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A B S T R A C T

This thesis develops numerical methods to improve the accuracy and computational efficiency of
the part-scale simulation of Additive Manufacturing (AM) (or 3D printing) metal processes. AM is
characterized by multiple scales in space and time, as well as multiple complex physics that occur
in three-dimensional growing-in-time geometries, making its simulation a remarkable computational
challenge.

To this end, the computational framework is built by addressing four key topics: (1) a Finite Element
technology with enhanced stress/strain accuracy including the incompressible limit; (2) an Adaptive
Mesh Refinement (AMR) strategy accounting for geometric and solution accuracies; (3) a coarsening
correction strategy to avoid loss of information in the coarsening AMR procedure, and (4) a GCode-
based simulation tool that uses the exact geometric and process parameters data provided to the actual
AM machinery.

In this context, the mixed displacement/deviatoric-strain/pressure u/e/p FE formulation in (1) is
adopted to solve incompressible problems resulting from the isochoric plastic flow in the Von Mises
criterion typical of metals. The enhanced stress/strain accuracy of the u/e/p over the standard and
u/p FE formulations is verified in a set of numerical benchmarks in iso-thermal and non-isothermal
conditions. A multi-criteria AMR strategy in (2) is used to improve computational efficiency while
keeping the number of FEs controlled and without the strictness of imposing the commonly adopted
2:1 balance scheme. Avoiding this enables to use high jumps on the refinement level between adjacent
FEs; this improves the mesh resolution on the region of interest and keeps the mesh coarse elsewhere.
Moving the FE solution from a fine mesh to a coarse mesh introduces loss of information. To prevent
this, a coarsening correction strategy presented in (3) restores the fine solution in the coarse mesh,
providing computational cost reduction and keeping the accuracy of the fine mesh solution accuracy.

Lastly, design flexibility is one of the main advantages of AM over traditional manufacturing
processes. This flexibility is observed in the design of complex components and the possibility to
change the process parameters, i.e. power input, speed, waiting pauses, among others, throughout
the process. In (4) a GCode-based simulation tool that replicates the exact path travelled and process
parameters delivered to the AM machiney is developed. Furthermore, the GCode-based tool together
with the AMR strategy allows to automatically generate an embedded fitted cartesian FE mesh for the
evolving domain and removes the challenging task of mesh manipulation by the end-user.

The FE framework is built on a high-performance computing environment. This framework enables
to accelerate the process-to-performance understanding and to minimize the number of trial-and-error
experiments, two key aspects to exploit the technology in the industrial environment.
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R E S U M E N

Esta tesis tiene como objetivo desarrollar métodos numéricos para mejorar la precisión y eficiencia
computacionales en simulaciones de piezas fabricadas mediante Manufactura Aditiva (MA), también
conocida como Impresión 3D. La manufactura aditiva es un problema complejo que involucra
múltiples fenómenos físicos, que se desarolla en múltiples escalas, y cuya geometría evoluciona en
el tiempo.

Para tal fin, se plantean cuatro objetivos: (1) Desarrollo de una tecnología de elementos finitos para
capturar con mayor precisión tanto tensiones como deformaciones en casos en el que el material tiene
comportamiento isocórico; (2) Una estrategia de adaptividad de malla (AMR), que busca modificar la
malla teniendo en cuenta la geometría y los errores en la solución numérica; (3) Una estrategia para
minimizar la aproximación numérica durante el engrosamiento (coarsening) de la malla, crucial en la
reducción de tiempos de cómputo en casos de piezas de grandes dimensiones; y (4) Un marco de
simulación basado en la lectura de ficheros GCode, ampliamente usado por maquinaria de impresión
en procesos de manufactura aditiva, un formato que no sólo proporciona los datos asociados a la
geometría, sino también los parámetros de proceso.

Con respecto a (1), esta tesis propone el uso de una formulación mixta en desplazamientos /
deformación-desviadora / presión (u/e/p), para simular la deposición de materiales con deformación
inelástica isocórica, como ocurre en los metales. En cuanto a la medición de la precisión en el cálculo
de las tensiones y las deformaciones, en esta tesis se realiza un amplio número de experimentos
tanto en condiciones isotérmicas como no isotérmicas para establecer una comparativa entre las dos
formulaciones mixtas, u/e/p y u/p. Con respecto a (2), para mejorar la eficiencia computacional
manteniendo acotado el número total de elementos finitos, se desarrolla una novedosa estrategia
multicriterio de refinamiento adaptativo. Esta estrategia no se restringe a mallas con balance 2:1,
permitiendo así tener saltos de nivel mayores entre elementos adyacentes. Por otra parte, para evitar
la pérdida de información al proyectar la solución a mallas más gruesas, se plantea una corrección
en (3), que tiene como objetivo recuperar la solución de la malla fina, garantizando así que la
malla gruesa conserve la precisión obtenida en la malla fina. El proceso de manufactura aditiva se
distingue por su gran flexibilidad comparándolo con otros métodos tradicionales de manufactura.
Esta flexibilidad se observa en la posibilidad de construir piezas de gran complejidad geométrica,
optimizando propiedades mecánicas durante el proceso de deposición. Por ese motivo, (4) se propone
la lectura de ficheros en formato GCode que replica la ruta exacta del recorrido del láser que realiza la
deposición del material.

Los ingredientes lectura de comandos escritos en lenguaje Gcode, multicriterio de adaptividad de
malla y el uso de mallas estructuradas basadas en octrees, permiten capturar con gran precisión el
dominio discreto eliminando así la engorrosa tarea de generar un dominio discreto ad-hoc para la
pieza a modelar.

Los desarrollos de esta tesis se realizan en un entorno de computación de altas prestaciones (HPC)
que permite acelerar el estudio de la ejecución del proceso de impresión y por ende reducir el número
de experimentos destructivos, dos aspectos clave que permiten explorar y desarrollar nuevas técnicas
en manufactura aditiva de piezas industriales.
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Part I

S U M M A RY D O C U M E N T

This part is dedicated to present the numerical models developed in this Thesis. The details,
proofs and numerical results, are referenced to the corresponding scientific article.





1
I N T R O D U C T I O N

1.1 Motivation

Additive Manufacturing (AM), also known as 3D printing, or free-form fabrication, is quickly gaining
traction in the industry as a way to increase design flexibility, save energy, and shorten the time-
to-market of new components. AM differs from Conventional Manufacturing (CM) or Subtractive
Manufacturing (SM) processes, because it is based on the layer-by-layer deposition of new material,
resulting in monolithic components, rather than assembling several parts together or removing material
from a starting work piece. This innovative process draws attention from industry of many fields, such
as the aeronautical industry (jet engine parts, aircraft stiffeners, micro-turbines), medical applications
(dental bridges, medical tools, prosthetics), the automotive industry (cooling systems, heat shields),
among others.

Traditional manufacturing (CM/SM) processes frequently fail to meet design requirements when
complex geometries are generated via shape optimization or when micro-scale design is used to fulfill
certain desired functionalities (e.g., weight reduction, thermal conductivity, or noise isolation). As a
result, fabricating such geometries using AM processes is preferred.

The flexibility of AM also enables the creation of new tools/components with spatially-varying
material distributions, e.g. lattice structures or multi-material; tailor-made solutions, e.g. medical bio-
implants, and the use of embedded components, e.g. inter-layer circuit used for digital monitoring.

The advantages of AM over traditional manufacturing are innovation, part consolidation, lower en-
ergy consumption, waste reduction, reduced time-to-market, light weighting, agility of manufacturing
operations (U. S. Department of Energy, 2012). Innovation is brought up in a way that difficult/novel
geometries are only feasible with AM processes. Part consolidation relates to the creation of components
with fewer and more complex parts, resulting in more optimized products built with more flexible
manufacturability requirements. Lower energy consumption through the AM ability to eliminate
production steps, use less material and producing lighter products. The layer-by-layer production can
reduce materials and costs, generating less waste production. The required time for a component to
reach the market is also reduced, due to the elimination of the part tooling and prototype fabrication
from the production chain. The use of topological optimized shapes reduces the weight and keeps the
functionality specifications of the product. Last, the manufacturing operations gain agility with the AM

capability of rapidly responding to market changes.
On the one hand, AM is a novel technology that requires more research to properly comprehend its

usefulness, constraints, and limits. Experimental analysis is being vastly used to better understand the
structural behavior of AM components. These experiments are expensive, time-consuming, based on
trial-and-error and demand the fabrication of several demonstrators before its actual manufacturing.

On the other hand, accurate computer-aided simulations are extremely useful in resolving these
bottlenecks. Numerical simulations have the ability to accelerate the understanding of the process-
structure-property-performance relationship, allowing AM applications to reach their full potential.
Furthermore, numerical simulations may enable a change to a digital design and certification paradigm,
allowing for engineers to certify designs before they are built, resulting in faster and less expensive AM

product design.
In this regard, numerical methods for assessing AM simulations with enhanced accuracy and com-

putational efficiency are a valuable tool for the adoption of the AM as industrial-scale manufacturing
process.

3
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1.2 Objectives

The main objective of the present doctoral thesis is to develop, validate and apply an accurate and
computationally efficient Finite Element (FE) framework for the simulation of AM processes.

To achieve this primary objective, the following major objectives are addressed, organized in the
following topics:

• State-of-the-art review. To perform an exhaustive investigation of the existing publications on the
challenges and numerical solutions adopted to address the simulation of AM processes focusing
on the part-scale analysis of metallic components.

• FE technology. To address the isochoric constraint of plastic deformations using a novel FE

technology with enhanced stress/strain suitable for strain-driven constitutive laws.

• Numerical accuracy. To improve the numerical solution accuracy of the thermo-mechanical
problem providing new numerical strategies in the field of the FE technology and Adaptive Mesh
Refinement (AMR) strategies.

• Computational efficiency. To reduce the computational cost of the AM simulation using AMR

strategies and parallelization.

• Complex geometries. To reduce the modelling difficulties that arise when complex geometries
are generated for the AM, and at the same time the input data complexity is minimized.

• Validation. To validate the numerical strategies comparing the results with numerical bench-
marks, experimental tests, analytical solutions, well-known formulations/strategies and fine
meshes as reference.

1.3 Thesis outline

This thesis addresses numerical methods to improve the accuracy and computational efficiency of
the part-scale simulation of AM metal processes. For that purpose, the thesis covers the topics of FE

technology, AMR strategies and AM machinery.
The thesis outline is as follows: Chapter 2 provides a comprehensive overview of the current

state-of-the-art in the numerical simulation of the part-scale AM components. Chapter 3 presents the
FE technologies suitable to tackle the isochoric behavior found in metals. Chapter 4 introduces the
thermo-mechanical modelling, including the heat source model, time-integration considerations and
the thermo-visco-plastic/visco-elastic constitutive model used for the solid/liquid phases, respectively.
Chapter 5 describes the multi-criteria strategy and the coarsening correction procedure. Chapter 6

introduces some additional remarks required for the automatic mesh generation when introducing the
coarsening/refinement geometric criterion described in Chapter 5. Chapter 7 presents the conclusions
and lines of future research. Finally, the articles included in this doctoral thesis by a compendium of
publications are provided in the Appendix.

1.4 Research dissemination

1.4.1 Publications in peer-reviewed international journals

The doctoral Thesis is presented as a compendium of the following publications:

• J. Baiges, M. Chiumenti, C. A. Moreira, M. Cervera and R. Codina An Adaptive Finite
Element strategy for the numerical simulation of Additive Manufacturing processes, Additive
Manufacturing, 37 (2021) 101650. https://doi.org/10.1016/j.addma.2020.101650

Impact Factor: 10.998 (Q1)

https://doi.org/10.1016/j.addma.2020.101650
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• M. Chiumenti, M. Cervera, C. A. Moreira and G. B. Barbat Stress, Strain and dissipation
accurate 3-field formulation for non-linear isochoric deformation, Finite Elements in Analysis
and Design, 192 (2021) 103534. https://doi.org/10.1016/j.finel.2021.103534

Impact Factor: 2.972 (Q1)

• C. A. Moreira, G. B. Barbat, M. Cervera, and M. Chiumenti Accurate thermal-induced structural
failure analysis under incompressible conditions, Engineering Structures (2022), 261:114213,
ISSN 0141-0296. https://doi.org/10.1016/j.engstruct.2022.114213

Impact Factor: 4.471 (Q1)

• C. A. Moreira, M. A. Caicedo, M. Cervera, M. Chiumenti and J. Baiges A Multi-criteria h-
Adaptive Finite Element Framework for Industrial Part-Scale Thermal Analysis in Additive
Manufacturing Processes, Engineering with Computers, (2022). https://doi.org/10.1007/s00366-
022-01655-0

Impact Factor: 7.963 (Q1)

1.4.2 Presentations in international conferences

During the development of this thesis, the ongoing work and results were presented in the following
international conferences:

• G. B. Barbat, C. A. Moreira, M. Cervera and M. Chiumenti Modelling of incompressible
damage with an enhanced-accuracy mixed thermo-mechanical formulation, VIII International
Conference on Coupled Problems in Science and Engineering, Sitges, Spain. June 2019.

• C. A. Moreira, G. B. Barbat, M. Chiumenti and M. Cervera Mixed FE formulation for modelling
incompressible damage with thermo-mechanical coupling, XV International Conference on
Computational Plasticity. Fundamentals and Applications, Barcelona, Spain. September 2019.

• M. Chiumenti, M. Cervera, C. A. Moreira and G. B. Barbat On the mixed three-field formu-
lation for strain localization problems encompassing the incompressible limit, International
Conference on Plasticity, Damage and Fracture 2020 (ICPDF 20), Rivera Maya, Mexico. January
2020.

• M. Chiumenti, J. Baiges, M. Cervera, R. Codina, M. A. Caicedo, C. A. Moreira and J. M. Martinez
HPC framework for the thermo-mechanical simulation of DED Additive Manufacturing
processes, Simulation for Additive Manufacturing (SimAM-2021), Glasgow, United Kingdom.
September 2021.

• C. A. Moreira, J. Baiges, M. Cervera, M. A. Caicedo and M. Chiumenti An automatic octree
mesh generation based on laser activation path for the metal deposition process in Additive
Manufacturing, XVI International Conference on Computational Plasticity. Fundamentals and
Applications, Barcelona, Spain. September 2021.

• J. Baiges, M. Chiumenti, C. A. Moreira, M. Cervera and R. Codina An adaptive finite element
strategy for numerical simulation of Additive Manufacturing processes, XVI International
Conference on Computational Plasticity. Fundamentals and Applications, Barcelona, Spain.
September 2021.

https://doi.org/10.1016/j.finel.2021.103534
https://doi.org/10.1016/j.engstruct.2022.114213
https://doi.org/10.1007/s00366-022-01655-0
https://doi.org/10.1007/s00366-022-01655-0




2
S TAT E O F T H E A RT

This chapter addresses the recent developments and challenges encountered in the simulation of
Additive Manufacturing (AM) of metal processes. The difficulties that arise from the AM simulation
of metals with enhanced accuracy are: 1) the material incompressibility; 2) the appropriate choice
on the thermo-mechanical modelling to achieve accurate solutions; 3) the high computational cost
demanded by such processes involving growing domains and 4) the handling of the data associated to
AM processes.

In this context, this chapter is outlined as follows: Section 2.1 discusses the use of several
FE technologies developed to tackle the isochoric plastic flow behavior of the metals. Section 2.2
summarizes the simplified and more refined constitutive models adopted for the simulation of
manufacturing processes, as well as the advantages and disadvantges of each one of them. Section
2.3 presents the main ingredients of the Adaptive Mesh Refinement (AMR) techniques to reduce
computational cost. Finally, Section 2.4 deals with the data acquisition from an input file in addition to
the activation strategies commonly used in the FE simulation of growing domains.

2.1 Finite element technology

The Finite Element Method (FEM) has been developed to approximate the behavior of a continous
domain by its discritized approximation to solve complex mathematical models (Hrennikoff, 1941;
Courant, 1943). In practice, the continuous domain is divided into small finite portions, namely the
finite elements (FE), and the unknowns are approximated using interpolation functions to solve a
weak form of the Partial Differential Equations (PDEs) that describe the phenomenon of interest. This
method has been widely applied in the engineering field to solve fluid dynamics, solid mechanics,
fluid-structure interaction, heat transfer, among other problems.

The first FEM developed was the displacement-based formulation, also known as the irreducible/s-
tandard formulation. The standard/irreducible formulation is vastly employed in commercial software
and uses the displacement field at the nodes as primal variable. Nevertheless, it was observed that the
standard FEM has some limitations depending on the choice of discretization, geometry and material.
In the case of incompressible materials, the displacement-based formulation fails, due to volumetric
locking, specially when low-order elements are adopted (Prathap, 1985; Bathe, 1996; Crisfield, 1993;
Zienkiewicz, 1965; Belytschko et al., 2000).

2.1.1 The early attempts to address the incompressibility problem

Material incompressibility means that the material deforms under stress without volumetric change, i.e.
the volumetric strain, that is, the strain (ε) first invariant is tr(ε) = (εx + εy + εz) = 0. Isotropic elastic
materials are incompressible if the Poisson ratio is equal to ν = 0.5. In this case, the bulk-modulus of
the material K → ∞. This behavior is typically found in rubber-like materials. In the nonlinear regime,
in Von Mises materials such as metals, the plastic flow is isochoric (constant volume), so that when
material flows it results in the incompressibility constraint (tr(ε) ' tr(εp) = 0).

The earliest attempt to tackle the incompressibility constraint was derived from a reduced form of
the Hellinger-Reissner principle (Hellinger, 1907; Reissner, 1950). The strong form from this principle
corresponds to the constitutive and kinematic equations, and the solution of the variational form is
rewritten in terms of the displacements and the mean-stress (Hermann, 1965; Fraeijs de Veubeke, 1965)

7
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to solve incompressible/near-incompressible elasticity problems. The multi-field approach, where the
stresses/strains are taken as additional primal fields, is called assumed stresses/strains or mixed FEs.

The work of Hermann (1965) was extended to orthotropic (Taylor et al., 1968) and anisotropic (Key,
1969) incompressible elasticity problems. Although the use of mixed methods was becoming popular to
solve constrained problems, its naive application reproduced results as bad as the standard formulation
(Hughes, 1977).

A mathematical theory for mixed formulations was developed by Babuska (1971); Brezzi (1974);
Babuska et al. (1975). The reason behind the failure of some mixed formulations is the incompatibility
of the interpolations adopted for each field, causing element instabilities. The choice of the interpolation
used in each field in the mixed FE method should pass the in f − sup condition, also known as the
Babuska-Brezzi (B-B) condition. At that time, the computational cost of mixed methods was a major
drawback.

Hence, in the search for solutions to the unstable behavior of the primitive mixed FE formulations,
Fried (1974) introduced gradually the incompressibility constraint upon mesh refinement to balance the
discretization error and to avoid the ill-conditioning of the system. In this work, the underintegration
of the volumetric part of the strain energy is suggested to prevent the volumetric locking.

The works of Naylor (1974); Nagtegaal et al. (1974) corroborated the findings made by Fried
(1974) and applied the underintegration to standard elements, resulting in accurate displacements and
stresses results. This extended the first use of reduced integration of the 8-node serendipity element
with the 2 × 2 Gauss quadrature proposed by (Zienkiewicz et al., 1971) for plate/shell problems
demonstrating improvement over the full 3× 3 Gauss quadrature.

Doherty applied the concept of selective integration for the first time in 1968 (Doherty et al., 1969),
where the shear contribution was exactly integrated and the volumetric part was underintegrated. The
equivalence of the mixed formulations and the reduced/selective integration was explained by Hughes
(1977); Malkus and Hughes (1978).

Zienkiewicz et al. (1978) studied two approaches to solve metal forming and extrusion processes.
In this work, the mixed u/p with a Lagrangian constraint and the penalty function approach are used
to deal with the incompressibility, resulting from the Von Mises flow. Both approaches are very similar
and differ in the manner that the constraint is imposed. The element used are a nine and eight node
element using reduced 2× 2 Gauss integration.

Next, the concept of Selective Reduced Integration (SRI) element was introduced by Hughes to
address anisotropic elastic materials (Hughes et al., 1978; Malkus and Hughes, 1978). Thereafter,
the authors extended this approach to create the B̄-element (Hughes, 1980, 1987). Subsequently,
Zienkiewicz and coworkers developed the B̄-method for nearly-incompressible solids (Zienkiewicz
and Taylor, 2000). The pressure of the SRI is computed at the centroid of the element, while the B̄-
element computes the constant mean-stress from the averaging of the volumetric strain. The advantage
of the B̄-element over the SRI is that it is easily extended to large strain kinematics. Simo and coworkers
extended the B̄-element in large strain elasto-plasticity (Simo et al., 1985).

Sloan and Randolph (1982) investigated the ability of displacement-based FE to predict collapse
loads in the fully plastic regime in soil mechanics problems, extending the work presented by
Nagtegaal et al. (1974).

The Hu-Washizu principle (Hu, 1954; Washizu, 1975) is an extension of the Hellinger-Ressner
principle (Stolarski and Belytschko, 1987). The strong form from the Hu-Washizu principle corresponds
to the constitutive equation, strain-displacement equation and kinematic equations (conservation of
momentum, Neumann boundary conditions and interior continuity conditions) (Belytschko et al., 2000).
Simo and Hughes (1986) showed that the assumed strain method falls into the class of variational
methods based on the Hu-Washizu principle and that the appropriate stress recovery needs be
compatible with this principle.

Following the ideas of Simo and Hughes (1986) and Stolarski and Belytschko (1987) that the
assumed strain methods derive from the Hu-Washizu principle, Simo and Riffai (1990); Simo and
Armero (1992) proposed an enhanced strain method of incompatible modes for nonlinear analysis.
The basis of the method of incompatible modes lies in the enrichment of the standard FE subspace of
displacement fields with a discontinuous interelement basis functions. The works of Simo and Riffai
(1990); Simo and Armero (1992) also gave a set of instructions on how to choose the assumed strain
interpolation properly, otherwise difficulties to achieve stability and convergence may arise.
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Simo et al. (1993) made improvements to the elements presented in Simo and Riffai (1990); Simo
and Armero (1992) to address the volumetric locking and the spurious hourglass modes. Nevertheless,
in their work instabilities were observed in the deformed meshes. This observation gave rise to the
question on how to design stable FEs.

To properly design a stable FE that satisfies the strictness of the B-B conditions (Brezzi and Fortin,
1991; Brezzi et al., 1993) is not easy. The stability of the FEs can be tested using the methodology
presented by Fortin (1977). This allowed to find several stable displacement − pressure (u/p) FE

formulations using discontinuous (Crouzeix and Raviart, 1973; Fortin, 1977, 1981; Oden and Jacquotte,
1984) and continuous (Taylor and Hood, 1973; Bercovier and Pironneau, 1979) pressure approximations.

However, achieving stability may require the adoption of unusual interpolations. Fig. 1 shows some
unusual combinition of interpolations of stable FEs. Fig. 1(a)-(b) are used for elasticity problems, where
the arrows represent the tractions and the inner triangle is the stress tensor (Johnson and Mercier,
1978; Arnold et al., 1984b); Fig. 1(c)-(d) are used for second order elliptic problems, where the arrows
correspond to the normal component of the flux (Raviart and Thomas, 1975; Brezzi et al., 1984); and
Fig. 1(e) is used to plate bending problems, where the arrows are the moment tensor (Arnold, 1990).
Arnold (1990) states that stable low order FEs are less usual than achieving stability with high order
elements, thus unconditionally stable elements may introduce additional computational cost.

Figure 1: Unusual stable mixed FEs. (a)-(b) Elasticity elements from Johnson-Mercier (a); and Arnold-Douglas-
Gupta (b). (c)-(d) Elements for scalar second order elliptic problems from Raviart-Thomas (c); and Brezzi-
Douglas-Marini (d). (e) The plate bending element from Hellan-Herman-Johnson. (Arnold, 1990).

2.1.2 The use of stabilized FEs to address the incompressibility problem with enhanced accuracy

Instead of pursuing the difficult task of creating stable FEs it was found that adding appropriate extra
terms to the Galerkin approximation may result in circumventing the strictness of the B-B conditions.
The introduction of such terms opens the field of stabilization methods.

In this sense, a new class of stable FE was developed using the Petrov-Galerkin method, where
the solution and the test function FE spaces are different. In this methodology, arbitrary combinations
of continuous displacement and pressure interpolations may be adopted (Hughes et al., 1985). This
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approach was applied to solve nearly incompressible elasticity (Hughes and Franca, 1987; Franca et al.,
1988) and visco-plastic flows (Maniatty et al., 2001; Maniatty and Liu, 2003).

Hughes et al. (1989) developed another stabilization technique named Galerkin Least-square
method (GLS) were the least-square form of the residuals are added to the Galerkin method. As a
breakthrough, this approach allows for the use of the Galerkin method with equal order interpolations
for the unknown fields. The use of stabilization techniques to circumvent the B-B conditions had
imediate impact to help popularize the use of mixed methods with equal order interpolation.

Later, Hughes and coworkers proposed a Variational Multi-Scale (VMS) approach based on a coarser
scale, solved by the FEs, and a finer scale that helps to stabilize the solution (Hughes, 1995; Hughes et al.,
1998). The ideas behind the VMS were present in the previous attempts, which consisted in enriching
the FE solution, but this time in a finer scale called sub-grid.

The VMS method was adopted in computational incompressible fluid dynamics and produced an
enhanced stabilization procedure, namely the Orthogonal Subgrid Stabilization (OSS) (Codina, 2000;
Codina and Blasco, 2000). The analysis of this stabilization technique has been made for the linearized
incompressible Navier-Stokes problem (Codina, 2008a), the linear elastic incompressible problem
using the three-field (displacements/stresses/pressure) formulation (Codina, 2008b) and for Darcy’s
equations (Badia and Codina, 2009).

The GLS, VMS and OSS stabilization methods have been sucessfully applied to a large variety of
problems, such as incompressible elasticity (Franca et al., 1988; Hughes and Franca, 1987; Chiumenti
et al., 2002), elasto-dynamics (Scovazzi et al., 2015; Rossi et al., 2016; Scovazzi et al., 2017; Zeng et al.,
2017; Liu and Marsden, 2018), hyper-elasticity (Maniatty et al., 2002; Masud and Truster, 2013; Bonet
et al., 2015; Schröder et al., 2011) and elasto-plasticity and damage, (Maniatty et al., 2001; Maniatty and
Liu, 2003; Cervera et al., 2003, 2004a,b; Chiumenti et al., 2004; Agelet de Saracibar et al., 2006; Cervera
and Chiumenti, 2009; Cervera et al., 2010b).

The stabilization techniques helped spreading the use of the mixed FE formulations, which usually
adopt stresses/strains as additional fields. The use of such mixed FEs shows improvements in the
convergence rate of the stress/strain fields compared to the standard FE formulation (Badia and
Codina, 2009; Cervera et al., 2010a). The global and local stress/strain convergence rate for the standard
formulation are hk

e and hk−1
e , respectively, where he is the FE size and k is the degree of the interpolation

adopted. For standard elements with linear interpolation the local convergence of the stresses is not
guaranteed (h0

e ).
The use of stress/strains as additional nodal variables enhances the stress/strain results, and this

has been demonstrated in problems of crack propagation in 2D and 3D (Benedetti et al., 2016, 2017;
Cervera et al., 2017; Barbat et al., 2018; Vlachakis et al., 2019; Cervera et al., 2020), structural size-effect
(Barbat et al., 2020), compressible and incompressible plasticity (Puso and Solberg, 2006; Cervera et al.,
2010a; Benedetti et al., 2015; Cervera et al., 2015), nearly incompressibility in finite strains (Puso and
Solberg, 2006; Gee et al., 2009).

Badia and Baiges (2013) developed a stabilized hybrid continuous-discontinuous Galerkin method
to solve incompressible flow problems. The authors state that the equal order interpolation is the
optimal choice in the trade-off between accuracy and efficiency.

Recently, a new mixed strain/displacement FE including the B̄ approximation has been presented
as the ε/B̄ element to tackle nearly incompressible conditions with enhanced stress/strain accuracy
(Saloustros et al., 2021) for beams, plates and shells problems.

In the context of incompressible problems, to achieve stress/strain accuracy, the stress tensor is
split into the deviatoric stress (s) and pressure (p), giving rise to the 3-field displacement/deviatoric
stress/pressure formulation (u/s/p) (Codina, 2008b; Chiumenti et al., 2015). As most of the nonlinear
constitutive models are defined in a strain-driven format, a natural choice is to split the ε/u formulation
into the deviatoric strain and pressure (u/e/p) (Chiumenti et al., 2021).

The 3-field formulation has proven to be accurate in terms of stress/strain and dissipation, although
the number of Degrees of Freedom (DOF) per node increases substantially. However, Chiumenti et al.
(2021) show that the u/e/p requires a much lower number of DOF and elements to achieve the same
level of accuracy than the standard and (u/p) formulations, reflecting in less computational time.

Fig. 2-(a) compares the local stress error for the standard, u/p and u/e/p formulations using the
same mesh, while Fig. 2-(b) presents the results for similar number of DOF among the FE formulations.
Lastly, Fig. 2-(c) presents the rate of convergence of the stress field upon mesh refinement; the u/e/p
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formulation achieves a global error of 1% employing a much coarser mesh than the standard and the
mixed u/e/p formulations.

(a)

(b)

(c)

Figure 2: Comparison between the standard FE formulation and the mixed u/p and u/e/p formulations. (a) L2-
norm of the local stress error using the same mesh. (b) L2-norm of the local stress error for similar number
of DOF. (c) Convergence rate for the stress field for all the three formulations upon mesh refinement.

Moreira et al. (2022a) extended the work of Chiumenti et al. (2021) to coupled thermo-mechanical
applications. The improvement in the strain field and the computed dissipation of the the mixed 3-field
formulation over the u/p was demonstrated in several incompressible problems of thermal-induced
failure.

This motivated a comparison between the u/p and u/e/p formulations in a topology optimization
setting of linear elasticity for incompressible materials (Castañar et al., 2022). The topological
derivatives inherit the benefits of the higher accuracy of the u/e/p because its computation depends
directly on the strains and stresses.

Stabilized mixed formulations provide enhanced accuracy in the additional fields compared to
the standard FE formulation. Nevertheless, the FE technology adopted depends on which type of
analysis is required by the AM simulation, i.e., simplified strategies using the inherent strains method
do not require the FE technology to solve for incompressible conditions; contrarily, high-fidelity thermo-
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mechanical analysis needs to address the isochoric flow. The proper choice of the FE technology is key
towards the development of reliable and cost-efficient AM simulation frameworks.

2.2 Thermo-mechanical modelling

The choice of the proper thermo-mechanical modelling is deeply connected to the AM process to be
simulated. For AM processes where very fast cooling rates are observed, i.e. the deposition of thin-
layers that reaches room temperature rapidly, as in Powder Bed Fusion (PBF) processes, the use of
simplified elastic models is possible without comprising the accuracy of the predicted results. For
low temperature gradients, an elasto-plastic constitutive law with temperature-dependent properties is
preferred as the yield stress may be considered temperature-independent. Finally, for high temperature
gradients induced by the AM process, the more adequate constitutive model is the thermo-elasto-plastic
or thermo-elasto-visco-plastic.

Next, the common strategies used in the AM simulation for structural assessment are divided in
two categories: 1) The simplified uncoupled approach; 2) Thermo-mechanical coupled modelling.

2.2.1 Simplified Elastic approach for AM processes

Linear elasticity is the most simple constitutive model used in the uncoupled simplified models for AM

processes. A common technique that makes use of the linear elastic law is the inherent strains approach;
it assumes that the Thermo-Mechanically Affected Zone (TMAZ) is very thin and the heat dissipates
rapidly.

This assumption is especially used in AM processes with very thin layers, i.e. powder-bed processes.
The TMAZ varies from 100-150 µm and the heat affects only a few layers. In this case, powder-bed
processes generally assume that the evolution of plastic strains and temperature gradients only occurs
in those few layers. Thus, a purely elastic stress analysis can be adopted with a suitable inherent strains
tensor that represents the combined contributions of the plastic and thermal strains in the AM process.
This way, the elastic strains εe are simply computed as εe = ε− εinh, where ε are the total strains and
εinh is the inherent strains tensor.

The inherent strains tensor can be obtained from experimental data or from small-scale, nonlinear,
numerical simulations (Bugatti and Semeraro, 2018). The method was proposed by Ueda et al. (1975)
and was first applied to large structures in the context of welding simulation by Deng et al. (2007).

Keller and Ploshikhin (2014) propose a thermo-mechanical model to simulate the scanning of a
hatching-scale region and define the inherent strains tensor. Next, the authors apply the computed
inherent strains tensor in a purely mechanical analysis to predict the residual distortion of the
component, obtaining a very good agreement with experimental results.

Li et al. (2015a) use the inherent strains method in four different scanning strategies and validate their
numerical results with experimental data. In their work, the thermal and thermo-mechanical models
employed to extract the inherent strains, have temperature independent properties, which is usually a
source of numerical inaccuracy in AM processes.

Alvarez et al. (2016) apply the inherent strains method to define the macro-layer (activation of several
layers at once) size with best accuracy and computational cost for the Selective Laser Melting (SLM)
process. The actual AM printing layer thickness is 30 µm and the macro-layer corresponding to the best
accuracy and computational cost is composed of 8 layers (240 µm).

Liang et al. (2018) and Liang et al. (2019) present a modified version of the inherent strains method
for the Direct Energy Deposition (DED) process. The authors validate the numerical results with
distortion measurements of a single wall and a rectangular contour components. Later, Liang et al.
(2020) extended the modified inherent strains approach to lattice structures.

Fig. 3 shows the computed distoritions of the original and modified methods, compared to the
measured values along two sample lines. The computed distortions from the modified inherent strains
method result in much better values and the maximum distortion is very close to the measured value
(Liang et al., 2019).
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(a) (b)

(c) (d)

Figure 3: Complex canonical part: (a) The FE mesh and the position of the sample lines. (b) The printed part and
the position of the sample lines. (c)-(d) Computed and measured distortions for the sample line 1 and 2,
respectively. (Liang et al., 2019).

Setien et al. (2019) define an empirical methodology to determine the inherent strains and apply it to
a bridge benchmark. In their findings for the periodic scanning strategy, the equivalent inherent strains
lead to in-plane isotropy. Furthermore, the longitudinal and transversal values of the inherent strains
tensor can be assumed as orthogonal due to the nature of the hatches of the tested specimen, but this
should be checked for more complex geometries.

2.2.2 Thermo-Mechanical Coupled Modelling

A more realistic approach to the simulation of AM processes is to consider the temperature-dependency
of the mechanical properties. In several manufacturing processes the high temperatures change
dramatically the mechanical properties, which affect the mechanical response. In this sense, the
constitutive laws are also affected by the thermal field, resulting in a coupling between the thermal
and mechanical analyses.

The thermo-mechanical behavior of AM processes can be considered as weakly or strongly coupled.
The weak coupling enables a staggered scheme, which is the most adopted solution (Cheng et al., 2016;
ul Abdein et al., 2009; Kong and Kovacevic, 2010), but monolithic and adiabatic schemes are also found
in literature (Armero and Simo, 1992; Riedlbauer et al., 2014; Schoinochoritis et al., 2017). The staggered
scheme decouples the temperature and mechanical problems, thus solving for the temperature field,
the corresponding mechanical temperature-dependent properties can be adopted.

Regarding the thermo-mechanical constitutive modelling, the AM technology is relatively recent
and the constitutive models used are similar to the ones adopted in previous manufacturing processes,
such as: 1) Welding; 2) Casting; 3) Friction Stir Welding; 4) Forming; 5) Moulding; 6) Machining.

Agelet de Saracibar et al. (1999) employ the isentropic split (Armero and Simo, 1992) to solve the
coupled thermo-mechanical solidification problem using a thermo-elasto-plastic constitutive model
accounting for the multi-phase change contribuition.
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Cervera et al. (1999) extend the constitutive law presented in Agelet de Saracibar et al. (1999)
considering the continuous transition between liquid-solid phases by assuming that both phases work
in a series arrangement as a visco-elastic-visco-plastic Maxwell element.

Bellet et al. (2003) propose a visco-elasto-plastic model for the thermo-mechanical analyses of
casting processes to predict the macroshrinkage phenomenon. The idea is to avoid a unique elasto-
visco-plastic constitutive law from liquid-phase to room temperature. In this way, the authors separate
the behavior of the liquid and solid phases. The temperature that switches the liquid-to-solid model
is called the transition temperature. For the liquid-phase, a thermo-viscoplastic model is used and
for the solid-phase a thermo-elasto-viscoplastic model is adopted. Fig. 4-(a) shows the computed pipe
shrinkage phenomenon in different times. Fig. 4-(b) presents the computed and measured shapes for
the part geometry, resulting from the shrinkage phenomenon in the casting process.

(a)

(b)

Figure 4: Casting process: (a) Evolution of the pipe shrinkage in different times. (b)Final computed shape (left) and
the measured shape (right). (Bellet et al., 2003).

Zhu and Chao (2004) use a thermo-elasto-plastic model assuming the von Mises yield criterion and
the associated flow rule to study the variation of transient temperature and residual stresses in friction
stir welded plates made of 304L stainless steel.

Chiumenti et al. (2010) adopt the J2-thermo-elasto-visco-plastic model including the phase-change
presented in Agelet de Saracibar et al. (1999); Cervera et al. (1999) to the simulation of welding
processes. The pure-visco model (Norton-Hoff) presents an incompressible characteristic and, therefore,
the authors consider the mixed u/p formulation to deal with the isochoric constraint.

Ding et al. (2011) make use of a thermo-elastic-plastic model and a model based on an advanced
steady-state thermal analysis to assess the thermo-mechanical analysis of the Wire Arc Additive
Manufacturing (WAAM) process. The first model uses a Lagrangian reference frame for the transient
analysis and the second uses an Eulerian reference frame for the steady-state analysis. The steady-state
approach saved up-to 80% computational time compared to the transient approach, but is restricted to
cases where long weld paths and constant welding speed are used.

Fu and Guo (2014) indicate that for simulations composed of heating and cooling cycles, the
material temperature-dependent properties must be considered to achieve an accurate prediction of
distortions and residual stresses.
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Denlinger et al. (2015) perform a validation of the built of a wall structure using the DED process.
In the simulation, the thermo-elasto-plastic constitutive model is employed and several relaxation
temperatures are tested. When the temperature goes above the relaxation temperature, henceforth
named as annealing temperature, the stresses and plastic strains are reset to 0. Making use of the
annealing temperature provides very good correlations, conversely, when no annealing temperature is
adopted overestimation of up to 500% is observed in the distortions. For the titanium-alloy Ti-6Al-4V,
the annealing temperature found is 690oC.

Dialami et al. (2016) adopt an Arbitrary Lagrangian-Eulerian (ALE) approach to simulate the Friction
Stir Welding (FSW) process. The authors adopt a double approach for the constitutive model, one for the
Global level where a thermo-elasto-visco-plastic model covers the full temperature range, leading to
accurate temperature, distortions and residual stresses evolution. Additionally, at the Local level model,
thermo-rigid-visco-plastic constitutive models, such as Norton-Hoff, Carreau or Sheppard-Wright may
be used (Chiumenti et al., 2013; Dialami et al., 2013; Bussetta et al., 2014). The local model neglects
both the elastic and thermal strains and the global-local model approach is intended to solve problems
dominated by high strain-rates. In FSW process, high mechanical dissipation takes place as a result
of the friction of the tool tip and the welded part, the result is that 90% of the plastic dissipation is
converted into heat.

Chiumenti et al. (2016) apply the J2-thermo-visco-elasto-plastic law with small strains kinematics
to the Electron Beam Welding (EBW) process. The material reproduce either an elato-plastic behavior,
at room temperature, or a pure-visco behavior, at temperatures above the melting point. In addition,
the constitutive law takes into account the phase-change by computing the solid/liquid fraction. The
authors use the mixed u/p formulation and the appropriate split in the constitutive model. The thermal-
shrinkage is caused by the density variation in the solidification process. The numerical model is
calibrated and validated through an experimental campaign with remarkably good results in terms of
the measured and predicted temperature and distortions.

Denlinger and Michaleris (2016) compare the predicted distortions with experimental data applying
the annealing temperature for the Ti-6Al-4V and Inconel625 materials, using the same constitutive
model as in Denlinger et al. (2015). The Inconel625, in opposition to the Ti-6Al-4V, provide good
predictions without the need to consider the annealing temperature.

Chiumenti et al. (2017a) calibrate and validate the Laser Engineered Net Shaping (LENS) process for
the thermal analysis considering the phase-change process. The global effect of the latent heat to the
liquid-solid phase-change can be neglected saving 60% of the computational time of the simulation.

Denlinger et al. (2017) validate a thermo-mechanical model with in-situ experiments of a 91 [mm3]
specimen using an elasto-plastic finite strain constitutive model.

Lu et al. (2018) provide a numerical simulation callibrated with experimental data for the simulation
of laser solid forming processes using the Ti-6Al-4V alloy and two scanning patterns (longitudinal
and transversal). The thermo-elasto-visco-plastic model includes the thermal shrinkage, visco-plastic
behavior, thermal softening, creep behavior and strain-hardning according to the references Chiumenti
et al. (2010, 2016). In this work, the analysis of a thin-walled structure showed that the cooling phase
was responsible for the development of 70% of the residual stresses and 60% of the total distortions.
Fig. 5 presents the residual J2-stresses of the thin-wall for the two different scanning patterns.

Zhang et al. (2018a) present a framework for the thermo-mechanical simulation of the PBF process to
single-track and part-scale analyses. The constitutive model adopted is the thermo-elasto-visco-plastic
model. For the part-scale analysis, the interface between the part under construction and powder is
considered through a level-set function and the fluid-flow in the fusion zone is ignored, as well as the
inertial terms.

Fig. 6 presents the cross-section of a single-track evolution of the melt-pool of two different cases of
the Marangoni effect, where ∂γ

∂T is the temperature-dependecy coefficient of the surface tension. The red
line represents the melt-pool geometry, the black-line corresponds to the initial position of the powder
and the arrows are the velocity field of the liquid (Zhang et al., 2018a).

Cattenone et al. (2018) investigate the influence of 4 constitutive models to predict distor-
tions and residual stresses in the Fused Deposition Modelling (FDM). The constitutive laws have
temperature-dependent physical properties (density, heat coefficient, specific heat and thermal ex-
pansion coefficient) and vary the mechanical properties (the Young modulus and Yield stress)
between temperature-dependent or independent. The models investidated are: 1) Linear Elastic
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Figure 5: Thin-wall residual J2-stresses: (a) Longitudinal scanning pattern. (b) Transversal scanning pattern. (Lu
et al., 2018).

Figure 6: Melt-pool geometry in a cross section of a single-track simulation for the extreme value cases of ∂γ/∂T
found on the literature. (Zhang et al., 2018a).

with temperature-independent mechanical properties; 2) Linear Elastic with temperature-dependent
Young’s modulus; 3) Elasto-plastic with temperature-dependent Young’s modulus and temperature-
independent yield stress; 4) Elasto-plastic with temperature-dependent mechanical properties. In
models 1 − 3, no physically acceptable results of the residual stresses are obtained, being the only
acceptable constitutive law for FDM the thermo-elasto-plastic (model 4).

Lu et al. (2019) presents a simplified activation procedure to speed-up the thermo-mechanical
analysis. In the work, the J2-thermo-elasto-visco-plastic model to asses the residual stresses and
distortions of a box-shaped and a S-shaped components. The speed-up in the activation process
is a result of activating 4 layers at each time step. This provides a 77% CPU-time reduction. This
strategy compromises the local accuracy, but the average values of the temperature and distortions are
preserved.

Yang et al. (2019) undergo a blind challenge for the prediction of residual stresses and distortions,
namely AM-Benchmark 2018 - challenge 1, where experimental results are obtained by X-Ray
Diffraction (XRD). The authors adopt a thermo-mechanical model with temperature-independent and
dependent properties. The temperature-dependent properties being the thermal conductivity, specific
heat capacitance, the Young modulus, the Poisson ratio and the thermal expansion coefficient. The
authors justify the use of temperature-independent plasticity because the range of temperatures
observed induce a small temperature-dependency in the plastic behavior.
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Figure 7: Validation of the thermo-mechanical model for a 40-layer thin-wall. (Lu et al., 2021a).

Carraturo et al. (2020a) use the same temperature-dependent properties as Yang et al. (2019) after
the good results obtained using the temperature-independent yield stress model. The authors perform
an immersed thermo-mechanical simulation using the elasto-plastic model for infinitesimal strains
obtaining very good correlation with experimental results for the deflection measurements (less than
5% error).

Carraturo et al. (2020b) compare different laser scanning strategies to minimize residual stresses. To
simulate the influence of the scanning strategies, the authors adopt a elasto-plastic with infinitesimal
strains kinematics, where the temperature-dependent properties are the Young modulus, the Poisson
ration, the thermal expansion coefficient and the Yield stress. The authors conclude that the best
scanning strategy is to keep the power density constant.

Levine et al. (2020) analyze the outcomes and conclusions of the blind submissions of the AM-
Benchmark 2018 series, where the experimental results are reported in Phan et al. (2019). Overall, the
simulations that included substantial underlying physics produced more accurate results than those
that used empirical methods. All the submitted results had substantial deviations with respect to
residual elastic strains and distortions. However qualitatively correct results can be matched when the
laser path effects are included.

Lu et al. (2021a) callibrate the thermo-mechanical model from the experimental data of a 40 layer
block from in-situ measurements to mitigate the residual stress in DED processes. The FE model adopts
the mixed u/p formulation and the J2-thermo-elasto-visco-plastic, where part of the thermal-strain is
resulting from a shrinkage coefficient. Prior to conducting the sensitivity study on the parameters that
affect the residual stresses, the authors perform a callibration of the thermo-mechanical model with
experimental data, providing remarkable agreement, see Fig. 7. Next, the authors create a three-bar
AM model to help understand the key factors of the development of residual stresses. This model is
used to compute the yielding temperature, described as the temperature that causes the material to
yield in the three-bar model. The key causes of the residual stresses are attributed to the maximum
gradient temperature and the yield temperature, that causes the mechanical restraint during the
thermal deformation.

Lu et al. (2021b) adopt the J2-thermo-elasto-visco-plastic with a non-Newtonian beahavior of the
pure-visco law for the mushy phase (from the annealing temperature to the liquid temperature). The
authors evaluate the substrate design that leads to minimal residual stress in the DED process, using
a thin-wall as an industrial demonstrator and evaluating several substrate designs. Fig. 8 shows the
geometry of the proposed substrates and the mechanical responses for the substrate demonstrators.

Patil et al. (2021) present a benchmark of multi-layer simulations for residual stresses in small AM

metal parts. In their work, the finite strain plasticity model is adopted using multi-mechanics iterations,
instead of a staggered approach. The thermo-mechanical response was practically insensitive to the
number of the multi-mechanics iterations, which shows that the staggered approach is sufficient to
deal with the thermo-mechanical coupling.

Lu et al. (2021c) study the warpage of several thin-walled structures produced from the Laser
Powder-Bed Fusion (LPB) process. The warpage can significantly reduce by using vertical stiffners;
the warpage effect is more prone to occur in open sections, because of their lower stiffness; the wall
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Figure 8: Box-shaped component with thin-walls: (a) Geometries of the different substrates analyzed. (b) Final
distortions. (c) Final residual J2-stresses. (Lu et al., 2021b).

thickness plays an important role on the development of warpage. Fig. 9 shows the warpage on a
semi-cylindrical and a L-shaped thin-walled parts with and without the vertical stiffners.

Figure 9: Open thin-walled structures warpage: (a)-(b) without and with vertical stiffners, respectively. (Lu et al.,
2021c).

2.3 Adaptive Mesh Refinement

Adaptive Mesh Refinement (AMR) is an important tool when numerically solving problems where
the relevant physical phenomena are localized in small portions of the computational domain. This
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technique enables to adaptively modify the characteristics of the FE discretization close to the region of
interest.

This section discusses the AMR techniques and the common error-estimators used to adpat the FE

mesh. In addition, the data-structures used to handle the mesh information are discussed, and the
applications of AMR to AM problems are presented.

2.3.1 Adaptive Mesh Refinement techniques

The most common refinements techniques are: 1) h-refinement, where the size of the FE in the region
of interest is changed; 2) p-refinement, where the interpolation function used in the FE is enriched; 3)
r-refinement or recolocation, searches for the optimal position of the nodes without changing the total
number of DOF and 4) hp-refinement, which combines techniques 1 and 2.

Babuska et al. (1981) compare the rate of convergence in terms of DOF for fix meshes employing p
and h-refinement in 1D and 2D elasticity problems. The p-version results converge twice as fast as the
h-version.

One of the earliest use of AMR is the work of Berger and Oliger (1984) where hyperbolic PDE in
1D and 2D were solved using finite differences for uniform fine and coarse meshes and compared to
the AMR results. The algorithm starts with a rectangular coarse grid and, as the solution progresses,
points of the mesh with high truncation errors are marked. The marked points are clustered and fine
rectangular grids are created in a way that all marked points are interior to the fine grids.

Peraire et al. (1987) adapt triangular meshes of FEs based on the computed solution to determine the
optimal nodal values for the mesh parameters (directional spacing, stretching parameter and stretching
direction). This is the first attempt of anisotropic AMR. The anisotropy is evaluated using directional
error estimates along the principal directions of the Hessian (second derivatives) matrix. Later, this
method has been generalized for 3D (Peraire et al., 1992).

Demkowicz et al. (1989) offer guidelines for implementing hp-refinement to accomodate the
different required data structures (connectivity, shape functions degrees, node locations, element
neighbors, etc), choosing local mesh sizes and polynomial degrees of freedom aiming at reducing
element-wise errors.

Zienkiewicz et al. (1989) extend the h-refinement procedures to hp-refinement to obtain optimal
mesh and accuracy. In the proposed problems, the desired accuracy of 1% is achieved for p = 4
requiring less DOF; however, the effective computational cost was not assessed.

Babuska and Suri (1990) note that the higher the FE polynomial order of the p-version, the less sparse
is the system of equations. This represents that there is a trade-off between a more costly solution and
faster rate of convergence. A detailed analysis is provided in Babuska and Elman (1989); Babsuka and
Scapolla (1987). In order to describe complex geometries, the p-version requires curvilinear elements
with high distortions. The number of necessary quadrature points depends on the distortions observed
in the mesh, which may pose drawbacks in the use of p-refinement to describe complex geometries.

Ortiz and Quigley (1991) develop a r-adaptivity strategy for strain-localization problems in
J2-plasticity. The approach handles the history variables on the evolving mesh by adopting a
consistent mesh transfer operator according to the Hu-Washizu principle. The method is based on the
discontinuous distribution of history dependent parameters employing local interpolation functions.
The local interpolation functions are chosen in a way that unit values are obtained at the Gauss points.

Pastor et al. (1991) extend the work of Peraire et al. (1987) to soil mechanics using a refinement
function based on the bifurcation for non-homogeneous stress fields.

Lee and Bathe (1994) use h-refinement and mixed u/p FE formulations to solve elastic and elasto-
plastic problems using all-quadrilateral meshes. The authors create a series of procedures to guarantee
stress accuracy including: 1) a pointwise indicator for the stress error; 2) a pointwise indicator of
the plastic strain increment error; 3) a quadrilateral element mesh generator to build a new mesh
on the deformed configuration and 4) data transfer across models by mapping the state and history-
dependent variables. Fig. 10 shows a perforated plate in plane-strain conditions where the localization
phenomenon appears in the adaptively refined mesh.

Szabo et al. (1995) and Holzer and Yosibash (1996) sucessfully use p-refinement in elasto-plastic
2D problems including cycles of loading and unloading, achieving good results with respect to the
h-refined and exact solutions.
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Figure 10: Shear-band localization in a perforated plate: (a) Adaptive mesh. (b) Coarse mesh. (Lee and Bathe, 1994).

Deb et al. (1996) develop a mesh enrichment to identify shear-bands in strain-localization problems
in elasto-visco-plasticity. The mesh adaptivity criterion combines three localization characteristics
(velocity variations, equivalent plastic strain and the ratio between the elastic and elasto-plastic tensor)
to predict individual element behavior. Furthermore, a modified L2 projection is proposed to transfer
the state variables between two sucessive refined meshes. The approach prevents the diffusion of
internal variables of localized elements into non-localized portions of the domain.

Boroomand and Zienkiewicz (1999) introduce a direct Gauss point-to-point transfer operator to
solve elasto-plasticity problems. The authors employ appropriate weight functions, based on the least-
squares procedure, to pass polynomials over the integration points. The weight functions are defined
element-wise according to the weight of the Gauss points in the numerical integration process. This
method prevents the spread of the local information over a large area when several adaptive steps are
performed.

Perić et al. (1999) adopt a h-refinement strategy to solve the elasto-plastic thermo-mechanical
coupled problem in finite strains for metal forming, high-speed machining and blanking, and projectile
impact modelling.

Duster and Rank (2001) compare the p-refinement and h-refinement in a elasto-plastic benchmark to
assess the accuracy of both methodologies. On the one hand, the authors recommend the p-refinement
because of its higher accuracy. On the other hand, the h-refinement is preferred in cases when complex
geometries are involved, because they require finer meshes to discretize the domain. Additionally,
the error on the energy norm is proportional to hmin(r−1,p) (Zienkiewicz et al., 1989), where r is the
regularity of the PDE. Discontinuities in the boundary conditions, loading/source and geometry lead
the solution to be non-smooth, thus r may be as low as 3/2; therefore, refining the polynomial order
and refining the mesh will lead to similar errors.

Zhou and Randolph (2007) apply h-refinement to simulate cylindrical and spherical penetrometers
in strain-softening clay using large-deformation kinematics. In their work, the remeshing and
interpolation technique with small strain proposed by Hu and Randolph (1998) is used. This is an
ALE technique (Ghosh and Kikuchi, 1991) in which a series of small-strain increments are performed
and followed by a remeshing. The stresses and material properties are interpolated between the new
Gauss points and the Gauss points from the previous mesh.

Khoei et al. (2007, 2008) provide a h-refinement scheme with error-estimator and an efficient
data-transfer operator for shear-band development in elasto-plasticity and crack propagation in 2D
problems. The data-transfer operator computes the nodal value gradients using the Super-convergent
Patch Recovery (SPR) (Zienkiewicz and Zhu, 1992a) and then transfers the nodal value gradients to the
nodes on the new mesh. The new mesh gradient values at the Gauss points are evaluated using the
shape functions of the new mesh and the transferred nodal value of the gradients. Later, Khoei et al.
(2013) extended the approach using a modified version of the SPR to simulate the crack growth in 3D



2.3 adaptive mesh refinement 21

Figure 11: Shear-band localization in a slope: (a) Initial mesh. (b) first AMR at δ = 50 mm. (c) second AMR at
δ = 80 mm. (d) third AMR at δ = 80 mm. (e) plastic strains contour for the final AMR mesh. (Khoei et al.,
2007).

problems. Fig. 11 shows the evolution of the AMR mesh in a slope and the numerical solution for the
shear-band localization problem (Khoei et al., 2007).

