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Motivation

Between Cauchy-Lipschitz and DiPerna-Lions

This thesis is mainly devoted to the study of certain planar vector fields and the rotational properties
of its flow. We use strong geometric tools coming from Geometric Function Theory to describe these
vector fields and their corresponding flows. Let us start with the Lagrangian method of describing
a vector field. We are given a bounded smooth vector field b : [0, T ]× Rn → Rn. The flow of b is
the map X : R× Rn → Rn such that the ODE{

d
dtX(t, x) = b (t,X(t, x))

X(0, x) = x.
(1)

holds true. For simplicity, we will assume b to be time-independent, although most of what we
discuss below holds for non-autonomous vector fields b = b(t, x). By the classical Cauchy-Lipschitz
theory it is well known that if the vector field b is Lipschitz, b ∈ Lip(Rn), then the flow X is
bi-Lipschitz. Moreover, by the classical Rademacher-Stepanov Theorem, this also shows that for
every fixed time t the flow map X(t, ·) is differentiable at almost every point x. Slightly below
Lipschitz vector fields, we have the Zygmund class. The Zygmund class Λ∗(Rn) is the space of
bounded continuous vector fields b : Rn → Rn so that

|b(x+ h) + b(x− h)− 2b(x)| ≤ C‖h‖ (2)

for each x, h ∈ Rn. This class was introduced by Zygmund in the 40s when he observed that the
conjugate of a Lipschitz function in the unit circle needs not be Lipschitz, but rather it is in this
particular class. In this sense, Λ∗(Rn) is known to be the natural replacement for Lip(Rn) in many
different circumstances in Harmonic Analysis, due to its Calderón-Zygmund invariance. Also, the
following inclusions hold true,

Lip(Rn) ( Λ∗(Rn) ( Cα(Rn), (3)

where Cα(Rn) is the class of Hölder continuous vector fields in Rn with 0 < α < 1.

Zygmund vector fields are important because they represent the first example of non necessar-
ily Lipschitz vector fields producing well defined flows. Indeed, these vector fields are continuous,
with a modulus of continuity of type δ log 1

δ , which ensures existence and uniqueness of a flow of
Hölder continuous homeomorphisms, by virtue of Osgood’s theorem. At the same time, in contrast
to the case of Lipschitz vector fields, functions in the Zygmund class may be non-differentiable
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at any point, whence in general one should not expect the flow X(t, ·) of such vector fields to be
differentiable either.

Away from Lipschitz and Zygmund vector fields, one has vector fields in the Sobolev class W 1,p
loc for

1 ≤ p <∞. When 1 ≤ p ≤ n, these vector fields need not be continuous in general. For n < p <∞
they are Hölder continous with exponent 1− n

p , but they may fail to be Lipschitz or Zygmund. In
this setting, there is another option for describing the flow, viz. the Eulerian formulation. In this
method, we consider the associated PDE to (1), that is{

∂tu+ b · ∇u = 0

u(x, 0) = u0.
(4)

In the literature, this PDE is called the Linear Transport Equation. Roughly speaking, well posed-
ness of (4) for b ∈ W 1,p

loc with p < +∞ was proved by Di Perna-Lions in 1989, see [24]. They
used the method of renormalization from mathematical physics. In 2004 Ambrosio gave a major
breakthrough by extending this result to a class of vector fields which are less regular than Sobolev,
viz. BVloc vector fields, see [5]. Among the consequences of Di Perna - Lions theory, one obtains
for any Sobolev vector field b the existence and uniqueness of a well-defined flow X(t, x), which
consists (at any time) of measurable self-maps of Rn, and which in general won’t be continuous,
hence they won’t be differentiable either. However, by a result of Le Bris - Lions [40], one may
ensure for these flows a much weaker kind of differentiability: they are differentiable in measure.

The Gap

There are some particular instances for which the flow X inherits the Sobolev smoothness of the
vector field b. This is the case, for instance, when n = 2 and the Sobolev vector field mostly points
towards a particular direction, as proven by Marconi [41]. More precisely, if there exist δ > 0 and
e ∈ S1 for which b · e > δ a.e. in a ball B(x,R) and div(b) = 0 then the flow map X has exactly
the same degree of Sobolev regularity as b itself. Unfortunately, the vector fields we are interested
in will most likely not satisfy Marconi’s assumptions, as happens quite often in Fluid Mechanics.

Trying to avoid any restrictions on the direction of b, it was proven recently that there is a subclasss
of Sobolev vector fields which are not Lipschitz but still its flow enjoys some Sobolev smoothness.
These are vector fields b for which its gradient falls into the exponential class. Let us recall that a
function u belongs to the local Exponential class Exp(L)loc if there is some λ > 0 such that

ˆ
B

exp(λ|u|)dx < +∞ for each ball B. (5)

Functions in Exp(L)loc belong to Lploc for every finite p. Vector fields with derivatives in Exp(L)loc
have δ log 1

δ modulus of continuity, and so they admit a well defined flow of Hölder continuous home-

omorphisms. In [23], it is shown that if b ∈ W 1,1
loc has gradient ∇b ∈ Exp(L)loc and div(b) ∈ L∞

then its flow map X(t, ·) belongs to the local Sobolev space W 1,p
loc for each p ≤ C

t , if t > 0 is small
enough.

Another interesting example is given in [43]. There it is shown that any vector field with bounded
traceless symmetric differential admits a well defined flow of Hölder continuous homeomorphisms
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which turn out to be Sobolev regular at any time. These vector fields are a subclass of Λ∗, so
the point here is not the existence and uniqueness of a Hölder continuous flow, but its Sobolev
smoothness. Remarkably, these vector fields need not have bounded divergence, and so the classi-
cal DiPerna - Lions theory may not be applicable.

In general, though, Sobolev vector fields do not give rise to Sobolev regular flows (not even of
fractional order) as shown in [4] and [36]. To be precise, for any finite p there is a vector field b
belonging to W 1,p

loc such that the DiPerna - Lions flow of b does not belong to any Sobolev space
Wα,q even for fractional α. Moreover, one may modify the construction and obtain a vector field
b belonging to the intersection of all Sobolev spaces W 1,p

loc for finite p for which the flow does not
have any degree of Sobolev regularity.

The above lines show the existence of a gap between Cauchy-Lipschitz and DiPerna-Lions the-
ories. In the first one, Lipschitz fields produce Lipchitz flows. In the second, Sobolev fields may
produce non-Sobolev flows. In between these two situations, we have many vector fields (for in-
stance, the ones in [23, 15]) for which some Sobolev smoothness can be granted to its flow, yet they
are not Lipschitz. This thesis is devoted to vector fields that fall into this gap. As will be clear
along the thesis, this gap is very narrow and unstable, as drastic changes in the regularity of X
may happen around it.

Most of the examples of vector fields in this gap can be constructed as Riesz potentials of BMO
functions. Let us recall that a locally integrable function u in Rn is said to have bounded mean
oscillation, in short u ∈ BMO, if

‖u‖BMO = sup
B

(
1

|B|

ˆ
B
|u(x)− uB|2 dx

) 1
2

< +∞ (6)

where the supremum is taken over the set of all balls B in Rn and

uB =
1

|B|

ˆ
B
u(x)dx

is the average of u on the balls B. BMO functions are known to have a degree of exponential
integrability, due to the well-known John-Nirenberg inequality,

|{x ∈ Q : |u(x)− uQ| > δ}| ≤ C1e
−C2δ/‖u‖∗ |Q|,

where u ∈ BMO and C1, C2 are constants depending on the dimension. Q is any cube in Rn and
δ > 0 is any real number. In particular, if u ∈ BMO then u belongs to the exponential class (5)
with λ = C2δ

‖u‖∗ . The space of continuous vector fields such that their distributional derivatives are

in BMO is denoted by I1(BMO). The relation between these three classes of vector fields, viz.
Lipschitz, Zygmund and I1(BMO) is the following:

Lip ( I1(BMO) ( Λ∗. (7)

In contrast to what happens to Zygmund vector fields, if b ∈ I1(BMO) then b is differentiable in
the classical sense at almost every point, and hence asking about the differentiability of X may make
sense. When n = 2, I1(BMO) can also be defined by means of the Cauchy-Riemann derivatives,

∂zb = ∂b =
(∂x − i∂y) (b1 + ib2)

2
=

div b + i curl b

2
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and

∂zb = ∂b =
(∂x + i∂y) (b1 + ib2)

2
.

So, b ∈ I1(BMO) ⇐⇒ ∂b, ∂b ∈ BMO. Examples of this situation are given when either
∂b ∈ L∞ or ∂b ∈ L∞, as both conditions force Db ∈ BMO. Such vector fields are guaranteed
all goods from both Zygmund vector fields (they admit a well defined flow, consisting of Hölder
continuous homeomorphisms) and DiPerna-Lions theory (the flow is compatible with transport
equations). Moreover, they enjoy at small times certain degree of Sobolev regularity. Indeed, in
the case ∂b ∈ L∞ this is due to the results at [23, 15], while the conclusion for ∂b ∈ L∞ is a
consequence of [43]. In the next paragraphs we intend to explain both situations separately.

Reimann’s vector fields and the quasiconformal world

According to Reimann [43], a continuous vector field b : Rn → Rn belongs to the Q class iff there
exists a constant C ≥ 0 so that for each x ∈ Rn and every h, k 6= 0 with |h| = |k| one has∣∣∣∣ 〈b(x+ h)− b(x), h〉

|h|2
− 〈b(x+ k)− b(x), k〉

|k|2

∣∣∣∣ ≤ C (8)

The best possible value of C is denoted by ‖b‖Q. It is not hard to see that

Lip(Rn) ( Q(Rn) ( Λ∗(Rn). (9)

Moreover, when n = 1, Q = Λ∗. By the classical ODE theory, if b ∈ Λ∗ then the initial value
problem (1) has a well-defined, unique flow of time-dependent solutions X(t, x). In particular, this
solution is a Hölder continuous homeomorphism in the space variable x. If b is non-autonomous
and also depends on time, the same conclusion holds if one assumes sup

t
‖b(·, t)‖Q <∞.

In [43] Reimann was able to identify in differential terms the elements of Q as follows,

b ∈ Q ⇐⇒ Sb ∈ L∞(Rn) and
|b(x)|

|x| log (e+ |x|)
≤ C, (10)

along with its quantitative formulation ‖b‖Q ' ‖Sb‖∞. Here Sb denotes the traceless symmetric
differential matrix of b,

Sb =
1

2

(
Db +Dtb

)
− div(b)

n
· In.

In the plane, Sb is equivalent to the complex derivative ∂b. This explains that the class Q falls
into the gap described in the previous section. The Sobolev regularity of the flow associate to any
b ∈ Q is understood with the help of quasiconformality and quasisymmetry.

Quasiconformality and quasisymmetry

Quasiconformal mapping is the central object of complex function theory. Historically, the discov-
ery of quasiconformal mappings could be thought of as the result of an interesting problem posed
by Grötzsch [27]. He asked to find the best possible nearly conformal mapping that maps a given
square to a given rectangle, while vertices are mapped into vertices. To provide a positive answer,
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first of all one needs to consider what it means to be nearly conformal. This paved the way towards
the generalization of conformal mappings to what would later on become quasiconformal mappings.
The term Quasiconformal mappings appeared for the first time in Ahlfors’s 1935 famous article on
covering spaces [1], for which he received the Fields Medal in 1936. Carathedory said that this
article opened a new branch in analysis, that could be called metric topology.

Given a domain Ω ⊂ Rn, and a real number K ≥ 1, a K-quasiconformal mapping is an orientation-
preserving homeomorphism f : Ω→ Rn with f ∈W 1,n

loc (Ω) and such that

|Df(z)|n ≤ K · Jf (z) (11)

at almost every point z ∈ Ω. Here |Df(z)| stands for the operator norm of the differential matrix
Df(z) at z and Jf (·) = det(Df) is the Jacobian determinant. The smallest constant K = K(f) for
which the distortion inequality (11) holds a.e. is called the distortion of f .

When n = 2, a way to construct nontrivial quasiconformal maps is through the so called Bel-
trami equation,

∂f(z) = µ(z)∂f(z). (12)

Here µ is a bounded measurable function satisfying

‖µ‖∞ =
K − 1

K + 1
< 1,

and it is called the Beltrami coefficient of f . The classical Measurable Riemann Mapping Theorem
asserts that to each such µ one can associate a K-quasiconformal mapping f : C→ C solving (12),
and moreover it is unique after choosing its value at three points.

There are other definitions for quasiconformality, whose equivalence was proven by a lot of math-
ematicians, Ahlfors, Bers and Gehring to name a few, during the 50s and 60s. The different
approaches to quasiconformal mappings clearly explains why these maps have played a central role
in diverse areas of mathematics such as Harmonic Analysis, Elliptic PDE, Inverse Problems, Com-
plex Dynamics, Differential Geometry and more recently Fluid Mechanics. Among these equivalent
definitions, the following metric concept plays an essential role.

Let η : [0,∞) → [0,∞) be an increasing homeomorphism. Given a domain Ω ⊂ Rn we call
an orientation-preserving homeomorphism f : Ω → Rn to be η-quasisymmetric if for each triple
z, w, y ∈ Ω we have

|f(z)− f(w)|
|f(z)− f(y)|

≤ η
(
|z − w|
|z − y|

)
(13)

Quasiconformality and quasisymmetry are quantitatively equivalent notions. More precisely, if
f : Rn → Rn is K-quasiconformal, then f is η-quasisymmetric, where η depends on K and n.
Conversely, η-quasisymmetric mappings can be shown to be K-quasiconformal for some K = Kη

that depends on η and n.

Sobolev regularity of quasiconformal mappings

By definition, every K-quasiconformal mapping f : Ω→ Rn lies in the local Sobolev space W 1,n
loc (Ω).

The Bojarski-Iwaniec theorem states that f actually belongs to a better Sobolev space W 1,p
loc (Ω) for
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some p > n. More precisely, if f : Ω → Rn is a K-quasiconformal mapping, then there exists a
number p0 = p0(n,K) > n such that f ∈ W 1,p

loc (Ω) for each p < p0. The precise value of p(n,K)
remains an open problem, except for n = 2. Indeed, the value of p(2,K) can be obtained from
Astala’s Area Distortion Theorem [3]. It states that for any planar K-quasiconformal mapping f ,
one has

1

CK

(
|E|
|D|

)K
≤ |f(E)|
|f(D)|

≤ CK
(
|E|
|D|

) 1
K

(14)

for any disk D ⊂ C and E ⊂ D. Now, if f is a given K-quasiconformal mapping, and we set E = Et
where

Et = {z ∈ D : J(z, f) > t}

then one gets from (14) that

|Et| ≤ CK |D|
1

1−K

(
|f(D)|
t

) K
K−1

. (15)

As a consequence, the Jacobian J(·, f) belongs to the weak Lebesgue space L
K
K−1 ,∞
loc and therefore

Df ∈ L
2K
K−1 ,∞
loc . In particular, p(2,K) = 2K

K−1 , and this is sharp as proven by f(z) = z|z| 1K−1.

Reimann’s flows are Sobolev regular

One of the main points in Reimann’s theory is that if b ∈ Q then the solution x 7→ X(t, x) of (1)
consists of quasisymmetric mappings for all t > 0. For the reader’s convenience, we sketch the proof
for autonomous b. Writing x = X(t, x0) and x+ h = X(t, y0), one immediately sees that

〈b(x+ h)− b(x), h〉
|h|2

=
〈 ddt (X(t, y0)−X(t, x0)) , X(t, y0)−X(t, x0)〉

|X(t, y0)−X(t, x0)|2

=
d

dt

(
1

2
log |X(t, y0)−X(t, x0)|2

)
Then repeating with a third point x+ k = X(t, z0), one gets that

〈b(x+ k)− b(x), k〉
|k|2

=
d

dt

(
1

2
log |X(t, z0)−X(t, x0)|2

)
Then (8) becomes equivalent to∣∣∣∣∣ ddt

(
1

2
log
|X(t, y0)−X(t, x0)|2

|X(t, z0)−X(t, x0)|2

)∣∣∣∣∣ ≤ C (16)

Roughly speaking, this gives quasisymmetry after integrating in time. By virtue of the equivalence
between quasisymmetry and quasiconformality, one then gets that if b ∈ Q then its flow is Sobolev
regular at all times, at least W 1,n

loc and for sure something better, according to Bojarski-Iwaniec
Theorem. However, only rough bounds can be given for the distortion of X(t, ·) at this point: the
ones coming from the quasisymmetry modulus η of X(t, ·).
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In the same way Q is the pointwise version of Sb ∈ L∞, and quasisymmetry is the pointwise
version of quasiconformality, one can equivalently show that if Sb ∈ L∞ then the flow consists of
Kt-quasiconformal mappings for all times t > 0, and for some Kt ≥ 1. Here Kt is the best possible
quantity for which the inequality

|DX(t, x)|n ≤ Kt J(x,Xt)

holds true at almost every x ∈ Rn. For the reader’s convenience, we sketch below the proof of this
fact for n = 2. It is based in the fact that the ODE (1) allows to deduce an ODE for the Beltrami

coefficient µ = µt = ∂Xt
∂Xt

of X = Xt = X(t, ·). Indeed, after taking ∂ and ∂ at (1), one easily gets
that

d
dtµt

1− |µt|2
= ∂b (Xt)

∂Xt

∂Xt
(17)

where ∂X is the complex conjugate of ∂X. The most remarkable fact here is that the above ODE
can be integrated in time. If we do it, one immediately gets

1

2
log

(
1 + |µt|
1− |µt|

)
≤
ˆ t

0

‖∂b(s, ·)‖∞ ds

Having in mind that Kt = 1+‖µt‖∞
1−‖µt‖∞ , this is equivalent to say that

Kt ≤ exp

(
2

ˆ t

0

‖∂b(s, ·)‖∞ds
)
. (18)

A similar argument in Rn shows that the optimal bound for Kt is

Kt ≤ exp

(
n

ˆ t

0

‖Sb(s, ·)‖∞ds
)
. (19)

The advantage of using quasiconformality instead of quasisymmetry is that now the bounds for
the distortion of X(t, ·) are much more precise. This allows to estimate the best p for which
X(t, ·) ∈ W 1,p

loc . Indeed, one can take p < p(n,Kt) where Kt is as in (18) or (19), and p(n,K) is
the one in Bojarski-Iwaniec Theorem. In particular, when n = 2 one has p(2,Kt) = 2Kt

Kt−1 , and
therefore

X(t, ·) ∈W 1,p
loc whenever p <

2

1− exp
(
−2

´ t
0
‖∂b(s, ·)‖∞

) . (20)

When n = 2, the vector field b(z) = −z log |z| produces the flow X(t, z) = z|z|
1
Kt
−1 with Kt = et.

Since ‖∂b‖∞ = 1
2 , b can be used to prove that (20) is sharp, in the sense that the largest value of

p at (20) may not be attained.

Flows arising from the incompressible Euler system

When looking for planar vector fields in a similar situation to Reimann’s, a natural option consists
of replacing the boundedness of the anticonformal derivative ∂b ∈ L∞ by its conformal counterpart
∂b ∈ L∞. By doing this, one includes in the discussion certain examples from Fluid Mechanics,

8



as for instance any bounded curl solution to the Euler system of equations. Some solutions to the
so-called aggregation system can also be included.

Let us consider the following active scalar model in the plane,
ωt + (b · ∇)ω = 0

b(t, ·) = K ∗ ω(t, ·)
ω(0, ·) = ω0

(21)

where K(z) = iz
2π|z|2 . This is known as the planar incompressible Euler equation in vorticity form.

Given a compactly supported ω0 : R2 → R with ω0 ∈ L∞, Yudovich [48] proved existence and
uniqueness of a solution ω = ω(t, z) of (21) belonging to L∞((0,∞)×R2). The connection between
b and ω is known as the Biot-Savart law. In particular, this law says that

b = K ∗ ω ⇐⇒ ∂b =
i

2
ω.

Since ω ∈ R, this means that div(b) = 0, and curl(b) = 1
2ω. In conclusion, if b is the velocity

field associated to a Yudovich solution ω = ω(t, z) of the above system (21), then ∂b ∈ L∞ and
therefore Db ∈ BMO so that b ∈ I1(BMO). In particular, b admits a well defined flow of measure
preserving, Hölder continuous homeomorphisms X(t, ·) : C→ C.

A similar situation is given with the kernel choice K(z) = z
2π|z|2 . Indeed, now one has ∂b = ω

2 so

that again any solution ω ∈ L∞((0,∞) × R2) to this new version of (21) produces another vector
field b with ∂b ∈ L∞. Examples of these solutions were given in [12].

In both examples above, one has Db ∈ Exploc and div(b) ∈ L∞. This allows to apply [23,
Theorem 4], and claim that for small times X(t, ·) has Lploc distributional derivatives, for some p
that may vary in time.

Optimal Sobolev regularity of Euler’s flow

We may always ask for the best p such that the Euler flow X(t, ·) belongs to the local Sobolev space
W 1,p
loc . It was conjectured in [23] that

X(t, ·) ∈W 1,p
loc whenever p <

2

1− exp (−t‖ω0‖∞)
. (22)

If this conjecture holds true, then the Sobolev embedding gives to the Euler flow an optimal Hölder
exponent strictly below exp (−t‖ω0‖∞), as proven by Bahouri and Chemin in [9]. In other words,
a proof of this conjecture would imply Bahouri-Chemin’s theorem. Also in the positive direction,
it was proven in [23, Corollary 3] that

X(t, ·) ∈W 1,p
loc whenever p <

2

t ‖ω0‖L∞

so that Conjecture (22) has the right order as t→ 0+.
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It is worth to mention that what we just explained does not only refer to vector fields b solving the
Euler system (21), but indeed to any other vector field b for which ∂b is a bounded quantity. In
other words, for such b one can reformulate Conjecture (22) as follows:

X(t, ·) ∈W 1,p
loc whenever p <

2

1− exp
(
−2

´ t
0
‖∂b(s, ·)‖∞ds

) . (23)

This conjecture is partially motivated by the positive and optimal result available for vector fields in
the Reimann class, namely (20). Thus, it seems natural to explore if the methods that worked out
in proving (20) can be used as well for proving (23). Such a strategy may be faced in two different
ways, one of a metric nature and one more geometric. At the metric side, one should start by
characterizing in pointwise terms the vector fields b with bounded ∂b (just as Reimann did when
proving equivalence between ∂b ∈ L∞ and Q) and then try to obtain geometric information about
the flow from these pointwise conditions (in the same way that quasisymmetry arises from Q). At
the geometric side, instead, one should directly work with condition ∂b ∈ L∞, and seek for its
geometric effects on the flow, in the same way condition ∂b ∈ L∞ guarantees the quasiconformality
of the flow.

In this thesis, we got some success in the metric part, and failed in the geometric. We now enter
the first one.

Pointwise descriptions of vector fields with bounded curl and
divergence

We introduce the class Q of vector fields b : R2 → R2 for which there exists a constant C ≥ 0 such
that for all x ∈ R2 and every h, k 6= 0 with |h| = |k| one has∣∣∣∣ 〈b(x+ h)− b(x), h〉

|h|2
− 〈b(x+ k)− b(x), k〉

|k|2

∣∣∣∣ ≤ C (24)

Here h and k denote complex conjugates. The best possible value of C is denoted by ‖b‖Q.

Similarly, for a given θ ∈ [0, 2π], we denote by Rθ the class of vector fields b : R2 → R2 for which
there is a constant C ≥ 0 such that for all x ∈ R2, every h, k 6= 0 with |h| = |k| one has∣∣∣∣ 〈b(x+ h)− b(x), eiθk〉

|h||k|
− 〈b(x+ k)− b(x), eiθh〉

|h||k|

∣∣∣∣ ≤ C (25)

As before, ‖b‖Rθ denotes the best possible C. It should be noted that Q ⊂ Λ∗ and Rθ ⊂ Λ∗.
Finally, we denote R = ∩θRθ, and call ‖b‖R = supθ ‖b‖Rθ . It is not hard to see that Q̄ ⊂ Λ∗ and
also that Rθ ⊂ Λ∗ for each θ. Our first result regarding the equivalence of these two classes, Q and
Rθ is the following one.

Theorem (Theorem 2.1.1). Let b : R2 → R2 be a continuous vector field. Then the following are
equivalent:

• b ∈ Q.

10



• b ∈ R.

• b ∈ R0 ∩Rπ/2

• b is differentiable a.e., ∂b ∈ L∞ and |b(x)|
|x| log(e+|x|) ≤ C.

If one of these holds true, then ‖b‖Q̄ ' ‖b‖R ' max{‖b‖R0
, ‖b‖Rπ/2} ' ‖∂b‖∞.

The above result establishes a very convenient counterpart to Reimann’s characterization of the
condition ∂b ∈ L∞, namely (8). Also, it shows that indeed R,Q ⊂ I1(BMO), while this may fail
for Rθ. It is remarkable that for R only two rotations are needed θ = 0 and θ = π/2.

In contrast to Reimann’s setting, now it is not immediate to extend the class Q to Rn, n > 2,
due to the presence of complex conjugation in its definition. Also, extending the class Rθ to higher
dimensions does not look to be a good idea either, because the set of rotations to be included is
not clear. Let us give a brief explanation that why it is not clear. For instance, the rotation factor
eiθ may be replaced by rotations not only in the Ox1,x2 plane, but on any of the coordinate planes
Oxi,xj . To this end, let us introduce the set Jn = {Ji,j}1≤i<j≤n of matrices Ji,j ∈ Rn×n defined by

Ji,j ei = −ej
Ji,j ej = ei

Ji,jek = ek, k 6= i, j

where e1, ..., en is the canonical basis in Rn. A natural extension for the class R in Rn, n > 2, would
be provided by asking b : Rn → Rn to satisfy∣∣∣∣ 〈b(x+ h)− b(x), Jk〉

|h||k|
− 〈b(x+ k)− b(x), Jh〉

|h||k|

∣∣∣∣ ≤ C (26)

for all matrices J ∈ Jn ∪{Id}, all points x, and all directions h, k 6= 0 with |h| = |k|. The following
Lemma shows that this extension is, indeed, trivial.

Lemma (Lemma 2.12). Let n > 2 and b : Rn → Rn be a vector field. Moreover, assume that x is
a differentiability point of b. If

lim sup
|h|=|k|→0

sup
J

∣∣∣∣ 〈b(x+ h)− b(x), Jk〉
|h||k|

− 〈b(x+ k)− b(x), Jh〉
|h||k|

∣∣∣∣ ≤ C (27)

then |Db(x)| ≤ C C for some dimensional constant C.

The above result shows that the class of vector fields b satisfying (26) consists, indeed, of Lipschitz
vector fields when n > 2. To the contrary, this class is much larger in the plane. Therefore, it is
not a good idea to build higher dimensional counterparts to Rθ in this way.

Nevertheless, one might still get L∞ estimates by removing all rotations, even in higher dimen-
sions. Formally, one can define the class of vector fields b : Rn → Rn for which there exists a
constant C ≥ 0 such that for all x ∈ Rn and every h, k with |h| = |k| 6= 0 one has∣∣∣∣ 〈b(x+ h)− b(x), k〉

|h||k|
− 〈b(x+ k)− b(x), h〉

|h||k|

∣∣∣∣ ≤ C (28)

11



Above, ‖b‖R0 denotes the best possible constant C. At this point, we state a new theorem on the
nature of the vector fields in the class R0.

Theorem (Theorem 2.1.2). Let b ∈ R0. Then Db−Dtb ∈ L∞(Rn) in the sense of distributions
and

‖Db−Dtb‖∞ ≤ C‖b‖R0

for some constant C > 0.

Note that the class R0 is much larger than R even in the plane. So, R0 may include many elements
not differentiable a.e. This prevents us from seeking higher dimensional counterparts to Theorem
2.1.1 for R0. To overcome this barrier, we need to add conditions on b that guarantee its a.e.
differentiability. One option consists of asking b to be nearly incompressible. In other words,
div b ∈ L∞. This motivates us to consider the differential operator Ab,

Ab =
1

2

(
Db−Dtb

)
+

div(b)

n
· In,

which is equivalent to ∂b in the plane. With the help of Ab we found the following.

Theorem (Theorem 2.1.3). Let b : Rn → Rn be a continuous vector field.

• If b ∈ R0 and is nearly incompressible, then b is differentiable a.e. and

‖Ab‖∞ ≤ C (‖ div b‖∞ + ‖b‖R0
) .

• If Ab ∈ L∞ and |b(x)|
|x| log(e+|x|) ≤ C, then b ∈ R0 and

‖b‖R0 ≤ C‖Ab‖∞.

As in Reimann’s case, one of the main tools used to prove this theorem is that if b is a compactly
supported vector field such that Ab ∈ L∞ then b has BMO distributional derivatives, which in
turn guarantees that b is differentiable a.e. One can always relax the assumption div b ∈ L∞ to
div b ∈ Lp for some p > n. In this case, one gets Db−Dtb ∈ Lp. Then, since the Riesz transforms

Rjb(x) =
1

πωn−1
lim
ε→0

ˆ
Rn\Bε(x)

(xj − yj) b(y)

|x− y|n+1
dy, j = 1, 2, ..., n,

boundedly map Lp to Lp, we can say that b has Lp distributional derivatives, which also ensures
that b is differentiable a.e. because p > n. On the other hand, from the applicability point of view,
the above result can be used to describe in a pointwise sense, among all the solutions to the Euler
equations, the ones with bounded vorticity.

Rotational properties of Mappings of Finite Distortion

The notion of quasiconformality admits a degenerate extension. To be precise, in (11) one can
replace the constant K by a measurable function K(·, f) ≥ 1, finite almost everywhere but not
necessarily bounded. Then one speaks about mappings of finite distortion to refer to the class of
mappings satisfying this new version of (11). The best possible function K(·, f) is known as the
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distortion function of f .

Mappings of finite distortion arise in a natural way in Fluid Mechanics. Indeed, it is proven in
[23] that if b = K ∗ ω is the velocity field associate to any solution ω to (21), with compactly
supported ω0 ∈ L∞, and t > 0 is small enough, then every flow map Xt = X(t, ·) : C → C of b is
a mapping of finite distortion, with distortion function K(·, Xt) ∈ Lploc(C), provided that p < C

t ,
where C depends only on ‖ω0‖∞.

In general, if f is a mapping of finite distortion and K(·, f) ∈ Lploc, and further f is a homeo-
morpshism, then f admits lower bounds for compression. In other words, there exists a real valued
increasing, onto homeomorphism η : [0,∞)→ [0,∞) such that

|f(z)− f(w)| ≥ η(|z − w|),

as proven in [38]. However, η is much weaker than any power function, which means that if α > 0
then limt→0 t

−α η(t) = 0. That is to say, f should not be expected to have a Hölder continuous
inverse. Hence, it is remarkable that each bounded and compactly supported vorticity ω0 produces
solutions ω to the incompressible Euler system (21) for which the corresponding flow Xt and its
inverse X−1

t are both Hölder continuous, with a Hölder exponent that decays exponentially in time.
This makes Euler flows particularly special within the class of homeomorphisms with distortion in
Lploc.

In the recent years, there has been an increasing interest in understanding the rotational prop-
erties of planar mappings of finite distortion. Broadly speaking, given one such map f : C → C
with f(0) = 0 and f(1) = 1, the main concern is the maximal growth of | arg (f(r)) | as r → 0+.
This represents the number of times that the image f ([r, 1]) winds around the origin as r → 0+. It
is known that this quantity admits several speeds of growth depending on the class of maps under
study. As explained in [7, 31, 32], the local rotational properties go hand in hand with the local
stretching behavior. Especially important for the argument are the estimates for the modulus of
continuity of the inverse map.

Before entering into our results, we would like to give a vivid description of the earlier works
of geometric analysts in this line of research, precisely the study of local pointwise rotation and
stretching of planar homeomorphisms. To this end, we start with pointwise stretching and then
enter into the details of local rotational properties.

Pointwise stretching

It is well known from the work of Ahlfors [2] that given any K-quasiconformal map f : C → C,
normalized by f(0) = 0 and f(1) = 1, we have

|f(z)| ≥ 1

cK
|z|K , ∀ |z| < 1. (29)

The K-quasiconformal map
f(z) = z|z|K−1

shows that the lower bound in (29) is optimal. In analogy to Ahlfors, Herron and Koskela [29]
showed that given an arbitrary mapping f : C → C of finite distortion, with eK(·,f) ∈ Lqloc, and
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normalized by f(0) = 0, we have

|f(z)| & e−
cf,q
q log2( 1

|z| ), for small enough |z|. (30)

The radial stretching mapping

f(z) =
z

|z|
exp

(
− c
q

log2 1

|z|

)
shows that the lower bound in (30) is sharp, in the sense that the exponent 2 of the logarithm on the
right hand side of (30) cannot be made smaller. The analog to (29) for mappings f K(·, f) ∈ Lploc,
p > 1, has been discovered by Koskela and Takkinen in [38], where they proved that for any such
mapping f : C→ C normalized by f(0) = 0, we have

|f(z)| ≥ e−cf,p|z|
− 2
p
, for sufficiently small |z|. (31)

Again, the radial map

f(z) =
z

|z|
log−p

(
1 +

1

|z|

)
proves the sharpness of (31), that is , the exponent 2

p in (31) cannot be made smaller.

Hitruhin in [32] extended the result of Koskela-Takkinen to the borderline case p = 1. He showed
that for any given mapping f : C → C with 1-integrable distortion, normalized by f(0) = 0, we
have

|f(z)| ≥ e−
cf (|z|)
|z|2 , for small enough |z|. (32)

Above, cf (|z|)→ 0 as |z| → 0. This result is also sharp in the sense that the exponent 2 cannot be
made smaller.

Pointwise rotation

The study of pointwise rotation for mappings of finite distortion classically involves mappings from
annulus to annulus. Broadly speaking, one considers mappings that fix some given annulus, keep
the outer circle fixed while rotating the inner circle. The case of quasiconformal mappings was
studied by Gütlyanskii and Martio in [28]. Balogh, Fässler and Platis in [10] extended this result to
annuli with different modulus. Both the works [10] and [28], in spite of considering a fairly general
class of mappings of finite distortion, only consider mappings between round annuli.

Astala, Iwaniec, Prause and Saksman came up with an alternative approach in [7] to study point-
wise rotation of quasiconformal mappings. They used the technique of holomorphic motion in the
plane to measure the maximal pointwise rotation of a general quasiconformal mapping in the entire
plane, thus dropping the restriction to annuli as done in the earlier works [10] and [28].

It is proven in [7] that if f is K-quasiconformal then

| arg(f(r))| ≤ 1

2

(
K − 1

K

)
log

(
1

r

)
+ cK , for all 0 < r < 1, (33)

14



where the branch of the argument is determined by arg(1) = 0. Moreover, there exists a K-
quasiconformal mapping that satisfies (33) as an equality with cK = 0.

On the other hand, for homeomorphisms of finite distortion situation changes drastically and the
order of spiraling depends on integrability of the distortion function. Namely, Hitruhin discovered
in [31] that if eK(·,f) ∈ Lploc for some p > 0 then

| arg(f(z))| ≤ c

p
log2

(
1

|z|

)
, for small enough |z|,

and moreover this is sharp up to the constant c > 0. In other words, there is a certain payoff to tran-
sit from boundedness to exponential integrability of K(·, f). More precisely, the logarithmic term
gets squared in this case. Further optimal results were obtained later on in [32] for homeomorphisms
with integrable distortion, that is, when K(·, f) ∈ Lploc for some p > 1,

| arg(f(z))| ≤ c

|z|
2
p

, for small enough |z| (34)

or even if K(·, f) ∈ L1
loc,

lim sup
|z|→0

|z|2| arg(f(z))| = 0. (35)

It is clear from the above estimates for the argument that one can allow more spiraling by relaxing
the degree of integrability of K(·, f).

Improved rotational behavior

Being a homeomorphism with distortion in Lp, any Euler flow Xt corresponding to the Euler system
(21) is in the assumptions of [32], and therefore the bound (34) can be applied to Xt. In particular,
this tells that for any fixed time t > 0 the set Xt([

1
n , 1]) winds around Xt(0) a number of times not

exceeding a multiple of
n2t‖ω0‖∞ (36)

It turns out that the Hölder nature of the inverse map X−1
t results in better rotation bounds. We

describe this improvement in our next Theorem.

Theorem (Theorem 3.1.1). Let f : C → C be a homeomorphism of finite distortion such that
f(0) = 0 and f(1) = 1, and assume that K(·, f) ∈ Lploc for some p > 1. Suppose also that

|f(x)− f(y)| ≥ C |x− y|α, if |x− y| is small,

for some α > 1. Then

| arg(f(z))| ≤ C
√
α |z|−

1
p log

1
2

(
1

|z|

)
(37)

whenever |z| is small enough.

In contrast with (34) and (35), the existence of a Hölder continuous inverse allows the power term
exponent to be halved, although then the logarithmic term needs to be included. This improvement
is better seen with the particular example of the Euler flow Xt. might be significantly improved for
a small time t > 0.
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Corollary (Corollary 3.1.2). Given ω0 ∈ L∞(C;C), let b be the velocity field of Yudovich’s solution
to (21) associated with the Euler Kernel K(z) = i

2πz̄ , and let Xt be its flow. Then there is a constant
C > 0 such that∣∣∣∣arg

(
Xt(z)−Xt(0)

Xt(1)−Xt(0)

)∣∣∣∣ ≤ C log
1
2

(
1

|z|

)
|z|−t‖ω0‖∞ exp (Ct‖ω0‖∞)

if both |z| and t > 0 are small enough.

