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Abstract

Images and videos are pervasive in our life and communication. With advances in
smart and portable devices, high capacity communication networks and high definition
cinema, image and video compression are more relevant than ever. Traditional block-
based linear transform codecs such as JPEG, H.264/AVC or the recent H.266/VVC are
carefully designed to meet not only the rate-distortion criteria, but also the practical
requirements of applications.

Recently, a new paradigm based on deep neural networks (i.e. neural image/video
compression) has become increasingly popular due to its ability to learn powerful
nonlinear transforms and other coding tools directly from data instead of being crafted
by humans, as was usual in previous coding formats. While achieving excellent
rate-distortion performance, these approaches are still limited mostly to research
environments due to heavy models and other practical limitations, such as being
limited to function on a particular rate and due to high memory and computational
cost. In this thesis we study these practical limitations, and designing more practical
neural image compression approaches.

After analyzing the differences between traditional and neural image compression,
our first contribution is the modulated autoencoder (MAE), a framework that includes
a mechanism to provide multiple rate-distortion options within a single model with
comparable performance to independent models. In a second contribution, we propose
the slimmable compressive autoencoder (SlimCAE), which in addition to variable rate,
can optimize the complexity of the model and thus reduce significanlty the memory
and computational burden.

Modern generative models can learn custom image transformation directly from
suitable datasets following encoder-decoder architectures, task known as image-to-
image (I2I) translation. Building on our previous work, we study the problem of
distributed I2I translation, where the latent representation is transmitted through a
binary channel and decoded in a remote receiving side. We also propose a variant that
can perform both translation and the usual autoencoding functionality.

Finally, we also consider neural video compression, where the autoencoder is
typically augmented with temporal prediction via motion compensation. One of the

iii



main bottlenecks of that framework is the optical flow module that estimates the
displacement to predict the next frame. Focusing on this module, we propose a method
that improves the accuracy of the optical flow estimation and a simplified variant that
reduces the computational cost.

Key words: neural image compression, neural video compression, optical flow,
practical neural image compression, compressive autoencoders, image-to-image trans-
lation, deep learning
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Resumen

Imágenes y vídeos son omipresentes en nuestra vida y comunicación. Con los avances
en dispositivos portátiles e inteligentes, las redes de comunicación de alta capacidad y
el cine de alta definición, la codificación de imágenes y vídeos resultan más relevantes
que nunca. Los codecs tradicionales basados en transformadas por bloques, como por
ejemplo JPEG, H.264/AVC o el reciente H.266/VVC han sido diseñados cuidadosa-
mente no sólo para satisfacer criterios de tasa-distorsión sino también otros requisitos
prácticos de las aplicaciones.

Recientemente, un nuevo paradigma de compresión de imágenes y vídeos basado
en redes neuronales profundas está suscitando interés debido a su capacidad para
aprender potentes transformaciones no lineales y otras herramientas de codificación
directamente a partir de los datos, en lugar de ser creadas por humanos, como era habi-
tual en anteriores formatos de codificación. Si bien logran un excelente rendimiento
en tasa-distorsión, estos enfoques todavía están limitados principalmente a entornos
de investigación, debido a que son modelos pesados y otras limitaciones prácticas,
entre ellos estar limitados para funcionar a una tasa particular y debido al alto coste
computacional y memoria. En esta tesis estudiamos estas limitaciones prácticas y
proponemos métodos para abordarlas.

Después de analizar las diferencias entre la compresión de imágenes tradicional
y con redes neuronales, nuestra primera contribución es el autoencoder modulado
(MAE), una arquitectura que incluye un mecanismo para proporcionar múltiples
opciones de tasa (y su correspondiente distorsión) dentro de un solo modelo, con un
rendimiento comparable a los modelos independientes. En una segunda aportación,
proponemos el "slimmable compressive autoencoder (SlimCAE)", que además de
proporcionar tasa variable, puede también adaptar la complejidad del modelo y así
reducir significativamente la memoria y la carga computacional.

Los modelos generativos modernos pueden aprender transformaciones personali-
zadas de imágenes aprendidas directamente a partir de conjuntos de datos, utilizando
arquitecturas de codificador-decodificador. Esta tarea se conoce como traducción de
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imagen a imagen (I2I). Sobre la base de nuestro trabajo anterior, estudiamos el pro-
blema de la traducción I2I distribuida, donde la representación latente se transmite
a través de un canal binario y se decodifica en un lado receptor remoto. También
proponemos una variante que puede realizar tanto la traducción como la transmisión
de la imagen original en un mismo modelo.

Finalmente, también consideramos la compresión de video con redes neuronales
profundas, donde el modelo se aumenta con predicción temporal a través de compen-
sación de movimiento. Uno de los principales cuellos de botella de ese marco es el
módulo de estimación de flujo óptico que estima el desplazamiento para predecir el
siguiente cuadro. Centrándonos en este módulo, proponemos un método que mejora la
precisión de la estimación del flujo óptico y una variante simplificada que reduce el
coste computacional.

Palabras clave: reconocimiento visual, aprendizaje auto-supervisado, aprendi-
zaje mediante ránquings, evaluación de calidad de imagen, contador de personas,
aprendizaje continuo
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Resum

Les imatges i els vídeos són pervasius en les nostres vides i comunicacions. Amb el
avenços en dispositius portables i intel·ligents, xarxes de comunicació d’alta capacitat
i cine d’alta definició, la compressió d’imatges i vídeos es més rellevant que mai. Els
còdecs de transformació lineals tradicionals basats en block com JPEG, H.264/AVC
o el recent H.266/VVC són acuradament designats per satisfer no tan sols criteris de
distorsió, sinó a mes a mes el requisits pràctics de les aplicacions.

Recentment, un nou paradigma basat en xarxes neuronals (p.e. compressió neuro-
nal de vídeo i imatge) ha anat incrementant la seva popularitat degut a la habilitat per
aprendre potents transformacions no lineals i altres eines de codi directament de les
dades en comptes de ser dissenyades per humans, com era habitual en format de còdecs
anteriors. Mentre que obtenen un rendiment excel·lent de distorsió, aquest sistemes
estan limitats al àmbit de la recerca degut a l’alta densitat del models, cost computa-
cionals i de memòria. En aquesta tesis estudiarem aquestes limitacions pràctiques i
proposarem dissenys de xarxes per compressió de imatges més eficients.

Després d’analitzar les diferencies entre models de compressió d’imatge tradicio-
nals i neuronals, la nostre primera contribució es un “autoencoder” modulat (MAE), un
framework que inclou un mecanisme que proporciona múltiples mesures de distorsió
dintre un sól model amb un rendiment comparable a models independents. En la
segona contribució, proposem el que anomenen “slimmable compressive autoencoder
(SlimCAE)”, que afegint un mesurament variable podem optimitzar la complexitat
del model i per tant reduir de manera significativa la memòria utilitzada i la carrega
computacional.

Un model generatiu modern pot aprendre transformacions d’imatge personalitza-
des directament de datasets adients seguint arquitectures encoder-decoder, aquestes
tasques son conegudes com translació imatge-a-imatge. Desenvolupant el nostre tre-
ball anterior, estudiem el problema de distribució de translació d’imatge-a-imatge, on
la representació latent es transmesa a través d’un canal binari i descodificada en una
banda receptora remota. També proposem una variant que pot dur a terme la translació
i l’usual funcionalitat d’autoencoding.

Finalment, també considerem compressió de vídeo neuronal, on l’autoencoder
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es típicament augmentat amb prediccions temporals per mitjà de compensació de
moviment. Un del principals cul de sac del framework es el mòdul de flux òptic que
estima el desplaçament per predir la següent imatge en el vídeo. Prestant atenció en
aquest mòdul, proposem un mètode que millora la precisió del flux òptic i una variant
que redueix el cost computacional.

Paraules clau: compressió neuronal de imatge, compressió neuronal de vídeo, flux
òptic, pràctica compressió neuronal de imatge, autoencoders compressius, traducció
d’imatge a imatge, aprenentatge profund
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1 Introduction

With the great advancement of global information technology and industry, communi-
cation networks and digital information have become nowadays an inseparable part of
people’s daily life. In the information age, high speed, efficiency, and convenience
are requirements for people to access digital content effectively. In particular, visual
information (e.g. image, video, and 3D vision) constitutes the largest portion of
multimedia data in modern communication networks.

Capture

Display and perception

Storage
Encoder

Decoder

Transmission

Figure 1.1 – Benefits from data compression: save storage space, speed up communi-
cation and reduce bandwidth

For example, today’s mobile phones are equipped with high resolution image and
video cameras, narrowing the gap with professional cameras. Given the availability of
these devices, users produce an increasingly large amount of high resolution visual
information every day. This visual content is typically stored, shared with family and
friends or uploaded to social media.

1.1 The image communication problem
In general, digital communication systems address the problem of transmitting a source
signal via binary digits (i.e. bits) through a digital channel in order to reconstruct the
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source signal in the receiver side. If the recovered signal is exactly the transmitted one,
this particular case is referred to as lossless compression. The objective is to remove as
much statistically redundant information as possible. If, in contrast, the reconstructed
signal is just an approximation, then this case is known as lossy compression, since
there is an irreversible loss of information. Lossy compression can achieve significantly
higher compression rates than lossless compression, and the system is usually designed
so the loss is imperceptible or minimally perceptible to the receiving observer. This
is the common case in audiovisual signals, where the properties of human visual and
auditive systems can be exploited to remove perceptual redundancy.

In general, the lossy communication problem (see Fig. 1.2) is typically posed
as conveying source data with the highest fidelity possible without exceeding an
available bit rate (or conversely, as conveying the source data using the lowest bit rate
possible while maintaining a specified reproduction fidelity) [92, 115]. Thus there is a
fundamental trade-off between the amount of information transmitted (rate) and the
quality of the approximation of the recovered signal (measured as distortion). Most
image and video coding standards are examples of lossy compression. For example,
there are JPEG [107], JPEG 2000 [78, 95], BPG [96] for image compression, and
H.262 [91], H.264 [116], HEVC [96] for video compression. As we can see, there
are two fundamental objectives to minimize in lossy compression (assuming a perfect
channel, i.e. we do not consider channel coding):

• (Bit) rate (R) measures the amount of information transmitted per second, and
is typically limited by the capacity of the transmission channel (which in practice
should also account for bits used for channel coding, such as error-correction
overhead). In the case of storage instead of transmission, rate determines the
amount of storage required to store a given piece of content. In images, rate is
often represented in terms of bits per pixel (bpp).

• Distortion (D) measures how different the recovered signal is compared to the
source signal (e.g. reconstruction error). Distortion is the result of lossy compo-
nents in the encoder-channel-decoder pipeline (e.g. quantization, transmission
errors). In images, the distortion between the original image and the recon-
structed image is usually measure with metrics such as Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index (SSIM)[111].

The theoretical basis for lossy compression is the rate-distortion theory, which is a
major branch of information theory.

In this thesis, lossy image compression is our main research focus. Fig. 1.2 shows
a lossy image coding pipeline consisting of an encoder and a decoder. Given an image
x, the encoder can generate its binary representation (i.e. bitstream b). The decoder
converts the bitstream b into the reconstructed image x̂.
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DecoderEncoder

Original Reconstructed

bitstream

distortion D

bit rate R

x x̂

b

Figure 1.2 – A typical lossy image compression system.

Optimizing rate, distortion and their tradeoff is thus the main objective of a lossy
image compression system. The performance (known as coding efficiency or rate-
distortion performance) is generally characterized with rate-distortion operational
curves [115]. However, in practical image transmission systems, there are additional
issues that need to be carefully considered:

• Complexity. For a codec to be practical in a certain scenario, its implementation
needs to consider the computational resources available in the device (e.g. com-
puter, smartphone, camera, TV set). We can distinguish between computational
complexity, the memory capacity and memory access requirements. Indirectly,
the computational complexity can also have significant impact on the energy
consumption, battery duration and even device life.

• Latency is the total time since the original image (or video frame) is captured
and the reconstructed image is presented to the receiver. There are many
factors which can influence the latency, such as the delays of image and channel
codecs, data processing and buffering latency, as well as the transmission time
through the transmission channel (e.g. copper wires, optical fibers, wireless
communication channels). In this thesis we will consider only the coding latency,
related with encoder and decoder architectures and coding algorithms.

• Variable rate. The ability to dynamically adjust the rate-distortion trade-off
according to a target rate or to varying rate requirements is particuarly important
in video coding. In scenarios such as video streaming and videoconference rate
needs to be adapted to the particular network conditions.

• Domain specific. While image codecs can be general purpose, knowing the
characteristics of the application domain, specific tools can be designed ex-
ploiting domain-specific properties (e.g. screencast, videoconference, medical
images, sports).
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• Interoperability. A main motivation of image and video compression and
transmission is to share content. A key requirement is that encoders and decoders
are compatible. Due to the impossibility of updating decoders every time a new
coding format appears or is updated, keeping a decoder compatible with legacy
formats (i.e. backward compatibility), is an important design concern. Similarly,
a codec can be designed so it can process inputs of a future version of the coding
format (i.e. forward compatibility).

In this thesis we pay special attention to these practical constraints. Wiegand and
Schwarz state the practical image coding problem as given a maximum allowed delay
and a maximum allowed complexity, achieve an optimal tradeoff between bit rate
and distortion for the range of network environments envisioned in the scope of the
applications. [115]

1.2 Image compression paradigms
We briefly compare the dominant image compression paradigm of the last four decades
and the emerging paradigm that relies on deep neural networks and machine learning.

1.2.1 Traditional image compression
An image encoder is essentially a mapping function b = E (x) that maps the continuous-
valued image x to a discrete binary sequence b. The decoder implements the inverse
mapping x̂ = D (b). Internally, the encoder first quantizes the image into a sequence of
symbols i (lossy) which then encodes with the entropy encoder b = γ (i) and inverted
by the entropy decoder (lossless).

Quantizing an image directly in the pixel domain is extremely difficult. So in
practice, image codecs follow the transform coding paradigm [32], where an analysis
transform is applied prior to quantization (see Fig. 1.3) and a synthesis transform
inverts the mapping in the decoder. The objective of this transform is to decorrelate
and concentrate the energy in few coefficients. Then scalar quantization is sufficient to
efficiently quantize the resulting coefficients. Another advantage of transform coding
is that, for properly designed transforms, the human visual system is less sensitive
perceptually to quantization in the transformed space than to quantization in the
original pixel space. In general, the analysis and synthesis transforms are orthogonal
linear transforms, such as the discrete cosine transform (DCT) [3, 4] and the discrete
wavelet transform (DWT) [93]. The former is used in the vast majority of image a
video coding standards. These transforms (as well as other coding tools) are carefully
handcrafted by researchers and engineers based on signal processing theory.

Practical considerations are essential in traditional image and video coding stan-
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Figure 1.3 – Block diagram for an image transform coding system. The analysis
transform converts an image x into corresponding transform coefficients u, which will
be mapped onto quantization indexs with an encoder mapping α. The quantization
indexes i are coded by using a lossless encoder γ, resulting in a bitstream b. In the
transform decoder, the bitstream b is decoded into the quantization indexes i with the
inverse lossless decoder γ−1. Then, the reconstructed transform coefficients û can
be obtained with the decoder mapping β. The reconstructed image x̂ is obtained by
applying the synthesis transform on the reconstructed transform coefficients u.

dards. In particular, the image is typically partitioned into blocks, which are trans-
formed locally using a small DCT (typically 8×8 blocks). This significantly reduces
the complexity, both computational and memory, leading to compact and efficient
implementations that can deployed at scale. Blocks are typically encoded and de-
coded in an autoregressive fashion (one by one), and the current block is predicted
based on previously encoded blocks (and frames in video coding). Other practical
requirements are , such as variable rate, progressive decoding, spatial/temporal/quality
scalability, and backward compatibility. To cover different application use cases and
implementation complexities, standards define profiles (sets of coding tools), and
levels (appropriate ranges of values of different properties used in the profile).

1.2.2 Neural image compression
Recently, advances in machine learning and the availability of large datasets and
suitable hardware platforms (e.g. GPUs) have driven a paradigm shift in areas such
as computer vision, audio processing and natural language processing. In this new
paradigm, known as deep learning, multi-layer neural networks with millions of
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Figure 1.4 – Neural image compression. (a) Basic framework of NIC method consists
of deep autoencoder with the learnable parameters θ and φ, quantization and entropy
coding. It can not be trained directly due to non differentiability of quantizatin and
entropy coding; (b) End-to-end trainable framework with differentiable proxies, in
which the quantization step is simulated by adding uniform noise, and rate is estimated
by a probability model implemented as neural network with the learnable parameters
ν.

parameters define flexible models, whose parameters are adjusted from data. Now,
instead of carefully handcrafted by engineers, models are learned from data. The role
of the engineer focuses now in designing the architecture and learning algorithms, and
collecting suitable data.

