantitative result.

Proposition 5.7.1. Let n > 1. Then,
B L*(v) — L**(v), Yo e Ay,

with constant less than or equal to C ||U||i2.
Therefore, as a consequence of Corollaries 4.3.12 and 4.3.16, we get the following result.
Corollary 5.7.2. Let n > 1. For every 0 < p < o0,
Buoy : AP (w) — AP (w), Vwe Bl n BX,

with constant less than or equal to C||w|| gr ||w\|1295,<C Further, for every locally integrable
function f and for everyt > 0,

(Bn ) Jf ds+f <1+10g§> f*(s)%.
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Finally, below the critical index, we already know that B, satisfies the unweighted weak-
type estimates at the endpoint (3.5.4) and (3.5.6). Hence, by duality we obtain the un-
weighted restricted weak-type estimate for n = 2,

1
By: LT '(RY) - LT ®(RY), V0<A\< 5

and, for n > 2, we get

n—1 n—1
— <A<
2(n+1) 2

By: Lt (RY) — Lt “(RY), ¥

Then, as a consequence of [23, Ch. 4 - Theorem 4.11|, for every locally integrable function
f and every t > 0,

1
(ka J f 1 2,\ J f 3+2)\7 Vo< A< 57

and, for n > 2,

n—1 n—1
(BAf) < n+1+2,\ff n12)\ leAf f n+1+2)\7 vﬁ<>‘< 9 .

Therefore, from Corollary 4.3.19 we deduce the following result.
Corollary 5.7.3. Given 0 < p < 0.
(i) Ifn=2and 0 < X < 3,

By : APH(w) — AP*(w), Yw e BY a2 O B*

_4
p(1—2X)

with constant less than or equal to

1
”w”g* ) 0< p < 17
3+2) %ﬁ)
Crllwl i "
p(3+2)) >
B ||w||B,,<4 , 1<p<oo.
p(1=2X)
(1) Ifn>2 and 3 < A<

+1)

B)\ : Ap’l(w) — AP’CO(IU), Yw € Bp(n+1+2)\) M B 2n s

Pm1-2%)
with constant less than or equal to
1
lelfe . 0<p<l,
n+2:l-2,\ ﬁ

Gl 4T
O R A

2

n
p(n—1-2X)
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At this point, define the class

SUD¢~0 (B/\f)*(t>W(t) < OO} .

W(By) ={0<we L. (R"): ||w = su

Then, from (2.1.2), one can immediately see that

wy (1) = el e W(B,) = the endpoint Bochner-Riesz conjecture holds for B,

and so does the Bochner-Riesz conjecture as well. On the other side (see (2.2.40) and

: 2n
(2241)), given q > nrlaon
wn7AeBn+1+2)\ ﬂBq, ¥Yn > 1 and 0<)\<T,
2n

so an interesting open question is to study for whichn > 1 and 0 < A < "T_l,

2n

B§+21;2A N B:; - W(B)\), for some q > m



Chapter 6

Multi-variable weighted estimates on

AP(w)

In this chapter, we pursue on proving weighted restricted weak-type estimates over classi-
cal Lorentz spaces AP(w) but now in the multi-variable setting. With this aim, in Section 6.1
we will first introduce and study the m-fold product of Hardy-Littlewood maximal opera-
tors, which is deeply related to the multi-variable type extrapolation. Further, in Sections 6.2
and 6.3 we will present our main results on multi-variable extrapolation, based on weighted
restricted weak-type and mixed-type estimates respectively. Finally, in Section 6.4 we will
show some applications of the results on multi-variable extrapolation applied to bilinear
Fourier multipliers (see Section 6.4.1) and multilinear sparse operators (see Section 6.4.2).

6.1 The m-fold product of Hardy-Littlewood maximal
operators

Due to its close relation with multi-variable extrapolation, our first goal is to study the
boundedness over classical Lorentz spaces of the m-fold product of Hardy-Littlewood maxi-
mal operators defined as

M®(fy, ..., fm)(x) = HMfi(gc), zeR" fi,..., fme LL.(R).

Indeed, the corresponding multi-variable weighted restricted weak-type boundedness of M®
on Lorentz spaces (see [161, Theorem 2.4.1] and [53, Theorem 3.3]) is characterized as follows:
1

: 1 1
glvenlépl,...,pm<oo,5=p—1+--~—|—ﬁandvl,...,vmero,

M® : LPV (0y) x oo x LPm Y (vy) = LPP (PP Plem) sy e Al i=1,...,m,

and the same holds with multi-variable weighted restricted weak-type boundedness on clas-
sical Lorentz spaces:

111
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Theorem 6.1.1. Set m > 1. Let0<q1,...,qm<ooandézq%—i—---%—q%ﬂ. Then,

M® A (wy) x - x AT (wy,) — APP (w) Vw; € BY i=1,...,m, (6.1.1)
with
HM®|| - HM®HAQ1 1(w1)>< X Aam l(wm)HApoo ~ mH Hw’LHBR 5 (612)

where w is such that W < qu/ql W Moreover, if (6.1.1) holds, with now w being
such that W = qu/ql e Wg{%, then w; € B(f for everyi=1,...,m, and

m
max (Jlwrllgg - [wmllsg ) < [M2] [T a
i=1
Proof. First assume that, for i = 1,...,m, w; € Bf. Then, since

1 e t
W(t)a (ME(f1,..., fm sﬂ yai (M f,)* (m> vt > 0,
and, by virtue of (2.2.13),

