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Abstract 

 

There is a myriad of microorganisms on Earth contributing to global biogeochemical cycles, and 

their interactions are considered pivotal for ecosystem function. Previous studies have already 

determined relationships between a limited number of microorganisms. Yet, we still need to 

understand a large number of interactions to increase our knowledge of complex microbiomes. 

This is challenging because of the vast number of possible interactions. Thus, microbial 

interactions still remain barely known to date. Networks are a great tool to handle the vast number 

of microorganisms and their connections, explore potential microbial interactions, and elucidate 

patterns of microbial ecosystems.  

This thesis locates at the intersection of network inference and network analysis. The 

presented methodology aims to support and advance marine microbial investigations by reducing 

noise and elucidating patterns in inferred association networks for subsequent biological down-

stream analyses. This thesis’s main contribution to marine microbial interactions studies is the 

development of the program EnDED (Environmentally-Driven Edge Detection), a computational 

framework to identify environmentally-driven associations inside microbial association 

networks, inferred from omics datasets. We applied the methodology to a model marine microbial 

ecosystem at the Blanes Bay Microbial Observatory (BBMO) in the North-Western 

Mediterranean Sea (ten years of monthly sampling). We also applied the methodology to a dataset 

compilation covering six global-ocean regions from the surface (3 m) to the deep ocean (down to 

4539 m). Thus, our methodology provided a step towards studying the marine microbial temporal 

patterns and the distribution in space via the horizontal (ocean regions) and vertical (water 

column) axes.  

To reach accurate interaction hypotheses, it is important to determine, quantify, and 

remove environmentally-driven associations from marine microbial association networks. 

Moreover, our results underlined the need to study the dynamic nature of networks, in contrast to 

using single static networks aggregated over time or space. Our novel methodologies can be used 

by a wide array of researchers investigating networks and interactions in diverse microbiomes. 
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Resumen 

 

Hay una gran cantidad de microorganismos en la Tierra que contribuyen a los ciclos 

biogeoquímicos globales, y sus interacciones se consideran fundamentales para la función del 

ecosistema. Estudios previos ya han determinado relaciones entre un número limitado de 

microorganismos. Sin embargo, todavía necesitamos comprender una gran cantidad de 

interacciones para aumentar nuestro conocimiento de los microbiomas más complejos. Esto 

representa un gran desafío debido a la gran cantidad de posibles interacciones. Por lo tanto, las 

interacciones microbianas son aun poco conocidas. Las redes representan una gran herramienta 

para analizar la gran cantidad de microorganismos y sus conexiones, explorar posibles 

interacciones y dilucidar patrones en ecosistemas microbianos.  

Esta tesis se ubica en la intersección entre la inferencia de redes y el análisis de redes. La 

metodología presentada tiene como objetivo avanzar las investigaciones sobre interacciones 

microbianas marinas mediante la reducción del ruido en las inferencias de redes y elucidar 

patrones en redes de asociación permitiendo análisis biológicos posteriores. La principal 

contribución de esta tesis a los estudios de interacciones microbianas marinas es el desarrollo del 

programa EnDED (Environmentally-Driven Edge Detection), un marco computacional para 

identificar asociaciones generadas por el medio ambiente en redes de asociaciones microbianas, 

inferidas a partir de datos ómicos. Aplicamos la metodología a un modelo de ecosistema 

microbiano marino en el Observatorio Microbiano de la Bahía de Blanes (BBMO) en el Mar 

Mediterráneo Noroccidental (diez años de muestreo mensual). También, aplicamos la 

metodología a una compilación de conjuntos de datos que cubren seis regiones oceánicas globales 

desde la superficie (3 m) hasta las profundidades del océano (hasta 4539 m). Por lo tanto, nuestra 

metodología significa un paso adelante hacia de los patrones temporales microbianos marinos y 

el estudio de la distribución microbiana marina en el espacio a través de los ejes horizontal 

(regiones oceánicas) y vertical (columna de agua).  

Para llegar a hipótesis de interacción precisas, es importante determinar, cuantificar y 

eliminar las asociaciones generadas por el medio ambiente en las redes de asociaciones 

microbianas marinas. Además, nuestros resultados subrayaron la necesidad de estudiar la 

naturaleza dinámica de las redes, en contraste con el uso de redes estáticas únicas agregadas en el 

tiempo o el espacio. Nuestras nuevas metodologías pueden ser utilizadas por una amplia gama de 

investigadores que investigan redes e interacciones en diversos microbiomas. 
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Resum 

 

Hi ha una infinitat de microorganismes a la Terra que contribueixen als cicles biogeoquímics 

mundials i les seves interaccions es consideren fonamentals pel funcionament dels ecosistemes. 

Estudis previs ja han determinat les relacions entre un nombre limitat de microorganismes. Tot i 

això, encara hem d’entendre un gran nombre d’interaccions per augmentar el nostre coneixement 

dels microbiomes complexos. Això és un repte a causa del gran nombre d'interaccions possibles. 

Per això, les interaccions microbianes encara són poc conegudes fins ara. Les xarxes són una gran 

eina per tractar el gran nombre de microorganismes i les seves connexions, explorar interaccions 

microbianes potencials i dilucidar patrons d’ecosistemes microbians.  

Aquesta tesi es sitúa a la intersecció de la inferència de xarxes i l’anàlisi de la xarxes. La 

metodologia presentada té com a objectiu donar suport i avançar en investigacions microbianes 

marines reduïnt el soroll i dilucidant patrons en xarxes d’associació inferides per a posteriors 

anàlisis biològiques. La principal contribució d’aquesta tesi als estudis d’interaccions microbianes 

marines és el desenvolupament del programa EnDED (Environmentally-Driven Edge Detection), 

un marc computacional per identificar associacions impulsades pel medi ambient dins de xarxes 

d’associació microbiana, inferides a partir de conjunts de dades òmics. Vam aplicar la 

metodologia a un model d’ecosistema microbià marí a l’Observatori Microbià de la Badia de 

Blanes (BBMO) al mar Mediterrani nord-occidental (deu anys de mostreig mensual). També hem 

aplicat la metodologia a una recopilació de dades que cobreix sis regions oceàniques globals des 

de la superfície (3 m) fins a l'oceà profund (fins a 4539 m). Per tant, la nostra metodologia va 

proporcionar un pas cap a l’estudi dels patrons temporals microbians marins i la distribució 

microbiana marina a l’espai a través dels eixos horitzontal (regions oceàniques) i vertical 

(columna d’aigua).  

Per arribar a hipòtesis d’interacció precises, és important determinar, quantificar i 

eliminar associacions impulsades pel medi ambient de les xarxes d’associació microbiana marina. 

A més, els nostres resultats van subratllar la necessitat d'estudiar la naturalesa dinàmica de les 

xarxes, en contrast amb l'ús de xarxes estàtiques individuals agregades al llarg del temps o l'espai. 

Les nostres noves metodologies poden ser utilitzades per una àmplia gamma d’investigadors que 

investiguen xarxes i interaccions en diversos microbiomes.  
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General introduction 
 

A graph is a simple mathematical object and can be found everywhere. 

The mathematical field of Graph Theory started with a riddle that entertained people in 

Königsberg in 1736 (Biggs et al., 1986; Barabási, 2003), when Leonhard Euler translated the real-

world problem into an abstract mathematical problem (Euler, 1741). Graph Theory became an 

export hit in various scientific fields. In general, graphs capture relationships between entities or 

objects, and they are the mathematical way to represent networks (Koutrouli et al., 2020). In turn, 

networks are powerful tools to represent complex systems (Barabási, 2003; Amaral & Ottino, 

2004). Thus, not surprisingly, they are found everywhere as they have diverse applications 

(Estrada & Knight, 2015), for example in biology. 

Various biological networks have been studied in the past decades and, for years to come, 

graph-theoretic methods will remain indispensable tools to further understand complex 

interconnected systems (Alm & Arkin, 2003; Faust & Raes, 2012; Layeghifard et al., 2017; 

Röttjers & Faust, 2018; Sporns, 2018). Alm and Arkin give two partial answers to what we can 

learn about biology by studying networks (Alm & Arkin, 2003): i) the use of network-based 

approaches to uncover patterns help to organize the vast collections of data, making them more 

accessible to and valuable for biologists; ii) the reformulation of existing biological questions 

from a network perspective has the potential to include all available data and to answer otherwise 

unsolvable questions. 

Although their applications and functions differ tremendously, real-world networks share 

universal properties. Networks have been characterized in the late nineties: networks are a small 

world (Watts & Strogatz, 1998), and the vast majority of networks are scale-free (Barabási & 

Albert, 1999). Thus, we can find a beautiful universality in network architecture. Moreover, 

graph-theoretic concepts applied in one field can be applied in another, e.g., studying the tiniest 

living beings on Earth, the micrrobes (microorganisms). 

 

A microorganism is the smallest (simplest) living entity and can be found everywhere. 

All living beings developed from a single microbial cell, and life without microorganisms would 

not be possible. Our human body provides a permanent albeit dynamic home to a vast number of 

microorganisms. They live within and outside us. The human microbiome, i.e., the set of 

microorganisms that colonize humans, is composed of about 3.8x1013 bacterial cells exceeding 

the number of human eukaryotic cells by a factor of 1.3 (Sender et al., 2016). The largest portion 

of the human microbiome is located in the digestive tract; the gut microbiota of a 70-kg person 

would weigh 0.2 kg (Sender et al., 2016). 
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While these numbers are already impressive, microorganisms play a far more significant role 

for the Earth. They are considered fundamental for the functioning of the global ecosystem 

(DeLong, 2009; Krabberød et al., 2017), and for the ocean biogeochemical cycling (Falkowski et 

al., 2008). The estimated number of microorganisms is around 1030 cells (Whitman et al., 1998; 

Kallmeyer et al., 2012). They constitute 60% of the biomass on Earth and carry out more 

photosynthesis than green plants (Demain & Adrio, 2008). In the sunlit ocean, photosynthetic 

microorganisms are responsible for ~50% of carbon fixation on Earth (Field et al., 1998). In the 

marine environment, microorganisms account for about 70% of the total marine biomass (Bar-

On et al., 2018). 

Although microorganisms dominate our world, they are the smallest living entities on Earth. 

Therefore, only the technological advance of the past centuries allowed their detection and 

quantification. To understand the microbial ecosystem, we need to know which microorganisms 

are there, how many microorganisms are there, and what influences them (environmental 

dependence). Extensive research elucidated these aspects. However, we also need to know how 

microorganisms are connected: we need to know who is interacting with whom. Despite the 

tremendous importance of microorganisms, their interactions are still barely known (Krabberød 

et al., 2017; Bjorbækmo et al., 2019). 

 

A network is a perfect tool to model interactions between microorganisms. 

The vast microbial diversity and the fact that most microorganisms are still uncultured (Baldauf, 

2008; Lewis et al., 2020) make it impossible to experimentally test all potential interactions. 

However, omics-technologies allow to estimate microbial sequence abundances over spatial and 

temporal scales and determine interaction hypotheses, e.g., via association analysis (Röttjers & 

Faust, 2018). These associations constitute a network, with nodes and edges representing 

microorganisms and potential interactions, respectively (Weiss et al., 2016; Layeghifard et al., 

2017). Networks’ inference and biological interpretation are in their infancy (Lv et al., 2019) with 

remaining open challenges (Faust, 2021). Nevertheless, as microorganisms are highly 

interconnected (Layeghifard et al., 2017), association networks provide a general overview of the 

entire microbial system and are valuable for generating interaction hypotheses. 

The awareness of the importance of microorganisms within the ecosystem has increased 

during the last decades. In particular, it has benefited from the development of new omics tools 

(e.g., genomics and metagenomics), analytical methods (i.e., algorithms), and computing 

performance. Therefore, currently, it is possible to explore microbial diversity, species 

distribution, and metabolic function in more depth. Such advances are having an essential impact 

on microbial ecology and microbiology. In particular, microbiologists are changing their 

perspective from a classical reductionist one (concentrating on one microbial group, species, or 
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metabolism), to another aiming to understand the functioning of ecosystems. Analyzing and 

converting microbiome data into meaningful biological insights is challenging (Layeghifard et 

al., 2017). Layeghifard et al. (2017) state that for understanding microbial ecosystems, it is 

essential to understand microbial interactions. Subsequently, to understand marine microbial 

interactions, it is essential to provide marine microbial ecologist with a clearer picture of true 

interactions, i.e., more truthful marine microbial associations. 

Right now, we live in a time in which collaborations between different research fields are 

becoming more and more necessary. For instance, ecologists profit from other specialists trained 

in algorithms and programming to investigate their data and extract information that ecologists 

are able to use for their investigations. In exchange, specialists (e.g., an applied- or bio-

mathematician), can profit from applying their theories on data from the natural world. 

Researchers trained in mathematics, computer science, and with a background in biology are 

required to make use of the technological advances in omics. Specifically, for this Ph.D. project, 

these advances allowed us to investigate marine microbial interactions at a great depth. This thesis 

is crossing fields between molecular biology, ecology, omics technologies, mathematics, 

especially network theory, and computer science. 

Previous network-based investigations have contributed to our understanding of marine 

microbial interactions. Still, what we know is only a drop in the ocean, in comparison to things 

yet to be discovered. Networks are a great tool to handle the vast number of microorganisms and 

their connections, explore potential microbial interactions, and elucidate patterns of microbial 

ecosystems. However, diverse challenges exist (see Chapter 4, and a recent listing of ten 

underexplored challenges (Faust, 2021)). Faust (2021) recently concluded that, if we want to learn 

more from microbial networks, we need to broaden our focus of research beyond inference 

algorithms and tackle underexplored challenges for microbial network construction and analysis. 

This thesis is located between network inference and interpretation. The main aims are presented 

in the next section. 
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Aims and Outline 
 

Aims 

The main aims of this thesis are 

- to improve the prediction of association networks for biological downstream 

analysis; 

- to provide better interaction hypotheses; 

- to elucidate temporal patterns; 

- to elucidate spatial patterns.   

The path from an initial constructed network to an interpretable one presents various 

challenges, as summarized in Chapter 4 that give context to this thesis. It would be challenging 

to experimentally tackle this matter, considering the vast number of microorganisms and potential 

interactions. Thus, networks are a great tool to generate interaction hypotheses, i.e., a set of 

potential interactions. Reducing the number of interaction hypotheses reduces the potential 

interactions to be experimentally tested. 

 

Objectives 

The project is located at the intersection of network inference and biological interpretation. In 

each subproject, we proposed steps that should be done after the construction and before the 

interpretation of a network to improve it before biological downstream analysis. Consequently, 

the following objectives had driven the doctoral subprojects: 

- Disentangle environmental effects: environmentally-driven association due to the 

environmental preferences of microorganisms or true interaction? 

- Unravel the temporal nature: permanent, seasonal, or temporal association? 

- Elucidate temporal patterns in a network constructed from a model marine microbial 

ecosystem at the Blanes Bay Microbial Observatory (BBMO) in the North-Western 

Mediterranean Sea. 

- Resolve the spatial distribution: global or regional association? 

- Enlighten depth-specific patterns in a network constructed from a compilation of four 

datasets covering different depths in global open oceans (North and South Atlantic, 

North and South Pacific, and Indian Oceans), and Mediterranean Sea. 

- Improve interaction hypotheses: select the associations that most likely are true 

interactions and reduce the set to the most interesting candidates for experimental 

testing by identifying the associations with highest temporal and spatial recurrence, 

respectively. 
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Outline 

In Part I, we introduced biological and graph-theoretic aspects. Moreover, we described 

association networks to study microbial interactions and the associated challenges. Results were 

then presented in Part II, which is a collection of three (submitted) manuscripts representing the 

main doctoral subprojects, and additional analyses. Finally, in Part III, we presented further 

discussions, future perspectives, and conclusions. 

 

Methodology 

The thesis aimed to increase our knowledge of microbial interactions in the oceans and the 

Mediterranean Sea by using omics approaches and tools from graph theory (networks). By 

combining them, it is possible to generate hypotheses on microbial interactions. Specifically, we 

investigated putative ecological interactions via marine microbial association networks. We used 

existing network construction tools on microbial data (16S and 18S rRNA gene data) either 

originating from a marine microbial observatory (temporal data), or from the global ocean (spatial 

data). 

 

Results 

The work provided further puzzle pieces to the quest on elucidating the microbial world. It 

widened the frontiers in marine microbial ecology and this was a step forward to better understand 

marine microbial ecosystems. More precisely, this thesis increased our knowledge on: 

- Associations between microbial taxa; 

- The architecture of networks displayed by ocean microorganisms; 

- How the network changes in time, with depth, and between oceans. 

Specifically, we provided the following improvements, which are further described in the three 

main doctoral subprojects: 

- a program to filter out environmental influence; 

- a methodology to generate a temporal network allowing to investigate temporal 

patterns over ten years for a model marine microbial ecosystem at the Blanes Bay 

Microbial Observatory in the North-Western Mediterranean Sea; 

- a methodology to generate sample-specific subnetworks allowing to explore 

horizontal and vertical patterns along spatial scales. It uses a compilation of four 

datasets covering five ocean basins (North and South Atlantic, North and South 

Pacific, and Indian Oceans), and the Mediterranean Sea from the surface to the deep 

ocean. 
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The three main subprojects 

In chapter 5, we aimed to distinguish true ecological interactions from associations representing 

environmental preference. This solved the problem of indirect dependencies due to environmental 

factors. We then applied our method to simulated data and an association network of a model 

marine microbial ecosystem at the Blanes Bay Microbial Observatory (BBMO) in the North-

Western Mediterranean Sea. We managed to reduce the number of edges, indirectly tackling the 

problem of dense networks. Moreover, we obtained a smaller and stronger set of potential 

associations, simplifying the testing of interaction hypotheses. However, there were still too many 

potential associations. Thus, we proposed another step of measuring association recurrence since 

an association with high recurrence (temporal and spatial) may be more likely to represent a true 

interaction.  

In chapter 6, we aimed to unravel the temporal nature and pattern of associations. This 

project took the marine microbial association studies on the model marine microbial ecosystem 

at the BBMO a step forward, by introducing the temporal dimension. We used the single static 

network and microbial sequence abundance to determine sample-specific (monthly) subnetworks 

that constituted a temporal network, i.e., each subnetwork was a layer in the temporal network. 

These subnetworks potentially represent a valid temporal game-changer in the field of marine 

microbial association studies until new data will allow to construct sample-specific networks 

(note: networks, not subnetworks). The temporal network allowed to distinguish between 

permanent, seasonal, and temporary associations. Hereby, we pinpointed the properties of season-

specific global networks. 

In chapter 7, building upon strategies from the former two, we disentangled the spatial 

distribution of associations in a marine microbial network of the global ocean and Mediterranean 

Sea. Using a compilation of datasets, we constructed a network covering different locations and 

depths. We adapted the sample-specific subnetworks approach, and aimed to distinguish between 

associations that are endemic to certain regions and global ones. Moreover, we determined the 

change of the microbial association networks between different depths and regions. Hereby, we 

pinpointed the properties of depth-specific subnetworks and identified clusters of similar 

subnetworks. 
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Part I Background 
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Chapter 1 Biological aspects 

 

The essential role of the ocean microbiome  

Marine microorganisms have critical functions in ecosystems. They contribute directly or 

indirectly to shaping and maintaining our current environment (Falkowski et al., 2008). In the 

ocean, they are essential players in biogeochemical cycles1 (DeLong, 2009). In particular, the 

smallest ocean microorganisms (so-called picoplankton) have a crucial role in the global carbon 

cycle (Worden et al., 2015). They account for a significant fraction of the total atmospheric carbon 

fixation in the ocean (Li, 1994; Jardillier et al., 2010; Massana, 2011) and for about 50% of the 

global primary productivity (Field et al., 1998). Besides the primary producer, heterotrophic 

marine picoplankton that preys on other picoplankton has a fundamental role in respiring organic 

carbon and channeling it to upper trophic levels when being preyed on itself (del Giorgio & 

Duarte, 2002; Massana, 2011). The ocean picoplankton constitutes the base of the marine food 

web and, subsequently, the marine ecosystem (Worden et al., 2015). 

Two types of microorganisms populate the ocean picoplankton: prokaryotes (including 

bacteria and archaea), and small eukaryotes. They feature fundamental differences in cellular 

structure, feeding habits, diversity of metabolism, growth rates, and ecological behavior (Massana 

& Logares, 2013; Keeling & Campo, 2017). Microbial communities are not a mere collection of 

independent individuals; they are interconnected ecological entities that communicate, cross-feed, 

recombine, and co-evolve (Layeghifard et al., 2017). Thus, to understand microbial ecosystems, 

it is essential to understand microbial interactions (Layeghifard et al., 2017). 

 

Marine microbial interactions 

Any type of biological interaction between two individual organisms is called symbiosis2. The 

organisms, so-called symbionts, either belong to the same or different species. Ecological 

interactions between pairs of symbionts can be positive (beneficial), neutral, or negative 

(disadvantageous), with consequences for one or both symbionts. The different types of symbiosis 

are classified according to their ecological effect on the organisms (Faust & Raes, 2012) (Table 

1). 

 
  

 
1 Biogeochemical cycle, also called cycling of substances, is a pathway in which a chemical substance (e.g., carbon, oxygen, or  
nitrogen) moves through biotic and abiotic parts of the Earth. In some systems, such as an ocean, there are reservoirs where a 
substance remains for a long period of time. Ecological systems have many biochemical cycles that function as a part of them.  All 
substances (chemical elements) that are present in organisms are part of biochemical cycles. 
2 Traditionally, symbiosis referred to mutualistic relationships.  Here, symbiosis is used in the broader sense to include all 
interactions. Martin & Schwab (2013) present a survey of the usage of the term symbiosis. 



 

 

10 

Table 1: Ecological interactions are categorized on the basis of the pairwise combination of the consequences for the two 
individual microorganisms. Such consequences are either beneficial (+), neutral (0), or disadvantageous (-). Mutualism: both 
interaction partner benefit. Commensalism: one benefits while the other neither has an advantage nor a disadvantage. Antagonism: 
one benefits while the other has a disadvantage (win-loss interactions, e.g., parasitism and predation). Amensalism: one has a 
disadvantage while the interaction is neutral for the other. Competition: both have a disadvantage. Neutralism: both are neither 
positively nor negatively impacted. 
 

Ecological interaction The consequence for species 1 The consequence for species 2 

Mutualism + + 

Commensalism + 0 

Antagonism + - 

Amensalism 0 - 

Competition - - 

Neutralism 0 0 

 

Microbial interactions may involve physical contact between the two partners or not. Within 

microbial communities, non-physical interactions can be substantial. For example, one 

microorganism releases toxic chemicals that inhibit the growth of others, or produces and releases 

a substance that may be essential for other members of the community. Thus, microbial 

interactions can also be predicted from a metabolic perspective. For example, complementarity 

in metabolite requirement and production in different microorganisms point towards an 

interaction (Borenstein & Feldman, 2009). Borenstein & Feldman (2009) introduced a pairwise 

measure that reflects the extent to which the nutritional requirements of one species could be 

satisfied by the biosynthetic3 capacity of another. Moreover, they show that this measurement 

reflects host-parasite interactions and facilitates predicting such interactions on a large scale. 

Several experiments and field studies investigated microbial interactions (Krabberød et al., 

2017) like intraspecific and interspecific competition (Fredrickson & Stephanopoulos, 1981), 

predation (Guerrero et al., 1986), parasitism (Chambouvet et al., 2008), and mutualism (Gast & 

Caron, 1996). For example, Guerrero et al. (1986) observed and characterized two kinds of 

predatory bacteria and concluded that antagonistic relationships, such as primary consumption, 

predation, and scavenging, had already evolved in microbial ecosystems before the appearance 

of eukaryotes. 

However, most marine microbial interactions are still unknown (Krabberød et al., 2017). Like 

the ones mentioned above, most studies focused on relationships within a single or few species, 

which provides no insight into the complex system of ecological interactions occurring in 

microbial communities. Thus, when studying an ecosystem, the possible interactions between all 

microorganisms that constitute it should be included. Finally, to achieve a holistic understanding 

of the ecosystem, at least two types of data are needed: 

- A list of components representing microorganisms; 

- A list of interactions between these components in a spatiotemporal context. 

 
3 Biosynthesis is a multi-step process catalysed by specific proteins (enzymes), where substances (substrates) are converted into 
more complex ones (products) in living organisms. 
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Recent advances in omics technology have allowed to retrieve a large number of microorganisms, 

and to improve the knowledge of ocean microbiome ecological relevance. The technological 

advance allowed to identify and quantify the list of components (next section), which is used to 

predict a list of interactions via associations (Chapter 3). 

 

Identifying and quantifying microorganisms 

Many microorganisms remain unknown or poorly known because they are uncultured (Baldauf, 

2008; Lewis et al., 2020). This limits the access to microbial genomes, gene-expression patterns, 

and metabolism, i.e., the information needed to make inferences about microbial function in the 

ecosystem. This limitation is currently overcome by relatively new high-performance approaches, 

including genomics, transcriptomics, metagenomics, metatranscriptomics, and single-cell 

genomics. 

The advances in omics tools resulted in a revolution in microbial molecular ecology 

(Dupont et al., 2010; Hasin et al., 2017). Briefly, the genome is the set of genetic material that 

every organism has, while the gene-expression4 patterns describe which parts are being expressed 

and used within the cell. Metabolism comprises processes or reactions needed to maintain life, 

subsequently, it is the set of life-sustaining chemical transformations. DNA regions on the 

genome are copied into genomic information called RNA transcripts. This is referred to as 

transcription: DNA is transcribed into RNA. Specific RNA, so-called messenger RNA (mRNA), 

act as a blueprint to form proteins; a process called translation: mRNA is translated into proteins. 

Following these definitions, genomics is the study of genomes. Metagenomics investigates the 

collective set of genomes within a community. Transcriptomics concentrates on the 

transcriptome, the complete set of RNA transcripts present in a cell under defined conditions and 

their quantities. Metatranscriptomics examines the collective set of RNA transcripts within a 

community. Finally, if these studies are applied to a single isolated cell, we might refer to single-

cell genomics and single-cell transcriptomics. Single-cell genomics and transcriptomics enable 

studying the extent and nature of genomic and transcriptomic heterogeneity (Macaulay & Voet, 

2014). Technologies to obtain omics data are high-throughput and generate a massive amount of 

data. Thus, we need new algorithms to work with such data in an acceptable amount of computing 

time. 

The advances in high-throughput technologies have made it possible to identify and quantify 

the list of components, that is, the microorganisms inhabiting the ocean (Li et al., 2016). The 

procedure to obtain such a list of components includes four main steps. 

 
4 Gene: a region on the DNA (Deoxyribonucleic acid) that transcribes into RNA (Ribonucleic acid). This RNA has a direct function 
or gets translated into an amino acid sequence. The set of all RNA of a cell at a given moment is used to determine the expression 
profile. 
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Sampling: The sampling of marine microorganisms in the open ocean occurs from a ship. 

Water is collected and typically filtered for different size fractions. The sampling might take place 

across different sites or time points of the same site. The former approach leads to spatial data, 

the latter to temporal data. The time component allows to better infer interactions between species 

and model the microbial ecosystem (Li et al., 2016). Li et al. state that, on the contrary of spatial 

data, temporal datasets provide a dynamic view of interactions, e.g., they can be used to infer the 

direction of dependency and therefore distinguish commensalism and competition (Li et al., 

2016). Together with the sampling, a large set of environmental variables are measured, such as 

temperature, salinity, and concentration of chlorophyll as a proxy for primary productivity 

(photosynthetic capacity), and many more. 

Sequencing: Once the microorganisms from the desired size fraction have been filtered, we 

can extract their genetic material for sequencing. Sequencing is the process of determining the 

genomic information in which the components of the DNA, called bases, are extracted as a linear 

sequence. Metagenomics aims to sequence the genomic content from a community of 

microorganisms to obtain a fair representation of what is in a natural sample. It is usually carried 

out via shotgun DNA sequencing, a method to sequence long DNA fragments. The DNA is 

randomly cut into numerous small pieces that are filtered for their length and sequenced. Not 

necessarily the entire fragments are sequenced, but a subsequence on one or both ends, which can 

overlap if fragments are sufficiently small. The latter approach is called paired-end sequencing. 

The resulting subsequences are called reads and paired-end reads (forward and reverse reads), 

respectively. They can be assembled, i.e., overlapped, to derive the DNA sequence from where 

they originated, through a bioinformatic process called assembly. The assembled reads compose 

a contiguous subsequences of the DNA (contig). The additional information obtained through 

paired-end sequencing, which is the distance between two paired-end reads, reveals contigs’ 

orientation, and allows to assemble them into scaffolds (Figure 1). 

 

 
 

 
 

Figure 1: Illustration of reads, contigs, and a scaffold. Reads assemble to contigs. Contigs can constitute scaffolds with the help 
of paired-end reads. 

Reads 

Contigs 

Scaffold 
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Sequencing the entire genomic content of each microorganism in a community is costly and 

generally unfeasible. Thus, another method, the commonly used polymerase chain reaction (PCR) 

technique copies a specific DNA fragment whose ends are defined (Erlich, 1989). Some specific 

genes or regions of the DNA have been profoundly studied and give enough information to 

identify microbial species. Thus, a shorter region is often sufficient and referred to marker or 

target genes. In taxonomy studies, the favored (gold-standard) marker gene codes5 for the small 

ribosomal subunit (Baker et al., 2003; McNichol et al., 2020), i.e., the 16S ribosomal RNA gene 

for prokaryotes (archaea and bacteria), and the 18S ribosomal RNA gene for eukaryotes, shortly 

referred to as 16S rRNA and 18S rRNA gene. These sequence data are widely used in molecular 

analysis to reconstruct the evolutionary history of organisms, because such regions have a low 

evolutionary rate, i.e., the sequence changes slowly over time. Moreover, the sequence is 

homologous between eukaryotes and prokaryotes since they share the same ancestor, but some 

sub-regions are variable, allowing to differentiate between different microorganisms that are 

closely related. This desired short DNA region coding for the 16S/18S rRNA gene is copied and 

multiplied, i.e., repeatedly synthesized during sequencing. We refer to it as the 16S/18S rRNA 

gene being amplified to generate thousands and millions of copies. Such a copy is called amplicon 

and typically consists of 200-450 bases. 

Clustering: The concept of a biological species for microorganisms is not clear. One of 

the main difficulties related to the analyses of marker genes is to distinguish sequencing errors 

from true heterogeneity (Bharti & Grimm, 2021). One pragmatic solution resolves sequencing 

errors by clustering reads on the basis of a predefined identity threshold into groups called 

Operational Taxonomic Units (OTUs) (Westcott & Schloss, 2015). OTUs may or may not agree 

with biological species. However, OTUs provide a “unit” used for ecological analyses (Logares 

et al., 2012). The number of OTUs depends on the similarity threshold (e.g., 97% vs. 99%), and 

on the clustering algorithm employed (Edgar, 2013; Sinclair et al., 2015).  

Another solution is a clustering-free approach, which uses a denoising approach on 

biological sequences before the introduction of amplification and sequencing errors (Tikhonov et 

al., 2015). The sequencing errors are sufficiently controlled, so sequences can be exactly resolved, 

leading to a fine resolution and allowing to separate sequences into so-called Amplicon Sequence 

Variants (ASVs) (Callahan et al., 2017). Using ASVs instead of “the threshold”-OTUs has its 

advantages, such as computational costs linearly scaling with size of the study, and the possibility 

of simple merging or comparison between independently processed data sets (Callahan et al., 

 
5 Coding: a specific combination of three DNA components (bases, more precise nucleotides) translate into one component of a 
protein (called amino acid). This mapping is not a bijective function: there are four nucleotides, i.e., 64 combinations of t riplets, but 
only 20 amino acids. Some combinations do not map to an amino acid and act as a stop of the translation. The translation scheme 
is called the genetic code. If a region of the DNA codes for a protein it means that the protein was built upon an mRNA copy from 
that DNA region. 
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2017). Callahan et al. (2017) state that replacing OTU with ASV makes marker-gene sequencing 

more precise, reusable, reproducible, and comprehensive. 

 Sequence abundance/count table: Once the OTUs/ASVs are defined, the amplicons are 

counted and represent the sequence abundance of the OTUs/ASVs in a sample. The collected 

sequence abundance data can then be further tabulated into a matrix. Numerous efforts have been 

made for sampling and they resulted in sequence abundance tables for marine microbial studies. 

Several expeditions provide samples from various locations worldwide or regionally, e.g., TARA 

Ocean (Karsenti et al., 2011), Malaspina (Duarte, 2015), and Hotmix (open Mediterranean Sea 

and the adjacent Northeast Atlantic Ocean) (Martínez-Pérez et al., 2017). In addition, several 

efforts have been made to obtain temporal data from microbial time-series, e.g., the San Pedro 

Ocean Time Series (SPOT) from the San Pedro Channel, off the coast of Los Angeles in southern 

California (Cram, Chow, et al., 2015), the Banyuls Bay Microbial Observatory (SOLA) (Lambert 

et al., 2021), and the Blanes Bay Microbial Observatory (BBMO) (Gasol et al., 2016). SOLA and 

BBMO are both located in the North-Western Mediterranean Sea. 

Here, we use in-house temporal and spatial data. Precisely, we had access to the ten-year 

BBMO time-series (Gasol et al., 2016) and data from the two expeditions Malaspina-2010 

(Duarte, 2015) and Hotmix (Martínez-Pérez et al., 2017). BBMO sampled one coastal location in 

the North-Western Mediterranean Sea (Gasol et al., 2016); Hotmix the open Mediterranean Sea 

and the adjacent Northeast Atlantic Ocean (Martínez-Pérez et al., 2017); and the Malaspina 

expedition covered several oceans. The Malaspina expedition aimed to explore the global 

biogeography, diversity, functioning, and genetic interaction of deep-ocean and surface marine 

microorganisms (from small eukaryotes to prokaryotes and viruses), for example through 16/18S 

rDNA sequencing, coupled to meta-genomics and meta-transcriptomics. The dataset contains 

picoplankton distributed worldwide, including ocean surface (3 m depth), deep ocean (~4000m 

depth), and data obtained along the water column (vertical profiles at 11 stations with up to 7 

depths from the surface to the deep ocean). 

Analyzing and converting microbiome data into meaningful biological insights is 

challenging, but network-based approaches have the potential to help disentangle microbial 

interactions (Layeghifard et al., 2017). The next chapter introduces and defines the mathematical 

aspects of networks. Before, we shortly introduce one specific microbial group. 

 

Example group: Cyanobacteria 

Microbial associations provide interaction hypotheses, which could lead to further investigations. 

This thesis focuses on general patterns but uses Cyanobacteria, the so-called blue-green algae, as 

an example group in Chapter 6). Cyanobacteria were selected because of their important 

ecological role as primary producers and their interactions with other organisms, e.g., to which 

they supply nitrogen (Scuito & Moro, 2015). Occurring in almost every habitat on Earth including 
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extreme environments (desert soils, glaciers, and hot springs) facing biotic and abiotic stresses, 

cyanobacteria produce a large array of metabolites including toxins (Scuito & Moro, 2015). 

Moreover, they require simple ingredients to grow and have a high growth rate. These 

characteristics allow a wide range of applications in nutrition, bioenergy, biotechnology, natural 

products, medicine, agriculture, and environment (Scuito & Moro, 2015; Zahra et al., 2020). For 

example, the production of anti-cancerous cyanobacterial bioactive compounds by Cyanobacteria 

makes them useful in the pharma and healthcare sectors (Qamar et al., 2021). Thus, cyanobacteria 

can have both positive and negative impacts on the environment and on human activities (Scuito 

& Moro, 2015). However, they have been far more critical to life on Earth. 

 Cyanobacteria are the first known oxygenic photosynthetic microorganisms. They 

contributed to the first rise in oxygen in the atmosphere of the Earth and shallow ocean, the so-

called Great Oxidation Event. However, it is unknown when they first appeared and past evidence 

based on molecular fossils was demonstrated invalid (Rasmussen et al., 2008). Thus, the most 

substantial indirect evidence for the appearance of oxygenic cyanobacteria is the rapid 

accumulation of atmospheric oxygen between 2.45 and 2.32 x 109 years ago (Bekker et al., 2004). 

This event is one of the most significant changes in Earth history, setting the stage for extensive 

transformations in ocean chemistry and the evolution of multicellular life (Pufahl & Hiatt, 2012). 

Pufahl and Hiatt (2012) concluded that it is the “utmost expression of co-evolution between the 

geosphere and biosphere”. The geosphere provided the chemical building blocks and ecological 

niches for early life. The biosphere provided oxygen, which changed the nature of weathering; 

nutrient cycling; mobility of redox-sensitive elements (like iron and uranium); and environmental 

stresses that pushed life along new evolutionary pathways (Pufahl & Hiatt, 2012). 

 Eukaryotic photosynthesis originated from the endosymbiosis of cyanobacterial-like 

organisms. In 1967, Lynn Margulis (then known as Sagan) revived the forgotten theory of 

organelle endosymbiont origin (Sagan, 1967), proposing the endosymbiotic origin of chloroplasts 

from Cyanobacteria (Mereschkowsky, 1905, 1910; Martin & Kowallik, 1999; Kowallik & 

Martin, 2021), and mitochondria from Alphaproteobacteria (Wallin, 1927). A decade later, 

Margulis’ hypothesis was tested with phylogenetic trees from protein sequences (Schwartz & 

Dayhoff, 1978). Conserved genes in chloroplasts and mitochondrial genomes clustered with 

cyanobacterial and alphaproteobacterial genes, respectively. However, questions like when, 

where, and how eukaryotic cells evolved remain unclear (López-García et al., 2017). 

Cyanobacteria have various shapes and sizes: from picoplankton (~500 nanometers in 

diameter, invisible in a conventional light microscope), to relatively large cells forming chains 

that are visible to the naked eye (Falkowski, 2015). They have symbiotic interactions with 

eukaryotes, e.g., they are prey to them. A literature-based eukaryote interaction database6, called 

 
6 Database downloaded 15th October 2019 and no updated version was available by 1st of June 2021. 
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PIDA (Bjorbækmo et al., 2019), lists 77 interactions involving Cyanobacteria. All of them 

belonged to Cyanophyceae and included the genera Synechococcus (16 entries) and 

Prochlorococcus (only one entry). Although these two genera comprise only 22% of the 77 

database entries, they were among the most abundant microorganisms in our datasets. We also 

found the genus Cyanobium within our data, but no entry for it in the interaction database. Given 

the importance of Cyanobacteria and the discrepancy between their known and potential 

(network-inferred) associations, they are an ideal candidate to highlight and investigate further. 

 

Final remarks 

 Marine microorganisms are crucial for the functioning of the ecosystem. 

 To understand the ecosystem, we need to i) identify and quantify the microorganisms; 

and ii) determine their interactions. 

 Advances in omics high-throughput technologies supported microbial investigations by 

identifying and quantifying microorganisms. 
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Chapter 2 Graph-theoretic aspects 

 

The interplay between microorganisms can be translated into mathematical language using 

networks. Network theory is part of graph theory. A network is a graph. In this thesis, I mainly 

used simple undirected graphs: 

- undirected means that edges are without a direction, no start nor end node; 

- there are no loops, meaning that no edge can connect a node to itself;  

- the graph does not contain multiple edges, meaning that there is either one or no edge 

between two nodes. 

The graph elements (nodes, edges) can have attributes assigned to them. For example, a node 

attribute may be the microbial taxonomic group, and an edge attribute the strength of the microbial 

association the edge represents. Thus, graphs are an ideal tool to comprise concisely much 

information within one object, the graph. Moreover, graph-based characteristics for nodes, edges, 

and emergent properties of the graph as a whole can be determined. 

 

Basic definitions 

The graph 

A graph 𝐺 is a pair (𝑉, 𝐸), with 𝑉 representing the set of nodes (an element of 𝑉 is called a node) 

and 𝐸 representing the set of edges (an element of 𝐸 is called an edge). An undirected edge 𝑒 =

(𝑣1, 𝑣2) has the nodes 𝑣1 and 𝑣2 at its ends. A directed edge 𝑒 = [𝑣1, 𝑣2] has a start node 𝑣1 and 

an end node 𝑣2. Here, 𝑉 is a finite set. It constitutes the set of 𝐸 using pairs from 𝑉, i.e., 𝐸 is a 

subset of (𝑉, 𝑉). 

 

Definition 1 

A graph G = (V, E) is defined through a set of nodes, V = {v1, … , vn}, and a set of edges between 

nodes, E = {e: e = (vi, vj) = (vj, 𝑣𝑖) with vi, vj ∈ V, and i ≠ j}. 

 

Two nodes are adjacent if they are connected through an edge. An edge and a node on 

that edge are incident. A graph can be represented through an adjacency matrix in which the 

columns and rows represent the nodes. If two nodes connect through an edge, the entry in the 

matrix is 1; otherwise, it is 0. If the graph is undirected, i.e., all edges are undirected, the adjacency 

matrix is symmetric. Further, a graph can be represented through an incidence matrix in which 

the columns represent the edges and rows represent the nodes. If an edge and a node are incident, 

the entry in the matrix is 1; otherwise, it is 0. Lastly, a graph can also be represented through an 
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edge list. If the matrix is sparse, i.e., the adjacency/incidence matrix contain many zeros, the 

network is usually stored as a list to reduce memory requirement. 

 

Neighbors of nodes 

Given a node 𝑣𝑖 is adjacent to node 𝑣𝑗. Then, node 𝑣𝑗 is called the neighbor of node 𝑣𝑖. All 

neighbors of  𝑣𝑖 constitute the neighborhood of node 𝑣𝑖, the set 𝑁𝑣 = {𝑣1, … , 𝑣𝑘} ⊆ 𝑉. The 

number of neighbors is the degree of a node in an undirected network. In a directed network, the 

number of edges pointing to the node is the in-degree, and the number of edges pointing away the 

out-degree. Let 𝑛𝑘 be the number of nodes in the network with degree 𝑘. Then the degree 

distribution 𝑝𝑘 is the probability that a randomly chosen node in graph 𝐺 has degree 𝑘.  

 

Definition 2 

The degree of a node 𝑣 in 𝑉 of graph 𝐺 is the number of edges attached to it, i.e., the cardinality 

of its neighborhood. Let |𝑉| = 𝑛 and 𝑛𝑘 is the number of nodes with degree 𝑘. Then, the degree 

distribution 𝑃(𝑘) of the network is the fraction of nodes with degree 𝑘: 

𝑃(𝑘) =
𝑛𝑘

𝑛
. 

 

Paths and shortest paths 

A path between two nodes is a sequence of edges that connect them, i.e., the edges needed to 

traverse the graph to get from one node to another node. The number of edges is the length 𝑙 of 

the path. A path of minimum length, 𝑙𝑚𝑖𝑛, is called a shortest path. The shortest path between 

two nodes may not be unique. The length of the shortest path between two nodes is the distance 

of these two nodes: 𝑑(𝑣𝑖 , 𝑣𝑗) = 𝑙𝑚𝑖𝑛 . We say a network is connected if there exists a path between 

all pairs of nodes, i.e., it exists a path (𝑣𝑖 = 𝑣1, 𝑣2, … , 𝑣𝑙 = 𝑣𝑗) with length 𝑙 ≥ 0, 𝑙 ∈ ℕ for all 

disjunct pairs of nodes {𝑣𝑖 , 𝑣𝑗} in 𝑉 with 𝑖 ≠ 𝑗. 

 

Connected and unconnected graphs 

A graph can be connected or unconnected. A connected graph contains a path between any two 

nodes. An unconnected graph contains at least one node that is not connected to at least one other 

node. A complete graph is a special case of a connected graph: each node connects to every other 

node through one edge, i.e., all shortest paths have length 1. 

 

Subgraph and induced subgraph 

Given graph 𝐺 with node set 𝑉 and edge set 𝐸, graph 𝐺’ is called a subgraph of graph 𝐺 if its 

node-set 𝑉’ is a subset of 𝑉 and its edge-set 𝐸’ a subset of 𝐸. All nodes incident to the edges in 𝐸’ 
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also appear in 𝑉’. In contrast, not all edges incident to the nodes in 𝑉’ must appear 𝐸’. On the 

contrary, an induced subgraph 𝐺’’ of graph 𝐺 has a subset 𝑉’’ of the node-set 𝑉, and all incident 

edges appearing in graph 𝐺 also appear in the subgraph 𝐺’’. 

 

Clique 

A clique is a fully connected (complete) subgraph, i.e., each node connects to all other nodes 

through one edge. 

 

Triplet 

A triplet is a tiny graph consisting of three nodes connected via two edges (open triplet) or three 

edges (closed triplet). A closed triplet is a clique. 

 

Global graph metrics 

There are redundancies between global graph metrics grouping them into four so-called 

redundancy clusters (Jamakovic & Uhlig, 2008). Thus, for graph characterization, we selected 

one from each redundancy cluster: average path length (distance cluster), transitivity (degree 

cluster), edge density (intra-connectedness), and assortativity based on node degree (inter-

connectedness). The latter can also be determined on the basis of a nominal classification, e.g., 

using the two taxonomic groups eukaryote and prokaryote. The global graph metrics are defined 

below. 

 

Average Path Length 

Definition 3 

The average path length is the average length of all possible shortest paths in the graph. 

Therefore, it is a positive number. 