In particular, if we fix a time t0 > 0 small enough, then the curve Xt0([ 1
n , 1]) cannot wind around

Xt(0) more than a multiple of

nt0‖ω0‖∞ (log n)
1
2 eCt0‖ω0‖∞

times. The improvement with respect to (36) is clear. At this point, it is worth mentioning that
the rotational behavior of Xt has been object of study in the recent years. For instance, When the
initial vorticity ω0 is close to the characteristic function of the unit disk, the work [19] provides
bounds for the winding number of the trajectories {Xt(z)}t>0 as t → ∞. However, we wish to
emphasize our results do not refer to the rotational behavior in time, but instead to the rotational
behavior as a function of the space variable. In other words, we provide spiraling bounds in the
space variable for a fixed time t > 0.

Towards the optimality of Theorem 3.1.1, we can show the following.

Theorem (Theorem 3.1.3). Given an increasing, onto homeomorphism h : [0,+∞) → [0,+∞),
and a real number p > 1, there exists a homeomorphism g : C→ C with the following properties:

• g is a mapping of finite distortion, with K(·, g) ∈ Lploc.

• g(0) = 0, g(1) = 1.

• If α > 3p
p−1 , then |g(x)− g(y)| ≥ C|x− y|α whenever |x− y| < 1. In other words,

g−1 ∈ C
1
3 (1− 1

p )−ε, ∀ε > 0.

• There exists a decreasing sequence {rn}, with rn → 0+ as n→∞, for which

| arg(g(rn))| ≥ r−
1
p

n log
1
2

(
1

rn

)
h(rn).

Since h can be chosen to approach 0 at any speed, Theorem 3.1.3 shows that the order provided in
Theorem 3.1.1 is sharp.

Next, we extend Theorem 3.1.1 to the borderline situation p = 1.

Theorem (Corollary 3.1.6). Let f : C → C be a homeomorphism of finite distortion such that
f(0) = 0 and f(1) = 1, and assume that K(·, f) ∈ L1

loc. Moreover, let us suppose that

|f(x)− f(y)| ≥ C |x− y|α if |x− y| is small,

for some α ≥ 1. Then

lim sup
|z|→0

|z|√
log
(

1
|z|

) | arg(f(z))| = 0. (38)
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Note that in the case p = 1 we get an improvement in the form of vanishing limsup compared
to the case p > 1, which is described by the bound (37). This is analogous to the maximal spiraling
bounds (34) and (35), where the exact same improvement happens.

Finally, we prove the optimality of the above result in a strong sense.

Theorem (Theorem 3.1.7). Given an increasing, onto homeomorphism h : [0,+∞) → [0,+∞),
an arbitrary δ > 0 and a real number β ≥ 1, there exists a homeomorphism g : C → C with the
following properties:

• g is a mapping of finite distortion, with K(·, g) ∈ L1
loc.

• g(0) = 0, g(1) = 1.

• If α ≥ 2 (β + 2) + δ, then |g(x)− g(y)| ≥ C|x− y|α whenever |x− y| < 1. That is,

g−1 ∈ C
1

2(β+2)
−ε, ∀ε > 0.

• There exists a decreasing sequence {rn}, with limit rn → 0+ as n→∞, for which

| arg(g(rn))| ≥ h(rn)

rn

(
β log

(
1

rn

)) 1
2

.

As it is clear from the statement, the construction in the proof of Theorem 3.1.3 does not cover
the case K ∈ L1

loc, and thus some modifications in the argument are necessary for proving Theorem
3.1.7. It turns out that these modifications do not only apply to the p = 1 setting, and instead
work as well when p > 1. In this case, the Hölder exponent of the inverse map g−1 from Theorem
3.1.3 can be improved from 1

3 (1 − 1
p ) − ε to p

(β+2)(p+1) − ε. In particular, as p ↘ 1 this exponent

converges to 1
2(β+2) − ε, as one would reasonably expect from Theorem 3.1.7.

Next, we extend our result to a much more general class of mappings of finite distortion. Namely,
we continue assuming that K(·, f) ∈ Lploc for some p ≥ 1, but now we drop the control on the
modulus of continuity of f−1, and instead the result is stated in terms of the growth of f . This
growth is measured by the quantity min

|ω|=|z|
|f(ω)| for small values of |z|. Note that if f−1 is 1

α -Hölder

continuous (as is the case in Theorem 3.1.1 or Corollary 3.1.6 above) then min
|ω|=|z|

|f(ω)| ' |z|α.

Theorem (Theorem 3.1.4). Let f : C → C be a homeomorphism of finite distortion such that
f(0) = 0, f(1) = 1, and assume that K(·, f) ∈ Lploc; p > 1. Then

|arg (f(z))| ≤ C |z|−
1
p log

1
2

 1

min
|ω|=|z|

|f(ω)|

 when |z| is small. (39)

Furthermore, if we assume that K(·, f) ∈ L1
loc, then

lim sup
|z|→0

|z|√
log

(
1

min
|ω|=|z|

|f(ω)|

) | arg(f(z))| = 0. (40)
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Towards the optimality of Theorem 3.1.4, we can show the following.

Theorem (Theorem 3.1.5). Let ϕ be a radially increasing homeomorphism with p-integrable dis-
tortion, p ≥ 1, such that

e−mϕ,p(|z|)|z|−
2
p ≤ |ϕ(z)| < |z|4 when |z| is small, (41)

where mϕ,p : R → R is an increasing continuous function with m(r) → 0 when r → 0. Then we
can choose an increasing onto homeomorphism h : [0,+∞)→ [0,+∞), which can converge to zero
as slow as we want, and find a radial homeomorphism g : C→ C with the following properties:

• g is a homeomorphism of finite distortion, with K(·, g) ∈ Lploc.

• g(0) = 0, g(1) = 1.

• There exists a decreasing sequence {rn}, such that

|g(rn)| = |ϕ(rn)| (42)

and

|arg (g(rn))| ≥ r−
1
p

n log
1
2

(
1

|g(rn)|

)
h(rn). (43)

Since h can be chosen to approach zero at any speed, Theorem 3.1.5 shows that the upper bound
provided in Theorem 3.1.4 is essentially sharp when we restrict modulus to satisfy (41).

Let us now briefly give some explanation for the bounds (41). The one on the right specifies
that we are studying mappings that compress stronger than Hölder maps, and thus have faster
maximal spiraling rate than given in (37). On the other hand, the bound on the left is always
satisfied when p = 1, see [32], and when p > 1 it is exact up to the gauge function mϕ,p, see [38].
Studying rotation under extremal compression leads to the extremal pointwise spiraling as shown
in [32]. Thus Theorem 3.1.5, together with examples in [32] proving optimality of the extremal spi-
raling rate (34), show that whenever mapping f is compressing we have essentially sharp spiraling
rates.

The Cauchy kernel

In Euler’s system of equations 
ωt + b · ∇ω = 0

b = i
2πz ∗ ω

ω(0, ·) = ω0

(44)

the transport structure of the equation ensures that the solution ω is transported along the flow
trajectories X(t, z) of the velocity field b, that is,

ω(t,X(t, z)) = ω0(z). (45)
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Of course, this requires some degree of regularity for b. This degree is certainly attained in the
case of Yudovich solutions ω ∈ L∞([0, T ], L∞). Indeed, the Biot-Savart law ensures that ∂b = iω

2 .
Equivalently, each Yudovich solution to (44) comes together with an incompressible velocity field
with bounded vorticity. As a consequence, the Lebesgue measure is preserved along trajectories, and
so both ‖ω(t, ·)‖L1 and ‖ω(t, ·)‖L∞ are constant in time, thereby making all compactness arguments
work in Yudovich’s proof.

The rigid structure of (44) is strongly related to the choice of the convolution kernel i
2πz̄ . This

means that a change in the kernel may drastically change the nature of solutions. As an example,
one may consider the active scalar system of equations

ωt + v ·∇ω = 0

v = eiθ

2πz ∗ ω
ω(0, ·) = ω0

(46)

Note the only difference between (44) and (46) is on the convolution kernel K(z) = eiθ

2πz , where
θ ∈ [0, 2π] is fixed. K is indeed a constant multiple of the well known Cauchy Kernel from complex
analysis. The choice of this new kernel is partially motivated by the fact that now, instead of
Biot-Savart law, one is left with the following relation between the unkonw ω and the associate
velocity field v,

∂ v =
eiθω

2
. (47)

On one hand, this choice tells us that v is not incompressible anymore. Moreover, div(v) and
curl(v) may be unbounded functions, even if one assumes that ω0 is bounded and compactly sup-
ported. Thus, the preservation of Lebesgue measure may fail in this case. On the other hand, this
new choice of K suggests that if a solution ω ∈ L∞([0, T ], L∞) is to be found then automatically
∂ v ∈ L∞ and therefore v is an element of Reimann’s Q class. Again, the transport structure
of the equation makes (45) hold true also in this case, though in contrast to Euler’s setting, the
flow X(t, z) is not anymore measure-preserving. Thus new arguments are needed to obtain a good
control of ‖ω(t, ·)‖L1 and ‖ω(t, ·)‖L∞ , and these arguments may well rely on the fact that v ∈ Q.

It has been recently shown in certain linear transport models [20, 21, 22] that their well-posedness
do not require the flow to be measure-preserving, rather the preservation of Lebesgue null sets is
only needed. In our setting, ‖∂ v ‖L∞ keeps bounded in time as long as Lebesgue null sets are
preserved. However, it was proven in [43] that vector fields in Q produce flows of quasiconformal
maps X(t, z) for all t > 0, and these maps do preserve Lebesgue null sets. This is the key idea for
proving the following result.

Theorem (Theorem 4.1.1). If the initial datum ω0 ∈ L∞ is compactly supported, then there exists
a solution ω ∈ L1([0, T ], L∞) for all T > 0 of (46).

Concerning uniqueness of solutions to the above system of equations, it remains an open problem.
Uniqueness is available for smooth data (say ω0 ∈ Cγ , 0 < γ < 1, see [16]). The attempts to show
uniqueness for ω0 ∈ L∞ are based on the following equivalent formulation for the system (46) in
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terms of the unknown v and an additional scalar valued unknown q,
ωt + v ·∇ω = 0

v = eiθ

2πz ∗ ω
ω(0, ·) = ω0

⇐⇒


vt +(v ·∇) v = −eiθ∇q
−∆q = div(v) div(eiθv)

∂ v(0, ·)) = eiθω0

2

As in Euler’s case, here q plays the role of a pressure function. It is worth mentioning that solutions
v to the system on the right hand side above do satisfy eiθ ∂v ∈ R at any time, and not just at
t = 0. This is similar to the situation in Euler’s equation, where incompressibility at time t = 0
implies incompressibility at any t > 0.

Open problems

At the geometric side, Reimann noticed that the time evolution of the distortion function K(·, Xt)
of the flow map Xt = X(t, ·) is controlled by ‖∂b‖∞, precisely (18). This came by integrating in
time equation (17). In order to find a counterpart for ‖∂b‖L∞ , then one is expected to replace (17)
by

∂Xt
d

dt
∂Xt − ∂Xt

d

dt
∂Xt = ∂b(Xt) JXt

and then integrate in time. This is better seen by showing both real and imaginary parts of the
above equation. Having in mind that for any complex valued function Z(t) one has

d

dt
Z(t)Z(t) = |Z(t)|2 log(Z(t))

one immediately gets, for the real part,

d

dt
JX(t, ·) = div b(X(t, ·)) JX(t, ·) (48)

and for the imaginary part

|∂X(t, ·)|2 d

dt
arg(∂X(t, ·))− |∂X(t, ·)|2 d

dt
arg(∂X(t, ·)) = curl b(X(t, ·)) JX(t, ·). (49)

Equation (48) admits the following well-known equivalent form,

JX(t, ·) = exp

(ˆ t

0

div b(X(s, ·)) ds
)
, (50)

in particular, div(b) controls the time evolution of JX(t, ·) but also the area expansion rate when
thinking X(t, z) as a map from C onto C. Especially, we get from div(b) some information for
X(t, z) as a function of the space variable. In contrast, integrating (49) in time is not immediate,
and we face serious difficulties in finding for curl b a counterpart to the role that JX(t, ·) plays
with respect to div b (or the role µ develops for ∂b). Among the things one can say, we note that
at points z of conformality, i.e. ∂X(t, z) = 0, arg(∂X(t, z)) varies in time an exact amount of
curl b(t,X(t, z)), and so all the rotation effects are included in the conformal derivative. Away from
points of conformality, (49) suggests that the rotation effects due to curl b(t,X(t, z)) are balanced
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between ∂X(t, z) and ∂X(t, z). Indeed, | curl b(t,X(t, z))| bounds from above the imaginary part
of the eigenvalues of Db(t,X(t, z)), hence it also bounds the speed of rotation of the solutions as
functions of time. However, this seems to say not much about the solutions as functions of the
space variable. This remains an open problem to date, and is the major obstacle we faced during
our work on this thesis. Unfortunately, we were not able to overcome this barrier.

In what concerns the geometric interpretation of the pointwise conditions, we already explained
that Q corresponds to the quasisymmetry of the flow in (16). This is so because of the following
easy identity,

〈 ddt Z(t), Z(t)
|Z(t)| 〉

|Z(t)|
=

d

dt
log |Z(t)|

for Z(t) = X(t, z0 + h)−X(t, z0), which allows to integrate in time the inner products on the left
hand side above. In contrast, we have not been able to find clear counterparts to quasisymmetry
for none of the classes Q, Rθ or R0. For instance, Q is equivalent to∣∣∣∣∣Re

(
d
dt (X(t, x0 + h)−X(t, x0))

X(t, x0 + h)−X(t, x0)
−

d
dt (X(t, x0 + k)−X(t, x0))

X(t, x0 + k)−X(t, x0)

)∣∣∣∣∣ ≤ C
Integrating in time the above inequality would require to find primitives in time of the following
expression,

〈 ddt Z(t), Z(t)
|Z(t)| 〉

|Z(t)|

which is not automatic. That is the reason why Q seems not to produce a clean geometric condition
on X(t, ·). The same happens with the alternative Rθ or R classes. In other words, again the same
obstruction is found: no information on the flow as a function of the space variable.

Last, we were unable to prove uniqueness of solutions to the system of equations (46), when the
datum ω0 ∈ L∞ is compactly supported. In contrast, the uniqueness of solutions to Euler system
of equations (21), when the initial vorticity ω0 is bounded and compactly supported, was proven
in [48]. The divergence-free nature of the vector field b in Euler’s case played a significant role in
Yudovich’s or Bertozzi-Majda’s proofs of uniqueness. Indeed, in the latter, incompressibility allows
to show that for any two solutions of the same Euler system v1 and v2 the quantity ‖v1−v2 ‖22 is
not just finite at every time, but satisfies an ODE with homogeneous initial conditions and with a
unique solution. This ODE comes indeed from the velocity formulation of Euler’s system. Unfortu-
nately, in the case of Cauchy kernel, the divergence of v is not even bounded. Naturally, this makes
the whole uniqueness proof in Cauchy’s case much more complicated when one is trying to follow
similar scheme. As we have shown, a velocity formulation is also available in this case. However,
the lack of incompressibility makes it impossible to bound the difference ‖v1−v2 ‖22 of any two
solutions. In contrast, the appropriate quantity this time seems to be ‖v1−v2 ‖pp for any p > 2.
However, now the homogeneous IVP one obtains does not need to have a unique solution. This
suggests new ideas are needed for proving uniqueness.
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Chapter 1

Preliminaries

1.1 Preliminaries to Chapter 2

In this section we recall some fundamental facts concerning harmonic functions on the upper half
space. We refer the interested reader to [45] for a more detailed review on this. We will be working
with functions defined on Rn+1

+ , where points are represented as (x, y) with x ∈ Rn and y > 0. Let

us recall that a function u : Rn+1
+ → R is said to be harmonic if

∆u(x, y) = 0

where ∆ = ∆x + ∂2
yy =

∑n
i=1 ∂

2
xi,xi + ∂2

yy. A typical way of constructing harmonic functions on the
upper half space is through the Poisson integral of a function g : Rn → R,

u(x, y) = Py ∗ g(x) =

ˆ
Rn
Py(x− z) g(z) dz

where
P (z, y) = Py(z) =

cny

(|z|2 + y2)
n+1
2

is the Poisson kernel. Above, the constant cn is chosen so that ‖Py‖L1(Rn) = 1. For a vector valued

g : Rn → Rm, then one interprets u = Py ∗g : Rn+1
+ → Rm componentwise. In either case, one often

says that u is the Poisson integral of g, and that g represents u’s boundary values. The following
result explains the latter terminology.

Proposition 1.1.1. If g ∈ Cc(Rn) then u = Py ∗ g is the only bounded solution to the Dirichlet
problem {

∆u = 0 Rn+1
+

u(·, 0) = g Rn.

Proof. From

∂2
yyP (z, y) = (n+ 1)Py(z)

−3|z|2 + ny2

(|z|2 + y2)2
∆zPy(z) = (n+ 1)Py(z)

3|z|2 − ny2

(|z|2 + y2)2
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it is immediate that ∆zPy(z)+∂2
yyPy(z) = 0, so Py(z) is harmonic on Rn+1

+ .Thus, u is harmonic on

Rn+1
+ . Also, ‖u(·, y)‖L∞ ≤ ‖Py‖L1 ‖g‖L∞ so u is bounded on Rn+1

+ . About the boundary condition,
it suffices to observe that Py is an approximation of unity in Rn, so one has Py ∗ g → g uniformly

as y → 0. In particular, u is continuous on Rn+1
+ and u(x, 0) = g(x) for every x ∈ Rn. Uniqueness

follows from the maximum principle for harmonic functions.

One may ask if there are other harmonic functions in Rn+1
+ that are not representable as Py ∗ g for

some g. The theory of Hardy spaces helps in this direction. Note that one may also define Py ∗ g
even when g is a measure.

Proposition 1.1.2. Let u : Rn+1
+ → R be harmonic.

• Given 1 < p ≤ ∞, there is g ∈ Lp(Rn) such that u = Py∗g if and only if supy ‖u(·, y)‖Lp <∞,
and moreover in this case one has ‖g‖Lp = supy ‖u(·, y)‖Lp .

• There is a finite Borel measure µ on Rn with u = Py ∗ µ if and only if supy ‖u(·, y)‖1 < ∞,
and moreover in this case one has ‖µ‖ = supy ‖u(·, y)‖1. Furthermore, if u > 0 then µ is
non-negative.

Poisson integrals of BMO functions can also be characterized, but its description involves a com-
pletely different quantity, as stated in the following Theorem by Carleson. Let us remind that
g : Rn → R belongs to the BMO class if

‖g‖∗ = sup

{
1

|B|

ˆ
B

∣∣∣∣g − 1

|B|

ˆ
B

g

∣∣∣∣ ;B ⊂ Rn is a ball

}
<∞.

Theorem 1.1.3. Let u : Rn+1
+ → R be harmonic. Then u = Py ∗ g for some g ∈ BMO(Rn) if and

only if

‖u‖∗∗ = sup
x0∈Rn,δ>0

1

|B(x0, δ)|

ˆ δ

0

ˆ
B(x0,δ)

(|Dxu(x, y)|2 + |∂yu(x, y)|2) dx y dy <∞.

Moreover, in case this happens, then ‖u‖∗∗ ' ‖g‖∗ with universal constants.

For a non continuous function g, calling it to be the boundary values of Py ∗ g requires some
explanation. Let us remind that the limit limy→0 u(x, y) = g(x) is said to be taken nontangentially
at the point x if and only if it happens when (x, y) move within a cone with vertex x.

Proposition 1.1.4. Let g ∈ Lp(Rn).

• If 1 ≤ p ≤ ∞, then Py ∗ g → g nontangentially at almost every point.

• If 1 < p <∞, then ‖Py ∗ g − g‖Lp → 0 as y → 0.

• If p = 1 or p =∞ then there exists g ∈ Lp(Rn) such that ‖Py ∗ g − g‖Lp 9 0 as y → 0.

In the case of Borel measures, the situation is significantly different. To see this, if δ0 is the Dirac
Delta then u(·, y) = Py ∗ δ0 = Py so that u(x, 0) ≡ 0. It turns out the following is true.

Proposition 1.1.5. If g is a finite Borel measure, singular w.r.t. dx, then Py ∗g has nontangential
limit 0 almost everywhere.
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Combining propositions 1.1.2 and 1.1.4, one sees that every bounded harmonic function u : Rn+1
+ →

R is precisely of the form u = Py ∗ g for some g ∈ L∞(Rn), and moreover u(·, y) converges
nontangentially to g at almost every point. It is interesting to note that there is some control as
well on the first order derivatives of u.

Lemma 1.1.6. If g ∈ L∞(Rn) then

‖Py ∗ g‖L∞ ≤ ‖g‖L∞

‖∂y(Py ∗ g)‖L∞ ≤ n
‖g‖L∞
y

‖Dx(Py ∗ g)‖L∞ ≤
n+ 1

2

‖g‖L∞
y

Proof. First, one easily sees that |Py ∗ g(x)| ≤ ‖Py‖1 · ‖g‖L∞ = ‖g‖L∞ since ‖Py‖L1(Rn) = 1.
Secondly, direct calculation shows that

∂yP (z, y) =
Py(z)

y

|z|2 − ny2

|z|2 + y2
DzPy(z) =

Py(z)

y

−(n+ 1) yz

|z|2 + y2

Thus, |∂yPy(z)| ≤ nPy(z)
y and hence |(∂yPy) ∗ g(x)| ≤ n ‖g‖L∞y . The bound for the spatial derivative

follows in the same way, after observing that |DzPy(z)| ≤ n+1
2

Py(z)
y .

Lemma 1.1.6 motivates the introduction of the class B of harmonic Bloch functions, which consists
of functions u : Rn+1

+ → R that are harmonic in Rn+1
+ and whose gradient blows up as y → 0 like

1
y , that is,

u ∈ B ⇐⇒ u is harmonic and ‖u‖B = sup
Rn+1

+

y(|Dxu(x, y)|+ |∂yu(x, y)|) <∞.

Vector valued harmonic Bloch functions are defined componentwise. Examples of harmonic Bloch
functions are, for instance, Poisson integrals of L∞ functions, as shown in Lemma 1.1.6. It turns
out Poisson integrals of BMO functions also belong to the Bloch class.

Lemma 1.1.7. If g ∈ BMO then Py ∗ g ∈ B, and moreover

‖∂y(Py ∗ g)‖L∞ ≤
C(n) ‖g‖∗

y

‖Dx(Py ∗ g)‖L∞ ≤
C(n) ‖g‖∗

y

Proof. One can find a proof in [44, p. 86-87] or also in [26, Lemma 1.1]. We sketch the latter here
for the reader’s convenience. Denote u(x, y) = Py ∗ g(x). Then u is harmonic in the upper half
space, and therefore all its partial derivatives are harmonic as well. By the mean value property, if
r = y0

4 then

∂u(x0, y0) =

 
|x−x0|2+|y−y0|2<r2

∂u(x, y) dx dy
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at any point (x0, y0) ∈ Rn+1
+ . Here ∂ denotes any element of the set {∂x1 , . . . , ∂xn , ∂y}. We now

observe that

|∂u(x0, y0)|2 =

∣∣∣∣∣
 
|x−x0|2+|y−y0|2<r2

∂u(x, y) dx dy

∣∣∣∣∣
2

≤
 
|x−x0|2+|y−y0|2<r2

|∂u(x, y)|2 dx dy

≤
 
|x−x0|2<r2

 
[3y0/4,5y0/4]

|∂u(x, y)|2 dy dx

≤
 
|x−x0|2<r2

8

3y2
0

ˆ
[3y0/4,5y0/4]

|∂u(x, y)|2 y dy dx

≤ c

r2

 
|x−x0|2<(5r)2

ˆ
[0,5r]

|∂u(x, y)|2 y dy dx ≤ c

r2
‖u‖2∗∗ ≤

c

r2
‖f‖2∗ =

c

y2
0

‖f‖2∗

as claimed.

The blow-up at the boundary of higher order derivatives of Poisson integrals is very relevant for
this chapter. In this direction, we have the following fact from [45, Appendix].

Lemma 1.1.8. If u : Rn+1
+ → R is harmonic, then

sup
(x,y)∈Rn+1

+

(
sup

1≤i1≤···≤ik≤n+1
yk |∂kxi1 ...xiku(x, y)|

)
≤ C(n, k) sup

(x,y)∈Rn+1
+

sup
1≤i≤n+1

y |∂xiu(x, y)|.

In other words, the blow-up of the first order derivatives roughly determines that of the higher order
ones. In particular, if u is a harmonic Bloch function and Hu(x, y) denotes its (n+ 1)-dimensional
Hessian,

Hu(x, y) =

(
D2
xu(x, y) Dx∂yu(x, y)

Dx∂yu(x, y) ∂2
yyu(x, y)

)
then one has

y2 |Hu(x, y)| ≤ C(n) ‖u‖B . (1.1)

It turns out that the bound (1.1) may be significantly improved if u is the harmonic extension of a
function in the Lipschitz class. Recall that g : Rn → R is Lipszhitz if

‖g‖Lip = inf {C ≥ 0 : |g(x)− g(y)| ≤ C|x− y| for every x, y ∈ Rn} <∞.

Lipschitz functions are also characterized by having bounded derivatives. Thus, if g ∈ Lip and
u = Py ∗ g then Dxu = Py ∗Dg and therefore combining Lemmas 1.1.6 and 1.1.8 one gets

y |Hu(x, y)| ≤ C(n) ‖Dg‖L∞ . (1.2)

which certainly improves (1.1). Let us recall that g : Rn → R is an element of Z if and only if

‖g‖Z = inf {C ≥ 0 : |g(x+ h) + g(x− h)− 2g(x)| ≤ C|h| for every x, h ∈ Rn} <∞.

For instance, if g has distributional derivatives Dg ∈ BMO then g ∈ Z. The Zygmund class is a
little larger than the Lipschitz class Lip. Indeed, one may think that Z is to Lip what BMO is to
L∞. Thus, the following result has an easy proof for functions in Lip, and a more complicate one
for functions in Z.
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Lemma 1.1.9. Let g ∈ L∞(Rn), and u = Py ∗ g. Let ∇u = (Dxu, ∂yu) denote the (n + 1)-
dimensional gradient of u. Then g ∈ Z if and only if ∇u ∈ B, and moreover

1

C
‖g‖Z ≤ ‖∇u‖B ≤ C ‖g‖Z

for some constant C > 0.

A proof of this fact can be found in [45, p. 146]. As a consequence, if g ∈ Z and u = Py ∗ g then
Lemma 1.1.9 tells that

y |Hu(x, y)| ≤ C ‖g‖Z , (1.3)

which is better than (1.1). Moreover, one can combine this with Lemma 1.1.8 and obtain that
yk|∇k+1u(x, y)| is bounded by a multiple of ‖g‖Z , for every k = 1, 2, . . . . Inequality (1.3) can
be proven, for instance, if g is a function with Dg ∈ BMO. That proof requires the help of the
classical BMO −H1 duality (see also [43, p. 263, top Corollary]). However, functions with BMO
derivatives belong to the Zygmund class. For this reason, we prefered to state Lemma 1.1.9 and use
the notion of harmonic Bloch gradients, which characterizes the class of Zygmund functions and at
the same time allows for a more precise constant in the inequality.

Finally, we include in this section the following result, which will be repeatedly used in the second
chapter, and whose proof is implicit in [34]. Let us recall that if b : Rn → Rn is a vector field, then
one defines the divergence and the curl of b, respectively, as

div b = Tr(Db) curl b = Db−Dtb

Lemma 1.1.10. Let 1 < p < ∞. If b : Rn → Rn is continuous and compactly supported, and
curl b,div b ∈ Lp(Rn), then also Db ∈ Lp(Rn), with

‖Db‖Lp ≤ C (‖ div b‖Lp + ‖ curl b‖Lp).

If the assumptions hold with p =∞, then one has Db ∈ BMO, and

‖Db‖∗ ≤ C (‖ div b‖Lp + ‖ curl b‖Lp).

Proof. We write the proof for the reader’s convenience. When n = 2, the assumptions say that b
has complex derivative ∂b = div b+i curlb

2 in Lp. Since b is continuous and compactly supported,

we can write b = 1
πz̄ ∗ (∂b), whence ∂b = p.v. −1

πz̄2 ∗ (∂b). But the convolution with p.v. −1
πz̄2 defines

a Calderón-Zygmund operator, and thus ∂b ∈ Lp (or BMO, if p = ∞) with ‖∂b‖Lp ≤ C ‖∂b‖Lp
(resp. ‖∂b‖∗ ≤ C ‖∂b‖L∞) as claimed.

When n > 2 the proof is a little bit delicate. We start by reminding that the second deriva-
tives of a function b vanishing at infinity can be recovered from its laplacian ∆b through the
second order Riesz transforms,

∂2b

∂xj∂xk
= −RjRk∆b, j, k = 1, . . . , n.

where R̂jb(ξ) = −i ξj|ξ| b̂(ξ) at the Fourier side. As Calderón-Zygmund operators, one has again

that Rj : Lp → Lp is bounded if 1 < p < ∞, and that Rj : L∞ → BMO is bounded. We now
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proceed first with the proof for p ∈ (1,∞). Since b is continuous and compactly supported, the
Poisson equation

∆u = b

has a unique solution u : Rn → Rn vanishing at infinity. In particular, the distributional Hessian
matrix Hu of the solution u has all its entries in Ls and ‖Hu‖s ≤ C ‖b‖s, for every s ∈ (1,∞).
We now decompose b as follows,

b = ∇ div u + div curl u (1.4)

where we recall that curl u = Du − Dtu is a matrix valued field. This is, indeed, the Hodge
decomposition of b as the sum of a curl free vector field (i.e. ∇ div u) and a divergence free field
(i.e. div curl u). We now observe that curl u solves the following Poisson equation,

∆(curl u) = curl b (1.5)

because ∆(curl u) = curl(∆u). In particular, if curl b ∈ Lp then the same holds for the hessian
H(curl u), and moreover ‖H(curl u)‖Lp ≤ C ‖ curl b‖Lp . Similarly, div u solves the Poisson equation

∆(div u) = div b (1.6)

because ∆(div u) = div(∆u). This shows that if div b belongs to Lp then also the hessian H(div u)
does, and we have the bound ‖H(div u)‖Lp ≤ C ‖ div b‖Lp . Summarizing, if both curl b,div b ∈ Lp,
then both hessians H(curl u) and H(div u) have Lp entries, whence both terms in the right hand
side of (1.4) belong to the homogeneous Sobolev space Ẇ 1,p, and

‖b‖Ẇ 1,p ≤ ‖∇div u‖Ẇ 1,p + ‖div curl u‖Ẇ 1,p

≤ ‖H(div u)‖Lp + ‖H(curl u)‖Lp
≤ C‖ div b‖Lp + C‖ curl b‖Lp

so the claim follows if 1 < p <∞. In case that curl b,div b ∈ L∞, then the proof follows similarly,
with the only difference that now curl u and div u have distributional hessian in BMO instead, and
therefore both terms in (1.4) have first order derivatives in BMO, so b also does.

It just remains to prove (1.4), which we do by direct calculation,

∇div u + div curl u =

=

 ∂x1
div u
...

∂xn div u

+ div


0 ∂x2

u1 − ∂x1
u2 . . . ∂xnu

1 − ∂x1
un

∂x1u
2 − ∂x2u

1 0 . . . ∂xnu
2 − ∂x2u

n

...
...

. . . . . .
∂x1u

n − ∂xnu1 ∂x2u
n − ∂xnu2 . . . 0



=


∑
j ∂

2
x1xju

j∑
j ∂

2
x2xju

j

...∑
j ∂

2
xnxju

j

+


∑
j 6=1 ∂

2
xjxju

1 − ∂x1

∑
j 6=1 ∂xju

j∑
j 6=2 ∂

2
xjxju

2 − ∂x2

∑
j 6=2 ∂xju

j

...∑
j 6=n ∂

2
xjxju

2 − ∂x2

∑
j 6=n ∂xju

j

 = ∆u.

This is legitimate for u because it has locally integrable second order derivatives.
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1.2 Preliminaries to Chapter 3

A mapping f : C→ C is said to be Hölder continuous, or simply Hölder from above, if there exist
constants C > 0, d > 0 and α > 0 such that for any two points x, y ∈ C and α ∈ R+ \ {0} with
|x− y| < d one has

|f(x)− f(y)| ≤ C|x− y|α

Similarly, we say f is Hölder from below if there are constants C, β > 0 such that for any two points
x, y ∈ C and β ∈ R+ \ {0} with |x− y| < d one has

|f(x)− f(y)| ≥ C̄|x− y|β

A mapping f : C→ C is called bi-Hölder if it is both Hölder from above and from below.

Let f : C → C be a mapping of finite distortion and fix a point z0 ∈ C. In order to study
the pointwise rotation of f at the point z0, one usually fixes an argument θ ∈ [0, 2π), and then
looks at how the quantity

arg(f(z0 + teiθ)− f(z0))

changes as the parameter t goes from 1 to a small r. This can also be understood as the winding
of the path f

(
[z0 + reiθ, z0 + eiθ]

)
around the point f(z0). As we are interested in the maximal

pointwise spiraling, we need to normalize and then retain the maximum over all directions θ,

sup
θ∈[0,2π)

| arg(f(z0 + reiθ)− f(z0))− arg(f(z0 + eiθ)− f(z0))|. (1.7)

Then, the maximal pointwise rotation is precisely the behavior of the above quantity (1.7) when
r → 0+. In this way, we say that the map f spirals at the point z0 with a rate g, where g : [0,∞)→
[0,∞) is a decreasing continuous function, if

lim sup
r→0+

supθ∈[0,2π) | arg(f(z0 + reiθ)− f(z0))− arg(f(z0 + eiθ)− f(z0))|
g(r)

= C (1.8)

for some constant 0 < C < ∞. Finding maximal pointwise rotation for a given class of mappings
equals finding the maximal spiraling rate for this class. Note that in (1.8) we must use limit supe-
rior as the limit itself might not exist. Furthermore, for a given mapping f there might be many
different sequences rn → 0 along which it has profoundly different rotational behaviour.

Our proof of Theorem 3.1.1 relies heavily on the modulus of path families. We give here the
main definitions, and address the interested reader to [46] for a closer look at the topic. The image
of a line segment I under a continuous mapping is called a path, and we denote by Γ a family of
paths. Given a path family Γ, we say that a Borel measurable function ρ is admissible for Γ if any
rectifiable γ ∈ Γ satisfies ˆ

γ

ρ(z)dz ≥ 1.

The modulus of the path family Γ is defined by

M(Γ) = inf
ρ admissible

ˆ
C
ρ2(z) dA(z),
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where dA(z) denotes the Lebesgue measure on C. As an intuitive rule, the modulus is big if the
family Γ has lots of short paths, and it is small if the paths are long and there are not many of them.

We will also need a weighted version of the modulus. Any measurable, locally integrable func-
tion ω : C → [0,∞) will be called a weight function. In our case, ω will always be the distortion
function K(·, f) of some map f . Then, we define the weighted modulus Mω(Γ) by

Mω(Γ) = inf
ρ admissible

ˆ
C
ρ2(z)ω(z) dA(z).

Finally, we need the modulus inequality

M(f(Γ)) ≤MK(·,f)(Γ) (1.9)

which holds for any mapping f of finite distortion for which the distortion K(·, f) is locally inte-
grable, proven by Hitruhin in [32].

1.3 Preliminaries to Chapter 4

We denote by C0 the class of continuous functions. For each 0 < γ < 1, we denote

Cγ = {f : R2 → R; ‖f‖∞ + [f ]γ <∞},

where

[f ]γ = sup
x,y∈C,x 6=y

|f(x)− f(y)|
|x− y|γ

and ‖f‖∞ is the classical supremum norm. We also denote by C1 the class of continuously differ-
entiable functions, that is, such that Df ∈ C0, and set

C1,γ = {f ∈ C1 : Df ∈ Cγ},

and set as norms in Cγ and C1,γ the following quantities, respectively

‖f‖γ = ‖f‖∞ + [f ]γ ,

‖f‖1,γ = |f(0)|+ ‖∇f‖γ = |f(0)|+ ‖∇f‖∞ + [∇f ]γ .

Lemma 1.3.1. [13, Lemmas 4.1] Suppose that γ ∈ (0, 1]. Then:

1. [fg]γ ≤ ‖f‖∞ [g]γ + ‖g‖∞ [f ]γ ,

2. ‖fg‖γ ≤ ‖f‖γ‖g‖γ ,

3. [ 1
f ]γ ≤ ‖ 1

f ‖
2
∞ [f ]γ ,

4. ‖ 1
f ‖γ ≤ ‖

1
f ‖∞(1 + ‖ 1

f ‖∞ [f ]γ) ≤ max{1, ‖ 1
f ‖∞}

2 (1 + [f ]γ).

