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CHAPTER 1

Introduction

The whole is more than the sum of
its parts

Aristotle

1.1 The Complex System Approach to Nature

Already Aristotle realized that considering the entities of many systems as a
whole could not be explained by a linear aggregation of their individual rules or
properties. Conversely, non-trivial phenomena and unexpected properties may
arise when the interactions between units are considered. The ensemble of neu-
rons producing consciousness and intelligence, a large population of starlings
showing complex flocking patterns, a crowd clapping spontaneously in unison
or a systemic financial shock are examples of such emergent behaviours [71].

Figure 1.1: Flock of birds. Drawing of a flock of birds peforming complex pat-
terns. (Source: Designed by Neus Rosell)
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A complex system is a large collection of components that interact with each
other at the local scale and still is able to spontaneously self-organize and show
non-trivial global patterns and conducts involving the whole system, often with-
out external guidance. Complex system science benefits from and contributes
to the required novel mathematical framework and methodologies to study this
type of systems [51].

The interactions between the constituents of the system may occur in multi-
ple ways, at different time and size scales, and potentially with the environment
as well. The society is a good case in point: citizens living and moving within
a city, but also commuters and visitors, relating with each other at the level of
households, neighbourhoods, workplaces, leisure and academic places, not to
mention the sizeable communication activity through online platforms and in-
formation technology.

One cannot infer the behaviour of the whole system only by observing sin-
gle individuals. The phenomena of unexpected and non-trivial global patterns
coming out and unpredicted behaviours occurring at the large scale is known as
‘emergence’ [75]. Consider, for instance, the massive amount of particles com-
posing the surface of the Earth and that, eventually, experience the rupture of
geological faults, namely an earthquake, resulting from the lithosphere’s seismic
waves.

Complex systems typically evolve over time. In other words, the states or
variables that characterize their constituents, but also the system as a whole, ex-
perience changes that depend linearly or non-linearly with time, its current state
or external inputs. Small shifts in the intrinsic parameters or the environment
may lead to dramatic changes in the behaviour of the system. Certain dynamic
processes can lead a system to a chaotic state, i.e., being extremely sensitive to
initial conditions or perturbations and becoming unpredictable in the long run
[29, 166]. Consider, for instance, the difficulty of accurate weather forecasting,
that results from the unpredictability of the climate-weather complex system1.

We can also look at the synchronization of flashing among large groups of
fireflies during twilight, or the spontaneous formation of discrete spatial pat-
terns present in the clustering of some shrubs or the spots of jaguars [4, 161].
Complex systems have the capability of self organizing, that is, the monitoring
of the whole system is distributed among their units without external interven-
tion or guidance.

1Syukuro Manabe, Klaus Hasselmann and Giorgio Parisi were awarded the 2021 Nobel Prize in
Physics for their contributions to our understanding of complex systems. In particular, Syukuro
Manabe and Klaus Hasselmann shared one half of the prize for their mathematical modelization
of the Earth weather-climate system and their predictions on global warming. Giorgio Parisi was
awarded with the other half of the prize for his study of the interactions between disorder and
fluctuations in physical systems at very different scales [60].
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Finally, complex systems are present in different domains and disciplines,
including biology and medicine, economy and finance, physics and engineer-
ing, information technology, politics, sociology, and more. All complex systems
share properties and are made up by similar building blocks that make them
exhibit common phenomena and features, a fact known as ‘universality’. Con-
sequently, the same mathematical and computational framework, methods and
models are applicable and worthwhile to all of them [170].

One of the most useful representation of a complex system is considering
the network of interactions between its units. Most of the real-world complex
systems are best described as complex networks: the nodes and edges of the
network corresponding to the constituents and interactions of the system, re-
spectively. Importantly, real-world complex networks, such as biological, socio-
economical or technological networks, exhibit common features which are nei-
ther purely regular nor purely random. Section 1.2 goes through the fundamen-
tals of network theory, including the mathematics of networks and the common
properties of real networks.

1.2 Fundamentals of Network Theory

1.2.1 Mathematics of Networks

1.2.1.1 Definitions and Notation

Formally, a complex network can be mathematically described as a graph
G (V ,E ) consisting of a collection of N vertices (or nodes), the set V (G ), and m
edges (or links) connecting them, the set E (G ). Both V (G ) and E (G ) can be given
attributes [122, 20, 176].

In an undirected graph or network, each edge is defined by a pair of adjacent
nodes, (i , j ), without a preferred direction. Conversely, in a directed graph, the
order of the nodes is important, and the pair (i , j ) stands for an edge going from
node i to node j . In a weighted graph, each edge (i , j ) is characterized by a real
number, wi j , that represents the strength or intensity of the connection.

In addition, a graph can contain self-loops, i.e., edges from a node to itself,
and multiple edges, nodes that are connected by more than one edge. Graphs
that contain either of these last features, are called multigraphs. Otherwise, a
simple graph is an unweighted, undirected graph containing no self-loops or
multiple edges.

A graph can be represented by an N ×N square matrix called the adjacency
matrix of G , A (G ), which elements indicate the connectivity structure of the
graph. In the case of simple graphs, the element Ai j equals 1 if node i is linked
to node j , and 0 otherwise. Undirected graphs are represented by symmetric
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matrices, with zeros on its diagonal. An example of a simple graph and its corre-
sponding adjacency matrix is shown in Figure 3.1.

A =



0 1 1 1 0 0 1
1 0 1 0 0 0 0
1 1 0 0 0 0 0
1 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
1 0 0 0 0 1 0



Figure 1.2: Example of a simple graph and the corresponding adjacency ma-
trix. Simple graph made of 7 nodes and 8 edges, i.e., N = 7 and m = 8, and
its corresponding symmetric adjacency matrix, A . The network is defined in
Ref.[124].

1.2.1.2 Graph spectra

The spectrum of a graph is the set of eigenvalues of its adjacency matrix. A

has N eigenvalues, {λi }, and N associated eigenvectors, {~vi }. The adjacency ma-
trix of an undirected simple graph is a real symmetric matrix and hence, can
be orthogonally diagonalizable. Moreover, all its eigenvalues are real numbers.
However, the eigenvalues of a directed graph can be complex numbers.

The Perron-Frobenius theorem [138, 65] states that a real square matrix with
positive entries has a unique largest real eigenvalue and which corresponding
eigenvector can be chosen so that all its entries are positive. The extension
for non-negative matrices (with non-negative elements) states that the leading
eigenvector will be non-negative and greater than or equal, in absolute value,
to the remaining eigenvalues. The corresponding eigenvector can be chosen to
have non-negative components.

Consequently, considering such matrix to be the adjacency matrix A of a
graph, the theorem shows that A has a real non-negative eigenvalue λ1 such
that |λi | ≤λ1, for all other eigenvalues. If the graph is connected, the multiplicity
of λ1 is 1 and |λi | < λ1. For an undirected graph, all entries of the correspond-
ing eigenvector ~v1 are non-negative. The same theorem tells that if the graph is
connected the following inequalities hold: max{〈k〉 ,

√
kmax} ≤λ1 ≤ kmax .
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1.2.1.3 Node degree and degree distribution

The degree ki of node i is the number of edges connected to it. For an undirected
graph, the degree can be computed from the adjacency matrix as2

ki =
∑
j∈V

Ai j (1.1)

The list of node degrees is called the degree sequence.
If the graph is directed, the degree of a node is composed by the number of

outgoing links (known as the out-degree) and the number of ingoing links (re-
ferred to as the in-degree). The total degree consists in the sum of both compo-
nents.

One of the most fundamental properties of networks is the heterogeneity in
its degrees, a feature which can be captured by plotting the histogram of node
degrees, also known as the degree distribution P (k). The quantity pk is defined
as the probability that a randomly chosen node has a degree k or, alternatively,
the fraction of nodes that have a degree k.

Relevant information can be obtained by plotting the degree distribution of
a graph, as we will show in Section 1.2.2. However, further knowledge on how
the degree is distributed among the nodes can be obtained by computing the
n-moment of P (k), defined as 〈

kn〉=∑
k

knP (k) (1.2)

The first moment of the distribution, 〈k〉, informs us about the mean degree of
the graph. The second moment

〈
k2

〉
is, however, more decisive for determining

the behaviour of a dynamical process being held on the corresponding graph.

1.2.1.4 Assortativity

Assortative mixing – also called homophily in the specific case of social networks
– is the tendency that the nodes of a network have to link to other nodes that are
similar to them in some way. Different similarity measures can be considered,
although node degree is the most frequently used when studying complex net-
works.

In particular, the tendency that the nodes of a network with a given degree
are attached to other with a similar degree value is called assortativity, while the
converse situation – high degree nodes having a bias towards linking to low de-
gree nodes – is called disassortativity. This property is often measured as a corre-
lation between two nodes. The two most notable measures are the assortativity
coefficient and the neighbour connectivity.

2If self-edges are present in the graph, the corresponding diagonal element has to be set to
Ai i = 2.
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The assortativity coefficient is given by the Pearson correlation coefficient of
the degree between pairs of neighbouring nodes [117]. A network is considered
to be assortative if the values of the correlation coefficient are positive, and con-
versely.

Nevertheless, one can study the correlations of a network using the neigh-
bour connectivity [117, 126, 160]. When the degree k ′ of the neighbouring nodes
to which a node of degree k is connected depends on k, another quantity shall
be considered: the average degree of the nearest neighbours of nodes with de-
gree k, 〈knn〉 (k) is defined as 3

〈knn〉 (k) =∑
k ′

k ′P (k ′|k) (1.3)

This function can be plotted and inform us whether the network is assortative
(positive slope) or disassortative (negative slope).

Eq.(1.3) can be alternatively calculated by taking the average degree of the
nearest neighbours of nodes with degree k once

knn,i = 1

ki

∑
j∈Ni

k j = 1

k j

N∑
j=1

Ai j k j (1.4)

is computed for each node. Ni stands for the set of neighbouring nodes of node
i .

1.2.1.5 Walks

A walk in a graph (network) is any sequence of consecutive vertices (nodes) that
are linked through the corresponding edges. The preferred direction of edges
has to be preserved in directed graphs. A path is a walk in which neither vertices
nor edges are repeated. A cycle is a closed path, that is, the starting and ending
nodes are the same.

The length of a walk is the number of edges that are spanned, taking into
account that they can be traversed more than once.

The number of walks of a given length r can be easily computed from the
elements of the adjacency matrix as follows: for a simple graph, the element Ai j

is 1 if an edge exists between nodes i and node j . Similarly, the product Ai k Ak j

is 1 if a walk of length 2 exists between nodes i and j through node k, and 0
otherwise. Hence, the sum for all possible k results in the total number of walks
of length 2 as follows ∑

k
Ai k Ak j = [A2]i j (1.5)

3Besides the correlations between k and k ′ are formally characterized by the conditional
probability P (k ′|k), the quantity 〈knn〉 (k) is preferred in order to avoid noisy results.
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We note that the right-hand side of Eq.(1.5) corresponds to the element i j th of
the squared adjacency matrix.

In the same way, the number of walks of length r from node i to node j is
given by the element i j th of the matrix Ar .

1.2.1.6 Clustering

The nodes of many real-world networks are naturally divided into groups that
share certain local features. There are several ways of measuring and detecting
such clusters. We present some of the constructs that are typically used.

A very important property, specially in social networks, is transitivity [156,
119]. Mathematically, the relation "◦" is said to be transitive if a ◦b and b ◦ c im-
plies b ◦ c. For a network, the ‘the friend of my friend is also my friend’ relation
is represented by the following triangle: if node u is connected with node v by
an edge and node v is connected to node w , then nodes u and w are also con-
nected. A network is a perfect transitive one only if each component is a fully
connected subgraph or clique4. However, if nodes u and v are connected and
nodes v and w are connected, they form a path of length 2. This, however does
not imply that nodes u and w are also connected. For this reason, we are in-
terested in assessing the level of transitivity of a network. Mathematically, we
define the global clustering coefficient [102, 130] as

C = 3× number of triangles

number of connected triples
(1.6)

where connected triple means three nodes uv w with, at least, edges (u, v) and
(v, w).

We can also define a local clustering coefficient, that is, a value for each node,
as follows [174]

Ci = number of pairs of neighbours of i that are connected

number of pairs of neighbours of i
(1.7)

Using Eq.(1.7) we can define an alternative measure of the global clustering co-
efficient as the mean of the local clustering coefficient of all nodes.

1.2.1.7 Community Structure

Another property of many real-world networks is the presence of groups of
nodes that are more densely connected internally than with the remaining
nodes. The community structure of the network refers to such frequent divi-
sion of the network into – potentially overlapping – communities or clusters
[74, 121, 120, 28, 105, 63, 57].

4a subgraph in which all vertices are connected to all others
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Each community is made up of a set of nodes such that each node belongs to
one community5. Most of the algorithms designed to find communities within
a network rely on this definition of community. A network division into such
separate communities or groups is called a partition. Despite the difficulties of
finding the best network partition into communities6, several approaches can
be considered and are applied with different degrees of success and adequacy
[140, 62, 63]. We name a few of them: spectral methods, methods based on
statistical inference, methods based on optimisation and methods based on dy-
namics, among others. We should also consider other issues such as the decision
on how many clusters are more suitable to some algorithms that require such
pre-detection input, how to deal with stochastic techniques that do not deliver a
unique answer or the problem of soft clustering, that is, communities that may
overlap.

One of the most frequently used methodology relies on the maximization of
a function that captures the goodness of a given network partition. The most
noted quality function was defined by Michelle Girvan and Mark Newman and
is known as modularity [121].

Modularity is a measure of the extent to which a network is naturally di-
vided into modules or communities, i.e., it captures whether the density of edges
within clusters is significantly larger than the quantity expected in a random net-
work. It is mathematically expressed as the fraction of edges that belong to the
different groups minus the fraction of edges we would expected to find if they
were distributed randomly.

On the one hand, the total number of edges that connect nodes of the same
type (that is, belonging to the same module or community) is given by

1

2

∑
i , j

Ai jδ(ci ,c j ) (1.8)

where ci is the class or community identifier to which node i belongs. Hence
δ(ci ,c j ) = 1 only if nodes i and j belong to the same community. The factor 1/2
accounts for the fact that edges are counted twice.

5This definition of non-overlapping communities, however, can be relaxed so that nodes can
belong to more than one community [7].

6Why is the partition (fixed groups’ size) of a graph into groups such a difficult task? Because
of its prohibitive scaling on the network size. In general the Bell number B(G ) of a graph is
the number of partition of its vertex set (For example, B5 = 52 corresponds to the 52 possible
partitions of a set with 5 elements). For instance, if we were interested in dividing the nodes only
into two parts (graph bisection), an exhaustive search, that is, trying all possible partitions in
order to find the best one, would require n!/n1!n2! prohibitive possibilities to test, where n1 and
n2 are the sizes of both groups. Actually, the generating function of the Bell numbers shows that
they grow more rapidly than an exponential function with respect to its number of components:
B(x) = expexpx −1
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On the other hand, the expected number of edges between nodes that belong
to the same community if edges were placed randomly is given by7

1

2

∑
i , j

ki k j

2m
δ(ci ,c j ) (1.9)

Finally, if we want to calculate the fraction between the current and expected
number of edges within groups, we have to divide the subtraction by m, i.e., the
number of edges in the network. Therefore, modularity is defined as [121, 46]

Q = 1

2m

∑
i , j

(
Ai j −

ki k j

2m

)
δ(ci ,c j ) (1.10)

The values of Q fall in the range [−1/2,1] [37].
There are, however, some limitations on the definition of modularity [61, 91].

Firstly, the maximum value of Q depends on the sizes of the groups and the
degrees of the nodes and, hence, it can be considerably less than 1, even for a
perfectly mixed network8. Secondly, standard methodologies to maximize mod-
ularity in large networks fail to distinguish small communities, as they tend to
merge them. For these reasons, several studies suggest alternative methodolo-
gies to find the communities of a network. For example, in Ref.[14] the authors
considered the dynamics of a system of coupled oscillators and its path to syn-
chronization in order to obtain modular structures that emerge in different time
scales and which correspond to the well-defined communities of a network.

1.2.1.8 Centrality measures

From the topology or structure of the network, enclosed in the adjacency ma-
trix, several measures can be considered in order to characterize it. Triggered by
modern sociologists, much effort has been devoted to the notion of centrality,
which addresses the question ‘Which are the most important or central nodes in
the network?’ [32, 34, 115]. Several centrality measures came up, emerging from
social network analysis, each of them with different considerations regarding
node importance. Hereafter, we revise some of the most well-known centralities
[25].

• Degree Centrality

The most simple measure of importance that one could define is the de-
gree of the node, i.e, the number of edges that are connected to it. Al-
though it is a straightforward meter, degree centrality is widely used in the

7There are 2m ends of edges in the network, where m is the total edges. If the network is built
randomly, the probability that the free end of the edge attached to node i is connected to node
j is given by k j /2m.

8A network where each node is connected only to nodes of the same class
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social sciences as a measure of (local) influence, and in many other fields
as a first approach to node importance. Mathematically, degree centrality
can be written as

xi =
∑

j
Ai j = ki (1.11)

Note that degree centrality can be normalized by dividing by the maxi-
mum possible degree in a simple graph, i.e., N −1.

In directed networks, both the in-degree and the out-degree of nodes can
be considered as separate centrality measures.

• Eigenvector Centrality

Unlike degree centrality, eigenvector centrality considers the fact that a
node is important if it is connected to other important nodes. In other
words, the centrality of a node is proportional to the sum of scores of its
neighbours. Mathematically, the idea behind eigenvector centrality can
be written as

xi ∝
∑

j
Ai j x j (1.12)

Starting from the guess~x(0) =~1, we can iterate to the next steps as

xi (t +1) =∑
j

Ai j x j (t ) (1.13)

and in matrix notation,~x(t +1) = A~x(t ). Therefore, at iteration t ,

~x(t ) = At~x(0) (1.14)

But, if~x(0) is expressed in terms of the eigenvectors,~vi , of A matrix,~x(0) =∑
i ci~vi , Eq(1.14) turns to

~x(t ) = At
∑

i
ci~vi =

∑
i

ciλ
t
i~vi , (1.15)

where λi is the eigenvalue corresponding to the eigenvector ~vi . Consid-
ering the Perron-Frobenius theorem, we can use the largest eigenvalue
λ1 and its corresponding eigenvector ~v1 (with non-negative entries) and
write

~x(t ) =λt
1

∑
i

ci

[
λi

λ1

]t

~vi → c1λ1~v1 (1.16)

when t →∞, since λi /λ1 < 1 for i > 1. Finally,

~x(t ) = c1λ1~v1 (1.17)



1.2. Fundamentals of Network Theory 11

Therefore, eigenvector centrality is proportional to the leading eigenvector
of A.

Alternatively, eigenvector centrality satisfies the matrix equation

~x A =λ1~x (1.18)

Eigenvector centrality is also known as Bonacich’s centrality, who first de-
fined it in 1987 [31, 32, 33].

Eigenvector centrality can also be defined for directed networks using ei-
ther the leading left eigenvector or the leading right eigenvector, account-
ing for the out-degree or the in-degree of nodes, respectively, as the ad-
jacency matrix is typically asymmetric. However, eigenvector centrality is
not a suitable measure for directed acyclic graphs9 as if the progression of
nodes being pointed by others ends up at a vertex set that has in-degree
zero, the resulting centrality will be zero.

• Katz Centrality

The definition of Katz centrality, first introduced by Leo Katz in 1953
[87, 83], is similar to that of the eigenvector centrality, but it tackles the
issue of zero in-degree nodes contributing zero to the centrality of the
neighbouring nodes. To this end, each node is provided with a small
amount of centrality, irrespective of the value of its degree. Mathemati-
cally,

xi =α
∑

j
Ai j x j +β (1.19)

where α and β are positive parameters that tune the importance of both
contributions. In matrix terms, Eq.(1.19) is written as

~x =αA~x +β~1 (1.20)

If β= 1, the solution of Eq(1.20) for the centrality~x is

~x = (I−αA)−1~1, (1.21)

where I is the identity matrix.

A proper choice of α is 0 < α < 1/λ1, where λ1 is the largest eigenvalue of
A matrix10.

9Directed graphs with no directed cycles
10The matrix identity (I−M)−1 = ∑∞

n M n is only true if the series on the right-hand side con-
verges. This last condition is true as long as the absolute value of all eigenvalues of M matrix are
smaller than 1, i.e., |λi | < 1.
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The free parameter α determines the balance between the constant term
and the eigenvector term. When α → 0 then the eigenvector term van-
ishes and Katz centrality approaches degree centrality. Conversely, as
α increases, the values of Eq(1.20) become large and on the limit when
det (I−αA) = 0, they diverge. This value is achieved when α= 1/λ1

• Closeness Centrality

Closeness centrality provides a measure of how close is a node from all
others on average [149, 24]. The length of the shortest path between node
i and node j 11 is denoted as di j . Then, the mean geodesic distance for
node i is

li = 1

n

∑
j

di j (1.22)

Nodes with low li are those which are located close to others on average.
In other words, they have better access to all other nodes. However, in
order to define a centrality measure, more central nodes are required to
get higher centrality value. For this reason, closeness centrality is defined
as

Ci = 1

li
= n∑

j di j
(1.23)

Despite closeness centrality is widely used in the social sciences it has
some problems: firstly, it is difficult to distinguish between nodes with a
high and a low centrality score as the values tend to be piled up around a
narrow range. Moreover, the values easily fluctuate with small changes in
the network. Finally, alternative definitions of closeness centrality, such as
efficiency [111], are proposed in order to overcome the issue of infinite li

values found in networks with several components.

• Betweenness Centrality

Betweenness centrality measures the extent to which a node lies on the
paths between other nodes [64]. That is to say, if information or mes-
sages are passed through the nodes of a network such that they follow the
shortest or geodesic paths, how many of such paths cross over the different
nodes? Hence, the betweenness centrality of a nodes is proportional to the
number of geodesic paths that nodes lies on. The removal of nodes with
a high betweenness value produces a larger disruption of the communi-
cation in the network. Formally and for a general network, betweenness

11The shortest path between two nodes is also called the geodesic path, and corresponds to
the path with less required edges between the given pair.
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centrality is defined as

xi =
∑
s,t

ni
s,t

gs,t
(1.24)

where ni
s,t is the number of geodesic paths from node s and node t that

pass through node i and gs,t is the total number of geodesic paths going
through node i . If both quantities are 0 the fraction ni

s,t /gs,t is set to 0.

The values of betweenness centrality are typically distributed over a wide
range. Moreover, they inform of how a node lies between other nodes and
hence, need not be correlated with the degree of that node.

1.2.2 Properties of Real Networks

In the previous section we have reviewed some of the most important concepts
of networks (and, consequently, graphs as its more adequate mathematical rep-
resentation). In this section we discuss how networks look like in the real world
(real systems that are represented as networks, for example technological net-
works, social networks or biological networks). The analysis of systems that are
rightly described as networks has uncovered the surprising fact that networks of
very different nature share common patterns, a concept known as universality
in the field of Statistical Physics. In this chapter we will enumerate and explain
the most relevant of such common features.

• Small-world property

One of the most well-known and unexpected properties of real networks
is the small-world effect [174], the finding that in most networks, and de-
spite having thousands and millions of nodes, the distance between nodes
remains small. This was first evidenced by Stanley Milgram’s letter pass-
ing experiment in the 1960s [107, 171]12. Mathematically, the small-world
effect means that the mean distance, l , between nodes in a network is
smaller than the expected in a lattice. For a network of one component
l is defined as

l = 1

n

∑
i

ll (1.25)

where li is the average geodesic distance of node i defined in Eq.(1.23). In
other words, l represents the average number of steps that a node needs
to reach another node [8].

12People were asked to send a received letter to a distant person passing it from acquaintance
to acquaintance. The letters that reached the final destination, made it in a small number of
steps, around six.
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• Power-law degree distribution

In Section 1.2.1 we define the degree distribution of a network. In order to
obtain more information of the network it is often very informative to plot
P (k) as a function of the degrees k (for instance, using a histogram). Look-
ing at real-world networks, it turns out that most of the systems display a
very particular shape: most of the nodes have a very small degree, i.e., are
poorly connected, while there is a few of them, known as hubs, that have a
large degree. These right-skewed degree distributions are commonly well
described by a power law distribution [52, 141, 19]. Mathematically,

P (k) =C k−α (1.26)

where the constant α is the exponent of the power law. Typically, for real
networks the values of the exponent fall in the range 2 ≤α≤ 3.

Nevertheless, despite the tail of the degree distribution can be generally
described by Eq.(1.26), the full degree distribution is more complex than
that. Moreover, there is often a cut-off that limits the maximum degree
that a node can have13. Networks that can be described by a power-law
distribution are known as scale-free networks because this density dis-
tribution is a function which is invariant under rescaling, i.e., P (c · k) =
cα ·P (k), and thus free of a natural scale. This last property is very familiar
to statistical physicists and that is why the interest and contributions from
this field.

• Clustering coefficient

As defined in Section 1.2.1, the clustering coefficient is a measure of the
probability that two neighbours of a node are themselves neighbours. For
many real-world networks, the number of this closed triadic relations,
i.e., triangles, is significantly larger than that expected if connections were
chosen at random. Importantly, the clustering coefficient of many social
networks are typically large, between 0.1 and 0.6 [122]. Nevertheless, other
systems such as technological or biological networks present values which
are not different to that of the equivalent random networks.

If we look at the local clustering coefficient, defined in Eq.(1.7), it turns out
that, on average, nodes with a higher degree tend to have a small clustering
coefficient [97, 122].

13Although it is generally claimed that most real-world networks follow this pattern, several
empirical studies are more reluctant to accept such general behavior[39, 129, 167, 47, 82].
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1.2.3 Network Models

One of the aims of network science is generating synthetic networks with spe-
cific features, such that they resemble real-world networks. For this reason, the
characterization of the latter is of particular importance (see Section 1.2.2).

In addition, network models are used to have a better understanding of net-
work behaviour and are often used as null models to reject or accept more com-
plex structures.

Hereafter, we briefly present three well-known random network models14

that are widely used in network science: the Erdös-Rényi model, the Barabási-
Albert model and the Newman modular model.

1.2.3.1 Erdös-Rényi network model

The Erdös-Rényi model (ER) generates a graph G(N ,m) of N nodes that are
linked through m randomly placed edges [55, 73, 59]. Alternatively, the graph
G(N , p) considers that each pair of nodes is connected with probability p. In the
following chapters we consider the second definition of the model and thus we
constrain ourselves to showing some of its basic results.

In the G(N , p) model, the network is built as follows: starting from N discon-
nected nodes, each of the N (N−1)/2 possible pairs is connected with probability
p (generate a random number in the range [0,1] from a uniform distribution. If
this value is smaller than the considered p, then connect the corresponding pair
of nodes.).

Despite each realization of the model looks slightly different, the network
class G(N , p) is characterized by the same features.

The degree distribution of G(N , p) follows a Binomial distribution [116].
Therefore, the probability that a randomly chosen node has degree k is

pk =
(

N −1

k

)
pk (1−p)N−1−k (1.27)

Also, the peak is located at

〈k〉 = p(N −1) (1.28)

and the width of the distribution is

σk = p(1−p)(N −1) (1.29)

14Generally, complex networks are not described as lattices or complete networks, but are
characterized by an apparently random connectivity pattern, i.e., links between nodes are placed
randomly, but following certain rules that are precisely prescribed by different random network
models.
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However, when N À〈k〉, the Binomial distribution can be approximated with a
Poisson distribution [173]. This approximation enables easier analytical calcu-
lations, because the latter has only one parameter, 〈k〉:

pk = 〈k〉
k !

e−〈k〉 (1.30)

The peak of the Poisson distribution is located at 〈k〉 and the width of the distri-
bution is

√
〈k〉.

Figure 1.3: Erdös-Rényi networks of different densities. Erdös-Rényi networks
of size N = 100 with three different values of connection probabilities p. From
left to right, p = 0.1, p = 0.2 and p = 0.7.

1.2.3.2 Barabási-Albert network model

Section 1.2.2 highlights some of the most relevant features that are shared
among many real-world networks. Scale-free networks are therefore not rightly
described by the Erdös-Rényi random network model, as the degree distribu-
tion is not right-skewed and other properties, such as the small-world effect or
the presence of hubs are not well represented.

The fact that many real networks share a common architecture, namely, they
are rightly described by power law degree distributions, could be due to simple
rules or mechanisms that are common for all such systems.

The following two processes are present in the evolution of real-world net-
works: they grow through the addition of new nodes and some of their con-
stituent nodes are preferred to others.

Albert-László Barabási and Réka Albert proposed a model, as a special case
of a more general model called Price’s model [141, 17], having both of the char-
acteristics and for this reason it is known as the Barabási-Albert preferential at-
tachment model (BA).

It turns out that the resulting networks could be rightly described by power
law degree distributions and hence the scale-free property emerges from the two
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simple formation mechanisms: growth of the network through the addition of
new nodes and linear preferential attachment, i.e., nodes are preferred propor-
tionally to its degree.

The networks are built as follows: starting from m0 initially connected nodes,
at each time step t we add a new node with m free stubs that are linked randomly
to existing nodes with a probability given by ki /

∑
j k j [8]. In other words, nodes

that have a higher degree have more chances to receive new connections when
new nodes are added.

For large k and t the degree distribution of the BA model is given by [20]

pk ≈ 2m1/βk−γ (1.31)

whereβ is called the dynamical exponent and has a value ofβ= 1/2, γ= 1/β+1 =
3. Hence, the exponent of the power law is 3.

Despite having some limitations, the BA model is widely used to generate
synthetic scale-free networks.

Figure 1.4: Barabási-Albert networks of different densities. Barabási-Albert
networks of size N = 100 with two different values of new nodes’ free stubs m.
From left to right, m = 1 and m = 3. The radius of nodes is proportional to the
degree.

1.2.3.3 Girvan-Newman modular network model

Michelle Girvan and Mark Newman, in order to test their algorithms of com-
munity detection, defined a model of random networks with known community
structure [74]. The nodes of the network are distributed in a number Nmodul es

of modules or communities. Similarly to ER networks, edges are placed inde-
pendently at random between pairs of nodes belonging to the same commu-
nity with probability pi n , whereas pairs belonging to different communities are
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linked with probability pout . They considered that the expected degree of each
node 〈k〉 and the average degree within a community 〈ki n〉 were fixed parame-
ters. pi n and pout are thus given by

pi n = 〈ki n〉
ni n −1

pout =
〈k〉−〈ki n〉

nout
(1.32)

where ni n = N /Nmodul es is the number of nodes in each module, and nout =
N −ni n is the number of nodes that are not in a particular module.

As 〈ki n〉 increases the modules are easier to be identify. In other words, the
modularity Q (defined in Eq.(1.10)) of the network increases too.