 

Transitivity 

The transitivity, or clustering coefficient, measures the probability that two neighbors of a node 

are also connected. Here, we define transitivity through the global clustering coefficient 𝐶 of a 

graph. It is defined as the number of closed triplets over the total number of triplets, i.e., open and 

closed triplets: 

 

𝐶 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑠𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠
. 
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Further, let 𝑁𝑖  be the neighborhood of node 𝑣𝑖 and 𝑘𝑖 = |𝑁𝑖| be the number of its neighbors. The 

local clustering coefficient 𝐶𝑖  of node 𝑣𝑖 is the proportion of edges between the nodes within its 

neighbors divided by the potential number of edges between them, 𝑘𝑚𝑎𝑥. Then the local clustering 

coefficient of node 𝑣𝑖 is computed as 

 

𝐶𝑖 =
|{(𝑣ℎ, 𝑣𝑗): 𝑣ℎ, 𝑣𝑗 ∈ 𝑁𝑖  ∧ (𝑣ℎ , 𝑣𝑗) ∈  𝐸}|

𝑘𝑚𝑎𝑥  
. 

 

For an undirected network 𝑘𝑚𝑎𝑥 =
1

2
𝑘𝑖(𝑘𝑖 − 1), and directed network 𝑘𝑚𝑎𝑥 = 𝑘𝑖(𝑘𝑖 − 1). 

Alternatively, to the global clustering coefficient, the overall level of clustering in a network can 

also be measured through the average clustering coefficient, which is the average of the local 

clustering coefficients of all nodes (Watts & Strogatz, 1998):  

 

𝐶̅ =
1

𝑛
∑ 𝐶𝑖

𝑛

𝑖=1

. 

 

Definition 4 

The transitivity, measuring how well nodes cluster together, is the ratio of closed triplets to all 

triplets, i.e., closed and open triplets. The transitivity ranges between 0 and 1. 

 

Edge density 

Definition 5 

The edge density, measuring how well the graph is connected, is the ratio of observed to possible 

edges. Given a graph G = (V, E), the edge density is 
2|𝐸|

|𝑉|∙(|𝑉|−1)
 with |V| and |E| representing the 

cardinality of the node and the edge set, respectively. The edge density ranges between 0 and 1. 

 

Assortativity 

The fourth metric, the assortativity coefficient, measures the relationship between nodes 

(Newman, 2002). The following explanations are adapted from (Newman, 2002). In general, 

assortativity ranges between -1 and 1. It is positive if similar nodes (on the basis of an external 

property) tend to connect, and negative otherwise. If it is 1, the graph has perfect assortative 

mixing patterns (assortative graph), zero indicates non-assortativity, and -1 complete 

disassortativity. The popular external metric is the node degree. 

 Defining assortativity is not straightforward. Above, we defined the degree distribution 

(Definition 2). However, if we randomly choose an edge in 𝐸 of graph 𝐺 and consider the incident 
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node 𝑣, its node degree is not distributed according to the above-defined degree distribution. It is 

biased in favor of high-degree nodes because more edges end at a high-degree node than a low-

degree node. Subsequently, the degree distribution for the node at the end of a randomly chosen 

edge is proportional to 𝑘𝑝𝑘. If we use one edge to get to a node, then the other “remaining” edges 

comprise the remaining degree. 

 

Definition 6 

The remaining degree of a node 𝑣 in 𝑉 of graph 𝐺 is the number of edges attached to it minus 1. 

It is distributed in proportion to (𝑘 + 1)𝑝𝑘+1. Thus, the normalized distribution 𝑞𝑘 of remaining 

degrees is 𝑞𝑘 =
(𝑘+1)𝑝𝑘+1

∑ 𝑗𝑝𝑗𝑗
. 

 

An edge connects two nodes. Then the joint probability distribution 𝑒𝑗𝑘 of the remaining 

degrees of two nodes incident to a randomly chosen edge, obeys the sum rules ∑ 𝑒𝑗𝑘 = 1𝑗,𝑘 , and 

∑ 𝑒𝑗𝑘 = 𝑞𝑘𝑗 . In a disassortative graph, 𝑒𝑗𝑘 takes the value 𝑞𝑗𝑞𝑘. In an assortative network, 𝑒𝑗𝑘 

differs from that value. The amount of assortative mixing in a graph can be quantified by 

averaging the differences: ∑ 𝑗𝑘(𝑒𝑗𝑘 − 𝑞𝑗𝑞𝑘)𝑗,𝑘 . This is the so-called connected degree-degree 

correlation function. It is zero for no assortative mixing. It is positive for assortative and negative 

for disassortative mixing. The value is normalized by dividing it by its maximal value, obtained 

on a perfectly assortative graph. This value is equal to the variance 𝜎𝑞
2 = ∑ 𝑘2𝑞𝑘 − [∑ 𝑘𝑞𝑘𝑘 ]2

𝑘  

of the distribution 𝑞𝑘. 

 Now, we can define assortativity on the basis of the external node characteristic “node 

degree”. In addition, we also define assortativity with a nominal characteristic. 

 

Definition 7 

The assortativity (degree) is the Pearson correlation coefficient of degrees at either ends of an 

edge: 𝑟 =
1

𝜎𝑞
2 ∑ 𝑗𝑘(𝑒𝑗𝑘 − 𝑞𝑗𝑞𝑘)𝑗,𝑘 . 

The assortativity (nominal) is the assortativity for categorical labels of nodes:  

𝑟 =
∑ 𝑒(𝑖,𝑖)− ∑ 𝑎(𝑖)𝑏(𝑖)𝑖𝑖

1−∑ 𝑎(𝑖)𝑏(𝑖)𝑖
, 

where 𝑎(𝑖) = ∑ 𝑒(𝑖, 𝑗)𝑗  and 𝑏(𝑗) = ∑ 𝑒(𝑖, 𝑗)𝑖 , 𝑒(𝑖, 𝑗) is the fraction of edges connecting nodes of 

type 𝑖 and 𝑗, and, subsequently, e(i,i) is the fraction of edges connecting nodes of the same type 

i. 

 

In our work, we use both assortativity on the basis of degree and a nominal classification. 

Precisely, we use the taxonomic classification into eukaryote (Euk) and prokaryote (Prok). 
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Moreover, our graph 𝐺 is a simple undirected graph leading to 𝑒(𝑖, 𝑗) = 𝑒(𝑗, 𝑖). Thus, the formula 

for assortativity (nominal) simplifies to 

 

𝑟 =
𝑒(𝐸𝑢𝑘,𝐸𝑢𝑘)+𝑒(𝑃𝑟𝑜𝑘,𝑃𝑟𝑜𝑘)−2𝑒(𝐸𝑢𝑘,𝑃𝑟𝑜𝑘)2

1−2𝑒(𝐸𝑢𝑘,𝑃𝑟𝑜𝑘)2 . 

 

Local graph metrics 

Global and local graph metrics characterize graphs. Above we described global graph metrics 

(edge density, average path length, transitivity, and assortativity). However, global graph metrics 

disregard local structures’ complexity, and topological analyses should include local graph 

metrics (Espejo et al., 2020). Local-topological metrics may use either motifs or graphlets. Motifs 

are subgraphs, and graphlets are induced subgraphs. Thus, the latter preserves all connections 

among nodes contrary to motifs. 

Graphlets are small connected induced subgraphs of a graph (Pržulj et al., 2004), i.e., a 

graphlet considers all edges for a given set of nodes. The smallest graphlet contains two nodes 

and one edge (G0). Graphlets with three nodes have two edges (G1) or three edges (G2). G1 and 

G2 are an open and a closed triplet, respectively. While the roles of a node in G2 are comparable 

(each node has two neighbors), there are two roles within G1: being connected to two nodes or 

being connected to one node. 

Mathematically, an open triplet has two automorphism orbits: orbit 1, the node is 

connected to one other node (black node in G1 in Figure 2), and orbit 2, the node is connected to 

two other nodes (white node in G1 in Figure 2). Let 𝑣 be a node in a graph 𝐺. Then, the 

automorphism orbit of 𝑣 is the set of nodes of 𝐺 that can be mapped to 𝑣 by an automorphism (an 

isomorphism of a network with itself) (Yaveroǧlu et al., 2014). Nodes of the same automorphism 

orbit within a graphlet are indicated in the same color in Figure 2, e.g., the two black nodes in G1. 

Any bijection of nodes belonging to the same automorphism orbit preserves node adjacency. 

Orbits define the relative position of nodes with respect to other nodes in the graphlet. There are 

15 orbits among the nine 2- to 4-node graphlets (Figure 2). 

Orbits extend the node degree through the so-called graphlet degree vector. Let 𝐶𝑖  be the 

𝑖-th graphlet degree of a node with 𝑖 indicating the orbit (see orbit 0 to 14 in Figure 2). For 

example, 𝐶0 is the degree of a node as it counts the number of times the node is touched by orbit 

0. Similarly, 𝐶2 is the graphlet degree for orbit 2 and 𝐶3 the graphlet degree for orbit 3. Graphlets 

provide a complete description of local graph topology (Espejo et al., 2020). Although 

considering all graphlet sizes may complete the description of graph topology, it would be 

computationally expensive. 
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Figure 2: The nine 2- to 4-node graphlets G0, …, G8. Nodes of the same color belong to the same role (automorphism orbit). Some 
orbits are redundant as their counts in a network can be derived from the counts of other orbits. The 11 red circles indicate non-
redundant orbits. The selection of non-redundant orbits is not unique. I adapted this figure from Figure 1d in (Yaveroǧlu et al., 2014). 
 

Some orbits can be computed from others, leaving 11 non-redundant orbits among the 

nine 2- to 4-node graphlets (Yaveroǧlu et al., 2014). For example, consider a node with 𝐶0 

neighbors (orbit 0 in graphlet 𝐺0). The neighbors of the node can either be connected (a closed 

triplet, then the node touches orbit 3 in graphlet 𝐺2) or they are not connected (an open triplet, 

then the node touches orbit 2 in graphlet 𝐺1). With 𝐶0 neighbors, there are (𝐶0
2

) =
𝐶0(𝐶0−1)

2
 pairs 

of neighbors that are either connected or not connected. Then, (𝐶0
2

) = 𝐶2 + 𝐶3. Thus, one of the 

three orbit degrees (𝐶0, 𝐶2, or 𝐶3) is redundant as it can be computed from the other two. 

Yaveroğlu et al. (2014) indicate this simple and another 16 independent orbit redundancy 

equations (i.e., they cannot be derived from other equations). 

The selection of non-redundant orbits is not unique as there are several ways to choose 

non-redundant orbits (Yaveroǧlu et al., 2014). One set of 11 non-redundant orbits is indicated in 

red in Figure 2. Yaveroğlu et al. (2014) proposed to analyze these 11 non-redundant orbits to 

characterize graph structure and to determining graph (dis)similarity. Shortly, given there are 𝑛 

nodes in graph 𝐺. First, for each node, the graphlet degree vector considering the 11 non-

redundant orbits is determined. The vectors are comprised to a 𝑛 ×  11 matrix, i.e., it has 𝑛 rows 

and 11 columns. The number of rows is equal to the number of nodes in the graph. The number 

of columns is equal to the number of the considered graphlet degrees. 

The 𝑛 ×  11 matrix listing all graphlet degree vectors is used to compute a new statistic 

for the graph by computing the Spearman’s correlation coefficients between all pairs of columns, 

which aims to exploit the existence of monotonic correlations between the non-redundant orbits. 

If one of the non-redundant orbits does not appear in the graph, the corresponding column 

contains only 0. The Spearman’s correlation coefficient cannot be computed for these orbits but 
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Yaveroğlu et al. (2014) overcame this computation problem by adding a pseudo row to the matrix, 

i.e., a dummy graphlet degree vector, [1, 1, ⋯ , 1] resulting in a (𝑛 + 1)  ×  11 matrix. Orbits for 

which all graphlet degrees are 0 will correlate perfectly resulting in a Spearman correlation 

coefficient of 1. Further, these orbits will not correlate with non-zero orbits resulting in a 

Spearman correlation coefficient of 0. 

This results in a symmetric 11 ×  11 matrix, which is called graphlet correlation matrix 

(GCM) (Yaveroǧlu et al., 2014). Thus, regardless of the number of nodes in a network, the 

topology of a graph can be summarized into an 11 ×  11 matrix with values in the interval [−1, 1] 

(Yaveroǧlu et al., 2014). That is, the GCM encodes the topology of a network using correlations 

between node properties contained in their non-redundant orbit counts (Yaveroǧlu et al., 2014). 

Generally, different real and model graphs have very different orbit dependencies 

resulting in different GCMs according to Yaveroğlu et al. (2014), who used the GCM to define a 

distance metric to measure graph dissimilarity. We indicate the matrix element in row 𝑖 and 

column 𝑗 with 𝐺𝐶𝑀(𝑖, 𝑗). Further, two graphs 𝐺1 and 𝐺2 are given via their graphlet correlation 

matrices 𝐺𝐶𝑀𝐺1
 and 𝐺𝐶𝑀𝐺2

. Then, we can measure graph dissimilarity via the so-called graphlet 

correlation distance (GCD), which is computed as the Euclidean distance of the upper triangle 

values of 𝐺𝐶𝑀𝐺1
 and 𝐺𝐶𝑀𝐺2

: 

 

𝐺𝐶𝐷(𝐺1, 𝐺2) = √∑ ∑ (𝐺𝐶𝑀𝐺1
(𝑖, 𝑗) − 𝐺𝐶𝑀𝐺2

(𝑖, 𝑗))
2

11
𝑗=𝑖+1

10
𝑖=1 . 

 

Thus, GCD encodes information about local network topology and provides a non-negative 

distance between two graphs, with 0 indicating identical graphs and the greater the distance the 

less similar (more dissimilar) are two graphs (Yaveroǧlu et al., 2014). 

 

Different types of graphs 

There are different types of graphs; the four main types of graphs, according to (Layeghifard et 

al., 2017) are i) regular graph, ii) random graph, iii) small-world graph, and iv) scale-free graph. 

Within a regular graph, each node has the same number of edges. In a random graph, nodes 

randomly connect. Within a small-world graph, most nodes can be reached from any other node 

through a path of short length. Let the average shortest path length be approximately the same as 

one of a random graph. Then the random and small-world graphs differ in their average clustering 

coefficient as the one of a small-world graph is higher than the one of a random graph. Scale-free 

graphs are characterized through their degree distribution of nodes, which follow a power law, 

i.e., for a constant 𝛾 > 0 is 𝑃(𝑘)~𝑘−𝛾 (Barabási & Albert, 1999). 
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Moreover, let the node-set V be divided into two disjunct sets, and edges only connect 

nodes from one set with nodes from the other disjunct set, i.e., there are no edges connecting 

nodes within the same set. Then the graph is called bipartite. Bipartite graphs are often used to 

connect two types of nodes, e.g., hosts with parasites. 

A minimal spanning tree is a special case of a connected subgraph of a graph. The edges 

of the graph are assigned an edge weight. The edges of the minimal spanning tree are chosen so 

that i) all nodes are connected through a path, and ii) the sum of edge weight is minimal. 

In order to define a temporal graph, we first define a more generalized object, a multilayer 

graph, of which temporal graphs are a special case. A multilayer graph comprises several layers. 

Each layer is a simple graph with its nodes and edges. Moreover, the graphs in different layers 

can be connected, allowing edges between layers similar to edges in bipartite graphs. On the basis 

of previous work (Bianconi, 2018), we define a general multilayer graph as follows: 

 

Definition 9 

A multilayer graph 𝑀 is given through the triple ℳ = (𝑌, �⃗�, 𝒢). 

- 𝑌 is the set of layers 𝑌 = {𝛼|𝛼 ∈ {1,2, ⋯ , 𝑀}}, with 𝑀 indicating the total number of layers. 

- �⃗� indicates the ordered list of graphs characterizing the interactions within each layer 𝛼 =

1,2, ⋯ , 𝑀, i.e., �⃗� = (𝐺1, 𝐺2, ⋯ , 𝐺𝛼, ⋯ , 𝐺𝑀), where 𝐺𝛼 = (𝑉𝛼, 𝐸𝛼) is the graph in layer 𝛼. The 

set of nodes of layer 𝛼 is 𝑉𝛼 and the set of edges 𝐸𝛼. These edges are also called intra-edges. 

- 𝒢 is a 𝑀 × 𝑀 list describing the edges between layers. Elements of 𝒢 are denoted as 𝒢𝛼,𝛽, 

which are given by 𝒢𝛼,𝛽 = (𝑉𝛼, 𝑉𝛽 , 𝐸𝛼,𝛽) for each 𝛼 < 𝛽 and 𝛼, 𝛽 ∈ {1,2, ⋯ , 𝑀}. Here, 𝒢𝛼,𝛽 

indicates the bipartite graph with nodes sets 𝑉𝛼 and 𝑉𝛽, and the edge set 𝐸𝛼,𝛽. These edges are 

also called inter-edges and connect the nodes between the layers 𝛼 and 𝛽. 

 

We can employ the framework of multilayer graphs to define temporal graphs. Temporal 

graphs are a special case of multilayer graphs: the layers represent discrete time points, and the 

sets of nodes in each layer have the same type, e.g., all nodes in each layer are microorganisms. 

 

Definition 10 

A universe 𝒰 is a collection of all considered entities. 

 

Definition 11 

A temporal graph, 𝑇 = (𝑌, �⃗�, 𝒢), is a special case of a multilayer graph in which the layers 𝑌 =

{𝛼|𝛼 ∈ {1,2, ⋯ , 𝑀}} correspond to discretized time points, and the set of nodes 𝑉𝛼 with 𝛼 ∈

{1,2, ⋯ , 𝑀} are subsets of the same universe 𝒰. 
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The third variable 𝒢, representing the list of bipartite graphs in a temporal network, allows 

to include time-delayed associations. Determining time-delayed edges may not be possible in 

each application. If time delay is not considered, a simpler version of the temporal graph can be 

given through ℳ = (𝑌, �⃗�). Alternatively, temporal networks can be defined by extending the 

node and edge set by the temporal dimension, i.e., assigning a property indicating presence and 

absence for each time point. 

 

Final remarks 

 Graphs used to model a specific system are often referred to as networks. 

 Ecosystems, such as marine microbial ecosystems, are complex systems that can be 

modeled through networks. 

 The toolbox of graph-theoretic concepts is diverse and will benefit marine microbial 

interaction studies. 

 In this thesis, we mainly consider simple undirected networks. 

 In subproject 2, we use simple undirected subnetworks (not induced) to determine a 

temporal network. 

 Networks can be characterized through global and local network metrics. 

 The degree-vector can be extended by the graphlet degree vector. 

 Graphlet degree vectors are the basis for network comparison based on local patterns. 

 In subproject 3, we use graphlet based network similarity to compare subnetworks, and a 

minimal spanning tree as a comprehensive representation of network similarities. 
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Chapter 3 Microbial association networks 

 

Microorganisms are involved in various ecological interactions (Table 1), which can be 

represented as an ecological network. Most interactions are unknown (Bjorbækmo et al., 2019). 

Given 𝑛 microorganisms, there are (𝑛
2

) =
𝑛(𝑛−1)

2
 pairs (potential interactions). For instance, if 

𝑛 = 2000, there would be 199000 pairs, which are too many to prove each one of them 

experimentally in a lab (given the microorganisms would be culturable). Omics-technologies 

allow to identify and quantify microorganisms generating profiles of sequence abundances for 

each sample, and the table of microbial sequence abundances. Such table allows to determine the 

microbial associations constituting a network. In contrast to ecological networks, association 

networks are limited by interpretational challenges since they cannot be directly observed 

(Röttjers & Faust, 2019), and tools used to infer associations display high error rates (Weiss et 

al., 2016). Thus, microbial association networks provide (ecological) interaction hypotheses, 

which need further validation to obtain ecological networks. 

Although the inference, analysis, and interpretation of marine microbial association 

networks encounter several challenges (see Chapter 4 and a very recent perspective (Faust, 2021)) 

and require to draw conclusions with care (Faust & Raes, 2012), networks are a versatile tool in 

microbial investigations (Faust & Raes, 2012): 

- Network inference is generic, i.e., the same method can be applied to different data such 

as species or genes; 

- Different types of data can be integrated, e.g., including microorganisms and 

environmental factors in one network; 

- Different properties can be identified, e.g., relating to single nodes or associations, group 

of nodes, and the network as a whole. 

Moreover, network analyses help to disentangle the structure of complex microbial communities 

across temporal and spatial scales (Barberán et al., 2012; Fuhrman et al., 2015). 

In microbial ecology, most association networks comprise pairwise correlations or other 

mathematical relationships (Fuhrman et al., 2015). Network-based analysis may detect essential 

microorganisms, e.g., by determining highly connected nodes (hubs), or groups of highly 

connected nodes (modules), which may represent groups of microorganisms of the same niche or 

biogeochemical process. In addition, networks display emergent properties related to 

characteristics of the community (Fuhrman et al., 2015). Similar network topology for different 

networks may reveal common organization principles for different complex systems (Zhou et al., 

2010). 

For instance, random networks follow a Poisson distribution (Erdös & Rényi, 1960). Yet, 

biological networks are clearly not random (Chaffron et al., 2010; Steele et al., 2011). For most 
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biological networks, the node degree distributions follow a power law (Barabási & Albert, 1999), 

at least in part (Khanin & Wit, 2006). Khanin and Wit (2006) indicate that most biological 

networks are not totally scale-free. Instead, they might better be described as following a truncated 

power law (suggesting scale-free behavior but only over a part of the network), while certain 

scale-free features, such as small world and centrality properties, hold true (Khanin & Wit, 2006). 

There are frequently many nodes with a low degree and few nodes with a high degree (hubs) 

(Khanin & Wit, 2006). 

Networks with a small average shortest path are referred to as small-world networks 

(Watts & Strogatz, 1998). In small-world networks, most of the nodes can be reached from every 

other node through a shortest path with small length, i.e., small number of steps. Since a small-

world pattern allows rapid communication among different components within a system, the 

system can respond to or is quickly affected by perturbations, such as environmental changes 

(Zhou et al., 2010). Yet, high modularity can minimize effects on the whole system by containing 

perturbations at a local level (Kitano, 2004). In turn, a modules’ hierarchical organization ensures 

a quick communication between modules and network hubs (Zhou et al., 2010). 

 

Previous studies of marine microbial association networks 

Microbial association networks are popular exploratory tools deriving hypotheses from massive 

datasets (Röttjers & Faust, 2018). A network is considered a representation of a system that 

aggregated over some time (Steele et al., 2011; Chow et al., 2013, 2014; Cram, Xia, et al., 2015; 

Needham et al., 2017; Parada & Fuhrman, 2017), or a set of spatial samples (Lima-Mendez et al., 

2015; Milici et al., 2016). Previous work characterizes ecological links between marine bacteria 

(Chow et al., 2013; Cram, Xia, et al., 2015) and eukaryotes (Milici et al., 2016), archaea (Steele 

et al., 2011; Parada & Fuhrman, 2017), and viruses (Chow et al., 2014; Needham et al., 2017). 

Another study includes organisms from viruses to small metazoans (Lima-Mendez et al., 2015). 

Moreover, datasets along the water column allow to investigate within- and between-depth 

relationships (Cram, Xia, et al., 2015; Lima-Mendez et al., 2015; Parada & Fuhrman, 2017). 

Previous studies identify associations among ecologically essential taxa, such as potential 

synergistic or antagonistic relationships, and possible keystone species and niches (Steele et al., 

2011; Chow et al., 2013). Moreover, studies find more associations between microorganisms than 

between microorganisms and environmental factors, which indicates the dominance of microbial 

relationships over associations between microorganisms and environmental factors (Steele et al., 

2011; Lima-Mendez et al., 2015). Finally, a previous study identifies associations that were 

driven by the environment, and determined regional associations (Lima-Mendez et al., 2015). 

Studies employing networks contribute to our understanding of marine microbial interactions. 

Networks are a great tool to handle the vast number of microorganisms and their connections, 
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explore potential microbial interactions, and elucidate patterns of microbial ecosystems. 

However, network construction is not straightforward. 

 

Network construction 

There are several methods inferring associations (list of interactions requirement) that use 

microbial sequence abundance data (list of components requirement). They vary in efficiency, 

accuracy, speed, computational requirements, and span from simple pairwise Pearson or 

Spearman correlation measures to Gaussian graphical models (Layeghifard et al., 2017). Faust 

and Raes (2012) state that, on the basis of correlations and anti-correlations of components, it is 

possible to build networks and generate hypotheses about which components (microorganisms) 

may positively or negatively interact. Due to the current limitations of the data and network 

construction tools, it is suggested to remove extremely rare ASVs before network construction. 

Moreover, Weiss et al. suggest to lower the usually corrected 𝑝-value from 0.05 to 0.001, for a 

higher precision (Weiss et al., 2016). 

No ideal (gold-standard) method for network construction exists, and some tools are 

better suited than others for the specificities of a dataset (e.g., temporal vs. spatial, and 

homogenous vs. heterogeneous). Benchmarking the performance of eight correlation techniques 

(Weiss et al., 2016), some methods perform better than others but there is still a considerable need 

for improvement. The investigation reveals that different tools infer significantly different 

numbers and types of edges for the same data, and they generally detect dissimilar edges (Weiss 

et al., 2016). For all datasets/models tested by Weiss et al. (2016), two tools demonstrate on 

average an edge overlap of 31.5%. The low overlap suggests that the techniques may have 

different strengths and weaknesses in response to the diverse challenges presented by microbiome 

data, as mentioned in more detail in Chapter 4. 

Since various metrics and also different tools have different strengths and weaknesses, 

they may also detect different functional relationships. An ensemble method with ReBoot 

procedure to assess significance is implemented in CoNet, which allows the combination of 

several metrics including similarity, dissimilarity and correlation measurements (Faust & Raes, 

2016). Moreover, many tools have been designed to reduce the compositionality bias of microbial 

sequence data, e.g., SparCC (Friedman & Alm, 2012) and SPIEC-EASI (Kurtz et al., 2015). In 

contrast to correlation techniques, which have been compared in (Weiss et al., 2016), other tools 

are based on probabilistic graphical models, e.g., SPIEC-EASI (Kurtz et al., 2015) and 

FlashWeave (Tackmann et al., 2019). Hirano and Takemoto (2019) compared six correlation-

based and three graphical model-based methods. For instance, the correlation-based methods 

included Pearson’s correlation, Spearman’s correlation and SparCC (Friedman & Alm, 2012), 

and the graphical model-based methods included SPIEC-EASI (Kurtz et al., 2015). The 
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comparison (Hirano & Takemoto, 2019) indicated that i) compositional-data methods may not be 

more efficient than the classical methods; ii) graphical model-based methods may not be more 

efficient than the correlation-based methods; iii) interaction patterns in dense networks are 

difficult to predict; iv) interaction patterns in heterogeneous networks are the most difficult to 

predict while those in small-world networks, which are homogenous, are the easiest; v) tool 

performance increased with more samples and plateau for over 200 samples; iv) interaction types 

affect tool performance as also shown in (Weiss et al., 2016). 

Various tools exist but no best tool. We tested several tools (e.g., SparCC, SPIEC-EASI, 

MICtools, and CoNet) and selected two tools in consideration of our datasets: Within the three 

main subprojects, we used the tool eLSA (Xia et al., 2011, 2013) for the temporal BBMO data 

and the tool FlashWeave (Tackmann et al., 2019) for the spatial data compilation from Malaspina 

and Hotmix samples. 

To construct a network from the temporal data set, we used eLSA (Xia et al., 2011, 2013). 

It aims to capture time-dependent associations (possible time-shifted) between microorganisms 

and between microorganisms and environmental factors. First, to obtain normally distributed 

data, the tool normalizes the data on sequence abundance using normal score transformation (Li, 

2002; Ruan et al., 2006). Second, it calculates the association strength via statistical correlation 

(Pearson correlation coefficient) between any pair of components, including the maximum shifts 

allowed (time-delay), using dynamic programming. The maximum score of all subsequences 

within some predefined time delay is the so-called local similarity score (LS) (Ruan et al., 2006). 

More specifically, eLSA determines the best start and end of the association in time for both 

association partners. A time delay represents a directed association. However, if the sampling is 

considered not suitable to allow time delay, the resulting network is undirected. Third, the tool 

determines the statistical significance by p-values using a permutation test. It randomly shuffles 

the components of the original data and recalculates the LS score for the pairs. Then, it 

approximates the p-value by the fraction of permutation scores that are larger than the original 

score. In addition, multiple testing corrections can be applied (q-values). Significant associations 

constitute the (and our preliminary) network. 

For our spatial heterogeneous dataset compilation, we used FlashWeave (Tackmann et 

al., 2019). After normalizing the data (centered log-ratio, clr transformation), FlashWeave 

determines pairwise associations (via a neighborhood search for each target variable). Next 

FlashWeave searches for conditional dependence between nodes, i.e., it removes associations 

between conditionally independent variables. Moreover, for datasets containing numerous zeros, 

FlashWeave is a tool of choice since it can handle sparse data and ignores matching zeros when 

computing associations (Tackmann et al., 2019). 
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Important nodes 

Microorganisms exerting a high impact on the structure and functioning of the ecosystem are 

referred to as keystone species. Keystones that are observed across different environments and 

studies may help microbial ecologists to explain the unexplained variation in ecosystem processes 

(Banerjee et al., 2018). There are only few experimentally confirmed microbial keystones because 

the classical experimental validation consists in studying the effects of the removal/addition of 

putative keystone and is difficult to perform (Röttjers & Faust, 2019). 

Networks may be used to infer key microorganisms via important nodes. However, 

importance in the network does not automatically translate into importance in the microbial 

system. For instance, highly abundant microorganisms are usually regarded as important by 

microbial ecologists. Marine microbial association networks are (at least in part) scale-free, with 

many low-degree nodes and a few high-degree nodes (called hubs). Hubs are important for 

network architecture. However, node degree does not depend on the abundance of the 

microorganisms that the node represents and abundance is generally very low for the highest 

degree nodes (Lima-Mendez et al., 2015; Röttjers & Faust, 2018; Krabberød et al., 2021). 

Besides the number of associations (degree), other metrics and their combination may be 

used to infer important nodes (Berry & Widder, 2014). For instance, betweenness centrality 

reflects how important a node is for the connectivity of a network, by measuring how often it 

appears in the shortest path of two other nodes. Another metric is represented by the closeness 

centrality. It reflects how “close” a node is to all the others, as it is computed through the 

reciprocal of the average length of shortest paths between itself and all the other nodes in the 

network. Lastly, the local clustering coefficient of a node measures the fraction of observed versus 

possible closed triplets. It reflects how likely are the neighbors of a node connected. A previous 

study investigated the applicability of different metrics in co-occurrence networks to find 

keystone species in microbial communities (Berry & Widder, 2014). The investigation showed 

that keystone species tend to be highly connected centrally-clustering nodes (Berry & Widder, 

2014). The results demonstrated that high mean degree, low betweenness centrality, and high 

closeness centrality can be used to identify keystones with 85% accuracy (Berry & Widder, 2014). 

However, some non-keystone species also had these properties. This indicates that such properties 

are a prerequisite but not highly specific for keystone species. 

It is not yet understood which measure of node importance best reflects the ecological 

importance of a species (Röttjers & Faust, 2018). Röttjers & Faust (2018) found that there is a 

striking lack of overlap in hubs identified through different tools, and the prediction of ecological 

interactions is hampered by underlying environmental gradients. Moreover, determining hubs is 

based on associations, but the prediction accuracy of associations is low (Weiss et al., 2016). 

Finally, is there a way to reliably predict keystone species? This question was addressed in a 
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Correspondence Letter (Röttjers & Faust, 2019) to the claim that microbial networks can identify 

keystones (Banerjee et al., 2018). Evidence for accurate keystone prediction from inferred 

networks is mixed at best (Röttjers & Faust, 2019). Röttjers & Faust (2019) concluded that better 

network inference tools and more validation experiments are required prior to classifying network 

hubs as keystones. 

 

Module detection 

An ecosystem contains a community of microorganisms that, in turn, may contain 

subcommunities, i.e., microorganisms that may be responsible for a certain function, and 

subsequently most likely interact with each other. Detecting groups of microorganisms that are 

strongly associated transfers to the mathematical problem to find modules within a network. A 

module 𝑀 is a subset of the node set 𝑉 whose members are highly connected to each other, and 

loosely or not connected to nodes that are not within this module. A module in a network can 

represent microorganisms that are involved in the same biogeochemical cycle or inhabit the same 

environmental niche. 

Detecting modules is not straightforward and several tools exist. Most of the methods aim to 

maximize modularity, which quantifies the density of links within modules, in opposition to links 

between modules (Rahiminejad et al., 2019). Examples of these methods are represented by the 

Girvan-Newman (Girvan & Newman, 2002), and the Louvain algorithms (Blondel et al., 2008). 

The limiting factor for applying the Louvain algorithm is the memory requirement rather than the 

computation time as is the case with Girvan-Newman algorithm (Rahiminejad et al., 2019). The 

Girvan-Newman algorithm is a network partitioning method that iteratively removes edges. First, 

it separates all nodes into single-node modules. Next, it recursively combines nodes/modules of 

the removed edges. The edge with highest betweenness centrality (similar defined to node 

betweenness centrality) are selected until no edges remain. The betweenness centrality has to be 

recalculated for those edges affected by an edge removal. In order to select the optimal division 

among all possible options, modularity is used. The Girvan-Newman algorithm gives good results 

in many cases, but is impractical for very large networks (Rahiminejad et al., 2019). In contrast, 

the Louvain algorithm is much faster and detects modules in large networks (Blondel et al., 2008). 

It contains two steps that are iteratively repeated. First, it separates all nodes into single-node 

modules. Next, it recursively removes a node from its module and places it in a neighboring one. 

The gain of modularity is measured and only changes that increase the modularity are kept. The 

step is repeated for all nodes until a maximum modularity reached. The algorithm is extremely 

fast and heuristics may further speed it up, e.g., network partitioning stopping when the gain of 

modularity is under a given threshold (Blondel et al., 2008). Finally, the Girvan-Newman and 

Louvain algorithms can be extended, allowing to determine modules for multilayer networks 
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(Didier et al., 2015, 2018). 

The partition approaches assign each node to a module, allowing modules of size one. Thus, 

size threshold may be used to select modules for downstream analysis. One limitation of 

traditional partition approaches is that they determine disjoint modules, whereas overlapping 

modules are biologically more relevant. Indeed, the approach of Overlapping Stochastic Block 

Model allows nodes to belong to multiple modules (Latouche et al., 2011). Another drawback of 

traditional methods is that they do not distinguish between positive and negative associations. A 

recent biologically-driven algorithm is implemented in manta (Röttjers & Faust, 2020). Contrary 

to the existing algorithms, manta exploits negative edges while differentiating between weak and 

strong module assignments to identify biologically relevant modules in real-world data sets 

(Röttjers & Faust, 2020). 

Although, identifying important nodes and modules aids to investigate marine microbial 

ecosystems, they should be treated with much care and should be validated, if possible, or at least 

strengthened with in-depth biological knowledge. Evaluating inferred associations is challenging 

due to the lack of unknown interactions (Bjorbækmo et al., 2019) and microbial associations 

predict true ecological interactions in a minority of cases (Weiss et al., 2016). Therefore, emergent 

properties may be more reliable in the search for new biological insights, and microbial 

association networks provide an excellent tool for studying them (Röttjers & Faust, 2018). 

 

Final remarks 

 Networks are a great tool to handle the vast number of microorganisms and potential 

interactions. 

 Studies employing networks contribute to our understanding of marine microbial 

interactions. 

 Network construction is not straightforward and there is a vast collection of tools. 

 There is no gold-standard network construction tool. 

 Some tools are better suited than others for the specificities of a dataset. 

 Identifying important nodes and modules aids to investigate marine microbial ecosystems 

but should be treated with much care. 

 Emergent properties may be more reliable in the search for new biological insights. 

 Microbial association networks allow studying emergent properties. 
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Chapter 4 Challenges studying microbial interactions 

 

The smallest living organisms 

Human relationships may be inferred via connections on social media. Another opportunity to 

determine professional interactions is to connect researchers who published together. 

Relationships between macro-organisms, e.g., animals living in the forest, may be observed with 

bare eyes or binoculars. Unfortunately, microorganism do not maintain a social media account 

and we cannot observe all microorganisms with our eyes. Even when using microscopes, we 

cannot easily detect all the tiny microorganisms. 

Considering the body size, aquatic microorganisms are traditionally separated into three 

logarithmic classes, namely pico (0.2–2 𝜇m), nano (2–20 𝜇m), and micro (20–200 𝜇m) (Massana 

& Logares, 2013). To put it in context, one micrometer corresponds to 10−6 meter, i.e., one 

million micrometer is one meter. If we consider a 0.5 𝜇m microorganism as a 1.70 m human 

being, a 2 𝜇m microorganism would be four times larger (6.8 m), about the height of a two-story 

house; and a 20 𝜇m microorganism would be forty times larger (68 m), taller than The Arc de 

Triomphe (49 m) in Paris. 

The invention of microscopes, culturing experiments, and omics technologies allowed to 

elucidate aspects of the microbial world that were completely hidden. Although the microbial size 

may not limit any longer their detection, this is not the only challenge on the quest to identify 

microbial interactions. 

 

Studying microbial interactions experimentally 

Most microorganisms remain uncultured and poorly characterized (Baldauf, 2008; Lewis et al., 

2020). In their review, Lewis et al. list six factors that influence microbial cultivability (Lewis et 

al., 2020): 

- First, we need to identify the microbial needs regarding substrates and growth conditions. 

- Second, we have to learn to induce the transition from the dormant to the active state in 

persisting microorganisms. They may have evolved different mechanisms to regulate 

dormancy necessitating different solutions to “resuscitate” them. 

- Third, interdependencies between two or more organisms require the identification of 

partners. Therefore, we need to perform co-isolation and co-culture of partner 

microorganisms, or to abiotically replace essential partners by providing the substrates 

the that they would have provided. 

- Fourth, we need to identify if partners require a physical contact or specific spatial 

proximity. 
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- Fifth, we need to provide essential physico-chemical environmental conditions, e.g., 

temperature and salinity. 

- Sixth, we need to overcome the challenge of culturing low abundant (rare) 

microorganisms and of competition. A fast-growing microorganism could quickly 

outcompete a slow-growing target microorganism. Also, a microorganism with a high 

affinity for an essential limited growth substrate prevents a target microorganism with 

low substrate affinity to grow. Thus, even if the target microorganism is initially enriched 

in a sample, its relative abundance can soon be diminished when co-inoculated with 

competitors. In addition, slow-growing microorganisms may lead to increased time-

scales of research, resulting in increased costs. 

Although most microorganisms remain uncultured, we can circumvent this problem by 

identifying and quantifying them through omics technologies, e.g., sequencing the genomes. The 

genomic revolution started in 1995 with the complete sequencing of the free-living Haemophilus 

influenzae genome, the first published bacterial genome (Fleischmann et al., 1995). Within five 

years, numerous other bacteria were sequenced. Since then, the genomes of eukaryotic 

microorganisms have also been sequenced. This led to the massive expansion of sequence data 

(Hall, 2007). Within few years, the sequencing method industrialized, and the vast majority of 

sequence data has been and is now generated by large genome centers (Hall, 2007). 

Finally, thanks to omics technologies, microbial interactions may be inferred by 

identifying metabolic dependencies. A metabolic dependency refers to need of an organism of a 

substrate produced by another one. Genomic data, in combination with transcriptomic and 

proteomic data, can be used to infer such dependencies. However, because of the huge number of 

microorganisms, it may not be possible to obtain the complete omics-data of each one. 

 

Quantifying microorganisms 

In order to identify a microorganism, we often use a specific sequence, and not the whole genome. 

Such sequence should be diverse enough to identify microorganisms and conserved enough to 

compare them. Each organism contains ribosomes and their genetic sequence is well preserved. 

The 16S rRNA and the 18S rRNA gene sequences can be used for the so-called marker- or 

targeted-sequencing, for prokaryotes (bacteria and archaea) and eukaryotes, respectively. 

These culture-independent methods based on targeted sequencing of ribosomal genes to 

identify microorganisms date back to the mid-1980s (Olsen et al., 1986). Specifically, the targeted 

sequencing of environmental 16S rRNA gene revealed the tremendous number of uncultured taxa. 

Comparing plate counts with direct microscopic counts, isolated cells are estimated to constitute 

less than 1% of microbial species (Staley & Konopka, 1985). The so called ‘great plate count 

anomaly’ (Staley & Konopka, 1985) refers to the discrepancy between microorganisms that are 



 

 

36 

present in a given environment, and those that can be cultured in the laboratory (Lewis et al., 

2020). 

We know that microorganisms dominate our world, but how many are there? The number 

of microbial species on Earth is estimated to be ≈ 1012 (Locey & Lennon, 2016) , comprising 

≈ 1030 cells (Whitman et al., 1998; Kallmeyer et al., 2012). The oceans are estimated to harbor 

1029 microbial cells (Whitman et al., 1998) accounting for ~70% of the total marine biomass (Bar-

On et al., 2018). 

Sequencing 16S and 18S rRNA genes allows to identify and quantify an enormous 

number of microorganisms in a given sample. A set of samples can then be used to determine 

microbial associations. These associations can be considered as edges and microorganisms as 

nodes in a network. Finally, the analysis of microbial association network is a great tool to 

investigate marine microbial ecosystems. Yet, there are challenges inferring association networks 

from microbial sequence abundance data. 

 

Technical challenges inferring association networks 

Constructing microbial association networks from sequence abundance data presents three main 

technical challenges.  

 

The compositional effect 

First, microbial sequence abundance data suffer from the compositional effect, which is not an 

exception but the rule (Gloor et al., 2017). The compositional effect is due to the fixed capacity 

of the sequencing instruments.  

Traditionally, to solve this problem, datasets have been rarified. Shortly, rarefication 

randomly subsamples each sample until a predefined number of total reads is reached. The 

probability to choose a read corresponding to a specific ASV is proportional to its sequence 

abundance. Thus, original proportions are preserved. However, rarefication is not advisable 

according to Gloor et al. (Gloor et al., 2017), because the subsampling results in loss of 

information and precision (McMurdie & Holmes, 2014). However, there may be already a loss 

of information and precision because of the high technical variability of rRNA gene sequencing 

(Faust, 2021). 

Another solution is to ratio transform the data. Ratio transformation captures the 

relationships between the microorganisms (Gloor et al., 2017). Applying the logarithm (log-

ratios) results in symmetric and linearly related data. We can obtain information about the log-

ratio of microbial sequence abundances relative to other microorganisms, and this information is 

directly relatable to the environment (Gloor et al., 2017). A popular method is the centered-log-

ratio (clr) transformation introduced by Aitchison (Aitchison, 1986). As log-ratios are sensitive 
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to zeros leading to negative infinities, a pseudo-count is usually added. Alternatives exists, but 

they make additional assumptions about zeros that have not yet been validated (Martín-Fernández 

et al., 2012; Tsilimigras & Fodor, 2016). 

 

Sparseness of data 

Another challenge is represented by the sparseness of data. Data is sparse if the sequence 

abundance table contains many zeros, which means the microorganisms (ASVs) were absent in 

most samples. A zero could mean the absence of a microorganism (structural or essential zero), 

or that the microorganism has not been detected, i.e., undersampled (rounded zero) (Martín-

Fernández et al., 2003). In the latter case, the microorganism was present, but we failed to detect 

it, for example if by chance rare components are not present in the sample drawn from the 

microbial community (Friedman & Alm, 2012). Alternatively, microorganisms may not be 

detected due to an insufficient sequencing depth or the microbial sequence was not amplified 

during the PCR.   

Sparse data can cause artefactual associations for low-abundance microorganisms with 

very few non-zero observations (Aitchison, 1981). Thus, removing extremely rare 

microorganisms prior to network construction subsequently lowers artefactual associations. There 

are two filtering solutions, both using an arbitrary threshold (Faust, 2021): i) using a prevalence 

filter that removes microorganisms appearing in too few samples; and ii) not considering 

(computing) associations between pairs that have a large number of matching zeros. Choosing 

the threshold is not straightforward and different formulas have been proposed (Cougoul et al., 

2019). Furthermore, filtering could significantly reduce the computational time needed to infer 

networks and the quality of network inference (Cougoul et al., 2019). The heterogeneous mode 

implemented in the network construction tool FlashWeave ignores matching zeros when 

computing associations (Tackmann et al., 2019). 

 

Small observation-to-variables ratio 

Traditionally, statistical analysis requires more observations than variables. However, most 

datasets display a small observations-to-variables ratio, i.e., the ratio of the number of samples 

(observations) and the number of components (variables) is low and often with more detected 

microorganisms (ASVs) than the number of samples. Obtaining more observations (more 

samples) is limited because of costs, time, and resources. Several network construction tools aim 

to be robust to the small observation-to-variables ratio and also the compositional effect 

(Layeghifard et al., 2017), e.g. SPIEC-EASI (Kurtz et al., 2015) and CoNet (Faust et al., 2012). 

Moreover, removing rare microorganisms (e.g., using a prevalence filter) when controlling for 

data sparsity, will also reduce the number of variables. 
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From association networks to biological meaningful interpretations 

In addition to technical challenges in the construction of microbial association networks, there 

are three main interpretation challenges.  

 

Ecological networks do not equal association networks 

First, interpretation of association networks is challenging because they are not equivalent to 

ecological networks. Edges in ecological networks represent observed ecological interactions 

between different microorganisms: negative interactions like parasitism or competition; positive 

interactions like symbiosis; and neutral interactions (Xiao et al., 2017). On the contrary, positive 

associations represent high niche overlap and/or positive microbial interactions, and negative 

associations indicate divergent niches and/or negative microbial interactions (Hernandez et al., 

2021). Moreover, ecological networks are directed graphs, where the edges point from a start 

node (source) to an end node (target). In contrast, association networks are (usually) undirected. 

Although association networks provide ecological insight, they do not encode casual relationships 

or observed ecological interactions. Thus, unless edges are verified with experiments or additional 

information, one should be careful when attributing biological meaning to network properties 

(Röttjers & Faust, 2018). 

