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Introduction

Towards the end of the 19th century and the beginning of the 20th physicists noted
that, in a number of microscopic experiments with spectrometer, one could not explain
the observed phenomena by using their current theoretical framework, which was based
on Newton’s mechanics and Maxwell’s laws. In fact, some of the results deduced using
this framework were contradicted by experimental evidence.

This disparity between the theoretical framework and the observed phenomena led
Heisenberg in the 20’s to note that, when studying microscopic systems, the observ-
able quantites do not commute in a product. With this realization, which marked
the beginning of quantum mechanics, came a paradigm shift: The classical notion of
‘real variable’ (formally associated to a real valued function) had to be changed. The
right substitute, as it turned out, was a self-adjoint operator in a separable, infinite-
dimensional Hilbert space. This started the theory of operator algebras, which since
its very inception has provided new and interesting approaches to problems both in
Mathematics and Physics. This has led to the fact that, for example, every physical
system can be described by a unital C∗-algebra; see [25].

The need to formalize these new structures of operators prompted Murray and
von Neumann to introduce, in their seminal papers [61, 62, 63], the notion of ‘rings
of operators ’. These algebras, which are now known as von Neumann algebras, are
defined as subalgebras of bounded operators over a Hilbert space that are closed under
the involution and agree with their double commutant. Von Neumann algebras, which
are only briefly discussed in this dissertation, were the first operator algebras to be
studied in detail, and they constitute a well developed and rich field.

The theory of operator algebras can be divided into two main branches: The anal-
ysis of the von Neumann algebras defined above, and the study and classification of
C∗-algebras. The latter class, which constitutes the main focus of the thesis, were first
introduced by Gelfand and Naimark in 1943 [39] as norm and involution closed subalge-
bras of bounded operators over a Hilbert space. Von Neumann algebra techniques have
become indispensable in the theory of C∗-algebras (e.g. in the breakthrough of parts
of the Toms-Winter conjecture). Conversely, C∗-techniques can have deep applications
to the structure theory of von Neumann algebras. This is why, however different, these
theories are intertwined and conform an indivisible unit.

C∗-algebras can also be defined abstractly, without the use of bounded operators, as
normed algebras equipped with a norm-compatible involution in a suitable sense. This
definition, which is the most widely used today, is equivalent to the one given above as
a consequence of the celebrated Gelfand-Naimark theorem. With this new definition at
hand, one can readily show that the algebra of continuous, complex valued functions
vanishing at infinity from a locally compact, Hausdorff space is a commutative C∗-al-
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gebra. In fact, Gelfand and Naimark proved that, up to isomorphism, these are the
only commutative examples. The class of C∗-algebras is closed under many natural
constructions, such as considering finite matrices over a C∗-algebra, inductive limits,
quotients, and tensor products.

As in many areas of mathematics, classification of certain objects in the field provides
great insights on their structure, and often constitutes the backbone of many other
theoretical advances. This is no different in the theory of operator algebras, where
classification is a complex and unsolved problem.

For von Neumann algebras, Connes’ groundbreaking classification of injective fac-
tors [24] is arguably the most relevant in the field. In analogy to this result, and inspired
by Glimm’s classification of UHF-algebras [42], Elliott conjectured that simple, unital,
separable, nuclear C∗-algebras could be classified by means of a complete invariant
consisting of K-theory and tracial data. That is, whenever there is an isomorphism be-
tween the invariant of two such C∗-algebras, one must be able to lift the isomorphism
to an isomorphism between the algebras.

After a number of reformulations, the proposed invariant to tackle the classification
program, nowadays known as the Elliott invariant, is a tuple consisting of the ordered
K0-group, the K0-class of the unit, the K1-group, the tracial space, and its pairing with
the states of the K0-group. Elliott’s conjecture began what became to be known as the
Elliott classification program, the first instance of which is Elliott’s own classification
of AF-algebras [30]; see [35] and the references therein for a survey on the classification
program.

Loosely speaking, Elliott showed in [30] that, in order to determine the isomorphism
class of an AF-algebra A, it is enough to study the projections in arbitrary matrices over
A. More concretely, in any C∗-algebra one can use the notion of Murray-von Neumann
equivalence of projections to define the ordered K0-group of the algebra. What Elliott
proved is that two (unital) AF-algebras are isomorphic if and only if their ordered K0-
groups (and the K0-classes of their units) agree. Equivalently, two unital AF-algebras
are isomorphic if and only if their Murray-von Neumann semigroups, together with the
classes of their units, agree.

The development of this program, and the reformulations of the Elliott invariant
itself, came hand in hand with the construction of counterexamples (primarily due to
Rørdam [79] and Toms [99]) to Elliott’s original conjecture: There exist pairs of simple,
unital, separable, nuclear, nonisomorphic C∗-algebras that nevertheless agree on their
Elliott invariant. Toms’ counterexample has the additional feature that his two algebras
not only agree on their Elliott invariant, but also on a large list of other well known
invariants, such as the stable rank or the real rank. In order to prove that the pair of
C∗-algebras are not isomorphic, Toms showed that these algebras can be distinguished
by an order-theoretical property of their Cuntz semigroup (see below), termed almost
unperforation.

In light of these examples, two natural questions impose themselves: Which class
of C∗-algebras can one hope to classify using the Elliott invariant? And, restricted to
such class, what is the possible range of the invariant?

The second question, which is known as the range problem, was answered for the
class of AF-algebras by Effros, Handelman, and Shen in [28]. Their result, which is
one of the first (and arguably the most celebrated) solution to the range problem,
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states that a countable, ordered, abelian group is order isomorphic to the ordered K0-
group of a separable AF-algebra if and only if it is unperforated and satisfies the Riesz
decomposition property.

Since the official start of the classification program in 1994, [31], and as a result
by many hands and years of work, a classification result was reached for a restricted,
well-behaved class of simple C∗-algebras. Mainly, the class of simple, unital, separable,
nuclear, Z-stable C∗-algebras satisfying the Universal Coefficient Theorem are classifi-
able by means of the Elliott invariant; see, amongst many others, [32] and [98]. There
has also been progress in the non-unital setting; see e.g. [43]. The fruits of the classifi-
cation program have a broader impact, since many of its theoretical advances, such as
Z-stability [105] and nuclear dimension [109], have been proved to be useful in other
situations; see e.g. [18], [80], [84], [91], [100] and [106].

Both of these notions appear in the Toms-Winter conjecture (see [106]), which states
that, in the setting of (non-trivial) separable, simple, unital, nuclear C∗-algebras, be-
ing Z-stable, having finite nuclear dimension, and having almost unperforation on the
Cuntz semigroup should all be equivalent. This conjecture has been studied extensively
(see for example [65], [85], [14], [55]) and, as a result, most of the implications be-
tween its statements are nowadays known. What remains to be proved is that almost
unperforation implies Z-stability.

As explained, the Cuntz semigroup appears as a decisive object on two keys aspects
of the theory. This invariant is the main object of study of this thesis.

Introduced by Cuntz in 1978 [27], the Cuntz semigroup of a C∗-algebra is a gen-
eralization of the Murray-von Neumann semigroup where, instead of projections, one
uses positive elements in its construction. Since these elements, which encompass all
projections, are abundant in any C∗-algebra, the Cuntz semigroup contains far more
information than its Murray-von Neumann counterpart.

This invariant is a positively ordered monoid which, as shown by Coward, Elliott and
Ivanescu in [26], satisfies four additional properties. Such properties were used to define
abstract Cuntz semigroups, or Cu-semigroups for short, and their associated category
Cu. By also studying the behavior of the Cuntz semigroup on morphisms between
C∗-algebras, one obtains a functor from the category of C∗-algebras to Cu and, as
showcased below, the study of said functor has been proved to be very valuable to
understand C∗-algebras. An intensive study of the category Cu has been subsequently
carried out in [3], [4], [6], [7] and [8], amongst others.

As mentioned before, the structure of the Cuntz semigroup of a C∗-algebra is much
richer than the Murray-von Neumann semigroup. For example, it carries the ideal struc-
ture of its underlying C∗-algebra. Moreover, when A is separable, simple, unital, finite
and Z-stable, Antoine, Dadarlat, Perera and Santiago showed in [2] that the Cuntz
semigroup functor is equivalent, if appropriately interpreted, to the Elliott invariant
when thought of as a functor. These results suggest that the Cuntz semigroup is a nat-
ural candidate to extend classification to the non-simple case, and certain classification
results have already been obtained in this direction, as we discuss next.

The class of (separable) approximate interval algebras, or AI-algebras for short, is
a generalization of the class of AF-algebras, and are the noncommutative analog of
the algebras of continuous, complex-valued functions on the inverse limit of possibly
increasing disjoint copies of the unit interval. Formally, an AI-algebra is a C∗-algebra
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isomorphic to an inductive limit of finite direct sums of matrices over C([0, 1]), the
continuous, complex-valued functions on [0, 1]. Ciuperca and Elliott [21] proved that
the Cuntz semigroup classifies all such algebras. This result was later generalized by
Ciuperca, Elliott and Santiago in [22] to include all approximate tree algebras. Further,
Robert proved in [72] that 1-dimensional NCCW complexes with trivial K1-group can
also be classified by their Cuntz semigroup.

Surprisingly, very few results addressing the range problem for the Cuntz semigroup
exist. A notable exception is the translation of the Effros-Handelman-Shen theorem
to the setting of Cuntz semigroups obtained in [6], which provides a list of abstract
properties that determine when a Cu-semigroup is isomorphic to the Cuntz semigroup
of an AF-algebra.

Thus, an important problem is to establish range results for wider classes of C∗-al-
gebras. A natural class to consider is that of AI-algebras, since a range result for these
algebras would complete the classification obtained by Ciuperca and Elliott.

Precisely because of the richness of its structure alluded to above, the drawback
of the Cuntz semigroup is that it is often hard to fully compute. However, without
computing it directly, the study of properties that the Cuntz semigroup of certain
classes of C∗-algebras (or all of them) satisfies has been proved to be successful in
many different scenarios; see [3], [12], [71], [82] and [106]. Two recent examples of such
instances are the results published in [91] and [4]:

It is known that a Z-stable C∗-algebra has an almost unperforated and almost
divisible Cuntz semigroup. Thus, a positive solution to the Toms-Winter conjecture
would imply that, in the setting of separable, simple, unital, nuclear C∗-algebras, almost
divisibility follows from almost unperforation. In [91], Thiel proves that, under the
additional assumption of stable rank one, this is indeed the case.

Because of its relation with the Toms-Winter conjecture, another interesting problem
in the theory of Cuntz semigroups is to define and study a notion of dimension for Cu-
semigroups in analogy to the nuclear dimension for C∗-algebras.

The other example consists of the study of the Cuntz semigroup of (not necessarily
simple) stable rank one C∗-algebras performed in [4], which led to the solution of three
open problems for this class of algebras.

One of these problems is the Global Glimm Problem. In their study of purely infinite
C∗-algebras [54], Kirchberg and Rørdam introduced the Global Glimm Property by
saying that a C∗-algebra A has this property if, for every a ∈ A+ and ε > 0, there
exists a ∗-homomorphism ϕ : M2(C0((0, 1])) → aAa such that (a − ε)+ is in the ideal
generated by the image of the morphism. One can then show that every C∗-algebra
having the Global Glimm Property has no nonzero elementary ideal-quotients. The
Global Glimm Problem asks whether these two conditions are equivalent. That is, if
every C∗-algebra with no nonzero elementary ideal-quotients has the Global Glimm
Property.

The C∗-algebras that satisfy the Global Glimm Property have many interesting
properties. For instance, every unital C∗-algebra with the Global Glimm Property has
a full square-zero element. As showcased in [19], this has a number of implications
on the unitary group of the algebra. For example, if A,B are unital, separable, prime,
traceless C∗-algebras with a full square-zero element such that U0(A) ∼= U0(B), it follows
then that A is isomorphic, or anti-isomorphic, to B.
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Using the results from [4] (together with those in this thesis), it follows that every
C∗-algebra of stable rank one with no elementary ideal-quotients has the Global Glimm
Property. Thus, following the task already initiated in [4], another interesting topic is
to translate the Global Glimm Problem into a question about the Cuntz semigroup by
using (weak) divisibility conditions defined by Robert and Rørdam in [75].

In this regard, this thesis aims to provide a better understanding of the Cuntz
semigroup, both through the study of this invariant for certain classes of C∗-algebras
and the definition of second-level invariants, such as the introduction of a notion of
dimension for Cu-semigroups. The body of the text has been divided in seven chapters.
We outline their contents below.

In Chapter 1 we provide all the necessary results and preliminaries needed to un-
derstand the subsequent material. More concretely, it contains an introduction to the
theory of C∗-algebras (as well as a brief introductory section on Elliott’s classification
program), an overview of the main results on Cuntz semigroups of C∗-algebras and
abstract semigroups, and a survey on the Effros-Handelman-Shen theorem which, in
some sense, is the focus of Chapters 2 and 3. The goal of these chapters is to study
the range problem for the class of AI-algebras, thus completing their classification from
[21].

We begin this study in Chapter 2, where we focus on commutative, separable, unital
AI-algebras. First, we provide a topological characterization for the underlying space
of such algebras, which generalizes well known results in continuum theory. Further, we
identify the abstract conditions that a Cu-semigroup must satisfy to be isomorphic to
the semigroup of lower-semicontinuous functions over a T1-space. Combining these two
results we obtain an abstract characterization for the Cuntz semigroup of commutative,
separable, unital AI-algebras. We also list a number of new properties satisfied by the
Cuntz semigroup of every separable AI-algebra.

Chapter 3 continues the study initiated in Chapter 2 by providing a local charac-
terization for the Cuntz semigroup of separable AI-algebras. The result is reminiscent
of Shen’s theorem for AF-algebras, a key ingredient in the Effros-Handelman-Shen the-
orem. To prove such characterization we show that, given a Cu-semigroup S satisfying
certain (mild) properties, Cauchy sequences of morphisms from the Cuntz semigroup
of C([0, 1]) to S have a unique limit. Paired with ideas from continuum theory, such
as that of almost commutative diagrams, this allows us to prove the desired character-
ization. With this local characterization at hand, we provide a list of necessary and
sufficient conditions for a countably based Cu-semigroup to be isomorphic to the Cuntz
semigroup of an AI-algebra. The results of Chapters 2 and 3 have appeared in [101]
and [102] respectively, but their presentation (particularly those in Chapter 3) has been
improved considerably.

Chapter 4 is devoted to the introduction of the notion of covering dimension of ab-
stract Cuntz semigroups and to apply it to Cuntz semigroups of C∗-algebras. In analogy
to Lebesgue’s covering dimension for topological spaces (and Winter and Zacharias’ nu-
clear dimension for C∗-algebras), we assign to each Cu-semigroup a value in N ∪ {∞}
that reflects certain properties of the semigroup. To a certain extent, this can be in-
terpreted as a measure of the amount of Riesz decomposition that the semigroup has.
For commutative C∗-algebras, the local dimension of the spectrum coincides with the
covering dimension of the Cuntz semigroup of the algebra. Moreover, we show that for
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a C∗-algebra A, the dimension of its Cuntz semigroup is always bounded by the nuclear
dimension of A. However, these two notions are not equivalent since, for example, ev-
ery real rank zero C∗-algebra has a zero-dimensional Cuntz semigroup whilst there are
examples of real rank zero C∗-algebras with non-zero nuclear dimension, such as the
irrational rotation algebra.

In Chapter 5 we continue the study of the covering dimension while also introducing
the notion of approximation for abstract Cuntz semigroups and the Löwenheim-Skolem
condition for properties of Cu-semigroups. These two new notions allow one to assume,
in many instances, that the Cu-semigroup with which one is working is countably based,
a property satisfied by the Cuntz semigroup of all separable C∗-algebras. Using this,
we provide new results for the covering dimension of Cuntz semigroups of arbitrary
C∗-algebras. For example, if a C∗-algebra is approximated by a family of sub-C∗-alge-
bras, we show that the covering dimension of the Cuntz semigroup of the C∗-algebra
is always bounded by the supremum of the dimensions of the Cuntz semigroups of the
sub-algebras. Almost all of the results on covering dimension presented in this thesis
have been published in [92] and [94].

Finally, in Chapters 6 and 7 we introduce the class of nowhere scattered C∗-algebras
and study their relation to the Global Glimm Property. Scattered C∗-algebras were
defined by Jensen in [48] as the noncommutative analogues of scattered spaces : A topo-
logical space is scattered if every nonempty closed subset has an isolated point, while a
C∗-algebra is said to be scattered if every nonzero quotient contains a minimal projec-
tion (in a suitable sense). One can show that a commutative C∗-algebra is scattered if
and only if its spectrum is, and that the notion of scatteredness for C∗-algebras admits
a number of interesting characterizations and permanence properties.

At the other extreme of the scale we have nowhere scatteredness: A C∗-algebra
A is said to be nowhere scattered if no quotient of A contains a minimal projection.
We provide a number characterizations for this notion, amongst them the absence of
nonzero elementary ideal-quotients. In addition, we also introduce a new property,
termed (O8), that the Cuntz semigroup of every C∗-algebra satisfies. With the help
of this new property, we show that a C∗-algebra is nowhere scattered if and only if its
Cuntz semigroup is weakly (2, ω)-divisible in the sense of [75].

In Chapter 7, we recall the Global Glimm Property for C∗-algebras and provide a
number of characterizations for it. In particular, we show that a C∗-algebra has the
Global Glimm Property if and only if its Cuntz semigroup is (2, ω)-divisible, a strength-
ening of weak (2, ω)-divisibility also introduced in [75]. With this characterization, one
can further reformulate the Global Glimm Problem as follows: Is every weakly (2, ω)-
divisible Cuntz semigroup of a C∗-algebra (2, ω)-divisible?

This question is studied abstractly in the chapter, where we introduce the notion
of ideal-filtered Cu-semigroups and three families of soft elements: strongly, weakly and
functionally soft. Informally, an abstract Cuntz semigroup is ideal-filtered if the Cuntz
classes generating an ideal are downward-directed, and the three definitions of softness
are all tailored notions from the soft elements introduced in [6]. In the presence of
ideal-filteredness, (2, ω)-divisibility is equivalent to having an abundance of strongly
soft elements, while weakly soft elements are deeply related to the notion of weak
(2, ω)-divisibility.

Using these new notions, we show that the Global Glimm Problem has a positive
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answer in the real rank zero or the stable rank one setting. This recovers results from
[34] and [4] respectively. We also prove that the problem has a positive solution for the
class of separable, residually stably finite C∗-algebras with topological dimension zero.
The results correspond to those in [93] and [95], although the main results of Chapter 7
are weaker than those that will appear in [95].
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Chapter 1

Preliminaries and prerequisites

In this first chapter we introduce the required notions and results needed to understand
the chapters that follow.

For Section 1.1, the proofs and a more thorough exposition of the results can be
found in [11] and [60]. A good reference for Section 1.2 is [6].

1.1 C∗-algebras
Definition 1.1.1. Let A be a Banach algebra over C with an antimultiplicative and
antilinear involution *. We say that A is a C∗-algebra if the following equality, known
as the C∗-equality, holds:

‖a‖2 = ‖aa∗‖ for all a ∈ A.

We will say that a subalgebra B of A is a sub-C∗-algebra if B is closed under the
involution and complete with respect to the norm of A. A bilateral ideal of A will be
called an ideal if it is closed under the involution and norm.

Definition 1.1.2. An algebra homomorphism ϕ between two C∗-algebras A,B is said
to be a *-homomorphism if ϕ(a∗) = ϕ(a)∗ for every a ∈ A.

A bijective *-homomorphism will be called *-isomorphism.

Examples 1.1.3.

(i) C is a C∗-algebra with the conjugation as its involution.

(ii) Given a Hilbert space H, the algebra of bounded operators B(H) is C∗-algebra
with the usual norm and involution.

The algebra K(H) of compact operators on H is in fact a sub-C∗-algebra of B(H),
where recall that a compact operator is the inductive limit of finite-rank operators.
We will denote by K the algebra of compact operators on a separable, infinite-
dimensional Hilbert space.

(iii) Given a compact metric space X, the algebra C(X) of continuous functions from
X to C is a C∗-algebra when equipped with the pointwise involution and the
supremum norm.

1
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(iv) For any ideal I of a C∗-algebra A, its quotient A/I with the norm ‖a + I‖ =
inf{‖a+ x‖ | x ∈ I} is again a C∗-algebra.

(v) Let H be a Hilbert space. A ∗-subalgebraM of B(H) is said to be a von Neumann
algebra if it is equal to its double commutant. Every von Neumann algebra is a
C∗-algebra.

As noted in Examples 1.1.3 above, every algebra of bounded operators over a Hilbert
space H is C∗-algebra. Consequently, every sub-C∗-algebra of B(H) is itself a C∗-alge-
bra. By Theorem 1.1.4 below, all C∗-algebras may be characterized in this way.

Theorem 1.1.4 (Gelfand-Naimark). For every C∗-algebra A there exists a Hilbert space
H such that A is isometrically isomorphic to a sub-C∗-algebra of B(H).

1.1.5 (Matrices and direct sums). Given a C∗-algebra A, considering its matrix algebra
or its direct sum with another C∗-algebra are among the most basic procedures for
creating new C∗-algebras from existing ones. We define these two constructions below:

Given a positive integer n, consider the matrix algebra Mn(A) with the involution
given by transposition and applying the involution of A componentwise. By Theo-
rem 1.1.4, there exists an isometric injective *-homomorphism ϕ from A to B(H) for
some Hilbert space H. Given a ∈ Mn(A), we define ‖a‖ := ‖ϕn(a)‖, where ϕn is the
componentwise morphism from Mn(A) to B(Hn) induced by ϕ. One can check that
Mn(A) is a C∗-algebra with this involution and norm.

The direct sum between A and another C∗-algebra B is defined as the algebraic
direct sum A ⊕ B equipped with componentwise involution and the norm ‖(a, b)‖ =
max{‖a‖, ‖b‖}.

Using these two constructions, one can show that a C∗-algebra A is finite dimen-
sional if and only if A is *-isomorphic to a finite direct sum of matrices over C.

A C∗-algebra need not have a unit, but one can always attach one to it by a process
known as unitization. We briefly recall its definition below.

Definition 1.1.6. Let A be a C∗-algebra. We will denote by A† the C∗-algebra A×C
with componentwise sum and involution, product given by

(a, λ)(b, µ) = (ab+ µa+ λb, λµ),

and norm
‖(a, λ)‖ = max{|λ|, sup

‖x‖=1

‖ax+ λx‖}.

The C∗-algebra A† is always unital, with unit (0, 1), and we denote its elements by
a+ λ1A† .

Definition 1.1.7. Given a C∗-algebra A, we define its minimal unitization, denoted
by Ã, as A† if A does not have a unit, and as A otherwise.

Remark 1.1.8. The above unitization process is called minimal since, whenever A is
contained in a unital C∗-algebra B with unit 1B, the minimal unitization Ã is isomorphic
to the sub-C∗-algebra A+ C1B of B.
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Another widely used construction to produce a unital C∗-algebra containing A as
an ideal is the multiplier algebra M(A), which can be seen as the maximal unitization
of A.

This C∗-algebra is characterized (up to isomorphism) by the following property:
Whenever A is contained as an ideal in a unital C∗-algebra B, the identity map on A
extends uniquely to a *-homomorphism B → M(A) with kernel {b ∈ B | Ab = {0}};
see [11, II.7.3]

Spectrum and functional calculus

As in the case of bounded operators over a Hilbert space, there are several distinct
classes of elements that one needs to consider in order to study a C∗-algebra. To
introduce them, we first generalize the concept of spectrum that one has in Mn(C):

Definition 1.1.9. Let A be a C∗-algebra and let a be an element in A. We define the
spectrum of x, denoted by σ(a), as the subset of elements λ ∈ C such that a − λ1 is
not invertible in Ã.

Using the notion of spectrum, one can define a variety of distinguished elements in
a C∗-algebra. The equivalences listed in the following definition can be found in [11].

Definition 1.1.10. Let a be an element in a C∗-algebra A. We say that a is

(i) self-adjoint if a = a∗.

(ii) normal if aa∗ = a∗a.

(iii) positive if a = xx∗ for some x ∈ A or, equivalently, if a is normal and σ(a) ⊆
R+∪{0}. The subset of all positive elements of A is denoted by A+, and we write
a ≤ b if b− a ∈ A+.

(iv) a projection if a = a2 = a∗ or, equivalently, if σ(a) ⊆ {0, 1}. We denote by P (A)
the set of all projections.

(v) a unitary if aa∗ = a∗a = 1 or, equivalently, if σ(a) ⊆ T.

Whenever an element a is normal, Theorem 1.1.11 below allows us to identify the
continuous functions over σ(a) with elements in Ã. This procedure is known as func-
tional calculus, and is a key concept in the study of C∗-algebras.

Theorem 1.1.11 (Gelfand-Naimark). Let A be a C∗-algebra and let a ∈ Ã be a normal
element. Then, there exists an isometric *-isomorphism γ between C∗(1, a), the smallest
sub-C∗-algebra of Ã containing 1 and a, and C(σ(a)) such that γ(z 7→ z) = a.

Remark 1.1.12. Let a be a positive element in a C∗-algebra A, and let γ be the map
from Theorem 1.1.11 above. Given a continuous map f ∈ C(R) such that f(0) = 0, we
have γ(f) ∈ A.

Indeed, we know by the Stone-Weierstrass theorem that f can be written as a
limit of polynomials that map 0 to 0 or, equivalently, that can be written as a linear
combination of powers of z 7→ z. Since a ∈ A, this shows that the image through γ
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of each of these polynomials belongs in A. Using that γ is continuous, it follows that
γ(f) ∈ A.

We will denote γ(f) by f(a). For example, ones writes
√
a and (a− ε)+ instead of

γ(z 7→
√
z) and γ(z 7→ (z − ε)+).

The following notions are of importance in the study of C∗-algebras and Cuntz
semigroups; see, for example, [11], [78], and [81] for more details.

Definition 1.1.13. A C∗-algebra A is

(i) separable if it contains a countable dense subset.

(ii) stably finite if, for every n ∈ N, every left-invertible element inMn(Ã) is invertible.

(iii) residually stably finite if every quotient of A is stably finite.

(iv) purely infinite if every nonzero positive element in A is properly infinite. That is
to say, if for every nonzero a ∈ A+ there exists a sequence (rn)n in M2(A) such
that ( a 0

0 a ) = limn rn( a 0
0 0 )r∗n in M2(A).

Definition 1.1.14. A C∗-algebra A is said to be of

(i) stable rank one if the set of invertible elements in Ã is norm dense in Ã.

(ii) real rank zero if the set of invertible self-adjoint elements in Ã is norm dense in
the set of self-adjoint elements of Ã.

One can prove that every stable rank one C∗-algebra is stably finite, and that no
purely infinite C∗-algebra has stable rank one; see [11, Section V.3]

Inductive limits and the spatial tensor product

In addition to direct sums and matrix expansions, as defined in Paragraph 1.1.5, two of
the most useful constructions to introduce C∗-algebras are inductive limits and (spatial)
tensor products, as defined in Definition 1.1.15 and Definition 1.1.18 below.

Definition 1.1.15. Let ((Aλ)λ∈Λ, (ϕµ,λ)λ≤µ in Λ) be a directed system with Aλ C∗-alge-
bras and ϕµ,λ *-homomorphisms from Aλ to Aµ. For every a ∈ Aλ, define the seminorm

‖a‖ = inf
λ≤µ
‖ϕµ,λ(a)‖.

Let alg limλAλ be the algebraic limit of the system, which is a *-algebra with semi-
norm ‖ · ‖ induced by the above seminorm. The limit of the directed system, denoted
by limλAλ, is the C∗-algebra defined as the completion over ‖ · ‖ of the *-algebra
(alg limλAλ)/{a | ‖a‖ = 0}.

We say that an inductive limit is sequential, and write limnAn, if Λ = N.

Examples 1.1.16.

(i) A C∗-algebra A is an approximately finite C∗-algebra, AF-algebra for short, if A
is *-isomorphic to a sequential inductive limit of finite dimensional C∗-algebras,
as defined in Paragraph 1.1.5.
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(ii) Recall from Examples 1.1.3 that C([0, 1]) is a C∗-algebra. We will say that a C∗-
algebra A is a (separable) AI-algebra if it is *-isomorphic to a sequential inductive
limit of C∗-algebras of the form ⊕ni=1Mkn(C([0, 1])). These algebras and their
Cuntz semigroup will studied extensively in Chapter 2 and Chapter 3.

(iii) A prime dimension drop algebra is a C∗-algebra of the form

{f ∈ C([0, 1],Mn1n2(C)) | f(0) ∈Mn1 ⊗ idn2 , f(1) ∈Mn2 ⊗ idn1}

with n1, n2 relatively prime.

Jiang and Su constructed in [50] a simple C∗-algebra Z as a sequential inductive
limit of prime dimension drop algebras with unit preserving connecting maps.
Such a C∗-algebra is known as the Jiang-Su algebra.

(iv) Another important simple C∗-algebra which can also be described as an inductive
limit, with slighlty different blocks, is the Jacelon-Razak algebra W ; see [47]. In
this case, the blocks are of the form{

f ∈ C([0, 1],Mn′(C))

∣∣∣∣∣ f(0) = diag(c, . . .a , c, 0n)

f(1) = diag(c, . . .a+1 , c)
c ∈Mn(C)

}
,

where n, n′ ∈ N are such that n|n′, and we set a := n′

n
− 1.

1.1.17 (C∗-norms on tensor products). Given a *-algebra A and a norm ‖ · ‖ on A, we
say that ‖ · ‖ is a C∗-norm if it satisfies the C∗-equality from Definition 1.1.1.

Given two C∗-algebras A and B, we can equip their algebraic tensor product A�B
with the multiplication (a1⊗b1)(a2⊗b2) = a1a2⊗b1b2 and the involution (a⊗b)∗ = a∗⊗b∗,
thus making A�B into an *-algebra.

One can see that there exists a minimal C∗-norm ‖ · ‖min on A� B, that is, if γ is
another C∗-norm on A� B, we have ‖ · ‖min ≤ γ. This minimal norm is known as the
minimal or spatial norm; see [11, II.9.1.3].

Definition 1.1.18. Let A and B be two C∗-algebras, and let A � B denote their
algebraic tensor product with the multiplication and the involution defined above. We
define the minimal or spatial tensor product, denoted by A ⊗ B, as the completion of
A�B by the minimal C∗-norm on A�B.

Remark 1.1.19. Since there usually is a variety of C∗-norms that one can define in
the algebraic tensor product of two C∗-algebras, in the literature the minimal tensor
product of A and B is usually denoted by A⊗min B.

However, in order to ease the notation, and since this the only tensor product that
we will use, we will denote it by A⊗B.

Examples 1.1.20.

1. Given a C∗-algebra A and a positive integer n ∈ N, we have A⊗Mn(C) ∼= Mn(A).

One can easily see that the spatial tensor product distributes over direct sums.
Thus, a C∗-algebra A is an AI-algebra, as defined in Examples 1.1.16 (ii), if and
only if A ∼= limnC([0, 1])⊗ Fn with Fn finite dimensional for every n.
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2. For any C∗-algebra A, we define the stabilization of A as the tensor product A⊗K.
This algebra might be viewed as the smallest C∗-algebra containing all row- and
column-finite infinite matrices over A.

3. Given a C∗-algebra A and a Hilbert space H, we say that a *-homomorphism
ϕ : A→ B(H) is an irreducible representation of dimension d ifH is d-dimensional
and has no nontrivial closed invariant subspaces under ϕ(A).

A C∗-algebra A is said to be d-homogeneous if every irreducible representation of
A is d-dimensional. Similarly, a C∗-algebra is d-subhomogeneous if its irreducible
representations are of dimension at most d; see [11, Sections IV.1.4, IV.1.7] for
their main structure theorems.

4. Let Z and W be the Jiang-Su and Jacelon-Razak algebras respectively; see Ex-
amples 1.1.16, (iii)-(iv). We say that a C∗-algebra A is Z-stable if A ⊗ Z ∼= A.
Similarly, one says that A is W-stable if A ⊗W ∼= A. Such C∗-algebras are of
importance in the classification theory of C∗-algebras (see the discussion below),
and will play a role in Chapter 4.

The classification program

A C∗-algebra A is said to be nuclear if, for every C∗-algebra B, there exists a unique
norm on the algebraic tensor product A� B such that its completion is a C∗-algebra.
Suitably interpreted, nuclearity can be seen as the noncommutative analogue of the
existence of partitions of unity; see [20] and [52].

Inspired by the classification of UHF-algebras due to Glimm ([42]) and his own
classification of AF-algebras ([30]), Elliott conjectured in the early 90s that the class
of simple, unital, separable, nuclear C∗-algebras might be classifiable by means of a K-
theoretic invariant. That is to say, he conjectured that one could find an invariant such
that, given any isomorphism between the invariant of two simple, separable, nuclear
C∗-algebras A and B, one could lift such isomorphism to a *-isomorphism between A
and B. The candidate invariant, which underwent some changes throughout the years,
is now known as the Elliott invariant. For any simple, unital C∗-algebra A, one defines

Ell(A) := (K0(A), K0(A)+, [1A]0, K1(A), T (A), rA : T (A)→ S(K0(A))).

Let us briefly recall the main components of Ell(A):
We say that a pair of projections p, q of a C∗-algebra A are Murray-von Neumann

equivalent, in symbols p ∼MvN q, if there exists v ∈ A such that p = vv∗ and q = v∗v.
One can show that this is an equivalence relation, and can thus define the quotient
V (A) := P (A ⊗ K)/ ∼MvN which, equipped with the addition induced by diagonal
addition, is known as the Murray-von Neumann semigroup.

For a unital C∗-algebra A, the Grothendieck group of V (A) is K0(A), and its posi-
tive cone K0(A)+ corresponds to the elements coming from the Murray-von Neumann
semigroup of A; in the non-unital case the definition of K0(A) differs, see for exam-
ple [81, Definition 4.1.1]. The pair (K0(A), K0(A)+) is known as the ordered K0-group
of A. These are the first two elements in Ell(A), while the third is simply the class
[1A]0 ∈ K0(A).
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Given a C∗-algebra A, consider SA := {f ∈ C(T, A) | f(1) = 0}. One defines
the K1-group of A as K1(A) := K0(SA). Alternatively, K1(A) can also be constructed
using unitaries; see [81, Definition 8.1.3].

For a unital C∗-algebra A, a linear functional τ : A→ C is called a state if τ(a) ≥ 0
whenever a ∈ A+ and τ(1A) = 1. A state τ is a tracial state if τ(xx∗) = τ(x∗x) for
every x ∈ A. The set of all tracial states is the trace space of A, denoted by T (A).

Every tracial state on A gives rise to a state on K0(A), that is to say a group
morphism φ : K0(A) → R such that φ(K0(A)+) ⊆ R+ and φ([1A]0) = 1; see [81,
Section 5.2] and [11, V.2.4.26]. This is precisely the pairing rA : T (A)→ S(K0(A)).

As a result by many hands (see [107] for a short overview), we now know:

Theorem 1.1.21. The Elliott invariant classifies separable, simple, unital, nuclear,
Z-stable C∗-algebras satisfying the UCT.

Since it is not the focus of this thesis, we do not introduce the UCT (which stands for
Universal Coefficient Theorem). Vaguely, let us just say that a C∗-algebra satisfies the
UCT if and only if it is, in some weak sense, homotopically equivalent to a commutative
C∗-algebra; see, for example, [11, Theorem V.1.5.8]. It is an open problem if every
separable, nuclear C∗-algebra satisfies the UCT.

Although the result is not yet published, one can drop the unital assumption from
Theorem 1.1.21 above. However, and as witnessed by Rørdam ([79]) and Toms ([99]),
there exist pairs of unital, simple, separable, nuclear (but not Z-stable), nonisomorphic
C∗-algebras that agree on their Elliott invariant. Thus, one cannot remove Z-stability
from Theorem 1.1.21.

To prove that the pair of C∗-algebras given in [99] were not isomorphic, Toms
showed that they could be distinguished by their Cuntz semigroup, a refinement of the
Murray-von Neumann semigroup introduced in Section 1.2 below.

1.2 Cuntz semigroups and the category Cu

We introduce in this section the main object of study of this thesis, the Cuntz semigroup.
This powerful invariant was introduced by Cuntz in [27], and has been succesfully used
in the classification of some non-simple C∗-algebras; see [21], [22] and [72].

The abstract study of the semigroup, started in [26], has unearthed several new
structural properties; see Paragraph 1.2.14. In [4], some of these new properties were
used to solve three open problems for the class of stable rank one C∗-algebras.

Let us first define the Cuntz subequivalence.

Definition 1.2.1. Let a, b be positive elements in a C∗-algebra A. We say that a is
Cuntz subequivalent to b, and write a - b, if there exists a sequence (rn)n in A such
that a = limn rnbr

∗
n. We also say that a is Cuntz equivalent to b, in symbols a ∼ b, if

a - b and b - a.

Even though it might not be clear from its definition, condition (iii) in Lemma 1.2.2
below shows that the Cuntz subequivalence can be seen as a generalization of the
Murray-von Neumann subequivalence for projections, where recall that given two pro-
jections p, q, we say that p is Murray-von Neumann subequivalent to q if there exists an
element v such that p = vv∗ and v∗v ≤ q.
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Lemma 1.2.2 ([77, Proposition 2.4]). Given two positive elements a, b in a C∗-algebra
A, the following are equivalent:

(1) a is Cuntz subequivalent to b;

(2) For every ε > 0 there exists δ > 0 such that (a− ε)+ - (b− δ)+;

(3) For every ε > 0 there exist δ > 0 and x ∈ A such that (a − ε)+ = xx∗ and
x∗x ∈ (b− δ)+A(b− δ)+;

(4) For every ε > 0 there exist δ > 0 and s ∈ A such that (a− ε)+ = s(b− δ)+s
∗.

Definition 1.2.3. Given a C∗-algebra A, we define its Cuntz semigroup Cu(A) as the
quotient (A⊗K)+/ ∼, and we denote the class of an element a by [a].

Further, for each *-homomorphism ϕ : A→ B, we define the map Cu(ϕ) : Cu(A)→
Cu(B) by Cu(ϕ)([a]) = [ϕ(a)], where ϕ also denotes the amplified map ϕ : A ⊗ K →
B ⊗K.

Note that, up to unitary equivalence, there is a unique *-isomorphism K⊗M2 → K.
That is to say, if φ1, φ2 are *-isomorphisms from K ⊗M2 to K, there exists a unitary
element u such that φ1(a) = uφ2(a)u∗ for every a ∈ K ⊗M2. In particular, for any
C∗-algebra A and any pair of elements a, b ∈ A⊗K, the element a⊕ b := ( a 0

0 b ) satisfies

[idA⊗φ1(a⊕ b)] = [idA⊗φ2(a⊕ b)].

We denote by [( a 0
0 b )] the class [idA⊗φ1(a ⊕ b)] in Cu(A). This allows us to define

an addition in the Cuntz semigroup; see Theorem 1.2.5 below.

1.2.4. Given two elements x, y in a partially ordered set, we say that x is way-below y,
in symbols x� y, if for every increasing sequence (zn)n whose supremum exists and is
greater than or equal to y, there exists n ∈ N such that x ≤ zn.

Whenever this condition is satisfied, we will often also say that x is compactly
contained in y. The reason behind this terminology will be explained later, in Exam-
ples 1.2.8 (v); see also [41].

Given a C∗-algebra A, the relevance of this notion sits on the fact that [(a−ε)+]� [a]
for every ε > 0 and [a] ∈ Cu(A).

Recall that a positively ordered monoid is a commutative monoid S with a partial
order ≤ such that 0 ≤ s for every element s in S and such that s′+ t′ ≤ s+ t whenever
s′ ≤ s and t′ ≤ t.

Theorem 1.2.5 ([26, Theorem 1]). Let A be a C∗-algebra. Equipped with the order
induced by - and the addition induced by [a]+[b] = [( a 0

0 b )], the Cuntz semigroup Cu(A)
becomes a positively ordered monoid satisfying the following conditions:

(O1) Every increasing sequence has a supremum.

(O2) Every element can be written as the supremum of a �-increasing sequence.

(O3) Given x′ � x and y′ � y, we have x′ + y′ � x+ y.
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(O4) For any pair of increasing sequences (xn)n and (yn)n, we have supn(xn + yn) =
supn xn + supn yn.

Note that, in Theorem 1.2.5, property (O2) follows from Paragraph 1.2.4 and using
that, for every [a] ∈ Cu(A), one has [a] = supn[(a− 1/n)+].

Definition 1.2.6. A positively ordered monoid S will be said to be a Cu-semigroup if
it satisfies conditions (O1)-(O4) above.

A monoid morphism between Cu-semigroups will be called a Cu-morphism if it
preserves order, suprema of increasing sequences and the way-below relation.

We denote by Cu the category whose objects and morphisms are Cu-semigroups
and Cu-morphisms respectively.

Further, a submonoid T of S will be a sub-Cu-semigroup if it is a Cu-semigroup with
the induced order and addition, and if the inclusion map T → S is a Cu-morphism.

We will say that two Cu-semigroups S, T are Cu-isomorphic, in symbols S ∼= T , if
there exists Cu-morphisms ϕ : S → T and φ : T → S such that ϕφ = idT and φϕ = idS.

Definition 1.2.7. A monoid morphism between Cu-semigroups is called a generalized
Cu-morphism if it preserves order and suprema of increasing sequences.

In the C∗-algebraic setting, every *-homomorphism ϕ : A → B induces a Cu-mor-
phism Cu(ϕ) : Cu(A) → Cu(B) (defined in Definition 1.2.3). Moreover, every com-
pletely positive, contractive, order-zero map induces a generalized Cu-morphism; see
[108].

Given a Cu-semigroup S, we will denote by S� the subset of S consisting of elements
x such that x� y for some y ∈ S.

Examples 1.2.8.

(i) The monoid of nonzero integers and ∞, denoted by N, is a Cu-semigroup with
the natural order. Here, one has n� m if and only if n < m or if n = m 6=∞.

(ii) Similarly, the monoids Ek = {0, 1, . . . , k,∞} endowed with the natural order and
with n+m =∞ if n+m > k are Cu-semigroups. In this case, we have n� m if
and only if n ≤ m.

Together with N, these semigroups are called the elementary Cu-semigroups in
[6, Paragraph 1.16], where it is shown that only N and E0 = {0,∞} are Cu-
isomorphic to the Cuntz semigroup of a C∗-algebra. More explicitly, they are
Cu-isomorphic to the Cuntz semigroup of C and of a nonzero, simple, separable,
purely infinite C∗-algebra respectively.

In Chapter 6 we redefine the notion of elementary Cu-semigroups; see Para-
graph 6.3.1.

(iii) The set of nonnegative real numbers and ∞, denoted by [0,∞], is also a Cu-sem-
igroup with the usual addition and order. In fact, Cu(W) ∼= [0,∞], where recall
that W is the Jacelon-Razak algebra.

In this semigroup, one has x� y if and only if x < y.
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(iv) Let Z denote the monoid (0,∞]tN, where addition in each component is defined
naturally and given n ∈ N and x ∈ (0,∞] we define n+x as n+x ∈ (0,∞]. Given
n ∈ N, one usually denotes by n′ its corresponding element in (0,∞].

Define a positive order in Z as follows: The order in each component is the usual
one, and if x ∈ (0,∞), n ∈ N, we write x ≤ n whenever x ≤ n′; and n ≤ x
whenever n′ < x. Then, Z is a Cu-semigroup where n � n for every n ∈ N and
x� y with x, y ∈ (0,∞] if and only if x < y.

It was shown in [70, Theorem 3.1] that Z is Cu-isomorphic to the Cuntz semigroup
of the Jiang-Su algebra Z.

(v) Given a topological space X, recall that a map f : X 7→ N is said to be lower-
semicontinuous if {x ∈ X | f(x) ≥ n} is open for every n ∈ N. Whenever the
space is compact, metric and finite-dimensional (in the sense of Definition 2.1.1),
it is a consequence of [5, Theorem 5.15] that the positively ordered monoid of
lower-semicontinuous functions from X to N with pointwise addition and order,
denoted by Lsc(X,N), is a Cu-semigroup.

In particular, given two open sets U, V ⊆ X and their respective indicator func-
tions χU , χV , it follows from [5, Theorem 5.15] that χU � χV if and only if U ⊆ V .
This justifies the naming of compact containment.

We will prove in Corollary 2.2.21 that Lsc(X,N) is in fact a Cu-semigroup for
every compact, metric space X.

Robert showed in [74, Theorem 1.1] that, whenever dim(X) ≤ 2, the semigroup
Lsc(X,N) is Cu-isomorphic to the Cuntz semigroup of C(X).

1.2.9 (Direct sums). Given two Cu-semigroups S and T , their direct sum S ⊕ T as
positively ordered monoids is also a Cu-semigroup. Indeed, since the order is compo-
nentwise we have (s′, t′) � (s, t) in S ⊕ T if and only if s′ � s in S and t′ � t in T .
Using this fact, it is clear that the semigroup S ⊕ T satisfies (O1)-(O4).

In fact, one can also see that given two C∗-algebras A,B, the Cuntz semigroup
Cu(A⊕B) is Cu-isomorphic to the Cu-semigroup Cu(A)⊕ Cu(B).

1.2.10 (Inductive limits). Let ((Sλ)λ∈Λ, (ϕµ,λ)λ≤µ in Λ) be a directed system in Cu, that
is, let Λ be a directed set, (Sλ)λ∈Λ a family of Cu-semigroups, and ϕµ,λ : Sλ → Sµ Cu-
morphisms such that ϕν,µ ◦ ϕµ,λ = ϕν,λ whenever λ ≤ µ ≤ ν and ϕλ,λ = idSλ for every
λ ∈ Λ.

The category Cu has inductive limits by [6, Corollary 3.1.11] (the sequential case had
already been proved in [26, Theorem 2]). More explicitly, we will see in Lemma 4.1.8
that a Cu-semigroup S together with Cu-morphisms ϕλ : Sλ → S for λ ∈ Λ is the
inductive limit in Cu of the system ((Sλ)λ∈Λ, (ϕµ,λ)λ≤µ in Λ) if and only if the following
conditions are satisfied:

(L0) we have ϕµ ◦ ϕµ,λ = ϕλ for all λ ≤ µ in Λ;

(L1) if xλ ∈ Sλ and xµ ∈ Sµ satisfy ϕλ(xλ) � ϕµ(xµ), then there exists ν ≥ λ, µ such
that ϕν,λ(xλ)� ϕν,µ(xµ);

(L2) for all x′, x ∈ S satisfying x′ � x there exists xλ ∈ Sλ such that x′ � ϕλ(xλ)� x.
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Given an element x ∈ Sλ, we will usualy denote its image ϕλ(x) in S by [x].

The following theorem was first proved for sequential inductive limits in [26, Theo-
rem 2], and was proved for general limits in [6, Corollary 3.2.9].

Theorem 1.2.11. Let C∗ denote the category of C∗-algebras. Then, mapping each C∗-
algebra A to its Cuntz semigroup Cu(A) and each *-homomorphism ϕ to Cu(ϕ) defines
a continuous functor Cu: C∗ → Cu, where C∗ denotes the category of C∗-algebra and
*-homomorphisms.

1.2.12 (Ideals and quotients). An ideal I of a Cu-semigroup S is a downward-hereditary
submonoid closed under suprema of increasing sequences; see [6, Section 5] and [23].

Given x, y ∈ S, we write x ≤I y if there exists z ∈ I such that x ≤ y + z. We set
x ∼I y if x ≤I y and y ≤I x. The quotient S/ ∼I endowed with the induced sum and
order ≤I is denoted by S/I.

As shown in [6, Lemma 5.1.2], S/I is a Cu-semigroup and the quotient map S → S/I
is a Cu-morphism.

That the Cuntz semigroup is a natural carrier of the ideal structure of the C∗-algebra
is testified by the following result:

Proposition 1.2.13 ([23]). Let A be a C∗-algebra and let I be an ideal of A. Then,
Cu(I) is an ideal of Cu(A). Conversely, for every ideal J of Cu(A) there exists an ideal
I in A such that J ∼= Cu(I).

Moreover, we also have Cu(A/I) ∼= Cu(A)/Cu(I).

1.2.14 (Additional properties). When working with Cu-semigroups, it is often useful
to assume that these satisfy additional properties that are known to hold for certain
families of C∗-algebras.

For example, the following properties were proved to be satisfied for the Cuntz semi-
group of any C∗-algebra; see [6, Proposition 4.6] (and [82]), [73] and [3, Proposition 2.2]
respectively:

(O5) Given elements x, y, z such that x+ y ≤ z, x′ � x and y′ � y, there exists c such
that x′ + c ≤ z ≤ x+ c and y′ � c.

(O6) Given x′ � x ≤ y + z there exist elements v, w with v ≤ x, y, w ≤ x, z and such
that x′ ≤ v + w.

(O7) Given x′1 � x1 ≤ w and x′2 � x2 ≤ w there exists x such that x′1, x′2 � x ≤
w, x1 + x2.

A common application of (O5) is when y = 0. That is, when we have x′ � x ≤ z.
In this case, (O5) implies that there exists an element c such that x′ + c ≤ z ≤ x+ c.

In Definition 6.2.1 we will introduce a new property, termed (O8), that the Cuntz
semigroup of every C∗-algebra also satisfies.

We will say that a Cu-semigroup is weakly cancellative if x � y whenever there
exists an element z such that x + z � y + z. In [82, Theorem 4.3], it was shown that
the Cuntz semigroup of any stable rank one C∗-algebra has weak cancellation.
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An element p in a Cu-semigroup is said to be compact if p� p. In every C∗-algebra
A, the Cuntz class of a projection is a natural example of a compact element in Cu(A).
For stably finite C∗-algebras, these are the only examples; see [17].

Given a compact element p in a weakly cancellative Cu-semigroup, one can check
that we have p+ x ≤ p+ y if and only if x ≤ y and, in particular, that p+ x = p+ y if
and only if x = y. This will be extensively used in Chapter 3.

In addition to being weak cancellative, the Cuntz semigroup of any separable sta-
ble rank one C∗-algebra is also known to be inf-semilattice ordered, that is, infima of
arbitrary pairs exists and the equation x∧ y + z = (x+ z)∧ (y + z) is always satisfied;
see [4, Theorem 3.8]. In Chapter 2 we will study Cu-semigroups that are distributive
lattice ordered; see Definition 2.2.1.

1.2.15 (Sup-dense subsets). Given a Cu-semigroup S, we will say that a subset D of S
is sup-dense if whenever x′, x ∈ S satisfy x′ � x, there exists y ∈ D with x′ ≤ y � x.
Equivalently, it follows from (O2) that D is sup-dense if and only if every element in S
is the supremum of an increasing sequence of elements in D.

We will say that a Cu-semigroup is countably based if it contains a countable sup-
dense subset. Cuntz semigroups of separable C*-algebras are countably based; see, for
example, [5].

A Cu-semigroup whose set of compact elements is sup-dense is said to be algebraic.
As shown in [26], the Cuntz semigroup of any real rank zero C∗-algebra is algebraic.

We will see in Section 5.1 that, when cheking whether or not a Cu-semigroup satisfies
one of the properties in Paragraph 1.2.14 above, one can restrict to the study of sup-
dense subsets.

1.2.16 (Functionals). Given a Cu-semigroup S, a map λ : S → [0,∞] is said to be a
functional if it is a generalized Cu-morphism.

Denote by F (S) the set of all the functionals in S. Then, for every x ∈ S, we define
x̂ : F (S)→ [0,∞] as x̂(λ) = λ(x).

For a C∗-algebra A, the set F (Cu(A)) can be identified with the set of lower-
semicontinuous 2-quasitraces of A; see [33].

1.2.17 (Cu-semirings and tensor products). As defined in [6, Definition 6.3.1], given S,
T and H Cu-semigroups, we say that a map f : S×T → H is a Cu-bimorphism if it is a
positively ordered monoid morphism in each variable such that f(x′, y′)� f(x, y) when-
ever x′ � x in S and y′ � y in T , and such that supn f(xn, yn) = f(supn xn, supn yn)
for every pair of increasing sequences (xn)n in S and (yn)n in T .

A Cu-semiring R is a Cu-semigroup together with an associative, commutative
Cu-bimorphism, (x, y) 7→ xy, and an element 1 ∈ R such that 1x = x for every x ∈ R.

The Cu-semigroups N, [0,∞], {0,∞} and Z as defined in Examples 1.2.8 are exam-
ples of Cu-semirings; see [6, Chapter 7].

Given a Cu-semiring R, we say that a Cu-semigroup S has R-multiplication if there
exists a Cu-bimorphism R× S → S, which we denote by (r, s) 7→ rs, such that 1s = s
and r1(r2s) = (r1r2)s for every r1, r2 ∈ R and s ∈ S

In [6, Chapter 6], a notion of tensor product for Cu-semigroups is introduced. This
notion is strongly related to having a multiplication as defined above. For example, we
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know that the Cuntz semigroup of a Z-stable C∗-algebra always has Z-multiplication,
and that the Cuntz semigroup of a W-stable C∗-algebra has [0,∞]-multiplication; see
[6, Section 7.3-7.5]. This will be used in Chapter 4.

1.3 The Effros-Handelman-Shen theorem and its Cu-
analogue

In the sequel, by a range problem we will mean the following:

1.3.1. Given a family of C∗-algebras F , a category C, and a functor I : C∗ → C, the
range problem for I of F consists in determining a natural set of properties that an
object in C satisfies if and only if it is isomorphic to I(A) for some A ∈ F .

In the theory of C∗-algebras, the most well known result addressing this type of
problem is the celebrated Effros-Handelman-Shen theorem, which gives a list of prop-
erties that characterize when a countable, ordered abelian group is isomorphic to the
K0-group of an AF-algebra; see Theorem 1.3.2 below, and [81] for an introduction to
C∗-algebraic K-theory.

A positively ordered monoid is said to satisfy the Riesz decomposition property if
whenever x ≤ y + z there exist y′ ≤ y and z′ ≤ z such that x = y′ + z′. We say that a
partially ordered abelian group has such a property if its positive cone does.

Theorem 1.3.2 ([28, Theorem 2.2]). A countable ordered (abelian) group G is order
isomorphic to the ordered K0-group of an AF-algebra if and only if it is unperforated
and it satisfies the Riesz decomposition property.

This results uses prominently Shen’s theorem, which had been proved previously
in [87, Theorem 3.1]. Regarding the Effros-Handelman-Shen theorem as an abstract
characterization of the K0-groups under study, the result due to Shen can be seen as a
local characterization of such groups.

Theorem 1.3.3 ([87, Theorem 3.1]). A countable unperforated ordered (abelian) group
G is order isomorphic to the ordered K0-group of an AF-algebra if and only if, for every
ordered homomorphism ϕ : Zr → G and any element α ∈ ker(ϕ), there exist s ≥ 0, and
ordered homomorphisms θ, φ such that the diagram

Zr ϕ
//

θ
��

G

Zs
φ

>>

commutes and α ∈ ker(θ).

Using that an algebraic Cu-semigroup is always of the form Cu(M) with M a posi-
tively ordered monoid, the following Cu-version of the Effros-Handelman-Shen theorem
was obtained in [6]. Recall that a positively ordered monoid is unperforated if x ≤ y
whenever nx ≤ ny for some n ∈ N.
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Theorem 1.3.4 ([6, Corollary 5.5.13]). Let S be a countably based Cu-semigroup.
Then, S is Cu-isomorphic to the Cuntz semigroup of an AF-algebra if and only if
S is weakly cancellative, unperforated, algebraic and satisfies (O5) and (O6).

The goal of Chapters 2 and 3 will be to obtain results on the range problem for the
Cuntz semigroup of AI-algebras building upon Theorem 1.3.2 and Theorem 1.3.3.

A Cu-generalization of Shen’s theorem

We will now prove, using Theorem 1.3.3, a Cu-version of Shen’s theorem which, despite
not being used in Chapters 2 and 3, provides some insight to the problems that one
encounters when trying to generalize this type of result.

We begin with a lemma that will prove to be useful throughout Chapters 2 and 3.

Lemma 1.3.5. Let S, T be Cu-semigroups, and let N be a subset of S. Assume that a
map φ : N → T satisfies

(i) for every pair x, y ∈ N , one has φ(x)� φ(y) whenever x� y in S;

(ii) for every element x ∈ N , there exists a �-increasing sequence (xn)n in S with
supremum x in S such that xn ∈ N for every n ∈ N and φ(x) = supn φ(xn).

Then, φ is order preserving and supn φ(xn) = supn φ(yn) for every pair of increasing
sequences (xn)n, (yn)n in N such that supn xn = supn yn in S.

If, additionally, N is sup-dense in S and φ is additive, φ extends to a Cu-morphism
S → T .

Proof. Let x, y ∈ N be such that x ≤ y, and let (xn)n be a�-increasing sequence given
by (ii). Then, xn � y for every n.

By (i), we have φ(xn)� φ(y). Taking supremum on n, we get

φ(x) = sup
n
φ(xn) ≤ φ(y),

which shows that φ is order preserving.
Now let (xn)n be an increasing sequence in N , and let x be the supremum of the

sequence in S. Using (ii), each xn can be written as the supremum of a �-increasing
sequence in S formed by elements in N . An standard diagonal argument shows that x
itself can be written as such.

Thus, let (sn)n be a �-increasing sequence in S with sn ∈ N for each n ∈ N and
such that x = supn sn in S. In particular, we have that for every m there exists n such
that sm ≤ xn.

Using that φ is order preserving, we get φ(sm) ≤ φ(xn) and, consequently,

sup
m
φ(sm) ≤ sup

n
φ(xn).

Conversely, let m ∈ N and take x′ ∈ N such that x′ � xm in S. Using that
xm ≤ x = supn sn, this implies that x′ � sn for some n and, by (i), that

φ(x′)� φ(sn) ≤ sup
n
φ(sn).
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Since this holds for each x′ � xm, it follows from (ii) that φ(xm) ≤ supn φ(sn).
Taking supremum on m, one gets

sup
m
φ(xm) ≤ sup

n
φ(sn),

which shows supn φ(xn) = supm φ(sm).
Given now two increasing sequences (xn)n, (yn)n in N with supn xn = x = supn yn in

S, let (sm)m be a�-increasing sequence in S with sm ∈ N for each m and supm sm = x
in S. By the argument above, we get

sup
n
φ(xn) = sup

m
φ(sm) = sup

n
φ(yn),

as required.
For the second part of the lemma, assume that N is sup-dense in S. For each

x ∈ S, let (xn)n be an increasing sequence in N with supremum x in S. Then, the map
x 7→ supn φ(xn) is well-defined. Moreover, it follows from (ii) that it extends φ.

Now take x′, x ∈ S such that x′ � x, and consider �-increasing sequences (x′m)m
and (xn)n in S of elements in N with supremum x′ and x respectively. Then, there exists
n ∈ N such that x′m � xn for everym, which implies supm φ(x′m) ≤ φ(xn)� supn φ(xn).
It follows that our map is �-preserving.

Thus, conditions (i)-(ii) of the first part of the lemma are satisfied for N = S. This
implies that the map s 7→ supn φ(xn) is order and suprema preserving.

Finally, it is readily checked using (O4) that the map is additive whenever φ is.

Proposition 1.3.6. Let S be a countably based and algebraic Cu-semigroup. Then,
S is Cu-isomorphic to the Cuntz semigroup of an AF-algebra if and only if, for every
Cu-morphism ϕ : Nr → S and triple x, x′, y ∈ Nr such that x � x′ and ϕ(x′) � ϕ(y),
there exist s ∈ N and Cu-morphisms θ : Nr → Ns and φ : Ns → S such that the diagram

Nr ϕ
//

θ
��

S

Ns
φ

??

commutes and θ(x)� θ(y).

Proof. If S is Cu-isomorphic to the Cuntz semigroup of an AF-algebra, there exists an
inductive system (Nri , φi+1,i) with limit T such that S ∼= T ; see [6, Corollary 5.5.13].

Let x, y ∈ Nr be such that ϕ(x) � ϕ(y), and take y′ � y satisfying ϕ(x) � ϕ(y′).
Since the elements ϕ(x), ϕ(y′) and ϕ(1j) are compact for every j ≤ r, there exists a
large enough i and elements qx, qy′ , pj ∈ N

ri such that

qx � qy′ , ϕ(x) = φi(qx), ϕ(y′) = φi(qy′) and ϕ(1j) = φi(pj)

for each j, where φi : N
ri → T is the the canonical limit Cu-morphism.

Define the map θ : Nr → Nri additively by setting θ(1j) = pj. Note that, since the
additive span of the 1j’s is dense in Nr and the �-increasing sequence (p)n trivially
satisfies supn θ(p) = θ(p) for every p ∈ Nr, θ is a Cu-morphism by Lemma 1.3.5 above.
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Set φ = φi. These two morphisms satisfy (i) and (ii), as desired.
Conversely, assume that the condition in the statement is satisfied. A direct appli-

cation of Theorem 1.3.3 shows that a positively ordered monoid H is isomorphic to a
limit of the form limi(Nri , φi+1,i) if and only if, for every morphism ϕ : Nr → H and pair
x, y ∈ Nr such that ϕ(x) = ϕ(y), there exist morphisms θ : Nr → Ns and φ : Ns → H
such that θ(x) = θ(y) and φθ = ϕ.

Let Sc denote the monoid of compact elements in S, and let ϕ : Nr → Sc be a monoid
morphism and x, y ∈ Nr be such that ϕ(x) = ϕ(y). By Lemma 1.3.5, there exists a
Cu-morphism ϕ̄ : Nr → S extending ϕ. Using our assumption, we find θ, φ satisfying
conditions (i)-(ii) for ϕ̄ and the triple x, x, y. That is to say, θ(x)� θ(y).

Since φ(θ(x)) = ϕ(x) = ϕ(y) = φ(θ(y)), we can apply the assumption once again to
obtain θ′, φ′ satisfying (i)-(ii) for φ and the triple θ(y), θ(y), θ(x). In particular, using
θ(x)� θ(y) at the first step, we have

θ′θ(x)� θ′θ(y)� θ′θ(x),

and so θ′θ(x) = θ′θ(y).
Using that the restrictions of θ′θ and φ′ at Nr and Ns respectively satisfy the required

conditions, it follows that Sc ∼= limi(Nri , φi+1,i).
This implies that S ∼= limi(N

ri
, φ̄i+1,i), where φ̄i+1,i : N

ri → Nri+1 denotes the ex-
tension of φi+1,i given by Lemma 1.3.5. The desired result now follows from Theo-
rem 1.3.4.



Chapter 2

The Cuntz semigroup of unital
commutative AI-algebras

In this chapter we give a solution to the range problem for the Cuntz semigroup of
unital, commutative AI-algebras in the sense of Paragraph 1.3.1. That is to say, we
provide a natural set of properties that a Cu-semigroup satisfies if and only if it is
isomorphic to Cu(A) for some AI-algebra A; see Theorem 2.5.12

Recall that, as defined in Examples 1.1.16 (ii), a C∗-algebra A is said to be a
(separable) AI-algebra ifA is *-isomorphic to an inductive limit of the form limnC[0, 1]⊗
Fn with Fn finite dimensional for every n. Moreover, if A is unital and commutative, the
results in [97] imply that A is isomorphic to C(X) with X an inverse limit of (possibly
increasing) finite disjoint unions of unit intervals. Conversely, any such inverse limit X
gives rises to a unital, commutative AI-algebra C(X).

Our solution consists of three parts:
First, and in analogy to the notion of chainable space from continuum theory, we

introduce in Section 2.1 almost chainable topological spaces. We show that, whenever
X is compact and metric, X is almost chainable if and only if C(X) is an AI-algebra.

From Sections 2.2 to 2.4 we characterize those Cu-semigroups that are of the form
Lsc(X,N) for some T1-space X. More concretely, we define the notion of Lsc-like Cu-
semigroup and see that, given a Lsc-like Cu-semigroup S, we can associate to it a
T1-space XS. It is shown in Theorem 2.4.5 that, in fact, S ∼= Lsc(XS,N).

Given a Lsc-like Cu-semigroup S, in Section 2.5 we give a list of provides that S
satisfies if and only if XS is almost chainable. Paired with the results from the previous
sections and Robert’s computation of the Cuntz semigroup of certain commutative
C∗-algebras in [74, Theorem 1.1], we obtain our desired result; see Theorem 2.5.12.

Using this characterization, we uncover in Section 2.6 new properies that the Cuntz
semigroup of every separable C∗-algebra satisfies.

The results in this chapter have appeared in [101]. We also provide a new proof for
Theorem 2.4.8, which is otherwise a corollary in [94].

2.1 Chainable and almost chainable spaces

We prove in this section that a compact metric space X is homeomorphic to an in-
verse limit of finite disjoint copies of unit intervals (i.e. C(X) is an AI-algebra) if and

17
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only if X is almost chainable, an abstract property introduced in Definition 2.1.7; see
Theorem 2.1.20.

As we will see in Section 2.5, almost chainability can be translated to a property of
Cu-semigroups (see Definition 2.5.5).

We begin by recalling some notions and results from general topology and continuum
theory (see, for example, [64, Chapter 12] for an introduction). We will then generalize
such notions to obtain our desired results.

Definition 2.1.1. Let X be a topological space. The (covering) dimension of X is the
minimum n ∈ N such that every open cover of X has a refinement where each point is
contained at most in n+ 1 sets of the refinement. If no such n exists, we say that X is
infinite-dimensional.

2.1.2. Recall that a compactum is a compact metric space, and that a continuum is
a connected compactum. Moreover, given a finite nonempty indexed collection C =
{C1, . . . , Ck} of open subsets of a topological space X, we will say that C is a chain if

Ci ∩ Cj 6= ∅ if and only if |i− j| ≤ 1.

Additionally, if X is metric, the mesh of C, in symbols mesh(C), is defined as

mesh(C) = max{diam(Ci)}.

An ε-chain is a chain of mesh less than ε.

The following definition coincides with the notion of chainability from continuum
theory ([64, Chapter 12]) whenever X is a continuum; see Lemma 2.1.8 below. Note
that, whenever the space is a compactum, the definition implies that X is connected
and of dimension at most one.

Definition 2.1.3. Let X be a topological space. We say that X is chainable if any
finite open cover of X can be refined by a chain.

Proposition 2.1.4 (cf. [64, Chapter 12]). Let X be a compactum. Then, X is chainable
if and only if X is homeomorphic to the inverse limit of unit intervals.

Proof. Assume that X is chainable, which in particular implies that X is connected
and, therefore, a continuum.

Recall that X is said to be degenerate if it only consists of a point. Thus, either X
is degenerate (in which case we are done) or non-degenerate. By [64, Theorem 12.11],
a non-degenerate chainable continuum is an inverse limit of unit intervals, as required.

Conversely, if X is the inverse limit of unit intervals, note that X is a continuum
since the unit interval is compact and connected.

If X is degenerate, it is trivially chainable, so we may assume otherwise. Then, [64,
Theorems 12.11, 12.19] and the comments following Theorem 12.19 of [64] imply that
X is chainable, as desired.

Definition 2.1.5. We will say that a unital AI-algebra A is block-stable if it is isomor-
phic to a finite direct sum of the form ⊕nk=1C(Xk) with Xk a chainable continuum for
each k.
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As explained in the introduction, the aim of this section is to characterize inverse
limits of (possibly increasing) finite disjoint unions of unit intervals. In light of Propo-
sition 2.1.4, our approach to obtain such a characterization is to generalize the above
mentioned definitions and results.

We begin by weakening the notions of chain and chainable space.

2.1.6. Let X be a topological space. An almost chain in X will be a finite nonempty
indexed collection of open subsets C = {C1, . . . , Ck} such that

Ci ∩ Cj = ∅ whenever |i− j| ≥ 2.

If X is a metric space, the mesh of an almost chain is mesh(C) = max{diam(Ci)},
and an almost chain of mesh less than ε will be called an ε-almost chain.

Definition 2.1.7. A topological space X will be said to be almost chainable if any
finite open cover of X can be refined by an almost chain.

Lemma 2.1.8. Let X be a compactum. Then, X is almost chainable if and only if, for
every ε > 0, there exists an ε-almost chain covering X

Similarly, a continuum X is chainable if and only if for every ε > 0 there exists an
ε-chain covering X.

Proof. Assume first that X is almost chainable and take ε > 0. Since X is compact,
there exist finitely many points x1, . . . , xn such that their ε-balls cover X.

Using thatX is almost chainable, we can refine this finite open cover by open subsets
C1, . . . , Ck such that Ci ∩ Cj = ∅ whenever |i − j| ≥ 2. Since each Ci is contained in
some ε-ball, it follows that C1, . . . , Ck is an ε-almost chain, as required.

Conversely, assume thatX satisfies the stated condition and let U1, . . . , Un be a finite
open cover of X. Then, since X is a compactum, the cover has a nonzero Lebesgue
number δ. That is to say, that every open subset of X of diameter less than δ is
contained in Uj for some j.

Set ε < δ and consider an ε-almost chain C = {C1, . . . , Ck} covering X. Since the
mesh of C is strictly less than δ, it follows that each Ci is contained in some Uj. Thus,
C1, . . . , Ck is an open refinement of U1, . . . , Un with the required property.

Let us now define the notion of (ε, δ)-maps and generalized arc-like spaces. This is
done in analogy with [64, Definition 2.12], where recall that a continuous map f : X → Y
is said to be an ε-map if diam(f−1(y)) ≤ ε for every y ∈ Y ; and a continuum X is said
to be arc-like if for every ε > 0 there exists an ε-map from X onto [0, 1]

Definition 2.1.9. Let X, Y be compacta, and let ε, δ be positive real numbers. A
continuous map f : X → Y is an (ε, δ)-map if diam(f−1(Z)) < ε for every Z ⊆ Y with
diam(Z) < δ.

Definition 2.1.10. A compactum X will be said to be a generalized arc-like space if,
for every ε > 0, there exists δ > 0 and an (ε, δ)-map f : X → [0, 1] t . . .n t [0, 1] for
some n ∈ N.
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Remark 2.1.11. Given a finite disjoint union of unit intervals [0, 1] t . . .n t [0, 1] and
δ > 0, one can construct a (δ, δ′)-map r : [0, 1]t . . .n t [0, 1]→ [0, 1] by simply rescaling
[0, 1] t . . .n t [0, 1] until it fits in [0, 1].

Consequently, a compactum X is a generalized arc-like space if and only if for every
ε > 0 there exists δ > 0 and an (ε, δ)-map f : X → [0, 1].

Lemma 2.1.12. Let X be an inverse limit of finite disjoint unions of unit intervals.
Then, X is a generalized arc-like space.

Proof. As stated, let X be an inverse limit of finite disjoint unions of unit intervals,
and let ([0, 1] t . . . t [0, 1], fi,j) be its associated inverse system. Recall that the metric
on X is defined as

d((xi)i, (yi)i) :=
∞∑
i=1

1

2i
di(xi, yi)

1 + di(xi, yi)
,

where di is the distance in the i-th component of the inverse system.
Also recall that, for any two points in a finite disjoint union [0, 1]t . . .t [0, 1], their

distance is defined as the usual distance if both points belong to the same connected
component or 2 otherwise.

Let ε > 0, and choose n ∈ N such that
∑

i>n 2/2−i < ε/2. Then, since the maps fi,n
are uniformly continuous for each i ≤ n, one can find δ > 0 with

di(fi,n(x), fi,n(y)) ≤ ε

2n

whenever dn(x, y) ≤ δ.
Let πn : X → [0, 1] t . . . t [0, 1] denote the n-th canonical projection map, and let

Z be a subset of πn(X) with diamn(Z) ≤ δ. Using that any two points are at distance
at most two, we have that, for each x, y ∈ π−1

n (Z),

d(x, y) =
n∑
i=1

1

2i
di(fi,n(xn), fi,n(yn))

1 + di(fi,n(xn), fi,n(yn))
+
∑
i>n

1

2i
di(xi, yi)

1 + di(xi, yi)
≤ n

ε

2n
+
∑
i>n

1

2i
2 ≤ ε.

This implies diam(π−1
n (Z)) ≤ ε and, consequently, that πn is an (ε, δ)-map.

Proposition 2.1.13. Let X be a compactum. Then, X is a generalized arc-like space
if and only if X is almost chainable.

Proof. We reproduce the proof of [64, Theorem 12.11] while making some minor ad-
justments.

Assume that X is almost chainable and take ε > 0. Let C be an ε/2-almost chain
covering X, and decompose it as C = C1 t . . . t Cr with Cj = {Ci,j}i an ε/2-chain for
each j ≤ r. Note that, since C covers X, one has

X = tj(∪iCi,j).

Let j ≤ r. Then, if |Cj| ≤ 2, let fj : ∪iCi,j → [0, 1] denote the map that sends every
element to 0, which clearly satisfies diam(f−1

j (Z)) < ε whenever diam(Z) < 1.
If |Cj| ≥ 3, one can use the techniques in the proof of [64, Theorem 12.11] to obtain

an (ε, δj)-map fj : ∪i Ci,j → [0, 1]. Define f := f1 t . . . t fr : X → [0, 1] t . . .r t [0, 1],
which is continuous by construction.
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Set δ < min{1, δj}. Then, given Z ⊆ [0, 1] t . . .r t [0, 1] with diameter less than δ,
we can see Z as a subset of the j-th copy of [0, 1] for some j. Thus, f−1(Z) = f−1

j (Z)
has diameter at most ε, as desired.

Conversely, if X is a generalized arc-like space, for any ε > 0 there exists δ > 0 and
an (ε, δ)-map f : X → [0, 1]t . . .r t [0, 1]. For each copy of [0, 1], we can find a δ-chain.
The inverse image of these chains through f is an ε-almost chain covering X.

Corollary 2.1.14. Let X be an inverse limit of disjoint unions of unit intervals. Then,
X is almost chainable.

Proof. This follows as a combination of Lemma 2.1.12 and Proposition 2.1.13.

We now prove the converse of Corollary 2.1.14. That is, every almost chainable
compactum is an inverse limit of disjoint unions of unit intervals; see Theorem 2.1.20.

By a closed interval we will mean a possibly degenerate, closed interval of [0, 1] (that
is to say, either a point or a non-degenerate closed interval).

Lemma 2.1.15 ([38]). Let C be a closed, nonempty subset of [0, 1]. Then, for every
ε > 0, there exist a finite disjoint union of closed intervals Y and a map α : C → Y
such that α(y) = y for every y ∈ Y and |α(x)− x| < ε for every x ∈ C.