1 t 2
sup 1503 (1" () < g 1Ay 0 g Dl

t>0
for every ¢ = 1,..., m, we deduce that
1 m n 2
[ME(fr, - o) | gy = sup W()a (MO (fr oo fu)) (@) S ™ [ ] will o [1fillpos oy
> - i

so that (6.1.2) holds.
On the other side, if (6.1.1) is bounded with constant ||M®||, then for every cube @ in
R™ and for every measurable function g with ||g|| A ) = 1

1M(9,x05 -+ XQ) | yarve ) ‘M®HH% (1Q)

Indeed, since Mxqg = xq,t=2,...,m, and Mg > <é SQ g) Xq, we have that

@W"('QD;) (\%rf@g) wieh (g J,2) = swwor | ([ o) Q]*(“

< [[M®(g,x0: X xao HM®Hqu QN

Q=
Q=

Therefore, taking the supremum over all such measurable functions g, we obtain that

Wi (lQ
”XQH(A‘Zlal(u)l)) i ’|Q|| HM®H qu
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However, from the definition of associate space (see (2.1.6))

ol ol Lgupminh QD _ 1, T
X , r =X a1 1= —Ssup = — §Sup )
Qll (A1 () Q <A1 (qull 1w1>> Q1 >0 Wl(t)ﬁ Q1 0<t<|Q| Wl(t)i

and @ is any cube in R", so we deduce that necessarily

wie By with  flwllge < [M)|] g
i=1
Analogously, for every i = 2,...,m, w; € B} with HwiHB(ﬁ < IME|TTE, ¢
O]
Remark 6.1.2. If we let w = w”™ ... w%% since ¢; > q for every i = 1,....m, by virtue
of the Hélder’s inequality,
W(t) < WU (). Waam(p), vt >0,
so (6.1.1) holds for such w whenever w; € B(f_“, i=1,...,m.
Remark 6.1.3. Even if w; € B(f, 1t =1,...,m, this does not necessarily imply that w € Bf.
For instance, take w;(t) = t%~' € Bf and observe that
1 1 1 L | 1— t
Wty s Wit)n - Wy = [ [ [ |t = "< 1
i=1 qu W(t)E
so that, form = 2, w ¢ Bf. Nevertheless, if w € Bf, taking wy, ..., w,, such that WY1 ~

Wll/‘ll WA e obtain, for every 0 <r <t,

Wit)\# Wi E W) ¢
()" <TI0 = 0 <l
i iSL W(r)ys W)
so that w; € B with Hw1;||B£ < lwligp, i=1,...,m.

Now observe that in order to prove (6.1.1) we have essentially used that w; € Bg, 1=
1,...,m, and the weighted restricted weak-type boundedness of M over classical Lorentz
spaces (see (2.2.13)), since the other properties would hold also for any product type operator

T2(f1,- -, fm)(2) = nTifi(I)v r € R".
i=1

Therefore, arguing identically as for the proof of (6.1.1), we also have the following result
for the more general operator 7.
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Lemma 6.1.4. Set m > 1. Let 0 < qi,...,qn < ©, ; = =+ + = and, for cach

7 q
1=1,...,m, takewieB(ﬁ. If for every 1 =1,...,m,

Ty A% (w;) — A% (wy),

with constant controlled by Cr, 4, 4, then

m
HT®<f17 SRR fm)HAq,oo(w) <m™ 1_[ HwiHB(ﬁ_ CTi:wiyqi fiHA‘Iiﬂl(wi) ’
i=1

where w is such that W < W™ ... W%4m  Moreover, if there exists some 1 < { < m such
that for everyi=1,...,¢,
T; : A% (w;) — A9 (wy;)

with constant controlled by Cop, ,.q;, then

m
fiHA(Ii (w;) H CTiywilei

i=0+1

m L
HT®(f17 SR fm>HAq,oo(w) <m™ H HwiHB(ﬁ, 1_[ CYTiywini fiHAqi’l(wi) :
=1 =1

6.2 Multi-variable weighted restricted weak-type extrap-
olation
Recall that in Section 4.2.1 we have considered one-variable operators for which there exists

some pg = 1 such that
T : [Pt (v) — LPoP(v), Vue AR,
Now, we will consider the multi-variable setting; that is, there exists some exponents 1 <

11 4. .4 L
jt)l,...,pm<ooandI—J—p1 Sa such that

T: LP (v)) x -+ x LP™(vy,) — Lp’oo(v]f/p1 o P/Pm), Ve Al i=1,....m. (62.1)

However, to proof our main result we will have to translate our hypothesis to the “diagonal
case”, i.e., when all the exponents pi,...,p,, are equal. With this aim, we will make use of
the following particular version of [161, Theorem 4.2.6].

Theorem 6.2.1. Set m > 1 and let T be an operator satisfying (6.2.1) with constant less
than or equal to ¢ <||U1||AR voe s loml] ar ), where ¢ : [1,00)™ — (0,00) is a nondecreasing
P1 Pm

function in each variable. Then, for every 1 < s < min{py,...,pm},

T2 L% (vy) X -+ x L¥%m (v) — L@ (0™ 0l™) Yo,e Ay i=1,...,m, (6.22)

m

with constant less than or equal to W(|[vi|l 4., .., [[vmll4,), where ¥ : [1,00)™ — (0,00) is a
nondecreasing function in each variable.