Badia and Baiges (2013) applied h-adaptivity combined with a continuous-discontinuous Galerkin
method to solve incompressible flow problems. AMR together with the discontinuous Galerkin
enables the use of non-conforming meshes to accurately describe the sharp solutions typical of the
incompressible flows. Fig. 12-(a) shows the velocity and pressure solutions for an incompressible flow.
Fig. 12-(b) presents the adaptively refined mesh and the sharp pressure singularity at the corner.

Zander et al. (2016b) attribute the lack of dissemination of the hp-adaptivity to its high implemen-
tation complexity. The difficulty lies in the non-correspondence between the shape functions of the
fine-scale elements and their coarse neighbours.

Alhadeff et al. (2016) developed a h-adapvitity scheme suitable for Graphical Processing Units (GPU)
for dynamic fracutre mechanics including the inter-element cohesive zone model.

Salazar de Troya and Tortorelli (2018) use h-adaptivity to topology optimization problem subjected
to stress-constrains. The authors solve the stress singularity problem combining a fraction filter to
impose a minimum volume together with the RAMP penalization and a RAMP-like stress definition.

Jomo et al. (2021) present a hierarchical multi-grid approach employing the Finite Cell Method (FCM)
and hp-refinement for large-scale computation of the Poisson and elasticity problems. The small cut-
element issue is addressed by using Additive Schwarz smoothing techniques.

2.3.2 Error-estimators

The question on how and where to perform the mesh refinement/coarsening brought interest to the
development of a posteriori error estimators to answer this question in an efficient and automatic
manner.

The mathematical ground of the AMR to minimize mesh error was set by Babuska and Rheinboldt
(1978). It consists in defining an element-wise value for the error of an energy norm.

Diaz et al. (1983) create an error-estimate for r-refinement by associating the node position that
minimizes the error associated with the interpolation of the exact solution using a finite element
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(a)

(b)

Figure 12: AMR used to solve the incompressible flow. (a) Computed solution for the velocity (left) and pressure
(right). (b) The non-conforming mesh at a intermediate time-step (left) and the pressure singularity at
the corner (right). (Badia and Baiges, 2013).

function space. After the new mesh is found and changed, computations restart to obtain the new
error of the mesh.

Rank (1986) proposes an error estimator to evaluate the residual at sampling points of the FEs, which
for linear elements were the element midpoint, and uses this information to optimize the mesh.

A simple and efficient error-estimate for mesh adaptivity is the flux projection estimate, known
as the Zienkiewicz-Zhu (ZZ) estimator (Zienkiewicz and Zhu, 1987; Ainsworth et al., 1989). The
error-estimator compares the projected flux from the Gauss points to the nodal points with the flux
at the element super-convergent point (Zienkiewicz and Zhu, 1992a,b). For the cases where linear
interpolation is used, the element super-convergent point coincides with the centroid of the element,
coinciding with the sampling points of Rank (1986).

Babuska and Miller (1987) propose an equivalent estimator for the H1 finite element error. The
method is a posteriori error-estimate for the energy norm. The estimator is composed of element-wise
error indicators and the mesh adaptivity is based on the mesh distribution of these indicators.

Rencis and Kwo-Yih (1989) coupled a posteriori error-estimation with h-refinement for the boundary
element method in 2D and 3D axisymmetric problems to solve the Laplace equation. The self-
adaptive mesh starts from an initial coarse boundary mesh and uses the boundary L2 error norm
to automatically adapt the mesh.

Belytschko and Tabbara (1993) use h-refinement to solve transient problems with plastic response
and localization phenomena using various error estimation criteria. The authors conclude that an error-
estimator based on the L2-projection of strains is the most effective for the constant strain elements.

Later, Perić et al. (1994) tackle the strain-localization problem using an h-refinement AMR coupled
with a modified version of the the ZZ estimator, adopting the rate of plastic work as the error measure.
In Perić et al. (1999) an error estimator for the h-refinement strategy in a finite strain setting for elasto-
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plastic problem of the thermo-mechanical coupled problem of metal forming, high-speed machining
and blanking, and projectile impact modelling is designed.

Hughes et al. (1998) suggest the use of the fine scales in the VMS as a measure of the error on the
coarse FE scale. Hauke et al. (2006b) used an element error norm for the one dimensional convection-
diffusion equation in the VMS framework for the first time.

Hauke et al. (2006a,c) extended the approach using high-order elements. These ideas were applied
in the context of Navier-Stokes, linear elasticity and higher order ordinary differential equations (Rossi
et al., 2013; Hauke et al., 2015; Hauke and Irisarri, 2015; Irisarri and Hauke, 2015).

Masud et al. (2011) derives an error-estimator based on the algebraic multi-grid approach for linear
elasticity where the contribution on the boundaries of the elements are neglected.

Barbié et al. (2015) use h-adaptivity associated with the local defect correction and the ZZ error
estimator applied to meshes with refinement ratio greater than 2 in nonlinear solid mechanics problems.
The ZZ estimator efficiency is related to the regularity of the mesh.

Baiges and Codina (2017) apply the subgrid scales to nonlinear solid mechanics problems
considering the subscales also on the elements boundaries and using the stabilized mixed u/p
formulation.

2.3.3 Handling Data-Structures

Apart from properly chosing an error-estimator, the success of the AMR also lies in handling mesh
information during refinement and coarsening. In this sense, two main approaches are commonly
used, block-structured and unstructured.

On the one hand, the Block-structured data utilizes unions of mapped regular grids. This method
is cheap and enables the re-use of uniform-mesh codes (Berger and Oliger, 1984; Calder et al., 2000;
Colella et al., 2007; Luitjens et al., 2007; Burstedde et al., 2011), but is not indicated in the case of complex
geometries or unstructured meshes. On the other hand, tree-data structures, i.e. quadtrees (2D) and
octrees (3D), make use of a hierarchical data structure to take advantage of the block-structure features
of mapping and storing regular grids (Benzley et al., 1995; Biswas and Strawn, 1998). This hierarchical
nature reduces the complexity of searching procedures and enhances the efficiency of mesh partitioning
(Campbell et al., 2003).

Therefore, the idea of quadtrees (2D) (Finkel and Bentley, 1974) and octrees (3D) (Meagher,
1982) becomes appealing to handle data-structures. Quadtrees and octrees divide the initial element,
henceforth called parent element, in halves for each direction of the element. This refinement rule is
called isotropic refinement, as all directions are split in the same number of divisions.

In terms of topological efficiency, AMR meshes using simplicial (triangular and tetrahedral) elements
and tree-based (quadrilateral and hexahedral) elements have been studied (Burstedde et al., 2011;
Holke, 2018) and the tree-based structure results in better performance in terms of storage and
hierarchy computation.

The completely unstructured data provides greater geometric flexibility, at the cost of storing all
the neighbor relations between mesh elements, which reduces the efficiency of storage and hierarchy
computation (Flaherty et al., 1997; Norton et al., 2001; Lawlor et al., 2006). In AM, the fast access to data
and low memory consumption is key due to the frequent data access necessary during the simulation.

Kirk et al. (2006) use unstructured data and store all the mesh information in each processor, which
compromises the scalability of the algorithm. Jansson et al. (2012) uses a tetrahedral unstructured
framework without hanging nodes, presenting strong scalability up to 1, 000 processors for the
incompressible flow problem.

In the development of efficient handling of isotropic AMR, Baiges and Bayona (2016) presented
an algorithm for computational physics meshes in a distributed memory environment. The library
is developed for nodally based parallel partitions, which means that the node belongs to a single
processor, but the element can belong to several processors at the same time. Furthermore, the
algorithm enables multilevel refinement jumps between neighbor elements, efficiently handles data-
structures for 2D and 3D meshes, with low memory consumption and scaling up-to thousands of
processors.
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Fig. 13 presents the domain for a heat transfer problem with the inital and AMR mesh (with both
quadrilateral and triangular elements) and the processor distribution after the load rebalancing using
the algorithm presented in Baiges and Bayona (2016).

Figure 13: Evolution of the temperature field and the DOF for the moving heat load, where the gray area represent
the solidified structure.(Baiges and Bayona, 2016).

2.3.4 AMR applied to Additive Manufacturing

In the context of AM simulations, different scales (microstructural, melt-pool and part-scale) might be
involved and each one of them demands different simulation strategies to be adopted. In this sense,
the common AM simulation approaches are:

a) The High Fidelity approach, when the advancement of the heat source per time step, ∆l, is
approximately the size of the FE (he) and he is approximately the size of the heat source spot
radius.

b) The Hatch-by-Hatch approach, when greater portions of the scanning path defined by consecutive
straight lines, each straight line of the scanning path is named hatch. In this approach the
requirement of the advance of the heat source is less strict than the High Fidelity (HF).

c) The Layer-by-Layer approach, when the whole layer is deposited at once with an average heat
input.

d) The Multi-Layer approach, when a group of layers is deposited at once with an average heat
input equivalent as the heat input for the group of layers, including the re-coating time between
layers.

Chiumenti et al. (2017b) provide guide-lines to choose the appropriate approach of the AM

simulation for the desired application, as well as the required mesh resolution.
For thermo-mechanical applications, HF or the Hatch-by-hatch approach should be selected and

the appropriate representative FE size used. In this case, the use of uniform fix meshes requires a
high number of FEs to discretize the geometry and meet the mesh resolution requirements for thermo-
mechanical applications. Some researchers adopt uniform fixed fine meshes (Matsumoto et al., 2002; Dai
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and Shaw, 2002; Patil and Yadava, 2007; Ma and Bin, 2007; Antony et al., 2014; Chiumenti et al., 2017a,b),
but the high computational cost makes this approach prohibitive for industrial-sized components.

Luo and Zhao (2018) categorizes the AMR adopted to simulate AM processes into two schemes:
static AMR (Ren et al., 2010; Contuzzi et al., 2011; Hussein et al., 2013; Cheng et al., 2014; Li et al., 2015b)
and dynamic AMR (Michaleris, 2014; Pal et al., 2014; Zeng et al., 2015; Denlinger et al., 2014; Dunbar
et al., 2016; Denlinger et al., 2017). This depends on whether the mesh is updated or not during the
simulation. The former has relatively low computational cost and high simulation accuracy, but is
suitable for single-layer components only and the mesh cannot change with the advancement of the
melt-pool. The latter is suitable for multi-layered components, achieves high simulation accuracy at
low computational costs, but it demands a more complex implementation and requires data-transfer
from the old to the new mesh.

Ren et al. (2010) adopts a static h-refinement strategy and use the ANSYS Parametric Design
Language (APDL) to simulate a dynamically moving Gaussian heat source for the Selective Laser
Sintering (SLS) process.

Contuzzi et al. (2011) use the static AMR to build a h-refined mesh at the depositing region and the
substrate portions away from the depositing region is filled with coarse FEs. The work simulates the
powder-liquid-solid change by checking the nodal temperatures for the SLM process.

Hussein et al. (2013) study the evolution of the thermal and stress fields in a static h-refined mesh
when the layer is deposited over loose powder without support structures instead of a solid substrate.

Michaleris (2014) use h-refinement for the heat transfer analysis of a thin wall component built
using metal deposition employing a hybrid element activation strategy.

Pal et al. (2014) use dynamic AMR to h-refine the area where the moving heat source is and analyze
the travelling thermo-mechanical wave caused by the localized heat source.

Cheng et al. (2014) use dynamic AMR to refine the area close to the Heat Affected Zone (HAZ)
and coarsen the region far away. The FE model incorporates temperature-dependent properties and a
Gaussian volumetric distribution for the heat input. Numerical and experimental results achieve good
agreement.

Denlinger et al. (2014) perform a thermo-mechanical simulation of a large part for the Electron
Beam Melting (EBM) process simulation adopting dynamic AMR. The authors use an isoparametric
mapping to interpolate the Gauss point values to the new mesh and divide the simulation process in
three stages, allowing mesh coarsening after each stage. The first stage corresponds to the deposition
of the first layer, stage two goes from the second through the ninth layer and stage three from the tenth
to the 80 th layer. The numerical comparison with the experimental setting obtained a maximum error
in the distortion measurements of 29%.

Riedlbauer et al. (2014) use dynamic AMR to refine and coarsen structured meshes. The work
compares the performance of the monilithic and adiabatic split approaches (Armero and Simo, 1992)
to assess evolution of the temperature field and Von Mises stresses within the melt pool for the EBM

process. The performance comparison between methodologies is done for a thermo-elastic constitutive
model.

Li et al. (2015b) use the static AMR approach and develop a multiscale thermal model to predict
the component distortions for the SLM process. The thermal information is transferred from the micro-
scale laser scanning to the meso-scale layer hatching and to the macro-scale part build-up. The transfer
is done with an equivalent heat source developed from the thermal history of the melt pool in the
micro-scale laser scanning model and applied to the meso-scale hatch layer and incorporated in the
macro-scale to predict distortions.

Zeng et al. (2015) compare the thermal model using the dynamic AMR approach with the uniform
fix fine mesh model and also with experimental results. The dynamic AMR compared to the fix fine
mesh model saves up to 80 % in computational time and 99.95 % physical memory required for the
postprocess files due to the reduced number of FEs.

Dunbar et al. (2016) study the post-building distortion of different scanning patterns using dynamic
AMR to discretize the cylindrical component. The maximum numerical and experimental distortion
difference is 12 %. For thin-walled cylindrical geometries, the distortions and stress accumulation are
caused by the compression of solidifying material of the current layer acting on the previous layers.
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Patil et al. (2015) and Pal et al. (2015) use a dynamic AMR to predict the thermal and microstructural
development of the α and β phases in the Metal Laser Sintering (MLS) process based on a multi-scale
spatio-temporal discretization of the moving heat source.

Denlinger et al. (2017) validate a thermo-mechanical model using in-situ experiments of a 91 [mm3]
specimen adopting an elasto-plastic finite strain constitutive model. In their work, dynamic AMR is
used to keep the mesh refined in the latest set of layers close to the deposition area, while the region
below is coarsened; this strategy is treated henceforth as the layer-wise AMR. The authors use the same
isoparametric mapping described in Denlinger et al. (2014) to interpolate the Gauss point variables.

Gouge et al. (2019) apply dynamic AMR based on a multi-scale approach to reduce the mesh density
according to a pre-activation re-meshing scheme. The authors perform thermo-mechanical analyses to
part-scale models and compare numerical and experimental results. The authors claim that the mesh
adaptivity is one of the source of errors observed in the numerical-experimental comparison.

Khan and De (2019) use dynamic AMR to refine the region close to the heat source and gradually
coarsen elements away from the heat source. A mapping of the temperature field is performed from
the fine to the coarse mesh. The authors investigate the development of the melt pool and compare the
numerical results of the AMR model with the fixed fine mesh model and experimental results.

Kollmannsberger et al. (2018) combine a hierarchical hp-refinement strategy with the FCM to reduce
the number of DOFs for moving thermal loads and phase-change simulations. Fig. 14 shows the FE mesh
and the moving thermal load in different times and the evolution of the DOF during the simulation,
where the gray area represents the solidified structure.

Figure 14: Evolution of the temperature field and the DOF for the moving heat load, where the gray area represent
the solidified structure.(Kollmannsberger et al., 2018).

Li et al. (2019) analyze layer-wise AMR strategies with variable number of refined layers (2, 4, and 8
layers) and different transition jumps from the fine to the coarse meshes (2, 3 and 4 isotropic refinement
level jumps). The authors obtain the thermo-mechanical response of a thin-wall structure and compare
the AMR results with the solution from the fixed fine mesh model. The more the number of refined
layers and the smoother the transition, the more accurate the solution. Nevertheless, the number of
refined layers plays a minor role compared to the fine-coarse refinement level jumps. The computational
speed-up gained with the 2 fine layer model pays-out the difference in the numerical accuracy (50 %
speed-up and less than 5 % difference with respect to the 8 fine layer model).
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Carraturo et al. (2019) apply truncated hierarchical B-splines in an IsoGeometric Analysis (IGA)
setting for the linear heat transfer problem. The authors define a set of algorithms to provide admissible
refinement and coarsening of the mesh using B-splines for moving heat sources.

Kollmannsberger et al. (2019) validate a thermal model, including the latent heat contribution, with
the experimental set from the AMB2018-02c omparing isotropic and anisotropic conductivity models
to accurately predict the melt-pool shape.

Neiva et al. (2019) present a highly scalable FE framework based on dynamic AMR for growing
domains combined with the FCM. The work dynamically adapts the mesh following a geometric
criterion. The HAZ is transformed into a cuboid and the background FE mesh is checked wether is
inside or outside the HAZ by means of the Separating Axis Theorem (SAT). The accuracy outside the
refined HAZ is achieved by the imposition of a 2 : 1 balance scheme; i.e., the coarsening scheme should
fullfil the following relation between neighbour FEs: hc = 2× h f , where hc and h f are the coarse and
fine FEs, respectively.

Olleak and Xi (2020) combine the layer-wise AMR with high-order tetrahehdral FEs to simulate the
thermo-mechanical response of a bridge benchmark (NIST benchmark test AMB2018-01). In their work,
the number of refined layers considered are N = 5 and N = 10, but no significant improvements in the
predicted distortions are obtained from N = 5 to N = 10.

Baiges et al. (2021) apply the layer-wise AMR with large jumps between the refined and coarse areas
to compute the mechanical response based on the inherent strains method. To compensate the loss of
accuracy during the coarsening step, the authors compute coarsening correction terms that aim to keep
the previous solution, provided by the fine mesh, in the updated coarse mesh. From this work, Fig. 15

presents, at the top, a cantilever beam with an initial fine mesh that is used to solve the mechanical
problem and, in a second time-step, the solution is derefined to the coarse mesh presented. Fig. 15

shows, at the bottom, the displacement field at the final step of the analysis (coarsened mesh) for the
reference solution in Fig. 15-(a), the AMR solution without and with the coarsening correction terms in
Fig. 15-(b)-(c), respectively.

Carraturo et al. (2021a) apply the dynamic AMR presented in Carraturo et al. (2019) to the topology
optimization problem for AM applications using a phase-field approach (Auricchio et al., 2019). The
authors evaluate the influence of the problem parameters using four stopping criteria. Additionaly, a
workflow to convert the smooth isogeometric solution into 3D printed components is presented.

Kollmannsberger and Kopp (2021) compare the convergence rate of the first-order and the second-
order time-stepping schemes using a temporal-spatial discretization employing hp-refinement for the
moving heat source. Although the second-order method presents a better convergence rate, numerical
oscillations are observed. The expected convergence rate is only achieved when strongly graded time-
steps are used for the initial discontinuous solution.

Carraturo et al. (2021b) use hp-refinement and FCM to capture the solidification process and residual
stress evolution in the SLM process. The authors use the same integration grids for the thermal and
mechanical problems, but a finer FCM grid is applied for the thermal problem to correctly capture the
melt pool shape.

Moreira et al. (2022b) employ h-refinement based on a multi-criteria approach to enhance the
numerical accuracy and reduce the computational cost. The multi-criteria is based on a geometric
criteria to obtain the refined mesh in the HAZ region and a ZZ error-estimator with the SPR approach
to guarantee the solution accuracy outside the HAZ. The approach is combined with a GCode reader
that provides the process parameter information as well as the geometric definition of the domain. The
user neither needs to model the component geometry nor spend time in creating a FE mesh. The FE

framework is well suited for the AM process simulation of complex geometries. From this work, Fig.16

show the building process of a component at two different time instants, where the red box represents
the current position of the HAZ bounding-box. Note that the remain refined area, not contained by the
HAZ, has been refined according to the ZZ error-estimator.

The computational simulation of AM processes requires a large number of time steps and the
tracking of large amounts of information. The h-adaptivity is efficient for all class of problems (smooth
and non-smooth solutions) and is preferred when complex geometries are analyzed; furthermore, it
requires less data storage than other adaptivity approaches, saving computational resources, and the
transferring between meshes complexity is lower than other adaptivity schemes.
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Figure 15: Cantilever beam: At the top, the FE discretizations adopted. At the bottom, the displacement results at
the final step of the analysis. (a) Fine fixed mesh. (b) AMR mesh without the coarsening correction terms.
(c) AMR mesh with the coarsening correction terms.

2.4 AM Machinery

The AM process relies on Computer Aided Design (CAD) tools to provide the AM printer with the
necessary data to produce the component. The component designers must supply the AM printer with
the geometry and the process parameters, such as power input, and intermediate pauses to be used.
When addressing the computational simulation of the AM process, the information obtained from the
pre-processing and used in the simulation must be the same as the data provided to the AM printer.

In the pre-processing stage, the component designers prepare the CAD geometry of the component,
convert the geometry to a STereoLithography (STL) mesh, and slice the STL mesh to obtain a Common
Layer Interface (CLI) or GCode file. The handling of these geometric data and process parameters from
the pre-processing stage is discussed in Section 2.4.1.

After this, the pre-process data is translated into computational information to simulate the growing
domain. The most common approaches used in the simulation of growing domains are examined in
Section 2.4.2.

2.4.1 Geometry and process parameters data acquisition

Information to be transferred to the AM printer and used for the simulation of the AM process can be
delivered in two standard formats: the CLI (Commission of the European Communities & Bayerische
Motoren Werke, 1994) and the GCode (RS-274). Both formats are obtained after slicing the CAD
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(a) (b)

Figure 16: Spatial discretization obtained by the multi-criteria approach. (a)-(b) Evolution of the FE mesh at two
different times with the red box representing the current position of the HAZ.

geometry prepared in STL format by the designers. The scanning sequence is defined for each layer
obtained by the slicing process (Wong and Hernandez, 2012; Singh et al., 2017).

The slicing process consists in intersecting the STL mesh by two parallel planes, separated by the
layer thickness. The volume contained in-between these two planes is later converted in a sequence
of straight lines, namely hatches, in an specific order, also known as the scanning/path sequence. The
scanning sequence can be stored in a CLI or GCode formats by softwares called 3D slicers, such as Cura
(Braam, 2017–2022), Netfabb (Autodesk, 2016–2022), Slic3r (Ranellucci, 2011–2022), Simplify3D (Webster,
2013–2022), etc.

Choi and Kwok (1999, 2002) present a memory efficient slicing algorithm for Rapid Prototyping (RP)
that converts a STL mesh into a CLI file. The memory constraint to convert the STL to a CLI is overcomed
by reading only the facets of the current layer, minimizing the number of searching operations and
memory requirements.

Brown and de Beer (2013) develop an algorithm to convert the STL mesh into a simple GCode
format capable of being interpreted by entry-level 3D printers. The algorithm efficiency is assessed by
analyzing 3 case studies specimens printed from the converted GCode in a BFB 3000 3D printer.

Neiva et al. (2019) manage the geometrical information for the AM simulation using a CLI parser
that aggregates an array of layer entities. Each layer of the CLI file generates a layer instance and stores
the information of the layer height. Likewise, instances of the polylines and hatches, associated to each
layer in the CLI file, are also created. This object-oriented structure enables the extension to other file
formats.

Livesu et al. (2019) present a tool to be used in the AM process simulation that reads a group of 2D
slices from a CLI file and converts into a tetrahehdral mesh using TetWild (Hu et al., 2018).

On the one hand, the interpretation of the CLI file is easy and requires only the reading of a sequence
of straight lines. On the other hand, the process parameters need be provided by the analyst separately,
remaining unchanged during the simulation, which may not be the case in the actual AM printing of
the component.

Contrariwise, the GCode standard (Association et al., 1980) enables to set process parameters
directly inside the file, permitting the flexibility to change the design of process parameters during
the course of the printing/simulation.

Yeung et al. (2018) implement a modified version of the GCode, namely the AM GCode, that
bound the simulated velocities/accelerations to match the capabilities of the machinery movements.
The authors demonstrate that the step velocities assume infinite acceleration, which in practice are
impossible to achieve. In this way, the authors limit the jerk (time derivative of the acceleration) and the
result is a modified version of the initial GCode, leading to a more accurate geometry-time description
of the AM process. Fig. 17 shows the difference in the simulated GCode command and the actual
measurements for the machine displacement, speed and acceleration.
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Figure 17: Comparison in the simulated GCode command and the measurements for the displacement, speed and
acceleration (Yeung et al., 2018).

Cattenone et al. (2018) employ ABAQUS software (Smith, 2009) in the analysis of FDM technology.
The STL is converted into a GCode file using a slicer. Later, a MATLAB (MATLAB, 2018) script retrieves
the information about the nozzle position, nozzle velocity and cross-section to be used in the element
activation strategy.

Carraturo et al. (2020b) make use of the work of Yeung et al. (2018) to obtain the required
information directly from a GCode file to perform a study on the influence of the laser control strategy
on the development of residual stresses.

Moreira et al. (2022b) present an easy-to-use AM FE framework using fitted AMR meshes where the
required information about the geometry and process parameters (hatches, power input, depositing
and recoating speeds, time-pauses) for the AM simulation comes directly from the GCode file. The
analyst is entitled to provide information about the desired size of the FEs in the HAZ, the power input
efficiency, the inital conditions, the HAZ bounding-box parameters and the temperature-dependent
material data.

Erturk et al. (2022) present a study of the microstructure and the mechanical characteristics of
lattice structures produced by the PBF process. The lattice structures parameters used in the study are
obtained using the STL and CLI formats. Two types of structures are analyzed, bending-dominant and
stress-dominant. The results shows that increasing the relative density of the lattice structures increases
the global strength in either type of structures. Nevertheless, the stress-dominant structures present
better mechanical properties than the bending-dominant structures for the same relative density.

2.4.2 Element activation strategies

In the matter of simulating evolving physical domains, the main strategies to deal with the growing of
computational domains are the quiet-element and the element birth-death approaches.

In the former, the FE domain is composed of active and quiet-elements, in the sense that they are
included into the system of equations, but the material properties are chosen in a way that the analysis
is not affected by their presence. In the latter, the inactive elements are not considered in the system of
equations until the corresponding material is deposited.

2.4.2.1 Quiet-element approach

Michaleris (2014) presents the advantages and disadvantges of the quiet-element approach. The strong
points are: it is easy to implement and to be used with commercial FE softwares through user-created
routines, the constant number of equations throughout the simulation does not require equation
renumbering and the solver is initialized only at the beginning of the simulation.
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(a) (b)

(c) (d)

Figure 18: Complex geometries obtained directly from a GCode file using octree mesh generation. (a)-(b)
Background mesh of the printing of a ball bearing. (c)-(d) Background mesh of the printing of a propeler.
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On the down side, Michaleris (2014) shows that the scale factors used to artificially remove the
contribution of the inactive element need be carefully chosen. In this sense, the scale factors are applied
to the thermal conductivity (sk) and to the specific heat (sCp ). On the one hand, when the scale factors
are too small, this causes the system of equations to be ill-conditioned. On the other hand, if the scale
factors are not sufficiently small, the heat transfer through the quiet-elements, leads to an erroneous
solution. Additionally, Michaleris (2014) observed long run times when the simulation has a majority
of the elements as quiet-elements.

Denlinger et al. (2014) adopts a hybrid method using both the quiet-element and the element
birth-death approaches to assess the thermo-mechanical behavior of the AM of large parts. The hybrid
method initializes all the elements that correspond to the component to be manufactured as inactive,
not contributing to the global system of equations. Next, the depositing layer is identified and all the
elements belonging to the current deposition layer are added to the analysis as quiet-elements.

Denlinger et al. (2015) present the residual stress and distortion analyses of a DED manufactured
wall structure using the quiet-element method. In this study, the authors adopt the thermal conductivity
and specific heat scale factors as sk = 10−6 and sCp = 10−2, respectively, to avoid the issues addressed
in the work of Michaleris (2014).

The hybrid approach is again employed by Denlinger and Michaleris (2016) to compare the effect
of stress relaxation when using different materials for the deposition process of DED.

Denlinger et al. (2017) use the hybrid approach to the thermo-mechanical analysis of LPB process
and experimental validation of the manufacturing process of 8 layer cube in a HF setting.

2.4.2.2 Element birth-death approach

Michaleris (2014) also presents the advantages and disadvantges of the element birth-death approach.
On the positive side, the element birth-death does not suffer neither from ill-conditioning nor errors
introduced by scaling factors. The system of equations contains only active elements and the number
of required element computations are very much reduced.

On the negative side, the birth-death is not easily implemented into commercial softwares from user
routines. The constant addition of new active elements require renumbering and reinitialization of the
solver. Inactive elements sharing nodes with active elements may introduce artificial thermal energy.
This may be corrected at the moment of the element activation by resetting the activation temperature
to the initial temperature, instead of using an interpolation value. In this way, the temperature is forced
to be discontinuous.

Lindgren et al. (1999) use the quiet-element and the element birth-death approaches to compare the
transient temperatures and residual stresses of a multipass welding of a thick plate. Good agreement
between both methods is observed; also, computational cost reduction is achieved by the element birth-
death.

Lindgren and Hedblom (2001) also employ both methods to compare the analysis of multipass
welding in a large deformation analysis. In the quiet-element approach, although the properties are
scaled to not contribute in the thermal analysis, the inactive quiet-elements present accumulated plastic
strains, that must be reset. This procedure is not required in the element birth-death approach.

Roberts (2012) employed the element birth-death using ANSYS (ANSYS10 Inc, 2007) to investigate
the effect of material and process parameters on the residual stress distribution of Laser Melting
Processes (LMP). The author identifies that the residual stresses develop through two mechanisms: 1)
the steep temperature gradient observed in the cooling phase of the melted powder; 2) the shrinkage
and consolidation of the molten material interacting with previous layers.

Lindgren et al. (2016) evaluate the changes in the microstructure in the process zone and the
solid material using the element birth-death approach. The authors apply techniques developed in
the Computational Welding Mechanics (CWM) field to obtain the overall behavior of the macro-scale
model. The simulation of the AM process of DED is treated similarly to the multi-pass welding approach.
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F E T E C H N O L O G I E S W I T H E N H A N C E D

S T R E S S / S T R A I N A C C U R A C Y

This chapter presents the FE technologies to tackle the material incompressibility constraint, due to the
J2 plastic isochoric flow.

In this sense, the chapter is outlined as: Section 3.1 presents the strong, weak and discrete FE

forms of the standard irreducible FE formulation. Section 3.2 introduces the B̄ and the mixed u/p
FE formulations. Section 3.3 derives the mixed u/e/p formulation with enhanced accuracy for the
stress/strain fields.

The FE technologies are described for the general 3D case in Voigt’s notation. Therefore, the
displacement u = (u, v, w)T is a vector of 3 components and the stress σ = (σx, σy, σz, τxy, τyz, τxz)T

and the strain ε = (εx, εy, εz, εxy, εyz, εxz)T are vectors of 6 components.

3.1 The standard irreducible u formulation

Although the standard u formulation does not fit into the FE technologies with enhanced accuracy, it is
the base for the forthcoming formulations.

3.1.1 Strong form

The strong form of the nonlinear solid mechanics problem is written in terms of the displacement u for
the standard irreducible FE formulation. Under the hypothesis of small strains, linear kinematics, the
displacement u and the total strains ε are related through the compatibility equation

ε = Su (3.1)

where S is the differential symmetric gradient operator

S =

 ∂x 0 0 ∂y 0 ∂z

0 ∂y 0 ∂x ∂z 0

0 0 ∂z 0 ∂y ∂x


T

(3.2)

Correspondingly, equilibrium between the stress vector σ and the body forces f = ( fx, fy, fz)
T is

defined by the Cauchy equation
STσ+ f = 0 (3.3)

where ST is the differential divergence operator, adjoint to the S in Eq. (3.1).
The constitutive equation relates the stress vector σ and the strain vector ε

σ = Cε (3.4)

where C is the fourth-order secant constitutive tensor which can be expressed in Voigt’s notation as a
6× 6 matrix.

Substituting Eqs. (3.1) and (3.4) into the Cauchy equation (3.3), leads to the Navier equation written
in terms of displacements, u:

33
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STCSu + f = 0 (3.5)

together with the prescribed Dirichlet’s and Neumann’s conditions imposed in the boundary Γ. The
boundary Γ can be split accordingly to the Dirichlet or the Neumann conditions, respectively as Γu and
Γt, such that Γ = Γu ∪ Γt and Γu ∩ Γt = ∅.

It is assumed herein that the prescribed displacements vanish on the boundary Γu

u = 0 in Γu (3.6)

In addition, the prescribed traction on the boundary Γt are

t = t̄ in Γt (3.7)

3.1.2 Weak form

The weak form of the problem is obtained as follows. First, Eq. (3.5) is premultiplied by an arbitrary
virtual displacement δu and integrated over the spatial domain, Ω:

ˆ
Ω

δuT [STCSu]dΩ +

ˆ
Ω

δuT f dΩ = 0 ∀δu (3.8)

The virtual displacement δu also conforms with the boundary conditions, so that δu = 0 in Γu. Next,
the Divergence Theorem is applied to the first term of Eq. (3.8) and the boundary is split Γ = Γu ∪ Γt.
The Dirichlet boundary terms vanish on Γu (δu = 0), the weak form of Eq. (3.8) becomes

ˆ
Ω
(δuS)T(CSu)dΩ =

ˆ
Ω

δuT f dΩ +

ˆ
Γt

δuT t̄dΓ ∀δu (3.9)

with the right hand side being the virtual work of the external forces, written as

W(δu)=
ˆ

Ω
δuT f dΩ +

ˆ
Γt

δuT t̄dΓ ∀δu (3.10)

The solution to the solid mechanics problem is to find the displacements u that verify the system
of Eq. (3.9) in compliance with the boundary condition u = 0 on Γu, given an arbitrary virtual
displacement δu, which vanishes on Γu.

3.1.3 FE approximation

Firstly, the continuous domain Ω is discretized into FEs partitions such that Ω = ∪Ωe, and the discrete
FE approximations of the displacements u is taken such that

u =̃ û = NuU (3.11)

where U is the vector comprising the values of the nodal displacements of the FE mesh. Nu is the matrix
containing the interpolation functions of the FE approximation.

Secondly, the Galerkin method is applied, where the discrete virtual displacement field takes the
same approxiamtion as in Eq. (3.11), so that

δu =̃ δû = NuδU (3.12)

Introducing Eqs. (3.11) and (3.12), the system of equations defined in Eq. (3.9) becomes
ˆ

Ω
(SNuδU)T︸ ︷︷ ︸

=δUT BT
u

C(SNuU)︸ ︷︷ ︸
=BuU

dΩ = Ŵ(δU) ∀δU (3.13)

where Bu is the discrete strain-displacement matrix, defined as

Bu = SNu (3.14)
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and Ŵ(δU) is the virtual work done by the traction t̄ and the body forces f , defined as

Ŵ(δU)=

ˆ
Ω
(NuδU)T f dΩ +

ˆ
Γt

(NuδU)T t̄dΓ ∀δU (3.15)

The discrete virtual displacement δU is an arbitrary nodal vector, thus the system of Eq. (3.13) can
be written in matrix format as [

KUU

] [
U
]
=
[

F
]

(3.16)

where [U]T is the array of nodal values of displacements and

KUU =

ˆ
Ω

BT
u CBudΩ (3.17)

and
F =

ˆ
Ω

NT
u f dΩ +

ˆ
Γt

NT
u t̄dΓ (3.18)

Furthermore, the integrals over the domain are understood as the sum of the integrals over the FEs

of the mesh
ˆ

Ω
(·) dΩ = ∑

e

ˆ
Ωe

(·) dΩe (3.19)

and, for the sake of simplicity, U is to be considered the nodal values of the whole FE mesh.

3.2 Isochoric formulations

In this Section, the split of the strains into the volumetric and deviatoric-strains is introduced to address
the volumetric-locking presented by the standard irreducible FE formulation when the material presents
an incompressible behavior.

The strains can be written in terms of its volumetric and deviatoric components as

ε =
1
3

evol I + e (3.20)

with evol the volumetric strain (scalar), and e is the deviatoric-strain vector, defined as

evol = tr(ε) = (εx + εy + εz) = GTu (3.21)

e = (εx −
1
3

evol , εy −
1
3

evol , εz −
1
3

evol , εxy, εyz, εxz)
T (3.22)

evol can be computed as the divergence of the displacements u where G = (∂x, ∂y, ∂z)
T is the gradient

operator and GT is the adjoint divergence operator. Introducing Eq. (3.21) and Eq. (3.20) into Eq. (3.1),
the deviatoric-strains e can be computed in terms of the displacements u as

e = Su− 1
3

I(GTu)︸ ︷︷ ︸
evol

= Wu (3.23)

where S is presented in Eq. (3.2) and W is the operator defined as

W = S−1
3

IGT =
1
3

 2∂x −∂x −∂x 3∂y 0 3∂z

−∂y 2∂y −∂y 3∂x 3∂z 0

−∂z −∂z 2∂z 0 3∂y 3∂x


T

(3.24)
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3.2.1 The B̄ formulation

The B̄ formulation can be understood as an extension of the standard FE formulation or a particular
case of the u/p formulation adopting the SRI approach. This FE technology is only applicable for
quadrilateral and hexahedra elements, in 2D and 3D, respectively in the near-incompressible limit.

The strong and weak forms are identical to the ones presented in Sections 3.1.1 and 3.1.2, since
there are no additional fields.

3.2.1.1 FE approximation

The difference between the standard and the B̄ formulations arises because a split of the strain-
displacement operator into the deviatoric and volumetric parts is performed as follows

Bu = Bdev
u + Bvol

u (3.25)

where Bdev
u and Bvol

u are the deviatoric and volumetric parts of the strain-displacement operator,
respectively. Eq. (3.25) can be rewritten using the definitions in Eqs. (3.14) and (3.23) as

Bu = SNu = W Nu︸ ︷︷ ︸
=Bdev

u

+
1
3

IGT Nu︸ ︷︷ ︸
=Bvol

u

(3.26)

In the classical B̄ method presented in Hughes (1980, 1987), the B̄u is defined as

B̄u = Bdev
u + B̄vol

u (3.27)

where B̄vol
u is the mean volumetric sub-matrix of the strain-displacement operator defined as

B̄vol
u =

1
ng

ng

∑
i=1

(Bvol
u )i (3.28)

where ng is number of integration points in the element.
Therefore, the system of equations presented in Eq. (3.16) for the standard irreducible FE can be

rewritten using the new definition of the B̄u strain-displacement operator in Eq. (3.27) as[
K̄UU

] [
U
]
=
[

F
]

(3.29)

with
K̄UU =

ˆ
Ω

B̄T
u CB̄udΩ (3.30)

3.2.2 The u/p formulation

The stress is split now into the deviatoric and pressure components as

σ = pI + s (3.31)

where I = (1, 1, 1, 0, 0, )T is the second-order identity tensor in Voigt’s notation, the scalar p is the
pressure and s is the deviatoric-stress vector defined as

p =
1
3
(σx + σy + σz) (3.32)

s = (σx − p, σy − p, σz − p, τxy, τyz, τxz)
T (3.33)

Next, the volumetric/deviatoric split of the constitutive law is written as

p = Kevol (3.34)

s = Cdevε = Cdeve (3.35)

with K and Cdev being the secant bulk modulus and the secant deviatoric constitutive matrix,
respectively.
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3.2.2.1 Strong form

The strong form of the nonlinear solid mechanics problem is written in terms of the displacement u
and pressure p fields.

Introducing the Eq. (3.31) into the Cauchy equation presented in Eq.(3.3) yields

STs + Gp+ f = 0 (3.36)

Note that G = ST I, and employing the compatibility relation between displacements and strains and
Eq. (3.35) into Eq. (3.36) results in

STCdevSu + Gp+ f = 0 (3.37)

Finally, the volumetric constraint is rewritten by introducing Eq. (3.21) into Eq.(3.34), leading to the
strong form written in terms of displacements u and pressures p as

STCdevSu + Gp+ f = 0

GTu− p
K = 0

(3.38)

3.2.2.2 Weak form

The variational form of the problem defined in Eq. (3.38) follows the same procedure described in
Section 3.1.2.

First, the first equation of the strong form is premultiplied by a virtual displacement δu and
integrated over the spatial domain, applying the divergence theorem in the two first terms. The
boundary term is split in the Dirichlet and Neumann boundaries, Γ = Γu ∪ Γt. The Dirichlet boundary
terms vanish (δu = 0) such that

ˆ
Ω
(δuS)T(CdevSu)dΩ +

ˆ
Ω

δuTGpdΩ =

ˆ
Ω

δuT f dΩ +

ˆ
Γt

δuT t̄dΓ ∀δu (3.39)

Next, the second equation of the strong form is premultiplied by an arbitrary virtual pressure δp
and integrated over the spatial domain

ˆ
Ω
(δpG)TudΩ−

ˆ
Ω

δpT p
K

dΩ = 0 ∀δp (3.40)

The resulting weak form of the u/p formulation is

´
Ω(δuS)T(CdevSu)dΩ +

´
Ω δuTGpdΩ = W(δu) ∀δu

´
Ω(δpG)TudΩ−

´
Ω δpT p

K dΩ = 0 ∀δp

(3.41)

Note that the system of equations (3.41) is symmetric. The solution to the solid mechanics problem
is to find the displacements u and pressure p that verify the system of Eq. (3.41) in compliance with
the boundary condition u = 0 on Γu, given an arbitrary virtual displacement δu, which vanishes on Γu
and an arbitrary virtual pressure δp.

3.2.2.3 FE approximation

The continuous domain of the problem needs to be discretized in a FE partition in a way that Ω = ∪Ωe.
Additionally, the FE approximations of the displacement u and the pressure p are taken as

u =̃ û = NuU

p =̃ p̂ = N pP
(3.42)

where U and P are the vectors containing the nodal displacements and pressures of the FE mesh,
respectively. Furthermore, the matrices Nu and N p are the FE interpolation functions adopted.
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Similarly, applying the Galerkin method, the discrete virtual displacements δU and discrete virtual
pressure δP approximations are given as

δu =̃ δû = NuδU

δp =̃ δ p̂ = N pδP
(3.43)

Now, introducing the FE approximations defined in Eqs. (3.42) and (3.43) into the weak form of the
u/p formulation in Eq. (3.41), the system of equations becomes

´
Ω(NuδUS)T(CdevSNuU)dΩ +

´
Ω(NuδU)TGN pPdΩ = Ŵ(δU) ∀δU

´
Ω(N pδPG)T NuUdΩ−

´
Ω(N pδP)T N pP

K dΩ = 0 ∀δP

(3.44)

Eq. (3.44) can be simplified by taking into account the equality Bu = NuS; therefore, the FE

approximation can be written as

´
Ω(BuδU)T(CdevBuU)dΩ +

´
Ω(NuδU)TGN pPdΩ =

´
Ω(NuδU)T f dΩ +

´
Γt
(NuδU)T t̄dΓ ∀δU

´
Ω(N pδPG)T NuUdΩ−

´
Ω(N pδP)T N pP

K dΩ = 0 ∀δP
(3.45)

The virtual displacements δU and virtual pressure δP are arbitrary, thus the system of equations in
Eq. (3.45) can be written in matrix format as[

Kdev
UU KUP

(KUP)
T −MPP

] [
U

P

]
=

[
F

0

]
(3.46)

where [U P]T is the array of nodal values of displacements and pressure and the terms given in Eq.
(3.46) are defined as

Kdev
UU =

ˆ
Ω

BT
u CdevBudΩ (3.47)

KUP =

ˆ
Ω

NT
u GN pdΩ (3.48)

MPP =

ˆ
Ω

NT
p

1
K

N pdΩ (3.49)

and

F =

ˆ
Ω

NT
u f dΩ +

ˆ
Γt

NT
u t̄dΓ (3.50)

3.2.2.4 Variational Multi-Scale Stabilization

In this thesis, the mixed approximation adopts linear FE interpolation for all the fields involved, which
does not comply with the stability conditions (Babuska, 1971; Brezzi, 1974; Babuska et al., 1975).

On the one hand, this approach is preferrable due to its simplicity in the implementation and
formulation of the FE, rather than adopting exotic interpolations or introducing additional difficulties
in the implementation (Arnold et al., 1984a; Lewis and Schrefler, 1987; Jha and Juanes, 2007; White
and Borja, 2008; Gavagnin et al., 2020). On the other hand, it requires stabilization to circumvent the
Inf-Sup conditions and the VMS method is employed.

In this context, the VMS stabilization (Hughes, 1995; Hughes et al., 1998; Codina, 2000; Codina and
Blasco, 2000) is chosen. The method consists in enriching the FE approxiamtion with a fine scale ũ,
namely the sub-grid scale. The new components introduced in the FE approximations are not solved
by the original FE coarse scale uh. The sub-grid scale terms are computed from the residuals of the
discrete solution. In this way, the continuous displacements u and pressure p are approximated by the
new enhanced displacements û and pressure p̂ approximations, such that
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u =̃ û = uh + ũ

p =̃ p̂ = ph + p̃
(3.51)

where ũ and p̃ are the sub-grid scales of the displacements and the pressure, respectively.
The residual-based nature of the VMS approach defines the sub-grid terms, as

ũ = τu[STCdevSuh + Gph+ f ]

p̃ = τp[GTuh −
ph
K ]

(3.52)

where τu and τp are the stabilization parameters.
Optimal convergence rates can be achieved by choosing the stabilization parameters (Cervera et al.,

2010a; Chiumenti et al., 2021) as

τu = cu
h2

e
2G̃

τp =
2cp
3 G̃(1 + ν

1− ν
) he

L0

(3.53)

with cu and cp being arbitrary stabilization constants, such that 0 6 cu 6 1 and 0 6 cp 6 1, G̃ is the
effective secant shear modulus, ν is the Poisson ratio, he is the size of the FE and L0 is the characteristic
length of the problem. Note that, upon mesh refinement, the contribution of the sub-grid scales vanish
(ũ→ 0 and p̃→ 0).

Likewise, the virtual displacements δu and pressure δp are enriched by the sub-grid finer scales,
yielding the following

δu =̃ δû = δuh + δũ

δp =̃ δ p̂ = δph + δ p̃
(3.54)

Subsequently, the discrete stabilized FE approximation are obtained by using Eqs. (3.51 - 3.53) and
the FE interpolation to Eq. (3.41), such that
´

Ω(BuδU)T(CdevBuU)dΩ + τp
´

Ω NuG(GNu)TUdΩ + (1− τp
K )
´

Ω(NuδU)TGN pPdΩ =

Ŵ(δU) ∀δU

(1− τp
K )
´

Ω(N pδPG)T NuUdΩ− (1− p
K )
´

Ω N pδP N pP
K dΩ +

−τu
´

Ω(N pG)TGN pPdΩ = 0 ∀δP
(3.55)

and δU and δP are arbitrary, thus the discrete stabilized FE system is written in matrix form as[
Kdev

UU + τpKUGG (1− τp
K ) KUP

(1− τp
K ) (KUP)

T −(1− τp
K ) MPP − τuKPGG

] [
U

P

]
=

[
F

0

]
(3.56)

where [U P]T is the array of nodal values of displacements and pressure and the additional terms given
in Eq. (3.56) are defined as

KUGG =

ˆ
Ω

NuG(GNu)
TdΩ (3.57)

KPGG =

ˆ
Ω
(N pG)TGN pdΩ (3.58)

3.3 Enhanced stress/strain accuracy

The u/p formulation shows an enhanced solution of the pressure field, nevertheless the total strains
are still piece-wise constant and discontinuous among elements. The following step is to design a FE

formulation with enhanced stress/strain accuracy for nonlinear solid mechanics problems.
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3.3.1 The u/e/p formulation

The forthcoming development is an extension of the u/s/p (Chiumenti et al., 2015) suitable for strain-
driven nonlinear constitutive laws.

3.3.1.1 Strong form

The Cauchy equation is written in terms of displacements, deviatoric-strains and pressure introducing
Eq.(3.35) into Eq. (3.36), such that

STCdeve + Gp+ f = 0 (3.59)

The mixed u/e/p strong form of the solid mechanics problem is then obtained by adding the
constitutive relation in Eq. (3.38-b) and the displacement/deviatoric-strain kinematic relation in Eq.
(3.23)

STCdeve + Gp+ f = 0

Wu− e = 0

GTu− p
K = 0

(3.60)

to be solved with the appropriate Dirichlet’s and Neumann’s boundary conditions.

3.3.1.2 Weak form

The variational form of the mixed u/e/p problem is obtained as follows.
Firstly, Eq. (3.60-a) is premultiplied by a virtual displacement δu that is also conforming to the

boundary conditions (δu = 0 on Γ), integrated over the domain Ω:

´
Ω δuTSTCdevedΩ +

´
Ω δuTGpdΩ +

´
Ω δuT f dΩ = 0 ∀δu (3.61)

Secondly, the divergence theorem is used to the left-hand side in Eq. (3.61) and the boundary is
split into the Neumann and Dirichlet boundaries, recalling that the Dirichlet boundary terms are null.
Therefore, the Principle of Virtual Work is derived as follows

´
Ω δuTSTCdevedΩ +

´
Ω δuTGpdΩ =

ˆ
Ω

δuT f dΩ +

ˆ
Γt

δuT t̄dΓ︸ ︷︷ ︸
W(δu)

∀δu
(3.62)

where W(δu) is the virtual work performed by the body forces f and traction t̄ and the left-hand side
is the virtual work done by the internal forces.

Thirdly, Eq. (3.60-b) is premultiplied by an arbitrary virtual deviatoric-strain δe and integrated over
the domain, resulting in

ˆ
Ω

δeTWu dΩ−
ˆ

Ω
δeTe dΩ = 0 ∀δe (3.63)

The fourth-order operators identity (I4), volumetric (V ), deviatoric (D) are introduced in Voigt’s
notation

I4 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(3.64)
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V =
1
3

I IT =
1
3



1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(3.65)

D = I4 − V =
1
3



2 −1 −1 0 0 0

−1 2 −1 0 0 0

−1 −1 2 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3


(3.66)

Eq. (3.35) can now be rewritten using the fourth-order deviatoric operator D as

s = Cdeve = DCe = 2GDe = 2Ge (3.67)

where G is the secant shear modulus. The following relations are satisfied using the fourth-order
deviatoric operator D

CdevD = Cdev (3.68)

W = DS (3.69)

De = e (3.70)

In the following, Eq. (3.63) is premultiplied by Cdev

ˆ
Ω

δeTCdevWu dΩ−
ˆ

Ω
δeTCdeve dΩ = 0 ∀δe (3.71)

Now, applying the relations in Eqs. (3.68)-(3.70), the weak form of the deviatoric constitutive
equation becomes ˆ

Ω
δeT [Cdev(Su)]dΩ−

ˆ
Ω

δeT(Cdeve)dΩ = 0 ∀δe (3.72)

Finally, Eq. (3.60-c) is premultiplied by an arbitrary virtual pressure δp and integrate over the spatial
domain: ˆ

Ω
(δpG)TudΩ−

ˆ
Ω

δpT p
K

dΩ = 0 ∀δp (3.73)

Hence, the resulting weak form of the mixed u/e/p problem is given by:

´
Ω(δuS)TCdevedΩ +

´
Ω δuTGpdΩ = W(δu) ∀δu

´
Ω δeT [Cdev(Su)]dΩ−

´
Ω δeT(Cdeve)dΩ = 0 ∀δe

´
Ω(δpG)TudΩ−

´
Ω δpT p

K dΩ = 0 ∀δp

(3.74)

Note that the system of equations (3.74) is symmetric. The solution to the mixed u/e/p problem is
to find the displacements u, the deviatoric-strains e and pressure p that verify the system of Eq. (3.74)
in compliance with the boundary condition u = 0 on Γu, given an arbitrary virtual displacement δu,
which vanishes on Γu, an arbitrary virtual deviatoric-strain δe and an arbitrary virtual pressure δp.
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3.3.1.3 FE approximation

The discretezed version of the problem is obtained by dividing the continuous domain into FE

partitions, such that Ω = ∪Ωe. The continuous displacements u, deviatoric-strains e and pressure
p are replaced by the discrete FE approximations

u =̃ û = NuU

e =̃ ê = NeE

p =̃ p̂ = N pP

(3.75)

U, E and P are the vectors of nodal values of the displacements, deviatoric-strains and pressure, respec-
tively, and their corresponding matrices containing the FE interpolation functions are Nu, Ne and N p.

