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Abstract

The vertical transport of particles plays a key role in the major mechanisms driving bio-
geophysical cycles in the ocean and contributes to the distribution of pollulants and its
accumulation on the ocean bottom. Most of theoretical models analyzing the global patterns
of ocean circulation are restricted to surface waters. While available data from satellite al-
timetry and sediment traps are scarce below surface waters, Lagrangian particle tracking over
the three-dimensional space may cover some gaps in our knowledge and better address future
experimental research. The aim of this thesis is to analyze the vertical transport of particles
in the ocean with tools of Statistical Physics and Dynamical Systems, and by providing a
theoretical characterization of transport for particles that are inmersed in a three-dimensional

fluid and travel in a preferential direction of motion.

We start analyzing the vertical dispersion and distribution properties of idealized sinking
microplastics in the Mediterranean sea. As a first step, we determine the dynamics describing
the motion of typical microplastics and evaluate the importance of physical effects such as
inertia, Coriolis force, small-scale turbulence and variable seawater density. As a second step,
we apply the dynamical equations of motion to negatively buoyant rigid microplastics that

sink from the sea surface and calculate their amount and distribution along the water column.

Next, we develop a general formalism to study transport structures of particles that
move in a preferential direction. The three-dimensional structures of transport given by the
so-called Lagrangian Coherent Structures are commonly analyzed from cross-sections as
they intersect at specific layers. However, few measurements have been developed char-
acterizing the Lagrangian motion of particles depending on spatial distances instead of
time. To aim at this, we characterize the Lagrangian transport of sinking particles traveling
between horizontal layers located at different depths of the flow domain. Consequently,
the derived formalism is applied to particles that are released from one layer and reach a
second one due to their sinking motion. We define a two-layer map describing the trans-
port of particles between layers, and apply concepts from dynamical systems and network

theory to analyze the structures behind the two-layer map. We define a novel measure, the



vii

Finite Depth Lyapunov Exponent, which quantifies the horizontal dispersion of particles
when traveling between two layers. This geometrical description is heuristically related to
network measures, such as degrees and entropies associated to the two-layer map. Numerical
results are obtained by using an analytic three-dimesional flow with chaotic behaviour: a

modified version of the ABC flow, imposing fluid particles to travel in a preferential direction.

Finally, we apply the transport characterization between layers to sinking particles that
are released from the ocean surface in the Canary Islands basin. Horizontal dispersion and
connectivity between layers are analyzed from quantifiers previously developed. We also
compare and analyze global properties when varying the settling velocity and the depth of the
bottom layer. Furthermore, both layers are partitioned into almost isolated regions identified
from a community detection algorithm. The resulting subdomains are characterized by low

interconnectivity between them and high internal mixing.



Resumen

El transporte vertical de particulas desempefia un papel fundamental en los principales
mecanismos que impulsan los ciclos biogeofisicos en el océano y contribuye a la distribucion
de contaminantes y a su acumulacion en el fondo ocednico. La mayoria de los modelos
tedricos que analizan los patrones globales de la circulacion ocednica se limitan a las aguas
superficiales. Mientras los datos disponibles procedentes de la altimetria por satélite y de
las trampas de sedimentos son escasos por debajo de las aguas superficiales, el estudio la-
grangiano de particulas en el espacio tridimensional puede aumentar nuestro conocimiento y
abordar mejor la investigacion experimental. El objetivo de esta tesis es analizar el transporte
vertical de particulas en el océano a partir de herramientas de fisica estadistica y sistemas
dindmicos, y proporcionando una caracterizacion tedrica del transporte para particulas que

estan inmersas en un fluido tridimensional y viajan en una direccién preferente.

En primer lugar, analizamos las propiedades de dispersion y distribucidn vertical de
micropldsticos idealizados que se hunden en el mar Mediterrdneo. Como primer paso, deter-
minamos la dindmica que describe el movimiento de los micropldsticos tipicos y evaluamos
la importancia de efectos fisicos como la inercia, la fuerza de Coriolis, la turbulencia a
pequeiia escala y la densidad variable del agua de mar. Como segundo paso, aplicamos
las ecuaciones dindmicas de movimiento a microplasticos rigidos que se hunden desde la
superficie del mar y calculamos la cantidad y distribucién de las particulas a lo largo de la

columna de agua.

En segundo lugar, desarrollamos un formalismo general para el estudio de las estructuras
de transporte de las particulas que se mueven en una direccion preferente. Las estructuras
tridimensionales de transporte dadas por las llamadas Estructuras Coherentes Lagrangianas
caracterizan la estructura del movimiento que tiene lugar en un momento dado y son comtn-
mente analizadas a partir de cortes bidimensionales donde intersectan. Sin embargo, se han
desarrollado pocas medidas que caractericen el movimiento lagrangiano de las particulas en
funcién de distancias espaciales en lugar del tiempo. En esta direccidn, caracterizamos el

transporte lagrangiano de particulas que se hunden y viajan entre capas horizontales situadas



a diferentes profundidades del dominio del flujo. En consecuencia, el formalismo derivado
es aplicado especificamente a particulas que se mueven desde una capa y alcanzan una
segunda a lo largo de sus trayectorias debido a su movimiento de hundimiento. Definimos
un mapa de dos capas que describe el transporte lagrangiano de particulas entre capas, y
aplicamos conceptos de teoria de sistemas dindmicos y de redes para analizar las estructuras
de transporte que hay detrds del mapa de dos capas. Definimos una medida novedosa, el
Exponente de Lyapunov de Profundidad Finita, que cuantifica la dispersion horizontal de
las particulas cuando viajan entre ambas capas. Ademds, esta descripcidon geométrica se
relaciona heuristicamente con medidas de red, como grados y entropias, asociadas al mapa de
dos capas. Los resultados numéricos se ilustran utilizando un flujo analitico tridimensional
con comportamiento cadtico: una version modificada del flujo ABC, que impone a las

particulas viajar en una direccion preferente.

Finalmente, aplicamos la caracterizacion del transporte entre capas a las particulas que se
hunden tras liberarse desde la superficie del océano en la cuenca de las Islas Canarias. La
dispersion horizontal y la conectividad entre capas se analizan a partir de los cuantificadores
desarrollados previamente. También comparamos y analizamos las propiedades globales
de la dindmica de las particulas al variar la velocidad de sedimentacion y la profundidad de
la capa de fondo. Ademads, ambas capas se dividen en regiones casi aisladas identificadas
a partir de un algoritmo de detecciéon de comunidades. Los subdominios resultantes se

caracterizan por una baja interconectividad entre ellos y una elevada mezcla interna.



Resum

El transport vertical de particules exerceix un paper fonamental en els principals mecanismes
que impulsen els cicles biogeofisics en I’ocea i contribueix a la distribucié de contaminants i
a la seva acumulaci6 en el fons oceanic. La majoria dels models teorics que analitzen els
patrons globals de la circulacié oceanica es limiten a les aigiies superficials. Mentre les dades
disponibles procedents de 1’altimetria per satel-lit i de les trampes de sediments s6n escassos
per sota de les aigiies superficials, 1’estudi lagrangia de particules en 1’espai tridimensional
pot augmentar el nostre coneixement i abordar millor la recerca experimental. L’ objectiu
d’aquesta tesi €s analitzar el transport vertical de particules en 1’ocea a partir d’eines de fisica
estadistica i sistemes dinamics, i proporcionant una caracteritzacid teorica del transport per a

particules que estan immerses en un fluid tridimensional i viatgen en una direcci6 preferent.

En primer lloc, analitzem les propietats de dispersi6 i distribuci6 vertical de microplastics
idealitzats que s’enfonsen en el mar Mediterrani. Com a primer pas, determinem la dinamica
que descriu el moviment dels microplastics tipics i avaluem la importancia d’efectes fisics
com la inercia, la for¢ca de Coriolis, la turbuléncia a petita escala i la densitat variable de
I’aigua de mar. Com a segon pas, apliquem les equacions dinamiques de moviment a mi-
croplastics rigids que s’enfonsen des de la superficie de la mar i calculem la quantitat 1

distribucié de les particules al llarg de la columna d’aigua.

En segon lloc, desenvolupem un formalisme general per a I’estudi de les estructures de
transport de les particules que es mouen en una direccié preferent. Les estructures tridi-
mensionals de transport donades per les anomenades Estructures Coherents Lagrangianes
caracteritzen I’estructura del moviment que té€ lloc en un moment donat i sén comunament
analitzades a partir de talls bidimensionals on intersecten. No obstant aix0, s’han desen-
volupat poques mesures que caracteritzin el moviment lagrangia de les particules en funci6
de distancies espacials en lloc del temps. En aquesta direccid, caracteritzem el transport
lagrangia de particules que s’enfonsen i viatgen entre capes horitzontals situades a diferents
profunditats del domini del flux. En conseqiiencia, el formalisme derivat és aplicat especifi-

cament a particules que es mouen des d’una capa i arriben a una segona al llarg de les seves



xi

trajectories a causa del seu moviment d’enfonsament. Definim un mapa de dues capes que
descriu el transport lagrangia de particules entre capes, i apliquem conceptes de teoria de
sistemes dinamics i de xarxes per a analitzar les estructures de transport que hi ha darrere
del mapa de dues capes. Definim una mesura nova, I’Exponent de Lyapunov de Profunditat
Finita, que quantifica la dispersi6 horitzontal de les particules quan viatgen entre totes dues
capes. A més, aquesta descripcié geometrica es relaciona heuristicamente amb mesures de
xarxa, com a graus i entropies, associades al mapa de dues capes. Els resultats numerics
s’il-lustren utilitzant un flux analitic tridimensional amb comportament caotic: una versio

modificada del flux ABC, que imposa a les particules viatjar en una direcci6 preferent.

Finalment, apliquem la caracteritzaci6 del transport entre capes a les particules que
s’enfonsen després d’alliberar-se des de la superficie de 1’ocea en la conca de les Illes
Canaries. La dispersio horitzontal i la connectivitat entre capes s’analitzen a partir dels
quantificadors desenvolupats previament. També comparem 1 analitzem les propietats globals
de la dinamica de les particules en variar la velocitat de sedimentacio i la profunditat de la
capa de fons. A més, totes dues capes es divideixen en regions gairebé aillades identificades
a partir d’un algorisme de detecci6 de comunitats. Els subdominis resultants es caracteritzen

per una baixa interconnectivitat entre ells 1 una elevada mescla interna.
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Chapter 1

Introduction

1.1 Plan of the thesis

The focus of this doctoral thesis is to extend some well-known concepts from dynamical
systems and network theory to analyze the transport structures present in the water column
of the ocean. We consider cross-sections of the three-dimensional motion of particles as
key elements to gather the essential information describing the dynamics along the vertical
direction. In this Chapter we introduce the concepts that have served as the basis for the
development of this thesis. In order to contextualize the results obtained from this work, an
introduction is made to the general topics of fluid dynamics, dynamical systems and networks,
as well as a brief description of the most important oceanic processes involved in the sinking
of particles. The following chapters show the results obtained in this thesis, which are divided
into two well differentiated parts. The first part is collected in Chapter 2, where we analyze
the vertical dispersion and distribution of microplastic particles in the Mediterranean Sea.
We first calculate the relevant terms in the dynamics of sinking microplastics, which allows
us to quantify the amount and vertical distributions of microplastics on the water column.
Appendices A, B and C provide specific analysis to support the methods that we use in
Chapter 2. Specifically, in Appendix A we analyze the importance of considering a spherical
shape in idealized particles. In Appendix B, we quantify the effect of different physical terms
in the dynamics of sinking particles, and Appendix C analyzes the effect of the bathymetry on
the vertical dispersion of particles. The second part of this thesis develops a new formalism
to analyze the vertical structure of motion and a preliminary application to the Canary Islands
basin. In particular, in Chapter 3 we characterize transport properties of sinking particles
travelling between horizontal surfaces located at different depths. A novel measure, the
Finite Depth Lyapunov Exponent (FDLE), is defined for analyzing dispersion and mixing

properties of particles while sinking, and is heuristically related to a coarse-graining version
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of transport. In Chapter 4 we apply the formalism to a realistic ocean model in the Canary
Islands basin in order to identify horizontal barriers to transport, mixing patterns of sinking
particles and connectivity properties through community detection methods. Appendix D
provides a mathematical description of the different geometrical processes involved in the
transport between two given layers. Finally, we gather the main conclusions that can be

drawn from this work and identify future perspectives.

1.2 Lagrangian transport in three dimensional flows

1.2.1 The Lagrangian perspective

Fluid motion can be analyzed from two different perspectives. In the Eulerian description,
fluid properties are functions of space and time. It is a field description, so fluid properties
such as density and velocity are mathematically represented as p(r,t) and u(r,t), respec-
tively. On the other hand, the Lagrangian description of the flow follows individual particle
trajectories. From this perspective, flow properties are determined by tracking the motion of

particles as they evolve in time, so the density and velocity of particles are represented as
pp(t) and u,(t).

The Eulerian and Lagrangian descriptions of the flow velocity are related as:

dr
E_u(r,t)a (11)
r(t()) =ro,

where ¢ denotes time and r(¢) is the time-evolving position of a particle starting from the
initial location r(fy) at time #y. We can recover the Lagragian description from the Eulerian

by solving the differential equation that relates both interpretations (1.1).

Streamlines and pathlines are used in the visualization of the fluid flow. Streamlines are
the curves tangent to the velocity field and show the direction of motion of a fluid particle
at any point, whereas pathlines are the individual trajectories followed by particles when
moving from one point to the next. The velocity at a path is determined by the streamlines of
the flow at each time, but streamlines and pathlines only coincide in steady flows for which

streamlines do not change with time.
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The material derivative is a Lagrangian concept defined as the rate of change of some
property following the fluid particle with time. By expressing the material derivative in terms
of the spatial location of particles, the relation between the time derivatives within each
description of motion is expressed as:

D d

— =—=—+4u-V, 1.2
Dt Jt i (12
~ ~———
Lagrangian Eulerian

which allows us to apply the conservation laws in the Eulerian description.

We adopt the Lagrangian description of the flow because it provides a natural framework
for analyzing transport properties in real-world flows where connectivity and sensitivity to

initial conditions are hidden from the Eulerian point of view.

1.2.2 Dynamical Systems

Dynamical systems theory is the mathematical branch used to describe the state evolution
of a system according to fixed rules, so fluid transport is well described in this framework
by analyzing the Lagrangian evolution of fluid particles from Eq. (1.1). Trajectories are the
corresponding solutions of the equation, so the evolution of each initial condition r(fy) = ry
traces the trajectory of a fluid particle, where r(z) represents the state of the system at
time ¢. There is no general analytic method for solving equation (1.1). However, some
dynamical system methods to analyze such systems exist, which are fundamentally different
for time-dependent flows.

Most of the developed techniques assume a time-independent velocity field, referred as
steady flows. In this case, streamlines and pathlines coincide and transport structures are well
described by dividing the domain into regions of qualitatively different dynamical behavior.
Flow patterns reveal idealized motions because each location has a unique trajectory crossing
it, which allows us to analyze the flow geometry by identifying the invariant manifolds of the
fixed points. The mathematical concept of a manifold is the abstraction of a n-dimensional
space. Manifolds are spaces with similar characteristics in all their points, i.e, the local
description around a point is analogous to the local description around any other point on
the manifold, and to the local description of the euclidean n-dimensional space. In other
words, the neighbourhood of each point of the manifold can be interpreted as a n-dimensional
ball. Invariant manifolds are topological manifolds that are invariant under the action of
the dynamical system. This means that any trajectory starting on the invariant manifold

will remain on the manifold. Among all invariant manifolds, the stable and unstable ones
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are crucial for idenfying the global structures of motion. A fixed point r is a point such
that u(r) = 0, so the stable manifold of a fixed point is the set of all points that approach
the fixed point as times goes to infinity forward in time and the unstable manifold is the
set of all points that approach the fixed point as times goes to infinity backwards in time.
The fixed points where both types of manifolds intersect are called hyperbolic fixed points.
Because stable and unstable manifolds remain invariant under the flow and separate regions
of different dynamical behavior, they are usually called separatrices (Herndndez-Carrasco,
2013, Bettencourt, 2014). Nearby initial points located at each side of the stable manifold
will diverge at the hyperbolic point due to the effect of the unstable manifold coming out of
the hyperbolic point. Similarly, if time goes backwards, nearby points on either side of the
unstable manifold will diverge at the hyperbolic point in the direction of the stable manifold.
However, we are interested in analyzing flow structures of time-dependent dynamical sys-
tems where classical methods do not apply. Idealized structures characterized by invariant
manifolds do not exist in real-world systems, so different approaches are generally adopted
to find structures in atmospheric and oceanic flows (Haller, 2015). One approach consists
in identifying similarities with idealized structures from steady analytical flows (Ottino and
Ottino, 1989, Wiggins, 2013, 2005, Samelson and Wiggins, 2006). Other approach goes one
step ahead and defines the idealized structures heuristically from geophysical models coupled
with data and compares the results with real-life patterns (Provenzale, 1999, Boffetta et al.,
2001, Peacock and Dabiri, 2010, Samelson, 2013). These two approaches focus on known
idealized structures and try to locate them in aperiodic systems, so both can be interpreted as
an extension of the traditional methods to identify stable and unstable manifolds in unsteady
systems. Such techniques provide a practical application in some cases, but have inherent
limits when the dynamical system is only known for a finite time interval, which is the typical
case for geophysical models or approximations to the Navier-Stokes equation. Unsteady
flows also divide the domain into regions of different dynamical behavior. However, these
regions move with time, so separatrices in unsteady flows lose their analogy with invariant
manifolds. The third approach consists in identifying such separatrices arising from the exact
dynamics. In unsteady flows fluid particles do not necessarily follow instantaneous stream-
lines, so the phase space does not contain points that decay to hyperbolic fixed points, but
rather there exists points that decay to hyperbolic trajectories that move with time. Therefore,
these trajectories appear to be robust to transport and act as time-dependent separatrices,
defined as the Lagrangian Coherent Structures (LCS) that form the skeleton of fluid motion.
In particular, the LCSs define the repelling and attracting material curves of the flow (Haller,
2015, Shadden et al., 2005, Haller, 2001).
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Locating these LCSs require the knowledge of the stability of the flow, so different
approaches have been developed to identify them. One geometrical method identifies lines or
surfaces that separate fluid regions of different dynamical behavior (M. Mancho et al., 2003).
On the other hand, these structures can be identified from the fact that advection of individual
particles exhibit sensitivity to initial conditions, computed from Lyapunov exponents or
related Lagrangian descriptors (Haller, 2001, Shadden et al., 2005). Under some conditions,
maximal values of Lyapunov exponents form ridges that are related to the LCSs. Other
approach focuses on the statistical properties of the flow from a coarse-graining version of
the phase space, the so-called set-oriented methods (Froyland and Dellnitz, 2003, Dellnitz
et al., 2001). Dispersion and mixing properties of real-world flows can be characterized from

these approaches.

1.3 Lyapunov Exponents

Chaotic advection is a phenomenon described by dynamical systems theory. A trajectory is
said chaotic if it shows sensitivity to initial conditions, i.e, if infinitesimal neighboring points
diverge exponentially with time. Given a point r(zp) and the perturbation r(ty), the classical

Lyapunov exponent is defined as

) ) 1 |6r(1)|
A=1 | -1
r1—>moo(5r<,§?l_>o t 7|or(t)]

). (1.3)

Stable solutions of dissipative or non-conservative systems have negative Lyapunov expo-
nents. On the other hand, positive values are indicators of chaotic motion. Because the
Lyapunov exponent is theoretically defined in the asymptotic limit, it measures the global
predictability of a system. In practice, its value can be approximated for large enough integra-
tion times if nearby trajectories do not scape from the chaotic regime and these perturbations
remain within the validity of linearization. However, it usually happens that the flow velocity
of real-world systems is only known for a time interval or it becomes an intractable problem
from a computational point of view. In such cases, we may be interested in the local pre-
dictability around points in space. The local Lyapunov exponent characterizes stretching rates
of trajectories for a finite time interval. As a local measure, it defines a function of space and
time, and becomes a field measure. Two types of local Lyapunov exponents has been defined,
the Finite-Size Lyapunov Exponent (FSLE) and the Finite-Time Lyapunov Exponent (FTLE).
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1.4 Finite-Time Lyapunov Exponent

The Finite-Time Lyapunov Exponent characterizes the exponential growth rate of perturba-
tions for a given finite integration time (Lacorata et al., 2001). Starting from the velocity field
(1.1), the flow map ¢, (ro) is obtained by integrating the equation from the initial condition

ro at to for a given integration time T:

¢y (ro) = r(to+17), (1.4)

which gives the position of the fluid particle at time #y + 7 . The application of the flow map
to a compact fluid region M(fy) C S located in the fluid domain S results in the defomation
of such fluid material evolving under the flow. This mapping funcion M(t) = ¢; (M (1))
requires the integration of trajectories for each fluid particle in the set M(ty), where the
corresponding vectors y of the tangent space T,M (1) are deformed locally along its trajectory
under the evolution of the variational equation:

y=Vu(r(t))y. (1.5)

Assuming the smoothness of the flow velocity u(r,z), the Jacobian matrix of the flow
J= ngfo(ro) is an invertible matrix, solution of the variational equation (1.5), J=Vu-J,
with Vq)t’é’ (ro) = I. The geometrical interpretation of the equation is given by the growth of
initially nearby particles along their trajectories, such that infinitesimal perturbations dr(z)
of a point ry evolve according to the Eq (1.5) as 8r(t) = Véy (r9)6r(1o).

The Cauchy-Green strain tensor is the symmetric and definite positive matrix:

C(ro) = (Vo5 (ro))" Vo5 (ro), (1.6)

whose eigenvalues y; and corresponding eigenvectors &; satisfy

C& =i, |&i|=1i=1,...,n (1.7)

where n denotes the dimensionality of space (Haller, 2015, Shadden et al., 2005). The
eigendirections are orthogonal to each other and aligned with the normal basis of the tangent
space, so the total number of eigenvalues equals the dimension n of the system. The singular
values of V¢, S; = /X, provide information about the ellipticity and hyperbolicity of tra-
jectories. For incompressible flows, the total volume is conserved under chaotic advection,
so det(C) = H,~Si2 = 1. If §; = 1 for all singular values, the trajectories are called elliptic,

where local rotation takes place and no stretching happens. On the other hand, if § > 1 for
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Fig. 1.1 Stretching of fluid material under the evolution of the flow map.

some singular value, the fluid material initially aligned with this eigendirection becomes
stretched. In a n-dimensional system, the spectrum of singular values can be ordered as 0 <
Sy <. <85 < S

In Figure 1.1 we can look at the geometrical interpretation of the stretching factors given
by the square root of eigenvalues of the Cauchy-Green strain tensor. In a three-dimensional
space, an initial small sphere around r(y advected by an incompressible flow is stretched in an
ellipsoide, whose principal axes are aligned with the vectors V¢,; &i(ro). The length of these
axis has grown S; = / x;i(ro) times the initial radius length. Thus, the singular values of the
Jacobian matrix, §;, are the stretching factors of the evolving material. In two dimensional
incompressible flows, the geometrical interpretation is analogous but considering initial fluid
circunferences around the center point ry. Stretching factors with § < 1 indicate contraction
in the correspoding eigendirection, whereas S > 1 corresponds to positive stretching. Fur-
thermore, in a n-dimensional incompressible flow, we are usually interested in the maximal
stretching factor S,,,,, which is always greater or equal than one, and aligns to the eigendi-
rection of maximal growth. Since this maximal value dominates the local stretching of the
fluid material around a point, it allows the characterization of chaotic advection taking place

locally around the point.
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The local exponential growth rate of nearby trajectories defined by the Finite Time

Lyapunov Exponent is:

1
A(r(),l‘o;f) = mlog(ﬁ’mm), (18)

where S, 1s the square root of the maximal eigenvalue of the Cauchy-Green strain tensor
given by the evolution of the flow map ¢ (ro). It integrates the separation between trajec-
tories, so the FTLE takes into account the effect of the dynamics even for time-dependent

T()Ll-i-;l.z)

flows. Geometrically, lines grow by a factor e, areas by a factor e and volumes by

a factor e?M1+22+43)

1.5 Lagrangian Coherent Structures

The identification of LCSs is extensively analyzed for two-dimensional incompressible flows,
where the coherent structures appear as thin filaments through the stability behavior of the
flow (Haller and Yuan, 2000). This means that fluid patches located around the coherent
structures experience local stretching and contraction according to the presence of repelling
and attracting material lines in the flow. Although a detailed study of the stability of material
lines is necessary to the identification of the LCSs, coherent structures can be located from
different approaches (Haller, 2015). FTLEs serve as a first-order approach to compute
the skeleton of motion in terms of infinitesimal deformation of material lines. From this
perspective, the local extrema of the FTLE field appear as ridges related to repelling curves.
This approach is also extended to three-dimensional flows. In this case, the LCSs are two-
dimensional structures embedded in the 3D space, so new methods are required to identify
such surfaces in a straightforward and efficient way. Most of the developed methods for
analyzing the three-dimensional LCSs draw cross-sections of the full structures or apply
projections onto two-dimensional surfaces (Sulman et al., 2013, Haller, 2015, Bettencourt
et al., 2012, 2013, 2017).