Now we are in conditions to settle our first main result in this chapter.
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Theorem 6.2.2. Set m > 1 and let T be an operator satisfying (6.2.1) with constant less

than or equal to ¢ <HU1HAR oo lvml] ar ), where ¢ : [1,00)™ — (0,00) is a nondecreasing
P1 Pm
function in each variable. Then, for all exponents 0 < qq, ..., ¢y, < 0 and % = q% +o 4 qu’
T: Aql’ﬁ(wl) X oo X Aqm’z%m(wm) — AP (w), Vw; e BIn By, i=1,....m,

2 -9
where w is a weight such that W < W™ --- Wi . Moreover, if T is a submultilinear operator
and min{py, ..., pm} > m, then, for every 0 <r < %,

T : A (wy) x - x A" (w,,) — AP (w), Vw; € BEnBY,i=1,....,m.

Proof. First take any 1 < s < min{py,...,pn}. Hence, by virtue of Theorem 6.2.1, we obtain
that (6.2.2) holds.

Now, by means of Proposition 2.2.20, we can define, for each ¢ = 1,...,m and for every
measurable set F' < R”,

o0 MFE
Rixr(x Z xr(x) o z e R™. (6.23)
k=0 <2 ||M||(A9i71(wi)>/>

Then, for every 2 = 1,...,m,

(1) xr(z) < Rixr(z),
@) I1Roxellz, < 20NN gy < il

2 I
3) || R; . ' <2 . < — ||w; —_—,
) Wxel gy < 2oy < g Ilsg s

where on the right-hand side of (3) we have used Lemma 2.2.15.

Let y > 0 and, for every locally integrable functions fi,..., fi,, set FF = {x € R :
|T(f17 ceey fm)(x” > y}a so that |F| = AT(fl,...,fm)(y)' Then, ta’klng

1

1—s n m 4 m 1 A~ .
M®(f1,--->fm)7H(RzXF n (Mf;)"*Rixp)™ Hv{”, v €A, i=1,...,m,
=1

=1 =

we get that

A f) W) S Ao (f o) (YY) + f
ATty o) (@) |59 MO(f1oee frn) (@) <70} 11

s

s—1 m 1 1
AM@ ’fm)(,yy) v yj U1 (,I)m cee ’Um(l‘) m daj
s—1 i
yom W ( A, 0009 m M %
S AMO(fr e fin) (YY) + > H A7
m ke (v;)



116 Chapter 6. Multi-variable weighted estimates on AP(w)

Hence, by means of Lemma 4.2.1 (with pg = s, go = =, fo = 1, p = ¢; and h = R;xr), the

pi’
property (3) of R; and the definition of the weight w,

A fr) Y) S Ao (fr, o fo) (YY) +

1
A1) () 7 (ol lomlla)” "
(W( - [ Theliog 1500, |

ATy fon) (Y)) Y o

1
Now, we observe that since for every i = 1,...,m, w; € B and A% (w;) = A% (w;)
continuously, from Theorem 6.1.1 it follows that

1

1 m L o 9
YW (Ame (s, pm)(VY)) 7 < = HM® froeoos fod || pocoguy <M S I [will g 1Fill xas- ) -
=1

Thus, arguing (if necessary) with Tn(f1,..., fm) = |T(f1,- .., fm)|XB(o,n) similar as we did
in the proof of Theorem 4.2.2, in particular, we obtain that

1
YW (AT(f,nf) (Y1) 2
mm m . s m
< max <7 [ Thwill g 7w ( ) ) [Tl 1Al o, -
i=1 i=1 ¢

so that taking the infimum in v > 0 and the supremum in y > 0 we get that

m(s—1) = 2_l
IT(frsee s fodllpaoy S5 O (ol omll4) H lwillgs” 1Fill yo
m(s—1) 1 1 = 23
gm s \I/(lenésko,,||wm||g§c>n||wl|’BR ||fZH qu ’
=1

where in the last estimate we have used the definition of each v; and property (2) of each R;.

Now assume that 7" is a submultilinear operator and min{py, ..., p,} > m. Besides, this
time take any m < s < min{py,...,pn}. Then, (6.2.2) can be rewritten as (see Remark 2.1.3)
T: L% (vy) x - x L*(v,,) — L%’w(vi/m ol Voie Ay, i=1,...,m,
with constant W\IJ (loxll4, -~ lomll 4.)- Therefore, arguing as before (but now using

Lemma 4.2.1 with gy = 1) we obtain that, for every m < s < min{py,...,pn},
T: A‘“’%(wl) X oo X Aqm’%(wm) — AP (w), Yw; € B£ NB: i=1,...,m,
with constant less than or equal to
mm(ssfl) L ) m
G (ol ool ) T il

Finally, the desired result follows by taking any 0 < r <
inclusion A%"(w;) < /\qi’%(wi)7 i=1,...,m

< % and using the continuous

©® =

]
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Remark 6.2.3. Observe that if py = -+ - = p,, = po, then there is not need in Theorem 6.2.2
of using Theorem 6.2.1 so that, in particular, we obtain that

T: Aql’%(wl) X e X Aqm’%(wm) — AP (w), Vw; € BInBY,i=1,....m,

with constant less than or equal to

1 1

1 1 m 91
O (sl oo luml ) [l
Remark 6.2.4. If we let w = wf/ql...w%qm, due to Remark 6.1.2 we have that Theo-
rem 6.2.2 also holds for this w.
As a consequence of Theorem 6.2.2, we have the next result.