Proof. The first inequality is trivial. For the second, we use the first and the definition of ‖f‖γ ,

‖f‖∞ [g]γ + ‖g‖∞ [f ]γ ≤ ‖f‖∞‖g‖γ + ‖g‖γ [f ]γ = ‖g‖γ ‖f‖γ
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as claimed. The last two parts of the proof follow since

1

f(x)
− 1

f(y)
= −f(x)− f(y)

f(x) f(y)
.

In what follows, we write X,Y to denote vector fields. Then X ∈ Cγ means that all the components
of X are elements of Cγ . We take the following result from [13, Lemmas 4.2, 4.3].

Lemma 1.3.2. Assume that X : Rn → Rn is smooth, invertible and |detDX(z)| ≥ c0 > 0 for
some 0 < c0 < 1. Then for each γ ∈ (0, 1] there is c = c(γ, c0, n) such that

1. ‖(DX)−1‖∞ ≤ c(n) ‖ 1
JX ‖∞ ‖DX‖

n−1
∞ ,

2. [(DX)−1]γ ≤ c(n) (1 + ‖ 1
JX ‖∞ ‖DX‖

n
∞) ‖ 1

JX ‖∞ ‖DX‖
n−2
∞ [DX]γ ,

3. ‖(DX)−1‖γ ≤ c(n) ‖ 1
JX ‖

2
∞ ‖DX‖2n−1

γ ,

4. [f ◦X]γ ≤ ‖DX‖γ∞ [f ]γ ,

5. ‖f ◦X‖γ ≤ max{1, ‖DX‖γ∞} ‖f‖γ ≤ (1 + ‖X‖γ1,γ) ‖f‖γ ,

6. [D(X−1)]γ ≤ [(DX)−1]γ ‖(DX)−1‖γ∞,

7. ‖D(X−1)‖γ ≤ ‖(DX)−1‖γ max{1, ‖(DX)−1‖γ∞},

8. ‖X−1‖1,γ ≤ c ‖X‖2n−1
1,γ ,

9. ‖f ◦X−1‖γ ≤ (1 + c‖X‖(2n−1)γ
1,γ ) ‖f‖γ .

Proof. We remind that

(DX)−1 =
1

detDX
(D#X)t

so that statements 1,2 and 3 are trivial. Also 4 and 5 follow easily. Statements 6 and 7 are a
consequence of the chain rule,

D(X−1) = ((DX)(X−1))−1.

For 8, we combine the chain rule with 7 and 3, and obtain

‖X−1‖1,γ = |X−1(0)|+ ‖D(X−1)‖γ
≤ ‖D(X−1)‖∞ |X(0)|+ ‖(DX)−1‖γ max{1, ‖(DX)−1‖γ∞}
≤ ‖D(X−1)‖∞ |X(0)|+ c(n) ‖1/JX‖2∞ ‖DX‖2n−1

γ max{1, ‖(DX)−1‖γ∞}
≤ C(n, γ, ‖1/JX‖∞, ‖(DX)−1‖∞) ‖X‖2n−1

1,γ

For 9, we combine 5 and 8.

Even though we primarily deal with the Cauchy Kernel K(z) = eiθ

2πz , most of our arguments will
work on a much larger class of kernels K. Namely, the kernel K : C→ C should satisfy the following
conditions,
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K1: |z| |K(z)| ≤ C, and

K2: p.v.DK is of Calderón-Zygmund type.

One of the essential points in the transit between the Cγ and the L∞ theory is an appropriate
bound for ‖v(t, ·)‖∞. Most of times, we will have

v(t, ·) = K ∗ ω(t, ·)

for some ω ∈ L1(0, T ;L∞) with compact support, and for a kernel K satisfying K1, K2. In this
context, the following basic estimate will be very useful.

Lemma 1.3.3. (a) Let K satisfy K1 and f ∈ L1 ∩ L∞. Then K ∗ f ∈ L∞ and

‖K ∗ f‖∞ ≤ C(K)‖f‖
1
2
1 ‖f‖

1
2∞, (1.10)

for some constant C(K) depending on the kernel K.

(b) Moreover, if f ∈ L∞ has compact support, then

‖K ∗ f‖∞ ≤ C(K)| supp f | 12 ‖f‖∞. (1.11)

Proof. Let us consider a real number R > 0. For each such R and given any two arbitrary points x
and y in the plane, we can always divide the plane into two regions, |x− y| ≤ R and |x− y| > R.
Therefore,

|K ∗ f(x)| =
∣∣∣∣ˆ

C
K(x− y)f(y)dA(y)

∣∣∣∣
≤
ˆ
C
|K(x− y)f(y)dA(y)|

=

ˆ
|x−y|≤R

|K(x− y)f(y)dA(y)|+
ˆ
|x−y|>R

|K(x− y)f(y)dA(y)|

≤ ‖f‖∞
ˆ
|x−y|≤R

C(K)

|x− y|
dA(y) +

C(K)

R

ˆ
|x−y|>R

|f(y)|dy

≤ C(K)R ‖f‖∞ +
C(K)

R
‖f‖1

If we minimize the term on the right hand of the inequality as a function of R, the best possible

value attainable is R =
‖f‖

1
2
1

‖f‖
1
2
∞

. This gives the bound (1.10).

If f has compact support, we get that ‖f‖1 ≤ | supp f | ‖f‖∞, which in turn implies bound (1.11).

Let us turn our attention to the more delicate Calderón-Zygmund estimates, which affect the
convolution with the tempered distribution p.v.DK. We recall the formal definition of p.v.DK,

p.v.DK ∗ f(x) = lim
ε→0

ˆ
|x−y|>ε

DK(x− y) f(y) dy

The above definition makes sense when f ∈ Cγ is compactly supported. The following result is
classical.
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Lemma 1.3.4. Let 0 < γ < 1, and let f ∈ Cγ be compactly supported. Assume that K satisfies
K1 and K2. Then

(a) p.v.DK ∗ f is bounded, and ‖p.v.DK ∗ f‖∞ ≤ C(K, γ, | supp f |) [f ]γ .

(a’) If ε > 0 then

‖p.v.DK ∗ f‖∞ ≤ C(K, γ) [f ]γ ε
γ + C(K) ‖f‖∞

(
1 + log

| supp f |
ε

)
(1.12)

(b) p.v.DK ∗ f is Cγ and ‖p.v.DK ∗ f‖γ ≤ C(K, γ) ‖f‖γ .

(c) K ∗ f ∈ C1,γ and D(K ∗ f) = p.v.DK ∗ f .

(d) ‖K ∗ f‖1,γ ≤ C(K, γ, | supp f |) ‖f‖γ .

Lemma 1.3.5. If f is bounded and compactly supported, and K satisfies K1,K2 then K∗f belongs
to the Zygmund class. Moreover, it has BMO distributional derivatives.

We omit the proof of the above lemma as it is easy. The interested reader can refer to [16] for a
proof.
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Chapter 2

Pointwise descriptions of nearly
incompressible vector fields with
bounded curl

2.1 Introduction

Following [43], we will say that a continuous vector field v : Rn → Rn is of Reimann’s type, and
write v ∈ Q, if there is a constant C0 ≥ 0 such that for each x, h, k ∈ Rn with |h| = |k| 6= 0 one has∣∣∣∣ 〈v(x+ h)− v(x), h〉

|h|2
− 〈v(x+ k)− v(x), k〉

|k|2

∣∣∣∣ ≤ C0.

The best possible value of C0 is denoted ‖v ‖Q. This class of vector fields was introduced by H.M.
Reimann in [43]. Even though every Lipschitz vector field belongs to the Q class, there exist many
vector fields of Reimann type which are not Lipschitz. Indeed, every element of Q belongs to the
Zygmund class. Thus, by the classical ODE theory, the autonomous initial value problem{

d
dtX(t, x) = v(X(t, x)),

X(0, x) = x.

has a well defined, unique flow of time-dependent solutions X(t, x). Moreover, in the space variable
x, this solution is a Hölder continuous homeomorphism. If v = v(t, x) is not autonomous and also
depends on time, then the same conclusion holds if we assume supt ‖v(t, ·)‖Q <∞.

The relevance of Reimann’s vector fields in Geometric Function Theory was first proven in [43]
with the quasisymmetry of the flow maps x 7→ X(t, x). At the same time, it is quite remarkable
that these maps enjoy a significant degree of Sobolev regularity in the space variable, as a conse-
quence of the quasisymmetry. This fact puts Reimann’s Q class into a very narrow and unstable
borderline: the one between the classical ODE theory and a much more recent result by Jabin [36]
(see also [4]). Roughly, in the first theory Lipschitz vector fields are proven to produce bilipschitzian
flows. The second theory refers to vector fields in the Sobolev space W 1,p (p < ∞), and asserts
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that no Sobolev smoothness (even fractional) can be expected for their flow.

Among the tools for proving the Sobolev regularity of the flow of a given v ∈ Q, there is the
following differential characterization from [43, Theorem 3],

v ∈ Q ⇐⇒ S v ∈ L∞(Rn) and
|v(x)|

(|x|+ 1) log(e+ |x|)
≤ C, (2.1)

as well as its quantitative formulation ‖v ‖Q ' ‖S v ‖L∞ . Here S v denotes the traceless symmetric
differential of v,

S v =
D v +Dt v

2
− div v

n
Id .

When n = 2, S v reduces to ∂ v, the classical Cauchy-Riemann derivative from complex analysis,

∂ v =
(∂x + i ∂y)(v1 + i v2)

2
≡ 1

2

(
∂xv

1 − ∂yv2

∂xv
2 + ∂yv

1

)
.

From (2.1), one deduces that if v ∈ Q then the flow map x 7→ X(t, x) is quasiconformal at ev-
ery time. The interested reader should refer to the monographs [6] or [34] for a self-contained
background in quasiconformality. Roughly, quasiconformal maps are a relatively compact class of
Sobolev homeomorphisms, and their transcendence goes beyond Geometric Function Theory to
many areas in mathematics. In particular, when n = 2 their optimal degree of Sobolev regularity
can be obtained from Astala’s Area Distortion Theorem [3].

It turns out a similar situation occurs in several active scalar models, an apparently disconnected
area. For instance, the planar Euler system for incompresible, inviscid fluids, in vorticity form

ωt + (v ·∇)ω = 0

v(t, ·) = i
2πz̄ ∗ ω(t, ·)

ω(0, ·) = ω0

(2.2)

was proven to be well posed by Yudovich [48] in the class of vector fields with bounded curl. More
precisely, given a compactly supported ω0 : R2 → R with ω0 ∈ L∞, Yudovich [48] proved existence
and uniqueness of a solution ω = ω(t, z) of (2.2) belonging to L∞((0,∞)×R2). This, together with
the incompressibility, provides us with a vector field v = v(t, z) such that ∂ v ∈ L∞((0,∞)× R2).
Here ∂ v denotes the complex derivative of the velocity field v,

∂ v =
(∂x − i ∂y)(v1 + i v2)

2
≡ 1

2

(
∂xv

1 + ∂yv
2

∂xv
2 − ∂yv1

)
=

div v +i curl v

2
.

A similar situation is given in the aggregation model (in which the convolution kernel from (2.2) is
replaced by 1

2πz̄ ). In analogy with Reimann, it was recently shown in [23] that, at least for small
times, vector fields v satisfying ∂ v ∈ L∞ admit a well defined flow which is Sobolev regular in the
space variable, with a Sobolev exponent that may vary with time. In [15], this result was improved
and obtained a degree of Sobolev regularity for the flow for every time.
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Although conditions ∂ v ∈ L∞ and ∂ v ∈ L∞ may look analytically similar, they have a signif-
icant difference. In the first case, for a general non-autonomous v, the flow map X(t, ·) belongs to
the Sobolev space W 1,p

loc whenever

p <
2

1− exp
(
−2

´ t
0
‖∂ v(s, ·)‖L∞ ds

) ,
as a consequence of both Reimann’s [43] and Astala’s [3] Theorems. In contrast, this remains being
an open problem in the second case. In accordance, it was conjectured in [23] that if ∂ v ∈ L∞
then for each t > 0 the flow map X(t, ·) belongs to the Sobolev space W 1,p

loc whenever

p <
2

1− exp
(
−2

´ t
0
‖∂ v(s, ·)‖L∞ ds

) .
The asymptotic behavior of this conjecture as t→ 0 was proven to be the right one in [23]. Moreover,
when v arises from (2.2), this conjecture says that p < 2

1−e−t ‖ω0‖L∞
. By the Sobolev embedding,

this gives a Hölder exponent strictly below e−t ‖ω0‖L∞ , as shown by Bahouri and Chemin [9].

Geometric Function Theory has proven to be very useful in obtaining the optimal Sobolev reg-
ularity in Reimann’s case, and therefore it is natural to try to face Euler’s case with a similar
scheme, as it was done in the works [22, 23]. In this chapter, we continue this line of research
by focusing our attention in the pointwise characterization of [43, Theorem 3]. We investigate the
existence of similar pointwise characterizations of the condition ∂ v ∈ L∞, both in the plane and
in higher dimensions.

In the plane, we introduce the class Q̄ of functions v : R2 → R2 for which there is a constant
C0 ≥ 0 such that for each x ∈ R2 and every h, k 6= 0 with |h| = |k| one has∣∣∣∣ 〈v(x+ h)− v(x), h̄〉

|h|2
− 〈v(x+ k)− v(x), k̄〉

|k|2

∣∣∣∣ ≤ C0.

Here h̄ and k̄ mean complex conjugates. By ‖v ‖Q̄ we denote the best possible value of C0. Similarly,
we denote by R the set of vector fields v : R2 → R2 for which there is a constant C0 ≥ 0 such that
for each x ∈ R2, every h, k 6= 0 with |h| = |k|, and every θ ∈ [0, 2π], one has∣∣∣∣ 〈v(x+ h)− v(x), eiθk〉

|h||k|
− 〈v(x+ k)− v(x), eiθh〉

|h||k|

∣∣∣∣ ≤ C0.

Again, ‖v ‖R denotes the best possible constant C0. Our first result is the following one.

Theorem 2.1.1. Let v : R2 → R2 be a continuous vector field. The following are equivalent:

(a) v ∈ Q̄.

(b) v ∈ R.

(c) v is differentiable a.e., ∂v ∈ L∞, and |v(x)|
(|x|+1) log(e+|x|) ≤ C.
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If one of them holds true, then ‖v‖Q̄ ' ‖v‖R ' ‖∂v‖L∞ .

The presence of complex conjugation in the definition of Q̄ prevents us from extending it to higher
dimensions, at least trivially. Extending the definition of R to Rn, n ≥ 2, seems not an easy task
either, because the set of rotations to be included is not obvious (see Lemma 2.3.6). It turns out
that one may still get some L∞ estimates by removing all rotations, even in higher dimensions.
Namely, let us introduce R0 as the class of vector fields v : Rn → Rn for which there is C0 such
that for each x ∈ Rn and each h, k with |h| = |k| 6= 0 one has∣∣∣∣ 〈v(x+ h)− v(x), k〉

|h||k|
− 〈v(x+ k)− v(x), h〉

|h||k|

∣∣∣∣ ≤ C0.

As usually, ‖v ‖R0
denotes the best possible constant C0.

Theorem 2.1.2. Let v ∈ R0. Then the distribution Dv −Dtv belongs to L∞, and

‖Dv −Dtv‖L∞ ≤ C ‖v‖R0
.

for some constant C > 0.

As it was the case for Q, Q̄ or R, the elements of R0 belong as well to the Zygmund class. However,
when n = 2 the class R0 is much larger than R, and one cannot guarantee its elements to be
differentiable a.e.. This makes it more difficult to find higher dimensional counterparts to Theorem
A. In the present chapter we solve this by asking v to be nearly incompressible, that is, div v ∈ L∞.
This allows to state the above mentioned counterpart, which is based in the differential operator

Av =
D v−Dt v

2
+

div v

n
Id .

Note that for n = 2 one has Av ≡ ∂ v.

Theorem 2.1.3. Let v : Rn → Rn be a continuous vector field.

(a) If v ∈ R0 and v is nearly incompressible, then v is differentiable a.e. and the estimate

‖Av‖L∞ ≤ C (‖ div v‖L∞ + ‖v‖R0)

holds.

(b) If Av ∈ L∞ and |v(x)|
|x| log(e+|x|) ≤ C then v ∈ R0 and

‖v‖R0
≤ C ‖Av‖L∞ .

As in Reimann’s setting, one of the main tools here is the fact that if v is a compactly supported
vector fields with Av ∈ L∞ then v has BMO derivatives and, in particular, it is differentiable a.e.
(see Lemma 1.1.10). For this reason, here one can relax the assumption div v ∈ L∞ to div v ∈ Lp
for some p > n. On the other hand, as a possible application, the above result can be used to
describe in a pointwise way, among all the solutions to the Euler system of equations, the ones with
bounded curl.

The chapter is structured as follows. In Section 2.2 we prove (a)⇔ (c) from Theorem 2.1.1. In Sec-
tion 2.3 we prove (b)⇔ (c) from Theorem 2.1.1. In Section 2.4 we prove Theorems 2.1.2 and 2.1.3.
Notation. Bold letters like b,u,v,w,g denote vector valued functions. After identifying planar
vectors with complex numbers, the inner product in R2 can be represented as 〈z, w〉 = Re(zw̄),
where Re denotes real part and w̄ stands for the complex conjugate of w, that is, if w = (w1, w2)
then w̄ = (w1,−w2). If A ' B then there is a constant C ≥ 0 such that B

C ≤ A ≤ CB.
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2.2 The planar setting: the class Q̄

With the spirit of finding a counterpart to Reimann’s Q class, we introduce a class Q̄ consisting of
functions b : R2 → R2 such that there is C > 0 with

‖b‖Q̄ = sup
z∈R2

sup
|h|=|k|6=0

∣∣∣∣ 〈b(z + h)− b(z), h̄〉
|h|2

− 〈b(z + k)− b(z), k̄〉
|k|2

∣∣∣∣ <∞
It is not hard to see that Lipszchitz functions are elements of Q̄. Also, arguing as in [43], one can
show that the elements of Q̄ are, at every time t, elements of the Zygmund Z class.

Proposition 2.2.1. If b : R2 → R2, then one has

‖b‖Z ≤ C ‖b‖Q̄ ≤ C ‖b‖Lip.

In particular, Lipschitz vector fields belong to Q̄, and elements of Q̄ are Zygmund vector fields.
Also, if b ∈ Q̄ then it holds that∣∣∣∣ 〈b(z + h)− b(z), h̄〉

|h|2
− 〈b(z + k)− b(z), k̄〉

|k|2

∣∣∣∣ ≤ C (1 +

∣∣∣∣log
|h|
|k|

∣∣∣∣)
for all pairs h, k 6= 0, and with C ≤ c ‖b‖Q̄, where c is a constant independent of b.

The proof of the above result follows the lines of [43], and therefore we omit it. The interested
reader is adressed to Propositon 2.4.3 below, whose proof is very similar. In the following lemma
we give a rather descriptive necessary condition for smooth elements of Q̄.

Lemma 2.2.2. Let b : R2 → R2 be smooth. If b ∈ Q̄, then ∂b ∈ L∞ and

‖∂b‖L∞ ≤
1

2
‖b‖Q̄.

Proof. In complex coordinates, the Taylor expansion of b at a differentiability point z ∈ R2 looks
as follows,

b(z + h)− b(z) = ∂b(z)h+ ∂b(z) h̄+ o(|h|).

Hence, if we now take inner product with h̄, we obtain

〈b(z + h)− b(z), h̄〉 = 〈∂b(z)h+ ∂b(z) h̄, h̄〉+ 〈o(|h|), h̄〉
= Re((∂b(z)h+ ∂b(z) h̄), h) + 〈o(|h|), h̄〉
= Re((∂b(z)h2)) + Re((∂b(z)) |h|2) + 〈o(|h|), h̄〉
= Re((∂b(z)h2)) + Re((∂b(z)) |h|2) + 〈o(|h|), h̄〉

whence ∣∣∣∣ 〈b(z + h)− b(z), h̄〉
|h|2

− 〈b(z + k)− b(z), k̄〉
|k|2

∣∣∣∣ = Re

(
∂b(z)

(
h2

|h|2
− k2

|k|2

))
+
〈o(|h|), h〉
|h|2

+
〈o(|k|), k〉
|k|2
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We now choose h, k so that k = ih and h2 = ε ∂b(z), and then let ε→ 0. We get

lim sup
|h|=|k|→0

∣∣∣∣ 〈b(z + h)− b(z), h̄〉
|h|2

− 〈b(z + k)− b(z), k̄〉
|k|2

∣∣∣∣ ≥ 2|∂b(z)|, (2.3)

and therefore |∂b(z)| ≤ 1
2 ‖b‖Q̄. If b is differentiable at every point x the claim follows.

It is a well known fact that Zygmund functions admit a modulus of continuity of the form δ log 1
δ ,

but may fail to differentiable almost everywhere. Thus, removing the differentiability assumption
in Lemma 2.2.2 does not seem automatic. Our next goal consists of proving this is actually the
case.

Theorem 2.2.3. Let b : R2 → R2 belong to the class Q̄. Then, b is differentiable almost every-
where, has BMO distributional derivatives, and ∂b ∈ L∞. Moreover,

‖∂b‖L∞ ≤ C ‖b‖Q̄

for some constant C > 0.

Proof. We first prove that it is not restrictive to assume that b has compact support. To do this,
let us assume that the theorem is proved under the extra assumption that b has compact support.
Now, let us be given b ∈ Q̄ non compactly supported. and set bt = gt b, where

gt(x) =


1 |x| ≤ t
1− 1

t log log |x|
log t t ≤ |x| ≤ tet

0 te
t ≤ |x|.

(2.4)

Clearly, bt has compact support. We now prove that bt ∈ Q̄. For proving this, we denote τhg(x) =
g(x+ h) and ∆hg(x) = τhg(x)− g(x). Then we observe that

〈∆hbt, h̄〉
|h|2

− 〈∆kbt, k̄〉
|k|2

= τhgt
〈∆hb, h̄〉
|h|2

− τkgt
〈∆kb, k̄〉
|k|2

+ ∆hgt
〈b, h̄〉
|h|2

−∆kgt
〈b, k̄〉
|k|2

= (τhgt − τkgt)
〈∆hb, h̄〉
|h|2

+ τkgt

(
〈∆hb, h̄〉
|h|2

− 〈∆kb, k̄〉
|k|2

)
+ 〈b, h̄∆hgt

|h|2
− h̄∆kgt
|k|2

〉

= (∆hgt −∆kgt)
〈∆hb, h̄〉
|h|2

+ τkgt

(
〈∆hb, h̄〉
|h|2

− 〈∆kb, k̄〉
|k|2

)
+ 〈b, h̄∆hgt

|h|2
− h̄∆kgt
|k|2

〉

Now we use the Mean Value Theorem to deduce that

|∆hgt(x)| ≤ C|h|
t |x| log |x|

and |∆kgt(x)| ≤ C|k|
t |x| log |x|

We now recall that b ∈ Q̄ implies that b ∈ Z, and therefore b has |x| log |x| growth at infinity.
Having in mind that |gt| ≤ 1, we have for |h| = |k| that∣∣∣∣ 〈∆hbt, h̄〉

|h|2
− 〈∆kbt, k̄〉

|k|2

∣∣∣∣ ≤ ∣∣∣∣ 〈∆hb, h̄〉
|h|2

− 〈∆kb, k̄〉
|k|2

∣∣∣∣+
C

t

39



whence gtb ∈ Q̄ and ‖gtb‖Q̄ ≤ ‖b‖Q̄ + C
t . We are now in situation to apply the theorem to gtb

and so gtb is differentiable a.e. and moreover we have the bound

‖∂(gtb)‖L∞ ≤ C ‖gtb‖Q̄ ≤ C‖b‖Q̄ +
C

t

The proof now finishes easily, as for any fixed x one can always find t > 0 large enough so that

∂b(x) = gt(x) ∂b(x) = ∂(gtb)(x)− b(x) ∂gt(x)

whence, after enlarging t if needed,

|∂b(x)| ≤ ‖∂(gtb)‖L∞ + |b(x) ∂gt(x)| ≤ C ‖gtb‖Q̄ +
C

t
≤ C‖b‖Q̄

as desired. Therefore, we can assume without loss of generality that b has compact support in R2.

Through a dilation if needed, we will suppose that supp b ⊂ D, where D denotes the unit disk on
R2. Then, since b is continuous, the convolution u(z, y) = Py ∗ b(z) is harmonic on R2 × (0,+∞)
and continuous in R2 × [0,+∞). Also the complex derivative ∂u is harmonic in R2 × (0,∞), and
as distributions one has

∂u = ∂(Py ∗ b) = ∂Py ∗ b = Py ∗ ∂b.

In particular, the last convolution is well defined, and from supp(∂b) ⊂ D we have

|∂u(z)| = |∂Py ∗ b(z)| ≤ C
ˆ
D

|b(w)|
|z − w|3

dA(w) ≤ C

|z|3
for each z /∈ 2D

uniformly for each y > 0. In particular, ∂u ∈ Lp(C \ 2D) for each 2
3 < p < ∞. From b ∈ Q̄

and ‖Py‖1 = 1 we have that also u ∈ Q̄ and ‖u‖Q̄ ≤ ‖b‖Q̄, uniformly in y > 0. So by Lemma
2.2.2, one has 2‖∂u‖L∞ ≤ ‖u‖Q̄ = ‖b‖Q̄, and this uniformly in y. It then follows that ∂u ∈ Lp(C)
uniformly in y, for each 1 < p <∞. As an element of the harmonic Hardy space hp(R2× (0,+∞)),
p > 1, we know that ∂u has well defined boundary values g ∈ Lp(R2), and moreover one necessarily
has ∂u = Py ∗ g. Since also Py ∗ ∂b = Py ∗ g, and p > 1, it then follows that ∂b = g and
so ∂b is actually an Lp(R2) vector field. By Lemma 1.1.10 we obtain Db ∈ Lp. This already
gives that b is differentiable a.e., because one can take any p > 2 (see for instance [37, Theorem
2.21]). Once we know that ∂b ∈ Lp and Py ∗ ∂b ∈ L∞ we immediately infer that ∂b ∈ L∞ with
‖∂b‖L∞ ≤ ‖Py ∗ ∂b‖L∞ = ‖∂u‖L∞ ≤ 1

2‖b‖Q̄, and this with no dependence on supp b. Using again
Lemma 1.1.10 we get Db ∈ BMO. In particular, b is differentiable almost everywhere.

In the converse direction, an extra assumption on the growth of b is needed.

Theorem 2.2.4. Let b ∈W 1,1
loc (R2;R2) be a continuous vector field such that

lim sup
|x|→∞

|b(x)|
|x| log |x|

<∞ (2.5)

and that ∂b ∈ L∞. Then b ∈ Q̄ and ‖b‖Q̄ ≤ C ‖∂b‖L∞ .
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Proof. This proof follows the scheme of [43, Proposition 12]. So we first assume that b has compact
support. Fix two unit vectors α, β ∈ R2, and set a = αh, b = βh for some h > 0. For each vector
field g : R2 → R2, we define

∆g(x) = ∆a,bg(x) = 〈g(x+ a)− g(x), ᾱ〉 − 〈g(x+ b)− g(x), β̄〉.

Clearly, ∆ = ∆a,b is a linear operator in g, and

|∆g(x)| ≤ 4 ‖g‖L∞ (2.6)

Moreover, g ∈ Q̄ if and only if |∆g| ≤ C h for some constant C that does not depend on a, b. We
can represent ∆g in terms of ∂g and ∂g as follows,

∆g(x) =

ˆ h

0

d

ds

(
〈g(x+ αs), ᾱ〉 − 〈g(x+ βs), β̄〉

)
ds

=

ˆ h

0

〈Dg(x+ αs)α, ᾱ〉 − 〈Dg(x+ βs)β, β̄〉 ds

= Re

ˆ h

0

(∂g(x+ αs)α2 − ∂g(x+ βs)β2) ds+ Re

ˆ h

0

(∂g(x+ αs)− ∂g(x+ βs)) ds

= ∆∂g(x) + ∆∂g(x)

where we set

∆∂g(x) = Re

ˆ h

0

(∂g(x+ αs)− ∂g(x+ βs)) ds

∆∂g(x) = Re

ˆ h

0

(∂g(x+ αs)α2 − ∂g(x+ βs)β2) ds

We now proceed with the proof. We denote u(x, y) = Py ∗ b(x), x ∈ C, y ≥ 0. We know that u is
harmonic in R3

+ and continuous up to the boundary, since b ∈ Cc(C). For each y > 0,

b(x) = u(x, 0) =

ˆ y

0

t ∂2
yyu(x, t) dt− y ∂yu(x, y) + u(x, y)

≡
ˆ y

0

twt(x) dt− y vy(x) + uy(x)

where we wrote uy(x) = u(x, y), vy(x) = ∂yu(x, y) and wr(x) = ∂2
yyu(x, r). By the linearity of ∆,

which acts only on the x variable, one has

∆b(x) =

ˆ y

0

t∆wt(x) dt− y∆ vy(x) + ∆uy(x). (2.7)

We now bound the three terms in the right hand side. For the first one, we use Lemma 1.1.10 to
see that ∂b ∈ L∞ implies Db ∈ BMO, which in turn guarantees that b ∈ Z. Now, from Lemma

1.1.9 as well as equation (1.3), we deduce that ‖Hu‖L∞ ≤ C ‖b‖Zy which in turn gives us that

‖wr‖L∞ ≤ C
‖b‖Z
r

.
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This fact, together with (2.6), implies for the first term in (2.7) the bound∣∣∣∣ˆ y

0

t∆wt(x) dt

∣∣∣∣ ≤ ˆ y

0

t 4‖wt‖L∞ dt = C y ‖b‖Z .

For the second and third terms in (2.7), we use that ∆ = ∆∂ + ∆∂ ,

y∆ vy(x) = y∆∂ vy(x) + y∆∂ vy(x)

∆uy(x) = ∆∂uy(x) + ∆∂uy(x)

and proceed first with the ∆∂ terms. For each fixed y, Lemma 1.1.6 gives us that

∂xi uy = ∂xi (Py ∗ b) = Py ∗ (∂xib) =⇒ ∂uy = Py ∗ ∂b

=⇒ ‖∂uy‖L∞ = ‖Py ∗ ∂b‖L∞ ≤ ‖∂b‖L∞

On the other hand, since u is smooth, we can argue similarly to get that

∂xi vy = ∂2
y,xiu = ∂y (Py ∗ ∂xib) =⇒ ∂ vy = ∂y(Py ∗ ∂b)

=⇒ ‖∂ vy ‖L∞ = ‖∂y(Py ∗ ∂b)‖L∞ ≤ C
‖∂b‖L∞

y
.

Thus, from |∆∂g(x)| ≤ 2h ‖∂g‖L∞ one gets that

|∆∂uy(x)| ≤ 2h ‖∂uy‖L∞ ≤ C h ‖∂b‖L∞ ,
|y∆∂ vy(x)| ≤ 2hy‖∂ vy ‖L∞ ≤ C h ‖∂b‖L∞ .

Now we proceed with the ∆∂ terms. Calling γ = α−β
|α−β| , we see that

|∆∂g(x)| =

∣∣∣∣∣Re

ˆ h

0

ˆ s|α−β|

0

d

dσ
(∂g(x+ βs+ γσ)) dσ ds

∣∣∣∣∣
=

∣∣∣∣∣Re

ˆ h

0

ˆ s|α−β|

0

D(∂g(x+ βs+ γσ) · γ) dσ ds

∣∣∣∣∣ ≤ h2 |α− β|
2

‖D(∂g)‖L∞

After applying this to g = uy and to g = vy, and putting all together in (2.7), one obtains

|∆b(x)| ≤ C y ‖b‖Z + C h ‖∂b‖L∞ +
h2 |α− β|

2

(
‖D(∂uy)‖L∞ + y‖D(∂ vy)‖L∞

)
(2.8)

Lemma 1.1.10 tells that from ∂b ∈ L∞ we get ∂b ∈ BMO and so Py ∗ (∂b) is harmonic Bloch.
This, together with Lemma 1.1.7, implies that

uy = Py ∗ b =⇒ ∂uy = Py ∗ ∂b

=⇒ D(∂uy) = D(Py ∗ ∂b)

=⇒ ‖D(∂uy)‖L∞ = ‖D(Py ∗ ∂b)‖L∞ ≤ C
‖∂b‖∗
y

≤ C ‖∂b‖L∞
y

.
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Similarly,

vy = ∂yuy = ∂yPy ∗ b =⇒ ∂ vy = ∂yPy ∗ ∂b

=⇒ D(∂ vy) = D(∂yPy ∗ ∂b)

=⇒ ‖D(∂ vy)‖L∞ = ‖D(∂yPy ∗ ∂b)‖L∞ ≤ C
‖∂b‖∗
y2

≤ C ‖∂b‖L∞
y2

Plugging the above bounds into (2.8), we get

|∆b(x)| ≤ C y ‖b‖Z + C h ‖∂b‖L∞ + C
h2 |α− β|

2y

and choose y = h to get |∆b(x)| ≤ C h ‖∂b‖L∞ . So b ∈ Q̄ and ‖b‖Q̄ ≤ C ‖∂b‖L∞ . The claim
follows in the case b ∈ Cc(C).

In order to remove the assumption on the compact support, we use again Reimann’s ideas. So
we use the gt functions introduced at (2.4), and assume that ∂b ∈ L∞ and |b(x)| ≤ C |x| log |x|
as |x| → ∞. For every fixed t > 0, we have that ∂(gtb) = b ∂gt + gt ∂b and so ∂(gtb) ∈ L∞.
Moreover, gtb has compact support. It then follows that gtb ∈ Q̄ and ‖gtb‖Q̄ ≤ C ‖∂(gtb)‖L∞ .
However, from (2.5) we see that

|∂(gtb)(x)| ≤ |∂b(x)|+ |b(x)||∂gt(x)|

≤ |∂b(x)|+ C |x| log |x| 1

t|x| log |x|

≤ |∂b(x)|+ C

t

Thus, we can always pick t > 0 large enough so that ‖gtb‖Q̄ ≤ C‖∂b‖L∞ . We now fix x ∈ R2. For

every pair |h| = |k| there is always t > 0 large enough and such that |x|, |x + h|, |x + k| < te
t

so
that b = gtb at x, x+ h and x+ k. Thus, when evaluating the Q̄ norm of b at x, x+ h and x+ k
one reduces the differences of b to the differences of gtb, which are controlled by ‖gtb‖Q̄, which is
independent of t, |h| and |k|. It follows that b ∈ Q̄ and ‖b‖Q̄ ≤ C ‖∂b‖L∞ .

In the above proof, among all terms in the right hand side of (2.7), most of them admit the desired
key bound precisely because b ∈ Z, except the two ∆∂ terms, which are the only ones requiring
specifically that ∂b ∈ L∞.

On the other hand, one can deduce from the previous Theorem that Q̄ contains many non-trivial,
non-Lipschitz vector fields. At least, as many as non-Lipschitz solutions of the planar Euler system
with bounded vorticity.

Corollary 2.2.5. Q̄ contains many non-Lipschitzian vector fields.

Proof. Let us assume that ω0 : C → R is a real valued, compactly supported function, such that
ω0 ∈ L∞. It follows from Yudovich Theorem [48] that the associate Euler system, in its vorticity
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form 
ωt + (v ·∇)ω = 0

v(t, ·) = 1
2π

(y,−x)
x2+y2 ∗ ω(t, ·)

ω(0, ·) = ω0

admits a unique solution ω global in time, belonging to L∞((0,∞);L∞(C)), and whose associate
velocity field v is such that curl v = ω, that is, 2∂ v = iω. In particular, ∂ v(t, ·) ∈ L∞ for every t.
Therefore, v(t, ·) is an element of Q̄ at every time. However, it is well known that not all bounded
vorticities produce Lipschitz vector fields, see for instance the example by Bahouri and Chemin in
[9, Theorem 1.3].

2.3 An alternative to Q̄: the class R

The class Q̄ is an appropiate counterpart to Reimann’s Q class when n = 2, but seems not so
convenient if n > 2 due to the absence of complex conjugation. The following observation shows
that there is another way to recover |∂b(x)| from the Taylor development of b at x that may be
more convenient with higher dimensional counterparts.

Lemma 2.3.1. Let b be a vector field in R2. Assume that x is a differentiability point of b. Then

lim sup
|h|,|k|→0

sup
0≤θ≤2π

|〈b(x+ h)− b(x), eiθk〉 − 〈b(x+ k)− b(x), eiθh〉|
|h| |k|

= 2 |∂b(x)| .