Image and video coding have been also influenced by deep learning, with the
emergence of the neural image compression (NIC) paradigm [12, 103, 104], also
known as learned image compression or deep image compression. While still fol-
lowing the transform coding pipeline (i.e. transform-quantization-entropy coding),
block-based linear transforms are now replaced by more powerful non-linear trans-
forms implemented with deep neural networks, fixed entropy models by parametric
probability models, and to whole pipeline is trained to explicitly minimize jointly rate
and distortion D (x, x̂)+λR (b), where λ controls the specific rate-distortion tradeoff.

From a machine learning perspective, the architecture resembles an autoencoder,
but extended with quantization and entropy coding (see Fig. 1.4a) to enable compres-
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sion of the latent representation [12, 13, 70, 71]. Thus, this architecture has been
termed compressive autoencoder (CAE) [103]. One important caveat is that deep
learning models are trained using gradient descent, which requires to compute the
gradient of the trainable parameters. Gradients at different layers are computed using
the backpropagation algorithm, which requires all parametric functions being differ-
entiable. Unfortunately, that is not the case for quantization and entropy coding. In
practice, during training quantization is replaced by a differentiable proxy, such as
adding uniform noise [12], and entropy coding is bypassed, approximating rate by the
entropy of the latent representation (see Fig. 1.4b).

Neural image compression has incorporated insights and tools from neuroscience
and machine learning. Notable examples are the generalized divisive normalization
(GDN) [10], which allows achieving high compression performance with relatively
few neural layers, and generative adversarial networks, which allow transmitting
realistic images at very low rates [2] by optimizing perceptual losses.

Researchers have explored many different architectures as the nonlinear image
transform, e.g., convolutional neural network (CNN) [12, 13, 70, 71], recurrent neural
network (RNN) [48, 104, 105], generative adversarial network (GAN) [2, 67, 123],
variational autoencoder (VAE) [12, 13, 70, 71]. In addition, some methods improved
RD performance of image compression with more accurate and complex entropy
models, such as hyperpriors [13] and contextual models [56, 58, 66, 70, 71].

1.3 Motivation

1.3.1 Practical neural image compression
While achieving competitive and sometimes even state-of-the-art rate-distortion per-
formance, NIC has its own drawbacks in practice compared to traditional image
compression (TIC), which prevents NIC codecs from being attractive in practice.
In this thesis we look beyond rate-distortion performance, and pay attention to the
practical limitations of this new paradigm.

Table. 1.1 summarizes and compares the differences between the two image coding
paradigms in terms of methodological and practical characteristics. One important
difference is that TIC operates in blocks in an iterative fashion (one block after
another in sequence) using small linear transforms, while NIC operates in feed-forward
fashion (a single pass, not iterative) using complex nonlinear deep transforms. This
difference in the size of the transforms leads to high demands in terms of memory and
computation, whose nature also requires specific hardware (e.g. GPUs), also leading
to high encoding latency. The complexity in TIC arises specially in the encoder due
to its block-based iterative nature and the cost of intra-prediction tools. Encoding
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Figure 1.5 – Towards practical neural image compression: (a) independent models for
variable rate; (b) variable rate within one single autoencoder; (c) complexity control
with variable rate.

is essentially a combinatorial problem where the encoder searchs optimal coding
mode and parameters for every block. However, this encoding complexity can be
alleviated (at the cost of worse rate-distortion performance) by limiting the number
of candidate coding modes and parameters. NIC has additional limitations such as
requiring a training stage, and being trained for a particular rate-distortion tradeoff,
lacking mechanisms to vary the rate-distortion tradeoff.

In this thesis, we focus on the problems of variable rate and complexity control
and adaptation in NIC (see Fig. 1.5).

Table 1.1 – Difference between traditional and neural image compression in practice.

Characteristics Traditional image compression Neural image compression

Transform Linear/nonlinear Linear Nonlinear and deep
Local/global Local 8x8 to 32x32 (DCT), global (wavelets) Typically global

Memory requirements Very low (both transform params and features) High (network params and features)

Computation Computational cost Very low (although repeated in many blocks) Very high
Dynamically adaptive Yes (restricting coding tools, search modes, etc.) No

Training time N/A (typically handcrafted coding tools) High
Variable rate Yes Typically not (fixed R-D tradeoff)
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Figure 1.6 – Joint I2I translation and image compression: (a) normal I2I translation; (b)
distributed I2I translation with compressed latent representation; (c) neural image com-
pression; (d) a unified framework combining I2I translation and image compression,
in which the operating mode (T indicates translation and A indicates autoencoding) is
one of inputs as the condition information.

1.3.2 Joint transmission and translation
Neural image compression can be seen as a distributed autoencoder, where we encode
an image into a binary latent representation, which then is reconstructed by a remote
decoder. Encoder-decoder architectures are pervasive in computer vision, and image
autoencoding is just one particular task that can be realized with that approach. Thus,
in this thesis we also study how other architectures and tasks can be distributed by
integrating quantization and entropy coding.

We focus on the particular task of image-to-image (I2I) translation, which ad-
dresses the problem of learning to transform images from a source domain to a target
domain. This has numerous applications in image restoration and enhancement (e.g.
colorisation, super resolution, deblurring), but also more complex data-driven trans-
formations (e.g. style transfer, face attribute modification, scene synthesis, zebra-to-
horse). Thus, we study the problem of distributed I2I translation, where the encoding
is performed at the sender side, and the decoding at the receiver side, and the coded
representation is either transmitted through a communications channel or stored (see
Fig. 1.6).
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Figure 1.7 – (a): Predictive coding architecture used by the traditional video codec
(e.g. H.264 [116] and H.265 [96]); (b): neural video compression framework [60].
The modules with yellow color are not included in the decoder side.

1.3.3 Towards practical neural video compression
Beyond the practical neural image compression, the more general goal is the problem
of practical neural video compression (NVC). Traditional video compression (TVC)
follows the hybrid video coding combining predictive coding and transform coding (see
Fig. 1.7 (a)). More specifically, most video codecs are based on motion-compensated
DCT. Some recent works have extended neural image compression to video [60, 85], by
combining temporal prediction via optical flow estimation and residual encoding with
a compressive autoencoder (see Fig. 1.7 (b)). Thus, these methods still implementing
hybrid coding frameworks where transforms and motion estimation are performed via
deep neural networks, with the potential advantage of being end-to-end trainable.

Thus, effective temporal prediction of the next frame from a previous one is a
crucial factor to achieve high rate-distortion performance in video. Once the predicted
frame is obtained, the difference image (i.e. residual information) is encoded with
the transform. In general, the difference image has much less information than the
original frame and can be encoded with much fewer bits (especially in scenes with
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little motion). However, accurate estimation of the motion of pixels is crucial to
obtain a good prediction, which will have a significant impact on the rate-distortion
performance. Fig. 1.7 illustrates this process for both TVC and NVC. In TVC,
encoding is block-based, so motion prediction is also performed on a block basis via
block matching, followed by a block-based transform of the residual. In contrast,
NVC process the whole frame and the motion estimation is pixel-based via optical
flow, followed by a deep transform of the difference image. Therefore an accurate
and efficient optical flow estimation algorithm is crucial for NVC to achieve good
rate-distortion performance as well as to not being too complex in practice.

1.4 Objectives and approach
As the above discrussion, our objective is to contribute to the development of practical
neural image and video compression frameworks. In this thesis we focus on images,
with the 5th chapter addressing accurate motion estimation problem as the preliminary
work to videos. Based on the compressive autoencoder framework, we propose
modifications to achieve:

1.4.1 Variable rate neural image compression
Most of NIC methods [12, 13, 70, 71, 103] jointly optimize rate and distortion at a
particular rate-distortion (R-D) tradeoff. It is necessary to train multiple independent
models with the different R-D tradeoffs to realize variable rate, although NIC has
shown better R-D performance than the traditional image codecs. This is an obvious
limitation in practice, since it requires training and storing each model separately,
resulting in large memory requirement.

To address variable rate in NIC, we propose variable rate deep image compression
with modulated autoencoders (MAEs) in Chapter 2. This method can adapt the
representations of a shared autoencoder at different layers to a specific R-D tradeoff
via a modulating network. The proposed method can achieve almost the same RD
performance of independent models with much fewer overall parameters.

1.4.2 Efficient and complexity-adaptive compression
Complexity is one of most important characteristics for practical neural image com-
pression. However, NIC usually is very heavy in model size compared with traditional
image codecs, which also cause high memory requirement and much coding time, even
with parallel computation on GPUs. Almost all the NIC methods need to train multiple
models independently with different capacities for different complexity requirements.
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In addition, this cost will be much larger considering the variable rate meanwhile.
To address the problem of complexity control in NIC, we propose slimmable

compressive autoencoders (SlimCAEs) in Chapter 3, where we show that applying
slimming mechanism with one single model can enable both adaptive complexity
and variable rate in NIC. Especially, We crucially observe that each R-D tradeoff has
an corresponding minimum capacity that additional filters in neural network can not
provide any benifits on R-D performance. Thus, it requests us to find the optimal R-D
tradeoffs λs depending on different capacities. Then, we propose λ-scheduling which
can obtain optimal λs by alternating between the model optimization and adjusting
the values of λs during training. SlimCAEs can not only achieve variable rate but also
complexity adaptation.

1.4.3 Integrated framework for distributed image-to-image trans-
lation

A short bitstream is the practical requirement for the distributed image-to-image trans-
lation, which is also a natural extension of NIC because of their similar architecture
based on neural networks. Beyond of this, I2I translation can also be viewed as an
additional functionality of normal neural image compression (e.g. autoencoding with
compressed latent representation). For example, people may need a option to decide
showing their real face or a fake one with face translation in a videoconference.

To achieve these goals, we propose a novel framework for I2I translation and
image Compression combining these two paradigms. We consider multi-domain
image synthesis as I2I translation task. Firstly, we propose the I2Icodec by integrating
quantization and entropy coding into an distributed I2I translation framework, which
can produce the compressed latent representation for the transmission. Then, we
further propose a unified framework that allows both translation and autoencoding
capabilities in a single codec. The proposed adaptive residual blocks conditioned on the
translation/compression mode provide flexible adaptation to the desired functionality.
The experiments show promising results in both I2I translation and image compression
using a single model.

1.4.4 Efficient and effective optical flow estimation
To pursue more accurate and efficient motion estimation to improve R-D performance
of neural video compression, we explore to introduce multiple frames into optical flow
estimation. Approaches that use more than two consecutive video frames in the optical
flow estimation have a long research history. However, most of such methods utilize
extra information for a pre-processing flow prediction or for a post-processing flow
correction and filtering. Different from previously developed techniques, we propose
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improved discrete optical flow estimation with triple image matching cost, in which
a new algorithm is designed for the likelihood function calculation (alternatively the
matching cost volume) that is used in the maximum a posteriori estimation. We exploit
the fact that in general, optical flow is locally constant in the sense of time and the
likelihood function depends on both the previous and the future frame. Implementation
of our idea increases the robustness of optical flow estimation. In addition, we also
propose a simplified variant that reduces the computational cost and keep comparable
accuracy.
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2 Variable Rate Deep Image Compression with
A Modulated Autoencoder1

2.1 Introduction
In many scenarios, communication networks or storage devices may impose a con-
straint on the maximum bitrate, which requires the image encoder to adapt to a given
bitrate budget. In some applications this constraint may even change dynamically
over time (e.g. video transmission). In all these cases, a bitrate control mechanism is
required, and it is available in most traditional image and video compression codecs.
In general, reducing the bitrate causes an increase in the distortion, i.e. there is a
rate-distortion (R-D) tradeoff. This mechanism is typically based on scaling the latent
representation prior to quantization to obtain finer or coarser quantizations, and then
inverting the scaling at the decoder side (Fig. 2.1a).

Traditional block DCT-based image compression methods enable control of the
rate via quantization tables that scale DCT coefficients according to the target rate.
However, in the NIC paradigm, the parameters of the encoder and decoder are learned
from certain image data by jointly minimizing rate and distortion at a particular R-D
tradeoff. Thus, providing compression at different bitrates requires an independent
model for every R-D tradeoff. This is an obvious limitation, since it requires storing
each model separately, resulting in large memory footprint.

To address this limitation, Theis et al. [103] use a single autoencoder whose bot-
tleneck representation is scaled before quantization depending on the target bitrate
(Fig. 2.1b). However, this approach only considers the importance of different chan-
nels from the bottleneck representation of learned autoencoders under R-D tradeoff
constraint. In addition, the autoencoder is optimized for a single specific R-D tradeoff
(typically high bitrate). These aspects lead to a drop in performance for low bitrates
and a narrow effective range of bitrates. Recurrent neural networks can also realize
variable rate coding [104], yet are demanding computationally. Cai et al. [22] proposed
a multi-scale decomposition network, each scale targeting a different rate.

In this chapter, in order to tackle the limitations of multiple independent models and
bottleneck scaling, we formulate the problem of variable R-D optimization for NIC,
and propose the modulated autoencoder (MAE) framework, where the representations
at different layers of a shared autoencoder are adapted to a specific R-D tradeoff via

1This chapter is based on a publication in IEEE Signal Processing Letters (SPL 2020) [122].
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Figure 2.1 – Image compression and R-D control: (a) JPEG transform, (b) pre-
trained autoencoder with bottleneck scaling [103], and (c) our proposed modulated
autoencoder with joint training. Entropy coding/decoding is omitted for simplicity.

a modulating network. The modulating network is conditioned on the target R-D
tradeoff, and synchronized with the actual tradeoff optimized to learn the parameters
of the autoencoder and the modulating network. MAEs can achieve almost the same
operational R-D points of independent models with much fewer overall parameters
(i.e. just the shared autoencoder plus the small overhead of the modulating network).
Multi-layer modulation does not suffer from the main limitations of bottleneck scaling,
namely, drop in performance for low rates, and shrinkage of the effective range of
bitrates. Concurrently, Choi et al. [25] proposed a conditional autoencoder (cAE) with
a similar mechanism to achieve variable rate.

16



2.2. Background

2.2 Background
Almost all lossy image and video compression approaches follow the transform cod-
ing paradigm [32]. The basic structure is a transform z = f (x) that takes an input
image x ∈ RN and obtains a transformed representation z, followed by a quantizer
q = Q (z) where q ∈ ZD is a discrete-valued vector. The decoder reverses the quan-
tization (i.e. dequantizer ẑ = Q−1

(
q
)
) and the transform (i.e. inverse transform) as

x̂ = g (ẑ) reconstructing the output image x̂ ∈RN . Before the transmission (or storage),
the discrete-valued vector q is binarized and serialized into a bitstream b. Entropy
coding [117] is used to exploit the statistical redundancy in that bitstream and reduce
its length.

In NIC, the handcrafted analysis and synthesis transforms are replaced by the en-
coder z = f (x;θ) and decoder x̂ = g

(
ẑ;φ

)
of a convolutional autoencoder, parametrized

by θ and φ. The fundamental difference is that the transforms are not designed
but learned from training data. The model is typically trained by minimizing the
optimization problem

argminθ,φR (b)+λD (x, x̂) , (2.1)

where R (b) measures the rate of the bitstream b and D (x̂,x) represents a distortion
metric between x and x̂, and the Lagrange multiplier λ controls the R-D tradeoff.
Note that λ is fixed in this case. The problem is solved using gradient descent and
backpropagation [87].