Applying the Galerkin method, the discrete virtual displacements δu, virtual deviatoric-strains δe
and virtual pressure δp approximations are taken as

δu =̃ δû = NuδU

δe =̃ δê = NeδE

δp =̃ δ p̂ = N pδP

(3.76)

Introducing the approximations in Eqs. (3.75) - (3.76) into the variational form of the u/e/p in Eq.
(3.74) and integrating over the spatial domain, results in

´
Ω(SNuδU)TCdevNeEdΩ +

´
Ω(NuδU)TGN pPdΩ = Ŵ(δU) ∀δU

´
Ω(NeδE)T [Cdev(SNuU)]dΩ−

´
Ω(NeδE)T(CdevNeE)dΩ = 0 ∀δE

´
Ω(N pGδP)T NuUdΩ−

´
Ω(N pδP)T N pP

K dΩ = 0 ∀δP

(3.77)

The virtual displacements δU, virtual deviatoric-strains δE and virtual pressure δP are arbitrary and
SNu = Bu, thus the Eq. (3.77) is rewritten as

´
Ω BT

u CdevNeEdΩ +
´

Ω NT
u GN pPdΩ = F

´
Ω NT

e [C
devBuU]dΩ−

´
Ω NT

e (C
devNeE)dΩ = 0

´
Ω(N pG)T NuUdΩ−

´
Ω NT

p
N pP

K dΩ = 0

(3.78)

The algebraic system of Eq. (3.78) can be rewritten in matrix format as 0 KUE KUP

(KUE)
T −MEE 0

(KUP)
T 0 −MPP


 U

E

P

 =

 F

0

0

 (3.79)

where [U E P]T is the array of nodal values of displacements, deviatoric-strains and pressure and the
new terms are

MEE =

ˆ
Ω

NT
e CdevNedΩ (3.80)

KUE =

ˆ
Ω

BT
u CdevNedΩ (3.81)

3.3.1.4 Variational Multi-Scale Stabilization

Using now the VMS method, the continuous fields are approximated by
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u =̃ û = uh + ũ

e =̃ ê = eh + ẽ

p =̃ p̂ = ph + p̃

(3.82)

The same procedure is applied to the discrete virtual displacements δu, virtual deviatoric-strains δe
and virtual pressure δp as follows

δu =̃ δû = δuh + δũ

δe =̃ δê = δeh + δẽ

δp =̃ δ p̂ = δph + δ p̃

(3.83)

The variational form in Eq. (3.74) is rewritten including the subg-grid scale terms, such that the
resulting weak form of the mixed u/e/p problem is given by

´
Ω[Sδuh]

T(Cdeveh)dΩ +
´

Ω[Sδuh]
T(Cdev ẽ)dΩ +

´
Ω δuh

T(Gph)dΩ+

+
´

Ω δuT
h (G p̃)dΩ = W(δuh)

∀δuh (a)

´
Ω δeT

h [C
devSuh]dΩ +

´
Ω δeT

h [C
devSũ]dΩ+

−
´

Ω δeT
h CdevehdΩ−

´
Ω δeT

h Cdev ẽdΩ = 0
∀δeh (b)

´
Ω δpT

h (G
Tuh)dΩ +

´
Ω δpT

h (G
T ũ)dΩ−

´
Ω δpT

h
ph
K dΩ−

´
Ω δpT

h
p̃
K dΩ = 0 ∀δph (c)

´
Ω[Sδũ]T(Cdeveh)dΩ +

´
Ω[Sδũ]T(Cdev ẽ)dΩ +

´
Ω δũT(Gph)dΩ+

+
´

Ω δũT(G p̃)dΩ = W(δũ)
∀δũ (d)

´
Ω δẽT [CdevSuh]dΩ +

´
Ω δẽT [CdevSũ]dΩ+

−
´

Ω δẽTCdevehdΩ−
´ T

Ω δẽTCdev ẽdΩ = 0
∀δẽ (e)

´
Ω δ p̃T(GTuh)dΩ +

´
Ω δ p̃T(GT ũ)dΩ−

´
Ω δ p̃T ph

K dΩ−
´

Ω δ p̃T p̃
K dΩ = 0 ∀δ p̃ ( f )

(3.84)

The residual-based sub-grid solution in the variational form, presented in the system of equations
Eq. [3.84(d)-3.84(f)], are assumed as

ũ =τu[ST(Cdeveh) + Gph + f]

ẽ =τe[Wuh − eh]

p̃ = τp[GTuh −
ph
K ]

(3.85)

τu, τe and τp are the stabilization parameters.
In order to obtain optimum convergence rates upon mesh refinement, the stabilization parameters

need to be chosen as (Badia and Codina, 2009; Castillo and Codina, 2014):

τu = cuheL0
2C̃dev

τe = ce
he
L0

τp = cpCvol he
L0

(3.86)

where L0 is a characteristic length of the problem, cu, ce and cp are arbitrary stabilization constants, he

is the FE size and C̃dev is the secant shear modulus defined as

C̃dev =
‖sh‖

2 ‖eh‖
(3.87)
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and K̃ is the compressibility modulus computed from the Fourier analysis (Badia and Codina (2009)),
such that:

Cvol =

(
c1

2G̃
+

c2

K̃

)−1
(3.88)

where G̃ and K̃ are the effective secant shear modulus and effective bulk modulus, respectively. The constants
c1 and c2 are arbitrary, but O(1); thus choosing them conveniently as c1 = 1 and c2 = 2

3 , Cvol can be
written in terms of G̃ as

Cvol =
2
3

G̃
(

1 + ν

1− ν

)
(3.89)

Note that, upon mesh refinement (he → 0), the stabilization terms in Eq. (3.86) tend to zero.
Next, the residual-based solution presented in Eqs. (3.86) is introduced to the discrete variational

form of Eqs. [3.84(a)-3.84(c)] together with the FE approximations in Eqs. (3.75 - 3.76), resulting in

(1− τe)
´

Ω(δUT NT
u ST︸ ︷︷ ︸

=BT
u

)(CdevNeE)dΩ + τe
´

Ω(δUT NT
u ST︸ ︷︷ ︸

=BT
u

)(CdevSNu︸︷︷︸
=Bu

U)dΩ+

+(1− τp
K )
´

Ω δUT NT
u GN pPdΩ + τp

´
Ω δUT NT

u GGT NuUdΩ = Ŵ(δU)

∀δU

(1− τe)
´

Ω δET NT
e [C

dev(SNu︸︷︷︸
=Bu

U)]dΩ − τu
´

Ω(δET NT
e SCdev)(CdevST NeE)dΩ

−τu
´

Ω(δET NT
e S)[Cdev(GN pP)]dΩ− (1− τe)

´
Ω δET NT

e CdevNeEdΩ = 0

∀δE

(1− τp
K )
´

Ω δPT NT
p (G

T NuU)dΩ− τu
´

Ω(δPT NT
p GT)(CdevST NeE)dΩ+

−τu
´

Ω(δPT NT
p GT)(GN pP)dΩ− (1− τp

K )
´

Ω δPT NT
p

N pP
K dΩ = 0

∀δP

(3.90)

The virtual displacements, virtual deviatoric-strains and virtual pressure are arbitrary; this leads to
the stabilized FE system of equations: τeKdev

UU + τpK̄UGG (1− τe)KUE (1− τp
K )KUP

(1− τe)(KUE)
T −(1− τe)MEE − τuKEE −τuKEP

(1− τp
K )(KUP)

T −τu(KEP)
T −(1− τp

K )MPP − τuKPGG


 U

E

P

 =

 F

0

0

 (3.91)

where [U E P]T is the array of nodal values of the displacements, deviatoric-strains and pressure and
the new terms displayed in Eq. (3.91) are

K̄UGG =

ˆ
Ω

NT
u GGT NudΩ (3.92)

KEE =

ˆ
Ω
(NT

e SCdev)(CdevST Ne)dΩ (3.93)

KEP =

ˆ
Ω
(NT

e SCdev)(GN p)dΩ (3.94)



4
T H E R M O - M E C H A N I C A L M O D E L L I N G

In this chapter, thermo-mechanical modelling is addressed, aiming to the accurate description of the
physical phenomena that occur during the AM process.

The thermo-mechanical coupling is performed in a staggered manner (Agelet de Saracibar et al.,
1999, 2001; Chiumenti et al., 2013; Dialami et al., 2016, 2017), considering temperature-dependent
properties in both the thermal and mechanical analyses.

The thermo-visco-plastic-elasto-plastic model is considered. An annealing temperature is used as a
threshold between the visco-plastic model and the elasto-plastic model. (Bellet et al., 2003; Agelet de
Saracibar et al., 1999; Cervera et al., 1999; Chiumenti et al., 2010, 2016; Zhang et al., 2018a).

The outline of the chapter is as follows. Section 4.1, the thermal analysis is described considering
a DED manufacturing process. The time integration aspects and thermo-mechanical coupling are
presented in Section 4.2. In Section 4.3, the phase-change and the annealing mechanism are introduced.
Lastly, Section 4.4 and Section 4.5 present the elasto-plastic and visco-plastic models provided for the
solid and liquid-like phases, respectively.

4.1 Thermal analysis

In this section, the strong and weak form of the thermal problem are presented followed by the FE

approximation, the external heat source definition and the boundary conditions involved in the DED

process.

4.1.1 Strong form

The strong form of the thermal problem is described by the energy balance equation written in terms
of the temperature T

Ḣ = −∇ · q + ṙ on Ω (4.1)

where Ḣ is the rate of enthalpy, ṙ represents the rate of heat source and q, is the heat-flux computed
according to the Fourier law

q = −k∇T (4.2)

with k = k(T) being the temperature-dependent thermal conductivity of the material.
The enthalpy rate Ḣ in Eq. (4.1) can be rewritten in terms of the temperature rate Ṫ as

Ḣ = ρcṪ (4.3)

where ρ = ρ(T) is the temperature-dependent material density and c = c(T) is the temperature-
dependent specific heat capacity of the material.

Introducing Eqs. (4.2)-(4.3) into Eq. (4.1), the strong form of the thermal problem becomes

ρcṪ −∇ · (k∇T) = ṙ on Ω (4.4)

to be solved with the appropriate Dirichlet’s and Neumann’s boundary conditions.
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4.1.2 Weak form

Introducing the test function δT and applying the divergence theorem to the second term on the righ-
hand side of Eq. (4.4), yields the weak form of the thermal problem

ˆ
Ω
[δT(ρcṪ)]dΩ +

ˆ
Ω
[k∇δT · ∇T]dΩ =

ˆ
Ω
[δTṙ]dΩ−

ˆ
Γ
[δTq̄]dΓ (4.5)

where q̄ are the prescribed heat flux. Note that q̄ = q · n, n being the normal vector to the free surface
and the prescribed temperatures vanish at the boundary Γ.

The solution to the AM thermal problem is to find the temperature T(t) ∈ H1(Ω(t)) in (t0, t f ], that
satisfies Eq. (4.5) together with the appropriate boundary conditions, where t0 and t f are the initial
and final instant of the AM process, respectively.

The thermal problem is subjected to the initial conditions at instant t0 = 0, such that the initial
temperature field is defined as T(x, t0) = T0(x).

4.1.3 FE approximation

The domain Ω is discretized in a FE partition such that Ω = ∪Ωe. Th Galerkin method is employed to
approximate the temperature and virtual temperature fields as

T =̃ T̂ = NTT

δT =̃ δT̂ = NTδT
(4.6)

where T and δT are the finite element nodal temperature and virtual temperature vectors, respectively,
and NT is the matrix containing the interpolation function adopted.

Introducing the FE discrete approximations into the continuous weak form of Eq. (4.5), we obtain
ˆ

Ω
δTT NT

TρcNT ṪdΩ +

ˆ
Ω

δTT NT
TGTkGNTTdΩ =

ˆ
Ω

δTT NT
T ṙdΩ−

ˆ
Γ
(δTT NT

T q̄)dΓ ∀δT (4.7)

The choice of the virtual field is arbitrary, thus the Galerkin approximation of Eq. (4.7) is
ˆ

Ω
NT

TρcNTdΩṪ +

ˆ
Ω

BT
TkBTdΩT =

ˆ
Ω

NT
T ṙdΩ−

ˆ
Γ

NT
T q̄dΓ (4.8)

with BT = GNT .

4.1.4 Boundary Conditions

In the DED process simulation, the most common heat loss mechanisms identified at the boundary Γ
are two: 1) The heat transfer by conduction between the building component and the substrate; 2) The
heat losses originated by the heat transfer by radiation and convection through the free surfaces in
contact with the environment.

In this sense, the heat loss mechanisms q̄, can be replaced by

q̄ = qcond + qconv + qrad (4.9)

with qcond the heat loss by conduction, qconv is the equivalent heat loss by convection and qrad is the
radiation flux through the environment (Chiumenti et al., 2017a; Lu et al., 2019).

The domain Ω is closed by the smooth boundary Γ, such that Γ = Γs ∪ Γe, where Γs and Γe are the
component-substrate boundary and the environment boundary, respectively.

The temperature at the interface of the substrate-component is given by:

T |Γs= Ts (4.10)

Heat Loss by Conduction. The heat loss by conduction between the substrate and component is
given by Newton’s law (Dialami et al., 2013) as
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Figure 19: Power distributions and their corresponding HAZ.

qcond = hcond(T − Ts), on Γs (4.11)

where hcond is the Heat Transfer Coefficient (HTC) by conduction on Γ and Ts is the temperature of the
substrate.

Environmental Heat Loss. The heat loss through the environment is due to the convection and
radiation heat transfers, expressed by Newton’s law as

qconv = hconv(T − Te), on Γe (4.12)

qrad = hrad(T − Te), on Γe (4.13)

where hconv and hrad are the HTCs associated to the convection and radiation, respectively, and Te is the
environment temperature. The HTC for the radiation (Chiumenti et al., 2017b) can be expressed as

hrad = σε(T3 + T2Te + TT2
e + T3

e ) (4.14)

where σ is the Stefan-Boltzmann constant and ε is the emissivity parameter of the radiating surface.

4.1.5 External Heat Source

For AM processes, there are several forms to provide the power input (e.g., electric arc, laser beam
or electron beam). In computational simulations, two methodologies are widely used. The first one
represents the power input as a Gaussian/Double ellipsoid density distribution (Goldak et al., 1984;
Ren et al., 2010; Chiumenti et al., 2016; Gouge et al., 2019) and the second one computes an uniformly
distributed average value of the power (Ma and Bin, 2007; Li et al., 2016; Lu et al., 2018) applied to the
HAZ.

The former approach is used for the study of the melt-pool, where the time-scale involved is small.
The latter approach is employed for part-scale analyses and validated with several numerical and
experimental tests by Chiumenti et al. (2017a,b) and is adopted herein.

Fig.19 shows the power distribution as a function of the length-scale, ∆l1, for the double-ellipsoid
distribution, and for length-scale for the average distribution, ∆l2, where vscan is the laser scanning
speed, ∆t1 and ∆t2 are the time increment for the double-ellipsoid and the average distribution
approaches, respectively and d0 the spot size of the power input.

The average heat density distribution per unit volume at the instant tn+1 is computed as

ṙ =
ηW

Vn+1
HAZ

, (4.15)

where η is the efficiency of the heat absorption and W is the total power input and Vn+1
HAZ is the heat

affected volume at the current time tn+1, which is the bounding-box that corresponds to the average
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distribution length-scale ∆l2 in Fig.19. The heat affected volume at the current time tn+1 is computed
between the initial and final position during the current time-increment, ∆t = tn+1 − tn, as

Vn+1
HAZ =

ne

∑
e=1

V(e)|e ε HAZ, (4.16)

4.2 Time integration and thermo-mechanical coupling

Next, the time integration scheme and thermo-mechanical coupling are presented for the AM process.

4.2.1 Time integration

The AM process includes very different physics and very different time-scales characteristic of the
micro-structure (micro-scale), melt-pool (meso-scale) and component (macro/part-scale) analyses.

The simulation of the melt-pool, for instance, is driven by physical phenomena that occur in a very
small time-scale, which results in even smaller time-steps for their proper simulation, in the order of
µs (Zhang et al., 2018a).

Contrarily, the time-step increment of a part-scale analysis is roughly estimated as ∆t = d/v, where
d is the size of the heat source spot and v is the speed (Zhang et al., 2018a), and this value may be scaled
up-to 40 times without affecting the results (Zhang et al., 2018b). Thus, the time-stepping required for
the part-scale is much larger than for the melt-pool analysis.

Kollmannsberger and Kopp (2021) investigate the convergence-rate of first and second-order time
integration schemes, focusing on the backward Euler and the Crank-Nicholson methods for LPB

processes. In their work, when large time-scales are to be solved, which is the case for the part-scale
analysis, solution oscillations may appear in the Crank-Nicholson method, see Fig. 20-(a). Additonaly,
the Crank-Nicholson method only achieves second-order convergence on the asymptotic regime for
small time-increments (high number of time-steps), see Fig. 20-(b).

For this reasons, the implicit backward Euler method is used to advance in time (Agelet de Saracibar
et al., 1999, 2001; Chiumenti et al., 2013; Dialami et al., 2017) to solve the discrete thermo-mechanical
problem.

The time-increment ∆t = tn+1 − tn is set automatically according to the deposition speed vdep and
the recoating speed vrec, which may vary from hatch to hatch. Threfore, the time-increment ∆t is not fix.
The time-increment where the power input is on ∆ton is computed using the the deposition speed and
a constant (user-defined) length ∆l. When the power input is off, the time-increment ∆to f f is calculated
with the recoating speed (vrec). The ∆to f f enables the component-substrate to experience cooling. Thus,
the ∆ton and ∆to f f are computed as

∆ton =
∆l

vdep
(4.17)

∆toff =
∆l
vrec

(4.18)

In the event of an undesired over-heating of the component-substrate, is possible to introduce
a pause interval in the GCode file to cool down the AM built or wait the set to reach a desired
maximum temperature. Then, the pause time tpause is defined in the GCode and a user-defined number
of divisions of the pause npause is used to compute the pause-increment ∆tpause as

∆tpause =
tpause

npause
, (4.19)

4.2.2 Thermo-mechanical coupling

In AM problems, the mechanical dissipation is negligible and a staggered solution of the thermo-
mechanical problem is preferred; adding iterative cycles among the thermal and mechanical partitions
does not improve the thermo-mechanical response (Patil et al., 2021). The two sub-problems, the
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(a)

(b)

Figure 20: Comparative results between the backward Euler and the Crank-Nicholson methods. (a) Solution
oscillations in the Crank-Nicholson results. (b) Convergence-rate of the time integration methods.
(Kollmannsberger and Kopp, 2021)

thermal and the mechanical, are solved separately and no iterative loops over the two sub-problems
are needed to guarantee the convergence of the solution (Chiumenti et al., 2013; Patil et al., 2021).

First, the thermal problem is linearized assuming temperature-dependent properties computed at
tn, and solved to get the temperature-field at tn+1. Next, the temperature-dependent properties of the
mechanical problem are computed using the solution T(x, tn+1).

4.3 Phase change and annealing

The phase-change process is generally much faster than the thermal diffusion of the power input at the
HAZ. Thus, the net influence of the phase-change in the thermo-mechanical problem can be neglected
(Chiumenti et al., 2017a) because melting and solidification occur within the same time interval (∆t =
tn+1 − tn). This assumption removes the associated non-linearity originated in the thermal analysis.
Nevertheless, the phase-change is considered for the choice of the appropriate constitutive model.

Denlinger et al. (2015) reset the plastic strains when the temperature rises above the annealing
temperature Tannel . Thus, when the material is in liquid-like state.
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Figure 21: Phase-change model according to the FE temperature.

Bellet et al. (2003) adopt a transition temperature within the range of the solidification interval.
Herein, the annealing temperature is used as the threshold to switch between the visco-plastic and the
elasto-plastic constitutive models.

The solution of the thermal problem permits the computation of the thermal-strain εt as

εt = 3[α(Te)(Te − Tre f )− α(T0)(T0 − Tre f )] (4.20)

where α is the temperature-dependent thermal-expansion coefficient, Tre f is the reference temperature,
taken as Tre f = 20 [oC], T0 is the initial temperature of the material at t = t0 and Te is the average
temperature of the FE at the current time t = tn+1.

The FE temperature, Te, used to compute the thermal-strains should be taken as

Te =

{
Tanneal for Te > Tanneal

Te for Te < Tanneal
(4.21)

Note that, whether the FE has a Te > Tanneal , Eq. (4.20) results in no thermal-strains εt. This
corresponds to the deposition of the melted material in a liquid-like phase. The thermal-strains start to
develop when the stiffening of the material occurs (Te < Tanneal).

The annealing temperature is also employed to set the material constitutive model. Introducing the
additive split of the total strains into their elastic, visco-plastic and elasto-plastic counterparts, and
together with the annealing temperature threshold, the elastic strain is defined as

εe =

{
ε− εvp for Te > Tanneal (Liquid-like phase)

ε− εvp − εp − εt for Te < Tanneal (Solid phase)
(4.22)

where εvp and εp are the visco-plastic and elasto-plastic strains, respectively.
Fig. 21 presents a scheme of the constitutive model including the phase-change assumption through

the annealing temperature threshold.

4.4 Solid phase: elasto-plastic model

Herein, the elasto-plastic model is presented. Eq. (4.22)-(b) is rewritten in terms of the deviatoric-strains
as

ee = e− evp − ep (4.23)

Applying the additive split of the deviatoric-strains, presented in Eq. (4.23), the deviatoric-stresses
results in

s = Cdev
0 ee = Cdev

0 (e− evp − ep) (4.24)

where Cdev
0 is the deviatoric part of the elastic constitutive matrix. Introducing Eqs. (4.23)-(4.24) and

the thermal-strains into the constitutive equations in Eqs. (3.34)-(3.35) results in the elasto-plastic
constitutive model:
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p = K(∇ · u− εt)

s = Cdev
0 (e− evp − ep)

(4.25)

The corresponding equivalent deviatoric-stress τ is given by

τ =

√
3
2
‖s‖ =

√
3
2
[sTs] (4.26)

The J2 plastic yield criterion, Φ(T, q), is defined as

Φ(s, T, q) = τ(s)− rp(T, q) 6 0 (4.27)

where rp(T, q) is the temperature-dependent yield surface radius

rp(T, q) = σy(T)− q(T, ξ) (4.28)

where σy(T) is the temperature-dependent elastic uniaxial stress threshold, ξ is the equivalent plastic
strain and q is a stress-like internal variable that controls the isotropic hardening of the model

q(T, ξ) = −[σ∞(T)− σy(T)][1− exp (δξ)]− Hξ for 0 6 ξ 6 ∞ (4.29)

ξ =

√
2
3
‖ep‖ (4.30)

where σ∞(T) is the temperature-dependent ultimate stress, H is the linear hardening parameter and δ
is the coefficient that controls the exponential hardening law.

The plastic evolution laws are

ėp = λ̇n (4.31)

ξ̇ = λ̇

√
2
3

(4.32)

where λ̇ is the visco-plastic multiplier determined by the Kuhn-Tucker and consistency conditions and
n is the normal to the yield surface, defined by

n =
∂Φ(s, T, q)

∂s
=

s
‖s‖ (4.33)

The Kuhn-Tucker conditions, related to the loading and unloading, hold:

λ̇ = 0 Φ < 0 (Elastic unloading) (4.34)

λ̇ > 0 Φ = 0 (Plastic loading) (4.35)

λ̇Φ = 0 (4.36)

In addition, the visco-plastic multiplier assumes the following rate-dependent evolution law

λ̇ =

〈
Φ(s, T, q)

η

〉 1
m

(4.37)

where 〈·〉 are the Macauly brackets. Therefore, the stress is allowed to exceed the yield surface, with
a viscous overstress η(λ̇)m, being η(T) and m(T)are the temperature-dependent plastic viscosity and
rate sensitivity, respectively (Chiumenti et al., 2016).
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4.5 Liquid-like phase: visco-plastic model

The liquid-like behavior of the material implies that the incompressibility constraint (K → ∞) applies to
the melted material. Additionaly, in the liquid-phase the elastic component of the strain tensor vanishes
(Chiumenti et al., 2016), yielding the following:

∇ · u = εt

e = evp

(4.38)

In this sense, only volumetric thermal and viscous shear deformations take place. The yield surface
radius defined in Eq. (4.28) vanishes above the annealing temperature rp = 0. Thus, the consequence
of this behavior is a pure viscous model.

Furthermore, above the melting point, the liquid-phase behaves as a Newtonian fluid. For this
reason, the rate sensitivity of the viscous law is taken as m = 1. Therefore,

s = η(T)ėvp (4.39)
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A D A P T I V E M E S H R E F I N E M E N T

In this chapter, the aspects related to the Adaptive Mesh Refinement (AMR) are addressed. A multi-
criteria hierarchical octree-based AMR strategy is described for the AM simulation. This strategy aims to
reduce geometry and mesh manipulation, while providing an efficient environment to tackle complex
geometries. The approach enables to eliminate both the user interaction and the need for initial fine
meshes to describe those geometries.

This chapter is divided as follows. In Section 5.1, the octree meshing is detailed including the
treatment of the hanging nodes and mesh projections. In the sequence, the refinement/coarsening
criteria adopted are discussed in Section 5.2, followed by the coarsening correction strategy in Section
5.3. Complementary aspects to fully accomplish the automatic mesh generation are addressed in
chapter 6. Lastly, the coarsening correction strategy is considered.

5.1 Octree meshing

The tree-data structures, quadtrees and octrees, are easy to parallelize and provide better performance
when working with block-structure methods. Octrees/quadtrees are capable of refining parallel meshes
using a single mapping sequence due to its organized structure (Baiges and Bayona, 2016).

The octree mesh partitioner divides the element isotropicaly, i.e. the element is divided in halves in
all directions, creating 8 new elements. The newly created elements are called child elements and the
original element is the parent element. This introduces a hierarchical relation between parent and child
elements.

The FE partition Ωe at the time instant t = t0 defines the base of the octree hierarchy Ωe(t0) = Ωe0 .
All the FEs ∪Ωe(t0) are named as level zero FEs. The FEs created from the octree division of the level zero
FEs are named sequentialy as level one elements. The level one elements are the corresponding branch to
the level zero elements. Additionaly, the level one elements are concurrently child elements to the level
zero elements and also parent elements to the level two elements.

Fig. 22 presents a color scheme of the octree hierarchy structure. Fig. 22-(a) presents the level zero
FE partition and the resulting FE partition after 4 adaptivity cycles have been applied. Fig. 22-(b) shows
a color scheme to represent the parent-child relation among the several existing refinement levels.

5.1.1 Hanging nodes

If a hanging node is introduced in an edge between two or more FEs and no additional measure is taken
this results in a non-conforming interpolation of the displacements (and other interpolated unknowns)
for the affected FEs. Note that derived fields are discontinuous anyway.

To restore the inter-element conformity of the nodal solution when hanging nodes are used,
several techniques have been developed. Amidst the popular hanging node treatments, there are:
1) the hanging node constraint (Rheinboldt and Mesztenyi, 1980; Shephard, 1984; Badia et al., 2020,
2021; Neiva and Badia, 2021), detailed next; 2) the use of the discontinuous-Galerkin approach
to treat the hanging nodes as a discontinuous field (Cockburn and Shu, 1998); 3) the hybrid
continuous-discontinuous Galerkin that introduces the low computational cost of the continuous
Galerkin approach (Badia and Baiges, 2013); and 4) the multi-level hp formulation for high-order mesh
adaptivity (Zander et al., 2015; Di Stolfo et al., 2016; Zander et al., 2016a).

53



54 adaptive mesh refinement

Level 0 
Level 1
Level 2

Level 3
Level 4

Refinement Levels:

After 4 adaptivity

cycles

(a)
Parent 

Child Child Child Child Child/
Parent

Child/
Parent

...Child Child/
Parent

Child/
Parent

Child/
Parent

Child/
Parent Child...

...
Child Child

...
Child Child

...
Child Child

...
Child Child

(b)

Figure 22: Color scheme of the octree hierarchy.

The relations between the hanging nodes and their parent nodes is established from an elemental
loop that checks the node matching of faces and edges which connect to the higher elements. The
hanging nodes are the nodes that are neither present in both sides of the face, nor in all elements
concurring to the same edge.

In most tree-based algorithms, the hanging node treatment follows a 2 : 1 balance condition that
must be satisfied. This condition imposes that there exists only one hanging node on the interface of
two adjacents FEs. This enforces that the refinement level difference between the coarsest and finest
adjacent FE is Lev(FE f )− Lev(FEc) = 1, where Lev(·) is the refinement level, FE f and FEc are the finest
and coarsest FE of a patch of adjacent FEs, respectively.

Contrariwise, the 2 : 1 balance condition is not imposed in the following. The treatment of the
hanging nodes consists in constraining the values of the hanging nodes according to the values of
the parent nodes (Baiges et al., 2017). This is achieved from a hanging node list with the recursive
dependency structure stored in a Compressed Sparse Row (CSR) format. Since there is no 2 : 1 balance
condition that must be satisfied, the number of parent nodes that contributes to the value of the hanging
node may be arbirtrarily large and the CSR format provides good efficiency to handle such volume of
data.

Fig. 23 presents the hanging node constraint treatment for the nodes unknowns u3, u4 and u5
computed from the unknowns of the standard parent nodes u1 and u2. This is achieved by modifying
the test/shape functions as

φ∗(x) = φ(x) +
nhanging

∑
i=1

(φ(xi)φhi
(x)) (5.1)

where φ∗ is the modified test/shape function, written in terms of the original shape/test function φ
and φhi

is the hanging shape/test function, computed according to the spatial location of the hanging
node, where xi is the i-th hanging node position, and nhanging is the number of hanging nodes.

The straight-forward application of the parent-child hanging node constraint may lead to scenarios
where a hanging node is active and contributes to an inactive parent, causing a singular system. To
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Figure 23: Hanging node unknown computation values from parent nodes.

(a) (b)

Figure 24: Node classification between standard and hanging at two time instants. (a) t = tn. (b) t = tn+1.

avoid this situation, the algorithm checks if the parent node is active or inactive, and, if required,
modifies the status of the hanging node to a standard node.

Fig. 24 illustrates the change on the classification of the nodes 1 and 2 from the standard status
to hanging node in two subsequent time instants; Fig. 24-(a) standard nodes at t = tn and Fig. 24-(b)
hanging nodes at t = tn+1, respectively.

5.1.2 Mesh projections

In the AM process, the FE space evolves over time, representing the deposition of new material. This
requires the building of a new finite element space and the data-transfer from the mesh at the previous
instant tn to the current instant tn+1.

The data-transfer process occurs at the same time refinement and/or coarsening of the mesh takes
place. The data-transfer is performed through mesh projections from the the solution at the instant tn

to the computed mesh at the instant tn+1.
The data-transfer is done through mesh projections procedures of the nodal and gaussian variables.

For nodal variables, such as the displacement u (and deviatoric-strain e and pressure p, if is the case
of the mixed u/e/p formulation) and temperature, a point-to-point projection is used. Let the nodal
variable, herein, be called as uh, representing the nodal variables involved in the thermo-mechanical
problem.

Therefore, the point-to-point projection from the mesh Ωn
e at the previous time instant tn, onto the

new mesh Ωn+1
e at the current time instant tn+1 is given by:

Pn+1(un
h) (5.2)

where Pn+1(·) is the point-to-point projection onto the new mesh Ωn+1
e , computed from the nodal

unknowns at the time instant tn, un
h .

This procedure is computationally cheap and straightforward for nested octree-based meshes; the
nodal values at the hanging nodes are interpolated from the corresponding parent elements, following
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the procedure described in Section 5.1.1 and the nodal solution of pre-existing nodes in the Ωn
e are

kept.
The historic variables stored at the quadrature points, such as the strains, are transferred through a

element by element L2 projection, such that:

Πn+1(εn) (5.3)

where Πn+1(·) is the element-wise L2 projection.
The projection is computed for each element FEn+1 of the new mesh according to

ˆ
FEn+1

δuΠn+1(εn)dΩ =

ˆ
FEn+1

δuεndΩ ∀δu ∈Wh,FEn+1 (5.4)

with δu being the weight function and Wh,FEn+1 is the finite element space of the new mesh restricted
to the considered FE. The projection Πn+1(εn) is computed, interpolated and stored at the quadrature
points of the new FE.

5.2 Refinement/coarsening criteria

The framework developed for the thesis starts from a single FE in the initial partition Ωe0 . To create the
FE mesh, it is required to build a coarsening/refinement array f, that contains the information on the
action that the octree mesh partitioner RefficientLib (Baiges and Bayona, 2016) should take for each i-th
FE, that is: 1) Refine ( fi = 1); 2) Coarsen ( fi = −1); 3) No action required ( fi = 0).

Furthermore, the minimum and maximum refinement levels (Levmin, Levmax, respectively) need be
set as the refinement thresholds to avoid the mesh to reach undesired FE sizes. The refinement level
threshold should be checked in all the refinement criteria and are written as:

Lev(FE) < Levmin → fi = 1 (5.5)

Lev(FE) > Levmax → fi = −1 (5.6)

5.2.1 Geometric criteria

The accuracy of the AM process simulation lies on the fine discretization of the domain close to the HAZ.
The computational cost of the simulation can be saved by coarsening the regions away from the HAZ.
The procedure that classifies whether a region is close or away from the HAZ is defined as a geometric
criterion. In this thesis, two geometric criteria are presented.

5.2.1.1 Layer-wise strategy

The layer-wise strategy is a purely geometric criterion where the set of the latest layers is kept refined
from a fix distance of the current deposition layer. The fix distance from the depositionlayer is called
the refinement height hre f .

The refinement height hre f is computed on the opposite direction of the built of the component
(in the z-coordinate). The fix distance is chosen considering the influence of the HAZ in the latest set
of layers. The FEs contained inside the refinement height are kept refined and coarsened, otherwise.
Therefore, the finest mesh size is preserved for the latest layers and the elements below the refinement
height are coarsened.

The layer-wise AMR strategy compares the maximum z-coordinate of the FE, maxz(FE), with the
maximum and minimum coordinates of the volume defined by the current deposition plane, zdep, and
the parallel plane defined using the refinement height hre f (downward the building direction), namely
the refinement height plane, zre f = zdep − hre f .

In the case where the maximum z-coordinate of the FE does not belong to this volume, the value
of the coarsening/refinement array for this FE is set as fi = −1 and fi = 1, otherwise. The FEs with at
least one node inside the fix distance between the current deposition plane and the refinement height
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Figure 25: Layer-wise strategy. The FEs outside the volume defined by the refinement height plane zre f and the
current deposition plane zdep are coarsened ( fi = −1) to the minimum refinement level Levmin. On
the other hand, the FEs contained in-between those planes are refined ( fi = 1) up to the maximum
refinement level Levmax.

plane are refined until they reach the maximum refinement level threshold. Contrarily, the FEs outside
this volume are coarsened until the minimum refinement level threshold is achieved.

Fig. 25 presents a gear with an initial FE mesh and the refined area in-between the current deposition
plane zdep and the refinement height plane zre f . Notice that, when the current deposition height zdep is
updated to a new layer, the new refinement plane zre f is computed and the FE mesh is updated from
the new set of coarsening/refinement array f.

maxz(FE) > zre f ∧ maxz(FE) < zdep → fi = 1 (5.7)

maxz(FE) < zre f → fi = −1 (5.8)

maxz(FE) > zdep → fi = −1 (5.9)

Note that Eqs. (5.7)-(5.9) are complemented with the thresholds Levmin and Levmax provided in Eqs.
(5.5)-(5.6). Furthermore, Eq. (5.7) defines the refine status ( fi = 1) to the FE contained by the current
deposition and refinement height planes. Eq. (5.8) performs the coarsening of the FE away from the
refinement height plane (HAZ) and Eq. (5.9) coarsens the FE that remains inactive during the deposition
of the current layer.

5.2.1.2 Bounding box strategy

This Section presents the geometric AMR criterion based on the HAZ bounding box position. The
additional details on the necessary input data, the generation of the bounding box and the collision
detection are presented in Chapter 6.

The bounding box geometric criterion consists in a search algorithm where an oriented reference
volume intersects the FEs of the background mesh Ωb

h. At the initial instant t = t0, the background
mesh Ωb

h coincides with the initial FE partition Ωe0.
The oriented volume (OV) is a fictitious prism, containing the HAZ at the current instant tn+1, being

immersed in Ωb
h. The OV prism is constructed using the process parameters of: 1) the hatch length,

which determines the OV length; the melt-pool width, bpool , that generates an in-plane width of the
OV which is perpendicular to the hatch length direction and 3) the height of the OV, in the z-direction,
composed by the layer thickness, hlayer, and the power input penetration height, zpower, resulting in the
melt-pool height, hpool . These process parameters and the construction of the HAZ bounding box (OV)
from a GCode input file are detailed in Chapter 6.
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Figure 26: The visual interpretation of the SAT: The projection of the distance between the polytopes geometrical
centers, defined by s, is compared to the sum of the projected half-sides of the OV, rOV, and the FE, rFE,
respectively.

Figure 27: Classification of the active and inactive FEs at the current time instant tn+1 for the evolving domain.

In practice, the bounding box criterion compares the projected distance between the pair of
polytopes centers, s, with the OV and FE projected half-sides, rOV and rFE, onto the normal direction
of the test plane, ntp.

If s > rOV + rFE, the plane is a separating plane, which means the OV and the tested FE do not overlap.
If the test finds a separating plane, no further checks are required, and both OV and FE do not intersect;
otherwise a new test plane should be verified. Fig. 26 presents a visual description of this method.

In addition to the SAT, the bounding box geometric criterion considers that the AM process is an
evolving domain problem. This creates, in the FE partition, elements that are either active or inactive
for the current instant of the analysis tn+1.

In this context, the evolving AM domain can be represented by four groups of FEs: 1) active FEs that
intersect the current HAZ bounding box (OV), Ωn+1

a ; 2) the previously activated FE that do not intersect
the current HAZ bounding box (OV), Ωn

a ; 3) inactive FEs that share nodes with active FEs, Ω̂n+1
i and

4) inactive FEs that do not share nodes with active FEs, Ωn+1
i . Fig. 27 shows the FE classification for

an arbitrary time instant of an AM process, where the current HAZ bounding box represents the Ωn+1
a

domain in purple.
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If the OV, representing the HAZ, and the FE intersect, then the tested FE belongs to Ωn+1
a , and is

marked as to be refined ( fi = 1). If a separating plane is detected, and the tested FE does not belong to
Ω̂n+1

i , this FE ∈ (Ωn
a ∪Ωn+1

i ) is marked as to be coarsened ( fi = −1). Finally, the FE ∈ Ω̂n+1
i , is as an

inactive FE that is a neighbor to an active FE. This FE is marked as to do nothing ( fi = 0), to prevent an
active FE from Ωn

a , that do not intersect the HAZ, from being coarsened; this preserves the geometry of
the evolving domain.

Thus, the corresponding coarsening and refinement flag for the i-th FE, fi, is determined as follows

FE ∈ (Ωn+1
a ) → fi = 1 (5.10)

FE ∈ (Ωn
a ∪Ωn+1

i )→ fi = −1 (5.11)

FE ∈ Ω̂n+1
i → fi = 0 (5.12)

Additionaly, Eq. (5.10)-(5.12) need be complemented with the general check of the minimum and
the maximum desired refinement level, presented in Eq. (5.5)-(5.6). As a consequence, the difference
between the maximum (Levmax) and minimum (Levmin) refinement levels provide a upper bound
condition in the required number of mesh computations (Neiva et al., 2019).

5.2.2 Accuracy-based criterion

This section presents the gradient-based approach adopted in this thesis to prevent the coarsening
process near the HAZ to affect the solution accuracy. In this context, an a-posteriori error-estimator is
used (Zienkiewicz and Zhu, 1987) and described next.

Let e be the discretization error for a given discrete solution computed as:

e = ∇u−∇uh, (5.13)

where ∇u and ∇uh are the analytical (exact) gradient of the unknown field and the discrete gradient
computed from the FE solution, respectively.

Exact solutions are rarely found, and are, in general, only possible in very simple cases. To
circumvent this issue, Zienkiewicz and Zhu (1992a,b) propose an accurate error-estimate to be used
when the exact solution is not available. The authors show that exist a set of super-convergent points
within the FE discretization where the solution can be used as a reference value when computing the
error estimator. These values are a-posteriori computed at the FE super-convergent points and projected
to the FE nodes. Thus, Eq. (5.13) becomes

ē = P(∇ū)−∇uh, (5.14)

where ē is the discrete error estimator for the gradient of the unknowns, ∇ū is the gradient of the
unknowns computed at the super-convergent point, P(·) is a projection operator that projects ∇ū onto
the nodes of the FE mesh, and ∇uh is the gradient of unknowns computed from the FE solution. For
the standard hexahedra tri-linear FE, adopted in the octree meshing, the super-convergent point is at
the barycenter of the element.

Finally, the L2-norm of the ē for the i-th FE, |ēi|, is computed and compared with the minimum and
maximum admissible errors, as follows

|ēi| < emin → fi = −1 (5.15)

|ēi| ≥ emax → fi = 1 (5.16)

emin ≤ |ēi| < emax → fi = 0

5.3 Coarsening correction strategy

The effect of the information loss in the thermal analysis of the AM process is less significative than
the loss of information in the mechanical analysis due to the dissipative nature of the heat transfer
problem. For this reason, the coarsening correction strategy is presented for the mechanical problem.
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Figure 28: Von Mises stress at a section cut of a gear component. (a) Fixed coarse mesh. (b) Fixed fine mesh. (c)
AMR strategy without the correction terms. (d) AMR strategy with the correction terms)

When coarsening is performed, the accuracy of the information stored in the fine mesh at the
instant tn is lost as a result of projection errors associated to Pn+1(·) and Πn+1(·), when transferring
the information to the new mesh at the instant tn+1. Additionaly, the FE solution computed for Ωn

act
now has evolved to a new FE domain Ωn+1

e at t = tn+1, which also introduces errors. Note that Ωn+1
e

corresponds to the new mesh of the current time instant prior to the FE activation (Ωn+1
e 6= Ωn+1

act ).
There are mainly two reasons for this. First, the solution in the fine mesh can present high jumps

of the gradient of the unknowns (strains), which is L2 averaged in the coarsening procedure, resulting
in an averaged field where the characteristics of the fine solution are lost. Second, the mesh evolution
may convert standard nodes into hanging nodes. In this case, the nodal unknowns are now interpolated
from the parent nodes, which also affects the computation of the strain values, resulting in modified
local stress/strain values.

Fig. 28 shows the Von Mises stress for a gear component using (a) a fixed coarse mesh; (b) a fixed
fine mesh; (c) AMR strategy without correction terms and (d) AMR strategy with correction terms. Fig. 28

demonstrates the important changes in the local stress field resulting from the information loss from
the coarsening procedure.

The correction strategy proposed may be interpreted as a VMS enrichment of the subscales for
the nodal displacements. For an evolving domain, the solution at the time instant tn is projected
onto the new FE Ωn+1

e , prior to the solution of the time instant tn+1. The solution at tn needs be
preserved; therefore, the solution subscale component is added to compensate the information loss in
the projection from Ωn

act to Ωn+1
e , resulting in:

ûn
h = Pn+1(un

h) + ũn
h

(5.17)

where ûn
h is the corrected solution from the mesh projected at tn to the current mesh Ωn+1

e , ũn
h is the

subscale associated to the information loss of the nodal displacements due to the mesh projection from
Ωn

act to Ωn+1
e and Pn+1(un

h) is the point-to-point projection of un to the new mesh at tn+1. Note that if
the mesh does not change, Pn+1(un

h) = un
h → ûn

h = un
h and the subscales contributions are null.

The solution of the current time instant tn+1 results in the corrected solution from the previous step
and the increment of the solution, derived from the evolving mechanical problem. Thus, the solution
of the nodal displacements are written in terms of the solution increment as

un+1
h = ûn

h + ∆un+1
h

(5.18)

where ∆un+1
h is the solution increment for the nodal displacements.

Introducing Eq. (5.17) into Eq. (5.18), the current time instant solution can be written using the mesh
projections Pn+1 and Πn+1, as well as the subscales ũn

h and ũn
g as:

un+1
h = Pn+1(un

h) + ũn
h + ∆un+1

h
(5.19)
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In this format, the solution of the current time instant tn+1 corresponds to the point-to-point
projection of the solution from the previous step, the displacement increment resulting from the
evolving AM process and the subscales contribution that accounts for the loss of information.

5.3.1 Stress correction terms

The stresses shown in Fig. 28-(c) represent the stress field resulting from the coarsening procedure.
This solution is polluted from projection errors. Therefore, it is required to correct the stress values to
avoid these errors associated to the projections. For the current instant tn+1, the stress field is defined
in the current active mesh Ωn+1

act as

σn+1
h = C(Sun+1

h − εvpn+1 − εpn+1 − εtn+1
) (5.20)

where σn+1
h are the stresses for the current time instant tn+1, computed from the solution un+1

h , εvp are
the visco-plastic strains, εp are the elasto-plastic strains and εt are the thermal-strains.

In order to simplify the notation, the visco-plastic strains, elasto-plastic strains and thermal-strains
are written as the inherent strain, defined as

εinh = εvp + εp + εt (5.21)

Thus, Eq. (5.20) is rewritten as

σn+1
h = C(Sun+1

h − εn+1
inh ) (5.22)

and the inherent strains computed in the current time instant (εn+1
inh ) are defined as

εn+1
inh = Πn+1(εn

inh) + ∆εn+1
inh

(5.23)

Note that the current-time instant inherent strains εn+1
inh are computed from the L2-projection from the

previous step plus the inherent strains increment from step tn to tn+1.
The stresses from the previous time instant tn projected onto the current mesh Ωn+1

e result in:

σ̂n
h = C[SPn+1(un

h)−Πn+1(εn
inh)] (5.24)

where σ̂n
h are the previous step stresses computed using the projected previous step variable un

h to the
new mesh.

The proposed stress correction term, computed at tn+1 from the variables projected from the
previous step, is introduced as

σ̃n+1 = Πn+1(σn
c )− σ̂n

h
(5.25)

where σ̃n+1 is the stress correction term, σn
c are the total corrected stresses from the time instant tn and

σ̂n are the stresses from the previous step computed from the point-to-point projection operator in the
current mesh Ωn+1

e .
Introducing Eq. (5.24) into Eq. (5.25), the stress correction term results in

σ̃n+1 = Πn+1(σn
c )− C[SPn+1(un

h)−Πn+1(εn
inh)] (5.26)

Finally, the total corrected stress field for the current time instant tn+1 is

σn+1
c = σn+1

h + σ̃n+1
h

(5.27)

Eq. (5.27) can be rewritten introducing Eqs. (5.22) and (5.26), resulting in

σn+1
c = Πn+1(σn

c ) + C(Sun+1
h − εn+1

inh )− C[SPn+1(un
h)−Πn+1(εn

inh)] (5.28)

where the first term is the projected corrected stress from the previous mesh at tn with minimal loss of
information, the second term are the stresses computed with the current time instant using the current
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active mesh Ωn+1
act and the last term are the stresses computed for the solution in Ωn

act projected to
Ωn+1

e .
Note that the following definitions may be adopted for the stress increments:

∆σn+1
h = CS[un+1

h − Pn+1(un
h)]

∆σn+1
inh = C[εn+1

inh −Πn+1(εn
inh)]

(5.29)

such that the stress increment caused by the increment of the loads in the evolving solution is defined
as

∆σn+1 = ∆σn+1
h − ∆σn+1

inh
(5.30)

Therefore, the total corrected stresses in Eq. (5.28) may be rewritten as

σn+1
c = Πn+1(σn

c ) + ∆σn+1 (5.31)

with the first term being the projected corrected stress from the previous mesh at tn with minimal loss
of information and ∆σn+1 is the increment of the stresses caused by the increment of the loads in the
evolving solution.

For the initial step (n = 1) the stress correction term is set to σ̃1 = 0. This implies that the corrected
stresses, for the first step, are simply the computed FE stresses σ1

c = σ1
h. For the second step (n = 2),

the stress correction term corresponds to the difference between the L2-projection of the stresses and
the stresses computed from the point-to-point projection of the nodal solution σ̃2 = Π2(σ1

h)− σ̂1
h from

the previous step (n = 1), such that:

σ̃2 = Π2(CSu1
h − Cε1

inh)− C[SP2(u1
h)−Π2(ε1

inh)] (5.32)

Additionaly, Πn+1(σn
c ) depends recursively on the previous solution σn

h , see Eqs. (5.25) and (5.27).
This can be interpreted as the recursive information transfer from the fine solution from the previous
step to the current coarse mesh, preventing the loss of information.

5.3.2 Force correction terms

The discrete weak form of the mechanical problem, presented in Eq. (3.9), is introduced for the evolving
domain at the time instant tn considering the inherent strains εinh, such that

ˆ
Ωn

act

(δuS)T [C(Sun
h − εn

inh)]dΩ =

ˆ
Ωn

act

δuT f ndΩ +

ˆ
Γn

t

δuT t̄ndΓ ∀δu (5.33)

where the right hand side presented in Eq. (3.10) is rewritten for an evolving domain at the time instant
tn as

Fn(δu) =
ˆ

Ωn
act

δuT f ndΩ +

ˆ
Γn

t

δuT t̄ndΓ ∀δu (5.34)

Ideally, the mesh projection from the solution at tn, computed on the FE mesh at tn (Ωn
act), onto the

new mesh at the time instant tn+1 (Ωn+1
e ) should preserve the equilibrium of the forces at the nodes of

the mesh. In practice, this is not guaranteed, even when the stress correction term is employed.
The L2-projection of the corrected stress from time instant tn (Πn+1(σn

c )) onto the updated mesh at
time instant tn+1 isˆ

Ωn+1
e

(δuS)TΠn+1(σn
c )dΩ =

ˆ
Ωn+1

e

(δuS)T(σ̂n
h + σ̃n+1)dΩ 6= Fn(δu) ∀δu (5.35)

The computed solution is in equilibrium of forces for the nodes in the Ωn
act domain. Now, the

domain has evolved to Ωn+1
e and the solution un

h is projected Pn+1(un
h), but the equilibrium of the forces

in the new mesh is not achieved for Pn+1(un
h). Instead, the equilibrium in the new mesh configuration

Ωn+1
e is given by ûn

h , such that
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ˆ
Ωn+1

e

(δuS)T [C(Sûn
h −Πn+1(εn

inh))]dΩ︸ ︷︷ ︸
=σ̂n

h

+

ˆ
Ωn+1

e

(δuS)T [C(Sûn
h −Πn+1(εn

inh))]dΩ︸ ︷︷ ︸
=σ̃n+1

= Fn(δu) ∀δu

(5.36)
where the solution ûn

h contains the contribution of the stress correction term σ̃n+1
h and the projected

stresses from the previous solution to the new mesh σ̂n
h .

To solve the inequality shown in Eq. (5.35), correction forces are introduced to guarantee that the
nodal solution obtained from the previous mesh Ωn

act is in equilibrium in the new mesh Ωn+1
e , prior

to the activation of new elements. The correction force term is defined at the time instant tn+1 and
computed using the projected solution from the previous time tn as:

Cn+1(δu) =
ˆ

Ωn+1
e

(δuS)T [Πn+1(σn
c )]dΩ − Fn(δu) ∀δu (5.37)

The correction force term is the residual force computed by projecting the corrected stress solution
σn

c onto the new FE mesh Ωn+1
e , while considering the stress correction terms σ̃n+1

h in the equilibrium
equation.

Therefore, the weak form of the evolving AM mechanical problem can be written for the active
domain at the current time instant Ωn+1

act as follows

´
Ωn+1

act
(δuS)T(C[Sun+1

h − εn+1
inh ])dΩ +

´
Ωn+1

act
(δuS)T(Πn+1(σn

c )− C[SPn+1(un
h)−Πn+1(εn

inh)])dΩ =

ˆ
Ωn+1

act

δuT f n+1dΩ +

ˆ
Γn+1

t

δuT t̄n+1dΓ︸ ︷︷ ︸
= Fn+1(δu)

+ Cn+1(δu) ∀δu

(5.38)
and, introducing the correction forces terms of Eq. (5.37) into Eq. (5.38), results in

´
Ωn+1

act
(δuS)T(C[Sun+1

h − εn+1
inh ])dΩ +

´
Ωn+1

act
(δuS)T(Πn+1(σn

c )− C[SPn+1(un
h)−Πn+1(εn

inh)])dΩ =

=
´

Ωn+1
act

(δuS)TΠn+1(σn
c )dΩ + Fn+1(δu)− Fn(δu) ∀δu

(5.39)

´
Ωn+1

act
(δuS)T(C[Sun+1

h − εn+1
inh ])dΩ −

´
Ωn+1

act
(δuS)T(C[SPn+1(un

h)−Πn+1(εn
inh)])dΩ =

=Fn+1(δu)− Fn(δu) ∀δu

(5.40)

The correction terms (stresses and forces) account for the contribution of the subscales, otherwise
lost during the mesh projection procedure.

This procedure requires additional computations, but the correction is computationally inexpensive.
Fig. 29-(a)-(b) demonstrates the enhancement in the solution accuracy using the correction terms
strategy for the AM process of a gear component. Fig. 29-(c)-(d) presents the computational cost (CPU-
time and memory consumption, respectively) of the correction terms results in very similar run times
of the standard AMR simulation without the correction terms.
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(a) (b)

(c) (d)

Figure 29: Coarsening correction terms influence on: (a) the displacement solution; (b) the relative percentual
difference with respect to the reference solution; (c) simulation run times and (d) memory consumption.



6
A M M A C H I N E RY

This chapter describes some aspects involved in the design of an automatic AM simulation framework
and the outlook on the FE activation procedure for evolving domains.

In Section 6.1, the geometry and the process parameters from the GCode input file are presented,
as well as providing the additional features required for the automatic mesh generation.

Section 6.2 addresses the searching technology used to generate the mesh automatically and to
activate the FEs according to the evolving domain. Additionaly, some considerations are made for the
FE activation procedure.

6.1 GCode reader and automatic meshing

The GCode is a format broadly used in industrial machine tooling. The advantage of using the GCode
format relies on the fact that it can include additional data related to the processing parameters, such as
the power input, time pauses, depositing and re-coating speeds.

This flexibility of the GCode format, to enable the change of the process parameters at any point of
the printing, permits the design of better AM components. This is because the process parameters can
be tunned to fulfill specific criteria, instead of remaining them constant during the manufacturing of
the component. For instance, This makes possible to construct GCodes where the process parameters
can be designed to minimize residual stresses by controling the temperature gradient between adjacent
layers.

Therefore, an input format that contains not only the geometric shape of the component, but
can also be molded according to specific criteria is important for the dissemination of the AM as an
industrial-scale technology capable to produce quality components.

The simulation of the AM process also needs to account for all the changes provided to the actual
machine tool. Thus, the GCode format is ideal for the accurate simulation of AM processes. Fig. 30

shows a comparison between a GCode, Fig. 30-(a), and a CLI format, Fig. 30-(a), in terms of a color
scheme for the process parameters. Both file formats deliver the correct geometry, nevertheless, the
process parameters for the CLI format are kept constant throughout the simulation process.

Regarding the GCode commands: G1/G0 correspond to movement commands, where G0 is a fast
straight movement (with no deposition), and G1 is a straight line movement with material feeding.
Command E provides the information of the deposition process, where the attached value corresponds
to the material feeding; if this value is different from zero, the machine is depositing new material in
this segment, otherwise the machine is moving without deposition. Command F refers to the power
source speed (in [mm/min]). The coordinates defined in a given command line corresponds to the
final (x, y) coordinates of the hatch; while the initial coordinate of the hatch is defined in the previous
command line.

The power source can be varied during along the process by using the command G108 and
introducing the P (power source) followed by S (of set) and the value of the new power source in
[W], e.g. G108 P S2000. In some cases, pauses are required during the printing process and the time
interval can be set by G4 followed by S and the value of the pause in [s]. In this format, the layer
thickness is defined by the difference between two consecutive z-coordinates.

As an example, Fig. 31 shows a code snippet describing the scanning path in a GCode format
considering variable process parameters. Table 1 shows the list of representative properties that are
stored in each hatch.

65



66 am machinery

(a) (b)

Figure 30: Process parameter color scheme, where each color represents a different combination of power input
and deposition speed. (a) Process parameters from the GCode format. (b) Process parameters from the
CLI format.

Code Command Units

G0/G1 Hatch movement mm

F Update speed mm/min

G4 Introduce time pause seconds

G108 Update laser power Watts

E Extruding material mm

Table 1: List of the process parameters provided by the GCode.

Figure 31: Sample of a GCode format containing the power input path and some process parameters.
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6.1.1 Automatic mesh generation

In the following, the aspects required for the generation of the automatic mesh procedure are
considered to complement the geometric criteria for refinement and coarsening (Section 5.2). The time-
step computation and the bounding box construction are detailed.

The GCode contains the total path L that the machine will travel during the manufacturing process.
The total path L is the sum of the length of individual hatches l. The total time interval considered in
the AM process is defined in the interval t ∈ (0, T]. The number of time-steps N of the AM simulation is
computed from a user-defined parameter, the length increment per time-step ∆l, such that N = L/∆l.

To define a time-step, the hatches that will be activated according to the length increment per time-
step ∆l need to be identified. To do so, all the hatches that are not yet activated are added together
until the summation reaches the path-length increment ∆l, such that

∆l =
nn+1

h

∑
i=1

li (6.1)

where, li is the i-th hatch-length and nn+1
h is the number of adjacent hatches that the total length is

equal to the path-length increment ∆l for the current time-step. The hatches included in the path-
length increment ∆l defines the domain Ωn+1

a (see Fig. 32).
Next, after selecting the hatches li that are included in the path-length increment ∆l, the time ti to

travel each hatch li is computed using the hatch deposition speed, read from the GCode, such that

ti =
li
vi

(6.2)

where ti is the time required to travel the i-th hatch-length li according to the i-th hatch deposition
speed vi.