Proof. We first note that

〈Db(x)h, eiθk〉 − 〈Db(x)k, eiθh〉 = Re

(
(∂b(x)h+ ∂b(x) h̄)e−iθk̄ − (∂b(x)k + ∂b(x) k̄)e−iθh̄

)
= Re

(
∂b(x)e−iθ(hk̄ − kh̄)

)
= −2Im

(
∂b(x)e−iθ

)
Im(hk̄)

=

(
− 2Im(∂b(x)) cos θ + 2 Re(∂b(x)) sin θ

)
Im(hk̄)

But since b is differentiable at x we know that

lim sup
|h|→0

|〈b(x+ h)− b(x)−Db(x)h, eiθk〉|
|h| |k|

= lim sup
|k|→0

|〈b(x+ k)− b(x)−Db(x)k, eiθh〉|
|h| |k|

= 0

Thus

2Im

(
∂b(x)e−iθ

)
Im(hk̄)

|h| |k|
= −〈Db(x)h, eiθk〉 − 〈Db(x)k, eiθh〉

|h| |k|

= −〈b(x+ h)− b(x), eiθk〉 − 〈b(x+ k)− b(x), eiθh〉
|h| |k|

+
〈o(h), k〉
|h| |k|

+
〈o(k), h〉
|h| |k|
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so it is obvious that if we take first supremum in θ and then lim sup in h, k one gets

lim sup
h,k→0

sup
θ

∣∣∣∣ 〈b(x+ h)− b(x), eiθk〉 − 〈b(x+ k)− b(x), eiθh〉
|h| |k|

∣∣∣∣ ≤ |2∂b(x)| .

For the converse inequality, just choose k = ih, then take supremum in θ and let h→ 0 then

|2∂b(x)| ≤ lim sup
h,k→0

∣∣∣∣ 〈b(x+ h)− b(x), eiθk〉 − 〈b(x+ k)− b(x), eiθh〉
|h| |k|

∣∣∣∣ .
The claim follows.

Lemma 2.3.1 encourages us to introduce the following definition.

Definition 2.3.2. We say that a continuous function b : R2 → R2 is an element of the class R if

sup
x∈R2

sup
|h|=|k|6=0

sup
0≤θ≤2π

|〈b(x+ h)− b(x), eiθk〉 − 〈b(x+ k)− b(x), eiθh〉|
|h| |k|

≤ C.

The best constant C will be denoted by ‖b‖R.

It is not hard to see that we have the inequalities

‖b‖Z ≤ c ‖b‖R ≤ c ‖b‖Lip.

As it was for Q̄, these inequalities are actually a direct consequence of Propositon 2.4.3, which will
be proven in the next sections. Also, it is not hard to deduce from Lemma 2.3.1 that if b ∈ R
happens to be smooth then one has the bound

‖∂b‖L∞ ≤
1

2
‖b‖R, (2.9)

arguing as we did in Lemma 2.2.2. As in the previous section, the difficulty is in proving that (2.9)
also holds true in absence of smoothness.

Theorem 2.3.3. Let b : R2 → R2 belong to the class R. Then b is differentiable almost everywhere,
it has BMO distributional derivatives, and ∂b ∈ L∞ with ‖∂b‖L∞ ≤ 1

2‖b‖R.

Proof. The proof of the above result follows the lines of the proof we have given in Theorem 2.2.3,
so we omit it.

The above sufficient condition for belonging to R is also necessary, again with the growth condition.

Theorem 2.3.4. Let b ∈W 1,1
loc (R2;R2) be a vector field such that

lim sup
|x|→∞

|b(x)|
|x| log |x|

<∞

and that ∂b ∈ L∞. Then b ∈ R and ‖b‖R ≤ C ‖∂b‖L∞ .
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Proof. Even though the proof is similar to the proof of Theorem 2.2.4, some modifications need to be
done. As before, we only do it assuming that b has compact support (removing this assumption can
be done as in Theorem 2.2.4), and start by fixing two unit vectors α, β ∈ R2, and set a = αh, b = βh
for some h > 0. Given g : R2 → R2, this time one sets

∆g(x) = ∆a,b,θg(x) = 〈g(x+ a)− g(x), eiθβ〉 − 〈g(x+ b)− g(x), eiθα〉.

Here, θ ∈ {0, π/2}. Clearly, ∆ = ∆a,b,θ is a linear operator in g, and

|∆g(x)| ≤ 4 ‖g‖L∞ (2.10)

Moreover, g ∈ R if and only if |∆g| ≤ C h for some constant C that does not depend on a, b or
θ. The representation of ∆g in terms of ∂g and ∂g changes a bit with respect to that in Theorem
2.2.4,

∆g(x) =

ˆ h

0

d

ds

(
〈g(x+ αs), eiθβ〉 − 〈g(x+ βs), eiθα〉

)
ds

=

ˆ h

0

〈Dg(x+ αs)α, eiθβ〉 − 〈Dg(x+ βs)β, eiθα〉 ds

= ∆∂g(x) + ∆∂g(x),

where we have set

∆∂g(x) = Re

(
e−iθ

ˆ h

0

(∂g(x+ αs)− ∂g(x+ βs)) β̄ᾱ ds

)
,

∆∂g(x) = Re

(
e−iθ

ˆ h

0

(∂g(x+ αs)αβ̄ − ∂g(x+ βs)βᾱ) ds

)
.

The proof now follows as the one of Theorem 2.2.4. So for u(x, y) = Py ∗ b(x) one knows that u is
harmonic in R3

+ and continuous up to the boundary, since b ∈ Cc(C). For each t > 0,

b(x) = u(x, 0) =

ˆ y

0

t ∂2
yyu(x, t) dt− y ∂yu(x, y) + u(x, y)

≡
ˆ y

0

twt(x) dt− y vy(x) + uy(x)

where we wrote uy(x) = u(x, y), vy(x) = ∂yu(x, y) and wr(x) = ∂2
yyu(x, r). By the linearity of ∆,

which acts only on the x variable, one has

∆b(x) =

ˆ y

0

t∆wt(x) dt− y∆ vy(x) + ∆uy(x).

and now one proceeds term by term. For the w term, one can use Lemma 1.1.9 to see that

∂b ∈ L∞ =⇒ Db ∈ BMO

=⇒ b ∈ Z

⇐⇒ ‖Hu‖L∞ ≤ C
‖b‖Z
y

⇒ ‖wr‖L∞ ≤ C
‖b‖Z
r
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Hence ∣∣∣∣ˆ y

0

t∆wt(x) dt

∣∣∣∣ ≤ ˆ y

0

t 4‖wt‖L∞ dt = C y ‖b‖Z

as desired. For the other two terms, we use that ∆ = ∆∂ + ∆∂ ,

y∆ vy(x) = y∆∂ vy(x) + y∆∂ vy(x)

∆uy(x) = ∆∂uy(x) + ∆∂uy(x)

and proceed first with the ∆∂ terms. For each fixed y, Lemma 1.1.6 gives us that

∂xi uy = ∂xi (Py ∗ b) = Py ∗ (∂xib) =⇒ ∂uy = Py ∗ ∂b

=⇒ ‖∂uy‖L∞ = ‖Py ∗ ∂b‖L∞ ≤ C ‖∂b‖L∞

On the other hand, since u is smooth, we can argue similarly to get that

∂xi vy = ∂2
y,xiu = ∂y (Py ∗ ∂xib) =⇒ ∂ vy = ∂y(Py ∗ ∂b)

=⇒ ‖∂ vy ‖L∞ = ‖∂y(Py ∗ ∂b)‖L∞ ≤ C
‖∂b‖L∞

y
.

Thus
|∆∂uy(x)| ≤ 2h ‖∂uy‖L∞ ≤ C h ‖∂b‖L∞
|y∆∂ vy(x)| ≤ 2hy‖∂ vy ‖L∞ ≤ C h ‖∂b‖L∞

where C is a constant. Concerning the ∆∂ terms, we call γ = α−β
|α−β| , and observe that

|∆∂g(x)| =

∣∣∣∣∣Re

(
e−iθ

ˆ h

0

ˆ s|α−β|

0

d

dσ
(∂g(x+ βs+ γσ)) β̄ᾱ dσ ds

)∣∣∣∣∣
=

∣∣∣∣∣Re

(
e−iθ

ˆ h

0

ˆ s|α−β|

0

D(∂g(x+ βs+ γσ) · γ) β̄ᾱ dσ ds

)∣∣∣∣∣ ≤ h2 |α− β|
2

‖D(∂g)‖L∞

After applying this to g = uy and to g = vy, one obtains

|∆b(x)| ≤ C y ‖b‖Z + C h ‖∂b‖L∞ +
h2 |α− β|

2

(
‖D(∂uy)‖L∞ + y‖D(∂ vy)‖L∞

)
(2.11)

We now use the first inequality in Lemma 1.1.7 with g = ∂uy. Indeed, by the linearity of all the
involved operators

uy = Py ∗ b ⇒ ∂uy = Py ∗ ∂b

Now, since ∂b ∈ L∞ we have ∂b ∈ BMO and therefore b ∈ Z, so Lemma 1.1.9 applies,

‖D(∂uy)‖L∞ = ‖D(Py ∗ ∂b)‖L∞ ≤ C
‖b‖Z
y

.

For g = ∂ vy, we proceed similarly, and observe that

vy = ∂yuy = ∂yPy ∗ b ⇒ ∂ vy = ∂yPy ∗ ∂b.
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Hence, one may combine Lemmas 1.1.8 and 1.1.9 to get

‖D(∂ vy)‖L∞ = ‖D(∂yPy ∗ ∂b)‖L∞ ≤ C
‖b‖Z
y2

.

We now plug the above bounds into (2.11),

|∆b(x)| ≤ C y ‖b‖Z + C h ‖∂b‖L∞ + C
h2 |α− β|

2y

and choose y = h to get |∆b(x)| ≤ C h ‖∂b‖L∞ . So b ∈ R and ‖b‖R ≤ C ‖∂b‖L∞ . The claim
follows in the case b ∈ Cc(C).

The following corollary, Theorem 2.1.1 in the introduction, is a way of putting together Theorems
2.2.3, 2.2.4, 2.3.3 and 2.3.4.

Corollary 2.3.5. Let b : R2 → R2 be a continuous vector field. The following conditions are
equivalent:

(a) b ∈ R

(b) b ∈ Q̄

(c) b is differentiable a.e., ∂b ∈ L∞ and |b(x)| ≤ C|x| log |x| as |x| → ∞.

Moreover, in case this happens, then ‖b‖Q̄ ' ‖b‖R ' ‖∂b‖L∞ ' ‖div b‖L∞ + ‖ curl b‖L∞ .

As explained at the beginning of this section, the absence of complex conjugation in Rn when
n > 2 seems to make the R class more suitable for higher dimensional counterparts. In order to
build them, one may replace the rotation factor eiθ in Definition 2.3.2 by rotations not only in
the Ox1, x2 plane, but on any of the coordinate planes Oxi, xj . For this, let us introduce the set
Jn = {Ji,j}1≤i<j≤n of matrices Ji,j ∈ Rn×n defined by

Ji,jei = −ej
Ji,jej = ei

Ji,jek = ek , k 6= i, j

where e1, . . . , en is the canonical basis in Rn. When n = 2, Jn contains only the matrix(
0 1
−1 0

)
which is nothing but the rotation e−i

π
2 . More in general, Jn contains n(n−1)

2 elements.

Lemma 2.3.6. Suppose that n ≥ 3. Let b : Rn → Rn be a vector field, and assume that x is a
differentiability point. If

lim sup
|h|=|k|→0

sup
J∈Jn∪{Id}

∣∣∣∣ 〈b(x+ h)− b(x), Jk〉
|h| |k|

− 〈b(x+ k)− b(x), Jh〉
|h| |k|

∣∣∣∣ ≤ C0 (2.12)

then also |Db(x)| ≤ C C0 for some dimensional constant C.
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Proof. Since x is a differentiability point,

lim sup
|h|=|k|→0

∣∣∣∣ 〈b(x+ h)− b(x), Jk〉
|h| |k|

− 〈b(x+ k)− b(x), Jh〉
|h| |k|

∣∣∣∣
= lim sup
|h|=|k|→0

∣∣∣∣ 〈Db(x)h, Jk〉 − 〈Db(x)k, Jh〉
|h| |k|

∣∣∣∣
= sup
|h|=|k|=1

|〈Db(x)h, Jk〉 − 〈Db(x)k, Jh〉| = sup
|h|=|k|=1

|〈h, (Dtb(x)J − J tDb(x))k〉|

When taking J = Id one recovers the curl matrix Db(x)−Dtb(x),

〈Db(x)h, Jk〉 − 〈Db(x)k, Jh〉 = 〈h, (Dtb(x)J − J tDb(x))k〉 = 〈h, (Dtb(x)−Db(x))k〉

Let us now take J = Ji,j for a given pair 1 ≤ i < j ≤ n. We get

〈Db(x)ei, Jej〉 − 〈Db(x)ej , Jei〉 = 〈∂ib, ei〉+ 〈∂jb, ej〉 = ∂ibi + ∂jbj

〈Db(x)ei, Jek〉 − 〈Db(x)ek, Jei〉 = 〈∂ib, ek〉+ 〈∂kb, ej〉 = ∂ibk + ∂kbj , k 6= i, j

〈Db(x)ej , Jek〉 − 〈Db(x)ek, Jej〉 = 〈∂jb, ek〉 − 〈∂kb, ei〉 = ∂jbk − ∂kbi, k 6= i, j

Suming up the second quantity with −∂ibk+∂kbi, and the third with −∂jbk+∂kbj (both of which
come from Db−Dtb), we get that both ∂kbj + ∂kbi and −∂kbi + ∂kbj are bounded by multiples
of C0, which means that ∂kbi, ∂kbj are bounded by multiples of C0 whenever k 6= i, j. Moving now
i, j we obtain the same sort of boundedness for all non-diagonal elements of Db. Also, note that
the boundedness of all pairs ∂ibi + ∂jbj implies that of all diagonal elements. This finishes the
proof.

The above result shows that the class of vector fields b : Rn → Rn satisfying (2.12) reduces, when
n > 2, to Lipschitz vector fields. In contrast, when n = 2, this class is much larger: this can be
deduced from Lemma 2.2.5, together with the fact that in the plane one has Q̄ = R. This suggests
it is not a good idea to build higher dimensional counterparts to R in this way, because the class
of vector fields one obtains is included into the Lipschitz ones, which are well understood.

2.4 Extending to higher dimensions: the class R0

Lemma 2.3.1 gives light to another fact: one may separate curl b from div b by simply choosing
different values of θ. This is the starting point to our following observation. Let us fix an integer
n ≥ 2.

Lemma 2.4.1. Let b : Rn → Rn be a vector field, and assume that x is a differentiability point of
b. Then

lim sup
|h|,|k|→0

|〈b(x+ h)− b(x), k〉 − 〈b(x+ k)− b(x), h〉|
|h| |k|

= |Db(x)−Dtb(x)|.

Proof. We first observe that if b is differentiable at x, then

〈b(x+ h)− b(x), k〉 = 〈Db(x)h, k〉+ 〈o(|h|), k〉
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Now, after exchanging the roles of h and k, we also have

〈b(x+ k)− b(x), h〉 = 〈Db(x)k, h〉+ 〈o(|k|), h〉

Thus

〈b(x+ h)− b(x), k〉 − 〈b(x+ k)− b(x), h〉
|h| |k|

=
〈(Db(x)−Dtb(x))h, k〉

|h| |k|
+
〈o(|h|), k〉
|h| |k|

− 〈o(|k|), h〉
|k| |h|

.

and therefore one immediately gets

lim sup
|h|,|k|→0

|〈b(x+ h)− b(x), k〉 − 〈b(x+ k)− b(x), h〉|
|h| |k|

≤ |Db(x)−Dtb(x)|.

For the converse inequality, we recall that

|Db(x)−Dtb(x)| = sup
h,k 6=0

〈(Db(x)−Dtb(x))h, k〉
|h| |k|

so we can pick two sequences hm, km → 0 such that

|Db(x)−Dtb(x)| = lim
m→∞

〈(Db(x)−Dtb(x))hm, km〉
|hm| |km|

= lim
m→∞

|〈b(x+ hm)− b(x), km〉 − 〈b(x+ km)− b(x), hm〉|
|hm| |km|

≤ lim sup
|h|,|k|→0

|〈b(x+ h)− b(x), k〉 − 〈b(x+ k)− b(x), h〉|
|h| |k|

and the claim follows.

The above result motivates the following definition.

Definition 2.4.2. We say that a continuous function b : Rn → Rn belongs to the class R0 if

|〈b(x+ h)− b(x), k〉 − 〈b(x+ k)− b(x), h〉|
|h| |k|

≤ C

for each pair h, k such that |h| = |k| 6= 0. The best constant C will be denoted as ‖b‖R0
.

When n = 1, the only options are h = k (which gives nothing) or h = −k, which gives us that
in fact R0 is exactly the class of Zygmund functions. When n = 2, though, the above definition
suggests that R0 is larger than R. For a general n > 1, taking k = −h in the definition we obtain
that

|〈b(x+ h) + b(x− h)− 2b(x), h〉|
|h|2

≤ C

which suggests that there may be some connection between R0 and Z.

Proposition 2.4.3. One has R0 ⊂ Z, and moreover ‖b‖Z ≤ 4 ‖b‖R0
.
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Proof. Let us assume for a while that a, b ∈ Rn are such that 〈a, b〉 = 0. Then by Pythagoras
|a+ b| = |a− b| and thus we can use condition R0 for x = z + a, h = b− a and k = −b− a. We get

|〈b(z + b)− b(z + a),−b− a〉 − 〈b(z − b)− b(z + a), b− a〉|
= |〈b(z − b)− b(z + b), a〉 − 〈b(z + b) + b(z − b), b〉+ 2〈b(z + a), b〉|
≤ ‖b‖R0

| − b− a| |b− a| = ‖b‖R0
(|a|2 + |b|2)

Similarly, for x = z − a, h = b+ a and k = −b+ a,

|〈b(z + b)− b(z − a),−b+ a〉 − 〈b(z − b)− b(z − a), b+ a〉|
= | − 〈b(z − b)− b(z + b), a〉 − 〈b(z + b) + b(z − b), b〉+ 2〈b(z − a), b〉|
≤ ‖b‖R0

| − b+ a| |b+ a| = ‖b‖R0
(|a|2 + |b|2)

Summing up the above inequalities,

|〈b(z + a) + b(z − a), b〉 − 〈b(z + b) + b(z − b), b〉| ≤ ‖b‖R0
(|a|2 + |b|2)

and as a consequence

|〈b(z + a) + b(z − a)− 2b(z), b〉 − 〈b(z + b) + b(z − b)− 2b(z), b〉| ≤ ‖b‖R0 (|a|2 + |b|2)

whence

|〈b(z + a) + b(z − a)− 2b(z), b〉| ≤ |〈b(z + b) + b(z − b)− 2b(z), b〉|+ ‖b‖R0
(|a|2 + |b|2)

= |〈b(z − b)− b(z), b〉 − 〈b(z + b)− b(z),−b〉|+ ‖b‖R0 (|a|2 + |b|2)

≤ ‖b‖R0
(|a|2 + 2|b|2)

Let us now take a vector v ∈ Rn, and decompose it as v = v1 + v2 with v1 = 〈v, a〉 a
|a|2 . Then

〈v2, a〉 = 0 so that taking b = v2
|v2| |a| we certainly have 〈a, b〉 = 0 and |a| = |b|, and so we can apply

what we proved before. Namely,

|〈b(z + a) + b(z − a)− 2b(z), v〉|
≤ |〈b(z + a) + b(z − a)− 2b(z), v1〉|+ |〈b(z + a) + b(z − a)− 2b(z), v2〉|

= |〈b(z + a) + b(z − a)− 2b(z), a〉| |〈v, a〉|
|a|2

+ |〈b(z + a) + b(z − a)− 2b(z), b〉| |v2|
|a|

≤ ‖b‖R0 |a|2
|〈v, a〉|
|a|2

+ ‖b‖R0
(|a|2 + 2|b|2)

|v2|
|a|

≤ ‖b‖R0
|〈v, a〉|+ ‖b‖R0

3|a| |v2| ≤ 4 ‖b‖R0
|a| |v|

and the claim follows.

Remark 2.4.4. In the above proof, condition R0 has only been used for precise pairs h and k for
which either h = k or 〈h, k〉 = 0 with |h| = |k|. It will be clear that the class of vector fields one
obtains with this restriction is exactly the same R0. This can be seen as a consequence of Theorems
2.4.6 and 2.4.9 below.
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Among the consequences, we deduce that each element of R0 has growth at most |x| log |x|, as
|x| → ∞, and also that each element of R0 has t log 1

t local modulus of continuity. Arguing as in
Reimann’s Proposition 5 for n = 1, functions in the R0 class can be shown to satisfy the following
extended version of condition R0,

|(b(x+ h)− b(x))k − (b(x+ k)− b(x))h|
|hk|

≤ ‖b‖R0

(
3

2
+

1

2 log 2

∣∣∣∣log
|h|
|k|

∣∣∣∣) (2.13)

provided that h · k > 0 (replace 3/2 by 5/2 in case you want to allow h · k < 0). The extension of
this fact to functions in the higher dimensional R0 class works as follows.

Proposition 2.4.5. There exists C = C(n) ≥ 1 such that if b ∈ R0 then

|〈b(x+ h)− b(x), k〉 − 〈b(x+ k)− b(x), h〉|
|h| |k|

≤ C ‖b‖R0

(
1 +

∣∣∣∣log
|h|
|k|

∣∣∣∣)
whenever h, k ∈ Rn are non-zero.

Proof. Let us fix two non-zero vectors a, b ∈ Rn, choose y = a
|a| , and observe that∣∣∣∣∣ 〈b(x+ |a|y)− b(x), |a| b|b| 〉

|a|2
−
〈b(x+ |a| b|b| )− b(x), |a|y〉

|a|2

∣∣∣∣∣ ≤ ‖b‖R0

while∣∣∣∣∣ 〈b(x+ b)− b(x), a〉
|a||b|

−
〈b(x+ |a| b|b| )− b(x), |a|y〉

|a|2

∣∣∣∣∣ =

∣∣∣∣∣〈b(x+ b)− b(x)

|b|
−

b(x+ |a| b|b| )− b(x)

|a|
,
a

|a|
〉

∣∣∣∣∣
(2.14)

In order to control this quantity, we use the auxiliary function g : R → R defined as g(t) =

〈b(x+tb)
|b| , a|a| 〉. Since b ∈ R0 implies b ∈ Z, we deduce for each fixed t that∣∣∣∣g(t+ s) + g(t− s)− 2g(t)

s

∣∣∣∣ =

∣∣∣∣b(x+ (t+ s)b) + b(x+ (t− s)b)− 2b(x+ tb), a〉
s|a||b|

∣∣∣∣
≤ ‖b‖Z

so that g ∈ Z with ‖g‖Z ≤ ‖b‖Z ≤ 4‖b‖R0
. As a consequence, and arguing as in Reimann’s proof

of Proposition 5 (part C) we get for all r ∈ R that if t, s > 0 then∣∣∣∣g(r + t)− g(r)

t
− g(r + s)− g(r)

s

∣∣∣∣ ≤ ‖g‖Z (3

2
+

1

2 log 2

∣∣∣∣log
t

s

∣∣∣∣)
In particular, if r = 0 and s < 0 < t,∣∣∣∣g(t)− g(0)

t
− g(s)− g(0)

s

∣∣∣∣ ≤ ∣∣∣∣g(t)− g(0)

t
− g(−s)− g(0)

−s

∣∣∣∣+

∣∣∣∣g(−s)− g(0)

−s
− g(s)− g(0)

s

∣∣∣∣
≤ ‖g‖Z

(
3

2
+

1

2 log 2

∣∣∣∣log
t

−s

∣∣∣∣)+ ‖g‖Z

= ‖g‖Z
(

5

2
+

1

2 log 2

∣∣∣∣log
t

−s

∣∣∣∣) .
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We now go back to (2.14), and apply the above estimate with s = 1, t = |a|
|b| . We obtain∣∣∣∣∣∣〈b(x+ b)− b(x)

|b|
,
a

|a|
〉 − 〈

b(x+ |a|
|b| b)− b(x)

|a|
,
a

|a|
〉

∣∣∣∣∣∣ =

∣∣∣∣g(t)− g(0)

t
− g(s)− g(0)

s

∣∣∣∣
≤ 4‖b‖R0

(
5

2
+

1

2 log 2

∣∣∣∣log
|a|
|b|

∣∣∣∣)
and the claim follows.

As it was done in the previous sections for the classes Q̄ and R, we are interested in a differential
characterization of the class R0. It is clear from Lemma 2.4.1 that if b is a smooth element of R0

then
‖Db−Dtb‖L∞ ≤ ‖b‖R0

However, this time the situation for a non necessarily smooth b ∈ R0 is more delicate than in the
previous sections, because differentiability points may not even exist. Indeed, with Db−Dtb there
is not enough information to control all of Db. Observe also that if n = 2 then R0 is strictly larger
than R.

Theorem 2.4.6. Let b ∈ R0. Then the distribution Db−Dtb is an element of L∞(Rn), and

‖Db−Dtb‖L∞ ≤ C(n) ‖b‖R0

for some constant C(n) that depends only on n.

The proof of this result is very similar to that of Theorem 2.2.3. However, some special attention
is needed to stop the argument at an earlier point.

Proof. We will first assume that b has compact support. Let us call u = Py ∗ b. We will write
u = (u1, . . . , un) and similarly b = (b1, . . . , bn). One immediately sees that ∂xib

j is a well defined
distribution, because b has compact support. Moreover, this distribution can be easily extended to
act against testing functions with polynomial decay, as for instance Poisson extensions of smooth
compactly supported functions. So the action 〈∂xibj , Py ∗ϕ〉 is well defined whenever ϕ ∈ C∞c . One
has

〈∂xiuj − ∂xjui, ϕ〉 = −〈uj , ∂xiϕ〉+ 〈ui, ∂xjϕ〉
= −〈Py ∗ bj , ∂xiϕ〉+ 〈Py ∗ bi, ∂xjϕ〉
= −〈bj , Py ∗ ∂xiϕ〉+ 〈bi, Py ∗ ∂xjϕ〉
= −〈bj , ∂xi(Py ∗ ϕ)〉+ 〈bi, ∂xj (Py ∗ ϕ)〉
= 〈∂xibj , Py ∗ ϕ〉 − 〈∂xj bi, Py ∗ ϕ〉
= 〈∂xibj − ∂xj bi, Py ∗ ϕ〉

In particular, we have the following equality of distributions,

∂xiu
j − ∂xjui = ∂xi(Py ∗ bj)− ∂xj (Py ∗ bi) = Py ∗ (∂xib

j − ∂xj bi) (2.15)

which is equivalent to say that Du − Dtu = Py ∗ (Db − Dtb). The convolution operator Py∗
commutes with translations. Therefore it is not hard to see that

b ∈ R0 ⇒ u(·, y) ∈ R0, and ‖u(·, y)‖R0 ≤ ‖Py‖L1(Rn) ‖b‖R0 = ‖b‖R0
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where we used that ‖Py‖L1(Rn) = 1. However, u is smooth. Thus, every point x is a differentiability
point of u(·, y), and therefore by Lemma 2.4.1

|Du(x, y)−Dtu(x, y)| ≤ ‖u(·, y)‖R0 ≤ ‖b‖R0 . (2.16)

In particular, this shows that each slice of ∂xiu
j − ∂xju

i belongs to L∞(Rn), and this happens
uniformly in y > 0. We now show that one also has ∂iu

j − ∂jui ∈ Lp(Rn) for some p ∈ (1,∞).
Indeed, from u = Py ∗ b we see that ∂xiu = (∂xiPy) ∗ b and therefore

|Du(x, y)| ≤ C
ˆ

suppb

|DPy(x− z)| |b(z)| dz

= C

ˆ
suppb

|(n+ 1)cn y(x− z)|
(y2 + |x− z|2)

n+3
2

|b(z)| dz

= C

ˆ
suppb

|(n+ 1)cn y(x− z)|
y2 + |x− z|2

|b(z)|
(y2 + |x− z|2)

n+1
2

dz ≤ cn
ˆ

|b(z)|
|x− z|n+1

dz

As a consequence, if supp b ⊂ B(0, R) and |x| > 2R then

|∂xiuj(x, y)− ∂xjui(x, y)| ≤ cn ‖b‖L∞
|x|n+1

From this, if p > n
n+1 then ‖∂xiuj(·, y) − ∂xju

i(·, y)‖Lp(Rn\B(0,2R)) is bounded uniformly in y.
Combining this fact with (2.16), one gets that

sup
y>0
‖∂xiuj(·, y)− ∂xjui(·, y)‖Lp(Rn) ≤ C(n,R).

As a consequence, ∂xiu
j − ∂xjui belongs to the Hardy space of harmonic functions hp(Rn+1

+ ). As
such, we can infer that there is vi,j ∈ Lp(Rn) such that ∂xiu

j − ∂xjui = Py ∗ vi,j and moreover

lim
y→0
‖(∂xiuj − ∂xjui)− (vi,j)‖Lp(Rn) = 0.

In particular, there is a subsequence of heights yn → 0 for which the converge is pointwise,

lim
n→∞

∂xiu
j − ∂xjui = vi,j a.e. (2.17)

which combined with (2.16) gives us that vi,j ∈ L∞(Rn). Finally, since (2.15) holds for all testing

functions ϕ ∈ Lp′(Rn), we see that

lim
y→0
‖Py ∗ (∂xib

j − ∂xj bi)− vi,j‖Lp(Rn) = 0

This forces ‖Py∗(∂xibj−∂xj bi)‖Lp to remain bounded as y → 0, which in turn forces the distribution
∂xib

j − ∂xj bi to belong to Lp(Rn), and therefore by Fatou’s Theorem vi,j = ∂xib
j − ∂xj bi almost

everywhere. Moreover, since vi,j ∈ L∞(Rn) we also have ∂xib
j − ∂xj bi ∈ L∞(Rn), and

‖∂xibj − ∂xj bi‖L∞ = ‖vi,j‖L∞ ≤ sup
y>0
‖∂xiuj − ∂xjui‖L∞ ≤ ‖Py‖1 ‖b‖R0
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so the claim follows.

In order to remove the assumption on supp b, we proceed as in Theorem 2.2.3. So we start by
recalling that b ∈ R0 implies b ∈ Z, whence

L = lim sup
|x|→∞

|b(x)|
|x| log |x|

<∞.

Setting ∆hϕ(x) = ϕ(x+ h)− ϕ(x) and τhϕ(x) = ϕ(x+ h) and taking g = gt as in (2.4) one has

〈∆h(gb), k〉 − 〈∆k(gb), h〉
= τhg 〈∆hb, k〉 − τkg 〈∆kb, h〉+ 〈b, k〉∆hg − 〈b, h〉∆kg

= τhg (〈∆hb, k〉 − 〈∆kb, h〉) + (τhg − τkg) 〈∆kb, h〉+ 〈b, k〉∆hg − 〈b, h〉∆kg

If |x| is large, from the mean value theorem we see that

|∆kg(x)| ≤ C|k|
t|x| log |x|

|∆hg(x)| ≤ C|h|
t|x| log |x|

|τhg(x)− τkg(x)| ≤ C|h− k|
t|x| log |x|

This, together with the growth of b at infinity, gives∣∣∣∣∆h(gb), k〉 − 〈∆k(gb), h〉
|h| |k|

∣∣∣∣ ≤ ‖b‖R0 +
C

t

and so gb ∈ R0 and has compact support. From the first part of the proof, we deduce that
D(gb)−Dt(gb) ∈ L∞, with norm les than ‖gb‖R0

. But from

D(gb)−Dt(gb) = b⊗∇g −∇g ⊗ b + g (Db−Dtb)

one gets at points |x| ≤ t that

D(gb)−Dt(gb) = Db−Dtb

whence for |x| ≤ t one has

|Db(x)−Dtb(x)| ≤ ‖D(gb)−Dt(gb)‖L∞
≤ ‖gb‖R0

≤ ‖b‖R0
+
C

t
≤ C(n)‖Db−Dtb‖L∞ +

C

t
.

The proof finishes by letting t→∞.
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Theorem 2.4.6 provides a sufficient condition for L∞ bounds for the distributional curl Db−Dtb.
It says nothing about the differentiability of b, nor the total pointwise differential Db. For instance,
if u ∈ W 1,1(Rn) and b = ∇u, then Db−Dtb = 0 in the sense of distributions, but b may not be
differentiable almost everywhere. That is, zero curl does not imply pointwise differentiability a.e..
Hence, at this point it is not clear why should any b ∈ R0 be differentiable almost everywhere.
This absence of regularity makes it harder to state Theorem 2.4.6 in the same terms we stated
Theorems 2.2.3 and 2.3.3 above. We solve this obstruction in the following result, which is a slight
modification of Theorem 2.4.6. It refers to a slightly smaller subclass of R0, given in terms of the
divergence div b.

Theorem 2.4.7. Let b : Rn → Rn belong to the class R0. Assume that div b ∈ Lploc(Rn).

• If 1 < p <∞, then b has Lploc(Rn) distributional derivatives, and curl b ∈ L∞(Rn).

• If p > n, then one further has that b is differentiable almost everywhere.

Proof. Let us first assume that b has compact support. If b ∈ R0 then we know from Theorem
2.4.6 that Db−Dtb ∈ L∞. Then, from the compact support we deduce that Db−Dtb ∈ Lp, and
from div b ∈ Lp and Lemma 1.1.10 we get that Db ∈ Lp. The rest is standard real analysis. If b
has not compact support, then using the functions gt from (2.4) we see that gtb is an element of R0

with Lp divergence, so using again Lemma 1.1.10 we get that gtb has Lp(Rn) derivatives, which in
turn ensures Db ∈ Lploc. The differentiability a.e. is a well known result of classical real analysis,
see for instance [25].

We also obtain the following counterpart to Theorem 2.4.7 in Rn for the case p =∞. It states that
vector fields in R0 with bounded divergence must necessarily have BMO derivatives and bounded
curl. Let us recall that

Ab =
Db−Dtb

2
+

div b

n
Id .

It can also be seen as a counterpart to [43, Proposition 15], as well as to Theorems 2.2.3 and 2.3.3
above.

Corollary 2.4.8. Let b : Rn → Rn belong to the class R0. Assume that div b ∈ L∞(Rn). Then b
is differentiable almost everywhere, has BMO(Rn) distributional derivatives, and Ab ∈ L∞(Rn).

Proof. We first assume that that b has compact support. Having also that b ∈ R0, we proved in
Theorem 2.4.6 that also curl b ∈ L∞. It then follows from Lemma 1.1.10 that Db ∈ BMO, and
so the differentiability a.e. is automatic. The boundedness of Ab is immediate. The proof for non
compactly supported b goes similarly, since gtb is compactly supported and also gtb ∈ R0.

In the converse direction, we have the following result, which establishes a much better counterpart
to [43, Proposition 12] or Theorems 2.2.4 or 2.3.4.

Theorem 2.4.9. Let b ∈ W 1,1
loc (Rn;Rn) be a vector field. Assume that b is continuous, and that

|b(x)| ≤ O(|x| log |x|) as |x| → ∞. If there exists a constant C > 0 such that

‖Ab‖L∞ ≤ C

then b belongs to the R0 class, and ‖b‖R0
≤ C ′ for some constant C ′ depending only on C.
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Proof. Let us remind that Ab ∈ L∞ gives us bounds for div b and curl b in the L∞ norm. Again, we
follow the steps in the proof of Theorem 2.2.4, so we will first assume that b has compact support,
and later on will remove this assumption. Given α, β ∈ Rn, |α| = |β| = 1, set a = αh, b = βh for
some h > 0. For each g : Rn → Rn, define

∆g(x) = ∆a,bg(x) = 〈g(x+ a)− g(x), β〉 − 〈g(x+ b)− g(x), α〉.

Clearly, ∆ = ∆a,b is a linear operator in g, and

|∆g(x)| ≤ 4 ‖g‖L∞ (2.18)

Moreover, g belongs to the class R0 if and only if |∆g| ≤ C h for some constant C that does not
depend on a or b. Using that Dg = Sg +Ag, we can represent ∆g as follows,

∆g(x) =

ˆ h

0

d

ds

(
〈g(x+ αs), β〉 − 〈g(x+ βs), α〉

)
ds

=

ˆ h

0

〈Dg(x+ αs)α, β〉 − 〈Dg(x+ βs)β, α〉 ds = ∆Sg(x) + ∆Ag(x)

with

∆Sg(x) =

ˆ h

0

〈Sg(x+ αs)α, β〉 − 〈Sg(x+ βs)β, α〉 ds

∆Ag(x) =

ˆ h

0

〈Ag(x+ αs)α, β〉 − 〈Ag(x+ βs)β, α〉 ds

By construction, u(x, y) = Py ∗b(x) is harmonic in Rn+1
+ and continuous up to the boundary, since

b ∈ Cc(Rn). For each t > 0,

b(x) = u(x, 0) =

ˆ y

0

t ∂2
yyu(x, t) dt− y ∂yu(x, y) + u(x, y)

≡
ˆ y

0

twt(x) dt− y vy(x) + uy(x)

where we wrote uy(x) = u(x, y), vy(x) = ∂yu(x, y) and wr(x) = ∂2
yyu(x, r). By the linearity of ∆,

which acts only on the x variable, one has

∆b(x) =

ˆ y

0

t∆wt(x) dt− y∆ vy(x) + ∆uy(x).