Remark 2.1.16. With the notation of Lemma 2.1.15 above, α is an onto 2ε-map from
C to Y . Indeed, for every y ∈ Y and x ∈ C with α(x) = y, we must have |x− y| < ε.
Since y ∈ α−1(y), we get diam(α−1(y)) < 2ε, as desired.

2.1.17. Let X be a compactum. For any (ε, δ)-map f : X → [0, 1], one can consider
its induced onto ε-map f from X to Im(f). Thus, since Im(f) is compact, we know
from Lemma 2.1.15 that there exists an onto δ-map α : Im(f) → Y with Y the finite
disjoint union of closed intervals. This shows that the composition αf : X → Y is an
onto ε-map.

This implies, by Remark 2.1.11, that given a generalized arc-like compactum X
(equivalently, an almost chainable compactum by Proposition 2.1.13) and any ε > 0,
there exists an onto ε-map f : X → Y with Y a finite disjoint union of closed intervals.

Lemma 2.1.18 below is a natural generalization of [64, Lemma 12.17]. We follow
both the structure and notation of its proof.

Lemma 2.1.18. Let X be a compactum and Y1 be a finite disjoint union of closed
intervals. Take η > 0 and let g1 : X → Y1 be an onto continuous map. Then, there
exists ε > 0 such that, for any onto ε-map g2 : X → Y2 with Y2 a finite disjoint union
of closed intervals, there exists a continuous map ϕ : Y2 → Y1 such that

|g1(x)− ϕg2(x)| < η

for every x ∈ X.

Proof. Since Y1 is the disjoint union of closed intervals, we can write

Y1 = J1 t . . . t Jn1 t {q1} t . . . t {qm1}

with Jk closed non-degenerate intervals for each k.
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Fix m ∈ N such that 1/m < η/2 and such that the distance between the connected
components of Y1 is greater than 1/m. Define si := i/m for each 0 ≤ i ≤ m. Using that
g1 is uniformly continuous, there exists γ > 0 such that diam(g1(A)) < 1/m whenever
diam(A) < γ.

Set ε := γ/2 and fix an onto ε-map g2 : X → Y2 as in the statement of the lemma.
Recall that there exists δ > 0 such that diam(g−1

2 (Z)) < 2ε = γ whenever diam(Z) < δ.
Let n ∈ N be such that 1/n < δ/2 and define tj := j/n for every 0 ≤ j ≤ n. As

above, we can write Y2 as

Y2 = I1 t . . . t In2 t {p1} t . . . t {pm2}

with Il closed non-degenerate intervals for every l.
For each l and k, consider the subsets

Ak1 = [s0, s1) , Aki = (si−1, si+1) , Akm = (sm−1, sm] ⊆ Jk,

Bl
1 = [t0, t1) , Bl

j = (tj−1, tj+1) , Bl
n = (tn−1, tn] ⊆ Il.

By construction, we know that diam(Bl
j) < δ for each j, l. Thus, diam(g−1

2 (Bl
j)) < γ

and, consequently,

g1(g−1
2 (Bl

j)) ⊆ Aki or g1(g−1
2 (Bl

j)) ⊆ {qr′}

for some i, k, r′.
Analogously, one also gets that, for every r ≤ m2, we can find i, k such that

g1(g−1
2 (pr)) ⊆ Aki or r′ with g1(g−1

2 (pr)) ⊆ {qr′}. Further, since g2 is onto and for
each l, j we have Bl

j ∩Bl
j+1 6= ∅, one has

∅ 6= g1(g−1
2 (Bl

j)) ∩ g1(g−1
2 (Bl

j+1)).

Thus, for each fixed l, the sets g1(g−1
2 (Bl

j)) belong to the same connected component
of Y1. This implies that there exists k such that g1(g−1

2 (Il)) ⊆ Jk or that there exists r′
with g1(g−1

2 (Il)) = {qr′}.
For each connected component Y of Y2, we now define the map ϕY : Y → Y1 as

follows:
If g1(g−1

2 (Y )) = {qr′} for some r′, let ϕY : Y → {qr′} be the constant map.
Else, there exists some k such that g1(g−1

2 (Y )) ⊆ Jk. If Y is degenerate, we can find
Aki ⊆ Jk such that g1(g−1

2 (Y )) ⊆ Aki for some i, k. Define ϕY : Y → Aki ⊆ Jk as the
constant map ϕY ≡ si.

Finally, if Y is non-degenerate, it is of the form Y = Il. Then, for each j fix i(j)
such that g1(g−1

2 (Bl
j)) ⊆ Aki(j), and recall that

∅ 6= g1(g−1
2 (Bl

j)) ∩ g1(g−1
2 (Bl

j+1))

for each j. This implies |i(j)−i(j+1)| ≤ 1 and, consequently, we can define ϕIl : Il → Jk
as ϕIl(tj) = si(j) and extend it linearly.

Let ϕ be the map ϕI1 t . . . t ϕIn2 t ϕp1 t . . . t ϕpm2
: Y2 → Y1, which is continuous

by construction. We will now show that |g1(x)− ϕg2(x)| < η for each x ∈ X.
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Thus, let x ∈ X and let B ⊆ Y2 such that g2(x) ∈ B with B being either Bl
j for

some l, j or {pr} for some r. Note that g1(x) ∈ g1(g−1
2 (B)).

Thus, if g1(g−1
2 (B)) = {qr′}, we get g1(x) = qr′ and, consequently,

|g1(x)− ϕg2(x)| = |qr′ − qr′ | = 0

by the definition of ϕ.
Finally, if g1(g−1

2 (B)) ⊆ Aki , we have g1(x) ∈ Aki . Therefore, one gets

|g1(x)− si| <
1

m
.

If B = {pr} for some r, we have defined ϕpr as the constant map si. Thus, one gets

|g1(x)− ϕg2(x)| = |g1(x)− si| < 1/m <
η

2
.

Else, if B = Bl
j for some l, j, let i(j) be the previously fixed integer satisfying

g1(g−1
2 (B)) ⊆ Aki(j). Then, since g2(x) ∈ B, we either have tj−1 ≤ g2(x) ≤ tj or

tj ≤ g2(x) ≤ tj+1. Thus, ϕ(g2(x)) is either between si(j−1) and si(j) or between si(j) and
si(j+1).

Since |i(j)− i(j + 1)| ≤ 1, the triangle inequality implies

|g1(x)− ϕg2(x)| ≤ |g1(x)− si(j)|+ |si(j) − ϕg2(x)| ≤ 2

m
< η,

as desired.

Proposition 2.1.19 ([64, Proposition 12.18]). Let (X, d) be a compactum and let Y =
lim←−(Yi, fi) be an inverse limit of compacta (Yi, di) with fi : Yi+1 → Yi.

Assume that there exist two sequences of strictly positive real numbers (δi)i, (εi)i with
lim εi = 0 and a family of onto εi-maps gi : X → Yi such that the following conditions
hold

(i) For every pair i < j, we have diam(fi,j(A)) ≤ δi/2
j−i for any A ⊆ Yj with

diam(A) ≤ δj;

(ii) di(gi(x), gi(y)) > 2δi whenever d(x, y) ≥ 2εi;

(iii) di(gi, figi+1) ≤ δi/2.

Then, X is homeomorphic to Y .

The following statement summarizes the results in this section.

Theorem 2.1.20. Let X be a compactum. Then, the following are equivalent:

(1) X is almost chainable;

(2) X is a generalized arc-like space;

(3) X is homeomorphic to an inverse limit of finite disjoint copies of unit intervals;
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(4) C(X) is an AI-algebra.

Proof. Proposition 2.1.13 shows (1) if and only if (2), while (3) is equivalent to (4) by
the results in [97]. Moreover, (3) implies (1) by Corollary 2.1.14.

To prove that (1) implies (3), let X be an almost chainable compactum. Following
the proof from [64, Theorem 12.19], we inductively construct sequences of maps and real
numbers satisfying the conditions in Proposition 2.1.19. We provide the construction
for the sake of completeness, although the only difference with the original is that we
replace [0, 1] with Y :

Take a positive number ε1 ≤ 1, and let g1 be an onto ε1-map from X to a finite
disjoint union of closed intervals Y1. Such a map exists because X is almost chainable.

In particular, note that g1(x) 6= g1(y) whenever d(x, y) ≥ 2ε1. Using that X is
compact, there exists δ1 > 0 such that |g1(x)− g1(y)| > 2δ1 whenever d(x, y) ≥ 2ε1.

Set η := δ1/2, let ε > 0 be the bound given by Lemma 2.1.18 and define ε2 :=
min{1/2, ε}. Since X is almost chainable, there exists an onto ε2-map g2 : X → Y2.

By the choice of ε2 and Lemma 2.1.18, there exists f1 : Y2 → Y1 with

|g1(x)− f1g2(x)| < η = δ1/2

for every x ∈ X.
Proceeding as above, we find δ2 > 0 with |g2(x) − g2(y)| > 2δ2 whenever d(x, y) ≥

2ε2. By the uniform continuity of f1, we can choose δ2 so that diam(f1(A)) ≤ η
whenever diam(A) ≤ δ2. This implies that g1, g2 satisfy (i)-(iii) in Proposition 2.1.19.

Following [64, Theorem 12.19], one can now inductively define εi, δi > 0 and gi : X →
Yi, fi : Yi+1 → Yi satisfying conditions (i)-(iii) from Proposition 2.1.19.

Thus, we get X ∼= lim(Yk, fk) with Yk finite disjoint unions of closed intervals. This
implies that C(X) is an AI-algebra, as desired.

2.2 Lsc-like Cu-semigroups
We begin the section by defining distributively lattice ordered Cu-semigroups, which
are a natural generalization of inf-semilattice ordered Cu-semigroups (as defined in
Paragraph 1.2.14). Using this new notion, we define the class of Lsc-like Cu-semigroups
(Definition 2.2.5) and study some of their properties. As we will see in the latter sections
of the chapter, these Cu-semigroups are exactly those that are Cu-isomorphic to the Cu-
semigroup of lower-semicontinuous functions Lsc(X,N) for some T1 topological space;
see Theorem 2.4.5.

Using Proposition 2.2.19, we also show in Corollary 2.2.21 that the semigroup
Lsc(X,N) is a Cu-semigroup whenever X is compact and metric.

Definition 2.2.1. Let S be a Cu-semigroup. We will say that S is distributively lattice
ordered if S is a distributive lattice such that x + y = (x ∨ y) + (x ∧ y) for any pair
x, y ∈ S.

Additionally, we will say that S is complete if suprema of arbitrary sets exist.

Remark 2.2.2. We note that, in a complete distributively lattice ordered Cu-semigroup
S, one has (supn xn)∨(supn yn) = supn(xn∨yn) whenever (xn)n and (yn)n are increasing
sequences in S.
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Indeed, since supn zn = ∨∞n=1zn for any increasing sequence, we get

(sup
n
xn) ∨ (sup

n
yn) = (∨∞n=1xn) ∨ (∨∞n=1yn) = ∨∞n=1(xn ∨ yn) = sup

n
(xn ∨ yn),

as required.

Throughout this chapter, a sum of finitely many indexed elements x1 + . . . + xm
will be said to be decreasingly (resp. increasingly) ordered if the sequence (xi)

m
i=1 is

decreasing (resp. increasing).

Lemma 2.2.3. Let S be a distributively lattice ordered Cu-semigroup, and take two
decreasing sequences (xi)

m
i=1, (yi)

m
i=1 in S. Then,

m∑
i=1

(xi + yi) =
2m∑
i=1

∨mj=(i−m)+
(xj ∧ yi−j)

where, on the right hand side, we set xi ∧ yk := xi and xk ∧ yi := yi whenever k ≤ 0.
In particular, every finite sum in a distributively lattice ordered semigroup can be

written as a decreasingly ordered sum.

Proof. We prove the result by induction on m, where we note that the case m = 1
follows directly from Definition 2.2.1.

Thus, fix m ∈ N and assume that the result holds for every k < m. In particular,
one has

k∑
i=1

zi + s = z1 ∨ s+ zk ∧ s+
k−1∑
i=2

(zi ∨ (zi−1 ∧ s))

for any k < m, s ∈ S and decreasing sequence (zi)i in S.
Now take two decreasing sequences (xi)

m
i=1, (yi)

m
i=1, and write

m∑
i=1

(xi + yi) =
m−1∑
i=1

(xi + yi) + xm ∨ ym + xm ∧ ym.

Set zi := ∨m−1
j=(i+1−m)+

(xj ∧ yi−j). Using our induction hypothesis, one gets

m∑
i=1

(xi + yi) =
2m−2∑
i=1

∨m−1
j=(i+1−m)+

(xj ∧ yi−j) + xm ∨ ym + xm ∧ ym

=
m−1∑
i=1

zi +

(
2m−2∑
i=m

zi + xm ∨ ym

)
+ xm ∧ ym,

where note that zi ≥ xm, ym for each i ≤ m−1. Thus, we have zi = ∨mj=(i−m)+
(xj∧yi−j)

for every i ≤ m− 1.
Using the induction hypothesis once again to the second summand above, we see

that it is equal to

zm ∨ (xm ∨ ym) + z2m−2 ∧ (xm ∨ ym) +
2m−3∑
i=m+1

zi ∨ (zi−1 ∧ (xm ∨ ym))
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with

zi ∨ (zi−1 ∧ (xm ∨ ym)) = zi ∨
(
∨m−1
j=(i−m)+

((xm ∧ y(i−1)−j) ∨ (xj ∧ ym))
)

= zi ∨ ((xm ∧ yi−m) ∨ (xi−m ∧ ym)) = ∨mj=(i−m)+
(xj ∧ yi−j).

for every i = m+ 1, . . . , 2m− 3.
Doing a similar argument with zm ∨ (xm ∨ ym) and z2m−2 ∧ (xm ∨ ym), we see that

2m−2∑
i=m

zi + xm ∨ ym =
2m−1∑
i=m

∨mj=(i−m)+
(xj ∧ yi−j).

Since xm ∧ ym = ∨mj=(2m−m)+
(xj ∧ y2m−j), this finishes the induction argument.

For the second part of the statement, let x1 + . . .+xm be a finite sum in S. Applying
the first part of the lemma, we can write x1 + x2 as an ordered sum z1 + z2. Then,
applying once again the first part of the lemma to (z1 + z2) + (x3 + 0), we can write it
as an ordered sum.

Prooceding in this manner, the desired result follows.

Definition 2.2.4. Let H be a subset of a Cu-semigroup S. We say that H is topological
if, given two finite decreasing sequences (xi)

m
i=1, (yi)

m
i=1 in H, we have

m∑
i=1

xi ≤
m∑
i=1

yi

if and only if xi ≤ yi for each i.

Recall that, for any element r in partially ordered set P , we denote by ↓ r the set
{s ∈ P | s ≤ r}; see, for example, [41, Definition O-1.3].

Also, given an element y in a Cu-semigroup S, we write ∞y := supn ny. Further, if
S has a greatest element, we denote it by ∞.

Definition 2.2.5. A Cu-semigroup S will be said to be Lsc-like if it is a complete
distributively lattice ordered Cu-semigroup such that the following conditions hold:

(C1) For every pair of idempotent elements y, z in S, y ≥ z if and only if

{x <∞ | xmaximal idempotent, x ≥ y} ⊆ {x <∞ | xmaximal idempotent, x ≥ z}.

(C2) There exists a topological subset of the form ↓ e such that the finite sums of
elements in ↓ e are sup-dense in S.

The following example justifies our terminology.

Example 2.2.6. Let X be a T1 topological space. Then, Lsc(X,N) is Lsc-like when-
ever it is a Cu-semigroup (for example, whenever X is compact and metric, see Corol-
lary 2.2.21 below).

Indeed, first note that Lsc(X,N) is clearly a complete distributively lattice ordered
semigroup, where suprema and infima are taken pointwise. Further, we know that
the maximal idempotent elements s < ∞ are of the form s = ∞χX\{x}. Given any
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pair of idempotents ∞f = ∞χsupp(f) and ∞g = ∞χsupp(g), we know that ∞χsupp(f) ≤
∞χsupp(g) if and only if supp(f) ⊆ supp(g). That is, if and only if for every x ∈ X

such that supp(g) ⊆ X \ {x} we have supp(f) ⊆ X \ {x}. This shows that Lsc(X,N)
satisfies (C1).

For (C2), it is readily checked that the order in ↓ 1 is topological. Moreover, the
subset ↓ 1 clearly generates a dense semigroup in Lsc(X,N).

An element e in a Cu-semigroup S is an order unit if x ≤ ∞e for every x ∈ S. That
is to say, if ∞e =∞.

Remark 2.2.7 (Order units in Lsc-like Cu-semigroups). Let S be an Lsc-like Cu-sem-
igroup, and let e be the element given by (C2). Then, e is an order unit because the
semigroup generated by ↓ e is dense in S.

Further, given any order unit f , take e′ � e. Since e ≤ ∞f , we can find f ′ � f
and k ∈ N such that e′ ≤ kf ′. Using that the set of finite sums of elements under e is
dense in S, and that e is an order unit, we may assume that f ′ is one such sum.

By Lemma 2.2.3, we can write f ′ =
∑m

i=1 gi with (gi)i decreasing and bounded by
e. Thus, we have e′ ≤

∑m
i=1 kgi, where note that the right hand side of the inequality

is a decreasingly ordered sum of km elements below e (the first k greatest elements are
g1, the next k are g2, and so on).

Using that the order on ↓ e is topological, it follows that e′ ≤ g1 ≤ f ′ � f . Since
this can be done for each e′ � e, we get e ≤ f and, consequently, e is the least order
unit of S.

Remark 2.2.8 (Idempotent elements in an Lsc-like Cu-semigroups). Let S be an Lsc-
like Cu-semigroup with no maximal idempotent elements x <∞. Then, S = {0}.

Indeed, assuming that S has no maximal idempotents, it follows from (C1) that
z ≤ 0 for each idempotent z. Thus, for any element s ∈ S, we get s ≤ ∞s = 0, and it
follows that s = 0.

Using a similar argument, one can show that an element s ∈ S satisfies ∞s =∞ if
and only if there are no maximal idempotents x <∞ with ∞s ≤ x.

Lemma 2.2.9. Let n ∈ N and let S be an Lsc-like Cu-semigroup with least order unit
e. Then, given any element y ≤ ne, y can be written as an ordered sum of at most n
nonzero terms below e.

Proof. By Lemma 2.2.3 and condition (C2), there exists an increasing sequence (yk)k
with supremum y such that each yk can be written as a finite ordered sum of elements
below e.

Further, since yk ≤ ne for every k and the order in ↓ e is topological, it follows that
each yk has at most n nonzero summands. Using once again that the order in ↓ e is
topological, we see that the i-th summands of (yk)k form an increasing sequence for
every i ≤ n.

One can check that the sum of their suprema is a finite ordered sum of at most n
nonzero elements below e, as desired.

Corollary 2.2.10. Let S be an Lsc-like Cu-semigroup with least order unit e, and let
s ≤ e. Then, for any y1, . . . , ym ∈ S with s ≤ y1 + . . .+ ym, we have s ≤ y1 ∨ . . . ∨ ym.
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Proof. Take s′ � s and let y′i � yi be such that s′ ≤ y′1 + . . .+ y′m. Since e is an order
unit, there exists n ∈ N with y′1 + . . .+ y′m ≤ ne.

Applying Lemma 2.2.9 above, each y′i can be written as an ordered sum of at most n
nonzero elements below e. For each i, let y′1,i denote the largest element in the ordered
sum of y′i. Then, it follows from Lemma 2.2.3 that y′1 + . . . + y′m can be written as a
finite ordered sum of elements below e, with the largest summand being y′1,1∨ . . .∨y′1,m.

Using that the order in ↓ e is topological, we get s′ ≤ y′1,1 ∨ . . . ∨ y′1,m and, conse-
quently,

s′ ≤ y′1,1 ∨ . . . ∨ y′1,m ≤ y′1 ∨ . . . ∨ y′m ≤ y1 ∨ . . . ∨ ym.

Since this holds for every s′ � s, we have s ≤ y1 ∨ . . . ∨ ym as desired.

The following lemmas will play an important role in the study of the induced topol-
ogy of an Lsc-like Cu-semigroup S; see Definition 2.3.1. Lemma 2.2.12 below gives
an alternative version of (C1) in Definition 2.2.5; see Remark 2.2.13. In particular, it
shows that y < e, with e the least order unit of S, if and only if there exists a maximal
element x < e with y ≤ x.

Lemma 2.2.11. Let S be an Lsc-like Cu-semigroup with least order unit e, and let
x ∈ S. Then,

∞x =∞(x ∧ e) and (∞x) ∧ e = x ∧ e.

In particular, if x <∞ is a maximal idempotent, we must have x ∧ e 6= e.

Proof. It follows from Lemma 2.2.9 and condition (C2) in Definition 2.2.5 that x can
be written as the supremum of finite ordered sums of elements in ↓ e. Moreover, using
that the order in ↓ e is topological, the sequence formed by the greatest element of each
ordered sum is increasing. Let x′ denote the supremum of this sequence.

Then, it is clear that ∞x =∞x′ and x ∧ e = x′. Therefore, we have

∞x =∞x′ =∞(x ∧ e) and (∞x) ∧ e = (∞x′) ∧ e = x′ = x ∧ e,

as desired.

Lemma 2.2.12. Let S be an Lsc-like Cu-semigroup with least order unit e, and let y, z
be elements in ↓ e. Then, z ≤ y whenever z ≤ x for every maximal element x < e such
that y ≤ x.

Proof. We may assume that there exist maximal idempotents x < ∞, since otherwise
S = {0} by Remark 2.2.8 and there is nothing to prove.

We claim that the maximal idempotent elements x <∞ are precisely the elements
∞s with s < e maximal. To prove this, let x <∞ be a maximal idempotent and take
s = x ∧ e. By Lemma 2.2.11 we have ∞s = ∞(x ∧ e) = ∞x = x. To see that s is
maximal, let t ∈ S be such that s ≤ t ≤ e.

Using that x is maximal, we either have ∞t =∞ or ∞t = x. Then, it follows from
Lemma 2.2.11 that we either have t = (∞t)∧e =∞∧e = e or t = (∞t)∧e = x∧e = s,
as required.

Conversely, let s < e be maximal and consider the element∞s = supn ns. Let (sk)k
be a �-increasing sequence with supremum s.
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Given an idempotent element x such that ∞s ≤ x ≤ ∞, we know by Lemma 2.2.9
that there exists a �-increasing sequence (xm)m with supremum x such that each xm
can be written as a finite increasing sum of elements in ↓ e.

Let (mk)k be a strictly increasing sequence of integers such that ksk ≤ xmk for every
k. Using that ↓ e is topological, each sk is less than or equal to each of the first k
summands of xmk . As in the proof of Lemma 2.2.11, note that the largest summands
of each sum of xmk form an increasing sequence of elements below e. Letting x′ be the
supremum of this sequence, we get s ≤ x′ ≤ e, where note that one also has∞x′ = x by
construction. Indeed, the largest summand of each xmk is xmk ∧ e, and Lemma 2.2.11
above implies that∞xmk =∞(xmk ∧ e). Since (xmk)k has supremum x =∞x, we have

x =∞x = sup
k
∞(xmk ∧ e) =∞x′.

By maximality of s, we either have s = x′ or x′ = e. Thus, we either have ∞s = x
or x =∞x′ =∞. This proves that ∞s is a maximal idempotent, as desired.

A similar argument shows that for any y, z ≤ e we have y ≤ z ≤ e if and only if
∞y ≤ ∞z. Consequently, if z ≤ s for every maximal element s < e such that y ≤ s, we
know that∞z ≤ ∞y. Taking the infimum with e, one gets z = (∞z)∧e ≤ (∞y)∧e = y
as required.

Remark 2.2.13. We note that Lemma 2.2.12 above gives an alternative version of
(C1). That is to say, an equivalent definition of an Lsc-like Cu-semigroup S can be
given by changing (C1) in Definition 2.2.5 by the property stated in Lemma 2.2.12.
Indeed, given two idempotents y, z ∈ S satisfying

{x <∞ | xmaximal idempotent, x ≥ y} ⊆ {x <∞ | xmaximal idempotent, x ≥ z},

consider the elements y ∧ e and z ∧ e.
By the proof of Lemma 2.2.12, maximal idempotents are in bijective correspondence

with the maximal elements below e, and the bijection is given by x 7→ x ∧ e.
Using Lemma 2.2.11, it follows that x ≥ y (resp. x ≥ z) if and only if x ∧ e ≥ y ∧ e

(resp. x ∧ e ≥ z ∧ e). This implies that y ∧ e and z ∧ e satisfy the condition in
Lemma 2.2.12 and, consequently, that y ∧ e ≥ z ∧ e.

Applying Lemma 2.2.11 once again, we get y ≥ z, as desired.

Recall that a complete lattice (P,≤) is said to be a complete Heyting algebra if, for
every T ⊆ P and s ∈ P , we have

s ∧ (∨t∈T t) = ∨t∈T (s ∧ t).

Lemma 2.2.14. Let S be an Lsc-like Cu-semigroup with least order unit e. Then, ↓ e
is a complete Heyting algebra.

Proof. We have to show that s ∧ (∨t∈T t) = ∨t∈T (s ∧ t) for every subset T ⊆↓ e and
s ≤ e. Thus, let x < e be maximal with ∨t∈T (s ∧ t) ≤ x, which happens if and only if
s ∧ t ≤ x for every t ∈ T .

Since x 6= e and (x∨ s)∧ (x∨ t) = x∨ (s∧ t) ≤ x∨ x = x, we either have x∨ s = x
or x ∨ t = x (since otherwise both of these unions would be equal to e and then e ≤ x,
a contradiction).
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If x = x ∨ s, we have s ∧ (∨t∈T t) ≤ x. Else, if t ≤ x for each t ∈ T , so we also get
s ∧ (∨t∈T t) ≤ x. It now follows from Lemma 2.2.12 that s ∧ (∨t∈T t) ≤ ∨t∈T (s ∧ t).

The other inequality holds in any lattice.

Definition 2.2.15. Let S be a Cu-semigroup. We say that S is sup-semilattice ordered
if suprema of finite sets exist and x+ (y ∨ z) = (x+ y) ∨ (x+ z) for every x, y, z ∈ S.

Since an Lsc-like Cu-semigroup S is a lattice, it is natural to ask if S is sup-
semilattice ordered. Lemma 2.2.16 below shows that this is indeed the case.

Lemma 2.2.16. Let S be an Lsc-like Cu-semigroup with least order unit e, and let
n ∈ N and y, z ∈ S be such that y ≤ z, ne. Then, there exists an element y \ z ∈ S such
that, for each x ∈ S, we have x+ y ≤ z if and only if x ≤ y \ z.

In particular, x+ (y ∨ z) = (x+ y) ∨ (x+ z) for every x, y, z ∈ S.

Proof. We construct the ‘almost-complement’ y \ z in three steps:
Step 1. Let y, z ∈ S be such that y ≤ z ≤ e.
Then, consider the subset T := {x ∈ S | y + x ≤ z}. Using that arbitrary suprema

exist in S, we define

y \ z := ∨{x ∈ S | y + x ≤ z} = ∨x∈Tx.

Further, since ↓ e is topological and y + x = (y ∨ x) + (y ∧ x) ≤ z for each x ∈ T ,
we have y ∨ x ≤ z and y ∧ x = 0.

Thus, Lemma 2.2.14 implies that (∨x∈Tx)∨ y = ∨x∈T (x∨ y) ≤ z and (∨x∈Tx)∧ y =
∨x∈T (x ∧ y) = 0. Consequently, one gets

y + (y \ z) = y ∨ (y \ z) + y ∧ (y \ z) = y ∨ (y \ z) ≤ z,

which shows that x ≤ y \ z if and only if y + x ≤ z.
Step 2. Assume that y, z ∈ S satisfy y ≤ z ≤ ne
By Lemma 2.2.9, we can write y and z as finite ordered sums y =

∑n
i=1 yi and

z =
∑n

j=1 zj of elements below e. Thus, since ↓ e is topological, yi ≤ zi ≤ e for each i,
and we can use Step 1 to define y \ z :=

∑n
i=1 yi \ zi.

Given x ∈ S with y + x ≤ z ≤ ne, we have x ≤ ne. Using Lemma 2.2.9, x can be
written as a finite ordered sum

∑n
i=1 xi with xi ≤ e for each i. Additionally, one gets

n∑
i=1

yi ∨ xi ≤ y + x ≤
n∑
i=1

zi,

which implies yi ∨ xi ≤ zi. Note that this holds if and only if xi ≤ yi \ zi.
Thus, x+ y ≤ z ≤ ne if and only if x ≤ y \ z.
Step 3. Let y ≤ z, ne, that is y ≤ z ∧ ne.
Since y ≤ z ∧ ne, we have y ≤ z ∧me for every m ≥ n. Thus, Step 2 allows us to

consider y \ (z ∧me). Further, one can easily check that

y \ (z ∧me) ≤ y \ (z ∧ (m+ 1)e)

for each m.
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We define y \ z := supm y \ (z ∧me), which satisfies the desired property.
Finally, let x, y, z ∈ S and note that

x+ (y ∨ z) ≥ (x+ y) ∨ (x+ z)

is clearly satisfied.
To see that x + (y ∨ z) ≤ (x + y) ∨ (x + z), let x′ � x and take s ∈ S such that

x′ + (y ∨ z) ≤ s.
Since x′ � x ≤ ∞e, there exists n ∈ N with x′ ≤ ne. Thus, we know that

x′ + (y ∨ z) ≤ s holds if and only if y ∨ z ≤ x′ \ s, which in turn holds if and only if
x′ + y, x′ + z ≤ s. Consequently, one has

x′ + (y ∨ z) = (x′ + y) ∨ (x′ + z).

Since this holds for each x′ � x, it also holds for x, as required.

Lemma 2.2.17. Let S be an Lsc-like Cu-semigroup with least order unit e, and let
x, y, z ≤ e with x+ y ≤ x+ z. Then, y ≤ z.

Proof. Since y ≤ x+ y ≤ x+ z, it follows from Corollary 2.2.10 that y ≤ x ∨ z. Thus,
the sum (x ∨ z) + y is decreasingly ordered.

Using Lemma 2.2.16 at the first and third step, the inequality x+ y ≤ x+ z at the
second step, and that S is distributively lattice ordered at the last step, one obtains

(x ∨ z) + y = (y + z) ∨ (y + x) ≤ (y + z) ∨ (z + x) = z + (y ∨ x)

= (z ∨ y ∨ x) + z ∧ (y ∨ x) ≤ (z ∨ x) + z.

Since the order in ↓ e is topological, it follows that y ≤ z, as required.

We now show that having a topological order is also reflected in the way below
relation.

Proposition 2.2.18. Let S be an Lsc-like Cu-semigroup with least order unit e, and let
(xi)

m
i=1, (yi)

m
i=1 be decreasing sequence of elements below e. Assume that (xi)

m
i=1, (yi)

m
i=1

are such that
m∑
i=1

xi �
m∑
i=1

yi.

Then, we have xi � yi for each i.

Proof. Let y′m � ym be such that
∑m

i=1 xi �
∑m−1

i=1 yi + y′m. Since y′m � ym ≤ ym−1,
we can find y′m−1 � ym−1 such that y′m ≤ y′m−1 and

m∑
i=1

xi �
m−2∑
i=1

yi + y′m−1 + y′m.

Proceeding in this manner, we obtain a decreasing sequence (y′i)
m
i=1 with y′i � yi for

each i, and
∑m

i=1 xi �
∑m

i=1 y
′
i.

Using that the order in ↓ e is topological, one gets xi ≤ y′i � yi for every i, as
desired.
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Proposition 2.2.19 below is probably well known to experts, but no proof has been
found in the literature.

As shown in Corollary 2.2.21, this result implies that Lsc(X,N) is a Cu-semigroup
whenever X is a compact, metric space. Recall that, for compact, metric, finite-
dimensionals spaces, this already followed from a much more general result; see [5,
Theorem 5.15].

Given f ∈ Lsc(X,N) and n ∈ N, we write {f ≥ n} to denote the open set
f−1([n,∞]). For an open set U ⊆ X, we denote by χU the indicator function of
U .

The supremum of f is denoted by sup(f), while supp(f) is the support of f .

Proposition 2.2.19. Let X be a topological space, and let f, g ∈ Lsc(X,N). Then,
f � g if and only if sup(f) <∞ and

χ{f≥n} � χ{g≥n}

for every n ∈ N.

Proof. First, let us assume that f � g, which clearly implies sup(f) < ∞. Fix n ∈ N
and consider an increasing sequence (hk)k such that

χ{g≥n} ≤ sup
k
hk,

which happens if and only if χ{g≥n} ≤ χ∪ksupp(hk).
Define the increasing sequence of functions

Gk := (n− 1) + χsupp(hk)

(
∞∑
r=0

χ{g≥n+r}

)
,

and note that g ≤ supkGk.
Since f � g, we can find k ∈ N with f ≤ Gk and, consequently,

{f ≥ n} ⊆ {Gk ≥ n} = supp(hk) ∩ {g ≥ n} ⊆ supp(hk).

This shows χ{f≥n} ≤ χsupp(hk) ≤ hk. Thus, χ{f≥n} � χ{g≥n} as required.
Conversely, assume that sup(f) < ∞ and that χ{f≥n} � χ{g≥n} for each n. Using

our first assumption, there exists m <∞ such that f =
∑m

i=1 χ{f≥i}.
Now let (hk)k be an increasing sequence with g ≤ supk hk. This implies

{g ≥ n} ⊆
⋃
k

{hk ≥ n}

and, therefore, we get χ{g≥n} ≤ supk χ{hk≥n}.
Since χ{f≥n} � χ{g≥n} for each n, it follows that for every i there exists ki ∈ N such

that χ{f≥i} ≤ χ{hki≥i}. Set k := maxi=1,...,m{ki}. Then,

f ≤
m∑
i=1

χ{hk≥i} ≤ hk,

as desired.
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Remark 2.2.20. Given a topological space X and two open subsets U, V ⊆ X, we
write U b V if U ⊆ V .

If X is a compact metric space, then U b V if and only if χU � χV in Lsc(X,N).
Indeed, if χU � χV , we can write V as a countable increasing union of open sets Vn
such that Vn is compactly contained in Vn+1 for every n. Thus, one gets χU � supn χVn ,
which implies that U is contained in Vn for some n. Conversely, if U b V and (Wn)n is
an increasing sequence of open sets with V = ∪nWn, it is clear that U ⊆ Wn for some
n. This shows χU � χV , as required.

Corollary 2.2.21. Let X be a compact metric space. Then, Lsc(X,N) is a Cu-semi-
group with pointwise order and addition.

Proof. Axioms (O1) and (O4) are satisfied for every topological space X, so we are left
to prove (O2) and (O3).

By Remark 2.2.20, we know that χU � χV if and only if U is compactly contained
in V . In particular, every indicator function can be written as the supremum of a
�-increasing sequence. Using that every element in S = Lsc(X,N) is the supremum of
finite sums of indicator functions, it follows that S satisfies (O2).

Now let f ′ � f and g′ � g in S, which by Proposition 2.2.19 implies that
sup(f ′), sup(g′) ≤ m <∞ and that {f ′ ≥ n} and {g′ ≥ n} are compactly contained in
{f ≥ n} and {g ≥ n} respectively for every n ∈ N. Thus, we have

m⋃
k=0

({f ′ ≥ k} ∩ {g′ ≥ n− k}) ⊆
m⋃
k=0

({f ≥ k} ∩ {g ≥ n− k})

for every n ≤ sup(f)+sup(g), where note that the left hand side is equal to {f ′ + g′ ≥ n}
and the right hand side is contained in {f+g ≥ n}. Proposition 2.2.19 implies f ′+g′ �
f + g and, consequently, S satisfies (O3).

2.3 The topological space of a Lsc-like Cu-semigroup
We begin this section by associating with each Lsc-like Cu-semigroup S a topological
spaceXS; see Definition 2.3.1. The properties of this space, studied in Proposition 2.3.3,
are used to prove that Lsc(XS,N) is always a Cu-semigroup; see Theorem 2.3.10. In
fact, we will show in Theorem 2.4.5 that, if S is Lsc-like, then S and Lsc(XS,N) are
Cu-isomorphic.

We also introduce notions for Cu-semigroups that have a topological equivalent
whenever the semigroup is Lsc-like. More explicitly, we characterize when XS is second
countable, normal and metric in terms of algebraic properties of the Lsc-like Cu-semi-
group S; see Proposition 2.3.7.

Definition 2.3.1. Given an Lsc-like Cu-semigroup S with least order unit e, we define
its topological space XS as

XS := {x ∈ S | x < e maximal},

with closed subsets
Cy := {x ∈ XS | y ≤ x}, y ≤ e.

We will also denote by Uy the open subset XS \ Cy.
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Let us first check that the subsets in Definition 2.3.1 above do indeed define a
topology in XS.

Lemma 2.3.2. Let S be an Lsc-like Cu-semigroup with least order unit e. Then, the
family {XS \ Cy | y ≤ e} is a T1-topology for XS.

Proof. Note that C0 = XS, Ce = ∅ and Cx = {x} for each x ∈ XS. Thus, our topology
will be T1.

We now need to prove that arbitrary intersections and finite unions of subsets of
the form Cyi are again of the form Cz for some z ≤ e.

First, for any family of subsets of the form Cyi , we get⋂
i

Cyi = C∨iyi ,

which implies the first desired property.
Further, one also has

n⋃
i=1

Cyi = C∧ni=1yi
.

Indeed, the inclusion ∪iCyi ⊆ C∧iyi is clear and, for x ∈ XS with ∧ni=1yi ≤ x, we
have

(x ∨ y1) ∧ . . . ∧ (x ∨ yn) = x ∨ (∧ni=1yi) ≤ x ∨ x = x.

Using the maximality of x, we get x∨yi = x or x∨yi = e for each i. Note, however,
that there must exist at least one i such that x = x∨ yi since otherwise we would have
e ≤ x, a contradiction.

Thus, yi ≤ x ∨ yi = x for some i, which shows that x ∈ ∪iCyi as desired.

Recall from Lemma 2.2.16 that, for every pair of elements y ≤ z ≤ e, the element
y\z denotes the almost complement of z by y. That is, for any x ∈ S we have x+y ≤ z
if and only if x ≤ y \ z.

Proposition 2.3.3. Let S be an Lsc-like Cu-semigroup with least order unit e. Then,

(i) For every y, z ≤ e, Cy ⊆ Cz if and only if z ≤ y.

(ii) For every y ≤ e, Uy = {x ∈ XS | y ∨ x = e}.

(iii) Given y, z ≤ e such that Uy ⊆ Cz, we have y ∧ z = 0.

(iv) For every y ≤ e, the closure of Uy, denoted by Uy, is Cy\e.

(v) Given y ≤ e, we have Int(Cy) = XS \ (XS \ Cy) = Uy\e, where Int(Cy) denotes
the interior of Cy.

(vi) For every y, z ≤ e, Cy ⊆ Uz if and only if y ∨ z = e.
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Proof. To see (i), let z, y ≤ e. Using Lemma 2.2.12, we know that z ≤ y if and only if
z ≤ x for every x ≥ y with x < e maximal. By definition, this is equivalent to Cy ⊆ Cz,
as required.

For (ii), let y ≤ e and take x < e be maximal. Since x ≤ y∨x ≤ e and x is maximal,
we either have y ∨ x = x (i.e. x ∈ Cy) or y ∨ x = e. Thus, Uy = {x ∈ XS | y ∨ x = e}
as desired.

To prove (iii), let y, z be as in the statement and assume, for the sake of contradic-
tion, that y ∧ z 6= 0. This implies that Uy∧z is a nonempty subset of XS.

By (ii), there exists x ∈ Uy∧z with x ∨ (y ∧ z) = e. Then, since y ∧ z ≤ y, z, one
has x ∨ z = e and x ∨ y = e. Using our second equality and the inclusion Uy ⊆ Cz, it
follows that x ∨ z = x, which contradicts x ∨ z = e 6= x, as required.

Let us now prove (iv) and, consequently, (v). First, take x ∈ Uy and note that, by
(ii), one gets

y \ e+ y ≤ e ≤ (y ∨ x) + (y ∧ x) = x+ y.

Using Lemma 2.2.17 we have y \ e ≤ x, which shows that Uy ⊆ Cy\e.
Conversely, let z be such that Uy ⊆ Cz. This implies, by (iii), that y ∧ z = 0. Thus,

one has y + z ≤ e, and Lemma 2.2.16 implies z ≤ y \ e. That is, we get Cy\e ⊆ Cz as
desired.

Therefore, we have Int(Cy) = XS \ Uy = XS \ Cy\e = Uy\e, which shows (v).
Finally, for (vi), assume first that y ∨ z = e and take x ∈ Cy. We have e = y ∨ z ≤

x ∨ z. This implies x ∈ Uz.
Conversely, let y, z ≤ e be such that Cy ⊆ Uz and assume, for the sake of contra-

diction, that y ∨ z 6= e. Then, there exists x ∈ XS with x ≥ y ∨ z. This implies x ≥ y
and, consequently, x ∨ z = e from Cy ⊆ Uz. However, we have

x = x ∨ y ∨ z ≥ x ∨ z = e

which is a contradiction.

Example 2.3.4. Let X be a T1 topological space such that S = Lsc(X,N) is a Cu-
semigroup. Recall from Example 2.2.6 that S is Lsc-like with least order unit 1. Then,
the topological space of S is homeomorphic to X.

Indeed, note that the maximal elements below 1 are of the form χX\{x} with x ∈ X.
Thus, we have

XS = {χX\{x} | x ∈ X}
and

UχU = XS \ CχU = XS \ {χX\{x} | χX\{x} ≥ χU}
= XS \ {χX\{x} | x ∈ X \ U} = {χX\{x} | x ∈ U}

for every open subset U ⊆ X.
Let ϕ : XS → X be the map defined as χX\{x} 7→ x. Using the above equalities, it

is easy to check that ϕ is a homeomorphism between X and XS.

Following our study of XS, Lemma 2.3.5 below provides an analog of Remark 2.2.20.

Lemma 2.3.5. Let S be an Lsc-like Cu-semigroup with least order unit e. Assume that
e is compact and that S satisfies (O5). Then, XS is normal.

Further, given x, y ≤ e, we have Ux b Uy if and only if x� y.



36 Chapter 2. The Cuntz semigroup of unital commutative AI-algebras

Proof. To see that XS is normal, let Cx and Cy be two closed disjoint subsets in XS.
By Lemma 2.3.2, we have Cx∨y = Cx ∩Cy = ∅ = Ce. In terms of the elements x, y ∈ S,
Proposition 2.3.3 (i) implies e� e ≤ x∨ y ≤ x+ y. Take x′ � x and y′ � y such that
e� x′ + y′.

Since S satisfies (O5), there exist elements c, d ≤ e satisfying

x′ + c ≤ e ≤ x+ c and y′ + d ≤ e ≤ y + d.

This implies, in particular, that x′ + c + y′ + d ≤ e + e with e � x′ + y′. By
Lemma 2.2.17, we get c + d ≤ e. Using that the order in ↓ e is topological, one has
c ∧ d = 0, x ∨ c = e and y ∨ d = e.

It now follows from Proposition 2.3.3 that the above equalities are equivalent to
Cx ⊆ Uc, Cy ⊆ Ud and Uc ∩ Ud = Uc∧d = ∅. This implies that XS is normal, as desired.

Now let x, y ≤ e and assume that Ux b Uy. Using (iv) and (vi) in Proposition 2.3.3,
this happens if and only if (x \ e) ∨ y = e. Thus, we have e ≤ x \ e + y and, since
x \ e+ x ≤ e� e, we obtain x� y by Lemma 2.2.17.

Conversely, if x � y, we can use (O5) to obtain an element c ≤ e such that
x+ c ≤ e ≤ y + c. Thus, one gets c ≤ x \ e, which implies

e ≤ y + c ≤ y + x \ e.

Using (iv) and (vi) in Proposition 2.3.3 once again, it follows that Ux b Uy, as
desired.

Recall the definition of inf-semilattice ordered Cu-semigroup from Paragraph 1.2.14.

Definition 2.3.6. An inf-semilattice ordered Cu-semigroup S is normal if there exists
an order unit z ∈ S such that, for any pair x, y ∈ S satisfying z ≤ x + y, there exist
s, t ∈ S with

z ≤ x+ s, z ≤ y + t and s ∧ t = 0.

We show in Proposition 2.3.7 below that a number of topological properties can be
translated to algebraic properties of Cu-semigroups. In Theorem 2.4.8, we will continue
this study and prove an abstract characterization of covering dimension.

Proposition 2.3.7. Let S be an Lsc-like Cu-semigroup and let XS be its associated
topological space. Then,

(i) XS is second countable if and only if S is countably based.

(ii) XS is countably compact if and only if S has a compact order unit.

(iii) XS is normal if and only if S is normal.

(iv) XS is a metric space whenever S is countably based and normal.

(v) XS is a compact metric space whenever S is countably based, has a compact order
unit and satisfies (O5).
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Proof. We will prove each claim separately.
(i) Let e be the least order unit of S, and assume that S is countably based. Let B

denote a countable basis of S and denote by E the monoid generated by the elements
in ↓ e. Since both B and E are bases, B′ := B ∩ E is also a countable basis for S.

For every open set Uy with y ≤ e, we can write y = supn yn with yn ∈ B′. Thus, we
have ∪nUyn = Uy, which implies that XS is second countable.

Conversely, assume that XS is second countable with basis C = {Uzn}n, which we
may assume to be closed under finite unions. Then, every open subset Uy can be written
as the countable union of increasing open subsets Uzm in C.

Since this is equivalent to y = supm zm, it follows that the monoid generated by
{zn}n is both countable and dense in S, as desired.

(ii) Note that e ∈ S is compact if and only if XS is countably compact. Thus, we
are left to prove that e is compact whenever there exists a compact order unit in S.

Let p be a compact order unit, which implies p ≤ ne for some n ∈ N. By
Lemma 2.2.9, we can write p = p1 + . . . + pn with pi+1 ≤ pi ≤ e for each i. It
then follows from Proposition 2.2.18 that each pi is compact. Since p1 is an order unit
below e, we must have p1 = e compact, as desired.

(iii) Assume first that S is normal and let z be the order unit given by Defini-
tion 2.3.6. Take disjoint closed subsets Cx, Cy of XS. We have x ∨ y = e.

Using that e is an order unit, one gets z ≤ ∞ = ∞x +∞y. By the definition of
normality, we can find s, t ∈ S with z ≤ ∞x + s, z ≤ ∞y + t and s ∧ t = 0. Then, it
follows from Corollary 2.2.10 that e ≤ ∞x ∨ s and e ≤ ∞y ∨ t.

By Lemma 2.2.11, one has

e = (∞x ∧ e) ∨ (s ∧ e) = x ∨ (s ∧ e), e = y ∨ (t ∧ e) and (s ∧ e) ∧ (t ∧ e) = 0.

Using (vi) in Proposition 2.3.3, we obtain Cx ⊆ Us∧e, Cy ⊆ Ut∧e and Us∧e∩Ut∧e = ∅.
Thus, XS is normal.

Conversely, if XS is normal, it is readily checked that S is normal by taking z = e
in Definition 2.3.6.

(iv) Using (i) and (iii), XS is a second countable, normal and Hausdorff space.
The result now follows from Urysohn’s metrization theorem; see, for example, [59,
Theorem 34.1].

(v) Note that e� e by the argument in (ii). Thus, we know from Lemma 2.3.5 and
(iii) that S is normal. Using (iv), we obtain the desired result.

We now prove that Lsc(XS,N) is a Cu-semigroup for every Lsc-like Cu-semigroup
S. As in Corollary 2.2.21, note that (O1) and (O4) are always satisfied, so we only need
to show (O2) and (O3).

Lemma 2.3.8. Let S be an Lsc-like Cu-semigroup with least order unit e, and take
y, z ≤ e. Then, y � z if and only if χUy � χUz in Lsc(XS,N).

Proof. Let us first assume that y � z, and let (fn)n be an increasing sequence in
Lsc(XS,N) such that χUz ≤ supn fn. In particular, note that this holds if and only if
χUz ≤ χ∪nsupp(fn) or, equivalently, if⋂

n

(XS \ supp(fn)) = XS \
⋃
n

supp(fn)‘ ⊆ XS \ Uz = Cz.
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Let zn be the elements in ↓ e with Czn = XS\supp(fn). Since supp(fn) ⊆ supp(fn+1)
for each n, (i) in Proposition 2.3.3 implies that (zn)n is increasing.

By (the proof of) Lemma 2.3.2, we get

Csupn(zn) =
⋂
n

Czn ⊆ Cz.

Using (i) in Proposition 2.3.3 once again, it follows that z ≤ supn zn and, since
y � z, there exists n ∈ N with y ≤ zn. Thus, Uy ⊆ Uzn or, equivalently, χUy ≤ χUzn =
χsupp(fn) ≤ fn. This shows χUy � χUz , as required.

Conversely, take y, z ≤ e such that χUy � χUz , and consider an increasing sequence
(hn)n in S with z ≤ supn hn. Note that, by taking z ∧hn instead of hn, we may assume
hn ≤ e for each n.

It follows from (the proof of) Lemma 2.3.2 that⋂
n

Chn = Csupn(hn) ⊆ Cz

and, consequently, we have χUy � χUz ≤ supn χUhn . This implies that there exists
n ∈ N with χUy ≤ χUhn , that is to say Chn ⊆ Cy.

Using (i) in Proposition 2.3.3, one has y ≤ hn as desired.

Proposition 2.3.9. Let S be an Lsc-like Cu-semigroup. Then, Lsc(XS,N) satisfies
(O2).

Proof. To verify that Lsc(XS,N) satisfies (O2), let f ∈ Lsc(XS,N) and consider the
sequence (yi)i in ↓ e satisfying

{f ≥ i} = Uyi ,

which is decreasing by (i) in Proposition 2.3.3.
Using that S satisfies (O2), we can choose �-increasing sequences (yi,n)n such that

yi = supn yi,n for each n. Thus, for every fixed k, we get

yk,n � yk ≤ . . . ≤ y1

for all n.
Consequently, for every i one can inductively choose ni,k with k ≥ i such that

yi,ni,k � yi,ni,k+1
and yk,nk,k ≤ . . . ≤ y1,n1,k

.

Indeed, we begin by setting n1,1 = 1. Then, assuming that we have defined ni,k
for every i, k ≤ m − 1 (and k ≥ i) for some fixed m, we set nm,m = 1 and choose
nm−1,m large enough so that ym,nm,m ≤ ym−1,nm−1,m and nm−1,m−1 ≤ nm−1,m. Similarly,
we choose nm−2,m ≥ nm−2,m−1 such that ym−1,nm−1,m ≤ ym−2,nm−2,m and define ni,m for
each i ≤ m− 2 in the same fashion.

Now consider the elements fk =
∑k

i=1 χUyi,ni,k
, which are ordered by construction.

Thus, one has Uyi,ni,k = {fk ≥ i} for every i. Using Lemma 2.3.8, Proposition 2.2.19
and the fact that yi,ni,k � yi,ni,k+1

for each i, we get

fk =
k∑
i=1

χUyi,ni,k
�

k∑
i=1

χUyi,ni,k+1
≤ fk+1.

One can now check that supk fk = f , as desired.
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Theorem 2.3.10. Let S be an Lsc-like Cu-semigroup. Then, the ordered monoid
Lsc(XS,N) is a Cu-semigroup.

Proof. As mentioned above, Lsc(XS,N) always satisfies (O1) and (O4), and we know
from Proposition 2.3.9 that it satisfies (O2). Thus, we are left to prove (O3).

Let f � f ′ and g � g′ in Lsc(XS,N). By Proposition 2.2.19, we have

χ{f≥i} � χ{f ′≥i} and χ{g≥i} � χ{g′≥i}

for each i. Also, there exists m <∞ such that sup(f), sup(g) ≤ m.
Take yi, y′i, zi, z′i ∈↓ e with

Uyi = {f ≥ i}, Uy′i = {f ′ ≥ i}, Uzi = {g ≥ i} and Uz′i = {g′ ≥ i}.

Using Lemma 2.3.8 we see that yi � y′i and zi � z′i for every i. Since S satisfies
(O3), we have

m∑
i=1

(yi + zi)�
m∑
i=1

(y′i + z′i).

By Lemma 2.2.3, we can rewrite these sums as

2m∑
i=1

∨mj=0(yj ∧ zi−j)�
2m∑
i=1

∨mj=0(y′j ∧ z′i−j),

where note that both sides are now ordered. Thus, it follows from Proposition 2.2.18
that

∨mj=0(yj ∧ zi−j)� ∨mj=0(y′j ∧ z′i−j)
for each i.

Since

{f + g ≥ i} =
m⋃
j=0

({f ≥ j} ∩ {g ≥ i− j}),

one gets, using Lemma 2.3.2 and its proof at the last two steps, that

XS\{f+g ≥ i} =
m⋂
j=0

((XS\{f ≥ j})∪(XS\{g ≥ i−j})) =
m⋂
j=0

(Cyj∧zi−j) = C∨mj=0(yj∧zi−j)

and, consequently, χ{f+g≥i} = χU∨m
j=0

(yj∧zi−j)
.

A similar argument also shows χU∨m
j=0

(y′
j
∧z′
i−j)
≤ χ{f ′+g′≥i}.

Using Lemma 2.3.8, we have χ{f+g≥i} � χ{f ′+g′≥i} for each i which, by Proposi-
tion 2.2.19, implies that f + g � f ′ + g′, as required.

2.4 An abstract characterization of Lsc(X,N)
We prove that every Lsc-like Cu-semigroup S is Cu-isomorphic to its associated semi-
group of lower-semicontinuous functions Lsc(XS,N); see Theorem 2.4.5. To do so, we
first define in Definition 2.4.2 a map ϕ0 : Lsc(XS,N)� → S, which we then extend to
a Cu-isomorphism ϕ : Lsc(XS,N)→ S.
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Lemma 2.4.1. Let S and H be a pair of Cu-semigroups, and let ϕ : S → H be a
Cu-morphism between them such that

(i) ϕ is an order embedding on a basis B of S;

(ii) ϕ(S) is a basis for H.

Then, ϕ is a Cu-isomorphism.

Proof. First, let x, y in S be such that ϕ(x) ≤ ϕ(y), and take x′ � x. Since B is a
basis, we can find s ∈ B such that x′ � s � x. Thus, since ϕ(s) � ϕ(y), we can also
find t ∈ B with ϕ(s)� ϕ(t) and t� y.

Using that ϕ is an order embedding in B, we obtain s� t and, consequently, x′ � y.
Since this holds for each x′ � x, we obtain x ≤ y. This shows that ϕ is a global order
embedding.

To prove surjectivity, let h ∈ H. Since ϕ(S) is a basis for H, we can write h =
supn ϕ(sn) for some sn ∈ S. Further, as we know that ϕ is an order embedding, the
sequence (sn)n is increasing in S, so

h = sup
n
ϕ(sn) = ϕ(sup

n
sn) ∈ ϕ(S),

as desired.

We now define the map ϕ0, where note that Lsc(XS,N)� can be identified with the
elements in Lsc(XS,N) with finite supremum.

Definition 2.4.2. Let S be an Lsc-like Cu-semigroup. We define

ϕ0 : Lsc(XS,N)� → S

by ϕ0(f) =
∑sup(f)

i=1 zi, where {f ≥ i} = Uzi for each i.

Lemma 2.4.3. For any Lsc-like Cu-semigroup S, the map ϕ0 defined above is a posi-
tively ordered monoid morphism and an order embedding.

Further, for any pair f, g ∈ Lsc(XS,N)�, we have ϕ0(f) � ϕ0(g) if and only if
f � g.

Proof. Let f, g ∈ Lsc(XS,N)� with sup(f) = m ∈ N, and take zi, yj ∈ S such that
{f ≥ i} = Uzi and {g ≥ j} = Uyj for each i ≤ m and j ≤ sup(g). We will first prove
by induction on m that ϕ0(f + g) = ϕ0(f) + ϕ0(g).

For m = 1, f is of the form χUz for some open subset Uz. Since Lsc(XS,N) is
distributively lattice ordered and f ≥ 0 ≥ . . .(sup(g)−1 . . . ≥ 0 is a decreasing sequence,
it follows from Lemma 2.2.3 that

f + g = χUz +
n∑
j=1

χUyj = χUz∪Uy1 + χ(Uz∩Uy1 )∪Uy2 + . . .+ χUz∩(∩jUyj ).

Applying ϕ0 and the equalities in the proof of Lemma 2.3.2 at the first step, and
Lemma 2.2.3 at the second step, we get

ϕ0(f + g) = (z ∨ y1) + ((z ∧ y1) ∨ y2) + . . .+ (z ∧ y1 ∧ . . . ∧ yn)

= z + (y1 + . . .+ yn) = ϕ0(f) + ϕ0(g),
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as desired.
Now fix some finitem and assume that the result has been proven for any k ≤ m−1.

Then, using the induction hypothesis at the second step, and the case m = 1 at the
third and fourth steps, we have

ϕ0(f + g) = ϕ0((f − χUzm ) + (g + χUzm )) = ϕ0(f − χUzm ) + ϕ0(g + χUzm )

= ϕ0(f − χUzm ) + ϕ0(g) + ϕ0(χUzm ) = ϕ0(f − χUzm + χUzm ) + ϕ0(g)

= ϕ0(f) + ϕ0(g)

as required.
To see that ϕ0 is order preserving and an order embedding, note that f ≤ g in

Lsc(XS,N)� if and only if {f ≥ i} ⊆ {g ≥ i} for each i ≤ sup(f) = m.
Using the same notation as above, (i) in Proposition 2.3.3 shows that

Uzi = {f ≥ i} ⊆ {g ≥ i} = Uyi

if and only if zi ≤ yi.
Further, since the sequences (zi)

m
i=1, (yi)

m
i=1 are both decreasing and the order in ↓ e

is topological, we have that zi ≤ yi for each i if and only if

ϕ0(f) =
m∑
i=1

zi ≤
m∑
i=1

yi ≤ ϕ0(g).

Finally, if f � g, it follows from Proposition 2.2.19 and Lemma 2.3.8 that this
holds if and only if zi � yi for each i. As above, and using Proposition 2.2.18, this is
equivalent to

ϕ0(f) =
m∑
i=1

zi �
m∑
i=1

yi ≤ ϕ0(g),

as desired.

Theorem 2.4.4. Let S be an Lsc-like Cu-semigroup. Then, the morphism ϕ0 from
Lsc(XS,N)� to S extends to a Cu-isomorphism ϕ : Lsc(XS,N)→ S.

Proof. We will first check that ϕ0 satisfies the properties of Lemma 1.3.5 for N =
Lsc(XS,N)�. By Lemma 2.4.3 above, we only need to prove that for every element
f ∈ Lsc(XS,N)� there exists a �-increasing sequence (fn)n in Lsc(XS,N)� with
supn ϕ0(fn) = ϕ0(f).

Let f ∈ Lsc(XS,N)� with sup(f) = m. Since Lsc(XS,N) is a Cu-semigroup, we
can find �-increasing sequences of indicator functions (hi,n)n with supn hi,n = χ{f≥i}.

It is readily checked that suprema of indicator functions is preserved by ϕ0. Thus,
consider the elements fn :=

∑m
i=1 hi,n for each n, which form a �-increasing sequence

with supremum f . We have

sup
n
ϕ0(fn) =

m∑
i=1

sup
n
ϕ0(hi,n) =

m∑
i=1

ϕ0(χ{f≥i}) = ϕ0(f),

which shows that the desired property is satisfied.
Using Lemma 1.3.5, ϕ0 can be extended to a Cu-morphism ϕ : Lsc(XS,N)→ S.
Further, note that for every z ≤ e there exists f such that ϕ0(f) = e, which implies

that the image of ϕ is dense in S. Thus, it follows from Lemma 2.4.1 and Lemma 2.4.3
that ϕ is an isomorphism, as required.
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Theorem 2.4.5. Let S be a Cu-semigroup. Then, S is Lsc-like if and only if S is
Cu-isomorphic to Lsc(X,N) for a T1 topological space X.

Proof. Combine Example 2.2.6 and Theorem 2.4.4 above.

Recall that a functor T : A → B is said to be essentially surjective if every object b
of B is isomorphic to Ta for some a of A. We also say that T is full on isomorphisms if
for every pair of isomorphic objects b1, b2 of B there exist a pair of isomorphic objects
a1, a2 of A such that Ta1 is isomorphic to b1 and Ta2 is isomorphic to b2.

Let Top be the category of topological spaces. We denote by T Cu
1 the subcategory

of Top whose objects X are the T1 spaces such that Lsc(X,N) ∈ Cu. Note that, by
Corollary 2.2.21, this includes all compact, metric spaces.

Theorem 2.4.6. Let Lsc be the subcategory of Cu consisting of Lsc-like Cu-semigroups.
Then, there exists a faithful and essentially surjective contravariant functor T : T Cu

1 →
Lsc that is full on isomorphisms.

Proof. Given a topological space X ∈ T Cu
1 we define T (X) = Lsc(X,N), where note

that T (X) ∈ Lsc by construction.
For any continuous map f : X → Y , set T (f) : Lsc(Y,N)→ Lsc(X,N) as the unique

Cu-morphism such that T (f)(χU) = χf−1(U) for every open subset U of Y .
Given f : X → Y and g : Y → Z in T Cu

1 , we have

T (g ◦ f)(χU) = χ(g◦f)−1(U) = χf−1g−1(U) = (T (f) ◦ T (g))(χU),

which shows that T is a contravariant functor. It is readily checked that T is faithful
by construction.

Further, given any Lsc-like Cu-semigroup S, we know from Theorem 2.4.4 that
S ∼= Lsc(XS,N). Thus, T is essentially surjective.

Now let S and T be a pair of isomorphic Lsc-like Cu-semigroups. By Theorem 2.4.4,
there exists a Cu-isomorphism of the form φ : Lsc(XS,N)→ Lsc(XT ,N).

Since the constant map 1 is a minimal compact element in both Lsc(XS,N) and
Lsc(XT ,N), it follows that φ(1) = 1. This implies that every element below 1 maps
to an element below 1. That is to say, indicator functions map to indicator functions.
Moreover, using that φ is a Cu-isomorphism, maximal elements below 1 must map to
maximal elements below 1. Thus, as in Example 2.2.6, for every x ∈ XS there exists
y ∈ XT such that φ(χXS\{x}) = χXT \{y}.

Define the map f : XT → XS as y 7→ x. Since φ is a Cu-isomorphism, we have that
f is bijective.

To prove that it is also continuous, let U be an open subset of XS and take V ⊆ XT

such that φ(χU) = χV . For any y ∈ XT , we have y ∈ V if and only if

1 ≤ χXT \{y} + χV = φ(χXS\{f(y)} + χU).

Using once again that φ is a Cu-isomorphism, this holds if and only if

(XS \ {f(y)}) ∪ U = XS

or, equivalently, if f(y) ∈ U . This implies f−1(U) = V and, therefore, that f is
continuous.
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Finally, let V ⊆ XT be an open subset and take U ⊆ XS such that χV = φ(χU).
By the argument above, we have V = f−1(U) and, since f is bijective, it follows that
f(V ) = f(f−1(U)) = U . This shows that f is open.

Thus, f is a homeomorphism between XT and XS, as desired.

Let n ∈ N. To finish this section, we continue the study of Proposition 2.3.7 and
translate the property of having covering dimension at most n to the language of Cu-
semigroups; see Theorem 2.4.8. This result is one of the driving reasons for defining a
notion of covering dimension for Cu-semigroups; see Chapter 4.

We recall the following characterization of topological covering dimension.

Proposition 2.4.7 (cf [56, Proposition 1.5]). Let n ∈ N. A metric space X satisfies
dim(X) ≤ n if and only if every open cover X = U1∪. . .∪Ur admits an (n+1)-colorable,
finite, open refinement. In other words, there exist open subsets Vj,k for j = 1, . . . , r
and k = 0, . . . , n such that

(i) Vj,k b Uj for each j and k;

(ii) X =
⋃
j,k Vj,k;

(iii) Vj,k ∩ Vj′,k = ∅ for every j 6= j′ and k.

Theorem 2.4.8. Let X be a compact, metric space, and let n ∈ N. Then, dim(X) ≤ n
if and only if, whenever f ′ � f � g1 + . . . + gr in Lsc(X,N), there exist hj,k with
j = 1, . . . , r and k = 0, . . . , n such that

(i) hj,k � gj for each j and k;

(ii) f ′ �
∑

j,k hj,k;

(iii)
∑r

j=1 hj,k � f for each k = 0, . . . , n.

Proof. First, let n be such that the stated property for Lsc(X,N) is satisfied, and take
an open cover U1, . . . , Ur of X. Then, we have

χX � χX � χU1 + . . .+ χUr .

Thus, we can find elements hj,k � χUj for j = 1, . . . , r and k = 0, . . . , n satisfying
(i)-(iii). In particular, (i) implies that each hj,k is of the form χVj,k for some open subset
Vj,k b Uj.

It follows from (ii) that {Vj,k}j,k is a cover for X, and (iii) implies that the Vj,k’s are
pairwise disjoint on j. Thus, Proposition 2.4.7 above shows that dim(X) ≤ n.

Conversely, let n ≥ dim(X), which we may assume to be finite since otherwise there
is nothing to prove. Take f ′ � f � g1 + . . .+ gr in Lsc(X,N), and let f ′′ and g′j � gj
for each j be such that f ′ � f ′′ � f � g′1 + . . .+ g′r.

We may assume that f ′, f ′′, g′1, . . . , g′r are all bounded by some m ∈ N, and that
there exists ε > 0 such that

Nε({f ′′ ≥ i}) b {f ′′ ≥ i− 1}, {f ≥ i} and Nε({g′j ≥ i}) ⊆ {gj ≥ i}
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for each i, where Nε() denotes the open ε-neighbourhood of a set. This can be assumed
because such maps are dense in Lsc(X,N).

For every i ≤ m, set

Yi := Nε({f ′′ ≥ i} \Nε({f ′′ ≥ i+ 1})),

which satisfy x /∈ Yi whenever f ′′(x) > i.
Moreover, for every N ∈ Nr, we denote the sum

∑
j Nj by |N | and set

UN := Y|N | ∩Nε(∩j{g′j ≥ Nj}),

where note that there are finitely many nonempty UN ’s, and that UN ⊆ {gj ≥ Nj} for
each j.

One has

Yi = Yi ∩Nε({f ′′ ≥ i}) ⊆ Yi ∩Nε(∪|N |=i ∩j {g′j ≥ Nj}) = ∪|N |=iUN ⊆ Yi

and, consequently,
Nε({f ′′ ≥ 1}) = ∪iYi = ∪NUN .

By Proposition 2.4.7, we can find open subsets V (0)
N , . . . , V

(n)
N b UN such that

{V (k)
N }k,N is an open cover for Nε({f ′′ ≥ 1}), and such that the V (k)

N ’s are pairwise
disjoint on N . Since there are finitely many nonempty UN ’s, we also have finitely many
nonempty V (k)

N ’s.
For each j and k, we set

hj,k :=
∑
N∈Nr

NjχV (k)
N
,

where note that such sums are finite because there are only finitely many nonempty
UN ’s.

Since V (k)
N b UN ⊆ {gj ≥ Nj}, we have NjχV (k)

N
� gj and, since the V (k)

N ’s are
pairwise disjoint on N , we obtain hj,k � gj for each j, k.

Further, we have∑
j

hj,k =
∑
N

(∑
j

Nj

)
χ
V

(k)
N

=
m∑
i=0

iχ∪|N|=iV (k)
N

and, using that ∪|N |=iV (k)
N ⊆ ∪|N |=iUN = Yi b {f ≥ i}, one gets∑

j

hj,k � f

for each k.
Finally, we note that for every x ∈ Nε({f ′′ ≥ 1})\∪i′<iYi′ there exist k,N such that

|N | ≥ i and x ∈ V (k)
N . Thus, one has

{f ′ ≥ i} b {f ′′ ≥ i} ⊆ Nε({f ′′ ≥ 1}) \ ∪i′<iYi′ ⊆ ∪k ∪|N |≥i V (k)
N

and, consequently,

f ′ �
m∑
i=0

iχ∪k∪|N|=iV
(k)
N
≤
∑
k

m∑
i=0

iχ∪|N|=iV
(k)
N

=
∑
j,k

hj,k,

as desired.
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2.5 Chain conditions: The Cuntz semigroup of com-
mutative AI-algebras

In this section, we give an abstract characterization for the Cuntz semigroup of a unital
commutative block stable AI-algebra (in the sense of Definition 2.1.5; see Theorem 2.5.4)
and, more generally, a unital commutative AI-algebra (Theorem 2.5.12) by using the
notions of piecewise chainable and weakly chainable Cu-semigroups ; see Definitions 2.5.1
and 2.5.5 respectively.

We also show that the Cuntz semigroup of any AI-algebra is weakly chainable, thus
uncovering a new propery that the Cuntz semigroup of any AI-algebra satisfies; see
Corollary 2.5.10.

Definition 2.5.1. Let S be an inf-semilattice ordered Cu-semigroup, and let x ∈ S.
We say that x is chainable if, whenever x ≤ y1 + . . . + yn, there exist z1, . . . , zm ∈ S
such that

(i) For every i ≤ m, we have zi ≤ yk for some k ≤ n;

(ii) zi ∧ zj 6= 0 if and only if |i− j| ≤ 1;

(iii) x ≤ z1 + . . .+ zm.

The Cu-semigroup S is said to be chainable if it has a chainable order unit.
We say that S is piecewise chainable if there exist chainable elements s1, . . . , sn with

si ∧ sj = 0 whenever i 6= j such that s1 + . . .+ sn is an order unit.

Recall the definition of chainability from Definition 2.1.3.

Lemma 2.5.2. Let S be an Lsc-like Cu-semigroup S with least order unit e, and let
y ≤ e. Then, Uy is chainable if and only if y is chainable.

In particular, S is chainable if and only if XS is chainable.

Proof. First, assume that y is chainable and let Uy1 , . . . , Uyn be a finite open cover of
Uy, which implies that

y = y1 ∨ . . . ∨ yn ≤ y1 + . . .+ yn.

Applying that y is chainable, we obtain z1, . . . , zm satisfying (i)-(iii) in Defini-
tion 2.5.1 above. In particular, since each zi is bounded by some yk, we have z1 ∨ . . . ∨
zm ≤ y. By Corollary 2.2.10 and (iii) in Definition 2.5.1, we also get y ≤ z1 ∨ . . . ∨ zm
and, consequently, z1 ∨ . . . ∨ zm = y. Therefore, Uz1 , . . . , Uzm is a cover for Uy.

Using (the proof of) Lemma 2.3.2, one can check that Uz1 , . . . , Uzm form a chain in
the sense of Definition 2.1.3, as desired.

Conversely, if Uy is chainable, let y1, . . . , yn ∈ S be such that y ≤ y1 + . . .+ yn. By
Corollary 2.2.10, this implies

(y1 ∧ y) ∨ . . . ∨ (yn ∧ y) = y.

Thus, we have Uy1∧y ∪ . . . ∪ Uyn∧y = Uy. By the chainability of Uy, we obtain a
chain refining this cover. Using Lemma 2.3.2, it is easy to check that the elements
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below e corresponding to the open subsets of the chain satisfy conditions (i)-(iii) in
Definition 2.5.1.

Note, in particular, that this shows that e is chainable whenever XS is chainable.
By definition, this implies that S is chainable.

If, conversely, S is chainable, let s be a chainable order unit. Given y1, . . . , yn ∈ S
with e ≤ y1 + . . . + yn, we know from Corollary 2.2.10 that e ≤ y1 ∨ . . . ∨ yn. This
implies that

s ≤ ∞s =∞ =∞e ≤ ∞y1 ∨ . . . ∨∞yn ≤ ∞y1 + . . .+∞yn.

Since s is chainable, we get z1, . . . , zm ∈ S satisfying (i)-(iii) in Definition 2.5.1.
Using that for every i there exists k with zi ≤ ∞yk, it follows from Lemma 2.2.11 that

zi ∧ e ≤ (∞yk) ∧ e = yk ∧ e ≤ yk.

Further, since e is the least order unit in S and e ≤ s ≤ z1 + . . . + zm, we know
by Corollary 2.2.10 that e ≤ z1 ∨ . . . ∨ zm. Thus, Corollary 2.2.10 implies that e ≤
z1 ∧ e+ . . .+ zm ∧ e.

Therefore, the elements zi ∧ e satisfy conditions (i)-(iii) in Definition 2.5.1 for e ≤
y1 ∨ . . . ∨ yn and, consequently, e is a chainable order unit. By the first part of the
lemma, Ue = XS is chainable, as required.

Lemma 2.5.3. Let S be a countably based Lsc-like Cu-semigroup with a compact order
unit. Then, S is piecewise chainable if and only if XS is a finite disjoint union of
chainable subsets.

Proof. If XS is piecewise chainable, there exist n ∈ N and chainable subsets X1, . . . , Xn

of XS such that XS = X1t. . .tXn. Since chainability implies connectedness (whenever
the space is compact), there is a finite number of connected components, and so these
are clopen.

It follows from Lemma 2.5.2 that these disjoint chainable components correspond
to chainable elements in S with null pairwise infima. Thus, S is piecewise chainable by
definition.

Conversely, if S is piecewise chainable, each element si in the definition of chainable
corresponds to a chainable open subset of XS, which is disjoint from the other chainable
open subsets by construction.

Theorem 2.5.4. Let S be a Cu-semigroup. Then, S is Cu-isomorphic to the Cuntz
semigroup of a unital commutative block-stable AI-algebra if and only if S is countably
based, Lsc-like, piecewise chainable, has a compact order unit, and satisfies (O5).

Proof. Let S be Cu-isomorphic to the Cuntz semigroup of a unital commutative block-
stable AI-algebra. Then, it follows from [74, Theorem 1.1], Proposition 2.1.4 and Defi-
nition 2.1.5 that S ∼= ⊕nk=1 Lsc(Xk,N) ∼= Lsc(tkXk,N) with Xk a chainable continuum
for each k. In particular, S satisfies (O5), has a compact order unit, is countably based
and Lsc-like. Using Lemma 2.5.3, it also follows that S is piecewise chainable.

Conversely, assume that S is a Cu-semigroup satisfying all the conditions in the
statement. Thus, S ∼= Lsc(X,N) with X a compactum by Theorem 2.4.5 and (v) in
Proposition 2.3.7.
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It follows from Example 2.3.4 and Lemma 2.5.3 that X is piecewise chainable.
This implies that its dimension is less than or equal to one and, consequently, S ∼=
Lsc(X,N) ∼= Cu(C(X)) by [74, Theorem 1.1].