Figure 1.5: Girvan-Newman modular networks with different modularity Q.
Girvan-Newman modular networks of size N = 100 and average degree 〈k〉 = 10
with three different values of average degree within communities 〈ki n〉. From
left to right, 〈ki n〉 = 6, 〈ki n〉 = 8 and 〈ki n〉 = 9.

1.3 Processes on Complex Networks

Section 1.2 looks into the fundamentals of the structure of complex networks. In
this section, we present some of the most relevant results of dynamical systems
on complex networks [43, 122, 21].

1.3.1 Dynamical Systems on Networks

Dynamical systems theory is a mathematical field that studies the behaviour of
dynamical systems, i.e., systems that, at any given time, are represented by a
vector of real numbers, which evolution is usually defined by differential (con-
tinuous time) or difference (discrete time) equations which can be either deter-
ministic or stochastic.

In particular, complex systems theory studies the common and emergent
properties of dynamical systems which are complex in nature because they are
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made of many components that interact with each other or, equivalently, they
have a large number of degrees of freedom (see Section 1.1 for a detailed expla-
nation). Researchers in this field study the global properties of systems, rather
than the behaviour of their isolated constituents. The synchronization in a sys-
tem of interacting oscillators [15, 139, 131] or the epidemic spreading in a net-
work of connected individuals [118] are examples of such global properties.

The ideas of dynamical systems can thus be applied to dynamical systems
on networks. Such systems are typically characterized by independent dynam-
ical variables, xi , yi , ... on each node that are coupled together only through the
edges of the network. In other words, the time evolution equation of an indi-
vidual variable xi on node i can involve xi , other variables on node i , or one or
more variables of a node which is adjacent to i in the network, i.e., variables of
neighbouring nodes.

For a system with a single variable on each node and considering pairwise
interactions, the general first-order equation describing the dynamics of node i
can be written as

d xi

d t
= fi (xi )+∑

j
Ai j gi j (xi , x j ) (1.33)

where fi is a function of the intrinsic dynamics of node i and gi j describes the
contribution of the connection i − j 15. Note that the sum over j of Ai j ensures
that only neighbouring nodes contribute to the evolution of a given node.

In general, nodes are representations of the same element - for example cells,
people or neurons - and hence, the dynamics may be identical. For this reason,
the functions fi and gi j are the same for all nodes and Eq.(1.33) turns to

d xi

d t
= f (xi )+∑

j
Ai j g (xi , x j ) (1.34)

Suppose we are interested in finding the fixed points {x∗
i } of the system16. The

latter are obtained by solving the simultaneous equations

f (x∗
i )+∑

j
Ai j g (x∗

i , x∗
j ) = 0 ∀i (1.35)

Note that the position of the fixed point depends on both the dynamics of the
system and the topology of the network.

15Higher-order interactions is the natural extension of pairwise interactions. As a proper
framework for these type of interactions, the connection between simplicial complexes – a no-
tion based on the set of possible generalized triangles – together with hypergraphs – interactions
between an arbitrary number of nodes through hyperedges – and complex systems is being re-
cently explored[151, 23].

16A fixed point is a steady state of the system, i.e., any set of values of the variables which do
not change over time.
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In order to analyse the linear stability of the fixed point we expand Eq.(1.34)
about {x∗

i } considering xi = x∗
i +εi , where εi is a small quantity and hence keep-

ing only linear terms. Finally,

dεi

d t
=

[
αi +

∑
j
βi j Ai j

]
εi +

∑
j
γi j Ai jε j (1.36)

where αi = ∂ f
∂x

∣∣∣
x=x∗

i

, βi j = ∂g (u,v)
∂u

∣∣∣u=x∗
i

v=x∗
j

and γi j = ∂g (u,v)
∂v

∣∣∣u=x∗
i

v=x∗
j

.

In matrix form, Eq.(1.36) can be written as

d~ε

d t
= M~ε (1.37)

where

Mi j =
[
αi +

∑
j
βi j Ai j

]
δi j +γi j Ai j (1.38)

Eq.(1.37)can be solved by writing~ε as a linear combination of the right eigenvec-
tors17 of the matrix M :

~ε(t ) =∑
k

ck (t )~vk , (1.39)

where ck (t ) is the coefficient corresponding to the contribution of the kth eigen-
vector ~vk . Using Eq.(1.39), Eq.(1.37) becomes

∑
k

dck

d t
~vk =∑

k
λk ck (t )~vk , (1.40)

where λk is the eigenvalue corresponding to ~vk eigenvector. Finally, for each
mode, i.e., in terms of each eigenvector we have

dck

d t
=λk ck (t ), (1.41)

which solution is given by

ck (t ) = ck (0)eλk t . (1.42)

From Eq.(1.42) we conclude that if the real part of all of the eigenvalues λk is
negative, all modes ck (t ) decay in time, as well as~ε. In other words, the corre-
sponding fixed point is a stable one18. Conversely, if all of the ℜ(λk ) are positive,
the associated fixed point is unstable. A combination of negative and positive

17In general, M is not a symmetric matrix
18Note that ck (t ) is the contribution of mode k to~ε. But εi is the deviation of variable xi from

the fixed point element x∗
i .
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values of ℜ(λk ) leads to a saddle fixed point, that is, a position which at least has
one repelling direction19.

As a final remark of this very general framework for the stability analysis of
the fixed points of a dynamical system, we highlight the fact that, very impor-
tantly, both the dynamical process characteristics and the topology of the net-
work are enclosed in the spectra of M matrix. Therefore, a particular analysis is
required for each pair of dynamical process and network.

1.3.2 Coupled Phase Oscillator Models

Many real systems of interest can be mathematically described as oscillatory sys-
tems, that is, an ensemble of units that are individually modelled as oscillators of
one sort or another, but that they are coupled with the neighbours through the
connections of the network. The flashing of fireflies, the neuronal brain signals
or the energy flow through the power grid are examples of oscillatory systems
[4, 15]. Many biological, technological and even socio-economical systems are
rightly described as networks of couple phase oscillators. Very often, the dynam-
ics of the oscillators considers that neighbouring nodes are coupled through its
phases and regardless of the amplitude of the oscillations.

Within this framework, researchers have drawn particular attention to the
study of synchronization, that is, the whole set (or a fraction) of network oscilla-
tors being locked at the same frequency [143, 15, 139, 131].

Despite results on several oscillatory ensembles have been obtained, such
as pulse-couple models or coupled map systems, we focus our attention on the
limit cycle oscillators.

1.3.2.1 Limit Cycle Oscillators: the Kuramoto Model

Already in 1665 Christiaan Huygens realized that two pendulum clocks, its own
invention, suspended side by side on a wall could synchronize in frequency,
swinging in opposite directions. He called the phenomena ‘an odd kind of sym-
pathy’ in his letter to the Royal Society and considered that it was due to the
‘imperceptible movements’ of the common supporting structure [180]. This ef-
fect for a few number of oscillators is already well studied. However, when ex-
amining the analogue effect for large population of oscillators the mathematical
treatment requires a different approach.

19Additionally to fixed points, some dynamical systems present limit cycles, which implies that
the system remains indefinitely trapped on a loop of the dynamics. Physically, they represent
stable oscillatory dynamics of systems. Nonetheless, limit cycles can also be repelling or attract-
ing, namely, a small displacement from it may tend to the limit cycle or move away from it.
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In 1948 Norbert Wiener published the book Cybernetics where he asked ‘How
is it that thousands of neurons or fireflies or crickets can suddenly fall into step
with one another, all firing or flashing or chirping at the same time, without any
leader or signal from the environment?’ [178] The first attempt to mathemati-
cally model this non-linear collective dynamics was done by Arthur Taylor Win-
free in 1967 [181]. He considered all-to-all interacting20 weakly coupled limit-
cycle oscillators characterized by intrinsic frequencies from an uni-modal prob-
ability distribution. His main contribution was considering only the phase of the
oscillators and neglecting their amplitude. Finally, although not proved analyti-
cally, he observed that, even if different, the oscillators could display a relatively
collective coherent behaviour when the frequencies were close enough.

After the work of Winfree and following his approach, in 1975 Yoshiki Ku-
ramoto [92, 93] came up with a tractable mathematical model that could capture
the phenomenology of collective synchronization even if several simplifications
were assumed. He suggested that oscillators were coupled by a sinusoidal func-
tion of their phase differences as follows

dθi

d t
= θ̇i =ωi + K

N

N∑
j=1

sin(θ j −θi ) ∀i ∈ [1, ..., N ], (1.43)

where θi denotes the phase of the i th oscillator, K is the coupling strength of the
interactions and ωi the intrinsic frequency of node i . The factor 1/N ensures
that the systems behaves correctly in the thermodynamic limit, N →∞. We note
that in his original work, Kuramoto considered a mean field approach, i.e., all
oscillators interacting simultaneously with all other units. The frequencies are
obtained from a given probability distribution g (ω), which is usually assumed
to be uni-modal and symmetric about its mean value Ω. Additionally, due to
the rotational symmetry of the model, a rotating frame θi → θi −Ωt is normally
assumed21. After this shift, g (ω) = g (−ω) and thus, ωi corresponds to deviations
from the mean frequency [15].

The collective behaviour of the oscillators can be measured by a complex-
valued order parameter defined as

Z = r (t )e iφ(t ) = 1

N

N∑
j=1

e iθ j (t ), (1.44)

where the modulus r (t ) captures the macroscopic coherence of all oscillators
and φ(t ) represents the average phase. r (t ) is usually considered as the effective
order parameter of the system, ranging 0 ≤ r (t ) ≤ 1. The limits r (t ) ≈ 0 and r (t ) ≈

20Also known as mean field model
21This assumption is essentially based on the fact that the system defined in Eq.(1.43) remains

invariant by a uniform rotation θi → θi +θ0.
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122 correspond to all oscillators moving incoherently and being phase locked,
i.e., frequency synchronized, respectively.

By means of Eq.(1.43) and despite its simplicity, the Kuramoto model (KM)
is able to capture the phase transition between the purely chaotic state, where
all oscillators move independently, to a coherent state, where more and more
oscillators reach the frequency synchronized state and eventually end with all
units swinging in unison. When the variance of the natural frequencies distribu-
tion g (ω) is too wide compared to the strength of the coupling parameter K , the
oscillators keep moving incoherently from each other. Conversely, once the cou-
pling strength is able to balance the width of the distribution, a sub-population
of oscillators starts locking their phases with respect to the others and hence be-
come synchronized at an average frequency. This threshold represents the onset
of synchronization, which is usually represented by the critical coupling Kc . The
oscillators which natural frequency is too separate from that of the locked pop-
ulation remain moving at a different velocity. Therefore, the population is de-
scribed by a partially synchronized state. As the coupling strength grows, more
and more oscillators join in the coherent group, swinging around a mean fre-
quency. Eventually, the entire population ends up locked in phase oscillating
accordingly to a collective average rhythm (See Figure 1.6).

Mathematically, two oscillators i and j are frequency synchronized when

θ̇i (t ) = θ̇ j (t ) ∀t > ts , (1.45)

where ts is the time step after which both oscillators become synchronized. The
whole system becomes synchronized when Eq.(1.45) is true for all pair of oscil-
lators.

Additionally to frequency synchronized, two oscillators may become phase
synchronized, a more restrictive state, when their phases have the same value
after a certain point in time. Mathematically,

θi (t ) = θ j (t ) ∀t > ts . (1.46)

Notice that two oscillators that are phase synchronized are consequently fre-
quency synchronized. When Eq.(1.46) is true for all pair of oscillators, the corre-
sponding state is known as fully synchronized state and the order parameter of
the system takes exactly its maximum value, i.e., r = 1.

Nonetheless, Eq.(1.43) does not include the topology of the interactions be-
tween oscillators. Therefore, in order to include the connectivity pattern in the
dynamical model, Eq.(1.43) can be modified as follows:

θ̇i =ωi +K
N∑

j=1
Ai j sin(θ j −θi ) ∀i ∈ [1, ..., N ], (1.47)

22The approximate symbol corresponds to fluctuations of ∼O(
p

N )
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Figure 1.6: Time evolution of the oscillators’ instantaneous frequencies θ̇ and
the corresponding order parameter r for a complete network of 50 nodes.
Time evolution of the oscillators’ instantaneous frequencies θ̇ (first column) and
the corresponding order parameter r (second column) for a complete network
of 50 nodes, considering natural frequencies distributed according to a Gaussian
distribution with unit variance g (ω) ∼ N (0,1) and three different values of the
coupling strenght K . From top to bottom, K = 1, K = 2 and K = 5.



1.3. Processes on Complex Networks 25

where Ai j is the element (i , j ) of the adjacency matrix of the corresponding net-
work. Several definitions of the coupling strength K can be considered to ensure
a correct behaviour of the system in the thermodynamic limit. Usually, the ef-
fective value of the coupling is obtained by dividing it by the maximum degree of
the network, kmax . Thereby, different topologies can be easily compared [137].

Much attention has been devoted to numerically exploring and analytically
deriving (under certain assumptions) the onset of synchronization. In other
words, researchers are interested in characterizing the value of the critical cou-
pling strength beyond which clusters of nodes become frequency synchronized,
given a particular network topology. Although this topic is not explicitly stud-
ied in the present work, the reader is referred to Refs.[165, 114, 15, 142, 50] for a
deeper understanding of the topic.

1.3.2.2 The Kuramoto-Sakaguchi Model

In 1986, Yoshiki Kuramoto together with Hidetsugu Sakaguchi presented a gen-
eralization of the previous limit-cycle set of oscillators Kuramoto’s model (see
Eq.1.43) which incorporated a constant phase lag α between oscillators23 and
was originally written as [150]

φ̇i =ωi −
N∑

j=1
Ki j sin(φi −φ j +α), |α| ≤π/2, (1.48)

where φi represents the phase of the i -th oscillator [150]. They considered the
case of uniform coupling, i.e., Ki j = K /N and, for this particular case, derived
analytical expressions such as the order parameter and the critical coupling for
the onset of synchronization, as well as compared them with computer simula-
tions.

Later studies of the Kuramoto-Sakaguchi model (KSM) [128, 124, 158, 38, 145,
146] included the network structure within the model together with the global
shift α - or frustration - and considered identical oscillators, i.e., ωi = ω for all
nodes. Therewith, the phase of each oscillator is governed by the equation

θ̇i =ω+K
N∑

j=1
Ai j sin(θ j −θi −α) ∀i ∈ [1, ..., N ], (1.49)

where Ai j accounts for the connectivity between nodes i and j and the phase
lag parameter α takes values in the range [0,π/2].

For a wide range of α > 0, the system becomes synchronized to a resulting
frequencyΩ, i.e., the dynamics reaches a stationary state. Nevertheless,α forces

23They suggested that because, empirically, two strongly coupled oscillators swing with a com-
mon frequency different from their average natural frequencies, a phase lag was needed in their
functional interaction.
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connected nodes to be locked in phase and hence breaks the phase synchro-
nization. The magnitude of such locking is determined by both the network
topology and the parameters of the dynamics. However, full synchronization is
conserved for topological symmetric nodes; a phenomenon that has been called
remote synchronization [124]. As the frustration increases, the asynchronous
groups move away from each other until they reach the maximum separation,
beyond which the system becomes chaotic. The threshold value αC depends on
the topology and the parameters of the dynamics.

In other words, when α= 0 the system reduces to a network of identical Ku-
ramoto oscillators. In this case, the fully synchronized state is globally stable24.

Conversely, when α 6= 0 the frustration parameter makes directly connected
nodes to maintain a constant phase lag and hence forces the system to break the
otherwise fully synchronized state. When the system reaches a stationary state,
in which all oscillators are frequency synchronized, partial phase synchroniza-
tion is conserved for nodes belonging to the same orbit in the network25.

Figure 1.7 shows the temporal evolution of the Kuramoto-Sakaguchi dynam-
ics for the network in Figure 3.1 considering three different values of the frus-
tration parameter. In the cases the system achieves the stationary state (upper
and middle panels) the nodes are divided into four equivalent clusters, as clearly
reflected in the four separate dynamics. Differently, the lower panel shows a
chaotic dynamic present when α>αC , a threshold which depends on every sys-
tem.

In order to quantify the level of synchronization between pairs of oscillators,
we define a local order parameter between oscillators, based on Ref.[14]:

ρi j (t ) = cos(θi (t )−θ j (t )) (1.50)

Equation (1.50) measures the correlation between pairs of oscillators in the
stationary regime, which is invariant under temporal translation.26 We outline
that the pairs of nodes that are structurally equivalent have a value of ρi j = 1.

Figure 1.8 shows the matrix representation of the local order parameter be-
tween all pair of nodes corresponding to the scenario described in the lower

24A proof of this statement is provided in Ref.[4], where the authors consider mean-field inter-
actions in the limit of strong coupling K →∞ and N →∞, for the case of unimodal natural fre-
quency distributions. The incoherent and partial synchronization states, as well as finite size ef-
fects are also analysed. Ref.[15] considers the more general case of complex interactions through
network topologies and studies the stability of the completely synchronized state of populations
of identical oscillators using the master stability function (MSF) formalism. Moreover, the fully
synchronized state can coexist with other attractors of the system under certain conditions. The
authors in Ref.[179] study the size of the synchronization basin.

25The vertices or nodes of the same orbit are structurally indistinguishable and play the same
structural role in the network.

26The original definition of the measure is time dependent. We are concerned only with the
stationary regime though.
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Figure 1.7: Time evolution of the oscillators’ phases θ for the network in Figure
3.1. Time evolution of the oscillators’ phases θ corresponding to the Kuramoto-
Sakaguchi dynamics defined in Eq.(1.49) for the nodes of the network in Figure
3.1. The parameters of the model are set to K = 1 andω= 0 and the initial phases
are distributed following a normal unimodal distribution N (0,1). The frustra-
tion parameterα is set to 0.3 (upper panel), 0.8 (middle panel) andα= 1.5 (lower
panel).
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panel in Figure 1.7 (Kuramoto-Sakaguchi dynamics with α= 0.8). Therein, four
groups (orbits) are internally (phase) synchronized but remain asynchronous
between them. The groups obtained capture the natural symmetries of the net-
work: nodes 1 and 2, nodes 3 and 6, nodes 4 and 5 and node 0, which be-
haves uniquely. The Kuramoto-Sakaguchi model is extended to the General

Figure 1.8: Matrix representation of the local order parameter. Matrix repre-
sentation of the local order parameter defined in Eq.(1.50) between nodes cor-
responding to the scenario described in the lower panel in Figure 1.7.

Kuramoto-Sakaguchi model in Chapter 2.
Obtaining the analytical expression of the temporal evolution of the system

of coupled non-linear differential equations defined in Eq.(1.49) for each oscilla-
tor θi (t ) becomes an impossible task, even for small systems27. Nonetheless, the
work presented throughout the following chapters relies on two basic assump-
tions or considerations: the system has reached a stationary state, i.e., it is not
chaotic, and such scenario corresponds to the frequency synchronized state, i.e.,
all oscillators moving with the same instantaneous frequency, θ̇i . Mathemati-
cally, θ̇i = const. and θ̇i = θ̇ j ∀(i , j ). These two assumptions imply several re-
strictions on the parameters and initial conditions of the model that one should

27Solving numerically the dynamics of the system in order to obtain interesting insights may
be, thus, a convenient approach.
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consider when defining the initial configuration of the non-linear model (See
Figure 1.7 for an example of stationary and chaotic behaviours of the system).

For small values of the frustration parameter and phases close to each other,
i.e., α≈ 0 and θ j −θi ≈ 0, which is the case in the frequency synchronized state,
Eq.(1.49) can be linearized as follows:

θ̇i ≈ω+K
N∑

j=1
Ai j (θ j −θi −α), (1.51)

where the sinus is replaced by its argument28. The linearized Kuramoto-
Sakaguchi dynamics can be expanded as

θ̇i =ω−K
N∑

j=1
Li jθ j −αK ki , (1.52)

where L is the Laplacian matrix, defined as Li j ≡ δi j ki −Ai j , and ki is the degree
of the i th node [122].

In the synchronized state all oscillators move coherently at the same con-
stant collective rhythm, namely, θ̇∗i =Ω, where θ∗i (t ) corresponds to the evolu-
tion of the phases at the stationary state. We can derive the value of the common
frequency oscillationΩ summing Eq.(1.52) over i index. Finally,

Ω=ω−αK 〈k〉 , (1.53)

where we have used the Laplacian matrix property
∑

i Li j = 0. Combining
Eq.(1.52) and Eq.(1.53) we obtain the closed expression for the phases at the sta-
tionary state: ∑

j
Li jθ

∗
j =α(〈k〉−ki ) (1.54)

Eq.(1.54) corresponds to an undetermined system of linear equations due to the
singular nature of the Laplacian matrix. In particular, there is one degree of free-
dom which corresponds to the phase of an arbitrary oscillator, which we should
use as a reference value for the solution. In this way, we do not work directly with
the functional form of phases because they are time dependent, i.e., θ∗i (t ) = f (t ),
but with the phase differences with respect to such reference node, once the sta-
tionary state is achieved,

φi ≡ θi −θR , (1.55)

where R corresponds to the label of the chosen reference node. By definition,
φR = 0.

To easily write the matrix expressions, we define the selection matrix J(n,m),
which is, in general, an (N −1)× (N −1) identity matrix after the removal of the

28si n(x) ≈ x when x → 0.
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mth row and the nth column. Using the selection matrix, we define the reduced
Laplacian matrix as

L̃(C ,R) = J(,C ) ·L · J(R,) ≡ L̃. (1.56)

In other words, L̃ corresponds to a (non-singular) square matrix of dimension
N−1 after removing the C th row and the Rth column from the original Laplacian
matrix L. Notice that the index of the removed column corresponds to that of the
reference node R, while the choice of the index C for the removal of the row is
left free29. With these remarks and using the new set of variables {φi }, Eq.(1.54)
turns to ∑

j
L̃i jφ

∗
j =α(〈k〉−ki ). (1.57)

Finally, the solution for the phase differences {φi } in Eq.(1.57) in matrix form is
given by

~̃φ∗ =αL̃−1(〈k〉~e −~̃k), (1.58)

where~e is a vector of ones of dimension N−1 and the i th element of the vector~k
corresponds to ki . ~̃k and ~̃φ are defined as J(,C ) ·~k and J(,C ) ·~φ, respectively, i.e., the
vector of node degrees and phase differences after the removal of the C th entry
30.

Considering the topology defined in Figure 3.1, we derive the solution of
the phase differences at the stationary regime (frequency synchronized state)
to illustrate the procedure concluding at Eq.(1.58). The Laplacian matrix corre-
sponding to the network in Figure 3.1 is given by

L =



4 −1 −1 −1 0 0 −1
−1 2 −1 0 0 0 0
−1 −1 2 0 0 0 0
−1 0 0 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
−1 0 0 0 0 −1 2


. (1.59)

The corresponding vector of node degrees is~k = (4,2,2,2,2,2,2). Next, we select
node 0 to be the reference node. Hence, R = 0. Note that, by definition, φ0 = 0.
In order to compute the reduced Laplacian matrix we choose C = 0, an arbitrary

29Which equation to remove is left as a free choice in a underdetermined system of linear equa-
tions.

30An alternative approach to derive the phases at the stationary state is suggested in Ref.[158]
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choice which does not affect the solution. Therefore, L̃ = J(,0)·L·J(0,). Particularly,

L̃ =



2 −1 0 0 0 0
−1 2 0 0 0 0
0 0 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2


. (1.60)

Applying Eq.(1.58) we obtain the solution

~̃φ∗ = α

7
(2,2,4,6,6,4), (1.61)

and φ0 = 0, by definition. Therefore, we obtain the four different dynamics
according to the numerical simulation (see Figure 1.7): φ1 = φ2, φ3 = φ6 and
φ4 = φ5, which numerical final value depends on the choice of the frustration
parameter α and that captures the four different clusters of structurally equiva-
lent nodes present in the network of Figure 3.1.

1.4 Outline of the thesis

After having reviewed the main concepts of network theory and revisited the
principal results concerning limit-cycle oscillatory network models, this thesis
explores the potential of considering a non-homogenous distribution of phase
lag parameters among the population of oscillators, the main variation of the
Kuramoto-Sakaguchi model with respect to the original Kuramoto model.

In Chapter 2 we consider the scenario of perturbing the otherwise fully syn-
chronized state of the system by introducing a non-zero phase lag shift into the
dynamics of a single node. In this way we obtain a rating of the nodes consid-
ering its potential to move the system away from the ground steady state. To
this end, we define a novel centrality measure, which we call funtionability, that
provides interesting insights into the network structure and node function.

In Chapter 3, we turn our attention to a second scenario by considering a
more general setting in which the phase lag parameter is an intrinsic property of
each node, not necessarily zero, and hence exploring the potential heterogene-
ity of the frustration among oscillators. In this second work, we bring forward
a methodology to drive the system into any desired phase state, by means of a
fine tuning of the phase lag distribution. In this way, the three intrinsic param-
eters of the nodes in the model, natural frequencies, frustration parameters and
the phases in the steady state are coupled by an equation. In addition, we also
address the question of finding, not only a plausible solution, but the optimal
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solution such that the system requires the minimum cost to achieve a particular
state.

Finally, in Chapter 4 the homogeneous scenario of phase lag distribution
is revisited. We explore the distribution of obtained phase differences in this
particular case and construct a framework that enables the detection of, not
only the perfect symmetries of a network, but also approximate symmetries,
defined as quasi-symmetries. We study the distributions of topological simi-
larity among all pair of nodes and find a benchmark to determine whether a
network has a more complex pattern to that of a random network concerning
quasi-symmetries. Moreover, we define the ‘dual network’, a weighted network –
and its corresponding binarized counterpart – that effectively encloses all the in-
formation of the quasi-symmetries in the original one. The dual network allows
for the analysis of centrality measures and community detection with respect to
approximate symmetries.

The overall conclusions are presented in Chapter 5, although a discussion of
each work is included at the end of each chapter.



CHAPTER 2

Functionability in Complex
Networks

Synchronization has become one of the most paradigmatic examples of emer-
gent properties in complex systems [139, 131], since the degree of interaction
between the oscillatory units of a discrete system makes that a variety of macro-
scopic states are available. Among the most studied such systems, because of its
inherent simplicity, is the Kuramoto model, presented in Section 1.3.2, in which
phase oscillators interact continuously with other units through a sine function
of the phase difference [93, 150, 4]. In all-to-all models, there is a transition from
an incoherent state to a coherent one that depends only on the relative strength
of the two competing forces: the dispersion of intrinsic frequencies, and the in-
tensity of the coupling between units.

Over the last four decades, the KM has been thoroughly studied in regular
lattices, and, with the sudden interest in complex networks, its role in irregular
connectivity patterns has been heavily exploited [15]. This has been achieved
not only by analyzing synchronization properties (order parameters, control pa-
rameters, time to synchronize, etc.) but also through use of the path to syn-
chronization of neighboring units in order to identify higher-order connectivity
patterns, for instance in communities that form complex networks at different
hierarchical levels [14, 13, 12]. As already stated, in the original KM the emphasis
is on the relative strength in the two antagonistic contributions: frequency dis-
persion and coupling strength. However, when complex topologies are consid-
ered, it is important to disentangle these effects; for this reason special interest
has been arisen concerning the evolution of identical oscillators. In particular,
a simple change in the coupling function, by inserting a phase-lag or frustration
parameter in the argument of the sine function, results in identical oscillators
now being unable to synchronize and it generates complex patterns of phase
differences, a fact which have been related to topological symmetries of the net-
work [124, 136].

The introduction of an identical frustration parameter in all the coupling
terms produces a global effect on the network. However, in complex network sci-
ence there is a special interest in understanding what role the individual nodes
play in the behavior of the overall network. Many centrality measures that are
key to this field have been considered for many years in the social sciences,
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and there are more recent proposals, such as Google Search PageRank as well
as other measures related to the concept of controllability [100]. However, to the
best of our knowledge, there is no measure of the effect that a given node can
have on the range of states a network can achieve which, in terms of phase os-
cillators, is measured in the different phase-difference patterns a network can
traverse. This is precisely the goal of the present chapter: to characterize the
effect a node can have on the global asynchronous state.

Among the systems where this new concept that we name ‘functionability’
has an immediate application is the rapidly evolving field of brain networks
[163]. The molecular and cellular mechanisms of synapse formation and plas-
ticity shape and guide the development and change of synaptic connections in
the long run [95, 40]. Therefore, brain networks, on a short timescale, are consid-
ered to be static. Such structural networks are the substrate on which different
temporal co-activation patterns can occur, also known as functional networks
[3, 108, 84, 41, 154, 27]. All the functionalities of the brain, at either the low
or the high level, are captured by different networks which nonetheless occur
within the same physical medium. How does this essential feature of the brain
arise? What mechanisms are responsible for a static network undergoing many
different states? Are there specialized brain regions that are better at this job?
Are they easy to identify?

Higher functionability may be positive for the system, as it reflects the ca-
pacity of a node to be involved in different tasks, and can result in the network
state shifting into one involving more complex temporal relationships between
modules. However, highly functional nodes can also be potentially danger-
ous in systems where tiny perturbations can produce cascade-like effects which
completely disrupt the network dynamics. An example of this is offered by the
transfer networks of power grids, which have been widely studied in the field of
complex networks, focusing on their structure to assess the damage of failures
[16, 10]. However, power grids are highly sensitive to oscillatory dynamics and
the synchronization of AC power [94], and hence to perturbations of the phase
lags between individual agents. Other such examples include the synchroniza-
tion in heartbeats [5], multiprocessors and multi-core processors and traffic sig-
nal synchronization [175].

We are specifically interested in detecting the nodes that have a major im-
pact on the network by enabling a broader spectrum of states or a larger dis-
persion from the ‘ground’ state. Many centrality measures have been developed
and defined over the years [29], some of them are even related to the dynami-
cal properties of the nodes; but we specifically target a measure of variability or
functionability that can be associated with the the physical phenomenon of syn-
chronization in order to provide it with meaning [139]. Hence, we base a great
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deal of our work on an oscillatory dynamical model; but we aim to arrive at a
compact mathematical expression that emerges from it.

All the results presented in this chapter can be found in Ref.[144].

2.1 The Generalized Kuramoto-Sakaguchi Model

In Section 1.3.2.1 we show that a connected system described by the KM dy-
namics reaches the fully synchronized state when all the oscillators are identical.
Nonetheless, besides tuning the natural frequency of each oscillator, is there an
alternative way of breaking the natural synchrony of the system?

As explained in Section 1.3.2.2, later studies [26, 128, 124] based on the work
of Kuramoto and Sakaguchi [150] have suggested the introduction of a homoge-
neous phase ‘frustration’ parameterα into the dynamics of the system. Equation
1.49 already includes the network structure and identical oscillators are consid-
ered.