To make the model differentiable, which is required to apply backpropagation,
during training the quantizer is replaced by a differentiable proxy function [12, 103,
104]. Similarly, entropy coding is invertible, but it is necessary to compute the length
of the bitstream b. This is usually approximated by the entropy of the distribution of
the quantized vector, R (b) ≈ H

[
Pq

]
, which is a lower bound of the actual bitstream

length.
In this paper, we will use scalar quantization by (element-wise) rounding to the

nearest neighboor, i.e. q = bzc, which will be replaced by additive uniform noise as
proxy during training, i.e. z̃ = z+∆z, with ∆z ∼U

(− 1
2 , 1

2

)
. There is no de-quantization

in the decoder, and the reconstructed representation is simply ẑ = q. To estimate the
entropy we will use the entropy model described in [12] to approximate Pq by pz̃ (z̃).
Finally, we will use mean squared error (MSE) as a distortion metric. With these
particular choices, (2.1) becomes

argmin
θ,φ

R (z̃;θ)+λD
(
x, x̂;θ,φ

)
, (2.2)
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with

R (z̃;θ) = Ex∼px,∆z∼U
[− log2 pz̃ (z̃)

]
, (2.3)

D
(
x, x̂;θ,φ

)= Ex∼px,∆z∼U
[‖x− x̂‖2] . (2.4)

2.3 Multi-rate neural image compression with modu-
lated autoencoders

2.3.1 Problem definition
We are interested in NIC models that can operate satisfactorily on different R-D
tradeoffs, and adapt to a specific one when required. Note that Eq.(2.2) optimizes
rate and distortion for a fixed tradeoff λ. We extend that formulation to multiple R-D
tradeoffs (i.e. λ ∈Λ= {λ1, . . . ,λM }) as the multi-rate-distortion problem

argmin
θ,φ

∑
λ∈Λ

[
R (z̃;θ,λ)+λD

(
x, x̂;θ,φ,λ

)]
, (2.5)

with

R (z̃;θ,λ) = Ex∼px,∆z∼U
[− log2 pz̃ (z̃)

]
, (2.6)

D
(
x, x̂;θ,φ,λ

)= Ex∼px,∆z∼U
[‖x− x̂‖2] , (2.7)

where we are simplifying the notation by omitting features dependency on λ, i.e.
z̃ = z̃ (λ) = f (x;θ,λ) and x̂ = x̂ (λ) = g

(
z̃ (λ);φ,λ

)
. This formulation can be easily

extended to a continuous range of tradeoffs. Note also that these optimization problems
assume that all R-D operational points are equally important. It could be possible to
integrate an importance function I (λ) to further give more importance to certain R-D
operational points if required. We assume uniform importance (continuous or discrete)
for simplicity.

2.3.2 Bottleneck scaling
A possible way to make the encoder and decoder aware of λ is simply scaling the latent
representation in the bottleneck before quantization (implicitly scaling the quantization
bin), and then inverting the scaling in the decoder. In this case, q =Q (z¯s (λ)) and
x̂ (λ) = g

(
ẑ (λ)¯ (1/s (λ));φ

)
, where s (λ) is the specific scaling factor for the tradeoff

λ. Conventional codecs use predefined tables for s (λ) (the descaling is often implicitly
subsumed in the dequantization, e.g. JPEG), while other approaches [103] keep
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Figure 2.2 – Modulated autoencoder (MAE) architecture, combining modulating
networks and shared autoencoder. The channel-wise product is performed before
GDN in the encoder and after IGDN in the decoder.

encoder and decoder fixed, optimized for a particular R-D tradeoff (Fig. 2.1(b)).
We observe several limitations in this approach: (1) scaling only the bottleneck

features is not flexible enough to adapt to a large range of R-D tradeoffs, (2) using
the inverse of the scaling factor in the decoder may also limit the flexibility of the
adaptation mechanism, (3) optimizing the parameters of the autoencoder only for a
single R-D tradeoff leads to suboptimal parameters for other distant tradeoffs, (4)
training the autoencoder and the scaling factors separately may also be limiting. In
order to overcome these limitations we propose the modulated autoencoder (MAE)
framework.

2.3.3 Modulated autoencoders
Variable rate is achieved in MAEs by modulating the internal representations in the en-
coder and the decoder (Fig. 2.2). Given a set of internal representations in the encoder
Z = {z1, . . . ,zK } and in the decoder U = {u1, . . . ,uL}, they are replaced by the cor-
responding modulated and demodulated versions Z′ = {z1 ¯m1 (λ) , . . . ,zK ¯mK (λ)}
and U′ = {u1 ¯d1 (λ) , . . . ,uL ¯dL (λ)}, where m (λ) = (m1 (λ) , . . . ,mK (λ)) and d (λ) =
(d1 (λ) , . . . ,dL (λ)) are the modulating and demodulating functions.

Our MAE architecture extends the NIC architecture proposed in [12] which com-
bines convolutional layers and GDN/IGDN layers [11]. In our experiments, we choose
to modulate the outputs of the convolutional layers in the encoder and decoder, i.e. Z
and U, respectively.

The modulating function m (λ) for the encoder is learned by a modulating network
as m (λ) = m (λ;ϑ) and the demodulating function d (λ) by the demodulating network
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as d (λ) = d
(
λ;ϕ

)
. As a result, the encoder has learnable parameters {θ,ϑ} and the

decoder
{
φ,ϕ

}
.

Finally, the optimization problem for the MAE is

argmin
θ,φ,ϑ,ϕ

∑
λ∈Λ

[
R (z̃;θ,ϑ,λ)+λD

(
x, x̂;θ,φ,ϑ,ϕ,λ

)]
, (2.8)

which extends Eq.(2.5) with the modulating/demodulating networks and their corre-
sponding parameters. All parameters are learned jointly using gradient descent and
backpropagation.

This mechanism is more flexible than bottleneck scaling since it allows multi-level
modulation, decouples encoder and decoder scaling and allows effective joint training
of both autoencoder and modulating network, therefore optimizing jointly to all R-D
tradeoffs of interest.

2.3.4 Modulating and demodulating networks
The modulating network is a perceptron with two FC layers and ReLU [75] and
exponential nonlinearities (Fig. 2.2). The exponential nonlinearity guarantees positive
outputs which we found beneficial in training. The input is a scalar value λ and the
output is m (λ) = (m1 (λ) , . . . ,mK (λ)). A small first hidden layer allows learning a
meaningful nonlinear function between tradeoffs and modulation vectors, which is
more flexible than simple scaling factors and allows more expressive interpolation
between tradeoffs. In practice, we use normalized tradeoffs as λ̂k = λk /maxλ∈Λ (λ).
The demodulating network follows a similar architecture.

2.4 Experiments

2.4.1 Experimental setup
We evaluated MAE on the CLIC 2019 Professional dataset with 585 training images
and 226 test images. In addition, we also test our models on Kodak dataset. Our
implementation 2 is based on the autoencoder architecture of [12], which is augmented
with modulation mechanisms and modulating networks (two FC layers, with 150 and
3×192 units respectively) for all the convolutional layers. We use MSE as distortion
metric. The model is trained with crops of size 240×240 using Adam with a minibatch
size of 8 and initial learning rates of 0.0004 and 0.002 for MAE and the entropy
model, respectively. After 400k iterations, the learning rates are halved for another
150k iterations. We also tested MAEs with scale hyperpriors, as described in [13]. In

2https://github.com/FireFYF/modulatedautoencoder
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Figure 2.3 – R-D curves for different methods on CLIC 2019 Professional test dataset.

our experiments, we consider seven (λ ∈ [64,128,256,512,1024,2048,4096]) and four
(λ ∈ [64,256,1024,4096]) R-D tradeoffs for the models without and with hyperprior,
respectively. We consider two baselines:

Independent models. Each R-D operational point is obtained by training a new
model with a different R-D tradeoff λ in (2.2), requiring each model to be stored
separately. This provides the optimal R-D performance, but also requires more
memory to store all the models for different R-D tradeoffs.

Bottleneck scaling. The autoencoder is optimized for the highest R-D tradeoff
in the range. Then it is frozen and the scaling parameters are learned for the other
tradeoffs.

2.4.2 Results

We use MS-SSIM (dB)3 and PSNR (dB) to evaluate image distortion. Fig. 2.3
and Fig. 2.4 show the R-D operational curves for the proposed MAE and the two
baselines on the CLIC 2019 Professional dataset and the Kodak dataset, respectively.
In addition, it also includes JPEG [107], JPEG2000 [1] and BPG [15] coding methods
to demonstrate their performance. For both of them, we can see that the best R-D
performance is obtained by using independent models. Hyperprior models also have
superior R-D performance. Bottleneck scaling is satisfactory for high bitrates, closer to
the optimal R-D operational point of the autoencoder, but degrades for lower bitrates.

3MS-SSIM (dB) is computed as 910log10(19MS-SSIM) [48]
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Figure 2.4 – R-D curves for different methods on Kodak dataset.

Table 2.1 – Model size (millions of parameters)

Architecture
w/o hyperprior [12] w/ hyperprior [13]

(seven R-D tradeoffs) (four R-D tradeoffs)
Independent models 28.02 M 40.53 M

Bottleneck scaling [103] 4.00 M -
Modulated AE (ours) 4.06 M 10.27 M

Interestingly, bottleneck scaling cannot achieve as low bitrates as independent models
since the autoencoder is optimized for a high bitrate. This can be observed in the R-D
curve as a narrower range of bitrates. Note that our independent models results did not
achieve the same performance as in [12] and [13] due to the different training datasets.
The proposed MAEs can achieve an R-D performance very close to the corresponding
independent models, demonstrating that multi-layer modulation with joint training is a
more powerful mechanism to achieve effective variable rate compression.

The main advantage of bottleneck scaling and MAEs is that the autoencoder is
shared, which results in much fewer parameters than independent models, which
depend on the number of R-D tradeoffs (Table 2.1). Both methods have a small
overhead due to the modulating networks or the scaling factors (which is smaller in
bottleneck scaling).

In order to illustrate the differences between the bottleneck scaling and MAE bitrate
adaptation mechanisms, we consider the image in Fig. 2.5b and the reconstructions for
high and low bitrates in Fig. 2.5a. We show two of the 192 channels in the bottleneck
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Figure 2.5 – Modulated feature maps: (a) reconstructed images for high (λ= 4096)
and low (λ = 64) bitrates (first row), and the corresponding feature maps for two
channels of the bottleneck before quantization (2nd and 3rd rows), (b) original image
for comparison, and (c) element-wise ratio (logarithmic scale) between the feature
maps at the two different tradeoffs.

feature before quantization (Fig. 2.5a), and observe that the maps for the two bitrates
are similar but the range is higher for λ= 4096, so the quantization will be finer. This
is also what we would expect in bottleneck scaling. However, a closer look highlights
the difference between both methods. We also compute the element-wise ratio between
the bottleneck features at λ= 4096 and λ= 64, and show the ratio image for the same
channels of the example (Fig. 2.5c). We can see that the MAE learns to perform a more
complex adaptation of the features beyond simple channel-wise bottleneck scaling
since different areas of the ratio map show different values (the ratio map would be
uniform in bottleneck scaling), which allows MAE to allocate bits more freely when
optimizing for different R-D tradeoffs, especially for low bitrates.
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2.5 Conclusion
In this chapter, we introduce the modulated autoencoder, a novel variable rate deep
image compression framework, based on multi-layer feature modulation and joint
learning of autoencoder parameters. MAEs can realize variable bitrate image com-
pression with a single model, while keeping the performance close to the upper bound
of independent models that require significantly more memory. We show that MAE
outperforms bottleneck scaling [103], especially for low bitrates.
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3 Slimmable Compressive Autoencoders for
Practical Neural Image Compression1

3.1 Introduction
While MAE provides variable rate and prevents having multiple NIC models, the
deep encoder and decoder are still heavy modules. As we discussed previously,
the challenging problem of practical image compression further includes real-world
constraints such as limited memory, computation and latency, often related with
their deployment in resource-constrained devices (e.g. mobile phones) and networks.
Similarly, video compression addresses the same problem for sequences of images,
where low complexity and latency become even more critical [115].

Method Rate-dist.
perform.

Total
memory

Variable Training
timeRate Memory FLOPs

JPEG,JP2K Low Very low Yes - - -
BPG High Low Yes - - -

Single CAE Optimal Medium No No No Low
Multiple CAEs Optimal High Yes Yes Yes High

BScale[103] Medium Medium Yes No No Low
MAE[122],cAE[25] High Medium Yes No No Low

SlimCAE Optimal Medium Yes Yes Yes Low

Table 3.1 – Comparison of compression methods.

Traditional block-based transform codings methods (e.g. JPEG [107], JPEG2000 [78,
95], BPG [96]) include carefully designed linear transforms and coding tools that con-
sider practical limitations, thus effectively addressing practical image compression. In
this paradigm, encoding is block-based and iterative. Rate and distortion are optimized
during encoding by exhaustively searching optimal block partitions and coding and
prediction modes. Complexity can be controlled by limiting the range of coding and

1This chapter is based on a publication at the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2021) [121].
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Figure 3.1 – Variable rate and complexity adaptive image compression with a
slimmable compressive autoencoder.

prediction modes, or using heuristics. The rate can be estimated from previous blocks,
and controlled by adjusting quantization parameters.

In contrast to block-based codecs, NIC approaches are typically image-based and
feed-forward, resulting in a constant processing cost. In addition, these heavier deep
networks require specialized hardware and still has a high computational cost, making
them unattractive in practical resource-limited scenarios.

The challenge of deploying deep neural networks in resource-limited devices (e.g.
smartphones, tablets) has motivated research on lightweight architectures [37, 89],
integer and binary networks [45, 50, 81] and automatic architecture search [101].
However, only few works have addressed efficiency in NIC [47, 84]. We borrow the
idea of slimmable neural networks [126], where the width of the layers (i.e. number
of channels) of a classifier can be adjusted to trade off accuracy for computational
efficiency.

This chapter describes the slimmable compressive autoencoder (SlimCAE) frame-
work, where we show that the slimming mechanism can enable both variable rate
and adaptive complexity (see Fig. 3.1). We propose and study different variants
of slimmable generalized divisive normalization [11] (GDN) layers, and slimmable
probability models. Naive training of SlimCAEs, with the different subnetworks (i.e.
subCAEs) optimizing the same loss on all widths, results in suboptimal performance.
We crucially observe that each R-D tradeoff has an corresponding minimum capacity.
This suggest that, in contrast to other slimmable networks, each width should have
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different objectives, i.e. different D +λR, determined by the corresponding tradeoff
λ. This characteristic makes SlimCAEs more difficult to train, and unlikely to benefit
from implicit or explicit distillation [126]. Addressing this problem, we propose
λ-scheduling an algorithm that alternates between training the model and adjusting the
different λs. Via slimming, SlimCAEs can address the main requirements of practical
neural image compression (PNIC) in a simple and integrated way.

Our main contributions are: (1) a novel rate and complexity control mechanism
via layer widths, motivated by a key insight connecting optimal R-D tradeoffs and
capacity; (2) the SlimCAE framework, which enables control of computation, memory
and rate, required for PNIC; (3) an efficient training algorithm for SlimCAEs; (4)
novel slimmable modules (i.e. GDNs, entropy models). In addition, SlimCAEs can be
easily adapted to obtain scalable bitstreams.

3.2 Related work

3.2.1 Variable rate image compression
As we described in the previous chapter, many practical applications require certain
control of the target rate. Several NIC approaches can provide variable rate con-
trol [22, 25, 104, 122]. However, none of these methods provides explicit control
over complexity. Our approach (see Fig. 3.2c), in addition to variable rate, can jointly
reduce significantly the memory and computational cost for low rates.

Bottleneck scaling Feature modulation Slimming

(a) (b) (c)

Figure 3.2 – Mechanisms to achieve variable rate in compressive autoencoders: (a)
bottleneck scaling [103], (b) feature modulation [25, 122], and (c) proposed method
(SlimCAE). Adaptation from high rate (left) to low rate (right). Changes are high-
lighted in red. Only SlimCAE reduces memory and computation. GDN layers are not
included for simplicity.
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3.2.2 Efficiency
Lightweight architectures, such as GoogleNet [100] and MobileNet [37, 89], are
designed for resource-limited devices by reducing the number of parameters and
computation. At the cost of small drop in performance, integer or binary weights
can further improve efficiency [45, 50, 81]. Network architecture search (NAS) [8,
101, 134] includes design hyperparameters (e.g. width, number of layers) in the
optimization space. Slimmable neural networks [125, 126] enable models that can
be run at different accuracy-efficiency tradeoffs. Regarding NIC, Johnston et al. [47]
use NAS to achieve 2-3× coding speed-up. Cai et al. [23] use progressive coding to
reduce initial latency, although memory and computational cost remain similar. While
tackling run-time or latency, these methods still focus on a single R-D tradeoff, not
providing rate, memory nor computation control.

