
Symmetries in Constraint Satisfaction
Weisfeiler-Leman Invariance and Promise Problems

Silvia Butti
TESI DOCTORAL UPF / 2022

Director de la tesi
Dr. Víctor Dalmau Lloret

Department of Information and Communication Technologies

A Gianna

Acknowledgements

I am well aware that these will be the only pages of this thesis that the
vast majority of people will read, and so it only makes sense that I de-
voted what some people would deem a disproportionate amount of time
to writing them. Those who know me well might speculate that this also
provided a not-so-needed excuse for doing one of the things that I do best,
that is, procrastinating difficult tasks (such as writing the actual thesis).
Well, they wouldn’t be wrong. Having said that, the last four years have
been an unimaginable rollercoaster of emotions that went far beyond the
academic process of working towards a PhD, and I sincerely want to thank
everybody who has been a part of this journey, whether big or small.

I must start by thanking my supervisor, Víctor Dalmau, for being just
the right person to guide me through this PhD. Víctor, thank you for
believing in me from the start, for listening to my convoluted ideas and
terrible explanations, and powering through many a deadline weekend
of late-night zoom calls and last-minute hidden mistakes. Thanks for the
constant encouragement and support even when it wasn’t clear that things
were going to work out.

Secondly, thanks to my collaborator and mentor, Libor Barto, for hav-
ing me over in Prague for a summer of CSPs and beers. Thank you Libor
for sharing your time and knowledge with me and for giving me the op-
portunity to learn so much in such a short time.

Finally, I want to thank my MSc supervisor, Standa Živný, for intro-
ducing me to the wonderland of CSPs, and more broadly to the world of
theoretical research, during my studies back in Oxford.

v

vi

Beyond the academic aspect, a lot of people have been working behind
the scenes to make the lives of PhD students like me a little easier, be it
by helping us navigate bureaucracy and paperwork, organize work trips,
or secure funding. Thank you so much to Lydia, Joana, Maria and Ruth
from the Secretaria and to Elsa, Gisela and Paola from La Caixa Founda-
tion for making us your priority every day.

Despite always feeling a little bit like an outsider in an engineering
department, working at DTIC has been an absolute pleasure. Thanks to
everyone who made it such a wonderful place to do (and have a break from)
research, from the beach volley tournaments to the bouldering evenings
to the many nights of bravas and wine around El Poblenou. You are too
many to mention, but you know who you are. In particular, thank you
to the Volleybolud@s and to my Queens & Boomers for being the best
teammates and friends. Thank you to the AI&ML group for making me
feel like I belong (and for the coffee, thank you so much for the coffee!).
Thank you to the Web Science group for adopting me as the weird theo-
retical office mate, and particularly to Ana for your guidance and support
during my first year at DTIC. Thank you Adriá and Antoine for helping
me make this thesis look prettier. Thank you Marina for being the queen
of the Queens (and the queen of errors). Thank you Adri for being there
for me whenever I needed it. E grazie Francesco, zí, for sharing this PhD
adventure with me from the beginning to the end, and for making me
laugh like no one else can. You are the best PhD brother that I could ask
for.

Outside of work, Barcelona immediately felt like home and this is
thanks to the warmth of the people I met here. Thanks to the People
Who Answer, my extra talented and quirky international PhD commu-
nity: Bradley, Christoph, Enrico, Iffy, Ignasi, Ivan, Iván, Loïc, Luca, Max
and Poonam, I had so much fun with you. Thanks for the many dinners,
the day trips, and the curfew-proof pijama parties. And thanks to all
the Lacaixitos for providing a much-needed PhD support group over these
strange times.

vii

Thank you Claire, Gui, Natalia and Peter for our avocado cooking
classes, for bearing with my mathematical models of The Mind, and for
sharing with me the love for dance. And thank you, Felix, for being such
an important part of this journey. Thank you especially for being by my
side through the strange year that was 2020, and turning what could have
been a really difficult time into a sweet memory. I don’t know what I
would have done without you.

Balboa was not just a house for the body, it was a home for the soul.
I was lucky enough that some of the most important people in this PhD
journey have shared this home with me. Thank you Benen, Bruno, Eline,
Lorna and Sofi for being the best housemates, and for putting up with my
weird bedtimes and my morning grumpiness.

Savvas, thank you for being my twin soul, and for taking care of me
day by day. Thank you for being my biggest cheerleader in the final sprint
before submission, and for telling me that “we’ve got this” so many times
that I finally started to believe it.

And thank you Aru and Yasmin, my Barcelonetas, for being like sisters
to me from the very beginning and throughout. Thank you because with
you I grew, learned, laughed, cried, and laughed even more.

My time in Prague was special beyond what I learned academically:
it made me fall in love with my work all over again after a long year
of lonely home office. I must thank the CSP community for being so
warm and welcoming and for the many beers, table football matches, and
karaoke nights in Prague and beyond. Thank you Albert for the late night
talks in the middle of the Slovenian mountains (and for being the abso-
lute best kicker teammate). Thank you Jakub for pushing me to climb
higher than I think possible - both physically and metaphorically - and
for being there to catch me if I fall. And Kristina, my coauthor and CSP
sister, thank you for travelling the world with me, one conference at a time.

Some people were there much before I started the PhD, and were just
exceptional at sticking with me despite the distance and my terrible track
record for online communication. I am grateful to each and every one of
you for not giving up on me, for visiting me in Barcelona or just calling

viii

me every now and then, and I can’t wait to see you again.
Thank you Antonio for our math-dance common language, Aryan for

infecting me with some of your love for algebra, Bea for our first trip
to Barcelona back in 2016, Carlos for the neverending philosophical con-
versations, Dani for the WhatsApp podcasts, Danny for our improvised
halušky lunch, Erika for our 23 year old friendship, Eva, Fenix and Jelle
for bringing a little bit of London to Barcelona, John for the cat pictures,
Josef for the Ryzlink-infused dancing, Laura for making me nostalgic of
Oxford, Rui for your fluffiness, and Ryan for the books in the mail.

To my dream team, Eddy and Réka, thank you for being so talented and
inspiring. Having each other as friends and role models to walk together
on the not-so-beaten path of being women mathematicians was one of the
best gifts that my time at UCL could give me.

And to my Interrail gang, Anna, Fillo, Giec, Tia and Ventu: in ten
years where everything changed, our friendship has been the one thing
that stayed. Thank you for our NYEs turned long weekends across Eu-
rope, I can’t wait to see where the road will take us next.

Ai miei nonni mi rivolgerò in italiano. Grazie a Nonna Armida per la
determinazione della sua scolorina. Grazie a Nonno Walter che a distanza
di anni trova sempre nuovi modi di parlarmi e guidarmi. E a Nonna
Gianna, che mi ha cresciuta e nutrita di cibo e amore come una seconda
mamma, grazie per avermi insegnato l’arte dei veri abbracci.

To my incredible sister Elena, thank you for teaching me how to read
and write, add and multiply, and for giving me nothing short of excellence
as an example: it is by watching you succeed that I learned about the
power of hard work and dedication. And of course, thank you for being
my forever best friend, sore.

And finally to my wonderful parents, il Ciano e la Dodo, thank you
for proudly embracing me and my quirks, and for loving me for and not
despite being a bit of a strange human. Thank you for being my point of
reference, my biggest supporters and my safety net, and most importantly,
thank you for saving the Sudokus from Il Corriere della Sera for me every
day, year after year, so that I could start playing with CSPs before I even
knew that CSPs existed.

ix

My studies took me from the shores of the river Adige to the Thames,
to the Vltava, to the Mediterranean sea, but deep down my heart always
belonged in the mountains. Il Monte Altissimo since childhood, and more
recently el Massís de Montserrat, have taught me that the road might be
a long and difficult one but that this is precisely why the views from the
summit are so beautiful.

In a way, I see this work as my own personal mountain which, with
the help of teachers and mentors and the support of friends and family, I
was able to discover, explore, give shape to, and ultimately climb. I hope
that you will join me at the top and enjoy the view with me.

Abstract

This thesis focuses on the complexity of the fixed-template Constraint Sat-
isfaction Problem (CSP) and its variants. Our contributions are two-fold.
On the one hand, we study how closure of the space of CSP instances un-
der an equivalence relation induced by the 1-dimensional Weisfeiler-Leman
algorithm correlates with solvability by the Sherali-Adams hierarchy of lin-
ear programs, invariance of the template under symmetric operations, and
tractability by distributed algorithms. We then extend this analysis to the
more general framework of Promise Valued CSPs. On the other hand, we
initiate the study of the complexity of the Promise Model Checking Prob-
lem (PMC) parametrised by the model for the existential positive and the
positive fragments of first-order logic. We lay the foundations for an al-
gebraic approach to these problems, which allows us to fully characterize
the complexity of the PMC for the existential positive fragment and to
give a number of upper and lower bounds for the positive fragment.

x

Resumen

Esta tesis se centra en la complejidad del Problema de Satisfacción de
Restricciones (Constraint Satisfaction Problem, CSP) de plantilla fija y
sus variantes. Nuestras aportaciones se dividen en dos grupos. Por un
lado, estudiamos cómo la clausura del espacio de instancias del CSP bajo
una relación de equivalencia inducida por el algoritmo unidimensional de
Weisfeiler-Leman se correlaciona con la resolubilidad por la jerarquía de
programas lineales de Sherali-Adams, la invariabilidad de la plantilla bajo
operaciones simétricas y la tratabilidad por algoritmos distribuidos. A
continuación, extendemos esta análisis al marco más general de los Pro-
mise Valued CSPs. Por otro lado, iniciamos el estudio de la complejidad
del Promise Model Checking Problem (PMC) parametrizado por el modelo
para los fragmentos existencial positivo y positivo de la lógica de primer
orden. Fijamos las bases de un enfoque algébrico para estos problemas,
que nos permite caracterizar completamente la complejidad del PMC para
el fragmento existencial positivo, y dar una serie de límites superiores e
inferiores para el fragmento positivo.

xi

Resum

Aquesta tesi se centra en la complexitat del Problema de Satisfacció de
Restriccions (Constraint Satisfaction Problem, CSP) de plantilla fixa i
les seves variants. Les nostres aportacions es divideixen en dos grups.
D’una banda, estudiem com la clausura de l’espai d’instàncies del CSP
sota una relació d’equivalència induïda per l’algorisme unidimensional de
Weisfeiler-Leman es correlaciona amb la resolubilitat per la jerarquia de
programes lineals de Sherali-Adams, la invariabilitat de la plantilla sota
operacions simètriques i la tractabilitat per algorismes distribuïts. A con-
tinuació, estenem aquesta anàlisi al marc més general dels Promise Valued
CSPs. D’altra banda, iniciem l’estudi de la complexitat del Promise Model
Checking Problem (PMC) parametritzat pel model per als fragments exis-
tencial positiu i positiu de la lògica de primer ordre. Fixem les bases d’un
enfocament algèbric per aquests problemes, que ens permet caracteritzar
completament la complexitat del PMC per al fragment existencial positiu
i donar una sèrie de límits superiors i inferiors per al fragment positiu.

xii

Sommario

Questa tesi si concentra sulla complessità del Problema di Soddisfacimento
di Vincoli (Constraint Satisfaction Problem, CSP) a modello fisso e delle
sue varianti. Il nostro contributo è duplice. In primo luogo, studiamo co-
me la chiusura dello spazio delle istanze del CSP rispetto a una relazione
di equivalenza indotta dall’algoritmo unidimensionale di Weisfeiler-Leman
sia correlata alla risolvibilità mediante la gerarchia di programmi lineari
di Sherali-Adams, all’invarianza del modello rispetto a operazioni simme-
triche e alla trattabilità mediante algoritmi distribuiti. Estendiamo poi
questa analisi al quadro più generale del Promise Valued CSP. In secondo
luogo, avviamo lo studio della complessità del Promise Model Checking
Problem (PMC) parametrizzato dal modello per i frammenti esistenziale
positivo e positivo della logica del primo ordine. Poniamo le basi per un
approccio algebrico a questi problemi, che ci permette di caratterizzare
completamente la complessità del PMC per il frammento esistenziale po-
sitivo e di fornire una serie di limiti superiori e inferiori per il frammento
positivo.

xiii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Manuscript Outline and Contributions 3

2 Background 7
2.1 The Constraint Satisfaction Problem 7

2.1.1 The algebraic approach 10
2.2 Extensions of the CSP . 12

2.2.1 Promise Constraint Satisfaction Problems 13
2.2.2 Valued Constraint Satisfaction Problems 14
2.2.3 Quantified Constraint Satisfaction Problems 16

3 Preliminaries 19

I Weisfeiler-Leman Invariant and Distributed CSPs 27

4 Introduction 29

5 Relaxation techniques 33
5.1 Combinatorial relaxations of isomorphism 33

5.1.1 Fractional isomorphism of graphs 33
5.1.2 From graphs to relational structures 36

5.2 Linear Programming . 40

xv

xvi

5.2.1 The Sherali–Adams hierarchy for CSPs 41
5.2.2 Applying the SA method exactly 46

5.3 Local Consistency . 49

6 Distributed CSPs 53
6.1 Introduction . 53
6.2 Distributed CSPs . 55
6.3 The Structure Theorem . 65
6.4 The Complexity of DCSP 70

6.4.1 Intractable Templates 70
6.4.2 Tractable Templates 76
6.4.3 The Search Algorithm 82

7 Weisfeiler-Leman Invariant CSPs 85
7.1 Introduction . 85
7.2 The Decomposition Theorem 87
7.3 Weisfeiler-Leman invariant CSPs 91

8 Weisfeiler-Leman Invariant Promise Valued CSPs 95
8.1 Introduction . 95
8.2 Promise Valued CSPs . 97
8.3 Fractional operations . 100
8.4 The Decomposition Theorem for valued structures 107
8.5 Weisfeiler-Leman invariant PVCSPs 108

9 A Glimpse on the Higher Levels 115
9.1 k-WL, Counting Logics, and Treewidth 115
9.2 Sherali-Adams meets Weisfeiler-Leman 119
9.3 Proof of Lemma 9.4 . 122
9.4 Proof of Theorem 5.4 . 123
9.5 Proof of Theorem 9.7 . 136

10 Conclusion 145

CONTENTS xvii

II Promise Model Checking 147

11 Introduction 149
11.1 Introduction . 149

11.1.1 Model checking problem parametrized by the model 150
11.1.2 Promise model checking problem 152

11.2 Preliminaries . 154
11.3 Interesting fragments . 159

12 The Complexity of Promise Model Checking 161
12.1 Existential positive fragment 161

12.1.1 Characterization of templates and p-L -definability . 161
12.1.2 Complexity classification 164

12.2 Positive fragment . 165
12.2.1 Witnesses for quantified formulas 165
12.2.2 Characterization of templates and p-L -definability . 166
12.2.3 Membership . 168
12.2.4 Hardness . 171
12.2.5 Summary . 175

13 Conclusion 177

Bibliography 179

Glossary of Abbreviations 201

Funding 203

List of Figures

1.1 Roadmap of this manuscript. 6

3.1 The component-wise application of a polymorphism. 23

5.1 Iterated degree as infinite tree. 35

5.2 ≡1-equivalent non-isomorphic graphs. 36

8.1 Diagram of the proof of Theorem 8.7. 113

9.1 ≡1-equivalent non-isomorphic 3-regular graphs. 116

9.2 Vandermonde Matrix. 129

9.3 A winning strategy closed under odd chains. 142

11.1 Known complexity results for L -MC(A). 152

11.2 Complexity results for L -PMC(A,B). 154

13.1 An example of unknown complexity. 178

xix

1 Introduction

1.1 Motivation

What makes a computational problem easy or hard? This question is at
the heart of all the research in computational complexity, that is, the
science of determining whether or not there exist ‘fast’ algorithms to
solve certain computational problems, and of classifying such problems
into broad classes induced by the (asymptotic) speed of these algorithms.

The relevance of studying the speed of algorithms in today’s Digital
Age could not be overstated. In fact, the most important open problem in
computational complexity, which asks whether the complexity classes P
and NP coincide – that is, whether for all problems for which a solution can
be verified to be correct in polynomial time, a solution can also be found
in polynomial time – is one of the seven Millennium Prize Problems in
mathematics. A resolution of the P versus NP problem in either direction
would have far-reaching consequences in virtually all aspects of life as we
know it, with tangible applications in cryptography, artificial intelligence,
operations research, and philosophy of science just to name a few [Imp95].
A proof that P = NP would even drastically revolutionise mathematics as
it would, in the words of Stephen Cook, “allow a computer to find a formal
proof of any theorem that has a proof of reasonable length” [Coo00].

The fact that the P versus NP problem remains wide open indicates
that, as a scientific community, we still do not have a satisfactory answer
to the question that we opened this thesis with. The study of constraint
satisfaction problems can be an incredibly good laboratory to look for

1

2

these answers and, hence, contribute to the grand challenge of better un-
derstanding the sources of tractability for computational problems. This
is the context that we wish to position this thesis in.

The constraint satisfaction problem (CSP) is, informally, the problem
of finding an assignment from a set of values to a set of variables that sat-
isfies a series of given constraints on the values that the variables can take.
CSPs originated around 40 years ago independently in different communi-
ties, and it was only relatively recently that the questions asked by these
different communities were brought together under a common framework.
The benefits of studying the CSP arise from the fact that it is a general
enough framework to express a wide range of computational problems
(including various complete problems for the standard complexity classes
mentioned above), yet it maintains a rich mathematical structure that
allows researchers to draw techniques from fields as diverse as universal
algebra, finite model theory, graph theory, combinatorics, and more.

The fundamental observation in constraint satisfaction theory is that
the computational complexity of these problems is fully determined by a
class of symmetries on the space of solutions of said problems. In par-
ticular, more symmetries guarantee the correctness of certain polynomial
time algorithms (and hence yield tractable problems), while the lack of
symmetries in the solution space of a CSP produces a reduction to 3-SAT
(the prototypical NP-complete problem) and hence implies that the CSP
is intractable.

Symmetries in the context of the CSP and its extensions will arise in
this thesis under different guises: in the classical form of polymorphisms
giving tractability of CSPs by certain algorithms; in the form of (surjec-
tive) multi-homomorphisms determining the complexity of an extension
of the CSP known as the Model Checking Problem; and in the unusual
form of an equivalence relation on the variables of a CSP instance induced
by the Weisfeiler-Leman algorithm, which bears surprising connections to
solvability by linear programs, distributed computing, and even polymor-
phisms themselves.

1. Introduction 3

1.2 Manuscript Outline and Contributions

This thesis is organized as follows. In Chapter 2 we introduce constraint
satisfaction problems in a little more detail and present some of the classi-
cal results in CSP theory. Furthermore, we introduce three generalisations
of the CSP: Promise, Valued, and Quantified CSPs.

In Chapter 3 we set the notation and provide all the definitions that
the reader ought to be familiar with in order to proceed with the reading.
The thesis is then divided in two parts.

Part I is dedicated, broadly, to the study of CSPs solvable by linear
programming algorithms. In fact, the main contribution of this part of the
thesis is perhaps the addition of two novel characterizations of the class
of CSPs solvable by a certain linear program: one in terms of solvability
by distributed algorithms, and the other in terms of invariance under an
equivalence relation induced by the Weisfeiler-Leman algorithm. Chapter
4 serves as a discursive introduction for this first part of the thesis.

In Chapter 5 we present some more technical background on three
types of relaxations techniques that will appear again and again in the
subsequent chapters: particularly, the Weisfeiler-Leman isomorphism test
(whose application in the context of CSPs is new to this work), linear
programming relaxations for CSPs, and local consistency methods. While
the majority of this chapter consists of background material that may be
already known to the reader who is familiar with CSPs, we also introduce
some definitions that are novel in this work.

In Chapter 6 we study the complexity of solving CSPs via distributed
algorithms. The main result of this chapter is a dichotomy theorem for
the Distributed CSP: we show that this problem is solvable in polynomial
time if and only if the template is invariant under symmetric polymor-
phisms of all arities. The results in this chapter have been published in

[BD22] Silvia Butti and Víctor Dalmau. The Complexity of the
Distributed Constraint Satisfaction Problem. Theory of
Computing Systems, 2022.

An extended abstract of this work appeared in

4

[BD21b] Silvia Butti and Víctor Dalmau. The complexity of the
distributed constraint satisfaction problem. In Proceed-
ings of the 38th International Symposium on Theoretical
Aspects of Computer Science (STACS 2021).

In Chapter 7, drawing inspiration from the methods used to establish
the dichotomy for the distributed CSP, we explore the connection between
linear programming and the Weisfeiler-Leman method. The main result
of this chapter is a decomposition theorem for the first level of a hierar-
chy of linear programs obtained using the Sherali-Adams lift-and-project
method. Using the decomposition theorem, we obtain the aforementioned
novel characterizations of CSPs solvable by said linear program. These
results appeared in1

[BD21a] Silvia Butti and Víctor Dalmau. Fractional Homomor-
phism, Weisfeiler-Leman Invariance, and the Sherali-
Adams Hierarchy for the Constraint Satisfaction Prob-
lem. In Proceedings of the 46th International Sympo-
sium on Mathematical Foundations of Computer Science
(MFCS 2021).

In Chapter 8 we show that the connection explored in the previous
chapter extends to the more general framework of Promise Valued CSPs,
establishing an analogous decomposition theorem for valued structures.
As above, we use this decomposition theorem to study the characteriza-
tion of PVCSPs solvable by a certain linear program. Collaterally, we show
that two commonly used linear programming relaxations are no longer
equivalent in this broader framework. These results appeared in

[BB22] Libor Barto and Silvia Butti. Weisfeiler-Leman Invari-
ant Promise Valued CSPs. In Proceedings of the 28th
International Conference on Principles and Practice of
Constraint Programming (CP 2022).

Finally, in Chapter 9 we lift the connection between the Weisfeiler-
Leman method and linear programming to higher dimensions. In partic-

1It is worth noting that many of the proofs as we present them here have been
substantially rewritten and simplified, drawing inspiration from the follow-up [BB22].

1. Introduction 5

ular, we lift the decomposition theorem studied in the previous chapters
to higher levels of the Sherali-Adams hierarchy. Moreover, we define a
higher-dimensional notion of Weisfeiler-Leman equivalence for relational
structures, and characterize it in terms of homomorphism indistinguisha-
bility. These results also appeared in

[BD21a] Silvia Butti and Víctor Dalmau. Fractional Homomor-
phism, Weisfeiler-Leman Invariance, and the Sherali-
Adams Hierarchy for the Constraint Satisfaction Prob-
lem. In Proceedings of the 46th International Sympo-
sium on Mathematical Foundations of Computer Science
(MFCS 2021).

In Chapter 10 we conclude Part I by proposing some open questions
and directions for future work.

In Part II we take a logical perspective and regard the CSP as the
model checking problem over the positive existential conjunctive fragment
of first-order logic. Motivated by recent developments in the area, we
study a problem that extends the CSP in two directions. First, we consider
different fragments of first-order logic which arise from different choices
of quantifiers and connectives. Second, we transform this into a promise
problem by considering two models, one ‘strong’ and one ‘weak’, and only
ask to distinguish sentences that are satisfiable in the strong model from
those that are not even satisfiable in the weak model.

We call this problem the Promise Model Checking problem (PMC) and
introduce it in Chapter 11. As our main contributions, in Chapter 12
we give a dichotomy for the PMC over the existential positive equality-
free fragment of first-order logic, and we show that the PMC over the
positive equality-free fragment includes problems that are complete for
at least four standard complexity classes. We conclude in Chapter 13 by
discussing some concrete open problems whose complexity we still do not
fully understand. These results appeared in

[ABB22] Kristina Asimi, Libor Barto and Silvia Butti. Fixed-
Template Promise Model Checking Problems. In Pro-
ceedings of the 28th International Conference on Princi-
ples and Practice of Constraint Programming (CP 2022).

6

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6 Chapter 7

Chapter 8 Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Figure 1.1: Roadmap of this manuscript.

2 Background

In this chapter we introduce constraint satisfaction problems and
discuss the main recent results in the field. We then briefly survey
three extensions of the classical problem.

2.1 The Constraint Satisfaction Problem

The Constraint Satisfaction Problem (CSP) consists of a collection of vari-
ables and a collection of constraints where each constraint specifies the
valid combinations of values that can be taken simultaneously by the vari-
ables in its scope. The goal is to decide if there exists an assignment of the
elements of a domain to the variables that satisfies all constraints. The
CSP is a very rich mathematical framework that is general enough to en-
compass many important computational problems such as various versions
of logical satisfiability, graph coloring, and systems of linear equations, as
well as applications in areas as diverse as artificial intelligence, optimiza-
tion, computer algebra, computational biology, computational linguistics,
among many others [RBW06, KŽ17b].

Formally, an instance of the CSP is commonly defined as a triple
(X,D,C) where X is a finite set of variables, D is a finite domain, and C is
a finite set of constraints. Each constraint c ∈ C is a pair ((x1, . . . , xr), R)
where (x1, . . . , xr) is a tuple of elements from X and R is an r-ary re-
lation on the domain D. The goal is then to decide if there exists a
map h : X → D such that all the constraints are satisfied – that is,
(h(x1), . . . , h(xr)) ∈ R for each ((x1, . . . , xr), R) ∈ C.

7

8

As a simple exercise, the reader can verify that if all the constraints
are the binary inequality relation, then an instance (X,D,C) of the CSP
is the problem of deciding whether a given graph (with vertex set X and
edge set defined by C) is |D|-colourable.

Aside from the decision problem, which is the primary focus of this
thesis, there are various other interesting computational problems that
arise from the CSP framework, such as the problem of finding a satisfying
assignment (under the assumption that one exists) [BJK05], the problem
of finding an assignment that satisfies the maximum number of constraints
(where a fully satisfying assignment may not exist) [DJKK08], the problem
of counting the number of satisfying assignments [Jer17]. Going back
to the graph colouring example, the above problems correspond to the
following tasks respectively: given a graph G defined by (X,C) as above,
find a proper |D|-colouring of G; find a |D|-colouring of G that maximizes
the number of non-monochromatic edges; count in how many ways G can
be |D|-coloured with a proper colouring.

There are a number of alternative formulations for the constraint sat-
isfaction problem. The one that is most commonly used by universal
algebraists is the homomorphism formulation [FV98, Jea98]: given a pair
of relational structures X and A, the constraint satisfaction problem asks
to decide whether X is homomorphic to A. Going back once again to the
example above, the d-coloring problem can be encoded as the problem of
deciding whether a given graph is homomorphic to Kd, where Kd denotes
the clique on d vertices.

Alternatively, one can regard the CSP as a model checking problem
[MM18]. Given a structure A (also called a model) and a sentence ϕ in a
specified logic, the model checking problem asks whether A ⊨ ϕ, that is,
whether ϕ is satisfied in A. If we require that the model is purely relational
and we restrict the logic to the positive existential conjunctive fragment of
first-order logic, we obtain precisely the constraint satisfaction problem.
Notice that this logical formulation of the CSP can also be viewed as the
problem of evaluating the truth value of a Boolean conjunctive query over
a relational database [KV00].

It is not difficult to see that these three formulations of the CSP are all
equivalent. In this thesis, we will predominantly use the homomorphism
formulation. However, in Part II, it will be convenient to switch to the

2. Background 9

logical formulation.
The CSP in its full generality is NP-complete, as it can encode famously

NP-complete problems such as 3-SAT and graph colouring. Consequently,
an important research effort has been put into identifying tractable frag-
ments of the problem, in particular by fixing the target structure A, also
known as the template. This version of the problem is known as the fixed-
template1 CSP and, together with its variants, will be the main focus of
this work.2 In particular, the phrase “a CSP” will mean the CSP over
some fixed template.

The first seminal result in the field is Schaefer’s dichotomy theorem for
the CSP on the Boolean domain: in his influential 1978 paper, Schaefer
showed that for every fixed Boolean template A, the CSP over A is either
solvable in polynomial time or it is NP-complete [Sch78]. Subsequently,
Hell and Nešetřil [HN90] showed that a parallel dichotomy holds for all
the CSPs where the template is a graph: in particular, they showed that
for every graph A, CSP(A) is in the complexity class P if A is bipartite,
and is NP-complete otherwise.

Motivated by these results, in their foundational 1998 paper [FV98],
Feder and Vardi conjectured that this dichotomy holds for all CSPs: that
is, for every finite-domain template A, the CSP over A is either solvable
in polynomial time or it is NP-complete. This hypothesis came to be
known as the dichotomy conjecture, and has been the starting point for
an intensive research program in the subsequent 20 years.

The stepping stone that allowed the field to flourish was the observa-
tion that the complexity of the fixed-template CSP depends only on the
template’s invariance under certain operations, now known as its poly-
morphisms. This idea, which came to be known as the algebraic approach
to constraint satisfaction, was pioneered in [JCG97, Jea98]. Thanks to
the algebraic approach, the dichotomy conjecture was confirmed for the
3-element domain [Bul06] and for smooth digraphs (i.e., directed graphs
with no sources and no sinks) [BKN09].

In 2005, Bulatov, Jeavons and Krokhin [BJK05] gave a first formulation

1Sometimes this is also referred to as the non-uniform CSP.
2We remark that considerable work has also been devoted to the study of the CSP

with structural or left-hand side restrictions, see [Gro07].

10

of the dichotomy conjecture in algebraic terms, and proved the hardness
side: informally, that if a template has no non-trivial higher-dimensional
symmetries, then the corresponding CSP is NP-complete. It took until
2017 for the tractability direction to be confirmed, with the two indepen-
dent proofs of Bulatov [Bul17] and Zhuk [Zhu17, Zhu20], who provided
polynomial time algorithms for all the CSPs that exhibit said non-trivial
symmetry. Recall that, if P ̸= NP, then NP contains problems of interme-
diate complexity [Lad75]. As observed two decades earlier by Feder and
Vardi, the results of Bulatov and Zhuk – and hence the positive answer to
the dichotomy conjecture – imply that the constraint satisfaction problem
is one of the largest classes of computational problems that exhibit a P
versus NP-complete dichotomy.

Recently, Barto et al. [BBB+21] proposed a unifying framework for the
three approaches that had been deployed to attack the dichotomy conjec-
ture: the aforementioned theories of Bulatov and Zhuk, and absorption
theory [BK17], which had proved so fruitful in the characterization of
CSPs solvable by local consistency methods (more about this in Section
5.3).

The recent post-dichotomy years have also seen an increasing interest
in researching “variations on the theme” of the CSP. Many of these will be
touched upon in this thesis. We introduce the main extensions of the CSP
in Section 2.2, but first, let us discuss the fundamentals of the algebraic
approach to the CSP in a little more detail.

2.1.1 The algebraic approach

In this section we discuss some basic concepts that are at the core of what
is known as the algebraic approach to constraint satisfaction. For a more
substantial introduction to the topic, see the surveys [Che09, BKW17].
While not all the concepts introduced in this section will be used directly
in this thesis, the idea that the complexity of a computational problem is
a product of its symmetries (or the lack thereof) will be a common thread
in the entirety of this work.

A primitive positive formula (pp-formula for short) is a formula in
first-order logic which only uses atomic formulas, the equality relation,
conjunction, and existential quantification. Let A, A′ be relational struc-

2. Background 11

tures on the same domain. We say that A pp-defines A′ if all the relations
in A′ can be defined via pp-formulas that only use atomic formulas (i.e.,
relations) from A. The largest relational structure that can be pp-defined
from A will be denoted ⟨A⟩. Note that ⟨A⟩ potentially has infinitely many
relations. The set of relations of ⟨A⟩ will be called a relational clone (or
simply co-clone), the reason for this will become clear later.

An easy gadget reduction gives the following theorem.

Theorem 2.1. Let A, A′ be relational structures on the same domain.
If A pp-defines A′, then CSP(A′) is log-space reducible to CSP(A).

We say that an n-ary operation f preserves a relation R if whenever we
apply f component-wise to any combination of tuples from R, we obtain
another tuple in R. If f preserves all the relations of a relational structure
A, then we say that f is a polymorphism of A. The set of polymorphisms
of A will be denoted Pol(A).

A clone is a set of finite-arity operations over the same set that contains
all the projections and is closed under composition. It turns out that for
every relational structure A, Pol(A) forms a clone. On the other hand,
for a set of operations F , we will denote by Inv(F) the largest relational
structure that has all operations in F as polymorphisms.

The following theorem, due to Geiger [Gei68] and Bodnarchuk et al.
[BKKR69a, BKKR69b], establishes a Galois connection between clones
and relational clones.

Theorem 2.2 ([Gei68, BKKR69a, BKKR69b]). Let A be a finite-domain
relational structure. Then, ⟨A⟩ = Inv(Pol(A)).

That is, a relation R is pp-definable from A if and only if all poly-
morphisms of A preserve R. Putting together Theorems 2.1 and 2.2, we
obtain that the complexity of CSP(A) is fully determined by Pol(A). This
is made explicit in the following theorem, due to [Jea98], which is at the
heart of the algebraic approach to constraint satisfaction.

Theorem 2.3 ([Jea98]). Let A, A′ be relational structures on the same
domain. If Pol(A) ⊆ Pol(A′), then CSP(A′) is log-space reducible to
CSP(A).

12

Theorem 2.3 then justifies making statements about the complexity
of CSPs in terms of invariance under polymorphisms. In particular, we
can reformulate the dichotomy conjecture – now Dichotomy Theorem – in
algebraic terms.

We say that an operation f is weak near-unanimity (WNU) if for all
x, y in the domain of f , it holds that

f(y, x, . . . , x) = f(x, y, . . . , x) = . . . = f(x, x, . . . , y).

It turns out that WNU operations capture the notion of “non-trivial
symmetry” mentioned above.3 Then, the Dichotomy Theorem can be
rephrased as follows.

Theorem 2.4 ([Bul17, Zhu20]). Let A be a finite-domain relational struc-
ture. If A has a WNU polymorphism of some arity, then CSP(A) is in
P. Otherwise, CSP(A) is NP-complete.

We point out that the algebraic approach has since been developed fur-
ther, for instance, stronger definability notions have been developed (with
an appropriate Galois correspondence in terms of polymorphisms) that
allow for reductions between relational structures on different domains,
see [BOP18]. Moreover, the meta-problem of the complexity of check-
ing invariance under certain classes of polymorphisms has been studied in
[CL17].

2.2 Extensions of the CSP

In this section, we briefly discuss three extensions of the CSP that have
received a lot of attention in recent years and that will be relevant to
the rest of the thesis. Other extensions, such as the infinite-domain CSP
[Bod21], surjective CSP [BKM12], or counting CSP [Jer17] are outside the
scope of this thesis.

3We point out that WNU operations are not the only source of non-trivial higher-
dimensional symmetry. In fact, equivalent characterizations for the dichotomy theorem
are available in terms of cyclic, Siggers, and Taylor operations [BKW17].

2. Background 13

2.2.1 Promise Constraint Satisfaction Problems

Currently, one of the most promising research directions in the field of
constraint satisfaction is the recently introduced framework of the Promise
Constraint Satisfaction Problem (PCSP). Intuitively, in this setting each
constraint comes in two forms, one strong and one weak, and the task is to
distinguish whether the input is satisfiable in the strong sense, or it is not
satisfiable even in the weak sense. Here, the “promise” is that the input
will fall precisely into one of these cases. More formally, a PCSP template
is a pair of structures (A,B) such that there is a homomorphism from A to
B, and the PCSP over (A,B) is the problem of distinguishing structures
homomorphic to A from those that are not homomorphic to B. In the
search version, the input structure is guaranteed to be homomorphic to
A, and the task is to find a homomorphism to B. Note that when A and
B coincide, the PCSP reduces to the CSP.

A well-known family of PCSP examples is the problem of distinguishing
c-colourable graphs from those that are not even d-colourable for some
fixed d ≥ c. Formally, this can be encoded as the PCSP over (Kc,Kd).
Dating back to the 1970s [GJ76], the complexity of the approximate graph
colouring problem – though conjectured to be NP-hard for all d ≥ c ≥ 3
– is still not well understood, and prior to recent years the only known
result was the hardness of 4-colouring a 3-colourable graph [KLS00].

PCSPs were originally introduced in [AGH17], where the authors de-
fined a natural extension of the notion of polymorphism4 and used this
newly developed theory to establish NP-hardness of a particular version
of approximate Boolean satisfiability which they called (2 + ε)-SAT.

Building on [AGH17], in a series of papers [BG19, BG20, BGWŽ20]
Brakensiek and Guruswami gave algebraic conditions for tractability of
PCSPs by certain algorithms based on convex relaxations, providing fur-
ther evidence that, much like in the CSP setting, the complexity of promise
problems also depends on the higher-level symmetries encapsulated in the
notion of polymorphism. Moreover, the authors were able to provide a di-
chotomy for a family of Boolean PCSPs [BG21], leading to further study
in [FKOS19].

An important advancement in the development of an algebraic theory
4Called weak polymorphism in [AGH17].

14

of PCSPs was added in [BKO19, BBKO21], where the authors showed
that the complexity of a PCSP does not depend on the associated poly-
morphisms per se but rather on the identities satisfied by said polymor-
phisms. This observation – and the theory that was developed upon it –
was the foundation to overcome what is maybe the main obstacle in lifting
results from the classical CSP theory to PCSPs, that is, the fact that in
the promise world polymorphisms are not closed under composition.

One of the main applications of the new algebraic approach was the
NP-hardness of various approximate graph colouring problems, includ-
ing the hardness of 5-colouring a 3-colourable graph, which represented
a major breakthrough. Despite considerable subsequent progress [WŽ20,
AD22, CŽ22b], the complexity of approximate graph colouring in its full
generality is still an open problem.

While a complete complexity classification for PCSPs seems currently
far away, in recent years there have been substantial developments in the
understanding of the power of specific algorithms for PCSPs, e.g. of con-
vex relaxations [BGWŽ20, CZ22a], constant levels of the Sherali-Adams
hierarchy [CŽ22b], or local consistency methods [AD22].

2.2.2 Valued Constraint Satisfaction Problems

The framework of Valued Constraint Satisfaction Problems (VCSP) is a
generalization of the CSP that has an optimisation flavour. For a compre-
hensive introduction to Valued CSPs, we refer the reader to [KŽ17a].

In the VCSP, instead of relations we consider valued relations (also
known as cost functions) – mappings that assign to tuples rational or
positive infinite costs. That is, each valued relation R of arity r over a
finite domain D is a function from Dr to Q∪ {∞}, and an instance of the
VCSP is specified by a set of variables X = {x1, . . . , xn} and an objective
function of the form

R(x1, x2) + R(x3, x1) + S(x2, x4, x1) + R(x3, x3) + . . . (2.1)

where each of the addends is a valued constraint, that is, a formal
expression of the form R(x) where R is a valued relation of arity r and
x ∈ Xr.

2. Background 15

In the search version of the VCSP, the task is to find an assignment
h : X → D such that R(h(x1), h(x2)) + R(h(x3), h(x1)) + . . . is minimal.
In the decision version, the instance is such a sum together with a rational
number τ and the goal is to decide whether the minimum is at most τ .

Notice that (the decision version of) the VCSP indeed generalizes the
CSP since relations can be modelled by {0,∞}-valued relations.5 On the
other hand, MaxCSP [DJKK08, MM17] – where the aim is to maximize
the number of satisfied constraints given a CSP instance – is exactly the
VCSP over {0, 1}-valued relational structures. The VCSP framework also
includes many problems of a mixed optimization and combinatorial nature,
such as the Vertex Cover Problem (see [KŽ17a]).

The algebraic approach to the Valued CSP was pioneered in [CCC+13],
where the authors (based on a series of preliminary results in [CCJ06,
Živ09, CCJŽ11, CŽ11]) showed that, just like in the CSP case, the com-
plexity of the VCSP is also determined by invariance under certain oper-
ations, which are now commonly referred to as fractional polymorphisms.
Using the newly established Galois connection between valued relations
and weighted clones (i.e., appropriately closed sets of fractional polymor-
phisms), the authors were able to rederive a complete complexity classifi-
cation of the VCSP on the Boolean domain, which was previously known
from [CCJK06] using somewhat different techniques.

The algebraic approach was further developed in [KO15], where an
analogue of the CSP dichotomy conjecture for VCSPs was formulated
and the hardness direction was shown to hold. The tractability part was
conformed shortly after in [KKR17], under the assumption that the cor-
responding CSP classes are tractable, thus reducing the VCSP dichotomy
conjecture to the CSP dichotomy conjecture. The Bulatov-Zhuk theorem
therefore also implies a P versus NP-complete dichotomy for VCSPs.

We note that substantial results have also been obtained for problems
related to the VCSP other than its fixed-template complexity, such as a
complexity classification of finite-valued CSPs [TŽ16] and of left-hand side
restricted VCSPs [CRŽ22], and results on the power of specific algorithms
for VCSPs [TŽ12, KTŽ15, TŽ17].

5The term crisp [CCJK06] is sometimes used in contrast to valued to refer to {0, ∞}-
valued or classical relations.

16

2.2.3 Quantified Constraint Satisfaction Problems

While in this thesis we will not focus directly on the Quantified Constraint
Satisfaction Problem (QCSP), having an intuition of this problem’s defi-
nition and challenges will be useful in sight of Part II. For a more com-
prehensive survey on the (non-Boolean) QCSP, see the relatively recent
[Mar17].

Recall that the CSP can alternatively be defined as the positive ex-
istential conjunctive model checking problem (see Section 2.1), i.e., the
inputs are logical sentences in the fragment of first-order logic that only
uses atomic formulas, the existential quantifier ∃, and the logical connec-
tive ∧.

Now, for each of the 27 subsets L ⊆ {∃,∀,∧,∨,=, ̸=,¬} (and each
fixed relational model A), we can define the corresponding model check-
ing problem, which we call the L -Model Checking Problem over A and
denote L -MC(A). Then, the Quantified CSP over a fixed template A
corresponds exactly to the {∃,∀,∧}-MC(A), that is, the problem of de-
ciding whether a given {∃, ∀,∧}-sentence of first-order logic is satisfiable
in A.

The QCSP in its full generality is PSPACE-complete. For each (mean-
ingful) L ⊆ {∃,∀,∧,∨,=, ̸=,¬}, the complexity of fixed-template L -
Model Checking has by now been classified [MM18] except for the QCSP
(and its dual), for which a full polychotomy is still a challenging open
problem.

The complexity of the fixed-template Boolean QCSP, also known as
Quantified Boolean Formula, has been classified independently in [Dal97,
CKS01], which gave a P versus PSPACE-complete dichotomy. The alge-
braic approach to the QCSP was later initiated in the work of Börner et al.
[BBJK03, BBC+09], who established a Galois connection between surjec-
tive polymorphisms and QCSP templates much like the renowned Inv-Pol
Galois connection for the CSP. Harnessing the power of the algebraic ap-
proach, the authors were able to show the first non-trivial complexity
classification for a class of non-Boolean QCSPs, that is, a trichotomy (P,
NP-complete, or PSPACE-complete) for a certain class of binary QCSPs
defined by graphs of permutations.

The partial results obtained thus far led researchers to believe that the

2. Background 17

fixed-template QCSP might exhibit a P/NP-complete/PSPACE-complete
trichotomy, a hypothesis that came to be known as the Chen conjec-
ture [Che12] (see also [CMZ17]). In a recent breakthrough, Martin and
Zhuk [ZM20] showed that the Chen conjecture fails even for the 3-element
domain case, for which they provided a tetrachotomy (P, NP-complete,
coNP-complete, or PSPACE-complete). Moreover, they showed that there
exist templates for which the QCSP is complete in the complexity classes
DP6 and ΘP

2 .7

In recent unpublished work, Zhuk found a 7th complexity class for
which there are complete QCSPs8 and conjectured that a heptachotomy
might be the definitive picture capturing the complexity of the fixed-
template QCSP.

6DP consists of the set of all languages that can be expressed as the intersection of
a language in NP and a language in coNP. We remark that DP ̸= NP ∩ coNP, unless
NP = coNP. In fact, we have that NP ∪ coNP ⊆ DP.

7ΘP
2 is the class of languages recognizable by deterministic Turing machines in

polynomial time with at most logarithmically many calls to an NP oracle. We have
DP ⊆ ΘP

2 .
8The class ΠP

2 from the polynomial hierarchy containing all decision problems solv-
able in coNP time by a Turing machine augmented by an NP oracle. We have
ΘP

2 ⊆ ΠP
2 ⊆ PSPACE.

3 Preliminaries

In this chapter we set the notation and introduce all the concepts
that are necessary to make this thesis self-contained.

Notation. Let N be the set of positive integers. For k ∈ N, we set
[k] = {1, . . . , k}. We shall denote tuples in boldface. For a set A and a
tuple a ∈ Ak, we use either a[i] or, where there is no ambiguity, ai to
refer to the ith entry of a. We say that a has a repetition if there exist
i ̸= j ∈ [k] such that ai = aj .

We use double curly brackets {{. . . }} to denote multisets. For a non-
negative integer k, k ·{{. . . }} stands for the multiset obtained by multiply-
ing the multiplicity of each element in the original multiset by k. Slightly
abusing the notation, the set and the multiset of entries of a tuple a are
denoted by {a} and {{a}}, respectively.

For a function f on a domain containing {a}, we denote by f(a) the
coordinate-wise application of f to a, that is, f(a) = (f(a1), . . . , f(ak)).

For every tuple i = (i1, . . . , in) ∈ [k]n we use πia to denote the projec-
tion of a to i, i.e, the tuple (ai1 , . . . , ain). If I ⊆ [k] we might abuse slightly
notation and use πIa to refer to πia where i is the tuple that contains the
elements of I in increasing order.

We use P(A) to denote the power set of a finite set A, i.e., P(A) =
{S | S ⊆ A}. Moreover, we define P ̸=∅(A) = P(A) \ ∅.

19

20

Relational structures. A signature σ is a finite collection of relation
symbols, each with an associated arity. We shall use ar(R) to denote the
arity of a relation symbol R. Given a set A and a positive integer r, an
r-ary relation over A is a subset of Ar. A (relational) structure A over
σ, or simply a σ-structure, consists of a set A called the universe of A,
and a non-empty relation RA of arity ar(R) over A for each R ∈ σ. In
this context, we call RA the interpretation of R in A. We shall use the
same boldface and standard capital letter to refer to a structure and its
universe, respectively. We will sometimes use the notation (A;R1, . . . , Rk)
to denote a structure with universe A and relations R1, . . . , Rk. In this
thesis, we will only deal with structures over a finite universe. We denote
by CA the set of formal expressions {R(a) | a ∈ RA, R ∈ σ}. Elements of
CA will be referred to as constraints, where a is also known as the scope of
the constraint R(a). The arity of a constraint is the arity of the associated
relation symbol, and will also be denoted ar(c) for any c ∈ CA. We will
sometimes write a ∈ R(a) to indicate that a ∈ {a1, . . . , aar(R)}.

Two structures are said to be similar if they have the same signature.
The union A ∪ B of two σ-structures A and B is the structure C with

C = A∪B and RC = RA ∪RB for every R ∈ σ. The disjoint union of two
structures A and B is the structure A ∪ B′ where B′ is obtained from B
by renaming variables wherever necessary so that A∩B′ = ∅. We say that
a structure is connected if it cannot be expressed as the disjoint union of
two structures. We say that A is a substructure of B if A ∪ B = B. If, in
addition, RA = RB ∩ Aar(R) for every R ∈ σ then A is the substructure
of B induced by A.

A digraph is a relational structure whose signature consists of a single
binary relation, which we will call the edge set. A graph (in the standard
graph-theoretic sense) can be seen as a digraph where, additionally, the
edge relation is symmetric and non-reflexive. We will often represent graph
edges as sets rather than ordered pairs to stress that the edge relation is
symmetric. A cycle in a graph (V ;E) is a sequence v0, v1, . . . , vk with
k ≥ 3 such that {vi−1, vi} ∈ E for all i ∈ [k], v0 = vk, and {v1, . . . , vk}
are distinct. A tree is a graph that contains no cycles. A graph (V ;E) is
said to be bipartite if the vertex set V can be partitioned into two classes
V1, V2 such that for every edge e ∈ E and every i ∈ [2], |e ∩ Vi| = 1.

3. Preliminaries 21

The Factor Graph1 [FPY18] GA of a structure A is the undirected la-
belled bipartite graph with vertex set A∪CA and edge set {{a,R(a)} | a ∈
R(a)}. Each edge in GA that is incident to a variable a and a constraint
R(a) has a label ℓ{a,R(a)} = (S,R) for S = {i ∈ [ar(R)] | ai = a}. We
denote the set of labels {(S,R) | S ⊆ [ar(R)], R ∈ σ} by Lσ, or simply L
when the signature is clear from the context.

An alternative definition of connectedness, which will be useful in this
thesis, is the following: a structure A is connected if GA is connected
in the standard graph-theoretic sense. Note that this definition coincides
with the notion of connectedness presented above. Similarly, we say that
A′ is a connected component of A if GA′ is a connected component of
GA. Moreover, we say that a structure A is an ftree (factor tree) if its
(unlabelled) factor graph is a tree. If A′ is a substructure of A and A′ is
an ftree then we say that A′ is a subftree of A.

Example 3.1

We present here some examples of relations that will be mentioned
at various points in this thesis.

Inequality on {0, . . . , k−1} ≠k = {d ∈ {0, . . . , k−1}2 | d1 ̸= d2}

Inequality on D ̸=D = {d ∈ D2 | d1 ̸= d2}

1-in-3-SAT 1-in-3-SAT = {(1, 0, 0),(0, 1, 0),(0, 0, 1)}
Not-all-equal-SAT NAE = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
r-ary not-all-equal on D NAEr

D = {d ∈ Dr | ¬(d1 = · · · = dr)}
r-ary rainbow on D Rbr

D = {d ∈ Dr | {d1, . . . , dr} = D}

Notice that ̸=2, ̸={0,1}, NAE2
{0,1} and Rb2

{0,1} coincide, and that NAE,
NAE3

{0,1} and Rb3
{0,1} also coincide.