Nonetheless, neither the Kuramoto model nor the Kuramoto-Sakaguchi
model provide information on specific nodes, but on the network as a whole.
In this chapter, we require that each oscillator is tagged by an intrinsic parame-
ter capable of moving the system away from its natural fully synchronized state.
What would the effect of a phase frustration parameter that characterizes dis-
tinctly each such oscillator be? Several studies have focused on the effect of dif-
ferent natural frequencies of the oscillators; but we may be concerned with other
types of natural properties connected to the phase shift between oscillators.

We would like to identify the nodes that have the largest effect in leading
the whole system away from full synchronization. To do so, we need to estab-
lish which nodes have the greatest capacity, with only a small perturbation, to
produce a large dispersion in the phases of the whole population. In the next
paragraphs we build a model that is capable of breaking the natural phase syn-
chronization and search for central nodes that are best suited for doing this. To
this end, we introduce a dynamic model based on Kuramoto-Sakaguchi model:
the General Kuramoto-Sakaguchi model (GKSM), which enables us to individu-
ally characterize each node by means of an intrinsic frustration parameter.

In the present chapter we consider the natural generalization of the KSM by
considering the frustration phase parameter to be intrinsic to each oscillator,αi ,
rather than a homogeneous property of the population. This assumption may
depict a more realistic scenario, in which oscillators represent real systems with
individual properties that are determined by the nature of each oscillator. The
GSKM is defined by the dynamics:

θ̇i =ω+K
N∑

j=1
Ai j sin(θ j −θi −αi ) ∀i ∈ [1, ..., N ], (2.1)
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where αi is an intrinsic parameter of each oscillator. Other considerations re-
garding the model can be found in Refs. [85, 38].

2.1.1 Finding the most functional nodes

We may find or define very distinct (discrete) distributions of the frustration pa-
rameter among the population, each of them leading the system to a different
behavior. As our main goal is to localize the nodes that are best able to move the
system away from synchronization, we consider two possible distributions, al-
though other interesting insights may be obtained from alternative possibilities:

• Homogeneous distribution: αi =αh ∀i .

In this case, the GKSM reduces to the KSM, as previously explored, where
all nodes share the same value of α (See Section 1.3.2.2).

• Delta distribution: αi =α ·δiC , where δiC = 0 if i 6=C and δiC = 1 if i =C .

In this case, only the node labelled as C has a frustration parameter value
different from zero. In this way, we break the overall problem of moving
the system away from the fully synchronized state into many individual
problems.

Let us first suggest a simple way to measure phase dispersion between oscilla-
tors.

2.1.2 Measuring perturbations in oscillatory systems

Suppose a given dynamical system defined by a network of coupled oscillators
experiences a shift in the original configuration of parameters produced by an
external mechanism. The system moves from an initial configuration of param-
eters, p, to a new set of parameters, q . Since each oscillator is characterized by
a phase θi (t ), the phases corresponding to the configuration p,~θ(p), will trans-
form to updated phases in the configuration q ,~θ(q). In other words, the system
experiences a change of state. We assume that configurations p and q lead the
system to two possible frequency synchronized stationary states, characterized
by a set of values for the phase locking between the oscillators, ~φ.

In this situation, we define the effect on nodes (i , j ), εi j , generated by the
configuration shift from p to q as

εi j (p → q) ≡ 1−cos(∆φi j )

2
(2.2)

whereφi j ≡ θ j−θi and∆φi j ≡φi j (q)−φi j (p) [182]. Therefore, εi j is a measure of
the change in phase difference between nodes i and j that, since it is defined in
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the stationary regime, is time independent. Eq.(2.2) has the following properties:
εi j (p → q) = ε j i (p → q), εi i (p → q) = 0 and εi j (p → p) = 0. Moreover, εi j (p →
q) ∈ [0,1]. In other words, if nodes (i , j ) were initially in phase and they change
to be in anti-phase, the effect or the change in phase difference would be the
largest possible: εi j (∆φ = π) = 1. When no changes are produced due to the
change of configuration, that is, the phase difference between nodes i and j
remains unchanged, the value of the effect is zero: εi j (∆φ= 0) = 0.

Further considerations regarding the properties of εi j as a distance metric
can be found in the Appendix 2.4.1.

2.2 Functionability: a new centrality measure

In order to assess the impact on the whole system of a node being perturbed,
we make use of the GKSM model described in Eq.(2.1) and the effect measure
defined in Eq.(2.2). Using the delta distribution defined in Section 2.1.1, we will
consider that the change in the configuration is produced by just one single node
C called the control node and we will compute the functionability FC of such
node. By performing the same procedure for each node, we will obtain a vector
~F with the functionability of each of them in its different entries.

The Control Node C . The initial configuration of the system p is such that all
the oscillators are completely synchronized at the stationary state. The
system then switches to configuration q , which is determined by the con-
trol node. This change is enacted by setting the set of frustration parame-
ters ~α in Eq.(2.1) as follows:

αi (p) = 0 ∀ i αi (q) =
{

0 if i 6=C

α if i =C
(2.3)

where C is the label of the control node, the effect of whose perturbation
on the whole system we will assess.

Functionability F . We define the functionability of node C as:

FC (α) ≡∑
i

∑
j
εi j (p → q(α)) (2.4)

where p and q are defined in Eq.(2.3), εi j is defined in Eq.(2.2) and the
state of the system is obtained from the dynamics described by Eq.(2.1)
with the aforementioned configurations. As already seen, the initial con-
figuration p corresponds to the fully synchronized state. Therefore, the
functionability measures the total dispersion of the phases from this
ground state owing to the perturbation of a single node. The larger the
dispersion, the more functionability a node has.
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Figure 2.1: Polar representation of the phases. Polar representation of the final
phases of the oscillators of the network in Figure 3.1 obtained from the dynamics
described by Eq.(2.1) and conditions defined in Eq. (2.3). Upper left panel: The
frustration parameter is set to α= 0. The upper right and lower panels show the
dispersion produced when nodes 1 and 6 are chosen as control nodes, respec-
tively, when α= 0.5.
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In Figure 2.1 we observe that, regardless of the selected control node, if the frus-
tration parameter is set to α = 0, then the system is fully synchronized. Con-
versely, when α 6= 0 – in the example considered, α = 0.5 – the system becomes
asynchronous, i.e., phases move apart from each other. We note that the effect
of the frustration depends on the choice of the control node C and the quantifi-
cation of this effect is captured by the corresponding value of the functionability.

2.2.1 Analytic expression of functionability

Equation (2.1) corresponds to a set of N coupled nonlinear differential equa-
tions whose solution, in general, cannot be derived analytically. However, if the
system reaches a frequency synchronized state, that is, θ̇ =Ω∀ (i , t > ts), and the
argument of the sine is small enough, we can linearize Eq.(2.1) similarly as it is
done for the Kuramoto-Sakaguchi model in Section 1.3.2.2. Accordingly, Eq.(2.1)
turns to

θ̇i ≈ω−K

[
N∑

j=1
Li jθ j +αi di

]
, (2.5)

where, for convenience, the symbol di corresponds to the degree of node i .

Without loss of generality, we can set ω = 0 and K = 11. With these remarks
and equivalently to Eq.(1.53), the value of the common frequency is given by

Ω=− 1

N

N∑
i

diαi ≡−〈αd〉 (2.6)

Finally,
N∑

j=1
Li jθ j = 〈αd〉−αi di (2.7)

In a connected graph, the Laplacian matrix has one null eigenvalue, which cor-
responds to the eigenvector~1, and hence the system of linear equations to solve
~θ in Eq.(2.7) is singular. Intuitively, we are left with one free parameter which
depends on the initial phase conditions,~θ(t = 0). Nonetheless, the phase differ-
ences between oscillators are well determined.

In accordance with the procedure used in Section 1.3.2.2, we need to work
with the phase differences between oscillators θi −θ j , instead of the correspond-
ing absolute phases θi . To this end, we replicate Eq.(1.55),

φi (R) =φi R ≡ θi −θR , (2.8)

1A non-zero shared natural frequency does not affect the synchronization of the system, and
the coupling strength plays a role in the timescale of the path to synchronization.
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where R corresponds to the label of a chosen reference node, with respect to
which the set of phase differences are computed, once the stationary state is
achieved. By definition, φR (R) = 0.

Using the reduced Laplacian matrix L̃(C ,R) defined in Eq.(1.56) and consid-
ering q configuration defined in Eq.(2.3), Eq.(2.6) turns to:

Ω=− 1

N

N∑
i

diαi =−αdC

N
∀i (2.9)

where C is the label of the control node. The GKSM in this particular case be-
comes

− αdC

N
=−

[
N∑

j=1
Li jθ j +αi di

]
∀i (2.10)

The analytical solution of the set of phase differences for a given choice of con-
trol and reference nodes ~φ(C ,R) in matrix form is given by

~φ(C ,R) = [−L̃(C ,R)
]−1~Ω= [−L̃(C ,R)

]−1
(
−αdC

N

)
~1 (2.11)

Hence,

~φ(C ,R) = [
L̃(C ,R)

]−1
(
αdC

N

)
~1 (2.12)

In order to calculate the matrix ε, whose elements are defined in Eq.(2.2)

εi j (p → q) ≡ 1−cos(∆φi j )

2

we consider the fact that ∆φi j (p → q) ∼ 0 and thus we can linearize the cosine2

and write εi j as:

εi j (p → q) ≈
(
∆φi j

)2

4
. (2.13)

To compute the functionability of a control node C as it is defined in Eq.(2.4), we
use Eq.(2.12) and Eq.(2.13), where node R and node j are equivalent.

εi R (p → q) ≈
(
αdC

2N

)2
(∑

l

[
L̃−1(C ,R)

]
i l

)2

(2.14)

FC ≡ ∑
i
∑

j εi j (p → q), or FC ≡ ∑
i
∑

R εi R (p → q) can be expanded in order to
obtain a more compact expression. Using Eq.(2.14) and rearranging summa-
tions:

FC =
(
αdC

2N

)2 ∑
i

∑
R

(∑
l

[
L̃−1(C ,R)

]
i l

)2

=
(
αdC

2N

)2 ∑
R

∑
i

(∑
l

[
L̃−1(C ,R)

]
i l

)2

(2.15)

2 1−cos(x)
2 = sin2

( x
2

)≈ x4

4 when x → 0.
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The last two summations can be expanded to

∑
i

(∑
l

[
L̃−1(C ,R)

]
i l

)2

=∑
i

∑
l

[
L̃−1(C ,R)

]
i l

∑
m

[
L̃−1(C ,R)

]
i m =

=∑
l

∑
m

∑
i

[
L̃−1(C ,R)

]
i l

[
L̃−1(C ,R)

]
i m =∑

l

∑
m

∑
i

[(
L̃−1(C ,R)

)T
]

l i

[
L̃−1(C ,R)

]
i m =

=∑
l

∑
m

∑
i

[(
L̃T (C ,R)

)−1
]

l i

[
L̃−1(C ,R)

]
i m

(2.16)

Finally,

FC =
(
αdC

2N

)2 N∑
R

N−1∑
i j

[(
L̃(C ,R)L̃T (C ,R)

)−1
]

i j
(2.17)

where we have used the matrix property: A−1B−1 = (B A)−1. If we are interested
in normalizing Eq.(2.17) we can divide it by the prefactor 1/N 2:

F̂C ≡ 1

N 2

(
αdC

2N

)2 N∑
R

N−1∑
i j

[(
L̃(C ,R)L̃T (C ,R)

)−1
]

i j
(2.18)

The values of functionability for the network in Figure 3.1 takingα= 0.2 are ~F =
{0.34,0.43, 0.43,0.18,0.36,0.36,0.18}. As we can see from Figure 2.2, nodes 1 and
2 obtain the highest scores, whilst nodes 3 and 6 have the lowest. The ranking of
nodes is preserved regardless of the value of the frustration parameter, since all
the dependence inα is a quadratic prefactor. A radial plot of the final phases at a
particular point in time is shown in Figure 2.1 when nodes 1 and 6 are chosen as
control nodes in the q configuration, with a value of the frustration parameter
of α= 0.5 (the linear model is considered).

2.2.2 Interpretation of functionability

At the beginning of the present Section, we define the functionability of node
C , FC , as a measure of the effect that a phase-lag parameter introduced in the
intrinsic properties of such node has on the original fully synchronized state of
the network. In other words, FC measures the potential that a single node has to
move the network oscillators out of phase synchrony, as shown in Figure 2.1. De-
spite the fact that the general definition of functionability is built from the GKSM
(see Eq.(2.1)), a non-linear dynamical model, we have derived a very compact
analytical expression of the measure, given by Eq.(2.17).

Getting back to the origin point of the model and, therefore, the physical jus-
tification of the dynamics, the interpretation of the final analytical expression
of the functionability is the following: high values of FC inform of the large po-
tential that the position where such nodes are located within the network have
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Figure 2.2: Functionability of the nodes in a network. Functionability values
for the nodes of the network presented in Figure 3.1. Larger radius and darker
colors correspond to higher functionability values. The frustration parameter is
set to α= 0.2.
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in order to move the state of the whole system into more possible configura-
tions, assuming the same perturbation is applied to individual nodes. As already
pointed out, this effect may be either beneficial or disruptive for a given system,
depending on its nature and functions.

To go one step further in the interpretation of functionability, we can take a
closer look at its analytical expression, in Eq.(2.17), in order to understand the
building blocks of it. Firstly, for fixed values of the network size N , and magni-
tude of the frustration parameter α, which can be included as a prefactor, we
can identify two main contributions to FC :

1. The square of the degree of the node: d 2
C .

2. The contribution corresponding to the reduced Laplacian term, which we
call L-Periphery:

N∑
R

N−1∑
i j

[(
L̃(C ,R)L̃T (C ,R)

)−1
]

i j
. (2.19)

The first term stands for the importance of the degree of the node (see the first
column in Figure 2.3). The more neighbors a node has (the more locally con-
nected is), the more likely it is to be a more functional node. We note that this
effect is further enhanced by the square of the degree.

Secondly, if we locate all the nodes using the Fruchterman-Reingold force-
directed algorithm [67] available at the Networkx python library, which consid-
ers an attractive spring force between adjacent nodes and a repulsive electrical
force between any pair of nodes, and use the second contribution of function-
ability as an attribute for size and color, we obtain an intuitive and qualitative
meaning of it: nodes that have higher values of the L-Periphery are located at
the periphery of the graphical layout of the network (see the second column in
Figure 2.3). Hence, higher values of functionability correspond to nodes that
are both well connected and also peripheral. Therefore, functionability provides
us with more information than other classic measures of node importance or
centrality (see the third column in Figure 2.3). Functionability and its two con-
tributions are shown in Figure 2.3. We highlight that the product of the squared
degree and the L-periphery is proportional to functionability.

2.2.3 New insights from functionability: a real example

In Section 2.2.2 we carry out a thoughtful analysis of functionability, taking into
account its physical meaning and its mathematical expression. In the present
section, we show that this new centrality measure provides us with unique infor-
mation about the network when we compare it with other centrality measures,
specially those used in the analysis of brain networks [90].
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Figure 2.3: Degree, L-Periphery and functionability of the nodes in a net-
work. Degree, L-Periphery and functionability values for the nodes correspond-
ing to four synthetic network topologies. Larger radius and darker colors corre-
spond to higher degree (first column), L-Periphery (second column) and func-
tionability (third column) values.The position of nodes are computed using the
Fruchterman-Reingold force-directed algorithm [67].
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To this end, we compute the functionability centrality of the nodes of a
well-known real network: the frontal cortex network (individual neurons) of the
Caenorhabditis Elegans worm [86] (see Figure 2.4). Our aim is not to examine the
details of the interpretation of the results, but rather to compare functionabil-
ity with other well-known centrality measures. Nevertheless, we obtain that the
ten nodes with the highest functionability score are ASKL, ASKR, ASER, OLQVR,
AIAL, AINR, RIAR, OLQVL, AIAR, AIBR, RIH neurons, as standard naming, in de-
scending order. Similarly, in Figure 2.5 we compute the values of several central-

Figure 2.4: Functionability of the 131 nodes of the C. Elegans frontal cor-
tex network. Functionability values for the nodes –representing individual
neurons– of the C. Elegans frontal cortex network. Larger radius and darker col-
ors correspond to higher functionability values. The position of nodes are com-
puted using the Fruchterman-Reingold force-directed algorithm [67].

ity measures and show the top ten neurons corresponding to the highest values.
More classic centrality measures, such as node degree, betweenness, closeness,
eigenvector and other spectral based centralities have different outcomes and
rankings for nodes from those of functionability, even if they are similar. Other
centrality measures also have different meanings [33, 25, 56, 34, 72, 147]. Figure
2.4 shows that the nodes that have the highest values of functionability corre-
spond to neurons that do not usually appear as neurons with the highest degree,
betweenness or eigenvector centralities; and hence, functionability gives us ad-
ditional information concerning such nodes. As can be seen in Figure 2.6, func-
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ASJR
ASJL
SIBDR
SIBDL
RID
ASKR
SIADR
ASKL
AFDL
AFDR
ASGL
SIBVL
SIBVR

RIAR
RIH
RIAL
AIBR
AVER
AVAL
RIBL
AVBR
AVEL
AVBL
RICL
RICR
OLLR

RIAR
RIH
RIAL
AIBR
RIBL
AVER
AIZL
AVEL
ADLL
ASHL
RICR
CEPDL
AVAL

RIAR
RIAL
RIH
AIBR
AVBR
RIBL
AVAL
AVEL
AVER
AVAR
RICL
AVBL
RIMR

Figure 2.5: Centrality scores of four different measures of the 131 nodes of
the C. Elegans frontal cortex network. L-Periphery (upper left panel), degree
(upper right panel), betweenness (lower left panel) and eigenvector centrality
(lower right panel) values for the nodes –representing individual neurons– of
the C. Elegans frontal cortex network. Larger radius and darker colors corre-
spond to higher centrality values. The position of nodes are computed using the
Fruchterman-Reingold force-directed algorithm [67].
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tionability has a positive correlation with degree, betweenness and the eigen-
vector centralities, although all the Pearson coefficient values are below 0.5. We
recall that nodes with higher values of functionability are more peripheral, as
well as having higher degrees. We may also wish to consider whether function-
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Figure 2.6: Correlation matrix between five centrality measures correspond-
ing to the C. Elegans frontal cortex network. Correlation matrix, using the stan-
dard Pearson correlation coefficient, between five (classic) centrality measures:
functionability, L-periphery (defined in Eq.(2.19)), degree, eigenvector and be-
tweenness, from left to right. Correlations are computed from the centrality val-
ues of the nodes in the C. Elegans frontal cortex network.

ability would be equivalent to other alternative centrality measures that have
been recently developed, such as controllability, core score or collective influ-
ence. These measures target specific properties of the network and have not
yet been incorporated into standard network libraries and for this reason we do
not provide a quantitative comparison with functionability. Nevertheless, we
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will consider their definitions and analytical derivations in order to analyse its
meaning:

Controllability, C Within the framework of control theory [96, 100, 134], spe-
cial attention is paid to possible applications to complex networks, par-
ticularly brain networks [101, 77]. The term control refers to the ability of
nodes to perturb the system in such a way that it reaches a desired state
[68]. In order to assess controllability, several methods have been devel-
oped; all of them assume a linear response dynamical model [162]. We
highlight two of them that were specifically designed to evaluate regional
controllability, rather than as a global measure of the network.

• Average controllability: As defined in [77], the average controllability
identifies the nodes that can steer the network to many easily reach-
able states. The result that we are most interested in concerns the
mathematical expression of the particular case when the set of con-
trol nodes reduces to one node at a time, and hence, provides a mea-
sure of the average controllability of each node of the network. It can
be proved that:

Ca(K ) ≡ tr(W −1
K ) =∑

i

[
(I− A2)−1]

K i (2.20)

Eq.(2.20) resembles the well-known Katz centrality measure, consid-
ering only odd length walks. Moreover, if we expand it and we keep
the second-order dependency on the adjacency matrix, we recover a
measure that is proportional to the degree of the node K .

• Modal controllability: A node that has large modal controllability is
one that participates in most of the dynamical modes of the linear
system. In other words, it is a node that is able to access states that
are difficult to reach [80, 77]. Modal controllability is defined as:

Cm(K ) ≡
N∑

j=1

(
1−λ j (A)2)v2

i j (2.21)

where λ(A) j is the eigenvalue of the j th mode and vi j is the contri-
bution of node i to the eigenvector of the j th mode.

Other definitions can be similarly compared to functionability, but their
meaning moves away from a measure of the effect on the states of a
network, for example, boundary controllability. Eq.(2.20) and (2.21) are
mathematical expressions which differ from Eq.(2.17) and have a different
meaning [168]. However, by looking at them, we can also find similarities
regarding dependence on the adjacency matrix. In general, many central-
ity measures tend to be partially correlated.



2.2. Functionability: a new centrality measure 49

Core Score, CS. Despite much attention has been paid to community detec-
tion algorithms, another well-known mesoscopic property of a network
is its core–periphery structure: which nodes are part of a more densely
connected core and which are part of a sparsely connected periphery
[22, 35, 78, 48, 103]. The authors in Ref.[22] proposed a continuous mea-
sure of a node’s closeness to the core, called ‘coreness’. The algorithm is
based on an optimization procedure which considers cores with different
sizes and boundaries, according to a transition function, and assesses to
what extend a node matches this. In order to compute coreness, the au-
thors define the core quality as:

Rγ =
∑
i , j

Ai j Ci j (2.22)

where γ is a vector that parametrizes the core quality. The elements Ci j

are normally computed as Ci j = Ci C j , where Ci are the elements of the
local core values. The aim is to find a core vector, ~C , that maximizes Rγ

and is a normalized shuffle of the vector ~C∗, which is determined using a
transition function, providing a shuffled list of possible core vector values.

For a given set of parameters that determine the transition function of the
core, γ(α,β), they define the aggregate core score of each node i as:

C S(i ) = Z
∑
γ

Ci (γ)×Rγ (2.23)

where Z is a normalization factor.

The aim of developing the core score measure differs from that behind
functionability in many aspects. Nevertheless, the L-periphery centrality,
which is one of the contributors to the former, may resemble the inverse
core score outcome when the network is characterized by a clear core–
periphery structure. Note that the aim of functionability is not related to
finding communities or the core of a network.

Collective Influence, CI. A subset of measures aim to detect the most influen-
tial nodes in an adaptive way. Each method considers a different heuris-
tics to rank all nodes, determines which node is ranked as the greatest
spreader and removes it. Scores are recomputed and the procedure is re-
peated iteratively until no nodes are left in the network. The simplest ap-
proach is done by the highly degree adaptive (HDA) method [9].

Collective Influence (CI) tries to fill the gap left by the fact that the pre-
ceding set of methods does not optimize an objective global function. In
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contrast, CI is defined in such a way that it potentially identifies the mini-
mal set of nodes that, if removed, would cause the network to become dis-
connected, understood in the framework of network percolation theory. It
does this, furthermore, by means of an energy cost function [112, 58, 113].

If G(q) represents the probability of the existence of a giant component
[9, 44, 116] in the limit of N →∞, then the problem reduces to finding the
minimum fraction qc such that:

qc = min{q ∈ [0,1] : G(q) = 0} (2.24)

CI is computed by considering balls of different radius, l , whereby each
size captures a different influence scale across the network. In Ref. [112],
the authors show that the problem is equivalent to minimizing the cost
function:

El (n) =
N∑

i=0
zi

∑
j∈∂B all (i ,l )

( ∏
k∈P l (i , j )

nk

)
z j (2.25)

where zi ≡ di − 1 and di stands for the degree of node i . The vector ~n
represents whether a node, in the final configuration, belongs to the set
of ’influencers’ or not. Then the collective influence strength at level l of
node i is:

C Il (i ) = zi
∑

j∈∂B all (i ,l )

( ∏
k∈P l (i , j )

nk

)
z j (2.26)

and Eq.(2.25) becomes

El (n) =
N∑

i=1
C Il (i ) (2.27)

Therefore, in order to minimize Eq.(2.27), we need to remove the node
with the greatest C Il value and iterate until a score is assigned to each
node.

Functionability is not obtained from an optimization algorithm or any it-
erative procedure. However, the physical interpretation of the measure
does also have a global scope in the following way: the mathematical def-
inition of FC for a node C is computed considering the effect that a local
perturbation has on the whole network.

We have compared the proposed functionability centrality with two sets
of measures of node importance. On the one hand, we compute the cor-
relation matrix between the functionability, the built-in L-periphery central-
ity (defined in Eq.(2.19)) and three classic centrality measures: degree, eigen-
vector and betweenness centralities considering the frontal cortex network of
the C.Elegans (see Figure 2.6). Also, the analytical expression of functionabil-
ity, in Eq.(2.17), informs us that this centrality provides unique insights of the
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considered network, since it cannot be replicated by other centralities. Note
that the defined L-periphery centrality – which corresponds to the contribution
of the reduced Laplacian term – is highly negatively correlated with between-
ness centrality. Moreover, both functionability and L-periphery are algorithmic-
free, parameter-free and deterministic centralities; all of these properties being
highly beneficial for network analysis. On the other hand, three more recently
developed measures, C ,C S and C I have been explored in order to compare the
definition of importance, and its computation as well as mathematical resem-
blance with functionability. We conclude that CS and CI aim to determine a
more structural type of centrality, like revealing the participation of a node in the
core or the set of nodes which would break the giant component apart. Hence,
they may correlate in some ways with L-periphery. Conversely, controllability
seeks the nodes which most enable the system to move towards a particular
state, either those which are easy to access (Ca) or more mode-like ones (Cm).
Average controllability resembles the intuitive motivation of functionability, al-
though it is neither mathematically equivalent nor does it have a similar physical
interpretation or building blocks (see Eq.(2.17) and (2.20)).

In addition, we should point out that functionability centrality does not rely
on optimization procedures, nor is it bound to the values of the parameters. Ac-
tually, we have proved that Eq.(2.17) is a compact mathematical expression for
the measure. The value of the frustration parameter α does not influence the
ordering of the nodes (see Section 2.4.2 for more details).

Thereby, functionability is a unique measure of the effect of perturbing a
node on the whole network by means of shifting the system to an asynchronous
state (phase dispersion of the oscillators). The final expression is a determinis-
tic, parameter-free and non-algorithmic measure of centrality, with an underly-
ing physical model to support it and that enables an intuitive interpretation of
it.

2.2.4 Weighted functionability

Both the dynamic model and the analytic expression of functionability can be
easily extended to weighted networks. A weighted network is defined by the ele-
ments of the adjacency matrix W as follows:

{
[W ]i j = wi j if i ↔ j

[W ]i j = 0 otherwise
(2.28)

where wi j ∈R.
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In a general setting, the intensity of the connections in a network vary. Con-
sidering these weights, the GKSM defined in Eq.(2.1) can be rewritten as

θ̇i =ω+K
N∑

j=1
[W ]i j sin(θ j −θi −αi ) ∀i ∈ [1, ..., N ], (2.29)

and the analytical expression of functionability for weighted networks is an ex-
tension of Eq.(2.17):

FC =
(
αdC

2N

)2 N∑
R

N−1∑
i j

[(
L̃W (C ,R)L̃T

W (C ,R)
)−1

]
i j

, (2.30)

where LW corresponds to the weighted Laplacian matrix, defined as

[LW ]i j ≡ siδi j − [W ]i j . (2.31)

The symbol si stands for the weighted degree of node i .

We show an example of a weighted version of the network topology in Figure
3.1. We highlight the difference in the color scale and size between Figure 2.2
and Figure 2.7.

Figure 2.7: Weighted functionability of the seven nodes of a weighted version
of the network topology of Figure 3.1 Weighted functionability values for the
nodes of the network presented in Figure 3.1 (right panel). Larger radius and
darker colors correspond to higher weighted functionability FW values (left
panel). The position of nodes are computed using the Fruchterman-Reingold
force-directed algorithm [67].
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2.3 Discussion

In the present chapter we have defined the functionability, a novel centrality
measure that addresses the question of which are the nodes that, when indi-
vidually perturbed, are best able to move the system away from the fully syn-
chronized state. We aim to sort the nodes by their potential effect on the whole
network when a change on their individual dynamics spreads over the entire os-
cillatory system and thereby disrupting the otherwise synchronized state. This
issue may be relevant for the identification of critical nodes that are either ben-
eficial – by enabling access to a broader spectrum of states – or harmful – by
destroying the overall synchronization. Hence, depending on the system we are
considering, the most functional nodes have to be considered when looking for
a potential enhancement of the diversity of attainable states or the inhibition of
risky instabilities in the system.

Our approach to this issue consists in defining a centrality measure called
functionability F which characterizes each node and depends only on the con-
nectivity of the network and the position or role of the corresponding node
within it.

We consider a system to be represented as a network of connected phase os-
cillators, each of them corresponding to the nodes of the underlying graph. The
dynamics that rules the evolution of individual nodes, and hence the system, is
based on the popular Kuramoto phase oscillators [93]. The functionability of a
node measures the dispersion of the phases at the stationary state produced by
the insertion of a phase lag parameter in the dynamics of the considered node, as
originally suggested by Kuramoto and Sakaguchi [150]. Despite F is defined in
terms of the phase differences between nodes that are obtained from a dynamic
model, in the present chapter we derive the analytical expression of the central-
ity. The corresponding ranking of node centralities is exclusively determined by
the network structure. Therefore and importantly, functionability centrality is fi-
nally defined as a quantity which does not depend on the values of the model or
the parameters of a numerical simulation. Moreover, the analytical expression
is a compact and deterministic mathematical function of the network topology
and, thus, is not based on optimization procedures. Additionally, the physical
meaning of the measure, which is based on a dynamical model, continues to be
worth and thus provides the centrality with an easy-to-handle interpretation of
the obtained results.

In the present chapter we also compare the output given by functionability
with that of other centrality measures, considering different network topologies.
This analysis makes us conclude that, despite most centrality measures share
certain common patterns, functionability delivers unique information about the
network and the importance of its constituent nodes. From the analysis we
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can also answer the question of which are the common features that are shared
among the nodes with the largest values of F : they are nodes that are locally
well connected – have a high degree – but are also far from the central core of
the network, that is, they are peripheral nodes. These two properties make func-
tionability to provide non-trivial results regarding the importance of each node.
In other words, the nodes that can potentially move the system further from the
fully synchronized state are those which are both peripheral and are also locally
well connected.

Many real systems are correctly represented as a network of coupled oscilla-
tors. For these systems, a perturbation that moves the system towards to or away
from the fully synchronized state may represent a beneficial or harmful change
to it. Functionability enables us to detect the nodes that are most central or rele-
vant for moving the overall system away from synchronization. Epileptic attacks
or power grid collapses may be derived from single nodes that, even if not lo-
cated in the main core, change their intrinsic properties and spread asynchrony
rapidly to the network, leading to potentially fatal states. It may be helpful to
target such nodes in order to control both synchrony and asynchrony.