 

Dense networks 

One major problem after network construction is represented by the presence of too many inferred 

edges resulting in dense networks, also called hairball networks (Röttjers & Faust, 2018). The 

large number of edges may result in a poorly informative network and weaken the biological 

interpretation. Less dense networks may be obtained when lowering the commonly used corrected 

p-value of 0.05 to 0.001 (Weiss et al., 2016), and increasing the cut-off for other criteria, such as 

the association strength, prevalence, and abundance filtering (Röttjers & Faust, 2018). Another 

strategy to circumvent dense networks is agglomeration through taxonomic or ecological 

(functional) groupings (Lima-Mendez et al., 2015). However, depending on the research aim, 

such grouping may not be applicable or desired. 

 

Indirect dependencies 

For most microbial association networks, an edge could either indicate ecological interaction or 

a similar/different environmental preference. This is an effect of indirect dependencies. 

Specifically, for most microbial association networks, an edge indicates: i) a true ecological 

interaction between two microorganisms; ii) similar or contrary dependence to environmental 

factor/s or a third microorganism (indirect edge); or iii) an association by chance. The latter two 

options do not predict microbial interactions. Indirect edges occur when two microorganisms are 
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both dependent on an abiotic environmental factor (e.g., same nutrients and temperature 

requirements) or a biotic factor (e.g., same prey or predator), but do not interact with one another. 

Thus, it is necessary to disentangle the nature of a given association in a network by determining 

whether or not it is environmentally-driven. 

In order to use the network as a representation of the microbial ecosystem, 

environmentally-driven associations need to be removed before analysis and interpretation. 

However, there are too many potential associations in an inferred network to experimentally test 

each potential interaction. More importantly, most microorganisms are uncultured and, 

subsequently, not available for experimental testing in the lab. We list and describe our and other 

existing approaches to disentangle environmentally-driven associations in Chapter 5. 

 

Comparing networks 

Differences in the manner a network is obtained 

There are common and well-known challenges for comparing networks that were generated with 

different strategies. First, the measurement (e.g., sequencing depth), the spatial and temporal 

frequency of the sampling, and the availability of replicates can influence network construction 

(Faust et al., 2015). Second, each step from the samples to the sequence abundance data may 

introduce a bias, e.g., when obtaining different amounts of DNA extracted, amounts sequenced, 

and percentages of high-quality reads (Faust & Raes, 2012). 

Next, comparing networks obtained through different construction tools is challenging 

because each of them infers different numbers and types of significant edges for the same data 

(Weiss et al., 2016). Weiss et al. (2016) compared eight different network construction tools 

demonstrating an average of 31.5% shared edge for all pairwise combinations of tools and all 

datasets/models tested. Finally, different cut-off levels for association strengths may have been 

used and alter networks’ structure (Connor et al., 2017), further complicating comparisons. 

 

Differences in network properties 

The environmental influence on network properties is unclear, and, subsequently, it is unknown 

if such properties can be reliably inferred from microbial networks (Röttjers & Faust, 2018). 

Röttjers and Faust (2018) showed that different levels of environmental influence changed 

network structure and that simulated networks fail to match global properties of the underlying 

true interaction network. This indicates that it is unwise to attribute biological relevance to the 

properties without further experiments or additional information (Röttjers & Faust, 2018). 

 

The actual network comparison 

Network comparison is an active field of research. There are several ways to compare networks 
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and measure their similarities, for example networks from different environments, locations, or 

times. A simple approach considers common and unique nodes and edges. Their number can be 

used to quantify network (dis)similarity, as proposed in the study of (Poisot et al., 2012). Another 

approach uses distance probability distributions (Schieber et al., 2017). 

We can also compare specific network properties (global metrics), e.g., edge density and 

transitivity. However, global metrics may disregard local patterns. Two local-topological metrics 

use either motifs or graphlets. The latter preserve all connections among nodes (induced 

subgraph), in contrast to the former. Graphlets can be used for network comparison (Pržulj et al., 

2004), which allows to compare network topology without considering specific microorganisms. 

Not all graphlets need to be considered because of redundancy (Yaveroǧlu et al., 2014). In 

addition, instead of using graphlets up to four nodes (Yaveroǧlu et al., 2014), we can 

preferentially choose graphlets up to three nodes (Espejo et al., 2020) when comparing (many) 

large networks. 

However, microbial association networks contain a large number of errors and derived 

properties do not necessarily reflect the true community structure (Röttjers et al., 2020). Röttjers 

et al. (2020) developed a toolbox to investigate noisy networks with null models to identify non-

random patterns in groups of association networks. Comparing multiple networks identifies 

conserved subsets, so called core-association networks, and other properties that are shared across 

all networks (Röttjers et al., 2020). 

 

Comparing nodes in a network 

Various methods exist to compare microorganisms, e.g., using the size, abundance, genomic 

sequence similarity; determining their seasonality; or using network-based metrics, such as the 

degree, betweenness, and closeness centrality scores. Moreover, graphlets can also be used for a 

network-based comparison of microorganisms, by extending the single value of the node degree 

to the graphlet degree vector quantifying the different nodes' roles (i.e., quantifying the orbits a 

node touches). Similar network-based roles potentially translate to similar functional roles in the 

ecosystem. 

 

The single static network 

Lastly, it may also be problematic that often single static networks are used to represent dynamic 

microbial ecosystems. The obvious solution would be to construct a network for each location, 

time point (temporal networks), and environmental condition. For instance, temporal networks 

are conceptually well-defined within the mathematical field. They have broad applications, e.g., 

transportation, social, and biological networks. Already a decade ago, Prztycka et al. (2010) stated 

that it is essential for computational biologists studying (molecular) networks to shift their focus 
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to developing methods that incorporate information about the dynamic nature of (cellular) 

systems. Temporal networks can have several names, e.g., time-dependent, evolving, time-

varying, and historical networks (Wang et al., 2019). However, current marine microbial datasets 

do not allow the construction of temporal networks since they often only provide one single 

sample per time point. Similarly, each location is often sampled once in global scale studies. In 

this thesis, we present our approach to overcome the problem of not having the required sampling 

size per time point (Chapter 6) or location (Chapter 7). 

 

Final remarks 

 Studying microbial interactions is challenging. 

 Besides sampling problems, there are challenges before, during, and after inferring 

interactions through association networks. 

 Nevertheless, networks are a valuable tool given their advantages. 

 Although they do not provide complete information on the interactions inside the system, 

the network provides a system view, which has value on itself. 

 Improving inferred networks before down-stream analysis will benefit microbial 

interaction studies. 
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Part II Disentangling marine microbial association 
networks 
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Chapter 5 Disentangling environmental effects in microbial association 
networks 

 

Ina Maria Deutschmann, Gipsi Lima-Mendez, Anders K. Krabberød, 

Jeroen Raes, Sergio M. Vallina, Karoline Faust and Ramiro Logares 

 

Abstract 

 
Background: Ecological interactions among microorganisms are fundamental for ecosystem function, yet they 

are mostly unknown or poorly understood. High-throughput-omics can indicate microbial interactions through 

associations across time and space, which can be represented as association networks. Associations could result 

from either ecological interactions between microorganisms, or from environmental selection, where the 

associations are environmentally-driven. Therefore, before downstream analysis and interpretation, we need to 

distinguish the nature of the association, particularly if it is due to environmental selection or not. 

Results: We present EnDED (Environmentally-Driven Edge Detection), an implementation of four 

approaches as well as their combination to predict which links between microorganisms in an association 

network are environmentally-driven. The four approaches are Sign Pattern, Overlap, Interaction Information, 

and Data Processing Inequality. We tested EnDED on networks from simulated data of 50 microorganisms. The 

networks contained on average 50 nodes and 1087 edges, of which 60 were true interactions but 1026 false 

associations (i.e. environmentally-driven or due to chance). Applying each method individually, we detected a 

moderate to high number of environmentally-driven edges—87% Sign Pattern and Overlap, 67% Interaction 

Information, and 44% Data Processing Inequality. Combining these methods in an intersection approach 

resulted in retaining more interactions, both true and false (32% of environmentally-driven associations). After 

validation with the simulated datasets, we applied EnDED on a marine microbial network inferred from 10 

years of monthly observations of microbial-plankton abundance. The intersection combination predicted that 

8.3% of the associations were environmentally-driven, while individual methods predicted 24.8% (Data 

Processing Inequality), 25.7% (Interaction Information), and up to 84.6% (Sign Pattern as well as Overlap). The 

fraction of environmentally-driven edges among negative microbial associations in the real network increased 

rapidly with the number of environmental factors. 

Conclusions: To reach accurate hypotheses about ecological interactions, it is important to determine, 

quantify, and remove environmentally-driven associations in marine microbial association networks. For that, 

EnDED offers up to four individual methods as well as their combination. However, especially for the 

intersection combination, we suggest using EnDED with other strategies to reduce the number of false 

associations and consequently the number of potential interaction hypotheses. 

 

Keywords: microbial interactions; association network; effect of indirect dependencies; environmentally-driven 

edge detection 
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Introduction 

Association networks to generate microbial interaction hypotheses 

There is a myriad of microorganisms on Earth; current estimates indicate ≈1012 microbial species (Locey & 

Lennon, 2016), and ≈1030 microbial cells (Whitman et al., 1998; Kallmeyer et al., 2012). Microorganisms have 

crucial roles in the biosphere by contributing to global biogeochemical cycles (Falkowski et al., 2008) and 

underpinning diverse food webs. The importance of microorganisms for the functioning of ecosystems cannot 

be understood without considering their ecological interactions (DeLong, 2009; Krabberød et al., 2017). These 

allow transferring carbon and energy to upper trophic levels, and the recycling of nutrients and energy (Worden 

et al., 2015). Furthermore, ecological interactions influence microbial community turnover and composition. 

These interactions include win-win (e.g. mutual cross-feeding and cooperation), win-loss (e.g. predator-prey 

and host-parasite), and loss-loss (e.g. resource competition) relationships (Faust & Raes, 2012). Although 

microbial communities are highly interconnected (Layeghifard et al., 2017), our knowledge about ecological 

interactions in the microbial world is still limited (Krabberød et al., 2017; Bjorbækmo et al., 2019). 

Previous studies have shown relationships between a restricted number of microorganisms. However, 

we need a large number of interactions to understand the functioning of complex ecosystems. This is 

challenging, in part, due to the vast number of possible interactions—given n microorganisms, there are (𝑛
2

) =

𝑛(𝑛 − 1)/2 potential pairwise interactions. Thus, it is unfeasible to test them experimentally within a reasonable 

amount of time and cost. The problem of having a large number of potential interactions can be partially 

circumvented with omics technologies coupled to network analyses. 

Omics can identify and quantify a large number of microorganisms from a given sample. Typically, the 

relative abundance for each identified organism per sample is estimated. There are multiple methods to 

determine associations (normally based on correlations) between microorganisms using their abundances (e.g. 

eLSA (Xia et al., 2011, 2013), CoNet (Faust & Raes, 2016), SPIEC-EASI (Kurtz et al., 2015), or FlashWeave 

(Tackmann et al., 2019)). These abundance-based associations compose a network, where nodes represent 

microorganisms and edges represent either co-presence (positive association) or mutual exclusion (negative 

association) relationships, which constitute microbial interaction hypotheses. 

 

Challenges in using networks as a representation of the microbial ecosystem 

Although networks play an essential role in understanding complex systems, microbial ecological networks are 

not yet as developed in terms of inference and biological interpretation (Lv et al., 2019). Network inference 

from -omics data is difficult (Li et al., 2016; Layeghifard et al., 2017) because of both technical and 

interpretation challenges. One challenge is the compositional nature of the data produced by DNA sequencers 

(Gloor et al., 2017). There are several network tools (Li et al., 2016) that consider this, e.g., SPIEC-EASI (Kurtz 

et al., 2015). Other difficulties include data based on a small number of samples relative to the number of 

microorganisms they contain, i.e., a low sample-to-microorganisms ratio; plus, sparse data—too many zeros in 

the dataset that can wrongly associate microorganisms (Aitchison, 1981). A zero indicates either the absence of 
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a microorganism (structural zero), or an insufficient detection level or sequencing depth (sampling zero). Thus, 

we should remove microorganisms appearing in just a few samples. 

Interpretation of association networks is challenging because they are not equivalent to ecological 

networks. Edges in ecological networks represent observed ecological interactions between different 

microorganisms like parasitism or competition (Xiao et al., 2017). Ecological networks are directed graphs, 

where the directed edges (arcs) point from a start node (source) to an end node (target). In contrast, association 

networks are undirected. Although association networks provide ecological insight, they do not necessarily 

encode causal relationships or observed ecological interactions. Unless edges are verified with experiments or 

additional information, one should be careful when attributing biological meaning to network properties 

(Röttjers & Faust, 2018). In addition, networks with too many edges (dense networks or hairballs) make 

interpretation more challenging. We can reduce network density when lowering the corrected 𝑝-value for 

inferred edges (Weiss et al., 2016), or increasing the cut-off for other criteria such as the association strength, 

prevalence, or abundance filtering (Röttjers & Faust, 2018). Another strategy is agglomeration using taxonomic 

or ecological (functional) groupings (Lima-Mendez et al., 2015). 

The interpretation challenge addressed in this study are indirect dependencies (associations) caused by 

environmental factors. For most microbial association networks, an edge indicates one of the following three 

alternatives: 

1. ecological interaction between two microorganisms, 

2. similar or contrary dependence (i.e., preference) to environmental factor/s or a third microorganisms, 

3. association by chance. 

Indirect associations occur when two microorganisms are both dependent on an abiotic environmental factor 

(e.g., same nutrients and temperature requirements) or biotic factor (e.g., same prey or predator), but do not 

interact with one another. Here, indirect association describes the computational effect of indirect dependencies, 

and observing an association when in fact there is none. 

 

Removing indirect dependencies including environmental effects 

To distinguish between direct and indirect interactions, several network construction tools use a probabilistic 

graphical model (Kurtz et al., 2015; Yang et al., 2017), e.g. SPIEC-EASI (Kurtz et al., 2015, 2019), miic (Verny 

et al., 2017), or FlashWeave (Tackmann et al., 2019). FlashWeave can also integrate metadata to avoid indirect 

associations driven by environmental factors but currently does not support missing data. The tool ARACNE 

(Margolin et al., 2006) aims to eliminate indirect associations by using an information theoretic property (the 

Data Processing Inequality, DPI, in Methods). The extension TimeDelay-ARACNE (Zoppoli et al., 2010) tries 

to extract dependencies between different times. Another approach including time-delay is implemented in the 

tool MIDER (Villaverde et al., 2014), which combines mutual information-based distances and entropy 

reduction to detect indirect interactions (Mutual Information, MI, in Methods). PREMER (Villaverde et al., 

2018), a successor of MIDER, allows to include previous knowledge, e.g., known non-existent associations. 
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There are also several prior network construction approaches to reduce indirect associations, e.g., a high 

prevalence filter that preserves microorganisms present in many samples (Pascual-García et al., 2014). 

However, this will keep generalist while removing specialist. Another approach divides datasets displaying a 

great environmental heterogeneity into sub datasets of similar environmental conditions (Röttjers & Faust, 

2018). For example, a previous work (Mandakovic et al., 2018) constructed two networks representing bacterial 

soil communities from two different sections of a pH, temperature, and humidity gradient. Another work (Lima-

Mendez et al., 2015) constructed ocean depth-specific networks to account for environmental differences 

between the surface layer and the deep chlorophyll maximum layer. In addition to dividing samples, an 

algorithm aiming to correct for habitat filtering effects (Brisson et al., 2019), subtracts, for a given habitat, the 

mean abundance from each microorganism within each sample. However, this approach is limited to the 

identified habitat groups that should have a similar sample size. 

In contrast, there are methods accounting for indirect dependencies after network construction. For 

instance, global silencing, (Barzel & Barabási, 2013) and network deconvolution (Feizi et al., 2013) aim to 

recover true direct associations from observed correlations. Both techniques are sensitive to missing variables 

(Alipanahi & Frey, 2013). Another method, called Sign Pattern, SP, uses environmental triplets (Lima-Mendez 

et al., 2015). An environmental triplet contains two microorganisms and one environmental factor, which are 

associated to each other. SP combines the signs of association scores (positive or negative) to determine if a 

microbial association should be classified as indirect (SP in Methods). Its major drawback is edge removal 

where microorganisms with similar environmental preference interact. Along SP and network deconvolution, 

the Interaction Information, II, was applied in (Lima-Mendez et al., 2015). Within an environmental triplet, the 

II method aims to indicate whether an edge is due entirely to shared environmental preferences (II<0) or whether 

environmental preferences and true interactions are entangled (II>0). However, II cannot determine which 

associations in a triplet is indirect (II in Methods). Here, we study several indirect edge detection methods: SP, 

Overlap, (OL, developed here), II, DPI, and their combination. 

 

EnDED is an implementation of four methods and their combination 

This article presents EnDED, which implements four approaches, and their combination, to indicate 

environmentally-driven (indirect) associations in microbial networks. The four methods are: Sign Pattern 

(Lima-Mendez et al., 2015), Overlap (developed here), Interaction Information (Lima-Mendez et al., 2015; 

Ghassami & Kiyavash, 2017), and Data Processing Inequality (Cover & Thomas, 2001; Margolin et al., 2006). 

SP requires an association score that represents co-occurrence when it is positive, and mutual-exclusion when 

it is negative. OL requires temporal data with a known start and end of the association to determine whether the 

microbial association occurs in a time window when both microorganisms are associated to the same 

environmental factor. The II method indicates the existence of one indirect dependency between three 

components that are associated with each other. The DPI method states that the association with the smallest 

mutual information is the indirect association. Here, we evaluate each method and their combination on how 

well they detect environmentally-driven associations on association networks from simulated data including 
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two environmental factors. Combining methods in an intersection approach retains more true interactions than 

each method on its own. A union approach was discarded because it would have retained the smallest number 

of true interactions. We are able to disentangle and filter environmentally-driven edges from microbial 

association networks (0.95-0.96 in positive predictive value and 0.35-0.83 in accuracy). We also applied 

EnDED to disentangle and filter environmentally-driven edges from a real marine microbial association network 

based on ten years of monthly sampling including ten environmental factors. EnDED contributed to both, 

generating more reliable hypotheses on microbial interactions, and facilitating network analysis by removing 

edges from dense “hairball” networks. EnDED is publicly available (Deutschmann, 2019). 

 

Results 

Simulated data 

To evaluate EnDED’s performance in removing environmentally-driven associations, we simulated 1000 

abundance time-series datasets with 50 microorganisms and known true interactions between them. We obtained 

another 1000 datasets with noise (hereafter dwn). We constructed the networks (hereafter simulated networks) 

with the tool eLSA (Xia et al., 2011, 2013) (see methods). The simulated networks contained on average 

(computed as the median) 50 nodes and 1087 edges (1063 dwn), of which 60 (59 dwn) were true interactions 

(edges present in the inferred and true network) and 1026 (1005 dwn) false associations (edges present in the 

inferred but absent in the true network). Networks inferred from simulated data without noise contained on 

average one more true interaction but also 21 more false interactions than the networks inferred from simulated 

data with noise. 

A simple approach to discriminate true interactions (desired) from false associations (undesired) would 

be to use a threshold for the association strength, which could be suitable if the values for true interactions and 

false associations are i) following different distributions, and ii) the distributions are mainly non-overlapping. 

We tested the former requirement with a two-sample Kolmogorov-Smirnov test with the R (R Core Team, 2019) 

function ks.test. Using a 95% (99%, 99.9%) confidence level, the distributions were significantly different for 

358 (192, 66) simulated datasets and 355 (173, 68) simulated datasets with noise, which is slightly more than 

one third of them. This indicates that an association strength cut-off is unsuitable to separate true interactions 

from false associations. More sophisticated approaches than a simple threshold include the methods 

implemented in EnDED: SP, OL, II, DPI, and their combination. 

Combining the methods in an intersection approach (hereafter referred to as intersection combination), 

we classified on average 348 (228 dwn), that is 32% (22% dwn) of the associations, to be environmentally-

driven. The number of correctly detected false associations was on average 332 (219 dwn), i.e., 96% of the 

removed edges. The resulting networks contained on average 737 (828 dwn) edges. When each method was 

individually applied more edges were removed: 87% (86% dwn) for SP and OL, 67% (60% dwn) for II, and 

44% (32% dwn) for DPI. The fraction of correctly removed edges for individual methods was on average 95%. 

Comparing the methods on correctly detected false associations, the greatest agreement was observed between 
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SP and OL, whereas DPI appeared to be the most conservative in not agreeing with other methods and, 

subsequently, reducing the number of detected edges in the intersection combination approach (Table 2). 

Individual methods removed more edges from the network than the intersection combination, where all methods 

must agree. However, a method’s performance is not solely determined by the number of removed edges. 

To evaluate the removal of environmentally-driven edges, we scored the different approaches based on 

five evaluation measurements (see Methods): the true positive rate, TPR, true negative rate, TNR, false positive 

rate, FPR, positive predicted value, PPV, and accuracy, ACC, (Figure 3 and Table 3). In order to determine 

these measurements, we first determined true and false positives, as well as true and false negatives. A true 

positive is a false association in the network that is correctly removed by a method, and a false negative is a 

false association that is incorrectly not removed. A false positive is a true interaction in the network that is 

incorrectly removed by a method, and a true negative is a true interaction that correctly is not removed by a 

method. The ideal method maximizes true positives and true negatives and minimizes false positives and false 

negatives. 

 

 

Figure 3: Evaluation of EnDED: intersection combination and individual methods on simulated networks. Using 1000 simulated networks, and 
1000 simulated networks incorporating noise, we evaluated EnDED’s performance. Plot A) displays the evaluation measurements t rue positive rate 
(TRP), true negative rate (TNR), accuracy (ACC), and positive predictive value (PPV) for each individual method, i.e., Sign Pattern (SP), Overlap (OL), 
Interaction Information (II), and Data Processing Inequality (DPI), as well as the intersection combination (Combi). SP and OL perform best according 
to TRP and ACC, while the intersection combination performs best according to TNR. All methods performed well according to PPV. The intersection 
combination, DPI and II performed better on noisy data according to TNR because less edges were removed along with less true interactions. Plot B) 
displays the ROC curve for each environmentally-driven edge detection method as well as their intersection combination. 
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Table 2: Comparison between methods on correctly detecting false associations. We computed the fraction (in percentage) of correctly detected 
false associations for each of the 1000 simulated datasets. There are only few edges that are detected by only one approach ( first four rows). The most 
prominent groupings are highlighted in gray, e.g., SP, OL, and II agree on average on a third of edges. Combi refers to intersection combination of all 
four methods, SP to Sign Pattern, OL to Overlap, II to Interaction Information, and DPI to Data Processing Inequality. Less prominent groupings are 
aggregated with others. 
 

Statistic Minimum 1st Quartile Median Mean 2nd Quartile Maximum 

SP 0 0 0.2 0.3 0.5 3.7 
OL 0 0 0.1 0.2 0.3 2.0 
II 0 0.7   1.3 1.4 2.0   6.0 

DPI 0 0.1 0.3 0.4 0.6 2.6 
SP and OL 4.9 12.2 14.9 15.0 17.5 30.0 

SP, OL, and II 19.1 29.5 32.6 32.8 36.2 49.6 
SP, OL, and DPI 2.6 7.1 8.9 9.1 10.8 22.1 

SP, OL, II, DPI, and Combi 22.4 32.1 35.6 35.5 38.6 48.6 
other 0.4 3.3 4.9 5.1 6.6 15.4 

 
 
Table 3: Performance of environmentally-driven edge detection methods on simulated networks. These include 50 microorganisms and 1225 
possible associations. Values display median (standard deviation) for simulated networks and simulated networks incorporating  noise. Combi refers to 
intersection combination of all four methods, SP to Sign Pattern, OL to Overlap, II to Interaction Information, and DPI to Data Processing Inequality. 
The methods with highest (TP, TN, TPR, TNR, PPV, ACC) or lowest (FP, FN, FPR) median, respectively, are highlighted in gray. 
 

Method Combi SP OL II DPI 

without noise 
number of nodes 

 
50 (0.045) 

 
47 (6.6) 

 
48 (5.6) 

 
50 (0.94) 

 
50 (0.1) 

number of edges 737 (50) 140 (52) 144 (58) 354 (67) 601 (60) 
TP 332 (47) 893 (64) 888 (69) 696 (72) 459 (53) 
TN 45 (5.1) 8 (4.3) 9 (4.7) 24 (5.8) 37 (5.5) 
FP 15 (4.6) 51 (5.8) 51 (6.2) 36 (6.4) 23 (5.2) 
FN 692 (48) 131 (49) 136 (54) 330 (63) 564 (56) 
TPR 0.32 (0.04) 0.87 (0.05) 0.87 (0.05) 0.68 (0.06) 0.45 (0.05) 
TNR 0.75 (0.07) 0.14 (0.07) 0.15 (0.08) 0.4 (0.10) 0.62 (0.08) 
FPR 0.25 (0.07) 0.86 (0.07) 0.85 (0.08) 0.6 (0.10) 0.38 (0.08) 
PPV 0.96 (0.011) 0.95 (0.005) 0.95 (0.005) 0.95 (0.007) 0.95 (0.009) 
ACC 0.35 (0.04) 0.83 (0.04) 0.83 (0.048) 0.66 (0.057) 0.46 (0.046) 

with noise 
number of nodes 

 
50 (0.08) 

 
47 (5.6) 

 
48 (4.9) 

 
50 (0.47) 

 
50 (0.12) 

number of edges 828 (56) 144 (53) 149 (59) 428 (79) 717 (73) 
TP 219 (48) 864 (69) 860 (72) 605 (81) 324 (64) 
TN 49 (5) 9 (4.6) 9 (4.9) 29 (6.3) 42 (5.8) 
FP 10 (3.9) 50 (6.1) 50 (6.4) 30 (6.6) 17 (5.1) 
FN 779 (53) 137 (50) 139 (55) 398 (75) 674 (69) 
TPR 0.22 (0.05) 0.86 (0.05) 0.86 (0.06) 0.6 (0.08) 0.32 (0.06) 
TNR 0.84 (0.07) 0.15 (0.08) 0.16 (0.08) 0.49 (0.1) 0.72 (0.09) 
FPR 0.16 (0.07) 0.85 (0.08) 0.84 (0.08) 0.51 (0.1) 0.28 (0.09) 
PPV 0.96 (0.014) 0.95 (0.005) 0.95 (0.005) 0.95 (0.007) 0.95 (0.012) 
ACC 0.25 (0.04) 0.82 (0.05) 0.82 (0.05) 0.6 (0.07) 0.34 (0.06) 
SP - Sign Pattern; OL - Overlap; II - Interaction Information; DPI - Data Processing Inequality; Combi-intersection combination 

 

 

The intersection combination under-performed compared to each individual method, SP and OL 

perform best, and II performs better than DPI according to TPR, FPR and ACC (Figure 3). However, applying 

each method individually has the drawback of removing more true interactions. On average there are 60 (59 

dwn) true interactions in the simulated networks. The individual methods removed 86% (85% dwn) (SP), 85% 

(84% dwn) (OL), 60% (51% dwn) (II), and 38% (28% dwn) (DPI). Therefore, although the intersection 

combination removed fewer edges, it outperformed the others according to the TNR because it eliminated fewer 
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of the true interactions, 25% (16% dwn). All methods had high PPV values with half of all measured PPV above 

≈0.95. According to PPV, intersection combination performed best and SP and OL performed worst (Figure 3). 

 

Real data 

After testing EnDED’s performance on simulated networks, we applied it to a real microbial association 

network, which was constructed from 10 years of monthly samples from January 2004 to December 2013 at the 

Blanes Bay Microbial Observatory (BBMO) (Gasol et al., 2016). These samples included bacteria and 

eukaryotes of two size-fractions: picoplankton (0.2-3 µm) and nanoplankton (3-20 µm). We estimated 

community composition via metabarcoding of the 16S and 18S rRNA gene, and inferred an association network, 

hereafter referred to as BBMO network (see Methods). The BBMO network contained 762 nodes including 754 

ASVs and eight of the ten available environmental factors, and 30498 edges including 29820 microbial edges 

and 607 edges between a microorganism and an environmental factor. The network contained more positive 

(24458, 82.0%) than negative (5362, 18.0%) microbial associations (Figure 4). 

We found that 25230 (84.6%) of the network edges were in at least one and in maximum six 

environmental triplets (Figure 4 and Table 4). Overall, we detected 35166 environmental triplets within the 

BBMO network. Of the ten considered environmental factors, PO4
3- and salinity were not associated to any 

microorganism in the network, and turbidity and NH4
+ were not found within a triplet. Thus, six environmental 

factors remained: Temperature (1831 environmentally-driven edges were removed due to Temperature) and day 

length (652 removed edges) were the top two environmental factors affecting microbial associations, followed 

by total chlorophyll (175), SiO2 (5) and NO3
- (1); no edge was removed due to NO2

-. 

 

Table 4: Number of triplets a microbial edge is part of in the BBMO network. SP and OL not listed below because they remove 100% of microbial 
associations that are within at least one triplet. The total number of edges (all) is given along the number of positive (pos) and negative (neg) edges. 
Combi refers to intersection combination of all four methods, II to Interaction Information, and DPI to Data Processing Inequality. 
 

Triplets all pos (%) neg (%) Combi (%) II (%) DPI (%) 

0 4 590 4 124 (89.8) 466 (10.2) NA NA NA 
1 16 193 13 369 (82.6) 2 824 (17.4) 1 276 (7.9) 3 851 (23.8) 4 560 (28.2) 
2 8 266 6 404 (77.5) 1 862 (22.5) 1 048 (12.7) 3 335 (40.3) 2 585 (31.3) 
3 667 484 (72.6) 183 (27.4) 140 (21.0) 388 (58.2) 222 (33.3) 
4 81 56 (69.1) 25 (30.9) 22 (27.2) 75 (92.6) 25 (30.9) 
5 22 20 (90.9) 2 (9.1) 2 (9.1) 22 (100) 2 (9.1) 
6 1 1 (100) NA NA 1 (100) NA 

 

The intersection combination removed 2488 (≈8.3%) associations from the BBMO network. We 

classified and quantified these indirect edges according to the domain of the nodes (bacteria - eukaryotes, 

nanoplankton – picoplankton), environmental factor, and the number of triplets a microbial edge was in (Figure 

4 and Table 5). Compared to the intersection combination, each method individually removed more edges: 

84.6% (SP and OL removing all microbial edges present in a triplet), 25.7% (II), and 24.8% (DPI); that is, 

removal was 3 to 10 times larger. 
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Figure 4: Quantification of environmentally-driven associations in the BBMO network. For A) the first column shows the number and fraction of 
microbial associations divided by domain: Bacteria-Bacteria associations (B), Bacteria-Eukaryote associations (BE), and Eukaryote-Eukaryote 
associations (E). The second column shows the number and fraction of associations divided by size-fractions: association within the nano size fraction 
(n), within the pico size fraction (p), and between these two size fractions (np). The third column shows all microbial edges connected  to an 
environmental parameter: Temperature (Tem), Day length (Day), Chlorophyll (Chl), inorganic nutrients NO3

- (NO3), SiO2 (Si), and NO2
- (NO2). The last 

column shows the number and fraction of edges divided in how many triplets they have been found ranging from no triplets (0) to six triplets. The first 
two rows display the number and fraction of microbial associations of the BBMO network before applying EnDED. Positive associations are indicated 
with black, negative associations with red. The last two rows indicate in blue the fraction of environmentally -driven edges among the positive (third row) 
and negative (fourth row) microbial associations. B) The left network shows in black the positive and in red the negative associations. The right network 
shows the number of triplets a microbial edge is in ranging from one (green) to six (orange), and no triplet (black). The middle network shows in blue 
the environmentally-driven associations that were detected by the intersection combination of the four methods Sign Pattern, Overlap, Interaction  
Information, and Data Processing Inequality. 
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Table 5: The BBMO network based on real data. The BBMO network contained bacteria (B) and eukaryotes (E) from the picoplankton (p) and 
nanoplankton (n). This table summarizes the number and fraction of microbial associations classified by EnDED as environmentally -driven. Combi 
refers to the intersection combination of all four methods, II to Interaction Information, and DPI to Data Processing Inequal ity. Both methods, Sign 
Pattern and Overlap, are not shown because both remove all microbial edges found in at least one triplet. For example (last row), 349 (14.9%) 
associations between bacteria from the picoplankton with eukaryotes from the nanoplankton were classified by intersection com bination as 
environmentally-driven (indirect), II classified 30.6% and DPI 37.2% as environmentally-driven. 
 

Type edges positive negative triplets Combi II DPI 

nB 6 377 5 453 (85.5) 924 (14.5) 5 150 (80.8) 376 (5.9) 1 512 (23.7) 1 080 (16.9) 
n+pB 5 191 4 069 (78.4) 1 122 (21.6) 4 824 (92.9) 440 (8.5) 1 381 (26.6) 1 678 (32.3) 
pB 2 832 2 053 (72.5) 779 (27.5) 2 160 (76.3) 125 (4.4) 569 (20.1) 631 (22.3) 
nE 1 319 1 163 (88.2) 156 (11.8) 1 016 (77.0) 113 (8.6) 350 (26.5) 254 (19.3) 
n+pE 1 165 976 (83.8) 189 (16.2) 1 006 (86.4) 158 (13.6) 353 (30.3) 370 (31.8) 
pE 895 820 (91.6) 75 (8.4) 543 (60.7) 44 (4.9) 153 (17.1) 113 (12.6) 
nB+E 4 703 4 080 (86.8) 623 (13.2) 4 120 (87.6) 438 (9.3) 1 345 (28.6) 1 043 (22.2) 
pB+E 2 520 1 908 (75.7) 612 (24.3) 1 980 (78.6) 204 (8.1) 626 (24.8) 647 (25.7) 
nB+pE 2 483 2 100 (84.6) 383 (15.4) 2 222 (89.5) 241 (9.7) 668 (26.9) 709 (28.6) 
pB+nE 2 335 1 836 (78.6) 499 (21.4) 2 209 (94.6) 349 (14.9) 715 (30.6) 869 (37.2) 
B - Bacteria; E - Eukaryotes; n - nano fraction; p - pico fraction 

 

 
We also determined for each association the Jaccard index, which indicates how often two 

microorganisms appear together in the dataset. We assumed that two microorganisms that appear together < 

50% of the time are less likely to have true contemporary ecological interactions and the corresponding 

association is more likely to be false. We found that only 27.7% of the indirect associations had a Jaccard index 

above 0.5 compared to 61.1% of the associations that were not indirect. This discrepancy was bigger for negative 

edges, with 1.2% above and 98.8% below 0.5 (Table 6). The fact that over 72.3% of environmentally-driven 

associations had a Jaccard index equal or below 0.5 strengthened the decision of their removal. 

 
Table 6: Jaccard index of edges. The BBMO network before applying EnDED contained 29820 edges of which 2488 (8.3%) were environmentally-
driven (indirect). Considering the Jaccard index for these indirect edges, 688 (27.7% of indirect edges) score above 50%, and  1800 (72.3%) score 
below or equal to 50%. In contrast, 61.1% of edges not considered as indirect have a Jaccard index above 50%, and 38.9% of all not indirect edges 
have a Jaccard index equal or below 50%. 
 

 

 All edges Jaccard index>50 Jaccard index≤50 

BBMO network 29 820 (100%) 17 383 (58.3%) 12 437 (41.7%) 

positive edges 24 458 (82.0%) 17 212 (70.4%) 7 246 (29.6%) 
negative edges 5 362 (18.0%) 171 (3.2%) 5 191 (96.8%) 

indirect (intersection) 2 488 (8.3%) 688 (27.7%) 1 800 (72.3%) 
positive + indirect (intersection) 934 (3.1%) 670 (71.7%) 264 (28.3%) 
negative + indirect (intersection) 1 554 (5.2%) 18 (1.2%) 1 536 (98.8%) 

not indirect (all) 27 332 (91.7%) 16 695 (61.1%) 10 637 (38.9%) 
not indirect (min 1 triplet) 22 742 (76.3%) 14 242 (62.6%) 8 500 (37.4%) 
not indirect (no triplet) 4 590 (15.4%) 2 453 (53.4%) 2 137 (46.6%) 

Sign Pattern 25 230 (84.6%) 14 930 (59.2%) 10 300 (40.8%) 
Overlap 25 230 (84.6%) 14 930 (59.2%) 10 300 (40.8%) 
Interaction Information 7 672 (25.7%) 4 962 (64.7%) 2 710 (35.3%) 
Data Processing Inequality 7 394 (24.8%) 1 862 (25.2%) 5 532 (74.8%) 
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The intersection combination removed more negative than positive edges, 1554 and 934, respectively 

(Figure 4). However, there were 20334 positive and 4896 negative microbial associations that were found in at 

least one environmental triplet, so the method removed 31.7% of the negative and only 4.6% of the positive 

edges. If we randomly removed 2488 edges, we would expect 18.0 % to be negative (i.e. 448) and 82.0 % of 

them to be positive (i.e. 2040). If we restrict these calculations to the 25230 microbial associations that were 

found in at least one environmental triplet, with 20334 of them being positive and 4896 being negative, we 

would expect to remove 19.4% (i.e. 483) of negative and 80.6% (i.e. 2005) of positive edges. The probability 

of randomly removing less positive than negative associations is nearly zero, since it follows a multivariate 

hypergeometric distribution: 

 

𝑃(𝑘𝑛𝑒𝑔 , 𝑘𝑝𝑜𝑠) =
(𝑁𝑛𝑒𝑔

𝑘𝑛𝑒𝑔
) ∙ (𝑁𝑝𝑜𝑠

𝑘𝑝𝑜𝑠
)

(𝑁
𝑛

)
 , 

Eq. (1) 

 

where 𝑁𝑝𝑜𝑠  and 𝑁𝑛𝑒𝑔 are the number of positive and negative associations in the network, respectively, 𝑘𝑝𝑜𝑠 is 

the number of removed positive and 𝑘𝑛𝑒𝑔 the removed negative associations from the network, 𝑁 is the number 

of associations in the network, and 𝑛 is the number of removed associations from the network. The removal of 

more negative edges through intersection combination indicates that this removal was not random or, in other 

words, that negative associations are more likely to represent environmentally-driven edges. 

To evaluate the performance of EnDED on the BBMO network, we considered interactions described 

in literature and collected in the Protist Interaction Database (PIDA) (Bjorbækmo et al., 2019). Studies typically 

compare the associations of a network to those reported in the literature at the genus level (Lima-Mendez et al., 

2015). The ambiguity in taxonomic classification and the large number of edges challenged this comparison. 

Thus, we implemented a function to compare strings and match the taxonomic classification of a microorganism 

in the BBMO network to those in the scientific literature (PIDA). We found that only 29 (0.1%) associations 

were supported by interactions described in the literature (Table 7). That is, 99.9% of associations in the BBMO 

network (before applying EnDED) could not be used to evaluate EnDED’s performance. These 29 associations 

describe eight unique interactions between eight microorganisms, and 18 edges were in an environmental triplet 

to which each method as well as their combination were applied (summary in Table 7). Ideally none of these 

described associations should be removed by EnDED. Yet, the intersection combination removed five 

associations (Table 7). In contrast and even worse, SP and OL removed all 18 edges, II eight and DPI nine 

edges. The additionally removed edges by individual methods are associations between a diatom (Thalassiosira) 

and an unknown Flavobacteriia. Considering only the genus level, there were 171 unique genera in the BBMO 

network, and 700 in PIDA, combined there were 837 microbial genera, and 34 genera in both. Thus, 19.9% of 

the microbial genera found in the BBMO network were also in PIDA, and 4.9% of the genera found in PIDA 

were also found in the BBMO network. 
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Table 7: Interactions found in the BBMO network that have been reported in the literature. The table mentions whether or not the associations 
were removed or kept by EnDED via the combination interaction approach. For example, the association between the ASVs classified as Dia. 
Thalassiosira and ASVs classified as F. unknown Flavobacteriia has been found 17 times in the network: 4 were removed and 13 were kept. 

 

 

Discussion 

Using EnDED to disentangle environmental effects in microbial association networks 

EnDED makes several indirect-edge removal techniques accessible to microbial ecologists without requiring 

previous programming experience. These techniques can be used individually or combined. In addition, this 

work systematically evaluated the different techniques and their combination to remove indirect edges from 

microbial association networks. Here, we tested only the union and intersection combination of all four methods, 

but other combination strategies are possible with EnDED. EnDED requires data of the environmental factors 

in order to predict if an association is environmentally-driven. This is a limitation, since it may be impossible 

to consider all environmental factors (Lv et al., 2019). However, EnDED can perform well if the major 

environmental factors, such as, e.g., temperature and nutrient concentrations for marine microorganisms, are 

provided. Moreover, knowledge of microbial interactions in nature is rather limited and therefore determining 

the performance of EnDED for real networks is challenging and carries some degree of uncertainty. Thus, 

EnDED’s results should be interpreted with care. 

For the simulated networks, we found that each method individually removed on average a moderate to 

high number of edges. The intersection combination removed fewer edges but kept more true interactions. To 

understand the impact of the environment, Röttjers and Faust (2018) simulated an increasing environmental 

influence and observed a decrease in retrieving true interactions from inferred associations. The observation 

holds for several network construction methods for cross-sectional data, including CoNet (Faust et al., 2012), 

SparCC (Friedman & Alm, 2012), SPIEC-EASI (Kurtz et al., 2015), and Spearman correlations. In agreement 

with these findings, we observed a slight increase in retrieving true interactions when removing 

environmentally-driven associations in our simulation networks. 

In our BBMO dataset, the intersection combination removed a modest number of the edges—a much 

higher fraction of negative than positive edges. We argue that several negative associations are probably due to 

different environmental preference (different niches) of microorganisms. The Jaccard index representing a level 

Microorganisms EnDED ID in PIDA 

Included in 1, 2, 3, or 4 triplets   
Dia. Thalassiosira - Dino. Heterocapsa 1 removed 1665 
Dia. Thalassiosira - F. unknown Flavobacteriia 4 removed 2199 
 13 kept  

Not included in a triplet   
Dino. Heterocapsa - Dino. Prorocentrum 1 kept 1501, 1511 
Dino. Gyrodinium - Dino. Heterocapsa 1 kept 1313, 1314, 1780, 1783 
Dino. Prorocentrum - Dino. Gymnodinium 2 kept 1499 
Dino. Prorocentrum - Dino. Prorocentrum 4 kept 1509, 1510 
Dino. Prorocentrum - Dino. Scrippsiella 2 kept 1513 
F. unknown Flavobacteriia - Dia. Pseudo-nitzschia 1 kept 2196 
Abbreviations indicate Dia - Diatomea; Dino - Dinoflagellata; C - Ciliophora; F - Flavobacteriia; ID in PIDA refers to the number PIDA gave to an interaction 
described in the literature. 
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of microbial co-occurrence, scored equal or below 50% for most negative associations. These may partially 

represent microorganisms adapted to different seasons. Previous work on the eukaryotic pico- and nano-

plankton at the BBMO, using the same basal 10-year dataset used here, indicated a strong seasonality at the 

community level (Giner et al., 2019). 

 

Comparisons of indirect edge detection on other datasets 

In our BBMO network we found that the majority (84.6%) of the microbial edges was within at least one 

environmental triplet. This was 2.6 times higher than what was found for an association network inferred from 

data considering microorganisms and small metazoans from two ocean depths across 68 stations around the 

world and various size fractions (hereafter global interactome) (Lima-Mendez et al., 2015). This global 

interactome contains 29912 (32.3%) edges that were within at least one environmental triplet (Lima-Mendez et 

al., 2015). In the previous study, 29900 edges in the global interactome (≈100% of triplets and 32% of all edges) 

were attributed to environmental factors by SP, similarly to this study as SP removed all edges within triplets 

in the BBMO network. II indicated 11043 environmentally-driven edges in the global interactome (≈37% of 

triplets and 12% of all edges) with 𝑝-value below 0.05 in a permutation test with 500 iterations. In comparison, 

II removed a higher fraction of edges in the BBMO network when considering all edges (25.7%), but less when 

considering within the triplets (30.4%). Network deconvolution suggested 22439 environmentally-driven edges 

(≈75% of triplets and 24% of all edges) within the global interactome, and the three methods agreed for 8209 

edges (≈27% of triplets and 8.9% of all edges). In comparison, we detected slightly less environmentally-driven 

associations for the BBMO network (8.3% of all edges). These differences suggest that a higher environmental 

heterogeneity in the dataset may induce more indirect edges. Also, the effects of indirect dependencies may 

depend on dataset type (e.g., temporal vs. spatial). These possible differences and their effect on 

environmentally-driven edges should be further investigated. 

Using II for the BBMO network, we identified a moderate number of environmentally-driven 

associations. DPI also identified a moderate number (24.8%, 29.3% when considering only triplets), whereas 

SP or OL identified a ubiquitous number of environmentally-driven edges (84.6%, 100% when considering only 

triplets). This indicates that SP and OL are strict and should be used in combination with other methods in an 

intersection approach. 

In another study, the tool FlashWeave (Tackmann et al., 2019) predicted direct microbial interactions 

in the human microbiome using the Human Microbiome Project (HMP) dataset, including heterogeneous 

microbial abundance data of 68818 samples (The Human Microbiome Project Consortium: Huttenhower et al., 

2012). The inferred networks (with and without metadata) were sparser than our networks. The network with 

metadata contained 10.7% fewer associations compared to the network without metadata, slightly more than in 

our results from BBMO. 
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Factors causing indirect microbial associations 

From the simulated networks, we found that using the intersection combination instead of each method 

individually, we maintained more true interactions at the cost of more false associations in the network—more 

when considering simulated networks including noise. Comparing our simulated network against the BBMO 

network, the intersection combination classified a higher number of edges as environmentally-driven in the 

simulated networks 32% (22% dwn) than in the BBMO network (8.3%). For the simulated data, we previously 

knew the environmental factor influencing pairwise microbial associations. For the BBMO data, we used ten 

available environmental factors, but not all factors that could affect microbial dynamics. Even though the most 

important factors influencing microbial seasonal dynamics at BBMO were considered (Giner et al., 2019), there 

are several factors that were not measured and that could generate indirect edges. The indirect edges associated 

to these factors were not detected in our analyses. Similarly, indirect edges associated to biotic interactions (e.g., 

two bacteria sharing a positive edge as they are symbionts in the same protists) were not considered. Future 

sampling for microbial interaction research should expand metadata collection in order to detect (more) abiotic 

and biotic factors that could generate indirect edges. 