We now proceed term by term. First, from Lemma 1.1.10 we know that Ab ∈ L∞ implies Db ∈
BMO, which in turn gives b ∈ Z. Hence, from Lemma 1.1.9,∣∣∣∣ˆ y

0

t∆wt(x) dt

∣∣∣∣ ≤ ˆ y

0

t 4‖wt‖L∞ dt ≤
ˆ y

0

t 4
C(n) ‖b‖Z

t
dt = C(n) y ‖b‖Z .

For the second term, we use that ∆ = ∆S + ∆A,

y∆ vy(x) = y∆S vy(x) + y∆A vy(x)

∆uy(x) = ∆Suy(x) + ∆Auy(x)
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and proceed first with the ∆A terms. For each fixed y, Lemma 1.1.6 gives us that

∂xi uy = ∂xi (Py ∗ b) = Py ∗ (∂xib) =⇒ Auy = Py ∗Ab

=⇒ ‖Auy‖L∞ = ‖Py ∗Ab‖L∞ ≤ ‖Py‖1 ‖Ab‖L∞ = ‖Ab‖L∞

On the other hand, since u is smooth, we can argue similarly to get that

∂xi vy = ∂2
y,xiu = ∂y (Py ∗ ∂xib) =⇒ Avy = ∂y(Py ∗Ab)

=⇒ ‖Avy ‖L∞ ≤ C(n)
‖Ab‖L∞

y
.

Thus
|∆Auy(x)| ≤ 2h ‖Auy‖L∞ ≤ 2h ‖Ab‖L∞
|y∆A vy(x)| ≤ 2hy‖Avy ‖L∞ ≤ C(n)h ‖Ab‖L∞

for some dimensional constant C(n). Now is time to proceed with the ∆S terms. For any function
g, set

(Sg)α,β(x) = 〈Sg(x) · α, β〉.

Using that Sg is a symmetric matrix, and calling γ = α−β
|α−β| ,

〈Sg(x+ αs)α, β〉 − 〈Sg(x+ βs)β, α〉 = 〈α, (Sg(x+ αs)− Sg(x+ βs))β〉

= 〈α,

(ˆ s|α−β|

0

d

dσ
(Sg(x+ βs+ σγ)) dσ

)
β〉

=

ˆ s|α−β|

0

d

dσ

(
〈α, Sg(x+ βs+ σγ)β〉

)
dσ

(2.19)

Therefore

|∆Sg(x)| ≤
ˆ h

0

ˆ s|α−β|

0

∣∣∣∣ ddσ (Sg)α,β(x+ βs+ σγ)

∣∣∣∣ dσ ds
≤
ˆ h

0

ˆ s|α−β|

0

|D((Sg)α,β)(x+ βs+ σγ)| dσ ds

≤ ‖D((Sg)α,β)‖L∞
ˆ h

0

ˆ s|α−β|

0

dσ ds = ‖D((Sg)α,β)‖L∞
h2 |α− β|

2

After applying this to g = uy and to g = vy, one obtains

|∆b(x)| ≤ C(n) y ‖b‖Z + C(n)h ‖Ab‖L∞ +
h2 |α− β|

2
(‖D((Suy)α,β)‖L∞ + y‖D((S vy)α,β)‖L∞)

(2.20)
Next, we see that

uy = Py ∗ b ⇒ Duy = Py ∗Db

⇒ Suy = Py ∗ Sb

⇒ (Suy)α,β = Py ∗ (Sb)α,β .
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Now, since Db ∈ BMO we have in particular that (Sb)α,β ∈ BMO, in particular (Suy)α,β is
harmonic Bloch. Lemma 1.1.7 with g = (Suy)α,β gives us that

‖D((Suy)α,β)‖L∞ = ‖D(Py ∗ (Sb)α,β)‖L∞ ≤
C(n) ‖(Sb)α,β‖∗

y
≤ C(n) ‖Sb‖∗

y
. (2.21)

For g = (S vy)α,β , we proceed similarly and note that

vy = ∂yuy = ∂yPy ∗ b ⇒ D vy = ∂yPy ∗Db

⇒ S vy = ∂yPy ∗ Sb

⇒ (S vy)α,β = ∂yPy ∗ (Sb)α,β .

Therefore one can combine Lemma 1.1.7 and Lemma 1.1.8 and obtain

‖D((S vy)α,β)‖L∞ = ‖D(∂yPy ∗ (Sb)α,β)‖L∞ ≤
C(n) ‖(Sb)α,β‖∗

y2
≤ C(n)‖Sb‖∗

y2
(2.22)

It is worth mentioning here that both in (2.21) and (2.22) one could replace the constant ‖Sb‖∗
by ‖b‖Z (note that ‖b‖Z ≤ C ‖Sb‖∗). To do this, one only needs to use Lemma 1.1.9 instead of
Lemma 1.1.7. We now plug the above bounds for ‖D((Suy)α,β)‖L∞ and ‖D((S vy)α,β)‖L∞ into
(2.11), and then take h = y. This finishes the proof in the case b ∈ Cc(Rn).
In order to remove the assumption on the compact support, we use once more the auxiliary function
g = gt introduced at (2.4). We have

D(gb)−Dt(gb) = b⊗∇g −∇g ⊗ b + g (Db−Dtb)

so
‖D(gb)−Dt(gb)‖L∞ ≤ ‖Db−Dtb‖L∞ + sup

t≤|x|≤tet
|b(x)||∇g(x)|

≤ ‖Db−Dtb‖L∞ + sup
t≤|x|≤tet

C |x| log |x| 1

t|x| log |x|

≤ ‖Db−Dtb‖L∞ +
C

t

Now the claim follows since for every x ∈ Rn we can pick t > 0 large enough and such that |x| < te
t

so that b = gb in a neighbourhood of x, and therefore Db−Dtb = D(gb)−Dt(gb).
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Chapter 3

Rotational bounds for
homeomorphisms with integrable
distortion and Hölder continuous
inverse

3.1 Introduction

Recently there has been a growing interest in understanding the rotational properties of planar
homeomorphisms, see [7, 14, 30, 31, 32, 33]. Special attention has been devoted to the spiraling
rate of these maps. More precisely, given a homeomorphism f : C → C normalized by f(0) = 0
and f(1) = 1, one is interested in the growth of | arg(f(r))| as r → 0. This growth represents the
number of times that the image f([r, 1]) winds around the origin as r → 0. This quantity has been
proven to admit several speeds of growth which depend on the class of maps under study. In this
way, it was proven in [7] that if f is K-quasiconformal then

| arg(f(r))| ≤ 1

2

(
K − 1

K

)
log

(
1

r

)
+ cK , for all 0 < r < 1. (3.1)

In contrast, if the maps under study are homeomorphisms of finite distortion, the situation changes
and the order of growth depends on the integrability of the distortion function. Namely, Hitruhin
discovered in [31] that if eK(·,f) ∈ Lploc for some p > 0 then

| arg(f(z))| ≤ c

p
log2

(
1

|z|

)
, for small enough |z|,

and moreover this is sharp up to the value of the constant c > 0. In other words, the transition
between boundedness and exponential integrability of K(·, f) results in a larger power of the log-
arithmic term. Further optimal results were obtained later on in [32], in the case of integrable
distortion, that is, when K(·, f) ∈ Lploc for some p > 1,

| arg(f(z))| ≤ c

|z|
2
p

, for small enough |z| (3.2)
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or even if K(·, f) ∈ L1
loc,

lim
|z|→0

|z|2 | arg(f(z))| = 0. (3.3)

The moral here is that more spiraling is allowed at the cost of relaxing the integrability properties
of K(·, f). As explained in [7, 31, 32], the local rotational properties go hand in hand with the local
stretching behavior. Especially important for the argument are the estimates for the modulus of
continuity of the inverse map.

It turns out mappings of finite distortion also have a role in fluid mechanics. To be precise, let us
think of the planar incompressible Euler system of equations in vorticity form,

d
dtω + (v ·∇)ω = 0

div(v) = 0

ω(0, ·) = ω0.

(3.4)

Here ω = ω(t, z) : [0, T ] × C → C is the unknown, ω0 ∈ L∞(C;C) is given, and v is the velocity
field. The Biot-Savart law,

v =
i

2πz̄
∗ ω

makes more precise the relation between v and ω. As it is well known, Yudovich [48] proved
existence and uniqueness of a solution ω ∈ L∞([0, T ];L∞(C;C)) for any given ω0. In particular,
the corresponding velocity field v belongs to the Zygmund class, and therefore the classical Cauchy-
Lipschitz theory guarantees for the ODE{

d
dtX(t, z) = v(t,X(t, z))

X(0, z) = z

both existence and uniqueness of a flow map X : [0, T ] × C → C. It was proven in [23] that, for
small enough t > 0, each of the flow homeomorphisms Xt = X(t, ·) : C → C is indeed a mapping
of finite distortion. Moreover, for each small value t > 0 there is a number p(t) > 1 such that the
distortion function K(·, Xt) belongs to Lploc whenever p < p(t).

As mappings with Lp distortion, the mappings Xt are a bit special because both Xt and X−1
t

are Hölder continuous, as shown in [47], with a Hölder exponent that decays exponentially in time.
This is not true in general, and mappings of Lp distortion need not have a Hölder continuous in-
verse, as shown in [38]. Therefore, it is a question of interest to find out if the Hölder nature of
the inverse map results in better rotation bounds. Indeed, even though the bounds obtained in [32]
can be applied to Xt, the Hölder continuous nature of X−1

t provides a significant improvement to
(3.2). We describe this improvement in our next Theorem.

Theorem 3.1.1. Let f : C → C be a homeomorphism of finite distortion such that f(0) = 0 and
f(1) = 1, and assume that K(·, f) ∈ Lploc for some p > 1. Suppose also that

|f(x)− f(y)| ≥ C |x− y|α, if |x− y| is small,

for some α > 1. Then

| arg(f(z))| ≤ C
√
α |z|−

1
p log

1
2

(
1

|z|

)
(3.5)

whenever |z| is small enough.
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In contrast with (3.2) and (3.3), the existence of a Hölder continuous inverse allows the power term
exponent to be halved, although then the logarithmic term needs to be included.

As an application, we can estimate the spiraling rate of Xt for small times. The rotational behavior
of Xt is nowadays studied a lot. For instance, in the case of ω0 being close to the characteristic
function of the unit disk, the article [19] provides bounds for the winding number of most of the
trajectories {Xt(z)}t>0 as t → ∞. Here, instead, we do not evaluate the rotational behavior at
large times, but look instead at spiraling bounds in the space variable for a fixed and small enough
time.

Corollary 3.1.2. Given ω0 ∈ L∞(C;C), let v be the velocity field of Yudovich’s solution to (3.4),
and let Xt be its flow. Then there is a constant C > 0 such that∣∣∣∣arg

(
Xt(z)−Xt(0)

Xt(1)−Xt(0)

)∣∣∣∣ ≤ C log
1
2

(
1

|z|

)
|z|−t‖ω0‖∞ exp (Ct‖ω0‖∞)

if both |z| and t > 0 are small enough.

In particular, if one fixes a time t0 > 0 small enough, then the curve Xt0([ 1
n , 1]) cannot wind around

Xt(0) more than an integral multiple of

nt0‖ω0‖∞ (log n)
1
2 eCt0‖ω0‖∞

times. Towards the optimality of Theorem 3.1.1, we can show the following.

Theorem 3.1.3. Given an increasing, onto homeomorphism h : [0,+∞) → [0,+∞), and a real
number p > 1, there exists a homeomorphism f̄ : C→ C with the following properties:

• f̄ is a mapping of finite distortion, with K(·, f̄) ∈ Lploc.

• f̄(0) = 0, f̄(1) = 1.

• If α > 3p
p−1 , then |f̄(x)− f̄(y)| ≥ C|x− y|α whenever |x− y| < 1.

• There exists a decreasing sequence {rn}, with rn → 0+ as n→∞, for which

| arg(f̄(rn))| ≥ r−
1
p

n log
1
2

(
1

rn

)
h(rn).

Since h can be chosen to approach 0 at any speed, Theorem 3.1.3 shows that the order provided in
Theorem 3.1.1 is sharp.

Next, we extend Theorem 3.1.1 and Theorem 3.1.3 to a more general class of homeomorphisms,
which have Lploc distortion for p ≥ 1 and the inverse having predetermined modulus of continuity.

Theorem 3.1.4. Let f : C → C be a homeomorphism of finite distortion such that f(0) = 0,
f(1) = 1, and assume that K(·, f) ∈ Lploc; p > 1. Then

|arg (f(z))| ≤ C |z|−
1
p log

1
2

 1

min
|ω|=|z|

|f(ω)|

 when |z| is small. (3.6)

62



Furthermore, if we assume that K(·, f) ∈ L1
loc, then

lim sup
|z|→0

|z|√
log

(
1

min
|ω|=|z|

|f(ω)|

) | arg(f(z))| = 0. (3.7)

Towards the optimality of Theorem 3.1.4, we can show the following.

Theorem 3.1.5. Let ϕ be a radially increasing homeomorphism with p-integrable distortion, p ≥ 1,
such that

e−gϕ,p(|z|)|z|−
2
p ≤ |ϕ(z)| < |z|4 when |z| is small, (3.8)

where gϕ,p : R→ R is an increasing continuous function with g(r)→ 0 when r → 0. Then we can
choose an increasing onto homeomorphism h : [0,+∞) → [0,+∞), which can converge to zero as
slow as we want, and find a homeomorphism f̄ : C→ C with the following properties:

• f̄ is a homeomorphism of finite distortion, with K(·, f̄) ∈ Lploc.

• f̄(0) = 0, f̄(1) = 1.

• There exists a decreasing sequence {rn}, such that

|f̄(rn)| = |ϕ(rn)| (3.9)

and ∣∣arg
(
f̄(rn)

)∣∣ ≥ r− 1
p

n log
1
2

(
1

|f̄(rn)|

)
h(rn). (3.10)

Note that the homeomorphism f̄ in Theorem 3.1.5 is radial and hence min
|ω|=|z|

|f̄(ω)| = |f̄(z)|. Since

h can be chosen to approach zero at any speed and sequence rn can be chosen freely, Theorem
3.1.5 shows that the upper bound provided in Theorem 3.1.4 is essentially sharp when we restrict
modulus to satisfy (3.8).

At this point, we provide some brief explanation for the bounds (3.8). The one on the right
specifies that we are studying mappings that compress stronger than Hölder maps, and thus have
faster maximal spiraling rate than given in (3.5). On the other hand, the bound on the left is
always satisfied when p = 1, see [32], and when p > 1 it is exact up to the gauge function gϕ,p,
see [38]. Studying rotation under extremal compression leads to the extremal pointwise spiraling
as shown in [32]. Thus Theorem 3.1.5, together with examples in [32] proving optimality of the
extremal spiraling rate (3.2), show that whenever mapping f is compressing we have essentially
sharp spiraling rates.

As a Corollary to Theorem 3.1.4 we can extend Theorem 3.1.1 to borderline situation p = 1.

Corollary 3.1.6. Let f : C → C be a homeomorphism of finite distortion such that f(0) = 0 and
f(1) = 1, and assume that K(·, f) ∈ L1

loc. Moreover, let us suppose that

|f(x)− f(y)| ≥ C |x− y|α if |x− y| is small,
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for some α ≥ 1. Then

lim sup
|z|→0

|z|√
log
(

1
|z|

) | arg(f(z))| = 0. (3.11)

Note that in the case p = 1 we get an improvement in the form of vanishing limsup compared to
the case p > 1, which is described by the bound (3.5). This is analogous to the maximal spiraling
bounds (3.2) and (3.3), where the exact same improvement happens.

Finally, we prove the optimality of the above result in a strong sense.

Theorem 3.1.7. Given an increasing, onto homeomorphism h : [0,+∞)→ [0,+∞), an arbitrary
ε > 0 and a real number β ≥ 1, there exists a homeomorphism f̄ : C → C with the following
properties:

(a) f̄ is a mapping of finite distortion, with K(·, f̄) ∈ L1
loc

(b) f̄(0) = 0, f̄(1) = 1

(c) If α ≥ 2 (β + 2) + ε, then |f̄(x)− f̄(y)| ≥ C|x− y|α whenever |x− y| < 1.

(d) There exists a decreasing sequence {rn}, with limit rn → 0+ as n→∞, for which

| arg(f̄(rn))| ≥ h(rn)

rn

(
β log

(
1

rn

)) 1
2

.

Towards the proof of Theorem 3.1.7, we modify the construction from Theorem 3.1.3 giving opti-
mality for the bound (3.5). However, this construction as written in the case of Theorem 3.1.3 does
not cover the case K ∈ L1

loc, and thus some changes in the argument are necessary. Also we note
that Corollary 3.1.6 is extremely sharp as the homeomorphism h in Theorem 3.1.7 can go to zero
as slow as we wish.

The chapter is structured as follows. In Section 3.2 we prove the positive theorems and the optimal
results in Section 3.3.

3.2 Spiraling bounds

We will write Theorem 3.1.1 in the following, clearly equivalent, form.

Theorem 3.2.1. Let f be a homeomorphism of finite distortion with distortion K(·, f) ∈ Lp(C),
p > 1, normalized by f(0) = 0 and f(1) = 1. Assume that it satisfies the following condition,

|f(x)− f(y)| ≥ C|x− y|α

whenever |x−y| is small. Then the winding number n(z0) of the image of the line segment
[
z0,

z0
|z0|

]
around the image of the origin is bounded from above by

n(z0) ≤ C
√
α |z0|−

1
p log

1
2

(
1

|z0|

)
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Proof. We would like to prove this theorem using the modulus inequality for homeomorphisms of
finite distortion (1.9) following the presentation in [32]. At first, we would like to estimate the
modulus term MK(·,f)(Γ) from above. To this end, let us choose an arbitrary point z0 ∈ C \ {0}
such that |z0| < 1. Without loss of generality, we may assume that z0 lies on the positive side
of the real axis. Next, let us fix the line segments E = [z0, 1] and F = (−∞, 0], and Γ be the
family of paths connecting a point in E to a point in F . Also, let us fix balls Bj = (2jz0, 2

jz0),
j ∈ {0, 1, ..., n} and let n be the smallest positive integer such that 2nz0 ≥ 1. Define

ρ0(z) =



2
r(B0) if z ∈ B0

2
r(B1) if z ∈ B1 \B0

...
2

r(Bn) if z ∈ Bn \Bn−1

0 otherwise

Note that any z ∈ E belongs to some ball 1
2Bj and that ρ0(z) ≥ 2

r(Bj)
, whenever z ∈ Bj . This

implies, since Bj ∩ F = ∅ for every j, that ρ0(z) is admissible with respect to Γ. Hence we can
estimate the modulus from above by

MK(·,f)(Γ) = inf
ρ admissible

ˆ
C
K(·, f)ρ2(z) dA(z)

≤
ˆ
C
K(·, f)ρ2

0(z) dA(z)

≤ ‖K(·, f)‖Lp(B(0,4))

(ˆ
B(0,4)

ρ
2p
p−1

0 (z) dA(z)

) p−1
p

≤ cf,p

(ˆ
B(0,4)

ρ
2p
p−1

0 (z) dA(z)

) p−1
p

Let us now estimate the integral term by using the definition of ρ0.

ˆ
B(0,4)

ρ
2p
p−1

0 (z) dA(z) ≤
n∑
j=0

ˆ
Bj

(
2

r(Bj)

) 2p
p−1

dA(z)

=

n∑
j=0

|Bj |
(

2

r(Bj)

) 2p
p−1

= cp

n∑
j=0

(r(Bj))
2

(r(Bj))
2p
p−1

= cp

n∑
j=0

1

z
2
p−1

0

1

2
2j
p−1

= cpz
− 2
p−1

0

n∑
j=0

1

2
2j
p−1
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The series
∑n
j=0

1

2
2j
p−1

converges to a constant depending on p for any fixed p > 1. Therefore,

MK(·,f)(Γ) ≤ cf,pz
− 2
p

0 (3.12)

Next, we would like to estimate the modulus term M (f(Γ)) from below. Let us start with the
definition of M (f(Γ)) in polar coordinates

M (f(Γ)) = inf
ρ admissible

ˆ
C
ρ2(z) dA(z)

= inf
ρ admissible

ˆ 2π

0

ˆ ∞
0

ρ2(r, θ)r drdθ

and provide a lower bound for ˆ ∞
0

ρ2(r, θ)rdr

for an arbitrary direction θ ∈ [0, 2π) and an arbitrary admissible ρ. To this end, we fix a direction
θ and consider the half line Lθ starting from origin in the direction θ. One might assume that the
image set f(E) winds once around the origin when z moves from a point t0 to a point t2 along E
and f(t0) ∈ Lθ. Moreover, let there exists a point z̄ ∈ F such that f(z̄) ∈ Lθ and |f(z̄)| > |f(t0)|.
Now, the origin and the point f(z̄) are contained in the image set f(F ) and by our assumption
f is a homeomorphism. This implies that f(F ) must intersect the line segment (f(t2), f(t0)) at
least once, say at a point f(t1), with t1 ∈ F . One could choose t1 in such a way that either the
line segment (f(t1), f(t0)) or the line segment (f(t2), f(t1)) belongs to the path family f(Γ). It is

evident that f(E) cycles around the origin n(z0) =
⌊
| arg(f(z0))−arg(f(1))|

2π

⌋
times. So, it is possible

to find at least

n(z0) =

⌊
| arg (f(z0))− arg (f(1)) |

2π

⌋
− 1

disjoint line segments belonging to the path family f(Γ), when t0 is sufficienty close to the origin.
Note that n(z0) does not depend on the direction θ. Since we are interested in extremal rotation, it
can be assumed that f(E) winds around the origin at least once, which makes it clear that n(z0) is
non-negative. Now, the n(z0) disjoint line segments can be written in the form

(
xje

iθ, yje
iθ
)
⊂ Lθ,

where j ∈ {1, 2, ..., n(z0)} and xj ,yj are positive real numbers satisfying

0 < rf ≤ x1 < y1 < ... < xn(z0) < yn(z0) ≤ cf

where cf = supz∈E |f(z)| and rf = minz∈E |f(z)|. Here, neither cf nor rf depends on θ or z0. So,
one could write ˆ ∞

0

ρ2(r, θ)rdr ≥
n(z0)∑
j=1

ˆ yj

xj

ρ2(r, θ)rdr.

Next, let us consider the Hölder inequality with the functions f(r) = ρ
√
r and g(r) = 1√

r
, which

after squaring both sides gives

ˆ yj

xj

ρ2(r, θ)rdr ≥

(ˆ yj

xj

ρ(r, θ)dr

)2(ˆ yj

xj

1

r
dr

)−1

≥ 1

log
(
yj
xj

) .
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The last inequality holds true as ρ is admissible with respect to f(Γ) where the line segments
(xje

iθ, yje
iθ) belong to the path family f(Γ). Therefore,

ˆ ∞
0

ρ2(r, θ)rdr ≥
n(z0)∑
j=1

1

log
(
yj
xj

) .
It is quite clear from the definition of cf that

n(z0)∑
j=1

1

log
(
yj
xj

) ≥ n(z0)−1∑
j=1

1

log
(
xj+1

xj

) +
1

log
(

cf
xn(z0)

) .
Next, let us consider the arithmetic mean - harmonic mean inequality, which states that for every
positive real number aj ,

n∑
j=1

aj ≥
n2∑n
j=1

1
aj

.

At this point, we would like to use the above inequality with the precise choices

aj =
1

log
(
xj+1

xj

) if j ∈ {1, 2, ..., n(z0)− 1}, and an(z0) =
1

log
(

cf
xn(z0)

) ,
which gives

n(z0)∑
j=1

1

log
(
yj
xj

) ≥ n2(z0)

log
(
cf
x1

) ≥ n2(z0)

log
(
cf
rf

) .
Therefore, ˆ ∞

0

ρ2(r, θ)rdr ≥ n2(z0)

log
(
cf
rf

) .
The constant cf can be defined as maxz∈D |f(z)|, which is finite and does not depend on either θ
or z0, and thus it is irrelevant at the limit z0 → 0. On the other hand, the constant rf must be
estimated using the Hölder modulus of continuity assumption on our mapping f , that is

|f(z0)| ≥ C|z0|α

for sufficiently small z0. This combined with the estimate above gives that

M (f(Γ)) ≥ n2(z0)

Cα log
(

1
|z0|

)
Now, using the modulus inequality (1.9) and (3.12) we get

n2(z0)

Cα log
(

1
|z0|

) ≤ cf,p( 1

|z0|

) 2
p

which implies the desired estimate.
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Proof of Corollary 3.1.2. Corollary 3.1.2 follows immediately after noting that one can take f =
Xt in Theorem 3.1.1. Indeed, from [23, Corollary 3] we know that Xt belongs to W 1,p for any
p < 2

t‖ω0‖∞ , provided that 0 < t < 2
‖ω0‖∞ . Since J(·, Xt) = 1 due to the incompressibility, it then

follows Xt is a homeomorphism with finite distortion, and moreover K(·, Xt) ∈ Lploc for p < 1
t‖ω0‖∞ .

Especially, if t is so small that 0 < t < 1
‖ω0‖∞ then one may take p > 1. Also, we recall from [47]

(see also [9]) that X−1
t is α-Hölder continuous with some exponent α ≥ e−ct ‖ω0‖∞ for some c > 0.

Hence, Theorem 3.1.1 applies to f = Xt and the claim follows.

Proof of Theorem 3.1.4. Let f satisfy the hypothesis of Theorem 3.1.4, and let z ∈ C \ {0} be such

that |z| < 1. Our goal is to estimate the winding number n(z) of the image set f
([
z, z|z|

])
around

the origin (recall that f(0) = 0). We will bound n(z) using the modulus inequality (1.9). More
precisely, we will prove that

n(z) ≤ C |z|−
1
p log

1
2

 1

min
|z0|=|z|

|f(z0)|


which is equivalent to Theorem 3.1.4 when p > 1, and

lim sup
|z|→0

|z|√√√√log

(
1

min
|z0|=|z|

|f(z0)|

)n(z) = 0

for p = 1.

Let us first prove p > 1 case. To this end, choose an arbitrary point z0 ∈ C \ {0} such that
|z0| < 1. Without loss of generality we can assume that z0 is real and positive. Next, fix line
segments E = [z0, 1] and F = (−∞, 0], and let Γ be the family of paths connecting them. Then we
can estimate the modulus term MK(·,f)(Γ) from above as in (3.12).
Next, we would like to estimate the modulus term M (f(Γ)) from below for p ≥ 1. Let us recall
that f(0) = 0 and define M (f(Γ)) in polar coordinates as follows:

M (f(Γ)) = inf
ρ admissible

ˆ
C
ρ2(z) dA(z)

= inf
ρ admissible

ˆ 2π

0

ˆ ∞
0

ρ2(r, θ)r drdθ

and provide a lower bound for ˆ ∞
0

ρ2(r, θ)rdr

for an arbitrary direction θ ∈ [0, 2π) and an arbitrary admissible ρ. To this end, let us fix a direction
θ and consider the half line Lθ starting from the origin to the direction θ. Assume that the image
set f(E) winds once around the origin when z moves from a point t0 to a point t2 along E and
f(t0), f(t2) ∈ Lθ. Since f is a homeomorphism and the image f(F ) contains the origin and points
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with big modulus, we can deduce that f(F ) must intersect the line segment (f(t2), f(t0)) at least
once, say at a point f(t1), with t1 ∈ F . Moreover, we can choose t1 in such a way that either the
line segment (f(t1), f(t0)) or the line segment (f(t2), f(t1)) belongs to the path family f(Γ). It is

evident that f(E) cycles around the origin n(z0) =
⌊
| arg(f(z0))−arg(f(1))|

2π

⌋
times. So, it is possible

to find at least

n(z0) =

⌊
| arg (f(z0))− arg (f(1)) |

2π

⌋
− 1

disjoint line segments belonging to the path family f(Γ) using this argument. Note that n(z0) does
not depend on the direction θ. Since we are interested in extremal rotation, it can be assumed that
f(E) winds around the origin at least once, which makes it clear that n(z0) is non-negative. Now, the
n(z0) disjoint line segments can be written in the form

(
xje

iθ, yje
iθ
)
⊂ Lθ, where j ∈ {1, 2, ..., n(z0)}

and xj ,yj are positive real numbers satisfying

0 < rf ≤ x1 < y1 < ... < xn(z0) < yn(z0) ≤ cf

where cf = supz∈E |f(z)| and rf = infz∈E |f(z)|. Hence we can write

ˆ ∞
0

ρ2(r, θ)rdr ≥
n(z0)∑
j=1

ˆ yj

xj

ρ2(r, θ)rdr.

Next, let us consider the Hölder inequality with the functions f(r) = ρ
√
r and g(r) = 1√

r
, which

after squaring both sides gives

ˆ yj

xj

ρ2(r, θ)rdr ≥

(ˆ yj

xj

ρ(r, θ)dr

)2(ˆ yj

xj

1

r
dr

)−1

≥ 1

log
(
yj
xj

) .
The last inequality holds true as ρ is admissible with respect to f(Γ) and the line segments
(xje

iθ, yje
iθ) belong to the path family f(Γ). Therefore,

ˆ ∞
0

ρ2(r, θ)rdr ≥
n(z0)∑
j=1

1

log
(
yj
xj

) .
The definition of cf makes it clear that

n(z0)∑
j=1

1

log
(
yj
xj

) ≥ n(z0)−1∑
j=1

1

log
(
xj+1

xj

) +
1

log
(

cf
xn(z0)

) .
Next, we consider the arithmetic-harmonic means inequality. For every positive integer aj ,

n∑
j=1

aj ≥
n2∑n
j=1

1
aj

. (3.13)

We use (3.13) with the precise choices

aj =
1

log
(
xj+1

xj

) if j ∈ {1, 2, ..., n(z0)− 1}, and an(z0) =
1

log
(

cf
xn(z0)

) ,
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that gives
n(z0)∑
j=1

1

log
(
yj
xj

) ≥ n2(z0)

log
(
cf
x1

) ≥ n2(z0)

log
(
cf
rf

) .
Therefore, ˆ ∞

0

ρ2(r, θ)rdr ≥ n2(z0)

log
(
cf
rf

) . (3.14)

The constant cf is finite and does not depend on either θ or z0, at least for small z0. So, it is
irrelevant at the limit z0 → 0. Hence the estimate (3.14) implies that

M (f(Γ)) ≥ cn2(z0)

log

(
1

min
|z|=|z0|

|f(z)|

) . (3.15)

Next, use the modulus inequality (1.9) and (3.12) to get

n2(z0)

log

(
1

min
|z|=|z0|

|f(z)|

) ≤ cf,pz− 2
p

0 ,

which implies the desired estimate (3.6).

To prove p = 1 case, we will again use the modulus inequality (1.9). Note that we have al-
ready lower bound for M (f(Γ)) from (3.15) for any p ≥ 1. Therefore, we just need to estimate
modulus term MK(·,f)(Γ) from above. To this end, let us define the function

ρ0(z) =

{
1
z0

if dist(z, E) < z0

0 otherwise

Note that ρ0 is admissible with respect to the path family Γ. Therefore,

MK(.,f)(Γ) ≤
ˆ
C
K(., f)ρ2

0(z)dA(z)

=
1

z2
0

ˆ
{z:dist(z,E)<z0}

K(., f)(z)dA(z).

Denote ˆ
{z:dist(z,E)<z0}

K(., f)(z)dA(z) = Cf (z0)

and note that since K(., f)(z) ∈ L1
loc(C) and

|{z : dist(z, E) < z0}| → 0

it follows that Cf (z0)→ 0 as z0 → 0, and thus

MK(.,f)(Γ) ≤ Cf (z0)

z2
0

. (3.16)
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Next, we use the modulus inequality (1.9), bounds (3.15) and (3.16) to get

n2(z0)

log

(
1

min
|z|=|z0|

|f(z)|

) ≤ Cf (z0)

z2
0

which implies the desired estimate (3.7). Hence, Theorem 3.1.4 is proved.

Proof of Corollary 3.1.6. As in Theorem 3.1.4, our aim is to estimate the winding number n(z) of

the image set f
([
z, z|z|

])
around the origin (recall that f(0) = 0), when f satisfies the hypothesis

of Corollary 3.1.6 and z ∈ C \ {0} such that |z| < 1. We will estimate n(z) using the modulus
inequality for homeomorphisms with integrable distortion (1.9). More precisely, we will show that

lim sup
|z|→0

|z|√
log
(

1
|z|

)n(z) = 0,

which is equivalent to Corollary 3.1.6.

To this end, let us choose an arbitrary point z0 ∈ C \ {0} such that |z0| < 1 and which we can
again assume to be positive and real. Next, as in the proof of Theorem 3.1.4, we fix line segments
E = [z0, 1] and F = (−∞, 0], and let Γ be the family of paths connecting them. We have already
estimated modulus term MK(·,f)(Γ) in (3.16) and thus we can concentrate on estimating M (f(Γ))
from below.

To this end we use the exact same steps as in the proof of Theorem 3.1.4 until the lower bound
(3.14), where we now estimate the constant rf using the Hölder modulus of continuity assumption
on the inverse of our map f . That is, we estimate

|f(z0)| ≥ C |z0|α

for sufficiently small z0, and obtain

M (f(Γ)) ≥ n2(z0)

α log
(

1
|z0|

) .
The estimates for moduli combined with the modulus inequality (1.9) results in

n2(z0)

α log
(

1
|z0|

) ≤ Cf (z0)

z2
0

,

which provides the desired estimate (3.11). Hence Corollary 3.1.6 is proved.

3.3 Optimality of spiraling
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Proof of Theorem 3.1.3. We will get Theorem 3.1.3 in two steps. In the first step, we will construct
a map which only rotates. This map will already give us the optimal result (in the power scale).
In the second step, we will strengthen this up with a second map, that both rotates and stretches.
This second map is going to be the optimal one.

Given an arbitrary annulus A = B(0, R) \B(0, r) we define the corresponding rotation map as

φA(z) =


z |z| > R

z eiα log| zR | r ≤ |z| ≤ R
z eiα log r

R |z| < r

Here 0 < r < R, and α ∈ R. One must note that φA : C → C is bilipschitz (i.e. both φA and
its inverse are Lipschitz), hence quasiconformal (its quasiconformality constant depends only on
α), and moreover it is conformal outside the annulus A. Note also that φA leaves fixed all circles
centered at 0, since |φA(teiθ)| = t for each t > 0 and θ ∈ R. Finally, a direct calculation shows for
the jacobian determinant that J(z, φA) = 1 for each z.

Next, we fix a sequence {rn} such that 0 < rn+1 < rn
2e and r1 < 1

e . Also, let Rn = ern.
These assumptions make sure that 2rn+1 < Rn+1 < rn

2 . Let us now construct disjoint annuli
An = B(0, Rn) \B(0, rn), and set {fn}n to be a sequence of maps, constructed in an iterative way
as follows. For n = 1, we set

f1(z) = φA1(z) =


z |z| > R1

z eiα1 log
|z|
R1 r1 ≤ |z| ≤ R1

z e−iα1 |z| < r1

where α1 ∈ R, α1 ≥ 1, is to be determined later. We then define fn for n ≥ 2 as

fn(z) = φfn−1(An) ◦ fn−1(z)

again for some values αn ∈ R, αn ≥ 1, to be determined later. Clearly, each fn : C → C is
quasiconformal, and conformal outside the annuli Ai, i = 1, . . . , n. It is also clear that fn(z) =
fn−1(z) on the unbounded component of C \ fn−1(An) (i.e. outside of B(0, Rn)). This proves that
the sequence fn is uniformly Cauchy and hence it converges to a map f , that is,

f = lim
n→∞

fn

which is again a homeomorphism by construction. Now, since fn is quasiconformal for every n and
fn(z) = fn−1(z) everywhere except inside the ball B(0, Rn), where Rn → 0 as n → ∞, the limit
map f is absolutely continuous on almost every line parallel to the coordinate axes and differen-
tiable almost everywhere.

It is helpful to note that each fn leaves fixed all circles centered at the origin, so in particular
we have fn(Aj) = Aj for each j, and therefore φfn−1(An) = φAn . Direct calculation shows that

|DφAn(z)| = |∂φAn(z)|+ |∂φAn(z)| =


1 |z| > Rn
|2+iαn|+|αn|

2 rn ≤ |z| ≤ Rn
1 |z| < rn
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which allows us to estimate that

|∂f(z)|+ |∂̄f(z)| ≤ 2αn whenever z ∈ An,

and |Df(z)| ≤ 1 otherwise. Therefore, in order to have Df(z) ∈ L1
loc(C) it suffices that∑

n

αn r
2
n < +∞. (3.17)

This, together with the absolute continuity, guarantees f ∈W 1,1
loc (C). Also, since f is a homeomor-

phism, we have that Jf (z) ∈ L1
loc(C), and in fact J(z, f) = 1 at almost every z ∈ C. Therefore, f

is a homeomorphism of finite distortion, with distortion function

K(z, f) =
|Df(z)|2

J(z, f)
≤

{
4α2

n z ∈ An,
1 otherwise.