This shows that S is isomorphic to the Cuntz semigroup of a unital commutative
block-stable AI-algebra, as required.

We now introduce weakly chainable Cu-semigroups and show that every AI-algebra
has such a Cuntz semigroup; see Corollary 2.5.10. We also prove in Proposition 2.5.6
that, under certain mild conditions, an Lsc-like Cu-semigroup S is weakly chainable if
and only if XS is almost chainable.

Recall that, for every pair of elements x, y in a Cu-semigroup, we write x ∝ y if
x ≤ ny for some n ∈ N.

Definition 2.5.5. A Cu-semigroup S will be said to be weakly chainable, or that it
satisfies the weak chainability condition if, whenever x′ � x� y1 + . . .+ yn, there exist
z, z1, . . . , zm ∈ S such that x′ ∝ z ≤ x and

(i) For every i ≤ m, we have zi ≤ yk for some k ≤ n;

(ii) zi + zj ≤ z whenever |i− j| ≥ 2;

(iii) z ≤ z1 + . . .+ zm.

Proposition 2.5.6. Let S be an Lsc-like Cu-semigroup with a compact order unit.
Then, XS is almost chainable whenever S is weakly chainable.

Conversely, if S also satisfies (O5), S is weakly chainable whenever XS is almost
chainable.

Proof. Assume first that S is weakly chainable, and let Uy1 , . . . , Uyn be a cover of XS.
Then, the elements y1, . . . , yn ≤ e satisfy

e ≤ y1 ∨ . . . ∨ yn ≤ y1 + . . .+ yn.

We know from (ii) in Proposition 2.3.7 that e is compact. Thus, set x′ = x = e and
apply Definition 2.5.5 to obtain elements z, z1, . . . , zm satisfying (i)-(iii) in the definition.
In particular, since z ≤ e ∝ z, it follows that z is an order unit bounded by e. Using
that e is the least order unit of S, this implies z = e.

Let Uz1 , . . . , Uzm be the open subsets of XS corresponding to z1, . . . , zm respectively.
Using (i)-(iii) in Definition 2.5.5, it is readily checked that these sets cover Uz = Ue = XS

and form an almost chain refining our original cover. Thus, XS is almost chainable.
Conversely, assume that XS is almost chainable and let x′ � x � y1 + . . . + yn in

S. Set z = x′ ∧ e. Then, Corollary 2.2.10 implies that z � y1 ∨ . . .∨ yn. Thus, one gets
z � (y1 ∧ e) ∨ . . . ∨ (yn ∧ e), and note that z also satisfies x′ ∝ z ≤ x.

Since e is compact and S satisfies (O5), it follows from z � y1∨. . .∨yn, Lemma 2.3.2
and Lemma 2.3.5 that

Uz ⊆ Uy1 ∪ . . . ∪ Uyn .

In particular, the open sets X \Uz, Uy1 , . . . , Uyn form a cover of XS and, since XS is
almost chainable, we can find an almost chain C1, . . . , Cm refining the cover. For each
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i ≤ m, let zi ≤ e be such that Uzi = Ci ∩ Uz. By construction, Uz1 , . . . , Uzm is a cover
for Uz and, consequently, we have z ≤ z1 + . . .+ zm.

Note that {Uzi}i is a family of open subsets of Uz, which implies that zi + zj ≤ z
if and only if zi ∧ zj = 0. Thus, since {Uzi}i is also an almost chain, it follows that
zi + zj ≤ z whenever |i− j| ≥ 2.

This shows that z, z1, . . . , zm satisfy conditions (i)-(iii) in Definition 2.5.5, as re-
quired.

Corollary 2.5.7. Let X be a compact metric space. Then, Lsc(X,N) is weakly chain-
able if and only if X is almost chainable.

If, additionally, X is also connected, Lsc(X,N) is weakly chainable if and only if X
is chainable.

Proof. By Corollary 2.2.21, we have that S := Lsc(X,N) is a Cu-semigroup and, since
X is a T1 space, it follows from Example 2.2.6 and Example 2.3.4 that S is Lsc-like and
X ∼= XS. Moreover, 1� 1 in S by (ii) in Proposition 2.3.7.

If S is weakly chainable, Proposition 2.5.6 above implies that X ∼= XS is almost
chainable. Conversely, if X ∼= XS is almost chainable, we know that dim(XS) ≤ 1.
Thus, it follows from [74, Theorem 1.1] that Cu(C(X)) ∼= S. In particular, this implies
that S satisfies (O5).

Using Proposition 2.5.6 once again, we get that S is weakly chainable, as desired.
The second part of the statement follows trivially.

Lemma 2.5.8. Let S, T be weakly chainable Cu-semigroups. Then, S ⊕ T is weakly
chainable.

Proof. Let x′ � x� y1 + . . .+ yn in S ⊕ T , and write

x′ = (x′1, x
′
2), x = (x1, x2) and yj = (yj,1, yj,2)

for each j ≤ n, where x′1, x1, yj,1 ∈ S and x′2, x2, yj,2 ∈ T .
Using that S and T are both weakly chainable, we find elements z1, z1,1, . . . , zm,1 ∈ S

and z2, z1,2, . . . , zm′,2 ∈ T satisfying (i)-(iii) in Definition 2.5.5 for the first and second
components of x′, x and yj respectively. Set z := (z1, z2) and let zi be (zi,1, 0) for i ≤ m
and (0, zi−m+1,2) whenever i > m. Then, we have

z = (z1, 0) + (0, z2) ≤ ((z1,1, 0) + . . .+ (zm,1, 0)) + ((0, z1,2) + . . .+ (0, zm′,2))

= z1 + . . .+ zm+m′−1,

which is condition (iii).
Also note that, for each zi, we get zi ≤ yk for some k by construction.
Finally, let zi, zj with |i−j| ≥ 2. If i, j ≤ m, we have zi+zj ≤ (z1, 0) ≤ z. Similarly,

zi + zj ≤ (0, z2) ≤ z whenever i, j > m. If i ≤ m < j, one gets

zi + zj = (zi,1, 0) + (0, zj−m+1,2) ≤ (z1, 0) + (0, z2) = z.

This shows that z1, . . . , zm+m′−1 satisfy conditions (i)-(iii) and, consequently, that S
is weakly chainable, as required.
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In the proof of Proposition 2.5.9 below, we will use the characterization of inductive
limits from Paragraph 1.2.10.

Proposition 2.5.9. Let S = limλ∈Λ Sλ be an inductive limit of Cu-semigroups. Assume
that Sλ is weakly chainable for each λ ∈ Λ. Then, S is also weakly chainable.

Proof. Given x′ � x� y1 + . . .+ yn in S, it follows from Paragraph 1.2.10 that there
exist λ ∈ Λ and elements u′, u, v1, . . . , vn ∈ Sλ with ϕλ(vj)� yj, u′ � u� v1 + . . .+vn
and

x′ � ϕλ(u
′)� ϕλ(u)� x� ϕλ(v1) + . . .+ ϕλ(vn),

where ϕλ is the canonical map Sλ → S.
Using that Sλ is weakly chainable, we find z, z1, . . . , zm ∈ Sλ satisfying (i)-(iii) in

Definition 2.5.5. Thus, we have

(i) u′ ∝ z ≤ u. This implies x′ � ϕλ(u
′) ∝ ϕλ(z) ≤ ϕλ(u)� x;

(ii) For any i there exists j such that zi ≤ vj, which shows that ϕλ(zi) ≤ ϕλ(vj) ≤ yj;

(iii) zi + zj ≤ z whenever |i− j| ≥ 2. Consequently, ϕλ(zi) +ϕλ(zj) ≤ ϕλ(z) whenever
|i− j| ≥ 2.

Using that z ≤ z1 + . . . + zm, one has ϕλ(z) ≤ ϕλ(z1) + . . . + ϕλ(zm). Thus, S is
weakly chainable, as required.

Corollary 2.5.10. Let A be an AI-algebra. Then, Cu(A) is weakly chainable.

Example 2.5.11. The Cu-semigroups Lsc(T,N) and Lsc([0, 1]2,N) do not satisfy the
weak chainability condition. Indeed, T and [0, 1]2 are not chainable continua, so it
follows from Corollary 2.5.7 that the semigroups cannot be weakly chainable.

Using an analogous proof to that of Theorem 2.5.4, we obtain the following result.

Theorem 2.5.12. Let S be a Cu-semigroup. Then, S is Cu-isomorphic to the Cuntz
semigroup of a unital commutative AI-algebra if and only if S is countably based, Lsc-
like, weakly chainable, has a compact order unit, and satisfies (O5).

2.6 New properties of the Cuntz semigroup of an AI-
algebra

Following the results obtained in the previous section, we now introduce Cu-semigroups
with refinable and almost ordered sums ; see Definitions 2.6.1 and 2.6.5. As in Corol-
lary 2.5.10 and Example 2.5.11, we show that all AI-algebras have Cuntz semigroups
satisfying such properties, but that there are well known Cu-semigroups that do not
satisfy them; see Example 2.6.3 and Theorem 2.6.9.

Definition 2.6.1. A Cu-semigroup S is said to have refinable sums if, for every finite
�-increasing sequence x1 � . . . � xn and elements x′1, . . . , x′n such that xi ∝ x′i for
each i, there exist sequences (yij)

m
j=1 such that
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(i) yim ≤ . . . ≤ yi1 ≤ x′i+1 for every i;

(ii) yij � yi+1
j for each i and j;

(iii) xi � yi1 + . . .+ yil � xi+1 for every i.

Example 2.6.2. Let S be an Lsc-like Cu-semigroup. Then, S has refinable sums.
Indeed, take xi, x′i as in Definition 2.6.1, and choose yi such that

x1 � y1 � x2 � y2 � x3 � . . .� xn.

Let e denote the least order unit of S. Using Lemma 2.2.9, we see that each yi can
be written as a finite ordered sum of elements below e. Further, by possibly adding
zeros, we may assume that all sums have the same number of summands. Thus, we get

x1 � y1 = y1
1 + . . .+ y1

m � x2 � y2 = y2
1 + . . .+ y2

m � x3 � . . .� xn,

where each sum is decreasingly ordered.
By Proposition 2.2.18, we have that yij � yi+1

j for each i, j. Additionally, using that
yi � xi+1 ∝ x′i+1, the topological order in ↓ e implies that yi1 ≤ x′i+1 ∧ 1 ≤ x′i+1, as
desired.

Example 2.6.3. Recall the definition of Z, the Cuntz semigroup of the Jiang-Su alge-
bra, from Examples 1.2.8 (iv). We show that Z does not have refinable sums:

Set x1 = x′1 = x2 = x′2 = 1, x3 = 1.1 and x′3 = 0.5, which satisfy x1 � x2 � x3

and xi ∝ x′i for each i = 1, 2, 3. Then, assuming for the sake of contradiction that Z
has refinable sums, we obtain sequences (yij)

m
j=1 satisfying (i)-(iii) in Definition 2.6.1. In

particular, we have

1� y1
1 + . . .+ y1

l � 1� y2
1 + . . .+ y2

l � 1.1,

which shows that y1
1 = 1 and y1

i = 0 whenever i ≥ 2.
However, we know by (ii) that 1 = y1

1 � y2
1 ≤ 0.5, which is a contradiction, as

required.

Proposition 2.6.4. Let S = limλ∈Λ Sλ be an inductive limit of Cu-semigroups Sλ that
have refinable sums. Then, S has refinable sums.

Proof. Let x1, x
′
1, . . . , xn, x

′
n ∈ S be as in Definition 2.6.1. By Paragraph 1.2.10, there

exist λ ∈ Λ and elements uj, u′j ∈ Sλ for j ≤ 2n − 2 such that u1 � . . . � u2n−2 and
uj ∝ u′j in Sλ, and

xi � ϕλ(u2i−1)� ϕλ(u2i)� xi+1 and ϕλ(u
′
2i) ≤ x′i+1 in S

for each i ≤ n− 1.
Using that Sλ has refinable sums, we obtain sequences (yij)

m
j=1 for i ≤ 2n−2 satisfying

(i)-(iii) in Definition 2.6.1. Thus, we have

xi � ϕλ(u2i−1)� ϕλ(y
2i−1
1 ) + . . .+ ϕλ(y

2i−1
1 )� ϕλ(u2i)� xi+1,

and ϕλ(y2i−1
1 ) ≤ ϕλ(u

′
i+1) ≤ x′i+1.

This shows that S has refinable sums, as desired.
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Definition 2.6.5. A Cu-semigroup S has almost ordered sums if, for any finite number
of elements x1, . . . , xn in S, there exist sequences (yi,j)i with j = 1, . . . , n such that

(i) yi,n ≤ . . . ≤ yi,1 for each i;

(ii) (yi,1 + . . .+ yi,n)i is increasing and supi(yi,1 + . . .+ yi,n) = x1 + . . .+ xn;

(iii) (yi,n)i is increasing and bounded by x1, . . . , xn;

(iv) Given x′, x ∈ S and J ⊆ {1, . . . , n} such that x′ � xj ≤ x for each j ∈ J , there
exists i0 such that x′ ≤ yi,|J | and yi,n+1−|J | ≤ x whenever i0 ≤ i.

Example 2.6.6. Let S be a distributively lattice ordered Cu-semigroup (for example,
an Lsc-like Cu-semigroup). Then, S has almost ordered sums.

Indeed, given x1, . . . , xn ∈ S, set

yi,1 = x1 ∨ . . . ∨ xn,
yi,2 = (x1 ∧ x2) ∨ . . . ∨ (xn−1 ∧ xn),

...
yi,n = x1 ∧ . . . ∧ xn,

for each i.
Using Lemma 2.2.3, we have

x1 + . . .+ xn = yi,1 + . . .+ yi,n,

and it is now easy to check that S has almost ordered sums.

Example 2.6.7. Let Z ′ = Z t {1′′} with 1′′ a compact element not comparable with
1 such that 1 + x = 1′′ + x for every x ∈ Z \ {0} and n1′′ = n for each n ∈ N; see [6,
Chapter 9 (8)]. Then, Z ′ does not have almost ordered sums.

Indeed, set x1 = 1, x2 = 1′′ and assume, for the sake of contradiction, that Z ′ has
refinable sums. Thus, we find sequences (yi,j)i for j = 1, 2 with 1+1′′ = supi(yi,1 +yi,2).

Using that 1 + 1′′ = 2 is compact, we have 1 + 1′′ = yi,1 + yi,2 for every sufficiently
large i. Consequently, for every large enough i, we have yi,1 = 2 and yi,2 = 0, since
1, 1′′ ≤ yi,1 and 1, 1′′ are not comparable.

However, since 1, 1′′ ≤ 1.5, (iv) in Definition 2.6.5 implies that 2 = y1,i ≤ 1.5, a
contradiction.

Proposition 2.6.8. Let S = limλ∈Λ Sλ be an inductive limit of distributively lattice
ordered Cu-semigroups. Then, S has almost ordered sums.

Proof. Let x1, . . . , xn ∈ S. As in Paragraph 1.2.10, denote by ϕµ,λ : Sλ → Sµ and
ϕλ : Sλ → S the Cu-morphisms of the limit. Then, there exist an increasing sequence
of integers (λi)i and elements xi,j ∈ Sλi for j = 1, . . . , n such that ϕλi+1,λi(xi,j)� xi+1,j

for each i, j and supϕλi(xi,j) = xj for each j.
By Example 2.6.6 applied to xi,1, . . . , xi,n ∈ Sλi , there exist yi,1, . . . , yi,n ∈ Sλi such

that xi,1 + . . . + xi,n = yi,1 + . . . + yi,n and such that the properties in Definition 2.6.5
are satisfied.
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We claim that ϕλi(yi,j) satisfy (i)-(iv) in Definition 2.6.5 for x1, . . . , xn. Note, in
particular, that we already have supi(ϕλi(yi,1) + . . .+ ϕλi(yi,n)) = x1 + . . .+ xn.

Moreover, since yi,n ≤ . . . ≤ yi,1 for each i, condition (i) is also satisfied.
Now take i ∈ N and note that yi,n ≤ xi,j for each j. Since ϕλi(xi,j) ≤ xj for each i

and j, we have ϕλi(yi,n) ≤ x1, . . . , xn. In fact, one gets ϕλi+1,λi(yi,n) � xi+1,j for every
j ≤ n.

Thus, it follows from (iv) in Definition 2.6.5 applied to Sλi+1
that ϕλi+1,λi(yi,n) ≤

yi+1,n. This shows that (iii) is satisfied.
Finally, to prove (iv), let x′, x ∈ S and J ⊆ {1, . . . , n} be such that x′ � xj ≤ x

for each j ∈ J . Then, there exist i0 ∈ N and u ∈ Sλi0 such that u � xi0,j for each
j ∈ J and x′ � ϕλi0 (u) in S. By (iv) in Sλi0 , we get u ≤ yi0,|J | and, consequently,
x′ ≤ ϕλi0 (u) ≤ ϕµ(yi,|J |) for each µ ≥ λi0 .

Similarly, since xj ≤ x for each j ∈ J , for every large enough i we can find some
element vi ∈ Sλi such that xi,j ≤ vi for every j ∈ J . Using the same argument as above,
it follows that condition (iv) is also satisfied, which shows that S has almost ordered
sums, as desired.

Theorem 2.6.9. Let A be an AI-algebra. Then, its Cuntz semigroup Cu(A) is weakly
chainable, has refinable sums, and almost ordered sums.

Proof. The Cuntz semigroup Cu(A) is weakly chainable by Corollary 2.5.10.
In analogy with Lemma 2.5.8, one can check that finite direct sums of Cu-semi-

groups having refinable or almost ordered sums have refinable or almost ordered sums
respectively.

Thus, since Lsc-like Cu-semigroups have refinable sums by Example 2.6.2, it follows
from Proposition 2.6.4 that every inductive limit of finite direct sums of such Cu-semi-
groups will also have refinable sums. In particular, this applies to Cu(A).

Similarly, we know from Example 2.6.6 that every Lsc-like Cu-semigroup has almost
ordered sums. Using Proposition 2.6.8, every inductive limit of finite direct sums of Lsc-
like semigroups also has them. Consequently, Cu(A) has almost ordered sums.



Chapter 3

A local characterization for the Cuntz
semigroup of AI-algebras

This chapter is devoted to the study of the Cuntz semigroup of (separable) AI-algebras.
More explicitly, we provide a local characterization for such semigroups resembling
Shen’s characterization for the ordered K0-group of AF-algebras, which we recall below:

Theorem (1.3.3). A countable unperforated ordered abelian group G is order isomor-
phic to the ordered K0-group of an AF-algebra if, and only if, for every ordered ho-
momorphism ϕ : Zr → G and any element α ∈ ker(ϕ), there exist s ≥ 0, and ordered
homomorphisms θ, φ such that the diagram

Zr ϕ
//

θ
��

G

Zs
φ

>>

commutes and α ∈ ker(θ).

In order to obtain our result, in Sections 3.2 and 3.3 we generalize to the setting of
Cu-semigroups the key ingredients used in the proof of the abovementioned character-
ization.

For example, and as already witnessed by Proposition 1.3.6, we will see that the
right ‘substitute’ for the kernel in Theorem 1.3.3 is similar to the notion of kernel
introduced in [23]. Further, we also note that, since countably based Cu-semigroups
are not necessarily countable, one will rarely obtain commutative diagrams.

This lack of commutativity will ultimately be bipased in Section 3.4 by considering
a metric version of Shen’s theorem; see Theorem 3.4.5 and Proposition 3.4.6. Instead
of equalities, we will ask the morphisms to be metrically close.

In Section 3.5, we introduce property I. This notion, together with a discrete version
of Theorem 3.4.5 (see Theorem 3.4.8), allows us to provide an abstract characterization
for the Cuntz semigroup of AI-algebras; see Theorem 3.5.34.

The results in this chapter can be found in [102], but the presentation we offer here
has been changed substantially.
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3.1 Preliminaries and notation
In this first section we introduce and prove results about the Cu-semigroup Lsc([0, 1],N)
that will be used throughout the chapter. We also prove Theorem 3.1.6, which reduces
the range problem to the study of inductive limits of the form limi Lsc([0, 1],N)ni .

Definition 3.1.1. Let f be an element in Lsc([0, 1],N). We say that f is a basic
indicator function if f is of the form

χ(s,1], χ(s,t), χ[0,t) or 1

for some s, t.
We will also say that f is a basic element if f can be written as a finite sum of basic

indicator functions.
Given n ∈ N, an element in Lsc([0, 1],N)n will be said to be a basic indicator function

(resp. basic) if it is so componentwise.

Remark 3.1.2. It is readily checked that the set of basic elements (together with 0)
forms a basis for Lsc([0, 1],N). Moreover, this monoid can be characterized as follows:

Let F denote the free abelian semigroup generated by the basic indicator functions
of Lsc([0, 1],N) as symbols. In F , we write f ∼0 g if

f = h+ χU + χV and g = h+ χU∪V + χU∩V

for some h, χU , χV ∈ F .
Given f, g ∈ F , we also write f ∼ g if f = g, f ∼0 g or g ∼0 f . Let ' be the

transitive relation induced by ∼. Then, F/' is isomorphic to the monoid of basic
elements in Lsc([0, 1],N).

Indeed, let ϕ : F → Lsc([0, 1],N) be the additive extension of the map that sends
χU ∈ F to χU ∈ Lsc([0, 1],N) for every basic indicator function χU . Since every basic
element in Lsc([0, 1],N) is the finite sum of basic indicator functions, it follows that the
image of ϕ is the monoid of basic elements.

Using that Lsc([0, 1],N) is a distributive lattice ordered semigroup (see Defini-
tion 2.2.1), we know that ϕ(f) = ϕ(g) whenever f ∼0 g. Consequently, ϕ(f) = ϕ(g)
whenever f ' g. This proves that the map [f ] 7→ ϕ(f) from F/ ' to the monoid of
basic elements of Lsc([0, 1],N) is an isomorphism, as desired.

Note that a basic element is increasing if and only if it can be written as a finite
sum of elements of the form χ(·,1] and 1.

Lemma 3.1.3. Let n ∈ N and let f, g ∈ Lsc([0, 1],N)n be basic elements such that
f � g. Then, there exist basic increasing elements h, d such that f + h� d� g + h.

Proof. We first note that it suffices to prove the result for n = 1. Thus, let f � g be
basic elements in Lsc([0, 1],N).

If g is a basic indicator function with associated interval V ⊆ [0, 1], the result is
clear. Indeed, since f � g, it follows that f = χU with U b V . Then, let W be the
(possibly empty) interval (sup(U), 1], where note that sup(U) ∈ V . Thus, one has

U ∩W = ∅ and U ∪W b V ∪W.
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This implies that f + χW � χV ∪W ≤ χV + χW . Setting h = χW and d � χV ∪W
such that f + g � d, the result follows.

Now let f � g be basic elements, and write f =
∑

i χUi , g =
∑

i χVi such that
Ui b Vi with χVi a basic indicator. Using the result above, we obtain for each i
increasing, basic indicators hi, di such that

χUi + hi � di � χVi + hi.

Let d =
∑

i di and h =
∑

i hi, where note that both h and d are basic increasing
elements in Lsc([0, 1],N). It follows by construction that these elements satisfy the
required conditions.

3.1.4 (Retractions). Let s, t ∈ [0, 1] be such that 0 ≤ s < t ≤ 1. Given ε > 0, we define
the ε-retraction of ∅, [0, t), (s, t), (s, 1] and [0, 1] as

∅, [0, t− ε), (s+ ε, t− ε), (s+ ε, 1] and [0, 1]

respectively.
If U is a finite disjoint union of intervals, we define its ε-retraction, denoted by

Rε(U), to be the disjoint union of the ε-retracted intervals. The ε-retraction of the
associated indicator function χU is then defined as Rε(χU) = χRε(U), where we set
χ∅ = 0 by definition.

Similarly, given any basic element f ∈ Lsc([0, 1],N), we know that it can be written
as f =

∑n
i=1 χ{f≥i} with {f ≥ i} a finite disjoint union of intervals. We define the

ε-retraction of f as Rε(f) =
∑n

i=1Rε(χ{f≥i}).

Theorem 3.1.6 below will allow us to reduce the range problem to the study of
inductive limits of the form limi Lsc([0, 1],Nni). This result is no doubt well known, but
we have not been able to find an explicit proof in the literature. We provide one for
the convenience of the reader:

For every finite tuple of positive integers N = (nj)j≤k, we denote by

ξN : Cu(⊕kj=1C[0, 1]⊗Mnj)→ ⊕kj=1 Cu(C[0, 1]⊗Mnj).

the isomorphism given by Paragraph 1.2.9.
We also let αN be the Cu-isomorphism from ⊕kj=1 Cu(C[0, 1]⊗Mnj) to Lsc([0, 1],Nk)

defined in [5, Corollary 2.7]. That is to say,

αN([(a1, . . . , ak)])(t) = (rk(a1(t)), . . . , rk(ak(t)))

for every t ∈ [0, 1].

Proposition 3.1.5. Let N = (nj)j≤k and M = (mi)i≤s be finite tuples of positive
integers. Assume that ϕ : Lsc([0, 1],Nk) → Lsc([0, 1],Ns) is a Cu-morphism satisfying
ϕ(N) ≤M . Then, there exists a *-homomorphism

φ : ⊕j≤k C[0, 1]⊗Mnj → ⊕i≤sC[0, 1]⊗Mmi

such that Cu(φ) = ξ−1
M α−1

M ϕαNξN .
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Proof. We may assume without loss of generality that ϕ 6= 0, since it is otherwise trivial
to find a lift.

For every finite tuple of positive integers S = (sj), we will denote by FS the AF-
algebra ⊕jMsj .

Fix 1 ≤ j ≤ k, and let ιj : C[0, 1]⊗Mnj → C[0, 1]⊗ FN denote the inclusion to the
j-th component. We define the *-homomorphism τj : C[0, 1]→ C[0, 1]⊗ FN as

τj(f) = ιj(f ⊕ 0nj−1),

which satisfies ξN Cu(τj)(x) = (0, . . . , 0, x, 0 . . . , 0) for every element x ∈ Cu(C[0, 1]).
Moreover, one has

njϕ(1j) ≤ ϕ(N) ≤M.

Set S = bM/njc, and let ϕS be the composition ξ−1
S α−1

S ϕαNξN . We have

ϕS Cu(τj)([1]) = ξ−1
S α−1

S ϕ(1j) ≤ ξ−1
S α−1

S (bM/njc)
= ξ−1

S ([1bm1/njc], . . . , [1bms/njc])

= [(1bm1/njc, . . . , 1bms/njc)].

Thus, it follows from [21, Theorem 4.1] that there exists an *-homomorphism ψj
from C[0, 1] to C[0, 1]⊗ FS such that Cu(ψj) = ϕS Cu(τj).

Let ι : C[0, 1] ⊗ FnjS → C[0, 1] ⊗ FM be the canonical inclusion, and let φj be the
*-homomorphism ι ◦ (ψj ⊗ 1nj) : C[0, 1]⊗Mnj → C[0, 1]⊗ FM . Then, one has

Cu(φj) =
(
ξ−1
M α−1

M ϕαNξN
)

Cu(ιj).

Since the previous argument can be done for each j, we obtain *-homomorphisms
φj such that

k∑
j=1

[φj(1nj)] =
k∑
j=1

(
ξ−1
M α−1

M ϕαNξN
)

Cu(ιj)[1nj ] =
k∑
j=1

(
ξ−1
M α−1

M ϕαNξN
)

[1j]

= ξ−1
M α−1

M ϕ(N) ≤ ξ−1
M α−1

M (M) = [(1m1 , . . . , 1ms)].

We claim that there exists a family of *-homomorphisms φ⊥j : C[0, 1] ⊗ Mnj →
C[0, 1]⊗ FM with pairwise orthogonal ranges such that Cu(φ⊥j ) = Cu(φj). Indeed, we
follow the argument from [72, Theorem 3.2.2 (iv)]:

Identifying C[0, 1] ⊗ FM with the upper-left corner of Mk(C[0, 1] ⊗ FM) and using
that both φ1(1n1)⊕ . . .⊕ φk(1nk) and (1m1 , . . . , 1ms) are projections, Rørdam’s Lemma
(see Lemma 1.2.2) implies that we can find x ∈Mk(C[0, 1]⊗ FM) such that

x∗x = φ1(1n1)⊕ . . .⊕ φk(1nk) and xx∗ ∈ C[0, 1]⊗ FM .

Given the polar decomposition x = v|x| of x, we define the *-homomorphisms
φ⊥1 , . . . , φ

⊥
k as

φ⊥1 = v(φ1 ⊗ e1,1)v∗, φ⊥2 = v(φ2 ⊗ e2,2)v∗, . . . and φ⊥k = v(φk ⊗ ek,k)v∗,

where ei,j denotes the matrix whose only nonzero entry is 1 in the position (i, j).
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To see that these maps are pairwise orthogonal, take i 6= j and note that

φ⊥i φ
⊥
j = v(φi ⊗ ei,i)|x|v∗v|x|(φj ⊗ ej,j)v∗

= v(φi ⊗ ei,i)x∗x(φj ⊗ ej,j)v∗ = v(φi ⊗ ei,i)(φj ⊗ ej,j)v∗ = 0.

Moreover, we have Cu(φ⊥j ) = Cu(φj) for every j. Thus, given the canonical projec-
tions πj : C[0, 1]⊗ FN → C[0, 1]⊗Mnj for j = 1, . . . , k, we can consider the map

φ := φ⊥1 π1 + . . .+ φ⊥k πk,

which is seen to satisfy Cu(φ) = ξ−1
M α−1

M ϕαNξN .

Theorem 3.1.6. The Cuntz semigroup of an AI-algebra is Cu-isomorphic to the in-
ductive limit of a system (Lsc([0, 1],Nni), ϕi).

Conversely, for every inductive system (Lsc([0, 1],Nni), ϕi) there exists an AI-algebra
such that its Cuntz semigroup is Cu-isomorphic to the limit of the system.

Proof. The first statement follows from the fact that Cu is a continuous functor [26,
Section 2] and that Cu(C[0, 1]) ∼= Lsc([0, 1],N); see [5, Corollary 2.7].

Now let (Lsc([0, 1],Nni), ϕi) be an inductive system in Cu with limit S, and choose
inductively Ni ∈ Nni such that Ni has no zero components and ϕi(Ni) ≤ Ni+1.

Using Proposition 3.1.5, for every i let φNi : C[0, 1] ⊗ FNi → C[0, 1] ⊗ FNi+1
be a

*-homomorphism such that Cu(φNi) = ξ−1
Ni+1

α−1
Ni+1

ϕiαNiξNi .
Thus, we get the following commutative diagram

. . .
Cu(φNi−1)

// Cu(C[0, 1]⊗ FNi)
Cu(φNi)

//

αNiξNi
��

Cu(C[0, 1]⊗ FNi+1
)

Cu(φNi+1)
// . . .

. . .
ϕi−1

// Lsc([0, 1],Nni) ϕi // Lsc([0, 1],Nni+1
)

ϕi+1
//

ξ−1
Ni+1

α−1
Ni+1

OO

. . .

where recall that the columns are isomorphisms.
Using once again that Cu is continuous, this implies that

S = lim Lsc([0, 1],Nni) ∼= lim
i

Cu(C[0, 1]⊗ FNi) ∼= Cu(lim
i
C[0, 1]⊗ FNi),

as desired.

3.2 Extending morphisms
Let S be a Cu-semigroup and let s1 � . . .� sn ≤ p� p be a finite increasing sequence
in S. We will prove in this section that, under certain assumptions on the Cu-semigroup
S, there always exists a Cu-morphism φ : Lsc([0, 1],N) → S such that φ(1) = p and
φ
(
χ(n−kn ,1]

)
= sk for each k; see Theorem 3.2.6.

This is in analogy to the fact that, given any element g in an abelian, ordered group
G, there always exists a morphism Z → G mapping 1 to g. Despite this being trivial,
it is used repeatedly in the proof of Shen’s theorem ([87, Theorem 3.1]) and, as we will
see later, the Cu-version proven in this section (Theorem 3.2.6) will be one of the key
ingredients in the proof of our local characterization; see the proof of Theorem 3.4.5.
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3.2.1. As shown in [86, Section 5.2], the sub-Cu-semigroup G of Lsc([0, 1],N) defined
as

G = {f ∈ Lsc([0, 1],N) | f(0) = 0, f increasing}
is a generator for the category Cu. That is to say, for every pair of distinct Cu-mor-
phisms ϕ, φ : S → T , there exists a Cu-morphism θ : G → S such that ϕθ 6= φθ.

In particular, Proposition 3.2.2 below follows as a combination of [86, Lemma 5.16]
and [7, Proposition 2.10].

Proposition 3.2.2. Let s1 � . . .� sn be a finite �-increasing sequence in a Cu-sem-
igroup S. Then, there exists a Cu-morphism φ : G → S such that φ

(
χ(n−kn ,1]

)
= sk for

each k.

Proof. Using [7, Proposition 2.10], we obtain a family (tλ)λ∈(0,1] in S with tk/n = sk for
each k such that tλ′ � tλ whenever λ′ < λ and supλ′<λ tλ′ = tλ.

The assignment λ 7→ tλ is a continuous path (in the sense of [86, Definition 5.16]). By
[86, Lemma 5.18], there exists a (unique) Cu-morphism φ : G → S such that φ

(
χ(λ,1]

)
=

t1−λ for every λ. This map satisfies the required condition.

Thus, the desired result will follow if we show that certain Cu-morphisms G → S
can be extended to Cu-morphisms of the form Lsc([0, 1],N)→ S.

Remarks 3.2.3. The following remarks show that a Cu-morphism φ : G → S may not
always lift to Lsc([0, 1],N) and that, even if it does, the lift may not be unique.

1. Let S = Lsc([0, 1],N) and take ∞ ∈ S. Then, by Proposition 3.2.2 (applied to
only one element), there exists a Cu-morphism φ : G → S such that φ(χ(0,1]) =∞.

Note that φ cannot be lifted to a Cu-morphism φ : Lsc([0, 1],N) → S. Indeed, if
such a lift existed we would have

∞ = φ(χ(0,1])� φ(1) =∞,

a contradiction.

2. Consider the inclusion ι : G → Lsc([0, 1],N). For every n ∈ N, define the Cu-mor-
phism ιn : Lsc([0, 1],N)→ Lsc([0, 1],N) as

ιn(χ(s,1]) = χ(s,1], ιn(χ[0,t)) = (n− 1) + χ[0,t), ιn(χ(s,t)) = χ(s,t),

and ιn(1) = n.

It is readily checked that ιn is a Cu-morphism for each n. This shows that ιn is
a lift for ι for every n and, in particular, that ι does not lift uniquely.

Lemma 3.2.4. Let S be a weakly cancellative Cu-semigroup satisfying (O5), and let
φ : {χ(t,1], χ[0,t), 1}t∈[0,1] → S be an order and suprema preserving map. Assume that,
for every t ≤ s < t′, one has

φ(χ[0,t)) + φ(χ(s,1]) ≤ φ(1)� φ(1) ≤ φ(χ[0,t′)) + φ(χ(s,1]).

Then, there is a unique Cu-morphism Lsc([0, 1],N) → S extending φ. Conversely,
the restriction of any Cu-morphism Lsc([0, 1],N) → S to {χ(t,1], χ[0,t), 1} satisfies the
displayed condition.
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Proof. Necessity is clear, so we are left to prove sufficency. Let BI and B denote the
subsets of basic indicator functions and basic functions in Lsc([0, 1],N) respectively, as
defined in Definition 3.1.1.

First, let s < t, and note that φ(1)� φ(χ[0,t)) +φ(χ(s,1]). Since S satisfies (O5) and
φ(1) is compact, there exists an element x ∈ S such that

φ(1) + x = φ(χ[0,t)) + φ(χ(s,1]).

Moreover, the element x is unique by weak cancellation; see Paragraph 1.2.14. We
extend φ to a map φ : BI → S by sending χ(s,t) to x. Therefore we get φ(1)+φ(χ(s,t)) =
φ(χ[0,t)) + φ(χ(s,1]).

For every n ∈ N set εn = 1/n. Note that for a large enough n we have s+εn < t−εn.
Thus, one gets

φ(1) + φ
(
Rεn+1(χ(s,t))

)
= φ

(
Rεn+1(χ[0,t))

)
+ φ

(
Rεn+1(χ(s,1])

)
≤ φ

(
Rεn(χ[0,t))

)
+ φ

(
Rεn(χ(s,1])

)
= φ(1) + φ

(
Rεn(χ(s,t))

)
,

where recall that R(·) denotes the retraction of the function; see Paragraph 3.1.4.
It follows by weak cancellation that the sequence

(
φ
(
Rεn(χ(s,t))

))
n
is increasing.

Further, since

φ(1) + sup
n
φ
(
Rεn(χ(s,t))

)
= sup

n

(
φ
(
Rεn(χ[0,t))

)
+ φ

(
Rεn(χ(s,1])

))
= φ(1) + φ(χ(s,t),

we have, by another usage of weak cancellation, that supn
(
φ
(
Rεn(χ(s,t))

))
n

= φ(χ(s,t).

Claim 1. Let χU , χV ∈ BI . Then, φ(χU) + φ(χV ) = φ(χU∪V ) + φ(χU∩V ).
We prove the claim for U and V of the form (s, t) and (s′, t′) respectively with

s ≤ s′ < t ≤ t′. The other cases are proven similarly.
One has that

φ(χU) + φ(χV ) + 2φ(1) = φ(χ[0,t)) + φ(χ(s,1]) + φ(χ[0,t′)) + φ(χ(s′,1])

= φ(χ(s,t′)) + φ(χ(s′,t)) + 2φ(1),

which implies φ(χU) + φ(χV ) = φ(χU∪V ) + φ(χU∩V ) by weak cancellation.

Using Claim 1, it follows from Remark 3.1.2 that the map φ : BI → S can be
lifted to a monoid morphism φ : B → S. Moreover, since any χU ∈ B is a finite
sum of elements in BI , we know that the sequence (Rεn(χU))n is increasing and that
supn φ(Rεn(χU)) = φ(χU).

Claim 2. Let s0 < . . . < sn be a strictly increasing sequence in [0, 1]. We have

φ(χ[0,s0)) + φ(χ(s0,s1)) + . . .+ φ(χ(sn−1,sn)) + φ(χ(sn,1]) ≤ φ(1)

≤ φ(χ[0,s1)) + φ(χ(s0,s2)) + . . .+ φ(χ(sn−2,sn)) + φ(χ(sn−1,1]).

It follows from this that, given χU , χV ∈ B, one gets φ(χU) ≤ φ(χV ) whenever
χU ≤ χV and φ(χU)� φ(χV ) whenever χU � χV .
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For each i, we have φ(χ(si−1,si)) + φ(1) = φ(χ[0,si)) + φ(χ(si−1,1]). Using this at the
first step, and that φ(χ[0,si)) + φ(χ(si,1]) ≤ φ(1) at the second step, one gets

φ(χ[0,s0)) + φ(χ(s0,s1)) + . . .+ φ(χ(sn−1,sn)) + φ(χ(sn,1]) + nφ(1)

=
n∑
i=0

φ(χ[0,si)) + φ(χ(si,1]) ≤ (n+ 1)φ(1).

Since, for every i, we also have φ(χ[0,si+1)) + φ(χ(si−1,1]) ≥ φ(1), it follows that

φ(χ[0,s1)) + φ(χ(s0,s2)) + . . .+ φ(χ(sn−2,sn)) + φ(χ(sn−1,1]) + (n− 1)φ(1)

=
n∑
i=1

φ(χ[0,si+1)) + φ(χ(si−1,1]) ≥ nφ(1).

Using weak cancellation to cancel nφ(1) in the first inequality and (n − 1)φ(1) in
the second, we get the desired inequalities.

Now assume that χU , χV ∈ B satisfy χU � χV . Since χU and χV are basic elements,
we can write them as finite sums of basic indicator functions. That is, U and V can
be written as finite disjoint unions of intervals. In particular, the interior of [0, 1] \ U ,
denoted by Int([0, 1] \ U), can also be written as such.

This implies that we can find a sequence s0 < . . . < sn in [0, 1] such that

φ(χU) + φ(χInt([0,1]\U)) = φ(χ[0,s0)) + φ(χ(s0,s1)) + . . .+ φ(χ(sn,1]).

Similarly, since χU � χV , there also exists a sequence t0 < . . . < tm with

φ(χV ) + φ(χInt([0,1]\U)) = φ(χ[0,t1)) + φ(χ(t0,t2)) + . . .+ φ(χ(tm−2,tm)) + φ(χ(tm−1,1]).

It follows from the first part of the claim that

φ(χU) + φ(χInt([0,1]\U)) ≤ φ(1) ≤ φ(χV ) + φ(χInt([0,1]\U))

and, by weak cancellation, we get φ(χU)� φ(χV ), as desired.
Finally, given any pair χU ≤ χV in B, note that φ(Rεn(χU)) � φ(χV ) for every n.

Taking suprema on n, we get φ(χU) ≤ φ(χV ).

Now, for any f ∈ B, consider the sequence (φ(Rεn(f)))n where Rεn(f) is the εn-
retraction as defined in Paragraph 3.1.4. Using Claim 2 and the fact that φ is additive,
it follows that this sequence is �-increasing with supremum φ(f).

Since every element in B is a finite sum of indicator functions in B, it follows from
Claim 2 that φ is order preserving and �-preserving. Thus, Lemma 1.3.5 implies that
the map φ : Lsc([0, 1],N) → S defined as φ(g) = supn φ(gn) for (gn)n a �-increasing
sequence in B with supremum g is a Cu-morphism extending φ.

Proposition 3.2.5. Let S be a weakly cancellative Cu-semigroup satisfying (O5), and
let φ : G → S be a Cu-morphism. Assume that φ(χ(0,1]) ≤ p for some compact element
p ∈ S. Then, there exists a unique Cu-morphism Lsc([0, 1],N) → S extending φ and
sending 1 to p.
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Proof. Set φ(1) = p and, for every n ∈ N, put εn = 1/n. Then, for every t ∈ (0, 1], one
has

φ(χ(t−εn+1,1])� φ(χ(t−εn,1])� φ(1).

Since S satisfies (O5), there exists xn = xn(t) such that

φ(χ(t−εn+1,1]) + xn ≤ φ(1) ≤ φ(χ(t−εn,1]) + xn.

for each n.
In particular, one gets

φ(χ(t−εn+1,1]) + xn ≤ φ(1)� φ(1) ≤ φ(χ(t−εn+1,1]) + xn+1

and, by weak cancellation, it follows that xn � xn+1 for every n.
Further, if another increasing sequence (x′n)n satisfies

φ(χ(t−εn+1,1]) + x′n ≤ φ(1) ≤ φ(χ(t−εn+1,1]) + x′n+1

for each n, we can apply weak cancellation to

φ(χ(t−εn+1,1])+x′n � φ(χ(t−εn+1,1])+xn+1 and φ(χ(t−εn+1,1])+xn � φ(χ(t−εn+1,1])+x′n+1

to deduce that supn xn = supn x
′
n. We set φ(χ[0,t)) = supn xn.

Also note that, since t > t− εn for every n, we have

φ(χ(t,1]) + xn ≤ φ(χ(t−εn+1,1]) + xn ≤ φ(1)

for every n.
By taking suprema on n, one gets φ(χ[0,t)) + φ(χ(t,1]) ≤ φ(1). Similarly, since for

every ε > 0 there exists n ∈ N with εn < ε, we deduce that φ(1) ≤ φ(χ[0,t))+φ(χ(t−ε,1]).
Thus, for every t ≤ s < t′, we have

φ(χ[0,t)) + φ(χ(s,1]) ≤ φ(1)� φ(1) ≤ φ(χ[0,t′)) + φ(χ(s,1]).

We will now show that the map χ[0,t) 7→ φ(χ[0,t)) is order and suprema preserving,
thus proving that φ : {χ(t,1], χ[0,t), 1}t∈[0,1] → S satisfies the conditions of Lemma 3.2.4.
This will give us the desired result.

Let t < t′ in [0, 1], and let ε > 0 be such that t+ ε = t′ − ε. Then, we get

φ(χ[0,t)) + φ(χ(t+ε,1]) ≤ φ(1)� φ(1) ≤ φ(χ[0,t′)) + φ(χ(t′−ε,1])

and, using weak cancellation once again, we obtain φ(χ[0,t))� φ(χ[0,t′)).
Now take t ∈ (0, 1] and consider the �-increasing sequence (χ[0,t−εn))n. Then,

(φ(χ[0,t−εn)))n is a �-increasing sequence in S satisfying supn φ(χ[0,t−εn)) ≤ φ(χ[0,t)).
Moreover, using the same notation as above, we have that

φ(χ(t−εn+1,1]) + xn � φ(1) ≤ φ(χ(t−εn+1,1]) + φ(χ[0,t−εn+2))

for every n.
By weak cancellation, one gets xn � φ(χ[0,t−εn+2)) and, taking supremum on n, we

have φ(χ[0,t)) = supn xn ≤ supn φ(χ[0,t−εn)).
This shows that the map φ : {χ(t,1], χ[0,t), 1}t∈[0,1] → S satisfies conditions (i)-(ii) in

Lemma 1.3.5. Consequently, φ is order and suprema preserving, as desired.
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Theorem 3.2.6. Let S be a weakly cancellative Cu-semigroup satisfying (O5). Given
a finite sequence of the form s1 � . . . � sn ≤ p � p, there exists a Cu-morphism
φ : Lsc([0, 1],N)→ S such that φ(1) = p and φ

(
χ(n−kn ,1]

)
= sk for each k.

Proof. Take a finite sequence of the form s1 � . . . � sn ≤ p � p. Then, it follows
from Proposition 3.2.2 that there exists a Cu-morphism φ : G → S such that

φ
(
χ(n−kn ,1]

)
= sk

for each k.
Note that φ(χ(0,1]) ≤ p. Thus, we know from Proposition 3.2.5 that the Cu-mor-

phism can be lifted to a Cu-morphism Lsc([0, 1],N) → S sending 1 to p. This lift has
the desired properties.

3.3 Cauchy sequences and their limits
Inspired by [21], [22] and [76], we introduce a notion of distance between Cu-morphisms
Lsc([0, 1],N)r → S that agree on their compact elements; see Definition 3.3.1 below.
Using this notion, we prove in Theorem 3.3.10 that certain Cauchy sequences of such
Cu-morphisms have a unique limit.

Definition 3.3.1. Let S be a Cu-semigroup. Given two Cu-morphisms ϕ1, ϕ2 from
Lsc([0, 1],N) to S with ϕ1(1) = ϕ2(1), we define the distance between them as

d(ϕ1, ϕ2) := inf

{
ε ∈ [0, 1]

∣∣∣∣∣ ϕ1(χ(t+ε,1]) ≤ ϕ2(χ(t,1])

ϕ2(χ(t+ε,1]) ≤ ϕ1(χ(t,1])
∀t ∈ [0, 1]

}
.

More generally, if ϕ1, ϕ2 : Lsc([0, 1],N)r → S are Cu-morphisms with ϕ1(1i) = ϕ2(1i)
for each i ≤ r, we define

d(ϕ1, ϕ2) := sup
1≤i≤r

d(ϕ1ιi, ϕ2ιi),

where ιi : Lsc([0, 1],N) → Lsc([0, 1],N)r denotes the canonical inclusion in the i-th
component.

Note that the distance between ϕ1, ϕ2 defined above is precisely the distance between
ϕ1|Lsc((0,1],N), ϕ2|Lsc((0,1],N) considered in [21] and [22] (see also [76]).

Remark 3.3.2. Given two Cu-morphisms ϕ1, ϕ2 : Lsc([0, 1],N)→ S with ϕ1(1) = ϕ2(1)
at distance d(ϕ1, ϕ2) and two elements s, t ∈ [0, 1] with s− t > d(ϕ1, ϕ2), we have

ϕ1(χ(s,1])� ϕ2(χ(t,1]) and ϕ2(χ(s,1])� ϕ1(χ(t,1]).

Indeed, since s − t > d(ϕ1, ϕ2), we can find η > 0 such that s − t > η > d(ϕ1, ϕ2).
Applying Definition 3.3.1, one gets

ϕ1(χ(s,1])� ϕ1(χ(t+η,1]) ≤ ϕ2(χ(t,1]) and ϕ2(χ(s,1])� ϕ2(χ(t+η,1]) ≤ ϕ1(χ(t,1]).
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As in [21, Theorem 4.1] we now prove that, under the hypothesis of weak cancella-
tion, the distance from Definition 3.3.1 above is a metric.

Lemma 3.3.3. Let S be a weakly cancellative Cu-semigroup satisfying (O5), and let
r ∈ N. Assume that two Cu-morphisms ϕ1, ϕ2 : Lsc([0, 1],N)r → S satisfy d(ϕ1, ϕ2) = 0
and ϕ1(1i) = ϕ2(1i) for every i. Then, ϕ1 = ϕ2.

Proof. We note that it is enough to prove the result for r = 1, since the general case
then follows from a componentwise application of this case.

Thus, let ϕ1, ϕ2 : Lsc([0, 1],N) → S be two Cu-morphisms at distance 0 such that
ϕ1(1) = ϕ2(1). Since d(ϕ1, ϕ2) = 0, the morphisms agree on χ(t,1] for every t. This
implies that they agree on G, the sub-Cu-semigroup of Lsc([0, 1],N) defined in Para-
graph 3.2.1.

Let φ = ϕ1|G = ϕ2|G, and note that both ϕ1 and ϕ2 are extensions of φ sending 1
to ϕ1(1) = ϕ2(1).

However, we know by Proposition 3.2.5 that φ has a unique extension mapping 1 to
ϕ1(1). This shows ϕ1 = ϕ2.

Lemma 3.3.4. Let S be a Cu-semigroup satisfying weak cancellation, and let ϕ1, ϕ2 be
Cu-morphisms from Lsc([0, 1],N) to S with ϕ1(1) = ϕ2(1) and d(ϕ1, ϕ2) ≤ ε. Then, for
every basic indicator function f ∈ Lsc([0, 1],N), as defined in Definition 3.1.1, we have

ϕ1(Rε(f)) ≤ ϕ2(f) and ϕ2(Rε(f)) ≤ ϕ1(f),

where Rε(f) denotes the ε-retraction of f ; see Paragraph 3.1.4.

Proof. We first note that, if f = 1 or f = χ(s,1], the result follows from Definition 3.3.1.
If f = χ(s,t) for some s < t, take η > 0 and note that

Rε+η(f) + χ(t−ε−η,1] = χ(s+η+ε,t−η−ε) + χ(t−η−ε,1] � χ(s+ε,1] = Rε(χ(s,1]).

Using that ϕ1, ϕ2 are Cu-morphisms at the first and third steps, and d(ϕ1, ϕ2) ≤ ε
at the second and fourth steps, one gets

ϕ1(Rε+η(f)) + ϕ1(χ(t−ε−η,1])� ϕ1(Rε(χ(s,1]) ≤ ϕ2(χ(s,1])

≤ ϕ2(χ(s,t)) + ϕ2(χ(t−η,1]) ≤ ϕ2(f) + ϕ1(χ(t−ε−η,1]).

Thus, we get ϕ1(Rε+η(f))� ϕ2(f) by weak cancellation. Since this holds for every
η > 0, we obtain ϕ1(Rε(f)) ≤ ϕ2(f) as required.

Finally, if f = χ[0,t) for some t ∈ [0, 1], let η > 0. Arguing as above and using
ϕ1(1) = ϕ2(1) at the third step, we have

ϕ1(Rε+η(f)) + ϕ2(χ(t−η,1]) ≤ ϕ1(Rε+η(f)) + ϕ1(χ(t−ε−η,1])� ϕ1(1)

= ϕ2(1) ≤ ϕ2(χ[0,t)) + ϕ2(χ(t−ε,1]) = ϕ2(f) + ϕ2(χ(t−ε,1])

It follows from weak cancellation that ϕ1(Rε+η(f)) � ϕ2(f) for every η > 0 and,
consequently, we have that ϕ1(Rε(f)) ≤ ϕ2(f).

The inequality ϕ2(Rε(f)) ≤ ϕ1(f) is proved analogously.
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Lemma 3.3.5. Let S be a weakly cancellative Cu-semigroup satisfying (O5) and let
φ : Lsc([0, 1],N)r → S be a Cu-morphism. Then, for every pair f ′ � f in Lsc([0, 1],N)r,
there exists ε = ε(f, f ′) > 0 and f ′′ ∈ Lsc([0, 1],N)r such that

(i) f ′ � f ′′ � f ;

(ii) For every Cu-morphism ϕ : Lsc([0, 1],N)r → S we have φ(f ′) � ϕ(f ′′) � φ(f)
whenever d(φ, ϕ) < ε and φ(1i) = ϕ(1i) for each i.

In particular, one gets φ(f ′)� ϕ(f) and ϕ(f ′)� φ(f).

Proof. First, note that it is enough to prove the result for r = 1, since a componentwise
application of this case shows the general result.

Thus, let us assume that f is a basic indicator function in Lsc([0, 1],N). Then, there
exists ε = ε(f, f ′) > 0 such that f ′ � R3ε(f)� f .

Set f ′′ = R2ε(f) and let ϕ : Lsc([0, 1],N) → S be a Cu-morphism with d(φ, ϕ) < ε
and φ(1) = ϕ(1). Applying that φ is a Cu-morphism in the first and third step, and
Lemma 3.3.4 in the second and last step, we have

φ(f ′)� φ(R3ε(f)) ≤ ϕ(f ′′)� ϕ(Rε(f)) ≤ φ(f).

Now, given f ′ � f in Lsc([0, 1],N), let g, g′ be basic elements in Lsc([0, 1],N) such
that f ′ � g′ � g � f ; see Definition 3.1.1. Thus, we know that there exist elements
h′i, basic indicator functions hi and n ∈ N such that

g′ =
n∑
i=1

h′i, g =
n∑
i=1

hi and h′i � hi for each i.

It follows from the case above that for each i there exist εi = εi(hi, h
′
i) and h′′i

satisfying (i)-(ii). Set ε = ε(f, f ′) = min(εi) and f ′′ =
∑

i h
′′
i , where note that ε > 0

because there are finitely many εi’s.
Given a Cu-morphism ϕ : Lsc([0, 1],N)→ S such that d(ϕ, φ) < ε and φ(1) = ϕ(1),

we have φ(h′i)� ϕ(h′′i )� φ(hi) for each i and, consequently,

φ(f ′)� φ(g′) =
∑
i

φ(h′i)�
∑
i

ϕ(h′′i ) = ϕ(f ′′)�
∑
i

φ(hi) = φ(g)� φ(f),

as required.

Corollary 3.3.6. Let S be a Cu-semigroup satisfying (O5) and weak cancellation, and
let f, g, h ∈ Lsc([0, 1],N) be such that f � h. Assume that there exists a Cu-morphism
φ : Lsc([0, 1],N)→ S satisfying φ(h)� φ(g).

Then, there exists ε = ε(f, g, h, φ) > 0 such that, for every ϕ : Lsc([0, 1],N) → S
such that φ(1) = ϕ(1) and d(φ, ϕ) < ε, there exists f ′′ with f � f ′′ and ϕ(f ′′)� ϕ(g).

In particular, we have ϕ(f)� ϕ(g).

Proof. Let ε(h, f) > 0 and ε(g, g′) > 0 be the numbers given by Lemma 3.3.5 applied
to f � h and g′ � g respectively.

Set

ε := ε(f, g, h, φ) = min(ε(h, f) , sup{ε(g, g′) | g′ � g and φ(h)� φ(g′)}),
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and let f ′′ be the element given by Lemma 3.3.5 associated with f � h.
Now take a Cu-morphism ϕ : Lsc([0, 1],N) → S with φ(1) = ϕ(1) and d(φ, ϕ) < ε.

Choose g′ � g with φ(h) � φ(g′) and note that d(φ, ϕ) < ε(h, f), ε(g, g′). Let g′′ be
the element in Lsc([0, 1],N) given by Lemma 3.3.5 applied to g′ � g.

Using Lemma 3.3.5 at the first and third step, we get

ϕ(f ′′)� φ(h)� φ(g′)� ϕ(g′′)� ϕ(g)

as required.

The following lemma, which states that our notion of distance can be discretized,
will be of importance throughout the chapter.

Lemma 3.3.7. Let S be a Cu-semigroup and let ϕ1, ϕ2 : Lsc([0, 1],N)→ S be Cu-mor-
phisms satisfying ϕ1(1) = ϕ2(1). Assume that there exist n ∈ N and ε ∈ (0, 1] such
that

ϕ1

(
χ( in+ε,1]

)
≤ ϕ2

(
χ( in ,1]

)
and ϕ2

(
χ( in+ε,1]

)
≤ ϕ1

(
χ( in ,1]

)
for every 0 ≤ i ≤ n.

Then, d(ϕ1, ϕ2) ≤ ε+ 1/n.

Proof. Let t ∈ [0, 1] and take i such that t ≤ i
n
≤ t+ 1

n
.

Using that ϕ1, ϕ2 are Cu-morphisms at the first and last steps, and our assumption
at the second step, we get

ϕ1(χ(t+ε+ 1
n
,1]) ≤ ϕ1(χ( i

n
+ε,1]) ≤ ϕ2(χ( i

n
,1]) ≤ ϕ2(χ(t,1]).

An analogous argument shows that ϕ2(χ(t+ε+ 1
n
,1]) ≤ ϕ1(χ(t,1]). Thus, d(ϕ1, ϕ2) ≤

ε+ 1/n as desired.

Proposition 3.3.8. Let S be a weakly cancellative Cu-semigroup satisfying (O5), let
ε > 0, and let φ : Lsc([0, 1],N)r → Lsc([0, 1],N)s be a Cu-morphism.

Then, there exists ε′ > 0 such that, for any pair of Cu-morphisms ϕ1, ϕ2 from
Lsc([0, 1],N)s to S with d(ϕ1, ϕ2) < ε′ and ϕ1(1i) = ϕ2(1i) for every i, we have

d(ϕ1φ, ϕ2φ) < ε.

Proof. Note that it is enough to prove the result for r = 1. Thus, let ε > 0 and let
φ : Lsc([0, 1],N)→ Lsc([0, 1],N)s.

For each t ∈ [0, 1], consider the pair χ(t+ε/2,1] � χ(t,1] in Lsc([0, 1],N). In particular,
we have φ(χ(t+ε/2,1])� φ(χ(t,1]) in Lsc([0, 1],N)s.

By Lemma 3.3.5 applied to φ(χ(t+ε/2,1])� φ(χ(t,1]), there exists ε′t > 0 such that, for
any pair of Cu-morphisms ϕ1, ϕ2 : Lsc([0, 1],N)s → S with d(ϕ1, ϕ2) < ε′t and ϕ1(1i) =
ϕ2(1i) for every i, we have

ϕ1(φ(χ(t+ε/2,1]))� ϕ2(φ(χ(t,1])) and ϕ2(φ(χ(t+ε/2,1]))� ϕ1(φ(χ(t,1])).

Now let n ∈ N be such that 1/n ≤ ε/2, and set tj = j/n for each j ≤ n. Define
ε′ = min(ε′tj) > 0.
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Then, for any pair of Cu-morphisms ϕ1, ϕ2 : Lsc([0, 1],N)s → S with d(ϕ1, ϕ2) < ε′

and ϕ1(1i) = ϕ2(1i) for every i, we have

ϕ1(φ(χ(tj+ε/2,1]))� ϕ2(φ(χ(tj ,1])) and ϕ2(φ(χ(tj+ε/2,1]))� ϕ1(φ(χ(tj ,1])).

for each j, since d(ϕ1, ϕ2) < ε′ ≤ ε′tj .
Lemma 3.3.7 shows that d(ϕ1φ, ϕ2φ) ≤ 1/n+ ε/2 ≤ ε, as desired.

We are now ready to prove the main result of this section, which states that certain
Cauchy sequences of Cu-morphisms Lsc([0, 1],N)→ S have a unique limit. This result
will also be generalized to Cu-morphisms Lsc([0, 1],N)r → S; see Theorem 3.3.10.

Proposition 3.3.9. Let S be a Cu-semigroup satisfying (O5) and weak cancellation,
and let ϕi : Lsc([0, 1],N) → S be Cu-morphisms such that ϕi(1) = ϕi+1(1) for every i.
Assume that d(ϕi, ϕi+1) < εi with (εi)i strictly decreasing and

∑∞
i=1 εi <∞.

Then,

(i) The sequence (ϕi)i induces a Cu-morphism ϕ : Lsc([0, 1],N)→ S satisfying ϕ(1) =
ϕ1(1);

(ii) d(ϕ, ϕi)→ 0 as i tends to infinity.

Proof. We prove each claim separately:

(i) Let R =
∑∞

i=1 εi < ∞, and set Ri =
∑i

k=1 εk for each i. Given t ∈ [0, 1], it
follows from Remark 3.3.2 that

ϕ1(χ(t+R,1])� ϕ2(χ(t+R−R1,1])� ϕ3(χ(t+R−R2,1])� . . .� ϕi+1(χ(t+R−Ri,1])� . . . ,

since (t+R−Ri)− (t+R−Ri+1) = εi > d(ϕi, ϕi+1).

Thus, the sequence (ϕi+1(χ(t+R−Ri,1]))i is �-increasing for each t.
Let ϕ : {χ(t,1]}t → S be the map defined as ϕ(χ(t,1]) := supi ϕi+1(χ(t+R−Ri,1]). We

will now see that ϕ satisfies (i)-(ii) from Lemma 1.3.5.
First, let χ(s,1] � χ(t,1], which implies that s− t > 0. Thus, since R−Ri → 0, there

exists some k ∈ N such that s− t > 2(R−Rk−1). For every i > k, we get

d(ϕi+1, ϕk) ≤ d(ϕi+1, ϕi) + . . .+ d(ϕk+1, ϕk)

< εi + . . .+ εk = Ri −Rk−1 ≤ R−Rk−1,

which implies that, again by Remark 3.3.2,

ϕi+1(χ(s+R−Ri,1])� ϕk(χ(s+Rk−1−Ri,1]) ≤ ϕk(χ(t+R−Rk−1,1]),

where in the first step we have used (s+R−Ri)−(s+Rk−1−Ri) = R−Rk−1 > d(ϕi, ϕk),
and in the second step we have used s− t ≥ 2(R−Rk−1) ≥ (R−Rk−1) + (Ri −Rk−1).

This shows that ϕ(χ(s,1]) ≤ ϕk(χ(t+R−Rk−1,1]) � ϕ(χ(t,1]) and, consequently, that ϕ
preserves the way-below relation.

Now let (tn)n be a strictly decreasing sequence converging to t. Since χ(tn,1] � χ(t,1]

for each n, we have ϕ(χ(tn,1])� ϕ(χ(t,1]) and, consequently, supn ϕ(χ(tn,1]) ≤ ϕ(χ(t,1]).
Conversely, let k ∈ N and note that d(ϕk+2, ϕk+1) < Rk+1 − Rk. Set ε = Rk+1 −

Rk − d(ϕk+2, ϕk+1) > 0.
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Since tn − t is positive and tends to zero, we can find some n such that tn − t < ε.
Thus, we have

(t+R−Rk)−(tn+R−Rk+1) = (t− tn)+Rk+1−Rk > −ε+Rk+1−Rk = d(ϕk+2, ϕk+1).

Using Remark 3.3.2 at the first step, one gets

ϕk+1(χ(t+R−Rk,1])� ϕk+2(χ(tn+R−Rk+1,1]) ≤ ϕ(χ(tn,1]) ≤ sup
n
ϕ(χ(tn,1]).

Since this holds for each k, it follows that ϕ(χ(t,1]) ≤ supn ϕ(χ(tn,1]) and, conse-
quently, supn ϕ(χ(tn,1]) = ϕ(χ(t,1]).

Now note that G, the sub-Cu-semigroup of increasing lower-semicontinuous functions
in (0, 1] from Paragraph 3.2.1, can be seen as the sup-completion of the monoid N
generated by {χ(t,1]}t.

Extend ϕ additively to a morphism N → S. Since every nonzero element in N can
be written uniquely as a finite sum of nonzero elements in {χ(t,1]}t, this extension also
satisfies (i)-(ii) in Lemma 1.3.5. Thus, it can be extended further to a Cu-morphism
G → S.

Finally, it follows from Proposition 3.2.5 that the map G → S has a unique extension
ϕ : Lsc([0, 1],N)→ S such that ϕ(1) = ϕi(1) for all i.

(ii) Let ε ∈ (0, 1]. We will show that d(ϕ, ϕi) ≤ ε for every sufficiently large i.
Since Ri tends to R, there exists some i0 such that 0 ≤ R − Ri ≤ ε/2 for every

i ≥ i0. Thus, we have

ϕi(χ(t+ε/2,1]) ≤ ϕi(χ(t+R−Ri,1]) ≤ ϕ(χ(t,1])

for every i ≥ i0 and t ∈ [0, 1].
Now let n ∈ N be such that 1/n ≤ ε/2. One gets

ϕ(χ(tj+ε/2,1])� ϕ(χ(tj ,1])

for every j and, by the definition of ϕ, we can find ij such that

ϕ(χ(tj+ε/2,1]) ≤ ϕij(χ(tj+R−Rij−1,1]).

Let i = max(i0, i1, . . . , in). Then, since i ≥ i0, we know that ϕi(χ(t+ε/2,1]) ≤ ϕ(χ(t,1])
for every t. Further, we also have

ϕ(χ(tj+ε/2,1]) ≤ ϕij(χ(tj+R−Rij−1,1]) ≤ ϕi(χ(tj+R−Ri−1,1]) ≤ ϕi(χ(tj ,1]).

Thus, it follows from Lemma 3.3.7 that d(ϕ, ϕi) ≤ ε/2 + 1/n ≤ ε, as desired.

As a consequence of Proposition 3.3.9, we can now prove Theorem 3.3.10 below.

Theorem 3.3.10. Let S be a weakly cancellative Cu-semigroup satisfying (O5), and
let ϕi : Lsc([0, 1],N)r → S be Cu-morphisms such that d(ϕi, ϕi+1) < εi with (εi)i strictly
decreasing and

∑∞
i=1 εi <∞. Also, assume that ϕi(1j) = ϕi+1(1j) for each i, j.

Then, there exists a unique Cu-morphism ϕ : Lsc([0, 1],N)r → S such that ϕ(1j) =
ϕi(1j) for every i, j and such that (d(ϕ, ϕi))i tends to zero 0.
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Proof. Let ϕi : Lsc([0, 1],N)r → S be as stated, and for each j ≤ r let ιj denote the
canonical inclusion from Lsc([0, 1],N) to the j-th component of Lsc([0, 1],N)r.

For each fixed j ≤ r, we apply Proposition 3.3.9 above to the sequence (ϕiιj)i. This
produces a Cu-morphism ϕ(j) satisfying d(ϕiιj, ϕ

(j))→ 0 and ϕi(1j) = ϕ(j)(1).
Set ϕ = ϕ(1) ⊕ . . . ⊕ ϕ(r) : Lsc([0, 1],N)r → S, which satisfies d(ϕ, ϕi) → 0 by the

definition of distance (Definition 3.3.1) and ϕi(1j) = ϕ(1j) for every i, j.
To prove uniqueness, let φ : Lsc([0, 1],N)r → S be a Cu-morphism with d(ϕi, φ)→ 0

and φ(1j) = ϕi(1j) for every i, j. Using the triangle inequality, we obtain

d(ϕ, φ) ≤ d(ϕ, ϕi) + d(ϕi, φ)→ 0.

This shows that d(ϕ, φ) = 0 and, consequently, ϕ = φ by Lemma 3.3.3.

3.4 A local characterization
Using the results developed thus far, in this section we obtain a local characterization
for the Cuntz semigroup of AI-algebras; see Theorem 3.4.5. We also prove a discretized
version of the result (Theorem 3.4.8) and use it to show that the Cuntz semigroup of
the Jiang-Su algebra, as defined in Examples 1.2.8 (iv), is not the Cuntz semigroup of
any AI-algebra; see Example 3.4.9. Finally, we also show in Proposition 3.4.10 that
Lsc([0, 1],N) is, under a suitable definition, ‘semiprojective’.

Lemma 3.4.1. Given a Cu-semigroup S satisfying (O5) and weak cancellation, let
ϕi : Lsc([0, 1],N)ni → S and σi+1,i : Lsc([0, 1],N)ni → Lsc([0, 1],N)ni+1 be a pair of se-
quences of Cu-morphisms. Assume that there exists a strictly decreasing sequence (εi)i
such that

d(ϕjσj,i, ϕj+1σj+1,i) < εi/2
j and ϕj+1σj+1,i(1k) = ϕjσj,i(1k) for each k ≤ ni,

where σj,i denotes the composition σj,j−1 ◦ . . . ◦ σi+1,i.
Then, we can find a Cu-morphism φ : lim(Lsc([0, 1],N)ni , σi+1,i) → S such that its

canonical morphisms φi : Lsc([0, 1],N)ni → S are the limits of the sequences (ϕjσj,i)j.

Proof. By Theorem 3.3.10, each sequence (ϕjσj,i)j has a unique limit, which we denote
by φi : Lsc([0, 1],N)ni → S. We will see that φi+1σi+1,i = φi for each i, which will give
us a Cu-morphism φ : lim Lsc([0, 1],N)ni → S, as required.

Thus, let i ∈ N be fixed and take ε > 0. Also, let ε′ > 0 be the number given
by Proposition 3.3.8 applied to ε and σi+1,i. Since d(φi, ϕjσj,i) tends to 0, there exists
some j such that

d(φi, ϕjσj,i) < ε and d(ϕjσj,i+1, φi+1) < ε′.

Using Proposition 3.3.8 at the last step, we have

d(φi, φi+1σi+1,i) ≤ d(φi, ϕjσj,i) + d(ϕjσj,i, φi+1σi+1,i)

= d(φi, ϕjσj,i) + d(ϕjσj,i+1σi+1,i, φi+1σi+1,i) < 2ε.

Since this holds for every ε > 0, we have φi = φi+1σi+1,i for every i. This induces a
morphism φ from lim(Lsc([0, 1],N)ni , σi+1,i) to S, as desired.
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Lemma 3.4.2. Let A be the limit of an inductive system of C∗-algebras (Ai, fi+1,i)i∈N
where, for every i, we denote the i-th canonical map by fi : Ai → A. Then, for any ε > 0
and *-homomorphism ϕ : C[0, 1]⊗Mm → A, there exist i ∈ N and a *-homomorphism
h : C[0, 1]⊗Mm → Ai such that

d(Cu(ϕ),Cu(fi) Cu(h)) ≤ ε

and Cu(ϕ)([1⊕ 0m−1]) = Cu(fi) Cu(h)([1⊕ 0m−1]).

Proof. We begin the proof with the following claim.
Claim. Let A,B be C∗-algebras, and let a, b be elements in B. Assume that

[a] � [b] in Cu(B). Then, there exists δ = δ(a, b) > 0 such that, for every pair of
*-homomorphisms ϕ, φ : B → A with ‖φ(b)− ϕ(b)‖ ≤ δ, we have

[ϕ(a)] ≤ [φ(b)] and [φ(a)] ≤ [ϕ(b)]

in Cu(A).
Using that [a]� [b], we obtain δ = δ(a, b) > 0 such that [a] ≤ [(b− δ)+] in Cu(B);

see, for example, [6, Remarks 3.2.4]. Further, it follows from [77, Lemma 2.2] that,
given any pair of *-homomorphisms ϕ, φ : B → A with ‖φ(b)− ϕ(b)‖ ≤ δ, we have

[(φ(b)− δ)+] ≤ [ϕ(b)] and [(ϕ(b)− δ)+] ≤ [φ(b)]

in Cu(A).
Thus, since *-homomorphisms preserve continuous functional calculus, one gets

[ϕ(a)] ≤ [ϕ((b− δ)+)] = [(ϕ(b)− δ)+] ≤ [φ(b)]

and, similarly, [φ(a)] ≤ [ϕ(b)], as required.

Now let ϕ : C[0, 1]⊗Mm → A be a *-homomorphism and take ε > 0.
Let n ∈ N be such that 2/n ≤ ε and, for each k < n, let g′k ∈ C[0, 1] be a function

with support (k/n, 1] and norm 1. Set gk = g′k ⊕ 0m−1 ∈ C[0, 1] ⊗Mm, whose Cuntz
class corresponds to the element χ(k/n,1] under the identification Cu(C[0, 1] ⊗Mm) ∼=
Lsc([0, 1],N).

Applying the Claim to each pair gk+1, gk, we obtain a positive number δk for each
k. Define δ = min(δk, 1), and let F be the finite set {gk}k<n ∪ {1⊕ 0m−1}.

Since C[0, 1]⊗Mm is projective (see, for example, [29, Section 3]), there exists i ∈ N
and a ∗-homomorphism h : C[0, 1]⊗Mm → Ai such that

‖ϕ(x)− fih(x)‖ < δ

for every x ∈ F .
In particular, since ‖ϕ(1⊕ 0m−1)− fih(1⊕ 0m−1)‖ < δ ≤ 1, we get that ϕ(1⊕ 0m−1)

is Murray-von Neumann equivalent to fih(1⊕ 0m−1). This in turn implies that

[ϕ(1⊕ 0m−1)] = [fih(1⊕ 0m−1)]

in Cu(A).
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Moreover, using that ‖ϕ(gk)− fih(gk)‖ ≤ δk for each k, the Claim implies that

[ϕ(gk+1)] ≤ [fih(gk)] and [fih(gk+1)] ≤ [ϕ(gk)]

for each k.
It now follows from Lemma 3.3.7 that d(Cu(ϕ),Cu(fi) Cu(h)) ≤ 2/n ≤ ε, as desired.

To state Theorem 3.4.5 we will use a the following notion for Cu-semigroup, which
may well be of importance in other scenarios; see, for example, Proposition 4.3.6.

Definition 3.4.3. A Cu-semigroup S is said to be compactly bounded if every element
compactly contained in another is bounded by a compact. That is to say, if for every
element x ∈ S� there exists a compact element p ∈ S such that x ≤ p.

Remark 3.4.4. It is readily checked that the Cuntz semigroup of a unital C∗-algebra
is always compactly bounded, since every compactly contained element is bounded by
a multiple of the class of the unit.

Similarly, one can also check that an inductive limit of Cuntz semigroups of unital
C∗-algebras is always compactly bounded.

The proof of Theorem 3.4.5 below adapts some ideas from Shen’s theorem ([87,
Theorem 3.1]) and continuum theory ([64, Chapter 12, Section 3]).