While temperature and day length (hours of light) were the top two environmental factors affecting 

microbial associations in the BBMO network, the most important environmental factors in the global 

interactome (Lima-Mendez et al., 2015) were phosphate concentration and temperature, followed by nitrite 

concentration and mixed-layer depth. Although we considered PO4
3- and salinity, they were not associated to 

any microorganism in the network, which may reflect the low variation of these environmental factors in the 

studied marine site (BBMO). For instance, the standard deviation in the BBMO dataset was < 1 for PO4
3- and 

salinity, in contrast to the global interactome dataset (Lima-Mendez et al., 2015), where it was about 20-30 

when considering all samples. During the Malaspina-2010 Circumnavigation Expedition, the concentrations of 

trace metals were determined for 110 surface water samples (Pinedo-González et al., 2015). The previous study 

indicates relationships between primary productivity and trace nutrients, more specifically for the Indian Ocean 

Cd, the Atlantic Ocean Co, Fe, Cd, Cu, V and Mo, and the Pacific Ocean Fe, Cd, and V. Thus, trace metals are 

further environmental factors that may play an important role in regulating oceanic primary productivity. 

 

Limitations of EnDED 

EnDED detects and removes environmentally-driven indirect edges. However, its triplet analysis could be 

extended to remove indirect edges driven by taxa, as done with gene triplets (Margolin et al., 2006). A recent 

update of the network construction tool eLSA (Xia et al., 2011, 2013) permits to examine how a factor, such as 

a microorganism or environmental variable, mediates the association of two other factors (Ai et al., 2019), 

which allows the study of interactions between three factors. Furthermore, triplets limit the study to first-order 

indirect dependencies, neglecting higher-order indirect dependencies. Such limitation was solved for the DPI 

method by examining associations in quadruplets, quintuplets, and sextuplets (Jang et al., 2013). Implementing 

higher-order DPI and adjusting the other three methods to account for higher-order indirect dependencies may 

be promising but one needs to be aware that incorporating higher-order dependencies will also increase the risk 
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of over-fitting. Further, all relevant (measured) environmental factors could be incorporated into the calculation 

of II, which would combine environmental triplets. However, we reason that such adjustments would require a 

larger sample size. Both II and DPI calculate MI that measures the dependence between two random variables. 

EnDED is limited by including one function to estimate the MI. A comparison of four different MI estimates 

revealed that obtaining the true value of MI is not straightforward, and minor variations of assumptions yield 

different estimates (Fernandes & Gloor, 2010). Lastly, the conditional mutual information, CMI, which 

quantifies nonlinear direct relationships among variables, can be underestimated if variables have tight 

associations in a network (Zhao, Zhou, et al., 2016). The so-called part mutual information, PMI, measurement 

can help overcome CMI’s underestimations. Although using PMI instead of CMI looks promising, calculating 

PMI is computationally more demanding (Zhao, Zhou, et al., 2016). 

 

Future Perspectives 

In this study, we have shown that EnDED with an intersection combination approach provides less dense 

networks, but still with many potential interactions. We observed a trade-off comparing single methods with 

the combination approach (intersection combination). Although the latter kept more true interactions, it kept 

also more false associations. Inferring emergent properties is a key task in microbial ecology to characterize 

microbial ecosystems from a network-perspective. Thus, if the study aim is to explore patterns of network 

topology rather than single edges, inferring a network comparable to the real interaction network may be more 

useful than accuracy of single edges. However, investigations aiming to provide potential interaction partners 

may use EnDED with the intersection combination approach (e.g., (Latorre et al., 2021)). Specific associations 

may be validated with experiments or microscopy (Lima-Mendez et al., 2015; Krabberød et al., 2017). 

However, we suggest to first further reduce the set of potential interaction hypotheses. To improve the selection 

of interaction hypotheses, we propose to score associations based on re-occurrence: in time, as done with 

microbial abundance seasonality (Giner et al., 2019), or space, where an association appears in different 

networks based on different datasets, or different regions of the world. In a previous study using 313 samples, 

including seven size-fractions, four domains (Bacteria, Archaea, Eukarya, and viruses), and two depths from 68 

stations across eight oceanic provinces, 14% of the 81590 predicted biotic interactions were identified as local 

(Lima-Mendez et al., 2015). Thus, re-occurrent associations may suggest a higher likelihood that the association 

represents a true ecological interaction, reducing the number of interaction hypotheses to the strongest ones. 

Another strategy to shortlist interaction hypotheses is to incorporate additional data into the network and use a 

multi-layer network approach. Such data could be environmental preferences such as temperature or salinity 

optima, size of cells, presence of chloroplasts, or data obtained from High-Throughput Cultivation (Faust, 

2019), microbial community transcriptomes that reveal metabolic pathways (McCarren et al., 2010), or 

interactions inferred from Single-Cell genome data (Yoon et al., 2011; Krabberød et al., 2017). 
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Conclusion 

In this chapter, we presented EnDED, an analysis tool to reduce the number of environmentally induced indirect 

edges in inferred microbial networks. Applying EnDED on simulated networks indicated that false associations, 

driven by environmental variables instead of true interactions, were ubiquitous. However, EnDED’s intersection 

combination classified a minority of associations as environmentally-driven in a real (BBMO) network. 

Depending on the single method used, we classified a moderate to high number of associations as 

environmentally-driven in the same network. Nevertheless, associations driven by environmental factors must 

be determined and quantified to generate more accurate insights regarding true microbial interactions. EnDED 

provides a step forward in this direction. 

 

Methods 

Simulated dataset: time series based on an adjusted generalized Lotka-Volterra model 

To evaluate the performance of EnDED, we simulated a time series using an adjusted version of the standard 

generalized Lotka-Volterra model, gLV (Berry & Widder, 2014; Bashan et al., 2016). The gLV can describe 

the dynamics of microbial communities, by including a first order approach of the microbial interactions. The 

model’s simplicity arises from the assumption of linear interactions, which facilitates implementation and 

allows fast numerical simulations. The gLV has, however, several limitations (Gonze et al., 2018). For example, 

gLV neglects higher-order interactions and the additivity of interaction strengths is a weakness because they 

may be combined in different ways. Also, interactions are often assumed to be constant parameters, but a 

reducing level of a nutrient may weaken cross-feeding relationships. Moreover, gLV omits the influence of 

environmental factors, which, for example, can induce oscillations in natural communities (Benincà et al., 

2011). Using a model that accounts for nutrients (Kettle et al., 2018) is more realistic but also more complex. 

More elaborate mechanistic models of microbial dynamics than gLV solve explicitly the global cycling of 

nutrients and are coupled to the oceanic circulation (see (Vallina et al., 2019) for a review), but the added 

complexity can hamper understanding about the ecological interactions among microorganisms when compared 

to a simpler gLV approach. Thus, we chose to use a simpler extension of the gLV to account for the influence 

of environmental factors (Stein et al., 2013; Dam et al., 2016). In order to allow the growth rates to vary when 

the environmental variables change, environmental variables can be incorporated directly into the gLV (Dam et 

al., 2016; Röttjers & Faust, 2018). We simulated a time series using the Klemm-Eguíluz algorithm (Klemm & 

Eguíluz, 2002), and an adjusted gLV. We adjusted the model by defining microbial growth rates as a function 

dependent on one seasonal abiotic environmental factor, and added an abiotic environmental factor in the 

interaction matrix. We then used the time series generated by the gLV to obtain temporal microbial abundance 

data. With this simulated data, we inferred a network that contained environmentally-driven associations, 

needed to evaluate the performance of EnDED. We repeated this procedure 1000 times to obtain a large set of 

simulated networks, and then used the determined abundance tables and Poisson distribution to obtain another 

1000 simulated networks including noise. The addition of noise was done by randomly drawing an abundance 
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from the Poisson distribution with λ equaling the original abundance of a specific microorganisms to a specific 

time. 

 

Adjusting the gLV 

To evaluate EnDED, we simulated a time series of microbial abundances with a gLV including true pairwise 

interactions between 50 microorganisms and adjusted it by incorporating two environmental factors: 

 

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑦(𝑡)[𝑏 + 𝐴𝑦(𝑡)] , 

Eq. (2) 

 

where 𝑡 is time, 𝑑𝑦(𝑡)/𝑑𝑡 is the rate of change of microbial abundances as a column vector, 𝑦(𝑡) is the vector 

of microbial abundance at time 𝑡, b is the growth rate vector determined through microorganism’s specific 

growth rate functions that depend on an environmental factor (see equation (4)), and 𝐴 is the interaction matrix. 

 

Interaction matrix 

In the interaction matrix 𝐴, each coefficient 𝑎𝑗𝑖 provides the linear effect that a change in the abundance of 

microorganism 𝑖 has on the growth of microorganism 𝑗 (Novak et al., 2016). We simulated the interaction 

coefficients 𝑎𝑗𝑖 with the Klemm-Eguíluz algorithm (Klemm & Eguíluz, 2002), which generates a modular and 

scale-free matrix. We also set the interaction probability to 0.01, the percentage of positive coefficients to 30%, 

and diagonal coefficients to zero7. Negative diagonal coefficients 𝑎𝑖𝑖 (i.e., the interaction of a microorganism 

with itself) can represent intra-specific competition and provides the carrying capacity for each microorganism, 

preventing its explosive growth (Haydon, 1994). We set the diagonal coefficients 𝑎𝑖𝑖 = −0.5 to avoid excessive 

microbial abundances in the simulations. 

 

Two abiotic environmental factors 

We adjusted the gLV by including two environmental factors. For simplicity, we assume no feedback between 

the microorganisms and the environmental factors. That is, the environmental factors affect the growth of the 

microorganisms but not vice-versa. The first environmental factor affects the specific growth rate of each 

microorganism by interacting with two of their traits: optimal environmental value for growth and tolerance 

range of environmental values. We simulated the environmental factor using a periodic sinusoidal function (see 

equation (3)), rounded to 3 digits: 

 

𝜖(𝑡) ≜ 𝑟𝑜𝑢𝑛𝑑(sin(𝜔 ∙ 𝑡) , digits = 3) , Eq. (3) 

 

 
7 Diagonal coefficients are set to zero using the Klemm-Eguíluz algorithm when generating the modular scale-free matrix but later set to -0.5. 
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where 𝑡 is the time axis (months), 𝜔 = (−2𝜋/𝑇) is the signal frequency (radians) and 𝑇 = 12 is the signal 

periodicity (months); resulting in a signal phase shift of 𝑇/4 (months). While the first environmental factor is 

considered to be “external” to the microbial community, the second environmental factor is considered to be 

“internal”, and therefore it is included in the interaction matrix. The interaction coefficients between the 

microorganisms and the second environmental factor were generated by splitting the microorganisms into two 

groups: the second abiotic environmental factor influenced positively one half and negatively the other half of 

the microorganisms. We obtained the interaction coefficients from two uniform distributions defined to range 

between [-0.8, -0.2] and [0.2, 0.8] respectively. As the microorganisms did not influence the abiotic factor, the 

corresponding interaction coefficients were set to zero. 

 

Species growth rate 

The external seasonal abiotic environmental variable affects the growth rate, 𝑔, of each microorganism. This 

dependency is given by: 

 

𝑔(𝑡) ≜ 𝑔𝑚𝑎𝑥
2 exp (−

1

2

(𝜖𝑜𝑝𝑡 − 𝜖(𝑡))
2

𝜎2
) , 

Eq. (4) 

 

where 𝐸(𝑡) is the environmental parameter that affects the microorganisms growth rate 𝑔(𝑡) at time 𝑡, 𝑔𝑚𝑎𝑥 is 

the microorganism’ specific maximum growth rate that determines the amplitude of the growth-rate curve, 𝜖𝑜𝑝𝑡 

is the microorganism’ specific optimal environmental value that determines the peak of the growth-rate curve, 

and 𝜎 is the microorganism’ specific ecological tolerance (niche width) determining the environmental range in 

which the microorganism grows, which determines the length (niche spread) of the growth-rate curve. We 

obtained the two constant parameters 𝑔𝑚𝑎𝑥, and 𝜎 for each microorganism from a uniform distribution ranging 

between 0.3 and 1 to assure positive values. The values 𝜖𝑜𝑝𝑡 were drawn from a uniform distribution ranging 

between the minimal and maximal value of the seasonal environmental factor. We defined the internal abiotic 

environmental factor, which is included in the interaction matrix, through the same function with 𝑔𝑚𝑎𝑥 = 0.8, 

𝜖𝑜𝑝𝑡 = 0.5, and 𝜎 = 0.5. Since the growth rates depend on the environmental factor, they vary seasonally. 

Different microorganisms will grow better or worse at different times of the year following their environmental 

niches. This will lead to an asynchrony of their growth rate responses to the environment that will translate into 

an asynchrony of their abundances in time. 

 

Initial abundances 

To obtain the microbial abundances in time with the adjusted gLV, we simulated the initial microbial 

abundances with a stick-breaking process such that abundances add up to 1, using the function bstick (Jackson, 

1993; Legendre & Legendre, 2012), and the package vegan (Oksanen et al., 2019). We generated uneven initial 
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microbial abundances without introducing zeros and set the initial value for the internal abiotic environmental 

factor included in the interaction matrix to 0.001. 

 

Species abundances in time 

Once we have set the initial conditions, we simulated microbial abundances over time by solving the equations 

given in the adjusted gLV (see equation (2)). Start time was 0, end time 49.5, and sample resolution 0.5 resulting 

in 100 samples. We used the solver function lsoda (Soetaert et al., 2010). The simulated abundances in time 

were used to construct an association network, which is referred to as the simulated network. 

 

Real dataset: Blanes Bay Microbial Observatory (BBMO) time series 

Microbial abundances 

Surface water (≈ 1m depth) was sampled monthly from January 2004 to December 2013, at the BBMO in the 

North-Western Mediterranean Sea (41◦40′N 2◦48′E) (Gasol et al., 2016). About 6L of seawater were filtered 

and separated into picoplankton (0.2-3 µm) and nanoplankton (3-20 µm), as described in (Giner et al., 2019). 

The DNA was extracted using a phenol-chloroform standard method (Schauer et al., 2003), which has been 

modified by using Amicon units (Millipore) for purification. 

Next, community DNA was extracted, and the 18S ribosomal RNA-gene (V4 region) was amplified in 

(Giner et al., 2019) using the primer pair TAReukFWD1 and TAReukREV3 (Stoeck et al., 2010). The 16S 

ribosomal RNA-gene (V4 region) was also amplified from the same DNA extracts using the primers Bakt 341F 

(Herlemann et al., 2011) and 806R (Apprill et al., 2015). Amplicons were sequenced in a MiSeq platform 

(2x250bp) at the sequencing service RTL Genomics in Lubbock, Texas. Read quality control, trimming, and 

inference of Amplicon Sequence Variants (ASV) was made with DADA2 v1.10.1 (Callahan et al., 2016) with 

the maximum number of expected errors (MaxEE), set to 2 and 4 for the forward and reverse reads, respectively. 

ASV sequence abundance tables were obtained for both microbial eukaryotes and prokaryotes. We 

subsampled both tables to the lowest sequencing depth of 4907 reads, with the rrarefy function from the Vegan 

package in R (Oksanen et al., 2019), v2.4-2. We excluded 29 nanoplankton samples (March 2004, February 

2005, and May 2010 to July 2012) featuring suboptimal amplicon sequencing. In these, we estimated microbial 

abundances using seasonally aware missing value imputation by weighted moving average for time series as 

implemented in the R package imputeTS (Moritz & Gatscha, 2017), v2.8. 

Dislodging cells or particles and filter clogging can bias the collection of DNA in either small or large 

organismal size fractions. To reduce the bias, we divided the sequence abundance sum of the nanoplankton by 

the picoplankton for each ASV appearing in both size fractions and set the picoplankton abundances to zero if 

the ratio exceeded 2. Likewise, we set the nanoplankton abundances to zero if the ratio was below 0.5. 

 

Taxonomic classification 

The taxonomic classification of each ASV was inferred with the naïve Bayesian classifier method (Wang et al., 

2007) together with the SILVA version 132 (Quast et al., 2012) database as implemented in DADA2 (Callahan 
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4 

et al., 2016). In addition, eukaryotic microorganisms were BLASTed (Altschul et al., 1990) against the Protist 

Ribosomal Reference database [PR2, version 4.10.0; (Guillou et al., 2012)]. If the taxonomic assignment for 

eukaryotes disagreed between SILVA and PR2, we used the PR2 classification. We removed microorganisms 

identified as either Metazoa, or Streptophyta, plastids and mitochondria. In addition, we removed Archaeas 

since the 341F primer is not optimal for recovering this domain (McNichol et al., 2021). The resulting microbial 

sequence abundance table contained microbial eukaryotic and bacterial ASVs. Rare ASVs were removed, i.e., 

we kept only ASVs present in more than 15% of the samples and with a sequence abundance sum above 100. 

 

Environmental factors 

We measured environmental factors that may affect the ecosystem’s dynamics. We considered a total of ten 

contextual abiotic and biotic variables: day length (hours of light), temperature (C◦), turbidity (Secchi depth m), 

salinity, total chlorophyll (µg/l), and inorganic nutrients— PO4
3- (µM), NH4

+ (µM), NO2
- (µM), NO3

- (µM), and 

SiO2 (µM) (Giner et al., 2019). Water temperature and salinity were sampled in situ with a SAIV-AS-SD204 

CTD (Conductivity, Temperature, and Depth) measuring device. Inorganic nutrients were measured with an 

Alliance Evolution II autoanalyzer (Grasshoff et al., 2009). See (Gasol et al., 2016) for specific details on how 

other variables were measured. 

 

Network construction 

We constructed association networks from the simulated and the real microbial abundance tables and 

environmental parameters using eLSA (Xia et al., 2011, 2013). We included default normalization and a z-score 

transformation using median and median absolute deviation. We estimated the 𝑝-value with a mixed approach 

that performs a random permutation test if the theoretical 𝑝-values for the comparison are below 0.05; the 

number of iterations was 2000. Although we are aware of time-delayed interactions and that eLSA (Xia et al., 

2011, 2013) could account for them, we considered our sampling interval as too large (1 month) for inferring 

time-delayed associations with a solid ecological basis. Thus, in our study, we focused on contemporary 

interactions between co-occurring microorganisms. For the BBMO dataset, the Bonferroni false discovery rate, 

𝑞, was calculated for all edges from the 𝑝-values using the R function p.adjust (R Core Team, 2019). Lastly, 

we used a significance threshold for the 𝑝 and 𝑞 value of 0.001 as suggested in other works (Weiss et al., 2016). 

 

Intersection combination of EnDED—Environmentally-Driven Edge Detection methods 

EnDED includes four methods: SP, OL, II, DPI (described below) and their intersection combination (an 

ensemble approach of the four methods). We applied these methods to find environmentally-driven associations 

of microorganisms that were within an environmental triplet, as in (Lima-Mendez et al., 2015). An 

environmental triplet is a special case of a closed triplet where one of the nodes corresponds to an environmental 

factor and the other two nodes correspond to microorganisms. We define the closed triplet, where there is an 

edge between each pair of three nodes, as 𝑇 =  {𝑣, 𝑤, 𝑓} where 𝑣 and 𝑤 are two microorganisms, and 𝑓 is an 

environmental component (see Figure 5). 
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For the intersection combination, all four individual methods must converge to the same solution, i.e., 

if all methods classify the microbial edge as environmentally-driven, the edge is removed from the network. If 

a microbial association is within several environmental triplets, at least one of them must indicate the association 

as environmentally-driven. In sum, the intersection combination retains an association in the network if no 

triplet classifies the association as environmentally-driven. 

 

 

 
Figure 5: EnDED Methods Overview. EnDED is an implementation of four methods aiming to determine whether an edge between two microorganisms 
is indirect through the action of an environmental factor. The four methods are: Sign Pattern, Overlap, Interaction Informati on, and Data Processing 
Inequality (see Methods). Each method can be used individually or in combination. Here, we show the intersection combination approach, i.e., only if 
all methods classify an edge as indirect, it is removed from the network. Otherwise, the edge is classified as not indirect a nd kept in the network. 

 

Sign Pattern 

The SP method (Lima-Mendez et al., 2015) filters environmentally-driven edges from a network in which a 

positive association score indicates co-occurrence, and a negative association score indicates mutual exclusion. 

Let 𝑠𝑣𝑤 be the sign of the association score of the association between 𝑣 and 𝑤  (i.e., 𝑠𝑣𝑤 = + or 𝑠𝑣𝑤 = −). A 

closed triplet 𝑇 has eight SP combinations that group into two sets (see Figure 5). If the product of the three 

association scores is positive, then the SP suggests that the edge between the two microorganisms is 

environmentally-driven. Otherwise, if the product of the three association scores is negative, SP does not suggest 

that the association is environmentally-driven. 

 

Overlap 

We have developed the OL method to support the SP for temporal data: a microbial edge should be disregarded 

as environmentally-driven when the associations are misaligned in time. Thus, OL requires the time when the 

association begins as well as how long the associations lasts, i.e., duration or length of association in time, both 

determined by the network construction tool eLSA (Xia et al., 2011, 2013). Given an association between 𝑣 and 
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𝑤, let 𝑏𝑣𝑤
𝑣  be the beginning of the association for 𝑣, 𝑏𝑣𝑤

𝑤  the beginning of the association for 𝑤, and 𝑑𝑣𝑤 be the 

duration of the association between 𝑣 and 𝑤. Although not used in the BBMO network, OL can consider time-

delays by assuming that the beginning of the association is the minimum of the two beginnings, 

𝑏𝑣𝑤 = min (𝑏𝑣𝑤
𝑣 , 𝑏𝑣𝑤

𝑤 ), and the end of the association is the maximum, 𝑒𝑣𝑤 = max (𝑏𝑣𝑤
𝑣 + 𝑑𝑣𝑤 , 𝑏𝑣𝑤

𝑤 + 𝑑𝑣𝑤).  

We indicate two microorganisms with 𝑣 and 𝑤, and the factor by 𝑓. The OL method calculates the overlap O 

of the microbial association with the two microorganism-environment associations through equation (5). As 

depicted in Figure 5, if 𝑂>60%, the microbial association is considered environmentally-driven. 

 

𝑂 = 100
𝑚𝑖𝑛(𝑒𝑣𝑤 , 𝑒𝑣𝑓 , 𝑒𝑤𝑓) − max (𝑏𝑣𝑤 , 𝑏𝑣𝑓 , 𝑏𝑤𝑓)

𝑒𝑣𝑤 − 𝑏𝑣𝑤
 

Eq. (5) 

 

Mutual Information and Conditional Mutual Information 

The method II employs two measurements: MI and CMI. The former is also used by DPI. Thus, before 

describing the methods, we first describe the two measurements. MI is a measure of the degree of statistical 

dependency between two variables (Margolin et al., 2006). We first consider 𝒗 =  𝑣1, . . . , 𝑣𝑛, 𝒘 =  𝑤1, . . . , 𝑤𝑛, 

and 𝒇 =  𝑓1, . . . , 𝑓𝑛  as discrete random variables. The marginal probability of each discrete state (value) of the 

variable is denoted by 𝑝(𝑣𝑖)  =  𝑃 (𝒗 =  𝑣𝑖), the joint probability by 𝑝(𝑣𝑖 , 𝑤𝑗), and 𝑝(𝑣𝑖 , 𝑤𝑗 , 𝑓𝑘), and the 

conditional probability by 𝑝(𝑣𝑖|𝑓𝑘), and 𝑝(𝑣𝑖 , 𝑤𝑗|𝑓𝑘). To obtain MI, we calculate the entropy of 𝒗 as 

 

𝑆(𝒗) = − ∑ 𝑝(𝑣𝑖) log(𝑝(𝑣𝑖)) ,

𝑛

𝑖=1

 
Eq. (6) 

 

and the joint entropy of 𝒗 and 𝒘 as 

 

𝑆(𝒗, 𝒘) = − ∑ 𝑝(𝑣𝑖 , 𝑤𝑗) log (𝑝(𝑣𝑖 , 𝑤𝑗)) ,

𝑛

𝑖=1,𝑗=1

 
Eq. (7) 

 

using the natural logarithm. The MI of 𝒗 and 𝒘 is defined through the sum of their entropies subtracted by their 

joint entropy: 

 

MI(𝒗; 𝒘) = 𝑆(𝒗) + 𝑆(𝒘) − 𝑆(𝒗, 𝒘) 

 

Eq. (8) 

                                         = ∑ ∑ 𝑝(𝑣𝑖 , 𝑤𝑗) log (
𝑝(𝑣𝑖 , 𝑤𝑖)

𝑝(𝑣𝑖)𝑝(𝑤𝑗)
) ,

𝑛

𝑗=1

𝑛

𝑖=1

 
Eq. (9) 
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with marginal probabilities 𝑝(𝑣𝑖)  =  ∑ 𝑝(𝑣𝑖 , 𝑤𝑗)𝑛
𝑗=1 , and 𝑝(𝑤𝑗)  =  ∑ 𝑝(𝑣𝑖 , 𝑤𝑗)𝑛

𝑖=1 . 

The measurement CMI is the expected value of the MI of two random variables given a third random 

variable. It is defined as 

 

CMI(𝒗; 𝒘|𝒇) = 𝑆(𝒗, 𝒇) + 𝑆(𝒘, 𝒇) − 𝑆(𝒗, 𝒘, 𝒇) − 𝑆(𝒇)             

 

Eq. (10) 

                                         = ∑ 𝑝(𝑓𝑘)

𝑛

𝑘=1

∑ ∑ 𝑝(𝑣𝑖 , 𝑤𝑗|𝑓𝑘) log (
𝑝(𝑣𝑖 , 𝑤𝑖|𝑓𝑘)

𝑝(𝑣𝑖|𝑓𝑘)𝑝(𝑤𝑗|𝑓𝑘)
)

𝑛

𝑗=1

𝑛

𝑖=1

 
Eq. (11) 

                              = ∑ ∑ ∑ 𝑝(𝑣𝑖 , 𝑤𝑗 , 𝑓𝑘) log (
𝑝(𝑓𝑘)𝑝(𝑣𝑖 , 𝑤𝑖 , 𝑓𝑘)

𝑝(𝑣𝑖 , 𝑓𝑘)𝑝(𝑤𝑗 , 𝑓𝑘)
)

𝑛

𝑗=1

𝑛

𝑖=1

𝑛

𝑘=1

 . 
 

 

Interaction Information 

The II is calculated with microbial abundance and environmental data. In this study, as in (Lima-Mendez et al., 

2015), II is computed as the difference of the CMI and MI: 

 

II = CMI − MI. Eq. (12) 

 

In other works (Ghassami & Kiyavash, 2017), the II is defined with a different sign convention: II = MI − CMI. 

In our study, if II is positive, the method suggests that the microbial association is not environmentally-driven. 

If II is negative, there is an environmentally-driven association within the closed triplet. However, this method 

cannot detect which of the three associations is indirect. In other works (Lima-Mendez et al., 2015), the 

microbial association is assumed to be environmentally-driven if II is negative, but here we suggest to combine 

it with DPI (see below). 

 

Significance of Interaction Information 

We determined the significance of II following a strategy from (North et al., 2002; Veech, 2012). We used a 

parameter-free permutation test and computed the 𝑝-value by randomizing the environmental vector 𝒇. Since 

the MI is independent of the environmental factor and therefore remains constant, the significance of the II is 

the same as the CMI. Thus, we determined the significance of CMI with 1000 permutations: we randomized the 

environmental vector 𝒇 and recalculated the CMI 1000 times, obtaining a CMI𝑖 with 𝑖 ∈ {1, . . . , 1000}. 

Afterwards, we quantified with 𝑐 how many random CMI𝑖 were at least as small as the original CMI𝑖: 𝑐 =

|𝑖: CMI𝑖 ≤ CMI𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 , 𝑖 ∈ {1, . . . ,1000}|. We calculated the 𝑝-value as 

 

𝑝 =
𝑐 + 1

1000 + 1
 . 

Eq. (13) 
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Data Processing Inequality 

As mentioned above, the II method can detect if an indirect association exists within a triplet but cannot 

determine which of the three associations is indirect. Thus, we added DPI to EnDED. DPI states that if two 

components 𝑣 and 𝑤 interact only through a third component 𝑓 (i.e., in a network 𝑣 and 𝑤 are connected through 

a path containing 𝑓 and there is no alternative path between 𝑣 and 𝑤), then the MI of 𝑣 and 𝑤, MI(𝒗;  𝒘) is 

smaller than MI(𝒗;  𝒇) and MI(𝒘;  𝒇) (Cover & Thomas, 2001): 

 

MI(𝒗; 𝒘) ≤ min {MI(𝒗; 𝒇), MI(𝒘; 𝒇)} . Eq. (14) 

 

While DPI has been used in previous works on gene triplets (Margolin et al., 2006), we used the DPI method 

for environmental triplets. We compared the MI between the two microorganisms with the MI between a 

microorganism and the environmental factor. If the MI between the microorganisms is the smallest, then the 

method suggests that the edge is environmentally-driven. This method complements the II method. 

 

Equal Width Discretization 

To compute the MI, CMI, and subsequently II, we discretized the abundance data and environmental parameters. 

EnDED uses the equal width discretization algorithm, which creates equal sized ranges (also called bins or 

buckets) for an abundance vector 𝒗 = (𝑣1, . . . , 𝑣𝑛) between the lowest value (𝑣𝑚𝑖𝑛) and highest value (𝑣𝑚𝑎𝑥). 

It is a procedure implemented in other works (Meyer et al., 2008). Given vector 𝒗 of length 𝑛 (that is the sample 

size) and number of bins |𝐵| = ⌊√𝑛⌋, the discretized value 𝑣𝑑 of variable 𝑣 in vector 𝒗 is: 

 

𝑣𝑑 = ⌈
(𝑣 − 𝑣𝑚𝑖𝑛) ∙ |𝐵|

𝑣𝑚𝑎𝑥
⌉ . 

Eq. (15) 

 

This equation assumes positive values. However, if 𝒗 contains negative values, 𝑣𝑚𝑖𝑛 < 0, we adjust equation 

(15) by substituting 𝑣𝑚𝑎𝑥 for 𝑣𝑚𝑎𝑥
′ = 𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛. This method does not fill in missing values, and it is limited 

by the presence of outliers as most values would go within the same bin. We can solve this problem with a 

different discretization method (where bins have the same number of elements) but we have not implemented 

it in the current version of EnDED. 

 

Applying EnDED to networks constructed from simulated and real data 

We applied EnDED to association networks constructed from time series of simulated abundances and estimated 

microbial abundances from sequence data. The simulated networks were based on a gLV, while the real network 

was based on data from the BBMO. For the methods II and DPI, we also included the corresponding abundance 

tables, and environmental factors. EnDED was run with the OL threshold of 60%. We set the significance 

threshold for the II score to 0.05 and used 1000 iterations. 
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Evaluation of EnDED’s performance 

Simulated network 

We evaluated EnDED with the simulated interaction matrices, which revealed the number of true positives (TP), 

true negatives (TN), false negatives (FN), and false positives (FP) before and after removing associations that 

were classified as environmentally-driven. We assumed that associations not present in the interaction matrices, 

are environmentally-driven. We consider P as the number of all false associations, both true positive and false 

negative detected environmentally-driven edges: P = TP + FN, and N as the number of all true interactions, 

i.e., all true negative and false positive detected environmentally-driven edges: N = TN + FP. Then, we 

calculated the true positive rate (sensitivity), by dividing the number of true positives by the number of all real 

positives: TPR = (TP)/(P). Equivalently, we can also calculate the true negative rate (specificity) by dividing 

the number of true negatives by the number of all real negatives, TNR = (TN)/(N). The false positive rate (fall 

out) is the complementary to TNR, i.e. FPR = 1 − TNR. The positive predictive value (precision) can be 

calculated by dividing the number of true positives by the sum of all predicted positives, PPV = (TP)/(TP +

FP). The accuracy is calculated by dividing the sum of true positives and true negatives by the sum of all real 

positives and real negatives, ACC = (TP + TN)/(P + N). 

 

Real Dataset 

Literature based database 

The real network evaluation is limited since the true interactions and the microorganisms that do not interact 

with each other are poorly known. We assessed true interactions known in the literature based on the genus, 

which are compiled within the Protist Interaction Database, PIDA (Bjorbækmo et al., 2019). On October 15th 

2019, PIDA contained 2448 interactions. Although our dataset contains protists as well as bacteria, we were 

unable to evaluate interactions between bacteria through PIDA. 

 

Jaccard index 

In ecology, the Jaccard index (Jaccard similarity coefficient) is normally used for communities. Here, for each 

pair of microorganisms in the BBMO network, we computed the Jaccard index as the number of samples in 

which both microorganisms occur, divided by the number of samples in which at least one of the two 

microorganisms are present. 

 

Availability of data and material 

EnDED is publicly available: https://github.com/InaMariaDeutschmann/EnDED. This repository contains the 

file “FromDataSimulationToEvaluatingEnDED.RMD”, which contains R code to generate simulated 

abundance tables, commands to run eLSA network construction and EnDED, as well as the commands to run a 

C++ program (included as well) and R code used for evaluation. The repository folder BBMO data contains the 
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BBMO abundance table, the taxonomic classification table, and the BBMO network including results of 

EnDED. 
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Final Remarks 

 Associations could result from either ecological interactions between microorganisms, or 

environmental selection. 

 Determining a cut-off level for the association score is not sufficient to separate true from false 

interactions (simulated networks). 

 EnDED is an implementation of four approaches and their combination (a newly developed ensemble 

approach) to predict environmentally-driven microbial associations. 

 EnDED can be used to quantify environmentally-driven associations for each environmental factor 

allowing to determine the main environmental drivers of indirect associations. 

http://www.thepapermill.eu/
https://marbits.icm.csic.es/
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 The main drivers of environmentally-driven edges in the real data BBMO network based on ten years 

of data at the BBMO were temperature and day length, to a lesser extent total chlorophyll and nutrients. 

 The fraction of environmentally-driven edges among negative microbial associations increased rapidly 

with the number of environmental factors (real network). 

 EnDED should be included in a filtering strategy to reduce the number of false associations and 

consequently the number of potential interaction hypotheses. 

 Proposed idea: quantify edge recurrence (temporal and spatial). 

 Observation: most of the edges are within one environmental triplet, some within no triplet and EnDED 

tests for indirect dependencies only within a triplet and the corresponding environmental factor. 
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Chapter 6 Disentangling temporal associations in marine microbial 
networks 
 

Ina Maria Deutschmann, Anders K. Krabberød, L. Felipe Benites, Francisco Latorre, 

Erwan Delage, Celia Marrasè, Vanessa Balagué, Josep M. Gasol, Ramon Massana, 

Damien Eveillard, Samuel Chaffron and Ramiro Logares 

 

Abstract 

Microbial interactions are fundamental for Earth’s ecosystem functioning and biogeochemical cycling. 

Nevertheless, they are challenging to identify and remain barely known. The omics-based censuses are helpful 

to predict microbial interactions through the inference of static association networks. However, since microbial 

interactions are highly dynamic, we have developed a post-network-construction approach to generate a 

temporal network from a single static network. We applied the approach to understand the monthly microbial 

associations’ dynamics occurring over ten years in the Blanes Bay Microbial Observatory (Mediterranean Sea). 

For the decade, we identified persistent, seasonal, and temporary microbial associations. Moreover, we found 

that the temporal network appears to follow an annual cycle, collapsing and reassembling when transiting 

between colder and warmer waters. We observed higher repeatability in colder than warmer months. Altogether, 

our results indicate that marine microbial networks follow recurrent temporal dynamics, which need to be 

accounted to better understand the dynamics of the ocean microbiome. 

 

Keywords: association network; temporal network; time series; microbial interactions; permanent versus 

temporary associations; network collapse and reassembling; bacteria and micro-eukaryotes; Mediterranean Sea 

 

Introduction 

Microorganisms are the most abundant life forms on Earth and are fundamental for global ecosystem 

functioning (Falkowski et al., 2008; DeLong, 2009; Krabberød et al., 2017). The number of microorganisms on 

Earth is estimated to be ≈ 1012 species (Locey & Lennon, 2016), comprising ≈ 1030 cells (Whitman et al., 1998; 

Kallmeyer et al., 2012). The oceans harbor ≈ 1029 microbial cells (Whitman et al., 1998) accounting for ~70% 

of the total marine biomass (Bar-On et al., 2018; Bar-On & Milo, 2019). These cell numbers are known to be 

dynamic. 

Microbial ecosystems are dynamic and their community composition is determined through a 

combination of ecological processes: selection, dispersal, drift, and speciation (Vellend, 2020). Selection is a 

prominent community structuring force that is exerted via multiple abiotic and biotic environmental factors 

(Lindström & Langenheder, 2012; Mori et al., 2018). Several studies have addressed the role of abiotic factors 

in structuring microbial communities. For example, temperature, one of the primary environmental variables, 

exerts selection in the ocean microbiome over spatiotemporal scales (Bunse & Pinhassi, 2017; Giner et al., 

2019; Lambert et al., 2019; Logares et al., 2020). Biotic factors can also exert a strong selection on microbial 

communities (Barraclough, 2015). However, a mechanistic understanding of how they affect community 
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structure is currently lacking, as the diversity of microbial interactions is barely known (Krabberød et al., 2017; 

Bjorbækmo et al., 2019). 

The vast microbial diversity and the fact that most microorganisms are still uncultured (Baldauf, 2008; 

Lewis et al., 2020) make it impossible to experimentally test all potential interactions. However, omics-

technologies allow estimating microbial sequence abundances over spatiotemporal scales, which permit 

determining (statistical) associations between microorganisms. These associations can be summarized as a 

network with nodes representing microorganisms and edges representing potential interactions (Weiss et al., 

2016; Layeghifard et al., 2017). 

As microorganisms are highly interconnected (Layeghifard et al., 2017), association networks provide 

a general overview of the entire microbial system and have been tremendously valuable for generating 

interaction hypotheses. In particular, several time-series have allowed the investigation of possible ecological 

interactions among marine microorganisms (Steele et al., 2011; Chow et al., 2013, 2014; Cram, Xia, et al., 

2015; Needham et al., 2017; Parada & Fuhrman, 2017; Krabberød et al., 2021). For example, previous work 

characterized ecological links between marine archaea, bacteria, and eukaryotes (Steele et al., 2011), including 

links with viruses (Chow et al., 2014; Needham et al., 2017), also investigating within- and between ocean-

depth relationships (Cram, Xia, et al., 2015; Parada & Fuhrman, 2017). Not only time-dependent associations 

among ecologically important taxa were identified, but also potential synergistic or antagonistic relationships, 

as well as possible ‘keystone’ species and potential niches (Steele et al., 2011; Chow et al., 2013). Moreover, 

studies found more associations between microorganisms than between the microorganisms and environmental 

factors, which would suggest the dominance of microbial relationships over associations between 

microorganisms and environmental factors (Steele et al., 2011; Krabberød et al., 2021). 

 Previous studies used temporal microbial-abundance data to build static networks. This static 

abstraction is based on several assumptions (Blonder et al., 2012), principally that the network topology does 

not change (static) and edges represent persistent associations assumed as interactions, that is, edges are present 

throughout time-space. This assumption cannot represent the reality for most microbial interactions. Thus, a 

single static network usually captures persistent, temporary, and recurring (including seasonal) associations, 

which need to be disentangled. 

Despite the contribution of static networks to our understanding of microbial interactions in the ocean, 

it is necessary to incorporate the temporal dimension. Using a temporal network instead of a single static 

network would allow investigating the dynamic nature of microbial associations, contributing to comprehend 

how they change over time, whether their change is deterministic or stochastic, and how environmental selection 

influences network architecture. Addressing these questions is fundamental for a better understanding of the 

dynamic interactions that underpin microbial ecosystem function. Here, we investigate marine microbial 

associations through time using an approach developed to determine a temporal network from a single static 

network. 
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Results 

Extracting a temporal network from a single static association network 

Leveraging ten years of monthly samples from the Blanes Bay Microbial Observatory (BBMO) in the 

Mediterranean Sea (Gasol et al., 2016), we computed sequence abundances for 488 bacteria and 1005 microbial 

eukaryotes from two organismal size-fractions: picoplankton (0.2 – 3 µm) and nanoplankton (3 – 20 µm). We 

removed Archaea since they are not very abundant in the BBMO surface and, additionally, primers were not 

optimal to quantify them. We inferred Amplicon Sequence Variants (ASVs) using the 16S and 18S rRNA-gene. 

After filtering the initial ASV table for sequence abundance and shared taxa among size fractions, we kept 285 

and 417 bacterial, 526 and 481 eukaryotic ASVs in the pico- and nanoplankton size-fractions, respectively. We 

found 214 bacterial ASVs that appeared in both size fractions, but only two eukaryotic ASVs: a Cryothecomonas 

(Cercozoa) and a dinoflagellate (Alveolate). 

 We used a total of 1709 ASVs to infer a preliminary association network with the tool eLSA (Xia et 

al., 2011, 2013). Next, we removed environmentally-driven edges with EnDED (Deutschmann et al., 2020) and 

only considered edges which association partners co-occurred more than half of the times together than alone 

(see methods and Figure 6A-B). Our filtering strategy removed a higher fraction of negative than positive edges 

(see methods and Table 8). The resulting network is our single static network connecting 709 nodes via 16626 

edges (16481 edges, 99.1%, positive and 145, 0.9% negative). 

 

 

 
Figure 6: Conceptual idea on how we determine a temporal network from a single static network via subnetworks . A) A complete network would 
contain all possible associations (edges) between microorganisms (nodes). B) The single static network is inferred with the network construction tool 
eLSA and a filtering strategy considering association significance, the removal of environmentally-driven associations, and associations whose partners 
appeared in more samples together than alone, i.e., Jaccard index being above 0.5. An association having to be present in the single static network is 
the first out of three conditions for an association to be present in a monthly subnetwork. C) In order to determine monthly subnetworks, we established 
two further conditions for each edge. First, both microorganisms need to be present in the sample taken in the specific month. Sec ond, the month lays 
within the time window of the association inferred through the network construction tool. Here, three months ar e indicated as an example. D) Example 
of monthly subnetworks for the three months. The colored nodes correspond to the abundances depicted in C).  
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Next, we developed a post-network-construction approach to determine a temporal network from a 

single static network. Building upon the single static network, we determined 120 sample-specific (monthly) 

subnetworks (see methods for details). These monthly subnetworks represent the 120 months of the time series 

and together comprise the temporal network. Each monthly subnetwork contains a subset of the nodes and a 

subset of the edges of the single static network. To determine which nodes and edges are present each month, 

we used the ASV abundances indicating the presence (ASV abundance > 0) or absence (ASV abundance = 0) 

as well as the estimated start and duration of associations inferred with the network construction tool eLSA (Xia 

et al., 2011, 2013) (Figure 6, see Methods).  

 
Table 8: Number of nodes and edges in preliminary networks and the temporal network. Number of nodes, removed isolated nodes, and number 
and fraction of edges in the preliminary network (A), and network obtained after removing environmentally -driven edges (B) and edges with association 
partners appearing more often alone than with the partner (C), which is the single static network. For comparison, we also give the minimum and 
maximum number of nodes and edges for the temporal network (D). We did not determine the union and intersection for the temporal network. If an 
ASV appeared in the nano and pico size fraction, it is counted twice. Therefore, for A-C) we also determined the number of microorganisms not 
considering size fraction (union) and being present in both size fractions (both, i.e. intersection).  
 

 A) eLSA B) EnDED C) Static network D) Range in Temporal network 

Connected nodes 754 754 709 130-542 

Bacteria (pico) 169 169 164 13-148 

Bacteria (nano) 279 279 251 31-204 
Bacteria (union) 309 309 281  

Bacteria (both) 139 139 134  

Eukaryote (pico) 150 150 141 7-124 
Eukaryote (nano) 156 156 153 2-138 

Eukaryote (union) 306 306 294  

Eukaryote (both) 0 0 0  

Isolated nodes 1000 0 45 6-38 

Edges 29820 26505 16626 538-15083 

Positive edges 24458 23405 16481 523-14940 
(%) 82.0 88.3 99.1 92.2-99.7 

Negative edges 5362 3100 145 12-143 

(%) 18.0 11.7 0.9 0.3-7.8 
pico and nano – microorganisms detected in the picoplankton and nanoplankton, respectively, union – how many microorganisms when not considering size-fraction, 
both – how many microorganisms appear in both size fractions 

 

The single static network metrics differed from most monthly subnetworks 

Since each monthly subnetwork was derived from the single static network, they were smaller, containing 

between 141 (August 2005) and 571 (January 2012) nodes, median ≈354 (Figure 7A), and between 560 (April 

2006) to 15704 (January 2012) edges, median ≈6052 (Figure 7B). For further characterization, we computed 

six global network metrics (Figure C and Methods). The results indicated that the single static network differed 

from most monthly subnetworks and it also differed from the average. In general, the single static network was 

less connected (edge density) and more clustered (transitivity) with higher distances between nodes (average 

path length) and stronger associations (average positive association score) than most monthly subnetworks 

(Figure 7C). In addition, the single static network was usually more assortative according to the node degree 

but less assortative according to the domain (bacteria vs. eukaryote) than most monthly subnetworks (Figure 

7C). High assortativity indicates that nodes tend to connect to nodes of similar degree and domain, respectively. 
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Monthly subnetworks display seasonal behavior with yearly periodicity 

Over the analyzed decade, the network became more connected and clustered in colder months, with stronger 

associations and shorter distances between nodes (Figure 7C, Figure 8, and Figure 9). Most global network 

metrics indicated seasonal behavior with yearly periodicity (Figure 7C). For instance, edge density, average 

positive association score, and transitivity were highest at the beginning and end of each year, while average 

path length and assortativity (bacteria vs. eukaryotes) were highest in the middle of each year. Assortativity 

(degree), in contrast to other metrics, usually had two peaks per year corresponding to April or May, and 

November (Figure 7C). 

