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Chapter 1

Introduction
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Led by the increasing demand of a strong mathematical theory to support the non-

commutative nature of quantum physics phenomena, Murray and von Neumann defined

von Neumann algebras in the 1920s, laying the first stone of modern non-commutative

algebra, a field that has become a major undertaking worldwide. Later on, Gelfand and

Naimark developed in the 1940s the notion of C∗-algebra, which turns out to generalize

the concept of von Neumann algebras. Since those early days, the study of C∗-algebras

has provided an elegant setting for many problems in mathematics and physics.

One of the major concerns across all mathematical areas (and for C∗-Algebra

Theory in particular) is the problem of classification. Motivated by the advances of

Connes in the classification of von Neumann algebras, G. Elliot initiated in [17] the

classification of C∗-algebras. He proved that the class of approximately finite dimen-

sional C∗-algebras (or simply AF) is completely determined by their ordered K0-groups.

Throughout the years, it has been proven that all simple separable unital nuclear

C∗-algebras with finite nuclear dimension satisfying the UCT can be distinguished by

their K-theoretic invariants, now known as Elliott invariants (see, for example, [53]). As

a consequence, the relevance of the study of K-theory has grown larger over the years.

The search of concrete models for certain classes of C∗-algebras has been a topic

of interest ever since. In this sense, the notion of group C∗-algebra was naturally genera-

lized to the one of groupoid C∗-algebra by Renault in his PhD. thesis [52]. Groupoids are

mathematical objects that generalize the concept of groups, where the unit space does

not need to consist of a single element. In consequence, groupoids are provided with

a partially defined multiplication. This small difference implies major changes in their

structure. Indeed, groupoids provide a unifying model for groups and group actions,

or even higher-rank graphs (and hence, for their associated C∗-algebras), among other

structures.

In group C∗-algebras, it is common to restrict our study to a more approachable

class of groups, usually the class of discrete groups. The groupoid analogue is what

Renault himself called étale groupoids. This family of groupoids is sufficient to model

a large number of examples (AF algebras, graph algebras, all Kirchberg algebras in the

UCT class, etc.).

Therefore, it is relevant the study of the K-theory of étale groupoids

C∗-algebras. In this line, Matui posed a conjecture in [38] where he claimed that the

K-groups of the C∗-algebra associated to an étale groupoid could be computed as a direct
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sum of all the even/odd homology groups of the given groupoid, under certain topological

conditions:

Conjecture 2.4.1. [38, Conjecture 2.6] Let G be an effective minimal étale groupoid,

such that G(0) is a Cantor space. Then:

∞⊕
i=0

H2i(G) ∼= K0(C∗r (G))

and

∞⊕
i=0

H2i+1(G) ∼= K1(C∗r (G)).

This conjecture has been proven true for several families of groupoids, that in-

clude AF groupoids, transformation groupoids of Cantor minimal systems [38], or Cuntz-

Krieger groupoids [21], [36]. In [46], it was proven that Katsura-Exel-Pardo groupoids

GA,B associated with square integer matrices, with A ≥ 0, satisfy the conjecture. In a

more recent work [6], the authors proved that the conjecture holds for principal groupoids

with dynamic asymptotic dimension at most 2.

Matui also posed a weakened version of this conjecture, obtained by applying a tensor

product (· ⊗Q) on both sides, in order to avoid extension and torsion problems.

A first counterexample to the strong conjecture was found by Scarparo in [56], and we

found two more shortly after in [47], in a joint work with Eduard Ortega. However, the

study of necessary and/or sufficient conditions for the conjecture to hold remains rele-

vant. The main goal of this work is to further deepen the knowledge of this conjecture,

providing some examples and counterexamples for it and, more importantly, developing

new techniques for the study of the invariants of certain families of groupoids.

The contents of this thesis are outlined below:

Contents and structure:

Chapter 2 will be devoted to setting all the notions required for the study of

Matui’s conjecture. We begin the chapter by providing most of the background that we

will need in the forthcoming pages. We state the basic definitions regarding groupoids

and their C∗-algebras, following [1], [3], [52], [58] and [59], among others. We also recall

some of the most important results concerning K-theory, appearing in [5], [53] and [51].

Later on, we provide the definition of homology groups of a groupoid, as appearing in

[14], and show the computation of the homology for some basic groupoids. We show
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special interest in the canonical map Φ between H0(G) into K0(C∗r (G)) (introduced in

[36]), given by [1U ]H0 → [1U ]K0 , where U is a compact open set of the unit space of G.

This map, always well defined, will play a key role in the discussion of Deaconu-Renault

groupoids, later in Chapter 4.

With all the basic notions set out, we finally introduce the HK conjecture posed by H.

Matui in [38], after a series of articles [36], [37]. We also introduce a second conjecture

appearing in [38], named AH, which we will discuss briefly in Chapter 5. This conjecture

predicts, for essentially principal, minimal étale groupoids whose unit space is a Cantor

set, the existence of an exact sequence relating the homology groups with the topological

full group [[G]]:

H0(G)⊗ Z j→ [[G]]ab
Iab→ H1(G)→ 0

In Chapter 3, we aim to collect some of the most important techniques used

to compute groupoid invariants. First, we discuss the notion of Kakutani equivalence,

also known as Morita equivalence (see [36]), appearing in [21], [52] or [58], among others.

Kakutani equivalence has proven to be a powerful tool when studying the HK conjecture,

since it preserves both the homology and the K-theory groups associated to a groupoid

(see, for example, [21]).

After that, we study the concept of groupoid cocycles, their associated skew-product

groupoids, and their relation with the original groupoid. In this line, we show how

the study of groupoid invariants can be approached by studying the invariants of the

associated skew-product groupoid, using the results appearing in [46], [36], and [21].

Crossed product C∗-algebras arise naturally from skew product groupoids due to Takai-

Takesaki duality (see [62]-[63]). In order to study those algebras, we follow the strategies

of [4], [29], [48], [51] or [67], among others. Since some of those results require certain

level of understanding about spectral sequences, we facilitate an introduction to that

subject, using [34], [35], [39] and [64] as guidelines.

We then state both Matui’s ([36], [14]) and Kasparov’s ([29]) spectral sequences in par-

ticular, and provide a certain explicit approach to the second one, appearing in [4], [54]

and [57]. We discuss the mapping torus C∗-algebra Mα(A) associated to a dynamical

system (A,α,Zn), which is known to satisfy

Kq+n(Mα(A)) ∼= Kq(Aoα Zn).

Moreover, using similar techniques to the ones appearing in [48], we show a new approach

to this isomorphism in Subsection 3.3.4.2, and we prove in Theorem 3.50 that the
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isomorphism satisfies certain naturality conditions which will be of major relevance in

Chapter 4.

We finish this chapter by displaying, in Corollary 3.59, the first counterexample of the

strong version of Matui’s HK conjecture, developed by Scarparo in [56], and consisting

of the transformation groupoid associated to a certain odometer.

The purpose of Chapter 4 is to investigate Matui’s HK-conjecture for Deaconu-

Renault groupoids, following the work of [21]. This family of groupoids is an important

source of C∗-algebras; they provide models for crossed products associated to Cantor

minimal dynamical systems or higher-rank graph C∗-algebras, among others. Matui’s

HK conjecture, if proven true for this family, could become a very useful tool for compu-

ting the K-theory of those C∗-algebras, since the homology groups of Deaconu-Renault

groupoids were completely determined in [21], following the work of [18]. In the same

work [21], the authors prove that Deaconu-Renault groupoids of rank 1 and 2 satisfy

the HK conjecture, and raise the question of whether the HK isomorphism could be

chosen to be natural, in some sense. We shed some light on this by using the picture of

Kasparov’s spectral sequence for K-theory appearing in [4] and [54]. By doing so, we

prove the following:

Propositions 4.14 + 4.15. Rank 2 Deaconu-Renault groupoids satisfy Matui’s HK

conjecture. Moreover, the isomorphism for K0 can be chosen such that H0(G(X, σ))

embeds into K0(C∗r (G(X, σ))) via the canonical map Φ.

Moreover, in [21], the authors conjectured that, for a rank 3 Deaconu-Renault

groupoid, the injectivity of the canonical map Φ from H0(G) into K0(C∗r (G)) may

lead to the verification of HK conjecture for this family. In this chapter, we prove

that their conjecture is true. To do so, we use a well-known result relating the

reduced C∗-algebra of a Deaconu-Renault groupoid C∗r (G) with the crossed product

by Zk of the C∗-algebra associated to certain skew product groupoid G ×c Zk, via

Takai-Takesaki duality [62], [63], and then we study Kasparov’s spectral sequence

following [4]. By doing so, we are able to identify each one of the components of the

sequence, as well as the maps involved. We use this to construct an exact sequence

containing, in a consecutive way, the only non-trivial map of the third page of the

spectral sequence, and Φ. Those techniques are enough to prove that the spectral se-
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quence meets its limit prematurely, which, in this case, is enough to verify HK conjecture.

Theorem 4.18. Let G(X, σ) be a Deaconu-Renault groupoid of rank 3. Then, whenever

the canonical map between H0(G(X, σ)) and K0(C∗r (G(X, σ))) is injective, G(X, σ) verifies

Matui’s weak HK conjecture for K0, and the strong version of HK for K1.

We then use this in order to obtain:

Theorem 4.26. Let σ be an action of Z3 by homeomorphisms on the Cantor set X.

Then the associated Deaconu-Renault groupoid G(X, σ) satisfies the HK conjecture for

K1, and the weak HK conjecture for K0.

We conclude this chapter by providing a complete description of the group

K1(C∗r (G(X, σ)×c Zk)o Z), using the techniques appearing in [3].

Chapter 5 revolves around the groupoid arising from the infinite dihedral group

acting as a self-similar group over certain set X, as studied in [46]. Self-similar objects

are well-known to provide relatively simple examples of exotic structures. In this line, we

expected to find new counterexamples to Matui’s HK conjecture encoded as self-similar

objects.

We begin the chapter with the basic notions of self-similarity and the associated

C∗-algebras, following [20], [44], [46] and [43]. We also show some results from Nekra-

shevych [41], [42] relating those algebras with ones constructed via crossed products.

In particular, it was proven in [42] that the C∗-algebra associated to a self-similar

groupoid G(Γ,X) is isomorphic to the Cuntz-Pimsner algebra C∗(Γ, X). In the same work,

the author shows how this C∗-algebra C∗(Γ, X) can be expressed as a certain crossed

product C∗-algebra of the gauge-invariant subalgebra MΓ.

We use those results to compute the K-theory of the self-similar groupoid associated to

the infinite dihedral group.

We then proceed to study the homology groups of said groupoid, obtaining, up to iso-

morphisms, the low homology groups, and some useful results on the torsion properties

of the higher ones. We combine all those results to present the dihedrical self-similar

groupoid as a complete counterexample for both strong and weak versions of the HK

conjecture.
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Theorem 5.21. Let D∞ be the infinite dihedral group, and X = {0, 1}. Let (D∞, X) be

the induced self-similar group, and let G(D∞,X) be the associated groupoid of germs. Then

Q ∼= Ki(C
∗
r (G(D∞,X)))⊗Q �

∞⊕
k=0

Hi+2k(G(D∞,X))⊗Q = 0, i = 1, 0.

We finish this chapter with the verification of the AH conjecture for the groupoid

G(D∞,X) appearing in Theorem 5.21, using techniques developed in [38] and [44].
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Chapter 2

Background
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The main purpose of this chapter is to introduce the HK-conjecture, posed by

H. Matui in a series of articles [36], [37], and [38]. To do so, and since this work aims

to be self-contained, we need first to provide all the definitions regarding this conjec-

ture: groupoids, étaleness, homology, K-theory, etc. The chapter is structured as follows:

In Section 2.1 we provide the basic notions about groupoids, and at the same

time we set most of the notation that we will use in this work. Here we show some of

the most common families of groupoids, as well as the ones we will focus our work later

on. A more detailed account on the groupoid subject can be found in [1], [52] or [59],

among others.

In Section 2.2, we give the definition of homology groups associated to a groupoid

introduced in [14]. These are obtained by computing the homology groups of a certain

chain complex associated to the groupoid. We also provide some basic results regarding

groupoid homology (see, for example, [14], [21] or [38]).

In Section 2.3 we describe how to naturally associate a (reduced) C∗-algebra to

an étale groupoid, following [19], [52] and [59]. We also use this section to recall some

basic results about K-theory.

Finally, in Section 2.4, we discuss the main motivation of this work, that is,

Matui’s HK conjecture introduced in [38]. This conjecture anticipated a relation between

the homology and the associated K-theory of an étale groupoid, under certain structure

conditions. As we will show throughout this document, a counterexample for the strong

version of this conjecture was found by Scarparo in a recent article [56]. Shortly after, we

found a counterexample for both the strong and weak version of this conjecture, in a work

made with Eduard Ortega [47]. We finish the chapter by showing a second conjecture

posed by Matui in [38], named AH, which we will discuss for self-similar groupoids in

Chapter 5. The question of whether this conjecture is true or false remain unanswered

yet.
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2.1 Basic notions

2.1.1 Groupoids

As we exposed in the introduction, the main theme of this work is the study of

groupoids, as well as the relation between their invariants. It is therefore mandatory to

begin with a proper definition of groupoid.

In a few words, groupoids are a generalization of groups. More precisely, a groupoid is a

group whose unit may fail to be unique. This change allows a richer and more versatile

structure, making their study worthwile.

If the reader is familiar with category theory, the simpler way to define a groupoid is the

following:

Definition 2.1. (Groupoid 1). A groupoid is a small category with inverses.

As mentioned, this is a quick and clean way to define a groupoid. However, it may

means very little for a reader unfamiliar with category notions. This work aims to be

self-contained, making it imperative to provide a less abstract, algebraic definition:

Definition 2.2. (Groupoid 2). A groupoid is a set G with a distinguished subset G(0),

together with a collection of maps:

Range and source maps r, s : G → G(0).

Inversion map g 7→ g−1, for all g ∈ G.

Multiplication map (g, h) 7→ gh ∈ G, for all (g, h) ∈ G(2) := {(α, β) ∈ G : s(α) = r(β)}.
Moreover, the following properties must be met:

• r(x) = x = s(x), for all x ∈ G(0).

• r(g)g = g = gs(g) for all g ∈ G.

• r(g−1) = s(g), and s(g−1) = r(g), for all g ∈ G.

• g−1g = s(g), and gg−1 = r(g), for all g ∈ G.

• r(gh) = r(g), and s(gh) = s(h), for all (g, h) ∈ G(2).

• (gh)f = g(hf), for all (g, h, f) ∈ G(3) (defined similarly to G(2)).

An elemental exercise for a category course would be to prove that, indeed, those two

definitions are equivalent.

Groupoid homomorphisms are defined similarly to group homomorphisms, that is, a

map ϕ : G → H between two groupoids satisfying that, whenever (g1, g2) ∈ G(2), then

(ϕ(g1), ϕ(g2)) ∈ H(2), and

ϕ(g1)ϕ(g2) = ϕ(g1g2).
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Immediate consequences arise from this:

• ϕ(x) ∈ H(0), for all x ∈ G(0).

• r(ϕ(g)) = ϕ(r(g)), and s(ϕ(g)) = ϕ(s(g)), for all g ∈ G.

• ϕ(g−1) = ϕ(g)−1.

Before advancing further, let us show some basic examples:

Example 2.3. (Groups).

Let G be a group, and let e ∈ G be its unit. Set G(0) = {e}. Then G, together with the

group operations, is a groupoid.

This goes in both directions. If the unit space of a groupoid has one single element, then

the groupoid is a group.

Example 2.4. (Product groupoid).

Let G, H be groupoids. Then the set G × H, together with pointwise operations and

G(0) ×H(0) as unit space, is a groupoid.

Example 2.5. (Equivalence relations).

Let R be an equivalence relation on a set X. Set R(0) := {(x, x) : x ∈ X} ⊆ R. Define

r(x, y) = (x, x), and s(x, y) = (y, y), multiplication given by (x, y)(y, z) = (x, z), and

inverse given by (x, y)−1 = (y, x). Then R, together with those operations, is a groupoid.

Usually, the elements (x, x) of R(0) are simply identified as elements x of X.

Given a groupoid, one can always construct an equivalence relation subgroupoid as it

follows:

Define R(G) := {(r(g), s(g)) : g ∈ G} ⊆ G(0) × G(0). It is straightforward to check that

R(G) is indeed a groupoid. Moreover, the map g 7→ (r(g), s(g)) from G to R(G) is always

a surjective groupoid homomorphism.

Example 2.6. (Group bundles).

Let X be a set, and let Gx be a group for every x ∈ X. Define the sets G :=
⋃
x∈X
{x}×Gx,

and G(0) := {(x, eGx) : x ∈ X}. Identify G(0) with X in the natural way. Then the set G
is a groupoid, together with operations r(x, g) = s(x, g) = x, (x, g)(x, h) = (x, gh), and

inverse given by (x, g)−1 = (x, g−1).

Example 2.7. (Transformation groupoids).

Let Γ be a group acting on a set X by bijections. Let G := Γ × X, and set G(0) =

{e} ×X, identified with X via (e, x) 7→ x. Define operations r(g, x) = g · x, s(g, x) = x,

multiplication given by (g, h·x)(h, x) = (gh, x), and inverse (g, x)−1 = (g−1, g ·x). Then G
is a groupoid called transformation groupoid. The usual notation is G = X o Γ.
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Example 2.8. Let ϕ : Γ y G be an action of a countable group on a groupoid G.

Define the semi-direct product groupoid Goϕ Γ as G ×Γ, together with the following

structure:

• (g, γ)(g′, γ′) = (gϕγ(g′), γγ′), whenever (g, ϕγ(g′)) ∈ G(2).

• (g, γ)−1 = (ϕγ
−1

(g−1), γ−1).

There exists a natural homomorphism ϕ̂ : G oϕ Γ→ Γ given by (g, γ) 7→ γ.

It is straightforward to check that, whenever G is trivial, in the sense that G = G(0) = X,

then the semi-direct product groupoid is just the transformation groupoid.

Some immediate unicity properties arise from the definition of a groupoid:

Lemma 2.9. Let G be a groupoid, and let g ∈ G. Then g−1 is the unique element such

that gg−1 = r(g). It is also the unique element such that g−1g = s(g).

Proof. Let gh = r(g). Then h = r(h)h = s(g)h = (g−1g)h = g−1(gh) = g−1r(g) = g−1.

The second statement is analogous.

Lemma 2.10. Let G be a groupoid, and let g, h ∈ G. Suppose that there exists some

γ ∈ G such that gγ = hγ. Then g = h. The same happens if γg = γh.

Proof. If gγ = hγ, then g = gγγ−1 = hγγ−1 = h.

Now we want to introduce the concept of isotropy, in order to define some key properties

for the groupoids. Before that, we need to set some notation:

Let x, y ∈ G(0). We write

Gx := {g ∈ G : s(g) = x} = s−1(x),

Gy := {g ∈ G : r(g) = y} = r−1(x),

and Gyx := Gx ∩ Gy.

Some texts refer to Gx, Gx and Gyx as Gx, xG and yGx respectively (see [36], for example).

Definition 2.11. Let G be a groupoid. For every x ∈ G(0), we define the isotropy of x

as Gxx . We define the isotropy of G to be the set Iso(G) :=
⋃

x∈G(0)

Gxx .

The isotropy of a groupoid can be seen as the set of all elements g ∈ G such that

r(g) = s(g) or, in category language, the set of all endomorphisms of G. It is clear that

G(0) ⊆ Iso(G).

Proposition 2.12. For every x ∈ G(0), the isotropy of x is a group with unit x. Moreover,

Iso(G) is a subgroupoid of G.
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Proof. The first statement is straightforward to check: Gxx is clearly a subgroupoid of G,

and its unit space contains a single element. Therefore, it is a group.

Then the second statement is immediate. Indeed, Iso(G) is a group bundle as in Example

2.6. Moreover, the unit space of Iso(G) is G(0).

Definition 2.13. For every x ∈ G(0), we define the orbit of x as G(x) := r(Gx) =

r(s−1(x)).

Notice that, since every element has a unique inverse, the definition is equivalent to

G(x) = s(Gx) = s(r−1(x)).

Definition 2.14. Let G be a groupoid. A subset F ⊆ G(0) is said to be G-full if, for

every x ∈ G(0), r−1(x) ∩ s−1(F ) 6= ∅.

Saying that F is G-full means, essentially, that F is connected with every unit of

G(0). Again, the reader can check that the definition does not change if we switch

r−1(x) ∩ s−1(F ) for s−1(x) ∩ r−1(F ).

From now on, we will refer to G-full subsets simply as full. At least, we will do that

whenever the groupoid they belong to is clear.

The following definition is often denoted as restriction subgroupoid.

Definition 2.15. Let F be a subset of G(0). The reduction (or restriction) of G to F ,

denoted as G|F , is given by:

G|F := r−1(F ) ∩ s−1(F ).

It is clear that G|F is a subgroupoid of G. Indeed, it is the biggest subgroupoid of G with

F as its unit space.

We now introduce a well known family of groupoids. In some texts, this definition is

replaced with another (equivalent) one. We use here the one we think is more intuitive.

Definition 2.16. We say that a groupoid G is principal if and only if Iso(G) = G(0).

As we noted before, there are few other equivalent definitions for principality. The most

relevant one is the following:

Lemma 2.17. A groupoid G is principal if and only if it is algebraically isomorphic to

the equivalence relation R(G) under the map g 7→ (r(g), s(g)).

Proof. Suppose that G is principal. The map g 7→ (r(g), s(g)) is always a surjective

homomorphism, so we just need to check its injectivity. Suppose that (r(g), s(g)) =

(r(h), s(h)) for some g, h ∈ G. Then hg−1 ∈ Iso(G) = G(0). Since the inverse is unique,

we deduce that g = h.



14

For the other implication, suppose that g 7→ (r(g), s(g)) is an isomorphism. Let g ∈
Iso(G), and denote x = r(g) = s(g) ∈ G(0). Then (r(g), s(g)) = (x, x) = (r(x), s(x)).

Since the map is an isomorphism, we deduce g = x, and thus Iso(G) = G(0), as desired.

We can easily study the principality for the examples we introduced in the previous lines.

Lemma 2.18. The following statements hold:

• A group is principal if and only if it is trivial.

• G ×H is principal if an only if both G, H are.

• A group bundle groupoid is principal if and only if Gx is trivial, for every x ∈ X.
Hence, a principal group bundle is just a set.

• A transformation groupoid is principal if and only if g · x 6= x, for all x ∈ X and
all g ∈ G, that is, if and only if the action is free.

2.1.2 Topological groupoids.

We aim to build some C∗-algebra structures associated to groupoids. In this

line, the first step is to associate some kind of topology to a groupoid, meeting certain

standards.

Definition 2.19. We say that a groupoid G is a topological groupoid whenever G is

endowed with a topology, with the following conditions:

• The topology is locally compact.

• G(0) is Hausdorff in the relative topology.

• The maps r, s, and g 7→ g−1 are all continuous.

• The map (g, h) 7→ gh from G(2) onto G is continuous in the relative topology on
G(2).

In particular, when considering Hausdorff groupoids, the following property appears.

Lemma 2.20. Let G be a topological groupoid. Then G(0) is closed in G if and only if

G is Hausdorff.

Proof. Suppose G(0) is not closed. Then there exists some {xi}i∈I ⊆ G(0) converging to

some g ∈ G \ G(0). However, r is continuous, and hence {r(xi)}i∈I = {xi}i∈I converges to

r(g) 6= g. Therefore, G is not Hausdorff.

Now suppose that G(0) is closed. Let {gi}i∈I converging to both α and β. By continuity,
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we have that {s(gi)} = {g−1
i gi} converges to α−1β. Since G(0) is closed, and s(gi) ∈ G(0),

we deduce that α−1β ∈ G(0), and therefore α = β. Hence, G is Hausdorff.

We can easily add a topology to the groupoids listed previously. For example:

Example 2.21. Every group is a topological groupoid with the discrete topology.

Example 2.22. If G and H are topological groupoids, then G × H is a topological

groupoid with the product topology.

Example 2.23. Let X be a locally compact Hausdorff space, and R an equivalence

relation on X. Then R is a topological groupoid in the relative topology of X ×X.

Example 2.24. Let X be a locally compact Hausdorff space, and G a locally compact

group acting on X by homeomorphisms. Then the associated transformation groupoid

is a topological groupoid in the product topology.

In most cases, when referring to topological groupoids, we will just name them as

groupoids, since it will be clear that they are endowed with a topology.

We now show a couple of more sophisticated groupoids. More precisely, we introduce

two of the families of groupoids that will be studied in the forthcoming chapters.

Example 2.25. (Deaconu-Renault groupoids). Let X be a locally compact Hausdorff

space, and let σ := (σ1, ..., σk) be an action of Nk on X by surjective local homeomor-

phisms. For p = (p1, ..., pk) ∈ Nk, denote σp := σp1

1 ...σ
pk
k .

The associated Deaconu-Renault groupoid G(X, σ) was defined in [16] as

G(X, σ) := {(x, p− q, y) ∈ X × Zk ×X : σp(x) = σq(y)},

together with operations r(x, n, y) = (x, 0, x), s(x, n, y) = (y, 0, y), and

(x, n, y)(y,m, z) = (x,m + n, z). The set G(X, σ)(0) is usually identified with X via

(x, 0, x) 7→ x.

The topology is given by the basis of sets Z(U, p, q, V ) := (U × {p− q} × V ) ∩ G(X, σ),

where U, V are open sets of X such that σp(U) = σq(V ).

Remark 2.26. For a Deaconu-Renault groupoid to be principal, one needs to ensure

that, for every x ∈ X, there are no integers p, q ∈ Nk, with p 6= q, such that σp(x) = σq(x).

In that (unusual) case, G(X, σ) is principal.

Remark 2.27. Deaconu-Renault groupoids, as defined initially in [16], are a more

general family of groupoids, since they do not impose that many topological conditions.

However, whenever they are studied along with Matui’s HK conjecture (which we will

introduce later), they appear as defined above, in order to meet the conjecture’s hypo-

thesis.
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Remark 2.28. Let X be a locally compact Hausdorff space, and suppose that σ :=

(σ1, ..., σk) is an action of Zk on X by homeomorphisms. Then the elements of the

associated Deaconu-Renault groupoid are of the form

(x, p− q, y) ∈ X × Zk ×X,

where σp(x) = σq(y). Since σ is an action by homeomorphisms, we can write this equality

as x = σq−p(y), and therefore (x, p − q, y) = (σq−p(y), p − q, y). Then, straightforward

computation shows that there is an isomorphism between the Deaconu-Renault groupoid

G(X, σ) associated to the action by homeomorphisms and the associated transforma-

tion groupoid (Definition 2.7), given by

(σq−p(y), p− q, y) 7→ (q − p, y) ∈ X o Zk.

We now show another example, used to encode the dynamics of inverse semigroup actions.

Example 2.29. (Groupoids of germs).

Let X be a locally compact Hausdorff space, and let G be an inverse semigroup of

homeomorphisms between open subsets of X. Given g ∈ G, and whenever x is in the

domain of g, we define the germ of (g, x) as the equivalence class [g, x], where :

[g, x] = [g′, x′] ⇔ x = x′ and g coincides with g′ in a neighborhood of x. We define the

groupoid of germs G as the set of all germs, with structure:

G(0) = {[e, x] : x ∈ X}
s([g, x]) = [e, x]

r([g, x]) = [e, g(x)]

[g1, g2(x)][g2, x] = [g1g2, x], and

[g, x]−1 = [g−1, g(x)].

The topology of G is given by the basis

UU,g := {[g, x] : x ∈ U},

where g ∈ G and U is an open subset of the domain of g.

Once a groupoid is endowed with a certain topology, we can look for a certain set of

desirable properties.

Definition 2.30. A topological groupoid G is minimal if, for every x ∈ G(0), the orbit

of x is dense in G(0).
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Given a groupoid G, one of the most natural conditions to expect is for G(0) to be open.

This, however, does not always happens. To meet that condition, we now introduce the

family of groupoids we focus our work on. In some sense, this family is the groupoid

equivalent to discrete groups.

Definition 2.31. (Étale groupoids) A topological groupoid is said to be étale if the

source map s : G → G(0) is a local homeomorphism. An étale groupoid is said to be

ample if its unit space is zero dimensional.

Before advancing forward, we give two remarks. More precisely, one remark and one

warning:

• The definition is equivalent if instead of the source map, we use the range map.
This one is clear.

• Early documents asked for the source (or range) map to be a local homeomorphism
as a map from G to G, not from G to G(0), as a way to force G(0) to be open in G.
Indeed, G(0) can then be put as G(0) =

⋃
g∈G s(Ug), where, for every g, Ug is an open

neighbourhood of g such that s : Ug → r(Ug) is a homeomorphism. This condition
is not needed, as we prove in the following Lemma.

Lemma 2.32. [59, Lemma 8.4.2]. If G is étale (as in Definition 2.31), then G(0) is open

in G.

Proof. Suppose that G(0) is not open. Then there is a sequence {γn}n in G \ G(0) such

that γn → x ∈ G(0). Continuity of s implies that s(γn) → s(x) = x. Now take an

open neighbourhood U of x in G. There exists some n0 such that γn0 , s(γn0) ∈ U . Since

γn0 ∈ G \G(0), it is clear that s(γn0) 6= γn0 . But s(s(γn0)) = s(γn0), and therefore s is not

locally injective. Thus, s is not a local homeomorphism, concluding the proof.

From now on, we will ask any groupoid homomorphism between étale groupoids to be

continuous. Some texts emphasize this by denoting continuous groupoid homomorphisms

as étale homomorphisms.

Under the proper conditions, all the groupoids listed before are étale.

Lemma 2.33. The following statements hold:

• Every discrete group is an étale groupoid.

• The product of two étale groupoids is étale.

• If G is an étale groupoid, and F is a subset of G(0), then G|F , endowed with the
induced topology, is an étale groupoid.

• A transformation groupoid is étale if and only if the acting group G is discrete.

• Deaconu-Renault groupoids, as defined in Example 2.25, are étale groupoids [59,
Example 8.4.6].
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Example 2.34. Let G be a Hausdorff étale groupoid, and let Y be a locally compact

Hausdorff space. Supppose that there exists a local homeomorphism ψ : Y → G(0). Then

the associated ampliation groupoid ([66, §3.3]) Gψ is defined as

Gψ := {(x, γ, y) ∈ Y × G × Y : ψ(x) = r(γ) and ψ(y) = s(γ)},

together with structure:

r(x, γ, y) = (x, ψ(x), x), s(x, γ, y) = (y, ψ(y), y),

(x, γ, y)(y, µ, z) = (x, γµ, z), and

(x, γ, y)−1 = (y, γ−1, x).

This is a Hausdorff étale groupoid under the topology inherited from Y × G × Y (see

[66]). The unit space (Gψ)(0) = {(y, ψ(y), y) ∈ Y ×G(0)× Y } is usually identified with Y

via (y, ψ(y), y) 7→ y.

One of the most important properties of étale groupoids is that they always have a base

consisting of open bisections. For that sentence to make any sense, we need, of course,

to define the notion of bisection.

Definition 2.35. ([59, Definition 8.4.8]) A subset B ⊆ G of a topological groupoid is

called a bisection (of G-set) if there is an open set U ⊇ B such that both r : U → r(U)

and s : U → s(U) are homeomophisms in G. A bisection U is called full if r(U) =

s(U) = G(0).

Then:

Lemma 2.36. ([59, Lemma 8.4.9]) Let G be an étale groupoid. Then G has a countable

base of open bisections.

Proof. Take a countable dense subset {gn} of G. For each gn, find countable neighbour-

hood bases {Un,i}i, {Vn,i}i such that r : Un,i → r(Un,i) and s : Vn,i → s(Vn,i) are all

homeomorphisms. Then the family {Un,i ∩ Vn,i : n, i ∈ N} is a countable base of open

bisections.

Corollary 2.37. Let G be an étale groupoid. Then, for each x ∈ G(0), Gx, Gx and Gxx
are all discrete in the relative topology.

Proof. Take g ∈ Gx, and choose Ug open bisection containing it. Then it is clear that

Ug ∩ Gx = {g}. Hence, {g} is open in the relative topology of Gx. The same argument

applies to Gx. For Gxx , it is then immediate by definition.



19

As noted before, étale groupoids are a family of well behaved groupoids, granting some

desirable properties. The following one appears, for example, in [59, Lemma 8.4.11].

Lemma 2.38. If G is a topological groupoid with r an open map, then the multiplication

map is open. In particular, every étale groupoid has open multiplication.

Proof. Let U, V ⊆ G open sets, and let (α, β) ∈ (U × V ) ∩ G(2). Let {gi} be a sequence

converging to g = αβ. We need to prove that gi eventually belong to UV . Let us show

it:

Let {Uj}j∈N be a decreasing neighbourhood base for α contained in U . By hypothesis,

r is an open map, and thus r(Uj) is an open neighbourhood of r(α), for every j. Using

the continuity of the maps, {gi} converging to αβ implies that {r(gi)} converges to

r(αβ) = r(α), so for every j we eventually obtain r(gi) ∈ r(Uj). Now choose {αi} ⊂ U

with r(αi) = r(gi), and αi ∈ Uj whenever r(gi) ∈ r(Uj). Then {αi} converges to α.

Therefore, {α−1
i gi} converges to β. In particular, α−1

i gi eventually belongs to V , and

then gi = αi(α
−1
i gi) ∈ UV for large i.

From now on, all the groupoids appearing in this work will be second counta-

ble Hausdorff groupoids. Many interesting families of groupoids exist outside these

bounds but, at some point, the need to delimit the object of study appears.

Remark 2.39. In the examples of Lemma 2.33, to meet the conditions of being second

countable and Hausdorff we need the acting group to be countable and X to be second

countable (in the case of transformation groupoids), and X to be second countable (in

the case of Deaconu-Renault groupoids).

We define now two families of étale groupoid that play a key role in our study: elementary

and AF groupoids. We will see later that, indeed, those are the groupoid versions of finite

dimensional and AF C∗-algebras. The original definition forces their unit spaces to be

compact. However, there is a more recent version developed in [21] that simply requires

them to be locally compact. We provide both of them here.

Definition 2.40. Let G be a second countable étale groupoid, and let G(0) be compact

and totally disconnected. We say that K ⊆ G is a compact elementary groupoid if K
is a compact, open and principal subgroupoid, such that K(0) = G(0).

Definition 2.41. ([21, Definition 4.9]) Let X, Y be locally compact Hausdorff spaces,

and let ψ : Y → X be a local homeomorphism. Then, considering X as a trivial groupoid,

we can build the associated ampliation groupoid as in Example 2.34:

R(ψ) := Xψ = {(y1, y2) ∈ Y × Y : ψ(y1) = ψ(y2)}.
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An ample groupoid is said to be elementary if it is isomorphic to the groupoid R(ψ)

for some local homeomorphism between two 0-dimensional spaces.

Straightforward computation shows that both definitions agree whenever the unit space

is compact.

Definition 2.42. Let G be a second countable étale groupoid. We say that G is an

AF groupoid (with compact unit space) if it can be written as an increasing union of

(compact) elementary subgroupoids.

Any AF groupoid is, by definition, principal, and therefore algebraically isomorphic to

an equivalence relation. The topology, however, may not coincide.

We give now a few technical definitions, that we will require later.

Definition 2.43. We say that a groupoid G is effective whenever the interior of Iso(G)

equals to G(0).

Some disparities appear over the nomenclature of this notion. For example, some texts

(see [36]), name this family of groupoids as essentially principal (or topologically prin-

cipal) groupoids. Moreover, some other texts define essentially principal groupoids as

the family of groupoids such that the set {x ∈ G(0) : Gxx = {x}} is dense in G(0) (see

[8, Definition 2.1]). This condition is equivalent to the one stated above whenever G
is a second-countable étale groupoid ([59, Lemma 10.2.3]), which is probably where the

disparities arose from in the first place.

Definition 2.44. ([38, Definition 4.1]) Let G be an effective étale groupoid whose unit

space is a Cantor set.

1. A clopen set F ⊂ G(0) is said to be properly infinite if there exist compact
open bisections U, V ⊆ G such that s(U) = s(V ) = F , r(U) ∪ r(V ) ⊆ F , and
r(U) ∩ r(V ) = ∅.

2. We say that G is purely infinite if every clopen set F ⊂ G(0) is properly infinite.

Purely infinite groupoids has been recently studied in-depth in [33].

Finally, we introduce the notion of topological amenability. There are a few equiva-

lent definitions for this. The most standard one states that a groupoid is topologically

amenable if it admits an approximate invariant continuous mean. We will not be treating

with means in this document. Hence, we believe the following definition, given by [1,

Proposition 2.2.13], is more adequate for this work:

Definition 2.45. Let G be an étale groupoid. We say that G is amenable whenever

there is a sequence (hi)i ⊂ Cc(G) such that:
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• The maps mi : G(0) → R given by mi(x) =
∑
g∈Gx
|hi(g)|2 converge uniformly to 1 on

every compact subset of G(0).

• The maps ni : G → R given by ni(γ) =
∑

g∈Gr(γ)

|hi(γ−1g)−hi(g)| converge uniformly

to 0 on every compact subset of G.

It is now time to introduce some of the most relevant invariants of groupoids. More

precisely, we will focus our research in two objects:

On one hand, we will study groupoid homology, as defined by Crainic and Moerdijk in

[14].

On the other hand, we will build two C∗-algebras associated to an étale groupoid, and

then study its K-theory. This one requires a little bit more setup, so we will leave it for

later.
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2.2 The homology groups of a groupoid

Here we define the homology groups associated to a groupoid G. This definition

was first introduced by Crainic and Moerdijk in [14]. The main idea is to build a chain

complex associated to G, capturing its structure, and then defining the homology of G as

the homology of the chain complex. Let us show it.

Definition 2.46. Let A be a topological abelian group, X, Y be locally compact Haus-

dorff spaces, and let Cc(X,A) be the set of continuous functions with compact support

taking values in A. Cc(X,A), together with pointwise addition, is trivially an abelian

group. Let π : X → Y be a local homeomorphism. Then, for every f ∈ Cc(X,A), we

define the map π∗(f) : Y → A as:

π∗(f)(y) :=
∑

π(x)=y

f(x)

Remark 2.47. The reader may easily check that, indeed, π∗ is a homomorphism between

Cc(X,A) and Cc(Y,A).

We can now use this to build a certain chain complex associated to an étale groupoid, in

the following way.

Let G be an étale groupoid, and for every n ∈ N, let G(n) ⊆ Gn be the set of composable

n-strings in G, i.e.

G(n) := {(g1, g2, ..., gn) ∈ Gn : s(gi) = r(gi+1), i = 1, ..., n− 1}.

For every i = 0, 1, ..., n, define the map di : G(n) → G(n−1) as:

di(g1, ..., gn) =


(g2, g3, ..., gn) i = 0

(g1, ..., gigi+1, ..., gn) 1 ≤ i ≤ n− 1

(g1, g2, ..., gn−1) i = n

In the extreme case n = 1, we let d0, d1 : G(1) → G(0) be the source and the range maps,

respectively.

Using the previous result, we can now define the maps δn : Cc(G(n), A) → Cc(G(n−1), A)

by:

δn :=
n∑
i=0

(−1)idi∗.

The reader can check that, indeed, (Cc(G(n), A), δn) is a chain complex.

Definition 2.48. Let G be an étale groupoid. We define the homology groups of G
with coefficients in A to be the homology of the chain complex defined above, that is
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Hn(G, A) := kerδn/Imδn+1.

Whenever A = Z, we just write Hn(G), and simply denote them as the homology groups

of G.

There is an equivalent of the Kunneth formula for groupoids [38, Theorem 2.4]:

Lemma 2.49. (Kunneth theorem for groupoid homology). Let G,H be étale groupoids.

For every n ≥ 0, there exists a natural short exact sequence

0→
⊕

i+j=n

Hi(G)⊗Hj(H)→ Hn(G ×H)→
⊕

i+j=n−1

Tor(Hi(G), Hj(H))→ 0

Moreover, the sequence split, but not canonically.

There is also a long exact sequence (introduced in [14, Section 3.6]) induced by any short

exact sequence of abelian groups

0→ A1 → A2 → A3 → 0

given by:

...→ Hn+1(G, A3)→ Hn(G, A1)→ Hn(G, A2)→ Hn(G, A3)→ ...

Finally, groupoid homology posess a really useful functoriality property. Let G,H be

ample Hausdorff groupoids, and let φ : G → H be a groupoid homomorphism. Then the

maps φ
(n)
∗ : Cc(G(n),Z)→ Cc(H(n),Z) induce homomorphisms on homology φ∗ : Hn(G)→

Hn(H) (see [14, 3.7.2]). The induced maps are natural with respect to the composition,

that is, if we have G1
φ1→ G2

φ2→ G3 homomorphisms between ample Hausdorff groupoids,

then (φ2 ◦φ1)∗ = (φ2)∗ ◦ (φ1)∗. This allows us to introduce the following result, appearing

in [21, Proposition 4.7].

Proposition 2.50. Let G be an ample Hausdorff groupoid, and let {Gi} be an increasing

sequence of open subgroupoids of G, such that
∞⋃
i=1

Gi = G. Then H∗(G) ∼= lim−→(H∗(Gi), ι∗).

Proof. Since Gi are open subgroupoids of G, all of them are ample and Hausdorff. Then,

each inclusion map ιi,∞ : Gi → G induces homomorphisms

(ιi,∞)∗ : H∗(Gi)→ H∗(G).

Hence, the universal property of the direct limit provides homomorphisms

θ∗ : lim−→(H∗(Gi), ι∗)→ H∗(G).

The maps θ∗ are all surjective. Indeed, take an open compact subset U ⊆ G(n). Then

there exists some i such that U ⊆ Gi, and hence [1U ]Hn(G) = (ιi,∞)n[1U ]Hn(Gi).
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On the other hand, the maps θ∗ are all injective. Take some a ∈ lim−→(H∗(Gi), ι∗), and

suppose θn(a) = 0. There exist some i ∈ N and some f ∈ Cc(G(n)
i ,Z) such that θn(a) =

[ιi,∞(f)]. But, since [f ] = 0 in Hn(G) = ker(δn)/Im(δn+1), there exist some j ∈ N and

some g ∈ Cc(G(n+1)
j ,Z) such that δn+1(g) = f , and hence [f ] = 0 in Hn(Gmax{i,j}). Hence,

a = 0, and θn is an isomorphism, for every n ∈ N.
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2.3 The C∗-algebras associated to a groupoid

As with groups, we can associate two C∗-algebras to any étale groupoid: the full

C∗-algebra and the reduced one. Let us build both.

Lemma 2.51. Let G be an étale groupoid, and let γ ∈ G. Then the set {(α, β) ∈ G(2) :

αβ = γ} is discrete in the topology of G.

Proof. The proof is standard. If αβ = γ, then α ∈ Gr(γ) and β ∈ Gs(γ). Since G is étale,

both Gr(γ) and Gs(γ) are discrete (see Lemma 2.37). Hence {(α, β) ∈ G(2) : αβ = γ} ⊆
Gr(γ) × Gs(γ) is also discrete.

Corollary 2.52. Let G be an étale groupoid, and let Cc(G) be the set of continuous

functions over G with compact support (and taking values in C). Then, for any given

γ ∈ G, and f, g ∈ Cc(G), the set {(α, β) ∈ G(2) : αβ = γ, and f(α)g(β) 6= 0} is finite.

Proof. Using the previous lemma, {(α, β) ∈ G(2) : αβ = γ, and f(α)g(β) 6= 0} is the

intersection of a discrete set, with supp(f) and supp(g), both compact. Thus, it is

finite.

This result allows us to define the convolution C∗-algebra of an étale groupoid G.

Definition 2.53. Let G be an étale groupoid. We define the convolution algebra of

G as the space Cc(G), together with the usual vector structure, and operations given by:

• (f ∗ g)(γ) :=
∑
αβ=γ

f(α)g(β).

• f ∗(γ) := f(γ−1).

See that the étaleness provides a key property that allows to define the convolution

product as a finite sum. There is a more general definition, covering non-étale groupoids,

in which the finite sum is replaced with integrals (see [52]). All the groupoids appearing

in this document will be étale, so we can stick to this definition.

As we noted before, the topology of an étale groupoid has a base of open bisections. In

this line, we can also build the convolution algebra using this type of sets [59, Lemma

9.1.3]:

Lemma 2.54. Let G be an étale groupoid. Then we have

Cc(G) = span{f ∈ Cc(G) : supp(f) is a bisection}.