Theorem 3.4.5. Let S be a countably based, weakly cancellative, compactly bounded
Cu-semigroup satisfying (O5). Then, S is Cu-isomorphic to the Cuntz semigroup of
an AI-algebra if and only if for every Cu-morphism ϕ : Lsc([0, 1],N)r → S, finite sub-
set F ⊆ Lsc([0, 1],N)r and ε > 0, there exist a natural number s and Cu-morphisms
θ : Lsc([0, 1],N)r → Lsc([0, 1],N)s, φ : Lsc([0, 1],N)s → S such that the diagram

Lsc([0, 1],N)r
ϕ
//

θ
��

S

Lsc([0, 1],N)s

φ
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satisfies

(i) d(φθ, ϕ) < ε;

(ii) For every x, x′, y ∈ F , we have θ(x)� θ(y) whenever x� x′ and ϕ(x′)� ϕ(y);

(iii) ϕ(1j) = φθ(1j) for every 1 ≤ j ≤ r.

Proof. Let S be isomorphic the Cuntz semigroup of an AI-algebra A, and let ϕ, F and
ε be as in the statement of the theorem. Since S ∼= Cu(A), we know by [21, Theorem
12.1] that ϕ lifts to a *-homomorphism g : C[0, 1] ⊗Mm → A, where m ∈ N and A is
the limit of an inductive system (Ai, fi+1,i) with Ai a direct sum of interval algebras for
each i.

By Corollary 3.3.6, for every triple of elements x, x′, y ∈ F with x� x′ and ϕ(x′)�
ϕ(y), there exists ε(x, x′, y, ϕ) such that for any Cu-morphism ψ : Lsc([0, 1],N)r → S
with d(ϕ, ψ) < ε(x, x′, y, ϕ) and ϕ(1j) = ψ(1j) for every j, we have ψ(x)� ψ(y).
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Since the cardinality of F is finite, so is the number of way-below relations between
its elements. This means that the number

εF := min(ε, 1,min{ε(x, x′, y, ϕ) | x, x′, y ∈ F such that x� x′ and ϕ(x′)� ϕ(y)})

is strictly positive.
For each i, let fi : Ai → A denote the canonical map. Using Lemma 3.4.2 above

applied to g (and the definition of distance; Definition 3.3.1) one can find i ∈ N and a
*-homomorphism h : C[0, 1] ⊗Mm → Ai such that d(ϕ,Cu(fi) Cu(h)) < εF and such
that ϕ(1k) = Cu(fi) Cu(h)(1k) for every k ≤ r.

By the choice of εF , we also have that Cu(fi) Cu(h)(x)� Cu(fi) Cu(h)(y) for every
triple x, x′, y ∈ F with x� x′ and ϕ(x′)� ϕ(y).

Finally, note that Cu(fi) : Cu(Ai) → S is the canonical morphism from Cu(Ai)
to the limit lim Cu(Ai) ∼= Cu(A) ∼= S. Thus, we know that Cu(fi) Cu(h)(x) �
Cu(fi) Cu(h)(y) if and only if there exists i(x, y) ≥ i with Cu(fi(x,y),i) Cu(h)(x) �
Cu(fi(x,y),i) Cu(h)(y).

Since F is finite, so is the supremum j of all the i(x, y)’s with x, y ∈ F . Setting
θ := Cu(fj,i) Cu(h) and φ := Cu(fj), we have

(i) d(φθ, ϕ) = d(Cu(fj) Cu(fj,i) Cu(h), ϕ) = d(Cu(fi) Cu(h), ϕ) < ε.

(ii) For every triple x, x′, y ∈ F such that x� x′ and ϕ(x′)� ϕ(y), we get

Cu(fi) Cu(h)(x)� Cu(fi) Cu(h)(y).

By our choice of j, it follows that

θ(x) = Cu(fj,i) Cu(h)(x)� Cu(fj,i) Cu(h)(y) = θ(y).

(iii) φθ(1k) = Cu(fi) Cu(h)(1k) = ϕ(1k) for every k ≤ r.

as required.

We are now left to prove the other implication.

Let s1, s2, . . . be a countable basis for S, where we may assume si ∈ S� for each
i, and consider a Cu-morphism ψi : Lsc([0, 1],N) → S such that ψi(χ(0,1]) = si. Such
a morphism can always be found by Theorem 3.2.6 and the fact that all compactly
contained elements in S are bounded by a compact. Also, denote by ρi : Lsc([0, 1],N)i →
S the direct sum ρi = ψ1 ⊕ . . .⊕ ψi.

For every j ∈ N, fix a countable and ordered basis for Lsc([0, 1],N)j. By ‘the first i
basis elements in Lsc([0, 1],N)j’ we will mean the first i elements of the fixed ordered
basis of Lsc([0, 1],N)j.

The idea of the proof is as follows:

We will define inductively Cu-morphisms σi+1,i : Lsc([0, 1],N)ni → Lsc([0, 1],N)ni+1

and ϕi : Lsc([0, 1],N)ni → S such that

(i)’ There exists a decreasing sequence of positive elements (εi)i≥1 tending to 0 such
that, for every i ≥ 2, there exists a Cu-morphism

θi : Lsc([0, 1],N)ni−1 ⊕ Lsc([0, 1],N)i → Lsc([0, 1],N)ni

with d(ϕi−1 ⊕ ρi, ϕiθi) < εi;
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(ii)’ For every fixed i ≥ 1 and any j ≥ i, we have

d(ϕjσj,i, ϕj+1σj+1,i) < εi/2
j and ϕj+1σj+1,i(1k) = ϕjσj,i(1k)

for each k ≤ ni. Here, σi,i = id and σj,i denotes the composition σj,j−1◦ . . .◦σi+1,i;

(iii)’ For every fixed k ≥ 2 and any j ≥ k, we have d(ϕjσj,kθk, ϕj+1σj+1,kθk) < εk/2
j;

(iv)’ For each i ≥ 1, let Fi be the finite set consisting of the images of the first i
basis elements of Lsc([0, 1],N)nr through σi,r for each r ≤ i. Then, for every
x, x′, y ∈ Fi satisfying ϕi(x′)� ϕi(y) with x� x′, we have σi+1,i(x)� σi+1,i(y).

Condition (ii)’ and Lemma 3.4.1 will provide a limit morphism

φ : lim Lsc([0, 1],N)ni → S

with the canonical morphisms φi : Lsc([0, 1],N)ni → S being the limits of the sequences
(ϕjσj,i)j.

Conditions (i)’ and (iii)’ will imply that φ is surjective. Condition (iv)’ will be used
to prove that φ is also an order embedding, thus showing the desired result.

Set ε1 = 1 and ϕ1 := ρ1. Fix some i ≥ 2 and assume that, for each k ≥ 2 with
k ≤ i − 1, the element εk and the morphisms σk,k−1, ϕk and θk have been defined so
that conditions (i)’-(iv)’ above are satisfied. Note that, for i = 2, nothing is assumed.

For every k ≤ i − 1, let δk be the distance given in Proposition 3.3.8 such that for
any pair of morphisms ζ1, ζ2 : Lsc([0, 1],N)ni−1 → S at distance less than δk, we have

d(ζ1σi−1,k, ζ2σi−1,k) < εk/2
i and d(ζ1σi−1,kθk, ζ2σi−1,kθk) < εk/2

i,

where the second bound is only asked if k ≥ 2. In particular, if i = 2, we can take
δ1 = ε1/4.

Set εi := min1≤k≤i−1{δk, εk}/2, which is positive and strictly less than εi−1. As
defined above, let Fi−1 be the set that contains, for each r ≤ i− 1, the image through
σi−1,r of i− 1 distinct basis elements of Lsc([0, 1],N)nr .

Let τi−1 : Lsc([0, 1],N)ni−1 → Lsc([0, 1],N)ni−1 ⊕ Lsc([0, 1],N)i be the canonical in-
clusion, and let F = τi−1(Fi−1).

By our assumptions, we can find morphisms ϕi, θi such that the diagram

Lsc([0, 1],N)ni−1 ⊕ Lsc([0, 1],N)i
ϕi−1⊕ρi

//

θi
��

S

Lsc([0, 1],N)ni

ϕi

44

satisfies conditions (i)-(iii) in the statement of the theorem with distance εi and finite
set F . Note that condition (i)’ is immediately satisfied.

Define σi,i−1 := θi ◦ τi−1. Condition (iv)’ is satisfied by construction.

Lsc([0, 1],N)ni−1
τi−1

//

σi,i−1
++

ϕi−1

((
Lsc([0, 1],N)ni−1 ⊕ Lsc([0, 1],N)i

ϕi−1⊕ρi
//

θi
��

S

Lsc([0, 1],N)ni

ϕi

44
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Furthermore, since τi−1 is an inclusion, we have by Definition 3.3.1 and ρiτi−1 = 0
that

d(ϕiσi,i−1, ϕi−1) = d(ϕiθiτi−1, (ϕi−1 ⊕ ρi)τi−1) ≤ d(ϕiθi, ϕi−1 ⊕ ρi) < εi ≤ δk

for each k.
By the choice of δk, one gets

d(ϕiσi,k, ϕi−1σi−1,k) = d(ϕiσi,i−1σi−1,k, ϕi−1σi−1,k) < εk/2
i.

Moreover, as ϕiσi,i−1(1j) = ϕi−1(1j) for every j ≤ ni−1, condition (ii)’ also holds.
An analogous argument shows that (iii)’ holds.

This finishes the inductive argument.

By Lemma 3.4.1, condition (ii)’ induces a Cu-morphism φ : lim Lsc([0, 1],N)ni → S
with the canonical morphisms φi : Lsc([0, 1],N)ni → S being the limits of the sequences
(ϕjσj,i)j.

To see that φ is surjective, first note that, for every i ∈ N and for every ε > 0,
there exists j ∈ N such that d(φiθi, ϕjσj,iθi) < ε. This is due to Proposition 3.3.8 and
because d(φi, ϕjσj,i) tends to 0 as j tends to infinity.

Thus, we get

d(ϕiθi, φiθi) ≤ d(ϕiθi, ϕi+1σi+1,iθi) + . . .+ d(ϕj−1σj−1,iθi, ϕjσj,iθi) + d(ϕjσj,iθi, φiθi)

≤ εi
2i

+ . . .+
εi

2j−1
+ ε ≤ 2εi + ε,

where we have used property (iii)’ to bound all but the last element.
Since this holds for every ε, one gets d(ϕiθi, φiθi) ≤ 2εi. In particular, the distance

tends to 0 on i.
Now let si be a basis element of S and let x ∈ S be such that x � si. We have

x� ψi(χ(0,1]) = si and, consequently, there exists s, t ∈ (0, 1] such that

x� ψi(χ(t+2s,1])� ψi(χ(t,1])� ψi(χ(0,1]).

Note that, for every k > i, we have

d(ϕk−1 ⊕ ρk, φkθk) ≤ d(ϕk−1 ⊕ ρk, ϕkθk) + d(ϕkθk, φkθk) < εk + 2εk = 3εk,

where in the previous bound we have used condition (i)’ and the inequality obtained
above.

Thus, there exists a large enough k so that d(ϕk−1 ⊕ ρk, φkθk) < s.
Since k > i, we know that (ϕk−1⊕ρk)ιi = ψi, where ιi denotes the canonical inclusion

from Lsc([0, 1],N) to the (nk−1 + i)-th component of Lsc([0, 1],N)nk−1 ⊕ Lsc([0, 1],N)k.
Using Remark 3.3.2, we have

x� ψi(χ(t+2s,1]) = (ϕk−1 ⊕ ρk)ιi(χ(t+2s,1])� φkθkηi(χ(t+s,1])

� (ϕk−1 ⊕ ρk)ιi(χ(t,1]) = ψi(χ(t,1])� ψi(χ(0,1]) = si.

This shows that for every i and every x� si, there exist some k such that

x� φk(l)� si
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with l ∈ Lsc([0, 1],N)nk . Consequently, φ is surjective.

We will now prove that φ is an order-embedding. To do this, we will denote by [v]
the elements in lim Lsc([0, 1],N)ni coming from some block Lsc([0, 1],N)ni of the direct
limit.

Take x, y ∈ lim Lsc([0, 1],N)ni such that φ(x) ≤ φ(y). Let v ∈ Lsc([0, 1],N)ns be
a basis element with [v] � x. Also, take [z], [z′] such that [v] � [z′] � [z] � x with
z, z′ ∈ Lsc([0, 1],N)ns′ basis elements as well. Finally, take w ∈ Lsc([0, 1],N)nk a basis
element such that [w]� y and φ([z])� φ([w])� φ(y).

We can assume that, for a large enough i, we have

σi,s(v), σi,k(w), σi,s′(z), σi,s′(z
′) ∈ Lsc([0, 1],N)ni

with
σi,s(v)� σi,s′(z

′)� σi,s′(z) and φi(σi,s′(z))� φi(σi,k(w)).

Thus, since we have d(φi, ϕjσj,i) → 0, it follows from Corollary 3.3.6 applied to
σi,s′(z

′), σi,k(w), σi,s′(z) and φi that

ϕjσj,i(σi,s′(z
′))� ϕjσj,i(σi,k(w))

for every sufficiently large j.
Also, since z, z′, v, w are basis elements in their respective blocks, we can take j

large enough so that we also have σj,s′(z), σj,s′(z
′), σj,s(v), σj,k(w) ∈ Fj.

Therefore, since σj,s(v) � σj,s′(z
′) and ϕj(σj,s′(z

′)) � ϕj(σj,k(w)), it follows from
condition (iv)’ that σj+1,j(σj,s(v))� σj+1,j(σj,k(w)). That is to say, we have

σj+1,s(v)� σj+1,k(w)

and thus [v]� [w]� y.
Since x can be written as the supremum of a �-increasing sequence ([xn]) with xn

basis elements, it follows from the previous argument that [xn]� y for every n. Taking
the supremum, one gets x ≤ y as required.

We now have S ∼= limi Lsc([0, 1],N)ni , and the desired result follows from Theo-
rem 3.1.6.

We now show that in Theorem 3.4.5 above one only needs to check conditions (i)-(iii)
for triples x, x′, y such that x� x′ and ϕ(x′)� ϕ(y).

Proposition 3.4.6. Let S be a countably based, compactly bounded and weakly cancella-
tive Cu-semigroup satisfying (O5). Then, S is Cu-isomorphic to the Cuntz semigroup
of an AI-algebra if and only if for every Cu-morphism ϕ : Lsc([0, 1],N)r → S, ε > 0
and any triple x, x′, y in Lsc([0, 1],N)r with x � x′ and ϕ(x′) � ϕ(y), there exist
Cu-morphisms θ, φ and a natural number s such that the diagram

Lsc([0, 1],N)r
ϕ
//

θ
��

S

Lsc([0, 1],N)s

φ

99

satisfies
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(i) d(φθ, ϕ) < ε;

(ii) θ(x)� θ(y);

(iii) ϕ(1j) = φθ(1j) for every 1 ≤ j ≤ r.

Proof. The forward implication follows trivially from Theorem 3.4.5. Thus, we only
need to show that (i)-(iii) in the statement of the proposition imply (i)-(iii) in Theo-
rem 3.4.5.

For any Cu-morphism ϕ : Lsc([0, 1],N)r → S, let Rϕ denote the set

Rϕ = {(x, x′, y) ∈ (Lsc([0, 1],N)r)3 | x� x′ with ϕ(x′)� ϕ(y)}.

Given any ε > 0 and finite subset R ⊆ Rϕ, we will show by induction on |R| that
there exist Cu-morphisms θ,φ such that the following conditions are satisfied:

(i)’ d(φθ, ϕ) < ε;

(ii)’ θ(x)� θ(y) for every (x, x′, y) ∈ R;

(iii)’ ϕ(1j) = φθ(1j) for every 1 ≤ j ≤ r.

In particular, since F 3 ∩Rϕ is finite for every finite subset F ⊆ Lsc([0, 1],N)r, this
will imply the desired result.

Note that, for n = 1, the result holds by assumption.
Thus, assume that the result has been proven for every k ≤ n − 1, Cu-morphism

ϕ : Lsc([0, 1],N)r → S, ε > 0 and finite subset R ⊆ Rϕ with |R| = k.
Let ϕ : Lsc([0, 1],N)r → S be a Cu-morphism, and take ε > 0 and a finite subset

R ⊆ Rϕ with cardinality n.
Write R as R = {(x1, x

′
1, y1), . . . , (xn, x

′
n, yn)}, where note that some elements

xi, x
′
i, yi might be repeated. Using Corollary 3.3.6, we find x′′i and ε′i > 0 such that

xi � x′′i � x′i and, for any Cu-morphism ψ : Lsc([0, 1],N)r → S with d(ψ, ϕ) < ε′i and
ψ(1j) = φ(1j) for every j, we have ψ(x′′i )� ψ(yi).

Set ε′ := min{ε/2, ε′i} > 0, and use the induction hypothesis on ϕ, ε′ and the set
{(x1, x

′′
1, y1)} to get Cu-morphisms

θ1 : Lsc([0, 1],N)r → Lsc([0, 1],N)t and φ1 : Lsc([0, 1],N)t → S

such that

(i) d(φ1θ1, ϕ) < ε′;

(ii) θ1(x1)� θ1(y1);

(iii) ϕ(1j) = φ1θ1(1j) for every 1 ≤ j ≤ r.

In particular, note that (i) and (iii) imply that (θ1(xi), θ1(x′′i ), θ1(yi)) ∈ Rφ1 for
every i > 1. Indeed, since d(φ1θ1, ϕ) < ε′ < ε′i and xi � x′′i , we get

θ1(xi)� θ1(x′′i ) and φ1θ1(x′′i )� φ1θ(yi),
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which shows that (θ1(xi), θ1(x′′i ), θ1(yi)) ∈ Rφ1 for each i > 1.
Set R′ = {(θ1(xi), θ1(x′′i ), θ1(yi))}i>1, which has cardinality n − 1. Let ν be the

bound given in Proposition 3.3.8 applied to the morphism θ1 and the constant ε/2.
Using the induction hypothesis to φ1, ν > 0, and R′ we get Cu-morphisms θ2, φ2

such that

(i) d(φ2θ2, φ1) < ν;

(ii) θ2θ1(xi)� θ2θ1(yi) for every 1 ≤ i ≤ n (for i = 1, this is because θ1(x1)� θ1(y1));

(iii) φ1(1j) = φ2θ2(1j) for every 1 ≤ j ≤ t.

Set φ := φ2 and θ := θ2θ1. It follows from Proposition 3.3.8 and (i) that d(φθ, φ1θ1) <
ε/2. Thus, we have

d(ϕ, φθ) ≤ d(ϕ, φ1θ1) + d(φθ, φ1θ1) < ε,

which shows that condition (i)’ is satisfied. Moreover, note that (ii) above is equivalent
to (ii)’.

Finally, given 1j ∈ Lsc([0, 1],N)r, let k1, . . . , kt ∈ N be such that

θ1(1j) = k111 + . . .+ kt1t

in Lsc([0, 1],N)t.
Using (iii) at the fourth step, we get

ϕ(1j) = φ1θ1(1j) = φ1(k111 + . . .+ kt1t) = k1φ1(11) + . . .+ ktφ1(1t)

= k1φ2θ2(11) + . . .+ ktφ2θ2(1t) = φ2θ2θ1(1j).

Thus, (iii)’ is also satisfied, as desired.

Proposition 3.4.6 can be weakened further by only considering basic increasing ele-
ments. That is to say, by only considering basic elements (as defined in Definition 3.1.1)
that are increasing as functions.

Proposition 3.4.7. Let S be a countably based, compactly bounded and weakly cancella-
tive Cu-semigroup satisfying (O5). Then, S is Cu-isomorphic to the Cuntz semigroup
of an AI-algebra if and only if, for every Cu-morphism ϕ : Lsc([0, 1],N)r → S, ε > 0,
and any triple of basic increasing elements x, x′, y such that x� x′ with ϕ(x′)� ϕ(y),
conditions (i)-(iii) in Proposition 3.4.6 are satisfied.

Proof. The forward implication is clear (using, for example, Proposition 3.4.6), so we
are left to prove the backward implication.

Given (possibly non-increasing) basic elements x, x′, y in Lsc([0, 1],N)r with x� x′

and ϕ(x′) � ϕ(y), we will show that (i)-(iii) in Proposition 3.4.6 are satisfied. Since
such elements are dense in Lsc([0, 1],N)r, the result will follow.

Thus, let ϕ : Lsc([0, 1],N)r → S be a Cu-morphism and let ε > 0. Take x, x′, y be
basic elements such that x� x′ and ϕ(x′)� ϕ(y).

Since ϕ(x′)� ϕ(y), we can find y′ � y satisfying ϕ(x′)� ϕ(y′). By Lemma 3.1.3,
we obtain basic increasing elements d, f, h, g ∈ Lsc([0, 1],N)r such that

x+ h� d� x′ + h and y′ + g � f � y + g.
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Let δ, ν, η > 0 satisfy

x+ h� Rη(d)� d ≤ x′ +R2δ(h) and y′ + g � f ≤ y +R2ν(g)

and such that Rη(d), R2δ(h), R2ν(g) are still basic increasing elements.
Therefore, using that ϕ(x′)� ϕ(y′) at the second step, and that y′ + g � f at the

third step, one has

ϕ(d+ g) ≤ ϕ(x′ +R2δ(h) + g) ≤ ϕ(y′ +R2δ(h) + g)� ϕ(f +Rδ(h)),

where note that, by construction, Rη(d)+Rν(g), d+g and f+Rδ(h) are basic increasing
elements satisfying

Rη(d) +Rν(g)� d+ g and ϕ(d+ g)� ϕ(f +Rδ(h)).

Applying our hypothesis, we obtain Cu-morphisms θ, φ satisfying conditions (i)-(iii)
in Proposition 3.4.6 for Rη(d) + Rν(g), d + g, and f + Rδ(h). Using this at the third
step, we get

θ(x) + θ(h+R2ν(g)) = θ(x+ h+R2ν(g))� θ(Rη(d) +Rν(g))� θ(f +Rδ(h))

≤ θ(y +R2ν(g) + h) = θ(y) + θ(R2ν(g) + h).

It follows from weak cancellation that θ(x)� θ(y), as required.

Let n ∈ N. We denote by Bn the additive span of the set {1} ∪ {χ(i/n,1]}i in
Lsc([0, 1],N), and for every r ∈ N we let Br

n be the direct sum Bn⊕ (r. . . ⊕Bn in
Lsc([0, 1],N)r.

Theorem 3.4.8. Let S be a countably based, compactly bounded and weakly cancellative
Cu-semigroup satisfying (O5). Then, S is isomorphic to the Cuntz semigroup of an AI-
algebra if and only if for every Cu-morphism ϕ : Lsc([0, 1],N)r → S, n ∈ N and triple
x, x′, y ∈ Br

n such that x� x′ with ϕ(x′)� ϕ(y), there exist Cu-morphisms θ, φ and a
natural number s such that the diagram

Lsc([0, 1],N)r
ϕ
//

θ
��

S

Lsc([0, 1],N)s

φ

99

satisfies

(i) for every i ≤ n and j ≤ r, we have

ϕιj

(
χ( in+ 1

n
,1]

)
� φθιj

(
χ( in ,1]

)
and φθιj

(
χ( in+ 1

n
,1]

)
� ϕιj

(
χ( in ,1]

)
,

where ιj denotes the canonical inclusion from Lsc([0, 1],N) to the j-th component
of Lsc([0, 1],N)r;

(ii) θ(x)� θ(y);
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(iii) ϕ(1j) = φθ(1j) for every 1 ≤ j ≤ r.

Proof. As in the proof of Proposition 3.4.7, the forward implication follows clearly from
Proposition 3.4.6 combined with Lemma 3.3.7 applied to ε < 1/n.

Conversely, it follows from Proposition 3.4.7 that it is enough to prove the existence
of Cu-morphisms θ, φ satisfying (i)-(iii) in Proposition 3.4.6 for every Cu-morphism
ϕ : Lsc([0, 1],N)r → S, ε > 0 and triple of basic increasing elements x, x′, y such that
x� x′ with ϕ(x′)� ϕ(y).

Thus, let n ∈ N be such that 2/n < ε and such that there exist v, v′, w ∈ Br
n such

that
x� v � v′ � x′, w � y and ϕ(x′)� ϕ(w).

By assumption, we obtain Cu-morphisms φ, θ satisfying conditions (i)-(iii) for the
elements v, v′, w. Thus, we have

θ(x)� θ(v)� θ(w)� θ(y),

which shows that φ, θ satisfy (ii) in the statement (which is the same as (ii) in Propo-
sition 3.4.6) for x, x′, y.

Moreover, condition (i) of the statement implies, by Lemma 3.3.7, that

d(ϕ, φθ) <
1

n
+

1

n
=

2

n
< ε

This shows that condition (i) of Proposition 3.4.6 is satisfied.
Finally, note that (iii) in Proposition 3.4.6 coincides with (iii) in our statement.

Using Proposition 3.4.7, it follows that S is Cu-isomorphic to the Cuntz semigroup of
an AI-algebra, as required.

Example 3.4.9. Let Z be the Jiang-Su algebra as defined in Examples 1.2.8. Recall
that its Cuntz semigroup, denoted by Z, is Cu-isomorphic to N t (0,∞].

The results developed by Robert in [72] show that Z is not isomorphic to the Cuntz
semigroup of an AI-algebra. We now use Theorem 3.4.8 to recover this result:

Take n ≥ 3, and consider the �-decreasing sequence (1′ − k/n)k in Z. Since this
sequence is bounded by 1, it follows from Theorem 3.2.6 that there exists a Cu-mor-
phism ϕ : Lsc([0, 1],N)→ Z such that

ϕ(χ(k/n,1]) = 1′ − k/n and ϕ(1) = 1,

where note that ϕ(1) = 1� 3/2 = ϕ(3 · χ(1/2,1]).
Assume for the sake of contradiction that Z is the Cuntz semigroup of an AI-algebra.

Applying Theorem 3.4.8 to ϕ, 1/2, and the triple 1, 1, 3 · χ(1/2,1] ∈ Z, we find Cu-mor-
phisms θ : Lsc([0, 1],N)→ Lsc([0, 1],N)s and φ : Lsc([0, 1],N)s → Z satisfying

d(φθ, ϕ) < 1/2, θ(1)� θ(3 · χ(1/2,1]) and φθ(1) = ϕ(1).

Let 1̄ denote the element (1, . . . , 1) in Lsc([0, 1],N)s. Then, since θ(1)� 3θ(χ(1/2,1]),
we get θ(1) ∧ 1̄� 3θ(χ(1/2,1]) ∧ 1̄ and, consequently,

supp(θ(1) ∧ 1̄) ⊆ supp(θ(χ(1/2,1]) ∧ 1̄),
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which shows that θ(1) ∧ 1̄ = θ(χ(1/2,1]) ∧ 1̄.
Using at the second step that d(ϕ, φθ) < 1/2, we now have

φ(θ(χ(1/2,1]) ∧ 1) ≤ φθ(χ(1/2,1])� ϕ(χ(0,1])

� ϕ(1) = φ(θ(1) ∧ 1) = φ(θ(χ(1/2,1]) ∧ 1).

This implies that ϕ(χ(0,1]) = 1′ is compact, a contradiction.

To finish this section, we prove that Lsc([0, 1],N) is ‘semiprojective’ in the sense
stated in Proposition 3.4.10 below. Note, in particular, that this result could be used
to show the forward implication of Theorem 3.4.5.

Recall that the set Br
n ⊂ Lsc([0, 1],N)r denotes the subset of finite sums of elements

of the form 1 and χ(i/n,1].

Proposition 3.4.10. Let S = limSm be an inductive limit of weakly cancellative Cu-
semigroups satisfying (O5), and let ϕ : Lsc([0, 1],N)r → S be a Cu-morphism.

Then, for any ε > 0, n ∈ N and x, x′, y ∈ Br
n with x� x′ and ϕ(x′)� ϕ(y), there

exist m ∈ N and a Cu-morphism θ : Lsc([0, 1],N)r → Sm such that

(i) d(τmθ, ϕ) < ε, where τm : Sm → S denotes the canonical inclusion;

(ii) θ(x)� θ(y);

(iii) τmθ(1j) = ϕ(1j) for each j ≤ r.

Proof. Note that it is enough to prove the result for r = 1, since the general result
follows from a componentwise application of this case.

Thus, fix ε > 0 and let N ∈ N be large enough so that 2/N < ε, Bn ⊆ BN and
such that there exist y′, y′′ ∈ BN with y′ � y′′ � y and ϕ(x′) � ϕ(y′). Since ϕ is a
Cu-morphism, one has

ϕ(0)� ϕ(χ((N−1)/N,1])� . . .� ϕ(χ(1/N,1])� ϕ(χ(0,1])� ϕ(1).

Now let m ∈ N be large enough so that there exist elements s0, . . . , sN , p ∈ Sm such
that τm(p) = ϕ(1) and

ϕ(χ(i/N,1])� τm(si)� ϕ(χ((i−1)/N,1]) and si � si−1 � p� p

for every i.
Since (si)i is a �-decreasing sequence in Sm bounded by p, we know by Theo-

rem 3.2.6 that there exists a Cu-morphism θ : Lsc([0, 1],N) → Sm mapping 1 to p and
χ(i/N,1] to si for each i. In particular, since τmθ(1) = ϕ(1), condition (iii) holds.

Moreover, it follows that

τmθ(χ(i/N,1]) = τm(si)� ϕ(χ((i−1)/N,1])

and
ϕ(χ(i/N,1])� τm(si−1) = τmθ(χ((i−1)/N,1]).

Using Lemma 3.3.7, this implies d(τmθ, ϕ) < 1/N + 1/N < ε, which shows that
condition (i) is also satisfied.
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By conditions (i) and (iii) we know that, for every pair v, v′ ∈ {1, χ(i/N,1]}N such
that v � v′, one gets

τmθ(v)� ϕ(v′) and ϕ(v)� τmθ(v
′).

Since x, x′ ∈ BN , we can write x =
∑sup(x′)

k=1 vk and x′ =
∑sup(x′)

k=1 v′k with vk � v′k in
BN . This implies

τmθ(x) =

sup(x′)∑
k=1

τmθ(vk)�
sup(x′)∑
k=1

τmϕ(v′k) = ϕ(x′)

and, similarly, one sees that ϕ(y′)� τmθ(y
′′).

Thus, we get

τmθ(x)� ϕ(x′)� ϕ(y′)� τmθ(y
′′)� τmθ(y).

Taking m large enough, one has θ(x)� θ(y), as desired.

3.5 An abstract characterization

In this section we introduce Property I (see Definition 3.5.29), which we use to provide
an abstract characterization for the Cuntz semigroups of AI-algebras as an application
of Theorem 3.4.8; see Theorem 3.5.34.

Definition 3.5.1. For every n ∈ N, set Ωn = {−∞, 0, . . . , n,∞}. We define Xn as the
free abelian monoid on

{(α, β) | n 6= α � β 6= 0, α, β ∈ Ωn}.

We denote the unit of Xn by 0.

3.5.2 (Relations on Xn). Let n ∈ N. Given α, β ∈ Ωn, we define α ≺ β if α � β, or
α = β =∞, or α = β = −∞.

We define relations ≺ and ' in Xn as follows:

(i) For every pair w, (α, β) ∈ Xn, we write w ≺ (α, β) if and only if w = 0 or else if
there exist (αi, βi) ∈ Xn such that

α ≺ α1 ≺ β1 ≺ α2 ≺ . . . ≺ αm ≺ βm ≺ β

and w =
∑

(αi, βi). In particular, (α′, β′) ≺ (α, β) if and only if α ≺ α′ ≺ β′ ≺ β.

Set 0 ≺ 0. Given w, v ∈ Xn we define w ≺ v if there exist (possibly zero and
repeated) elements wi, (αi, βi) ∈ Xn such that w =

∑
wi, v =

∑
(αi, βi) and

wi ≺ (αi, βi) as above for each i.

Note that ≺ is compatible with the addition in Xn.
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(ii) Given v, w ∈ Xn, we write w u v if w = v or else if there exist z ∈ Xn and
α ≺ γ ≺ β ≺ δ in Ωn such that

w = z + (α, β) + (γ, δ) and v = z + (α, δ) + (γ, β)

or
v = z + (α, β) + (γ, δ) and w = z + (α, δ) + (γ, β).

Given two elements w, v ∈ Xn, we define w ' v if and only if there exist
w1, . . . , wm ∈ Xn such that w u w1 u . . . u wm u v.

The definition of ' tries to mimic the relation introduced in Remark 3.1.2.

Lemma 3.5.3. Let n ∈ N, and take w, v ∈ Xn. Then, we have

(i) If w =
∑

(γj, δj) ≺ (−∞,∞), there exists at most one j with γj = −∞ (resp. at
most one j with δj =∞).

(ii) w + (−∞,∞) ≺ (−∞,∞) if and only if w = 0.

(iii) w + (−∞,∞) ≺ v + (−∞,∞) if and only if w ≺ v.

Proof. To prove (i), we may assume that w =
∑

j≤m(γj, δj) ≺ (−∞,∞) with

−∞ ≺ γ1 ≺ . . . ≺ δm ≺ ∞

as in Paragraph 3.5.2 above.
If j is such that γj = −∞, we have

−∞ = γ1 = δ1 = . . . = γj = −∞

and, since γ1 6= δ1, it follows that j = 1. In particular, j is unique.
Similarly, we see that there is at most one j such that δj =∞ for some j.
The argument in (i) shows that, whenever w ≺ (α, β), w has a summand of the

form (−∞,∞) if and only if w = (−∞,∞) = (α, β).
Thus, we get that w + (−∞,∞) ≺ (−∞,∞) if and only if w = 0, and (ii) follows.
Finally, to see (iii), let v′ = v + (−∞,∞) and write v′ =

∑
i≤k(αi, βi) and w =∑

i≤k wi in such a way that w1 + (−∞,∞) ≺ (α1, β1) and wi ≺ (αi, βi) for i ≥ 2.
From the first inequality and (ii), we have w1 = 0 and (α1, β1) = (−∞,∞). There-

fore, one gets v =
∑

i≥2(αi, βi).
Since ≺ is compatible with addition, we have

w =
∑
i≥1

wi =
∑
i≥2

wi ≺
∑
i≥2

vi = v,

as desired.

Proposition 3.5.4. Let n ∈ N. Then, ≺ is a transitive and antisymmetric relation on
Xn.
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Proof. To show that ≺ is transitive, let w, v, u ∈ Xn be such that w ≺ v ≺ u. By
definition (Paragraph 3.5.2), this means that w =

∑
wi, v =

∑
(αi, βi) =

∑
j vj and

u =
∑

j(γj, δj) such that

wi ≺ (αi, βi) and vj ≺ (γj, δj)

for every i, j.
For each j, let Ij be the (possibly empty) set such that

∑
i∈Ij(αi, βi) = vj. Using

that ≺ is compatible with addition, we get∑
i∈Ij

wi ≺
∑
i∈Ij

(αi, βi) = vj ≺ (γj, δj).

Thus, since w =
∑

j

∑
i∈Ij wi, we have w ≺ u using once again that ≺ is compatible

with addition. This shows that ≺ is transitive.

Now let v, w ∈ Xn, and let m ∈ N be the number of nonzero summands of w.
We will see by induction on m that w ≺ v ≺ w if and only if w = v = m(−∞,∞),
where it is understood that 0(−∞,∞) = 0. In particular, this will show that ≺ is
antisymmetric.

If m = 0 or m = 1, it follows from Lemma 3.5.3 (i)-(ii) that w ≺ v ≺ w if and only
if w = v = 0 or w = v = (−∞,∞). Thus, let m > 1 and assume that for a fixed m we
have proven the result for any v ∈ Xn and any w having m− 1 nonzero summands.

Take w =
∑

i≤m(αi, βi) and v =
∑

j≤k(γj, δj) such that w ≺ v ≺ w, where we assume
that all summands are nonzero. Set i1 = 1 and find j1 such that (αi1 , βi1) ≺ (γj1 , δj1).
This can be done because w ≺ v.

Now let i2 be such that

(αi1 , βi1) ≺ (γj1 , δj1) ≺ (αi2 , βi2),

which exists because v ≺ w.
If i2 = i1, we have

(αi2 , βi2) ≺ (γj1 , δj1) ≺ (αi2 , βi2),

which implies (αi2 , βi2) = (γj1 , δj1) = (−∞,∞). Consequently, we can cancel these
summands from v ≺ w ≺ v by Lemma 3.5.3 (iii) and apply the induction hypothesis to
deduce w = v = m(−∞,∞).

Thus, we may assume i1 6= i2. Proceeding as above, we obtain an ordering i1, . . . , in
of {1, . . . , n} and pairwise different integers j1, . . . , jn such that

(αi1 , βi1) ≺ (γj1 , δj1) ≺ . . . ≺ (αin , βin) ≺ (γjn , δjn).

Since v ≺ w, there exists s ≤ n such that (γjn , δjn) ≺ (αs, βs) and, since i1, . . . , in is
an ordering of {1, . . . , n}, we must have s = jl for some l ≤ n.

This implies
(αil , βil) ≺ (γjl , δjl) ≺ (αil , βil)

and, by the same argument as above, we get w = v = m(−∞,∞), as required.

Proposition 3.5.5. Let n ∈ N. Then, ' is an equivalence relation on Xn compatible
with addition.
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Proof. First note that, by definition (Paragraph 3.5.2), ' is transitive, symmetric and
reflexive. Thus, we only need to check that it is compatible with addition.

First, let w u v with w 6= v, where we may assume that there exist z ∈ Xn and
α ≺ γ ≺ β ≺ δ in Ωn such that

w = z + (α, β) + (γ, δ) and v = z + (α, δ) + (γ, β).

For any w′ ∈ Xn, we have

w + w′ = (z + w′) + (α, β) + (γ, δ) and v + w′ = (z + w′) + (α, δ) + (γ, β),

which shows w+w′ u v +w′. Trivially, if w = v, we also have w+w′ u v +w′ for any
w′.

This implies that, given w u v and w′ u v′, we get

w + w′ u v + w′ u v + v′

and, consequently, w + w′ ' v + v′.
Now let w ' v and w′ ' v′. By definition, there exist elements w1, . . . , wm and

w′1, . . . , w
′
m′ in Xn such that

w u w1 u . . . u wm u v and w′ u w′1 u . . . u w′m′ u v′,

where we may assume that m = m′ because w u w for any w ∈ Xn.
Thus, one gets

w + w′ u w1 + w′1 u . . . u wm + w′m u v + v′,

which implies w + w′ ' v + v′ as desired.

Chainable subsets

We now use the set Xn and the relations ≺,' defined in Paragraph 3.5.2 to introduce
the notion of chainable subsemigroups. This is related to topological chainability and
the chainable Cu-semigroups from Chapter 2.

To introduce such notion, we first need a way to think of Xn as a subset of a
Cu-semigroup. This is achieved using I-morphisms, defined below.

Definition 3.5.6. Let S be a Cu-semigroup and let F : Xn → S be an additive map.
We will say that F is an I-morphism if F (v)� F (w) whenever v ≺ w and F (v) = F (w)
whenever v ' w.

Definition 3.5.7. Let e be a compact element in a Cu-semigroup S, and let n ∈ N. A
subsemigroup H of S containing e is said to be an (n, e)-chainable subset if there exists
an I-morphism F : Xn → S with F (Xn) = H satisfying the following properties:

(i) F ((−∞,∞)) = e;

(ii) F ((α, β)) + F ((β,∞)) ≤ F ((α,∞));
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(iii) For every integer m ≥ 1 there exists an I-morphism F ′ : Xmn → S such that
F ′((mα,mβ)) = F ((α, β)) for every (α, β) ∈ Xn.

Remark 3.5.8. Let S be a Cu-semigroup. Given a Cu-morphism ϕ : S → T and an
(n, e)-chainable subsemigroup H of S, it is readily checked that the subsemigroup ϕ(H)
is an (n, ϕ(e))-chainable subset of T .

Also note that, if S is a weakly cancellative Cu-semigroup and F : Xn → S is an
I-morphism, the inequality

F (0) + F ((−∞,∞)) = F ((−∞,∞))� F ((−∞,∞))

implies, by weak cancellation, that F (0) = 0.

Example 3.5.9. Given any compact element e in a Cu-semigroup S, the additive span
H of e (i.e. the set of finite multiples of e) is (n, e)-chainable for every n. Indeed, let
n ∈ N and define the additive map Fn : Xn → H as Fn((α,∞)) = e and Fn((α, β)) = 0
whenever β 6=∞.

It follows from Lemma 3.5.3 (i) that, if w, v ∈ Xn satisfy w ≺ v, then the number of
summands of the form (α,∞) of w must be less than or equal to that of v. In particular,
this implies that Fn(w)� Fn(v) whenever w ≺ v.

Now let α ≺ γ ≺ β ≺ δ in Ωn. If δ 6=∞ we have

Fn((α, β) + (γ, δ)) = 0 = Fn((α, δ) + (γ, β))

and, if δ =∞, one gets

Fn((α, β) + (γ, δ)) = Fn((α, δ) + (γ, β)).

Using that Fn is additive, this implies Fn(w) = Fn(v) whenever w ' v. Conse-
quently, we have that Fn is an I-morphism.

Properties (i) and (ii) of Definition 3.5.7 follow by construction. To see (iii), let
m ∈ N and consider the I-morphism Fnm : Xnm → H.

Example 3.5.10. For every n ∈ N, let Ln be the additive span of

{0, 1, χ(i/n,j/n), χ(i/n,1], χ[0,j/n)}i,j

in Lsc([0, 1],N). Then, Ln is an (n, 1)-chainable subset of Lsc([0, 1],N).
Let (α, β) ∈ Xn. If α 6= −∞ and β 6= ∞, let (α/n, β/n) denote the correspond-

ing interval in [0, 1]. If α = −∞ but β 6= ∞, (−∞/n, β/n) denotes the interval
[0, β/n). Similarly, if α 6= −∞ and β = ∞, (α/n,∞/n) corresponds to (α/n, 1], while
(−∞/n,∞/n) is the unit interval [0, 1].

Define the additive map Gn : Xn → Ln as Gn((α, β)) = χ(α/n,β/n), which we now
check is an I-morphism.

First, let α ≺ γ ≺ β ≺ δ in Ωn, which implies that

(α/n, β/n) ∪ (γ/n, δ/n) = (α/n, δ/n) ∪ (γ/n, β/n),

(α/n, β/n) ∩ (γ/n, δ/n) = (α/n, δ/n) ∩ (γ/n, β/n).
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Thus, one gets

Gn((α, β) + (γ, δ)) = χ(α/n,β/n) + χ(γ/n,δ/n) = χ(α/n,β/n)∪(γ/n,δ/n) + χ(α/n,β/n)∩(γ/n,δ/n)

= χ(α/n,δ/n)∪(γ/n,β/n) + χ(α/n,δ/n)∩(γ/n,β/n) = χ(α/n,δ/n) + χ(γ/n,β/n)

= Gn((α, δ) + (γ, β)).

Using the additivity of Gn once again, we have Gn(v) = Gn(w) whenever v ' w in
Xn.

Now, given w, (α, β) ∈ Xn such that w ≺ (α, β), we know by definition (see Para-
graph 3.5.2) that w =

∑m
i=1(αi, βi) with

α ≺ α1 ≺ β1 ≺ α2 ≺ . . . ≺ αm ≺ βm ≺ β.

This in turn implies

∪(αi/n, βi/n) b (α/n, β/n) and (αi/n, βi/n) ∩ (αj/n, βj/n) = ∅

for every pair i 6= j.
Consequently, we have

Gn(w) =
m∑
i=1

χ(αi/n,βi/n) � χ(α/n,β/n) = Gn((α, β)),

which implies, using the additivity of Gn and the definition of ≺, that Gn(v)� Gn(w)
whenever v ≺ w.

By definition, one gets Gn((−∞,∞)) = χ[0,1] = 1 and

Gn((α, β)) +Gn((β,∞)) = χ(α/n,β/n) + χ(β/n,∞/n) ≤ χ(α/n,∞/n) = Gn((α,∞)),

which shows that (i) and (ii) in Definition 3.5.7 are satisfies
Further, for every m ≥ 1 we can consider the map Gnm : Xnm → Lnm to check

condition (iii). This implies that Ln is (n, 1)-chainable, as desired.
Moreover, note thatGn is clearly surjective for every n, since every indicator function

in Ln is in the image of Gn.

As we have seen in Example 3.5.10 above, the subsemigroup Ln of Lsc([0, 1],N) is
(n, 1)-chainable. As this chainable subsemigroup will of importance for the remainder
of the chapter, we study its associated I-morphism in detail; see Proposition 3.5.15.

Lemma 3.5.11. Let n ∈ N and f ∈ Ln. Denote by Gn the additive map Xn → Ln
defined as Gn((α, β)) = χ(α/n,β/n). Then, there exists qf ∈ Xn such that w ' qf
whenever Gn(w) = f .

Proof. Given (α, β) and w =
∑m

i=1(αi, βi) in Xn, we define

Λw((α, β)) = |{i ≤ m | α < αi < β < βi}|

and set Λ(w) =
∑

i Λw((αi, βi)).
Claim. For every w ∈ Xn, there exists w′ ' w such that Λ(w′) = 0.
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To prove the claim, note that it is enough to find w′ ' w such that Λ(w′) < Λ(w),
since a repeated application of this fact will give us the desired element.

Thus, write w =
∑m

i=1(αi, βi) with Λw((α1, β1)) maximal. Note that we may assume
Λw((α1, β1)) to be nonzero, since otherwise we set w′ = w.

Let j be such that α1 < αj < β1 < βj. Then, one has

Λw((α1, βj)) + Λw((αj, β1)) ≤ Λw((α1, β1)) + Λw((αj, βj))− 1.

Indeed, let (αi, βi) be such that α1 < αi < βj < βi. If αj < αi < β1 < βi, we have

α1 < αi < β1 < βi and αj < αi < βj < βi.

Else, one gets α1 < αi < β1 < βi or αj < αi < βj < βi.
Similarly, if (αi, βi) satisfies αj < αi < β1 < βi, we have α1 < αi < β1 < βi or

αj < αi < βj < βi. Moreover, note that j is in {i ≤ m | α1 < αi < β1 < βi}, while it is
not in the set corresponding to (α1, βj) nor (αj, β1). This shows the desired inequality.

To finish the proof of the Claim, note that w′ = (α1, βj) + (αj, β1) +
∑

i 6=1,j(αi, βi)
satisfies

w′ ' w and Λ(w′) < Λ(w),

as required.
Now let f ∈ Xn and take v ∈ Xn such thatGn(v) = f . We let qf be the element given

by the Claim applied to v. Since v ' qf and Gn is a I-morphism by Example 3.5.10,
we have f = Gn(qf ).

Write qf =
∑m

i=1(αi, βi). Following the notation from Example 3.5.10, note that
for every pair i, j ≤ m we either have that (αi/n, βi/n) and (αj/n, βj/n) are disjoint,
or that one interval is contained inside the other. This shows that there exist pairwise
disjoint subsets Ik ⊆ {1, . . . ,m} such that

{Gn(w) ≥ k} = ti∈Ik(αi/n, βi/n)

for every k.
Now take w ∈ Xn such that Gn(w) = f , and let w′ be the element given by the

Claim applied to w. Using that Gn(w′) = f = Gn(qf ) and writing w′ =
∑

j(γj, δj), we
know that there exist pairwise disjoint sets Jk such that

tj∈Jk(γj/n, δj/n) = {f ≥ k} = ti∈Ik(αi/n, βi/n),

for every k, which implies that w′ = qf .
Therefore, we get w ' w′ = qf , as desired.

3.5.12 (The subset L0
n of Ln). Following the notation of Lemma 3.5.11 above, note

that we do not always have v ' v′ ≺ w′ ' w in Xn whenever Gn(v)� Gn(w).
For example, let v = (1, 2) + (2, 3) and w = (0, 4) in X4. We have G4(v)� G4(w),

but there are no elements v′, w′ ∈ X4 such that v ' v′ ≺ w′ ' w. Indeed, such elements
would satisfy w′ = w and v′ = v, and it is clear that v is not ≺-below w.

To ammend this, let L0
n be the subset of Ln consisting of the functions f ∈ Ln

such that, for every k ≤ sup(f), the connected components of {f ≥ k} are at pairwise
distance at least 2/n.

Proposition 3.5.15 (iii) below shows that one can find v′, w′ with v ' v′ ≺ w′ ' w
whenever Gn(v)� Gn(w) with Gn(v), Gn(w) in L0

n.
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Recall that, for every ε > 0 and basic element f ∈ Lsc([0, 1],N), Rε(f) denotes its
ε-retraction; see Paragraph 3.1.4.

Lemma 3.5.13. Let n ∈ N and take f ∈ Ln. For every rational ε > 0, there exists
m ∈ N such that Rε(f) ∈ L0

m.

Proof. Write ε = m1/m2 for some integers m1 and m2 > 1, and let m be nm2. It
follows that Rε(f) ∈ Lm.

Further, since {f ≥ k} is a finite disjoint union of open intervals for each k ≤ sup(f),
the ε-retractions of these intervals are at pairwise distance at least 2ε = 2m1n/m ≥
2/m, as desired.

Lemma 3.5.14. Let n ∈ N and let f, g ∈ L0
n be such that f � g. Let Gn be the

I-morphism Xn → Ln defined as Gn((α, β)) = χ(α/n,β/n). Then, there exist elements
v, w ∈ Xn such that v ≺ w, Gn(v) = f and Gn(w) = g.

Proof. Given f, g ∈ L0
n, there exist Ik, Jk finite sets and (αi,k, βi,k), (γj,k, δj,k) elements

of Xn such that

{f ≥ k} = ti∈Ik(αi,k/n, βi,k/n) and {g ≥ k} = tj≤Jk(γj,k/n, δj,k/n)

for every k ≤ max{sup(f), sup(g)}.
Set v =

∑
k

∑
i∈Ik(αi,k, βi,k) and w =

∑
k

∑
j∈Jk(γj,k, δj,k) in Xn, which satisfy

Gn(v) = f and Gn(w) = g by construction.
Since f � g, we know from Proposition 2.2.19 that {f ≥ k} b {g ≥ k} for every k.

Therefore, for every fixed k there exists a partition tj∈JkBj,k = Ik satisfying

ti∈Bj,k(αi,k/n, βi,k/n) b (γj,k/n, δj,k/n)

for each j ∈ Jk.
Thus, there is an ordering i1, . . . , i|Bj,k| of Bj,k such that

γj,k ≺ αi1,k ≺ βi1,k ≤ αi2,k ≺ . . . ≺ βi|Bj,k|−1,k ≤ αi|Bj,k|,k ≺ βi|Bj,k|,k ≺ δj,k.

Using that f is an element in L0
n, one gets

γj,k ≺ αi1,k ≺ βi1,k ≺ αi2,k ≺ . . . ≺ βi|Bj,k|−1,k ≺ αi|Bj,k|,k ≺ βi|Bj,k|,k ≺ δj,k,

since we cannot have βis,k = αis+1,k for any s < |Bj,k|.
By the definition of ≺ in Paragraph 3.5.2, we have∑

i∈Bj,k

(αi,k, βi,k) ≺ (γj,k, δj,k)

and, using that ≺ is compatible with addition by definition, we get

v =
∑
k

∑
i∈Ik

(αi,k, βi,k) =
∑
k

∑
j∈Jk

∑
i∈Bj,k

(αi,k, βi,k) ≺
∑
k

∑
j∈Jk

(γj,k, δj,k) = w,

as desired.
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Proposition 3.5.15. Let n ∈ N, and denote by Gn the I-morphism Xn → Ln defined as
Gn((α, β)) = χ(α/n,β/n). Let f, g ∈ Ln. Then, there exist elements qf , qg ∈ Xn satisfying

(i) Gn(qf ) = f and Gn(qg) = g;

(ii) v′ ' v ' qf if and only if Gn(v′) = Gn(v) = f ;

(iii) assuming f, g ∈ L0
n, v ' qf ≺ qg ' w if and only if Gn(v) = f � g = Gn(w).

Proof. Let qf , qg be the elements given by Lemma 3.5.11 applied to f and g respectively.
It follows that (i) is satisfied. Also note that necessity in (ii) and (iii) follows from the
fact that Gn is an I-morphism; see Example 3.5.10.

Moreover, given v, v′ ∈ Xn such that Gn(v′) = Gn(v) = f , we know that v′ ' qf
and v ' qf . This shows condition (ii).

Finally, to see (iii), apply Lemma 3.5.14 to f � g to obtain v′, w′ such that v′ ≺ w′,
Gn(v′) = f and Gn(w′) = g.

Using the notation from the proof of Lemma 3.5.11 note that, by construction, we
have Λ(v′) = Λ(w′) = 0. Since we also have Λ(qf ) = Λ(qg) = 0, the argument in the
proof of Lemma 3.5.11 shows v′ = qf and w′ = qg.

Condition (iii) now follows from (ii).

Corollary 3.5.16. Given n ∈ N, let Gn be the I-morphism Xn → Ln defined as
Gn((α, β)) = χ(α/n,β/n), and let v '

∑
i(αi, βi) in Xn. Then, for every 0 < ε < 1/2n,

we have Rε(Gn(v)) =
∑

iRε(Gn((αi, βi))).

Proof. Let U, V be intervals of the form (α/n, β/n) for some α, β ∈ Ωn, and take
0 < ε < 1/2n.

A straightforward computation shows that

Rε(U ∪ V ) = Rε(U) ∪Rε(V ) and Rε(U ∩ V ) = Rε(U) ∩Rε(V ).

Thus, given v, (αi, βi) ∈ Xn as in the statement of the corollary, we get

∪|I|=k ∩i∈I Rε((αi/n, βi/n)) = Rε(∪|I|=k ∩i∈I (αi/n, βi/n)) = Rε({Gn(v) ≥ k}),

and, therefore,∑
i

Rε(Gn((αi, βi))) =
∑
i

χRε((αi/n,βi/n)) =
∑
k

χ∪|I|=k∩i∈IRε((αi/n,βi/n))

=
∑
k

χRε({Gn(v)≥k}) = Gn(v),

as desired.

With Proposition 3.5.15 above at hand, we will now prove that (n, e)-chainable sub-
semigroups are deeply related to the Cu-semigroup Lsc([0, 1],N); see Proposition 3.5.18.

Throughout the remainder of this subsection, H will denote an (n, e)-chainable
subsemigroup of a weakly cancellative Cu-semigroup S satisfying (O5). We let F : Xn →
S be the I-morphism associated to H.
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Note that, for any m ≥ 1 and F ′ : Xnm → S satisfying (iii) in Definition 3.5.7 for
F , the sequence (F ′((α,∞)))α∈Ωnm is bounded by e and is �-decreasing. Indeed, F ′ is
an I-morphism and (α,∞) ≺ (α− 1,∞) for every α.

Thus, using the notation from Example 3.5.10, we know by Theorem 3.2.6 that
there exists a Cu-morphism Lsc([0, 1],N) → S mapping χ(α/nm,1] to F ′((α,∞)) for
every α ∈ Ωnm. We fix one such Cu-morphism, which we will denote by ρm.

In particular, we note that (iii) in Definition 3.5.7 implies

ρm(χ(α/n,1]) = ρm(χ(mα/mn,1]) = F ′((mα,∞)) = F ((α,∞))

for every m ≥ 1 and α ∈ Ωn.

Let ε > 0. Recall from Paragraph 3.1.4 that, given any basic indicator function
χU , we denote by Rε(χU) the element χRε(U), where Rε(U) is the ε-retraction of U .
Similarly, we let Nε(χU) denote χNε(U), where Nε(U) is the open ε-neighbourhood of U .

Lemma 3.5.17. Let Gn denote the I-morphism Xn → Ln defined as Gn((α, β)) =
χ(α/n,β/n). Then, for every ε > 0, m ≥ ε−1 and (α, β) ∈ Xn, one has

ρm(Rε(Gn((α, β))))� F ((α, β))� ρm(Nε(Gn((α, β)))).

Proof. Note that, for β =∞, the result follows from the fact that ρm is a Cu-morphism
and that ρm(χ(α/n,1]) = F ((α,∞)). Thus, we assume otherwise.

Using (ii) in Definition 3.5.7 and the observation prior to this lemma, we know that

F ((α, β)) + ρm(χ(β/n,1]) = F ((α, β)) + F ((β,∞)) ≤ F ((α,∞)) = ρm(χ(α/n,1])

and, consequently,

F ((α, β)) + ρm(χ(β/n,1]) ≤ ρm(χ(α/n,1])� ρm(Nε(χ(α/n,1]))

≤ ρm(Nε(Gn((α, β)))) + ρm(χ(β/n,1])

for any ε > 0.
It follows from weak cancellation that F ((α, β)) � ρm(Nε(Gn((α, β)))). Moreover,

since
(mα,mβ) + (mβ − n,∞) ' (mα,∞) + (mβ − n,mβ),

we get

F ((α, β)) + F ′((mβ − n,∞)) = F ′((mα,mβ)) + F ′((mβ − n,∞))

= F ′((mα,∞)) + F ′(mβ − n,mβ)

≥ F ′((mα,∞)) = F ((α,∞)).

Using that ρm is a Cu-morphism at the first step and the above inequality at the
third step, we have

ρm(R1/m(Gn((α, β)))) + ρm(χ(β/n−1/m,1])� ρm(χ(α/n,1]) = F ((α,∞))

≤ F ((α, β)) + ρm(χ(β/n−1/m,1]).

Thus, since ε > 1/m, it follows from weak cancellation that

ρm(Rε(Gn((α, β)))) ≤ ρm(R1/m(Gn((α, β))))� F ((α, β)),

as required.
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Proposition 3.5.18. Let {vi ≺ wi}i=1,...,N be a finite family of ≺-relations in Xn, and
let Gn : Xn → Ln be the I-morphism defined as Gn((α, β)) = χ(α/n,β/n). Take ε < 1/2n
positive, and set fi = Rε(Gn(vi)) and gi = Rε(Gn(wi)) for each i. Then, the pairs fi, gi
satisfy

(i) fi � gi for each i;

(ii) For every sufficiently large m, ρm(fi)� F (vi)� ρm(gi)� F (wi) for each i;

(iii) fi = fj (resp. fi = gj, gi = gj) whenever vi = vj (resp. vi = wj, wi = wj) for
every pair i, j.

Proof. Since vi ≺ wi for each i, we know from Paragraph 3.5.2 that we can write
vi =

∑
j≤M,k≤K(αij,k, β

i
j,k) and wi =

∑
j≤M ′(α

i
j, β

i
j) in such a way that

αij ≺ αij,1 ≺ βij,1 ≺ . . . ≺ βij,K ≺ βij

for every j, that is to say
∑

k(α
i
j,k, β

i
j,k) ≺ (αij, β

i
j) for each j. Here, it is understood

that K depends on both i and j, and that M,M ′ depend on i.
Thus, since Gn is an I-morphism, we have∑

k

Gn((αij,k, β
i
j,k))� Gn((αij, β

i
j))

for every i, j.
Now let ε < 1/2n positive, and note that, for every α ≺ α′ ≺ β′ ≺ β in Ωn, we have

(α′/n− ε, β′/n+ ε) b (α/n+ ε, β/n− ε) in [0, 1]. Thus, we have∑
k

Gn((αij,k, β
i
j,k))�

∑
k

Nε(Gn((αij,k, β
i
j,k)))� Rε(Gn((αij, β

i
j)))

for each pair i, j.
Now let m > 2n. Then, using Lemma 3.5.17 at the first, second, and last step, and

that ρm is a Cu-morphism at the third step, we get∑
k

ρm(Rε(Gn((αij,k, β
i
j,k))))�

∑
k

F ((αij,k, β
i
j,k))�

∑
k

ρm(Nε(Gn((αij,k, β
i
j,k))))

� ρm(Rε(Gn((αij, β
i
j))))� F ((αij, β

i
j)).

Adding on j, and using Corollary 3.5.16 at the first and fourth steps, we have

ρm(fi) =
∑
j,k

ρm(Rε(Gn((αij,k, β
i
j,k))))� F (vi)

� ρm(gi) =
∑
j

ρm(Rε(Gn((αij, β
i
j))))� F (wi),

which is condition (ii).
By the comments above, we also have∑

k

Rε(Gn((αij,k, β
i
j,k)))�

∑
k

Gn((αij,k, β
i
j,k))� Rε(Gn((αij, β

i
j))),

which implies condition (i) in the same fashion.
Condition (iii) follows by construction, since we have applied the same retraction to

all the elements.
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Properties I0 and I

In this last subsection we introduce property I (Definition 3.5.29), which may be seen as
a generalization of the properties of weak chainability and being Lsc-like introduced in
Chapter 2. In this sense, and understanding the property of being compactly bounded
(Definition 3.4.3) as a weakening of having a compact order unit, Theorem 3.5.34 below
is a direct generalization of the abstract characterization for the Cuntz semigroup of
unital commutative AI-algebras obtained in Theorem 2.5.12.

3.5.19 (Sequences on Ωm). Let m ∈ N. Given a sequence (zα)α∈Ωm in a Cu-semigroup
S, we will say that the sequence is �-decreasing if z∞ = 0 and zα � zβ whenever
β ≺ α. In particular, note that z−∞ � z−∞.

Similarly, a sequence (vα)α∈Ωm in Xn will be said to be ≺-decreasing if v∞ = 0 and
vα ≺ vβ whenever β ≺ α.

Property I0

We begin by introducing property I0 and its reduced version. Even though these two
notions will not be used in Theorem 3.5.34, they ilustrate the main ideas of its proof.

By a multiset we mean a collection of elements that allows multiple instances of
each element. For example, {0, 0, 1} is a multiset in N.

Definition 3.5.20. We say that a Cu-semigroup S has the reduced I0 property if, for
any m ∈ N, any �-decreasing sequence (zα)α∈Ωm , and finite multisets A,B of Ωm such
that

∑
α∈A zα �

∑
β∈B zβ, there exists a chainable subsemigroupH of S with associated

I-morphism F : Xn → S such that

(i) There exists a ≺-decreasing sequence (vα)α∈Ωm in Xn satisfying

F (vα)� zα � F (vβ)

for every β ≺ α;

(ii) There exist v, w ∈ Xn such that
∑

α∈A vα ' v ≺ w '
∑

β∈B vβ.

Remark 3.5.21. Note that condition (i) in Definition 3.5.20 above is shorthand nota-
tion for

0 = z∞ � F (v∞)� zm � F (vm)� zm−1 � . . .� F (v0)� z0 � F (v−∞) = z−∞

with F (v−∞) = z−∞ compact.

Recall that we denote by Bm the additive span of the set {1} ∪ {χ(i/m,1]}i in
Lsc([0, 1],N). With the notation of Example 3.5.10, we can see Bm as the additive
span of {χ(α/m,1]}α∈Ωm .

Proposition 3.5.22. Let S be a weakly cancellative Cu-semigroup satisfying (O5) and
the reduced I0 property, and let ϕ : Lsc([0, 1],N) → S be a Cu-morphism. Then, for
every m ∈ N and x, x′, y ∈ Bm with x � x′ and ϕ(x′) � ϕ(y), there exist Cu-mor-
phisms θ : Lsc([0, 1],N)→ Lsc([0, 1],N) and φ : Lsc([0, 1],N)→ S such that
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(i) for every i ≤ m,

ϕ
(
χ( i

m
+ 1
m
,1]

)
� φθ

(
χ( i

m
,1]

)
and φθ

(
χ( i

m
+ 1
m
,1]

)
� ϕ

(
χ( i

m
,1]

)
;

(ii) θ(x)� θ(y);

(iii) ϕ(1) = φθ(1).

Proof. Let x, x′, y be as in the statement. Since x′, y ∈ Bm, there exist multisets A,B
of Ωm such that x′ =

∑
α∈A χ(α/m,1] and y =

∑
β∈B χ(β/m,1].

Set zα = ϕ(χ(α/2m,1]) for every α ∈ Ω2m, where note that (zα)α is �-decreasing.
Moreover, we have ∑

α∈A

z2α = ϕ(x′)� ϕ(y) =
∑
β∈B

z2β

By the reduced I0 property, there is a chainable subsemigroup H with associated I-
morphism F : Xn → S such that there exists a sequence (vα)α∈Ω2m in Xn and v, w ∈ Xn

satisfying (i)-(iii) in Definition 3.5.20.
In particular, we have

ϕ(χ(i/m,1]) = z2i � F (v2i−1)� F (v2(i−1))� z2(i−1) = ϕ(χ((i−1)/m,1])

for every 1 ≤ i ≤ m.
Consider the finite family of ≺-relations

{vα ≺ vα−1}α≥1 ∪ {v0 ≺ v−∞} ∪ {v−∞ ≺ v−∞} ∪ {v ≺ w}.

Let Gn : Xn → Ln be the I-morphism defined as Gn((α, β)) = χ(α/n,β/n), and take
ε < 1/2n. Then, we know by Proposition 3.5.18 that there exists a large enough N ∈ N
such that the functions fα = Rε(Gn(vα)), f = Rε(Gn(v)) and g = Rε(Gn(w)) satisfy

fα � fα−1 � f−∞, f � g,

ρN(fα)� F (vα)� ρN(fα−1)� F (vα−1),

ρN(f−∞) = F (v−∞),

ρN(f)� F (v)� ρN(g)� F (w)

for every α ≥ 1, where recall that ρN is the Cu-morphism defined prior to Lemma 3.5.17.
Note, in particular, that f−∞ is compact because v−∞ ≺ v−∞.

Furthermore, since
∑

α∈A v2α ' v, it follows from Corollary 3.5.16 that

f = Rε(Gn(v)) =
∑
α∈A

Rε(Gn(v2α)) =
∑
α∈A

f2α,

and, similarly, that g =
∑

β∈B f2β.
Now note that the sequence (f2α)α∈Ωm is �-decreasing and bounded by the com-

pact f−∞. Thus, we know from Theorem 3.2.6 that there exists a Cu-morphism
θ : Lsc([0, 1],N) → Lsc([0, 1],N) satisfying θ(1) = f−∞ and θ(χ(i/m,1]) = f2i for every
0 ≤ i ≤ m.
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By construction, we get

θ(x)� θ(x′) =
∑
α∈A

f2α = f � g =
∑
β∈B

f2β = θ(y),

which is condition (ii).
Set φ = ρN . Then, we have φθ(1) = ρN(f−∞) = F (v−∞) = z−∞ = ϕ(1), which is

condition (iii).
Further, one also has

ϕ(χ(i/m,1])� F (v2i−1)� ρm(f2(i−1)) = φ(θ(χ((i−1)/m,1]))

� F (v2(i−1))� ϕ(χ((i−1)/m,1]),

for every 1 ≤ i ≤ m, which implies condition (i) in the proposition.

We now strengthen the previous property.

Definition 3.5.23. A Cu-semigroup S is said to satisfy property I0 if, for anym,M ∈ N,
any�-decreasing sequences (zα,j)α∈Ωm for j ≤M , and finite multisets A,B of Ωm such
that

∑
α∈A,j≤M zα,j �

∑
β∈B,j≤M zβ,j, there is a chainable subsemigroup H of S with

associated I-morphism F : Xn → S such that

(i) For each j ≤M , there exists a ≺-decreasing sequence (vα,j)α∈Ωm in Xn satisfying

F (vα,j)� zα,j � F (vβ,j)

for every j and β ≺ α;

(ii) There exist v, w ∈ Xn such that
∑

α∈A,j≤M vα,j ' v ≺ w '
∑

β∈B,j≤M vβ,j.

Lemma 3.5.24. Property I0 passes to inductive limits.

Proof. Let S = limk Sk be an inductive limit of Cu-semigroups Sm satisfying property
I0, and let (zα,j)α∈Ωm , A and B be as in Definition 3.5.23. Given f ∈ Sk, we will denote
by [f ] the image of f through the limit morphism from Sk to S.

There exists a large enough k and elements xα,j, yα,j ∈ Sk such that

xα,j � yα,j � xβ,j,
∑
α∈A,j

yα,j �
∑
β∈B,j

yβ,j

in Sk, and

zα,j � [xβ,j]� [yβ,j]� zβ,j,
∑
α∈A,j

zα,j �
∑
β∈B,j

[yβ,j]�
∑
β∈B,j

zβ,j

for every β ≺ α in Ωm and j ≤M .
Since Sk satisfies property I0, we can find a chainable subset H with associated

I-morphism F : Xn → Sk such that:
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(i) There exist ≺-decreasing sequences

v∞,j ≺ w∞,j ≺ vm,j ≺ . . . ≺ v−∞,j = w−∞,j ≺ w−∞,j

in Xn such that
xα,j � F (vα,j)� yα,j � F (wα,j)� xβ,j

in Sm for every β ≺ α and j;

(ii) There exist v, w ∈ Xn such that
∑

α∈A,j≤M vα,j ' v ≺ w '
∑

β∈B,j≤M vβ,j.

Therefore, one gets zα,j � [F (vβ,j)]� zβ,j for every j and β ≺ α.
By Remark 3.5.8, [H] is a chainable subsemigroup of S, and it satisfies the required

properties by the previous considerations.

Example 3.5.25. Let S be an inductive limit of the form S = limm Sm , with Sm = N
for every m. Then S satisfies property I0.

To prove this, we know from Lemma 3.5.24 that it is enough to see that N satisfies
property I0.

Thus, let (zα,j)α∈Ωm , A and B be as in Definition 3.5.23. Since zα,j belongs to N�
for every α, j, it follows that zα,j ∈ N.

Set H = N, which is the additive span of 1. Then, it follows from Example 3.5.9
that H is (n, 1)-chainable for every n. Take n = 1 and let F : X1 → H be as in
Example 3.5.9.

Set vα,j = zα,j(−∞,∞), whose image through F is zα,j. This implies condition (i)
in Definition 3.5.23.

Also, since
∑

α∈A,j≤M zα,j �
∑

β∈B,j≤M zβ,j, we clearly have∑
α∈A,j≤M

zα,j(−∞,∞) ≺
∑

β∈B,j≤M

zβ,j(−∞,∞).

Letting v =
∑

α∈A,j≤M vα,j and w =
∑

β∈B,j≤M vβ,j, condition (ii) also follows.

Example 3.5.26. Every Cu-semigroup S of the form S = limm Sm, with Sm =
Lsc([0, 1],N) for every m, satisfies property I0.

Indeed, we first note that, as in Example 3.5.25 above, it is enough to prove that
Lsc([0, 1],N) satisfies property I0. Thus, take (zα,j)α∈Ωm , A and B as in Definition 3.5.23,
and let Ln be the subsets of Lsc([0, 1],N) defined in Example 3.5.10.

Since ∪nLn is dense in Lsc([0, 1],N), there exist n′ ∈ N and�-decreasing sequences
(fα,j)α∈Ωm in Ln′ such that zα,j � fβ,j � zβ,j for every β ≺ α and∑

α∈A,j≤M

fα,j �
∑

β∈B,j≤M

fβ,j.

Take a small enough positive rational ε < 1/2n′ such that

zα,j � Rε(fβ,j)� zβ,j

for each β ≺ α and∑
α∈A,j

Rε(fα,j) = Rε

(∑
α∈A,j

fα,j

)
� Rε

(∑
β∈B,j

fβ,j

)
=
∑
β∈B,j

Rε(fβ,j),
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where the equalities follow from Corollary 3.5.16 since each fα,j is in the image of the
I-morphism associated to Ln′ .

Define gα,j = Rε(fα,j) and note that, by Lemma 3.5.13, there exists some n ∈ N
such that gα,j ∈ L0

n for each α, j.
Now recall from Example 3.5.10 that Ln is (n, 1)-chainable with an associated I-

morphism Gn : Xn → Ln induced by Gn((α, β)) = χ(α/n,β/n).
Set gA =

∑
α∈A,j gα,j and gB =

∑
β∈B,j gβ,j, so that gA � gB. Let qgα,j , qgA and qgB

be the elements in Xn given by Proposition 3.5.15.
Note that, by Proposition 3.5.15, (qgα,j)α is ≺-decreasing for every j and that, ad-

ditionally, we have
zα,j � Gn(qgβ,j)� zβ,j

for every β ≺ α in Ωm and, since Gn(
∑

α∈A,j qgα,j) = gA and Gn(
∑

β∈B,j qgβ,j) = gB, we
also get ∑

α∈A,j

qgα,j ' qgA ≺ qgB '
∑
β∈B,j

qgβ,j

which are conditions (i) and (ii) in Definition 3.5.23, as desired.

Example 3.5.27. The Cu-semigroup Lsc([0, 1],N)⊕Lsc([0, 1],N) does not satisfy prop-
erty I0. Indeed, consider the sequences (0, 0) � (1, 0) � (1, 0) and (0, 0) � (0, 1) �
(0, 1) indexed in Ω0 = {−∞, 0,∞}. Set A = B = ∅.

If Lsc([0, 1],N)⊕Lsc([0, 1],N) were to satisfy property I0, we could find in particular
elements v−∞,1 and v−∞,2 in X0 such that

v−∞,1 ≺ v−∞,1, v−∞,2 ≺ v−∞,2, (1, 0) = F (v−∞,1) and (0, 1) = F (v−∞,2)

for some I-morphism F .
Thus, setting e = F (−∞,∞), and using that v−∞,1 = k1(−∞,∞) and v−∞,2 =

k2(−∞,∞) for some k1, k2 ∈ N, we see that e is a compact element satisfying (1, 0) =
k1e and (0, 1) = k2e. Clearly, this is not possible.

Note that the same argument works for N⊕ N.

Theorem 3.5.28. Let S be a Cu-semigroup. Then, S is Cu-isomorphic to an inductive
limit of the form lim Lsc([0, 1],N) if and only if S is countably based, weakly cancellative,
compactly bounded (see Definition 3.4.3) and it satisfies (O5), (O6), and property I0.

Proof. The proof of one implication is analogous to the proof of Proposition 3.5.22, so
we omit it.

The other implication is Example 3.5.26 above, together with the well known fact
that (O5), (O6), weak cancellation and being countably based pass to inductive limits
(see, for example, [6, Chapter 4]). Since it is clear that being compactly bounded also
passes to inductive limits, the result follows.