1We note that the notion of factor graph, although similar, differs in several ways
from the incidence multigraph (see [LLT07]) as the latter allows for parallel edges.

22

Morphisms. Let A, B be σ-structures. A homomorphism from A to
B is a map h : A → B such that for every R ∈ σ and every a ∈ RA it
holds that h(a) ∈ RB, where h is applied to a component-wise. If there
exists a homomorphism from A to B we say that A is homomorphic to B
and we write A → B. We say that two structures are homomorphically
equivalent if A → B and B → A. We shall use hom(A; B) to denote the
number of homomorphisms from A to B.

An isomorphism from A to B is a bijective map f : A → B such that
for every R ∈ σ and every a ∈ Aar(R) it holds that a ∈ RA if and only if
f(a) ∈ RB.

CSP and PCSP. For a relational structure A, the (fixed-template)
CSP over A, denoted CSP(A), is the problem of deciding whether an
input structure X similar to A is homomorphic to A. X is also referred
to as the instance and A as the constraint language or template in this
context. When the template is clear from the context, if an instance X is
homomorphic to the template, we also say that X is satisfiable.

Beyond the decision problem, we can define the search problem for
CSP(A): given an input structure X which satisfies X → A, find a ho-
momorphism from X to A. It is well-known that the decision and search
problem for CSP have the same complexity [BJK05].

Given two σ-structures A and B, the (fixed-template) Promise CSP
over (A,B), denoted PCSP(A,B), is defined as follows: given a σ-structure
X, output Yes if X is homomorphic to A, and output No if X is not ho-
momorphic to B. Note that we do not impose any requirements on the
algorithm in the case that X is neither a Yes instance nor a No instance.
Alternatively, we are promised that the input is either a Yes instance or a
No instance. Notice that PCSP(A,A) is precisely CSP(A).

The PCSP is a well-defined problem if and only if the sets of Yes and
No instances are disjoint. The pairs of structures (A,B) that satisfy this
condition are called PCSP templates. It is an easy observation that this
happens exactly when A is homomorphic to B.

Proposition 3.2. (A,B) is a PCSP template if and only if A → B.

Proof. For the forward direction, if we assume that A is not homomorphic

3. Preliminaries 23

f

a11

...
a1k

 ,
a21

...
a2k

, . . . ,
aℓ1

...
aℓk

 =

f(a11, . . . , aℓ1)
...

f(a1k, . . . , aℓk)

 ∈ R

∈ ∈ ∈

R R R

Figure 3.1: The component-wise application of a polymorphism.

to B, then A is both a Yes instance and a No instance, leading to a
contradiction. For the backwards direction, it is enough to notice that
homomorphisms compose.

Polymorphisms. Let R ⊆ Ar be an r-ary relations. A k-ary polymor-
phism of R is an operation f : Ak → A such that the coordinate-wise
application of f to any list of k tuples from R gives a tuple in R. More
formally, f is a polymorphism of R if for any a1, . . . ,ak ∈ R we have that
(f(a11, . . . , aℓ1), . . . , f(a1k, . . . , aℓk)) ∈ R, where aij denotes the jth entry
of ai (see Figure 3.1).

We say that a function f is a polymorphism of a σ-structure A if f
is a polymorphism of RA for all R ∈ σ. Equivalently, we say that A is
invariant under f , or that f preserves A. Note that a unary polymorphism
of A is just an endomorphism of A. The set of polymorphisms of A will
be denoted Pol(A).

Example 3.3 (Power structure).

Given a σ-structure A and a positive integer k, the kth power struc-
ture of A is the σ-structure Ak with universe Ak and such that
for every R ∈ σ of arity r and for all a1, . . . ,ak ∈ RA we have
((a11, . . . , ak1), . . . , (a1r, . . . , akr)) ∈ RAk , where as above aij denotes
the jth entry of ai. It follows easily that for every f : Ar → A, f is a
homomorphism from Ak to A if and only if f is a k-ary polymorphism
of A.

24

A k-ary operation f : Ak → A is said to be symmetric if for all
a1, . . . , ak ∈ A and all permutations ρ on [k] we have that f(a1, . . . , ak) =
f(aρ(1), . . . , aρ(k)). An operation k-ary operation f : Ak → A is said to be
totally symmetric (also called a set function) if its output only depends
on the set of variables in the argument, i.e., if there exists a function
g : P ̸=∅(A) → A such that, for each a ∈ Ak, f(a) = g({a}). Finally, a
k-ary (k ≥ 2) operation f : Ak → A is said to be weak near-unanimity if
for all x, y ∈ A it holds that

f(y, x, . . . , x) = f(x, y, . . . , x) = . . . = f(x, x, . . . , y).

Example 3.4 (Inequality relation).

Consider the inequality relation ̸=2 = {(0, 1), (1, 0)} on the Boolean
domain. It is easy to see that the ternary minority operation f given
by f(x, y, z) = x ⊕ y ⊕ z is a polymorphism of ̸=2. On the other
hand, one can show that R does not have symmetric polymorphisms
of arity 2. In particular, let t1 = (0, 1) and t2 = (1, 0). Since a
symmetric binary operation f needs to satisfy f(0, 1) = f(1, 0), the
coordinate-wise application of f to t1, t2 would yield a reflexive tuple,
which cannot possibly belong to ̸=2.

Primitive positive definability. Given a σ-structure A with domain
A, a relation R ⊆ Ak is said to be primitive positive definable, most com-
monly shortened to pp-definable, from A if there exists an existential con-
junctive first-order formula ψ(x1, . . . , xk) which uses only relation symbols
from σ and equality, such that for all (a1, . . . , ak) ∈ Ak, (a1, . . . , ak) ∈ R
if and only if ψ is satisfied when each xi, i ∈ [k] is evaluated as ai, and
the relation symbols in ψ are interpreted as in A.

Alternatively, pp-definitions can be seen in the following equivalent
way. A relation R ⊆ Ak is pp-definable from a σ-structure A if there exists
a pair ((x1, . . . , xk),X) where X is a σ ∪ {=}-structure and x1, . . . , xk

are distinct variables in X such that for every tuple (a1, . . . , ak) ∈ Ak,
(a1, . . . , ak) ∈ R if and only if there exists a homomorphism h : X → A
such that ai = h(xi) for all i ∈ [k].

3. Preliminaries 25

A structure A′ is pp-definable from A if all the relations in A′ can
be pp-defined from A (notice that A and A′ do not necessarily have the
same signature).

Example 3.5 (pp-definitions).

Consider the inequality relation ̸=2 from example 3.4. A pp-definition
of ̸=2 from A = ({0, 1}; NAE) is

̸=2 (x, y) = ∃z[NAE(x, y, z) ∧ (x = z)].

This is a major theme in mathematics: things
are what you want them to be. You have endless
choices; there is no reality to get in your way.

Lockhart’s Lament

Part I:
Weisfeiler-Leman
Invariant and
Distributed CSPs

27

4 Introduction

The motivation for this work stems from questions that are seemingly
distant from the world of constraint satisfaction: we would like to investi-
gate the computational power of distributed algorithms from a theoretical
standpoint. Under what conditions is distributed computation guaran-
teed to converge to a solution in finite time? And in the case that we do
have this guarantee, how fast can we expect the computation to converge?
These questions, while very natural and relevant to practitioners, seem to
have received little attention in the computer science theory literature.

To address these questions, in Chapter 6 we begin our journey with an
exploration of the computational complexity of solving constraint satis-
faction problems via distributed algorithms. We consider a synchronous,
anonymous network of deterministic processes, each of which controls ei-
ther a variable or a constraint of the CSP, and ask for which templates
A is the distributed CSP over A tractable. We obtain a surprising di-
chotomy: there is a (polynomial-time) distributed algorithm that solves
a certain CSP if and only if the template is invariant under symmetric
polymorphisms of every arities. What is more, this is a computability di-
chotomy rather than a complexity dichotomy: in the case that there are
no polynomial-time algorithms for the distributed CSP, we can show that
there are in fact no algorithms at all.

In fact, the connection between invariance under polymorphisms and
solvability by certain algorithms has been studied extensively in the con-
straint satisfaction community. In particular, the algebraic condition that
defines the borderline of tractability for the distributed CSP is precisely

29

30

the same condition that corresponds to solvability by a very natural linear
program. This connection with linear programming also arises indepen-
dently in our work on distributed CSP, as the proof of one of the main
results relies on some theoretical properties of an approximation method
for linear programs.

On the other hand, message passing in distributed networks can be
seen as the natural setting in which to run a graph vertex partitioning
procedure known as the 1-dimensional Weisfeiler-Leman algorithm. In
fact, it is not difficult to show that a necessary condition for the distributed
CSP to be tractable is that it is closed under the equivalence induced by
this algorithm, in the sense that if two instances satisfy this equivalence
condition, it must be the case that they are either both satisfiable or both
unsatisfiable. This simple fact allows us to draw the first of the many
connections between linear programs and the Weisfeiler-Leman method,
which will be the leitmotif of this first part of the thesis.

Inspired by this, in Chapter 7 we explore this correspondence further
from a different viewpoint. The Weisfeiler-Leman equivalence relation
mentioned above has an equivalent characterization in terms of a well-
studied linear programming relaxation for the graph isomorphism prob-
lem, known as fractional isomorphism. The starting point for this new
side of the correspondence is the observation of a similarity between the
algebraic formulation of fractional isomorphism, and that of the aforemen-
tioned natural linear program for the CSP. We build on this similarity to
obtain a decomposition of the feasibility of the latter linear program in
terms of the former, attained by means of a CFI-type construction. This
allows us to add two more equivalent conditions to the characterization of
CSPs solvable by the linear programming relaxation: in terms of invari-
ance under the Weisfeiler-Leman equivalence, and in terms of solvability
by the class of distributed algorithms studied in Chapter 6.

In Chapter 8 we take this connection further and show that it extends
to the much more general framework of Promise Valued CSPs. Promise
Valued CSPs generalize both Promise CSPs and Valued CSPs, and are
broad enough to include all constant factor approximation problem, hence
the results in this chapter might be of interest also to researchers outside
the strict CSP community. Along the way, we delve into the world of
fractional operations, the study of which has been pivotal in the develop-

4. Introduction 31

ment of an algebraic theory of valued constraints. While the connection
that is the center of this part of the thesis does – perhaps as expected
or at least as desired – extend to the promise valued setting, the study
of solvability by linear programs in the context of PVCSPs leads us to a
surprising discovery. The linear programming relaxation for the CSP that
we already mentioned several times in this chapter has two versions which
for all practical purposes are equivalent in terms of solving CSPs, as well
as PCSPs and (finite-valued) VCSPs. It turns out that this is no longer
the case in the realm of the PVCSP: we can show that one version of the
relaxation is strictly stronger than the other. This suggests that the fine
difference between how these two versions of the relaxation work might
have so far been overlooked in the literature.

Finally, in Chapter 9 we lift the by now established connection be-
tween the Weisfeiler-Leman method and linear programming to higher
dimensions. This is done in the spirit of previous work that shows that
the power of higher-dimensional levels of the Weisfeiler-Leman method
interleave with the levels of the well-known Sherali-Adams hierarchy (ap-
plied to fractional isomorphism) in terms of distinguishing non-isomorphic
graphs. Nonetheless, the connection between these two hierarchies in the
context of homomorphism of relational structures (i.e., CSPs), is new to
this work. In particular, we are able to lift the results of Chapter 7 to
higher levels of the Sherali-Adams hierarchy (applied to our natural lin-
ear program for CSPs) and give an analogous decomposition in terms of
fractional isomorphism.

Moreover, we define a higher-dimensional notion of equivalence for re-
lational structures in the style of Weisfeiler and Leman. This definition
might not resemble what one would expect if one were to naively extend
the definition of higher-dimensional Weisfeiler-Leman equivalence that is
commonly used in the context of graphs. This difference is due to ob-
stacles in dealing with relations of large arity that trivially do not occur
when one restricts one’s focus to graphs only. However, when the dimen-
sion is large enough, our notion of equivalence coincides with the natural
extension of the well-studied notion for graphs. In order to characterize
it exactly, we touch upon a variety of topics, such as distinguishability in
fixed-variable logics with counting and homomorphism counts from struc-
tures of bounded treewidth, and discuss their connection to the Weisfeiler-

32

Leman method.
The next chapter is meant as an introduction to many of the technical

topics that we will need in the subsequent chapters. In particular, we will
survey three types of relaxations for decision problems, that is, heuristics
that exhibit one-sided errors in that they always accept Yes instances,
but do not always reject No instances. These are the already mentioned
Weisfeiler-Leman method for isomorphism (Section 5.1) and linear pro-
gramming methods for CSPs (Section 5.2), as well as local consistency
methods for CSPs (Section 5.3). While we have not mentioned the lat-
ter methods in this introduction, they are also relevant to our work as
they lend themselves particularly well to being adapted to the distributed
setting.

5 Relaxation techniques

In this chapter we survey three incomplete methods to test for
isomorphism (Section 5.1) and homomorphism (Sections 5.2, 5.3)
of graphs and relational structures. Each of these methods will
find plenty of applications in the remainder of this thesis.

5.1 Combinatorial relaxations of isomorphism

We start by describing a number of relaxations for the graph isomorphism
problem in graphs, and then we will see how to extend these methods to
arbitrary relational structures. The following definitions will be useful.

A matrix M of non-negative real numbers is said to be left (resp. right)
stochastic if all its columns (resp. rows) sum to 1. Note that we do not
require M to be square. A doubly stochastic matrix is a square matrix
that is both left and right stochastic.

5.1.1 Fractional isomorphism of graphs

Recall that two graphs are isomorphic iff there exists an edge-preserving
bijection between their vertex sets. Despite an important research effort,
it is still an open problem to determine whether the isomorphism problem
– that is, problem of deciding whether two given graphs are isomorphic –
can be solved in polynomial time. The recent quasipolynomial algorithm
for the problem presented by Babai [Bab16] is widely regarded as a major
breakthrough in theoretical computer science.

33

34

Now, the isomorphism problem for graphs G and H can be reformu-
lated as an integer program which asks whether there exists a permutation
matrix P such that PNG = NHP , where NG and NH are the adjacency
matrices of G and H respectively. If we relax this condition to only require
that P is doubly stochastic, that is, we drop the integrality constraint, we
obtain a linear program known as fractional isomorphism. It turns out
that fractional isomorphism has a number of equivalent characterizations,
which we introduce next.

In a graph G, the degree of a vertex v is the number of edges incident
to v. The zeroth iterated degree of v is equal to its degree. For j ≥ 1, the
jth iterated degree of v is the multiset of (j−1)th degrees of v’s neighbours
in G. Then, the iterated degree1 of a vertex v is given by the list of its jth

iterated degrees for k ≥ 0, and the iterated degree sequence of a graph G
is the multiset of iterated degrees of the vertices of G.2

One can think of the jth iterated degree of a vertex as the “local view”
of G from v. That is, the jth iterated degree of v can be seen as the rooted
tree Tv of depth j constructed inductively in such a way that there is a map
γ from the vertices of Tv to the vertices of G which maintains the following
properties: the root is mapped by γ to v, and for every t in Tv, the set of
children of t is mapped bijectively to the neighbours of γ(t). Then, two
vertices have the same iterated degree if the corresponding infinite trees
constructed via this procedure are isomorphic (see Figure 5.1).

The colour refinement algorithm, also known as 1-dimensional Weisfei-
ler-Leman algorithm (1-WL) [LW68]3, is the procedure that calculates the
iterated degree sequence of a graph (see for instance [GKMS17]). Thanks
to the observation that only a linear number of iterations is needed to
reach a stable point, 1-WL is often used as a simple heuristic for the
graph isomorphism problem: if two graphs are isomorphic then they must

1Sometimes referred to as the ultimate iterated degree [SU11].
2The degree sequence is often defined to be a list. However, when looking at iterated

degree it is common [RSU94, SU11] and more practical to use multisets instead of lists,
while maintaining the terminology sequence to highlight that we are dealing with a
generalisation of the classical concept of degree sequence.

3To be precise, we point out that the algorithm proposed in the original paper
of Weisfeiler and Leman [LW68] is equivalent to what is known as the 2-dimensional
Weisfeiler-Leman algorithm. This will be defined in its general (k-dimensional) version
in Chapter 9.

5. Relaxation techniques 35

Figure 5.1: The first three levels of the “local view” of the red nodes (left)
and blue nodes (right) of the graphs in Figure 5.2.

have the same iterated degree sequence, but the opposite is not true. We
say that 1-WL distinguishes two graphs G and H if their iterated degree
sequences differ. Famously, 1-WL distinguishes almost all non-isomorphic
graphs [BK79, BES80]. However, it also fails on some very simple instances
(see for example Figure 5.2). To address these limitations, a hierarchy
of higher-dimensional versions of this algorithm (k-WL for k > 1) was
proposed, see Chapter 9 for details.

An alternative characterization of fractional isomorphism is in terms
of the notion of equitable partition. Let G = (V ;E) be a graph and
P = {Pi | i ∈ I} be a partition of V . P is said to be equitable if for every
i, j ∈ I there exists an integer ci,j such that for every v ∈ Pi we have

|N(v) ∩ Pj | = ci,j

where N(v) denotes the neighbourhood of v in G. The integers ci,j are
called collectively the parameters of the partition. Two graphs G, H are
said to have a common equitable partition if there exist equitable partitions
{PG

i | i ∈ I} of G and {PH
i | i ∈ I} and H with the same parameters

satisfying |PG
i | = |PH

i | for all i ∈ I.
It turns out that all of the concepts introduced above are equivalent

for the purpose of distinguishing non-isomorphic graphs. In fact, much
more is true. Let C denote the first-order logic enriched with counting
quantifiers - that is, objects of the form ∃nx for each positive integer n,
where the meaning of a sentence ∃nxφ(x) is “there exist at least n objects
x that satisfy φ”; and let C k denote the k-variable fragment of C . Then,
we have the following characterization of fractional isomorphism:

36

Figure 5.2: It is easy to see that the graphs depicted above have the same
iterated degree sequence. In particular, the equivalence classes are given
by the distinct colours, red and blue. However, the graphs are clearly not
isomorphic, since the left graph is bipartite while the right graph is not.

Theorem 5.1. Let G, H be graphs. The following are equivalent:

1. There exists a doubly stochastic matrix P such that PNG = NHP ;

2. G and H have the same iterated degree sequence;

3. G and H have a common equitable partition;

4. G and H satisfy the same formulae in the logic C 2;

5. hom(T ;G) = hom(T ;H) for all trees T .

The equivalence of (1), (2) and (3) can be traced back to the work
of Leighton [Lei82], Tinhofer [Tin86, Tin91], and Ramana, Scheinerman
and Ullman [RSU94]. The equivalence of (2) and (4) is due to Cai, Fürer
and Immerman [CFI92] (in fact, in the same paper a much stronger result
is proved, see Section 9.1). Item (5) was added later independently by
Dvorák [Dvo10] and Dell, Grohe and Rattan [DGR18].

5.1.2 From graphs to relational structures

We now extend each of the notions defined above in the context of graphs
to arbitrary relational structures. We start by adapting the the 1-di-
mensional Weisfeiler-Leman algorithm to calculate iterative refinements
of a colouring of the universe and constraint set of a relational structure.
While there are syntactical differences, when run on graphs this procedure
is equivalent for all purposes to 1-WL.

5. Relaxation techniques 37

In what follows it will be convenient to allow disconnected instances.
Consider the labelled factor graph GX of a relational structure X, which we
defined in Chapter 3. Let v be a node of GX and denote its neighbourhood
in the factor graph by N(v). For every j ≥ 0 and v ∈ X ∪ CX, we define
inductively the jth iterated degree δX

j (v) of v on X as follows. We set
δX

0 (v) to be one of two arbitrary symbols that distinguish elements of
X from elements of CX. For j ≥ 1 we set δX

j (v) = {{(ℓ{v,w}, δ
X
j−1(w)) |

w ∈ N(v)}}, and the iterated degree of v is defined accordingly as δX(v) =
(δX

0 (v), δX
1 (v), δX

2 (v), . . .). For vertices v and v′ we write v ≡1 v
′ if δX(v) =

δX(v′). In this case, we say that v and v′ are ≡1-equivalent.4 It can be
shown (see the following proposition) that as j increases, the partition
induced by δX

j gets more refined (or remains unchanged), and indeed it
reaches a fixed point for some j ≤ 2n where n = |X|.

Proposition 5.2. Let X be a relational structure and v, v′ ∈ X ∪ CX. Let
j ≥ 2n where n = |X|. Then, δX

j (v) = δX
j (v′) implies v ≡1 v

′.

Proof. We start by showing that for all non-negative integers j, j′ with
j ≤ j′, the partition induced by δX

j′ on X ∪ CX is at least as refined as
the partition induced by δX

j . The proof goes by induction. Let v, v′ be
arbitrary nodes in GX. Clearly if δX

0 (v) ̸= δX
0 (v′), then δX

j (v) ̸= δX
j (v′)

for all j ∈ N, so in particular δX
1 (v) ̸= δX

1 (v′). Now assume that for all
v, v′ ∈ X ∪ CX, δX

j (v) = δX
j (v′) implies δX

j−1(v) = δX
j−1(v′). Then it is

a clear consequence of the definition of δX
j that δX

j+1(v) = δX
j+1(v′) ⇒

δX
j (v) = δX

j (v′) for all v, v′ ∈ X ∪ CX too as required.
Now it remains to show that if δX

2n(v) = δX
2n(v′), then δX

j (v) = δX
j (v′)

for all j ≥ 2n. The result is immediate if we replace 2n by n + m. To
achieve 2n we use the fact that the factor graph is bipartite. Denote by
Pj and Qj the partitions induced by δX

j on X and CX respectively and
note that if Pj−2 = Pj then (Pj ,Qj) is a fixed point. We notice that
Pj−2 = Pj must occur for some j ≤ 2n and we are done.

The iterated degree sequence of a relational structure X is defined as
δ(X) = {{δX(v) | v ∈ X ∪ CX}}; for two σ-structures X, Y, we write
X ≡1 Y if they have the same iterated degree sequence. Notice that in

4The “1” refers to “1-dimensional”.

38

order to prove that X ≡1 Y it is sufficient to show that {{δX(x) | x ∈
X}} = {{δY(y) | x ∈ Y }}.

Here we deviate for a moment from the analogy with the presentation
for graphs to introduce the notion of weak congruence. We say that two
σ-structures X and Y are weakly congruent if |Y | · δ(X) = |X| · δ(Y). The
following observation will be useful in the proofs of the main theorems of
Chapters 7 and 8 (respectively, 7.2 and 8.7).

Remark 5.3 (Weakly congruent connected components).

It is a simple consequence of the definition of iterated degree that for
any two (possibly disconnected) σ-structures X and Y with X ≡1 Y
and any two connected components X′ of X and Y′ of Y, either the
iterated degree sequences δ(X′) and δ(Y′) are disjoint, or X′ and Y′

are weakly congruent.
Indeed, for a “variable vertex” x ∈ X of GX, a label ℓ ∈ Lσ,

and a “constraint vertex” c ∈ CX such that x and c are adjacent
in GX, denote x[ℓ, c] = {c′ | δX(c′) = δX(c), ℓ{x,c′} = ℓ}. Observe
that if there exists an edge between x and c labeled ℓ, then {x′[ℓ, c] |
δX(x′) = δX(x)} is a collection of mutually disjoint sets of equal
size, which covers {c′ | δX(c) = δX(c′)}; and, moreover, the same
claim holds when x′ and c′ are restricted to the connected component
containing x (or c). The claim easily follows.

Most of the results in Chapters 6, 7 and 8 are phrased in terms of iter-
ated degree, as this is the formulation that better lends itself to be used in
the context of distributed algorithms. However, we can lift the equivalent
characterizations of the 1-dimensional Weisfeiler-Leman algorithm from
graphs to relational structures. In order to do so, we need to define some
more concepts.

For a signature σ, let Lσ := {(S,R) | R ∈ σ, S ⊆ [ar(R)]} be the set
of possible labels for the edges of the factor graph of a σ-structure. We
construct the matrix representation MX of a σ-structure X as follows (it
will be convenient to assume that the indices of the rows and columns of
a matrix are arbitrary sets). MX is an X × CX matrix whose entries are
elements of Lσ. In particular, for all x ∈ X and R(x) ∈ CX, we have that

5. Relaxation techniques 39

MX[x,R(x)] = (S,R) where S = {i ∈ [ar(R)] | x = x[i]}.
In a nutshell we are lifting from graph isomorphism to matrix isomor-

phism, where two matrices are isomorphic if they are identical modulo a
permutation of the rows and columns. To formalize this, it will be con-
venient to associate X with a set of 0-1 incidence matrices. In particular,
for every ℓ ∈ Lσ we define M ℓ

X ∈ {0, 1}X×CX as follows: M ℓ
X[x,R(x)] = 1

if MX[x,R(x)] = ℓ and M ℓ
X[x,R(x)] = 0 otherwise.

We are now in the position to present the adaptation of the notion of
equitable partition to relational structures. A partition of a σ-structure
A is a pair (P ,Q) where P = {Pi | i ∈ I} is a partition of A and
Q = {Qj | j ∈ J} is a partition of CA. We say that (P ,Q) is equitable if
for every i ∈ I, j ∈ J , and ℓ ∈ Lσ, there are integers cℓ

i,j , d
ℓ
j,i, called the

parameters of the partition, such that for every i ∈ I, every a ∈ Pi, every
ℓ ∈ Lσ, and every j ∈ J , we have

|{R(a) ∈ Qj | MA[a,R(a)] = ℓ}| = cℓ
i,j (P1)

and, similarly, for every j ∈ J , every R(a) ∈ Qj , every ℓ ∈ Lσ, and every
i ∈ I we have

|{a ∈ Pi | MA[a,R(a)] = ℓ}| = dℓ
j,i. (P2)

As above, we say that two structures A, B have a common equitable
partition if there are equitable partitions ({PA

i | i ∈ I}, {QA
j | j ∈ J})

and ({PB
i | i ∈ I}, {QB

j | j ∈ J}) of A and B with the same parameters
satisfying |PA

i | = |PB
i | for every i ∈ I and |QA

j | = |QB
j | for every j ∈

J . Here we point out that, if A and B are connected, the notion of
weak congruence introduced above can be alternatively rephrased as the
existence of a partition (P ,Q) that satisfies conditions (P2) and (P1),
but where we do not have any requirements on the sizes of the partition
classes.

Then, we have the following theorem, which generalizes the equiva-
lence between the algebraic and combinatorial characterizations of frac-
tional isomorphism for graphs from Theorem 5.1 to arbitrary relational
structures. The proof is deferred to Chapter 9.
Theorem 5.4. Let A, B be σ-structures. The following are equivalent:

1. There exist doubly stochastic matrices P , Q such that for every ℓ ∈
Lσ it holds that PM ℓ

A = M ℓ
BQ and M ℓ

AQ
T = P TM ℓ

B;

40

2. A and B have the same iterated degree sequence;

3. A and B have a common equitable partition;

4. hom(T; A) = hom(T; B) for all σ-ftrees T.

If, additionally, A and B are graphs, then the following is also equivalent:

6. There exists a doubly stochastic matrix P such that PNA = NBP .

Then, we can write X ≡1 Y if X and Y satisfy any of the conditions
of Theorem 5.4. Notice that ≡1 is clearly an equivalence relation.

Note in particular that condition (6) shows that our definition of ≡1
coincides with the standard notion of fractional isomorphism when A and
B are graphs.

We say that a decision problem D is invariant (or closed) under an
equivalence relation ∼ defined on the set of instances of D if for any two
instances I1 and I2 of D, if I1 ∼ I2 then I1 and I2 are either both Yes
instances or both No instances of D.

Then in particular, we have that for any σ-structure A, CSP(A) is
invariant under ≡1 iff for any two σ-structures X1 and X2, X1 ≡1 X2
implies that X1 → A if and only if X2 → A. We shall call these families
of CSPs Weisfeiler-Leman invariant to stress the connection of ≡1 with
the Weisfeiler-Leman method.

5.2 Linear Programming

Let us now turn our attention to linear programming relaxations of the
homomorphism problem. These have been used intensively in the more
general setting of the Constraint Satisfaction Problem and, most usually,
in the approximation of its optimization versions such as MaxCSP, among
other variants. For instance, a simple linear programming relaxation yields
a 2-approximation algorithm for the Vertex Cover problem, and no better
polynomial time approximation algorithm is known [KR08, KMTV09].

Given a pair of σ-structures X and A, there is an LP relaxation
known as the basic LP relaxation (see for example [KOT+12]), denoted
BLP(X,A), which is defined as follows. It has a variable px(a) for every

5. Relaxation techniques 41

x ∈ X and a ∈ A, and a variable pR(x)(a) for every R(x) ∈ CX and ev-
ery a ∈ Aar(R). All variables must take values in the range [0, 1]. The
value of px(a) is interpreted as the probability that x is assigned to a, and
similarly, the value of pR(x)(a) is interpreted as the probability that the
x is assigned component-wise to a. The variables are restricted by the
following equations:∑

a∈A

px(a) = 1 x ∈ X (BLP1)

px(a) =
∑

a∈Aar(R), ai=a

pR(x)(a) a ∈ A,R(x) ∈ CX, (BLP2)

i ∈ [ar(R)] such that xi = x

pR(x)(a) = 0 R(x) ∈ CX, a ∈ Aar(R) (BLP3)
such that R(a) /∈ CA

Intuitively, equations (BLP1)–(BLP3) ensure that, for each R(x) ∈ CX,
the values of pR(x)(a) form a probability distribution on RA (which is
additionally consistent with px(a)’s).

5.2.1 The Sherali–Adams hierarchy for CSPs

Similarly to the Weisfeiler-Leman hierarchy for fractional isomorphism,
any LP relaxation of an integer program can be further strengthened by
sequentially applying so-called lift-and-project methods from mathemati-
cal programming in order to obtain a hierarchy of increasingly tighter re-
laxations which can still be solved efficiently. The main idea behind these
is to add auxiliary variables and valid inequalities to an initial relaxation
of a 0/1 integer program. These methods, which include Lovász-Schrijver
[LS91] and Sherali-Adams [SA90], have been used to study classical prob-
lems in combinatorial optimization such as Max-Cut, Vertex Cover, Max-
imal Matching, among many others.

We consider relaxations arising from the application of the Sherali-
Adams (SA) method. In this presentation we will follow [AM13]. Let
P ⊆ [0, 1]n be a polytope {y ∈ Rn : My ≥ b, 0 ≤ y ≤ 1} for a matrix
M ∈ Rm×n, and a column vector b ∈ Rm. We denote the convex hull of
the {0, 1}-vectors in P by PZ. The sequence of Sherali-Adams relaxations

42

of PZ is the sequence of polytopes P = P1 ⊇ P2 ⊇ · · · where Pk is defined
in the following way.

Each inequality in My ≥ b is multiplied by all possible terms of the
form Πi∈IyiΠj∈J(1 − yj) where I, J ⊆ [n] satisfy |I ∪ J | ≤ k − 1 and
I∩J = ∅. This leaves a system of polynomial inequalities, each of degree at
most k. Then, this system is linearized and hence relaxed in the following
way: each square y2

i is replaced by yi and each resulting monomial Πi∈Kyi

is replaced by a variable zK . In this way we obtain a polytope Pk
L. Finally,

Pk
L is projected back to n dimensions by defining

Pk := {y ∈ Rn : there exists z ∈ Pk
L such that z{i} = yi for each i ∈ [n]}.

We note here that PZ ⊆ Pk for every k ≥ 1.
In order to apply the SA method to the homomorphism problem there

are different possible choices for the polytope P (encoding a relaxation of
homomorphism) to start with, each one then yielding a different hierarchy.

Here we shall adapt a SA-based family of relaxations commonly used
in optimization variants of CSP [GMT09, CLRS13, YZ14, TŽ17, CŽ22b]
which we transform into a relaxation of (plain) CSP by just turning the
objective function into a set of new restrictions. Hence, the resulting
system of inequalities is not, strictly speaking, obtained using the SA
method. Nonetheless, we shall abuse slightly notation and still use SAk

to refer to our system of inequalities.
In fact, giving an explicit description of the inequalities obtained using

the SA method for any natural polytope P encoding the LP relaxation for
a general CSP in our setting is a bit cumbersome (because the constraints
of the CSP are encoded in the polytope-defining inequalities rather than in
the objective function as in the optimization variants).5. Hence, it seems
sensible to settle for a good approximation as SAk. Indeed, as we will show
in Section 5.2.2, the sequence of relaxations SAk is tightly interleaved with
the sequence Pk obtained by the SA method, in stricto sensu, for a natural
choice of initial polytope P.

Given a pair of σ-structures X and A, the system of inequalities
SAk(X,A) for the homomorphism problem over (X,A) contains a vari-
able pV (f) for every V ⊆ X with 1 ≤ |V | ≤ k and every f : V → A, and a

5A precise description of these is given in [AD22]

5. Relaxation techniques 43

variable pR(x)(f) for every R(x) ∈ CA and every f : {x} → A. Each vari-
able must take a value in the range [0, 1]. The variables are constrained
by the following conditions:∑

f :V →A

pV (f) = 1 V ⊆ X s.t. |V | ≤ k (SA1)

pU (f) =
∑

g:V →A,g|U =f

pV (g) U ⊆ V ⊆ X s.t. |V | ≤ k, f : U → A (SA2)

pU (f) =
∑

g:V →A,g|U =f

pR(x)(g) R(x) ∈ CX, U ⊆ {x} = V (SA3)

s.t. |U | ≤ k, f : U → A

pR(x)(f) = 0 R(x) ∈ CX, f : {x} → A (SA4)
s.t. f(x) ̸∈ RA

For the particular case of k = 1 we shall use the simplified notation
px(f(x)) to denote the variable pV (f) for a singleton set V = {x} and a
function f : V → A.

It is easy to see that SA1(X,A) is equivalent to BLP(X,A), subject
to the following additional constraint:

pR(x)(a) = 0 R(x) ∈ CX, a ∈ Aar(R) : ∃i, j ∈ [ar(R)] (⟲)
such that xi = xj and ai ̸= aj

That is, BLP and SA1 differ only in the way that they deal with repeated
entries in a tuple.6 An easy example to show the difference between BLP
and SA1 is the following.

Example 5.5

Let X = ({0}; =1) be the equality relation on the 1-element domain
and A = ({0, 1}, ̸=2) be the Boolean inequality relation. Let R be
the unique binary relation symbol in the signature of X and A. The
equations in (BLP3) together with (⟲) enforce that pR(0,0)(a) = 0 for
all a ∈ {0, 1}2, so SA1 correctly detects that X ̸→ A. On the other

6We remark that in the literature the difference between the two relaxations is some-
times neglected, which occasionally leads to unjustified or slightly incorrect claims.

44

hand, a feasible solution of BLP(X,A) is given by p0(0) = p0(1) =
1/2 and pR(0,0)(0, 1) = pR(0,0)(1, 0) = 1/2.

For a linear program L ∈ {BLP, SA1} we say that L(X,A) is feasible
if there exists a rational solution to the system L(X,A). We say that
L decides CSP(A) if, for every input structure X, we have that L(X,A)
is feasible implies X → A (notice that the opposite implication holds
trivially).

While Example 5.5 shows that there are specific instances for which
SA1 is strictly stronger than BLP, it turns out that in general these
two relaxations have the same expressive power in terms of solving fixed-
template CSPs. In particular, the class of CSPs that are decided by BLP
and SA1 have a precise algebraic characterization in terms of polymor-
phisms, as the following well-known result shows.

Theorem 5.6 ([BD21a, KOT+12]). Let A be a fixed finite σ-structure.
The following are equivalent:

1. SA1 decides CSP(A);

2. BLP decides CSP(A);

3. A has symmetric polymorphisms of all arities.

Proof. The proof of this theorem is folklore in the CSP community. A
version of the proof of (2) ⇔ (3) can be found for example in [KOT+12],
but we are not aware of a proof of (2) ⇔ (1) other than the one in [BD21a].
For completeness, we provide the entire argument below.

For the proof of (1) ⇔ (2), we will use the following fact which follows
from the Sparse Incomparability Lemma [NR89]: for every σ-structure X,
there exists a structure X′ with no loops such that X′ → X and X → A
iff X′ → A. Now, assume that BLP does not solve CSP(A). This means
that there exists a structure X not homomorphic to A and such that
BLP(X,A) is feasible. Now, let X′ be the structure given by the Sparse
Incomparability Lemma. Since X′ → X it follows that BLP(X′,A) is
feasible, and, since X′ has no loops, SA1(X′,A) is feasible as well. Since
X′ is not homomorphic to A it follows that SA1 does not solve CSP(A).
The same argument can be used to show the converse although it is not

5. Relaxation techniques 45

necessary as it also follows immediately by comparing the inequalities of
SA1 and BLP.

On the other hand, the equivalence of (2) and (3) follows immediately
if we assume the following result:

Lemma 5.7. Let A be a σ-structure. There exists a set of structures
denoted LPm(A), one for each m ∈ N, which satisfies the following prop-
erties:

1. For all m ∈ N, LPm(A) → A if and only if A has an m-ary sym-
metric polymorphism.

2. For all σ-structures X, BLP(X,A) is feasible if and only if there
exists some m ∈ N such that X → LPm(A);

Then, for (2) ⇒ (3) suppose that A does not have a symmetric poly-
morphism of some arity m. Then, there LPm(A) is not homomorphic
to A. It follows that LPm(A) is a witness that BLP does not decide
CSP(A), since BLP(LPm(A),A) must be feasible from (2). Conversely,
for (3) ⇒ (2), assume that A has symmetric polymorphisms of all arities.
Let m ∈ N. We know that LPm(A) is homomorphic to A and therefore
for all σ-structures X, BLP(X,A) is feasible if and only if X → A. Hence,
BLP decides CSP(A).

So it only remains to prove that Lemma 5.7 holds. Variants of a set
of structures with this properties have been defined in the literature both
for CSP [KOT+12] and for VCSP [TŽ12, VŽ21]. For completeness, we
present the proof here.

Proof of Lemma 5.7. The universe of LPm(A) is the set
((

A
m

))
of all A-

multisets of size m. For every R ∈ σ of arity r and for every s1, . . . , sr ∈((
A
m

))
, we have that

(s1, . . . , sr) ∈ RLPm(A) ⇔ ∃a1, . . . ,am ∈ RA such that
si = {{a1[i], . . . ,am[i]}}.

(5.1)

Item (1) follows easily from equation (5.1) and the obvious correspon-
dence between maps from

((
A
m

))
to A and symmetric m-ary operations on

A.

46

As for item (2), for the backwards implication let m ∈ N be such that
X → LPm(A), and let h : X →

((
A
m

))
be such a homomorphism. We

define a feasible solution to BLP(X,A) as follows. For s ∈
((

A
m

))
and

a ∈ A, let ns(a) be the multiplicity of a in s. Then, for each x ∈ X and
a ∈ A we define px(a) = nh(x)(a)/m. Similarly, letR ∈ σ, x ∈ RX, and s =
(s1, . . . , sar(R)) = h(x) be the image of x under h. Let S = {{a1, . . . ,am}}
be a multiset of tuples in RA such that si = {{a1[i], . . . ,am[i]}}, notice
that S must exist because of (5.1). Let nS(a) be the multiplicity of a in S.
Then, we define pR(x)(a) = nS(a)/m. It is easy to see that these functions
satisfy equations (BLP1), (BLP2) and (BLP3) of BLP(X,A).

On the other hand, for the forward implication let px(a), pR(x)(a)
define a feasible solution to the linear system BLP(X,A), and let m be
the least common multiple of the denominators of this solution. We claim
that there exists a homomorphism from X to LPm(A).

For every x ∈ X, we define h(x) to be the A-multiset such that each
a ∈ A appears exactly m · px(a) times in h(x) (in particular, by (BLP1)
h(x) has size m). Now for some R ∈ σ and x ∈ RX, let S = {{a1, . . . ,am}}
be such that each a ∈ Aar(R) appears in S exactly pR(x)(a) times. By
equation (BLP2), we have that for every j = 1, . . . , ar(R), h(x[j]) =
{{a1[j], . . . ,am[j]}} and so h(x) ∈ RLPm(A) as required.

The following is an immediate consequence of the proofs of Theorem
5.6 and Lemma 5.7.

Corollary 5.8. Let A be a fixed finite σ-structure such that Pol(A) con-
tains symmetric operations of all arities. Then, for all σ-structures X
where BLP(X,A) is feasible, there exists a homomorphism h from X to
A such that for all x, x′ ∈ X with px(a) = px′(a) for all a ∈ A, we have
h(x) = h(x′).

5.2.2 Applying the SA method exactly

Here we shall show that the family of relaxations SAk considered in the
present paper is closely interleaved with the system of relaxations obtained
by applying the SA method to a natural choice of initial polytope P.

5. Relaxation techniques 47

Let X and A be σ-structures. We define polytope P = P(X,A) using
a system of inequalities. The variables of the system are yx,a for each
x ∈ X and a ∈ A. Each variable must take a value in the range [0, 1]. We
remark that by fixing some arbitrary ordering on the variables in yx,a we
can represent any assignment on the variables yx,a with a tuple y ∈ Rn

with n = |X| · |A|. Therefore we shall abuse notation and use yx,a to refer
to the value in y corresponding to variable yx,a.

The variables are subject to the following inequalities.∑
a∈A

yx,a = 1 x ∈ X, (5.2)
∑

x∈{x}
yx,f(x) ≤ |{x}| − 1 for each R ∈ σ, x ∈ RX, and (5.3)

f : {x} → A with f(x) ̸∈ RA.

Note that if h is a homomorphism from X to A then the assignment
setting yx,h(x) = 1 for every x ∈ X and the rest of variables to zero is
feasible.

Now let Pk, k ≥ 1 be the sequence of polytopes obtained using the SA
method. The next lemma shows that the sequence of relaxations defined
by SAk and Pk are interleaved.

Lemma 5.9. Let k ≥ 1 and let r be the maximum arity of a relation in
σ. Then

1. If Pk ̸= ∅ and r ≤ k then SAk is feasible.

2. If SAk+r−1(X,A) is feasible then Pk ̸= ∅.

Proof. (1). Assume that Pk ̸= ∅ and let z be a feasible solution of Pk
L. We

shall construct a feasible solution of SAk(X,A). First, set every variable
of the form pV (f) to zK where K = {(x, f(x)) | x ∈ V }. We first observe
that this assignment satisfies (SA1) and (SA2). Indeed, let U ⊆ X with
|U | < k, let f : U → A, and let I = {(u, f(u)) : u ∈ U}. Then, multiplying
the equality (5.2) with x ∈ X \ U by Πi∈Iyi and linearizing we obtain
equality (SA2) for U , f , and V = U ∪ {x}. In this way we can obtain
all equalities in (SA2) for |U | + 1 = |V |. We note here that the rest of
equalities in (SA2) along all equalities in (SA1) can be obtained as a linear
combination.

48

Secondly, let us set the rest of variables. For every (x, R) ∈ CX and
f : {x} → A, set p(x,R)(f) to be zK where K = {(x, f(x)) | x ∈ {x}} (note
that we are using implicitly the fact that r ≤ k). Then, (SA3) follows
directly from (SA2). Finally, it only remains to show that (SA4) is also
satisfied. Indeed, for every f(x) ̸∈ RA we obtain equality p(x,R)(f) = 0 if
we multiply (5.3) by the term Πi∈K and linearize.

(2). Assume that SAk+r−1(X,A) is feasible. We construct a feasible
solution z of Pk

L as follows. For every K ⊆ X × A which satisfies K =
{(x, f(x)) | x ∈ U} for some U ⊆ X with |U | ≤ k and f : U → A, we set
zK := pU (f). Otherwise, we set zK to zero.

Let us show that this assignment satisfies all inequalities in Pk
L. Let

cT z ≤ d (5.4)

be any inequality defining Pk
L. Since (5.4) is obtained by multiplying an

inequality which contains at most r variables by a term of at most k − 1
variables, there exists a set V ⊆ X with |V | ≤ r + k − 1 such that for
every variable zK appearing in (5.4), V satisfies K ⊆ V × A. Note that,
by (SA1), variables pV (g), g : V → A define a probability distribution.
For every g : V → A in the support of this distribution, consider the
assignment yg that sets yg

x,a = 1 if x ∈ V and b = g(x) and yx,b = 0
otherwise.

Inequality (5.4) has been obtained by multiplying an inequality from
(5.2) or (5.3) by a term and linearizing. We claim that in both cases, the
inequality that has generated (5.4) is satisfied by yg. If the inequality
generating (5.4) is ∑a∈A yx,a = 1 for some x ∈ X this follows simply
from the fact that x ∈ V . Assume now that (5.4) has been generated by
inequality ∑x∈{x} yx,f(x) ≤ |{x}| − 1. In this case note that {x} ⊆ V and
then the claim follows from (SA3) and (SA4). This finalizes the proof of
the claim.

Consequently, since yg is integral it follows that the assignment zg

defined as zg
K = Πi∈Kyg

i satisfies (5.4). Finally, note that if we set αg =
pV (g), then for every K ⊆ V × A, zK is precisely given by the convex
combination ∑g α

gzg
K .

5. Relaxation techniques 49

5.3 Local Consistency

Local Consistency methods are widely used in constraint satisfaction as
a heuristic to discard unsatisfiable instances at a low computational cost.
The basic idea is to run an (efficient) algorithm that checks consistency
in sets of bounded size, and rejects if an inconsistency is found. While
these methods are only guaranteed to accept Yes instances (yet they do
not always reject No instances), it has been shown that for certain classes
of CSPs, local consistency methods are sufficient to decide satisfiability.

Let 1 ≤ k ≤ l. Intuitively, an instance X of CSP(A) is said to be
(k, l)-consistent if the set of all substructures of X with at most l ele-
ments admits a system of homomorphisms into A that are consistent on
all sets of variables of size at most k. For each fixed (k, l), there is a
polynomial-time algorithm that checks this condition, which is known as
the (k, l)-consistency algorithm. We say that A has width (k, l) if the
(k, l)-consistency algorithm decides CSP(A): that is, if (k, l)-consistency
accepts X, then X → A. A is said to have bounded width if it has width
(k, l) for some fixed k and l. CSPs of bounded width have a number of
equivalent characterizations in terms of solvability in DATALOG, pebble
games, bounded treewidth duality, and definability in infinitary logics (see
e.g. Theorem 19 in [BKL08]).

One of the simplest notions of consistency is called (generalized) arc
consistency. The basic idea is, given an instance X of CSP(A), to main-
tain a set Sx ⊆ A for each x ∈ X which, at all times, satisfies that for
any homomorphism h from X to A, h(x) ∈ Sx. Arc consistency can be
enforced in polynomial time via a simple algorithm which initially sets
Sx = A for each x ∈ X and then iteratively prunes each Sx in a natural
way until a fixed point is reached (see e.g. [CDG13] for details).

Let r denote the maximum arity of a relation in the signature. The
families of CSPs that are solvable by arc consistency are precisely those
that have width (1, r). One of the many examples of the power of the
algebraic approach to CSPs can be found in [DP99] (see also [FV98]),
where the CSPs of width (1, r) are characterized in terms of invariance
under certain polymorphisms.

Theorem 5.10 ([DP99]). Let A be a finite relational structure. CSP(A)

50

has width 1 if and only if A is invariant under totally symmetric polymor-
phisms of all arities.

It was later claimed in [KOT+12] that the condition of Theorem 5.10
would also be equivalent to A being invariant under symmetric polymor-
phisms of all arities, and as a consequence, that arc consistency would
have the same power as BLP (see Theorem 5.6). However, this turned out
not to be the case, as the following example illustrates [KS16].

Example 5.11

Let B be the relational structure on the 3-element domain B =
{−1, 0, 1} with two ternary relations defined by

R+ = {(b1, b2, b3) ∈ B3 : b1 + b2 + b3 ≥ 1},

R− = {(b1, b2, b3) ∈ B3 : b1 + b2 + b3 ≤ −1}.

It is easy to show, e.g. by contradiction, that for every m ≥ 1,
the function f : Bm → B defined as

f(b1, . . . , bm) =

1 if 1

m

∑m
i=1 bi ≥ 1

3
0 if | 1

m

∑m
i=1 bi| < 1

3
−1 if 1

m

∑m
i=1 bi ≤ −1

3

is a polymorphism of B.
On the other hand, suppose that B has a totally symmetric poly-

morphism f of arity 3. Then, there exists some x ∈ B such that
f({−1, 1}) = x, and in particular

f

−1

1
1

,
 1

−1
1

,
 1

1
−1

 =

xx
x

 = f

 1

−1
−1

,
−1

1
−1

,
−1

−1
1

where f is applied component-wise. It follows that (x, x, x) ∈ R+

(from the first equality) and (x, x, x) ∈ R− (from the second equal-
ity), which is a contradiction.

5. Relaxation techniques 51

CSPs of bounded width were characterized in [Bul09] and indepen-
dently in [BK09, BK14], answering a conjecture of Feder and Vardi [FV98].
In particular, it follows from the so-called Barto-Kozik theorem [BK14]
and [Bar16] that for any A, if CSP(A) has bounded width, then it has
width (2,max{3, r}), where r is the maximum arity of a relation in A.