Proof. Let f ∈ Cc(G). Recall that G has a base of open bisections. Hence, since supp(f) is

compact, we can find a finite subcover U1, ..., Un of supp(f) consisting in open bisections.
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Take a partition of unity {hi} on
⋃
Ui subordinate to the Ui. Then fi := f · hi ∈ Cc(G)

verifies supp(fi) ⊆ Ui, for every i = 1, ..., n, and f =
n∑
i=1

fi, as desired.

Immediate consequences of this lemma arise:

Corollary 2.55. Let G be and étale groupoid, f, g ∈ Cc(G), and U, V open bisections

such that supp(f) ⊆ U and supp(g) ⊆ V . The the following statements are true:

• supp(f ∗ g) ⊆ UV .

• (f ∗ g)(γ) = f(α)g(β), for γ = αβ ∈ UV .

• supp(f ∗ ∗ f) = s(supp(f)).

Proof. Let γ ∈ supp(f ∗ g). Then 0 6= (f ∗ g)(γ) :=
∑
αβ=γ

f(α)g(β). We deduce that

s(β) = s(γ) and r(α) = r(γ). Recall that both f, g are supported on bisections, and thus

the only non zero element of the sum must correspond to αβ ∈ UV . This proves the first

two statements.

The third statement is then immediate.

2.3.1 The full and reduced C∗-algebras

There are a few equivalent definitions for the full C∗-algebra of an étale groupoid.

Once again, we show here the one we think is more intuitive. In that line, we will provide

a certain C∗-norm, that will allow us to define the universal C∗-algebra of an étale

groupoid. From now on, Cc(G) will denote the convolution algebra of G. The following

description appears in [19, Definition 3.17]:

Proposition 2.56. Let G be an étale groupoid. For each f ∈ Cc(G), there is a constant

Kf ≥ 0 such that ‖π(f)‖ ≤ Kf for every ∗-representation π : Cc(G) → B(H) of Cc(G)

on Hilbert space. Moreover, if f is supported on a bisection, we can take Kf = ‖f‖∞.

Proof. Fix f ∈ Cc(G). We can write f =
n∑
i=1

fi, with fi supported on a bisection, for all

i, and then define Kf :=
n∑
i=1

‖fi‖∞.

Let π be a ∗-representation. Then π|Cc(G(0)) is a ∗-representation of the commutative

∗-algebra Cc(G(0)). Therefore, ‖π(h)‖ ≤ ‖h‖∞, for every h ∈ Cc(G(0)). Since every f ∗i ∗ fi
is supported on G(0), and ‖f ∗i ∗ fi‖∞ = ‖fi‖2

∞, we deduce:

‖π(fi)‖2 = ‖π(f ∗i ∗ fi)‖ ≤ ‖f ∗i ∗ fi‖∞ = ‖fi‖2
∞,

and so each ‖π(fi)‖ ≤ ‖fi‖2
∞. The triangle inequality gives ‖π(fi)‖ ≤ Kf .

As we noted, if f is already supported on a bisection, then we can just take Kf =

‖f‖∞.
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We can then define the universal C∗-algebra of an étale groupoid:

Theorem 2.57. There exist a C∗-algebra C∗(G) and a ∗-homomorphism πmax : Cc(G)→
C∗(G) such that πmax(Cc(G)) is dense in C∗(G), and such that for every representation

π : Cc(G) → B(H) there is a representation ψ of C∗(G) such that ψ ◦ πmax = π. The

norm on C∗(G) satisfies

‖πmax(f)‖ = sup{‖π(f)‖ : π is a ∗ −representation of Cc(G)},

for all f ∈ Cc(G). The algebra C∗(G) is denoted the full C∗-algebra of G.

Proof. See [59, Theorem 9.2.3].

There is an alternative, previous definition of the full C∗-algebra of a groupoid, given by

Renault in [52]. This definition generalizes the one we just introduced, in the sense that

it does not ask for the groupoid to be étale. It was proven in [59, Theorem 9.2.4] that,

indeed, the two definitions agree whenever the groupoid is étale. Since all the groupoids

involved in our work are étale, we will just stick to this simpler definition.

Example 2.58. The full groupoid C∗-algebra of a group G coincides with the usual full

group C∗-algebra.

Example 2.59. The full C∗-algebra of an AF groupoid is an AF C∗-algebra.

We now introduce a second C∗-algebra associated to an étale groupoid, known as the

reduced algebra.

Lemma 2.60. Let G be an étale groupoid. For each x ∈ G(0), there exists a ∗-
representation πx : Cc(G)→ B(`2(Gx)) such that

πx(f)δγ =
∑

α∈Gr(γ)

f(α)δαγ,

for each f ∈ Cc(G), and each γ ∈ Gx. Then πx is called the regular representation of

Cc(G) associated to x.

Proof. See [59, Theorem 9.3.1].

Definition 2.61. Let G be an étale groupoid. The reduced C∗-algebra C∗r (G) of an

étale groupoid G is the completion of

(
⊕

x∈G(0)

πx)(Cc(G)) ⊆
⊕

x∈G(0)

(B(`2(Gx))).

The following one is a well known result when dealing with the two C∗-algebras of a

groupoid. The first statement can be found, for example, in [59, Theorems 10.1.4-10.1.5].

A counterexample for the converse can be found in [65].
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Lemma 2.62. Let G be a locally compact, Hausdorff étale groupoid. Then C∗r (G) is

nuclear if and only if G is amenable.

Moreover, if G is amenable, then C∗(G) = C∗r (G). However, the converse is false.

Most of the groupoids we will be using throughout the document are amenable. Thus,

the C∗-algebras will coincide.

Example 2.63. [59, Example 9.3.8] Let XoΓ be the transformation groupoid associated

to an action of a discrete group Γ on a compact Hausdorff space X. Recall that the unit

space (XoΓ)(0) can be identified with X. Let α be the induced action of Γ on C(X), and

let Cc(Γ, C(X)) be the convolution algebra associated to the dynamical system, as in [67,

Section 1.3.2]. Then the map ϕ : Cc(G) → Cc(Γ, C(X)) given by ϕ(f)(g)(x) := f(g, x)

is an isomorphism. For any fixed x ∈ X, this isomorphism intertwines the regular

representation πx of Cc(G) with the induced representation of Cc(Γ, C(X)) associated to

the character of C(X) given by the evaluation at x. Then, using [67, Example 2.4.2], we

deduce that C∗r (G) is isomorphic to the reduced crossed product C(X)or Γ.

2.3.2 K-theory

The study of K-theory of C∗-algebras has brought the interest of researchers for

a few decades, making the literature on this subject quite extensive. If the reader wishes

to expand its study in this area, a broad study of it can be found in [53] or [5], among

others.

In this brief section, we remind the basic notions of K-theory.

Definition 2.64. Let A be a C∗-algebra, let Pn(A) be the set of all projections over

the matrix C∗-algebra Mn(A). Denote P∞(A) :=
∞⋃
n=1

Pn(A). Given two projections

p ∈ Pm(A), q ∈ Pn(A), we say that p ∼0 q if there is an element v ∈Mm,n(A) such that

p = v∗v, and q = vv∗.

One can check that, indeed, ∼0 is an equivalence relation on P∞(A). We denote the

equivalence class of p as [p]0.

Then, the set (P∞(A)/ ∼0,+) is an abelian semigroup, with operation given by:

[p]0 + [q]0 = [p⊕ q]0

Definition 2.65. ([53, Definition 3.1.4]) (K0 group of a unital C∗-algebra).

Let A be a unital C∗-algebra, and let (D(A),+) be the abelian semigroup defined above.

Then we define the K0 group of A as the Grothendiek group of D(A). We denote it as

K0(A).
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It is a well known result that any homomorphism between C∗-algebras ϕ : A→ B induces

a group homomorphism between K0 groups, given by K0(ϕ)[p]0 := [ϕ(p)]0.

Definition 2.66. (K0 group of a non-unital C∗-algebra).

Let A be a non-unital C∗-algebra, and denote by Ã its unitization. Consider the split

exact sequence

0→ A→ Ã
π→ C→ 0

We define K0(A) to be the kernel of the homomorphism K0(π) : K0(Ã) → K0(C). We

denote by λ : C→ Ã the lifting of π. The scalar mapping is defined as

s = λ ◦ π : Ã→ Ã

By definition, the above short exact sequence induces a short exact sequence in K-theory.

This, however, must not be expected to happen in general. Instead, short exact sequences

of C∗-algebras induce six-term exact sequences in K-theory. We will show that later on.

Proposition 2.67. ([53, Proposition 4.2.2]) (The standard picture of K0(A)).

For each C∗-algebra A, the K0 group is given by:

K0(A) = {[p]0 − [s(p)]0 : p ∈ P∞(Ã)}.

Moreover, the following conditions hold:

• For each p, q ∈ P∞(Ã), the following are equivalent.

1. [p]0 − [s(p)]0 = [q]0 − [s(q)]0.

2. There exist natural numbers k, l such that p⊕ 1k ∼0 q ⊕ 1l ∈ P∞(Ã).

3. There exist scalar projections r1, r2 such that p⊕ r1 ∼0 q ⊕ r2.

• Whenever [p]0 − [s(p)]0 = 0, there exists a natural number m such that

p⊕ 1m ∼0 s(p)⊕ 1m.

• If ϕ : A→ B is a ∗-homomorphism, then:

K0(ϕ)([p]0 − [s(p)]0) = [ϕ̃(p)]0 − [s(ϕ̃(p))]0,

where ϕ̃ : Ã→ B̃ is the map induced by ϕ.

On the other hand, the K1 group is defined using the unitaries of the matrix algebra:

Definition 2.68. Let A be a unital C∗-algebra, let Un(A) be the set of unitary elements

on Mn(A), and define U∞ :=
∞⋃
n=1

Un(A). We define a relation ∼1 on U∞ in the following

way:

For u ∈ Un(A), v ∈ Um(A), u ∼1 v if there exists a natural number k ≥ max{m,n} such
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that there exists a continuous path in Uk(A) between u ⊕ 1k−n and v ⊕ 1k−m, that is,

some f : [0, 1]→ Uk(A), such that f(0) = u⊕ 1k−n, and f(1) = v ⊕ 1k−m.

One can check that this is indeed an equivalence relation (see [53, Proposition 8.1.2]).

Then, we can define the K1 group:

Definition 2.69. For each C∗-algebra A, the group K1(A) is given by:

K1(A) := U∞(Ã)/ ∼1,

with operation given by [u]1 + [v]1 = [u⊕ v]1.

As with the K0 group, we can give an standard picture of K1.

Proposition 2.70. ([53, Proposition 8.1.4])(The standard picture of K1). Let A

be a C∗-algebra. Then:

K1(A) = {[u]1 : u ∈ U∞(Ã)}.

Moreover, the map [·]1 : U∞(Ã)→ K1(A) verifies:

• [u⊕ v]1 = [u]1 + [v]1.

• [1]1 = 0.

• If u, v ∈ Un(Ã), then [uv]1 = [vu]1 = [u]1 + [v]1.

• For u, v ∈ U∞(Ã), [u]1 = [v]1 if and only if u ∼1 v.

As we said before, there is more literature on K-theory that we could possibly put in this

document. However, there are a few statements that we believe we must write down here,

to serve, at least, as a reminder of their existence. The following results will probably

sound familiar for the reader.

Theorem 2.71. ([53, Theorem 10.1.3]) For every C∗-algebra A, denote by SA the

suspension of A, that is, SA := {f ∈ C(T, A) : f(1) = 0}. The suspension is an

endofunctor on the category of C∗-algebras. Then the groups K1(A) and K0(SA) are

always isomorphic. Moreover, the isomorphism is natural in the following sense:

Let A,B be C∗-algebras, and denote by θA, θB the respective isomorphisms. Suppose

that ϕ : A→ B is a ∗-homomorphism. Then the following diagram commutes:

K1(A) K1(B)

K0(SA) K0(SB)

K1(ϕ)

θA θB

K0(Sϕ)
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The isomorphism θA has the following explicit description. Let u ∈ Un(Ã), such that

s(u) = 1n. Let g ∈ C([0, 1],U2n(Ã)) such that g(0) = 12n, g(1) = diag(u, u∗), and

s(g(t)) = 12n for every t ∈ [0, 1]. Put

p = g

(
1n 0

0 0

)
g∗

Then p is a projection in P2n(S̃A), s(p) = diag(1n, 0n), and

θA([u]1) = [p]0 − [s(p)]0.

Theorem 2.72. ([53, Theorem 11.1.2]) (Bott’s periodicity) For every C∗-algebra A,

there exists an isomorphism βA : K0(A) → K1(SA). Moreover, βA has the following

explicit description for unital C∗-algebras:

For every n ∈ N, and every p ∈ Pn(A), define fp : T→ Un(A) by

fp(z) = zp+ (1n − p), z ∈ T.

By identifying Mn(S̃A) with {f ∈ C(T,Mn(A)) : f(1) ∈ Mn(C1A)}, we obtain that

fp ∈ Un(S̃A). Then the isomorphism is given by βA([p]0) = [fp]1, and it is called Bott

map.

For non-unital algebras, the Bott map is defined using the following universal property:

Let A be a non-unital C∗-algebra. Then there is a unique group homomorphism βA :

K0(A)→ K1(SA), making the next diagram commute:

K0(A) K0(Ã) K0(C)0 0

K1(SA) K1(S̃A) K1(SC)0 0

βA βÃ βC

Theorem 2.73. ([53, Theorem 12.1.2])(The six-term exact sequence). Every short

exact sequence of C∗-algebras

0→ I → A→ B → 0

induces a six-term exact sequence
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K0(I) K0(A) K0(B)

K1(B) K1(A) K1(I)

where the horizontal maps are induced by the ones of the short exact sequence. Moreover,

the vertical homomorphisms are explicitly described in [53].

We conclude this section by providing a picture of the canonical map between the groups

H0 and K0 associated to an étale groupoid, appearing in [36].

Definition 2.74. (Canonical map Φ : H0(G)→ K0(C∗r (G))).

Given an étale groupoid G such that G(0) is locally compact, metrizable and totally

disconnected, one can always build a canonical map between H0(G) and K0(C∗r (G). It is

deduced from the following reasoning:

By definition of C∗r (G), we can consider the canonical inclusion ι : Cc(G(0)) → C∗r (G),

which induces an homomorphism in K-theory K0(ι) : K0(Cc(G(0)))→ K0(C∗r (G)). Now,

since there are no non-unit elements in G(0), a straightforward computation shows that

K0(Cc(G(0))) = Cc(G(0),Z). Let us take U some compact open bisection of G, and define

u = χU . Then u is a partial isometry of C∗r (G) such that uu∗ = χs(U), and u∗u = χr(U),

which means χs(U) and χr(U) belong to the same equivalence class in K0(C∗r (G)).

Then the differential map of Definition 2.48, δ1 : Cc(G,Z) → Cc(G(0),Z) defining the

homology groups verifies (K0(ι) ◦ δ1)(u) = 0, since δ1(u) = χs(U) − χr(U), by definition,

from where we deduce that Im(δ1) ⊆ ker(K0(ι)). Since every étale groupoid has a

countable basis consisting in open bisections, it follows that there exists a canonical

homomorphism Φ : H0(G) → K0(C∗r (G)) such that Φ([f ]) := K0(ι)(f). The question

about when this map is injective is open, even for some simple groupoids. In chapter 3

we study this problem for Deaconu-Renault groupoids.

It is worth to mention that there exists a counterpart of this result providing a canonical

map between H1(G) and K1(C∗r (G), for a certain class of groupoids (see [36, Corollary

7.15]).
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2.4 Matui’s conjectures

In 2016, two conjectures were presented by H. Matui in [38], both involving some

groupoids invariants. The first one predicts some relation between the homology groups

and the K-theory of the associated C∗-algebra of a certain family of étale groupoids.

The strong version of this conjecture was disproven by Scarparo in [56], using a coun-

terexample we will show later. In later chapters, we will also provide the first complete

counterexample for both strong and weak versions of the conjecture. This counterexam-

ple was obtained with the help of Eduard Ortega, appearing in [47].

Even though the main object of study in this work is this first conjecture, there is a

second one relating the lower homology groups of a certain family of groupoids, with its

topological full group. So far, the conjecture still holds, meaning that no counterexample

has been found. We will show that conjecture in this chapter, as well as some results

involving it. In chapter 5, we will show how the counterexample to the first conjecture

verifies the second one.

2.4.1 Matui’s HK conjecture

[38, Conjecture 2.6] Let G be an effective minimal étale groupoid, such that G(0) is a

Cantor space. The (strong) HK conjecture states that:

∞⊕
i=0

H2i(G) ∼= K0(C∗r (G))

and

∞⊕
i=0

H2i+1(G) ∼= K1(C∗r (G)).

There is, however, a weakened version of HK conjecture that ignores any torsion problems.

Under the same hypothesis, the weak HK conjecture states that:

∞⊕
i=0

H2i(G)⊗Q ∼= K0(C∗r (G))⊗Q

and

∞⊕
i=0

H2i+1(G)⊗Q ∼= K1(C∗r (G))⊗Q.

In the next chapter we will provide some of the most common tools used to compute the

groupoid invariants, and then use them to verify Matui’s HK conjecture for some basic

groupoids. Here we just present a couple of immediate results.

Lemma 2.75. Let G = G(0) be a trivial groupoid, with G(0) the Cantor set. Then G
satisfies HK-conjecture.
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Proof. The proof is standard:

Since G = G(0), we deduce that G(n) = G(0), for all n ∈ N. Hence, definition of homology

implies δ1 = 0, and, in general, δn(f)(x) =
n∑
i=0

(−1)if(x), for all n > 1. Thus, δn = 0

if n is odd, and δn = id whenever n is even. We deduce that H0(G) = Cc(G(0),Z), and

Hn(G) = 0 for all n > 1.

On the other hand, since G has no non-trivial composable elements, it is clear that its

associated algebra is Cc(G(0),C). Hence, K0(C∗r (G)) ∼= Cc(G(0),Z), and K1(C∗r (G)) = 0

(see,for example, [53]). Therefore, Matui’s HK conjecture holds, and the isomorphism is

given by the natural map [1U ]H0 7→ [1U ]K0 , for any compact open U ⊆ G(0).

Proposition 2.76. Let G, H be effective, minimal étale groupoids whose unit space is

a Cantor set, and suppose C∗r (G) is nuclear and verifies the UCT. Then, if HK is true for

both G and H, it is also true for G ×H.

Proof. The result is a consequence of combining the Kunneth theorem for groupoids

(Lemma 2.49) and the Kunneth theorem for C∗-algebras (see [53]).

2.4.2 Matui’s AH conjecture

Here we introduce all the notions involved in Matui’s second conjecture, named

AH. Even though it is not the main object of study of this work, it will be discussed in

chapter 5 for a certain groupoid. If the reader is only interested in Matui’s HK conjecture,

this section can be skipped. Most of the early literature about this conjecture can be

found in [36] and [38].

Definition 2.77. Let G be an étale groupoid, and let U be a full compact open bisection

of G. We define the map πU : G(0) → G(0) as:

s(γ) 7→ r(γ), for γ ∈ U .

If U verifies that r(U)∩ s(U) = ∅, we can define Û as U tU−1tG(0) \ r(U)t s(U). Then

Û is clearly full, and the map πÛ is said to be a transposition.

The maps πU capture the dynamical properties of a groupoid. In this line, one can note

the reason behind the name transposition: by definition, π2
Û

is always the identity map

in G(0). It is natural to study the structure of the set of all πU .

Definition 2.78. The topological full group is defined as the set

[[G]] := {πU : U full bisection},

together with the product given by composition, i.e. , πUπV = πUV . The unit of [[G]] is

πG(0) = idG(0) .
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Notice that this product always makes sense, since both U and V are full, and hence

U × V ∈ G(2), and UV is full.

There is always a natural map between the topological full group and the homology group

H1(G).

Definition 2.79. ([36, Definition 7.1]) We define the index map I : [[G]] → H1(G) as

the map given by πU 7→ [1U ].

Immediate properties arise for this map.

Lemma 2.80. ([36, Lemma 7.3]) The following statements are true:

1. Let U, V ⊆ G full compact open bisections. Then the set

O = {(g1, g2) ∈ G(2) : g1 ∈ U, g2 ∈ V }
is a compact open subset of G(2), and δ2(1O) = 1U − 1UV + 1V .

2. [1U ] = 0 ∈ H1(G), for any clopen subset U ⊆ G(0). In particular, I(πU) = 0.

3. I(πUπV ) = [1U ] + [1V ] = I(πU) + I(πV ) ∈ H1(G), for U, V full compact open
bisections of G.

4. [1U ] + [1U−1 ] = 0 ∈ H1(G), for any full compact open of G. In particular,

I(πU) + I(πU−1) = 0.

5. The index map is a group homomorphism.

Proof. The statements are straightforward:

1. This follows directly from definition of the homology maps.

2. The claim is immmediate after noticing that, whenever U ⊆ G(0), then U = UU .

3. Using the first result, we obtain that [1U ] − [1UV ] + [1V ] = 0 ∈ H1(G). Therefore,
I(πUπV ) = I(πUV ) = [1UV ] = [1U ] + [1V ].

4. Note that UU−1 = G(0). Thus, [1U ] + [1U−1 ] = [1UU−1 ] = 0 ∈ H1(G).

5. Follows from 1− 4.

Remark 2.81. Recall that H1(G) is an abelian group. Thus, we can induce a homo-

morphism Iab : [[G]]ab → H1(G), where [[G]]ab denotes the abelianization of [[G]].

With all the previous notions, we can already enunciate the conjecture. It appeared

firstly in [38], and predicts the existence of a certain exact sequence

H0(G)⊗ Z j→ [[G]]ab
Iab→ H1(G)→ 0

for essentially principal minimal étale groupoids whose unit space is a Cantor set [38,

Conjecture 2.9]. This conjecture is known as Matui’s AH conjecture.
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The map j : H0(G)⊗ Z→ [[G]]ab is explicitly described in [38].

The first (strong) version of the conjecture predicted the existence of a short exact

sequence. This was, however, early discarded by Nekrashevych (see [38, Remark 2.10]).

This weakened conjecture has been confirmed for several cases, and so far no counter-

examples have been found. It has been proven, for example, for principal almost finite

groupoids [36], or transformation groupoids associated to odometers [56], which happen

to provide the first counterexample for Matui’s HK conjecture. Among other cases the

conjecture has been confirmed there are the Katsura-Exel-Pardo groupoids (see [44]), or

what is the same, the groupoids of a special self-similar action of Z over a finite graph.

We remark those because we will use some of the techniques developed there in later

chapters.

There is quite a extensive literature around this conjecture. For example, an in-depth

study of the index map can be found in [36]. However, since this is not the main theme

of this work, we will just state the results we will use later in chapter 5. The proof of

those results can be found in [36] and [38].

Denote by T (G) to be the subgroup of [[G]] generated by all transpositions.

Lemma 2.82. Let I : [[G]] → H1(G) be the index map. Then T (G) ⊆ ker(I) always

holds.

Proof. See [36, Lemma 7.7 (3)].

The relation between T (G) and ker(I) is closely related to the verification of the AH-

conjecture, in the following way.

Definition 2.83. Let G effective, Hausdorff, ample groupoid, and let T (G) be the sub-

group of [[G]] generated by all transpositions. We say that G has Property TR whenever

T (G) = ker(I).

Remark 2.84. It was proven in [38, Theorem 4.4] that, whenever G is minimal and

purely infinite, then Property TR is equivalent to the verification of Matui’s AH conjec-

ture. However, it is not known if all minimal, purely infinite groupoids have Property

TR.
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Chapter 3

Useful strategies for the computation of the

groupoids invariants
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Throughout the last decades, the study of groupoids and their invariants has

been approached using different strategies. This chapter provides to the reader with

some of the most common tools about groupoids used when studying the invariants

involved in Matui’s HK-conjecture. More techniques can be found, for example, in [38],

[14], [18] or [20], among others. The chapter is structured as follows:

In Section 3.1, we study one of the many notions of groupoid equivalence

existing in the literature. More precisely, we study the concept of Kakutani equivalence,

sometimes named as Morita equivalence (see [36]). Other types of equivalence can be

found, for example, in [21], as well as the relation among them. Kakutani equivalence is

known to preserve all the invariants involved in Matui’s HK conjecture. Hence, it is a

common tool in its study.

In Section 3.2 we introduce the notion of cocycles, that is, groupoid homomor-

phisms from G to an abelian group Γ (considered as a groupoid). We then relate the

invariants of a groupoid, under certain conditions, with the invariants of the associated

skew-product groupoid arising from the cocycle. We show special interest in the case

Γ = Zk. This technique has been broadly used in the study of Matui’s HK conjec-

ture (see, for example, [46]), usually in combination with Kakutani equivalence (see [21]).

We devote Section 3.3 to give the basic notions concerning spectral sequences.

For a more detailed account, we direct the reader to [39] or [64]. Following that, we use

the techniques appearing in [4] in order to explicitly build Kasparov’s spectral sequence

for K-theory (see [29]).

We finish the chapter recalling in Section 3.4 the work of Scarparo, published in

[56], where the author builds the first counterexample to the strong version of Matui’s

HK-conjecture.
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3.1 Kakutani equivalence

In [21], the authors introduce a serie of different types of groupoids equivalence,

and the relations among them. Here we describe one of them: Kakutani equivalence. This

notion will play an important role throughout this document. Indeed, it has been proven

that Kakutani equivalence preserves all the invariant objects involved in our work, that

is, the homology groups and the associated K-theory (see, for example, [21]). We recall

those results here.

We should note that some texts refer to this notion as Morita equivalence (see [38]),

since whenever two étale groupoids are Kakutani equivalent, their reduced C∗-algebras

are strongly Morita equivalent.

Definition 3.1. Let G,H be étale groupoids, with both G(0) and H(0) compact and

totally disconnected spaces. We say that G is Kakutani equivalent to H if there exist

full clopen subsets Y ⊆ G(0), Z ⊆ H(0) such that G|Y ∼= H|Z .

Kakutani equivalence is, indeed, an equivalence relation. Symmetry and reflexivity are

trivial, so we must just prove transitivity. Before proving it in Lemma 3.5, we need to

show a couple of results. Throughout this subsection, all groupoids will be étale, with

compact and totally disconnected unit space. We also keep our standing assumptions

stated in section 2.1.2.

Definition 3.2. Let G be a groupoid, and let f ∈ C(G(0),Z), with f ≥ 0. Define

Gf := {(g, i, j) ∈ G × Z× Z : 0 ≤ i ≤ f(r(g)), and 0 ≤ j ≤ f(s(g))}.

Then Gf is a groupoid, under the following structure:

G(0)
f := {(x, i, i) ∈ G(0) × Z× Z : 0 ≤ i ≤ f(x)},

(g, i, j)−1 = (g−1, j, i), and

(g, i, j)(h, j, l) = (gh, i, l),

whenever (g, h) ∈ G(2).

Straightforward computation shows that the groupoid Gf , together with the topology

induced from G × Z× Z, is an étale groupoid. Moreover, the subset

{(x, 0, 0) : x ∈ G(0)} ⊆ G(0)
f

is full in Gf .
Lemma 3.3. ([36, Lemma 4.3]) Let G be a groupoid, and let Y ⊆ G(0) be a full clopen

subset of G. Then there exists f ∈ C(Y,Z), and an isomorphism π between (G|Y )f and

G, satisfying π(g, 0, 0) 7→ g, for all g ∈ G|Y .
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Proof. Take x ∈ G(0) \ Y . Since Y is full, we can always find g ∈ r−1(x) ∩ s−1(Y ). Take

a compact open bisection Ux such that g ∈ Ux, r(Ux) ⊂ G(0) \ Y , and s(Ux) ⊂ Y . It

is clear that {r(Ux) : x ∈ G(0) \ Y } is an open covering of G(0) \ Y . Hence, we can find

x1, ..., xn ∈ G(0) \ Y such that r(Ux1), ..., r(Uxn) form a finite subcover of G(0) \ Y . We

can refine this to make it a mutually disjoint cover, defining the following open compact

bisections inductively:

V1 = Ux1 ,

Vk = Uxk \ r−1(r(V1 ∪ ... ∪ Vk−1)).

Then r(V1), ..., r(Vn) are mutually disjoint, and their union equals to G(0) \ Y .

Now, for each subset Λ ⊂ {1, 2, ..., n}, fix a bijection αΛ : {1, ..., |Λ|} → Λ. For y ∈ Y ,

define Λ(y) := {l ∈ {1, ..., n} : y ∈ s(Vk)}, and f : Y → Z as f(y) = |Λ(y)|. Each s(Vk) is

clopen, hence f ∈ C(Y,Z). Fix y ∈ Y . Then, for any i ≤ f(y), define li := αΛ(y)(i). Note

that this is just a way to enumerate the V ′j s whose source contains y, and then choosing

the i− th one. Then we can define θ : (G|Y )
(0)
f → G as

θ(y, i, i) =

{
y i = 0

(s|Vli )
−1(y) otherwise

The reader may check that

π(g, i, j) = θ(r(g), i, i) · g · θ(s(g), j, j)−1

defines an isomorphism between (G|Y )f and G.

The following result, appearing in [36, Lemma 4.4], shows that two reduction sub-

groupoids of the same groupoid are Kakutani equivalent whenever the subsets are full.

Lemma 3.4. Let G be as above, and let Y, Y ′ ⊆ G(0) be full subsets of G. Then G|Y is

Kakutani equivalent to G|Y ′ .

Proof. Take f ∈ C(Y,Z), and let π : (G|Y )f → G be as in Lemma 3.3. Define the clopen

subset Z ⊂ Y given by

Z = {y ∈ Y : π(y, k, k) ∈ Y ′, for some 0 ≤ k ≤ f(y)}.

Since Y ′ is full, we can see that Z is also full. Let

g(z) := min{k ∈ {0, ..., f(z)} : π(z, k, k) ∈ Y ′},

for each z ∈ Z, and define U = {π(z, g(z), 0) : z ∈ Z}. Then U is a compact open

bisection of G, satisfying s(U) = Z, and r(U) ⊂ Y ′. Thus, r(U) is clearly a full subset

of G(0) contained in Y ′, such that G|Z is isomorphic to G|r(U). Hence, G|Y and G|Y ′ are

Kakutani equivalent.
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Lemma 3.5. ([36, Lemma 4.5]) Let G1,G2,G3 be étale groupoids with compact, totally

disconnected unit spaces, such that G1 is Kakutani equivalent to G2, and G2 is Kakutani

equivalent to G3. Then G1 is Kakutani equivalent to G3.

Proof. The hypothesis implies the existence of Y1, Y2, Y
′

2 , Y3 full clopen subsets of

G1,G2,G3 respectively, together with maps π, π′, such that π : G2|Y2 → G1|Y1 , and

π′ : G2|Y ′2 → G3|Y3 are both isomorphisms. Using the previous lemma, there exist Z ⊆ Y2,

Z ′ ⊆ Y ′2 full clopen subsets of G2 such that G2|Z ∼= G2|Z′ . Hence, G1|π(Z)
∼= G3|π′(Z′),

concluding the proof.

Corollary 3.6. Kakutani equivalence is an equivalence relation.

A different approach to the proof of the last statement can be found in [11, Theorem

3.2], where the authors prove that, for ample groupoids G,H with σ-compact unit spaces,

Kakutani equivalence is equivalent to the condition G × R ∼= H × R, where R is the

full countable equivalence relation, that is, R = N × N. This condition is referred to as

groupoid equivalence.

Among other applications, we can use Kakutani equivalence to study the HK-conjecture:

Lemma 3.7. Let G,H be Kakutani equivalent groupoids. Then C∗r (G) is strongly Morita

equivalent to C∗r (H), that is, C∗r (G)⊗K ∼= C∗r (H)⊗K. Hence, Ki(C
∗
r (G)) ∼= Ki(C

∗
r (H)),

for i = 0, 1.

Proof. Let Y ⊆ G(0) be a full clopen subset. Then C∗r (G|Y ) is canonically isomorphic

to the hereditary subalgebra 1YC
∗
r (G)1Y of C∗r (G). Therefore, if G and H are Kakutani

equivalent, their reduced C∗-algebras are strongly Morita equivalent. Thus, their K-

theory groups coincide.

The first proof of the following theorem appeared in [14, Corollary 4.6]. However, it is

quite technical, and so we will go with the one appearing in [36, Propositions 3.5-3.6].

Before that, we need to define the notion of similarity.

Definition 3.8. Let G,H be étale groupoids. Two étale homomorphisms ρ, σ : G → H
are said to be similar if there exists a continuous map θ : G(0) → H such that

θ(r(g))ρ(g) = σ(g)θ(s(g)),

for all g ∈ G. If such θ exists, it is automatically étale.

Two groupoids G and H are said to be homologically similar if there exist two étale

homomorphisms ρ : G → H and σ : H → G such that σ ◦ ρ is similar to idG, and ρ ◦ σ is

similar to idH.
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With this in mind, we can use the results of [36] to prove the theorem below.

Theorem 3.9. Let G,H be Kakutani equivalent ample groupoids, and let A be an

abelian group. Then

Hn(G, A) ∼= Hn(H, A),

for all n ∈ N.

Proof. The proof has two steps. First, we prove that groupoid homology is invariant

under similarities. Second, we will prove that G is homologically similar to G|F . Let us

show it:

Suppose that ρ, σ : G → H are similar étale homomorphisms. Then there exists a

continuous map θ : G(0) → H such that θ(r(g))ρ(g) = σ(g)θ(s(g)), for all g ∈ G. For

each n ∈ N ∪ {0}, define hn : Cc(G(n), A) → Cc(H(n+1), A) as follows. Let h0 := θ∗, and

hn :=
n∑
j=0

(−1)jkj∗, with kj : G(n) → H(n+1) given by:

kj(g1, ..., gn) =


(θ(r(g1)), ρ(g1), ρ(g2), ..., ρ(gn)) j = 0

(σ(g1), ..., σ(gj), θ(s(gj)), ρ(gj+1), ..., ρ(gn)) 1 ≤ j ≤ n− 1

(σ(g1), σ(g2), ..., σ(gn), θ(s(gn))) j = n.

The reader may check that δ1 ◦ h0 = ρ
(0)
∗ − σ(0)

∗ , and

δn+1 ◦ hn + hn−1 ◦ δn = ρ(n)
∗ − σ(n)

∗ ,

where ρ(n) denotes the induced map ρ(n) : G(n) → H(n). Note that this means that ρ
(n)
∗

and σ
(n)
∗ are homotopic. Hence, we get Hn(ρ) = Hn(σ).

Now, if G is homologically similar to H, we have two homomorphisms ρ, σ such that ρ◦σ
is similar to idH, and σ ◦ ρ is similar to idG. But then:

Hn(idG) = idHn(G) = Hn(σ ◦ ρ) = Hn(σ) ◦Hn(ρ), and

Hn(idH) = idHn(H) = Hn(ρ ◦ σ) = Hn(ρ) ◦Hn(σ).

Hence, Hn(ρ) = Hn(σ)−1, and Hn(G, A) ∼= Hn(H, A). This completes the first step.

For the second step, we use similar strategies to the ones used in Lemma 3.3.

First, take an open full subset F ⊆ G(0), and suppose that there exist some continuous

map θ : G(0) → G, such that r(θ(x)) = x, and s(θ(x)) ∈ F , for all x ∈ G(0). Define

ρ : G → G|F as ρ(g) = θ(r(g))−1gθ(s(g)), for all g ∈ G, and σ : G|F → G as σ(g) = g, for

all g ∈ G|F . The reader may check that, under those maps, G is homologically similar to

G|F . Hence, all is left to do is to prove that the map θ always exists.

Take a countable family of compact open bisections {Un} such that {r(Un)} covers G(0),
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and s(Un) ⊂ F , for all n. Define compact open bisections V1, ..., Vn inductively by

V1 = U1, and

Vn = Un \ r−1(r(V1 ∪ ... ∪ Vn−1)).

Then the map θ : G(0) → G given by θ(x) = (r|Vn)−1(x), for x ∈ Vn, satisfies the

assumptions stated above, concluding the proof.

Corollary 3.10. Let G,H be Kakutani equivalent groupoids. Then, if G satisfies HK

conjecture, so does H.

Proof. Immediate combining the previous results.

As shown above, Kakutani equivalence is a powerful tool in the study of the HK conjecture

for certain families of groupoids. Here we show some of the most direct results.

Lemma 3.11. Let G be a compact elementary groupoid, that is, a compact and principal

étale groupoid. Then G is Kakutani equivalent to a trivial groupoid, i.e. a groupoid H
such that H = H(0).

Proof. The proof is deduced from [22, Lemma 3.4]. Since G(0) is totally disconnected,

we can find a clopen partition G(0) =
⊔∞
i=1Xi where each Xi satisfies that |G(x)| = i

for all x ∈ Xi, where G(x) denotes the orbit of x. Compactness of G(0) implies that this

partition is finite, and that X∞ = ∅. Indeed, suppose x ∈ G(0) such that |G(x)| = ∞,

and let {γn}n := {xG}, where xG := r−1(x), as in Corollary 2.37. Since G is compact,

{γn}n must have an accumulation point γ ∈ G. Then {x}n = {r(γn)}n → r(γ) = x, by

continuity of the range map. Finally, since xG is discrete in G (see Corollary 2.37), we

deduce that there exists some m ∈ N such that γn = γ for all n ≥ m. Therefore, the

orbit G(x) is not infinite, and X∞ = ∅.
With this in mind, we can write G as the disjoint finite union G =

⊔n
i=1 G|Xi , for some

n ∈ N. Since G is principal, all G|Xi are also principal. Each G|Xi is isomorphic to an

equivalence relation where each class contains exactly i elements, and hence, for each

i, there exist some G|Xi-full clopen subsets Y j
i ⊆ Xi such that Xi =

⊔i
j=1 Y

j
i , and

G|Y ji = Y j
i , for all 1 ≤ j ≤ i. Therefore, denoting Z :=

n⊔
i=1

Y 1
i , we have that G|Z = Z, as

desired.

Corollary 3.12. Let G be a compact elementary groupoid. Then G verifies the HK-

conjecture, with K1(C∗r (G)) = 0, Hn(G) = 0 for all n > 0, and H0(G) ∼= K0(C∗r (G)).

Moreover, the isomorphism is the natural one, given by [1U ]H0 7→ [1U ]K0 , for any compact

open U ⊆ G(0).
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Proof. Immediate after using Corollaries 2.75 and 3.10, combined with the last lemma.

We can extend this result to AF groupoids.

Lemma 3.13. Let G be an AF groupoid with compact unit space. Then G satisfies the

HK-conjecture. Moreover, the isomorphism is the natural one, given by [1U ]H0 7→ [1U ]K0 ,

for any compact open U ⊆ G(0).

Proof. Let G =
∞⋃
i=0

Ki, with Ki elementary groupoids. Then C∗r (G) is given by the closure

of the increasing union of C∗r (Ki) (i.e., it is an AF algebra). Since K∗ is a continuous

functor, we can compute K1(C∗r (G)) = 0, and K0(C∗r (G)) = lim−→(K0(C∗r (Ki))).
On the other hand, combining Proposition 2.50, Lemma 2.75 and the previous corollary,

we deduce that Hn(G) = 0 for any n > 0, and

H0(G) ∼= lim−→(H0(Ki)) ∼= lim−→(K0(C∗r (Ki))) ∼= K0(C∗r (G)),

concluding the proof.

Moreover, it was shown in [21] that this result extends to the case of non-compact ele-

mentary and AF groupoids. The techniques used in the proof are similar to the ones

used for the compact version. Hence, we just show here the result, and direct the reader

to the original source for further details.

Theorem 3.14. ([21, Theorem 4.10]) Let X, Y be locally compact Hausdorff spaces

such that Y is σ-compact and totally disconnected, and let ψ : Y → X be a local

homeomorphism. Then Hn(R(ψ)) = Hn(X) = 0 for n ≥ 1, and H0(R(ψ)) = H0(X) ∼=
Cc(X,Z) under the map given by [ψ∗(1U)] 7→ [1U ].

Moreover, the groupoid C∗-algebra C∗(R(ψ)) is an AF algebra, the map ψ∗ induces an

isomorphism K0(C∗(R(ψ))) ∼= Cc(X,Z) such that the diagram

Cc(Y,Z)

K0(C∗(R(ψ))) Cc(X,Z)

ψ∗

∼=

i∗

commutes, and K1(C∗(R(ψ))) = 0. In particular, R(ψ) verifies the HK-conjecture.

Corollary 3.15. AF groupoids satisfy Matui’s HK-conjecture.
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3.2 Cocycles

Cocycles usually provide a way to simplify the study of both homology and K-

theory associated to an étale groupoid. They transform the direct computation to the

study of either a certain exact sequence of homology or a crossed product algebra. In

this line, we will show special interest in cocycles over Zk.
A cocycle is a continuous groupoid homomorphism c : G → Γ, with Γ an abelian group

(considered as a groupoid).

Definition 3.16. Let c : G → Γ be a cocycle. We define the associated skew product

groupoid G ×c Γ as the set G × Γ, together with structure:

r(g, γ) = (r(g), γ),

s(g, γ) = (s(g), γ + c(g)),

(g, γ)(h, γ + c(g)) = (gh, γ), and

(g, γ)−1 = (g−1, γ + c(g)), whenever (g, h) ∈ G(2).

Moreover, there is a natural action ĉ : Γ y G ×c Γ given by ĉµ(g, γ) = (g, γ + µ).

One can usually study G ×c Γ indirectly, through the consideration of ker(c):

Lemma 3.17. Let G be a groupoid, and let c : G → Γ be a cocycle. Suppose that

G(0) × {0} is full in G ×c Γ. Then G ×c Γ is Kakutani equivalent to ker(c).

Proof. It is clear that G(0) × {0} is a clopen subset of (G ×c Γ)(0) = G(0) × Γ. Then

(G ×c Γ)|G(0)×{0} = {(g, 0) ∈ G ×c Γ : c(g) = 0} ∼= ker(c), as desired.

Some of the most useful applications of cocycles arise when considering Γ = Zk. The

following results will provide a powerful tool when computing either the homology or the

K-theory associated to a groupoid.

3.2.1 Long exact sequence in homology

Given a cocycle c : G → Z, we can compute the homology groups of G by studying

a certain long exact sequence in homology. Note that, for clarity matters, we make a

slight abuse of notation, using the same symbols to denote the maps induced in homology

and the maps induced in the algebras.

Theorem 3.18. ([46, Lemma 1.3]) Let G be an étale groupoid with G(0) a locally

compact, Hausdorff and totally disconnected space, and let c : G → Z be a cocycle.

Then there exists a long exact sequence

0 H0(G)oo H0(G ×c Z)oo H0(G ×c Z)
Id−ĉ(0)

1∗oo H1(G)oo H1(G ×c Z)oo

· · · // H3(G) // H2(G ×c Z)
Id−ĉ(2)

1∗// H2(G ×c Z) // H2(G) // H1(G ×c Z)

Id−ĉ(1)
1∗

OO
(3.1)



46

where the maps ĉ
(n)
1∗ are induced by the action ĉ : Z y G ×c Z, with ĉ1(g, i) = (g, i+ 1).

Proof. Let ĉ1 be as above, and consider

0→ Cc((G ×c Z)(n),Z)
Id−ĉ(n)

1∗→ Cc((G ×c Z)(n),Z)
π

(n)
∗→ Cc(G(n),Z)→ 0, (3.2)

where π
(n)
∗ is induced by the map π(n) : (G ×c Z)(n) → G(n) given by

((g1, i1), ...(gn, in)) 7→ (g1, ..., gn). Those are short exact sequences. Clearly, π
(n)
∗ is a

surjective map, and Id − ĉ
(n)
1∗ is injective. Moreover, π

(n)
∗ ◦ (Id − ĉ

(n)
1∗ )(f) = 0, for all

f ∈ Cc((G ×c Z)(n),Z). Thus, all is left to do is to prove that ker(π
(n)
∗ ) ⊆ Im(Id− ĉ(n)

1∗ ).

Let us show it.

Denote by (G ×c Z)
(n)
i the set of elements

{((g1, i), (g2, i+ c(g1)), ..., (gn, i+ c(g1) + ...+ c(gn−1))) : (g1, ..., gn) ∈ G(n)} ⊆ (G ×c Z)(n).

For clarity matters, we will write the elements of (G ×c Z)
(n)
i as (g1, ..., gn)i.

Now take f ∈ ker(π(n)
∗ ). Since it has compact support, we can always find some m ∈ N,

and write

f =
m∑

i=−m

fi,

for some fi ∈ Cc((G ×c Z)(n),Z) verifying supp(fi) ⊆ (G ×c Z)
(n)
i , for each i.

We claim that

fm + ĉ
(n)
1∗ (fm−1) + (ĉ

(n)
1∗ )2(fm−2) + ...+ (ĉ

(n)
1∗ )2m(f−m) = 0.