For a given path-length increment ∆l, the time-step is defined as ∆t = tn+1 − tn, such that tn is the
accumulated time from the previous time-step, at the beginning of the deposition of the current group
of hatches, and tn+1 is given by

tn+1 = tn +
nn+1

h

∑
i=1

ti (6.3)

Fig. 32 presents the hatches that belong to the total active domain Ωn+1
act . The green bounding

boxes represent the hacthes activated in previous time-steps Ωn
a and the purple boxes are the hatches

activated in the current time-step Ωn+1
a with nn+1

h = 4.

Figure 32: Definition of the active domain Ωn+1
act and the information stored in the hatches about its length li and

the required time ti to travel the hatch length.



68 am machinery

The hatches are unidimensional while the bounding box geometric criterion requires 3D polytopes.
The bounding box volume is defined by the hatch length, l, the layer-thickness, hlayer, the heat source
penetration, zpower, the melt-pool width, bpool and the total height in which the power is distributed,
namely the melt-pool height hpool , computed as hpool = hlayer + zpower.

Fig. 33 shows the initial and final nodal coordinates of the i-th hatch that define the current HAZ

bounding box (OV). The bounding box is built by extruding the hatch initial and final position
according to the the process parameters (bpool , hlayer and zpower). Note that for each time-step the
number of bounding boxes to be tested to generate the automatic mesh depend on nn+1

h .

Figure 33: The HAZ bounding box (OV) construction using the process parameters and the hatch coordinates.

6.2 Growing computational domains

6.2.1 Searching technology

In this thesis, the searching algorithm for the automatic mesh generation and element activation looks
for the collision between two prismatic polytopes, one representing the current position of the HAZ

(OV), built from the GCode information (Section 6.1), and one being the FE to be tested using the
separating axis theorem (SAT) (Eberly, 2002; Gottschalk et al., 2000; Neiva et al., 2019; Moreira et al.,
2022b). For a pair of convex polytopes, formed by E edges and F faces each, the SAT states that the
polytopes overlap if they intersect in at least one of their projections onto their E2 + 2F planes.

When both polytopes are box-shaped (prismatic), the number of planes to be tested is considerably
reduced because parallel planes only need to be tested once. This results in E = 3 and F = 3, in a total
of only 15 testing planes. In the case of using tetrahedra FEs, the number of testing planes increases
to 44 (E = 6 and F = 4). The presence of a separating plane (s > rOV + rFE, see Fig. 26) returns the
non-intersection between the HAZ and the FE, and the FE is not refined and no additional planes are
required to be tested. Fig. 34 shows a 2D example of the AMR mesh after 5 adaptive cycles using the
SAT searching algorithm with and without the 2 : 1 balance scheme restriction.

In a cartesian mesh, the 3 FE testing planes are simply the unit vectors representing the system of
coordinates (x, y, z). Therefore, the group of the FE testing planes nFE is given by the 3× 3 matrix:

nFE =

 1 0 0

0 1 0

0 0 1

 (6.4)

where the columns of the nFE represents the x-plane, y-plane and z-plane, respectively.
On the other hand, the HAZ bounding box testing planes are variable and need to be computed for

all the nn+1
h hatches that defines Ωn+1

a , see Fig. 32. The layer-by-layer nature of the AM process also
simplifies the computation of the HAZ bounding box testing planes, because the deposition direction
is on the z-direction. Therefore, the HAZ bounding box top and bottom faces are parallel to the z-plane
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(a)

(b) (c)

Figure 34: (a) OV embedded into the initial domain; Final mesh after 5 adaptivity cycles (b) with 2:1 balance; (c)
without 2:1 balance.

defined from the unit vector nz = (0, 0, 1)T ; similarly, the x and y-planes are parallel to the unit vectors
nx = (1, 0, 0)T and ny = (0, 1, 0)T , respectively. The hatch direction defines another testing plane, nl ,
such that:

nl =
(x f − xi)

li
(6.5)

where xi and x f are the initial and final cartesian coordinates of the hatch, respectively, and li is the
hatch length. Lastly, the third HAZ bounding box testing plane is orthogonal to the pair nl and z− plane
(nz), thus, computed as:

nb = nz × nl (6.6)

with nb being the testing plane defined in the melt-pool width, bpool . Therefore, the group of the testing
planes defined by the HAZ bounding box is nHAZ = [nl , nb, nz]. Fig. 35 shows the testing planes of the
FE and the HAZ bounding box.

Finaly, the remaining 9 testing planes are created from the the cross-product of the existing testing
planes from the HAZ and the FE. Table 2 shows all the 15 testing planes necessary to verify the collision
of two prismatic polytopes.

6.2.2 FE activation

For time t of the AM process, the domain is decomposed into its active and inactive parts. The current
active part is defined as a FE partition Ωn+1

act ⊆ (Ωn+1
a ∪Ωn

a ), where Ωn+1
a and Ωn

a are FEs activated at
tn+1 and the set of FEs activated previously, respectively. The inactive domain is defined as Ωn+1

ina ⊆
(Ωn+1

i ∪ Ω̂n+1
i ), where Ωn+1

i is the domain of inactive FEs and Ω̂n+1
i the domain of inactive FEs that

share nodes with Ωactn+1 .
The nodes of the FE mesh are labelled according to three sets: 1) the common nodes of the active

(Ωn+1
act ) and inactive (Ωn+1

ina ), defined as ξskin, 2) ξint is the set of nodes where all the adjacent FEs belong
to Ωn+1

act and 3) ξina is the set of nodes belonging where all the adjacent FEs belong to the inactive
domain (Ωn+1

ina ). Fig. 36 shows the domain and the nodal classifications of an arbitrary x − y plane of
the AM process.
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Figure 35: Testing planes for the HAZ bounding box (a)-(c) and for the FE (d)-(f).

Test Plane # Polytope Test Plane

1 HAZ nl

2 HAZ nb

3 HAZ nz

4 FE nx

5 FE ny

6 FE nz

7 HAZ × HAZ nl × nl

8 HAZ × HAZ nl × nb

9 HAZ × HAZ nl × nz

10 HAZ × HAZ nb × nb

11 HAZ × HAZ nb × nz

12 HAZ × FE nl × nx

13 HAZ × FE nl × ny

14 HAZ × FE nb × nx

15 HAZ × FE nl × ny

Table 2: List of the required testing planes to verify the collision detection between prismatic polytopes.



6.2 growing computational domains 71

Figure 36: Definition of the evolving active domain (Ωn+1
act ⊆ (Ωn+1

a ∪Ωn
a )) and inactive domain (Ωn+1

ina ⊆ (Ωn+1
i ∪

Ω̂n+1
i )) and the node classification.

Figure 37: Displacement field induced by the FE activation process: red FEs are the elements activated in the
previous time-steps. Green FEs elements are activated within the current time-step.

The element birth-death approach is used to add to the computational domain all the FEs that
belongs to the corresponding domain of each time-step, that evolves according to the user-defined
path-length increment, ∆l. The inactive elements do not belong to the computational domain, therefore
are not assembled to the global system of equations.

The activation procedure apply the search algorithm detailed in Section 6.2.1 to determine the FEs to
be added to the discrete weak form. The problem is solved for the active domain at the current instant
tn+1, Ωn+1

act , using an implicit approach for the time integration.
The activation process, i.e. adding new FEs to the system of equations, induces a movement of the

nodes shared between the active and inactive domains, the set of ξskin nodes. Thus, when a FE is born,
i.e. the FE is introduced in the system of equations, the effects of the initial displacements (u0), caused
by the previous activation of adjacent FEs needs to be considered.

Fig. 37 shows the displacement fields in the Ωn+1
act and Ωn+1

ina FE partitions. The dark green FE

in evidence is going to be activated in the next time instant. This FE presents a displacement field
computed for the active domain, at the shared nodes between the Ωn+1

act and Ωn+1
ina , which, if not

removed, generates spurious pre-stress and pollutes the solution.
The strains caused by the initial displacement, in the row of dark green FEs (Fig. 37), should not

introduce any stress in the newly activated FE; thus, the total strain is computed as
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ε∗ = ε− εact = S(u − u0) (6.7)

where ε are the total strains, εact are the activation strains, u0 are the initial displacement field and ε∗

are the compensated total strains, which removes the spurious effect of the activation strains for the FE

activation.
This given, the general discrete weak form of the mechanical problem, presented in Eq. (3.9), can

be rewritten for AM processes using the element birth-death approach for the current time instant tn+1

as:
ˆ

Ωn+1
act

(δuS)T [CS(un+1
h − u0

h)]dΩ =

ˆ
Ωn+1

act

δuT f n+1dΩ +

ˆ
Γn+1

t

δuT t̄n+1dΓ ∀δu (6.8)

where the solution to the AM mechanical problem is to find un+1
h for the current instant tn+1, subjected

to the evolving boundary conditions in the evolving domain.
For a fix mesh, after the FE is activated, the initial displacements u0 of the FE do not change, as well

as the corresponding activation strains εact. On the one hand, if the layer height coincides with the size
of the FE he, all the activated FEs will be activated with activation strains. On the other hand, if the HAZ is
activated with several elements defining the layer thickness, only the elements on the interface between
the previous and current layers will be activated with non-zero values for the activation strains.

In the context of the correction procedure presented in Section 5.3, the activation strains must be
introduced in the correction terms similarly to the inherent strains εinh.



7
C O N C L U S I O N S

The outline of this Chapter is as follows. Section 7.1 summarizes this doctoral thesis. Section 7.2
presents a list of conclusions. Section 7.3 provides the main contributions of this work. Section 7.4
suggests the lines of future research.

7.1 Summary

This doctoral thesis focuses on the development of numerical solutions to reduce the computational
cost of AM simulations while delivering results of enhanced accuracy. For this purpose, a parallel FE

framework for the simulation of AM with enhanced accuracy is developed, validated and employed in
industrial applications.

Chapter 2 presents a detailed state-of-the-art on the main challenges regarding the numerical
simulation of AM processes. The incompressibility problem arising from the Von Mises materials, such
as metals, is addressed from the FE technology perspective. Numerical approaches for the thermo-
mechanical modelling to obtain accurate thermal and mechanical responses is presented. Next, the
high-demanding computational cost required by the AM simulation is tackled presenting several AMR

strategies used in computational mechanics and also applied to AM problems. Lastly, the importance
of delivering the same input data to both the actual machinery and the computational simulation is
assessed.

Chapter 3 presents the FE technologies used to address the volumetric locking including the novel
mixed u/e/p formulation. The enhanced accuracy of the proposed FE formulation in the computation
of the mechanical dissipation, stress/strain and computational cost reduction is assessed in Paper 2,
where a series of benchmarks and proposed numerical examples are used.

Chapter 4 introduces the thermo-mechanical modelling aspects for the simulation of part-scale
components in AM processes. The thermo-mechanical extension of the mixed u/e/p formulation is
used for the assessment of thermal-induced failure in Paper 3. Several benchmarks and numerical
examples are used to compare the mixed u/p and u/e/p with respect to the capability of reproducing
failure mechanisms, load capacity and numerical stability. Additionaly, the heat source model
presented is applied in Paper 4 in the AM context, obtaining good agreement with the experimental
results.

Chapter 5 details the multi-criteria strategy used to generate the automatic mesh from the GCode
while providing numerical accuracy. Additionaly, the coarsening correction strategy is presented
to avoid the loss of information resulting from the mesh coarsening procedure. The improvement
resulting from the coarsening correction strategy is presented in Paper 1, while the accuracy of
the multi-criteria and automatic mesh generation from the GCode is presented in Paper 4. Several
numerical analyses for the heat transfer problem of the DED process are used to assess the accuracy
and computational cost efficiency of the multi-criteria approach.

Chapter 6 details the additional features required for the automatic mesh generation, including
the data acquisition for the AM simulation from a GCode file, presented in Paper 4. The FE activation
procedure adopted in Paper 1 is presented; the searching algorithm used to build the automatic mesh
and activate the corresponding FEs is also described.

In this thesis, the ability of the proposed strategies in the field of the FE technology, the AMR

technique and the AM machinery to reduce computational cost without compromising the solution
accuracy is demonstrated.
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7.2 Conclusions

The following conclusions can be drawn from the work presented in this thesis:

7.2.1 Conclusions on the enhanced accuracy of the stress/strain mixed formulation

• The mixed u/e/p formulation can be used with a wide range of constitutive models, such as
J2-plasticity, J2-damage, Drucker-Prager plasticity or damage models, etc, in the solid mechanics
field and also in the fluid dynamics, for instance in non-newtonian rigid-viscoplastic flows.

• The mixed u/e/p formulation presents a faster convergence rate for the stress/strain fields than
the u/p upon mesh refinement, resulting in the desired accuracy with a much coarser mesh and
less cpu-time.

• The better performance of the mixed u/e/p formulation has been demonstrated with respect to
mechanical dissipation accuracy and failure mechanisms.

• The 3-field formulation accomodates any FE approximation and has been applied to triangles,
quadrilaterals, tetrahedras and hexahedras.

• The 3-field formulation addresses incompressible conditions in the elastic and inelastic regimes
without presenting stress-locking, including when softening behavior is considered.

• As evidenced by this work, the mixed u/e/p reproduces theoretical load capacity in the
numerical benchmarks.

• The thermo-mechanical coupling of the 3-field formulation has been successfully implemented
and the strong points observed in the mechanical applications are also observed in the thermo-
mechanical numerical examples.

• The enhanced accuracy observed in the mixed 3-field formulation in the mechanical and thermo-
mechanical scenarios make it a very appealing FE technology to be considered in industrial
manufacturing problems, i.e. Friction Stir-Welding, Forging, Extrusion, AM, etc.

• In AM, mesh discretization is often determined by geometrical requirements rather than accuracy
considerations. In those instances, using a FE technology with enhanced accuracy may not be
necessary.

7.2.2 Conclusions on the AMR applied to AM

• The use of AMR is paramount to save computational resources and to reduce cpu-time in AM

simulations.

• Not employing the 2 : 1 balance scheme provides coarser meshes, improving computational
speed. On the other hand, large jumps on the refinement level of adjacent FEs may pollute the
previously fine solution with errors associated with the mesh projections used.

• The coarsening correction strategy minimizes the effects of the projection errors in the mechanical
solution by introducing a correction stress term and guaranteeing the equilibrium of forces at the
nodes with the residual-based correction forces. The former corrects the information loss in the
stress field resulting from the coarsening procedure, and the later is introduced in the weak form
of the problem to prevent the information loss in the displacement field.

• The coarsening correction strategy has been successfully applied to hexahedra and tetrahedra
meshes and different AM processes. The strategy enables cpu-time reduction, as a consequence
of the unrestricted coarsening possibility (in opposition to the 2 : 1 balance scheme), while the
solution accuracy is preserved.
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• The use of a purely geometric criterion, i.e. layer-wise, without an associated error-estimator
requires the calibration of the number of refined layers necessary to balance accuracy and
efficiency.

• It is important to consider the use of an error-estimator for the AMR strategy in the simulation of
AM processes that induce high temperature gradients in the manufactured component.

• The multi-criteria approach is used to avoid the 2 : 1 balance restriction without loosing numerical
solution accuracy while the number of FEs is kept controlled. The balance between efficiency and
accuracy is found with less effort than using a purely geometric criterion, where the coarsening
criterion needs calibration.

7.2.3 Conclusions on the numerical simulations of industrial components

• The major competitive advantage of AM is the free-form design, resulting in very optimized
and complex geometries. The use of the GCode to model the geometry, at the same time that
it defines the process parameters, increases the simulation accuracy with respect to the actual
manufacturing process.

• The proposed AM framework is able to avoid the CAD cleaning and meshing operations, giving
agility to the AM simulation process, especially when complex geometries are involved.

• The separating axis theorem (SAT) is used to access the mesh building according to the evolving
domain. The searching algorithm is highly scalable and efficient to identify the collision between
the HAZ and the background FE mesh.

• Thin-walls are frequent in optimized AM components. This provides a coarsening geometrical
constraint to preserve the component boundaries, which reduces the AMR advantages. In those
cases, the number of active FEs increases, instead of reaching a stable value. Even so, the use of
the AMR strategy still pays-off when the 2 : 1 balance constraint is avoided.

• The bottleneck to reduce the computational time in the HF simulation of AM components is in the
required number of time steps necessary to obtain HF responses.

7.3 Main contributions

The research developed in this doctoral thesis includes the following original contributions:

• Enhanced stress/strain FE formulation. The development of a mixed 3-field FE formulation
to tackle the incompressibility problem including thermo-mechanical applcations. This FE

technology demonstrates superior performance compared to the widely used u/p formulation
in terms of stress/strain accuracy in a wide variety of proposed problems and benchmarks. The
mixed 3-field FE formulation may be a powerful tool in the simulation of industrial manufacturing
processes.

• Automatic mesh generation from GCode. One of the primary sources of inaccuracies between
the simulation and the actual component manufacturing lies in the different data provided to
the machinery and the numerical simulation. The development of a GCode reader that stores the
exact process parameters and geometrical data provided to the actual AM machinery reduces the
user-interference in the modelling step. The SAT used to construct the evolving FE domain permits
the simulation of very complex geometry starting from a single hexahedron FE describing the
embedding domain.

• Parallelized AM framework. The feasability of HF simulations of AM processes demands high
computational power and the parallelization of the AM framework is mandatory. The original AM

framework has been initially developed in the in-house software COMET (COupled Mechanical
and Thermal analysis) (Cervera et al., 2002) and moved to the FEMUSS (Finite Element Method
Using Sub-grid Scales) platform, that uses a objected-oriented paradigm in a Fortran environment.
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This has made it possible to increase the degree of complexity of the AM parts simulated and
enabled the use of adaptive meshes without the 2 : 1 balance constraint. The implementation has
been validated throughout an extensive campaign including thermal, mechanical and thermo-
mechanical analyses.

• Coarsening correction strategy. The use of the coarsening correction strategy developed is key
for the solution of the mechanical problem, especially when the 2 : 1 balance scheme is avoided.
The large jumps on the gradients of the mechanical solution, when homogenized and projected
to a much coarser mesh, introduces stress errors behavior that need to be corrected. This strategy
enables the use of several refinement levels between adjacent FEs preserving the accuracy of the
fine mesh solution at a very low computational cost.

• Multi-criteria approach for AMR. The use of a geometric criterion is very common for fast
cooling-rate AM processes, such as the PBF. On lower cooling-rate AM technologies, the use of
a geometric criterion without an error-estimator induces approximation errors from the coarser
FEs. The incorporation of an extra criterion based on an a posteriori error-estimator, such as
the ZZ-error estimator, reduces significantly the computed global error at almost no additional
computational cost.

7.4 Lines of future research

In this thesis, the FE simulation of AM processes with enhanced accuracy is investigated. In order to
advance in this field of research, the following lines of investigation need to be pursued:

• Formulation Adaptivity. Although the performance of the mixed u/e/p has demonstrated to
be less costly for a desired level of accuracy, the number of existing FEs in an AM component is
driven by the complexity of the geometry. Therefore, a solution to make the use of the mixed
3-field formulation feasible is to combine it with the u/p formulation on the same geometric
model. The development of an error-estimator to provide the automatic choice between both FE

formulation is required, reducing the number of 3-field elements on less relevant portions of the
domain and, in consequence, reducing the computational cost.

• Reduced Order Model (ROM). The major bottleneck in the HF part-scale simulation of the AM

process is the required number of time-steps, especially when industrial components are of
interest. In this sense, the development and training of a ROM enables the reduction of the number
of time-steps without compromising the quality of the obtained solution.

• Multi-laser AM Simulation. The possibility of introducing several GCodes, each one belonging to
a different printer, permits the decrease in the both fabrication and simulation times required by
the AM process. The number of time-steps is reduced by the increase in the number of activated
FEs for each time-step, due to the use of several GCodes concurrently.

• Shrinkage. In the constitutive model presented, the shrinkage effect is not considered. This effect
depends on the evolution of the rate of the liquid/solid fraction and may introduce large values
for the thermal-strains. Inclusion of this effect may be of interest for massive components.

• Nonlinear Kinematics. The growing demands of the industry towards weight reduction
translates into slender components. In this sense, the use of nonlinear kinematics may be required
when high temperature gradients are observed in thin-walled manufactured components.
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A B S T R A C T   

In this work an adaptive Finite Element strategy to deal with the numerical simulation of Additive Manufacturing 
(AM) processes is presented. The Selective Laser Melting (SLM) is chosen as the reference technology because of 
its great diffusion in the industrial manufacturing chain, although the proposed methodology can be applied to 
the numerical simulation of all types of AM. An octree-based mesh adaptivity approach is adopted allowing for 
the use of much finer meshes within the processing zone, the so called Thermo-Mechanically Affected Zone 
(TMAZ), if compared to the rest of the computational domain. Although the adaptive meshing is vital to keep 
controlled the computational resources through the entire simulation of the fabrication process, the accuracy of 
the results can be compromised by the coarsening strategy, and particularly when simulating the SLM process, 
where the mesh size can vary from microns (TMAZ) to centimetres (close to the build-plate). This loss of accuracy 
can spoil the original efforts in refining the mesh in the process zone. Therefore a strategy to compensate for 
information loss in the adaptive refinement simulation of additive manufacturing processes is developed. The 
main idea is to add two correction terms which compensate for the loss of accuracy in the coarsening process of 
the mesh in the already manufactured regions. The proposed correction terms can be interpreted as a Variational 
Multiscale enhancement on the adaptive mesh. This allows one to successfully simulate the additive 
manufacturing process by using an adaptively coarsened mesh, with results which have an accuracy very similar 
to the one of a uniformly refined mesh simulation, at a fraction of the computational cost. Numerical examples 
illustrate the performance of the proposed strategy.   

1. Introduction 

The numerical simulation of Additive Manufacturing (AM) processes 
has been capturing the interest of the scientific community during the 
last years. Many efforts have been done to reproduce the fabrication 
process in a way as faithful as possible to the industrial practice. We refer 
to high fidelity analysis when the objective is to simulate the actual 
scanning sequence (laser Electron Beam (EB) melting processes) or the 
metal deposition pattern (wire melting or blown-powder processes). 
Following this concept, fully coupled thermo-mechanical analysis are 
conducted on an evolving (growing) computational domain which 
closely follows the building process.Most of the original works on AM 
simulation make use of the numerical framework used for the welding or 
multi-pass welding analysis, adopting very similar numerical strategies 
to solve the thermal/coupled thermo-mechanical problem [10,13]. 
These strategies have been applied to validate additive manufacturing 
numerical simulation using experimental data [16,17,37], including 

stress and deformation evaluation [32–34]. A review of the residual 
stresses can be found in [8] and the influence of the how scanning 
strategies affect the residual stresses are subject of [12,40]. While the 
constitutive models used for the characterization of the material 
behavior have demonstrated to be suitable for the AM analysis, the 
numerical strategy has shown its limitations when trying to afford 
simulations on components of industrial interest. This problem is more 
and more evident when moving the focus from Wire Arc Additive 
Manufacturing (WAAM), where the thickness of the deposited layer is 
within the range of 1–3 mm, to Selective Laser Melting (SLM), that 
makes use of a laser source to (selectively) melt powder-bed layers of 
about 20–60 µm. This is the reason why the numerical simulation of the 
SLM process is generally addressed using simplified strategies based on 
the Inherent Strain method [11,22,44,48,49]. Hence, the coupled 
thermo-mechanical process is replaced by a sequence of purely me
chanical computations in a layer-by-layer (or even multi-layer) manner. 
This is physically motivated by the fact that during the recoating 
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process, when a new powder-bed is spread, the temperature of the built 
decreases to reach the value of the build-plate, de-coupling the analysis 
of the last printed layer from the rest of the built. In the common 
practice, the Thermo-Mechanically Affected Zone (TMAZ) penetrates 
only 100–150 µm (just few layers) through the substrate (or the more 
recent printed layers). Hence, the temperature gradients (induced by the 
laser source), as well as the evolution of the plastic strains (due to the 
material shrinkage), affect the last few printed layers, only. A second 
simplification hypothesis consists of assuming a purely elastic stress 
analysis being the end-user the final responsible of defining or obtaining 
a suitable Inherent-Strain tensor that characterizes the process in terms 
of distortions and residual stresses of the manufactured component. The 
Inherent-Strain tensor can be obtained from experimental data or pre
vious small-scale, non-linear, numerical simulations [9]. This tensor 
includes both the thermal and the plastic strains defined as a uniform 
(averaged) distribution over each printed layer. This hypothesis relays 
on the fact that the melt-pool is very small, if compared with the size of 
the entire layer, its effects being very localized and almost independent 
of the boundary conditions. Other approaches to obtain the Inherent 
Strain tensor are possible, such as the modified version of the Inherent 
Strain Method is presented for the Direct Energy Deposition (DED) in 
LENS (Laser Engineered Net Shaping) presented in [28,29] and the 
extension of this work for lattice support structures in powder bed 
technology is introduced in [30]. 

Although the inherent strain method alleviates the computation re
quirements for the simulation of the SLM process, the huge number of 
layers necessary to build the final component as well as the mesh size 
required for the Finite Element (FE) discretization still need very large 
computational time and memory requirements. 

The approach followed in this work consists in combining a FE High 
Performance Computing (HPC) framework together with dynamic mesh 
adaptation, which mitigates the computational effort by refining the 
mesh at the TMAZ while coarsening it anywhere else. An octree-based 
coarsening strategy is adopted (see Fig. 1). The main idea of octree 
strategies is to hierarchically refine/coarsen elements, which allows the 
refinement process to be efficient and relatively simple to parallelize 
[18,36,39,41]. The octree method allows for a fast coarsening of the 
mesh while minimizing the data-transfer between meshes. It also dem
onstrates to be suitable for its parallelization in MPI-based HPC envi
ronments. The enhancement provided by AMR and parallelism for the 
solution of AM processes can be found in several works. 

Ref. [20] uses a coarsening algorithm to reduce the computational 
cost. The algorithm keeps a fine mesh on the two layers below the 
deposition area and merges the elements below this region maintaining 
at least 1 fine layer below the deposition. Plastic strains and hardening 
variables are interpolated to the new Gauss points. [38] proposes an 
adaptive re-meshing to minimize the number of nodes to predict dis
tortions and residual stresses in the simulation of LPBF where the layers 
being solved are kept with a fine mesh and a coarse mesh at the inactive 
and previous solved layers. [26] uses dynamically changing meshes 
based on a combination of hp-finite elements and the finite cell method 
to treat state and field variables to reduce the number of nodes on the 
simulation to save computational resources. 

In [21] a thermo-mechanical LPBF is validated by comparing pre
dicted and measured distortions. The work is based on a multi-scale 
approach and uses mesh adaptivity to reduce mesh density according 

to a pre-activation remeshing scheme. The authors refer to the adap
tivity as one of the sources of error between the observed results of 
model-experiment. [27] addresses several coarsening strategies using 
Hex8 elements with smooth transitions between coarse and fine mesh 
regions. The authors compare the coarsening strategies with static mesh 
results validated experimentally comparing temperature field, distor
tions and residual stresses in a thin wall structure. A common strategy is 
to apply a dynamic mesh with a refined area near the heat source in 
LPBF and compare the adaptive solution with a fix uniform mesh for the 
thermal problem [25,50]. The work of [42] compares the performance 
of the thermo-mechanical solution using the monolithic and adiabatic 
[2] approaches using AMR to refine and coarsen structured meshes 
where required. 

Nevertheless, by using intensive adaptive refinement for the AM 
processes, one of the main concerns is the loss of information in the data- 
transfer when switching from a fine mesh (TMAZ) to a coarser one. This 
information loss can lead to a reduction of accuracy spoiling the final 
results. 

In this work a strategy to compensate for information loss in the 
adaptive refinement simulation of AM processes is presented. The main 
idea is to add two correction terms to the boundary value problem 
defined for the coarser mesh to preserve the results obtained in the finer 
mesh just before the coarsening procedure. The proposed methodology 
can be understood as a Variational Multiscale approach [23], in which 
the model for the subscales arising from finer discretizations is exactly 
known. The method is derived from the approaches presented in [5,6], 
where coarsening correction terms were applied in order to enhance the 
performance of reduced order models. 

The proposed correction method is applied to the numerical simu
lation of SLM processes by the inherent strain method. Nevertheless, the 
same methodology can be extended to the high-fidelity analysis of more 
complex AM processes (e.g. WAAM, DED, etc.) involving thermo- 
mechanical coupling and elasto-visco-plastic constitutive behavior. 

The paper is organized as follows: in Section 2 the FE modeling of the 
AM process by SLM is presented. Section 3 focuses on the proposed 
adaptive methodology and the strategy to correct the information loss in 
the coarsening process. In Section 4 several numerical examples illus
trate the performance of the proposed strategy, and finally some con
clusions close the work in Section 5. 

2. Finite Element modeling of the additive manufacturing 
process by SLM 

The most suitable numerical strategy to tackle the simulation of the 
SLM process is based on the Inherent Strain approach. This method 
enables for a fast prediction of the distortions and residual stresses of the 
fabricated component assuming the general hypotheses widely accepted 
in Computational Welding Mechanics (CWM) [35,46,47]. In this case, 
the fully coupled transient thermo-mechanical analysis is replaced by a 
layer-by-layer (or even multi-layer) sequence of steady-state mechanical 
analyses. Hence, the original CAD geometry is firstly sliced according to 
the thickness of the powder-bed and then the FE discretization is 
generated accordingly. The birth-death FE activation technique is 
adopted [14,15,17,19,31] to add to the computational domain Ω all the 
finite elements belonging to each layer (slice) arising from the laser 
melting process of the powder bed. The analysis follows the two-step 
sequence of the actual SLM process: (i) recoating and (ii) laser- 
scanning. From the modeling point of view, the former consists of 
updating the computational domain by adding all the elements 
belonging to each new layer. The latter stage performs the stress analysis 
on the new domain. 

In the initial FE discretization Ωo
h = Ωh(t = 0) all the elements are 

inactive: they do not belong to the computational domain, so that they 
are neither computed nor assembled into the global system of equations. 
The time discretization consists of a uniform partition of the analysis 
period [0, T] into N time intervals, which correspond to the total number 

Fig. 1. AM process simulation: Initial uniform mesh (left); mesh coarsening far 
from the TMAZ (right). 
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of layers required to complete the whole SLM process. This given, when 
the first layer is activated, the corresponding stress analysis is performed 
on Ω1

h . The whole layer activation sequence follows. 
The stress analysis enforces the conservation of the balance of mo

mentum equation within the current active domain Ωn+1
h at time tn+1 ∈

[0, T]. We denote as tn+1 the current time instant to indicate that an 
implicit approach for the time integration is used. The corresponding 
Dirichlet and Neumann boundary conditions are applied on Γn+1

D =

ΓD(tn+1) and Γn+1
N = ΓN(tn+1), respectively, which results in the 

following set of equations: 

− ∇⋅σ = b in Ωn+1
h ,

u = u on Γn+1
D ,

σ⋅n = t on Γn+1
N ,

(1)  

where u is the displacement field, σ is the Cauchy stress tensor, b are the 
external body forces and, u and t are the prescribed displacements and 
the prescribed tractions on Γn+1

D and Γn+1
N , respectively. 

After the finite element discretization, the discrete weak form of (1) 
at time tn+1 ∈ [0, T] can be written as: 
∫

Ωn+1
h

ϵ(δvh) : σ(un+1
h ) dΩ =

∫

Ωn+1
h

δvh⋅b dΩ

+

∫

Γn+1
N

δvh⋅t dΓ ∀δvh ∈ Vn+1
h .

(2)  

where δvh are the test functions and Vn+1
h is the finite element space for 

the displacements. 

The total strain tensor ϵ(u) = 1
2

(
∇u + (∇u)T

)
= ∇Su can be split 

into the elastic strains, ϵe, the visco-plastic strains including phase 
transformation and creep induced strains, ϵvp, and the thermal defor
mation including the shrinkage effect during the phase-change trans
formation, ϵth, as: 

ϵ = ϵe + ϵvp + ϵth (3) 

The constitutive model reads as: 

σ = C : ϵe = C :
(
ϵ − ϵvp − ϵth

)
(4)  

where C is the elastic constitutive tensor. Defining the inherent strain as: 
ϵinh = ϵvp + ϵth, the constitutive equation can be rewritten as: 

σ(u) = C : (ϵ(u) − ϵinh ) (5) 

Note that the inherent strain tensor is typically obtained either by 
experimental calibration by matching the actual distortion of repre
sentative demonstrators or by a high-fidelity simulation of the moving 
melt-pool at the TMAZ [24,43,45]. Hence, both the thermal coupling 
and the plastic analysis are avoided, thus minimizing the computational 
cost. 

Nevertheless, according to the activation process, each new layer is 
born with an initial displacement field, uo, induced by the movement of 
the nodes shared with the pre-existing active elements. This means that 
at the instant of the activation, the newly activated elements inherit an 
initial strain field ϵ(uo) = ∇Suo induced by those initial displacements. If 
not removed from the computation, this strains transform into a 
spurious pre-stress field which pollutes the entire solution. Hence, to 
deal with the AM analysis, the constitutive equation must be corrected 
as: 

σ(u, ϵinh, ϵact) = C : (ϵ(u) − ϵinh − ϵact ) (6)  

where ϵact = ∇Suo are the so called activation strains. 
Fig. 2 illustrates the displacement field caused by the effect of the 

inherent strains ϵinh. Displacements are magnified by several orders of 
magnitude so that they can be appreciated in the figure. Active elements 
are depicted in red, while inactive elements are depicted in green. The 

highlighted green element is the element which is going to be activated 
in the next time step. The element is deformed due to the displacements 
of the nodes which belong to already activated elements. This initial or 
activation deformation shall not introduce any stresses in the newly 
printed material. To compensate for it, the initial or activation strain ϵact 
is introduced. 

This given, the weak form of the mechanical problem suitable for AM 
analysis can be rewritten using the following compact form: find a 
displacement field un+1

h such that: 

Bn+1( δvh, σ(un+1
h , ϵn+1

act , ϵ
n+1
inh )

)
= Fn+1(δvh) ∀δvh ∈ Vn+1

h , (7)  

where 

Bn+1( δvh, σ(un+1
h , ϵn+1

act , ϵn+1
inh )

)
:=

∫

Ωn+1
h

ϵ(δvh) : C :
(
ϵ(un+1

h )

− ϵn+1
act − ϵn+1

inh

)
dΩ,

(8)  

Fn+1(δvh) :=

∫

Ωn+1
h

δvh⋅b dΩ +

∫

Γn+1
N

δvh⋅t dΓ (9)  

3. Coarsening and correction strategy 

3.1. Octree refinement strategy 

For the solution of Eq. (7) an adaptive finite element method is used. 
This is very convenient since it allows to use a fine mesh in the regions 
where material is being printed and where both large temperature 
gradients and stress concentrations occur. At the same time it allows to 
coarsen the mesh once the simulation advances and less precision is 
required on that area. An octree refinement strategy is used (see our 
previous works on adaptive methods for computational solid mechanics 
[3,4,7]). Fig. 1 illustrates the adopted refinement strategy. The simula
tion departs from a coarse mesh which covers the complete simulation 
domain over time. The mesh is then refined by subdividing the elements 
in the areas close to the melt-pool. This can be done for both hexahedral 
and tetrahedral elements. As the manufacturing process advances, a 
finer mesh is used in the TMAZ (upper layers), while a mesh coarsening 
is performed elsewhere. The hierarchical octree refinement strategy 
results in hanging nodes (see Fig. 3) in the finite element mesh which 
need to be properly treated [3]. 

3.2. Adaptive finite element approach 

Let us consider an adaptively refined finite element space in the 
active domain, Vn+1

h , and the discrete weak form of the problem given by 

Fig. 2. Displacement field caused by inherent strains.  
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Eqs. (7)–(9). Note that the finite element space Vn+1
h evolves after the 

deposition of each new layer following the printing process, as well 
because of the adaptive refinement and coarsening process. When a new 
finite element mesh is generated because of the mesh adaptivity process, 
information from the previous mesh needs to be projected onto the new 
mesh. 

For the displacement field, a nodal projection is used, which means 
that for already existing nodes the nodal displacement values do not 
change, and for new nodes, the values are interpolated point to point 
from the old mesh onto the new one. Therefore, the displacements at tn 

in the mesh at tn+1 are given by: 

Pn+1
h

(
un

h

)
, (10)  

where Pn+1
h (⋅) is the point to point projection onto Vn+1

h . 
For the historical variables defined at the integration points, such as 

ϵact and ϵinh, the projection process is done element by element, the 
quantities are transferred through an elementwise L2 projection, which 
is denoted by Πn+1

h . Thus: 

Πn+1
h (ϵn

act), (11)  

Πn+1
h (ϵn

inh). (12)  

are the strains ϵact and ϵinh at tn in the mesh at tn+1. For each element Kn+1 

of the new mesh the projection is computed solving: 
∫

Kn+1
δγh : Πn+1

h (ϵn)dΩ =

∫

Kn+1
δγh : ϵndΩ, ∀δγh ∈ Wh,Kn+1  

where now δγh are the tensorial weight functions and Wh,Kn+1 is the 
tensorial finite element space of the new mesh restricted to the consid
ered element. Once computed, Πn+1

h (ϵn) is interpolated and stored at the 
new element quadrature points. Note that Πn+1

h (ϵn) belongs to the 
element-wise tensorial finite element space Wh,Kn+1 , which is of the same 
approximation order as the displacement space Vn+1

h , whereas ϵn belongs 
to the strains finite element space, which is typically one approximation 
order inferior than the displacement space Vn+1

h . 

3.3. Stress correction terms 

During the coarsening step between successive adaptive meshes, part 
of the information stored in the coarsened region is lost. This is so 
because of the projection errors associated to Pn+1

h and Πn+1
h , and also 

because in the coarsening process the finite element space changes from 
Vn

h to Vn+1
h . This causes that when straightforwardly computing the 

stresses which result from the adaptive simulation of the AM process by 
using inherent and activation strains, it is observed that the obtained 
results are of poor quality and not in concordance with those obtained 
with an equivalent fine mesh simulation. This effect is particularly 
apparent when low order elements with a poor representation of the 
stress field (namely tetrahedral elements) are used. The obtained stress 
field if of a much lower quality than the one obtained for coarser non- 
adaptive meshes. 

The reason for this behavior is twofold: on the one hand the acti
vation (or inherent) strains on the fine mesh before coarsening ϵn

act can 
present heavy element to element jumps, specially if low order elements 
with a poor gradient representation are used. When coarsened, activa
tion strains result in an L2 averaged field Πn+1

h (ϵn
act) which introduces the 

appropriate average forces field, but which can result in an inaccurate 
local strain value. This representation is translated into a poor local 
solution stress field when the next step of the simulation is performed. 
Secondly, when mesh coarsening is performed, there will be nodes 
which were previously free which will become hanging in the new mesh. 
Displacement values at these nodes will automatically be switched from 
their free value to an interpolated value from the corresponding parent 
nodes. This results in important changes in the strain values, which 
automatically translates into incorrect local stress values on the ele
ments to which these hanging nodes belong. 

Due to this, it is necessary to correct the obtained stress values 
through a stress correction term. Let us define the stress field on the 
current step σn+1

h straightforwardly computed from the current step 
variables: 

σn+1
h = σ

(
un+1

h , ϵn+1
act , ϵn+1

inh

)
, (13)  

and the stresses from the previous time step computed on the current 
step mesh, by using the projected previous step variables, σ̂n

h: 

σ̂n
h = σ

(
Pn+1

h (un
h),Πn+1

h (ϵn
act),Πn+1

h (ϵn
inh)

)
. (14)  

Note that both quantities are defined in the mesh at step n + 1. Recall 
that due to the nature of activation and inherent strains: 

ϵn+1
act = Πn+1

h (ϵn
act) + Δϵn+1

act ,

ϵn+1
inh = Πn+1

h (ϵn
inh) + Δϵn+1

inh .

The proposed total corrected stress field σn+1 is defined as: 

σn+1 = σn+1
h + σ̃n+1 (15)  

with: 

σ̃n+1
= Πn+1

h (σn) − σ̂n
h, (16)  

where σ̃n+1 is the stress correction term. Let us remark the recursive 
nature of Eqs. (15)–(16), where the total corrected stress field σn+1 de
pends on the projection of the total corrected stress field at the previous 
step Πn+1

h (σn). At the first step ̃σ1
= 0 is set. Note also that Eqs. (15)–(16) 

imply that the total stress at time step n + 1 can be interpreted as the 
decomposition into: 

σn+1 = Πn+1
h (σn) + Δσn+1,

where the first term is the contribution of the previous time steps with 
minimum information loss as a result of the stress correction term, and 
the second one is the increment in stresses caused by load increments 
Δϵn+1

act , Δϵn+1
inh at the current step, with: 

Δσn+1 = σn+1
h − σ̂n

h,

as defined in Eqs. (13)–(14). 
In the first coarsening step, the correction term (16) is just the dif

ference between the projected stress field at the previous time step, and 
the stress computed in the new mesh with the projected variables from 
the previous step, namely displacements and inherent and activation 
strains field. For successive steps, due to the recursive nature of σ̃, in
formation on the fine meshes at previous steps is successively transferred 
throughout the simulation, minimizing information loss. 

Fig. 3. Hanging nodes (red) at the interface between refined and coarse 
meshes. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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3.4. Force correction terms 

The introduction of the stress correction terms (16) is not enough to 
prevent information loss during successive coarsening steps. This is so 
because there is no guarantee that the solution of the finite element 
problem in the previous mesh is at equilibrium when projected onto the 
new coarsened mesh. The optimal situation would be to preserve the 
results obtained through the solution of problem (7) at time step n into 
the new (coarsened) finite element mesh at time n + 1. In general this 
does not happen and thus: 

∃δvh ∈ V̂
n+1
h ∣Bn( δvh, σ̂n

h + σ̃n+1)
= Bn( δvh,Πn+1

h (σn)
)
∕= Fn(δvh). (17)  

where now V̂n+1
h is the coarsened finite element space at tn+1 prior to the 

new element activation, that is, the space associated to the mesh at n + 1 
but covering only the domain Ωn, instead of Ωn+1. Due to this, the 
equilibrium state attimestepn on the coarsened mesh n + 1 is not attained 
for Pn+1

h (un
h) but for ûn

h, the solution to: 

Bn( δvh, σ
(
ûn

h,Π
n+1
h (ϵn

act),Πn+1
h (ϵn

inh)
)
+ σ̃n+1)

= Fn(δvh) ∀δvh ∈ V̂
n+1
h . (18)  

In order to correct this issue, a force coarsening correction term is 
computed which compensates for coarsening information loss. The 
correction term is defined as: 

Cn+1(δvh,un
h, ϵ

n
act, ϵ

n
inh) := Bn( δvh,Πn+1

h (σn)
)
− Fn(δvh) δvh ∈ V̂

n+1
h . (19)  

This term corresponds to the forces residual obtained by projecting the 
solution obtained at time n onto the new mesh at time n + 1, including 
the stresses correction term σ̃n+1, in the equilibrium equation. When 
adding (19) to Eq. (18), the resulting weak form is: 

Bn( δvh, σ
(
ûn

h,Πn+1
h (ϵn

act),Πn+1
h (ϵn

inh)
)
+ σ̃n+1)

= Fn(δvh) + Cn+1(δvh, un
h, ϵn

act, ϵ
n
inh) ∀δvh ∈ V̂

n+1
h .

(20)  

The solution to (20) is ûn
h = Pn+1

h (un
h). By inserting (19) in the formula

tion, we successfully compensate for information loss in the coarsening 
process in the equilibrium equation. Note that this means that the so
lution at time step n + 1 can be interpreted as the decomposition into: 

un+1
h = Pn+1

h (un
h) + Δun+1

h ,

where the first term is the contribution of the previous time steps with 
minimum information loss thanks to the modification of the equilibrium 
equation, and the second one is the increment in displacements caused 
by the load increments Δϵn+1

act , Δϵn+1
inh at the current step. 

By taking into account (19), the resulting finite element problem at 
time step n + 1 is: find a displacement field un+1

n such that: 

Bn+1(δvh, σ(un+1
h , ϵn+1

act , ϵ
n+1
inh ) + σ̃n+1

)

= Fn+1(δvh) + Cn+1(δvh, un
h, ϵn

act, ϵ
n
inh) ∀δvh ∈ Vn+1

h .
(21)  

3.5. Interpretation as a variational multiscale method 

The corrections proposed in Subsections 3.3 and 3.4 can be inter
preted as a Variational Multiscale approach (see [23]), in which the 
value of the displacement and stress subscales is exactly known. Let us 
decompose the solution at time n into its projection onto Vn+1

h and the 
remaining part referred to as the subscales, ̃un. This latter corresponds to 
the information loss in the projection from Vn

h to Vn+1
h . Thus: 

un
h = Pn+1

h (un
h) + ũn

. (22)  

Similarly, activation and inherent strains are decomposed into: 

ϵn
act = Πn+1

h (ϵn
act) + ϵ̃n

act,

ϵn
inh = Πn+1

h (ϵn
inh) + ϵ̃n

inh.
(23)  

Eq. (16) straightforwardly defines the stress subscales σ̃. 
Correction stresses σ̃ and correction forces Cn+1(δvh,un

h, ϵn
act, ϵn

inh)

precisely account for the (otherwise lost) contribution of ̃un
,ϵ̃n

act, ̃ϵ
n
inh, and 

σ̃ to the bilinear form. This interpretation gives a variational foundation 
to the proposed correction terms. 

4. Numerical examples 

In this section some numerical examples illustrate the performance 
of the proposed methodology. 

The objectives are two-fold: (a) to reduce the computational effort 
using mesh refinement and, particularly, mesh coarsening, and (b) to 
minimize the effects induced by the mesh coarsening using the proposed 
correction terms. Both the CPU-time and the result accuracy using the 
mesh adaptivity with and without the correction term are compared to a 
fixed fine FE mesh used as a reference. These numerical examples do not 
pretend to present accurate results for the quantities of interest of a 
particular simulation (the used finite element meshes are possibly too 
coarse for this), but on the contrary they have been selected because 
they are illustrative and allow us to show the improvements that can be 
obtained by using the strategy proposed in this work. 

The material and process parameters used in the numerical examples 
are shown in Table 1 and the building process follows a layer-by-layer 
activation scheme. 

Three test-cases are proposed. The first one adopts a fixed compu
tational domain and it is intended to demonstrate the necessity of the 
correction term to preserve the solution obtained with the finest mesh 
used in the adaptive process. The second example shows the virtue of the 
adaptive technology when a growing computational domain is used as 
required for the simulation of the AM process. Finally, an industrial 
component is simulated with the proposed technology to show the 
speed-up obtained with respect to the use of a fixed mesh while pre
serving the same accuracy. 

To assess the global error of each example, a relative L2 error norm of 
the displacement field is computed at the end of the simulation as: 

eL2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∫

Ω

(
Pcoarse

h (ufine
h ) − ucoarse

h

)
dΩ

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∫

Ω

(
Pcoarse

h (ufine
h )

)2
dΩ

√ (24)  

where Pcoarse
h (ufine

h ) is the projection of the reference (fixed fine mesh) 
solution and ucoarse

h is the solution obtained with the coarsened mesh both 
with and without the correction term. 

Remark: Note that the error is computed after point to point pro
jecting the fine solution onto the coarse mesh: this is so because the 
objective of the methodology is to avoid any spurious displacement due 
to the coarsening of lower layers to be transferred to the upper layers, 
where the printing is taking place and which have still not been coars
ened. This translates into trying to minimize the difference between the 
fine and the coarse solutions on the degrees of freedom which have not 

Table 1 
Simulation parameters.  

Parameter Cantilever Beam Slender Column Gear Component 

Young’s Modulus (E) 100 GPa 100 GPa 100 GPa 
Poisson’s ratio (ν) 0.3 0.3 0.3 
Density (ρ) 4420 kg/m3 4420 kg/m3 4420 kg/m3 

Layer thickness (t) (− ) 0.10 mm 1 mm 
Refinement height (href) 3 m 0.5 mm 1 mm 
ϵx

inh = ϵy
inh  (− ) -0.67 -0.67 

ϵz
inh  (− ) 0.0 0.0  
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been coarsened, and hence the proposed definition of the relative L2 
error norm. 

The numerical simulations are carried out using the FEMUSS (Finite 
Element Method Using Subgrid Scales) software developed by the authors 
at the International Center for Numerical Methods in Engineering 
(CIMNE). The post-processing is done using Paraview [1]. 

4.1. Cantilever beam 

This example demonstrates the necessity of using the proposed 
correction terms to retain the solution accuracy of the finest mesh used 
when a coarsening strategy is employed, in a very simple setting. The 
objective is to observe how, for a single simulation step, information is 
transferred from a fine to a coarse mesh thanks to the correction terms. 
As it will be shown, if no coarsening correction terms are used all the 
information on the solution obtained in the fine mesh is lost when 
coarsening. On the contrary, if the correction terms are used, optimal 
projected solutions for both displacements and stresses on the coarse 
mesh are obtained. 

The dimensions of a slender cantilever beam are reported in Fig. 4. 
The beam is clamped at one end and subjected to its self-weight, only. 
The reference solution is obtained using a uniform mesh with an element 
size: h = 6.25 mm. The adaptive strategy starts from the same fine mesh. 
Once the solution is obtained, a coarsening step increases the element 
size up to 50 mm (see Fig. 5). Next, the simulation is repeated on the 
new coarse mesh. This is done both for a trilinear hexahedra mesh and 
for a linear tetrahedra mesh. 

Figs. 6 and 7 compare the magnitudes of the vertical displacements 
for the fine mesh, coarse mesh without and coarse mesh with the 
correction terms for the hexahedra and tetrahedra cases respectively.  
Figs. 8 and 9 do the same comparison for the normal stresses in the main 
bending direction. 

In both the hexa and tetrahedra cases the solution in the coarse mesh 
achieved without the correction terms is too stiff because of the very poor 
finite element approximation space. This are simply new simulations on 
the coarse meshes, and they do not take advantage of the information 
obtained in the first step of the simulation on the fine mesh. Also, the 
obtained stress fields are poor, this can be clearly observed in the 
tetrahedra mesh stress plot, where the stress field is constant element to 
element and presents large jumps between adjacent elements. On the 
hexahedra elements, the stresses are also discontinuous element to 
element, but they have a linear component in space, so the effect is not 
so apparent. 

On the contrary, when the correction terms are used, the information 
on the fine mesh is transferred to the coarser mesh, and the agreement 
with the reference solution is optimal (for this single step simulation 
displacements (in the nodes) and stresses (at the integration points) are 
identical in the fine and the coarse meshes except for projection errors). 
In the stress field plot, it is worth observing that for linear tetrahedra, 
stresses are no longer constant element to element thanks to the 
correction terms. 

The global errors are presented in Table 2 where the corresponding 
relative L 2 error norms are computed according to equation 24. As ex
pected, the error is null for the coarse mesh if the coarsening correction 

terms are employed. 
The key point of the methodology is that if a new load increment was 

now solved on the coarse mesh, the resulting displacement and stress 
increments would be computed on such current coarse mesh. However, 
the displacement and stress increments associated to the original load, 
which were computed on the fine mesh, would not loose the fine mesh 
accuracy. This is especially important in AM simulations where elements 
will be concentrated dynamically in the region of the melting-pool 
(TMAZ). 

4.2. Slender column 

This example proves the efficiency of the coarsening strategy to Fig. 4. Cantilever beam: Geometry and dimensions.  

Fig. 5. Cantilever beam: fine (reference) and coarse meshes.  

Fig. 6. Cantilever beam: Displacement results for the hexahedral mesh. (a) Fine 
mesh. (b) Adaptive mesh without correction terms. (c) Adaptive mesh with 
correction terms. 

Fig. 7. Cantilever beam: Displacement results for the tetrahedral mesh. (a) Fine 
mesh. (b) Adaptive mesh without correction terms. (c) Adaptive mesh with 
correction terms. 
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analyse growing domains as required for the numerical simulation of the 
AM process. This is particularly necessary when using the layer-by layer 
activation technique and slender parts. 

The selected geometry consists of a 10 mm high column of 
1 × 1 mm2 square base. A total number of 100 layers are activated in 
100 time-steps. Two different solutions are compared in Fig. 10: (a) a 
uniform mesh characterized by an element size: h = 0.03125 mm and, 
(b) an adaptive mesh having the same element size within the process 
region and a maximum coarsening up to h = 0.5 mm. The finer dis
cretization follows the activation process to maintain the highest reso
lution in the TMAZ while a coarser mesh is adopted elsewhere. 

Fig. 11 shows the evolution of the displacements with and without the 
proposed correction term at point P situated at coordinates (0, 0, 1) mm 
(see Fig. 10). The adaptive solutions are compared to the solution ob
tained with the fine fixed mesh used as a reference. It is observed that 
without the correction term the cumulative error is between 20% (x and y 
components) and 40% (z component), while the difference is between 
2% (x and y components) and 8% (z component) when using the 
correction strategy. 

Fig. 12 shows the plot of the displacement and stress fields at the end 

of the simulation for the fixed and adaptive meshes. Regarding dis
placements, it can be observed that the adaptive solution with correction 
terms ensures that the nodal values are much closer to the solution of the 
fine mesh during the whole simulation. The improvement is even more 

Fig. 8. Cantilever beam: Stress results for the hexahedra mesh. (a) Fine mesh. (b) Adaptive mesh without correction terms. (c) Adaptive mesh with correction terms.  

Fig. 9. Cantilever beam: Stress results for the tetrahedra mesh. (a) Fine mesh. (b) Adaptive mesh without correction terms. (c) Adaptive mesh with correction terms.  

Table 2 
Cantilever beam: relative global error eL2 norm.  

Model Hexahedra Tetrahedra 

Adaptive mesh without correction term  46.9%  50.0% 
Adaptive mesh with correction term  0%  0%  

Fig. 10. Slender column: (a) Fixed mesh with hexahedral elements. (b) 
Adaptive meshing at the end of the simulation and position of point P. 
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relevant in the stresses case. A remarkable generalized lack of global 
accuracy in the stress computation is observed in the adaptive case 
without correction term, with a spurious stress jump in the interface 
between the fine and coarse mesh areas in the top of the column. This 
spurious stress jump is caused by the switching of free nodes to hanging 

nodes in the coarsening process as explained in Section 3.3. The adaptive 
simulation with correction terms, on the contrary, shows a very good 
agreement with the fine mesh simulation (except for the expected and 
unavoidable loss of resolution due to extreme coarsening). Fig. 13 
compares the CPU-time and the number of active nodes (mesh size) 

Fig. 11. Slender column: Evolution of the displacements (left) and the relative difference vs. the fixed fine mesh (right) at point P during the activation process.  

Fig. 12. Slender column: Displacement (left) and stress (right) fields at the end of the simulation. (a) Fine mesh. (b) Adaptive mesh without correction terms. (c) 
Adaptive mesh with correction terms. 
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using the fixed and the adaptive meshes. During the activation of the 
first 5 layers, the two strategies adopt the same mesh and consequently 
approximately the same solution time is required. Next, the adaptive 
strategy is switched on. Thereafter, the mesh size (number of active 
nodes) of the adaptive mesh is kept almost constant allowing for a 
reduced CPU-time increment for each new time-step. Contrarily, the 
fixed mesh requires an increasing amount of resources as the growing 
process proceeds. Therefore, the use of a fixed mesh is not recommended 
for the numerical simulation of industrial AM processes and, particu
larly, when the high-fidelity simulation of the actual layer thickness and 
the detailed scanning sequence is required. 