We found that mainly temperature and day length, and to a lesser extent nutrient concentrations (mainly 

SiO2, NO3
− and NO2

−, less PO4
3−), and total chlorophyll-a concentration affected network topologies as 

indicated by correlation analysis (Figure 9). For example, edge density was highest and temperature lowest in 

January-March. Then, the edge density dropped as the temperature increased. April-June displayed edge 

densities slightly above or similar to the warmest months July-September, while October-December had similar 

or slightly lower edge densities than the coldest months January-March. Edge density vs. hours of light (day 

length) indicated a yearly recurrent circular pattern for September-April (Figure 8). May-August were not part 

of the circular pattern and had the highest day length and lowest edge density (Figure 8). 

Next, we quantified how many edges are preserved (kept), lost, and gained (new) in consecutive months. 

We found the highest loss of edges in April. The overall number of edges (preserved and gained) were lowest 

during April-September and increased towards the end of each year (Figure 7B). The number of associations 

changed over time in a yearly recurring pattern with few associations being preserved when transitioning from 

colder to warmer waters. We see a clear network change from colder to warmer months, similar to a crash. In 

turn, the network change from warmer to colder months is less abrupt, similar to a reassembling. Thus, network 

change was not symmetrical over the studied decade at BBMO. Moreover, we defined summer and winter as in 

(Krabberød et al., 2021), and compared both seasons between consecutive years in terms of preserved, gained 

and lost associations and ASVs. We observed higher repeatability in terms of edges (Figure 10) and ASVs 

(results not shown) in colder than in warmer months, indicating higher predictability during low temperature 

seasons. 
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Figure 7: Global (sub)network metrics. A) Number of ASVs (counting an ASV twice if it appears in both size fractions) for each of the 120 months of 
the Blanes Bay Microbial Observatory time series. There are 1709 ASVs, of which 709 ASVs are connected in the static network. In black, we show 
the number of nodes connected in the temporal network, and in red the number of nodes that are isolated in the temporal network, i.e., they are 
connected in the static network and have a sequence abundance above zero for that month ("non-zero"). In dark gray, we show the number of ASVs 
that are non-zero in a given month but were not connected in the static and subsequently temporal network. In light gray, we show the number of ASVs 
with zero-abundance in a given month. The sum of connected and isolated nodes and non-zero ASVs represents each month's richness (i.e., number 
of ASVs). B) By comparing the edges of two consecutive months, i.e., two consecutive monthly subnetworks, we indicate the number of edges that 
have been lost (red), preserved (black), and those that are gained (blue), compared to the previous month. C) Six selected gl obal network metrics for 
each sample-specific subnetwork of the temporal network. The colored line indicates the corresponding metric for the single static network. 
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Figure 8: Correlation Analysis. Using the temporal network, we correlated six global network metrics with environmental factors including the nutrients PO4

3−, NH4
+, NO2

−, NO3
− and SiO2. The global network 

metrics were: Edge density, Average positive association (Avg. pos. ass.) score, Transitivity, Average path length (Avg. path length), Assortativity (degree), and Assortativity (bacteria vs. eukaryote). Each dot is a 
sample-specific subnetwork and its color indicates the month it represents. Also, the linear regression line with a 0.95 confidence interval is shown in gray.
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Figure 9: Correlation Analysis through linear regression. Using the temporal network, we correlated six global network metrics with environmental 
factors including the nutrients PO4

3−, NH4
+, NO2

−, NO3
− and SiO2. The global network metrics were: Edge density, Average positive association (Avg. 

pos. ass.) score, Transitivity, Average path length (Avg. path length), Assortativity (degree), and Assortativity (bacteria vs. eukaryote). The number, 
circle's size and color in the square correspond to the Spearman correlation scores, no circle indicates non-significance. 

 

 
 
Figure 10: Number of preserved, gained, and lost edges in summer and winter. A) Indicates how we determined summer indicated with red dots 
(temperature above 17 ºC and day length above 14 hours) and winter indicated with blue dots (temperature below 17 ºC and day length below 11 
hours); gray dots indicate months that are neither summer nor winter. B) accumulation curve of ASVs per year for winter (blue) and summer (red). C) 
and D) number of preserved, gained, and lost edges for winter and summer, respectively. The colors of flows indicate the prev alence of an edge with 
10 (light blue) being present in each year, and 1 (dark blue) appearing in only one year. An edge appears in a year if it appears in at least one monthly 
subnetwork in the corresponding season. In winter, most edges appear in all years (light blue indicating 100% prevalence with edges present in all ten 
years), i.e. most edges are preserved in the consecutive months (we see a flow from the white preserved box to the next white preserved box). In 
summer, compared to winter, less edges are present in a month (combination of boxes indicating preserved, first time gained, and gained), and more 
edges are (re)gained and lost throughout the years (subsequently prevalence is lower indicated through darker blue).  
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Potential core associations 

A single static network can comprise permanent, seasonal, and temporary associations. By comparing monthly 

subnetworks, we identified edges that remain (preserved), appear (gained), or disappear (lost) over time (Figure 

7B). Intuitively, we would classify permanent associations through 100% recurrence. However, no association 

fulfilled the 100% criteria. Most associations had a low recurrence with three-quarters of the associations present 

in no more than 38% (46 monthly subnetworks). The average association prevalence increased slightly for 

taxonomically more related microorganisms (Figure 11). Considering the 100 most prevalent associations, 

which appeared in 71.7-98.3% (86-118) monthly subnetworks, 87 were bacterial associations (Table 9). 

 

 
 
Figure 11:  Association prevalence increases slightly when microorganisms are taxonomically more related. We grouped the associations 
according to the taxonomic classification of association partners (columns) and size fractions (rows). For example, “Class” groups associations between 
bacteria and eukaryotes, respectively, which were assigned to the same class. The gray column groups associations between bacteria and eukaryotes. 
The boxplot shows the association prevalence over a decade, i.e. in how many monthly subnetworks an association appears (given as fraction from 0 
to 100% = 120 networks). 

 

Table 9: Top 100 most prevalent/recurring associations. Associations were classified based on the domain of association partners. 
 

Association partners Number of associations 

Bacterial association in picoplankton 42 
Bacterial association in nanoplankton 35 
Bacterial associations between size fractions 10 
Bacteria associated to Eukaryote in nanoplankton 4 
Eukaryotic association in nanoplankton 3 
Bacteria associated to Eukaryote in picoplankton 3 
Bacteria in nanoplankton associated to Eukaryotic picoplankton 2 
Eukaryotic association in picoplankton 1 
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Although temporal recurrence of associations over the ten years was low, we found high recurrence in 

corresponding months from different years. We quantified the fraction of subnetworks in which each association 

appeared (Figure 12). We observed the highest prevalence from December to March, and the lowest prevalence 

from June to August (Figure 12). For each month, we taxonomically characterized prevalent associations 

appearing in at least nine out of ten monthly subnetworks (Figure 13). We found more association partners in 

colder waters compared to warmer waters. Alphaproteobacteria associations dominated, especially in April and 

May. The Alphaproteobacteria ASVs having highly prevalent associations belonged to Pelagibacter ubique 

(SAR11 Clades Ia & II), Rhodobacteraceae, Amylibacter, Puniceispirillales (SAR116), Ascidiaceihabitans, 

Planktomarina, Parvibaculales (OCS116), and Kiloniella. Between April and May, we noticed a large increase 

in the fraction of associations including Cyanobacteria or Bacteroidetes as association partners. While 

Cyanobacteria associations were a small fraction during November-April, they had a dominant role from May-

October along with Bacteroidetes and Alphaproteobacteria associations (Figure 13). 

 

Dynamic associations within main taxonomic groups: the case of Cyanobacteria  

Our results indicated that associations are dynamic within specific taxonomic groups. Therefore, we 

investigated their behavior in Cyanobacteria given the importance of this group as primary producers in the 

ocean. We found 661 associations for Cyanobium, Prochlorococcus, and Synechococcus ASVs (Figure 14 and 

Figure 15). Most associations between cyanobacterial ASVs were positive (63 of 65), only a Synechococcus 

(referred to as bn_ASV_5) was negatively associated (association score measured -0.5) to other Synechococcus 

(bn_ASV_1 and bn_ASV_25), which were positively associated (association score of 0.8). While bn_ASV_5 

appeared mainly in colder months, the other two appeared mainly in warmer months (Figure 15). All 

Cyanobacteria had more associations to other bacteria (in total 433) than eukaryotes (in total 163), which were 

dinoflagellate (103), Chlorophyta (25), Ochrophyta (12), Cryptophyta (11), Stramenopiles (5), Ciliophora (5), 

and Cercozoa (2). 

Within the temporal network, the fraction of Cyanobacteria associations was highest in April-October 

(Figure 14A), which are the months with the fewest edges in the entire temporal network (Figure 7B), e.g., in 

the year 2011 (Figure 14B). We found that cyanobacterial ASVs, although being evolutionarily related, behaved 

differently in terms of number of associations over time, and association partners (Figure 15). For example, 

Synechococcus bn_ASV_5 had less partner than bn_ASV_1 according to numbers of associations but more 

according to taxonomic variety; both belonged to the most abundant ASVs (Figure 15). Only a tiny fraction of 

Prochlorococcus (e.g. bp_ASV_18) association partners were other Cyanobacteria, which contrasted to 

Synechococcus and Cyanobium (Figure 15). Moreover, we observed that Cyanobium (bn_ASV_20) connected 

to one Deltaproteobacteria (SAR324) ASV during the first eight years, but the association disappeared in the 

last two years. In particular, the inferred association duration was 101 months, starting March 2004 and ending 

with July 2012. After summer 2012, the Deltaproteobacteria ASV was not detected except from a few reads in 

November and December of 2012 and 2013. This Cyanobacteria example is likely representative of the 

dynamics of associations within other main taxonomic groups. 
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Figure 12:  Association prevalence per month. Big bar plots: distribution of associations' prevalence for each month. For example, the bar at 100 for 
January indicates the number of edges that have been present in all Januarys of the ten-year time series. Small bar plots: number of nodes forming 
the associations with a 100% prevalence. For example, only bacteria were responsible for the edges during May, with an associ ation prevalence of 
100%. Bacteria are indicated with B or b, eukaryote with E or e. ASVs from the nano size-fraction have a capital letter (B, E), and ASVs from the pico 
size-fraction have a small letter (b, e). 
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Figure 13: Highly prevalent associations. Associations with a monthly prevalence of at least 90%. Bacteria and eukaryotes are separated and ordered 
alphabetically. We provide in parentheses the number of associations that appeared in at least nine out of ten monthly subnetworks. 
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Figure 14: Cyanobacteria associations. A) Fraction of edges in the temporal network containing at least one Cyanobacteria. B) Location of 
Cyanobacteria associations in the temporal network and the single static network. Here we show, as an example, selected months of year 2011. The 
number and fraction of cyanobacterial edges and total number of edges is listed below each monthly subnetwork and the single static network. 

 
(see next page) 
Figure 15: Association Partners of Cyanobacteria. Number of Cyanobacteria associations in the temporal network (stacked bars) and the 
cyanobacterial sequence abundance in each month (black dashed line). Within the box, figures are split by ASVs (rows) and size fraction: picoplankton 
(left column) and nanoplankton (right column). The unboxed plots on the right are ASVs detected only in the nanoplankton. The  height of the bar 
indicates the number of edges in each month for each cyanobacterial ASV. The color indicates the taxonomy of the association partner. From bottom 
to top, first appear bacteria and then eukaryotes, both sorted alphabetically. The subtitle shows the number of association partners followed by their 
identifiers (first 3 letters) for bacteria and eukaryotes. 

 

 



 

83 
 



 

84 

Discussion 

Previous work found yearly recurrence in microbial community composition at the BBMO (Giner et al., 2019; 

Auladell et al., 2020; Krabberød et al., 2021), and at the Bay of Banyuls (Lambert et al., 2019), both in the NW 

Mediterranean Sea. Our approach focused in the connectivity of microorganisms and how they organize 

themselves from a network perspective. Similar to previous studies (Giner et al., 2019; Lambert et al., 2019; 

Auladell et al., 2020; Krabberød et al., 2021), our temporal network displayed seasonality with annual 

periodicity for most global network metrics. In general, our measured global network metrics are within 

previous work range (Steele et al., 2011; Chow et al., 2013, 2014; Cram, Xia, et al., 2015; Lima-Mendez et al., 

2015; Zhao, Shen, et al., 2016; Chaffron et al., 2020) (Table 10 for edge density, transitivity, and average path 

length). Contrary to early works reporting biological networks generally being disassortative (negative 

assortativity based on degree) (Newman, 2002), our single static network and monthly subnetworks were 

assortative. Microorganisms had more and stronger connections and a tighter clustering in colder than in warmer 

waters. Seasonal bacterial freshwater networks (Zhao, Shen, et al., 2016) also showed higher clustering in fall 

and winter than spring and summer, but in contrast to our work, networks were biggest in summer and smallest 

in winter. In agreement with our results, Chaffron et al. (2020) reported higher association strength, edge 

density, and transitivity in polar regions (colder) compared to other regions (warmer) of the global ocean. Colder 

waters in the Mediterranean Sea are milder than polar waters, but together, these results suggest that either 

microorganisms interact more in colder environments, or that their recurrence is higher due to higher 

environmental selection exerted by low temperatures and therefore, they tend to co-occur. Alternatively, lack 

of resources (mostly nutrients) in summer or in the tropical and subtropical ocean may prevent the establishment 

of several microbial interactions. In any case, temperature may not be the only driver of network architecture. 

The effects of environmental variables on network metrics are unclear (Röttjers & Faust, 2018), yet, 

our approach allowed identifying potential environmental drivers of network architecture. Correlation analyses 

pointed to the usual suspects that have been already found to influence microbial abundances. For instance, our 

results indicated that temperature and day length, key variables driving microbial assemblages in seasonal time-

series (Bunse & Pinhassi, 2017; Giner et al., 2019; Lambert et al., 2019), and to a lesser extent inorganic 

nutrients, were the main factors influencing global network metrics. This is also in agreement with earlier works 

indicating that phosphorus and nitrogen are the primary limiting nutrients in the Western Mediterranean Sea 

(Estrada, 1996; Sala et al., 2002). Altogether, our correlation analysis is a step forward to elucidate the effects 

of environmental variables on network metrics, although we did not consider several other variables that could 

affect networks (e.g. organic matter). 
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Table 10: Global network metrics of previously described microbial association networks. 

 

Edge 
density 

Transitivity 
Average 

path 
length 

Sampling Location Domains Notes Reference 

0.04 0.26 3.05 Monthly 
samples 
August 
2000 - 
March 
2004 

Subsurface deep 
chlorophyll 

maximum depth 
off the southern 
California coast 

(SPOT) 

Archaea, bacteria, 
and eukaryotes 

Edge density for 
microbial network 

including 
environmental 

factors. Transitivity 
and average path 

length for microbial 
network. 

(Steele et 
al., 2011) 

0.14 0.33 1.94 Monthly 
samples 
August 
2000 - 

January 
2011 

Two depths at 
SPOT 

Free-living bacteria 
and some 

picoeukaryotes 

Metrics from surface 
layer network. 

(Chow et 
al., 2013) 

0.02 0.24  Monthly 
samples 
March 
2008 - 

January 
2011 

surface ocean (0-
5m) at SPOT 

Free-living 
eukaryotes (0.7–20 

µm), bacteria 
(0.22–1 µm) and 
viruses (30 kDa–

0.22 µm) 

 (Chow et 
al., 2014) 

0.04 0.28 2.07 Monthly 
samples 
August 
2003 - 

January 
2011 

Five depths at 
SPOT 

Free-living bacteria Metrics from 5 m 
layer network. 

(Cram, 
Xia, et al., 

2015) 

(0.023) 
W:0.033 
Sp:0.032 
S:0.036 
F:0.029 

(0.472) 
W:0.518 
Sp:0.480 
S:0.475 
F:0.573 

(4.84) 
W:2.16 
Sp:5.03 
S:7.26 
F:3.04 

Spatial 
samples 

52 samples from 
freshwater lakes 

(surface) in 
China 

Bacteria Metrics for (whole 
network) and 

seasonal networks: 
W: winter,  
Sp: spring,  

S: summer, and  
F: fall 

(Zhao, 
Shen, et 
al., 2016) 

E:0.005 
EP:0.003 

P:0.008 

E:0.2 
EP:0.0 
P:0.43 

E:3.05 
EP:3.02 

P:2.56 

Spatial 
sampling 

68 stations from 
the Tara Oceans 

expeditions 
(TARA) at two 
depths across 
eight oceanic 

provinces 

Organisms from 
seven size fractions 

spanning from 
viruses to small 

metazoans 

Metrics from surface 
networks including 
E: eukaryotes only, 
EP: eukaryotes and 
prokaryotes (0.5-5 

µm), and 
P: prokaryotes only 

(0.2-1.6 µm) 

(Lima-
Mendez et 
al., 2015) 

0.002 0.036  Spatial 
sampling 

Samples from 
115 stations from 
the TARA at two 
depths covering 
all major oceanic 
provinces from 

pole to pole 

Bacteria, archaea, 
and eukaryotes 

from six size 
fractions. 

Metrics represent the 
means of sample-

specific 
subnetworks. 

(Chaffron 
et al., 
2020) 
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Our preliminary network (significant associations derived with eLSA) contained 18% negative edges 

compared to 0.9% in the single static network (after applying EnDED and Jaccard index). Thus, our filtering 

strategy removed proportionally more negative edges. Associations may represent positive or negative 

interactions, but they can also indicate high niche overlap (positive association) or divergent niches (negative 

association) between microorganisms (Hernandez et al., 2021). We hypothesize that most of the removed 

negative edges represented associations between microorganisms from divergent niches, most likely 

corresponding to colder or warmer months. 

We found more highly prevalent associations within specific months, than when considering all ten-

years of data. Furthermore, our results indicate a potentially low number of core interactions and a vast number 

of non-core ones. Usually, core microorganisms are defined based on sequence abundances, as microorganisms 

(or taxonomical groups) appearing in all samples or habitats being under investigation (Shade & Handelsman, 

2012). Shade & Handelsman (Shade & Handelsman, 2012) suggested other parameters, including connectivity, 

will create a more complex portrait of the core microbiome and advance our understanding of the role of key 

microorganisms and functions within and across ecosystems (Shade & Handelsman, 2012). Using a temporal 

network, we identified core associations based on recurrence, which contributes to our understanding of key 

interactions underpinning microbial ecosystem function. Considering associations within each month, we found 

more highly-prevalent associations in colder than in warmer months. Our results indicated microbial 

connectivity is more repeatable (indicating higher predictability) in colder than in warmer waters. On one hand, 

the microbial community in colder waters being more recurrent (Giner et al., 2019) may explain our 

observations indicating a more robust connectivity. On the other hand, it may be the stronger connectivity that 

leads to more similar communities in colder waters in BBMO. Last but not least, the interplay of both species 

dynamics and interactions may determine community turnover in the studied ecosystem. From a technical 

viewpoint, the overall single static network may have missed to capture summer associations resulting in smaller 

monthly subnetworks. For instance, a previous work in freshwater lakes constructed season specific networks 

and found more associations in summer than winter with Cyanobacteria dominating in summer, which may be 

due to strong co-occurrence patterns and suitable living conditions (Zhao, Shen, et al., 2016). 

Several network-based analyses have been used to study Cyanobacteria associations. For example, 

Chow et al. (Chow et al., 2014) determined for 12 Cyanobacteria (Prochlorococcus and Synechoccus) 44 

potential relationships with two potential eukaryote grazers (a ciliate and a dinoflagellate), 39 to other bacteria 

and three between Cyanobacteria, which were all positive. Similarly, all cyanobacterial ASVs in our study 

connected primarily to other bacterial ASVs, and exerted mainly positive associations. In agreement, 

Cyanobacteria also displayed primarily positive associations in a network determined for the global ocean 

(Lima-Mendez et al., 2015).  

Identifying different potential association partners of closely related Cyanobacteria, may indicate 

adaptations to different niches. A recent study found distinct seasonal patterns of closely related taxa indicating 

niche partitioning at the BBMO, including Synechococcus ASVs (Auladell et al., 2020). Our approach can 

complement and further characterize “sub”-niches by providing association partners for different ASVs. 
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Moreover, in contrast to a single static network, temporal networks allow identifying associated partners in time 

(Figure 15). An increase in abundance of a microorganism may promote the growth of associated partners and 

a decrease may hinder the growth of partners or cause predators to prey on other microorganisms. Moreover, 

given the majority of association partners being other bacteria, the growth of Cyanobacteria may affect other 

bacteria and their growth, which is why it is necessary to explore potential interaction partners (Zhao, Shen, et 

al., 2016). 

From a technical perspective, our approach allowed us to see what the single static network captured 

since all our temporal network observations are linked to it. Thus, future studies with higher sampling frequency 

may be able to construct networks within a month. However, our approach is a good starting point that allows 

us to move forward, but still, it has limitations, suggesting caution when making biological interpretations from 

the temporal network. Another limitation is that we disregarded local network patterns by using global network 

metrics. Future work could use the local-topological metric based on graphlets (Pržulj et al., 2004). Counting 

the number of graphlets a node is part of quantifies their local connection patterns, which allows to infer seasonal 

microorganisms through recurring connection patterns in a temporal network. Such a network-based approach 

would complement the detection of the seasonal microorganisms based on sequence abundances (Giner et al., 

2019). 

 

Conclusion 

Incorporating the temporal dimension in the microbial association analysis unveiled multiple patterns that often 

remain hidden when using static networks. We developed a post-network-construction approach to generate a 

temporal network from a single static network that represents a step forward for disentangling the temporal 

nature of microbial associations. Yet, this approach has limitations, such as the monthly sampling frequency in 

our study. Using a higher sampling frequency would be the main solution.  Investigating a coastal marine 

microbial ecosystem over ten years revealed a one-year-periodicity in the network topology. The temporal 

architecture was not stochastic, but displayed a modest amount of recurrence over time, especially in winter. 

Altogether, our approach allows comparing (sub)networks across spatiotemporal scales. Future efforts to 

understand the ocean microbiome should consider the dynamics of microbial interactions as these can be basis 

of ecosystem function. 

 

Methods 

The Blanes Bay Microbial Observatory (BBMO) 

BBMO is a coastal oligotrophic site in the North-Western Mediterranean Sea (41◦40′N 2◦48′E) with not many 

identified natural disturbances and little anthropogenic pressures, with the exception of the construction of a 

nearby harbor from 2010 to 2012 (Gasol et al., 2016; Ferrera et al., 2020). The seasonal cycle is typical for a 

temperate coastal system (Gasol et al., 2016), and the main environmental factors influencing microbial 

seasonal succession in temperate waters have been well studied and are known (Bunse & Pinhassi, 2017). 
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Shortly, the water column is slightly stratified in summer before it destabilizes and mixes in late fall, increasing 

the availability of inorganic nutrients with maximum concentrations in winter, between November and March. 

The high amounts of nutrients and increasing light induce phytoplankton blooms, mostly in late winter-early 

spring. During summer, inorganic nutrients become limiting, primary production is minimal, and dissolved 

organic carbon accumulates (Gasol et al., 2016). 

 

From sampling to sequence abundances 

We sampled surface water (≈ 1m depth) monthly from January 2004 to December 2013 to determine microbial 

community composition and also measured ten environmental variables, which were previously described 

(Gasol et al., 2016; Giner et al., 2019): water temperature (◦C) and salinity (obtained in situ with a SAIV-AS-

SD204 Conductivity-Temperature-Depth probe), day-length (hours of light), turbidity (Secchi depth in meters), 

total chlorophyll-a concentration (µg/l, fluorometry of acetone extracts after 150 ml filtration on GF/F filters), 

and five inorganic nutrients: PO4
3−, NH4

+, NO2
−, NO3

− and SiO2 (µM, determined with an Alliance Evolution 

II autoanalyzer (Grasshoff et al., 2009)). 

Sampling of microbial communities, DNA extraction, rRNA-gene amplification, sequencing and 

bioinformatic analyses are explained in detail in (Krabberød et al., 2021). In short, 6 L of water were prefiltered 

through a 200 µm nylon mesh and subsequently filtered through another 20 µm nylon mesh and separated into 

nanoplankton (3 – 20 µm) and picoplankton (0.2 – 3 µm) using a 3 µm and 0.2 µm pore-size polycarbonate and 

Sterivex filters, respectively. Then, the DNA was extracted from the filters using a phenol-chloroform protocol 

(Schauer et al., 2003), which has been modified for using Amicon units (Millipore) for purification. We 

amplified the 18S rRNA genes (V4 region) with the primers TAReukFWD1 and TAReukREV3 (Stoeck et al., 

2010), and the 16S rRNA genes (V4 region) with Bakt 341F (Herlemann et al., 2011) and 806RB (Apprill et 

al., 2015). Amplicons were sequenced in a MiSeq platform (2x250bp) at RTL Genomics (Lubbock, Texas). 

Read quality control, trimming, and inference of Amplicon Sequence Variants (ASVs) was made with DADA2 

(Callahan et al., 2016), v1.10.1, with the maximum number of expected errors set to 2 and 4 for the forward and 

reverse reads, respectively. 

Microbial sequence abundance tables were obtained for each size fraction for both microbial eukaryotes 

and prokaryotes. Before merging the tables, we subsampled each table to the lowest sequencing depth of 4907 

reads with the rrarefy function from the Vegan R-package (Oksanen et al., 2019), v2.4-2, (see details in 

(Krabberød et al., 2021)). We excluded 29 nanoplankton samples (March 2004, February 2005, May 2010 - 

July 2012) due to suboptimal amplicon sequencing. In these, abundances were estimated using seasonally aware 

missing value imputation by the weighted moving average for time series as implemented in the imputeTS R-

package (Moritz & Gatscha, 2017), v2.8.  

Sequence taxonomy was inferred using the naïve Bayesian classifier method (Wang et al., 2007) together 

with the SILVA database (Quast et al., 2012), v.132, as implemented in DADA2 (Callahan et al., 2016). 

Additionally, eukaryotic microorganisms were BLASTed (Altschul et al., 1990) against the Protist Ribosomal 
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Reference (PR2) database (Guillou et al., 2012), v4.10.0. The PR2 classification was used when the taxonomic 

assignment from SILVA and PR2 disagreed. We removed ASVs that identified as Metazoa, Streptophyta, 

plastids, mitochondria, and Archaea since the 341F-primer was not optimal for recovering this domain 

(McNichol et al., 2020). 

The resulting table contained 2924 ASVs, Table 11A. Next, we removed rare ASVs, keeping ASVs 

with sequence abundance sums above 100 reads and prevalence above 15% of the samples, i.e., we considered 

taxa present in at least 19 months. The resulting table contained 1782 ASVs, Table 11B. An ASV can appear 

twice, in the nano and pico size fractions due to dislodging cells or particles and filter clogging. This can 

introduce biases in our analysis. To reduce these biases, as done previously (Krabberød et al., 2021), we divided 

the abundance sum of the bigger by the smaller size-fraction for each ASV appearing in both size fractions and 

set the picoplankton abundances to zero if the ratio exceeded 2. Likewise, we set the nanoplankton abundances 

to zero if the ratio was below 0.5. This operation removed two eukaryotic ASVs and 41 bacterial ASVs from 

the nanoplankton, and 30 bacterial ASVs from the picoplankton (Table 11C). The resulting table was used for 

network inference. 

 

Table 11: Number and fraction of ASVs and reads. We list the number of ASVs, and the total, bacterial and eukaryotic number of reads for the 
sequence abundance tables before removing rare ASVs (A), after removing rare ASVs (B), and after the size-fraction filtering (C), the preliminary 
network with significant edges (D), and the single static network obtained after removing environmentally -driven edges and edges with association 
partners appearing more often alone than with the partner (E). If an ASV appeared in the nano- and pico-plankton size fractions, it was counted twice. 
 

Count tables ASVs Reads Eukaryote Eukaryotic reads Bacteria Bacterial reads 

A 2 924 2 273 548 1 365 1 121 855 1 559 1 151 693 

B 1 782 2 155 318 1 009 1 057 599 773 1 097 719 

C 1 709 2 062 866 1 007 1 057 263 702 1 005 603 

D 754 1 657 885 306 730 025 448 927 860 

E 709 1 621 959 294 719 558 415 902 401 

Fractions ASV Reads Eukaryote Eukaryotic reads Bacteria Bacterial reads 

B/A*100 60.94 94.80 73.92 94.27 49.58 95.31 

C/A*100 58.45 90.73 73.77 94.24 45.03 87.32 

D/C*100 44.12 80.37 30.39 69.05 69.05 92.27 

E/C*100 41.49 78.63 29.20 68.06 59.12 89.74 

A – raw sequence abundance table; B – sequence abundance table without rare ASVs; C –sequence abundance table 
after size-fraction filtering; D – preliminary network with significant edges; E – single static network  

 

From sequence abundances to the single static network  

First, we constructed a preliminary network using the tool eLSA (Xia et al., 2011, 2013), as done in 

(Deutschmann et al., 2020; Krabberød et al., 2021), including default normalization and z-score transformation, 

using median and median absolute deviation. Although we are aware of time-delayed interactions, we considered 
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our 1-month sampling interval as too large for inferring time-delayed associations with a solid ecological basis, 

and focused on contemporary interactions between co-occurring microorganisms. Using 2000 iterations, we 

estimated p-values with a mixed approach that performs a random permutation test of a co-occurrence if the 

comparison's theoretical p-values are below 0.05. The Bonferroni false discovery rate (q) was calculated based 

on the p-values using the p.adjust function from the stats R-package (R Core Team, 2019). We used the 0.001 

significance threshold for the p and q values, as suggested in other studies (Weiss et al., 2016). We refrained 

from using an association strength threshold since it may not be appropriate to differentiate between true 

interactions and environmentally-driven associations (Deutschmann et al., 2020), and changing thresholds have 

been shown to lead to different network properties (Connor et al., 2017). The preliminary network contained 

754 nodes and 29820 edges (24458, 82% positive, and 5362, 18% negative). 

Second, for environmentally-driven edge detection, we applied EnDED (Deutschmann et al., 2020), 

combining the methods Interaction Information (with a 0.05 significance threshold and 10000 iterations) and 

Data Processing Inequality. We inserted artificial edges connecting each node to each environmental parameter. 

We identified and removed 3315 (11.12%) edges that were environmentally-driven, i.e., 26505 edges (23405, 

88.3% positive, and 3100, 11.7% negative) remained (Table 12 and Table 13). 

 
Table 12: Number of environmental factors leading to the removal of edges. 
 

Number of environmental factors Edges Positive edges Negative edges 

no environmentally-driven edges 26505 23405 (88.3%) 3100 (11.7%) 

1 2747 1019 (37.1%) 1728 (62.9%) 

2 506 33 (6.5%) 473 (93.5%) 

3 61 1 (1.6%) 60 (98.4%) 

4 1 0 (0%) 1 (100%) 

    

 
Table 13: Environmentally-driven edges for each environmental factor. Number of environmentally-driven edges and their fraction considering the 
total number of edges (29820) in the network. In addition, we present the number of positive and negative edges and their fraction considering number 
of edges removed through an environmental factor. 
 

Environmental factor Edges Positive edges Negative edges 

Temperature 1920 (6.44%) 725 (37.8%) 1195 (62.2%) 

Total chlorophyll-a concentration 838 (2.81%) 82 (9.8%) 756 (90.2%) 

Day length 730 (2.45%) 237 (32.5%) 493 (67.5%) 

NO2− 192 (0.64%) 26 (13.5%) 166 (86.5%) 

SiO2 162 (0.54%) 6 (3.7%) 156 (96.3%) 

NO3− 57 (0.19%) 12 (21.1%) 45 (78.9%) 

Turbidity 47 (0.16%) 0 47 (100%) 

Salinity, NH4+, and PO43− 0 0 0 

    

 

Third, we determined the Jaccard index, 𝐽, for each microorganism pair associated through an edge. Let 

𝑆𝑖 be the set of samples in which both microorganisms are present (sequence abundance above zero), and 𝑆𝑢 be 

the set of samples in which one or both microorganisms are present. Then, we can calculate the Jaccard index 

as the fraction of samples in which both appear (intersection) from the number of samples in which at least one 

appears (union): 𝐽 = 𝑆𝑖/𝑆𝑢. We chose 𝐽 > 0.5, which removed 9879 edges and kept 16626 edges (16481, 99.1% 
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positive and 145, 0.9% negative). We removed isolated nodes, i.e., nodes without an associated partner in the 

network. The number and fraction of retained reads are listed in Table 11. The resulting network is our single 

static network. 

 

From the single static network to the temporal network 

We determined the temporal network comprising 120 sample-specific (monthly) subnetworks through the three 

conditions indicated below and visualized in Figure 6. The subnetworks are derived from the single static 

network and contain a node subset and an edge subset of the static network. Let e be an association between 

microorganisms A and B, with association duration d = (t1, t2), i.e., the association starts at time point t1 and ends 

at t2. Then, considering month m, the association e is present in the monthly subnetwork Nm, if 

1) e is an association in the single static network, 

2) the microorganisms A and B are present within month m, and 

3) m is within the duration of association, i.e., t1 ≤ m ≤ t2. 

With the 2nd condition, we assumed that an association was present in a month if both microorganisms were 

present, i.e., the microbial abundances were non-zero for that month. However, we cannot assume that microbial 

co-occurrence is a sufficient condition for a microbial interaction because different mechanisms influence 

species and interactions, and the environmental filtering of species and interactions can be different (Poisot et 

al., 2012). Using only the species occurrence assumption would increase association prevalence. To lower this 

bias, we also required that the association was present in the static network, 1st condition, and within the 

association duration, 3rd condition, both inferred by eLSA (Xia et al., 2011, 2013). Lastly, we removed isolated 

nodes from each monthly subnetwork.  

 

Network analysis 

We computed global network metrics to characterize the single static network and each monthly subnetwork, 

using the igraph R-package (Csardi & Nepusz, 2006). Some metrics tend to be more correlated than others 

implying redundancy between them and clustering them into four groups (Jamakovic & Uhlig, 2008). Thus, we 

selected one metric from each group: edge density, average path length, transitivity, and assortativity based on 

node degree. In addition, we also computed the average strength of positive associations between 

microorganisms using the mean, and assortativity based on the nominal classification of nodes into bacteria and 

eukaryotes. Assortativity (bacteria vs. eukaryotes) is positive if bacteria tend to connect with bacteria and 

eukaryotes tend to connect with eukaryotes. It is negative if bacteria tend to connect to eukaryotes and vice 

versa. We also quantified associations by calculating their prevalence as the fraction of monthly subnetworks 

in which the association was present for all ten years (recurrence), and monthly. We visualized highly prevalent 

associations with the circlize R-package (Gu et al., 2014). We tested our hypotheses of environmental factors 

influencing network topology by calculating the Spearman correlations between global network metrics and 

environmental data, using Holm’s multiple test correction to adjust p-values (Holm, 1979), with the function 
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corr.test in psych R-package (Revelle, 2020). We used Gephi (Bastian et al., 2009), v.0.9.2, and the 

Fruchterman Reingold Layout (Fruchterman & Reingold, 1991) for network visualization. 

 

Cyanobacteria 

Our dataset contained 19 cyanobacterial ASVs, which all appeared in the nano-, and nine in the picoplankton. 

This is against expectations, as Cyanobacteria are part of the pico-plankton. Yet, they have been observed in 

fractions above 3 µm at BBMO (Mestre et al., 2020). Recovering ASVs in the nanoplankton may be due to cell 

aggregation, particle attachment, clogging of filters or being prey to bigger microorganisms. We blasted the 

sequences against the Cyanorak database (Garczarek et al., 2021), v.2. We performed BLASTN matches against 

the nucleotide database containing all Synechococcus and Prochlorococcus RNAs with the -evalue 1.0e-5 

option. We found 2812 sequences comprising 95 different ecotypes (considering name, clade and subclade), 

with 93.84-100% identity. There were 63 sequences (34 different microorganisms) with a similarity of 100% 

for 11 ASVs. Most matching sequences were found for Synechococcus ASV_1. While Synechococcus ASV_5 

had only two 100% hits, they did not 100% match to ASV_1 (Table 14). 

 
Table 14: Cyanobacterial ASVs. 100% Matching sequences from Cyanorak database for selected cyanobacterial ASVs 
 

ASV Number Matching sequence name with clade and subclade 

Synechococcus #1 38 2x A15-24 III IIIa, 2x A15-28 III IIIb, 3x A15-44 II IIa, 2x A15-62 II IIc, 2x A18-40 III IIIa, 2x A18-
46.1 III IIIa, 2x BOUM118 III IIIa, 2x CC9605 II IIc, 2x M16.1 II IIa, 2x PROS-U-1 II IIh, 2x ROS8604 
I Ib, 3x RS9902 II IIa, 3x RS9907 II IIa, 2x RS9915 III IIIa, 2x TAK9802 II IIa, 1x WH8016 I Ib, 2x 
WH8103 III IIIa, 2x WH8109 II IIa 

Synechococcus #5 2 2x PROS-9-1 I Ib 
Prochlorococcus #18 2 1x EQPAC1 HLI HLI, 1x MED4 HLI HLI 
Cyanobium #20 2 1x MINOS11 5.3 5.3, 1x RCC307 5.3 5.3 

 

Availability of data and material 

The BBMO microbial sequence abundances (ASV tables), taxonomic classifications, environmental data 

including nutrients will be publicly available after acceptance. The data are of course available upon request. 

Networks are already available. R-Markdowns for data analysis including commands to run eLSA and EnDED 

(environmentally-driven-edge-detection and computing Jaccard index) are publicly available: 

https://github.com/InaMariaDeutschmann/TemporalNetworkBBMO. 
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Final remarks 

 Associations could represent permanent, temporary, or seasonal associations. 

 Monthly sampling does not allow the construction of one network per month. 

 Our post-network-construction approach allows determining monthly subnetworks derived from an 

overall single static network. 

 Our approach can be used to quantify temporal recurrence for each association over the ten years and 

also for each month. 

 Most associations appear in colder months. 

 Associations are more repeatable at colder compared to warmer months. 

 The temporal network comprising the 120 monthly subnetworks appears to collapse from colder to 

warmer months and reassemble from warmer to colder months. 

 High prevalent associations may infer core associations that are essential for ecosystem functioning. 

 Our approach allows quantifying associations based on temporal recurrence, which was suggested in 

Chapter 5 to may strengthen and reduce the number of potential interaction hypotheses. 

 Proposed idea: our approach of quantifying edge recurrence (temporal) can be adjusted to determine 

spatial recurrence. 

 Note: in the previous chapter we used EnDED for edges that are within at least one (network-based) 

environmental triplet. Here, we inserted artificial edges (resulting in artificially-generated triplets) to 

use EnDED on each edge with each possible environmental factor. The number of identified indirect 

associations increased slightly. 

https://marbits.icm.csic.es/
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 Observation: we shortly scratched upon the application of using the temporal network to determine 

association partners in time for an example group (Cyanobacteria). In the future, such approach may be 

valuable for microbial ecologist studying specific organismal groups. However, this was outside the 

scope of the subproject and it was not the aim of this thesis, which focuses on network improvement 

and identifying general patterns. 
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Chapter 7 Disentangling marine microbial networks across space 
 

Ina Maria Deutschmann, Erwan Delage, Caterina R. Giner, Marta Sebastián, Julie Poulain, 

Javier Arístegui, Carlos M. Duarte, Silvia G. Acinas, Ramon Massana, Josep M. Gasol, 

Damien Eveillard, Samuel Chaffron and Ramiro Logares 
 

Abstract 

Although microbial interactions underpin ocean ecosystem functions, they remain barely known. Different 

studies have analyzed microbial interactions using static association networks based on omics-data. However, 

microbial associations are dynamic and can change across physicochemical gradients and spatial scales, which 

needs to be considered to understand the ocean ecosystem better. We explored associations between archaea, 

bacteria, and picoeukaryotes along the water column from the surface to the deep ocean across the northern 

subtropical to the southern temperate ocean and the Mediterranean Sea by defining sample-specific 

subnetworks. Quantifying spatial association recurrence, we found the lowest fraction of global associations in 

the bathypelagic zone, while associations endemic of certain regions increased with depth. Overall, our results 

highlight the need to study the dynamic nature of plankton networks and our approach represents a step forward 

towards a better comprehension of the biogeography of microbial interactions across ocean regions and depth 

layers. 

 

Keywords: association network; sample-specific subnetworks; microbial interactions; biogeography of 

associations; archaea, bacteria, and micro-eukaryotes; ocean 

 

Introduction 

Microorganisms play fundamental roles in ecosystem functioning (DeLong, 2009; Krabberød et al., 2017) and 

ocean biogeochemical cycling (Falkowski et al., 2008). The main processes shaping microbial community 

composition are selection, dispersal, and drift (Vellend, 2020). Selection exerted via environmental conditions 

and biotic interactions are essential in structuring the ocean microbiome (Logares et al., 2020), leading to 

heterogeneities reflecting those in the ocean environment, mainly in terms of temperature, light, pressure, 

nutrients and salinity. In particular, global-scale studies of the surface ocean reported strong associations 

between microbial community composition and diversity with temperature (Sunagawa et al., 2015; Ibarbalz et 

al., 2019; Salazar et al., 2019; Logares et al., 2020). Marked changes in microbial communities with ocean 

depth have also been reported (Cram, Xia, et al., 2015; Parada & Fuhrman, 2017; Mestre et al., 2018; Peoples 

et al., 2018; Xu et al., 2018; Giner et al., 2020), reflecting the steep vertical gradients in light, temperature, 

nutrients and pressure.  

Prokaryotes (bacteria and archaea) and unicellular eukaryotes are fundamentally different in terms of 

ecological roles, functional versatility, and evolutionary history (Massana & Logares, 2013) and are connected 

through biogeochemical and food web interaction networks (Layeghifard et al., 2017; Seymour et al., 2017). 

Still, knowledge about these interactions remains limited despite their importance to understand better microbial 
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life in the oceans (Krabberød et al., 2017; Bjorbækmo et al., 2019). Such interactions are very difficult to resolve 

experimentally, mainly because most microorganisms are hard to cultivate (Baldauf, 2008; Lewis et al., 2020) 

and synthetic laboratory communities are unlikely to mirror the complexity of wild communities. However, 

metabarcoding approaches to identify and quantify marine microbial taxa allow to infer microbial association 

networks, where nodes represent microorganisms and edges potential interactions. 

Association networks provide a general overview of the microbial ecosystem aggregated over a given 

period of time (Steele et al., 2011; Chow et al., 2013, 2014; Cram, Xia, et al., 2015; Needham et al., 2017; 

Parada & Fuhrman, 2017) or through space (Lima-Mendez et al., 2015; Milici et al., 2016; Chaffron et al., 

2020). Previous work characterized potential marine microbial interactions, including associations within and 

across depths. For example, monthly sampling allowed investigating prokaryotic associations in the San Pedro 

Channel, off the coast of Los Angeles, California, covering the water column from the surface (5 m) to the 

seafloor (890 m) (Cram, Xia, et al., 2015; Parada & Fuhrman, 2017). Furthermore, a global spatial survey 

occurring within the TARA Oceans expedition, allowed to investigate planktonic associations between a range 

of organismal size fractions in the epipelagic zone, from pole to pole (Lima-Mendez et al., 2015; Chaffron et 

al., 2020). However, these studies did not include the bathypelagic realm, below 1000 m depth, which represents 

the largest microbial habitat in the biosphere (Arístegui et al., 2009). 

A single static network determined from spatially distributed samples over the global ocean captures 

global, regional and local associations. Also, given that global-ocean expeditions collect samples over several 

months, networks could include temporal associations, yet, disentangling them from spatial associations is 

normally complicated and not considered. Global associations may constitute the core interactome, that is, the 

set of microbial interactions essential for the functioning of the ocean ecosystem (Shade & Handelsman, 2012). 

Core associations may be detected by constructing a single network from numerous locations and identifying 

the most significant associations and strongest associations (Coutinho et al., 2015). On the other hand, regional 

and local associations may point to interactions occurring in specific spatial areas of different sizes due to 

particular taxa distributions resulting from environmental selection, dispersal limitation, ecological niches or 

biotic/abiotic filtering. The fraction of regional associations may be determined by excluding all samples 

belonging to one region and recomputing network inference with the reduced dataset (Lima-Mendez et al., 

2015). Alternatively, regional networks can be built allowing to determine both, global and regional associations 

(Mandakovic et al., 2018) by investigating which edges networks have in common and which are unique. Such 

regional networks could contribute to understanding how the architecture of potential microbial interactions 

changes with environmental heterogeneity, also helping to comprehend associations that are stable (i.e., two 

partners always together) or variable (one partner able to interact with multiple partners across locations). 