Indeed, if f ∈ ker(π(n)
∗ ), then

m∑
i=−m

f((g1, ..., gn)i) = 0,

for all (g1, ..., gn) ∈ G(n). Then, for an element of (G ×c Z)
(n)
m , we have:

(fm+ĉ
(n)
1∗ (fm−1) + (ĉ

(n)
1∗ )2(fm−2) + ...+ (ĉ

(n)
1∗ )2m(f−m))((g1, ..., gn)m) =

=fm((g1, ..., gn)m) + fm−1((g1, ..., gn)m−1) + ...+ f−m((g1, ..., gn)−m) =

=
m∑

i=−m

f((g1, ..., gn)i) = 0 .

Moreover, for an element of (G ×c Z)
(n)
j , with j 6= m, we obtain:

(fm+ĉ
(n)
1∗ (fm−1) + (ĉ

(n)
1∗ )2(fm−2) + ...+ (ĉ

(n)
1∗ )2m(f−m))((g1, ..., gn)j) =

=fm((g1, ..., gn)j) + fm−1((g1, ..., gn)j−1) + ...+ f−m((g1, ..., gn)−j) =

=0 + ...+ 0 = 0 ,



47

hence concluding that the equality

fm + ĉ
(n)
1∗ (fm−1) + (ĉ

(n)
1∗ )2(fm−2) + ...+ (ĉ

(n)
1∗ )2m(f−m) = 0

holds. Therefore, using this equality, we deduce

f =
m∑

i=−m

fi = fm−1 + ...+ f−m − ĉ(n)
1∗ (fm−1)− (ĉ

(n)
1∗ )2(fm−2)− ...− (ĉ

(n)
1∗ )2m(f−m) =

= (fm−1 − ĉ(n)
1∗ (fm−1)) + (fm−2 − ĉ(n)

1∗ (fm−2)) + ((ĉ
(n)
1∗ (fm−2)− ĉ(n)

1∗ (ĉ
(n)
1∗ (fm−2))) +

+ ...+ (f−m − ĉ(n)
1∗ (f−m)) + ...+ ((ĉ

(n)
1∗ )2m−1(f−m)− ĉ(n)

1∗ (ĉ
(n)
1∗ )2m−1(f−m))) ∈ Im(Id− ĉ(n)

1∗ ) ,

making (3.2) a short exact sequence, as desired.

Then, the long exact sequence of homology associated to (3.2) gives us the exact sequence

(3.1) as claimed.

There is a more general result relating the homology of a groupoid with the homology

of the associated skew product groupoid G ×c Γ, involving a certain spectral sequence.

If the reader is unfamiliar with the basics of spectral sequences, we will devote a short

introductory section about them later in this chapter.

Theorem 3.19. ([36, Theorem 3.8]). Let G be an étale groupoid, A an abelian group,

and let Γ be a countable discrete group, such that there exists some cocycle c : G → Γ.

Then there exists a spectral sequence

E2
p,q = Hp(Γ, Hq(G ×c Γ, A))⇒ Hp+q(G, A),

where Hq(G ×c Γ, A) is regarded as a Γ-module via the action ĉ : Γ y G ×c Γ.

Moreover, whenever there exists an action ϕ : Γ y G, then there exists a spectral

sequence

E2
p,q = Hp(Γ, Hq(G, A))⇒ Hp+q(G oϕ Γ, A).

The proof of this theorem is out of the scope of this work.

We have shown how groupoid homology can be studied when there is a cocycle involved.

Let us now introduce some results concerning its associated K-theory.

3.2.2 Crossed product C∗-algebra associated to a cocycle

Recall that, given a cocycle c : G → Γ, there is an induced action ĉ : Γ y G ×c Γ

given by ĉµ(g, γ) = (g, γ+µ), for µ ∈ Γ. Since every automorphism of a groupoid induces

an automorphism on its associated C∗-algebra, we obtain an induced action α of Γ on

C∗(G ×c Γ). We can use this in order to study the C∗-algebra of G.
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Lemma 3.20. ([21, Lemma 6.6]) Let G be an amenable, Hausdorff, second countable

étale groupoid, and let c : G → Zk be a cocycle. Denote by α : Zk y C∗(G ×c Zk) the

associated action. Then the crossed product C∗(G ×c Zk) oα Zk is stably isomorphic to

C∗(G). This isomorphism extends to an isomorphism C∗r (G ×c Zk)oα Zk ∼= C∗r (G)⊗K.

Proof. A cocycle c : G → Zk determines an action of Tk by automorphisms of Cc(G)

given by (z · f)(γ) = zc(γ)f(γ), for all γ ∈ G. This extends to an action ϕ of

Tk by automorphisms on C∗(G). Straightforward computation shows that the map

θ : C∗(G ×c Zk) → C∗(G) oϕ Tk that carries f ∈ Cc(G × {n}) ⊆ Cc(G ×c Zk) to the

function z 7→ (γ 7→ znf(γ, n)) ∈ C(Tk, C∗(G)) ⊆ C∗(G)oϕ Tk is an isomorphism.

By construction, it follows that the map θ intertwines with both α and the dual action

ϕ̂ on C∗(G) oϕ Tk. Hence, Takesaki-Takai duality (see [63, Theorem 4.5]-[62, Theorem

3.4]) implies that C∗(G ×cZk)oαZk is stably isomorphic to C∗(G). Indeed, we have that

C∗(G ×c Zk)oα Zk ∼= (C∗(G)oϕ Tk)oϕ̂ Zk ∼= C∗(G)⊗K.

For further details about this isomorphism, see [49, Theorem 7.9.3].

Finally, the amenability of the skew product G ×c Zk follows from that of G (see [52,

Proposition II.3.8]), extending the result to the reduced C∗-algebras.

The above result is a particular case of [27, Theorem 5.9], where the group Zk can be

replaced for any discrete group, and dual actions are replaced by coactions in the non-

abelian case. Both of the families of groupoid involved in our work (Deaconu-Renault

groupoids and self-similar groups) can be studied using a cocycle c : G → Zk. Thus, we

stick to the simpler statement, and direct the reader to the work of Kaliszewski, Quigg

and Raeburn for further details.

Remark 3.21. Throught this work, we will usually write Aoα Z simply as AoZ, with

α an action of Z on a C∗-algebra A. We will, however, keep the subindex whenever we

want to outline the action involved.

Lemma 3.20 stablishes a stable isomorphism between the C∗-algebra associated to

a groupoid and a certain crossed product C∗-algebra associated to its skew product

groupoid. It is a well known fact that stable isomorphisms of C∗-algebras preserve the

K-groups (see, for example, [53]). Hence, all is left to do is to find a way to describe

the K-theory of a crossed product algebra A o Zk, given that we know K∗(A). There

are two major results in this matter. The first one is the Pimsner-Voiculescu exact se-

quence, a six-term exact sequence that relates K∗(A) with K∗(AoZ). The second one is

Kasparov’s spectral sequence, a more general result that allows us to study K∗(AoZk).
Both approaches are strongly related. In fact, it is shown in [5, Proposition 10.4.1] that
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the Pimsner-Voiculescu exact sequence can be deduced using the same techniques that

the ones used to study Kasparov’s spectral sequence.

We begin studying the Pimsner-Voiculescu exact sequence. We will provide a sketch of

the proof, and direct the reader to the original source for further details: [51, Theorem

2.4] for the unital case, and [51, Remark 2.7] for the non-unital one.

Theorem 3.22. (Pimsner-Voiculescu exact sequence for K-theory).

Let A be a C∗-algebra, and let α be an action of Z on A by automorphisms. Denote

by A o Z the associated crossed product C∗-algebra (see, for example, [53]). Then the

diagram

K0(A) K0(A) K0(Ao Z)

K1(Ao Z) K1(A) K1(A)

id−K0(α) K0(j)

K1(j) id−K1(α)

is exact, where A is considered as a subalgebra of Ao Z under the embedding j.

Proof. Let C∗(S) be the C∗-algebra generated by a non-unitary isometry S. The Toeplitz

algebra T(A,α) associated to the action α : Z y A is defined as the subalgebra of

(AoZ)⊗C∗(S), generated by A⊗ I, and u⊗S∗, where u denotes the unitary associated

to the crossed product. We will use that there exists an isomorphism K∗(T(A,α)) ∼= K∗(A)

(see, for example, [51]).

By construction, one has the short exact sequence

0→ K→ C∗(S)→ C∗(T)→ 0,

which induces a short exact sequence

0→ A⊗K ι→ T(A,α) → Ao Z→ 0.

It can be proven that the isomorphism K∗(T(A,α)) ∼= K∗(A) can be described by the

following commutative diagram

K∗(A⊗K) K∗(T(A,α))

K∗(A) K∗(A)

K∗(ι)

∼=

id−K∗(α)

∼=
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The Pimsner-Voiculescu exact sequence is then obtained as the six-term exact sequence

of the extension above.

In a more general setting, the following result studies the K-theory of a crossed product

by Zk, via spectral sequences. Here we just state the theorem, appearing in [29, Theorem

2]. In the following section, we fully build the cohomological spectral sequence using the

strategies of [4] and [54].

Theorem 3.23. (Kasparov’s spectral sequence).

Let A be a C∗-algebra, and let α be an action of Zk on A by automorphisms. Then,

there is a homological spectral sequence:

E2
p,q = Hp(Zk, Kq(A))⇒ Kp+q(Ao Zk),

and a cohomological spectral sequence

Ep,q
2 = Hp(Zk, Kq(A))⇒ Kp+q+k(Ao Zk),

both converging to the K-theory of the associated crossed product.
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3.3 Spectral sequences

So far, we have introduced two major results involving spectral sequences, without

talking the least about what is a spectral sequence. For this reason, in this section we

provide a (very brief) guide to spectral sequences, for those who just want to understand

the statements above. An in-depth guide on spectral sequences can be found in [39].

3.3.1 Terminology

Definition 3.24. A (cohomological) spectral sequence in an abelian category A is a

family {Ep,q
r } of objects in A, for all p, q ∈ Z, r ∈ N, together with maps

dp,qr : Ep,q
r → Ep+r,q−r+1

r

that are differentials, in the sense that dp,qr ◦ dp−r,q+r−1
r = 0, satisfying that

Ep,q
r+1
∼= ker(dp,qr )/Im(dp−r,q+r−1

r ).

The bigraded object {Ep,q
r } will be called the r-th page of the spectral sequence. One

can picture the first page of a spectral sequence as follows

..

...

...

...

...

..

E0,3
1

E0,2
1

E0,1
1

E0,0
1

..

E1,3
1

E1,2
1

E1,1
1

E1,0
1

..

E2,3
1

E2,2
1

E2,1
1

E2,0
1

..

E3,3
1

E3,2
1

E3,1
1

E3,0
1

..

...

...

...

...

We say that a spectral sequence reaches its limit at the r0-th page if Ep,q
r = Ep,q

r0
, for

every p, q ∈ Z, and for every r ≥ r0.

Remark 3.25. Analogously, one can define a (homological) spectral sequence by in-

verting the bidegree of the differential maps, that is, drp,q : Er
p,q → Er

p−r,q+r−1. All of the

results shown here can be rephrased to the homology counterpart.

One can see that Ep,q
r+1 is a subquotient of Ep,q

r , for all r, p, q. More precisely, denote

Z1 = ker(d1), and B1 = Im(d1). Although Z1, B1 are bigraded objects, we drop the

superindexes p, q for a matter of clarity. The differential condition over the maps dr

implies B1 ⊆ Z1 ⊆ E1. Write Z2 = ker(d2 : E2 → E2). Clearly Z2 ⊆ E2 = Z1/B1, and

hence it can be written as Z2/B1, for some Z2 ⊆ Z1. Similarly, we can find some B2 such

that Im(d2) := B2 = B2/B1, and so

B1 ⊆ B2 ⊆ Z2 ⊆ Z1.
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Moreover, E3
∼= Z2/B2

∼= (Z2/B1)/(B2/B1) ∼= Z2/B2.

Iterating this process, we obtain an infinite tower

B1 ⊆ B2 ⊆ B3 ⊆ ... ⊆ Z3 ⊆ Z2 ⊆ Z1,

satisfying Er+1
∼= Zr/Br, for each r ∈ N.

Definition 3.26. Let (Ep,q
r , dp,qr ) be a spectral sequence in A. Define the bigraded

objects:

B∞ =
∞⋃
r=1

Br, and

Z∞ =
∞⋂
r=1

Zr.

Then we define the limit term as Ep,q
∞ := Zp,q

∞ /Bp,q
∞ .

If the spectral sequence reaches its limit at some r0-th page, then Ep,q
∞ = Ep,q

r0
.

We now provide the definition of convergence. We show two definitions: one for the

homology and another for the cohomology case, since the extrapolation from one to

another may not be trivial.

Definition 3.27. ([64, Definition 5.2.11]) Let H∗ := {Hn}n be a family of objects in A.

• We say that a homological spectral sequence (Er
p,q, d

r
p,q) weakly converges to H∗

if, for every n, Hn has a filtration

... ⊆ Fp−1Hn ⊆ FpHn ⊆ Fp+1Hn ⊆ ... ⊆ Hn,

such that, for every p, q, there exists an isomorphism E∞p,q
∼= FpHp+q/Fp−1Hp+q.

• We say that (Er
p,q, d

r
p,q) approaches H∗ if it weakly converges to H∗, and it

satisfies Hn = ∪FpHn, 0 = ∩FpHn.

• Then (Er
p,q, d

r
p,q) converges to H∗ if all of the following conditions hold:

1. (Er
p,q, d

r
p,q) approaches H∗.

2. (Er
p,q, d

r
p,q) is regular, meaning that, for each p, q, the differentials drp,q are all

eventually zero for large enough r.

3. For each n, Hn = lim←−(Hn/FpHn).

The usual notation for a convergent homological spectral sequence is:

Er
p,q ⇒ Hp+q
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Definition 3.28. Let H∗ := {Hn}n be a family of objects in A.

• We say that a cohomological spectral sequence (Ep,q
r , dp,qr ) weakly converges to

H∗ if, for every n, Hn has a decreasing filtration

... ⊆ F p+1Hn ⊆ F pHn ⊆ F p−1Hn ⊆ ... ⊆ Hn,

such that, for every p, q, there exists an isomorphism Ep,q
∞
∼= F pHp+q/F p+1Hp+q.

• We say that (Ep,q
r , dp,qr ) approaches H∗ if it weakly converges to H∗, and it

satisfies Hn = ∪F pHn, 0 = ∩F pHn.

• Then (Ep,q
r , dp,qr ) converges to H∗ if all of the following conditions hold:

1. (Ep,q
r , dp,qr ) approaches H∗.

2. (Ep,q
r , dp,qr ) is regular, meaning that, for each p, q, the differentials dp,qr are all

eventually zero for large enough r.

3. For each n, Hn = lim←−p→−∞(Hn/F pHn).

The usual notation for a convergent cohomological spectral sequence is:

Ep,q
r ⇒ Hp+q

Note that we can ignore the last condition whenever the filtration is finite, in the sense

that, for all n, F tHn = F t+1Hn for large enough t, and F sHn = F s−1Hn, for small

enough s. Finite filtrations such that F tHn = 0 and F sHn = Hn are usually called

bounded. A similar argument can be made in the case of homological spectral sequences.

We provide here a few examples of convergent spectral sequences, for both the homology

and cohomology cases:

Example 3.29. We say that a spectral sequence collapses at the r-th page (r ≥ 1)

if there is only one non-zero row (or column) in {Er
p,q}. A collapsing spectral sequence

reaches its limit at the r-th page, since the differential maps are forced to be zero.

Straightforward computation shows that a collapsing spectral sequence converges to the

limit term Hn := Er
n−q,q = E∞n−q,q, where q is the only non-zero row. Indeed, consider the

trivial filtration FpHn of Hn given by

... ⊆ 0 ⊆ ... ⊆ 0 ⊆ Hn ⊆ Hn ⊆ ...

where FjHn = Hn, whenever j ≥ n− q, and 0 otherwise.

Then, for any fixed n, E∞n−q,q = Hn = Hn/{0} = Fn−qHn/Fn−q−1Hn, as desired.
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It is important to note that a great number of applications of spectral sequences rely on

spectral sequences that collapse in the early pages.

Example 3.30. Suppose that a homological spectral sequence converging to H∗ has

E2
p,q = 0 unless p = 0, 1. Then there are short exact sequences of the form

0→ E2
0,n → Hn → E2

1,n−1 → 0

Indeed, the differential maps drp,q : Er
p,q → Er

p−r,q+r−1 are trivial for all r ≥ 2, since either

domain or codomain lies on a row different than 0, 1, forcing them to be zero. Hence

the spectral sequence reaches its limit at the page 2. Then, convergence of the spectral

sequence means that there exists a filtration FpHn of Hn such that, for each p, q, we have

FpHp+q/Fp−1Hp+q
∼= E2

p,q.

Then, for all p < 0, we have FpHp+q/Fp−1Hp+q = 0, and therefore FpHp+q = Fp−1Hp+q.

Since the spectral sequence approaches H∗, we deduce that FpHp+q = 0 for all p < 0. A

similar argument can be made to show that FpHp+q = Hp+q for all p ≥ 1.

Then, for p = 1, q = n− 1, we have that

F1Hn/F0Hn = Hn/F0Hn
∼= E2

1,n−1,

and for p = 0, q = n

F0Hn/F−1Hn = F0Hn
∼= E2

0,n,

Therefore, we deduce that there exists a short exact sequence

0→ E2
0,n → Hn → E2

1,n−1 → 0

as claimed.

The following two examples will appear when dealing with Deaconu-Renault groupoids

later in this document. They are, mostly, the same one, but one refers to a homological

spectral sequence, and the other to a cohomological one. We believe it is worthwhile to

put both here, so the reader may notice the subtle differences.

Example 3.31. Suppose that a homological spectral sequence (Er
p,q, d

r) converging to

H∗ has E2
p,q = 0 whenever q is odd, and suppose that E2

p,q = 0 unless p = 0, 1, 2. Then

we have

E2
1,n−1

∼= Hn

whenever n is odd, and



55

0→ E2
0,n → Hn → E2

2,n−2 → 0

whenever n is even. Let us show it:

First, note that, since all the odd rows are zero, the differentials of the second page

d2
p,q : E2

p,q → E2
p−2,q+2−1 are all zero (since either domain or codomain lies in an odd row),

and hence E2
p,q = E3

p,q. Moreover, since E2
p,q is zero unless p = 0, 1, 2, the differentials drp,q

are also zero for every r > 2 (since either domain or codomain lies in a column different

than 0, 1, 2). Hence, we conclude that the spectral sequence reaches its limit at the page

2.

For each n ∈ Z, let FpHn be the filtrations for Hn associated to the convergence of the

spectral sequence. Using similar arguments as the ones in the previous example, it is

straightforward to check that FpHn = 0 whenever p < 0, and FpHn = Hn whenever

p ≥ 2. Hence, the filtrations are of the form

{0} = F−1Hn ⊆ F0Hn ⊆ F1Hn ⊆ F2Hn = Hn.

We study the filtrations of Hn considering separately the two cases, n odd and n even.

First, suppose that n is odd. Then F2Hn/F1Hn
∼= E2

2,n−2 = 0, and hence Hn = F2Hn =

F1Hn. Moreover, F0Hn/F−1Hn
∼= E2

0,n = 0, and thus F0Hn = F−1Hn = 0. Therefore

F1Hn/F0Hn = Hn
∼= E2

1,n−1,

as desired.

Now, suppose that n is even. Then F2Hn/F1Hn
∼= E2

2,n−2. Moreover, F1Hn/F0Hn
∼=

E2
1,n−1 = 0, meaning that F1Hn = F0Hn, and F0Hn/F−1Hn = F0Hn

∼= E2
0,n. Combining

those three results, together with the fact that F2Hn = Hn, we obtain a short exact

sequence

0→ E2
0,n → Hn → E2

2,n−2 → 0

as claimed.

A similar study can be made for any finite number of columns, although the extension

problems grow.

The reader may note that, if the rows repeat periodically (in the sense that E2
p,i = E2

p,2q+i,

for i = 0, 1, and all p, q), then H2n+i and Hi agree up to extensions problems, with n ∈ Z
and i = 0, 1. This is usually the case when dealing with K-theory.

Example 3.32. Suppose that a cohomological spectral sequence (Ep,q
r , dr) converging

to H∗ has Ep,q
2 = 0 whenever q is odd, and suppose that Ep,q

2 = 0 unless p = 0, 1, 2. Then

we have
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E1,n−1
2

∼= Hn

whenever n is odd, and

0→ E2,n−2
2 → Hn → E0,n

2 → 0

whenever n is even. Let us show it:

Using the same argument as before, we can conclude that the spectral sequence reaches

its limit at the page 2.

For each n ∈ Z, let F pHn be the decreasing filtrations for Hn associated to the con-

vergence of the spectral sequence. As before, straightforward computation shows that

F pHn = 0 whenever p > 2, and F pHn = Hn whenever p ≤ 0. Hence, the filtrations are

of the form

{0} = F 3Hn ⊆ F 2Hn ⊆ F 1Hn ⊆ F 0Hn = Hn.

We study the filtrations of Hn considering separately the two cases, n odd and n even.

First, suppose that n is odd. Then F 2Hn/F 3Hn ∼= E2,n−2
2 = 0, and hence F 2Hn = 0.

Moreover, F 0Hn/F 1Hn ∼= E0,n
2 = 0, and thus F 0Hn = F 1Hn = 0. Therefore

Hn = F 0Hn = F 1Hn = F 1Hn/F 2Hn ∼= E1,n−1
2 ,

as desired.

Now, suppose that n is even. Then F 1Hn/F 2Hn ∼= E1,n−1
2 = 0, meaning that F 1Hn =

F 2Hn. Therefore, since F 3Hn = 0, we have E2,n−2
2

∼= F 2Hn/F 3Hn = F 2Hn = F 1Hn.

Then, using the isomorphism E0,n
2
∼= F 0Hn/F 1Hn, together with the fact F 0Hn = Hn,

we obtain a short exact sequence

0→ E2,n−2
2 → Hn → E0,n

2 → 0

as claimed.

Both remarks at the end of Example 3.31 can also be used here.

We show one last example, similar to the previous one. We will use this in Subsection

4.4.1.

Example 3.33. Suppose that a cohomological spectral sequence (Ep,q
r , dr) converging

to H∗ has Ep,q
2 = 0 whenever q is odd, and suppose that Ep,q

2 = 0 unless p = 0, 1, 2, 3.

Then we have exact sequences

0→ coker(d0,n−1
3 )→ Hn → E1,n−1

2 → 0

whenever n is odd, and



57

0→ E2,n−2
2 → Hn → ker(d0,n

3 )→ 0

whenever n is even. Let us show it:

Reasoning as in Example 3.32, we have that all the differential maps of the second page

are zero, and hence E2 = E3. Moreover, the third page of the spectral sequence is of the

form

..

0

0

0

0
..

..

0

E0,0
2

0

E0,−2
2..

..

0

E1,0
2

0

E1,−2
2..

..

0

E2,0
2

0

E2,−2
2..

..

0

E3,0
2

0

E3,−2
2..

..

0

0

0

0
..

..

...

...

...

...

d0,0
3

where the only maps that may not be zero are d0,n
3 , with n even. Therefore, for all q

even, we have:

Ep,q
∞ = Ep,q

2 , whenever p = 1, 2,

E0,q
∞ = E0,q

4 = ker(d0,q
3 ), and

E3,q
∞ = E3,q

4 = coker(d0,q+2
3 ).

Trivially, we have Ep,q
∞ = 0 whenever q is odd.

We keep the convention n = p + q. Then, straightforward computation shows that

F pHn = 0 whenever p > 3, and F pHn = Hn whenever p ≤ 0. Hence, the filtrations are

of the form

{0} = F 4Hn ⊆ F 3Hn ⊆ F 2Hn ⊆ F 1Hn ⊆ F 0Hn = Hn.

Suppose that n is odd. Then we have:

F 0Hn/F 1Hn ∼= E0,n
∞ = 0, and hence F 0Hn = F 1Hn = Hn.

F 1Hn/F 2Hn ∼= E1,n−1
∞ = E1,n−1

2 .

F 2Hn/F 3Hn ∼= E2,n−2
∞ = 0, and hence F 2Hn = F 3Hn.

F 3Hn/F 4Hn ∼= E3,n−3
∞ = coker(d0,n−1

3 ).

Since F 4Hn = 0, the last equality translates into F 3Hn = coker(d0,n−1
3 ). Then, combi-

ning all four equalities, we have a short exact sequence
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0→ coker(d0,n−1
3 )→ Hn → E1,n−1

2 → 0,

as desired.

Now suppose n even. Then we have:

F 0Hn/F 1Hn ∼= E0,n
∞ = ker(d0,n

3 ).

F 1Hn/F 2Hn ∼= E1,n−1
∞ = 0, and hence F 1Hn = F 2Hn.

F 2Hn/F 3Hn ∼= E2,n−2
∞ = E2,n−2

2 .

F 3Hn/F 4Hn ∼= E3,n−3
∞ = 0, and hence F 3Hn = F 4Hn = 0.

Therefore, combining all four equalities (and since F 0Hn = Hn), we obtain a short exact

sequence

0→ E2,n−2
2 → Hn → ker(d0,n

3 )→ 0,

concluding the proof.

3.3.2 Exact couples

We have already shown what is a spectral sequence, but it remains to be seen how

they are built. In this section, we introduce one of the more common ways of creating a

spectral sequence. More methods can be found in [64, Chapter 5].

Definition 3.34. An exact couple is a pair of objects (D,E) in an abelian category

A, together with three morphisms i, j, k, such that the following diagram

D D

E

i

jk

is exact at every vertex, that is, ker(j) = Im(i), ker(k) = Im(j) and ker(i) = Im(k).

Given an exact couple, one can always build the associated derived couple.

Let (D,E, i, j, k) be an exact couple. The map d1 := j ◦ k verifies d1 ◦ d1 = 0, since

(j ◦ k) ◦ (j ◦ k) = j ◦ (k ◦ j) ◦ k = 0. Then, it makes sense to consider the associated

homology E2 := ker(d1)/Im(d1). Consider then the diagram

i(D) i(D)

E2

i′

j′k′
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where the morphisms are defined as:

i′ := i|i(D),

j′(i(a)) := [j(a)], a ∈ D, and

k′([e]) = k(e), for [e] ∈ E2.

Let us check that those maps are well defined. If i(a) = 0, then a ∈ Im(k), and hence

a = k(e) for some e ∈ E. Therefore, j(a) = j(k(e)) ∈ Im(j ◦ k). In particular, i(a) = 0

implies [j(a)] = 0 in E2.

On the other hand, k′([e1 +j(k(e2))]) = k(e1 +j(k(e2))) = k(e1)+(k◦j ◦k)(e2) = k(e1) =

k′([e1]). Also, e ∈ ker(j ◦ k) implies that (j ◦ k)(e) = 0, and thus k(e) ∈ ker(j) = Im(i).

Hence k′([e]) = k(e) ∈ i(D), and k′ is well defined.

Proposition 3.35. The triangle (i(D), E2, i
′, j′, k′) is an exact couple. We called this

exact couple the derived couple of (D,E, i, j, k).

Proof. To check the exactness, let’s start with the upper left vertex:

Consider [e] ∈ ker(j ◦ k)/Im(j ◦ k). Then i′(k′[e]) = i(k(e)) = 0, so Im(k′) ⊆ ker(i′).

For the other inclusion, take a ∈ Im(i) such that i′(a) = i(a) = 0. Then a = k(e)

for some e ∈ E. Since a ∈ Im(i), write a = i(a′) for some a′ ∈ D. Then

j(k(e)) = j(a) = j(i(a′)) = 0, therefore e ∈ ker(j ◦ k). Taking [e] ∈ ker(j ◦ k)/Im(j ◦ k),

we have k′[e] = k(e) = a, and so ker(i′) = Im(k′).

Let us now study the upper right vertex:

Let a ∈ Im(i), and a′ ∈ D such that i(a′) = a. Then j′(i′(a)) = j′(i(a)) = [j(a)] =

[j(i(a′))] = 0, hence Im(i′) ⊆ ker(j′). On the other hand, let a = i(a′) for some a′ ∈ D,

such that j′(a) = [j(a′)] = 0. Then j(a′) ∈ Im(j ◦ k), so there exists some e ∈ E such

that j(a′) = (j ◦ k)(e). Then j(a′ − k(e)) = 0, so a′ − k(e) ∈ ker(j) = Im(i). Hence

we can find some b ∈ D such that a′ = k(e) + i(b). In particular, a can be written as

a = i(a′) = i(k(e)) + (i ◦ i)(b) = (i ◦ i)(b) ∈ Im(i′), and so ker(j′) = Im(i′).

Finally, for the lower vertex:

Let a ∈ Im(i), with a = i(a′) for some a′ ∈ D. Then we have k′(j′(a)) =

k′[j(a′)] = k(j(a)) = 0, and so Im(j′) ⊆ ker(k′). On the other direction, consider

[e] ∈ ker(j ◦ k)/Im(j ◦ k) such that k′([e]) = k(e) = 0. Then e ∈ ker(k) = Im(j). Hence

e = j(a) for some a ∈ D, and we have [e] = [j(a)] = j′(i(a)), concluding the proof.

As the reader may have noticed, this process can be iterated indefinitely. We can use

this to build a spectral sequence.

Proposition 3.36. Let D := Dp,q and E := Ep,q be bigraded objects in A, together

with morphisms
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i : D → D

j : D → E

k : E → D

of bidegree (−1, 1), (1, 0) and (0, 0) respectively, and such that the triangle is exact, in

the sense that

Im(i) = ker(j),

Im(j) = ker(k), and

Im(k) = ker(i).

Fix E1 := E, D1 := D, i1 := i, j1 := j, and k1 := k. Then, for each r ≥ 1, define

(Er+1, Dr+1, ir+1, jr+1, kr+1) to be the derived couple of (Er, Dr, ir, jr, kr), and denote

dr := jr ◦ kr. Then the pair (Er, dr) is a (cohomological) spectral sequence.

Proof. By definition, the maps dr are all differentials. Straightforward computation shows

that their bidegree is (r,−r + 1), concluding the proof.

Strictly speaking, one can allow k to have bidegree (m,−m), with m ∈ N, and still obtain

a spectral sequence (starting at the (m+ 1)-page, instead to the first one).

Moreover, a homology exact couple can be defined in a similar way, replacing the bidegrees

of i, j, k for (1,−1), (0, 0) and (−1, 0), respectively. This allows the differential maps dr

of the homology spectral sequence to have bidegree (−r, r − 1).

3.3.3 Spectral sequences associated to cofiltrations of
C∗-algebras

One of the most common ways to build convergent spectral sequences is associating

an exact couple to a finite filtration or cofiltration. Here we show how.

Definition 3.37. A finite cofiltration of a C∗-algebra B is a family of C∗-algebras

Fn, Fn−1, ..., F−1, together with surjective maps πi:

B = Fn
πn→ Fn−1

πn−1→ ...
π1→ F0

π0→ F−1 = 0.

Any finite cofiltration of a given C∗-algebra B induces a series of exact sequences:

0→ Ik
ik→ Fk

πk→ Fk−1 → 0, (3.3)

where Ik := ker(πk). We can use this to build an exact couple.

Proposition 3.38. A finite cofiltration of a C∗-algebra B induces a bigraded exact

couple (i.e. an exact couple with bigraded objects) and, hence, a (cohomological) spectral

sequence.
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Proof. Consider the bigraded objects D1, E1 given by D1 := Dp,q
1 , E1 := Ep,q

1 , where

Dp,q
1 = Kp+q(Fp) and Ep,q

1 = Kp+q(Ip) Denote by δ
(k)
∗ the boundary maps from K∗(Fk−1)

to K∗+1(Ik) appearing in the respective six-term exact sequences. This, together with

the induced maps in K-theory associated to ik, πk, defines the morphisms

K∗(π∗) : D1 → D1,

δ∗∗ : D1 → E1, and

K∗(i∗) : E1 → D1,

of bidegree (−1, 1), (1, 0) and (0, 0), respectively. The six-term exact sequences of (3.3)

ensures that the following triangle is exact

D1 D1

E1

K∗(π∗)

δ∗∗K∗(i∗)

and hence (D1, E1, K∗(π∗), δ
∗
∗, K∗(i∗)) is a cohomology exact couple.

This spectral sequence converges to the K-theory of the C∗-algebra B. This is conse-

quence of the following two theorems, which we just state here, and direct the reader to

their original sources for further details:

Theorem 3.39. ([57, Theorem 2.1]). Suppose given a filtered C∗-algebra

A0 ⊂ A1 ⊂ ... ⊂ An ⊂ ... ⊂ B

with
⋃
An = B. Define the bigraded objects L1 := L1

p,q = Kp+q(Ap), and E1 := E1
p,q =

Kp+q(Ap/Ap−1), and denote by θ∗∗ : E1
∗,∗ → L1

∗,∗ the respective index maps. Then the

homology spectral sequence associated to the exact couple

L1 L1

E1

K∗(i∗)

K∗(ω∗)θ∗∗

converges to K∗(B), where i∗, ω∗ are the respective inclusion and projection maps.

If the filtration is finite, with An = B for n ≥ N , then E1
p,q = 0 for p ≥ N + 1, and

EN = E∞.
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Theorem 3.40. ([54, Theorem 9]). The spectral sequence for K-theory of a C∗-algebra

B associated with a finite filtration of B by ideals Ap, and the spectral sequence associated

with its corresponding finite cofiltration by quotients Fp = B/An−p−1, are isomorphic, in

the sense that their associated exact couples are equivalent (see [54, Definition 17]).

Combining both statements, we conclude:

Corollary 3.41. Let

B = Fn
πn→ Fn−1

πn−1→ ...
π1→ F0

π0→ F−1 = 0

be a finite cofiltration of a C∗-algebra B. The spectral sequence arising from the exact

couple (D1, E1, K∗(π∗), δ
∗
∗, K∗(i∗)) associated to Equation (3.3), converges to K∗(B).

Moreover, Ep,q
1 = 0 for p ≥ n+ 1, and En = E∞.

Proof. For each p, we have a surjection ∆p : B → Fp, given as the composition of the

consecutive maps π∗. Then the kernels of ∆p provide a filtration of B, which satisfies

the relation of Theorem 3.40. Using Theorem 3.39, this spectral sequence converges to

K∗(B), concluding the proof.

Remark 3.42. There is a disparity of notation between both sources [57] and [54]. In

the first one, the author uses a filtration with increasing subindexes. In the second one,

the authors use decreasing subindexes. We have adapted the notation appearing in the

second one ([54, Theorem 9]), in order to match the convention of [57] (which is the one

we use throughout this work).

Finally, we provide a picture of the consecutive differential maps of the spectral sequence.

In [4], the author gives a general description of the differential maps of the r-page, follo-

wing the work appearing in [54].

Lemma 3.43. Let [x] ∈ Ep,q
r be represented by x ∈ Kp+q(Ip), and con-

sider its image under the map induced by the natural inclusion, given by

Kp+q(ip)(x) ∈ Kp+q(Fp). Then there exists a lift y ∈ Kp+q(Fp+r−1) for Kp+q(ip)(x)

under the map Kp+q(Fp+r−1)→ Kp+q(Fp), such that

dp,qr ([x]) = [δ
(p+r)
p+q (y)] ∈ Ep+r,q−r+1

r .

3.3.4 A spectral sequence for the crossed product by an
action of Zk

Here we show a method appearing in [4] and [54], in which Kasparov’s cohomo-

logical spectral sequence (see Theorem 3.23) is built explicitly from a cofiltration asso-

ciated to the crossed product algebra. Recall that, for a C∗-dynamical system (A,α,Zk),
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Kasparov’s cohomological spectral sequence is of the form

Ep,q
2
∼= Hp(Zk, Kq(A))⇒ Kp+q+k(Ao Zk).

The construction goes as follows.

First, we defineMα(A), the mapping torus C∗-algebra associated to a dynamical sistem

(A,α,Zk). This C∗-algebra satisfies K∗+k(Mα(A)) ∼= K∗(A o Zk). After that, we find

certain cofiltration of the mapping torus, and apply the previous section. This technique

appeared originally in [54]. Let us show it.

3.3.4.1 The mapping torus

We give here a definition for the mapping torus associated to a Zk-action. It can be

generalized to any abelian group (see [45]).

Definition 3.44. Let (A,α,Zk) be a C∗-dynamical system. The associated mapping

torus C∗-algebra is defined as

Mα(A) := {f ∈ C([0, 1]k, A) : f(t1, ..., ti−1, 1, ti+1, ..., tk) =

αi(f(t1, ..., ti−1, 0, ti+1, ..., tk)), for all 1 ≤ i ≤ k},

where αi denotes the action of the generator ei of Zk.

Remark 3.45. We give two remarks on this definition:

• There is an equivalent definition of Mα given by

Mα(A) := {f ∈ C(Rk, A) : f(x+ z) = αz(f(x)), z ∈ Zk}.
• Moreover, the mapping torus of a Zk-dynamical system can be defined inductively.

Indeed, let α = (α1, ..., αk). Then the reader may check that

Mα(A) ∼=Mαk(M(α1,...,αk−1)(A)).

The K-theory of the mapping torus has been broadly studied (see [5], [4], [48] or [54],

for example). The following theorem, a special case of [45, Corollary 2.5], relates the

K-theory of the mapping torus with the one of the crossed product. A proof of this

particular case can be found in [4, Theorem 1.2.6], or [48]. In the following section, we

show an explicit description of this result, appearing in [48]. Moreover, we prove some

key properties for the isomorphism. We will use this to prove Theorem 3.50, one of

the main technical results of this document, which will allow us to study the associated

K-theory of Deaconu-Renault groupoids in Chapter 4.

Theorem 3.46. ([45, Corollary 2.5]) Given a C∗-dynamical system (A,α,Zk), there

exists an isomorphism



64

Ψ
(k)
A : K∗+k(Mα(A)) ∼= K∗(Aoα Zk).

3.3.4.2 Naturality of the isomorphism

Here we prove that the isomorphism ΨA is natural in various senses, similar

to the axiomatics presented by Alain Connes [13]. We will use the following explicit

description appearing in [48].

We first recall various basic definitions and facts.

Let A be a C∗-algebra and α an automorphism of A. There are two natural sequences

associated to (A,α). The first one involves the mapping torus Mα(A):

0 // SA //Mα(A) // A // 0 (3.4)

where Mα(A)→ A is given by evaluation at 0. The second one is the sequence

0 // A⊗K // TA,α // Aoα Z // 0 (3.5)

associated to the Toeplitz extension of the crossed product Aoα Z.

The first sequence (3.4) gives rise to a 6-term exact sequence

K1(A)
ζ1
A // K0(Mα(A)) // K0(A)

��
K1(A)

OO

K1(Mα(A))oo K0(A)
ζ0
Aoo

(3.6)

where ζ1
A : K1(A) → K0(Mα(A)) is the composition of the Bott isomorphism

θA : K1(A) → K0(SA) and the map K0(SA) → K0(Mα(A)) induced by the inclusion

SA→Mα(A), and similarly for ζ0
A.

On the other hand, the Toeplitz extension (3.5) gives rise to the Pimsner-Voiculescu

6-term exact sequence (see Theorem 3.22 and its proof)

K0(A)
id−K0(α) // K0(A) // K0(Aoα Z)

��
K1(Aoα Z)

OO

K1(A)oo K1(A)
id−K1(α)oo

(3.7)

Paschke showed in [48] that the vertical maps in the sequence (3.6) are equal to

id−K∗(α), and that there are isomorphisms Ki(Mα(A))→ Ki+1(AoαZ) which provide
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an isomorphism from the exact sequence (3.6) to the exact sequence (3.7).

We now recall the definition of ΨA, following [48].

Suppose first that A is unital and α is an automorphism of A. Then we define

ΨA : K0(Mα(A))→ K1(Aoα Z)

by

ΨA([p]) = [L∗w1p(0) + 1n − p(0)].

Here p is a path of projections in Mn(A) such that p(1) = α(p(0)) and {wt} is an imple-

menting path of unitaries in Mn(A) for p(t), and L is the canonical unitary associated to

the action.

We give also the definition for non-unital A. We will denote by Ã the unitization

of A, and by s : Ã → Ã the scalar map of Definition 2.66. In this case the map

ΨA : K0(Mα(A)) → K1(A oα Z) is the restriction of ΨÃ : K0(Mα̃(Ã)) → Ã oα̃ Z to

K0(Mα(A)), where α̃ denotes the automorphism in Ã induced by α. We shall always

use a concrete picture of this map, compatible with the usual conventions for suspension

maps.

An element of K0(Mα(A)) is represented by an element of the form [p]− [1n], where p is

a projection in Mn(Mα̃(Ã)), such that s(p(t)) = 1n for all t ∈ [0, 1]. Now by inspecting

the proof of [48, Lemma 2], one realizes that the implementing path {wt} can be chosen

such that w0 = 1n and s(wt) = 1n for all t ∈ [0, 1]. We will always use this representation.

Note that we obtain

ΨA([p]− [1n]) = [L∗w1p(0) + 1n − p(0)]− [L∗1n] = [w1p(0) + L(1n − p(0))]

with s̃(L∗w1p(0) + 1n− p(0)) = L∗, where s̃ : Ãoα̃ Z→ C(T) is the C(T)-scalar map, so

that s(w1p(0) + L(1n − p(0))) = 1n.

Paschke showed in [48] that the diagram

K1(A)
ζ1
A //

=

��

K0(Mα(A)) //

ΨA
��

K0(A)

=

��
K1(A) // K1(Aoα Z) δ // K0(A)

(3.8)

is commutative.

We are now ready for our axiomatic approach.

The map ΨA satisfies the following axioms:
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1. Normalization. If A = C, then the map ΨC is the canonical map

K0(C(T))→ K1(C(T))

sending the generator [1] of K0(C(T)) to the generator [L∗] of K1(C(T)). (Note that

C∗(Z) ∼= C(T) by Fourier transform.)

2. Suspension. If α is an automorphism of A, then it induces an automorphism Sα of

SA and we have natural isomorphisms

(SA)oSα Z ∼= S(Aoα Z), MSα(SA) ∼= S(Mα(A)).

We have a commutative diagram

K0(MSα(SA))
ΨSA // K1(SAoSα Z)

K0(SMα(A))

∼=

OO

K1(S(Aoα Z))

∼=

OO

K1(Mα(A))
Ψ1
A //

∼=

OO

K0(Aoα Z),

∼=

OO

where Ψ1
A is the unique map making the diagram commutative.

3. Naturality. If we have dynamical systems (A,α,Z), (B, β,Z) and f : A → B is an

equivariant homomorphism, then the following diagram is commutative:

K0(Mα(A))
ΨA //

��

K1(Aoα Z)

��
K0(Mβ(B))

ΨB // K1(B oβ Z),

where the vertical maps are induced by f .

This is readily checked.

Lemma 3.47. With the map Ψ1
A defined in 2. above, we have the following commutative

diagram:

K0(A)
ζ0
A //

=

��

K1(Mα(A)) //

Ψ1
A
��

K1(A)

=

��
K0(A) // K0(Aoα Z) δ // K1(A).

In particular, the maps ΨA and Ψ1
A define an isomorphism from the 6-term exact sequence

(3.6) to the 6-term exact sequence (3.7).

Proof. We will only check the commutativity of the left hand square, leaving to the reader

to check the commutativity of the right hand square.
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Let jA : A→ Aoα Z and iA : SA→Mα(A) denote the natural inclusions.

By (3.8) applied to the pair (SA, Sα), we have a commutative diagram:

K0(S2A)
K0(iSA)// K0(MSα(SA))

ΨSA
��

K1(SA)

θSA

OO

K1(jSA)// K1(SAoSα Z)

Applying the natural isomorphisms MSα(SA) ∼= SMα(A) and SAoSα Z ∼= S(Aoα Z),

we get the diagram:

K0(S2A)

=yy

K0(iSA) // K0(MSα(SA))

∼=vv
ΨSA

��

K0(S2A)
K0(SiA) // K0(S(Mα(A)))

Ψ̃

��

K1(SA)

θSA

OO

K1(jSA) // K1(SAoSα Z)

∼=uu
K1(SA)

θSA

OO

=
99

K1(SjA)
// K1(S(Aoα Z))

(3.9)

Here the map K0(S2A) → K0(S2A) at the top face of the diagram is the map induced

by the twist function f 7→ f̃ from S2A to itself, where f̃(t, s) = f(s, t) for s, t ∈ I. It

can be easily seen that the induced map on K-theory is the identity. For instance, if f

is a path of projections, then Fr(t, s) = f(rs + (1 − r)t, (1 − r)s + rt), for r ∈ I, is a

homotopy of projections connecting f with f̃ . It follows that the top face of the diagram

is a commutative square.