Corollary 6.2.5. Under the hypothesis of Theorem 6.2.2 and if T is a submultilinear oper-

ator, then, for all exponents 0 < q1,...,qn < 0 and % = q% +-F qu,
T : A (wy) x - x A (w,,) — AP (w), Yw; € B(f, NBy,i=1,...,m,
9 a
where w € By satisfies W < W™ - Wi,
Proof. Since w € By, then A%*(w) is a Banach function space under the norm || - || ys.(,)
and the result follows by means of Proposition 2.1.2 and Theorem 6.2.2. [

6.3 'Two-variable weighted mixed-type extrapolation

In this section, we work in the two-variable setting and we relax the hypothesis of Theo-
rem 6.2.2 by introducing some weighted Lebesgue space (with weight in A, ) in addition
to a weighted Lorentz space (with weight in A%) in (6.2.1). As before, we will need to go
through the diagonal setting. With this aim, we will make use of the following particular
version of [161, Corollary 3.3.29].

Theorem 6.3.1. Let T be an operator satisfying that for some exponents 1 < p1,pa < 0
and + = L + L
p p1 D2’

T : LP(vy) x LP*'(vy) — Lp’oo(vlf/plvg/m), Vo€ Ay, v € AL (6.3.1)

with constant less than or equal to ¢ (HUIHAm Nval] ar ), where ¢ : [1,00)2 — (0,0) is a
P2

nondecreasing function in each variable. Then, for every exponent 1 < s < min{py, po},
T L*(vy) x L% (vg) — L3P (v1?03?), Yoy € Ay, vy € A, (6.3.2)

with constant less than or equal to V(||| , |lv2llz), where ¥ : [1,00)> — (0,0) is a
nondecreasing function in each variable.
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Now we are in conditions to settle our second main result in this chapter.

Theorem 6.3.2. Let T be an operator satisfying (6.3.1). Then, for every exponents 0 <

1 1 1
0 =L 4 =
G <ooandl=141

T A% (wy) x A% (wy) — A% (w), Yy € By n B, wy € BE A B,

q 4
with w being such that W < W W2 . Moreover, if T is a submultilinear operator and
min{py, p2} > 2, then, for every 0 <r < %

T : A% (wy) x A" (wq) — AT (w), Vw; € By, 0 Bk, wy € BE 0 B,

Proof. First take any 1 < s < min{p;,p2}. Hence, by virtue of Theorem 6.3.1, we obtain
that (6.3.2) holds.

Now, by means of Proposition 2.2.20, we can define the Rubio de Francia operator R as
in (6.2.3) for g2 and ws. On the other side, from Propositions 2.2.11 and 2.2.18 we define,
for every measurable set F' < R™ and every locally integrable function f,

k
M xr(2) and

Rxp(z) =
o 50 (2010 oy ‘“:°<2“M“A‘“ )

HM8

for every x € R™. Then,

(1) xr(z) < Rxr(z), 1) |f(z)] < Sf(x),
@) 1R xFl4, < lwrl g . max(1,2)
6l 17 27 1S FlL, < lwillg, ™,
max|1,-— F
B3) 1R x| por oy < Nl © ™ ———, )
(A ) B Wi(FDE GV 1Sl e S 1l o)

where on the right-hand side of (3)” we have used Lemma 2.2.15.
Let y > 0 and, for every locally integrable functions f1, fs, set

F={zeR": |T(f1, f2)(x)| >y},

so that |F| = Ay, 1)(y). Besides, denote

T®(f, fo)(x) = Sfi(@)Mfa(x),  zeR™

Then, taking

N

Ty, f2) 7 (Riyr)? (Rxr)? = [(SH) 7 Rxr]® [(Mf2) " Rxp]® = vivi,

with v; € A, and vs € As, we get that
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1 1
AT(ff2)(Y) < Arepy, ) (YY) + J R'xrp(z)2Rxp(z)? d
(T, 82) @) >0, T (f1.,f2) ()< v}

s
2

Ly 1 1
< Areiy () +77 1 | vi(@)2ea(2)2 do

y% P
YT U0l s ol $
< /\T®(f1,f2)<7y) + T ||f1| Ls(v1) ||f2| 2 .
Y2 L% P2 ()
At this point, we observe that

(s—1)min (1,1

< lnllgg )
and, since (Sf;)'7% < f1 7%,
s max 1,i /\T , (y)
1l < J fi(@) R xp(z) de < leHBql( W) _Arom® ey
R WAz, 1) () ™

while [[va |5

< [Jw2|| s and, due to Lemma 4.2.1 (with py = s, g =
h = RXF)a

= Bo=1p=q and

A1(f1.£2)(Y)
1f2ll (o) S llwallpn LT £l

AT P2
W <)‘ (f17f2)(y)) 92
Further, from Lemma 6.1.4 we deduce that

ax(Li)
q1

(w) S ||'w1||Bq1

HT®(f17 f2>HAq,oo

2
w2l 1 Full A o) [[F2lla221 ) -
Finally, the desired result follows the same lines as the proof of Theorem 6.2.2

]

Remark 6.3.3. Observe that if p1 = ps = po > 1, then there is not need in Theorem 6.3.2
of using Theorem 6.3.1 so that, in particular, we obtain that

T A% (wy) x A7 (wy) — A® (w), Yy € By B, wy € BE A B,

with constant less than or equal to

max(l,i) 2—L (po—1) mln(l q11) %
C g, lwall g ¢ { lwnll g llwnlls,, wal g ) -

Remark 6.3.4. If we just had considered weighted Lebesgque spaces in (6.3.1) with weights

in Ay, and Ap,, arguing identically as in the proof of Theorem 6.53.2, but instead of having

called Theorem 6.5.1 we had used some two-variable weighted strong-type extrapolation (see
for instance, [101]) it could be deduced that then

T : A" (wy) x A”(wy) — AP (w), Yuwy € By, n B, wy € By, N B
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To end this section, similar as we did to prove Corollary 6.2.5, as a consequence of
Theorem 6.3.2 we have the next result.