2.4 Additional Information

2.4.1 Is phase distance a proper metric?

In Eq.(2.2) we define a measure of the distance between two nodes or oscillators
after a perturbation is made on the system. Our system consists of a set of phase
oscillators, that is, oscillators whose main and only variable is its phase, and not
amplitude. Hence, the distance between two nodes is a rather simpler function
of an angular argument, symmetric with respect to π and bounded between 0
and 1. In this section we will comment on the mathematical implications of this
definition. As a first consideration, the distance we are using it is not a proper
metric, because it does not meet the triangle inequality, as we will see. Neverthe-
less, we will prove that it can be easily related to the Euclidean distance, which
it is so. However, as we are not concatenating or adding different distances, this
drawback will not be a problem. There are many optimization algorithms that
use non-metric distances without modifying the expected results.

In order to make an intuitive description of the distance εi j , we will consider
each oscillator to lay on a two dimensional plane. Each oscillator is character-
ized by a phase, which evolves in time, and a radius, which is equally set to one.

The Euclidean distance of two vectors,~a and~b, in an n-dimensional space is
defined as

dE (~a,~b) =
√
||~a −~b||2 =

√
(a1 −b1)2 + (a2 −b2)2 +·· ·+ (aN −bN )2. (2.32)
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The squared Euclidean distance can be expanded as follows

d 2
E (~a,~b) = ||~a −~b||2 = ||~a||2 +||~b||2 −2~a ·~b = 2

(
1−cos(~a,~b)

)
(2.33)

where we have considered that vectors ~a and~b are normalized, that is, ||~a|| = 1
and ||~b|| = 1.

If we go back to the definition of the used distance between nodes, εi j in
Eq.(2.2), we notice that the functional form is the same as the cosine distance be-
tween two vectors, albeit in one dimension. Looking at Eq.(2.33) we can rewrite
cosine distance as

dC (~a,~b) ≡ 1−cos(~a,~b)

2
= d 2

E (~a,~b)

4
. (2.34)

From the former equality, Eq.(2.34), we can state that, although, in general, co-
sine distance is not a proper metric, as it does not meet the triangle inequality, it
can be easily interpret by means of the euclidean distance between both vectors.

The four properties a metric defined by a distance function d(~a,~b) should
satisfy are:

1. d(~a,~b) ≥ 0

2. d(~a,~b) = 0 ↔~a =~b
3. d(~a,~b) = d(~b,~a)

4. d(~a,~c) ≤ d(~a,~b)+d(~b,~c)

Considering cosine distance, dC (~a,~b), condition 4 can be written as

dC (~a,~c) ≤ dC (~a,~b)+dC (~b,~c) ⇒

⇒ 1−cos(~a,~c)

2
≤ 1−cos(~a,~b)

2
+ 1−cos(~b,~c)

2
⇒

⇒ cos(~a,~b)+cos(~b,~c)−cos(~a,~c) ≤ 1

(2.35)

Eq.(2.35) is, in general, not satisfied. Let us provide a counterexample by consid-
ering 3 2-dimensional normalized to unity vectors, ~a = (1,0), ~b = (

p
2/2,

p
2/2)

and~c = (0,1).
0.76+0.76−0 ≈ 1.52� 1 (2.36)

Nevertheless, we are interested in small phase differences, and hence, small an-
gular arguments. In this situation, if ∠(~a,~b) = θ1, ∠(~b,~c) = θ2 and ∠(~a,~c) = θ3 =
θ1 +θ2, Eq.(2.35) can be approximated to

1− θ2
1

2
+1− θ2

2

2
−

(
1− θ2

3

2

)
≤ 1 ⇒−|θ1||θ2| ≤ 0 (2.37)

Condition in Eq.(2.37) is always true and, therefore, Eq.(2.2) is a proper distance
for our purpose.
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2.4.2 The linear model: assumptions and validity

The final definition and usage of functionability centrality, in Eq.(2.17), or
Eq.(2.18) if we are interested in the normalized definition, is based on a non-
linear oscillatory dynamics, as explained in Section 2.2. However, several as-
sumptions have been made in order to obtain a more compact and useful ex-
pression of it. The more restrictive one is the linearization of the model. How-
ever, this assumption relies on the fact that we are concerned with the state
where nodes are frequency synchronized and therefore, dispersion comes from
the disruption of the phase synchronized state. For a set of coupled oscillators in
a network which follow the conditions described in Section 2.1, the linearization
assumption is not met when the frustration parameter α becomes too large (see
lower panel in Figure 1.7).

In Figure (2.8) the value of functionability is computed in two different ways
and for different values of α. On the one hand, the phase differences between
oscillators are obtained from the numerical simulation of the non-linear model
and F is determined applying its definition in Eq.(2.4). On the other hand,
the analytical expression of functionability, derived in Eq.(2.17), is directly com-
puted considering the same parameters.

Regardless of the type of network topology, there is a threshold value at which
the two methods diverge. This value changes from one network to another, as
well as from size to size.

Importantly, when the maximum simulation time increases, the values of
the functionability delivered by the two methods become closer because the dy-
namics eventually reaches the stationary state (as the network size increases, the
time needed to reach the stationary state becomes larger too). Nevertheless, our
interest is to use the analytical expression of functionability, found in Eq.(2.17),
rather than the values obtained from the results of the numerical simulation of
a dynamical system, which results may be extremely sensible to the parameters
of the simulation and the model (additionally, and depending on the values of
the frustration parameter, the system may not achieve the stationary state, but
continue trapped in a chaotic state). Nevertheless, the GKSM being the starting
point of functionability enables a physical interpretation of it.

In addition, Eq.(2.17) is proportional toα, and therefore the ranking of nodes
does not depend on this parameter, but only on the connectivity structure. From
Figure 2.8 we can conclude that, if we set the value of the frustration parame-
ter small enough, the two approaches – numerical simulation of the dynamical
model and the linearized expression of functionability – are equivalent. How-
ever, as we move to larger values of α, the system following the GKSM dynamics
results in a chaotic state and the corresponding values of functionability do not
reflect the meaning of the centrality, whilst the analytical expression of func-
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Figure 2.8: Comparison of the functionability values obtained from the nu-
merical simulation of the dynamical model and using the corresponding ana-
lytical expression for the four synthetic networks defined in Figure 2.3. Com-
parison of the results obtained from the computation of functionability central-
ity F both considering the numerical simulation of the dynamical model de-
fined in Eq.(2.1) and Eq.(2.4) (dotted lines), and the analytical expression derived
in Eq.(2.17) (continuous lines). Functionability centrality is obtained consider-
ing different values of the frustration parameter α, in the range [0,π/2], and all
the nodes in the four synthetic networks defined in Figure 2.3 (maintaining the
same ordering, from top to bottom, and from left to right).
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tionability is always robust in the ranking of nodes. Moreover, the interpretation
of the measure is still valid because it keeps rank ordering, that is, the ordering
of the nodes according to its functionability score obtained from the analytical
expression of the linear model is the same as that given by the numerical simu-
lation of the dynamics described by the non linear one.



CHAPTER 3

Optimal Cost Tuning of Frustration

Emergence is one of the key concepts in the analysis of complex systems [123].
Collective properties emerge as a consequence of irregular interactions among
its elemental constituents [21]. One of the most paradigmatic examples of emer-
gence is synchronization [139, 131], because the interplay between populations
of oscillatory units gives rise to a variety of global states, ranging from per-
fect synchronization or phase locked stationary configurations to chimera states
[15, 53, 30]. Among the different models that have been used to understand such
collective behavior, a lot of effort has been devoted to the Kuramoto model (KM),
in which phase oscillators interact continuously with other units through a sine
function of the phase difference [92, 150, 4].

In the past few years there has been a growing interest in the concept of con-
trollability, which quantifies the feasibility to achieve a desired final state of a
given dynamical system [99]. As stated above, the KM can give rise to a wide
variety of stationary (phase or frequency synchronized) or not stationary states,
being chimeras an unexpected mixture of both types of behaviors [66]. In this
context, controllability can be understood as a tuning of the internal parame-
ters of the oscillators to reach specific phase configurations. The most simple
settings stand for a collection of identical oscillators interacting through a sinus
function of the phase differences. In this case it is quite intuitive to see that the
final state is a perfectly synchronized one in which all oscillators have exactly the
same phase and frequency (the same frequency than the intrinsic one). It is the
existence of a distribution of frequencies that gives rise to a transition, in terms
of the strength of the coupling, from an incoherent state to a coherent one [93].
This transition is also present when we include a lag term – a constant phase
added to the argument of the sinus function – for a wide range of such param-
eter [150, 124]. However, the introduction of this lag term for identical oscilla-
tors changes completely the structure of the, in principle, synchronized state.
In Reference [124] it was shown that, for small and common values of the lag
parameters, the synchronized state breaks into partially synchronized groups of
oscillators, being symmetry the reason for the phase synchronization of the os-
cillators. When increasing this common lag parameter the system enters into a
incoherent chaotic state. Actually, there has been an increasing interest in the
last months on the role that symmetries plays in the synchronization of oscilla-
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tory units and how the lack of homogeneity in some of the parameters can be
compensated by other choices [125, 110, 184].

In the previous chapter we introduced the concept of “functionability" as a
measure of the ability of a given node to change the state of the system by just
tuning one internal variable, the node lag in the argument of the sinus func-
tion of the interaction [144]. Being an intrinsic property of the node, its change
produces a global change in the phases of the system of oscillators that can be
measured. Functionability stands for the reaction of the whole phase distribu-
tion to a small change in a node. The analytical expression of functionability
reports its quadratic dependence on the node degree and the node lag value,
but also a structural term, such that the most peripheral nodes in the network
have also larger contributions to functionability centrality measure. The nodes
with higher functionability values may represent positive actors for the network,
because they enable more variability in the states of the system, but also poten-
tially dangerous ones, as tiny perturbations can produce cascade like effects that
completely changes the network dynamics.

As stated, the addition of a phase lag parameter enables a richer configu-
ration state. However, it is clear that a tuning of a single parameter will not
be enough to generate the wide variety of stationary states that a population
of Kuramoto oscillators can achieve. Notwithstanding, the question that arises
is whether a fine tuning of a set of individual parameters can make it possible.
In this chapter, this is our proposal, we construct a general formalism that al-
lows, within a linear approximation, to compute the set of lag parameters that
may lead to any phase configuration for a fixed set of intrinsic frequencies. The
problem can also be posed the other way around. Namely, given a set of fre-
quencies, we may derive the configuration of phases that is produced by a set of
lag parameters.

There are numerous examples of real-world systems that can be described
as dynamical systems characterized by individual phases and which function-
ing are object of investigation. Some examples are the brain functional net-
works arising from temporal correlation patterns, ac power in power grids[94],
heartbeats[6], multiprocessors and multicore processors, or traffic signalling.
Not only the synchronization between their constituents may be intended or
prevented, but also other particular configurations may be of relevant interest.
For this reason, we propose a mechanism for tuning the intrinsic parameters of
the system to achieve any desired phase configuration.

A previous work proposes a methodology to enhance frequency synchro-
nization for the nonlinear Kuramoto-Sakaguchi model (extension of the Ku-
ramoto model with a node phase lag parameter) [38]. Another work suggests
that an unstable synchronized state becomes stable when, and only when, the
oscillator parameters are tuned to nonidentical values [125]. We highlight the
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work done in Reference [158], where the particular configuration of perfect syn-
chronization is studied and the synchrony alignment function is defined in order
to minimize the order parameter of the system considering different topologies
and frequency scenarios. We address the most general question, following a sim-
ilar path to that pursued by them, forcing the system to achieve any particular
configuration for the linear case of the Kuramoto-Sakaguchi model by means of
a fine tuning of the phase lag or frustration parameter set. Despite considering
a linear approximation of the model, we show that the obtained tuned param-
eters for the case of full synchronization enhance frequency synchronization in
the nonlinear model as well.

All the results presented in this chapter can be found in Ref.[145].

3.1 Analytic expression of the frustration parame-
ters tuning

Similarly to the previous chapters, we consider the most general expression of
the Kuramoto-Sakaguchi model, without any assumption about the distribution
of natural frequencies and allowing the edges of the network to be weighted, a
more realistic scenario for real-world networks, in which oscillators represent
real systems with individual properties that are determined by the nature of each
oscillator. The GSKM is thus defined by the dynamics:

θ̇i =ωi +K
N∑

j=1
Wi j sin(θ j −θi −αi ) ∀i ∈ [1, ..., N ], (3.1)

whereαi is an intrinsic parameter of each oscillator andωi its natural frequency.
We next derive the general expression of the linearization of Eq.(3.1) follow-

ing an equivalent procedure as Sections 1.3.2.2 and 2.2.1. For small values of
the frustration parameters and phases close to each other, which is the case in
frequency synchronization, we can linearize Eq.(3.1) as follows:

θ̇i =ωi +K
∑

j
Wi j (θ j −θi −αi ) =ωi −K

∑
j

Li jθ j −Kαi si , (3.2)

where Wi j is the value of the weight of the edge between node i and node j ,
si ≡ ∑

j Wi j is the weighted degree of the i th node and L is the weighted Lapla-
cian matrix defined as Li j ≡ δi j si −Wi j . In the stable regime, a synchronized
frequency is achieved and, for all oscillators θ̇i =Ω. We can derive the value of
the common frequency oscillation,Ω, summing Eq.(3.2) over i :∑

i
Ω=∑

i
ωi −K

∑
i

∑
j

Li jθ
∗
j −K

∑
i
αi si (3.3)
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Taking into account the steady state θ̇i =Ω ∀i and arranging summations:

NΩ=∑
i
ωi −K

∑
j
θ∗j

∑
i

Li j −K
∑

i
αi si . (3.4)

and finally,
Ω= 〈ω〉−K 〈αs〉 . (3.5)

where we have used the Laplacian matrix property:
∑

i Li j = 0 and defined the
averages

∑
i αi si /N = 〈αs〉 and

∑
i ωi /N = 〈ω〉. Now we can plug expression

Eq.(3.5) to Eq.(3.2) to get the stable phases of oscillators, θ∗i :

∑
j

Li jθ
∗
j =

ωi

K
− 〈ω〉

K
+〈αs〉−αi si ∀i (3.6)

The solution of Eq.(3.6) regarding phases is undetermined due to the singular
nature of the Laplacian matrix. Hence, Eq.(3.6) is, in general, an undetermined
system of linear equations, that is, there is one free phase, which we should use
as a reference value for the solution. Nonetheless, we do not work directly with
the functional form of phases because they are time dependent {θ∗i } = fi (t ), but
with the phase differences with respect to a reference node, once the stationary
state is achieved,

φi ≡ θi −θR (3.7)

In this way, we work with time independent values. In this situation, φR = 0, by
definition, as φR ≡ θR −θR = 0.

On the other hand, the contribution 〈αs〉 −αi si of the right-hand side of
Eq.(3.6) can be written in matrix form as:

−


N−1

N − 1
N − 1

N ...
− 1

N
N−1

N − 1
N ...

... ... ... ...
− 1

N − 1
N 1 ... N−1

N

 ·


s0 0 ... 0
0 s1 ... 0
0 ... ... 0
0 ... 0 sN−1

 ·


α0

α1

...
αN−1

= (−M ·Ds)~α (3.8)

where we have defined

M ≡


N−1

N − 1
N − 1

N ...
− 1

N
N−1

N − 1
N ...

... ... ... ...
− 1

N − 1
N 1 ... N−1

N

 (3.9)

and

Ds ≡


s0 0 ... 0
0 s1 ... 0
0 ... ... 0
0 ... 0 sN−1

 . (3.10)
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We write Eq.(3.6) in matrix form as

L~θ∗ = 1

K
~∆ω−M ·Ds~α (3.11)

where ∆ωi ≡ωi −〈ω〉. Finally, we obtain the set of unknowns {αi }:

M ·Ds~α= 1

K
~∆ω−L~θ∗ (3.12)

Equation (3.12), however, does not have a solution, because of the singular na-
ture of M ·Ds matrix. M matrix is singular too, and hence, its inverse matrix does
not exist. Mathematically, det (M ·Ds) = det (M) ·det (Ds) = 0

Similarly as we did for phases in Section 2.2.1, we solve the singularity prob-
lem by setting a reference node, which we call control node, regarding frustration
parameters, i.e., we would not obtain the value for each of the parameters, but a
relation between them:

κi ≡αi −αC (3.13)

where αC is the value of the control node. In this situation, κC = 0, by definition,
as κC ≡αC −αC = 0.

To easily write the matrix expressions, we define the selection matrix J(n,m),
which is, in general, an (N −1)× (N −1) identity matrix after the removal of the
mth row and the nth column.

L~θ∗ turns to L̃(k,R)~φ∗, where we have removed the kth row and the Rth
column. The result does not depend on which row we remove, hence we can
choose any k. Using the selection matrix, L̃(k,R) = J(,k) ·L · J(R,) ≡ L̃.

Similarly, ~̃φ(k) = J(,k) ·~φ≡ ~̃φ, where we have removed the kth row.
In an equivalent way as the definition of the reduced Laplacian:

˜MDs(k,C ) = J(,k) ·MDs · J(C ,) ≡ ˜MDs

where ˜MDs is MDs without the kth row and the C th column.
Similarly, ~̃κ(k) = J(,k) ·~κ ≡ ~̃κ and ~̃∆ω(k) = J(,k) · ~∆ω ≡ ~̃∆ω, where we have re-

moved the kth row.
Considering all the previous definitions and remarks, Eq.(3.11) can be rewrit-

ten as:

˜MDs~̃κ= 1

K
~̃∆ω− L̃~̃φ∗−αC · J(,k)

→∑
j

[MDs]i j (3.14)

and finally,

~̃κ= (
˜MDs

)−1
(

1

K
~̃∆ω− L̃~̃φ∗−αC · M̃~s

)
(3.15)
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where we have used J(,k)
~∑

j [MDs]i j = M̃~s. Notice that MDs matrix is singular,
but the row sum is not zero, although it is so for the column sum. Hence, we need
to set αC = 0 if we want to avoid extra constant arrays in the final expression. In
this particular case:

~̃κ= (
˜MDs

)−1
(

1

K
~̃∆ω− L̃~φ∗

)
(3.16)

and keep in mind that κC = 0.

The obtained values of ~α depend on both the chosen control node, C , and
the value we set for its frustration parameter,αC . Notice, therefore, that there is a
continuous spectrum of values for the frustration parameter in order to achieve
a particular phase configuration.

Moreover and more importantly, due to the non-row-sum equal to zero of
MDs matrix, the differences between the obtained values are dependent of the
control node choice. Mathematically,αi −α j (C = l ) 6=αi −α j (C = k) if l 6= k. This
property will lead us to the definition of a cost for the system to move to the final
configuration, which will depend on both the control node and the value of its
frustration parameter.

We provide an example of a synthetic network for the case of a homogeneous
natural frequencies distribution, i.e., ωi =ω ∀i . In this case, Eq.(3.15) turns to:

~̃κ= (
˜MDs

)−1
(
−L̃~̃φ∗−αC · M̃~s

)
which in the case of the network depicted in Figure 3.1, leads to the solution

Figure 3.1: Example of a simple graph. Simple graph made of 7 nodes and 8
edges.
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κ0

κ2

κ3

κ4

κ5

κ6


=



−2α1+3φ1+φ3+3φ6
4

3(φ1−φ2)
2

2φ1−φ2−2φ3+φ4
2

2φ1−φ2+φ3−2φ4+φ5
2

2φ1−φ2+φ4−2φ5−φ6
2

2φ1φ2+φ5−2φ6
2


(3.17)

where we have chosen κ1 = 0 andφ0 = 0. Hence, the results are written as a func-
tion of the value α1 and φi i 6= 0. Therefore, we can achieve any phase configu-
ration, given by the set {φi } by tuning the frustration parameters set {α}, where
αi = κi +αC .

To illustrate how we obtain the final values, let us consider the following
phase configuration:

~̃φ(R=0) = (0.1,0.2,0.25,−0.2,−0.1,0.0) (3.18)

In the general case where αC =α1 6= 0:

~̃κ(C=1) = (0.1375− α1

2
,−0.15,−0.35,0.275,0.0,−0.05).

If we choose αC = 0, then αi = κi , we can include the value of the control node
C = 1:

~̃α= (0.1375,0.0,−0.15,−0.35,0.275,0.0,−0.05).

Alternatively, we can choose whatever value we need regarding the control node.
For instance, if αC =α1 = 0.1:

~̃α= (0.1875,0.1,−0.05,−0.25,0.375,0.1,0.05)

and the phases configuration is the same. Importantly, we recover the same
phase differences using the nonlinear model with the tuned α’s, up to an error.
For this last example and using the frustration parameters obtained by setting
α1 = 0.1, the nonlinear model leads to final phases vector

~̃φ(R=0) = (0.09969,0.19944,0.25097,−0.19798,−0.09897,0.00012) (3.19)

which represents ∼ 0.3% of relative error with respect to the initial Eq.(3.18). See
the full derivation of the analytical solution in Section 3.4.1.

3.2 Optimal Cost tuning of frustration

As pointed out in Section 3.1, there is a continuous spectrum of values for the
choice of the frustration parameters that enables the system access a particu-
lar phase configuration. The following question arises naturally: Among all the
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possible solutions, which is the one that makes the system achieve a particular
phase configuration with the minimum required cost?

This question is of particular relevance when we consider the plausible real
nature of the system. If a real system needs to access a particular phase configu-
ration, which may be associated with a precise function, it will tend to minimize
the effort or cost to do so.

In order to quantify the required cost, we define it as follows:

eT (C ) ≡∑
i
|αi (C )| (3.20)

Henceforth, the cost associated to each node is given by the absolute value of
the required frustration parameter. The absolute value operator allows for a
sign-free contribution of each node, a very convenient choice in the case that
the system is not beforehand specified, and a general definition is proposed in-
stead. Furthermore, unlike other nonlinear cost functions such as the square
sum of the parameters, no extra weight is given to larger values, besides the cor-
responding to a linear function.

As previously remarked, eT (C ) will depend both on the chosen control node,
C , as well as the particular choice of its frustration parameter, αC .

The optimal configuration is given by the solution of the minimization prob-
lem

min
C ,x

eT (C , x) = min
C ,x

N∑
i
|αi (C , x)| (3.21)

where the x variable is not yet specified. Depending on the problem we are in-
terested in we would set it either to ωi , si or any other combination of the pa-
rameters of the model. The minimal value of the cost will depend on the proper
choice of the control node, C , in addition of the particular value of its frustration
parameter, αC , as the free parameter left to be set. In Sections 3.2.1 and 3.2.2 we
provide a thorough analysis of it.

The cost required to achieve a particular phase configuration depends on
that configuration, the control node and the chosen value of αC . In Figure 3.2
we present an example, following with the network presented in Section 3.1 and
choosing different values of αC , we compute numerically the values of the re-
quired cost using Eq.(3.20) to achieve the phase configuration given in Eq.(3.18).
Notice that the global minimum depends on the control node and its frustration
parameter.

In Section 3.1 we have derived the general analytical solution of the frustra-
tion parameters as a function of a particular choice for the phase configuration.
In this section we have defined a cost function in order to assess the optimal
choice of such configuration.
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Figure 3.2: Implied cost to achieve the phase configuration in Eq.(3.18) as a
function of the chosen control node, C , for the network in Figure 3.1 and con-
sidering five different values ofαC Implied cost to achieve the phase configura-
tion in Eq.(3.18) as a function of the chosen control node, C , for the network in
Figure 3.1 and considering five different values of αC . Notice that the minimum
cost is given, in this case, with the values αC = 0 and C = 1 or C = 5.

Depending on the phase configuration one is interested in achieving, results
will vary and the analytical expressions will have different features.

In the following sections we will focus on two particular configurations, due
to its intrinsic importance, in order to obtain and discuss the analytical solution
of Eq.(3.21): The configuration given by the symmetries of the network [124] and
the fully synchronized state.

3.2.1 Symmetric phase configuration

As explained in Section 1.3.2.2, a particular example of the Kuramoto-Sakaguchi
model is the symmetric case, obtained by a homogeneous distribution of frus-
tration parameters, i.e, αi =αh ∀i . For our purposes, we consider αh > 0. In this
situation, the trivial solution of the frustration parameters, αi = αh , is another
one of the values out of the continuous spectrum. That is, we can recover the
landscape given by the symmetric configuration in many different ways. We are
however, interested in computing the analytical expression of the cost function
in order to select the one corresponding to the minimum cost.
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3.2.1.1 Optimal cost tuning when αC = 0

Let us firstly consider the case where αC = 0 and homogeneous natural frequen-
cies ωi = ωh ∀i . In the particular case of the symmetric configuration, that is,
the phase configuration given by αi = αh ∀i the solution of the frustration pa-
rameters is given by:

~̃κ= (
˜MDs

)−1
(

1

K
~̃∆ω− L̃~̃φ∗

)
=−(

˜MDs
)−1

L̃~̃φ∗ (3.22)

But ~̃φ∗ corresponds to the symmetric case. Hence,

~̃φ∗ =αh L̃−1 ~̃∆s (3.23)

where ~̃∆si ≡ 〈s〉− si and the tilde touches on kth row removal.
Plugging Eq.(3.23) into Eq.(3.22):

~̃κ=−αh
(

˜MDs
)−1

L̃L̃−1 ~̃∆s =−αh
(

˜MDs
)−1 ~̃∆s

But ~̃∆s can be written as:
~̃∆s =−M̃~s (3.24)

Putting it all together:

~̃κ=−αh
(

˜MDs
)−1

L̃L̃−1 ~̃∆s =αh
(

˜MDs
)−1

M̃~s ~̃κ (3.25)

which in vector form is written as:

~̃κ=αh
(

˜MDs
)−1

M̃~s ~̃κ=αh


1− sC

s0

1− sC
s1

· · ·
1− sC

sN−1

 (3.26)

And considering the relation between α and κ, in Eq.(3.13):

~α=αh



1− sC
s0

1− sC
s1

· · ·
0 (C node)

· · ·
1− sC

sN−1


(3.27)

Equation (3.26) gives us the tuned values of the frustration parameters as a func-
tion of the chosen control node, C , when αC = 0. Notice that the result depends
nonlinearly only on the ratio between the degree of each node and the control
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node. This informs us that nodes with the same degree would be tuned to the
same value or, in other words, the tuning depends only on the degree sequence
of the network.

Once we have computed the analytical solution of the frustration parame-
ters, we derive the expression of the required cost to achieve such state with the
particular choice of C . Using the definition in Eq.(3.20):

eT (C ) = |αh |
N−1∑

i

∣∣∣∣1− sC

si

∣∣∣∣= |αh |
N−1∑

i

∣∣∣ si − sC

si

∣∣∣ (3.28)

Before we provide the mathematical solution to the minimization problem
defined in Eq.(3.21) for this particular case, let us gain an intuitive understanding
of it. Looking at Eq.(3.28) we see that the contribution of the i th node to the
cost increment depends on |sC − si | and, hence, if the chosen control node, C ,
has an extreme value, i.e, sC ¿ si or sC À si , the contribution will be larger. On
the contrary, if the degree of the control node is similar to that of the remaining
nodes, then the increase in cost will be smaller.

For example, the network in Figure 3.3(a), with~s = (1,6,2,1,2,2,2,2) has the
set of unique degrees ~suni que = (1,2,6) and hence three possible values of the
cost, shared by some nodes. If C = {0,3}, sC = 1:

eT (C ) = |αh |
(
|1− 1

1
|+5|1− 1

2
|+ |1− 1

6
|
)
= |αh |

(
5

2
+ 5

6

)
= 10

3
|αh | (3.29)

If C = {2,4,5,6,7}, sC = 2:

eT (C ) = |αh |
(
2|1− 2

1
|+4|1− 2

2
|+ |1− 2

6
|
)
= |αh |

(
2+ 2

3

)
= 8

3
|αh | (3.30)

And, finally, if C = 1, sC = 6:

eT (C ) = |αh |
(
2|1− 6

1
|+5|1− 6

2
|
)
= |αh | (10+10) = 20|αh | (3.31)

The minimum value of the energy is 8
3 |αh |, corresponding to the choice C ∈

{2,4,5,6,7} with sC = 2.

Notice that the optimal choice of the control node (or nodes) does not de-
pend on the value of αh in the symmetric configuration, but only on the de-
gree sequence of the network. Moreover, this example illustrates that the degree
of the control node corresponds to an intermediate value within the degree se-
quence of the network and not an extreme value. A more detailed inspection of
Eq.(3.28) discloses that the proper choice of the control node (or control nodes)
corresponds to the minimization of the relative error of degrees. In order to find
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the particular value of the degree that the control node must have we should
solve the minimization problem defined in Eq.(3.21):

min
C ,x

eT (C , x) = min
C ,x

N∑
i
αi (C , x)

which, when considering the symmetric configuration case, turns to

min
sC

|αh |
N−1∑

i

∣∣∣1− sC

si

∣∣∣= |αh |min
sC

N∑
i

∣∣∣ sC − si

si

∣∣∣ (3.32)

Equation (3.32) is equivalent to the minimization of the absolute value of the
relative error of the degree:

|αh |min
sC

N∑
i
|Ei | (3.33)

where Ei =
∣∣∣ sC − si

si

∣∣∣.
The most general minimization problem of the relative error of a variable

[155] can be written as

min
d

N∑
i=1

wi |xi −d | ;d > 0 (3.34)

where d is the variable one is interested in and wi is the weight corresponding
to each xi variable. The solution of Eq.(3.34) is given by

d = xm , where m ≡ min{i |
i∑

k=1
wk ≥

n∑
k=i

wk } i ∈ {1, ...,n} (3.35)

In other words, the value of d that minimizes Eq.(3.34) corresponds to the
weighted median of the variable x or, equivalently, the 50% weighted percentile.
The weighted median of a set n distinct ordered elements x1, x2, ..., xn with
positive weights w1, w2, ..., wn , is the element xk satisfying min{i |∑i

k=1 wk ≥∑n
k=i wk }. In other words, the solution is given by xk , the value such that the

sum of the weights at each side of the pivot, k, are as even as possible.
The particular case defined in Eq.(3.32) can be mapped to the most general

problem defined in Eq.(3.34), choosing wi = 1/si , xi = si and d = sC . Accord-
ingly, the solution of sC corresponds to the weighted median of the set {si }, with
weights given by the inverse of the node degree.