In a recent line of work, Kozik presented a series of progressively weaker
consistency notions that strictly improve upon (2,max{3, r})-consistency
in terms of efficiency, yet still solve all the CSPs of bounded width: Sin-
gleton Arc Consistency (SAC) [Koz16], Singleton Linear Arc Consistency
(SLAC) [Koz16], and most recently jpq-consistency [Koz21]. The jpq-
consistency algorithm will find a surprising application in this thesis in
the context of solving CSPs via distributed algorithms, see Section 6.4.2.

On a related note, the notion of bounded width also finds applicability
in the realm of linear programming algorithms. In fact, it was shown in
[TŽ17] that the CSPs of bounded width are precisely those that can be
solved by the third level of the Sherali-Adams hierarchy (see Section 5.2).
All together, we have the following (non-exhaustive) characterization of
the CSPs of bounded width:

Theorem 5.12 ([Bul09, BK14, Bar16, Koz16, Koz21, TŽ17]). Let A be
a finite σ-structure. The following are equivalent:

1. A has a k-ary WNU polymorphism for every k ≥ 3;

2. A has bounded width;

3. A has width (2,max{3, r}), where r = maxR∈σ ar(R);

4. CSP(A) is solvable by SAC;

5. CSP(A) is solvable by jpq-consistency;

6. SA3 decides CSP(A).

While not specifically relevant to this thesis, the paper [AD22] provides
an interesting contribution that motivates the study of these relaxations
for the CSP and its extensions. In particular, the authors show that the
implication (2) ⇒ (1) in Theorem 5.12 can be lifted to PCSPs, yet the
converse implication breaks. In particular, in the Promise setting even the

52

second level of the Sherali-Adams hierarchy is strictly stronger than local
consistency as the former solves, for instance, PCSP(1-in-3-SAT,NAE)
while the latter does not.

6 Distributed CSPs

In this chapter we study the complexity of the Distributed Con-
straint Satisfaction Problem (DCSP) on a synchronous, anonymous
network from a theoretical standpoint. We show a dichotomy theo-
rem for both the decision and the search version of DCSP in terms
of invariance under symmetric polymorphisms.

6.1 Introduction

In this chapter we study the computational complexity of the distributed
counterpart of CSP, which is known as DCSP. This was introduced by
Yokoo et al. [YIDK92] as a formal framework for the study of coopera-
tive distributed problem solving. In particular, we consider a determinis-
tic, synchronous, anonymous network of agents controlling variables and
constraints, and we study the complexity of solving constraint satisfac-
tion problems by using message passing on this network. A number of
practical applications can be encoded in the DCSP model, for instance
resource allocation tasks in wireless networks, routing, networking, and
mobile technologies (see for instance [BKGS01, DBL13]).

We notice that this framework is general enough to encompass some
simple Graph Neural Network (GNN) architectures (see for example [Gro20,
MRF+19]). In particular, when training a GNN to classify graphs, it is
customary that the GNN network ignores the node label when updating
its feature vector. This is, in fact, essential as otherwise there would be
no way to apply the network trained on a given graph to another one.

53

54

However, whereas in all variants of GNNs the computation is limited to a
reduced number of operations over feature vectors, in the DCSP model the
computation at each node is governed by an arbitrary algorithm. GNNs
have a wide range of applications including molecule and image classifica-
tion (see [BHB+18] for example). Recently, GNNs have been deployed to
solve CSPs [TRWG20].

While there are a variety of well-performing distributed algorithms for
constraint satisfaction and optimisation (see for instance [YH00, Mei08,
FPY18]), the theoretical aspects of distributed complexity are to date not
well understood. In this chapter we initiate the study of the complexity
of DCSP parametrized by the constraint language, obtaining a complete
characterization of its tractable classes. More specifically, building on the
connection between the CSP and algebra, we show that for any finite
constraint language A, the decision problem for DCSP(A) is tractable
whenever A is invariant under symmetric polymorphisms of all arities.
Otherwise, there are no message passing algorithms that solve DCSP(A).
Collaterally, we show that the same holds for the search problem for DCSP.

Our work begins with the identification of a connection between the
inherent nature of message passing algorithms in distributed networks and
the 1-dimensional Weisfeiler-Leman algorithm. It turns out that, due to
the network’s anonymity, in every distributed algorithm all the agents that
are equivalent with respect to 1-WL must necessarily behave identically
at each round. A similar phenomenon has been observed independently in
the context of GNNs [MRF+19, XHLJ19] (see also [BKM+20, MLM+21]).

We use this fact to show that, under the absence of symmetric polymor-
phisms of any arity in A, it is always possible to construct two instances
of DCSP(A), one satisfiable and the other unsatisfiable, that cannot be
distinguished by any message passing algorithm in an anonymous network.

On the other hand, as we saw in Section 5.2, if A has symmetric
polymorphisms of all arities then the basic linear programming relaxation
decides CSP(A). While it is not clear how to directly use this fact to
obtain a distributed algorithm for DCSP(A), it can be applied to establish
a structure theorem that unveils a simple yet surprising structure in the
solution space of every satisfiable instance of CSP(A): it must contain a
solution that assigns the same value to all variables that are ≡1-equivalent.
The proof of this structure theorem uses the weighted majority algorithm,

6. Distributed CSPs 55

a weight update method that is widely used in optimisation and machine
learning applications (see [AHK12]). The structure theorem is key in the
proof of the positive results as it allows to run an adapted variant of the
jpq-consistency algorithm [Koz21] that overcomes the absence of unique
identifiers for the variables, by using instead their iterated degree.

This chapter is organised as follows. In Section 6.2 we introduce some
definitions and technical concepts about the DCSP model. In Section
6.3 we show the connection between iterated degree and the basic LP
relaxation for CSP, culminating in the structure theorem (Theorem 6.12).
Section 6.4 is dedicated to the proof of the dichotomy theorem for the
complexity of DCSP, with the hardness results in Section 6.4.1, the details
of the distributed algorithm for tractable languages in Section 6.4.2, and
its extension to the search problem in Section 6.4.3.

6.2 Distributed CSPs

For consistency with the rest of the thesis, we shall deviate from the
notation in [BD22] (and of [FPY18]) and regard DCSP as a distributed
homomorphism problem.

The Distributed Model. We consider the DCSP model of [YIDK92]
with some small modifications. The basic idea is to assign the task of
solving a constraint satisfaction problem to a multi-agent system whose
organisation depends on the input structure. In the original model, which
assumes that all constraints are binary [YDIK98, YH00], the premise is
that each variable in the input structure is controlled by an agent, and
two agents can communicate with one another if and only if they share
a constraint. Here we deviate slightly from the original model to allow
for non-binary constraints and we assume that both variables and con-
straints of the input structure are controlled by distributed agents in the
network. An instance of the Distributed Constraint Satisfaction Problem
over a finite-domain relational structure A, denoted DCSP(A), is a triple
(X,Ψ, ψ), where X is a relational structure similar to A, Ψ is a finite set
of agents, and ψ : X ∪ CX → Ψ is a surjective function which assigns the
control of each variable x ∈ X and each constraint c ∈ CX to an agent

56

ψ(x), ψ(c) respectively. Unless explicitly stated otherwise, in this chapter
we will adhere to the following assumptions. All instances are assumed
to be connected. The number of variables and constraints of the input
instance will be denoted by n and m respectively. We shall assume that
there are exactly n+m agents, and therefore each agent controls exactly
one variable or one constraint. Under this assumption, there is a one-
to-one correspondence between instances of CSP(A) and of DCSP(A),
and thus we shall switch freely between them, while maintaining the dis-
tinction between agents and their controlled variables and constraints for
clarity when discussing distributed algorithms.

Distributed Networks and Message Passing. We now present some
fundamental concepts relating to the message-passing paradigm for dis-
tributed networks. For a general introduction to distributed algorithms,
we refer the reader to [Fok13]. A distributed system consists of a finite set
of agents or processes, which are connected through communication chan-
nels to form a network. Any process in the network can perform events
of three kinds: send, receive and internal. Send and receive events are
self-explanatory, as they denote the sending or receiving of a message over
a communication channel. Any kind of local computation performed at
the process level, as well as state changes and decisions, are classified as
internal events.

We assume a fully synchronous communication model, meaning that
the send event at a process p and the corresponding receive event at a
process p′ can be considered de facto as a unique event, with no time
delay. As a whole, a synchronous system proceeds in rounds, where at each
round a process can perform some internal computation and then send
messages to and receive messages from its neighbours. A round needs to
terminate at every process before the next round begins. Note that while
for simplicity we assume a synchronous network, all our algorithms can
be adapted to asynchronous systems by applying a simple synchronizer.
Nonetheless, we point out that our negative results rely on the network
operating in synchronous rounds.

We make the fundamental assumption that the network is anonymous,
meaning that variables, constraints and agents do not have IDs. For prac-
tical purposes, we still refer to variables and constraints with names (such

6. Distributed CSPs 57

as xi, ci), however these cannot be communicated through the channels.
The assumption of anonymity can have various practical justifications:
the processes may actually lack the hardware to have an ID, or they may
be unable to reveal their ID due to security or privacy concerns. For
instance, the basic architecture of GNNs is anonymous. This is a very
desirable property as it allows to deploy GNNs in different networks than
those in which they were trained.

We assume that all the processes run locally the same deterministic
algorithm, therefore IDs cannot be created and deadlocks cannot be broken
by for instance flipping a random coin. Hence, the lack of IDs makes the
processes essentially indistinguishable from one another - except, as we
will see later, for the structure of their neighbourhood in the network.

Leader election is a procedure by which the processes in a network
select a single process to be the leader in a distributed way. If a leader
is elected, then she can, for instance, dictate the output to the other pro-
cesses. Moreover, all the information about the instance can be gathered
to the leader, which if the network had unique IDs, would be sufficient to
solve the CSP locally at the leader. It is a well-known result that there
does not exist a terminating deterministic algorithm to elect a leader in an
anonymous ring [Ang80]. Therefore, the assumptions of anonymity and
determinism ensure that the DCSP model is intrinsically different from the
(centralised) CSP framework, and open up the way for establishing novel,
non-trivial complexity results. We remark that while considerable effort
has been put into characterizing under what conditions an anonymous
network is able to elect a leader [BSV+96, YK88] or compute relations
[BV01], our work focuses on characterizing the complexity of the DCSP
as parametrised by the template. Therefore, all of our algorithms work
regardless of the topology of the network, and hence regardless of whether
or not a leader can be elected.

The encoding of a DCSP instance into the message passing framework
is straightforward. The processes correspond to the agents of the network,
and there is a labelled communication channel between a variable agent
ψ(x) and a constraint agent ψ(c) if and only if x ∈ c. More formally,
let GX be the factor graph of an input structure X. Then, the message
passing network corresponds to the factor graph where every node (vari-
able or constraint) is replaced by their associated agent and every edge

58

by a communication channel of the same label. Note that between any
two agents there is at most one channel. If privacy is a concern, we point
out that labeling channels does not reveal any more information about the
processes than what is strictly necessary for the problem instance to be
well defined. It is easy to prove (see Remark 6.1) that in the case that all
relations are binary, the original model where only variables are controlled
by agents is equivalent to our model.

At the start of an algorithm, a process only has access to very lim-
ited information. All processes know the template, the total number n
of variables and m of constraints in the CSP instance, the labels of the
communication channels that they are incident to in the network, and
naturally whether they are controlling a variable or a constraint. During
a run of the algorithm a process can acquire further knowledge from the
messages that it receives from its neighbours. We assume that at any
time each process is in one of a set of states, a subset of which are ter-
minating states. When it enters a terminating state, a process performs
no more send or internal events, and all receive events are disregarded.
The local algorithm is then a deterministic function which governs the
process’s next state and the messages it will send to its neighbours. The
output of such function only depends on the process’s current knowledge
(including the messages it has received so far) and on its state. We allow
processes to send different messages through different channels. However,
since processes can only distinguish the channels based on their labels,
identical messages must be sent through channels with identical labels.
Note that the power of the model would not decrease if only one message
was allowed to be passed through all the channels, since a process can sim-
ulate sending a separate message through each channel by tagging each
message with the label of the desired channel and concatenating them in
a unique string. This, however, comes at the cost of increased message
size. Moreover, if a process needs to broadcast multiple messages, these
can be concatenated into one. We say that an algorithm terminates when
all processes are in a terminating state. For a precise formalisation of the
definition of distributed algorithm, see Remark 6.2.

We say that a distributed algorithm solves an instance (X,Ψ, ψ) of
DCSP(A) if the algorithm terminates and at termination every process
in Ψ correctly outputs Yes if X is homomorphic to A, and No other-

6. Distributed CSPs 59

wise. Moreover, we consider the search version of DCSP(A), denoted
DCSP-Search(A). In the search version, if X is homomorphic to A,
at termination every variable process ψ(x) must additionally specify a
value h(x) ∈ A such that the function h : X → A is a homomor-
phism. We say that a distributed algorithm solves DCSP(A) (respec-
tively DCSP-Search(A)) if it solves all connected instances of DCSP(A)
(respectively DCSP-Search(A)).

In terms of algorithmic complexity, there are a number of measures
that can be of interest. Time complexity, which is our primary concern,
corresponds to the total amount of time required for the algorithm to
terminate, including the time needed for internal events. This is closely
related to the number of rounds of the algorithm, which is another mea-
sure that we are concerned with. Message complexity and bit complexity
measure the total number of messages and bits exchanged respectively.
These can be bounded easily from the maximum size of a message.

Remark 6.1 (Binary structures).

Throughout this chapter, we assume that both variables and con-
straints are controlled by agents in a distributed network (in this
section, we will refer to this as model 1). However, when the sig-
nature only contains binary relation symbols it is also valid and,
indeed, more common to assume that only variables are controlled
by agents, and there is a communication channel between any two
variable agents ψ(x) and ψ(x′) whenever x and x′ share a constraint
(model 2) which is labelled with the relation and the direction of the
constraint.

It is very easy to see that in the case of a binary signature both
models are equivalent. Indeed, for every binary template A and
every instance X of CSP(A), let (X,Ψ1, ψ1) and (X,Ψ2, ψ2) be the
associated instances of DCSP(A) in model 1 and 2 respectively. It is
easy to see that every algorithm in model 2 can be easily simulated
by an algorithm in model 1. In particular, it is only necessary that at
round 2j every variable agent ψ1(x) replicates the jth round of ψ2(x)
(while every constraint agent ψ1(c) remains idle). Then, round 2j+1

60

is used to replicate the messages sent at round j. That is, whenever
ψ2(x) sends a message to a neighbour ψ2(x′) at round j, ψ1(x) sends
a message to ψ1(c) at round 2j, where c is the constraint shared by
x and x′. At round 2j+1 then ψ1(c) forwards the message to ψ1(x′).

Similarly, any algorithm in model 1 can be replicated in model
2. In this case, at a given round j, every agent ψ2(x) simulates the
internal computation done at round j by ψ1(x) and all its neighbours.

Remark 6.2 (The distributed formalism).

We give a formalization of the definition of the distributed model
which we presented above. The impatient reader can skip this re-
mark as the informal definitions given above will be sufficient for
all the results of this chapter. Note that for simplicity, here we de-
scribe a distributed system which only allows message broadcast (as
opposed to allowing different messages to be sent through channels
with different labels). Nonetheless, as pointed out above, this does
not decrease the expressive power of the system.

Let N denote the set of positive integers and N0 := N ∪ {0}. For
a (possibly infinite) set S, we use NS

0 (as an extension of the power
set notation 2S) to denote the set of all multisets containing just
elements from S. Let Σ be a finite alphabet. A message is a finite
string of symbols from Σ, that is, an element of Σ∗. A process (also
called an agent) is a 7-tuple (Σ,Λ,L, Q, qo, Qf , F) where Λ is a finite
set known as the memory alphabet, L is a finite set of labels, Q is a
finite set of states, q0 ∈ Q is the initial state, Qf ⊆ Q denotes the
subset of terminal states, and F is a Turing-computable function

F : Q× Λ∗ × NL×Σ∗

0 → Q× Λ∗ × Σ∗

which takes as input the current state, the memory tape, and the
multiset of labelled messages received at the previous round, and
outputs a new state, an updated memory tape, and a message to
be broadcast to the process’s neighbours. We require that terminal
states are fixed points of F in the sense that for all q ∈ Qf , λ ∈ Λ∗,

6. Distributed CSPs 61

and M ∈ NL×Σ∗

0 it holds that

F (q, λ,M) = (q, λ, ε)

where ε ∈ Σ∗ denotes the empty string. An output of the function F
– that is, a triplet γ = (q, λ, s) ∈ Q×Λ∗×Σ∗ – is called a configuration
of the process.

In this thesis, a message-passing network is an edge-labelled graph
whose vertex set is a set of identical processes and where the label
set of the network corresponds to the label set L of the processes.
The neighbourhood of a process i in the network is denoted N(i).
Given a message-passing network G with vertex set [p], a run of F
over G with initial memory (λ1

0, . . . , λ
p
0) is a collection of p sequences

of configurations γi
0, γ

i
1, γ

i
2 . . ., i ∈ [p] where γi

t = (qi
t, λ

i
t, s

i
t), such

that qi
0 = q0 is the initial state, si

0 = ε is the empty string, and
for all t ≥ 0 and all i ∈ [p], (qi

t+1, λ
i
t+1, s

i
t+1) = F (qi

t, λ
i
t,M

i
t), where

M i
t = {{(ℓ{i,j}, s

j
t) | j ∈ N(i)}} and ℓ{i,j} ∈ L denotes the label of

edge {i, j}. A run is said to be terminating if there exists some integer
T such that, for each i ∈ [p], qi

T ∈ Qf (and hence, by definition of F ,
qi

t = qi
T for all t > T). The output of the run is the set of terminal

memory tapes λi
T , i ∈ [p].

We point out that, while for convenience we define runs to be
infinite sequences of configurations, for all practical purposes one
can assume that a process effectively halts as soon as it reaches a
terminating state.

Notice that, given p identical processes, a run of the algorithm is
fully determined by the connectivity and labels of the network, and
by the choice of initial memory λi

0 for each of the p processes. This
is generally fairly limited as each process acquires new information
via message passing. It could, for instance, contain the processes’
unique identifiers if these were available (this is clearly not the case
for anonymous networks like the one that we address in this thesis).
In the case of the DCSP message passing network, the network is
bipartite and each edge with its corresponding label describes how a
variable participates in a constraint. The initial memory is limited to

62

the numbers n and m of variables and constraints respectively in the
DCSP instance, and to a bit which specifies if the process is control-
ling a variable or a constraint. In particular, it contains no identifier
nor any other information about the input instance. Moreover, in
the case of DCSP the function F can depend on the template, since
this is fixed, but not on the specifics of the input instance. Finally,
we remark that while F does not depend explicitly on the round t,
this can be stored and updated in the process’s memory, and the
messages can even be tagged with a time stamp if this is needed for
synchronization purposes, for example, due to hardware issues.

Iterated Degree and ≡1-equivalence. We say that two processes in
the distributed network given by GX are ≡1-equivalent if the variables
(resp. constraints) that they control are ≡1-equivalent in X. The notion
of iterated degree is strikingly relevant in our work as it captures what it
means for two processes in a network to be indistinguishable. This implies
that no distributed algorithm can differentiate between two ≡1-equivalent
nodes, as we illustrate in the following result.
Proposition 6.3. Let (X,Ψ, ψ) be a not necessarily connected instance of
DCSP(A) and consider two nodes v, v′ in GX. Then, v ≡1 v

′ if and only
if any terminating decision algorithm over X outputs the same decision
at ψ(v) and ψ(v′). Furthermore, if v, v′ ∈ X and X → A, then any
terminating search algorithm outputs the same values h(v) = h(v′) at ψ(v)
and ψ(v′).

Proof. (⇒). At the beginning of the algorithm, all processes are in the
same state. Let v be a node in the factor graph of X, and denote by sv

t the
message broadcast at time t by ψ(v) to its neighbours. For any two nodes
v, v′, δX

1 (v) = δX
1 (v′) is equivalent to v and v′ having the same knowledge

at the start of the algorithm. This means that the first internal and send
events are the same at ψ(v) and at ψ(v′), hence sv

1 = sv′
1 . Then, it is easy

to see by induction that δX
t (v) = δX

t (v′) ⇒ sv
t = sv′

t , which in turn implies
that

v ≡1 v
′ ⇒ sv

t = sv′
t at all times t = 1, 2, . . .

This implies that at any time t, ψ(v) and ψ(v′) send and receive the same
messages, so they have the same knowledge and hence the internal events

6. Distributed CSPs 63

at ψ(v) and ψ(v′) are the same at all time. In particular, if the algorithm
terminates, then the terminating state is the same at ψ(v) and ψ(v′), and
therefore the decision and, in case of search, the value of h at ψ(v) and
ψ(v′) are the same.

(⇐). Consider the algorithm that calculates the iterated degree at each
node (we detail the procedure in the proof of Theorem 6.21). If v ̸≡1 v

′,
then we can devise an algorithm that on the basis of the iterated degree
gives different outputs at ψ(v) and ψ(v′).

Example 6.4 (Distributed 2-coloring – search).

Let A = ({0, 1}; ̸=2) where ̸=2 is the inequality relation on the
Boolean domain. Let X be an instance of DCSP(A) with vari-
ables {x1, . . . , xn} and constraints ((x1, x2), ̸=2), ((x2, x3), ̸=2), . . . ,
((xn, x1), ̸=2); that is, X can be seen as a directed n-cycle. If n is
even, then clearly X is homomorphic to A. Therefore, if there was a
distributed algorithm that solved DCSP-Search(A), any two agents
controlling two consecutive variables xi, xi+1 should output at ter-
mination a partial map h such that h(xi) ̸= h(xi+1). But it is easy
to see that all variable agents in X have the same iterated degree,
and so by Proposition 6.3, such an algorithm cannot exist.

The following is a direct consequence of Proposition 6.3.

Corollary 6.5. Let (X,Ψ, ψ), (X′,Ψ′, ψ′) be (connected) instances of
DCSP(A) such that X ≡1 X′. Then with both inputs any terminating
decision algorithm for DCSP(A) will report the same decision.

Example 6.6 (Distributed 2-coloring).

Let A = ({0, 1}; ̸=2) be as in Example 6.4 and consider the two in-
stances pictured in Figure 9.1 (where nodes represent variables and
edges represent constraints). By Corollary 6.5, any terminating deci-
sion algorithm will report the same decision on both instances. How-

64

ever, one of the graphs is 2-colorable and the other is not, so there
cannot be a distributed algorithm that solves DCSP(A).

Equality-free pp-definability. Recall from Section 2.1.1 that pp-de-
finability provides one of the most basic tools for complexity reductions
between CSPs (see Theorem 2.1). We would like to harness the power of
pp-definitions to obtain analogous reductions between DCSPs. However,
in the distributed setting, allowing equality in the pp-definitions introduces
a few technical difficulties. Fortunately, this obstacle can be overcome by
considering a more restricted notion of pp-definability which, following
[JLNZ17], we shall call equality-free primitive positive definability (efpp-
definability for short) where equality is not allowed. More precisely, we
shall say that a relation R is efpp-definable from a σ-structure A if it is
pp-definable from A and, in addition, the pp-formula defining R only uses
relations from σ. That is, we are not allowed to use the equality relation
in the formula, unless, of course, it belongs already to A. Then, we have:

Proposition 6.7. Let A, A′ be finite-domain relational structures, and
assume that all the relations of A′ are efpp-definable from A. If DCSP(A)
is solvable in polynomial time (resp. finite time) then so is DCSP(A′).

Proof. Given an algorithm Alg that solves DCSP(A) we can design a
new algorithm Alg′ for DCSP(A′) that, given an instance (X′,Ψ′, ψ′) of
DCSP(A′) simulates the execution of Alg with the instance (X,Ψ, ψ) of
DCSP(A) defined as follows. For every constraint R(x) in CX′ , consider
the pair ((y1, . . . , yar(R)),YR) defining RA′ over A, and define YR(x) to be
the structure obtained from YR by renaming the variables so that yi = xi

for every 1 ≤ i ≤ ar(R) and the rest of variables in YR(x) are fresh. Note
that YR (and hence YR(x)) is similar to A. Then we define X to be the
union of X′ with all the structures YR(x) for R(x) ∈ CX′ . Ψ and ψ are
defined such that ψ agrees with ψ′ over X ′ and, as usual, every variable
and constraint in X is controlled by a different agent.

The simulation is as follows. At each round, for every x ∈ X ′, ψ′(x)
simulates the execution of ψ(x) as in Alg, and for every c ∈ CX′ , ψ′(c) sim-
ulates the execution of all constraints and fresh variables in Yc. We note
that no new communication channels need to be created as this simulation

6. Distributed CSPs 65

is done internally by ψ′(R(x)). The transmission of messages can be also
easily simulated for every pair of neighbours ψ(x) and ψ(c) in Ψ. In fact,
if x ̸∈ X ′, then both ψ(x) and ψ(c) are simulated by the same agent ψ′(c)
in Ψ′ (and, hence, no communication is required). Otherwise, if x ∈ X ′,
ψ(x) is simulated by ψ′(x) and ψ(c) is simulated by some neighbour ψ′(c′)
of ψ(x).

Remark 6.8 (Power structure as efpp-definition).

We note here that for every k ≥ 1, the kth power structure of A con-
stitutes an efpp-definition of the |A|k-ary relation U encoding the set
of all polymorphisms of A of arity k. It then follows from Proposi-
tion 6.7 that if DCSP(A) is solvable in polynomial time (resp. finite
time) then so is DCSP(U), where U = (Ak;U).

6.3 The Structure Theorem

Our work unveils a novel structure in the space of solutions of a CSP in-
stance that is deeply connected to the symmetry of its polymorphisms. In
particular, Pol(A) containing symmetric operations of all arities is equiv-
alent to the existence of a homomorphism for every satisfiable instance
of CSP(A) that preserves the partition induced by ≡1. This is the main
result of this section. To build up to it we will need the following result.

Theorem 6.9. Let X and A be σ-structures such that BLP(X,A) is
feasible. Then, BLP(X,A) has a feasible solution such that for every
x, x′ ∈ X with x ≡1 x

′ and every a ∈ A, px(a) = px′(a).

Proof. We start by rewriting BLP(X,A) in the form

∃?v ∈ [0, 1]V Bv ≥ b. (6.1)

by replacing every equality a = b by the inequalities a ≥ b and −a ≥ −b.
It will be convenient to index the rows and columns of B not using

positive integers. Let us start with the columns. Each column is associated
to a variable of BLP(X,A), i.e, a variable of the form px(a), x ∈ X, a ∈ A

66

or pc(a), c ∈ CX, a ∈ Aar(c).In the first case, we index the corresponding
column with the pair (x, a) whereas in the second case we index it with
the pair (c,a), and we denote by V the set of all such indices.

Now, let us turn our attention to the rows. Every equation in (BLP1)
gives rise to two rows that we shall index with (x,+) and (x,−). Similarly,
every equation in (BLP2) also gives rise to two rows that we shall index
with (c, i, a,+) and (c, i, a,−). Let us denote by W the set of all indexes
for rows.

We shall see later how to define an oracle which, given a probability
W -vector p (i.e, a vector p with non-negative entries such that the sum
of all its entries is 1), outputs a vector v which is a solution to the weaker
problem

∃?v ∈ [0, 1]V pTBv ≥ pT b (6.2)
if one exists, or correctly states that no such vectors exist otherwise. Note
that if a solution exists to (6.1), then it is necessarily also a solution to
(6.2), while the opposite is not true in general.

For every w ∈ W , let us denote by Bw the row corresponding to w. If
w = (x,+) then, since the vector returned by the oracle satisfies v ∈ [0, 1]V
it follows easily that Bwv − b[w] ∈ [−1, |A|]. Similarly, if w = (c, i, a,+)
then Bwv−b[w] ∈ [−1,maxR∈σ |RA|]. It follows that by setting ℓ = 1 and
ρ = max{|A|,maxR∈σ |RA|} any such oracle-given vector v satisfies the
following condition: there is a fixed subset J ⊆ W (consisting precisely of
the positive rows) such that

Bwv − b[w] ∈ [−ℓ, ρ] ∀w ∈ J,

Bwv − b[w] ∈ [−ρ, ℓ] ∀w ̸∈ J.

Such an oracle is known as an (ℓ, ρ)-bounded oracle. Then we have:

Theorem 6.10 ([AHK12]). Let ε > 0 be an arbitrary error parameter.
Suppose that there exists an (ℓ, ρ)-bounded oracle for the feasibility problem
(6.2). Assume that ℓ ≥ ε

2 . Then there exists an algorithm which either
finds v such that Bv ≥ b−ε whenever such v exists, or correctly concludes
that no such v exists otherwise. Such algorithm makes O(ℓρ log(|W |)/ε2)
calls to the oracle.

The algorithm that Theorem 6.10 refers to is Multiplicative Weight Up-
date (MWU), a well-known technique that is widely used in optimisation

6. Distributed CSPs 67

Algorithm 1: Multiplicative Weight Update
Initialisation: Fix η ∈ [0, 1

2] and let w(1) be a W -vector, whose
entries, called weights, are initially set to 1.

for t = 1, . . . , T do
Compute the probability vector p(t) = 1

Φ(t)w(t), where
Φ(t) = ∑|W |

j=1 w(t)[j]
Let v(t) be a solution satisfying (p(t))TBv(t) ≥ (p(t))T b given
by oracle O

Compute the losses ℓℓℓ(t) = 1
ρ(Bv(t) − b)

Compute the new weights w(t+1) = w(t) ⊙ (1 − ηℓℓℓ(t)) (where ⊙
denotes the element-wise product)

end
return v := 1

T

∑T
t=1 v(t)

and machine learning. MWU was discovered independently by researchers
of different communities; for a survey of its different variants we refer the
reader to [AHK12]. The version that we are interested in is described
in Algorithm 1. Recall that the algorithm assumes that BLP(X,A) is
feasible.

We shall see that if we choose the oracle O wisely then for every x, x′ ∈
X with x ≡1 x′ and every a ∈ A, the solution returned by the MWU
algorithm assigns the same value to px(a) and px′(a).

To see this we need some more notation. We note that ≡1 induces in a
natural way an equivalence relation ∼V on V . In particular, we have that
v, v′ ∈ V are ∼V -related if v = (x, a) and v′ = (x′, a) where x ≡1 x

′ and
a ∈ A, or v = (c,a) and v′ = (c′,a) where c ≡1 c

′ and a ∈ Aar(c). Similarly
≡1 induces an equivalence relation, denoted ∼W , on W . More specifically,
we have that w,w′ ∈ W are ∼W -related if w = (x, s) and w′ = (x′, s)
where x ≡1 x

′ and s ∈ {+,−} or w = (c, i, a, s) and w′ = (c′, i, a, s) where
c ≡1 c

′, i ∈ [ar(c)], a ∈ A, and s ∈ {+,−}.
Now, we say that a V -vector v is ∼V -preserving if v[v] = v[v′] whenever

v ∼V v′ and we similarly define ∼W -preserving W -vectors. So it is enough
to show that there exists some oracle O that guarantees that at each
iteration t of the MWU algorithm, v(t) is ∼V -preserving. To this end we

68

need the following easy properties.
Claim 6.11. For all ∼V -preserving V -vectors v and for all ∼W -preserving
W -vectors w, we have that

1. Bv is ∼W -preserving;

2. wTB is ∼V -preserving.

Proof of Claim 6.11. We include only the proof of (2) as the proof of (1)
is analogous and, indeed, simpler. Let v := wTB. An easy computation
shows that

v(x, a) = w(x,+) − w(x,−) −
∑

R(x)∈Cx

∑
1≤i≤ar(R)

x[i]=x

(
w(R(x), i, a,+)−

w(R(x), i, a,−)
)

where we write Cx to denote the set of all constraints in CX where x appears
in the scope, and

v(R(x),a) =
∑

1≤i≤ar(R)
a[i]=a

(
w(R(x), i, a,+) − w(R(x), i, a,−)

)

It is immediate to see that, if w is ∼W -preserving, then v(c,a) = v(c′,a)
whenever c ≡1 c

′. Let us show that v(x, a) = v(x′, a) whenever x ≡1 x
′.

Since w is ∼W -preserving we have that w(x, s) = w(x′, s) for s ∈ {+,−}
and hence we only need to show that φx(Cx) = φx′(Cx) where φx(Cx) is a
shorthand for∑

R(x)∈Cx

∑
1≤i≤ar(R)

x[i]=x

(
w(R(x), a, i,+) − w(R(x), a, i,−)

)

and φx′(Cx) is defined analogously.
Now for every R ∈ σ, every S ⊆ [ar(R)], and every class [c]≡1 of

equivalent constraints, let Cx,R,S,[c]≡1
be the set of constraints R(x) in Cx ∩

[c]≡1 satisfying that S = {i ∈ [ar(R)] | x[i] = x}. Note that since Cx and
Cx′ can be partitioned as the union of sets of this form it is only necessary
to show that φx(Cx,R,S,[c]≡1

) = φx′(Cx′,R,S,[c]≡1
) for every choice of R, S,

6. Distributed CSPs 69

and [c]≡1 . To see this it is enough to note that |Cx,R,S,[c]≡1
| = |Cx′,R,S,[c]≡1

|
(because x ≡1 x

′) and that, since w is ∼W -preserving, for every constraint
c′ ∈ [c]≡1 and every choice of a, i, and s, we have w(c′, a, i, s) = w(c, a, i, s).
■

Now, consider the oracle O that, given a W -vector p, returns the V -
vector v defined as v[v] = 1 if pTB[v] is positive and v[v] = 0 otherwise.
Since v maximizes pTBv under the restriction v ∈ [0, 1]V it follows that
v satisfies (6.2). Furthermore, it is easy to see that if p is ∼W -preserving
then v is ∼V -preserving.

Now, note that by definition both w(1) - which is an all-ones W -vector -
and b are ∼W -preserving. It follows easily by induction that for each t, v(t)

is ∼V -preserving and w(t) is ∼W -preserving. Hence, if we call algorithm 1
iteratively with T → ∞ we obtain in the limit a feasible solution satisfying
the conditions of the statement. We note here that, although we have
not included explicitly any inequalities requiring that all the variables in
BLP(X,A) take values in the range [0, 1], this is guaranteed by the fact
that all the entries of the vector returned by O are in the range [0, 1]. This
concludes the proof of Theorem 6.9.

We conclude the section by presenting the theorem on the structure of
the solution space of CSP instances.

Theorem 6.12. Let A be a finite relational structure. The following are
equivalent:

1. A has symmetric polymorphisms of all arities.

2. For all satisfiable instances X of CSP(A) there exists a homomor-
phism h : X → A such that for all pairs of variables x, x′ ∈ X, if
x ≡1 x

′ then h(x) = h(x′).

Proof. (1) ⇒ (2). Let X be a satisfiable instance of CSP(A), where
A has symmetric polymorphisms of all arities. Consider the solution of
BLP(X,A) given by Theorem 6.9 and note that it satisfies px(a) = px′(a)
for all x ≡1 x

′ and all a ∈ A. Then, by Corollary 5.8, there is a homomor-
phism h from X to A which satisfies h(x) = h(x′) for all x ≡1 x

′.
(2) ⇒ (1). Let A satisfy (2) and let k ≥ 1. We shall prove that A has

a symmetric polymorphism of arity k. Let Ak be the kth power structure

70

of A. Recall that every homomorphism from Ak to A corresponds to a k-
ary polymorphism of A, and hence for any k ≥ 1, the kth power structure
is satisfiable since for instance the projection to the first coordinate is a
polymorphism of A. Let h be a homomorphism from Ak to A which
satisfies condition (2). It is easy to show by induction that for every
tuple (a1, . . . , ak) ∈ Ak and every permutation τ of [k], (a1, . . . , ak) ≡1
(aτ(1), . . . , aτ(k)). Therefore, h(a1, . . . , ak) = h(aτ(1), . . . , aτ(k)) and h is
symmetric as required.

6.4 The Complexity of DCSP

The primary goal of this section is to prove the main theorem of this chap-
ter, namely, the dichotomy theorem for tractability of DCSP(A), which
we now state.

Theorem 6.13. DCSP(A) is solvable in polynomial time if and only if A
has symmetric polymorphisms of all arities. Otherwise, DCSP(A) cannot
be solved in finite time.

We show hardness for templates that do not have symmetric poly-
morphisms of all arities in Section 6.4.1 and tractability of the remaining
templates in Section 6.4.2. Moreover, in Section 6.4.3 we extend the de-
cision algorithm so that, additionally, it also solves the search problem.
Hence we have:

Theorem 6.14. DCSP-Search(A) is solvable in polynomial time if and
only if A has symmetric polymorphisms of all arities. Otherwise, DCSP-
Search(A) cannot be solved in finite time.

6.4.1 Intractable Templates

In this section we focus on intractable templates, that is, the hardness
part of Theorem 6.13.

Theorem 6.15. Let A be a finite σ-structure. If Pol(A) does not contain
symmetric operations of all arities, then there is no algorithm that solves
DCSP(A) in finite time.

6. Distributed CSPs 71

Schematically, the proof goes as follows. Assume that A does not have
symmetric polymorphisms of some arity r. Consider the relation U defined
by the set of homomorphisms from the the rth power structure Ar into A,
and let U = (Ar;U). It can be shown (see Remark 6.8) that if DCSP(A)
is solvable in polynomial (or finite) time then so is DCSP(U). Then, we
show that there always exist two connected instances of DCSP(U), of
which one is satisfiable and the other one is not, that are ≡1-equivalent.
Therefore, by Corollary 6.5, any algorithm will return the same output
on both instances, meaning that one of these outputs is wrong. Before
embarking on the proof we state the following useful combinatorial lemma.

Lemma 6.16. Let 0 < k < d be positive integers. If n is a large enough
multiple of k, then there exists a collection S of nk k-element subsets of
{0, 1, . . . , kn− 1} satisfying the following properties:

(a) S contains every k-element subset of {0, . . . , d− 1}

(b) Every element of {0, 1, . . . , kn − 1} appears in the same number of
sets of S.

(c) If k ≥ 2, the k-uniform hypergraph with vertex set given by {0, 1, . . . ,
kn− 1} and edge set given by S is connected.

Proof. If k = 1 we can just define S to be the set containing all singletons
in {0, 1, . . . , kn − 1} so we can assume that k ≥ 2. Pick some n that
is a multiple of k and consider the subsets of {0, 1, . . . , kn− 1}. We say
that one such set is bad if S = S + i (mod kn) for some i ̸= 0, and good
otherwise where the right-hand side of the equation is a shorthand for the
set {s+ i (mod kn) | s ∈ S}. The following facts hold.

Claim 6.17. If n > 2(d−1)
k , then all subsets of {0, . . . , d− 1} are good.

Proof of Claim 6.17. Let S ⊆ {0, . . . , d − 1} and assume that S is bad.
Then, there exists i such that S = S + i (mod kn). Denote by sm the
smallest element of S. Then, we need sm + i ∈ S, which implies that
i ≤ d− 1. On the other hand, kn+ sm = x+ i for some x ∈ S, implying
that kn+ sm ≤ 2(d− 1) < kn, a contradiction. ■

Claim 6.18. There are at least nk good sets.

72

Proof of Claim 6.18. We say that a bad set (not necessarily of size k)
is canonical if we can write S = {s + c · i (mod kn) | c = 0, . . . , k − 1}
for some s ∈ S and 0 ≤ i < kn. Notice that in this case |S| ≥ 2. Now,
every bad set of size k is a disjoint union of canonical bad sets, and in
particular it is the disjoint union of a canonical bad set S1 of size j for
some j ∈ {2, . . . , k}, and another bad set S2 of size k − j. Then, to get
a loose upper bound on the number of bad sets we notice that there are
at most k(k − 2)n choices for S1 (since we have kn choices for the first
element and at most k− 2 choices for the number of elements in S1), and
at most

(kn−j
k−j

)
= O(nk−2) choices for S2, which leaves us with at most

O(nk−1) bad sets. This implies that there are at least
(kn

k

)
−O(nk−1) good

sets, which, since k ≥ 2, is at least nk for n large enough. ■

Therefore, consider the collection of good k-element subsets of {0, 1, . . . ,
kn − 1}. We say that two sets S, S′ are related if S = S′ + i (mod kn)
for some i ̸= 0. Note that, since we are only considering good sets, every
class of related sets has exactly kn members and, hence, there are at least
nk/kn many classes. Also it is immediate that every class of related sets
satisfies condition (b).

Hence, to construct S we just need to remove some of the classes of good
sets so that we end up having exactly nk/kn classes, which corresponds
to nk sets. We have to keep all the classes containing one of the sets of
condition (b), which is always possible if we pick n large enough so that(d

k

)
≤ nk.
It only remains to show that the hypergraph with vertex set {0, 1, . . . ,

kn − 1} and edge set S is connected. To do this it is sufficient to show
that each i ∈ {0, 1, . . . , kn − 1} is connected to, say, vertex 0 by a walk.
This is immediate to see as, for instance, S0 = {0, 1, . . . , k − 1} ∈ S
(because S0 ⊆ {0, 1, . . . , d − 1}) and therefore Si := S0 + i ∈ S for all
i ∈ {0, 1, . . . , kn−1}, hence, the sets S0, S1, . . . , Si−k+1 witness that 0 and
i are connected.

Proof of Theorem 6.15. Assume that Pol(A) does not contain symmetric
operations of arity r ≥ 2. Fix any arbitrary order t1, . . . , t|A|r on the
tuples of Ar and consider the relation U defined as

{(f(t1), . . . , f(t|A|r)) | f is a polymorphism of A of arity r}

6. Distributed CSPs 73

This is, U encodes the set of homomorphisms from Ar to A. Let U =
(Ar;U). Given that U is efpp-definable from A, it follows from Proposition
6.7 and in particular from Remark 6.8 that if DCSP(U) is not solvable in
finite time then neither is DCSP(A).

Partition Ar into equivalence classes where two tuples t, t′ ∈ Ar are
related, denoted t ∼ t′, if there exists some permutation τ on {1, . . . , r}
such that t′[i] = t[τ(i)] for every i ∈ {1, . . . , r}. We shall use Ar

∼ to refer
to the collection of classes and [t]∼ to refer to the class of tuple t. For
every t ∈ Ar, define k[t]∼ to be the number of tuples in [t]∼. Then we can
choose an integer n large enough such that for every t ∈ Ar, n is a multiple
of k[t]∼ , and n satisfies Lemma 6.16 for k = k[t]∼ and d = k[t]∼ · |A|. Notice
that since Pol(A) does not contain symmetric operations of all arities, we
must have that |A| ≥ 2, and hence there is some [t]∼ ∈ Ar

∼ such that
k[t]∼ ≥ 2.

We are now ready to construct two instances I1 and I2 of DCSP(U),
which are indistinguishable with respect to their iterated degree sequence,
but differ with regards to satisfiability. The two instances have the same
set of variables, defined to be ⋃[t]∼∈Ar

∼
V[t]∼ where V[t]∼ = {vi

[t]∼ | 0 ≤ i <

k[t]∼n} is a set of k[t]∼n distinct variables. Let R be the unique |A|r-ary
relation symbol in the signature of U which satisfies RU = U .

We start by constructing the constraints of the unsatisfiable instance
I1, which we will do in two stages. First, for every class [t]∼, let S[t]∼
be the collection of nk[t]∼ sets of cardinality k[t]∼ given by Lemma 6.16,
as before with d = k[t]∼ · |A| and k = k[t]∼ . Note that each set in S[t]∼
defines naturally a subset of V[t]∼ so we shall abuse notation and assume
that S[t]∼ is a collection of subsets of V[t]∼ .

To simplify notation it will be convenient to use S as a shorthand for
the indexed family {S[t]∼ | [t]∼ ∈ Ar

∼}. Now let S be {S[t]∼ | [t]∼ ∈
Ar

∼} satisfying S[t]∼ ∈ S[t]∼ for every [t]∼ ∈ Ar
∼. We associate to S

the constraint R(s) where the scope s is constructed as follows. Before
defining s we need some preparation. Recall that when considering the
interpretation of R in U every coordinate of R, and hence of s, is associated
to a tuple t ∈ Ar, so we can talk of the class [t]∼ to which each coordinate
belongs. In particular, there are k[t]∼ coordinates in s of class [t]∼. Hence,
by fixing some arbitrary ordering we can use si

[t]∼ , i = 1, . . . , k[t]∼ to refer

74

to the coordinates in s of class [t]∼. Then, informally, S[t]∼ describes which
variables from v0

[t]∼ , . . . , v
k[t]∼ n−1
[t]∼ to use in order to fill coordinates si

[t]∼ ,
i = 1, . . . , k[t]∼ . Formally, for every [t]∼ ∈ Ar

∼ and each i = 1, . . . , k[t]∼ ,
si

[t]∼ is assigned to the ith element in S[t]∼ in increasing order.
We add such a constraint for each of the Π[t]∼∈Ar

∼
nk[t]∼ = n(|A|r) pos-

sible choices for S. Therefore, after the first stage we have exactly n(|A|r)

constraints in CI1 .
In the second stage we add more constraints which will yield the par-

ticular symmetry of I1. Note that every permutation τ on {1, . . . , r} in-
duces a permutation τ ′ on the coordinates of R in a natural way. Specif-
ically, if coordinate i of R is associated to tuple ti, then τ ′(i) = j where
tj = (ti[τ(1)], . . . , ti[τ(r)]). Then, in the second stage, for each permuta-
tion τ on {1, . . . , r} and for every constraint R(s) added in the first stage
we add the constraint R(s′) where for every 1 ≤ i ≤ |A|r, s′[i] = s[τ ′(i)].
Therefore, after the second stage we have a total of m = r! · n(|A|r) con-
straints as needed.

We now turn to I2. The constraints are constructed in a similar way,
but instead of using the family S in the first stage, we use a different family
S′. In particular, for each class [t]∼, S′

[t]∼ is obtained by partitioning V[t]∼
in k[t]∼ blocks of consecutive elements, so that each block has exactly n

elements. Then, S′
[t]∼ contains the nk[t]∼ sets that can be obtained by

selecting one element from each block. The second stage is done exactly
as in I1.

We need to show that I1 and I2 are connected. Notice that in both
instances each constraint R(s) spans all subsets V[t]∼ , so in both cases it
is sufficient to prove that the subgraph of the factor graph induced by
the constraint set together with one of these subsets V[t]∼ is connected.
Pick any t ∈ Ar with k[t]∼ ≥ 2. Then, from part (c) of Lemma 6.16,
the hypergraph (V[t]∼ ; S[t]∼) is connected, and since for every S[t]∼ ∈ S[t]∼
there is some constraint in I1 whose scope contains all the variables in S[t]∼ ,
V[t]∼ satisfies the aforementioned connectedness condition in I1, meaning
that I1 is connected. As for I2, the reasoning is the same except that we
are left to show that whenever k[t]∼ ≥ 2, the hypergraph with vertex set
{0, 1, . . . , k[t]∼n−1} and edge set S′ is connected. This is immediate as by
construction of S′, any two vertices in {0, 1, . . . , k[t]∼n − 1} either belong

6. Distributed CSPs 75

to two separate blocks, in which case they share an edge, or they belong
to the same block, in which case they both share an edge with any other
vertex in any other block.
Claim 6.19. I1 and I2 have the same iterated degree sequence.

Proof of Claim 6.19. Let [t]∼ ∈ Ar
∼. First, we observe that in both

instances after the first stage, every variable of V[t]∼ appears in the same
number of constraints. More specifically, every variable in V[t]∼ appears
in an n-fraction of the constraints added in the first stage. In the case
of instance I1 this is due to the fact that S[t]∼ satisfies condition (b) in
Lemma 6.16 and in instance I2 this follows from the fact that S′

[t]∼ contains
all possible sets obtained by choosing an element within each one of the
blocks of size n. After the second stage (in both I1 and I2 since the second
stage is common) every variable in V[t]∼ still participates in an n-fraction
of the total number of constraints. In addition, it follows easily that the
positions of the scope in which a variable in V[t]∼ participates distribute
evenly among the k[t]∼ positions associated to t. That is, in both instances,
we have that for every [t]∼ ∈ Ar

∼, every variable x ∈ V[t]∼ , and every
position i associated to [t]∼ there are exactly m/(nk[t]∼) constraints in
which x appears at position i of the scope, where m = r! · n|A|r . Using
this fact it is very easy to prove that I1 and I2 have the same iterated
degree sequence. Formally, one can show by induction on j that for every
[t]∼ ∈ Ar

∼ and x1, x2 ∈ V[t]∼ , δI1
j (x1) = δI2

j (x2) and that for any two
constraints c1, c2 in I1 and I2 respectively δI1

j (c1) = δI2
j (c2). ■

Claim 6.20. I1 is not satisfiable while I2 is satisfiable.