Corollary 6.3.5. Under the hypothesis of Theorem 6.5.2 and if T is a submultilinear oper-

ator, then, for all exponents 0 < q1,qa < o0 and % = q% + q%,

T : A% (wy) x A (wy) — AT (w), Yw, € By, n B}, we € By, N B,

9 g
where w € B, satisfies W < W™ Wy=.

6.4 Applications

In this section, we present some applications for our multi-variable extrapolation results
previously introduced. Indeed, in Section 6.4.1 we will study bilinear Fourier multipliers and
in Section 6.4.2 multilinear sparse operators.

6.4.1 Bilinear Fourier multipliers

Recall that for a bounded variation function m : R — R (see Definition 3.1.1) that is right-
continuous at every point = € R and satisfies that lim,_, ,, m(x) = 0, we have that for a
given Schwartz function f (that is, f € S(R")),

Tof(z) = LHtf(:c) dm(t), Vz e R,

where dm denotes the Lebesgue-Stieltjes measure (which satisfies that |dm| < o) and, for
every t € R,

a0
Hif(a) =Ty, f@) = | H©F™d weR
t
In particular, since H f = T,,, f with m(§) = —isgn& (where H is the Hilbert transform) and

41
X(t0) (&) = M, V€ eR,

we have that, for every t € R,

[f(iL‘) + Z-e2rrixtH(e—2m't-f) (iL‘)] Vr e R.

DN | —

Hf(z) = f X(eoo) [ (§)€*T ¢ d =

R

Therefore, given p > 1 and v € Aﬁ, by means of Proposition 5.5.2 and the pointwise domi-
nation of the Hilbert transform by sparse operators, for every t € R,

p —2mit- 1
HHtfHLp,OO(v) < 2(p _ 1) (HfHLp,oo(v) + HH(@ 2 tf)HLp,oo(v)> < Cn,p HUHZZI} HfHLP,l(v) )
(6.4.1)

with C),, > 0 independent of t € R.
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Inspired by this result, let us take a measure y on R? such that |u|(R?) < co. Further,
define the function

my(§1,62) = JQ X(t1,00) (1) X (t2,00) (§2) dpu(t1, t2), (£1,6) e R%.

R

It is clear that ||[my |l ey < [1|(R?), so my, can be considered as a multiplier in R* and we
can define the bilinear Fourier multiplier operator

T, (f1, fo)(z) = Lz mu (&1, &) [i(6) fo(&)e ™ O+ d(g) &), reR",

initially defined for Schwartz functions fi, fo (that is, fi1, fo € S(R™)). Hence, applying
Fubini’s theorem, we have that, indeed, T},, is a two-variable averaging operator since

Tmﬂ(f1,f2)($)
= J <J X(tl,oo)(fl)fl(fl)‘?me{l dfl) <f X (t2,00) (&) fal&r)emimse d§2> dp(ty, ta)
r2 \JR R

= N Hy, fi(z)Hy, fo(x) dplty, ta),

for every x € R™.
As a consequence of (6.4.1) together with Theorem 6.3.2, we obtain the following result.

Corollary 6.4.1. Given exponents 0 < q1,qs < 0 and % = qil + q%. For every 0 <r < 1,

T, : AT (w1) x A7 (wy) — A (w), Vwy € By, n Bk, wy € Bl n By,

a9 4
with w being a weight such that W < W, W, . Further, if w € B,, then we can take r = 1.

Proof. Let py = % > 1 and p; > 1 such that i = p% + p% < 1, and take v; € A, and

Vg € Azi . Hence, by virtue of the Minkowski’s integral inequality (see [20, Theorem 4.4] and
[167, Proposition 2.1]) we have that, for every measurable functions fi, fa,

p
||Tmu(f17 f2)HLp,oo(vf/p1vg/p2) < Z: fRQ ||Ht1let?fZHLPvOC(vIl’/plfug/p?) d‘,u|<t1,t2).

Therefore, due to [161, Proposition 3.4.1], we obtain that
T, : LPv (v)) x LP2Y (vy) — Lp,OO(UIID/ng/pz)

with constant less than or equal to Z%I,u\(R?)(I)(HleA i |v2|| gr ), where @ : [1,00)? — (0, )
P 12
is a nondecreasing function in each variable. Finally, the result follows from Theorem 6.3.2
and Corollary 6.3.5.
O
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6.4.2 Multilinear sparse operators

Set m > 2. Given a n-sparse family of cubes S € D (see Section 5.5), the m-linear sparse
operator corresponding to the family S is defined by

AG(fry ..oy fm)(T) = Z <HﬁL fi(y) dy) xo(z), x e R".

QEeS

In [160, Theorem 10, (5.4)], the authors proved the following result (where the constant
that appears comes from by applying twice the Holder’s inequality on the constant of the
same result).

Proposition 6.4.2. Let m > 2. Then,

AT LMNoy) % - x Do) — L™ (0™ 0l™) Yy, o € Ay,

m

with constant less than or equal to C (3", ||Ui||A1)2m [T il 4, -
As a consequence of Theorem 6.2.2 and Remark 6.2.3, we obtain the following result.
1

Corollary 6.4.3. Let m =2, 0<qy,...,qn < 0 and é = Tt qu' Then,

AZ A () x - x A (w,,) — AT (w), Vw; € BEnBY, i=1,....m,

with constant less than or equal to

m 2m m
C (Z HwiHB;“o> 11 [will g [[will s »
i=1 i=1 ¢

a e
where w is a weight such that W < W™ .- Wi

Remark 6.4.4. Since any m-linear w-Calderon-Zygmund operator with w satisfying the
Dini condition can be dominated by such sparse operators (see [99, Exercise 1.4.17] and
[158, Theorem 1.2 and Proposition 3.1]) the same result can be derived for them.