Especially, in order to have K(·, f) ∈ Lploc, it suffices to ensure the convergence of the series

∞∑
n=1

|An|(4α2
n)p '

∞∑
n=1

α2p
n r2

n (3.18)

which can be done by choosing αn properly. Note that if (3.18) holds, then also (3.17) holds,
because our choice of αn will guarantee αn ≥ 1. The last restriction to choose our αn comes from
rotational behavior of f . It is clear from the above construction that f(0) = 0, f(1) = 1 and

|arg (f(rn))| ≥

∣∣∣∣∣arg

((
1

e

)1+iαn
)∣∣∣∣∣ = αn

for every rn. Since we want our map to be optimal for Theorem 3.1.1, we may be tempted to choose

αn = r
−1/p
n log1/2(1/rn). Unfortunately such a choice does not meet the requirement (3.18). The

same problem occurs if we simply choose αn = r
−1/p
n . So we choose

αn = h(rn) r−1/p
n .

Here h : [0,∞)→ [0,∞) is any monotonically decreasing gauge function such that limr→0+ h(r) = 0.
With this choice, (3.18) is fulfilled if the series

∞∑
n=1

h(rn)2p < +∞.

But this can always be done by simply reducing the already chosen values of rn, for instance if
h(rn) < 1

n1/2 . Note that this does not provide full optimality for Theorem 3.1.1, but it already
gives the right order (in the power scale).

We now show that f is Hölder continuous with exponent 1− 1
p . For this, let us recall that our map

f is a limit of iterates of logarithmic spiral maps inside the annuli An = B(0, Rn) \ B(0, rn). In
particular, as shown in [7], if γ ∈ R then the basic logarithmic spiral map g(z) = z|z|iα = zeiγ log |z|
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is L-bilipschitz, for a constant L such that |γ| = L− 1
L . When |γ| is large, L is large as well and so

one roughly has |γ| ' L. Since our fn behaves on the annulus An as a spiral map with |γ| = αn,
we deduce the bilipschitz constant of fn on An is

L ' |γ| = αn = h(rn) r−1/p
n .

Let us now start the proof. To this end, let us consider two arbitrary points x and y in D \ {0}.
We first consider the case where x, y ∈ An. In this case, f(x) = fn(x) and f(y) = fn(y). Since
rn > C|x− y|, we have

|f(x)− f(y)| = |fn(x)− fn(y)| . h(rn) r−1/p
n |x− y|

≤ h(rn)

(
C

|x− y|

) 1
p

|x− y|

≤ C|x− y|1−
1
p

where we have used the bilipschitz nature of fn on An.

We now assume that x, y ∈ Dn = B(0, rn) \ B(0, Rn+1). On that set f is of the form zeiβ ,
where β ∈ R \ {0}, which is clearly an isometry.

Next, we take x ∈ An and y ∈ Dn. In particular, |x| ≥ |y|. Then let w be any point on the
outer boundary of Dn joining x and y. We have

|f(x)− f(y)| ≤ |f(x)− f(w)|+ |f(w)− f(y)|

≤ C|x− w|1−
1
p + |w − y|

≤ 2C|x− y|1−
1
p

The same happens if x ∈ Dn−1 and y ∈ An.

So it just remains to see what happens when x ∈ An = B(0, Rn) \ B(0, rn) and y ∈ B(0, Rn+1).
Let L be the line joining x and y. We divide it into three parts, viz., L1, L2 and L3. L1 connects
x to a point a on the inner boundary of An, so that

|f(x)− f(a)| = |fn(x)− fn(a)| ≤ C|x− a|1−
1
p

Next, L2 connects a to b, which is the closest point to y where the line L crosses the inner boundary
of Dn. From 2Rn+1 < rn <

Rn
2 we get that |f(a)| > 2|f(b)|. Also, since a, b ∈ Dn and f is an

isometry there, we get

|f(b)− f(y)| ≤ 2|f(b)| ≤ 2|f(a)− f(b)| = 2|a− b|

Summarizing
|f(x)− f(y)| ≤ |f(x)− f(a)|+ |f(a)− f(b)|+ |f(b)− f(y)|

≤ C|x− a|1−
1
p + |a− b|+ 2|a− b|

≤ C|x− y|1−
1
p
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The case x ∈ Dn and y ∈ B(0, rn+1) can be proved in a similar manner. Therefore, we have covered
all the possible cases. Since the set D \ {0} is partitioned by separated annuli An and Dn, it is
clear that we have proved that f is Hölder continuous with exponent 1 − 1

p . At this point, it is
worth noting that this regularity could also be proven by means of the Sobolev embedding. Indeed,
we proved above that K(·, f) ∈ Lploc, and also that the Jacobian determinant is constantly 1. This

together implies that Df ∈ L2p
loc.

Now we show that also f−1 is Hölder continuous. Indeed, let us recall that f is the limit of
iterates of logarithmic spiral maps inside the annuli and conformal outside. Now, f−1 can be con-
structed using the same building blocks as f itself, just changing the sign of αn at each step. This
is possible because the inverse of a logarithmic spiral map is the same spiral map, just the direction
of rotation is opposite of the original map. Since it is clear that the direction of rotation does not
play any role in the proof of Hölder continuity of f , this implies that f−1 is also Hölder from above.
Thus f is Hölder from below as well.

As we said before, the above example approaches the borderline stated in Theorem 3.1.1, but
it does not attain full optimality yet. To this end, we have to modify it by adding to our building
blocks a stretching factor. This is done by replacing, at each iterate, the logarithmic spiral map
z|z|iα = zeiα log |z| by a complex power z|z|q+iα = z|z|q eiα log |z|. We now proceed with the details.

So, similarly as in the previous construction, we fix a rapidly decreasing sequence {rn} such that
rn+1 <

rn
2e and r1 <

1
e . Also, let Rn = ern. Given an arbitrary annulus A = B(0, R) \ B(0, r) we

define the corresponding radial stretching combined with rotation map as follows:

φA(z) =


z |z| > R

z
∣∣ z
R

∣∣q−1
eiα log

|z|
R r ≤ |z| ≤ R

z
(
r
R

)q−1
eiα log r

R |z| < r

(3.19)

Note that this time we will have q ≥ 1. Direct calculation shows that

|∂φA(z)|+ |∂φA(z)| =


1 |z| > R

R1−q|z|q−1 |q+1+iα|+|q−1+iα|
2 r ≤ |z| ≤ R

R1−qrq−1 |z| < r

and also that

J(z, φA) =


1 |z| > R

q
(
|z|
R

)2(q−1)

r ≤ |z| ≤ R(
r
R

)2(q−1) |z| < r

whence

K(z, φA) =


1 |z| > R
(|q+1+iα|+|q−1+iα|)2

4q r ≤ |z| ≤ R
1 |z| < r

In particular, if 2 ≤ q + 1 < α then one may estimate ‖K(·, φA)‖∞ ≤ 4α2

q . Next, let us construct
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the sequence of maps fn in an iterative way as follows. For n = 1, we set

f1(z) = φA1
(z) =


z |z| < R1

z
∣∣∣ zR1

∣∣∣q1−1

eiα1 log
|z|
R1 r1 ≤ |z| ≤ R1

z
(

1
e

)q1−1
e−iα1 |z| < r1

where q1 and α1 are to be determined later. Next, assuming we have f1, . . . , fn−1, we define fn for
n ≥ 2 as:

fn(z) = φfn−1(An) ◦ fn−1(z)

Note that φfn−1(An) is determined by the inner and outer radii of φfn−1(An) (which are already
available since f1, . . . , fn−1 are known) as well as for the parameters qn and αn, which will be
determined later. Clearly, each fn : C→ C is quasiconformal, and conformal outside the annuli Ai,
i ∈ {1, ..., n}. Moreover, one can easily show that

K(·, fn) =

n∏
j=1

K(·, fn−j ◦ φfn−j(An−j+1)) =

n∏
j=1

K(·, φAn−j+1
)

so that K(z, fn) ≤ C α2
j

qj
whenever z ∈ Aj , j = 1 . . . n while K(·, fn) = 1 otherwise. In a similar way,

we can use that |DφA(z)| ≤ Cα when z ∈ A (and |DφA(z)| ≤ 1 at all other points) to obtain that
|Dfn| ≤ Cαj on Aj , j = 1 . . . n, and |Dfn| ≤ 1 otherwise.

By construction, we have fn(z) = fn−1(z) whenever z /∈ B(0, Rn). Thus {fn}n converges uni-
formly to a map f̄(z), that is,

f̄ = lim
n→∞

fn

which is again a homeomorphism by construction. A similar argument to the one before shows that
f̄ is absolutely continuous on almost every line parallel to the coordinate axis. For almost every
fixed z0 6= 0 there is a neighbourhood of z0 such that the sequence {fn(z)}n remains constant for
n very large and z in that neighbourhood. Therefore the same happens to the sequences Dfn(z),
J(z, fn) and K(z, fn), and so their limits are precisely Df̄(z), J(z, f̄) and K(z, f̄). Especially, in
order to have Df̄ ∈ L1

loc it suffices that

∞∑
n=1

|An|αn < +∞ (3.20)

In case this holds true, then f̄ is a homeomorphism in W 1,1
loc , and as a consequence its jacobian

determinant J(·, f̄) ∈ L1
loc. Moreover, in order to have K(·, f̄) ∈ Lploc one needs to require that

∞∑
n=1

|An|
α2p
n

qpn
< +∞ (3.21)

Again, as it was the case for f , (3.21) implies (3.20) when q
p

2p−1
n < αn and so our parameters αn

and qn need to be chosen according to (3.21) as well as the purpose of f̄ to be optimal for Theorem
3.1.1. For this, again as before, we have f̄(0) = 0, f̄(1) = 1 and

∣∣arg
(
f̄(rn)

)∣∣ ≥ ∣∣∣∣∣arg

((
1

e

)qn+iαn
)∣∣∣∣∣ = |αn|
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which motivates us to choose

αn = h(rn)

(
log

1

rn

)1/2

r
− 1
p

n qn = log
1

rn
,

where h is any gauge function such that h(r) → 0 as r → 0 and the condition q
p

2p−1
n < αn is

satisfied. Indeed, with these choices (3.21) becomes∑
n

h(rn)2p < +∞

which, as before, may always be granted by choosing smaller rn, if needed. Having (3.21) fulfilled,
our map f̄ is a mapping of finite distortion with K(·, f̄) ∈ Lploc. Also, the resulting map f̄ attains
the optimal rotational behavior stated at Theorem 3.1.1 modulo the gauge function h which can
be chosen to converge to 0 as slowly as desired.

Therefore, Theorem 3.1.3 will be proven if we are able to show that f̄ is Hölder from below.
Furthermore, we also show that f̄ is Hölder from above, highlighting regularity of our mappings.

To do this, we first observe that the composition of z 7→ zeiα log |z| followed by z 7→ z|z|q−1 is
precisely z 7→ z|z|q−1eiα log |z|. This observation suggests us to decompose f̄ = g ◦ f , where f is
essentially the first example in this section (with different choice of αn) and g is constructed by
building blocks (3.19) with α = 0 at each step. Morally, f leaves fixed all circles centered at 0, and
only rotates the annuli An, while g conveniently stretches each An.

For any p > 1, the bi-Hölder nature of f has already been proven when αn = h(rn) r
−1/p
n . Hence

we can directly use the same proof there after we estimate

h(rn)

(
log

1

rn

)1/2

r
− 1
p

n ≤ h(rn) r−1/(p−ε)
n

for all small rn and ε = (p − 1)/2. Therefore, it only remains to show that g is bi-Hölder as well.
To this end, we first show that g is Hölder from above using the fundamental theorem of calculus.

Let x, y ∈ B(0, 1) be given. Without loss of generality let us assume that |y| ≥ |x| and let w
be the point for which |w| = |x| and arg(w) = arg(y). Now

|g(x)− g(y)| ≤ |g(w)− g(x)|+ |g(y)− g(w)|, (3.22)

and we will show that both of these are Hölder. First, since g maps circles centered at the origin
radially to similar circles with equal or smaller radius (as qn ≥ 1) it is clear that

|g(x)− g(w)| ≤ |x− w| ≤ |x− y|.

Let us then concentrate of the second part. First we note, that we can without loss of generality
assume that y and w are real numbers as g is a radial mapping. From our construction we see that
the line segments [rn, Rn], (Rn+1, rn) and (R1, 1] partition the line segment (0, 1]. Furthermore,
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from (3.19) it is clear that the differential is bounded from above by 1 in the segments (Rn+1, rn)
and (R1, 1]. On the other hand, in segments [rn, Rn] we can estimate

|g′(t)| ≤ log

(
1

rn

)
≤ C√

t

for any t ∈ [rn, Rn] with fixed C that does not depend on n or t. This is so because of our choice
of qn. Combining these two estimates we have

|g′(t)| ≤ C√
t

for any t ∈ (0, 1). Thus we can use fundamental theorem of calculus to estimate

|g(y)− g(w)| =
ˆ y

w

|g′(t)|dt

≤
ˆ y

w

C√
t
dt

= 2C
(√
y −
√
w
)

≤ 2C
√
y − w.

This proves that also the second part in (3.22) is Hölder from above, and thus we obtain

|g(y)− g(x)| ≤ |g(y)− g(w)|+ |g(w)− g(x)| ≤ C
√
|y − w|+

√
|x− w| ≤ 2C

√
|x− y|,

which shows g is Hölder from above.

Let us next prove that g is Hölder from below. To this end, given any two points x, y ∈ B(0, 1) we
again without loss of generality assume that |y| ≥ |x| and let w be the point for which |w| = |x|
and arg(w) = arg(y). Now, as g is a radial homeomorphism, it follows that

|g(x)− g(y)| ≥ max{|g(x)− g(w)|, |g(y)− g(w)|}

Moreover,

max{|x− w|, |y − w|} ≥ 1

2
|x− y|

Therefore, it is enough to show that both |g(x) − g(w)| and |g(y) − g(w)| satisfy Hölder bounds
from below. Note that if x = 0 then clearly w = 0 and we have only the radial part |g(y)− g(w)|.

Let us first check the term |g(x) − g(w)|. Since g maps radially circles centered at the origin
to similar circles we see that |g(x)− g(w)| gets contracted the same amount as the modulus |g(w)|
is contracted under g. Now we must consider two possibilities, either x,w ∈ An or x,w ∈ Dn

for some n. Let us first assume x,w ∈ An = B(0, Rn) \ B(0, rn) for some n. Here we impose an
additional assumption that

rn <

(
1

e

)qn−1+qn−2+...+q1−(n−1)

, (3.23)
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which we can do as the radii rn can be assumed to decrease as fast as we want. Then we can
estimate

|g(x)| =
(

1

e

)qn−1+qn−2+...+q1−(n−1)

· |x|
(
|x|
Rn

)qn−1

≥ rn · |x|
(
|x|
Rn

)qn−1

≥ rn · |x|
(

1

e

)qn−1

= e · r2
n · |x|

for any x ∈ An. Therefore,
|g(x)− g(w)| ≥ e · r2

n · |x− w|
≥ C · |x− w|3

since |x− w| < C · rn for some fixed constant C > 0 when x,w ∈ An.

Next, let x,w ∈ Dn = B(0, rn) \B(0, Rn+1) for some n. Using (3.23) we get

|g(x)| ≥ c
(

1

e

)qn−1+qn−2+...+q1−(n−1)

· rn · |x|

≥ c · r2
n · |x|.

Thus we can use a similar argument as in the previous case to estimate

|g(x)− g(w)| ≥ c · r2
n · |x− w|

≥ c · |x− w|3

since |x− w| < c · rn for some fixed constant c > 0 when x,w ∈ Dn.

Since the set D \ {0} is partitioned by separated annuli An and Dn we have thus proven that
|g(x)− g(w)| satisfies Hölder estimates from below.

Finally, let us prove the Hölder estimates from below for the term |g(y) − g(w)|. As the map-
ping g is radial, we can again assume that y and w are real. We aim to use again the Fundamental
Theorem of Calculus, and thus have to estimate the differential from below. Using (3.23), as well
as the fact that qn > 1, we can estimate for any real number t ∈ [rn, Rn] that

g′(t) =

(
1

e

)qn−1+qn−2+...+q1−(n−1)

· qn ·
(

t

Rn

)qn−1

≥ rn qn ·
(
rn
Rn

)qn−1

= e qn r
2
n

≥ c · t2 log
1

t
.
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Next, if t ∈ [Rn+1, rn], we have

g′(t) =

(
1

e

)qn−1+qn−2+...+q1−(n−1)

·
(

1

e

)qn−1

≥ e · r2
n

≥ c · t2

Thus, as before, since (0, 1) is partitioned by the intervals [rn, Rn], [Rn+1, rn] and [R1, 1), we end
up getting that

g′(t) ≥ c · t2

for every t ∈ (0, 1). Now, we use the fundamental theorem of calculus to get

|g(y)− g(w)| =
ˆ y

w

g′(t)dt

≥
ˆ y

w

c · t2dt

= C
(
y3 − w3

)
≥ C|y − w|3

This proves that the second term is Hölder from below as well, which in turn proves that g is Hölder
from below. This finishes the proof of Theorem 3.1.3.

Proof of Theorem 3.1.5. We prove Theorem 3.1.5 in two steps. In the first step, we construct a
map which only rotates. This map will have the correct spiraling rate but the distortion of the
map will not belong to the desired space. To overcome this barrier we compose it with a radial
stretching map, which gives us better control over distortion.

Given an arbitrary annulus A = B(0, R) \ B(0, r) let us define the corresponding rotation map
as

φA(z) =


z |z| > R

z eiα log| zR | r ≤ |z| ≤ R
z eiα log r

R |z| < r

(3.24)

Here 0 < r < R, and α ∈ R. It is clear that φA : C → C is bilipschitz, hence quasiconformal (its
quasiconformality constant depends only on α), and moreover it is conformal outside the annulus
A. Moreover, |φA(teiθ)| = t for each t > 0 and θ ∈ R. This means that φA leaves fixed all circles
centered at 0. It is easy to check that the jacobian determinant J(z, φA) = 1 for each z.

Next, let us consider sequence {rn} such that 0 < rn+1 <
rn
2e and r1 <

1
e . Also, let Rn = ern, which

ensures that 2rn+1 < Rn+1 <
rn
2 . Let us now construct disjoint annuli An = B(0, Rn) \ B(0, rn),

and set {fn}n to be a sequence of maps, constructed in an iterative way as follows. For n = 1, we
set

f1(z) = φA1
(z) =


z |z| > R1

z eiα1 log
|z|
R1 r1 ≤ |z| ≤ R1

z e−iα1 |z| < r1

(3.25)

80



where α1 ∈ R, α1 ≥ 1, is to be determined later. We then define fn for n ≥ 2 as

fn(z) = φfn−1(An) ◦ fn−1(z)

again for some values αn ∈ R, αn ≥ 1, to be determined later. Clearly, each fn : C → C is
quasiconformal, and conformal outside the annuli Ai, i = 1, . . . , n. It is also clear that fn(z) =
fn−1(z) on the unbounded component of C \ fn−1(An) (i.e. outside of B(0, Rn)). This proves that
the sequence fn is uniformly Cauchy and hence it converges to a map f , that is,

f = lim
n→∞

fn

which is again a homeomorphism by construction. Now, since fn is quasiconformal for every n and
fn(z) = fn−1(z) everywhere except inside the ball B(0, Rn), where Rn → 0 as n → ∞, the limit
map f is absolutely continuous on almost every line parallel to the coordinate axes and differen-
tiable almost everywhere.

It is helpful to note that each fn leaves fixed all circles centered at the origin, so in particular
we have fn(Aj) = Aj for each j, and therefore φfn−1(An) = φAn . Direct calculation shows that

|DφAn(z)| = |∂φAn(z)|+ |∂φAn(z)| =


1 |z| > Rn
|2+iαn|+|αn|

2 rn ≤ |z| ≤ Rn
1 |z| < rn

which allows us to estimate that

|∂f(z)|+ |∂̄f(z)| ≤ 2αn whenever z ∈ An,

and |Df(z)| ≤ 1 otherwise. Therefore, in order to have Df(z) ∈ L1
loc(C) it suffices that∑

n

αn r
2
n < +∞. (3.26)

This, together with the absolute continuity, guarantees f ∈W 1,1
loc (C). Also, since f is a homeomor-

phism, we have that Jf (z) ∈ L1
loc(C), and in fact J(z, f) = 1 at almost every z ∈ C. Therefore, f

is a homeomorphism of finite distortion, with distortion function

K(z, f) =
|Df(z)|2

J(z, f)
≤

{
4α2

n z ∈ An,
1 otherwise.

Especially, in order to have K(·, f) ∈ Lploc, it suffices to ensure the convergence of the series

∞∑
n=1

|An|(4α2
n)p '

∞∑
n=1

α2p
n r2

n (3.27)

which can be done by choosing αn properly. Note that if (3.27) holds, then also (3.26) holds,
because our choice of αn will guarantee αn ≥ 1. The last restriction to choose our αn comes from
rotational behavior of f . It is clear from the above construction that f(0) = 0, f(1) = 1 and

|arg (f(rn))| ≥

∣∣∣∣∣arg

((
1

e

)1+iαn
)∣∣∣∣∣ = αn
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for every rn. Let us choose αn = r
−1/p
n log1/2(1/ϕ(rn)). This implies that

|arg (f(rn))| ≥ r−1/p
n log1/2(1/ϕ(rn)),

which shows that this map would be optimal for Theorem 3.1.4.
However, with this particular choice of αn,

∞∑
n=1

α2p
n r2

n =

∞∑
n=1

logp(1/ϕ(rn))

which is certainly not finite. This means that K(·, f) /∈ Lploc.

Hence we need to modify the construction by adding a stretching factor to our building blocks,
which lets us reduce the distortion while preserving spiraling rate. This is precisely done by substi-
tuting the logarithmic spiral map z|z|iα = zeiα log |z| by a complex power z|z|q+iα = z|z|q eiα log |z|

at each iterate. Let us explain this process in detail.

Similarly as in the previous construction, we consider a rapidly decreasing sequence {rn} such
that rn+1 <

rn
2e , r1 <

1
e and set Rn = ern. Given an arbitrary annulus A = B(0, R) \ B(0, r) we

define the corresponding composition map as follows:

φA(z) =


z |z| > R

z
∣∣ z
R

∣∣q−1
eiα log

|z|
R r ≤ |z| ≤ R

z
(
r
R

)q−1
eiα log r

R |z| < r

(3.28)

Note that we will always choose q ≥ 1. Direct calculation shows that

|∂φA(z)|+ |∂φA(z)| =


1 |z| > R

R1−q|z|q−1 |q+1+iα|+|q−1+iα|
2 r ≤ |z| ≤ R

R1−qrq−1 |z| < r

(3.29)

and also that

J(z, φA) =


1 |z| > R

q
(
|z|
R

)2(q−1)

r ≤ |z| ≤ R(
r
R

)2(q−1) |z| < r

(3.30)

whence

K(z, φA) =


1 |z| > R
(|q+1+iα|+|q−1+iα|)2

4q r ≤ |z| ≤ R
1 |z| < r

(3.31)

In particular, if 2 ≤ q + 1 ≤ α, which will be satisfied for our choices of α and q, then one may

estimate ‖K(·, φA)‖∞ ≤ 4α2

q . Next, let us construct the sequence of maps fn in an iterative way as
follows. For n = 1, we set

f1(z) = φA1(z) =


z |z| < R1

z
∣∣∣ zR1

∣∣∣q1−1

eiα1 log
|z|
R1 r1 ≤ |z| ≤ R1

z
(

1
e

)q1−1
e−iα1 |z| < r1

(3.32)
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where q1 and α1 are to be determined later. Next, assuming we have f1, . . . , fn−1, we define fn for
n ≥ 2 as:

fn(z) = φfn−1(An) ◦ fn−1(z)

Note that φfn−1(An) is determined by the inner and outer radii of φfn−1(An) (which are already
available since f1, . . . , fn−1 are known) as well as for the parameters qn and αn, which will be
determined later. Clearly, each fn : C→ C is quasiconformal, and conformal outside the annuli Ai,
i ∈ {1, ..., n}. Moreover, one can easily show that

K(·, fn) =

n∏
j=1

K(·, fn−j ◦ φfn−j(An−j+1)) =

n∏
j=1

K(·, φAn−j+1
)

so that K(z, fn) ≤ C α2
j

qj
whenever z ∈ Aj , j = 1 . . . n while K(·, fn) = 1 otherwise. In a similar way,

we can use that |DφA(z)| ≤ Cα when z ∈ A (and |DφA(z)| ≤ 1 at all other points) to obtain that
|Dfn| ≤ Cαj on Aj , j = 1 . . . n, and |Dfn| ≤ 1 otherwise.

By construction, we have fn(z) = fn−1(z) whenever z /∈ B(0, Rn). Thus {fn}n converges uni-
formly to a map f̄ , that is,

f̄ = lim
n→∞

fn

which is again a homeomorphism by construction. A similar argument to the one before shows that
f̄ is absolutely continuous on almost every line parallel to the coordinate axis. For almost every
fixed z0 there is a neighbourhood of z0 such that the sequence {fn(z)}n remains constant for n very
large and z in that neighbourhood. Therefore the same happens to the sequences Dfn(z), J(z, fn)
and K(z, fn), and so their limits are precisely Df̄(z), J(z, f̄) and K(z, f̄). Especially, in order to
have Df̄ ∈ L1

loc it suffices that
∞∑
n=1

|An|αn < +∞. (3.33)

In case this holds true, then f̄ is a homeomorphism in W 1,1
loc , and as a consequence its jacobian

determinant J(·, f̄) ∈ L1
loc. Moreover, in order to have K(·, f̄) ∈ Lploc; (p ≥ 1) one needs to require

that
∞∑
n=1

|An|
α2p
n

qpn
< +∞. (3.34)

Again, as it was the case for the pure rotation example, when p > 1 condition (3.34) implies (3.33)

if q
p

2p−1
n ≤ αn, and for p = 1 case we must verify qn ≤ αn. So, our parameters αn and qn need to be

chosen according to these constraints as well as the purpose of f̄ to be optimal for Theorem 3.1.4.
To this end, note that f̄(0) = 0, f̄(1) = 1 and

∣∣arg
(
f̄(rn)

)∣∣ ≥ ∣∣∣∣∣arg

((
1

e

)qn+iαn
)∣∣∣∣∣ = |αn|, (3.35)

which motivates us to choose

qn =

log e r1
|ϕ(r1)| n = 1

log

(
e · rn· ( 1

e )
qn−1+qn−2+...+q1−(n−1)

|ϕ(rn)|

)
n ≥ 2

(3.36)

83



and

αn = h(rn)

(
log

1

|ϕ(rn)|

)1/2

r
− 1
p

n (3.37)

where h is a monotone non-increasing gauge function such that h(r)→ 0 as r → 0 which we specify
later.

Next, we show that qn ≤ αn for all p ≥ 1, from which q
p

2p−1
n ≤ αn then also follows. At this

point, we impose an ansatz on rn:

rn <

(
1

e

)qn−1+qn−2+...+q1−(n−1)

, (3.38)

which is feasible as the radii rn can be assumed to decrease as fast as we want. Let us then recall
our assumption on ϕ to satisfy compression bound:

|ϕ(z)| ≥ e−gϕ,p(|z|)|z|−
2
p
, (3.39)

where gϕ,p : R→ R is some increasing gauge function such that |gϕ,p| → 0 as |z| → 0. Now, let us
proceed with the calculations.

qn = log

(
e · rn ·

(
1
e

)qn−1+qn−2+....+q1−(n−1)

|ϕ(rn)|

)

≤ log
1

|ϕ(rn)|

= log
1
2

1

|ϕ(rn)|
· log

1
2

1

|ϕ(rn)|

≤ log
1
2

1

|ϕ(rn)|
·
√
gϕ,p(rn)

1

r
1
p
n

≤ log
1
2

1

|ϕ(rn)|
· h(rn)

r
1
p
n

= αn

where the last inequality holds for h converging to zero slowly enough. Note that, from [32, Theo-
rem 1.6] we see that if p = 1 then the compression bound (3.39) is always satisfied with some gϕ.
Thus our choices for qn and αn satisfy technical constrains.

Next, we show that estimate (3.34) governing integrability of the distortion holds true for p ≥ 1.
We start by estimating

|An|
α2p
n

qpn
= C r2

n

h2p r−2
n logp

(
1

|ϕ(rn)|

)
logp

(
e ·rn ·( 1

e )
qn−1+qn−2+....+q1−(n−1)

|ϕ(rn)|

)

≤ C h2p
logp

(
1

|ϕ(rn)|

)
logp

(
r2n

|ϕ(rn)|

) .
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It is easy to check that 1 <
logp( 1

|ϕ(rn)| )

logp
(

r2n
|ϕ(rn)|

) ≤ 2p, using the condition (3.8), and therefore, up to

constants, condition (3.34) is equivalent to∑
n

h(rn)2p < +∞

which we can always satisfy by choosing rn small enough. Having (3.34) fulfilled, our map f̄ is a
mapping of finite distortion with K(·, f̄) ∈ Lploc.

Next we must show that our mapping f has right compression and spiraling behaviour. Let us
start with modulus and show that |f̄(rn)| = |ϕ(rn)| by calculating

|f̄(rn)| =
(

1

e

)qn−1+qn−2+...+q1−(n−1)

· rn
(
rn
Rn

)qn−1

=

(
1

e

)qn−1+qn−2+...+q1−(n−1)

· rn
(

1

e

)qn−1

= |ϕ(rn)|,

where the last line follows from the penultimate due to our choice of qn.

For the spiraling part we must show that the rotation bound (3.10) holds true. But this fol-
lows directly from (3.35), (3.37) and from the above modulus equation. This concludes the proof
of Theorem 3.1.5.

Proof of Theorem 3.1.7. We prove Theorem 3.1.7 in two steps similarly to Theorem 3.1.5. In the
first step we construct a map which only rotates. This map already provides the optimal result
in the exponent scale. Then, as in the previous construction, we compose this map with radial
stretching mapping and finish the proof.

Given an arbitrary annulus A = B(0, R) \B(0, r) we define the corresponding rotation map φA as
in (3.24). It is clear that φA : C → C is quasiconformal, and moreover it is conformal outside the
annulus A. Furthermore, φA leaves fixed all circles centered at 0, and the Jacobian determinant
J(z, φA) = 1 for each z.

Next, we again consider sequence {rn} such that 0 < rn+1 <
rn
2e , r1 <

1
e , and fix Rn = ern. We

then construct disjoint annuli An = B(0, Rn) \ B(0, rn) and a sequence of maps {fn}n iteratively
as before. That is, set f1 as in (3.25) and define fn for n ≥ 2 as

fn(z) = φfn−1(An) ◦ fn−1(z)

for some αn ≥ 1, to be determined later. We can use word by word the same arguments as before
to deduce that the limit

f = lim
n→∞

fn

is a homeomorphism with integrable distortion if∑
n

αn r
2
n < +∞ (3.40)
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and
∞∑
n=1

|An|4α2
n '

∞∑
n=1

α2
n r

2
n < +∞. (3.41)

Moreover, as we will choose αn > 1, we see that in fact (3.41) implies (3.40). Hence we only need
to choose αn so that (3.41) is satisfied.
Furthermore, it is clear from the above construction that f(0) = 0, f(1) = 1 and

|arg (f(rn))| ≥

∣∣∣∣∣arg

((
1

e

)1+iαn
)∣∣∣∣∣ = αn (3.42)

for every rn. Since we want our map to be optimal for Corollary 3.1.6, we may be tempted to

choose αn = log1/2(1/rn)
rn

. Unfortunately such a choice does not meet the requirement (3.41) and
instead we are forced to choose

αn =
h(rn)

rn
,

where h : [0,∞)→ [0,∞) is a monotonically decreasing gauge function such that limr→0+ h(r) = 0.
With this choice, (3.41) is fulfilled if

∞∑
n=1

(h(rn))
2
< +∞,

which we can ensure by choosing small enough rn. Note that this does not provide optimality for
Corollary 3.1.6 in full generality, but it already gives the right order in the exponent scale.

Finally, we show that f−1 is Hölder continuous with exponent 1
2 . To this end, let us recall

that our map f is actually a limit of iterates of logarithmic spiral maps inside the annuli An =
B(0, Rn) \ B(0, rn). In particular, as shown in [7], if γ ∈ R then the basic logarithmic spiral map
g(z) = zeiγ log |z| is L-bilipschitz for a constant L such that |γ| = L− 1

L . And thus for large |γ| one
roughly has |γ| ' L. Since our fn behaves in the annulus An as a spiral map with |γ| = αn, we
deduce that the bilipschitz constant of fn on An is

L ' |γ| = αn =
h(rn)

rn
.

Let us now start the proof. We first consider the case where x, y ∈ An, and hence f(x) = fn(x),
f(y) = fn(y). Since rn > C|x− y|, we have

|f(x)− f(y)| = |fn(x)− fn(y)| & rn
h(rn)

|x− y|

≥ C

h(rn)
|x− y|2

≥ C|x− y|2

where we have used the bilipschitz nature of fn on An. The fact that f is Hölder from below inside
the annuli An with exponent 2 implies that in these sets f−1 is Hölder continuous with exponent
1
2 . Here we note, that f and f−1 are essentially the same mapping, only the direction of rotation is
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changed, and hence f is also Hölder continuous with exponent 1
2 inside An.

Then we assume that x, y ∈ Dn = B(0, rn) \ B(0, Rn+1). In this case f is of the form zeiβ ,
where β ∈ R \ {0}, which is clearly an isometry and hence Hölder estimate inside Dn is trivial.

Next, we take x ∈ An and y ∈ Dn. In particular, |x| ≥ |y|. Then let w be the point on the
outer boundary of Dn joining x and y. We have

|f(x)− f(y)| ≤ |f(x)− f(w)|+ |f(w)− f(y)|

≤ C|x− w| 12 + |w − y|

≤ 2C|x− y| 12

The same happens if x ∈ Dn−1 and y ∈ An.

So it just remains to see what happens when points are further apart from each other. Let us
first cover the case x ∈ An = B(0, Rn) \ B(0, rn) and y ∈ B(0, Rn+1). Let L be the line joining x
and y. We divide it into three parts, viz., L1, L2 and L3. Fix L1 so that it connects x to a point a
on the inner boundary of An, giving estimate

|f(x)− f(a)| = |fn(x)− fn(a)| ≤ C|x− a| 12

Next, L2 connects a to the crossing point of the line L and the inner boundary of Dn, which we
denote by b. And since f is an isometry in Dn an estimate for line segment L2 is trivial.

For L3 part we note that from 2Rn+1 < rn <
Rn
2 we get that |f(a)| > 2|f(b)| and hence

|f(b)− f(y)| ≤ 2|f(b)| ≤ 2|f(b)− f(a)| = 2|b− a|.

Combining these estimates we get

|f(x)− f(y)| ≤ |f(x)− f(a)|+ |f(a)− f(b)|+ |f(b)− f(y)|

≤ C|x− a| 12 + |a− b|+ 2|a− b|

≤ C|x− y| 12

The case x ∈ Dn and y ∈ B(0, rn+1) can be proved in a similar manner. Thus f is Hölder continu-
ous with exponent 1

2 .

Here we again note that f and f−1 are essentially the same mapping modulo the direction of
rotation, and hence f−1 is also Hölder continuous with the exponent 1

2 . Thus f is Hölder from
below with the exponent 2.

As we discussed before, the above example approaches the borderline stated in Corollary 3.1.6,
but it does not attain full optimality yet. To this end, we need to modify it by adding a stretching
factor to our building blocks, which lets us increase rotation without increasing the distortion. This
is done by replacing, at each iterate, the logarithmic spiral map z|z|iα = zeiα log |z| by a complex
power z|z|q+iα = z|z|q eiα log |z|. Let us proceed with the details.
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So, similarly as in the previous construction, we consider a rapidly decreasing sequence {rn} such
that rn+1 <

rn
2e , r1 <

1
e and fix Rn = ern. Given an arbitrary annulus A = B(0, R) \ B(0, r) we

define the corresponding radial stretching combined with rotation map as in (3.28). As before we
will choose q ≥ 1.

The values of the differential, Jacobian and distortion of φA are already known from (3.29), (3.30)

and (3.31). In particular, if 2 ≤ q + 1 < α then one may estimate ‖K(·, φA)‖∞ ≤ 4α2

q . Next, we

construct the sequence of maps fn in an iterative way as before. Let us set f1 as in (3.32) and fn
for n ≥ 2 as:

fn(z) = φfn−1(An) ◦ fn−1(z).

Each fn : C→ C is quasiconformal, and conformal outside the annuli Ai, i ∈ {1, ..., n}. Moreover,
we still calculate distortion by

K(·, fn) =
n∏
j=1

K(·, fn−j ◦ φfn−j(An−j+1)) =

n∏
j=1

K(·, φAn−j+1
)

so that K(z, fn) ≤ C α2
j

qj
whenever z ∈ Aj , j = 1 . . . n while K(·, fn) = 1 otherwise. As before we also

use |DφA(z)| ≤ Cα when z ∈ A (and |DφA(z)| ≤ 1 at all other points) to obtain that |Dfn| ≤ Cαj
on Aj , j = 1 . . . n, and |Dfn| ≤ 1 otherwise.