4.3. Gear component 

The last example corresponds to an industrial component: a gear 
17 mm high with an outer diameter of 40 mm. The gear is attached to 
the base-plate, thus the movements of all the nodes belonging to its 
lower surface are prescribed. The computational domain is discretized 

by an unstructured tetrahedral mesh. On the one hand, a fixed coarse 
mesh is generated with an average element size of 0.70 mm and a total 
number of 880, 384 elements and 169, 316 nodes. On the other hand, a 
fine mesh (used as the numerical reference) is characterized by an 
average mesh size of 0.35 mm and a total number of elements 7, 470, 
787 and 1, 259, 626 nodes. Finally, the adaptive mesh adopts the same 
mesh size as the fine mesh within the process zone (defined as the vol
ume enclosed up to a vertical distance href) and it is coarsened up to the 
size of the fixed coarse mesh elsewhere (see Fig. 15). In this case, the 
average mesh includes about 493, 058 nodes and 2, 743, 781 elements. 

The P point on the external surface, at 4.3 mm from the base plate, is 
chosen to record the evolution of the radial displacement on the 
different meshes used (see Fig. 14). The layer thickness is 1 mm so that 
17 time-steps are required to complete the AM process. Note that the 
layer thickness chosen is the minimal to allow for the use of the fixed 
fine mesh (adopted as the numerical reference) in a reasonable CPU- 
time. Fig. 16 shows the total displacement magnitude at the end of the 
simulation for the four adopted meshes. Fig. 17 shows the difference 

Fig. 13. Slender column: Number of active nodes (left y-axis) and execution time (right y-axis) comparison between fixed and adaptive meshes.  

Fig. 14. Gear component: Geometry and position of the reference point P.  

J. Baiges et al.                                                                                                                                                                                                                                   



Additive Manufacturing 37 (2021) 101650

10

between such displacement and the displacement on the reference fine 
mesh. As expected accuracy is better for the adaptive simulation with 
correction terms. Fig. 18(a) shows the evolution of the radial displace
ments at point P using both the fixed fine and coarse meshes and the 
adaptive solution with and without the correction term. Fig. 18(b) pre
sents the corresponding relative error with respect to the fixed fine 
mesh. Once again, the agreement of the adaptive solution with the 
proposed correction with the fine mesh is remarkable. The relative local 
error is lower than 2.50% while a standard adaptivity without the 
correction shows a local error of about 14%. 

The global error analysis is presented in Fig. 17: the errors are 
computed as the difference between the reference solution (fixed fine 
mesh) and the results obtained with the coarse mesh and the adaptive 
technology, and projected on the coarse mesh for their visualization.  
Table 3 provides the global relative L2 error computed according to 
equation 24: the corrected methodology increases the global accuracy of 
about 40% with respect to the crude adaptivity and of about 70% with 
respect to the solution obtained with the fixed coarse mesh. 

Fig. 19 shows the Von-Mises stress field at a cut along the central 
plane of the gear component. The results from the fixed coarse and fine 
meshes are quite similar. However, the adaptive mesh without the 
correction terms approximates the Von-Mises stress field very poorly. 
The reason for this is that linear tetrahedral elements are used in this 
simulation. Due to this, the activation strain field, computed from the 
gradient of an initial displacement field as defined in Section 2, presents 
heavy jumps from element to element in the adaptive mesh prior to 
coarsening. This is illustrated in Fig. 20. When coarsened, the projected 
activation strain field on the coarse mesh is assigned an averaged value 

Fig. 15. Gear component: (a) Fixed coarse mesh. (b) Fixed fine mesh. (c) 
Adaptive mesh. 

Fig. 16. Gear: Final displacement. (a) Fixed coarse mesh. (b) Fixed Fine mesh. (c) Adaptive mesh without correction terms. (d) Adaptive mesh with correction terms.  

Fig. 17. Gear: Displacement relative difference w.r.t reference mesh projected onto the coarse mesh. (a) Fixed coarse mesh. (b) Adaptive mesh without correction 
terms. (c) Adaptive mesh with correction terms. 
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(Fig. 20 (b), (c)). This averaged value is used together with the 
displacement field in order to compute stresses, and this results in a very 
poor approximation, as shown in Fig. 19 (c). By using the stress 
correction terms this phenomenon is corrected, resulting in the stress 
field presented in Fig. 19 (d), which is pretty much the projection of the 
fine mesh stress field in Fig. 19 (b) onto the coarsened adaptive mesh. 

Fig. 21 shows graphically the computational efficiency of the pro
posed adaptive technology in terms of CPU-time and maximum memory 
consumed during the simulation. In terms of solution time a speed-up of 
2.25 with respect to the fixed fine solution is obtained. This speed-up can 
be increased by reducing the size of the moving fine mesh which is 
following the TMAZ. In the actual process the heat penetration is of 
about 2–3 layer thickness. Therefore, the mesh refinement can be 
reduced to this size, only. Finally, observe that the computational cost 
due to the evaluation of the correction term is negligible allowing for its 
use for any mesh discretization. 

5. Conclusions 

In this work an adaptive FE strategy to deal with the numerical 
simulation of AM processes has been presented. An octree-based mesh 
adaptivity approach has been adopted allowing for the use of much finer 
meshes within the processing zone, the TMAZ, if compared to the rest of 
the computational domain. Although the adaptive meshing is vital to 
keep the computational resources bounded through the entire simula
tion of the fabrication process, the accuracy of the results can be 
compromised by the coarsening strategy. This loss of accuracy can spoil 
the original efforts in refining the mesh in the process zone. Therefore a 
strategy to compensate for information loss in the adaptive refinement 

Fig. 18. Gear: evolution of the radial displacement at point P (left) and the relative difference with respect to the fixed fine mesh (right).  

Table 3 
Gear: relative global error eL2 norm.  

Model Relative eL2 norm  

Fixed coarse mesh  11.9% 
Adaptive mesh without correction term  5.9% 
Adaptive mesh with correction term  3.6%  

Fig. 19. Gear: Von-Misses stress at a cut along the central plane. (a) Fixed coarse mesh. (b) Fixed Fine mesh. (c) Adaptive mesh without correction terms. (c) Adaptive 
mesh with correction terms. 

Fig. 20. Evolution of ϵinh + ϵact fields, ϵx component, on a tetrahedral mesh 
through the coarsening process. 
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simulation of additive manufacturing processes is developed. 
The main idea is to add two correction terms which compensate for 

the loss of accuracy in the coarsening process of the mesh in already 
manufactured regions. The first term corrects the errors introduced in 
the stress field by the coarsening process. The second correction term 
consists of a forcing term introduced in the weak form of the problem 
which prevents loss of information in the displacement field. This allows 
to successfully simulate the additive manufacturing process by using an 
adaptively coarsened mesh, with results which have an accuracy very 
similar to the one of a uniformly refined mesh simulation, at a fraction of 
the computational cost. Also, the proposed correction terms can be 
interpreted as a Variational Multiscale enhancement on the adaptive 
mesh, which gives a variational foundation to the proposed correction 
strategy. 

The numerical examples show the generality of the proposed meth
odology, which has been applied to different FE meshes, AM processes, 
several geometries, and its success in reducing the overall computational 
cost. The coarsening correction terms have turned out to be key in order 
to obtain a good accuracy in the simulation. 

The ideas presented in this work can be extended to more complex 
problems such as coupled thermo-mechanical simulations including 
non-linear behavior like plastic or damage constitutive models. This will 
be a matter of future work. 
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Acadèmia Research Program of the Catalan Government. The financial 
support from the Spanish Ministry of Economy and Competitiveness, 
through the Severo Ochoa Programme for Centres of Excellence in R&D 
(CEX2018-000797-S), is gratefully acknowledged. The authors also 
acknowledge the financial support provided by the Spanish Ministry of 
Economy via the ADaMANT project (DPI2017-85998-P): Computational 
Framework for Additive Manufacturing of Titanium Alloy. 

References 

[1] J. Ahrens, B. Geveci, C. Law, ParaView: An End-User Tool for Large Data 
Visualization. Visualization Handbook, Elsevier, 2005. 

[2] F. Armero, J.C. Simo, A new unconditionally stable fractional step method for non- 
linear coupled thermomechanical problems, Int. J. Numer. Methods Eng. 35 (4) 
(1992) 737–766. 

[3] J. Baiges, C. Bayona, Refficientlib: an efficient load-rebalanced adaptive mesh 
refinement algorithm for high-performance computational physics meshes, SIAM J. 
Sci. Comput. 39 (2) (2017) 65–95. 

[4] J. Baiges, R. Codina, Variational multiscale error estimators for solid mechanics 
adaptive simulations: an orthogonal subgrid scale approach, Comput. Methods 
Appl. Mech. Eng. 325 (2017) 37–55. 
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[23] T. Hughes, G. Feijóo, L. Mazzei, J. Quincy, The variational multiscale method-a 
paradigm for computational mechanics, Comput. Methods Appl. Mech. Eng. 166 
(1–2) (1998) 3–24. 

[24] T.-S. Jun, A.M. Korsunsky, Evaluation of residual stresses and strains using the 
eigenstrain reconstruction method, Int. J. Solids Struct. 47 (13) (2010) 1678–1686. 

[25] K. Khan, A. De, Modelling of selective laser melting process with adaptive 
remeshing, Sci. Technol. Weld. Join. 24 (5) (2019) 391–400. 
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A B S T R A C T

This work exploits the high accuracy of the mixed 3−field u∕e∕p formulation to address materially non-linear
inelastic problems including isochoric deformations.
Motivated by the strain-driven format of several constitutive equations used in FEA, the mixed u∕s∕p formulation
is reinterpreted, selecting the deviatoric strains as primary variables, together with the displacements and the
pressure field.
The mixed formulation is complemented with several constitutive equations suitable for Solid and Fluid Mechan-
ics.
The convergence rate upon mesh refinement, as well as the enhanced accuracy of the stress and strain fields is
proven in several non-linear problems with isochoric deformation in both the elastic and the inelastic ranges. 2D
and 3D problems involving different FE discretizations are solved with J2−plasticity, J2−damage and Bingham
models, all of them including strain localization. Numerical results show that perfectly convergent and mesh-
independent results are achieved in terms of peak load, failure mechanism, stress release and energy dissipation.
Revealing comparison with the u∕p formulation is also addressed.

1. Introduction

The aim of this work is to exploit the advantages of the
mixed displacement/deviatoric-strain/pressure (u∕e∕p)3−field formu-
lation for the solution of material non-linear problems in Computa-
tional Solids and Fluid Mechanics. The authors have introduced this FE
technology in a previous work where enhanced accuracy was proven
for both compressible and incompressible elasticity problems [1]. The
scope of this work is to solve materially non-linear Stokes problems
where a variety of constitutive laws can be adopted for solid and fluid
analyses. Within the former setting, elasticity, plasticity or damage con-
stitutive laws are tackled within the infinitesimal strain theory, while
the latter is suitable to analyze different rigid-viscoplastic flows such as
Bingham, Norton-Hoff, Sheppard-Wright and Carreau, among others.

This flexibility is very appealing to address the numerical simu-
lation of different industrial manufacturing processes including metal
forming, forging, extrusion, Friction Stir Welding (FSW), or machining
operations, and many others. All these processes are non-linear, present
stress concentrations and most of them show strain localization through

∗ Corresponding author.
E-mail address: michele.chiumenti@upc.edu (M. Chiumenti).
URL: http://www.cimne.com (M. Chiumenti).

the formation of shear bands. Moreover, the deviatoric nature of the
plastic strains arising from the plasticity models used in metal forming,
as well as the intrinsic isochoric nature of the constitutive laws used
to characterize the rigid-plastic material flow, require a FE technology
able to deal with the incompressibility constraint. Hence, stress accu-
racy and performance in the incompressible limit are both mandatory
requirements that motivate this work.

Popular solutions to tackle the quasi-incompressible limit are: the
reduced and selective integration methods [2,3,4,5], the B-bar and
F-bar elements [6,7,8,9] and the enhanced assumed strain methods
[10,11,12]. Although they cannot be used in the incompressible limit,
these approaches have proven to be reliable in quasi-isochoric prob-
lems for hexahedral elements but they do not have a straightforward
generalization to tetrahedral grids, being the preferred choice for the
automatic mesh generation.

Alternatively, the use of mixed displacement/pressure (u∕p) or
velocity/pressure (v∕p) formulations have been proposed to avoid the
volumetric locking when approaching the incompressible limit. The
use of different stabilization techniques and particularly the Varia-

https://doi.org/10.1016/j.finel.2021.103534
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tional Multi-Scale (VMS) method allows for the adoption of equal-order
piecewise linear interpolations for both displacement (velocity) and
pressure, circumventing the inf-sup conditions [13,14] for the Stokes
and Navier-Stokes problems [15,16,17]. The approach was extended
to incompressible elasticity [18,19], elastoplasticity [20,21], elasto-
dynamic problems [22,23,24,25,26] and hyperelastic finite deforma-
tion [27,28,29,30]. The Orthogonal Subgrid Scales (OSS) method
[15] was presented by the authors to address problems in incom-
pressible elasticity and J2-plasticity, and damage analysis includ-
ing the strain localization process induced by strain-softening laws
[31,32–34,35,36,37].

The stress/strain accuracy can be enhanced by adopting the mixed
displacement/stress (u∕𝝈) formulation, where both displacements and
stresses are used as primary variables in the finite element discretiza-
tion [38,39,40,41,42,43]. This given, a natural way to access the incom-
pressible limit with stress accuracy consists of splitting the stress tensor
into its deviatoric and spherical (volumetric) parts, being the latter the
pressure field, p. Hence, when the (deviatoric)-stress tensor, s, together
with both the pressure and the displacement fields are taken as primary
variables, the mixed 3−field (u/s/p) formulation arises, as shown in
Ref. [1].

Nevertheless, numerous material laws and the corresponding com-
putational algorithms are strain-driven: the strain tensor is the input to
the constitutive equations while the stress tensor is the corresponding
outcome. This motivates the mixed displacement/strain (u/𝛆) formula-
tion. Thus, the same implementation of the constitutive laws used for
the standard irreductible (displacements-based) element is suitable for
the mixed u/𝛆 technology.

The displacement/strain formulation was successfully used to
encompass non-linear problems including finite displacements in
dynamic problems [44], strain-localization in plasticity [45,46,47,48]
and crack propagation using damage models in mode-I [40,49,50]
and mixed modes [51,52,53]. However, the strain/displacement for-
mulation is not able to reach the incompressible limit. This is
the motivation of the present work: the development of a mixed
displacement/(deviatoric)-strains/pressure (u∕e/p) 3−field formula-
tion as accurate as the strain/displacement FE technology but able to
treat isochoric deformations.

The outline of the paper is as follows. In Section 2 and Section 3, the
framework suitable for solids and fluids is presented. The continuum
problem (strong form) is shown in Sections 2.1 and 3.1, respectively.
The volumetric/deviatoric split of the stresses and strains as well as the
constitutive tensor is described in Section 2.2. Next, the constitutive
equations suitable for both computational solid (Section 2.3) and fluid
mechanics (Section 3.2) are described. The weak form of the 3−field
formulation is detailed in Sections 2.4 and 3.3, respectively. Sections
2.5 and 3.4 deal with the discrete approximation of the problem by the
Galerkin method. The Variational Multi-Scale (VMS) approach required
when using equal order linear interpolation for all fields is described in
Section 2.6. This method allows for circumventing the inf-sup stability
condition [14]. Section 4 shows different numerical examples to assess
the accuracy and robustness of the proposed formulation.

2. Solid mechanics

2.1. The continuum problem

Let us denote by Ω (X) ∈ ℝndim an open and bounded material
domain of ndim dimensions where X are the coordinates of its mate-
rial points. The boundary ∂Ω is split into ∂Ωu and ∂Ωt , being ∂Ω =
∂Ωu ∪ ∂Ωt and ∂Ωu ∩ ∂Ωt = 0, such that the prescribed displacements,
u, are specified on ∂Ωu (Dirichlet boundary conditions) and the pre-
scribed tractions, t, are applied on ∂Ωt (Neumann boundary condi-
tions).

The continuum mechanical problem is defined by the following 3
equations:

∇ · 𝝈 + b = 0 (1)

𝝈 − ℂ ∶ 𝜺 = 0 (2)

𝜺−∇su = 0 (3)

where the unknowns are the displacement u (X) , the Cauchy stresses
𝝈 (X) and the strain field 𝜺 (X), respectively. The first one is the bal-
ance of momentum (equilibrium) equation, the second is the constitutive
equation and the last one is the kinematic equation (in the hypothesis
of infinitesimal strains), and where b are the external loads per unit of
volume and ℂ is a generic 4th order (secant) constitutive tensor.

Replacing the strains from Eq. (3) into the constitutive Eq. (2) and
substituting the resulting stresses into Eq. (1), the result is Navier’s equa-
tion:

∇ ·
(
ℂ ∶ ∇su

)
+ b = 0 (4)

which is written in terms of the displacement field only, being the
strains and the stresses:

𝜺 (u) = ∇su (5)

𝝈 (u) = ℂ ∶ 𝜺 (u) (6)

Alternatively, the mixed 𝝈/u formulation uses both stresses and dis-
placements as master fields:

∇ · 𝝈 + b = 0 (7)

𝝈 − ℂ ∶ ∇su = 0 (8)

obtained by substituting Eq. (3) into Eq. (2).
Nevertheless, the constitutive equations, as used in FEM, are gener-

ally strain-driven, hence it is convenient to keep the strains as one of
the independent variables, together with the displacement field, as:

∇ · (ℂ ∶ 𝜺) + b = 0 (9)

𝜺−∇su = 0 (10)

The result is the mixed 𝜺/u formulation, where the constitutive Eq.
(2) has been plugged into the balance Eq. (1) while Eq. (10) enforces
the kinematic constraint.

2.2. The volumetric/deviatoric split

Most of the constitutive equations can be split into their volumetric
and deviatoric components by assuming a volumetric/deviatoric split
of the free energy potential. This split implies that: (i) the volumetric
deformation (volume change) is governed by the pressure field, only;
(ii) the distortions are induced by the deviatoric part of the stress field.
Hence, the two deformation modes are uncoupled.

Let us define the rank−4 volumetric and deviatoric projection ten-
sors, 𝕍 and ℙ, as follows:

𝕍 = 1
3
(I ⊗ I) (11)

ℙ = 𝕀− 1
3 (I ⊗ I) (12)

ℙ + 𝕍 = 𝕀 (13)

where 𝕀 =
[
𝛿ij𝛿kl

]
and I =

[
𝛿ij
]

are the rank−4 and the rank−2 identity
tensors, respectively (𝛿ij is Kronecker’s delta).

The spherical (volumetric) and the deviatoric parts of the stress ten-
sor, 𝝈, are obtained as:

𝕍 ∶ 𝝈 = 1
3
(I ⊗ I) ∶ 𝝈 = p I (14)

2
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ℙ ∶ 𝝈 =
[
𝕀− 1

3 (I ⊗ I)
]
∶ 𝝈 = 𝝈 − p I = s (15)

where p (𝝈) = 1
3 (𝝈 ∶ I) = 1

3 tr (𝝈) is the pressure and s =dev (𝝈) are the
deviatoric stresses. This given, the stress tensor can be rebuilt adding
both components of the split as:

𝝈 = p I + s (16)

The same procedure is used to split the strain tensor 𝜺, as:

𝕍 ∶ 𝜺 = 1
3
(I ⊗ I) ∶ 𝜺 = 1

3
evol I (17)

ℙ ∶ 𝜺 =
[
𝕀− 1

3
(I ⊗ I)

]
∶ 𝜺 = 𝜺 − 1

3
evol I = e (18)

where evol = 𝜺: II =tr (𝜺) and e = ℙ ∶ 𝜺 = dev (𝜺) are the volumetric and
deviatoric component of 𝜺, respectively. This tensor is rebuilt as:

𝜺 = 1
3

evol I + e (19)

In solid mechanics, the constitutive relationship between stresses
and strains expressed in secant form is:

𝝈 = ℂ ∶ 𝜺 (20)

where the constitutive tensor ℂ is split as:

ℂ = ℂvol +ℂdev (21)

ℂvol and ℂdev being the spheric and the deviatoric parts of the tensor,
extracted as:

ℂvol = 𝕍 ∶ ℂ (22)

ℂdev = ℙ ∶ ℂ (23)

Introducing the split of stresses and strains given by Eqs. (16) and
(19) into Eq. (20), the constitutive relationship can be rewritten as:

p I + s = ℂ ∶
(1

3
evol I + e

)
(24)

that is:

p = Cvol evol (25)

s = ℂdev ∶ e (26)

which are the volumetric and the deviatoric components of the original
constitutive equation (20), being Cvol = 1

9 I ∶ ℂ ∶ I.
Note that in the case of isotropic materials the constitutive tensor can

be written as:

ℂvol = 3K 𝕍 = K (I ⊗ I) (27)

ℂdev = 2G ℙ = 2G
[
𝕀− 1

3
(I ⊗ I)

]
(28)

where K and G are the effective bulk modulus and the effective shear
modulus of the material, respectively. Thus, the constitutive equation
reduces to:

p = K evol (29)

s = 2G e (30)

When approaching the incompressible limit, K → ∞, it is convenient
to write Eq. (29) as:

evol =
p
K

(31)

so that, in the limit, Eq. (31) transforms into: evol = 0, or, making use
of Eq. (3), as the kinematic constraint:

∇ · u = 0 (32)

Remark 1. The effective values of K and G depend on the actual consti-
tutive equations used to characterize the material behavior, as illustrated in
the following Section. For isotropic elasticity, these parameters correspond to
their elastic counterparts: K = K and G = G.

2.3. Constitutive modeling

Firstly, the elastic constitutive equation is derived from the strain
energy density function (hyperelastic model). Next and following the
same procedure, both J2-plasticity and J2-damage models are detailed
including the evolution laws of the corresponding internal variables and
the definition of the mechanical dissipation. The latter is used to show
the accuracy of the 3-field formulation.

2.3.1. Elasticity
Elasticity is the starting point to introduce the volumetric/deviatoric

split as well as the basis for the following elasto-plastic or elasto-damage
constitutive models. In particular, incompressible elasticity is widely
used in different applications such as rubbers, elastomers, biological
tissues, etc.

Let us write the strain energy density function, Ψ, as:

Ψ = 1
2
𝜺 ∶ ℂ ∶ 𝜺 (33)

and introducing the split of the strain tensor in Eq. (19), it can be split
as:

Ψ = Ψvol (evol) + Ψdev (e) =
1
2

K e2
vol +

1
2

2G e ∶ e (34)

where the bulk modulus K = E
3(1−2𝜈) and the shear modulus G = E

2(1+𝜈)
are defined in terms of Young’s modulus and Poisson’s ratio, E and 𝜈,
respectively.

Applying Coleman’s method [54], the rate of mechanical dissipa-
tion, Ḋmech, is defined as:

Ḋmech = 𝝈 ∶ 𝜺̇− Ψ̇ ≥ 0 (35)

and using the split of the stress tensor in Eq. (16), the mechanical dissi-
pation results in:

Ḋmech =
(

p − 𝜕Ψ
𝜕evol

)
ėvol +

(
s − 𝜕Ψ

𝜕e

)
∶ ė ≥ 0 (36)

From this, the constitutive equations of the hyperelastic problem are
derived as:

p = 𝜕Ψ
𝜕evol

= K evol (37)

s = 𝜕Ψ
𝜕e

= 2G e (38)

and the mechanical dissipation cancels out:

Ḋmech = 0 (39)

2.3.2. J2−plasticity
The main hypothesis of the J2-elasto-plastic constitutive model consists

of the additive split of the total deviatoric strains, e, into their elastic
and plastic counterparts, ee and ep, respectively, as:

e = ee + ep (40)

Hence, the (elastic) strain energy density function, Ψe, is written in
terms of the (total) volumetric deformation and the elastic deviatoric
strains:

Ψe = Ψe
vol (evol) + Ψe

dev
(
ee) (41)

3



M. Chiumenti et al. Finite Elements in Analysis and Design 192 (2021) 103534

Fig. 1. J2 Elasto-plastic model.

= 1
2

K e2
vol +

1
2

2G ee ∶ ee (42)

= 1
2

K e2
vol +

1
2

2G
(
e − ep) ∶ (

e − ep) (43)

Applying Coleman’s method [54]:

Ḋmech =
(

p − 𝜕Ψe

𝜕evol

)
ėvol +

(
s − 𝜕Ψe

𝜕ee

)
∶ ėe + s ∶ ėp ≥ 0 (44)

the constitutive equations of the J2-elasto-plastic constitutive model are:

p = K evol (45)

s = 2G ee = 2G
(
e − ep) (46)

while the mechanical dissipation results in:

Ḋmech = s ∶ ėp ≥ 0 (47)

The evolution of the plastic deformations, ep, depends on the
definition of the yield surface. The von Mises yield function, 𝜑, typi-
cally used in isotropic J2-plasticity, is defined as:

𝜑 = seq − 𝜎y ⩽ 0 (48)

where seq =
√

3
2 ‖s‖ =

√
3
√

J2 is the equivalent von Mises stress, being
J2 the 2nd invariant of the deviatoric stress tensor. The tensile strength
of the material is defined as:

𝜎y = 𝜎yo − q (𝜉) (49)

where 𝜎yo is the initial yield stress and q (𝜉) is the stress-like internal
variable, conjugate to the isotropic hardening/softening variable 𝜉, and
defined as:

q (𝜉) = −
(
𝜎∞ − 𝜎yo

)
[1 − exp (−𝛿𝜉)] (50)

where 𝜎∞ is the saturation (ultimate) stress and 𝛿 is the coefficient of
the saturation hardening/softening law (see Fig. 1).

Remark 2. The von Mises yield function can be defined by the equivalent
format as:

𝜑∗ = ‖s‖− R ⩽ 0 (51)

where R =
√

2
3𝜎y (𝜉) is the radius of the cylinder that characterizes the von

Mises yield surface [55].

Let us introduce the rate of plastic work Ẇp (s, q), defined as:

Ẇp (s, q) = s ∶ ėp + q 𝜉̇ (52)

The evolution laws of both the plastic strains and the isotropic harden-
ing/softening variable are obtained through the principle of maximum
(plastic) work [55]. Thus, the functional:

F (s, q) = −Ẇp (s, q) + 𝛾̇ 𝜑 (s, q) (53)

is minimized while satisfying the restriction induced by the yield sur-
face:

𝜕F (s, q)
𝜕s

= −𝜕Ẇp (s, q)
𝜕s

+ 𝛾̇ 𝜕𝜑 (s, q)
𝜕s

= 0 (54)

𝜕F (s, q)
𝜕q

= −𝜕Ẇp (s, q)
𝜕q

+ 𝛾̇ 𝜕𝜑 (s, q)
𝜕q

= 0 (55)

4



M. Chiumenti et al. Finite Elements in Analysis and Design 192 (2021) 103534

Hence, the evolution laws result in:

ėp = 𝛾̇ 𝜕𝜑 (s)
𝜕s

=
√

3
2
𝛾̇ n (56)

𝜉̇ = 𝛾̇ (57)

where 𝛾̇ and n = s
‖s‖ are the plastic multiplier and the normal to the

yield surface, respectively.
The corresponding loading and unloading (Kuhn-Tucker) conditions

hold:

𝛾̇ > 0 𝜑 = 0 Plastic loading (58)

𝛾̇ = 0 𝜑 < 0 Elastic unloading (59)

𝛾̇𝜑 = 0 (60)

In plastic loading, the plastic multiplier 𝛾̇ , is obtained through the
consistency condition, 𝜑̇ = 0, as:

𝜑̇ (s, q) = 𝜕𝜑
𝜕s

∶ ̇s+𝜕𝜑
𝜕q

q̇ = 𝜕𝜑
𝜕s

∶ 2G
(
ė − ėp) + 𝜕𝜑

𝜕q
dq
d𝜉 𝜉̇ = 0 (61)

Substituting the evolution laws in Eqs. (56) and (57), yields:

𝛾̇ =
√

2
3
𝛽 (n ∶ ė) (62)

and, thereby, the evolution law of the plastic strains can be written as:

ėp = 𝛽 (n ⊗ n) ∶ ė (63)

where 𝛽 = 3G ∕
(

3G + dq
d𝜉

)
and 𝛽 = 1 in the particular case of perfect

plasticity.
Note that, from Eqs. (56) and (57), it is also possible to write:

𝜉̇ = ėp
eq (64)

where ep
eq =

√
2
3 ‖ep‖ is the equivalent (plastic) strain. Thus, the

isotropic hardening/softening variable yields:

𝜉 = max
(

ep
eq

)
(65)

This given, the mechanical dissipation can be rewritten as:

Ḋmech = s ∶ ėp = s 𝛾̇ = 𝜎y (𝜉) 𝜉̇ ≥ 0 (66)

being seq = 𝜎y in plastic loading (𝜑 = 0, Eq. (48)).

Remark 3. In the case of strain-softening, the total energy (per unit vol-
ume) dissipated during the fracture process, Dmech, within the localization
band, must fulfill the equation:

Dmech =
Gf
h

(67)

where Gf is the Mode-II fracture energy (per unit of surface) and h is the
localization bandwidth. The total dissipation, Dmech, yields:

Dmech = ∫
∞

0
Ḋmech dt = ∫

∞

0
𝜎y (𝜉) d𝜉 =

𝜎yo

𝛿
(68)

being the saturation stress set to 𝜎∞ = 0, (see Fig. 1). Thereby, the exponent
of the exponential law in Eq. (50), 𝛿, can be expressed as [35]:

𝛿 =
𝜎yo
Gf

h (69)

Remark 4. Further generalizations considering pressure sensitive elasto-
plastic models such as linear Druker-Prager, or orthotropic Hill’s plasticity
can be also accommodated into this split format.

2.3.3. J2−damage
Damage models are useful for the analysis of materials that show

degradation of both stiffness and strength. In the case of metallic alloys,
damage mainly affects the shear stiffness, that is, the deviatoric compo-
nent of the constitutive equation. Thus, the J2-isotropic damage model
accounts for the degradation of the mechanical properties of these
materials.

The (elastic) strain energy density function reads:

Ψe = 1
2

K e2
vol +

1
2

(1 − d) 2G e ∶ e (70)

where 0 ⩽ d ⩽ 1 is the damage index controlling the degradation of the
shear modulus. Applying Coleman’s method:

Ḋmech =
(

p − 𝜕Ψe

𝜕evol

)
ėvol +

(
s − 𝜕Ψe

𝜕e

)
∶ ė − 𝜕Ψe

𝜕d
ḋ ≥ 0 (71)

the constitutive equations of the J2-isotropic damage constitutive model
are:

p = K evol (72)

s = (1 − d) 2G e (73)

and the mechanical dissipation is:

Ḋmech =
(1

2
2G e ∶ e

)
ḋ ≥ 0 (74)

As for J2−plasticity, the equivalent stress is defined as: seq =√
3
2 ‖s‖, while the equivalent strain is eeq =

√
2
3 ‖e‖. This given, it is

useful to write the relationship between seq and eeq, as:

seq = (1 − d) 3G eeq (75)

and the mechanical dissipation as:

Ḋmech =
1
2

3G e2
eq ḋ ≥ 0 (76)

The J2−damage constitutive model adopts the same yield surface
defined as for J2−plasticity (48) as well as the same exponential law to
characterize the evolution of the tensile strength (49), as shown in Fig.
2.

The inelastic work reduces to:

Ẇp (q) = q (𝜉) 𝜉̇ (77)

and, according to the principle of maximum dissipation, the functional
to be minimized is:

F (q) = −Ẇp (q) + 𝛾̇ 𝜑 (q) (78)

and, thereby:

dF (q)
dq

= −dẆp (q)
dq

+ 𝛾̇ d𝜑 (q)
dq

= 0 (79)

From the above equation, the evolution law for the softening vari-
able, 𝜉, results in

𝜉̇ = 𝛾̇ (80)

Using the consistency condition, 𝜑̇ = 0, the value of the multiplier
turns out:

𝛾̇ = ėeq → 𝜉̇ = ėeq (81)

The corresponding loading and unloading (Kuhn-Tucker) conditions
hold:

𝛾̇ > 0 𝜑 = 0 Loading (82)

𝛾̇ = 0 𝜑 < 0 Unloading (83)

𝛾̇𝜑 = 0 (84)

5
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Fig. 2. J2 Elasto-damage model.

Remark 5. The tensile strength can be expressed using the equivalent
definition as:

𝜎y (𝜉) = (1 − d) 3G
(
eyo + 𝜉

)
(85)

where eyo = 𝜎yo∕3G is the (equivalent) strain at the elastic limit. Conse-
quently, the yield criterion can be rewritten in a more convenient form as:

𝜑∗ = eeq −
(
eyo + 𝜉

)
⩽ 0 (86)

and the consistency condition, 𝜑̇∗ = 0, returns the expected result as
shown in Eq. (81), and consequently: the softening variable is computed
as:

𝜉 = max
(
eeq − eyo

)
eeq ≥ eyo (87)

The damage variable evolves once the yield criterion is satisfied:
𝜑 = 0, thus:
{

seq = (1 − d) 3G eeq = 𝜎y (𝜉)
eeq = eyo + 𝜉

→ d = 1 −
𝜎y (𝜉)

𝜎yo + 3G 𝜉
(88)

where 𝜎yo = 3G eyo.

Remark 6. The total energy (per unit volume) dissipated during the frac-
ture process is (see Fig. 2):

Dmech = ∫
∞

0
Ḋmech dt = We

o +
𝜎yo
𝛿 (89)

where We
o =

1
2
𝜎2

yo
3G is the modulus of resilience (maximum energy per unit

volume that can be absorbed up to the elastic limit without permanent dam-
age). According to Eq. (67), the exponent of the softening law, 𝛿, can be

expressed as [56]:

𝛿 =
𝜎yo

Gf − We
oh

h (90)

2.4. The 3-field formulation

The mixed u∕e∕p formulation is obtained by applying the volumet-
ric/deviatoric split to the u/𝛆 formulation (9 − 10), as:

∇ ·
(
ℂdev ∶ e

)
+∇p + b = 0 (91)

ℙ ∶ ∇su − e = 0 (92)

∇ · u − p
Cvol = 0 (93)

where Eq. (91) is the balance of momentum equation in mixed form,
including the contributions of the deviatoric stresses and the pressure,
s (e) and p, respectively. Eqs. (92) and (93) are the deviatoric and the
volumetric components of the kinematic equation (10).

The weak form of the mixed 3−field formulation reads:

∫
Ω

𝛿uT ∇ ·
(
ℂdev ∶ e

)
dV + ∫

Ω

𝛿uT ∇p dV + ∫
Ω

𝛿uT b dV = 0 (94)

∫
Ω

𝛿eT (
ℙ ∶ ∇su

)
dV − ∫

Ω

𝛿eT e dV = 0 (95)

∫
Ω

𝛿pT (∇ · u) dV − ∫
Ω

𝛿pT p
Cvol dV = 0 (96)

6
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where 𝛿u, 𝛿e and 𝛿p are the test functions of the displacement, devia-
toric strains and the pressure field, respectively. Integrating Eq. (94) by
parts and taking 𝛿u = 0 on ∂Ωu, the problem is written as:

∫
Ω

(
∇s𝛿u

)T
(
ℂdev ∶ e

)
dV + ∫

Ω

(∇ · 𝛿u)T p dV = F (𝛿u)

∫
Ω

𝛿eT (
ℙ ∶ ∇su

)
dV − ∫

Ω

𝛿eT e dV = 0

∫
Ω

𝛿pT (∇ · u) dV − 1
Cvol ∫

Ω

𝛿pT p dV = 0

(97)

where F (𝛿u) is the work of the external loads, defined as:

F (𝛿u) = ∫
Ω

𝛿uT b dV + ∫
𝜕Ωt

𝛿uT t dS (98)

being t the prescribed tractions on ∂Ωt (Neumann’s boundary condi-
tions).

Problem (97) involves the first derivatives of u. Hence, the natu-
ral space for the continuum displacements is V = H1(Ω)ndim . Hm (Ω)
denotes the space of functions whose derivatives (up to order m ≥
0) belong to L2 (Ω). The corresponding variations are defined in
V0 = {𝛿u (X) ∈ V | 𝛿u = 0 for ∀X ∈ 𝜕Ωu}. The natural space for the
deviatoric part of the strain field e, and its variations 𝛿e, is S ={
e (X) =

[
eij (X)

]
, eij = eji ∈ L2 (Ω) | tr (e) = 0 for ∀X ∈ Ω

}
. The pres-

sure field p, and its variation 𝛿p, belong to space Q = L2 (Ω).
Other functional settings may be considered by changing the terms

integrated by parts. In fact, the formulation that yields optimal stress
convergence for equal interpolation for all the unknowns requires more
regularity on the stresses. We will not treat this issue in this work (see
Ref. [57] for similar ideas in the context of Darcy’s problem).

Problem (97) is complemented by Dirichlet’s boundary conditions
in terms of the prescribed displacements u (X) = u for ∀X ∈ ∂Ωu.

Remark 7. To achieve symmetry, the second equation is multiplied by ℂ,
and because ℂdev = ℙ ∶ ℂ, problem (97) reads:

∫
Ω

(
∇s𝛿u

)T
(
ℂdev ∶ e

)
dV + ∫

Ω

(∇ · 𝛿u)T p dV = F (𝛿u)

∫
Ω

𝛿eT
(
ℂdev ∶ ∇su

)
dV − ∫

Ω

𝛿eT (ℂ ∶ e) dV = 0

∫
Ω

𝛿pT (∇ · u) dV − ∫
Ω

𝛿pT p
Cvol dV = 0

(99)

2.5. Discrete approximation of the 3-field problem

To obtain the discrete Galerkin Finite Element (FE) approximation
of problem (99), the material domain Ω (X), is discretized into finite

elements, Ω(e), so that: Ω =
ne
∪

e=1
Ω(e), being ne, the total number of ele-

ments,
The continuum solution

{
u, e, p

}
∈ 𝕎 = V × S × Q is approxi-

mated by
{

uh, eh, ph

}
defined onto the Galerkin FE space: 𝕎h =

Vh × Sh × Qh. Thus, the discrete counterpart of the weak form of the
3−field problem is written as:

∫
Ω

(
∇s𝛿uh

)T
(
ℂdev ∶ eh

)
dV + ∫

Ω

(∇ · 𝛿uh)T ph dV = F (𝛿uh)

∫
Ω

𝛿eT
h

(
ℂdev ∶ ∇suh

)
dV − ∫

Ω

𝛿eT
h (ℂ ∶ eh) dV = 0

∫
Ω

𝛿pT
h (∇ · uh) dV − ∫

Ω

𝛿pT
h

ph
Cvol dV = 0

(100)

being ∫
Ω
(·) dV =

ne
∪

e=1
∫
Ω(e)

(·) dV

Denoting by U =
[
UA

i

]
=
[
UA

x UA
y UA

z

]
, E =

[
EA

i

]
=[

EA
xx EA

yy EA
zz EA

xy EA
xz EA

yz

]
and P =

[
PA] the nodal values

of the master fields, their element-wise approximation is written as:

u(e)
h = NuU =

[
NAI(3x3)ij U

A
j

]
(101)

e(e)h = NeE =
[
NAI(6x6)ij E

A
j

]
(102)

p(e)h = NpP =
[
NAPA] (103)

where Nu =
[
NAI(3x3)ij

]
, Ne =

[
NAI(6x6)ij

]
and Np =

[
NA] are the matri-

ces incorporating the shape functions, NA, at each node A, adopted for
the FE interpolation of all master fields.

The elemental stiffness matrix of the algebraic form of problem (100)
is:

𝕂(e)
h = ∫

Ω(e)

⎡
⎢⎢⎢⎢⎢⎣

[0]
[
BTCdevNe

] [
GNp

]
[
NT

e CdevB
]

−
[
NT

e CNe

]
[0]

[
NT

p GT
]

[0] − 1
Cvol

[
NT

p Np

]

⎤
⎥⎥⎥⎥⎥⎦

dV (104)

where G =
[
GA

i

]
and GT stand for the (discrete) gradient and divergence

matrices, while B =
[
BA

ij

]
and BT are the (discrete) symmetric gradient

and divergence (applied to 2nd order tensors expressed in Voigt’s nota-
tion). Finally, C and Cdev are the rank −2 constitutive matrices and its
deviatoric part, when both stresses and strains are expressed in Voigt’s
notation.

2.6. Variational-multi-scale stabilization technique

In this work, continuous equal order linear interpolation for all fields
is assumed. This choice does not comply with the compatibility limi-
tations stated by the inf-sup stability condition [14]. This can be cir-
cumvented by using a stabilization technique. The Variational Multi-Scale
(VMS) method is introduced to stabilize the mixed discrete formulation
and allowing for the use of linear interpolations for all master fields.

The basic idea of the VMS method consists of approximating the
space 𝕎, where the continuum solution belongs to, at two different
levels of resolution (scales): a coarse FE space 𝕎h and a finer one, 𝕎̃.
Hence, the enhanced approximation is defined as:

⎧
⎪⎨⎪⎩

u ≃ uh + ũ
e ≃ eh + ẽ
p ≃ ph + p̃

in 𝕎 ≃ 𝕎h ⊕ 𝕎̃ (105)

On the one hand, the coarse scale can be solved using the standard
FE interpolation; on the other hand, the sub-grid scale cannot be solved
and only its effect is accounted for, enhancing the stability of the mixed
formulation. According to the original work of Codina [58], the sub-grid
approximation is expressed in terms of the residuals of the projected
(Galerkin) components of Eqs. (91)–(93) as:

ũ = 𝜏u Rh
u = 𝜏u

[
∇ ·

(
ℂdev ∶ eh

)
+∇ph + b

]
(106)

ẽ = 𝜏e Rh
e = 𝜏e

[
ℙ ∶ ∇suh − eh

]
(107)

p̃ = 𝜏p Rh
p = 𝜏p

[
∇ · uh −

ph
Cvol

]
(108)

where the stabilization parameters [59,1]:

𝜏u = cu
hL

2C̃dev
(109)

7
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𝜏e = ce
h
L

(110)

𝜏p = cpC̃vol h
L

(111)

are expressed in terms of the element size h, the characteristic length
of the computational domain L, as well as two additional parameters
related to the effective deviatoric and volumetric stiffness of the mate-
rial: the secant shear modulus, defined as: 2C̃dev = ‖‖sh

‖‖∕ ‖‖eh
‖‖, and the

compressibility modulus, C̃vol. Coefficients cu, ce and cp are constants to
be chosen.

According to Fourier’s analysis in Ref. [57], the compressibility
modulus can be defined as:

C̃vol =
(

c1
2C̃dev

+ c2
Cvol

)−1
(112)

where c1 and c2 are arbitrary constants.

Remark 8. In isotropic elasticity, 2C̃dev = 2G, and choosing c1 = 1 and
c2 = 2∕3, then:

C̃vol = 2G
3

(1 + 𝜐
1 − 𝜐

) {
𝜐 = 0
𝜐 = 0.5

C̃vol = 2G
3

= K

C̃vol = 2G

The solution of the problem is approximated as:

u ≃ uh + ũ = uh + 𝜏u

[
∇ ·

(
ℂdev ∶ eh

)
+∇ph + b

]
(113)

e ≃ eh + ẽ = (1 − 𝜏e) eh + 𝜏e
[
ℙ ∶ ∇suh

]
(114)

p ≃ ph + p̃ =
(

1 −
𝜏p

Cvol

)
ph + 𝜏p

[
∇ · uh

]
(115)

Remark 9. Note that in the incompressible limit Cvol → ∞ and ∇ · uh →
0; thus, the pressure field: p ≃ ph.

Introducing the approximate fields (113–115) into the original prob-
lem (99), the elemental stiffness matrix of the problem, now including
the VMS stabilization, is expressed as:

𝕂(e) = 𝕂(e)
h − 𝜏u 𝕂(e)

𝜏u
− 𝜏e 𝕂(e)

𝜏e
− 𝜏p 𝕂(e)

𝜏p
(116)

where there exist 3 different contributions to add stability to the
Galerkin problem. The matrix form of these terms is:

𝕂(e)
𝜏u

= ∫
Ω(e)

⎡⎢⎢⎢⎢⎢⎣

[0] [0] [0]

[0]
[(

CdevB
)(

CdevB
)T

] [(
CdevB

)
G
]

[0]
[
GT

(
CdevB

)T
] [

GTG
]

⎤⎥⎥⎥⎥⎥⎦

dV (117)

𝕂(e)
𝜏e

= ∫
Ω(e)

⎡
⎢⎢⎢⎢⎣

−
[
BT

(
CdevB

)] [(
CdevB

)T
Ne

]
[0]

[
NT

e

(
CdevB

)]
−
[
NT

e CNe

]
[0]

[0] [0] [0]

⎤
⎥⎥⎥⎥⎦

dV (118)

𝕂(e)
𝜏p

= ∫
Ω(e)

⎡
⎢⎢⎢⎢⎢⎣

−
[
GGT] [0] 1

Cvol
[
GNp

]

[0] [0] [0]
1

Cvol

[
NT

p GT
]

[0] − 1(
Cvol

)2

[
NT

p Np

]

⎤
⎥⎥⎥⎥⎥⎦

dV (119)

Remark 10. The sub-grid scales are “small” compared to the FE scales
and they vanish at a rate equal to one order higher than the FE interpolation
degree. For linear elements this means that the sub-grid scales reduce with
the square of the element size. Thus, the relative weight of the sub-grid scale
can be used as an efficient indicator of the discretization error of a given FE
mesh and it can be used as driver for adaptive mesh refinement in linear and
nonlinear solid mechanics [60,61].

3. Fluid mechanics

3.1. The continuum problem

In fluid mechanics, Ω(x) denotes a spatial domain, composed of spa-
tial points, x, and u (x) stands for the velocity field.

Eqs. (1)–(3) define the associated mechanical problem when
Cauchy’s equilibrium equation (1) is assumed in its steady-state form.
This framework is suitable for laminar flow problems characterized by
very low Reynolds numbers (ratio of inertial forces to viscous forces).
Thus, it is possible to neglect the inertia forces (convection), compared
to the frictional shear forces due to the actual (very high) viscosity
values. As shown through the numerical assessment, this is applied in
incompressible rigid-viscoplastic flows, as typically found in many indus-
trial manufacturing processes, such as extrusion, Friction Stir Welding
(FSW) or forging.

On the one hand, the kinematic constraint to enforce the isochoric
behavior (incompressibility) must be satisfied:

∇ · u = 0 (120)

On the other hand, the strain-rate, 𝜺 =∇su, is a fully deviatoric field,
thus: 𝜺 ≡ e.

The resulting set of equations defining the continuum problem is:

∇ · s +∇p + b = 0 (121)

e −∇su = 0 (122)

∇ · u = 0 (123)

3.2. Constitutive modeling

Two different non-Newtonian viscous models suitable for the analy-
sis of rigid-viscoplastic flows are presented: Norton-Hoff and Bingham
models. Both of them allow for the definition of the constitutive equa-
tion as:

s = 2𝜇eff e (124)

where 𝜇eff is the effective viscosity which characterizes the specific vis-
cous law.

In fluid mechanics, the equivalent strain-rate is defined as: 𝛾 =√
2 ‖e‖, being conjugate to the equivalent stress: 𝜏 = 1√

2
‖s‖ = √

J2.
Consequently, making use of the constitutive Eq. (124), the following
equation holds:

𝜏 = 𝜇eff 𝛾 (125)

The mechanical dissipation is computed as:

Ḋmech = s ∶ e = 𝜏 𝛾 ≥ 0 (126)

3.2.1. Visco-plastic Norton-Hoff model
The Norton-Hoff model is characterized by an effective viscosity of

the form:

𝜇eff (𝛾) = 𝜇o 𝛾m−1 (127)

being 𝜇o and m the consistency parameter and the flow index, respec-
tively. Therefore, the Norton-Hoff model is defined by the following
power law:

𝜏 = 𝜇o 𝛾m ↔ s = 2𝜇o 𝛾m−1 e = 2𝜇eff e (128)

Note that for m = 1 the Newtonian behavior is recovered: 𝜇eff = 𝜇o,
and the corresponding constitutive equation reduces to:

s = 2𝜇o e (129)

8
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3.2.2. Regularized Bingham model
The Bingham model characterizes a material that behaves as rigid

at low stresses but flows as a viscous fluid under sufficiently high shear
stress. The corresponding mathematical model assumes that the fluid
starts flowing, with a constant viscosity 𝜇, when the initial shear thresh-
old, 𝜏yo, is overpassed. Thus:

𝛾 = 0 if 𝜏 < 𝜏yo

𝛾 = 1
𝜇
(
𝜏 − 𝜏yo

)
if 𝜏 ≥ 𝜏yo

(130)

The rheological model can be written in terms of an effective viscos-
ity, 𝜇eff , defined as:

𝜇eff (𝛾) = 𝜇 +
𝜏yo
𝛾 (131)

Note that when 𝛾 → 0, this ideal rheological model presents a singu-
larity because the effective viscosity, 𝜇eff (𝛾) → ∞. This aspect is a seri-
ous inconvenient from the numerical point of view. Many authors have
proposed regularized versions of the Bingham model to remove this
singularity [62,63,64]. In this work, the Tanner and Milthorpe model
is adopted [64]. Therefore, the actual rigid behavior of the fluid when
𝜏 < 𝜏yo is replaced by a fictitious viscosity (i.e. a regularization param-
eter), 𝜇o ≫ 𝜇, and the following bilinear form turns out:

𝜏 = 𝜇o 𝛾 if 𝜏 < 𝜏yo

𝜏 =
(
𝜇 +

𝜏yo
𝛾

)
𝛾 if 𝜏 ≥ 𝜏yo

(132)

and the effective viscosity results in:

𝜇eff (𝛾) = 𝜇o if 𝜏 < 𝜏yo

𝜇eff (𝛾) = 𝜇 +
𝜏yo
𝛾 if 𝜏 ≥ 𝜏yo

(133)

3.3. The 3-field formulation

In this Section, the mixed u∕e∕p problem (see Eqs. (91)–(93)) is
particularized for incompressible fluids characterized by their effective
viscosity, 𝜇eff (𝛾), as:

2𝜇eff ∇ · e +∇p + b = 0 (134)

∇su − e = 0 (135)

∇ · u = 0 (136)

The corresponding weak form reads:

∫
Ω

(
∇s𝛿u

)T (
2𝜇eff e

)
dV + ∫

Ω

(∇ · 𝛿u)T p dV = F (𝛿u)

∫
Ω

𝛿eT (
2𝜇eff ∇su

)
dV − ∫

Ω

𝛿eT (
2𝜇eff e

)
dV = 0

∫
Ω

𝛿pT (∇ · u) dV = 0

(137)

where the 2nd equation has been multiplied by 2𝜇eff to achieve sym-
metry.

Problem (137) is complemented by Dirichlet’s boundary conditions
in terms of prescribed velocities, u.

3.4. Algebraic form

The elemental stiffness matrix of problem (137) is expressed as:

𝕂(e) = 𝕂(e)
h − 𝜏u 𝕂(e)

𝜏u
− 𝜏e 𝕂(e)

𝜏e
(138)

where the Galerkin term is:

𝕂(e)
h = ∫

Ω(e)

⎡
⎢⎢⎢⎢⎣

[0] 2𝜇eff
[
BTNe

] [
GNp

]

2𝜇eff

[
NT

e B
]

−2𝜇eff

[
NT

e Ne

]
[0][

NT
p GT

]
[0] [0]

⎤
⎥⎥⎥⎥⎦

dV (139)

and the contributions adding stability to the Galerkin problem are:

𝕂(e)
𝜏u

= ∫
Ω(e)

⎡⎢⎢⎢⎣

[0] [0] [0]
[0]

(
2𝜇eff

)2 [BBT] 2𝜇eff [BG]
[0] 2𝜇eff

[
GTBT ] [

GTG
]

⎤⎥⎥⎥⎦
dV (140)

𝕂(e)
𝜏e

= ∫
Ω(e)

⎡⎢⎢⎢⎢⎣

−2𝜇eff
[
BTB

]
2𝜇eff

[
BTNe

]
[0]

2𝜇eff

[
NT

e B
]

−2𝜇eff

[
NT

e Ne

]
[0]

[0] [0] [0]

⎤⎥⎥⎥⎥⎦
dV (141)

PLEASE

... (142)

Remark 3.1. Note that in the incompressible limit, the pressure field:
p ≃ ph. Therefore, the stabilization terms arising from the pressure sub-scale
vanish, see Eq. (108).

4. Numerical results

In this section, the proposed u∕e∕p formulation is assessed by solv-
ing several numerical examples including both solid and fluid analy-
ses. Different constitutive models as introduced in Sections 3 and 4 are
adopted for both 2D and 3D. Different FE discretizations are also tested:
triangular, quadrilaterals and hexahedral elements.

The objectives are three-fold: (a) to show the faster convergence rate
of the 3−field formulation over other available FE formulations, (b) to
demonstrate the enhanced accuracy of the stress and strain fields over
the u∕p formulation (used as the reference solution in isochoric prob-
lems) and, as a consequence of this, (c) to show mesh bias independence
when addressing strain localization problems.

The stabilization coefficients used in all examples are cu = 1.0, cp =
1.0 for both the u∕p and u∕e∕p formulations. The latter requires a third
stabilization coefficient: ce = 1.0.

The Newton-Raphson method is adopted to solve the nonlinear sys-
tem of equations in an incremental and manner. The number of time-
steps set for all cases is 400. The convergence norm based on residual
forces is 10−5.

The numerical simulations are solved using an enhanced version of
the in-house finite element software COMET [65]. The pre and post pro-
cessing is performed with GiD [66]. Both softwares are developed at the
International Center for Numerical Methods in Engineering (CIMNE).

4.1. Convergence test

The first example consists of a benchmark to assess the conver-
gence rate of different finite elements formulations: standard irre-
ducible (based on displacements, only), mixed u∕p FE technology and
the proposed mixed 3−field formulation.

The problem consists of a square domain, Ω = [0,1] × [0,1] in ℝ2,
with homogeneous boundary conditions.

The exact solution is given in terms of horizontal and vertical dis-
placements, u (x, y) and v (x, y), respectively defined as:

u (x, y) = +2x2y(x − 1)2(y − 1)(2y − 1) (143)
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Fig. 3. Local error of the stress field (L2-norm) using: (a) the same mesh; (b) similar number of degrees of freedom.

v (x, y) = −2xy2 (x − 1) (y − 1)2(2x − 1) (144)

The corresponding strain field is:

𝜀xx(x, y) =
𝜕u
𝜕x

= +4xy(x − 1)(y − 1)(2x − 1)(2y − 1) (145)

𝜀yy(x, y) =
𝜕v
𝜕y

= −4xy(x − 1)(y − 1)(2x − 1)(2y − 1) (146)

𝜀xy(x, y) =
1
2

(
𝜕u
𝜕y

+ 𝜕v
𝜕x

)

= (y − x)(x + y − 1)(6x2y − 6x2y2 − x2

+6xy2 − 6xy + x − y2 + y)

Note that 𝜀xx(x, y) = −𝜀yy(x, y) and, in plane strain, 𝜀zz(x, y) = 0.
Thus, the problem is isochoric: evol = 0.