Chapter 7

Further results: weighted strong-type
estimates on AL (w)

The purpose of this chapter is the study of Rubio de Francia extrapolation results in the
setting of weighted classical Lorentz spaces AE(w). We start in Section 7.1 by introducing
known results about extrapolation on weighted r.i. Banach function spaces and also by mo-
tivating the weighted strong-type estimates that we want to study for A?(w), from which the
class of weights B,(u) will come out. Indeed, we will see that the only condition to check,
which has been unknown up to now, is the boundedness of the dual Hardy-Littlewood max-
imal function induced for some weight u over (A2 (w))’, which will be settled in Section 7.2.
Thus, as a consequence, in Section 7.3 we will obtain boundedness of operators over weighted
classical Lorentz spaces even when they are quasi-Banach function spaces.

7.1 An introduction about boundedness on A?(w) and the
B,(u) weights

In this section, we will consider operators 1" that satisfies, for some py > 1,
T:LP(v) — LP(v), for v belonging in some class of weights. (7.1.1)

Indeed, these results are obtained using extrapolation theory by means of various versions
of the Rubio de Francia theorem (see Theorem 2.3.1). For instance, in [80, 84| the authors
study operators satisfying (7.1.1) for all weights v € A, getting interesting estimates over
weighted r.i. Banach function spaces X(u) for every weight u € Ay.

Further, in [83, Theorem 4.10] the authors considered weights v € A,, in (7.1.1), proving
a more general version of Theorem 2.3.3 involving weighted r.i. Banach function spaces X(u).
Here, for the sake of simplicity, we state a different version of it consisting on introducing,
instead of the Boyd indices, the maximal operator M and its dual induced by a weight
u € Ay defined as

M. f(z) = , reR", fe L. (R"), (7.1.2)

123
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and where we keep track of the constants.

Theorem 7.1.1. Assume that for some pair of nonnegative functions (f,g) and for some
1 < Po < 9O,

U _g(z) (@) dx) g < e(llvll4,,) (L f(x)Pou(x) dm) Y Weed,,  (113)

where ¢ is a nondecreasing function on [1,00). Let X be a r.i. Banach function space and
let uw e Ay, such that

M : X(u) — X(u) and M, : X' (u) = X' (u). (7.1.4)

Then,
-1
9llxay < €1 (Ca 1MLy IM B ) 1 -

In fact, the proof of Theorem 7.1.1 relies on the construction of the following two A;
weights: given hy, hy € L (R"), then

o MFh (MR
Rhy(z) = Z —1(33)]9 and Shy(x) = Z (M,)"ha (@) . xeR",
=0 (21M gy ) =0 (21Me e
satisfy that
(1) |ha(2)] < Rha(z), (1) [ho(2)|u(z) < S(hau)(x),
(2) [[Bha]ly, < 2 [1M]]xu, (2)7 [15(haw) |4, < 2 1M [lxouy
(3) [1RA Iy < 21171 llxuys (3)7 15 (haw) fullxy < 2 llh2ll )

All in all, in order to get estimates over X(u) we first must study whether X is a r.i. Banach
function space and (7.1.4) holds.

Now, take u € Ay, and let X = AP(w) (so that X(u) = AP(w)) for w being a weight in R™.
In [58, Theorem 3.3.5| it was characterized the weighted strong-type boundedness on A? (w)
of the Hardy-Littlewood maximal operator for every 0 < p < o by

M : AP (w) — AP (w) — w € By(u), (7.1.5)

(see Definition 7.1.2 below) while, for p > 1, in [5, Theorem 1.2| the authors showed that
the same holds for the corresponding weighted weak-type boundedness; that is,

M : AP (w) — AP” (w) — w € By(u).
Further, in [3, Theorem 1.1] and [4, Theorem 5.5| it was shown that for p > 1,

H:A(w) > A(w) <— H:A(w)—>A®w) <= webBy(u)nBy. (7.1.6)

u
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Definition 7.1.2. Given 0 < p < o0, we say that w € By(u) if there exists some ¢ > 0 such

that )
({00
(a8, 1) —

(o (U)

where the supremum is taken over every finite family of cubes {Q; }37:1.

sup
E;cQ;,vV1<j<J

< 0, (7.1.7)

Remark 7.1.3. (i) Ifu =1, due to (2.2.9) we have that (7.1.7) is equivalent to w € B,.

(1)) Ifw =1 and 1 < p < o, then (7.1.7) is equivalent to

< max

J 1<j<J
u (szl Ej)

| £l

+ (U @) ('

which agrees with u € A, (see, for instance, [70, 119]).

We observe that, direct from the definition, this class of weights increase with the expo-
nent in the sense that for every 0 < ¢ < p, By(u) < B,(u), and, if w € B,(u) then there
exists some ¢ > 0 such that w € B,_.(u). Further, for every 0 < p < o0, B,(u) € B,, while it
turns out to be an equality if and only if u € ) o144 (see [58, Corollary 3.3.4 and Theorem
3.3.7]). In particular, for every p > 1, if w € B,(u) then A?(w) is a Banach function space.
(We refer the reader to [1, 58| for more details on this class of weights.)