Following the example of the network in Figure 3.3(a), with degree sequence
~s = (1,6,2,1,2,2,2,2), let us compute the optimal value of sC by using Eq.(3.35):

sorted(~s) = (1,1,2,2,2,2,2,6) ~w =
(
1,1,

1

2
,

1

2
,

1

2
,

1

2
,

1

2
,

1

6

)
(3.36)
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To find the weighted median, we have to find the minimum value such that the
sum of the weights at each side of the pivot are as even as possible.

1+1+ 1

2
+ 1

2
= 3 ≥ 2.17 = 1

2
+ 1

2
+ 1

2
+ 1

2
+ 1

6

which corresponds to sC = 2, in agreement with the location of the minimum for
αC = 0 in Figure 3.3(b) corresponding to the network in Figure 3.3(a).

Figure 3.3: Implied cost to achieve the symmetric configuration as a function
of the degree corresponding to different choices of the control node for two
different synthetic networks. Implied cost to achieve the symmetric configura-
tion as a function of the degree corresponding to different choices of the control
node, sC , for a network of 8 nodes (upper panels) and 9 nodes (lower panels).
The distinct colors and markers correspond to different values of αC . The sym-
metric configuration is generated by a value of αh = 0.1.

3.2.1.2 Optimal cost tuning when αC 6= 0

We next ask which is the optimal choice of the control node in the case we
let αC 6= 0 and ωi = ωh ∀i . In this case, we should look at Eq.(3.14) and set
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~̃∆ω = 0. Making use of the analytical solution of the symmetric configuration
in Eq.(3.23):

˜MDs~̃κ=−αh L̃L̃−1 ~̃∆s −αC ·
→∑
j

[MDs]i j

Using the properties L̃L̃−1 = I and ~̃∆s = M̃~s,

~̃κ=αh
(

˜MDs
)−1

(
M̃~s −αC

(
˜MDs

)−1
→∑
j

[MDs]i j

)

Finally, in vector form,

~̃κ=αh


1− sC

s0

1− sC
s1

· · ·
1− sC

sN−1

−αC


1− sC

s0

1− sC
s1

· · ·
1− sC

sN−1

 (3.37)

Using Eq.(3.13),

~α= (αh −αC )



1− sC
s0

1− sC
s1

· · ·
0 (C node)

· · ·
1− sC

sN−1


+αC , (3.38)

where we have used the result in Eq.(3.26) and the relation

(
˜MDs

)−1
→∑
j

[MDs]i j =
(

˜MDs
)−1

M̃~s = =


1− αC

α0

1− αC
α1

· · ·
1− αC

αN−1


In the particular case that αC = αh we recover the trivial initial configuration
αi =αh ∀i , as expected from the model.

Once we have computed the analytical solution of the frustration parame-
ters, we derive the expression of the implied cost to achieve such state with the
particular choice of C . Using the definition in Eq.(3.20):

eT (C ) =
N−1∑
i=0

∣∣∣(αh −αC )

(
1− sC

si

)
+αC

∣∣∣ (3.39)

We next derive the analytical solution of the optimal choice of the control node
and finally proof that the global minimum corresponds to a value of αC = 0.
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Equation (3.39) can be rearranged as

eT (C ) =
N−1∑
i=0

∣∣∣ si −
(
1− αC

αh

)
sC

si /αh

∣∣∣ (3.40)

and thereby can be easily mapped to the solution of the minimization problem
defined and solved in Eq.(3.34) and Eq.(3.35), respectively. Looking at Eq.(3.39),
we should choose xi = si , wi = αh/si and d = (1−αC /αh) sC . With this choice,
the value of d that minimizes Eq.(3.39) corresponds to the weighted median of
the set {si } with weights αh/si . Therefore, the value of d is the same as the solu-
tion of the case αC = 0, but d 6= sC and thus we must apply a transformation in
order to obtain the optimal choice of sC . We have to distinguish several cases,
considering αh > 0:

• αC > 0. In this case we inspect Eq.(3.40) and distinguish two more cases:

o αC >αh : in this case, the prefactor of sC is negative, and we can write:

eT (C ) =
N−1∑
i=0

∣∣∣ si +
∣∣∣1− αC

αh

∣∣∣sC

si /αh

∣∣∣=
=

N−1∑
i=0

∣∣∣αh +Mαh
sC

si

∣∣∣
where M ≡

∣∣∣1− αC
αh

∣∣∣> 0 is a positive number. Hence, as the cost func-
tion increases with increasing sC , the minimum is achieved when
sC = min(si ) (See Figure 3.3 at αC = 0.2).

o αC <αh : in this case, the prefactor of sC is positive, and we can write:

eT (C ) =
N−1∑
i=0

∣∣∣ si −
∣∣∣1− αC

αh

∣∣∣sC

si /αh

∣∣∣
taking into account that d =

∣∣∣1− αC
αh

∣∣∣sC and considering that, in this

case, 0 < αC < αh and hence 0 ≤
∣∣∣1− αC

αh

∣∣∣ ≤ 1 and the weighted mean
is bounded by min(si ) ≤ d ≤ max(si ), the optimal value of sC falls in
the range d ≤ sC ≤ max(si ). Hence, the optimal value of sC is always
larger than the weighted median, d (see Figure 3.3 at αC = 0.05).

• αC < 0. In this case we can rewrite Eq.(3.40) as

eT (C ) =
N−1∑
i=0

∣∣∣ si −
(
1+ |αC |

αh

)
sC

si /αh

∣∣∣
and distinguish two more cases:
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o |αC | > |αh |: In this case, the prefactor of sC is positive and bounded

by 2 ≤
(
1+ |αC |

αh

)
≤∞. In this case, d =

(
1+ |αC |

αh

)
sC and hence 0 ≤ sC ≤

d/2. Hence, the optimal value of sC is always smaller than half the
value of the weighted median, d (see Figure 3.3 at αC =−0.2).

o |αC | < |αh |:n this case, the prefactor of sC is positive and bounded by

1 ≤
(
1+ |αC |

αh

)
≤ 2. In this case, d =

(
1+ |αC |

αh

)
sC and hence d/2 ≤ sC ≤

d . Hence, the optimal value of sC is always smaller than the weighted
median, d (see Figure 3.3 at αC =−0.05).

• αC = 0: This case is explored in Section 3.2.1.1. Equation (3.40) turns to

eT (C ) =
N−1∑
i=0

∣∣∣ si − sC

si /αh

∣∣∣
. The optimal value of sC is the same as the weighted median, d , without
any further transformation (see Figure 3.3 at αC = 0.0).

• αC =αh : This case is discussed in the introduction of the present section.
Eq.(3.40) turns to

eT (C ) =
N−1∑
i=0

αh = Nαh

and hence the value of the cost is the same constant value for all nodes
(see Figure 3.3 at αC = 0.1).

Amid all the cases considered concerning the value of αC , the global minimum
cost is given by αC = 0, as shown in Figure 3.3. This result can be proved by
considering a simplified version of Eq.(3.40), defined as

f (x) =
∣∣∣a − (1−x/b)c

a/b

∣∣∣ (3.41)

The minimum value of Eq.(3.41) is achieved when x = 0, as long as a > 0, b > 0
and c > 0. This conditions are equivalent to si > 0, αh > 0 and sC > 0, and are
true for all the summation terms in Eq.(3.40). Therefore, the minimum value is
given by setting αC = 0.

Summing up, in order to obtain the optimal {αi } parameters’ set in order
to achieve the symmetric phase configuration with the minimum implied cost
in the Kuramoto-Sakaguchi model, we should set αC = 0, independently of the
value of αh . The remaining parameters have to be tuned using Eq.(3.38). More-
over, the optimal choice of the control node (or nodes) corresponds to that with
sC located at the weighted median of {si } (with weight equal to s−1

i ).
Notice also that nodes are grouped by degree regarding the tuned values of its

frustration parameters. In other words, there may be different potential control
nodes, as long as they share the same degree.
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3.2.2 Fully synchronized phase configuration

Another particular phase configuration is given by the phase synchronization
of nodes, that is, ~φ∗ =~0. If we set, as in Section 3.2.1, ωi = ωh ∀i , we end up
with the trivial solution αi = 0 ∀i . In the case of full synchronization we want
to recover the completely in-phase state from a phase dispersion produced by
a distribution of natural frequencies, which we consider to be positive. Hence,
applying Eq.(3.14) to this case:

~̃κ= (
˜MDs

)−1
(

1

K
M̃~ω−αC · M̃~s

)
(3.42)

and in vector form,

~̃κ=


αC (sC−s0)−(ωC−ω0)/K

s0
αC (sC−s1)−(ωC−ω1)/K

s1

· · ·
αC (sC−sN−1)−(ωC−ωN−1)/K

sN−1

 (3.43)

where we have used: ~̃∆ω= M̃~ω. Finally, from the~κ in Eq.(3.43) we can obtain ~α:

~α=



αC sC−(ωC−ω0)/K
s0

αC sC−(ωC−ω1)/K
s1

· · ·
αC

· · ·
αC sC−(ωC−ωN−1)/K

sN−1


(3.44)

Similarly as the result of the symmetric configuration, given in Eq.(3.38), the
solution of the fully synchronized configuration concerning ~α is a continuous
spectrum of values, depending on the choice of the control node, C , the value of
its frustration parameter αC , which is a free parameter, and the natural frequen-
cies of the oscillators. In Sections 3.2.2.1 and 3.2.2.2 we will make a in-depth
analysis of the problem, as well as comment on the nonlinear expansion of the
Kuramoto-Sakaguchi model and the validity of our approach in this case (Sec-
tion 3.2.3).

3.2.2.1 Optimal cost tuning when αC = 0

Using the definition of cost in Eq.(3.20) and the general solution of the frustra-
tion parameters in Eq.(3.44) we get:

eT (C ) =
N−1∑
i=0

∣∣∣αC sC − (ωC −ωi )/K

si

∣∣∣ (3.45)
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In the particular choice αC = 0:

eT (C ) =
N−1∑
i=0

∣∣∣ωC −ωi

K si

∣∣∣ (3.46)

Equation (3.46) shows that the relevant piece of information regarding the con-
trol node is given by its natural frequency, ωC . Similarly to the minimization
problem posed in Section 3.2.1, and in order to find the optimal choice of the
control node we need to solve Eq.(3.21) considering the solution of Eq.(3.46):

min
ωC

∣∣∣ωC −ωi

K si

∣∣∣= 1

K
min
ωC

∣∣∣ωC −ωi

si

∣∣∣ (3.47)

The optimization problem is equivalent to the most general problem, described
in Eq.(3.34), with solution given by Eq.(3.35). In this case, d = ωC , xi = ωi and
the weight wi = s−1

i . Accordingly, and in a similar way as in Section 3.2.1, the
solution of ωC corresponds to the weighted median of the set {ωi }, with weights
given by the inverse of the node degree. Notice that the optimal choice of the
control node is in general different to that given in Section 3.2.1.1). This is due
to the fact that the weights of the weighted median have to be sorted according
to descending order of natural frequencies instead of node degree.

Following with the example provided in Section 3.2.1.1, for the network in
Figure 3.3(a), with degree sequence~s = (1,6,2,1,2,2,2,2), let us compute the op-
timal value ofωC by using Eq.(3.35). Consider the following natural frequencies:

~ω= (0.1,0.2,0.05,0.45,0.3,0.4,0.25,0.15), (3.48)

which lead to

sorted(~ω) = (0.05,0.1,0.15,0.2,0.25,0.3,0.4,0.45) (3.49)

and the corresponding weights

~w =
(

1

2
,1,

1

2
,

1

6
,

1

2
,

1

2
,

1

2
,1

)
(3.50)

To find the weighted median, we have to find the minimum value such that the
sum of the weights at each side of the pivot are as even as possible.

1

2
+1+ 1

2
+ 1

6
+ 1

2
= 2.67 ≥ 2.5 = 1

2
+ 1

2
+ 1

2
+1

Therefore, the optimal value of natural frequency corresponds to the choice C =
6 [seeαC = 0 line in Figure 3.4(a)], withωC = 0.25 [seeαC = 0 line in Figure 3.4(b)]
and a degree of sC = 2.
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Figure 3.4: Implied cost to achieve the fully synchronized configuration as a
function of the chosen control node and natural frequencies of nodes for the
network in Figure 3.3(a). Implied cost to achieve the fully synchronized config-
uration as a function of the chosen control node, C (upper panel) and natural
frequencies of nodes (bottom panel) for the network in Figure 3.3(a). Five differ-
ent values of αC are considered (marked colored lines). Natural frequencies are
set as the example in Eq.(3.48).
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3.2.2.2 Optimal cost tuning when αC 6= 0

The cost corresponding to the fully synchronized configuration case is given by
Eq.(3.45). In the general case where αC 6= 0, we can minimize the cost with re-
spect to ωC or to sC . If we minimize with respect to ωi , we first have to rewrite
Eq.(3.45) as

eT (C ) =
N−1∑
i=0

∣∣∣αC sC − (ωC −ωi )/K

si

∣∣∣= 1

K

N−1∑
i=0

∣∣∣ωi − (ωC −αC sC K )

si

∣∣∣ (3.51)

Again, the problem and the solution of Eq.(3.51) can be taken from Eq.(3.34) and
Eq.(3.35), choosing d ≡ωC −αC sC K , wi ≡ 1/K si and xi ≡ωi .

Hence, the value d that minimizes the cost is the weighed median consid-
ering the same weight as in Section 3.2.2.1, wi = 1/si (notice, however, that the
ordering is determined by natural frequencies and not degrees). Let us analyze
the different possibilities regarding the values ofαC , maintainingωC and sC con-
stant:

• ωC >αC sC K or αC < ωC
K sC

: We can write

N∑
i

∣∣∣ωi −|ωC −αC sC K |
K si

∣∣∣
The value which minimizes cost is given by d = ωk , corresponding to
the weighted median. However this is not directly the value of ωC , as
d = |ωC −αC sC K | in this case. The real values of the pair {ωC , sC } are given
by minC (ωk−(ωC−αC sC K )). Following with the example in Section 3.2.2.1,
the value of the weighted median is d = 0.25. In the case we are consid-
ering, however, this is not the optimal choice of the parameters for the
control node. We must shift the values considering the relation between d
and the other parameters. If we chooseαC = 0.1, for instance, we find that,
|ωC −0.1sc | = 0.25. In Figure 3.4 we see that the optimal choice is given by
ωC = 0.4, which corresponds to C = 5 and sC = 2.

• ωC <αC sC K or αC > ωC
K sC

: We can write

N∑
i

∣∣∣ωi +|ωC −αC sC K |
K si

∣∣∣
Hence, as the function increases with increasing (ωi −αC si K ), the mini-
mum is achieved by minC (ωC −αC sC K ).
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3.2.3 Non-linear expansion of the Kuramoto-Sakaguchi model

The results obtained in Section 3.2.2 are based on a linear approximation of the
Kuramoto-Sakaguchi model. We have derived the results based on the phase
synchronization requirement, and assuming that frequency synchronization is
already achieved in the steady state. Nevertheless, when measuring the order
parameter with a large dispersion of natural frequencies or low coupling con-
stant, we do not expect such steady state. However, we ask to which extend
the proposed values of the obtained frustration parameters are also able to en-
hance frequency synchronization considering the original nonlinear Kuramoto-
Sakaguchi model:

θ̇i =ωi +K
∑

j
Wi j sin(θ j −θi −αi ) (3.52)

We compare the results from Ref.[38] considering its Type II frustration param-
eters tuning for both the linear and the nonlinear Kuramoto model and we find
that, despite our approach does not consider the enhancement of frequency
synchronization on the nonlinear regime, it is able to improve the value of the
order parameter, in a similar fashion as in Ref.[38]. This work considers the non-
linear Kuramoto-Sakaguchi model and seeks to improve the number of nodes
that fall into the recruitment condition so as to achieve the same common os-
cillatory frequency. The considered network class is the same as the mentioned
paper, as well as the statistics study.

We make use of the expression in Eq.(3.44) to tune the set of ~α for a given
configuration of random ~ω and study the effect on the synchronization of the
system for different values of the coupling strength.

We consider two cases: the linear and the nonlinear model with natural fre-
quencies obtained from a uniform distribution ωi ∈ [−1,1]. From Figure 3.5(a),
the linear case of the Kuramoto-Sakaguchi model [see Eq.(3.2)], our approach,
derived from the analytic expression of the linear approximation, advances the
analytic tuning of frustration parameters suggested by Ref.[38]. This is because
they look for an enhancement in the number of nodes that are oscillating at the
same frequency, Ω, but they do not worry about the exact values of the phases
they achieve. On the contrary, we assume nodes are already synchronized (with-
out setting the specific value of Ω, as they do) and we look for the full synchro-
nization state.

In Figure 3.5(b), the linear tuning squared discontinuous purple line) ap-
proaches the type II (squared dashed green line) tuning in the case of the nonlin-
ear Kuramoto-Sakaguchi model, even for small values of the coupling strength.
Hence, despite the aim of our approach is not achieving frequency synchroniza-
tion, the obtained tuning of the frustration parameters helps enhancing it as
well. In principle this behavior is reminiscent of the so called explosive per-
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Figure 3.5: Average order parameter as a function of the coupling strength for
the linear and the nonlinear Kuramoto-Sakaguchi (KS) model on regular ran-
dom graphs with homogeneous node degree. Average order parameter, 〈r 〉, as
a function of the coupling strength, K , for the linear [in panel (a)] and the non-
linear [in panel (b)] Kuramoto-Sakaguchi (KS) model on regular random graphs
with homogeneous node degree si = 4 and N = 100 nodes. Natural frequencies
are obtained from a uniform random distribution in the range ωi ∈ [−1,1]. Each
data point represents an average over ten optimized configurations. We com-
pare three types of tuning for the set of frustration parameters, {αi }: the original
Kuramoto dynamics or αi = 0 ∀i (spotted continuous red line); type II [38] KS
dynamics with the frustration parameters set to sin(αi ) =−ωi /(K si ) if |ωi | < K si

and sin(αi ) = ±1 otherwise (squared dashed green line); and KS dynamics with
the frustration parameters determined by the derived linear approximation in
Eq.(3.44))(squared discontinuous purple line).
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colation (see Ref.[54] and references therein), since the transition to the syn-
chronized state is abrupt, as it happens in a first order phase transition. We are
adjusting the phase-lag parameter as a response to the frequencies, and then in
some sense it is similar to the original proposal in Ref.[76], the correlated degree-
frequency framework.

3.3 Discussion

The Kuramoto-Sakaguchi model adds to the original Kuramoto model a homo-
geneous phase lag, α, between nodes which promotes a phase shift between os-
cillators. We consider a more general framework, in which the phase lag or the
frustration parameter, αi , is an intrinsic property of each node. A very relevant
question in oscillatory models is finding the conditions of network synchroniza-
tion. In the present chapter, we bring forward a methodology not only to obtain
the desired synchronized state, but any convenient phase configuration in the
steady state, by means of a fine tuning of the phase lag or frustration parame-
ters, {αi }. We feature the analytical solution of frustration parameters so as to
achieve any phase configuration, by linearizing the most general model. The
three intrinsic parameters of the nodes in the model, natural frequencies, {ωi },
frustration parameters {αi }, and phases in the steady stateφ∗

i , are coupled by an
equation that allows to tune them for a desired configuration. While the set φ∗

i
is uniquely determined, the set αi has a continuous spectrum of solutions.

A main result is that a given phase configuration can be access via a contin-
uous spectrum of frustration parameters, i.e, one phase and one frustration pa-
rameter are left as free parameters. The nodes we choose their values concern-
ing phase and frustration parameter, are named reference and control nodes, re-
spectively. Once the frustration parameters are tuned so as to obtain the desired
state, we define a cost function to assess the overhead that the system requires to
achieve such parameters’ configuration. Among all possible tuning solutions of
{αi }, we request those which minimize the cost to obtain them. We develop the
analytical solution of the cost function for the cases of symmetric configuration
and fully synchronized state and discuss them.

A key result is the solution to the minimization cost problem: For the case
of symmetric configuration, the nodes which are to be set as control nodes are
those whose degree is the weighed median of the sample, with a weight equal to
the inverse of its degree. On the other hand, for the case of fully synchronized
state, control nodes are those whose natural frequency is the weighted median
of the sample, with a weight equal to the inverse of its degree. An extensive anal-
ysis of several cases is done in the text and a detailed example of a toy network
is provided. We highlight the connection made with the nonlinear Kuramoto-
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Sakaguchi model. Despite our analysis being based on the linear version of the
model, we show that the proposed parameters’ tuning is also able to enhance
frequency synchronization, as done in Ref.[38]. We stress the fact that the ques-
tion ‘among all the possible solutions, which is the one that makes the system
achieve a particular phase configuration with the minimum required cost?’ is of
particular relevance when we consider the plausible real nature of the system.
If a real system needs to access a particular phase configuration, which may be
associated with a singular function, then it will tend to minimize the effort or
cost to do so. Further work can be done within this framework by doing real ex-
periments on measuring the energy needed to access a particular configuration.
Moreover, other nonlinear oscillatory models can be analyzed and compared
with the Kuramoto-Sakaguchi model.

Other questions regarding the model are left open. We have considered the
coupled trio of natural frequencies-frustration parameters-steady state phases.
A natural extension to this would be to inspect the possibility to also tune the
weights of the network edges in order to access a particular configuration. The
higher dimension of the latter with respect to the vectors of parameters would
require further assumptions about the model or the network structure, such
as positive weights or particular distributions or topologies. Another research
venue would be to consider the effect of removing a node of the network and the
{αi } set needed to minimize the effect on the removal on the whole network.

Despite we provide the analytical solution to the optimal choice of parame-
ters in order to minimize the cost of achieving both the symmetric and the fully
synchronized configurations, the access to all nodes’ parameters requirement
may not be feasible in real-world networks. Our methodology is quite general
and the optimization procedure refers to a set of parameters to be tuned. In
particular, a finite subset of nodes with accessible phase-lag parameter could be
chosen (the choice could be restricted to any subset of nodes), holding all other
nodes unaltered. This would provide a nonoptimal global condition but a re-
stricted and approximated one that could deal with a subset of available nodes.
A meaningful analysis would be to identify which subset of nodes is the one that
enables to get a closest approximate solution, and relate those nodes with their
topological properties, although this question is beyond the goal of this work.

3.4 Additional Information

3.4.1 Step-by-step derivation of the frustration parameters

In the present Section we illustrate the procedure and result equivalent to the
compact expression derived in Eq.(3.16) with a simple example of a synthetic
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network. Consider the network in Figure 3.1, with its Laplacian matrix:

L =



4 −1 −1 −1 0 0 −1
−1 2 −1 0 0 0 0
−1 −1 2 0 0 0 0
−1 0 0 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 1
−1 0 0 0 0 −1 2



We expand

∑
j

Li jθ
∗
j =

ωi

K
− 〈ω〉

K
+〈αs〉−αi si ∀i

(Eq.(3.6) in previous sections) step by step:



4 −1 −1 −1 0 0 −1
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−1 0 0 0 0 −1 2


·
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4 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 2
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If we set all natural frequencies to the same value: ωi =ω ∀i :

4 −1 −1 −1 0 0 −1
−1 2 −1 0 0 0 0
−1 −1 2 0 0 0 0
−1 0 0 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 1
−1 0 0 0 0 −1 2


·
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α4
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Now we choose R = 0 and C = 1, i.e., all φi = θi −θ0 and κi = αi −α1 (arbitrary
choices). Let us write explicitly the change of variables (the red and the blue
columns are ones we can remove due to the change of variables, as they do not
affect to the system of equations anymore):
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−12
7 α1
2
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2
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2
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2
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2
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2
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If we look carefully at Eq.(3.53), we see that although the left-hand side and the
right hand-side matrices are both singular, the first one has both column and
row sums equal to zero, while the second one has only column sum equal to
zero. This is reflected in the additional constant term that appears when doing
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the change of variables regarding αi , which can be written as:

bi =
∑

j
[M ·Ds]i j 6= 0, in general (3.53)

We can choose whatever row to remove from either sides. We choose row 0:
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In this situation, we can solve for the set ~̃κ:
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,

which leads to the result: 

κ0

κ2

κ3

κ4

κ5

κ6


=



−2α1+3φ1+φ3+3φ6
4

3(φ1−φ2)
2

2φ1−φ2−2φ3+φ4
2

2φ1−φ2+φ3−2φ4+φ5
2

2φ1−φ2+φ4−2φ5−φ6
2

2φ1φ2+φ5−2φ6
2


. (3.54)
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We recall that κ1 = 0 and φ0 = 0.
Let us consider the following arbitrary phase configuration, as an example:

~̃φ(R=0) = (0.1,0.2,0.25,−0.2,−0.1,0.0). (3.55)

In this case and using Eq.(3.54) we obtain the values of the frustration parame-
ters:

~̃κ(C=1) = (0.1375−α1/2,−0.15,−0.35,0.275,0.0,−0.05)

Bear in mind the definition κi ≡αi −αC ⇒αi = κi +αC to obtain the final values.
If we choose αC = 0 ⇒ αi = κi , then we can include explicitly the value of the
control node C = 1:

~̃α= (0.1375,0.0,−0.15,−0.35,0.275,0.0,−0.05)

Alternatively, we can choose whatever value we need regarding the control
node. For instance, if αC =α1 = 0.1 and the phases configuration is also defined
by Eq.(3.55),. the solution of the frustration parameter tuning is

~̃α= (0.1875,0.1,−0.05,−0.25,0.375,0.1,0.05).

Figure 3.6 shows an example of possible phase configuration (the one provided
by the symmetric configuration, i.e., four distinct cluster of nodes)

3.4.2 Solution of the cost optimization problem

In order to gain a more intuitive understating of the analytical expression and
solution of the considered cost function, we consider the analysis of the contin-
uous case.

Symmetric configuration case

Considering the symmetric configuration case and choosing αC = 0, the contin-
uous optimization problem can be written as

∂eT (C )

∂sC
= ∂

∂sC
|αh |

N−1∑
i

∣∣∣1− sC

si

∣∣∣=
|αh |

N−1∑
i

sgn(sC − si )

si
(3.56)

Equation (3.56) is based on the function

f (x) =
∣∣∣a −x

a

∣∣∣ a, x > 0 (3.57)



3.4. Additional Information 87
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Figure 3.6: Polar plot of the scaled phases after tuning the set of frustration
parameters to the symmetric configuration. For the network in Fig 3.1, phases
obtained after tuning the set of frustration parameters to the symmetric config-
uration (four distinct symmetries).
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f(x) + g(x) + h(x)

Figure 3.7: Examples of the function defined in Eq.(3.57). Three examples of
the general function f (x) = |a−x

a |, with a = 2, a = 3 and a = 4, and the resulting
sum of them.
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which is depicted in Figure 3.7 for different values of a and the sum of all of them.
Regardless of the set of ai values, the sum function

∑
i f (x, ai ) (see the example

in the black line in Figure 3.7), is a concave function and has a unique minimum,
which corresponds to one of the ai values.

In order to assess the value of ai where the minimum is located, we compute
the derivative of Eq.(3.57):

d f (x)

d x
= sgn(x −a)

a
(3.58)

and hence, d
∑

i f (x, ai )/d x = ∑
i sgn(x −ai )/ai , which is depicted in Figure 3.8.

Notice that, despite the derivative of the function is not defined at the values
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1.5
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3.0 f ′(x) + g′(x) + h ′(x)
f(x) + g(x) + h(x)

Figure 3.8: Derivative of a composed function based on Eq.(3.57). Derivative of
the function f (x) = |2−x

2 |+ |3−x
3 |+ |4−x

4 | defined in Figure 3.7. Red dashed line at
y = 0.

x = ai , the derivative changes its sign when moving from x < 3 to x > 3 and
hence, the minimum is located at this value of ai .

To conclude, Eq(3.56) behaves equivalently as the function defined in
Eq.(3.57) and hence, displays only one minimum, which is achieved at the si

where there is a change of sign in the derivative.
Alternatively and as explained in the main text, we can understand the mini-

mization problem as part of a general framework. The minimization of Eq.(3.56)
is equivalent to the minimization of the absolute value of the relative error:

N−1∑
i

∣∣∣1− sC

si

∣∣∣= N∑
i

∣∣∣ sC − si

si

∣∣∣= N∑
i
|Ei | (3.59)
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The general problem can be written as [155]:

min
d

N∑
i=1

wi |xi −d | ;d > 0

with the solution:

d = xm where m ≡ min{i |
i∑

k=1
wk ≥

n∑
k=i

wk }

i ∈ {1, ...,n} (3.60)

In other words, the d value that minimizes Eq.(3.60) corresponds to the weighted
median of the variable x, or the 50% weighted percentile.

Weighted median: For n distinct ordered elements x1, x2, ..., xn with posi-
tive weights w1, w2, ..., wn , the weighted median is the element xk satisfying
min{i |∑i

k=1 wk ≥∑n
k=i wk }

Therefore, the solution is given by xk , the value such that the sum of the
weights at each side of the pivot, k, are as even as possible.

Our problem is a special case of the discrete weighted medians with weights
1/si , which are a special case of the medians of a measure.

Following the example provided in Figure 3.7, {x} = {2,3,4} and {w} =
{1/2,1/3,1/4}.

The weighted median is achieved for k = 2, corresponding to x2 = 3 and
weight w2 = 1/3 as 1/2+1/3 = 5/6 > 1/3+1/4 = 7/12. Conversely, if we let k = 1,
and hence x1 = 2 and w1 = 1/2, the condition on the weights will not be true:
1/2≯ 1/2+1/3+1/4.





CHAPTER 4

Quasi-Symmetries in Complex
Networks

Complex networks – from biological networks such as the brain connectome
or regulatory networks to social and technological networks, like scientific col-
laboration networks or the Internet [42, 18, 43, 135, 116] – are widely used to
model the structure and behaviour of complex systems. Despite these appar-
ently diverse networks are unique in its nature, many studies have shown that
they share a number of properties, which distinguish them from other mathe-
matical graphs of interest. Such common features include the heterogeneity in
its node degrees, captured by a power-law distribution, high clustering coeffi-
cients, and the ‘small-world’ property, among others [174, 8, 29, 166, 74]. Addi-
tionally, a certain degree of symmetry is also an attribute of real-world networks
[159, 152]. The study of the symmetries of a network is of great relevance for
several reasons: it may help us to have a better understanding of the formation
of certain real-world networks, they can also provide information about node
function, and have an effect on network redundancy and robustness. Moreover,
symmetries are known to influence the outcome of network dynamics, such as
synchronization or controllability [100, 98, 177, 124, 136, 85].