Property I

Definition 3.5.29. We say that a Cu-semigroup S satisfies property I if, for anym,M ∈
N, �-decreasing sequences (zα,j)α∈Ωm for j ≤ M , and finite multisets A,B of Ωm such
that

∑
α∈A,j≤M zα,j �

∑
β∈B,j≤M zβ,j, there exist finitely many chainable subsemigroups

Hk of S with associated I-morphisms Fk : Xnk → S such that
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(i) For each j ≤M , there exists a ≺-decreasing sequence (vkα,j)α∈Ωm in Xnk satisfying∑
k

Fk(v
k
α,j)� zα,j �

∑
k

Fk(v
k
β,j)

for every j and β ≺ α;

(ii) For each k, there exist vk, wk ∈ Xnk such that∑
α∈A,j

vkα,j ' vk ≺ wk '
∑
β∈B,j

vkβ,j.

Remark 3.5.30. Note that a Cu-semigroup satisfying property I0 will also satisfy
property I.

Lemma 3.5.31. Property I passes to inductive limits.

Proof. Following the proof of Lemma 3.5.24, let S = limSt with St Cu-semigroups
satisfying property I. Take (zα,j)α∈Ωm for j ≤ M , and multisets A,B of Ωm as in
Definition 3.5.29.

Then, for a large enough t, there exist elements xα,j, yα,j ∈ St such that

xα,j � yα,j � xβ,j,
∑
α∈A,j

yα,j �
∑
β∈B,j

yβ,j

in St, and

zα,j � [xβ,j]� [yβ,j]� zβ,j,
∑
α∈A,j

zα,j �
∑
β∈B,j

[yβ,j]�
∑
β∈B,j

zβ,j

for each pair β ≺ α in Ωm and j ≤M .
Since St satisfies property I, we can find a chainable subsets Hk with I-morphism

Fk : Xnk → St such that

(i) There exist ≺-decreasing sequences

vk∞,j ≺ wk∞,j ≺ vkm,j ≺ . . . ≺ vk−∞,j = wk−∞,j ≺ wk−∞,j

in Xnk such that

xα,j �
∑
k

Fk(v
k
α,j)� yα,j �

∑
k

Fk(w
k
α,j)� xβ,j

in St for every β ≺ α and j;

(ii) There exist vk, wk ∈ Xnk such that
∑

α∈A,j v
k
α,j ' v ≺ w '

∑
β∈B,j v

k
β,j.

One can now check that the subsemigroups [Hk] and the elements vkα,j satisfy the
desired properties for our original pair of multisets and sequences.

Recall that [Hk] is a chainable subsemigroup of S by Remark 3.5.8.
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Recall from Example 3.5.27 that property I0 is not preserved under direct sums.
Lemma 3.5.32 below exemplifies one of the main differences between property I0 and
property I, since the latter is preserved under such sums.

Lemma 3.5.32. Let S, T be Cu-semigroups satisfying property I. Then, S⊕T satisfies
property I.

Proof. As before, let (zα,j)α∈Ωm be �-decreasing in S ⊕ T for j ≤ M , and let A,B be
multisets of Ωm as in Definition 3.5.29.

Let (xα,j)α∈Ωm in S and (yα,j)α∈Ωm in T be such that zα,j = (xα,j, yα,j) for every α, j.
Note that, since (zα,j)α∈Ωm is �-decreasing, (xα,j)α∈Ωm and (yα,j)α∈Ωm are as well.

Using that both S and T satisfy property I, we obtain chainable subsemigroups Hk

of S and Tl of T , and ≺-decreasing sequences (vkα,j)α∈Ωm in Xnk and (wkα,j)α∈Ωm in Xnl

satisfying the required properties for (xα,j)α∈Ωm and (yα,j)α∈Ωm respectively.
Since Hk ⊕ 0 and 0⊕ Tl are chainable subsemigroups of S ⊕ T , it is readily checked

that such subsemigroups together with the sequences (vkα,j)α∈Ωm and (wkα,j)α∈Ωm satisfy
the required properties for (zα,j)α∈Ωm , as desired.

Example 3.5.33. By a combination of Lemma 3.5.31, Lemma 3.5.32, Remark 3.5.30
and Examples 3.5.25 and 3.5.26, we obtain the following examples:

1. Let S be the Cuntz semigroup of an AF-algebra. Then S satisfies property I.

2. The Cuntz semigroup of an AI-algebra satisfies property I.

Theorem 3.5.34. Let S be a Cu-semigroup. Then, S is Cu-isomorphic to the Cuntz
semigroup of an AI-algebra if and only if S is countably based, weakly cancellative,
compactly bounded, and satisfies (O5), (O6), and property I.

Proof. If S is Cu-isomorphic to the Cuntz semigroup of an AI-algebra, then it is well
known that S is countably based, weakly cancellative, compactly bounded and satisfies
(O5) and (O6). That S satisfies property I follows from Example 3.5.33 above.

Conversely, assume that S is a countably based, weakly cancellative, compactly
bounded Cu-semigroup that satisfies (O5), (O6), and property I. By Theorem 3.4.8,
we know that it is enough to prove that, for every Cu-morphism ϕ : Lsc([0, 1],N)r → S,
n ∈ N and triple x, x′, y ∈ Br

m such that x � x′ with ϕ(x′) � ϕ(y), there exist a
natural number s and Cu-morphisms

θ : Lsc([0, 1],N)r → Lsc([0, 1],N)s and φ : Lsc([0, 1],N)s → S

such that the following properties are satisfied

(i) for every i ≤ m and j ≤ r, we have

ϕιj

(
χ( i

m
+ 1
m
,1]

)
� φθιj

(
χ( i

m
,1]

)
and φθιj

(
χ( i

m
+ 1
m
,1]

)
� ϕιj

(
χ( i

m
,1]

)
,

where ιj denotes the canonical inclusion from Lsc([0, 1],N) to the j-th component
of Lsc([0, 1],N)r;

(ii) θ(x)� θ(y);
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(iii) ϕ(1j) = φθ(1j) for every 1 ≤ j ≤ r.

To see this, we generalize the proof of Proposition 3.5.22. Thus, using the notation
from Example 3.5.10, we define zα,j = ϕιj(χ(α/2m,1]) for every α ∈ Ω2m and j ≤ r.

We also let A,B be the multisets in Ωm such that

x′ =
∑

α∈A,j≤r

ιj(χ(α/m,1]) and y =
∑

β∈B,j≤r

ιj(χ(β/m,1]),

which implies that
∑

α∈A,j z2α,j �
∑

β∈B,j z2β,j.
Since (zα,j)α∈Ω2m is �-decreasing for every j, we can apply property I to such

sequences and the multisets A,B. Thus, we get chainable subsemigroups Hk with
associated I-morphisms Fk : Xnk → S and ≺-decreasing sequences (vkα,j)α∈Ωm in Xnk

satisfying (i)-(iii) in Definition 3.5.29.
In particular, we note that

ϕιj(χ(i/m,1]) = z2i,j �
∑
k

Fk(v
k
2i−1,j)�

∑
k

Fk(v
k
2(i−1),j)� z2(i−1),j = ϕιj(χ((i−1)/m,1])

for every 1 ≤ i ≤ m.
Consider, for every k, the family of ≺-relations

{vkα,j ≺ vkα−1,j}α≥1,j ∪ {vk0,j ≺ vk−∞,j}j ∪ {vk−∞,j ≺ vk−∞,j}j ∪ {vk ≺ wk}.

As in Proposition 3.5.22, we obtain an integer Nk and elements fkα,j, fk and gk in
Lsc([0, 1],N) such that

fkα,j � fkα−1,j � fk−∞,j, fk � gk,

ρNk(f
k
α,j)� Fk(v

k
α,j)� ρNk(f

k
α−1,j)� Fk(v

k
α−1,j),

ρNk(f
k
−∞,j) = Fk(v

k
−∞,j),

ρNk(fk)� Fk(vk)� ρNk(gk)� Fk(wk)

for every α ≥ 1. Recall that ρNk is the Cu-morphism defined prior to Lemma 3.5.17.
We also note that fk−∞,j is compact.

Moreover, following the proof Proposition 3.5.22, we also have∑
α∈A,j

fk2α,j = fk � gk =
∑
β∈B,j

fk2β,j.

We define φ = ⊕kρNk : Lsc([0, 1],N)s → S, and set fα,j =
∑

k ιk(f
k
α,j).

Note that fα,s � fα−1,s � f−∞,j for each pair α, j. For each j ≤ r, we let
θj : Lsc([0, 1],N) → Lsc([0, 1],N)s be a Cu-morphism sending χ(α/m,1] to f2α,j for each
α. Recall that such morphism exists by Theorem 3.2.6.

We define θ = ⊕jθj : Lsc([0, 1],N)r → Lsc([0, 1],N)s. For every j ≤ r, we get

φθ(1j) = φ(f−∞,j) =
∑
k

ρNk(f
k
−∞,j) =

∑
k

Fk(v
k
−∞,j) = z−∞,j = ϕ(1),

which is property (iii).
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Further, we also have

ϕιj(χ(i/m,1])�
∑
k

Fk(v
k
2i−1,j)�

∑
k

ρNk(f
k
2(i−1),j)

= φθ(χ((i−1)/m,1])�
∑
k

Fk(v
k
2(i−1),j)� ϕιj(χ((i−1)/m,1])

for every 1 ≤ i ≤ m. This proves property (i).
Finally, we have

θ(x)� θ(x′) =
∑
α∈A,j

f2α,j =
∑
k

fk �
∑
k

gk =
∑
β∈B,j

f2β,j = θ(y),

as desired.

During our investigations on the covering dimension of Cuntz semigroups (as defined
in Chapter 4 below), in Chapter 5 we introduce a notion of approximation for Cu-sem-
igroups. Using such a notion and Theorem 3.5.34 above, one can prove Theorem 3.5.35
below; see Theorem 5.1.16 for the proof.

Theorem 3.5.35. Let S be a countably based Cu-semigroup. Then, S is Cu-isomorphic
to the Cuntz semigroup of an AI-algebra if and only if S is approximated by the family
{Lsc([0, 1],N)n}n.





Chapter 4

Covering dimension of Cuntz
semigroups

We introduce a notion of covering dimension for Cuntz semigroups and, more generally,
for Cu-semigroups. The main permanence properties are studied in Section 4.1, where
amongst other results we prove that purely infinite C∗-algebras have zero-dimensional
Cuntz semigroups, and that the dimension of the Cuntz semigroup of any Z-stable
C∗-algebra is at most one; see Proposition 4.1.24.

A connection between the dimension of the Cuntz semigroup of a C∗-algebra and
the nuclear dimension is presented in Section 4.2. We also show in Section 4.3 that
the Cuntz semigroup of a real rank zero C∗-algebra is zero-dimensional and that, in
the stable rank one case, these two notions coincide. Moreover, we prove that the
Cuntz semigroup of a simple, Z-stable C∗-algebra is zero-dimensional if and only if the
C∗-algebra is of real rank zero or is stably projectionless.

Finally, we study in Sections 4.4 and 4.5 when a simple, soft Cu-semigroup is zero-
dimensional.

The results of this chapter have been published in [94]. We also provide additional
remarks and comments that were not provided in [94].

Some of the results in this chapter will be generalized in Chapter 5.

4.1 Dimension of Cuntz semigroups

In this first section we define a notion of covering dimension for Cu-semigroups inspired
by Theorem 2.4.8; see Definition 4.1.1. We prove that this notion satisfies the expected
permanence properties (Proposition 4.1.10), and provide a number of examples where
the dimension can be computed; see, for example, Example 4.1.3 and Example 4.1.22.

Further, we introduce the notion of retracts (Definition 4.1.15) for Cu-semigroups,
and use it to unearth a relation between the dimension of a simple Cu-semigroup and
its soft part; see Proposition 4.1.20. We finish the section by studying how the di-
mension behaves in the presence of a semimodule structure. We then apply the result
to the Cuntz semigroups of purely infinite, W-stable and Z-stable C∗-algebras; see
Proposition 4.1.24.
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Definition 4.1.1. Let S be a Cu-semigroup. Given n ∈ N, we write dim(S) ≤ n if,
whenever x′ � x � y1 + . . . + yr in S, then there exist zj,k ∈ S for j = 1, . . . , r and
k = 0, . . . , n such that

(i) zj,k � yj for each j and k;

(ii) x′ �
∑

j,k zj,k;

(iii)
∑r

j=1 zj,k � x for each k = 0, . . . , n.

We set dim(S) = ∞ if there exists no n ∈ N with dim(S) ≤ n. Otherwise, we let
dim(S) be the smallest n ∈ N such that dim(S) ≤ n. We call dim(S) the (covering)
dimension of S.

We note that, in Definition 4.1.1 above, some of the�-relations may be changed to
≤.

Lemma 4.1.2. Let S be a Cu-semigroup and let n ∈ N. Then, dim(S) ≤ n if and only
if, whenever x′ � x � y1 + . . . + yr in S, there exist zj,k ∈ S for j = 1, . . . , r and
k = 0, . . . , n such that:

(i) zj,k ≤ yj for each j and k;

(ii) x′ ≤
∑

j,k zj,k;

(iii)
∑r

j=1 zj,k ≤ x for each k = 0, . . . , n.

Proof. The forward implication is straightforward, so we are left to prove the converse.
Thus, let x′ � x � y1 + . . . + yr in S. Choose elements s′, s, y′1, . . . , y′r ∈ S such

that y′j � yj for each j and

x′ � s′ � s� x� y′1 + . . .+ y′r.

Applying the assumption, we obtain elements zj,k satisfying properties (i)-(iii) in
the statement for s′ � s� y′1 + . . .+ y′r.

One can verify that such elements satisfy (i)-(iii) in Definition 4.1.1 for x′ � x �
y1 + . . .+ yr, thus showing that dim(S) ≤ n, as desired.

Example 4.1.3. Let X be a compact, metric space. It follows from Theorem 2.4.8
that

dim(Lsc(X,N)) = dim(X),

which justifies our terminology of covering dimension for a Cu-semigroup.
As noted in Corollary 4.2.8, this equality will also follow from some more general

results developed in Section 4.2.

Recall the definition of ideal and quotient of a Cu-semigroup from Paragraph 1.2.12.

Proposition 4.1.4. Let S be a Cu-semigroup, and let I ⊆ S be an ideal. Then,

dim(I), dim(S/I) ≤ dim(S).



4.1. Dimension of Cuntz semigroups 103

Proof. Set n := dim(S), which we may assume to be finite, since otherwise there is
nothing to prove. Using that every ideal of a Cu-semigroup is, by definition, downward-
hereditary, one can easily check that dim(I) ≤ n.

To verify dim(S/I) ≤ n, let π : S → S/I denote the quotient map, and take elements
x′, x, y1, . . . , yr ∈ S such that

π(x′)� π(x)� π(y1) + . . .+ π(yr).

Then, there exists yr+1 ∈ I such that x ≤ y1 + . . .+ yr + yr+1 in S. Using that the
quotient map S → S/I preserves suprema of increasing sequences, there exist elements
s′, s ∈ S such that

s′ � s� x and π(x′) ≤ π(s′).

Applying the definition of dim(S) ≤ n to s′ � s � y1 + . . . + yr + yr+1, we obtain
elements zj,k ∈ S for j = 1, . . . , r+ 1 and k = 0, . . . , n such that zj,k � yj for every j, k,
such that s′ �

∑
j,k zj,k, and such that

∑
j zj,k � s for every k.

Since yr+1 ∈ I, we have zr+1,k ∈ I and thus π(zr+1,k) = 0 in S/I for each k. Using
that π is�-preserving, we see that the elements π(zj,k) have the desired properties.

Problem 4.1.5. Given a Cu-semigroup S and an ideal I ⊆ S, does there exist a bound
of dim(S) in terms of dim(I) and dim(S/I)? In particular, do we always have dim(S) ≤
dim(I)+dim(S/I)+1? (as in the case of nuclear dimension; see Paragraph 4.2.1 below).

In fact, it is not known whether dim(Cu(Ã)) ≤ dim(Cu(A))+1 for every C∗-algebra
A. We do have, however, examples where dim(Cu(Ã)) 6= dim(Cu(A)); see, for example,
Example 5.4.5 and the discussion in Question 5.4.6.

Given two Cu-semigroups S and T , we can consider their direct sum S ⊕ T as
defined in Paragraph 1.2.9. We provide a proof for Proposition 4.1.6 below, which was
ommitted in [94, Propositon 3.7].

Proposition 4.1.6. Let S and T be Cu-semigroups. Then

dim(S ⊕ T ) = max{dim(S), dim(T )}.

Proof. Note that S and T can be seen as ideals of S ⊕ T , so it follows that

max{dim(S), dim(T )} ≤ dim(S ⊕ T )

Conversely, let n = dim(S) andm = dim(T ), which we may assume to be finite since
otherwise there is nothing to prove. Also, we may assume without loss of generality
that n ≥ m.

Take x′ � x � y1 + . . . + yr in S ⊕ T , and let π1, π2 denote the projections from
S ⊕ T to S and T respectively.

Then, since πi(x′)� πi(x)� πi(y1) + . . . + πi(yr) for i = 1, 2, there exist elements
vj,k ∈ S and wj,t ∈ T for j = 1, . . . , r, k = 0, . . . , n and t = 0, . . . ,m satisfying conditions
(i)-(iii) in Definition 4.1.1.

For each k > m, set wj,k = 0 and define zj,k = (vj,k, wj,k) for every j and k ≤ n.
One can now check that the elements zj,k ∈ S ⊕ T satisfy the desired conditions.

Lemma 4.1.8 below provides a useful characterization for inductive limits in Cu. In
order to prove it, we first recall the definition of W , a category closely related to Cu.



104 Chapter 4. Covering dimension of Cuntz semigroups

4.1.7 (W-semigroups and W-morphisms). It follows from [8, Theorem 2.9] that Cu is
a full, reflective subcategory of W, an abstract category defined in [8, Definition 2.5].
Thus, inductive limits in Cu can be obtained by applying the reflection functor W→ Cu
to the inductive limits in W. We briefly recall the definition of this category:

Let S be a commutative monoid together with a transitive, binary relation ≺, and
denote by z≺ the set {z′ | z′ ≺ z} for every z ∈ S. We say that S is a W-semigroup if:
0 ≺ x for every x ∈ S; for every x ∈ S there is a ≺-increasing, ≺-cofinal sequence in x≺;
and, for every x, y ∈ S, we have that x≺ + y≺ is contained and ≺-cofinal in (x+ y)≺.

A map ϕ : S → T between W-semigroups is said to be a W-morphism if ϕ is a
≺-preserving monoid morphism such that for every x ∈ S the set ϕ(x≺) ⊆ ϕ(x)≺ is
≺-cofinal.

The category W is defined as the category of W-semigroups and W-morphisms.
Since every Cu-semigroup paired with � is a W-semigroup, we obtain an inclusion
Cu→W.

Given an inductive system ((Sλ)λ∈Λ, (ϕµ,λ)λ≤µ in Λ) in Cu, its inductive limit in W
is constructed as follows:

Consider the equivalence relation ∼ on the disjoint union
⊔
λ Sλ given by xλ ∼ xµ

if there exists ν ≥ λ, µ such that ϕν,λ(xλ) = ϕν,µ(xµ). We denote by Salg the set of
equivalence classes, which is the set-theoretic inductive limit of the system. We write
[xλ] for the equivalence class of xλ ∈ Sλ.

Further, given xλ ∈ Sλ and xµ ∈ Sµ, we set

[xλ] + [xµ] := [ϕν,λ(xλ) + ϕν,µ(xµ)]

in Salg for any ν ≥ λ, µ.
We also write [xλ] ≺ [xµ] if there exists ν ≥ λ, µ such that ϕν,λ(xλ) � ϕν,µ(xµ) in

Sν . This gives Salg the structure of a W-semigroup, which together with the natural
maps Sλ → Salg, xλ 7→ [xλ], is the inductive limit in W.

By [6, Theorem 3.1.8], the reflection of Salg in Cu is a Cu-semigroup S together with
a (universal) W-morphism α : Salg → S characterized by the following conditions:

(R1) For every xλ ∈ Sλ and xµ ∈ Sµ, [xλ]
≺ ⊆ [xµ]≺ if and only if α([xλ]) ≤ α([xµ]);

(R2) For all x′, x ∈ S satisfying x′ � x there exists xλ ∈ Sλ such that x′ � α([xλ])� x.

Lemma 4.1.8. Let ((Sλ)λ∈Λ, (ϕµ,λ)λ≤µ in Λ) be an inductive system in Cu as defined in
Paragraph 1.2.10. Then, a Cu-semigroup S together with Cu-morphisms ϕλ : Sλ → S
for λ ∈ Λ is the inductive limit of the system ((Sλ)λ∈Λ, (ϕµ,λ)λ≤µ in Λ) if and only if the
following conditions are satisfied:

(L0) ϕµ ◦ ϕµ,λ = ϕλ for all λ ≤ µ in Λ;

(L1) if x′λ, xλ ∈ Sλ and xµ ∈ Sµ satisfy x′λ � xλ and ϕλ(xλ) ≤ ϕµ(xµ), then there
exists ν ≥ λ, µ such that ϕν,λ(x′λ)� ϕν,µ(xµ);

(L2) for all x′, x ∈ S satisfying x′ � x there exists xλ ∈ Sλ such that x′ � ϕλ(xλ)� x.

Proof. As mentioned in Paragraph 4.1.7 above, the inductive limit of the inductive
system ((Sλ)λ∈Λ, (ϕµ,λ)λ≤µ in Λ) in Cu is S, the reflection of Salg in Cu. Note that (L0)
is satisfied by construction, where we define ϕλ(xλ) := α([xλ]) for each λ.
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Moreover, given x′λ, xλ ∈ Sλ and xµ ∈ Sµ as in (L1), we have [xλ]
≺ ⊆ [xµ]≺ by (R1).

Thus, it follows that [x′λ] ≺ [xµ] which, by definition, implies that ϕν,λ(x′λ)� ϕν,µ(xµ)
for some ν ≥ λ, µ.

To see (L2), take x′ � x in S. By (R2), there exists some xλ ∈ Sλ such that
x′ � α([xλ])� x, where recall that α([xλ]) = ϕλ(xλ).

Proposition 4.1.9. Let S = lim−→λ∈Λ
Sλ be an inductive limit of Cu-semigroups. Then,

dim(S) ≤ lim inf
λ

dim(Sλ).

Proof. Let n = lim infλ dim(Sλ), which we may assume to be finite.
To see that dim(S) ≤ n, take x′ � x� y1 + . . .+ yr in S and choose y′1, . . . , y′r ∈ S

such that y′j � yj for each j and

x� y′1 + . . .+ y′r.

For every λ, denote by ϕλ : Sλ → S the Cu-morphism into the inductive limit. By
Lemma 4.1.8 above, these morphisms satisfy properties (L0)-(L2).

Combining (L0) and (L2), there exist λ and elements v, w1, . . . , wr ∈ Sλ such that
x′ � ϕλ(v)� x and y′j � ϕλ(wj)� yj for each j.

Let v′′, v′ ∈ Sλ satisfy v′′ � v′ � v and

x′ � ϕλ(v
′′)� ϕλ(v)� x,

which exist since ϕλ is a Cu-morphism.
Hence,

ϕλ(v)� x� y′1 + . . .+ y′r � ϕλ(w1 + . . .+ wr).

Applying (L1), we obtain ν ≥ λ such that ϕν,λ(v′)� ϕν,λ(w1 + . . .+ wr).
Since lim infλ dim(Sλ) ≤ n, we may also assume that dim(Sν) ≤ n. Applying

dim(Sν) ≤ n to
ϕν,λ(v

′′)� ϕν,λ(v
′)� ϕν,λ(w1 + . . .+ wr),

we obtain elements zj,k ∈ Sν for j = 1, . . . , r and k = 0, . . . , n satisfying properties
(i)-(iii) from Definition 4.1.1. Thus, we have ϕν(zj,k) � ϕλ(wj) � yj for every j, k.
Moreover, one also gets

x′ � ϕλ(v
′′)�

∑
j,k

ϕν(zj,k)

and ∑
j

ϕν(zj,k)� ϕλ(v
′)� x for each k,

as desired.

Proposition 4.1.10. Let A be a C∗-algebra A, and let I be a closed, two-sided ideal I
of A. Then,

dim(Cu(I)), dim(Cu(A/I)) ≤ dim(Cu(A)).

Given C∗-algebras A and B, we have

dim(Cu(A⊕B)) = max{dim(Cu(A)), dim(Cu(B))}.

Given an inductive limit of C∗-algebras A = lim−→λ
Aλ, we have

dim(Cu(A)) ≤ lim inf
λ

dim(Cu(Aλ)).
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Proof. By [6, Section 5.1], Cu(I) is naturally isomorphic to an ideal of Cu(A), and
Cu(A/I) is naturally isomorphic to Cu(A)/Cu(I). Thus, the first statement follows
from Proposition 4.1.4.

The second statement follows from Proposition 4.1.6, since Cu(A⊕B) is isomorphic
to Cu(A)⊕ Cu(B).

Finally, the third statement follows from Proposition 4.1.9 and the fact that the
Cuntz semigroup of an inductive limit of C∗-algebras is naturally isomorphic to the
inductive limit of the C∗-algebras; see [6, Corollary 3.2.9].

Example 4.1.11. Recall that Cu(C) is naturally isomorphic to N := {0, 1, 2, . . . ,∞};
see Examples 1.2.8 (i)-(ii). Using that N has Riesz decomposition (as defined in Sec-
tion 1.3), one can easily check that dim(N) = 0. Thus, it follows from Proposition 4.1.6
that dim(Nk) = 0 for every k ≥ 1.

Applying Proposition 4.1.9, every inductive limit of such Cu-semigroups has dimen-
sion zero. Proposition 4.1.10 also shows that dim(Cu(A)) = 0 for every AF-algebra A.
In Theorem 4.3.8, we will generalize this to C∗-algebras of real rank zero.

Thus, we also know by the Cu-semigroup version of the Effros-Handelman-Shen
theorem (Theorem 1.3.4) that every countably based, weakly cancellative, unperforated,
algebraic Cu-semigroup satisfying (O5) and (O6) is zero-dimensional. This is because
such semigroups are isomorphic to inductive limits of Nk’s. In Proposition 4.3.6, we
will show that all weakly cancellative, algebraic Cu-semigroups satisfying (O5) and (O6)
have dimension zero.

Example 4.1.12. For each k ∈ N, let Ek be the Cu-semigroups defined in Exam-
ples 1.2.8 (ii). As above, one can see that they also have dimension zero.

Note, however, that not all algebraic Cu-semigroups are zero dimensional. For
example, consider S := N∪{1′}, with 1′ a compact element not comparable with 1 and
such that 1′ + 1′ = 2 and 1 + k = 1′ + k for every k ∈ N \ {0}. Then, dim(S) =∞.

Indeed, assume for the sake of contradiction that dim(S) ≤ n for some n ∈ N. Then,
since 1′ � 1′ � 2 = 1 + 1, there exist elements z1,k, z2,k ∈ S for k = 0, . . . , n satisfying
(i)-(iii) from Definition 4.1.1.

By (i), we have zj,k � 1 and therefore zj,k = 0 or zj,k = 1 for every j, k. By condi-
tion (ii), we have 1′ �

∑
j,k zj,k, and so there exist j′ ∈ {1, 2} and k′ ∈ {0, . . . , n} such

that zj′,k′ = 1. However, condition (iii) implies 1 = zj′,k′ � 1′, which is a contradiction
because the elements 1 and 1′ are not comparable.

Example 4.1.13. Let k, l ∈ N, and let Ek and El be the Cu-semigroups defined in
Examples 1.2.8 (ii). Then, their abstract bivariant Cu-semigroup JEk, ElK, as defined
in [7], has dimension one whenever l > k and dimension zero otherwise.

Indeed, by [7, Proposition 5.18], we know that JEk, ElK = {0, r, . . . , l,∞} with
r = d(l + 1)/(k + 1)e. Thus, if l ≤ k, then JEk, ElK = El, which is zero-dimensional by
Example 4.1.12.

If, conversely, we have l > k, that is r > 1, consider r + 1 � r + 1 � r + r. One
cannot find z1, z2 � r such that r + 1 = z1 + z2, which shows that dim(JEk, ElK) 6= 0.

To verify dim(JEk, ElK) ≤ 1, let x� x� y1 + . . .+ yr in JEk, ElK. We may assume
that yj is nonzero for every j. If there exists i ∈ {1, . . . , r} with x ≤ yi, then zi,0 := x
and zj,k := 0 for j 6= i or k = 1 have the desired properties.
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So we may assume that yj < x for each j. Let k be the least integer such that
x ≤ y1 + . . . + yk. Define zj,0 := yj for every j < k and zj,0 := 0 for j ≥ k. Further,
define zk,1 := yk and zj,1 := 0 for j 6= k. By choice of k, we have

∑
j zj,0 � x. We also

have
∑

j zj,1 = yk � x. Finally, x�
∑

j zj,0 +
∑

j zj,1, as desired.

Example 4.1.14. Given a compact, metric space X containing at least two points,
let S = Lsc(X,N)++ ∪ {0} be the sub-Cu-semigroup of Lsc(X,N) consisting of strictly
positive functions and 0. We claim that dim(S) =∞.

To see this, assume for the sake of contradiction that dim(S) ≤ n for some n ∈ N,
and take r > n. Since X contains at least two points, we can choose open subsets
U ′, U ⊆ X such that ∅ 6= U ′, U ′ ⊆ U and U 6= X.

Let χU ′ and χU denote their corresponding characteristic functions, and consider
the elements x′ := 1 + (n+ 1)χU ′ and x := 1 + (n+ 1)χU in S. We have

x′ � x� r + 1 = 1+ (r+1. . . +1.

Using dim(S) ≤ n, one obtains elements zj,k ∈ S for j = 1, . . . , r+1 and k = 0, . . . , n
satisfying (i)-(iii) from Definition 4.1.1.

Condition (i) implies zj,k � 1 and, therefore, zj,k = 0 or zj,k = 1 for each j, k.
Further, for every k ≤ n, condition (iii) implies

∑
j zj,k � x. Consequently, all but

possibly one of the elements z1,k, . . . , zr+1,k are zero. Thus,
∑

j zj,k ≤ 1. Using this at
the last step, and using condition (ii) at the first step, one has

x′ �
∑
j,k

zj,k =
n∑
k=0

(
r+1∑
j=1

zj,k

)
≤ n+ 1,

a contradiction.
Note that S does not arise as the Cuntz semigroup of a C∗-algebra since, for example,

it does not satisfy (O5). (Take 1� 1� 1 + χU with U 6= X.)

The previous example shows that, given a Cu-semigroup S and a sub-Cu-semigroup
T of S, one may not have dim(T ) ≤ dim(S). However, we will see in Chapter 5 that
there are always plenty of sub-Cu-semigroups for which this bound is satisfied; see
Proposition 5.3.7.

Retracts and soft elements

Definition 4.1.15 below mimics the definition of a topological retract. As shown in [10],
this notion might also be of importance in the study of the radius of comparison; see
[12] for its definition.

Recall from Definition 1.2.7 that a monoid morphism between two Cu-semigroups
is a generalized Cu-morphism if it preserves order and suprema of increasing sequences.

Definition 4.1.15. Let S and T be Cu-semigroups. We say that S is a retract of T if
there exist a Cu-morphism ι : S → T and a generalized Cu-morphism σ : T → S such
that σ ◦ ι = idS.

Proposition 4.1.16. Let S and T be Cu-semigroups and assume that S is a retract of
T . Then dim(S) ≤ dim(T ).
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Proof. Set n := dim(T ), which we may assume to be finite.
To see that dim(S) ≤ n, let x′ � x� y1+. . .+yr in S and let ι, σ be a Cu-morphism

and a generalized Cu-morphism such that σ ◦ ι = idS. Then, since ι is a Cu-morphism,
one gets

ι(x′)� ι(x)� ι(y1) + . . .+ ι(yr)

in T .
Using that dim(T ) ≤ n, we obtain zj,k in T satisfying conditions (i)-(iii) of Defi-

nition 4.1.1. Since σ is a generalized Cu-morphism, we see that the elements σ(zj,k)
satisfy conditions (i)-(iii) in Lemma 4.1.2, from which the result follows.

4.1.17 (Soft elements). As defined in [6, Paragraph 5.2.2], an element x in a Cu-semi-
group S is soft if for every x′ � x there exists n ≥ 1 such that (n+1)x′ � nx. Further,
the subset of soft elements, denoted by Ssoft, is seen to be a sub-Cu-semigroup whenever
S is simple, weakly cancellative and satisfies (O5) and (O6); see [6, Proposition 5.3.18].

Given a simple Cu-semigroup S, let us now show that Ssoft is a retract of S. As we
will see in Proposition 4.1.20 below, this sub-Cu-semigroup will play an important role
in the study of the dimension of S.

Proposition 4.1.18. Let S be a simple, countably based, weakly cancellative Cu-semi-
group satisfying (O5) and (O6). Then Ssoft is a retract of S.

Proof. As shown in [6, Proposition 5.3.18], the set Ssoft is a Cu-semigroup. If S is
isomorphic to N, the result follows trivially. Thus, we may assume otherwise. Using
[91, Proposition 2.9], we see that for each x ∈ S there exists a unique maximal soft
element below x and that the map σ : S → Ssoft given by

σ(x) := max
{
x′ ∈ Ssoft : x′ ≤ x

}
is a generalized Cu-morphism.

Note that the canonical inclusion ι : Ssoft → S is a Cu-morphism satisfying σ ◦ ι =
idSsoft

, as desired.

Lemma 4.1.19 below follows as a combination of [6, Lemma 5.1.18] and [73, Propo-
sition 5.2.1]. However, since this result will be used repeatedly, we include its proof for
the convenience of the reader

Lemma 4.1.19. Let S be a nonzero, simple Cu-semigroup satisfying (O5) and (O6),
and let u0, u1 ∈ S be nonzero. Assume that S is not isomorphic to N or Ek for any k.
Then, there exists a nonzero w ∈ S such that 2w � u0, u1.

Proof. Let u′′0, u′0 ∈ S be nonzero elements such that u′′0 � u′0 � u0. Since S is simple
and u1 6= 0, we get u′0 � u0 ≤ ∞ =∞u1 and, consequently, u′0 ≤ nu1 for some n ∈ N.

Applying (O6) to u′′0 � u′0 ≤ u1+ n. . . +u1, there exist elements z1, . . . , zn ∈ S such
that

u′′0 � z1 + . . .+ zn and z1, . . . , zn � u′0, u1.

Moreover, using that u′′0 is nonzero, there is some j ≤ n such that zj is nonzero. Set
v := zj, and note that v � u0, u1.
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Since S is not isomorphic to N or Ek for any k, it follows from [6, Proposition 5.1.19]
that v is not a minimal nonzero element. Thus, there exist v′′, v′ ∈ S with 0 6= v′′ �
v′ � v. Using (O5), we obtain an element c ∈ S such that

v′′ + c ≤ v ≤ v′ + c.

Note that, since v′ 6= v, c is nonzero. Applying the first part of the argument to
ũ0 = v′′ and ũ1 = c, we obtain w ∈ S such that 0 6= w � v′′, c. Then, w has the desired
properties.

Proposition 4.1.20. Let S be a simple, countably based, weakly cancellative Cu-semi-
group satisfying (O5) and (O6). Then,

dim(Ssoft) ≤ dim(S) ≤ dim(Ssoft) + 1.

Proof. The first inequality follows as a combination of Propositions 4.1.16 and 4.1.18.
For the second inequality, let n := dim(Ssoft), which we may assume to be finite.

We may also assume that S 6∼= Ek,N for every k, since otherwise Examples 4.1.11 and
4.1.12 imply that the dimension of S is zero and the result is trivial.

To verify dim(S) ≤ n+ 1, let x′ � x� y1 + . . .+ yr in S, where we may assume x
and y1 nonzero. By [6, Proposition 5.3.16], every nonzero element of S is either soft or
compact. Thus, x is either soft or compact. We study each case separately:

Assume first that x is soft. Then, since Ssoft is a sub-Cu-semigroup, we find s ∈ Ssoft

satisfying x′ � s � x. Let σ : S → Ssoft be as in the proof of Proposition 4.1.18. We
have

s� x = σ(x) ≤ σ(y1) + . . .+ σ(yr)

in Ssoft.
Using that dim(Ssoft) ≤ n and that σ(yj) ≤ yj, we obtain elements zj,k for j =

1, . . . , r and k = 0, . . . , n such that zj,k � yj,

x′ � s�
∑
j,k

zj,k and
r∑
j=1

zj,k � σ(x) = x,

as desired.
Now assume that x is compact. Lemma 4.1.19 implies that there exists a nonzero

element w ∈ S satisfying w � x, y1. Thus, we know from [6, Proposition 5.4.4] that
x� σ(x) +w, which allows us to choose (using once again that Ssoft is a sub-Cu-semi-
group) elements s′ � s in Ssoft such that s� σ(x) and x� s′ + w. We have

s′ � s� σ(x) ≤ σ(y1) + . . .+ σ(yr)

in Ssoft.
Arguing as above, and using that dim(Ssoft) ≤ n, we find soft elements zj,k ∈ S for

j = 1, . . . , r and k = 0, . . . , n satisfying

(i) zj,k � σ(yj) ≤ yj for each j and k;

(ii) s′ �
∑

j,k zj,k;
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(iii)
∑r

j=1 zj,k � s� σ(x) ≤ x for each k.

Set z1,n+1 := w and zj,n+1 := 0 for j = 2, . . . , r. Then, zj,n+1 � yj for each j and

x′ � x� s′ + w ≤

(
n∑
k=0

r∑
j=1

zj,k

)
+

r∑
j=1

zj,n+1 =
n+1∑
k=0

r∑
j=1

zj,k.

We also have
∑r

j=1 zj,n+1 = w � x, which shows that the elements zj,k have the
desired properties.

Remark 4.1.21. Engbers showed in [36] that, for every compact element c in the Cuntz
semigroup of a simple, separable, stably finite C∗-algebra A, the set {x ∈ S | x < c}
has a maximum, called the predecessor of c.

The proof of Proposition 4.1.20 above can be generalized to this situation to obtain

dim(Cu(A)soft) ≤ dim(Cu(A)) ≤ dim(Cu(A)soft) + 1.

Example 4.1.22. Let Z be the Cuntz semigroup of the Jiang-Su algebra Z as defined
in Examples 1.2.8 (iv). Then, dim(Z) = 1.

Indeed, one can easily check, using that [0,∞) has Riesz decomposition, that the
Cu-semigroup [0,∞] has dimension zero. Since Zsoft

∼= [0,∞], it follows from Proposi-
tion 4.1.20 above that dim(Z) ≤ dim([0,∞]) + 1 = 1.

To see dim(Z) 6= 0, consider the compact element 1 ∈ Z and the soft element 3
4
∈ Z,

which satisfy 1 � 1 � 3
4

+ 3
4
. Note that there are no elements z0, z1 ∈ Z satisfying

1 = z0 + z1 and z0, z1 � 3
4
, which implies dim(Z) 6= 0. Alternatively, it will also follow

from Corollary 4.3.7 that Z is not zero-dimensional.
Let Z ′ be the Cu-semigroup Z ′ := Z ∪ {1′′} with 1′′ a compact element not compa-

rable with 1 and such that 1′′+ 1′′ = 2 and 1 + x = 1′′+ x for every x ∈ Z \ {0}, which
was considered in [6, Question 9(8)]. An analogous argument shows that dim(Z ′) = 1.

The study of soft elements, and the techniques presented in this section, can be
generalized to a broader setting. This will be pursued in [10].

R-multiplications

Recall from Paragraph 1.2.17 that, given a Cu-semiring R, an R-multiplication on a
Cu-semigroup S is a scalar multiplication on S with natural compatibility conditions.

As shown in [6, Theorem 7.2.2], a Cu-semigroup has {0,∞}-multiplication if and
only if every element in the semigroup is idempotent. By [6, Theorem 7.3.8], a Cu-sem-
igroup has Z-multiplication if and only if it is almost unperforated and almost divisible.
Further, we know from [6, Theorem 7.5.4] that a Cu-semigroup has [0,∞]-multiplication
if and only if it has Z-multiplication and every element in S is soft.

Proposition 4.1.23. Let S be a Cu-semigroup satisfying (O5) and (O6).

(i) If S has {0,∞}-multiplication, then dim(S) = 0.

(ii) If S has [0,∞]-multiplication, then dim(S) = 0.
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(iii) If S has Z-multiplication, then dim(S) ≤ 1.

Proof. We prove each claim separately:
(i) Given elements x′ � x � y1 + . . . + yr in a Cu-semigroup with {0,∞}-

multiplication, we can apply (O6) to obtain elements zj ∈ S such that

x′ ≤ z1 + . . .+ zr

and zj ≤ x, yj for each j.
Since every element in S is idempotent, we get

z1 + . . .+ zr ≤ x+ . . .r + x = rx = x.

This implies, by Lemma 4.1.2, that dim(S) = 0.
(ii) Given a Cu-semigroup S, recall from Paragraph 1.2.16 that F (S) denotes the

set of functionals of S. When equipped with a suitable topology, F (S) becomes a
compact Hausdorff space; see [73]. One defines the realification of S, denoted by SR,
as the smallest subsemigroup of Lsc(F (S), [0,∞]) closed under suprema of increasing
sequences and containing 1

n
x̂ for every n ≥ 0 and x ∈ S.

We know from Theorem 7.5.4 and Proposition 7.5.9 in [6] that, if S has [0,∞]-
multiplication, S is isomorphic to its realification SR. Thus, by [73, Theorem 4.1.1], it
follows that whenever x′ � x� y1 + . . .+ yr there exist elements zj � yj such that

x′ � z1 + . . .+ zr � x.

This shows that the dimension of S is zero.
(iii) Recall the definition of Z from Examples 1.2.8. By [6, Proposition 7.3.13], an

element x in a Cu-semigroup S with Z-multiplication is soft if and only if x = 1′x.
Further, it follows from [6, Corollary 7.5.10] that the Cu-semigroup Ssoft is isomor-

phic to the realification of S. Consequently, we have dim(Ssoft) = 0 by (ii).
Now let x′ � x� y1 + . . .+ yr in S. Since S has Z-multiplication, we get

5
8
x′ � 6

8
x� 7

8
y1 + . . .+ 7

8
yr,

where note that all the elements in the previous expression belong to Ssoft.
Since dim(Ssoft) = 0, we obtain elements z1, . . . , zr ∈ Ssoft such that zj � 7

8
yj for

each j, and such that
5
8
x′ � z1 + . . .+ zr � 6

8
x.

Set zj,k := zj for j = 1, . . . , r and k = 0, 1, and note that we have zj,k � yj for each
j and k. Further,

x′ ≤ 10
8
x′ � 2(z1 + . . .+ zr) =

∑
j,k

zj,k,

and ∑
j

zj,k � 6
8
x ≤ x.

for each k, as desired.

Proposition 4.1.24. Let A be a C∗-algebra.
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(i) If A is purely infinite, then dim(Cu(A)) = 0.

(ii) If A is W-stable, then dim(Cu(A)) = 0.

(iii) If A is Z-stable, then dim(Cu(A)) ≤ 1.

Proof. Given a C∗-algebra A, we know from [6, Proposition 7.2.8] that A is purely
infinite (in the sense of Definition 1.1.13) if and only if Cu(A) has {0,∞}-multiplication.
This, together with Proposition 4.1.23, shows (i).

By [6, Proposition 7.6.3], the Cuntz semigroup of A has [0,∞]-multiplication or
Z-multiplication whenever A is W-stable or Z-stable respectively. Combined with
Proposition 4.1.23 above, this shows (ii) and (iii).

4.2 Commutative and subhomogeneous C∗-algebras
We now move our attention to the relation between the covering dimension of a Cuntz
semigroup and the nuclear dimension of the underlying C∗-algebra. More concretely,
we show in Theorem 4.2.2 that the dimension of the Cuntz semigroup of a C∗-algebra
A is always bounded by the nuclear dimension of A.

In the case of subhomogeneous C∗-algebras (which include commutative C∗-alge-
bras), we show that both dimensions agree; see Proposition 4.2.7 and Theorem 4.2.12.

4.2.1 (Nuclear dimension). As defined in [109, Definition 1.1], a linear map ϕ between
two C∗-algebras A,B is said to be a cpc order zero map if it is completely positive,
contractive, and if, for every pair of orthogonal positive elements a, b ∈ A, their images
ϕ(a), ϕ(b) are orthogonal in B.

A cpc order-zero map ϕ : A → B always induces a generalized Cu-morphism, de-
noted by Cu(ϕ) : Cu(A)→ Cu(B); see [108, Paragraph 3.5].

In [109], Winter and Zacharias define the nuclear dimension of a C∗-algebra A,
in symbols dimnuc(A), as the least nonnegative integer n such that there exists a
net (Fλ, ψλ, ϕλ) with Fλ finite dimensional C∗-algebras, ψλ : A → Fλ cpc. maps, and
ϕλ : Fλ → A completely positive maps such that

(i) ψλϕλ(a) tends to a uniformly on finite subsets of A;

(ii) for every λ we can write Fλ = F
(0)
λ ⊕ . . .⊕F

(n)
λ in such a way that ϕλ|F (k)

λ
is a cpc

order-zero map for each k.

If no such n exists, one sets dimnuc(A) =∞.

Given an ultrafilter U on an index set Λ, and a family of C∗-algebras Aλ indexed
by Λ, recall that the ultraproduct with respect to U , denoted by AU , is defined to be the
quotient of

∏
λ∈ΛAλ by the ideal{

(aλ) ∈
∏
λ∈Λ

Aλ | lim
U
‖aλ‖ = 0

}
.

Let A be a C∗-algebra such that dimnuc(A) is finite, and let n ∈ N be such that
dimnuc(A) = n. Robert shows in [71, Proposition 2.2] that there exist an ultrafilter U
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on an index set Λ, finite-dimensional C∗-algebras Fλ,k for λ ∈ Λ and k = 0, . . . , n, and
cpc. order-zero maps ψk : A→

∏
U Fλ,k and ϕk :

∏
U Fλ,k → AU such that

ι =
n∑
k=0

ϕk ◦ ψk,

where ι : A→ AU denotes the natural inclusion map.

Theorem 4.2.2. Let A be a C∗-algebra. Then, dim(Cu(A)) ≤ dimnuc(A).

Proof. Set n := dimnuc(A), which we may assume to be finite. As in the comments
above, there exist an ultrafilter U on an index set Λ, finite-dimensional C∗-algebras Fλ,k,
and cpc. order-zero maps ψk : A →

∏
U Fλ,k and ϕk :

∏
U Fλ,k → AU with k = 0, . . . , n

such that:

ι =
n∑
k=0

ϕk ◦ ψk.

We let Cu(ψk) and Cu(ϕk) denote the induced generalized Cu-morphisms by ψk and
ϕk respectively. Then, the equality ι =

∑n
k=0 ϕk ◦ ψk implies

Cu(ϕl)(Cu(ψl)(x)) ≤ Cu(ι)(x) ≤
n∑
k=0

Cu(ϕk)(Cu(ψk)(x))

for every x ∈ Cu(A) and each l ∈ {0, . . . , n}.
To show that dim(Cu(A)) ≤ n, let x′ � x � y1 + . . . + yr in Cu(A) and set, for

each k ≤ n, xk := Cu(ψk)(x) ∈ Cu(
∏
U Fλ,k).

We have

Cu(ι)(x′)� Cu(ι)(x) ≤
n∑
k=0

Cu(ϕk)(Cu(ψk)(x)) =
n∑
k=0

Cu(ϕk)(xk).

In particular, since Cu(ϕk) preserves suprema of increasing sequences, there exist
elements x′k � xk such that

Cu(ι)(x′)�
n∑
k=0

Cu(ϕk)(x
′
k).

Moreover, for every fixed k ∈ {0, . . . , n}, we have

x′k � xk = Cu(ψk)(x) ≤ Cu(ψk)(
r∑
j=1

yj) =
r∑
j=1

Cu(ψk)(yj).

Using that
∏
U Fλ,k has real rank zero and stable rank one, we know from [6, Corol-

lary 5.5.10] that its Cuntz semigroup has Riesz decomposition. Thus, we obtain ele-
ments z1,k, . . . , zr,k ∈ Cu(

∏
U Fλ,k) such that zj,k ≤ Cu(ψk)(yj) for each j and

x′k ≤
r∑
j=1

zj,k = xk.
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Applying Cu(ϕk), one gets

Cu(ϕk)(zj,k) ≤ Cu(ϕk)(Cu(ψk)(yj)) ≤ Cu(ι)(yj)

for each j and k, and

Cu(ι)(x′)�
n∑
k=0

Cu(ϕk)(x
′
k) ≤

n∑
k=0

Cu(ϕk)(
r∑
j=1

zj,k) =
n∑
k=0

r∑
j=1

Cu(ϕk)(zj,k)

in Cu(AU).
Further, we also have
r∑
j=1

Cu(ϕk)(zj,k) = Cu(ϕk)(
r∑
j=1

zj,k) ≤ Cu(ϕk)(xk) = Cu(ϕk)(Cu(ψk)(x)) ≤ Cu(ι)(x).

Using that the classes of elements in
⋃
N∈N(AU ⊗MN)+ are sup-dense in Cu(AU),

we find N ∈ N and positive elements cj,k ∈ AU ⊗MN such that [cj,k] � Cu(ϕk)(zj,k)
and Cu(ι)(x′)�

∑
j,k[cj,k].

Now note that AU =
∏

λA/cU with

cU = {(aλ)λ ∈
∏
λ

A | lim
λ→U
‖aλ‖ = 0},

and let π :
∏

λA → AU denote the quotient map and also its amplification to matrix
algebras, where we have AU ⊗MN

∼= (A⊗MN)U .
Choose positive elements cj,k,λ ∈ A ⊗MN such that π((cj,k,λ)λ) = cj,k. Then, for a

sufficiently large λ, the elements [cj,k,λ] ∈ Cu(A) satisfy the conditions of Lemma 4.1.2
for x′ � x� y1 + . . .+ yr, as desired.

As we have just seen in Theorem 4.2.2 above, the nuclear dimension of a C∗-algebra
is always a bound for the covering dimension of its Cuntz semigroup. The following
results show that, for subhomogeneous C∗-algebras, both dimensions agree.

We note that this is not always the case; see Example 4.3.10.

4.2.3. As defined in Examples 1.1.20 (3), a C∗-algebra is d-homogeneous if all of its
irreducible representations are of dimension d. We also say that a C∗-algebra is d-
subhomogeneous if its irreducible representations are of dimension at most d. Generally,
a C∗-algebra is said to be homogeneous (resp. subhomogeneous) if it is d-homogeneous
(resp. d-subhomogeneous) for some d. Commutative C∗-algebras, and algebras of the
form C0(X,Mn) with X locally compact, are examples of homogeneous C∗-algebras. A
C∗-algebra is subhomogeneous if and only if it is isomorphic to a sub-C∗-algebra of a
unital, homogeneous C∗-algebra; see [11, Proposition IV.1.4.3]

We briefly recall below the definition of the canonical homogeneous ideal-quotients
of a subhomogeneous C∗-algebra; see [11, Sections IV.1.4, IV.1.7] for details.

Let A be a d-subhomogeneous C∗-algebra. For each k ≤ d + 1, define I≥k as the
closed, two-sided ideal formed by the elements a ∈ A such that π(a) = 0 for some
irreducible representation π of dimension at most k − 1. For k = 1, we set I≥1 = A.

By construction, I≥k+1 is contained in I≥k for each k. The canonical k-homogeneous
ideal-quotient of A is Ak := I≥k/I≥k+1. As its name indicates, Ak is k-homogeneous.
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4.2.4 (Local and topological dimension). As defined in [67, Definition 5.1.1, p.188],
the local dimension of a topological space X, in symbols locdim(X), is the smallest
nonnegative integer n such that every point inX has a closed neighbourhood of covering
dimension at most n.

If X is a locally compact, Hausdorff space, [67, Proposition 3.5.6] implies that

locdim(X) = sup
{

dim(K) | K ⊆ X compact
}
.

In particular, locdim(X) and dim(X) agree whenever X is σ-compact, locally com-
pact and Hausdorff. Moreover, locdim(X) = dim(αX) whenever X is locally compact,
Hausdorff but not compact, where αX is the one-point compactification of X; see [67,
Proposition 3.5.6].

Recall that the primitive ideal space Prim(A) of a C∗-algebra A is the set of ideals
that can be expressed as the kernel of an irreducible representation of A equipped with
the hull-kernel topology. That is to say, the closure of a subset {Ji}i of Prim(A) is
defined to be

{Ji}i := {J ∈ Prim(A) | ∩iJi ⊆ J}.

This topology makes Prim(A) a locally compact, T0-space; see [11, Section IV.1.4].
If A is homogeneous, Prim(A) is Hausdorff.

The notion of topological dimension for certain C∗-algebras was defined in [16]. For
a homogeneous C∗-algebra A, one lets its topological dimension, in symbols topdim(A),
be the local dimension of its primitive ideal space.

In the subhomogeneous case, the topological dimension of A is defined as

topdim(A) := max
k=1,...,d

topdim(Ak) = max
k=1,...,d

locdim(Prim(Ak)),

where recall that Ak denotes the canonical k-homogeneous ideal-quotient defined in
Paragraph 4.2.3 above.

Let Subsep(A) denote the collection of separable sub-C∗-algebras of a C∗-algebra A,
and let S be a family of Subsep(A). We say that S is cofinal if for every separable sub-
C∗-algebra B0 there exists B ∈ S with B0 ⊆ B. We will also say that S is σ-complete
if
⋃
{B | B ∈ T } ∈ S for every countable, directed subfamily T of S.
Results like Proposition 4.2.5 below are one of the driving reasons behind Chapter 5,

where we investigate if the covering dimension of Cuntz semigroups is a noncommutative
dimension theory; see Section 5.4.

Proposition 4.2.5. Let A be a subhomogeneous C∗-algebra such that topdim(A) ≤ n
for some n ∈ N. Then, the set{

B ∈ Subsep(A) | topdim(B) ≤ n
}

is σ-complete and cofinal.

Proof. We will prove the result for d-subhomogeneous C∗-algebras by induction over
d. For d = 1, note that a 1-subhomogeneous C∗-algebra is 1-homogeneous. Thus, the
result follows from the following fact.



116 Chapter 4. Covering dimension of Cuntz semigroups

Fact 1 ([90, Proposition 3.5]). For a homogeneous C∗-algebra B of local dimension
at most n, the collection {

C ∈ Subsep(B) | topdim(C) ≤ n
}

is σ-complete and cofinal.
Now let d ≥ 1 and assume that the result holds for every d-subhomogeneous C∗-al-

gebra. Given a (d + 1)-subhomogeneous C∗-algebra A, we will prove that S := {B ∈
Subsep(A) | topdim(B) ≤ n} is σ-complete and cofinal.

Given a countable, directed family T ⊆ S, we note that the sub-C∗-algebra C :=⋃
{B | B ∈ T } of A is separable and can be approximated by the sub-C∗-algebras

B ∈ T , which satisfy topdim(B) ≤ n by construction. Thus, it follows from [89,
Proposition 8] that topdim(C) ≤ n. This shows C ∈ S, as desired.

Fact 2 ([16, Proposition 2.2]). Let I be an ideal of a subhomogeneous C∗-algebra
B. Then,

topdim(B) = max{topdim(I), topdim(B/I)}.

Consider I := I≥d+1 ⊆ A, the closed, two-sided ideal defined in Paragraph 4.2.3. By
definition, I is (d+1)-homogeneous and A/I is d-subhomogeneous. Using Fact 2 above,
we see that topdim(I) ≤ n and topdim(A/I) ≤ n. By Fact 1 and by the induction
hypothesis, both of the collections below are σ-complete and cofinal:

T1 :=
{
C ∈ Subsep(I) | topdim(C) ≤ n

}
,

T2 :=
{
D ∈ Subsep(A/I) | topdim(D) ≤ n

}
.

Thus, it follows from [90, Lemma 3.2] that

S1 :=
{
B ∈ Subsep(A) | topdim(B ∩ I) ≤ n

}
,

S2 :=
{
B ∈ Subsep(A) | topdim(B/(B ∩ I)) ≤ n

}
,

are also σ-complete and cofinal.
An standard argument (see, for example, Paragraph 5.3.3) shows that S1 ∩ S2 is

σ-complete and cofinal as well. Moreover, given any B ∈ S1 ∩ S2, it follows from [11,
Proposition IV.1.4.3] that B is subhomogeneous. Thus, Fact 2 implies that

topdim(B) = max{topdim(B ∩ I), topdim(B/(B ∩ I))} ≤ n.

Thus, S1 ∩ S2 ⊆ S. Since S1 ∩ S2 is cofinal, so is S.

The following result is probably well known to the experts but, since it does not
appear in the literature, we provide a proof. For separable subhomogeneous C∗-alge-
bras, the equality between dr(A) and topdim(A) has already been shown in [104].

Recall that dr(A) denotes the decomposition rank of A, as defined in [56]. Its
definition is the same as the nuclear dimension of A, with the additional condition that
the maps ϕλ in Paragraph 4.2.1 are contractive.

Theorem 4.2.6. Let A be a subhomogeneous C∗-algebra. Then

dimnuc(A) = dr(A) = topdim(A).
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Proof. We will prove that, for every subhomogeneous C∗-algebra A, one has

dr(A) ≤ topdim(A) ≤ dimnuc(A).

The result will then follow from the fact that dimnuc(B) ≤ dr(B) for every C∗-alge-
bra B; see [109, Remarks 2.2(ii)].

Thus, set n := topdim(A). To see that dr(A) ≤ n, we may assume n to be finite.
Using Proposition 4.2.5, we know that the family

S :=
{
B ∈ Subsep(A) | topdim(B) ≤ n

}
is cofinal and σ-complete.

Since every sub-C∗-algebra B ∈ S is separable and subhomogeneous (by [11, Propo-
sition IV.1.4.3]), we know from [104, Theorem 1.6] that dr(B) = topdim(B) ≤ n. It
follows that A is approximated by the collection S, which consists of C∗-algebras with
decomposition rank at most n. Using this, one can verify that dr(A) ≤ n; see, for
example, [89, Remark 2].

Now let m := dimnuc(A), and we will prove that topdim(A) ≤ m. As before, we
may assume m to be finite. By [109, Proposition 2.6], the family

T :=
{
B ∈ Subsep(A) | dimnuc(B) ≤ m

}
is cofinal, where note that every B ∈ T is a separable and subhomogeneous.

For each B ∈ T and k ≥ 1, let Bk denote the canonical k-homogeneous ideal-
quotient of B as defined in Paragraph 4.2.3. Using [109, Corollary 2.10] at the first
step, and that the nuclear dimension does not increase when passing to ideals ([109,
Proposition 2.5]) or quotients ([109, Proposition 2.3(iv)]) at the second step, one gets

topdim(Bk) = dimnuc(Bk) ≤ dimnuc(B) ≤ m.

Thus, we have
topdim(B) = max

k
topdim(Bk) ≤ m

Since A is approximated by the collection T , which consists of C∗-algebras with
topological dimension at most m, it follows from [89, Proposition 8] that topdim(A) ≤
m, as desired.

Proposition 4.2.7. Let X be a compact, Hausdorff space. Then,

dim(Cu(C(X))) = dim(X).

Proof. If X is a second countable, compact, Hausdorff space, we have dim(X) =
dimnuc(C(X)) by [109, Proposition 2.4]. Thus, since C(X) is a homogeneous C∗-alge-
bra and dim(X) = topdim(C(X)), Theorem 4.2.6 implies that this equality also holds
for any compact, Hausdorff space. Using Theorem 4.2.2, one obtains the inequality
dim(Cu(C(X))) ≤ dim(X).

Now set n := dim(Cu(C(X))). To see that dim(X) ≤ n, we may assume n to be
finite.
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Let U1, . . . , Ur be a finite open cover of X. By [56, Proposition 1.5] (see also Propo-
sition 2.4.7), it is enough to find an (n + 1)-colourable, finite, open refinement of the
cover.

Since X is normal, we can find an open cover V1, . . . , Vr of X such that Vj ⊆ Uj
for each j; see, for example, [67, Proposition 1.3.9, p.20]. For every j ≤ r, it follows
from Urysohn’s lemma that there exists a continuous function fj : X → [0, 1] taking
the value 1 on Vj and 0 on X \ Uj.

In particular, we have 1 ≤ f1 + . . .+ fr and, consequently,

[1]� [1] ≤ [f1 + . . .+ fr] ≤ [f1] + . . .+ [fr]

in Cu(C(X)).
Applying dim(Cu(C(X))) ≤ n, we obtain elements zj,k ∈ Cu(C(X)) for j = 1, . . . , r

and k = 0, . . . , n satisfying (i)-(iii) in Definition 4.1.1.
For each pair j, k, let gj,k ∈ (C(X)⊗K)+ be such that zj,k = [gj,k]. Viewing gj,k as

a positive, continuous function from X to K, set

Wj,k := {x ∈ X | gj,k(x) 6= 0},

which is an open set.
It follows from condition (i) that gj,k = limn hnfjh

∗
n for some sequence (hn)n in

C(X)⊗K. Thus, gj,k(x) = 0 whenever fj(x) = 0, which implies Wj,k ⊆ Uj.
By condition (ii) in Definition 4.1.1, X is covered by the sets Wj,k. Thus, the sets

Wj,k form a finite, open refinement of our original cover.
Finally, let k ∈ {0, . . . , n} and x ∈ X. It follows from condition (iii) in Defini-

tion 4.1.1 that the rank of g1,k(x) ⊕ . . . ⊕ gr,k(x) is at most one. This implies that at
most one of g1,k(x), . . . , gr,k(x) is nonzero. Thus, the sets W1,k, . . . ,Wr,k are pairwise
disjoint, as desired.

As mentioned in Example 4.1.3, we can now provide a simpler proof to the already
known fact that dim(Lsc(X,N)) = dim(X).

Corollary 4.2.8. Let X be a compact, metrizable space. Then

dim(Lsc(X,N)) = dim(X).

Proof. The inequality ‘≥’ follows easily by considering, for every open cover U1, . . . , Ur,
the inequalities 1� 1� χU1+. . .+χUr in Lsc(X,N); see the first part of Theorem 2.4.8.

For ‘≤’, it is enough to see that Lsc(X,N) is a retract of Cu(C(X)), since then the
inequality will follow from Proposition 4.1.16 and Proposition 4.2.7.

Set S = Lsc(X,N) and T = Cu(C(X)), and define ι : S → T as the unique Cu-
morphism mapping each characteristic function χU to the class of a positive function
in C(X) with support U .

We also define σ : T → S as the generalized Cu-morphism mapping the class of an
element a ∈ C(X)⊗K to its rank function σ(a) : X → N, σ(a)(x) = rank(a(x)).

It is readily checked that σ ◦ ι = idS, as desired.

Theorem 4.2.9. Let X be a locally compact, Hausdorff space. Then,

dim(Cu(C0(X))) = locdim(X).
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Proof. For every compact subset K ⊆ X, C(K) is a quotient of C0(X). Thus, using
Propositions 4.2.7 and 4.1.10 at the first and second step respectively, one gets

dim(K) = dim(Cu(C(K))) ≤ dim(Cu(C0(X))),

which implies locdim(X) ≤ dim(Cu(C0(X))).
Conversely, recall that C0(X) is an ideal in C(αX), where αX denotes the one-

point compactification of X. Using Proposition 4.1.10 at the first step, and applying
Proposition 4.2.7 and the fact that dim(αX) = locdim(X) at the second, we have

dim(Cu(C0(X))) ≤ dim(Cu(C(αX))) = locdim(X),

as required.

4.2.10 (Continuous fields of C∗-algebras). Let X be a locally compact, Hausdorff space,
let {A(x)}x∈X be a family of C∗-algebras indexed by X, and let Γ := {a : X 7→ tXA(x)}
be a set of sections. As defined in [11, Definition IV.1.6.1], the tuple (X, {A(x)},Γ) is
a continuous field of C∗-algebras if the following conditions are satisfied:

(i) For every x ∈ X and a ∈ Γ, one has a(x) ∈ A(x).

(ii) For every a ∈ Γ, the assignment x 7→ ‖a(x)‖ is an element in C0(X).

(iii) Γ is closed under pointwise addition, multiplication and adjoint, and also under
scalar multiplication.

(iv) For every x ∈ X and b ∈ A(x), there exists a ∈ Γ with a(x) = b.

(v) Γ is closed under local uniform limits.

The set Γ becomes a C∗-algebra when equipped with the norm ‖a‖ := supx ‖a(x)‖,
known as the C∗-algebra of the continuous field.

The field Γ is trivial if it is isomorphic to C0(X,A) with A(x) = A for each x.
Further, one says that the field is locally trivial if, for every x ∈ X, there exists an open
neighborhood U of x such that Γ|U is trivial.

If a C∗-algebra A is d-homogeneous, it is isomorphic to a C∗-algebra of a Md(C)-
locally trivial field over X = Prim(A). That is to say, A is isomorphic to a continuous
field C∗-algebra Γ as above such that for every point x ∈ X there exists a neighborhood
U with Γ|U ∼= C0(U)⊗Md; see, for example, [11, Section IV.1.7]

Lemma 4.2.11. Let A be a homogeneous C∗-algebra. Then,

dimnuc(A) ≤ dim(Cu(A)).

Proof. Let A be a d-homogeneous C∗-algebra, and let X := Prim(A), which we know
is locally compact and Hausdorff. Since topdim(A) = locdim(X), we have to prove
locdim(X) ≤ dim(Cu(A)).

Thus, let x ∈ X and, as in the comments above, let us think of A as the algebra
of sections vanishing at infinity of a locally trivial Md(C)-bundle over X. This implies
that there exists a compact neighbourhood Y of x over which the bundle is trivial.
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Let I denote the ideal of A consisting of all sections in A that vanish on X \ Y .
Then, A/I is the algebra of sections of the trivial Md(C)-bundle over Y , which implies
A/I ∼= C(Y )⊗Md.

Using Proposition 4.2.7 at the first step, that C(Y ) and C(Y )⊗Md have isomorphic
Cuntz semigroups at the second step, and Proposition 4.1.10 at the last step, we have

dim(Y ) = dim(Cu(C(Y ))) = dim(Cu(C(Y )⊗Md)) ≤ dim(Cu(A)).

It follows that every point in X has a closed neighbourhood of dimension at most
dim(Cu(A)), whence locdim(X) ≤ dim(Cu(A)).

Theorem 4.2.12. Let A be a subhomogeneous C∗-algebra. Then,

dim(Cu(A)) = dimnuc(A) = dr(A) = topdim(A).

Proof. Note that it is enough to verify the inequality topdim(A) ≤ dim(Cu(A)), since
the second and third equalities are shown in Theorem 4.2.6 and we know that the
inequality dim(Cu(A)) ≤ dimnuc(A) holds in general by Theorem 4.2.2.

As in Paragraph 4.2.3, let Ak denote the canonical k-homogeneous ideal-quotient of
A for each k. Using Lemma 4.2.11 and Theorem 4.2.6 at the first step, and Proposi-
tion 4.1.10 at the second, one has

topdim(Ak) ≤ dim(Cu(Ak)) ≤ dim(Cu(A))

and, consequently,

topdim(A) = max
k≥1

topdim(Ak) ≤ dim(Cu(A)),

as required.

4.3 Algebraic, zero-dimensional Cuntz semigroups
In the remaining sections of this chapter we focus on zero-dimensional Cu-semigroups.
We first prove a useful characterization of zero-dimensionality (Lemma 4.3.2), which we
use to provide a sufficient criterion for zero-dimensional Cu-semigroups; see Proposi-
tion 4.3.4. For weakly cancellative, simple, zero-dimensional Cu-semigroups satisfying
(O5), we also prove in Corollary 4.3.7 a dichotomy: either they are algebraic or have
no nonzero compact elements.

This section is dedicated to the study of the first case (without assuming simplicity).
In particular, we prove that the Cuntz semigroup of every real rank zero C∗-algebra
is zero-dimensional and that, conversely, every unital stable rank one C∗-algebra with
zero-dimensional Cuntz semigroup has real rank zero; see Theorem 4.3.8.

The second case, that is to say when there are no nonzero compact elements, is
covered in Sections 4.4 and 4.5.

4.3.1 (Relation between (O6) and zero-dimensionality). Lemma 4.3.2 below shows that
every zero-dimensional Cu-semigroup satisfies (O6). However, the converse does not
hold since, for example, the Cuntz semigroup of the Jiang-Su algebra satisfies (O6) but
is not zero-dimensional; see Example 4.1.22.

Thus, zero-dimensionality is strictly stronger than (O6).
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Lemma 4.3.2. A Cu-semigroup S is zero-dimensional if and only if, whenever x′ �
x� y1 + y2 in S, there exist elements z1, z2 ∈ S such that

z1 � y1, z2 � y2 and x′ � z1 + z2 � x.

Proof. The forward implication follows from Definition 4.1.1 by taking r = 2.
To prove the converse, let r ≥ 1 and take x′ � x � y1 + . . . + yr in S. We will

prove by induction on r that there exist elements z1, . . . , zr ∈ S such that

zj � yj for j = 1, . . . , r and x′ � z1 + . . .+ zr � x.

Note that the case r = 1 is trivial, and that the case r = 2 holds by assumption.
Thus, fix r > 2, assume that the result holds for r−1, and let x′ � x� y1 + . . .+yr

in S. Applying the case r = 2 to

x′ � x� (y1 + . . .+ yr−1) + yr,

we obtain obtain elements u1, u2 ∈ S such that

u1 � y1 + . . .+ yr−1, u2 � yr and x′ � u1 + u2 � x.

Now choose u′1 � u1 such that x′ � u′1 + u2. Applying the induction hypothesis to

u′1 � u1 � y1 + . . .+ yr−1,

we obtain z1, . . . , zr−1 ∈ S such that zj � yj for each j and

u′1 � z1 + . . .+ zr−1 � u1.

Then z1, . . . , zr−1, u2 have the desired properties.

4.3.3 (Riesz properties). Recall from Section 1.3 that a positively ordered monoid M
is said to have the Riesz decomposition property if, whenever x ≤ y + z in M , there
exist y′ ≤ y and z′ ≤ z such that x = y′ + z′.

Further, one says that M has

(i) the Riesz interpolation property if, given x1, x2, y1, y2 such that xi ≤ yj for every
i, j, there exists z ∈M such that xi ≤ z ≤ yj for every i, j.

(ii) the Riesz refinement property if, whenever x1 + x2 = y1 + y2, there exist zi,j for
i, j = 1, 2 such that xi = zi,1 + zi,2 and yj = z1,j + z2,j for each i, j.

All three Riesz properties agree whenever the order is cancellative and algebraic;
see, for example, [45, Proposition 2.1].

Further, note that M has Riesz interpolation whenever every pair of elements in M
has an infimum. Indeed, if xi ≤ yj for every i, j, we can consider z = y1 ∧ y2.

Proposition 4.3.4. Let S be a Cu-semigroup, and let D ⊆ S be a dense subsemigroup
of S. Assume that D satisfies the Riesz decomposition property for the pre-order induced
by �. Then, S is zero-dimensional.
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Proof. To see that dim(S) = 0, let x′ � x� y1 + y2 in S. Since D is sup-dense, there
exist elements x̃, ỹ1, ỹ2 ∈ D with

x′ � x̃� x ≤ ỹ1 + ỹ2, ỹ1 � y1 and ỹ2 � y2.

In particular,we have x̃� ỹ1+ỹ2 and, using thatD satisfies the Riesz decomposition
property, we get x1, x2 ∈ D such that

x̃ = x1 + x2, x1 � ỹ1 and x2 � ỹ2.

One can now check that x1 and x2 satisfy the properties in Lemma 4.3.2, as desired.

Given an element c in a Cu-semigroup S, we let the ideal generated by c be the
subset {x ∈ S | x ≤ ∞c}, which is an ideal in S.

Lemma 4.3.5. Let S be a weakly cancellative, zero-dimensional Cu-semigroup satisfy-
ing (O5), and let c ∈ S be compact. Then, the ideal generated by c is algebraic.

Proof. First, note that an element x ∈ S belongs to the ideal generated by c if and
only if x ≤ ∞c. To verify that the ideal is algebraic, for every pair x′, x satisfying
x′ � x ≤ ∞c we will find a compact element z such that x′ � z � x.

Thus, let x′, x be such a pair and choose x′′ � x with x′ � x′′. Then x′′ � ∞c,
which implies that there exists n ∈ N such that x′′ ≤ nc. Applying (O5) to x′ � x′′ ≤
nc, we obtain y ∈ S satisfying

x′ + y ≤ nc ≤ x′′ + y

and, applying that S is zero-dimensional to nc � nc � x′′ + y, we obtain z1, z2 ∈ S
such that

nc = z1 + z2, z1 � x′′ and z2 � y.

Note that, by weak cancellation, z1 and z2 are compact. Further, one has

x′ + y � nc = z1 + z2 ≤ z1 + y.

Using weak cancellation once again, we get x′ � z1, which shows that z = z1 has
the desired properties.

Recall from Definition 3.4.3 that a Cu-semigroup S is said to be compactly bounded
if every element in S� is bounded by a compact element.

Proposition 4.3.6. Let S be a Cu-semigroup satisfying (O5) and weak cancellation.
Then, the following are equivalent:

(1) S is compactly bounded and zero-dimensional;

(2) S is algebraic and satisfies (O6).



4.3. Algebraic, zero-dimensional Cuntz semigroups 123

Proof. Assuming (1), let x′ � x in S and take x′′ such that x′ � x′′ � x. Since S is
compactly bounded, it follows that x′′ is in the ideal generated by some compact. It
follows from Lemma 4.3.5 that S is algebraic.

Further, it is clear that zero-dimensionality implies that S satisfies (O6); see Para-
graph 4.3.1.

Conversely, assuming (2), let Sc denote the subsemigroup of compact elements,
which by assumption is a dense subsemigroup. By [6, Corollary 5.5.10], Sc satisfies the
Riesz decomposition property. Hence, dim(S) = 0 by Proposition 4.3.4.

The fact that S is compactly bounded follows clearly from algebraicity.

Corollary 4.3.7. Let S be a weakly cancellative, simple, zero-dimensional Cu-semi-
group satisfying (O5). Then, S is either algebraic or has no nonzero compact elements.

Proof. Assume that S has at least one nonzero compact element, since otherwise there
is nothing to prove.

Then, since S is simple, S is compactly bounded. It follows from Proposition 4.3.6
that S is algebraic, as desired.

Theorem 4.3.8. Let A be a C∗-algebra. Consider the following conditions:

(1) A has real rank zero;

(2) dim(Cu(A)) = 0.

Then, (1) ⇒ (2) and, if A is unital and of stable rank one, (2) ⇒ (1).

Proof. Let A be a real rank zero C∗-algebra. By [15, Corollary 3.3], A⊗K has real rank
zero. Applying [111, Theorem 1.1], the Murray-von Neumann semigroup V (A) satisfies
the Riesz decomposition property.