1.6 Set-Oriented Methods

1.6.1 A statistical perspective

Concepts from dynamical systems theory can be extended to a statistical perspective in order
to detect global features of the flow that are not sensitive to the unpredictability of the system.
While FTLE is a geometrical approach that makes use of invariant manifolds, probabilistic

techniques attempt to approximate the so-called invariant or almost-invariant sets in terms of
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transition rates (Froyland and Dellnitz, 2003, Dellnitz et al., 2001). Furthermore, concepts
from network theory can be applied to this representation level of the dynamics and detect

the transport properties in terms of connectivity.

1.6.2 Lagrangian flow networks

The transport matrix provides a coarse-graining version of the flow from which different
patterns of transport can be analyzed. This operator allows to define a network that connects
fluid boxes in terms of their physical interchanges. In general terms, a complex network
display non-trivial topological features of a system that can be described by nodes and
connections between them (Girvan and Newman, 2002, Newman, 2010, Caldarelli, 2007).
Here we focus on flow neworks, a directed graph where each edge represents transport of an

amount of fluid between two boxes (Ser-Giacomi et al., 2015a).

The domain is divided into N regular fluid boxes B;,i = 1,..., N which corresponds to
the nodes of the network. Here we focus on regular box sizes having the same amount of
fluid, but this restriction can be modulated. A link between two nodes is established when
there exists an exchange of fluid between their boxes. Let pt denote the Lebesgue measure.
Applying the flow map to the fluid contained in each box, the proportion of fluid travelling

from box B; to B is given by the transition transport matrix:

(BN ¢tg—ir(Bj)>
u(B:) ,

which is the discretized version of the Perron-Frobenius operator. It defines the links be-

P;j(to,7) = (1.9)

tween boxes by estimating the amount of fluid travelling from box B; to box B;. The link
is called directed since it defines the fluid transport with a directional preference. Thus,
P;j = Pj; for undirected fluid networks, whereas P;; corresponds to the fluid travelling from

one box to another one. The weight of the link corresponds to the amount of fluid transported.

If the same amount of fluid is initialized at each box, then the transport matrix has

non-negative elements and is row-stochastic:

N

Y Pj(to,T) =1, Vi
7 (1.10)

Pij(t(bT) > 07
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which gives a probabilistic interpretation of the fluid transport. Specifically, P; is the proba-
bility that a trajectory started in a random location in box B; ends in box B;. If the flow u(r,?)
is incompressible, the fluid transport mantains the fluid content at each box unalterable and
the matrix is also column-stochastic, YN P; i(to,T) =1, Vj.

For a numerical evaluation, the Lagrangian map ¢, is applied over all particles uniformly
distributed along the domain, with N the number of released particles at each box proportional
to the Lebesgue measure 1 (B;). The flow map applied over each box B; gives the final
location of particles at box i after being advected by the flow for a given integration time 7,
so the estimation in terms of particles of the fluid travelling from box B; to box B; after the
integration time 7 is given by:

__ # particles travelling from box ito box j

Pj= N (1.11)

Each entry matrix P;; provides information about the initial and final location of particles
from a probabilistic point of view with a dependence on initial release time ¢y and integration
time 7. The resulting matrix P;;(t,7) is the adjacency matrix of a weighted and directed
network, with P;; denoting the weight of the link from node i to node j. Also, the size box A
used for the discretization of the domain may introduce numerical errors, so robust features
arise when the box size is large enough to not be affected by the unpredictability of the
system while capturing the essential dynamical structure of the flow. If one is interested in
transport properties covering the intermediate steps within the full time interval [fg,7) + 7], a
Markovian approach may be taken (Ser-Giacomi et al., 2015b).

1.6.3 Network measures

The transport matrix contains information whose properties can be analyzed from network

measures. The binary description of the adjacency matrix is defined as

1 ifP;>0
Ay=4 i (1.12)
0 lfP,'jZO

1.e, it defines directed and unweighted links if an exchange of fluid from box i to box j
takes place. The degree of a node corresponds to the number of links that conect it to other
nodes, so in terms of Lagrangian flow networks it measures properties of fluid dispersion and
mixing. In the case of directed networks, the degree of a node is splitted in the outcoming and

incoming flux, which provides different characteristics of the flow pattern. The out-degree of
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a node i provides dispersion properties in terms of connectivity. It is defined as

Kour(i) = )_A(t0)i), (1.13)

™=

which gives the number of nodes receiving some fluid content from node i. On the other
hand, the in-degree of a node i informs about mixing properties, and is defined as the number

of nodes from which the node receives some fluid content:

N
Kin(j) =Y A(to)ij- (1.14)

i=1
In a previous study (Ser-Giacomi et al., 2015a), the degree of a node is heuristically
related to the Lyapunov exponent. For sufficiently long integration time 7, fluid patches
contained in boxes are stretched into thin filaments characterized by their length. Stretching

of initial lines dl(fy) around x( are quantified by the FTLE
dl(tg+7) = di(1g)e**00:7), (1.15)

and averaging over the different initial locations in a box, the final length of lines stretched

by the flow map initially located at B; is estimated to be
1 :
Lit+7)~ 5 /B dxgeTH ), (1.16)

Restricting to a two-dimensional flow, and denoting as A(fy + 7) the total area of boxes with
fluid content of @ (B;), the relationship is described analytically as
. A(to+T) L(t0+T)A

Kour (i) = IV

1 : .
_ P/Bdmem(m,t@,r) — (P00

(1.17)

1

With this characterization, dispersion properties of the flow are naturally described by
Lyapunov exponents and related to the coarse-graining version of the stretching factor. Note
however that the description of flow patterns in terms of Lyapunov exponents and network
theory is valid if the flow map is dominated by strain, which requires large enough integration
times. On the other hand, box sizes and numerical estimations of the Lyapunov exponents
require sufficiently small fluid elements to avoid folding effects or non-exponential growth

behavior.
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Finally, network entropies provide a generalization to the degree which takes into account
the weight distribution of the links (Aurell et al., 1997). They are defined as

N AR
Hi(i) = “_—Mzog(;gj), (1.18)

and quantify the diversity of the amount of fluid received by nodes from node i. In the limit

of g approaching zero, we recover a characterization of the amount of received fluid,

HY(i) = =log(Koyr(i)). (1.19)

Q=

For g approaching one, the first-order network entropy is
1 1
H'(i) :—;;Pijlogpij. (1.20)

All these network measures are defined for closed flows, where the transport matrix is
row-stochastic. For open flows, particles may scape from the predefined domain, so we can

recover the standard network measures by defining the out-strength of a node as

N

NOEDW:IE (1.21)

J

which allows us to define the row-stochastic transport matrix with a well defined probability:

Pi poas
[ ifsG) #£0, -
Q”_{o if S(i)=0. (122

Mixing and dispersion are naturally defined from this description of the flow.

1.6.4 Communities

Local connectivity describes the skeleton of transport from dynamical properties of flow
particles, and defines boundary manifolds that divide the domain into regions of different
dynamical behavior. The global structure of transport is also analyzed by identifying the
breaking up of the fluid domain into regions that display high intraconnectivity patterns but
low interconnectivity between them. In terms of lagrangian flow networks, communities are
generally defined as a network partition with high connectivity between nodes of a commu-

nity and a low connectivity between them. The community detection problem becomes an
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optimization problem that requires a methodological setup to reduce the computationally
large cost of exploring all possible configurations, even for small networks. Furthermore, the
number and sizes of real-world communities are generally unknown parameters. However,
the methods developed depend on a definition of community, the interpretation of which may
vary. This is the main reason why there are different types of methods and perspectives on a

practical level. We briefly explain in the following the most used in the literature.

Different methods for community detection have been developed. Most of these algo-
rithms measure a given partition with an objective function (Newman, 2004b, Newman and
Girvan, 2004, Girvan and Newman, 2002), such the Girvan-Newman algorithm (Newman,
2004b, Girvan and Newman, 2002) that identifies communities optimizing betweenness
centrality measure, or modularity maximization (Newman, 2004b, Blondel et al., 2008),
which searches the network partition that fits better to a model. Other approach considers
communities as invariant sets of the dynamical system. In terms of lagrangian flow transport,
the transport matrix provides a statistical description of the flow dynamics and allows the
identification of communities as coherent sets. The idea behind this approach is to detect
the global structure of the flow by identifying dynamically isolated regions that are robust
to the unpredictability of the flow. The Perron-Frobenius operator provides the required
information to determine which regions are isolated with similar dynamical behavior. Their
boundaries are expected to occur at the invariant manifolds of the flow analyzed from the
geometrically point of view. This approach requires the discretization of the fluid domain and
applies concepts from network theory. Communities are sets of boxes B; that act as invariant
sets. In particular, a set A = U;B; is called an almost-invariant set in the time interval [fo, 7] if

it satisfies

HANg T (A)
PA="0 )

For almost-invariant sets, the probability of a trajectory to not scape from the region A is very

~1. (1.23)

high. Thus, almost-invariant sets are considered as coherent structures of the flow (Froyland
and Dellnitz, 2003, Dellnitz et al., 2001, Haller, 2000). The community detection becomes
an optimization problem of finding almost-invariant sets A; with values of p(A;) maximized.
Different algorithms have been developed in order to find such a partition. The spectral
method computes the first singular vectors of the transport matrix, and performs a cluster-

ing to find regions of maximal invariance (Froyland and Padberg, 2009, Froyland et al., 2007).

Here we focus on the Infomap algorithm, that minimizes a cost function and finds

a partition based on the connectivity of the transport matrix (Ser-Giacomi et al., 2015a).
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Infomap optimises an objective function, the map equation, and finds the partition that best
compresses the information of the flow transport (Bohlin et al., 2014). A set of random
walkers describe trajectories moving throught the nodes with a probability proportional to
the weighted links of the network. The idea behind this algorithm is that the random walkers
will be retained in modules, so the trajectories will move inside closed regions for long
times. Concepts from information theory are used to describe the movement of random
walkers and quantify the minimal information required to describe the network partition.
Trajectories of random walkers are described by a sequence of words representing the nodes
they cross, and the information cost is defined as the total information required for a random
walker to describe a given network partition. The map equation uses transition rates of
the transport matrix as a modular description of the walker’s trajectory. Thus, community
detection consists in minimising the information cost trought the map equation over possible

network patitions. The length of the codeword given in terms of transition rates is

m
L=q~H(Q)+ }, pEH(p%), (1.24)
a=1
where m is the number of communities. Given a network partition, the length L gives the
minimum amount of information required to describe the average length displacement of
a random walker. The equation is described in terms of the Shannon entropy H, which

measures the transition diversity between communities o

m

H(Q) = — ) 180 jgg, (12, (1.25)

a=1 94~ 4~

where gq~ denotes the probability for a random walker to leave the community o and
d~ = Y. q—149ar is the absolute probability of jumping between communities. The second
term of equation 1.24 defines the Shannon entropy value of the codebook of module ¢, i.e, it
measures the entropy associated to the words required to describe the trajectories of random

walkers inside the community and the word describing a jump leaving the community:

Ui i q q
HP) == Y alosal g) =~ gloga(” o), (1.26)
ea

with 7; denoting the stationary distribution of the random walkers and p% = pg~ + Yicq -
This description of a network partition from information theory allows to minimize the
map equation and find such partition that optimizes the information required to describe
random walks inside and between communities. In practice, infomap algorithm improves

other methods because it does not require a predefined community size and is not contraint to



1.7 Vertical transport of particles 15

a minimum community size. Furthermore, communities are not necesarily of similar size. As
an illustration, we show in Fig. 1.2 a community partition of the Mediterranean Sea analyzed
in Ser-Giacomi et al. (2015a).

T T U U U
o° 9°E 18°E 27°E 36°E

Fig. 1.2 Infomap partition of the Mediterranean Sea into communities after 7 = 30 days.
(Source: Ser-Giacomi et al. (2015a))

1.7 Vertical transport of particles

1.7.1 Dynamics of inertial particles

Advection of finite-size particles is relevant in a variety of natural and engineering situations.
In the ocean it plays a key role in the biogeophysical processes that allows the sustainability
of life. Specifically, it plays a key role in natural phenomena such as primary production,
marine aggregates, biological cycles or transport of pollulants. Particles are usually assumed
to have negligible mass and size. In this case, the particle’s velocity becomes identical to that
of the fluid flow. Particles are passive tracers, with r(¢) the particle’s position, and satisfying
the dynamical equation

r(t) =u(r(t),t), (1.27)

where u is the flow velocity. Tracer dynamics preserve volumes when the flow is incompress-
ible and particles distribute homogeneously. Altough this assumption is a good approximation
in some cases, it does not apply for finite-size particles where inertial forces do not allow
instantaneous adaptation of the particle’s velocity to that of the fluid (Maxey and Riley, 1983).
In the latter case, particle dynamics is dissipative and transport can be described in terms of

attractors dominated by regions with high accumulation rates.
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Finite-size particle dynamics are well described by Navier-Stokes equation for moving
boundaries. However, solving directly the partial differential equation presents some difficul-
ties. Instead, the Maxey-Riley-Gatignol (MRG) equation (Maxey and Riley, 1983, Gatignol,
1983, Meccia et al., 2016, Cartwright et al., 2010) is an approximate differential equation
that describes the motion of small spherical particles under some assumptions

b = my u(r(0),0) ~ sm (v~ u(r(0),0) + 10V 2u(r(e) 1)
dq(t)/dt (1.28)

t
—6mapvq(t)+ (m, —mys)g — 67a’ v/dt’—,
prog(t)+ (mp—mys)g Py 0 ol 1)

where a is the particle’s radius, m,, its mass, and

qt) =v(t) —u(r(t),t) — éazvzu. (1.29)
The particle’s velocity is denoted as v(7) and u(r(r),t) is the flow velocity at particle’s
position r(t). my is the fluid mass displaced by the particle, v the kinematic viscosity of the
fluid. The fluid density is py, and g the gravitational acceleration. These terms represent
different forces involved in the dynamics. The fluid acceleration is analytically described
in the first right-hand side term and represents the force that the surrounding flow motion
applies on the particle, disregarding the perturbation of the flow by the particle presence.
The second term describes the added-mass effect from which an amount of fluid is displaced
by particle’s movement, and the two following terms describe the Stokes drag due to the
fluid viscosity and the buoyancy force (Auton et al., 1988). Finally, the Basset-Boussinesq
history term, associated to the vorticity diffusion. The term a®>V?u is the Faxén correction
and accounts for the spatial variation of the flow around the particle (Faxén, 1922). The MRG
equation is valid for particles with low Reynolds number, Re,, = % < 1, where particle size
represents the length scale and W = |v — u| the velocity scale defined as the relative velocity
between particle and the surrounding fluid. This implies that initial velocity differences
between particle and the fluid must be small enough. Also, another condition for the equation
validation is that the shear Reynolds number Re = ‘ﬁ—g < 1 must be small, where L and
U denote the characteristic length and velocity scales of the flow (Batchelor, 2000). This
condition implies that typical gradients of the flow remain small.

The MRG equation can be simplified for very small particle sizes. Faxén corrections
can be neglected if the typical length of the velocity field is much larger than particle’s size.
On the other hand, the Basset-Boussinesq term depends on the full history of the particle
and may be difficult to compute in practise. Both terms are negligible under the assumption
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\/iﬁ < 1 (Maxey and Riley, 1983, Meccia et al., 2016, Haller and Sapsis, 2008), and the

MRG equation simplifies to the ordinary differential equation

dv Du u—v+vy
— =4+ — 1.30
dt ﬁDz * T, (150)

where § = with p,,, pr denoting the particle and fluid densities, respectively. Particles

3pf
2pp+py’
denser than seawater have 8 < 1, whereas 8 = 1 for neutrally buoyant particles. The Stokes
time, T, = 3‘;3—1), is the characteristic response time of the particle to changes in the flow, and
the settling velocity is defined as vy = (1 — B)7,g. This equation usually serves as a starting
point for analyzing the dynamics of inertial particles of very small size, spherical shape and

where interactions between particles are not taken into account (Maxey and Riley, 1983).

1.7.2 Typical sinking particles in the ocean

Vertical transport plays a key role in the major mechanisms driving biological cycles in
the ocean and contributes to the distribution of pollulants and its accumulation on specific
regions. Most of theoretical models analyzing the global scale patterns of ocean are restricted
to the horizontal surface. However, there is a recent interest in the vertical structure of
transport as it drives crucial biogeophysical processess involved in the sustainability of life.
Until now, there are no sophisticated technologies that allow to collect experimental data
in the full vertical domain, so available data from satellite altimetry and sediment traps are
usually compared to theoretical models in order to fill gaps in our knowledge and better
address experimental research (Buesseler et al., 2007). Taking into account the chemical
composition of particles and their source, particles can be classified into biogenic particles
(mostly composed by plankton, fecall pellets and marine snow) or polluting material, being

polymer types of microplastics one of the most abundant.

1.7.3 Sinking biogenic particles

Marine biogeochemical cycles are the pathways of chemical elements travelling through the
ocean. Although chemical elements have their cycles interconnected, the carbon cycle is one
of the most studied as it forms the building block of life. In particular, a change in the carbon
flux may have high impacts in ecosystems and climate. Carbon tends to enter the ocean as
carbon dioxide and methane in a natural way. However, human activity has increased this
greenhouse gas in the atmosphere due to the combustion of fossil fuel ((Stocker, 2014)). At

least a quarter of this emitted CO; is taken up by the ocean. This is the reason why climate
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change is usually analyzed from sensitiveness to dioxide of carbon sequestration that takes

place in the ocean.
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Fig. 1.3 Time scales of carbon storage through the vertical column. (Source: Michael
Osadciw, University of Rochester.)

Carbon is introduced into the ocean as dissolved CO; or from phytosynthetic fixation.
The process known as the Biological Carbon Pump describes the transport of carbon dioxide
from the atmosphere to the deep ocean through biological activity, so the effect of the bio-
logical pump in the carbon cycle resides in the capacity for the microorganisms of taking
carbon from the ocean surface and sequester it to the deep ocean as sediments. Marine
organisms are involved in carbon transport and regulate the functionality of the carbon cycle
through metabolic processes and chemical reactions. The depth to which the particles sink
defines a time scale for their future return to the surface for its reuse, such that the deeper
they go, the longer it takes for them to return to the surface (Passow and Carlson, 2012,
Boyd et al., 2019). As illustrated in Fig. 1.3, carbon located at a scale of hundred meters
takes about ten years to return to the atmosphere, whereas sinking particles reaching the
deep ocean remain as a carbon storage for millenia before returning to the surface. There
exists different processes by which carbon pump takes place, but also ocean mixing and its
interaction with marine organisms play a key role (Honjo et al., 2014, Buesseler et al., 2007).
The general pathways of the carbon cycle are schematized in Fig. 1.4. Along the euphotic
zone, some organisms such as phytoplankton perform photosyntesis taking carbon dioxide
from the ocean surface and generate organic matter, reducing the CO; from the surface and
enhacing its absorption from the atmosphere. Part of this primary production is exported to
the deep ocean as biogenic particles, being almost composed by dissolved organic carbon
(DOC), fecal pellets and zooplankton as particulate organic matter (POC). Within a complex
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food web interaction, zooplankton consumes organic carbon produced by phyplankton in
the photosyntesis and transforms it into fecal pellets than sink very fast. These particles can
be a new source of nutrients in the future through upwelling events. Therefore, the ocean
regulates atmospheric CO; levels and prevents impacts from climate change. However, small
changes in the carbon flux influence the oceanic storage capacity and may have impacts in

the atmospheric CO; levels.
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Fig. 1.4 Representation of the biological carbon pump. Source from (Passow and Carlson,
2012).

1.7.4 Sinking microplastics

Plastic has become indispensable in human life despite the fact that its accumulation in ecosys-
tems generates devastating impacts on marine biota, biodiversity and human health (Solomon
and Palanisami, 2016). There are different polymer types with different physical properties
associated, mostly classfied as PET (Polyethylene Terephthalate), PP (Polypropylene), HDPE
(High Density Polyethylene), LDPE (Low Density Polyethylene), VC (Polyvinyl) and PS
(Polystyrene), so once disposed into the environment, risk assessment becomes a complex
problem. Due to its physical and chemical properties, plastic is difficult to degrade by
microorganisms and its duration in the environment can be extended from some years to
centuries (Goldberg, 1997). In general, there are only two main mechanisms that lead to its
degradation: mechanical abrasion, i.e, its erosion and fragmentation into smaller and smaller
pieces, and degradation by exposure to UV rays from the sun light. Under the degradation
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process, some scientists have already shown that plastic releases chemicals such as methane

and ethylene, contribute as a powerful source of greenhouse gases.

From the beginning of its manufacturation in 1950, approximately 8 million tonnes of
plastics end up in the oceans every year (Jambeck et al., 2015) and the annual production
rate grows exponentially. It is estimated that only 2 % of the plastic produced closes the
recycling cycle. A large amount is used for fossil fuels, while an estimated 32 % ends up into
the environment. Plastic is a long-lived material with high resistance and low density, and its
buoyancy makes it to be dispersed long distances. In general, it is transported by atmospheric
factors ending at the ocean, mainly in coastal regions of high population density (Ivar do Sul
et al., 2013, Jayasiri et al., 2013). The vast majority of plastic has a lower density than that of
the water, so scientists believed that plastics remain floating on the ocean surface and were
transported following the ocean currents of the surface. However, only 1% of the estimated
plastic ending at the ocean was found at the surface (van Sebille et al., 2015, Choy et al.,
2019), which led to a reconsideration of the processes involved in their transport. After an
exhaustive research, some important processes has been identified, illustrated at Figure 1.5.
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Fig. 1.5 Processes of plastic transport in the ocean. Source from (Van Sebille et al., 2016).

Plastic debris in aquatic environment are degraded until reaching a micro-size range.

Microplastics are defined as such plastic particles with sizes smaller than Smm (Kershaw
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and Rochman, 2015), which has been identified in most aquatic habitats and along the
water column (Ivar do Sul et al., 2013). The most important reported processes by which
microplastics leave the ocean surface are beaching (Turner and Holmes, 2011), biofouling
(Ye and Andrady, 1991, Chubarenko et al., 2016, Kooi et al., 2017), sinking (Erni-Cassola
et al., 2019), wind-driven mixing or their introduction into the marine food web (Wright
et al., 2013a,b). The technical complications for studying the distribution of subsurface
microplastic takes us to a little known scenario. It is reported that wind-driven mixing
generates an exponential decrease of pieces with depth. However, this vertical distribution
only accounts for concentration rates of underway samples driven by wind, a few meters
below the surface (Enders et al., 2015). High plastic concentrations are also reported in
deeper waters, at 1000m depth in Monterey Bay, and at 2000 m below the North Pacific
Garbage Patch, among many others (Choy et al., 2019, Thompson et al., 2004, Hidalgo-Ruz
et al., 2012), and recent studies reveal continuous distribution of microplastic along the water
colum (de la Fuente et al., 2021b).



Chapter 2

Sinking microplastics in the water

column

2.1 Introduction

Approximately 8 million tonnes of plastics end up in the oceans every year (Jambeck et al.,
2015). Nevertheless, only a very small percentage, around 1%, remains on the surface (van
Sebille et al., 2015, Choy et al., 2019). The rest leaves the surface of the ocean (Ballent et al.,
2013, van Sebille et al., 2020) through beaching (Turner and Holmes, 2011), biofouling (Ye
and Andrady, 1991, Chubarenko et al., 2016, Kooi et al., 2017) or sinking (Erni-Cassola
et al., 2019), but also wind-driven mixing presumably leads to an underestimation for the
amount of particles remaining close to sea surface (Kukulka et al., 2012, Enders et al., 2015,
Suaria et al., 2016, Poulain et al., 2018). The distribution of plastic pollution in the sea is
poorly understood at present but would be crucial to properly evaluate the exposure of marine
biota to this material, and formulate strategies for cleaning the oceans (Horton and Dixon,
2018).