The notion of ‘symmetry’ or ‘invariance’ includes several specifications de-
pending on the field it is applied [183]. Mathematically, a symmetric transfor-
mation, or a symmetry is the set of transformations that leaves an object invari-
ant or unmodified [49]. Differently than continuous transformations, such as a
translation or a rotation applied to a geometric shape, symmetries in complex
networks are necessarily discrete transformations applied to graphs, which are
defined as discrete entities. Importantly, graphs are topological objects and gen-
erally, their properties are independent of the positions of vertices or lengths of
the links. For this reason, a geometric transformation of their components has
no effect on the topology, but to the visualization of the graph . In a different way,
a topological transformation of a graph maps each vertex to another one as a
permutation. Finally, the set of permutations of a graph that leaves the topology
invariant are the automorphisms of the graph (in Section 4.1 the notion of sym-
metries in complex networks is explained in depth). Other types of symmetries
that may be present in graphs are scale invariance or translational symmetries,
which are not considered in the present chapter [69].
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Built on the standard notion of graph symmetry that we have reported, i.e,
topological or structural symmetry, other weaker or approximate symmetries
may be present in real-world networks. Despite they are not included in the
finite number of automorphisms of graphs, they indeed play an important part
in determining the network behaviour [69, 164, 127]. Alternatives for approxi-
mate symmetries in graphs include ‘near’ symmetries and ‘stochastic symme-
tries’ [159, 81]. A ‘near’ symmetry is described in terms of properties of the net-
work that are left unchanged when some other transformation is applied on the
network. Examples include whether two nodes have the same degree, and/or
the same number of second neighbours, and/or the same local clustering coef-
ficient. A more relaxed condition consists in whether two nodes are ‘statistically’
equivalent, that is, whether these topological properties are the same in an aver-
age sense. The permutation of statistically equivalent nodes are called stochastic
symmetries and they result in a family of statistically equivalent networks with
the same statistical properties [69].

The given alternatives to perfect or standard topological symmetries in
graphs are of great interest as small fluctuations or errors may be present when
constructing the graphs, as well as additional and/or missing links could be in-
cluded/removed. The resulting graphs or networks may lead to very significant
changes in the analysis of topological symmetries, as many of them will remain
hidden due to its approximate nature.

In the present chapter and in line with the analysis of approximate sym-
metries, we propose a different extension of the latter, which we call ‘Quasi-
Symmetries’. This alternative definition of weaker symmetries remains free to
impose any invariance of a particular topological property. Quasi-Symmetries
are obtained from the network as an extension to structural equivalence; struc-
tural or topological similarity is derived for all pair of nodes from an oscilla-
tory dynamical model: the Kuramoto-Sakaguchi model [150]. According to this
model, all nodes are considered as individual phase-oscillators that are coupled
with its neighbours by a sinus function of its phase difference. The phase differ-
ences between them at the steady-state configuration determine the degree of
structural similarity, as shown in Section 4.1.2. The analysis of quasi-symmetries
provides insights to otherwise hidden properties of real-world networks. Firstly,
we explore the distributions of structural similarity among all pairs of nodes and
we find a benchmark to determine whether a network has a more complex pat-
tern than that of a random network concerning quasi-symmetries . Secondly, we
define the ‘dual network’, a weighted network (and its corresponding binarized
counterpart) that effectively encodes all the information of quasi-symmetries
in the original one. The dual network allows for the analysis of centrality mea-
sures and community detection. The first informs us about the nodes that play
a unique role in the network or those that behave similarly to many other nodes.
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The latter results to a classification of nodes into quasi-symmetric communities,
the natural extension of the automorphism group orbits (structurally symmetric
nodes) of a network.

All the results presented in this chapter can be found in Ref.[146].

4.1 Symmetries in complex networks

A network or, mathematically, a simple graph, G (V ,E ), consists of a set of nodes,
V (G ), linked by a set of edges E (G ). A network of n nodes, labelled from 0 to
n −1, can be represented by its adjacency matrix, A, a n ×n matrix with ai j = 1
if there is a link between nodes i and j and ai j = 0 otherwise. A permutation,
or relabelling, of the nodes of a network can be written as π(V ) : {0,1, ...,n −1} →
{π(0),π(1), ...,π(n −1)} where, for instance, node 0 changes to π(0). Equivalently,
a permutation can be represented in a two-line form as follows,

π(V ) :

(
0 1 ... n −1

π(0) π(1) ... π(n −1)

)
(4.1)

Pπ is a square matrix that corresponds to the permutation π(V ) and is obtained
by permuting the columns of the identity matrix, i.e., the element pi j = 1 ifπ(i ) =
j and 0 otherwise.

The concept of network symmetry is akin to the mathematical definition of a
graph automorphism, which is a permutation of the network nodes but preserv-
ing adjacency. In other words, neighbouring nodes still remain neighbours after
the permutation is applied. Namely, a graph automorphism σ(V ) is a permuta-
tion of the vertices σ(V ) such that (σ(i ),σ( j )) is an edge only if (i , j ) is an edge:
the set of edges is preserved. Consequently, the permutation matrix correspond-
ing to a graph automorphism or a symmetry, Pσ, commutes with the adjacency
matrix of the network.

APσ = PσA (4.2)

The set of all the symmetries of a graph form the automorphism group of the
graph, Aut (G ). In Reference [55], a graph is defined as symmetric when there
exits at least a non-identical permutation of its vertices that leaves the graph
invariant or, equivalently, the group of its automorphisms has a degree greater
than 1.

The set of vertices can be split into the core of fixed points, V0, that is, vertices
which are moved by none of the automorphisms of Aut (G ), and the vertex set
of symmetric motifs, Mi . This partition is called the geometric decomposition
of the network and can be written as

V =V0 ∪M1 ∪ ...∪Mm (4.3)
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being m the number of symmetric motifs. Each symmetric motif can be further
partitioned into clusters. Two nodes, vi and v j , belong to the same cluster if
σ(vi ) = v j and conversely, where σ ∈ Aut (G ). Clusters are alternatively called
orbits induced by Aut (G ). The vertices or nodes of the same orbit are struc-
turally indistinguishable and play the same structural role in the network (nodes
are colored by orbit in Fig. 4.1). We can classify symmetric motifs into two types:

Figure 4.1: Geometric decomposition into the asymmetric core and four sym-
metric motifs of a network. Geometric decomposition into the asymmetric
core and four symmetric motifs of a network, in panels (b) and (a), respectively.
Nodes are colored by orbit and fixed points are in white color. Motifs M2, M3 and
M4 correspond to BSMs and motif M1 is non-basic.

basic and complex. Basic symmetric motifs (BSMs) are made of one or more
orbits of the same number of vertices (motifs M2, M3 and M4 in Fig. 4.1) and
complex symmetric motifs are hardly found in real-world networks, and they
are typically branched trees (motif M1 in Fig. 4.1)[104, 70, 152]. The detection
of graph automorphisms and the corresponding geometric decomposition of a
network is vastly used to simplify the topology of the network by compressing re-
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dundant information. Moreover, the basic structural properties of the network
can be derived only from the geometric decomposition of the graph or the so
called quotient graph. Network eigenvalues are an example of it.

In the present chapter we are interested in detecting the nodes that are struc-
turally equivalent, that is, nodes that play the same role in a network and there-
fore, we will be detecting the orbits generated by the automorphism group of
a network, Aut (G ). Notice that a symmetric motif may be subdivided into sev-
eral orbits and that the isolated permutation of two nodes belonging to the same
orbit needs not correspond to an automorphism of the network.

The notion of ‘structural equivalence’ or a pair of nodes being structurally
equivalent is alternatively defined in the social sciences as: if two nodes have
exactly the same set of neighbours, regardless of whether they are neighbours
of each other, then a permutation between them exists such that the network
remains unchanged. Notice, however, that this definition is more restrictive that
two (or more) nodes being structurally equivalent as long as they belong to the
same orbit, which may not share the same neighbours, however.

4.1.1 Generation of symmetric networks

By examining the automorphism group of real-world networks, several studies
show that real networks, unlike random graphs, contain a large amount of sym-
metries, namely, network motifs[11]. This is partly due to the fact that symmetry
can arise from growth processes present in nature. However, the availability of
real network datasets is often scarce, especially, when looking for enough vari-
ability regarding symmetry. Alternately, we can use random graphs generating
models, such as Erdös-Rényi, Watts-Strogatz or Barabási-Albert, but these mod-
els do not generate graphs with symmetries, and hence we should turn to regu-
lar graphs in order to work with symmetries. Such motifs are however trivial and
easy-to-identify by visual inspection.

In the present chapter we will use an algorithm that is able to generate graphs
with any desired symmetry pattern [89]. Hereafter, we provide a schematic ex-
planation of the algorithm and the main required concepts.

An equitable partition(EP) of the nodes divides the graph into non-
overlapping clusters of nodes, {Ci }, such that the number of connections to C j

from any node v ∈Ci only depends on i and j , that is, their corresponding clus-
ters [153].

The automorphism group, Aut (G ), of a graph induces an equitable partition
of nodes, where the clusters of the EP are the orbits generated by Aut (G ).
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An equitable partition of a graph can be represented by its quotient graph,
Q. The quotient graph of an EP consists of five components:

Q = {C ,F ,~n,~s,~f } (4.4)

Q is made of p quotient nodes and q quotient edges. C represents the set of
clusters or quotient nodes and F represents the set of quotient edges that link
the clusters of the EP. The integer vector ~n of length p contains the size of each
cluster or quotient nodes, while the integer vector~s of length p represents the
intra-cluster degree of each cluster, that is, the number of edges of a node with
all the others within the same cluster (which is a shared number for all nodes in
the cluster). The integer vector ~f of length 2q consists of pairs of quotient edge
weights assigned to each quotient edge (Ci ,C j ) ∈F as ( f j k , fk j ) defined as

f j k = ∑
va∈Ck

Ai a , vi ∈C j

fk j =
∑

va∈C j

Ai a , vi ∈Ck (4.5)

In Fig. 4.2 we show the quotient graph corresponding to the network in Fig.
4.1(a). However, not all quotient graphs are feasible, that is, not all combination

Figure 4.2: Quotient graph Q of a network. Quotient graph Q correspond-
ing to the network in Fig. 4.1(a). Ci correspond to the different clusters
or quotient nodes of Q. Using the components described in Eq.(4.4), ~n =
(4,2,4,2,3,1,1,1,1,1), ~s = (0,0,0,0,2,0,0,0,0,0) and the weights of the quotient
edges are included in the figure using the notation ( f j k , fk j ) with j < k.

of the components of Q described in Eq.(4.4) represents some original graph.
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The authors of the algorithm for generating symmetric graphs [89] take into ac-
count several constraints that must be considered: firstly and in order to satisfy
that the number of nodes of each cluster, ni , can satisfy the connectivity require-
ments implied by si , the following restrictions have to be met:

mod (ni si ,2) = 0, ni ≥ si +1 (4.6)

In addition, the number of edges, m j k , going through two linked clusters, C j and
Ck , must be consistent:

n j f j k = nk fk j = m j k (4.7)

which also imply that there must be enough nodes in cluster Ck to satisfy the
demands of each node in cluster C j and the other way round:

nk ≥ f j k , n j ≥ fk j (4.8)

The constraints defined in Eqs.(4.6)-(4.8) gathers the conditions that a quotient
graph, Q, must meet to be feasible. In addition, one could construct a represen-
tative graph G from a given quotient graph. This last implication is of particular
relevance as the authors suggest a methodology to obtain samples of symmet-
ric graphs that fulfill the requirements of a particular quotient graph. We will
briefly present the steps of the algorithm, but we encourage the reader to find all
the details in Ref.[89].

The required input consists of the sets~n,~s and F , together with the number
of quotient nodes and quotient edges, p and q , respectively. The resulting graph,
G , has

∑p
i=1 ni nodes and

∑p
i=1

ni si
s +∑

(C j ,Ck ) ∈Fni f j k edges. They next propose
a method to provide a proper choice of the quotient edges weights, without hav-
ing first made sure that the constraints defined in Eqs.(4.6)-(4.8) are met. They
divide the set of G edges into the intra-cluster and the inter-cluster edge sets
and suggest a wiring scheme for the edges, based on mathematical proofs. The
equitable partition induced by the created Aut (G ) is verified by using software
Nauty[106].

4.1.2 Detection of symmetries: a dynamic model approach

There are many discrete algebra software that is able to determine the auto-
morphism group, that is, the symmetries, of a graph as well as to extract the
orbits that locate the nodes in each cluster. Saucy3[2], GAP[1] or Nauty[106] are
some examples. We are however interested in constructing a framework that en-
ables the detection of, not only perfect symmetries, but what we will call Quasi-
Symmetries (See Section 4.2).

To this end, we present an alternative method to detect the orbits of a net-
work by using the steady state of the Kuramoto-Sakaguchi dynamic model with
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homogeneous phase lag, introduced in Chapter 1 and analysed throughout the
previous chapters. We recall that this model considers the dynamics of N iden-
tical phase oscillators θi , for i = {1, ..., N }, coupled in a network whose evolution
is governed by

θ̇i =ω+K
∑

j
Ai j sin(θ j −θi −α), j ∈ Γi (4.9)

Eq.(4.9) corresponds to the Kuramoto-Sakaguchi model (1986) [150], which adds
to the original Kuramoto model (1975) [92, 4, 15] a homogeneous phase lag α
between nodes that promotes a phase shift between oscillators. Each unit is
influenced directly by the set of its nearest neighbours via the adjacency matrix
of the network corresponding to the system, G (V ,E ). The coupling strength,
K > 0, adjusts the intensity of such interactions, Γi is the set of neighbours of
node i and ω is the natural frequency of each unit, which we consider to be
homogeneous among oscillators.

If the system becomes synchronized to a resulting frequency, α forces the
system to break the otherwise original fully synchronized state, that is, phase
synchronization. However, partial synchronization is conserved for nodes be-
longing to the same orbit in the network [124, 125]. We hereafter provide a proof
of this last statement. To this end, we refer to sections 1.3.2.2, 2.2.1 and 3.1 of the
previous chapters for a full explanation of the steps and further clarification of
the definitions.

Let us first derive the analytical solution of the phases in the stationary state:
if the system reaches the synchronized state and α is small enough, Eq.(4.9) can
be linearized and the values of the phases at any time in the stationary state are
given by ∑

j
Li jθ j =α(〈d〉−di ), (4.10)

where di is the degree of the i th node and L corresponds to the Laplacian matrix
of the network G , in matrix form defined as

L ≡ D − A, (4.11)

where A is the adjacency matrix of the network and D is the diagonal matrix
[D]i j = diδi j and di is the degree of the i th node. Equivalently, Li j = diδi j −Ai j .
In matrix notation,

L~θ =α(〈d〉~en − ~d) (4.12)

where ~[d ]i = di . In a connected network, L has one null eigenvalue. Conse-
quently, Eq.(4.12) is singular. Nonetheless, we can solve it by computing the
phase difference between each node and a node which we choose as reference.
Hence,

φi ≡ θi −θR (4.13)
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where R is the index of the reference node and its corresponding θR is left as a
free variable. Obviously, θR = 0. The new system can be written as

L̃~̃φ=α(〈d〉~en−1 − ~̃d) (4.14)

where L̃, the so called reduced Laplacian [124, 144], is obtained by removing the
Rth row and column of L, although the result does not depend on which row we

remove. Similarly, the vector ~̃d is obtained by removing the Rth element of ~d . Fi-
nally, the phases with respect to a reference node in the frequency synchronized
steady state of the Kuramoto-Sakaguchi model are given by

~̃φ=αL̃−1(〈d〉~en−1 − ~̃d) (4.15)

We next show that the phases of nodes belonging to the same orbit will be equal
at any time.

If P corresponds to the permutation matrix of an automorphismσ ∈ Aut (G ),
then Eq.(4.2) is true. The Laplacian matrix of the network L also commutes with
the permutation matrix, as

PL = P (D − A) = PD −PA

We already know that P = Pσ commutes with A, as σ ∈ Aut (G ). P also com-
mutes with D on account of the general statement that any diagonal matrix with
equal values for all elements corresponding to the same orbit of the automor-
phism permutes with the corresponding permutation matrix (See the Appendix
section for a detailed proof and Ref.[152] for a generalization of this result). All
nodes belonging to the same orbit have the same degree, and hence, D meets
the required conditions so as to permute with P . Hence,

PL = PD −PA = DP − AP = (D − A)P = LP (4.16)

If we left-multiply Eq.(4.12) by P we get

PL~θ =α(〈d〉P~en −P ~d) =α(〈d〉~en − ~d)

as symmetric nodes have the same degree (P ~d = ~d). In addition, PL = LP , as
derived in Eq.(4.16). Consequently,

LP~θ = L~θ (4.17)

Similarly as done in Eq.(4.14), we define P̃ as P with the removal of the Rth row
and column and Eq.(4.17) turns to

L̃P̃ ~̃φ= L̃~̃φ (4.18)
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Now, the inverse of L̃ exists and we can left-multiply Eq.(4.18) by L̃−1, leading to

P̃ ~̃φ= ~̃φ (4.19)

Since P̃ ~̃φ corresponds to the permutation of the phases of symmetric nodes,
Eq.(4.19) implies that the phases of nodes belonging to the same orbit (those
permuted within an automorphism) are equal at any time.

The reverse conditional statement is always true with the exception of a very
unlikely case. Only when two nodes i and j that have different degrees, i.e.,
di 6= d j , verify this very restrictive condition (see Appendix 4.5.2)∑

k [L̃−1]i k∑
k [L̃−1] j k

= 〈d〉−di

〈d〉−d j
(4.20)

and, additionally the degrees of both nodes meet the inequality

di ≥ 〈d〉 and d j ≥ 〈d〉 or 0 < di ≤ 〈d〉 and 0 < d j ≤ 〈d〉 (4.21)

then the two considered nodes can have the same phases despite not belonging
to the same orbit.

Nevertheless, we note that the condition expressed in Eq.(4.20) represents a
highly unlikely event and hence would require a very fine tuning of the degree
sequence of the corresponding (weighted) network. Moreover, from a proba-
bilistic perspective, the probability that a continuos random variable takes a
specific value is zero and so is the chance that the quotient of weighted degrees
in Eq.(4.20), resulting from a non-linear transformation, takes a particular value.
Henceforth we will assume that the bi-conditional stated as ‘Nodes that have the
same phases ⇐⇒ Nodes that belong to the same orbit’ is effectively true.

In this section we have proved that the phases at the steady state of the
Kuramoto-Sakaguchi model with homogeneous natural frequencies and phase
lag parameters capture the clusters of nodes corresponding to the orbits of the
network. Therefore, a straightforward method to detect the orbits of a network is
computing the phases analytically as in Eq.(4.15) and classify nodes into clusters
according to their values. Nodes with equal values ofφ belong to the same orbit.

As α behaves as a scaling factor in Eq.(4.15) one could always normalize the
results such that φi ∈ [0,π]. As an example, the values of ~φ, choosing R = 0, for
the network in Fig. 4.3(a) are

~φ= (0.0,0.0,0.0,0.11,0.76,1.02,1.02,1.20,2.30,2.72,

2.99,2.99,2.72,2.99,2.99,2.88,3.14,3.14,3.14,3.14)

The corresponding clusters or orbits of the scaled values can be easily identified
in the polar plot shown in Fig. 4.3(b). Notice that the obtained groups are the
same as the orbits coloured in Fig. 4.1(a), as expected.
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Figure 4.3: Polar plot of the scaled phases corresponding to the orbits of a net-
work. (a) Labels’ choice for the network topology of 20 nodes further examined
in Figs 4.1 and 4.2 and (b) its corresponding polar plot of the {φi } scaled phases
(in the range [0,π]) obtained according to Eq.(4.15). We note that the obtained
number of groups are the same as the orbits of the network.
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4.2 Quasi-Symmetries in complex networks

The concept of approximate symmetry is not new. Approximate symmetry de-
tection for 3D geometry [109] or approximate symmetry methods for solving dif-
ferential equations [132] are some examples. We address the question of what do
we understand by approximate symmetries, or what we call Quasi-Symmetries,
in complex networks and how do they emerge. For that purpose, we will estab-
lish a simile with a circle, a geometric shape consisting of all points in a plane
that are a constant distance, the radius, from the center. The circle is highly
symmetric as every line that passes through the center generates a reflection
and every angle represents a rotational symmetry around the center. However,
one could obtain slightly different shapes if the points are obtained experimen-
tally. Despite the underlying true shape being a circle, owing to missing data or
experimental errors, the derived shape may lead to a deformed circle or quasi-
symmetric circle. Similarly, besides synthetic regular networks, real-world net-
works represent samples of processes that generate them and they are gathered
by data collecting methods, either computational or experimentally. Ultimately,
researchers deal with networks with missing or additional edges or nodes, as
well as with noisy weighted networks. Hence, despite a group of nodes being
structurally indistinguishable up to an error, that is, belonging to the same orbit,
they may remain as separate independent units by applying traditional symme-
try detection methods.

As defined in Section 4.1, the extent of symmetry of a symmetric graph can
be measured by the number of possible symmetric permutations of its group of
automorphisms [55]. We are concerned, however, by symmetry as a node-wise
attribute. Symmetry, as a mathematical concept, is a binary attribute of a node
with respect to another, either true or false, depending on whether they belong
to the same orbit or not. We however introduce the concept of Quasi-Symmetry
as a continuous variable that characterizes the degree of structural similarity of
a pair of nodes. Obviously, a pair or a group of nodes that belong to the same
orbit will be perfectly symmetric and therefore, have the largest possible value
of quasi-symmetry. This new attribute enables us to characterize the degree of
symmetry of all pair of nodes and provides richer information of the network.
Notice that the concept of quasi-symmetry can be applied not only to networks
which have been perturbed, but also to networks of which we want to obtain the
degree of symmetry between its nodes, even if we know, beforehand, that they
do not belong to the same orbit.

Other authors have defined the notion of ‘near symmetry’, a more restric-
tive definition of approximate symmetry, present in complex networks when
certain properties remain invariant under some other network transformation,
for example, node degree. Accordingly, notions of ‘stochastic symmetry’ have
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also been established in order to characterize near symmetries in real networks
[69, 159].

4.2.1 Building synthetic networks with Quasi-Symmetries

Real-world networks, both weighted and unweighted, are potential quasi-
symmetric networks. In order to provide a general framework, we need to work
with synthetic samples. As exposed in Section 4.1.1, random networks hardly
present symmetric patterns and the latter are difficult to control. For this reason,
we use the algorithm presented in Section 4.1.1 in order to generate networks
with any desired symmetry pattern. This networks are considered to be the
underlying perfectly symmetric networks. On top of them, we build the quasi-
symmetric networks by either swapping a given number of edges randomly or by
modifying the weight of its edges. These mechanisms can be applied in very dif-
ferent ways. We present two particular implementations that can be applied in
order to perturb the original networks. The first class of synthetic (unweighted)
quasi-symmetric networks is constructed by swapping a random pair of edges,
{(x, y), (u, v)}, that become {(x,u), (y, v)} such that degree is preserved and the
new edges do not already exist (See Fig. 4.4(b) for an example). The second
class of (weighed) synthetic quasi-symmetric networks is constructed by adding
a uniform random real number w ∈ U (−wmax , wmax) to the otherwise binary
edge (See Fig. 4.4(c) for an example). The random transformations that result to
a negative weight are ignored.

4.2.2 Characterization of Quasi-Symmetries

In Section 4.1.2 we propose an alternative methodology to those based on dis-
crete algebra for detecting the clusters of equivalent nodes or orbits of the net-
work by bundling the nodes that have the same value of φi computed analyti-
cally from Eq.(4.15). Using the same result, we extend the notion of symmetry
into that of quasi-symmetry to characterize the degree of structural equivalence
of all pair of nodes.

We first compute the steady state phases of the nodes with respect to any ref-
erence node (we note that results do not depend on this choice) using Eq.(4.15).
Theα parameter in Eq.(4.15) acts as a scaling factor and hence one could always
re-scale the set of phases such that they fall in the range [0,π]. In this way, the
most distant nodes are separated by, at most, π (See Fig. 4.3(b) as an example)
and results are independent of the network size and the number of edges.

Next, the phase difference is computed between all pair of nodes as

∆φi j = |φi −φ j | = |φ j −φi | (4.22)
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Figure 4.4: Two possible mechanisms for the generation of quasi-symmetric
networks. Example of a toy network with four orbits or clusters of equivalent
nodes in panel (a), and two feasible quasi-symmetric networks drawing from
it. Panel (b) shows one possible mechanism leading to the creation of quasi-
symmetries by double-edge swapping. Panel (c) exemplifies the perturbation of
perfect symmetries by adding random weights to the edges.

Notice that ∆φi j = 0 if nodes i and j are completely symmetric.

4.2.2.1 Distribution of Quasi-Symmetries

One could easily count the number of distinct orbits of a network with perfect
symmetries either using a discrete algebra software or following the steps de-
scribed in Section 4.1.2. But besides quantifying perfect symmetries, we may be
interested in characterizing the topology of a network, regarding the structural
similarity between the nodes, or quasi-symmetries. The first measure that we
propose corresponds to the distribution of the scaled phases and phase differ-
ences.

In order to obtain more information about a network and distinguish
whether it presents more structurally equivalent or similar nodes (quasi-
symmetries) than those expected by a random network, we study two baseline
types of networks and their distributions of quasi-symmetries: regular networks
and random networks.

• Regular Networks
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1. Complete Networks KN : all nodes are structurally equivalent, that is,
they belong to the same orbit and, accordingly, they have the same
value of φi . Hence, ∆φi j = 0 for all pairs of nodes.

2. Circulant Networks G(k1, ...,km): in a circulant network, each node i
is connected to the nodes with indexes i +ks and i −ks , for all the set
of m numbers. Many well-known graph families are subfamilies of
the circulant networks. For example if m = 1 and k1 = 1, the resulting
network is a circular network. The resulting distributions are delta-
like, as for a complete network, as all nodes are structurally equiva-
lent.

3. Balanced Tree Networks G(r,h): A tree with a branching factor of

r and a height of h has
∑h

k=0 r k = r h+1−1
r−1 nodes. The number of

perfect symmetries or distinct orbits of the network is h + 1, with a
size given by r k , where k is the current height of the leaf. There-
fore, there are h(h +1)/2+1 different values of ∆φi j , each one hav-
ing r k1 r k2 repetitions, where k1 and k2 are the height of the two
leaves which we are considering. The frequency of ∆i j = 0 corre-
sponds to the count of all possible pairs of nodes in the same leaf,

i.e.,
∑h

k=1 r k (r k −1)/2 = r (r h −1)(r h+1 −1)

2(r 2 −1)
. Figure 4.5 shows the dis-

tributions of scaled phases and the corresponding phase differences
of a balanced tree network with a height of h = 3 and two values of
the branching factor, r ∈ {2,3}. Notice that there are four distinct
values of phases, according to h +1 = 3+1, with frequency given by
r k : {1,2,4,8} and {1,3,9,27}, for r = 2 and r = 3, respectively (see Fig.
4.5(a,b). There are seven distinct values of phase differences, accord-
ing to h(h +1)/2+1 = 3(3+1)/2+1 (see Fig. 4.5(c,d)).

• Random Networks

1. Erdös-Rényi (ER) Network G(N , p): in this model, each of the
(N

2

)
pos-

sible edges is included with probability p, independently from every
other edge. Figure 4.6 shows the distributions (relative frequencies)
of the scaled phases, {φi } and the phase differences between nodes,
{∆φi j } for an ER network of 500 nodes and three different values of
the p. As the probability of connection approaches 1, the network
becomes closer to a complete network and therefore, there are more
nodes that are structurally similar. Consequently, the distribution of
scaled phases and phase differences is discrete (see the bottom pan-
els in Fig. 4.6(a-b)). Intermediate values of p lead to a continuous
distribution of scaled phases which average approaches π/2 as p in-
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creases (see the middle panels in Fig. 4.6(a-b)). The final shape of
the distribution is a reflection of the degree distribution of the origi-
nal network.

2. Barabási-Albert (BA) Network G(N ,m): in this model, called prefer-
ential attachment or Barabási-Albert network, nodes are added one
at a time with m random edges which are linked to the existing nodes
with a probability proportional to the degree of them. Figure 4.7
shows the distributions (relative frequencies) of the scaled phases,
{φi } and the phase differences between nodes, {∆φi j } for a BA net-
work of 500 nodes and three different values of the m. The resulting
distributions are very similar to that of ER networks (see Fig. 4.6).
Besides small values of m, resulting to star-like patterns, the distri-
bution of phases is continuous. Again, the particular shape of the
distributions is determined by the degree distribution of the original
network.

Figure 4.5: Relative frequency of the scaled phases and phase differences of
two balanced trees. Relative frequency of the scaled phases, φi , obtained using
Eq.(4.15), and phase differences, ∆φi j , of a balanced tree network of height, h,
equal to 3 and branching factor, r , of 2 [panels (a) and (c)] and 3 [panels (b) and
(d)].
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Figure 4.6: Relative frequency of the scaled phases and phase differences of
an Erdös-Rényi random network of 500 nodes and three different densities.
Relative frequency of the scaled phases, φi , obtained using Eq.(4.15), and phase
differences,∆φi j , of an Erdös-Rényi random network of 500 nodes and three dif-
ferent densities: p = 0.05, p = 0.5 and p = 0.99 (upper, middle and lower figures
in panels (a) and (b), respectively).
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Figure 4.7: Relative frequency of the scaled phases and phase differences of a
Barabási-Albert random network of 500 nodes and three different densities.
Relative frequency of the scaled phases, φi , obtained using Eq.(4.15), and phase
differences, ∆φi j , of a Barabási-Albert random network of 500 nodes and three
different densities: m = 1, m = 3 and m = 7 (upper, middle and lower figures in
panels (a) and (b), respectively).
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From the analysis of random networks, namely, ER and BA models, we
conclude that, despite both networks have distinct network topologies,
i.e., different degree distributions, the level of structural similarity be-
tween nodes is very similar. We conclude that random networks display a
uni-modal continuous distribution of phases, the shape of which is deter-
mined by the corresponding degree distribution. Extreme values of the pa-
rameters of the models, i.e., networks with very few connections1 or very
dense networks, conversely, lead to a discrete distribution of phases, re-
sulting from most of the nodes being structurally similar.

• Networks with perturbed (quasi) symmetries

Once regular and random networks have been analysed in terms of struc-
ture similarity, we conduct the equivalent analysis of networks of which
we control the number of (perfect) symmetries, generated accordingly to
the methodology presented in Section 4.1.1. In order to assess the effect
of perturbing the originally perfect symmetries, we add a uniform ran-
dom noise to each edge (see Section 4.2.1) and study the evolution of
similarity, or presence of quasi-symmetries, of two networks with 5 and
12 symmetries in the non-perturbed network (originally perfect symme-
tries). Figs 4.8(a) and 4.9(a) show the relative frequency of the scaled
phases, φi , obtained using Eq.(4.15) of a network of 264 nodes with orig-
inally 5 perfect symmetries or orbits and another of 209 nodes and origi-
nally 12 perfect symmetries, respectively. Six different perturbed networks
are included for each one, by adding a uniform random noise in the range
[−wmax , wmax] to each edge. The upper panels in Figs 4.8(a) and 4.9(a)
show that, in the non-perturbed case, i.e., wmax = 0.0, the distribution of
scaled phases results to a discrete one that sets the group of nodes apart
according to symmetries, 5 and 12, respectively. As the network becomes
more noisy, i.e, the value of wmax increases, the symmetries are no longer
perfect, but quasi-symmetries. In other words, equivalent nodes turn to
similar nodes. When the perturbation applied to the networks is too large,
the distributions of phases is similar to that of a random network (see
lower panels in Figs 4.8(a) and 4.9(a)).