Using the exact same arguments as before we see that for the limit

f̄ = lim
n→∞

fn

to be a homeomorphism of integrable distortion it is enough to check that

∞∑
n=1

|An|αn < +∞ (3.43)

and
∞∑
n=1

|An|
α2
n

qn
< +∞. (3.44)

Note that as in the case of f , (3.44) implies (3.43) when qn < αn and so our parameters αn and qn
need to be chosen such that (3.44) is satisfied as well as the purpose of f̄ to be optimal for Corollary
3.1.6. Thus we choose

αn =
h(rn)

rn

(
β log

1

rn

)1/2

qn = β log
1

rn
, β ≥ 1 (3.45)

where h is any gauge function such that h(r)→ 0 as r → 0 and the condition qn < αn is satisfied.
Indeed, with these choices (3.44) becomes∑

n

(h(rn))
2
< +∞
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which, as before, may always be satisfied by choosing small enough rn. Having (3.44) fulfilled,
our map f̄ is a mapping of finite distortion with K(·, f̄) ∈ L1

loc. Furthermore, since we can bound
spiraling from below by αn at the points rn using the same estimate (3.42) as before, the resulting
map f̄ attains the optimal rotational behavior stated at Corollary 3.1.6 modulo the gauge function
h which can be chosen to converge to 0 as slowly as desired.

Therefore, Theorem 3.1.7 will be proven once we show that f̄ is Hölder from below.

To this end, we first observe that the composition of z 7→ zeiα log |z| followed by z 7→ z|z|q−1 is
precisely z 7→ z|z|q−1eiα log |z|. This observation suggests us to decompose f̄ = g ◦ f , where f is
essentially the first example in this section (with slightly different choices for the constants αn)
and g is constructed by building blocks (3.28) with α = 0 at each step. Morally, f leaves fixed
all circles centered at 0 and only rotates inside the annuli An, while g conveniently stretches each An.

The Hölder nature of f−1 has already been proven when αn = h(rn)
rn

. We need to show that

our map f−1 is still Hölder continuous with our new choices for αn, which we can estimate by

αn =
h(rn)

rn

(
β log

1

rn

)1/2

≤
√
βh(rn) r−1/(1−ε)

n (3.46)

for an arbitrary ε > 0 and small enough rn. This can be done by exactly the same proof as before
once we check that f is Hölder from below inside the annuli An. To this end, let us consider two
points x, y ∈ An and note that f(x) = fn(x) and f(y) = fn(y). Since rn > C|x − y|, using the
estimate (3.46) gives

|f(x)− f(y)| = |fn(x)− fn(y)| & r
1/(1−ε)
n

h(rn)
|x− y|

≥ C

h(rn)
|x− y|1+ 1

1−ε

≥ C|x− y|2+ε

where we are using the bilipschitz nature of fn in An. Therefore, in order to prove Theorem 3.1.7
it remains to prove that g is Hölder from below.

To this end, given any two points x, y ∈ B(0, 1), we can without loss of generality assume that
|y| ≥ |x| and let w be the point for which |w| = |x| and arg(w) = arg(y). Now, as g is a radial
stretching map, it follows that

|g(x)− g(y)| ≥ max{|g(x)− g(w)|, |g(y)− g(w)|}.

Moreover,

max{|x− w|, |y − w|} ≥ 1

2
|x− y|.

Therefore, it is enough to show that both |g(x) − g(w)| and |g(y) − g(w)| satisfy Hölder bounds
from below. Note that if x = 0 then clearly w = 0 and we have only the radial part |g(y)− g(w)|.

Let us first check the term |g(x) − g(w)|. Since g maps radially circles centered at the origin
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to similar circles we see that |g(x)− g(w)| gets contracted the same amount as the modulus |g(x)|
is contracted under g. Now we must consider two possibilities, either x,w ∈ An or x,w ∈ Dn for
some n. Let us first assume x,w ∈ An = B(0, Rn) \B(0, rn) for some n. Here we recall the ansatz
(3.38) on rn. Then we can estimate

|g(x)| =
(

1

e

)qn−1+qn−2+...+q1−(n−1)

· |x|
(
|x|
Rn

)qn−1

≥ rn · |x|
(
|x|
Rn

)qn−1

≥ rn · |x|
(

1

e

)qn−1

= e · r1+β
n · |x|

for any x ∈ An, where in the last step we use (3.45). Therefore,

|g(x)− g(w)| ≥ e · r1+β
n · |x− w|

≥ C · |x− w|2+β

since |x− w| < C · rn for some fixed constant C > 0 when x,w ∈ An.

Next, let x,w ∈ Dn = B(0, rn) \B(0, Rn+1) for some n. Using (3.38) we get

|g(x)| ≥ c
(

1

e

)qn−1+qn−2+...+q1−(n−1)

· rβn · |x|

≥ c · r1+β
n · |x|.

Thus we can use similar argument as in the previous case to estimate

|g(x)− g(w)| ≥ c · r1+β
n · |x− w|

≥ c · |x− w|2+β

since |x− w| < c · rn for some fixed constant c > 0 when x,w ∈ Dn.

Since the set D \ {0} is partitioned by separated annuli An and Dn we have thus proven that
|g(x)− g(w)| satisfies Hölder estimates from below.

Finally, let us prove the Hölder estimates from below for the term |g(y) − g(w)|. As the map-
ping g is radial, we can assume that y and w are real. We intend to use the Fundamental Theorem
of Calculus, and thus have to estimate the differential from below. Using (3.38), as well as the facts
that qn > 1 and Rn = ern, we can estimate for any real number t ∈ [rn, Rn] that

g′(t) =

(
1

e

)qn−1+qn−2+...+q1−(n−1)

· qn ·
(

t

Rn

)qn−1

≥ rn qn ·
(
rn
Rn

)qn−1

= e qn r
1+β
n

≥ cβ · t1+β log

(
e+

1

t

)
.
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Next, if t ∈ [Rn+1, rn], we have

g′(t) =

(
1

e

)qn−1+qn−2+...+q1−(n−1)

·
(

1

e

)qn−1

≥ e · r1+β
n

≥ c · t1+β

Thus, as before, since (0, 1) is partitioned by the intervals [rn, Rn], [Rn+1, rn] and [R1, 1), we end
up getting that

g′(t) ≥ c · t1+β

for every t ∈ (0, 1). Now, we use the fundamental theorem of calculus to get

|g(y)− g(w)| =
ˆ y

w

g′(t)dt

≥
ˆ y

w

c · t1+βdt

= C(β)
(
y2+β − w2+β

)
≥ C|y − w|2+β

This proves that the second term is Hölder from below as well, which in turn proves that g is Hölder
from below with exponent (2 + β) . This finishes the proof of Theorem 3.1.7.
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Chapter 4

Nonlinear transport equations and
quasiconformal mappings

4.1 Introduction

In this chapter we prove existence of global in time solutions to the following active scalar equation,
d
dtω + v ·∇ω = 0,

v(t, ·) = K ∗ ω(t, ·),
ω(0, ·) = ω0.

(4.1)

In the above system, one has

K(z) =
eiθ

2πz
=

1

2π

(x cos θ + y sin θ, x sin θ − y cos θ)

x2 + y2

and θ ∈ [0, 2π] is fixed, while ω0 ∈ L∞ is a given compactly supported and real valued function.
This model arises as a natural counterpart to the classical planar Euler system of equations in
vorticity form, which is given also by (4.1) but with a different choice for the kernel K, namely

K(z) =
i

2π z̄
=

1

2π

(−y, x)

x2 + y2

In both cases, the quantity ∂t+v ·∇ is called the material derivative of the unknown ω : [0,∞)×C→
R, and v is called the velocity. In Euler system, v represents the velocity field of a fluid, and ω is
known as the vorticity of the fluid.

In Euler’s setting, the Biot-Savart law v = K ∗ω can be written in terms of complex derivatives as

∂ v =
iω

2
.

where ∂ =
∂x−i∂y

2 denotes the classical complex derivative. Since ω is real valued, this ensures
that div v = 0 as well as curl v = ω. The first condition says that the fluid under consideration
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is incompressible, and so the flow map X(t, z) = Xt(z) produced by v does not distort area,
i.e. |Xt(E)| = |E| for any Lebesgue measurable set E ⊂ C. On the other hand, and under
enough regularity, the transport structure of the equation guarantees for the solution the following
representation formula,

ω(t,X(t, x)) = ω0(x). (4.2)

Having X to be a measure preserving map, Lebesgue null sets are also preserved and so both L1

and L∞ norms of ω(t, ·) are constant in time, which helps in making all compactness arguments
work. This is the reason why both the incompressibility of the fluid and the boundedness of curl v
were essential for Yudovich [48] to prove existence and uniqueness of global in time solutions to the
Euler system under the assumption ω0 ∈ L∞.

In contrast, in our setting (4.1), the kernel ensures instead that

∂ v =
eiθ ω

2

where now ∂ =
∂x+i∂y

2 denotes the anticonformal complex derivative. Especially, div v needs not
be identically 0, so the vector field v is not anymore incompressible. Moreover, classical Calderón-
Zygmund Theory can be used to show that now div v and curl v may be unbounded functions, even
for bounded and compactly supported ω0. Thus the preservation of Lebesgue null sets, or of L∞

and L1 norms of ω(t, ·) may seem unclear or even be false. Nevertheless, still the transport structure
of the equation tells that the solution ω(t, ·) admits again the representation formula (4.2), although
now the flow X(t, ·) needs not be measure preserving.

Recently it has been shown in certain linear transport models [20, 21, 22] that their well-posedness
do not depend on the measure-preservation property of the flow and, instead, the preservation of
Lebesgue null sets is the only requirement. Such models already show that this is possible even if
the velocity field has unbounded divergence.

In the same way ‖∂ v ‖L∞ keeps bounded in time for any Yudovich solution to the Euler sys-
tem, in our setting (4.1) the quantity ‖∂ v ‖L∞ keeps bounded in time as long as one is able to show
the preservation of Lebesgue null sets, rather than the preservation of Lebesgue measure through
the flow. Having uniform in time bounds for ‖∂ v ‖L∞ immediately drives our attention to H.M.
Reimann’s paper [43]. There it was shown that such vector fields produce flows X(t, x) with the
very special property of being quasiconformal for every t > 0. Quasiconformal maps are known to
Geometric Function Theory experts to be a very well understood class of homeomorphisms preserv-
ing Lebesgue null sets, and their compactness properties make them specially suitable for solving
certain elliptic PDE problems. This time, though, we will use them for a purely hyperbolic PDE.
Our main result is as follows.

Theorem 4.1.1. If the initial datum ω0 ∈ L∞ has compact support, there exists a solution ω ∈
L1([0, T ], L∞) of (4.1) for every T > 0.

This chapter is structured as follows. In Section 4.2 we remind a proof of the smooth theory for a

general kernel K. In Section 4.3 we prove the L∞ theorem for the particular case K(z) = eiθ

2πz . In
Section 4.4 we prove the equivalence of the velocity field formulation and the vorticity formulation
of the Cauchy system. Finally, in Section 4.5 we discuss about the hindrance one faces while trying
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to prove uniqueness of solutions to Cauchy using similar techniques to the one used for proving
uniqueness in Euler’s setting.

4.2 Existence theory for ω0 ∈ Cγ

In this section, we follow the lines of [13] to prove that the system (4.1) can be proven, for any
ω0 ∈ Cγ , to have a unique solution ω which is global-in-time. As specified at [16], this scheme works
for many kernels K(z), and not just Euler’s or Cauchy’s. We sketch the details for the reader’s
convenience.

As it happens to any transport equation under enough smoothness, if d
dt ω + v ·∇ω = 0 then

the solution ω is obtained from the initial value ω(0, ·) = ω0 through the trajectories of the defining
velocity field v,

ω(t,X(t, α)) = ω0(α)

where {
d
dt X(t, α) = v(t,X(t, α))

X(0, α) = α
(4.3)

provided these trajectories do exist and are nice enough. In our setting, though, the equation is
nonlinear as v depends on the unknown. We assume that v = K ∗ω at every point and every time.
Here K is a Kernel satisfying conditions K1, K2 as in the previous section. In particular, on the
trajectories,

v(t,X(t, α)) =

ˆ
ω(t, w)K(X(t, α)− w) dA(w)

=

ˆ
ω(t,X(t, β)K(X(t, α)−X(t, β)) |det(DX(t, β))| dA(β)

=

ˆ
ω0(β)K(X(t, α)−X(t, β)) |det(DX(t, β))| dA(β).

(4.4)

This establishes a direct connection between ω0 and v through X. That is to say, to each ω0 we
can associate a map F = Fω0

that sends a given flow X to a new map F (X), which is defined by

F (X)(α) =

ˆ
ω0(β)K(X(α)−X(β)) |det(DX(β))| dA(β). (4.5)

This map is constructed as F : E→ E in an autonomous way (i.e. time-independent) , on a Banach
space E to be defined later. Symbolically,

F (X) = (K ∗ (ω0 ◦X−1)) ◦X.

This representation allows us to see F as an application on a set of maps X. Once F is constructed,
we are then led to look for solutions X = X(t, ·) of the following Banach valued ODE,{

d
dt X(t, ·) = F (X(t, ·)),
X(0, ·) = Id

(4.6)

The strategy for finding solutions of (4.1) consists of solving (4.6). This is done in two steps: first,
one finds local-in-time solutions, and then one shows secondly that these local-in-time solutions are
indeed defined for every time.
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4.2.1 Local-in-time solutions

This is done with the help of the following Banach space version of the classical Picard Theorem.
We follow the scheme of [13], and write the details for the reader’s convenience.

Theorem 4.2.1. [13, Theorem 4.1] Let O ⊂ E be an open subset of the Banach space E. Let
F : O → E be locally Lipschitz continuous, that is,

lim sup
y→x

‖F (y)− F (x)‖E
‖y − x‖E

<∞.

For each x0 ∈ O there is a real number T = T (x0) > 0 such that the ODE{
Ẋ = F (X),

X(0) = x0,

admits a unique classical solution X ∈ C1((−T, T );O).

The job consist of finding appropriate O and E so that the map F given in (4.5) is in the hypothesis
of the above theorem. To this end, we set

E = {X : C→ C; ‖X‖1,γ <∞}

and for every fixed M > 0

OM =

{
X ∈ E : ‖X‖1,γ < M, inf

z∈C
detDX(z) >

1

M

}
.

Clearly, X(z) = z belongs to OM , and all elements in OM are local homeomorphisms by the
inverse function theorem. As in [13, Lemma 4.4] one can show that they are actually global
homeomorphisms, as a consequence of Hadamard’s theorem, which can also be relaxed by means
of a result by John which asserts that local homeomorphisms X : C→ C satisfying

lim inf
x→x0

|f(x)− f(x0)|
|x− x0|

> ε > 0, for all x0 ∈ C

are automatically global homeomorphisms, see [39, Theorem 8]. In the following result, dA denotes
the area measure in the plane (that is, the 2-dimensional Lebesgue measure).

Lemma 4.2.2. For each M > 1 the set OM ⊂ E is non-empty, open, and consists of homeomor-
phisms X : C→ C. Moreover, the image measures X#A and X−1

# A are absolutely continuous with
bounded densities. Both bounds depend only on M .

Proof. Non-emptiness is clear since X(z) = z belongs to OM . Its openness comes as X 7→ ‖X‖1,γ
is continuous on E, while X 7→ infz∈C det(DX)(z) is lower semi-continuous on E. The fact that the
elements of OM are global homeomorphisms follows both by Hadamard’s or by John’s lemma. To
finish the proof, just note that if X ∈ OM and A denotes the area measure then X#A is absolutely
continuous with respect to dA, with bounded density,

d(X#A) = (detDX−1) dA =
1

detDX(X−1)
dA ≤M dA

and in particular if |E| = 0 then |X−1(E)| = 0. Similarly, X−1
# A is also absolutely continuous with

bounded density, as X ∈ C1,γ and so in particular DX ∈ L∞.
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Proposition 4.2.3. Let ω0 be compactly supported and such that [ω0]γ < ∞ for some 0 < γ < 1.
Let M ≥ 1 be fixed. For each X ∈ OM , define

F (X) = (K ∗ (ω0 ◦X−1)) ◦X.

Then:

(a) F : OM → E is well defined.

(b) F is locally Lipschitz continuous on OM .

Proof. The first part is very easy. Indeed, after the change of variables α = X−1(x) we can represent

F (X)(X−1(x)) =

ˆ
K(x− y)ω0(X−1(y)) dA(y).

It is worth mentioning that X ∈ OM is a sufficient condition to legitimate the change of variables
formula. From this, combined with Lemma 1.3.2, one gets

‖F (X)‖1,γ ≤ C ‖(F (X))(X−1)‖1,γ ‖X−1‖1,γ
= C ‖K ∗ (ω0(X−1))‖1,γ ‖X−1‖1,γ

and we are left to estimate the first factor on the right hand side. To this end, we use Lemmas
1.3.4 and 4.2.2 and obtain

‖K ∗ (ω0(X−1))‖1,γ ≤ C(K, γ, | supp(ω0(X−1))|) ‖ω0(X−1)‖γ
≤ C(K, γ, | supp(ω0)|,M) ‖ω0‖γ

Hence
‖F (X)‖1,γ ≤ C(K, γ, | supp(ω0)|,M) ‖ω0‖γ

In particular, if X ∈ OM then F (X) ∈ E whence (a) follows.

To see the bound for the difference quotients, we will prove that if X ∈ OM then the differen-
tial F ′(X) : E→ E is a bounded linear operator, with the following bound,

‖F ′(X)Y ‖1,γ ≤ C(M) ‖ω0‖γ ‖Y ‖1,γ . (4.7)

After this, one can immediately deduce that

‖F (X2)− F (X1)‖1,γ =

∥∥∥∥ˆ 1

0

d

dε
F (X1 + ε(X2 −X1)) dε

∥∥∥∥
1,γ

≤
ˆ 1

0

∥∥∥∥ ddε F (X1 + ε(X2 −X1))

∥∥∥∥
1,γ

dε

≤
ˆ 1

0

‖F ′(X1 + ε(X2 −X1)) · (X2 −X1)‖1,γ dε ≤ C(M) ‖ω0‖γ ‖X2 −X1‖1,γ

and so local Lipschitz continuity is automatic. To do this, we start by finding appropriate bounds
for all directional derivatives. So, let us fix a direction in the tangent space Y ∈ E. From the
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definition of F , we have

F (X + εY )(α) =

ˆ
ω0(β)K((X + εY )(α)− (X + εY )(β))J(β,X + εY ) dA(β)

=

ˆ
ω0(β)K((X(α)−X(β)) + ε(Y (α)− Y (β)))J(β,X + εY ) dA(β)

We now have to differentiate the above integral in ε, and evaluate at ε = 0. The first term can be
formally handled as follows,

d

dε
(K((X(α)−X(β)) + ε(Y (α)− Y (β)))) |ε=0 = DK((X(α)−X(β))) · (Y (α)− Y (β))

Integrals with this integrand inside might look delicate, as the singularity of DK may not be locally
integrable. However, this is not a problem since the smoothness of both X, Y prevents us to have
such integrability problems. Yet still one may simply consider this factor in the principal value
sense, to be at the safe side. Concerning the second factor, let us remind now the classical Jacobi
formula, which states for smooth invertible matrix valued functions A(ε) that

d

dε
detA(ε) = detA(ε) Tr(A(ε)−1A′(ε))

As a consequence,

d

dε
J(β,X + εY ) = J(β,X + εY ) Tr(D(X + εY )(β)−1DY (β))

whence at ε = 0
d

dε
J(β,X + εY )|ε=0 = J(β,X) Tr(DX(β)−1DY (β))

hence

F ′(X)(Y )(α) = lim
ε→0

F (X + εY )(α)− F (X)(α)

ε
=

d

dε
F (X + εY )(α)|ε=0

=

ˆ
ω0(β)K(X(α)−X(β)) Tr(DX(β)−1DY (β)) J(β,X) dA(β)

+ p.v.

ˆ
ω0(β)DK(X(α)−X(β)) · (Y (α)− Y (β)) J(β,X) dA(β)

= G1(X)Y (α) +G2(X)Y (α)

Now the job consists of finding bounds

‖Gi(X)(Y )‖1,γ ≤ C(M) ‖ω0‖γ‖Y ‖1,γ , i = 1, 2,

and the claim will follow. For this, we start with G1. We proceed as follows,

‖G1(X)(Y )‖1,γ ≤ C(M)‖G1(X)(Y ) ◦X−1‖1,γ
= C(M)‖K ∗ (ω0(X−1) Tr(DX(X−1)−1DY (X−1)))‖1,γ
≤ C(K, γ, | suppω0(X−1)|) ‖ω0(X−1) Tr(DX(X−1)−1DY (X−1))‖γ
≤ C(K, γ, | suppω0(X−1)|,M) ‖ω0(X−1)‖γ ‖Tr(DX(X−1)−1DY (X−1))‖γ
≤ C(K, γ, | suppω0|,M) ‖ω0‖γ ‖Tr((DX)−1DY )‖γ
≤ C(K, γ, | suppω0|,M) ‖ω0‖γ ‖Y ‖1,γ
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For G2, the argument is a little more delicate since derivatives of the kernel K appear. However,
this is not a problem since we end up getting a commutator between the Calderón-Zygmund op-
erator p.v.DK and the pointwise multiplier Y ◦X−1, and therefore all the integrals are absolutely
convergent. Namely,

G2(X)(Y )(X−1(x)) =

ˆ
ω0(X−1(y))DK(x− y) · (Y (X−1(x))− Y (X−1(y))) dA(y)

= [p.v.DK, Y ◦X−1](ω0 ◦X−1)(x)

As a consequence,

‖G2(X)(Y )‖1,γ ≤ C(M) ‖G2(X)(Y ) ◦X−1‖1,γ
= C(M) ‖[p.v.DK, Y ◦X−1](ω0 ◦X−1)‖1,γ
≤ C(M) ‖[p.v.DK, Y ◦X−1]‖Cγ→C1,γ ‖(ω0 ◦X−1)‖γ

Now, classical results from harmonic analysis allow us to state that

‖[p.v.DK, Y ◦X−1]‖Cγ→C1,γ ≤ C(K, γ) ‖Y ◦X−1‖1,γ ≤ C(K, γ,M) ‖Y ‖1,γ

whence
‖G2(X)(Y )‖1,γ ≤ C(K, γ,M) ‖Y ‖1,γ ‖ω0‖γ

as desired. The claim follows.

From the local existence theorem, to each initial condition in OM we can associate a unique tra-
jectory, well defined on a maximal time interval that depends on the Lipschitz constant as well as
on the norm of the initial condition. In our setting, this means that for each fixed M ≥ 1, there is
a time T ∗ = T ∗(M) > 0 such that the O.D.E.{

Ẋ = Fω0
(X)

X(0) = Id

has a unique solution X ∈ C1((−T ∗, T ∗),OM ), and T ∗ is the largest possible with this property.
This quantity T ∗ is called the maximal time of existence, and depends on the local Lipschitz con-
stant of F on Id (bounded by C(M) ‖ω0‖γ , as proven in (4.7)) as well as on ‖ Id ‖E.

Once such X is proven to exist and be unique locally in time, then it is immediate to check
that ω(t, z) defined by

ω(t,X(t, z)) = ω0(z)

solves (4.1) in the weak sense with kernel K satisfying K1 and K2, and initial data ω0, at least in
[0, T ∗)× C. That is,

−
ˆ
ω0(z)ϕ(0, z) dA(z)−

¨
ω(t, z) ∂tϕ(t, z) dA(z) dt−

¨
ω(t, z) div(vϕ)(t, ·) dA(z)dt = 0

for each ϕ ∈ C∞c ([0, T ∗)× C). The magnitude of T ∗ is the following question to be addressed.
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4.2.2 Global-in-time solutions

In this section we want to connect the quantities ‖X‖L∞((0,T ),C1,γ) and ‖ω‖L1((0,T ),L∞) and see to
which extent their finiteness determines global-in-time existence. We start with the following three
lemmas.

Lemma 4.2.4. If ω0 ∈ Cγ , and ω ∈ L1(0, T ;L∞) solves (4.1) with v given by (4.4), then

‖ω(t, ·)‖γ ≤ ‖ω0‖γ exp

(
γ

ˆ t

0

‖Dv(s, ·)‖∞ds
)
.

Proof. From (4.2) we see that
ω(t, x) = ω0(X−1(t, x))

where X(t, x) denotes the flow of v, and X−1(t, ·) denotes the inverse map of X(t, ·). Thus

|ω(t, x)− ω(t, y)| = |ω0(X−1(t, x))− ω0(X−1(t, y))|
≤ [ω0]γ |X−1(t, x)−X−1(t, y)|γ

≤ [ω0]γ ‖DX−1(t, ·)‖γ∞|x− y|γ

Now, keeping in mind that
d

dt
X−1(t, x) = −v(t,X−1(t, x))

we obtain

‖DX−1(t, ·)‖∞ ≤ exp

(ˆ t

0

‖D v(s, ·)‖∞ ds

)
whence

[ω(t, ·)]γ ≤ [ω0]γ exp

(
γ

ˆ t

0

‖D v(s, ·)‖∞ ds

)
.

Therefore
‖ω(t)‖γ = ‖ω(t)‖∞ + [ω(t)]γ

≤ ‖ω0‖∞ + [ω0]γ exp

(
γ

ˆ t

0

‖D v(s, ·)‖∞ ds

)
≤ ‖ω0‖γ exp

(
γ

ˆ t

0

‖D v(s, ·)‖∞ ds

)
as claimed.

Lemma 4.2.5. Let v, ω,X be linked as above. Then ‖X(t, ·)‖1,γ can be bounded in terms of
‖Dv‖L1((0,t),L∞).

Proof. The ODE Ẋ = v(t,X) implies at z = 0 that

|X(t, 0)| ≤
ˆ t

0

|v(s,X(s, 0))|ds ≤
ˆ t

0

‖v(s, ·)‖∞ds. (4.8)

In order to bound ‖DX(t, ·)‖∞, we use the first variational equation ˙DX = D v(X)DX to deduce
that

|DX(t, z)| ≤ exp

ˆ t

0

|D v(s,X(s, z))|ds ≤ exp

ˆ t

0

‖D v(s, ·)‖∞ ds (4.9)
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Bounding the Cγ norm of DX(t, ·) is a little bit rigorous. One can easily see that

d

dt
(DX(t, x)−DX(t, y)) = D v(t,X(t, x))DX(t, x)−D v(t,X(t, y))DX(t, y)

= D v(t,X(t, x))(DX(t, x)−DX(t, y)) + (D v(t,X(t, x))−D v(t,X(t, y)))DX(t, y)

whence

d

dt

(
|DX(t, x)−DX(t, y)|

|x− y|γ

)
≤ 1

|x− y|γ

∣∣∣∣ ddt (DX(t, x)−DX(t, y))

∣∣∣∣
≤ |D v(t,X(t, x))| |DX(t, x)−DX(t, y)|

|x− y|γ
+
|D v(t,X(t, x))−D v(t,X(t, y))|

|x− y|γ
|DX(t, y)|

≤ ‖D v(t, ·)‖∞ [DX(t, ·)]γ + [D v(t, ·)]γ ‖DX(t, ·)‖1+γ
∞

and therefore

d

dt
[DX(t, ·)]γ ≤ ‖D v(t, ·)‖∞ [DX(t, ·)]γ + [D v(t, ·)]γ ‖DX(t, ·)‖1+γ

∞

We now infer that

d

dt
‖DX(t, ·)‖γ =

d

dt
‖DX(t, ·)‖∞ +

d

dt
[DX(t, ·)]γ

≤ ‖D v(t, ·)‖∞ ‖DX(t, ·)‖γ + ‖D v(t, ·)‖γ ‖DX(t, ·)‖1+γ
∞

(4.10)

The second term needs to be bounded carefully. First, from Lemma 1.3.4 and Lemma 4.2.4

‖D v(t, ·)‖γ = ‖D(K ∗ ω(t, ·))‖γ
= ‖p.v.DK ∗ ω(t, ·)‖γ
≤ ‖p.v.DK‖γ‖ω(t, ·)‖γ

≤ ‖p.v.DK‖γ‖ω0‖γ exp

(
γ

ˆ t

0

‖D v(s, ·)‖∞ ds

)
Hence, together with (4.9) and (4.10), we obtain

d

dt
‖DX(t, ·)‖γ ≤ ‖D v(t, ·)‖∞ ‖DX(t, ·)‖γ + ‖D v(t, ·)‖γ ‖DX(t, ·)‖1+γ

∞

≤ ‖D v(t, ·)‖∞ ‖DX(t, ·)‖γ + ‖p.v.DK‖γ‖ω0‖γ exp

(
(1 + 2γ)

ˆ t

0

‖D v(s, ·)‖∞ ds

)
Setting now a(t) = exp

(
−
´ t

0
‖D v(s, ·)‖∞ ds

)
, this means that

d

dt
‖DX(t, ·)‖γ ≤

−a′(t)
a(t)

‖DX(t, ·)‖γ + ‖p.v.DK‖γ‖ω0‖γ a(t)1+2γ

From DX(0, ·) = Id we end up getting that

‖DX(t, ·)‖γ ≤ ‖p.v.DK‖γ‖ω0‖γ
ˆ t

0

a(s)2+2γ

a(t)
ds

= ‖p.v.DK‖γ‖ω0‖γ
ˆ t

0

a(s)2+2γ

a(t)
ds

as desired.
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Lemma 4.2.6. One can bound ‖Dv‖L1(0,t;L∞) in terms of ‖ω‖L1(0,t;L∞).

Proof. By (1.12), we have for any ε > 0

‖D v ‖∞ = ‖p.v.DK ∗ ω‖∞

≤ C(K, γ)[ω]γ ε
γ + C(K) ‖ω‖∞

(
1 + log

| suppω|
ε

)
Then choosing ε = | suppω| [ω]

−1/γ
γ ‖ω‖1/γ∞ one gets

‖D v ‖∞ ≤ C(K, γ)‖ω‖∞ | suppω|γ + C(K) ‖ω‖∞
(

1 +
1

γ
log

[ω0]γ
‖ω0‖∞

+

ˆ t

0

‖D v(s, ·)‖∞ds
)

≤ C(K, γ, | suppω|) ‖ω‖∞
(

1 +
1

γ
log

[ω0]γ
‖ω0‖∞

+

ˆ t

0

‖D v(s, ·)‖∞ds
)

Thus
d

dt
log

(
1 +

1

γ
log

[ω0]γ
‖ω0‖∞

+

ˆ t

0

‖D v(s, ·)‖∞ds
)
≤ C(K, γ, | suppω|) ‖ω‖∞

The claim follows.

We now recall a general result from Cauchy-Lipschitz theory in Banach spaces.

Theorem 4.2.7. [13, Theorem 4.4] Let O ( E be an open subset of a Banach space. Let F : O → E
be locally Lipschitz, and let X ∈ C1([0, T ),O) be the unique solution to the autonomous ODE (4.6).
Then either T =∞ or T <∞ and X(t, ·) leaves O as t↗ T .

The following is our main result in this section.

Theorem 4.2.8. Assume that ω0 is compactly supported, real valued, and [ω0]γ < ∞ for some
0 < γ < 1. Let ω(t, ·) be a solution of (4.1) with kernel K satisying K1 and K2, initial data ω0

and v given by (4.4).

(a) Assume that for each T > 0 one has ω ∈ L1((0, T ), L∞). Then for each T > 0 there is
M = MT > 0 such that X ∈ C1([0, T ),OMT

).

(b) Assume that for each M > 0 there is a finite maximal time 0 < T = TM < ∞ such that
X ∈ C1([0, TM ),OM ) and limM→∞ TM <∞. Then necessarily

lim
M→∞

ˆ TM

0

‖ω(t, ·)‖∞ dt =∞.

Proof. Let us begin with (a). From the lemmas 4.2.5 and 4.2.6, the finiteness of ‖ω‖L1(0,T ;L∞)

implies that of ‖X(T, ·)‖1,γ , and so for each T there is MT such that X(t) ∈ OMT
for each 0 < t < T .

Of course, MT depends on ˆ T

0

‖ω(t)‖∞dt.

Now, since the trajectories X are obtained by Ẋ = F (X), we automatically get that X ∈
C1([0, T );OMT

), and (a) is proven.
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For (b), let us now assume that for each M > 0 there is TM such that X ∈ C1([0, TM );OM ), that
is,

‖X(t)‖1,γ < M for each t ∈ [0, TM ),

and limM→∞ TM = T ∗ < ∞. By Theorem 4.2.7, X(t) must escape from OM as t increasingly
approaches TM . But we know that ‖X(t)‖1,γ can be bounded in terms of ‖ω‖L1(0,t;L∞), and
moreover the finiteness of the latter implies the finiteness of the first. Hence the only option is that

lim
ε→0

ˆ T∗−ε

0

‖ω(t)‖∞ dt =∞

Indeed, if the above limit was finite, then also ‖X(t)‖1,γ would remain finite as t ↗ T ∗, and this
would contradict Theorem 4.2.7.

The main application is the following corollary.

Corollary 4.2.9. Assume that ω0 is compactly supported, real valued, and [ω0]γ < ∞ for some

0 < γ < 1. Then the ODE (4.6) admits a unique solution X ∈ C1(R,E).

Proof. The local-in-time existence of a unique solution X of (4.6) is granted by Theorem 4.2.1.
Thus, for each M there is a maximal time TM of existence of trajectories X ∈ C1([0, TM ),OM )
solving (4.6). As a consequence, we can solve (4.1) with kernel K satisying K1 and K2, and initial
data ω0 by setting

ω(t,X(t, α)) = ω0(α).

From the smoothness of X(t, ·) we know that it preserves Lebesgue-null sets, and so ‖ω(t, ·)‖∞ =
‖ω0‖∞ whenever 0 < t < TM . Assume now that for each M > 0 one has TM <∞. Then

ˆ TM

0

‖ω(t, ·)‖∞ dt =

ˆ TM

0

‖ω0‖∞ dt = ‖ω0‖∞ TM

By part (b) of Theorem 4.2.8, we cannot have limM→∞ TM < ∞. Thus either limM→∞ TM = ∞
(and so we get global-in-time existence) or for some finite M > 0 one has TM = ∞ (thus giving
global existence in time again).

4.3 Existence theory for ω0 ∈ L∞

Given compactly supported ω0 ∈ L∞(C), we look for scalar-valued functions ω : R × C → R
belonging to L1(R, L∞(C)) that solve the problem (4.1). The arguments in this section only work

for the particular kernel K(z) = eiθ

2πz . Our goal is to prove that a weak solution exists and can be
represented by

ω(t,X(t, z)) = ω0(z)

where X are the trajectories of the vector field v. To this end, we start by mollifying to ωε0 ∈ C∞
in such a way that

‖ωε0‖∞ ≤ ‖ω0‖∞
‖ωε0‖1 ≤ ‖ω0‖1
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and moreover ‖ωε0 − ω0‖1 → 0, as ε → 0. Then, by virtue of previous section, to each ωε0 we can
associate its unique solution ωε to 

d
dt ω

ε + vε ·∇ωε = 0,

vε(t, ·) = K ∗ ωε(t, ·),
ωε(0, ·) = ωε0

(4.11)

with K(z) = eiθ

2πz . This solution is obtained by translating the datum ωε0 along the trajectories
Xε(t, x) of vε, that is, ωε(t,Xε(t, z)) = ωε0(z). Of course, Xε(t, ·) preserves Lebesgue null sets. In
particular, ωε ∈ L1(R, L∞(C)) as ωε0 ∈ L∞(C).

Theorem 4.3.1. If ω0 ∈ L∞ has compact support, there exists a solution ω ∈ L1([0, T ], L∞) for
each T > 0.

The proof of Theorem 4.3.1 consists of proving convergence of the solutions ωε and vε in an appro-
priate sense. As usually, the most delicate point is the following L1 bound,

‖ω(t, ·)‖1 ≤ e2t ‖ω0‖∞ ‖ω0‖∞ | suppω0|.

This, combined with the preservation of ‖ω(t, ·)‖∞ and Lemma 1.3.3(b), gives uniform bounds for
the velocity field, and so Ascoli’s Theorem allows to find limit trajectories.

In Euler’s setting, that is for the kernel K(z) = i
2πz̄ , the L1 control comes from the L∞ bounds of

the jacobian, which in turn comes from the fact div vε ∈ L∞. Now, for K(z) = eiθ

2πz unfortunately
div vε /∈ L∞, but still the same L1 control is possible, and comes as a consequence of the fact that
the flow consists of principal quasiconformal maps which are conformal outside of the support of
ω0, and moreover with uniformly bounded distortion . To show this, step by step, we first need to
recall the following result, due to H.M. Reimann [43]. We only state it on the plane, although it
holds also in higher dimensions.

Theorem 4.3.2. Let v : [0, T ]× C→ C be a continuous vector field, such that for each t one has

lim sup
|z|→+∞

|v(t, z)|
|z| log |z|

< +∞.

Suppose that the distributional derivatives ∂v(t, ·) and ∂v(t, ·) are locally integrable functions of
z ∈ C, and moreover suppose that

sup
t∈[0,T ]

‖∂v(t, ·)‖∞ ≤ C0 <∞.

Then, v admits a unique flow X(t, z) of Kt-quasiconformal maps X(t, ·) : C→ C, and

Kt ≤ exp

(
2

ˆ ∞
0

‖∂v(s, ·)‖∞ ds

)
.

Next, in order to proceed with the proof of Theorem 4.3.1, we start with a Lemma.