3.3 Slimmable compressive autoencoders

3.3.1 Slimmable autoencoders
The basic structure of an autoencoder (AE) is a learnable encoder z = f (x;θ) parametrized
by θ that maps an input image x ∈RN to a transformed (latent) representation z ∈RD ,
followed by a learnable decoder x̂ = g

(
z;φ

)
parametrized by φ that maps the latent

representation to x̂ ∈RN , with the objective of reconstructing the input image x. Hence
the combination of encoder and decoder is autoencoding x, and the objective is to learn
the parameters ψ = (

θ,φ
)

by minimizing a loss L
(
θ,φ;X

)
given a training dataset

X = {xi }|X |
i=1. The loss measures the reconstruction error, possibly combined with other

objectives.
We are interested in AEs whose layers are slimmable [126], i.e. slimmable autoen-

coders (SlimAEs), thus enabling dynamic control over the memory and computation
costs. An slimmable layer allows for discarding part of the layer parameters (in most
cases is equivalent to setting them to zero) while still performing a valid operation,
trading off expressiveness for lower memory and computational cost. We consider
SlimAEs containing K subautoencoders (subAEs), each of them parametrized by
a pair ψ(k) = (

θ(k),φ(k)
) ∈ Ψ = {(

θ(1),φ(1)
)

, . . . ,
(
θ(K ),φ(K )

)}
, where we assume that

θ(1) ⊂·· ·⊂θ(K )=θ and φ(1) ⊂ ·· · ⊂φ(K ) =φ (we assume these conditions are met for
every layer in the SlimAE). Similarly, we can define the loss for the subAE k as
L(k)

(
θ(k),φ(k);X

)
, and train the SlimAE with the joint loss or a weighted average

L (Ψ;X ) =∑
k L(k)

(
θ(k),φ(k);X

)
.
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(a) (b)

(c)

Figure 3.3 – GDN variants: (a) SwitchGDN, (b) SlimGDN, (c) SlimGDN+ (SlimGDN
with switch. param. modulation).

3.3.2 Compressive autoencoders
A compressive autoencoder (CAE) is an AE, where the output of the encoder is a binary
stream (bitstream), typically stored or transmitted through a communications channel.
The objective is to maximize the quality of the reconstructed image (i.e. minimize
the distortion) while minimizing the number of bits transmitted (i.e. minimize the
rate). CAEs are based on AEs, where the encoder is followed by a quantizer q =Q (z),
where q ∈ZD is a discrete-valued symbol vector. A losseless entropy encoder then
binarizes and serializes q into the bitstream b, exploiting its statistical redundancy to
achieve code lengths close to its entropy. These operations are reversed in the decoder.

CAEs are typically trained by solving a rate-distortion optimization (RDO) prob-
lem with loss

L
(
θ,φ;X ,λ

)= D
(
θ,φ;X

)+λR (θ;X ) , (3.1)

where X is the training dataset, λ is the (fixed) tradeoff between rate and distor-
tion. To allow end-to-end optimization with backpropagation, during training non-
differentiable operations, such as quantization and entropy coding, are replaced by
differentiable proxies, such as additive noise and entropy estimation.
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Without loss of generality, we focus on the CAE framework of Balle et al. [12],
which combines convolutional layers, generalized divisive normalization (GDN) and
inverse GDN (IGDN) layers, scalar quantization to the nearest neighbor (i.e. i.e.
q = bzc) and arithmetic coding. During training, quantization is replaced by additive
uniform noise (i.e. z̃ = z+∆z, with ∆z ∼ U

(− 1
2 , 1

2

)
). Similarly, arithmetic coding is

bypassed and rate is approximated by the entropy of the quantized symbol vector
R (b) ≈ H

[
Pq

]≈ H
[
pz̃ (z̃;ν)

]
, where ν are the parameters of the entropy model used

in [12]. Distortion is measured as the reconstruction mean square error (MSE), i.e.
‖x− x̂‖2. The CAE is thus parametrized by ψ= (

θ,φ,ν
)
.

3.3.3 Slimmable CAEs
In order to obtain a slimmable compressive autoencoder (SlimCAE), all operations
in the CAE are required to be non-parametric, slimmable or efficiently switchable.
Quantization is non-parametric in our case, and convolutional layers are implemented
slimmable [126]. For GDN/IGDN layers, we propose and compare several variants
(see next subsection) layers. Finally, we use switchable entropy models, i.e. each
subCAE k has its own parameters ν(k), which can be easily switched since the size is
negligible compared to the other parameters θ(k) or φ(k).

Our approach can also be extended to more complex frameworks including hyper-
priors [13] and autoregressive context models [70].

3.3.4 Switchable and slimmable GDN/IGDN layers
While GDN [10] was proposed to Gaussianize the local joint statistics of natural im-
ages, Balle et al. [12] proposed an approximate inverse operation (IGDN), and showed
that GDN/IGDN layer pairs are highly beneficial in learned image compression, and
since then have been adopted by many CAE frameworks. Both GDN and IGDN are
parametrized by γ ∈Rw×w and β ∈Rw , where w is the number of input (and output)
channels.

In the case of a SlimCAE with K subCAEs, the input to the GDN layer has the
following possible channel dimensions w (1), . . . , w (K ). We consider three possible
variants:

• Switchable GDNs2. We use independent sets of parameters γ(k) ∈ Rw (k)×w (k)

and β(k) ∈Rw (k)
for every subGDN k (see Fig. 3.3 a). The normalized represen-

2In the following, we omit IGDN for clarity (the same analysis applies).
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tation for an input y(k) ∈Rw (k)
is then

ỹ (k)
i = y (k)

i(
β(k)

i +∑
j γ

(k)
i j |y (k)

j |2
) 1

2

(3.2)

While flexible, the total number of parameters is relatively high
∑K

k=1

(
w (k) +1

)
w (k),

and switching may be not very efficient.

• Slimmable GDN (SlimGDN). A more compact option is to reuse parameters
from smaller subGDNs by imposing γ(1) ⊂ ·· · ⊂ γ(K ) and β(1) ⊂ ·· · ⊂β(K ). Now
the total number of parameters in a SlimGDN layer is

(
M (K ) +1

)
w (K ) (see

Fig. 3.3b).

• SlimGDN with switchable parameter modulation. SlimGDNs usually per-
forms worse than switchable GDNs, since they are less flexible to adapt to the
statistics of the different y(k). We propose a variant using switchable parame-
ter modulation, where a global scale and bias are learned separately for every
subGDN (i.e. switchable), i.e. γ(k)

i j = s(k)
γ γ′(k)

i j +b(k)
γ and β(k)

i = s(k)
β
β′(k)

i +b(k)
β

,

where γ′(k) and β′(k) are shared and slimmable and s(k)
γ , b(k)

γ , s(k)
β

and b(k)
β

are
switchable scalars specific for the subGDN k. This variant requires only 4 addi-
tional parameters per subGDN (see Fig. 3.3c), for a total number of parameters(
w (K ) +1

)
w (K ) +4K .

3.3.5 (Naive) training of SlimCAEs
For the training of SlimCAEs, we can extend Eq. (3.1) and optimize the joint loss of
all K subCAEs argminψ

∑
ψ∈ΨL

(
ψ;X ,λ

)
, with parameters Ψ= {

ψ(1), . . . ,ψ(K )
}
. The

problem can be solved using stochastic gradient descent (SGD) and backpropagation.
We refer to this case as naive SlimCAE.

3.4 SlimCAEs with multiple rate-distortion tradeoffs

3.4.1 Rate-distortion and capacity
While a naive SlimCAE can already control the rate of the output bitstream and
the complexity of the model, it is limited to a relatively narrow range of rates with
suboptimal R-D performance. This can be observed in Fig. 3.4, where we show the
R-D curves obtained with independent CAEs with different capacities controlled via
the layer width w (i.e. number of filters per convolutional layer) compared with one

31



Chapter 3. Slimmable Compressive Autoencoders for Practical Neural Image
Compression

SlimCAE with the same layer widths.
Fig. 3.4 shows that there is a limit in the minimum achievable distortion by a CAE

(i.e. at high rates), which is in turn related to its capacity (the lower the capacity, the
higher the minimum distortion). Additionally, the figure shows that, when the rate is
low enough, additional capacity is unnecessary since the curves converge before that
point, (i.e. an optimal capacity for every segment of the optimal R-D curve). Note also

w=48

w=72

w=96
w=144

w=192

Independent CAEs
SlimCAE (same λ)
Estimated optimal

R

D

Figure 3.4 – Comparison of R-D curves of independent CAEs and SlimCAE with
shared λ. Better choices in the R-D curves are also highlighted.

that the R-D points of the SlimCAE are located over the R-D curves of independent
CAEs with the same capacity, suggesting that a slimmable version does not entail R-D
penalty. We aim at training the SlimCAE so it can achieve optimal R-D performance
at the different capacities. We define the multi-RD optimization (MRDO) loss as

L (Ψ;X ,Λ) =
K∑

k=1
D

(
ψ(k);X

)
+λ(k)R

(
ψ(k);X

)
, (3.3)

where Λ= {
λ(1), . . . ,λ(K )

}
is a given set of R-D tradeoffs for the different K subCAEs,

and the corresponding MRDO problem is argminΨ
∑
ψ(k)∈ΨL (Ψ;X ,Λ).

An important aspect to note is that in this case each subCAE solves a different
optimization problem determined by the specific tradeoff λ(k). This is an important
difference with slimmable networks and SlimAEs in general (including naive Slim-
CAEs), where every subnetwork or subAE solves exactly the same problem, just with
different capacity. This has implications, such as more difficulty to jointly solve all the
subproblems and also makes implicit distillation [126] across subCAEs more unlikely.
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The problem now is to find appropriate values of Λ and train the SlimCAE.

3.4.2 Estimating optimal λs from R-D curves
One possible way is to leverage the R-D curves of independent CAEs and try to
estimate the optimal points to switch to the next subCAE, which is where the curves
start diverging because R-D performance saturates for that capacity. We can then
estimate λ(k) as the slope of the corresponding curve at that optimal point (see Fig. 3.4).

3.4.3 Automatic estimation via λ-scheduling
While knowing in advance the empirical R-D curves leads to better R-D performance
and wider rate ranges, it has the important drawback of having very high computation
cost, since we need to compute K R-D curves, one for each target capacity, and every
curve requires training a number of independent CAE exploring different λs.

MRDO training with λ scheduling In order to address the previous limitation, we
propose an effective MRDO training algorithm to automatically estimate Λ without
requiring independent CAEs curves (see Alg. 1).

The algorithm is based on progressively varying the values of every λ(k) following
a predefined schedule. We alternate phases of updating Λ and updating the SlimCAE
using SGD. The initial stage is a naive SlimCAE, where λ is set to target high rate and
low distortion, which requires full use of the capacity. Once trained, the SlimCAE
is already optimized for that full capacity. We fix λ(K ) and update the remaining
k = 1, . . . ,K −1 as λ(k)

t = κλ(k)
t−1 with a factor κ> 1. Then we update the SlimCAE for

another number of iterations, which tends to reduce the rate and moves the R-D of
subCAE K −1 closer to the optimal R-D curve. Geometrically, this results in the slope
of the segment between the R-D points of the two consecutive subCAEs K −1 and K
decreasing (see Fig. 3.5b and c). When this slope does not decrease anymore, we fix
λ(K−1) and continue the process recursively. The overall effect of the λ scheduling is
to progressively accommodate the target R-D point for each subCAE so training can
approximate the optimal R-D points.

33



Chapter 3. Slimmable Compressive Autoencoders for Practical Neural Image
Compression

D

R

R

R

D

D

λ scheduling

CAE optimization

(a) (b)

(c) (d)
R

DD

Figure 3.5 – Training SlimCAEs: (a) naive training with a single R-D tradeoff λ leads
to small ranges and suboptimal R-D performance, (b) varying the λ progressively
for smaller subCAEs changes the target R-D point and stretches the R-D range,
(c) the slope ξ of R-D segments is used to monitor convergence of the proposed
training algorithm, and (d) illustration of how λ scheduling changes the R-D target
and SlimCAE optimization stretches the R-D range.
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Algorithm 1 SlimCAE training with λ-scheduling

Input: X X tr , Xval . Training, val. data
Input: SlimCAE with K subCAEs and parameters Ψ
Input: λ(K ) . R-D tradeoff for largest subCAE
Input: κ, T , M . Other hyperparameters
Output: Ψ,Λ

1: Λ0 ←
[
λ(K ), . . . ,λ(K )

]
2: Ψ0 ← argminΨL (Ψ;Xtr ,Λ0) . Naive training
3: Calculate R(K−1)

0 ,R(K )
0 ,D (K−1)

0 ,D (K )
0 over Xval

4: ξ0 ← D(K )
0 −D(K−1)

0

R(K )
0 −R(K−1)

0
5: t ← 1
6: for i ← K −1 to 1 do
7: for m ← 1 to M do
8: Λi ←

[
κλ(1)

i−1, . . . ,κλ(i )
i−1,λ(i+1)

i−1 , . . . ,λ(K )
i−1

]
9: for j ← 1 to T do

10: Ψt ← argminΨL (Ψt−1;Xtr ,Λi )
11: t ← t +1
12: end for
13: if R(i+1)

t < R(i )
t then

14: continue
15: else
16: Calculate ξt ← D(i+1)

t −D(i )
t

R(i+1)
t −R(i )

t

over Xval

17: if ξt > ξt−T then
18: break
19: end if
20: end if
21: end for
22: end for

3.5 Experiments

3.5.1 Experimental settings

We implemented3 and evaluated the proposed approaches building upon the widely
used image compression framework proposed by Balle at al. [12] which typically uses

3https://github.com/FireFYF/SlimCAE

35

https://github.com/FireFYF/SlimCAE


Chapter 3. Slimmable Compressive Autoencoders for Practical Neural Image
Compression

layers with a width of 192 filters (encoder: 3 conv, 3 GDN; decoder: 3 deconv, 3
IGDN). To address different complexities and rates, we consider five different widths
(w ∈ {48,72,96,144,192}), which also control the total capacity of the model. The
models are trained and evaluated on the CLIC dataset4. In Section 3.5.6 we evaluate
on the Kodak 5 and Tecnick6 datasets to compare to other methods. We evaluate both
R-D performance and efficiency (memory footprint, computational cost and latency).

SlimCAE variants. We consider three GDN/IGDN variants (SwitchGDN, SlimGDN
and SlimGDN+ corresponding to Fig. 3.3a, b and c respectively) and three training
strategies (naive, estimated λs and λ-scheduling, corresponding to the methods de-
scribed in Sections 3.3.5, 3.4.2 and 3.4.3). We used a switchable entropy model
(i.e. one independent entropy model per width), since the number of parameters is
negligible compared to the overall model.

Baselines. We compare SlimCAE to independently trained CAEs for different
widths (five models in total following [12]). We also compare to three approaches to
provide variable rate in a single model: bottleneck scaling (BScale) [103]7, modulated
autoencoders (MAE) [122] and conditonal autoencoders (cAE) [25].

Training details. We use 240× 240 pixel crops and a batch size of 8. Some
methods are trained in one step, while other require two steps. The former includes
independent CAEs, MAE, cAE, SlimCAE with naive training and training with
estimated λs. In these cases we use a learning rate of 1e-4 (1e-3 for the entropy
model) during 1.2M iterations, and then halve them for an additional 200K iterations.
SlimCAE with λ-scheduling uses a SlimCAE after naive training 1.2M iteration,
followed by training with λ-scheduling (κ = 0.8, T = 2000 and M = 7 in Alg. 1)8

during 28K iterations and then fine tuned (by halving the learning rates) until a total of
1.5M iterations with the final λs fixed. We measure distortion as MSE during training
and as PSNR during λ-scheduling. BScale uses a CAE trained during 1.2M iterations,
which is then fixed and scaling parameters are learned during 300K iterations.

3.5.2 Qualitative analysis
SlimCAE can effectively distribute and optimize the capacity in a way that each
subCAE can focus on the patterns relevant to its own optimal R-D tradeoff. For
example, the first convolutional layer of the smallest subencoder (see Fig. 3.6) contains

4https://www.compression.cc/2019/challenge
5http://r0k.us/graphics/kodak
6https://testimages.org/sampling
7Note that [103] actually introduces the term compressive autoencoder. s in a general sense, and in our

experiments CAE refers to our baseline [12], while BScale denotes the variable rate approach in [103]
8We extend the implementation of [12], which optimizes λD +R. We adapt λ-scheduling correspond-

ingly.
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Figure 3.6 – Filters in the first convolutional layer (encoder) and last convolutional
layer (decoder) for different widths.

only filters sensitive to low frequency patterns, while larger subencoders progressively
include filters related with higher frequency, since they are necessary to achieve lower
distortion. The latent representation in the bottleneck is also structured in a similar
way from coarse reconstruction to fine details (see Fig. 3.8 a-b in supp. mat.).