Thereby, we have shown that networks which structure is enriched with
quasi-symmetries, differently than random networks, present a very par-
ticular pattern regarding phases distribution, even if perfect symmetries
have been removed by adding random noise: they are characterized by a
multi-modal distribution of phases, rather than the uni-modal distribu-
tion that identify random networks.

1All networks are verified to be made of one single component
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Figure 4.8: Relative frequency of the scaled phases and the corresponding
Gaussian Kernel Density distributions of a network of 264 nodes with origi-
nally 5 perfect symmetries or orbits. Relative frequency of the scaled phases,
φi [panel (a)], obtained using Eq.(4.15) and the corresponding Gaussian Ker-
nel Density distributions with an optimal bandwidth choice according to cross-
validation method of a network of 264 nodes with originally 5 perfect symme-
tries or orbits. A uniform random noise in the range [−wmax , wmax] is added to
each edge, avoiding negative values. Six different values of wmax are included,
from upper to lower panels.
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Figure 4.9: Relative frequency of the scaled phases and the corresponding
Gaussian Kernel Density distributions of a network of 209 nodes with origi-
nally 12 perfect symmetries or orbits. Relative frequency of the scaled phases,
φi [panel (a)], obtained using Eq.(4.15) and the corresponding Gaussian Ker-
nel Density distributions with an optimal bandwidth choice according to cross-
validation method of a network of 209 nodes with originally 12 perfect symme-
tries or orbits. A uniform random noise in the range [−wmax , wmax] is added to
each edge, avoiding negative values. Six different values of wmax are included,
from upper to lower panels.
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4.2.2.2 Counting Quasi-Symmetries

In order to assess the quality of the quasi-symmetries or structural simi-
larity of real-world networks, we propose a methodology to reject the hy-
pothesis that the network presents a structural similarity equivalent to that
of a random network. To do so, we explore the modality of the scaled
phases distribution. In other words, we detect the number of modes or
peaks of the distribution of scaled phases. When the distribution of {φi } is
uni-modal we can not say that the topology of the network is different to
that of a random network, with respect to quasi-symmetries or structural
similarity.

The methodology consists in fitting a Gaussian Kernel Density Estimator
(KDE) distribution to the scaled phases (see the Appendix 4.33 for more
details on KDE). The bandwidth of the Kernel, for each case, is selected
using cross-validation, a non-parametric methodology. [79, 45]. The re-
sults for the networks of 5 and 12 symmetries are shown in Figs 4.8(b) and
4.9(b), respectively. Notice that the width of the distributions changes with
increasing wmax , as expected. Once the optimal density is found for each
wmax , we can detect the peaks for each case. Notice that the perfect sym-
metries are unequivocally detected (see upper panels in Figs 4.8(b) and
4.9(b)). The distribution becomes more broadened and the number of de-
tected peaks diminishes. Finally, when the networks are completely per-
turbed, i.e., randomized, the distributions and corresponding number of
peaks, or modes, are equivalent to the random networks presented in Figs
4.6 and 4.7, that is, uni-modal distributions.

From the analysis of the symmetric networks we can draw several conclusions,
which will be applied to real-world networks: firstly and importantly, random
networks present a uni-modal distribution of scaled phases. Secondly, networks
that are made of groups of structurally similar nodes, present multi-modal dis-
tribution of scaled phases. Narrower peaks are a signal of more differentiated
groups of nodes.

In Fig. 4.10 we show the KDE distribution, with the optimal choice of band-
width, and the corresponding peaks, for a whole-cortex macaque structural con-
nectome constructed from a combination of axonal tract-tracing and diffusion-
weighted imaging data [157], which displays distinct modes and hence, informs
us that the network is more richer than a random topology with regard to quasi-
symmetries.
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Figure 4.10: Kernel Density Distribution of a Macaque brain network. Ker-
nel Density Distribution, using a Gaussian kernel, with an optimal choice of
the bandwidth according to 10% cross-validation method of a Macaque brain
network, where the nodes above the 95% percentile of phases are removed (out-
liers).

4.3 The Dual Network

The analysis of the distribution of scaled phases and the corresponding phase
differences leaves much room for obtaining more in-depth insights of the struc-
tural similarity or quasi-symmetries in complex networks. Eq.(4.22) enables us
to define the dual network, a mathematical object which gathers all the infor-
mation regarding the quasi-symmetries of a network, as we will see.

We define the dual network, H (V ,E ′) of G (V ,E ), as a complete weighted
network that inherits all nodes of the original one and which edges are given a
weight according to

wi j =
π−∆φi j

π
(4.23)

Hence, the weight of the edges is in the range [0,1]. An edge connecting two
nodes which are completely symmetric has a weight of 1, while an edge connect-
ing the most distant nodes has a weight of 0. Notice that weights are obtained
from phase differences applying a linear transformation.

Figure 4.11(a) shows the dual network corresponding to the network in Fig.
4.3(a) with its phases distributed as shown in Fig. 4.3(b). Notice that the nodes
which are structurally more similar are more strongly connected, i.e., the edges
connecting them have a larger weight, and they are placed very close together
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Figure 4.11: Dual network and corresponding binarized dual network of the
network topology defined in Fig. 4.3(a). (a) Dual network, H , corresponding
to the network, G , in Fig. 4.3(a) with its phases distributed as shown in Fig.
4.3(a). Edge width and color intensity scales with its weight, computed using
Eq.(4.23). The position of nodes are computed using the Fruchterman-Reingold
force-directed algorithm [67] considering H . (b) Corresponding binarized dual
network, HB . The number of communities (in different colors) is set to 10, the
known value of different orbits. The position of nodes are computed using the
Fruchterman-Reingold force-directed algorithm [67] considering G .
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when using the Fruchterman-Reingold force-directed algorithm [67] for assign-
ing the position of the nodes in the layout of the network. In the network of Fig.
4.3(a), many nodes are part of tree-like motifs of different sizes. This structural
similarity is reflected in them being tightly connected in the corresponding dual
network.

The fact that the dual network, it is worth saying, is a complex network, en-
tails that many measures developed in the field of network theory can be also
applied to this particular network, unveiling interesting properties of the origi-
nal one.

Before exploring the most informative measures on the dual network, we de-
fine the binarized dual network, HB , as the network with the adjacency matrix
given by

ai j =
{

1 if wi j ≥ wthr eshol d

0 otherwise
(4.24)

In other words, a threshold value for the weight determines the sparsity of the
binarized dual network. HB leads to more significant results of network mea-
sures, as explained in Section 4.3.1. Different values of wthr eshol d enhance or
weaken the presence of quasi-symmetries, ranging from a complete network to
a completely disconnected one. Our approach consists in choosing a thresh-
old such that the corresponding number of detected communities in HB is the
same as the number of peaks obtained in the Gaussian Kernel density. Note
that several values may verify the latter requirement, a fact that captures the
probabilistic nature of a network with quasi-symmetries. As long as the main
edges are conserved, one could obtain the same number of communities with
slightly different connectivity patterns. Figure 4.11(b) shows the binarized dual
network, HB , corresponding to the network in Fig. 4.3(a). The number of
communities, in this case, perfect symmetries, is 10, and wthr eshol d is chosen
to meet this requirement. Notice that only nodes that belong to the same or-
bit are connected by an edge, while all nodes remain connected in the origi-
nal definition of (weighted) dual network (see Fig. 4.11(a)). Note that different
values of wthr eshol d may lead to the same number of communities. This be-
haviour becomes more clear when dealing with larger networks. If we consider
the networks with originally 5 and 12 symmetries when we apply a perturba-
tion on their edges with wmax = 0.05, the number of detected peaks is 4 and
9, respectively (see Figs 4.8(b) and 4.9(b)). Using Eq.(4.24), we obtain the cor-
responding HB , by setting the number of communities to the number of de-
tected peaks. A range of wthr eshol d values leads to feasible networks and one
can choose between more sparse networks (higher values of wthr eshol d ) or more
densely connected (lower values of wthr eshol d ) realizations of HB . Figure 4.12
shows two feasible HB for the network with originally 5 symmetries after apply-
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Figure 4.12: Binarized network for the network with originally 5 symmetries
considering two different weight thresholds. HB for the network with orig-
inally 5 symmetries when we apply a perturbation with wmax = 0.05, corre-
sponding to 4 peaks in the distribution of scaled phases (see Section 4.2.1).
The position of nodes are computed using the Fruchterman-Reingold force-
directed algorithm [67] considering HB . The threshold values for the weight
are wthr eshol d = 0.92 and wthr eshol d = 0.99, in panel (a) and (b), respectively.
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Figure 4.13: Binarized network for the network with originally 12 symmetries
considering two different weight thresholds. HB for the network with orig-
inally 12 symmetries when we apply a perturbation with wmax = 0.05, corre-
sponding to 9 peaks in the distribution of scaled phases (see Section 4.2.1).
The position of nodes are computed using the Fruchterman-Reingold force-
directed algorithm [67] considering HB . The threshold values for the weight
are wthr eshol d = 0.96 and wthr eshol d = 0.98, in panel (a) and (b), respectively.
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ing a perturbation with wmax = 0.05 (see Section 4.2.1), corresponding to 4 de-
tected peaks in the distribution of scaled phases. Notice that when wthr eshol d is
larger, the dual network becomes more sparse (Fig. 4.12(b)). However, the num-
ber of communities is preserved, as a requirement for the creation of HB . The
same applies in Fig. 4.13, for the network with originally 12 symmetries when
we apply a perturbation with wmax = 0.05, corresponding to 9 detected peaks.

4.3.1 Centrality measures

The characterization of the nodes in a network includes the study of its central-
ity, a measure of its importance in the network, based on the application-specific
context we are interested in. On this basis, centrality measures are classified into
two types, depending on whether local information around the particular nodes
or global information of the network is required.

At the beginning of this Section we have introduced the definition of the dual
network, H , and the corresponding binarized network, HB , which represents
a mapping of the structural similarity between nodes of the original networks,
namely, its quasi-symmetries. In fact, the dual network is the more complete
measure of the structural similarity or equivalence between nodes, relying on
the distribution of quasi-symmetries, as exposed in section 4.2.2.1. Nonethe-
less, we may be interested in computing node-specific measures that inform us
about the role that a particular node plays regarding the structural similarity of
a network. To this end, we explore some well-known centrality measures on top
of the dual network to obtain new insights about the nodes that are the most rel-
evant concerning structural similarity. Although many centrality measures have
been proposed, we focus on providing an analysis of one local and one global
centrality measures, namely, degree and betweenness centralities, respectively.

We provide an example of the degree centrality values in H for the network
defined in Fig. 4.3(a). The radius of the nodes in Fig. 4.14 is proportional to the
values of the degree centrality of the dual network, and the color map is built
such that darker values correspond to larger values of this centrality. Nodes that
have the largest values are those that are more structurally similar to all others,
while nodes with the smallest values are those whose position is more rare or
unique. Table 4.1 shows the results of the degree centrality of the dual network
corresponding to the network in Fig. 4.3(a) sorted in ascending order. The nodes
that display a largest value of degree centrality in the dual network are the nodes
9 and 12, while those displaying the smallest values correspond to nodes 0,1 and
2.

In Fig. 4.18 we show the results of degree centrality on HB for the Macaque
brain network, which KDE distribution is presented in Fig. 4.10. Although we
are not looking for the interpretation of the obtained results, as it is not our field
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Figure 4.14: Degree centrality corresponding to the dual network of the net-
work defined in Fig. 4.3(a). Degree centrality of the nodes in the dual network
corresponding to the network presented in Fig. 4.3(a). Larger radius and darker
colors correspond to higher centrality values. The position of nodes are com-
puted using the Fruchterman-Reingold force-directed algorithm [67] consider-
ing the original network.

Node ID Degree Centrality
0,1,2 0.342

3 0.369
4 0.499

5,6 0.542
7 0.560

16, 17, 18, 19 0.605
8 0.634

10, 11, 13, 14 0.636
15 0.643

9, 12 0.648

Table 4.1: Degree centrality ranking of the nodes in Fig.4.3(a). Values of the
degree centrality of the dual network corresponding to the network in Fig. 4.3(a)
sorted in ascending order.
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of expertise, we highlight the fact that brain regions that display a larger value
of degree centrality account for a larger similarity with many other nodes in the
network (here we find dorsolatral premotor cortex, prefrontal polar cortex, su-
perior parietal cortex, posterior insula and orbitolateral prefrontal cortex as the
most central ones), while small values of degree centrality means that their role
in the network is more unique, in the sense that no other nodes can play a similar
structural role (here we find amygdala, inferior temporal cortex, primary visual
cortex, anterior visual area, ventral temporal cortex and hippocampus as the less
central ones).

Figure 4.15 shows for the Macaque brain network, the relation between
the original network and its corresponding dual network regarding degree and
eigenvector centralities, respectively. Note that the most central nodes of the
original network and its dual counterpart are not the same. Therefore, the dual
network provides new insights about the structure of the original one: nodes
that play a role of being structurally similar to many others need not have spe-
cific requirements concerning its degree. Regarding eigenvector centrality, we
can observe a non-linear tendency between both networks. The interpretation
of the highest scores of eigenvector centrality in the dual network is the follow-
ing: nodes that are, not only structurally similar to many other nodes, but whose
neighbours are so (and the neighbours of their neighbours, and so on). Con-
versely, the nodes with low values of eigenvector centrality are those which are
unique and which neighbours so are. Note that the values of the centralities in
both the original and the dual network are positively correlated up to a thresh-
old, from which a slightly negative correlation appears.

Despite the ranking of node importance obtained from centralities provides
us with the more relevant information about structural similarity, the distribu-
tion of scores is rather homogeneous. In order to obtain a more clear pattern,
we suggest using the binarized dual network, HB , in order to compute network
measures, such as centralities or community detection, because we get rid of
non-significant low-weighted edges and the network becomes more sparse, a
characteristic which leads to a better separation of the roles of nodes. On this
basis, Figs 4.19 and 4.20 show the results of degree and eigenvector centralities
using HB , the binarized dual network. In this case, the ranking of nodes is simi-
lar to that of the weighted dual network but differences between nodes are more
emphasized.

The brain regions with lower eigenvector centrality on the dual network are
the amygdala, inferior temporal cortex, inferior temporal cortex, primary visual
cortex, anterior visual area, ventral part and hippocampus. The regions with
the highest eigenvector centrality score are the prefrontal polar cortex, primary
auditory cortex, posterior cingulate cortex, posterior insula, orbitolateral pre-
frontal cortex and superior parietal cortex.
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Figure 4.15: Degree and eigenvector centralities computed for the nodes of the
original and the corresponding dual network for eh Macaque brain network.
Scatter plot of the degree and eigenvector centralities, in panel (a) and (b), re-
spectively, obtained for both the original and its corresponding dual network, G

and H , respectively, for the brain network of a Macaque.

4.3.2 Quasi-Symmetric communities

The classification of nodes into perfectly symmetric clusters or orbits has been
already addressed and solved in the field of discrete algebra. In Section 4.1.2
we suggest an alternative approach to obtain these same results based on a dy-
namic model. Nonetheless, we are interested in classifying nodes into different
communities based on the structural similarity, and not perfect equivalence, be-
tween them. This problem is a particular case of the more general topic of un-
supervised classification algorithms, where no correctly classified samples are
provided. In other words, we do not know the number of groups and the char-
acteristics of the nodes belonging to each group. However and differently to
classical classification problems, our main point is relying on the detection of
the number of peaks of the Gaussian Kernel Estimator distribution fitted on the
scaled phases (see Section 4.2.2.2). For large enough networks (those which con-
sidering a distribution makes sense), the number of peaks will be considered as
the number of expected communities that the community detection algorithm
should obtain. Hence, only the classification of nodes in each community is
missing. To address this question, several approaches are proposed, although
we do not reject alternative methodologies that may come up.

• Distance based approach: in section 4.2.2.1 we explore the distribution of
phases by fitting a Kernel density distribution in order to decide whether
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the structural similarity of a network has a richer pattern than a random
network. Once the optimal bandwidth of the Gaussian kernel is numeri-
cally computed, we can easily count the number of peaks of the distribu-
tion (see, for example, Fig. 4.9(b)). Our method consists in considering this
last value as the number of expected communities in the corresponding
parameter of an unsupervised clustering algorithm, for example, k-means
clustering or hierarchical clustering (following Reference [124]), and ob-
tain the optimal partition into communities. Note that the algorithm de-
livers the cluster to which each node belongs to, but not in a network-like
structure.

Figure 4.16(a,c) shows the dual network corresponding to the networks
with originally 5 symmetries with no perturbation and wmax = 0.05, re-
spectively. The position of nodes are computed using the Fruchterman-
Reingold force-directed algorithm [67] considering H . Colors represent
the distinct clusters obtained using k-means algorithm with the number
of clusters given by the number of peaks of the Kernel density distribu-
tion, i.e., 5. (see the upper panel in Fig. 4.8(b)). Similarly, Fig. 4.17(a,c)
shows the obtained communities for the networks with 12 perfect symme-
tries and after applying a random noise with wmax = 0.05, respectively. In
order to verify whether all nodes are correctly classified into the different
clusters (a number which is given by the detected peaks of the KDE distri-
butions), we plot the obtained scaled phases of each node and its corre-
sponding membership into the different communities. For the case of no
perturbation, single points are expected, as nodes belonging to the same
cluster collapse into a single phase value (see Figs 4.16(b) and 4.17(b)). For
perturbed networks, a dispersion of phases around different centroids is
expected (see Figs 4.16(d) and 4.17(d)).

Alternatively to k-means clustering algorithm we could apply hierarchical
clustering in order to split the nodes into communities and obtain equiv-
alent results.

The classification of items into clusters obtained by applying unsuper-
vised algorithms, such as k-means or hierarchical clustering, depend on
the choice of the number of clusters. The problem of the optimal choice
has been widely studied and several approaches have been proposed in or-
der to select the proper number of clusters or the cut height, for the cases
of k-means and hierarchical clustering, respectively. We compare the re-
sults of the number of peaks obtained by using the Kernel density distribu-
tion approach with that obtained by choosing the optimal number of clus-
ters with the most common method: the elbow curve [88]. The obtained
optimal number of clusters does not coincide with our approach as, when
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Figure 4.16: Clusters delivered by k-means algorithm of the dual network of
the network with originally 5 symmetries and the corresponding scatter plot
of the scaled phases versus the cluster ID. (a) Dual network corresponding to
the network (264 nodes) with originally 5 symmetries and no perturbation ap-
plied (wmax = 0.0). Colors represent the distinct clusters obtained using k-
means algorithm with the number of clusters given by the number of peaks of
the Kernel density distribution, i.e., 5. (see the upper panel in Fig. 4.8(b)). (b)
Corresponding scatter plot of the scaled phases versus the cluster ID. Nodes are
correctly classified, as the number of distinct groups is 5, as expected for the case
of a network with 5 symmetries and no perturbation applied. (c) Dual network
obtained after applying a perturbation of wmax = 0.05 to the original network.
The number of clusters is 4 (see the third panel Fig. 4.8(b)). (d) Corresponding
scatter plot of the scaled phases versus the cluster ID. Notice that phases corre-
sponding to nodes that belong to the same cluster have a dispersion different
than zero.
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Figure 4.17: Clusters delivered by k-means algorithm of the dual network of
the network with originally 12 symmetries and the corresponding scatter plot
of the scaled phases versus the cluster ID. (a) Dual network corresponding to
the network (209 nodes) with originally 12 symmetries and no perturbation
applied (wmax = 0.0). Colors represent the distinct clusters obtained using k-
means algorithm with the number of clusters given by the number of peaks of
the Kernel density distribution, i.e., 12. (see the upper panel in Fig. 4.9(b)). (b)
Corresponding scatter plot of the scaled phases versus the cluster ID. Nodes are
correctly classified, as the number of distinct groups is 12, as expected for the
case of a network with 12 symmetries and no perturbation applied. (c) Dual
network obtained after applying a perturbation of wmax = 0.05 to the original
network. The number of clusters is 9 (see the third panel Fig. 4.9(b)). (d) Cor-
responding scatter plot of the scaled phases versus the cluster ID. Notice that
phases corresponding to nodes that belong to the same cluster have a disper-
sion different than zero.
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the network is not perturbed, larger number of clusters are suggested. The
Kernel density distribution approach automatically detects the optimal
bandwidth and adapts to each distribution, from narrow peaks to broad
and diffuse distributions.

• Dual Network approach: using the definition of the binarized dual net-
work, in Eq.(4.24), we choose wthr eshol d such that the number of detected
communities using the Louvain algorithm equals the number of detected
peaks. In Figs 4.12 and 4.13, an example is provided for the networks with
originally 5 and 12 symmetries, respectively.

One key benefit of using HB is working with a sparse network and keep-
ing only significant relations between similar nodes. On this basis, in Fig.
4.21 we present the result of applying community detection on the bina-
rized dual network of the Macaque brain network, with the positions of the
layout being determined by the original network. Notice that the left-right
hemispheres separation is recovered from the communities and similar
regions are gathered in the same quasi-symmetric community. Nodes be-
longing to the same community play a similar role or have a similar struc-
tural pattern.

4.4 Discussion

There have been a number of attempts to deal with approximate symmetries
in networks. Beyond structural or topological symmetry, one should consider
the fact that real-world networks are exposed to fluctuations or errors, as well as
mistaken insertions or removals. Understanding network (approximate) sym-
metry is of great relevance for the analysis of real-world networks, as they have a
significant effect on network dynamics and function. In the present chapter, we
provide an alternative notion to approximate symmetries, which we call ‘Quasi-
Symmetries’. Differently from other definitions, quasi-symmetries remain free
to impose any invariance of a particular network property and are obtained from
an oscillatory dynamical model: the Kuramoto-Sakaguchi model.

A first main contribution is exploring the distributions of structural similar-
ity among all pairs of nodes and finding a benchmark to determine whether a
network has a more complex pattern to that of a random network concerning
quasi-symmetries: the criteria consists in determining whether the number of
quasi-symmetric groups is greater than one. The number of peaks is derived
from the Gaussian Kernel Density Estimator (KDE) (a detailed explanation of
the KDE is found in the appendix 4.5.3). Despite we have used this approach, we
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are open to alternative methodologies to find a more accurate detection of the
number of peaks. Moreover, other Kernels may be considered.

Secondly, we define the ‘dual network’, a weighted network (and its corre-
sponding binarized counterpart) that effectively encloses all the information of
quasi-symmetries in the original one. The dual network allows for the analysis
of centrality measures and community detection. The first informs us about the
nodes that play a unique role in the network and of those that behave similarly
to many other nodes. The latter leads to a classification of nodes into quasi-
symmetric communities, the natural extension of the automorphism group or-
bits (structurally symmetric nodes) of a network. The use of the binary dual
network, HB , is advantageous as it leads to more heterogeneous results in the
ranking of node importance and it enables a more significant classification of
nodes into quasi-symmetric communities. The number of detected peaks in the
KDE distribution determines the family of feasible HB . However, one could
suggest other criteria, as well as threshold models, in order to create the bina-
rized counterpart of the dual network.

Finally, we state that in the present chapter we bring out a general framework
to deal with approximate symmetries in complex networks. The dual network
has been presented as a useful tool to work with quasi-symmetries and a num-
ber of applications have been addressed. Nevertheless, there is a lot of room for
obtaining other interesting insights. The analysis of network tolerance to attack
to the quasi-symmetric structure or the analysis of quasi-symmetries in multi-
layer networks are some examples.

4.5 Additional Information

4.5.1 Condition on a diagonal matrix so that it commutes with
an automorphism permutation matrix

We provide a proof of the condition that a diagonal matrix must meet in order to
commute with the permutation matrix, P , corresponding to an automorphism
σ ∈ Aut (G ). This last statement is needed to proof that the Laplacian matrix of a
network also commutes with the permutation matrix, P :

Proof. Let P be a permutation matrix corresponding to an automorphism, σ ∈
Aut (G ). Hence,

Pei = eσ(i ) ∀i ∈ {0, ...,n −1} (4.25)

where {e0, ...,en−1} denotes the standard basis of Rn . For a n ×n matrix M to
commute with P we must have MP = P M , or equivalently, P−1MP = M . If M is
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the diagonal matrix

M =

m0
. . .

mn−1


for all i ∈ {0, ...,n −1},

P−1MPei = P−1Meσ(i ) = P−1mσ(i )eσ(i ) =
= mσ(i )P

−1eσ(i ) = mσ(i )ei (4.26)

where we have used ei = P−1eσ(i ) derived from Eq.(4.25) and the fact that mσ(i )

is a scalar. From this we can write

P−1MP = Mσ (4.27)

where

Mσ ≡

mσ(0)
. . .

mσ(n−1)


So M = di ag (m0, ...,mn−1) commutes with P if and only if mσ(i ) = mi for all i .
But the condition in Eq.(4.27) holds as long as mi = m j for all i , j that belong to
the same orbit.

4.5.2 The bi-conditional proof of the statement ‘nodes with
equal φ belong to the same orbit’

We derive the required conditions for the statement ‘Nodes that have the same
phases belong to the same orbit’ to be true. As we will see, the implication of two
nodes having the same phases is, in most cases, that these nodes belong to the
same orbit. However, there might be some cases where the equality of phases is
achieved by other conditions.

Suppose nodes i and j have the same phase, θi = θ j or φi = φ j . Then, from
Eq.(4.14) we can write the corresponding solutions using the reduced Laplacian

φi =α
∑
k

[L̃−1]i k (〈d〉−di ) and φ j =α
∑
k

[L̃−1] j k (〈d〉−d j ) (4.28)

The condition of identical phases leads to the equality∑
k

[L̃−1]i k (〈d〉−di ) =∑
k

[L̃−1] j k (〈d〉−d j ) ⇒ (〈d〉−di )
∑
k

[L̃−1]i k = (〈d〉−d j )
∑
k

[L̃−1] j k

(4.29)
because di and d j do not depend on k.

Condition (4.29) comes from assuming φi =φ j .
We consider two different cases: the considered nodes having the same de-

gree or different degree.
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• di = d j

If nodes i and j have the same degree, from Eq.(4.29) we get
∑

k [L̃−1]i k =∑
k [L̃−1] j k . This last equality is only true when i and j belong to the same

orbit.

Therefore, the straightforward implication is that i and j having the same
phase implies that i and j belong to the same orbit.

• di 6= d j

This case is more tricky. We can write the relations between the sum along
rows of the inverse of the reduced Laplacian as∑

k [L̃−1]i k∑
k [L̃−1] j k

= 〈d〉−di

〈d〉−d j
(4.30)

Making use of the inequality
∑

k [L̃−1]i k > 0 ∀i , we get

∑
k [L̃−1]i k∑
k [L̃−1] j k

≥ 0. Fi-

nally,
〈d〉−di

〈d〉−d j
≥ 0 (4.31)

Considering that di > 0 ∀i , the inequality (4.31) has the following solution:

di ≥ 〈d〉 and d j ≥ 〈d〉 or 0 < di ≤ 〈d〉 and 0 < d j ≤ 〈d〉 (4.32)

where we have simplified by considering that the network is large enough.

From this second case we can conclude that the equality (4.29) can be
achieved when di 6= d j only if Eq.(4.30) and Eq.(4.32) are true. These last
requirements represent very strong restrictions for a network. Firstly, the
fine tuning (only feasible for weighted networks) of the degree sequence
implied in Eq.(4.30) is hard to be achieved. Secondly, the inequality (4.32)
adds further constrains on the first condition.

To conclude, we can say that the double implication ‘Nodes that have the
same phases ⇐⇒ Nodes that belong to the same orbit’ is always true except by
the cases where a pair of nodes i and j that have different degrees, di 6= d j meet
the conditions expressed in Eqs.(4.30) and (4.32). Note that restriction (4.30)
requires that a quotient of degrees takes a specific value, resulting from a non-
linear transformation of network parameters, and hence, it is highly unlikely.
From a probabilistic perspective, the probability that a continuous random vari-
able takes a specific value is zero.
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4.5.3 Kernel Density Estimator

Kernel Density Estimator (KDE) is a non-parametric standard technique in ex-
plorative data analysis to estimate the probability density function of a random
variable first introduced in References [148] and [133]. From a finite data sample
the probability function of the whole population is inferred. The KDE method
takes a kernel and a parameter, the bandwidth, that affects the level of smooth-
ness the resulting curve has.

The problem can be posed as ‘How can one estimate a probability density
function f (x) given a sequence of n independent identically distributed random
variables X1, ..., Xn from this density f ? [172] The estimator of f , f̂h(x) is defined
by

f̂h(x) = 1

n

n∑
i=1

Kh(x −Xi ) (4.33)

where h is the smoothing parameter called the bandwidth and K is the kernel,
Kh(u) = K (u/h)/h. The Kernel is imposed to be symmetric and non-negative,
and K itself being a probability density. Then, f̂h(x) intuitively places at each ob-
servation point Xi a probability mass according to Kh and then averages. Some
of the commonly kernels are uniform, triangle,quartic, triweight, Epanechnikov
and Gaussian. It turns out that the choice of the bandwidth is much more im-
portant for the estimation of the density than the particular shape of the kernel.
Small values of h result into an over-fitted density distribution, showing spuri-
ous features ot the latter, while to big values of h lead to an estimate which is too
biased and may not reveal relevant features of the distribution.

The construction of a kernel density estimate finds and interpretation in
thermodynamics, since the Gaussian KDE is the solution of the heat propaga-
tion model, i.e., the solution of the estimator is equivalent to the amount of heat
generated when heat kernels are placed at each data point locations [36]. Note
that the Gaussian kernel density estimator is the unique solution to the diffusion
partial differential equation PDE

∂

∂t
f̂ (x, t ) = 1

2

∂2

∂2x
f̂ (x, t ), t > 0 (4.34)

with initial condition f̂ (x,0) = 1/N
∑

i δ(x − Xi ) is the empirical density of the
data and t =p

h. Eq.(4.34) corresponds to the Fourier heat equation.
We however make a few comments on some drawbacks of the popular Gaus-

sian Kernel density estimator: firstly, it lacks local adaptativity, which often leads
to substantial sensitivity to outliers as well as a tendency to flatten the peaks
and valleys of the distribution [169]. Secondly, just as most kernel estimators,
it suffers from boundary bias, as most kernels do not take into account further
information about the domain of the data, i.e., data being nonnegative. Some
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of these issues have been addressed by introducing more complex higher-order
kernels.