Proof of Claim 6.20. We start by showing that I1 is not satisfiable. Assume
by contradiction that there is a homomorphism h from I1 to U. For each
class [t]∼, consider the values given by h to the first d variables v0, . . . , vd−1
in V[t]∼ . Since d = k[t]∼ · |A|, it follows by the pigeon-hole principle that at
least k[t]∼ of these variables are assigned by h to the same element of A.
Let S[t]∼ be a subset of V[t]∼ containing k[t]∼ of these variables (we know
that this subset belongs to S[t]∼ by condition (a) of Lemma 6.16). Now
consider the constraint R(s) in I1 associated to S := {S[t]∼ | [t]∼ ∈ Ar

∼},
which belongs to CI1 . If h is a homomorphism, then the restriction of h
to s corresponds to an r-ary polymorphism of A. But h assigns the same
value to any two related tuples t ∼ t′, which implies that h is symmetric,

76

a contradiction.
We now turn our focus to I2. Let f be any r-ary polymorphism of A

(for example the ith projection, 1 ≤ i ≤ r). We shall construct a homo-
morphism h from I2 to U in the following way. Recall that in the definition
of I2 we have partitioned the elements of each set V[t]∼ in k[t]∼ consecu-
tive blocks. In the first stage, all the elements in each block are placed in
the same coordinate of U . So, if t1, . . . , t|A|r are the tuples associated to
coordinates 1, . . . , |A|r and hence blocks 1, . . . , |A|r respectively, then we
only need that all variables in the ith block are assigned to f(ti) to satisfy
all constraints added in the first stage. This assignment also satisfies the
constraints added in the second stage, because if f is an r-ary polymor-
phism of A, then for every permutation τ on {1, . . . , r}, the operation g
defined as g(x1, . . . , xr) = f(xτ(1), . . . , xτ(r)) is also a polymorphism of A.
■

To sum up, under the assumption that A does not have symmetric
polymorphisms of all arities, we were able to construct two connected ≡1-
equivalent instances I1 and I2 of DCSP(A), of which I2 is satisfiable while
I1 is not. It follows from Corollary 6.5 that any distributed algorithm
will give the same output on both instances, meaning that no algorithm
can solve DCSP(U). As anticipated at the beginning of the proof then
it follows from Remark 6.8 that there are also no algorithms that solve
DCSP(A).

6.4.2 Tractable Templates

In this section we turn our attention to the tractable case. In particular
we shall show the following:

Theorem 6.21. Let A be a finite σ-structure such that Pol(A) contains
symmetric operations of all arities. Then there is an algorithm Alg that
solves DCSP(A). The total running time, number of rounds, and max-
imum message size of Alg are, respectively, O(n3m logn), O(n2), and
O(m logn) where n and m are the number of variables and constraints,
respectively, of the input instance.

Note that this implies the “if” part of Theorem 6.13. Alg is composed
of two phases. In the first phase, a distributed version of the colour re-

6. Distributed CSPs 77

finement algorithm allows every process to calculate its iterated degree.
Then, thanks to Theorem 6.12 we can use the degree of a variable as its
ID for the second phase, implying that a distributed adapted version of
the jpq-consistency algorithm [Koz21] where messages are tagged with a
process’s iterated degree solves the decision problem for A.

Distributed Colour Refinement. Let (X,Ψ, ψ) be an instance of
DCSP(A) and let n = |X| and m = |CX|. There is a very natural way
to calculate (a finite representation of) an agent’s iterated degree in a
distributed way, both for variables and for constraints. This is a simple
adaptation of the colour refinement algorithm. The algorithm proceeds
in rounds. At round k = 0, each agent ψ(v) for v ∈ X ∪ CX computes
δX

0 (v) and broadcasts it to all its neighbours. At round k > 0, each agent
ψ(v) knows the (k−1)th degrees of its neighbours which it had received in
the previous round, uses them to compute δX

k (v), and broadcasts it to its
neighbours. If k = 2n (see Proposition 5.2) then for every v, v′ ∈ X ∪ CX
satisfying δX

k (v) = δX
k (v′) we have that v ≡1 v

′, which implies that we can
essentially regard the kth iterated degree as the unique common ID for all
agents controlling equivalent variables or constraints. Then in 2n rounds
each agent ψ(v) can compute δX

2n. As we described it, the distributed
colour refinement algorithm is not particularly efficient in terms of mes-
sage complexity. Although this is not necessary to achieve polynomial
time, we can reduce the space required to encode δX

2n(v).

Lemma 6.22. Let smax denote the size of the encoding of δX
2n(v). A

modified version of the distributed colour refinement algorithm that runs
over O(n2) rounds achieves smax = O(logn). The time at each round and
the maximum size of a message are both bounded above by O(msmax).

Proof. We describe a variation of the distributed colour refinement algo-
rithm that achieves the required bounds. After computing the kth degree
and before proceeding to compute the (k + 1)th degree, all agents broad-
cast their kth degree to their neighbours. At the next round, every agent
broadcasts all the kth degrees received (removing repetitions) to its neigh-
bours so that in 2n rounds every agent has received a complete list of all
the kth degrees of all nodes. Every agent ψ(v) orders all kth degrees (this
can easily be done in such a way that all agents produce the same order),

78

and sets δX
k (v) to be the rank of its own degree in the order. Then it

proceeds to send out this new encoding of δX
k (v) and to calculate δX

k+1(v)
accordingly.

In this way, we have smax = O(log(n+m)) = O(logn). Note that the
total number of rounds of this algorithm is O(n2) and that, provided every
set of degrees is stored as an ordered array, the cost of each computation
done locally by an agent at a given round is bounded above by the size,
O((n + m)smax) = O(msmax), of the largest message sent. Note that
in order to obtain these bounds we have used the standard facts that
any finite relational structure X over a fixed signature σ is such that
m = O(nr) and n = O(rm), where r is the largest arity of a relation
symbol in σ.

For the rest of this chapter, when talking about the iterated degree of
some v ∈ GX we will mean this reduced size encoding of δX

2n(v), which we
will denote δX

∞(v) to highlight that it is a fixed point. As we will see, the
price of an increase in the number of rounds (from n to n2) is compensated
by the effect of smax on both time complexity and the size of the messages.

The Distributed Consistency Algorithm. It follows from Theorem
5.12 that if a constraint language A has symmetric operations of all arities
then it has bounded width. Recall that, informally, CSPs of bounded
width are those that can be solved by a local consistency algorithm. As
mentioned in Section 5.3, it has been shown in [Koz21] that if A has
bounded width and an instance X of CSP(A) satisfies a combinatorial
condition called jpq-consistency, then X is satisfiable. Instead of stating
literally the result in [Koz21] we shall state a weaker version that uses a
different notion of consistency, more suitable to the model of distributed
computation introduced in this thesis.

A set system S is a subset of X × A. We shall use Sx to denote
the set {a ∈ A | (x, a) ∈ S}. A walk of length ℓ in X is any sequence
x0c0 . . . cℓ−1xℓ where x0, . . . , xℓ are variables, c0, . . . , cℓ−1 are constraints,
and xi, xi+1 ∈ ci for every 0 ≤ i < ℓ. Note that walks are precisely
the walks in the factor graph GX (in the standard graph-theoretic sense)
starting and finishing in X.

Let S be a set system, p be a walk, and B ⊆ Sx where x is the starting

6. Distributed CSPs 79

node of p. The propagation of B via p under S, denoted B +S p, is the
subset of A defined inductively on the length ℓ of p as follows. If ℓ = 0
then B +S p = B. Otherwise, p = p′cℓ−1xℓ where p′ is a walk of length
ℓ− 1 ending at xℓ−1. Let cℓ−1 = R(x). Then we define B +S p to contain
all b ∈ A such that there exists a ∈ B +S p

′ and a ∈ RA such that for
every 1 ≤ i ≤ ar(R), a[i] satisfies the following conditions:

1. a[i] ∈ Sx[i],

2. if x[i] = xℓ−1 then a[i] = a, and

3. if x[i] = xℓ then a[i] = b.

We are now ready to state the result from [Koz21] that we shall use.

Theorem 6.23 (follows from [Koz21]). Let X be an instance of CSP(A)
where A has bounded width and let S be a set system such that Sx ̸= ∅
for every x ∈ X and such that for every walk p starting and finishing at
the same node x and for every a ∈ Sx, a belongs to {a} +S p. Then X is
satisfiable.

Our goal is to design a distributed algorithm that either correctly de-
termines that an instance X is not satisfiable, or produces a set system S
verifying the conditions of Theorem 6.23. This is not possible in general
due to the fact that agents are anonymous and hence a hypothetical algo-
rithm that would generate a walk in a distributed way would be unable to
determine if the initial and end nodes are the same. However, thanks to
the structure established by Theorem 6.12, this difficulty can be overcome
when A has symmetric polymorphisms of all arities because, essentially,
the iterated degree of a node can act as its unique identifier. To make this
intuition precise we will need to introduce a few more definitions.

We say that a pair (x, a) ∈ S is S-supported if for every walk p starting
at x and finishing at a node y with x ≡1 y, we have that {a}+S p contains
a.

Remark 6.24

We note that if (x, a) ∈ S is not S-supported and p = x0c0 . . . xℓ is a
walk of minimal length among all walks witnessing that (x, a) is not

80

S-supported then ℓ ≤ n2|A|. Indeed if we let Bi = {a} + x0c0 . . . xi,
i = 0, . . . , ℓ then we have that (xi, Bi) ̸= (xj , Bj) for every 0 ≤
i < j ≤ ℓ, since otherwise the shorter walk x0c0 . . . xicj . . . xℓ would
contradict the minimality of p. Since there are n choices for each xi

and 2|A| choices for Bi, the bound follows.

We say that a set system S is safe if for every homomorphism h from
X to A we have

h(x) = h(y) for all x, y ∈ X with x ≡1 y ⇒ h(x) ∈ Sx for all x ∈ X.

Then, we have

Lemma 6.25. Let S be a safe set system and let (x, a) ∈ S be a pair that
is not S-supported. Then S \ {(x, a)} is safe.

Proof. Let h be any homomorphism from X to A satisfying h(y) = h(z)
for every y, z ∈ X with y ≡1 z and let p = x0c0 . . . xℓ be any walk in S
witnessing that (x, a) is not S-supported, (i.e, p is such that x0 = x, x0 ≡1
xℓ, and a ̸∈ {a}+S p). Since S is safe we have that h(y) ∈ Sy for every y ∈
X. It remains to see that h(x) ̸= a, so that the safety condition remains
unaltered when (x, a) is removed. First, it follows easily by induction that
for every 1 ≤ i ≤ ℓ, h(xi) ∈ {h(x)} +S pi where pi = x0c0 . . . xi. Then,
since h(xℓ) ∈ {h(x)} +S p, h(x) = h(xℓ), and a /∈ {a} +S p, it follows that
h(x) ̸= a.

The distributed consistency algorithm (that is, the second phase of
Alg) works as follows. Every variable agent ψ(x) maintains a set Sx ⊆ A
in such a way that the set system S is guaranteed to be safe at all times.
As a result of an iterative process S is modified. We shall use Si to denote
the content of S at the ith iteration, where an iteration is, in turn, a loop
of T = 2n(2|A| + 1) = O(n) consecutive rounds. The rationale behind
this exact value will be made clear later. Initially, S0

x is set to A for every
x ∈ X. At iteration i for i ≥ 1, Si is obtained by removing all the elements
in Si−1 that are not Si−1-supported. By Lemma 6.25, Si is safe. Then,
in at most n|A| = O(n) iterations we shall obtain a fixed point S∞.

The key observation is that when A has symmetric polymorphisms of
all arities, the satisfiability of X can be determined from S∞. Indeed, if

6. Distributed CSPs 81

S∞
x = ∅ for some x ∈ X then we can conclude from the fact that S∞ is

safe and Theorem 6.12 that X has no solution. Otherwise, S∞ satisfies
the conditions of Theorem 6.23 and, hence, X is satisfiable.

It remains to see how to compute Si+1 from Si. In an initial prepa-
ration step for every iteration, every variable agent ψ(x) sends Si

x to all
its neighbours. To compute Si+1 the algorithm proceeds in rounds. All
the messages sent are sets containing triplets of the form (δ, a,B) where
a ∈ A, B ⊆ A, and δ is the iterated degree of some variable x ∈ X. It
follows from the fact that there are at most n possibilities for the iterated
degree of a variable that the size of each message is O(nsmax).

The agents controlling variables and constraints alternate. That is,
variables perform internal and send events at even rounds and receive mes-
sages at odd rounds, while constraints perform internal and send events
at odd rounds and receive messages at even rounds. More specifically, in
round j = 0 of iteration i, every variable agent ψ(x) sends to its neighbours
the message M containing all triplets of the form (δX

∞(x), a, {a}) with
a ∈ Si

x. At round 2j for j > 0, ψ(x) computes M = M1 ∪ · · · ∪Md where
M1, . . . ,Md are the messages it received at the end of round 2j − 1. Sub-
sequently, for every triplet (δ, a,B) ∈ M with δ = δX

∞(x) and a ̸∈ B, ψ(x)
marks a as ‘not Si-supported’. Finally, it sends message M to all its neigh-
bours. This computation can be done in time O(dnsmax) = O(mnsmax)
provided that each message is stored as an ordered array.

In round 2j + 1, every constraint agent ψ(c) computes from the mes-
sages Mx (received from each neighbour ψ(x) in the previous round) the
set M ′

x, which contains for every variable y ∈ c and every (δ, a,B) in My,
the triplet (δ, a,B+Sip) where p = ycx. Finally, it sends to each neighbour
ψ(x) the corresponding message M ′

x. Note that while ψ(c) doesn’t know
the address of ψ(x) specifically, knowing the label of the channel that con-
nects them is sufficient to calculate M ′

x correctly and send the message
accordingly. Moreover, for given y and x, ψ(c) can compute B +Si p in
O(1) time as ψ(c) knows both Si

y and Si
x. Hence, since the arity of c is

constant (as σ is fixed) the total running time at iteration 2j + 1 of a
constraint agent ψ(c) is O(nsmax).

Now it is immediate to show by induction that for every j ≥ 0, every
x ∈ X and every c ∈ CX with x ∈ c the message sent by ψ(x) to ψ(c) at

82

the end of round 2j is precisely

{(δX
∞(y), a, {d} + p) | y ∈ X, a ∈ Si

y, p = y . . . x has length j}

and the message sent by ψ(c) to ψ(x) at the end of round 2j+1 is precisely

{(δX
∞(y), a, {d} + p) | y ∈ X, a ∈ Si

y, p = y . . . cx has length j + 1}.

By Remark 6.24 only 2n2|A| = T − 2n iterations are needed to identify
all elements in Si that are not Si-supported. Hence, after exactly T − 2n
rounds every variable agent ψ(x) computes Si+1

x by removing all the ele-
ments in Si that are marked as “not Si-supported”. If Si+1

x = ∅, then ψ(x)
initiates a wave, which is propagated by all its neighbours, broadcasting
that an inconsistency was detected. In this case, in at most 2n additional
rounds all agents can correctly declare that X is unsatisfiable. Otherwise,
a new iteration begins.

To sum up, the distributed consistency algorithm consists of O(n)
iterations consisting, each, of O(n) rounds where the total running time
for internal events at a given round is O(mnsmax) and the maximum size
of each message transmitted is O(nsmax). Together with the bounds given
by Lemma 6.22 for the distributed colour refinement phase, this completes
the proof of Theorem 6.21.

6.4.3 The Search Algorithm

We conclude by presenting the proof of Theorem 6.14. The hardness
part follows immediately from Theorem 6.13 as the search problem is as
difficult as the decision problem. For the positive result we shall present an
adaptation of the algorithm solving the decision version. Let (X,Ψ, ψ) be
an instance of DCSP-Search(A) where A has symmetric polymorphisms
of all arities. In what follows we shall use intensively the fact that Pol(A)
is closed under composition. Let J ⊆ A be minimal with the property that
f(A) = J for some unary polymorphism f in Pol(A). It is fairly standard
to show that for every r ≥ 0 there is a r-ary symmetric operation g in
Pol(A) such that g(x, . . . , x) = x for every x ∈ J . Indeed, let f satisfy
f(A) = J and let g′ be any r-ary symmetric polymorphism in Pol(A).
Then the unary operation h defined by h(x) = f ◦ g′(x, . . . , x) is a unary

6. Distributed CSPs 83

polymorphism of A. By the choice of f we have h(A) ⊆ J . We note
that h(J) = J since otherwise h2 would contradict the minimality of f .
Consequently, h restricted to J is a (partial) isomorphism, and so h−1

preserves all relations of A restricted to the subdomain J . Hence, the
r-ary operation g defined as g = h−1 ◦ f ◦ g′ satisfies the claim. This
implies that if we enlarge the template by adding all singletons {a}, a ∈ J ,
the resulting structure, which we shall denote by A′, still has symmetric
polymorphisms of all arities. For convenience we also include A as a unary
relation in A′.

The algorithm has two phases. In the first phase it runs the decision
algorithm to determine whether the instance is satisfiable. As a byproduct,
every variable agent ψ(x) has computed its iterated degree δX

∞(x) and
knows as well its rank in a prescribed ordering of all the variables’ iterated
degrees δ1, . . . , δr, r ≤ n. This (partial) order will be used to coordinate
between the agents. An i-agent, 1 ≤ i ≤ r is any agent ψ(x) with δX

∞(x) =
δi. We also assume a fixed ordering on the elements in A. If the instance
is unsatisfiable nothing else remains to be done so from now on we shall
assume that the instance is satisfiable.

In the second phase the algorithm searches for a solution. Every vari-
able agent ψ(x) maintains a set Fx ⊆ A with the property that there is a
homomorphism h from X to A that falls within the set system F , i.e, such
that h(x) ∈ Fx for every x ∈ X. Initially every agent ψ(x) sets Fx = A so
it is only necessary to make sure that this condition is preserved during
the execution of the algorithm. The second phase contains two nested
loops. The outer loop has r iterations and the inner loop consists of at
most |A| iterations so that we shall use iteration (i, a) to indicate the run
of the algorithm at the i = 1, . . . , r iteration of the outer loop and at the
iteration a of the inner loop.

At the beginning of iteration (i, a) every variable agent ψ(x) defines
Sx ⊆ A to be Sx = {a} whenever ψ(x) is an i-agent and Sx = Fx elsewhere.
Then it runs the distributed consistency algorithm starting at S obtaining
a fixed point S∞. We note that since all initial sets Sx are relations in A′

and A′ has symmetric polymorphisms of all arities then the obtained fixed
point S∞ correctly determines whether there exists a homomorphism h
that falls within S. Then every i-agent ψ(x) checks whether S∞

x = ∅.
In case of positive answer nothing else is done and round (i, a) finishes.

84

Otherwise, there must be a homomorphism h that falls within S, so ψ(x)
sets Fx to {a} and starts a wave to indicate to all processes that the
ith iteration of the outer loop is finished and that the next iteration of
the outer loop can start. When the r iterations of the outer loop have
been completed the set system F contains only singletons. The map that
assigns every variable x ∈ X to the only element in Fx is necessarily a
homomorphism. This concludes the proof of Theorem 6.14.

7 Weisfeiler-Leman Invariant CSPs

In this chapter we establish a close link between LP relaxations for
isomorphism and homomorphism by decomposing solutions to the
SA1 program into sequences of homomorphisms and fractional iso-
morphisms. We use this decomposition to characterize Weisfeiler-
Leman invariant CSPs and to obtain back the results of Chapter
6 in a streamlined manner.

7.1 Introduction

Linear programming relaxations, among other relaxations such as SDP-
based, have been largely used in the study of both the isomorphism and
the homomorphism problem. The motivation for this chapter stems from
the similarity between the linear program defining fractional isomorphism
(see Section 5.1) and the relaxations of homomorphism defined in Section
5.2. For the sake of simplicity we will introduce this similarity for the case
of graphs first.

Recall that the isomorphism problem for two graphs X, A can be
reformulated as an integer program which asks whether there exists a
permutation matrix P such that PNX = NAP , where NX and NA are the
adjacency matrices of X, A respectively. If we relax this condition to only
require that P is doubly stochastic, we obtain the fractional isomorphism
linear program. Now, this condition can be equivalently expressed as
the existence of a pair of doubly stochastic matrices P and Q such that
PMX = MAQ and MXQ

T = P TMA, where MX denotes the incidence
matrix of X.

85

86

If we relax this condition further to only require that P and Q are
left stochastic and, additionally, we drop the second equation, then we
obtain a relaxation of graph homomorphism equivalent to the SA1 system
introduced in Section 5.2.1 With some minor variations depending on
whether the objective function is present (as in MaxCSP) or not and how
repeated elements in a tuple are treated, this LP formulation has been
extensively used [KMTV11, KOT+12, DK13, DKM18, GT18, BGWŽ20].

The main result of this chapter is a two-fold characterization of the
first level of the Sherali-Adams hierarchy applied to the homomorphism
problem for relational structures: algebraic, in terms of the linear pro-
gram described above, and combinatorial, relating SA1 to the equivalence
relation ≡1. In particular, we show that for any two similar structures
X, A the linear program SA1(X,A) is feasible if and only if there exists
a sequence of structures Y0,Y1, . . . ,Yn with X = Y0, A = Yn, and for
every i < n, Yi is either homomorphic or fractionally isomorphic to Yi+1.
Moreover, if such a chain of structures exists then there exists a chain of
length 3.

Each of these morphisms - homomorphism and fractional isomorphism
- from Yi to Yi+1 can be naturally associated with a rational matrix of
dimensions |Yi| × |Yi+1|. It can be calculated that the product of these
matrices is a matrix associated to a solution to the SA1(X,A) linear pro-
gram. This is why we regard this result as a decomposition theorem. In
Chapter 8 we will obtain a similar decomposition for valued structures,
and in Chapter 9 we will extend this decomposition to the higher levels of
the SA hierarchy (for crisp structures).

The established connection between SA1 and ≡1 is essentially due to
the fact that the LP relaxation of homomorphism inherits the symmetries
of X and A. However, the main interest of this result lies in the opposite
direction: that is, the fact that SA1 is able to certify that X is not ho-
momorphic to A unless X belongs to the backwards closure of A under

1We remark that in [BD21a], this algebraic condition - and its equivalent charac-
terizations - was alternatively phrased as the existence of a fractional homomorphism,
to stress that it is a “fractional” relaxation of homomorphism in the same way that
fractional isomorphism is a relaxation of isomorphism. Nonetheless, in this thesis we
avoid this terminology as it clashes with the notion of fractional homomorphism defined
in Section 8.3 as a unary fractional polymorphism.

7. Weisfeiler-Leman Invariant CSPs 87

homomorphism and ≡1-equivalence (or, even more strongly, unless X is
homomorphic to a structure Y1 which is ≡1-equivalent to a structure Y2
which in turn is homomorphic to A).

In fact, we will conclude this chapter by applying our results to extend
Theorem 5.6 with two additional characterizations: the first, in terms of
Weisfeiler-Leman invariance, is a direct consequence of the decomposition
theorem. The second, in terms of solvability by distributed algorithms,
shows that the complexity classification obtained for DCSP in Chapter 6
can be derived again using substantially different techniques.

7.2 The Decomposition Theorem

We now state the decomposition theorem for SA1. Note that for graphs,
condition (5) below is naturally seen as the homomorphism counterpart
of the notion of fractional isomorphism (see condition (1) in Lemma 5.4).

Theorem 7.1. Let X, A be σ-structures. Then, the following are equiv-
alent:

1. SA1(X,A) is feasible;

2. There exist left stochastic matrices P , Q such that for every ℓ =
(S,R) ∈ Lσ it holds that PM ℓ

X ≤
∑

ℓ′ M ℓ′
AQ, where ℓ′ ranges over

all (S′, R) ∈ Lσ with S ⊆ S′;

3. There exists a sequence of structures Y0, . . . ,Yn such that Y0 = X,
Yn = A, and for all i = 0, . . . , n − 1 we have that Yi → Yi+1 or
Yi ≡1 Yi+1;

4. There exists a pair of structures Y1,Y2 such that X → Y1, Y1 ≡1
Y2, and Y2 → A.

If in addition none of the relations in X and A have repetitions, then the
following condition is also equivalent:

5. There exist left stochastic matrices P , Q such that for every ℓ ∈ Lσ

it holds that PM ℓ
X = M ℓ

AQ.

88

Proof. The equivalence (1) ⇔ (2) is merely syntactic. In particular we
shall show that there is a one-to-one satisfiability-preserving correspon-
dence between pairs of matrices and variable assignments of SA1(X,A).
However, we first need to massage a bit the two formulations. First, we
can assume that for every R(x) ∈ CX and R′(a) ∈ CA, the corresponding
entry in Q is null unless R = R′ and f(x) = a for some f : {x} → {a},
since otherwise it is impossible that Q forms part of a feasible solution.
Secondly, we note that the feasibility of SA1(X,A) does not change if in
(SA3) we replace = by ≤ obtaining a new set of inequalities (which to
avoid confusion we shall denote by (SA3′)) and, in addition, we add for
every R(x) ∈ CX the equality∑

f :{x}→A

pR(x)(f) = 1. (SA5)

Finally, note that in SA1(X,A) we can ignore (SA2).
Then we can establish the following correspondence between pairs of

matrices P , Q and assignments SA1(X,A): for every x ∈ X and a ∈ A,
we set px(a) = P [a, x] and for every R(x) ∈ CX and f : {x} → A we
define pR(x)(f) = Q[R(f(x)), R(x)]. Then, it is easy to see that (SA3′)
corresponds to PM ℓ

X ≤
∑

ℓ′∈Lℓ
M ℓ′

AQ for every ℓ ∈ Lσ (where L(S,R) :=
{(S′, R) ∈ Lσ | S ⊆ S′}), P being left stochastic corresponds to (SA1),
and Q being left stochastic corresponds to (SA5).

The equivalence (1) ⇔ (5) is obtained as in (1) ⇔ (2). We just need to
notice that when X and A have no loops, then none of the entries in MX
and MA contain any label ℓ = (S,R) ∈ Lσ where |S| > 1 and hence it is
only necessary to consider labels ℓ = (S,R) ∈ Lσ where S is a singleton.
Observe that, in this case, the equation in (2) becomes PM ℓ

X ≤ M ℓ
AQ

since for every label ℓ = (S,R) where S is a singleton, the only label
(S′, R) with S ⊆ S′ and M ℓ

A not a zero matrix is ℓ itself. Finally, in order
to replace ≤ by = in the previous equation we just need to use (SA3)
instead of (SA3′).

Notice that (4) ⇒ (3) is trivial.
The proof of (3) ⇒ (2) is by induction on n. If n = 0 the claim

is immediate, so assume that n ≥ 1. Let Y0,Y1, . . . ,Yn be a sequence
of structures satisfying (3). By the induction hypothesis, there exist left
stochastic matrices P , Q such that PM ℓ

Y1
≤
∑

ℓ′∈Lℓ
M ℓ′

Yn
Q for all ℓ ∈ Lσ.

7. Weisfeiler-Leman Invariant CSPs 89

If Y0 ≡1 Y1 then it follows from Theorem 5.4 that there exist doubly
stochastic matrices P ′ and Q′ such that P ′M ℓ

Y0
= M ℓ

Y1
Q′ for all ℓ ∈ Lσ,

and so it is easy to verify that PP ′, QQ′ are such that (2) holds. Assume
that Y0 → Y1. We shall show that there exist left stochastic matri-
ces P ′ and Q′ such that for all a ∈ A, for all R(x) ∈ CX, and for all
ℓ ∈ Lσ there exists ℓ̂ = ℓ̂(a,R(x), ℓ) ∈ Lℓ such that PM ℓ

X[a,R(x)] ≤
M ℓ̂

AQ[a,R(x)]. Assuming that this holds, again it follows by the in-
duction hypothesis that PP ′, QQ′ are left stochastic matrices such that
PP ′M ℓ

Y0
≤
∑

ℓ′∈Lℓ
M ℓ′

Yn
QQ′ for all ℓ ∈ Lσ.

Let h be a homomorphism from X to A. We define P ′[a, x] = 1 if
a = h(x) and P ′[a, x] = 0 otherwise. Similarly, we set Q′[R′(a), R(x)] = 1
if a = h(x) and R′ = R and Q′[R′(a), R(x)] = 0 otherwise. It is easy to
see that P ′ and Q′ are left stochastic. Now let ℓ = (S,R) ∈ Lσ, a ∈ A
and R(x) ∈ CX. If M ℓ

X[x,R(x)] = 0 for all x ∈ X then PM ℓ
X[a,R(x)] = 0

and there is nothing to prove. So we can assume that there is x ∈ X such
that for all i ∈ [ar(R)], x[i] = x if and only if i ∈ S. Then we have that
PM ℓ

X[a,R(x)] = 1 if a = h(x), and PM ℓ
X[a,R(x)] = 0 otherwise. Again

in the latter case there is nothing to prove so let us assume that a = h(x).
It follows that h(x)[i] = a for all i ∈ S and hence there exists ℓ̂ = (R,S′)
with S ⊆ S′ such that M ℓ̂

A[a,R(h(x))] = 1, which completes the proof.
We first presented a construction which witnesses (1) ⇒ (4) in [BD21a].

Subsequently, in [BB22] we were able to obtain a simplified version which
also applies to the more general framework of valued structure. Here
we present the non-valued version of the construction from [BB22], as it
is substantially simpler. The valued version of this construction will be
presented in Chapter 8.

Assume that SA1(X,A) is feasible. Let px(a), pR(x)(a) form a feasible
solution of SA1(X,A) and let m > 0 be an integer such that all the values
mpx(a) and mpR(x)(a) are (non-negative) integers.

We define the universe of both structures Y1 and Y2 as Y1 = Y2 =
[m] × X. The structure Y1 is simply a disjoint union of m copies of X:
for every R ∈ σ, x ∈ Xar(R) and k ∈ [m] we set

((k,x[1]), (k,x[2]), . . . , (k,x[ar(R)])) ∈ RY1 ⇔ x ∈ RX.

Observe that clearly X → Y1 since for all (k, x) ∈ Y1, any map hk : x 7→

90

(k, x) is a homomorphism. Also notice that for all k ∈ [m], the iterated
degree δY1(k, x) is the same as δX(x).

The structure Y2 is a “twisted” version of Y1 (the construction is a
version of the twisted product from [Kun13]). For every x ∈ X, fix a
tuple px ∈ Am in which a ∈ A appears exactly mpx(a) times – note
that this is possible since the mpx(a) sum up to m by (SA1). Moreover,
for every R(x) ∈ CX, denote r = ar(R), and consider an m × r matrix
T = T (R(x)) that has, for each a ∈ Ar, exactly mpR(x)(a) rows equal to
a. Note that then all the rows of T are elements of RA by (SA4), and that
the ith column of T contains a ∈ A exactly mpx[i](a) times by (SA3), in
other words, the multiset of elements of this columns is equal to {{px[i]}}.
In particular, T indeed has m rows. Moreover, if x[i] = x[j], then the
ith and jth columns of T are identical by (⟲). It follows that there are
permutations ρ1, . . . , ρr : [m] → [m] such that

1. for every k ∈ [m], (px[1][ρ1(k)],px[2][ρ2(k)], . . . ,px[r][ρr(k)]) is equal
to the kth row of T ;

2. for every i, j ∈ [r], if x[i] = x[j] then ρi = ρj .

Then, for every R ∈ σ, x ∈ Xar(R) and k ∈ [m] we set

((ρ1(k),x[1]), (ρ2(k),x[2]), . . . , (ρr(k),x[r])) ∈ RY2 ⇔ x ∈ RX.

We define h : Y2 → A by h(k, x) = px[k] for all k ∈ [m] and x ∈ X.
It is easy to see that the image of any tuple in RY2 under h is a row of
T (R(x)) for some R(x) ∈ CX, and hence belongs to RA. In particular,
for every y ∈ RY2 , there exists some x ∈ RX and k ∈ [m] such that
y[i] = (ρi(k),x[i]) for all i ∈ [ar(R)]. Then, h(y[i]) = px[i](ρi(k)) and
hence h(y) is the kth row of T (R(x)) by (1).

Moreover, for all (k, x) ∈ Y2 the iterated degree δY2(k, x) is the same
as δX(x) and hence the same as in Y1 (note here that item (2) above
guarantees that repeated entries are handled correctly). It follows that
Y1 ≡1 Y2, and the proof is concluded.

7. Weisfeiler-Leman Invariant CSPs 91

7.3 Weisfeiler-Leman invariant CSPs

The principal novelty of our result is that it leads to an alternative com-
binatorial characterization of solvability by the first level of the Sherali-
Adams relaxation: that is, it allows us to extend Theorem 5.6 and ulti-
mately improve our understanding of solvability of CSPs by linear pro-
grams. A concrete application is the answer to the following question: for
which structures A is CSP(A) closed under ≡1-equivalence? This ques-
tion arises in the context of distributed CSPs (see Chapter 6). In fact,
the connection between the Weisfeiler-Leman algorithm and distributed
computation goes back to the influential paper of Angluin on networks of
processors [Ang80]. We saw in Chapter 6 that any distributed message
passing algorithm necessarily behaves in an identical manner on every
two input instances that are ≡1-equivalent (see Corollary 6.5). Hence,
it follows that CSP(A) can only be solved by a distributed algorithm if
CSP(A) is closed under ≡1-equivalence. We then obtain the following
characterization of Weisfeiler-Leman invariant CSPs:

Theorem 7.2. Let A be a fixed finite σ-structure. The following are
equivalent:

(i) There is a distributed algorithm that solves CSP(A). Moreover, in
this case, there is a polynomial-time distributed algorithm that solves
CSP(A).

(ii) CSP(A) is closed under ≡1-equivalence;

(iii) SA1 decides CSP(A);

(iv) BLP decides CSP(A);

(v) A has symmetric polymorphisms of all arities.

Proof. The implication (ii) ⇒ (iii) is an immediate corollary of the de-
composition theorem 7.1.

The equivalence of (iii), (iv) and (v) is precisely Theorem 5.6.
The implication (v) ⇒ (i) is precisely Theorem 6.21. In fact, we will

see in Chapter 8 that there is also a simpler proof of this implication that

92

does not require Theorem 5.12 and the deep theory of bounded width
structures.

(i) ⇒ (ii). From the nature of the distributed model, it follows that
agents with the same iterated degree will be in the same state at any time
during the execution of any distributed algorithm. Therefore, if (i) holds
and X ≡1 Y are connected, then a terminating distributed algorithm will
report the same decision when run on input X or Y (see Proposition 6.3
and Corollary 6.5), so we obtain that (ii) holds for all connected X, Y.
We now show how (ii) in its full generality follows from (ii) restricted to
connected X and Y.

We claim that X → A iff Y → A whenever X and Y are weakly
congruent and connected. The claim clearly holds when |X| = 1 or |Y | =
1 (since this would imply that X = Y), so assume that |X|, |Y | ≥ 2.
For any positive integer k, we define a connected σ-structure X(k) (and
similarly Y(k) for Y) as follows. Let X = {x0, x1, . . . , x|X|−1} and let
the universe of X(k) be {0, 1, . . . , k − 1} × X. Then, for each constraint
RX(xi1 , . . . , xiar(R)) ∈ CX and each j ∈ {0, 1, . . . , k − 1}, we add to CX(k)

the constraints
RX(k)((j, xi1), . . . , (j, xiar(R)))

and

RX(k)((j + i1 (mod k), xi1), . . . , (j + iar(R) (mod k), xiar(R))).

Then X and X(k) are homomorphically equivalent, since for instance
the map f given by f(x) = (0, x) is a homomorphism from X to X(k),
and the projection from {0, 1, . . . , k− 1} ×X onto X is a homomorphism
in the opposite direction. Moreover, notice that by construction X(k) is
connected. Finally, if k is large enough (k ≥ |X| suffices), then the iterated
degree of (j, xi) in X(k) is obtained from the iterated degree of xi in X by
multiplying all the variable multisets in each of the elements of δX(xi) by
2 (in each inductive step in the definition of iterated degree). It follows
from the weak congruence of X and Y that, for all k′, Y(k′|X|) and X(k′|Y |)

are connected and, when k′ is large enough, have the same iterated degree
sequence. By item (ii) for connected structures, we get that X(k′|Y |) → A
iff Y(k′|X|) → A and therefore X → A iff Y → A.

7. Weisfeiler-Leman Invariant CSPs 93

Now it follows from Remark 5.3 that if X ≡1 Y, then for every con-
nected component X′ of X there is a connected component Y′ of Y such
that X′ and Y′ are weakly congruent and vice versa. By observing that
X → A if and only if all the connected components of X are homomor-
phic to A (and similarly for Y), we obtain that X → A iff Y → A as
required.

8 Weisfeiler-Leman Invariant
Promise Valued CSPs

In this chapter we deal with valued structures. We start by in-
troducing fractional operations and their properties. We then pro-
ceed to generalize the decomposition theorem and the character-
ization of WL-invariance to Promise Valued CSPs. We conclude
by discussing where the equivalence of BLP and SA1 breaks in the
Promise Valued setting.

8.1 Introduction

The Promise Valued Constraint Satisfaction Problem (PVCSP) combines
and generalizes both Promise and Valued CSPs. A template is a pair of
valued structures of the same signature and the problem is, given a sum
such as (2.1) and a rational number τ , to distinguish sums whose minimum
computed in A is at most τ from those whose minimum computed in B
is greater than τ .

We believe that the PVCSP is an extremely promising research direc-
tion for two reasons. First, it is very broad: it includes, for example, all
constant factor approximation problems for MaxCSP (both the version
where the aim is to approximately maximize the number of satisfied con-
straints and the version where the aim is to approximately minimize the
number of unsatisfied constraints). Second, the approach via generalized
polymorphisms, so successful in both the promise and the valued cases, is
still available [Kaz22] (this work is not yet published). The only published
work on PVCSP that we are aware of (other than [BB22]) is [VŽ21] where

95

96

the authors, among other results, generalize the equivalence of (iv) and
(v) in Theorem 7.2 to the PVCSP setting and even consider the more gen-
eral infinite-domain case (recall that this equivalence was already known
to hold in both the VCSP and the PCSP frameworks by [KTŽ15] and
[BBKO21] respectively).

The main result of this chapter, Theorem 8.7, lifts the equivalence of
(i), (ii), and (iii) in Theorem 7.2 to the PVCSP framework (and hence
for PCSPs and VCSPs as well). The generalization of implication (i) ⇒
(ii) for valued structures is similar to the crisp case, but requires some
extra care when taking disconnected structures into consideration. For
the implication (ii) ⇒ (iii) we also employ the approach of Chapter 7 and
“decompose” the solution to the SA1 relaxation of a PVCSP into three
components. One component is a kind of morphism, called here a dual
fractional homomorphism, which appeared before in the context of VCSPs
with left-hand side (i.e., structural) restrictions [CRŽ22].1 The decompo-
sition theorem for valued structures, stated as Theorem 8.6, might be of
independent interest.

The distributed algorithm that we design to prove (iii) ⇒ (i) is different
from the one used for the CSP case. The algorithm of Chapter 6 relies on
a deep theorem from the algebraic CSP theory about the strength of jpq-
consistency algorithm (see Theorem 6.23), yet this approach is no longer
applicable, even in the (non-valued) PCSP setting [AD22]. However, we
show that a substantially more simple idea of directly computing an ad-
justed form of SA1 – while more distant in spirit from the message-passing
systems approach – works even in the more general PVCSP framework.

Surprisingly, the implication (iii) ⇒ (iv) is no longer true for PVCSPs:
in Example 8.8 we present a PVCSP template that is decided by SA1 but
not decided by BLP. The converse implication remains valid since SA1 is
a stronger relaxation than BLP.

1[CRŽ22] uses the terminology “inverse fractional homomorphism”, however we feel
that “dual” might better fit the meaning of this concept.

8. Weisfeiler-Leman Invariant Promise Valued CSPs 97

8.2 Promise Valued CSPs

PVCSP. Let Q be the set of rational numbers. We denote by Q≥0 the
set of non-negative rationals and by Q∞ the set Q ∪ {∞}, where ∞ is an
additional symbol interpreted as a positive infinity. We set 0 · ∞ = 0 and
c · ∞ = ∞ for all c > 0.

A k-ary valued relation on A is a function R : Ak → Q∞. A valued σ-
structure A consists of a finite universe A, together with a valued relation
RA of arity ar(R) on A for each R ∈ σ. Valued structures are sometimes
referred to as general-valued in the literature [KTŽ15, TŽ17] to emphasize
that relations in A may take non-finite values. A σ-structure A is said
to be non-negative finite-valued if for every R ∈ σ, the range of RA is
contained in Q≥0.

Let X, A be valued σ-structures, where X is non-negative finite-valued.
The value of a map h : X → A for (X,A), and the optimum value for
(X,A) are given by

Val(X,A, h) =
∑
R∈σ

∑
x∈Xar(R)

RX(x)RA(h(x)),

Opt(X,A) = min
h:X→A

Val(X,A, h).

For two valued σ-structures A and B, the Promise Valued CSP over
(A,B) [VŽ21, Kaz22], denoted PVCSP(A,B), is defined as follows: given
a pair (X, τ), where X is a non-negative finite-valued σ-structure and
τ ∈ Q is a threshold, output Yes if Opt(X,A) ≤ τ , and output No if
Opt(X,B) > τ . We call (A,B) a PVCSP template if the sets of Yes and
No instances are disjoint. We show in Proposition 8.4 that this least re-
strictive meaningful requirement on a PVCSP template coincides with the
choice taken in [VŽ21].

Notice that the values of R have a different intended meaning in the
template valued structures A, B and in the input valued structure X. For
the template, RA(a) and RB(b) should be understood as the cost of a and
b: we wish an assignment h to map tuples of variables to tuples of domain
elements that are as cheap as possible (and, in fact, RA or RB is often
referred to as a cost function). On the other hand, RX(x) is the weight of
the tuple of variables x: we need to be more concerned about heavy tuples,

98

while we may ignore the tuples of zero weight (recall that 0 · ∞ = 0). As
an example, observe that the PCSP over a pair of structures (A′,B′) is
essentially the same problem as the PVCSP over the pair of {0,∞}-valued
structures (A,B), where tuples in the latter template are given zero cost
iff they belong to the corresponding relations in the former template; while
to an instance X′ of the PCSP corresponds a non-negative finite-valued
structure X where the cost of a tuple is zero iff the tuple does not belong
to the corresponding relation in X′ (and costs of the remaining tuples are
arbitrary positive rationals), together with any threshold τ ∈ Q≥0.

For a PVCSP input valued σ-structure X we define the set of con-
straints CX as the set of formal expressions of the form R(x) where R ∈ σ,
x ∈ Xar(R), and RX(x) > 0; the value RX(x) is the weight of the con-
straint. This almost translates the presented definition of (P)VCSP to the
version introduced in Section 2.2.2: weights of constraints can be emulated
by repeating constraints in (2.1). However, this encoding choice can cause
an exponential blow up of the instance size. Nevertheless, this difference
between the two formalisms is inessential for our purposes.

We say that a valued relation RX has no repetitions if RX(x) = 0
whenever x has a repetition. Similarly, we say that an input valued struc-
ture X has no repetitions if none of its valued relations has a repetition.

Example 8.1 (Constant factor approximation).

As mentioned in the introduction, the PVCSP framework can be
used to model a decision version of constant factor approximation
problems for MaxCSP. More concretely, suppose that we want to find
a c-approximation for CSP(A) for some (non-valued) σ-structure A
and some c < 1. One can model this problem as PVCSP(A′,B′)
where A′ = B′ = A and for all R ∈ σ and a ∈ Aar(R), RA′(a) = −1
if a ∈ RA and RA′(a) = 0 otherwise; and RB′(a) = 1

cR
A′(a). Given

an instance X of CSP(A) and a parameter 0 < β ≤ 1, we turn it into
an instance (X′,−βm) of PVCSP(A′,B′) in a natural way, where X′

is a 0-1 valued structure and m is the number of constraints in X′.
Then, Opt(X′,A′) ≤ −βm if a β-fraction of all constraints of X can
be satisfied in A, and Opt(X′,B′) > −βm if not even a cβ-fraction
of the constraints of X can be satisfied in A.

8. Weisfeiler-Leman Invariant Promise Valued CSPs 99

Iterated degree and distributed model. As in the crisp setting, we
use the factor graph representation of valued structures to define the iter-
ated degree as well as the distributed model. This is defined analogously
to the crisp setting, except that each edge {a,R(a)} in the factor graph
of A is labelled by a triple (S,R, q) where q = RA(a) > 0 is the value of
the constraint R(a) ∈ CA and, as above, S = {i ∈ [ar(R)] | ai = a}. The
notions of connectedness and iterated degree, the equivalence relation ≡1,
and the distributed computational model are then defined using the factor
graph for valued structures in the same way as for crisp structures.

Analogously to the case of distributed CSPs, we say that a distributed
algorithm solves an instance (X, τ) of PVCSP(A,B) if the algorithm ter-
minates and the terminating state of every process is Yes if (X, τ) is
a Yes instance of PVCSP(A,B), and No if (X, τ) is a No instance of
PVCSP(A,B). We say that a distributed algorithm solves PVCSP(A,B)
if it solves every connected instance of PVCSP(A,B).

Linear programming relaxations. Given two valued σ-structures X
and A where X is non-negative finite-valued, the systems of inequali-
ties BLP(X,A) and SA1(X,A) are given by adapting equations (BLP1),
(BLP2), (BLP3) and (in the case of SA1(X,A)) (⟲) to the valued case,
and importantly, adding an objective function. Concretely, BLP(X,A)
for valued X and A is the following linear program.

OptBLP(X,A) := min
∑

R(x)∈CX

∑
a∈Aar(R)

pR(x)(a)RX(x)RA(a) (⋆)

subject to:
∑
a∈A

px(a) = 1 x ∈ X (vBLP1)

px(a) =
∑

a∈Aar(R), ai=a

pR(x)(a) a ∈ A,R(x) ∈ CX, (vBLP2)

i ∈ [ar(R)] such that xi = x

pR(x)(a) = 0 R(x) ∈ CX, a ∈ Aar(R) (vBLP3)
such that RA(a) = ∞

100

As for the linear program SA1(X,A), the objective function, denoted
OptSA1(X,A), is given by the same objective function as in BLP(X,A).
The variables are subject to all the constraints in BLP(X,A), but in
addition, they are also subject to the following constraint which (as in the
non-valued case) handles the repetitions in the constraints of X.

pR(x)(a) = 0 R(x) ∈ CX, a ∈ Aar(R) : ∃i, j ∈ [ar(R)] (v⟲)
such that xi = xj and ai ̸= aj

Notice that in general OptBLP(X,A) ≤ OptSA1(X,A). Additionally, in
the particular case where X has no repetitions, BLP and SA1 are the same
linear program and so OptBLP(X,A) = OptSA1(X,A).

Moreover, for L ∈ {BLP, SA1}, if there exists a rational solution to
L(X,A) then OptL(X,A) < ∞ since RA(a) = ∞ implies pR(x) = 0 and
0 · ∞ = 0 (formally, one should skip these summands in (⋆)). If L is
infeasible, then we set OptL(X,A) = ∞.

The inner sum in (⋆) is equal to the expected “cost” of the constraint
R(x) with weight RX(x) when x is evaluated according to this distribu-
tion. From this observation it is apparent that OptL(X,A) ≤ Opt(X,A).
We say that L decides PVCSP(A,B) if, for every input structure X, we
have Opt(X,B) ≤ OptL(X,A). Note that in this case the algorithm for
PVCSP(A,B) that answers Yes iff OptL(X,A) ≤ τ (where τ is the input
threshold) is correct, so the definition makes sense.

8.3 Fractional operations

In this section we introduce the notions of fractional operation, which
played a major role in the development of the algebraic approach to Valued
CSPs [CCC+13, KO15], and discuss some of their basic properties.

An n-ary fractional polymorphism [VŽ21] of a pair of valued σ-structures
(A,B) is a probability distribution ω on the set BAn := {f : An → B}
such that for every R ∈ σ and every list of n tuples a1, . . . ,an ∈ Aar(R) we
have that ∑

f∈BAn

ω(f)RB(f(a1, . . . ,an)) ≤ 1
n

n∑
i=1

RA(ai)

8. Weisfeiler-Leman Invariant Promise Valued CSPs 101

where f is applied to a1, . . . ,an ∈ Aar(R) component-wise.2 The support
of ω is the set of functions f : An → B such that ω(f) > 0. We say that
ω is symmetric if every operation in its support if symmetric.

The equivalence of solvability by BLP to invariance under symmetric
operations lifts to the Promise Valued setting.

Theorem 8.2 ([VŽ21]). Let (A,B) be a promise valued template of sig-
nature σ. Then the following are equivalent.

(iv) BLP decides PVCSP(A,B);

(v) (A,B) has symmetric fractional polymorphisms of every arity.

Example 8.3 (BLP-decidable (P)(V)CSPs).

A CSP that can be decided by BLP is e.g. the Horn-3-Sat, where the
template has domain {true, false} and two ternary relations defined
by ¬x∨¬y∨¬z and ¬x∨¬y∨z (as well as both constants). A simple
PCSP template decidable by BLP is e.g. PCSP(A,B) where A, B
are ordered sets, |A| ≤ |B|, and A and B both have a single binary
relation defined by x < y. A well-known class of templates with
BLP-decidable VCSPs are those that contain only submodular valued
relations (see [Kol13, KŽ17a]). Finally, the 2-approximation of the
Vertex Cover problem [KŽ17a] is a PVCSP decidable by BLP. In all
the mentioned examples, it is not hard to find symmetric (fractional)
polymorphisms of every arity.

We will defer the proof of Theorem 8.2 to the end of this section as it
makes use of a concept that we introduce next.

A fractional homomorphism [TŽ12, VŽ21] from A to B is a unary frac-
tional polymorphism of (A,B), or equivalently, a probability distribution
µ over BA such that for every R ∈ σ and every a ∈ Aar(R) we have that∑

f∈BA

µ(f)RB(f(a)) ≤ RA(a). (8.1)

2We use a simpler concept than fractional polymorphism as defined in [VŽ21], which
will be sufficient for our purposes.

102

If there exists a fractional homomorphism from A to B, we say that
A is fractionally homomorphic to B and we write A →f B.

The following is a characterization of PVCSP templates in terms of
fractional homomorphisms. This result will also be useful in the proof of
Theorem 8.2.
Proposition 8.4. For any two valued σ-structures A and B, the following
are equivalent.