3.5.3 Rate-distortion
Fig. 3.7a shows the rate-distortion performance obtained with different GDN variants.
Sharing GDN parameters across different widths (i.e. SlimGDN) results in worse
performance than independent ones (i.e. SwitchGDN). However, this loss can be
recovered when parameter modulation (i.e. SlimGDN+) at a negligible parameter
increase.

Fig. 3.7b shows that naive training suffers from the limitations of using a single
shared tradeoff λ, while training with more adequate width-specific λs (those estimated
in Fig. 3.4) results in an R-D curve closer to the obtained with independent CAEs.
Fig. 3.7b also illustrates the effect of λ-scheduling in the R-D curve, which gets
progressively closer until it essentially achieves the same performance as independent
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(a) GDN variants (with estimated λs) (b) Training strategies and scalability

(c) Variable rate methods

Figure 3.7 – Rate-distortion performance comparison (CLIC dataset).

CAEs (see Fig. 3.9), but without requiring training auxiliary models.
Finally, we compare SlimCAE to other baselines enabling variable rate in a

single model. SlimCAE obtains the best R-D performance, overlapping with that of
independent CAEs, but with a much lower training and memory cost, as we see next.

3.5.4 Efficiency
We also evaluate the efficiency of SlimCAE in terms of memory footprint (in MB),
computational cost (in FLOPs) and latency (in ms)9. Values in features and parameters

9We only compare to NIC codecs, since traditional codecs run in different hardware (CPU instead of
GPU). As reference, our BPG baseline takes on CPU (for 0.1-1.0 bpp) 3.2-4.5 s/img (enc) and 95-131
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Figure 3.8 – The latent representations.
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Figure 3.9 – Evolution of the R-D curve (top) and λ during the λ-scheduling phase.
Naive training shown in black (top).

are represented with 4 bytes, and the features are calculated for input images of size
768× 512 pixels. We consider a baseline with five independent CAEs optimized
for different R-D tradeoffs. For fair comparison we use the minimum width that
guarantees that the R-D performance at a particular tradeoff λ remains optimal (see
Fig. 3.4).

Fig. 3.10 shows the memory footprint in the encoder and decoder at different
widths. Features require significantly more memory than model parameters, especially
at small widths. While for the largest width all methods require similar memory, an
independent CAE and SlimCAE can reduce significantly the memory footprint for
small widths. This reduction also results in a significantly lower computational cost
(see Table 3.2), and much lower latency during both encoding and decoding (see

ms/img (dec).
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Table 3.2 – Computational cost of trained models (millions of FLOPs). Some methods
adjust layer widths.

Methods Low rate → Medium rate → High rate

Independent 15.34M 31.69M 53.81M 115.53M 200.28M
(w=48) (w=72) (w=96) (w=144) (w=192)

BScale [103] 200.28M 200.28M 200.28M 200.28M 200.28M
(w=192) (w=192) (w=192) (w=192) (w=192)

MAE [122] 200.40M 200.40M 200.40M 200.40M 200.40M
(w=192) (w=192) (w=192) (w=192) (w=192)

cAE [25] 200.31M 200.31M 200.31M 200.31M 200.31M
(w=192) (w=192) (w=192) (w=192) (w=192)

SlimCAE 15.34M 31.69M 53.81M 115.53M 200.28M
(w=48) (w=72) (w=96) (w=144) (w=192)

Table 3.3). Now we consider the total memory required to provide the five different
rates. It requires to store the model parameters of the independent CAEs (31.1 MB),
in contrast to just a single model for BScale (15.3 MB), MAE (15.7 MB), cAE (15.3
MB) and SlimCAE (15.3 MB with SlimGDN+). If we consider the memory used to
store features (note that at only one model is use at a time), the memory footprint
of multiple CAEs varies from 42.9 to 78.3 MB, depending on the selected rate, and
similarly to SlimCAE (27.1 to 62.5 MB). In contrast, other methods cannot adapt the
complexity and remain with a higher and constant footprint (BScale 62.5 MB, MAE
63 MB and cAE 62.6 MB)10. The SlimGDN+ layers require 0.85 MB (compared to
1.71 MB and 0.85 MB in SwitchGDN and SlimGDN, respectively).

Finally, Table 3.1 summarizes the main advantages and drawbacks of different
methods. SlimCAE is the most complete of them providing variable rate with a single
model and controllable memory and computational requirements, while achieving
optimal R-D performance. Training and switching between multiple CAEs suffers
from a higher memory footprint (that increases with the number of target R-D points),
and the much higher cost of training multiple models. The other baselines can adapt
rate, but not memory and computational costs, which remain high at low rates.

3.5.5 Scalable bitstreams
Motivated by SlimCAE’s structured latent respresentation, we consider a variant where
each group of channels are encoded independently, allowing quality scalability and

10Note that, in practice, an optimized implementation could save some memory by discarding intermedi-
ate features once they are processed.
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Table 3.3 – Encoding and decoding latency (ms) for a 768×512 input image (i.e. batch
size 1) on a NVIDIA GTX 1080Ti GPU (excluding data loading/writing and arithmetic
coding.

Methods Low rate → Medium rate → High rate

E
nc

od
in

g

Independent 1.9±0.19 2.2±0.17 2.8±0.22 4.0±0.19 5.1±0.20
BScale [103] 5.2±0.11 5.2±0.16 5.2±0.22 5.2±0.15 5.2±0.13
MAE [122] 5.4±0.20 5.4±0.20 5.4±0.13 5.4±0.10 5.4±0.11
cAE [25] 5.5±0.18 5.5±0.11 5.5±0.14 5.5±0.21 5.5±0.28
SlimCAE 1.9 ± 0.15 2.2 ± 0.27 2.8 ± 0.12 4.0 ± 0.17 5.1 ± 0.10

D
ec

od
in

g

Independent 2.9±0.20 3.5±0.10 4.3±0.07 6.1±0.07 8.0±0.13
BScale [103] 8.0±0.21 8.0±0.13 8.0±0.18 8.0±0.11 8.0±0.13
MAE [122] 8.4±0.15 8.4±0.13 8.4±0.08 8.4±0.07 8.4±0.14
cAE [25] 8.5±0.20 8.5±0.07 8.5±0.09 8.5±0.13 8.5±0.21
SlimCAE 2.9 ± 0.10 3.5 ± 0.07 4.3 ± 0.10 6.1 ± 0.16 8.0 ± 0.13

Figure 3.10 – Memory footprint comparison for different rates.
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Figure 3.11 – Rate-distortion performance of SlimCAE with slimmable entropy model
(Kodak dataset).

progressive decoding. The resulting bitstreams (i.e. base[+ enhancement stream(s)])
are all decodable by the SlimCAE decoder. On the other hand, the SlimCAE is no
longer slimmable, so enabling quality scalability disables memory and computation
scalability since the SlimCAE is no longer slimmable, and also has certain penalty in
R-D performance (see Fig. 3.7b and Fig. 3.8c), a usual compromise in scalable image
and video coding [79, 90, 102].

3.5.6 Slimmable entropy models
Our approach is general and can be easily extended including slimmable versions
of entropy models to achieve state-of-the-art R-D performance. Following [13, 70],
we train11 a larger capacity autoencoder12 with a three conv layer slimmable hy-

11 3M iter., batch 8, 256×256 crops, λ-sched (κ=0.8,T =104,M =7).
12w ∈ {96,144,192,288,384}
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Table 3.4 – BD-rate (%) over BPG. Lower means better.

Dataset PSNR (opt. for MSE) MS-SSIM (opt. for MS-SSIM)
[7] [23] Slim[7] Slim[23] [7] [23] Slim[7] Slim[23]

Kodak 9.68 -8.94 9.52 -6.17 -41.46 -46.92 -41.41 -47.88
Tecnick 2.95 -11.77 5.23 -10.43 -41.50 -43.24 -40.34 -48.94

perprior13 [13] and conditional convolutions [25]. We also include a slimmable
autoregressive context model14 [70]. We trained these models15 and evaluated on
Kodak and Tecnik datasets. Fig. 3.11 shows that our approach can be integrated with
almost no penalty in R-D performance, while providing the aforementioned advantages
in terms of rate and complexity control of SlimCAEs. The same conclusions hold
when optimizing MS-SSIM, keeping a significant gain over BPG (see Table 3.4).

3.6 Conclusion
While providing excellent R-D performance, current NIC approaches are also resource
demanding, and usually tied to a particular rate, which limits their application in
practice. In this chapter we consider the important practical problem of complexity in
NIC, both in terms of memory and computational cost. The latter also can significant
impact on the latency, which is often an important practical concern.

we propose the SlimCAE framework, a novel approach towards practical and adap-
tive neural image compression, combining in a single model important functionalities,
such as excellent rate-distortion performance, low and dynamically adjustable memory
footprint, computational cost and latency, all of them easily controlled via a lightweight
slimming mechanism. This makes our approach attractive to resource-limited devices
(e.g. smartphones), when rate and computation needs to be controlled dynamically
(e.g. video coding, multi-tasking) or to deploy different models to heterogeneous
devices, adapted to their computational capabilities. SlimCAE can also generate
scalable bitstreams, which can be useful in streaming and broadcasting scenarios with
heterogeneous devices.

Finally, this chapter also studies the fundamental connection between rate-distortion
performance and model capacity, and propose an efficient and effective approach to
train the slimmable model in a single pass.

13w ∈ {48,72,96,144,192}, and Leaky ReLUs (same in decoder)
14One masked conv layer with w ∈ {96,144,192,288,384}
15On CLIC extended with 20k high quality images from flickr.com
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4 A Novel Framework for Image-to-image
Translation and Image Compression1

4.1 Introduction
Modern computer vision and image processing approaches heavily rely on deep neural
networks and machine learning. One prominent example is image-to-image translation
(I2I) addresses the problem of learning to transform images from a source domain
(source) to a target domain. This has numerous applications in image restoration and
enhancement (e.g. colorisation, superresolution, deblurring), but also more complex
data-driven transformations (e.g. style transfer, face attribute modification, scene
synthesis, zebra-to-horse). a transforming one image in one domain into another
one, where the transformation is learned from data. A image transformation from a
source generating a new image based on an input image, which usually occurs between
two different domains (source and target). More recently, image and video coding
paradigms are starting to shift towards neural image compression (NIC) approaches,
competing and often surpassing the rate-distortion performance of traditional transform
coding approaches (e.g. BPG [15]). This technology has also significant implications
in visual communications and storage and distribution of video content.

In this chapter we study the problem of distributed I2I translation, where the
encoding is performed at the sender side, and the decoding at the receiver side, and the
coded representation is either transmitted through a communications channel or stored.
Thus, in addition to addressing the translation problem, we also aim at obtaining
compact binary representations (i.e. bitstreams).

A naive approach to this problem would be translating the image before compress-
ing it at the sender side, or translating the reconstructed image at the receiver side.
These approaches have several limitations. First, they require encoding and decoding
images twice, once with the translator and once with the image codec, resulting in
lower computational efficiency. Similarly it requires storing two separate codecs (i.e.
for translation and autoencoding). Finally, each encoding and decoding pass is a
lossy transformation, therefore it is likely that through these four transformations
more information is lost, resulting in lower quality in the translation with artifacts,
and/or larger bitstreams. In order to address this limitations, we propose the I2Icodec

1
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mode=A

(a) (b)

T

A

Figure 4.1 – Proposed approaches: (a) distributed I2I translation (I2Icodec), alongside
a regular image compression codec, and (b) unified translation and autoencoding
framework using a single codec (UI2Icodec).

framework (see Fig. 4.1a), which addresses distributed I2I translation with a single
encoder and decoder, thus avoiding computational overheads and potential loss of
information.

While I2Icodec only requires a single encoder and decoder pair, it cannot perform
regular autoencoding (i.e. conventional image coding), which is an important function-
ality. A naive solution is to deploy a regular image codec alongside, but that increases
the memory requirements significantly. Thus, to avoid deploying two separate models,
we also propose UI2Icodec, a unified framework that can perform compression for
distributed translation and autoencoding in a single model (see Fig. 4.1b).

In summary, our contributions are: 1) we study the problem of distributed I2I
translation, which involves I2I translation under rate constraints; 2) a novel framework
for distributed I2I translation (I2Icodec); and 3) a unified framework for distributed
I2I translation and autoencoding (UI2Icodec).

4.2 Related work
Image-to-image translation has been studied widely in recent years. Paired I2I trans-
lation [30, 44, 108, 109, 132] assumes the availability of input-output image pairs.
Unpaired I2I translation [28, 51, 59, 65, 77, 124, 131] is a more challenging setting
where translations are learned from (unpaired) images from the input and output
domain.

Often, a given input image can have multiple plausible translations (e.g. col-
orization). Multimodal I2I translation (or diverse I2I translation) [5, 41, 54, 86, 127]
addresses this problem by disentangling content and style. Style is sampled randomly,
ensuring the model generate diverse translations. Early approaches assume only two
domains. More recently, multi-domain I2I translation approaches [26, 55, 127] can
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translate between a range of domains using a single model. In particular, we build upon
on StarGAn v2 [26] which provides state-of-the-art translation, including multimodal
and multi-domain translation, with content-style disentanglement.

In all I2I translation approaches, encoder and decoder are integrated in a single
model, and therefore the latent representation is continuous valued. In this chapter we
study the case where this latent representation is transmitted via a digital communica-
tion channel, and decoded remotely by the receiver side. This brings the challenges of
integrating quantization and entropy coding into the I2I translation framework.

4.3 Distributed image-to-image translation
We first consider the problem of distributed I2I translation to a target domain. In
particular, an image x ∈ X is encoded into a compressed bitstream b at the sender
side. The receiver side then decodes b, reconstructing the translated image in a target
domain, indicated by the label y ∈Y . Following the common practice of disentangling
content and style, the bitstream b captures the content component, while the style of
the translated image is determined by a style vector s, either sampled randomly or
obtained from a reference image. This disentanglement enables the reconstruction of
diverse translations for a given image x.

The objective in distributed I2I translation is to obtain successful translations with
compact bitstreams.

4.3.1 I2Icodec framework
Our framework is based on the I2I translation framework of [26], but with the encoder
and decoder located separately in the sender and receiver sides, respectively. The
framework is augmented with compression capabilities, i.e. quantization and entropy
coding. It is composed of content encoder E c , style encoder E s , mapping network M ,
decoder G and discriminator D.
Content encoder The content encoder E c extracts a latent representation z = E c (x)
of the content of the image x. To transmit via a binary channel, the representation z is
quantized (in this paper we use scalar quantization) as q =Q (z) to obtain a discrete-
valued representation q ∈ZD . Then, q is binarized using entropy coding (arithmetic
coding in our case) to reduce statistical redundancy. Quantization is lossy, but entropy
coding is not. During training we replace quantization by uniform noise, and bypass
entropy coding, approximating the rate by the entropy of z.
Mapping network and style encoder. The style s is used for guiding I2I translation
towards a specific style in the target domain. This style code can either be sampled
randomly (providing diversity), or obtained from a reference style image. In the
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Figure 4.2 – Architecture of the unified framework for regular image compression
and I2I translation (UI2Icodec). The mode m signals whether the model runs as
autoencoder or as I2I translator (store as 1 bit in the bitstream). The simplified
framework without m and D A is referred to as I2Icodec .

former, the mapping network M obtains the domain-specific style representation s
from a domain-independent random style w as s = M

(
w, y

)
. Alternatively, the domain-

specific style representation can be obtained from a reference image x̄ with the style
encoder E s as s = E s

(
x̄, y

)
.

Decoder. The decoder G receives the bitstream and performs entropy decoding and
maps back to the real-valued representation ẑ. It then generates the reconstructed
image from z and the style s as x̂ =G (z,s).
Discriminator. Following [26], we use a multi-task discriminator where D

(
x, y

)
returns the probability that x is classified in domain y , for every domain.
Entropy model. We use a learnable hyperprior [13] to model the latent distribution
P (z).

4.3.2 Loss
Our objective during training is to optimize translation while minimizing rate. Regard-
ing translation, we following the losses used in [26]. Given an image x ∈X and its
original domain label y ∈Y , we can obtain its latent representation z = E c (x) the loss
LT consists of the following terms.
Adversarial loss. We first generate a random domain-specific target style as s̃ =
M(w, ỹ) from a random domain-independent style w and random target domain ỹ ∈Y .
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Figure 4.3 – (a-b): Adaptive ResBlock for switching between I2I translation and
autoencoding; (c) Details of adaptation units in encoder and decoder.