The left hand and bottom faces are clearly commutative,and the back face is commu-

tative by [48]. The map Ψ̃: K0(S(Mα(A))) → K1(S(A oα Z)) is defined as the unique

homomorphism making the right hand square of the diagram commutative.

Hence all faces of the diagram but possibly the front face are commutative. Now a dia-

gram chasing shows that the front face must also be commutative.

We now consider the following diagram:
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K0(S2A)
K0(SiA) // K0(S(Mα(A)))

Ψ̃

��

K1(SA)

θSA
99

K1(iA) // K1(Mα(A))

θMα(A)
66

Ψ1
A

��

K1(SA)

θSA

OO

K1(SjA) // K1(S(Aoα Z))

K0(A)

βA

OO

βA
99

K0(jA)
// K0(Aoα Z)

βAoαZ

66

(3.10)

Here the back square is the front square of the previous diagram (3.9), so it is commuta-

tive. The map Ψ1
A has been defined so that the right hand square is commutative. The

commutativity of the upper and bottom squares follows from the naturality of the Bott

maps θ and β respectively. The left hand square is obviously commutative. Therefore

diagram chasing shows that the front face is also commutative, which gives the desired

result.

If α, β are two commuting automorphisms of a C∗-algebra A, then one can easily see that

β defines an automorphism on Mα(A) by the rule β(f)(t) = β(f(t)), for f ∈ Mα(A)

and t ∈ [0, 1]. Similarly, α induces an automorphism on Aoβ Z satisfying that α(avi) =

α(a)vi, where a ∈ A and v is the canonical unitary in Aoβ Z.

Lemma 3.48. Let α and β two commuting automorphisms of a C∗-algebra A. Then

there is a natural isomorphism

ψ : Mα(A)oβ Z→Mα(Aoβ Z).

Naturality means that if we have another C∗-algebra B with two commuting automor-

phisms α′, β′ and f : A → B is an equivariant ∗-homomorphism then the following dia-

gram

Mα(A)oβ Z
ψA //

M(f)oZ
��

Mα(Aoβ Z)

M(foZ)

��
Mα′(B)oβ′ Z

ψB //Mα′(B oβ′ Z)

is commutative.

Proof. We first assume A and B unital.

Let j : A→ AoβZ be the canonical injective ∗-homomorphism. Since j is α-equivariant,

there is a ∗-homomorphism

Mα(j) : Mα(A)→Mα(Aoβ Z)
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defined by Mα(j)(f) = j ◦ f for f ∈ Mα(A). Note that, since j is injective, Mα(j) is

also injective.

Let u and v be the canonical unitaries associated to the actions α and β in the respective

crossed product algebras Aoα Z and Aoβ Z. Define cv ∈ Mα(Aoβ Z) as the constant

function cv(t) = v. Observe that cv ∈ Mα(A oβ Z) because α(v) = v. We show the

covariance property for the homomorphism M :=Mα(j) and cv, that is

M(β(f)) = cvM(f)c∗v

for f ∈Mα(A). For t ∈ [0, 1] we have

M(β(f))(t) = (j ◦ β(f))(t) = j(β(f(t))) = vj(f(t))v∗ = (cvM(f)c∗v)(t),

which proves the covariance. Hence we get an induced ∗-homomorphism

ψ : Mα(A)oβ Z→Mα(Aoβ Z)

such that ψ(fvi) =M(f)civ for all i ∈ Z.

We now show that ψ is injective. Let E and E ′ be the canonical conditional expectations

from Aoβ Z onto A and from Mα(A)oβ Z onto Mα(A), respectively.

We claim that for each x ∈Mα(A)oβ Z and t ∈ [0, 1] we have the equality

M(E ′(x))(t) = E(ψ(x)(t)). (3.11)

By continuity and linearity it is enough to show this formula for an element of the form

fvi, where f ∈Mα(A) and i ∈ Z. But this is trivially verified, so the formula holds.

Now suppose that x is a nonzero positive element in the kernel of ψ. Note that E ′ is

faithful (see [9, Prop. 4.1.9 and Thm. 4.2.4]), and hence we have that E ′(x) 6= 0. Now,

since M = Mα(j) is injective, we have M(E ′(x)) 6= 0 and so there is some t ∈ [0, 1]

such that M′(E ′(x))(t) 6= 0. Equation (3.11) tells us that E(ψ(x)(t)) 6= 0; in particular,

ψ(x) 6= 0. This shows that ψ is injective.

To show that ψ is surjective, it suffices to show that its range is dense. This is done by

a partition of unity argument, as follows. Let a ∈ Mα(Aoβ Z) and ε > 0 be given. Let

U be a finite open cover of [0, 1], and elements tU ∈ U for each U ∈ U with the following

properties:

1. ‖a(t)− a(tU)‖ < ε when t ∈ U .

2. There is a unique U ∈ U such that 0 ∈ U , This unique set is denoted by U0.
Moreover tU0 = 0.

3. There is a unique U ∈ U such that 1 ∈ U , This unique set is denoted by U1.
Moreover tU1 = 1.
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Now let {fU : U ∈ U} be a partition of unity subordinated to the cover U . Define

b =
∑
U∈U

a(tU)fU .

Then b ∈Mα(Aoβ Z), because using conditions (2) and (3) above we get

b(1) =
∑
U∈U

a(tU)fU(1) = a(tU1)fU1(1) = a(1) = α(a(0)) = α(b(0)).

Moreover we have that for all t ∈ [0, 1]

‖a(t)−
∑
U∈U

a(tU)fU(t)‖ ≤
∑
U∈U

fU(t)‖a(t)− a(tU)‖ < ε.

Hence ‖a − b‖ < ε. Now a(tU) ∈ A oβ Z for each U ∈ U , and since U is finite we can

find a positive integer N and elements aU,i ∈ A, for U ∈ U , −N ≤ i ≤ N , such that

‖a(tU)−
N∑

i=−N

aU,iv
i‖ < ε.

Moreover we can clearly take aU1,i such that aU1,i = α(aU0,i) for all −N ≤ i ≤ N . We

now can build elements ai ∈Mα(A) as follows:

ai =
∑
U∈U

aU,ifU .

By the same argument as before and since we have that aU1,i = α(aU0,i) for all i, we

get that ai ∈ Mα(A). Hence the element
∑N

i=−N aiv
i belongs to Mα(A) oβ Z and for

t ∈ [0, 1] we have

‖b(t)− (ψ(
N∑

i=−N

aiv
i))(t)‖ = ‖

∑
U∈U

a(tU)fU(t)−
N∑

i=−N

(∑
U∈U

aU,iv
ifU(t)

)
‖ ≤

≤
∑
U∈U

fU(t)‖a(tU)−
N∑

i=−N

aU,iv
i‖ < ε.

Hence ‖b− ψ(
∑N

i=−N aiv
i)‖ < ε and

‖a− ψ(
N∑

i=−N

aiv
i)‖ ≤ ‖a− b‖+ ‖b− ψ(

N∑
i=−N

aiv
i)‖ < 2ε,

proving the surjectivity.
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We now show the non-unital case. Let α and β be two commuting actions on a C∗-algebra

A and consider the unitization Ã of A, and the unital extensions α̃ and β̃ of α and β to

Ã. We then obtain a commutative diagram of short exact sequences

0 //Mα(A)oβ Z //

ψA

��

Mα̃(Ã)oβ̃ Z //

ψÃ
��

C(T)⊗ C(T)

=

��

// 0

0 //Mα(Aoβ Z) //Mα̃(Ãoβ̃ Z) // C(T)⊗ C(T) // 0

Here the map ψÃ is an isomorphism by what we have proved before, and the map ψA is

the induced map, which must be also an isomorphism.

The naturality is easily proved.

Later on (see Theorem 3.50), we will use the above strategies to extend this naturality

to the isomorphism associated to the n-mapping torus.

3.3.4.3 A cofiltration of the mapping torus

First, we set some notation. Let i ≤ k, and consider µ = (µ1, µ2, ..., µi) such that

1 ≤ µ1 < µ2 < ... < µi ≤ k. Let T (i, k) be the set of all such elements µ. Consider

{e1, e2, ..., ek} to be the usual basis of Zk, and let
∧i(Zk) be the Z-linear span of the

elements eµ := eµ1 ∧ eµ2 ∧ ... ∧ eµi , with µ = (µ1, µ2, ..., µi) ∈ T (i, k). By convention, we

put
∧0(Zk) := Z and

∧i(Zk) = 0 for all i > k or i < 0. We also consider T (0, k) to be

the set which contains only the empty tuple, and set eµ := 1 when µ = ∅ ∈ T (0, k).

The group
∧i(Zk) has the set {eµ : µ ∈ T (i, k)} as a basis. By equipping T (i, k) with

the lexicographical order, we obtain an order-preserving bijection between T (i, k) and

{1, 2, ...,
(
k
i

)
}, which induces a group isomorphism

∧i(Zk) ∼= Z(ki).

With this in mind, we can build a cofiltration of the mapping torus associated to a C∗-

dynamical system (A,α,Zk).
For i = 0, ..., k, define

Xi := {t ∈ [0, 1]k : tµ1 = tµ2 = ... = tµk−i = 0, for some (µ1, µ2, ..., µk−i) ∈ T (k − i, k)},

and set X−1 := ∅. The sequence

∅ = X−1 ⊆ X0 = {0} ⊆ ... ⊆ Xk = [0, 1]k

is a filtration of the k-cube. From this, we can build a cofiltration of the mapping torus

Mα(A) = Fk
πk→ Fk−1

πk−1→ ...→ F0 = A
π0→ F−1 = 0,

where each Fi is defined by restricting the respective domain to Xi, and the πi maps are

obtained by restricting each domain to Xi−1.
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We have enough data to build a spectral sequence using the techniques described in

Section 3.3.3. We show here the most relevant results.

3.3.4.4 E1-page of the spectral sequence

The first page of the spectral sequence is defined as Ep,q
1 := Kp+q(Ip), where

Ip := ker(πp : Fp → Fp−1). Let us compute those K-theory groups, following the

techniques of [4] and [54]:

For p = 1, we have that

X1 = [0, 1]× {0}k−1 ∪ {0} × [0, 1]× {0}k−2 ∪ ... ∪ {0}k−1 × [0, 1],

that is, the union of all the edges of the n-cube converging at the origin. Moreover,

X0 = {0}k, and then

I1 := ker(π1 : F1 → F0)

is given by the set of continuous functions f ∈ C(X1, A) such that f is zero in every

vertex of X1. Hence, I1 can be identified as:

I1 = SA⊕ SA⊕ ...⊕ SA ∼= (SA)k.

The sets Xp can be studied similarly to X1. In this line, X2 can be seen as the union

of all the faces converging at the origin, X3 as the set of all 3-cubes converging at the

origin, and so on. In general, for 1 < p ≤ k, and µ = (µ1, ..., µp) ∈ T (p, k) we can write

Xp =
⋃

µ∈T (p,k)

X(µ),

with X(µ) defined as:

X(µ) := {t ∈ [0, 1]k : tµ⊥1 = ... = tµ⊥k−p = 0} ⊆ Xp,

where µ⊥ ∈ T (k − p, k) is the unique (k − p)-string disjoint to µ. We can consider the

induced Zp-action generated by αµ1 , ..., αµp , which we denote by α(µ). Then (A,α(µ),Zp)
is a dynamical system, and we can build the associated mapping torusMα(µ)(A). Using

the same strategy as before, we obtain a cofiltration of Mα(µ)(A), which we will denote

by F (µ)i. Notice that we can identify Mα(µ)(A) as the quotient of Fp by restricting its

domain to X(µ) ⊆ Xp. By doing so, the following commutative diagram for each p and

each µ ∈ T (p, k) arises:

0 Ip Fp Fp−1 0

0 SpA Mα(µ)(A) F (µ)p−1 0
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where the vertical maps are obtained by projecting into the µ-component. Therefore,

we can obtain Fp as the iterative pullback of the
(
k
p

)
mapping tori Mα(µ)(A) of the

natural Zp-subactions, glued together over the
(
k
p−1

)
many mapping tori Mα(λ)(A) for

λ ∈ T (p − 1, k) arising from the natural Zp−1 subactions. Denote by χ(µ) : Ip → SpA

the respective map of the diagram above. One can see that the ∗-homomorphism

χ = (χ(µ))µ∈T (p,k) : Ip → (SpA)(
k
p)

is an isomorphism. Therefore, we obtain isomorphisms

Ep,q
1 := Kp+q(Ip) ∼= Kp+q((S

pA)(
k
p)) ∼= Kq(A)(

k
p)

whenever 0 ≤ p ≤ k, and 0 otherwise. We use the convention

Kq(A)(
k
p) ∼= Kq(A)⊗Z

∧p(Zk).

Moreover, Savignen and Bellisard developed the following method to compute the E2-

page of the spectral sequence. We direct the reader to the original source [54, Theorem

2] for its proof.

Theorem 3.49. Given a C∗-dynamical system (A,α,Zk), the Pimsner-Voiculescu com-

plex (CPV , d
p,q
PV ) is defined as:

Cp,q
PV := Kq(A)⊗Z

∧p(Zk)
dp,qPV : Cp,q

PV −→ Cp+1,q
PV

x⊗ e 7→
k∑
i=1

(Kq(αi)− id)(x)⊗ (e ∧ ei)

Then the isomorphism Ep,q
1 = Kp+q(Ip) ∼= Cp,q

PV intertwines the differentials d1 and

dPV . Therefore, the E2-term of the spectral sequence is obtained as the cohomology

of (CPV , dPV ).

We can now state and prove the following result, main technical Theorem of this Chapter.

It shows that the isomorphism between Ep,q
1 and Cp,q

PV given in Theorem 3.49 is natural

with respect to the isomorphism Ψ described in Subsection 3.3.4.2. We will follow the

notation of [4].

Recall that for n ≥ 2, the functor Kn is defined inductively by Kn = Kn−1 ◦ S ([53,

Definition 10.2.1]). We thus have Kn(A) = K1(Sn−1A) for any C∗-algebra A and all

n ≥ 2.

Theorem 3.50. Let α be an action of Zn on A and q ∈ {0, 1}. Then there exists a

commutative diagram:
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Kq+n−1(In−1) Kq+n(In)

Kq(A)⊗
∧n−1(Zn) Kq(A)

Kq+n(Mα(A))

Kq(Aoα Zn)

dn−1,q
1 Kq+n(in)

∼= ∼= Ψ
(n)
A

dn−1,q
PV

Kq(jn)

where Ψ
(n)
A is a natural isomorphism, and the vertical arrows are the natural isomor-

phisms between Ep,q
1 and Cp,q

PV , induced by the canonical Bott isomorphisms βn : Kq(A)→
Kq+n(SnA) = Kq+n(In) and

βn−1 ⊗ id : Kq(A)⊗
n−1∧

(Zn)→ Kq+n−1(Sn−1A)⊗
n−1∧

(Zn) ∼= Kq+n−1(In−1).

The maps in : In →Mα(A) and jn : A→ Aoα Zn are the natural inclusions.

Proof. The left hand diagram is commutative for all n by [4, Corollary 7.2.3].

We show the result for the right hand diagram by induction on n. If n = 1, the result

follows from [48]. Indeed, for q = 0, the right hand square is exactly the left hand square

of the diagram from Lemma 3.47. For q = 1, the right hand diagram is obtained as the

composite

K1(S2A)
K1(SiA)// K1(S(MαA))

K0(SA)

βSA

OO

K0(iA) // K0(Mα(A))

ΨA
��

βMα(A)

OO

K1(A)
K1(jA) //

θA

OO

K1(Aoα Z),

where the lower square is commutative by (3.8), and the upper square is commutative

by naturality of the Bott map β.

Assume that the result holds for some n ≥ 1. We will show that it also holds for n+1. So

let α be an action by automorphisms of Zn+1 on A. We will denote by α(n) the subaction

of Zn on A given by the first n automorphisms α1, . . . , αn associated to the action α.

Observe that we have a natural isomorphism Mα(A) ∼= Mαn+1(Mα(n)(A)). We obtain

an exact sequence

0 // SMα(n)(A)
i′n //Mα(A) //Mα(n)(A) // 0

and applying the case k = 1 we obtain a commutative diagram
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Kq+n+1(SMα(n)(A)) Kq+n+1(Mαn+1(Mα(n)(A)))

Kq+n(Mα(n)(A)) Kq+n(Mα(n)(A)oαn+1 Z)

Kq+n+1(i′n)

Kq+n(j′n)

β ΨM
α(n) (A)

where j′n : Mα(n)(A) → Mα(n)(A) oαn+1 Z is the canonical map, and β is the Bott iso-

morphism.

By using Lemma 3.48 and an induction argument, we get that Mα(n)(A) oαn+1 Z ∼=
Mα(n)(Aoαn+1 Z) canonically through a natural ∗-isomorphism λn. . Therefore we have

another commutative diagram

Kq+n(Mα(n)(A)) Kq+n(Mα(n)(A)oαn+1 Z)

Kq+n(Mα(n)(A)) Kq+n(Mα(n)(Aoαn+1 Z))

Kq+n(j′n)

Kq+n(Mα(n)(j′))

id λn

where j′ : A→ Aoαn+1 Z is the canonical map, which is α(n)-equivariant.

Now, since j′ is α(n)-equivariant, naturality of the ∗-homomorphism Ψ(n) gives another

commutative diagram:

Kq+n(Mα(n)(A)) Kq+n(Mα(n)(Aoαn+1 Z))

Kq(Aoα(n) Zn) Kq((Aoαn+1 Z)oα(n) Zn)

Kq+n(Mα(n)(j′))

Kq(j
′ oα(n) Zn)

Ψ
(n)
A

Ψ
(n)
Aoαn+1Z

The map Ψ
(n+1)
A : Kq+n+1(Mα(A)) → Kq((A oαn+1 Z) oα(n) Zn) = Kq(A oα Zn+1) is

defined as the composition

Ψ
(n)
Aoαn+1Z

◦ λn ◦ΨM
α(n)(A)

.
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It is natural because it is the composition of three natural ∗-homomorphisms. By induc-

tion, we have another commutative diagram

Kq+n(SnA) Kq+n(Mα(n)(A))

Kq(A) Kq(Aoα(n) Zn)

Kq+n(in)

Kq(jn)

βn Ψ
(n)
A

where in : SnA→Mα(n)(A) and jn : A→ Aoα(n) Zn are the natural maps.

We obtain thus the following diagram, where all the squares are commutative:

Kq+n+1(Sn+1A)

Kq+n(SnA)

Kq+n(SnA)

Kq(A)

Kq+n+1(SMα(n)(A))

Kq+n(Mα(n)(A))

Kq+n(Mα(n)(A))

Kq(Aoα(n) Zn)

Kq+n+1(Mα(A))

Kq+n(Mα(n)(A)oαn+1 Z)

Kq+n(Mα(n)(Aoαn+1 Z))

Kq((Aoαn+1 Z)oα(n) Zn)

β

id

βn

β

id

Ψ
(n)
A

ΨM
α(n) (A)

λn

Ψ
(n)
Aoαn+1Z

Kq+n+1(Sin)

Kq+n(in)

Kq+n(in)

Kq(jn)

Kq+n+1(i′n)

Kq+n(j′n)

Kq+n(Mα(n)(j′))

Kq(j
′ oα(n) Zn)

Using that in+1 = i′n ◦ Sin and that jn+1 = (j′ oα(n) Zn) ◦ jn, we obtain the following

commutative diagram:
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Kq+n+1(In+1) Kq+n+1(Mα(A))

Kq(A) Kq(Aoα Zn+1)

Kq+n+1(in+1)

Kq(jn+1)

βn+1 Ψ
(n+1)
A

This completes the proof.

Remark 3.51. Observe that, by considering the cokernels associated to the horizontal

rows of Theorem 3.50, we can extend this naturality of Ψ(n) to the second page of the

spectral sequence, obtaining the following commutative diagram:

Kq+n(In)/Im(dn−1,q
1 )

Kq(A)/Im(dn−1,q
PV )

Kq+n(Mα(A))

Kq(Aoα Zn)

Kq+n(in)

∼= Ψ
(n)
A

Kq(jn)

where the horizontal maps are both injective.

In chapter 4, we will use the previous strategies in order to compute the K-theory of the

C∗-algebras associated to certain Deaconu-Renault groupoids, generalizing the arguments

of [21].
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3.4 First counterexample to Matui’s HK
conjecture

With the basic notions about spectral sequences already explained, we can now

deduce an immediate result arising from Theorem 3.19. This result allows us to compute

the homology groups of any given transformation groupoid, in a straightforward way.

Lemma 3.52. Let ϕ : Γ y X be an action of a discrete group Γ on a totally disconnected

compact Hausdorff space X. Then we have

Hn(X o Γ) ∼= Hn(Γ, C(X,Z)).

Proof. Recall from Example 2.8 that a transformation groupoid XoΓ is just a particular

case of a semi-direct product groupoid in which Γ acts on the trivial groupoid X. Hence,

Theorem 3.19 ensures the existence of a spectral sequence

E2
p,q = Hp(Γ, Hq(X))⇒ Hp+q(X o Γ).

The homology groups of a trivial groupoid X (with X totally disconnected) were com-

puted in Lemma 2.75 to be H0(X) = C(X,Z), and Hn(X) = 0, for all n ≥ 1. Therefore,

the spectral sequence collapses at the second page, meaning that this page only has one

non-zero row. Hence we obtain

E∞p,0 = E2
p,0 = Hp(Γ, C(X,Z)) ∼= Hp(X o Γ)

as desired.

This lemma, together with Example 2.63, allows us to compute all of the pieces involved

in Matui’s HK conjecture for any given transformation groupoid. In [56], Scarparo uses

the above techniques to compute all the needed data to check that the transformation

groupoid arising from the action of a certain odometer on the Cantor set does not satisfy

Matui’s strong HK conjecture. This is, indeed, the first counterexample to the strong

version of the conjecture. Let us show it.

Definition 3.53. Let Γ be a group, and let (Γi)i∈N be a strictly decreasing sequence of

finite index subgroups of Γ. Denote by pi : Γ/Γi+1 → Γ/Γi the natural surjections given

by

pi(γΓi+1) = γΓi.

Define X := lim←−(Γ/Γi, pi) = {(xi)i∈N ∈
∏
i∈N

Γ/Γi : pi(xi+1) = xi,∀i ∈ N}. It is known that

X is homeomorphic to the Cantor set. Moreover, there is a minimal action of Γ on X

given by γ(xi) = (γxi), for all γ ∈ Γ, (xi) ∈ X. This action is called an odometer.
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Now we recall the definition of the infinite dihedral group.

Definition 3.54. The infinite dihedral group D∞ is given by the semidirect product

Z o Z2 under the action given by multiplication by −1. Thus, the group D∞ has the

following presentation:

D∞ = 〈r, s : s2 = 1, srs = r−1〉.

Note that there exist a few equivalent presentations of this group. For example, in later

chapters we use the one given as the free product D∞ = Z2 ∗ Z2 = 〈a, b〉. The reader

may check that the map θ : Z o Z2 → Z2 ∗ Z2 defined by θ(r) = ab, θ(s) = a is a group

isomorphism. Unless we state the contrary, in this section we will see D∞ as Z o Z2.

Let us now build an odometer arising from D∞.

Example 3.55. Denote Γ = D∞ , and let (ni) be a strictly increasing sequence of

natural numbers, satisfying ni|ni+1, for all i. Set Γi := niZ o Z2. Then (Γi)i∈N is a

strictly decreasing sequence of finite index subgroups of Γ with, and hence induces an

odometer.

For each i ∈ N, the quotient D∞/Γi is isomorphic to Zni . Moreover, it was shown in [56,

Proposition 2.1, Example 2.2] that this odometer D∞ y lim←−Zni is topologically free.

In particular, the object of study will be the transformation groupoid associated to this

odometer. All we need to do is to compute both its homology and K-theory, using

Lemmas 3.52 and 2.63. We just provide here a sketch of the proofs, and direct the reader

to [56] for full details.

3.4.1 K-theory of the infinite dihedral odometer.

It was shown in [56, Proposition 2.3] that, given an odometer Γ y X = lim←−Γ/Γi,

we have that C(X)or Γ ∼= lim−→MΓ/Γi(C)⊗ C∗r (Γi), and hence

K∗(C(X)or Γ) ∼= lim−→K∗(C
∗
r (Γi)).

Recall that, in the case of the infinite dihedral odometer, we set Γ = D∞ = Z o Z2, and

all Γi are of the form niZ o Z2, for certain ni. Note that D∞ ∼= Γi = niZ o Z2 for all

i ∈ N.

The K1-group of C∗(Z o Z2) is known to be trivial (see [5, 10.11.5(a)]), and therefore

K1(C(X)o D∞) = 0. In fact, this algebra is AF (see [30] or [7]), and its K0-group was

determined in [7].

In order to ease the computation, we make a slight abuse of notation: given the action of

D∞ on the Cantor set X, we denote by (a, b) ∈ ZoZ2 the automorphism on X associated

to the element (a, b).
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Theorem 3.56. ([7, Theorem 4.1]) Given an action of D∞ = Z o Z2 on the Cantor

set X such that the restricted Z-action is minimal and (0, 1), (1, 1) ∈ Z o Z2 have, at

most, a finite number m(0,1) and m(1,1) of fixed points, with m(0,1) + m(1,1) > 0, then

K0(C(X)oD∞) is isomorphic to

(Id+ (0, 1)∗)

(
C(X,Z)

(Id− (1, 0)∗)(C(X,Z))

)
⊕ Zm(0,1)+m(1,1) .

Using this result, we need now to study the number of fixed points of (0, 1) and (1, 1).

Here we provide a sketch of the proof.

Theorem 3.57. ([56, Lemma 3.2-3.3]) Let D∞ y lim←−Zni be an odometer as in Example

3.55. Then:

K0(C(X)oD∞) ∼=

{
{m
ni

: m ∈ Z, i ≥ 1} ⊕ Z if ni+1

ni
is even for infinitely many i

{m
ni

: m ∈ Z, i ≥ 1} ⊕ Z2 otherwise.

Proof. First, we compute the number of fixed points. Recall that ZoZ2/niZoZ2
∼= Zni ,

and that, for every (xi) ∈ lim←−Zni , (0, 1)(xi) = (−xi). Hence (xi) is a fixed point of (0, 1)

if and only if, for every i, xi = 0 or xi is even and xi = ni
2

.

On the other hand, the action of (1, 1) is given by (1, 1)(xi) = (−xi + 1). Hence, any

fixed point is a list of elements xi = ni+1
2

, with ni odd. Straightforward computation

shows that

m(0,1) =


1 if ni+1

ni
is even for infinitely many i

1 if ni is odd for every i

2 otherwise

m(1,1) =

{
1 if ni is odd for every i

0 otherwise

Now we apply Theorem 3.56. Then the result follows after noting that (0, 1)∗ acts trivially

on C(X,Z)
(Id−(1,0)∗)(C(X,Z))

∼= {mni : m ∈ Z, i ≥ 1}.

We now investigate the homology groups H∗(D∞, C(X,Z)).

3.4.2 Homology groups of the infinite dihedral odometer

In order to study Hk(D∞, C(X,Z)), we see D∞ as the free product Z2 ∗ Z2,

and then use [64, Corollary 6.2.10] to compute Hk(D∞, C(X,Z)) as the direct sum

Hk(Z2, C(X,Z))⊕Hk(Z2, C(X,Z)), for k ≥ 2. We investigate the lower homology groups

in a separate way. Those particular computations are quite extensive, hence we choose

to skip the proof, and redirect the reader to [56, Proposition 2.4-Theorem 3.5] for the
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full computation. Note that in Chapter 5 we use similar techniques when computing

Hk(D∞, C(X,Z)) (for a different action). The reader may just check that.

Theorem 3.58. Let D∞ y lim←−Zni = X be the odometer of Example 3.55. Then

we have H0(D∞, C(X,Z)) = {m
ni

: m ∈ Z, i ≥ 1}, and for k ≥ 1, we have that

H2k(D∞, C(X,Z)) = 0, and

H2k−1(D∞, C(X,Z)) =

{
Z2 if ni+1

ni
is even for infinitely many i

(Z2)2 otherwise.

Combining Theorems 3.57 and 3.58, together with Lemmas 3.52 and 2.63, we conclude

that:

Corollary 3.59. Let D∞ y lim←−Zni be the odometer of Example 3.55. Then, Matui’s

HK conjecture does not hold for the associated transformation groupoid.

Remark 3.60. In relation with the weak HK conjecture (see paragraph 2.4.1), we can

see that Scarparo’s counter-example satisfies the conjecture for K1, but not for K0. In

Chapter 5, we present a complete counter-example for the weak HK conjecture, arising

from the self-similar action of the infinite dihedral group over a Cantor set. Note that,

even though Scarparo’s groupoid is also built upon the infinite dihedral groupoid, it

is different to the one we show in Chapter 5. Most important, the C∗-algebra of this

groupoid is an AF algebra, while the C∗-algebra studied in Chapter 5 provides, as we

will see later, a richer structure.
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Chapter 4

A study of HK conjecture for

Deaconu-Renault groupoids
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The purpose of this chapter is to investigate the HK-conjecture for groupoids

arising from an action of Nk by local homeomorphisms on a locally compact Hausdorff

zero-dimensional space. The associated Deaconu-Renault groupoids were introduced by

Deaconu in [16], and later studied by Farsi, Kumjian, Pask and Sims in [21]. In their

recent work [21], the authors studied the HK conjecture for this family of groupoids,

generalizing the techniques of Evans developed in [18] regarding k-graphs. In this work,

the authors prove that rank 1 and rank 2 Deaconu-Renault groupoids satisfy the strong

version of the conjecture. However, this approach cannot be easily extended to rank 3

and higher, requiring more explicit techniques. The chapter is structured as follows:

In Section 4.1, we show the computations of [18] and [21], in which the homology

groups of Deaconu-Renault groupoids of arbitrary rank are completely determined.

In Section 4.2, we use both Pimsner-Voiculescu exact sequence and Kasparov’s

spectral sequence to compute the K-theory of Deaconu-Renault groupoids of rank 1 and

2. We show that Deaconu-Renault groupoids of rank 1 and 2 satisfy the HK-conjecture.

Those results were obtained by the authors in [21]. Two major questions arise from

their work. The first one asks for an explicit expression of the HK isomorphism for rank

2 Deaconu-Renault groupoids. The second, wonders whether this result can be extended

to rank 3 and higher Deaconu-Renault groupoids. We will discuss both questions in the

following sections.

In Section 4.3, we describe the isomorphism mentioned in their first question. To

do so, we explicitly build the spectral sequence associated to our C∗-algebra as in Section

3.3.4, using the techniques of [4] and [54]. In particular, we find that the isomorphism

can be chosen in a way that the embedding H0(G(X, σ)) ↪→ K0(C∗r (G(X, σ))) is canonical

(see Definition 2.74).

Finally, in Section 4.4, we attack the second question mentioned above. We pro-

vide a sufficient condition for Deaconu-Renault groupoids of rank 3 to satisfy the con-

jecture. Indeed, we show that Deaconu-Renault groupoids of rank 3 may satisfy the HK

conjecture whenever the canonical map Φ : H0(G(X, σ)) → K0(C∗r (G(X, σ))) of Defini-

tion 2.74 is injective, as the authors suggested in [21]. To this end, we build the associated

spectral sequence to our algebra, and determine the relationship between the respective

differential map and Φ. We also prove that this condition is met whenever the group N3

acts on X by homeomorphisms.



84

4.1 Homology of Deaconu-Renault
groupoids

The homology of Deaconu-Renault groupoids has been completely determined by

Farsi, Kumjian, Pask and Sims in a recent work (see [21]), where they generalize Evans’

study of the homology of k-graphs (see [18]). In this section, we show the techniques

of [21] to give an explicit formula for all the homology groups of a Deaconu-Renault

groupoid. Throughout this chapter, we use the convention:

σn := σn1
1 ...σnkk ,

whenever σ := (σ1, ..., σk) is an action of Nk on a space X, and n := (n1, ..., nk) ∈ Nk.
We recall the definition of a Deacounu-Renault grupoid, given in Example 2.25:

Definition 4.1. (Deaconu-Renault groupoids). Let X be a locally compact Hausdorff

space, and let σ be an action of Nk on X by surjective local homeomorphisms. The

associated Deaconu-Renault groupoid G(X, σ) is given by

G(X, σ) := {(x, p− q, y) ∈ X × Zk ×X : σp(x) = σq(y)},

together with structure operations r(x, n, y) = (x, 0, x), s(x, n, y) = (y, 0, y), and

(x, n, y)(y,m, z) = (x,m + n, z). The set G(X, σ)(0) is usually identified with X via

(x, 0, x) 7→ x.

The topology is given by the basis of sets Z(U, p, q, V ) := (U × {p− q} × V ) ∩ G(X, σ),

where U, V are open sets of X such that σp(U) = σq(V ).

Note that, if we denote X ′ := X × Zk, there is an induced action τ of Nk by surjective

local homeomorphisms on X ′ defined by τ q(x, p) = (σq(x), p+ q).

Lemma 4.2. Let X be a locally compact Hausdorff space, and let σ be an action of

Nk on X by surjective local homeomorphisms. Then the map c : G(X, σ) → Zk given

by (x, p − q, y) 7→ p − q is a cocycle. Moreover, there exists an isomorphism between

G(X, σ)×c Zk and G(X ′, τ) given by

((x, n, y), p) 7→ ((x, p), n, (y, p+ n)).

Proof. For any m,n ∈ Z, and x, y, z ∈ X, we have that (x,m, y)(y, n, z) = (x,m+n, z) ∈
G(X, σ), and then:

m+ n = c(x,m+ n, z) = c((x,m, y)(y, n, z)) = c(x,m, y) + c(y, n, z) = m+ n,

hence c is a cocycle.

The second statement is straightforward to check.
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In order to compute the homology groups of G(X, σ), we will use Matui’s spectral se-

quence given in Theorem 3.19. To do so, we first need to study the homology groups of

G(X, σ)×c Zk.
Lemma 4.3. Let X be a locally compact Hausdorff space, and let σ be an action of Nk

on X by surjective local homeomorphisms. Then the set X × {0} ⊆ X × Zk is a clopen

G(X ′, τ)-full subset of G(X ′, τ)(0), and G(X, σ)×c Zk is Kakutani equivalent to ker(c).

Proof. ([21, Lemma 6.1]) It is clear that X×{0} is clopen. We need to see that it is full.

Fix (x, n) ∈ X ×Zk, and let n = p− q, with p, q ∈ Nk. Since σ acts via surjections, there

exists some y ∈ X such that σp(y) = σq(x). Then we have

τ p(y, 0) = (σp(y), p) = (σq(x), n+ q) = τ q(x, n).

Therefore, if we define γ := ((y, 0), p− q, (x, n)) ∈ G(X ′, τ), we have that r(γ) = (y, 0) ∈
X × {0}, and s(γ) = (x, n). Hence, X × {0} is full.

The last statement is then immediate after using Lemma 3.17 and the isomorphism

G(X, σ)×c Zk ∼= G(X ′, τ).

Corollary 4.4. The skew product G(X, σ)×c Zk is an AF groupoid.

Proof. For each n ∈ Nk, define cn := {(x, 0, y) ∈ G(X, σ) : σn(x) = σn(y)} ⊆ ker(c).

Each cn is an elementary groupoid and, for each n,m ∈ Nk, we have cn ⊆ cn+m. Moreover,

ker(c) =
⋃
n∈Nk

cn.

Combining this with the last lemma, we deduce that G(X, σ)×cZk is an AF groupoid.

The following Lemma appears in [21, Lemma 6.2]. We write here a sketch of its proof

for a matter of completeness.

Lemma 4.5. Let X be a totally disconnected locally compact Hausdorff space, and let

σ be an action of Nk on X by surjective local homeomorphisms. There is an isomorphism

lim−→n∈Nk(Cc(X,Z), σn∗ )
∼= H0(ker(c)) that takes σ0,∞

∗ (1U) to [1U ] for every compact open

U ⊆ X, where σn∗ denotes the induced action on Cc(X,Z). Then we have

Hq(G(X, σ)×c Zk) =


lim−→n∈Nk(Cc(X,Z), σn∗ ) if q = 0

0 otherwise

Moreover, the isomorphism H0(G(X, σ) ×c Zk) ∼= lim−→n∈Nk(Cc(X,Z), σn∗ ) intertwines the

action α of Zk on H0(G(X, σ) ×c Zk) given by αp((x,m, y), n) = ((x,m, y), n + p) with

the action of Zk on lim−→n∈Nk(Cc(X,Z), σn∗ ) induced by σn∗ .
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Proof. The fact that Hq(G(X, σ) ×c Zk) = 0 for all q > 0 is immediate consequence of

G(X, σ)×c Zk being an AF groupoid. Let us study the case q = 0.

Let U, V ⊆ X compact open sets on which σn is injective, and such that σn(V ) = σn(U).

It is clear that [χU ] = [χV ] in H0(cn), given that r(U, 0, V ) = U , and s(U, 0, V ) = V .

Then, since every W ⊆ X can be expressed as a finite disjoint union of open compact

sets W =
⊔
σn(Uj), such that σn|Uj is injective, it follows that there exists a unique

homomorphism ϕn : Cc(X,Z)→ H0(cn) such that ϕn(σn∗ (χU)) = [χU ], for every compact

open U . This map is an isomorphism (see [21]). Let im,n : cm → cm+n be the natural

inclusion for each m,n ∈ Nk. Then we have the following commutative diagram:

Cc(X,Z) Cc(X,Z)

H0(cm) H0(cn+m)

σn∗

ϕm ϕm+n

(im,n)∗

Then, using Corollary 4.4, we have that

H0(G(X, σ)×c Zk) ∼= H0(ker(c)) ∼= lim−→
n∈Nk

(H0(cn), i∗) ∼= lim−→
n∈Nk

(Cc(X,Z), σn∗ ).

Since H0(G(X, σ)×c Zk) = 0 for all q ≥ 1, Matui’s spectral sequence (3.19) collapses at

the second page, inducing an isomorphism

Hn(G(X, σ)) ∼= Hn(Zk, H0(G(X, σ)×c Zk)), for 0 ≤ n ≤ k,

and zero for all n > k, where H0(G(X, σ)×c Zk) is considered as a Zk-module under the

action induced by α on G(X, σ)×c Zk.
The homology groups Hn(Zk,G(X, σ) ×c Zk) were computed in [21], using techniques

previously developed in [18]. We skip some of the technical proofs, directing the reader

to [21].

The following lemmas allow us to study the homology groups when direct limits are

involved.

Lemma 4.6. ([21, Lemma 6.3]) Let A be an abelian group, and let σ be an action of Nk

on A. Denote by σi the subaction associated to the generator ei and, for each 1 ≤ p ≤ k,

we write
∧p Zk as in Chapter 3. Define

δp :
∧p Zk ⊗ A→

∧p−1 Zk ⊗ A
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by

δp(ei1 ∧ ... ∧ eip ⊗ a) =


∑

j(−1)j+1ei1 ∧ ... ∧ êij ∧ ... ∧ eip ⊗ (id− σij)a if p > 1

1⊗ (1− σi1)a if p = 1

where the symbol êij means that this element is removed.

Then the maps δp are differentials, in the sense that δp ◦ δp+1 = 0, and (
∧∗ Zk ⊗A, δ∗) is

a complex. Moreover, the homomorphism id ⊗ σi :
∧∗ Zk ⊗ A → ∧∗ Zk ⊗ A commutes

with δ∗, and the induced map (id⊗ σi∗) in homology is the identity map.

This extends to a more general result.

Lemma 4.7. ([21, Lemma 6.4]) Let A be an abelian group, and σ : Nk y A be an action.

Let δp :
∧p Zk ⊗A→

∧p−1 Zk ⊗A be as in Lemma 4.6, and denote Ã := lim−→n∈Nk(A, σ
n).

For i ≤ k, let σ̃i be the automorphism of Ã induced by σi, and let δ̃p :
∧p Zk ⊗ Ã →∧p−1 Zk ⊗ Ã be the boundary maps of Lemma 4.6, applied to Ã and σ̃i. Then the

homomorphism σ(0,∞) : A→ Ã induces an isomorphism H∗(
∧∗ Zk⊗A) ∼= H∗(

∧∗ Zk⊗Ã).

Proof. The homology is a continuous functor (see [61, Theorem 4.1.7]), and hence

H∗(
∧∗ Zk ⊗ Ã) ∼= lim−→Nk

(H∗(
∧∗ Zk ⊗ A), (id⊗ σn)∗). Lemma 4.6 ensures that (id⊗ σn)∗

is the identity in homology, and therefore

H∗(
∧∗ Zk ⊗ Ã) ∼= H∗(

∧∗ Zk ⊗ A).

Combining all the previous results, we can now compute the homology groups

Hn(G(X, σ)).

Theorem 4.8. ([21, Theorem 6.5]) Let X be a second countable totally disconnected

locally compact space, and let σ be an action of Nk by surjective local homeomorphisms

on X. For 1 ≤ p ≤ k, let Aσp :=
∧p Zk⊗Cc(X,Z), and define Aσp = {0} for p > k. Define

δp : Aσp → Aσp−1 by

δp(ei1∧...∧eip⊗f) =



∑
j(−1)j+1ei1 ∧ ... ∧ êij ∧ ... ∧ eip ⊗ (id− σij∗)f if 2 ≤ p ≤ k

1⊗ (1− σi1∗)f if p = 1

0 otherwise

Then (Aσ∗ , δ∗) is a complex, and

H∗(G(X, σ)) ∼= H∗(Zk, H0(G(X, σ)×c Zk)) ∼= H∗(A
σ
∗ , δ∗).
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In particular, Hn(G(X, σ)) = 0 for all n > k.

Proof. For an abelian group A and an action σ : Nk y A, the homology groups

H∗(
∧∗ Zk ⊗ Ã) were computed in [18, Lemma 3.12] and [21, Lemma 6.4] to be:

H∗(
∧∗ Zk ⊗ Ã) ∼= H∗(Zk, Ã),

where Ã is a Zk-module under the action induced by σ̃.

Now, define A := Cc(X,Z), and then Ã := lim−→n∈N(Cc(X,Z), σn∗ ). Using Matui’s spectral

sequence, together with the previous results, we obtain an isomorphism:

H∗(G(X, σ)) ∼= H∗(Zk, H0(G(X, σ)×c Zk)) ∼= H∗(Zk, lim−→n∈N(Cc(X,Z), σn∗ ))
∼=

∼= H∗(
∧∗ Zk ⊗ Ã) ∼= H∗(

∧∗ Zk ⊗ A) ∼= H∗(A
σ
∗ , δ∗).

The last statement is immediate.
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4.2 Rank 1 and rank 2 Deaconu-Renault
groupoids

In [21], the authors use the above results, together with Lemma 3.20 in order

to verify Matui’s HK conjecture. We show their strategies here, as well as the open

questions arising from their reasoning.

Theorem 4.9. ([21, Theorem 6.7]) Let X be a second countable locally compact totally

disconnected space, and let σ : X → X be a surjective local homeomorphism (that is,

an action of N on X). Denote by σ∗ : Cc(X,Z)→ Cc(X,Z) the induced map. Then the

groupoid G(X, σ) satisfies Matui’s HK conjecture, with

K0(C∗r (G(X, σ))) ∼= H0(G(X, σ)) ∼= coker(id− σ∗),
K1(C∗r (G(X, σ))) ∼= H1(G(X, σ)) ∼= ker(id− σ∗), and

Hn(G(X, σ)) = 0, for all n ≥ 2.

Proof. Lemma 3.20 provides a stably isomorphism

C∗r (G(X, σ))⊗K ∼= C∗r (G(X, σ)×c Z)oα Z.

As noted before, we will drop the subindex α of the crossed product whenever the involved

action is clear.

The groupoid G(X, σ)×cZ is an AF groupoid (see Corollary 4.4) and hence, using Lemma

3.13, we have that:

K1(C∗r (G(X, σ)×c Z)) = 0, and

K0(C∗r (G(X, σ)×c Z)) ∼= H0(G(X, σ)×c Z),

under the map given by [1U×{n}]K0 7→ [1U×{n}]H0 for any compact open U ⊆ X. Therefore

if we denote A := C∗r (G(X, σ)×c Z), the Pimsner-Voiculescu exact sequence (3.22) is of

the form:

K0(A) K0(A) K0(Ao Z)

K1(Ao Z) 0 0

id−K0(α)

In particular, we have that

K0(C∗r (G(X, σ))) ∼= K0(Ao Z) ∼= coker(id−K0(α)), and

K1(C∗r (G(X, σ))) ∼= K1(Ao Z) ∼= ker(id−K0(α)).