In this work, we pursue to hold the methodology as simple as possible. To
this end and because it meets the objectives of the posed problem, we use the
Gaussian kernel. Nonetheless, we suggest the reader to consider implementing
a kernel based on diffussive processes, in Reference [36], as it solves the men-
tioned problems of standard kernels estimators.

4.5.4 Whole-cortex Macaque structural connectome: results

In several section we have applied our measures to the whole-cortex macaque
structural connectome constructed from a combination of axonal tract-tracing
and diffusion-weighted imaging data [157]. We present the corresponding fig-
ures of the results concerning centralities and community detection.
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Figure 4.18: Degree centrality of the nodes in the dual network corresponding
to the Macaque brain network. Degree centrality of the nodes in the dual net-
work corresponding to the Macaque brain network. Larger radius and darker
colors correspond to higher centrality values. The position of nodes are com-
puted using the Fruchterman-Reingold force-directed algorithm [67] consider-
ing the original network.
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Figure 4.19: Degree centrality of the nodes in the binarized dual network cor-
responding to the Macaque brain network. Degree centrality of the nodes in
the HB network of the Macaque brain network. Larger radius and darker col-
ors correspond to higher centrality values. The position of nodes are computed
using the Fruchterman-Reingold force-directed algorithm [67] considering the
original network. The nodes above the 95% percentile of phases are removed
(outliers).
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Figure 4.20: Eigenvector centrality of the nodes in the binarized dual network
corresponding to the Macaque brain network. Eigenvector centrality of the
nodes in the HB network of the Macaque brain network. Larger radius and
darker colors correspond to higher centrality values. The position of nodes are
computed using the Fruchterman-Reingold force-directed algorithm [67] con-
sidering the original network. The nodes above the 95% percentile of phases are
removed (outliers).
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Figure 4.21: Binarized dual network of the Macaque brain network with colors
corresponding to the different communities obtained after applying Louvain
community detection algorithm. HB network of the macaque brain network
with wthr eshol d = 0.97. Colors correspond to different communities. The posi-
tion of nodes are computed using the Fruchterman-Reingold force-directed al-
gorithm [67] considering the original network. We note that the left-right hemi-
spheres separation is recovered from the communities and similar regions are
gathered in the same quasi-symmetric community.



CHAPTER 5

Conclusions

Most of the real-world complex systems are best described as complex networks
– biological, socio-economic or technological networks, among others. Notably,
they exhibit common features which make them be neither purely regular nor
purely random. Such of these well-known properties include the small-work
effect, an heterogeneous distribution of node degrees and the presence of com-
munities. The identification of the constituents and interactions of such systems
as the nodes and edges of the corresponding network, respectively, allows to in-
dividually explore the importance and role of each element: centrality measures
are the best example of node assessment. Nevertheless, the full description of
a network might remain incomplete if its structure is considered detached from
its dynamics.

Real networks are representations of evolving systems, which constituent
parts and connexions may experience changes over time. Ongoing dynamical
processes may be present even if the topology of a network is considered to be
static. Such systems are typically characterized by independent dynamical vari-
ables on each node that are coupled together only through the edges of the net-
work – acknowledge the transmembrane voltage spiking of individual neurons
in a brain or the infectious disease status of an individual in the course of an
epidemic spreading. Importantly, non-trivial patterns and phenomena emerge
from the interactions existing in such dynamical networked systems.

Many real systems of interest can be mathematically described as oscilla-
tory systems, that is, an ensemble of units that are individually modelled as os-
cillators of one sort or another, but that they are coupled with the neighbours
through the connections of the network. The flashing of fireflies, the neuronal
brain signals or the energy flow through the power grid are some examples.
Many biological, technological and even socio-economic systems are rightly de-
scribed as networks of couple phase oscillators. Very often, the dynamics of the
oscillators considers that neighbouring nodes are coupled through its phases
and regardless of the amplitude of the oscillations. Within this framework, re-
searchers have drawn particular attention to the study of synchronization, that
is, the whole set (or a fraction) of network oscillators being locked at the same
frequency.

Within this framework, after Arthur Taylor Winfree had made the first at-
tempt to mathematically model the latter non-linear collective dynamics [181]
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and following his approach, Yoshiki Kuramoto came up with a tractable mathe-
matical model that could capture the phenomenology of collective synchroniza-
tion by suggesting that oscillators were coupled by a sinusoidal function of their
phase differences [92, 93]. Despite its simplicity, the Kuramoto model is able to
capture the phase transition between the purely chaotic state, where all oscilla-
tors move independently, to a coherent state, where more and more oscillators
reach a frequency synchronized state and eventually end with all units swinging
in unison.

Later, Yoshiki Kuramoto together with Hidetsugu Sakaguchi presented a gen-
eralization of the previous limit-cycle set of oscillators Kuramoto’s model which
incorporated a constant phase lag between oscillators [150]. Subsequent stud-
ies of the model included the network structure within the model together with
the global shift – or frustration parameter – and considered identical oscillators
for all nodes, i.e., sharing a common intrinsic frequency. For a wide range of
the phase lag values, the system becomes synchronized to a resulting frequency,
i.e., the dynamics reaches a stationary state. However, the frustration parame-
ter forces connected nodes to be locked in phase and hence leading the system
to break the phase synchronized state. The magnitude of such locking is de-
termined by both the network topology and the parameters of the dynamics.
However, full synchronization is conserved for topological symmetric nodes – a
phenomenon that has been called remote synchronization [124].

In the original work of Kuramoto and Sakaguchi and in most of the conse-
quent later studies, a uniform distribution of phase lag parameters is custom-
arily assumed. However, just as the connectivity pattern of individual nodes is
mostly heterogeneous, other intrinsic properties of nodes – that assuredly rep-
resent the constituents of real systems – do not need be identical but distributed
non-homogeneously among the population. This thesis contributes to the un-
derstanding of the Kuramoto-Sakaguchi model with a generalization for non-
homogeneous phase lag parameter distribution. Considering different scenar-
ios concerning the distribution of the frustration parameter among the oscil-
lators represents a major step towards the extension of the original model and
provides significant novel insights into the structure and function of the consid-
ered network.

The first setting that the present thesis considers consists in perturbing the
stationary state of the system by introducing a non-zero phase lag shift into the
dynamics of a single node. The aim of this work is to sort the nodes by their po-
tential effect on the whole network when a change on their individual dynamics
spreads over the entire oscillatory system by disrupting the otherwise synchro-
nized state. In particular, we define functionability, a novel centrality measure
that addresses the question of which are the nodes that, when individually per-
turbed, are best able to move the system away from the fully synchronized state.
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This issue may be relevant for the identification of critical nodes that are either
beneficial – by enabling access to a broader spectrum of states – or harmful –
by destroying the overall synchronization. Hence, depending on the system we
are considering, the most functional nodes have to be considered when looking
for a potential enhancement of the diversity of attainable states or the inhibi-
tion of risky instabilities in the system. In addition, despite functionability is
obtained from a dynamical model, in the present thesis we derive the analyti-
cal expression of the centrality. It turns out that the corresponding ranking of
node centralities is exclusively determined by the network structure. Therefore
and importantly, functionability centrality is finally defined as a quantity which
does not depend on the values of the model or the parameters of a numerical
simulation. Moreover, the analytical expression is a compact and deterministic
mathematical function of the network topology and, thus, is not based on opti-
mization procedures.

After comparing functionability with other centrality measures we conclude
that, although most centrality measures share certain common patterns, func-
tionability delivers unique information about the network and the importance
of its constituent nodes. Importantly, we obtain that the nodes with the largest
values of functionability are both locally well connected – have a high degree –
but are also far from the central core of the network – that is, they are periph-
eral nodes. To sum up, functionability enables us to detect the nodes that are
most central or relevant for moving the overall system away from synchroniza-
tion. For example, epileptic attacks or power grid collapses may be derived from
single nodes that, even if not located in the main core, change their intrinsic
properties and spread asynchrony rapidly to the network, leading to potentially
fatal states. It may be helpful to target such nodes in order to control both syn-
chrony and asynchrony.

The second scenario that the present thesis addresses considers a more gen-
eral configuration in which the phase lag parameter is an intrinsic property of
each node, not necessarily zero, and hence exploring the potential heterogeneity
of the frustration among oscillators. A very relevant question in oscillatory mod-
els is finding the conditions of network synchronization. In this second work,
we bring forward a methodology not only to obtain the desired synchronized
state, but any convenient phase configuration in the steady state, by means of
a fine tuning of the phase lag or frustration parameters. We obtain the analyti-
cal solution of frustration parameters so as to achieve any phase configuration,
by linearizing the most general model. The three intrinsic parameters of the
nodes in the model, natural frequencies, frustration parameters and the phases
in the steady state are coupled by an equation that allows to tune them for a
desired configuration. A main result is that a given phase configuration can be
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access via a continuous spectrum of frustration parameters, i.e, one phase and
one frustration parameter are left as free parameters.

We also address the fact that the question ’among all the possible solutions,
which is the one that makes the system achieve a particular phase configuration
with the minimum required cost?’ is of particular relevance when we consider
the plausible real nature of the system. If a real system needs to access a particu-
lar phase configuration, which may be associated with a singular function, then
it will tend to minimize the effort or cost to do so. To this end, once the frus-
tration parameters are tuned so as to obtain a particular state, we define a cost
function to assess the overhead that the system requires to achieve such con-
figuration. In this way, among all possible solutions of the tuning, we request
those which minimize the cost to obtain them. Moreover, in the present thesis
we obtain the analytical solution of the cost function for two particular config-
urations and we make a connection with the non-linear Kuramoto-Sakaguchi
model: despite our analysis being based on the linear version of the model, we
show that the proposed phase lag parameters tuning is also able to enhance fre-
quency synchronization.

Finally, the homogenous distribution of phase lag parameters is revisited
in the last scenario: the phase state obtained in the stationary state when all
nodes share a common frustration parameter is tightly bounded to the topolog-
ical symmetries of the network. As studied in the literature, a certain degree of
symmetry is an attribute of real-world networks. The study of the symmetries
of a network is of great relevance for several reasons: it may help us to have a
better understanding of the formation of certain real-world networks, they can
also provide information about node function, and have an effect on network
redundancy and robustness. Moreover, symmetries are known to influence the
outcome of network dynamics, such as synchronization or controllability. The
notion of ‘symmetry’ or ‘invariance’ includes several specifications depending
on the field it is applied: a topological transformation of a graph or a network
maps each vertex to another one as a permutation, and the set of permuta-
tions of a graph that leaves the topology invariant are the automorphisms of the
graph. Additionally, the set of vertices can be split into the core of fixed points,
that is, vertices which are moved by none of the automorphisms of the graph,
and the vertex set of symmetric motifs, corresponding to the different permu-
tations. Each symmetric motif can be further partitioned into clusters, alterna-
tively called orbits, and they represent nodes that are structurally indistinguish-
able and play the same structural role in the network.

Nevertheless, beyond structural or topological symmetry, one should con-
sider the fact that real-world networks are exposed to fluctuations or errors, as
well as mistaken insertions or removals. Hence, despite there are many discrete
algebra software that is able to determine the automorphism group, that is, the
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symmetries, of a graph as well as to extract the orbits that locate the nodes in
each cluster, we are interested in constructing a framework that enables the de-
tection of, not only perfect symmetries, but approximate symmetries. There
have been a number of attempts to deal with approximate symmetries in net-
works. In the present thesis, we provide an alternative notion to approximate
symmetries, which we call ‘Quasi-Symmetries’. Differently from other defini-
tions, quasi-symmetries remain free to impose any invariance of a particular
network property and are obtained from the stationary state of the Kuramoto-
Sakaguchi model with an homogeneous phase lag distribution.

A first contribution is exploring the distributions of structural similarity
among all pairs of nodes and finding a benchmark to determine whether a net-
work has a more complex pattern than that of a random network concerning
quasi-symmetries: the criteria consists in determining whether the number of
quasi-symmetric groups is greater than one.

Secondly, we define the ‘dual network’, a weighted network –and its corre-
sponding binarized counterpart– that effectively encloses all the information of
quasi-symmetries in the original one. The dual network allows for the analysis
of centrality measures and community detection. The first informs us about the
nodes that play a unique role in the network and of those that behave similarly
to many other nodes. The latter leads to a classification of nodes into quasi-
symmetric communities, the natural extension of the automorphism group or-
bits (structurally symmetric nodes) of a network. The use of the binary dual net-
work is advantageous as it leads to more heterogeneous results in the ranking of
node importance and it enables a more significant classification of nodes into
quasi-symmetric communities.

Therefore, in this last work we bring out a general framework to deal with
approximate symmetries in complex networks. The dual network is presented
as a useful tool to work with quasi-symmetries and a number of applications are
addressed.

Bringing all the pieces together, the general conclusion that we can draw
from this thesis is that, despite the compact and simple mathematical expres-
sion of the original Kuramoto-Sakaguchi oscillatory model, interesting insights
are obtained when we consider the versatility of the phase lag parameters dis-
tribution. Considering three different scenarios for the distribution of the frus-
tration parameters among the population has lead us to obtain a more exten-
sive understanding of the connection between the dynamics and the structure
of complex networks. The definition and study of the functionability centrality
or quasi-symmetries are examples of it.

Throughout this thesis, we have sought to obtain the analytic solution of
several questions, wherever possible, because of the great benefit of having a
more tractable and interpretable outcome of the problems set forth. In addi-
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tion, we have illustrated most of the concepts and results by considering simple
synthetic networks. In this way, the meaning and required procedures of each
work become clearer to the reader. Moreover, special attention has been paid to
exemplify the different results to real networks, particularly, real brain networks.
However, we are aware that the interpretation by an expert of the field of such
outcomes is missing and hence represents a limitation to the work. For this rea-
son, a natural extension of the thesis is the application of the different measures
and results to real world networks, together with a meaningful interpretation of
the results, which would represent a significant step forward for the considered
fields. Furthermore, there is a lot of room for obtaining other interesting results,
such as the extension of the obtained results to multilayer or temporal networks.
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APPENDIX B

Resum en Català

Les xarxes complexes són una bona representació matemàtica de la majoria
dels sistemes complexos que es troben en la natura i en la societat: xarxes bi-
ològiques, socioeconòmiques o tecnològiques, entre d’altres. Aquestes xarxes,
que representen sistemes reals, tenen característiques en comú que fan que
no siguin ni purament regulars ni purament aleatòries. Aquestes propietats,
ben conegudes, inclouen l’efecte de small world, la distribució heterogènia dels
graus dels nodes i la presència de comunitats. La identificació dels components
i les interaccions d’un sistema en els nodes i les arestes d’una xarxa, respecti-
vament, permet explorar individualment la importància i el paper de cada el-
ement: les mesures de centralitat en són un bon exemple. No obstant això, la
descripció completa d’una xarxa pot romandre incompleta si la seva estructura
es considera desvinculada de la seva dinàmica.

Les xarxes complexes són representacions de sistemes en evolució, les parts
constitutives i les connexions dels quals poden experimentar canvis al llarg del
temps. Encara que la topologia d’una xarxa es consideri estàtica, hi poden estar
tenint lloc processos dinàmics. Aquests sistemes es caracteritzen habitualment
associant variables dinàmiques independents a cada node que s’acoblen només
a través de les arestes de la xarxa: pensem en l’increment del voltatge trans-
membrana de les neurones en un cervell o l’evolució d’una malaltia infecciosa
d’un individu en el curs d’una epidèmia. És important destacar que els patrons
i fenòmens no trivials emergeixen degut a les interaccions existents en aquests
sistemes dinàmics.

Molts sistemes reals d’interès es poden descriure matemàticament com sis-
temes oscil·latoris, és a dir, com un conjunt d’unitats que es modelitzen indi-
vidualment com a oscil·ladors d’un tipus o un altre, però que s’acoblen amb els
veïns a través de les connexions de la xarxa. El centelleig de les cuques de llum,
els senyals neuronals del cervell o el flux d’energia a través de la xarxa elèctrica
en són alguns exemples. Una descripciò adequada de molts sistemes biològ-
ics, tecnològics i, fins i tot, socioeconòmics consisteix en considerar-los xarxes
d’oscil·ladors de fase acoblats. Molt sovint, la dinàmica dels oscil·ladors consid-
era que nodes veïns estan acoblats a través de les seves fases i independentment
de l’amplitud de les seves oscil·lacions. Dins d’aquest marc, hi ha hagut espe-
cial interès en l’estudi de la sincronització, és a dir, quan tot el conjunt (o una
fracció) dels oscil·ladors de la xarxa es mou a la mateixa freqüència.
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Després que Arthur Taylor Winfree hagués fet el primer intent de modelitzar
matemàticament aquesta dinàmica col·lectiva no lineal [181] i seguint el seu en-
focament, Yoshiki Kuramoto va elaborar un model matemàtic senzill que po-
dria capturar el fenòmen de la sincronització col·lectiva suggerint que els os-
cil·ladors estaven acoblats per una funció sinusoïdal de les seves diferències de
fase [92, 93]. Tot i la seva simplicitat, el model de Kuramoto és capaç de capturar
la transició de fase entre un estat purament caòtic, on tots els oscil·ladors es
mouen de manera independent, a un estat coherent on, de manera progressiva,
els oscil·ladors arriben a un estat de sincronització en freqüència i, finalment,
totes les unitats acaben oscil·lant a l’uníson. .

Més tard, Yoshiki Kuramoto juntament amb Hidetsugu Sakaguchi van pre-
sentar una generalització del model d’oscil·ladors de cicle límit corresponent
al model de Kuramoto, que incorporava un desfasament constant entre os-
cil·ladors [150]. Estudis posteriors del model han incorporat l’estructura de la
xarxa dins del model juntament amb el desfasament constant (o paràmetre de
frustració), tot considerant tots els oscil·ladors idèntics, és a dir, amb la mateixa
freqüència natural. Per un rang ampli de valors del paràmetre de frustració el
sistema se sincronitza a una freqüència resultant, o dit d’una altra manera, el sis-
tema arriba a un estat estacionari. Tanmateix, el paràmetre de frustració obliga
els nodes connectats a mantenir una diferència de fase constant i, per tant, el
sistema deixa d’estar sincronitzat en fase. La magnitud d’aquest desfasament
està determinada tant per la topologia de la xarxa com dels paràmetres de la
dinàmica. Tanmateix, en els nodes topològicament simètrics la sincronització
completa (en freqüència i en fase) es conserva , un fenomen que s’ha anomenat
sincronització remota [124].

En el treball original de Kuramoto i Sakaguchi, així com en la majoria dels es-
tudis conseqüents, és habitual considerar una distribució uniforme del paràme-
tre de desfasament. No obstant això, de la mateixa manera que el patró de con-
nectivitat dels nodes és majoritàriament heterogeni, altres propietats que en són
intrínseques no són necessàriament idèntiques en tots els componenets sinó
que estan distribuïdes de manera no homogènia entre la població. Aquesta tesi
representa una contribució a la comprensió del model de Kuramoto-Sakaguchi,
especialment, en l’efecte de considerar una distribució heterogènia del paràme-
tre de frustració. El fet de tenir en compte diferents escenaris relacionats amb
la distribució de la constant de desfasament entre parelles d’oscil·ladors repre-
senta un pas important en l’extensió del model original i proporciona informa-
ció única de l’estructura i la funció de la xarxa que s’està considerant.

El primer escenari que es considera en la tesi consisteix en pertorbar l’estat
estacionari del sistema mitjançant la incorporació d’un paràmetre de desfasa-
ment diferent de zero a la dinàmica de cada node. L’objectiu d’aquest treball
és proporcionar una ordenació dels nodes segons l’efecte potencial que tenen
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sobre tota la xarxa quan un canvi en la seva dinàmica individual s’estén per tot
el sistema oscil·latori, modificant així l’estat inicialment sincronitzat. En par-
ticular, definim la funcionabilitat, una nova mesura de centralitat que adreça la
qüestió de quins són els nodes que, quan són pertorbats individualment, tenen
més capacitat de moure el sistema fora de l’estat totalment sincronitzat.

Aquesta qüestió pot ser rellevant en la identificació dels nodes crítics del sis-
tema, ja sigui pel fet de ser beneficiosos – permetent per exemple l’accés a un
espectre més ampli d’estats – o bé perjudicials – destruint la sincronització gen-
eral. Per tant, depenent del sistema que s’estigui considerant, caldrà identificar
els nodes més funcionals, ja sigui per aconseguir una major diversitat d’estats
accessibles com per inhibir inestabilitats que representin un risc pel sistema. A
més, tot i que la funcionabilitat té el seu origen en un model dinàmic, en aquesta
tesi obtenim l’expressió analítica d’aquesta centralitat. L’anterior expressió ens
indica que l’ordenació dels nodes segons la seva funcionabilitat està determi-
nada exclusivament per l’estructura de la xarxa. Cal destacar doncs que aquesta
mesura de centralitat es defineix com una quantitat que no depèn dels paràme-
tres del model o d’una simulació numèrica. A més, l’expressió analítica ve don-
ada per una funció matemàtica compacta i determinista de la topologia de xarxa
i que, per tant, no es basa en mètodes numèrics d’optimització.

Després de comparar la funcionabilitat amb altres mesures de centralitat
concloem que, tot i que la majoria de mesures de centralitat comparteixen
certs patrons comuns, la funcionabilitat proporciona informació única sobre
la xarxa i la importància dels seus nodes constitutius. És important destacar
que obtenim que els nodes amb valors més grans de funcionabilitat estan ben
connectats localment – tenen un grau alt – però també estan allunyats del nucli
central de la xarxa – és a dir, són nodes perifèrics. Resumint, la funcionabilitat
permet detectar els nodes que són més centrals o rellevants per tal de pertor-
bar el sistema de la sincronització total. Per exemple, els atacs epilèptics o els
col·lapses de la xarxa elèctrica poden ser desencadenats per nodes que, encara
que no estiguin situats al nucli principal, al modificar les seves propietats in-
trínseques, transmeten ràpidament l’asincronia a tota la xarxa, donant lloc a es-
tats potencialment perillosos. Per tant, pot ser d’especial rellevància identificar
aquests nodes per tal de controlar tant la sincronia com l’asincronia.

El segon escenari que aborda la present tesi considera una configuració més
general en la qual el paràmetre de desfasament és una propietat intrínseca de
cada node, no necessàriament zero, i n’explora la potencial heterogeneïtat. Una
qüestió molt rellevant quan es consideren models oscil·latoris consisteix en tro-
bar les condicions sota les quals la xarxa assoleix la sincronització. En aquest
segon treball, proposem una metodologia, no només per obtenir l’estat de sin-
cronització desitjat, sinó qualsevol altra configuració de les fases en l’estat esta-
cionari mitjançant un ajust dels paràmetres de desfasament o frustració. Així,
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obtenim la solució analítica dels paràmetres de frustració per aconseguir qual-
sevol configuració de les fases del conjunt d’oscil·ladors, linealitzant el model
més general. D’aquesta manera, obtenim que els tres paràmetres intrínsecs dels
nodes del model – les freqüències naturals, els paràmetres de frustració i les
fases en estat l’estacionari – estan acoblats en una equació que permet ajustar-
los a la configuració desitjada. Un resultat principal és que es pot accedir a una
configuració de les fases determinada a través d’un espectre continu de paràme-
tres de frustració, és a dir, la fase d’un dels oscil·ladors, així com un dels paràme-
tre de frustració esdevenen paràmetres lliures degut als graus de llibertat.

En aquest mateix treball també es planteja la següent pregunta: ‘D’entre
totes les solucions possibles, quina és la que fa que el sistema assoleixi una de-
terminada configuració de les fases amb el mínim cost requerit?’. Aquesta pre-
gunta és d’especial rellevància si considerem la naturalesa de molts sistemes. Si
un sistema real necessita accedir a una determinada configuració de les fases –
que podria estar associada a una funció particular – aleshores tendirà a minim-
itzar l’esforç o el cost per fer-ho. Per això, un cop ajustats els paràmetres de
frustració per obtenir un estat determinat, definim una funció de cost per aval-
uar la sobrecàrrega que li requereix al sistema arribar a aquesta configuració.
D’aquesta manera, d’entre totes les possibles solucions de l’ajust dels paràme-
tres, ens quedem amb aquelles que minimitzin el cost d’obtenir-les. A més, en la
present tesi obtenim la solució analítica de la funció de cost pel cas de dues con-
figuracions particulars i fem una connexió amb el model no lineal de Kuramoto-
Sakaguchi: tot i que l’anàlisi que realitzem es basa en la versió lineal del model,
mostrem que l’ajust dels paràmetres de desfasament proposat també és capaç
de potenciar la sincronització en freqüència del sistema.

Finalment, en l’últim escenari es torna a considerar una distribució dels
paràmetres de desfasament homogènia: l’estat de les fases obtingut en l’estat
estacionari quan tots els nodes comparteixen un paràmetre de frustració comú
està estretament lligat a les simetries topològiques de la xarxa. En diversos es-
tudis empírics es mostra que un atribut de les xarxes del món real és que pre-
senten un cert grau de simetria. L’estudi de les simetries d’una xarxa és de gran
rellevància per diversos motius: ens pot ajudar a entendre millor la formació de
determinades xarxes del món real, també poden proporcionar informació sobre
la funció dels nodes i tenir un efecte sobre la redundància i la robustesa de la
xarxa. A més, se sap que les simetries influeixen en el resultat de la dinàmica de
la xarxa, com ara en la sincronització o la controlabilitat. La noció de “simetria"
o“invariància" inclou diverses especificacions segons el camp en què s’apliqui.
Una transformació topològica d’un graf o d’una xarxa intercanvia cada vèrtex
amb un altre en forma de permutació. El conjunt de permutacions d’un graf
que deixen la topologia invariant són els automorfismes d’aquest graf. Tenint
en compte els automorfismes d’un graf, el conjunt dels seus vèrtexs es pot di-
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vidir en: un nucli format pels punts fixos – vèrtexs que es mantenen invariants
en tots els automorfismes del graf – i el conjunt de vèrtexs que formen motius
simètrics – corresponents a les diferents permutacions. Cada motiu simètric es
pot dividir en grups, també anomenats òrbites, que representen nodes estruc-
turalment indistinguibles, és a dir, que tenen el mateix paper estructural a la
xarxa.

No obstant això, més enllà de la simetria estructural o topològica, cal tenir
en compte el fet que les xarxes del món real estan exposades a fluctuacions
o errors, així com insercions o eliminacions errònies. Per tant, malgrat que hi
ha molts programaris d’àlgebra discreta que són capaços de determinar el grup
d’automorfismes, és a dir, les simetries d’un graf, així com d’extreure les òrbites
a les que pertanyen cada un dels nodes, agrupant-los en clusters, ens interessa
construir una metodologia que permeti la detecció de, no només les simetries
perfectes, sinó les simetries aproximades. Hi ha hagut una sèrie d’intents de
tractar les simetries aproximades en xarxes complexes. En la present tesi, pro-
porcionem una noció alternativa a les simetries aproximades, que anomenem
“Quasi-simetries". A diferència d’altres definicions, les quasi-simetries romanen
lliures d’imposar qualsevol invariància d’alguna de les propietats de la xarxa i
s’obtenen a partir de l’estat estacionari del model de Kuramoto-Sakaguchi quan
es considera una distribució homogènia del paràmetre de desfasament.

Una primera contribució consisteix en explorar les distribucions de similitud
estructural entre tots els parells de nodes i establir un punt de referència per
determinar si una xarxa té un patró més complex que el d’una xarxa aleatòria pel
que fa a les quasi-simetries: aquest criteri consistirà en determinar si el nombre
de quasi-simetries o grups simètrics és més gran que u.

En segon lloc, definim la “xarxa dual", una xarxa ponderada – i el seu corre-
sponent homòleg binaritzat – que integra en definitiva tota la informació rela-
tiva a les quasi-simetries en la xarxa original. La definició de la xarxa dual per-
met aplicar els mètodes estàndards d’anàlisi de xarxes, com són les mesures
de centralitat i la detecció de comunitats. El primer ens informa sobre els
nodes que tenen un paper únic a la xarxa i dels que es comporten de man-
era semblant a molts altres nodes. El segon proporciona una classificació dels
nodes en comunitats quasi-simètriques, l’extensió natural de les òrbites del
grup d’automorfismes (nodes estructuralment simètrics) d’una xarxa. L’ús de
la xarxa dual binària és avantatjós ja que condueix a resultats més heterogenis
en la obtenció de la importància dels nodes i permet una classificació més sig-
nificativa de nodes en comunitats quasi-simètriques.

Per tant, en aquest darrer treball presentem un marc general per tractar
simetries aproximades en xarxes complexes. La xarxa dual es presenta com una
eina útil per treballar amb quasi-simetries i s’especifiquen diverses aplicacions.
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Els diferents treballs que integren la present tesi ens ajuden a concloure
que, de l’expressió matemàtica compacta i senzilla del model oscil·latori origi-
nal de Kuramoto-Sakaguchi se’n deriven nocions interessants quan considerem
l’heterogeneïtat en la distribució dels paràmetres de desfasament. Considerar
tres escenaris diferents per a la distribució dels paràmetres de frustració entre la
població ens ha portat a obtenir una comprensió més profunda de la connexió
entre la dinàmica i l’estructura de xarxes complexes. La definició i estudi de la
funcionabilitat com a mesura de centralitat o les quasi-simetries en són exem-
ples.

Al llarg d’aquesta tesi hem obtingut la solució analítica a diverses qües-
tions – sempre que ha estat possible – ja que tenir una expressió matemàtica
com a resultat permet una interpretació i aprofundiment més significatius
dels problemes plantejats. A més, hem il·lustrat la majoria dels conceptes i
resultats considerant xarxes sintètiques simples. D’aquesta manera, el sentit
i els procediments necessaris de cada treball es fan més clars per al lector.
Addicionalment, s’ha prestat especial atenció a aplicar els diferents resul-
tats a xarxes reals, en particular, xarxes reals del cervell. Tanmateix, som
conscients que en manca una interpretació per part d’un expert en l’àmbit
d’aquests resultats i, per tant, representa una limitació. Per aquest motiu,
una extensió natural de la tesi és l’aplicació de les diferents mesures i re-
sultats a xarxes del món real, juntament amb una interpretació significativa
dels resultats, la qual cosa suposaria un important pas endavant per als
camps considerats. A més, hi ha molt de marge per obtenir altres resultats
interessants, com ara l’extensió dels resultats obtinguts a xarxes multicapa,
temporals o considerant interaccions d’ordre superior, com són els hipergrafs.
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