The decoder then synthesizes the translated image as G(x, s̃). We employ adversarial
loss [31] to distinguish the generated images from the real images

Ladv = Ex,y
[
logD

(
x, y

)]+Ex,ỹ ,w
[
log

(
1−D

(
G (z, s̃) , ỹ

))]
, (4.1)

Style reconstruction. We encourage the decoder to optimize the style representation
s̃ when generating the image G(x, s̃) with a style reconstruction loss

Lsty = Ex,ỹ ,w
[∥∥s̃ −E

(
G (z, s̃) , ỹ

)∥∥
1

]
. (4.2)

Style diversification. To encourage diversity and prevent mode collapse, we sample
and map random pairs of styles s̃1 = M

(
w1, ỹ

)
and s̃2 = M

(
w2, ỹ

)
, using diversity
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Figure 4.4 – Baselines for distributed I2I translation.

sensitive loss

Lds = Ex,ỹ ,w1,w2 [‖G (z, s̃1)−G (z, s̃2)‖1] . (4.3)

Cycle consistency. To ensure that the domain-invariant structure of the input
image x in the translated image G (z, s̃) is preserved we use the cycle consistency
mechanism [131]

Lcyc = Ex,y,ỹ ,w [‖x−G (E (G (z, s̃)) , ŝ)‖1] , (4.4)

where ŝ = E s (x, y) is the style of the input image.
Rate. We estimate the rate as the entropy of the bitstream via modeling the dis-
tribution of z using the entropy model P . This term encourages the model to retain
important in a compact representation

Lrate = Ex
[− log(P (z))

]
(4.5)

using z = E c (x). The final loss is LT =Ladv +γstyLsty −γdsLds +γcycLcyc +λT Lrate.

4.4 Unified translation and autoencoding
While the I2Icodec framework can realize distributed I2I translation, being able to
recover the original input image (i.e. regular image compression) is equally important
in practice. In order to avoid having to deploy two independent codecs (i.e. I2Icodec
and autoencoding codec), here we propose a unified framework to transmit an input
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image and recover either a reconstruction of the original image (autoencoding mode)
or a translated image (translation mode), in a single model.

4.4.1 UI2Icodec framework
As shown in Fig. 4.2, we endow the I2Icodec with a switching mechanism controlled
via the mode input m ∈ {A,T}, which signals the operating mode. In the following
we describe the additional modifications to the I2Icodec framework to implement the
joint functionality.
Conditional encoder and decoder. The content encoder E c (x;m) and the decoder
G (z,s;m) are conditioned on the mode m. When m = T , the encoder and decoder
operate exactly as the I2Icodec described earlier.
Adaptive residual blocks (AdaResBlocks). The switching functionality is imple-
mented by conditioning the residual blocks of the content encoder and decoder on
the mode m, via an adaptation unit that modulates intermediate features within the
residual block (see Fig. 4.3 (a) and (b)). As shown in Fig. 4.3 (c), adaptation units of
the content encoder modulate a given input feature o as o′ = u (m)¯o+ r (m). The
adaptation units in the decoder implement o′ = u (s;m)¯o+ r (s;m). In both cases,
scale and bias parameters themselves are obtained via linear functions of m (and s in
the decoder).
Conditional entropy model. We condition the hyperprior on the mode, i.e. P (z;m),
and one underlying factorized model for translation and another for autoencoding,
selected depending on m.
Task-specific discriminators. We use a separate discriminator when optimizing the
autoencoding task. We found this more effective than using a shared discriminator for
both tasks.

4.4.2 Losses
During training we optimize a loss with two terms corresponding to each of the
operating modes

L= [m =A]LA + [m =T]LT, (4.6)

where [P ] is the Iverson bracket (1 when P is true, 0 otherwise), LT is the loss
described in the previous section minimized when m =T, and LA is the autoencoding
loss, minimized for m =A. The latter combines three terms LT =LRD +βLadv2

Rate-distortion . In autoencoding we optimize a combination of rate and distortion,
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(a) FID on AFHQ (b) LPIPS on AFHQ

(c) FID on CelebA-HQ (d) LPIPS on CelebA-HQ

Figure 4.5 – Results of different schemes on AFHQ and CelebA-HQ dataset.

where the tradeoff is controlled by the parameter λA . The loss is

LRD = Ex
[
d (x, x̂)−λA log(P (z))

]
(4.7)

where z = E(x;m =A) is the latent representation, x̂ =G(z;m =A) is the reconstructed
image, and d (x, x̂) is the distortion metric (mean-squared error in our case).
Adversarial loss. Similarly to Ladv, we encourage realism in the reconstructed
images using

Ladv2 = E(x,y)
[
logD A (

x, y
)]+E(x,y)

[
log

(
1−D A (

x̂, y
))]

, (4.8)
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Method
Latent-guided synthesis Reference-guided synthesis

CelebA-HQ AFHQ CelebA-HQ AFHQ
FID↓ LPIPS ↑ FID↓ LPIPS↑ FID↓ LPIPS↑ FID ↓ LPIPS ↑

MUNIT [41] 31.4 0.363 41.5 0.511 107.1 0.176 223.9 0.199
DRIT [54] 52.1 0.178 95.6 0.326 53.3 0.311 114.8 0.156

MSGAN [62] 33.1 0.389 61.4 0.517 39.6 0.312 69.8 0.375
StarGANv2 [26] 22.1* 0.115* 16.2 0.450 23.3* 0.209* 19.8 0.432

I2Icodec (λT = 0.5) 16.6 0.402 15.2 0.565 21.0 0.354 20.6 0.526
I2Icodec (λT = 0.1) 20.8 0.224 14.9 0.533 20.7 0.247 20.0 0.494
I2Icodec (λT = 0.05) 20.2 0.210 15.4 0.508 20.0 0.220 19.9 0.471

T + A (w GAN) 20.0 0.088 25.8 0.288 22.2 0.082 28.1 0.265
T + A (w/o GAN) 20.6 0.098 28.7 0.268 21.1 0.089 32.5 0.238

UI2Icodec (T mode) 18.14 0.403 13.5 0.531 17.45 0.360 17.9 0.496
Real images 14.8 - 12.9 - 14.8 - 12.9 -

Table 4.1 – Quantitative comparison. The FIDs of real images are computed between
the training and test sets. Note that they may not be optimal values since the number
of test images is insufficient, but we report them for reference. * means the results of
StarGAN v2 on CelebA-HQ are from the same model architecture on AFHQ, which
doesn’t include skip connections with the adaptive wing based heatmap [110]

4.5 Experiments
In this section, we describe our experimental setup and results. We analyze the
effects of the rate constraint of I2Icodec in the translations (see Section 4.5.1). We
also show the results of our unified framework UI2Icodec on both autoencoding and
I2I translation (Section 4.5.2). Ablation study and additional results are shown in
Section 4.5.3.

Datasets. Our experiments are mainly conducted on CelebA-HQ and the animal
faces (AFHQ) datasets [26]. As in [26], CelebA-HQ is separated into male and female
domains, and AFHQ into cat, dog and wildlife domains. We resized all images to
256×256 for training and comparisons.

Training. For I2Icodec, we train the model minimizing LT during 100k iterations.
We set γst y = γd s = γc yc = 1 and λT ∈ {0.01,0.05,0.1,0.3,0.5}. For UI2Icodec, we
first train E c and G just with distortion loss (MSE) on autoencoding mode for 50k
iterations, then the whole model is jointly trained with the total loss of Eq. 4.6 for
another 100k iterations with λT = 1, λA = 20 and β= 1.

Evaluation metrics. We compute FID and LPIPS metrics to evaluate the quality
and diversity of the translated images, respectively. The performance of autoencoding
is measured with the distortion metrics PSNR, MS-SSIM and LPIPS. Note that, for
translation, LPIPS is computed between translated images, while for autoencoding, is
computed between original and reconstructed images.
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Method CelebA-HQ AFHQ
BPP PSNR↑ MSSSIM (dB)↑ LPIPS↓ BPP PSNR↑ MSSSIM (dB)↑ LPIPS↓

JPEG 0.132 21.98 6.27 0.495 0.308 25.02 10.32 0.296
BPG 0.138 28.49 12.48 0.208 0.316 27.87 12.74 0.250
NIC 0.132 29.55 11.85 0.185 0.302 29.05 12.42 0.216

UI2Icodec (A mode) 0.134 28.65 13.36 0.085 0.290 28.01 12.82 0.107

Table 4.2 – Compression performance on CelebA-HQ and AFHQ dataset.

Method NIC StarGAN v2 I2Icodec UI2Icodec
Number of parameters (millions) 35.30 53.73 54.22 54.23

Training time (hours) 10.3 65.7 71.34 97.6

Table 4.3 – Number of parameters and training time of different methods when run on
CelebA-HQ dataset.

4.5.1 Distributed I2I translation
In this section, we analyze different methods to address distributed I2I translation:
(1) compression before translation (CbT): the input image is compressed and then
translated after reconstruction; (2) compression after translation (CaT): the input image
is translated and then compressed with the image codec; (3) the proposed I2Icodec.
We use the pretrained model same with [26] as translator, and two classic compression
methods: JPEG and BPG as two compressor options for CbT and CaT. In addition,
we also train domain-specific neural image compression models on CelebA-HQ and
AFHQ separately (NIC in our experiments). We use the same encoder and decoder
architecture of StarGAN v2 for fair comparison, and optimized with mean square
error.

Influence of compression. As shown in Fig. 4.5, we observe changes of both FID
and LPIPS values with varying rates (BPP). Notably, CbT always obtains lower FID
scores than CaT, which is not surprising since CaT compresses translated images the
final images have compression artifacts, resulting in worse FID. I2Icodec obtains the
lowest FID among of all methods at the same rate. The diversity measured by LPIPS is
shown in Fig. 4.5b and Fig. 4.5d, where CaT can achieve larger scores but with higher
distortion (e.g. the second row in Fig. 4.7). CbT obtains a similar LPIPS as StarGAN
v2, which are lower than our I2Icodec. In summary, I2Icodec provides an effective
way to guide I2I translation by controlling the amount of information in the bottleneck
via the rate constraint. In Table. 4.1, we also report the quantitative comparison with
other I2I translation methods [26, 41, 54, 62] without considering compression. It
shows that I2Icodec can achieve a range of scores (FID and LPIPS) on different rates
for both latent-guided and reference-guided synthesis on two datasets. We want to
emphasis that I2Icodec provides a lever for I2I translation.
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Source Reference StarGAN v2 High rate

BPP 0.294

BPP 0.285

BPP 0.292

BPP 0.285

Low rate

BPP 0.013

BPP 0.013

BPP 0.012

BPP 0.011

Medium rate

BPP 0.092

BPP 0.095

BPP 0.098

BPP 0.092

(a) AFHQ dataset
Source Reference StarGAN v2 High rate

BPP 0.341

BPP 0.338

BPP 0.332

BPP 0.347

Low rate

BPP 0.011

BPP 0.012

BPP 0.011

BPP 0.010

Medium rate

BPP 0.030

BPP 0.027

BPP 0.028

BPP 0.032

(b) CelebA-HQ dataset

Figure 4.6 – Translated images with reference on different rate.
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Figure 4.7 – Visualization of translations with different methods (more in appendix).

Visualization of translated images. In Fig. 4.7 we show translated images using
different methods. It is obvious that CaT suffers from artifacts (see 2nd row) even
with the better codec BPG and higher rate than other methods. CbT with JPEG can
keep some structure information, but resulting in unnatural translation (on AFHQ) or
serious artifacts (on CelebA-HQ) due to the JPEG compression artifacts themselves.
With BPG and NIC, the influence of compression is largely reduced (see fourth and
fifth row in Fig. 4.7a), but note that it still appears again in low rates (see third and
fourth row in Fig. 4.7b). I2Icodec can generate natural and diverse images even with
extreme low rate. In addition, we also show the synthesized images guided by a
reference image on three different rates from high to low in Fig. 4.6. It shows that the
translated images have more similar style to reference image when the rate is lower,
and also illustrate that this method can control well how much the translated image
obtains the same style of reference image along with the rate.
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4.5.2 Unified I2I translation and autoencoding
In this section, we evaluate the performance of UI2Icodec in I2I translation and
autoencoding.

Autoencoding. We compare to JPEG, BPG and NIC as image compression
baselines. As shown in Table. 4.2, UI2Icodec in the autoencoding mode outperforms
JPEG largely and BPG marginally on PSNR and MS-SSIM (dB) on similar rates.
NIC has the best PSNR results, since it was optimized for mean square error. In
contrast, UI2Icodec obtains much better LPIPS scores than others methods due to the
adversarial loss. Comparing the examples in Fig. 4.11, we can see that our method
can keep more high frequency information and more natural reconstruction at the
same rate. I2I translation. The quantitative evaluation of UI2Icodec in the translation

Ground truth JPEG BPG NIC Ground truth JPEG BPG NIC

0.149 BPP

0.141 BPP

0.134 BPP

0.133 BPP

0.131 BPP

0.130 BPP

0.303 BPP

0.284 BPP

0.286 BPP

0.276 BPP

0.289 BPP

0.272 BPP

UI2ICodec

(A mode)

0.136 BPP

0.131 BPP

UI2ICodec

(A mode)

0.288 BPP

0.275 BPP

Figure 4.8 – Reconstructions with different compression methods

mode is shown in Table. 4.1. It shows that it is possible to switch image compression
and I2I translation by using our method. In addition, some images generated with
UI2Icodec have been already shown in Fig. 4.11. More visualization samples can be
viewed in Fig. 4.9 and Fig.4.10.

4.5.3 Additional results
Ablation study. We evaluate the effects of the two main modifications of StarGAN
v2 architecture: quantization+entropy coding (for compression), and adaptation units
(for integrated translation+autoencoding). Comparing StarGAN v2 and I2Icodec in
Table. 4.1, we observe that compression tends to improve FID and LPIPS. In contrast,
comparing StarGAN and T+A (StarGAN with adaptation units and autoencoding loss),
we observe that the combination of both functionalities has a small penalty in those
metrics. However, an important caveat is that FID and LPIPS could be somewhat
limited as evaluation metrics in this setting, and further research is required.
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Figure 4.9 – Diverse image synthesis results of UI2Icodec in the translation and
autoencoding modes on CelebA-HQ dataset.
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Figure 4.10 – Diverse image synthesis results of UI2Icodec in the translation and
autoencoding modes on AFHQ dataset.
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Model size and training time. Table. 4.3 shows that the proposed models only
have 1% more parameters than StarGANv2. Note that CbT and CaT with NICs require
around double amount of parameters (since there are two encoders and two decoders).
Training requires 8.6%/48% more time (for I2Icodec/UI2Icodec, respectively). Simi-
larly, note that training CbT and CaT requires training a NIC model and StarGAN, so
I2Icodec requires less training time.

Input InputGenerated outputs Generated outputs

Figure 4.11 – Diverse image synthesis results of UI2Icodec in the translation mode on
the CelebA-HQ and AFHQ datasets.

4.6 Conclusion
In this paper, we study a novel problem combining I2I translation and image com-
pression, and propose a framework (I2Icodec) to address it, integrating quantization
and entropy coding in an I2I translation framework, and jointly both translation and
autoencoding (UI2Icodec). Interestingly, constraining the rate can control the amount
of source information in I2I translation. The experiments show that our joint model
can keep competitive autoencoding and translation performance.
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5 Improved Discrete Optical Flow Estimation
With Triple Image Matching Cost1

5.1 Introduction
Recently, NVC methods [40, 60, 85] have shown comparable or even superior per-
formance than TVC methods, but there are few works considering the problem of
complexity, memory requirement and latency in practice. In addition, there is still
space to improve the performance of NVC with a more accurate motion estimation
method. In this chapter, we study the optical flow estimation problem as our prelimi-
nary work to practical neural video compression.

Optical flow estimation is important for a large variety of computer vision appli-
cations, such as video compression, 3D scene reconstruction, autonomous driving
systems and robotics. Thus, optical flow can be considered as one of the fundamental
problems of computer vision. Originally, the optical flow methods are based on the
assumptions of brightness constancy and spatial smoothness [36, 61]. Although there
is a long research history, accurate and robust optical flow is still an open problem due
to illumination changes, large displacement, blur, texture-less regions and occlusions.