On the other hand, we can use Theorem 4.8 to compute the homology groups of G(X, σ)

as the homology groups of the chain complex given by
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0→ Cc(X,Z)
id−σ∗→ Cc(X,Z)→ 0

and therefore

H0(G(X, σ)) ∼= coker(id− σ∗),
H1(G(X, σ)) ∼= ker(id− σ∗), and

Hn(G(X, σ)) = 0 for n > 1.

Moreover, it was shown in Lemma 4.5 that the isomorphism

H0(G(X, σ)×c Z) ∼= lim−→n∈N(Cc(X,Z), σn∗ )

intertwines the action of Z on lim−→n∈N(Cc(X,Z), σn∗ ) induced by σ∗ with the action α

of Z on H0(G(X, σ) ×c Z). Then, using Lemma 4.7 and the canonical isomorphism

H0(G(X, σ)×c Z) ∼= K0(C∗r (G(X, σ)×c Z)), we conclude that

K0(C∗r (G(X, σ))) ∼= coker(id−K0(α)) ∼= coker(id− σ∗) ∼= H0(G(X, σ)), and

K1(C∗r (G(X, σ))) ∼= ker(id−K0(α)) ∼= ker(id− σ∗) ∼= H1(G(X, σ)),

as desired.

Theorem 4.10. ([21, Theorem 6.10]) Let X be a second countable locally compact

totally disconnected space, and let σ1, σ2 : X → X be a pair of commuting surjective

local homeomorphisms (that is, an action of N2 on X). Define d2 : Cc(X,Z)→ Cc(X,Z)⊕
Cc(X,Z) by d2(f) := ((σ2∗− id)f, (id−σ1∗)f), and d1 : Cc(X,Z)⊕Cc(X,Z)→ Cc(X,Z)

by d1(f, g) := (id− σ1∗)f + (id− σ2∗)g. Then the groupoid G(X, σ) satisfies Matui’s HK

conjecture, with

K0(C∗r (G(X, σ))) ∼= H0(G(X, σ))⊕H2(G(X, σ)) ∼= coker(d1)⊕ ker(d2),

K1(C∗r (G(X, σ))) ∼= H1(G(X, σ)) ∼= ker(d1)/Im(d2), and

Hn(G(X, σ)) = 0, for all n ≥ 3.

Proof. First, recall that C∗r (G(X, σ)) is stably isomorphic to C∗r (G(X, σ) ×c Z2) oα Z2

(see Lemma 3.20), and hence we can consider Kasparov’s homological spectral sequence

from Theorem 3.23:

E2
p,q = Hp(Z2, Kq(C

∗
r (G(X, σ)×c Z2)))⇒ Kp+q(C

∗
r (G(X, σ))).

Before advancing further, we should note that the spectral sequence above, used by the

authors in [21], is a homological spectral sequence, in contrast with the cohomological

one introduced in Section 3.3.4. In this line, the reader may note that both spectral

sequences are symmetrical with respect to each other. In this subsection, since we are

just stating the results obtained by the authors in [21], as well as their reasoning, we
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have chosen to keep their convention. We will, however, use the cohomological approach

in the next sections.

Recall that G(X, σ) ×c Z2 is an AF groupoid (see Corollary 4.4). Hence, we have that

K1(C∗r (G(X, σ)×c Z2)) = 0. In particular, we deduce that E2
p,q = 0 whenever q is an odd

integer. Moreover, Lemma 3.13 provides an isomorphism

K0(C∗r (G(X, σ)×c Z2)) ∼= H0(G(X, σ)×c Z2)

under the map given by [1U×{n}]K0 7→ [1U×{n}]H0 . This isomorphism intertwines the

actions of Z2 on K0(C∗r (G(X, σ)×cZ2)) and H0(G(X, σ)×cZ2) induced by the translation

on the second coordinate αm((x, n, y), p) = ((x, n, y), p+m). Thus, it follows that

E2
n,q
∼= Hn(Z2, K0(C∗r (G(X, σ)×c Z2))) ∼= Hn(Z2, H0(G(X, σ)×c Z2)),

whenever q is even. Therefore, using Theorem 4.8, the differential maps in the second

page of the spectral sequence have bidegree (−2, 1), and the second page of the spectral

sequence is of the form

...

...

...

..

0

H0(G(X, σ))

0

H0(G(X, σ))

..

0

H1(G(X, σ))

0

H1(G(X, σ))

..

0

H2(G(X, σ))

0

H2(G(X, σ))

..

0

0

0

0

..

...

...

...

...

Since all the odd rows of the page are zero, we deduce that all the differentials d2
p,q

are trivial, and hence E2
p,q = E3

p,q. Moreover, for any integer r > 2, the bidegree of

dr∗,∗ is (−r, r − 1). Since there are only three non-trivial columns, we conclude that the

differential maps are trivial for all r ≥ 2, and then the spectral sequence reaches its limit

at the second page, that is, E2
p,q = E∞p,q. Then, as in Example 3.31, convergence of the

spectral sequence implies the existence of an isomorphism

K1(C∗r (G(X, σ))) ∼= E2
0,1
∼= H1(Z2, H0(G(X, σ)×c Z2)) ∼= H1(G(X, σ)),

and an extension

0→ E2
0,2 → K0(C∗r (G(X, σ)))→ E2

2,0 → 0

where
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E2
0,2
∼= H0(Z2, H0(G(X, σ)×c Z2)) ∼= H0(G(X, σ)), and

E2
2,0
∼= H2(Z2, H0(G(X, σ)×c Z2)) ∼= H2(G(X, σ)).

The groups Hn(Z2, H0(G(X, σ)×c Z2)) were computed in Theorem 4.8 to be isomorphic

to the homology groups of the chain complex (Aσ∗ , δ∗), which is defined as:

0→ Cc(X,Z)
d2→ Cc(X,Z)⊕ Cc(X,Z)

d1→ Cc(X,Z)→ 0

Therefore, we deduce that

K1(C∗r (G(X, σ))) ∼= ker(d1)/Im(d2) ∼= H1(G(X, σ)).

On the other hand, it was shown in [21, Lemma 6.9] that Cc(X,Z) is a free abelian

group whenever X is a second countable locally compact Hausdorff space. Hence, since

E2
2,0
∼= ker(d2) ⊆ Cc(X,Z), the extension of K0 splits, and we obtain an isomorphism

K0(C∗r (G(X, σ))) ∼= coker(d1)⊕ ker(d2) ∼= H0(G(X, σ))⊕H2(G(X, σ)),

concluding the proof.

Two major questions arise in [21, Remarks 6.11-6.13]. The first one aims to determine

the maps involved in the verification of Matui’s HK conjecture for Deaconu-Renault

groupoids of rank 2. As we just saw, there is an isomorphism

K0(C∗r (G(X, σ))) ∼= H0(G(X, σ))⊕H2(G(X, σ)) ∼= coker(d1)⊕ ker(d2).

However, the explicit expression of the isomorphism is unknown.

The second question tries to determine if Matui’s HK conjecture is still satisfied for

Deaconu-Renault groupoids of higher ranks. In particular, the authors suggest that, for

the rank 3, the conjecture could be related with the injectivity of the natural map

Φ : H0(G(X, σ))→ K0(C∗r (G(X, σ)))

described in Definition 2.74.

Throughout the remaining of this chapter, we answer both of this questions. To do so, we

need to study Kasparov’s spectral sequence under last chapter’s point of view (Section

3.3.4).
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4.3 The HK isomorphisms for
Deaconu-Renault groupoids of rank 2

In this section, we provide information about the HK isomorphisms previously

obtained for Deaconu-Renault groupoids of rank 2:

K0(C∗r (G(X, σ))) ∼= H0(G(X, σ))⊕H2(G(X, σ)),

K1(C∗r (G(X, σ))) ∼= H1(G(X, σ)).

To this end, we will use two different approaches, leading both to the same conclusion:

the HK isomorphism for K0 can be chosen such that the map between H0(G(X, σ)) and

K0(C∗r (G(X, σ))) is the natural one, given in Definition 2.74. In this line, we show the

strengths and limitations of each strategy.

Our first approach is based on the Pimsner-Voiculescu exact sequences shown in

Theorem 3.22. Since Lemma 3.20 implies a stable isomorphism between C∗r (G(X, σ))

and C∗r (G(X, σ) ×c Z2) oα Z2, we can find the desired K0 group, up to isomorphism,

encoded in the second iteration of the Pimsner-Voiculescu exact sequences. However,

we will see that this approach fails to provide any information about the isomorphism

associated to K1. This strategy will be used later, in Section 4.4.2.

In order to obtain information about the K1 isomorphism, we use a second approach

based on Kasparov’s spectral sequence, using the techniques from Section 3.3.4, that is,

building the spectral sequence associated to a certain cofiltration of the mapping torus.

We will also use this strategy in Section 4.4.

Let us start with the approach via Pimsner-Voiculescu sequences:

Lemma 4.11. Let X be a second countable locally compact totally disconnected space,

and let σ1, σ2 : X → X be a pair of commuting surjective local homeomorphisms (that is,

an action of N2 on X). Then the homology group H0(G(X, σ)) of the Deaconu-Renault

groupoid embeds canonically into K0(C∗r (G(X, σ))).

Proof. Recall that C∗r (G(X, σ)) is stably isomorphic to C∗r (G(X, σ) ×c Z2) oα Z2 (see

Lemma 3.20). The proof of Lemma 3.20 shows that this result is deduced from the

isomorphism

C∗r (G(X, σ)×c Z2) ∼= C∗r (G(X, σ))oϕ T2,

where ϕ is the gauge action. By inspecting this map as defined in Lemma 3.20, one can

see that this isomorphism sends 1U×{0} to 1U , for each open U ⊆ X. Then naturality
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of Takai-Takesaki duality implies that the stable isomorphism is canonical, in the sense

that 1U ⊗e00 ∈ C∗r (G(X, σ))⊗K is sent to the element 1U×{0} ∈ C∗r (G(X, σ)×cZ2)oαZ2.

From now on, we denote A := C∗r (G(X, σ)×c Z2), and drop the subindex α. Recall that

G(X, σ) ×c Z2 is an AF groupoid (see Corollary 4.4), and hence K1(A) = 0. Therefore,

the Pimsner-Voiculescu exact sequence associated to the action α1 is as it follows:

K0(A) K0(A) K0(Ao Z)

K1(Ao Z) 0 0

id−K0(α1) j1

δ

where, in order to ease the notation, we simply write j1 instead of K0(j1).

From the diagram above, we deduce that K0(A o Z)
j1∼= K0(A)/Im(id − K0(α1)), and

K1(A o Z)
δ∼= ker(id − K0(α1)). Then the second Pimsner-Voiculescu exact sequence

associated to the action α2 is of the form

K0(Ao Z) K0(Ao Z) K0(Ao Z2)

K1(Ao Z2) K1(Ao Z) K1(Ao Z)

id−K0(α2) j2

ρ

id−K1(α2)

Naturality of the Pimsner-Voiculescu exact sequences implies that the following diagram

commutes

ker(id−K0(α1)) ker(id−K0(α1))

K1(Ao Z) K1(Ao Z)

id−K0(α2)

δ ∼= δ∼=

id−K1(α2)

Hence we obtain an extension for K0(Ao Z2) given by

0→ K0(A)/(
2∑
i=1

Im(id−K0(αi)))
j2◦j1→ K0(Ao Z2)

δ◦ρ→
2⋂
i=1

ker(id−K0(αi))→ 0,
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where the map K0(A)/(
2∑
i=1

Im(id−K0(αi)))
j2◦j1→ K0(AoZ2) is induced by the canonical

inclusions j1, j2, and thus is given by

[1U×{n}] 7→ [1U×{n}].

This extension induces Matui’s HK isomorphism for K0. Indeed, by Theorem 4.10 we

have isomorphisms

H2(G(X, σ)) ∼=
2⋂
i=1

ker(id− σi∗) ∼=
2⋂
i=1

ker(id−K0(αi)),

and

H0(G(X, σ)) ∼= Cc(X,Z)/(
2∑
i=1

Im(id− σi∗)) ∼= K0(A)/(
2∑
i=1

Im(id−K0(αi))).

The isomorphism H0(G(X, σ)) ∼= K0(A)/(
2∑
i=1

Im(id−K0(αi))) is given by [1U ] 7→ [1U×{0}].

Indeed, the isomorphism is consequence of the following chain of isomorphisms:

H0(G(X, σ)) ∼= H0(Z2, H0(G(X, σ)×c Z2)),

provided by Matui’s spectral sequence, which sends [1U ] to [1U×{0}] (see [14, Theorem

4.4] for further details), where H0(G(X, σ)×c Z2) is a Z2-module under the action given

by α.

H0(Z2, H0(G(X, σ)×c Z2)) ∼= H0(Z2, ker(c)),

where ker(c) is a Z2-module under the action given by σ. This isomorphism is conse-

quence of the Kakutani equivalence between H0(G(X, σ)×c Z2) and ker(c) described in

Lemmas 4.3 and 3.17, given by [1U×{0}] 7→ [1U ], which intertwines the respective actions

α and σ (see Lemma 4.5).

H0(Z2, ker(c)) ∼= H0(Z2, lim−→
n∈N2

(Cc(X,Z), σn∗ )),

since ker(c) is an AF groupoid.

H0(Z2, lim−→
n∈N2

(Cc(X,Z), σn∗ ))
∼= lim−→

n∈N2

(Cc(X,Z), σn∗ )/
∑

Im(id− σi∗),

by definition of group homology. Then, using Lemma 4.5, Lemma 4.7 and Theorem 4.8,

we have

lim−→
n∈N2

(Cc(X,Z), σn∗ )/
∑

Im(id− σi∗) ∼= K0(A)/
∑

Im(id−K0(αi)).
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Hence, following the involved maps one has that the isomorphism H0(G(X, σ)) ∼=

K0(A)/(
2∑
i=1

Im(id−K0(αi))) is given by [1U ] 7→ [1U×{0}].

The isomorphism for H2(G(X, σ)) comes from the same reasoning. Finally, using the

isomorphism K0(Ao Z2) ∼= K0(C∗r (G)) deduced from Lemma 3.20, which sends [1U×{0}]

to [1U ⊗ e00] (as we noted at the beginning of the proof), we conclude that the HK iso-

morphim for K0 can be chosen to be natural, in the sense that the group H0 embeds

canonically into the group K0.

This approach, however, does not provide a description of the isomorphism for the K1-

group. From the last Pimsner-Voiculescu exact sequence, we deduce an extension of

K1(Ao Z2) of the form:

0→ ker(id−K0(α1))/Im(id−K1(α2))→ K1(AoZ2)→ ker(id−K0(α2))/Im(id−K0(α1))→ 0

which does not give us enough information. To this end, we follow a second strategy,

and investigate Kasparov’s spectral sequence as in Section 3.3.4.

Denote by Mα(A) the mapping torus associated to the action α, as in Definition 3.44.

Then we have

K∗(Ao Z2) ∼= K∗(Mα(A)),

as we noted in Theorem 3.46. In Subsection 3.3.4.3, we associated a finite cofiltration of

the mapping torus Mα(A) arising from an action of Zk on A, given by:

Mα(A) = Fk
πk→ Fk−1

πk−1→ ...
π3→ F2

π2→ F1
π1→ F0

π0→ F−1 = {0}

where each Fi is obtained by restricting its domain to

Xi := {t ∈ [0, 1]k : tµ1 = tµ2 = ... = tµk−i = 0, (µ1, µ2, ..., µk−i) ∈ T (k − i, k)}.

In our case k = 2, we have:

Fi = {0}, for all i < 0,

F0 = C({0}, A) ∼= A,

F1 = {f ∈ C(X1, A) : f(0, 1) = α2(f(0, 0)), f(1, 0) = α1(f(0, 0))},
F2 =Mα(A), and

Fi = F2, for all i > 2,

where X1 = [0, 1]× {0} ∪ {0} × [0, 1]. For each i, we have a short exact sequence

0→ Ii
ii→ Fi

πi→ Fi−1 → 0 (4.1)

where Ii := ker(πi). Recall that we have isomorphisms:
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I0 = F0
∼= A,

I1
∼= (SA)2,

I2 = S2A, and

Ii = 0, for i > 2.

Proposition 4.12. Under the above assumptions, we have that K0(F1) ∼= H2(G(X, σ)).

Proof. All the information of the first page of the associated spectral sequence is contained

in the following periodic diagram, obtained by concatenating the six term exact sequences

(see Theorem 2.73) of the above extensions (4.1):

...

...

K1(F1)

K1(F2)

K0(I0)

K0(I1)

K0(I2)

0

K0(F0)

K0(F1)

K0(F2)

...

K1(I1)

K1(I2)

0

...

K1(F0)

K1(F1)

K1(F2)

...

K0(I2)

...

..

φ

K0(i0)

K0(i1)

K0(i2)

ψ K1(i1) φ

K0(π1)

K0(π2)

K1(π2)

K1(π1)

In order to outline the maps appearing in our reasoning, we denote by φ, ψ the respective

index maps appearing in the diagram.

First, note that, since G(X, σ) ×c Z2 is AF (see Corollary 4.4), we have

that K0(I1) ∼= K0(SA)2 ∼= K1(A)2 = 0. Therefore, we deduce that

K0(π1) : K0(F1)→ K0(F0) is injective, and hence K0(F1) ∼= ker(ψ). Moreover, I0 = F0,
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and hence K0(I0) = K0(F0). Therefore, the differential map K0(I0)→ K1(I1) defined as

ψ ◦K0(i0) equals to ψ. Thus, K0(π1) induces an isomorphism:

K0(F1)
K0(π1)∼= ker(ψ) = ker(ψ ◦K0(i0)),

where ker(ψ ◦ K0(i0)) equals to the term E0,0
2 , by definition (see Proposition 3.38).

Moreover, by Theorem 3.49, we have an isomorphism

E0,0
2
∼= ker(id−K0(α1)) ∩ ker(id−K0(α2)) ⊆ K0(A),

which is isomorphic to ker(id − σ1∗) ∩ ker(id − σ2∗) ⊆ Cc(X,Z) (see Lemmas 4.5 and

4.7). Therefore:

K0(F1)
K0(π1)∼= E0,0

2
∼=

2⋂
i=1

ker(id−K0(αi)) ∼=
2⋂
i=1

ker(id− σi∗) = H2(G(X, σ)),

as desired.

Remark 4.13. This result can be generalized for any Deaconu-Renault groupoid. In-

deed, building the suitable cofiltration, and using the above strategy, we can deduce that

the term K0(F1) is always isomorphic to the higher homology group of G(X, σ). In the

case of a Deaconu-Renault groupoid of rank n, we have that K0(F1) ∼= Hn(G(X, σ)).

We can now provide an alternative picture of the HK isomorphism

H0(G(X, σ))⊕H2(G(X, σ)) ∼= K0(C∗r (G(X, σ))).

Proposition 4.14. Under the above assumptions, we have that H0(G(X, σ)) ∼=
K0(I2)/Im(φ), and G(X, σ) satisfies the HK conjecture for K0. Moreover, the HK

isomorphism for K0 can be chosen such that H0(G(X, σ)) embeds canonically into

K0(C∗r (G(X, σ))).

Proof. Note that, since we can identify F0 = A, we have that K1(F0) = 0, and

hence K1(i1) is surjective. In particular, Im(φ ◦ K1(i1)) = Im(φ), and then E2,0
2 =

K0(I2)/Im(φ ◦K1(i1)) = K0(I2)/Im(φ). This, together with Theorem 3.49 and Lemmas

4.5, and 4.7, shows that

K0(I2)/Im(φ) = E2,0
2
∼= K0(A)/

∑
Im(id−K0(αi)) ∼= Cc(X,Z)/

∑
Im(id−σi∗) ∼= H0(G(X, σ)).

Moreover, since K1(I2) = 0 and K0(F1) ∼= H2(G(X,Z)) is free, we have a split exact

sequence:
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0→ K0(I2)/Im(φ)
K0(i2)→ K0(F2)

K0(π2)→ K0(F1)→ 0

By using the isomorphism K0(I2)/Im(φ) ∼= H0(G(X, σ)), and Proposition 4.12, the above

extension of K0(F2) induces a commutative diagram:

0 K0(I2)/Im(φ) K0(F2) K0(F1) 0

0 H0(G(X, σ)) K0(C∗r (G(X, σ))) H2(G(X, σ)) 0

K0(i2) K0(π2)

∼= ∼= ∼=

where the vertical isomorphism between K0(F2) and K0(C∗r (G(X, σ))) is given by Lemma

3.20 and Theorem 3.46 . Observe that we can apply Remark 3.51 (which is a consequence

of Theorem 3.50) to the left square, and conclude that the map between H0(G(X, σ))

and K0(C∗r (G(X, σ))) is the canonical one given by [1U ]H0 7→ [1U ]K0 . This provides an

alternative description for the HK isomorphism for the K0 component.

Finally, we provide a picture of the isomorphism for the K1 component.

Proposition 4.15. Under the above assumptions, we have that H1(G(X, σ)) ∼= ker(φ),

and G(X, σ) satisfies the HK conjecture.

Proof. Reasoning as above, we have that K1(i1) is surjective, and so it induces an iso-

morphism

ker(φ) ∼= ker(φ ◦K1(i1))/ker(K1(i1)) = ker(φ ◦K1(i1))/Im(ψ).

Also, K1(I2) = 0, and therefore K1(F2)
K1(π2)∼= Im(K1(π2)) = ker(φ). By Theorem 3.46

and exactness of the diagram, we have

K1(C∗r (G(X, σ))) ∼= K1(F2) ∼= ker(φ) ∼= ker(φ ◦K1(i1))/Im(ψ), (4.2)

which equals to E1,0
2 by definition (see Proposition 3.38). Moreover, by using Theorem

3.49 and Lemma 4.5, we have that

E1,0
2
∼= H1(G(X, σ)). (4.3)

Combining equations (4.2) and (4.3), we obtain a picture of the HK isomorphism for the

K1 component, as desired.
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4.4 Rank 3 and higher Deaconu-Renault
groupoids: an open problem

In order to study the K-theory of the C∗-algebra associated to a Deaconu-Renault

groupoid of rank k, we use two approaches previously introduced. The first one involves

the use of the spectral sequence described in Section 3.3.4. The second one consists in

iterating the Pimsner-Voiculescu exact sequences (see Theorem 3.49) k-times, and study

the extensions arising. This section will be structured as follows:

• First, we will give a sufficient condition for the verification of HK-conjecture for a
Deaconu-Renault groupoid of rank 3, as it was suggested in [21].

• In the second part, we use this in order to prove that rank 3 Deaconu-Renault
groupoids arising from actions by homeomorphisms satisfy the rational HK-
conjecture.

• Finally, we will provide an explicit picture of the group K1(AoZ), in order to set
the first step in the study of whether rank-3 Deaconu-Renault groupoids satisfy
HK-conjecture in the general setting.

4.4.1 A sufficient condition for the verification of HK for
Deaconu-Renault groupoids of rank 3

In this subsection, we answer positively in Theorem 4.18 the question appearing

in [21, Remark 6.13], where the authors suggested that, for Deaconu-Renault groupoids

of rank 3, the verification of the HK conjecture may follow from the injectivity of the

natural map Φ : H0(G(X, σ))→ K0(C∗r (G(X, σ))) described in Definition 2.74.

To do so, we use Kasparov’s cohomological spectral sequence (Theorem 3.23), as des-

cribed in Subsection 3.3.4. In this case, the spectral sequence is of the form

Ep,q
2
∼= Hp(Z3, Kq(A))⇒ Kp+q(Mα(A)) ∼= Kp+q−1(Ao Z3) ∼= Kp+q−1(C∗r (G(X, σ))),

where A := C∗r (G(X, σ)×c Z3). Notice that the last isomorphisms follow by Lemma 3.20

and Theorem 3.46.

Since G(X, σ)×c Z3 is an AF groupoid (see Corollary 4.4), and hence K1(A) = 0, we can

provide the specific picture of the above spectral sequence. Indeed, all the odd rows of

the spectral sequence are trivial. Then, reasoning as in Example 3.33, we have E2 = E3,

and the third page of the spectral sequence converging to the K-theory of Mα(A) is of

the form:
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..

0

E0,0
2

0

E0,−2
2

..

..

0

E1,0
2

0

E1,−2
2

..

..

0

E2,0
2

0

E2,−2
2

..

..

0

E3,0
2

0

E3,−2
2

..

..

0

0

0

0

..

...

...

...

...

d0,0
3

The spectral sequence reaches its limit, at most, at the fourth page, since either domain

or codomain of the following differential maps lie in a zero row. Its convergence in the

fourth page induces two short exact sequences (see Example 3.33):

0→ coker(d0,0
3 )→ K1(Mα(A))→ E1,0

2 → 0

and

0→ E2,−2
2 → K0(Mα(A))→ ker(d0,0

3 )→ 0

If the map d0,0
3 happens to be trivial, then ker(d0,0

3 ) = E0,0
2 and coker(d0,0

3 ) = E3,−2
2 .

Observe that we always have Ep,2q
2 = Ep,0

2 , by periodicity of K-theory.

As we noted in Theorem 3.49, the objects Ep,0
2 can be computed as the cohomology of the

Pimsner-Voiculescu complex (CPV , dPV ). More explicitly, we have the cochain complex

0→ K0(A)
d0,0
PV→ K0(A)3 d1,0

PV→ K0(A)3 d2,0
PV→ K0(A)→ 0,

where dp,0PV : K0(A)⊗
∧p Z3 → K0(A)⊗

∧p+1 Z3 is given by

x⊗ e 7→
3∑
i=1

(K0(αi)− id)(x)⊗ (e ∧ ei).

Lemma 4.16. Let X be a second countable totally disconnected locally compact space,

let σ be an action of Nk by surjective local homeomorphisms on X, and denote by

G(X, σ) the associated Deaconu-Renault groupoid. Let B̃ := lim−→n∈Zk(Cc(X,Z), σn∗ ), and
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let B = Cc(X,Z). Denote by (B̃σ
∗ , δ̃∗) and (Bσ, δ∗) the respective chain complexes as in

Lemma 4.6. Then we have isomorphisms

0 K0(A)⊗
∧0 Zk K0(A)⊗

∧1 Zk .. K0(A)⊗
∧k−1 Zk K0(A)⊗

∧k Zk 0

0 B̃ ⊗
∧k Zk B̃ ⊗

∧k−1 Zk .. B̃ ⊗
∧1 Zk B̃ ⊗

∧0 Zk 0

d0,0
PV dk−1,0

PV

δ̃k δ̃1

τ0 τ1 τk−1 τk∼= ∼= ∼= ∼=

Moreover, the isomorphisms intertwine the differential maps dp,0PV and δ̃k−p, making the

diagram commutative. Therefore:

Hp(CPV , dPV ) ∼= Hk−p(B̃σ
∗ , δ̃∗)

∼= Hk−p(B
σ
∗ , δ∗)

∼= Hk−p(G(X, σ)). (4.4)

Proof. The skew product groupoid G(X, σ) ×c Zk is AF (see corollary 4.4), and hence

K0(A) ∼= H0(G(X, σ) ×c Zk) ∼= B̃, as shown in Lemma 4.5. Then, by symmetry of the

exterior product, we have the isomorphisms τp : K0(A)⊗
∧p Zk ∼= B̃⊗

∧k−p Zk. Denoting

by θ the isomorphism between K0(A) and B̃, we can write τp as:

τp(z ⊗ eµ) = θ(z)⊗ eµ⊥ ,

where µ ∈ T (p, k), and µ⊥ ∈ T (k − p, k) is the unique (k − p)-string disjoint to µ (see

paragraph 3.3.4.4).

The intertwining of the differential maps dp,0PV and δ̃k−p follows from Lemma 4.5 and

definition of those maps. Therefore, we obtain

Hp(CPV , dPV ) ∼= Hk−p(B̃σ
∗ , δ̃∗).

The isomorphisms

Hk−p(B̃σ
∗ , δ̃∗)

∼= Hk−p(B
σ
∗ , δ∗)

∼= Hk−p(G(X, σ))

were proven in Lemma 4.7 and Theorem 4.8, respectively.

With the second page of the spectral sequence already computed, our goal is to study

the necessary conditions for the map d0,0
3 to be trivial. More precisely, we will prove that

it is trivial whenever the canonical map

Φ : H0(G(X, σ))→ K0(C∗r (G(X, σ)))
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of Definition 2.74 is injective. We will do so in Lemma 4.17 and Theorem 4.18.

To this end, we first build the cohomological spectral sequence as in Subsection 3.3.4.3:

The associated finite cofiltration of the mapping torusMα(A) arising from the action of

Z3 on A is given by:

Mα(A) = F3
π3→ F2

π2→ F1
π1→ F0

π0→ F−1 = {0}.

Each Fj is defined by restricting the domain to Xj, where:

Xj = ∅, for all j < 0,

X0 = {(0, 0, 0)},
X1 = ([0, 1]× {0} × {0}) ∪ ({0} × [0, 1]× {0}) ∪ ({0} × {0} × [0, 1]),

X2 = ([0, 1]× [0, 1]× {0}) ∪ ([0, 1]× {0} × [0, 1]) ∪ ({0} × [0, 1]× [0, 1]), and

Xj = [0, 1]3, for all j ≥ 3.

For each j, we have a short exact sequence

0→ Ij
ij→ Fj

πj→ Fj−1 → 0 (4.5)

where Ij := ker(πj). Recall that, as we noted in Subsection 3.3.4.4 we have isomorphisms:

I0 = F0
∼= A,

I1
∼= (SA)3,

I2 = (S2A)3,

I3 = S3A, and

Ij = 0, for j > 3.

Reasoning as in Proposition 4.12, we can put together all the six term exact sequences

associated to Equation 4.5, in order to obtain the following periodic diagram:
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...

...

K1(F1)

K1(F2)

K1(F3)

K0(I0)

K0(I1)

K0(I2)

K0(I3)

0

K0(F0)

K0(F1)

K0(F2)

K0(F3)

...

K1(I1)

K1(I2)

K1(I3)

...

K1(F0)

K1(F1)

K1(F2)

K1(F3)

K0(I2)

K0(I3)

..

φ

K0(i0)

K0(i1)

K0(i2)

ψ

ξ

K1(i1)

K1(i2)

K1(i3)

φ

K0(π1)

K0(π2)

K0(π3)

K1(π3)

K1(π2)

K1(π1)

Recall that, by definition, Ep,q
1 := Kp+q(Ip). Since K1(A) = 0, straightforward computa-

tion shows that Kp+q(Ip) = 0 whenever q is odd. The differential maps d∗,∗1 : E∗,∗1 → E∗,∗1

are defined as the composition

dp,q1 : Kp+q(Ip)→ Kp+q(Fp)→ Kp+q+1(Ip+1).

The second page is defined as Ep,q
2 := ker(dp,q1 )/Im(dp−1,q

1 ), and its differentials dp,q2 are

all zero, since either domain or codomain are trivial. Therefore we have that Ep,q
2 = Ep,q

3 ,

for all p, q. In the third page, there is only one differential map that may not be zero (up

to periodicity), more precisely:

d0,0
3 : ker(ψ)→ K1(I3)/Im(ξ ◦K0(i2)),

where we have used that I0 = F0, making K0(i0) : K0(I0) → K0(F0) the identity map,

and hence ker(ψ ◦ K0(i0)) = ker(ψ). If the map d0,0
3 happens to also be zero, then

Ep,q
2 = Ep,q

∞ , and the result would follow.

Lemma 4.17. Under the previous assumptions, d0,0
3 = 0 if and only if the canonical map

E3,0
2 = K1(I3)/Im(ξ ◦K0(i2))→ K1(F3) induced by K1(i3) is injective. If that happens,

the spectral sequence reaches its limit at the second page, and therefore we have two

short exact sequences
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0→ E3,0
2 → K1(F3)→ E1,0

2 → 0

0→ E2,0
2 → K0(F3)→ E0,0

2 → 0

Proof. It is clear that d0,0
3 = 0 implies the injection of E3,0

2 intoK1(F3), by the convergence

of the spectral sequence, so we only need to prove the other implication.

Looking at K1(F3), we have the following exact sequence:

0→ ker(K1(π3))→ K1(F3)→ Im(K1(π3))→ 0

Considering ker(K1(π3)) = Im(K1(i3)) ⊆ K1(F3), we obtain a canonical isomorphism

Im(K1(i3)) ∼= K1(I3)/Im(ξ) via the map [v] 7→ [v] for every v unitary of Mn(I3), and

therefore K1(I3)/Im(ξ) embeds canonically onto K1(F3).

We claim that, if the canonical map E3,0
2 = K1(I3)/Im(ξ ◦ K0(i2)) → K1(F3) is also

injective, then Im(ξ) = Im(ξ ◦K0(i2)). This is straightforward, since the kernel of the

map K1(I3)/Im(ξ ◦ K0(i2)) → K1(F3) is precisely Im(ξ)/Im(ξ ◦ K0(i2)). Therefore, if

the kernel is trivial, we have that Im(ξ) = Im(ξ ◦K0(i2)) as intended.

In our sequence, the map d0,0
3 is defined as follows (see Lemma 3.43). Take an ele-

ment f0 of ker(ψ). Find any lift f2 ∈ K0(F2), and consider ξ(f2) ∈ K1(I3). Then

d0,0
3 (f0) := [ξ(f2)] ∈ K1(I3)/Im(ξ ◦ K0(i2)), which is independent of the choice of f2.

Since Im(ξ) = Im(ξ ◦ K0(i2)), we have that ξ(f2) ∈ Im(ξ ◦ K0(i2)), and therefore

d0,0
3 (f0) = 0 ∈ E3,0

2 = K1(I3)/Im(ξ ◦K0(i2)), for any f0 ∈ ker(ψ).

Since d0,0
3 = 0, we deduce that the spectral sequence reaches its limit in the second page.

Then, reasoning as in Example 3.33, and using the periodicity Ep,2q
2 = Ep,0

2 , we obtain

the two exact sequences

0→ E3,0
2 → K1(F3)→ E1,0

2 → 0

0→ E2,0
2 → K0(F3)→ E0,0

2 → 0

Theorem 4.18. Let X be a second countable locally compact totally disconnected space,

and let σ = (σ1, σ2, σ3) be an action of N3 on X by surjective local homeomorphisms. Let

G(X, σ) be the associated Deaconu-Renault groupoid. Then, whenever the canonical map

between H0(G(X, σ)) and K0(C∗r (G(X, σ))) is injective, G(X, σ) verifies Matui’s weak HK

conjecture for K0, and the strong version of HK for K1.

Proof. As we noted in Equation 4.4, we have

E0,0
2
∼= H3(G(X, σ)),

E1,0
2
∼= H2(G(X, σ)),

E2,0
2
∼= H1(G(X, σ)),
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E3,0
2
∼= H0(G(X, σ)).

Observe that, by periodicity of K-theory, we have Ep,q
2 = Ep,0

2 for all even q.

Since K∗(F3) = K∗(Mα(A)) ∼= K∗−1(A o Z3) ∼= K∗−1(C∗r (G(X, σ))) (see Theorem 3.46

and Lemma 3.20), the short exact sequences of Lemma 4.17 are enough to prove that

Matui’s weak HK conjecture is satisfied for G(X, σ), whenever the map

K1(I3)/Im(ξ ◦K0(i2))→ K1(F3)

is injective.

Finally observe that, by using Remark 3.51, we have a commutative diagram

K1(I3)/Im(ξ ◦K0(i2))

K0(A)/
∑

(Im(id−K0(αi)))

K1(F3)

K0(Ao Z3)

K1(i3)

∼= Ψ
(3)
A

K0(j)

As we observed in Lemma 4.11, the isomorphism K0(AoZ3) ∼= K0(C∗r (G(X, σ))) induced

by Takai-Takesaki duality is natural, and hence the following diagram commutes

K0(A)/
∑

(Im(id−K0(αi)))

Cc(X,Z)/
∑

(Im(id− σi∗))

K0(Ao Z3)

K0(C∗r (G(X, σ)))

K0(j)

∼= ∼=

Φ

Therefore, we can translate the injectivity condition of Lemma 4.17, to the injectivity of

the canonical map

Φ : H0(G(X, σ))→ K0(C∗r (G(X, σ))).

Hence, the injectivity of Φ implies the existence of exact sequences

0→ H0(G(X, σ))→ K0(C∗r (G(X, σ)))→ H2(G(X, σ))→ 0

0→ H1(G(X, σ))→ K1(C∗r (G(X, σ)))→ H3(G(X, σ))→ 0

Therefore G(X, σ) satisfies the weak HK conjecture whenever Φ is injective.

Finally, since Cc(X,Z) is free (see [21, Lemma 6.9]), we deduce that H3(G(X, σ)) ⊆
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Cc(X,Z) is also free, and hence the short exact sequence for K1 splits, obtaining the

isomorphism

K1(C∗r (G(X, σ))) ∼= H1(G(X, σ))⊕H3(G(X, σ)),

that is, G(X, σ) satisfies the strong version of the HK conjecture for K1.

4.4.2 Actions by homeomorphisms Z3 y X on a Cantor set

We now study the specific case of a Deaconu-Renault groupoid associated to an

action by homeomorphisms, with compact unit space. So let σ = (σ1, σ2, σ3) : Z3 y X

be an action of Z3 by homeomorphisms on a Cantor set X. We keep our standing

convention σn := σn1
1 σn2

2 σn3
3 , for n = (n1, n2, n3) ∈ Z3, and denote σ∗ the induced action

in C(X). Observe that, by using Remark 2.1.2, we can identify the Deaconu-Renault

groupoid associated to the action σ with the transformation groupoid X o Z3. The

C∗-algebra of X o Z3 is isomorphic to C(C) oσ∗ Z3 (see, for example, [58, Example

3.3.8]).

Throughout this section, we write A = C(X) and, as usual, we write the crossed product

Aoσ∗ Z3 simply as Ao Z3.

We begin by describing the K-groups appearing in the first iteration of the Pimsner-

Voiculescu sequence. To do so, we use a certain family of elements uf ∈ A o Z, under

the following construction:

Consider f ∈ C(X,Z) such that f = σ1∗(f). Since σ1 acts on X by homeomorphisms,

we can write f =
∑
niχUi , for ni ∈ Z distinct, X =

⊔
Ui, and σ1(Ui) = Ui, for all i. We

define uf ∈ Ao Z as

uf :=
∑
n

χf−1({n})u
n
1 ,

where u1 ∈ Ao Z is the unitary of the crossed product associated to the action σ1∗.

Lemma 4.19. Let X be the Cantor set. Let σ be an action of Z3 on X by homeomor-

phisms, and denote A = C(X). Let f ∈ C(X,Z) be of the form f =
∑
niχUi , for ni ∈ Z

distinct, X =
⊔
Ui, and σ1(Ui) = Ui, for all i. Then the element uf defined as above is

an unitary in Ao Z.
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Proof. The proof is standard:

u∗fuf = (
∑
m

u∗m1 χf−1({m}))(
∑
n

χf−1({n})u
n
1 ) =

∑
n

u∗n1 χf−1({n})u
n
1 =

=
∑
i

u∗ni1 χf−1({ni})u
ni
1 =

∑
i

σ1∗(χUi) =

=
∑
i

χσ1(Ui) =
∑
i

χUi = 1X .

The proof that ufu
∗
f = 1X is analogous, after checking that, for each n 6= m, one has

that

χf−1({n})u
n
1u
∗m
1 χf−1({m}) = 0.

Indeed, suppose that n > m, and then we have

χf−1({n})u
n
1u
∗m
1 χf−1({m}) = χf−1({n})u

n−m
1 χf−1({m}) =

= un−m1 u∗n−m1 χf−1({n})u
n−m
1 χf−1({m}) =

= un−m1 σn−m1∗ (χf−1({n}))χf−1({m}) =

= un−m1 χf−1({n})χf−1({m}) = 0.

The same result is obtained when considering n < m.

We can use this in order to describe K1(Ao Z).

Lemma 4.20. Let X be the Cantor set. Let σ be an action of Z3 on X by homeomor-

phisms, and denote A = C(X).

Then, K0(AoZ) ∼= coker(id−K0(σ1)) ∼= coker(id− σ1∗ : C(X,Z)→ C(X,Z)), and the

index map induces the isomorphism:

K1(Ao Z) ∼= {[uf ]1 := [
∑

n χf−1({n})u
n
1 ]1 : f ∈ C(X,Z) is σ1∗ − invariant},

where u1 denotes the unitary of the crossed product associated to the action σ1∗.

Proof. Recall that K0(A) ∼= C(X,Z). The first Pimsner-Voiculescu exact sequence (see

Theorem 3.22) reads as follows:

K0(A) K0(A) K0(Ao Z)

K1(Ao Z) K1(A) K1(A)

id−K0(σ1)

ϕ

id−K1(σ1)
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where ϕ denotes the respective index map.

The terms K1(A) are zero and, therefore, exactness of the diagram gives us the first

isomorphism, and also K1(Ao Z) ∼= ker(id−K0(σ1) : K0(A)→ K0(A)).

Note that the latter map can be identified with id− σ1∗ : C(X,Z)→ C(X,Z), where

(id− σ1∗)(f) = f − f ◦ σ−1
1 .

Therefore we can identify ker(id −K0(σ1)) with the set of functions f ∈ C(X,Z) such

that f = f ◦ σ1. If we write f =
∑
niχUi for ni ∈ Z distinct and X =

⊔
Ui mutually

disjoint clopen subsets of X, then we have that f ∈ ker(id−σ1∗) if and only if σ1(Ui) = Ui

for all i.

Let’s consider [χU ]0 for some U clopen σ1-invariant, generator of ker(id − K0(σ1)) ⊆
K0(A). This element identifies with [χU ⊗ e00]0 under the isomorphism K0(A) ∼= K0(A⊗
K). We claim that its preimage under the index map is [uχU ]1 := [χUu1 + χUc ]1. Let’s

see it:

Let f = χU , and vf = (χU ⊗ 1)(u⊗ S∗) + (χUc ⊗ 1) ∈ TA,σ1∗ be a preimage of uf under

π, where TA,σ1∗ is the Toeplitz algebra as defined in Theorem 3.22 (for further details,

see [15, Proposition 5.8]), that is, the subalgebra of (AoZ)⊗C∗(S) generated by A⊗ I
and u⊗ S∗.
Straightforward computation shows that vfv

∗
f = 1⊗1, and v∗fvf = 1⊗1−χU⊗e00, which

means that vf is a partial isometry in TA,σ1∗ , and so the index map is defined as ([53],

9.2.4):

δ[uf ]1 := [1− v∗fvf ]0 − [1− vfv∗f ]0 = [χU ⊗ e00]0 ∼= [χU ]0

To extend this result for every f ∈ C(X,Z) σ1∗-invariant, it is enough to check that

ufug = uf+g. Indeed,

ufug =
∑
n

∑
m

χf−1{n}χg−1{m}u
n+m
1 =

∑
k

∑
n+m=k

χf−1{n}∩g−1{m}u
k
1 =

∑
k

χ(f+g)−1{k}u
k
1 = uf+g.

Having this identity, and since ϕ is a homomorphism,

ϕ([uf+g]1) = ϕ([ufug]1) = ϕ([uf ]1 + [ug]1) = [f ]0 + [g]0,

thus concluding the proof.

Remark 4.21. Iterating for the second time we obtain the following Pimsner-Voiculescu

six term exact sequence:
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K0(Ao Z) K0(Ao Z) K0(Ao Z2)

K1(Ao Z2) K1(Ao Z) K1(Ao Z)

id−K0(σ2)

δ

id−K1(σ2)

Now, we aim to prove that there exists some lifting γ of δ (and so K0(A o Z2) =

ker(δ) ⊕ γ(Im(δ))), which verifies a key property. It is clear that δ has a splitting

because

Im(δ) ⊆ K1(Ao Z) ∼= ker(id−K0(σ1)) ∼= ker(id− σ1∗) ⊆ C(X,Z)

is free, but we need an additional key property. We will find an explicit expression of the

lifting γ.

Lemma 4.22. With the above notation, there is a homomorphism

γ : Im(δ)→ K0(Ao Z2)

such that K0(σ3)γδ = γδK0(σ3).

Proof. To show the result, we will study the trivial case of Z3 acting on the trivial algebra

C, and then we will expand the result for A = C(X). First, we set some conventions:

• When working with the algebras arising from this action over the trivial algebra,
we will add a subindex 0 to all the maps involved, for clarity matters.

• Recall that, if A0 = C, then A0 o Z3 can be identified with C(T3).

• Bott’s periodicity gives, for every C∗-algebra B, two isomorphisms
K0(B) ∼= K1(S(B)) and K1(B) ∼= K0(S(B)), where S(B) denotes the sus-
pension of B (see [53]). For convenience, both isomorphisms will be denoted by θ,
since it will be clear which one we are applying in each case.