1. There exists a fractional homomorphism from A to B.

2. For all non-negative finite-valued σ-structures X, Opt(X,B)≤Opt(X,A).

Proof. (1) ⇒ (2). Let µ be a fractional homomorphism from A to B, let
g : X → A be such that Opt(X,A) = Val(X,A, g), and let f ∈ BA be
some map that minimizes Val(X,B, f ◦ g). Then

Opt(X,B) ≤ Val(X,B, f ◦ g) ≤
∑

f ′∈BA

µ(f ′) Val(X,B, f ′ ◦ g)

=
∑
R∈σ

∑
x∈Xar(R)

RX(x)
∑

f ′∈BA

µ(f ′)RB(f ′ ◦ g(x))

≤
∑
R∈σ

∑
x∈Xar(R)

RX(x)RA(g(x)) = Val(X,A, g) = Opt(X,A).

(2) ⇒ (1). The idea for this proof is to assume that there is no
fractional homomorphism from A to B, formulate this fact as infeasi-
bility of a system of linear inequalities, and then use a version of Farkas’
Lemma [Sch86] to find a valued structure X with Opt(X,B) > Opt(X,A).

The existence of a fractional homomorphism from A to B can be re-
formulated as the following system of linear inequalities, where there is a
rational-valued variable µf for every f ∈ BA.

variables: µf for all f ∈ BA

constraints:
∑

f∈BA

µfR
B(f(a)) ≤ RA(a) for all R ∈ σ (8.2a)

and a ∈ Aar(R)∑
f∈BA

µf ≥ 1 (8.2b)

µf ≥ 0 for all f ∈ BA. (8.2c)

8. Weisfeiler-Leman Invariant Promise Valued CSPs 103

If there is no fractional homomorphism from A to B, the system (8.2)
is infeasible.

We now deal with infinite coefficients. Define BA
<∞ = {f ∈ BA : ∀R ∈

σ, ∀a ∈ Aar(R), RA(a) < ∞ implies RB(f(a)) < ∞}. Now consider the
new linear system obtained from (8.2) by first removing all the inequalities
in (8.2a) where RA(a) = ∞ (since these inequalities are always satisfied),
and second, by removing from (8.2) the variable µf for all f ∈ BA \BA

<∞
and changing (8.2a) so that the sums run over BA

<∞ only (since we need to
have µf = 0 for f ∈ BA\BA

<∞ in any feasible solution). Clearly, the system
of linear inequalities resulting from this procedure remains infeasible and
does not contain infinite coefficients.

This system of linear inequalities can be rewritten in matrix form as
M f ≤ a subject to f ≥ 0, where f ∈ QBA

<∞
≥ is the vector of unknowns, and

M is a real-valued matrix. By Farkas’ Lemma, if the program (8.2) is not
feasible, then the system of inequalities MT y ≥ 0 subject to aT y < 0 and
y ≥ 0 is feasible. Explicitly, the latter system is the following.

variables: y, xR,a for every R ∈ σ and a ∈ Aar(R) with RA(a) < ∞

constraints:
∑
R∈σ

∑
a∈Aar(R)

RA(a)<∞

xR,aR
B(f(a)) ≥ y for all f ∈ BA

<∞ (8.3a)

∑
R∈σ

∑
a∈Aar(R)

RA(a)<∞

xR,aR
A(a) < y (8.3b)

xR,a ≥ 0 for all R ∈ σ,a ∈ Aar(R) (8.3c)
y ≥ 0. (8.3d)

Eliminating y, and adding trivially satisfied constraints to (8.3a) for
all f ∈ BA \BA

<∞, we get that the following system is feasible.

variables: xR,a for every R ∈ σ and a ∈ Aar(R) with RA(a) < ∞

constraints:
∑
R∈σ

∑
a∈Aar(R)

RA(a)<∞

xR,aR
B(f(a)) >

∑
R∈σ

∑
a∈Aar(R)

RA(a)<∞

xR,aR
A(a)

for all f ∈ BA (8.4a)
xR,a ≥ 0 for all R ∈ σ, a ∈ Aar(R). (8.4b)

104

Let xR,a for R ∈ σ, a ∈ Ar be a feasible solution to (8.4), and
consider the structure X with domain X = A and relations given by
RX(a) = xR,a for a ∈ Aar(R) with RA(a) < ∞ and RX(a) = 0 whenever
RA(a) = ∞. Notice that X is non-negative finite-valued, that the right-
hand side in (8.4a) is equal to Val(X,A, id) (where id denotes the identity
function), and that the left-hand side is equal to Val(X,B, f). Therefore
Opt(X,B) > Opt(X,A), as required.

The valued version of the decomposition theorem for SA1 uses a con-
cept that is “dual” to fractional homomorphism, as suggested by Proposi-
tion 8.5 below. While only the easier implication (1) ⇒ (2) is needed for
the proof of Theorem 8.6, we sketch the proof of the other implication as
well.

We define a dual fractional homomorphism from X to Y (X →df Y)
to be a probability distribution η over Y X such that for every R ∈ σ and
every y ∈ Y ar(R) we have that

RY(y) ≥
∑

f∈Y X

η(f)
∑

x∈Xar(R)

y=f(x)

RX(x). (8.5)

Proposition 8.5 ([CRŽ22]). For any two non-negative finite-valued σ-
structures X and Y, the following are equivalent.

1. There exists a dual fractional homomorphism from X to Y.

2. For all valued σ-structures A, Opt(X,A) ≤ Opt(Y,A).

Proof. (1) ⇒ (2). Let η be a dual fractional homomorphism from X to
Y, and g : Y → A be such that Opt(Y,A) = Val(Y,A, g). Then

Opt(Y,A) =
∑
R∈σ

∑
y∈Y ar(R)

RY(y)RA(g(y))

≥
∑
R∈σ

∑
y∈Y ar(R)

∑
f∈Y X

η(f)
∑

x∈Xar(R)

y=f(x)

RX(x)RA(g ◦ f(x))

=
∑

f∈Y X

η(f) Val(X,A, g ◦ f),

8. Weisfeiler-Leman Invariant Promise Valued CSPs 105

which implies that there exists some function f ′ : X → Y such that
Val(X,A, g◦f ′) ≤ Opt(Y,A), hence Opt(X,A) ≤ Opt(Y,A) as required.
Notice that this holds regardless of whether A is finite-valued or general-
valued.

(2) ⇒ (1). The contrapositive is proved in a similar way to Proposi-
tion 8.4. The proof is in fact somewhat simpler since we do not need to
deal with infinities.

The existence of a dual fractional homomorphism from X to Y can be
reformulated as the following linear program:

variables: ηf for all f ∈ Y X

constraints:
∑

f∈Y X

ηf

∑
x∈Xr

y=f(x)

RX(x) ≤ RY(y) for all R ∈ σ (8.6a)
and y ∈ Y ar(R)∑

f∈Y X

ηf ≥ 1 (8.6b)

ηf ≥ 0 for all f ∈ Y X . (8.6c)

Assume that there is no dual fractional homomorphism from X to Y.
Then, the (8.6) is infeasible.

Notice that X and Y are assumed to be finite-valued, so all the co-
efficients in this system of linear inequalities are finite-valued too. Then,
(8.6) can be rewritten in matrix form as M f ≤ y subject to f ≥ 0, where
f ∈ QY X

≥ is the vector of unknowns, and M is a real-valued matrix. By
Farkas’ Lemma, if (8.6) is not feasible, then the linear program MT z ≥ 0
subject to yT z < 0 and z ≥ 0 is feasible. Explicitly, this program is the
following.

variables: t, zR,u for every R ∈ σ and y ∈ Y ar(R)

constraints:
∑
R∈σ

∑
y∈Y ar(R)

zR,y
∑

x∈Xar(R)

y=f(x)

RX(x) ≥ t for all f ∈ Y X (8.7a)

∑
R∈σ

∑
y∈Y ar(R)

zR,yR
Y(y) < t (8.7b)

zR,y ≥ 0 for all R ∈ σ,y ∈ Y ar(R) (8.7c)
t ≥ 0. (8.7d)

106

Eliminating t and rearranging we get that the following program is feasible.

variables: zR,y for every R ∈ σ and y ∈ Y ar(R)

constraints:
∑
R∈σ

∑
y∈Y ar(R)

zR,y
∑

x∈Xar(R)

y=f(x)

RX(x) >
∑
R∈σ

∑
y∈Y ar(R)

zR,yR
Y(y)

for all f ∈ Y X (8.8a)

zR,y ≥ 0 for R ∈ σ,y ∈ Y ar(R). (8.8b)

Let zR,y for R ∈ σ, y ∈ Y ar(R) be a feasible solution to (8.8), and
consider the valued structure A with domain A = Y and valued relations
given by RA(y) = zR,y for each y ∈ Y ar(R). For all f ∈ Y X , we have

Val(Y,A, id) =
∑
R∈σ

∑
y∈Y ar(R)

RA(y)RY(y)

<
∑
R∈σ

∑
y∈Y ar(R)

RA(y)
∑

x∈Xar(R)

y=f(x)

RX(x) = Val(X,A, f),

therefore Opt(Y,A) < Opt(X,A), which is the negation of (2).

Sketch of proof of Theorem 8.2. The proof is similar in spirit to the equiv-
alence of (2) and (3) in Theorem 5.6, except that for each m ≥ 1, the
valued relation of the valued structure LPm(A) [TŽ12, VŽ21] are defined
by:

RLPm(A)(s1, . . . , sr) := 1
m

min
t1,...,tr∈Am

{{ti}}=si

m∑
i=1

RA(t1[i], . . . , tr[i]).

The following properties are the equivalents of 1 and 2 in the valued set-
ting:

1. OptBLP(X,A) = minm≥1 Opt(X,LPm(A)) for all non-negative finite-
valued X.

2. For all m ≥ 1, LPm(A) →f B if and only if (A,B) has an m-ary
symmetric fractional polymorphism.

8. Weisfeiler-Leman Invariant Promise Valued CSPs 107

The proof can be now finished using Proposition 8.4. For (iv) ⇒ (v)
suppose that (A,B) does not have a symmetric polymorphism of some
arity m. Then, there is no fractional homomorphism from LPm(A) to
B. It follows from Proposition 8.4 that there exists some non-negative
finite-valued structure X such that Opt(X,B) > Opt(X,LPm(A)) ≥
OptBLP(X,A). Hence, BLP does not decide PVCSP(A,B). On the other
hand, for (v) ⇒ (iv), assume that (A,B) has symmetric fractional poly-
morphisms of every arity. Let X be non-negative finite-valued and m ≥ 1
be such that Opt(X,LPm(A)) is minimal. We know that LPm(A) is frac-
tionally homomorphic to B and therefore by Proposition 8.4 Opt(X,B) ≤
Opt(X,LPm(A)) = OptBLP(X,A). Hence, BLP decides PVCSP(A,B).

8.4 The Decomposition Theorem for valued struc-
tures

Finally, we state the decomposition theorem for valued structures. This
provides a connection between the combinatorial and the LP-based char-
acterizations of the class of PVCSP templates that are the subject of the
main result of this chapter.

Theorem 8.6. Let X, A be a pair of similar valued structures, where X is
non-negative and finite-valued. Then there exist non-negative finite-valued
structures Y1,Y2 such that

1. X →df Y1,

2. Y1 ≡1 Y2, and

3. Opt(Y2,A) ≤ OptSA1(X,A).

Proof. If SA1(X,A) is not feasible, then we can take Y1 = Y2 = X,
and the statement follows trivially, so from now on we shall assume that
SA1(X,A) is feasible. In this case, the construction of the valued struc-
tures Y1 and Y2 is analogous to the construction of Theorem 7.1, ex-
cept that one has to additionally take into consideration the weights of
the constraints in X. In particular, let m > 0 be the least common

108

denominator of a rational solution to SA1(X,A). For every constraint
R(x) ∈ CX of arity r, let ρ1, . . . , ρr be the permutations of [m] obtained
as in the proof of Theorem 7.1 so that they satisfy conditions (1) and (2)
in said proof. Then, for each k ∈ [m] we set RY1((k,x[1]), . . . , (k,x[r])) =
RY2((ρ1(k),x[1]), . . . , (ρr(k),x[r])) = 1/m·RX(x), and all the other tuples
in Y1 and Y2 are given zero weight.

Then X →df Y1 by the dual fractional homomorphism given by the
uniform distribution over fk, k ∈ [m], where fk : X → Y1 is defined by
fk(x) = (k, x) for all x ∈ X.

On the other hand, let h : Y2 → A be the same map that gives a
homomorphism from Y2 to A in the crisp setting. For each R(x) ∈ CX
the weights of the tuples that correspond to R(x) are selected so that their
contribution to Val(Y2,A, h) is equal to the inner sum in the objective
function (⋆) of SA1(X,A); therefore, the total value of h for (Y2,A) is
equal to OptSA1(X,A). It follows that Opt(Y2,A) ≤ OptSA1(X,A).

Moreover, the iterated degree of (k, x) in both Y1 and Y2 is obtained
from the iterated degree of x by scaling down each label (S,R, q) to
(S,R, q/m). It follows that Y1 ≡1 Y2, and the proof is concluded.

As in the crisp setting, the dual fractional homomorphism X →df Y1,
the equivalence Y1 ≡1 Y2, and the assignment Y2 → A that witness
Opt(Y2,A) from the proof of Theorem 8.6 can all be associated with
rational matrices of the appropriate dimensions, the product of which is
associated to a solution to SA1(X,A). Hence, again, Theorem 8.6 can be
regarded as a decomposition theorem.

8.5 Weisfeiler-Leman invariant PVCSPs

We are ready to prove the main result. The appropriate generalization of
≡1-invariance (see Section 5.1) to the PVCSP setting is the following: for
any promise valued template (A,B), PVCSP(A,B) is closed under ≡1 iff
for any two non-negative finite-valued structures X1 and X2 similar to A
and B and any rational threshold τ , X1 ≡1 X2 implies that Opt(X2,B) ≤
Opt(X1,A).

8. Weisfeiler-Leman Invariant Promise Valued CSPs 109

Theorem 8.7. Let (A,B) be a promise valued template of signature σ.
Then the following are equivalent.

(i) There is a distributed algorithm that solves PVCSP(A,B). More-
over, in this case, there is a polynomial-time distributed algorithm
that solves PVCSP(A,B).

(ii) PVCSP(A,B) is closed under ≡1-equivalence;

(iii) SA1 decides PVCSP(A,B).

Proof. The proof of (i) ⇒ (ii) is similar to the corresponding implication in
the proof of Theorem 7.2, but one has to use extra care when dealing with
valued structures. As before, it follows from Corollary 6.5 that if (i) holds
and X ≡1 Y are connected, then a terminating distributed algorithm will
report the same decision when run on input (X, τ) or (Y, τ), so by setting
τ = Opt(X,A) we obtain that (ii) holds for all connected X, Y. We
need to show that (ii) in its full generality follows from (ii) restricted to
connected structures.

We now claim that for any two finite-valued σ-structures X and Y,
Opt(Y,B)/|Y | ≤ Opt(X,A)/|X| whenever X and Y are weakly congru-
ent and connected. As before, the claim holds trivially when either X or
Y is a singleton. For |X|, |Y | ≥ 2, we present a valued construction similar
in spirit to that of Theorem 7.2, but which accounts for valued relations.

For any positive integer k, we define a pair of connected finite-valued
σ-structures X′(k) and X(k) (and similarly Y′(k), Y(k)) as follows. Let X =
{x0, x1, . . . , x|X|−1} and let the universe of X′(k) be X(k) = {0, 1, . . . , k −
1} × X. Let η be the probability distribution over the mappings X →
X(k) assigning probability 1/2k to each of the 2k mappings fj , f ′

j , j ∈
{0, 1, . . . , k − 1}, where fj(xi) = (j, xi) and f ′

j(xi) = (i + j (mod k), xi)
for each xi ∈ X. We define the weights in X′(k) in the unique way so
that (8.5) holds for η with equality instead of inequality. Then η is a
dual fractional homomorphism from X to X′(k), and the probability dis-
tribution which assigns probability 1 to the projection onto X is a dual
fractional homomorphism in the opposite direction. By Proposition 8.5,
Opt(X,C) = Opt(X′(k),C) for any valued σ-structure C. Finally, let X(k)

be the valued σ-structure obtained from X′(k) by multiplying weights by

110

2k; clearly, Opt(X(k),C) = 2kOpt(X′(k),C) for any C. As in Chapter 7,
X(k) is connected for all k and for k′ large enough, the valued structures
Y(k′|X|) and X(k′|Y |) have the same iterated degree. By item (ii) for con-
nected valued structures, we get Opt(Y(k′|X|),B) ≤ Opt(X(k′|Y |),A) and
the claim follows using the equalities above and rearranging.

This observation allows us to finish the proof as follows. Let X and
Y be valued structures such that X ≡1 Y and let n = |X| = |Y |.
From Remark 5.3 we get that there exists a sequence (X1, . . . ,Xn) (resp.,
(Y1, . . . ,Yn)) that contains each connected component X′ of X (resp., Y′

of Y) exactly |X ′| times (resp., |Y ′| times), and Xi and Yi are weakly con-
gruent for every i ∈ [n]. From the claim above, we get that Opt(Yi,B)/|Yi|
≤ Opt(Xi,A)/|Xi| for every i ∈ [n]. Summing up these inequalities and
observing that Opt(X,A) is equal to the sum of Opt(X′,A) over all con-
nected components X′ of X (and similarly for Y), item (ii) follows.

(ii) ⇒ (iii). We need to show that for every non-negative finite-valued
σ-structure X, Opt(X,B) ≤ OptSA1(X,A). Let Y1,Y2 be the structures
obtained from Theorem 8.6, i.e., X →df Y1, Y1 ≡1 Y2, and Opt(Y2,A) ≤
OptSA1(X,A). Then, by (ii) we have that Opt(Y1,B) ≤ OptSA1(X,A),
and by Proposition 8.5, Opt(X,B) ≤ OptSA1(X,A) too as required (see
Figure 8.1 for a diagram of this proof).

(iii) ⇒ (i). From Theorem 6.9 (adapted to the valued setting), if
OptSA1(X,A) < ∞, then there is a solution to the linear program that
assigns the same value to every class of variables and constraints of X
that have the same iterated degree.3 This allows us to reduce the linear
program as follows. Let X/≡1 and CX/≡1 denote the sets of equivalence
classes of variables and constraints, respectively, under the equivalence
≡1. The new linear program, denoted SA1

≡(X,A), contains one variable
p[x](a) for every class [x] ∈ X/≡1 and one variable p[R(x)](a) for every
class [R(x)] ∈ CX/≡1. The variables of the new program SA1

≡(X,A) are
subject to the same constraints as in SA1(X,A), except the sums run over
the new reduced set of variables. The new objective function is

OptSA1
≡(X,A) := min

∑
[R(x)]∈CX/≡1

k[R(x)]
∑

a∈Aar(R)

p[R(x)](a)RX(x)RA(a), (8.9)

3While Theorem 6.9 is stated in terms of BLP, it is easy to see that the same proof
also gives an equivalent result for SA1.

8. Weisfeiler-Leman Invariant Promise Valued CSPs 111

where k[R(x)] = |[R(x)]| is the number of constraints equivalent to R(x).
By the above discussion, we have OptSA1

≡(X,A) = OptSA1(X,A). There-
fore, since SA1 decides PVCSP(A,B), so does SA1

≡. (We remark here
that two input structures with the same iterated degree have the same
reduced SA1

≡ up to renaming of variables; this can be used e.g. to show
that (iii) implies (ii).)

In order to show that (iii) implies (i), assume that X is a connected
input structure. We show that every agent in the distributed network can
obtain the reduced linear program SA1

≡ via a polynomial-time distributed
algorithm. As SA1

≡ decides PVCSP(A,B), this will conclude the proof.
The agents can calculate a finite and effectively computable represen-

tation of their iterated degree in polynomial time using the distributed
version of the color refinement algorithm described in Section 6.4.2 (see
Lemma 6.22.) Each agent ψ(v), v ∈ X∪CX can then use the representation
of the iterated degree as an identifier. Every agent can obtain sufficient
information from its neighbours to compute the equations in (vBLP1),
(vBLP2), (vBLP3) and (v⟲) that constrain its relevant LP variables of
the reduced system (and use the identifiers to name the LP variables), and
can subsequently broadcast these along the network. We are left to show
that every agent can also compute the objective function of SA1

≡(X,A).
In fact, it is sufficient that every agent ψ(R(x)) computes the summand of
OptSA1

≡(X,A) that corresponds to [R(x)] and then broadcasts it in order
to obtain the complete objective function. The only nontrivial piece of
information to compute is the value of the coefficients k[R(x)].

By Remark 5.3, for each R(x) ∈ CX, each participating variable x ∈
{x}, and ℓ = ℓ{x,R(x)}, the coefficient k[R(x)] is equal to the number of ℓ-
labeled edges from x into members of [R(x)] (denoted x[ℓ, R(x)] in Remark
5.3) multiplied by the size of [x]. The former value can be computed by
the agent ψ(x), so ψ(x) can compute the ratio k[R(x1)] : k[R(x2)] for any
two constraints R(x1), R(x2) in which x participates. After broadcasting
all these ratios, each agent can compute the ratios between any two k[R(x)]
and, since the sum of these coefficients is |CX| (which is known to the
agents), they can compute the coefficients.

Clearly, the implication (iv) ⇒ (iii) in Theorem 7.2 remains true for
PVCSP (so the equivalent statements in Theorem 8.7 are satisfied in, e.g.,

112

the PVCSPs in Example 8.3). The following example shows that, unlike
for PCSPs, the converse implication does not hold in general: we provide
an example of a PVCSP template that is decided by SA1 but not by BLP.

Example 8.8

Let A, B be σ-structures where σ contains a single binary relation
symbol R. Let A = B = {0, 1}, RA(a, a) = RB(a, a) = 3 for
a ∈ {0, 1}, and RA(a, b) = 2, RB(a, b) = 0 for a ̸= b ∈ {0, 1}.
The probability distribution which assigns probability 1 to the iden-
tity function is a fractional homomorphism, so (A,B) is a PVCSP
template.

We claim that BLP does not decide PVCSP(A,B). Indeed, let X
be the PVCSP input structure given by X = {x} and RX(x, x) = 1.
Then, there is a feasible solution to BLP(X,A) given by px(a) = 1/2
for a ∈ {0, 1} and pR(x,x)(a, a) = 0, pR(x,x)(a, b) = 1/2 for a ̸= b ∈
{0, 1}. This solution witnesses that OptBLP(X,A) ≤ 2, however,
it is easy to see that Opt(X,B) = 3 and so BLP does not decide
PVCSP(A,B).

On the other hand, we show that Opt(X,B) ≤ OptSA1(X,A)
for any input valued structure X. Let Vl(X) = ∑

x∈X RX(x, x) and
Ve(X) = ∑

x ̸=y R
X(x, y) be the total weight of the constraints in

X with and without repetitions, respectively. We choose an as-
signment h : X → B at random: each h(x) is chosen indepen-
dently and uniformly (both 0 and 1 with probability 1/2). The ex-
pected value of Val(X,B, h) is 3Vl(X)+3/2Ve(X), which implies that
Opt(X,B) ≤ 3Vl(X) + 3/2Ve(X). As for SA1, we know that any fea-
sible solution must have p(x,x)(a, b) = 0 whenever a ̸= b. Therefore,
we get

OptSA1(X,A) = min
[∑

x∈X

∑
a∈A

pR(x,x)(a, a)RX(x, x)RA(a, a)+

∑
x ̸=y∈X

∑
a,b∈A

pR(x,y)(a, b)RX(x, y)RA(a, b)
]

≥ 3Vl(X) + 2Ve(X) > Opt(X,B).

8. Weisfeiler-Leman Invariant Promise Valued CSPs 113

Y
1

Y
2

B

X
A

≡
1

≤
O

pt
SA

1 (X
,A

)

≤
O

pt
SA

1 (X
,A

)

SA
1
(X

,A
)

df

≤
O

pt
SA

1 (X
,A

)

f

Fi
gu

re
8.

1:
D

ia
gr

am
of

th
e

pr
oo

fo
f(

ii)
⇒

(ii
i)

of
T

he
or

em
8.

7.
Fr

ac
tio

na
l

(
)

f
an

d
du

al
fra

ct
io

na
l

(
)

df
ho

m
om

or
ph

ism
s

ar
e

pi
ct

ur
ed

as
da

sh
ed

ar
ro

w
s,

th
e

eq
ui

va
le

nc
e

re
la

tio
n

≡
1

as
a

do
tt

ed
lin

e

(
),

th
e

fe
as

ib
ili

ty
of

th
e

lin
ea

r
pr

og
ra

m
SA

1
as

a
sq

ui
gg

ly
ar

ro
w

(
),

an
d

an
up

pe
r

bo
un

d
of

k
on

th
e

op
tim

um
va

lu
e

fo
r

a
pa

ir
of

st
ru

ct
ur

es
as

a
st

an
da

rd
ar

ro
w

(
)

≤
k

.

9 A Glimpse on the Higher Levels

In this chapter we discuss the higher-dimensional version of the
Weisfeiler-Leman method and its equivalent combinatorial, logical,
and algebraic characterizations. We then extend the notions of ≡1-
equivalence to higher dimensions, and we present a combinatorial
decomposition of the higher levels of the Sherali-Adams hierarchy.

9.1 k-WL, Counting Logics, and Treewidth

As mentioned in Section 5.1, colour refinement is a very powerful heuristic
for testing isomorphism of graphs, in fact, it decides the isomorphism prob-
lem on almost all graphs (that is, on all but o(2(n

2)) graphs on n vertices
for every positive integer n) [BK79, BES80], and on all trees [IL90]. How-
ever, it also has some important limitation, for instance, colour refinement
fails on specific classes of graphs, such as regular graphs (see Figure 9.1).
For this reason, an increasingly powerful hierarchy of relaxations based
on the Weisfeiler-Leman method, known as the k-dimensional Weisfeiler-
Leman algorithm (k-WL), has been developed independently by multiple
researchers.

As before, k-WL proceeds in iterations. At every iteration j on a
graph G = (V ;E), k-WL produces a colouring χG,k

j of the set of k-tuples
of V . In particular, for v ∈ V k, χG,k

0 (v) is given by the isomorphism
type of v: that is, two k-tuples u = (u1, . . . , uk) and v = (v1, . . . , vk)
have the same isomorphism type if and only if the mapping ui 7→ vi is
an isomorphism between the subgraphs of G induced by {u1, . . . , uk} and

115

116

Figure 9.1: Both graphs depicted above are 3-regular and hence they are
not distinguished by the colour refinement algorithm. However, they are
clearly not isomorphic, since the left graph is bipartite while the right
graph is not.

{v1, . . . , vk} respectively. For j ≥ 1, k-WL sets

χG,k
j+1(v) = (χG,k

j (v),Mj(v))

where

Mj(v) = {{
(
χG,k

j (ζ1(v, w)), . . . , χG,k
j (ζk(v, w))

)
| w ∈ V }}

and
ζi(v, w) = (v1, . . . , vi−1, w, vi+1, . . . , vk)

for k ≥ 2, and Mj(v) = {{
(
χG,k

j (w) | w ∈ N(v)}} for k = 1. Notice that
in the latter case, 1-WL is precisely the colour refinement algorithm.

As in the 1-dimensional case, a stable colouring is eventually reached,
and two graphs are said to be distinguished by k-WL if their stable colour-
ings differ. Notice that for all practical purposes (for example in terms of
isomorphism testing), it is enough to compute the partition induced by the
stable colouring instead of the actual colours viewed as multisets, which
can quickly become very large. In this setting, the stable k-WL colouring
of an n-vertex graph can be computed in time O(nk+1 logn) [IL90].

We say that k-WL identifies a graph G if it distinguishes G from all
non-isomorphic graphs. As mentioned above, 1-WL identifies almost all
graphs (the complete characterization of the graphs that are identified by
1-WL can be found in [KSS22]). It turns out that 2-WL is sufficient to
identify almost all regular graphs [Bol82], however, it fails on strongly

9. A Glimpse on the Higher Levels 117

regular graphs (the standard example of this being the 4 × 4 rook’s graph
and the Shrikhande graph; for an insightful digression on this, see the
blog post [Ger17]). For a class of graphs G, the WL dimension of G is
the least integer k such that k identifies all graphs in G. Remarkably,
Grohe [Gro12] showed that every class of graphs with excluded minors
has bounded WL dimension, where we say that H is a minor of G if it
can be obtained by G via the operation of vertex and edge deletion and
edge contraction. More recently, Kiefer et al. showed that the class of
planar graphs has WL dimension 3 [KPS19] and that the class of graphs
of treewidth at most k has WL dimension at most k [KN22]. Fore a more
comprehensive survey on the power of the Weisfeiler-Leman method see
[Kie20], and for its applications to isomorphism testing and an overview of
Babai’s algorithmm, see [GS20, GN21] as well as the recent 2-WL-based
quasipolynomial parametrized algorithm for graphs with excluded minors
[GWN20].

It had initially been conjectured that the k-dimensional Weisfeiler-
Leman algorithm would provide a polynomial time isomorphism test for
graphs of bounded degree. In their seminal paper, Cai, Fürer, and Immer-
man disprove this conjecture by constructing for every integer k a pair of
non-isomorphic graphs on O(k) vertices which cannot be distinguished by
k-WL (yet they are distinguished by (k + 1)-WL).

Theorem 9.1 ([CFI92]). For all k ∈ N, there exist two graphs on O(k)
vertices such that they are not distinguished by k-WL.

The proof of indistinguishability of the graphs from Theorem 9.1, which
came to be known as the CFI construction, relies on the equivalence be-
tween k-WL and the counting logic C k+1, which is the other main contri-
bution in [CFI92]. While Theorem 9.1 shows the limitations of k-WL, the
algorithm turned out to have a number of useful applications, such as the
important role it plays in the quasipolynomial algorithm of Babai.

On the other hand, it is known from an old result of Lovász [Lov67]
that counting homomorphisms characterizes isomorphism classes: that is,
two graphs G and H are isomorphic if and only if for every graph F , F has
the same number of homomorphisms into G and into H. We already saw in
Chapter 5 how restricting this condition to counting homomorphisms from
trees yields a combinatorial characterization of indistinguishability by 1-

118

WL. It turns out that considering not just trees but tree-like structures in
a broader sense corresponds to indistinguishability under k-WL [Dvo10,
DGR18]. To make this more precise we will need to introduce some more
definitions.

Let P(A) denote the power set of A. A tree-decomposition [RS84] of a
structure A is a pair (G, β) where G = (V,E) is a tree and β : V → P(A)
is a mapping such that the following conditions are satisfied:

1. For every constraint R(a) in CA there exists a node v ∈ V such that
{a} ⊆ β(v);

2. If a ∈ β(u) ∩ β(v) then a ∈ β(w) for every node w in the unique
path in G joining u to v.

The width of a tree-decomposition (G, β) is max{|β(v)| | v ∈ V } − 1
and the treewidth of A is defined as the smallest width among all its
tree-decompositions. It is not difficult to see that the only (undirected,
loopless) graphs that have treewidth 1 are trees and forests (i.e. disjoint
unions of trees). Moreover, a σ-ftree has treewidth at most r− 1, where r
is the maximum arity of a relation in σ.

Then we have that the logical and combinatorial characterizations of
colour refinement from Theorem 5.1 can be lifted to higher dimensions, as
summarized in the following result:

Theorem 9.2 ([CFI92, Dvo10, DGR18]). Let G, H be graphs. The fol-
lowing are equivalent:

1. k-WL does not distinguish G from H.

2. G and H satisfy the same formulae in the logic C k+1;

3. hom(T ;G) = hom(T ;H) for all graphs T of treewidth at most k.

Recall that 1-WL also has an algebraic characterization in terms of
feasibility of the fractional isomorphism linear program (see item 1 in
Theorem 5.1). Surprisingly, Atserias and Maneva [AM13] and Malkin
[Mal14]) were able to also lift this correspondence to higher dimensions:
in particular, they showed that a hierarchy of linear programs obtained
by applying the Sherali-Adams method to the system of linear equations

9. A Glimpse on the Higher Levels 119

defining fractional isomorphism interleaves with indistinguishability under
k-WL. Subsequently, in [GO15] Grohe and Otto gave a variant of the SA-
based relaxation of isomorphism whose levels correspond tightly with k-
WL, and showed that the interleaving of the two hierarchies from [AM13,
Mal14] is strict.

9.2 Sherali-Adams meets Weisfeiler-Leman

It is from this correspondence between the Sherali-Adams hierarchy ap-
plied to fractional isomorphism and the Weisfeiler-Leman algorithm that
the inspiration for our work arises. More precisely, we ask the question:
can a similar correspondence be established when applying the Sherali-
Adams method to relaxations of homomorphism (instead of isomorphism)
of arbitrary relational structures (instead of graphs)? The results in this
section seem to indicate that the answer to this question is positive. A
crucial step in establishing this correspondence is defining a transforma-
tion that allows us to reduce arbitrary relational structures to the world
of binary structures (essentially, vertex- and edge-coloured digraphs).

For every k > 0 we define an operator ∗k that maps a σ-structure to a
new structure whose signature we will denote σ∗

k. Let A be a σ-structure.
Then we define the universe of A∗

k to be A∗
k := ∪j≤kA

j ∪CA. Additionally,
A∗

k contains the following unary (Tj,S , RS) and binary (Tj,i, Ri) relations:

T
A∗

k
j,S = {a ∈ Aj | ai = ai′ ∀i, i′ ∈ S} j ≤ k, S ⊆ [j]

T
A∗

k
j,i = {(a, πia) | a ∈ Aj} j′, j ≤ k, i ∈ [j]j′

R
A∗

k
S = {R(a) ∈ RA | ai = ai′ ∀i, i′ ∈ S} R ∈ σ, S ⊆ [ar(R)]

R
A∗

k
i = {(R(a), πia) | a ∈ RA} R ∈ σ, j ≤ k, i ∈ [ar(R)]j .

In the following remark we motivate the definition of ∗k from the point
of view of pp-powers, a notion that proved to be very powerful in the
context of the algebraic approach to CSP [BOP18].

120

Remark 9.3 (A∗
k as a multi-sorted pp-power).

An n-sorted signature σ is a list of relation symbols, each of which
has an associated arity and an associated sort. As in the standard
(1-sorted) case, the arity of a relation symbol R is a positive integer.
The sort of R, denoted sort(R), is a list ⟨j1, . . . , jar(R)⟩, where ji ∈ [n]
for each i ∈ [ar(R)]. An n-sorted σ-structure A consists of a list of
domains A1, . . . , An, and a sorted relation RA ⊆ Aj1 × . . . × Ajar(R)
for each relation symbol R ∈ σ with sort(R) = ⟨j1, . . . , jar(R)⟩.

A structure B is said to be a pp-power [BOP18] of a structure A
(note that the signatures can differ) if B is isomorphic to a structure
D whose domain D is a subset of Ak (for some k ≥ 1) which is pp-
definable from A, and each r-ary relation in D is pp-definable from
A if we regard it as a rk-ary relation on A. Notice that the power
structure is a canonical example of a pp-power.

Then, A∗
k can be seen as a multi-sorted pp-power of A with do-

mains A1, . . . , Ak, RA
1 , R

A
2 , . . . (notice RA

i ⊆ Aar(Ri)). For instance,
for R ∈ σ, j ≤ k, and i ∈ [ar(R)]j the sorted relation RA∗

k
i ⊆ RA ×Aj

would be defined from A by

Ri(a1, . . . , aar(R), a
′
1, . . . , a

′
j) = R(a1, . . . , aar(R)) ∧

j∧
i=1

(a′
i = ai[i]).

To begin with, thanks to the ∗k transformation, we are able to reduce
feasibility of SAk to feasibility of SA1.

Lemma 9.4. Let X, A be σ-structures. Then SAk(X,A) is feasible if
and only if SA1(X∗

k,A∗
k) is feasible.

As an immediate consequence of Lemma 9.4 together with the decom-
position theorem 7.1, we obtain the characterization of the Sherali-Adams
relaxation for the homomorphism problem in terms of fractional isomor-
phism that we promised in Chapter 7.

9. A Glimpse on the Higher Levels 121

Theorem 9.5. Let X, A be relational structures. Then, the following are
equivalent:

1. SAk(X,A) is feasible;

2. There exists a sequence of structures Y0, . . . ,Yn such that Y0 = X∗
k,

Yn = A∗
k, and for all i = 0, . . . , n − 1 we have that Yi → Yi+1 or

Yi ≡1 Yi+1;

3. There exists a pair of structures Y1,Y2 such that X∗
k → Y1, Y1 ≡1

Y2, and Y2 → A∗
k.

In particular, this implies that feasibility of SAk (for a fixed right-hand
structure A) is closed under ≡k.

Corollary 9.6. Let X, X′ and A be σ-structures and k ≥ 1. Suppose
that X ≡k X′. Then, SAk(X,A) is feasible if and only if SAk(X′,A) is
feasible.

Furthermore, the operator ∗k allows us to define, similarly to the case
of graphs, a hierarchy of increasingly tighter relaxations of isomorphism
for relational structures. In particular, for every k ≥ 1, we shall denote
A ≡k B whenever A∗

k and B∗
k satisfy the conditions of Theorem 5.4. It

is easy to see that the case k = 1 would be unchanged if one replaces A∗
1

and B∗
1 by A and B respectively and, hence, ≡k correctly extends ≡1. For

other small values of k other than k = 1, the characterization of ≡k is not
so straightforward. However, as long as k is at least as large as the arity of
any relation in the signature, then we have the following characterization,
extending the analogous result for graphs (i.e., Theorem 9.2).

Theorem 9.7. Let r be the maximum arity among all relations in σ and
assume that r ≤ k. Then for every pair of structures A, B the following
are equivalent:

1. A ≡k B;

2. hom(X; A) = hom(X; B) for every σ-structure X of treewidth < k;

3. A and B satisfy the same formulae in the logic C k.

122

The proof of this theorem requires item (4) of Theorem 5.4, and so
we will provide the proofs of both Theorem 5.4 and Theorem 9.7 below.
In fact, it is not surprising that a result similar to Theorem 9.2 can be
shown for ≡k since, after all, the k-WL algorithm can be seen as the 1-WL
algorithm applied to k-ary tuples. However, note that the bound on the
treewidth and the number of variables allowed in the logic differ in one unit
between k-WL and ≡k – that is, A ≡k B corresponds to homomorphism
indistinguishability from structures of treewidth less than k (and not at
most k) and to indistinguishability in C k (and not C k+1).

We conclude by presenting the missing proofs of the results mentioned
in this chapter.

9.3 Proof of Lemma 9.4

Lemma 9.4. Let X, A be σ-structures. Then SAk(X,A) is feasible if
and only if SA1(X∗

k,A∗
k) is feasible.

The proof is purely syntactical, although it is convenient to first slightly
modify the LP formulations SAk(X,A) and SA1(X∗

k,A∗
k). We shall refer

to the solutions of SAk(X,A) and SA1(X∗
k,A∗

k) by appropriately indexed
sets of variables p, q respectively.

• In SAk(X,A), it follows from (SA4) that we can safely replace all
variables pR(x)(f) with f(x) ̸∈ RA by 0.

• In SA1(X∗
k,A∗

k) some more substantial observations are needed. First,
for each j ≤ k and each x ∈ Xj , it follows from conditions (SA3)
and (SA4) for Tj,S (S ⊆ [j]) that for every v in A∗

k, qx(v) must take
value 0 unless v = f(x) for some function f : {x} → A. Hence, in a
first stage we set qx(v) to zero for each j ≤ k, each x ∈ Xj and each
v that is not a tuple of the form f(x) for some function f : {x} → A.
Furthermore, it follows from condition (SA3) for Tj,i that qx(f(x)) =
qx′(f(x′)) for every x, x′ satisfying {x} = {x′} and every f : {x} →
A. Hence, in a second stage, for each V ⊆ X with |V | ≤ k and every
f : V → A we identify all variables qx(f(x)) which satisfy {x} = V .

9. A Glimpse on the Higher Levels 123

Then, consider now the variables of the form qR(x)(v), v ∈ A∗
k. It

follows from conditions (SA3) and (SA4) for RS (S ⊆ [ar(R)]) that
qR(x)(v) must be set to 0 unless v = R(f(x)) for some function
f : {x} → A.
The other variables in SA1(X∗

k,A∗
k) are of the form qC(f) where

C ∈ CX∗
k
. As we shall see they can always safely be identified with

some of the other variables. Let us start first with the case in which
C is a unary constraint. If C = Tj,S(x) or C = RS(x), then it follows
from (SA3) that qC(f) = qx(f(x)). Assume now that C is a binary
constraint, that is C = Tj,i(x, πix) or C = Ri(x, πix). It follows
again from (SA3) that qC(f) = qx(f(x)).

Now we are ready to prove the lemma. In particular, consider the fol-
lowing one-to-one correspondence between the assignments in SAk(X,A)
and SA1(X∗

k,A∗
k):

• Every variable pV (f) of SAk(X,A) is assigned to the variable qx(f(x))
of SA1(X∗

k,A∗
k), where x is any tuple satisfying {x} = V .

• Every variable pR(x)(f) of SAk(X,A) is assigned to the variable
qR(x)(R(f(x))) of SA1(X∗

k,A∗
k).

It is not difficult to see that this correspondence preserves feasibility.

9.4 Proof of Theorem 5.4

Theorem 5.4. Let A, B be σ-structures. The following are equivalent:

1. There exist doubly stochastic matrices P , Q such that for every ℓ ∈
Lσ it holds that PM ℓ

A = M ℓ
BQ and M ℓ

AQ
T = P TM ℓ

B;

2. A and B have the same iterated degree sequence;

3. A and B have a common equitable partition;

4. hom(T; A) = hom(T; B) for all σ-ftrees T.

If, additionally, A and B are graphs, then the following is also equivalent:

124

6. There exists a doubly stochastic matrix P such that PNA = NBP .

Before starting we note that two structures A and B have a common
equitable partition if there is an equitable partition (P ,Q) = ({Pi | i ∈
I}, {Qj | j ∈ J}) of the disjoint union A ∪ B such that

1. |Pi ∩A| = |Pi ∩B| for every i ∈ I, and

2. |Qj ∩ CA| = |Qj ∩ CB| for every j ∈ J .

Note that since (P ,Q) is equitable, then any of conditions (1) or (2)
implies the other. We might freely switch between the two alternative
characterizations of common equitable partition.

We also need a few additional definitions before embarking on the
proof. We denote by JV the V × V matrix whose entries are all ones and
we use ⊕ to denote direct sums of matrices. Let M be a V × W matrix
and consider two subsets SV ⊆ V , SW ⊆ W . The restriction of M to SV

and SW , denoted by M [SV , SW], is the matrix obtained by removing from
M all the rows that do not belong in SV and all the columns that do not
belong in SW .

A matrix M ∈ RV ×W is decomposable if there exists a partition (V1, V2)
of V and a partition (W1,W2) of W such that for every two distinct
i, j ∈ [2] and every v ∈ Vi and w ∈ Wj , Mv,w = 0. In this case we can
write M = M1 ⊕ M2 where Mi = M [Vi,Wi]. Otherwise, M is said to be
indecomposable.

Let P ∈ [0, 1]V ×V be a doubly stochastic matrix. Note that P has a
unique decomposition P = ⊕i∈IPi where each Pi is an indecomposable
doubly stochastic matrix. The row partition of P is defined to be the
partition of V into classes Pi, i ∈ I where Pi contains the rows of Pi, and
the column partition is defined in an analogous manner.

We will also need the following lemma (see for example [SU11]).

Lemma 9.8. Let P ∈ RV ×V , Q ∈ RW ×W be doubly stochastic indecom-
posable matrices.

1. Let a,b ∈ RV such that P ·a = b and P T ·b = a. Then, there exists
c ∈ R such that

a = b = c · 1.

9. A Glimpse on the Higher Levels 125

2. Let M1,M2 ∈ RV ×W such that PM1 = M2Q and M1Q
T = P TM2.

Then, there exist c, d ∈ R such that the following identities hold:

M11 = M21 = c · 1 1TM1 = 1TM2 = d · 1T

Proof. Item (1) is Theorem 6.2.4 (ii) from [SU11]. We enclose a proof of
item (2). Let a = M1·1 and b = M2·1. We have PM1·1 = M2Q·1 = M2·1
since Q is doubly stochastic, which implies P · a = b. Similarly, we have
M1 · 1 = M1Q

T · 1 = P TM2 · 1 which implies a = P T · b. Then, we apply
item (1) to deduce that there exists c ∈ R such that M11 = M21 = c · 1.
The other identity is proven in an analogous way.

(1) ⇒ (3). Let P and Q be doubly stochastic matrices satisfying (1).
Let P = ⊕i∈IPi, Q = ⊕j∈JQj be decompositions of P and Q. Denote
by (PA,PB) the column and row partitions of P respectively and by
(QA,QB) the column and row partitions of Q. Then, the restrictions of
M ℓ

A and M ℓ
B to (PA

i ,QA
j), (PB

i ,QB
j) respectively satisfy

PiM
ℓ
A[PA

i ,QA
j] = M ℓ

B[PB
i ,QB

j]Qj ,

M ℓ
A[PA

i ,QA
j]QT

j = P T
i M

ℓ
B[PB

i ,QB
j].

Hence it follows from Lemma 9.8 that there exist cℓ
i,j , dℓ

i,j such that

M ℓ
A[PA

i ,QA
j] · 1 = M ℓ

B[PB
i ,QB

j] · 1 = cℓ
i,j · 1

1T ·M ℓ
A[PA

i ,QA
j] = 1T ·M ℓ

B[PB
i ,QB

j] = 1T · dℓ
i,j

which is equivalent to conditions (P1) and (P2) showing that partitions
(PA,QA) and (PB,QB) have the same parameters.

(3) ⇒ (2). Assume that ({PA
i | i ∈ I}, {QA

j | j ∈ J}) and ({PB
i | i ∈

I}, {QB
j | j ∈ J}) define a common equitable partition of A and B. We

shall prove that any two elements that are in the same set of the partition
of A and B must have the same iterated degree. That is, we show by
induction on k that for all k ≥ 0, δA

k (a) = δB
k (b) whenever there exists

i ∈ I such that a ∈ PA
i and b ∈ PB

i (the case R(a) ∈ QA
j , R(b) ∈ QB

j is
analogous). The base case (k = 0) is immediate. For the inductive case,
assume that the statement holds for k − 1. Let (ℓ, δ) be any arbitrary

126

element in δA
k (a). We shall show that it has the same multiplicity in

δA
k (a) and in δB

k (b). By the inductive hypothesis it follows that there
exists Jδ ⊆ J such that

{R(a) ∈ CA | δA
k−1(R(a)) = δ} =

⋃
j∈Jδ

QA
j

{R(b) ∈ CB | δB
k−1(R(a)) = δ} =

⋃
j∈Jδ

QB
j

Then, the multiplicity of (ℓ, δ) in δA
k (a) is

|{R(a) ∈
⋃

j∈Jδ

QA
j | MA[a,R(a)] = ℓ}|. (9.1)

Since (PA,QA) is an equitable partition it follows that (9.1) is equal
to ∑j∈Jδ

cA,ℓ
i,j where cA,ℓ

i,j are the parameters of the partition.
It can analogously be shown that the the multiplicity of (ℓ, δ) in δB

k (b)
is ∑j∈Jδ

cB,ℓ
i,j . Since (PA,QA) and (PB,QB) define a common equitable

partition it follows that cA,ℓ
i,j = cB,ℓ

i,j for every i ∈ I, j ∈ J and we are done.
(2) ⇒ (3). Assume that A and B have the same iterated degree

sequence. Let P = {Pi | i ∈ I} and Q = {Qj | j ∈ J} be the partition of
A ∪ B and CA ∪ CB induced by the fixed point δA∪B. It is easy to verify
that (P ,Q) defines a common equitable partition.

(3) ⇒ (1). Assume that ({PA
i | i ∈ I}, {QA

j | j ∈ J}) and ({PB
i |

i ∈ I}, {QB
j | j ∈ J}) define a common equitable partition. For ease

of notation it is convenient that matrices M ℓ
A and M ℓ

B are indexed by
the same sets of rows V and columns W , which can be done by fixing a
one-to-one correspondence between A, B, and V and similarly between
CA, CB, and W . Furthermore, the correspondence can be established in
such a way that under this correspondence PA and PB become the same
partition P over V , and QA and QB become the same partition Q over
W .

Define P = ⊕i∈I
1

|Pi|JPi and Q = ⊕j∈J
1

|Qj |JQj . Clearly P and Q are
doubly stochastic. It remains to show that PM ℓ

A = M ℓ
BQ and M ℓ

AQ
T =

P TM ℓ
B for all labels ℓ ∈ Lσ. Now since (P ,Q) is an equitable partition,

9. A Glimpse on the Higher Levels 127

it follows that for every i ∈ I, j ∈ J , and ℓ ∈ Lσ there exist parameters
cℓ

ij and dℓ
ji which satisfy conditions (P1) and (P2).

Then for all i ∈ I, j ∈ J and ℓ ∈ Lσ it holds that

|Pi|cℓ
ij = |Qj |dℓ

ji,

and that the sum of the elements of the respective Pi ×Qj portions of M ℓ
A

and M ℓ
B are equal. Now let b ∈ Pi ∩B and R(a) ∈ Qj ∩ CA. Then

(PM ℓ
A)[b, R(a)] = 1

|Pi|
dℓ

ji = 1
|Qj |

cℓ
ij = (M ℓ

BQ)[b, R(a)],

showing that PM ℓ
A = M ℓ

BQ for all labels ℓ ∈ Lσ as required, and similarly,
noting that P T = P and QT = Q, we obtain that M ℓ

AQ
T = P TM ℓ

B for all
ℓ ∈ Lσ too.