Lemma 4.3.3. Let T > 0 be fixed. Then:
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(a) Xε(t, ·) is Kt-quasiconformal, with 1 ≤ Kt ≤ e|t|‖ω0‖∞ , where −T ≤ t ≤ T .

(b) There exists a constant C = C(Kt) such that

1

C

(
|z − z0|
|z − w0|

)Kt
≤ |X

ε(t, z)−Xε(t, z0)|
|Xε(t, z)−Xε(t, w0)|

≤ C
(
|z − z0|
|z − w0|

) 1
Kt

for any z, z0, w0 ∈ C and any time t ∈ [−T, T ].

(c) There exists a constant C = C(Kt) such that

|Xε(t, E)|
|Xε(t,D)|

≤ C(Kt)
(
|E|
|D|

) 1
Kt
.

whenever D ⊂ C is a disk and E ⊂ D is measurable.

Proof. The structure of the Cauchy Kernel makes it clear that

2‖∂vε(t, ·)‖∞ = ‖ωε(t, ·)‖∞ = ‖ωε0‖∞ ≤ ‖ω0‖∞.

Moreover, from Lemma 1.3.5 we know that vε(t, ·) belongs to the Zygmund class as p.v.DK is
bounded in BMO and wε ∈ L1(R, L∞(C)). It is a classical fact that Zygmund functions are
Log-Lipschitz. Therefore,

lim sup
|z|→∞

|vε(t, z)|
|z| log (e+ |z|)

≤ C‖vε(t, ·)‖Λ∗

≤ C ′‖∂ vε(t, ·)‖∞
≤ C ′′‖ω0‖∞.

Thus, quasiconformality follows from Reimann’s Theorem 4.3.2, with constant

Kt ≤ exp

(
2

ˆ t

0

‖∂ vε(s, ·)‖∞ds
)
≤ et‖ω0‖∞

and by definition, Kt ≥ 1. Therefore, part (a) is clear. Part (b) says that quasiconformal maps
are quantitatively quasisymmetric. The interested reader should check [6, Corollary 3.10.4] for a
detailed proof. Part (c) follows from [6, Theorem 13.1.5] and the classical area distortion estimates
for Kt-quasiconformal maps.

Next, we would like to find an accumulation point X(t, ·) of the trajectories Xε(t, ·). As always,
this will be done by using the control in time of the L1 norm of ωε. However, this control will be
obtained in a completely different way. As a first step, let us note that compactness of the flow will
be a direct consequence of local boundedness.

Lemma 4.3.4. Assume that Xε(t, ·) is uniformly bounded on compact sets. Then:

(a) {Xε(t, ·)}ε is pointwise equicontinuous.

(b) {Xε(t, ·)}ε accumulate to a Kt-quasiconformal map X(t, ·).

104



Proof. To prove the claim (a), let us remind from Lemma 4.3.3 that Xε(t, ·) is quasisymmetric.
That is, given any three points z0, z, w ∈ C we have

|Xε(t, z)−Xε(t, z0)|
|Xε(t, w)−Xε(t, z0)|

≤ ηKt
(
|z − z0|
|w − z0|

)
.

As a consequence

|Xε(t, z)−Xε(t, z0)| ≤ ηKt(|z − z0|/|w − z0|)|Xε(t, w)−Xε(t, z0)|
≤ ηKt(|z − z0|/|w − z0|)(|Xε(t, w)|+ |Xε(t, z0)|)
≤ ηKt(|z − z0|/|w − z0|)(C(t, |w|) + C(t, |z0|))

In particular, by leaving w fixed one can easily get that Xε(t, ·) is equicontinuous at z0.
The family of maps, {Xε(t, ·)}ε is pointwise equicontinuous and locally uniformly bounded. There-
fore, Arzela-Ascoli theorem ensures the existence of a locally uniform accumulation point X(t, ·).
It is worth mentioning that by classical tools in Geometric Function Theory [8, Theorem 3.1.3]
it can only be either Kt-quasiconformal or constant. To see that it cannot be constant, one
must observe that the quasisymmetry bounds are preserved by uniform limits. Being two sided,
these quasisymmetry bounds guarantee bijectivity. Therefore, the accumulation point X(t, ·) is
Kt-quasiconformal.

In order to get the local boundedness of the flow, the key point is the following elementary fact.

Lemma 4.3.5. Let Xε(t, ·) be as before, and assume that ωε0 has compact support. Then

ωε0(z) = 0 =⇒ ∂Xε(t, z) = 0,

in other words Xε(t, ·) is conformal outside of suppωε0.

Proof. The Kt-quasiconformality of Xε(t, ·) ensures the existence of a well-defined, uniformly elliptic

Beltrami coefficient µε(t, ·) = ∂Xε(t,·)
∂Xε(t,·) , and moreover we know that

‖µε(t, ·)‖∞ ≤
Kt − 1

Kt + 1
.

The smoothness in time of ∂Xε(t, z) and ∂Xε(t, z) guarantees that t 7→ µε(t, z) is also smooth.
From the equation for the flow Ẋε(t, z) = vε(t,Xε(t, z)) and the chain rule we get that

∂ vε(t,Xε(t, z)) =
d
dt∂X

ε(t, z) ∂Xε(t, z)− ∂Xε(t, z) d
dt∂X

ε(t, z)

Jε(t, z)

=
d
dtµ

ε(t, z) (∂Xε(t, z))
2

Jε(t, z)

=
d
dtµ

ε(t, z)

1− |µε(t, z)|2
∂Xε(t, z)

∂Xε(t, z)

On the other hand, from the kernel structure we have

2|∂ vε(t,Xε(t, z))| = |ωε(t,Xε(t, z))| = |ωε0(z)|.
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Thus
d
dt |µ

ε(t, z)|
1− |µε(t, z)|2

≤
∣∣ d
dtµ

ε(t, z)
∣∣

1− |µε(t, z)|2
=

1

2
|ωε0(z)|

Now, given any time t > 0, we can integrate on (0, t) the above inequality to obtain that

log

(
1 + |µε(t, z)|
1− |µε(t, z)|

)
≤ t |ωε0(z)|, (4.12)

since Xε(0, z) = z implies µε(0, z) = 0. Now, if ωε0(z) = 0 then necessarily µε(t, z) = 0 and hence
∂Xε(t, z) = 0. The claim follows.

Remark 4.3.6. The above proof also shows that, at time t = 0,

ωε0(z)

2
=

1

2
ωε(0, ·)(z) = ∂vε(0, z) =

d

dt
[µε(t, z)]t=0 .

That is, the initial vorticity is determined by the time derivative of the Beltrami coefficient at time
t = 0. Thus, it is natural to ask for the dependence of Xε(t, ·) under second-order perturbations of
µε(t, z).

Now, it just remains to observe that vε(t, ·) cannot grow without control as |z| → ∞. This, together
with the conformality of the flow outside of suppωε0, provides improved area estimates which are
essential for the control of ‖ωε(t, ·)‖1.

Lemma 4.3.7. Let Xε(t, ·) be as before, and assume that ω0 has compact support.

(a) For each t, ε there exists bε(t) ∈ C such that lim|z|→∞ |Xε(t, z)− z − bε(t)| = 0.

(b) One has |Xε(t, E)| ≤ Kt |E| for each set E ⊃ suppωε0.

Proof. From Lemma 1.3.3 (b) and the integral representation of Xε(t, ·), we know that

|Xε(t, z)− z|
|z|

=

∣∣∣´ t0 vε(s,Xε(s, z))
∣∣∣

|z|
ds

≤
ˆ t

0

|vε(s,Xε(s, z))|
|z|

ds

≤
ˆ t

0

C(K) ‖ωε(s, ·)‖∞ | suppωε(s, ·)| 12
|z|

ds

≤
ˆ t

0

C(K) ‖ωε0‖∞ |Xε(s, suppωε0)| 12
|z|

ds

≤ C(K) ‖ωε0‖∞
|z|

ˆ t

0

|Xε(s, suppωε0)| 12 ds

≤ C(K) ‖ωε0‖∞
|z|

t | suppωε0|
1
2 max

0≤s≤t
‖Jε(s, ·) 1

2 ‖L∞(suppωε0).

Above, the maximum term on the right hand side (even depending on t and ε) is finite and stays
bounded as |z| → ∞, due to the smoothness in t and z of Xε(t, z). Thus, for every fixed t and ε > 0
one has

lim
|z|→∞

|Xε(t, z)− z|
|z|

= 0. (4.13)
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However, by Lemma 4.3.5 we know that Xε(t, ·) is conformal on a neighborhood of ∞. Therefore,
it has around ∞ a Laurent series development whose higher order term is linear,

Xε(t, z) = aε(t)z + bε(t) +
cε(t)

z
+ ...

Now, (4.13) tells us that necessarily aε(t) = 1, and so (a) follows. To see (b), we observe that
Xε(t, ·)− bε(t) is a principal Kt-quasiconformal map, because

lim
|z|→∞

|Xε(t, z)− bε(t)− z| = 0.

Moreover, it is conformal outside of suppωε0 by Lemma 4.3.5. Hence, by [8, Theorem 13.1.2], we
have the following area distortion estimates,

|Xε(t, E)| = |Xε(t, E)− bε(t)| ≤ Kt |E|

∀E ⊃ supp(ωε0), as claimed.

We are now in position of getting the L∞ bounds for vε.

Proposition 4.3.8. Assume that K(z) = eiθ

2πz . If ω0 is compactly supported, then

(a) ‖ωε(t, ·)‖∞ ≤ ‖ω0‖∞

(b) ‖ωε(t, ·)‖1 ≤ ‖ω0‖∞ et‖ω0‖∞ | suppωε0|.

(c) ‖ vε(t, ·)‖∞ ≤ C(K) e
t
2 ‖ω0‖∞ ‖ω0‖∞ | suppωε0|

1
2 .

Proof. Claim (a) can be proved by recalling that ωε(t, ·)◦Xε(t, ·) = ωε0(·) and the facts that Xε(t, ·)
preserves Lebesgue-null sets and ‖ωε0‖∞ ≤ ‖ω0‖∞. For (b), we use Lemmas 4.3.3 (a), 4.3.5 and
4.3.7 (b) to obtain

‖ωε(t, ·)‖1 =

ˆ
C
|ωε(t, z)| dA(z)

=

ˆ
C
|ωε0(ζ)| Jε(t, ζ) dA(ζ)

≤ ‖ωε0‖∞
ˆ

suppωε0

Jε(t, ζ) dA(ζ)

= ‖ωε0‖∞ |Xε(t, suppωε0)|
≤ ‖ωε0‖∞Kt | suppωε0|
≤ ‖ω0‖∞ et‖ω0‖∞ | suppωε0|

as desired. Estimate (c) follows from Lemma 1.3.3 (b).

The control on ‖vε ‖L1(R,L∞) allows for local boundeness of Xε(t, ·), since

|Xε(t, z)− z| ≤
ˆ t

0

|vε(s,Xε(s, z))| ds ≤ ‖vε ‖L1((0,t),L∞) ≤ C(K) | suppω0|
1
2 e

t
2 ‖ω0‖∞

and so Lemma 4.3.4 guarantees the existence of a limit flow map X(t, ·) : C → C which is Kt-
quasiconformal at each time t. Setting then ω(t, ·) = ω0(X(−t, ·)), we obtain a well defined
L1((0, t), L∞) function. We also define v(t, ·) = K ∗ ω(t, ·).
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Theorem 4.3.9. With the above notation,

(a) ‖ωε(t, ·)− ω(t, ·)‖1 → 0, and

(b) ‖vε(t, ·)− v(t, ·)‖∞ → 0 .

Proof. One has

‖ωε(t, ·)− ω(t, ·)‖1 ≤ ‖ωε0(Xε(−t, ·))− ω0(Xε(−t, ·)‖1 + ‖ω0(Xε(−t, ·)− ω0(X(−t, ·)‖1

At the first term, we consider a disk D such that suppωε0, suppω0 ⊂ D, and use the higher integra-
bility of quasiconformal jacobians. If 1 < p < Kt

Kt−1 ,

‖ωε0(Xε(−t, ·))− ω0(Xε(−t, ·)‖1 =

ˆ
|ωε0 − ω0| Jε(t, ·)

≤ ‖ωε0 − ω0‖Lp′ (D) ‖J
ε(t, ·)‖Lp(D)

≤ ‖ωε0 − ω0‖
1
p′

L1(D) ‖ω
ε
0 − ω0‖

1
p

L∞(D) ‖J
ε(t, ·)‖Lp(D)

Above, ‖ωε0 − ω0‖L1(D) converges to 0, while ‖Jε(t, ·)‖Lp(D) is bounded in terms of Kt and |D|,

‖Jε(t, ·)‖Lp(D) =

(ˆ
D

Jε(t, ·)p
) 1
p

≤ C(p,Kt) |D|
1
p−1

ˆ
D

Jε(t, ·)

≤ C(p,Kt) | suppωε0|
1
p ≤ C(p,Kt) | suppω0|

1
p

by Lemma 4.3.7 (b) and the reverse Hölder property of quasiconformal jacobians [8], and provided
that ε > 0 is small enough. Concerning the second term, let us choose ωn0 ∈ C0 such that ‖ωn0 −
ω0‖1 ≤ 1/n and ‖ωn0 ‖∞ ≤ ‖ω0‖∞. Then

‖ω0(Xε(−t, ·))− ω0(X(−t, ·))‖1 ≤ ‖ω0(Xε(−t, ·))− ωn0 (Xε(−t, ·))‖1
+ ‖ωn0 (Xε(−t, ·))− ωn0 (X(−t, ·))‖1
+ ‖ωn0 (X(−t, ·))− ω0(X(−t, ·))‖1

Above, again because of the higher integrability of quasiconformal jacobians,

‖ω0(Xε(−t, ·))− ωn0 (Xε(−t, ·))‖1 =

ˆ
|ω0 − ωn0 | Jε(t, ·)

= ‖ω0 − ωn0 ‖Lp′ (D) ‖J
ε(t, ·)‖Lp(D)

≤ ‖ω0 − ωn0 ‖
1
p′

L1(D) ‖ω
n
0 − ω0‖

1
p
∞ ‖Jε(t, ·)‖Lp(D)

≤ n
−1
p′ 2

1
p ‖ω0‖

1
p
∞ ‖Jε(t, ·)‖Lp(D)

and similarly for ‖ωn0 (X(−t, ·)) − ω0(X(−t, ·))‖1. Thus each of these two terms can be made
smaller than δ/3 if n is chosen large enough. The control of the second term comes by continuity.
Precisely, as Xε(−t, ·) → X(−t, ·) and ωn0 is continuous, there is ε > 0 such that ‖ωn0 (Xε(−t, ·) −
ωn0 (X(−t, ·))‖∞ < δ/3. Thus (a) follows. For the proof of (b), use (a) and Lemma 1.3.3 (b).
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The above convergence result suffices to prove that ω is a weak solution to the desired nonlinear
transport equation. Existence is proved.

There exist extensions to Reimann’s Theorem. To mention one, it was proven in [23, Theorem
1] that if v is a planar Sobolev vector field with certain control on its growth at infinity, such that

∂ v +λ Im(∂ v) ∈ L∞

then the flow X(t, ·) of (4.3) consists of quasiconformal mappings. Above, one may choose λ to be a
constant with |λ| < 1 if λ ∈ C, or also a smooth, compactly supported function with ‖λ‖L∞(R2) < 1.
This makes it reasonable to extend Theorem 4.3.1 to other kernels K(z) different than the one we

used here K(z) = eiθ

2πz . The new kernels K we have in mind are multiples of the fundamental

solution of the operator ∂ v +λ Im(∂ v).

4.4 The governing equations

Let us recall that the Euler’s system of equations is given, in its original formulation, in terms of
the velocity field v. Namely, one has the following equivalence

ωt + v ·∇ω = 0,

v = i
2πz̄ ∗ ω,

ω|t=0 = ω0

⇐⇒


vt + v ·∇v = −∇p,
div v = 0,

curl v |t=0 = 1
2ω0.

where p is the scalar valued pressure function. Especially, the equation div v = 0 on the right hand
side is superfluous and can be replaced by div v |t=0 = 0. It turns out that a similar equivalent
formulation can be provided for (4.1), and this is our goal in the present section. From now on, we
denote

C =

(
1 0
0 −1

)
and set Mθz = eiθ C z = eiθ z̄. Thus, indeed Mθ is the R-linear map with matrix

Mθ =

(
cos θ sin θ
sin θ − cos θ

)
To avoid formalities, we reduce ourselves to the smooth setting, and assume the datum ω0 : C→ R
is smooth and compactly supported. Let us remind that K(z) = Kθ(z) = eiθ

2πz .

Proposition 4.4.1. The scalar-valued function ω : [0, T ]× C→ R is a weak solution of
ωt + v · ∇ω = 0

v = K ∗ ω
ω|t=0 = ω0

(4.14)

if and only if v : [0, T ]× C→ C and q : [0, T ]× C→ R solve
vt + v · ∇v = −Mθ∇Q
−∆Q = div(v) div(Mθv)

curl(Mθv)|t=0 = 0

div(Mθv)|t=0 = ω0

(4.15)
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also in the weak sense.

Proof. We first go from (4.15) to (4.14). We identify R2 ≡ C, and write the system (4.15) in
complex notation, 

vt + v ∂ v +v ∂ v = −eiθ∇Q
−∆Q = div(v) div(eiθv̄)

Im(∂(eiθv̄))|t=0 = 0

Re(∂(eiθv̄))|t=0 = ω0

Now, taking ∂ on the first equation, and obtain

(∂ v)t + v ∂(∂ v) + v ∂(∂ v) + ∂ v(∂ v +∂v) = −∂(eiθ∇Q)

or equivalently,

(∂ v)t + v ·∇(∂ v) + ∂ v div v = −1

2
eiθ ∆Q.

We now multiply by e−iθ, and use the C-linearity of the transport operator d
dt + v ·∇ to get

(e−iθ ∂ v)t + v ·∇(e−iθ ∂ v) + e−iθ ∂ v div v = −1

2
∆Q.

After taking real and imaginary parts,{
Re((e−iθ∂ v)t + v ·∇(e−iθ∂ v)) + Re(e−iθ∂ v) div v = − 1

2 ∆Q

Im((e−iθ∂ v)t + v ·∇(e−iθ∂ v)) + Im(e−iθ∂ v) div v = 0.
(4.16)

The above equations may be seen as scalar conservation laws for Re(e−iθ ∂ v) and Im(e−iθ ∂ v).
The second one is homogeneous, and so from the initial condition

2 Im(e−iθ∂ v)|t=0 = − curl(Mθ v)|t=0 = 0

we deduce that at any time t > 0

2 Im(e−iθ∂ v) = − curl(Mθ v) = 0.

To see this, simply call ρ = 2 Im(e−iθ∂ v) and note it satisfies the following initial value problem,{
d
dtρ+ div(ρ v) = 0

ρ(0, ·) = 0

which has ρ = 0 as its unique solution, due to the smoothness of v. As a consequence, e−iθ∂ v ∈ R
and so if we now denote ω = 2Re(e−iθ∂ v), then

ω = div(eiθv̄).

Thus the first equation at (4.16) implies that

ωt + v ·∇ω + ω div v = −∆Q.
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Now, since the second equation at (4.15) tells us that ω div v = −∆Q, we necessarily have for ω a
homogeneous transport equation

ωt + v ·∇ω = 0

together with the initial condition ω|t=0 = div(eiθv̄)|t=0 = ω0 as claimed.

For the converse implication, we start by noting that our choice of the kernel K and the sec-
ond equation in (4.14) tell us that 2e−iθ∂v = ω, which by assumption is real valued. We now use
the first equation in (4.14), together with the C-linearity of the complex operator, to get

∂ vt + v ·∂(∂ v) + v · ∂(∂ v) = 0

or equivalently
∂(vt + v ·∂ v +v · ∂ v) = ∂ v div v

We now complex conjugate at both sides of the equality, multiply by eiθ, and use C-linearity of the
transport operator, and obtain

∂(eiθ(vt + v ·∂ v +v · ∂ v)) =
ω

2
div v (4.17)

By assumption, the right hand side above is real, whence eiθ(vt + v ·∂ v +v · ∂ v) is a conservative
vector field. Thus there exists a scalar valued potential Q such that

eiθ(vt + v ·∂ v +v · ∂ v) = −∇Q

This automatically gives the first equation at (4.15). Moreover, if we take real parts at (4.17),

−1

2
∆Q =

1

2
div(eiθ(vt + v ·∂ v +v · ∂ v)) =

ω

2
div v

or equivalently
−∆Q = div(v) div(Mθ v)

as claimed. The third and fourth equations in (4.15) are automatic from the second and fourth in
(4.14).

Let us mention that the relation between v and ω is precisely ω = Re(2e−iθ∂v). This comes directly
from v = K ∗ ω and the fact that ω is real valued.

4.5 Comments about uniqueness

In this section, we try to adapt the proof of uniqueness of solutions to Euler’s system to the case
of (4.1). To this end, we will use the previous section Proposition 4.4.1. First, some estimates are
needed.

Lemma 4.5.1. Let ω0 ∈ L∞ be compactly supported, and assume that v(0, ·) = K ∗ ω0 where

K(z) = eiθ

2πz . Let ω ∈ L∞(0, T ;L1 ∩ L∞) be a real valued weak solution of
ωt + v · ∇ω = 0

2e−iθ ∂v = ω

ω(0, ·) = ω0.
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Finally, let Q be such that {
vt + v · ∇v = −Mθ∇Q
−∆Q = div(v)ω

Then there exists a constant C(ω0) depending only on ω0 such that:

(a) v(t, ·) ∈ L∞(C) and

‖v(t, ·)‖∞ ≤ e
1
2 t‖ω0‖∞ C(ω0) (4.18)

(b) If 1 < q <∞ and q∗ = max{q, q
q−1} then div(v) ∈ Lq(C) and

‖ div v(t, ·)‖Lq(C) ≤ e
1
q t‖ω0‖∞ C(ω0) (q∗ − 1) (4.19)

(c) If 2 < p <∞ then ∇Q ∈ Lp(C) and

‖∇Q‖Lp(C) ≤ e
p+2
2p t‖ω0‖∞ C(ω0)Cp (4.20)

for some constant Cp depending only on p.

Proof. If ω ∈ L∞(0, T ;L1 ∩ L∞) is a weak solution, and K(z) = eiθ

2πz , then v = K ∗ ω belongs to
the Zygmund class, and satisfies the Osgood condition, so that it admits a unique well defined flow
of homeomorphisms Xt(·) = X(t, ·) : R× C→ C solving the ODE{

d
dtX(t, z) = v(t,X(t, z)),

X(0, z) = z

From ‖2∂ v(t, ·)‖ = ‖ω(t, ·)‖∞ = ‖ω0‖∞ it follows from Reimann’s theorem [43] that Xt are Kt-
quasiconformal maps, with Kt ≤ et ‖ω0‖∞ . In particular, Lebesgue null sets are preserved by Xt. As
a consequence, ω(t,Xt(z)) = ω0(z) and therefore ω(t, ·) has compact support at each time t > 0.
Also, ‖ω(t, ·)‖∞ = ‖ω0‖∞. Moreover, we can use Lemma 4.3.7 (b) to see that

| suppω(t, ·)| = |Xt(suppω0)| ≤ et ‖ω0‖∞ | suppω0|.

Hence, from Lemma 1.3.3 (b),

‖v(t, ·)‖∞ ≤ C | suppω(t, ·)| 12 ‖ω(t, ·)‖∞ ≤ C e
t‖ω0‖∞

2 | suppω0|
1
2 ‖ω0‖∞,

where C is a constant that depends only on the size of the kernel K. So (a) follows.
For proving (b), we observe that B(∂ v) = ∂ v, because v belongs to each global Sobolev space
W 1,q(C), for any 1 < q <∞. Here B is the Beurling-Ahlfors singular integral operator,

Bf(z) = lim
ε→0
− 1

π

ˆ
|w−z|>ε

f(w)

(w − z)2
dA(w).

Thus we can write
div(v) = 2Re(∂ v) = 2ReB(∂ v) = Re(eiθ Bω).

112



From [42] we know that ‖ReB(eiθω)‖q ≤ (q∗ − 1) ‖ω‖q and using it deduce that

‖ div v(t, ·)‖Lq(C) ≤ ‖ReB(eiθω(t, ·))‖Lq(C)

≤ (q∗ − 1) ‖ω(t, ·)‖Lq(C)

≤ (q∗ − 1) ‖ω(t, ·)‖∞ | suppω(t, ·)|
1
q

≤ (q∗ − 1) ‖ω0‖∞ e
t‖ω0‖∞

q | suppω0|
1
q

≤ (q∗ − 1) e
t‖ω0‖∞

q C(ω0).

as claimed.
For the proof of (c), we observe that Q is determined modulo constants. Indeed, if L(z) = 1

4π log |z|2
denotes the fundamental solution of ∆, then the difference Q− L ∗ (div(v)ω) is constant. Indeed,
the gradient

∇(Q− L ∗ (div(v)ω)) = ∇Q− 1

4πz
∗ (div(v)ω)

is antiholomorphic. Moreover, it vanishes at infinity, because ∇Q does (due to the equation for v)
and ω has compact support. As a consequence, it follows that

∇Q =
1

4πz
∗ (div(v)ω).

But it is also clear that the convolution with 1
4πz continuously maps L

2p
p+2 (C) into Lp(C) for any

2 < p <∞. Thus,
‖∇Q‖Lp(C) ≤ C(p) ‖ div(v)ω‖

L
2p
p+2 (C)

≤ C(p) ‖ω0‖∞ ‖div(v)‖
L

2p
p+2 (C)

and now we can just use (b). The claim follows.

In Euler’s setting, one is given two solutions v1,v2 to the same initial value problem. The first task
consists of proving that one actually has v1−v2 ∈ L2. This is a consequence of the incompressibility,
together with the fact that v1(0, ·) = v1(0, ·). Having this in mind, then one finds an ODE for

E(t) = ‖v1 − v2‖2. Under the assumptions of (4.1), that is with the kernel K(z) = eiθ

2πz , it is not
possible to control ‖v1 − v2‖2 anymore, and instead one needs to look for the Lp norms, p > 2.

Lemma 4.5.2. Let ω0 ∈ L∞ be given, and assume that supp(ω0) ⊂ D. Let ωi ∈ L∞(0, T ;L1∩L∞),
i = 1, 2, be two real valued weak solutions of

ωt + v · ∇ω = 0

v = K ∗ ω
ω(0, ·) = ω0.

Let vi = K ∗ ωi, and let p > 2 be fixed. Then for each q > 1

d

dt
E(t) ≤ C0E(t) + C1 q E(t)1− 1

q + C2E(t)
1
p′ , (4.21)

where E(t) = ‖v1 − v2‖p, and C0, C1, C2 are constants that do not depend on q.
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Proof. From the equivalent formulation (4.15), we know there exist two functions Qi, i = 1, 2, such
that 

vit + vi ·∇vi = −Mθ∇Qi

−∆Qi = div(vi)ωi

vi(0, ·) = K ∗ ω0,

where K(z) = eiθ

2πz . Set v = v1−v2, ω = ω1 − ω2 and Q = Q1 −Q2. This gives an equation for v,

vt + v1 ·∇v + v ·∇v2 = −Mθ∇Q.

We fix now a number p ∈ (2,∞), and take dot product by |v |p−2 v at both sides of the above
equality. Using the chain rule and observing that (v ·∇v2) · v = vt ·D v2 ·v (here vt is the row
obtained by transposing the column v) one gets

d

dt

(
|v |p

p

)
= −v1 ·∇

(
|v |p

p

)
− |v |p−2 vt ·D v2 ·v−|v |p−2 vt ·Mθ∇Q. (4.22)

It is clear that each vi(t, ·) = K ∗ ωi(t, ·) belongs to Lp(C), since ωi(t, ·) is compactly supported
and the kernel K decays linearly at ∞. Thus we are legitimate to introduce the quantity

E(t) = Ep(t) =

ˆ
|v(t, z)|p

p
dA(z)

which may be infinite if p = 2, but is certainly finite if 2 < p <∞. We now integrate with respect
to dA(z) at (4.22), and after an integration by parts we get

d

dt
E(t) = −

ˆ
v1 ·∇

(
|v |p

p

)
−
ˆ
|v |p−2 vt ·D v2 ·v−

ˆ
|v |p−2 vt ·Mθ∇Q. (4.23)

and take care of each term separately. To do this, we will need an exponent q ∈ (1,∞), that will
be chosen large enough later on. First, an integration by parts gives that∣∣∣∣−ˆ v1 ·∇

(
|v |p

p

)∣∣∣∣ ≤ ˆ
|div(v1)| |v |

p

p

≤
(ˆ
|div(v1)|q

) 1
q

(ˆ (
|v |p

p

)q′
dA(z)

) 1
q′

≤
(ˆ
|div(v1)|q

) 1
q
∥∥∥∥ |v |pp

∥∥∥∥ 1
q

∞
E(t)

1
q′

(4.24)

Second, it is even easier to see that∣∣∣∣−ˆ |v |p−2 vt ·D v2 ·v
∣∣∣∣ ≤ ˆ

|D v2 | |v |p

≤
(ˆ
|D v2 |q

) 1
q
(ˆ
|v |pq

′
) 1
q′

(4.25)
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and from here one could proceed similarly. However, in the above bound, one can replace |D v2 |
in the right hand term by |div(v2)|. Indeed, from

vt ·D v2 ·v = vt
(
D v2 +Dt v2

2
− div(v2)

2
Id

)
· v +

div(v2)

2
|v |2

= vt
(
∂ v2

)
· v +

div(v2)

2
|v |2

we obtain∣∣∣∣− ˆ
|v |p−2 vt ·D v2 ·v

∣∣∣∣ ≤ ˆ
|v |p |∂ v2 |+ 1

2

ˆ
|div(v2)| |v |p

≤ p ‖∂ v2 ‖∞E(t) +
p

2

(ˆ
|div(v2)|q

) 1
q
∥∥∥∥ |v |pp

∥∥∥∥ 1
q

∞
E(t)

1
q′

(4.26)

This shows that the control of div(v2) suffices when ∂ v2 ∈ L∞, instead of controlling all of D v2.
We prefer this argument since the proof becomes better.
Finally, for the third term we use that Mθ is an isometry, and obtain∣∣∣∣− ˆ

|v |p−2 vt ·Mθ∇Q
∣∣∣∣ ≤ ˆ

|v |p−1 |∇Q|

≤ E(t)
p−1
p p

p−1
p

(ˆ
|∇Q|p

) 1
p

.

(4.27)

We now plug (4.24), (4.26) and (4.27) into (4.23) and obtain

d

dt
E(t) ≤ E(t)

1
q′

∥∥∥∥ |v |pp
∥∥∥∥ 1
q

∞

(
‖ div(v1)‖Lq(C) +

p

2
‖ div(v2)‖Lq(C)

)
+ p ‖∂ v2 ‖∞E(t) + E(t)

1
p′ p

1
p′ ‖∇Q‖Lp(C)

(4.28)

We now take q > p > 2 and use plug (4.18), (4.19) and (4.20) into (4.28), and obtain

d

dt
E(t) ≤ E(t)C(ω0)Cp

+ q E(t)
1
q′ C(ω0)Cp e

p+2
2q t‖ω0‖∞

+ E(t)
1
p′ e

p+2
2p t‖ω0‖∞ C(ω0)Cp.

Let us now fix T > 0 to be chosen, and restrict to 0 < t < T . Then

d

dt
E(t) ≤ C0E(t) + C1 q E(t)

1
q′ + C2E(t)

1
p′ , (4.29)

for constants C0, C1, C2 that depend only on p, ω0 and T , but not on q or t.

As we mentioned before, in Euler’s setting, namely (4.1) with the kernel K(z) = i
2πz̄ , one is allowed

to take p = 2, so that E(t) = ‖v1−v2‖2. Under these circumstances, the inequality (4.21) improves
to

d

dt
E(t) ≤ qM E(t)1− 1

q , (4.30)
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where M = C (‖ω0‖∞). In that particular setting, E(t) = ‖v1 − v2‖2 is a solution to (4.30).
Although, (4.30) does not need to have a unique solution. Indeed, the maximal solution Ê(t) to
(4.30) is Ê(t) = (Mt)q, and so any other solution satisfies E(t) ≤ Ê(t). Let us consider an inter-
val [0, T ∗] such that MT ∗ ≤ 1

2 . Therefore, as q → ∞, one has E(t) ≤ ( 1
2 )q → 0. This implies

E(t) = 0, ∀ 0 ≤ t ≤ T ∗. Repeating these techniques, we conclude that E(t) = 0, ∀ 0 ≤ t ≤ T , which
automatically leds to v1 = v2, proving uniqueness for the Euler system.

Unfortunately the system (4.1) we are looking at is a bit more delicate, and the arguments in
the above paragraph do not seem to work. Remarkably, instead of (4.30) we get (4.21),

d

dt
E(t) ≤ C0E(t) + C1 q E(t)1− 1

q + C2E(t)
1
p′ ,

which includes two additional terms on the right hand side that identically vanish under Euler
(due to incompressibility). The first of these terms C0E(t) is not a problem, and could be easily

reabsorved by means of an integrating factor. However, the second of these two terms (i.e. E(t)
1
p′ )

produces an ODE for which uniqueness certainly fails. To see this, note that the problem{
F ′(t) = F (t)

1
p′

F (0) = 0

admits as solution

F (t) =

{
0 0 ≤ t ≤ t0(
t−t0
p

)p
t > t0

for all t0 > 0. This explains that, in order to prove uniqueness for (4.1) for measurable datum,
better estimates are needed for the Q term at (4.20).

Last but not least, we would like to mention some recent progresses on the study of smooth patches
in the context of the Cauchy Kernel. To this end, let us remind that in the planar Euler system
(4.1), with kernel K(z) = i

2πz̄ , solutions consisting of characteristic functions of domains are usu-
ally refered to as patches. Remarkably, if the initial datum is ω0 = χD0

for some domain D0, and
since the vorticity equation is a transport equation, the solution ω(t, ·) is forced to have the form
ω(t, z) = χDt(z), for some domain Dt, because the vorticity is to be conserved along the trajec-
tories. The most natural question is, under this setting, the preservation in time of the boundary
smoothness. That is, one asks if the regularity of ∂D0 keeps stable in time and ∂Dt has the same
regularity, or instead some singularities, cusps, etc may appear. In [18], Chemin proved that this
is indeed the case for the Euler equation, and if ∂D0 ∈ C1+γ then ∂Dt ∈ C1+γ for every time
t > 0. His proof is based in paradifferential calculus. Bertozzi and Constantin in [11] provided an
alternative proof of the same result using techniques from classical analysis. Very recently, Cantero,
Mateu, Orobitg and Verdera were the first to study at [17] the same question with Euler’s kernel
replaced by a much more general one (including Cauchy’s kernel into their discussion, among oth-
ers). They were able to prove global uniqueness of solutions to the patch problem and assuming for
the datum ω0 = χD0

a boundary regularity of class C1+γ , 0 < γ < 1. Moreover, in the particular
case of the Cauchy kernel K(z) = 1

2πz and an elliptic domain D0,

D0 = {(x, y) ∈ R2 :
x2

a2
+
y2

b2
< 1},
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they proved that the unique solution is of the form ω(t, z) = χDt(z), where Dt is the domain
enclosed by an ellipse with semiaxes a(t) and b(t) collapsing to a line segment on the horizontal
axis as t becomes large enough. We wish to mention that uniqueness for the patch problem needs
not imply uniqueness for a general datum ω0 ∈ L∞, thouhgh [17] is the first positive result about
global uniqueness.
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mensionnels, Ann. Sci. École Norm. Sup. (4), 26(4):517-542, 1993.

[19] K. Choi, I. Jeong, On the winding number for particle trajectories in a disk-like vortex patch
of the Euler equations, arXiv:2008.05085v2

[20] A. Clop, R. Jiang, J. Mateu, J. Orobitg, Flows for non-smooth vector fields with subex-
ponentially integrable divergence, J. Differential Equations, 261(2), pages 1237-1263 (2016).

[21] A. Clop, R. Jiang, J. Mateu, J. Orobitg, Linear transport equations for vector fields
with subexponentially integrable divergence, CalVar PDE, 55, pages 1-30 (2016).

[22] A. Clop, R. Jiang, J. Mateu, J. Orobitg, A note on transport equations in quasiconfor-
mally invariant spaces, Adv CalVar 11(2), pages 193-202 (2018).

[23] A. Clop, H. Jylhä, Sobolev regular flows of non-Lipschitz vector fields, J. Differential Equa-
tions 266 (2019), no. 8, 4544–4567.

[24] R.J. DiPerna, P.L. Lions, Ordinary differential equations, transport theory and Sobolev
spaces, Invent Math 98, 511–547 (1989).

[25] L. C. Evans, Partial differential equations, vol. 19, Graduate Studies in Mathematics. Amer-
ican Mathematical Society, Providence, RI, 1998.

[26] E.B. Fabes, R. L. Johnson, U. Neri, Spaces of harmonic functions representable by Pois-
son integrals of functions in BMO and Lp,λ, Indiana Univ. Math. J. 25 (1976), no. 2, 159–170.
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