Lastly, recall that, by 4.20, K1(AoZ) = {[uf ]1 := [
∑
χf−1({n})u

n
1 ]1 : f ∈ C(X,Z) is σ1∗−

invariant}, where u1 is the unitary of the crossed product of A o Z associated to the

action σ1∗. In particular, one may check that Im(δ) = ker(id − K1(σ2)) ⊆ K1(A o Z)

can be identified as {[uf ]1 := [
∑
χf−1({n})u

n
1 ]1 : f ∈ C(X,Z) is σ1∗ , σ2∗ − invariant}.

Let u, v be the canonical unitaries generating C(T2). There exists a unique

∗-homomorphism ϕ : C(T2)→ Ao Z2 sending u to u1 and v to u2.

We will make use of the following map between short exact sequences
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0 // C(T)⊗K //

ϕ1

��

TC(T),id
//

ψ

��

C(T)o Z //

ϕ

��

0

0 // (Ao Z)⊗K // TAoZ,σ2
// Ao Z2 // 0,

(4.6)

where we identify C(T)o Z = C(T)⊗ C(T) with C(T2).

Consider the diagram:

K1(C(T))

K0(C(T2)) K1(S(C(T2)))

K0(S(C(T)))
θ0

δ′0

θ0

δ0

associated to the second iteration of the Pimsner-Voiculescu exact sequence of the trivial

algebra C. We will take a lifting for δ0, and extend it in order to find liftings [Vf ]1 ∈
K1(S(Ao Z2)) for the elements θ([uf ]1) ∈ K0(S(Ao Z)) in the general case

δ′ : K1(S(Ao Z2))→ K0(S(Ao Z)).

Let us show it:

Let [V ]1 ∈ K1(S(C(T2))) be such that δ′0([V ]1) = θ0([u]1)), where V ∈ Ur( ˜S(C(T2))),

and we assume without loss of generality that s(V ) = Ir, where s is the scalar map of

Definition 2.66. Define

Vf :=
∑
n∈Z

χf−1({n})V
n

1 ∈ Ur( ˜S(Ao Z2)),

where V1 := S̃ϕ(V ), and

S̃ϕ : Mr( ˜S(C(T2)))→Mr( ˜S(Ao Z2))

is the homomorphism on matrices induced by S̃ϕ. Then the map γ′ : θ([uf ]1) 7→ [Vf ]1 is

a lifting of δ′ : K1(S(Ao Z2))→ K0(S(Ao Z)).

First, we need to prove that, for each f ∈ C(X,Z) such that f is σ1∗ , σ2∗-invariant, the

element Vf :=
∑

n∈Z χf−1({n})S̃ϕ(V ) is a unitary in Mr( ˜S(Ao Z2)). Let us show it:
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Recall that we can identify Mr( ˜S(Ao Z2)) with the set of those elements a ∈
C(T,Mr(A o Z2)) such that a(1) ∈ Mr(C1A) (see [53, Chapter 11]). We think of V

as an element in C(T,Mr(C(T2))) such that V (1) = Ir ∈Mr(C).

We have S̃ϕ(V )(z) ∈ Mr(C
∗(u1, u2)) for all z ∈ T. Since f is σ1∗-invariant and

σ2∗-invariant, it follows that S̃ϕ(V )(z) commutes with χf−1({n})1r for all z ∈ T and con-

sequently Vf (z) is a unitary in Mr(AoZ2) for all z ∈ T. Moreover, since S̃ϕ(V )(1) = Ir,

it follows that Vf (1) = Ir, and we conclude that Vf ∈ Ur( ˜S(Ao Z2)).

We can now define the map λ : Im(δ)→ K1(S(Ao Z2)) by

λ([uf ]1) = [Vf ]1

for each f ∈ C(X,Z) which is σ1∗- and σ2∗-invariant. Let us prove some properties for

the map λ. First, we prove that it is a homomorphism. For this, it suffices to realize

that ufug = uf+g, as we proved earlier. The same computation shows that VfVg = Vf+g

for f, g σ1∗- and σ2∗-invariant functions in C(X,Z). This implies

λ([uf ]1 + [ug]1) = λ([uf+g]1) = [Vf+g]1 = [VfVg]1 = [Vf ]1 + [Vg]1 = λ([uf ]1) + λ([ug]1),

showing that λ is a homomorphism.

Naturality of both the index map and Bott’s isomorphism implies that the following

square is commutative, that is, θδ = δ′θ:

Im(δ) ⊆ K1(Ao Z)

K0(Ao Z2) K1(S(Ao Z2))

K0(S(Ao Z))
θ

δ′

θ

δ

We want to show that

γ := θ−1 ◦ λ : Im(δ)
λ→ K1(S(Ao Z2))

θ−1

→ K0(Ao Z2)

is a section of δ, that is, δ = δ ◦ γ ◦ δ. By the commutativity of the above square, it

suffices to check that

γ′ := λ ◦ θ−1 : θ(Im(δ))
θ−1

→ Im(δ)
λ→ K1(S(Ao Z2))
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is a section of δ′, that is, δ′ = δ′ ◦ γ′ ◦ δ′, and for this it is enough to check that δ′λ = θ.

We first check that we have δ′(λ([u1]1)) = θ([u1]1). This follows from the naturality of

the involved maps. Indeed, we have

δ′(λ([u1]1)) = δ′([S̃ϕ(V )]1) = (δ′ ◦K1(S̃ϕ))([V ]1) =

= (K0(S̃ϕ1) ◦ δ′0)([V ]1) = (K0(S̃ϕ1) ◦ θ0)([u]1) =

= (θ ◦K1(ϕ1))([u]1) = θ([u1]1).

To show that δ′ ◦λ = θ, it suffices to check that δ′(λ([up]1)) = θ([up]1), for any projection

p = χU , where U is a clopen subset of X such that σ1(U) = σ2(U) = U . The element

V1 = Sϕ(V ) will play an important role in our computations.

We now study Bott’s isomorphism θ:

In order to simplify notation, we put B := (Ao Z)⊗K and T := TAoZ,σ2∗ and j : jAoZ.

Then B is a closed ideal of the unital C∗-algebra T and we have S(B) ⊆ S(T ). We

will look at elements in Mk(S̃T ) as continuous functions a : T → Mk(T ) such that

a(1) ∈ Mk(C1T ). Analogously, we will look at elements in Mk(S̃B) as those elements

a ∈Mk(S̃T ) such that a(t) = a(1) + b(t), where b(t) ∈Mk(B) for all t ∈ T.

With these definitions, note that the element [up]1 ∈ K1(AoZ) is represented in K1(B) ∼=
K1(A⊗ Z) by [up ⊗ e00 + (1− e00)]1, where e00 = 1− SS∗.
By definition of the Bott’s isomorphism,

θ([up ⊗ e00 + (1− e00)]1) =
[
wp

(
1 0

0 0

)
w∗p

]
0
−
[(1 0

0 0

)]
0
,

where

wp =(
up ⊗ e00 + (1− e00) 0

0 1

)(
cos(π

2
t) − sin(π

2
t)

sin(π
2
t) cos(π

2
t)

)(
u∗p ⊗ e00 + (1− e00) 0

0 1

)(
cos(π

2
t) sin(π

2
t)

− sin(π
2
t) cos(π

2
t)

)

In our case, this can be simplified, since an easy computation shows that, if we denote

by w1 the element as above associated to u1 ⊗ e00 + (1− e00), then:

wp =

(
χU ⊗ e00 0

0 χU ⊗ e00

)
w1 +

(
1− χU ⊗ e00 0

0 1− χU ⊗ e00

)
and therefore, since χU and χUc are orthogonal central projections:

[wp

(
1 0

0 0

)
w∗p]0 − [

(
1 0

0 0

)
]0 = [

(
χU ⊗ e00 0

0 χU ⊗ e00

)
w1

(
1 0

0 0

)
w∗1]0 − [

(
χU ⊗ e00 0

0 0

)
]0.
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On the other hand, we will apply the definition of the index as given in [53, Definition

9.1]. We first compute δ′([V1]1). There exists µ1 ∈ U2r(S̃T ) such that Sj(µ1) =
(
V1 0

0 V ∗
1

)
.

We then have δ′([V1]1) = [µ1

(
1r 0

0 0

)
µ∗1]0− [

(
1r 0

0 0

)
]0. Indeed, it will be important to make

a special choice of µ1. First we take µ ∈ U2r( ˜STC(T),id) such that SjC(T)(µ) =
(
V 0

0 V ∗

)
.

Note that necessarily we have µ(1) = 12r. Now we take µ1 := S̃ψ(µ). It is clear that µ1

satisfies the desired conditions. Observe that µ1(1) = 12r.

Since we already know that δ′([V1]) = δ′(λ([u1]1)) = θ([u1]1), and

θ([u1]1) = θ([u1]1) =
[
w1

(
1⊗ e00 0

0 0

)
w∗1

]
0
−
[(1⊗ e00 0

0 0

)]
0
,

we conclude that[
w1

(
1⊗ e00 0

0 0

)
w∗1

]
0
−
[(

1⊗ e00 0

0 0

)]
0
=
[
µ1

(
1r 0

0 0

)
µ∗1

]
0
−
[(

1r 0

0 0

)]
0
. (4.7)

in K0(S̃B).

For any projection p = χU , where σ1(U) = σ2(U) = U , we have Vp = χUV1 +

χUc1r. We need to find an element in U2r( ˜STAoZ,σ2∗ ) such that its image is equal to(
Vp 0

0 V ∗
p

)
. Since U is σ1- and σ2-invariant, our choice of µ1 enables us to check that

µp = (χU ⊗ 1)µ1 + (χUc ⊗ 1)
(

1r 0

0 1r

)
is a unitary matrix over the unitization of STAoZ,σ2∗

satisfying the required conditions. Indeed, µ1 = S̃ψ(µ), and so, for t ∈ T, all the entries

of µ1(t) belong to the C∗-subalgebra of T generated by u1 ⊗ 1 and u2 ⊗ S∗ (where here

S is the unilateral shift), so all these entries commute with χU ⊗ 1. Indeed, we have

that χU ⊗ 1 is a central projection in T . Using this, it is straightforward to check that

µp ∈ U2r(S̃T ) and that µp(1) = 12r.

Therefore we have

δ′([Vp]1) = [µp

(
1r 0

0 0

)
µ∗p]0 − [

(
1r 0

0 0

)
]0 =

[(χU ⊗ 1)µ1

(
1r 0

0 0

)
µ∗1 + (χUc ⊗ 1)

(
1r 0

0 0

)
]0 − [

(
1r 0

0 0

)
]0,

Note that the projections (χU ⊗ 1)µ1

(
1r 0

0 0

)
µ∗1 and (χUc ⊗ 1)

(
1r 0

0 0

)
belong to

C([0, 1],M2r(T )), but they do not belong to M2r(S̃T ) (except when U = X or U = ∅).
However their sum belongs to M2r(S̃B).

Now by (4.7) there exists p ∈ N and a matrix X ∈Mk(S̃B), where k = 2r + 2 + p, such

that
XX∗ =

(
1r 0

0 0

)
⊕ w1

(
χU ⊗ e00 0

0 0

)
w∗1 ⊕ 1p

and
X∗X = µ1

(
1r 0

0 0

)
µ∗1 ⊕

(
χU ⊗ e00 0

0 0

)
⊕ 1p.



115

Write sX(t) = X(1) = C ∈ Mk(C1T ). Then we have C∗C = CC∗ = 1r ⊕ 0⊕ 1p. Hence

we can complete C to a unitary matrix C̃ so that (1r ⊕ 0⊕ 1p)C̃ = C = C̃(1r ⊕ 0⊕ 1p)

and (0r ⊕ 1r+2 ⊕ 0p)C̃ = 0r ⊕ 1r+2 ⊕ 0p = C̃(0r ⊕ 1r+2 ⊕ 0p).

Set Y = C̃∗X. Then Y ∈ Mk(S̃B) and s(Y (t)) = Y (1) = C̃∗(1r ⊕ 0 ⊕ 1p)C = C∗C =

1r ⊕ 0 ⊕ 1p. Moreover we have Y Y ∗ = XX∗ and Y ∗Y = X∗X. Hence, by replacing X

by Y , we may assume that s(X(t)) = X(1) = 1r ⊕ 0⊕ 1p.

Now let p = χU as before, and define

Xp = (χU ⊗ 1)X + (χUc ⊗ 1)(1r ⊕ 0⊕ 1p).

Then we have sXp(t) = Xp(1) = (χU ⊗ 1)X(1) + (χUc ⊗ 1)(1r ⊕ 0 ⊕ 1p) = 1r ⊕ 0 ⊕ 1p.

Using this, it is easy to verify that Xp ∈Mk(S̃B). Moreover, we have

XpX
∗
p =

(
1r 0

0 0

)
⊕ w1

(
χU ⊗ e00 0

0 0

)
w∗1 ⊕ 1p

and
X∗pXp =

(
(χU ⊗ 1)µ1

(
1r 0

0 0

)
µ∗1 + (χUc ⊗ 1)

(
1r 0

0 0

))
⊕
(
χU ⊗ e00 0

0 0

)
⊕ 1p.

This shows that

θ([up]1) = [w1

(
χU ⊗ e00 0

0 0

)
w∗1]− [

(
χU ⊗ e00 0

0 0

)
]0 =

= [(χU ⊗ 1)µ1

(
1r 0

0 0

)
µ∗1 + (χUc ⊗ 1)

(
1r 0

0 0

)
]0 − [

(
1r 0

0 0

)
]0 =

= δ′(λ([up]1)),

as desired.

Finally, we check that K0(σ3)(γδ) = (γδ)K0(σ3). Observe that we have:

0 // B //

σ3

��

T //

σ3

��

Ao Z2 //

σ3

��

0

0 // B // T // Ao Z2 // 0,

(4.8)

where the squares are commutative, and we simply denote by σ3 all the maps induced

by σ3. By naturallity of the connecting map we get that δK0(σ3) = K1(σ3)δ.

We now show that λK1(σ3) = K1(Sσ3)λ. Let f be a σ1∗ and σ2∗-invariant function in

C(X,Z). Then we have

λ(K1(σ3)([uf ]1)) = λ([uf◦σ−1
3

]1) = [Vf◦σ−1
3

]1 = K1(Sσ3)([Vf ]1) = K1(Sσ3)(λ([uf ]1)).

This shows our claim. Now using the naturallity of the Bott map we get that θK0(σ3) =

K1(Sσ3)θ. Hence

γK1(σ3) = θ−1λK1(σ3) = θ−1K1(Sσ3)λ = K0(σ3)θ−1λ = K0(σ3)γ.
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Combining this with the equality δK0(σ3) = K1(σ3)δ we get that K0(σ3)(γδ) =

(γδ)K0(σ3), as desired.

We are now going to use the fact that δ splits. The third iteration of the Pimsner-

Voiculescu exact sequences is of the form:

K0(Ao Z2) K0(Ao Z2) K0(Ao Z3)

K1(Ao Z3) K1(Ao Z2) K1(Ao Z2)

id−K0(σ3)

id−K1(σ3)

If we study the upper row, we obtain the following exact sequence:

K0(Ao Z2)
id−K0(σ3)−→ K0(Ao Z2)→ G2 → 0

where G2 ⊆ K0(AoZ3) denotes the image of the respective map. Our goal now is to split

this exact sequence according to δ. To do that, we first need to prove that id −K0(σ3)

is well defined in both parts of this splitting.

Lemma 4.23. With the above notation , we have that for δ : K0(AoZ2)→ K1(AoZ)

as in Remark 4.21, the map (id−K0(σ3)) : γ(Imδ)→ γ(Imδ) is well defined.

Proof. Immediate from Lemma 4.22.

Now, we need to find an analogous statement for the kernel of δ, in order to prove that

the map id−K0(σ3) respects the splitting.

Lemma 4.24. With the above notation, with δ : K0(AoZ2)→ K1(AoZ) as in Remark

4.21, the map (id−K0(σ3)) : kerδ → kerδ is well defined.

Proof. Recall that δ arise from the following diagram:

K0(Ao Z) K0(Ao Z) K0(Ao Z2)

K1(Ao Z2) K1(Ao Z) K1(Ao Z)

id−K0(σ2) K0(ι)

δ

id−K1(σ2)

where A = C(X). By exactness of the diagram, ker(δ) = Im(K0(ι)). Note that K0(ι)

is induced by the natural inclusion ι : A o Z → A o Z2 . Since ισ3∗ = σ3∗ι, we get that

K0(ι)K0(σ3) = K0(σ3)K0(ι), and the result follows.
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Corollary 4.25. Given an action σ of Z3 by homeomorphisms on the Cantor set X, the

following diagram is commutative:

0

ker(δ)

K0(Ao Z2)

γ(Im(δ))

0

0

ker(δ)

K0(Ao Z2)

γ(Im(δ))

0 0

0

G0

G2

G1

0

0

0

(I)

id−K0(σ3)

id−K0(σ3)

id−K0(σ3)

ι

where A = C(X), G0, G1, G2 are the groups that make the respective rows exact, and all

the columns are split-exact.

Moreover there is a commutative square

G0
//

ι

��

H0(G(X, σ))

Φ
��

G2
// K0(Ao Z3),

(4.9)

where Φ: H0(G(X, σ)) → K0(A o Z3) is the natural map from H0 of the Deaconu-

Renault groupoid G(X, σ) to K0(A o Z3) ∼= K0(C∗(G(X, σ))), the top horizontal map

is an isomorphism and the bottom horizontal map is injective. Therefore, the canonical

map between H0(G(X, σ)) and K0(C∗(G(X, σ))) is injective.

Proof. Split-exactness of the columns is immediate after the last two lemmas, and G2 ⊆
K0(Ao Z3) is clear, by construction.

To prove G0
∼= H0(G(X, σ)), diagram chasing suffices to prove

G0
∼= K0(A)/

3∑
i=1

Im(id−K0(σi)).
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Indeed one may check that

ker(δ) = Im(K0(ι)) = K0(A)/
2∑
i=1

Im(id−K0(σi)) ∼= C(X,Z)/
2∑
i=1

Im(id− σi∗),

and so

G0
∼= K0(A)/

3∑
i=1

Im(id−K0(σi)) ∼= C(X,Z)/
3∑
i=1

Im(id− σi∗)

naturally. By [21, Theorem 6.5], H0(G(X, σ)) ∼= C(X,Z)/
3∑
i=1

Im(id − σi∗), and so we

obtain a commutative diagram

G0 = C(X,Z)/
3∑
i=1

Im(id− σi∗) //

ι

��

H0(G(X, σ))

Φ

��
G2

// K0(Ao Z3),

concluding the proof.

Theorem 4.26. Let σ be an action of Z3 by homeomorphisms on the Cantor set X.

Then the associated Deaconu-Renault groupoid G(X, σ) satisfies the HK conjecture for

K1, and the weak HK conjecture for K0.

Proof. Immediate after Corollary 4.25 and Theorem 4.18.

4.4.3 A complete description of K1(C
∗(G(X, σ)×c Zk)o Z)

Finally, we extend our previous study to the general case. This section aims to

provide the first step in the study of the HK conjecture for rank-3 Deaconu-Renault

groupoids (and higher), in the general setting.

Again, we focus on our second approach, that is, by iterations of the Pimsner-Voiculescu

exact sequences. In order to successfully investigate the iterations, it is important to

have an explicit expression of the elements of some of the K-groups arising from those se-

quences. Contrary to the previous section, the results that follow are valid for a Deaconu-

Renault groupoid of arbitrary rank.

In this document’s main technical section, we provide a complete description of the ele-

ments of K1(C∗(G(X, σ)×c Zk)o Z), as well as their images under the index map.

Before starting, we recall some important notation. Given an action α of Z on a C∗-
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algebra A, we can build the Pimsner-Voiculescu exact sequence ([51]):

K0(A) K0(A) K0(Ao Z)

K1(Ao Z) K1(A) K1(A)

id−K0(α)

δ

id−K1(α)

which is obtained by applying the six-term exact sequence of K-theory to the short exact

sequence:

0→ A⊗K→ TA,α
π→ Ao Z→ 0

Here, TA,α denotes the generalized Toeplitz algebra ([15], 5.8), which can be identified as

the subalgebra of (AoZ)⊗C∗(S) generated by the elements of the form A⊗ 1, u⊗ S∗.
Now, let X be a locally compact Hausdorff space, and let σ := (σ1, ..., σk) be an action

of Nk on X by surjective local homeomorphisms. Denote by G(X, σ) the associated

Deaconu-Renault groupoid of rank k, and let α := (α1, ..., αk) the induced action of Zk

on G(X, σ)×c Zk. We simply write α when referring to the action on C∗r (G(X, σ)×c Zk)
induced by α.

By identifying C∗r (G(X, σ)×cZk)oαZk ∼= C∗r (G(X, σ)×cZk)oαe1
Zoαe2

Zo ...oαek
Z, we

obtain k consecutive Pimsner-Voiculescu exact sequences, with the desired information

contained in the k-th one. We warn the reader that, for clarity matters, we will drop

the subindexes in the crossed product, since it will be clear which action is being used in

each case.

Before advancing further, we provide a technical lemma:

Lemma 4.27. Let X be a zero-dimensional locally compact Hausdorff space and let

σ : X → X be a surjective local homeomorphism. Let U and V be open compact subsets

of X such that σ(V ) = U . Then there exist n ≥ 1 and decompositions V =
⊔n
i=1 Vi

into mutually disjoint open compact subsets Vi such that each Vi can be decomposed as

Vi =
⊔i
j=1 Vij for mutually disjoint open compact subsets Vij, such that the following

properties hold:

1. σ|Vij is a homeomorphism from Vij onto σ(Vij) for all i, j,

2. For each i = 2, . . . , n we have σ(Vi1) = σ(Vi2) = · · · = σ(Vii).

3. U =
⊔n
i=1 σ(Vi1).

In particular, there exists an open compact subset W ⊆ V such that σ|W is injective and

σ(W ) = U .
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Proof. Since σ is a local homeomorphism, X is zero-dimensional, and V is compact,

there is a finite partition V =
⊔n
i=1 Ai of V such that σ|Ai is injective for all i. Setting

Bi := σ(Ai), we observe that U = σ(V ) =
⋃n
i=1 Bi. Now we can refine this decomposition

to a disjoint decomposition into open compact subsets U =
⊔n
r=1Cr, where

Cn = B1 ∩B2 ∩ · · · ∩Bn,

and, for 1 ≤ r ≤ n− 1,

Cr =
⊔

1≤i1<i2···<ir≤n

[
(Bi1 ∩Bi2 ∩ · · · ∩Bir) \

[ ⋃
j /∈{i1,...,ir}

(Bi1 ∩Bi2 ∩ · · · ∩Bir ∩Bj)
]]
.

Now for r = 1, . . . , n and 1 ≤ j ≤ r, set

Vrj =
⊔

1≤i1<···<ir≤n

(σ|Aij )
−1
(

(Bi1∩Bi2∩· · ·∩Bir)\
[ ⋃
j /∈{i1,...,ir}

(Bi1∩Bi2∩· · ·∩Bir ∩Bj).
])
.

Then the sets Vr =
⊔r
j=1 Vrj satisfy the required conditions.

Finally observe that W :=
⊔n
r=1 Vr1 is an open compact subset of X satisfying that σ|W

is injective and σ(W ) = U .

We now develop some basic properties of the projections and unitaries.

Lemma 4.28. Let A = C∗(G(X, σ)×c Zk). For p ∈ Zk and n ∈ Nk we have

1. Let U be an open compact subset of X, and suppose that σn|U is injective. Then
we have

[χU×{p}]0 = [χσn(U)×{n+p}]0

in K0(A).

2. Let U be an open compact subset of X. Then we have

[χU×{p}]0 = [(σn)∗(χU)n+p]0

in K0(A), where for f ∈ Cc(X,Z)+, we denote by fp the corresponding projection
in matrices over Cc(X × {p}),

Proof. (1) Suppose that σn|U is injective. Then we may consider the compact open

bisection

Z = {((x, n, σn(x)), p) : x ∈ U}.

Then we have χZχ
∗
Z = χU×{p} and χ∗ZχZ = χσn(U)×{n+p}, and we get the result.

(2) Write U =
⊔N
i=1 Ui, where σn|Ui is injective for all i. Then we have

[χU×{p}]0 =
N∑
i=1

[χUi×{p}]0 =
N∑
i=1

[χσn(Ui)×{n+p}]0 =
N∑
i=1

[(σn)∗(χUi)n+p]0 = [(σn)∗(χU)n+p]0.



121

In particular, we obtain that all the projections are represented in degree 0, because

given n ∈ Nk, every open compact subset of X can be represented as a disjoint union of

sets of the form σn(U), where U is open compact and σn|U is injective. In this way we

obtain an explicit realization of the isomorphism

K0(A) ∼= lim−→
n∈Nk

(Cc(X,Z), (σn)∗).

Now suppose that we have a compact open subset U of X such that σ1(U) = U and σ1|U
is injective. Then we have

K0(α1)([χU×{0}]0) = [χU×{e1}]0 = [χσ1(U)×{e1}]0 = [χU×{0}]0

where we have used Lemma 4.28 in the last step.

Therefore we have identified an element in ker(id − K0(α1)). For this element we can

produce a unitary in Ao Z which is the pre-image under the isomorphism

K1(Ao Z)
δ→ ker(id−K0(α1))

Let U be a compact open subset of X such that σ1(U) = U and σ1|U is injective. Set

f = χU×{0}, and let Z = Z(U) be the compact open bisection defined by

Z = {((x, e1, σ1(x)), 0) : x ∈ U}.

Then the element

uf = χZu+ χX\U×{0}

is a partial unitary in Ao Z with ufu
∗
f = u∗fuf = χX×{0}.

Lemma 4.29. With the hypothesis above we have that δ([uf ]1) = [χU ]0.

Proof. Let f = χU×{0}, and vf = (χZ ⊗ 1)v∗ ∈ TA,α1 be a preimage of uf under π. Recall

that v = u⊗ S∗ is an isometry in TA,α1 such that

v∗(a⊗ 1)v = α1(a)⊗ 1,

and π(v∗) = u. Straightforward computations, using the representation in [15, Proposi-

tion 5.8], show that vfv
∗
f = χU×{0} ⊗ 1, and v∗fvf = χU×{0} ⊗ SS∗, which means that vf

is a partial isometry in TA,α1 , and so the index map can be computed as ([53], 9.2.4):

δ([uf ]1) := [1− v∗fvf ]0 − [1− vfv∗f ]0 = [χU×{0} ⊗ (1− SS∗)]0

which is the class of χU×{0} in K0(A⊗K).
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Consider now nonzero integers ai, with i = 1, . . . , n and let {Ui : 1 ≤ i ≤ n} be pairwise

disjoint compact open subsets of X such that σ1|Ui are injective and σ1(Ui) = Ui for all

i. Note that the above hypothesis imply that σn1 |Ui are injective and σn1 (Ui) = Ui for

all i and all n ∈ N. Then the element f =
∑n

i=1 ai[χUi×{0}]0 belongs to the kernel of

id−K0(α1). For each i we consider the compact open bisection

Zi = {((x, |ai|, σ|ai|1 (x)), 0) : x ∈ Ui}.

Write ui := χZiu
|ai| for all i, and let

uf :=
n∑
i=1

ai
|ai|

ui.

Then uf is a partial unitary in AoZ such that ufu
∗
f = u∗fuf = χU×{0}, where U =

⊔n
i=1 Ui.

As before, straightforward computation proves the following lemma:

Lemma 4.30. With the hypothesis above, we have that δ([uf ]1) = f .

We now present more elements in the kernel of id−K0(α1). This is inspired by the theory

of graph C∗-algebras.

Let V1, . . . , Vn be pairwise disjoint non-empty compact open subsets of X. Suppose that

for some non-negative integers aji, with 1 ≤ i, j ≤ n, we have decompositions

Vi =
n⊔
j=1

aji⊔
k=1

V
(k)
ji ,

where V
(k)
ji are compact open subsets of X, σ1|V (k)

ji
is injective for all i.j, k and

σ1(V
(k)
ji ) = Vj, (1 ≤ i, j ≤ n, 1 ≤ k ≤ aji).

Consider the matrix A = (aji) ∈ Mn(Z+). Note that, since Vi 6= ∅ for all i, we get that

all columns of A are nonzero. We will also assume that all rows are nonzero.

Lemma 4.31. With the above notation, let x = (x1, . . . , xn)t be a column vector in Zn

such that (A− I)x = 0. Let f =
∑n

i=1 xi[χVi×{0}]0 ∈ K0(A). Then f ∈ ker(id−K0(α1)).
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Proof. We have

(id−K0(α1))(
n∑
i=1

xi[χVi×{0}]0) =
n∑
i=1

xi[χVi×{0}]0 −
n∑
i=1

xi[χVi×{e1}]0

=
n∑
i=1

xi

( n∑
j=1

aji∑
k=1

[χ
V

(k)
ji ×{0}

]0

)
−

n∑
i=1

xi[χVi×{e1}]0

=
n∑
i=1

xi

( n∑
j=1

aji∑
k=1

[χ
σ1(V

(k)
ji )×{e1}

]0

)
−

n∑
i=1

xi[χVi×{e1}]0

=
n∑
j=1

( n∑
i=1

ajixi

)
[χVj×{e1}]0 −

n∑
i=1

xi[χVi×{e1}]0 = 0.

Note that this covers the case considered before, in which A = I.

We are going to build a suitable unitary element uf , lifting for an f defined as in the

statement of the lemma. This follows the construction for graph C∗-algebras. Indeed

we are going to use the same notation as in [10]. For this, we consider a finite graph

E = (E0, E1, r, s) with E0 = {1, . . . , n} and E1 = {e(k)
ji : 1 ≤ k ≤ aji, 1 ≤ i, j ≤ n},

where s(e
(k)
ji ) = i and r(e

(k)
ji ) = j for all allowed indices i, j, k.

Let Z
(k)
ji = {((y, e1, σ1(y)), 0) : y ∈ V k

ji}. Then, as before, Z
(k)
ji is a compact open bisection

and the element u
(k)
ji := χ

Z
(k)
ji
u is a partial isometry in Ao Z such that

u
(k)
ji (u

(k)
ji )∗ = χ

V
(k)
ji ×{0}

and (u
(k)
ji )∗u

(k)
ji = χVj×{0}.

It is easy to show that the assignments v 7→ χVv×{0} and e
(k)
ji 7→ u

(k)
ji define a

∗-homomorphism ρ : C∗(E)→ Ao Z such that ρ(1) = χV×{0}, where V =
⊔n
v=1 Vv.

Now observe that x = (x1, . . . , xn)t defines an element in K1(C∗(E)) as described in [10],

and concretely we can define a unitary Ux ∈ Mh(C
∗(E)) (see below) representing this

element. We then define

uf := ρ(Ux) ∈Mh(Ao Z),

which is a partial unitary with ufu
∗
f = u∗fuf = χV ⊗ 1h.

We now recall the definition of Ux. We keep the above notation. Define

L+
x =

{
(e, i) | e ∈ E1, 1 ≤ i ≤ −xs(e)

}⋃{
(v, i) | v ∈ E0, 1 ≤ i ≤ xv

}
, and

L−x =
{

(e, i) | e ∈ E1, 1 ≤ i ≤ xs(e)

}⋃{
(v, i) | v ∈ E0, 1 ≤ i ≤ −xv

}
.

(4.10)

By [10, Lemma 3.1] and [10, Lemma 3.2], L+
x and L−x have the same number of elements

and there are bijections

[·] : L+
x −→ {1, · · · , h} and 〈·〉 : L−x −→ {1, · · · , h}
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with the property that [x, i] = 〈y, j〉 implies r(x) = r(y). Here h is the common number

of elements in L+
x and L−x .

With notation as above, define two matrices Vx and Px by

Vx =
∑

1≤i≤xw
s(e)=w

eE[w,i],〈e,i〉 +
∑

1≤i≤−xw
s(e)=w

e∗E[e,i],〈w,i〉

and

Px =
∑

1≤i≤xw

wE[w,i],[w,i] +
∑

1≤i≤−xw
s(e)=w,r(e)=v

vE[e,i],[e,i],

where E•,• denote the standard matrix units in the h×h-matrix algebra Mh(C
∗(E)) (see

[10, Definition 3.3]).

In addition, we define

Ux = Vx + (1− Px). (4.11)

The matrix Ux is invertible and U−1
x = U∗x = V ∗x + (1 − Px) (compare [10, Lemma 3.4]

and [10, Fact 3.6]).

Now set uf := π(Ux) ∈Mh(A× Z).

Lemma 4.32. With the above notation, we have that δ([uf ]1) = f .

Proof. As before, we consider the element v = u∗ ⊗ S in TA,α1 and we set

v
(k)
ji := (χ

Z
(k)
ji
⊗ 1)v∗ = u

(k)
ji ⊗ S∗.

Then replacing each occurrence of u
(k)
ji in uf by v

(k)
ji , we obtain an element vf ∈ TA,α1 .

We now compute

δ([uf ]1) = [1− v∗fvf ]0 − [1− vfv∗f ]0

=
( n∑
w=1

(
∑
v:xv>0

awvxv)[χVw×{0} ⊗ (1− SS∗)]0
)
−
( n∑
w=1

(
∑
v:xv<0

awv(−xv))[χVw×{0} ⊗ (1− SS∗)]0
)

=
n∑

w=1

xw[χVw×{0} ⊗ (1− SS∗)]0 = f.

We now consider another type of element, this time connected with a certain separated

graph. Suppose we have a set of vertices Γ =
⊔n+1
i=1 Γi. We force Γi 6= ∅ for i =

1, . . . , n, but allow Γn+1 to be empty. Now suppose that we have non-empty compact



125

open mutually disjoint open sets Zv, v ∈ Γ. Set Vi =
⊔
v∈Γi

Zv. Moreover suppose that

for each i ∈ {1, ..., n} there are decompositions

Vi =
⊔
v∈Γ

avi⊔
k=1

V
(k)
vi ,

where V
(k)
vi are compact open sets such that σ1|V (k)

vi
is injective and σ1|V (k)

vi
(V

(k)
vi ) = Zv

for all allowable values of v, i, k. Let A = (avi) ∈ MΓ×[1,n](Z+), where we denote [1, n] =

{1, . . . , n}. Let also I ∈ MΓ×[1,n](Z+) be the matrix with all entries in {0, 1} such that

in the ith column has 1’s exactly at the position that belongs to Γi, for i = 1, . . . , n.

Lemma 4.33. With the above notation, let x = (x1, . . . , xn)t ∈ Zn be a column vector

such that (A − I)x = 0 and let p ∈ Nk. Let f =
∑n

i=1 xi[χVi×{p}]0 ∈ K0(A). Then

f ∈ ker(id−K0(α1)).

Proof. We have

(id−K0(α1))(
n∑
i=1

xi[χVi×{p}]0) =
n∑
i=1

xi[χVi×{p}]0 −
n∑
i=1

xi[χVi×{p+e1}]0

=
n∑
i=1

xi

(∑
v∈Γ

avi∑
k=1

[χ
V

(k)
vi ×{p}

]0

)
−

n∑
i=1

xi[χVi×{p+e1}]0

=
n∑
i=1

xi

(∑
v∈Γ

avi∑
k=1

[χ
σ1(V

(k)
vi )×{p+e1}

]0

)
−

n∑
j=1

xj[
∑
v∈Γj

χZv×{p+e1}]0

=
∑
v∈Γ

( n∑
i=1

avixi

)
[χZv×{p+e1}]0 −

n∑
j=1

∑
v∈Γj

xj[χZv×{p+e1}]0

=
n∑
j=1

∑
v∈Γj

( n∑
i=1

avixi − xj
)

[χZv×{p+e1}]0 +
∑

v∈Γn+1

( n∑
i=1

avixi

)
[χZv×{p+e1}]0 = 0.

Our objective now is to show that the above covers indeed all the elements in ker(id −
K0(α1)).

Theorem 4.34. Let f ∈ ker(id−K0(α1)). Then there are non-empty mutually disjoint

compact open sets Zv, v ∈ Γ, where Γ =
⊔n+1
i=1 Γi is a finite set, p ∈ Nk, such that with

Vi =
⊔
v∈Γi

Zv, we have for each i ∈ {1, ..., n} a decomposition

Vi =
⊔
v∈Γ

avi⊔
k=1

V
(k)
vi ,

where V
(k)
vi are compact open sets such that σ1|V (k)

vi
is injective and σ1|V (k)

vi
(V

(k)
vi ) = Zv for

all allowable values of v, i, k. Let A = (avi) ∈ MΓ×[1,n](Z+), and let I ∈ MΓ×[1,n](Z+) be
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the matrix with all entries in {0, 1} such that in the ith column has 1’s exactly at the

positions that belong to Γi, for i = 1, . . . , n. There exists x = (x1, . . . , xn)t ∈ ker(A− I)

such that f =
∑n

i=1 xi[χVi×{p}]0.

Proof. We can write f =
∑n′

i=1 x
′
i[χV ′i×{0}]0, where x′i ∈ Z and V ′1 , . . . , V

′
n are non-empty

compact open subsets of X.

Since f ∈ ker(id−K0(α1)), we have

n′∑
i=1

x′i[(σ1)∗(χV ′i )e1 ]0 =
n′∑
i=1

x′i[χV ′i×{e1}]0.

Since K0(A) ∼= lim−→n∈Nk(Cc(X,Z), (σn)∗), we get that there is some p ∈ Nk such that

n′∑
i=1

x′i(σ
p+e1)∗(χV ′i ) =

n′∑
i=1

x′i(σ
p)∗(χV ′i ),

where now this is an identity in Cc(X,Z), and

f =
n′∑
i=1

x′i[(σ
p+e1)∗(χV ′i )p+e1 ]0 =

n′∑
i=1

x′i[(σ
p)∗(χV ′i )p]0.

Writing each (σp)∗(χV ′i ) as a Z-linear combination of characteristic functions and rearran-

ging, we can therefore write

f =
n∑
i=1

xi[χVi×{p}]0,

where xi ∈ Z, {Vi : 1 ≤ i ≤ n} are mutually orthogonal compact open subsets of X, and

n∑
i=1

xi(σ1)∗(χVi)p+e1 =
n∑
i=1

xiχVi×{p+e1}. (4.12)

We will assume that xi > 0 for i = 1, . . . , r and xi < 0 for i = r+ 1, . . . , n. Then we have

r∑
i=1

xi(σ1)∗(χVi)p+e1 +
n∑

i=r+1

(−xi)χVi×{p+e1} =
r∑
i=1

xiχVi×{p+e1} +
n∑

i=r+1

(−xi)(σ1)∗(χVi)p+e1 .

(4.13)

Using Lemma 4.27 we get decompositions

Vi =

ti⊔
j=1

Wi,j,

where Wi,j are compact open sets, σ1|Wi,j
are injective for all i, j, and there is t′i ≤ ti such

that

σ1(Vi) =

t′i⊔
j=1

σ1(Wi,j),
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and for each l = t′i + 1, . . . , ti we have σ1(Wi,l) = σ1(Wi,j) for some j ∈ {1, . . . , t′i}.
Looking at the supports of the functions in the equality (4.13), we obtain a set equality:

Y :=
r⋃
i=1

( t′i⊔
j=1

σ1(Wi,j)
)
∪
( n⊔
i=r+1

ti⊔
j=1

Wi,j

)
=
( r⊔
i=1

ti⊔
j=1

Wi,j

)
∪
( n⋃
i=r+1

( t′i⊔
j=1

σ1(Wi,j)
))
.

(4.14)

Here we need to introduce some further notation. Set

B :=
r⋃
i=1

( t′i⊔
j=1

σ1(Wi,j)
)
, C :=

n⋃
i=r+1

( t′i⊔
j=1

σ1(Wi,j)
)
.

For 1 ≤ i1 < i2 < · · · < il ≤ r, and 1 ≤ js ≤ t′is , s = 1, . . . , l, set

B(i1,j1),...,(il,jl) = (σ1(Wi1,j1)∩· · ·∩σ1(Wil,jl))\
[ ⋃

(il+1,jl+1)

σ1(Wi1,j1)∩· · ·∩σ1(Wil,jl)∩σ1(Wil+1,jl+1
)
]
,

where (il+1, jl+1) ranges on all pairs with 1 ≤ il+1 ≤ r and 1 ≤ jl+1 ≤ t′il+1
, with

il+1 /∈ {i1, . . . , il}. By Lemma 4.27, we have B =
⊔
B(i1,j1),...,(il,jl). Similarly we define

sets C(i1,j1),...,(il,jl), where now r + 1 ≤ i1 < · · · < il ≤ n and 1 ≤ js ≤ t′is for s = 1, . . . , l,

so that C =
⊔
C(i1,j1),...,(il,jl).

Now write

B0
(i1,j1),...,(il,jl)

:= B(i1,j1),...,(il,jl) \
[ n⊔
i=r+1

Vi

]
, C0

(i1,j1),...(il,jl)
= C(i1,j1),...,(il,jl) \

[ r⊔
i=1

Vi

]
.

Moreover, set, for r + 1 ≤ i ≤ n,

W 0
i,d = Wi,d \B,

and, for 1 ≤ i ≤ r,

W 0
i,d = Wi,d \ C.

Applying the formula appearing in the proof of Lemma 4.27 to the middle term of (4.14)

we get

Y =
⊔

B0
(i1,j1),...,(il,jl)

t
⊔

(B(i1,j1),...,(il,jl) ∩Wi,d) t
⊔

W 0
i,d. (4.15)

Here, in all the unions on the right, the indices (i1, j1), . . . , (il, jl) are extended over all

possible indices with 1 ≤ i1 < · · · < il ≤ r and 1 ≤ js ≤ t′is , s = 1, . . . , l. For the indices

(i, d), we have r + 1 ≤ i ≤ n and 1 ≤ d ≤ ti.

Similarly, we obtain, applying the same formula to the term appearing at the right hand

side of (4.14),

Y =
⊔

C0
(i1,j1),...,(il,jl)

t
⊔

(C(i1,j1),...,(il,jl) ∩Wi,d) t
⊔

W 0
(i,d). (4.16)
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Here, in all the unions on the right, the indices (i1, j1), . . . , (il, jl) are extended over all

possible indices with r + 1 ≤ i1 < · · · < il ≤ n and 1 ≤ js ≤ t′is , s = 1, . . . , l. For the

indices (i, d), we have 1 ≤ i ≤ r and 1 ≤ d ≤ ti.

Let 1 ≤ i1 < · · · il ≤ r and 1 ≤ js ≤ t′is for s = 1, . . . , l. Notice that for each non-

empty subset T of B(i1,j1),...,(il,jl) and each s with 1 ≤ s ≤ l, the preimage (σ1|Vis )
−1(T )

of T in Vis is the union of m(is, js) sets, where m(is, js) is the cardinality of the set of

indices j ∈ {1, . . . , tis} such that σ1(Wis,j) = σ1(Wis,js). Moreover, we have σ1(Z) = T

for each of these m(is, js) sets. In addition, we have that (σ1|Vi)−1(T ) = ∅ for i ∈
{1, . . . , r} \ {i1, . . . , il}.
A similar observation holds for the non-empty subsets of C(i1,j1),...,(il,jl), where now r+1 ≤
i1 < · · · < il ≤ n.

We can use a lighter notation, and set, using (4.15) and (4.16),

Y =
⊔
α

B0
α t

⊔
β

n⊔
i=r+1

ti⊔
j=1

(Bβ ∩Wi,d) t
n⊔

i=r+1

ti⊔
j=1

W 0
i,d,

where B0
α, Bβ are subsets of B satisfying the above conditions for suitable subsets of

{1, . . . , r}, and B0
α ∩ (tni=r+1Vi) = ∅. Similarly, we write

Y =
⊔
γ

C0
γ t
⊔
δ

r⊔
i=1

ti⊔
j=1

(Cδ ∩Wi,d) t
r⊔
i=1

ti⊔
j=1

W 0
i,d,

where C0
γ , Cδ are subsets of C satisfying the above conditions for suitable subsets of

{r + 1, . . . , n}, and C0
γ ∩ (tri=1Vi) = ∅.

We now refine these two decompositions of Y . Observe that for each i, d with r+1 ≤ i ≤ n

we have

Wi,d ⊆
⊔
γ

C0
γ .

Similarly, for each i, d with 1 ≤ i ≤ r we have

Wi,d ⊆
⊔
α

B0
α.

We thus obtain

Y =
⊔
α,γ

B0
α∩C0

γt
r⊔
i=1

⊔
α,d

B0
α∩W 0

i,dt
r⊔
i=1

⊔
α,γ,,d

B0
α∩Cδ∩Wi,dt

n⊔
i=r+1

⊔
γ,β,d

C0
γ∩Bβ∩Wi,dt

n⊔
i=r+1

⊔
γ,d

C0
γ∩W 0

i,d.