(1) ⇒ (6). Assume that P and Q satisfy (1). We shall prove that P
satisfies (6).

Let R be the unique binary edge relation symbol in σ. We define
two matrices UA, ZA where UA = (M (1,R)

A + M
(2,R)
A)/

√
2 and ZA =

2M (1,R)
A /

√
2. Then we have that NA = UAU

T
A − ZAZ

T
A. We similarly

obtain NB = UBU
T
B − ZBZ

T
B if we define UB and ZB accordingly. Note

that the identities of (1) are still satisfied if we replace M ℓ
A and M ℓ

B by
UA and UB or ZA and ZB respectively.

It then follows that

PUAU
T
A = UBQU

T
A = UBU

T
BP.

and
PZAZ

T
A = ZBQZ

T
A = ZBZ

T
BP.

Therefore, PNA = NBP as required.
(6) ⇒ (3). Let R be the unique binary edge relation symbol in σ. Let

P be a doubly stochastic matrix satisfying PNA = NBP . Since NA and
NB are symmetric it also holds that NAP

T = P TNB. Let P = ⊕i∈IPi

be a decomposition of P and denote by {PA
i | i ∈ I} and {PB

i | i ∈ I}
the column and row partitions of P . Applying the same reasoning as in
(1) ⇒ (3) it follows that for every i, i′ ∈ I, there exists ci,i′ such that for
every D ∈ {A,B} and every d ∈ PD

i

{d′ ∈ PD
i′ | R(d, d′) ∈ CA} = ci,i′

128

It then easily follows that if we let QA, QB be the partitions of CA, CB
respectively given by assigning two edges to the same partition class if the
partition classes of their vertices coincide then (PA,QA) and (PB,QB)
define a common equitable partition of A and B.

The proof of (3) ⇔ (4) requires some more work. We shall use the
following technical lemma.
Claim 9.9. Let n ≥ 1, let X be a family of n-ary vectors of non-negative
real numbers such that for every a,b ∈ X, if the new vector a ·b obtained
by multiplying a and b component-wise is different from 0 then it also
belongs to X. Let SX = {i ∈ [n] | ∀a ∈ X(a[i] ̸= 0)} and DX = {(i, j) |
∃a ∈ X(a[i] ̸= a[j])}. Then

1. There exists a ∈ X such that a[i] = 0 for every i ̸∈ SX and a[i] ̸= a[j]
for every (i, j) ∈ DX ∩ (SX × SX).

2. Furthermore if DX contains all non reflexive pairs in [n] × [n] then
X contains n linearly independent vectors.

Proof of Claim 9.9. (1). We shall prove that for every subset Y of X there
exists an assignment satisfying (1) replacing SX by SY and DX ∩(SX ×SX)
by DY ∩ (SY × SY). The proof is by induction on |Y |. The base case
when Y only contains a single vector is trivial. For the inductive case, let
Y = Z ∪ {b} and let a be the tuple satisfying the claim for Z. It follows
immediately that, for d > 0 large enough, (a)d · (b) satisfies the claim for
Y .

(2). The proof is by induction on n. The base case is when SX = [n].
In this case, let a ∈ X be the tuple given by item (1). It follows immedi-
ately that the matrix A with rows (a)1, (a)2, . . . , (a)n is non-singular as a
Vandermonde matrix (see Figure 9.2) can be easily obtained if we multiply
column i by 1/a[i], for every i ∈ [n].

For the inductive case, we can assume that SX ̸= [n]. Pick a vector
y ∈ X where the set I = Iy defined as Iy := {i ∈ [n] | y[i] ̸= 0} is
non-empty and as small as possible. Note that I ̸= [n] since SX ̸= [n].
Let

Y := {a ∈ X | ∀i ∈ I(a[i] ̸= 0)}.
Note that SY ⊆ I since y ∈ Y and I ⊆ SY by the minimality of Y . Also,
DY contains all irreflexive pairs in I× I. Indeed, for every such pair (i, j),

9. A Glimpse on the Higher Levels 129

1 1 1 · · · 1
a1 a2 a3 · · · am

a2
1 a2

2 a2
3 · · · a2

m
...

...
...

an−1
1 an−1

2 an−1
3 · · ·an−1

m

Figure 9.2: The shape of a Vandermonde matrix. Notice that in our case
n = m.

let b be the tuple in X witnessing (i, j). Clearly b[i] ̸= 0 or b[j] ̸= 0. It
follows that b ∈ Y , since otherwise Iy·b would be strictly smaller than I
yet non-empty.

Now, let z be the tuple obtained by applying item (1) to Y .
Consider the set Z defined as

Z := {a ∈ Y | ∀i ̸∈ I(a[i] = 0)}

Note that z ∈ Z and z[i] ̸= z[j] for every i ̸= j ∈ I. Then by the inductive
hypothesis,

πIZ := {πIa | a ∈ Z}

has |I| independent vectors πIa1 . . . , πIa|I|. Also, note that Dπ
I
X has

all irreflexive pairs in I × I and, hence, by the inductive hypothesis πIX
has n − |I| independent vectors πIa|I|+1, . . . , πIan. It follows easily that
a1 . . . ,an are linearly independent. ■

It will be convenient to endow a structure D with designated elements
and constraints. That is, given d1, . . . , dn where di ∈ D ∪ CD we shall use
(D, d1, . . . , dn) to denote the structure obtained from D where d1, . . . , dn

have been designated. Homomorphisms are extended in a natural way to
this more general setting. That is, a homomorphism from (D, d1, . . . , dn)
to (E, e1, . . . , en) is any homomorphism h from D to E such that, addi-
tionally, h(di) = ei for all i ∈ [n] where if di is a constraint, say, di = R(d)
then h(di) is defined to be the constraint R(h(d)). Similarly, we shall de-
note the number of homomorphisms from (D, d1, . . . , dn) to (E, e1, . . . , en)
by hom(D, d1, . . . , dn; E, e1, . . . , en). A rooted ftree is any structure (T, t)
where T is an ftree and t ∈ T .

130

The following definitions, although somewhat technical, will be used a
few times. Assume that we want to compute hom(T, t, R(t); D, d, R′(d))
where t ∈ T and d ∈ D. We say that (t, R(t)) can be mapped to (d,R′(d))
if the following conditions hold:

1. R = R′, and

2. for every s, s′ ∈ [ar(R)], t[s] = t[s′] implies d[s] = d[s′], and

3. for every s ∈ [ar(R)], t[s] = t implies d[s] = d.

Alternatively, (t, R(t)) can be mapped to (d,R′(d)) if R = R′ and there is
a mapping h : {t} ∪ {t} → {d} ∪ {d} such that h(t) = d and h(t) = d.

Assume that, additionally, T is an ftree. Let Tm, m ∈ M be the
collection of all maximal subftrees of T satisfying the following conditions:

1. Tm does not contain R(t)

2. Every Tm contains an element tm in {t} (which by condition (1)
must be unique) and, additionally, tm participates in only one con-
straint in Tm.

Alternatively, we can regard collection Tm,m ∈ M as constructed in two
stages from T as follows. In a first stage, we remove constraint R(t) from
T obtaining a collection of ftrees satisfying condition (1). Note that each
one of the ftrees X obtained in this way contains a unique element x in
{t} but x might appear in several constraints C1, . . . , Cr of X. Then, X is
further divided in r ftrees X1, . . . ,Xr in the following way: Xi, i ∈ [r] is
the substructure of X induced by all the elements that are still connected
to x if we remove constraints C1, . . . , Ci−1, Ci+1, . . . , Cr.

Then, we define T \ R(t) to be the collection (Tm, tm), m ∈ M of
rooted ftrees obtained in this way. The following claim is immediate.
Claim 9.10. Assume that t ∈ R(t). Then, hom(T, t, R(t); D, d, R′(d)) = 0
if (t, R(t)) cannot be mapped to (d,R′(d)). Otherwise,

hom(T, t, R(t); D, d, R′(d)) =
∏

m∈M

hom(Tm, tm; D,d[sm])

where sm ∈ [ar(R)] is such that tm = t[sm].

9. A Glimpse on the Higher Levels 131

Then we have the following lemmas:

Lemma 9.11. Let D be a σ-structure and let (P ,Q) = ({Pi | i ∈ I}, {Qj |
j ∈ J}) be an equitable partition of D. Then, for every d1, d2 in the same
P-class and every rooted ftree (T, t), hom(T, t; D, d1) = hom(T, t; D, d2).

Proof. The proof follows easily by induction on the number of constraints
of T. Assume that T contains no constraints. In this case T consists
only of node t and the claim is immediate. Otherwise, let R(t) be any
constraint in T containing t and let (Tm, t[sm]), m ∈ M be T \R(t).

For every constraint C ∈ CD and every d ∈ D we shall use nd,C to
denote hom(T, t, R(t); D, d, C). We claim that for every two constraints
C1, C2 in the same Q-class satisfying MD[d1, C1] = MD[d2, C2] we have
nd1,C1 = nd2,C2 .

Let C1 = R1(d1) and C2 = R2(d2). Note that since MD[d1, C1] =
MD[d2, C2] we can assume that C1 and C2 share the same relation symbol.
Let us do a case analysis using Claim 9.10:

• If (t, R(t)) does not map to (d1, R1(d1)) then nd1,C1 = 0. Since
C2 belongs to the same Q-class and MD[d1, C1] = MD[d2, C2] it
follows that (t, R(t)) does not map to (d2, R2(d2)) either, and hence
nd2,C2 = 0.

• Otherwise ndq ,Cq = ∏
m∈M hom(Tm, tm; D,dq[sm]) (q = 1, 2). Since

C1 and C2 belong to the same Q-class, it follows that d1[s] and d2[s]
belong to the same P-class for every s ∈ [ar(R)]. It then follows by
induction that nd1,C1 = nd2,C2 .

Then, for every i ∈ I, j ∈ J , and ℓ ∈ Lσ there exists some unique nℓ
i,j

such that nd,C = nℓ
i,j for every d ∈ Pi and every C ∈ Qj with MD[d,C] =

ℓ. Let Pi be the P-class of d1 and d2. To finalize the proof it is enough
to see that for every q ∈ {1, 2},

hom(T, t; D, dq) =
∑

C∈CD

hom(T, t, R(t); D, dq, C) =
∑

C∈CD

ndq ,C =
∑

j∈J,ℓ∈Lσ

nℓ
i,jc

ℓ
i,j

where cℓ
i,j is as in condition (P1) of equitable partition. Hence, in the

previous expression we use that cℓ
i,j = |{C ∈ Qj | MD[dq, C] = ℓ}| for

q ∈ {1, 2}.

132

Lemma 9.12. Let D be a σ-structure, let (P ,Q) = ({Pi | i ∈ I}, {Qj |
j ∈ J}) defined as follows:

1. P is the partition of D that places two elements d1, d2 in the same
class if hom(T, t; D, d1) = hom(T, t; D, d2) for every rooted ftree
(T, t);

2. Q is the partition of CD that places two constraints R1(d1), R2(d2)
in the same class if the following conditions hold:

• R1 = R2, and
• for every s, s′ ∈ [ar(R1)], d1[s] = d1[s′] iff d2[s] = d2[s′], and
• for every s ∈ [ar(R1)], d1[s] and d2[s] belong to the same P-

class.

Then (P ,Q) is an equitable partition.

Proof. We only need to prove that for every i ∈ I, every j ∈ J , and
every ℓ ∈ Lσ there exists cℓ

i,j such that cℓ
d,j = cℓ

i,j for every d ∈ Pi, where
cℓ

d,j = |{C ∈ Qj | MD[d,C] = ℓ}| (since the other condition of equitable
partition follows immediately from the definition of (P ,Q)).

Let Z be the set of all (T, t, R(t)) where T is an ftree, R(t) ∈ CT, and
t ∈ {t}.

We shall start by proving that for every i ∈ I, j ∈ J , ℓ ∈ Lσ, and
z ∈ Z, there exists nz,ℓ

i,j such that nz
d,C = nz,ℓ

i,j for every d ∈ Pi and every
C ∈ Qj , where nz

d,C is defined to be hom(T, t, R(t); D, d, C). That is, we
want to prove the following claim.
Claim 9.13. For every d1, d2 inside the same class Pi and every C1, C2
inside the same class Qj such that MD[d1, C1] = MD[d2, C2] we have
nz

d1,C1
= nz

d2,C2
.

Proof of Claim 9.13. Again, let us do a case analysis using Claim 9.10:

• If (t, R(t)) cannot be mapped to (d1, C1) then since C2 belongs to
the same Q-class as C1 and MD[d1, C1] = MD[d2, C2] it follows
that (t, R(t)) cannot be mapped to (d2, C2) either. Then, we have
nz

d1,C1
= nz

d2,C2
= 0.

9. A Glimpse on the Higher Levels 133

• Assume that we are not in the previous case. Let C1 = R(d1) and
C2 = R(d2) and let (Tm, t[sm]), m ∈ M be T\R(t). Then, we have
that for every q ∈ {1, 2} nz

dq ,Cq
= ∏

m∈M hom(Tm, t[sm]; D,dq[sm]).
Since C1 and C2 belong to the same Q-class, it follows that d1[s]
and d2[s] belong to the same P-class for every s ∈ [ar(R)]. It then
follows from the definition of (P ,Q) that nz

d1,C1
= nz

d2,C2
.

■

Then for every i ∈ I and every d ∈ Pi we have

hom(T, t; D, d) =
∑

C∈CD

hom(T, t, R(t); D, d, C)

=
∑

j∈J,ℓ∈Lσ

nz,ℓ
i,j c

ℓ
d,j =

∑
(j,ℓ)∈Ki

nz,ℓ
i,j c

ℓ
d,j (9.2)

where Ki = {(j, ℓ) ∈ J × Lσ | nz,ℓ
i,j ̸= 0 for some z ∈ Z}. The following is

immediate.
Claim 9.14. Let i ∈ I and d ∈ Pi. For every (j, ℓ) ∈ J × Lσ, (j, ℓ) ∈ Ki iff
there exists a constraint C = R′(d) in Qj with MD[d,C] = ℓ and d ∈ {d}.

In what remains of the proof i is any arbitrary element of I. Then, it
follows from Claim 9.14 that if (j, ℓ) ̸∈ Ki we can safely set cℓ

i,j = 0. It
now remains to show the existence of cℓ

i,j for every (j, ℓ) ∈ Ki. To this
end we only need to observe that (9.2) holds for every z ∈ Z and invoke
Claim 9.9(2) to conclude that cd1,ℓ

i,j = cd2,ℓ
i,j for every j ∈ J ,ℓ ∈ Lσ and

every d1, d2 ∈ Pi.
However, we need first to guarantee that the hypothesis of the claim

are met. First, we prove the following:
Claim 9.15. Let (j1, ℓ1), (j2, ℓ2) be different elements in Ki. Then, there
exists z ∈ Z such that nz,ℓ1

i,j1
̸= nz,ℓ2

i,j2
.

Proof of Claim 9.15. Let d ∈ Pi, and let Cq = Rq(dq), q ∈ {1, 2} be
a constraint in Qjq with MD[d,Cq] = ℓq such that d ∈ {dq}. If (d,C1)
cannot be mapped to (d,C2) then we just need to set z to be (T, d, C1)
where T is the ftree with universe {d1} containing only constraint C1. A
similar construction takes care of the case when (d,C2) cannot be mapped
to (d,C1). Hence, we are left with the case in which each of (d,C1), (d,C2)

134

can be mapped to each other, that is, where (d,C1), (d,C2) are identical
modulo renaming the elements. This implies that ℓ1 = ℓ2 and, hence,
j1 ̸= j2, which implies that that there exists s ∈ [ar(R1)] such that
d1[s] and d2[s] belong to a different P-class. Consequently, by the def-
inition of (P ,Q) we have that hom(T, t; D,d1[s]) ̸= hom(T, t; D,d2[s])
for some rooted ftree (T, t). Now, let z = (X, d, R1(d1)) where X is
the ftree obtained by adding constraint R1(d1) to T (we can assume,
renaming variables if necessary that T does not contain any element in
{d1}) and identifying t with d1[s]. It follows immediately that nz,ℓq

i,jq
=

hom(X, d, R1(d1); D, d, Rq(dq)) = hom(T, t; D,dq[s]) and we are done. ■

Denote by nz the Ki-vector with entries nz,ℓ
i,j , (j, ℓ) ∈ Ki.

Claim 9.16. Let zq = (Tq, tq, Rq(tq)) ∈ Z, q = 1, 2 such that nz1 ·nz2 ̸= 0.
Then there exists z ∈ Z such that nz = nz1 · nz2

Proof of Claim 9.16. Clearly if R1 ̸= R2 then nz1,ℓ
i,j · nz2,ℓ

i,j = 0 for every
(j, ℓ) ∈ Ki and nothing needs to be done. Otherwise, let z = (T, t, R(t))
where T is obtained by first computing the disjoint union of T1 and T2
and then, for every s ∈ [ar(R)], merging t1[s] and t2[s] into a single node,
as well as identifying t1 and t2 into a single element t. Note that after
the identification R1(t1) and R2(t2) become the same constraint, which
we denote by R(t).

It only remains to see that nz1,ℓ
i,j · nz2,ℓ

i,j = nz,ℓ
i,j for every (j, ℓ) ∈ Ki. Let

d ∈ Pi, and let C ∈ Qj be such that ℓ = MD[d,C]. Clearly, if (t1, R(t1))
cannot be mapped to (d,C) then nz1,ℓ

i,j = 0. Note that in this case (t, R(t))
cannot be mapped to (d,C) either, and hence nz,ℓ

i,j = 0 as desired. A similar
reasoning applies if (t2, R(t2)) cannot be mapped to (d,C) and, hence, we
only need to deal with the case in which both (t1, R(t1)) and (t2, R(t2))
can be mapped to (d,C). In this case it follows that (t, R(t)) can be
mapped to (d,C). Let (Tm, t[sm]), m ∈ M be T\R(t) and let C = R(d).
Then

nz
d,C = hom(T, t, R(t); D, d, R(d)) =

∏
m∈M

hom(Tm, t[sm]; D,d[sm])

Note that M can be partitioned in two sets M1,M2 such that for every
q ∈ {1, 2} Tq \R(tq) is precisely (Tm, t[sm]), m ∈ Mq.

9. A Glimpse on the Higher Levels 135

It follows that
nz,ℓ

i,j = nz
d,C =

∏
m∈M

hom(Tm, t[sm]; D,d[sm])

=
∏

m∈M1

hom(Tm, t[sm]; D,d[sm] ·
∏

m∈M2

hom(Tm, t[sm]; D,d[sm])

= hom(T1, t1, R(t1); D, d, R(d)) · hom(T2, t2, R(t2); D, d, R(d))
= nz1

d,C · nz2
d,C = nz1,ℓ

i,j · nz2,ℓ
i,j

as desired. ■

We are finally ready to give a proof of the equivalence of (3) and (4).
(3) ⇒ (4). Let D denote the disjoint union of A and B, let ({Pi | i ∈

I}, {Qj | j ∈ J}) be an equitable partition of D witnessing that A and B
have a common equitable partition, and let T be an ftree and t ∈ T . It
follows from Lemma 9.11 that for every i ∈ I there is a value ni such that
for every d ∈ Pi, hom(T, t; D, d) = ni.

Then, for every E ∈ {A,B},
hom(T; E) =

∑
e∈E

hom(T, t; E, e) =
∑
i∈I

ni · pE
i

where pE
i = |Pi ∩ E|. Since (P ,Q) is an equitable partition of A ∪ B, it

follows that pA
i = pB

i for every i ∈ I and we are done.
(4) ⇒ (3). Let D be the disjoint union of A and B and let (P ,Q) =

({Pi | i ∈ I}, {Qj | j ∈ J}) be the partition of D defined as in Lemma
9.12. We first show that pA

i = pB
i for every i ∈ I, where pE

i = |Pi ∩E| for
E ∈ {A,B}.

Let z = (T, t) be any rooted ftree. Note that from the definition of
(P ,Q) it follows that for every i ∈ I there exists nz

i such that nz
i =

hom(T, t; D, d) for every d ∈ Pi. Consequently, for E ∈ {A,B} we have:

hom(T; E) =
∑
e∈E

hom(T, t; E, e) =
∑
i∈I

nz
i · pE

i

Since the previous identity holds for every rooted ftree z, it is only
necessary to invoke Claim 9.9 to conclude that pA

i = pB
i for every i ∈ I.

However, we must first verify that the conditions of Claim 9.9 are satisfied.

136

First, we need to show that for every i ̸= i′ ∈ I, there exists a rooted
ftree z such that nz

i ̸= nz
i′ . This follows immediately from the definition

of P . Secondly, we need to show that for every pair of rooted ftrees
z1 = (T1, t1), z2 = (T2, t2), there exists a rooted ftree z = (T, t) such that
nz

i = nz1
i · nz2

i . Indeed, it is easy to verify that the condition is satisfied if
we let T be the rooted ftree obtained by merging t1 and t2 into a single
node t in the disjoint union of T1 and T2.

9.5 Proof of Theorem 9.7

Theorem 9.7. Let r be the maximum arity among all relations in σ and
assume that r ≤ k. Then for every pair of structures A, B the following
are equivalent:

1. A ≡k B;

2. hom(X; A) = hom(X; B) for every σ-structure X of treewidth < k;

3. A and B satisfy the same formulae in the logic C k.

For the equivalence of (1) and (2), we use Theorem 5.4. In particular,
we have that for a pair of σ-structures A and B, A∗

k ≡1 B∗
k if and only if

hom(T; A∗
k) = hom(T; B∗

k) for every σ∗
k-ftree T. So to show that (1) ⇔ (2)

it only remains to prove the following.
Claim 9.17. Assume that r ≤ k. Then the following are equivalent:

2. hom(X; A) = hom(X; B) for every σ-structure X of treewidth < k;

4. hom(T; A∗
k) = hom(T; B∗

k) for every σ∗
k-ftree T.

Proof of Claim 9.17. 2 ⇒ 4. Let T be a σ∗
k-ftree. It follows immediately

that if 2 holds then both A and B must have the same number of elements
and constraints. It then follows that 4 holds for T if T consists of a single
element and no constraints at all. Consequently we can safely assume that
all elements in T participate in at least one constraint.

In what follows D∗
k ∈ {A∗

k,B∗
k}. Let t be any node in T . Since t

participates in a constraint it follows that the possible image of t under a

9. A Glimpse on the Higher Levels 137

homomorphism from T is heavily restricted. In particular, if the image of
t according to some homomorphism from T to D∗

k is in Dj for some j ≤ k
then necessarily the image of t under any homomorphism from T to any
structure C∗

k ∈ {A∗
k,B∗

k} must be in Cj . This means that we can safely
add constraint Tj,∅(t) to T without altering hom(T; A∗

k) or hom(T; B∗
k).

Likewise, if some homomorphism from T to a structure D∗
k maps t to

a constraint R(d), then we can assume that constraint R∅(t) belongs to
T.

To complete the proof we shall show that it is always possible to con-
struct from T a σ-structure X of treewidth < k such that hom(T; D∗

k) =
hom(X; D). It is convenient to construct X in two stages. First, let us
construct a σ-structure Y (not necessarily of treewidth < k) satisfying
that hom(T; D∗

k) = hom(Y; D). We shall allow to use equalities in Y,
i.e., constraints of the form y1 = y2, indicating that y1 and y2 must be
assigned to the same element in D.

We shall define Y along with a function α mapping every element t of
T to a j-ary tuple of elements in Y (j ≤ k) inductively on the number of
elements of T as follows.

Assume (base case) that T contains a unique element t. As discussed
above we can assume that T contains constraint Tj,∅(t) for some j ≤ k
or R∅(t) for some R ∈ σ. In the first case, we set the universe of Y to
contain j new elements y1, . . . , yj . Furthermore, for every unary constraint
Tj,S(t) in T and every i, i′ ∈ S, we include in Y the equality yi = yi′ , and
we define α(t) = (y1, . . . , yj). In the second case, we set the universe of
Y to contain ar(R) new elements y1 . . . , yar(R) and we include in Y the
constraint R(y1, ..., yar(R)). Similarly to the previous case, for every unary
constraint RS(t) in T and every i, i′ ∈ S, we include in Y the equality
yi = yi′ . Finally, we set α(t) = (y1, . . . , yar(R)).

Let us consider now the inductive case. Let t1 and t2 be nodes that
participate in a binary constraint U(t1, t2) (recall that U is either Tj,i or
Ri) in T. By removing this constraint T gets divided in two ftrees T1
and T2 such that T1 contains t1 and T2 contains t2. Now, assume that
Yi and αi are already constructed for Ti, i = 1, 2. We are ready to define
Y. First, we compute the disjoint union of Y1 and Y2. Then, we add
some further equalities depending on constraint U(t1, t2). Consider first
the case that U = Tj1,i, i = (i1, . . . , ij2) ∈ [j1]j2 for some j1, j2 ≤ k and

138

let αi(ti) = (yi
1, . . . , y

i
ji

), i = 1, 2. Then, for every ℓ ≤ j2 we add the
equality y2

ℓ = y1
iℓ

. Finally, for every t ∈ T we define α(t) to be αi(t)
where Ti contains t. The procedure is identical for U = Ri, where we just
substitute j1 by ar(R). It follows immediately from the definition that
hom(Y; D) = hom(T; D∗

k).
Finally, let us define X to be the structure obtained by identifying

(i.e, merging into a single element) all elements in Y joined by a chain of
equalities. It is immediate that hom(Y; D) = hom(X; D).

We shall conclude by giving a tree-decomposition (G, β) of X of width
< k. In particular, let G be the tree where the vertex set is precisely the
universe of T and two different nodes are adjacent if both participate in
some common constraint in T and let β(t) = {α(t)}.

4 ⇒ 2. Let X be a σ-structure of treewidth < k and let D ∈ {A,B}.
We note here that we can assume that X is connected since if X is the
disjoint union of structures X1 and X2 then hom(X; D) = hom(X1; D) ·
hom(X2; D). We shall show that there exists a σ∗

k-ftree T such that
hom(T; D∗

k) = hom(X; D). Let (G, β) be a tree-decomposition of width
at most k of X. It is well-known and easy to prove that, since X is con-
nected, we can always construct (G, β) in such a way that for every pair
u, v of adjacent nodes in G, β(u) ⊆ β(v) or β(v) ⊆ β(u). Furthermore, it
is easy to see that we can further enforce that for every constraint R(x)
in X there exists a node v ∈ G such that β(v) = {x}.

The universe T of T is V ∪ CX where V is the node-set of G. Further-
more T contains the following constraints.

Let us start with the unary constraints. Let t be an element in T. If
t = v ∈ G then we include in T a constraint Tjv ,∅(t) where jv = |β(v)|.
Otherwise, if t = R(x) ∈ CX then we include in T all constraints R{i,i′}(t)
where x[i] = x[i′].

Now, let us turn our attention to the binary constraints. Fix some
arbitrary ordering on X and for every v ∈ V let xv = (xv

1, . . . , x
v
jv

) be an
array containing the nodes in β(v) following this fixed order.

Then, for every edge (u, v) in G include constraint Tju,i(u, v) where
i = (i1, . . . , ijv) is defined as follows. First, we assume without loss of
generality that β(v) ⊆ β(u). Then, for every ℓ ≤ jv, iℓ is defined to be
such that xu[iℓ] = xv[ℓ].

9. A Glimpse on the Higher Levels 139

Finally, for every constraint t = R(x) in X we pick some element
v ∈ V satisfying {x} = β(v) and we add the constraint Ri(t, v) with
i = (i1, . . . , ijv) where iℓ satisfies x[iℓ] = xv[ℓ]. It is immediate to see that
T is an ftree and that hom(X; D) = hom(T; D∗

k) ■

For the equivalence of (1) and (3) , we will need to introduce a simple
combinatorial game that will help us characterize equivalence in counting
logic.

The bijective k-pebble game is played by two players, Spoiler and
Duplicator, by placing k pairs of pebbles on a pair of structures A, B
of the same size. We shall denote each pair of pebbles by (xi, yi), where xi

belongs to Spoiler and yi belongs to Duplicator. At every round, Spoiler
picks up a pebble xi, and Duplicator picks up the corresponding pebble yi.
At this point, Duplicator chooses a bijection f between A and B. Then,
Spoiler places a pebble xi on an element a ∈ A, and Duplicator must place
the corresponding pebble yi on f(a) ∈ B.

Duplicator wins a round of the bijective k-pebble game if the partial
map defined by xi 7→ yi (i.e., where the element of A under pebble xi is
mapped to the element of B under pebble yi) is a partial isomorphism
between A and B. Otherwise, Spoiler wins the round. We say that
Duplicator has a winning strategy for the bijective k-pebble game if she
has a strategy to win every round of the game (note that the game has
infinitely many rounds).

More formally, for a j-tuple d = (d1, . . . , dj), an element d, and i ∈
[j+1], define di

d = (d1, . . . , di−1, d, di, . . . , dj). Additionally, for j ∈ [k] and
i ∈ [j], define i(j, i) = (1, . . . , i− 1, i+ 1, . . . , j). Then, a winning strategy
for the bijective k-pebble game is a non-empty set W ⊆ ∪0≤j≤k(Aj ×Bj)
such that, for every a = (a1, . . . , aj) and b = (b1, . . . , bj) with (a,b) ∈ W ,
the following conditions hold:

1. The partial map given by ai 7→ bi, i ∈ [j] is a partial isomorphism
between A and B;

2. If j ≥ 1, then (πi(j,i)a, πi(j,i)b) ∈ W for every i ∈ [j];

3. If j < k, there exists a bijection f : A → B such that (ai
a,bi

f(a)) ∈ W
for every a ∈ A and every i ∈ [j + 1].

140

Before continuing, we remark that when we talk about a partial isomor-
phism, we mean an isomorphism between the vertex-induced substructures
of A and B on the universes defined by the pebble sets. In particular then,
any relation of arity larger than k would not be accounted for by a par-
tial isomorphism between substructures of size at most k, hence why we
restrict our scope to structures with relations of smaller arity.

We have the following theorem of Hella (see also [GO15, ADW17]).

Theorem 9.18 ([Hel96]). A and B satisfy the same formulae in the logic
C k if and only if Duplicator has a winning strategy for the bijective k-
pebble game on A, B.

Therefore, in order to prove (1) ⇔ (3) in Theorem 9.7, it is sufficient
to show that the following claim holds.
Claim 9.19. Assume that r ≤ k. Then the following are equivalent:

1. A ≡k B;

5. Duplicator has a winning strategy for the bijective k-pebble game
on A, B.

Proof of Claim 9.19. In what follows, we will assume without loss of
generality that A and B are disjoint, so when we talk about the union of
A and B, we will always mean the disjoint union.

(1) ⇒ (5). It will be convenient to assume that A∗
k and B∗

k additionally
include a tuple of null arity each (this will correspond to the configuration
where no pebbles are placed yet). Let (P ,Q) be an equitable partition of
A∗

k ∪ B∗
k. A winning strategy W for Duplicator can be obtained as the set

of all pairs (a,b) ∈ A∗
k × B∗

k such that a and b belong to the same class
of P .

To see that W is a winning strategy, first observe that, by the definition
of the transformation ∗k, any two tuples of A∗

k ∪ B∗
k in the same partition

class of P must have the same isomorphism type in the original structure
A ∪ B. It follows that for all elements (a,b) ∈ W , the map ai 7→ bi is a
partial isomorphism from A to B, hence W satisfies condition (1).

Second, it is easy to see that W satisfies condition (2), since for each
j ∈ [k] and each d ∈ Aj ∪Bj , d has a unique out-neighbour of type Tj,i(j,i),

9. A Glimpse on the Higher Levels 141

which is precisely πi(j,i)d. Therefore, for every (a,b) ∈ W , πi(j,i)a and
πi(j,i)b must belong to the same class of P and hence (πi(j,i)a, πi(j,i)b) ∈
W .

Finally, to see that W satisfies condition (3), for each (a,b) ∈ W of
arity j < k we need to find a bijection f : A → B in such a way that for
every a ∈ A and every i ∈ [j + 1], the tuples ai

a and bi
f(a) belong to the

same partition class of P . Since a and b belong to the same class of P and
(P ,Q) is equitable, there is a one-to-one correspondence that respects the
partition between the constraints that a and b participate in; in particular,
this holds for the constraints of type Tj+1,i(j+1,i). Since for each a ∈ A and
b ∈ B, Tj+1,i(j+1,i)(ai

a,a) ∈ CA∗
k

and Tj+1,i(j+1,i)(bi
b,b) ∈ CB∗

k
, there is a

one-to-one partition-preserving correspondence between tuples ai
a ∈ Aj+1,

bi
b ∈ Bj+1 that induces an appropriate bijection between A and B. In

particular, the unary constraints of A∗
k, B∗

k of the form Tj+1,S , S ⊆ [j+ 1]
imply that f(ai) = bi for each i ∈ [j].

(5) ⇒ (1). We begin with the simple observation that, since ar(R) ≤
k for all R ∈ σ, the transformation ∗k can be substantially simplified
without its basic properties being affected (particularly, Lemma 9.4 and
the definition of ≡k remain unchanged). Specifically, this simplification
consists of the following changes:

1. For each R ∈ σ, identify R(a) with a, so the universe of A∗
k is just

∪j≤kA
j ;

2. Remove from σ∗
k all binary relation symbols of the form Ri (since

for all i ∈ [ar(R)]j and all a ∈ RA, Ri(a, πia) is equivalent to
Tar(R),i(a, πia) ∧R∅(a));

3. Remove from σ∗
k all unary relation symbols of the form RS for all

S ̸= ∅ (since for all S ⊆ [ar(R)] and all a ∈ RA, RS(a) = Tar(R),S(a)∧
R∅(a));

4. Remove from σ∗
k all binary relation symbols of the form Tj,i whenever

|[j] \ {i}| > 1. This is because, if |[j] \ {i}| > 1, then there exists
a sequence i1 ∈ [j0]j1 , i2 ∈ [j1]j2 , . . . , im ∈ [jm−1]jm with j0 =
j and m ≥ 2 such that |[ji−1] \ {ii}| ≤ 1 for each i ∈ [m], and

142

a0

b0

a1

a1

. . .

. . .

an

an

Figure 9.3: A representation of the closure of W under a chain of length
2n + 1 in W . Pairs in W are represented as solid black arrows and the
added pairs in W are represented as dashed red arrows.

πim . . . πi2πi1 = πi. Then, we have that

Tj,i(a, πia) = Tj,i1(a, πi1a) ∧ Tj1,i2(πi1a, πi2πi1a) ∧ . . .

. . . ∧ Tjm−1,im(πim−1 . . . πi1a, πimπim−1 . . . πi1a).

We are now in the position to prove the backwards direction of Claim 9.19.
Assume that Duplicator has a winning strategy for the bijective k-

pebble game. We need to find an equitable partition of A∗
k ∪ B∗

k such that
each class of the partition has the same number of elements from A∗

k and
from B∗

k. Since A∗
k ∪ B∗

k is a (vertex- and edge-coloured) digraph, it is
enough to define a partition P = {Pi | i ∈ I} of A∗

k ∪ B∗
k where any two

elements in the same partition class of P are subject to the same unary
constraints, and have the same number of in- and out-neighbours in any
other class of P connected by an edge of any given colour.

Let W be a winning strategy for Duplicator. We define the set W to
contain precisely all the pairs (a,b) ∈ ∪j≤kA

j × Bj such that there exist
a0,a1, . . . ,an ∈ Aj and b0,b1, . . . ,bn ∈ Bj such that a0 = a, bn = b,
(a0,b0) ∈ W , and for each i ∈ [n], the pairs (ai,bi−1) and (ai,bi) both
belong to W . That is, we think of W as the closure of W under odd chains
(see Figure 9.3).

We shall show that W is also a winning strategy for the bijective k-
pebble game over A, B. Conditions (1) and (2) are easily verified by
using the corresponding conditions for W , plus the fact that isomorphisms
compose. For (3), let (a,b) ∈ W have arity j and let a0,b0, . . . ,an,bn

be the odd chain witnessing this. Let fi,i, fi+1,i be the bijections given
by condition (3) of W for (ai,bi), (ai+1,bi) respectively. We claim that

9. A Glimpse on the Higher Levels 143

f := fn,n ◦ f−1
n,n−1 ◦ . . . ◦ f1,1 ◦ f−1

1,0 ◦ f0,0 witnesses that (3) is satisfied for
(a0,bn) = (a,b) in W . Recall that for a j-tuple d, an element d, and
l ∈ [j + 1], we denote by dl

d the tuple obtained from d by adding d to d
before the lth coordinate. By condition (3) for W , we have that for every
l ∈ [j], every i = 0, . . . , n, and every αi ∈ A,

((ai)l
αi
, (bi)l

fi,i(αi)) ∈ W,

and similarly for every l ∈ [j], every i = 0, . . . , n− 1, and every βi ∈ A,

((ai+1)l
f−1

i+1,i(βi)
, (bi)l

βi
) ∈ W.

Therefore, if for i = 0, . . . , n− 1 we choose

βi = fi,i(αi), αi+1 = f−1
i+1,i(βi)

we get that for every choice of α0 ∈ A, ((a)l
α0 , (b)l

f(α0)) ∈ W as required.
Hence, W is a winning strategy.

The partition P of A∗
k ∪ B∗

k is defined by the transitive closure of W .
That is, a ∈ Aj and b ∈ Bj are in the same set of P if (a,b) ∈ W ; any
two a,a′ ∈ Aj are in the same set of P if there exists some b such that
(a,b), (a′,b) ∈ W ; and similarly for any two b,b′ ∈ Bj . In particular,
there is a partial isomorphism between any two tuples d,d′ in the same
class of P . Recall that, from item (1) in the observation above, we do not
need to worry about defining a partition of CA ∪ CB.

Since Duplicator has a winning strategy for the game on A, B, and
since the game is completely symmetric (i.e., Duplicator would still win if
we inverted A and B so that Spoiler places pebbles on B and Duplicator
on A), it is easy to see that the condition |Pl∩A∗

k| = |Pl∩B∗
k| is satisfied for

each class Pl of the partition. It remains to show that the P is equitable.
It is easily seen that any two tuples in the same class of P are subject to

the same unary constraints. In particular, if there is a partial isomorphism
between d and d′, then they are subject to the same relations in A ∪ B
(accounting for unary constraints of the type R∅, R ∈ σ) and they have
the same repetition structure (accounting for unary constraints of the type
Tj,S for j ≤ k, S ⊆ [j]).

Now we are left to deal with the binary constraints of type Tj,i for
j, j′ ≤ k and i ∈ [j]j′ . It is easy to see that any two tuples of arity j in

144

the same class of P have the same number of outgoing edges of type Tj,i
that are incident to each other class of P , since for any j, j′ ∈ k, any two
isomorphic tuples d,d′ ∈ Aj ∪ Bj , and any i ∈ [j]j′ , πid and πid′ will
still be isomorphic (equivalently, any winning strategy for the bijective
k-pebble game is trivially closed under removing pairs of pebbles, under
adding pairs of pebbles on already pebbled elements, and under permuting
pairs of pebbles).

Finally, let us deal with the incoming edges of type Tj,i. For simplicity,
let us start by considering two elements of the same class of P belonging
to different structures A, B. That is, let a ∈ Aj′ , b ∈ Bj′ for some j′ ≤ k,
(a,b) ∈ W , and let j ≤ k and i ∈ [j]j′ . For each partition class Pl of P ,
we need to show that a and b have the same number of incoming edges
labelled Tj,i from Pl.

Notice that, if {i} = [j], then there is nothing to prove (since as we
pointed out above, the winning strategy is trivially closed under adding
pebbles on already pebbled elements and permuting pairs of pebbles),
so we may assume that {i} ⊊ [j], and for the same reasons, we may
assume that i has no repetitions and that its entries are in increasing
order. Moreover, from item (4) above, we have that |[j] \ {i}| = 1. All
together then we may assume that j′ = j − 1 and i = i(j, i) for some
i ∈ [j]. Therefore, for any j′-tuple d, πidi

d = d.
Since (a,b) ∈ W , there exists a bijection f : A → B such that, for

each a ∈ A, (ai
a,bi

f(a)) ∈ W . Hence, for each a ∈ A, ai
a and bi

f(a) belong
to the same class of P . By the definition of Tj,i, this means that a and b
have the same number of incoming edges labelled Tj,i from each class of
P .

Now we still need to check that this condition holds for any two ele-
ments of the same class of P that belong to the same structure, say A.
But this is immediate since if a,a′ ∈ Aj′ belong to the same class of P ,
then there exists b ∈ Bj′ such that (a,b) and (a′,b) belong to W , and
since both a and b and a′ and b have the same number of incoming edges
labelled Tj,i from each class of P , the same must hold for a and a′. It
follows that P is equitable. ■

10 Conclusion

In this section we lay out some of the open questions that arise from this
work.

In Chapter 6, we analysed the complexity of the fixed-template dis-
tributed constraint satisfaction problem on a synchronous, anonymous
network. We gave a dichotomy theorem for the complexity of DCSP(A)
in terms of the polymorphisms of A. A number of natural open questions
arise in this context. For instance, it is not clear whether asynchronous
networks are strictly more powerful than their synchronous counterpart.
Moreover, it would be interesting to explore the role of allowing agents
to make random choices - provided this is not used to create and share
unique IDs.

In the spirit of [Gro07], one could consider characterizing the structural
restrictions on tractable distributed CSPs, or in other words, determining
which classes of networks are tractable in the DCSP framework, regardless
of the template. The starting point for this analysis could be the work on
fibrations by Boldi et al. (see for example [BSV+96, BV01]). In particular,
we propose the question of establishing a connection between the universal
fibration of a graph and its iterated degree sequence.

In Chapters 7 and 8, we showed that solvability by the SA1 relaxation
of a CSP and PVCSP respectively is equivalent to invariance under the
Weisfeiler-Leman-like equivalence ≡1, and also to solvability in the dis-
tributed model. The distributed algorithm for the narrower CSP setting
from Chapter 6 works also for the search version of the problem, but this
is unfortunately not the case for the algorithm presented for PVCSPs. Is

145

146

there an algorithm solving the search version of PVCSP(A,B) whenever
the PVCSP is solvable by SA1?

Another open problem emerges from Example 8.8, which shows that
BLP and SA1 are not equivalent for PVCSPs. It follows from the sparse
incomparability lemma that BLP and SA1 are equivalent for PCSPs and
from [TŽ16] that they are also equivalent for finite-valued VCSPs. Are
these relaxations equivalent for general-valued VCSPs? Moreover, can we
find an algebraic condition (i.e., in terms of polymorphisms) for tractabil-
ity of a PVCSP by SA1?

In Chapter 9, we defined the notion of ≡k-equivalence and charac-
terized it in terms of homomorphism count from structures of bounded
treewidth and in terms of indistinguishability in counting logic. There
are a number of open-ended questions regarding the applicability of this
notion. Can we define a tighter correspondence between the linear pro-
gram SAk and the equivalence relation ≡k? Even more speculatively: can
we use our results to better understand the relationship between CSPs
definable in and CSPs closed under k-variable logics with counting?

23. Everyone has the right to understand.
24. Everyone has the right to understand nothing.

Užupis republic constitution

Part II:
Promise Model Checking

147

11 Introduction

11.1 Introduction

The motivation for this second part of the thesis is in line with the goals
that we set out in Chapter 1: that is, we would like to get a better un-
derstanding of the sources of tractability and the reasons for hardness
in computation.1 As mentioned in the opening chapter, known results
from CSP theory endorse the principle that symmetries, defined loosely,
are the determinant of tractability in computation. We have already seen
how these symmetries are captured, for instance, by the notion of poly-
morphisms in the case of CSPs, and fractional polymorphisms in the case
of Valued CSPs.

In this part of the thesis, motivated by recent developments in the area,
we study a class of computational problems that extends the CSP – seen
as the model checking problem over the existential conjunctive fragment
of first-order logic – in two simultaneous directions. One direction, dis-
cussed in Subsection 11.1.1, is to consider different fragments of first-order
logic. Another direction, discussed in Subsection 11.1.2, is to consider two
versions of each relation, strong and weak, and only ask to distinguish
strongly satisfiable inputs from those that are not even weakly satisfiable
(a so-called promise problem).

1So far, we have used the words ‘tractable’ and ‘hard’ as synonyms for ‘solvable in
polynomial time’ and ‘NP-complete’, respectively. In this part of the thesis, we will
see that tractability and hardness assume a much broader meaning of upper and lower
complexity bounds.

149

150

While this family of problems might not display the wide range of
practical applications that one can boast for the CSP and its best-known
extensions (e.g. the PCSP and VCSP), we believe they are worth studying
for a variety of reasons. First, they are very natural extensions of well-
studied problems, and thus also very general. Second, the structure of
these problems lends itself to be studied using similar techniques to those
used in the classical CSP field, thus allowing for the development of very
neat theories. In particular, this is witnessed by the fact that for each of
these problems we are able to establish an appropriate notion of symmetry
which shows that, once again, the complexity of computational problems
is governed, via the corresponding Galois connection, by the presence or
absence of symmetries in the template.

11.1.1 Model checking problem parametrized by the model

Throughout this part of the thesis we will adopt the logical formulation
for the constraint satisfaction problem, which we recall here. Given a
fixed template A, also called a model, the CSP over A is the problem of
deciding whether a given {∃,∧}-sentence in the signature of A is true in
A. To see that this formalization indeed expresses constraint satisfaction
problems, consider for instance the sentence ∃x∃y∃z R(x, y)∧S(y, z): this
sentence is true in a structure A if the variables x, y, z can be evaluated
so that both atomic formulas (constraints) are satisfied in A.

More generally, the model checking problem (see for instance [MM18])
takes as input a finite relational structure A (the template or model) and
a sentence ϕ in a specified logic and asks whether A satisfies ϕ. As in the
case of the CSP, in order to obtain tractable classes we can restrict our
attention to the the situation where A is a fixed, so the input is simply
ϕ. Moreover, the logic is a fragment of the first-order logic obtained by
restricting the allowed quantifiers and connectives to a fixed subset L of
{∃, ∀,∧,∨,=, ̸=,¬}. Thus, for each A and each of the 27 choices for L ,
we obtain a computational problem, which we call the L -Model Checking
Problem over A and denote L -MC(A).

As we already mentioned, {∃,∧}-MC(A) corresponds to the CSP over
A, for which a complexity classification is given by the celebrated di-
chotomy theorem of Bulatov [Bul17] and Zhuk [Zhu20]: each CSP over A

11. Introduction 151

is in P or is NP-complete. For the case L = {∃, ∀,∧}, L -MC(A) is the
Quantified CSP, another well-studied class of problems, see Section 2.2.3.
It was widely believed that this class exhibits a P/NP-complete/PSPACE-
complete trichotomy [Che12]. A recent breakthrough [ZM20] shows that
at least three more complexity classes appear within quantified CSPs, and
ongoing work suggests that even 6 is not the final number. In any case,
the full complexity classification of {∃,∀,∧}-MC(A) is a challenging open
problem.

The remaining 27 − 2 choices for L do not need to be considered sep-
arately. For instance, {∃,∧,=}-MC(A) is no harder than {∃,∧}-MC(A)
because equalities can be propagated out in this case, hence we shall freely
switch between {∃,∧,=}-MC(A) and {∃,∧}-MC(A). Moreover, {∀,∨}-
MC(A) is dual to {∃,∧}-MC(A) so we immediately obtain a P/coNP-
complete dichotomy for this problem. Finally, some choices of L , such
as L = {∃,∨}, lead to very simple problems. It turns out [Mar08] (see
Subsection 11.3) that, in addition to L = {∃,∧} and L = {∃,∀,∧}, only
two more fragments need to be considered in order to fully understand the
complexity of L -MC(A), namely L = {∃,∧,∨} and L = {∃,∀,∧,∨}.

The former fragment was addressed in [Mar08]: except for a simple
case solvable in polynomial time (in fact, L, the logarithmic space), all
the remaining problems are NP-complete. The latter fragment turned
out to be more challenging but, after a series of partial results [Mar08,
MM12, MM10] (see also [Mar10, CM21]), the full complexity classification
was given in [MM11, MM18]: each problem in this class is in L, or is
NP-complete, coNP-complete, or PSPACE-complete. These results are
summarized in Figure 11.1.

The starting point of the algebraic approach to L -MC has been to
find a characterization of definability in terms of certain “compatible func-
tions” or symmetries (polymorphisms for L = {∃,∧,=} [BKW17], sur-
jective polymorphisms for L = {∃, ∀,∧} [Mar17], multi-endomorphisms
for L = {∃,∧,∨}, surjective multi-endomorphisms for L = {∃, ∀,∧,∨}
[MM18]; see also [Bör08]). We will see how corresponding characteri-
zations of definability for promise templates will allow us to deploy the
algebraic approach in the context of promise model checking.

152

L -MC(A) Complexity
{∃,∧}-MC(A) (CSP) dichotomy: P or NP-complete

{∃, ∀,∧}-MC(A) (QCSP) ≥ 6 classes
{∃,∧,∨}-MC(A) dichotomy: L or NP-complete

{∀, ∃,∧,∨}-MC(A) tetrachotomy: L, NP-complete,
coNP-complete, PSPACE-complete

Figure 11.1: Known complexity results for L -MC(A).