Floating plastics and those that have beached or sedimented on the seafloor are relatively
well studied through field campaigns (although explanation is missing for many findings;
Andrady, 2017, Erni-Cassola et al., 2019, Kane and Clare, 2019). In contrast, the presence of
plastics within the water column has received less attention, and many surveys in this realm
are restricted to so-called underway samples, a few meters below the surface (e.g., Enders
et al., 2015). However, e.g., Choy et al. (2019) reported that below the mixed layer and down

to 1000 m depth in Monterey Bay, concentrations of plastics are larger than at the surface

The contents of this Chapter are based on de la Fuente et al. (2021b).



2.2 Types of microplastics in the water column 23

(Thompson et al., 2004, Hidalgo-Ruz et al., 2012). Egger et al. (2020) found more plastic
between 5 m and 2000 m below the North Pacific Garbage Patch than at the surface. These
findings turn out to mostly concern plastic pieces that, according to their nominal material
density, would be classified as positively buoyant (Egger et al., 2020).

We focus on a certain class of plastic particles, negatively buoyant rigid microplastics,
excluding very small size, and we estimate their vertical distribution through the water
column and their amount in the Mediterranean Sea. Microplastic particles are among
the most important contributors to marine plastic pollution (Arthur et al., 2009). Closely
following the work of (Monroy et al., 2017) for sinking biogenic particles but choosing
particle properties to correspond to those of negatively buoyant microplastics, we first justify
the use of a simplified equation of motion, in which the plastic particle velocity is the
sum of the ambient flow velocity and a sinking velocity depending on particle and water
characteristics. In particular, we estimate the impact of some corrections to this simple
dynamics and evaluate in detail the influence of the spatial variation of the seawater density
on the plastic dispersion and sinking characteristics. For our Mediterranean case study, the
impact of the varying seawater density on particle trajectories can be comparable to the
estimated effect of the neglected small scales below the hydrodynamical model’s resolution.

We then estimate the amount of microplastic particles in the water column of the open
Mediterranean. Our estimates rely on a uniform vertical distribution, which is confirmed
by our numerical simulations to be a good approximation for fast-sinking particles. This
can be explained by a simple model in which released particles sink with a constant velocity.
Detailed consideration of the transient dynamics identifies small non-Gaussian vertical
dispersion around this simple sinking behavior, with transitions between anomalous and
normal effective diffusion.

2.2 Types of microplastics in the water column

The dynamics and the fate of microplastics in the ocean are largely determined by their
material density (Erni-Cassola et al., 2019). However, shape, size and rigidity are also
relevant properties, characteristic transport pathways to the water column being different for
different particle types.

Typically, positively buoyant plastic types will remain floating at the sea surface or close
to it, and then will not contribute to the microplastic content in the water column, the topic
we are interested in. However, it has been documented experimentally that biofouling may
increase sinking rates of particles up to 81% and enhances sedimentation (Kaiser et al., 2017).

So, a class of high abundance and mass may be represented by nearly neutrally buoyant
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microplastic particles that are generated by biofouling (Ye and Andrady, 1991, Chubarenko
et al., 2016) from positively buoyant plastic types or by other mechanisms of aggregation
with organic matter, especially for small particle sizes (Kooi et al., 2017).

In fact, the fallout from the North Pacific Garbage Patch almost entirely consists of
plastic types nominally less dense than water (Egger et al., 2020). Although some of these
immersed particles finally reach the sea bottom, their proportion in sedimented plastic is
minor except for the immediate vicinity of coasts where water is shallow. Most of these
particles remain in the photic zone (Mountford and Morales Maqueda, 2019, Wichmann
et al., 2019, Soto-Navarro et al., 2020). This suggests that reverse processes could also take
place after biofouling and that the dynamics of such particles is complicated (Kooi et al.,
2017, Erni-Cassola et al., 2019).

Particles denser than seawater dominantly accumulate at the sea bottom (Mountford and
Morales Maqueda, 2019). A mechanism by which microplastics denser than water can also
be present within the water column is the finite time taken by them to reach the bottom.
Under continuous release at the surface and sedimentation at the bottom, the transient falling
would lead to a steady distribution for the amount of plastic in the water column at any given
time, and this distribution has never been estimated. Note that the Eulerian methodology
of Mountford and Morales Maqueda (2019), treating sedimentation (i.e., deposition on the
seafloor) by parametrization and thus leaving particles in the water column indefinitely
long, is not suitable for this estimation. One aim is to explore this distribution by means of
Lagrangian simulations.

There are different classes of microplastic particles denser than seawater. For example,
dense synthetic microfibers have been found to strongly dominate in sediment samples far
from the coast (Woodall et al., 2014, Fischer et al., 2015, Bergmann et al., 2017, Martin
et al., 2017, Peng et al., 2018), and have been detected in large proportions in deep-water
samples and sediment traps in the open sea as well (Bagaev et al., 2017, Kanhai et al., 2018,
Peng et al., 2018, Reineccius et al., 2020). Mostly originating from land-based sources (Dris
et al., 2016, Carr, 2017, Gago et al., 2018, Wright et al., 2020), it is not obvious to explain
their abundance on abyssal oceanic plains (Kane and Clare, 2019). Maritime-activity sources
(Gago et al., 2018) can contribute to that. Another reason could be that their special and
deformable shape results in a strongly reduced settling velocity (Bagaev et al., 2017) that
allows long distance horizontal transport (Nooteboom et al., 2020). In any case, it is difficult
to estimate the amount of microfibers in the oceans due to sampling issues and to their
absence from statistics of mismanaged plastic waste (Carr, 2017, Barrows et al., 2018), and
we will not consider them. We also disregard films, which are only sporadically encountered

in the open ocean (Bagaev et al., 2017) and thus have moderate importance.
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We concentrate in the following on dense rigid microplastic particles. The most abundant
particles of this class are fragments (e.g., Martin et al., 2017, Peng et al., 2018), which
have an irregular shape, but their extension is usually comparable in the three dimensions.
Experimental estimates for the settling velocities of irregular fragments or other nonspherical
particles have suggested considerable deviations from values predicted by the Stokes law
(Kowalski et al., 2016, Khatmullina and Isachenko, 2017, Kaiser et al., 2019), so that it
is unclear how a precise full equation of motion should be constructed. For a qualitative
exploration of particle transport through the water column, we will argue in Sect. 2.4.1 and
App. A that the Maxey—Riley—Gatignol (MRG) equation (Maxey and Riley, 1983) should be
appropriate for a reasonably wide range of such particles.

Whatever their precise equation of motion is, these sinking particles (directly detected
by Bagaev et al. (2017) and Peng et al. (2018)) are thought to reach the seafloor relatively
fast (Chubarenko et al., 2016, Kane and Clare, 2019, Soto-Navarro et al., 2020), landing
within horizontal distances of tens of kilometers from their surface location of release (see
Sect. 2.4.2 and App. B). One consequence of their fast sinking is the absence of almost
any fragmentation after they leave the sea surface (Andrady, 2015, Corcoran, 2015), and
the influence of biological processes on the particles’ properties should also be moderate,
leaving their size and shape intact during sinking. Note that, in contrast to the case of floating
plastics (Koot et al., 2017, Kvale et al., 2020), interaction of sinking plastics with particulate
matter of biological origin appears to be moderate. This is according to the absence of a need
to disassemble microplastic pieces from biological aggregates during sample processing as
described by Bagaev et al. (2017). Note, however, that experimental results by Michels et al.
(2018) indicate that aggregation with organic material might occur within a sufficiently short
time at surface layers, which would likely lead to increased sinking velocities (Long et al.,
2015). Transport by bottom currents (Kane and Clare, 2019, Kane et al., 2020) is important
for explaining their distribution in sediments after coastal release. However, the statements
above imply that the dense rigid microplastic content of samples from deep-sea trenches,
abyssal plains (van Cauwenberghe et al., 2013, Fischer et al., 2015, Peng et al., 2018, Kane
and Clare, 2019) must originate from sources at the surface of the open sea rather than from
coastal inputs.

While methodological issues make the quantification of abundance difficult (Song et al.,
2014, Andrady, 2015, Filella, 2015, Lindeque et al., 2020), negatively buoyant microplastic
fragments have indeed been found in surface and near-surface samples of the open waters
of the Mediterranean Sea (Suaria et al., 2016) and the Atlantic Ocean (Enders et al., 2015),
respectively, from which they can contribute to microplastic content of the water column and

deep-sea sediments (Fischer et al., 2015, Bagaev et al., 2017). Horizontal transport of these
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particles can be carried out by marine organisms, and spontaneous attachment to pieces of
positive buoyancy is a further possibility but is not yet discussed in the literature. Composite
pieces of debris or those that contain trapped air (including foams in some cases) may also
represent a source of microplastic ending at the water column (Andrady, 2015). However,
most of such particles are presumably released by local maritime activity. An example of
this are flakes of paint and structural material from boats and ships, which contain negatively
buoyant alkyds and poly-(acrylate/styrene). Despite the particle’s high density, large amounts
of them may be found in the sea surface microlayer where surface tension keeps them floating
(Song et al., 2014). The range of horizontal transport of these particles at the sea surface is
unclear, but expected to be restricted to short distances because sinking from the sea surface
microlayer is considerable, especially in waters disturbed by waves (Hardy, 1982, Stolle
et al., 2010).

While the idea of Kooi and Koelmans (2019) to treat all plastic particles together by
means of continuous distributions is appealing, the above considerations strongly favor
the separate treatment of positively buoyant pieces, negatively buoyant microfibers, and
negatively buoyant rigid particles of sufficiently big size, since these classes have very
different dynamics and sources. In the following we concentrate on the properties, amount

and dynamics of particles of the last class.

2.3 Considerations for modeling negatively buoyant rigid

microplastics

2.3.1 Physical properties

From a meta-analysis of 39 previous studies, Erni-Cassola et al. (2019) established the pro-
portion of the most abundant polymer types discharged into water bodies: PE (polyethylene,
23 %), PP (polypropylene, 13 %), PS (polystyrene, 4 %) and PP&A (group of polymer
types formed by polyesters, PEST, polyamide, PA and acrylics, 13 %). Note that these
proportions do not distinguish between different regions (e.g., coastal region or open water;
even inland water bodies of urban environments are included in the analysis) and between
the particle types (size range and shape) concerned in the different studies. We organize
these polymer types according to their density (Chubarenko et al., 2016, Andrady, 2017,
Erni-Cassola et al., 2019) in Fig. 2.1: PP between 850 — 920 kg/m>, PE 890 — 980 kg/m?,
PS with 1040 kg/m?> (excluding its foamed version), PEST in the range 1100 — 1400 kg/m?,
PA within 1120 — 1150 kg/ m? and acrylic with 1180 kg/ m?>. There is also some less abun-
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dant plastic like polytetrafluoroethylene (PTFE) which has higher densities, in the range
2100 — 2300 kg/m?.

Thus, the full range of microplastic particle densities in the ocean, denoted here as p,, is
850 — 2300 kg/m?, and most of them have densities within the interval 850 — 1400 kg /m?.
This has to be compared with the seawater density, which close to the surface has a con-
ventional mean value of py = 1025 km/ m> (red line in Fig. 2.1) and changes around
1% from the surface to the sea bottom. Since we are interested in sinking material, and
for the sake of maximal practicality, we restrict our study to microplastics of densities
1025 kg/m> < py < 1400 kg /m?.

Polymer Densities

Most abundant polymer types located at oceans

PP -
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PEST -

PA -

Sea water density
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Fig. 2.1 Polymer densities for the most abundant microplastics identified in water bodies
(Erni-Cassola et al., 2019).

Another relevant property of plastic particles is their size. By a widely accepted definition,
microplastics are particles with a diameter less than 5 mm without any lower limit (Arthur
et al., 2009). Some observations at the ocean surface show that the most common diameter
is around 1 mm (Cézar et al., 2014, Cézar et al., 2015), with an exponential decay with
increasing diameter up to 100 mm. However, the absence of this peak in other studies that
show an increasing abundance with further decreasing size (Enders et al., 2015, Suaria et al.,
2016, Erni-Cassola et al., 2017) suggests (Song et al., 2014, Andrady, 2015, Erni-Cassola
et al., 2017, Bond et al., 2018, Lindeque et al., 2020) the need for new technologies in

sampling methods (which usually use trawl nets with a mesh size around 0.3 mm) and
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especially for the adaptation of careful and standardized analysis procedures to avoid artifacts
(Filella, 2015).

Field data about distributions of size and quantifiers of shape for negatively buoyant rigid
particles in the water column or deep-sea sediments are not available to date to the best of our
knowledge, except in the Artic for Bergmann et al. (2017). However, their results may not
apply to the majority of the oceans because of the very special dynamics provided by melting
and freezing of sea ice (Bergmann et al., 2017). Data from Bergmann et al. (2017) and Song
et al. (2014) about unspecified sedimented fragments and paint particles, respectively, exhibit
an increasing abundance with decreasing size, most particles being smaller than 0.05 mm.
Laboratory findings about surface degradation of individual particles also indicate such a
tendency (Song et al., 2017). Thus, these findings seem to indicate the prominent presence of
small pieces of plastic. Nevertheless the observations of Bagaev et al (2017), Kanhai et al.
(2018) and Peng et al. (2018) do not indicate this abundance of small particles.

For these reasons, we will disregard particles of extremely small size. To keep our
qualitative study sufficiently simple, we will consider all our modelled particles to have a
radius a = 0.05 mm (a diameter of 0.1 mm). This is a rather small size, but still within the
commonly measured ranges. As we will discuss in Section 2.4.1, this radius is well within

the validity range of the MRG equation.

2.3.2 Source estimation

In this subsection we indicate the total amount of dense microplastics entering the water
column in open waters of the Mediterranean. Despite the correlation of plastic source with
coastal population density, the rapid fragmentation of small particles along the shoreline
(Pedrotti et al., 2016) and the seasonal variability of spatial distribution of floating particles
(Macias et al., 2019), we focus on local maritime activity and exclude direct release from sur-
face accumulation areas or the coast, either from urban areas or from rivers. The estimations
are based on the results of Kaandorp et al. (2020). They provide a total amount of yearly
plastic release into the Mediterranean in the range 2200 — 4000 tonnes, from which around
37% corresponds to negatively buoyant plastic, and 6% are due to maritime activity. This
37% agrees well with previous global estimations (Lebreton et al., 2018).

We will take these numbers, 4000 tonnes per year, 37% of sinking particles, and the
proportion of direct release by maritime activity (6%) to obtain in Sect. 2.4.3 an estimate
for the basin-wide yearly release of negatively buoyant sphere-like microplastics in the open
Mediterranean. Note that we choose the upper bound, 4000 tonnes per year, in order to

account for the considerable amount of unregistered particles.
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2.3.3 Dynamics

A standard modeling approach (Siegel and Deuser, 1997, Monroy et al., 2017, Liu et al.,
2018, Monroy et al., 2019) for the transport of noninteracting sinking particles is to consider
the time-dependent particle velocity v as the combination of the ambient fluid flow u and a
settling velocity v; as:

v=u-+v,, (2.1)
with )
3pf a

v, = (1— T,, p=—""—,and 7, = —— . 2.2

s =( B)g P B 20, + Py P 3Bv (2.2)

g denotes the gravitational acceleration vector, pointing downwards; 8 is a parameter de-
pending on the particle and the fluid densities, p, and py, respectively. Particles heavier than
water have B < 1, and B = 1 for neutrally buoyant particles. The expression given for 3
assumes spherical particles. 7, is the Stokes time, i.e., the characteristic response time of
the particle to changes in the flow, where a is the radius of the particle and v the kinematic
viscosity of the fluid. Although Eq. (2.1) is commonly used, we are not aware of a systematic
justification of it in the microplastics context. This will be done in Section 2.4.1.

2.3.4 Numerical procedures

For the flow velocity # we use a 3D velocity field from NEMO (Nucleus for European
Modelling of the Ocean), which implements a horizontal resolution of 1/12 degrees and 75
s-levels in the vertical with updates data every 5 days (Madec, 2008, Madec and Imbard,
1996). Salinity and temperature are also extracted from that model. The Parcels Lagrangian
framework (Delandmeter and van Sebille, 2019) is used to integrate the particle trajectories
from Eq. (2.1) or more complex ones to be considered in Sect. 2.4.1. Typical numerical
experiments to obtain the results presented below consist of distributing a large number N of
particles in a horizontal layer over the whole Mediterranean on the nodes of a sinusoidal-
projection grid (Seong et al., 2002), so that their release is with uniform horizontal density.
We locate this input source at 1 m depth to avoid surface boundary conditions. After particles
are released at some initial date, in a so-called flash release, they evolve under equations of
motion such as Eq. (2.1), and the statistics of the resulting particle cloud is analyzed.
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2.4 Results

2.4.1 Dynamical equations of microplastics

We next show, closely following the treatment of Monroy et al. (2017) for biogenic particles,
that possible inertial effects that would correct Eq. (2.1) are negligible for the sizes and densi-
ties of typical dense microplastics. To this end, similarly to many other studies (Michaelides,
2003, Balkovsky et al., 2001, Cartwright et al., 2010, Haller and Sapsis, 2008), we start
by choosing the simplified standard form of the more fundamental Maxey—Riley—Gatignol
(MRG) equation (Maxey and Riley, 1983), and analyze under which conditions it is valid
for microplastic transport. After finding this simplified MRG equation to be valid for an
important range of microplastic particles, we will explore its relationship with Eq. (2.1).
The simplified MRG equation gives the velocity v(¢) of a very small spherical particle in
the presence of an external flow u(r(z),t) as
dv

Du
a Port

uU—v+vg
dt )

- (2.3)

Beyond sphericity, two conditions are needed for the validity of Eq. (2.3) (Monroy et al.,
2017, Maxey and Riley, 1983): a) the particle radius, a, has to be much smaller than the
Kolmogorov length scale 1 of the flow, which has values in the range 0.3 mm <1 <2 mm for
wind-driven turbulence in the upper ocean (Jiménez, 1997); b) the particle Reynolds number
Re), = M ~ % should satisfy Re, < 1. Note that this last condition imposes restrictions
on the values of the particles’ density and size, partially via the settling velocity vy = |vg].
For the most abundant sinking microplastics, i.e., with densities p, = 1025 — 1400 kg / m3,
we now determine the range of validity of Eq. (2.3) assuming v = 1.15 x 107® m? /s and
pr=1025kg/ m?> to be fixed. This gives B in the range 0.8 — 1. The possibility of small
changes in the seawater density as the particle sinks, which translates to variations in v, will
also be analyzed in Section 2.4.2.

In Fig. 2.2 we show a diagram with the settling velocities and particle sizes for which
Eq. (2.3) is valid. We plot the minimal value of the Kolmogorov scale 1 = 0.3 mm with the
red line (Jiménez, 1997), and Re,, = 1 with a black line, which bound the area of validity
(shaded in the plot). We also indicate v, as a function of a for = 0.8 with the blue curve,
corresponding to the upper bound to v, for typical microplastic densities. In total, the zone
with soft shading in Fig. 2.2 represents a parameter region where Eq. (2.3) applies for
particles with B < 0.8 (i.e., particles falling faster than the typical ones), whereas the area
of our interest, corresponding to 8 > 0.8, is represented by a dark shading, denoting the

typical plastic sizes and corresponding settling velocities for which the equation is valid.
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As arule of thumb, in a typical situation, validity of Eq. (2.3) requires vy < 0.01 m/s and
a < 0.3 mm. As discussed in Section 2.3.1, information about particles in the validity range is
particularly sparse for surface waters because of the usual sampling techniques, but sediment
data indicates the prevalence of sufficiently small particles. Furthermore, in sufficiently calm
waters, the Kolmogorov scale is larger (of the order of millimeters, Jiménez (1997)), so that
a can be increased to this size without compromising the equation validity. These estimates
of the Kolmogorov scale anyway assume wind-driven turbulence and are thus restricted to
the mixed layer (Jiménez, 1997), below which 1 is undoubtedly larger. Deviations from a
spherical shape may lead to a more complicated motion than that described by the MRG
equation, especially through particle rotation (Voth and Soldati, 2017). In App. A, we
present quantitative arguments for the applicability of the MRG equation to rigid microplastic
particles of common shapes in the parameter ranges of our interest.

The simplified MRG equation, Eq. (2.3) thus represents an appropriate basis for qualita-
tive estimations of the transport properties of negatively buoyant rigid microplastics in the
water column. Note that rigidity of the particles is an essential condition which is why the

advection of microfibers is out of the scope of this research line.
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Fig. 2.2 Settling velocities and particle sizes for which Eq. (2.3) holds. Kolmogorov scale is
represented by the red line and Re;, = 1 with a black line, which bound the area of validity.
Blue curve corresponds to vy = vs(f,a) for B = 0.8, the upper bound to v, for typical
microplastic densities. Dark shading denotes the plastic particle sizes and corresponding
settling velocities for which application of Eq. (2.3) is valid.
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The connection between Eq. (2.3) and its approximation Eq. (2.1) is made by noticing
that 7, ~ Ls in the ocean (Monroy et al., 2017, Jiménez, 1997), so that the Stokes number
St = 7,/ Ty, which measures the importance of particle inertia in a turbulent flow, is very
small (of the order of 10~ — 1072). Thus an expansion of the MRG equation for small St
(smallness of the Froude number, i.e. smallness of fluid accelerations with respect to gravity,
is also required) can be performed. The expansion in its simplest form leads to (Balachandar
and Eaton, 2010, Monroy et al., 2017, Drétos et al., 2019):

Du

vzu+vs+‘cp(ﬁ—l)ﬁ. (2.4)

We can now take the results of Monroy et al. (2017) for biogenic particles of sizes and
densities similar to the microplastics considered here to show that the inertial corrections (the
term proportional to 7,) in Eq. (2.4) are negligible, so that the simpler Eq. (2.1) correctly
describes sinking of microplastics in the considered parameter range. For completeness, we
report in App. B the explicit numerical calculations showing this (in which the influence
of the Coriolis force is also taken into account, since it is known to be of the same order
or larger than the inertial term when a large-scale flow is used for u). In particular we find
from release experiments from 1 m below the surface of a large number of particles with f in
the range 0.8 — 1 in the whole Mediterranean that the difference between horizontal particle
positions after 10 days of integration calculated from Eq. (2.4) and the simpler Eq. (2.1) is
just a 0.26% of the horizontal displacements. For the vertical motions the difference is of
about 0.05%. Thus, Eq. (2.1) provides a proper description of the dynamics.

Even if an equation of motion is accurate, the accuracy of its solution is limited by that
of the input data. In particular, small-scale flow features are absent from oceanic velocity
fields u simulated on large-scale domains, which is an important limitation of the respective
solutions of Eq. (2.1). The NEMO velocity field of our choice is not an exception, but a
rigorous evaluation of the corresponding errors of particle trajectories is not possible without
knowing the actual small-scale flow. Nevertheless, one can roughly estimate the effect of
these small scales by adding a stochastic term to Eq. (2.1) with statistical properties similar
to the expected ones for a small-scale flow (Monroy et al., 2017, Kaandorp et al., 2020).
Results similar to those by Monroy et al. (2017), summarized in App. B, indicate that after
10 days of integration the relative difference between particle positions given by Eq. (2.4)
with and without this ‘noise’ term modeling small scales (using B = 0.99) is around 8%
for the horizontal displacements and 5% for the vertical ones. The figures become 12%
and 5%, respectively, when evolving the particles for 20 days. These errors are moderate,

although they may be of importance under some circumstances (Nooteboom et al., 2020).
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We consider these figures as a baseline to evaluate corrections to the simple Eq. (2.1): adding
more complex particle-dynamics terms to it will not improve plastic-sedimentation modeling
unless the effect of these corrections is significantly larger than the above estimations for the
effect of the unknown small-scale flow. In the following we consider the simple Eq. (2.1),

but we estimate the implications of assuming or not a constant value of the water density.

2.4.2 Effect of variable seawater density

In this section we analyze the role of a variable seawater density on the particle settling
dynamics. Fluid density is calculated from the TEOS-10 equations, which is a thermody-
namically consistent description of seawater properties derived from a Gibbs function, for
which absolute salinity is used to describe salinity of seawater and conservative temperature
replaces potential temperature (Pawlowicz, 2010). In the simulations described in this section,
as particles move in the ocean they encounter different temperatures and salinities, as given
by the NEMO model described in Sect. 2.3.4, and then they experience different values of
the ambient-fluid density.