Assuming isotropic elasticity, the stresses are

𝜎xx (x, y) = (𝜆 + 2𝜇)𝜀xx(x, y) + 𝜆𝜀yy(x, y) (148)

𝜎yy (x, y) = 𝜆𝜀xx(x, y) + (𝜆+ 2𝜇)𝜀yy(x, y) (149)

𝜎xy (x, y) = 2𝜇𝜀xy(x, y) (150)

where 𝜆 = 𝜈E
(1+𝜐)(1−2𝜈) and 𝜇 = E

2(1+𝜈) are the Lamé parameters
expressed in terms of the Young modulus, E = 2,000MPa and the Pois-
son ratio, 𝜈 = 0.3. The value of Poisson’s ratio allows for using standard

irreducible elements in the convergence test.
The FE discretization makes use of different structured meshes vary-

ing between 4 × 4 and 480 × 480 quadrilateral elements.
The local L2-norm of the stress field error is evaluated at each Gauss

point as:

‖𝝈‖local
L2 =

√√√√√
(𝜎c

xx − 𝜎a
xx)2 + (𝜎c

yy − 𝜎a
yy)2 + (𝜎c

xy − 𝜎a
xy)2

(
𝜎a

xx
)2 +

(
𝜎a

yy

)2
+
(
𝜎a

xy

)2 (151)

where the super-indexes c and a stand for the computed and analytical
values, respectively. The global L2-norm is evaluated by summing the
contributions at all Gauss points.

Fig. 3 depicts the distribution of the local error based on the stress
field. Fig. 3(a) compares the 3 FE technologies (standard irreducible,
mixed u∕p and the proposed u∕e∕p formulation) adopting the same
mesh, while Fig. 3(b) shows the error for a similar number of degrees of
freedom. The accuracy of the proposed 3−field formulation is remark-
able.

Fig. 4 shows the displacement convergence rate upon mesh size. As
expected the 3 FE technologies present the same slope of 2.0. More
interesting is the convergence rate of the stress field. The global error
is demonstrated in Fig. 5. The accuracy is assessed upon mesh refine-
ment (Fig. 5(a)) and increasing the number of degrees of freedom (Fig.
5(b)). The convergence rate is 1.0 for both the standard and the mixed
u∕p formulations while the 3−field formulation achieves the expected
superior convergence rate slope of 1.5 (see Ref. [58]).

Therefore, to achieve the same accuracy, e.g. 1% of global error,
both the irreducible and the u∕p formulations require a mesh size,
h, almost 10 times finer (h ⩽ 0.003 and h ⩽ 0.005, respectively) than
for the 3-field FE technology (h ⩽ 0.04). A similar result is obtained in
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Fig. 4. Convergence rate of the displacement field of the three FE technologies
upon mesh refinement.

terms of the number of degrees of freedom (dofs): to get an error lower
than 1%, the u∕e∕p formulation needs 4,292 dofs, while the mixed u∕p
requires 118,150 dofs (27 times more) and the standard irreducible for-
mulation needs 211,300 dofs (49 times more if compared to the 3-field
and almost 2 times more than the mixed u∕p formulation).

Fig. 6 depicts the cpu-time needed by each FE technology to achieve
a given global stress accuracy. In particular, to reduce the simula-
tion error below 1%, the u∕e∕p formulation is almost 10 time faster
compared to the other technologies: tu/e/p ≃ 2.5 × 10−4s, tu/p ≃ 5 ×
10−3s and tu ≃ 3 × 10−3s, respectively. The values are normalized with
respect to the cpu-time needed for the solution of the 256 × 256 mesh
with the 3−field formulation.

4.2. Perforated strip

This example consists of the 2D plane-strain analysis of a perforated
strip subjected to uniaxial stretching. The axial load is applied through
a rigid plate. Because of the double symmetry, only one quarter of the
domain (the top right quarter) needs to be discretized. Fig. 7(a) depicts
the geometry of the problem. The dimensions are relative to the size of
the hole: r = 1m.

Both J2-Plasticity and J2-Damage constitutive models are adopted
with a strain softening law to favor strain localization. The Young mod-
ulus of the material is E = 10MPa, the Poisson ratio 𝜈 = 0.5 (incom-
pressible elasticity), yield stress 𝜎y = 10KPa, and fracture energy Gf =
400J∕m2.

The expected failure mechanism consists of the formation of two
symmetric slip-lines exactly at 𝜃cr = ±45◦ with the horizontal axis [46].
The total amount of energy, Wmech, dissipated up to failure is:

Wmech =
9r

cos 𝜃cr
Gf = 5,091 J (152)

This value is used as the analytical reference to assess the accuracy
of the different FE technologies used for the numerical simulation.

Fig. 7(b) shows a structured mesh of 10,060 triangular elements
and 5,182 nodes, being the average element size: h = 0.20m. This FE

Fig. 6. Convergence rate of the three FE technologies upon normalized cpu-
time.

discretization is used to obtain the numerical reference, because this
mesh is well-aligned with the direction of the expected slip-line.

Fig. 8 shows the failure mechanism (slip-lines) obtained using the
J2-plasticity and J2-damage models. Note that the strain localization
is concentrated in one single element across the thickness of the shear
band when the mixed u∕p formulation is adopted (see Fig. 8(b) and
(d)), being the double for the 3−field formulation (see Fig. 8(a) and
(c)). This is because of the different interpolation of the strain field
used by the two mixed FE technologies: discontinuous and continuous
strains/stresses for the u∕p and u∕e∕p formulations, respectively.

Fig. 9 compares the load vs. displacement curves for all the case-
studies. The curves are practically overlapped as demonstrated by the
relative errors of the computed mechanical dissipation with respect to
the analytical solution, reported in Table 1. Therefore, when the mesh
is aligned with the slip-lines both FE technologies predict almost the
exact solution.

An unstructured mesh of 7,711 triangular elements and 3,993 nodes
with the same average element size, h = 0.20m is analyzed next (see Fig.
7(c)). Fig. 10 reports the contour-fills of the J2 strains corresponding to
the different analyses. All results are qualitatively satisfactory, show-
ing shear bands at ±45◦. Nevertheless, the accuracy of the different
FE technologies can be appreciated in Fig. 12 where the load vs. dis-
placement curves are shown. The 3−field formulation demonstrates its
accuracy for both the J2−plasticity and J2−damage constitutive mod-
els even if an unstructured FE mesh is used. The curves are overlapped
to the reference one with a small error in both cases (see Table 2).

This is not the case for the mixed u∕p formulation. In the case of
J2−damage, the quantitative error is small but the failure mechanism is
not exactly the same, as shown by the corresponding load/displacement
curve at the initiation of the shear band. The lack of accuracy is more
evident for J2−plasticity. In Table 2 an error close to 30% is reported
with respect to the reference solution, in terms of mechanical dissipa-
tion. This is due to the stress locking shown by the mixed u∕p formula-
tion when dealing with a directional inelastic flow, as the plastic flow
in J2−plasticity. This is due to the poor performance of low order stan-
dard FE for reproducing opening or sliding modes which are not normal

Fig. 5. Convergence rate of the stress field for the three FE technologies: (a) upon mesh refinement; (b) upon number of degrees of freedom.
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Fig. 7. Perforated strip under uniaxial stretching.

Fig. 8. Perforated strip. Strain localization analysis: reference results for J2-
plasticity (a)–(b) and J2 damage (c)–(d).

Fig. 9. Perforated strip: load vs. displacement curves. Solution obtained using
a structured mesh aligned with the shear band for both J2-plasticity and J2-
damage models.

Table 1
Structured mesh: relative errors of the computed mechanical
dissipation with respect to the analytical value.

FE Technology Const. Model Wmech [J] Error
[
%
]

u∕p J2−plasticity 4,994 1.91
u∕p J2−damage 4,947 2.82
u∕e∕p J2−plasticity 4,991 1.96
u∕e∕p J2−damage 5,053 0.75

or parallel, respectively, to one of the sides of the element. In Fig. 11,
the spurious stresses at the end when the shear band is fully formed can
be appreciated. Note that the u∕e∕p formulation performs very well,
while stress release does entirely occur for the mixed u∕p formulation
in conjunction with incremental J2−plasticity (see Fig. 11(b)). For the
u∕p formulation in conjunction with J2−damage, the spurious strains
do not translate into spurious stresses because of the secant format of
the constitutive model and scalar damage.
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Fig. 10. Perforated strip. Strain localization obtained with the unstructured
mesh for J2-plasticity (a)–(b) and J2 damage (c)–(d).

Table 2
Unstructured mesh: relative errors on the computed mechanical
dissipation with respect to the analytical value.

FE Technology Const. Model Wmech [J] Error
[
%
]

u∕p J2−plasticity 6,538 28.4
u∕p J2−damage 5,416 6.4
u∕e∕p J2−plasticity 5,364 5.4
u∕e∕p J2−damage 5,280 3.7

4.3. Perforated thin-wall cylinder

As a third example, a thin-wall cylinder, 30m height with an outer
diameter of 6m and a wall thickness of 0.2m is addressed. The cylin-
der has a 0.40 × 0.40m2 perforation at mid-height and it is subjected
to vertical stretching by an imposed vertical displacement, 𝛿z = 0.20m
applied to the top boundary. Due to the double symmetry of the prob-
lem, only one quarter of the domain is considered (see Fig. 13).

A uniform structured FE mesh is generated including 3,749 hexahe-
dral elements and 7,750 nodes (see Fig. 13). This discretization consists
of 31,000 dofs and 77,500 dofs for the u∕p and the u∕e∕p formulations,
respectively.

Table 3
Difference between mixed FE formulations and analytical values.

FE Technology Wmech [J] Error
[
%
]

𝜃cr Error
[
%
]

u∕p 1,222 39.98 32.17◦ 8.8
u∕e∕p 874 0.11 35.05◦ 0.6

A fully incompressible (𝜈 = 0.5) elasto-J2-damage constitutive
model is adopted including the same softening law and the same mate-
rial properties as in the previous problem.

The radial stresses through the wall are null, so that plane stress
conditions apply in the problem. A slip-line is expected to start from
the perforation, with an angle of 𝜃cr = 35.26◦ with respect to the an
horizontal plane, to later develop showing a helicoidal shape and caus-
ing the failure of the structure [46].

The total amount of energy Wmech = AGf , dissipated up to the failure
is:

Wmech = h
(
𝜋𝜑mean∕2− h

cos 𝜃cr

)
Gf = 873 J (153)

where 𝜑mean is the average diameter of the cylinder and A is the fracture
surface, computed by multiplying the thickness of the cylinder by the
length of the shear band (see Fig. 14).

Fig. 15 shows the failure mechanism (slip-line) at the end of the
strain localization process for the mixed u∕e∕p and the u∕p formu-
lations, respectively. Once again, both results are qualitatively good,
being the mixed u∕p solution sharper (b = h) than the one obtained by
the 3−field formulation (b = 2h), being b the shear bandwidth.

Nevertheless, in Fig. 16, it is possible to appreciate the differences
found in the load vs. displacement curves recorded for both analyses.
The shear band obtained with the mixed u∕p elements is discontinu-
ous at some instances. Contrarily, the 3−field formulation is able to
generate a well defined solution during the entire analysis (see Fig.
17). The accuracy of the two formulations is also reflected in the
load/displacement curves. The energy dissipated by the 3−field for-
mulation is almost exact, while the mixed u∕p produces an error close
to 40%, as shown in Table 3.

Table 3 also shows the value of the critical angle 𝜃cr, that is the slope
of the shear band starting at the perforation. Once again, the accuracy
of the mixed u∕e∕p formulation is remarkable.

4.4. Elasto-plastic extrusion

Extrusion is a manufacturing process suitable to multifold engi-
neering applications ranging from metal forming processes to the food
industry.

The numerical example proposed here consists of a 2 ∶ 1 reduction
direct extrusion, where a displacement, 𝛿x = 0.10m is applied through
the piston. Fig. 18 shows the 3D geometry of the problem and the corre-
sponding dimensions. Note that due to the double symmetry conditions
of the problem, one quarter of the total domain is simulated.

According to Hill’s solution [67], two shear bands at ± 45◦ and
a slip-surface defined by a quarter circumference are expected, once
the extrusion mechanism is fully developed as shown in Fig. 19. The
mechanical dissipation, Wmech = AGf , is computed as:

Wmech =
(

2 + 𝜋
2

)
Rd Gf = 25.3 J (154)

where the radius of the slip-line is: R = H
√

2 , being H = 0.125m and
d = 0.1m.

An incompressible (𝜈 = 0.5) elasto−J2−plastic constitutive model
is adopted, including the same softening law and the same material
properties as in the previous problems.

A fully structured hexahedral FE mesh is generated, made of 18,227
nodes and 15,600 elements of an average size, h = 0.01m (see Fig. 18).
Both mixed u∕p and u∕e∕p formulation are tested and compared.
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Fig. 11. Residual (principal) stresses at the end of the loading process when the unstructured mesh is used.

Fig. 12. Perforated strip: load vs. displacement curves. Solution obtained using
the unstructured mesh for both J2-plasticity and J2-damage models.

Fig. 20 shows the two shear bands as obtained by the mixed u∕e∕p
and mixed u∕p formulations. Once again, the accuracy of the solution
given by the 3− field analysis is remarkable: the slope of the shear
bands is almost exact (46.12◦) despite the coarse mesh used (see Table
4). Fig. 21(a) shows the well defined slip surface, less sensitive to the
background mesh than for the u∕p formulation (see Fig. 21(b)).

Fig. 22 shows the extrusion force as a function of the imposed dis-
placement at the piston surface. Both FE technologies are able to cap-
ture correctly the peak load. Nevertheless, the mechanical dissipation
(e.g. heat generated by the plastic deformation) is over-estimated by
the u∕p formulation as reported in Table 4.

Fig. 13. Perforated thin-wall cylinder: geometry and FE mesh.

4.5. Rigid-viscoplastic extrusion

In this example, an extrusion problem is also addressed, but now
an Eulerian framework is adopted [68]. A rigid-viscoplastic Bingham
model is characterized by an initial shear threshold, 𝜏yo = 1,000Pa.
The constitutive model makes use of an initial viscosity (regularization
parameter): 𝜇o = 106Pa · s.
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Fig. 14. Perforated thin-wall cylinder: length of the shear band.

Fig. 15. Perforated thin-wall cylinder. Strain localization analysis: (a) Mixed
u/e/p, (b) Mixed u/p formulation.

The analysis consists of a direct extrusion process characterized by
a 3 ∶ 1 reduction, as shown in Fig. 23. The problem is solved in 2D
plane-strain conditions and only half of the actual geometry is analyzed
because of the existing symmetry conditions.

The FE mesh consists of 2,821 nodes and 5,340 triangular elements
with an average size of 0.1m. Both the mixed u∕p and the u∕e∕p for-
mulations are analyzed.

The extrusion pressure, pextr , is given by Ref. [67]:

pextr =
4
3

(𝜋
2
+ 1

)
𝜏y = 3,428 Pa (155)

and the expected failure mechanism is shown in Fig. 24.
Fig. 25 shows the streamlines and the yield region, once the extru-

sion mechanism is fully developed. The agreement with the analytical
result is remarkable. A smoother solution is achieved with the 3−field
formulation (Fig. 25(a)), although the u∕p formulation also achieves
good definition in this very fine mesh. The value of the extrusion pres-
sure predicted by both FE technologies is almost exact (see Table 5).
Note that this value follows from the failure mechanism and the flow
stress.

Fig. 16. Perforated thin-wall cylinder: load vs. displacement curves.

Fig. 17. Strain localization at different time-steps: u/e/p formulation in (a)–(b)
and u/p formulation in (c)–(d).

Table 4
Elasto-plastic extrusion: relative errors of both the mechanical dissipation and
the shear-band angles with respect to the analytical values.

FE Technology Wmech [J] Error
[
%
]

𝜃cr Error
[
%
]

u∕p 47.7 88.54 48.6◦ 8.00
u∕e∕p 27.3 7.91 46.12◦ 2.49
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Fig. 18. Elasto-plastic extrusion: geometry and FE mesh.

Fig. 19. Elasto-plastic extrusion with 2:1 reduction.

Fig. 20. Elasto-plastic extrusion: shear bands obtained through the numerical
simulations.

Fig. 21. Elasto-plastic extrusion: slip-surface and shear bands obtained through
the numerical simulations.

5. Concluding remarks

This paper exploits the accuracy of the proposed 3−field formulation
to tackle highly non-linear problems including isochoric elastic (incom-
pressible elasticity) and inelastic deformations while, at the same time,
achieving a remarkable degree of accuracy of both the stress and the
strain fields and, ensuingly, the mechanical work and the dissipated
energy.

Fig. 22. Elasto-plastic extrusion: Force vs Displacement curve.

Fig. 23. Rigid-viscoplastic extrusion: Problem setting and FE mesh.

Fig. 24. Expected slip-lines during the extrusion process.

Fig. 25. Rigid-viscoplastic extrusion: Streamlines and yield region.

The mixed u∕e∕p formulation is developed, being suitable for
several constitutive equations in Solid Mechanics (e.g. J2−plasticity,
Drucker-Prager, J2−damage, etc..) and Fluid Dynamics (e.g. non-
Newtonian rigid-viscoplastic flows).

The proposed 3−field formulation is convergent upon mesh refine-
ment with a convergence rate higher than the well-known mixed u∕p
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Table 5
Extrusion pressure: relative errors with respect to the analytical
value.

FE Technology Extrusion pressure [Pa] Error
[
%
]

u∕p 3,410.9 0.50
u∕e∕p 3,408.4 0.58

formulation. Regarding efficiency, for a given accuracy, faster conver-
gence is attained in terms of mesh refinement, degrees of freedom and
cpu-time.

Several strongly non-linear problems including strain localization
and the formation of shear bands are solved in 2D and 3D using triangu-
lar and quadrilateral meshes to demonstrate that the obtained solutions
are free of any volumetric or shear locking.

The remarkable degree of accuracy makes the proposed mixed
u∕e∕p formulation very appealing for the solution of engineering prob-
lems including many industrial manufacturing processes (e.g. extrusion,
forging, Additive Manufacturing, Friction Stir Welding, among others).
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A B S T R A C T

In this work, the performance of the mixed 3-field displacement/deviatoric-strain/pressure (𝐮∕𝐞∕𝑝) finite element is examined for nonlinear thermo-mechanical
structural applications under incompressible behavior. The proposed FE model increases the solution accuracy in terms of strains and stresses, guaranteeing
mesh-objective results in nonlinear analyses. Structural failure is modelled with J2-plasticity and J2-damage constitutive laws, introducing the isochoric behavior,
typical of metals, in the material response. The solution of the coupled thermal and mechanical problems follows a staggered scheme and temperature dependent
material properties are introduced to study the effect of the thermal coupling in the mechanical problem. This FE approach is applicable with any interpolation
basis: triangles, quadrilaterals, tetrahedras, hexahedras and prisms.

A set of numerical benchmark problems is proposed to examine the influence of the enhanced accuracy of the proposed model in thermally-induced structural
failure analyses in incompressible conditions. The study includes the comparison of the 𝐮∕𝐞∕𝑝 and 𝐮∕𝑝 FE formulations, where the effect of the thermal coupling in
the problem is investigated. The superior performance of the 3-field formulation with regard to the evaluation of collapse mechanisms, failure loads, mechanical
dissipation and numerical stability in incompressible situations is shown.

1. Introduction

Isochoric behavior in solid mechanics can be found in situations
with incompressible elasticity, such as rubber-like materials, or
undrained saturated porous media; also, in nonlinear constitutive laws
with isochoric flow, such as plasticity models using the Von Mises
yield criterion typical for metals. In the latter case, the standard
displacement-based formulation [1] fails to solve these incompressible
situations, resulting in an almost completely locked solution, due to
numerical difficulties caused by the volumetric constraints and spurious
pressure oscillations [2–4].

To avoid or reduce the volumetric locking in these situations, sev-
eral numerical strategies have been proposed in the literature. These
are based on the use of mixed formulations [5–11], enhanced as-
sumed strains methods [3,4,12–14], nodal pressure and strain averag-
ing [15–19]; and reduced and selective integration [20–22]. Within the
mixed approaches, the displacement/pressure (𝐮∕𝑝) FE has become a
widespread method to solve incompressibility both in solid and fluid
mechanics.

Recently, the authors have proposed the use of the mixed stress/
displacement (𝝈∕𝐮) and strain/displacement (𝜺∕𝐮) finite element for-
mulations to increase the accuracy of the computed solution in terms
of stresses and strains [23–32]. This increase in the precision of the
calculations has proven to be crucial to obtain mesh objective results

∗ Corresponding author.
E-mail addresses: carlos.augusto.moreira.filho@upc.edu (C.A. Moreira), gabriel.barbat@upc.edu (G.B. Barbat), miguel.cervera@upc.edu (M. Cervera),

michele.chiumenti@upc.edu (M. Chiumenti).

in structural failure problems [24,28,29]. In nonlinear applications, the
𝜺∕𝐮 FE is preferred over the 𝝈∕𝐮 because it allows to readily implement
and adopt the constitutive laws usually considered in solid mechanics,
which are defined in strain-driven format.

In view of this, the 3-field displacements/deviatoric-stress/pressure
𝐮∕𝐬∕𝑝 and the displacement/deviatoric-strain/pressure 𝐮∕𝐞∕𝑝 FEs have
been proposed to address incompressible problems with enhanced ac-
curacy compared to the mixed displacement/pressure 𝐮∕𝑝 FEs com-
monly adopted in isochoric problems [33–36]. These three methods
require the constitutive equation split into its volumetric and deviatoric
components.

Alternatively, the use of an 𝜺∕B-bar method has been proposed,
showing a better accuracy with respect to the standard B-bar approach
also commonly adopted to solve nearly incompressible problems [10,
20–22]. These strategies present the advantage of not requiring the
split of the constitutive equation in volumetric and deviatoric parts.
Notwithstanding, this approach is unfit for the elastic incompressible
limit (𝜈 = 0.5) and can be used only in the near incompressible limit.
Also, they present the limitation of being restricted to quadrilaterals
and hexahedral elements.

https://doi.org/10.1016/j.engstruct.2022.114213
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Table 1
FE and their applicability.

Standard (𝐮) B-bar 𝐮∕𝑝 𝝈∕𝑢 𝜺∕𝐮 𝜺∕B-bar 𝐮∕𝒔∕𝑝 𝐮∕𝐞∕𝑝

References [1] [20–22] [5–11] [28] [23–27,29–31] [10] [34] [33,35]

Incompressibility ✘ ✓* ✓ ✘ ✘ ✓* ✓ ✓

Strain-driven constitutive laws ✓ ✓ ✓ ✘ ✓ ✓ ✘ ✓

Avoids the split
✓ ✓ ✘ ✓ ✓ ✓ ✘ ✘of constitutive equations

Higher stress/strain accuracy ✘ ✘ ✘ ✓ ✓ ✓ ✓ ✓

General interpolation basis
✓ ✘ ✓ ✓ ✓ ✘ ✓ ✓(triangles, quadrilaterals,

tetrahedras, hexahedras, prisms)

Table 1 summarizes the advantages and disadvantages of these
alternative formulations. The superscript (*) in the B-bar and 𝜺∕B-
bar methods indicates that they are not apt for fully incompressible
problems and are used for near incompressibility only.

In our previous work [35] it was shown that, when considering
incompressibility, the mixed displacement/deviatoric-strain/pressure
𝐮∕𝐞∕𝑝 formulation allows for a better evaluation of stresses, strains and
mechanical dissipation than the mixed displacement/pressure 𝐮∕𝑝 ele-
ment and that a spurious overestimation of the mechanical dissipation
in nonlinear analyses takes place with the 𝐮∕𝑝 FE.

Mixed finite elements have been extensively used to solve problems
involving softening behavior in damage and plasticity, strain localiza-
tion and size-effect [27–29,32,37–41], but few studies, so far, have
been conducted considering non-isothermal behavior [42–45].

Saloustros et al. (2021) [10] detail the advantages of using mixed
solid elements to address typical plate, beam and shell problems; among
them: this approach does not require additional kinematical hypothe-
ses (planar sections; shear stress and warping through the thickness);
does not pose compatibility problems between different elements used
by the structural model; can easily accommodate construction details
(e.g., web-perforated steel beams, layered elements, element-stiffeners);
does not require rotational degrees of freedom and awkward boundary
condition alternatives (e.g., “soft” and “hard” supports). In the specific
case of thermal loading, no additional assumptions need to be made
about the through thickness temperature distribution.

Alternatively, the Carrera Unified Formulation (CUF) [46] has been
applied to solve different multifield problems in multilayered struc-
tures using beam, plates and shell elements. The CUF has been used
with thermal loads [47], thermo-elastic coupling [48,49], piezoelectric
structures [50,51] and a complete multifield formulation has been
proposed [52,53].

The interest in solving coupled thermo-mechanical problems arises
from engineering applications where temperature-dependency of the
mechanical properties is relevant as, for instance, on the fire analy-
sis of structures, manufacturing processes (casting, welding, additive
manufacturing, etc.), aerospace industry, turbines and high-speed civil
transport industry [54]. Specifically, in structural failure problems, the
presence of an external heat source and/or the mechanical dissipation
that takes place during the process may produce an increase in the
temperature field that significantly influences the observed nonlinear
behavior of the material.

For these reasons, this work focuses on the accurate analysis of
thermally-coupled structural failure under isochoric conditions. The
computation of the coupled thermal and mechanical problems is made
following a staggered approach. The mixed 𝐮∕𝐞∕𝑝 FE formulation is
employed to solve the mechanical problem, with the aim of increas-
ing the accuracy of the computed stresses, strains and mechanical
dissipation and to obtain mesh-objective results. Structural failure is
modelled using J2-damage and J2-plasticity constitutive laws, intro-
ducing an incompressible behavior in the material nonlinear response.
The thermal problem is solved using an implicit Euler method and
temperature-dependent material properties are considered in the anal-
ysis. A comparison of the performance of the 3-field formulation with

the 𝐮∕𝑝 element is introduced to assess the advantages of the proposed
model.

The objectives of this paper are: (1) to extend the mixed 𝐮∕𝐞∕𝑝 for-
mulation to address the incompressible limit and isochoric constitutive
laws in thermo-mechanical applications; (2) to investigate the influence
of temperature-dependent parameters in thermo-mechanical failure; (3)
to assess the enhanced accuracy of the 3-field (𝐮∕𝐞∕𝑝) over the mixed
𝐮∕𝑝 in thermo-mechanical analyses.

Therefore, the paper is organized as follows. Section 2 addresses the
mixed 𝐮∕𝐞∕𝑝 strong and weak forms, as well as the resulting FE formu-
lation. In Section 3 the coupling between the thermal and mechanical
problems is introduced. In Section 4 the constitutive models adopted
in the numerical examples, isotropic J2-damage and J2-plasticity, are
summarized. In Section 5 several numerical simulations are presented
to compare the performance and accuracy of the 3-field formulation
with respect to the 𝐮∕𝑝 FE in thermo-mechanical problems. Finally,
Section 6 presents the concluding remarks.

2. Mixed 𝟑-field (𝐮∕𝐞∕𝒑) mechanical problem

2.1. Volumetric/deviatoric split

Using Voigt’s notation, in 3D, the displacement 𝐮 = (𝑢, 𝑣,𝑤)𝑇 is a
vector of 3 components and the stress 𝝈 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧, 𝜏𝑥𝑦, 𝜏𝑦𝑧, 𝜏𝑥𝑧)𝑇 and
the strain 𝜺 = (𝜀𝑥, 𝜀𝑦, 𝜀𝑧, 𝜀𝑥𝑦, 𝜀𝑦𝑧, 𝜀𝑥𝑧)𝑇 are vectors of 6 components.

The constitutive equation relates the stress vector 𝜎 and the strain
vector 𝜺

𝝈 = 𝐂𝜺 (1)

where 𝐂 is the fourth-order secant constitutive tensor expressed in
Voigt’s notation as a 6 × 6 matrix. In this work, the nonlinear mechan-
ical behavior is introduced through the adoption of the J2-damage and
J2-plasticity constitutive laws, presented in Section 4. These establish
the nonlinear relation between stresses and strains followed by the
material and define the corresponding secant constitutive matrix 𝐂.

Herein, the volumetric/deviatoric split of the stresses and strains is
introduced, respectively as:

𝝈 = 𝑝𝐈 + 𝐬 (2)

𝜺 = 1
3
𝑒𝑣𝑜𝑙𝐈 + 𝐞 (3)

where 𝐈 = (1, 1, 1, 0, 0, 0)𝑇 is the second-order identity tensor in Voigt’s
notation, 𝑝 is the pressure, which is a scalar, and 𝐬 is the deviatoric-
stress vector

𝑝 = 1
3
(𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧) (4)

𝐬 = (𝜎𝑥 − 𝑝, 𝜎𝑦 − 𝑝, 𝜎𝑧 − 𝑝, 𝜏𝑥𝑦, 𝜏𝑦𝑧, 𝜏𝑥𝑧)𝑇 (5)

also, 𝑒𝑣𝑜𝑙 is the volumetric strain (scalar), and 𝐞 is the deviatoric-strain
vector, defined as

𝑒𝑣𝑜𝑙 = (𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧) = 𝐆𝑇 𝐮 (6)
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𝐞 = (𝜀𝑥 −
1
3
𝑒𝑣𝑜𝑙 , 𝜀𝑦 −

1
3
𝑒𝑣𝑜𝑙 , 𝜀𝑧 −

1
3
𝑒𝑣𝑜𝑙 , 𝜀𝑥𝑦, 𝜀𝑦𝑧, 𝜀𝑥𝑧)𝑇 (7)

𝑒𝑣𝑜𝑙 can be computed as the divergence of the displacements 𝐮 where
𝐆 = (𝜕𝑥, 𝜕𝑦, 𝜕𝑧)𝑇 is the gradient operator and 𝐆𝑇 is the adjoint diver-
gence operator.

The volumetric/deviatoric split is also applied to the constitutive
relationship:

𝑝 = 𝐶𝑣𝑜𝑙𝑒𝑣𝑜𝑙 (8)

𝐬 = 𝐂𝑑𝑒𝑣𝐞 (9)

where 𝐶𝑣𝑜𝑙 is defined as 𝐶𝑣𝑜𝑙 = 1
9 𝐈
𝑇𝐂𝐈 and 𝐂𝑑𝑒𝑣 is the deviatoric secant

constitutive matrix.
Note that

𝐬 = 𝐂𝑑𝑒𝑣𝜺 (10)

Let 𝐉 be the fourth-order identity tensor, expressed following Voigt’s
notation as a 6 × 6 identity matrix

𝐉 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

(11)

and the volumetric and deviatoric fourth-order operators, 𝐕 and 𝐘,
respectively, are introduced in Voigt’s notation as

𝐕 = 1
3
𝐈𝐈𝑇 = 1

3

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

(12)

𝐘 = 𝐉 − 𝐕 = 1
3

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎤
⎥⎥⎥⎥⎥⎥⎦

(13)

For the case of isotropic materials, 𝐶𝑣𝑜𝑙 and 𝐂𝑑𝑒𝑣 in Eqs. (8) and (9)
can be written as

𝐶𝑣𝑜𝑙 = 𝐾 (14)

𝐂𝑑𝑒𝑣 = 𝐘𝐂 = 2𝐺𝐘 (15)

where 𝐾 is the secant bulk modulus and 𝐺 is the secant shear modulus.
This leads to the following constitutive relationships:

𝑝 = 𝐾𝑒𝑣𝑜𝑙 (16)

𝐬 = 2𝐺𝐞 (17)

2.2. Strong form

The strong form of the nonlinear solid mechanics problem is written
in terms of the displacement 𝐮, deviatoric-strain 𝐞, and pressure 𝑝 fields.
The displacement 𝐮 and the total strains 𝜺 are related through the
compatibility equation

𝜺 = 𝐒𝐮 (18)

where 𝐒 is the differential symmetric gradient operator

𝐒 =
⎡
⎢⎢⎣

𝜕𝑥 0 0 𝜕𝑦 0 𝜕𝑧
0 𝜕𝑦 0 𝜕𝑥 𝜕𝑧 0
0 0 𝜕𝑧 0 𝜕𝑦 𝜕𝑥

⎤
⎥⎥⎦

𝑇

(19)

Equilibrium between the stress vector 𝝈 and the body forces 𝐟 =
(𝑓𝑥, 𝑓𝑦, 𝑓𝑧)𝑇 is defined by the Cauchy equation

𝐒𝑇 𝝈 + 𝐟 = 𝟎 (20)

where 𝐒𝑇 is the differential divergence operator, adjoint to the 𝐒 in
Eq. (18).

Introducing the split of the strains, Eqs. (3) and (6), in Eq. (18),
leads to

𝐞 = 𝐒𝐮 − 1
3
𝐈 (𝐆𝑇 𝐮)
⏟⏟⏟
𝑒𝑣𝑜𝑙

= 𝐖𝐮 (21)

where 𝐖 is the operator defined as

𝐖 = 𝐒 − 1
3
𝐈𝐆𝑇 = 1

3

⎡⎢⎢⎣

2𝜕𝑥 −𝜕𝑥 −𝜕𝑥 3𝜕𝑦 0 3𝜕𝑧
−𝜕𝑦 2𝜕𝑦 −𝜕𝑦 3𝜕𝑥 3𝜕𝑧 0
−𝜕𝑧 −𝜕𝑧 2𝜕𝑧 0 3𝜕𝑦 3𝜕𝑥

⎤⎥⎥⎦

𝑇

(22)

Note that 𝐖 = 𝐘𝐒.
Next, introducing Eqs. (2) and (9) in Eq. (20), where the identity

𝐒𝑇 𝐈 = 𝐆 is used, and Eq. (6) in Eq. (8), the continuous strong form of
the mixed 𝐮∕𝐞∕𝑝 formulation is

𝐒𝑇 (𝐂𝑑𝑒𝑣𝐞) +𝐆𝑝 + 𝐟 = 𝟎
𝐖𝐮 − 𝐞 = 𝟎

𝐆𝑇 𝐮 −
𝑝

𝐶𝑣𝑜𝑙
= 0

(23)

together with the prescribed mechanical boundary conditions. The
boundary 𝛤 can be split according to the Dirichlet and Newman con-
ditions imposed, respectively as 𝛤𝑢 and 𝛤𝑡, such that 𝛤 = 𝛤𝑢 ∪ 𝛤𝑡 and
𝛤𝑢 ∩ 𝛤𝑡 = ∅.

It is assumed herein that the prescribed displacements vanish on the
boundary 𝛤𝑢

𝐮 = 𝟎 in 𝛤𝑢 (24)

In addition, the prescribed traction on the boundary 𝛤𝑡 are

𝐭 = 𝐭̄ in 𝛤𝑡 (25)

2.3. Weak form

The variational form of the problem in Eqs. (23) is then obtained as
follows.

Firstly, Eq. (23)a is premultiplied by an arbitrary virtual displace-
ment 𝛿𝐮 and integrated over the spatial domain:

∫𝛺 𝛿𝐮
𝑇 [𝐒𝑇 (𝐂𝑑𝑒𝑣𝐞)]𝑑𝛺 + ∫𝛺 𝛿𝐮

𝑇 [𝐆𝑝]𝑑𝛺 + ∫𝛺 𝛿𝐮
𝑇 𝐟𝑑𝛺 = 𝟎 ∀𝛿𝐮 (26)

The virtual displacement 𝛿𝐮 also conforms with the boundary con-
ditions, so that 𝛿𝐮 = 𝟎 in 𝛤𝑢. Then, the Divergence Theorem is applied
to the first and second terms of Eq. (26) and the boundary term is
split 𝛤 = 𝛤𝑢 ∪ 𝛤𝑡. The Dirichlet boundary terms vanish (𝛿𝐮 = 𝟎) and,
considering that 𝐒𝑇 𝐈 = 𝐆, the variational form of Eq. (26) becomes

∫𝛺(𝐒𝛿𝐮)
𝑇 (𝐂𝑑𝑒𝑣𝐞)𝑑𝛺 + ∫𝛺(𝐒𝛿𝐮)

𝑇 (𝑝𝐈)𝑑𝛺 = ∫𝛺 𝛿𝐮
𝑇 𝐟𝑑𝛺 + ∫𝛤𝑡 𝛿𝐮

𝑇 𝐭̄𝑑𝛤

= 𝑊 (𝛿𝐮) ∀𝛿𝐮
(27)

Eq. (27) is equivalent to the Principle of Virtual Work, as the right
hand side term, noted 𝑊 (𝛿𝐮), is the virtual work done by the traction 𝐭̄
and body forces 𝐟 while the left hand side constitutes the virtual work
of the internal forces.

Secondly, Eq. (23)b is premultiplied by 𝐂𝑑𝑒𝑣 to obtain a symmetric
problem and then premultiplied by an arbitrary virtual deviatoric-strain
vector 𝛿𝐞 and integrated over the spatial domain

∫𝛺 𝛿𝐞
𝑇 [𝐂𝑑𝑒𝑣( 𝐘𝐒

⏟⏟⏟
=𝐖

𝐮)]𝑑𝛺 − ∫𝛺 𝛿𝐞
𝑇 (𝐂𝑑𝑒𝑣𝐞)𝑑𝛺 = 𝟎 ∀𝛿𝐞 (28)

Note that 𝐂𝑑𝑒𝑣𝐘 = 𝐂𝑑𝑒𝑣.
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Thirdly, Eq. (23)c is premultiplied by an arbitrary virtual pressure
vector 𝛿𝑝 and integrated over the spatial domain

∫𝛺 𝛿𝑝
𝑇 (𝐆𝑇 𝐮)𝑑𝛺 − ∫𝛺 𝛿𝑝

𝑇 𝑝
𝐶𝑣𝑜𝑙

𝑑𝛺 = 0 ∀𝛿𝑝 (29)

The resulting variational form of the 3-field formulation is:

∫𝛺(𝐒𝛿𝐮)𝑇 (𝐂𝑑𝑒𝑣𝐞)𝑑𝛺 + ∫𝛺(𝐒𝛿𝐮)𝑇 (𝑝𝐈)𝑑𝛺 = 𝑊 (𝛿𝐮) ∀𝛿𝐮
∫𝛺 𝛿𝐞𝑇 [𝐂𝑑𝑒𝑣(𝐒𝐮)]𝑑𝛺 − ∫𝛺 𝛿𝐞𝑇 (𝐂𝑑𝑒𝑣𝐞)𝑑𝛺 = 𝟎 ∀𝛿𝐞

∫𝛺 𝛿𝑝𝑇 (𝐆𝑇 𝐮)𝑑𝛺 − ∫𝛺 𝛿𝑝𝑇 𝑝
𝐶𝑣𝑜𝑙 𝑑𝛺 = 0 ∀𝛿𝑝

(30)

The solution to the mixed problem is: find the unknowns 𝐮, 𝐞 and
𝑝 that verify the system of Eqs. (30) and comply with the boundary
condition 𝐮 = 𝟎 on 𝛤𝑢 given the arbitrary virtual displacement 𝛿𝐮,
which also vanishes on 𝛤𝑢 and the arbitrary virtual deviatoric-strain
and pressure 𝛿𝐞 and 𝛿𝑝, respectively.

2.4. FE approximation

The continuous domain of the problem is discretized in a FE par-
tition such that 𝛺 = ∪𝛺𝑒, and discrete FE approximations of the
displacements 𝐮, the deviatoric-strains 𝐞 and the pressure 𝑝 are taken,
such that
𝐮 =̃ 𝐮̂ = 𝐍𝑢𝐔
𝐞 =̃ 𝐞̂ = 𝐍𝑒𝐄
𝑝 =̃ 𝑝̂ = 𝐍𝑝𝐏

(31)

where 𝐔, 𝐄 and 𝐏 are vectors comprising the values of the displace-
ments, deviatoric-strains and pressures at the nodes of the finite ele-
ment mesh. 𝐍𝑢, 𝐍𝑒 and 𝐍𝑝 are the matrices containing the interpolation
functions adopted in the FE approximation.

In the Galerkin method, the same approximation is taken for the
discrete virtual displacements, virtual deviatoric-strains and virtual
pressure, so that

𝛿𝐮 =̃ 𝛿𝐮̂ = 𝐍𝑢𝛿𝐔
𝛿𝐞 =̃ 𝛿𝐞̂ = 𝐍𝑒𝛿𝐄
𝛿𝑝 =̃ 𝛿𝑝̂ = 𝐍𝑝𝛿𝐏

(32)

Introducing these approximations, the system of Eqs. (30) becomes:

∫𝛺 (𝐒𝐍𝑢𝛿𝐔)𝑇
⏟⏞⏞⏟⏞⏞⏟
=𝛿𝐔𝑇 𝐁𝑇𝑢

(𝐂𝑑𝑒𝑣𝐍𝑒𝐄)𝑑𝛺 + ∫𝛺 (𝐒𝐍𝑢𝛿𝐔)𝑇 (𝐍𝑝𝐏𝐈)𝑑𝛺 = 𝑊̂ (𝛿𝐔) ∀𝛿𝐔

∫𝛺 𝛿𝐄𝑇𝐍𝑇𝑒 [𝐂𝑑𝑒𝑣(𝐒𝐍𝑢𝐔)⏟⏟⏟
=𝐁𝑢𝐔

]𝑑𝛺 − ∫𝛺 𝛿𝐄𝑇𝐍𝑇𝑒 (𝐂𝑑𝑒𝑣𝐍𝑒𝐄)𝑑𝛺 = 𝟎 ∀𝛿𝐄

∫𝛺 𝛿𝐏𝑇𝐍𝑇𝑝 (𝐆𝑇𝐍𝑢𝐔)𝑑𝛺 − ∫ 𝑇𝛺 𝛿𝐏𝑇𝐍𝑇𝑝
𝐍𝑝𝐏
𝐶𝑣𝑜𝑙 𝑑𝛺 = 0 ∀𝛿𝐏

(33)

where 𝐁𝑢= 𝐒𝐍𝑢 is the discrete strain–displacement matrix.
In Eq. (33)a 𝑊̂ (𝛿𝐔) is the work done by the traction 𝐭̄ and body

forces 𝐟 defined as

𝑊̂ (𝛿𝐔) = ∫𝛺 𝛿𝐔
𝑇𝐍𝑇𝑢 𝐟𝑑𝛺 + ∫𝛤𝑡 𝛿𝐔

𝑇𝐍𝑇𝑢 𝐭̄𝑑𝛤 (34)

Note that the equality 𝐆 = 𝐒𝑇 𝐈 can be used again in the second term
in Eq. (33)a

∫𝛺(𝐒𝐍𝑢𝛿𝐔)
𝑇 (𝐍𝑝𝐏𝐈)𝑑𝛺 = ∫𝛺 𝛿𝐔

𝑇𝐍𝑇𝑢 𝐒
𝑇 𝐈𝐍𝑝𝐏𝑑𝛺 = ∫𝛺 𝛿𝐔

𝑇𝐍𝑇𝑢 𝐆𝐍𝑝𝐏𝑑𝛺

(35)

This shows that the resulting problem is symmetric.
The virtual displacement 𝛿𝐔, virtual deviatoric-strain 𝛿𝐄 and vir-

tual pressure 𝛿𝐏 are arbitrary nodal vectors. Therefore, the system of
Eqs. (33) can be written in matrix form as

⎡⎢⎢⎣

𝟎 𝐊𝑈𝐸 𝐊𝑈𝑃
(𝐊𝑈𝐸 )𝑇 −𝐌𝐸𝐸 𝟎
(𝐊𝑈𝑃 )𝑇 𝟎 −𝐌𝑃𝑃

⎤⎥⎥⎦

⎡⎢⎢⎣

𝐔
𝐄
𝐏

⎤⎥⎥⎦
=
⎡⎢⎢⎣

𝐅
𝟎
𝟎

⎤⎥⎥⎦
(36)

where [𝐔𝐄𝐏]𝑇 is the array of nodal values of displacements, deviatoric-
strains and pressure and

𝐌𝐸𝐸 = ∫𝛺 𝐍𝑇𝑒 𝐂
𝑑𝑒𝑣𝐍𝑒𝑑𝛺 (37)

𝐌𝑃𝑃 = ∫𝛺 𝐍𝑇𝑝
1
𝐶𝑣𝑜𝑙

𝐍𝑝𝑑𝛺 (38)

𝐊𝑈𝐸 = ∫𝛺 𝐁𝑇𝑢 𝐂
𝑑𝑒𝑣𝐍𝑒𝑑𝛺 (39)

𝐊𝑈𝑃 = ∫𝛺 𝐍𝑇𝑢 𝐆𝐍𝑝𝑑𝛺 (40)

and

𝐅 = ∫𝛺 𝐍𝑇𝑢 𝐟𝑑𝛺 + ∫𝛤𝑡 𝐍
𝑇
𝑢 𝐭̄𝑑𝛤 (41)

2.5. Variational multi-scale stabilization

A crucial issue for mixed methods is stability. In order to ensure
this, the mixed interpolation adopted needs to satisfy the Inf–Sup
condition. However, stable combinations of interpolation spaces are
problem dependent, difficult to formulate and, often, rather exotic
[6,55–58].

A common strategy when using mixed FEs is to adopt equal or-
der interpolation functions for all the proposed fields. This approach
is preferred because it is far simpler to formulate and implement.
However, equal order interpolation does not comply with the Inf–Sup
condition [59,60] and requires the use of a stabilization method. Tech-
niques based on the Variational Multi-Scale method (VMS) [61–63]
have been used to this end. They consist on the numerical enrichment
of the FE fields adding a fine scale refinement to the FE solution, which
provides the discrete problem with the necessary stability. Within the
VMS approach, Codina introduced the Orthogonal Subgrid-Scales (OSS)
in which the fine scales are chosen orthogonal to the FE space [64–66].

The VMS technique has been successfully applied to stabilize the
following mixed formulations using equal order linear approximations
for all fields: displacement/pressure (𝐮∕𝑝); stress/displacement (𝝈∕𝐮);
strain/displacement (𝜺∕𝐮); displacement/deviatoric-stress/pressure
(𝐮∕𝐬∕𝑝); as well as the displacement/deviatoric-strain/pressure (𝐮∕𝐞∕𝑝)
FEs [25,28,29,34,67–70].

In this work, equal order linear interpolation functions are used for
all unknown fields. A Variational Multiscale Stabilization procedure
is adopted to circumvent the strictness of the Inf–Sup condition. The
stabilization procedure modifies the discrete variational form within
the framework of the VMS methods [5,62,63,65].

The idea of the VMS approach is to enhance the FE approximation
of the continuous solution by adding to the discrete fields 𝐮ℎ, 𝐞ℎ, and 𝑝ℎ
(from the FE space) a term 𝐮̃, 𝐞̃, and 𝑝̃ approximating the finer sub-grid
scale that cannot be captured at the FE scale:

𝐮 =̃ 𝐮̂ = 𝐮ℎ + 𝐮̃
𝐞 =̃ 𝐞̂ = 𝐞ℎ + 𝐞̃
𝑝 =̃ 𝑝̂ = 𝑝ℎ + 𝑝̃

(42)

The Appendix details the derivation of the discrete stabilized for-
mulation for the 𝐮∕𝐞∕𝑝 FEs.

The resulting stabilized FE system of equations is shown as Eq. (43)
in Box I where [𝐔𝐄𝐏]𝑇 is the array of nodal values of displacements,
deviatoric-strains and pressure and

𝐊𝐞
𝑈𝑈 = ∫𝛺 𝐁𝑇𝑢 𝐂

𝑑𝑒𝑣𝐁𝑢𝑑𝛺 (44)

𝐊𝑝
𝑈𝑈 = ∫𝛺 𝐍𝑇𝑢 𝐆𝐆𝑇𝐍𝑢𝑑𝛺 (45)

𝐊𝐸𝐸 = ∫𝛺(𝐍
𝑇
𝑒 𝐒𝐂

𝑑𝑒𝑣)(𝐂𝑑𝑒𝑣𝐒𝑇𝐍𝑒)𝑑𝛺 (46)

𝐊𝑃𝑃 = ∫𝛺 𝐍𝑇𝑝𝐆
𝑇𝐆𝐍𝑝𝑑𝛺 (47)
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⎡⎢⎢⎢⎣

𝜏𝑒𝐊𝐞
𝑈𝑈 + 𝜏𝑝𝐊

𝑝
𝑈𝑈 (1 − 𝜏𝑒)𝐊𝑈𝐸 (1 − 𝜏𝑝

𝐶𝑣𝑜𝑙 )𝐊𝑈𝑃
(1 − 𝜏𝑒)(𝐊𝑈𝐸 )𝑇 −(1 − 𝜏𝑒)𝐌𝐸𝐸 − 𝜏𝑢𝐊𝐸𝐸 −𝜏𝑢𝐊𝐸𝑃
(1 − 𝜏𝑝

𝐶𝑣𝑜𝑙 )(𝐊𝑈𝑃 )𝑇 −𝜏𝑢(𝐊𝐸𝑃 )𝑇 −(1 − 𝜏𝑝
𝐶𝑣𝑜𝑙 )𝐌𝑃𝑃 − 𝜏𝑢𝐊𝑃𝑃

⎤⎥⎥⎥⎦

⎡
⎢⎢⎣

𝐔
𝐄
𝐏

⎤
⎥⎥⎦
=
⎡
⎢⎢⎣

𝐅
𝟎
𝟎

⎤
⎥⎥⎦

(43)

Box I.

𝐊𝐸𝑃 = ∫𝛺(𝐍
𝑇
𝑒 𝐒𝐂

𝑑𝑒𝑣)(𝐆𝐍𝑝)𝑑𝛺 (48)

Note that the problem is symmetric and that for a converged solu-
tion (when ℎ → 0), the stabilization terms vanish. For non-converged
situations these terms depend on the residual value of the system
of equations. Varying the stabilization parameters 𝜏𝑢, 𝜏𝑒 and 𝜏𝑝 pro-
duces slightly different results for a given FE mesh; however, the
residual-based nature ensures the uniqueness of the solution upon
mesh convergence. In linear problems, the optimal convergence rate
is achieved using the stabilization parameters defined in Eq. (A.4) of
the Appendix, which decrease on mesh refinement [71].

Finally, some remarks regarding the implementation of the formu-
lation in FE codes are given.

Note that the 𝐊𝐸𝐸 and 𝐊𝐸𝑃 sub-matrices in Eqs. (46) and (48) can
be rewritten as

𝐊𝐸𝐸 = ∫𝛺(𝐁𝑒𝐂
𝑑𝑒𝑣)(𝐂𝑑𝑒𝑣𝐁𝑇𝑒 )𝑑𝛺 (49)

𝐊𝐸𝑃 = ∫𝛺(𝐁𝑒𝐂
𝑑𝑒𝑣)(𝐆𝐍𝑝)𝑑𝛺 (50)

where 𝐁(𝑖)
𝑒 is a submatrix with an analogous structure to 𝐁(𝑖)

𝑢 , defined
for each node (i) of a given element as

𝐁(𝑖)
𝑒 = 𝐍(𝑖)

𝑒
𝑇 𝐒

=
⎡⎢⎢⎢⎣

𝜕𝑥𝑁
(𝑖)
𝑒 0 0 𝜕𝑦𝑁

(𝑖)
𝑒 0 𝜕𝑧𝑁

(𝑖)
𝑒

0 𝜕𝑦𝑁
(𝑖)
𝑒 0 𝜕𝑥𝑁

(𝑖)
𝑒 𝜕𝑧𝑁

(𝑖)
𝑒 0

0 0 𝜕𝑧𝑁
(𝑖)
𝑒 0 𝜕𝑦𝑁

(𝑖)
𝑒 𝜕𝑥𝑁

(𝑖)
𝑒

⎤⎥⎥⎥⎦

𝑇

(51)

In this work, where the same interpolation functions are used for
both the displacement and the deviatoric-strain, 𝐁𝑒 and 𝐁𝑢 are the
same.

Note also that when using the same interpolation functions for both
the displacement and the pressure, the submatrix 𝐍𝑇𝑢 𝐆 is equal to the
submatrix 𝐆𝐍𝑝. Specifically, it can be observed that, for each node (i)
of a given element:

𝐍(𝑖)
𝑢
𝑇𝐆 = (𝜕𝑥𝑁 (𝑖)

𝑢 𝜕𝑦𝑁
(𝑖)
𝑢 𝜕𝑧𝑁

(𝑖)
𝑢 )𝑇 (52)

𝐆𝐍(𝑖)
𝑝 = (𝜕𝑥𝑁 (𝑖)

𝑝 𝜕𝑦𝑁
(𝑖)
𝑝 𝜕𝑧𝑁

(𝑖)
𝑝 )𝑇 (53)

3. Thermal problem and thermo-mechanical coupling

3.1. Strong form

The strong form of the thermal problem is written in terms of the
temperature 𝑇 as the energy balance equation

𝜌𝑐𝑇̇ = −∇ ⋅ 𝐪 + 𝑅̇ + ̇𝑚𝑒𝑐ℎ 𝑜𝑛 𝛺 (54)

where 𝑇̇ is the temperature time derivative, 𝜌 = 𝜌(𝑇 ) is the temperature-
dependent material density, 𝑐 = 𝑐(𝑇 ) is the temperature-dependent
specific heat capacity of the material, 𝑅̇ represents the heat source that
may be present in the problem and ̇𝑚𝑒𝑐ℎ is the rate of mechanical
dissipation that takes place in the body, dependent on the constitutive
model employed. Here, the heat flux, 𝐪, is computed according to the
Fourier law

𝐪 = −𝑘∇𝑇 (55)

Fig. 1. Double clamped rectangular beam: Problem setting.

with 𝑘 = 𝑘(𝑇 ) being the thermal conductivity of the material, also
temperature-dependent. The left-hand side of Eq. (54) is the enthalpy
rate where the heat capacity is 𝐶 = 𝐶(𝑇 ) = 𝜌(𝑇 )𝑐(𝑇 ).

Introducing Eq. (55) in (54), the strong form becomes

𝐶𝑇̇ − ∇ ⋅ (𝑘∇𝑇 ) = 𝑅̇ + ̇𝑚𝑒𝑐ℎ 𝑜𝑛 𝛺 (56)

together with the prescribed thermal boundary conditions.