To end this section, we should point out that if we are able to see when M is bounded
over (A2(w))’, by means of Theorem 7.1.1 we will have that, in particular, if 7" satisfies
(7.1.1) for every v € A, then T : AP(w) — AP(w) whenever p > 1 and w € B,(u).

The next section will be devoted to study the boundedness of M over (A2 (w))’.

7.2 Boundedness on the associate space of AL (w)

Our first goal is to see for which conditions on p and the weights u, w,
M, = (Af(w)" — (A (w))’ (7.2.1)

holds, where M/ is the often-called dual Hardy-Littlewood maximal function induced by the
weight u (see (7.1.2)).

(I) If w = 1, it is known that when w € A, (that is, when AP(w) is a r.i. quasi-Banach
function space) then (7.2.1) is equivalent to w € B (see Section 2.2.3).

(I) If w = 1 and 1 < p < oo, then (7.2.1) is equivalent to M/ : L¥ (u) — L¥ (u), which
in turn remains true whenever u € A,. On the other side, for instance, if p < 1 then
(A2 (1))" = {0} (see (2.1.7)) so for this case there is nothing to prove.

To see the general case, we need first a couple of results. Both are related with the
Fefferman-Stein maximal operator (see (5.2.1)).
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Proposition 7.2.1 ([86]). For every f € L} (R™), there exists a linear operator Ly such that

loc

Mf(x) ~ Le(|f])(2), a.e. xeR"

Moreover, the adjoint of Ly, E}, satisfies that for every g € L} (R"),

M# (Z}qu)) (z) < Mg(z),  ae zeR" (7.2.2)

Proposition 7.2.2. Givenue A,, 1 <q <, and w e BY. Iflim o, f(t) =0, then

11z ay < enoea (Nulla, ) Thollgs [132% F 0
where @, is an nondecreasing function on [1,00).

Proof. First, by means of [19, Corollary 4.3 (a)], there exists a nondecreasing function ¢, on
[1,00) such that

ds

S

0 < 0y (1l ) @ (O)2) 0 = o () [ #0205 v

Therefore, due to (2.2.24),

1l < o (I, ) @ (07£)7)

iy < o (Il ) Il (132l

O
With the previous result at hand, we are able to find conditions so that (7.2.1) holds.

Theorem 7.2.3. Given u € Ay. For every 0 < p < o0,

M, o (A2 (w)) — (A? (w))’, Vw € B,(u) n BE.

u

Proof. First, since w € By(u) < B,, we have that (A2(w))" # {0}. Then, by definition of
associate space,

u

HM(fU)

= sup JHM(fu)(x)h(a:) dz, (7.2.3)

(Aﬁ(w)), ”h”Aﬁ(w)<1

where the supremum is taken over all nonnegative functions h satisfying ||h| s,y < 1.

Now, we observe that i can be chosen to be in L*(R"). Otherwise, we can take h; =
xe(o.x)h € L*(R™) (with B(0, k) being the ball of center 0 and radius k) so by the monotone
convergence theorem,

M(fu)(x)h(z)dx = klim M (fu)(x)hy(z)dz,

Rn —00 Rn

and, as well as that [[he]|ye () < [l 2 -
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Hence, take such a nonnegative function h in (7.2.3) satisfying h € L'(R"). Further,
assume that u is bounded and take ¢ > 1 such that v € A,. Then, by Proposition 7.2.1,

Y

A% (w)

n

M(fu)ah(e)d < C, | |F@)|Erulh)whuta) o < Co 7l gy [ Zath)]

Rn
and if we are able to see that

limn (L a(h))%(t) = 0, (7.2.4)

t—00

by virtue of Proposition 7.2.2 and estimate (7.2.2) we will deduce that

[

e (T50)

< cugpa (lulla, ) ol
< nppu (Ilulla,)

@0 (Ilulla, ) ol ps 1Ml

A% (w) A% (w)

N
™

where || M| \p(,,) < o0 since w € By(u).
Thus, we have to show that (7.2.4) holds. However, this is just a consequence of that, by
construction, it is known that Ly, (h) is bounded in L'(R™), so for every y > 0,

u({xeR": |i\f;(h)| >y}> Cy

{xem O

C
h n)
Y LY(R™)—LL®(R") H ”Ll R
and hence,
1. C
() < =2 -
(LfU(h))u(t) ~ t u Ll(Rn)—>L1,OO(Rn) ||h||L1(Rn) T 0

Finally, if u is not bounded, taking N € N, we just have to observe that uy = min(u, N) €
A, (where g depends on u but not on N) is a bounded weight that satisfy

lunlla, <2 ulla, . (IMIlxz ) < 1Mz ) and 1Pz < 1

so that

M(fu)(a)h(z) de = lim | M(fux)@)h(z) dz < Coppg (Ilulls, ) el sy 1Mz

Rn N—w Jgn

]

Remark 7.2.4. When u = 1 we have already pointed out in (I) (at the beginning of this
section) that the only condition imposed on w is to belong into BX n Ay. Nevertheless, in
Theorem 7.2.3 it has appeared also the condition By,(u), which becomes B, when u =1, and
is quite smaller than Ay. This makes us to think that this condition could be improved, but
by the time we are writing this thesis is unknown to us how to do it. However, this is not a
big deal since for our purposes we will also need to assume (7.1.5).
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7.3 Weighted strong-type extrapolation on A?(w)

In this section, we want to study the operators for which for some py > 1,
T:LP(v) — LP(v), Yo e Ay,
and see for which conditions on p, v and w the weighted strong-type boundedness
T : AP (w) - AP (w) (7.3.1)

is satisfied. In particular, by means of Theorem 7.1.1, whenever AP(w) is a Banach function
space and if (7.1.4) holds, then we obtain (7.3.1).