11.1.2 Promise model checking problem

The Promise CSP is a recently introduced extension of the CSP framework
motivated by open problems in (in)approximability of satisfiability and
colouring problems, see Section 2.2.1. As for the case of the CSP, we
can also interpret the PCSP as a (promise) model checking problem: the
template consists of two structures A and B of the same signature, and
the task is to distinguish {∃,∧}-sentences that are true in A from those
that are not true in B.

The generalization of Promise CSP over (A,B) to an arbitrary choice
of L ⊆ {∃, ∀,∧,∨,=, ̸=,¬} is referred to as the L -Promise Model Check-
ing Problem over (A,B) and is denoted L -PMC(A,B). Similarly as in
the special case A = B, which is precisely L -MC(A), it is sufficient to
consider only four fragments.

A full complexity classification for {∃,∧}-PMC (i.e., Promise CSP) is
much desired but widely open, and {∃,∀,∧}-PMC is likely even harder.
In this thesis we focus on the remaining two classes of problems, {∃,∧,∨}-
PMC and {∃, ∀,∧,∨}-PMC.

Our motivation is that these cases might be substantially simpler, as
indicated by the non-promise special case, and at the same time, the in-
vestigation could uncover interesting intermediate problems towards the
grand endeavor of understanding the sources of tractability and hardness
in computation.

11. Introduction 153

Example 11.1

Consider structures A and B with a single relation symbol = inter-
preted as the equality on the three-element domain in A and as the
equality on the two-element domain in B. For L = {∃,∀,∧,∨},
both L -MC(A) and L -MC(B) are PSPACE-complete problems,
see [Mar08].

It is not hard to see that every L -sentence true in A is also true
in B. In this sense, the relation in A is stronger than the relation in
B. On the other hand, there are L -sentences that are true in B but
not in A, for instance, ϕ = ∀x∃y∀z (z = x) ∨ (z = y). Therefore, L -
PMC(A,B) could potentially be easier than the above non-promise
problems – instances such as ϕ need not be considered (there is no
requirement on the algorithm for such inputs). Nevertheless, the
problem remains PSPACE-complete, as shown in Proposition 12.15.

The contributions of this work are organised as follows. In Theo-
rem 12.3 and Theorem 12.10 we provide the basics for an algebraic ap-
proach to {∃,∧,∨}-PMC and {∃,∀,∧,∨}-PMC by characterizing defin-
ability in terms of compatible functions (symmetries): multi-homomor-
phisms for the {∃,∧,∨} fragment and surjective multi-homomorphisms
for {∃, ∀,∧,∨}. The proofs can be obtained as relatively straightforward
generalizations of the proofs for MC in [MM18]; however, we believe that
our approach is somewhat more transparent. In particular, it allows us
to easily characterize meaningful templates for these problems (Proposi-
tions 12.2 and 12.8).

For {∃,∧,∨}-PMC, we obtain an L/NP-complete dichotomy in Theo-
rem 12.5. It turns out that, apart from some simple cases, the problem
is NP-complete. Interestingly, there is a “single reason” for hardness: the
NP-hardness of colouring a rainbow colourable hypergraph from [GL18].

For the {∃,∀,∧,∨} fragment, we show that there are {∃,∀,∧,∨}-PMCs
that are complete for at least four complexity classes: L, NP, coNP, and
PSPACE. While our results are only partial, leaving two gaps for fur-
ther investigation, they are sufficient for a full complexity classification
of L -PMC(A,B) in the case that L = {∃,∀,∧,∨} and at least one of
the structures A, B has a two-element domain, and also in the case that

154

L ⊋ {∃, ∀,∧,∨}. In Section 13, we conclude by giving some examples
where our efforts have failed so far. One such example is a particularly
interesting {∃,∀,∧,∨}-PMC over 3-element domains: given a {∃,∀,∧,∨}-
sentence ϕ whose atomic formulas are all of the form Ri(x), i ∈ {1, 2, 3},
distinguish between the case where ϕ is true when Ri(x) is interpreted as
“x = i”, and the case where ϕ is false when Ri(x) is interpreted as “x ̸= i”.

Our complexity results are summarized in Figure 11.2, where the con-
ditions for L = {∃, ∀,∧,∨} are stated in terms of two special types of
surjective multi-homomorphisms which we introduce in Subsection 12.2.3.

L -PMC(A,B) Condition Complexity

{∃, ∀,∧}-PMC(A,B) Dichotomy:
L or NP-c∃∀-smuhom, or∀-smuhom and ∃-smuhom

and A,B digraphs
L

{∃,∀,∧,∨}-PMC(A,B) ∀-smuhom and ∃-smuhom NP ∩ coNP∀-smuhom, no ∃-smuhom NP-c∃-smuhom, no ∀-smuhom coNP-c
no ∀-smuhom

and no ∃-smuhom
NP-hard and
coNP-hard

{∃,∀,∧,∨,=}-PMC(A,B),
{∃,∀,∧,∨, ̸=}-PMC(A,B),
{∃, ∀,∧,∨,¬}-PMC(A,B)

Dichotomy: L
or PSPACE-c

Figure 11.2: Complexity results for L -PMC(A,B). We use ‘-c’ as an
abbreviation for ‘-complete’.

11.2 Preliminaries

Structures. For the rest of this thesis we will make a few additional as-
sumptions. In particular, for every relational structure A, we will assume
that the (finite) universe A has size at least 2, and that each relation is
non-empty and proper, i.e., ∅ ⊊ RA ⊊ Aar(R) for each relation symbol R in

11. Introduction 155

σ. These nonstandard requirements are placed for technical convenience
and do not significantly decrease the generality of our results. In fact, in
the case where at least one of the domains is a singleton, all the problems
are trivially solvable in constant time.

The complement of a relation S is denoted S := An \ S. The com-
plement of a relational structure A is obtained by taking complements of
all relations in the structure and is denoted A. Note that the fact that
all relations are nonempty and proper guarantees that complements are
always well-defined.

Multi-homomorphisms. A multi-valued function f from A to B is a
mapping from A to P ̸=∅(B), the set of all nonempty subsets of B. Note
that all multi-valued functions are therefore assumed to be total, that is,
for all a ∈ A there is some b ∈ B such that b ∈ f(a). A multi-valued
function f is called surjective if for every b ∈ B there exists a ∈ A such
that b ∈ f(a). The inverse of a surjective multi-valued function f from
A to B is the multi-valued function from B to A defined by f−1(b) =
{a : b ∈ f(a)}. Observe that the inverse of a surjective total multi-valued
function is surjective and total. For a tuple a ∈ An we write f(a) for
f(a1) × · · · × f(an). The value max{|f(a)| : a ∈ A} is referred to as the
multiplicity of f ; in particular, multi-valued functions of multiplicity one
are essentially functions. For two multi-valued functions f and f ′ from
A to B, we say that f ′ is contained in f if f ′(a) ⊆ f(a) for each a ∈ A.
For a multi-valued function f from A to B and a set S ⊆ A we define
f(S) = ∪a∈Sf(a). Composition of multi-valued functions is then defined
in the natural way.

Given two similar structures A and B, a multi-valued function f from
A to B is called a multi-homomorphism2 from A to B if for any R in the
signature and any a ∈ RA we have f(a) ⊆ RB, i.e., b ∈ RB whenever
bi ∈ f(ai) for each i ∈ [ar(R)]. A (multi)-endomorphism is a (multi)-
homomorphism from some structure A to itself. Notice that if f is a
multi-homomorphism from A to B, then so is any multi-valued function
contained in f . In particular, if f is a multi-homomorphism from A to
B, then any function g : A → B such that g is contain ed in f is a

2We deviate here from the terminology of [MM11, MM12] because it would not work
well in the promise setting.

156

homomorphism from A to B. The converse does not hold in general, as
witnessed by the following example.

Example 11.2

Let A = B be the structure with a single binary equality relation on
the Boolean domain, i.e., A = B = ({0, 1}; =2). Then, both g1 and
g2 are endomorphisms of A, however f is not a multi-endomorphism
of A, where g1(a) = a; g2(a) = 1 − a (a ∈ {0, 1}), and f(0) = f(1) =
{0, 1}.

The set of multi-homomorphisms from A to B is denoted by MuHom(A,B)
and the set of surjective multi-homomorphisms by SMuHom(A,B).

Fragments of first-order logic, definability, and model checking.
Let L ⊆ {∃,∀,∧,∨,=, ̸=,¬} and fix some signature. By an L -sentence
(resp., L -formula) we mean a sentence (resp., formula) of first-order logic
that only uses variables (denoted xi, yi, zi), relation symbols in the signa-
ture, and connectives and quantifiers in L . We refer to this fragment of
first-order logic as the L -logic.

The prenex normal form of an L -formula is an equivalent formula that
begins with quantified variables followed by a quantifier-free formula. The
prenex normal form can be computed in logarithmic space and it is an
L -formula whenever L does not contain the negation symbol ¬, so we
shall assume that all the inputs to the MC problem are in prenex normal
form.

For a structure A in the signature and an L -sentence ϕ, we write
A ⊨ ϕ if ϕ is satisfied in A (i.e., ϕ is true when ∀v,∃v,R(v) are replaced
by (∀ v∈A), (∃ v∈A), RA(v), respectively). More generally, given an L -
formula ψ, a tuple of distinct variables (v1, . . . , vn) which contains every
free variable of ψ and a tuple (a1, . . . , an) ∈ An, we write A ⊨ ψ(a1, . . . , an)
if ψ is satisfied when v1, . . . , vn are evaluated as εA(v1) = a1, . . . , εA(vn) =
an, respectively. Notice that variables v1, . . . , vn indeed need to be pair-
wise distinct, otherwise this notation would not make sense. The tuple
(v1, . . . , vn) is often specified by writing ψ = ψ(v1, . . . , vn).

11. Introduction 157

Recall that in Chapter 3 we introduced the notion of primitive pos-
itive definability. We can generalize this concept as follows. Let L ⊆
{∃, ∀,∧,∨,=, ̸=,¬}. We say that a relation S ⊆ An is L -definable from A
if there exists an L -formula ψ(v1, . . . , vn) such that, for all (a1, . . . , an) ∈
An, we have (a1, . . . , an) ∈ S if and only if A ⊨ ψ(a1, . . . , an). In this
case, we also say that ψ(v1, . . . , vn) defines S in A. Notice that then the
notion of pp-definability introduced in Chapter 3 corresponds to {∃,∧,=}-
definability, and the notion of efpp-definability introduced in Chapter 6
corresponds to {∃,∧}-definability.

Let L ⊆ {∃, ∀,∧,∨,=, ̸=,¬} and A be a σ-structure. The L -Model
Checking Problem over A, denoted L -MC(A), is the problem of deciding
whether a given L -sentence ϕ (in the signature σ of A) is true in A.

Then, we have the following reduction between definable problems,
which generalizes Theorem 2.1.
Theorem 11.3. Let A and C be relational structures on the same do-
main such that C is L -definable from A. Then, L -MC(C) is log-space
reducible to L -MC(A).

The reduction, much like in the primitive positive (i.e., L = {∃,∧,=})
case, amounts to replacing atomic formulas of the form R(v) by their L -
definitions.

Promise Model Checking and Promise definability. Let L ⊆
{∃, ∀,∧,∨,=, ̸=,¬}. A pair of similar structures (A,B) is called an L -PMC
template if for every L -sentence ϕ in the signature of A and B, A ⊨ ϕ
implies B ⊨ ϕ. Equivalently, every L -sentence that is true in A is also
true in B.

Given an L -PMC template (A,B), the L -Promise Model Checking
Problem over (A,B), denoted L -PMC(A,B), is the following problem:
given an L -sentence ϕ in the signature of A and B, output Yes if A ⊨ ϕ,
and output No if B ̸⊨ ϕ.

Notice that {∃,∧}-PMC is precisely the PCSP, and that the definition
of L -PMC template then generalizes that of PCSP template (see Chapter
3), i.e., it guarantees that the sets of Yes and No instances are disjoint.
However, as for the PCSP, their union need not be the whole set of L -
sentences; an algorithm for L -PMC is only required to produce correct

158

outputs for Yes instances and No instances. Alternatively, we are promised
that the input sentence is a Yes instance or a No instance.

The complexity-theoretic notions (such as membership in NP, NP-
completeness, reductions) can be adjusted naturally for the promise set-
ting. In particular, we write L -PMC(C,D) ≤ L -PMC(A,B) if the for-
mer problem can be reduced to the latter problem by a logarithmic space
reduction, that is, a logarithmic space transformation that maps each Yes
instance ϕ of L -PMC(C,D) to a Yes instance ψ of L -PMC(A,B) (equiv-
alently, C ⊨ ϕ must imply A ⊨ ψ) and No instances of L -PMC(C,D) to
No instances L -PMC(A,B) (equivalently, B ⊨ ψ must imply D ⊨ ϕ).

An appropriate adjustment of definability for the promise setting is as
follows. Assume ¬ ̸∈ L and let (A,B) be a pair of similar structures. We
say that a pair of relations (S, T), where S ⊆ An and T ⊆ Bn, is promise-
L -definable (or p-L -definable) from (A,B) if there exist relations S′ and
T ′ and an L -formula ψ(v1, . . . , vn) such that S ⊆ S′, T ′ ⊆ T , ψ(v1, . . . , vn)
defines S′ in A, and ψ(v1, . . . , vn) defines T ′ in B.

Note that the notion of promise definability does not allow the nega-
tion in L , as including ¬ would not work well with the inclusions in the
definition.

We say that an L -PMC template (C,D) is p-L -definable from (A,B)
(the signatures can differ) if (QC, QD) is p-L -definable from (A,B) for
each relation symbol Q in the signature of C and D. We have the following
complexity reduction between promise problems.

Theorem 11.4. Assume ¬ ̸∈ L . If (A,B) and (C,D) are L -PMC tem-
plates such that (C,D) is p-L -definable from (A,B), then L -PMC(C,D)
≤ L -PMC(A,B).

Proof. The reduction is to replace each atomic Q(v) in every instance
ϕ of L -PMC(C,D) by the corresponding formula ψ which p-L -defines
(QC, QD) in (A,B). For correctness of this reduction, observe that an L -
sentence which is true in a structure E remains true when we add tuples
to the relations of E (since L does not contain the negation).

11. Introduction 159

11.3 Interesting fragments

As mentioned in Section 11.1.1, only four fragments of first-order logic
need to be considered in order to fully understand L -PMC(A,B). We
now explain why in a little more details.

First, observe that if L does not contain any connective (∧,∨), or L
does not contain any quantifier (∃,∀), or L ⊆ {∃,∨}, then each L -PMC
is in L, i.e., it is solvable in logarithmic space (in fact, in some of these
cases we do not even have any valid inputs.)

Secondly, notice that (L ∪{=})-PMC(A,B) is essentially the same as
L -PMC(A′,B′), where A′ and B′ are obtained from the original struc-
tures by adding a fresh binary symbol = to the signature which is inter-
preted as =A in A′ and as =B in B′. The disequality is dealt with analo-
gously, thus we can and shall restrict to fragments with L ⊆ {∃, ∀,∧,∨,¬}.

Next, we deal with the negation. If ¬ is in L , and L contains at least
a quantifier and a connective, then it is sufficient to consider the case L =
{∃, ∀,∧,∨,¬}, since the possibly remaining quantifiers and connectives can
be expressed using negation. Moreover, the complements of relations can
also be expressed, so we may assume that each template (A,B) is closed
under complementation, meaning that for every symbol R in the signature,
we have a symbol R interpreted as RA = RA, RB = RB. But then, ¬ is
no longer necessary since we can propagate the negations inwards in an
input sentence. We are down to L ⊆ {∃, ∀,∧,∨}.

Finally, note that E ⊨ ¬ϕ, where ϕ is an L -sentence, is equivalent
to E ⊨ ϕ′ where ϕ′ is an L ′-sentence and L ′ is obtained from L by
swapping ∀ ↔ ∃ and ∨ ↔ ∧ (ϕ′ can be, again, computed from ¬ϕ by
inward propagation). It follows that ϕ 7→ ϕ′ transforms every Yes in-
stance (resp., No instance) of L -PMC(A,B) to a No instance (resp., Yes
instance) of L ′-PMC(B,A), and a similar “dual” reduction works in the
opposite direction. Therefore, the latter PMC has the “dual” complexity
to the former PMC, e.g., if the former is NP-complete, then the latter is
coNP-complete; and if the former is PSPACE-complete, then the latter is
PSPACE-complete as well. We will refer to this reasoning as the duality
argument.

Eliminating one of the logic fragments from each of the “dual” pairs,

160

we are left with only four fragments: L = {∃,∧} (whose L -PMC is the
PCSP), L = {∃,∀,∧} (the Promise Quantified CSP), L = {∃,∧,∨},
and L = {∃,∀,∧,∨}. We investigate the last two separately in the next
Chapter.

12 The Complexity of
Promise Model Checking

In this chapter we set the basics for an algebraic approach to the
existential positive and the positive promise model checking prob-
lems. This allows us to give a full complexity classification for the
{∃,∧,∨}-PMC and to provide a number of upper and lower bounds
for the {∃,∀,∧,∨}-PMC.

12.1 Existential positive fragment

This section concerns the existential positive equality-free logic, that is,
the L -logic with L = {∃,∧,∨}. We fix this L for the entire section.

12.1.1 Characterization of templates and p-L -definability

We start by characterizing L -PMC templates. We will need the following
observation.

Lemma 12.1. Let f be a multi-homomorphism from A to B, let ϕ(x1, . . . ,
xn) be a quantifier-free L -formula in the same signature, and let a ∈ An,
b ∈ Bn. If A ⊨ ϕ(a) and b ∈ f(a), then B ⊨ ϕ(b).

Proof. The claim holds for atomic formulas by the definition of multi-ho-
momorphisms. The proof is then finished by induction on the complexity
of ϕ; both ∨ and ∧ are dealt with in a straightforward way.

Proposition 12.2. A pair (A,B) of similar structures is an L -PMC
template if and only if there exists a homomorphism from A to B.

161

162

Proof. Suppose that there exists a homomorphism from A to B and A ⊨ ϕ,
where ϕ = ∃x1∃x2 . . . ∃xnϕ

′(x1, . . . , xn) is in prenex normal form. Then
we have A ⊨ ϕ′(a) for some a ∈ An, therefore B ⊨ ϕ′(f(a)) by Lemma
12.1, and it follows that B ⊨ ϕ.

For the forward implication, assume A = [k] := {1, . . . , k} and consider
the following formula.

ϕ(x1, . . . , xk) :=
∧

R∈σ

∧
r∈RA

R(xr1 , . . . , xrar(R)) (12.1)

It follows immediately from the definitions that, for any σ-structure
E, E ⊨ ϕ(e1, . . . , ek) if and only if the mapping defined by i 7→ ei for each
i ∈ [k] is a homomorphism from A to E.

By existentially quantifying all the variables in (12.1) we obtain a sen-
tence that is true in A (as there exists a homomorphism from A to A –
the identity), so it must be true in B. Therefore, let (b1, . . . , bk) be such
that B ⊨ ϕ(b1, . . . , bk). It follows that the map i 7→ bi is a homomorphism
from A to B.

We point out here that an equivalent characterization of L -templates
is available in terms of multi-homomorphisms: that is, a pair (A,B) of
similar structures is an L -PMC template if and only if there exists a multi-
homomorphism from A to B. It is immediate to see that this condition is
equivalent to Proposition 12.2: one direction of this equivalence is trivial;
for the other direction, simply observe that every function h contained in
a multi-homomorphism from A to B is a homomorphism from A to B.

Furthermore, note that this characterization would remain the same if
we add = to L (and/or remove ∨). Conversely, for the following charac-
terization of promise definability, the absence of the equality relation does
make a difference, which is why we need to use multi-homomorphisms
instead of homomorphisms for the equality-free fragment.

Theorem 12.3. Let (A,B) and (C,D) be L -PMC templates such that
A = C and B = D. Then (C,D) is p-L -definable from (A,B) if
and only if MuHom(A,B) ⊆ MuHom(C,D). Moreover, in this case,
L -PMC(C,D) ≤ L -PMC(A,B).

12. The Complexity of Promise Model Checking 163

Proof. It is enough to verify the equivalence, since then the second claim
follows from Theorem 11.4. To prove the forward implication, assume that
(C,D) is p-L -definable from (A,B), let f ∈ MuHom(A,B), and let Q
be a symbol in the signature of C and D. To show that f(a) ⊆ QD for
any a ∈ QC we apply Lemma 12.1 as follows. We have A ⊨ ψ(a), where
ψ(x) = ∃y1∃y2 . . . ∃ymψ

′(x,y) is a formula which p-L -defines (C,D) from
(A,B), turned into prenex normal form. Then A ⊨ ψ′(a,a′) for some a′ ∈
Am, thus B ⊨ ψ′(b,b′) for any b ∈ f(a) and b′ ∈ f(a′) by Lemma 12.1.
Therefore, B ⊨ ψ(b) and, finally, b ∈ QD, as required.

For the backward implication, assume that MuHom(A,B) ⊆ MuHom
(C,D), denote by σ the signature of A and B, and consider an n-ary
relational symbol Q in the signature of C and D. To prove the claim,
we need to find a formula ψ(x1, . . . , xn) that defines, in A, a relation
containing QC and, in B, a relation contained in QD.

For simplicity, assume A = [k] and consider the formula

ϕ(x1,1, . . . , x1,n, x2,1, . . . , x2,n, . . . , xk,1, . . . , xk,n) := (12.2)∧
R∈σ

∧
r∈RA

∧
j∈[n]ar(R)

R(xr1,j1 , . . . , xrar(R),jar(R))

It follows immediately from definitions that, for any structure E in
the signature σ, we have E ⊨ ϕ(e1,1, . . . , ek,n) if and only if the mapping
i 7→ {ei,1, . . . , ei,n}, 1 ≤ i ≤ k is a multi-homomorphism from A to E.
Therefore, for any a ∈ An, the formula τa(x1, . . . , xn), obtained from ϕ by
renaming xai,i to xi and existentially quantifying the remaining variables,
defines in E the union of f(a) over f ∈ MuHom(A,E) of multiplicity
at most n. This relation is clearly equal to the union of f(a) over all
f ∈ MuHom(A,E). The required formula ψ is then the disjunction of
τa over all a ∈ QC: it defines in A a relation containing QC (because
of the identity “multi”-homomorphism A → A) and, in B, a relation
contained in QD (because every multi-homomorphism from A to B is a
multi-homomorphism from C to D, and hence f(a) ⊆ QD for any a ∈ QC

and any f ∈ MuHom(A,B)).

164

12.1.2 Complexity classification

Since L -PMC(A,B) reduces to L -MC(A) (or L -MC(B)) by the triv-
ial reduction which does not change the input, and the latter problem is
clearly in NP, then the former problem is in NP as well. In Theorem 12.5
below, we show that L -PMC(A,B) is NP-hard in all the “nontrivial”
cases, as in the non-promise setting. However, our proof of hardness
requires (in addition to Theorem 12.3) a much more involved hardness
result than in the non-promise case: NP-hardness of c-colouring rainbow
k-colourable 2k-uniform hypergraphs from [GL18] (where c, k ≥ 2).

To translate this result into our formalism, recall the definitions of the
n-ary “rainbow colouring” and “not-all-equal” relations on a finite domain
D introduced in Chapter 3:

Rbn
D = {d ∈ Dn : {d1, d2, . . . , dn} = D},

NAEn
D = {d ∈ Dn : ¬(d1 = d2 = · · · = dn)}.

Then, the result of Guruswami and Lee can be stated as follows.

Theorem 12.4 (Corollary 1.2 in [GL18]). For any A and B of size at least
2, the problem {∃,∧}-PMC((A; Rb2|A|

A), (B; NAE2|A|
B)) is NP-complete.1

Given this hardness result, the complexity classification is a simple
consequence of Theorem 12.3.

Theorem 12.5 (L = {∃,∧,∨}). Let (A,B) be an L -PMC template.
If there is a constant homomorphism from A to B, then L -PMC(A,B)
is in L (in fact, decidable in constant time), otherwise L -PMC(A,B) is
NP-complete.

Proof. If there exists a constant homomorphism f : A → B, say with
image {b}, then all the relations RB in B must contain the constant tuple
(b, b, . . . , b). It follows that every input sentence is satisfied in B by eval-
uating the existentially quantified variables to b; therefore, Yes is always
a correct output.

1The result in [GL18] is slightly stronger since the NP-hardness remains true even
when the input sentences are required to have distinct variables in each atomic formula
(such instances correspond to 2|A|-uniform hypergraphs).

12. The Complexity of Promise Model Checking 165

If there is no constant homomorphism A → B, we observe that no
multi-homomorphism from A to B contains a constant homomorphism (as
the set of multi-homomorphisms of a PMC template is closed under con-
tainment). It follows that the image of any “rainbow” tuple of A under any
multi-homomorphism from A to B does not contain any constant tuple,
and so any multi-homomorphism from A to B is a multi-homomorphism
from (A; Rb2|A|

A) to (B; NAE2|A|
B). The reduction from Theorem 12.3 and

the hardness from Theorem 12.4 conclude the proof.

12.2 Positive fragment

We now turn our attention to the more complex case – the positive
equality-free logic, that is, the L -logic with L = {∃,∀,∧,∨}. We again
fix this L for the entire section.

12.2.1 Witnesses for quantified formulas

It will be convenient to work with L -formulas of the special form

ϕ(x1, . . . , xn) = ∀y1∃z1∀y2∃z2 . . . ∀ym∃zm ϕ′(x,y, z), (12.3)

where ϕ′ is quantifier-free. Note that each formula is equivalent to a
formula in this form (by transforming to prenex normal form and adding
dummy variables and quantification as needed) and the conversion can be
done in logarithmic space.

Observe that for a structure A and a tuple a ∈ An, we have A ⊨ ϕ(a)
if and only if there exist functions α1 : A → A, α2 : A2 → A, . . . ,
αm : Am → A which give us evaluations of the existentially quantified vari-
ables given the value of the previous universally quantified variables, i.e.,
these functions satisfy A ⊨ ϕ′(a, c, α1(c1), α2(c1, c2), . . . , αm(c1, . . . , cm))
for every c ∈ Am. We call such functions witnesses for A ⊨ ϕ(a).

The following is a simple consequence of this viewpoint, a version of
Lemma 12.1.

Lemma 12.6. Let f be a surjective multi-homomorphism from A to B,
let ϕ(x1, . . . , xn) be an L -formula in the same signature as A and B, and
let a ∈ An, b ∈ Bn. If A ⊨ ϕ(a) and b ∈ f(a), then B ⊨ ϕ(b).

166

In particular, if there exists a surjective multi-homomorphism from A
to B, and ϕ is an L -sentence such that A ⊨ ϕ, then B ⊨ ϕ.

Proof. The claim holds for quantifier-free L -formulas by Lemma 12.1.
Next, we assume that ϕ is of the form (12.3) and select witnesses

α1, . . . , αm for A ⊨ ϕ(a). Let g : B → A be any function such that
b ∈ f(g(b)) for every b ∈ B, which exists as f is surjective. We claim that
any functions β1, . . . , βm such that βi(b1, . . . , bi) ∈ f(αi(g(b1), . . . , g(bi)))
for every i ∈ [m], are witnesses for B ⊨ ϕ(b). Indeed, for all d ∈ Bm, we
have A ⊨ ϕ′(a, g(d), α1(g(d1)), . . . , αm(g(d1), . . . , g(dm))), and also b ∈
f(a), d ∈ f(g(d)), and βi(d1, . . . , di) ∈ f(αi(g(d1), . . . , g(di))) (by the
assumption, choice of g, and choice of βi, respectively); therefore, B ⊨
ϕ′(b,d, β1(d1), . . . , βm(d1, . . . , dm)) since ϕ′ is quantifier-free. Hence, B ⊨
ϕ(b).

12.2.2 Characterization of templates and p-L -definability

Unlike in the existential case, both characterizations require surjective and
multi-valued functions. The core of these characterizations is an adjust-
ment of (12.2) for surjective homomorphisms.

Lemma 12.7. Let A be a structure with A = [k] and m,n be arbitrary pos-
itive integers. Then there exists a formula ϕ(x1,1, . . . , x1,n, x2,1, . . . , xk,n)
such that, for any structure E similar to A with |E| ≤ m, we have E ⊨
ϕ(e1,1, . . . , ek,n) if and only if the multi-valued mapping i 7→ {ei,1, . . . , ei,n},
i ∈ [k] is contained in a surjective multi-homomorphism from A to E.

Proof. For every function h from [m] to [k] we take a formula ϕh(x1,1, . . . ,
xk,n, z1, . . . , zm) such that, for any structure E in the signature of A, we
have E ⊨ ϕh(e1,1, . . . , ek,n, e

′
1, . . . , e

′
m) if and only if the mapping i 7→

{ei,1, . . . , ei,n} ∪
⋃

h(l)=i e
′
l, 1 ≤ i ≤ k, is a multi-homomorphism from A to

E. Such a formula can be obtained by directly translating the definition
of a multi-homomorphism into the language of logic, similarly to (12.2).

We claim that the formula ϕ obtained by taking the disjunction of ϕh

over all h : [m] → [k] and universally quantifying the variables z1, . . . ,
zm satisfies the requirement of the lemma, provided |E| ≤ m. Indeed, on
the one hand, if E ⊨ ϕ(e1,1, . . . , ek,n), then for every evaluation of the z

12. The Complexity of Promise Model Checking 167

variables, some ϕh must be satisfied. We choose any evaluation that covers
the whole set E (which is possible since |E| ≤ m) and the satisfied disjunct
ϕh then gives us the required surjective multi-homomorphism from A to
E (by the choice of ϕh). On the other hand, if i 7→ {ei,1, . . . , ei,n} is
contained in a surjective multi-homomorphism f , then for any evaluation
εE(z1), . . . , εE(zm) of the universally quantified variables, a disjunct ϕh

is satisfied whenever εE(zl) ∈ f(h(l)) for every l ∈ [m]. Such an h exists
since f is surjective.

Proposition 12.8. A pair (A,B) of similar structures is an L -PMC
template if and only if there exists a surjective multi-homomorphism from
A to B.

Proof. For the forward implication, consider the sentence obtained by
existentially quantifying all the variables in the formula ϕ provided by
Lemma 12.7 (with m ≥ |A|, |B|). This sentence is true in A (as there
exists a surjective multi-homomorphism from A to A – the identity), so
it must be true in B, giving us a surjective multi-homomorphism from A
to B. The backward implication follows from Lemma 12.6.

Example 12.9 (Surjectivity is relevant).

An example which shows that one cannot replace in Proposition 12.8
“surjective multi-homomorphism” by “(multi-)homomorphism” is the
input formula φ = ∀x∃yR(x, y) (“there are no sinks”) for a template
where A is a digraph with no sinks and B is, say, A plus an iso-
lated vertex. Clearly there is a (multi-)homomorphism from A to B
(the inclusion function), however, φ witnesses that (A,B) is not an
L -PMC template.

The following characterization of promise definability is also a straight-
forward consequence of Lemmata 12.6 and 12.7.

Theorem 12.10. Let (A,B) and (C,D) be L -PMC templates such that
A = C and B = D. Then (C,D) is p-L -definable from (A,B) if
and only if SMuHom(A,B) ⊆ SMuHom(C,D). Moreover, in this case,
L -PMC(C,D) ≤ L -PMC(A,B).

168

Proof. The theorem is proved in the same way as Theorem 12.3; using
Lemma 12.6 instead of Lemma 12.1 for the forward implication, and the
formula provided by Lemma 12.7 instead of (12.2) for the backward im-
plication.

12.2.3 Membership

Clearly, every L -MC, as well as L -PMC, is in PSPACE. We now give a
generalization of the remaining membership results from [MM11] using an
appropriate generalization of the notions of “A-shops” and “E-shops” from
that same paper. We say that a surjective multi-homomorphism from A
to B is an ∀-smuhom if there exists a∗ ∈ A such that f(a∗) = B. We also
say that (A,B) admits an ∀-smuhom in this case. We call f an ∃-smuhom
if f−1(b∗) = A for some b∗ ∈ B. Finally, we call f an ∃∀-smuhom if it is
simultaneously an ∀-smuhom and an ∃-smuhom.

An additional simple reduction, in the spirit of the reductions given by
homomorphic relaxation much used in the study of PCSPs, will be useful
in the proof of the membership result (Theorem 12.12), and in the proofs
of some of the hardness results later on. We say that an L -PMC template
(C,D) is a relaxation of an L -PMC template (A,B) if (C,A) and (B,D)
are L -PMC templates. Recall that, by Proposition 12.8, this property is
equivalent to the existence of surjective multi-homomorphisms from C to
A and from B to D.

Proposition 12.11. Let (A,B) and (C,D) be L -PMC templates. If
(C,D) is a relaxation of (A,B), then L -PMC(C,D) ≤ L -PMC(A,B).

Proof. The trivial reduction, which does not change the input, works. In-
deed, Yes instances of L -PMC(C,D) are Yes instances of L -PMC(A,B)
since (C,A) is an L -PMC template, and No instances of L -PMC(C,D)
are No instances of L -PMC(A,B) since (B,D) is an L -PMC template.

Theorem 12.12. Let (A,B) be an L -PMC template. Then the following
holds.

1. If (A,B) admits an ∀-smuhom, then L -PMC(A,B) is in NP.

12. The Complexity of Promise Model Checking 169

2. If (A,B) admits an ∃-smuhom, then L -PMC(A,B) is in coNP.

3. If (A,B) admits an ∃∀-smuhom, then L -PMC(A,B) is in L.

Proof. For the first item, let f be an ∀-smuhom from A to B with f(a∗) =
B, and consider an input ϕ in the special form (12.3), i.e., ϕ = ∀y1∃z1∀y2
∃z2 . . . ∀ym∃zm ϕ′(y, z), where ϕ′ is quantifier-free. We answer Yes if there
exists a ∈ Am such that A ⊨ ϕ′(a∗, a∗, . . . , a∗,a); this can be clearly de-
cided in NP. It is clear that the answer is Yes whenever ϕ is a Yes instance
of L -PMC(A,B). On the other hand, if A ⊨ ϕ′(a∗, . . . , a∗,a), then any
functions β1 : B → B, . . . , βm : Bm → B such that βi(b1, . . . , bi) ∈ f(ai)
(for all i ∈ [m] and b1, . . . , bm ∈ B) provide witnesses for B ⊨ ϕ by
Lemma 12.1. Therefore, if ϕ is a No instance, then the answer is No, as
needed.

The second item follows by the duality argument.
In the case A = B, the third item can be proved in an analogous way

(by eliminating both quantifiers instead of just one), see Corollary 9 in
[MM11]. For the general case, we will construct C such that there is an∃∀-smuhom from C to C and there are surjective multi-homomorphisms
from A to C and from C to B. Then (A,B) will be a relaxation of
(C,C) by Proposition 12.8, and then membership of L -PMC(A,B) in
L will follow from Proposition 12.11 and the mentioned Corollary 9 in
[MM11]. Let f be an ∃∀-smuhom from A to B with f(a∗) = B and
f−1(b∗) = A, and define a surjective multi-valued function f ′ from A to
B by f ′(a∗) = B and f ′(a) = {b∗} if a ̸= a∗. Note that f ′ is contained in
f , so f ′ is a surjective multi-homomorphism from A to B. We define C
as the “image” of A under f ′, that is, C = B and RC = ∪a∈RAf ′(a) for
each relation symbol R. Clearly, f ′ is a surjective multi-homomorphism
from A to C and the identity is a surjective homomorphism from C to B.
It remains to find an ∃∀-smuhom from C to C. We claim that g defined
by g(b∗) = {b∗} and g(c) = C for c ̸= b∗ is such an ∃∀-smuhom. Indeed,
if c ∈ RC, then c ∈ f ′(a) for some a ∈ RA. By the definition of f ′, we
necessarily have ai = a∗ whenever ci ̸= b∗; therefore, f ′(a) ⊇ g(c). But
f ′(a) ⊆ RC as f ′ ∈ SMuHom(A,C), and we are done.

These membership results together with the (more involved) hardness
results were sufficient for the tetrachotomy in [MM11]. One problem with

170

generalizing this tetrachotomy is that, unlike in the non-promise setting,
an L -PMC template can admit an ∀-smuhom and an ∃-smuhom, but no∃∀-smuhom (see Chapter 13 for examples) and therefore we have no clear
upper bounds in this case other than membership in NP∩coNP. However,
such a situation cannot happen for digraphs.

Proposition 12.13. Let (A,B) be an L -PMC template such that A and
B are digraphs. If (A,B) admits an ∀-smuhom and an ∃-smuhom, then
it admits an ∃∀-smuhom.

Proof. Denote by R the unique binary symbol in the signature. Let f be
an ∀-smuhom from A to B with f(a∗) = B and let g be an ∃-smuhom
from A to B with g−1(b∗) = A.

If a∗ is isolated in A (i.e., (a, a∗), (a∗, a) /∈ RA for every a ∈ A), then we
define a surjective multi-valued function h by h(a∗) = B and h(a) = {b∗}
for every a ̸= a∗. It is a multi-homomorphism from A to B since for
any (a, a′) ∈ RA, we have h(a, a′) = {(b∗, b∗)}, which is contained in RB

because RA is nonempty, so g(RA) ∋ (b∗, b∗).
Suppose next that there is an edge (a1, a

∗) ∈ RA but a∗ has no outgoing
edges in A. Let b1 be an arbitrary element from f(a1) and define h
by h(a∗) = B and h(a) = {b1} for every a ̸= a∗. To verify that h ∈
SMuHom(A,B), consider an edge (a, a′) ∈ RA. As a∗ has no outgoing
edges in A, we get a ̸= a∗, so h(a) = {b1}. Now h(a, a′) ⊆ {b1}×B, which
is contained in RB because RB ⊇ f(a1, a

∗) ⊇ {b1} ×B.
If a∗ has an outgoing edge (a∗, a1) ∈ RA but no incoming edges, we

proceed similarly, defining h(a∗) = B and h(a) = {b1} for all a ̸= a∗,
where b1 is an arbitrary element from f(a1).

Finally, suppose that (a1, a
∗) ∈ RA and (a∗, a2) ∈ RA for some a1, a2 ∈

A. If there is an element a3 ∈ A with no outgoing (resp., incoming)
edges, define h by h(a3) = B and h(a) = {b′} for all a ̸= a3, where
b′ is an arbitrary element from f(a1) (resp., f(a2)). If there is no such
element a3, then we define h(a∗) = B and h(a) = {b∗} for all a ̸= a∗.
Since g is surjective, and every a ∈ A has both an incoming and an
outgoing edge, then (b, b∗) ∈ RB and (b∗, b) ∈ RB for all b ∈ B, therefore,
h ∈ SMuHom(A,B).

12. The Complexity of Promise Model Checking 171

12.2.4 Hardness

As a consequence of Theorems 12.4 and 12.10, we obtain the following
hardness result.

Theorem 12.14. Let (A,B) be an L -PMC template.

1. If (A,B) admits no ∃-smuhoms, then L -PMC(A,B) is NP-hard.

2. If (A,B) admits no ∀-smuhoms, then L -PMC(A,B) is coNP-hard.

Proof. If there are no ∃-smuhoms from A to B, then SMuHom(A,B)
is contained in SMuHom((A; Rb2|A|

A), (B; NAE2|A|
B)). Theorem 12.4 and

Theorem 12.10 then imply the first item. The second item follows by the
duality argument.

In the non-promise setting, the absence of ∀-smuhoms and ∃-smuhoms
is sufficient for PSPACE-hardness [MM11, MM18]. This most involved
part of the tetrachotomy result seems much more challenging in the promise
setting and we do not have strong reasons to believe that templates with-
out ∀-smuhoms and ∃-smuhoms are necessarily PSPACE-hard. Neverthe-
less, we are able to prove some additional hardness results which will cover
all the extensions of L .

Proposition 12.15. L -PMC((A; =A), (B; =B)) is PSPACE-hard for any
A, B such that |A| ≥ |B| ≥ 2.

Note here that the surjective multi-homomorphisms from (A; =A) to
(B; =B) are exactly the surjective multi-valued functions from A to B of
multiplicity one. In particular, if |A| < |B|, then ((A; =A), (B; =B)) is not
an L -PMC template.

Proof. We start by noticing that the template ((A; =A), ([2]; =[2])) is a re-
laxation of (A,B) := ((A; =A), (B; =B)). Therefore, by Proposition 12.11,
it is enough to prove the claim in the case B = [2]. For simplicity, we
assume that A = [k] (k ≥ 2). We prove the PSPACE-hardness by a
reduction from L -MC(B), a PSPACE-hard problem by, e.g., [Mar08].
Consider an input ϕ to L -MC(B) in the special form (12.3), i.e., ϕ =
∀y1∃z1∀y2∃z2 . . . ∀ym∃zm ϕ′(y, z), where ϕ′ is quantifier-free. We need to

172

find a log-space computable formula ψ such that B ⊨ ϕ implies A ⊨ ψ
(so that Yes instances of L -MC(B) are transformed to Yes instances of
L -PMC(A,B)) and B ⊨ ψ implies B ⊨ ϕ (so that No instances are
transformed to No instances).

The rough idea to construct ψ is to reinterpret the values in A = [k]
as values in B = [2] via a mapping A → B. We set

ψ = ∀x1∀x2 ∃x3∃x4 . . . ∃xk (x1 = x2) ∨
∧

f :A→B

ρf , where (12.4)

ρf = (∀y′
1∃z1 . . . ∀y′

m∃zm) (∃y1 . . . ∃ym)
(

m∧
i=1

σ[f, y′
i, yi]

)
∧ ϕ′(y, z),

(12.5)

σ[f, y′
i, yi] =

∨
a∈A

(
(y′

i = xa) ∧ (yi = xf(a))
)
. (12.6)

Observe first that ψ can be constructed from ϕ in logarithmic space.
Next, we verify that B ⊨ ψ implies B ⊨ ϕ. So, we suppose B ⊨ ψ

and aim to find witnesses β1, . . . , βm for B ⊨ ϕ; to this end, let c be
some tuple in Bm that corresponds to evaluations of universally quantified
variables in ϕ. We evaluate the variables x1 and x2 in ψ as εB(x1) = 1
and εB(x2) = 2, and pick an evaluation εB(x3), . . . , εB(xk) making ψ
true in B. Set f(a) = εB(xa), a ∈ A. The first disjunct of (12.4) is
not satisfied, so ρf is satisfied with this choice of εB. When it is the
turn to evaluate y′

i, we set εB(y′
i) = ci and define βi(c1, . . . , ci) = εB(zi),

where εB(zi) is a satisfactory evaluation of zi. Inspecting the definition
(12.6), we see that y1, . . . , ym are necessarily evaluated as εB(y1) = c1, . . . ,
εB(ym) = cm: indeed, if a disjunct (y′

i = xa)∧(yi = xf(a)) is satisfied, then
ci = εB(y′

i) = εB(xa) and εB(yi) = εB(xf(a)) = εB(xεB(xa)) = εB(xa); in
particular, εB(yi) = ci. Therefore, the conjunct ϕ′(y, z) in (12.5) ensures
B ⊨ ϕ′(c, β1(c1), . . . , βm(c1, . . . , cm)). As c was chosen arbitrarily, we get
that β1, . . . , βm are witnesses for B ⊨ ϕ, as required.

We now suppose that β1, . . . , βm are witnesses for B ⊨ ϕ, and aim to
show that A ⊨ ψ. Because of the first disjunct of (12.4), it is enough to
consider only evaluations of x1 and x2 with εA(x1) ̸= εA(x2). Since any
bijection, regarded as a surjective multi-homomorphism from A to A of
multiplicity one, preserves L -formulas (in the sense of Lemma 12.6), then

12. The Complexity of Promise Model Checking 173

we can as well assume that εA(x1) = 1 and εA(x2) = 2. We evaluate the
remaining x variables as εA(xa) = a, a = 3, 4, . . . , k. We take a function
f : A → B and argue that ρf is satisfied in A. Given a selection of
εA(y′

i), we evaluate zi as εA(zi) = βi(f(εA(y′
1)), . . . , f(εA(y′

i))), and we
define the evaluation of the remaining variables by εA(yi) = f(εA(y′

i)).
With these choices, each σ[f, y′

i, yi] is satisfied because of the disjunct
a = εA(y′

i) in (12.6). The second conjunct in (12.5), ϕ′(y, z), is also
satisfied: we know B ⊨ ϕ′(c, β1(c1), . . . , βm(c1, . . . , cm)) in particular for
c1 = f(εA(y′

1)), . . . , cm = f(εA(y′
m)) and, with this c, it is apparent

from the choice of evaluations that B ⊨ ϕ′(c, β1(c1), . . . , βm(c1, . . . , cm)) is
equivalent to A ⊨ ϕ′(εA(y1), . . . , εA(ym), εA(z1), . . . , εA(zm)). The proof
of A ⊨ ψ is concluded.

It follows that {∃, ∀,∧,∨,=}-PMC over any template is PSPACE-hard
and so is, by the duality argument, {∃, ∀,∧,∨, ̸=}-PMC. The next propo-
sition implies PSPACE-hardness for {∃, ∀,∧,∨,¬}-PMC.

Proposition 12.16. Let (A,B) be an L -PMC template which is closed
under complementation. Then L -PMC(A,B) is PSPACE-hard.

Proof. Suppose that (A,B) is closed under complementation. We define
an equivalence relation ∼A on A by considering two elements equivalent
if they play the same role in every relation of A. Formally, a ∼ a′ if
for every symbol R from the signature, every coordinate i ∈ [ar(R)], and
every c, c′ ∈ Aar(R), if ci = a, c′

i = a′, cj = c′
j for all j ∈ [ar(R)] \ {i},

and c ∈ RA, then c′ ∈ RA. We define an equivalence relation ∼B on
B analogously. Notice that ∼A and ∼B are indeed equivalence relations,
and let m and n denote the number of equivalence classes of ∼A and ∼B

respectively. Observe that m,n ≥ 2, as otherwise, any nonempty relation
in the corresponding template would contain all the tuples, and we do not
allow such structures in this context.

Let C = (A; ∼A) and D = (B; ∼B). We claim that every surjective
multi-homomorphism f from A to B preserves ∼, i.e., is a surjective multi-
homomorphism from C to D. Consider a, a′ ∈ A, and b, b′ ∈ B such that
a ∼A a′, b ∈ f(a), and b′ ∈ f(a′). In order to prove b ∼B b′, take arbitrary
R, i, d, d′ such that di = b, d′

i = b′, dj = d′
j for all j ̸= i, and d ∈ RB. Let

c, c′ ∈ Aar(R) be tuples such that ci = a, c′
i = a′, and cj = c′

j ∈ f−1(dj)

174

for all j ̸= i (which exist as f is surjective). If c ̸∈ RA, then c ∈ R
A and,

consequently, d ∈ f(c) ⊆ R
B (as f is a surjective multi-homomorphism

from A to B), a contradiction with d ∈ RB. Therefore, c ∈ RA and also
c′ ∈ RA as a ∼A a′. Now d′ ∈ f(c′) ⊆ RB, and b ∼B b′ follows.

By Theorem 12.10, L -PMC(C,D) ≤ L -PMC(A,B). Since there
exists a surjective multi-valued function from A to B that preserves ∼
(namely, any f ∈ SMuHom(A,B)), we also know that m ≥ n. The
template (E,F) := (([m]; =[m]), ([n]; =[n]) is a relaxation of (C,D), be-
cause there exists a surjective multi-homomorphism from ([m]; =[m]) to
C (a multi-valued function that maps i to the i-th equivalence class of
∼A under an arbitrary linear ordering of classes) and a surjective multi-
homomorphism from D to ([n]; =[n]) (a “multi”-valued function that maps
every element in the i-th equivalence class of ∼B to {i}). By Proposi-
tion 12.11, L -PMC(E,F) ≤ L -PMC(C,D); therefore, L -PMC(E,F) ≤
L -PMC(A,B). But L -PMC(E,F) is PSPACE-hard by Proposition 12.15,
so L -PMC(A,B) is PSPACE-hard, too.

Finally, the following reduction puts together the two main techniques
that we have used to prove both hardness and tractability conditions in
this work, namely, gadget reductions and relaxations.

Lemma 12.17. Let (A,B), (C,D) be L -PMC templates and c : C →
A, d : B → D be surjective multi-valued functions such that for all
f ∈ SMuHom(A,B), the composition dfc ∈ SMuHom(C,D). Then,
L -PMC(C,D) ≤ L -PMC(A,B).

Proof. It is sufficient to construct two structures A′, B′ on the same
signature as (C,D) and with domains A′ = A, B′ = B, such that
c ∈ SMuHom(C,A′), d ∈ SMuHom(B′,D) (hence (C,D) is a relaxation
of (A′,B′)) and SMuHom(A,B) ⊆ SMuHom(A′,B′). Then, by Proposi-
tion 12.11 and Theorem 12.10, we have that

L -PMC(C,D) ≤ L -PMC(A′,B′) ≤ L -PMC(A,B).

In particular, for each relation symbol R in the signature of (C,D), we
define its interpretation in A′, B′ respectively as

RA′ = c(RC); RB′ = d−1(RD).

12. The Complexity of Promise Model Checking 175

The result clearly follows from this definition.

Example 12.18 (Partitions for PSPACE-hardness).