For every projection p ∈ A ⊗ K, denote by [p]0 its class in V (A) and consider the
map [p]0 7→ [p] from V (A) to Cu(A)c. This map is always well-defined, additive and
order-preserving. Further, since A has real rank zero, the map is also surjective. Indeed,
given [a] ∈ Cu(A)c, let B := a(A⊗K)a be the associated hereditary sub-C∗-algebra.
Since A has real rank zero, B has an approximate unit consisting of projections (see
[15, Theorem 2.6]) and, using that a - (a−ε)+ for some ε > 0, we can find a projection
p ∈ a(A⊗K)a such that a - p - (a− ε)+. This shows [a] = [p], as desired.

Now, suppose that [p] ≤ [q] + [r] in Cu(A)c, we have [p]0 ≤ [q]0 + [r]0 in V (A).
Using that V (A) has Riesz decomposition, one can find p1, p2 ∈ A ⊗ K such that
[p]0 = [p1]0 + [p2]0 with [p1]0 ≤ [q]0 and [p2]0 ≤ [r]0. This implies [p] = [p1] + [p2],
[p1] ≤ [q] and [p2] ≤ [r] in Cu(A). Thus, Cu(A)c has the Riesz decomposition property.

Using once again that A has real rank zero, it follows that Cu(A)c is sup-dense in
Cu(A). This implies dim(Cu(A)) = 0 by Proposition 4.3.4.

Conversely, let A be a unital, stable rank one C∗-algebra, and assume that Cu(A)
is zero-dimensional. Since A is unital, it follows from Remark 3.4.4 that Cu(A) is
compactly bounded.

Using Proposition 4.3.6 we have that Cu(A) is algebraic, and [26, Corollary 5] now
implies that A has real rank zero.

Recall that a C∗-algebra A is said to be stably projectionless if A⊗K has no nonzero
projections.
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Corollary 4.3.9. Let A be a separable, simple, Z-stable C∗-algebra. Then, one has
dim(Cu(A)) ≤ 1. Moreover, Cu(A) is zero-dimensional if and only if A has real rank
zero or if A is stably projectionless.

Proof. The first part of the corollary follows from Proposition 4.1.24, where note that
we only use Z-stability.

To show the forward implication of the second statement, assume that Cu(A) has
dimension zero. By [78, Theorem 4.1.10], a separable, simple, Z-stable C∗-algebra is
either purely infinite or stably finite.

If A is purely infinite, it follows from [110] that A has real rank zero, as required.
Thus, assume that A is stably finite, and note that we may also assume that A is not
stably projectionless, since otherwise there is nothing to prove.

Now let p ∈ A ⊗ K be a nonzero projection, so that A is stably isomorphic to
p(A⊗K)p and, consequently, Cu(A) ∼= Cu(p(A⊗K)p). Thus, dim(Cu(p(A⊗K)p)) = 0
and, since p(A ⊗ K)p is unital, we deduce from Proposition 4.3.6 that Cu(p(A ⊗ K)p)
is algebraic.

By [80, Theorem 6.7], the separable, unital, simple, stably finite, Z-stable C∗-alge-
bra p(A ⊗ K)p has stable rank one. Consequently, it follows from Theorem 4.3.8 that
p(A⊗K)p has real rank zero. By [15, Corollary 2.8 and 3.3], a C∗-algebra has real rank
zero if and only if its stabilization does. Thus, A has real rank zero.

To show the backward implication of the second statement, note that dim(Cu(A)) =
0 whenever A has real rank zero by Theorem 4.3.8.

If A is stably projectionless, [17, Theorem 5.8] implies that Cu(A) has no nonzero
compact elements. Thus, it follows from [6, Theorem 7.5.4] that Cu(A) has [0,∞]-
multiplication. Hence, dim(Cu(A)) = 0 by Proposition 4.1.23.

Example 4.3.10. We know from Theorem 4.2.12 that the nuclear dimension of subho-
mogeneous C∗-algebras agrees with the covering dimension of their Cuntz semigroup.
However, there are many examples where these two notions are not the same. For
example, let A be a separable C∗-algebra. In Theorem 4.3.8 above we have shown that
the Cuntz semigroup of A is zero-dimensional whenever A has real rank zero, but [109,
Remarks 2.2(iii)] implies that dimnuc(A) = 0 if and only if A is an AF-algebra.

Every non-nuclear, real rank zero C∗-algebra A, such as B(`2(N)), is also an example
where both dimensions are not the same. In fact, dim(Cu(A)) = 0 while dimnuc(A) =
∞. As a final example, the irrational rotation algebra has a zero-dimensional Cuntz
semigroup, but its nuclear dimension is 1.

4.4 Thin boundary and complementable elements

We introduce in this section two classes of elements in a simple Cu-semigroup: elements
with thin boundary (Definition 4.4.3) and complementable elements (Definition 4.4.6).
Both of these classes behave similarly to compact elements, and they agree whenever
S is simple, stably finite, soft, weakly cancellative, and satisfies (O5) and (O6); see
Theorem 4.4.9. In particular, this includes the Cuntz semigroup of any simple, stably
projectionless C∗-algebra of stable rank one by Proposition 4.4.2.
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Following the study of zero-dimensional, simple Cu-semigroups from Section 4.3, we
will show in Section 4.5 that zero-dimensionality is characterized by the denseness of
complementable elements; see Theorem 4.5.6.

4.4.1 (Residually stably finite Cu-semigroups). A Cu-semigroup S will be said to be
stably finite if for every pair of elements x, y ∈ S we have y = 0 whenever x + y � x.
Although this definition is more restrictive than the one given in [6], both notions agree
whenever S is simple.

Indeed, in [6] one says that a Cu-semigroup S is stably finite if, for every x ∈ S�,
one has that x + y = x implies y = 0. Clearly, if S satifies this condition, S is stably
finite in our sense (since x+ y = x whenever x+ y � x).

Conversely, if S is simple and nonzero, we know from [6, Proposition 5.2.10] that S
is stably finite in the sense of [6] if and only if ∞ ∈ S is not compact. Assume that
S is stably finite in our sense. Then, if ∞ was compact, we would have ∞ +∞ � ∞
and, therefore, ∞ = 0, a contradiction. This shows that both notions agree for simple
Cu-semigroups.

In analogy to residually stably finite C∗-algebras, we will say that a Cu-semigroup
is residually stably finite if all of its quotients are stably finite. Note that every weakly
cancellative Cu-semigroup is residually stably finite.

A simple, stably finite (resp. residually stably finite) C∗-algebra has a simple, stably
finite (resp. residually stably finite) Cuntz semigroup.

Recall from Paragraph 4.1.17 that an element x in a Cu-semigroup S is soft if for
every pair x′ � x in S there exists k ∈ N such that (k+ 1)x′ � kx, and that we denote
by Ssoft the set of soft elements in S. If S is simple, stably finite and satisfies (O5), it
follows from [6, Proposition 5.3.16] that we can decompose S as S = Ssoft t Sc, where
Sc denotes the set of compact elements in S. Thus, in this case, x ∈ S is soft if and
only if x = 0 or if for every x′ � x there exists a nonzero t ∈ S such that x′ + t� x.

Indeed, the two previous conditions imply that x is either zero or noncompact and,
therefore, x is soft. Conversely, if x is a nonzero soft element, x is not compact. Thus,
if x′ � x, we can take x′′′, x′′ ∈ S with x′ � x′′′ � x′′ � x and x′′ 6= x. Using (O5) we
find c ∈ S such that x′′′ + c ≤ x ≤ x′′ + c. Since x′′ 6= x, it follows that c 6= 0. Taking
t� c nonzero, the result follows.

We will say that a Cu-semigroup is soft if all of its elements are soft.

Proposition 4.4.2. Let A be a simple, stably projectionless C∗-algebra. Then, the
Cuntz semigroup Cu(A) is simple, stably finite, soft, and satisfies (O5) and (O6).

Proof. Since A is a simple C∗-algebra, it follows from [6, Corollary 5.1.12] that the
Cuntz semigroup Cu(A) is simple, It also satisfies (O5) and (O6); see Paragraph 1.2.14.
Moreover, since A is simple and stably projectionless, [17, Theorem 5.8] implies that
Cu(A) has no nonzero compact elements.

By [6, Proposition 5.2.10], a simple Cu-semigroup is stably finite if and only if ∞
is not compact or if S is zero. Thus, the Cuntz semigroup of a stably projectionless
C∗-algebra is always stably finite.

Consequently, we have Cu(A) = Cu(A)soft tCu(A)c = Cu(A)soft t{0} by [6, Propo-
sition 5.3.16], as desired.
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Definition 4.4.3. An element x of a simple Cu-semigroup S will be said to have thin
boundary if x� x+ t for every nonzero t ∈ S.

We let Stb denote the subset of elements with thin boundary.

Remark 4.4.4. Every compact element has thin boundary. However, the converse
does not hold. For instance, every nonzero element in [0,∞] has thin boundary but is
not compact.

The definition of such elements is inspired by the notion of ‘small boundary’ in
dynamical systems:

Let X be a compact, metric space, and take a minimal homeomorphism T : X → X.
An open subset U ofX is said to be of small boundary if µ(∂U) = 0 for every T -invariant
probability measure µ on X; see [58, Section 3].

Using the dynamical notion of comparison introduced by Kerr in [51, Section 3],
one can associate a dynamical version of the Cuntz semigroup to (X,T ). One can then
show that U has small boundary whenever [U ] � [U ] + [V ] for every nonempty open
set V ⊆ X in the dynamical Cuntz semigroup.

Thus, in this sense, ‘thin boundary’ implies ‘small boundary’; see Examples 6.4, 6.5
and Remark 6.6 in [94] for more details.

The following result lists some of the main properties of elements with thin boundary.
Note that not all the assumptions in the statement are needed for each claim.

Proposition 4.4.5. Let S be a simple, weakly cancellative Cu-semigroup satisfying
(O5) and (O6). Then,

(i) Stb is a submonoid of S.

(ii) x ≤ y whenever x+ z ≤ y + z with x, y ∈ Ssoft and z ∈ Stb.

(iii) For every pair x, y ∈ S, x, y have thin boundary whenever x+y has thin boundary.

(iv) x+ s� x+ t whenever x ∈ Stb, t is nonzero and soft, and s� t.

Proof. We prove each claim separately.

(i): We may assume that S is not isomorphic to N or Ek for any k, since then the
result follows trivially.

Thus, let x, y ∈ Stb and take t ∈ S nonzero. By Lemma 4.1.19, there is a nonzero
element s such that 2s ≤ t. Using that x and y have thin boundary, we have

x+ y � x+ s+ y + s ≤ x+ y + t.

Since this can be done for any nonzero t, we get that x+ y ∈ Stb, as desired.

(ii): Note that the result is clear for x = 0, so we may assume otherwise. Then, let
x′, x′′ ∈ S be nonzero and such that x′ � x′′ � x. Using that x is nonzero and soft,
there exists a nonzero t ∈ S with x′′ + t ≤ x. Thus, since z � z + t as z has thin
boundary, we have

x′ + z � x′′ + (z + t) ≤ x+ z ≤ y + z.

Using weak cancellation, one obtains x′ � y and, since this holds for every x′ � x,
we get x ≤ y.
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(iii): Now assume that x, y ∈ S are such that x+ y ∈ Stb, and let t ∈ S be nonzero.
Then,

x+ y � (x+ y) + t = (x+ t) + y.

This implies, by weak cancellation, that x � x + t. As this can be done for any
nonzero t ∈ S, it follows that x ∈ Stb. An analogous argument shows that y has thin
boundary.

(iv): Finally, to see (iv), choose t′ ∈ S such that s� t′ � t. Since t is nonzero and
soft, we can find a nonzero element c ∈ S such that t′ + c ≤ t. Thus, since x ∈ Stb we
have x� x+ c and therefore

x+ s� (x+ c) + t′ ≤ x+ t,

as required.

Definition 4.4.6. An element x in a Cu-semigroup S is complementable if for every
y ∈ S satisfying x� y there exists z ∈ S such that x+ z = y.

Proposition 4.4.7 below implies that elements with thin boundary are comple-
mentable; see Corollary 4.4.8.

Proposition 4.4.7. Let S be a simple, soft, stably finite Cu-semigroup satisfying (O5)
and (O6), and let x, y ∈ S be such that x � y. Assume that x has thin boundary.
Then, there exists z ∈ S such that x+ z = y.

Proof. We may assume that x is nonzero, since the case x = 0 is readily checked by
taking z = y.

Step 1. We construct an increasing sequence (yn)n and a sequence (sn)n of nonzero
elements such that supn yn = y, x = y0, and

yn + sn � yn+1

for every n ∈ N.
Set y0 := x, and let (ȳn)n be any�-increasing sequence in S with supremum y. Let

y′ ∈ S be such that y0 � y′ � y. Then, since y′ is nonzero, we can find a nonzero
element s0 satisfying y0 + s0 ≤ y′.

Using that y0 + s0 and ȳ1 are both way-below y, we can choose y1 such that

y0 + s0 � y1, ȳ1 � y1 and y1 � y.

Since y1 � y and y is soft, there is as above s1 6= 0 such that y1 + s1 � y. Thus,
there exists y2 ∈ S such that

y1 + s1 � y2, ȳ2 � y2 and y2 � y.

Continuing in this way, we obtain the desired sequences (yn)n and (sn)n.
Step 2. We construct a sequence (rn)n of nonzero elements such that

2rn+1 � rn, sn+1 and yn + rn + rn+1 � yn+1 (4.4.1)



128 Chapter 4. Covering dimension of Cuntz semigroups

for every n ∈ N.
Using Lemma 4.1.19 to s0, we get a nonzero element r0 ∈ S such that 2r0 � s0.

Then, applying Lemma 4.1.19 once again to r0 and s1, we obtain some nonzero r1 ∈ S
such that 2r1 � r0, s1.

Continuing in this way, we construct a sequence (rn)n such that 2rn+1 � rn, sn+1

for every n ∈ N.
In particular, we have

yn + rn + rn+1 ≤ yn + 2rn ≤ yn + sn � yn+1

for each n ∈ N, which shows that (rn)n has the desired properties.
Step 3. We construct a �-increasing sequence (wn)n and a sequence (vn)n such

that

x+ rn+1 + vn ≤ yn ≤ x+ rn + vn, wn � rn + vn, vn+1 and yn−1 ≤ x+ wn

for every n ≥ 1.
Using Proposition 4.4.5 (iv) at the first step and that S is soft, one gets

x+ r2 � x+ r1 ≤ y0 + s0 ≤ y1

and, applying (O5), we obtain v1 ∈ S such that

x+ r2 + v1 ≤ y1 ≤ x+ r1 + v1.

Further, using that x = y0 � y1 � x+ r1 + v1, yields an element w1 such that

x = y0 ≤ x+ w1 and w1 � r1 + v1.

Now let n ≥ 1, and assume that we have already chosen vn and wn. Using for the
first inequality that x+ rn+1 + vn ≤ yn and Step 2, we have

x+ rn+1 + rn + vn ≤ yn+1, and x+ rn+2 � x+ rn+1.

Consequently, since we also have wn � rn + vn by hypothesis, we can apply (O5)
(in its general setting, as defined in Paragraph 1.2.14) to x + rn+1 + rn + vn ≤ yn+1 in
order to obtain an element vn+1 ∈ S with

x+ rn+2 + vn+1 ≤ yn+1 ≤ x+ rn+1 + vn+1 and wn � vn+1.

Moreover, since yn � yn+1 ≤ x+ rn+1 + vn+1 and wn � vn+1 ≤ rn+1 + vn+1, we get
wn+1 ∈ S such that

yn ≤ x+ wn+1 and wn � wn+1 � rn+1 + vn+1.

This ends the proof of Step 3.
Now, since the sequence (wn)n is increasing, we can set z := supnwn. For each

n ≥ 1, we have
x+ wn ≤ x+ vn+1 ≤ yn+1 ≤ y

and therefore x+ z ≤ y. Further, we also have

yn ≤ x+ wn+1 ≤ x+ z

for every n and therefore y ≤ x+ z.
This implies x+ z = y, as desired.
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Corollary 4.4.8. Every element with thin boundary in a simple, soft, stably finite
Cu-semigroup satisfying (O5) and (O6) is complementable.

Assuming that S is also weakly cancellative, we can now prove that the converse of
Corollary 4.4.8 also holds:

Theorem 4.4.9. Let S be a simple, soft, weakly cancellative Cu-semigroup satisfying
(O5) and (O6), and let x ∈ S satisfy x�∞. Then, x has thin boundary if and only if
x is complementable.

Proof. The forwards implication follows from Corollary 4.4.8.
To show the backwards implication, assume that x is complementable and let t ∈ S

be nonzero. Since t is nonzero, we can choose a nonzero t′ ∈ S such that t′ � t. Using
that S is simple, one has x � ∞ = ∞t′ and, consequently, we get x ≤ nt′ for some
n ≥ 1.

Choose t1, . . . , tn ∈ S such that

t′ � t1 � t2 � . . .� tn � t,

and set y := t1 + . . .+ tn.
Since x is complementable and x ≤ nt′ � y, we obtain z ∈ S such that x + z = y.

Further, note that

y = t1 + t2 + . . .+ tn−1 + tn � t2 + t3 + . . .+ tn + t ≤ y + t,

which implies
x+ z = y � y + t = x+ z + t.

Using weak cancellation, we obtain x� x+ t, as desired.

Theorem 4.4.10. Let S be a simple, soft, weakly cancellative Cu-semigroup satisfying
(O5) and (O6). Then, Stb is a cancellative monoid and, for every pair of nonzero
elements x, y ∈ Stb, we have x� y if and only if x+ z = y for some z ∈ S×tb.

Proof. It follows from Proposition 4.4.5 that Stb is a cancellative monoid.
Next, let x, y ∈ Stb. If x � y, Theorem 4.4.9 implies that there exists z ∈ S such

that x + z = y. Since y is not compact, we have z 6= 0. Further, we have z ∈ Stb by
Proposition 4.4.5 (iii).

Conversely, if x + z = y for some nonzero z ∈ Stb, we have x � x + z = y by the
definition of thin boundary.

Corollary 4.4.11. Let A be a simple, stably projectionless C∗-algebra of stable rank
one. Then, Cu(A)tb is a cancellative monoid and, for every pair of nonzero elements
x, y ∈ Cu(A)tb, we have x� y if and only if x+ z = y for some z ∈ Cu(A)×tb.

Proof. Using Proposition 4.4.2, we know that Cu(A) is simple, soft, and satisfies (O5)
and (O6). Moreover, recall from Paragraph 1.2.14 that a stable rank one C∗-algebra
has a weakly cancellative Cuntz semigroup.

The result now follows from Theorem 4.4.10 above.
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4.5 Simple, zero-dimensional Cuntz semigroups

As mentioned in Section 4.4, we prove in Theorem 4.5.6 that countably based, simple,
weakly cancellative, soft Cu-semigroups that satisfy (O5) and (O6) are zero-dimensional
if and only if the complementable elements are dense in the semigroup.

Using this result and Corollary 4.3.7, we deduce that a countably based, simple,
weakly cancellative Cu-semigroup S satisfying (O5) and (O6) is zero-dimensional if
and only if S is the retract of a simple, algebraic Cu-semigroup; see Theorem 4.5.8.

Let us first show that Stb has the Riesz decomposition property.

Lemma 4.5.1. Let S be a simple, soft, weakly cancellative Cu-semigroup satisfying
(O5) and (O6). Assume that Stb is sup-dense. Let x, y, z ∈ S be such that x ∈ Stb and
x� y + z. Then, there exist v, w ∈ Stb such that

x = v + w, v � y and w � z.

Proof. We first note that, if z is zero, we can set v = x and w = 0, which trivially
satisfy the required conditions. Thus, we may assume otherwise, i.e. z, y 6= 0.

Let z′ ∈ S nonzero be such that

x� y + z′ and z′ � z.

Since z is nonzero and soft, we obtain a nonzero t ∈ S such that z′+ t� z. Further,
since x has thin boundary, we get x � x + t, which allows us to choose x′ � x such
that x� x′ + t. By the denseness of Stb, we may assume that x′ has thin boundary.

Applying (O6) to x′ � x� y + z′, there exist elements e, f ∈ S such that

x′ � e+ f, e� x, y and f � x, z′.

Using once again that Stb is sup-dense, we can take e havein thin boundary. Thus,
e is complementable by Corollary 4.4.8, and we can find c ∈ S such that e+ c = x. In
particular, it follows from Proposition 4.4.5 that e and c have thin boundary.

This implies
e+ c = x� x′ + t ≤ e+ f + t

and, by weak cancellation, we get c� f + t.
Thus, we have

c� f + t ≤ z′ + t� z.

Hence, v := e and w := c have the desired properties.

Recall from Paragraph 4.3.3 the definition of Riesz decomposition and Riesz refine-
ment.

Given two elements x, y in a positively ordered monoid M , we write x ≤alg y if
x+ z = y for some z ∈M .

Proposition 4.5.2. Let S be a simple, soft, weakly cancellative Cu-semigroup satisfying
(O5) and (O6). Assume that Stb is sup-dense. Then, Stb is a simple, cancellative
refinement monoid and dim(S) = 0.
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Proof. The subset of elements with thin boundary Stb is a cancellative monoid by
Theorem 4.4.10. Moreover, for any x, y 6= 0, x � y if and only if there exists z ∈ S×tb
with x+ z = y. Thus, x ≤alg y in Stb if and only if x = y or x� y.

Now let x ≤alg y + z in Stb. Then, either x = y + z or x � y + z. Setting v = y
and w = z in the first case or using Lemma 4.5.1 in the second, note that there always
exist elements v, w ∈ Stb such that x = v + w with v ≤alg y and w ≤alg z. That is to
say, Stb satisfies the Riesz decomposition property.

Since Stb is cancellative, it follows that Stb is a refinement monoid. Further, since
Stb satisfies the Riesz decomposition property, it follows from Proposition 4.3.4 that
dim(S) = 0.

Lemma 4.5.3. Let S be a weakly cancellative, zero-dimensional Cu-semigroup satisfy-
ing (O5). Assume that x′, x′′, x, e, t ∈ S satisfy

x′ � x′′ and x′′ + t ≤ x ≤ e� e+ t.

Then, there exists y ∈ S such that x′ � y � x and y � y + t.

Proof. Using (O5) at x′ � x′′ ≤ e, we obtain c ∈ S satisfying

x′ + c ≤ e ≤ x′′ + c,

which implies that e� e+ t ≤ x′′ + c+ t = x′′ + (c+ t).
Moreover, since dim(S) = 0, there exist u, v ∈ S such that

u� x′′, v � c+ t and e� u+ v � e+ t.

Thus, one gets
x′ + c ≤ e� u+ v ≤ u+ c+ t

and, using weak cancellation, we have x′ � u+ t. Since u+ v � e+ t ≤ u+ v + t, we
obtain u� u+ t, again by weak cancellation.

Now choose t′ ∈ S such that

t′ � t, x′ � u+ t′ and u� u+ t′

and set y := u+ t′.
Then,

x′ � u+ t′ = y and y = u+ t′ � x′′ + t ≤ x.

Using that u� u+ t′ and t′ � t, we get

y = u+ t′ � u+ t′ + t = y + t.

This shows that y has the desired properties.

Lemma 4.5.4. Let S be a countably based, simple, soft, weakly cancellative Cu-semi-
group satisfying (O5) and (O6). Assume that for every x′, x ∈ S with x′ � x and t 6= 0
there exists y ∈ S such that

x′ � y � x, y � y + t.

Then, for every x′ � x there exists y ∈ S with thin boundary such that x′ � y � x.
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Proof. Since S is countably based, there exists a sequence (tn)n∈N of nonzero elements
such that, for every nonzero t ∈ S, tn ≤ t for some n ∈ N.

Now let x′, x ∈ S be such that x′ � x. Then, it follows from our assumption that
we can choose an element y0 such that x′ � y0 � x and y0 � y0 + t0.

Thus, we can take y′0 with

x′ � y′0 � y0 � x, y0 � y′0 + t0.

Applying the assumption once again, but now to y′0, y0, t1, we obtain y1 such that
y′0 � y1 � y0 and y1 � y1 + t1, and we can choose y′1 satisfying

y′0 � y′1 � y1 � y0, y1 � y′1 + t1.

Proceeding in this way, we find elements y′n and yn such that

x′ � y′0 � . . .� y′n � yn � . . .� y0 � x, yn � y′n + tn.

Set y := supn y
′
n, which satisfies x′ � y′0 ≤ y ≤ y0 � x. Further, given some

nonzero t ∈ S, there exists n such that tn ≤ t. This implies

y ≤ yn � y′n + tn ≤ y + tn ≤ y + t

and it follows that y has thin boundary.

Proposition 4.5.5. Let S be a countably based, simple, soft, weakly cancellative, zero-
dimensional Cu-semigroup satisfying (O5) and (O6). Then, Stb is sup-dense.

Proof. It suffices to verify the assumptions of Lemma 4.5.4. Thus, take x′ � x and
t 6= 0 in S.

If x′ = 0, the element y = 0 satisfies

x′ � y � x and y � y + t,

as desired.
If x′ 6= 0, choose x′′, u ∈ S such that x′ � x′′ � u� x. Since u is soft and nonzero,

there exists a nonzero element s with x′′ + s � u. Using Lemma 4.1.19, and noting
that N and Ek are not soft, we find r ∈ S with 0 6= r ≤ s, t.

Now choose r′ ∈ S such that 0 6= r′ � r. Since r′ is nonzero and S is simple, one
has u�∞ =∞r′ and, consequently, we get u ≤ nr′ for some n ∈ N.

Let r1, . . . , rn ∈ S be such that

r′ � r1 � r2 � . . .� rn � r,

and set e := r1 + . . .+ rn.
As in the proof of Theorem 4.4.9, we get e� e+ r ≤ e+ t. Thus, one has

x′ � x′′ and x′′ + r ≤ x′′ + s� u ≤ nr′ ≤ e� e+ r.

By Lemma 4.5.3, there exists y ∈ S with x′ � y � u and y � y + r ≤ y + t, as
desired.
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Theorem 4.5.6. Let S be a countably based, simple, soft, weakly cancellative Cu-sem-
igroup satisfying (O5) and (O6). Then, the following conditions are equivalent:

(1) S is zero-dimensional;

(2) the elements with thin boundary are sup-dense;

(3) the complementable elements are sup-dense;

(4) there exists a countably based, simple, algebraic, weakly cancellative Cu-semigroup
T satisfying (O5) and (O6) such that S ∼= Tsoft.

Proof. By Proposition 4.5.5, (1) implies (2). Conversely, (2) implies (1) by Proposi-
tion 4.5.2. That (2) and (3) are equivalent follows from Theorem 4.4.9.

To show that (4) implies (1), let T be as in (4). Using Proposition 4.1.20 and
Proposition 4.3.6 at the second and last steps respectively, we have

dim(S) = dim(Tsoft) ≤ dim(T ) = 0,

as desired.
Now assume (2) and let us prove (4). Since S is countably based and Stb is sup-dense,

there exists a countable subset M0 ⊆ Stb that is also sup-dense and whose elements are
�-below ∞. Moreover, we know by Proposition 4.5.2 that Stb is a simple, cancellative
refinement monoid.

Let M ′
0 denote the (countable) subset containing all finite sums of elements in M0,

and consider the countable sets

C0 := {(x, y) ∈ (M ′
0)2 | x ≤alg y in Stb},

I0 := {(x, y, z, t) ∈ (M ′
0)4 | x+ y = z + t}.

For each c = (x, y) ∈ C0, let zc ∈ Stb be such that x + zc = y. Since Stb is
cancellative, this element is unique.

Further, for every i = (x, y, z, t) ∈ I0, let r1,i, r2,i, r3,i, r4,i ∈ Stb be a choice of
elements satisfying the refinement conditions for x+ y = z + t.

We set
M1 := M ′

0 ∪ {zc}c∈C0 ∪ {r1,i, r2,i, r3,i, r4,i}i∈I0 ,

where we note that every element in M1 is still �-below ∞.
Proceeding in this manner, we obtain an increasing sequence of subsets

M0 ⊆M1 ⊆M2 ⊆ . . .

such that M := ∪nMn is a countable, cancellative, refinement submonoid of Stb, such
that the inclusion (M,≤alg) → (Stb,≤alg) is an order-embedding, and such that every
element in M is �-below ∞. Thus, given x, y ∈ M , we have y � ∞ = ∞x in S,
which implies that there exists some k ∈ N with y � kx. By Theorem 4.4.10, we get
y ≤alg kx and, consequently, that M is simple

We let T be the sequential round ideal completion Cu(M,≤alg) of M with respect
to the algebraic partial order; see [6, Section 5.5]. Then, T is a countably based,
algebraic Cu-semigroup. Since M is cancellative, algebraically ordered and satisfies the
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Riesz decomposition property, we know from [6, Proposition 5.5.8] that T is weakly
cancellative and satisfies (O5) and (O6). Further, since M is simple, so is T .

To see that S is isomorphic to Tsoft, we identify T with the set of intervals in M
ordered by inclusion. Recall that an interval I ⊆ M is a downward hereditary and
upward directed subset.

Moreover, the intervals of the form {y ∈ M | y ≤alg x} for some x ∈ M are
precisely identified with the compact elements in T . Thus, it follows that the nonzero
soft elements in T are those intervals that do not contain a largest element. Since every
upward directed set in a countably based Cu-semigroup has a supremum, we can define
the Cu-morphism α : Tsoft → S by α(I) := sup I for every (soft) interval I ⊆M .

To see that α is surjective, note that every element s ∈ S can be written as the
supremum of a �-increasing sequence in M0 ⊆M . Thus, one has

α({y ∈M | y ≤alg s}) = s.

That α is an order-embedding follows from the fact that the natural inclusion
(M,≤alg)→ (Stb,≤alg) is an order-embedding.

Remark 4.5.7. Note that, with the notation of Theorem 4.5.6 (4) above, one cannot
always set T = Cu(S,≤alg). Indeed, this semigroup (which satisfies all the other prop-
erties) may not be countably based, since every basis of T contains at least all of its
compact elements and, consequently, all the elements of Stb.

In fact, there is no canonical choice for T . For example, set S = [0,∞], and note
that, for every supernatural number q satisfying q = q2 6= 1, its associated UHF-
algebra Mq has a countably based, simple, algebraic, weakly cancellative Cu-semigroup
satisfying (O5) and (O6) such that (Cu(Mq))soft

∼= [0,∞]; see [6, Section 7.4].

Using Corollary 4.3.7 and Theorem 4.5.6, we can now prove the following result.
One should recall the definition of retract from Definition 4.1.15.

Theorem 4.5.8. Let S be a countably based, simple, weakly cancellative Cu-semigroup
satisfying (O5) and (O6). Then, S is zero-dimensional if and only if S is a retract of
a countably based, simple, algebraic, weakly cancellative Cu-semigroup satisfying (O5)
and (O6).

Proof. We know from Corollary 4.3.7 that, if S is zero-dimensional, S is either alge-
braic or soft. If it is algebraic, we choose S as its own retract. Else, S is soft. By
Theorem 4.5.6, S isomorphic to the soft part of a countaly based, simple, algebraic,
weakly cancellative Cu-semigroup T . Using Proposition 4.1.18, we see that T satisfies
the required properties.

Conversely, suppose that S is a retract of such an algebraic Cu-semigroup T . Then,
it follows from Proposition 4.3.6 that dim(T ) = 0. Using Proposition 4.1.20, one obtains
dim(S) ≤ dim(T ) = 0, as desired.

Recall the definition of Riesz interpolation from Paragraph 4.3.3. As defined in [6,
Definition 7.3.4], a Cu-semigroup S is almost divisible if, for every pair x′ � x in S and
n ∈ N, there exists y ∈ S such that ny ≤ x and x′ ≤ (n+ 1)y.

Lemma 4.5.9. Let S be a retract of a Cu-semigroup T . Then,
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(i) If T is almost divisible, so is S.

(ii) If T has the Riesz interpolation property, so does S.

Proof. Since S is a retract of T , there is a Cu-morphism ι : S → T and a generalized
Cu-morphism σ : T → S such that σ ◦ ι = idS.

(i): Assume that T is almost divisible, and let n ∈ N and x′, x ∈ S satisfying x′ � x.
Since ι is a Cu-morphism, we have ι(x′)� ι(x) in T . Using that T is almost divisible,
there exists y ∈ T such that ny ≤ ι(x) and ι(x′) ≤ (n + 1)y. Then, nσ(y) ≤ x and
x′ ≤ (n+ 1)σ(y), as desired.

(ii): Now assume that T has the Riesz interpolation property, and let x1, x2, y1, y2 ∈
S be such that xi ≤ yj for all i, j ∈ {1, 2}. Thus, ι(xi) ≤ ι(yj) in T for each i, j and,
consequently, there exists z ∈ T such that ι(xi) ≤ z ≤ ι(yj). This implies xi ≤ σ(z) ≤ yj
for all i, j ∈ {0, 1}, which shows that σ(z) has the desired property.

Proposition 4.5.10. Let S be a countably based, simple, weakly cancellative, zero-
dimensional Cu-semigroup satisfying (O5). Then,

(i) S satisfies the Riesz interpolation property.

(ii) if S is not isomorphic to N or Ek for any k, S is almost divisible.

Proof. Using Theorem 4.5.8, we know that S is the retract of a countably based, simple,
algebraic, weakly cancellative Cu-semigroup T satisfying (O5) and (O6).

(i): Since Tc is a simple and cancellative refinement monoid, it follows that Tc has
the Riesz interpolation property. Consequently, we know from [6, Proposition 5.5.8 (3)]
that T also has Riesz interpolation. By Lemma 4.5.9, S has Riesz interpolation.

(ii): Now assume that S is not isomorphic to N or Ek for any k. We have that
Tc is weakly divisible, that is, for every x ∈ Tc there exist elements y, z ∈ Tc such
that x = 2y + 3z; see [9, Theorem 6.7]. This implies that T is almost divisible. By
Lemma 4.5.9, S is almost divisible.

In [96], we will investigate when non-simple, soft Cu-semigroups are have dimension
zero.

Question 4.5.11. To what extent does the converse of Proposition 4.5.10 holds? That
is to say, when does a countably based, simple, soft, weakly cancellative, almost divisible
Cu-semigroup S that satisfies Riesz interpolation, (O5), and (O6) have dimension zero?

We note that the question has a negative answer if softness is not assumed, as
pointed out by the referee of [94]. For example, the Cuntz semigroup Z of the Jiang-
Su algebra satisfies all of the above properties except for softness, but we know from
Example 4.1.22 that it is not zero-dimensional.

Question 4.5.12. Let S be a zero-dimensional, weakly cancellative Cu-semigroup sat-
isfying (O5). Does S have the Riesz interpolation property? If, additionally, no quotient
of S is isomorphic to N or Ek for any k, is S almost divisible?





Chapter 5

Approximations and
sub-Cu-semigroups

In this chapter we introduce the notion of approximation for Cu-semigroups and the
Löwenheim-Skolem condition for properties in Cu. The first one is defined in Section 5.1,
where we show that it is compatible with inductive limits in Cu and with the notion
of approximations for C∗-algebras. As a result, we prove that, for any C∗-algebra A,
the dimension of Cu(A) can be bounded by the dimension of the Cuntz semigroups
of any approximating family of sub-C∗-algebras of A. Moreover, we provide a new
characterization for the Cuntz semigroup of AI-algebras; see Theorem 5.1.16.

In Sections 5.2 and 5.3 we investigate the general structure of sub-Cu-semigroups
and show that most of the usual properties in Cu (such as the ones in Paragraph 1.2.14)
satisfy the Löwenheim-Skolem condition. In particular, the results in this section imply
that the covering dimension of a Cu-semigroup is determined by the dimension of its
countably based sub-Cu-semigroups. This allows us to drop separability assumptions
from some of the results in Chapter 4.

We finish the chapter by discussing if associating to each C∗-algebra the dimension
of its Cuntz semigroup is a noncommutative dimension theory in the sense of [89]; see
Section 5.4

The results, except Theorem 5.1.16, have appeared in [92].

5.1 Approximation of Cu-semigroups

Inspired by the notion of approximation for C∗-algebras, in this section we introduce
in Definition 5.1.1 a notion of approximation for a Cu-semigroup S by a family of
Cu-morphisms Sλ → S. We prove that properties such as (O5)-(O7) and having di-
mension at most n pass to the approximated Cu-semigroup; see Proposition 5.1.7 and
Proposition 5.1.8.

We also show in Proposition 5.1.12 that, for any family of sub-C∗-algebras Aλ
approximating a C∗-algebra A, their Cuntz semigroups Cu(Aλ) approximate Cu(A).
Moreover, if a Cu-semigroup S is the inductive limit of a system of Cu-semigroups Sλ,
the family (Sλ)λ approximates S (Proposition 5.1.14). Finally, using the results from
Chapter 3, it is shown that a countably based Cu-semigroup is the Cuntz semigroup of
an AI-algebra if and only if it can be approximated by the Cuntz semigroup of interval
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algebras; see Theorem 5.1.16.

Definition 5.1.1. Let S be a Cu-semigroup and let (Sλ, ϕλ)λ∈Λ be a family of Cu-sem-
igroups Sλ and Cu-morphisms ϕλ : Sλ → S.

We say that the family (Sλ, ϕλ)λ∈Λ approximates S if the following holds: Given
finite sets J andK, given elements x′j, xj ∈ S for j ∈ J , and given functionsmk, nk : J →
N for k ∈ K, such that x′j � xj for all j ∈ J and such that∑

j∈J

mk(j)xj �
∑
j∈J

nk(j)x
′
j

for all k ∈ K, there exist λ ∈ Λ and yj ∈ Sλ for j ∈ J such that x′j � ϕλ(yj)� xj for
each j ∈ J , and such that ∑

j∈J

mk(j)yj �
∑
j∈J

nk(j)yj

for all k ∈ K.
We will also say that a family F of Cu-semigroups approximates S if there exists

an approximation (Sλ, ϕλ)λ of S such that Sλ ∈ F for each λ.

Remark 5.1.2. Note that, in Definition 5.1.1 above, we do not ask the Cu-morphisms
ϕλ : Sλ → S to be order-embeddings. This is because our two main sources of approxi-
mations (Proposition 5.1.12 and Proposition 5.1.14) would otherwise be excluded, since
neither the natural maps Sλ → S to an inductive limit, or the induced Cu-morphisms
Cu(Aλ)→ Cu(A) from sub-C∗-algebras need be order-embeddings. For the second case
consider for example C ⊆ O2.

Further, one might think of J as the index set for a collection of variables, and for
each k ∈ K we think of the pair (mk, nk) as the encoding of a ‘formula’. A ‘property’ for
Cu-semigroups could then be seen as a collection of formulas. The notion introduced in
Definition 5.1.1 ensures that all such properties pass to the Cu-semigroup that is being
approximated.

However, we will not formalize here the notions of ‘formula’ or ‘property’. This goes
into the direction of developing a model theory for Cu-semigroups, an elaborate task
that will be taken up elsewhere.

In order to prove that properties such as (O5)-(O7) and weak cancellation pass to
the approximated Cu-semigroup, we first need to express them with the notation of
Definition 5.1.1.

Lemma 5.1.3. Let S be a Cu-semigroup. Then, S satisfies (O5) if and only if there
exists a basis B ⊆ S such that, for all x′, x, y′, y, z′, z ∈ B with x′ � x, y′ � y, z′ � z
and such that x+ y � z′, there exists c ∈ B such that

x′ + c� z, z′ � x+ c and y′ � c.

Proof. Let B be a basis of S, and assume that S satisfies (O5). Take x′ � x, y′ � y
and z′ � z in B such that x + y � z′, and choose z′′ ∈ B with z′ � z′′ � z. Then,
since S satisfies (O5), one finds a ∈ S with

x′ + a ≤ z′′ ≤ x+ a and y′ � a.
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Using that y′ � a and z′ � z′′ ≤ x+ a, there exists a′ � a such that

z′ � x+ a′ and y′ � a′.

Thus, since B is a basis, we can find c ∈ B with a′ � c � a. It is readily checked
that c has the required properties.

Conversely, assume that there exists a basis B of S with the stated property. We
follow a similar argument to that of [6, Theorem 4.4 (1)]:

Let x′, x, y′, y, z ∈ S be such that

x+ y ≤ z, x′ � x and y′ � y.

Using that B is a basis, we can find elements c′0, c0 ∈ B with y′ � c′0 � c0 � y and
a �-decreasing sequence (xn)n in B satisfying

x′ � . . .� xn+1 � xn � . . .� x1 � x0 � x.

Since x0 + c0 � z, there exists a �-increasing sequence (zn)n in B with supremum
z such that x0 + c0 � z0.

Thus, we get

x0 + c0 � z0, x1 � x0, c′0 � c0 and z0 � z1.

Using that B satisfies the stated property, we find c1 ∈ B satisfying

x1 + c1 � z1, z0 � x0 + c1 and c′0 � c1.

Consequently, we can choose c′1 ∈ B such that z0 � x0 + c′1 and c′0 � c′1 � c1.
Then,

x1 + c1 � z1, x2 � x1, c′1 � c1 and z1 � z2,

and we can use the assumption once again to obtain c2 ∈ B such that

x2 + c2 � z2, z1 � x1 + c2 and c′1 � c2.

This allows us to choose c′2 ∈ B such that z1 � x1 + c′2 and c′1 � c′2 � c2.
Proceeding in this manner inductively, we find a �-increasing sequence (c′n)n satis-

fying
x′ + c′n ≤ xn + cn � zn ≤ z and zn � xn + c′n+1 ≤ x+ c′n+1

for each n.
Therefore, the supremum c := supn c

′
n satisfies x′ + c ≤ z ≤ x + c and y′ � c0 ≤ c,

as required.

Lemma 5.1.4. Let S be a Cu-semigroup. Then, S satisfies (O6) if and only if there
exists a basis B ⊆ S such that, for all x′, x, y′, y, z′, z ∈ B with x′ � x, y′ � y, z′ � z
and such that x� y′ + z′, there exist v, w ∈ B satisfying

x′ � v + w, v � x, y and w � x, z.
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Proof. Given a basis B ⊆ S, an analogous argument to that of Lemma 5.1.3 shows that
B has the stated property whenever S satisfies (O6).

Conversely, assume that there exists a basis B ⊆ S with the stated property, and
let x′, x, y, z ∈ S satisfy

x′ � x ≤ y + z.

Since B is a basis, we can find a′, a ∈ B such that x′ � a′ � a � x. Thus, since
a� y + z, there exist elements b′, b, c′, c ∈ B satisfying

a� b′ + c′, b′ � b� y and c′ � c� z.

Using that B has the stated property, we get v, w ∈ B such that

x′ � a′ � v + w, v � a, b and w � a, c.

Note that a� x, b� y and c� z. Thus, the elements v and w have the required
properties. That is, S satisfies (O6).

We omit the proofs of Lemmas 5.1.5 and 5.1.6 below, since they can be proven with
the same methods as Lemma 5.1.4.

Lemma 5.1.5. Let S be a Cu-semigroup. Then, S satisfies (O7) if and only if there
exists a basis B ⊆ S such that, for all x′1, x1, x

′
2, x2, w

′, w ∈ B with x′1 � x1, x′2 � x2,
w′ � w and satisfying x1 � w′ and x2 � w′, there exists x ∈ B satisfying

x′1, x
′
2 � x� w, x1 + x2.

Lemma 5.1.6. Let S be a Cu-semigroup. Then, S is weakly cancellative if and only if
there exists a basis B ⊆ S such that, for all x′, x, y′, y, z′, z ∈ B with x′ � x, y′ � y,
z′ � z, and such that x+ z � y′ + z′, we have x′ � y.

Proposition 5.1.7. Let S be a Cu-semigroup that is approximated by (Sλ, ϕλ)λ∈Λ.
If each Sλ is weakly cancellative, then so is S. Similarly, if each Sλ satisfies (O5)
(respectively, (O6) or (O7)), then so does S.

Proof. Assume first that S is approximated by (Sλ, ϕλ)λ∈Λ with Sλ weakly cancellative
for each λ ∈ Λ. We will prove that S satisfies the condition in Lemma 5.1.6 for B = S,
which will imply that S is weakly cancellative.

Thus, let x′, x, y′, y, z′, z ∈ S be such that x′ � x, y′ � y, z′ � z and x+z � y′+z′.
Using that S is approximated by (Sλ, ϕλ)λ∈Λ, there exist λ ∈ Λ and elements u, v, w ∈ Sλ
satisfying

x′ � ϕλ(u)� x, y′ � ϕλ(v)� y, z′ � ϕλ(w)� z and u+ w � v + w.

Applying weak cancellation at u+ w � v + w, we get u� v. Therefore, one has

x′ � ϕλ(u)� ϕλ(v)� y,

as desired.
Now assume that Sλ satisfies (O5) for each λ. As before, we will show that S satisfies

the property of Lemma 5.1.3 for B = S.
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Let x′ � x, y′ � y and z′ � z in S satisfy x + y � z′. Since (Sλ, ϕλ)λ∈Λ

approximates S, we can find λ ∈ Λ and u, v, w ∈ Sλ such that

x′ � ϕλ(u)� x, y′ � ϕλ(v)� y, z′ � ϕλ(w)� z and u+ v � w.

Moreover, using that ϕλ is a Cu-morphism and u + v � w, there exist u′, v′ ∈ Sλ
satisfying

x′ � ϕλ(u
′), u′ � u, y′ � ϕλ(v

′) and v′ � v.

Since Sλ satisfies (O5), we obtain a ∈ Sλ such that

u′ + a ≤ w ≤ u+ a and v′ � a.

Thus, the element c := ϕλ(a) has the required properties, and it follows from
Lemma 5.1.3 that S satisfies (O5).

The statements for (O6) and (O7) can be proven analogously, using Lemmas 5.1.4
and 5.1.5 insted of Lemma 5.1.3 respectively.

Proposition 5.1.8. Let S be a Cu-semigroup approximated by a family (Sλ, ϕλ)λ∈Λ.
Then, dim(S) ≤ supλ∈Λ dim(Sλ).

Proof. We may assume that n := supλ∈Λ dim(Sλ) is finite, since otherwise there is
nothing to prove.

Thus, let x′ � x� y1 + . . . + yr in S, and choose elements y′j � yj for each j ≤ r
such that

x′ � x� y′1 + . . .+ y′r.

Since the family (Sλ, ϕλ)λ∈Λ approximates S, there exists λ ∈ Λ and elements
v, w1, . . . , wr ∈ Sλ such that

x′ � ϕλ(v)� x, y′j � ϕλ(wj)� yj

for each j ≤ r and
v � w1 + . . .+ wr.

Using that ϕλ is a Cu-morphism and that x′ � ϕλ(v), we can find v′ ∈ Sλ with

x′ � ϕλ(v
′) and v′ � v.

Therefore, one has v′ � v � w1 + . . . + wr in Sλ. Since dim(Sλ) ≤ n, we obtain
elements zj,k ∈ Sλ for j = 1, . . . , r and k = 0, . . . , n satisfying conditions (i)-(iii) in
Definition 4.1.1.

One can now check that the elements ϕλ(zj,k) in S satisfy conditions (i)-(iii) in
Definition 4.1.1 for x′ � x� y1 + . . .+ yr, as required.

Recall that we say that a collection of sub-C∗-algebras Aλ of a C∗-algebra A ap-
proximates A if, for every ε > 0 and finitely many elements a1, . . . , an ∈ A, there exist
λ ∈ Λ and b1, . . . , bn ∈ Aλ such that ‖bj − aj‖ < ε for every j.

In order to prove Proposition 5.1.12, we first need some preliminary lemmas:

Lemma 5.1.9 ([22, Lemma 1]). Let A be a C∗-algebra. For every ε > 0 and a ∈ A+,
there exists δ > 0 such that for every b ∈ A with ‖b−a‖ < δ one has ‖(b∗b)1/2−a‖ < ε.
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Lemma 5.1.10. Let A be a C∗-algebra. For every ε, δ > 0 and a ∈ A+, there exists
σ > 0 such that

‖(a− ε)+ − (b− ε)+‖ ≤ δ

whenever b ∈ A+ satisfies ‖a− b‖ ≤ σ.

Proof. Let ε, δ > 0 and a ∈ A+, and let p(t) :=
∑n

i=1 λit
i be a polynomial on [0, 2‖a‖]

such that
‖(t− ε)+ − p(t)‖ ≤

δ

3
.

Take σ > 0 such that

σ ≤ ‖a‖, and σ ≤ δ

3n|λi|

(
4i−1 +

4i − 1

3

)−1

‖a‖1−i

for each i ≤ n.
Now let b ∈ A+ satisfying ‖a− b‖ ≤ σ. For each i ≤ n, we have

‖ai − bi‖ = ‖(a+ b)(ai−1 − bi−1) + bi−1a− ai−1b‖
≤ ‖a+ b‖‖ai−1 − bi−1‖+ ‖bi−1a− ai−1b‖
≤ (2‖a‖+ σ)‖ai−1 − bi−1‖+ ‖bi−1a− ai‖+ ‖ai − ai−1b‖
≤ 3‖a‖‖ai−1 − bi−1‖+ ‖a‖‖ai−1 − bi−1‖+ ‖a‖i−1σ

= 4‖a‖‖ai−1 − bi−1‖+ ‖a‖i−1σ

≤ 4‖a‖(4‖a‖‖ai−2 − bi−2‖+ ‖a‖i−2σ) + ‖a‖i−1σ

= 42‖a‖2‖ai−2 − bi−2‖+ (4 + 1)‖a‖i−1σ

≤ . . . ≤ 4i−1‖a‖i−1‖a− b‖+
4i−1 − 1

3
‖a‖i−1σ

≤
(

4i−1 +
4i−1 − 1

3

)
‖a‖i−1σ ≤ δ

3n|λi|
.

Thus, given any b ∈ A+ satisfying ‖a− b‖ ≤ σ, one obtains

‖(a− ε)+ − (b− ε)+‖ ≤
2δ

3
+ ‖p(a)− p(b)‖

≤ 2δ

3
+

n∑
i=1

|λi|‖ai − bi‖

≤ 2δ

3
+

n∑
i=1

|λi|
δ

3n|λi|
= δ,

as desired.

Lemma 5.1.11. Let A be a C∗-algebra, and take ε > 0 and a, b, r ∈ A such that
‖a− rbr∗‖ < ε. Then, there exists δ > 0 such that, whenever c, d, s ∈ A satisfy

‖c− a‖ < δ, ‖d− b‖ < δ and ‖s− r‖ < δ,

one has ‖c− sds∗‖ < 2ε.
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Proof. Let ε > 0 and a, b, r ∈ A satisfy ‖a− rbr∗‖ < ε. Take δ > 0 such that

δ < ‖r‖, and δ <
ε

1 + 3‖b‖‖r‖+ 4‖r‖2
.

Then, given c, d, s ∈ A such that

‖c− a‖ < δ, ‖d− b‖ < δ and ‖s− r‖ < δ,

we have

‖c− sds∗‖ ≤ ‖c− a‖+ ‖a− sds∗‖
≤ δ + ‖a− sbs∗‖+ ‖sbs∗ − sds∗‖
≤ δ + ‖a− rbr∗‖+ ‖rbr∗ − sbs∗‖+ ‖s‖2δ

≤ δ + ε+ ‖rbr∗ − sbs∗‖+ (δ + ‖r‖)2δ

≤ δ + ε+ ‖rbr∗ − rbs∗‖+ ‖rbs∗ − sbs∗‖+ 4‖r‖2δ

≤ δ + ε+ ‖b‖‖r‖δ + ‖b‖‖s‖δ + 4‖r‖2δ

≤ δ + ε+ ‖b‖‖r‖δ + ‖b‖(δ + ‖r‖)δ + 4‖r‖2δ

≤ δ + ε+ ‖b‖‖r‖δ + 2‖b‖‖r‖δ + 4‖r‖2δ

= ε+ (1 + 3‖b‖‖r‖+ 4‖r‖2)δ

< 2ε,

as desired.

Proposition 5.1.12. Let A be a C∗-algebra approximated by a family of sub-C∗-alge-
bras Aλ ⊆ A, and denote by ιλ : Aλ → A the inclusion maps for each λ ∈ Λ. Then, the
system (Cu(Aλ),Cu(ιλ))λ∈Λ approximates Cu(A).

Proof. First note that we may assume that A and Aλ are stable for every λ ∈ Λ.
To see that the system (Cu(Aλ),Cu(ιλ))λ∈Λ approximates Cu(A), take finite sets J

and K, elements x′j, xj ∈ Cu(A) for each j ∈ J , and functions mk, nk : J → N for every
k ∈ K, such that x′j � xj for each j ∈ J and such that∑

j∈J

mk(j)xj �
∑
j∈J

nk(j)x
′
j

for all k ∈ K, where we may assume that (
∑

j∈J mk(j))(
∑

j∈J nk(j)) 6= 0 for each k.
Now let aj ∈ A+ be such that xj = [aj] for every j ∈ J . Using that J is finite, we

can find ε > 0 such that

x′j � [(aj − 2ε)+]� [aj] = xj

for all j ∈ J .
Moreover, we have[⊕

j∈J

a
⊕mk(j)
j

]
=
∑
j∈J

mk(j)xj �
∑
j∈J

nk(j)x
′
j ≤

[⊕
j∈J

(aj − 2ε)
⊕nk(j)
+

]
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for every k ∈ K, which allows us to take rk ∈ A such that∥∥∥∥∥⊕
j∈J

a
⊕mk(j)
j − rk

(⊕
j∈J

(aj − 2ε)
⊕nk(j)
+

)
r∗k

∥∥∥∥∥ < ε

2
.

Applying Lemma 5.1.11 to the previous inequality, we find for each k a bound δk > 0.
Take δ > 0 be such that

δ < min
k∈K

{
δk

(
∑

j∈J mk(j))(
∑

j∈J nk(j))

}
and δ < ε.

Thus, we know from Lemma 5.1.10 that there exists σ > 0 such that σ ≤ δ and
such that, for every j ∈ J and b ∈ A+ satisfying ‖aj − b‖ ≤ σ, we have ‖(aj − 2ε)+ −
(b− 2ε)+‖ ≤ δ.

Using Lemma 5.1.9 and the fact that the sub-C∗-algebras Aλ approximate A, we
find λ ∈ Λ and elements sk ∈ Aλ and bj ∈ (Aλ)+ such that

‖sk − rk‖ ≤ σ and ‖bj − aj‖ ≤ σ

for every k ∈ K and j ∈ J .
Thus, it follows from the choice of σ that ‖(bj − 2ε)+ − (aj − 2ε)+‖ ≤ δ for every

j ∈ J . Using ‖bj − aj‖ ≤ δ < ε and ‖(bj − ε)+ − aj‖ < 2ε in the first and second step
respectively, we have

[(aj − 2ε)+]� [(bj − ε)+]� [aj]

for each j ∈ J .
Further, for every k ∈ K one gets∥∥∥∥∥⊕

j∈J

a
⊕mk(j)
j −

⊕
j∈J

b
⊕mk(j)
j

∥∥∥∥∥ ≤∑
j∈J

mk(j)‖aj − bj‖ ≤
∑
j∈J

mk(j)δ < δk

and, similarly,∥∥∥∥∥⊕
j∈J

(aj − 2ε)
⊕nk(j)
+ −

⊕
j∈J

(bj − 2ε)
⊕nk(j)
+

∥∥∥∥∥ ≤∑
j∈J

nk(j)δ < δk.

Using Lemma 5.1.11 we get that, for every k ∈ K,∥∥∥∥∥⊕
j∈J

b
⊕mk(j)
j − sk

(⊕
j∈J

(bj − 2ε)
⊕nk(j)
+

)
s∗k

∥∥∥∥∥ < 2
ε

2
= ε

and, consequently, ∑
j∈J

mk(j)[(bj − ε)+] ≤
∑
j∈J

nk(j)[(bj − 2ε)+]

in Cu(Aλ).
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Finally, recall that ιλ : Aλ → A denotes the inclusion map. Using that [(aj−2ε)+]�
[(bj − ε)+]� [aj] in Cu(A) and that [(bj − 2ε)+]� [(bj − ε)+] in Cu(Aλ), the elements
[(bj − ε)+] ∈ Cu(Aλ) satisfy

x′j � [(aj − 2ε)+]� Cu(ιλ)([(bj − ε)+])� [aj] = xj

for every j ∈ J , and∑
j∈J

mk(j)[(bj − ε)+] ≤
∑
j∈J

nk(j)[(bj − 2ε)+]�
∑
j∈J

nk(j)[(bj − ε)+]

for each k ∈ K, as required.

Theorem 5.1.13. Let A be a C∗-algebra approximated by a family of sub-C∗-algebras
Aλ ⊆ A, for λ ∈ Λ. Then, dim(Cu(A)) ≤ supλ∈Λ dim(Cu(Aλ)).

Proof. The system (Cu(Aλ),Cu(ιλ))λ∈Λ approximates Cu(A) by Proposition 5.1.12.
The result now follows from Proposition 5.1.8.

Proposition 5.1.14. Let S = lim−→λ∈Λ
Sλ be an inductive limit of Cu-semigroups, and

let ϕλ : Sλ → S be the Cu-morphisms into the limit. Then, S is approximated by the
family (Sλ, ϕλ)λ∈Λ.

Proof. Let ϕµ,λ : Sλ → Sµ denote the connecting Cu-morphisms of the inductive sys-
tem for each λ ≤ µ in Λ, and recall from Lemma 4.1.8 that the inductive limit S is
characterized by the following three properties:

(L0) we have ϕµ ◦ ϕµ,λ = ϕλ for all λ ≤ µ in Λ;

(L1) if x′λ, xλ ∈ Sλ and xµ ∈ Sµ satisfy x′λ � xλ and ϕλ(xλ) ≤ ϕµ(xµ), then there
exists ν ≥ λ, µ such that ϕν,λ(x′λ)� ϕν,µ(xµ);

(L2) for all x′, x ∈ S satisfying x′ � x there exists xλ ∈ Sλ such that x′ � ϕλ(xλ)� x.

To see that S is approximated by the stated system, let J and K be finite sets,
x′j, xj be elements in S satisfying x′j � xj for each j ∈ J , and let mk, nk : J → N be
maps such that ∑

j∈J

mk(j)xj �
∑
j∈J

nk(j)x
′
j

for all k ∈ K.
Using (L2) for each j ∈ J , we get λj ∈ Λ and an element wj ∈ Sλj such that

x′j � ϕλj(wj)� xj.

Take λ ∈ Λ with λj ≤ λ for all j ∈ J , and define zj := ϕλ,λj(wj) ∈ Sλ for every j.
Thus, we have

ϕλ

(∑
j∈J

mk(j)zj

)
�
∑
j∈J

mk(j)xj �
∑
j∈J

nk(j)x
′
j � ϕλ

(∑
j∈J

nk(j)zj

)
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for each k ∈ K.
Moreover, since ϕλ is a Cu-morphism, we can choose elements z′j � zj such that

ϕλ

(∑
j∈J

mk(j)zj

)
� ϕλ

(∑
j∈J

nk(j)z
′
j

)
and x′j � ϕλ(z

′
j)� xj.

Using that S satisfies (L1), there exist νk ∈ Λ with λ ≤ νk such that

ϕνk,λ

(∑
j∈J

mk(j)z
′
j

)
� ϕνk,λ

(∑
j∈J

nk(j)z
′
j

)

for every k.
Now let ν ∈ Λ be such that νk ≤ ν for each k, and set yj := ϕν,λ(z

′
j) ∈ Sν for every

j ∈ J . We obtain

∑
j∈J

mk(j)yj = ϕν,νk

(
ϕνk,λ

(∑
j∈J

mk(j)z
′
j

))

� ϕν,νk

(
ϕνk,λ

(∑
j∈J

nk(j)z
′
j

))
=
∑
j∈J

nk(j)yj,

for every k ∈ K and, for each j ∈ J , one has x′j � ϕν(yj)� xj, as desired.

Using the previous result, we can recover [6, Theorem 4.5] and Proposition 4.1.9.
Note that the following statement is new for (O7).

Corollary 5.1.15. Let S = lim−→λ∈Λ
Sλ be an inductive limit of Cu-semigroups. If each

Sλ satisfies weak cancellation (respectively, (O5), (O6) or (O7)), then so does S. Fur-
ther, if dim(Sλ) ≤ n for each λ for some n ∈ N, then dim(S) ≤ n.

Proof. This follows by combining Propositions 5.1.7, 5.1.8 and 5.1.14.

As announced at the end of Section 3.5, the notion of approximation for Cu-sem-
igroups allows us to give another characterization for the Cuntz semigroup of AI-
algebras.

Theorem 5.1.16. Let S be a countably based Cu-semigroup. Then, S is Cu-isomorphic
to the Cuntz semigroup of an AI-algebra if and only if S is approximated by the family
{Lsc([0, 1],N)n}n.

That is to say, a countably based Cu-semigroup S is Cu-isomorphic to the Cuntz
semigroup of an AI-algebra if and only if S can be approximated by the Cuntz semigroups
of interval algebras.

Proof. If S is Cu-isomorphic to the Cuntz semigroup of an AI-algebra, it follows
from Theorem 3.1.6 and Proposition 5.1.14 that S is approximated by the family
{Lsc([0, 1],N)n}n.

Conversely, assume that S is approximated by such a family, and let (Sλ, ϕλ)λ be
an approximation for S such that Sλ = Lsc([0, 1],N)rλ for each λ.
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It follows from Proposition 5.1.7 that S satisfies (O5), (O6) and weak cancellation.
Moreover, it is also easy to check that, since each Lsc([0, 1],N)n is compactly bounded,
so is S.

By Theorem 3.5.34, it suffices to show that S satisfies property I. Thus, let m,M ∈
N, take �-decreasing sequences (zα,j)α∈Ωm for j ≤ M , and finite multisets A,B of Ωm

satisfying the conditions in Definition 3.5.29.
For each β and j, let z′β,j � zβ,j be such that zα,j � z′β,j whenever β ≺ α and∑

α∈A,j≤M

zα,j �
∑

β∈B,j≤M

z′β,j.

Since (Sλ, ϕλ)λ approximates S, there exist λ and elements yβ,j ∈ Sλ such that
z′β,j � ϕλ(yβ,j)� zβ,j for every β, j,

yα,j � yβ,j and
∑

α∈A,j≤M

yα,j �
∑

β∈B,j≤M

yβ,j

for each j and β ≺ α.
Now let r ∈ N be such that Sλ = Lsc([0, 1],N)r, and recall that for each n we defined

Ln as the additive span of {0, 1, χ(i/n,j/n), χ(i/n,1], χ[0,j/n)}i,j; see Example 3.5.10. Also
recall that Ln is a chainable subsemigroup of Lsc([0, 1],N), as defined in Definition 3.5.7.

Since ∪nLrn is dense in Sλ, we may assume that there exists n ∈ N such that
each yβ,j is in Lrn. For each k ≤ r, let Fk : Xn → Sλ denote the composition of
the I-morphism F : Xn → Ln given in Example 3.5.10 with the inclusion to the k-th
component in Lsc([0, 1],N)r. Also, let πk : Sλ → Lsc([0, 1],N) denote the projection to
the k-th component.

Letting vkβ,j be such that Fk(vkβ,j) = πk(yβ,j), it is now easy to check that these
elements satisfy the required conditions in Definition 3.5.29.

5.2 The lattice of sub-Cu-semigroups
The aim of this and the next section is to reduce the computation of the covering
dimension of a Cu-semigroup to that of its countably based sub-Cu-semigroups.

In order to do this, in this section we study when a submonoid of a Cu-semigroup
S is a sub-Cu-semigroup and, given any submonoid T ⊆ S, we construct an associated
sup-closed submonoid T sup ⊆ S (Definition 5.2.3) and its ‘derived’ submonoid T ′ ⊆ S
(Definition 5.2.5). With this notation, we prove that T is a sub-Cu-semigroup if and
only if T = T ′; see Proposition 5.2.8.

We also show in Theorem 5.2.11 that the collection of sub-Cu-semigroups of a Cu-
semigroup is a complete lattice.

Recall the definition of sub-Cu-semigroup from Definition 1.2.6. We begin by giving
two characterizations of when a submonoid is a sub-Cu-semigroup.

Lemma 5.2.1. Let S be a Cu-semigroup and T be a submonoid of S. Then, T is a
sub-Cu-semigroup of S if and only if T is closed under passing to suprema of increasing
sequences and, for every x′ ∈ S and x ∈ T with x′ � x, there exists y ∈ T such that
x′ � y � x.



148 Chapter 5. Approximations and sub-Cu-semigroups

Proof. Let ι : T → S denote the inclusion (as a monoid morphism), and assume that T
satisfies both of the stated properties. Given an increasing sequence (xn)n in T , denote
by xT and xS its supremum in T and S respectively. Clearly, one has xS ≤ xT .

Now let (x′n)n be a �-increasing sequence in S such that x′n ∈ T for each n and
xT = supn x

′
n. Such a sequence exists by our second assumption. Since x′n � xT in

S, one gets x′n � xm for some m and, consequently, x′n ≤ xS for each n. This implies
xT ≤ xS and, therefore, that ι preserves suprema of increasing sequences.

Further, one has x� y in T if and only if x� y in S. Using this and the fact that
ι preserves suprema, it is clear that T satisfies (O1)-(O4).

The inclusion ι is a Cu-morphism by the comments above.

Lemma 5.2.2. Let S, T be Cu-semigroups, and let ϕ : T → S be a Cu-morphism. Then
the following are equivalent:

(1) ϕ is an order-embedding, that is, x, y ∈ T satisfy x ≤ y if (and only if) ϕ(x) ≤ ϕ(y);

(2) x, y ∈ T satisfy x� y if (and only if) ϕ(x)� ϕ(y);

(3) ϕ(T ) ⊆ S is a sub-Cu-semigroup and ϕ : T → ϕ(T ) is an isomorphism.

Proof. That (1) holds if and only if (2) holds is well known. Further, it is easy to check
that (3) implies (2) by using that ϕ : T → ϕ(T ) is an isomorphism.

Finally, to see that (1) implies (3), note that ϕ : T → ϕ(T ) is a surjective Cu-mor-
phism by construction. Moreover, it is injective by (1).

Let ϕ−1 denote the inverse Cu-morphism of ϕ. Then, the inclusion map ι : ϕ(T )→ S
can be decomposed as ι = ϕϕ−1. Since both of the previous maps are Cu-morphisms,
it follows that ι is as well.

Definition 5.2.3. Let T be a subset of a Cu-semigroup S. We define

T
seq

:=

{
sup
n
xn ∈ S | (xn)n is an increasing sequence in T

}
.

By using transfinite induction, for every ordinal α we let T (α) be T (0)
:= T , T (1)

:=
T

seq, and

T
(α+1)

:= T (α)
seq
,

T
(λ)

:=
⋃
α<λ

T
(α) if λ is a limit ordinal.

The sup-closure of T is defined as T sup
:=
⋃
α≥1 T

(α). Further, T will be said to be
sup-closed if T = T

sup.

Remark 5.2.4. Using the notation of Definition 5.2.3 above, the sup-closure of T
is sup-closed. Indeed, the sequence (T

(α)
)α is an increasing family of subsets of S.

Thus, it eventually stabilizes. That is, there exists α0 such that T (α)
= T

(α0). We get
T

sup
= T

(α0) and, consequently, T supseq

= T
sup, as desired.

Moreover, note that T is sup-closed if and only if T = T
seq.
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Given a subset of a Cu-semigroup, we now introduce what might be seen as the
Cu-version of its derived subset and its Cantor-Bendixson derivative; see Remark 5.2.6
below for a discussion.

Definition 5.2.5. Let T be a subset of a Cu-semigroup S. We set

T ′ :=

{
sup
n
xn ∈ S | (xn)n is a �-increasing sequence in T

}
.

We define T (α) for every ordinal α by setting T (0) := T , T (1) := T ′, and

T (α+1) :=
(
T (α)

)′
,

T (λ) :=
⋂
α<λ

T (α), if λ is a limit ordinal.

Further, we set
δ(T ) :=

⋂
α≥1

T (α).

Remark 5.2.6. Given a subset Y of a topological space X, the derived set of Y ,
denoted by Y ′, is defined as the set of limit points of Y .

In a subset T of a Cu-semigroup S, we may view suprema of�-increasing sequences
in T as the limit points of T . Thus, one can think of T ′ as the derived set of T , and
the subsets T (α) as the α-th Cantor-Bendixson derivatives of T .

Moreover, the following statements, which are analogs of well known properties
satisfied by the derived subsets of a topological space, are also satisfied by the derived
subsets of a Cu-semigroup:

(i) If x ∈ T ′ and if x is not compact (that is, x 6� x), then x also belongs to (T−{x})′.

(ii) We have (T ∪H)′ = T ′ ∪H ′.

(iii) If T ⊆ H, then T ′ ⊆ H ′.

Further, recall that a subset of a topological space is said to be perfect if it is equal
to its derived set. Continuing with the previous analogy, Proposition 5.2.8 below shows
that we may view sub-Cu-semigroups as the perfect submonoids of a Cu-semigroup.

Lemma 5.2.7. Let T be a submonoid of a Cu-semigroup S. Then, T ′ is a sup-closed
submonoid of S.

Proof. That T ′ is a submonoid follows from the fact that 0� 0 and that the way-below
relation is additive. Thus, it remains to verify that T ′ is sup-closed.

Let (xn)n be an increasing sequence in T ′, and let x denote its supremum in S. Since
S satisfies (O2), there exists a �-increasing sequence (x′m)m in S with supremum x.
Then, there exists n1 ∈ N such that x′1 � xn1 . Since xn1 ∈ T ′, we can find y1 ∈ T such
that

x′1 � y1 � xn1 .

Further, since there is n2 ≥ n1 with y1, x
′
2 � xn2 , there exists y2 � xn2 in T such

that y1, x
′
2 � y2.
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Proceeding in this manner, we construct a �-increasing sequence (ym)m in T such
that

x′m � ym ≤ x.

This implies that x = supm x
′
m = supm ym ∈ T ′, as desired.

Proposition 5.2.8. Let T be a submonoid of a Cu-semigroup S. Then, T is a sub-
Cu-semigroup of S if and only if T = T ′.

Proof. First, assume that T is a sub-Cu-semigroup. Then, the supremum of any �-
increasing sequence in T is also in T . This shows that T = T ′.

Conversely, assume that T is a submonoid such that T = T ′. Using Lemma 5.2.7,
we know that T is sup-closed. Thus, it follows from Lemma 5.2.1 that T is a sub-Cu-
semigroup.

We can now prove the following result, which recovers [6, Lemma 5.3.17].

Corollary 5.2.9. Let T be a submonoid of a Cu-semigroup S. Assume that every
element in T is the supremum of a�-increasing sequence in T . Then, T ′ = T

seq
= T

sup,
which is a sub-Cu-semigroup of S.

Proof. The inclusions T ′ ⊆ T
seq ⊆ T

sup hold generally, and we know by our assumption
that T ⊆ T ′. Using Lemma 5.2.7 at the second step, one has

T
sup ⊆ T ′

sup
= T ′,

as desired.
To see that T ′ is a sub-Cu-semigroup, note that T ′′ ⊆ T ′ because T ′ is sup-closed

and that, since T ⊆ T ′, one gets T ′ ⊆ T ′′. This shows T ′ = T ′′ and, consequently,
T ′ ⊆ S is a sub-Cu-semigroup by Proposition 5.2.8.

Theorem 5.2.10. Let T be a submonoid of a Cu-semigroup S. Then, δ(T ) ⊆ S is a
sub-Cu-semigroup.

If T is sup-closed, then δ(T ) ⊆ T .

Proof. We prove that T (α) is always a sup-closed submonoid using transfinite induction:
For α = 1 and the successor case, this is Lemma 5.2.7. Moreover, the limit case follows
from its definition. This implies that δ(T ) is a submonoid.

Further, we note that (T (α))α≥1 is a decreasing family of submonoids, which must
therefore stabilize. Thus, δ(T ) = T (α) for some α ≥ 1. In particular, one has

δ(T ) = T (α) = T (α+1) = δ(T )′,

which implies that δ(T ) is a sub-Cu-semigroup by Proposition 5.2.8.
One clearly also gets T ′ ⊆ T

seq, which shows that δ(T ) ⊆ T
sup.

Theorem 5.2.11. Let S be a Cu-semigroup. Then, the collection of sub-Cu-semigroups
of S is a complete lattice when ordered by inclusion.

For any collection (Tj)j∈J of sub-Cu-semigroups, their supremum is the sup-closure
of the submonoid generated by

⋃
j Tj, while their infimum is δ(

⋂
j Tj).
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Proof. Let P , C and S denote the collection of all subsets, sup-closed submonoids and
sub-Cu-semigroups of S respectively. Equip each of these with the partial order given
by inclusion, and note that P is a complete lattice.

Let α : P → C denote the order-preserving map that sends an element of P (that
is, a subset of S) to the sup-closure of the submonoid it generates. By considering
α as a map P → P , it follows from Remark 5.2.4 that α is idempotent and satisfies
X ⊆ α(X) for every X ∈ P . Thus, α : P → P is a closure operator in the sense of
[41, Definition 0-3.8 (ii)]. This implies, since P is a complete lattice, that C is also a
complete lattice. Moreover, we also have that α preserves arbitrary suprema, and that
the inclusion map ι : C → P preserves arbitrary infima.

Now let δ : C → S be the map that sends T ∈ C to δ(T ) as defined in Definition 5.2.5,
which is well-defined by Theorem 5.2.10. Also note that the map is order-preserving by
construction.

It follows from Proposition 5.2.8 that δ as a map C → C is idempotent and satisfies
δ(T ) ⊆ T for every T ∈ C. Therefore, δ : C → C is a kernel operator in the sense of
[41, Definition 0-3.8 (iii)]. This shows that S is a complete lattice, and that δ preserves
arbitrary infima, and the inclusion map ι : S → C preserves arbitrary suprema.

Thus, one gets the following diagram

S � � ι
// C � � ι

//

δ
||

P .
α

||

Now let T = (Tj)j∈J be a collection of sub-Cu-semigroups. By the comments above,
its infimum in P is infP T = δ(infC T ) = δ(∩T ). Similarly, their supremum is supP T =
supC T = α(∪T ), as required.

5.3 Reduction to countably based Cu-semigroups
Given a Cu-semigroup S, we prove in this section that the dimension of its countably
based sub-Cu-semigroups determine the dimension of S; see Theorem 5.3.8. This allows
us to generalize results from Chapter 4 by dropping the countably based assumption;
see Propositions 5.3.9 and 5.3.10.