Corollary 7.3.1. Assume that for some pair of nonnegative functions (f,g) and for some
1 <po <, (7.1.3) holds. Let 1 < p < oo and ue Ay. Then,

—1 *
I9llagca < Co0 (Co 1ML oy 1M1 ) W gy Vo € Byla) o B
Proof. Since w € By(u) < B,, then AP(w) is a Banach function space. Therefore, the result
follows by means of Theorems 7.1.1 and 7.2.3, together with (7.1.5). O

Remark 7.3.2. (i) If w = 1, then necessarily p > 1 since 1 ¢ By(u) whenever u € Ay.
Besides, for u e Ay, 1 € By(u) is equivalent to u € A,. Thus, we recover the Rubio
de Francia extrapolation theorem (see Theorem 2.3.1) and, as expected, we can not
extrapolate till the exponent p = 1.

(1) If w = 1, by virtue of Propositions 2.2.11 and 2.2.18, the constant of Corollary 7.5.1

can be estimated by C1o(Cs ||[w| g HwH’gjl).

Remark 7.3.3. At least for p > 1, by means of the Hilbert transform (see (7.1.6)) the
condition B,(u) n B on the weight w of Corollary 7.5.1 is sharp in the sense that it can
not be found a greater class for w.

Remark 7.3.4. If 0 < p < 1, arguing as in the proof of Theorem 7.1.1 for X(u) = AP (w),
and using that AP (w) = (AL(w))?, in addition to that, by means of Theorem 2.5.1, we can
consider pg as big as we want, it can be seen that Corollary 7.3.1 also holds for this range of
p (although with a different constant) since Theorem 7.2.3 is also true for these exponents.

Now, as a consequence of Corollary 7.3.1 and Remark 7.3.4 we have the next result.
Corollary 7.3.5. Let T be an operator satisfying that, for some 1 < pg < o0,
T: LP(v) — L (v), Yo e Ay,

with constants less than or equal to go(||v||ApO), where ¢ is a positive nondecreasing function
on [1,00). Let 0 < p,q < oo and u€ Ay. Then,

T : AP (w) — AP (w), Yw e By(u) n B, (7.3.2)
Further, if T is sublinear,

T : AP*(w) — AP*(w), Yw € B,(u) n By (7.3.3)
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Proof. First, from the definition of the B,(u) class of weights and by Lemma 2.2.19,

we By(u)n BY = @ =Wrtwe By(u) n BX.

Therefore, since [ - [|ypa¢,) = || || s2(z), we obtain (7.3.2) by means of Corollary 7.3.1 and
Remark 7.3.4.

On the other hand, assume now that 7' is sublinear an take 0 < p < o0. Recall that if
w € By(u) n B, there exists some € > 0 such that w € B,_.(u) n B} and w € B,,.(u) n BX.
Hence, again due to Corollary 7.3.1 and Remark 7.3.4,

T: A2~ 5(w) — AP™%(w) and T : AP+ (w) — AP (w),

so that by interpolation on weighted classical Lorentz spaces (see |58, Theorem 2.6.5]) we
obtain (7.3.3).
UJ

For instance, in [60] the authors consider as hypothesis weighted weak-type estimates;
that is, for some 1 < py < 0,

T:LP(v) — LPo%(v), Yo e A, (7.3.4)
and then try to find conditions on p and w for which
T : AP(w) — AP®(w).

However, this is just a consequence of the weighted strong-type extrapolation settled in
Corollary 7.3.1 and Remark 7.3.4.

Corollary 7.3.6. Let T be an operator satisfying (7.3.4) with constant less than or equal
to gp(HvHAPO), with ¢ being a positive nondecreasing function on [1,0). Let 0 < p < o and
u€ Ay. Then,

T:A(w) — AD(w), Yw € By(u) n B

Proof. Observe that
1Ty < @ (I0llay, ) 1 Doy W0 € Ap

implies that for every y > 0,
e (Ivlla,,)

Y

Fix y > 0. Hence, by means of Corollary 7.3.1 and Remark 7.3.4 we obtain that, for every
0<p<owandue Ay,

HX{\Tf|>y}HL1>o(U) < ||f||Lpo(v) ; Vv e Apo-

CTL u,w *
< % Hf“Aﬁ(w) ) Vw e Bp(u) a BOO' (7'3'5)

HX{ITf|>y}HA£(w) =
Therefore, moving y from the right-hand side to the left-hand side of (7.3.5) and taking the

supremum over all y > 0, we obtain the desired result.
]
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Again, for p > 1 and by means of the Hilbert transform (see (7.1.6)) the condition
B,(u) n B% on the weight w of Corollary 7.3.6 is sharp in the sense that it can not be found
a greater class for w. However, in [3, Theorem 1.1] it was also characterized the weak-type
boundedness of the Hilbert transform for the range 0 < p < 1 where it was seen that the
class B,(u) n B was sufficient but not necessary (i.e, it is needed a greater class of weights).
Indeed, if py = 1, in Section 4.2.1 we have shown that

T : A(w) — AV (w), Ywe B n BX,

so it would be interesting to study for a given u € A, if there exists some greater class
of weights than B,(u), let us say Bff(u), so that BJ(1) = BJ, the weighted weak-type
boundedness of the Hilbert transform is characterized by B;f(u) N BX and, assuming that
(7.3.4) holds for py = 1, we can achieve

T : AL (w) — AL (w), Vw e Bif(u) n B%.
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