Here we show an example application of Lemma 12.17. In partic-
ular, let (A,B) be an L -PMC template that satisfies the follow-
ing condition: there exist partitions A = (A1, . . . , An) of A and
B = (B1, . . . , Bm) of B with 2 ≤ m ≤ n such that, for all f ∈
SMuHom(A,B) and for all i ∈ [n], there exists some j ∈ [m] such
that f(Ai) ⊆ Bj . Then, we can apply Lemma 12.17 to show that
(A,B) is PSPACE-hard. In particular, it is sufficient to pick (C,D) =
(([n]; =[n]), ([m]; =[m])), which is PSPACE-hard by Proposition 12.15.
Then, the multi-valued functions

c : [n] → A, c(i) = Ai and d : B → [m], d(b) = j for all b ∈ Bj

are such that the multiplicity of dfc is 1 for all f ∈ SMuHom(A,B)
and hence they satisfy the conditions of Lemma 12.17.

Similarly, by choosing (C,D) = (([n]; ̸=[n]), ([m]; ̸=[m])), we can
show that (A,B) is PSPACE-hard whenever there exist partitions
A = (A1, . . . , An) of A and B = (B1, . . . , Bm) of B with 2 ≤ n ≤ m
such that, for all f ∈ SMuHom(A,B) and for all j ∈ [m], there exists
a unique i ∈ [n] such that Bj ⊆ f(Ai).

12.2.5 Summary

The claims stated in Figure 11.2 are now immediate consequences of the
obtained results. Note that the claims remain true without the imposed
restrictions on structures (i.e., we can allow singleton universes, improper
relations, etc.); the only nontrivial ingredient is the L-membership of the
Boolean Sentence Value Problem [Lyn77]. We summarize our results in
Corollary 12.19.
Corollary 12.19 (L = {∃, ∀,∧,∨}). Let (A,B) be an L -PMC template.

1. If (A,B) admits an ∃∀-smuhom, or the signature of A and B con-
tains a single binary symbol and (A,B) admits both an ∀-smuhom
and an ∃-smuhom, then L -PMC(A,B) is in L.

176

2. If (A,B) admits both an ∀-smuhom and an ∃-smuhom, then L -PMC
(A,B) is in NP ∩ coNP.

3. If (A,B) admits an ∀-smuhom but no ∃-smuhom, then L -PMC(A,B)
is NP-complete.

4. If (A,B) admits an ∃-smuhom but no ∀-smuhom, then L -PMC(A,B)
is coNP-complete.

5. If (A,B) admits no ∀-smuhom and no ∃-smuhom, then L -PMC(A,B)
is NP-hard and coNP-hard.

6. {∃, ∀,∧,∨,=}-PMC(A,B), {∃,∀,∧,∨, ̸=}-PMC(A,B), and {∃, ∀,∧,
∨,¬}-PMC(A,B) are PSPACE-complete whenever |A|, |B| ≥ 2, and
in L otherwise (for {∃, ∀,∧,∨,¬} we require a nonempty signature).

We observe that the results imply a complete complexity classification
in the case that one of the two template structures is Boolean, i.e., has a
two-element universe.

Corollary 12.20 (L = {∃,∀,∧,∨}). Let (A,B) be an L -PMC template.

1. If B is Boolean, then L -PMC(A,B) is in L, or is NP-complete, or
PSPACE-complete.

2. If A is Boolean, then L -PMC(A,B) is in L, or is coNP-complete,
or PSPACE-complete.

3. If A and B are Boolean, then L -PMC(A,B) is in L, or is PSPACE-
complete.

Proof. If B is Boolean, then every ∃-smuhom (from A to B) is also
an ∃∀-smuhom. Moreover, if there is no ∀-smuhom, then every surjec-
tive multi-homomorphism is of multiplicity one, so it is also a multi-
homomorphism from (A; =A) to (B; =B). The first item now follows from
Proposition 12.15 and Theorem 12.10. The other items are shown in a
similar manner.

13 Conclusion

In this part of the thesis, we initiated the study of the fixed-template
promise model checking problem for the existential positive ({∃,∧,∨})
and the positive ({∃,∀,∧,∨}) fragments of first-order logic. We gave a full
complexity classification of {∃,∧,∨}-PMC, initiated an algebraic approach
to {∃,∀,∧,∨}-PMC, and applied it to provide several complexity results
about this class of problems.

There are two wide gaps left for further investigation. First, it is
unclear what the complexity is for the {∃,∀,∧,∨}-PMC over templates
that admit both an ∀-smuhom and an ∃-smuhom, but no ∃∀-smuhom.
While there are no such templates for digraphs (as shown in Proposition
12.13), there are examples with one ternary or two binary relations, such
as the following. We use ij as a shortcut for the pair (i, j).

A = ([3]; {(1, 2, 3)}), B = ([3]; {1, 2, 3}×{2}×{3} ∪ {1, 2}×{2}×{2, 3})
A = ([3]; {12}, {13}), B = ([3]; {12, 22, 32}, {12, 13, 22, 23, 33})

The second gap is between simultaneous NP- and coNP-hardness, and
PSPACE-hardness, when the template admits neither an ∀-smuhom nor
an ∃-smuhom. Examples with unknown complexity include the following.

A = ([3]; {(1, 2, 3)}), B = ([3]; {2, 3} × {1, 3} × {1, 2})
A = ([3]; {(1, 2, 3)}), B = ([3]; {1, 2} × {1, 2} × {3} ∪ {1, 3} × {2} × {2})
A = ([4]; {12, 34}), B = ([4]; {12, 13, 14, 23, 24, 34, 32})

Take for instance the binary example above (also pictured in Figure
13.1). One can check that there is no known PSPACE-hard template that

177

178

1

2 3

4

1

2 3

4

Figure 13.1: An example of a digraph template of unknown complexity.

we can reduce from applying Lemma 12.17; in particular, there are no
partitions of A and B that satisfy the criteria described in Example 12.18.

The following equivalent unary version of the first example is an es-
pecially interesting template, whose {∃, ∀,∧,∨}-PMC is the problem de-
scribed in the introduction.

A = ([3]; {1}, {2}, {3}), B = ([3]; {2, 3}, {1, 3}, {1, 2})

As for the theory-building, the next natural step is to capture more
complex reductions by means of surjective multi-homomorphisms; namely,
the analogue of pp-constructions, which proved to be so useful in the
theory of (Promise) CSPs [BKW17, BBKO21]. Lemma 12.15 represents a
first step in this direction. It may be also helpful to characterize and study
the sets of surjective multi-homomorphisms in the spirit of [Mar10, CM21].

Bibliography

[ABB22] Kristina Asimi, Libor Barto, and Silvia Butti. Fixed-
Template Promise Model Checking Problems. In Christine
Solnon, editor, 28th International Conference on Principles
and Practice of Constraint Programming, CP 2022, Haifa,
Israel, August 2-5, 2022, LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022. (5)

[AD22] Albert Atserias and Víctor Dalmau. Promise Constraint Sat-
isfaction and Width. In Joseph (Seffi) Naor and Niv Buch-
binder, editors, Proceedings of the 2022 ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2022, Virtual Confer-
ence / Alexandria, VA, USA, January 9 - 12, 2022, pages
1129–1153. SIAM, 2022. (14, 42, 51, 96)

[ADW17] Samson Abramsky, Anuj Dawar, and Pengming Wang. The
pebbling comonad in finite model theory. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS
2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12.
IEEE Computer Society, 2017. (140)

[AGH17] Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2+
ϵ)-Sat Is NP-hard. SIAM J. Comput., 46(5):1554–1573, 2017.
(13)

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The Multi-
plicative Weights Update Method: a Meta-Algorithm and
Applications. Theory of Computing, 8(6):121–164, 2012. (55,
66, 67)

179

180

[AM13] Albert Atserias and Elitza Maneva. Sherali–Adams Relax-
ations and Indistinguishability in Counting Logics. SIAM
Journal on Computing, 42(1):112–137, 2013. (41, 118, 119)

[Ang80] Dana Angluin. Local and Global Properties in Networks
of Processors (Extended Abstract). In Proceedings of the
Twelfth Annual ACM Symposium on Theory of Computing,
STOC ’80, page 82–93, New York, NY, USA, 1980. Associa-
tion for Computing Machinery. (57, 91)

[Bab16] László Babai. Graph Isomorphism in Quasipolynomial Time
[Extended Abstract]. In Proceedings of the Forty-Eighth An-
nual ACM Symposium on Theory of Computing, STOC ’16,
page 684–697, New York, NY, USA, 2016. Association for
Computing Machinery. (33)

[Bar16] Libor Barto. The collapse of the bounded width hierarchy.
Journal of Logic and Computation, 26(3):923–943, 2016. (51)

[BB22] Libor Barto and Silvia Butti. Weisfeiler-Leman Invariant
Promise Valued CSPs. In Christine Solnon, editor, 28th In-
ternational Conference on Principles and Practice of Con-
straint Programming, CP 2022, Haifa, Israel, August 2-5,
2022, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2022. (4, 89, 95)

[BBB+21] Libor Barto, Zarathustra Brady, Andrei Bulatov, Marcin
Kozik, and Dmitriy Zhuk. Minimal Taylor Algebras as a
Common Framework for the Three Algebraic Approaches to
the CSP. In 36th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2021, Rome, Italy, June 29 - July
2, 2021, pages 1–13. IEEE, 2021. (10)

[BBC+09] Ferdinand Börner, Andrei A. Bulatov, Hubie Chen, Pe-
ter Jeavons, and Andrei A. Krokhin. The complexity of
constraint satisfaction games and QCSP. Inf. Comput.,
207(9):923–944, 2009. (16)

[BBJK03] Ferdinand Börner, Andrei A. Bulatov, Peter Jeavons, and
Andrei A. Krokhin. Quantified Constraints: Algorithms and

BIBLIOGRAPHY 181

Complexity. In Matthias Baaz and Johann A. Makowsky, ed-
itors, Computer Science Logic, 17th International Workshop,
CSL 2003, 12th Annual Conference of the EACSL, and 8th
Kurt Gödel Colloquium, KGC 2003, Vienna, Austria, August
25-30, 2003, Proceedings, volume 2803 of Lecture Notes in
Computer Science, pages 58–70. Springer, 2003. (16)

[BBKO21] Libor Barto, Jakub Bulín, Andrei A. Krokhin, and Jakub
Opršal. Algebraic Approach to Promise Constraint Satisfac-
tion. J. ACM, 68(4):28:1–28:66, 2021. (14, 96, 178)

[BD21a] Silvia Butti and Víctor Dalmau. Fractional Homomorphism,
Weisfeiler-Leman Invariance, and the Sherali-Adams Hier-
archy for the Constraint Satisfaction Problem. In Filippo
Bonchi and Simon J. Puglisi, editors, 46th International Sym-
posium on Mathematical Foundations of Computer Science,
MFCS 2021, August 23-27, 2021, Tallinn, Estonia, volume
202 of LIPIcs, pages 27:1–27:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. (4, 5, 44, 86, 89)

[BD21b] Silvia Butti and Victor Dalmau. The Complexity of the Dis-
tributed Constraint Satisfaction Problem. In Markus Bläser
and Benjamin Monmege, editors, 38th International Sympo-
sium on Theoretical Aspects of Computer Science, STACS
2021, March 16-19, 2021, Saarbrücken, Germany (Virtual
Conference), volume 187 of LIPIcs, pages 20:1–20:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. (4)

[BD22] Silvia Butti and Víctor Dalmau. The Complexity of the Dis-
tributed Constraint Satisfaction Problem. Theory of Com-
puting Systems, 2022. (3, 55)

[BES80] László Babai, Paul Erdős, and Stanley M. Selkow. Random
Graph Isomorphism. SIAM J. Comput., 9(3):628–635, 1980.
(35, 115)

[BG19] Joshua Brakensiek and Venkatesan Guruswami. An Algorith-
mic Blend of LPs and Ring Equations for Promise CSPs. In

182

Timothy M. Chan, editor, Proceedings of the Thirtieth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pages
436–455. SIAM, 2019. (13)

[BG20] Joshua Brakensiek and Venkatesan Guruswami. Symmetric
Polymorphisms and Efficient Decidability of Promise CSPs.
In Shuchi Chawla, editor, Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, Salt
Lake City, UT, USA, January 5-8, 2020, pages 297–304.
SIAM, 2020. (13)

[BG21] Joshua Brakensiek and Venkatesan Guruswami. Promise
Constraint Satisfaction: Algebraic Structure and a Symmet-
ric Boolean Dichotomy. SIAM J. Comput., 50(6):1663–1700,
2021. (13)

[BGWŽ20] Joshua Brakensiek, Venkatesan Guruswami, Marcin
Wrochna, and Stanislav Živný. The Power of the Com-
bined Basic Linear Programming and Affine Relaxation
for Promise Constraint Satisfaction Problems. SIAM J.
Comput., 49(6):1232–1248, 2020. (13, 14, 86)

[BHB+18] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Al-
varo Sanchez-Gonzalez, Vinícius Flores Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam San-
toro, Ryan Faulkner, Çaglar Gülçehre, H. Francis Song, An-
drew J. Ballard, Justin Gilmer, George E. Dahl, Ashish
Vaswani, Kelsey R. Allen, Charles Nash, Victoria Langston,
Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli,
Matthew Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pas-
canu. Relational inductive biases, deep learning, and graph
networks. CoRR, abs/1806.01261, 2018. (54)

[BJK05] Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokhin.
Classifying the Complexity of Constraints Using Finite Alge-
bras. SIAM J. Comput., 34(3):720–742, 2005. (8, 9, 22)

BIBLIOGRAPHY 183

[BK79] László Babai and Ludek Kucera. Canonical Labelling of
Graphs in Linear Average Time. In 20th Annual Symposium
on Foundations of Computer Science, San Juan, Puerto Rico,
29-31 October 1979, pages 39–46. IEEE Computer Society,
1979. (35, 115)

[BK09] Libor Barto and Marcin Kozik. Constraint Satisfaction Prob-
lems of Bounded Width. In 50th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2009, October
25-27, 2009, Atlanta, Georgia, USA, pages 595–603. IEEE
Computer Society, 2009. (51)

[BK14] Libor Barto and Marcin Kozik. Constraint Satisfaction Prob-
lems Solvable by Local Consistency Methods. J. ACM,
61(1):3:1–3:19, 2014. (51)

[BK17] Libor Barto and Marcin Kozik. Absorption in Universal Alge-
bra and CSP. In Andrei A. Krokhin and Stanislav Živný, ed-
itors, The Constraint Satisfaction Problem: Complexity and
Approximability, volume 7 of Dagstuhl Follow-Ups, pages 45–
77. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.
(10)

[BKGS01] Ramon Bejar, Bhaskar Krishnamachari, Carla Gomes, and
Bart Selman. Distributed constraint satisfaction in a wire-
less sensor tracking system. In Workshop on Distributed Con-
straint Reasoning, International Joint Conference on Artifi-
cial Intelligence, volume 4, 2001. (53)

[BKKR69a] V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A.
Romov. Galois theory for Post algebras. I. Cybernetics,
5(3):243–252, 1969. (11)

[BKKR69b] V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A.
Romov. Galois theory for Post algebras. II. Cybernetics,
5(5):531–539, 1969. (11)

[BKL08] Andrei A. Bulatov, Andrei Krokhin, and Benoit Larose. Du-
alities for Constraint Satisfaction Problems, pages 93–124.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. (49)

184

[BKM12] Manuel Bodirsky, Jan Kára, and Barnaby Martin. The com-
plexity of surjective homomorphism problems - a survey. Dis-
cret. Appl. Math., 160(12):1680–1690, 2012. (12)

[BKM+20] Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez,
Juan L. Reutter, and Juan Pablo Silva. The Logical Ex-
pressiveness of Graph Neural Networks. In 8th International
Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
(54)

[BKN09] Libor Barto, Marcin Kozik, and Todd Niven. The CSP Di-
chotomy Holds for Digraphs with No Sources and No Sinks
(A Positive Answer to a Conjecture of Bang-Jensen and Hell).
SIAM J. Comput., 38(5):1782–1802, 2009. (9)

[BKO19] Jakub Bulín, Andrei A. Krokhin, and Jakub Oprsal. Alge-
braic approach to promise constraint satisfaction. In Moses
Charikar and Edith Cohen, editors, Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages
602–613. ACM, 2019. (14)

[BKW17] Libor Barto, Andrei Krokhin, and Ross Willard. Polymor-
phisms, and How to Use Them. In Andrei Krokhin and
Stanislav Živný, editors, The Constraint Satisfaction Prob-
lem: Complexity and Approximability, volume 7 of Dagstuhl
Follow-Ups, pages 1–44. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 2017. (10, 12, 151, 178)

[Bod21] Manuel Bodirsky. Complexity of Infinite-Domain Constraint
Satisfaction. Lecture Notes in Logic. Cambridge University
Press, 2021. (12)

[Bol82] Béla Bollobás. Distinguishing Vertices of Random Graphs.
In Béla Bollobás, editor, Graph Theory, volume 62 of North-
Holland Mathematics Studies, pages 33–49. North-Holland,
1982. (116)

BIBLIOGRAPHY 185

[BOP18] Libor Barto, Jakub Opršal, and Michael Pinsker. The
wonderland of reflections. Israel Journal of Mathematics,
223(1):363–398, 2018. (12, 119, 120)

[Bör08] Ferdinand Börner. Basics of Galois Connections. In Nadia
Creignou, Phokion G. Kolaitis, and Heribert Vollmer, editors,
Complexity of Constraints - An Overview of Current Research
Themes [Result of a Dagstuhl Seminar], volume 5250 of Lec-
ture Notes in Computer Science, pages 38–67. Springer, 2008.
(151)

[BSV+96] P. Boldi, S. Shammah, S. Vigna, B. Codenotti, P. Gemmell,
and J. Simon. Symmetry Breaking in Anonymous Networks:
Characterizations. In ISTCS, 1996. (57, 145)

[Bul06] Andrei A. Bulatov. A dichotomy theorem for constraint sat-
isfaction problems on a 3-element set. J. ACM, 53(1):66–120,
2006. (9)

[Bul09] Andrei Bulatov. Bounded relational width. 2009. (51)

[Bul17] A. A. Bulatov. A Dichotomy Theorem for Nonuniform CSPs.
In 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), pages 319–330, Oct 2017. (10,
12, 150)

[BV01] Paolo Boldi and Sebastiano Vigna. An Effective Character-
ization of Computability in Anonymous Networks. In Jen-
nifer L. Welch, editor, Distributed Computing, 15th Inter-
national Conference, DISC 2001, Lisbon, Portugal, October
3-5, 2001, Proceedings, volume 2180 of Lecture Notes in Com-
puter Science, pages 33–47. Springer, 2001. (57, 145)

[CCC+13] David A. Cohen, Martin C. Cooper, Páidí Creed, Peter G.
Jeavons, and Stanislav Živný. An Algebraic Theory of
Complexity for Discrete Optimization. SIAM J. Comput.,
42(5):1915–1939, 2013. (15, 100)

186

[CCJ06] David A. Cohen, Martin C. Cooper, and Peter Jeavons. An
Algebraic Characterisation of Complexity for Valued Con-
straint. In Frédéric Benhamou, editor, Principles and Prac-
tice of Constraint Programming - CP 2006, 12th Interna-
tional Conference, CP 2006, Nantes, France, September 25-
29, 2006, Proceedings, volume 4204 of Lecture Notes in Com-
puter Science, pages 107–121. Springer, 2006. (15)

[CCJK06] David A. Cohen, Martin C. Cooper, Peter Jeavons, and An-
drei A. Krokhin. The complexity of soft constraint satisfac-
tion. Artif. Intell., 170(11):983–1016, 2006. (15)

[CCJŽ11] David A. Cohen, Páidí Creed, Peter G. Jeavons, and
Stanislav Živný. An Algebraic Theory of Complexity for Val-
ued Constraints: Establishing a Galois Connection. In Filip
Murlak and Piotr Sankowski, editors, Mathematical Founda-
tions of Computer Science 2011 - 36th International Sym-
posium, MFCS 2011, Warsaw, Poland, August 22-26, 2011.
Proceedings, volume 6907 of Lecture Notes in Computer Sci-
ence, pages 231–242. Springer, 2011. (15)

[CDG13] Hubie Chen, Víctor Dalmau, and Berit Grußien. Arc con-
sistency and friends. J. Log. Comput., 23(1):87–108, 2013.
(49)

[CFI92] Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal
lower bound on the number of variables for graph identifica-
tions. Comb., 12(4):389–410, 1992. (36, 117, 118)

[Che09] Hubie Chen. A rendezvous of logic, complexity, and algebra.
ACM Computing Surveys (CSUR), 42(1):2, 2009. (10)

[Che12] Hubie Chen. Meditations on Quantified Constraint Satisfac-
tion. In Robert L. Constable and Alexandra Silva, editors,
Logic and Program Semantics - Essays Dedicated to Dexter
Kozen on the Occasion of His 60th Birthday, volume 7230 of
Lecture Notes in Computer Science, pages 35–49. Springer,
2012. (17, 151)

BIBLIOGRAPHY 187

[CKS01] Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Com-
plexity classifications of Boolean constraint satisfaction prob-
lems, volume 7 of SIAM monographs on discrete mathematics
and applications. SIAM, 2001. (16)

[CL17] Hubie Chen and Benoît Larose. Asking the Metaquestions
in Constraint Tractability. ACM Trans. Comput. Theory,
9(3):11:1–11:27, 2017. (12)

[CLRS13] Siu On Chan, James R. Lee, Prasad Raghavendra, and David
Steurer. Approximate Constraint Satisfaction Requires Large
LP Relaxations. In 54th Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 350–359. IEEE Computer
Society, 2013. (42)

[CM21] Catarina Carvalho and Barnaby Martin. The lattice and
semigroup structure of multipermutations. International
Journal of Algebra and Computation, 0(0):1–25, 2021. (151,
178)

[CMZ17] Catarina Carvalho, Barnaby Martin, and Dmitriy Zhuk.
The Complexity of Quantified Constraints Using the Alge-
braic Formulation. In Kim G. Larsen, Hans L. Bodlaen-
der, and Jean-François Raskin, editors, 42nd International
Symposium on Mathematical Foundations of Computer Sci-
ence, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark,
volume 83 of LIPIcs, pages 27:1–27:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017. (17)

[Coo00] Stephen Cook. The P versus NP problem. 2000. (1)

[CRŽ22] Clément Carbonnel, Miguel Romero, and Stanislav Živný.
The Complexity of General-Valued Constraint Satisfaction
Problems Seen from the Other Side. SIAM Journal on Com-
puting, 51(1):19–69, 2022. (15, 96, 104)

[CŽ11] Páidí Creed and Stanislav Živný. On Minimal Weighted
Clones. In Jimmy Ho-Man Lee, editor, Principles and Prac-

188

tice of Constraint Programming - CP 2011 - 17th Interna-
tional Conference, CP 2011, Perugia, Italy, September 12-16,
2011. Proceedings, volume 6876 of Lecture Notes in Computer
Science, pages 210–224. Springer, 2011. (15)

[CZ22a] Lorenzo Ciardo and Stanislav Zivný. CLAP: A New Algo-
rithm for Promise CSPs. In Joseph (Seffi) Naor and Niv
Buchbinder, editors, Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual
Conference / Alexandria, VA, USA, January 9 - 12, 2022,
pages 1057–1068. SIAM, 2022. (14)

[CŽ22b] Lorenzo Ciardo and Stanislav Živný. The Sherali-Adams
Hierarchy for Promise CSPs through Tensors. CoRR,
abs/2203.02478, 2022. (14, 42)

[Dal97] Victor Dalmau. Some dichotomy theorems on constant-free
quantified Boolean formulas. 1997. (16)

[DBL13] Ken R Duffy, Charles Bordenave, and Douglas J Leith. De-
centralized constraint satisfaction. IEEE/ACM Transactions
on Networking (TON), 21(4):1298–1308, 2013. (53)

[DGR18] Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász
Meets Weisfeiler and Leman. In Ioannis Chatzigiannakis,
Christos Kaklamanis, Dániel Marx, and Donald Sannella,
editors, 45th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2018, July 9-13, 2018,
Prague, Czech Republic, volume 107 of LIPIcs, pages 40:1–
40:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018. (36, 118)

[DJKK08] Vladimir G. Deineko, Peter Jonsson, Mikael Klasson, and
Andrei A. Krokhin. The approximability of MAX CSP with
fixed-value constraints. J. ACM, 55(4):16:1–16:37, 2008. (8,
15)

[DK13] Víctor Dalmau and Andrei A. Krokhin. Robust Satisfiability
for CSPs: Hardness and Algorithmic Results. ACM Trans.
Comput. Theory, 5(4):15:1–15:25, 2013. (86)

BIBLIOGRAPHY 189

[DKM18] Víctor Dalmau, Andrei A. Krokhin, and Rajsekar
Manokaran. Towards a characterization of constant-factor
approximable finite-valued CSPs. J. Comput. Syst. Sci.,
97:14–27, 2018. (86)

[DP99] Víctor Dalmau and Justin Pearson. Closure Functions and
Width 1 Problems. In Joxan Jaffar, editor, Principles and
Practice of Constraint Programming - CP’99, 5th Interna-
tional Conference, Alexandria, Virginia, USA, October 11-
14, 1999, Proceedings, volume 1713 of Lecture Notes in Com-
puter Science, pages 159–173. Springer, 1999. (49)

[Dvo10] Zdenek Dvorák. On recognizing graphs by numbers of ho-
momorphisms. J. Graph Theory, 64(4):330–342, 2010. (36,
118)

[FKOS19] Miron Ficak, Marcin Kozik, Miroslav Olsák, and Szymon
Stankiewicz. Dichotomy for Symmetric Boolean PCSPs. In
Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and
Stefano Leonardi, editors, 46th International Colloquium on
Automata, Languages, and Programming, ICALP 2019, July
9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 57:1–
57:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. (13)

[Fok13] Wan Fokkink. Distributed algorithms: an intuitive approach.
MIT Press, 2013. (56)

[FPY18] Ferdinando Fioretto, Enrico Pontelli, and William Yeoh.
Distributed Constraint Optimization Problems and Applica-
tions: A Survey. J. Artif. Int. Res., 61(1):623–698, January
2018. (21, 54, 55)

[FV98] Tomás Feder and Moshe Y Vardi. The computational struc-
ture of monotone monadic SNP and constraint satisfaction:
A study through Datalog and group theory. SIAM Journal
on Computing, 28(1):57–104, 1998. (8, 9, 49, 51)

[Gei68] David Geiger. Closed systems of functions and predicates.
Pacific Journal of Mathematics, 27(1):95 – 100, 1968. (11)

190

[Ger17] Jonathan Gerhard. Visualizing the difference be-
tween the 4×4 Rook’s graph and the Shrikhande
graph. https://mathematicaladd.wordpress.com/2017/
02/06/, 2017. (117)

[GJ76] M. R. Garey and D. S. Johnson. The Complexity of Near-
Optimal Graph Coloring. J. ACM, 23(1):43–49, jan 1976.
(13)

[GKMS17] Martin Grohe, Kristian Kersting, Martin Mladenov, and Pas-
cal Schweitzer. Color refinement and its applications. Van
den Broeck, G.; Kersting, K.; Natarajan, S, 2017. (34)

[GL18] Venkatesan Guruswami and Euiwoong Lee. Strong Inap-
proximability Results on Balanced Rainbow-Colorable Hy-
pergraphs. Comb., 38(3):547–599, 2018. (153, 164)

[GMT09] Konstantinos Georgiou, Avner Magen, and Madhur Tulsiani.
Optimal Sherali-Adams Gaps from Pairwise Independence. In
Irit Dinur, Klaus Jansen, Joseph Naor, and José D. P. Rolim,
editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, 12th International
Workshop, APPROX 2009, and 13th International Work-
shop, RANDOM 2009, Berkeley, CA, USA, August 21-23,
2009. Proceedings, volume 5687 of Lecture Notes in Computer
Science, pages 125–139. Springer, 2009. (42)

[GN21] Martin Grohe and Daniel Neuen. Recent advances on the
graph isomorphism problem. In Konrad K. Dabrowski, Max-
imilien Gadouleau, Nicholas Georgiou, Matthew Johnson,
George B. Mertzios, and Daniël Paulusma, editors, Surveys in
Combinatorics, 2021: Invited lectures from the 28th British
Combinatorial Conference, Durham, UK, July 5-9, 2021,
pages 187–234. Cambridge University Press, 2021. (117)

[GO15] Martin Grohe and Martin Otto. Pebble Games and linear
equations. J. Symb. Log., 80(3):797–844, 2015. (119, 140)

https://mathematicaladd.wordpress.com/2017/02/06/
https://mathematicaladd.wordpress.com/2017/02/06/

BIBLIOGRAPHY 191

[Gro07] Martin Grohe. The Complexity of Homomorphism and Con-
straint Satisfaction Problems Seen from the Other Side. J.
ACM, 54(1), March 2007. (9, 145)

[Gro12] Martin Grohe. Fixed-point definability and polynomial time
on graphs with excluded minors. J. ACM, 59(5):27:1–27:64,
2012. (117)

[Gro20] Martin Grohe. Word2vec, Node2vec, Graph2vec, X2vec: To-
wards a Theory of Vector Embeddings of Structured Data.
In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS’20,
page 1–16, New York, NY, USA, 2020. Association for Com-
puting Machinery. (53)

[GS20] Martin Grohe and Pascal Schweitzer. The graph isomorphism
problem. Commun. ACM, 63(11):128–134, 2020. (117)

[GT18] Mrinalkanti Ghosh and Madhur Tulsiani. From Weak to
Strong Linear Programming Gaps for All Constraint Satis-
faction Problems. Theory Comput., 14(1):1–33, 2018. (86)

[GWN20] Martin Grohe, Daniel Wiebking, and Daniel Neuen. Iso-
morphism Testing for Graphs Excluding Small Minors. In
Sandy Irani, editor, 61st IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2020, Durham, NC,
USA, November 16-19, 2020, pages 625–636. IEEE, 2020.
(117)

[Hel96] Lauri Hella. Logical hierarchies in PTIME. Inf. Comput.,
129(1):1–19, 1996. (140)

[HN90] Pavol Hell and Jaroslav Nešetřil. On the complexity of H -
coloring. J. Comb. Theory, Ser. B, 48(1):92–110, 1990. (9)

[IL90] Neil Immerman and Eric Lander. Describing Graphs: A
First-Order Approach to Graph Canonization, pages 59–81.
Springer New York, New York, NY, 1990. (115, 116)

192

[Imp95] Russell Impagliazzo. A Personal View of Average-Case Com-
plexity. In Proceedings of the Tenth Annual Structure in Com-
plexity Theory Conference, Minneapolis, Minnesota, USA,
June 19-22, 1995, pages 134–147. IEEE Computer Society,
1995. (1)

[JCG97] Peter Jeavons, David A. Cohen, and Marc Gyssens. Closure
properties of constraints. J. ACM, 44(4):527–548, 1997. (9)

[Jea98] Peter Jeavons. On the Algebraic Structure of Combinatorial
Problems. Theor. Comput. Sci., 200(1-2):185–204, 1998. (8,
9, 11)

[Jer17] Mark Jerrum. Counting Constraint Satisfaction Problems.
In Andrei A. Krokhin and Stanislav Živný, editors, The Con-
straint Satisfaction Problem: Complexity and Approximabil-
ity, volume 7 of Dagstuhl Follow-Ups, pages 205–231. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017. (8, 12)

[JLNZ17] Peter Jonsson, Victor Lagerkvist, Gustav Nordh, and Bruno
Zanuttini. Strong partial clones and the time complexity of
SAT problems. J. Comput. Syst. Sci., 84:52–78, 2017. (64)

[Kaz22] Alexander Kazda. Minion homomorphisms give reductions
between promise valued CSPs. In preparation, 2022. (95, 97)

[Kie20] Sandra Kiefer. The Weisfeiler-Leman algorithm: an explo-
ration of its power. ACM SIGLOG News, 7(3):5–27, 2020.
(117)

[KKR17] Vladimir Kolmogorov, Andrei A. Krokhin, and Michal
Rolínek. The Complexity of General-Valued CSPs. SIAM
J. Comput., 46(3):1087–1110, 2017. (15)

[KLS00] Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the
Hardness of Approximating the Chromatic Number. Comb.,
20(3):393–415, 2000. (13)

BIBLIOGRAPHY 193

[KMTV09] Amit Kumar, Rajsekar Manokaran, Madhur Tulsiani, and
Nisheeth K. Vishnoi. On the Optimality of a Class of LP-
based Algorithms. Electron. Colloquium Comput. Complex.,
page 124, 2009. (40)

[KMTV11] Amit Kumar, Rajsekar Manokaran, Madhur Tulsiani, and
Nisheeth K. Vishnoi. On LP-Based Approximability for
Strict CSPs. In Dana Randall, editor, Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2011, San Francisco, California, USA,
January 23-25, 2011, pages 1560–1573. SIAM, 2011. (86)

[KN22] Sandra Kiefer and Daniel Neuen. The Power of the Weisfeiler-
Leman Algorithm to Decompose Graphs. SIAM J. Discret.
Math., 36(1):252–298, 2022. (117)

[KO15] Marcin Kozik and Joanna Ochremiak. Algebraic Properties
of Valued Constraint Satisfaction Problem. In Magnús M.
Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina
Speckmann, editors, Automata, Languages, and Program-
ming - 42nd International Colloquium, ICALP 2015, Kyoto,
Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of
Lecture Notes in Computer Science, pages 846–858. Springer,
2015. (15, 100)

[Kol13] Vladimir Kolmogorov. The Power of Linear Programming for
Finite-Valued CSPs: A Constructive Characterization. In Fe-
dor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and
David Peleg, editors, Automata, Languages, and Program-
ming - 40th International Colloquium, ICALP 2013, Riga,
Latvia, July 8-12, 2013, Proceedings, Part I, volume 7965 of
Lecture Notes in Computer Science, pages 625–636. Springer,
2013. (101)

[KOT+12] Gabor Kun, Ryan O’Donnell, Suguru Tamaki, Yuichi
Yoshida, and Yuan Zhou. Linear Programming, Width-1
CSPs, and Robust Satisfaction. In Proceedings of the 3rd In-
novations in Theoretical Computer Science Conference, ITCS

194

’12, page 484–495, New York, NY, USA, 2012. Association
for Computing Machinery. (40, 44, 45, 50, 86)

[Koz16] Marcin Kozik. Weak consistency notions for all the CSPs of
bounded width. In 2016 31st Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pages 1–9, 2016. (51)

[Koz21] Marcin Kozik. Solving CSPs Using Weak Local Consistency.
SIAM Journal on Computing, 50(4):1263–1286, 2021. (51,
55, 77, 78, 79)

[KPS19] Sandra Kiefer, Ilia Ponomarenko, and Pascal Schweitzer. The
Weisfeiler-Leman Dimension of Planar Graphs Is at Most 3.
J. ACM, 66(6):44:1–44:31, 2019. (117)

[KR08] Subhash Khot and Oded Regev. Vertex cover might be
hard to approximate to within 2 − ϵ. J. Comput. Syst. Sci.,
74(3):335–349, 2008. (40)

[KS16] Gábor Kun and Mario Szegedy. A new line of attack on the
dichotomy conjecture. European Journal of Combinatorics,
52:338 – 367, 2016. Special Issue: Recent Advances in Graphs
and Analysis. (50)

[KSS22] Sandra Kiefer, Pascal Schweitzer, and Erkal Selman. Graphs
Identified by Logics with Counting. ACM Trans. Comput.
Log., 23(1):1:1–1:31, 2022. (116)

[KTŽ15] Vladimir Kolmogorov, Johan Thapper, and Stanislav Živný.
The Power of Linear Programming for General-Valued CSPs.
SIAM J. Comput., 44(1):1–36, 2015. (15, 96, 97)

[Kun13] Gábor Kun. Constraints, MMSNP and expander relational
structures. Comb., 33(3):335–347, 2013. (90)

[KV00] Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-Query
Containment and Constraint Satisfaction. J. Comput. Syst.
Sci., 61(2):302–332, 2000. (8)

BIBLIOGRAPHY 195

[KŽ17a] Andrei Krokhin and Stanislav Živný. The Complexity of
Valued CSPs. In Andrei Krokhin and Stanislav Živný, edi-
tors, The Constraint Satisfaction Problem: Complexity and
Approximability, volume 7 of Dagstuhl Follow-Ups, pages
233–266. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 2017. (14, 15, 101)

[KŽ17b] Andrei Krokhin and Stanislav Živný. The Constraint Satis-
faction Problem: Complexity and Approximability, volume 7.
Schloss Dagstuhl, 2017. (7)

[Lad75] Richard E. Ladner. On the Structure of Polynomial Time
Reducibility. J. ACM, 22(1):155–171, 1975. (10)

[Lei82] Frank Thomson Leighton. Finite common coverings of
graphs. Journal of Combinatorial Theory, Series B, 33(3):231
– 238, 1982. (36)

[LLT07] Benoît Larose, Cynthia Loten, and Claude Tardif. A Char-
acterisation of First-Order Constraint Satisfaction Problems.
Log. Methods Comput. Sci., 3(4), 2007. (21)

[Lov67] László Lovász. Operations with structures. Acta Mathe-
matica Academiae Scientiarum Hungarica, 18(3-4):321–328,
1967. (117)

[LS91] László Lovász and Alexander Schrijver. Cones of Matrices
and Set-Functions and 0-1 Optimization. SIAM J. Optim.,
1(2):166–190, 1991. (41)

[LW68] AA Leman and B Weisfeiler. A reduction of a graph to
a canonical form and an algebra arising during this re-
duction. Nauchno-Technicheskaya Informatsiya, 2(9):12–16,
1968. (34)

[Lyn77] Nancy Lynch. Log Space Recognition and Translation of
Parenthesis Languages. J. ACM, 24(4):583–590, oct 1977.
(175)

196

[Mal14] Peter Malkin. Sherali–Adams relaxations of graph isomor-
phism polytopes. Discrete Optimization, 12:73–97, 2014.
(118, 119)

[Mar08] Barnaby Martin. First-Order Model Checking Problems Pa-
rameterized by the Model. In Arnold Beckmann, Costas Dim-
itracopoulos, and Benedikt Löwe, editors, Logic and Theory
of Algorithms, 4th Conference on Computability in Europe,
CiE 2008, Athens, Greece, June 15-20, 2008, Proceedings,
volume 5028 of Lecture Notes in Computer Science, pages
417–427. Springer, 2008. (151, 153, 171)

[Mar10] Barnaby Martin. The Lattice Structure of Sets of Surjective
Hyper-Operations. In David Cohen, editor, Principles and
Practice of Constraint Programming - CP 2010 - 16th Inter-
national Conference, CP 2010, St. Andrews, Scotland, UK,
September 6-10, 2010. Proceedings, volume 6308 of Lecture
Notes in Computer Science, pages 368–382. Springer, 2010.
(151, 178)

[Mar17] Barnaby Martin. Quantified Constraints in Twenty Sev-
enteen. In Andrei Krokhin and Stanislav Živný, edi-
tors, The Constraint Satisfaction Problem: Complexity and
Approximability, volume 7 of Dagstuhl Follow-Ups, pages
327–346. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 2017. (16, 151)

[Mei08] Amnon Meisels. Distributed Search by Constrained Agents:
algorithms, performance, communication. Springer Science
& Business Media, 2008. (54)

[MLM+21] Christopher Morris, Yaron Lipman, Haggai Maron, Bastian
Rieck, Nils M. Kriege, Martin Grohe, Matthias Fey, and
Karsten M. Borgwardt. Weisfeiler and Leman go Machine
Learning: The Story so far. CoRR, abs/2112.09992, 2021.
(54)

[MM10] Barnaby Martin and Jos Martin. The Complexity of Posi-
tive First-Order Logic without Equality II: The Four-Element

BIBLIOGRAPHY 197

Case. In Anuj Dawar and Helmut Veith, editors, Computer
Science Logic, 24th International Workshop, CSL 2010, 19th
Annual Conference of the EACSL, Brno, Czech Republic, Au-
gust 23-27, 2010. Proceedings, volume 6247 of Lecture Notes
in Computer Science, pages 426–438. Springer, 2010. (151)

[MM11] Florent R. Madelaine and Barnaby Martin. A Tetrachotomy
for Positive First-Order Logic without Equality. In Proceed-
ings of the 26th Annual IEEE Symposium on Logic in Com-
puter Science, LICS 2011, June 21-24, 2011, Toronto, On-
tario, Canada, pages 311–320. IEEE Computer Society, 2011.
(151, 155, 168, 169, 171)

[MM12] Florent Madelaine and Barnaby Martin. The Complexity of
Positive First-Order Logic without Equality. ACM Trans.
Comput. Logic, 13(1), January 2012. (151, 155)

[MM17] Konstantin Makarychev and Yury Makarychev. Approxi-
mation Algorithms for CSPs. In Andrei A. Krokhin and
Stanislav Živný, editors, The Constraint Satisfaction Prob-
lem: Complexity and Approximability, volume 7 of Dagstuhl
Follow-Ups, pages 287–325. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017. (15)

[MM18] Florent R. Madelaine and Barnaby Martin. On the Com-
plexity of the Model Checking Problem. SIAM J. Comput.,
47(3):769–797, 2018. (8, 16, 150, 151, 153, 171)

[MRF+19] Christopher Morris, Martin Ritzert, Matthias Fey, William L
Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin
Grohe. Weisfeiler and Leman go neural: Higher-order graph
neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 4602–4609, 2019. (53,
54)

[NR89] Jaroslav Nešetřil and Vojtěch Rödl. Chromatically optimal
rigid graphs. Journal of Combinatorial Theory, Series B,
46(2):133–141, 1989. (44)

198

[RBW06] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook
of Constraint Programming (Foundations of Artificial Intel-
ligence). Elsevier Science Inc., USA, 2006. (7)

[RS84] Neil Robertson and Paul D. Seymour. Graph minors. III.
Planar tree-width. J. Comb. Theory, Ser. B, 36(1):49–64,
1984. (118)

[RSU94] Motakuri V. Ramana, Edward R. Scheinerman, and Daniel
Ullman. Fractional isomorphism of graphs. Discrete Mathe-
matics, 132(1):247 – 265, 1994. (34, 36)

[SA90] Hanif D. Sherali and Warren P. Adams. A Hierarchy of Re-
laxations Between the Continuous and Convex Hull Repre-
sentations for Zero-One Programming Problems. SIAM J.
Discret. Math., 3(3):411–430, 1990. (41)

[Sch78] Thomas J. Schaefer. The Complexity of Satisfiability Prob-
lems. In Proceedings of the Tenth Annual ACM Symposium
on Theory of Computing, STOC ’78, pages 216–226, New
York, NY, USA, 1978. ACM. (9)

[Sch86] Alexander Schrijver. Theory of Linear and Integer Program-
ming. John Wiley & Sons, Inc., USA, 1986. (102)

[SU11] Edward R Scheinerman and Daniel H Ullman. Fractional
graph theory: a rational approach to the theory of graphs.
Courier Corporation, 2011. (34, 124, 125)

[Tin86] Gottfried Tinhofer. Graph isomorphism and theorems of
Birkhoff type. Computing, 36(4):285–300, 1986. (36)

[Tin91] Gottfried Tinhofer. A note on compact graphs. Discret. Appl.
Math., 30(2-3):253–264, 1991. (36)

[TRWG20] Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin
Grohe. Graph Neural Networks for Maximum Constraint
Satisfaction. Frontiers Artif. Intell., 3:580607, 2020. (54)

BIBLIOGRAPHY 199

[TŽ12] Johan Thapper and Stanislav Živný. The Power of Linear
Programming for Valued CSPs. In 53rd Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS 2012,
New Brunswick, NJ, USA, October 20-23, 2012, pages 669–
678. IEEE Computer Society, 2012. (15, 45, 101, 106)

[TŽ16] Johan Thapper and Stanislav Živný. The Complexity of
Finite-Valued CSPs. J. ACM, 63(4):37:1–37:33, 2016. (15,
146)

[TŽ17] Johan Thapper and Stanislav Živný. The Power of Sherali-
Adams Relaxations for General-Valued CSPs. SIAM J. Com-
put., 46(4):1241–1279, 2017. (15, 42, 51, 97)

[VŽ21] Caterina Viola and Stanislav Živný. The Combined Basic
LP and Affine IP Relaxation for Promise VCSPs on Infinite
Domains. ACM Trans. Algorithms, 17(3):21:1–21:23, 2021.
(45, 95, 97, 100, 101, 106)

[WŽ20] Marcin Wrochna and Stanislav Živný. Improved hardness
for H -colourings of G-colourable graphs. In Shuchi Chawla,
editor, Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 1426–1435. SIAM, 2020. (14)

[XHLJ19] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.
How Powerful are Graph Neural Networks? In 7th Interna-
tional Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. (54)

[YDIK98] Makoto Yokoo, Edmund H Durfee, Toru Ishida, and Kazuhiro
Kuwabara. The distributed constraint satisfaction problem:
Formalization and algorithms. IEEE Transactions on knowl-
edge and data engineering, 10(5):673–685, 1998. (55)

[YH00] Makoto Yokoo and Katsutoshi Hirayama. Algorithms for
distributed constraint satisfaction: A review. Autonomous
Agents and Multi-Agent Systems, 3(2):185–207, 2000. (54,
55)

200

[YIDK92] Makoto Yokoo, Toru Ishida, Edmund H Durfee, and Kazuhiro
Kuwabara. Distributed constraint satisfaction for formalizing
distributed problem solving. In [1992] Proceedings of the 12th
International Conference on Distributed Computing Systems,
pages 614–621. IEEE, 1992. (53, 55)

[YK88] Masafumi Yamashita and Tiko Kameda. Computing on an
Anonymous Network. In Danny Dolev, editor, Proceedings of
the Seventh Annual ACM Symposium on Principles of Dis-
tributed Computing, Toronto, Ontario, Canada, August 15-
17, 1988, pages 117–130. ACM, 1988. (57)

[YZ14] Yuichi Yoshida and Yuan Zhou. Approximation schemes
via Sherali-Adams hierarchy for dense constraint satisfac-
tion problems and assignment problems. In Moni Naor, edi-
tor, Innovations in Theoretical Computer Science, ITCS’14,
Princeton, NJ, USA, January 12-14, 2014, pages 423–438.
ACM, 2014. (42)

[Zhu17] Dmitriy Zhuk. A Proof of CSP Dichotomy Conjecture. In
2017 IEEE 58th Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 331–342, Oct 2017. (10)

[Zhu20] Dmitriy Zhuk. A Proof of the CSP Dichotomy Conjecture.
J. ACM, 67(5):30:1–30:78, August 2020. (10, 12, 150)

[Živ09] Stanislav Živný. The complexity and expressive power of val-
ued constraints. PhD thesis, University of Oxford, UK, 2009.
(15)

[ZM20] Dmitriy Zhuk and Barnaby Martin. QCSP monsters and the
demise of the Chen conjecture. In Konstantin Makarychev,
Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and
Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020,
Chicago, IL, USA, June 22-26, 2020, pages 91–104. ACM,
2020. (17, 151)

Abbreviations

BLP Basic Linear Programming
CSP Constraint Satisfaction Problem
DCSP Distributed Constraint Satisfaction Problem
LP Linear Programming
MC Model Checking
MuHom Multi-Homomorphism
MWU Multiplicative Weight Update
PCSP Promise Constraint Satisfaction Problem
PMC Promise Model Checking
PVCSP Promise Valued Constraint Satisfaction

Problem
QCSP Quantified Constraint Satisfaction Problem
SA Sherali-Adams
SMuHom Surjective Multi-Homomorphism
VCSP Valued Constraint Satisfaction Problem
WL Weisfeiler-Leman

201

Funding

The project that gave rise to these results received the support of a fel-
lowship from “la Caixa” Foundation (ID 100010434). The fellowship code
is LCF/BQ/DI18/11660056.

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement No. 713673

The final year of the PhD was supported by a MICINN grant PID2019-
109137GB-C22.

203

	 Introduction
	Motivation
	Manuscript Outline and Contributions

	 Background
	The Constraint Satisfaction Problem
	The algebraic approach

	Extensions of the CSP
	Promise Constraint Satisfaction Problems
	Valued Constraint Satisfaction Problems
	Quantified Constraint Satisfaction Problems

	 Preliminaries
	I Weisfeiler-Leman Invariant and Distributed CSPs
	 Introduction
	 Relaxation techniques
	Combinatorial relaxations of isomorphism
	Fractional isomorphism of graphs
	From graphs to relational structures

	Linear Programming
	The Sherali–Adams hierarchy for CSPs
	Applying the SA method exactly

	Local Consistency

	 Distributed CSPs
	Introduction
	Distributed CSPs
	The Structure Theorem
	The Complexity of DCSP
	Intractable Templates
	Tractable Templates
	The Search Algorithm

	 Weisfeiler-Leman Invariant CSPs
	Introduction
	The Decomposition Theorem
	Weisfeiler-Leman invariant CSPs

	 Weisfeiler-Leman Invariant Promise Valued CSPs
	Introduction
	Promise Valued CSPs
	Fractional operations
	The Decomposition Theorem for valued structures
	Weisfeiler-Leman invariant PVCSPs

	 A Glimpse on the Higher Levels
	k-WL, Counting Logics, and Treewidth
	Sherali-Adams meets Weisfeiler-Leman
	Proof of Lemma 9.4
	Proof of Theorem 5.4
	Proof of Theorem 9.7

	 Conclusion

	II Promise Model Checking
	 Introduction
	Introduction
	Model checking problem parametrized by the model
	Promise model checking problem

	Preliminaries
	Interesting fragments

	 The Complexity of Promise Model Checking
	Existential positive fragment
	Characterization of templates and p-L-definability
	Complexity classification

	Positive fragment
	Witnesses for quantified formulas
	Characterization of templates and p-L-definability
	Membership
	Hardness
	Summary

	 Conclusion
	Bibliography
	Glossary of Abbreviations
	Funding