5.3.1 (Countably based sub-Cu-semigroups). Let S be a Cu-semigroup. We denote by
Subctbl(S) the collection of countably based sub-Cu-semigroups of S.

Given a countable, directed family T ⊆ Subctbl(S), its supremum in the complete
lattice of sub-Cu-semigroups (see Theorem 5.2.11) is again a countably based sub-Cu-
semigroup. Indeed, let

⋃
T denote the union of all the members of T . Then, every

element in the submonoid
⋃
T is the supremum of a �-increasing sequence in

⋃
T ,

and it follows from Corollary 5.2.9 that the sup-closure
⋃
T

sup
is a sub-Cu-semigroup.

This semigroup is countably based since T is countable and every member in the family
has a countable basis.

Using the results developed in Section 5.2 above, we obtain the following lemma.

Lemma 5.3.2. Let T0 be a countable subset of a Cu-semigroup S. Then, there exists
a countably based sub-Cu-semigroup T ∈ Subctbl(S) that contains T0.
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Proof. First, note that the submonoid generated by T0 is also countable. Thus, we may
assume directly that T0 is a submonoid.

Then, for each x ∈ T0, choose a �-increasing sequence in S with supremum x, and
let T1 be the submonoid of S generated by T0 and the elements in each of the chosen
sequences. Note that, once again, T1 is a countable submonoid.

Proceeding in this manner, we obtain an increasing, countable sequence (Tk)k of
countable submonoids. Therefore, their union T∞ :=

⋃
k Tk is also a countable sub-

monoid of S. Using that for every element x in T∞ there exists a �-increasing se-
quence in T∞ with supremum x, it follows from Corollary 5.2.9 that T := T∞

seq is a
sub-Cu-semigroup of S.

By construction, T∞ is a countable basis for T , as desired.

5.3.3 (Löwenheim-Skolem condition in Subctbl(S)). Given a Cu-semigroup S and a
collection R ⊆ Subctbl(S), we say that R is cofinal if for every T ∈ Subctbl(S) there
exists R ∈ R with T ⊆ R. We also say that R is σ-complete if

⋃
T

sup
belongs to R for

every countable, directed subset T ⊆ R.
A property P of Cu-semigroups will be said to satisfy the Löwenheim-Skolem con-

dition if, for every Cu-semigroup S satisfying P , there exists a σ-complete, cofinal
subcollection R ⊆ Subctbl(S) such that P is satisfied in every R ∈ R. We will show in
Propositions 5.3.4, 5.3.5 and 5.3.7 below that (O5)-(O7), simplicity, weak cancellation
and ‘dim(_ ) ≤ n’ (for a fixed n ∈ N) each satisfy the Löwenheim-Skolem condition.

Note that, given any pair of σ-complete and cofinal collections R1,R2 ⊆ Subctbl(S),
their intersection R1 ∩R2 is again σ-complete and cofinal. Indeed, to see that R1 ∩R2

is σ-complete, take a countable, directed subset T ⊆ R1 ∩ R2. Then, since both R1

and R2 are σ-complete, we see that
⋃
T

sup
∈ R1 ∩R2, as desired.

Further, to show thatR1∩R2 is also cofinal, let T ∈ Subctbl(S) and define inductively
a ⊆-increasing sequence (Rn)n≥1 in Subctbl(S) such that T ⊆ R1, R2k ∈ R1 and R2k+1 ∈
R2 for each k ∈ N. Set R := ∪nRn

sup, and note that R = ∪kR2k
sup

= ∪kR2k+1
sup. Since

both R1 and R2 are σ-complete, it follows that R ∈ R1 ∩R2 with T ⊆ R, as required.
In particular, this implies that if a finite number of properties P1, . . . ,Pn of Cu-

semigroups all satisfy the Löwenheim-Skolem condition, their intersection (that is, the
property of satisfying all properties at once) also satisfies the Löwenheim-Skolem con-
dition.

Proposition 5.3.4. Let S be a Cu-semigroup satisfying (O5) (respectively (O6), (O7)).
Then, the countably based sub-Cu-semigroups satisfying (O5) (resp. (O6), (O7)) form
a σ-complete and cofinal subcollection of Subctbl(S).

In particular, (O5)-(O7) each satisfy the Löwenheim-Skolem condition.

Proof. Given a Cu-semigroup S satisfying (O5), let R denote the subcollection of
Subctbl(S) formed by those countably based sub-Cu-semigroups satisfying (O5).

It follows from [6, Theorem 4.5] (see also Corollary 5.1.15) that (O5) passes to
inductive limits. Thus, for any countable, directed subset T ⊆ R, we have

⋃
T

sup
∈ R

because
⋃
T

sup
can be written as the inductive limit of the elements in T indexed over

T . This shows that R is σ-complete.
To see thatR is also cofinal, let T ∈ Subctbl(S) and choose a countable basis B0 ⊆ T .
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Claim. There exist an increasing sequence (Rn)n in Subctbl(S) with R0 = T and
countable basis Bn ⊆ Rn for each n such that, whenever x + y � z′ � z, x′ � x and
y′ � y in Bn, there is c ∈ Bn+1 such that x′ + c� z, z′ � x+ c and y′ � c.

We prove the claim by induction, where note that we already have R0 and B0. Now
let n ∈ N and assume that we have chosen Rk and Bk for all k ≤ n. Then, consider the
following set

In :=
{

(x′, x, y′, y, z′, z) ∈ B6
n | x+ y � z′ � z, x′ � x, y′ � y

}
,

which is countable because B6
n is.

Further, since S satisfies (O5), we know that for each i = (x′, x, y′, y, z′, z) ∈ In
there exists ci ∈ S such that x′ + ci � z, z′ � x+ ci and y′ � ci. By Lemma 5.3.2, we
can find a countable sub-Cu-semigroup Rn+1 containing Bn and {ci : i ∈ In}.

Let Bn+1 be a countable basis for Rn+1 and note that, since Bn is a basis for Rn,
we have Rn ⊆ Rn+1. This finishes the proof of the Claim.

Now let B :=
⋃
nBn and R :=

⋃
nRn

sup
, which is a countably based sub-Cu-

semigroup by Paragraph 5.3.1, with countable basis B. Further, note that for every
x′, x, y′, y, z′, z ∈ B with x′ � x, y′ � y, z′ � z and x+y � z′, we can find n ∈ N with
x′, x, y′, y, z′, z ∈ Bn. Thus, since the tuple formed by these elements is in In, there
exists c ∈ Bn+1 such that

x′ + c� z, z′ � x+ c and y′ � c.

This shows that B satisfies the condition from Lemma 5.1.3 and, consequently, that
R satisfies (O5). Thus, we have R ∈ R, as required.

Using Corollary 5.1.15 (for σ-completeness) and Propositions 5.1.4 and 5.1.5 (for
cofinality) an analogous argument shows that (O6) and (O7) also satisfy the Löwenheim-
Skolem condition.

Proposition 5.3.5. Every sub-Cu-semigroup of a simple (resp. weakly cancellative)
Cu-semigroup S is simple (resp. weakly cancellative).

In particular, simplicity and weak cancellation each satisfy the Löwenheim-Skolem
condition.

Proof. Let T be a sub-Cu-semigroup of a simple Cu-semigroup S, and let x, y ∈ T be
a pair of nonzero elements. Using that S is simple, one gets x ≤ ∞y in S. Since the
inclusion T → S is an order-embedding, one also gets x ≤ ∞y in T , which implies that
T is simple.

Assume now that S is weakly cancellative and that T ⊆ S is a sub-Cu-semigroup.
Given x, y, z ∈ T satisfying x+ z � y+ z, it follows from weak cancellation that x� y
in S. Thus, x� y in T , as desired.

Lemma 5.3.6. Let R be a countably based sub-Cu-semigroup of a Cu-semigroup S.
Then, there exists T ∈ Subctbl(S) such that R ⊆ T and dim(T ) ≤ dim(S).

Proof. Note that, if dim(S) = ∞, T := R has the desired properties. Thus, let n :=
dim(S), which we may assume to be finite.

Claim. For every P ∈ Subctbl(S) there exists Q ∈ Subctbl(S) such that P ⊆ Q and
such that, whenever x′ � x � y1 + . . . + yr in P , there exist zj,k ∈ Q for j = 1, . . . , r
and k = 0, . . . , n satisfying (i)-(iii) from Definition 4.1.1.
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Let P ∈ Subctbl(S) and denote by B ⊆ P a countable basis of P . Consider the set

I :=
{

(x′, x, y1, . . . , yr) ∈ tr≥1B
r+2 | x′ � x� y1 + . . .+ yr

}
,

which is countable since each Br+2 is.
Then, since dim(S) ≤ n, we know that for each i = (x′, x, y1, . . . , yr) ∈ I there

exist elements zi,j,k ∈ S for j = 1, . . . , r and k = 0, . . . , n satisfying (i)-(iii) from
Definition 4.1.1 for x′ � x � y1 + . . . + yr. Thus, it follows from Lemma 5.3.2 that
we can find Q ∈ Subctbl(S) containing B and each zi,j,k for i ∈ I, j = 1, . . . , r, and
k = 0, . . . , n. Using that B is a basis for P , we get P ⊆ Q.

To see that Q verifies the claimed property, let x′ � x� y1 + . . .+ yr in P . Then,
since B is a basis, there exist c′, c, d1, . . . , dr ∈ B such that dj � yj for each j and

x′ � c′ � c� x� d1 + . . .+ dr.

This implies that the tuple i := (c′, c, d1, . . . , dr) is in I. Thus, Q contains the
elements zi,j,k, which satisfy (i)-(iii) from Definition 4.1.1 for c′ � c � d1 + . . . + dr.
One can now check that these elements also satisfy (i)-(iii) from Definition 4.1.1 for
x′ � x� y1 + . . .+ yr, which finishes the proof of the claim.

Now apply the Claim successively in order to obtain an increasing sequence (Tk)k
in Subctbl(S) with T0 := R and such that, for every k ∈ N and x′ � x� y1 + . . . + yr
in Tk, there exist zj,k ∈ Tk+1 for j = 1, . . . , r and k = 0, . . . , n satisfying (i)-(iii) from
Definition 4.1.1.

Set T := T∞
seq, which by Corollary 5.2.9 and Paragraph 5.3.1 is a countably based

sub-Cu-semigroup of S satisfying R ⊆ T . By construction, we have dim(T ) ≤ n as
desired.

Proposition 5.3.7. Let S be a Cu-semigroup satisfying dim(S) ≤ n for some n ∈ N.
Then, the countably based sub-Cu-semigroups T ⊆ S satisfying dim(T ) ≤ n form a
σ-complete and cofinal subcollection of Subctbl(S).

In particular, the property of having covering dimension at most n satisfies the
Löwenheim-Skolem condition.

Proof. Let R be the subcollection of Subctbl(S) consisting of the sub-Cu-semigroups T
satisfying dim(T ) ≤ n.

It follows from Proposition 4.1.9 that the property of having dimension at most n
passes to inductive limits. In particular, this implies thatR is σ-complete. Lemma 5.3.6
above shows that R is also cofinal, as required.

Theorem 5.3.8. Let S be a Cu-semigroup, and let n ∈ N. Then, the following are
equivalent:

(1) dim(S) ≤ n;

(2) every countable subset of S is contained in a countably based sub-Cu-semigroup
T ⊆ S satisfying dim(T ) ≤ n;

(3) every finite subset of S is contained in a sub-Cu-semigroup T ⊆ S satisfying
dim(T ) ≤ n.
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Proof. Lemmas 5.3.2 and 5.3.6 show that (1) implies (2). Moreover, (2) implies (3)
trivially.

Finally, to prove that (3) implies (1), let T denote the collection of sub-Cu-sem-
igroups of S with dimension at most n. For each T ∈ T , let ιT : T → S be the
inclusion map. By our assumption, the family (T, ιT )T∈T approximates S in the sense
of Definition 5.1.1. Thus, it follows from Proposition 5.1.8 that dim(S) ≤ n.

With these results at hand, we can now generalize Proposition 4.5.10 and Proposi-
tion 4.1.20 by removing the assumption of being countably based. Recall the definition
of soft element from Paragraph 4.1.17.

Proposition 5.3.9. Let S be a simple, weakly cancellative, zero-dimensional Cu-semi-
group satisfying (O5). Then, S satisfies the Riesz interpolation property. Further, if S
is not isomorphic to N or Ek for any k, then S is almost divisible.

Proof. First note that S has Riesz interpolation whenever it is isomorphic to N or Ek for
some k. Thus, we may assume that S is not isomorphic to any of these Cu-semigroups
for the remainder of the proof. Thus, it follows from [6, Proposition 5.1.19] that there
exists a sequence (sn)n in S with s0 > s1 > . . ..

LetRO5,Rsimple,Rcanc, andRdim0 denote the subcollections of sub-Cu-semigroups in
Subctbl(S) that satisfy (O5), or that are simple, weakly cancellative, or zero-dimensional
respectively. Then, it follows from Paragraph 5.3.3 that the intersection R := RO5 ∩
Rsimple∩Rcanc∩Rdim0 is σ-complete and cofinal, since we know from Propositions 5.3.4,
5.3.5 and 5.3.7 that each of the subcollections is σ-complete and cofinal.

Now let x0, x1, y0, y1 ∈ S satisfy xj ≤ yk for each j, k ∈ {0, 1}. Since R is cofinal,
it follows from Lemma 5.3.2 that there exists R ∈ R containing x0, x1, y0, y1 and the
sequence s0, s1, . . ., which forces R to be nonisomorphic to either N or Ek for any k.
By Proposition 4.5.10, we can find z ∈ R such that xj ≤ z ≤ yk for every j, k ∈ {0, 1}.
Thus, since z ∈ R ⊆ S , we get that S satisfies the Riesz interpolation property.

Similarly, let n ∈ N and take x′, x ∈ S such that x′ � x. Using the same argument
as above, we find R ∈ R containing x′, x and satisfying all the conditions in Proposi-
tion 4.5.10. Thus, there is y ∈ R with ny � x and x′ � (n + 1)y. This shows that S
is almost divisible, as desired.

Proposition 5.3.10. Let S be a simple, weakly cancellative Cu-semigroup satisfying
(O5) and (O6). Then,

dim(Ssoft) ≤ dim(S) ≤ dim(Ssoft) + 1.

Proof. To prove the first inequality we will verify condition (3) of Theorem 5.3.8. Thus,
let H be a finite subset of Ssoft and set n := dim(S), which we may assume to be finite.

Proceeding as in the proof of Proposition 5.3.9, it follows from Lemma 5.3.2 and
Propositions 5.3.4, 5.3.5 and 5.3.7, that we can find a simple, weakly cancellative sub-
Cu-semigroup T ∈ Subctbl(S) satisfying (O5) and (O6) and such that H ⊆ T and
dim(T ) ≤ n.

Thus, Proposition 4.1.20 implies dim(Tsoft) ≤ n, where note that Tsoft is a sub-Cu-
semigroup of Ssoft containing H. This shows that every finite subset of Ssoft is contained
in a sub-Cu-semigroup of dimension at most n, as desired.
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Now set m := dim(Ssoft) and let H be a finite subset of S. To prove the second
inequality, we will verify condition (3) of Theorem 5.3.8. As above, we may assume m
to be finite.

Using Lemma 5.3.2 and Proposition 5.3.4, we find T (1) ∈ Subctbl(S) satisfying (O5)
and (O6) with H ⊆ T (1). By Proposition 5.3.7, we can choose R(1) ∈ Subctbl(Ssoft)

with T
(1)
soft ⊆ R(1) and dim(R(1)) ≤ m. Since R(1) and T (1) are both countably based,

it follows from Lemma 5.3.2 that there exists a countably based sub-Cu-semigroup
containing both R(1) and T (1). By Proposition 5.3.4, there exists T (2) ∈ Subctbl(S)
satisfying (O5) and (O6) and such that R(1), T (1) ⊆ T (2).

Proceeding in this manner, we obtain an increasing sequence (T (k))k in Subctbl(S) of
sub-Cu-semigroups satisfying (O5) and (O6), and another increasing sequence (R(k))k
in Subctbl(Ssoft) of sub-Cu-semigroups with dimension at most m such that

T
(k)
soft ⊆ R(k) ⊆ T (k+1)

for each k.
Set T :=

⋃
k T

(k)
sup

and R :=
⋃
k R

(k)
sup

. It follows from Paragraph 5.3.1, Proposi-
tion 5.3.4 and Proposition 5.3.5 that T is a countably based, simple, weakly cancellative
sub-Cu-semigroup of S satisfying (O5) and (O6). Moreover, since dim(R(k)) ≤ m for
every k, we get that dim(R) ≤ m by Theorem 5.3.8.

Further, note that for every soft element x in T there exists an increasing sequence
(ki)i of natural numbers and an increasing sequence of elements xi ∈ T

(ki)
soft such that

supi xi = x. Thus, since T (ki)
soft ⊆ R(ki) for each i, we see that x ∈ R. This shows that

Tsoft ⊆ R, and we know by construction that R ⊆ Tsoft. Thus, Tsoft = R.
Using Proposition 4.1.20, one gets

dim(T ) ≤ dim(Tsoft) + 1 = dim(R) + 1 ≤ m+ 1.

Therefore, every finite subset of S is contained in a sub-Cu-semigroup with dimen-
sion at most m+ 1. By Theorem 5.3.8, we have dim(S) ≤ m+ 1, as required.

5.4 Dimension of the Cuntz semigroup as a noncom-
mutative dimension theory

In this section we study which properties of a noncommutative dimension theory are
satisfied by the assignment A 7→ dim Cu(A), for each C∗-algebra A; see Paragraph 5.4.1
below. In particular, we prove in Theorem 5.4.3 that this assignment satisfies the
Löwenheim-Skolem condition, which implies that A 7→ dim(Cu(A)) satisfies all but one
of the properties of a noncommutative dimension theory.

5.4.1. Recall from [89, Definition 1] that an assignment that to each C∗-algebra A asso-
ciates a number (the dimension) d(A) ∈ {0, 1, 2, . . . ,∞} is a noncommutative dimension
theory if the following conditions are satisfied:

(D1) d(I) ≤ d(A) for every ideal I ⊆ A;

(D2) d(A/I) ≤ d(A) for every ideal I ⊆ A;
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(D3) d(A⊕B) = max{d(A), d(B)} for any pair of C∗-algebras A and B;

(D4) d(Ã) = d(A) for every C∗-algebra A;

(D5) Let n ∈ N. If a C∗-algebra A is approximated by sub-C∗-algebras Aλ ⊆ A with
d(Aλ) ≤ n, then d(A) ≤ n;

(D6) Given a C∗-algebra A and a separable sub-C∗-algebra B0 ⊆ A, there exists a
separable sub-C∗-algebra B ⊆ A such that B0 ⊆ B and d(B) ≤ d(A).

Note that, by Proposition 4.1.10 and Theorem 5.1.13, we already know that assign-
ing to a C∗-algebra the dimension of its Cuntz semigroup satisfies conditions (D1)-(D3)
and (D5). Moreover, using [89, Proposition 3], one can see that this assignment is
in fact Morita-invariant, that is, dim(Cu(A)) = dim(Cu(B)) whenever A and B are
Morita equivalent.

We will see in Theorem 5.4.3 below that (D6) is also satisfied. However, Exam-
ple 5.4.5 shows that (D4) does not hold.

It is an open question if assigning to each C∗-algebra the dimension of the Cuntz
semigroup of its minimal unitization, A 7→ dim(Cu(Ã)), is a dimension theory; see
Question 5.4.6.

Recall that, given a sub-C∗-algebra B of a C∗-algebra A, the Cuntz semigroup of
B is not necessarily a sub-Cu-semigroup of Cu(A). However, the next result shows
that there are sufficiently many separable sub-C∗-algebras whose Cuntz semigroups are
sub-Cu-semigroups.

Given a C∗-algebra A, we denote by Subsep(A) the collection of separable sub-C∗-
algebras of A; see [90, Paragraph 3.1]. A family S of Subsep(A) is said to be σ-complete
if for every countable, directed subset T ⊆ S we have

⋃
T ∈ S. We also say that S is

cofinal if for every B ∈ Subsep(A) there is C ∈ S with B ⊆ C.

Proposition 5.4.2. Let A be a C∗-algebra. Then,

S :=
{
B ∈ Subsep(A) | Cu(B)→ Cu(A) is an order-embedding

}
is σ-complete and cofinal.

The map α : S → Subctbl(Cu(A)) that sends B ∈ S to the (up to isomorphism)
sub-Cu-semigroup Cu(B) ⊆ Cu(A) preserves the order and the suprema of countable
directed subsets, and the image of α is a cofinal subset of Subctbl(Cu(A)).

Proof. Let T be a countable, directed subfamily of S, and set D :=
⋃
T . To prove that

S is σ-complete, we need to show D ∈ S. Thus, let ϕA,D : Cu(D)→ Cu(A) denote the
Cu-morphism induced by the inclusion map D → A, and take x, y ∈ Cu(D) such that
ϕA,D(x) ≤ ϕA,D(y).

Choose x′, x′′ ∈ Cu(D) with x′ � x′′ � x. Since ϕA,D is a Cu-morphism, there
exists y′ � y satisfying ϕA,D(x′′)� ϕA,D(y′).

Using that D ∼= lim−→B∈T B, it follows from [6, Corollary 3.2.9] that Cu(D) ∼=
lim−→B∈T Cu(B). By (L2) from Lemma 4.1.8, we get B ∈ T and c, d ∈ Cu(B) such
that

x′ � ϕD,B(c)� x′′ and y′ � ϕD,B(d)� y,
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where ϕD,B : Cu(B) → Cu(D) denotes the induced Cu-morphism from the inclusion
map.

Similarly, denote by ϕA,B the Cu-morphism induced by the inclusion B → A. Then,

ϕA,B(c) = ϕA,D(ϕD,B(c))� ϕA,D(x′′)� ϕA,D(y′)� ϕA,D(ϕD,B(d)) = ϕA,B(d).

Since ϕA,B is an order-embedding, we obtain c� d in Cu(B). Consequently,

x′ � ϕD,B(c)� ϕD,B(d)� y,

which implies that x′ � y for every x′ way-below x or, equivalently, that x ≤ y. This
shows that ϕA,D is an order-embedding and that D ∈ S.

Now take B0 ∈ Subsep(A). By [37, Theorem 2.6.2], we can find B ∈ Subsep(A) such
that B0 ⊆ B and such that B is an elementary submodel of A. Using [37, Lemma 8.1.3],
one gets that Cu(B) → Cu(A) is an order-embedding. Thus, B belongs to S and,
therefore, S is cofinal.

Let α : S → Subctbl(Cu(A)) be the map that sends each element B ∈ S to Cu(B),
which by Lemma 5.2.2 can be identified with a countably based sub-Cu-semigroup of
Cu(A). It is straightforward to check that α is order-preserving.

To see that α preserves suprema of countable directed subsets, let T ⊆ S be a
countable, directed subset and set D :=

⋃
T . Note that D ∈ S by the first part of

the proof. Since α is order preserving, (Cu(B))B∈T is a countable, directed family in
Subctbl(Cu(A)). Using Theorem 5.2.11, we know that its supremum is

⋃
B∈T Cu(B)

sup
.

Since Cu(B) is contained in Cu(D) for each B ∈ T , one gets⋃
B∈T

Cu(B)
sup

⊆ Cu(D).

Using that D is the inductive limit of the elements in T indexed over themselves,
and that the Cuntz semigroup preserves inductive limits, we see that Cu(D) is the
inductive limit of (Cu(B))B∈T , from which the other inclusion follows.

Finally, let us show that the image of α is cofinal in Subctbl(Cu(A)). Take T ∈
Subctbl(Cu(A)), choose a countable basis D ⊆ T and, for each x ∈ D, let ax ∈ (A⊗K)+

be such that x = [ax].
Choose a separable sub-C∗-algebra B0 ⊆ A such that each ax is contained in B0⊗K.

Since S is cofinal, there exists B ∈ S with B0 ⊆ B. Then, x ∈ Cu(B) for each x ∈ D,
which implies T ⊆ Cu(B) as desired.

Theorem 5.4.3. Let n ∈ N, and let A be a C∗-algebra satisfying dim(Cu(A)) ≤ n.
Then,

S :=
{
B ∈ Subsep(A) | Cu(B)→ Cu(A) order-embedding, dim(Cu(B)) ≤ n

}
is σ-complete and cofinal.

In particular, for every B0 ∈ Subsep(A) there exists B ∈ Subsep(A) such that B0 ⊆ B
and dim(Cu(B)) ≤ n.
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Proof. Consider the subcollections

T :=
{
T ∈ Subctbl(Cu(A)) | dim(T ) ≤ n

}
,

S0 :=
{
B ∈ Subsep(A) | Cu(B)→ Cu(A) is an order-embedding

}
,

which are σ-complete and cofinal in Subctbl(Cu(B)) and Subsep(A) by Proposition 5.3.7
and Proposition 5.4.2 respectively.

As in Proposition 5.4.2, let α : S0 → Subctbl(Cu(A)) send each B ∈ S0 to the sub-
Cu-semigroup of Cu(A) identified with Cu(B). Then, S =

{
B ∈ S0 | α(B) ∈ T

}
.

Since both S0 and T are σ-complete, and α preserves suprema of countable, directed
sets, it follows that S is σ-complete.

To see that it is also cofinal, take B0 ∈ Subsep(A). Using that T is cofinal, we obtain
T0 ∈ T such that Cu(B0) ⊆ T0. By Proposition 5.4.2, the image of α is cofinal. Thus,
we can find B1 ∈ S0 with T0 ⊆ α(B1).

Proceeding in this way, and similar to the proof of Proposition 5.3.10, we get in-
creasing sequences (Tk)k∈N in T and (Bk)k≥1 in S0 such that

α(B0) ⊆ T0 ⊆ α(B1) ⊆ T1 ⊆ α(B2) ⊆ T2 ⊆ . . . .

Setting B :=
⋃
k Bk and T :=

⋃
k Tk

sup
, and using that α preserves suprema of

countable, directed sets, one gets α(B) = T . Then, since B0 ⊆ B, B ∈ S0 and T ∈ T ,
we obtain B ∈ S, as required.

Corollary 5.4.4. Let A be a C∗-algebra, and let n ∈ N. Then, dim(Cu(A)) ≤ n if
and only if every finite subset of A is contained in a separable sub-C∗-algebra B ⊆ A
satisfying dim(Cu(B)) ≤ n.

Proof. If dim(Cu(A)) ≤ n, it follows from Theorem 5.4.3 above that every finite subset
of A is contained in a separable sub-C∗-algebra B ⊆ A satisfying dim(Cu(B)) ≤ n.

Conversely, if this condition is satisfied, the family of separable sub-C∗-algebras
whose Cuntz semigroup has dimension at most n approximates A. Thus, the result
follows from Theorem 5.1.13.

Example 5.4.5. The assignment A 7→ dim(Cu(A)) does not satisfy property (D4)
from Paragraph 5.4.1. Indeed, take for example the Jacelon-Razak algebra W , which
satisfies dim(Cu(W)) = 0 by Proposition 4.1.24 (2).

Since W has stable rank one and nonzero real rank, so does its minimal unitization
W̃ . Thus, using that W̃ is unital, Theorem 4.3.8 implies that Cu(W̃) is not zero-
dimensional.

In fact, since we know that the nuclear dimension of W̃ is 1, we get dim(Cu(W̃)) = 1
by Theorem 4.2.2.

Question 5.4.6. Do we have dim(Cu(Ĩ)) ≤ dim(Cu(A)) whenever I is an ideal of a
unital C∗-algebra A?

If this question can be answered affirmatively, the assignment A 7→ dim(Cu(Ã)) is
a noncommutative dimension theory. Indeed, using the results in this section one can
verify that (D2)-(D6) are satisfied, and Question 5.4.6 is asking if (D1) holds.





Chapter 6

Nowhere scattered C∗-algebras

Scattered topological spaces, that is to say, spaces such that every subset contains
an isolated point, and their C∗-analog (defined by Jensen in [48]) admit various and
interesting characterizations. One such characterization consists of demanding that the
spectrum of every self-adjoint element is countable. Another consists of asking every
sub-C∗-algebra to have real rank zero; see [46] and [57] respectively.

In this chapter, we study C∗-algebras that, informally speaking, are really far from
being scattered. These algebras, which we term nowhere scattered C∗-algebras, have
appeared implicitly in the literature but they have never been given a name; see, for
example, [34] and [75].

The permanence properties of nowhere scattered C∗-algebras and their associated
topological spaces are studied in Section 6.1, while a characterization of nowhere scat-
teredness in terms of the Cuntz semigroup is found in Section 6.3. More concretely,
we see that a C∗-algebra A is nowhere scattered if and only if Cu(A) is weakly (2, ω)-
divisible. To obtain such a characterization, in Section 6.2 we unveil a new property
that the Cuntz semigroup of every C∗-algebra satisfies.

Finally, we show in Section 6.4 that, under the additional assumption of real rank
zero or stable rank one, the Cuntz semigroup of a nowhere scattered C∗-algebra is (2, ω)-
divisible, a strengthening of weak (2, ω)-divisibility. Whether this stronger property is
satisfied in the Cuntz semigroup of every nowhere scattered C∗-algebra is unknown,
and this question is known as the Global Glimm Problem, studied in Chapter 7.

The results announced in this chapter have appeared in [93].

6.1 Scattered and nowhere scattered C∗-algebras

In this section we define and begin our study on nowhere scattered C∗-algebras; see
Definition 6.1.1 and Theorem 6.1.2. Examples of such C∗-algebras include all simple,
unital, infinite-dimensional C∗-algebras (Example 6.1.3) and traceless C∗-algebras (in
particular, weakly purely infinite C∗-algebras, see Example 6.3.11).

A topological space X is said to be scattered if every closed subset of X contains an
isolated point. Equivalently, X is scattered if each of its subsets contains an isolated
point. Thus, given any x, y ∈ X, the set {x, y} has an isolated point. This shows that
every scattered space is T0.

In analogy to this definition, one says that a C∗-algebra is scattered if each of its
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quotients contains a minimal projection, where recall that a nonzero projection p in a
C∗-algebra A is said to be minimal if pAp = Cp. Note that, even though every minimal
projection is minimal with respect to the order ≤, the converse does not hold: Take,
for example, the unit in the Jiang-Su algebra.

Although this is not the original definition of scatteredness for C∗-algebras given in
[48, Definition 2.1], it can be seen to be equivalent; see [40, Theorem 1.4]. It is also
known that a C∗-algebra is scattered if and only if each of its sub-C∗-algebras has real
rank zero ([57, Theorem 2.3]), and if and only if it contains no sub-C∗-algebra of the
form C0((0, 1]). In particular, every sub-C∗-algebra of a scattered C∗-algebra is once
again scattered.

Definition 6.1.1. A C∗-algebra is said to be nowhere scattered if none of its quotients
contains a minimal projection.

A C∗-algebra is said to be elementary if it is isomorphic to the algebra of compact
operators on some Hilbert space. An ideal-quotient of a C∗-algebra is an ideal of a
quotient.

A sub-C∗-algebra B ⊆ A is hereditary if, whenever 0 ≤ b − a with b ∈ B, we have
a ∈ B.

We say that a positive element a ∈ A+ is abelian if aAa is commutative, and a C∗-
algebra is said to be antiliminal if it contains no nonzero abelian positive elements; see
[11, Definition IV.1.1.6]. Also, a C∗-algebra A is said to be of type I if every quotient
of A contains a nonzero abelian element.

Recall from Examples 1.1.20 (3) that, given a C∗-algebra A and a Hilbert space H,
a *-homomorphism π : A→ B(H) is an irreducible representation if H has no nontrivial
closed invariant subspaces under π(A). We will say that π is GCR if π(A)∩K(H) 6= {0}.

Theorem 6.1.2. Let A be a C∗-algebra. Then the following are equivalent:

(1) A is nowhere scattered;

(2) every quotient of A is antiliminal;

(3) A has no nonzero ideal-quotients of type I;

(4) A has no nonzero scattered ideal-quotients;

(5) A has no nonzero elementary ideal-quotients;

(6) A has no nonzero GCR irreducible representation;

(7) no hereditary sub-C∗-algebra of A admits a finite-dimensional irreducible represen-
tation;

(8) no hereditary sub-C∗-algebra of A admits a one-dimensional irreducible representa-
tion.

Proof. Assume first that there exists an ideal I of A such that A/I contains a nonzero,
abelian element b. Then, b(A/I)b is commutative and we can find an ideal J ⊆ b(A/I)b
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satisfying b(A/I)b/J ∼= C. Since b(A/I)b is hereditary, we have K∩b(A/I)b = J , where
K is the ideal of A/I generated by J . Thus,

(b+K)((A/I)/K)(b+K) ∼= b(A/I)b/K ∼= b(A/I)b/J ∼= C,

which implies that (A/I)/K has a minimal projection. Indeed, the projection p in
(b+K)((A/I)/K)(b+K) corresponding to 1 ∈ C through the isomorphism satisfies

p((A/I)/K)p = p(b+K)((A/I)/K)(b+K)p = Cp.

This shows that (1) implies (2).
To see that (2) implies (3), assume that (2) is satisfied and also assume, for the sake

of contradiction, that there exist ideals I ⊆ J of A such that J/I is a nonzero, type I
ideal-quotient. Since J/I is type I, it contains a nonzero, abelian element. Using that
J/I is an ideal of A/I, it follows that A/I is not antiliminal, a contradiction.

The implications ‘(3)⇒(4)⇒(5)’ follow using that every elementary C∗-algebra is
scattered, and that every scattered C∗-algebra is type I.

To prove that (5) implies (6), assume that π : A → B(H) is a nonzero irreducible
GCR representation, and let I be the kernel of π. By [11, Corollary IV.1.2.5], we
have K(H) ⊆ π(A) and, consequently, π−1(K(H))/I ∼= K(H), which is an elementary
ideal-quotient of A.

Let us now see ‘(6)⇒(7)’. Assume, for the sake of contradiction, that there exists
a hereditary sub-C∗-algebra B ⊆ A with a nonzero, finite-dimensional irreducible rep-
resentation π0 : B → B(H0). By [11, Proposition II.6.4.11], we can find an irreducible
representation π : A → B(H) on some Hilbert space H containing H0, such that H0 is
invariant under π(B) and such that π(b)ξ = π0(b)ξ for all b ∈ B and ξ ∈ H0. Using
that B is hereditary and [11, Proposition II.6.1.9], we see that π|B is irreducible on its
essential subspace {π(b)ξ | b ∈ B, ξ ∈ H}. Note that, since π0 is irreducible, the inter-
section of H0 with this subspace is nonzero. Thus, we have π(b)ξ = 0 for all ξ ∈ H⊥0
and b ∈ B. Consequently, π(B) ⊆ K(H). This shows that π is GCR and nonzero.

That (7) implies (8) is clear.
Finally, to show that (8) implies (1), take an ideal I of A such that the quotient

A/I contains a minimal projection p. Denote by π : A → A/I the quotient map, and
consider the hereditary sub-C∗-algebra π−1(Cp). This sub-C∗-algebra admits a nonzero,
one-dimensional representation.

Example 6.1.3. By Theorem 6.1.2 (5) above, a C∗-algebra is nowhere scattered if and
only if none of its nonzero ideal-quotients is elementary. Thus, a simple C∗-algebra is
nowhere scattered if and only if it is not elementary. Consequently, a unital simple
C∗-algebra is nowhere scattered if and only it is infinite-dimensional.

Recall the definition of a von Neumann algebra from Examples 1.1.3 (v), and its
main structure theorems from, for example, [11, III].

Proposition 6.1.4. Let M be a von Neumann algebra. Then, M is nowhere scattered
if and only if the type I summand of M is zero.

Proof. Assume first thatM is nowhere scattered. By Theorem 6.1.2, no hereditary sub-
C∗-algebra of M admits a one-dimensional irreducible representation. Thus, M cannot
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contain a nonzero abelian projection p, since otherwise pMp would be commutative
and thus admit a one-dimensional irreducible representation. This shows that the
type I summand of M is zero; see, for example, [11, IV.1.1].

Conversely, if the type I summand ofM is zero, assume for the sake of contradiction
that there exists a hereditary sub-C∗-algebra B ⊆ M admitting a finite-dimensional,
irreducible representation π. Then, let p ∈ B be a projection such that π(p) 6= 0.
By [88, Proposition V.1.35], we know that, for every n ≥ 1, the projection p can be
expressed as the sum of 2n equivalent and pairwise orthogonal projections. However,
π(p) is nonzero and of finite rank, a contradiction. Theorem 6.1.2 implies that M is
nowhere scattered.

Let us now prove some permanence properties of nowhere scattered C∗-algebras.
More properties, such as passing to limits and satisfying the Löwenheim-Skolem, are
proven in Section 6.3.

Proposition 6.1.5. Nowhere scatteredness passes to hereditary sub-C∗-algebras and
quotients.

Proof. Condition (7) of Theorem 6.1.2 passes to hereditary sub-C∗-algebras, while con-
dition (2) passes to quotients.

Proposition 6.1.6. Let A be a C∗-algebra, and let I be an ideal of A. Then, A is
nowhere scattered if and only if I and A/I are nowhere scattered.

Proof. If A is nowhere scattered, it follows from Proposition 6.1.5 above that I and
A/I are nowhere scattered.

Conversely, assume that I and A/I are nowhere scattered, and let J ⊆ K be ideals of
A such that K/J is scattered. Since (I∩K)/(I∩J) is an ideal-quotient of I isomorphic
to an ideal of K/J , it follows that (I ∩K)/(I ∩ J) is scattered and, therefore, zero by
Theorem 6.1.2 applied to I. This shows I ∩K = I ∩ J .

Moreover, the ideal-quotient (K/I∩K)/(J/I∩J) of A/I corresponds to a quotient of
K/J and is thus scattered. Since A/I is nowhere scattered, we have K/I∩K = J/I∩J ,
which shows K = J or, equivalently, that K/J is zero. Theorem 6.1.2 (4) now implies
that A is nowhere scattered.

Given a sub-C∗-algebra B of a C∗-algebra A, we say that B separate the ideals of
A if two ideals I, J ⊆ A satisfy I = J whenever I ∩B = J ∩B.

Proposition 6.1.7. Let A be C∗-algebra, and let B ⊆ A be a nowhere scattered sub-
C∗-algebra that separates the ideals of A. Then, A is nowhere scattered.

Proof. Let I ⊆ J be ideals of A such that J/I is scattered. Since the ideal-quotient
(J ∩ B)/(I ∩ B) of B is isomorphic to a sub-C∗-algebra of J/I, it follows that it is
scattered. By Theorem 6.1.2, we have J ∩B = I ∩B.

Using that B separates ideals, we get I = J and, consequently, that J/I is zero.
The result now follows from Theorem 6.1.2.

Corollary 6.1.8. Let A and B be Morita equivalent C∗-algebras. Then, A is nowhere
scattered if and only if B is.
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Proof. Using [11, Theorem II.7.6.9], there exists a C∗-algebra C and a projection p in
the multiplier algebra of C (see Remark 1.1.8) such that both pCp and (1− p)C(1− p)
are full, hereditary sub-C∗-algebras of C, and pCp ∼= A, (1− p)C(1− p) ∼= B.

Assume that A is nowhere scattered. Then, since pCp is full in C, it follows that
pCp separates the ideals of C. By Proposition 6.1.7, C is nowhere scattered.

Consequently, the hereditary sub-C∗-algebra (1−p)C(1−p) is also nowhere scattered
by Proposition 6.1.5, which implies that B is nowhere scattered.

The converse follows by symmetry.

As defined in the beginning of this section, a topological space X is said to be
scattered if every closed subset of X contains an isolated point. We now define nowhere
scattered topological spaces as those that are very far from being scattered.

As we will see in Theorem 6.1.11 below, a separable C∗-algebra is nowhere scattered
if and only if its spectrum is.

Definition 6.1.9. We say that a topological space X is nowhere scattered if no closed
subset of X contains an isolated point.

Recall that a subset of a topological space is locally closed if it can be written as
the intersection of an open and a closed subset.

Proposition 6.1.10. Let X be a topological space. Then the following are equivalent:

(1) X is nowhere scattered;

(2) X has no nonempty, locally closed, scattered subsets;

(3) X has no nonempty, locally closed T1 subsets;

(4) X has no locally closed one-element subsets.

Proof. Note first that nowhere scatteredness passes to open and closed subsets. Thus, if
X is nowhere scattered, every locally closed subset of X is also nowhere scattered. Since
no nonempty scattered space is nowhere scattered, it follows that X has no nonempty,
locally closed, scattered subsets. Thus, (1) implies (2).

That (2) implies (3), and that (3) implies (4), is clear. By definition, (4) implies (1).

Recall that, given a C∗-algebra A, we define its spectrum Â as the set of unitary
equivalence classes of irreducible representations of A. We equip Â with the hull-kernel
topology; see [11, Paragraph II.6.5.13] for details.

We know from [49, Corollary 3] that a C∗-algebra A is scattered if and only if A is
of type I and Â is scattered. Thus, a separable C∗-algebra is scattered if and only if
its spectrum is. Indeed, this follows from the fact that every scattered space is T0, and
that, for separable C∗-algebras, being type I is equivalent to having a T0-spectrum; see
[11, Theorem IV.1.5.7].

We note that there are examples of nonseparable, not scattered C∗-algebras with
scattered spectrum; see [1].

Theorem 6.1.11. Let A be a separable C∗-algebra. Then, A is nowhere scattered if
and only if Â is.
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Proof. It is well known that there is a natural correspondence between ideal-quotients
of A and locally closed subsets of Â; see [11, Paragraph II.6.5.13]. Since A is separable,
it follows from [49, Corollary 3] that an ideal-quotient of A is scattered if and only if
its corresponding locally closed subset is scattered.

We know from Theorem 6.1.2 that A is nowhere scattered if and only if it has no
nonzero scattered ideal-quotients. By the remarks above, this is equivalent to Â having
no nonempty, scattered, locally closed subsets. By Proposition 6.1.10, this happens if
and only if Â is nowhere scattered, as desired.

6.2 A new property for Cuntz semigroups

In order to characterize nowhere scattered C∗-algebras in terms of their Cuntz semi-
group, we introduce a new property that the Cuntz semigroup of every C∗-algebra
satisfies; see Definition 6.2.1. With it, we prove in Proposition 6.3.8 that a Cu-sem-
igroup satisfying (O5), (O6) and this new property is weakly (2, ω)-divisible (in the
sense of Paragraph 6.3.6) if and only if it has no elementary ideal-quotients. This im-
plies that a C∗-algebra is nowhere scattered if and only if its Cuntz semigroup is weakly
(2, ω)-divisible; see Theorem 6.3.9 and Remark 6.3.10.

Definition 6.2.1. A Cu-semigroup S is said to satisfy (O8) if, whenever

2w = w, x+ y � z + w, x′ � x and y′ � y in S,

there exist z1, z2 ∈ S such that

z1 + z2 � z, x′ � z1 + w, y′ � z2 + w, z1 � x+ w and z2 � y + w.

Remark 6.2.2. Note that a Cu-semigroup S satisfies (O8) if and only if, whenever

2w = w, x+ y � z + w, x′ � x and y′ � y in S,

there exist z1, z2 ∈ S such that

z1 + z2 ≤ z, x′ ≤ z1 + w, y′ ≤ z2 + w, z1 ≤ x+ w and z2 ≤ y + w.

Indeed, if x′, x, y′, y, z, w are as above and S satisfies the stated property, let x′′, y′′
be such that x′ � x′′ � x and y′ � y′′ � y. Applying the property to x′, x′′, y′, y′′, z, w,
we obtain v1, v2 ∈ S such that

v1 + v2 ≤ z, x′ � x′′ ≤ v1 + w, y′ � y′′ ≤ v2 + w, v1 ≤ x+ w and v2 ≤ y + w.

Choose z1 � v1 and z2 � v2 such that x′ � z1 +w and y′ � z2 +w. It follows that
z1, z2 have the desired properties.

The forward implication is trivial.

Theorem 6.2.3. The Cuntz semigroup of every C∗-algebra satisfies (O8).
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Proof. Let A be a C∗-algebra, which we may assume to be stable, and take elements
x′, x, y′, y, z, w ∈ Cu(A) as in Definition 6.2.1. That is to say, such that

2w = w, x+ y � z + w, x′ � x and y′ � y.

Since A is stable, we can choose a, b, c ∈ A+ and ε > 0 with a orthogonal to b,

x = [a], y = [b], z = [c], x′ ≤ [(a− ε)+] and y′ ≤ [(b− ε)+].

Using that the set {s ∈ Cu(A) : s ≤ w} is an ideal of Cu(A), we can find by
Proposition 1.2.13 an ideal I of A with Cu(I) equal to it. Let π : A→ A/I denote the
quotient map, and note that

π(a) + π(b) = π(a+ b) - π(c).

Thus, it follows from Lemma 1.2.2 that we can find r ∈ A/I satisfying

(π(a)− ε)+ + (π(b)− ε)+ = ((π(a) + π(b))− ε)+ = r∗r

and rr∗ ∈ π(c)(A/I)π(c).
Now set e := r(π(a)− ε)+r

∗ and f := r(π(b)− ε)+r
∗, which are orthogonal elements

contained in π(c)(A/I)π(c). Using that the C∗-algebra C0((0, ‖e‖]) ⊕ C0((0, ‖f‖]) is
projective (see [29, Section 4]), and that π maps cAc onto π(c)(A/I)π(c), we find
orthogonal positive elements ẽ, f̃ ∈ cAc such that π(ẽ) = e and π(f̃) = f .

Let z1 and z2 be the Cuntz classes of ẽ and f̃ respectively. Since ẽ and f̃ are
orthogonal, we get ẽ+ f̃ ∈ cAc and, consequently, z1 + z2 ≤ [c] = z.

Further, we know that

π(ẽ) = e - (π(a)− ε)+ - π(a),

which implies z1 ≤ x+ w. Similarly, z2 ≤ y + w.
One also has

r∗er = r∗r(π(a)− ε)+r
∗r = (π(a)− ε)3

+ ∼ (π(a)− ε)+.

This shows x′ ≤ z1 + w, and an analogous argument proves y′ ≤ z2 + w. Using
Remark 6.2.2, we see that Cu(A) satisfies (O8), as desired.

Recall that (O5) can be seen as a weakening of having algebraic order, while (O6)
is a weakened form of Riesz decomposition. In this sense, (O8) can be thought of as a
weak version of Riesz refinement, and Proposition 6.2.4 below is the Cu-version of the
fact that a cancellative, algebraically ordered semigroup with Riesz decomposition has
Riesz refinement.

Proposition 6.2.4. A weakly cancellative Cu-semigroup with (O5) and (O6) satisfies
(O8).

Proof. Let S be a Cu-semigroup satisfying (O5), (O6) and weak cancellation. As in
Definition 6.2.1, let x′, x, y′, y, z, w ∈ S satisfy

2w = w, x+ y � z + w, x′ � x and y′ � y.
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Since x′ � x� z + w, we can use (O6) to obtain an element z̃1 satisfying

x′ � z̃1 + w and z̃1 � x, z.

Now let z1 ∈ S be such that z1 � z̃1 and x′ � z1+w. Applying (O5) to z1 � z̃1 ≤ z,
there exists c ∈ S with

z1 + c ≤ z ≤ z̃1 + c.

Thus, one has
x+ y � z + w ≤ z̃1 + c+ w ≤ x+ c+ w

and, using that S is weakly cancellative, we get y � c+ w.
Applying (O6) once again to y′ � y � c+ w, we find z2 ∈ S such that

y′ � z2 + w and z2 � y, c.

In particular, this implies z1 + z2 ≤ z1 + c ≤ z. Thus, the elements z1 and z2 satisfy
the properties in Remark 6.2.2, which shows that S satisfies (O8).

With a view towards Proposition 6.2.7 and Theorem 6.3.9, we first need some pre-
liminary results:

Lemma 6.2.5. Let S be a Cu-semigroup satisfying (O8), and let w, z, x′j, xj ∈ S for
j = 1, . . . , n be such that

2w = w, x1 + . . .+ xn � z + w, x′1 � x1, . . . , and x′n � xn.

Then, there exist z1, . . . , zn ∈ S such that

z1 + . . .+ zn � z, x′j � zj + w and zj � xj + w

for j = 1, . . . , n.

Proof. Let us prove the result by induction over n, where note that the result holds
clearly for n = 1 and by (O8) for n = 2.

Thus, let n > 2 be fixed and assume that the result holds for n. Take w, z, x′j, xj ∈ S
for j = 1, . . . , n+ 1 such that

2w = w, x1 + . . .+ xn+1 � z + w, x′1 � x1, . . . , and x′n+1 � xn+1.

Let x′′n, x′′n+1 ∈ S satisfy x′n � x′′n � xn and x′n+1 � x′′n+1 � xn+1. Since our result
holds for n, we can use it on w, z, x′j, xj for j = 1, . . . , n − 1 and x′′n + x′′n+1, xn + xn+1

to obtain elements z1, . . . , zn−1, v ∈ S satisfying

z1 + . . .+ zn−1 + v � z, x′j � zj + w and zj � xj + w

for j = 1, . . . , n− 1 and

x′′n + x′′n+1 � v + w and v � xn + xn+1 + w.

Using (O8) on x′n, x
′′
n, x

′
n+1, x

′′
n+1, v, w, we obtain zn, zn+1 with zn + zn+1 � v and

such that

x′n � zn + w, x′n+1 � zn+1 + w, zn � x′′n + w and zn+1 � x′′n+1 + w.

One can now check that z1, . . . , zn+1 have the required properties.
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Proposition 6.2.6. Let S be a Cu-semigroup satisfying (O6) and (O8), and let w, x′j, xj
in S for j = 1, . . . , n be such that

2w = w, x1 + . . .+ xn � z + w and x′1 � x1 � x′2 � x2 � . . .� x′n � xn.

Then, there exist z1, . . . , zn ∈ S such that

z1 + z2 + . . .+ zn � z, z1 � . . .� zn, x′j � zj + w and zj � xj + w

for j = 1, . . . , n.

Proof. Using Lemma 6.2.5, we get elements y1, . . . , yn ∈ S satisfying

y1 + . . .+ yn � z, x′j � yj + w and yj � xj + w

for j = 1, . . . , n.
Set zn := yn, and let y′n−1 � yn−1 be such that x′n−1 � y′n−1 + w. Then, we have

y′n−1 � yn−1 ≤ xn−1 + w ≤ x′n + w ≤ yn + w = zn + w.

Thus, we can apply (O6) to obtain zn−1 ∈ S such that

y′n−1 � zn−1 + w and zn−1 � yn−1, zn.

Now let y′n−2 � yn−2 satisfy x′n−2 � y′n−2 + w, and note that

y′n−2 � yn−2 ≤ xn−2 + w ≤ x′n−1 + w ≤ y′n−1 + w ≤ zn−1 + w,

which allows us to apply (O6) once again. Proceeding in this manner, we get elements
z1, . . . , zn ∈ S such that

y′j � zj + w and zj � yj, zj+1

for each j ≤ n− 1.
These elements satisfy the desired properties.

Proposition 6.2.7. Let S be a Cu-semigroup satisfying (O6) and (O8). Let x′, x, y, w
be elements in S be such that

2w = w, nx� y + w and x′ � x

for some n ≥ 1.
Then, there exists z ∈ S such that

nz � y, x′ � z + w and z � x+ w.

Proof. Since x′ � x, we can choose elements x′1, x1, x
′
2, x2, . . . , xn ∈ S satisfying

x′ � x′1 � x1 � x′2 � x2 � . . .� x′n � xn � x.

By Proposition 6.2.6, there exist z1, . . . , zn such that

z1 + . . .+ zn � y, z1 � . . .� zn, x′j � zj + w and zj � xj + w

for j = 1, . . . , n.
Thus, setting z := z1, we obtain

nz ≤ z1 + . . .+ zn � y, x′ ≤ x′1 � z1 + w = z + w,

and z = z1 ≤ zn � xn + w ≤ x+ w, as desired.
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6.3 Divisibility conditions on the Cuntz semigroup

We show in this section that nowhere scatteredness can be characterized in terms of
divisibility conditions on the Cuntz semigroup; see Proposition 6.3.8 and Theorem 6.3.9.

First, let us give a tailored definition of elementary Cu-semigroups.

6.3.1. Recall that a C∗-algebra A is elementary if A is isomorphic to the algebra of
compact operators on some Hilbert space.

As explained in Examples 1.2.8 (2), elementary Cu-semigroups were defined in [6,
Paragraph 5.1.16] to be those simple Cu-semigroups containing a minimal nonzero
element. In particular, the Cu-semigroup {0,∞} is elementary in this sense, although it
is the Cuntz semigroup of simple, purely infinite C∗-algebras, which are not elementary.

We propose the following revised definition: A Cu-semigroup is elementary if it is
simple and contains a minimal, nonzero, finite element x (that is, x 6= 2x).

Lemma 6.3.2 below, which is Theorem 4.4.4 in [36], shows that this ammended
definition agrees with the established terminology in C∗-algebras. We include its proof
for the convenience of the reader.

Lemma 6.3.2. Let A be a (nonzero) C∗-algebra. Then, A is elementary if and only if
Cu(A) is elementary (if and only if Cu(A) ∼= N).

Proof. Assume first that A is elementary. Then, A⊗ K(H) ∼= K(H) for some infinite-
dimensional Hilbert space H and, consequently, V (A) ∼= N. Since A has real rank zero,
Cu(A) is the ideal completion of V (A), which implies Cu(A) ∼= N and that Cu(A) is
elementary; see, for example, [6, Remark 5.5.6].

Now assume that Cu(A) is elementary. Since, with our new definition, {0,∞} is not
an elementary Cu-semigroup, we get Cu(A) ∼= N by [6, Paragraph 5.1.16]. In particular,
it follows from [6, Corollary 5.1.12] that A is a simple C∗-algebra.

By [17, Theorem 5.8], there exists a projection p ∈ A⊗K such that [p] corresponds
to 1 under the identification Cu(A) ∼= N. Given any nonzero element a ∈ A+, we have
[p] ≤ [a] and, consequently, p - a. Thus, there exists a projection q ∈ A with [q] = [p]
and q - a for every a ∈ A+. This shows that q is minimal, and the existence of such a
projection is well-known to imply that A is elementary.

Lemma 6.3.3. Let S be a Cu-semigroup satisfying (O8) and let I be an ideal of S.
Then, I and S/I satisfy (O8).

Proof. Given an ideal I of S and elements x′, x, y′, y, z, w ∈ I as in Definition 6.2.1,
note that the elements z1, z2 ∈ S obtained using (O8) satisfy z1 + z2 � z. Since I is
downward-hereditary, it follows that both z1 and z2 are in I. This shows that I satisfies
(O8).

Now let π : S → S/I denote the quotient map. If x′, x, y′, y, z, w ∈ S satisfy

2π(w) = π(w), π(x) + π(y)� π(z) + π(w), π(x′)� π(x) and π(y′)� π(y)

in S/I, there exist elements r′, r, t′, t ∈ S such that

r′ � r � x, t′ � t� y, π(x′)� π(r′) and π(y′)� π(t′).
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Thus, we can find an idempotent v ∈ I satisfying

2(w + v) = (w + v) and r + t� z + (w + v).

Using that S satisfies (O8), one obtains elements z1, z2 ∈ S satisfying the conditions
in Definition 6.2.1 for r′, r, t′, t, z, w+v. The elements π(z1) and π(z2) satisfy the desired
conditions in S/I.

Lemma 6.3.4. Let S be a Cu-semigroup satisfying (O6) and (O8), and let I be an ideal
of S. Denote by π the canonical map π : S → S/I. Then, given y ∈ S and e, e′ ∈ S/I
such that

e′ � e and 2e ≤ π(y),

there exists z ∈ S satisfying e′ � π(z)� e and 2z � y.

Proof. Let x′, x′′, x ∈ S be such that x′ � x′′ � x, π(x) = e and e′ � π(x′). Then, since
2π(x) ≤ π(y), there exists an idempotent element w ∈ I such that 2x′′ � 2x ≤ y + w.

Using Proposition 6.2.7, we get z ∈ S satisfying

2z � y, x′ � z + w and z � x′′ + w ≤ x+ w.

Consequently, we have

e′ � π(x′)� π(z)� π(x) = e,

as desired.

Lemma 6.3.5. Let S be a Cu-semigroup satisfying (O5), (O6) and (O8) with no
nonzero elementary ideal-quotients, and let x ∈ S be nonzero. Then, there exists z ∈ S
with 0 6= 2z ≤ x.

Proof. Let x′′, x′ ∈ S be nonzero elements such that x′′ � x′ � x. Since S satisfies
(O5), there exists c ∈ S satisfying

x′′ + c ≤ x ≤ x′ + c.

Note that, if x ≤ ∞c, one gets n ∈ N such that x′ ≤ nc. As in the proof of [73,
Proposition 5.2.1], (O6) allows us to obtain elements c1, . . . , cn ≤ x′′, c with

x′′ ≤ c1 + . . .+ cn.

Thus, since x′′ is nonzero, there exists j such that cj 6= 0. Such an element satisfies
2cj ≤ x′′ + c ≤ x, as required.

Now assume that x 6≤ ∞c or, equivalently, that x does not belong to the ideal I
generated by c. Let K be the ideal generated by x. If K/I is not simple, let J ( K be
a maximal ideal containing I. Else, set J = I.

Thus, if π : K → K/J denotes the quotient map, π(x) is a nonzero, compact element
in the (nonzero) simple, nonelementary ideal-quotient K/J .

Using that (O5) and (O6) pass to ideals and quotients (see [6, Proposition 5.1.3]),
[73, Proposition 5.2.1] implies that there exists a nonzero element e ∈ K/J such that
2e ≤ π(x). By Lemmas 6.3.3 and 6.3.4, there exists z ∈ S such that 0 6= 2z � x, as
desired.
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6.3.6. Let k ∈ N. As defined in [75, Definition 5.1], an element x in a Cu-semigroup S
is said to be (k, ω)-divisible if, whenever x′ � x, there exists y ∈ S such that ky ≤ x
and x′ ≤ ny for some n ∈ N. Similarly, x is said to be weakly (k, ω)-divisible if,
whenever x′ � x, there exist n ∈ N and y1, . . . , yn ∈ S such that ky1, . . . , kyn ≤ x and
x′ ≤ y1 + . . .+ yn; see also [4, Paragraph 5.1].

A Cu-semigroup S will be said to be (weakly) (k, ω)-divisible if each element of S is
(weakly) (k, ω)-divisible.

Lemma 6.3.7. Let S be a Cu-semigroup. Then, S is weakly (2, ω)-divisible if and only
if S is weakly (k, ω)-divisible for every k ≥ 2.

Similarly, S is (2, ω)-divisible if and only if S is (k, ω)-divisible for every k ≥ 2.

Proof. We only prove the result for weak (k, ω)-divisibility, since the proof for (k, ω)-
divisibility is analogous.

Thus, assume that S is weakly (2, ω)-divisible and note that, to see that S is weakly
(k, ω)-divisible for each k ≥ 2, it is enough to prove that S is weakly (2k, ω)-divisible
for every k ≥ 1. We proceed by induction:

For k = 1, the result holds by assumption. Now fix k ∈ N and assume that S is
weakly (2k, ω)-divisible. Then, given x′ � x in S, choose x′′ � x such that x′ � x′′,
and use weak (2, ω)-divisibility to obtain m ∈ N and y1, . . . , ym ∈ S such that

2y1, . . . , 2ym ≤ x and x′′ ≤ y1 + . . .+ ym.

Since x′ � x′′ ≤ y1 + . . . + ym, we can find elements y′j � yj for each j ≤ m such
that x′ � y′1 + . . . + y′m. Thus, applying weak (2k, ω)-divisibility to each pair y′j � yj,
we get n(j) ∈ N and elements zj,1, . . . , zj,n(j) ∈ S satisfying

2kzj,1, . . . , 2
kzj,n(j) ≤ yj and y′j ≤ zj,1 + . . .+ zj,n(j)

for each j.
Thus, one gets

2k+1zj,n ≤ 2y′j ≤ x

for each j ≤ m and n ≤ n(j), and

x′ � y′1 + . . .+ y′m ≤ (z1,1 + . . .+ z1,n(1)) + . . .+ (zm,1, . . . , zm,n(m)),

as desired.
The converse is trivial.

Proposition 6.3.8. Let S be a Cu-semigroup satisfying (O5), (O6) and (O8). Then,
the following are equivalent:

(1) S has no nonzero elementary ideal-quotients;

(2) S is weakly (2, ω)-divisible;

(3) S is weakly (k, ω)-divisible for every k ≥ 2.
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Proof. Let us first assume that S is weakly (2, ω)-divisible. Since this property passes
to ideals and quotients, every ideal-quotient of S is also weakly (2, ω)-divisible. This
implies that no nonzero ideal-quotient of S is elementary, since a minimal, finite, nonzero
element of such Cu-semigroups is not weakly (2, ω)-divisible. Thus, (2) implies (1).

To see that (1) implies (2), we follow a similar proof to that of [9, Theorem 6.7].
Let x ∈ S and let I be the ideal generated by the elements z ∈ S such that 2z ≤ x.

We claim that x ∈ I. Indeed, let π : S → S/I denote the quotient map, and note
that, by [6, Proposition 5.1.3] and Lemma 6.3.3, S/I satisfies (O5), (O6) and (O8).
If x /∈ I, the element π(x) is nonzero. Using Lemma 6.3.5, we find nonzero elements
e′ � e in S/I such that 2e ≤ π(x).

Thus, we know from Lemma 6.3.4 that there exists z ∈ S with 2z ≤ x and

0 6= e′ � π(z).

Since 2z ≤ x, we get π(z) = 0, a contradiction. This shows that x ∈ I.
Now let x′ � x and take x′′ ∈ S such that x′ � x′′ � x. Since x ∈ I, there exist

elements z1, . . . , zn ∈ S with 2z1, . . . , 2zn ≤ x and x′ � x′′ ≤ z1 + . . .+ zn. This shows
that x is weakly (2, ω)-divisible, as desired.

That (2) is equivalent to (3) follows from Lemma 6.3.7.

Theorem 6.3.9. Let A be a C∗-algebra. Then, the following are equivalent:

(1) A is nowhere scattered;

(2) Cu(A) is weakly (2, ω)-divisible;

(3) Cu(A) is weakly (k, ω)-divisible for every k ≥ 2;

Proof. By Theorem 6.1.2, A is nowhere scattered if and only if it has no nonzero ele-
mentary ideal-quotients. Using Proposition 1.2.13 and Lemma 6.3.2, this is equivalent
to Cu(A) having no nonzero elementary ideal-quotients.

Thus, Proposition 6.3.8 shows that A is nowhere scattered if and only if Cu(A) is
weakly (2, ω)-divisible.

The equivalence between (2) and (3) is Lemma 6.3.7.

Remark 6.3.10. Our proof of Theorem 6.3.9 above is a direct consequence of Proposi-
tion 6.3.8. We note that, if one restricts to the study of Cuntz semigroups of C∗-algebras,
this can also be proven using results due to Robert and Rørdam from [75].

Indeed, given a C∗-algebra A, Corollary 6.1.8 above implies that A is nowhere
scattered if and only if its stabilization is. Thus, we can assume A to be stable.

If A is nowhere scattered, we know from Theorem 6.1.2 that, for any a ∈ A+, the
hereditary sub-C∗-algebra aAa does not admit a one-dimensional irreducible represen-
tation. By [75, Theorem 5.3(iii)], this is equivalent to [a] being weakly (2, ω)-divisible
in Cu(aAa). Consequently, [a] is weakly (2, ω)-divisible in Cu(A). Since this holds for
each a ∈ A+, it follows that Cu(A) is weakly (2, ω)-divisible.

Conversely, if Cu(A) is weakly (2, ω)-divisible, assume for the sake of contradiction
that A is not nowhere scattered. Thus, Theorem 6.1.2 implies that there exists a
hereditary sub-C∗-algebra B with a one-dimensional irreducible representation π. Given
b ∈ B+ such that π(b) 6= 0, it follows that bAb also admits a one-dimensional irreducible
representation. Using [75, Theorem 5.3(iii)] once again, we obtain that [b] cannot be
weakly (2, ω)-divisible in Cu(bAb) and, consequently, not in Cu(A), a contradiction.
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Example 6.3.11. Recall from Definition 1.1.13 (iv) that, as defined in [53, Defini-
tion 4.1], a C∗-algebra is purely infinite if each element x of its Cuntz semigroup satis-
fies x = 2x. Further, we say that a C∗-algebra is weakly purely infinite if there exists
n ∈ N such that each element x of its Cuntz semigroup satisfies 2nx = nx; see [54,
Definition 4.3].

Every weakly purely infinite C∗-algebra A is traceless. That is, for every element
x ∈ Cu(A), the map x̂ : S → [0,∞] (defined in Paragraph 1.2.16) satisfies 2x̂ = x̂; see
[13, Remark 2.27].

Traceless C∗-algebras are nowhere scattered. In particular, every weakly purely
infinite C∗-algebra is. To see this, let A be a traceless C∗-algebra and assume, for the
sake of contradiction, that its Cuntz semigroup has a nonzero elementary ideal-quotient
I/J ∼= N. Let π : I → I/J be the quotient map, and denote by σ : I/J → [0,∞] the
nontrivial functional corresponding to the map N→ [0,∞] given by 1 7→ 1.

Let τ : Cu(A)→ [0,∞] be the map defined as τ(x) = σπ(x) if x ∈ I and τ(x) =∞
otherwise. It is readily checked that τ is a nonzero functional. Take x ∈ I such that
π(x) corresponds to 1 ∈ N. Then, x̂(τ) = τ(x) = 1 6= 2 = 2x̂(τ), a contradiction.

Proposition 6.3.8 and Theorem 6.3.9 now show that A is nowhere scattered.

Using the characterization given by Theorem 6.3.9 above, we can show more perma-
nence properties that nowhere scatteredness enjoys. The proofs given here differ from
those in [93, Section 4].

Recall the definition of approximation from Section 5.1.

Proposition 6.3.12. Let A be C∗-algebra, and let (Aλ)λ∈Λ be a family of sub-C∗-al-
gebras that approximates A. Assume that each Aλ is nowhere scattered. Then, A is
nowhere scattered.

Proof. Let ιλ : Aλ → A be the inclusion map for each λ. By Theorem 6.3.9 and Proposi-
tion 5.1.12, each Cu(Aλ) is weakly (2, ω)-divisible and (Cu(Aλ),Cu(ιλ))λ approximates
Cu(A).

Given x′ � x in Cu(A), let λ ∈ Λ and z′ � z in Cu(Aλ) be such that

x′ � Cu(ιλ)(z
′)� Cu(ιλ)(z)� x.

Using that Cu(Aλ) is weakly (2, ω)-divisible, there exist n ∈ N and y1, . . . , yn such
that 2y1, . . . , 2yn ≤ z and z′ ≤ y1 + . . .+ yn.

Considering the elements Cu(ιλ)(yj) for j = 1, . . . , n, one sees that Cu(A) is weakly
(2, ω)-divisible. By Theorem 6.3.9, this implies that A is nowhere scattered.

Proposition 6.3.13. An inductive limit of nowhere scattered C∗-algebras is nowhere
scattered.

Proof. Let A be an inductive limit of nowhere scattered C∗-algebras Aλ with limit
morphisms ϕλ : Aλ → A. Since each ϕλ(Aλ) is a quotient of Aλ, it follows from Propo-
sition 6.1.6 that ϕλ(Aλ) is nowhere scattered for every λ.

Using that the family of sub-C∗-algebras ϕλ(Aλ) ⊆ A approximates A, Proposi-
tion 6.3.12 above implies that A is nowhere scattered.
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In analogy to Paragraph 5.3.3, we say that a property P for C∗-algebras satisfies the
Löwenheim-Skolem condition if for every C∗-algebra A with property P there exists a σ-
complete and cofinal family S of separable sub-C∗-algebras of A that each have property
P
Proposition 6.3.14. Nowhere scatteredness satisfies the Löwenheim-Skolem condition.

Proof. Using the techniques from the proof of Proposition 5.3.4, one can show that
weak (2, ω)-divisibility satisfies the Löwenheim-Skolem condition for Cu-semigroups.

Now let A be a nowhere scattered C∗-algebra. By Proposition 5.4.2, the family

S =
{
B ∈ Subsep(A) | Cu(B)→ Cu(A) is an order-embedding

}
is σ-complete and cofinal.

Given a separable sub-C∗-algebra B ⊆ A, and proceeding as in Theorem 5.4.3, we
obtain an increasing sequence

Cu(B0) ⊆ T0 ⊆ Cu(B1) ⊆ T1 ⊆ Cu(B2) ⊆ T2 ⊆ . . .

in Subctbl(Cu(A)) such that each Ti is weakly (2, ω)-divisible, (Bi)i is increasing in S
and B ⊆ B0.

Using Theorem 5.2.11 and the second part of Proposition 5.4.2, one gets

Cu(
⋃
k

Bk) =
⋃
k

Tk
sup

,

which is a (2, ω)-divisible Cuntz semigroup. By Theorem 6.3.9,
⋃
k Bk is a separable,

nowhere scattered C∗-algebra that contains B. This shows that the family of separable,
nowhere scattered sub-C∗-algebras is cofinal.

It follows from Proposition 6.3.13 that the family of separable, nowhere scattered
sub-C∗-algebras is σ-complete, since for any countable, directed family {Bi}i of such
sub-C∗-algebras we know that ∪iBi can be written as an inductive limit of the Bi’s
indexed over themselves.

Proposition 6.3.15. Let (Aj)j∈J be a family of nowhere scattered C∗-algebras. Then,
the direct sum

⊕
j∈J Aj is nowhere scattered.

Proof. Note that the direct sum of two weakly (2, ω)-divisible Cu-semigroups is again
weakly (2, ω)-divisible. By Theorem 6.3.9, this shows that

⊕
j∈J Aj is nowhere scattered

whenever J is finite.
Since, for any J , the sum

⊕
j∈J Aj is the inductive limit of

⊕
j∈F Aj indexed over

all finite subsets F ⊆ J ordered by inclusion, Proposition 6.3.13 implies that
⊕

j∈J Aj
is nowhere scattered.

Example 6.3.16. Proposition 6.3.15 above shows that nowhere scatteredness is pre-
served under direct sums. However, this is not the case for products.

Indeed, [75, Corollary 8.6] shows that there exist unital, simple, infinite-dimensional
(thus nowhere scattered) C∗-algebras (Ak)k∈N such that

∏
k Ak has a one-dimensional

irreducible representation. It follows from Theorem 6.1.2 that
∏

k Ak is not nowhere
scattered.

Moreover, since each Ak is unital, it follows from [11, II.8.1.3] that the multiplier
algebraM(

⊕
k Ak) (see Remark 1.1.8) is isomorphic to

∏
k Ak. This shows that nowhere

scatteredness is not preserved when passing to the multiplier algebra.
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Example 6.3.17. Given a type II1 factor M and a pure state ϕ : M → C, let A be the
associated hereditary kernel

A =
{
a ∈M : ϕ(aa∗) = ϕ(a∗a) = 0

}
.

It follows from [83, Theorem 1] and the remarks after Proposition 2.6 in [68] that A
is a simple, nowhere scattered C∗-algebra such that M(A)/A ∼= C. Thus, its multiplier
algebra is not nowhere scattered.

Question 6.3.18. As witnessed by Examples 6.3.16 and 6.3.17 above, nowhere scat-
teredness may not be preserved when passing to the multiplier algebra of a separable
or simple C∗-algebra.

Does there exist a nonunital, separable, simple, nonelementary C∗-algebra A such
that M(A) has a one-dimensional irreducible representation?

6.4 Real rank zero and stable rank one
In this section we give further characterizations of nowhere scatteredness under the
additional assumptions of real rank zero or stable rank one; see Theorem 6.4.1 and
Theorem 6.4.11 respectively.

Recall from Definition 1.1.14 (ii) that a C∗-algebra A is said to have real rank zero
if the self-adjoint, invertible elements of Ã are dense in the set of self-adjoint elements
of Ã.

Theorem 6.4.1. Let A be a real rank zero C∗-algebra. Then, the following are equiv-
alent:

(1) A is nowhere scattered;

(2) V (A) is weakly divisible;

(3) Cu(A) is weakly divisible.

Proof. Assume first that A is nowhere scattered. By Corollary 6.1.8, we may also
assume A to be stable.

Thus, Theorem 6.1.2 (7) implies that, for every [p] ∈ V (A), the hereditary sub-C∗-
algebra pAp does not have one-dimensional irreducible representations. It follows from
the proof of [9, Corollary 6.8] that there exist y, z ∈ V (A) such that [p] = 2y+ 3z. This
shows that (1) implies (2).

Now assume that V (A) is weakly divisible, and let ≤alg denote the algebraic pre-
order on V (A). Since A has real rank zero, we know from (the proof of) Theorem 4.3.8
that there exists an order preserving, monoid morphism α : V (A) → Cu(A) with sup-
dense image. Further, observe that, whenever x′ = 2y′+ 3z′ ≤alg x in V (A), there exist
y, z ∈ V (A) satisfying

y′ ≤alg y, z′ ≤alg z and x = 2y + 3z.

Indeed, let w be such that x′ + w = x. Then, we have w = 2u + 3v in V (A), and
setting y = y′ + u and z = z′ + v proves the claim.
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Using that α(V (A)) is sup-dense, we deduce that every element in Cu(A) can be
written as supn(2yn + 3zn) with (2yn + 3zn)n increasing. By the previous observation,
we may choose the elements yn, zn such that (yn)n and (zn)n are increasing. Thus, every
element in Cu(A) is of the form

sup
n

(2yn + 3zn) = 2 sup
n

(yn) + 3 sup
n

(zn),

which implies that Cu(A) is weakly divisible.
Finally, to show that (3) implies (1), assume that Cu(A) is weakly divisible and let

x′ � x in Cu(A). By weak divisibility, we find elements y, z such that x = 2y + 3z.
Thus, we have 2(y+z) ≤ x and x′ ≤ x ≤ 3(y+z), which implies that x is (2, ω)-divisible.

Since this can be done for every pair x′ � x, it follows from Theorem 6.3.9 that A
is nowhere scattered, as desired.

Remark 6.4.2. Let Z be the Jiang-Su algebra, which is a simple, non-elementary C∗-
algebra. By Example 6.1.3, Z is nowhere scattered. However, its Murray-von Neumann
semigroup is isomorphic to N, which is not weakly divisible.