3.2. Weak form

Introducing 𝛿𝑇 as a virtual temperature field and integrating
Eq. (56) over the domain 𝛺, the weak form of the energy balance is
written as

∫𝛺(𝛿𝑇𝐶𝑇̇ )𝑑𝛺 + ∫𝛺(𝑘∇𝛿𝑇 ⋅∇𝑇 )𝑑𝛺 = ∫𝛺[𝛿𝑇 (𝑅̇+̇𝑚𝑒𝑐ℎ)]𝑑𝛺 +∫𝛤𝑞 (𝛿𝑇 𝑞)𝑑𝛤
(57)

where the divergence theorem has been applied to the second term.
The domain is closed by a smooth boundary 𝛤 , such that 𝛤 = 𝛤𝑇 ∪ 𝛤𝑞
and 𝛤𝑇 ∩ 𝛤𝑞 = ⊘, where 𝛤𝑇 and 𝛤𝑞 are the boundaries with prescribed
temperatures and fluxes respectively. It is assumed that the prescribed
temperatures vanish at the boundary 𝛤𝑇 . The prescribed heat fluxes in
the boundary 𝛤𝑞 are noted 𝑞.

The initial conditions are defined in terms of the initial temperature
field at 𝑡 = 0, where 𝑇 (𝑡 = 0) = 𝑇0.

3.3. FE approximation

Similarly to the mechanical problem, the domain 𝛺 is discretized
in a FE partition such that 𝛺 = ∪𝛺𝑒, with the temperature and virtual
temperature fields approximated according to the Galerkin method

𝑇 =̃ 𝑇̂ = 𝐍𝑇𝐓
𝛿𝑇 =̃ 𝛿𝑇̂ = 𝐍𝑇 𝛿𝐓

(58)

where 𝐓 and 𝛿𝐓 are the finite element nodal temperature and virtual
temperature vectors, respectively, and 𝐍𝑇 is the matrix containing the
interpolation function adopted.

Introducing the FE discrete approximations into the continuous
weak form of Eq. (57), results in

∫𝛺 𝛿𝐓
𝑇𝐍𝑇𝑇𝐶𝐍𝑇 𝐓̇𝑑𝛺 + ∫𝛺 𝛿𝐓

𝑇𝐍𝑇𝑇𝐆
𝑇 𝑘𝐆𝐍𝑇𝐓𝑑𝛺

= ∫𝛺 𝛿𝐓
𝑇𝐍𝑇𝑇 (𝑅̇ + ̇𝑚𝑒𝑐ℎ)𝑑𝛺 + ∫𝛤𝑞 (𝛿𝐓

𝑇𝐍𝑇𝑇 𝑞)𝑑𝛤 ∀𝛿𝐓
(59)

and the choice of the virtual field is arbitrary, thus the Galerkin
approximation of Eq. (59) is

∫𝛺 𝐍𝑇𝑇𝐶𝐍𝑇 𝑑𝛺𝐓̇ + ∫𝛺 𝐁𝑇𝑇 𝑘𝐁𝑇 𝑑𝛺𝐓 = ∫𝛺 𝐍𝑇𝑇 (𝑅̇ + ̇𝑚𝑒𝑐ℎ)𝑑𝛺 + ∫𝛤𝑞 (𝐍
𝑇
𝑇 𝑞)𝑑𝛤
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Fig. 2. Double clamped rectangular beam: Pressure in [Pa]. Plane-stress (a)–(c). Plane-strain (d)–(f ).

Fig. 3. Double clamped rectangular beam: Pressure in [Pa] at the left support.
Plane-stress (a)–(c). Plane-strain (d)–(f ).

(60)

with 𝐁𝑇 = 𝐆𝐍𝑇 .

3.4. Thermo-mechanical coupling

The coupled thermo-mechanical problem considered in this work is
established in strong form by Eqs. (23) and (56). The corresponding
discrete weak form of the problem being numerically computed is
determined by Eqs. (43) and (60).

The time integration scheme adopted in Refs. [72–75] is consid-
ered to solve the discrete problem in time. The two sub-problems,
mechanical and thermal, are solved sequentially following a staggered
incremental procedure. When the mechanical dissipation is much lower
than the energy input from the heat source, the thermo-mechanical
coupling is weak, and a staggered solution of the thermal and the
mechanical sub-problems is preferred instead of a monolithic approach.

For every time increment 𝛥𝑡 = 𝑡𝑛+1 − 𝑡𝑛 between time steps 𝑡𝑛
and 𝑡𝑛+1, to obtain the solution at time 𝑡𝑛+1, first the mechanical sub-
problem is calculated with all the state variables of the solution known
at time instant 𝑡𝑛. This results in an intermediate solution, which is then
used as a starting point to compute the thermal problem. According to
the considerations in Ref. [74], the proposed algorithm does not need
an iterative loop over the two sub-problems within the same time-step
to ensure the convergence of the solution.

Due to the nonlinearity of the mechanical sub-problem, which
includes J2-damage and J2-plasticity constitutive laws, an iterative
Picard algorithm is introduced for its solution. Also, temperature-
dependent mechanical properties are introduced, which are determined
at 𝑡𝑛+1 using the temperature computed at 𝑡𝑛.

As the thermal sub-problem in Eq. (60) involves the time derivatives
of the temperature, an implicit Euler scheme is adopted for its solu-
tion. Temperature-dependent thermal properties are introduced as well,
making the problem nonlinear. However, the resulting thermal sub-
problem is solved in an incrementally linear manner. For this, material
properties are also computed at time step 𝑡𝑛+1 using the temperature
field obtained at 𝑡𝑛.

For additional details on the thermo-mechanical coupling,
Refs. [72–75] are recommended.

4. Constitutive laws

The mixed 𝐮∕𝐞∕𝑝 formulation requires the split of the constitutive
law into the volumetric and deviatoric parts as shown in Eqs. (8) and
(9). This section introduces the J2-damage and J2-plasticity laws used
in this work to model the nonlinear material behavior in structural
failure problems. The damage and yield surfaces of both models are
described by the Von Mises criterion. Both models are comprehensibly
described in Ref. [35]. For additional details on the constitutive laws,
Ref. [35] is recommended.

4.1. J2-damage

In this section, the J2-damage model is presented. An isotropic dam-
age model is considered for the deviatoric secant constitutive matrix
𝐂𝑑𝑒𝑣

𝐂𝑑𝑒𝑣 = (1 − 𝑑𝑠)𝐂𝑑𝑒𝑣0 (61)

where 𝐂𝑑𝑒𝑣0 is the initial elastic deviatoric constitutive matrix and 𝑑𝑠
is a damage variable modeling the degradation of the material, which
ranges 0 ⩽ 𝑑𝑠 ⩽ 1.

The effective deviatoric-stress 𝐬̄ is defined as 𝐬̄ = 𝐂𝑑𝑒𝑣0 𝐞 and the
corresponding equivalent effective deviatoric-stress 𝜏 is

𝜏 =
√

3
2
‖𝐬̄‖ =

√
3
2
[
𝐬̄𝑇 𝐬̄

]1∕2 (62)

The damage criterion, 𝑑 , is

𝑑 = 𝜏 − 𝑟(𝐬̄) ⩽ 0 (63)

where 𝑟 is the current damage threshold. Its initial value is the tensile
strength of the material, 𝑟0 = 𝜎𝑦. According to the Kuhn–Tucker opti-
mality and consistency conditions, the value of the damage threshold
at time 𝑡 is explicitly updated as

𝑟(𝐬̄) = max(𝑟0,max 𝜏(𝑡)) 𝑡 ∈ [0, 𝑡] (64)
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Fig. 4. Double clamped rectangular beam: Vertical reaction (half ) vs vertical displacement. (a) Plane-stress. (b) Plane-strain.

Fig. 5. Double clamped rectangular beam: J2-strains. Plane-stress (a)–(c). Plane-strain (d)–(f ).

Fig. 6. Double clamped rectangular beam: J2-strains detail at the left support.
Plane-stress (a)–(c). Plane-strain (d)–(f ).

The evolution of the internal damage variable is defined by

𝑑𝑠 = 𝑑𝑠(𝑟) = 1 −
𝑟0
𝑟
exp

(
−2𝐻𝑆

(⟨𝑟 − 𝑟0⟩
𝑟0

))
(65)

where 𝐻𝑆 is a positive softening parameter controlling the rate of
material degradation and ⟨⋅⟩ are the Macaulay brackets such that ⟨𝑥⟩ =
𝑥 if 𝑥 ⩾ 0, ⟨𝑥⟩ = 0 if 𝑥 < 0.

The mechanical dissipation ̇𝑚𝑒𝑐ℎ for this constitutive law is

̇𝑚𝑒𝑐ℎ = 𝜓0𝑑̇𝑠 =
1
2
𝐞𝑇𝐶𝑑𝑒𝑣0 𝐞𝑑̇𝑠 ≥ 𝟎 (66)

where 𝜓0 =
1
2 𝐞
𝑇𝐶𝑑𝑒𝑣0 𝐞 is the initial elastic strain energy density per unit

of volume of the undamaged material and 𝑑̇𝑠 is the derivative of the
damage 𝑑𝑠 with respect to time.

The total dissipation along the process is [35]

𝑚𝑒𝑐ℎ = ∫
𝑡=∞

𝑡=0
̇𝑚𝑒𝑐ℎ𝑑𝑡 = ∫

∞

0

1
2
𝐞𝑇𝐶𝑑𝑒𝑣0 𝐞𝑑̇𝑠𝑑𝑡 = 𝑊 𝑒

0 +
𝑊 𝑒

0
𝐻𝑆

(67)

where𝑊 𝑒
0 is the maximum energy per unit volume that can be absorbed

up to the elastic limit without permanent damage. For the case of
isotropic materials, 𝑊 𝑒

0 = 1
2
(𝜎𝑦)2

3𝐺0
, 𝐺0 being the initial elastic shear mod-

ulus. The previous expression of 𝑚𝑒𝑐ℎ can be related to the fracture
energy 𝑓 as [76,77]

𝑚𝑒𝑐ℎ =
𝑓
𝑏

(68)

where 𝑏 is the bandwidth of the strain localization, which is equal to
2ℎ for the 3-field element, ℎ being the FE size. This results in

𝐻𝑆 =
𝐻̄𝑆𝑏

1 − 𝐻̄𝑆𝑏
(69)

𝐻̄𝑆 =
(𝜎𝑦)2

6𝐺0𝑓 (70)

Eqs. (64)–(66) guarantee the irreversible nature and the positiveness
of the dissipation.

4.2. J2-plasticity

Herein, the J2-plasticity model is presented. The deviatoric plastic
strains 𝐞𝑝 are introduced as

𝐬 = 𝐂𝑑𝑒𝑣0 𝐞𝑒 = 𝐂𝑑𝑒𝑣0 (𝐞 − 𝐞𝑝) (71)
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Fig. 7. Double clamped rectangular beam: J2-strains detail at the center of the beam. Plane-stress (a)–(c). Plane-strain (d)–(f ).

Fig. 8. Double clamped I-shaped beam: Problem setting.

where 𝐂𝑑𝑒𝑣0 is the deviatoric part of the elastic constitutive matrix and
𝐞𝑒 are the deviatoric elastic strains computed as

𝐞𝑒 = 𝐞 − 𝐞𝑝 (72)

The constitutive equation can be rewritten in terms of the secant
deviatoric constitutive matrix

𝐬 =
[
𝐂𝑑𝑒𝑣0 −

(𝐂𝑑𝑒𝑣0 𝐞𝑝)(𝐂𝑑𝑒𝑣0 𝐞𝑝)𝑇

𝐞𝑇𝐂𝑑𝑒𝑣0 𝐞𝑝

]
𝐞 = 𝐂𝑑𝑒𝑣𝐞 (73)

where 𝐂𝑑𝑒𝑣 is the deviatoric part of the secant nonlinear constitutive
tensor, which is symmetric by construction.

Taking into account that, for an isotropic material, 𝐂𝑑𝑒𝑣0 = 2𝐺0𝐘,
that 𝐞 = 𝐘𝐞 and that 𝐞𝑝 is also purely deviatoric i.e. 𝐞𝑝 = 𝐘𝐞𝑝, Eq. (73)
can be simplified to

𝐬 = 2𝐺0

[
𝐉 − 𝐞𝑝(𝐞𝑝)𝑇

𝐞𝑇 𝐞𝑝

]
𝐞 (74)

Using the equivalent deviatoric-stress, 𝜏, defined in Eq. (62), the
plastic yield surface, 𝑝, is defined as

𝑝 = 𝜏 − 𝑟𝑝(𝑞) ⩽ 0 (75)

where 𝑟𝑝(𝑞) are the admissible deviatoric-stresses, and 𝑞 is a stress-like
internal variable that controls the softening of the model. The deviatoric
stress threshold is

𝑟𝑝(𝑞) = 𝜎𝑦 − 𝑞(𝜉) (76)

where 𝜎𝑦 is the initial uniaxial stress threshold, 𝜉 is the equivalent
plastic strain and 𝑞(𝜉) is the softening function, that in this work is
exponential:

𝜉 =
√

2
3
‖𝐞𝑝‖ (77)

𝑞(𝜉) = 𝜎𝑦 exp
(
−2𝐻
𝜎𝑦

𝜉
)

for 0 ⩽ 𝜉 ⩽ ∞ (78)

where 𝐻 is the softening parameter.

The plastic evolution laws are

𝐞̇𝑝 = 𝜆̇𝐧 (79)

𝜉̇ = 𝜆̇
√

2
3

(80)

where 𝜆̇ is the plastic multiplier determined by the Kuhn–Tucker op-
timality and consistency conditions and 𝐧 is the normal to the yield
surface, defined by

𝐧 =
𝜕𝑝
𝜕𝐬

= 𝐬
‖𝐬‖ (81)

The rate of plastic work is ̇𝑚𝑒𝑐ℎ = 𝐬 ∶ 𝐞̇𝑝 and the total deviatoric
plastic work along the softening process is

𝑚𝑒𝑐ℎ = ∫
𝑡=∞

𝑡=0
̇𝑚𝑒𝑐ℎ𝑑𝑡 = ∫

∞

0
𝑞(𝜉)𝑑𝜉 =

𝜎2𝑦
2𝐻

(82)

Also, the dissipated energy in a softening process can be related to
the fracture energy 𝑓 as

𝑚𝑒𝑐ℎ =
𝑓
𝑏

=
𝑓
2ℎ

(83)

where 𝑏 is the bandwidth of the strain localization, that in this work is
2ℎ for the 3-field element, ℎ being the mesh size.

Finally, the softening parameter 𝐻 can be computed using Eq. (82)
and (83) as

𝐻 =
𝜎2𝑦
2𝑓 𝑏 = 2ℎ𝐻̄ (84)

𝐻̄ =
𝜎2𝑦
2𝑓 (85)

The parameter 𝐻 depends on the mesh resolution ℎ and the material
properties.

5. Numerical simulations

In this section, the enhanced accuracy and the mesh independence
of the mixed 𝐮∕𝐞∕𝑝 formulation are assessed in isothermal (Section 5.1)
and non-isothermal (Sections 5.2–5.5) failure problems. Temperature-
dependent properties are considered. The simulations include the J2-
damage and J2-plasticity constitutive models, introducing the isochoric
behavior into the problem; thus the requirement of using a FE approach
such as 𝐮∕𝐞∕𝑝, capable of resolving incompressible conditions. Several
FE discretizations (triangular, quadrilaterals and hexahedral elements)
are used to show the generality of the formulation.
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Fig. 9. Double clamped I-shaped beam: Pressure in [Pa].

Fig. 10. Double clamped I-shaped beam: Vertical reaction (half ) vs vertical
displacement.

The nonlinear problem is solved incrementally in a (pseudo) time
step-by-step manner; at each step a staggered scheme is used for the
mechanical and the thermal problems. An iterative Picard algorithm
is employed in the mechanical problem. A convergence based on the
norm of the residuals of Eqs. (43) with a tolerance of 10−5 is adopted
at each time step. The thermal problem is solved in a linear incremental
manner and an implicit backward Euler scheme is adopted for its
resolution.

The mixed 𝐮∕𝐞∕𝑝 formulation is compared with the 𝐮∕𝑝 FE in
terms of result accuracy, collapse mechanism prediction and numerical
stability. The approximations adopted are Q1Q1 and P1P1 for 𝐮∕𝑝 and
Q1Q1Q1 and P1P1P1 for 𝐮∕𝐞∕𝑝 in the mechanical simulation and Q1
and P1 for the thermal field, depending on the FE discretization.

The stabilization constants defined in Eq. (A.4) of the Appendix are
taken as 𝐿0 = 1.0, 𝑐𝑢 = 1.0, 𝑐𝑝 = 0.0 and 𝑐𝑒 = 0.1 for both the 𝐮∕𝑝 and
𝐮∕𝐞∕𝑝 formulations.

An enhanced version of the finite element code COMET (see [78]),
developed by the authors, is used to solve the numerical simulations.
The pre and post process is done with GiD, a software developed at the
International Center for Numerical Methods in Engineering (CIMNE)
[79]. Paraview [80] is used for post processing as well.

5.1. Double clamped beam

5.1.1. Rectangular beam
In this section the development of plastic hinges is studied in a

clamped–clamped beam in plane-stress and plane-strain conditions. In
the present examination, the performance of the standard, 𝐮∕𝑝 and
𝐮∕𝐞∕𝑝 FE formulations are investigated when used in conjunction with
an isochoric (incompressible) nonlinear constitutive model. The numer-
ical simulations compare their solution in an isothermal setting. The
geometry and loading conditions of the beam are shown in Fig. 1.

The collapse mechanism predicted from the limit analysis of the
beam consists in the formation of two plastic hinges at the clamped
ends and, ultimately, of a third plastic hinge at the center of the beam.

The constitutive model adopted is elasto-perfect J2-Plasticity with
a Young’s modulus of 𝐸 = 200 [GPa], Poisson’s ratio of 𝜈 = 0.3 and
an uniaxial yield stress threshold of 𝜎𝑦 = 500 [MPa]. For the plane-
stress assumption, where the transversal stress is 𝜎𝑧 = 0, the theoretical
ultimate distributed load is 𝑝𝑢 = 4000 [kN∕m] and the vertical reaction
in each end is 10,000 [kN]. For the plane-strain case, the influence of
𝜎𝑧 ≠ 0 reflects on the perceived yield threshold, 𝜎̄𝑦 ≥ 𝜎𝑦 [81], which,
in the case of the Von Mises criterion, is given by

𝜎̄𝑦 =
𝜎𝑦√

1 − 𝜈 + 𝜈2

so, the corresponding plane-strain condition ultimate load is 𝑝𝑢 =
4500 [kN∕m] resulting in a vertical reaction of 11,250 [kN] in each end.

A structured quadrilateral mesh is adopted and, due to the symme-
try of the problem, half of the domain is considered, with a total of
5494 elements and a FE size of ℎ = 0.015 [m]. An arc-length strategy
is used in the simulations, controlling the displacement at the top
midpoint.

Fig. 2 shows the pressure computed in plane-stress and plane-strain
conditions for the standard, 𝐮∕𝑝 and 𝐮∕𝐞∕𝑝 FEs. The standard element
presents spurious oscillations of the pressure field while the mixed
formulations provide a smooth (correct) solution. Fig. 3 shows the
detail of the pressure at the left support where the poor performance
of the standard element is noticeable.

Fig. 4 shows the vertical reaction of one clamped end versus the
vertical displacement of the mid-span. In this simulation without ma-
terial softening, the two mixed FE formulations coincide while the
standard formulation presents a spurious hardening behavior due to
the volumetric locking that takes place in the computed solution. This
shows the inability of the standard FE formulation in reproducing
nonlinear isochoric behavior such as J2-plasticity.

Fig. 5 shows the J2-strains for the three FEs formulations. It can
be seen that the plastic hinges at the clamped ends form an arch that
connects the top and bottom faces of the beam. Close to the clamped
end, a region with no strain localization that extends towards the
center of the beam can be observed. The support and central hinges
are detailed in Figs. 6 and 7, respectively.

The numerical results in terms of load capacity in Fig. 4 for plane-
stress are higher than the theoretical results derived from the plastic
limit analysis. This is because of the assumption that the plastic hinge
develops exactly at the clamped face of the beam, which limit analysis
translates into assuming that the effective span coincides with the
geometric span. Fig. 5 shows that this is not the case; a dead-region
is formed, which decreases the value of the effective span length,
considered to be the distance from hinge to hinge, and increases the
ultimate load. In the plane stress case, the maximum vertical reaction
in 𝐮∕𝐞∕𝑝 is 11,440 [kN], for the 𝐮∕𝑝 is 11,510 [kN] and for the standard
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Fig. 11. Double clamped I-shaped beam: J2-strains.

Fig. 12. Double clamped I-shaped beam: J2-strains detail at the left clamped-end.

Fig. 13. Semicircular arch: Problem setting.

formulation is 12,640 [kN] at 𝛿𝑦 = 0.20 [m]; the theoretical one when
adopting a reduced effective span of 𝐿𝑒𝑓𝑓 = 4.52 [m], as observed in the
numerical solution, is 11,060 [kN].

5.1.2. I-shaped beam
In the following, the numerical simulation of the formation of

plastic hinges is considered in an I-shaped beam. The goal of this
section is to analyze the phenomenon in a 3D geometry, where the cross
section of the beam does not have constant width.

Fig. 8 shows the geometry and boundary conditions of this case. The
analysis is performed using elasto-perfect J2-plasticity, with a Young
modulus 𝐸 = 200 [GPa], Poisson’s ratio of 𝜈 = 0.3 and an uniaxial
yield stress threshold 𝜎𝑦 = 245 [MPa]. Considering the geometrical span
length 𝐿 = 2.5 [m], as shown in Fig. 8, the theoretical ultimate load of
the beam is 𝑝 = 61.47 [kN∕m]. This results in a vertical reaction on each
end of 𝑅 = 76.8 [kN].

Fig. 14. Semicircular arch: Collapse mechanism in an isothermal setting in dashed line.
Source: Adapted from [81].

Due to symmetry, half of the problem is considered. The simulation
is performed using an arc-length strategy controlling the vertical dis-
placement at the beam top midpoint. The domain is discretized using
a structured mesh of hexahedral elements of size ℎ = 5 ⋅ 10−3 [m], with
a total of 25,000 elements. At one end the beam is clamped and at the
mid-span symmetry conditions are applied.

Fig. 9 shows the pressure for the three FEs, where it can be seen that
the solution obtained by the standard formulation suffers from spurious
oscillations. Fig. 10 shows the evolution of the vertical reaction at the
left clamped end with the vertical displacement at the mid-span. In
this simulation without material softening, both mixed formulations
reach similar final bearing capacities, with the 𝐮∕𝐞∕𝑝 value being
83.1 [kN] and the 𝐮∕𝑝 value 83.4 [kN], while the standard FE produces
a much stiffer solution due to the volumetric locking originated by the
incapability of the standard element to address the material isochoric
(incompressible) behavior.

Fig. 11 presents the J2-strains for the three formulations where a
slightly different strain distribution on the web is observed between
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Fig. 15. Semicircular arch: (a) Heat source increment over time. Evolution of the (b) stress threshold and (c) specific heat capacity with temperature.

Fig. 16. Semicircular arch: Reference model (isothermal) failure mechanism for 𝛿𝑦 = 1.6 [m].

the mixed formulations. The J2-strains for the 𝐮∕𝑝 element are more
uniform throughout the web height. Fig. 12 provides a zoom at the
clamped end for a total displacement of |𝛿| = 0.30 [m]. The 𝐮∕𝑝
formulation has a lower accuracy in terms of strains and is not able to
capture the distribution observed in the 3-field solution. The standard
formulation presents a much broader area where the J2-strains develop,
Fig. 11, but the J2-strains magnitude are much smaller than the mixed
formulations values, Fig. 12, due to the volumetric locking of the
standard element.

It can be seen in Fig. 12 how also in this case a dead region where
no localization occurs develops next to the clamped face of the beam.
This reduces the effective span length of the beam to 𝐿𝑒𝑓𝑓 = 2.45 [m].
The resulting ultimate load is 𝑝 = 64 [kN∕m], and the expected vertical
reaction at each beam end (half vertical reaction) is 𝑅 = 80 [kN]. The
load capacities observed in Fig. 10 when using the 𝐮∕𝑝 and 𝐮∕𝐞∕𝑝 FEs
agree with these values.

5.2. Semicircular arch

In the next simulation, a semicircular arch in plane-stress conditions
is considered with temperature-dependent material properties. A heat
source is placed at one end of the arch, weakening the bearing capacity.
The aim of this example is to assess the difference in the failure
mechanisms provided by the 3-field and 𝐮∕𝑝 solutions.

The arch is clamped in both ends and has an outer radius 𝑅 = 10 [m],
a thickness 𝑡 = 1.0 [m], a width 𝜔 = 0.5 [m] and is subjected to a vertical
displacement 𝛿𝑦 = 2.5 [m] downwards with a heat source placed on
the right clamping (see Fig. 13). Fig. 13 shows the point 𝐴 chosen to
measure the evolution of the temperature.

An isothermal reference case is also considered to assess the in-
fluence of the temperature on the failure mechanism. The structure,
if not subjected to temperature effects, fails with the formation of
symmetrical hinges [81] as presented in Fig. 14.

The constitutive model adopted is the isotropic J2-Damage and the
material properties are described in Table 2. The heat load is described
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Table 2
Semicircular arch: Material properties.

Property Value

Young’s Modulus [GPa] 200
Fracture Energy [MJ/m2] 60
Density [kg/m3] 7800
Thermal Conductivity [W/(m ◦C)] 45
Thermal Expansion coefficient [m/(m ◦C)] 12 ⋅10−6

in Fig. 15(a). The yield stress threshold, 𝜎𝑦, and the specific heat
capacity, 𝑐, vary in function of the temperature, see Fig. 15(b) and (c).
These evolution functions of the material temperature-dependency are
taken based on the behavior reported for steel in Ref. [82].

A structured quadrilateral mesh with 16 elements through the thick-
ness is adopted, resulting in a total of 8000 elements with an average
size of ℎ = 0.0625 [m].

Fig. 16 shows the failure mechanism for the isothermal case, compa-
rable to the expected behavior in Fig. 14. Fig. 17 details the evolution
of the intermediate plastic hinge in four different time steps. The
lack of accuracy of the 𝐮∕𝑝 formulation introduces stress locking,
precludes the achievement of a localized solution and exhibits the
banding phenomenon in Fig. 17c (right), in contrast to the 𝐮∕𝐞∕𝑝 result.
This increases the mechanical dissipation 32.2% for the 𝐮∕𝑝 element
compared to the 3-field solution, as can also be seen in the reaction vs
displacement plot in Fig. 18(a). This also produces an overestimation
of the failure load by 𝐮∕𝑝 of 2.29% with respect to the 𝐮∕𝐞∕𝑝, as can
be appreciated in Fig. 18(a).

Fig. 19 shows the unsymmetrical failure mechanism induced by the
heat source positioned at the right hand side base for the mixed 𝐮∕𝐞∕𝑝
and the mixed 𝐮∕𝑝. The right base of the arch loses strength at a faster
rate which produces the unsymmetrical failure mechanism. Although
both solutions are unsymmetrical, a large difference is observed be-
tween both collapse mechanisms. The 𝐮∕𝐞∕𝑝 element yields a sliding
mechanism, due to the loss of strength at the arch base, while the 𝐮∕𝑝
displays a stiffer solution, resulting from the stress locking observed at
the hinges.

Fig. 18 presents the vertical reaction vs displacement plot for the
𝐮∕𝑝 and 𝐮∕𝐞∕𝑝 formulations (recall that the reference case is isothermal)
and the temperature evolution at point 𝐴. The differences between the
3-field and the 𝐮∕𝑝 solutions are caused by the formation of a different
failure mechanism and the over dissipation exhibited by the 𝐮∕𝑝, both
originated from the poor evaluation of the stress/strain field. Note
also that the resulting bearing capacities are different: 55, 396 𝑘𝑁 for
the 𝐮∕𝑝 and 53, 720 𝑘𝑁 for the 𝐮∕𝐞∕𝑝, a 3.12% difference. The heat
increase at the base barely affects the peak load value with respect
to the isothermal case, but the resulting nonlinear structural response
is greatly modified. The measured temperature increase at point 𝐴,
presented in Fig. 18(b), depends on the mechanical dissipation and
captures the instant when the localization occurs, when the peak value
is attained. The hinge is formed sooner in the 𝐮∕𝐞∕𝑝 solution, denoting
that the 𝐮∕𝑝 has a stiffer behavior and delays the localization process.

5.3. Temperature induced failure - 3D frame

The following example is a 3D frame subjected to self-weight. The
structural failure is induced by an incremental heat source placed on
the right portion of the beam–column connection, shown in Fig. 20 and
defined in Fig. 21(a). The frame has a total height of 3 [m] with a free
span of 4.8 [m]. The heat-affected area is a portion of the beam with
1.2 [m] in length from the right beam–column connection. The beam
and column cross-sections are presented in Fig. 20.

The constitutive model is perfect J2-Plasticity, Young’s modulus
is 𝐸 = 200 [GPa], the material density is 𝜌 = 7800 [kg∕m3] and the
thermal expansion coefficient is 𝛼 = 12 ⋅ 10−6 [m∕(m ◦C)]. The yield
stress threshold, 𝜎𝑦, the specific heat capacity, 𝑐, and the thermal

Fig. 17. Semicircular arch: Reference model (isothermal) detail of the development of
the intermediate plastic hinge. (a) 𝛿𝑦 = 0.10 [m]. (b) 𝛿𝑦 = 0.30 [m]. (c) 𝛿𝑦 = 1.20 [m]. (d)
𝛿𝑦 = 2.5 [m].

conductivity, 𝑘, are temperature dependent, as shown in Fig. 21 (b)–
(d). The evolution laws are taken based on the behavior reported in
Ref. [82]. The simulation is performed with a time step of 20 [s] in a
total of 10,000 [s] and a structured hexahedral mesh with element size
ℎ = 0.025 [m] (39,936 elements in total).

Fig. 22 shows the evolution of the vertical reaction at each column.
On the one hand, the 𝐮∕𝑝 simulation stops at 3880 [s], when the
temperature in the heated region reaches 796 ◦C, due to the degradation
of the strength of the beam in the heated zone. On the other hand, the
𝐮∕𝐞∕𝑝 formulation manages to conclude the analysis successfully.

Figs. 23(a)–(b) shows the J2-strains developed by the mixed 𝐮∕𝑝
and 𝐮∕𝐞∕𝑝 formulations a few time-steps before the mixed 𝐮∕𝑝 for-
mulation fails. This is caused by the lack of local convergence of the
𝐮∕𝑝 formulation, which induces a premature shear mechanism at the
heated beam–column connection, observed in the following time-step
in Fig. 23(c)–(d). On the other hand, this does not happen in the
enhanced accuracy mixed 𝐮∕𝐞∕𝑝 formulation and the analysis follows
on until the final time-step 𝑡 = 10, 000 [s].

5.4. The Prandtl Punch test

The Prandtl Punch test consists of a rigid punch pressed into a semi-
infinite domain in plane-strain conditions. The geometry considered is
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Fig. 18. Semicircular arch: (a) Reaction vs displacement curves and (b) temperature evolution over time at point 𝐴.

Fig. 19. Semicircular arch: Failure mechanism with heated base for 𝛿𝑦 = 2.50 [m].

Fig. 20. 3D frame with heat source at the right quarter portion of the beam–column
connection: Problem setting.

a 4 [m] × 2 [m] (x × y) region with a rigid punch of size 1.0 [m] centered
at the top portion of the domain (see Fig. 24). Due to the symmetry of
the problem only half of the domain is considered.

Also, in this section, artificial properties are considered, to bet-
ter demonstrate the capacities of both mixed FE formulations. The
constitutive model is J2-Damage with a high value for the fracture
energy (𝐺𝑓 ⟶ ∞). The material properties are Young’s Modulus,
𝐸 = 10 [MPa], density, 𝜌 = 7800 [kg∕m3], Poisson’s ratio 𝜈 = 0.5 (incom-
pressible elastic behavior), specific heat capacity, 𝑐 = 5⋅10−5 [J∕(kg ◦C)],
and the evolution of the yield-threshold with respect to the temper-
ature is shown in Fig. 25. Two simulations, one with null thermal
conductivity and one including an external heat source, are performed
in this section. In this problem with elastic incompressible behavior,
the pressure stabilization constant is set to 𝑐𝑝 = 0.1.

Computations are conducted using a 14,608 unstructured triangular
element mesh in the first case and a 6400 quadrilateral element dis-
cretization in the second one, with the element size being ℎ = 0.025 [m]
in both meshes. A downward vertical displacement of 𝛿𝑦 = 0.20 [m] is
applied to the rigid punch area in 500 [s] (500 steps).

The failure mechanism in an isothermal setting is shown in Fig. 26
with critical angles of 𝜃 = ±45◦ from the edge of the punch with the
horizontal plane. The analytical peak load (yield load), 𝑞, for the rigid
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Fig. 21. 3D frame: (a) Heat source increment over time. (b) Uniaxial stress threshold, (c) Specific heat capacity, (d) Thermal conductivity, evolution with the temperature.

Fig. 22. 3D frame: Evolution curves of the bearing capacity of the columns.

Fig. 23. 3D frame: J2-strains at the beam–column connection (a)–(b) at the time step
𝑡 = 3820 s and (c)–(d) at time step 𝑡 = 3880 s, before the 𝐮∕𝑝 solution fails.

punch in an isothermal setting is given by [83]:

𝑞 = 4𝑎
(
1 + 𝜋

2

)
𝜏𝑝𝑠

Table 3
Prandtl’s Punch test: Peak load relative errors for the
half-domain in an isothermal setting at 20 ◦C.

Peak load [N] Error [%]

𝐮∕𝐞∕𝑝 15,257 2.79
𝐮∕𝑝 15,264 2.84

where 𝜏𝑝𝑠 is the yield stress threshold in pure shear, defined as a
function the uniaxial yield stress threshold, 𝜎𝑦, as 𝜏𝑝𝑠 = 𝜎𝑦√

3
and 2𝑎 is

the width of the punch (2𝑎 = 1 [m]). For a stress threshold 𝜎𝑦 (20 ◦C) =
10 [kPa], the peak load for the half-domain is 𝑞1∕2 = 14, 842.5 [N∕m].

Table 3 presents the peak load for the isothermal setting of the
half-domain computed by both FE formulations.

5.4.1. Case 1: Numerical simulation with null thermal conductivity
The objective of this simulation is to illustrate a case where the

temperature increase is produced exclusively by the mechanical dissi-
pation. The thermal conductivity is set to 𝑧𝑒𝑟𝑜 to emulate null thermal
inertia. In this way, mechanical dissipation increases the temperature
locally, without thermal conduction. Point 𝐴, shown in Fig. 24, is
chosen to evaluate the evolution of the J2-stresses and the temperature,
presented in Fig. 27. The 𝐮∕𝑝 element produces a higher mechanical
dissipation [35], resulting in a higher temperature increase, Fig. 27a,
affecting the computed yield threshold and reducing the J2-stresses
observed at point 𝐴, Fig. 27b.

In the isothermal setting, both mixed formulations reach the yield
threshold value, 𝜎𝑦 (20 ◦C) = 10 [kPa], for point 𝐴. On the other hand,
the peak J2-stress values reached in the non-isothermal analysis are
𝜎𝑦 = 9.51 [kPa] and 𝜎𝑦 = 8.94 [kPa] for the mixed 3-field and 𝐮∕𝑝
formulations, respectively. The J2-stresses decrease until they reach the
final value of 𝜎𝑦 = 6.95 [kPa] and 𝜎𝑦 = 6.65 [kPa] for the 3-field and
𝐮∕𝑝, respectively.

Fig. 28 shows snapshots of the failure mechanism (a–b — near the
peak load; c–d at the final step) for both formulations. Although the
failure mechanisms in both cases are similar, the 𝐮∕𝑝 formulation shows
some mesh sensitivity and presents a vertical slip line that does not
develop in the 3-field.

5.4.2. Case 2: Numerical simulation with an external heat source
The following case introduces an external heat source in the prob-

lem and the thermal conductivity of the domain is set to
2.5 ⋅ 10−3 [W∕(m◦C)]. The resulting effects on the failure mechanism,
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Fig. 24. Prandtl’s Punch test: General problem setting and meshes.

Fig. 25. Prandtl’s Punch test: Temperature-dependency of the uniaxial stress threshold.

Fig. 26. Prandtl’s Punch test: Collapse mechanism in an isothermal setting.

peak load and bearing capacity are explored. The heat source is
positioned in the rigid punching area at a constant temperature of
150 [◦C].

Fig. 29 shows snapshots of the failure mechanism (a–b — near
the peak load; c–d — at the final step) for both formulations. The
increase of temperature in the rigid footing area changes the failure
mechanism with respect to the isothermal case, altering its depth,
which eventually emerges closer to the heated area. Note that, due
to the effect of temperature, the failure mechanism does no longer
present a critical angle 𝜃 of 45◦. Fig. 30(a) shows the difference in
terms of strains between the computations of both formulations at
the end of the simulation. Note that the difference is computed as
[𝐮∕𝐞∕𝑝−𝐮∕𝑝], where blue values mean that the 𝐮∕𝑝 solution has higher
strains and red values otherwise. This represents the superposition of

Table 4
Prandtl’s Punch test — case 2: Difference between isother-
mal and non-isothermal critical angles on the slip-line and
computed peak-load in the non-isothermal case.

Case 𝜟𝜽 𝒒 [N]

𝐮∕𝑝 −13.24◦ 10,472
𝐮∕𝐞∕𝑝 −7.69◦ 11,070

the 𝐮∕𝑝 and 𝐮∕𝐞∕𝑝 mechanisms in blue and red, respectively. It can be
seen how the two formulations do not produce the same results due to
the poor precision of the 𝐮∕𝑝 element. Fig. 30(b) shows the reaction vs
displacement curves, where the effect of the thermal softening induced
by the temperature-dependency of the yield stresses, as defined in
Fig. 25, can be observed for both formulations. The reference curves
are obtained from simulations without a temperature-dependent yield
threshold. The higher peak-load observed in the 3-field is a consequence
of the broader confined region below the rigid footing compared to the
𝐮∕𝑝 formulation.

Table 4 shows the change in the critical angles with respect to the
reference case (𝜃 = 45◦) caused by the increase of temperature on the
rigid footing. It also presents the reduced peak loads which are to be
compared to the isothermal simulation results presented in Table 3.

Note that the 3-field formulation is able to produce the original
Prandtl collapse mechanism (a slip-line), while the mixed 𝐮∕𝑝 intro-
duces a vertical punching line to the slip-line mechanism in both sets
analyzed.

5.5. Singly perforated thin-walled cylinder

The next example is a thin-walled cylinder 0.6 [m] × 3 [m] ×
0.02 [m] (outer diameter × height × thickness) with a perforation of
0.04 [m] × 0.04 [m] × 0.02 [m] (width × height × thickness) subjected to
vertical stretching. The cylinder is heated at the perforation, as shown
in Fig. 31, in an area of dimensions 0.12 [m] × 0.12 [m] × 0.02 [m]
(width × height × thickness). The heat load is described in Fig. 32(a).

The constitutive model adopted is the J2-Damage with softening
and the material properties are presented in Table 5. One fourth of the
domain is considered due to the double symmetry of the problem (see
Fig. 31).

As shown in Fig. 31, the perforated cylinder is in a state of plane
stress, as the normal stress through the thickness is null. An imposed
vertical displacement of 𝛿𝑧 = 0.20 [m] is applied at the top boundary.

The yield stress threshold, 𝜎𝑦, is temperature-dependent as shown
in Fig. 32(b), following the observations in Ref. [82].

Fig. 31 presents the cylinder geometry and the structured mesh
of hexahedral finite elements of size ℎ = 0.02 [m] employed in the
simulation, resulting in a total of 3749 elements.
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Fig. 27. Prandtl’s Punch test — case 1: (a) Comparative evolution of the temperature and (b) J2-stresses at point 𝐴.

Fig. 28. Prandtl’s Punch test — case 1: Collapse mechanisms (a)–(b) at 𝑑𝑦 = 0.02 [m] and (c)–(d) at 𝑑𝑦 = 0.20 [m].

Fig. 29. Prandtl’s Punch test — case 2: Collapse mechanisms (a)–(b) at 𝑑𝑦 = 0.02 [m] and (c)–(d) at 𝑑𝑦 = 0.20 [m].

Fig. 33 shows the load vs displacement curves of the singly per-
forated thin-walled cylinder computed for both formulations. It can
be observed that the peak loads computed with both formulations are
in good agreement in this case. However, an important difference on
the mechanical dissipation can be appreciated in the analysis. This is

caused by the poor evaluation of the stress field in the 𝐮∕𝑝 formulation,

which, as shown in Ref. [35] specially pollutes the computations in

the nonlinear range. Conversely, the enhanced precision of the 3-field

formulation allows to increase the accuracy of the discrete solution in
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Fig. 30. Prandtl’s Punch test — case 2: (a) Superimposed collapse mechanisms at 𝑑𝑦 = 0.20 [m]. In red the 𝐮∕𝐞∕𝑝 solution and the 𝐮∕𝑝 in blue; (b) Reaction vs displacement curves.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 31. Singly perforated thin-walled cylinder: Problem setting. Heated area in red.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Table 5
Singly perforated thin-walled cylinder: Material properties.

Property Value

Young’s Modulus [GPa] 200
Fracture Energy [MJ/m2] 20
Density [kg/m3] 7800
Thermal Conductivity [W/(m ◦C)] 45
Specific Heat Capacity [J/(kg ◦C)] 500

terms of stress and produces more reliable results, which is particularly
crucial in nonlinear problems [35].

Fig. 34 shows the J2-strains at the mid-simulation, Fig. 34(a)–
(b), and at the end of the simulation, Fig. 34(c)–(d). The difference
in the evaluation of the stress field by both formulations produces
the contrast observed in Fig. 34. The banding phenomenon, reported
in Section 5.2 and in the work [27], is again observed in Fig. 34
for the 𝐮∕𝑝 formulation when softening behavior is introduced, this
time in a thermo-mechanical analysis, while the 3-field solution is
correctly localizing in a continuous shear band. Fig. 35 exhibits the
principal stress vectors for the same time-steps. There it can be seen the
stress-locking phenomenon taking place in the 𝐮∕𝑝 formulation, where
stresses spuriously concentrate in the region of the shear band.

Fig. 36 shows the computed temperature field with both formula-
tions at the time step 𝑡 = 750 [s]. It can be seen that the temperature
is higher in the area where the crack develops in the 𝐮∕𝑝 solution

as a result of the higher dissipation of this FE formulation. This evi-
dences the over-dissipation due to stress locking, noticed in Figs. 33
and 35, that takes place in the 𝐮∕𝑝 formulation due to lack of stress
accuracy.

6. Conclusions

In this work, the numerical simulation of thermally-induced struc-
tural failure under incompressible conditions is addressed. For this, an
enhanced accuracy 𝐮∕𝐞∕𝑝 formulation is employed and its performance
is assessed against the classical 𝐮∕𝑝 formulation. J2-damage and J2-
plasticity nonlinear constitutive laws are introduced to represent the
degradation of the isochoric material. Thermal coupling is introduced
in the model following a staggered procedure.

The computation of several nonlinear benchmark applications is
performed, including strain localization, plasticity and softening be-
havior. Temperature-dependent material properties are introduced and
the influence of the temperature in structural failure is examined with
respect to reference isothermal analyses.

It is observed that:

• The standard displacement-based FE formulation from solid me-
chanics cannot be used to compute problems including
incompressible nonlinear constitutive behavior such as the Von
Mises yield criterion.

• The 3-field and 𝐮∕𝑝 FE formulations are both able of considering
the elastic incompressibility and the isochoric deformations of the
J2-plasticity and J2-damage constitutive models.

• The proposed 3-field FE has a much better performance com-
pared with the 𝐮∕𝑝 FE in terms of failure mechanisms, bearing
capacity, mechanical dissipations, solution stability and is free of
stress locking. These aspects are a consequence of the enhanced
accuracy of the stress/strain fields considered. Correspondingly,
the results computed with the 𝐮∕𝑝 formulation present serious
numerical difficulties in nonlinear applications.

• No spurious mesh dependency can be appreciated in the solutions
computed with the 𝐮∕𝐞∕𝑝 element.

• The proposed method is able to solve incompressible problems
using different FE meshes including triangles, quadrilaterals, hex-
ahedra, etc.

• The model reproduces the theoretical load carrying capacity of
the numerical benchmarks with accuracy.

• The coupling of the mixed 3-field FE for mechanical problems
with the thermal problem is successful and many of the strong
points of the 3-field formulation are inherited in
thermo-mechanical applications.
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Fig. 32. Singly perforated thin-walled cylinder: (a) Temperature increase curve applied on the perforation and (b) the uniaxial yield stress threshold evolution with the temperature.

Fig. 33. Singly perforated thin-walled cylinder: Load vs displacement curve.
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Appendix

The discrete virtual displacements, virtual deviatoric-strains and
virtual pressure are approximated as:

𝛿𝐮 =̃ 𝛿𝐮̂ = 𝛿𝐮ℎ + 𝛿𝐮̃
𝛿𝐞 =̃ 𝛿𝐞̂ = 𝛿𝐞ℎ + 𝛿𝐞̃
𝛿𝑝 =̃ 𝛿𝑝̂ = 𝛿𝑝ℎ + 𝛿𝑝̃

(A.1)

Introducing these approximations and the ones in Eq. (42) into the
continuous weak form in Eq. (30) and separating the FE and sub-grid
scale terms results in the following system of equations:

∫𝛺[𝐒𝛿𝐮ℎ]𝑇 (𝐂𝑑𝑒𝑣𝐞ℎ)𝑑𝛺 + ∫𝛺[𝐒𝛿𝐮ℎ]𝑇 (𝐂𝑑𝑒𝑣𝐞̃)𝑑𝛺
+ ∫𝛺[𝐒𝛿𝐮ℎ]𝑇 (𝑝ℎ𝐈)𝑑𝛺+
+ ∫𝛺[𝐒𝛿𝐮ℎ]𝑇 (𝑝̃𝐈)𝑑𝛺 = 𝑊 (𝛿𝐮ℎ)

∀𝛿𝐮ℎ (𝑎)

∫𝛺 𝛿𝐞𝑇ℎ [𝐂𝑑𝑒𝑣𝐒𝐮ℎ]𝑑𝛺 + ∫𝛺 𝛿𝐞𝑇ℎ [𝐂𝑑𝑒𝑣𝐒𝐮̃]𝑑𝛺+

− ∫𝛺 𝛿𝐞𝑇ℎ𝐂𝑑𝑒𝑣𝐞ℎ𝑑𝛺 − ∫𝛺 𝛿𝐞𝑇ℎ𝐂𝑑𝑒𝑣𝐞̃𝑑𝛺 = 𝟎
∀𝛿𝐞ℎ (𝑏)

∫𝛺 𝛿𝑝𝑇ℎ (𝐆𝑇 𝐮ℎ)𝑑𝛺 + ∫𝛺 𝛿𝑝𝑇ℎ (𝐆𝑇 𝐮̃)𝑑𝛺 − ∫𝛺 𝛿𝑝𝑇ℎ 𝑝ℎ
𝐶𝑣𝑜𝑙 𝑑𝛺

− ∫𝛺 𝛿𝑝𝑇ℎ 𝑝̃
𝐶𝑣𝑜𝑙 𝑑𝛺 = 0 ∀𝛿𝑝ℎ (𝑐)

∫𝛺[𝐒𝛿𝐮̃]𝑇 (𝐂𝑑𝑒𝑣𝐞ℎ)𝑑𝛺 + ∫𝛺[𝐒𝛿𝐮̃]𝑇 (𝐂𝑑𝑒𝑣𝐞̃)𝑑𝛺
+ ∫𝛺[𝐒𝛿𝐮̃]𝑇 (𝑝ℎ𝐈)𝑑𝛺+
+ ∫𝛺[𝐒𝛿𝐮̃]𝑇 (𝑝̃𝐈)𝑑𝛺 = 𝑊 (𝛿𝐮̃)

∀𝛿𝐮̃ (𝑑)

∫𝛺 𝛿𝐞̃𝑇 [𝐂𝑑𝑒𝑣𝐒𝐮ℎ]𝑑𝛺 + ∫𝛺 𝛿𝐞̃𝑇 [𝐂𝑑𝑒𝑣𝐒𝐮̃]𝑑𝛺+

− ∫𝛺 𝛿𝐞̃𝑇𝐂𝑑𝑒𝑣𝐞ℎ𝑑𝛺 − ∫ 𝑇𝛺 𝛿𝐞̃𝑇𝐂𝑑𝑒𝑣𝐞̃𝑑𝛺 = 𝟎
∀𝛿𝐞̃ (𝑒)

∫𝛺 𝛿𝑝̃𝑇 (𝐆𝑇 𝐮ℎ)𝑑𝛺 + ∫𝛺 𝛿𝑝̃𝑇 (𝐆𝑇 𝐮̃)𝑑𝛺 − ∫𝛺 𝛿𝑝̃𝑇 𝑝ℎ
𝐶𝑣𝑜𝑙 𝑑𝛺

− ∫𝛺 𝛿𝑝̃𝑇 𝑝̃
𝐶𝑣𝑜𝑙 𝑑𝛺 = 0 ∀𝛿𝑝̃ (𝑓 )

(A.2)

The system formed by the sub-grid scale Eqs. (A.2)d, (A.2)e and
(A.2)f admits the following solution, corresponding to the residual
based sub-grid approach,

𝐮̃ = 𝜏𝑢[𝐒𝑇 (𝐂𝑑𝑒𝑣𝐞ℎ) +𝐆𝑝ℎ + 𝐟 ]
𝐞̃ = 𝜏𝑒[𝐖𝐮ℎ − 𝐞ℎ]

𝑝̃ = 𝜏𝑝[𝐆𝑇 𝐮ℎ −
𝑝ℎ
𝐶𝑣𝑜𝑙 ]

(A.3)

where the stabilization parameters 𝜏𝑢, 𝜏𝑒 and 𝜏𝑝 are chosen to obtain
optimum convergence rates upon mesh refinement [71,84] as:

𝜏𝑢 =
𝑐𝑢ℎ𝐿0
2𝐶̃𝑑𝑒𝑣

𝜏𝑒 = 𝑐𝑒
ℎ
𝐿0

𝜏𝑝 = 𝑐𝑝𝐶̃𝑣𝑜𝑙
ℎ
𝐿0

(A.4)

where 𝐿0 is a characteristic length of the problem, 𝑐𝑢, 𝑐𝑒 and 𝑐𝑝 are
arbitrary stabilization constants, ℎ is the FE size and 𝐶̃𝑑𝑒𝑣 is the secant
shear modulus defined as

𝐶̃𝑑𝑒𝑣 =
‖‖𝐬ℎ‖‖
2 ‖‖𝐞ℎ‖‖

(A.5)

and 𝐶̃𝑣𝑜𝑙 is the compressibility modulus obtained according to a Fourier
analysis in [84] and defined as:

𝐶̃𝑣𝑜𝑙 =
(
𝑐1
2𝐺̃

+
𝑐2
𝐾̃

)−1
(A.6)

where 𝐺̃ and 𝐾̃ are the effective secant shear modulus and effective bulk
modulus, respectively. Choosing the constants 𝑐1 = 1 and 𝑐2 = 2

3 , and
rewriting 𝐶̃𝑣𝑜𝑙 in terms of 𝐺̃ leads to

𝐶̃𝑣𝑜𝑙 = 2
3
𝐺̃
( 1 + 𝜈
1 − 𝜈

)
(A.7)
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Fig. 34. Singly perforated thin-walled cylinder: J2-strains (a)–(b) at the mid-simulation and (c)–(d) at the final time step.

Fig. 35. Singly perforated thin-walled cylinder: Principal stresses vectors (a)–(b) at the mid-simulation and (c)–(d) at the final time step.

Fig. 36. Singly perforated thin-walled cylinder: Temperature field in [◦C] computed
with both formulations at the time step 𝑡 = 750 [s].

Then 𝐮̃, 𝐞̃ and 𝑝̃ of Eq. (A.3) are introduced into the remaining equa-

tions (A.2)a, (A.2)b and (A.2)c to stabilize the discrete FE problem. Note

that the stabilization terms in Eq. (A.3) tend to zero upon convergence

as they correspond to the residual of the strong form of the problem.