We consider particles of a fixed density p, = 1041.5 kg/ m>. This implies that for a
nominal water density of py = 1025 kg/m> the value of § would be § = 0.99, giving a
sinking velocity vy = 6.2 m/day for our particles of radius @ = 0.05 mm, but this sinking
velocity will be increased or decreased in places where water density is lower or higher,
respectively, so that we have a spatially- and temporally-dependent velocity in Eq. (2.1).
The particle density and size have been chosen to be representative of the slowly-sinking
microplastic particles, for which we expect the seawater density variations to have the largest
impact. In this way we find some upper bound for the importance of variability in seawater
density for particle trajectories.

We release N = 78,803 particles over the whole Mediterranean Sea, and monitor their
trajectories under Eq. (2.1). The left panel of Fig. 2.3 shows the histogram of water densities
encountered by the particles when the release is performed on July 8th 2000. On this summer
date, the Mediterranean is well stratified, at least in its upper layers. Initially the particles
are in surface waters with a range of salinities that average approximately to the nominal
pr=1025kg/ m>. But as they sink in time they reach layers with higher densities (and more
homogeneous across the Mediterranean). When the release is done in winter (right panel of
Fig. 2.3) the water column is more mixed, so that the range of water densities experienced by
the particles released at different points is always narrow. But the mean water density turns
out to be always larger than the conventional surface density of py = 1025 kg/ m?, so that a

slightly slower sinking is expected to occur.
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Fig. 2.3 Normalized histogram of the seawater density p at the positions of N = 78803
particles after r = 0, 10, and 20 days of being released over the whole Mediterranean. (a):
summer release (release date 8 July 2000). (b): winter release (release date 8 January
2000). The particles’ density is fixed at p, = 1041.5kg/ m?, and fluid density is obtained
from the TEOS-10 equations. The vertical line indicates a conventional seawater density of
1025kg /m?.

(a) (b)
20.0

14000 4
17.54

12000 4
15.0 1

10000 4
12.54

8000
10.0 4

6000 751

(1xO(t) = xD(t)]) [m]
(120(t) = 2M(t)]) [m]

4000 - 5.01

2000 4 2.5 1

T T T r r 0.0 T T T r r
0 5 10 15 20 25 30 0 5 10 15 20 25 30
t [days] t [days]

Fig. 2.4 The distance, as a function of time, between trajectories obtained with constant
nominal fluid density of py = 1025kg/ m> and the actual variable fluid density, both starting
at the same initial location. The range of the values among all particles released in different
points of the Mediterranean is indicated by the shaded area, while the solid line indicates
the average over the particles. Particles have p, = 1041.5kg/ m?, and all parameters are the
same as for the summer release in Fig. 2.3.(a): horizontal distances; (b): vertical distances.

We illustrate the impact of this variable density on particle trajectories for the summer
release in Fig 2.4. Here we compute, as a function of time, the range of horizontal |x(0) —x( |
and vertical |z(?) —z(1)| distances and its average among particles. Trajectories x(¥) (1) and
x(1(¢) are obtained with constant nominal fluid density (1025 kg/m?>) and position-dependent

fluid density, respectively, using the same release location and date 8 July 2000 in both cases.
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10 days | 20 days
Horizontal: | 1.12 % | 2.75 %
Vertical: 319% | 6.25 %
Horizontal: | 1.88 % | 5.62 %
Vertical: 814 % | 932 %
Table 2.1 Relative effect on horizontal and vertical particle positions after 10 and 20 days
of integration, averaged over 78803 particles released over the whole Mediterranean at 1 m
depth, of replacing the actual seawater density by a nominal value p; = 1025 kg/ m.

Summer release

Winter release

Particle density is fixed at p, = 1041.5 kg/ m?. The difference between the two calculations
(and thus the error of considering that constant value for the density) should be compared to
average horizontal and vertical displacements of 95 km and 124 m, respectively, at t = 20
days. At that time, we thus find that the influence of variable fluid density on the dynamics is
about 3% for the horizontal movement and 6% for the vertical displacement on average.

A summary of the average relative differences on horizontal and vertical particle positions
between using the location-dependent seawater density and a nominal constant value py =
1025kg/m?, both in winter and summer periods, is displayed in Table 2.1. The relative error
produced by assuming a constant density is larger in the vertical direction. It is also larger for
the release in winter, but this is a consequence of taking a value for the reference density that
1s not representative of winter waters but is strongly biased (see Fig. 2.3, right). If using a
reference value more appropriate for winter waters (say pr ~ 1027 kg/ m?) the relative error
remains quite small, due to the weaker stratification of the sea during this season. In fact,
the reference value is also biased in the summer unless the investigation is restricted to the
surface.

In brief, we see that the effect of location-dependent density may be a relevant effect
to evaluate microplastic transport. At least, the traditional value of seawater density may
be biased, which may be reflected in the particle trajectories. We recall, however, that we
used parameters for the particle properties for which they are slowly falling. The impact
of variable density on particles that sink faster will be smaller. Also, the effects reported
in Table 2.1 remain of the order of the estimations of the effects of unresolved small scales
of the flow (Sect. 2.4.1). As a consequence, in the following we will not consider variable
seawater density, but restrict our modeling to Eq. (2.1) with a constant nominal value of the

sinking velocity vy.
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2.4.3 Total mass and vertical distribution of microplastics

We will first estimate the total mass of negatively buoyant rigid microplastics in the water
column of the open Mediterranean Sea by assuming a uniform vertical distribution, then we
will justify this assumption by running numerical simulations according to the conclusion of
Section 2.4.1 about the equation of motion.

For estimating the total mass, we take the quantities of Section 2.3.2 (4000 tonnes/year
of plastic release, with 37% being negatively buoyant of which 6% originates from maritime
activities) to compute the rate r at which microplastic particles of our interest enter the
water column in the open sea: r = 4000 ronnes/year x 0.37 x 0.06 = 88.8 tonnes/year, or
r =0.24 tonnes/day.

The next step is to estimate the time during which these microplastic particles remain
in the water column before reaching the sea bottom. We take the mean depth for the
Mediterranean to be 4 = 1480 m (Eakins and Sharman, 2010, GEBCO Compilation Group,
2020) and estimate a residence time 7 as the time of sinking to that mean depth. The
residence time depends on the sinking velocity, T = //vy, and thus on the physical properties
of the microplastic particles. Assuming a seawater density pr = 1025 kg/ m?, and the range
of plastic densities and their proportions described in Sect. 2.3.1, we see from Eq. (2.2)
that for microplastic particles of radius a ~ 0.05 mm the range of sinking velocities is
6.20 — 509.23 m/day, giving a residence time in the range 3.1 — 255 days. Averaging these
times weighted by the proportion of each type of plastic we get T ~ 14 days. Combining the
input rate r with this mean residence time we get an estimate for the total amount present in
the water column at any given time as Q = r7: the result is Q ~ 3.36 tonnes of dense rigid
microplastics if all of them would be in the form of particles of size a = 0.05 mm. This is
below but close to 1% of the estimated upper bound of 470 tonnes of floating plastic in the
Mediterranean (according to the corresponding estimation of Kaandorp et al. (2020)).

We emphasize the many uncertainties affecting this result (Sections 2.3.1 and 2.3.2), and
we highlight the one related to particle size: because of the quadratic dependence of the
sinking velocity on the particle radius a, Eq. (2.2), choosing the particle size to be half of
the one used here will lead to a four times larger estimate for the mass if the same release
rate is assumed. This enhanced retention of smaller particles in the water column may imply,
depending on the actual size distribution, a dominance of very small particles on the plastic
mass content of the water column. However, our estimates of plastic input into the ocean
(we use mainly Kaandorp et al. (2020)) rely on observations that do not catch extremely
small particles. These considerations further justify our choice of a radius a = 0.05 mm,
small but still easily detectable, as convenient to provide reasonable estimations of negatively

buoyant rigid microplastic mass in the water column within commonly quoted size ranges.
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We can not exclude larger plastic content at smaller sizes. Another source of bias may be not
considering in this study the impact of small-scale turbulence and convective mixing events.
While small-scale turbulence might cause an increase of lifetimes of particles in the water
column, dense water formation and rapid convection, a process reported in areas such as the
Gulf of Lions, might likely reduce particle retention time. These events take place in winter
and were shown to transfer particles from the ocean surface to mid-waters (1000 meters)
and deep ocean (>2000 meters) in a very short time (1-2 days) and lead to the formation of
bottom nepheloid layers (de Madron et al., 1999, Vidal et al., 2009, Heussner et al., 2006,
Stabholz et al., 2013).

The result for the total mass is independent of the horizontal distribution of particle
release, which is quite inhomogeneous (Fig. 1 of Liubartseva et al., 2018). However, for
a rough estimate of the density of these microplastics in the water column, we assume a
uniform particle distribution over the whole Mediterranean both in horizontal and in vertical.
Since the volume of the Mediterranean is about 4.39 x 10° km? (Eakins and Sharman, 2010)
the estimated density would be py = 7.7 x 107! kg/m> (with the above-discussed scaling
issues with a). We remind the reader that this is a value for the open sea, and our study does
not address coastal areas, where the density would likely be higher.

The above estimates are rather rough as a result of the mentioned uncertainties. The
assumption of a uniform distribution in the vertical direction has not yet been justified either,
but we will show it to be appropriate by means of our simulations of particle release starting
at 1 m depth over the whole Mediterranean. Instead of performing a continuous release of
new particles at each time step, and computing statistics over this growing number of sinking
particles, we approximate this by the statistics of all positions at all time steps of a set of
particles deployed in a single release event. This assumes a time-independent fluid flow, but
this approximation is appropriate, since the dispersion of an ensemble of particles released
in a single event follows rather well-defined statistical laws, see Section 2.4.4, and is thus
independent of the time-varying details of the flow. Particles are removed when touching
the bottom. For our estimate, we use 3 = 0.8, i.e., assuming the fastest sinking velocity of
typical plastic particles, for which particles reach vertical depths deeper if compared with the
slower sinking velocities used in our study.

Figure 2.5 shows p(z), the density of plastic particles per unit of depth z in the whole
Mediterranean, and also A(z), the amount of area that the Mediterranean has at each depth z.
Both functions have been normalized such that the value of their integrals with respect to z is
one; in this way the functions can be displayed in the same plot. We see that both curves are
nearly identical (in fact, just proportional, because of the normalization), indicating that the

variation of the number of particles with depth is essentially due to the decrease of sea area
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with depth. A clearer way to see that is to plot p(z)/A(z), which is proportional to the mean
plastic concentration per unit volume at each depth z, py(z). We see that this quantity is
nearly constant, at least in the first 3000 m. At larger depths a weak increase seems to occur,
but made unclear by the poor statistics arising from the small area and number of particles
present at these depths. Thus, the hypothesis of a uniform distribution of plastic in the water
column seems to be a reasonable description of the simulation of the fastest-sinking particles.

A uniform distribution of plastics in z is what is expected if the vertical velocity of the
particles is exactly a constant (since each particle will spend exactly the same time at each
depth interval). The equation of motion used, Eq. (2.1) corrects this constant sinking velocity
v with a contribution u# from the ambient flow. Thus, the close-to-constant character of
the plastic concentration may imply that the flow correction u is negligible, at least when
considering its effect over the whole Mediterranean. Another possibility is that the fluctuating
flow component u# in Eq. (2.1) results in a vertical dispersion compatible with a constant
concentration. Although the former explanation predicts an alteration from a constant if
the settling velocity is sufficiently small to allow u to induce a stronger vertical dispersion,
we will see in the next section that a nearly constant concentration may be assumed for the
majority of our parameter range.
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Fig. 2.5 The continuous line is the area that the Mediterranean has at each depth z. The
dashed line is microplastic density per unit of depth p(z) under continuous release of particles
with B = 0.8 at 1 m depth. Both curves have been normalized to have unit area, so that they
can be compared on the same scale. The binning size is 100 m. The inset shows the ratio
p(z)/A(z), proportional to the mass density of microplastic per unit of volume py (z).
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2.4.4 Transient evolution

We now analyze in detail the transient evolution of particle clouds initialized by flash releases
at a fixed depth. Numerically we proceed by releasing N = 78803 particles uniformly
distributed over the entire Mediterranean surface at 1 m depth in the winter season, as already
described. They evolve according to Eq. (2.1) using a constant water density. We take three
examples for the particle density, which correspond to f = 0.8, 0.9, 0.99, or vy = 153.48,
68.21, 6.20 m/day for our particles of radius a = 0.05 mm, respectively; in what follows,
these setups shall be denominated as v153, v68 and v6. The horizontal displacements during
the particle sinking times are much larger (of the order of 60 km) than the sea depth, so that
in fact the particles are sinking sideways (Siegel and Deuser, 1997). However, the horizontal
displacements still remain very small compared to the basin size, and we concentrate on the
vertical motion. Even though the vertical steady distribution has been found to be close to
uniform in Section 2.4.3, the reason for this is not evident, and we will give support here for
the pertinence of this finding to most of the relevant parameter range.

Figure 2.6 shows the vertical particle distribution at different times (upper plot is for
v153, middle for v68 and bottom for v6). The plot is given in terms of a rescaled variable
7= Z_T’ZVS where 62 = ((z; — (z;))?) is the variance of the particles’ z coordinate. Here the
subindex i refers to the particle and (...) denotes averaging over different particles. Thus, we
plot in the figure the rescaled distribution of the particles around the average depth of the
particles at any given time. For comparison, the normal distribution is plotted with dashed
lines. This figure shows deviations from Gaussianity for early times. The deviation from
normal distribution decreases for later instants but remains considerable, especially for the
tails, which may also be indicative of anomalous diffusive behavior. For reference, particles
reach the mean Mediterranean depth, 7 = 1480 m at times T = 9.64, 21.8 and 246.7 days for
v153, v68 and v6, respectively.

Since a non-Gaussian distribution is usually linked to anomalous dispersion (Neufeld
and Herndndez-Garcia, 2009), we now analyze this aspect in detail by considering how the
variance of the vertical particle distribution, Gzz(t), evolves. Although there is a continual
loss of particles because of reaching the seafloor with a varied topography, we illustrate in
App. C that our conclusions are likely unaffected by this effect.

According to Fig. 2.7, dispersion appears to be governed by different laws in different
regimes, which we shall distinguish by the approximate effective exponents v, defined
through approximate behaviors 622 ~ t¥ in different time intervals.

We start our analysis with the fastest-sinking particles (v153, Fig. 2.7a). At the very
beginning, superdiffusion takes place with v > 2, which may be related to autocorrelation
in the flow, but we will iterate on this question when comparing different settling velocities.
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Fig. 2.6 The probability density function, estimated from a histogram of bin size 0.1, of
all particles released in the Mediterranean in the rescaled variable 7 = Z;ﬂ for the differ-
ent setups (v153, v68 and v6) and times (in days) as indicated. For comparison, normal
distributions of zero mean and unit variance are shown with a dashed line.

Around t = 1 day, the evolution seems to become consistent with normal diffusion (v = 1),
usual after initial transients in oceanic turbulence (Berloff and McWilliams, 2002, Reynolds,
2002). However, around ¢ = 4.5 days, we can observe a crossover to ballistic dispersion
(v=2).
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Fig. 2.7 Variance of depth reached by the particles as a function of time. Straight lines
represent power laws for reference, with exponents 1 (in green, corresponding to standard
diffusion) and 2 (in purple, corresponding to ballistic dispersion).

We explain this last crossover as resulting from a different mean sinking velocity in

diverse regions of the Mediterranean, associated with up- and down-welling. This can be
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modeled in an effective way by writing the vertical position of particle i as
zi = (zi) + ot + Wi, (2.5)

where (...) denotes, as before, an averaging over different particles. Here we are assuming
that z; — (z;) evolves according to the sum of a constant average velocity contribution @;
for sufficiently long times (a characteristic of the flow region traversed by particle i), and
of W;, a Wiener process representing fluctuations with zero mean and defining a diffusion
coefficient D; for each trajectory by W_l2 = D;t. The overbar refers to temporal averaging
for asymptotically long times along the trajectory of a given particle (but assuming that the
particle remains in a region with a well-defined @; # 0), and D; characterizes the strength of
the fluctuations. Assuming (@;W;) =0,

02 = ((zi— (@))% = (@) + (D)t (2.6)

that is, the variance is a sum of a ballistic and a normal diffusive term, associated with
regional differences in the mean velocity and with fluctuations, and dominating for long
and short times, respectively. Writing D = (D;), the crossover between the two regimes is
obtained by equating the two terms as
. D
t <(D,2> . (2.7)
To evaluate Eq. (2.7), we first estimate @; for each particle from the “asymptotically”
long time of t = 10.83 days, which is the latest time after the crossover still in the ballistic
regime in Fig. 2.7a, when the contribution of fluctuations should already have become
negligible. The horizontal pattern of the estimated @; is presented in Fig. 2.8, which confirms
its patchiness throughout the Mediterranean, associated with mesoscale features. Computing
((Dlz> and fitting a line to Gzz(t) between ¢ = 1.4 and 4 days to estimate D, we obtain * ~ 4.5
days from Eq. (2.7), which remarkably agrees with Fig. 2.7a. After approximately # = 12
days there is hardly any dispersion, since most of the particles are close to the sea bottom
(ct. Fig. 2.9) where the vertical fluid velocity is nearly zero. Note also a small drop in GZZ(
at the very end of the time series, where the results may actually be subject to artifacts, see
App. C. However, this is of minor importance, since the distribution of particles so close to
the bottom should anyway be strongly influenced by resuspension and remixing by bottom
currents (Kane et al., 2020).
The different regimes are not as clear in the v68 case as for v153, see Fig. 2.7b. One

evident novel feature is a subdiffusive regime during the transient from the initial superdif-
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Fig. 2.8 @; as estimated from r = 10.83 days plotted at the initial position of each particle i
in the v153 simulation. The black rectangle in the Western Mediterranean is the area of large
depth considered in App. C.

fusion (as in the case of horizontal tracer dispersion in the ocean studied by Berloff and
McWilliams (2002), Reynolds (2002)). Approximate normal diffusion is then observed until
t = 10 days, when a crossover to a faster dispersion does seem to take place, see the inset. A
fit of normal diffusion from ¢t = 4 to 8 days and the velocity variance at t = 12.5 days give an
estimate * ~ 11.7. However, the long-time ballistic regime is not clear. In fact, a long-term
return from such a ballistic regime to normal diffusion is expected as a result of increasing
horizontal mixing, which renders @; time dependent and makes it approach zero. According
to a careful visual inspection of the inset in Fig. 2.7b, this may take place already around
t = 14 days.

For v6 (Fig. 2.7¢), the transition from the initial superdiffusive regime to that of normal
diffusion appears to not involve subdiffusion. This is already informative: the fluid velocity
field is the same for the three simulations with different settling velocity, so the differences
must originate from the different rate of sampling of the different fluid layers by particles
while they sink. In particular, the decay of autocorrelation is obviously faster for faster-
sinking particles, since it is determined by the spatial structure of the velocity field.

While this is one possible explanation for the earlier timing of the initial transition from
anomalous to normal diffusion for higher settling velocity, one cannot exclude that a depth-
dependent organization of the flow is more in play; note that v > 2 at the beginning, which
might not be explained by simple autocorrelation but might be characteristic of properties of
the velocity field at those depths. The governing role of the spatial structure is supported by
Fig. 2.9: the transition in question takes place at the same depth (= 100m) in the different
simulations, which seems to point to mixed-layer processes. Depth-dependence might also

govern the suppression of ballistic dispersion for long times, but it is very unclear.
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Fig. 2.9 Variance of depth reached by the particles as a function of their mean depth.

Note in Fig. 2.9 that the vertical variance is not expected to grow much larger for v68
than for v153 even if the simulation were longer. Therefore, even if the constancy of the
steady vertical distribution relies on the weak vertical dispersion for v153 (see Section
2.4.3), constancy is expected to hold in most of our parameter range. A considerably
stronger dispersion and a possible corresponding deviation from constancy may arise only
for extremely low settling velocities, like for v6 in Fig. 2.9.

2.5 Conclusions

We have discussed the different types of plastics occurring in the water column, pointing out
gaps in our knowledge about the sources, transport pathways and properties of such particles.
It would be highly beneficial to have distributions of size, polymer type and quantifiers of
shape recorded separately for the dynamically different classes of microplastics.

We have focused our attention on rigid microplastic particles with negative buoyancy. We
have argued that the simplified MRG equation approximates the dynamics of such particles
sufficiently well for qualitative estimations.

We have then analyzed the importance of different effects in this equation, and concluded
that the Coriolis and the inertial terms are negligible. When a velocity field of large-scale
nature is input to the equation (such that small-scale turbulence is not resolved), or when
the variability in seawater density is neglected, moderate but possibly non-negligible errors
emerge (Nooteboom et al., 2020). However, our conclusions about the vertical distribution

and dispersion of microplastics rely on robust features of the large-scale flow and must
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remain unaffected by moderate errors. We also note that the traditional value of seawater
density, py = 1025 kg/ m?, is representative only for near-surface layers in the summer, and
correcting for the bias could reduce the error of simulations with a constant seawater density.
A suitable equation of motion for the particles considered is constructed by adding to the
the external velocity field a constant settling term, as also found by Monroy et al. (2017) for
marine biogenic particles.

When the velocity field of the Mediterranean sea is approximated by realistic simulation,
this equation of motion results in a nearly uniform steady distribution along the water column,
perhaps except at extremely low settling velocities. The corresponding total amount of plastic
present in the water column is relatively small, close to 1% of the floating plastic mass, but it
may be an important contribution to the microplastic pollution in deep layers of the ocean,
and is subject to several uncertainties.

Note that only those microplastic particles are considered here that have not yet sedi-
mented on the bottom, and the plastic amount sedimented on the seafloor is large (Fischer
et al., 2015, Liubartseva et al., 2018, Peng et al., 2018, Mountford and Morales Maqueda,
2019, Soto-Navarro et al., 2020). The suitability of our equation of motion to describe the
sinking of a class of microplastic particles implies that advection by the flow may contribute
to large-scale horizontal inhomogeneity of deep-sea plastic sediments by means of recently
described noninertial mechanisms (Drétos et al., 2019, Monroy et al., 2019, Sozza et al.,
2020). This may especially be so in regions where redistribution by bottom flows is re-
stricted to small distances, like abyssal plains (Kane and Clare, 2019). Resuspension and
redistribution may be dominant in forming sedimented patterns (Kane et al., 2020), and a
future investigation should take all processes into account to identify zones of high plastic
concentration on the sea bottom.

As for the vertical distribution profile, its approximate uniformity may be linked to the
weak vertical dispersion of particles that is found in our simulations started with a flash
release over the whole surface of the Mediterranean sea. The shape of the emerging transient
vertical distribution exhibits deviations from a Gaussian, which are related to anomalous
diffusive laws that dominate the vertical dispersion process in some phases.

The different diffusive laws are related to the properties of the decay in the Lagrangian
velocity autocorrelation defined along the trajectories of the sinking particles. An important
example is the transition from initial superdiffusion to a longer phase of normal diffusion,
occurring around 100 m depth, which indicates that the particles enter into a different flow
regime. Another characteristic of the velocity field is a horizontal patchiness, which results
in a long-term ballistic dispersion as long as the particles’ horizontal displacements remain

small. The vertical diffusion returns to the normal type when horizontal mixing becomes
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more developed. These results suggest regional differences in the sinking process, so that
regional modeling might be more appropriate than a whole-basin approach. Future studies
will include different areas of the oceans, and analyze the role of Lagrangian coherent
structures on the different vertical dispersion regimes.



Chapter 3

Network and geometric characterization
of three-dimensional fluid transport
between two layers

3.1 Introduction

The study of transport phenomena is at the core of fluid mechanics. The Lagrangian approach

to fluid transport has received powerful insights from its relationship to chaos and dynamical
systems (Ottino and Ottino, 1989, Wiggins, 2005, Shadden et al., 2005), and more recently
from set-oriented methodologies than can be recast into the language of graph or network
theory (Bollt and Santitissadeekorn, 2013, Ser-Giacomi et al., 2015a, Froyland et al., 2014,
2007).