We are now ready to define the set Γ =
⊔n+1
i=1 Γi. Let Γn+1 be the set of all the non-

empty sets B0
α ∩ C0

γ , for all values of α and β. For i = 1, . . . , r let Γi be the set of all

the non-empty sets of the forms B0
α ∩W 0

i,d and B0
α ∩ Cδ ∩Wi,d, for all possible values of
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α, δ, d. Finally, for i = r + 1, . . . , n, let Γi be the set of all the non-empty sets of the

forms C0
γ ∩W 0

i,d and C0
γ ∩Bβ ∩Wi,d, for all possible values of β, γ, d. For each v ∈ Γ, we

set Zv = v, to keep in line with the notation previously introduced.

Finally we define the matrix A = (avi). For each i = 1, . . . , n and v ∈ Γ, there is

avi ∈ Z+ such that Vi contains exactly avi mutually disjoint subsets, all of them having

the property that the restriction of σ1 to them is injective and that its image under σ1 is

exactly Zv. Note that for v of the form B0
α ∩W 0

i,d, one has avi = 0 for i = r + 1, . . . , n,

and that, for v of the form C0
γ ∩W 0

i,d, one has avi = 0 for i = 1, . . . , r.

We therefore have subsets V
(k)
vi for each v ∈ Γ, 1 ≤ i ≤ n and 1 ≤ k ≤ avi such that

Vi =
⊔
v∈Γ

avi⊔
k=1

V
(k)
vi .

Observe that we have, for i = 1, . . . , r and 1 ≤ d ≤ ti, that

Wi,d =
⊔
γ,β

C0
γ ∩Bβ ∩Wi,d t

⊔
γ

C0
γ ∩W 0

i,d,

so that we obtain Vi =
⊔
v∈Γi

Zv. Similarly we get that Vi =
⊔
v∈Γi

Zv for i = r+ 1, . . . , n.

There is an extra term (possibly empty), disjoint to all the Vi’s with i = 1, . . . , n, which

is Vn+1 :=
⊔
α,γ B

0
α ∩ C0

γ =
⊔
v∈Γn+1

Zv.

Now observe that equation (4.12) gives us∑
v∈Γ

(
n∑
i=1

avixi)χZv =
n∑
i=1

∑
v∈Γi

xiχZv .

Since Zv are mutually disjoint and non-empty, we get that (A − I)x = 0 and so∑n
i=1 xiχVi×{p} is of the desired form.

We now observe that the formula for the unitaries in K1(C∗(E)) can be generalized to

separated graphs.

Let (E,C) be a finitely separated graph. Following [3], we define the map:

A : Z(C) → Z(E0)

by A(δX) =
∑

w∈E0 aX(v, w)δw, where X ∈ Cv. We also define the map

I : Z(C) → Z(E0)

by I(δX) = δv for X ∈ Cv.
It will be useful in the sequel to use the notation s(X) = v for X ∈ Cv. Now recall from

[3, Theorem 5.2] that

K1(C∗(E,C)) ∼= ker
(

(I − A) : Z(C) → Z(E0)
)
.
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We are going to find an explicit formula for the isomorphism

χ : ker
(

(I − A) : Z(C) → Z(E0)
)
→ K1(C∗(E,C)).

Let x = (xX)X∈C ∈ ker(I − A) ⊆ Z(C). Then we set:

L+
x = {(X, i) | 1 ≤ i ≤ xX} ∩ {(e, i) | e ∈ X, 1 ≤ i ≤ −xX},

L−x = {(X, i) | 1 ≤ i ≤ −xX} ∪ {(e, i) | e ∈ X, 1 ≤ i ≤ xX}.

Note that the condition that x ∈ ker(I − A) translates into the equations:∑
X∈Cw

xX =
∑
Y ∈C

aY (v, w)xY , (w ∈ E0).

Therefore we get |L+
x (w)| = |L−x (w)| for all w ∈ E0, where

L+
x (w) = {(X, i) : X ∈ Cw, 1 ≤ i ≤ xX} ∪ {(e, i) : e ∈ Y, r(e) = w, 1 ≤ i ≤ −xY },

and similarly

L−x (w) = {(X, i) : X ∈ Cw, 1 ≤ i ≤ −xX} ∪ {(e, i) : e ∈ Y, r(e) = w, 1 ≤ i ≤ xY }.

In particular we get |L+
x | = |L−x | and we fix bijections

[ ] : L+
x → {1, . . . , h} and 〈 〉 : L−x → {1, . . . , h}

such that [L+
x (w)] = 〈L−x (w)〉 for all w ∈ E0.

We now consider:

Vx =
∑

1≤i≤xX ,e∈X

eE[X,i],〈e,i〉 +
∑

1≤i≤−xX ,e∈X

e∗E[e,i],〈X,i〉.

Then we have VxV
∗
x = Px = V ∗x Vx, where

Px =
∑

X:xX>0

∑
1≤i≤xX

s(X)E[X,i],[X,i] +
∑

X:xX<0

∑
1≤i≤−xX

r(e)E[e,i],[e,i].

In this way, we obtain that the map χ is defined by χ(x) = Ux := Vx + (1 − Px) for all

x ∈ ker(I − A).

We are going to relate this with our previous situation. Let f ∈ ker(id −K0(α1)). By

Theorem 4.34 there are non-empty mutually disjoint compact open sets Zv, v ∈ Γ, where

Γ =
⊔n+1
i=1 Γi is a finite set, p ∈ Nk, such that with Vi =

⊔
v∈Γi

Zv, and we have for each i

a decomposition

Vi =
⊔
v∈Γ

avi⊔
k=1

V
(k)
vi ,
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where V
(k)
vi are compact open sets such that σ1|V (k)

vi
is injective and σ1|V (k)

vi
(V

(k)
vi ) = Zv for

all allowable values of v, i, k.

Let A = (avi) ∈ MΓ×[1,n](Z+), and let I ∈ MΓ×[1,n](Z+) be the matrix with all entries in

{0, 1} such that in the ith column has 1’s exactly at the positions that belong to Γi, for

i = 1, . . . , n. There exists x = (x1, . . . , xn)t ∈ ker(A− I) such that f =
∑n

i=1 xi[χVi×{p}].

We define a separated graph (E,C) which locally reflects the above situation. This will

be a bipartite separated graph, with a partition E0 = E0,0 t E0,1 such that all arrows

from E go from E0,0 to E0,1. Set E0,0 = {v1, . . . , vn} and E0,1 = Γ. For each vi ∈ E0,0 we

have Cvi = {Xi, Yi}, where |Xi| = |Γi| and there is an arrow evi in Xi from vi to v ∈ Γi for

each v ∈ Γi. On the other hand, there are exactly avi arrows, denoted f
(k)
vi , 1 ≤ k ≤ avi,

in Yi from vi to v, for each v ∈ Γ. In this way, we obtain a bipartite separated graph

(E,C).

The proof of the following lemma is straightforward.

Lemma 4.35. With the above notation, we have a group isomorphism

ker(I − A) ∼= ker(I(E,C) − A(E,C)).

This isomorphism sends an element x = (x1, . . . , xn) ∈ ker(I − A) to the element∑n
i=1 xi(δYi − δXi) ∈ ker(I(E,C) − A(E,C)).

We now define a homomorphism ρ : pC∗(E,C)p → A o Z, where p =
∑

v∈Γ v is a full

projection in C∗(E,C). We first obtain a presentation of the algebra pC∗(E,C)p. We

have Xi = {evi : v ∈ Γi} and Yi = {f (k)
wi : w ∈ Γ, 1 ≤ i ≤ awi}. Now for v ∈ Γi, w ∈ Γ

and 1 ≤ k ≤ awi, set

g(k)
vw := e∗vif

(k)
wi ∈ pC∗(E,C)p.

Then pC∗(E,C)p is generated by the elements g
(k)
vw with the relations:∑

w∈Γ

awi∑
k=1

g(k)
vw (g(k)

vw )∗ = v (v ∈ Γi). (4.17)

∑
v∈Γi

(g(k)
vw )∗g(k)

vw = w, (w ∈ Γ, 1 ≤ k ≤ awi). (4.18)

Using this we can define a suitable representation. For v ∈ Γi, w ∈ Γ and 1 ≤ k ≤ awi,

we set

Z(k)
vw = {((y, e1, σ1(y)), p) : y ∈ V (k)

wi ∩ Zv}.

and u
(k)
vw = χ

Z
(k)
vw
u ∈ Ao Z. Then we have

u(k)
vw(u(k)

vw)∗ = χ
Zv∩V (k)

wi ×{p}
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and

(u(k)
vw)∗u(k)

vw = χ
σ1(Zv∩V (k)

wi )×{p}.

Consequently we get ∑
w∈Γ

awi∑
k=1

u(k)
vw(u(k)

vw)∗ = χZv×{p}, (v ∈ Γi)

and ∑
v∈Γi

(u(k)
vw)∗u(k)

vw = χZw×{p}, (w ∈ Γ, 1 ≤ k ≤ awi).

By (4.17) and (4.18), we get a unique ∗-homomorphism ρ : pC∗(E,C)p→ AoZ defined

by

ρ(w) = χZw×{p}, ρ(g(k)
vw ) = u(k)

vw

for each v ∈ Γi, w ∈ Γ and 1 ≤ k ≤ awi.

Let q =
∑

v∈∪ni=1Γi
v. Then q ≤ p and we have an isomorphism

ψ : C∗(E,C)→

(
q 0

0 p

)
M2(pC∗(E,C)p)

(
q 0

0 p

)
given by

ψ(a) =

(
e∗ae e∗ap

pae pap

)
,

where e =
∑n

i=1

∑
v∈Γi

evi. It follows that we have a homomorphism

ξ : C∗(E,C)→

(
ρ(q) 0

0 ρ(p)

)
M2(Ao Z)

(
ρ(q) 0

0 ρ(p)

)
obtained by composing ψ with the extension to matrices of ρ. Using this morphism, we

will define the unitary uf as the image of the canonical unitary constructed before in

matrices over C∗(E,C). So let f =
∑n

i=1 xiχVi×{p} as in Proposition 4.34, and keep all

the notation above.

Since x ∈ ker(I − A), by Lemma 4.35 we get the element a =
∑n

i=1 xi(δYi − δXi) ∈
ker(I(E,C) − A(E,C)). Let [ ] : L+

a → {1, . . . , h} and 〈 〉 : L−a → {1, . . . , h} be bijections

satisfying the conditions above.

We get

Va =
∑

1≤i≤−xl

∑
v∈Γl

evlE[Xl,i],〈evl,i〉 +
∑

1≤i≤xl

∑
v∈Γl

e∗vlE[evl,i],〈Xl,i〉

+
∑

1≤i≤xl

∑
w∈Γ,1≤k≤awl

f
(k)
wl E[Yl,i],〈f

(k)
wl ,i〉

+
∑

1≤i≤−xl

∑
w∈Γ,1≤k≤awl

(f
(k)
wl )∗E

[f
(k)
wl ,i],〈Yl,i〉
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Then Ua = Va + (1− Pa) is a unitary element in Mh(C
∗(E,C)). Applying

ξ : Mh(C
∗(E,C))→Mh(M2(Ao Z)) ∼= M2(Mh(Ao Z)),

we obtain

uf =

(
0
∑

1≤i≤−xl

∑
v∈Γl

χZv×{p}E[Xl,i],〈evl,i〉

0 0

)
+

(
0 0∑

1≤i≤xl

∑
v∈Γl

χZv×{p}E[evl,i],〈Xl,i〉 0

)

+

(
0
∑

1≤i≤xl

∑
w∈Γ,1≤k≤awl(

∑
v∈Γl

u
(k)
vw)E

[Yl,i],〈f
(k)
wl ,i〉

0 0

)

+

(
0 0∑

1≤i≤−xl

∑
w∈Γ,1≤k≤awl(

∑
v∈Γl

(u
(k)
vw)∗)E

[f
(k)
wl ,i],〈Yl,i〉

0

)
+ ξ(1− Pa)

This is a partial unitary in M2h(AoZ) and thus it defines an element [uf ] ∈ K1(AoZ).

Write

B
(k)
wi = {((y, e1, σ1(y)), p) : y ∈ V (k)

wi }.

Then B
(k)
wi are bisections and we may consider u

(k)
wi = χ

B
(k)
wi
u ∈ A o Z. Note that

u
(k)
wi (u

(k)
wi )
∗ = χ

V
(k)
wi ×{p}

and (u
(k)
wi )
∗u

(k)
wi = χZw×{p}. Moreover

∑
v∈Γl

u
(k)
vw = u

(k)
wl , so that

we can simplify the above formula for uf as follows:

uf =

(
0
∑

1≤i≤−xl

∑
v∈Γl

χZv×{p}E[Xl,i],〈evl,i〉

0 0

)
+

(
0 0∑

1≤i≤xl

∑
v∈Γl

χZv×{p}E[evl,i],〈Xl,i〉 0

)

+

(
0
∑

1≤i≤xl

∑
w∈Γ,1≤k≤awl u

(k)
wl E[Yl,i],〈f

(k)
wl ,i〉

0 0

)

+

(
0 0∑

1≤i≤−xl

∑
w∈Γ,1≤k≤awl(u

(k)
wl )
∗E

[f
(k)
wl ,i],〈Yl,i〉

0

)
+ ξ(1− Pa)

We can now show the desired property of uf .

Lemma 4.36. With the above notation, we have that δ([uf ]1) = f .

Proof. As before, we consider the element v = u∗ ⊗ S in TA,α1 and we set

v
(k)
wi := (χ

B
(k)
wi
⊗ 1)v∗ = u

(k)
wi ⊗ S∗.

Then replacing each occurrence of u
(k)
wl in uf by v

(k)
wl , we obtain an element vf ∈ TA,α1 .
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We now compute

δ([uf ]1) = [1− v∗fvf ]0 − [1− vfv∗f ]0

=
(∑
w∈Γ

(
∑
l:xl>0

awlxl)[χZw×{p} ⊗ (1− SS∗)]0
)
−
(∑
w∈Γ

(
∑
l:xl<0

awl(−xl))[χZw×{p} ⊗ (1− SS∗)]0
)

=
∑
w∈Γ

(
n∑
l=1

awlxl)[χZw×{p} ⊗ (1− SS∗)]0

=
n∑
i=1

xi(
∑
w∈Γi

[χZw×{p} ⊗ (1− SS∗)]0)

=
n∑
i=1

xi[χVi×{p} ⊗ (1− SS∗)]0 = f.
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Chapter 5

Self-similar groups and their groupoids
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Self-similarity is a type of symmetry appearing in fractal geometry and dynamics.

Self-similar structures first appeared in early eighties, when they were used to build

a group which is neither of polynomial nor of exponential growth (see [25]). To some

extent, an object is said to be self-similar if its structure repeats at all scales. A natural

way to study a self-similar space is to encode it as the algebra associated to a certain

groupoid of germs, as in [20]. In the last decades, their exotic nature has drawn the

attention of researchers from many different areas. Indeed, very simple self-similar

constructions could generate complicated structures with uncommon properties, hard

to find with more standard approaches. In this line, new counterexamples to Matui’s

HK conjecture were expected to appear encoded as self-similar objects. This chapter is

structured as follows:

Section 5.1 provides the basic facts and notions regarding self-similarity, as well as

the groupoids associated to self-similar groups. The self-similar infinite dihedral group, as

well as its associated groupoid of germs, is displayed as the main example of this chapter.

In Section 5.2 we analyze the C∗-algebra associated to the groupoid arising from

the self-similar infinite dihedral group, as well as its K-theory. To do so, we build a

suitable crossed product stably isomorphic to the initial C∗-algebra. This approach

was developed by Nekrashevych in [42], where a more detailed account can be found.

The section ends with the computation of the K-theory invariants for the mentioned

C∗-algebra.

Section 5.3 displays a standard strategy for the computation of the homology

of a groupoid associated to a self-similar group. The results are then applied to the

particular case of the self-similar infinite dihedral groupoid.

Immediate consequences of the first two sections regarding the HK conjecture are

shown in Section 5.4. There, we display the self-similar infinite dihedral groupoid as the

first complete counterexample to both HK and weak HK conjectures, in contrast with

the one found by Scarparo in [56]. Another minor counterexample will also be shown

here. The chapter ends with a discussion on Matui’s AH conjecture.
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5.1 Self-similar groups (Γ, X)

The section begins stating the basic notions and notation that will be used

throughout the chapter. The reader can find further details about self-similarity in [41],

and about its associated C∗-algebras in [42].

Definition 5.1. Let X be a finite alphabet, and let X∗ be the set of finite words over

X. A self-similar group action (Γ, X) is a faithful action of a group Γ over X∗ such

that for every g ∈ Γ and every x ∈ X, there exist h ∈ Γ and y ∈ X such that

g(xw) = yh(w),

for every w ∈ X∗.

It is clear that, given g ∈ Γ, x ∈ X, the element y is unique. Moreover, the faithful

condition implies that h is also unique.

From now on, we will denote h := g|x, and then we will just write

g · x = y · g|x,

In general, for every g ∈ Γ, and every finite word v ∈ X∗, there exists a unique element

g|v ∈ Γ, and a unique z ∈ X |v| such that

g(vw) = zg|v(w).

The word z will be denoted as g(v), and the element g|v will be called the restriction

of g at v. In particular, for every g, g1, g2 ∈ Γ and every v, v1, v2 ∈ X∗ we have that:

1. g|v1v2 = (g|v1)|v2

2. (g1g2)|v = g1|g2(v)g2|v

In the literature, self-similar group actions usually appear simply as self-similar groups.

We will also stick to that nomenclature.

The following properties will play a notorious role throughout this chapter.

Definition 5.2. Let (Γ, X) be a self-similar group.

1. (Γ, X) is pseudo-free if, whenever g · x = x · e for some g ∈ Γ and x ∈ X, then
g = e.

2. (Γ, X) is contractive if there is a finite set N ⊂ Γ such that for every g ∈ Γ, there
exists n ∈ N such that g|v ∈ N , for all v ∈ X∗ of length greater or equal that n.

3. (Γ, X) is self-replicant or recurrent if, for any x, y ∈ X, there exists g ∈ Γ such
that g · x = y · e.
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We now introduce the self-similar infinite dihedral group, which will be our main example

throughout this chapter.

Example 5.3. Let D∞ be the infinite dihedral group, that is

D∞ := 〈a, b : a2 = b2 = e〉,

and let X = {0, 1}. It was shown in [24, Example 4] that the group (D∞, X) is a

self-similar group with relations

a · 0 = 1 · e, a · 1 = 0 · e, b · 0 = 0 · a b · 1 = 1 · b .

As it will be shown later, this simple example provides a groupoid with structure rich

enough to contradict Matui’s HK conjecture.

Proposition 5.4. The self-similar infinite dihedral group (D∞, X) is pseudo-free. More-

over, (D∞, X) is contractive with N = {e, a, b}.

Proof. We begin with the first statement.

By definition, we need to prove that whenever g · x = x · e, with x ∈ X, then g = e.

Take g ∈ D∞. Then g is of one of the following forms: (ab)na, (ab)n, (ba)nb, or (ba)n,

with n ≥ 0. The reader may check that:

(ab) · 0 = 1 · a, and (ab) · 1 = 0 · b.

Therefore

(ab)2n · 0 = 0 · (ba)n, (ab)2n · 1 = 1 · (ab)n,

for the even exponents, and

(ab)2n+1 · 0 = 1 · a(ba)n, (ab)2n+1 · 1 = 0 · b(ab)n,

for the odd ones.

This shows that whenever g is of the form (ab)n, g · x = x · e implies g = e.

If g = (ab)na, we have:

(ab)2na · 0 = 1 · (ab)n, (ab)2na · 1 = 0 · (ba)n,

(ab)2n+1a · 0 = 0 · b(ab)n, (ab)2n+1a · 1 = 1 · a(ba)n

so then again, we have that g · x = x · e implies g = e, whenever g = (ab)na.

The two remaining choices, g = (ba)n and g = (ba)nb, are left to the reader.

We now prove that (D∞, X) is contractive with N = {e, a, b}.
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As noted before, the elements of D∞ are of the form (ab)n, (ab)na, (ba)nb, or (ba)n, with

n ≥ 0. The proof is analogous for every case; we check here the statement for the first

one.

Let g ∈ D∞ be of the form (ab)n. Then we claim that, for every word v of length greater

or equal than n, (ab)n|v ∈ N . We use an induction argument:

If n = 1, then (ab) · 1 = 0 · b, and (ab) · 0 = 1 · a. Since for any word z of arbitrary length

we have that a|z, b|z ∈ N , the condition holds. Suppose now that the statement is true

for n, and let us prove it for n + 1. First, note that for every word w of length n + 1,

(ab)|w = e whenever w 6= 1n+1, 1n0. Therefore, for every w 6= 1n+1, 1n0:

(ab)n+1w = (ab)n(ab)w = (ab)nw′e,

where w′ = (ab)(w). By induction, (ab)n+1|w ∈ N .

Now suppose that w = 1n+1, and we have:

(ab)n+1 · 1n+1 = (ab)n(ab) · 1n+1 = (ab)n · 01n · b

By the induction hypothesis, (ab)n|01n−1 ∈ N , and so we have that (ab)n+1 ·1n+1 is of one

of the following forms:

w′e · 1 · b = w′1 · b,
w′a · 1 · b = w′0 · b, or

w′b · 1 · b = w′1 · e.

Thus the statement holds.

On the other hand, if w = 1n0, we have:

(ab)n+1 · 1n0 = (ab)n(ab) · 1n0 = (ab)n · 01n−10a.

As before, by the induction hypothesis we have that (ab)n|01n−1 ∈ N , and then (ab)n+1·1n0

is of the form:

w′e · 0 · a = w′0 · a,

w′a · 0 · a = w′1 · a, or

w′b · 0 · a = w′0 · e.

Since a|z, b|z ∈ N for any given word z, we conclude that for any word wz of length

greater or equal than n+ 1, (ab)n|wz ∈ N , as desired.

The three remaining choices, g = (ab)na, g = (ba)n and g = (ba)nb, are left to the

reader.

Finally, it is shown that the self-similar infinite dihedral group verifies a strong version

of recurrence.
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Proposition 5.5. Let (D∞, X) be the self-similar infinite dihedral group. Then, for any

n ∈ N and any α, β ∈ Xn, there exists g ∈ D∞ such that g · α = β · e. In particular,

(D∞, X) is recurrent.

Proof. Let us first show that, given x, y ∈ {0, 1}, there exist gx,y, hx,y ∈ D∞ such that:

gx,y · x = y · a,

hx,y · x = y · b

The reader may check that:

g0,0 = b, g0,1 = ab, g1,0 = ba, g1,1 = aba

h0,0 = aba, h0,1 = ba, h1,0 = ab, h1,1 = b

Since a, b generate D∞, we deduce that, for any x, y ∈ X and any h ∈ D∞, there exists

g ∈ D∞ such that g · x = y · h.

We now proceed by induction over n = |α| = |β|.
If n = 1, then α, β ∈ X, and then:

gβ,βgα,β · α = gβ,β · β · a = β · a2 = β · e,

as desired. Note that this result already implies that (D∞, X) is recurrent. Suppose now

that the property is true for all words of length n, and consider α = x1x2...xn+1, and

β = y1y2...yn+1. Let δ ∈ D∞ be the element such that δ ·x2x3...xn+1 = y2y3...yn+1 · e, and

let γ ∈ D∞ such that γ · x1 = y1 · δ (which exists by the first part of the proof). Then

γ · x1x2...xn+1 = y1 · δ · x2x3...xn+1 = y1y2...yn+1 · e, concluding the proof.

In a similar fashion that it is done for groups and groupoids, we can associate a C∗-

algebra to any self-similar group. The following definition was introduced in [42]; we

recall it here for a matter of completeness:

Definition 5.6. The (universal) Cuntz-Pimsner algebra C∗(Γ, X) associated to

a self-similar group (Γ, X) is the universal C∗-algebra generated by a set of unitaries

{Ug}g∈Γ and isometries {Sx}x∈X satisfying the following relations:

1. The map g 7→ Ug is a unitary representation (that is, Ug is a unitary element for
every g ∈ Γ, UgUh = Ugh, and Ue = 1.)

2.
∑
x∈X
SxS∗x = 1, and S∗xSx = 1 for every x ∈ X.

3. For all g ∈ Γ and x ∈ X, whenever g · x = y · g|x we have that

UgSx = SyUg|x
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With the basic notions about self-similarity already set up, we can now introduce the

groupoid associated to a self-similar group.

5.1.1 Groupoid associated to a self-similar group.

In this part, we associate a groupoid of germs (see definition 2.29) to any self-

similar group (Γ, X). This technique can be found, for example, in [20].

Define X∞ to be the set of infinite words over the alphabet X, and associate to it the

topology given by the cylinders:

Z(α) := {αx : x ∈ X∞},

where α is any finite word in X∗. Notice that, with this topology, X∞ is homeomorphic

to the Cantor set, whenever |X| ≥ 2.

We define the natural action of Γ on X∞ given by:

g · x1x2x3... = y1y2y3...

with gn · xn = yn · gn+1, where we define g1 := g, and gn+1 := (gn)|xn .

Then, for each (α, g, β) ∈ Xn × Γ×Xm with n,m ∈ N, there exists a homeomorphism

S(α,g,β) : Z(β)→ Z(α)

βx 7→ αg · x

The set 〈Γ, X〉 = {S(α,g,β) : α, β ∈ X∗, g ∈ Γ}∪{0} defines an inverse semigroup of partial

homeomorphisms on X∞ (i.e., homeomorphisms between cylindrical subsets), with the

product given by the composition, that is:

S(α1,g1,β1)S(α2,g2,β2) =


S(α1,g1g2,β2) if β1 = α2

S(α1g1(γ),g1|γg2,β2) if α2 = β1γ

S(α1,g1g2|g−1
2 (µ)

,β2g
−1
2 (µ)) if β1 = α2µ

Indeed, if α2 = β1γ for some γ ∈ X∗, then S(α1,g2,β1)S(α2,g2,β2)(β2x) = S(α1,g2,β1)(β1γg2x) =

α1g1γg2x = α1g1(γ)g1|γg2x.

The last row can be checked in a similar way.

Definition 5.7. Given a self-similar group (Γ, X), we define the associated self-similar

groupoid G(Γ,X) as the groupoid of germs of 〈Γ, X〉.

G(Γ,X) = {[S(α,g,β); βx] : α, β ∈ X∗, g ∈ Γ, x ∈ X∞},

where [S(α,g,β); βx] = [S(α′,g′,β′); β
′x′] if and only if βx = β′x′ and there exists a neighbor-

hood U of βx such that S(α,g,β)(y) = S(α′,g′,β′)(y) for all y ∈ U .

The unit space is given by:
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G(0)
(Γ,X) = {[S(∅,e,∅);x] : x ∈ X∞}.

The groupoid structure maps are of the form:

r([S(α,g,β); βx]) = [S(β,e,β); βx] = [S(∅,e,∅); βx],

s([S(α,g,β); βx]) = [S(α,e,α);αg · x] = [S(∅,e,∅);αg · x],

[S(α′,g′,β′); β
′x′] · [S(α,g,β); βx] = [S(α′,g′g,β); βx]

whenever β′x′ = αg · x. The inverse is given by

[S(α,g,β); βx]−1 = [S(β,g−1,α);αg · x]

The topology of G(Γ,X) consists of open sets of the form:

Z(α, g, β;U) := {[S(α,g,β);x] : x ∈ U},

with U an open subset of Z(β), α, β ∈ X∗, and g ∈ Γ.

With this topology, we have that G(Γ,X) is a locally compact, effective, ample and locally

contractive (in the sense of [20, Section 17]). Moreover, if (Γ, X) is recurrent, then G(Γ,X)

is minimal [20, Section 17].

It is shown in ([20, Propositions 8.6, 12.1]) that, whenever (Γ, X) is pseudo-free, the

groupoid G(Γ,X) is Hausdorff, and we have

[S(α,g,β); βx] = [S(α,g′,β); βx]

if and only if g = g′.

From now on, we will identify G(0)
(Γ,X) with X∞ through the map [S(∅,e,∅);x] 7→ x. We will

also denote the elements [S(α,g,β); βx] simply as [α, g, β; βx].

Remark 5.8. Notice that, following the definition of G(Γ,X), we have that:

[α, γ, β1; β1β2x] = [αγ · β2, γ|β2 , β1β2; β1β2x].

This gives us an easy way to enlarge the words defining a representative of an equivalence

class. This fact will be used in later sections.

Let us finish this section relating the Cuntz-Pimsner C∗-algebra associated to a self-

similar group (Γ, X), with the full C∗-algebra associated to its groupoid of germs. This

relation was described in [42]; we provide here a sketch of the proof, for a matter of

completeness.

Theorem 5.9. Let (Γ, X) be a self-similar group. Then the C∗-algebra C∗(Γ, X) is

isomorphic to the full convolution C∗-algebra of G(Γ,X).
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Proof. For every α, β ∈ X∗, g ∈ Γ, consider the set of all germs of S(α,g,β), that is, the

cylinder Z(α, g, β;Z(β)) := [α, g, β;Z(β)]. This is a compact, open Hausdorff subset of

G(Γ,X), and such sets cover the groupoid. We deduce that every element of Cc(G(Γ,X)) is

a finite sum of continuous complex valued functions fi with supp(fi) ⊆ Z(α, g, β;Z(β)),

that is:

Cc(G(Γ,X)) =
∑

S(α,g,β)∈〈Γ,X〉
C(Z(α, g, β;Z(β))),

where C(Z(α, g, β;Z(β))) denotes the algebra of continuous complex valued functions

over the cylinder Z(α, g, β;Z(β)).

Let α = x1x2...xn ∈ Xn, and define the elements Sα := Sx1Sx2 ...Sxn ∈ C∗(Γ, X), and

S∗α := (Sα)∗. Then the map

F : C∗(Γ, X)→ C∗(G(Γ,X))

SαUgS∗β 7→ 1Z(α,g,β;Z(β))

is an isomorphism [42, Theorem 5.1].

It was proven in [42, Theorem 5.6] that, if (Γ, X) is a contractive recurrent group such

that G(Γ,X) is Hausdorff, then G(Γ,X) is an amenable group. In particular,

C∗r (G(Γ,X)) ∼= C∗(Γ, X).
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5.2 K-theory of a groupoid associated to a
self-similar group

We are interested in Matui’s HK conjecture for the self-similar group (D∞, X)

defined before. To this end, we will use the techniques developed by Nekrashevych in [42],

where he computed the K-theory of the C∗-algebra associated to a pseudo-free, recurrent

and contractive self-similar groupoid as the K-theory of a certain crossed product C∗-

algebra.

5.2.1 Nekrashevych’s approach via crossed products

We begin this section defining a gauge action on the Cuntz-Pimsner C∗-algebra

C∗(Γ, X) associated to a self-similar group. This action will be used later in order to

compute the K-theory of C∗(Γ, X).

Definition 5.10. Let (Γ, X) be a self-similar group, and denote C∗(Γ, X) its associated

Cuntz-Pimsner algebra. Then, for each z ∈ T, we define

z · (Ug) = Ug, and

z · (Sx) = zSx,

for all g ∈ Γ, and all x ∈ X. One can notice that this extends to an automorphism

of C∗(Γ, X), and defines an action of T on C∗(Γ, X) [42]. This is called the gauge

action.

Now, given a self-similar group (Γ, X), consider the universal C∗-algebra MΓ generated

by elements of the form SvUgS∗u, with g ∈ Γ and v, u ∈ X∗ such that |v| = |u|, together

with the relations given by:

1. g 7→ Ug is a unitary representation.

2. SvUgS∗u =
∑
x∈X
Svg(x)Ug|xS∗ux, and

3. For |u1| = |v2|, we have Sv1Ug1S∗u1
Sv2Ug2S∗u2

= Sv1Ug1g2S∗u2
, whenever u1 = v2, and

0 otherwise.

Since the above relations are satisfied in C∗(Γ, X), we deduce that the gauge-invariant

sub-algebra of C∗(Γ, X) is a quotient of MΓ. In fact, it was shown in [42, Theorem 3.7]

that the gauge-invariant sub-algebra of C∗(Γ, X) is isomorphic to MΓ.

From definition of MΓ, it follows that

MΓ
∼=MΓ ⊗Md,

where Md is the algebra of square matrices of size d = |X| over C. The isomorphism

above is given by the map SxvUgS∗yu 7→ SvUgS∗u ⊗ e
(d)
x,y, for x, y ∈ X. It is then clear that

MΓ
∼=MΓ ⊗Mdn ,



145

iterating the argument.

Any fixed z ∈ X induces a non-unital homomorphism Ez :MΓ →MΓ given by

SvUgS∗u 7→ SzvUgS∗zu.

If we use the identification MΓ
∼=MΓ ⊗Md, then Ez :MΓ →MΓ ⊗Md is given by:

SvUgS∗u 7→ SvUgS∗u ⊗ e(d)
z,z.

Let us denote by BΓ the direct limit of

MΓ MΓ MΓ MΓ
... BΓ

Ez Ez Ez Ez

We have that BΓ
∼=MΓ⊗K. Moreover, the map Ez induces an automorphism ofMΓ⊗K,

which will be denoted by Êz.

This automorphism plays a key role in the study of the K-theory of C∗(Γ, X). The

following result appears in [42, Theorem 3.7]. We show here a sketch of the proof.

Theorem 5.11. Let C∗(Γ, X) be the Cuntz-Pimsner C∗-algebra associated to the self-

similar group (Γ, X). Then we have an isomorphism

C∗(Γ, X)⊗K ∼= (MΓ ⊗K)oÊz
Z

Proof. Fix z ∈ X, and denote by M(n)
Γ the n-th component of the direct limit

lim−→(MΓ ⊗Mdn , Ez) . Denote by Λn the subalgebra of (MΓ ⊗ K) oÊz
Z generated by

M(n)
Γ and the elements:

T (n)
x = SxS∗zu,

where u is the generator of Z, and SxSz∗ is seen as an element of M(n)
Γ .

The subalgebras Λn are naturally isomorphic to C∗(Γ, X) under the identification

T
(n)
x 7→ Sx, and SvUgS

∗
u 7→ SvUgS

∗
u, for SvUgS

∗
u ∈ M

(n)
Γ ⊆ Λn on the left-hand side,

and SvUgS
∗
u ∈ C∗(Γ, X) on the right-hand side of the equality. Moreover, the maps from

Λn to Λn+1, after identifications of C∗(Γ, X) with Λn and Λn+1, given by

SvUgS∗u 7→ SzSvUgS∗uS∗z
Sx 7→ SzSxS∗z

are all injective.

It can be proved that the direct limit of these embeddings is isomorphic to C∗(Γ, X)⊗K,

and
⋃

Λn is dense in (MΓ ⊗K)oÊz
Z, as desired.
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Alternatively, we can build MΓ as the following inductive limit. Let C(Γ) be the usual

group algebra over C. Let d = |X|, and note that we can embed both the group ∗-algebra

C∗(Γ) and Od into C∗(Γ, X), where Od denotes the usual Cuntz algebra generated by d

isometries. Now consider the map:

φ0 : C(Γ)→ C(Γ)⊗Md

Ug 7→
∑
x∈X

Ug|x ⊗ e
(d)
y,x,

when g · x = y · g|x. We can then define φn by:

φn : C(Γ)⊗Mdn → C(Γ)⊗Mdn+1

Ug ⊗ e(dn)
v,w 7→

∑
x∈X

Ug|x ⊗ e
(dn+1)
vy,wx ,

for g ∈ Γ, v, w ∈ Xn and y ∈ X such that g · x = y · g|x.
One can easily check that every φn is an ∗-homomorphism of algebras. Thus, the maps

φn extend naturally to unital ∗-homomorphisms

Φn : C∗(Γ)⊗Mdn → C∗(Γ)⊗Mdn+1 .

The maps Φn will be called the matrix recursion maps.

Then

MΓ
∼= lim−→(C∗(Γ)⊗Mdn ,Φn)

under the identification SvUgS∗u 7→ Ug⊗ e(dn)
v,u , where |v| = |u| = n ([42, Proposition 3.8]).

5.2.2 K-theory of the groupoid associated to the self-similar
infinite dihedral group

In this section, we use Nekrashevych’s approach in order to study the infinite

dihedral self-similar group (D∞, X). Let us start with the basics:

The K-theory of C∗(D∞) is well-known. Indeed, the group D∞ can be represented as

the free product Z2 ∗ Z2. Then, using for example [32, Theorem 5.4] , we have the short

exact sequences:

0 K0(C) K0(C∗(Z2))⊕K0(C∗(Z2)) K0(C∗(D∞)) 0
(K0(χ1),−K0(χ2)) K0(ε1) +K0(ε2)

0 K1(C) K1(C∗(Z2))⊕K1(C∗(Z2)) K1(C∗(D∞)) 0
(K1(χ1),−K1(χ2)) K1(ε1) +K1(ε2)
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where χi denote the embeddings of C into the respective algebras C∗(Z2), and εi are the

embeddings of each C∗(Z2) into C∗(D∞). Then the following lemma is straightforward

to check:

Lemma 5.12. Let D∞ be the infinite dihedral group. Then

K0(C∗(D∞)) = 〈[1], [1+Ua
2

], [1+Ub
2

]〉 ∼= Z3

K1(C∗(D∞)) = 0

where Ua, Ub are the unitaries associated to a, b respectively.

For the self-similar infinite dihedral group (D∞, X), the matrix recursion maps are of the

form:

Φ0 : C∗(D∞)→ C∗(D∞)⊗M2

Ua 7→ 1⊗ e(2)
0,1 + 1⊗ e(2)

1,0

Ub 7→ Ua ⊗ e(2)
0,0 + Ub ⊗ e(2)

1,1 ,

and in general

Φn : C∗(D∞)⊗M2n → C∗(D∞)⊗M2n+1

Ua ⊗ e(2n)
v,w 7→ 1⊗ e(2n+1)

v0,w1 + 1⊗ e(2n+1)
v1,w0

Ub ⊗ e(2n)
v,w 7→ Ua ⊗ e(2n+1)

v0,w0 + Ub ⊗ e(2n+1)
v1,w1 .

In particular, we will use the characterization

MD∞
∼= lim−→(C∗(D∞)⊗M2n ,Φn) .

given in paragraph 5.2.1.

Proposition 5.13. Let (D∞, X) be the self-similar infinite dihedral group. Then we

have that:

K0(MD∞) ∼= Z[1
2
]⊕ Z, and

K1(MD∞) = 0

Moreover, the isomorphism Ψ0 between K0(MD∞) and Z[1
2
]⊕ Z is given by:

Ψ0([Φn,∞(1⊗ e(2n)
v,v )]) = ( 1

2n
, 0),

Ψ0([Φn,∞(1+Ua
2
⊗ e(2n)

v,v )]) = ( 1
2n+1 , 0),

Ψ0([Φn,∞(1+Ub
2
⊗ e(2n)

v,v )]) = (−
n∑
k=1

1
2k+1 , 1)

for every v ∈ Xn.
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Proof. Since K∗ is a continuous functor and K1(C∗(D∞)) = 0, one has the equality

K1(MD∞) = 0 trivially. Let us now focus our effort into the computation of K0(MD∞).

This will be computed using again the continuity of K0, meaning that K0(MD∞) ∼=
lim−→(K0(C∗(D∞)⊗M2n),Φ∗n), where Φ∗n is the homomorphism in the K0 groups induced

by Φn. In particular, if we denote P := 1+Ua
2

, Q := 1+Ub
2

, then Φ∗0 is given by:

Φ∗0([1]) =

[(
1 0

0 1

)]
= 2[1] ∈ K0(C∗(D∞)),

Φ∗0([P ]) =

[(
1
2

1
2

1
2

1
2

)]
=

[(
1 0

0 0

)]
= [1] ∈ K0(C∗(D∞)),

and

Φ∗0([Q]) =

[(
P 0

0 Q

)]
= [P ] + [Q] ∈ K0(C∗(D∞)).

For a general n ≥ 0, if we consider 1n := Φn,∞(1 ⊗ e(2n)
0n,0n), Pn := Φn,∞(P ⊗ e(2n)

0n,0n) and

Qn := Φn,∞(Q⊗ e(2n)
0n,0n), we obtain the following relations in K0(MD∞):

[1n] = 2[1n+1],

[Pn] = [1n+1],

[Qn] = [Qn+1] + [Pn+1] = [Qn+1] + [1n+2].

We notice that K0(MD∞) is generated by the classes [1n] for n ∈ N, and [Q0], since

all [Qn] can be generated in an inductive way, using [Qn] = [Qn−1] − [1n+1], for n > 0.

The identifications [1n] 7→ ( 1
2n
, 0) and [Q0] 7→ (0, 1) determine the desired isomorphism

between K0(MD∞) and Z[1
2
]⊕ Z.

The map E0 :MD∞ →MD∞ defined in section 5.2.1 induces a map

E : lim−→(C∗(D∞)⊗M2n ,Φn)→ lim−→(C∗(D∞)⊗M2n ,Φn)

given by

Φn,∞(x⊗ e(2n)
v,w ) 7→ Φn+1,∞(x⊗ e(2n+1)

0v,0w ).

With a slight abuse of notation, we define

BD∞ := lim−→(MD∞ , E) ∼=MD∞ ⊗K.

Then clearly K0(MD∞) is isomorphic to K0(BD∞) under the map induced by the inclusion

m 7→ E0,∞(m), for m ∈MD∞ .

Finally, we define the automorphism Ê : BD∞ → BD∞ given by:
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Ê(Ek,∞(Φn,∞(x⊗ e(2n)
v,w ))) = Ek−1,∞(Φn,∞(x⊗ e(2n)

v,w )) = Ek,∞(Φn+1,∞(x⊗ e(2n+1)
0v,0w ))

Then, by Theorem 5.11, BD∞ oÊ Z is isomorphic to C∗(D∞, X) ⊗ K. Hence, using

Proposition 5.9, and since G(D∞,X) is amenable, we deduce that

C∗r (G(D∞,X))⊗K ∼= BD∞ oÊ Z.

All is left to do is computing the K-theory of BD∞ oÊ Z.

Lemma 5.14. Let (D∞, X) be the infinite dihedral self-similar group. Then the K-

theory of BD∞ oÊ Z is given by:

K0(BD∞ oÊ Z) ∼= coker(1−K0(Ê)) ∼= Z, and

K1(BD∞ oÊ Z) ∼= ker(1−K0(Ê)) ∼= Z,

where K0(Ê) : K0(BD∞)→ K0(BD∞) is the map induced in K0 by Ê .

Proof. Using the Pimsner-Voiculescu exact sequence given in Theorem 3.22, we have

K0(BD∞) K0(BD∞) K0(BD∞ oÊ Z)

K1(BD∞ oÊ Z) K1(BD∞) K1(BD∞)

id−K0(Ê)

id−K1(Ê)

Now, since K1(BD∞) = K1(MD∞) = 0, we have that K0(BD∞ oÊ Z) ∼= coker(1−K0(Ê))

and K1(BD∞ oÊ Z) ∼= ker(1−K0(Ê)). In order to prove the second set of isomorphisms,

and using Lemma 4.7, we then need to study the map K0(E).

With the notation used in Proposition 5.13, the set {[1n], [Q0]}n∈N generates K0(BD∞).

Then we have:

K0(E)([1n]) = [E(1n)] = [1n+1], and

K0(E)([Qn]) = [E(Qn)] = [Qn+1] = [Qn]− [1n+2],

for every n ∈ N. Using the identification K0(MD∞) ∼= Z[1
2
]⊕Z, with [1n] 7→ ( 1

2n
, 0), and

[Qn] 7→ (0, 1), we have that K0(E) : Z[1
2
]⊕ Z→ Z[1

2
]⊕ Z is given by

K0(E)( 1
2n
, 0) = ( 1

2n+1 , 0),

K0(E)(0, 1) = (− 1
22 , 1).

Therefore:
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(1−K0(E))( 1
2n
, 0) = ( 1

2n+1 , 0),

(1−K0(E))(0, 1) = ( 1
22 , 0).

In particular, the kernel and image are given by:

ker(1−K0(Ê)) ∼= ker(1−K0(E)) = 〈(1
2
,−1)〉 ∼= Z, and

Im(1−K0(E)) = (Z[1
2
], 0).

Hence coker(1−K0(Ê)) ∼= coker(1−K0(E)) ∼= Z, concluding the proof.

The following corollary is then immediate, after using the results obtained at the begin-

ning of this chapter.

Corollary 5.15. Let (D∞, X) be the self-similar infinite dihedral group, and let G(D∞,X)

be its associated groupoid of germs. Then

K0(C∗r (G(D∞,X))) ∼= K1(C∗r (G(D∞,X))) ∼= Z.
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5.3 Homology groups of a groupoid
associated to a self-similar group

In this section, we provide a strategy for the computation of the homology groups

defined in paragraph 2.2 of the groupoid associated to a self-similar group. To do so, we

will make some use of the skew-product construction defined in chapter 3.