This shows that, without the real rank zero assumption, weak divisibility of the
Murray-von Neumann semigroup is not equivalent to nowhere scatteredness.

Definition 6.4.3. A Cu-semigroup S is said to satisfy the interval axiom if, whenever

x′ � x, x� y + u and x� y + v in S,

there exists w ∈ S such that

x′ � y + w and w � u, v.

Remark 6.4.4. In [103, Paragraph 1.3], Wehrung defines the ‘algebraic interval axiom’
for positively ordered monoids. The definition above is the Cu-version of this notion.

Recall the definition of inf-semilattice ordered semigroups and the Riesz interpola-
tion property from Paragraph 1.2.14 and Paragraph 4.3.3 respectively.

Proposition 6.4.5. Let S be a countably based Cu-semigroup. Then, S is an inf-
semilattice ordered Cu-semigroup if and only if S satisfies the interval axiom and has
the Riesz Interpolation Property.

Proof. Recall first that, if S is inf-semilattice ordered, S satisfies the Riesz Interpolation
Property; see Paragraph 4.3.3. Further, given x′, x, y, u, v ∈ S as in Definition 6.4.3,
set w̃ = u ∧ v. We have

x′ � x ≤ (y + u) ∧ (y + v) = y + w̃ and w̃ ≤ u, v,

which allows us to choose w � w̃ such that x′ � y+w. This shows that S also satisfies
the interval axiom.

Conversely, assume that S satisfies both the interval axiom and the Riesz Interpo-
lation Property. Since S is countably based, suprema of upward directed sets exists.

Using that S has interpolation, it follows that the set {z ∈ S : z ≤ x, y} is upward
directed and, consequently, has a supremum, which is x ∧ y. This implies that S is an
inf-semilattice.
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Now, given x, y, z ∈ S, note that (x+ z) ∧ (y + z) ≥ (x ∧ y) + z is always satisfied.
For the other inequality, set s = (x + z) ∧ (y + z), and take s′ ∈ S such that s′ � s.
Since S satisfies the interval axiom, there exists w ∈ S satisfying

s′ ≤ z + w and w ≤ x ∧ y.

This implies s′ ≤ z + x ∧ y. Since this holds for every s′ � s, we obtain

(x+ z) ∧ (y + z) = s ≤ (x ∧ y) + z,

as desired.

The following result can be proven with the methods used in Proposition 5.3.4. We
omit its proof.

Proposition 6.4.6. The interval axiom and the Riesz Interpolation Property both sat-
isfy the Löwenheim-Skolem condition.

As mentioned in Paragraph 1.2.14, the Cuntz semigroup of any separable, stable
rank one C∗-algebra is inf-semilattice ordered. Thus, Proposition 6.4.5 implies that it
satisfies the interval axiom. Using the techniques from Chapter 5, we generalize this to
the nonseparable case.

Corollary 6.4.7. Let A be a stable rank one C∗-algebra. Then, Cu(A) satisfies weak
cancellation, the Riesz Interpolation Property, and the interval axiom.

Proof. The Cuntz semigroup of any stable rank one C∗-algebra A is weakly cancellative
and has the Riesz interpolation property by [82, Theorem 4.3] and [4, Theorem 3.5]
respectively.

To see that Cu(A) also satisfies the interval axiom, let x′, x, y, u, v ∈ Cu(A) be
as in Definition 6.4.3. Using Proposition 5.4.2 (in conjunction with Lemma 5.3.2)
and the fact that having stable rank one satisfies the Löwenheim-Skolem condition,
we find a separable, stable rank one sub-C∗-algebra B ⊆ A such that the Cu-mor-
phism Cu(B)→ Cu(A) induced by the inclusion is an order-embedding, and such that
x′, x, y, u, v belong to the image of this map.

Since B is separable and of stable rank one, its Cuntz semigroup Cu(B) is inf-
semilattice ordered. By Proposition 6.4.5 above, Cu(B) also satisfies the interval axiom.

Thus, an element w with the desired properties can be found in Cu(B). This Cuntz
semigroup can be identified with a sub-Cu-semigroup of Cu(A), so it follows that w
also has the desired properties in Cu(A), as required.

Remark 6.4.8. Goodearl constructs in [44] a separable, real rank zero C∗-algebra A
such that K0(A) does not satisfy Riesz decomposition and, consequently, Riesz interpo-
lation. It follows from [69, Lemma 4.2] that V (A) does not satisfy Riesz interpolation
either.

One can check that, in an algebraically ordered monoid, the algebraic interval axiom
implies Riesz interpolation. Thus, since the order in V (A) is algebraic and V (A) does
not have Riesz interpolation, V (A) does not satisfy the algebraic interval axiom either.
This implies that Cu(A) does not satisfy the interval axiom, since V (A) is dense in
Cu(A); see, for example, [6, Remark 5.5.6].

Thus, even in the real rank zero case, the Cuntz semigroup of a separable C∗-algebra
might not satisfy the interval axiom.
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Question 6.4.9. Which C∗-algebras have a Cuntz semigroup satisfying the interval
axiom?

Lemma 6.4.10. Let S be a weakly cancellative Cu-semigroup satisfying (O5), the in-
terval axiom, and the Riesz Interpolation Property. Then, S is weakly (2, ω)-divisible if
and only if S is (2, ω)-divisible.

Proof. Assume first that S is weakly (2, ω)-divisible, and let x ∈ S. Since x is weakly
(2, ω)-divisible, we find a sequence (yn)n with 2yn ≤ x for each n, and such that x ≤∑∞

n=1 yn. Indeed, take a�-increasing sequence (xm)m with supremum x. Then, apply-
ing weak (2, ω)-divisibility for each pair xm � x, we obtain elements y1,m, . . . , yrm,m ∈ S
such that 2yj,m ≤ x for each j,m and such that xm ≤ y1,m + . . .+ yrm,m. In particular,
we have x ≤

∑
j,m yj,m, as desired.

Now, since weak cancellation, (O5), the interval axiom and Riesz interpolation all
satisfy the Löwenheim-Skolem condition, we find a countably based, weakly cancellative
sub-Cu-semigroup T ⊆ S satisfying (O5), the interval axiom, and Riesz interpolation
which contains the sequence (yn)n and the element x.

Thus, since yn ∈ T for each n, it follows that x is also weakly (2, ω)-divisible in
T . Using that T is inf-semilattice ordered by Proposition 6.4.5, it follows from [4,
Theorem 5.5] that x is (2, ω)-divisible in T . Consequently, x is (2, ω)-divisible in S, as
desired.

The remaining implication is trivial.

Theorem 6.4.11. Let A be a C∗-algebra with stable rank one. Then, the following are
equivalent:

(1) A is nowhere scattered;

(2) Cu(A) is (2, ω)-divisible;

(3) Cu(A) is (k, ω)-divisible for every k ≥ 2.

Proof. That (2) is equivalent to (3) is Lemma 6.3.7. Further, since A has stable
rank one, its Cuntz semigroup Cu(A) satisfies, by Corollary 6.4.7, the hypothesis of
Lemma 6.4.10. This shows that Cu(A) is (2, ω)-divisible if and only if Cu(A) is weakly
(2, ω)-divisible.

The result now follows from Theorem 6.3.9.

Note that, as a consequence of Theorem 6.3.9, every C∗-algebra with a (2, ω)-
divisible Cuntz semigroup is nowhere scattered. It is unknown if the converse holds, that
is to say, if every nowhere scattered C∗-algebra has a (2, ω)-divisible Cuntz semigroup.

This problem, studied in the next chapter, is known as the Global Glimm Problem.





Chapter 7

The Global Glimm Problem

A C∗-algebra A is said to satisfy the Global Glimm Property if, for each ε > 0,
each a ∈ A+, and every natural number n ≥ 2, there exists a ∗-homomorphism
ϕ : C0((0, 1],Mn)→ aAa such that the ideal of A generated by the image of ϕ contains
(a − ε)+. This property, whose definition is inspired by a classical result by Glimm,
implies that those C∗-algebras that satisfy it are nowhere scattered; see, for example,
Theorem 7.4.6. In this chapter, we focus on the converse. That is to say, we study the
Global Glimm Problem, which asks if every nowhere scattered C∗-algebra satisfies the
Global Glimm Property; see Problem 7.4.3.

Our approach consists on the introduction of a new notion for abstract Cuntz semi-
groups, which we term ideal-filteredness; see Definition 7.1.1. We show that, although
not all Cuntz semigroups have this property (Example 7.1.5), there are a number of
interesting families of C∗-algebras that do; see Theorems 7.1.12, 7.1.14 and 7.1.17.

In Sections 7.2 and 7.3 we investigate the connections between (2, ω)-divisibility
and weak (2, ω)-divisibility in the presence of ideal-filteredness since, as witnessed by
Theorem 7.4.6, the study of these relations is deeply connected to the Global Glimm
Problem. With the introduction of strongly and weakly soft elements in Definition 7.2.1,
we see that a residually stably finite Cuntz semigroup is (2, ω)-divisible if and only if it
is ideal-filtered and weakly (2, ω)-divisible; see Theorem 7.3.10.

Finally, in Section 7.4 we prove that a C∗-algebra A has the Global Glimm Property
if and only if its Cuntz semigroup is (2, ω)-divisible. Using the results from the previous
sections, we reformulate the Global Glimm Problem in a number of ways and give a
positive answer to the problem for some classes of C∗-algebras; see Theorem 7.4.11.

The results in this chapter are from [95]. At the time of writing this thesis [95] is in
preparation, and it is possible that the results presented here will be improved further
in the paper.

7.1 Ideal-filtered Cuntz semigroups

We introduce in Definition 7.1.1 below the notion of ideal-filteredness for Cu-semi-
groups. As shown in Theorems 7.1.12 and 7.1.14, the Cuntz semigroup of a stable rank
one or real rank zero C∗-algebra is ideal-filtered. Further, we also prove that separable
C∗-algebras with zero-dimensional primitive ideal space also have ideal-filtered Cuntz
semigroups; see Theorem 7.1.17. We also note that not all Cuntz semigroups satisfy
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this property; see Example 7.1.5.

Definition 7.1.1. A Cu-semigroup S is said to be ideal-filtered if, whenever

v′ � v �∞x,∞y in S,

there exists z ∈ S such that

v′ �∞z and z � x, y.

The following notation will be used throughout the chapter:

Notation 7.1.2. Given elements v, x in a Cu-semigroup S, we write v <C x if there
exists x′ ∈ S satisfying x′ � x and v ≤ ∞x′.

With this notation, S is ideal-filtered if and only if, whenever v′ � v <C x, y, there
exists z ∈ S with v′ <C z � x, y.

Remark 7.1.3. Given a Cu-semigroup S and elements v, x, y ∈ S, note that

(i) v <C x and x <C y implies v <C y.

(ii) if v � x, then v <C x.

(iii) if v <C x, there exists x′ ∈ S with v <C x′ � x.

Remark 7.1.4. Let v′, v be elements in an ideal-filtered Cu-semigroup S such that
v′ � v ≤ ∞v′. Then, the set F := {x ∈ S : v ≤ ∞x} is filtered. That is to say, for
every pair of elements z, t ∈ F , one can find w ∈ F satisfying w ≤ z, t.

In particular, if S has a compact full element (for example, if S is an ideal-filtered
Cuntz semigroup of a unital C∗-algebra), the full elements in S form a filtered set.

Example 7.1.5. Let A be the commutative C∗-algebra C(S2), where S2 denotes the
two-sphere. Then, Cu(A) is not ideal-filtered.

Indeed, we know by [74, Theorem 1.2] (or [91, Example 6.7]) that the submonoid of
compact elements Cu(A)c is isomorphic to

V (A) ∼=
{

(0, 0)
}
∪
{

(n,m) : m > 0
}
⊆ Z× Z.

Thus, through this identification, the elements x = (0, 1) and y = (1, 1) are both
elements in Cu(A)c, full in Cu(A), that have no full element below them. It follows
from Remark 7.1.4 above that Cu(A) is not ideal-filtered.

Lemma 7.1.6. Let S be an ideal-filtered Cu-semigroup, and let x′, x, y ∈ S and n ≥ 1
be such that x′ � x� 2ny. Then, there exists z ∈ S such that

x′ <C z � x, y.

Proof. If n = 1, take w ∈ S such that x′ � w � x. Thus, we have

x′ � w <C x, y
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and, since S is ideal-filtered, we find z ∈ S satisfying

x′ <C z � x, y,

as required.
We now prove the result by induction on n. Thus, fix n ≥ 1 and assume that the

result holds for n. Then, given x′, x, y ∈ S satisfying x′ � x� 2n+1y, one gets

x′ � x� 2n+1y = 2(2ny).

Using the case n = 1, we find z0 ∈ S with

x′ <C z0 � x, 2ny.

Choose z′0 � z0 such that x′ <C z′0; see Remark 7.1.3. Then, applying the induction
assumption to z′0 � z0 � 2ny, there exists z ∈ S such that

z′0 <C z � z0, y

The element z satisfies the required properties by construction.

Proposition 7.1.7. A Cu-semigroup S is ideal-filtered if and only if it satisfies the
following two conditions:

(i) Whenever v′ � v <C x in S, there exists z ∈ S such that

v′ <C z <C v and z � x;

(ii) Whenever x′ � x� 2y, there exists z ∈ S such that

x′ <C z � x, y.

Proof. Assume first that S is ideal-filtered. If v′, v, x ∈ S are such that v′ � v <C x,
we can find w ∈ S with v′ � w � v. In particular, one gets

v′ � w <C x, v.

Since S is ideal-filtered, there exists an element z in S such that

v′ <C z � x, v,

which shows that S satisfies (i).
Condition (ii) follows from Lemma 7.1.6.
Conversely, assume now that S satisfies (i) and (ii), and let v′, v, x, y ∈ S be such

that v′ � v <C x, y. Using (i), one gets an element w ∈ S such that

v′ <C w <C v and w � x.

Thus, by Remark 7.1.3 there exist w′′, w′ ∈ S satisfying v′ <C w′′ � w′ � w.
Since w′ � w <C v <C y, we have w′ � ∞y and, consequently, there exists n ≥ 1

such that w′ � 2ny.
Now note that, in the proof of Lemma 7.1.6, we have only used that S satisfies

condition (ii). Thus, one gets z ∈ S with w′′ <C z � w′, y, which shows that

v′ <C w′′ <C z, z � w′ � w � x and z � y,

as desired.
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We now prove that, if S is the Cuntz semigroup of a C∗-algebra, condition (i) from
Proposition 7.1.7 above is always satisfied; see Corollary 7.1.10.

Lemma 7.1.8. Let v′, v, x be elements in a Cu-semigroup S that satisfies (O6) and
(O7). Assume that v′ � v ≤ ∞x. Then, there exists z ∈ S such that

v′ <C z <C v and z � x.

Proof. Let v′′ ∈ S be such that v′ � v′′ � v, and take n ≥ 1 such that v′′ � nx. Since
S satisfies (O6), there exist z1, . . . , zn ∈ S satisfying

v′ � z1 + . . .+ zn, z1 � v′′, x, . . . , zn � v′′, x.

For each j ≤ n, let z′j ∈ S be such that z′j � zj and v′ � z′1 + . . .+ z′n. Using that
z′j � zj � x for every j, and that S satisfies (O7), one gets z ∈ S with

z′1, . . . , z
′
n � z � x, z1 + . . .+ zn.

In particular, we have

v′ � z′1 + . . .+ z′n ≤ ∞z, z � z1 + . . .+ zn ≤ ∞v′′ ≤ ∞v and z � x.

Using that v′ � ∞z, we can find z′ ∈ S such that z′ � z and v′ ≤ ∞z′. This
implies, by definition, that v′ <C z, as desired.

Proposition 7.1.9. Let S be a Cu-semigroup satisfying (O6) and (O7). Then, S is
ideal-filtered if and only if, whenever x′ � x� 2y in S, there exists z ∈ S such that

x′ <C z � x, y.

Proof. Combine Proposition 7.1.7 and Lemma 7.1.8.

Corollary 7.1.10. Let A be a C∗-algebra. Then, Cu(A) is ideal-filtered if and only if,
whenever x′ � x� 2y in Cu(A), there exists z ∈ Cu(A) such that

x′ <C z � x, y.

Lemma 7.1.11. Let S be a Cu-semigroup satisfying (O6) and Riesz interpolation.
Then, S is ideal-filtered.

Proof. Note that, since S has Riesz interpolation, it satisfies (O7). Thus, in order to
prove the result, we only need to verify the condition in Proposition 7.1.9.

That is to say, given x′, x, y ∈ S with x′ � x� 2y, we have to find z ∈ S such that
x′ <C z � x, y.

Applying (O6) to x′ � x� 2y, we get z1, z2 ∈ S satisfying

x′ � z1 + z2, z1 � x, y and z2 � x, y.

Now take x̃ � x and ỹ � y with z1 � x̃, ỹ and z2 � x̃, ỹ. Since S has Riesz
interpolation, we find z ∈ S such that

z1, z2 ≤ z ≤ x̃, ỹ

and, consequently, one gets

x′ � z1 + z2 ≤ ∞z and z � x, y,

as required.
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Theorem 7.1.12. Let A be a C∗-algebra with stable rank one. Then, Cu(A) is ideal-
filtered.

Proof. Recall from Paragraph 1.2.14 that the Cuntz semigroup of every C∗-algebra
satisfies (O6). Moreover, since A is of stable rank one, Cu(A) has Riesz interpolation;
see [4, Theorem 3.5] or Corollary 6.4.7.

The result now follows from Lemma 7.1.11.

Lemma 7.1.13. Let S be a zero-dimensional Cu-semigroup satisfying (O7). Then, S
is ideal-filtered.

Proof. Since S is zero-dimensional, we have that S satisfies (O6); see Paragraph 4.3.1.
Thus, as in Lemma 7.1.11 above, we only need to verify the condition from Proposi-
tion 7.1.9.

Now let x′, x, y in S be such that x′ � x� 2y. Since dim(S) = 0, we find z1, z2 � y
satisfying

x′ � z1 + z2 � x.

Take z′1 � z1 and z′2 � z2 in such a way that x′ � z′1 + z′2. Applying (O7) to
z′j � zj for j = 1, 2, one obtains z ∈ S with

z′1, z
′
2 � z � y, z1 + z2

and, therefore,

x′ � z′1 + z′2 ≤ ∞z, z � z1 + z2 � x and z � y,

as required.

Theorem 7.1.14. Let A be a real rank zero C∗-algebra. Then, Cu(A) is ideal-filtered.

Proof. We know that the Cuntz semigroup of every C∗-algebra satisfies (O7); see
Paragraph 1.2.14. Additionally, it follows from Theorem 4.3.8 that Cu(A) is zero-
dimensional.

Applying Lemma 7.1.13, we see that Cu(A) is ideal-filtered.

Let S be a Cu-semigroup. Given x ∈ S, we denote by 〈x〉 the ideal generated by x.
That is to say,

〈x〉 := {y ∈ S : y ≤ ∞x}.

We let Latf (S) be the set of singly generated ideals in S, which is a Cu-semigroup
with the expected order and addition. It follows from [6, Proposition 5.1.7] that one
has 〈x〉 � 〈y〉 in Latf (S) if and only if there is some element y′ ∈ S with x ≤ ∞y′ and
y′ � y.

Lemma 7.1.15. Let S be a Cu-semigroup satisfying (O6) and (O7). Then, the follow-
ing are equivalent:

(1) whenever x′ � x in S, there exist elements y′, y ∈ S with x′ � y′ � y � x and
y �∞y′;

(2) Latf (S) is algebraic.
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Proof. Assume first that (1) is satisfied. Then, given I ′ � I in Latf (S), we can find
x′ � x in S such that

I ′ ≤ 〈x′〉 � 〈x〉 = I.

Applying our assumption at x′ � x, we find elements y′, y in S such that x′ � y′ �
y � x and y �∞y′. Then, since y �∞y′, we obtain 〈y〉 � 〈y〉. Thus, we have

I ′ � 〈y〉 � 〈y〉 � I,

as required.
Conversely, assume that Latf (S) is algebraic, and let x ∈ S. Take x′ ∈ S such that

x′ � x and let x′′ ∈ S be such that x′ � x′′ � x.
Since 〈x′′〉 � 〈x〉 in Latf (S), we can find z ∈ S such that 〈x′′〉 � 〈z〉 � 〈z〉 � 〈x〉.

That is to say, there exists z′ ∈ S satisfying

x′′ ≤ ∞z′ and z′ � z ≤ ∞x,∞z′.

Let z′′ ∈ S be such that z′ � z′′ � z. Then, one gets n ∈ N with z′ � z′′ ≤ nx.
Using (O6), we find elements e1, . . . , en satisfying

z′ � e1 + . . .+ en and ej � z′′, x for j = 1, . . . , n.

For each j ≤ n, let e′j � ej be such that z′ � e′1 + . . . + e′n. Applying (O7) to
x′ � x′′ � x and e′j � ej � x for j = 1, . . . , n, one finds y ∈ S with

x′, e′1, . . . , e
′
n � y � x, e1 + . . .+ en + x′′.

Let y′ ∈ S be such that y′ � y and x′, e′1, . . . , e′n � y′. Then, one has

x′ � y′ � y � x

and, using that z′′ � z ≤ ∞z′ at the third step,

y � e1 + . . .+ en + x′′ ≤ ∞z′′ ≤ ∞z′ ≤ ∞(e′1 + . . .+ e′n) ≤ ∞y′,

as desired.

Lemma 7.1.16. Let S be a Cu-semigroup satisfying (O5)-(O7) such that Latf (S) is
algebraic. Then, S is ideal-filtered.

Proof. We will show that the condition in Proposition 7.1.9 is satisfied. Thus, let
x′, x, y ∈ S be such that x′ � x� 2y.

By (O6), there exist elements e, f ∈ S satisfying

x′ � e+ f, e ≤ x, y and f ≤ x, y.

Thus, we can find f ′ � f and e′ � e such that x′ � e′ + f ′. Since Latf (S) is
algebraic, Lemma 7.1.15 allows us to choose e�∞e′.

Now let e′′ ∈ S be such that e′ � e′′ � e. Applying (O5) to e′′ � e ≤ x to get an
element c ∈ S with

e′′ + c ≤ x ≤ e+ c.
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In particular, one gets f ′ � f ≤ x ≤ e+ c and, since S satisfies (O6), we find d ∈ S
with

f ′ � e+ d, and d ≤ f, c.

Let d′ � d be such that f ′ � e+ d′. Then, we have

e′ � e′′ ≤ e ≤ y and d′ � d ≤ f ≤ y.

Applying (O7), we find an element z ∈ S satisfying

e′, d′ � z and z � y, e′′ + d.

Since d ≤ c, we have z ≤ e′′ + c ≤ x. Further, using that e ≤ ∞e′, we also have

x′ � e′ + f ′ ≤ e′ + e+ d′ ≤ ∞(e′ + d′) ≤ ∞z,

as required.

As defined in [16, Remark 2.5(vi)], we say that a C∗-algebra A has topological
dimension zero if its primitive ideal space Prim(A) has a basis consisting of compact-
open subsets.

Theorem 7.1.17. Let A be a separable C∗-algebra with topological dimension zero.
Then, Cu(A) is ideal-filtered.

Proof. Since A is separable and has topological dimension zero, it follows from [66,
Corollary 4.3] that A⊗O2 has real rank zero. By [26], Cu(A⊗O2) is algebraic. Thus,
using [6, Corollary 7.2.15] at the first step and [6, Proposition 5.1.7] at the second step,
we get that

Cu(A⊗O2) ∼= Cu(A)⊗ {0,∞} ∼= Latf (Cu(A))

is algebraic.
The result now follows from Lemma 7.1.16.

Generally, if A is a stable C∗-algebra, ideal-filteredness can be characterized as
follows:

Proposition 7.1.18. Let A be a stable C∗-algebra. Then, Cu(A) is ideal-filtered if and
only if, for every a ∈ A+, every b ∈ (aAa⊗M2)+, and every ε > 0, there exists c ∈ aAa
such that

c - b and (b− ε)+ ∈ AcA.

Proof. Assume first that Cu(A) is ideal-filtered, and let a, b, ε as in the statement.
Then, using that b ∈ aAa⊗M2 in the second step, one has

[(b− ε)+]� [(b− ε/2)+]� 2[a].

Since Cu(A) is ideal-filtered, there exists d ∈ A+ satisfying

[(b− ε)+] <C [d]� [(b− ε/2)+], [a].
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Let δ > 0 such that [(b − ε)+] ≤ ∞[(d − δ)+]. Since c - a, we obtain r such that
(d − δ)+ = rr∗ and r∗r ∈ aAa; see Lemma 1.2.2. It follows that c := r∗r has the
required properties.

To prove the backward implication, recall from Proposition 7.1.9 that Cu(A) is
ideal-filtered if and only if, whenever x′ � x� 2y, there exists an element z ∈ Cu(A)
with x′ <C z ≤ x, y.

Thus, take x′, x, y ∈ Cu(A) such that x′ � x � 2y, and let a, b ∈ A+ with x = [b]
and y = [a]. Since x′ � [b], we can find ε > 0 satisfying x′ � [(b− 2ε)+].

Now identify a with a⊕0 in A⊗M2, and consider the strictly positive element a⊗1
in aAa⊗M2. Using that x� 2y, one has b - a⊗ 1. It follows from Lemma 1.2.2 that
there exists r ∈ A⊗M2 satisfying

(b− ε)+ = rr∗ and r∗r ∈ aAa⊗M2.

Using our assumption, we find c ∈ (aAa)+ with c - r∗r and such that (r∗r − ε)+

belongs to AcA. Note that one has

[c] ≤ [a] = y, [c] ≤ [r∗r] = [rr∗] ≤ [b] = x

and
x′ � [(b− 2ε)+] = [(rr∗ − ε)+] = [(r∗r − ε)+] ≤ ∞[c],

as desired.

Problem 7.1.19. When is the Cuntz semigroup of a C∗-algebra ideal-filtered?

7.2 Three shades of softness
We refine the notion of soft element from [6, Definition 5.3.1] (see Paragraph 4.1.17)
to obtain three diferent kinds of softness, termed strong softness, weak softness and
functional softness; see Definition 7.2.1. Functional softness agrees with the definition
from [6, Definition 5.3.1], and stronlgy soft elements were implicitly considered in [6,
Section 5.3].

As shown in Proposition 7.2.3, every strongly soft element is weakly soft, and every
weakly soft element is functionally soft. In the residually stably finite case, a function-
ally soft element is strongly soft, and so all three notions agree.

Definition 7.2.1. An element x in a Cu-semigroup S will be said to be strongly soft
if, whenever x′ � x in S, there exists t ∈ S such that

x′ + t� x and x′ �∞t.

We will say that x is weakly soft if, whenever x′ � x in S, there exists n ≥ 1 and
elements t1, . . . , tn ∈ S such that

x′ + tj � x for each j and x′ � t1 + . . .+ tn.

The element will be called functionally soft if, whenever x′ � x in S, there exists
n ≥ 1 such that

(n+ 1)x′ � nx.

The Cu-semigroup S will be said to be strongly (resp. functionally, weakly) soft if
every element in S is strongly (resp. functionally, weakly) soft.
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Lemma 7.2.2. Let x be an element in a Cu-semigroup S. Then, the following are
equivalent:

(1) x is strongly soft;

(2) whenever x′ � x in S, there exists t ∈ S such that

x′ + t ≤ x ≤ ∞t;

(3) whenever x′ � x in S, there exists t ∈ S such that

x′ + t ≤ x and x′ ≤ ∞t.

Proof. Let us first assume that x is strongly soft, and choose x′ ∈ S such that x′ � x.
Let (xn)n be a �-increasing sequence with supremum x and x0 = x′. Then, one can
inductively find elements yn and tn satisfying

yn + tn � x, yn + tn � yn+1, yn �∞tn and xn+1 � yn+1

for every n ≥ 0.
Indeed, set y0 := x′. Since x is strongly soft, there exists an element t0 ∈ S such

that y0 + t0 � x and y0 �∞t0.
Now fix n ∈ N. If the elements yk and tk have been chosen for every k ≤ n, we can

use that both yn+ tn and xn+1 are compactly contained in x to find yn+1 � x satisfying

yn + tn � yn+1 and xn+1 � yn+1.

Using once again that x is strongly soft, we get tn+1 ∈ S such that yn+1 + tn+1 � x
and yn+1 �∞tn+1, as desired.

Set t :=
∑∞

k=0 tk. For each n ≥ 0, we have xn ≤ yn ≤ ∞t, which implies x ≤ ∞t.
Moreover, for every n ∈ N, we also get

x′ +
n∑
k=0

tk = y0 + t0 + t1 + . . .+ tn ≤ y1 + t1 + . . .+ tn ≤ . . . ≤ yn+1 ≤ x

and, consequently, x′ + t ≤ x. This proves that (1) implies (2).
That (2) implies (3) is clear, so it remains to show that (3) implies (1). Thus, let

x′ ∈ S be such that x′ � x, and take x′′ satisfying x′ � x′′ � x. Applying (3) to
x′′ � x, one gets t ∈ S with x′′ + t ≤ x and x′′ ≤ ∞t.

Since x′ � x′′, there exists t′ ∈ S satisfying

x′ �∞t′ and t′ � t,

which implies x′ + t′ � x, as required.

Recall the definition of a residually stably finite Cu-semigroup from Paragraph 4.4.1.

Proposition 7.2.3. Let x be an element in a Cu-semigroup S, and consider the fol-
lowing properties:
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(1) x is strongly soft;

(2) x is weakly soft;

(3) x is functionally soft.

Then, (1) implies (2), and (2) implies (3). If S is residually stably finite and satisfies
(O5), all properties are equivalent.

Proof. It is clear that (1) implies (2). If x is weakly soft and x′ is such that x′ � x,
there exist n ≥ 1 and elements t1, . . . , tn in S satisfying

x′ + tj � x for each j ≤ n, and x′ � t1 + . . .+ tn.

Thus, we get
(n+ 1)x′ ≤ nx′ + t1 + . . .+ tn � nx,

which implies that x is functionally soft. That is to say, (2) implies (3).
Next, assume that S is residually stably finite and satisfies (O5). It follows from [6,

Lemma 5.3.8] that (3) implies (1) and, consequently, that all properties are equivalent.

Corollary 7.2.4. Let S be a weakly cancellative Cu-semigroup satisfying (O5). Then,
an element x ∈ S is strongly soft if and only if x is functionally soft.

Proof. It is readily checked that every quotient of a weakly cancellative Cu-semigroup
is again weakly cancellative. Since stably finiteness is weaker than weak cancellation,
the result follows from Proposition 7.2.3.

Corollary 7.2.5. Let S be a Cu-semigroup, and consider the following properties:

(1) S is strongly soft;

(2) S is weakly soft;

(3) S is functionally soft.

Then, (1) implies (2), and (2) implies (3). If S is residually stably finite and satisfies
(O5), all properties are equivalent.

Example 7.2.6. A Cu-semigroup S is said to be idempotent if every element x ∈ S
satisfies 2x = x. By [6, Section 7.2], a C∗-algebra A is purely infinite if and only
if Cu(A) is idempotent. It follows that the Cuntz semigroup of every purely infinite
C∗-algebra is strongly soft.

Similarly, the Cuntz semigroup of every weakly purely infinite C∗-algebra (see Ex-
ample 6.3.11) is functionally soft. Indeed, let S be the Cuntz semigroup of a weakly
purely infinite C∗-algebra and let n ∈ N be as in Example 6.3.11. Then, given any pair
x′, x ∈ S with x′ � x, we have nx′ � nx and, since 2nx′ = nx′, the result follows.

It is not known if every weakly purely infinite C∗-algebra is purely infinite; see [54,
Question 9.5].
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Proposition 7.2.7. Let x be compact element in a Cu-semigroup S. Then, x = 2x if
and only if x is strongly soft, if and only if x is weakly soft.

Proof. If x = 2x, then it follows directly from Definition 7.2.1 that x is strongly soft,
and this implies that x is weakly soft.

Conversely, if x is weakly soft, we can apply Definition 7.2.1 to x� x to get n ≥ 1
and elements t1, . . . , tn ∈ S satisfying

x+ t1 � x, . . . , x+ tn � x and x� t1 + . . .+ tn.

Thus, we have x+ tj = x for each j. Therefore, one gets

x ≤ 2x ≤ x+ t1 + t2 + . . .+ tn = x+ t2 + . . .+ tn = . . . = x,

as desired.

Example 7.2.8. Given k ≥ 1, recall the definition of the Cu-semigroup Ek from
Examples 1.2.8 (ii). The element x := 1 is compact in Ek and satisfies (k + 2)x =
(k + 1)x, but not 2x = x. Thus, x is an example of a functionally soft element that is
not weakly soft. In particular, x is not strongly soft either.

Given a Cu-semigroup S, we will denote by Ssoft the subset of strongly soft elements
in S. Note that, in the previous chapters, this notation has already been used to denote
the subset of (functionally) soft elements of a weakly cancellative Cu-semigroups. By
Corollary 7.2.4, the new and old notation agree.

Theorem 7.2.9. Let S be a Cu-semigroup. Then,

(i) Ssoft is a submonoid of S closed under suprema of increasing sequences.

(ii) Ssoft is absorbing. That is to say, whenever x ∈ S and y ∈ Ssoft satisfy x ≤ ∞y,
we have x+ y ∈ Ssoft.

Proof. Let us first show that Ssoft is closed under addition. Thus, take x, y ∈ Ssoft and
let w ∈ S be such that w � x+ y.

Choose x′ � x and y′ � y satisfying w � x′ + y′. Using that x and y are strongly
soft, we get elements r, s in S with

x′ + r � x, x′ �∞r, y′ + s� y and y′ �∞s,

which implies

w + (r + s) ≤ x′ + y′ + r + s� x+ y and w ≤ x′ + y′ �∞(r + s).

Consequently, x + y ∈ Ssoft and, since 0 is strongly soft, it follows that Ssoft is a
submonoid.

Now let (xn)n be an increasing sequence in Ssoft, and set x := supn xn in S. To see
that x ∈ Ssoft, take x′ ∈ S with x′ � x.

Since x is the supremum of (xn)n, there exists n ∈ N satisfying x′ � xn. Using that
xn is strongly soft, we obtain r ∈ S with

x′ + r � xn and x′ �∞r.
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Thus, we get x′ + r � x and x′ �∞r, as desired.
To prove (ii), take x ∈ S and y ∈ Ssoft such that x ≤ ∞y. Let w ∈ S satisfy

w � x+ y, and choose y′ � y with w � x+ y′. Since y is strongly soft, we can apply
Lemma 7.2.2 to find an element r ∈ S such that

y′ + r ≤ y ≤ ∞r.

Using that x ≤ ∞y at the third step, one has

w + r ≤ x+ y′ + r ≤ x+ y ≤ ∞y ≤ ∞r,

which shows that condition (2) of Lemma 7.2.2 is verified for x+ y, as required.

7.3 Divisibility vs weak divisibility

Recall from Paragraph 6.3.6 that a Cu-semigroup S is said to be weakly (2, ω)-divisible
if, whenever x′ � x, there exist y1, . . . , yn ∈ S such that

2y1, . . . , 2yn ≤ x and x′ ≤ y1 + . . .+ yn.

Further, one says that S is (2, ω)-divisible if, whenever x′ � x, there exists y ∈ S
with 2y ≤ x and x′ ≤ ∞y. That is to say, if one can always set n = 1 in the previous
definition.

In this section, we study when a weakly (2, ω)-divisible Cu-semigroup is (2, ω)-
divisible . First, we characterize (2, ω)-divisibility in the presence of ideal-filteredness
by the existence of strongly soft elements; see Theorem 7.3.5. We also show in Propo-
sition 7.3.8 that, in an ideal-filtered and weakly (2, ω)-divisible Cu-semigroup S, the
number n of elements y1, . . . , yn in the definition of weak (2, ω)-divisibility can always
be bounded by 2. If, additionally, one assumes S to be residually stably finite, one can
set n = 1; see Proposition 7.3.9. In particular, it follows that a residually stably finite
C∗-algebra A has a (2, ω)-divisible Cuntz semigroup if and only if Cu(A) is ideal-filtered
and weakly (2, ω)-divisible.

Lemma 7.3.1. Let S be a (2, ω)-divisible Cu-semigroup satisfying (O6) and (O7).
Then, S is ideal-filtered.

Proof. Since S satisfies (O6) and (O7), it is enough to verify the condition in Proposi-
tion 7.1.9. Thus, let x′, x, y be elements in S such that

x′ � x� 2y.

Applying that S is (2, ω)-divisible, there exists d ∈ S satisfying 2d � x and x′ �
∞d. Thus, we have x′ <C d and, using Remark 7.1.3, we can take d′ ∈ S such that
x′ <C d′ � d.

Then, applying (O6) to d′ � d� 2y, we find elements z1, z2 ∈ S such that

d′ � z1 + z2 and z1, z2 � d, y.
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Choose z′1 � z1 and z′2 � z2 with d′ � z′1 + z′2. Since S satisfies (O7) and we have
that z′1 � z1 � y and z′2 � z2 � y, there exists z ∈ S with

z′1, z
′
2 � z � y, z1 + z2,

which implies

x′ <C d′ � z′1 + z′2 <C z, z � z1 + z2 ≤ d+ d� x and z � y.

This shows that z is such that x′ <C z � x, y, as required.

Proposition 7.3.2. Let S be a (2, ω)-divisible Cu-semigroup satisfying (O5). Then,
for every element x ∈ S and k ≥ 2 there exists a strongly soft element y ∈ S satisfying
ky ≤ x ≤ ∞y.

Proof. First, note that it is enough to verify the result for k = 2. We will make use of
the following claim:

Claim. Let v′, v ∈ S be such that v′ � v. Then, there exist y, w ∈ S satisfying

2y + w ≤ v ≤ ∞w, v′ ≤ ∞y and y � v.

To prove the Claim, recall from Lemma 6.3.7 that S is (3, ω)-divisible. Thus, we
can find z ∈ S with 3z ≤ v and v′ �∞z.

Since v′ � ∞z, there exist z′, z′′ ∈ S such that z′ � z′′ � z and v′ ≤ ∞z′. In
particular, we get

(2z′′) + z ≤ v, 2z′ � 2z′′ and z′′ � z.

Using (O5), we find an element w ∈ S such that z′′ � w and

2z′ + w ≤ v ≤ 2z′′ + w.

Set y := z′, and note that v′ ≤ ∞z′ =∞y. Moreover, we also have

2y + w = 2z′ + w ≤ v ≤ 2z′′ + w ≤ 3w ≤ ∞w and y = z′ � z ≤ v,

and this establishes the claim.
Now let x ∈ S, and let (xn)n be a �-increasing sequence with supremum x. Then,

one can inductively find elements wn ∈ S for n ∈ N and yn ∈ S for n ≥ 1 satisfying

2yn+1 + wn+1 ≤ wn, x ≤ ∞wn+1, xn+1, yn ≤ ∞yn+1 and yn+1 � x

for all n ≥ 0.
Indeed, set w0 := x and w′0 := x1. Applying the claim to w′0 � w0, we get y1, w1 ∈ S

such that
2y1 + w1 ≤ w0 ≤ ∞w1, w′0 ≤ ∞y1 and y1 � w0,

which implies

x = w0 ≤ ∞w1, x1 = w′0 ≤ ∞y1 and y1 � w0 = x.
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Thus, assume that the elements yk and wk have been found for all k ≤ n for some
fixed n ∈ N. Since both xn+1 and yn are compactly contained in ∞wn, there exists
w′n � wn such that

xn+1, yn ≤ ∞w′n.

Applying the claim once again to w′n � wn, we get elements yn+1, wn+1 ∈ S satisfy-
ing

2yn+1 + wn+1 ≤ wn ≤ ∞wn+1, w′n ≤ ∞yn+1 and yn+1 � wn,

which, as before, implies

x ≤ ∞wn ≤ ∞wn+1, xn+1, yn ≤ ∞w′n ≤ ∞yn+1 and
yn+1 � wn ≤ wn−1 ≤ . . . ≤ w0 = x,

as required.
Set y :=

∑∞
k=1 yk. For every n ≥ 1, one has

2(y1 + . . .+ yn) ≤ 2(y1 + . . .+ yn−1) + wn−1 ≤ . . . ≤ 2y1 + w1 ≤ w0 = x,

and, consequently, 2y ≤ x.
Further, since xn ≤ ∞yn ≤ ∞y, one also gets x ≤ ∞y.
Finally, to verify that y is strongly soft, let us verify condition (3) of Lemma 7.2.2.

Take y′ ∈ S such that y′ � y. Then, there exists n ∈ N such that y′ ≤
∑n

k=1 yk. Since
yk ≤ ∞yk+1 for every k, we get

n∑
k=1

yk ≤ ∞y2 +
n∑
k=2

yk ≤ ∞y3 +
n∑
k=3

yk ≤ . . . ≤ ∞yn ≤ ∞yn+1.

This implies

y′ + yn+1 ≤
n∑
k=1

yk + yn+1 ≤ y and y′ ≤
n∑
k=1

yk ≤ ∞yn+1,

as required.

Lemma 7.3.3. Let S be an ideal-filtered Cu-semigroup, and let x be an element in S.
If x is strongly soft, then x is (2, ω)-divisible.

Proof. Assume that x is strongly soft, and take x′ � x. Let v′, v ∈ S be such that
x′ � v′ � v � x. Then, since x is strongly soft, one can find t ∈ S satisfying

v + t� x and v �∞t.

In particular, we have x′ � v′ <C v, t. Using that S is ideal-filtered, there exists an
element z ∈ S with x′ <C z � v, t.

This implies that
2z � v + t� x and x′ ≤ ∞z,

as required.
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Lemma 7.3.4. Let x be a weakly soft element in a Cu-semigroup S satisfying (O6).
Then, x is weakly (2, ω)-divisible.

Proof. Let x′ ∈ S be such that x′ � x, and let x′′ ∈ S satisfy x′ � x′′ � x. Using that
x is weakly soft, we find n ≥ 1 and elements t1, . . . , tn in S with

x′′ + t1 � x, . . . , x′′ + tn � x and x′′ � t1 + . . .+ tn.

Applying (O6) to x′ � x′′ � t1 + . . .+ tn, we get elements z1, . . . , zn ∈ S satisfying

x′ � z1 + . . .+ zn, z1 � x′′, t1, . . . and zn � x′′, tn.

Thus, one has x′ � z1 + . . .+ zn and

2zj � x′′ + tj � x

for every j = 1, . . . , n, as desired.

Theorem 7.3.5. Let S be a Cu-semigroup satisfying (O5), (O6) and (O7). Then, the
following are equivalent:

(1) S is (2, ω)-divisible;

(2) S is ideal-filtered and, for every element x in S, there exists a strongly soft element
y ∈ S satisfying 2y ≤ x ≤ ∞y;

(3) S is ideal-filtered and, whenever x′ � x, there exists a strongly soft element y ∈ S
with x′ <C y � x.

Proof. That (1) implies (2) follows as a combination of Lemma 7.3.1 and Proposi-
tion 7.3.2.

Assuming (2), let x′, x ∈ S be such that x′ � x. Take x′′ ∈ S satisfying x′ � x′′ �
x. Then, there exists a strongly soft element y ∈ S with 2y ≤ x′′ ≤ ∞y. In particular,
it follows that y ≤ x′′ � x and x′ <C y. This shows that (2) implies (3).

Finally, to see that (3) implies (1), take x ∈ S and let x′ ∈ S be such that x′ � x.
Then, we know by our assumption that there exists a strongly soft element y ∈ S

satisfying x′ <C y � x. Further, we can find y′ � y with x′ <C y′.
Since y is (2, ω)-divisible by Lemma 7.3.3, we obtain z ∈ S such that 2z ≤ y and

y′ ≤ ∞z. Consequently, we have 2z � x and x′ ≤ ∞z, as required.

Corollary 7.3.6. A strongly soft Cu-semigroup satisfying (O5), (O6) and (O7) is
(2, ω)-divisible if and only if it is ideal-filtered.

Proof. Let S be a strongly soft Cu-semigroup that satisfies (O5), (O6) and (O7). If S
is (2, ω)-divisible, it follows from Lemma 7.3.1 that S is ideal-filtered.

Conversely, if S is ideal-filtered, we note that S satisfies (3) in Theorem 7.3.5 above.
Thus, S is (2, ω)-divisible.

Lemma 7.3.7. Let S be an ideal-filtered, weakly (2, ω)-divisible Cu-semigroup satisfying
(O5). Then, for every pair x′ � x in S, there exist elements c, d1, . . . , dn ∈ S such that

c+ d1, . . . , c+ dn ≤ x, x′ �∞c and x′ � d1 + . . .+ dn.
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Proof. Let x′, x ∈ S be such that x′ � x. Using that S is weakly (2, ω)-divisible, there
exist elements y1, . . . , yn ∈ S satisfying

2y1, . . . , 2yn � x and x′ � y1 + . . .+ yn.

For every j ≤ n, let y′′j , y′j ∈ S be such that y′′j � y′j � yj and x′ � y′′1 + . . . + y′′n.
Applying (O5) to

y′j + yj ≤ x, y′′j � y′j and y′j � yj,

we find cj ∈ S such that

y′′j + cj ≤ x ≤ y′j + cj and y′j � cj.

In particular, one gets x′ � x ≤ 2cj ≤ ∞cj for each j. Thus, given x′′ ∈ S with
x′ � x′′ � x, we have

x′ � x′′ �∞c1, . . . ,∞cn
and, applying that S is ideal-filtered, there exists c ∈ S satisfying

x′ �∞c and c� c1, . . . , cn.

Thus, the elements c and dj := y′′j have the desired properties.

Proposition 7.3.8. Let S be an ideal-filtered, weakly (2, ω)-divisible Cu-semigroup sat-
isfying (O5)-(O8). Then, for every pair x′ � x in S, there exist elements c, d1, d2 ∈ S
such that

c+ d1, c+ d2 ≤ x, x′ �∞c and x′ �∞(d1 + d2).

Further, one can find e1, e2 ∈ S satisfying

2e1, 2e2 ≤ x and x′ �∞(e1 + e2).

Proof. Let x′, x ∈ S be such that x′ � x. Also, let x′′ ∈ S satisfy x′ � x′′ � x. Then,
using Lemma 7.3.7 above, there exist elements y, z1, . . . , zn ∈ S such that

y + z1, . . . , y + zn ≤ x, x′′ �∞y and x′′ � z1 + . . .+ zn.

Let y′ ∈ S satisfy y′ � y and x′′ � ∞y′. Then, applying (O5) to y′ � y ≤ x, we
find an element f ∈ S satisfying

y′ + f ≤ x ≤ y + f.

In particular, we have zj + y ≤ x ≤ y + f for each j. Thus, we get

2x′′ � 2(z1 + . . .+ zn) ≤ 2(z1 + . . .+ zn) + y ≤ 2(z1 + . . .+ zn−1) + zn + y + f

≤ 2(z1 + . . .+ zn−1) + y + 2f ≤ . . . ≤ y + 2nf ≤ y +∞f.

Since S satisfies (O8), we can apply Proposition 6.2.7 to 2x′′ � y+∞f and x′ � x′′.
Thus, we find g ∈ S satisfying

2g � y and x′ � g +∞f.
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Let g′, g′′ ∈ S be such that g′ � g′′ � g and x′ � g′+∞f . Then, applying (O5) to
g′′ + g ≤ y with g′ � g′′ and g′′ � g, there exists h ∈ S with

g′ + h ≤ y ≤ g′′ + h and g′′ ≤ h.

It follows that y ≤ 2h and, consequently, that

x′ � x′′ �∞y ≤ ∞h and x′ � x′′ �∞y′.

Since S is ideal-filtered, there exists an element c ∈ S with

x′ �∞c and c� h, y′.

Now set d1 := f and d2 := g′. Then, one has

c+ d1 = c+ f ≤ y′ + f ≤ x, c+ d2 ≤ h+ g′ ≤ y ≤ x,

and
x′ � g′ +∞f ≤ ∞(d1 + d2),

as required.

To prove the second part of the statement, and abusing notation, we let x′, x ∈ S
be such that x′ � x. Take x′′ ∈ S satisfying x′ � x′′ � x.

Applying the first part of the proof, we find elements c, d1, d2 ∈ S such that

c+ d1, c+ d2 ≤ x, x′′ �∞c and x′′ �∞(d1 + d2).

Thus, applying (O6) to x′ � x′′ �∞d1 +∞d2, one obtains elements w1, w2 in such
a way that

x′ � w1 + w2, w1 � x′′,∞d1 and w2 � x′′,∞d2.

Further, one can choose w′1 � w1 and w′2 � w2 with x′ � w′1 +w′2. Then, note that
for each j ≤ 2 we have w′j � wj ≤ ∞c,∞dj.

Thus, it follows from ideal-filteredness that there exists elements e1, e2 ∈ S with

w′1 �∞e1, w′2 �∞e2, e1 � c, d1 and e2 � c, d2.

It follows that
2e1 ≤ c+ d1 ≤ x, 2e2 ≤ c+ d2 ≤ x,

and
x′ � w′1 + w′2 ≤ ∞(e1 + e2),

as required.

Proposition 7.3.9. Let S be an ideal-filtered, residually stably finite Cu-semigroup
satisfying (O5). Then, S is (2, ω)-divisible if and only if S is weakly (2, ω)-divisible.
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Proof. We note that the forward implication is trivial.
Thus, assume that S is weakly (2, ω)-divisible, let x ∈ S and take x′ � x. Also, let

x′′ ∈ S be such that x′ � x′′ � x.
Since S is weakly (2, ω)-divisible, we can apply Lemma 7.3.7 to find elements

c, d1, . . . , dn ∈ S satisfying

c+ d1, . . . , c+ dn ≤ x, x′′ �∞c and x′′ � d1 + . . .+ dn.

Using that x′′ �∞c, one can choose elements c′′, c′ in S such that c′′ � c′ � c and
x′′ �∞c′′.

Since S satisfies (O5) and c′′ � c′ ≤ x, there exists e ∈ S such that c′′+e ≤ x ≤ c′+e.
Thus, for each j ∈ {1, . . . , n}, we get

c+ dj ≤ x ≤ c′ + e

with c′ � c.
Let π : S → S/〈e〉 be the quotient map. Then, one has

π(c) + π(dj) ≤ π(c′)� π(c)

and, since S/〈e〉 is stably finite, it follows that π(dj) is zero in S/〈e〉 for every j. That
is to say, for each j ≤ n we have dj ≤ ∞e in S.

Using that x′′ � d1 + . . .+ dn, we obtain x′′ �∞e and, consequently, one gets

x′ �∞c′′,∞e.

Applying that S is ideal-filtered, we find y ∈ S with x′ �∞y and y � c′′, e. Thus,
we have

2y ≤ c′′ + e ≤ x and x′ �∞y,

as required.

Theorem 7.3.10. Let S be a Cu-semigroup satisfying (O5)-(O7), and consider the
following statements:

(1) S is (2, ω)-divisible;

(2) S is ideal-filtered and, for every element x in S, there exists a strongly soft element
y ∈ S satisfying 2y ≤ x ≤ ∞y;

(3) S is ideal-filtered and, whenever x′ � x, there exists a strongly soft element y ∈ S
with x′ <C y � x;

(4) S is ideal-filtered and, whenever x′ � x, there exists a weakly soft element y ∈ S
with x′ <C y � x;

(5) S is ideal-filtered and weakly (2, ω)-divisible.

Then, (1)-(3) are equivalent and imply (4), which in turn implies (5). If, addition-
ally, S is residually stably finite, (5) implies (1) and all the statements are equivalent.
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Proof. The first three statements are equivalent by Theorem 7.3.5, and that (3) im-
plies (4) follows from Proposition 7.2.3.

Assuming (4), let x ∈ S and take x′ � x. Then, we can find a weakly soft element
y ∈ S with x′ <C y � x.

Let y′ � y be such that x′ <C y′. Since y is weakly soft and S satisfies (O6),
Lemma 7.3.4 implies that y is weakly (2, ω)-divisible. This implies that there exists
some z ∈ S with y′ ≤ ∞z and 2z � y. In particular, one has x′ ≤ ∞z and 2z � x,
which shows that x is (2, ω)-divisible.

Since this can be done for every x ∈ S, it follows that (4) implies (5).
Finally, if S is also residually stably finite, Proposition 7.3.9 shows that (5) im-

plies (1), as desired.

7.4 The Global Glimm Property
In this section we study the Global Glimm Property (Definition 7.4.1) and its relation
to nowhere scatteredness: In order for a C∗-algebra A to satisfy the Global Glimm
Property, it is necessary that A is nowhere scattered. Asking if this condition is also
sufficient is known as the Global Glimm Problem.

Following the ideas in Section 6.3, we begin the section by characterizing the Global
Glimm Property in terms of divisibility conditions in the Cuntz semigroup. With this
characterization at hand, we are able to reformulate the Global Glimm Problem in a
number of ways; see Theorem 7.4.6, Problem 7.4.7 and Theorem 7.4.8.

Using these different formulations, a positive answer to the Global Glimm Problem is
given when the C∗-algebra under study is of stable rank one, real rank zero or residually
stably finite and of topological dimension zero; see Theorem 7.4.11 (the first two cases
are recovered from [4] and [34] respectively).

Finally, we study some permanence properties of the Global Glimm Property and
generalize the results in Theorem 7.4.11.

Let us first indicate what we mean by the Global Glimm Property, which should
not be confused with the ‘Glimm Halving Property’; see Remark 7.4.2 below.

Definition 7.4.1 ([54, Definition 4.12]). A C∗-algebra A is said to have the Global
Glimm Property if, for every ε > 0, every a ∈ A+, and every natural number n ≥
2, there exists a ∗-homomorphism ϕ : C0((0, 1],Mn) → aAa such that the ideal of A
generated by the image of ϕ contains (a− ε)+.

Remark 7.4.2. As defined in [75], a unital C∗-algebra A is said to have the ‘Glimm
Halving Property’ if there exists a ∗-homomorphism M2(C0((0, 1])) → A with full im-
age. As testified by A = M2(C), this is not equivalent to the property defined in
Definition 7.4.1 above.

We will see in Theorem 7.4.6 that a C∗-algebra A has the Global Glimm Property
if and only if Cu(A) is (2, ω)-divisible. Using Theorem 6.3.9, it follows that every C∗-
algebra having the Global Glimm Property is nowhere scattered. The Global Glimm
Problem asks if the converse holds:

Problem 7.4.3 (The Global Glimm Problem). Let A be a nowhere scattered C∗-alge-
bra. Does A satisfy the Global Glimm Property?
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In order to prove Theorem 7.4.6, let us recall the notion of a scale in a Cu-semigroup:
As defined in [8, Definition 4.1], a subset Σ of a Cu-semigroup S is a scale if Σ is

downward-hereditary, is closed under suprema of increasing sequences, and generates S
as an ideal. For a C∗-algebra A, the subset

ΣA :=
{
x ∈ Cu(A) : for each x′ � x there exists a ∈ A+ with x′ ≤ [a]

}
is a scale of Cu(A); see [8, 4.2].

Lemma 7.4.4. Let A be a C∗-algebra, and let x ∈ ΣA and x′ ∈ Cu(A) be such that
x′ � x. Then, there exists a ∈ A+ such that x′ � [a]� x.

Proof. Let x′′ ∈ Cu(A) be such that x′ � x′′ � x, and take c ∈ (A⊗K)+ with x′′ = [c].
Then, since x ∈ ΣA, we can find b ∈ A+ satisfying x′′ ≤ [b].

Using that x′ � x′′ = [c], we can find ε > 0 such that x′ � [(c − ε)+]. Moreover,
we can apply Lemma 1.2.2 to c - b and ε in order to obtain an element r ∈ A ⊗ K
satisfying

(c− ε)+ = r∗r and rr∗ ∈ bAb.

Setting a := rr∗ ∈ A+, we note that

x′ � [(c− ε)+] = [r∗r] = [rr∗] = [a] and [a] = [(c− ε)+]� [c] = x′′ � x,

as desired.

Lemma 7.4.5. Let Σ be a scale of a Cu-semigroup S satisfying (O5), (O6) and (O7).
Assume that every element in Σ is (2, ω)-divisible. Then, S is (2, ω)-divisible.

Proof. First note that, using an analoguous argument to that of Lemma 6.3.7, every
element in Σ is (k, ω)-divisible for every k ≥ 2.

Set

Σ(2) :=
{
x ∈ S : for each x′ � x there are y1, y2 ∈ Σ with x′ ≤ y1 + y2

}
,

which is a scale of S containing Σ.
We claim that, to prove the result, we only need to show that every element in Σ(2)

is (2, ω)-divisible. Indeed, if Σ(2) is (2, ω)-divisible, we can apply the same argument
to Σ(2) in order to get that (Σ(2))(2) is also (2, ω)-divisible. Proceeding in this manner,
and using that Σ generates S as an ideal, it follows that S is (2, ω)-divisible.

Thus, let x ∈ Σ(2) and take x′, x′′ ∈ S with x′ � x′′ � x. Also, let y1, y2 ∈ Σ be
such that x′ � x′′ ≤ y1 + y2.

Since S satisfies (O6), there exist elements z1, z2 ∈ S satisfying

x′ � z1 + z2, z1 ≤ x′′, y1 and z2 ≤ x′′, y2.

In particular, since Σ is downward-hereditary, we see that z1, z2 are elements in Σ.
Thus, given z′1 � z1 and z′2 � z2 such that x′ � z′1 + z′2, we can use that every element
in Σ is (3, ω)-divisible to find elements c, d ∈ S with

3c ≤ z1, z′1 �∞c, 3d ≤ z2 and z′2 �∞d.
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This allows us to find c′, c′′, d′ ∈ S with c′ � c′′ � c, d′ � d,

z′1 �∞c′ and z′2 �∞d′.

Note that, since z1 ≤ x and 3c ≤ z1, we have 2c′′ + c ≤ 3c ≤ x. Applying (O5) to
(2c′′) + c ≤ x with 2c′ � 2c′′ and c′′ � c, there exists an element e ∈ S such that

2c′ + e ≤ x ≤ 2c′′ + e and c′′ ≤ e,

which shows x ≤ 3e.
Applying (O6) to d′ � d ≤ z2 ≤ x ≤ 3e, we find elements e1, e2, e3 ∈ S satisfying

d′ � e1 + e2 + e3 and e1, e2, e3 ≤ d, e.

For each j ≤ 3, let e′j � ej be such that d′ � e′1 + e′2 + e′3. Then, applying (O7) to
e′j � ej ≤ e, we find f ∈ S with

e′1, e
′
2, e
′
3 ≤ f ≤ e, e1 + e2 + e3.

One gets

z′2 �∞d′ ≤ ∞(e′1 + e′2 + e′3) ≤ ∞f and f ≤ e1 + e2 + e3 ≤ 3d ≤ z2,

which implies, in particular, that f ∈ Σ. Consequently, f is (2, ω)-divisible.
Thus, let f ′ � f be such that z′2 �∞f ′. Then, there exists an element g ∈ S with

2g ≤ f and f ′ �∞g.
Set h := c′ + g. Then, one has

2h = 2c′ + 2g ≤ 2c′ + e ≤ x

and, since z′2 �∞f ′ ≤ ∞g, we also get

x′ � z′1 + z′2 ≤ ∞c′ +∞g =∞h,

as required.

Theorem 7.4.6. Let A be a C∗-algebra. Then, the following are equivalent:

(1) A has the Global Glimm Property;

(2) for each a ∈ A+ and each ε > 0, there exists a ∗-homomorphism

ϕ : M2(C0((0, 1]))→ aAa

such that (a− ε)+ belongs to the ideal generated by the image of ϕ;

(3) for each a ∈ A+ and each ε > 0, there is an element r ∈ aAa with r2 = 0 such that
(a− ε)+ ∈ ArA;

(4) Cu(A) is (2, ω)-divisible;

(5) Cu(A) is (n, ω)-divisible for every n ≥ 2;
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Proof. It is clear that (1) implies (2) and that (4) implies (5). Further, (5) implies (1)
by [75, Theorem 5.3 (i)].

To see that (2) implies (3), take a ∈ A+ and ε > 0. By (2), we can find a ∗-
homomorphism ϕ : M2(C0((0, 1])) → aAa such that (a − ε)+ belongs to the ideal gen-
erated by the image of ϕ.

Let r = ϕ(( 0 t
0 0 )), where t denotes the identity map on C0((0, 1]). Then, r2 = 0

and r ∈ aAa by construction. Further, both ϕ(( t 0
0 0 )) and ϕ(( 0 0

0 t )) belong to the ideal
generated by r, so it follows that (a− ε)+ ∈ ArA.

To prove (4) we will apply Lemma 7.4.5 to ΣA, which is possible since Cu(A) satisfies
(O5)-(O7); see Paragraph 1.2.14. Let x ∈ ΣA and take x′ ∈ Cu(A) such that x′ � x.
Then, it follows from Lemma 7.4.4 that there is a ∈ A+ with x′ � [a]� x.

Since x′ � [a], we can find ε > 0 such that x′ � [(a− ε)+]. Thus, ussing (3), there
exists r ∈ aAa such that r2 = 0 and (a− ε)+ ∈ ArA.

In particular, using that r ∈ aAa and that r2 = 0, we see that both rr∗ and r∗r are
orthogonal elements in aAa. Let c = [rr∗]. Then,

2c = 2[rr∗] = [rr∗ + r∗r] ≤ [a]� x.

Further, since (a− ε)+ ∈ ArA, it follows that x′ � [(a− ε)+] ≤ ∞c, as desired.

By Theorem 7.4.6 above, a C∗-algebra A satisfies the Global Glimm Property if
and only if Cu(A) is (2, ω)-divisible. In light of Theorem 6.3.9, this result leads to the
following reformulation of the Global Glimm Problem:

Problem 7.4.7 (The Global Glimm Problem). Is a weakly (2, ω)-divisible Cuntz semi-
group always (2, ω)-divisible?

Using the results developed thus far, we can reformulate Problem 7.4.7 once again
in the residually stably finite case.

Theorem 7.4.8. Let A be a residually stably finite C∗-algebra. Then, the following
statements are equivalent:

(1) A has the Global Glimm Property;

(2) Cu(A) is weakly (2, ω)-divisible and ideal-filtered;

(3) A is nowhere scattered and Cu(A) is ideal-filtered.

Proof. First, assume that A satisfies the Global Glimm Property. Then, it follows
from Theorem 7.4.6 that Cu(A) is (2, ω)-divisible and, consequently, weakly (2, ω)-
divisible. Further, Theorem 7.3.10 implies that Cu(A) is ideal-filtered. This shows that
(1) implies (2).

That (2) and (3) are equivalent is Theorem 6.3.9.
Finally, if (3) is satisfied, it follows from Theorem 6.3.9 and Theorem 7.3.10 that

Cu(A) is (2, ω)-divisible. Using Theorem 7.4.6 once again, we deduce that A has the
Global Glimm Property.
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As witnessed by Theorem 7.4.8 above, and using Theorem 7.4.6, one can restate the
Global Glimm Problem (in the residually stably finite case) as: ‘Does every residually
stably finite, nowhere scattered C∗-algebra have an ideal-filtered Cuntz semigroup?’.

Indeed, if every residually stably finite, nowhere scattered C∗-algebra has the Global
Glimm Property, it follows from Theorem 7.3.5 that all such C∗-algebras have an ideal-
filtered Cuntz semigroup. Conversely, if every residually stably finite, nowhere scattered
C∗-algebra has an ideal-filtered Cuntz semigroup, Theorem 7.4.8 above shows that all
such C∗-algebras have the Global Glimm Property.

Problem 7.4.9. Is the Cuntz semigroup of every nowhere scattered C∗-algebra ideal-
filtered?

Using the results in [75], one can show that a C∗-algebra is nowhere scattered if and
only if, for every a ∈ A+ and each ε > 0, there exist finitely many ∗-homomorphisms

ϕ1, . . . , ϕn : C0((0, 1],M2)→ aAa

such that (a − ε)+ belongs to the ideal of A generated by the union of the images of
ϕ1, . . . , ϕn.

As a consequence of Theorem 7.4.6, the Global Glimm Problem is equivalent to ask-
ing if one can always set n = 1 in the above characterization of nowhere scatteredness.

Proposition 7.4.10. Let A be a nowhere scattered C∗-algebra with an ideal-filtered
Cuntz semigroup. Then, for every a ∈ A+ and each ε > 0, there exist ∗-homomorphisms
ϕ1 : C0((0, 1],M2) → aAa and ϕ2 : C0((0, 1],M2) → aAa such that (a − ε)+ belongs to
the ideal of A generated by the combined images of ϕ1 and ϕ2.

Proof. It follows from Theorem 6.3.9 that Cu(A) is a weakly (2, ω)-divisible Cu-semi-
group. Further, Cu(A) satisfies (O5)-(O8) by Paragraph 1.2.14 and Theorem 6.2.3. By
assumption, Cu(A) is also ideal-filtered.

Let a ∈ A+ and ε > 0. Then, we have [(a − ε/2)+] � [a] in Cu(A). Set x′ =
[(a − ε/2)+] and x = [a]. Using the second part of Proposition 7.3.8, there exist
e1, e2 ∈ Cu(A) such that

2e1, 2e2 ≤ x and x′ �∞(e1 + e2).

Let e′1 � e1 be such that x′ � ∞(e′1 + e2). Then, it follows from [75, Lemma 2.4]
applied to 2e1 ≤ x that there exist two orthogonal, equivalent, positive elements
b1, b2 ∈ a(A⊗K)a = aAa such that e′1 � [b1] = [b2] � e1. Thus, there exists a
∗-homomorphism ϕ1 : C0((0, 1],M2)→ aAa with ϕ1(e1,1⊗ ι) = b1 and ϕ2(e2,2⊗ ι) = b2.

Now take e′2 � e2 satisfying x′ � ∞(e′1 + e′2). Arguing as above, we find a ∗-
homomorphism ϕ2 : C0((0, 1],M2)→ aAa such that ϕ2(e1,1⊗ι) = c1 and ϕ2(e2,2⊗ι) = c2

with c1, c2 orthogonal satisfying e′2 � [c1] = [c2]� e2.
Thus, one gets k ∈ N such that

[(a− ε/2)+] = x′ ≤ k[b1] + k[c1].

Since (a − ε/2)+, b1, c1 ∈ A, it follows from [75, Lemma 2.3] that (a − ε)+ belongs
in the ideal generated by the images of ϕ1 and ϕ2, as desired.
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Using Theorem 7.4.8, we recover in Theorem 7.4.11 (i)-(ii) below the positive solu-
tions to the Global Glimm Problem from [4] and [34].

Theorem 7.4.11. Let A be a nowhere scattered C∗-algebra. Assume that A is either:

(i) of stable rank one;

(ii) of real rank zero;

(iii) separable, residually stably finite, and with topological dimension zero.

Then, A satisfies the Global Glimm Property.

Proof. First note that, if A is of stable rank one, it is residually stably finite. Thus, as-
suming (i) or (iii), it follows from Theorem 7.1.12 or 7.1.17 together with Theorem 7.4.8
that A has the Global Glimm Property.

If A is of real rank zero, we know from Theorem 6.4.1 that Cu(A) is (2, ω)-divisible.
Thus, Theorem 7.4.6 shows that A satisfies the Global Glimm Property.

To finish this section, and as in Section 6.3, let us now prove permanence properties
for (2, ω)-divisibility of Cu-semigroups. Using the results in Theorem 7.4.6, these lead
to permanence properties for the Global Glimm Property. In particular, we show that a
nowhere scattered C∗-algebra with generalized stable rank one or generalized real rank
zero has the Global Glimm Property; see Corollary 7.4.18.

Proposition 7.4.12. The Global Glimm Property is invariant under Morita equiva-
lence.

Proof. Morita equivalent C∗-algebras have isomorphic Cuntz semigroups. Thus, the
result follows from Theorem 7.4.6.

Arguing as in Proposition 6.3.12 and Proposition 6.3.13, one also has the following
results:

Proposition 7.4.13. Let A be C∗-algebra, and let (Aλ)λ∈Λ be a family of sub-C∗-alge-
bras that approximates A. Assume that each Aλ has the Global Glimm Property. Then,
A has the Global Glimm Property.

Corollary 7.4.14. The Global Glimm Property passes to inductive limits.

Proposition 7.4.15. Let I be an ideal of a Cu-semigroup S satisfying (O5)-(O8).
Then, S is (2, ω)-divisible if and only if I and S/I are (2, ω)-divisible.

Proof. Assume first that S is (2, ω)-divisible, and let π : S → S/I denote the quotient
map. Let y ∈ S and take x ∈ S such that π(x)� π(y). Since π is a Cu-morphism, we
find y′ � y with π(y′)� π(y).

Using that y is (2, ω)-divisible in S, one gets an element z ∈ S such that 2z ≤ y
and y′ �∞z. This implies that 2π(z) ≤ π(y) and π(x)�∞π(z). Consequently, S/I
is (2, ω)-divisible.

Clearly, we also have that I is (2, ω)-divisible.
Assume now that I and S/I are both (2, ω)-divisible, and take x′, x ∈ S such that

x′ � x. Let x′′ ∈ S satisfy x′ � x′′ � x. Then, π(x′′)� π(x).
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Since S/I is (3, ω)-divisible (see Lemma 6.3.7), there exists y ∈ S such that

3π(y) ≤ π(x) and π(x′′)�∞π(y).

Using once again that π is a Cu-morphism, there exist y′, y′′ ∈ S with y′ � y′′ � y
and π(x′′) ≤ ∞π(y′). Moreover, since 3π(y) ≤ π(x) and π(x′′) ≤ ∞π(y′), there exist
w1, w2 ∈ I such that

3y ≤ x+ w1 and x′′ ≤ ∞y′ + w2.

Setting w :=∞(w1 + w2), we get

2w = w, 3y ≤ x+ w and x′′ ≤ ∞y′ + w.

Thus, applying Proposition 6.2.7 to 3y′′ � x + w and y′ � y′′, we find z ∈ S such
that

3z � x and y′ � z + w.

Take z′, z′′ ∈ S with z′ � z′′ � z and y′ � z′ + w. Then, one gets

2z′′ + z ≤ x, 2z′ � 2z′′ and z′′ � z.

Thus, using (O5), one can find c ∈ S with

2z′ + c ≤ x ≤ 2z′′ + c and z′′ � c

and, consequently, x ≤ 2z′′ + c ≤ 3c. Further, since y′ ≤ z′ + w, we also have

x′′ ≤ ∞y′ + w ≤ ∞z′ + w

Assume first that S is countably based. Then, we know from [3, Theorems 2.4, 2.5]
that for every s ∈ S and u = 2u ∈ S, the infimum s ∧ u exists. Moreover, the map
s 7→ s ∧ u preserves addition, order and suprema of increasing sequences.

Thus, using at the first step that x′′ ≤ ∞z′ + w and x′ ≤ ∞c, and at the last step
that z′ ≤ c, one gets

x′′ ≤ (∞z′ + w) ∧∞c = (∞z′ ∧∞c) + (w ∧∞c) =∞z′ +∞(w ∧ c).

Since x′ � x′′, we can find d′ � w ∧ c satisfying x′ ≤ ∞z′ +∞d′. Thus, since w ∧ c
is an element in I and I is (2, ω)-divisible, there exists e ∈ I with

2e ≤ w ∧ c and d′ ≤ ∞e.

Note that the element z′ + e satisfies

2(z′ + e) ≤ 2z′ + (w ∧ c) ≤ 2z′ + c ≤ x

and
x′ ≤ ∞z′ +∞d′ ≤ ∞z′ +∞e =∞(z′ + e),

as desired.
In the general case, assume that I is an ideal of S such that I and S/I are both

(2, ω)-divisible, and let x′ � x in S.



206 Chapter 7. The Global Glimm Problem

Recall from Proposition 5.3.4 that (O5)-(O7) each satisfy the Löwenheim-Skolem
condition. Similarly, one can see that (O8) and (2, ω)-divisibility also satisfy this con-
dition. Thus, there exists a countably based sub-Cu-semigroup H of S satisfying (O5)-
(O8) such that x, x′ ∈ H and such that H ∩ I and H/(H ∩ I) are (2, ω)-divisible.

Applying our result to H, we obtain r ∈ H such that 2r ≤ x and x′ � ∞r. Since
H is a sub-Cu-semigroup of S, the element r satisfies the required properties in S.

Theorem 7.4.16. Let A be a C∗-algebra and let I be an ideal of A. Then, A has the
Global Glimm Property if and only if I and A/I do.

Further, the Global Glimm Property passes to hereditary sub-C∗-algebras.

Proof. Let I be an ideal of a C∗-algebra A. Then, as explained in Paragraph 1.2.12,
Cu(I) is naturally identified with an ideal in Cu(A), and Cu(A/I) is isomorphic to
Cu(A)/Cu(I).

Thus, the first part of the statement follows as a combination of Theorem 7.4.6 and
Proposition 7.4.15.

Now let B be a hereditary sub-C∗-algebra of a C∗-algebra A satisfying the Global
Glimm Property. Then, the Cuntz semigroup of B is isomorphic to the Cuntz semigroup
of the ideal generated by B. This implies, by Theorem 7.4.6 and the first part of the
theorem, that B satisfies the Global Glimm Property.

Theorem 7.4.17. Let A be a C∗-algebra. Then, there exists a largest ideal IGlimm(A)
of A satisfying the Global Glimm Property. That is to say, whenever I is an ideal of A
with the Global Glimm Property, one has I ⊆ IGlimm(A).

Proof. Denote by J the family of ideals of A satisfying the Global Glimm Property.
Note that, given two ideals I, J ∈ J , it follows from Theorem 7.4.16 that I + J is also
in J . Indeed, I is an ideal of I + J , and (I + J)/I is isomorphic to a quotient of J .

Thus, we see that J is upward directed with respect to the order induced by inclu-
sion. We set IGlimm(A) :=

⋃
J , which is an ideal of A that satisfies the Global Glimm

Property by Corollary 7.4.14.

As defined in [16, 2.1(iv)], a C∗-algebra is of generalized stable rank one (resp.
generalized real rank zero) if it admits a composition series (Iλ)λ≤κ of ideals with A = Iκ
such that each quotient Iλ+1/Iλ has stable rank one (resp. real rank zero).

Corollary 7.4.18. Let A be a nowhere scattered C∗-algebra. Assume that A has gen-
eralized stable rank one or generalized real rank zero. Then, A has the Global Glimm
Property.

Proof. If A has either generalized stable rank one or generalized real rank zero, the result
follows as a combination of Theorem 7.4.11, Corollary 7.4.14 and Theorem 7.4.16.
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