Regional networks, however, require a high number of samples per delineated zone, but these may not 

be available due to logistic or budgetary limitations. Recent approaches circumvent this limitation by deriving 

sample-specific subnetworks from a single static, i.e., all-sample network, which allows quantifying association 

recurrence over spatiotemporal scales (Chaffron et al., 2020; Deutschmann et al., 2021). Here, we adjusted this 

approach and used it to determine global and regional associations along vertical and horizontal ocean scales, 
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which allowed us determining the biogeography of marine microbial associations. We analyzed associations 

between archaea, bacteria, and picoeukaryotes covering the water column, from surface to deep waters, in the 

Mediterranean Sea (hereafter MS) and five ocean basins: North and South Atlantic Ocean, North and South 

Pacific Ocean, and Indian Ocean (hereafter NAO, SAO, NPO, SPO, and IO). We estimated microbial taxa 

abundances using 397 globally distributed samples from the epipelagic to the bathypelagic zone in six ocean 

regions (Figure 16). We separated most epipelagic samples into surface and deep-chlorophyll maximum (DCM) 

samples. Next, we constructed a first global network comprising 5457 nodes and 31966 edges, 30657 (95.9%) 

positive and 1309 (4.1%) negative. Then, we applied a filter strategy including the removal of environmentally-

driven edges due to nutrients (4.9% NO3
−, 4.2% PO4

3−, 2.0% SiO2), temperature (1.9%), salinity (0.2%), and 

Fluorescence (0.01%) (Table 15). Altogether, our sample-specific network-based exploration allowed us to 

determine core associations in the global ocean and specific regions, analyze changes in associations and 

network topology with depth and regions, and to investigate the vertical connectivity of connected planktonic 

associations. 

 

Table 15: Number of environmentally-driven edges detected by EnDED. We removed environmentally-driven edges (indirect) from the preliminary 
network, which contained 31966 edges. Only edges that were not environmentally-driven by any environmental factor (not indirect) remained in the 
network. 
 

Environmental factor Number of samples indirect Not indirect 

Fluorescence 394 4 (0.01%) 31962 
NO3 361 1563 (4.9%) 30403 
PO4 359 1357 (4.2%) 30609 
Salinity 395 67 (0.2%) 31899 
SiO4 360 632 (2.0%) 31334 
Temperature 395 622 (1.9%) 31344 

All  2848 (8.9%) 
= 1779 removed by 1 
+ 751 removed by 2 
+ 308 removed by 3 
+ 10 removed by 4 

29118 (91.1%) 
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Figure 16: Sampling scheme. Location, number, and depth range of samples from the epipelagic zone including surface and DCM layer, the 
mesopelagic zone, and the bathypelagic zone from the global tropical and subtropical ocean and the Mediterranean Sea.  
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Results 

From a global static network to sample-specific subnetworks 

The resulting global static network contained 5448 nodes and 29118 edges, 28178 (96.8%) positive and 940 

(3.2%) negative. It served as the underlying structure from which we generated 397 sample-specific 

subnetworks following three criteria. First, we required that an edge must be present in the global static network. 

Second, an edge can only be present within a subnetwork if both microorganisms associated with the edge have 

a sequence abundance above zero in the corresponding sample. Third, microorganisms associated need to appear 

together (intersection) in more than 20% of the samples, in which one or both appear (union) for that specific 

region and depth. This third condition was robust since random subsets retained most associations compared 

with the associations obtained when using all samples (Figure 17). In addition to these three conditions, a node 

is present in a subnetwork if it has at least one association partner. Consequently, each subnetwork is included 

in the global static network. 

 

Spatial recurrence 

We determined the spatial recurrence of each association using its prevalence computed as the fraction of 

subnetworks in which a given association was present across the 397 samples (Figure 18A) and within each 

region-depth-layer combination (Figure 18B). The global ocean surface layer (contributing with 40% of 

samples) had more associations compared to the other depths (Figure 18B). Remarkably, 14971 of 18234 

(82.1%) global ocean surface associations were absent from the MS. In turn, the number of surface associations 

was similar across ocean basins (Figure 18B). 

Considering the most prevalent associations (those found in over 70% of subnetworks), we found that 

major vertical taxonomic patterns were conserved across regions: the epipelagic layers (surface and DCM) and 

the two lower layers (meso- and bathypelagic zones) were more similar to each other, respectively (Figure 19). 

The fraction of associations including Alphaproteobacteria was moderate to high in all zones in contrast to 

Cyanobacteria appearing mainly, as expected, in the epipelagic zone (Figure 19). The fraction of Dinoflagellata 

associations was moderate to high in the epipelagic zone and lower in the meso- and bathypelagic zones. While 

Dinoflagellata associations dominated most epipelagic layers, fewer were found in the MS and SAO surface 

and NAO DCM (Figure 19). Thaumarchaeota associations were moderate to high especially in the mesopelagic 

(dominant in the MS), moderate in the bathypelagic, and lower in the epipelagic zone (Figure 19). Another 

interesting pattern is the increase in associations including Gammaproteobacteria with depth being higher in 

the meso- and bathypelagic than in the epipelagic, especially in the SAO, SPO, NPO and IO. 
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Figure 17: Robustness of the third condition. We tested the robustness of the third condition for generating sample-specific subnetworks for each 
region and depth with sufficient samples. The DCM layer from the SPO was removed because it contained only one sample. Within each region and 
depth, the set of samples was randomly subsampled containing between 10% to 90% of the samples in the original set using all samples. The y-axis 
shows the fraction of edges that were kept in the subsampled set compared to the original set. We considered A) only the number of kept edges and 
B) which edges were kept. 
 
(see next page) 
Figure 18: Spatial recurrence. A) Association prevalence showing the fraction of subnetworks in which an association appeared considering all depth 
layers across the global tropical and subtropical ocean and the Mediterranean Sea. Associations that occurred more often (black) appeared in the 
middle of the single static network visualization. Most edges had a low prevalence (blue) <20%. B) The sample-specific subnetworks of the four ocean 
layers (rows): surface (SRF), DCM, mesopelagic (MES), and bathypelagic (BAT), and the six regions (columns). The histograms show the association 
prevalence within each depth layer and region (excluding absent associations, i.e., 0% prevalence). The number of samples app ears in the upper left 
corner, the number of edges with a prevalence >0% in the upper right corner, and the depth range in the lower right corner (in m below surface). Note 
that the prevalence goes up to 100% in B) vs. 66.5% in A). 
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Figure 19: Highly prevalent associations for each region and depth layer. If an association appears in more than 70% of subnetworks it is classified 
as highly prevalent. The four ocean layers (rows) are surface (SRF), DCM, mesopelagic (MES), and bathypelagic (BAT). The number of samples 
appears in the upper left corner, the number of edges in the upper right corner, and the depth range in the lower right corner (in m below surface). 
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Highly prevalent associations present across all regions are candidates to represent putative core 

interactions in the global ocean, which are likely to perform processes crucial for ecosystem functioning. We 

defined global associations as those appearing in more than 70% of subnetworks in each region. While we found 

several (21-26) global associations in the epi- and mesopelagic zones, no global associations were identified in 

the bathypelagic zone (Table 16, Figure 20). In addition, we resolved prevalent (>50%) and low-frequency 

(>20%) associations. These three types of associations are distinct by definition, i.e., a global association cannot 

be assigned to another type. The fraction of global, prevalent, and low-frequency associations was highest in 

the DCM layer and lowest in the bathypelagic zone (third and fifth column in Table 16, Figure 20B, and Figure 

20D). Given that the MS bathypelagic is warmer (median temperature of 13.78°C) than the global ocean 

bathypelagic (median temperature between 1.4°C in SPO and 4.41°C in NAO), we calculated these associations 

for the global ocean only. We found slightly to moderately more global, prevalent, and low-frequency 

associations in the global ocean when not considering the MS (fifth to seventh row in Table 16, Figure 20E-H). 

 

Table 16: Number of classified associations per depth layer. The sum of classified associations (including Other) is the number of present 
associations. Absent associations appear in other layers but in no subnetwork of a given layer. Global, prevalent, and low-frequency associations have 
been computed with and without considering the MS. The proportion of regional associations increased with depth (row highlighted in gray). 

Depth layer Epipelagic (Surface) Epipelagic (DCM) Mesopelagic Bathypelagic 

Global 26 (0.14%) 23 (0.31%) 21 (0.20%) - 

Prevalent 22 (0.12%) 47 (0.64%) 10 (0.10%) 7 (0.07%) 

Low-frequency 105 (0.58%) 160 (2.17%) 212 (2.05%) 51 (0.51%) 

Global (no MS) 86 (0.47%) 52 (0.70%) 28 (0.27%) 9 (0.09%) 

Prevalent (no MS) 207 (1.14%) 76 (1.03%) 27 (0.26%) 28 (0.28%) 

Low-frequency (no MS) 1361 (7.46%) 219 (2.97%) 342 (3.30%) 489 (4.84%) 

Regional 2014 (11.05%) 2290 (31.03%) 3420 (33.00%) 3669 (36.33%) 

MS 596 (3.27%) 1295 (17.55%) 2254 (21.75%) 1217 (12.05%) 

NAO 577 (3.16%) 306 (4.15%) 422 (4.07%) 1522 (15.07%) 

SAO 162 (0.89%) 304 (4.12%) 301 (2.90%) 143 (1.42%) 

SPO 152 (0.83%) 105 (1.42%) 40 (0.39%) 109 (1.08%) 

NPO 298 (1.63%) 133 (1.80%) 204 (1.97%) 516 (5.11%) 

IO 229 (1.26%) 147 (1.99%) 199 (1.92%) 162 (1.60%) 

Other* 16067 (88.12%) 4860 (65.85%) 6701 (64.66%) 6372 (63.10%) 

Other (no MS)* 14566 (79.88%) 4743 (64.27%) 6547 (62.17%) 55904 (58.46%) 

Present 18234 (100%) 7380 (100%) 10364 (100%) 10099 (100%) 

Absent 10884 21738 18754 19019 

* The number of unclassified (Other) associations is computed from present, regional, global, prevalent, and low-frequency associations. The last three classifications 
have been done with and without the MS, and subsequently the number of unclassified (other) associations varies. 
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Figure 20: Associations occurring in each region and depth layer. If an association appears in more than 20% of subnetworks in each region, it is 
classified as low-frequency, >50% prevalent, and >70% global. The number of samples appears in the upper left corner, the number of edges in the 
upper right corner, and the depth range in the lower right corner (in m below surface). We classified the associations considering all six regions (A-D) 
and considering the five ocean basins not considering the the MS (E-H). 
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Next, we determined regional associations within each depth layer. A regional association was defined 

as detected in at least one sample-specific subnetwork of one region and absent from all subnetworks of the 

other five regions. Results indicated an increasing proportion of regional associations with depth (Table 16, 

Figure 21A-B, Figure 22). We found substantially more associations in the DCM and mesopelagic layers of the 

MS than corresponding layers of the global ocean. This may reflect the different characteristics of these layers 

in the MS vs. the global ocean or the massive differences in spatial dimensions between the global ocean and 

the MS. More surface and bathypelagic regional associations corresponded to the MS and NAO than in other 

regions (Table 16). Most regional associations had low prevalence, i.e., they were present in a few sample-

specific subnetworks within the region (Figure 21C). We found 235 prokaryotic highly prevalent (>70%) 

regional associations in contrast to 89 eukaryotic and 24 associations between domains (Supplementary Material 

1[8]). 

Previous studies have found a substantial vertical connectivity in the ocean microbiota, with surface 

microorganisms having an impact in deep sea counterparts (Mestre et al., 2018; Ruiz-González et al., 2020). 

Thus, here, we analyzed the vertical connectivity of microbial associations. Few associations appeared 

throughout the water column within a region: 327 prokaryotic, 119 eukaryotic, and 13 associations between 

domains (Supplementary Material 2[9]). In general, most associations appearing in the meso- and bathypelagic 

did not appear in upper layers except for the MS and NAO where most and about half, respectively, of the 

bathypelagic associations already appeared in the mesopelagic (Figure 23, Table 17). Specifically, 81.77 – 

90.90% mesopelagic and 43.54-72.71% bathypelagic associations appeared for the first time in the five ocean 

basins (Table 17). In the MS, 71.24% mesopelagic and 22.44% bathypelagic associations appeared for the first 

time and 69.71% of bathypelagic associations already appeared in the mesopelagic (Table 17). This points to 

specific microbial interactions occurring in the deep ocean that do not occur in upper layers. In addition, while 

most surface associations also appeared in the DCM in the MS, most surface associations disappeared with 

depth in the five oceans (Figure 23) suggesting that most surface ocean associations are not transferred to the 

deep sea, despite microbial sinking (Mestre et al., 2018). In fact, we observed that most deep ocean ASVs 

already appeared in the upper layers (Figure 24), in agreement with previous work that has shown that a large 

proportion of deep sea microbial taxa are also found in surface waters, and that their presence in the deep sea is 

related to sinking processes (Mestre et al., 2018). 

 

 
[8] Supplementary Material 1: Description at the end of the methods section. 
[9] Supplementary Material 2: Description at the end of the methods section. 
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Figure 21: Classification of associations. An association can be classified into global (>70% prevalence, not considering the MS), prevalent (>50%, 
not considering the MS), low-frequency (>20%, not considering the MS), regional, and other. Regional associations are assigned to one of six ocean 
basins. The number A) and fraction B) of each type of association are shown for each depth layer: surface (SRF) and DCM (epipelagic), mesopelagic 
(MES) and bathypelagic (BAT). Color indicates the type of classification. The associations have been classified into the five types based on their 
prevalence in each region. The prevalence of associations is shown in C). For instance, global associations have a prevalence above 70% in each 
region (not considering the MS). Regional associations are present in one region (indicated with yellow with mainly low preva lence >0%) and absent 
in all other regions (0% prevalence not shown in graph). 
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Figure 22: Regional associations occurring in each region and depth layer. Within a particular depth layer, if an association appears in at least 
one subnetwork in one region (present) and in no subnetwork in other regions (absent), it is classified as regional. The four ocean layers (rows) are 
surface (SRF), DCM, mesopelagic (MES), and bathypelagic (BAT). The number of samples appears in the upper left corner, the number of edges in 
the upper right corner, and the depth range in the lower right corner (in m below surface). 
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Figure 23: Microbial associations across depth layers. For each region and taxonomic domain, we color associations based on when they first appeared: surface (S, yellow), DCM (D, orange), mesopelagic (M, 
red), and bathypelagic (B, black). Absent ASVs are grouped in the white (transparent) box. Columns show associations between archaea (Arc), bacteria (Bac), and eukaryotes (Euk)
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Figure 24: ASVs across depth layers. For each region, we color ASVs based on the layer they first appeared: surface (S, yellow), DCM (D, orange), 
mesopelagic (M, red), and bathypelagic (B, black). Absent ASVs are grouped in box “a”. An ASV only appearing in the bathypelagic, is assigned to box 
“a” in above layers. That is, an ASV detected in the surface and present in the DCM but absent in lower layers, appears in the box (S) in the surface 
and DCM layer, but in box “a” in the meso- and bathypelagic layer. An ASV cannot be assigned to two layers. Note that most ASVs in the bathypelagic 
zone have been already detected in upper layers because most ASVs are assigned to the boxes “S”, “D”, and “M” instead of “B”.  
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Table 17: Fraction of microbial associations across depth layers. For each region and layer (rows), we determined the constitution of associations 
(in percentage %) classifying them based on their first appearance (columns): surface, DCM, mesopelagic, and bathypelagic. We indicated the fractions 
above 40% in grey. 
 

Region Layer Surface DCM Mesopelagic Bathypelagic 

MS SRF 100.00    
 DCM 45.14 54.86   
 Mesopelagic 10.35 18.42 71.24  
 Bathypelagic 2.73 5.12 69.71  22.44 

NAO SRF 100.00    
 DCM 68.30 31.70   
 Mesopelagic 11.64 6.59 81.77  
 Bathypelagic 11.62 1.35 43.49 43.54 

SAO SRF 100.00    
 DCM 45.08 54.92   
 Mesopelagic 6.15 8.50 85.35   
 Bathypelagic 12.22 6.30 26.97 54.61 

SPO SRF 100.00    
 DCM 50.07 49.93   
 Mesopelagic 6.44 2.66 90.90  
 Bathypelagic 9.81 3.32 14.15 72.71 

NPO SRF 100.00    
 DCM 54.23 45.77   
 Mesopelagic 8.33 6.06 85.61  
 Bathypelagic 17.46 5.34 19.92 57.28 

IO SRF 100.00    
 DCM 39.23 60.77   
 Mesopelagic 5.92 7.87 86.21  
 Bathypelagic 11.00 3.84 29.61 55.56 

 

Comparing subnetworks 

Vertical and horizontal spatial variability is expected to affect network topology via biotic and abiotic variables 

as well as through dispersal processes (e.g., dispersal limitation). Yet, we have a limited understanding on how 

much marine microbial networks change due to these processes, thus analyzing the topology of subnetworks 

from specific ocean regions and depths is a first step to address this question. We compared the subnetworks of 

the six regions and depth layers using eight global network metrics (see Methods). We found that global network 

metrics change along the water column (Figure 25). As a general trend, subnetworks from deeper zones were 

more clustered (transitivity) with higher average path length, stronger associations (average positive association 

scores) and lower assortativity (based on degree) compared to those in surface waters. Most DCM and 

bathypelagic subnetworks had highest connectivity (edge density) (Figure 25). 

To avoid predefined grouping into regions and depth layers, we grouped similar subnetworks via a local 

network metric (see Methods) and identified 36 clusters of 5 to 28 subnetworks (Table 18). We found 13 

(36.1%) clusters that were dominated by surface subnetworks: six clusters (100% surface subnetworks) from 

three to five oceans but not MS and seven clusters with 55-86% surface networks from two to five of the six 

ocean regions. In turn, 11 clusters were dominated by a deeper layer: two DCM (64-90%), five mesopelagic 

(62-83%) and four bathypelagic dominated clusters (60-69%). Nine of these 11 clusters combined different 

regions except for one mesopelagic and one bathypelagic dominated cluster representing exclusively the MS 
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(Table 18). Furthermore, we found 11 clusters containing exclusively or mainly MS subnetworks in contrast to 

only one cluster dominated by an ocean basin (NAO). 

Next, we built a more comprehensive representation of network similarities between subnetworks via a 

minimal spanning tree (MST, see Methods) to underline the pervasive connectivity of associations across depth 

and environmental gradients. The depth layers, ocean regions, location of clusters, and environmental factors 

were projected onto the MST (Figure 26). Most surface subnetworks were centrally located, while subnetworks 

from other depths appeared in different MST areas. Most MS subnetworks were located in a specific branch of 

the MST, while the five oceans were mixed, indicating homogeneity within oceans but network-based 

differences between the oceans and the MS. However, subnetworks in the MST tended to connect to 

subnetworks from the same depth layer, cluster or similar environmental conditions. All in all, the above results 

suggest a strong influence of environmental gradients in shaping network topology and plankton associations, 

as previously observed in epipelagic communities at global scale (Chaffron et al., 2020). 
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Figure 25: Global network metrics. The considered global network metrics are (from top to bottom): number of nodes and edges, edge density, 
average path length, transitivity, assortativity (degree), assortativity (eukaryote – prokaryote), and average positive association score. We grouped the 
metrics by region and depth layer. For better visualization, we removed one edge-density outlier: 0.07 for a bathypelagic subnetwork in the NAO 
(MalaVP_DNA_D2795_4000m).
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Table 18: Subnetwork cluster. We highlighted the clusters that were dominated, i.e., over 50%, by one layer or one region in gray. The last row shows unassigned subnetworks. 

Cluster 
ID 

Dominated 
by 

Size 

Fraction of depth layers Number of regions (if no number if indicated, it is 1x) 

Epipelagic Meso- Bathy- Epipelagic Meso- Bathy- 
SRF EPI DCM pelagic pelagic pelagic EPI DCM MES BAT 

1 MS 5 20.00 20.00 20.00 20.00 20.00 SAO MS NAO MS MS 
2 MS 10 10.00 - 20.00 20.00 50.00 MS - 2xMS 2xMS 5xMS 
3 MS 8 12.50 - - 25.00 62.50 SRF - - 2xMS 5xMS 
4 MS, MES 8 - 12.50 - 75.00 12 - MS - 6xMS MS 
5 MS, MES 12 16.67 - - 66.67 16.67 IO, NAO - - 7xMS, NAO 2xNAO 
6  8 12.50 25.00 12.50 25.00 25.00 IO MS, NAO NPO MS, NAO 2xMS 
7 BAT 15 13.33 - - 26.67 60.00 IO, SPO - - IO, MS, SAO, SPO IO, MS, NAO, 2xNPO, 2xSAO, 

2xSPO 
8 DCM 10 10.00 - 90.00 - - NPO - 5xMS, NPO, 

3xSAO 
- - 

9 DCM 11 36.36 - 63.64 - - 2xNAO, NPO, SAO - 3xIO, 2xMS, NPO, 
SAO 

- - 

10  12 - - 8.33 50.00 41.67 - - NAO IO, MS, NAO, 2xNPO, 
SAO 

IO, 2xNAO, NPO, SAO 

11 MES 6 - - - 83.33 16.67 - - - IO, MS, NPO, 2xSAO IO 
12 NAO, MES 6 16.67 - - 83.33 - NAO - - 2xMS, 3xNAO - 
13 SRF 11 54.55 9.09 - 27.27 9.09 IO, MS, NPO, 3xSAO MS - 2xMS, NAO MS 
14 BAT 16 12.50 6.25 6.25 6.25 68.75 MS, NAO MS MS MS 5xNAO, 3xNPO, 2xSAO, SPO 
15 SRF 8 100.00 - - - - 3xIO, 4xNAO, NPO - - - - 
16 MS, SRF 7 71.43 14.29 - 14.29 - 4xMS, NPO MS - MS - 
17 MS 9 - 11.11 33.33 22.22 33.33 - MS MS, NAO, SPO 2xMS 3xMS 
18 MS, BAT 8 12.50 25.00 - - 62.50 IO 2xMS - - 3xMS, 2xNAO 
19 SRF 7 85.72 14.29 - - - 2xIO, NAO, NPO, 2xSAO MS - - - 
20 SRF 15 73.33 - 6.67 6.67 13.33 2xIO, 2xNAO, NPO, 5xSAO, SPO - MS IO IO, NPO 
21  8 25.00 - 12.50 25.00 37.50 IO, SPO - MS MS, SAO IO, 2xNAO 
22  17 23.53 - 5.88 35.29 35.29 3xSAO, SPO - MS NAO, 2xNPO, SAO, 

2xSPO 
IO, MS, NAO, 3xSAO 

23 SRF 8 75.00 12.50 - 12.50 - IO, 2xMS, NAO, NPO, SPO MS - MS - 
24 MS, MES 13 15.38 7.69 - 61.54 15.38 2xMS MS - IO, 4xMS, 3xNAO NAO, NPO 
25  14 28.57 7.14 14.29 7.14 42.86 2xMS, 2xNAO MS 2xMS NAO MS, 3xNPO, 2xSAO 
26 SRF 7 85.72 14.29 - - - 2xIO-SRF, MS-EPI, 2xNAO-SRF, 

2xNPO-SRF 
2xIO-SRF, MS-EPI, 2xNAO-SRF, 

2xNPO-SRF 
- - - 

27 SRF 11 100.00 - - - - 2xIO, NAO, 4xNP, 4xSPO - - - - 
28 MS 11 9.09 27.27 - 36.36 27.27 MS 3xNAO - 4xMS 3xMS 
29  12 50.00 - 16.67 16.67 16.67 IO, MS, 3xNAO, SAO - MS, NAO 2xMS 2xMS 
30  6 50.00 - 16.67 16.67 16.67 IO, NAO, SPO - MS NPO IO-BAT 
31 MS 28 25.00 10.71 7.14 35.71 21.43 4xIO, 2xMS, SAO 3xMS 2xMS 6xMS, 2xNAO, 

2xNPO 
IO, 2xMS, 3xNAO 

32 SRF 6 100.00 - - - - IO, 2xNA, NPO, 2xSAO - - - - 
33 SRF 6 100.00 - - - - NAO, 3xNPO, SAO, SPO - - - - 
34 SRF 14 100.00 - - - - IO, 4xNAO, 5xNPO, 2xSAO, 2xSPO - - - - 
35 SRF 13 69.23 7.69 - - 23.08 4xIO, 3xNAO, SAO, SPO MS - - 3xMS 
36 SRF 7 100.00 - - - - 3xIO, 3xNPO, SAO - - - - 

-  24 41.67 - 12.50 29.17 16.67 2xIO, MS, 2xNAO, 3xNPO, 2xSAO - MS, 2xNAO 2xIO, 4xMS, NPO MS, NAO, NPO, SAO 

MS – Mediterranean Sea, NAO – North Atlantic Ocean, SAO – South Atlantic Ocean, SPO – South Pacific Ocean, NPO – North Pacific Ocean, IO – Indian Ocean, EPI – epipelagic layer, SRF – surface, DCM – Deep Chlorophyll Maximum, 
MES – mesopelagic layer, BAT – bathypelagic layer
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Figure 26: Minimal Spanning Tree. Each subnetwork is a node in the MST and represents a sample. Nodes are colored according to A) the sample’s 
depth layer, B) the samples ocean region, C) the subnetworks cluster, and D) selected samples’ environmental factors. In C), the barplots indicate the 
different layers within each cluster colored as in A).
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Discussion 

In this work, we disentangled and analyzed global and regional microbial associations across the 

oceans’ vertical and horizontal dimensions. We found a low number of global associations 

indicating a potentially small global core interactome within each depth layer across six oceanic 

regions. Core microorganisms are often defined as those appearing in most or all samples from 

similar habitats (Shade & Handelsman, 2012). We previously identified a core microbiota in a 

coastal MS observatory based on both association patterns (Krabberød et al., 2021) and temporal 

recurrence of associations (Deutschmann et al., 2021). Both studies indicate more robust 

microbial connectivity, suggesting a broader core, in colder than in warmer seasons. In contrast, 

within each region, we found less highly prevalent associations in the bathypelagic zone of the 

global ocean (pointing to a smaller regional core) than in upper layers, except from the NPO, 

having less highly prevalent associations in the meso- than in the bathypelagic. In agreement, we 

found more regional bathypelagic associations than in upper layers. Thus, associations may reflect 

the heterogeneity and isolation of the deep ocean regions due to deep currents, water masses, or 

the topography of the seafloor that may prevent microbial dispersal. Moreover, the higher 

complexity of the deep ocean ecosystem may provide a higher number of ecological niches 

potentially resulting in more regional associations and agreeing with our observations. A high 

diversification of niches may be associated to different quality and types (labile, recalcitrant, etc.) 

of organic matter reaching the deep ocean from the epipelagic zone (Arístegui et al., 2009), which 

are significantly different across oceanic regions (Hansell & Carlson, 1998). In an exploration of 

generalists versus specialist prokaryotic metagenome-assembled genomes (MAGs) in the arctic 

Ocean, most of the specialists were linked to mesopelagic samples indicating that their 

distribution was uneven across depth layers (Royo-Llonch et al., 2020). This is in agreement with 

putatively more niches in the deep ocean than in upper ocean layers leading to more specialist 

taxa and subsequently more regional associations. 

 Vertical connectivity in the ocean microbiome is partially modulated by surface 

productivity through sinking particles (Mestre et al., 2018; Boeuf et al., 2019; Ruiz-González et 

al., 2020). An analysis of eight stations, distributed across the Atlantic, Pacific and Indian oceans 

(including 4 depths: Surface, DCM, meso- and bathypelagic), indicated that bathypelagic 

communities comprise both endemic taxa as well as surface-related taxa arriving via sinking 

particles (Mestre et al., 2018). Ruiz‐González et al. (Ruiz-González et al., 2020) identified for 

both components (i.e., surface-related and deep-endemic) the dominating phylogenetic groups: 

while Thaumarchaeota, Deltaproteobacteria, OM190 (Planctomycetes) and Planctomycetacia 

(Planctomycetes) dominated the endemic bathypelagic communities, Actinobacteria, 

Alphaproteobacteria, Gammaproteobacteria and Flavobacteriia (Bacteroidetes) dominated the 

surface-related taxa in the bathypelagic zone. We found association partners for each dominating 

phylogenetic group within each investigated type of association, i.e., highly prevalent, regional, 



 

116 

global, prevalent, and low-frequency associations. While ASVs belonging to these taxonomic 

groups were present throughout the water column, specific associations were observed especially 

in the mesopelagic and the bathypelagic zones, which suggests specific associations between 

deep-sea endemic taxa. This is in agreement with a recent study that found a remarkable 

taxonomic novelty in the deep ocean by analyzing 58 microbial metagenomes from global 

samples, unveiling ~68% archaea and ~58% bacterial novel species (Acinas et al., 2021). 

Less is known about associations found along the entire or a substantial fraction of the 

water column, suggesting consortia of associated microorganisms that sink together or that 

populate large vertical ranges of the water column. Associations present across all layers were 

few but may represent interacting taxa that populate the entire water column or that sink together. 

However, given that we targeted mainly picoplankton, we would not expect a considerable 

influence of sinking particles in the vertical distribution of associations in this study. Some 

associations observed in the deep ocean may correspond to consortia of taxa degrading sinking 

particles, or taxa that might have detached from sinking particles, i.e., dual life-style taxa as 

observed in (Sebastián, Sánchez, et al., 2021). Alternatively, microorganisms may have reached 

bathypelagic waters via fast-sinking processes, embedded in (larger) particles (Agusti et al., 

2015). By following this observation, a previous study found that the abundances of 

microorganisms in deeper layers mirrored the changes in abundance of microorganisms in 

shallower layers, at a single sampling station, indicating that communities populating different 

ocean depths are not isolated from each other but linked, possibly through sinking particles or 

migrating organisms transporting nutrients through the water column (Cram, Xia, et al., 2015). 

However, microbial co-occurrence alone does not suffice to infer microbial interactions, because 

different mechanisms, such as selection or dispersal, influence species as well as their interactions 

(Poisot et al., 2012). Our results suggest that microorganisms can potentially change their 

interaction partners along with vertical (and horizontal) scales and, to a lesser extent, maintain 

interactions along the water column. 

A study of global-ocean picoplanktonic eukaryotes through the water column (from the 

epi- to the bathypelagic zone) found the highest and lowest relative metabolic activity for most 

eukaryotes in the meso- and bathypelagic zones, respectively (Giner et al., 2020). Thus, we could 

hypothesize more competition in the mesopelagic zone and more beneficial interactions in the 

bathypelagic zone. In our study, mesopelagic subnetworks displayed the lowest connectivity in 

most regions on average, and we found the strongest associations among both meso- and 

bathypelagic subnetworks. Moreover, we found the highest clustering (transitivity) in the meso- 

and bathypelagic zones (relatively colder waters) compared to the epipelagic zone (warmer 

waters). Similarly, a previous global-scale study (Chaffron et al., 2020) concentrating on the 

epipelagic zone and including polar waters, found higher edge density, association strength and 

clustering in polar (colder waters) compared to warmer waters. These results suggest that either 
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microorganisms interact more in colder and darker environments or that their recurrence is higher 

due to a higher environmental selection exerted by low temperatures and no light. Alternatively, 

limited resources (primarily nutrients) in the surface versus deep ocean may prevent the 

establishment of specific microbial interactions. Furthermore, another explanation could be the 

higher diversity of ecological niches and, thus, a higher diversity of associations in the meso- and 

bathypelagic. 

Through quantifying regional associations, our results indicated distinct associations in 

the MS, where most regional associations were observed compared to the global ocean, as 

previously shown in an epipelagic network (Lima-Mendez et al., 2015). Furthermore, we found 

a substantial number of regional associations in the NAO compared to other ocean basins, 

contrasting with the NAO having the lowest number of regional associations in a previous 

epipelagic network (Lima-Mendez et al., 2015). 

 

Conclusion 

Our network-based exploration disentangles the spatial distribution of associations of the global 

ocean microbiome, from top to bottom layers, suggesting both global and regional interactions. 

Our analysis demonstrated the change of network topology across vertical (water column) and 

horizontal (different regions) dimensions of the ocean. Furthermore, our results indicate that 

associations have specific spatial distributions that are not just mirroring ASV distributions. 

 

Methods 

Dataset 

Samples originated from two expeditions, Malaspina-2010 (Duarte, 2015) and Hotmix (Martínez-

Pérez et al., 2017). The former was onboard the R/V Hespérides and most ocean basins were 

sampled between December 2010 and July 2011. Malaspina samples included i) MalaSurf, 

surface samples (Ruiz-González et al., 2019; Logares et al., 2020), ii) MalaVP, vertical profiles 

(Giner et al., 2020), and iii) MalaDeep, deep-sea samples as in (Pernice et al., 2016; Salazar et 

al., 2016; Sanz-Sáez, 2021). For the Hotmix expedition, sampling took place onboard the R/V 

Sarmiento de Gamboa between 27th April and 29th May 2014 and represented a quasi-synoptic 

transect across the MS and the adjacent North-East of the NAO. See details in Table 19. 

DNA extractions are indicated in the papers associated with each dataset (Table 19). From 

the DNA extractions, the 16S and 18S rRNA genes were amplified and sequenced. PCR 

amplification and sequencing of MalaSurf, MalaVP (18S), and Hotmix (16S) are indicated in the 

papers associated with each dataset in Table 19. MalaVP (16S) and Hotmix (18S) were PCR-

amplified and sequenced following the same approach as in (Logares et al., 2020). MalaDeep 

samples were obtained from (Pernice et al., 2016; Salazar et al., 2016) but re-sequenced in 
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Genoscope (France) with different primers, as described below. MalaSurf, MalaVP and Hotmix 

datasets were sequenced at RTL Genomics (Texas, USA). 

 

Table 19: Dataset compilation. Our data was a compilation of four different datasets. We required that each location had to provide 
data for both eukaryotes and prokaryotes, which resulted in 397 samples. This condition allowed only 13 MalaDeep samples.  
 

Dataset Samples 
used for 
analysis 

Stations Depth 
range 

(m) 

Water 
samples 

Size 
Fraction 

(µm) 

16S 18S Reference ENA 
accession 

number 

Malaspina           

MalaSurf 122 120 3 122 0.2-3 122 124 (Ruiz-
González 

et al., 
2019; 

Logares et 
al., 2020) 

PRJEB23913 
[18S rRNA 

genes], 
PRJEB25224 

[16S rRNA 
genes] 

MalaVP 83 13 3-4000 91 0.2-3 91 83 (Giner et 
al., 2020) 

& This 
study 

PRJEB23771 
[18S rRNA 

genes], 
PRJEB45015 

[16S rRNA 
genes] 

MalaDeep 
(Prok) 

13 30 ~4000 60 0.2-0.8 41 - (Sanz-
Sáez, 
2021) 

PRJEB45011 

MalaDeep 
(Euk) 

13 27 2400-
4000 

27 0.8-20 - 82 This study PRJEB45014 

Hotmix 179 29 3-4539 188 0.2-3 188 179 (Sebastián, 
Ortega-

Retuerta, 
et al., 
2021) 

PRJEB44683 
[18S rRNA 

genes], 
PRJEB44474 

[16S rRNA 
genes] 

16S and 18S refer to sequenced samples; Prok - prokaryotes; Euk – eukaryotes 

 

We used the same amplification primers for all samples. For the 16S, we amplified the 

V4-V5 hypervariable region using the primers 515F-Y and 926R (Parada et al., 2016). For the 

18S, we amplified the V4 hypervariable region with the primers TAReukFWD1 and 

TAReukREV3 (Stoeck et al., 2010). See more details in (Logares et al., 2020). Amplicons were 

sequenced in Illumina MiSeq or HiSeq2500 platforms (2x250 or 2x300 bp reads). Inference of 

Amplicon Sequence Variants (ASVs) was made using DADA2 (Callahan et al., 2016), v.1.4.0, 

running each dataset separately before merging the results. ASVs were assigned taxonomy using 

SILVA (Quast et al., 2012), v132, for prokaryotes, and PR2 (Guillou et al., 2012), v4.11.1, for 

eukaryotes. ASVs corresponding to Plastids, Mitochondria, Metazoa, and Plantae, were removed. 

Only samples with at least 2000 reads were kept. The dataset contained several MalaDeep 

replicates, which we merged, and two filter sizes: given the cell sizes of prokaryotes versus 

microeukaryotes, we selected the smallest available filter size (0.2-0.8 µm) for prokaryotes and 

the larger one (0.8-20 µm) for microeukaryotes. The other three datasets used the filter sizes of 

0.2-3 µm. Additionally, we required that samples had eukaryotic and prokaryotic data, resulting 
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in 397 samples for downstream analysis: 122 MalaSurf, 83 MalaVP, 13 MalaDeep, and 179 

Hotmix. We separated the samples into epipelagic, mesopelagic and bathypelagic zone (Figure 

1). Furthermore, we separated most epipelagic samples into surface and deep-chlorophyll 

maximum (DCM) samples, but 18 MS and 4 NAO samples belonged to neither. We also 

considered environmental variables: Temperature (2 missing values = mv), salinity (2 mv), 

fluorescence (3 mv), and inorganic nutrients NO3
− (36 mv), PO4

3− (38 mv), and SiO2 (37 mv), 

which were measured as indicated elsewhere (Giner et al., 2020; Logares et al., 2020; Sebastián, 

Ortega-Retuerta, et al., 2021). In specific samples, missing data on nutrient concentrations were 

estimated from the World Ocean Database (Boyer et al., 2013). 

 

Single static network 

We constructed the single static network in four steps. First, we prepared the data for network 

construction. We excluded rare microorganisms by keeping ASVs with a sequence abundance 

sum above 100 reads and appearing in at least 20 samples (>5%). The latter condition removes 

bigger eukaryotes only appearing in the 13 MalaDeep eukaryotic samples of a bigger size 

fraction. To control for data compositionality (Gloor et al., 2017), we applied a centered-log-ratio 

transformation separately to the prokaryotic and eukaryotic tables before merging them. 

Second, we inferred a (preliminary) network using FlashWeave (Tackmann et al., 2019), 

selecting the options “heterogeneous” and “sensitive”. FlashWeave was chosen as it can handle 

sparse datasets like ours, taking zeros into account and avoiding spurious correlations between 

ASVs that share many zeros. 

Third, we aimed to remove environmentally-driven edges. FlashWeave (Tackmann et al., 

2019) could detect indirect edges and allows to supply additional metadata such as environmental 

variables, but currently does not support missing data. Thus, we applied EnDED (Deutschmann 

et al. 2020), combining the methods Interaction Information (with 0.05 significance threshold and 

10000 iterations) and Data Processing Inequality as done previously via artificially-inserted edges 

to connect all microbial nodes to the six environmental parameters (Deutschmann et al., 2021). 

Although EnDED can handle missing environmental data when calculating intermediate values 

relating ASV and environmental factors, it would compute intermediate values for microbial 

edges using all samples. Thus, to avoid a possible bias and speed up the calculation process, we 

applied EnDED individually for each environmental factor, using only the samples containing 

values for the specific environmental factor. 

Fourth, we removed isolated nodes, i.e., nodes without any edge. The resulting network 

represented the single static network in our study. 
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Sample-specific subnetwork 

We constructed 397 sample-specific subnetworks. Each subnetwork represented one sample and 

was derived from the single static network, i.e., a subnetwork contained nodes and edges present 

in the single static network but not vice versa. Consider sample 𝑠𝑅𝐿 with 𝑅 being the marine 

region, and 𝐿 is the sample’s depth layer. Let 𝑒 be an association between microorganisms 𝐴 and 

𝐵. Then, association 𝑒 is present in the sample-specific subnetwork 𝑁𝑠 , if 

i. 𝑒 is an association in the single static network, 

ii. the microorganisms 𝐴 and 𝐵 are present within sample 𝑠, i.e., the abundances are above 

zero within that particular sample, and 

iii. the association has a region and depth specific Jaccard index, 𝐽𝑅𝐿, above 20% (see below). 

In addition to these three conditions, a node is present in a sample-specific subnetwork when 

connected to at least one edge, i.e., we removed isolated nodes. 

Regarding the third condition, we determined 𝐽𝑅𝐿 for each association pair by computing 

within each region and depth layer, the fraction of samples two microorganisms appeared together 

(intersection) from the total samples at least one microorganism appears (union). Table 20 shows 

the number of edges using different thresholds. Given the heterogeneity of the dataset within 

regions and depth layers, we decided on a low threshold, keeping edges with a Jaccard index 

above 20% and removed edges below or equal to 20%. We tested the robustness by randomly 

drawing a subset of samples of each region and depth combination. The subset contained between 

10% and 90% of the original samples. We rounded up decimal numbers to avoid zero samples, 

e.g., 10% of 4 or 7 samples both resulted in a subset of 1 sample. We excluded DCM of the SPO 

because it contained only one sample. Next, we recomputed the Jaccard index for the random 

subset. Lastly, requiring J>20%, we evaluated the robustness determining i) how many edges 

were kept in the random subsamples compared to all samples, and ii) how many edges were kept 

in the random subset that were also kept when all samples were used. We repeated the procedure 

for each region-depth combination 1000 times. 
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Table 20: Different thresholds on the Jaccard index. Number of edges within each region and depth layer before (J>0%) and 
after filtering edges with low Jaccard index measuring how often the association partners appeared together in the region and depth 
layer. The DCM layer in the South Pacific Ocean (SPO) contained only one subnetwork, which resulted in the edge prevalence 
being 100% for all edges. 
 

Region Layer Samples Depth (m) J>0% J>10% J>20% J>30% J>40% J>50% 

MS EPI - SRF 19 3 3710 3631 3263 2881 2375 1797 
 EPI 18 12-50 4763  4682 4196 3731 3064 2189 
 EPI - DCM 21 40-130 5545 5417 4736 4030 3062 2027 
 MES 52 200-1000 8756 8403 7336 6179 4629 3088 
 BAT 35 1100-3300 4497 4263 3694 3171 2506 1830 

NAO EPI - SRF 34 3 15862  15255 13478 11449 8487 5331 
 EPI 4 50 3027 3027 3027 2778 2529 2091 
 EPI - DCM 6 70-106 3865 3865 3738 3480 2973 2212 
 MES 14 200-800 6325 6289 5689 5109 4169 2978 
 BAT 20 1200-4539 7490 7419 6831 6206 5211 3857 

SAO EPI - SRF 26 3 13118 12768 11026 9269 6842 4353 
 EPI - DCM 4 80-130 4199 4199 4199 3941 3443 2468 
 MES 6 450-850 3937 3937 3740 3440 2687 1614 
 BAT 11 1290-4000 4143 4130 3886 3605 3049 2254 

NPO EPI - SRF 29 3 14376 13778 11919 9907 7323 4736 
 EPI - DCM 3 37-110 3100 3100 3100 3100 2568 1968 
 MES 9 200-780 4197 4197 3781 3343 2583 1625 
 BAT 12 2000-4000 5198 5185 4834 4510 4009 3372 

SPO EPI - SRF 14 3-5 12007 11927 10420 8990 6728 4480 
 EPI - DCM 1 65 1530 1530 1530 1530 1530 1530 
 MES 3 450-650 2066 2066 2066 2066 1756 1318 
 BAT 3 1500-4000 3159 3159 3159 3159 2906 2128 

IO EPI - SRF 35 3 14307 13646 11736 9602 6912 4396 
 EPI - DCM 3 86-130 3411 3411 3411 3411 2855 2310 
 MES 7 400-950 4654 4654 4344 3961 3083 2082 
 BAT 8 1065-4000 2928 2928 2790 2563 2101 1290 

MS – Mediterranean Sea, NAO – North Atlantic Ocean, SAO – South Atlantic Ocean, SPO – South Pacific Ocean, NPO – North Pacific Ocean, 
IO – Indian Ocean, EPI – epipelagic layer, SRF – surface, DCM – Deep Chlorophyll Maximum, MES – mesopelagic layer, BAT – bathypelagic 
layer 

 

 

Spatial recurrence 

To determine an association’s spatial recurrence, we calculated its prevalence as the fraction of 

subnetworks in which the association was present. We determined association prevalence across 

the 397 samples and each region-layer combination. We mapped the scores onto the single static 

network, visualized in Gephi (Bastian et al., 2009), v.0.9.2, using the Fruchterman Reingold 

Layout (Fruchterman & Reingold, 1991) with a low gravity score of 0.5. We used the region-

layer prevalence to determine global and regional associations. We considered an association to 

be global within a specific depth layer if its prevalence was above 70% in all regions. In turn, a 

regional association had an association prevalence above 0% within a particular region-layer 

(present, appearing in at least one subnetwork) and 0% within other regions of the same layer 

(absent, appearing in no subnetwork). In addition, associations that are not global but appear in 

all regions over 50% are considered prevalent. Similarly, associations that are not global nor 

prevalent but appear in all regions over 20% are considered low-frequency. Thus, an association 

can be classified as i) global, ii) regional, iii) prevalent, iv) low-frequency, and v) “other”, i.e., 

associations that have not been classified into the previous categories.  
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Global network metrics 

We considered the number of nodes and edges and six other global network metrics of which 

most were computed with functions of the igraph R-package (Csardi & Nepusz, 2006). Edge 

density indicating connectivity is computed through the number of actual edges divided by the 

number of possible edges. The average path length is the average length of all shortest paths 

between nodes in a network. Transitivity indicating how well a network is clustered is the 

probability that the nodes’ neighbors are connected. Assortativity measures if similar nodes tend 

to be connected, i.e., assortativity (degree) is positive if high degree nodes tend to connect to 

other high degree nodes and negative otherwise. Similarly, assortativity (Euk-Prok) is positive if 

eukaryotes tend to connect to other eukaryotes and prokaryotes tend to connect to other 

prokaryotes. Lastly, we computed the average positive association strength as the mean of all 

positive association scores provided by FlashWeave (Tackmann et al., 2019). 