With some manipulation, the stabilized weak form of the problem

results in:

(1 − 𝜏𝑒) ∫𝛺[𝐒𝛿𝐮ℎ]𝑇 (𝐂𝑑𝑒𝑣𝐞ℎ)𝑑𝛺 + 𝜏𝑒 ∫𝛺[𝐒𝛿𝐮ℎ]𝑇 (𝐂𝑑𝑒𝑣𝐒𝐮ℎ)𝑑𝛺
+ (1 − 𝜏𝑝

𝐶𝑣𝑜𝑙 ) ∫𝛺[𝐒𝛿𝐮ℎ]𝑇 (𝑝ℎ𝐈)𝑑𝛺
+ 𝜏𝑝 ∫𝛺[𝐒𝛿𝐮ℎ]𝑇 (𝐆𝑇 𝐮ℎ𝐈)𝑑𝛺 = 𝑊 (𝛿𝐮ℎ)

∀𝛿𝐮ℎ

(1 − 𝜏𝑒) ∫𝛺 𝛿𝐞𝑇ℎ [𝐂𝑑𝑒𝑣𝐒𝐮ℎ]𝑑𝛺
− 𝜏𝑢 ∫𝛺(𝛿𝐞𝑇ℎ𝐒𝐂𝑑𝑒𝑣)(𝐂𝑑𝑒𝑣𝐒𝑇 𝐞ℎ)𝑑𝛺+

− 𝜏𝑢 ∫𝛺(𝛿𝐞𝑇ℎ𝐒)[𝐂𝑑𝑒𝑣𝐆𝑝ℎ]𝑑𝛺
− (1 − 𝜏𝑒) ∫𝛺 𝛿𝐞𝑇ℎ𝐂𝑑𝑒𝑣𝐞ℎ𝑑𝛺 = 𝟎

∀𝛿𝐞ℎ

(1 − 𝜏𝑝
𝐶𝑣𝑜𝑙 ) ∫𝛺 𝛿𝑝𝑇ℎ (𝐆𝑇 𝐮ℎ)𝑑𝛺 − 𝜏𝑢 ∫𝛺(𝛿𝑝𝑇ℎ𝐆𝑇 )(𝐂𝑑𝑒𝑣𝐒𝑇 𝐞ℎ)𝑑𝛺

− 𝜏𝑢 ∫𝛺(𝛿𝑝𝑇ℎ𝐆𝑇 )(𝐆𝑝ℎ)𝑑𝛺+

− (1 − 𝜏𝑝
𝐶𝑣𝑜𝑙 ) ∫𝛺 𝛿𝑝𝑇ℎ 𝑝ℎ

𝐶𝑣𝑜𝑙 𝑑𝛺 = 0

∀𝛿𝑝ℎ

(A.8)

where the divergence theorem has been applied to the second and third

terms of Eq. (A.8)b and (A.8)c. Note that in this process, the boundary

terms of the sub-grid scales are neglected with respect to the other

terms. In addition, the body forces, 𝐟 , are considered constant inside

each element.
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Next, the FE discrete form of the problem is obtained by substituting
𝐮ℎ, 𝐞ℎ and 𝑝ℎ (and 𝛿𝐮ℎ, 𝛿𝐞ℎ, 𝛿𝑝ℎ) by their FE discrete approximations:

(1 − 𝜏𝑒) ∫𝛺(𝛿𝐔𝑇 𝐍𝑇𝑢 𝐒
𝑇

⏟⏟⏟
=𝐁𝑇𝑢

)(𝐂𝑑𝑒𝑣𝐍𝑒𝐄)𝑑𝛺

+ 𝜏𝑒 ∫𝛺(𝛿𝐔𝑇 𝐍𝑇𝑢 𝐒
𝑇

⏟⏟⏟
=𝐁𝑇𝑢

)(𝐂𝑑𝑒𝑣 𝐒𝐍𝑢
⏟⏟⏟

=𝐁𝑢

𝐔)𝑑𝛺+

+ (1 − 𝜏𝑝
𝐶𝑣𝑜𝑙 ) ∫𝛺 𝛿𝐔𝑇𝐍𝑇𝑢 𝐆𝐍𝑝𝐏𝑑𝛺

+ 𝜏𝑝 ∫𝛺 𝛿𝐔𝑇𝐍𝑇𝑢 𝐒𝑇 𝐈
⏟⏟⏟

=𝐆

𝐆𝑇𝐍𝑢𝐔𝑑𝛺 = 𝑊̂ (𝛿𝐔)

∀𝛿𝐔

(1 − 𝜏𝑒) ∫𝛺 𝛿𝐄𝑇𝐍𝑇𝑒 [𝐂𝑑𝑒𝑣( 𝐒𝐍𝑢
⏟⏟⏟

=𝐁𝑢

𝐔)]𝑑𝛺

− 𝜏𝑢 ∫𝛺(𝛿𝐄𝑇𝐍𝑇𝑒 𝐒𝐂𝑑𝑒𝑣)(𝐂𝑑𝑒𝑣𝐒𝑇𝐍𝑒𝐄)𝑑𝛺
− 𝜏𝑢 ∫𝛺(𝛿𝐄𝑇𝐍𝑇𝑒 𝐒)[𝐂𝑑𝑒𝑣(𝐆𝐍𝑝𝐏)]𝑑𝛺
− (1 − 𝜏𝑒) ∫𝛺 𝛿𝐄𝑇𝐍𝑇𝑒 𝐂𝑑𝑒𝑣𝐍𝑒𝐄𝑑𝛺 = 𝟎

∀𝛿𝐄

(1 − 𝜏𝑝
𝐶𝑣𝑜𝑙 ) ∫𝛺 𝛿𝐏𝑇𝐍𝑇𝑝 (𝐆𝑇𝐍𝑢𝐔)𝑑𝛺

− 𝜏𝑢 ∫𝛺(𝛿𝐏𝑇𝐍𝑇𝑝𝐆𝑇 )(𝐂𝑑𝑒𝑣𝐒𝑇𝐍𝑒𝐄)𝑑𝛺+

− 𝜏𝑢 ∫𝛺(𝛿𝐏𝑇𝐍𝑇𝑝𝐆𝑇 )(𝐆𝐍𝑝𝐏)𝑑𝛺

− (1 − 𝜏𝑝
𝐶𝑣𝑜𝑙 ) ∫𝛺 𝛿𝐏𝑇𝐍𝑇𝑝 𝐍𝑝𝐏

𝐶𝑣𝑜𝑙 𝑑𝛺 = 0

∀𝛿𝐏

(A.9)

with

𝑊̂ (𝛿𝐔) = ∫𝛺 𝛿𝐔
𝑇𝐍𝑇𝑢 𝐟𝑑𝛺 + ∫𝛤𝑡 𝛿𝐔

𝑇𝐍𝑇𝑢 𝐭̄𝑑𝛤 (A.10)

Once again, the virtual displacement 𝛿𝐔, virtual deviatoric-strain
𝛿𝐄 and virtual pressure 𝛿𝐏 nodal vectors that appear in the system of
Eqs. (A.9) are arbitrary, leading to the stabilized system of Eqs. (43).
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Abstract
This work presents an h-adaptive finite-element (FE) strategy to address the numerical simulation of additive manufacturing 
(AM) of large-scale parts. The wire-arc additive manufacturing is chosen as the demonstrative technology for its manufactur-
ing capabilities suitable for industrial purposes. The scanning path and processing parameters of the simulation are provided 
via a RS-274 (GCode) file, being the same as the one delivered to the AM machine. The approach is suitable for industrial 
applications and can be applied to other AM processes. To identify the location in the FE mesh of the heat affected zone 
(HAZ), a collision detection algorithm based on the separating axis theorem is used. The mesh is continuously adapted to 
guarantee the necessary mesh resolution to capture the phenomena inside and outside the HAZ. To do so, a multi-criteria 
adaptive mesh refinement and coarsening (AMR) strategy is used. The AMR includes a geometrical criterion to guarantee 
the FE size within the HAZ, and a Zienkiewicz–Zhu-based a-posteriori error estimator to guarantee the solution accuracy 
elsewhere. Thus, the number of active FEs is controlled and mesh manipulation by the end-user is avoided. Numerical simu-
lations comparing the h-adaptive strategy with the (reference) fixed fine meshes are performed to prove the computational 
cost efficiency and the solution accuracy.

Keywords  Finite elements · Multi-criteria adaptive mesh refinement · Additive manufacturing · GCode-based simulation · 
Hierarchical octree-based meshes

1  Introduction

Meeting the demands of new design strategies in terms of 
optimality and functionality of many industrially relevant 
settings involves the use of suitable additive manufacturing 
(AM) techniques. When complex geometries are generated 
via shape optimization analysis, or provided by a multi-scale 

analysis, where specific micro-scale is required to fulfill cer-
tain functionalities (e.g., weight reduction, thermal conduc-
tion or noise isolation) [30, 42, 51, 56], traditional manufac-
turing processes often fail to meet the design requirements. 
Therefore, the use of AM manufacturing techniques to fab-
ricate such geometries is preferred.

Powder-based AM technologies, as selective laser melt-
ing (SLM), electron beam melting (EBM) and selective 
laser sintering (SLS), produce very thin layers, ranging 
from 25 to 100 ( μm), while wire feeding technologies, for 
instance Wire-Arc additive manufacturing (WAAM), and 
direct energy deposition (DED) technologies, such as laser 
engineered net shaping (LENS) and electron beam freeform 
fabrication (EBF3 ), provide layer thickness in the range 
of 1000–5000 ( μm). Although the former produce a final 
product of higher quality [6], they are limited by the actual 
dimension of the AM chamber. Therefore, WAAM or DED 
technologies are suitable when dealing with large-size com-
ponents (where the height can range from tens of centimeters 
to meters) due their capacity to print thicker layers.
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Together with the evolution of AM techniques, appro-
priate CAD tools have been developed to bridge the gap 
between designers and the manufacturing process, playing 
a crucial role in the design to production pipeline. Once the 
computer aided design (CAD) geometry has been prepared, 
the resulting STereoLithography (STL) mesh is sliced to 
produce the scanning sequence for each layer [52, 53]. Two 
formats are commonly used: the common layer interface 
(CLI) [18] and the RS-274 (GCode). CLI contains only 
the geometry of the scanning path, while the GCode also 
includes a series of machine tools commands.

Nowadays, the calibration of the AM process parame-
ters is a trial and error process, and experiments are costly. 
Therefore, a major effort is being put into the development 
of efficient and accurate finite-element (FE) frameworks 
for the simulation of AM processes. In addition, from the 
numerical point of view, complex geometries require several 
hundreds of scanning tracks to conform the geometry to be 
read from the CLI/GCode files. As a consequence, a large 
number of FEs need to be used to describe the computa-
tional domain, resulting in a high computational cost [39]. 
The part-scale meshing step is challenging when complex 
geometries are involved. Standard solutions adopt an initial 
FE mesh to accurately describe the geometry resulting in 
huge FE meshes and large pre-process data files.

Because of this, computational models have been 
restricted to validation, using simple geometries (e.g., thin-
walled structures, cuboids, beams, bridges) with a reduced 
mesh size [15, 29, 35, 50]. However, to assess the quality 
and performance of the printed part, high-fidelity (HF) simu-
lations are mandatory to optimize the process parameters. 
For instance, the accurate prediction of the thermal history 
is necessary to analyze the metallurgical evolution at the 
micro-scale [31, 32, 38]. In this context, the sizes of the FEs 
and the laser-spot must be comparable [19]; for industrial-
sized components, this specification implies a dense FE 
mesh at the heat affected zone (HAZ).

From the computational point of view, problems involv-
ing growing domains require a strict control on the evolution 
of the active FEs and the proper load balancing among pro-
cessors is crucial. Recently, a scanwise refinement scheme 
based on the laser position with a fix refinement distance 
ahead and behind from the HAZ has been proposed by [46, 
47] to reduce the computational cost. This approach pro-
poses a refined volume exclusively based on the geometrical 
entities.

Alternatively, a multi-scale approach is performed by 
[28] using dynamic adaptive mesh refinement and coarsen-
ing (AMR) technique to reduce the computational cost. The 
simulation is split into the part-scale and the small-scale 
models. In the part-scale model, pre-activation adaptivity 
is applied to coarsen the FEs inside the current layer group 

prior to their activation, but it requires an initial fine mesh to 
describe the geometry. A multi-level method using hp-AMR 
combined with the finite cell method have been applied by 
[48] demanding more costly FE approximations.

Other more elaborated approaches use unfitted boundary 
strategies to properly describe complex geometries, some 
of them exhibiting the well known small-cut cell problem 
that yields ill-conditioned systems [7, 9, 13, 14, 43, 45, 48]. 
In addition, integrating cut FEs may require extra computa-
tional cost, stability issues and is not easy to implement [4, 
10, 20, 41]. This motivated the shifted-boundary method 
(SBM) and shifted-interface method (SIM), both substitute 
the initial domain by a surrogate domain, where the Dirichlet 
boundary conditions are replaced by equivalent Neumann 
boundary conditions in a surrogate domain. The challenges 
in the former approach are the computation and stability of 
the Neumann conditions for the surrogate domain and also 
the presence of edges and corners might induce numerical 
instability and requires a mapping strategy [5, 41]. The lat-
ter approach makes use of the ideas of SBM, but requires 
the use of mixed formulations to deal with the jumps in the 
primal variable and its fluxes [34].

A scalable parallel AM framework is provided in [44] 
using a geometry criterion based on the Separating Axis 
Theorem (SAT). The criterion adopted transforms the HAZ 
into a cuboid and apply the SAT to check if the FEs intersect 
or not the HAZ [24, 27]. All the FEs intersecting the HAZ 
cuboid are refined and the accuracy elsewhere is achieved 
by the imposition of the 2:1 ratio, i.e., both coarse and fine 
FEs must fullfil the following relation: hc = 2 × hf , where 
hc and hf denote the representative sizes for the coarse and 
fine FEs, respectively.

To sum-up the main difficulties encountered in the men-
tioned approaches for simulating the AM process for com-
plex geometries are: (1) the usage of fixed fine meshes is 
unfeasible to simulate industrial-scale components; (2) some 
AMR strategies are purely based on geometric parameters 
without including an error-estimator based on the accuracy 
of the temperature of the problem; (3) the necessity of using 
fine meshes to accurately reproduce the boundaries of the 
domain; (4) the use of complex and costly techniques to 
integrate cut FEs in embedded approaches; and (5) the impo-
sition of a 2:1 balance scheme is not optimal to keep the 
number of FEs controlled.

To overcome such difficulties, the AM pipeline for simu-
lating large scale industrial components presented in this 
article includes the following features: 

(a)	 The geometry is defined by using CLI/GCode formats, 
both widely used in industrial applications. The geom-
etry information is described by a sequence of straight 
lines, namely, hatches. The laser path describing the 
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geometry is the common link between the two formats. 
The GCode offers additional features for each hatch, 
such as laser speed, power source and cooling pauses. 
This enhances the flexibility of the simulation, allowing 
to modify the process parameters (i.e., scanning speed, 
power input, feeding rate, waiting time) as delivered to 
the AM machine.

(b)	 The AMR strategy allows to keep the number of FEs 
under control throughout the simulation while having 
a very fine mesh resolution at the HAZ. Simultane-
ously, the SAT [24, 27, 44] is performed to find the 
intersection of the HAZ with a background mesh, and 
refine the intersecting FEs until the desired refinement 
level has been reached. In addition, to guarantee the 
proper use of resources, the proposed strategy periodi-
cally performs a load re-balancing process to provide 
a similar amount of FEs per process in parallel com-
puting.

(c)	 The solution accuracy is guaranteed by an a-poste-
riori error estimator criterion, on the current state of 
variables along the simulation. Based on a Based on 
a Zienkiewicz–Zhu (ZZ) error estimator, the tempera-
ture gradient at the super-convergent points of the FE 
is computed and projected back to the nodes, where the 
nodal error must be evaluated by the L2 projection (see. 
e. g [57–59]).

The objective of this paper is to present a robust parallel 
h-adaptive FE framework applied to the thermal analysis of 
AM processes.

The outline of this paper is as follows. Section 2 intro-
duces the external heat source and the boundary conditions 
for the WAAM thermal model. Section 3 describes the spa-
tial and time discretizations. In Sect. 4, the main ingredients 
of the AM pipeline are described. Section 4.1 describes the 
GCode input-data format. In Sect. 4.2, some aspects about 
the AMR strategy are detailed. In Sect. 4.3, all the criteria 
used to generate the coarsening and refinement flags to adapt 
the mesh are described. Section 5 provides a set of numerical 
examples comparing the multi-criteria AMR, the layer-wise 
AMR and the uniform fixed fine meshes. Finally, in Sect. 6, 
some relevant conclusions are presented.

2 � The thermal model

2.1 � The continuum problem: strong and weak forms

Let Ω be a growing open bounded domain in ℝ3 with the 
boundary Γ . The strong form of the balance of energy equa-
tion is given by

where Ḣ , ṙ and q are the rate of enthalpy, rate of heat source 
and the heat-flux per unit volume, respectively. The heat 
flux, q , is defined through Fourier’s law as

where T is the temperature field and k is the (temperature 
dependent) thermal-conductivity.

The phase-change process is generally much faster than 
the thermal diffusion due to the concentrated laser beam at 
the HAZ, being its global influence negligible [18], because 
melting and solidification occur within the same time inter-
val. Thus, the enthalpy rate can be simply written as

where C is the (temperature dependent) heat capacity. Intro-
ducing Eqs. (2, 3) in Eq. (1), yields

After applying the divergence theorem to the second term 
and introducing the test functions �� , compatible with the 
Dirichlet boundary conditions, the weak form of Eq. (4) is 
given by

The first integral of the right-hand side of Eq. (5) is the 
external work of the thermal loads and the second integral is 
related to the heat losses. Thus, qcond is the heat loss because 
of the heat conduction between the substrate and the printed 
component, qrad is the radiation flux through the environ-
ment, and qconv is the equivalent heat flux by convection 
[18, 36].

The solution to the AM thermal problem consists in find-
ing T(t) ∈ H1(�(t)) in (ti, tf ] , that satisfies Eq. (5) subjected 
to the initial conditions T(x, ti) = T0(x) , where ti and tf are 
the initial and final time of the AM process, and the follow-
ing appropriate boundary conditions.

2.2 � The external heat source

In the context of AM simulations, the external heat source is 
generated by the power input (e.g., electric arc, laser beam 
or electron beam) while following the pre-defined scanning 
path. To properly track the heat source during the material 
deposition process, two methodologies are widely used. The 
first one represents the power input as a Gaussian/double-
ellipsoid density distribution [17, 26, 28, 49], while the 

(1)Ḣ = −∇ ⋅ q + ṙ,

(2)q = −k∇T ,

(3)Ḣ = CṪ ,

(4)CṪ − ∇ ⋅ (k∇T) = ṙ inΩ,

(5)
∫
𝛺

[(CṪ)𝛿𝜂]d𝛺 + ∫
𝛺

[k∇T ⋅ ∇𝛿𝜂]d𝛺

= ∫
𝛺

[ṙ𝛿𝜂]d𝛺 − ∫Γ

[(qcond + qrad + qconv)𝛿𝜂]dΓ,
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second one consider an average value of the power uniformly 
distributed in the HAZ [33, 37, 40]. In what follows, we will 
consider the latter approach suitable for part-scale analyses 
and validated with several numerical and experimental tests 
[18, 19]. Figure 1 shows the power distribution as a function 
of the length-scale, Δl1 , for the double-ellipsoid distribution, 
and Δl2 , for the average distribution, where vscan is the laser 
scanning speed, Δt1 and Δt2 are the time increment for the 
double-ellipsoid and average approaches, respectively, and 
d0 the spot size.

2.3 � Boundary conditions

The boundary of the domain, Γ , is subjected to the following 
two heat loss mechanisms: (1) heat transfer by conduction at 
the contact surface between the substrate and the component 
and (2) heat transfer by radiation and convection through 
the surfaces in contact with the environment. Therefore, the 
boundary Γ is split into two regions, namely: the substrate-
component boundary, Γs , and the environment boundary, Γe.

The temperature Ts is the temperature at the interface 
between substrate and component on Γs , thus

Heat conduction: The heat loss by conduction between 
the substrate and component is given by Newton’s law [23] 
as

where hcond is the HTC by conduction.
Environment heat loss: The heat loss through the environ-

ment is a combination of both convection and radiation heat 
transfer, expressed by Newton’s law as

(6)T ∣Γs
= Ts,

(7)qcond = hcond(T − Ts), on Γs,

where hconv and hrad are the HTCs associated to the con-
vection and radiation, respectively, and Te is the environ-
ment temperature. The HTC for the radiation [19] can be 
expressed as

where � is the Stefan–Boltzmann constant and � is the emis-
sivity parameter of the radiating surface.

3 � The discrete problem

AM processes involve growing-in-time domains. As a con-
sequence, an initial discrete domain, referred to as Ω(t0) , 
is taken as point of departure to be continuously adapted 
along the simulation. This initial discrete domain depends 
on many factors, among them, the AM technology and the 
chamber, where the piece is printed, specific for every print-
ing machine. We consider this initial discrete domain Ω(t0) 
containing the bounding box of the component (domain 
where the piece is printed), including the substrate domain, 
where the piece is supported during the printing process, 
see Fig. 2. This split allows to handle complex mesh pat-
terns generated by the AMR process in the component part, 
while no adaptivity processes in the substrate domain are 
performed along the simulation.

To obtain the required mesh density at the HAZ, the ini-
tial mesh is subjected to several AMR cycles according to 
geometrical criteria. Essentially, the initial bounding box is 
adapted to obtain a proper discretization to capture the tem-
perature dissipation in the melt-pool, see Sect. 4.3.1. Once 
the mesh has been generated, the FEs are progressively acti-
vated following the laser path, as explained later in Sect. 4.1.

(8)qconv = hconv(T − Te), on Γe,

(9)qrad = hrad(T − Te), on Γe,

(10)hrad = ��(T3 + T2Te + TT2
e
+ T3

e
),

Fig. 1   Power distributions and their corresponding HAZ

Fig. 2   In blue, the bounding box level zero FE for the component part 
and, in yellow, the level zero FE for the substrate part (Color figure 
online)
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3.1 � Spatial discretization

Consider the AM process defined in the time interval 
(0,  T], divided into N time steps with t ∈ (0, T] . For a 
given time step, where the increment of time is defined as 
( Δt = tn+1 − tn ), the laser beam activates a set of FEs as 
determined by the scanning path.

Thus, at time step tn+1 the domain is decomposed into 
its active and inactive parts. The active part is defined as a 
FE partition Ωact ⊆ (Ωn+1

a
∪ Ωn

a
) , where Ωn+1

a
 and Ωn

a
 , are the 

sets of activated FEs at tn+1 and tn , respectively. The inactive 
domain is defined as Ωina ⊆ (Ωn+1

i
∪ Ω̂n+1

i
) , where Ωn+1

i
 is the 

domain of inactive FEs and Ω̂n+1
i

 the domain of inactive FEs 
that share nodes with Ωact . Figure 3 shows an example of this 
classification of FEs at time tn+1 , for a given scanning path 
in an arbitrary layer.

The domain Ωact is built as the union of FEs intersected 
by the scanning path. To determine how the domain Ωact 
evolves along the simulation, the path-length increment 
per time-step, Δl , is user-defined as an input argument. The 
strategy will activate all the FEs intersected by the laser 
path, until the increment of laser path reaches the value Δl , 
see Fig. 4a. Vertical movements are considered when the 
laser changes its position from one layer to the next one.

Similar to the classification of FEs, the nodes are also 
classified according to their status (active/inactive) and 
their geometric position in the component part. An active 
node belongs to the component and it is located either at 
the surface or in the interior of the component. Nodes are 
classified in the following three sets: (1) �skin contains all 
nodes belonging to the surface of the active portion of the 
component (i.e., they belong simultaneously to Ωact and 
Ω̂n+1

i
 ), (2) �int is the set of active nodes in the interior of the 

component (i. e. they belong to Ωact ), (3) �ina is the set of 

nodes belonging to inactive FEs ( Ωn+1
i

 ). Figure 4b shows an 
example of all sets.

The volume activated between the initial and final posi-
tion during the time-step, Δt = tn+1 − tn , defines the HAZ as

where Vn+1
HAZ

 , V (e) and ne are the discrete volume of the HAZ, 
the volume of each FE and number of activated FEs inside 
the HAZ, respectively. The average heat density distribution 
per unit of volume is computed as

where � denotes the efficiency of the heat absorption and W 
the total power input.

3.2 � Time integration

The implicit backward Euler method is used to advance in 
time [1, 2, 16, 22]. The time-increment is set automatically 
according to the metal deposition speed, vdep , and the re-
coating speed, vrec , which may vary from hatch to hatch. 
The deposition speed determines the time-increment when 
the laser is on ( Δton ), while the re-coating speed allows the 
computation of the time-increment for the laser to be re-
positioned for the next hatch, allowing previous printed 
hatches to experience cooling effects, while the laser is off 
( Δtoff ); for example, when a given layer is totally printed, 
and the laser beam is moved to the next one. In some cases, 

(11)Vn+1
HAZ

=

ne∑
e=1

V (e)|e �HAZ,

(12)ṙ =
𝜂W

Vn+1
HAZ

,

Fig. 3   FEs classification at tn+1 according to the scanning path activa-
tion

Fig. 4   a FEs activation process: green FEs are the elements activated 
in the previous time-steps. Purple FEs elements are activated within 
the current time-step; the volume of the purple domain corresponds 
to Vn+1

HAZ

 . b Classification of nodes (Color figure online)
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additional re-positioning tasks may be performed, and the 
re-positioning time must be accounted for.

For both laser status, the time-increment, for a constant 
(user-defined) Δl , is computed as

In some cases, the over-heating of the laser require pauses 
during the manufacturing process. When a given pause is 
scheduled, the time evolves within a number of time-steps 
defined by the user, npause . Then, the time-increment is com-
puted as

where no deposition occurs and the laser is set as off, allow-
ing the component to cool down.

4 � AM via hierarchical octree‑based adaptive 
meshes

In this section, a hierarchical octree-based adaptive FE mesh 
strategy for AM is described. Its objective is to ease the 
tasks performed by the user, avoiding cumbersome geometry 
manipulation, and providing a user-friendly environment to 

(13)Δton =
Δl

vdep
,

(14)Δtoff =
Δl

vrec
,

(15)Δtpause =
tpause

npause
,

tackle complex geometries. The approach enables to elimi-
nate both the user interaction and the need for initial fine 
meshes to describe complex geometries. As an example, 
Fig. 5a shows a section cut of a complex geometry embed-
ded in the initial bounding box and surrounded by inactive 
elements; Fig. 5b shows a top view of the component and 
the FEs mesh around it, Fig. 5c, d shows the evolution of the 
mesh following the HAZ for two different times.

The first step to start the AM simulation consists of com-
puting the maximum length increment per time-step, Δl , 
the minimum mesh size (the maximum level of refinement) 
to describe the HAZ and the maximum mesh size allowed 
(coarsest level) away from the HAZ. The path data and 
process parameters are read from the GCode. The number 
of steps of the simulation is computed dividing the total 
distance of the scanning path by Δl . This given, an initial 
uniform refinement (Cartesian Voxelization) is performed. 
Next, the thermal problem is solved and the error estimators 
based on the temperature field and the corresponding array 
of coarsening and refinement flags are also computed. Then, 
the AMR performs the mesh refinement and data transfer. 
Next, the FEs activation strategy generates the new compu-
tational domain for the next time step.

In large-scale simulations, the use of more than one CPU 
is required. In this context, once the variables of the prob-
lem have been projected to the new mesh and all nodes and 
related data are redistributed among tasks to balance the load 
per CPU and guarantee the proper memory usage. Algo-
rithm 1 presents the implementation aspects of the adaptive 
AM simulation pipeline. 

Algorithm 1: Time-stepping and FEs activation in parallel AMR simulation for AM processes.

1 Read input data and generate the initial background mesh (uniformly refined octree)
2 Compute array of time-steps based on the deposition ∆l defined by the user.
3 current time step← 1
4 Initialize welding path.
5 Activate the FEs for the first step with deposition.
6 while current time step≤ num time steps do
7 Solve thermal problem
8 Compute error estimators based on the temperature field.
9 Compute array of coarsening and refinement flags ft.

10 current time step← current time step+ 1
11 if current time step≤ num time steps then
12 Compute the array of coarsening and refinement flags based on the geometry of the welding path fg.
13 Generate the final array of coarsening and refinement flags f .

14 Adapt the background mesh Ωb
h.

15 Transfer variables to the new mesh.
16 Activation of FEs to build the updated domain.
17 Redistribute mesh and migrate variables among tasks.
18 Generate postprocess.
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In Sect. 4.1, some basic features of the input data con-
taining the scanning path geometry in GCode format are 
described. In Sect. 4.2, some aspects of the AMR techniques 
applied to hierarchical octree-based meshes are presented. 
Finally, in Sect. 4.3, the multi-criteria used to adapt the mesh 
size are outlined.

4.1 � Input data: the GCode format

GCode is a format broadly used in industrial machine tool-
ing. The advantage of using the GCode format relies on the 
fact that it can include additional data related to the process-
ing parameters, such as the power input, time pauses, depos-
iting and re-coating speeds, useful to inform the machine 
and the simulation too.

Fig. 5   Spatial discretization. a Section cut of the component embedded in the inactive domain. b Top view from the component and the sur-
rounding FEs mesh. c, d Evolution of the FEs mesh following the HAZ bounding box at two different times

Regarding the GCode commands: G1/G0 correspond to 
movement commands, where G0 is a fast straight movement 
(with no deposition), and G1 is a straight line movement 
with material feeding. Command E provides the informa-
tion of the deposition process, where the attached value 
corresponds to the material feeding; if this value is differ-
ent from zero, the laser is depositing new material in this 
segment, otherwise the laser is moving without deposition. 
Command F refers to the laser speed (in (mm/min)). The 
coordinates defined in a given command line corresponds 
to the final (x, y) coordinates of the hatch, while the initial 
coordinate of the hatch are defined in the previous com-
mand line. The power source can be changed along the AM 
process using the command G108 and introducing the P 
(power source) followed by S (of set) and the value of the 
new power source in [W]. In some cases, pauses are required 
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during the printing process. This time interval can be set 
by G4 followed by S and the value of the pause in [s]. In 
this format, the layer thickness is defined by the difference 
between two consecutive z-coordinates.

As an example, Fig. 6 shows a code snippet describing a 
laser beam path in GCode format, and Table 1 shows the list 
of representative properties stored by hatch.

Although the GCode format is most used due to its flex-
ibility, there are other formats also supported by the present 
framework. This is the case of the CLI format, which only 
provides the geometry of the scanning path; process param-
eters need to be input separately.

4.2 � Adaptive mesh coarsening and refinement

In this section, a brief description of the adaptivity strategy 
used is given; interested readers may find further details in 
reference [11].

The hierarchy of refinement levels is defined by an octree 
parental structure, where zero level FEs are parents to the 
one level (this way, one level FEs are children of the zero 
level FEs), and the one level FEs are parent to two level FEs. 
Figure 7 shows the hierarchical tree of parental relations of 
the FEs.

The refinement strategy produces a non-conforming 
mesh with hanging nodes. The treatment of hanging nodes 
adopted in this work is detailed in [12], and summarized 
herein; interested readers may find other hanging nodes 

treatment techniques in [8, 9, 21, 43, 54, 55]. The modified 
test/shape function is written as

where the modified parent test/shape function, �∗
p
 , is written 

in terms of the original (parents) shape/test function, �p , and 
the children shape/test function, �ci

 , according to the spatial 
location of the child, where xi is the ith hanging child posi-
tion, and nchild is the number of children FEs.

The straight-forward application of the parent/child hang-
ing node constraint may lead to scenarios, where a child 
node is active and contributes to an inactive parent, caus-
ing a singular system. To avoid this situation, the algorithm 
checks if the parent node is active or inactive. Figure 8 
shows the change on the hanging/parent nodes classifica-
tion in t = tn , Fig. 8a, and in t = tn+1 , Fig. 8b.

Let the zero level mesh (bounding box) be the initial 
mesh for the AMR strategy. The strategy requires an array 
of coarsening and refinement flags, � , to perform the adaptiv-
ity process according to an established criterion, this being 
performed in an iterative procedure until the mesh does not 
require further adaptivity or once the maximum number of 
adaptivity cycles is reached. The multi-criteria strategy to 
mark the FEs is described in Sect. 4.3.

When mesh refinement is required, an isotropic octree 
division of each parent FEs into two new FEs in each direc-
tion is performed. Thus, each FEs is divided into 8 new 
FEs in one cycle. Figure 9 shows an initial mesh (just one 

(16)�∗
p
(x) = �p(x) +

nchild∑

i=1

(�p(xi)�ci
(x)),

Fig. 6   Code snippet in GCode format containing an example of laser 
beam path

Table 1   List of the process parameters provided by the GCode

Code Command Units

G0/G1 Hatch movement mm
F Update speed mm/min
G4 Introduce time pause s
G108 Update laser power Watts
E Extruding material mm

Parent 

Child Child Child Child Child/

Parent

Child/

Parent

...Child
Child/

Parent

Child/

Parent

Child/

Parent

Child/

Parent
Child...

...
Child Child

...
Child Child

...
Child Child

...
Child Child

Fig. 7   FEs hierarchy following the color scheme in Fig. 9

Fig. 8   Nodal hanging/parent classification. a t = t
n . b t = t

n+1
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FEs, the bounding box corresponding to the component part) 
subjected to 4 adaptivity cycles. The figure at the right hand 
side denotes the color pattern of each refinement level after 
four AMR cycles.

4.3 � Multi‑criteria AMR

This AMR strategy is developed in such a way that different 
adaptivity criteria can be used in the same simulation. This 
design takes advantage of the Object-Oriented program-
ming, where a set of objects provide an array of coarsening 
and refinement flags, � , to be compared to obtain the most 
critical scenario.

The criteria used to adapt the mesh are described in the 
following. In Sect. 4.3.1, a geometrical criterion based on 
the intersection of the FEs mesh with the bounding box of 
the HAZ is presented. In Sect. 4.3.2, a criterion based on 
a-posteriori error estimators of the temperature is presented. 
Each criterion performs a search of FEs to mark them as: to 
refine (1), to do nothing (0) or to coarsen ( −1 ). The outcome 
of this process is an array that contains the coarsening and 
refinement flags for all FEs. This array is sent to the library 
in charge of performing the AMR process [11], where all 
related data structures are also updated.

For the temperature field, a point-to-point projection is 
used. This procedure is straightforward for nested octree-
based meshes; temperature at the hanging nodes is interpo-
lated from the corresponding parent elements.

4.3.1 � Geometry‑based adaptivity

The geometric criterion consists in a search algorithm, 
where an oriented reference volume intersects the FEs of 
the background mesh Ωb

h
 . The oriented volume (OV) is a 

fictitious prism, containing the HAZ at tn+1 , being immersed 
in Ωb

h
 . The dimensions of the prism are: the hatch length, the 

melt-pool width, bpool , and the HAZ height including the 

current layer thickness and the laser penetration (melt-pool 
depth), hpool.

The intersection between the OV and the FEs rely on 
the separating axis theorem/hyperplane separating theorem 
(SAT/HST) [24, 27, 44] which states that a pair of convex 
polytopes, formed by E edges and F faces each, intersect if 
they overlap at least in one of their projections onto their 
E2 + 2F planes. When both polytopes are box-shaped, i. e. 
they contain parallel faces and edges, the number of planes 
to be tested is considerably reduced. Thus, E = 3 and F = 3 , 
resulting in only 15 testing planes. In case of using tetrahe-
dra, the number of testing planes is increased to 44 ( E = 6 
and F = 4).

In practice, this test compares the projected distance of 
the pair of polytopes centers, s, with their projected half-
sides, rOV and rFE , onto the normal direction of the test plane, 
�tp . If s > rOV + rFE , the plane is a separating plane, hence 
the polytopes do not overlap. If the test finds a separating 
plane, no further checks are required, and both OV and FEs 
do not intersect; otherwise a new test plane should be veri-
fied. The method chooses as testing planes, 3 independent 
planes describing the OV, 3 independent planes describing 
the FEs of the Ωb

h
 , and the 9 cross-product between them. 

Figure 10 presents a visual description of this method.
If the OV and the FEs overlap, then the tested FEs belongs 

to Ωn+1
a

 , and is marked as to be refined ( fi = 1 ). If a separat-
ing axis is detected, and the tested FEs does not belong to 
Ω̂n+1

i
 , this FEs ∈ (Ωn

a
∪ Ωn+1

i
) is marked as to be coarsened 

( fi = −1 ), see Fig. 3. The case where the FEs ∈ Ω̂n+1
i

 , then it 
is marked as to do nothing ( fi = 0 ), to prevent it from being 

Level 0 

Level 1

Level 2

Level 3

Level 4

Refinement Levels:

After 4 adaptivity

cycles

Fig. 9   Illustration of the refinement levels after 4 adaptivity cycles

Fig. 10   Graphical interpretation of the SAT: in orange, the OV and 
in blue the target FEs taken from the background mesh. r

OV

 and r
FE

 
denote the projection of the half-sides of the FEs and the OV onto the 
testing plane normal vector, respectively. In addition, s denotes the 
projection of the distance between their geometrical centers
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coarsened; this preserves the geometry of the growing-in-
time domain.

The number of adaptivity cycles depends on the accuracy 
desired to represent the OV. The refinement level per FEs, 
referred to as Lev(FEs), is computed and compared with 
the minimum, �min , and maximum, �max , respectively. Then, 
the corresponding coarsening and refinement flag for the ith 
FEs, fi , is determined as follows

In consequence, the number of computations required is 
bounded by the difference between the maximum and mini-
mum refinement levels [44]. Figure 11 shows a 2D example, 
the OV inside Ωb

h
 and the final mesh using the SAT test after 

computing 5 adaptivity cycles with and without the 2:1 bal-
ance between FEs.

Alternatively, another geometry-based strategy is the 
layer-wise AMR, which consists of keeping refinement in 
the latest set of layers from the current deposition layer to a 
fix distance down in the building direction. Therefore, the 
finest mesh size is preserved for the latest layers to avoid 
continuous remeshing, thus minimizing the data transfer and 
CPU time.

Lev(FEs) < 𝛶min → fi = 1

FEs ∈ (Ωn
a
∪ Ωn+1

i
) ∧ Lev(FEs) > 𝛶min → fi = −1

FEs ∈ (Ωn+1
a

) ∧ Lev(FEs) < 𝛶max → fi = 1

FEs ∈ Ω̂n+1
i

→ fi = 0

4.3.2 � A‑posteriori error‑estimators adaptivity

To avoid that the coarsening process near the OV affects the 
accuracy of the solution, an a-posteriori error-estimator is 
used [57]. This section presents the gradient-based approach 
adopted in this work.

The discretization error, � , for a given discrete solution 
can be computed as

where ∇T  and ∇Th correspond to the temperature gradient 
obtained with analytical (exact) and the discrete FE solu-
tions, respectively. However, exact solutions are only known 
in very simple cases. Thus, Zienkiewicz et al. [58, 59] pre-
sent a methodology to obtain an accurate error-estimate 
when the exact solution is not available. The authors show 
that there exist a set of super-convergent points within the 
FE discretization, where the solution can be used as refer-
ence value when computing the error estimator. These values 
are a-posteriori computed at the FE super-convergent points 
and projected to the FE nodes. Thus, Eq. (17) is modified as

where 𝐞̄ is the discrete error estimator for the gradient of 
temperature, ∇T̄ is the gradient of the temperature computed 
at the super-convergent points, P(⋅) is a projection operator 
that projects ∇T̄  onto the nodes of the FE mesh, and ∇Th is 
the gradient of temperature computed with the FE solution. 

(17)� = ∇T − ∇Th,

(18)𝐞̄ = P(∇T̄) − ∇Th,

Fig. 11   a OV embedded into 
the initial domain; final mesh 
after 5 adaptivity cycles, b 
with 2:1 balance; c without 2:1 
balance
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As a matter of example, in the standard hexahedra tri-linear 
FE, the super-convergent point is the barycenter of the FE.

Finally, the L2-norm of the 𝐞̄ for the ith FE, �i , is computed 
and compared with the minimum and maximum admissible 
errors, as follows

5 � Numerical examples

In the examples presented in this section, the WAAM ther-
mal problem is simulated. Nevertheless, the multi-criteria 
approach is technology independent and can be adapted to 
other AM processes.

The objective of the presented numerical examples is to 
demonstrate the suitability of the multi-criteria approach to 
industrial part-scale simulations with regard to the compu-
tational cost-efficiency and accuracy. Figure 12 shows the 
temperature dependent properties of the Ti6Al4V titanium-
alloy used in all the numerical simulations.

The Cartesian adaptive FE meshes are obtained from 
an uniform Cartesian Voxelization of the initial Bounding 

�i < �min → fi = −1

�i ≥ �max → fi = 1

�min ≤ �i < �max → fi = 0

Box, which include the part geometry. The minimum and 
maximum �L2 threshold are 10−4 and 10−3 , respectively. The 
fixed fine FE meshes are obtained to match the FE size of 
the maximum refinement level of the adaptive mesh, which 
corresponds to the resolution inside the HAZ.

To assess the global error of the multi-criteria approach 
with respect to the fine mesh solution, a relative L2 error 
norm of the temperature field is computed at the end of the 
simulation as

where Pcoarse
h

(uf ine
h

) is the point to point projection of the 
reference (fixed fine mesh) solution onto the adaptive mesh 
and ucoarse

h
 is the solution obtained with the adaptive refined 

mesh.
The performance and numerical accuracy among the 

multi-criteria AMR and different mesh strategies are 
assessed and compared. Section 5.1 compares the multi-cri-
teria AMR with a reference fix fine mesh and the AMR using 
only the geometric criterion. In Sect. 5.2, the multi-criteria 
AMR is used and the results are compared with experimen-
tal data and with the layer-wise strategy. Finally, Sect. 5.3 
simulates a complex geometry modelled automatically from 
the GCode provided.

(19)e
L
2

=

√
∫ (

P
coarse
h

(uf ine
h

) − ucoarse
h

)
2

Ω
dΩ

∫ (
P
coarse
h

(uf ine
h

)
)
Ω
dΩ

,

Fig. 12   Temperature dependent properties for the Ti6Al4V. a Density; b heat capacity; c thermal conductivity
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The numerical simulations are carried out using the in-
house software FEMUSS (Finite-Element Method Using 
Sub-grid Scales) developed at the International Center for 
Numerical Methods in Engineering (CIMNE). All the com-
putations are performed in a distributed-memory environ-
ment using an Intel i7-10700 @2.9GHz with 16 CPU’s (8 
cores and 2 threads-per-core) and 32 GB RAM memory. The 
thermal-problem is solved using the bi-conjugated gradient 
solver together with the Additive Schwarz Method. The post-
processing is done using Paraview [3].

5.1 � Printing of a cube

In this section, the 3D printing of a cube of side 
a = 100 (mm) is simulated to study the accuracy and com-
putational efficiency of the proposed multi-criteria AMR. To 
compare the solution of the approach, the numerical results 
obtained with the fixed fine mesh are compared to the AMR 
using only the geometric criterion. The bottom corner of the 
cube is chosen to compare the local accuracy of the AMR 
strategies with respect to the fixed fine mesh.

The domain has been discretized into hexahedral FEs, 
a total of 7 uniform AMR cycles are performed to obtain a 
proper discretization to capture the phenomena in the HAZ 
(this discretization corresponds to 27 = 128 FEs per side). 
In this case, the FE representative size inside the HAZ is 
h = 0.78125 (mm). This mesh contains a total of 2,097,152 
hexahedral FEs.

Figure 13 shows the fixed fine mesh, and the AMR using 
the multi-criteria and the geometric criterion, respectively. 
The difference of both AMR solutions compared to the fixed 
fine mesh is remarkable; also, the influence of the a-posteri-
ori criterion can be appreciated when compared to the purely 
geometry-based AMR (see Fig. 15).

The convective flow inside the melt-pool is considered 
by increasing of the thermal conductivity above the melting 
temperature [25]. The heat loss by radiation and convection 
are considered at all external surfaces and the environment 

temperature is set to 20 ( ◦C). The radiation emissivity is 
� = 0.7 . The HTC for convection increases linearly from 
hconv(20

◦C) = 10 (W/(m2
⋅
◦C)) to hconv(1000 ◦C) = 100 (W/

(m2
⋅
◦C)).

The cube is built in a sequence of 16 layers, where the 
power source is W = 5 (kW) with a heat absorption effi-
ciency of � = 0.75 . The simulation accuracy depends on 
the melt-pool deposition process which is set to Δl = 12.5 
(mm), defining the length of the melt-pool, and its base and 
height bpool = hpool = 12.5 (mm). In this experiment, a con-
stant speed for both, deposition and re-coating is considered, 
vrec = vdep = 3600 (mm/min).

Figure 14 shows the evolution of the number of active 
FEs for the length-scale adopted in the simulation in total of 
2087 time-steps and the dashed lines are the average number 
of active FEs of the AMR simulations. Figure 14a shows 
the evolution of the three strategies; the difference in the 
final number of active FEs of the fixed fine mesh compared 
to the AMR strategies is remarkable. Figure 14b shows the 
initial 200 time-steps, where the number of active FEs of 
the fixed fine mesh develops at a much faster rate than the 
AMR strategies. Figure 14c shows that the AMR strategies 
increase the number of active FEs initially and stabilize 
around a much smaller value than the fixed fine mesh, keep-
ing the size of the problem controlled throughout the simu-
lation. The multi-criteria approach has an average number 
of active FEs of 10,500, almost twice the size of the purely 
geometric criterion (5400 average active FEs). This reduc-
tion represents 1.00% and 0.51% of the average total number 
of active FEs of the fixed fine mesh at the end of the simu-
lation for the multi-criteria AMR and the geometry-based 
AMR, respectively.

The real-time run for the fixed fine mesh case is 7 (h) 
24 (min). The computational time reduction for the multi-
criteria AMR and the purely geometric AMR are 88.57% 
and 91.21%, respectively. Table 2 shows the time spent by 
each module.

Fig. 13   Cube: final meshes. a Fixed mesh; b multi-criteria AMR; c geometric AMR criterion
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Fig. 14   Cube: a evolution of the 
number of active FEs per time 
step; b zoom on the evolution 
of active FEs for the initial 200 
time-steps; c detail of the evolu-
tion of active FEs for the AMR 
strategies
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Figure 15 shows the evolution of the temperature at the 
bottom corner of the cube to assess the local accuracy of 
both AMR strategies. In the case of the thermal problem, 
the accuracy is enhanced by the a-posteriori error estimate 
at a computational cost around 3% higher than the purely 
geometric AMR for this example.

Figure 16 shows the relative difference of the tempera-
ture field of the AMR strategies with respect to the fixed 
fine mesh at the end of the simulation. The local maximum 
relative differences observed are 2.47% and 21.33% for the 

multi-criteria AMR and the purely geometric AMR, respec-
tively. Applying Eq. (19), the global error computed for the 
multi-criteria AMR and the geometric-based AMR are 
0.81% and 6.71%, respectively.

5.2 � Printing of a thin‑wall

In the next example, the computational cost and accuracy of 
the multi-criteria AMR and the layer-wise AMR are com-
pared with the experimental data obtained from the printing 
of a thin-walled component using the WAAM process.

In the experimental setting, a thin wall is built upon the 
deposition of 18 layers of thickness t = 4.5 (mm). Figure 17 
shows the geometry of the thin wall and the substrate. The 
metal deposition goes from the initial to the final position 
with a constant speed of 100 (mm/min) and after concluding 
the current layer, the re-coating velocity is 514 (mm/min). 
In this experiment, two scenarios have been considered: a 
cooling interval between layers of (I) 5 min:21 s and (II) 10 
min:21 s (see Fig. 18).

Table 2   Details on the real-time consumption for each module

Module Fixed fine 
mesh (h:min)

Multi-criteria 
AMR (h:min)

Geometric-
criterion AMR 
(h:min)

Thermal 7:04 0:23 0:18
Meshing 0:00 0:16 0:13
Element 
activa-
tion

0:20 0:11 0:07

Fig. 15   Cube: temperature evo-
lution of the cube bottom corner

Fig. 16   Cube: relative percen-
tual difference of the tempera-
ture field of the a multi-criteria 
AMR and b geometric-based 
AMR, with respect to the fixed 
fine mesh
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The GCode provides a variable value for the power source 
for the first 3 layers and thereafter the power is kept con-
stant for the remaining 15 layers. Table 3 shows the power 
source, while the heat absorption efficiency is set to a value 
of � = 0.75.

The chamber temperature, measured in-situ, is 17 ( ◦ C) 
and a radiation emissivity of � = 0.7 is considered. The 
HTC for convection is taken as hconv = 10 (W/(m2

⋅
◦C)). To 

consider the contact of the bottom surface of the substrate 
with the stainless steel work-bench, the conduction HTC 
value is set to hcond = 100 (W/(m2

⋅
◦C)). The time-stepping 

is defined by a fix movement of the heat source of Δl = 10.0 
(mm), the melt-pool base, bpool = 20.0 (mm), and the height 
(layer thickness and HAZ penetration), hpool = 9.0 (mm).

The initial mesh consists of two bounding boxes: one to 
include the thin-wall and one for the substrate. The dimen-
sions of the initial bounding box for the thin-wall and for the 
substrate are 220 × 80 × 81 (mm3 ) and 220 × 80 × 20 (mm3 ), 
respectively. The maximum and minimum adaptivity level 
considered in this case is 8 and 4, respectively. In addition, 
an alternative AMR strategy is forced to keep the finest mesh 
throughout the last 3 layers, while the mesh below it is coars-
ened to the minimum refinement level chosen. Figure 19 

shows the initial mesh and the different adaptive meshes for 
each strategy at an intermediate time step.

The thermo-couples are positioned 5 (mm) from the thin-
wall deposition starting point, at the top of the currently 
deposited layer. The temperature is measured 21 (s) prior to 
the deposition of the next layer. Figure 20 shows the tem-
perature evolution of the two AMR strategies compared to 
the experimental data at the measurement points of each 
layer for the two idle time scenarios. The temperature evolu-
tion from the layer-wise AMR and the multi-criteria AMR 
show good agreement with the experimental results. The 
average errors associated to the 5 (min) and 10 (min) curves 
are 4.8% and 4.4%, respectively. The small width of the thin-
wall makes the positioning of the thermocouples difficult 
in the experimental setting. Regarding the 5 (min) test, the 
thermo-couple was misplaced in the initial three layers and 
the data is not available.

The real-time run for the layer-wise AMR case is 10 (h) 
34 (min), and the multi-criteria AMR yields a computational 
time reduction of 87.37%. The saving in time is a conse-
quence of the reduced number of FEs required by the multi-
criteria AMR strategy (see Fig. 21).

The peak value of active FEs on the initial steps of the 
simulation is due to the layer-wise strategy, refining the sub-
strate with a very dense FEs mesh. The peak number of 
active FEs is 8,804,331 for the layer-wise AMR and 526,541 
for the multi-criteria AMR. After the refinement height of 
the layer-wise strategy leaves the substrate (around time step 
200) the effect on the substrate is reduced and the number of 
active FEs remains almost constant. For the layer-wise strat-
egy, the average number of active FEs is 1,166,199, being 
highly influenced by the initial steps, whereas the multi-
criteria strategy average number is 90.81% lower, being 

Fig. 17   Thin-wall: geometry

Fig. 18   Thin-wall: laser path for a generic layer and the waiting time for the two scenarios

Table 3   Thin-wall: laser power 
per layer

Laser power (W)

Layer 1 P + 1045.6

Layer 2 P + 522.0

Layer 3 P + 196.8

Layer 4–18 P
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close to the time reduction in the simulation obtained by 
the multi-criteria.

The requirement of the layer-wise AMR strategy of hav-
ing 3 adapted layers below the current deposition height is 
far from optimal when the manufacturing process is capa-
ble of depositing thick layers of material, compromising the 
computational cost due to the large number of active FEs. 
Even when the refinement height is no longer affecting the 
substrate this strategy presents almost 5 times the number 
of active FEs compared to the ones obtained with the multi-
criteria approach. Another shortcoming of the layer-wise 
approach is that the mesh remains constant during pauses, 
whereas the multi-criteria AMR reduces the number of FEs 
based on the data provided by the cooling process, avoid-
ing excessive coarsening that may affect the accuracy of the 
model.

5.3 � Printing of an optimized door handle

In the next example, a complex geometry taking from a top-
ological optimization analysis, is analyzed using both the 
fixed fine mesh and the multi-criteria AMR.

Due to the complex geometry of the door handle, the 
structure walls are very thin and hollow, in consequence 
a balance between computational saving time using mesh 
coarsening techniques and a proper description of the shape 
must be guaranteed.

The goal of this example is to compare the performance 
of the fixed fine mesh and the multi-criteria AMR in a 
scenario, where the coarsening speed-up benefits are con-
strained by the complexity of the geometry.

The printed component geometry is obtained from the 
STereoLithography file and converted to a GCode file using 

Fig. 19   Thin-wall: a initial FE mesh; b multi-criteria AMR; c layer-wise AMR

Fig. 20   Thin-wall: comparison 
of the experimental results vs. 
numerical results of the AMR 
strategies
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the open-source software CURA. Hence, no user manipu-
lation is required and the mesh resolution depends on the 
maximum refinement level adopted for the geometric-based 
AMR criterion.

Figure 22 shows the door handle geometry and the points 
P1 and P2, of coordinates (37.73, 101.48, 2.99) (mm) and 

(120.0, 117.31, 52.02) (mm) are chosen to measure the tem-
perature evolution for both FE meshes.

The discrete domain is built departing from a bound-
ing box of dimensions 180 × 135 × 70 (mm3 ) being gen-
erated with the data provided by a GCode file. The mini-
mum and maximum refinement levels adopted are 4 and 

Fig. 21   Thin-wall: a evolution of the number of active FEs per time step; b detail from time-step 200 to the end of simulation for the 10 (min) 
waiting time case
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9, respectively. The fixed fine mesh model has a total of 
1,644,511 active FEs.

The environment temperature is 20 ( ◦ C) and a radiation 
emissivity of � = 0.7 is considered. The HTC by convec-
tion is fix to a constant value hconv = 10 (W/(m2

⋅
◦C)). In 

this case, we considered the laser movement defining the 
time-marching scheme is Δl = 800.0 (mm), the melt-pool 
base and height are bpool = 500.0 ( μ m) and hpool = 100.0 ( μ
m), respectively.

Figure 23 shows the evolution of the component build-
ing and the inactive background mesh required. Figure 24 
shows a cross section of the door handle for both FE mod-
els; note that the difference between the finest and the 
coarsest FEs in the multi-criteria AMR is of 2 refinement 
levels.

Figure 25 shows the evolution and the average num-
ber of the active FE. Ideally, the AMR strategy exhibits a 
fluctuation of the number of active FEs around a constant 
threshold, as observed in previous examples using simpler 
geometries. In this case, the complexity of the geometry of 
the hollowed thin-walled door-handle induces a geomet-
ric constraint to the coarsening technique inhibiting higher 
coarsening capabilities. For the fixed fine mesh, the aver-
age number of active FEs is 764,923, whereas the multi-
criteria strategy average is 57.89% lower (322,099 active 
FEs). The real-time run for the fixed fine mesh case is 14 
(h) 6 (min) obtaining a time reduction of 29.91% when the 
multi-criteria AMR is used.

Figure 26 shows the temperature evolution at points P1 
and P2, showing the agreement between the two strategies. 
Figure 27 graphically shows the relative percentual differ-
ence of the temperature field of the multi-criteria AMR 

Fig. 22   Door handle: a geometry; b position of the points P1 and P2

Fig. 23   Evolution of the background FE mesh during the building process
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strategy with respect to the fixed fine mesh at the end of the 
simulation, where the maximum relative difference observed 
is 1.81%. The global error obtained by applying Eq. (19) 
is 0.28%. The strategy produces very accurate results at a 

fraction of the computational cost, even when coarsening is 
restricted by geometric constraints due to the complexity of 
the component.

Fig. 24   Door handle: a position 
of the section cut; b fixed fine 
mesh; c multi-criteria AMR 
mesh

Fig. 25   Door handle: evolution of the number of active FEs per time step
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6 � Conclusions

In this work, a robust parallel h-adaptive framework to simu-
late AM processes focusing on industrial part-scale simu-
lation is presented. The motivation arises from the neces-
sity of the industry to take advantage of the capabilities of 
AM simulation to produce complex optimized solutions to 
enhance the performance of industrial components. In this 
sense, the use of the GCode file to define the geometry of the 

components is crucial, because it is a flexible format, where 
the process parameters may be introduced and changed 
throughout the simulation. The use of the GCode removes 
both CAD cleaning and meshing operations, very challeng-
ing when dealing with complex geometries. Therefore, the 
proposed strategy allows for a user-friendly environment for 
industrial part-scale analyses.

The scalability of the industrial use of AM processes 
depends on the reduction of the printing time for large-scale 

Fig. 26   Door handle: temperature curves evolution of points a P1 and b P2 for both models
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components. The success on the numerical simulation 
depends on its capability to reduce the overall simulation 
time without loss of accuracy. For this reason, the multi-
criteria approach has a geometrical-based criterion to iden-
tify the current position of the laser, creating a maximum 
refined area at the vicinity of the HAZ by means of the 
separating-axis theorem. All FEs belonging to the HAZ are 
activated on the current time-step and the geometric resolu-
tion depends on the user-defined maximum level of refine-
ment. The boundaries of the domain are represented by a 
fitted FE mesh, which does not require cut FE integration 
schemes. The accuracy is assured by the a-posteriori error 
estimate based on the temperature gradients, avoiding the 
imposition of a 2:1 balance scheme.

The numerical examples show compelling results in 
terms of computational cost reduction and accuracy com-
pared to alternative approaches to simulate AM processes. 
The multi-criteria approach is easy to implement and can be 
applied to several others AM processes.

The AMR strategy presented herein is now being devel-
oped into a thermo-mechanical setting. To make it applica-
ble for industrial needs, a ROM of the thermo-mechanical 
problem may be incorporated to speed-up the computational 
model.
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