In most of the previous applications of these developments to geophysical contexts,
consideration has been restricted to horizontal transport, as this is the dominant mode of
motion at large scales in oceans and in the atmosphere. Some works, however, have addressed
the full three-dimensional dynamics (Froyland et al., 2015, Bettencourt et al., 2015, 2017).
Less attention has been given to the application or adaptation of the approaches mentioned
above to the peculiarities of transport in the vertical direction, which is singled out by the
gravitational force.

As the main motivation for the present work, many relevant biogeochemical phenomena
involve the vertical transport of particles in the ocean. Two paradigmatic examples are
the sinking of biogenic particles (Siegel and Deuser, 1997, Monroy et al., 2017), like

The contents of this Chapter are based on de la Fuente et al. (2021a).



3.1 Introduction 48

phytoplankton cells and marine snow, which play a fundamental role in the biological
carbon pump (Sabine et al., 2004, De La Rocha and Passow, 2007), and the sedimentation
dynamics of microplastics, which are becoming a key environmental problem (Choy et al.,
2019, Kaandorp et al., 2020, de la Fuente et al., 2021b). Despite the numerous studies
with different experimental and theoretical methodologies many questions remain open, in
particular those concerning the final fate of the particles from a known release surface area
(i.e. the connection paths between surface and deep ocean), the amount and time they are
suspended in the water column, and the spatial distribution both over the water column and
the seafloor. Beyond the ocean context, vertical transport is also relevant in many other
situations such as engineering processes (Michaelides, 2003) or rain precipitation (Falkovich
et al., 2002). The objective of this chapter is to extend and adapt the powerful previously
commented Lagrangian methodologies to situations in which there is a strong anisotropy
in the flow leading to a clear transport direction, as is the case when considering sinking
particles in fluid flows. We will concentrate on characterizing transport between two layers:
in the case of particles sedimenting under gravity, particles released from an upper layer
are driven by the flow and reach and accumulate in a lower layer. We expect our formalism
would be useful also under transport anisotropies produced by forces other than gravity.
The main object we will define is a two-layer map that connects the initial conditions of
particles released from one of the layers to their final positions in the other one, after being
transported by the flow. We extract information from this map with the two complementary
approaches mentioned above: on the one hand we use dynamical systems tools to describe
the geometry of the evolution of sheets of particles released from the initial layer. In this way
we formalize previous results obtained in this context (Monroy et al., 2019, Drétos et al.,
2019, Sozza et al., 2020) and extend them by the introduction of a new quantifier related to
Lyapunov exponents: the Finite Depth Lyapunov Exponent. On the other hand, connectivity
properties between the layers are studied with network theory or probabilistic techniques.
Relationships between both approaches are obtained, and the whole formalism is illustrated
with a model flow: a modification of the ABC flow which is frequently used as a simple
example of three-dimensional chaotic advection, to which we add an additional velocity,
modeling sinking, in the vertical direction.

The outline of the chapter is as follows. In Section 3.2 we introduce the basic Lagrangian
description for transport of particles between two layers. In 3.3 we study the geometry and
dynamics of a falling layer of particles, introducing the new type of Lyapunov exponent. In
Section 3.4 we introduce the network methods to characterize connectivity, and in Section

3.5 we show the connection between the previous two descriptions. In Section 3.7 we present
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the numerical results obtained for the modified ABC flow model. Section 3.8 presents our

conclusions. Appendix D contains additional technical details.

3.2 Characterization of transport between two layers

Given a fluid flow characterized by a velocity field u(r,¢), the Lagrangian description of
transport considers the equations of motion for the position of fluid elements, which evolve

according to
dr(r)
— = t),t). 3.1
5 = ur().) (.1
This equation defines the flow map ¢, (r¢), such that integrating Eq. (3.1) for a given initial

condition r at g gives the final position of the fluid particle at time 7y + 7:
(P%(I‘Q) = l‘(to—{—f). (3.2)

In this thesis we will restrict to the situation in which u(r(z),¢) is a three-dimensional velocity
field, and trajectories r(¢) move in regions of R>.

Description (3.1) is not only pertinent for the motion of fluid elements. Particles of other
substances immersed in a fluid also satisfy a first-order equation like (3.1), provided they
are sufficiently small for their inertia to be neglected. For example, in a variety of realistic
situations in the ocean, the equation of motion for the position of many types of particles
of biological origin or of microplastics is ruled by Eq. (3.1), in which the velocity field to
be used is the velocity of the fluid flow with the addition of a constant vertical component
related to the sinking of the particle under gravity because of its weight (Siegel and Deuser,
1997, Monroy et al., 2017, de la Fuente et al., 2021b). In this chapter we will talk about the
motion of ‘particles’ without specifying if they are particles of fluid or particles submerged
in a fluid, provided an equation of the type (3.1), and thus (3.2), applies.

An object that plays an important role in the analysis of the map in (3.2) is its Jacobian

matrix (a 3 X 3 matrix), defined by
J = Vo (ro). (3.3)

Given an infinitesimal separation between two initial conditions drg, J gives the evolution in
time of this separation: dr(fo+ 7) =J -drg. The singular values {S¢}o=123 of J (i.e. the
square roots of the eigenvalues of the Cauchy-Green tensor C = J7 J) give the stretching
factors experienced by infinitesimal material line elements oriented along the eigendirections

and started around rp while integrated from #( to 7o + 7. The standard finite-time Lyapunov
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exponents (FTLE, {4¢ }q—1.3) are obtained from these singular values as Ao = |7| "1 InSq
(Shadden et al., 2005).

In this chapter we are interested in anisotropic situations in which a direction of flow is
distinguished from the others. Specifically, instead of the fully three-dimensional motion
described by (]),g, we are interested in the dynamics of fluid particles traveling between a
pair of two-dimensional layers. The main example is the case of particles released from an
upper horizontal layer, falling by gravity across a moving flow, and being collected on a
second lower horizontal layer. Other sources of anisotropy can play the role of gravity, but
in this chapter we use the terminology appropriate to the sedimentation by gravity example,
so that both layers will be considered to be horizontal, and the first one will be called the
upper or release layer, whereas the second one will be called the lower or the collecting layer.
We distinguish the vertical coordinate z from the horizontal ones that form the horizontal
vector X, so that r = (x,y,x) = (X, z). Particles are initially released (at p) from the horizontal
layer .# characterized by ‘height’ zo: .# = {r = (X¢,20),20 fixed}, and we want to track
the horizontal position x at which the particle started at rq first reaches the second horizontal
layer characterized by ‘depth’ z. As we stop the dynamics after this first arrival, we can say
that particles ‘accumulate’ at the second layer. This procedure defines a new flow map which
we call the two-layer map: x = ¢ (x0). We do not explicitly specify the initial time 7y but
for time-dependent velocity fields there will be a dependence on it.

Given a region D € ./ of the upper layer, we call its image ¢ (D) onto the lower one
its footprint. 1t is the region of the collecting layer where particles from D will become
accumulated.

Particles released at the same time do not necessarily arrive at the same time at the final
layer. Let m(x() be the time that a particle started at 7y from (X, z9) takes to reach the second
layer at z for the first time. Thus the time of arrival is #, = 1o + ®. Although not explicitly
written, ® and ¢, depend on #g, zp and z, in addition to Xg. In terms of @, the relationship

between the coordinates of the two flow maps introduced so far is:

02 (x0) =x(to+ 0(x0)) = ¢ (r=(x0,20)) |
z = 02 (r=(x0,20)) |,, (3.4)

where the subindices h and z indicate that the horizontal and vertical coordinates of ¢,
respectively, should be taken.

In general ¢ can always be computed by solving Eq. (3.1) from initial conditions on
A, and checking when the trajectory crosses the second layer at z, as Eq. (3.4) indicates. In
the following we will use this last method.
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The Jacobian associated with the two-layer map is

T =V§3,(x0) . 3.5)

Note that the gradient acts on the two-dimensional initial position X, so that J , is a2 x 2
matrix. The subindex ./ is a reminder of the fact that J_, is defined on each point xq of the
upper layer .Z .

The singular values of this new Jacobian matrix are the square roots of the eigenvalues of

the associated 2 x 2 Cauchy-Green tensor:

C.u = (V9 (x0))" - V93 (x0), (3.6)

which will be used later on.
We next develop the two complementary approaches we propose to study transport

between two layers: the geometric and the network approaches.

3.3 Geometric characterization of a falling layer

First we introduce a geometric characterization of the deformation of the falling layer of
released particles with tools from dynamical systems. This approach can be called both
geometric or dynamical.

In the same way that the three-dimensional Jacobian matrix J maps infinitesimal vector
particle separations from time 7 to time ¢ (dr(¢z) = J - dry), J , takes initial infinitesimal
separations dxo on the horizontal release layer and gives its footprint dx, on the collecting
layer: dx, = J , -dxo. The singular values A and A, of J , give the stretching factors
experienced by the footprint of line elements initially oriented along the eigendirections
of C 4. In analogy with the definition of FTLEs, we can define Finite-Depth Lyapunov
Exponents (FDLEs, Za(xo)) as the logarithmic rate of stretching along the eigendirections:

Aa(X0) = #logl_\a ,o=1,2. (3.7)
|z = 20|

Ag is naturally expressed as a function of xo. But in fact it is a property of the trajectory

joining xo and x = ¢ (xp), so that it (and also Aq) can be thought and displayed as a

function of the coordinates on the collecting layer, x. Although not explicitly indicated, Ao

(and Ay) is a function of #y, zo and z. Values Ay > 0 (A > 1) indicate that lengths grow

when initially in the corresponding eigendirection, whereas A4 < 0 (Ag < 1) indicate length

contraction. If A; > A, for sufficiently large differences of depth |z—z0| we would have
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|dx,| ~ elz=2l% ]dx(()l) |, where dx(()l) is the projection of the initial particle separation dxg onto
the singular vector of singular value A;.

At difference with the FTLE, the FDLE has dimensions of inverse of length, not of
time. But this is not the most important difference between the two quantities (in fact an
alternative definition could be to replace |z —zo| by @ in (3.7)). The main difference is that
the FTLE quantifies the stretching of initial vectors as they are transported by the flow in
three-dimensional space, whereas the FDLE also includes the projection effect experienced
by these vectors when arriving at the collecting layer: the footprint of such a vector is the
projection onto the horizontal layer of that vector arriving there, taken along its direction of
motion. Further details of this projection process are given in App. D, and are also illustrated
in Fig. 3.1. Note also that the FDLE is not a form of a finite-size Lyapunov exponent (Aurell
et al., 1997, Bettencourt et al., 2013, Cencini and Vulpiani, 2013), since for this last quantity
initial separations are integrated until reaching a specified separation value, whereas in the
FDLE integration proceeds until reaching a particular depth level z.

Next, we consider the effect of the flow on surface elements initially in the release layer.
This was already considered in (Monroy et al., 2017, 2019, Drétos et al., 2019, Sozza et al.,
2020) in the context of sedimenting particles in fluid flows.

Let us consider an infinitesimal material surface of area dA started at the release layer at
20, which at any time is transformed into a surface of area dA;, and which finally reaches the
collecting layer at z leaving a footprint area dA,.. (see Fig. 3.1). If we take the initial surface
element to be a rectangle of sides given by the vectors Xdxy and ydyg (X and y are unit vectors
in the x and y directions; the area of the rectangle is dAg = dxodyg), and noting that the cross
product of vectors gives the area of the parallelogram subtended by them, we obtain

dAgec = |%x X i‘yldA07 (3.8)
_ dP: (x _ dP: (x . )
where T, = %00) and Ty = ¢3°y(0 0 are two-dimensional vectors on the final layer such

that T,dxo and Tydy( give the footprint of the initial vectors Xdxo and ydyy.
Simple algebra relates the cross product in (3.8) to the matrix C , and the singular values
Aq:
1T, x Ty| = VdetC o =AAy=F ", (3.9)

where we have defined the quantity F which we call the density factor. It is a function of the
trajectory that starts at xo and arrives at X = ¢, (xp), so that, with some abuse of language,
it can be considered either as a function of the initial or of the final location: F = F(xg) or
F = F(x). The name density factor comes from the consideration of the ratio between the
density of particles in a release surface element, 6(Xg), and in its image in the collecting
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il S A

dA() = |T«I(t()) X ‘ry(to)|dx0dy0 = dx‘ody()

SV

dA; = |T.(t) x T,(t)|dAg

dACC = |7_',,; X 7_'y|dA0

Fig. 3.1 Illustration of the dynamics of a rectangular surface element, lying on the upper
layer at the release time 7y, and with area dAg, until leaving a footprint of area dA,.. on the
lower layer when arriving there. See main text and App. D for details.

layer o(x = ¢7 (Xo)). In the situation in which both surface elements contain the same fluid
particles, this ratio is the inverse of the ratio of areas, and thus equal to F":
(o3 (X) dA()

o)~ T~ F. (3.10)

The surface elements dA(y and dA,.. will contain the same particles if a single surface element
from the release layer reaches dA,... For time-dependent velocity fields, folding of the falling
layer can occur, and in this case the complete density ratio should be computed as the sum
of all contributions of the type (3.10) from the initial release areas dA( that reach the same
dA,c. at different times (Drétos et al., 2019, Monroy et al., 2019, Sozza et al., 2020).

A convenient way to write F = dA(/dA,c is to split it into two contributions (Monroy
et al., 2019, Drétos et al., 2019, Sozza et al., 2020) (see Fig. 3.1): the evolution of the
surface element under the time map ¢t‘0" until when its area gets stretched to dA,, (recall

that 7, = 9 + @ is the time at which the infinitesimal surface touches the z layer), and the
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projection of this surface element onto the horizontal collection layer along the direction of

motion to leave a footprint of area dA,cc there, completing with this the action of ¢ :

L =SP. (3.11)

The stretching and projection factors, S and P, can be calculated as (Monroy et al., 2019,
Drétos et al., 2019, Sozza et al., 2020):

_ W

—1
S_dA,Z = |7e(t) x Ty (1), (3.12)
dAt Uu;
P=—3 = 3.13
dAscc n-ul’ (.13)

where fi(¢) is a unit vector normal to the falling surface element at time #, and the vectors
d ¢rf) (ro) and

T.(t) and 7,() are tangent to the sinking surface dA, at time ¢, given by T, = I

99y, . . . . .
T, = ¢§y(:°). The expression for S is obtained simply by recognizing that T, (¢)dxo and

T, (t)dyo are the images under time evolution of the vectors Xdxy and ydyy, respectively, that
make the initial surface, and thus the area at any time ¢ is dA; = |Tx(¢) x Ty(f)|dxodyo. A
derivation of the expression for P is given in App. D, where further details on the projection
process is given. As with Ay, expression (3.12) is a property of the trajectory joining x( and
the corresponding x in the collecting layer, so that S can be considered as a function of any
of these two locations. Eq. (3.13) involves velocities and the normal to the surface element
at the collecting layer, so that it is more natural to consider P = P(x), although for invertible
¢;, the values of P can also be mapped back to the release layer and displayed there.

The density factor F can also be expressed in terms of singular values of a different
Jacobian matrix. We begin with expressing the stretching factor S. First note that the
Jacobian matrix in (3.3) has as columns the two vectors T.(t), T,(¢), and the additional one

Fr% . . . . .
T.(1) = ¢°(r0). Let J 4 be the 3 x 2 matrix having as columns just the three-dimensional
dzo

vectors Ty(t), T,(¢). The subindex .# indicates that it involves derivatives only along the
horizontal release layer .# . The singular values of J ,, A; and A,, are the square roots of
the eigenvalues of the 2 x 2 matrix C , = JZ//J - Simple algebra demonstrates that

SV = |1.(t) x 7y(1)| = /detC y = AjA; . (3.14)

We stress that the quantities Ay are in general different from the singular values Sy of
the 3 x 3 matrix J in Eq. (3.3), giving the Lyapunov exponents as Aq = |®|~'logSy. Ag

characterizes stretching only of infinitesimal initial vectors lying on the horizontal initial
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layer. But, in the limit of large 7, or |z — zg|, vectors of arbitrary initial orientation are expected
to approach the directions that stretch faster under the action of J, so that we expect that in
this limit Ay will approach S, for @ = 1,2. More in general, since J 4 is the matrix J with
a column deleted, inequalities for singular values of submatrices (Horn and Johnson, 1991)
lead to Sg4+1 < Ag < Sq, with a = 1,2.

Comparison of Egs. (3.9), (3.11) and (3.14) gives the following relationship between the

descriptions based on the singular values of J 4 and J 4 :
AMAy =P ANy =F 1, (3.15)

which also shows the two different ways to compute the density factor F.

3.4 The network approach

We now describe a characterization of fluid transport between layers by tools from network or
graph theory. This type of approach can also be called probabilistic, or set-oriented. Our goal
is to generalize studies such as (Froyland and Dellnitz, 2003, Ser-Giacomi et al., 2015a) by
considering a bipartite network which is the natural framework to study two-layer transport.
For this we construct the discrete version of the Perron-Frobenius operator describing the

transport matrix between the two layers.

3.4.1 Coarse-graining of the flow and transport matrix

The upper layer is partitioned with a set of boxes {A;}i—1 ... m,, and the lower layer with
boxes {B;}j—1
network. Links between the upper and the lower layer are established by the action of the

m. (see Fig. 3.2). Each of these boxes is interpreted as a node in a bipartite

-----

two-layer map. These links are directed and weighted, with weights between A; in the upper
layer and B; in the lower one given by the proportion of area of A; which is mapped onto B,

which defines a transport matrix:

u(ain(e;)”" )
1 (A)) .

W (S) is the measure of set S (a part of the release layer) here taken to be its area. The

P(z0,2)ij = (3.16)

—1. . .. .
map ((])ZZO) is the inverse of @7, i.e. it takes points from the lower layer that at some
moment were reached by the released particles and maps them back into the position they

had at ¢y in the upper layer. Note that for time-dependent velocity fields this inverse map
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can be multivalued, as several initial conditions X can reach the same point in the lower
layer, provided they do so at different times. In this case, all preimages of box B should be
considered in Eq. (3.16). From a practical point of view, one computes the matrix elements
P(z0,2);; by releasing a large number N; of trajectories from box A; at #, and counts how
many of them, N;;, reach the collecting layer for the first time at box B;. The ratio N;;/N;
estimates the value of P(z9,z);; for N; large enough.

2 o of 20

m~ N

N S
S

z

Fig. 3.2 Sketch of the bipartite network construction. Particles travel from the upper layer to
the bottom one. Nodes are the boxes A;, i = 1,..., My on which the upper layer is partitioned,
and B;, j = 1,...,M,, partitioning the lower one. Two nodes are linked if some trajectory
joins them.

We note that the transport matrix P(zg,z) is different from the one used in previous works
in two aspects: first, it represents connections between two distinct regions: the release and
the collecting layer, whereas the transport matrix used for example in (Froyland and Dellnitz,
2003, Ser-Giacomi et al., 2015a) quantifies the transport between boxes embedded in the
same fluid region. This bipartite character of our transport matrix is shared by other operators
in the literature, for example (Froyland et al., 2015), but then the second difference is that in
those cases transport is computed during a fixed amount of time, whereas in our case what
is fixed is the distance between the two layers, with possibly different times of transport
between them for different fluid particles.

Eq. (3.16) immediately leads to a probabilistic interpretation: P(z9,z);; > 0 is the
probability that a fluid particle started at 7 in a uniformly random position in box A; of the

release layer reaches the collecting layer for the first time on box B;. If all fluid particles
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released from .2 reach the collecting layer, then P(zg, z);; is row stochastic:
M,
Y P(z0.2)i=1. (3.17)
j=1

If some fluid particles never reach the collecting layer, then we can have Z]}’Izl P(z0,2)ij <1,
being this the probability of reaching the lower layer if starting from a random position in the
release one. As when dealing with open flows (Ser-Giacomi et al., 2017) one can consider
the transport matrix that takes into account only the particles that do reach the second layer.

The so-called out-strength of node i, defined as
M,
Sout(i) =Y Py, (3.18)
j=1

can be used to formulate a general definition of the bilayer transport matrix, which is row-
stochastic and valid for both closed and open flows (i.e. cases in which the collecting layer is

always reached and cases in which it is not):

P . .
Q= { o Sour 70 (3.19)
0 ifSour(i) =0

In the following we indicate some relevant network measures that can be computed from

this bipartite transport matrix.

3.4.2 Network measures

Many quantities have been introduced to characterize the topology and connectivity properties
of networks (Newman, 2010). In this chapter we will not consider non-local quantifiers,
such as optimal paths, betweenness or communities (Bollt and Santitissadeekorn, 2013,
Ser-Giacomi et al., 2015a,b,c, 2021). We just introduce the simplest quantifiers involving

single nodes, namely degrees and network entropy. The adjacency matrix is given by

1 ifQ;>0
A= ! Q”i . (3.20)
0 lfQU—O

It is used to define the out-degree of a node i, Kour(i), i.e, the number of nodes in layer
z receiving fluid from node i in layer zp; and the in-degree for a node j, Kin(j), which is

the number of nodes of the release layer from which fluid content arrives at node j in the
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collecting layer:

M,
Kour(i) = Y Aij, (3.21)
=1
My
Kin(j) = ZAij~ (3.22)

Quantities related to degrees, but that take into account the actual proportion of particles
arriving at each node (the weights of the links) are the out-strength defined in Eq. (3.18) and

the in-strength:
My

SIN() = Y Pij - (3.23)
i=1

An alternative to Sy can also be defined by using Q;; instead of P;;. It coincides with (3.23)
for closed flows, which is the case for the example presented later in this chapter.
Another quantity that takes into account the weights of the links is the network entropy,

defined for each node i of the release layer as
M,

H(i) = -} Qijlog(Q;)- (3.24)
j=1

Note that, at difference with previous references (Ser-Giacomi et al., 2015a), we have not
introduced a prefactor corresponding to the inverse of the integration time in the definition
(3.24).

3.5 Relationship between geometric and network charac-

terization

For clarity, in the following we write expressions in terms of the matrix P;;, with the
understanding that Q;; should be used instead if the flow is open. We first obtain a relationship
between the probabilistic or network approach and the geometric or dynamical one for the
evolution of densities. Recall that P;; is estimated as P;; = N;;j/No, where N;; is the number
of particles released from box A; and landing on box B}, provided Ny particles are seeded
from each release box (giving the same density oy at each initial box if all of them have
the same area). Then, Sin(/), defined in (3.23), is estimated as Sin(j) = N;/No, where N;
is the number of particles landing on box B; irrespective of their origin. On the other hand,
the average of the ratios of local densities 6(x) /0y of the points inside a collecting box B,
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(o(x))p;, = p(B;)! fBj dxo(x)/oy is also estimated by N;/Ny. These estimates become
exact in the limit Ny — oo. Using relationships (3.9) and (3.10) we find

N.
SIN(j) = lim =L = (F)p, = (A1A2) "), , (3.25)

where the left-hand side is computed from the network approach of Sect. 3.4, and the right-
hand average is a coarse-graining of quantities from the geometrically based approach of
Sect. 3.3. Note that Eq. (3.10) assumes the absence of folding processes producing multiple
branches of arrival of the release layer onto the collecting one, so that this is also needed for
the validity of (3.25).

We now suggest some network-geometric relationships similar to the ones developed
in (Ser-Giacomi et al., 2015a) for single-layer Lagrangian flow networks. In particular,
relationships between degree and network entropy on the one hand and the largest stretching
factor and Lyapunov exponent on the other were found. These relationships were not exact
ones, but approximate relationships that were checked to hold for the case of long times,
sufficiently small network boxes, and a clear hyperbolic situation (i.e. Lyapunov exponents
sufficiently larger or smaller than zero).

By repeating the heuristic arguments developed in (Ser-Giacomi et al., 2015a) we can find
the following approximate relationships between the network and the geometrical description

of our two-layer dynamics:

Kour(i) =~ (A), = (e=alt) (3.26)

i

H(i) (logA), = |z—z0 <5L>Ai , (3.27)

Q

where A and A are defined below. The averages perform a coarse-graining of the values
of A(xg) or A(xg) over all initial conditions inside the initial box A;. At difference with
the bidimensional situation considered in (Ser-Giacomi et al., 2015a), in which only one
of the stretching factors was larger than one (a single expanding direction), in the present
three-dimensional dynamics several directions can be expanding, and these directions are, in
the arguments leading to Eqs. (3.26-3.27), the ones that contribute to the out degree Koy
or to the network entropy H. In consequence, in Eqs. (3.26-3.27) we should use for every
initial location A = [ Ag, where the product is over all factors A that satisfy Ay > 1 at
that point. Or, equivalently, A = ¥, Ao, where the sum is over all positive FDLEs, A¢ > 0,
at that point.