 

Local network metric 

The previous global metrics disregard local structures’ complexity, and topological analyses 

should include local metrics (Espejo et al., 2020), e.g., graphlets (Pržulj et al., 2004). Here, we 

determined network-dissimilarity between each pair of sample-specific subnetworks proposed in 

(Yaveroǧlu et al., 2014), comparing network topology without considering specific ASVs. The 

network-dissimilarity is a distance measurement that is always positive: 0 if networks are identical 

and greater numbers indicate greater dissimilarity. 

Next, we constructed a Network Similarity Network (NSN), where each node is a 

subnetwork and each node connects to all other nodes, i.e., the NSN was a complete graph. We 

assigned the network-dissimilarity score as edge weight within the NSN. To simplify the NSN 

while preserving its main patterns, we determined the minimal spanning tree (MST) of the NSN. 

The MST had 397 nodes and 396 edges. The MST is a backbone, with no circular path, in which 

the edges are chosen so that the edge weights sum is minimal and all nodes are connected, i.e., a 

path exists between any two nodes. We determined the MST using the function mst in the igraph 

package in R (Prim, 1957; Csardi & Nepusz, 2006). 

Using the network-dissimilarity (distance) matrix, we determined clusters of similar 

subnetworks in python. First, we reduced the matrix to ten dimensions using umap (McInnes et 

al., 2018) with the following parameter settings: n_neighbors=3, min_dist=0, n_components=10, 

random_state=123, and metric=’precomputed’. Second, we clustered the subnetworks 

(represented via ten dimensions) with hdbscan (McInnes et al., 2017) setting the parameters to 

min_samples=3 and min_clusters=5. 

 

  



 

123 

Reproducibility 

R-Markdowns for data analysis including commands to run FlashWeave and EnDED 

(environmentally-driven-edge-detection and computing Jaccard index) are publicly available: 

https://github.com/InaMariaDeutschmann/GlobalNetworkMalaspinaHotmix. While the networks 

are already available, the microbial sequence abundances (ASV table), taxonomic classifications, 

environmental data including nutrients will be publicly available after acceptance. The data are 

of course available upon request to reviewers. 

 

Supplementary Material 

Due to their size, the two supplementary materials are not included in this thesis but publicly 

available as tab-separatec txt-files in the Github repository (specific links are provided below): 

https://github.com/InaMariaDeutschmann/GlobalNetworkMalaspinaHotmix. 

 

Supplementary Material 1: Highly prevalent (>70%) regional associations. For each association 

between two ASVs (first and second column) we list: region (third column), depth layer (fourth 

column), prevalence in that region and depth layer (fifth column), type: eukaryotic (Euk_Euk), 

prokaryotic (Prok_Prok), and association between domains (Euk_Prok) (sixth column), and the 

phyla (seventh and eight column). 

Available here:  

https://github.com/InaMariaDeutschmann/GlobalNetworkMalaspinaHotmix/blob/main/05_Clas

sifyingAssociations/HighlyPrevalentRegionalAssociations.txt 

 

Supplementary Material 2: Associations appearing in all layers in at least one region. For each 

association between two ASVs (first and second column) we list: the classification in each layer 

(3-6 column), overall prevalence (8. column), prevalence in each region and depth layer (9- 34. 

column), the number of regions in which the association appeared in all layers (AllLayers, 35. 

column), the number of layers an association appears in a region (36-41. column), type: 

eukaryotic (Euk_Euk), prokaryotic (Prok_Prok), and association between domains (Euk_Prok) 

(42. column), and the phyla (43-44. column). 

Available here:  

https://github.com/InaMariaDeutschmann/GlobalNetworkMalaspinaHotmix/blob/main/06_Vert

icalConnectivity/AllLayersAssociations.txt 
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Final remarks 

 Associations could be global or regional. 

 Most sampling does not allow to construct one network per location because only one 

sample is provided. 

 Our post-network-construction approach allows determining sample-specific 

subnetworks derived from an overall single static network. 

 Our approach can be used to quantify spatial recurrence for each association over the 

entire dataset and also for each depth or region and depth. 

https://marbits.icm.csic.es/
http://www.singek.eu/
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 The fraction of global associations is highest in the DCM layer and lowest in the 

bathypelagic zone. 

 Regional associations increase with depth. 

 Most regional associations have a low prevalence. 

 High prevalent associations may infer core associations that are essential for ecosystem 

functioning. 

 Our approach allows to quantify associations based on spatial recurrence, which was 

suggested in Chapter 5 to may strengthen and reduce the number of potential interaction 

hypotheses. 

 Here, we accomplished the proposed idea from the previous chapter: we adjusted our 

approach of quantifying edge recurrence (temporal) to determine spatial recurrence. 

 As in the previous chapter, we inserted artificial edges (artificially-generated triplets) to 

apply EnDED on each edge with each possible environmental factor. The fraction of 

indirect edges was lower in this study considering different locations and depths, than in 

the previous chapter considering ten years of one coastal surface location. 

 As known from other works, most deep ocean ASVs already appeared in upper layers. In 

contrast, most associations in the meso- and bathypelagic appeared for the first time. 

 Mapping environmental factors onto the MST, the tendency of similar environmental 

variables grouping together indicates a possible connection between environment and 

network topology since the MST was constructed using network similarity based on 

solely network topology. 

 The greatest bias of the study is the heterogeneity of the sampling in terms of the number 

of samples. 
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Chapter 8 Further investigations including EnDED 

 

The chapters’ focus is on three aspects: i) comparing network-based environmental and 

artificially-generated triplets, ii) comparing the application of EnDED in networks constructed 

with network-construction tools used in first and co-authored manuscripts, iii) expanding the type 

of data used to detect factors causing indirect dependencies. 

 

Network-based environmental versus artificially-generated triplets 

Chapter 5 and Chapter 6 employ the same model marine microbial BBMO network. We used 

network-based environmental triplets in the former chapter and artificially-generated triplets in 

the latter chapter. Network-based environmental triplets are generated during network 

construction. However, not all methods allow including environmental factors as nodes, e.g., 

SparCC (Friedman & Alm, 2012). Therefore, we adjusted the method. First, we construct a 

network without environmental factors. Second, we insert artificial edges from each microbial 

node to each environmental factor, which results in artificially-generated triplets. 

The network-based triplets approach requires to re-construct the network if 

environmental data changes, in contrast to the artificially-generated triplets approach. Both 

approaches can be used with the current implementation of EnDED. Although artificially-

generated triplets increase computation time, the approach is highly suitable for parallelization 

since EnDED can be run with each environmental factor separately. Further, artificial edges do 

not provide information about a potential association between ASV and environmental variables, 

e.g., no sign of association strength and no association duration, which are used by the methods 

Sign Pattern and Overlap, respectively. Thus, the artificially-generated triplets approach can only 

use the methods Interaction Information, Data Processing Inequality, and their ensemble approach 

(intersection combination). However, these methods may be sufficient given that Sign Pattern and 

Overlap indicated all edges as environmentally-driven using network-based environmental 

triplets in the BBMO network (Chapter 5). Finally, the artificially-generated triplets approach 

applies EnDED on more edges, which may increase the chance of finding environmentally-driven 

edges. However, if the number of environmentally-driven edges would remain the same, it would 

indicate that the network-based triplets are sufficient and the computationally costlier artificially-

generated triplet approach would not be needed. The results indicated that this was not the case. 

The BBMO network before applying EnDED contained 29820 edges of which 2488 

(8.34%) are environmentally-driven using network-based triplets, in contrast to 3315 (11.12%) 

when using artificially-generated triplets. Thus, adapting the strategy allowed to identify more 

environmentally-driven edges, especially indirect edges due to nutrients and the total chlorophyll-

a concentration (Table 21). There was a small increase in identified environmentally-driven edges 
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due to temperature and day length (hours of light). This indicates that the chosen network 

construction tool may incorporate associations between microorganisms and temperature and day 

length well, but misses relevant associations with other factors such as nutrients. The discrepancy 

may be due to temperature and day-length being easy to quantify in contrast to other factors. 

To conclude, EnDED allows indirect dependency detection using network-based 

environmental triplets (generated during network construction) and artificially-generated triplets 

(generated after network construction). We quantified more environmentally-driven edges using 

artificially-generated triplets, especially for nutrients and the total chlorophyll-a concentration but 

only slightly more for temperature and day-length. 

 

Table 21: Number and fraction of environmentally-driven edges for each available environmental factor. We detected 
environmentally-driven edges with EnDED using network-based environmental triplets and artificially generated environmental 
triplets, i.e., we introduced artificial edges to connect each ASV with each environmental factor.  
 

Environmental factor Network-based triplet Artificially generated triplet 

Temperature 1831 (6.14%) 1920 (6.44%) 

Total chlorophyll-a concentration 175 (0.59%) 838 (2.81%) 

Day length 652 (2.19%) 730 (2.45%) 

NO2− 0 192 (0.64%) 

SiO2 5 (0.02%) 162 (0.54%) 

NO3− 1 (0.003%) 57 (0.19%) 

Turbidity Not in a triplet 47 (0.16%) 

NH4+ Not in a triplet 0 

PO43- Not in network 0 

Salinity Not in network 0 

 

Comparing the application of EnDED on networks constructed with different tools 

using the Malaspina Surface data 

Malaspina Surface data has been used in three projects. In the first study (Logares et al., 2020), 

we used the method SparCC (Friedman & Alm, 2012) as implemented in FastSpar (Watts et al., 

2019) to construct and compare the prokaryotic and the eukaryotic network. The network 

construction method does not allow including environmental factors as nodes and the analysis 

was done before the completion of EnDED. In the second study (Latorre et al., 2021), we used 

the network construction tool MICtools (Albanese et al., 2018), which allows to include 

environmental data within the network construction. EnDED has been applied using the 

traditional network-based environmental triplet approach with the methods Interaction 

Information and Data Processing Inequality. This second marine microbial investigation focused 

on a specific microbial group. Specifically, we used an association network to infer potential 

interaction partners for MAST-4A/B/C/E in the sunlit global ocean. Thus, although the study aim 

revolved around MAST-4 taxa, a sub-aim was to provide potential interaction partners via a 

network-approach. To select strong interaction partner candidates several steps have been done 

starting with the sequence abundance table and ending with a list of interaction partners. To select 
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promising interaction partner candidates, the strategy comprised different filters. We observed a 

vast number of spurious associations in the preliminary network. Thus, we filtered associations 

whose association partners had many matching zeros, i.e., we removed associations with half or 

more zero-matching samples. Moreover, we applied a Jaccard index filter of 25%, removed 

environmentally-driven associations and only considered those with an association strength above 

0.4. The experience from the first and second study resulted in the selection of a third network 

construction tool in the third study. The third project used a data compilation including Malaspina 

Surface data and three other datasets to cover the water column from the surface to the deep ocean 

(Chapter 7). The sparse sequence abundance table (many zeros) was prone to result in spurious 

associations. To avoid spurious associations, we used the network construction tool FlashWeave 

in the heterogenous mode, which ignores matching zeros when computing associations 

(Tackmann et al., 2019). 

In this chapter, we use the Malaspina Surface dataset as an example dataset to compare 

environmentally-driven associations in eukaryotic and prokaryotic networks constructed using 

the three tools employed in the three projects. Here, we use EnDED with artificially-generated 

triplets. Before network construction, we required that all samples contained eukaryotic and 

prokaryotic data resulting in 122 samples. We removed rare ASVs and kept ASVs with a sequence 

abundance sum above 100 reads and appearing in at least 19 samples (>15%). To control for data 

compositionality (Gloor et al., 2017), we applied a centered-log-ratio transformation separately 

to the prokaryotic and eukaryotic tables before applying the tools MICtools and FlashWeave. The 

tool FastSpar expects raw counts. 

 The SparCC network was constructed using SparCC (Friedman & Alm, 2012) as 

implemented in FastSpar (Watts et al., 2019), v.0.0.7. It was run with 1000 iterations including 

1000 bootstraps to infer p-values resulting in the smallest being 0.001. We only considered 

associations with a p-value of 0.001. The MICtools network was constructed using Maximal 

Information Coefficient (MIC) analyses as implemented in MICtools (Albanese et al., 2018), 

v.1.0.1. TICe null distributions were estimated using 200000 permutations. The significance level 

for the MICtools network was set to 0.001 as suggested in (Weiss et al., 2016). The FlashWeave 

network was constructed using FlashWeave (Tackmann et al., 2019), v.0.18.0, in Julia, v.1.5.3, 

selecting the heterogeneous and sensitive mode. 

 As expected, the MICtools networks contain a vast number of associations and 

FlashWeave networks considerably less associations (Table 22). The discrepancy may be due to 

spurious associations. Thus, we use the Jaccard index as an estimator or indicator for spurious 

associations. We determined the Jaccard index for each association in each of the six networks 

(Figure 27). The distribution of Jaccard index of same tools is similar between eukaryotic and 

prokaryotic networks and different between networks constructed with different tools. The 

distribution from SparCC networks (first row in Figure 27) is more similar to the FlashWeave 
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networks (third row in Figure 27); they show two peaks whereas the MICtools networks (second 

row in Figure 27) show one peak. Considering associations with a Jaccard index equal or below 

25%, we found the highest number of spurious associations in the MICtools networks (60.4-

70.8%), followed by SparCC networks (40.9-42.7%), and less spurious associations in 

FlashWeave networks (19.1-23.42%). For further analysis, we only keep associations with a 

Jaccard index above 25% and remove proportionally more associations in eukaryotic than 

prokaryotic networks constructed with MICtools and FlashWeave, but slightly less in SparCC 

networks. 

 

Table 22: Number and fraction of associations in the network before and after applying the Jaccard index filter and EnDED. 
We used a Jaccard index threshold of 0.25, i.e., association partners have to co-occur in more than 25% of the samples in which 
one or both were detected. Moreover, we list the number and fraction of environmentally-driven edges for each network and available 
environmental factor detected with EnDED using artificially generated environmental triplets, i.e., we introduced artificial edges to 
connect each ASV with each environmental factor. 

Domain Eukaryotic networks Prokaryotic networks 
and tool SparCC MICtools FlashWeave SparCC MICtools FlashWeave 

Significant 43482 1275951  4402  19676  123599  1227  

Jaccard index       
removed 17786  

(40.9%) 
902745  
(70.8%) 

1031  
(23.42%) 

8404 
(42.7%) 

74608 
(60.4%) 

234 
(19.1%) 

kept 25696  
(59.1%) 

373206  
(29.2%) 

3371 
(76.6%) 

11272 
(57.3%) 

48991 
(39.6%) 

993 
(80.9%) 

EnDED       
removed 1093  

(4.3%) 
42464 

(11.4%) 
88 

(2.6%) 
517 

(4.6%) 
4477 

(9.1%) 
10 

(1.0%) 
kept 24603 

 (95.7%) 
330742 
(88.6%) 

3283 
(97.4%) 

10755 
(95.4%) 

44514 
(90.9%) 

983  
(99.0%) 

Environmental 
drivers 

      

Temperature 137 (0.5%) 3246 (0.9%) 7 (0.2%) 147 (1.3%) 643 (1.3%) 1 (0.1%) 
Salinity 1 (0.004%) 17 (0.005%) - - 3 (0.01%) - 

Chlorophyll-a  523 (2.0%) 14714 (3.9%) 63 (1.9%) 78 (0.7%) 805 (1.64%) 2 (0.2%) 
Fluorescence 10 (0.03%) 273 (0.1%) 1 (0.03%) - 5 (0.01%) - 

NO3− 24 (0.1%) 2166 (0.6%) 4 (0.1%) 13 (0.1%) 213 (0.4%) - 
PO43- 398 (1.5%) 19195 (5.1%) 15 (0.5%) 248 (2.2%) 1914 (3.9%) 6 (0.6%) 
SiO2 66 (0.3%) 5878 (1.6%) - 91 (0.8%) 1303 (2.6%) 1 (0.1%) 

 

Next, we apply EnDED combining the Interaction Information with the Data Processing 

Inequality method using artificially-generated triplets. Similar to the Jaccard index filter, 

MICtools networks contained the highest proportion of environmentally-driven associations (9.1-

11.4%) followed by SparCC networks (4.3-4.6%), and less environmentally-driven associations 

in FlashWeave networks (1.0-2.6%). Again, while we detected proportionally more 

environmentally-driven associations in eukaryotic than prokaryotic networks constructed with 

MICtools and FlashWeave, it was slightly less in SparCC networks (Table 22 and Figure 28). 
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Figure 27: Jaccard index. The histograms display the Jaccard index of the associations in the prokaryotic 
and eukaryotic networks constructed with the SparCC approach implemented in FastSpar, MICtools and 
FlashWeave. 
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Figure 28: Kept and removed associations. We show the number of kept and removed associations in 
prokaryotic and eukaryotic networks constructed with the SparCC approach implemented in FastSpar, 
MICtools, and FlashWeave. We used the 25% threshold on the Jaccard index, and removed 
environmentally-driven associations detected with the tool EnDED. Associations still present in the networks 
are indicated as kept. 
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In order to compare eukaryotic and prokaryotic associations, we quantified the number 

of environmentally-driven indirect dependencies for each environmental factor (Table 22). 

Surprisingly, Temperature was not the main driver of environmentally-driven associations in the 

Malaspina Surface networks. However, temperature-driven associations were more prominent 

among prokaryotic than eukaryotic networks (SparCC and MICtools but not FlashWeave 

networks). In contrast, we found more total-chlorophyll-a-driven associations in all eukaryotic 

than prokaryotic networks indicating that the eukaryotic environmental preference causes more 

indirect dependencies in network inference than prokaryotic environmental preference. The main 

environmental driver in prokaryotic networks were nutrients as a whole and PO4
3- in particular. 

The nutrient SiO2 was responsible for a higher proportion of environmentally-driven associations 

in the prokaryotic than eukaryotic networks. Nutrients were also main drivers in eukaryotic 

networks together with the total-chlorophyll-a. However, the results indicate that the network 

construction tool resulted in different proportions of environmentally-driven associations. Thus, 

the ranking of environmental factors may vary depending on the tool of choice but generally main 

patterns emerge. Results also indicate that all tools were prone to generate indirect dependencies, 

at least to a minor fraction, which should be removed before down-stream analysis and biological 

interpretation. 

 Lastly, we determined the number of kept and environmentally-driven associations 

shared between networks constructed with associations in the prokaryotic and eukaryotic 

networks (Figure 29). Most associations of the SparCC networks are also included in the 

MICtools networks. Most kept associations of the FlashWeave networks are included in the 

SparCC and MICtools networks, but a majority of eukaryotic environmentally-driven 

associations detected in the FlashWeave network have not been present in the other two networks. 

Results indicate a greater overlap between the three tools in kept than environmentally-driven 

associations. The 3014 eukaryotic and 914 prokaryotic common associations have been inferred 

via each of the three tools and have a Jaccard index above 25% and have not been detected as 

environmentally-driven. These associations may be promising candidates for potential 

interactions and further biology-driven investigations. However, in this chapter, we were 

interested on the number of indirect dependencies among associations that are shared between the 

three methods in contrast to associations inferred by one or two methods. 
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Figure 29: Shared associations. Number of shared associations between the eukaryotic and prokaryotic 
networks constructed with the SparCC approach implemented in FastSpar, MICtools, and FlashWeave. The 
agreement of edges is shown for networks before applying EnDED, after applying EnDED (kept 
associations), and for associations detected as environmentally-driven. 
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We found 3014 kept and 25 environmentally-driven associations appearing in all three eukaryotic 

networks (120.56x more kept than removed associations). Considering the numbers, the overlap 

between methods is greater for the kept than the environmentally-driven associations. However, 

we kept 88.6-97.4% and removed 2.6-11.4% of edges. Thus, we determined whether we also 

proportionally find more agreement among the kept than removed associations. First, we scaled 

the numbers by the union of edges that appear in the three networks. The fractions are very low 

due to the massive number of edges in the MICtools network: 0.91% kept and 0.06% 

environmentally-driven associations lay in the intersection of methods (15.17x more). We can 

also scale based on the number of edges that appeared in at least two networks: 12.23% kept and 

2.82% environmentally-driven associations lay in the intersection of methods (4.34x more). 

Lastly, considering the number of edges in the smallest network (FlashWeave network): 91.81% 

kept and 28.41% environmentally-driven associations appearing in the FlashWeave network also 

appear in the other two networks (3.23x more). The corresponding values when scaling by the 

number of associations in the SparCC and MICtools networks, and results for the prokaryotic 

networks are listed in Table 23. In all scaling procedures, the proportion of associations in the 

intersection of methods is higher among kept associations. 

We showed how EnDED performed on the tools that we have previously used on 

Malaspina Surface data but other tools could have been included. Here, we determined how 

EnDED performs on associations detected via three different methods. Our results indicated that 

all tools were prone to indirect dependencies, at least to a minor fraction. We found less indirect 

dependencies among associations inferred by all three tools than associations inferred by one or 

two methods. Future systematic network construction tool benchmarking may include the 

quantification of environmentally-driven edges for which EnDED provides several methods. 

 

Table 23: Kept and environmentally-driven associations appearing in the intersection of networks constructed by the three 
methods. If the number of shared associations are used, i.e., no scaling, the agreement between methods is 121-183x larger 
between kept than environmentally-driven associations (highlighted in gray). The discrepancy between them varies depending on 
the scaling factor. The union of all scales by the number of associations detected it at least one of the three networks. Union of 2-3 
indicates that only those edges are considered that are present in at least 2 networks. Lastly, we scaled by the number of ed ges 
present in the single networks. In each case, we found a higher fraction of edges in the intersection of kept than environmentally-
driven associations. 

Scaling No scaling Union of all Union of 2-3 FlashWeave SparCC MICtools 

Eukaryotes       
removed 25 0.06% 2.82% 28.41% 2.29% 0.06% 

kept 3014 0.91% 12.23% 91.81% 12.25% 0.91% 
factor 120.56x 15.17x 4.34x 3.23x 5.35x 15.17x 

Prokaryotes       
removed 5 0.11% 1.11% 50.00% 0.97% 0.11% 

kept 914 2.05% 8.51% 92.98% 8.50% 2.05% 
factor 182.8x 18.64x 7.67x 1.86x 8.76x 18.64x 

 
  



 

135 

Factors leading to indirect dependencies 
 

EnDED detects and removes environmentally-driven indirect edges. However, its triplet 

analysis could be extended to remove indirect edges driven by taxa, as done with gene 

triplets (Margolin et al., 2006). A recent update of the network construction tool eLSA 

(Xia et al., 2011, 2013) permits to examine how a factor, such as a microorganism or 

environmental variable, mediates the association of two other factors (Ai et al., 2019), 

which allows the study of interactions between three factors. 

Chapter 5: Disentangling environmental effects in microbial association networks 

 

Ai et al. (2019) used data from the SPOT time-series (monthly sampling from 5 m depth from 

August 2000 to January 20211) including bacterial OTUs (operational taxonomic units), 

environmental data, and the total bacterial and viral abundance measured by microscopy. Each 

component (OTUs, environmental factor, bacterial and viral abundance) may act as a mediator 

for a putative bacterial interaction (so-called three-way associations). The study found that the 

total bacterial abundance appears to predict correlations of seven pairs of bacterial OTUs showing 

strongest correlations when the total bacterial abundance is high or low (Ai et al., 2019). The 

numbers for other (selected) mediating factors are: silicate (12 connections), viral abundance (5 

connections), salinity (6 connections), bacterial productivity as measured by thymidine 

incorporation (4 connections), the rate of change in day length (spring vs fall) (4 connections), 

phosphate concentration (3 connections), chlorophyll-A concentration (3 connections), and less 

connections for other environmental parameters such as temperature (2 connections) and nitrate 

(2 connections) (Ai et al., 2019). Moreover, the study found that four OTUs from the genus 

Flavobacteria appear in most three-way associations (Ai et al., 2019). Given its importance, the 

work also focused on three-way associations including nodes from the SAR11 clade 

(Pelagibacterales), which is abundant and exerts many associations. Only one node appears to be 

involved in several three-way interactions suggesting that SAR11 clades are not active mediators 

nor governed by mediators in the studied bacterial community (Ai et al., 2019). 

Identifying mediators (Ai et al., 2019) is conceptually different from identifying possible 

drivers of indirect dependencies (Chapter 5). A mediator mediates whether or not an interaction 

occurs, it allows inferring potential interactions between three components, i.e., going beyond 

pair-wise associations (between two components). Thus, it is biologically oriented. In contrast, 

indirect dependencies are errors in the association study and rather mathematically oriented. 

Nevertheless, the mediator study (Ai et al., 2019) further motivates including parameters such as 

bacterial abundance or specific microorganisms in environmentally-driven edge detection. Thus, 

in other works, we included cell-count data (Krabberød et al., 2021) and phytoplankton taxa 

(Arandia-Gorostidi et al., in preparation) to detect indirect dependencies. 
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Indirect dependencies detected using cell-count data 

“Long-term patterns of an interconnected core marine microbiota” 

(Krabberød et al., 2021) 

Marine microbiotas include core taxa that are usually key for ecosystem function. However, 

despite their importance, core marine microorganisms are relatively unknown. Most core 

microbiotas have been defined based on species occurrence and abundance. Yet, species 

interactions are also important to identify core microorganisms, as communities include 

interacting species. The work investigates interconnected bacteria and small eukaryotes putatively 

composing the core microbiota populating the model long-term marine-coastal observatory at the 

Blanes Bay in the Mediterranean Sea over ten years. 

In order to determine interconnected core marine microbiota, several steps have been 

done. First, we inferred the initial BBMO association network using the tool eLSA (Xia et al., 

2011, 2013) as described in previous chapters using the sequence abundance table and 15 

contextual abiotic and biotic variables. These variables include the ten environmental factors, 

which we have used previously, 

- Daylength (hours of light); 

- Temperature (°C); 

- Turbidity (estimated as Secchi disk depth [m]); 

- Salinity; 

- Total Chlorophyll a [Chla] (μg/l); 

- inorganic nutrients (μM): PO4
3-, NH4

+, NO2
-, NO3

-, and SiO2. 

In addition, the environmental factors were extended by five microbial groups via cell-count data,  

- heterotrophic prokaryotes [HP] (cells/ml); 

- Synechococcus (cells/ml); 

- total photosynthetic nanoflagellates [PNF; 2-5μm size] (cells/ml); 

- small PNF (2μm; cells/ml); 

- heterotrophic nanoflagellates [HNF; 2-5μm size] (cells/ml). 

Cell counts were done by flow cytometry (heterotrophic prokaryotes, Synechococcus) or 

epifluorescence microscopy (PNF, small PNF and HNF).  

Second, a filtering strategy was applied to infer core interactions from the initial network. 

The filtering strategy combined different filters. To infer environmentally-driven associations, 

EnDED was run in default mode using network-based environmental triplets appearing in the 

initial network and the combination of the four methods: Sign Pattern, Overlap, Interaction 

Information, and Data Processing Inequality. If the four methods agreed that an association was 

environmentally-driven, then it was removed from the network. In addition, only edges 
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representing the strongest associations were considered. An association was considered as strong, 

if 

- the absolute value of the local similarity score (LS) is above 0.7; 

- the absolute value of the Spearman correlation is over 0.7; 

- the significance was below 0.001 (for both, the p-value, and the Bonferroni false 

discovery rate (q-value); 

Lastly, only microorganism present in over 30% of samples were considered. The retained 

associations were referred to as core associations. ASVs participating in core associations were 

defined as core ASVs. However, the ASVs involvement in ecological interactions need further 

experimental validation. 

Both core associations and core ASVs constitute the core network, which represents the 

core microbiota. The core network contained 262 nodes and 1411 edges. It includes only the 

strongest microbial associations that are inferred during a decade and, according to the set 

definition, determines the core microbiota. The associations in the core microbiota may represent 

proxies for species interactions since steps have been taken to remove associations that are driven 

by environmental factors. This was the aim of EnDED. Thus, EnDED was an important aspect of 

the filtering strategy in this investigation. 

However, in context of this thesis, we want to investigate the usefulness of employing 

cell-counts in addition to the environmental factors considered in Chapter 5 and Chapter 6. For 

these previous analyses, we considered microorganisms present in over 15% of samples. Thus, 

for sake of comparison, here we rerun the analysis using the preliminary BBMO network as used 

in Chapter 5 and Chapter 6. The network contained 29820 edges. We run EnDED using 

artificially-generated triplets to detect indirect dependencies. The number of environmentally-

driven edges due environmental factors and cell-count data are listed in Table 24. 

Results show that the cell-counts detected 1098 indirect dependencies that would have 

been missed otherwise, i.e., including cell-counts as biotic environmental factors removed 4413 

(14.80%) edges in contrast to 3315 (11.12%) when cell-counts are not considered. More indirect 

dependencies were due to Synechococcus and nanoflagellates than nutrients (Table 24). In 

general, we find a higher fraction of negative indirect associations (Table 24). However, we 

detected more positive (53.3%) than negative (46.7%) indirect edges due to the number of 

photosynthetic nanoflagellates cells. Accounting for the type of association partners (bacteria 

versus eukaryote), more bacterial associations were negative in contrast to more positive 

associations between eukaryotes and between the two domains (Table 25). These numbers are in 

contrast to the general trend observed with other cell-count data and environmental factors. For 

instance, the number of heterotrophic nanoflagellates cells removed mainly negative associations 

(94.4%). The discrepancy in results considering photosynthetic and heterotrophic nanoflagellates 

cells, may be because photosynthetic nanoflagellates are much more influenced by environmental 
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fluctuations than heterotrophic nanoflagellates. Sunlight is one of the main sources of energy of 

photosynthetic nanoflagellates. Thus, they follow more closely seasonal patterns, especially of 

day-length and temperature, than the heterotrophic nanoflagellates. Indeed, temperature and day 

length accounted for 32.5-37.8% of positive indirect dependencies in contrast to other factors 

(3.7-21.1%). 

 

Table 24: Number and fraction of environmentally-driven edges for each available environmental factor including cell-
counts. We detected environmentally-driven edges with EnDED using artificially generated environmental triplets, i.e., we 
introduced artificial edges to connect each ASV with each environmental factor. The network contained 29820 edges: 24458 (82%) 
positive and 5362 (18%) negative. Using the ten environmental factors removes 4.3% of the positive and 42.2% of the negative 
edges. Extending the indirect-dependencies detection through cell-counts, removed 6.7% of the positive and 51.8% of the negative 
edges. 

Environmental factor Indirect Positive Negative 

10 factors (without cell-counts) 3315 (11.12%) 1053 (31.8%) 2262 (68.2%) 

Temperature 1920 (6.44%) 725 (37.8%) 1195 (62.2%) 
Total chlorophyll-a concentration 838 (2.81%) 82 (9.8%) 756 (90.2%) 

Day length 730 (2.45%) 237 (32.5%) 493 (67.5%) 
NO2− 192 (0.64%) 26 (13.5%) 166 (86.5%) 
SiO2 162 (0.54%) 6 (3.7%) 156 (96.3%) 
NO3− 57 (0.19%) 12 (21.1%) 45 (78.9%) 

Turbidity 47 (0.16%) - 47 (100%) 
NH4+ - - - 
PO43- - - - 

Salinity - - - 

heterotrophic prokaryotes [HP] (cells/ml) 28 (0.09%) - 28 (100%) 
Synechococcus (cells/ml) 368 (1.23%) 39 (10.6%) 329 (89.4%) 

total photosynthetic nanoflagellates [PNF; 2-5μm 
size] (cells/ml) 

979 (3.28%) 522 (53.3%) 457 (46.7%) 

total small photosynthetic nanoflagellates [PNF; 
2μm size] (cells/ml) 

342 (1.15%) 160 (46.8%) 182 (53.2%) 

heterotrophic nanoflagellates [HNF; 2-5μm size] 
(cells/ml) 

425 (1.43%) 24 (5.6%) 401 (94.4%) 

All 17 factors (including cell-counts) 4413 (14.80%) 1636 (37.1%) 2777 (62.9%) 

 

Table 25: Photosynthetic nanoflagellates. Number and fraction of environmentally-driven edges detected through the number of 
photosynthetic nanoflagellates separated by the type of association partner.  

Association partners Total Positive Negative 

all 979 (100%) 522 (53.3%) 457 (46.7%) 

Bacterial associations 263 (26.9%) 102 (38.9%) 161 (61.2%) 
Eukaryotic associations 183 (18.7%) 102 (55.7%) 81 (44.3%) 

Bacteria-Eukaryote associations 533 (54.4%) 318 (59.7%) 215 (40.3%) 

 

In conclusion, EnDED integrates well in filter strategies, e.g., when determining core 

associations. Here, we extended the environmental factors by cell-count data. Cell-count data 

appears to be a valuable addition to detect environmentally-driven associations, i.e., indirect 

dependencies among microbial associations that are due to biotic factors. The number of 

heterotrophic prokaryotes, Synechococcus, and heterotrophic nanoflagellates cells infer much 

more negative than positive edges, similarly to other environmental factors. In contrast, the 

number of photosynthetic nanoflagellates cells remove a similar fraction of positive and negative 
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associations. In sum, cell-count data are a valuable extension to the detection of environmentally-

driven edges, especially positive associations. 

 

Indirect dependencies between bacterioplankton due to phytoplankton 

“Biotic interactions between phytoplankton and heterotrophic bacteria dominate microbial 

seasonal dynamic in coastal ocean waters” 

(Arandia-Gorostidi et al., in preparation) 

Marine phytoplankton represents one of the most important carbon sources for another microbial 

group, the heterotrophic bacterioplankton. Therefore, the interactions between them may largely 

determine biogeochemical cycling in the coastal ocean. However, how these interactions impact 

their temporal dynamics is still unclear. This work employs network analysis of a three-year time-

series dataset to assess associations between different phytoplankton and bacterial taxa. 

Expanding our view about bacteria-phytoplankton interactions, this work shows that the specific 

composition of co-occurring phytoplankton may largely mediate patterns of bacterial seasonal 

reoccurrence. 

The time series contained 42 samples (monthly sampling from July 2009 to December 

2012). Here, we consider bacterial OTUs (0.2-3µm), phytoplankton taxa (determined via 

microscopy), and the environmental factors: temperature, salinity, and fluorescence. The network 

was constructed with the local similarity analysis (LSA) program (Ruan et al., 2006) and 

contained 2062 edges (1976 microbial associations and 86 from a microorganism to an 

environmental factor). 

Before applying EnDED to detect indirect dependencies, rare microorganisms were 

removed keeping 11 phytoplankton taxa and 152 bacterial OTUs. EnDED was applied twice using 

the network-based triplet approach combining the methods Sign Pattern, Overlap, Interaction 

Information, and Data Processing Inequality. First, EnDED was used to detect indirect 

dependencies among the 1976 microbial associations, i.e., between microorganisms including 

phytoplankton and heterotrophic bacterioplankton, due to three environmental factors. We found 

943 microbial associations appearing in at least one network-based environmental triplet, in total 

966 triplets, and 127 indirect edges according to the combination approach using all four methods. 

Using a single method would infer more indirect edges (data not shown).  

Second, EnDED was used to detect indirect dependencies between the 1911 bacterial 

associations, i.e., associations between heterotrophic bacterioplankton, due to the 11 

phytoplankton taxa. We found 137 environmental triplets including seven of the considered 

eleven phytoplankton taxa. Several edges have been detected as environmentally-driven 

according to single methods (data not shown) but only 3 edges according to the combination 

approach using all four methods. The method restricting the most was Data Processing Inequality. 
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The number of triplets and environmentally-driven edges are listed in Table 26.  

Temperature was the top driver accounting for all 127 environmentally-driven associations, 38 

(29.9%) positive and 89 (70.1%) negative associations. Two of them were between a bacterial 

OTU and the phytoplankton taxon number 264. The very same phytoplankton taxon was the only 

detected driver of three environmentally-driven bacterial negative associations in the second run 

of EnDED. All three edges were also in a triplet with temperature, but only one of them was also 

environmentally-driven according to temperature (OTU0117 and OTU0005), the other two only 

due to the phytoplankton taxon (OTU0016 and OTU0014, and OTU0016 and OTU0033). 

 

Table 26: Number and fraction of environmentally-driven edges for each available environmental factor including 
phytoplankton taxa. We detected environmentally-driven edges with EnDED using network-based environmental triplets, i.e., 
environmental factors have been included in the network construction. 

Environmental factor Network-based environmental triplets Environmentally-driven edges 

Temperature 928 127 (38 positive and 89 negative) 
Salinity 37 0 

Fluorescence 1 0 

Phy_sp_035 6 0 
Phy_sp_036 51 0 
Phy_sp_178 27 0 
Phy_sp_185 6 0 
Phy_sp_195 - - 
Phy_sp_196 - - 
Phy_sp_221 - - 
Phy_sp_243 - - 
Phy_sp_244 3 0 
Phy_sp_254 10 0 
Phy_sp_264 34 3 (3 negative) 

 

The aim of EnDED in (Arandia-Gorostidi et al., in preparation) was to remove 

environmentally-driven edges due to environmental factors and phytoplankton taxa. However, in 

context of this thesis, using EnDED with microbial triplets (two bacterial OTUs and one 

phytoplankton taxon) was a first step and test if general microbial triplets, as suggested in 

(Deutschmann et al., 2020) should be considered in future studies. In sum, EnDED detected 129 

(6.5%) indirect edges among the 1976 microbial edges. Temperature was the main driver as it 

was in the BBMO network investigations employing network-based triplets (Deutschmann et al., 

2020; Krabberød et al., 2021) and artificially-generated triplets (Deutschmann et al., 2021).  

Here nutrients were not considered although the dataset contained inorganic nutrient 

concentration (nitrate and phosphate) and photosynthetically active radiation (PAR). Future 

investigations may find more environmentally-driven edges using artificially-generated triplets 

and incorporating other environmental factors such as nutrients. Using phytoplankton to detect 

indirect dependencies was not fruitful, promising at best. Only 3 (2.2%) of 137 triplets were 

inferred as indirect in contrast to 127 (13.1%) of 966 triplets with abiotic factors. However, 
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considering only the phytoplankton taxon number 264, we inferred 3 (8.8%) of 34 triplets as 

indirect in contrast to 127 (13.7%) of 928 triplets with temperature. 

To conclude, the results indicate, that it is still worth considering general microbial 

triplets in future studies. While we investigated two types of microorganisms (phytoplankton 

affecting bacterial associations), future investigations should also consider triplets of the same 

type, e.g., three connected bacterial OTUs. 

 

Final remarks 

 EnDED allows indirect dependency detection using network-based and artificially-

generated triplets. 

 We quantified more environmentally-driven edges when using artificially-generated 

triplets instead of network-based environmental triplets. 

 Comparing both approaches, we detected similar numbers of environmentally-driven 

associations for temperature and day-length but more associations for nutrients and the 

total chlorophyll-a concentration using artificially-generated triplets. 

 Applying EnDED to networks constructed with different tools indicated that all tools 

were prone to indirect dependencies, at least to a minor fraction. 

 We found less indirect dependencies among associations inferred by three tools (SparCC, 

MICtools, and FlashWeave) than associations inferred by one or two methods. 

 Future systematic network construction tool benchmarking may include the 

quantification of environmentally-driven edges for which EnDED provides several 

methods. 

 EnDED integrates well in filter strategies, e.g., when determining core associations or 

potential interaction partners. 

 Extending the environmental factors by cell-count data appears to be a valuable addition 

to detect indirect dependencies among microbial associations that are due to biotic 

factors. 

 The number of heterotrophic prokaryotes, Synechococcus, and heterotrophic 

nanoflagellates cells infer much more negative than positive edges, similarly to other 

environmental factors.  

 The number of photosynthetic nanoflagellates cells remove a similar fraction of positive 

and negative associations. 

 Investigating two types of microorganisms (phytoplankton affecting bacterial 

associations) revealed overall little indirect dependencies. 

 Nevertheless, including microbial triplets remains promising and future investigations 

should consider triplets of the same type, e.g., three bacterial associations. 
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Part III Further discussion and thesis 
conclusions 
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In this section, we extend the previous discussion. Then, we present and discuss future 

perspectives and directions. Finally, we conclude the thesis. 

 

Chapter 9 Environmentally-driven associations 
 

Negative versus positive environmentally-driven associations 

We applied EnDED on networks using different tools and data. For instance, for temporal data, 

we applied (extended) local similarity analysis, i.e., LSA and eLSA, (Ruan et al., 2006; Xia et 

al., 2011, 2013) to construct 

- the simulated networks; 

- the BBMO network; 

- the phytoplankton-bacterioplankton network. 

Further, for spatial data, we applied different tools 

- the global network (compilation of Malaspina and Hotmix data) and Malaspina Surface 

network constructed with FlashWeave (Tackmann et al., 2019); 

- the Malaspina Surface network constructed with the method SparCC (Friedman & Alm, 

2012) as implemented in FastSpar (Watts et al., 2019); 

- the Malaspina Surface network constructed with the tool MICtools (Albanese et al., 

2018). 

In all analysis, we found a higher fraction of negative than positive environmentally-driven edges 

except when considering the number of photosynthetic nanoflagellates cells on the BBMO 

network. Associations may represent positive or negative interactions, but they can also indicate 

high niche overlap (positive association) or divergent niches (negative association) between 

microorganisms (Hernandez et al., 2021). We hypothesize that most of the removed negative 

edges represented associations between microorganisms from divergent niches, i.e., several 

negative associations are probably due to different environmental preferences (different niches) 

of microorganisms. 

In Chapter 5, we showed that the Jaccard index representing a level of microbial co-

occurrence scored equal or below 50% for most negative associations. In Chapter 6 and Chapter 

7, we included the Jaccard index in our filtering strategy and removed proportionally more 

negative than positive edges. For example, our preliminary BBMO network (significant 

associations derived with eLSA) contained 18% negative edges compared to 0.9% in the single 

static BBMO network (after applying EnDED and Jaccard index). Furthermore, we tested the 

Jaccard index-based approach in the global network study generating sample-specific 

subnetworks. It was tested robust. However, since the approach uses simple microbial presence 

and absence (sequence abundance greater or equal to zero), possible future evaluations and 

technical investigations may introduce a cut-off level instead of zero. 
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Conclusion 

A higher fraction of negative than positive associations was found to be environmentally-driven. 

Negative association may be true negative interactions or represent contrary environmental 

preference. Our results indicate that most negative associations in association networks may 

rather represent the latter, i.e., environmental preferences rather than true interactions. 

 

Factors causing indirect microbial associations 

For the temporal BBMO data and the spatial dataset compilation, we used available 

environmental factors, but not all factors that could affect microbial dynamics and potentially 

could generate indirect edges. For instance, indirect edges associated with biotic interactions (e.g., 

two bacteria sharing a positive edge as they are symbionts in the same protists) were not 

considered. Applying EnDED in a filtering strategy using cell-counts (Krabberød et al., 2021) 

and phytoplankton taxa (Arandia-Gorostidi et al., in preparation), detected indirect edges that 

may be due to biotic influences. In addition, larger single-celled eukaryotes should be considered. 

For instance, we excluded larger single-celled eukaryotes by filtering the BBMO water at 20 µm, 

but there is a substantial diversity of larger protists (de Vargas et al., 2015) with potential 

interactions among them and to smaller-sized microorganisms (Lima-Mendez et al., 2015). The 

literature-based protist interaction database PIDA includes many groups that are generally larger 

than the filters used in BBMO, e.g., Radiolarians and many Dinoflagellates (Bjorbækmo et al., 

2019). Moreover, viruses are ubiquitous in marine environments (Endo et al., 2020). Viruses 

infect diverse eukaryotes and such interactions may be important in biogeochemical processes in 

the ocean (Endo et al., 2020). Viruses have been included in network-based microbial 

investigations (Chow et al., 2014; Needham et al., 2017), a number of interactions may be 

mediated either by the viruses themselves or an unmeasured factor that relates to viral abundance 

as detected via extended liquid association (ELA) analysis (Ai et al., 2019). 

 

Conclusion 

Various factors may cause indirect dependencies in association networks such as abiotic factors 

(e.g., temperature), nutrients, but also biotic factors (e.g., specific microorganisms, other living 

organisms or viruses). Thus, on one hand, future sampling should expand metadata collection in 

order to account for (more) abiotic and biotic factors that could explain and identify indirect 

dependencies. On the other hand, an updated version of EnDED should allow to investigate any 

triplet, e.g., microbial triplets. 
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Technical aspects of environmentally-driven associations 

We found more environmentally-driven associations in our global network spanning the water 

column from the surface to the deep ocean as opposed to a global network covering the epipelagic 

(surface and DCM layer) (Lima-Mendez et al., 2015). However, such comparison is unfair 

because we sampled mainly picoplankton from the surface to the deep ocean while (Lima-Mendez 

et al., 2015) samples cover the epipelagic zone including several size fractions. Compared to the 

BBMO network based on ten years of data, our global ocean network showed a lower fraction of 

environmentally-driven edges. The BBMO environmental table was more complete in contrast to 

several missing environmental datapoints in the global ocean dataset. We list the fraction of 

environmentally-driven associations in these three networks (Table 27), but refrain from further 

comparisons because each of the three studies used different sampling, environmental data, filter 

and network construction strategies. 

 
Table 27: Fraction of environmentally-driven edges for environmental factors in this and previous works. 
 