Recently, several new approaches [27, 43, 80, 99] leverage end-to-end convolu-
tional neural networks [53] to take an important step forward in optical flow estimation,
and results are close to state-of-the-art. However, these networks without a special ar-
chitecture for optical flow estimation can realize their full potential only with adequate
training data and appropriate training arrangements [98]. For example, PWC-Net [99]
gets state-of-the-art results with a new neural network architecture by embedding
several classical principles: pyramid, warping and cost volume. In this chapter, we
focus our efforts to improve the part of neural network architectures that is based
on classic methods. Several typical methods use an initialization by approximate
nearest neighbor fields (ANNF) [6, 7, 39, 113] or sparse descriptor matching [20], they
leverage edge-preserving interpolation techniques [38, 83] to get final dense optical
flow. High quality correspondence is the key for dense optical flow estimation.

Early optical flow methods make two assumptions: the optical flow motion vector
field belongs to the set of continuous values; and the magnitude of the motion vector
values is relatively small. Thus, the problem of large motion vectors arises. Note
that the same problem exists in stereo matching and the most successful algorithms

1This chapter is based on a publication in IEEE Access (2020) [120].
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rely on discrete inference, where all possible discrete disparity vectors form the
matching search domain. Stereo matching methods achieve an impressive accuracy,
and this is why many optical flow estimation algorithms try to exploit the same
technique to solve the optical flow problem in the framework of the discrete matching
paradigm [29, 68, 72, 119]. Generally, a stereo matching method pipeline consists
of the following steps: matching cost computation, cost aggregation or optimization
and post-processing refinement. Unfortunately, the straightforward application of
this stereo matching scheme to optical flow is very difficult due to the huge size of
the discrete 2D motion vector domain in comparison to the 1D stereo problem [68].
Recent progress in parallel calculation architectures shows that processing on the
non-restricted cost volume is feasible and that the regular structure of this volume
allows the use of global optimization techniques [24].

The main part of the above pipeline is the cost volume formation. A matching
cost or a dissimilarity measure is an essential part of the correspondence problem
that, in turn, is a fundamental problem in computer vision. Thus, calculation of the
cost volume in stereo matching and discrete optical flow is a very important sub-
problem [34]. Despite progress in the robust matching cost formation there is still one
fundamental problem in the matching dissimilarity estimation: the cost uncertainty
in the occluded region, due to the lack of a real correspondence between matched
pixels in this case. For the standard stereo matching that uses only two images the
mentioned problem cannot be solved in a straightforward manner. Fortunately, optical
flow methods usually deal with more than two images and in the presented work
we show how to handle occlusion problem using three consecutive images in the
considered video sequences. Note that the occlusion handling in the cost volume
domain improves the solution robustness also in non-occluded regions, because the
energy minimization approach is very sensitive to the cost outliers.

In this chapter, we propose a new matching cost formation based on two assump-
tions: most occlusion regions that are invisible in the forward frame image (relative to
the current frame) are visible in the backward frame; the forward flow is approximately
equal to the negative value of the backward flow. The assumptions allow us to form the
composite matching cost as a combination of two independent forward and backward
matching costs. We consider the proposed composite cost as the main contribution of
the paper. Implementation of our method increases the robustness of the optical flow
estimation.

To demonstrate the advantage of the proposed cost formation we incorporate our
cost in the pipeline of the state-of-the-art method DCFlow [118] and perform several
experiments during each step of the prototype estimation scheme. Consequently we
show that the results of the prototype method is improved for results of intermediate
steps and for the final estimation of the full pipeline. Our approach considerably
increases the optical flow estimation on the MPI-Sintel dataset [21] after the matching
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cost processing that is the most important part of the proposed pipeline. As a result,
accuracy of our estimation without the back flow consistency check increases up to
50% in occluded regions and up to 9% in non-occluded regions relative to the DCFlow
algorithm original results. After post-processing steps our estimation results achieve
state-of-the-art results especially on the MPI-Sintel dataset.

The rest of this chapter is organised as follows. The related works are described
in section 5.2. In section 5.3 we introduce our problem definition. In section 5.4 we
describe the proposed cost volume formation with triple frame. Our improved optical
flow estimation pipeline is described in section 5.5. In section 5.6 we present our
experiments and conclude our work in section 5.7.

5.2 Related work
There are two kinds of cost calculation approaches: a per-pixel and an area based
dissimilarity measure estimation. The per-pixel dissimilarity measure usually is the
Euclidean distance in the RGB color space between two image matched values or the
same distance between the gradients. The robust per-pixel measure is reported [72,
119] when distances between gradients and values are combined in one measure.
Early methods that exploited area based cost models calculated the cost by using
a non-parametric transform with a support region such as rank and census [128]
or normalized cross correlation [57]. Using a combination of these two costs can
significantly improve the result of stereo matching [64]. A patch match approach
is proposed in [52], where they used the sum of squared distances to compute an
initial matching cost. Consequently, Kong and Tao [52] propose a new cost learning
technique, which is theoretically extended by Brown et al. [18]. The latest progress
in the field of CNN provides a more robust matching cost for stereo [33, 129, 130]
and optical flow [7, 118]. Consequently, the traditional cost computation has been
replaced by the CNN based cost in most recent works, and we also include the CNN
based framework as a part of our cost calculation process.

Formally, all methods that use more than two images can be considered as related
work, however the proposed triple patch match model is fundamentally different from
these approaches. Usually, the related work introduces a temporal regularization [19,
49, 74, 112], a trajectory regularization [88, 106, 114] or predicts optical flow between
previous frames to guide the estimation of the current flow field [16, 63]. Another
related work is [14], which proposed a variational model for joint optical flow and
occlusion estimation with three frames. Recently, there are several papers that embed a
multi-frame optical flow estimation into the convolutional neural network architecture.
Maurer et al. [63] proposed an unsupervised online learning approach that estimates a
current motion model with multi-frame and provides predicted motion information for
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forward flow estimation. Janai et al. [46] proposed an unsupervised learning method
for multi-frame optical flow. They construct past cost volume and future cost volume
with three frames and leverage convolutional neural network to reason occlusion.
Neoral et al. [76] also estimate occlusion masks by introducing the previous frame
flow and named it ContinualFlow. Ren et al. [82] use a neural network to fuse optical
flows of different moments depending on longer-term temporal cues.

5.3 Problem definition
Discrete optical flow estimation belongs to the general matching problem, and in the
framework of the global approach the matching problem is formulated in terms of
energy minimization with the energy function in the following form:

E (v) =
∑

p∈V
Cp

(
vp

)+ ∑
(p,q)∈Ep

Bp,q
(
vp ,vq

)
(5.1)

where set p ∈ V corresponds to pixels and set
(
p, q

) ∈ Ep to edges of a pixel p
neighborhood of an image graph G = (E ,V) ; vp denotes the label of pixel p which
belongs to some discrete set of 2D motion vectors v ∈ V that represents the so called
correspondence search region; Cp (·) defines a unary potential which corresponds to
the conventional penalty or dissimilarity cost; Bp,q (·, ·) is a binary potential which
defines edge interaction between pixels

(
p, q

)
. Here we assume that the search region

is discrete and rectangular V = [−vmax ,−vmax+1, ...,vmax−1,vmax ].
Consequently, the integer solution of the optical flow estimation problem v should

minimize the energy functional in Eq. (5.1):

vp = argmin
vp

E
(
vp

)
(5.2)

The binary potential Bp,q in Eq. (5.1) defines the local smoothness of the estimated
optical flow v and in our algorithm has the following form:

Bp,q =µmin
(∣∣vp −vq

∣∣ ,∆
)

(5.3)

where µ and ∆ the algorithm intrinsic parameters.
As we note in the introduction the choice of the unary potential (cost) in matching

tasks is very important. The main contribution of our paper is a new dissimilarity
cost formation based on triple image matching. We explain the main concept and
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motivation of the cost calculation in the next section. However, firstly it is necessary to
describe the prototype cost calculation based on a simple convolutional neural network
(CNN).

To calculate the cost volume in our pipeline we use the feature extraction CNN
network trained by [118]. This small network contains 4 convolutional layers and each
layer uses 64 filters. The first three layers are followed by a ReLU layer and output are
normalized to produce a unit-length feature. The receptive field of this network or the
size of a matched image patch is 9×9, which has proven to be effective for stereo and
optical flow estimation. Or formally, the considered CNN transforms the 81D vectors
iNp that consist of image values in the patch neighborhood relevant to a pixel p into

the 64D up vectors of the CNN feature space: up = TC N N

(
iNp

)
.

In turn, the cost is the vector dot-product of two matched pixel features:

C
(
p,v

)= 1−ut
p ut+1

p+v (5.4)

For more details about the used CNN readers can refer the paper [118].
Energy minimization methods have lately attracted much attention in computer

vision, especially in the context of image segmentation and optical flow estimation.
The first implementations of the energy minimization methods such as belief propaga-
tion [42] and graph cuts [17] in stereo matching have provided a significant progress
in disparity map estimation. However in our case, where a huge cost volume has to
be handled in Eq. (5.1) the above approaches are computationally demanding. As the
trade-off between computational complexity and accuracy of energy minimization we
use semi-global matching technique (SGM) [35] to process the cost volume the same
as in the DCFlow method [118].

5.4 Cost volume formation based on triple image match-
ing

Our idea to use three constitutive frames for cost calculation is based on two principles:
supplementing visibility of occluded regions in a triple frame set of a video sequence
and local time optical flow constancy.

The first principle is illustrated in Fig. 5.1(a). One can see that the occlusion region
t +1 in the frame f t+1 has no corresponded pixels relative to the current frame f t , but
this occluded region is visible in the frame f t−1. The same supplementing visibility
exists for the occluded region t −1.The illustrated assumption is not a physical law
or a strict general observation, however in real world scenarios, those pixels which
are visible in a current frame and turn invisible in the next frame are usually visible in
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Figure 5.1 – Illustration of two main principles for the triple image matching: (a) -
supplementing visibility of occluded regions in a triple frame set of a video sequence;
(b) - local time optical flow constancy.

the previous frame. Thus, in the set that consists of three consecutive frames there are
less pixels in the current frame that have no correspondent pixels in the next or in the
previous frames.
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Figure 5.2 – Cost volume calculation scheme for the standard CNN based approach
and for the proposed triple image matching technique. Both individual costs are
unified in one triple image matching cost. Here, the middle image is used twice: for
the forward and backward costs calculation.

The second principle is illustrated in Fig. 5.1(b). We suppose that the motion
vector v f r

p , which corresponds to the forward optical flow direction (to the future) is
equal to the negative motion vector −vbk

p , which corresponds to the backward optical
flow direction (to the past). This principal is a direct consequence of the optical flow
framework, and we reformulate it in the cost form rewriting Eq. 5.4:

C f r (
p,v

)= 1−ut
p ut+1

p+v = 1−ut
p ut−1

p−v =C bk (
p,−v

)
(5.5)

It is obvious that the above equality Eq. 5.5 holds only for non-occluded pixels in
the next and the previous frames simultaneously. And for these pixels it is reasonable
to make the final cost as a linear combination of the forward and backward costs to
make the composite cost more robust:

C =λ1C f r +λ2C bk (5.6)

However, if Eq. 5.5 does not hold as illustrated in Fig. 5.1(a), we assume that one of
the costs C f r or C bk is the true cost. Consequently, to avoid ambiguities caused by
occlusion, we have to choose the true one. Recall that the energy minimization ap-
proach is derived from the maximum a posteriori probability rule with the assumption
that the cost of the estimated motion vector is inversely proportional to its probability:
C ∝ − logP . It means that a lower cost value corresponds to a higher probability.
Because we think that this is a good reason to choose the most probable cost as a
true cost, consequently, we formalize our paradigm in the presence of occlusion as a
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minimum choice between correspondent cost values:

C = min
(
C f r ,C bk

)
(5.7)

To unify both sets of pixels: occluded and non-occluded, the final cost can be
written in the following form:

C =λ1C f r +λ2C bk +λ3 min
(
C f r ,C bk

)
(5.8)

where linear weights λ1,λ2 and λ3 are our algorithm intrinsic parameters to be op-
timized and we explain their choice in the experimental section. In Fig. 5.2 the
computational scheme of the composite cost volume is summarized. Also one can see
the difference between the proposed cost formation and the standard one.

5.5 Improved optical flow estimation pipeline
To demonstrate advantages of our proposed cost formation we design our optical
flow estimation pipeline based on triple image matching cost formation (TIMCflow),
which mainly follows the DCFlow algorithm [118]. In Fig. 5.3 we depict our main
algorithm (red arrow) in parallel with the two-frame DCFlow prototype (black arrow).
We demonstrate the result difference between the compared algorithms in all control
points (steps) by including the relevant table in the same figure. The compared
intermediate results are based on the Sintel training dataset under the EPE of all | noc
| occ metrics. Note that numbers in Fig. 5.3 corresponding to the outlier handling step
are not meaningful, because the sparseness density of the algorithms is different.

CNN 
Network

CNN 
Network

Two frames 
Cost volume

Three frames 
Cost volume

Outlier
handling

Step 1 Step 2 Step 3 Step 4

(a)

(b)

Optimization Interpolation  Refinement

Optimization
Outlier

handling
Interpolation  Refinement

Two-Frame

Three-Frame

10.2 | 5.9 | 32.7

 7.1 | 5.3 | 16.2

 2.3 | 2.1 | 9.4

 3.1 | 2.6 | 11.6

 4.6 | 3.4 | 10.1

 4.4 | 3.2 | 9.6

 4.0 | 2.8 | 9.7

 3.8 | 2.6 | 9.3

Figure 5.3 – The pipeline of two-frame baseline method (a) and our TIMCflow
algorithm (b) with the results comparison on MPI Sintel data set after each step.

The cost volume formation of the scheme Fig. 5.3 is described in Section III, and in
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the experimental section we compare the simple flow results obtained by two different
cost formation.

The optimization block of the scheme in Fig. 5.3 is described in Section II. From
Fig. 5.3 one can see that after the optimization step our three-frame approach consider-
ably outperforms the two-frame prototypes (results highlighted by yellow).

The next step is the occlusion detection and outlier removal. To perform this task
most work uses the forward-backward consistency strategy [39, 68, 118]. We also fol-
low this idea, but the problem is that the consistency check procedure usually removes
estimated flow values in occluded regions, thus we cannot capitalize advantages of the
flow estimation that are achieved on the previous algorithmic step. Consequently we
try several different strategies for outlier removal and choose the best that is described
in the experimental section.

The next step of our pipeline is the sparse data interpolation, because the output
result of the previous steps is the sparse set of estimated values and this set should be
interpolated to the dense optical flow. For this purpose we choose the state-of-the-art
interpolation method InterpoNet [135]. The motivation behind this choice is that the
method can produce good dense optical flow for all kinds of sparse optical flow input,
for example FlowField [6], DeepMatch [113], DF [68], CPM [39].

Both two-frame and three-frame pipelines include the same coarse-to-fine proce-
dure based on a continues optimization framework [133] that is the final step of our
pipeline.

The performance of the proposed algorithm on MPI Sintel benchmark is con-
firmed in Table 5.1, where we compare the proposed algorithm TIMCflow with five
discrete optical flow methods: FlowFieldsCNN[7], CPM-Flow [39], FullFlow [24],
FlowFields [6] and DCFlow [118], two interpolation methods with discrete optical
flow initialization: EpicFlow [83] and InterpoNet [135]. One can see that our method
is better than the prototype DCFlow method and also outperforms all compared
algorithms.

In addition, we also show the results of several recent learning based optical flow
estimation methods in this table: PWC-Net [97] , ProFlow [63], Back2FutureFlow [46],
MFF [82].
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Table 5.1 – Results on the final pass of the MPI-Sintel benchmark for different regions,
velocities (s) and distances from motion boundaries (d).
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5.6 Experiments
The experiments have been designed to demonstrate the main advantages of the
proposed cost formation approach. They are divided into several key parts related to
the main algorithm steps in Fig. 5.3 where:

• the robustness of the proposed triple image matching cost in comparison with
standard two-image matching cost is evaluated.

• the advantage of using the proposed cost in the energy minimization part of the
pipeline is analyzed (corresponding to Step 1 in Fig. 5.3) and the results of our
additional simplified pipeline of Fig. 5.6 are reported.

• we motivate our choice for the final outlier handling strategy by analizing the
intermediate results after Step 2.

• we compare the results of two different pipelines after flow field interpolation
(corresponding to Step 3) and refinement (corresponding to Step 4).

• we report and compare running time of our pipeline in comparison with the
two-frame version of our algorithm.