We stress that relationships (3.26-3.27) are not exact, but we expect them to be satisfied

for sufficiently small network boxes, large |z — zo|, and dynamics sufficiently hyperbolic,
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which roughly requires A, sufficiently different from unity. We will check this validity for a

particular flow model in Sect. 3.7.5.

3.6 Bipartite network communities

As pointed out in Sec. 3.4, the network approach is defined by partitioning each layer into
regular boxes. This coarse-graining allows a natural network description of the two-layer map
given by the Perron-Frobenius operator, P, which defines flow connections between nodes
of different layers. In this case, links are directed (from the upper to bottom layer) and the
weight quantifies the proportion of fluid from boxes in the upper layer mapped to boxes in the

collecting layer. The probabilistic interpretation of this transport matrix is derived in Sec. 3.4.

Set-oriented approaches identify a partition of the fluid domain into regions of different
dynamical behaviour, the so-called coherent regions (Froyland et al., 2010, Santitissadeekorn
et al., 2010). These regions are characterized by the large-scale properties of the flow. In
terms of networks, they have high intraconnectivity between their nodes and low interconnec-
tivity between them, resulting in almost isolated subnetworks. Similarly to other structures
in time-dependent flows, these regions are not fixed in time, but rather they move with the
flow. Coherent regions have been previously identified as communities in two-dimensional
incompressible flows (Ser-Giacomi et al., 2015a). Altough different methods for community
detection such as spectral partitioning may identify almost isolated regions (Danon et al.,
2005, Lancichinetti and Fortunato, 2009), the additional condition of high internal mixing
requires specific approaches. In this line, the Infomap algorithm assumes such condition and

has a clear interpretion in flow networks, as pointed out in (Ser-Giacomi et al., 2015a).

The Infomap algorithm minimizes a cost function based on random walkers moving
according to the transition probabilities between nodes. It searches for the best network parti-
tion given the inter and intraconnectivity between nodes (Rosvall and Bergstrom, 2008) (see
Sec. 1.6.4). For two-dimensional incompressible flows, transition probabilities are associated
to the transport matrix P(y, 7) of Eq. 1.9, which has a direct probabilistic interpretation. For
bipartite networks, one common approach consists in analyzing the community structure of
each mode of the bipartite network (Zhou et al., 2007, Ramasco and Morris, 2006, Newman,
2004a). However, this method results in a loss of structural information if one is interested in
finding common community structures between modes and an integration of communities
in the whole bipartite system (Everett and Borgatti, 2013, Melamed, 2014). In such cases,

a simultaneous search of communities of both networks is performed by using combina-
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torial techniques that link communities of each individual network, as the dual-projection
(Melamed, 2014, Newman and Girvan, 2004, Guimera et al., 2007, Barber, 2007). Here we
use the first approach, and analyze the community structure at each individual layer using the
two one-mode projections. We argue that a loss of information in one-mode projections is
not relevant for our propouse, since we are interested in the independent community structure
at each layer, and it has a clear interpretation in terms of fluid networks. Further research in
the exploration of other possible projections may be useful to characterize other connectivity
properties.

The two one-mode networks are mathematically described as the projection of the

transport matrix P;; onto each layer:

MOul — PPT

M — PTP. (3.28)

These matrices provide connections between nodes located in the same layer, with M
defining links between nodes in the upper layer and M between nodes in the bottom layer.
At a difference from P, the links are now undirected and the weights lose a probabilistic
interpretation. Thus, both one-mode projections, M®“ and M are symmetric, and are
neither row stochastic nor column stochastic. Furthermore, these matrices do not share
identical information, mathematically illustrated from the fact that PP”  P”P. From one
side, the one-mode matrix M?“ defines connectivity patterns between nodes in the upper
layer, and links quantify the amount of fluid density shared by each pair of boxes when being
collected at the second layer. In other words, an undirected link gives the probability that
trajectories from two locations chosen randomly in the two nodes end up in the same location
at the collecting layer. Analogously, the one-mode matrix M defines connections in the

collecting layer, and quantifies the amount of fluid with common initial releasing source.

Coherent regions are identified at each layer finding the optimal community structure
given the matrices M and M!". We apply the Infomap algorithm using each one-mode
projection as undirected transition rates between nodes belonging at a given layer. A direct
consequence of the inequality between both one-mode projections is that communities of each
layer are not necessarily connected to each other. Following the community characterization
of (Ser-Giacomi et al., 2015a), we extend some concepts from network theory to define two
quantifiers that test the quality of each network partition, the outwards (inwards) coherence

ratio and the outwards (inwards) mixing parameter. In the following we use specific notation
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to refer to sets of boxes. We first denote by Zy and Zy the set boxes at the releasing and
collecting layers, repectively. Then, the set of indices I correspond to all boxes making the
upper layer, Zy = U;c/A;. Analogously, the set of indices K correspond to boxes making the
collecting layer, Zy = UycxB. We also denote by M C I the subset of boxes making a set

A = UpepmAnm. We define the outwards transport matrix as the normalized version of MO'” :

Z PP i
. kek ij
P, = - , (3.29)
Y Y PP Y My
Iel keK 1€l

for each pair of boxes i, j € I. This matrix is not symmetric, defining directed and weighted
links, with a probabilistic interpretation:

l_),-jgl,Vi,jGI

ZP,‘jZl,ViGI. (3.30)
J€EI

The outwards coherence ratio for a set A is defined as

Z p(A)P;

G

pi(A) = r——. (3.31)
? ) w(A)
il
For a given parition of the releasing layer into p communities, P = {Ay,...,A,}, the global
outwards coherent ratio reads as
p
X n(4p5, (A
pi(P) =" : (3.32)

f‘,u(A,)

=1

~

where we have weighted communities according to their size. A coherence value close to
one indicates a good community partition. In terms of fluid networks, a good partition means
that the application of the two-layer map over each community results in almost-isolated

collecting areas in the bottom layer.

We also provide a measure for the internal mixing occurring inside communities, which
quantifies how strongly the two-layer map mixes particles inside communities. We first

define the transport matrix conditioned to a set A (we recall that M denotes the set of indices
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making A): Z
PP
Rij(A) = <~ = L, (3.33)
Z Z PikPmk Z My,
meM keK meM

for all i, j € M. This matrix also defines directed links between nodes and has a probabilistic
intepretation inside A. The entropy of the transition probabilities defined in R provides a
natural description of mixing, which we use to define the outwards mixing rate of a set A:
— Z R; jlogRi j
i,jeM
|Allog(|A[)

mg (A) =

Z

(3.34)

where |A| denotes the size of A. A value close to one indicates a high internal mixing
occurring inside A. The global mixing rate defined for a community partition P is given by

mt (P) = =1 . (3.35)

While these two quantifiers provide a good test fot the quality of a given community
partition at the releasing layer, we define similarly the inwards coherence rate and inwards
mixing rate, which are quantifiers for the quality of community partition in the collecting layer.
The mathematical description of such quantifiers is analogous to the previous formalism,
with a simple reversal of indices between boxes and sets of boxes of both layers. Similarly,
values of coherence and mixing close to one would indicate a good community partition of
the collecting layer, where each community would be mapped from an almost-isolated but

well mixed fluid area source in the releasing layer.

3.7 Numerical results

In this section we illustrate the previous concepts with a slightly modified version of an
idealized incompressible three-dimensional flow, the ABC flow. Application of the network
communities formalism of the last section however will be delayed until application to the

Canary island flow described in the next Chapter.
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3.7.1 ABC flow model

The ABC flow is a 3d model flow which is widely used for analyzing chaotic transport
(McMillen et al., 2016, Dombre et al., 1986). It provides a simple stationary solution of
Euler’s equation for incompressible, inviscid fluid flows.

To simulate the situation of particles going from one layer to another, we modify the
ABC flow with a drift in a preferential direction, specifically in the vertical one (z-direction),
without changing most of the properties of the flow. The motivation for this choice is to
mimic in a very simple way the transport of particles falling under gravity in a chaotic fluid
flow. The equations describing the model are

X = u,=Asinz+Ccosy, (3.36)
Yy = uy=Bsinx+Acosz, (3.37)
z = u,=Csiny+Bcosx+D. (3.38)

WetakeA=1,B= \/i, C = /3 for which chaotic motion is found (Dombre et al., 1986). The
new constant D = —3.15 is the one giving a contribution to the velocity pointing downwards.
Its value is just sufficient to keep the particles to travel downwards in the z direction (thus,
u; < 0 for any particle at any time). Among other consequences, this guarantees that all
initially released trajectories will reach the collecting layer at some time, so that Soyt = 1
in Eq. (3.25). In the horizontal coordinates the fluid domain is x,y € [0,27] with periodic
boundary conditions. In the vertical (z-coordinate) particles are released from the layer
zo = 10 and are followed until they reach the layer at coordinate z where integration is
stopped. Thus the model is defined in the vertical interval [z, zo].

Note that V- u = 0. The facts that u; < 0 and that the flow is time-independent guarantees

that the map ¢ is one-to-one.

3.7.2 Transport properties between layers

We first study the map ¢ for the ABC flow by taking zo = 10 and z = O (particles fall from
height zp). In Fig. 3.3 we show a histogram of arrival times, p(®). It shows a two-peaked
shape with peaks around the values 2 and 6. We can differentiate two main dynamical
behaviors: more laminar for the first peak and more chaotic for the second one. This suggests
the existence of two zones of trajectory behavior in the fluid flow, which is confirmed in
Figure 3.4.

We show in Figure 3.4 the spatial distribution of @, the time needed by every particle to

go from layer z to layer z. This time is shown as a color map for every particle at the release
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Fig. 3.3 Histogram of the times to reach the second layer at z = 0, starting from zo = 10.

layer zo and on its corresponding final position at layer z. The color map in the bottom layer
is conveniently computed by running the flow backwards in time from a regular grid of initial
conditions located at z. The equivalence between the backwards- and the forward-in-time
calculation of 7, is guaranteed by the fact that for this time-independent flow the map ¢ is
one-to-one. Since u, < 0 for any particle and time, all particles released in the upper layer
reach the collecting layer in a finite time, and all locations in the collecting layer receive a

trajectory.

O N O OO

Fig. 3.4 The travel time, @, from release layer (zo = 10) to collecting layer (z = 0) displayed
at the initial and final position of each particle.
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We observe the two regions in Fig. 3.4: the first peak in Figure 3.3 corresponds the
dark regions, with more laminar trajectories, i.e., the particles go straightforwardly from one
layer to the other; and the red regions correspond to the second peak and to more convoluted
(chaotic) trajectories. The frontiers between initial conditions of large and small ¢, are quite
sharp, and will be identified with lines of large finite-depth Lyapunov exponent in Section
3.7.3.

3.7.3 Geometric characterization

The Jacobian J_ is computed by releasing particles on a regular grid on layer z(, integrating
their trajectories under the modified ABC flow until reaching the final layer at z, and
approximating the derivatives in J , = Vo3 (xp) by finite differences between final positions
of initially neighboring particles. Then, its singular values A; and A, are computed after

. —_ - T —_
construction of the Cauchy-Green tensor C , =J_,J 4.

(a) (b)

<
o = N W A~ O o

Fig. 3.5 Maximal FDLE 1, for dynamics under the modified ABC flow, displayed at the
initial particle locations in the release layer zo = 10, and for collecting layer at (a) z = 27,
(b)z=4and (c) z=0.

Figure 3.5 shows the maximal FDLE A, (xg) from Eq. (3.7), displayed on the release
layer zg = 10, for collecting layers at three different depths z. We see that increasingly finer
filamentary structures appear for increasing travel depth. This is similar to the behavior of
the FTLE for increasing integration time. We note that the highest FDLE values roughly
divide the release domain into two regions (remember the periodic boundary conditions in
the horizontal directions) that closely correspond to the long and short travel time regions in
Fig. 3.4: as for the FTLE, ridges of FDLE are associated with separatrices that divide the
release layer into regions of different dynamic behavior.

In Figure 3.6a we plot the factor F on the collecting layer, which is the factor that

multiplies the initial density at the release layer (and thus it is proportional to the accumulated
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density of particles if the release density is constant). We also display in the other panels of
Fig. 3.6 the two geometric factors, stretching S and projection P, that shape F (i.e. F =S P,
Eq. (3.11)). We see clearly from the plot of F that filamentary structures will appear in
the density collected in the lower layer. The effect of surface-element stretching (S) is
less determinant for F' than the projection of surface elements onto the collecting layer, P,
although this can be different for other types of flows. In more complex flows (Drétos et al.,
2019, Monroy et al., 2019, Sozza et al., 2020) the projection factor can even diverge at
caustics, locations where the denominator of Eq. (3.13) vanishes. As in (Drétos et al., 2019),
there is some degree of anticorrelation between S and P, so that the fluctuations in F are
smaller than those in S and P.

(a) Density Factor, F (b) Stretching Factor, S (c) Projection Factor, P
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Fig. 3.6 (a) The density factor, F, computed as F = (AjA;)~! at the collecting layer z = 0,
giving the relative density of collected particles if the density in the release layer zg = 10
is uniform. Panel (b) shows the stretching factor S, computed as S = (AlAz)_l. Panel (c)
shows the projection factor P from Eq. (3.13). We have checked that F = S P to good
accuracy. Note the logarithmic scale in the color maps.

3.7.4 Network characterization

We study connectivity properties between layers zo = 10 and z = 0. For doing this, we
divide the upper layer into 100 x 100 square boxes A;, i = 1,...,10000, and the lower one
into 100 x 100 square boxes Bj, j = 1,...,10000. Then we release from each box in zg
900 particles uniformly distributed. We integrate each of these particles with the map ¢,
(equivalent to integrating Eq. (3.1) until reaching the collecting layer at z).

In Figure 3.7 we show the out-degree in the starting layer and the in-degree in the final
one. The out-degree for a given box in the starting layer indicates the number of boxes
reached in the final layer. It is a measure of dispersion, and large values at a box indicate that
a part of a repelling or dispersing structure is present there. On the other side, large values of
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in-degree in the final layer indicate mixing from a large number of different initial conditions,
so that boxes with in-degree maxima trace the location of attracting regions. These ideas are

confirmed when comparing degrees to the FDLEs of Fig. 3.5c.

Fig. 3.7 Out-degree and in-degree in the release (zo = 10) and the arrival (z = 0) layers,
respectively.

Fig. 3.8 Entropy H (i) for transport from the release layer at zo = 10 to the collecting layer at
z =0, displayed on the release layer.

Another quantity computed in the network approach, the entropy H (i) defined in Eq.
(3.24) is displayed in Fig. 3.8. There is a clear relationship with Koyt (i) (Fig. 3.7), and also
with the FDLEs of Fig. 3.5¢c. These relationships will be checked more systematically in the

next section.
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3.7.5 Relationship between geometric and network characterization

In this section we first check Eq. (3.25). It relates the network quantity SiN( /), giving also the
density accumulated at box B; in the lower layer relative to the uniform release density in the
upper layer, to a coarse graining on collecting boxes of a quantity developed in the geometric
approach, the density factor F = (AjA;)~'. In Fig. 3.9 we see that, as predicted, both
quantities are nearly equal, although there are some differences in the narrowest filamental
regions, arising from numerical inaccuracies. According to the outlying values in Fig. 3.9b,
it is presumably Spy that can be computed more reliably than (AjA;) !

a) In-strength, Sy b) Density Factor, F
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1 1
0.00010 0.00010
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Fig. 3.9 (a) The in-strength SiN(j) in the lower layer z = 0, which gives the accumulated
density in that layer starting from a unit-density uniform release at zop = 10. (b) Density
factor averaged on each box of the accumulation layer, i.e. (F) B; = <(A1A2)_1> B

We now address the validity of expressions (3.26) and (3.27). At difference with Eq.
(3.25), these formulae were derived only heuristically, following the arguments of Ref.
(Ser-Giacomi et al., 2015a). Their validity is subjected to restrictions such as smallness of
boxes, large values of |z — zp|, and sufficiently hyperbolic dynamics (roughly, singular values
sufficiently different from unity), which we will now check if are satisfied for our modified
ABC flow.

Regarding Eq. (3.26), comparison of Koyt from the upper layer in Fig. 3.7, and A; in
Fig. 3.5c, which is the logarithm of A, already indicates a strong relationship. A more
quantitative comparison is made in panel (a) of Fig. 3.10 between Kour(i) and (A),,, where
A = [y A and the product multiplies the singular values larger than unity. We see that,
although there is a positive correlation, there is no identity between the two quantities. We
attribute this failure of Eq. (3.26) to the fact that the second singular value A, takes values
close to unity for most of the trajectories. This is confirmed by the distribution of A, in
the upper layer displayed in Fig. 3.11. We note that, since the modified ABC flow is time
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Fig. 3.10 (a) Scatter plot of values of Kour(i) vs (A)s,. The red diagonal indicates the
fulfillment of Eq. (3.26). (b) Scatter plot of values of H (i) vs (logA)4,. The red diagonal
indicates the fulfillment of Eq. (3.27). Dots are colored according to the value of (Aj)y;.

independent, we have always that the second Lyapunov exponent is zero, or S» = 1. The
three-dimensional singular value S5 is not exactly A, nor A, but it is related to them at
long times, which justifies the prevalence of values A, ~ 1 in Fig. 3.11, and then a lack of
hyperbolicity. A, ~ 1 implies that boxes in the upper layer are not converted by the dynamics
into thin filaments, but into broad strips. When reaching the collecting layer, they will leave
a footprint larger than the thin filament needed to derive Eq. (3.26), and consequently Koyt
will be generally larger than predicted, as seen in Fig. 3.10a.

Relationships that imply a weighting with the number of particles reaching a particular
box in the collecting layer are expected to be more robust than relations such as Eq. (3.26)
that involve the degree, a quantity counting all boxes to which particles arrive, independently
on how many of them do so. Thus, Eq. (3.27), although derived under heuristic arguments
similar to those leading to Eq. (3.26), is expected to be satisfied under a broader range of
conditions. This in indeed the case, as seen by comparing plots of entropy (Fig. 3.8) with
corresponding plots of FDLE (Fig. 3.5c). A more quantitative check is performed in panel
(b) of Fig. 3.10. We see that the equality in Eq. (3.27) is satisfied much better than Eq. (3.26).
Nevertheless, there are still deviations, especially for small values of (log[\) 4;- These small
values arise from locations where A ~ 1, confirming situations of lack of hyperbolicity. We
have also colored the points in the scatter plot with the values of (A;)4,. Again, the stronger

deviations occur when both (A;) 4, and (A) are close to unity.
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Fig. 3.11 Probability density function of the values of A, on the release layer.

3.8 Conclusions

In this chapter we have developed a formalism to characterize transport of particles between
two layers in a fluid. The motivation was to obtain a theoretical framework to analyze
problems related to the sinking of particles in fluid flows, sedimenting towards a bottom
layer. Two complementary sets of tools have been addressed: geometrical or dynamical,
by studying the dynamics and deformation of a layer of particles, and probabilistic, using
concepts from network theory. Most importantly, we have addressed the relationship between
these two approaches, and illustrated the whole formalism with a modified ABC model.
The crucial step is the definition of a two-layer map, which drives particles from one
initial layer to the final one. Within the geometric approach we have analyzed the deformation
of surfaces and lines of particles released from the upper layer. A quantity related to the
Lyapunov exponent, the FDLE, has been defined and related to the quantities above. Within
the probabilistic methodology the natural description of the system is via bipartite networks,
in which quantities such as the out-degree in the initial layer and the in-degree in the final
one acquire a clear physical meaning. Both descriptions have been connected, for example,
by expressing the accumulated density of particles in terms of the in-degree and of averages
of singular values defined in the geometric approach. Other geometric-network relationships
that were successfully tested for transport on a single layer (Ser-Giacomi et al., 2015a) are
satisfied here with poor accuracy. This stresses the need for sufficiently hyperbolic dynamics

to justify some of the heuristic steps used in the derivations. Finally, a formalism is developed
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to identify network communities associated to the two-layer map, which is applied to the
Canary Island basin in the next Chapter.

There are recent works studying, on the one side, microplankton sedimentation in the
ocean with network tools (Nooteboom et al., 2019) and, on the other, the geometry of
sedimentation dynamics and distribution of biogenic particles (Monroy et al., 2017, 2019)
and microplastics (de la Fuente et al., 2021b). The steps presented here to connect both
approaches will provide new insights into problems of sinking particles in the ocean. This
will be also relevant for studies of sedimentation in atmospheric flows, as for example in the
context of deposition of volcanic ashes or aerosol particles (Haszpra and Tél, 2011, Haszpra,
2019). More generally, we expect our formalism to be of use in other flow problems in which

a clear direction of transport occurs.



Chapter 4

Vertical structure of transport of sinking
particles: A case study in the Canary
Islands

4.1 Introduction

In this Chapter we proceed to the application of the vertical transport characterization
described in Chapter 3 to idealized sinking particles released in the Canary islands basin. We
first introduce previous results related to the oceanography in this region. Then, we apply
our model based on the two-layer map and analyze dynamical properties of particles and
connectivity patterns taking place in the Canary basin. In particular, we use concepts from
dynamical systems to analyze the horizontal dispersion of particles when reaching a given
deeper layer, by applying the FDLE. We also check within this realistic flow the identities
derived in Chapter 3 that relate the geometrical and network approaches. As a novelty, we
use bipartite networks to identify communities at each layer depth as almost isolated regions.

4.2 Oceanography of the Canary Islands basin

The Canary islands basin is of specific interest because it shows crucial instabilities as a result
of strong interactions between fronts, the upwelling system and the topography structure. As
a result, it is a region characterized by strong mesoscale variability. The main large-scale
circulation patterns influencing the flow transport are illustrated skematically in Fig. 4.1. The
Canary basin is a complex region dominated by the anticyclonic eastern subtropical gyre.
It follows the eastward-flowing Azores current, which crosses the Madeira Island, within a
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Fig. 4.1 Large-scale circulation in the Canary islands basin

recirculation through the Canary current until going further away from the coast following
the North Equatorial current in westward direction. The pathways to the islands are not
well-defined, but a dominant northwest entrance of waters in summer is reported Mason
(2009). Islands act as a barrier to the influx of the Canary current, with the appearance of
island-generated mesoscale eddies and extended filaments (Aristegui et al., 2009, Mason,
2009). This activity is associated to a strong vorticity around the islands countour, which
generates high vertical velocities (Aristegui et al., 1994, Alvaro Peliz et al., 2002). Eddies are
estimated to be about 50 km and up to 270 m deep (Aristegui et al., 1994). The well-known
Canary Eddy Corridor was identified from altimetry data as a corridor of persistent eddies
being transported offshore from the Canary islands (Sangra et al., 2009). It shows long-lived
eddies with a seasonal dependence. Specifically, eddies are generated at the African coast
during all year and are intensified in autumn and winter, while island-generated eddies appear
to be dominant in summer.

On the other hand, the Canary upwelling system is present almost all year, with strongest
activity in summer (Wooster et al., 1976), and is one of the most important regions of bio-
logical production (Hailegeorgis et al., 2020, Aristegui et al., 2001). It has been reported

the formation of filamentary structures of hundred of kilometers carrying cold waters rich
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in nutrients up to the photic zone at latitudes of Cape Guir and Cape Bojador (Sangra et al.,
2009, Aristegui et al., 2001), mainly associated to oceanic instabilities of the upwelling
system (Pelegri et al., 2005). This system is conected to the Canary Eddy Corridor, which
spans zonally in the west direction carrying potent mass of biological primary production
and carbon from the Canary Upwelling region to the open ocean. Specifically, this corridor

has been estimated to transport more than 0.25% of the southward path of the Canary Current.

High vertical transport is reported to exist at the eddy boundaries and fronts, enhancing
the exchange of nutrients from cold and deep waters to the photic zone. In particular, there
are fronts and eddies that dissipate in short temporal scales, but whose vertical velocities are
larger than typical ones associated to mesoscale structures (Bakun and Nelson, 1991). There
are three main vertical waters in the Canary basin (Mason, 2009). The central waters expand
from the surface to the main thermocline, which is located between 200 and 1000 meters
depth, generally above 600 m. This water mass is mainly wind-driven, where instabilities
generated by the subtropical gyre result in strong vertical mixing that homogenizes the
superficial waters, specially in winter. The intermediate waters are under the central waters,
at a maximum depth of 1500 m. Finally, the deep waters extend up to 4000 m.