Lemma 5.16. Let (Γ, X) be a self-similar group. Then

c : G(Γ,X) −→ Z
[α, g, β; βx] 7→ |α| − |β|

is a cocycle. Moreover, the subgroupoid H(Γ,X) := c−1(0) = {[α, g, β; βx] : |α| = |β|} is

Kakutani equivalent to the skew-product groupoid G(Γ,X) ×c Z.

Proof. We begin by proving that c is a cocycle. First, we need to see that it is well

defined:

Take [α, g, β; βx] = [α′, g′, β′; β′x′]. By definition, we get that βx = β′x′. In particular,

we can find a finite word t ∈ X∗ such that either β = β′t or β′ = βt is true. Without

any loss of generality, suppose that the latter equality, β′ = βt , holds. Since βx =

β′x′ = βtx′, we deduce that x = tx′. Then we can use Remark 5.8 to write [α, g, β; βx] =

[α, g, β; βtx′] = [αg · t, g|t, βt; βtx′]. Thus, we can assume that β = β′, and just study the

case [α, g, β; βx] = [α′, g′, β; βx]. By definition, those two classes are equal if and only

if S(α,g,β) and S(α′,g′,β) coincide in a neighbourhood U of βx. Without loss of generality,

assume that U = Z(βx0), where x = x0x
′ for some x′ ∈ X∞. Then, for any y ∈ X∞, the

elements S(α,g,β)(βx0y) = αg ·x0y, and S(α′,g′,β)(βx0y) = α′g′ ·x0y must be equal. Denote

A = αg(x0), A′ = α′g′(x0). Then the previous equality can be written as Ag|x0 · y =

A′g′|x0 · y. Hence, we deduce that either A′ = Aα0, A = A′α0, or A = A′, for some α0

such that |α0| > 0.

Suppose that the first statement is true. Then, for every y ∈ X∞ we have the equality

Ag|x0 · y = Aα0g
′|x0 · y, and therefore g|x0 · y = α0g

′|x0 · y, for every y ∈ X∞. But we can

always choose y = y0y
′ such that g|x0(y0) is different than the first letter of α0, arriving

at a contradiction. Thus, A′ 6= Aα0. In a similar fashion, we can also discard the equality

A = A′α0, concluding that A = A′, that is, αg(x0) = α′g′(x0), and therefore |α| = |α′|.
Hence, the difference |α| − |β| remains constant, and the map c is well-defined.

Let us see that c is a groupoid homomorphism:

It is clear that c maps any [∅, e, ∅;x] ∈ G(0)
(Γ,X) to 0. Also, recall that

[α′, g′, α;α(g · x)][α, g, β; βx] = [α′, g′g, β; βx],
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and so we have:

c([α′, g′, α;α(g · x)][α, g, β; βx]) = c([α′, gg′, β; βx]) = |α′| − |β|, and

c([α′, g′, α);α(g · x)]) + c([α, g, β; βx]) = |α′| − |α|+ |α| − |β| = |α′| − |β|.

Indeed, c is a groupoid homomorphism.

To check Kakutani equivalence, notice that G(0)
(Γ,X)×{0} ⊆ (G(Γ,X)×cZ)(0) is a full clopen

subset of G(Γ,X)×c Z, and then (G(Γ,X)×c Z)|G(0)
(Γ,X)

×{0}
∼= H(Γ,X), under the map given by:

[α, g, β; βx]× {0} 7→ [α, g, β; βx].

Notice that |α| 6= |β| implies that c([α, g, β; βx]) = |α| − |β| 6= 0, and there-

fore s([α, g, β; βx] × {0}) = (s([α, g, β; βx]), |α| − |β|) /∈ (G ×c Z)|G(0)
(Γ,X)

×{0}. Hence,

[α, g, β; βx]×{0} ∈ (G ×c Z)|G(0)
(Γ,X)

×{0} if and only if |α| = |β|, and so the map above is a

well defined groupoid homomorphism.

We can then study the homology of G(Γ,X) combining this result with Theorem 3.18. To

do so, we decompose H(Γ,X) as the union
⋃
n∈N

(H(Γ,X))n, where (H(Γ,X))n is defined as the

subgroupoid of all equivalence classes [α, g, β; βx] that have a representative such that

|α| = |β| = n.

Remark 5.8 shows that (H(Γ,X))n ⊆ (H(Γ,X))n+1. Denoting by ιn,m the inclusion map

from (H(Γ,X))n into (H(Γ,X))m, and ιn := ιn,n+1, we have that

ιn,m : (H(Γ,X))n → (H(Γ,X))m

is given by [α, g, β; βγx] 7→ [α(g · γ), g|γ, βγ; βγx], for α, β ∈ Xn, γ ∈ Xm−n, x ∈ X∞

and g ∈ Γ.

Since the homology is a continuous functor [36], we can compute it as the direct limit

H∗(H(Γ,X)) ∼= lim−→(H∗((H(Γ,X))n), (ιn)∗), where (ιn)∗ is the induced map in homology.

The topology of (H(Γ,X))n has a basis of open compact sets of the form [α, g, β;Z(ββ′)],

with α, β ∈ Xn, β′ ∈ X∗.

5.3.1 Homology of the groupoid associated to the self-similar
infinite dihedral group.

In this subsection, we study the homology groups of G(D∞,X). We first compute

the lower homology groups in a separate way, and then we prove that the higher ones

are all torsion groups.

Lemma 5.17. Let (D∞, X) be the self-similar infinite dihedral group, and let G(D∞,X)

be its associated groupoid of germs. Consider H(D∞,X) as in Lemma 5.16. Then

H0(H(D∞,X)) ∼= Z[1
2
].
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Proof. We identify (H(D∞,X))
(0)
n with X∞ under [β, e, β; βx] 7→ βx. Then the equivalence

classes on H0((H(D∞,X))n) are generated by elements of the form [1Z(α)]0, with α ∈ X∗.
We claim that [1Z(α)]0 = [1Z(β)]0 if and only if |α| = |β|.
To show the forward implication, it is enough to observe that if V = [α0, g, β0;Z(β0β

′)] is

a basic compact open bisection of (H(D∞,X))n, with |α0| = |β0| = n, then s(V ) = Z(β0β
′),

and r(V ) = Z(α0gβ
′), and so |β0β

′| = |α0gβ
′|.

On the other hand, suppose that |α| = |β|. We can assume |α| = |β| ≥ n. Set α = α0α
′,

β = β0β
′, with |α0| = |β0| = n. Proposition 5.5 ensures the existence of some g ∈ D∞

such that g · β′ = α′. Take V = [α0, g, β0;Z(β0β
′)]. Then s(V ) = Z(β0β

′) = Z(β), and

r(V ) = Z(α0gβ
′) = Z(α0α

′) = Z(α), as desired.

Finally, since 1Z(α) = 1Z(α0) + 1Z(α1) for every α ∈ X∗, it follows that [1Z(0n)]0 =

2[1Z(0n+1)]0, for every n ∈ N. Hence we deduce that the map H0((H(D∞,X))n) → Z[1
2
]

given by [1Z(α)]0 7→ 1
2|α|

is an isomorphism for all n ∈ N.

It remains to study the respective maps (ιn,m)∗ in H0. Those maps are given by

(ιn,m)∗ : H0((H(D∞,X))n)→ H0((H(D∞,X))m)

[1Z(α)]0 7→ [1Z(α)]0,

and hence (ιn,m)∗ are all equal to the identity map. Therefore

H0(H(D∞,X)) ∼= lim−→(H∗((H(D∞,X))n), (ιn)∗) ∼= lim−→(Z[1
2
], id) ∼= Z[1

2
],

concluding the proof.

We now compute the H1 group. Next lemma’s original proof was developed with the help

of professor Ortega in [47]. Here we show a slightly different one, developed afterwards.

Lemma 5.18. Let (D∞, X) be the self-similar infinite dihedral group, and let G(D∞,X)

be its associated groupoid of germs. Consider H(D∞,X) as in Lemma 5.16. Then

H1(H(D∞,X)) ∼= Z2.

Proof. By definition, we have

H1((H(D∞,X))n) := kerδ1/Imδ2 = {[f ] : f ∈ Cc((H(D∞,X))n,Z), s.t. δ1(f) = 0}

with δ1, δ2 as defined in paragraph 2.2. Let f ∈ Cc((H(D∞,X))n,Z) such that δ1(f) = 0,

and write it as

f =
k∑
i=0

λi1Z(α′i,g
′
i,β
′
i;Ui)

,

with α′i, β
′
i ∈ Xn, λi ∈ Z, g′i ∈ D∞ and Ui clopen subsets of Z(β′i). Notice that, replacing

f with ιn,m(f) ∈ Cc((H(D∞,X))m,Z) for a large enough m, and using Remark 5.8, we can

take
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f =
k∑
i=0

λi1Z(αi,gi,βi;Z(βi)),

where αi, βi ∈ Xm, λi ∈ Z, and gi ∈ D∞.

Then, whenever Z(α, g, β;Z(β))× Z(β, h, γ;Z(γ)) ⊂ (H(D∞,X))
(2)
m , we have that

δ2(1(Z(α,g,β;Z(β))×Z(β,h,γ;Z(γ)))) = 1Z(α,g,β;Z(β)) + 1Z(β,h,γ;Z(γ)) − 1Z(α,gh,γ;Z(γ)),

for every α, β, γ ∈ Xm, g, h ∈ D∞. Hence

[1Z(α,gh,γ;Z(γ))] = [1Z(α,g,β;Z(β))] + [1Z(β,h,γ;Z(γ))] ∈ H1((H(D∞,X))m). (5.1)

In particular, if we choose β = 0m, h = e we obtain

[1Z(α,g,γ;Z(γ))] = [1Z(α,g,0m;Z(0m))] + [1Z(0m,e,γ;Z(γ))] ∈ H1((H(D∞,X))m). (5.2)

Using the same argument,

[1Z(α,g,0m;Z(0m))] = [1Z(α,e,0m;Z(0m))] + [1Z(0m,g,0m;Z(0m))] ∈ H1((H(D∞,X))m),

and thus we get:

[1Z(α,g,γ;Z(γ))] = [1Z(α,e,0m;Z(0m))] + [1Z(0m,g,0m;Z(0m))] + [1Z(0m,e,γ;Z(γ))] ∈ H1((H(D∞,X))m).

(5.3)

Moreover, if we consider α = β = γ, and g = h = e in equation (5.1), then we obtain:

[1Z(α,e,α;Z(α))] = [1Z(α,e,α;Z(α))] + [1Z(α,e,α;Z(α))] ∈ H1((H(D∞,X))m).

We conclude that [1Z(α,e,α;Z(α))] = 0. Combining this result with equation (5.2), we also

deduce that

[1Z(α,e,0m;Z(0m))] + [1Z(0m,e,α;Z(α))] = 0. (5.4)

in H1((H(D∞,X))m). We then use all of the above results to find a representative h of [f ]

of the form:

h =
k∑
i=0

λi1Z(0m,gi,0m;Z(0m)) +
∑

α∈Xm
α 6=0m

µα1Z(α,e,0m;Z(0m)),

for λi, µα ∈ Z. Using that f, h ∈ kerδ1, we have:

δ1(h) = δ1(
k∑
i=0

λi1Z(0m,gi,0m;Z(0m)) +
∑

α∈Xm
α 6=0m

µα1Z(α,e,0m;Z(0m))) = 0.

Notice that r(Z(0m, gi, 0
m;Z(0m))) = s(Z(0m, gi, 0

m;Z(0m))) = Z(0m), and therefore

δ1(1Z(0m,gi,0m;Z(0m))) = 1s(Z(0m,gi,0m;Z(0m))) − 1r(Z(0m,gi,0m;Z(0m))) = 0, for all m ∈ N. Hence

δ1(h) = δ1(
∑

α∈Xm
α 6=0m

µα1Z(α,e,0m;Z(0m)))) =
∑

α∈Xm
α 6=0m

µα(1Z(α) − 1Z(0m)) = 0.
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This forces µα = 0 for all α ∈ Xm \ {0m}.
We have proven that, for every [f ] ∈ H1((H(D∞,X))n), there is a representative f̂ of [f ]

of the form:

f̂ =
k∑
i=0

λi1Z(0m,gi,0m;Z(0m)).

Applying equation (5.1) again, we obtain the relation

[1Z(0m,g,0m;Z(0m))] + [1Z(0m,h,0m;Z(0m))] = [1Z(0m,gh,0m;Z(0m))]

for all g, h ∈ D∞. Since the homology groups are abelian groups, it follows that

[1Z(0m,hg,0m;Z(0m))] = [1Z(0m,gh,0m;Z(0m))].

Hence, since D∞/[D∞,D∞] =
〈
ā, b̄
〉 ∼= Z2 ⊕ Z2, we deduce:

[f̂ ] = λa[1Z(0m,a,0m;Z(0m))] + λb[1Z(0m,b,0m;Z(0m))],

with λa, λb ∈ {0, 1}. In particular, we deduce that H1(H(D∞,X)) is generated by

[1Z(0m,a,0m;Z(0m))] and [1Z(0m,b,0m;Z(0m))], for m ∈ N.

We now study their behaviour under the inductive limit

H1(H(D∞,X)) ∼= lim−→(H1((H(D∞,X))m), (ιm)∗),

that is, we need to study the maps

(ιm,m+1)∗ : H1((H(D∞,X))m)→ H1((H(D∞,X))m+1)

Those are given by

(ιm,m+1)∗([1Z(0m,g,0m;Z(0m))]) = (ιm,m+1)∗([1Z(0m,g,0m;Z(0m0)) + 1Z(0m,g,0m;Z(0m1))]) =

= [1Z(0m(g·0),g|0,0m+1;Z(0m+1)) + 1Z(0m(g·1),g|1,0m1;Z(0m1))].

for every g ∈ D∞. Evaluating this map for g = a, and using equation (5.4), we obtain:

(ιm,m+1)∗([1Z(0m,a,0m;Z(0m))]) = [1Z(0m1,e,0m+1;Z(0m+1))] + [1Z(0m+1,e,0m1;Z(0m1))] = 0.

On the other hand, choosing g = b:

(ιm,m+1)∗([1Z(0m,b,0m;Z(0m))]) = [1Z(0m+1,a,0m+1;Z(0m+1))] + [1Z(0m1,b,0m1;Z(0m1))].

Then, using equation (5.3), we have

[1Z(0m1,b,0m1;Z(0m1))] = [1Z(0m1,e,0m+1;Z(0m+1))]+[1Z(0m+1,b,0m+1;Z(0m+1))]+[1Z(0m+1,e,0m1;Z(0m1))],

which equals to [1Z(0m+1,b,0m+1;Z(0m+1))] after applying equation (5.4). Therefore:

(ιm,m+1)∗([1Z(0m,b,0m;Z(0m))]) = [1Z(0m+1,a,0m+1;Z(0m+1))] + [1Z(0m+1,b,0m+1;Z(0m+1))].
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Gathering all of the above equalities, we conclude that, given f ∈ Cc((HD∞,X)n,Z) with

δ1(f) = 0, there exists a large enough m ∈ N such that

[f ] = (ιn,m)∗([f ]) = [ιn,m(f)] = [λb1Z(0m,b,0m;Z(0m))] ∈ H1(HD∞,X),

with λb ∈ {0, 1}. Suppose that, for every m ∈ N, [1Z(0m,b,0m;Z(0m))] 6= 0 in H1((HD∞,X)m).

Then we could compute the homology as:

H1(H(D∞,X)) ∼= lim−→(H1((H(D∞,X))m), (ιm)∗) ∼= Z2,

under the isomorphism given by

(ιm,∞)∗([1Z(0m,b,0m;Z(0m))]) 7→ 1̄,

(ιm,∞)∗([1Z(0m,a,0m;Z(0m))]) 7→ 0̄.

It remains to be proven that [1Z(0m,b,0m;Z(0m))] is indeed different than zero. Let us show

it. For every m ∈ N, (H(D∞,X))m is Kakutani equivalent to X∞ oD∞, and so

H∗(X
∞ oD∞) ∼= H∗((H(D∞,X))m).

Indeed, for any m ∈ N, the clopen Z(0m) ⊆ X∞ is full in (H(D∞,X))m, and the elements of

the restriction groupoid are of the form [0m, g, 0m; 0mx]. Then the map [0m, g, 0m; 0mx] 7→
(g, x) defines an isomorphism between ((H(D∞,X))m)|Z(0m) and X∞ oD∞.

Recall that, by Lemma 3.52, Hn(X∞ o D∞) ∼= Hn(D∞, C(X∞)), which is defined as

Tor
Z[D∞]
1 (Z, C(X∞)) (see [64, Definition 6.1.2]). This isomorphism is natural, in the

sense that the following diagram commutes (see [14]):

Hn(D∞, C(X∞)) Hn(X∞ oD∞)

Hn(〈b〉, C(X∞)) Hn(X∞ o 〈b〉)

∼=

∼=

Let ID∞ denote the augmentation ideal of Z[D∞]. It was shown in [64, Proposition 6.2.9]

that

ID∞ ∼= (I〈a〉 ⊗Z[〈a〉] Z[D∞])⊕ (I〈b〉 ⊗Z[〈b〉] Z[D∞]).

Applying the functor Tor
Z[D∞]
∗ (·, C(X∞)) to the exact sequence

0→ IZ[D∞] → Z[D∞]→ Z→ 0
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we obtain an exact sequence

0 Z⊗Z[D∞] C(X∞)oo Z[D∞]⊗Z[D∞] C(X∞)oo ID∞ ⊗ C(X∞)ωoo

· · · // Tor
Z[D∞]
1 (IZ[D∞], C(X∞)) // Tor

Z[D∞]
1 (Z[D∞], C(X∞)) // H1(D∞, C(X∞))

ξ

OO

(5.5)

Note that Z[D∞] is flat, and therefore Tor
Z[D∞]
1 (Z[D∞], C(X∞)) = 0. Hence, ξ is injective,

and H1(D∞, C(X∞)) ∼= Im(ξ) = ker(ω).

The kernel of ω is given by:

ker(ω) = {(1− a)⊗Z[〈a〉] f + (1− b)⊗Z[〈b〉] g : f + g = a · f + b · g}.

Using the same argument,

H1(〈b〉, C(X∞)) = {(1− b)⊗Z[〈b〉] g : g = b · g}.

Observe that given N > 0 we can write X∞ as the disjoint union

X∞ = (
N−1⊔
n=0

(Z(1n00) t Z(1n01))) t Z(1N)

Then, for any g ∈ C(X∞,Z), we can write

g =
∑N−1

n=0 (
∑
α∈X∗

(λ1n00α1Z(1n00α) + λ1n01α1Z(1n01α))) + λ1N1Z(1N ) for some N > 0 and with

only finitely many λ’s not equal to zero. If we consider that g is in the kernel of (1− b),
we have that

λ1n00α = λ1n01α,

for each n ∈ N, and each α ∈ X∗. But 1Z(1n00α) + 1Z(1n01α) = (1 + b)1Z(1n00α), and

therefore

(1− b)⊗Z[〈b〉] g = (1− b)⊗Z[〈b〉] λ1N1Z(1N ).

Moreover,

(1− b)⊗Z[〈b〉] 2 · 1Z(1N ) = (1− b)⊗Z[〈b〉] (1 + b) · 1Z(1N ) = 0,

hence λ1N ∈ {0, 1}. Finally, note that 1Z(1N ) \ 1Z(1N+1) = 1Z(1N0) = (1 + b) · 1Z(1N00). This

implies that

(1− b)⊗Z[〈b〉] 1Z(1N ) = (1− b)⊗Z[〈b〉] 1Z(1M )

for each N,M . Gathering all of the above information, we conclude that

H1(〈b〉, C(X∞)) ∼= Z2,
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generated by the element (1− b)⊗Z[〈b〉] 1X∞ . This element is not zero in ker(ω). Indeed,

(1−b)⊗Z[〈b〉]1X∞ = 0 if and only if there exists some g ∈ C(X∞) such that 1X∞ = (1+b)·g.

Suppose that this is true. Then. evaluating in 1∞ ∈ X∞, we obtain

1 = 1X∞(1∞) = (1 + b) · g(1∞) = g(1∞) + g(b · 1∞) = 2g(1∞),

which is impossible. Hence, (1− b)⊗Z[〈b〉] 1X∞ 6= 0.

It is not too difficult to check that, whenever ψ is a homeomorphism of a compact

Hausdorff space X with ψ∗ its induced map in C(X,Z), such that ψ2 = Id, then the map

χ : C(X,Z)→ C(X o 〈ψ〉,Z)

g 7→ g̃

given by g̃(ψ, x) := g(x), and g̃(e, x) = 0 induces an isomorphism

H1(〈ψ〉, C(X,Z))
(∗)∼= ker(Id− ψ∗)/Im(Id+ ψ∗)

χ∼= H1(X o 〈ψ〉),

where the isomorphism (∗), shown in [64, Theorem 6.2.2], is given by (1−ψ)⊗Z[〈ψ〉]g 7→ [g].

In particular, the map

(1− b)⊗Z[〈b〉] 1X∞ 7→ [1(b,X∞)]

yields an isomorphism between H1(〈b〉, C(X∞)) and H1(X∞ o 〈b〉), and hence

[1(b,X∞)] 6= 0.

This, together with the commutative diagram shown above, gives us an isomorphism

between ker(ω) ∼= H1(D∞, C(X∞)) and H1(X∞ oD∞) that sends (1− b)⊗Z[〈b〉] 1X∞ to

[1(b,X∞)]. Finally, the Kakutani equivalence between (H(D∞,X))n and X∞oD∞ described

above gives us an isomorphism that sends

0 6= [1(b,X∞)] 7→ [1Z(0m,b,0m;Z(0m))],

concluding the proof.

Once computed the low homology groups of H(D∞,X), we focus our study on the higher

homology groups.

Lemma 5.19. Let (D∞, X) be the self-similar infinite dihedral group, G(D∞,X) its asso-

ciated groupoid of germs, and H(D∞,X) be as in Lemma 5.16. Then H2k(H(D∞,X)) = 0,

and H2k−1(H(D∞,X)) ∼= Z2, for every k ≥ 1.
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Proof. As noted before, for every n ∈ N, (H(D∞,X))n is Kakutani equivalent to X∞oD∞,

and so H∗(X
∞ oD∞) ∼= H∗((H(D∞,X))n) ∼= H∗(X

∞ oD∞) ∼= H∗(D∞, C(X∞,Z)), where

C(X∞,Z) is a left D∞-module by the induced action D∞ y C(X∞,Z). Using [64,

Corollary 6.2.10], we obtain an isomoprhism

Hk(〈a〉 ∗ 〈b〉, C(X∞,Z)) ∼= Hk(〈a〉, C(X∞,Z))⊕Hk(〈b〉, C(X∞,Z)) ,

for every k ≥ 2.

Observe that H∗(〈a〉, C(X∞,Z)) ∼= H∗(X
∞o 〈a〉). Note that X∞o 〈a〉 is an elementary

groupoid (definition 2.40): it is clearly compact, and for any (a, x) ∈ X∞ o 〈a〉, we

have that s(a, x) = (e, x), and r(a, x) = (e, a · x). For any x ∈ X∞, x 6= a · x, and

therefore there is no isotropy (i.e. X∞o〈a〉 is principal). Hence, X∞o〈a〉 is elementary.

Therefore, Hk(〈a〉, C(X∞,Z)) = 0 for k ≥ 1.

Let’s now show that H2k(〈b〉, C(X∞,Z)) = 0 and H2k+1(〈b〉, C(X∞,Z)) ∼= Z2 for k ≥ 1.

It is shown in [64, Theorem 6.2.2] that

H2k(〈b〉, C(X∞,Z)) ∼= ker(1 + b)/(b− 1)(C(X∞,Z))

and

H2k−1(〈b〉, C(X∞,Z)) ∼= ker(b− 1)/(b+ 1)(C(X∞,Z)) ,

for k ≥ 1. We begin studying H2k(〈b〉, C(X∞,Z)). As before, observe that given N > 0

we can write X∞ as the disjoint union

X∞ = (
N−1⊔
n=0

(Z(1n00) t Z(1n01))) t Z(1N)

Then, for any f ∈ C(X∞,Z), we can write

f =
∑N−1

n=0 (
∑
α∈X∗

(λ1n00α1Z(1n00α) + λ1n01α1Z(1n01α))) + λ1N1Z(1N ) for some N > 0 and with

only finitely many λ’s not equal to zero. If we consider that f is in the kernel of (1 + b),

we have that
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0 = (1 + b)f = (1 + b)(
N−1∑
n=0

(
∑
α∈X∗

(λ1n00α1Z(1n00α) + λ1n01α1Z(1n01α))) + λ1N1Z(1N )) =

=
N−1∑
n=0

(
∑
α∈X∗

(λ1n00α1Z(1n00α) + λ1n01α1Z(1n01α))) + λ1N1Z(1N )+

+
N−1∑
n=0

(
∑
α∈X∗

(λ1n00α1Z(b·1n00α) + λ1n01α1Z(b·1n01α))) + λ1N1Z(b·1N ) =

=
N−1∑
n=0

(
∑
α∈X∗

(λ1n00α1Z(1n00α) + λ1n01α1Z(1n01α))) + λ1N1Z(1N )+

+
N−1∑
n=0

(
∑
α∈X∗

(λ1n00α1Z(1n01α) + λ1n01α1Z(1n00α))) + λ1N1Z(1N ) =

=
N−1∑
n=0

(
∑
α∈X∗

((λ1n00α + λ1n01α)1Z(1n00α) + (λ1n01α + λ1n00α)1Z(1n01α))) + 2λ1N1Z(1N ) .

But this forces λ1n01α + λ1n00α = 0 and λ1N = 0. Thus, we have that

f =
N−1∑
n=0

(
∑
α∈X∗

(λ1n00α1Z(1n00α) − λ1n00α1Z(1n01α))) = (1− b)(
N−1∑
n=0

∑
α∈X∗

λ1n00α1Z(1n00α))

Hence, we have that ker(1 + b) = (1− b)(C(X∞,Z)), and so H2k(〈b〉, C(X∞,Z) = 0.

We now study H2k−1(〈b〉, C(X∞,Z)). Let f ∈ ker(b− 1). Here, as before, we write any

element of C(X∞,Z) as f =
∑N−1

n=0 (
∑
α∈X∗

(λ1n00α1Z(1n00α)+λ1n01α1Z(1n01α)))+λ1N1Z(1N ) for

some N > 0 and with only finitely many λ’s not equal to zero. Hence, since f ∈ ker(b−1),

replicating the previous techniques we get that λ1n01α = λ1n00α, so

f =
N−1∑
n=0

(
∑
α∈X∗

(λ1n00α1Z(1n00α) + λ1n00α1Z(1n01α))) + λ1N1Z(1N ).

However, if we realize that

(1 + b)(
N−1∑
n=0

∑
α∈X∗

(λ1n00α1Z(1n00α)) + λ1N1Z(1N )) =

=
N−1∑
n=0

(
∑
α∈X∗

(λ1n00α1Z(1n00α) + λ1n00α1Z(1n01α))) + 2λ1N1Z(1N ) .

we deduce that [f ] = 0 in ker(b − 1)/(b + 1)(C(X∞,Z)) whenever λ1N is even, and

[f ] = [1Z(1N )], whenever λ1N is odd. All is left to see is that [1Z(1N )] = [1Z(1N+1)], for all

N , but this is straightforward to check, since 1Z(1N )−1Z(1N+1) = 1Z(1N0) = (1+b)1Z(1N00),
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which is zero in the quotient. Hence, we conclude that ker(b−1)/(b+1)(C(X∞,Z)) ∼= Z2,

concluding the proof.

Theorem 5.20. Let (D∞, X) be the self-similar infinite dihedral group, and consider

G(D∞,X) its associated groupoid of germs. Then H0(G(D∞,X)) = 0, and H1(G(D∞,X)) ∼=
H2(G(D∞,X)) ∼= H1(H(D∞,X)) ∼= Z2. Moreover, Hn(G(D∞,X)) is a torsion group for all

n ≥ 3.

Proof. We will make use of the long exact sequence of homology given in Theorem 3.18.

As we noted in Lemma 5.16, H(D∞,X) is Kakutani equivalent to G(D∞,X) ×c Z, where c is

the cocycle defined as [α, g, β; βx] 7→ |α|−|β|. Moreover, the isomorphism H∗(H(D∞,X)) ∼=
H∗(G(D∞,X) ×c Z) is induced by the natural inclusion [α, g, β; βx] 7→ [α, g, β; βx]× {0}.
Here, we study the behaviour of the map in H∗(H(D∞,X)) induced by the shift σ :

G(D∞,X) ×c Z → G(D∞,X) ×c Z given by g × {n} 7→ g × {n + 1}, that is, the map σ̂∗

that makes the following diagram commute.

H∗(H(D∞,X)) H∗(H(D∞,X))

H∗(G(D∞,X) ×c Z) H∗(G(D∞,X) ×c Z)

σ̂∗

∼= ∼=

σ∗

We will focus our study in the cases ∗ = 0, 1.

For ∗ = 0, the map σ0 : H0(G(D∞,X) ×c Z) → H0(G(D∞,X) ×c Z) is given by

[1Z(0n,e,0n;Z(0n))×{0}] 7→ [1Z(0n,e,0n;Z(0n))×{1}].

Consider the bisection U := Z(0n, e, 0n+1;Z(0n+1))× {1} ⊆ G(D∞,X) ×c Z, which verifies

r(U) = Z(0n, e, 0n;Z(0n))× {1}, and

s(U) = Z(0n+1, e, 0n+1;Z(0n+1))× {0}.

Then δ1(1U) := s∗(1U) − r∗(1U) = 1s(U) − 1r(U) implies that [1Z(0n,e,0n;Z(0n))×{1}] =

[1Z(0n+1,e,0n+1;Z(0n+1))×{0}] in H0(G(D∞,X) ×c Z), and hence the map σ̂0 : H0(H(D∞,X)) →
H0(H(D∞,X)) is given by [1Z(0n,e,0n;Z(0n))] 7→ [1Z(0n+1,e,0n+1;Z(0n+1))]. Using the isomorphism

H0(H(D∞,X)) ∼= Z[1
2
] given in Lemma 5.17, we deduce the following description of σ̂0:

σ̂0 : H0(H(D∞,X)) ∼= Z[1
2
]→ Z[1

2
] ∼= H0(H(D∞,X))

x 7→ x
2
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We now the study the case ∗ = 1.

Let [1Z(0n,g,0n;Z(0n))×{0}] ∈ H1(G(D∞,X) ×c Z), and let [1Z(0n,g,0n;Z(0n))×{1}] be its image

under σ1. Using the same bisection U as before, we obtain

Z(0n, g, 0n;Z(0n))× {1} · U = U · Z(0n+1, g, 0n+1;Z(0n+1))× {0}.

In particular,

(Z(0n, g, 0n;Z(0n))× {1}, U) ⊂ (G(D∞,X) ×c Z)(2), and

(U,Z(0n+1, g, 0n+1;Z(0n+1))× {0}) ⊂ (G(D∞,X) ×c Z)(2).

Then we have:

δ2(1((Z(0n,g,0n;Z(0n))×{1},U))) = 1Z(0n,g,0n;Z(0n))×{1} + 1U − 1Z(0n,g,0n;Z(0n))×{1}·U ,

and

δ2(1(U,Z(0n+1,g,0n+1;Z(0n+1))×{0})) = 1U+1Z(0n+1,g,0n+1;Z(0n+1))×{0}−1(U ·Z(0n+1,g,0n+1;Z(0n+1))×{0}).

Gathering all the above facts, we deduce that

1Z(0n,g,0n;Z(0n))×{1} − 1Z(0n+1,g,0n+1;Z(0n+1))×{0} ∈ Im(δ2),

and thus it is 0 in H1(G(D∞,X) ×c Z).

Then we obtain that

σ1([1Z(0n,g,0n;Z(0n))×{0}]) = [1Z(0n+1,g,0n+1;Z(0n+1))×{0}] ∈ H1(G(D∞,X) ×c Z).

Finally, using the isomorphism H1(H(D∞,X)) ∼= Z2 given in Lemma 5.18, we conclude

that

σ̂1 : H1(H(D∞,X)) ∼= Z2 → Z2
∼= H1(H(D∞,X))

is the identity map.

We can now use the long exact sequence introduced in Theorem 3.18, that is

0 H0(G(D∞,X))oo H0(H(D∞,X))oo H0(H(D∞,X))
Id−σ̂0oo H1(G(D∞,X))oo H1(H(D∞,X))

ϕoo

· · · // H3(G(D∞,X)) // H2(H(D∞,X))
Id−σ̂2 // H2(H(D∞,X)) // H2(G(D∞,X)) // H1(H(D∞,X))

Id−σ̂1

OO

(5.6)

which, combined with all the previous results, is of the form
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0 H0(G(D∞,X))oo Z[1
2
]oo Z[1

2
]

x
2oo H1(G(D∞,X))oo Z2

ϕoo

· · · // H3(G(D∞,X)) // 0
Id−σ̂∗ // 0 // H2(G(D∞,X)) // Z2

0

OO (5.7)

It is immediate from this sequence that H0(G(D∞,X)) = 0, and H2(G(D∞,X)) ∼= Z2. More-

over, since x
2

: Z[1
2
]→ Z[1

2
] is injective, the map ϕ is an isomorphism between H1(G(D∞,X))

and Z2.

Finally, by Lemma 5.19, we obtain exact sequences for k ≥ 1:

0←− H2k+1(G(D∞,X))←− Z2
Id−σ̂∗←− Z2 ←− H2k+2(G(D∞,X))←− 0

from which we deduce that for all n ≥ 3, Hn(G(D∞,X)) is either 0 or Z2 (and thus a torsion

group).
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5.4 HK and AH conjectures

This section sums up all the results obtained and relate them with the HK-

conjecture. In particular, we present the first complete counterexample for both HK

and weak HK conjecture. Moreover, we also draw the attention a minor counterexample

for HK conjecture obtained in the process. The chapter ends with a discussion of Matui’s

AH conjecture for the groupoids involved.

5.4.1 A complete counterexample for Matui’s HK conjecture

The computation of the homology groups in Theorem 5.20, together with the

computation of the K-groups in Lemma 5.14, leads us to the main result of this chapter.

Indeed, below we show that the groupoid G(D∞,X) associated to the infinite dihedral

self-similar group contradicts both Matui’s HK and weak HK conjectures. Recall that,

as we pointed out in Definition 5.7, the groupoid G(D∞,X) is minimal, effective, Hausdorff

and ample, so it lies under the conditions of the mentioned conjecture. Moreover,

C∗r (G(D∞,X)) is a unital, purely infinite simple C∗-algebra ([20, section 17]).

Theorem 5.21. Let D∞ be the infinite dihedral group, and X = {0, 1}. Let (D∞, X)

be the induced self-similar group, and let G(D∞,X) be the associated groupoid of germs.

Then

Q ∼= Ki(C
∗
r (G(D∞,X)))⊗Q �

∞⊕
k=0

Hi+2k(G(D∞,X))⊗Q = 0, i = 1, 0

This means that G(D∞,X) provides a complete counterexample for Matui’s weak HK con-

jecture and, therefore, for Matui’s HK conjecture.

Proof. Since (D∞, X) is recurrent, the groupoid G(D∞,X) is amenable, and thus

C∗(D∞, X) ∼= C∗r (G(D∞,X)). The proof is then immediate after combining the com-

putation of the K-groups in Lemma 5.14, where it is shown that K0(C∗r (G(D∞,X))) ∼=
K1(C∗r (G(D∞,X))) ∼= Z, and noticing that all the homology groups are torsion groups, by

Theorem 5.20.

We close this subsection showing that, in fact, there is a second complete counterexample

for Matui’s HK conjecture (but not for the weak version) hidden among the previous

pages. The homology of H(D∞,X) was given by:

H0(H(D∞,X)) ∼= Z[1
2
],

H1(H(D∞,X)) ∼= Z2,

H2k(H(D∞,X)) = 0, for all k ≥ 1, and

H2k+1(H(D∞,X)) ∼= Z2, for all k ≥ 1.
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On the other hand, it was shown in [42, Theorem 5.3] that, whenever the self-similar

group is recurrent, then MD∞ is isomorphic to the full convolution algebra of H(D∞,X).

Moreover, H(D∞,X) is amenable [42, Theorem 5.6], and thus C∗r (H(D∞,X)) ∼=MD∞ . The

K-theory of MD∞ was computed in Proposition 5.13 to be:

K0(MD∞) ∼= Z[1
2
]⊕ Z, and K1(MD∞) = 0.

Finally, it is straightforward to check that H(D∞,X) lies under Matui’s HK hypothesis.

As we can see, this proves to be another complete counterexample for Matui’s HK-

conjecture. In the case of the weak version, the conjecture fails at the K0-term, but it

holds for the K1.

5.4.2 AH conjecture

As noted in Section 2.4, Matui posed, in addition to the HK, a second conjecture

regarding groupoids, which remains yet to be disproven. Even though it is not the main

theme of this text, it is worthwhile to save a few lines to the study of this AH conjecture

for the self-similar infinite dihedral groupoid, since most of the work is already done. As

pointed out in Section 2.4, this conjecture claimed the existence of an exact sequence:

H0(G)⊗ Z2
j→ [[G]]ab

Iab→ H1(G)→ 0,

where [[G]]ab is the abelianization of the full group defined in Definition 2.78, and Iab is

the index map defined in 2.79.

It was shown in [38, Theorem 4.4] that, whenever a groupoid is minimal, purely infinite

(Definition 2.44) and ample, then the verification of AH conjecture is equivalent to satis-

fying Property TR introduced in paragraph 2.83, that is, the condition that every element

of the kernel of the index map can be put as a product of transpositions (definition 2.77).

We will use the notation and results displayed in Section 2.4.

Proposition 5.22. Let (D∞, X) be the self-similar infinite dihedral group. Then the

groupoid H(D∞,X) defined in Lemma 5.16 satisfies Property TR.

Proof. We use a similar strategy to the one used in [44, Lemma 5.3, Proposition 5.4].

First, recall that H(D∞,X) =
∞⋃
n=0

(H(D∞,X))n, with (H(D∞,X))
(0)
n = G(0)

(D∞,X), and

(H(D∞,X))n ⊆ (H(D∞,X))n+1 for all n (see Remark 5.8). Then, the definition of topo-

logical full group implies that [[(H(D∞,X))n]] ⊆ [[(H(D∞,X))n+1]], and [[H(D∞,X)]] =
∞⋃
n=0

[[(H(D∞,X))n]].

Let πU ∈ [[(H(D∞,X))n]] such that I(πU) = 0, for some n ∈ N. We can assume, without

loss of generality, that U is of the form
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U =
k⊔
i=1

Z(αi, gi, βi;Z(βi)),

where αi, βi ∈ Xn, gi ∈ D∞, and
k⊔
i=1

Z(αi) =
k⊔
i=1

Z(βi) = X∞. Then, using the results

obtained in Lemma 5.18, we can write:

I(πU) =
k∑
i=1

[1Z(0n,gi,0n;Z(0n))] = [1Z(0n,
∏k
i=1 gi,0

n;Z(0n))],

where [1Z(0n,a,0n;Z(0n))] 7→ 0, and [1Z(0n,b,0n;Z(0n))] 7→ 1 under the isomorphism

H1(H(D∞,X)) ∼= Z2.

Therefore, we deduce that the condition I(πU) = 0 in H1(H(D∞,X)) implies that
∏k

i=1 gi

must be an arbitrary product of elements a, and bab.

Now, define U1, U2 as

U1 :=
k⊔
i=1

Z(αi, gi, αi;Z(αi)),

U2 :=
k⊔
i=1

Z(αi, ei, βi;Z(βi)).

It is clear that U = U1 · U2, and hence πU = πU1 ◦ πU2 . It was shown in [44, Lemma

5.3] that πU2 is product of transpositions. Let us show that πU1 is also a product of

transpositions.

For each 1 < i ≤ k, define the bisections

Vi := Z(α1, gi, αi;Z(αi)), Wi := Z(α1, e, αi;Z(αi)).

One can check that

U1V̂2Ŵ2...V̂kŴk = Z(α1,
k∏
i=1

gi, α1;Z(α1)) t
k⊔
i=2

Z(αi, e, αi;Z(αi)).

Moreover, if we define

Wa := Z(α11, e, α10;Z(α10)), and Wbab := Z(α11, ba, α10;Z(α10)),

then we obtain

Z(α1, a, α1;Z(α1)) t
k⊔
i=2

Z(αi, e, αi;Z(αi)) = Ŵa,

and

Z(α1, bab, α1;Z(α1)) t
k⊔
i=2

Z(αi, e, αi;Z(αi)) = Ŵbab.

Indeed, since a · 0 = 1 · e and a · 1 = 0 · e, we have

Ŵa = Z(α11, e, α10;Z(α10)) t Z(α10, e, α11;Z(α11)) tX∞ \ Z(α1) =

= Z(α1, a, α1;Z(α1)) t
k⊔
i=2

Z(αi, e, αi;Z(αi)), where we identify Z(αi, e, αi;Z(αi)) with
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Z(αi), as usual. A similar argument applies to Ŵbab. Now, since
k∏
i=1

gi is a product of

elements a, and bab, we deduce that U1V̂2Ŵ2...V̂kŴk is a product of elements Ŵa, and

Ŵbab, and therefore

πU1(πV̂2
πŴ2

...πV̂kπŴk
) = ...πŴa

πŴbab
πŴa

...,

thus πU1 is a product of transpositions. We deduce that πU1 ∈ T (H(D∞,X)), and hence

πU ∈ T (H(D∞,X)), concluding the proof.

Finally, let us show that the G(D∞,X) also satisfies Property TR, concluding that the

AH-conjecture holds for G(D∞,X).

Theorem 5.23. Let (D∞, X) be the self-similar infinite dihedral group. Then the

groupoid G(D∞,X) satisfies the AH-conjecture.

Proof. As we noted before, since G(D∞,X) is a minimal purely infinite ample groupoid, all

we need to do is to check that, indeed, G(D∞,X) satisfies Property TR.

Let IG, IH be the respective index maps for G(D∞,X) and H(D∞,X), and let ϕ :

H1(H(D∞,X)) → H1(G(D∞,X)) be the map appearing in the long exact sequence shown

in Lemma 3.18. Recall that this map was proven to be an isomorphism in Theorem 5.20,

and by definition it is given by ϕ([1Z(0n,b,0n;Z(0n))]) = [1Z(0n,b,0n;Z(0n))]. It was shown in

[44, Lemma 4.6] that this map is natural with respect to the index map, in the sense that

IG(πU) = ϕ(IH(πU)), for every full bisection U ⊆ H(D∞,X). Since ϕ is an isomorphism,

we deduce that, for every U ⊆ H(D∞,X), IG(πU) = 0 if and only if IH(πU) = 0.

Suppose U ⊆ G(D∞,X) is a full bisection such that IG(πU) = 0, and recall that any full

bisection can be written as U =
k⊔
i=1

Z(αi, gi, βi;Z(βi)), for gi ∈ D∞, and αi, βi ∈ X∗ such

that
k⊔
i=1

Z(αi) =
k⊔
i=1

Z(βi). Define

V =
k⊔
i=1

Z(αi, gi, αi;Z(αi)) ⊆ H(D∞,X), and

W =
k⊔
i=1

Z(αi, e, βi;Z(βi)) ⊆ G(D∞,X).

Then we have that U = VW , and hence

0 = IG(πU) = IG(πV ) + IG(πW ).

Define now Ω as the subgroupoid of G(D∞,X) given by

Ω := {[α, e, β; βx] ∈ G(D∞,X) : α, β ∈ X∗, x ∈ X∞}
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This subgroupoid is isomorphic to the groupoid of one-sided full shift with two letters

(see [37]).

Then we have that πW ∈ [[Ω]] ⊆ [[G(D∞,X)]]. It was shown in [37, Lemma 6.10] that

πW ∈ T (Ω) ⊆ T (G(D∞,X)), and hence IG(πW ) = 0.

Finally, IG(πW ) = 0 implies that IG(πU) = IG(πV ) = IH(πV ) = 0, and therefore we obtain

that πV ∈ T (H(D∞,X)) ⊆ T (G(D∞,X)). We deduce that πU ∈ T (GD∞,X), and so G(D∞,X)

satisfies Property TR, concluding the proof.

As we can see, the groupoid G(D∞,X) satisfies the AH conjecture, which remains yet to

be disproven.

Matui’s AH conjecture provides a useful tool for the computation of the topological full

group of a groupoid. In this line, the last theorem, in addition to Theorem 5.20, implies

an isomorphism [[G(D∞,X)]]ab ∼= Z2 given by the index map. [[G(D∞,X)]]ab is then generated

by the class πU , where U = Z(∅, b, ∅;X∞).
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