In our experiments we mainly use the final pass of the MPI-Sintel dataset [21] that
is a challenging flow evaluation benchmark, which contains long image sequences
with large displacements, motion blur, defocus blur and specular reflections. For
several additional experiments we also use the KITTI flow 2015 dataset [69] and a
part of the Middlebury training dataset [9]. We discuss the results of the proposed
algorithm in comparison with state-of-the-art methods on the Sintel dataset. Note that
the KITTI dataset differs from the Sintel dataset: the first data set include shading and
over-exposure, the second motion blur and dramatic occlusion. As a result, different
strategies are necessary to reach state-of-the-art.
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Table 5.2 – Cost volume processing results with WTA output: quantitative comparison
of two-frames and three-frames using the endpoint error metric for every MPI-Sintel
training set sequence. The top part of this table is the all pixels mask, the middle is the
non-occluded pixels mask and the bottom is the occluded pixels mask.

Method alley-1 alley-2 ambush-2 ambush-4 ambush-5 ambush-6
All 3 frames 2.82 3.82 72.2 58.8 30.2 54.6

pixels 2 frames 4.36 5.79 81.4 66.2 36.6 63.2
Non-occluded 3 frames 2.38 3.18 66.8 52.4 23.6 48.8

pixels 2 frames 3.50 4.73 72.8 56.1 27.2 54.2
Occluded 3 frames 15.5 40.4 88.0 87.9 62.6 76.5

pixels 2 frames 29.8 67.1 109 111 84.2 99.4

Method ambush-7 bamboo-1 bamboo-2 bandage-1 bandage-2 cave-2
All 3 frames 5.14 4.70 8.60 5.08 2.74 30.1

pixels 2 frames 8.24 6.92 12.7 7.90 4.06 39.3
Non-occluded 3 frames 3.97 4.02 6.79 3.92 2.47 22.6

pixels 2 frames 6.40 5.74 9.72 5.99 3.61 27.0
Occluded 3 frames 28.3 19.2 35.0 27.2 8.97 63.7

pixels 2 frames 50.2 31.9 60.0 44.7 14.9 96.5

Method cave-4 market-2 market-5 market-6 mountain-1 shaman-2
All 3 frames 19.3 4.28 41.7 21.6 4.13 2.83

pixels 2 frames 27.5 6.96 50.3 28.8 6.04 4.56
Non-occluded 3 frames 14.6 3.15 33.2 15.0 3.70 2.58

pixels 2 frames 19.9 4.84 38.2 20.1 5.32 4.05
Occluded 3 frames 55.0 26.9 82.8 53.0 18.6 5.94

pixels 2 frames 86.0 49.0 110 73.3 30.9 10.6

Method shaman-3 sleeping-1 sleeping-2 temple-2 temple-3 Average
All 3 frames 2.69 1.99 1.24 11.8 27.6 18.2

pixels 2 frames 3.88 2.09 1.30 16.4 35.8 22.6
Non-occluded 3 frames 2.55 1.99 1.24 9.61 19.3 15.1

pixels 2 frames 3.66 2.09 1.29 12.1 23.6 17.9
Occluded 3 frames 11.0 1.60 1.51 37.1 61.1 39.5

pixels 2 frames 17.4 1.70 1.75 63.2 89.1 58.0
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5.6.1 WTA output results comparison
We perform experiments with the winner takes all (WTA) output for two different
cost formation approaches in Fig. 5.3. In this part, we found that the best results of
our approach can be achieved by using λ1 = 0,λ2 = 0 and λ3 = 1 as parameter setting
in Eq. 5.8. In Table 5.2 the comparison between two different cost calculations is
shown by using the final pass of the Sintel training data. One can see that our triple
image matching cost produces more accurate results and improves the accuracy of
the standard cost calculation technique in the occluded area by 32% and by 16% in
the non-occluded region. The comparison results confirm the ability of the proposed
cost to handle occlusion. Note that the proposed cost formation is more robust than
the standard two-image matching cost and that is confirmed by the results in the
non-occluded region.

5.6.2 Discrete flow results comparison
The next experiments are performed to show the advantage of using the proposed cost
in the energy minimization part of the pipeline (Step 1 in Fig. 5.3). Here we use the
SGM approach to minimize energy of the cost volume for three optical flow datasets:
the MPI-Sintel, the Middlebury and the KITTI flow 2015 datasets. The Middlebury
is represented only by six sequences (Grove2, Grove3, Hydrangea, RubberWhale,
Urban2 and Urban3) because other sequences do not provide the ground truth or only
two frames are available.

Table 5.3 – Quantitative comparison of two-frames and three-frames using the endpoint
error metric with different masks.

Method MPI-Sintel KITTI Middlebury
all noc occ all noc occ epe

Two-frame 10.25 5.90 32.74 17.04 7.92 53.57 0.6713
Three-frame 7.18 5.39 16.29 14.87 7.16 43.27 0.6609
Three-frame+ 5.99 4.26 14.27 12.14 5.56 36.28 0.5909
Three-frame++ 4.65 3.01 12.63 6.00 2.13 21.37 0.2279

We prepare Fig. 5.4 to demonstrate the advantage of our approach for visual
comparison with the standard two-frame approach. Occluded regions are displayed
with shadow in the optical flow ground truth image. One can see that our algorithm is
able to estimate flow values in occluded regions, while the two-frame method produces
noisy flow values in these regions. For example, the regions in the red bounding box
in Fig. 5.4 illustrate our claim. Also our method is more accurate in non-occluded
regions (the regions in the blue bounding box). It is important, because non-occluded
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regions expand their flow values over image boundaries (the regions in green bounding
box).

In this subsection we also perform an experiment to obtain the final dense optical
flow without backward flow check and interpolation. In this case, the cost volume
pre-processing based on the bilateral filtering is added, like it is done in the paper [73].
Fig. 5.5 illustrates this experiment and shows that the filtering operation in the cost
volume can improve the discrete optical flow estimation. Table 5.3 gives the quan-
titative evaluation results. One can see that for the MPI-Sintel dataset the accuracy
of our estimation without the backward flow consistency check increases up to 50%
in occluded regions and up to 9% in non-occluded regions in comparision with the
two-frame approach, which are the original results of DCFlow algorithm before con-
sistency check. In the case of the cost volume pre-filtering accuracy of the final result
(three-frame+ in Table 5.3) increases further by 21% and 12% in non-occluded and
occluded regions respectively. In this experiment we also leverage a variational

Table 5.4 – Endpoint error and density of outliers handling results on the final pass of
the MPI-Sintel dataset: DCFlow (sparse matching points) and four different outliers
handling strategies

Method all noc occ dens-all(%) dens-occ(%)
DCFlow(smp) 2.3808 2.1132 9.4510 74.13 41.22
TIMCflow Str1 3.2187 2.4914 10.1091 84.82 66.65
TIMCflow Str2 3.4647 2.7555 9.1800 79.54 59.26
TIMCflow Str3 3.1035 2.6266 11.6307 81.31 52.37
TIMCflow Str4 2.6430 2.3106 10.1220 71.28 40.68

energy minimization post-processing method [133] to obtain our final optical flow
results (three-frame++ in Table 5.3). In comparison with the DCFlow results after
interpolation and post processing (Table 5.5), our method reaches the same accuracy
level in non-occluded regions directly without the consistency check and interpolation.
The result of this experiment demonstrates that potentially one can use our approach
without the consistency check and interpolation parts.

5.6.3 Results after outliers handling
In the previous subsection it is shown that accuracy of the optical flow estimation with
our triple image matching cost formation is considerably higher than with the standard
two-image matching cost. In this part, we test the impact of different outlier handling
methods for the final optical flow estimation results (Step 3 in Fig. 5.3). The problem
is that the popular consistency check procedure usually removes estimated flow values
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Figure 5.4 – Optical flow results illustration: the first row illustrates the reference
image; ground truth with occlusion mask(shadow area) is shown in the second row;
the third row illustrates discrete optical flow using two frames; the two-frame approach
results after consistency check is shown in the forth row; the fifth row illustrates the
optical flow results with three frames; three-frame approach results with different
outlier removal strategies are shown in the sixth - ninth rows.

75



Chapter 5. Improved Discrete Optical Flow Estimation With Triple Image Matching
Cost

 

Figure 5.5 – Discrete optical flow results on the MPI-Sintel training dataset for two
frames, three frames and three frames with cost volume filtering; final flow values
after post-processing.

in occluded regions, thus we cannot capitalize advantages of the flow estimation that
are achieved in the previous algorithmic step.

In this subsection we apply several different strategies for outlier handling, which
include outlier removal based on the flow field map segmentation and several modifi-
cations of the consistency check procedure. These results are summarized in Table 5.4.
For Strategy1, we use the breadth-first search [94] technique to segment the flow field
map and remove the regions with less than 20 pixels. For Strategy2, we estimate two
different discrete flows relative to the same current frame f t , but with different sets
of λ. We use standard forward and backward flow consistency check to Strategy3,
but with two different thresholds T1 and T2 for consistency check: T1 is equal to 0.8
for area in which C f k <C bk and T2 is equal to 3 elsewhere. For Strategy4, we use
backward flow computed also with three images but shift one frame compared with
forward flow. Different outlier handling results can be seen in Fig. 5.4. Formally, the
best results among our strategies is achieved with Strategy2 and Strategy4. However,
these strategies produce a more sparse output, thus making the final optical flow
estimation worse than the output of Strategy3.

5.6.4 Dense optical flow results after interpolation and refinement
We consider two interpolation methods in our experiments: EpicFlow [83] and Inter-
poNet [135] to get dense initialization flow values for the final variational refinement.
The default parameters of EpicFlow and InterpoNet are the same for different outlier
handling strategies. In the interpolation part of Table 5.5 one can see that our approach
gets the best interpolation results with Strategy3 (circle 4 in Fig. 5.3), even for the
refinement results (circle 5 in Fig. 5.3). We find that the interpolation result of the
InterpoNet method is better than the result obtained with the EpicFlow algorithm,
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especially for occluded regions.

Table 5.5 – Interpolation and variational refinement results: quantitative comparison
of interpolation and refinement results with DCFlow (sparse matching points) and for
four different outliers handling strategies.

EpicFlow InterpoNet
Interpolation all noc occ all noc occ
with DCFlow(smp) 4.71 3.48 11.17 4.60 3.42 10.13
TIMCflow Str1 5.19 3.58 12.97 4.54 3.40 9.73
TIMCflow Str2 5.32 3.85 12.48 4.82 3.70 9.79
TIMCflow Str3 4.55 3.32 10.82 4.41 3.22 9.64
TIMCflow Str4 5.32 3.92 12.25 5.10 3.37 10.81
Refinement all noc occ all noc occ
with DCFlow(smp) 4.13 2.91 10.68 4.01 2.81 9.78
TIMCflow Str1 4.46 2.92 12.02 3.92 2.78 9.34
TIMCflow Str2 4.59 3.15 11.62 4.40 3.27 9.53
TIMCflow Str3 3.99 2.73 10.61 3.82 2.61 9.30
TIMCflow Str4 4.69 3.28 11.87 4.44 3.06 10.39

5.6.5 Additional algorithm
The intermediate results of our algorithm considerably outperform the DCFlow method,
however the final performance gain is not that significant, we propose an additional
algorithm in Fig. 5.6 that simplifies the proposed calculation scheme by removing
the outlier removal and interpolation steps of the original pipeline. Consequently,
this innovation decreases computation complexity. In this case, the results are not
better, but comparable with the original results of the two-frame pipeline, however,
this decreases the computational complexity of the algorithm.

CNN
network

Cost volume
filter

Optimization Refinement
Three frames 
Cost volume

Figure 5.6 – Proposed additional algorithm based on tripe image matching cost and
cost volume filter: outlier handing and interpolation part are not necessary in this
simplified pipeline.
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5.6.6 Running time
We report and compare running time of our main pipeline (in Fig. 5.3 and additional
algorithm (in Fig. 5.6) in Table 5.6. Our three-frame version increases the calculation
time minimally. In contrast, our additional algorithm Three-Frame_add algorithm
considerably decreases the computational time.

Table 5.6 – Running time of different methods(sec)

Method Cost Volume Optimization Interpolation refinement total
Two-Frame 0.35 2.50 0.41 1 4.24
Three-Frame 0.43 2.63 0.41 1 4.47
Three-Frame_add 0.87 1.19 – 1 3.06

5.7 Conclusion
In this paper, we propose a new matching cost formation based on two assumptions:
most occlusion regions that are invisible in the forward frame image (relative to the
current frame) are visible in the backward frame; the forward flow is approximately
equal to the negative value of the backward flow. The assumptions allow us to
form the composite matching cost as a combination of two independent forward and
backward matching costs. The proposed method allows us to improve the standard
two-frame matching technique. Consequently, our approach considerably increases
discrete optical flow estimation after the matching cost processing. Experimental
results have shown that our TIMCflow pipeline can get better results than two-frame
pipeline and reach three first rank positions among nine metrics. In addition, we also
propose a simplified pipeline without consistency check and interpolation that can
keep comparable accuracy. The running time of our TIMCflow stays at the same level
as the two-frame pipeline, and our reduced pipeline shortens running time significantly
when compared to the full pipeline. Note that the consistency check procedure usually
removes estimated flow values in occluded regions, thus we cannot fully capitalize
advantages of the flow estimation that are achieved on the previous algorithmic step of
our pipeline, and we plan to improve this aspect of our algorithm in future work.

78



6 Conclusions and Future Work

6.1 Conclusions
Although neural image compression approaches have demonstrated competitive and
even superior rate-distortion performance compared to traditional image coding meth-
ods, they still remain unappealing as new generation of image coding formats, mostly
due to practical requirements. Compared to traditional image codecs, NIC has im-
portant disadvantages such as much higher computational and memory requirements,
fixed rate and non-adaptive complexity. Motivated by these practical limitations, in this
thesis, we have contributed with solutions towards practical neural image compression.

The methods proposed and the results obtained in this thesis are:

• Chapter 2: Variable Rate Deep Image Compression with Modulated Au-
toencoders. We propose to use an modulated autoencoder to realize variable
rate neural image compression. Our method can adapt the features of each layer
in both encoder and decoder for different rates and needs to be trained only
once with a single model. The experimental results show that the proposed
method has better Rate-distortion performance than the previous variable rate
method [103], even very close to the upper bound of independent models that
need more training time and memory.

• Chapter 3: Slimmable Compressive Autoencoders for Practical Neural Im-
age Compression. We show the relation between the rate-distortion perfor-
mance of the different compression models and their capacity. Based on our
observation of this relationship, we propose slimmable compressive autoen-
coders, where we slim the network to its minimal capacity with the given RD
tradeoff. In this way, we can reduce the memory requirements, computation cost
and latency, especially in low and middle rates. We also propose a train strategy
named λ-scheduling to estimate the optimal RD tradeoffs corresponding to
different capacities of the model. The experiment results show that SlimCAE
can not only realize variable rate but also adapt computation cost, memory
footprint and latency for different rate, while without performance drop than the
independent models.

• Chapter 4: A Novel Framework for Image-to-image Translation and Im-
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age Compression. This chapter proposes and studies the new problem of
distributed image-to-image translation. We analyze how image compression
influences image-to-image translation, and propose a novel framework to solve
the translation and transmission together by introducing NIC techniques in
I2I translation. Our method can provide less bits requirements and reduce the
latency for distributed I2I translation. In addition, we also propose a unified
framework which can work on I2I translation mode or normal neural image
compression mode.

• Chapter 5: Improved Discrete Optical Flow Estimation with Triple Image
Matching Cost. We propose to construct the cost volume with triple image
frames by combining two independent forward and backward matching costs.
Our method considerably improve discrete optical flow estimation after the
matching cost processing, and show an large improvement than the baseline
of two image frames. In addition, we also propose a simplified variant that
shortens runing time significantly when compared to the full pipeline and keep
comparable accuracy at the same time.

6.2 Future work
For future work we are interested in exploring the practical neural video compression
continually based on our experience on neural image compression. First of all, we
plan to expand our modulated autoencoder and slimmable CAE framework to video
compression, and include mechanisms for rate control, which plays a crucial role in
video compression and transmission in practice. The extension to video is not trivial,
since it involves additional components such as motion prediction/compensation
and residual coding, requiring integrating additional modules such as optical flow
estimation.

Another direction for our future work is the study of the rate-distortion-complexity
problem in neural image and video compression. The latter is particularly challenging,
since block matching and optical flow estimation are expensive operations, and require
careful analysis.

Finally, we will continue exploring the interplays between neural image compres-
sion and other computer vision tasks.
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