We are specifically interested in the transport structure of particles present in the Canary
basin. There is high horizontal variability in particle distribution (Neuer et al., 2002),
which is commonly associated to changes in biogenic particle concentration in superficial
waters (Fischer et al., 2020). However, the vertical profile shows a most robust distribution,
with an increase of particle concentrations for deeper waters (Neuer et al., 1997). A first
hypothesis for this vertical distribution was that fast sinking particles drag smaller particles
and contribute to an increasing particle concentration with depth, but some studies pointed
out that there is no evidence for a predominance of this effect and remark other processes that
are involved, such as aggregate formation and remineralization for slower particles (Omand
et al., 2020, Riley et al., 2012, Collins et al., 2015). Instabilities in the coastal upwelling
system are predominant in autumn, which develop into filamentary structures of cold water
that flow offshore until reaching deeper waters in the open ocean (Fischer et al., 2020, Pelegri
et al., 2005, Alvarez Salgado et al., 2008), exporting large amounts of organic material
(Pelegri et al., 2005, Sangra et al., 2009). Recent studies point out that the Canary current
is characterized by higher lateral export than previous estimates, being more susceptible
for slower particles. This lateral transport, for which 90% of exported fresh material is in

dissolved form, is intensified by the filaments of cold water. Particle flux has high seasonality,
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with maximum flux rates of lateral transport taking place in late winter and early spring
(Neuer et al., 1997). Some modelling studies can be seen in Sandulescu et al. (2006, 2007).

4.3 Numerical procedure

We focus on theoretical particles for which the dynamics is well approximated by the
equation:

v(r(t),t) =ua(r(r),r) + vy, 4.1)
where the parameters correspond to the settling velocity, vy = (1 — B)g7,, the particle’s
buoyancy, = 5 pi’j-: o and the Stokes time, 7, = 3‘[’3—2‘, It is an approximation of the simpli-
fied Maxey-Riley-Gatignol (MRG) equation (Maxey and Riley, 1983, Gatignol, 1983) for
spherical particles with sufficiently small size and negligible inertial effects (Monroy et al.,
2017, de la Fuente et al., 2021b). Further details in the derivation of Eq. (4.1) is given in

Monroy et al. (2017) and is also explored in Chapter 2 for sinking microplastic particles.

We focus on the subdomain remarked by a black box in Fig. 4.1, which is considered as
one of the subregions with a particular large-scale circulation (Aristegui et al., 2009). The
three-dimensional velocity field of the fluid u is computed from ROMS (Regional Ocean
Modeling System), a primitive equation, free-surface model described on an orthogonal
curvilinear coordinate system in the horizontal, (§,7), and a generalized terrain-following
coordinate in the vertical. We use data provided from Mason (2009), where ROMS is
applied over the Canary Islands basin with climatological forcing of 1/2 monthly means. The
horizontal domain has 332 x 534 grid points, covering a total of 996 x 1602km?, with an
horizontal resolution of A =3km and 75 vertical s-levels. The domain is rotated clockwise
28.5° to become parallel to the coast line. The different ocean variables can be rotated from
(€,m) curvilinear grid directions to geographic east and north, (4, 6), following a rotation
(Evans, 2001):

uy, = ugcos(®) — unsin(0) “42)
ug = uncos(0) + ugsin(0®), '

where (ué ,un ) represent the horizontal components of the velocity field pointing in the di-
rection of the curvilinear grid (&,7), and (uy,ug) the velocity field pointing in the direction
of longitude and latitude. @ is the counterclockwise angle between the &-axis and true
east at grid points. Notice that grid coordinates are extracted from Easy-Grid (Equal-Area

Scalable Earth Grid), whose method generates an horizontal grid lattice superimposing an
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equal-area map. We apply the formalism by using the curvilinear coordinate (&, 1) given
by the model and vertical locations are represented always in meters depth by performing
a bilinear interpolation from model data. Bilinear interpolation is performed according to
the formulation in Delandmeter and van Sebille (2019), which provides an interpolation
scheme suitable for curvilinear C-grids, and trajectories are integrated using a fourth order
Runge-Kutta method with integration time of 20 seconds. We uniformly distribute particles
at the releasing layer with distances between them of 6 = 0.5A, which equals to 1.5km. This
initial setup results in a total of N=176423 released particles. The releasing layer is fixed
at depth zop = 100m and we analyze transport by varying the depth of the collecting layer,
z=1300,600, 1200m.

Finally, we establish a range to be studied for the settling velocity taking into account
the properties of the external flow, and assuming a strictly negative particle velocity, and
its restriction to values within the theoretical validity of Eq. (4.1). The application of the
two-layer map is restricted to particles with a preferential motion, in this case pointing
in the vertical direction. We analyze transport of particles that sink downwards from the
ocean surface due to their physical properties and gravity, ultimately reflected in the settling
velocity. The upper limit of settling velocities is established looking at the distribution of
the vertical fluid velocity, which allows the identification of a significant range of sinking
particle’s velocities when comparing the settling velocity to that of the fluid. In Fig. 4.2
we show the probability density function of the vertical fluid velocity values, w, along the
full three-dimensional domain. Assuming that the velocity field distributes according to a
normal distribution, the percentil Pys value is located around w=20m/day, which corresponds
to the upper positive limit (i.e, upwards) below which the 95% of vertical fluid velocities
are located. Furthermore, an empirical estimation of the percentage of values falling below
w = 20m/day agrees with this Gaussian approximation percentage. The condition of vy <
20m/day guarantees a significant proportion of particles to travel downwards, i.e., that at
least 95% of the released particles will cross the bottom layer. With this analysis, and taking
into account the theoretical range in Monroy et al. (2017) for which the equation of motion
is valid, we conclude that we should restrict to settling velocities limited to the interval of
20m/day - 1000m/day in the downwards direction. We explore the dynamics of oceanic
sinking particles for three different setups: vy = 20,60, 100m/day.
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Fig. 4.2 Probability density function of the vertical fluid velocity, w, along the three-
dimensional fluid domain.

4.4 Results

4.4.1 Seasonality of FDLE

We first analyze the seasonality of the FDLE for vy = 20m/day, which is expected to show
more seasonality if compared to faster sinking particles. The releasing layer is fixed at
Zo = 100m and the bottom layer at z = 600m depth. Monthly and spatial averages for 4 years
of the FDLE are computed starting from January in Fig. 4.3. The temporal evolution of
the mean FDLE in the Canary Islands basin shows one-year seasonal cycle with maximum
values in February. This result is in agreement with the seasonal predictability of large-scale
flow patterns (Chen et al., 2006, Vannitsem, 2017), with lower predictability of oceanic
patterns in late winter. Seasonal instabilities in surface waters are mainly driven by trade-
winds that are ultimately reflected on the spreading of particles. Consequently, the FDLE
appears to be inversely correlated to sea surface temperature (see Fig. 4.3 (b)). As expected,
higher values of horizontal dispersion occur at minimum water temperatures, coupled to
the desestabilization of the water column. Conversely, lower values of the FDLE in early
autumn are in concordance with the vertical stabilization of the column in warm conditions.
Seasonality of FDLE fields is reflected in the full range of sinking particles. However, while
FDLE values show lower values for faster particles, a qualitative comparison of the FDLE
when varying the settling velocity of particles suggests a more flattened seasonality for
increasing sinking velocities. This is consistent with the fact that faster particles are less
affected by lateral transport, and fall almost vertically along the water column.

In Figure 4.4 we show the FDLE field at initial particle trajectories in the releasing layer
starting at each of the four seasons. Although mean values of the FDLE show seasonality,

the range of values remains constant in all time periods. Indeed, maximum values are of the
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Fig. 4.3 (a) Monthly and spatial average of FDLE values over 4 years starting from January.
The settling velocity is fixed at vy=20m/day and the releasing and bottom layer are located at
zo = 100m and z = 600m depth, respectively. (b) Mean Sea Surface Temperature.

order of 0.012 meters ™~ in all seasons.

In relation with previous observations, we observe eddies appearing in all seasons, with
higher values of the seasonal FDLEs in concordance with the highest mesoscale activity
taking place in late winter and early spring (Valdés and Déniz-Gonzdlez, 2015, Aristegui
et al., 2001). In particular, eddies appear as filamentary structures with maximum values
of the FDLE in the boundaries and very low values in the core of eddies, suggesting that
particles tend to concentrate inside eddies while boundaries act as a barrier that prevents
particles to cross it. In summer and autumn we observe the predominance of big vortices
around the Canary islands, which agrees with a predominance of island-generated eddies and
stabilization of the water column in summer. On the other hand, in winter there is an increase
of mesoscale structures and the big vortices predominate along the coast line, in accordance
with a dominant generation of eddies at the coast in this season and the destabilization of
water column. In the following, we focus on structures in spring, when the transport of cold
and rich upwelled waters into the open ocean takes place through long filamentary structures
and eddies.
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Fig. 4.4 FDLE fields displayed at the initial releasing layer zo = 100, with z = 600 the
bottom layer, the settling velocity fixed at v¢ = 20m/day, and starting at seasons (a) winter

(December), (b) spring (March), (¢) summer (Juny) and (d) autumn (September).
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4.4.2 FDLE Fields

FDLE fields do not inform about the instantaneous location of structures, but rather about
the horizontal transport structures at the initial or final locations of particles that sink from
the ocean surface and reach a given depth. Maximum values of the FDLE field organize
into filamentary structures, where particles experience maximal stretching and do not cross
them while sinking. In this section we analyze FDLE fields and how they vary for different
collecting layers and increasing settling velocities. In figures 4.5, 4.6 and 4.7 we show the
FDLE fields for settling velocities vy = 20,60, 100, and collecting layers z = 300,600, 1200
for each case study. Simulations are performed in spring, starting in March, and initial
location of particles is set to zg = 100.

The typical length scale for vortices is approximately 50A=150km. Negative values
of the FDLE predominate at the eddy cores, whereas eddy boundaries have positive and
maximal values. As observed in figures, although there are a few big vortices along the
Canary eddy corridor, there is not a predominance of island-generated eddies, and mesoscale
structures are abundant in all the domain. One interesting observation is the filamentary
structure that spans in west direction along the islands line, which may be associated to the

transport of cold and rich waters to the deep ocean taking place in late winter and early spring.

Typical values of the FDLE decrease for increasing distances between layers in all setups.
This result suggests a convergence of the FDLE values for increasing vertical distances, simi-
larly to the evolution of the FTLE when increasing integration times. However, the projection
effect may cancel any global property of the dynamical evolution of the falling surfaces. This
is the case, for example, in the modified version of the ABC flow in Chapter 3, for which
the projection P is more determinant to F' if compared to the effect of stretching factors S.
We hypothesize, however, that there are global trends associated to the changes of FDLE
fields when increasing vertical distances between layers that are inherent to incompressible
and hyperbolic flows with a preferential direction of motion. This hypothesis is supported
from the fact that, in such flows, while stretching factors of falling surfaces increase for
increasing vertical distances (or integration times), the projection factor has similar global
effects without dependency on the collecting layer depth where it applies. This argument is
also in concordance with the appearance of more filamentary structures for increasing the
bottom depth. Finally, a qualitative comparison between Figures 4.5-4.7 indicates that FDLE
values also decrease for faster particles. It agrees with the fact that faster particles are less
influenced by the external flow, resulting in a more flattened field and broader structures.

These results show that the global structure of transport governed by the dynamics is robust
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to changes in both parameters, the settling velocity and the vertical distance between layers.

In Fig. 4.8 we analyze quantitatively the evolution of stretching rates, A, and FDLEs,
A, averaged over all particle trajectories as a function of distance between both layers,
z—z0. As discussed previously, stretching rates increase for increasing vertical distances,
but with a decrease in FDLE values. While FTLEs usually converge asymptotically to a
given value for increasing integration times, the evolution of the FDLE for increasing sinking
distances may have fluctuations due to the effect of local projections onto the collecting layer.
In particular, we observe in Fig. 4.8(b) that the FDLE seems to approach some positive
value, but the log-log picture illustrated in the inset shows that such convergence does not
take place in the parameter space of study. Although a deeper analysis may be required,
the results suggest that a steady state would be reached for deeper collecting layers and
slower particles to those limited in our study. On one side, infinitesimal lines advected by
a three-dimensional incompressible flow are expected to grow at a rate given by Lyapunov
exponents. On the other hand, because the vertical component of the external velocity flow
follows a normal distribution with zero mean, the vertical particle velocity fulfills (v;) = vy
and arrival times of particle trajectories follow a linear relationship with vertical spatial
distances, which is approximately (z,) = |z — zo|/vs. Consequently, mean stretching rates of
the three-dimensional falling surfaces, A4, computed at ¢, when they reach the collecting
layer, are also expected to show an increase for increasing vertical distances, z — zp. A first
conclusion is that both dependencies, in z, and z, of field properties (averages over all particle
trajectories) show similar dispersion laws. Furthermore, we have verified that this is indeed
the case for the evolution of the three-dimensional stretching rates of falling surfaces. A
second conclusion is that, as previously suggested, because the projected stretching rates,
A, also show increasing values with depth, the projection effect does not significantly affect
the vertical (or time) evolutionary trends reflected on the large-scale properties of particle
dispersion taking place between layers, and only may add small fluctuations.

FDLE identifies separatrices of maximum horizontal dispersion of particles when reach-
ing the bottom layer. To visualize the location of such structures at the bottom layer, FDLE
values can be displayed at final particle’s position given by the two-layer map. In Figure 4.9
we show FDLE values at each initial and final particle locations of the two-layer map. Since
the particle dynamics is time-dependent, arrival times are specific to each particle trajectory.
Consequently, the FDLE map displayed both at the releasing and collecting layers has not to
be interpreted as the existence of instantaneous structures, but rather about the properties of

transport on the horizontal layers.
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4.4.3 Transport structure from Bipartite Networks

In this section we first check the relationship between the geometric and network character-
izations, as pointed out in Chapter 3. We perform the simulations starting in March. The
layer domain is partitioned into boxes of size 6A = 18km, giving a total number of 4895
regular boxes in each layer. A number of N = 144 particles are released homogeneously
from each box in the upper layer. Furthermore, we assure a statistical significance in the
network measures by excluding in the simulations such releasing boxes for which more than

5% of releasing particles scape before reaching the collecting layer.

Connection between Bipartite Networks and Lyapunov Exponents

The out degree is displayed in Fig. 4.10 at releasing boxes for zop = 100 and collecting
layers z = 300,600, 1200. The simulation is performed for the slowest settling velocity,
vy = 20m/day, as it better captures the filamentary structure of transport if compared to
faster particles. As expected, typical values increase for increasing depth, indicating larger
horizontal dispersion of fluid boxes when reaching the second layer. Furthermore, a qual-
itative comparison with Fig. 4.5 suggests a close relationship between the out degree and
stretching factors of the two-layer map. However, the filamentary structure loses some degree
of resolution when performing the coarse-graining. This result is aligned from the fact
that mesoscale structures are not well captured by the most robust large-scale sructures of
transport. In Fig. 4.11 we check the validity of Eqs. (3.26, 3.27) described in Chapter 3. As
expected, the relation of out-degree and network entropy correlate well with the geometric
interpretation of the bipartite mapping. On the other hand, we also observe some deviations
from equality with a predominance of higher values of network measures when compared
to stretching factors (logarithm of stretching factors for network entropies). As previously
discussed, this inequality is mostly due to the fact that values of the second singular value
A, close to one break the analogy between footprints and thin filaments, and the projection

results into broad strips.

Horizontal communities

In this section we identify coherent regions associated to each layer by applying the Infomap
algorithm and using the two one-mode matrices given in Eq. (3.28) as transition probabilities
of transport. This community detection method shows a partition of each layer into regions
with low interconnectivity and high intraconnectivity given the two one-mode projection
matrices. This means that there is a rather different set of final positions for particles released
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from different communities.

We first identify communities for layers located at zp = 100 and z = 600. The result of
this partition is illustrated in Fig. 4.12 for increasing settling velocities v, and communities
are differentiated with different colors. In general, coherence ratios are high, with values
close to unity, which indicates a good community partition into almost isolated regions. On
the other hand, mixing values are rather moderate, which is expected from the fact that
values close to one correspond to an accumulation of all particles in highly dense regions, a
situation which is unrealistic for oceanic flows. The Canary basin is partitioned into two main
communities along the offshore line crossing the Canary islands for both layers and setups.
This result shows that the presence of the Canary islands has a strong influence on dynamics
and generate a zonal barrier, although the absence of more partitions may be also strongly
biased by the presence of the islands. We observe increasing coherence and a decreasing
of mixing ratios for faster particles, reflected from the fact that faster particles sink more

vertically and experience lower lateral advection.

A two-level Infomap partition of communities is performed in Fig. 4.13, i.e, the commu-
nity structure occurring inside first-level communities of Fig. 4.12. In this case, coherence
values are lower and mixing increases for all communities, but both values remain high
enough to guarantee a good community partition. As for the first-level community descrip-
tion, coherence values increase for faster particles while mixing decreases. On the other
hand, a qualitative comparison between the different setups (given by panels (a)-(c)) shows a
lack of community robustness when varying the settling velocity and a slightly increasing
number of communities for faster particles. Finally, all communities have an elongated shape
in offshore direction. We argue that horizontal dispersion of particles may predominate in
offshore direction, causing the lateral advection of particles and the transport of coastline
particles to deep waters away from the coast, as previously observed in some studies (Pelegri
et al., 2005, Sangra et al., 2009, Fischer et al., 2020).

The community structure is also modulated by the depth of the collecting layer. We
show in Fig. 4.14 some quality parameters of the two-level community structure for varying
collecting depths. Releasing layer is fixed at zo = 100, and vy = 20m/day for all setups. We
conclude from Fig. 4.14(a) that the mean area of communities increases for larger distances
between layers, |z — zp|, according to a decrease in the number of communities. Note that we
lose statistical significance for highest vertical distances, for which we observe a deviation
from the trend. Finally, Figs. 4.14(b),(c) show a lose of coherence but a gain in mixing for

increasing depths.
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4.5 Conclusions

We have analyzed transport properties of sinking particles travelling between horizontal
layers in the Canary islands basin. In particular, we have applied the two-layer map and
transport measures defined in Chapter 3 to idealized sinking particles, whose dynamics are
governed by the external fluid flow and a settling velocity. Typical vertical velocities in the
external flow have limited the range for the possible settling velocities, from vy = 20m/day
to vy = 200m/day.

The first approach uses a geometric interpretation of transport, for which the Finite-Depth
Laypunov Exponent is applied. FDLE fields show one-year seasonality with higher disper-
sion rates taking place in winter, in accordance with seasonal instabilities of the flow along
the water column and observational results related to the spreading and lateral export of
particles around the Canary basin. FDLE fields organize the layer domains into regions of
different dynamical behavior. Maximum values define thin filaments, approximating the most
horizontal repelling lines of sinking particles travelling between layers, and show vortices

and horizontal fronts taking place along the Canary basin.

Focusing on March season, we observe a decreasing FDLE values for increasing final
depths. The FDLE results fom the combination of two well different processes: The de-
formation of fluid patches as they are advected by the three-dimensional flow and their
projection onto the bottom layer. The results indicate that the projection effect does not
cancel the dispersion laws of large-scale properties when varying the collecting depth or
settling velocities. In particular, there is an increase of stretching factos A and the appearance

of more filamental structures for increasing the collecting depth and slower particles.

The network approach analyzes transport properties from a statistical point of view using
a coarse-graining of the domain and applying concepts of network theory. The heuristic
relationship between FDLEs and network measures is checked in this realistic flow. The
relations show a good correlation with a slight deviation due to stretching factors associated
to the second eigendirection close to one.

Finally, coherent regions are characterized independently at each layer. The community
detection algorithm Infomap is applied over the two one-mode projection matrices to obtain a
domain partition into almost isolated regions with high internal mixing. The global structure
of transport gives a partition of the domain into two main communities along the offshore line
parallel to the Canary islands. However, a two-level partition of communities shows that the
community structure is modulated by settling velocities and bottom depths. Interestingly, all
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communities present an elongated shape in offshore direction, which suggests a predominance
of lateral transport of particles in offshore direction, from the surface close to the coast to
deep waters in the interior of the ocean.
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Fig. 4.5 FDLE field for 20m/day from zo = 100m and final layer at (a) z = 300, (b) z = 600,

and (c) z = 1200, starting in March.
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and (c) z = 1200, starting in March.
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Fig. 4.9 FDLE field showed at initial and final particle locations of the two-layer map.
Parameters are fixed at vy = 20m/day, zo = 100, z = 600.
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Fig. 4.10 Out-degree in the releasing layer (zo = 100) for vy = 20m/day. Collecting layers
are (a) z =300, (b) z =600 and (c) z = 1200.
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Fig. 4.11 Scatter plots of (a) Ko(i) vs (A); and (b) H(i) vs {log(A));. The diagonal red line
corresponds to equality and dots are colored according to collecting depth layers z = 300
(blue), z = 600 (yellow) and z = 1200 (red). Simulations are performed with vy = 20m/day

and zg = 100.
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Fig. 4.12 Partition of domain layers into two communities given by Infomap algorithm from
the two-one mode projections M?“ and M!". Particle dynamics are integrated forwards in
time with releasing and collecting layers set at zo = 100 and z = 600, respectively. Settling
parameter is fixed at (a) vy = 20m/day, (b) vy = 60m/day and (c) vy = 100m/day. Colors
are assigned randomly to each community. Global coherence and mixing ratios are (a)
ps, = 0.987, m; = 0.379, (b) p;, = 0.994, m7 = 0.264, and (c) p5, = 0.993, m;, = 0.236 for
community partition in the releasing layer, and (a) p; = 0.986, m?, = 0.381, (b) p3, = 0.995,
mZ, = 0.264, and (c) p;, = 0.995, m% = 0.236 for community partition in the collecting
layer.
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Fig. 4.13 Two-level Infomap partition of Fig. 4.12. Global coherence and mixing ratios are (a)
ps, = 0.883, m%, = 0.494, (b) pf, = 0.921, m7 = 0.334, and (c) p{, = 0.924, m7 = 0.332 for
community partition in the releasing layer, and (a) Pi, = 0.881, m§0 =0.487, (b) Pz, = 0.928,
m;, = 0.358, and (c) p3, = 0.937, m = 0.291 for community partition in the collecting

layer.
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Fig. 4.14 Quality parameters of community partition evaluated at the releasing layer zg =
100 for increasing distances between layers, |z —zo|. Settling velocity is fixed at vy =
20m/day and dynamics are integrated forwards in time. Quality parameters: (a) mean area
of communities and number of communities (inset), (b) global coherence and (c) global
mixing. The shadow in panel (a) corresponds to standard deviation.



Conclusions and Perspectives

We have analyzed the vertical distribution and dispersion properties of micropastics in the
Mediterranean sea. We have focused on negatively buoyant rigid microplastics, for which
the simplified MRG equation has been tested to be valid. For typical microplastics, the
dynamics has been simplified by adding a constant settling term to the external velocity field,
as previously used in Monroy et al. (2017) for marine biogenic particles. We have observed a
uniform distribution of particles along the water column, except at extremely low settling
velocities. The total amount of plastic present in the water column has been estimated to be
close to 1% of the floating plastic mass. We have also observed a weak vertical dispersion of
particles and the emergence of transient vertical distributions with deviations from Gaussian-
ity, related to anomalous diffusive behaviours dominating the vertical dispersion of particles
in some phases. We have argued that regional differences in the sinking process may be the

source of these diffusive behaviours.

On the other side, we have developed a formalism to describe transport structures of
particles travelling between two layers within a three-dimensional flow. This theoretical
framework aims to characterize the transport of particles that travel in a preferential direction,
which is of crucial interest for analyzing the motion of sinking particles in the ocean. A
two-layer map has been applied to map particle positions initially released at a given layer
onto a second one. Two different approaches have been adressed: the geometrical and
the probabilistic ones. Within the geometrical, we have characterized the deformation of
particle patches. Specifically, the formalism characterizes the transport between layers as
the combination of two different processes: the deformation of particle patches as they are
advected by the three-dimensional flow and its projection onto the bottom layer. A novel
measure, the Finite Depth Lyapunov Exponent, has been defined to quantify the dispersion
properties specific to the two-layer map, so it is a new and useful quantity for the study of
transport structures of sinking particles. On the other hand, the probabilistic point of view
uses tools from network theory and transport properties have been described in terms of
network degrees and entropies. Both descriptions of transport have been previously related

for two-dimensional flows (Ser-Giacomi et al. (2015a)). In this work, we have tested the
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heuristic relation for the two-layer characterization of transport in three-dimensional flows.
Also, we have used bipartite networks as a natural description for transport properties between
the two layers, for which the out-degree (defined at the releasing layer) and the in-degree
(defined at the collecting layer) have a clear physical meaning. The main numerical results
have been illustrated in a modified version of the analytical ABC flow model, in which we

have added a constant velocity pointing downwards.

Finally, we have applied the characterization to study sinking particles in the Canary
Island basin. Horizontal dispersion of sinking particles show one-year seasonality with higher
dispersion rates in winter. While final footprints of particles are the result of two combined
processes, it has been observed that the projection effect does not dominate the large-scale
properties of the flow. We have also compared FDLE values when varying settling velocity
of particles and the depth of collecting layers. As a main result, there is a trend of increasing
stretching values and the appearance of more filamentary structures for slowest particles and
for increasing distances between layers. Within the network approach, we have developed a
formalism to identify communities specific to each layer. As a first step, the transport matrix
defining connections between both layers has been projected onto each layer, providing a
description of similarity between fluid regions located at the same layer in terms of their fate
or origin. Next, Infomap algorithm has been applied to each one-mode transport matrix and
layers have been partitioned into almost isolated regions with high internal mixing. The main
result is the partition of the two-layer domain into two main communities along the offshore
line parallel to the Canary islands. Furthermore, all communities have an elongated shape

offshore, indicating a predominance of lateral export of particles from the coastline.

The developed formalism provides new insights into problems of sinking particles in the
ocean by the identification of the vertical skeleton of motion of particles traveling between
waters located at different depths. The result is a theoretical characterization that may be
useful in all future applications that focus on transport properties of sinking particles, such
as the study of sedimentation patterns, barriers to transport, or regions with high mixing
properties between regions located at different depths. The formalism may be useful to
analyze global patterns of connectivity between superficial and deep waters for sinking
particles present in the ocean, compare particle distributions of sinking particles between
different regions of the ocean and better understand the global cycles that mantain the
sustainability of life. Furthermore, as a novel application, community detection can be
practically useful, which is inaccessible without the network characterization. This approach

may characterize connectivity patterns between regions located at different depths, and find



4.5 Conclusions 99

almost-isolated regions along its vertical dynamics. This will be relevant for studies of
sedimentation, and for the identification of regions of interest, such as highly polluted regions
or with high primary activity, with sinking particles remaining in isolated regions along their
trajectories in the vertical direction.



Appendix A

Effect of deviations from spherical
particle shape on its settling

We complete the analysis of Chapter 2 by quantitatively assessing the impact of deviations
from a spherical shape of a falling particle through a correction to the settling velocity vs. The
simplified MRG equation, Eq. (2.3), or its first-order approximations in the Stokes number,
Egs. (2.4) and (B.1), are affected by particle geometry through the drag force and the added
mass term; however, accelerations are irrelevant for vg, so that the added mass term does
not appear in its formulation or in the simple approximation of Eq. (2.1). We will compare
values of the settling velocity describing nonspherical and spherical particles with the same
density, then finally comment on the results’ relevance for Egs. (2.3), (2.4) and (B.1).

Most generally, the settling velocity vector vg can be obtained by balancing the drag
force Fyrag (v—u) (a function of the difference of the particle and the fluid velocities, v and

u, respectively) with the resultant of gravitational and buoyancy forces:

0 =Farag(V—1) +V (0p— pr) (A.1)

with v —u = vy, where V is the particle’s volume, p, and py are the densities of the particle
and the fluid, respectively, and g is the gravitational acceleration vector. For a spherical
particle with radius a, the Stokes drag force reads as

FoPt (v —u) = —6mu(v—u)a, (A.2)



101

where U is the dynamical viscosity of the fluid. According to Leith (1987), Ganser (1993),

an appropriate approximation for small nonspherical particles is

1 2
Fiot (v—u) = —61p(v —u) (—an + —as) , (A3)

3 3

where a, is the radius of the sphere with equivalent area projected on the plane perpendicular
to the relative velocity v —u, and ay is the radius of the sphere with equivalent total surface.
From either of the last two equations, the settling velocity is obtained by substituting
v —u = vy, and solving Eq. (A.1) for v. We denote the magnitudes of the settling velocities
obtained from Eq. (A.2) and Eq. (A.3) by VP and ymom respectively.

To characterize the correction in the settling velocity for a given nonspherical particle
(with a given density pp) with respect to assuming a spherical shape with a radius a, we will

consider
vgnon) 3 y/ (non)

WP AT a2 (San + Fag)”

q (A4)

where V(™ is the real volume of the given particle. In order to evaluate Eq. (A.4), one has
to specify the shape and the size of the particle, its orientation with respect to its relative
velocity, and also how a is derived from its real size.

Note that it is always possible to define an a for which ¢ = 1, i.e., for which there is
no correction arising from the deviation from a spherical shape. In this sense, any choice
of a representing a spherical shape, including ours in the manuscript, describes the settling
velocity of certain nonspherical particles, the question is just their shape and size, which will
mutually depend on each other for a given a. We will nevertheless proceed by choosing a
shape class and defining a along independent considerations, because we intend to link a
given a to a single particle size as identified during the processing of field observations.

The shape of rigid microplastic particles is not usually described in the literature, but
we can see photographs of some examples in, e.g., Song et al. (2014), Fischer et al. (2015),
Bagaev et al. (2017). For an explorative computation, a reasonable choice seems to be a
rectangular cuboid with edges A, B=BA < A and C = CA < B < A, where one or both of B
and C are less than 1 but greater than, say, 0.1.

Under this assumption, the particle size will correspond to the longest edge, A, of the
cuboid if the size is identified through microscopy as the largest extension (“length”; e.g.,
Cozar et al., 2015); and it may be related more to the middle edge, B, if one thinks of a
sieving technique (e.g., Suaria et al., 2016). The naive choice willbe a =A/2 and a = B/2

in these two cases.
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We can substitute either of these choices of a in Eq. (A.4), as well as the appropriate

formulae describing the actual cuboid. V = ABC is unique, and so is as,

(A.S5)

AB+AC+BC\ ?
ag = T .

However, a, depends on the particle’s orientation with respect to the relative velocity.
Implications will be discussed when interpreting the results, and we take here all three

directions parallel to edges A, B and C to represent different possibilities. The corresponding

1
ABC\\ 2
= — A.
an x ( X ) (A.6)

expressions for a, read as

for X =A, BandC.

After substituting all these expressions in Eq. (A.4), we obtain

A (BENT
44 _oxpe (;) L2 (BrCyBO)| (A7)
qg(B/z) _ szqg?/z), (A.8)

where X = XA has been introduced.

We plot qu/z) in Fig. A.1 as a function of B and C for B,C € [0.1,1] with B > C. Its
range extends from 0.07 to 1.5 on this domain, but it drops below 0.1 only for C very close
to 0.1 and B below 0.2; i.e., for extremely thin rod-like particles, which do not appear to
be common based on photographs. The range of q/(j‘B/ 2) (not shown) on the same domain is
between 0.2 and 7, and values above 4 are again restricted to very small € and to B < 0.3.
The results are very similar for other choices of X, deviations beyond 20% with respect to
X = A are only found for small € and do not reach beyond 40% even there.

We have left the question which orientation is relevant open so far. In small-scale isotropic
turbulence, which is certainly present in the ocean, nonspherical particles have a preferential
alignment with certain characteristics of the flow but undergo rotation (Voth and Soldati,
2017). This is why we have chosen to simply cover three perpendicular orientations in our
analysis, and have found that differences that may arise from changes in the orientation are
minor in most of the domain describing shapes. The only relevant exception is small C with

B ~ 1. This regime may characterize paint flakes (Song et al., 2014, Bagaev et al., 2017), but
the relative difference remains below 40% even there.
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A2
@

Fig. A.1 qu/ ?) as a function of B and € for B,C €0.1,1] with B > C. Dotted lines represent
g =o0.1.

Even though the real advection of the particles will become more complicated as a result
of the ever-changing orientation and may thus be beyond the scope of the MRG equation
(cf. the discussion in the main text about the settling velocity of irregular particles), we
have found that changing orientation introduces minor variations in the value of the settling
velocity. Together with the absence of order-of-magnitude corrections that may arise from a
nonspherical shape (but comparing shapes under the assumption of the same particle density),
this gives quantitative support for the applicability of a spherical shape in Eq. (2.1) of the
main text.

Finally, we briefly comment on the more general Egs. (2.4) and (B.1), in which effects
from nonsphericity arise in the inertial term through added mass. Since corrections in added
mass with respect to a sphere are of order 1 for all common shapes (see Kaneko et al., 2014,
for an overview), we believe that the finding of App. B about the negligible importance of
inertial effects in these equations is not affected by a deviation from sphericity. The Stokes
number, which is proportional to the settling velocity and also depends on the coefficient of
added mass (St ~ T, with 7, given by Eq. (2.2)), is estimated to be 1073 — 1072 for spherical
particles in Sect. 2.4.1, so that it will not increase to 1 due to a nonspherical shape either,

hence leaving the approximation (2.4) of Eq. (2.3) valid.



Appendix B

Importance of different physical effects
in the dynamics of sinking particles

To complete the analysis of Chapter 2, we present here the detailed numerical analysis of the
relevance of a finite time of response (Stokes time, 7,) of the particle to the fluid forces, the
Coriolis force, and scales unresolved by the NEMO velocity field.

We incorporate the first two effects to a single equation,
D
V:u+vs+fp(ﬁ—1)(ﬁl;+29xu) , (B.1)

which is identical to Eq. (2.4) except for the addition of the Coriolis force, 2Q x u. Q
is Earth’s angular velocity vector. We include the Coriolis force because it can be more
important than the other inertial term, given by the fluid acceleration Du/Dt, in large-scale
ocean flows u (Haller and Sapsis, 2008, Monroy et al., 2017).

The effect of unresolved scales will also be estimated by keeping the original NEMO
velocity field u but modifying the equation of motion, Eq. (2.1), by adding a stochastic noise
term:

v=u+vy+W. (B.2)

W(t) = (v2Dpé«(t),/2Dp&y(t),/2D,E, (1)), where & (¢) is a vector Gaussian white noise

process (independent for each particle) of zero mean and with correlations given by (&;(11)€;(t2)) =
0;j0(t1 —t2) , i,j = x,y,z. Thus, the horizontal and vertical intensities of this term are given
by Dy, by D,, respectively.

The statistical properties are chosen to be similar to the ones expected for oceanic motions
below the scales resolved by the numerical model (Monroy et al., 2017, Kaandorp et al., 2020).

To do so, we use for D, Okubo’s empirical formulation (Okubo, 1971) that parameterizes the
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effective horizontal eddy-diffusion below a spatial scale £ as Dj,(£) = 2.055 x 10~4¢155m? /.
Taking for ¢ the horizontal resolution of our numerical model (1/12 degrees) we obtain
Dy, = 7.25 m*/s. Since the Okubo formula is an empirical fit to surface motions, and
effective horizontal diffusivity should be weaker below the thermocline, our results provide
an upper bound for the error associated with unresolved scales of fluid motion. For the
vertical diffusivity we take D, = 10~>m? /s.

In order to compare the different equations of motion, we release a large number N =
78803 of particles on the whole Mediterranean at 1 m depth on 8 January 2000. We associate
a B parameter to each particle by selecting it from a random uniform distribution in the range
B €[0.8,1), and once it is selected it remains fixed at all times for the corresponding particle.
High values of B (close to one) correspond to more buoyant plastic particles whereas low
values of 3 correspond to high settling velocities. The corresponding range of velocities
is vy € [1.776 x 1073,0) m/s. We integrate the particle trajectories using Eq. (2.1) and
also, from the same initial conditions, using the corrected dynamics in Eq. (B.1) or (B.2),
all with the same NEMO velocity field u. The horizontal and vertical distances between
particles released from the same point but evolved with different equations are compared by
calculating the following averages over particles:

N N
a0 =~ ¥ 10—l Ll =~ Y 20— )] B.3)
Nk:1 Nk:1

ry = (X, yx) is the horizontal position of particle k, z; is its vertical position, and the su-
perindices O and I indicate that the particle trajectory has been integrated by using the
reference equation, Eq. (2.1) or the one containing inertial corrections, Eq. (B.1). The quan-
tities d}’ (¢) and d)Y (), comparing Eq. (2.1) with the dynamics (B.2) modeling small-scale
flow effects, are defined analogously.

In Fig. B.1, we display the average distances d{l(t) and d!(t) as a function of time, char-
acterizing the corrections by inertial terms to the simple dynamics of Eq. (2.1). Analogously,
Fig. B.2 displays the average distances d)” (r) and d) () as a function of time, characterizing
the estimated corrections arising from small scales unresolved by the NEMO velocity field.
The effect induced by the inertial terms is very small and clearly negligible. The impact of
W, and thus of small unresolved scales is larger.

To evaluate the different effects more quantitatively, we summarize in Table B.1, consid-
ering particles separately in different density ranges (given by the ranges in 8 and associated
vs), the average horizontal and vertical pairwise particle distances, calculated after integrating
the different dynamics for 10 days. To fully appreciate the importance of these numbers, in

the two final columns we compute the horizontal and vertical average of the total distance
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Fig. B.1 Solid line indicates the average horizontal distance d,ll (a) and the average vertical
distance d! (b) of particles released from the same initial location but integrated with equations
(2.1) and (B.1) in the NEMO velocity field. Shaded region indicates the range of the distances
among the individual pairs of particles.
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Fig. B.2 Same as Fig. B.1 for the comparison of equations (2.1) and (B.2).

r traveled by the particles (using Eq. (2.1)) during the same interval of time. While the
influence of the inertial terms is completely irrelevant both in a relative and an absolute sense
for any realistic application, more care has to be taken with regards to the unresolved scales.
Although the vertical error associated with the latter remains small, its relative importance
hugely increases with decreasing settling velocity. (Indeed, it would tend to infinity for
approaching neutral buoyancy.) At the same time, the relative horizontal error is the biggest
for the fastest-sinking particles and is well above 10% for them.

We can also observe the time evolution of the d entries of this table in Figs. B.3 and B.4.
The overall effect of the unresolved scales is confirmed to be much larger than that of the
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B vs (1073 m/s) d! (m) dl (m) dy (m) d¥ (m) rp, (m) | r, (m)
[0.8,0.85) [ [1.78,1.25) || 60 (0.26%) | 0.016 (0.001%) || 2675 (11.8%) | 2.1 (0.16%) || 22601 | 1291
[0.85,0.9) | [1.25,0.79) || 42 (0.14%) | 0.010 (0.001%) || 2831  (9.7%) | 2.0 (0.24%) | 29278 | 870
[0.9,0.95) | [0.79,0.37) || 31 (0.08%) | 0.009 (0.002%) || 3313  (8.0%) | 2.1 (0.43%) | 41587 | 493
[0.95,1) | [0.37,0) 16 (0.03%) | 0.008 (0.005%) || 4668  (8.0%) | 2.7 (1.79%) | 58320 | 151

Table B.1 Average horizontal and vertical pairwise particle distances d and single-particle
displacements r after an integration time of 10 days. See text. d/r is indicated by percentages
in parentheses.
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Fig. B.3 Average horizontal distance d;’l (a) and average vertical distance d’ (b) of particles
released from the same initial location but integrated with equations (2.1) and (B.1) in the
NEMO velocity field. The different lines are obtained from particles from different ranges of
densities characterized by the indicated ranges in 3.

inertial terms, and the differences between particles with different densities (ranges of ) are

less noticeable (except for the smallest densities considered, i.e. f ~ 1).
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Fig. B.4 Same as Fig. B.3 for the comparison of equations (2.1) and (B.2).



Appendix C

The effect of bathymetry on vertical
dispersion

Complementing the analysis of Chapter 2, we investigate here if the finite and spatially
varying depth of the basin (the bathymetry) could affect the conclusions in Sect. 2.4.4
about vertical dispersion. The falling particles released from different locations reach the
seafloor at different times, and then computing some statistics over these particles involves an
increasingly narrow set of particles. Note that the bottom boundary (i.e., the seafloor) extends
from the surface (close to the coast) to the deepest point of the basin, it is thus relevant at
any time during the simulation. We intend to exclude three different effects arising from
the continual removal of particles: (i) distortion of the shape of the distribution close to the
boundary, (i1) poor quality of the statistics when many particles have already been lost, (iii)
decrease in the geographical area sampled by the particles.

We start with effect (i) by comparing, in Fig. C.1, the variance presented in the main text
(Fig. 2.7), computed over all sinking (but not yet sedimented) particles, and that computed
over a restricted set of particles. This restricted set contains only those particles at the
positions of which the bathymetry Z satisfies Z > (z;) — 30;, where the average (z;) and the
standard deviation o, are taken with respect to the original (unrestricted) set of particles.
This restriction is adaptive and ensures that the seafloor is sufficiently far for its effect on the
particle distribution to be negligible at the positions of all particles kept for the computation.
Fig. C.1 shows that the difference in the results between the full set and the restricted one
is negligible for all three settling velocities considered, except perhaps for the drop at the
very end of the time evolution, after the constant section, in Fig. C.1a. This drop is, however,
very short compared to the bulk of the sinking process and thus have minor importance.
Furthermore, the distribution of particles so close to the bottom (cf. Fig. 2.9) should anyway

be strongly influenced by resuspension and remixing by bottom currents (Kane et al., 2020).
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For the rest of the time evolution, we can be confident that a possible distortion of the particle
distribution induced by the boundaries has no impact on the variance curves. Such distortion
may be present, but the number of particles close to the seafloor is very small at any given
time instant (see the small difference between the numbers N of particles considered for
the two kinds of computation in Fig. C.1) so that they have a negligible contribution on the
originally computed variance. This is a result of the relatively weak dispersion; artifacts
might be found for broader distributions, possibly including a hypothetical continuation of
the v6 simulation. The time evolution of N in Fig. C.1 also assures us that poor-quality
statistics, effect (ii), does not arise until the final drop discussed in the previous paragraph.
Except for that very final section, the variance is estimated from a sufficiently large number
of particles to keep the relative error of the sample variance (with respect to the population
variance) very low. This is so because, under standard assumptions, the ratio between the
sample and the population variance should be close to a chi-square random variable with
N — 1 degrees of freedom, divided by N — 1 (Douillet, 2009).

The time evolution of N also suggests that effect (iii) is avoided as well: in Fig. C.1, there
is no sudden drop in the number of particles during the simulations that could result in the
changes in the slope of the curves of variance versus time. To further support this conclusion,
we compute the time evolution of the variance over the particles initialized in a subregion
of the whole Mediterranean, see in Fig. 2.8. In particular, we choose the box of longitudes
5,6.9] degrees, and latitudes [37.5,42] degrees, corresponding to the Sea of Sardinia, where
the bathymetry is deep enough to prevent particles from reaching the seafloor (except for the
very last few time steps of the v153 configuration), so that the horizontal area sampled by the
particles approximately remains constant (remember that horizontal displacements are small
compared to geographical features).

According to Fig. C.2, the character of the dispersion in the Sea of Sardinia is nearly
identical to that in the whole Mediterranean, except after the crossover from normal diffusive
to ballistic dispersion in the v153 case (Fig. C.2a). The smaller variance in the velocity
should naturally lead to a later crossover to the long-time behavior in the Sea of Sardinia (see
Section 2.4.4), it is nevertheless doubtful that the crossover should fall outside the simulation
time. As the crossover is not observed, one might speculate that horizontal mixing might just
get strong enough to suppress ballistic dispersion, similarly to the v68 case (see the discussion
of Fig. 2.7), for which the time evolution of the variance is very similar in the Sea of Sardinia
and the whole Mediterranean (Fig. C.2b). Fig. 2.8 suggests that the characteristic patch size
is smaller in the western basin of the Mediterranean, including the Sea of Sardinia, than in the
(considerably larger) eastern one, which makes inter-patch mixing easier. We conclude that

the only substantial difference between the dispersion in the Sea of Sardinia and the whole
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Mediterranean may originate from the smaller extension and some special characteristics
of the former, and the decrease in the area sampled in the whole-Mediterranean simulation
presumably has not effect on the results.

Based on these analyses, we believe that the findings of Section 2.4.4 are unaffected by
the boundary and thus have general relevance for oceanic dispersion.
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Fig. C.1 Variance of depth reached by all sinking particles (in black) and an adaptively
restricted subset of them (in yellow) as a function of time. See text for details. Straight
lines represent power laws for reference, with exponents 1 and 2. The number N of particles
considered for the computation of the variance is also shown.
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Fig. C.2 Variance of depth reached by all sinking particles (in black) and those initialized in
the Sea of Sardinia (in blue; longitudes in [5,6.9] degrees, and latitudes in [37.5,42] degrees)
as a function of time. See text for details. Straight lines represent power laws for reference,
with exponents 1 and 2.



Appendix D

Geometric approach to the fall of an
initially horizontal surface

In this Appendix we give further details on the geometry of projection and stretching that
is used in the geometric approach in Chapter 3. Some of the expressions presented here
were already derived or used in Refs. Drétos et al. (2019), Monroy et al. (2019), Sozza et al.
(2020).

4q:

qZL’ q,z Lo Pq

—U,

Fig. D.1 Sketch (in a two-dimensional situation) of the footprint or projection in the direction
of its motion, Zq, of a vector q = (¢x,gy) onto a horizontal collecting layer (in fact a col-
lecting line) when arriving there with velocity u = (u,,u,). We have 22q = (qx — qu/u;)X,
where X is the unit vector in the direction of the collecting line.

First, we derive expressions for the footprint left by a vector q on the collecting layer as it
arrives in it with a velocity u. We will apply the expressions to vectors tangent to the falling
surface at some specified point that behave as infinitesimal segments on the surface. Thus
the same u applies to the whole vector: u is the velocity field at the moment 7, at which the

specified point of the falling surface touches the collecting layer, and evaluated at the contact
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location. Figure D.1 shows a sketch of the geometry in a two-dimensional situation, so that
the components of the vector are (gy,q;) and those of the velocity (uy,u;). The horizontal
projection Zq of q along the direction of motion, or footprint, is made of two parts, g, and the
result of multiplying ¢, by the tangent of the angle between u and the vertical, i.e. g u,/(—u;).
Considering also the y component, the projected vector is 2q = (qx — gux/uz,qy — gty /u;)
and the vertical component (#q). is zero. The projection of q = (gx, gy,g;) onto the direction

of motion is a linear operation and thus it can be expressed as the action of a matrix & on

(1 0 —u/u,
@—(0 { _uy/uz>. (D.1)

A row of zeros can be added to the bottom if &?q is considered to be embedded in three-

the vector, with

dimensional space. An equivalent expression for this projection operator can be written in

terms of cross products:
Pq=1x (qxl) , (D.2)

where 2 is the unit vector in the positive vertical direction.

Let us consider a vector of the form T(¢) = w, which is tangent to the falling
surface at every time, and points initially (at time #y) along the direction on the release
layer specified by the parameter s. T =J , - T(ty) is its footprint on the collection layer.
Consideration (see Fig. 3.1) of the generation of this footprint as the composition of two
transformations, namely the three-dimensional stretching and transport towards the collecting
surface, T(t;) =J 4 - T(ty), and subsequent projection onto the horizontal along the direction

of motion, T = £ 1(t;), gives the following relationship:
Jy=21 4. (D.3)

This expression can be derived more formally by applying the chain rule to Eq. (3.4), as done
explicitly in Droétos et al. (2019) for the two-dimensional case. Since the singular values of
P are |u|/|u,| and 1, standard inequalities for singular values of products of matrices Horn
and Johnson (1991) allow to show that A; < Ay|u|/|u.| and AjAs < |u/u;|A1A;. This last
inequality is however improved by the exact equality in Eq. (3.15).

We now obtain expression (3.13) for the projection factor P entering the density factor.
We first note that T, = Z1T,(t;) and Ty = & 7,(t;). Thus, we can elaborate the expression
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for the density factor in Eq. (3.9) (we omit the time variable ¢, to simplify the notation):

F7' = |7, x1)| = |21, x 1|

_ ul%|(1,-x(2 u) —u(z- 1) % (Ty(2-u) — u(2- 1))

- % | (Tattz = w(0):) x (Tyuz — u(5,);)|

_ ﬁ 42(T2 % Ty) + (T)2(Ty X ) — (1) x )|

_ (Txxu:'y) u ’

_ “u_" 7, % 1, (D.4)

Comparing with Egs. (3.11) and (3.12) we identify the projection factor P = |u, /(- u)]|,
thus demonstrating Eq. (3.13).
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