 Global ocean Global Ocean Time series 

Samples Epi- (surface and DCM), 
meso-, and bathypelagic 

Epipelagic (surface and 
DCM) 

Coastal surface 

Campaigns or sites Malaspina & Hotmix Tara Oceans Blanes Bay Microbial 
Observatory 

Considered edges All edges with all 
environmental factors 

Edges in environmental 
triplets 

All edges with all 
environmental factors 

Method    

Combination of Interaction 
Information and Data Processing 

Inequality 

8.9% - 11.1% 

Interaction Information 53.7% 12% (37% of triplets) 86.4% 

Environmental factor / Method Combination Interaction Information Combination 

Fluorescence/Chlorophyll-a 
concentration 

Top 6 (0.01%) - Top 2 (2.8%) 

Day length - - Top 3 (2.5%) 

NH4+ - - 0 

NO2− - Top3 Top 4 (0.6%) 

NO3− Top 1 (4.9%) - Top 6 (0.2%) 

PO43− Top 2 (4.2%) Top 1 0 

SiO2 Top 3 (2.0%) Top 6 Top 5 (0.5%) 

Salinity Top 5 (0.2%) - 0 

Temperature Top 4 (1.9%) Top2 Top 1 (6.4%) 

Turbidity - - Top 7 (0.2%) 

Reference Chapter 7 (Lima-Mendez et al., 
2015) 

Chapter 6 

 

Using the Malaspina surface data, we constructed eukaryotic and prokaryotic networks 

with three different tools (Chapter 8). We found all tools were prone to effects of indirect 

dependencies, at least to a minor fraction. However, depending on the tool, we found more 

environmentally-driven associations among eukaryotic or prokaryotic associations, and the 
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ranking of top environmental-drivers differed. Our results indicate that different tools result in 

different levels of indirect dependencies. There remains an open question of how, how much, and 

which technical and biological factors cause indirect dependencies in the dataset. 

 

Conclusion 

The effect of environmentally-driven edges is prominent in association networks. All tested 

network construction tools were prone to effects of indirect dependencies but the extent of specific 

environmental drivers differed among tools. Thus, comparing environmental-drivers in microbial 

ecosystems will require same sampling, environmental data, filter and network construction 

strategies. 
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Chapter 10 Analyzing networks 

Usage of environmental data in network analysis 

Microbial community composition is strongly influenced by multiple environmental factors. The 

prime example is temperature that exerts selection on the ocean microbiome (Sunagawa et al., 

2015; Ibarbalz et al., 2019; Salazar et al., 2019; Logares et al., 2020). In microbial association 

networks, an edge may not represent a true interaction but a common or opposite response to 

environmental factors. Thus, network-based microbial investigations should account for 

environmental influence. There are different strategies on how to use environmental data in 

network analysis prior-, during-, and post-network construction. 

 Several prior-network construction methods aim to account for environmental influence. 

One strategy splits samples into groups and constructs networks for each sample group. For 

example, a previous work (Mandakovic et al., 2018) constructed two networks representing 

bacterial soil communities from two areas displaying different pH, temperature, and humidity 

gradients. Another work (Lima-Mendez et al., 2015) constructed ocean depth-specific networks 

to account for environmental differences between the surface layer and the deep chlorophyll 

maximum layer. A temporal network-based investigation (Lambert et al., 2021) constructed 

networks for three consecutive years including an average year (physical and chemical parameters 

were close to the long term mean), and two years that were marked by environmental 

perturbations. However, defining the groups may not be straight forward, and splitting samples 

may leave too few samples for network construction. Another pre-network construction approach 

aims to regress out the influence of environmental factors on microbial abundances by using the 

residual microbial abundances to infer associations (Warton et al., 2015). However, Faust (2021) 

argues that many species respond nonlinearly to environmental parameters and extending 

regression to handle nonlinearities may increase the risk of overfitting the data.  

During network construction, environmental components may be included as nodes in 

the networks among microbial nodes. Several network construction tools allow to include 

environmental factors, e.g., LSA and eLSA (Ruan et al., 2006; Xia et al., 2011, 2013), CoNet 

(Faust & Raes, 2016), MICtools (Albanese et al., 2018), and FlashWeave (Tackmann et al., 

2019). Previous marine microbial association studies found more microbial associations than 

associations between microorganisms and environmental factors (Steele et al., 2011; Lima-

Mendez et al., 2015; Krabberød et al., 2021), which indicates the dominance of microbial 

associations over associations between microorganisms and environmental factors.  

Post-network construction, environmental nodes may be used to filter indirect 

associations via environmental triplets (Lima-Mendez et al., 2015; Deutschmann et al., 2020). 

However, introducing environmental factors as nodes in the network has also its flaws. We 

detected more environmental effects using artificially-generated compared to network-based 
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triplets. That is, using network-based environmental triplets potentially misses the detection of 

indirect dependencies among microbial associations indicating that artificially-generated triplets 

could be a better option. During this thesis, we used several post-network construction approaches 

to combine environmental information with microbial associations: i) employing environmental 

data to detect environmentally-driven associations; ii) correlating environmental factors with 

global network metrics; and iii) investigating if similar network topologies also align with similar 

environmental values. Another post-network construction approach studied environmental 

influence by designing a network attack procedure combining environmental tolerance range 

inference with network stability analyses (Chaffron et al., 2020). It mimics the potential effect of 

each environmental parameter’s variations onto the network. It is used to simulate the effects of 

environmental changes and to predict their impact on the stability of plankton community 

structures. Finally, environmental factors can be correlated with detected microbial modules as 

implemented in the R package WGCNA (Langfelder & Horvath, 2008) and, e.g., used to relate 

modules to carbon export in the global ocean (Guidi et al., 2016). Other works use environmental 

data to characterize specific nodes, e.g., to determine microorganisms’ environmental preferences 

(Krabberød et al., 2021; Lambert et al., 2021; Latorre et al., 2021). 

 

Conclusion 

Incorporating environmental data as additional nodes during network construction may miss 

important associations between environmental factors and microorganisms. Instead, it may be 

valuable to use different approaches to incorporate environmental data, e.g., inferring 

environmentally-driven associations via artificially-generated triplets and elucidating 

environmental influence on network architecture by relating environmental factors with network 

properties. 

 

Drivers of network architecture 

Röttjers and Faust (2018) claimed that the effects of environmental variables on network metrics 

are unclear. A bi-weekly sampling during winter months allowed examining three winter 

networks of subsequent years, which revealed weather perturbations in temperature or salinity 

may have altered network topology (Lambert et al., 2021). In Chapter 6, we introduced a monthly 

subnetwork approach that allows to identify potential environmental drivers of network 

architecture. As discussed in Chapter 6, correlation analysis pointed to common factors known to 

influence microbial abundance: temperature and day length (Bunse & Pinhassi, 2017; Giner et 

al., 2019; Lambert et al., 2019), and to a lesser extent inorganic nutrients (Estrada, 1996; Sala et 

al., 2002). Furthermore, in Chapter 7, we followed another approach by mapping environmental 

factors onto the minimal spanning tree (MST) showing main patterns between similar sample-

specific subnetworks. The tendency of similar environmental variables to locate together in the 
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MST indicates a possible connection between environment and network topology since the MST 

was constructed using network similarity based solely on network topology. Thus, our analyses 

are a step forward to elucidate the effects of environmental variables on network metrics and 

network topology; although, we did not consider several other variables that could affect 

microbial communities and network architecture (as already discussed in previous chapters). 

 

Conclusion 

Sample-specific (including monthly) subnetworks provide a step forward towards disentangling 

the effects of environmental variables on network metrics and network architecture. 

 

Quantifying microbial associations expands their characterization 

Microbial associations can be assigned properties, usually significance and association strength. 

However, these may not be sufficient to select promising associations for interaction hypotheses 

because increasing significance still yields numerous associations and an association strength cut-

off was shown to be not sufficient to separate true from false interactions in simulated data in 

Chapter 5. Recurring associations may yield potential interaction hypotheses, e.g., when detected 

via different network construction tools. Weiss et al. found little overlap between different tools 

and methods (Weiss et al., 2016). Thus, associations that are repeatably captured (by different 

tools/methods on the same dataset or networks constructed for different datasets) may indicate a 

strong biological signal. Using EnDED (Chapter 8) on three eukaryotic and three prokaryotic 

networks constructed with three different tools, showed that edges detected as environmentally-

driven overlap less than edges that are not environmentally-driven and subsequently, promising 

potential microbial interactions. 

This thesis expands the tool set for characterizing associations to quantifying temporal 

and spatial recurrence by using sample-specific subnetworks to disentangle association networks 

aggregated over time and space, respectively. Furthermore, monthly recurrence and region-depth 

specific recurrence may allow detecting associations prevalent at a certain time and region, 

respectively, which may provide another approach to infer essential associations. Such essential 

marine microbial association may represent the core network of the global ocean. 

Identifying core networks is not straightforward as discussed in the ninth challenge of a 

recent perspective (Faust, 2021): First, a microbial network should be constructed for each sample 

group representing a location, environmental condition, or time point. Second, the intersection of 

these networks should be computed. However, such a core network is only informative if it has 

more edges than expected by chance but it is unclear which null model to choose to compute the 

random expectation (Faust, 2021). Moreover, a global intersection approach discards associations 

that are more frequently encountered in a subset of specific networks than expected by chance 
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(Faust, 2021). Our approach of quantifying microbial associations circumvents the all-or nothing 

global intersection approach but future developments should (include a strategy to) determine if 

the (temporal or spatial) recurrence is higher or lower than expected by chance. 

 

Conclusion 

Focusing on the most significant and strongest associations may not be sufficient to select 

candidate interactions. Quantifying recurring associations may be promising and several 

approaches can be done: i) recurring associations using different network construction tools, ii) 

recurring associations using different datasets, iii) temporal recurrence, and iv) spatial recurrence. 

Quantifying microbial association recurrence may be a step towards identifying a core network, 

i.e., associations that are preserved across spatial and temporal scales. 

 

Temporal and spatial patterns 

Considering global network metrics, different results indicate that microbial communities are 

more clustered (higher transitivity) in colder waters compared to warmer counterparts when 

considering i) samples along the entire water column (Chapter 7), ii) horizontally distributed 

samples from pole to pole (Chaffron et al., 2020), and iii) monthly data over ten years (Chapter 

6). These results suggest that either microorganisms interact more in colder environments or that 

their recurrence is higher due to a higher environmental selection (exerted by temperature or other 

factors) increasing their tendency to co-occur. Alternatively, limited resources (mostly nutrients) 

may prevent the establishment of several microbial interactions in surface vs. deep stratified ocean 

waters (Chapter 7) or in warmer summer vs. colder winter in temperate areas (Chapter 6). In 

accordance, using temporal and spatial recurrence, we found more highly prevalent associations 

in colder than warmer months (Chapter 6) and in the warmer epipelagic than in colder deeper 

ocean zones (Chapter 7), respectively. It remains to be tested whether this finding is due to 

biological or technical reasons. 

Associations are more repeatable at colder versus warmer months in the ten year BBMO 

model marine microbial ecosystem using monthly subnetworks. Moreover, the temporal BBMO 

network appears to collapse from colder to warmer months and reassemble from warmer to colder 

months. Yet, these findings should be treated with care and investigated using monthly networks. 

For example, Lambert et al. (2021) sampled the Banyuls Bay microbial observatory (SOLA), a 

coastal site of the North-Western Mediterranean Sea, twice a week during three winters (January–

March), and constructed one network per winter. These networks show clear differences in 

topology between years and microorganisms changed association partners between the years 

(Lambert et al., 2021). Such investigation among summer months should be done to investigate 

if microbial communities interact i) more, ii) similarly, or iii) less in summer or winter. 
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 Using temporal BBMO data (ten years) and monthly subnetworks (Chapter 7), we found 

that most global network metrics indicated a periodicity of one year changing between colder and 

warmer waters. This is in accordance with previous work that found yearly recurrence in 

microbial community composition at the BBMO (Giner et al., 2019; Auladell et al., 2020; 

Krabberød et al., 2021), and at the Bay of Banyuls (Lambert et al., 2019), which is also in the 

North-Western Mediterranean Sea. In contrast to our work finding repeatable network properties, 

the three subsequent years revealed inter-annual variations of network topology (Lambert et al., 

2021). However, the three years were selected because they displayed environmental changes for 

which differing network topology should be expected. The strategies of both studies should be 

combined, investigating several (ten rather than three) years of season-specific networks to 

determine the change of network topology. 

Using spatial data (compilation of Malaspina Surface, Malaspina Vertical Profiles, 

Malaspina Deep Ocean, and Hotmix) and sample-specific subnetworks, there was no one general 

up or down trend in global network metrics along the water column from the warmer surface to 

the colder deep ocean. However, using spatial recurrence, we identified an increasing number and 

fraction of regional association from the surface to the deep ocean. In Chapter 7, we found most 

deep-ocean ASVs already appeared in upper layers, but most deep-ocean associations did not 

appear in upper layers. Similarly, although ASVs re-occur, their associations do not re-occur in 

the three winter networks from three consecutive years (Lambert et al., 2021). Precisely, a total 

of 42 ASVs were common to the three high-frequency winter samplings but all of them changed 

neighbors between years. 

 

Conclusion 

Associations may be more repeatable at colder versus warmer waters, but it remains to be tested 

using a higher sampling frequency allowing the construction of season-specific networks over 

several years and depth-specific networks of one location, respectively. Moreover, such season-

specific networks are the next step to test if recurring annual patterns in network architecture may 

be due to similar environmental variables. In accordance, depth-specific patterns and changes 

(up- and down-ward trends) may be better studied using networks constructed per depth and 

region instead of using subnetworks derived from a single static network. Yet, our approaches 

represent the first steps in elucidating similar and different network-based patterns between 

seasons, depths, and between the ocean and the sea (here Mediterranean Sea).  
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Chapter 11 Additional technical perspectives 

Single networks versus subnetworks 

From a technical perspective, our monthly subnetwork approach allowed us to see what the single 

static BBMO network captured since all our temporal network observations are linked to it. 

Similarly, the sample-specific subnetwork approach allowed us to see what the single static global 

ocean network captured since all observations are linked to it. Comparing our networks with 

previous work, main global network metrics (considering edge density, transitivity, and average 

path length) fall within the range of published networks (Steele et al., 2011; Chow et al., 2013, 

2014; Cram, Xia, et al., 2015; Lima-Mendez et al., 2015; Chaffron et al., 2020). However, it 

remains to be tested whether a single static network or subnetworks derived from it provide not 

only a different but also better view. A follow-up investigation (not shown in thesis) comparing 

modules of the single static BBMO network with modules of the temporal network provided no 

evidence to such claim and further investigations should be done. However, monthly and sample-

specific subnetworks provided a new approach suited to quantify association recurrence and 

investigate the relationship between environmental factors and network topology. 

When we mapped depth-related spatial recurrence onto the single static global network 

visualization (Figure 18), we identified patterns of specific connected ASVs for certain regions. 

However, our global ocean analysis comprised a well-sampled surface layer of the global ocean 

and well-sampled MS layers, while fewer samples were available for deeper layers of the global 

oceans due to the challenges of sampling this habitat. This unevenness of samples may have 

introduced biases in our study, e.g., when constructing the global static network or determining 

sample-specific subnetworks. Another bias may be related to the DNA filtration process, which 

used different filter types (pore size and diameter of the filter). These biases are expected when 

combining different datasets from large-scale surveys involving complex logistics and sampling 

procedures. However, we aimed at mitigating possible biases by matching size fractions among 

datasets (see Methods in Chapter 7) and by performing different tests, which supported that the 

main reported patterns are robust. 

Furthermore, the single static networks may have missed microbial associations that we 

are not able to infer from our data, and subsequently, did not appear in subnetworks. In the future, 

we might elucidate them through extensive sampling, e.g., within one time period or region. Thus, 

for the BBMO network study we refrained from concluding that more microbial associations 

characterize winter months but we concluded that we could infer more microbial associations in 

the colder months than in the warmer months. Our suggestion for a higher sample frequency at 

the BBMO is in contrast to the results from two decades ago. The sampling at the BBMO started 

in early 2000 using fingerprinting techniques (Schauer et al., 2003). Schauer et al. (2003) 

compared weekly with monthly samples during late winter periods, which demonstrated that 
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monthly frequency is sufficient to study the variability of the bacterial assemblage. However, in 

our study we observed a sharp decrease of associations from late winter to early spring and a finer 

sampling frequency may help to find in-between configurations or pinpoint the moment when the 

system collapses. 

The combination of a single static network (our 1st condition) and microbial co-

occurrence (our 2nd condition) has been used previously (Chow et al., 2013; Chaffron et al., 2020). 

Chow et al. (2013) also use the tool eLSA to construct a single static network from ten-year of 

data but did not exploit the potential to derive monthly subnetworks. Chaffron et al. (2020) also 

use the tool FlashWeave to construct a single static network from an epipelagic global ocean 

dataset from pole to pole. Since microbial co‐occurrence is a necessary but not sufficient 

condition for a potential interaction to realize itself (Poisot et al., 2012), an interaction is not 

automatically exhibited when both microorganisms are present in a sample. Thus, our approach 

generating monthly subnetworks contained the 3rd condition using association duration (Chapter 

6) and the approach to generate sample-specific subnetworks used region and depth specific 

Jaccard index (Chapter 7). However, the association duration condition operates on a time 

window with one start and one end point in time and, subsequently, does not consider seasonal 

on-off switches. In addition, our approaches do not take into account possible switches of 

associations from negative to positive, e.g., when transitioning from low to high-stress 

environments (Piccardi et al., 2019; Hernandez et al., 2021). If associations switch from negative 

to positive, a single static network may miss or infer weak associations (Hernandez et al., 2021). 

Such biases are reduced with higher sampling frequency allowing the construction of time and 

location specific networks. 

 

Conclusion 

Future studies with higher sampling frequency may be able to construct networks within a month 

(monthly networks instead of subnetworks) and location (location-specific networks instead of 

subnetworks). Although our approaches are a good starting point that allow us to move forward, 

they have limitations suggesting caution when making biological interpretations from the 

temporal network and sample-specific subnetworks. 

 

The lack of gold-standards 

No ideal (gold-standard) network construction method exists and some tools are better suited than 

others for specificities of a dataset, e.g., temporal vs. spatial and homogenous vs. heterogenous. 

For the three main projects, we decided to use two construction tools, namely eLSA (Xia et al., 

2011, 2013) and FlashWeave (Tackmann et al., 2019), which we selected according to the 

characteristics of our datasets. The former incorporates the temporal aspect of the BBMO dataset 

of 10 years. Due to missing datapoints, the data was first rarefied and then the missing abundances 
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were interpolated. However, microbial data is compositional and future studies may apply clr-

transformation instead of rarefication (Gloor et al., 2017). We used FlashWeave for the global 

ocean dataset. Here we applied the clr-transformation. FlashWeave is ideal for our dataset because 

of its sparse and heterogenous nature. FlashWeave accounts for zeros in the dataset avoiding 

spurious associations due to many zeros in common, which we have observed with other tools, 

e.g., in a MICtools (Albanese et al., 2018) surface network of the global ocean. We used this 

network to determine potential interaction partners for MAST-4 species (Latorre et al., 2021). 

We aimed to reduce spurious associations using a post-network construction filtering strategy 

(Latorre et al., 2021). Furthermore, whereas eLSA determined pairwise associations individually, 

FlashWeave models the network as a whole. Thus, removing some of the players may interfere 

with the associations of the remaining ones in network constructed with FlashWeave but not 

eLSA. 

There are several approaches predicting microbial interactions. Li et al. (2016) state that 

integrating multiple approaches (co-occurrence patterns, metabolic reconstruction, and mining 

the literature) could improve the accuracy of microbial interaction prediction. However, there is 

currently no gold-standard dataset of interactions, i.e., validated interactions and validated cases 

of two microorganisms that do not interact with each other. However, a few data sets recording 

known interactions have been generated. For instance, to evaluate the global epipelagic 

interactome network, a list of known eukaryotic phytoplankton interactions has been compiled 

(Lima-Mendez et al., 2015). One effort is the website http://aquasymbio.fr/, which is dedicated 

to collecting associations in aquatic systems (marine and freshwater). Another effort gathered 

marine microbial interactions described in the literature, PIDA, the Protist Interaction Database 

(Bjorbækmo et al., 2019). PIDA contains eukaryotic (protist) interactions and interactions 

between eukaryotes and prokaryotes but no prokaryotic interactions. The data is not complete and 

lacking interactions may be due to the interaction not occurring or not being detected and 

described in the literature. Thus, observed interactions cannot be used to determine the accuracy 

of network inference tools but only their sensitivity (probability that a known interaction is 

inferred) (Faust, 2021). 

Another promising approach is the use of single cells as evidence for potential 

interactions. Emerging technologies retrieve genomic and transcriptomic information from 

individual microorganisms: single-cell genomics and single-cell transcriptomics. There is no need 

for culturing as the approach can use cells taken directly from natural environments. Single 

Amplified Genomes (SAGs) contain the genomic information of a single cell. Assuming no 

contamination of the samples, if DNA from different species appears in the same SAG, it implies 

a potential interaction between the two different microorganisms. For example, finding the 

bacterial DNA in a eukaryotic SAG suggests that the latter was a host or predator of the former. 

Assume the network contains an edge between species A and B. If both association partners are 

http://aquasymbio.fr/
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found within the same cell, we have additional evidence that there may be an ecological 

interaction, e.g., prey-predator or parasite-host. Also, some ecological interactions may require a 

tied physical connection that may not be separated during single cell isolation leading to finding 

two microorganisms within the same single cell. Of course, finding genetic material of two 

organisms within the same single cell is not the idea and purpose of single cell genomics. Instead 

of ecological interaction the reason behind finding additional organisms may be contamination. 

In addition, the obtained genetic material is not complete. Thus, although the idea seemed simple, 

the execution is challenging. However, SAGs may provide evidence (however, no proof) of 

microbial interactions. 

For evaluation purposes we used PIDA and a SAGs-dataset. First, we wanted to evaluate 

the BBMO network via known interactions. Most interactions are unknown but a few have been 

recorded in the literature and gathered, for example, in the protist interaction database PIDA 

(manual curation) (Bjorbækmo et al., 2019). The results of this attempt were poor. Only 29 (0.1%) 

association in the BBMO network have been found to correspond to eight interactions described 

in the literature of which 18 associations (corresponding to 2 interactions) were in a network-

based environmental triplet (Chapter 5). Next, we employed Single Cell data but found little 

support for potential microbial interactions (results not shown in this thesis). Subsequently, we 

disregarded the analysis. However, as more single-cell data is and will be produced, it may be a 

valuable resource in the future. Thus, although literature-described interactions (PIDA) and SAGs 

were not enough to accurately evaluate our BBMO network, future extended versions and data 

will be promising evidence that a predicted edge is a true interaction. 

 Given that marine microbial interactions are barely known (Bjorbækmo et al., 2019) and 

we lack comprehensive biological benchmark data, network construction evaluation is to a large 

extent carried out in silico (Faust, 2021). Similar to network construction evaluation lacking gold-

standard datasets, we lacked a dataset to evaluate the different methods of detecting 

environmentally-driven edges (Chapter 5). Thus, to evaluate EnDED we needed a simulated 

dataset with known interactions. Such dataset required specific characteristics in order to evaluate 

all four methods (SP, OL, II, DPI) and their ensemble approach. The evaluation required temporal 

data with environmental perturbation generating indirect dependencies, i.e., changing 

environmental variables influencing the microorganisms. Public simulated data or approaches 

often do not consider the temporal dimension (e.g., (Berry & Widder, 2014; Röttjers & Faust, 

2018)) or missed an environmental component (e.g., Berry & Widder, 2014) making them not 

applicable for our purposes. Thus, we simulated microbial abundances using an adjusted 

generalized Lotka-Volterra (gLV) model. 

Generalized Lotka-Volterra models are popular to model microbial abundances despite 

several limitations (Gonze et al., 2018). Moreover, environmental variables can be incorporated 

directly into the gLV (Dam et al., 2016; Röttjers & Faust, 2018). Models in which all 
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microorganisms feed on the same nutrient are not suitable because, by definition, all 

microorganism would then have the ecological interaction of food competition. We adapted the 

gLV model and simulated datasets for our purposes. Our solution may be simple, but covered our 

most pressing needs: i) temporal dataset, ii) environmental factor influencing microorganisms but 

iii) microorganism not changing the environmental factor. The code is freely available and 

accessible for microbial ecologists. 

For instance, our approach may be applicable for network construction evaluations since 

different approaches and data should be used (Faust, 2021). Faust (2021) argues that for most 

microbial communities it is not precisely known which processes shape microbial abundances. 

Further, evaluation should include a range of data simulation procedures incorporating various 

levels of noise because an evaluation relying on a single simulation method may favor tools with 

assumptions similar to the data simulation assumptions (Faust, 2021). For instance, several data 

generation methods have been used to evaluate eight microbial network inference tools (Weiss et 

al., 2016). Tool development should be separated from evaluations, i.e., tool developers should 

be equipped with more heterogeneous benchmark data leading to tools performing in diverse 

settings (Faust, 2021), similar to the DREAM challenge for gene regulatory network inference 

(Marbach et al., 2010). In accordance, heterogeneous benchmark data will benefit the systematic 

evaluation of methods to detect environmentally-driven indirect dependencies. 

 

Conclusion 

Currently, there is no best network construction method. Researchers should choose the tool that 

best handles specific characteristics of the dataset. Moreover, marine microbial studies lack gold-

standard datasets (plural!) for proper benchmarking of network construction tools but also 

methods of indirect dependency detection. Simulating a dataset serving particular needs of a 

marine microbial system was outside of the thesis aims and remains subject to further research. 

However, our solution simulating temporal data with environmental influence served the purpose 

to evaluate the program EnDED. There may be more sophisticated tools to model microbial 

interactions but they are usually more complex and harder to interpret. Thus, our simple approach 

may serve microbial ecologists in specific investigations or developers in tool evaluations. 

 

Each network elucidates a part of the whole 

Lastly, there seem to be two main lines of research. One line of research aims to modulate 

microbial interactions through differential equations, which necessitates several assumptions, and 

(numerous) parameters to be defined beforehand. The other line of research uses microbial 

sequence abundances and determines associations between them, which are comprised through 

networks. Depending on the network construction method, there may be also some parameter 

setting needed. 
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Each dataset has its own characteristics, its own environment, its own story to tell. Each 

network can elucidate a part of the whole. The second line of research uses the microbial sequence 

abundances and aims to describe and discover what is there. The first line of research defines 

environment, growth rates, nutrient absorption rates, etc., and obtains a microbial system 

modeling the real world. We can learn from both. 

The work of this thesis locates in the second line of research. I’m using the network-

flashlight to allow a sneak-peak into the marine microbial ecosystem. If the entire marine 

microbial ecosystem is a puzzle, this PhD thesis will act as puzzle pieces on the quest to complete 

the picture. Our main aim disentangling environmental-effects in association networks acted as a 

broom cleaning up the dust to get a better view. Then, generating monthly subnetworks, i.e., 

adding a temporal dimension, we saw the network changing in time, like a movie. With the third 

project we left the comfort of our home (the BBMO data), and went to the wide world, we zoomed 

out of the picture. To see if patterns we found in one location (e.g., warm versus cold water), can 

be found in other locations. Similar to looking behind the scenes, we looked below the surface. 

We dived into a new world. The environment and microbial communities are different, and so are 

the networks. 

We can imagine a meta-network which includes all possible microbial interactions 

between all microorganisms. Each ecosystem at each time point is a subnetwork of the meta-

network. This subnetwork is not induced, i.e., the presence of microorganisms does not 

necessarily lead to the presence of an interaction between them. A similar idea was presented in 

previous work using the term metaweb to describe the regional pool of species and their potential 

interactions (Dunne, 2006; Poisot et al., 2012), and a network drawn from this pool is called a 

realization (Poisot et al., 2012). Thus, a realization is a subnetwork of the metaweb. Realizations 

from different times, locations or environmental conditions may be aggregated (or merged) to 

reconstruct the metaweb (Poisot et al., 2012). 

 

Conclusion 

Here, we use microbial sequence abundances to determine associations and association networks 

to investigate real microbial ecosystems. As datasets and the samples’ environments have their 

own characteristics, so do the networks. Subsequently, each network provides puzzle pieces of 

the bigger microbial world picture – it represents a potential subnetwork of the meta-network. 

Each network may provide a sneak-peak of and a step towards the meta-network. 
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Chapter 12 Further future perspectives 

Classifying ecological interactions 

Association networks are not equivalent to ecological networks. An association may or may not 

encode for a real interaction. Although association networks provide ecological insight, they do 

not necessarily encode causal relationships or observed ecological interactions. Unless edges are 

verified with experiments or additional information, one should be careful when attributing 

biological meaning to network properties (Röttjers & Faust, 2018). Further, an association 

encoding for a real interaction can represent different ecological interactions. Given two 

interaction partners, the outcome whether an interaction benefits, is disadvantageous, or does not 

have an effect (neutral) on one or both partners, results in six possibilities. Further classifications 

are possible, e.g., an antagonistic interaction could be due to predation or parasitism. However, 

the boundaries between the six categories can be blurred in real-life (Stat et al., 2008) and the 

type of interaction may change between the same interaction partners, e.g., when transitioning 

from low to high-stress environments (Piccardi et al., 2019). Thus, identifying ecological 

interactions is challenging. 

Additional information may reduce the set of possible ecological interaction 

classifications. Given a suitable sampling periodicity in temporal data analysis, the network 

construction tool eLSA (Xia et al., 2011, 2013) allows inferring time-delayed associations. Time-

delay further characterizes an association and could potentially support ecological classification, 

e.g., a time-delayed association may point to predator-prey relationships. Furthermore, eLSA uses 

a dynamical programming approach allowing to infer associations over a subinterval of the time 

period. Imagine a scenario of an inferred negative association between two closely related 

microorganisms A and B. Microorganism A is an established microorganism appearing 

throughout the time-series but its sequence abundance reduces from the middle towards the end. 

Let microorganism B appear in the middle of the time series and from that point increase in its 

sequence abundance. Such a pattern may hint at a competition relationship. Further analysis 

investigating their resource requirement then may reveal that the two microorganisms share 

metabolic pathways for certain resources, which would strengthen a competition relationship 

hypothesis. However, in nature a vast number of microorganisms are present. Intra- and inter-

species relationships take place. It may cause a third factor (environment or microorganisms) for 

a certain ecological interaction to take place. A recent update of the network construction tool 

eLSA (Xia et al., 2011, 2013) permits to examine how a factor, such as a microorganism or 

environmental variable, mediates the association of two other factors (Ai et al., 2019), which 

allows the study of interactions between three factors. 

Classification of associations into ecological interaction will benefit from the integration 

of different datatypes allowing the construction of metabolic networks (Muller et al., 2018). 
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Metabolic networks can infer functional redundancies and functional dependences to elucidate 

the ecological nature of associations. Functional dependence may point to symbiotic or parasitic 

relationships. Functional redundancy information may point to competition. Moreover, if the 

ecological nature of an association is known for one microorganism, it predicts ecological 

interactions of functional redundant organisms. A temporal analysis of marine microbial 

association networks constructive for three consecutive winters found that microbial taxa may 

change interaction partners over time (Lambert et al., 2021). Given microorganism A interacts 

with two interchangeable partners B and C, which are functional redundant. If the ecological 

interaction between A and B is known, it may point to the same ecological interaction between B 

and C. 

 Some non-metabolic interactions, such as commensalism by niche engineering (e.g. a 

first organism creating an environment to allow a second organism to colonize) or predation 

cannot be predicted from inferred metabolic networks (Muller et al., 2018). Thus, complimentary 

analyses remain valuable, such as association networks or using single-cell data. By definition, 

single cell data investigates single cells. Despite contamination, there may be biological reasons 

for finding genetic material of other organisms in a single cell. For instance, microorganisms with 

close physical contact may not get separated during cell isolation. Moreover, finding digestive 

material of one microorganism in the single-cell of another allows to infer predator-prey 

relationships. Thus, single cell sequencing provides further evidence on ecological interactions 

such as species-specific prey preferences and symbiotic interactions (Martinez-Garcia et al., 

2012). For instance, bacterial DNA appeared in 19% of 906 eukaryotic single amplified genomes 

(SAGs) from the Gulf of Main (GoM) and 48% of 792 SAGs from the Mediterranean Sea (MS) 

(Brown et al., 2020). More viral DNA has been found in 51% GoM SAGs and 35% MS SAGs. 

The fraction of cells containing viral DNA varied among eukaryotic lineages and are 100% for 

Picozoa and Choanozoa, which also contained significantly higher numbers of viral sequences 

than other identified taxa (Brown et al., 2020). Brown et al. (2020) conclude that predation on 

free viral particles contributed to the observed patterns. 

 

Conclusion 

This thesis aimed to disentangle microbial associations to provide valuable interaction 

hypotheses. However, interactions are diverse and identifying their ecological nature challenging. 

Several approaches are available but the best classifications may be reached when focusing on 

few associations to gather further evidence in biological-driven investigations. Providing life 

scientist with a selection of best interaction hypotheses will benefit their work. Thus, employing 

different data types into marine microbial studies may elucidate the potential ecological nature of 

microbial associations. 
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Additional graph-theoretic approaches 

After disentangling association networks, microbial investigations can benefit from employing 

other graph theoretic approaches.  

 

Microbial network-based roles 

While we disregarded local network patterns by using global network metrics in Chapter 6, we 

included them in Chapter 7. We used the local topological metric based on graphlets (Pržulj et 

al., 2004). Further analyses diving deeper into the study of specific microorganisms may benefit 

from extending the node degree to the graphlet degree vector, i.e., counting the number of orbits 

a node touches. For instance, quantifying a nodes’ local connection patterns over time may allow 

inferring seasonal microorganisms via recurring connection patterns. Such a network-based 

approach would complement the detection of seasonal microorganisms based on sequence 

abundances (Giner et al., 2019). Furthermore, characterizing nodes via their graphlet degree 

distribution allows comparing nodes in two or more networks. Two nodes with similar roles may 

be great candidates for microorganisms playing similar roles in an ecosystem, which may provide 

a hypothesis about potential functional redundant microorganisms. Changing roles may indicate 

system relevant changes. For instance, changing network-based roles was used to identify 

cancerous genes (Malod-Dognin et al., 2019). 

Moreover, using local patterns (e.g., graphlets) to investigate microbial network-based 

roles in monthly or sample-specific networks may identify fixed and adaptive microorganisms. 

Fixed microorganisms preserve their network-based roles (they appear in the same orbits), while 

adaptive microorganisms have different roles in different networks, i.e., the role changes (they 

appear in different orbits). Interactions partners may change in time for both, fixed and adaptive 

microorganisms, indicating the possibility to adapt to changing environment or different, 

potentially functional redundant, partners. Prevalent microorganisms appearing throughout the 

year may maintain relationships to other prevalent microorganisms or they may connect to 

summer as well as winter microorganisms. In the latter case, such microorganisms may be 

potential candidates involved or aiding in the transition between seasons, e.g., from summer to 

winter when the network reassembles such as we found with the temporal BBMO network. 

Relationships that are maintained are potentially essential associations, core associations. 

Identifying similar roles is used for aligning networks (network alignment). Finding 

microorganisms with similar roles in the network may potentially translate into similar functional 

roles in the ecosystem. 

 

Network Alignment 

Network alignments aim to infer similar regions between networks. Specifically, network 

alignments aim to find a node mapping of topologically or functionally similar regions between 
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the networks (Vijayan et al., 2017). Network alignments have a wide range of applications and 

there are several proposed approaches, see a comparison in (Trung et al., 2020). Aligning static 

networks of different marine microbial association networks may be promising. Another possible 

application would be to transfer knowledge from (better) known systems, e.g., using a network 

alignment between a marine microbial system and the human gut microbiome or other (non-

microbial) systems. Numerous network alignment tools and approaches exist. For example, 

homogeneous network alignment assumes that nodes and edges are of the same type. In contrast, 

heterogenous network alignment (Gu et al., 2018) may be suitable if association networks include 

different players, e.g., aligning eukaryotes with eukaryotes and prokaryotes with prokaryotes. 

Instead of aligning single static networks, temporal networks can be aligned (Vijayan et al., 2017; 

Vijayan & Milenković, 2018; Aparício et al., 2019). Several network aligners have been 

compared and some unified into the tool Ulign (Malod-Dognin et al., 2017). The previous study 

proposed a gain of additional biological insights by aligning all available data types collectively 

rather than any particular data type in isolation from others (Malod-Dognin et al., 2017). Future 

investigations may shift from pairwise to multiple network alignments despite a recent 

comparison indicating that the former is often better than the latter depending on the choice of 

evaluation test (Vijayan et al., 2020). 

 

 Beyond simple networks 

Our networks were simple. A further adjustment to the BBMO temporal network may include 

associations between layers (time-delayed associations). Moreover, we used microbial 

associations based on 16S/18S rRNA data but the integration of different (e.g., omics) datatypes 

may provide complementary information. A plethora of strategies allow integrating multi-omics 

datasets (Bersanelli et al., 2016; Huang et al., 2017), e.g., combining networks of available data-

types as layers of a multi-layer network (Bianconi, 2018) or fusing them into one network (Wang 

et al., 2014; Malod-Dognin et al., 2019). Finally, going beyond pairwise associations accounts 

for interactions between three or more interaction partners and necessitates a generalized graph, 

so-called hypergraphs. Hypergraphs allow edges between more than two nodes (Golubski et al., 

2016). Although identifying true interactions between two partners is already challenging, 

including non-pairwise interactions seems promising. A first step may be to account for a third 

interaction partner, e.g., a mediator (Ai et al., 2019). However, the mediator approach necessitates 

triplets, which are three pairwise associations. Thus, including non-pairwise associations requires 

the adjustment of association detection but also data structures, algorithms, and visualizations to 

handle, store, and analyze such associations. For instance, while pairwise interactions can be 

displayed as adjacency matrix or incidence matrix, non-pairwise networks will require the 

incidence matrix, which may require much memory. Thus, sparse hypergraphs may be better 

stored via an adapted edge list providing for each edge (row) a list of incident nodes. 
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Subsequently, network-tools need to be adapted to handle non-pairwise edges. Considering 

visualization, an additional type of node may be added for each edge as in (Ai et al., 2019), or 

colored planes are used, i.e., multi-node edges may be visualized via polygons (Figure 30). Large 

networks may be visualized through their incidence matrix as heat maps. 

 

 

 

Figure 30: Visualization hypergraphs. Non-pairwise edges in hypergraphs may be represented via an additional node (triangle in 
the left hypergraph) or a polygon (gray polygons in the right network). 

 

Conclusion 

The graph-theoretic toolbox provides further valuable network-based approaches for marine 

microbial interaction studies. Determining the graphlet degree vector (network-based roles) may 

aid identifying functional redundancy and dependence. Aligning networks of different systems 

allows transferring knowledge from a well-studied system to a less known system. Different 

datatypes can be incorporated using a multilayer network or network fusion. Finally, going 

beyond pairwise interactions accounts for interactions of three or more partners (hypergraphs). 
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Chapter 13 All conclusions 

First, I gather the conclusions stated previously, then I conclude the thesis. 

 

Gathered conclusions 

Chapter 5 
 We present EnDED, an analysis tool to reduce the number of environmentally induced 

indirect edges in inferred microbial networks. Applying EnDED on simulated networks 

indicated that false associations, driven by environmental variables instead of true 

interactions, were ubiquitous. However, EnDED’s intersection combination classified a 

minority of associations as environmentally-driven in a real (BBMO) network. 

Depending on the single method used, we classified a moderate to high number of 

associations as environmentally-driven in the same network. Nevertheless, associations 

driven by environmental factors must be determined and quantified to generate more 

accurate insights regarding true microbial interactions. EnDED provides a step forward 

in this direction. 

  

Chapter 6 

 Incorporating the temporal dimension in the microbial association analysis unveiled 

multiple patterns that often remain hidden when using static networks. We developed a 

post-network-construction approach to generate a temporal network from a single static 

network that represents a step forward for disentangling the temporal nature of microbial 

associations. Yet, this approach has limitations, such as the monthly sampling frequency 

in our study. Using a higher sampling frequency would be the main solution.  

Investigating a coastal marine microbial ecosystem over ten years revealed a one-year-

periodicity in the network topology. The temporal architecture was not stochastic, but 

displayed a modest amount of recurrence over time, especially in winter. Altogether, our 

approach allows comparing (sub)networks across spatiotemporal scales. Future efforts to 

understand the ocean microbiome should consider the dynamics of microbial interactions 

as these can be basis of ecosystem function. 

 

Chapter 7 

 Our network-based exploration disentangles the spatial distribution of associations of the 

global ocean microbiome, from top to bottom layers, suggesting both global and regional 

interactions. Our analysis demonstrated the change of network topology across vertical 

(water column) and horizontal (different regions) dimensions of the ocean. Furthermore, 

our results indicate that associations have specific spatial distributions that are not just 

mirroring ASV distributions. 
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Chapter 8 

 EnDED allows indirect dependency detection using network-based environmental 

triplets (generated during network construction) and artificially-generated triplets 

(generated after network construction). We quantified more environmentally-driven 

edges using artificially-generated triplets, especially for nutrients and the total 

chlorophyll-a concentration but only slightly more for temperature and day-length. 

 We showed how EnDED performed on the tools that we have previously used on 

Malaspina Surface data but other tools could have been included. Here, we determined 

how EnDED performs on associations detected via three different methods. Our results 

indicated that all tools were prone to indirect dependencies, at least to a minor fraction. 

We found less indirect dependencies among associations inferred by all three tools than 

associations inferred by one or two methods. Future systematic network construction tool 

benchmarking may include the quantification of environmentally-driven edges for which 

EnDED provides several methods. 

 EnDED integrates well in filter strategies, e.g., when determining core associations. Here, 

we extended the environmental factors by cell-count data. Cell-count data appears to be 

a valuable addition to detect environmentally-driven associations, i.e., indirect 

dependencies among microbial associations that are due to biotic factors. The number of 

heterotrophic prokaryotes, Synechococcus, and heterotrophic nanoflagellates cells infer 

much more negative than positive edges, similarly to other environmental factors. In 

contrast, the number of photosynthetic nanoflagellates cells remove a similar fraction of 

positive and negative associations. In sum, cell-count data are a valuable extension to the 

detection of environmentally-driven edges, especially positive associations. 

 The results indicate, that it is still worth considering general microbial triplets in future 

studies. While we investigated two types of microorganisms (phytoplankton affecting 

bacterial associations), future investigations should also consider triplets of the same 

type, e.g., three connected bacterial OTUs. 

 

Chapter 9 

 A higher fraction of negative than positive associations was found to be environmentally-

driven. Negative association may be true negative interactions or represent contrary 

environmental preference. Our results indicate that most negative associations in 

association networks may rather represent the latter, i.e., environmental preferences 

rather than true interactions. 

 Various factors may cause indirect dependencies in association networks such as abiotic 

factors (e.g., temperature), nutrients, but also biotic factors (e.g., specific 
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microorganisms, other living organisms or viruses). Thus, on one hand, future sampling 

should expand metadata collection in order to account for (more) abiotic and biotic 

factors that could explain and identify indirect dependencies. On the other hand, an 

updated version of EnDED should allow to investigate any triplet, e.g., microbial triplets. 

 The effect of environmentally-driven edges is prominent in association networks. All 

tested network construction tools were prone to effects of indirect dependencies but the 

extent of specific environmental drivers differed among tools. Thus, comparing 

environmental-drivers in microbial ecosystems will require same sampling, 

environmental data, filter and network construction strategies. 

 

Chapter 10 

 Incorporating environmental data as additional nodes during network construction may 

miss important associations between environmental factors and microorganisms. Instead, 

it may be valuable to use different approaches to incorporate environmental data, e.g., 

inferring environmentally-driven associations via artificially-generated triplets and 

elucidating environmental influence on network architecture by relating environmental 

factors with network properties. 

 Sample-specific (including monthly) subnetworks provide a step forward towards 

disentangling the effects of environmental variables on network metrics and network 

architecture. 

 Focusing on the most significant and strongest associations may not be sufficient to select 

candidate interactions. Quantifying recurring associations may be promising and several 

approaches can be done: i) recurring associations using different network construction 

tools, ii) recurring associations using different datasets, iii) temporal recurrence, and iv) 

spatial recurrence. Quantifying microbial association recurrence may be a step towards 

identifying a core network, i.e., associations that are preserved across spatial and temporal 

scales. 

 Associations may be more repeatable at colder versus warmer waters, but it remains to 

be tested using a higher sampling frequency allowing the construction of season-specific 

networks over several years and depth-specific networks of one location, respectively. 

Moreover, such season-specific networks are the next step to test if recurring annual 

patterns in network architecture may be due to similar environmental variables. In 

accordance, depth-specific patterns and changes (up- and down-ward trends) may be 

better studied using networks constructed per depth and region instead of using 

subnetworks derived from a single static network. Yet, our approaches represent the first 
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steps in elucidating similar and different network-based patterns between seasons, depths, 

and between the ocean and the sea (here Mediterranean Sea). 

 

Chapter 11 

 Future studies with higher sampling frequency may be able to construct networks within 

a month (monthly networks instead of subnetworks) and location (location-specific 

networks instead of subnetworks). Although our approaches are a good starting point that 

allow us to move forward, they have limitations suggesting caution when making 

biological interpretations from the temporal network and sample-specific subnetworks. 

 Currently, there is no best network construction method. Researchers should choose the 

tool that best handles specific characteristics of the dataset. Moreover, marine microbial 

studies lack gold-standard datasets (plural!) for proper benchmarking of network 

construction tools but also methods of indirect dependency detection. Simulating a 

dataset serving particular needs of a marine microbial system was outside of the thesis 

aims and remains subject to further research. However, our solution simulating temporal 

data with environmental influence served the purpose to evaluate the program EnDED. 

There may be more sophisticated tools to model microbial interactions but they are 

usually more complex and harder to interpret. Thus, our simple approach may serve 

microbial ecologists in specific investigations or developers in tool evaluations. 

 Here, we use microbial sequence abundances to determine associations and association 

networks to investigate real microbial ecosystems. As datasets and the samples’ 

environments have their own characteristics, so do the networks. Subsequently, each 

network provides puzzle pieces of the bigger microbial world picture – it represents a 

potential subnetwork of the meta-network. Each network may provide a sneak-peak of 

and a step towards the meta-network. 

 

Chapter 12 

 This thesis aimed to disentangle microbial associations to provide valuable interaction 

hypotheses. However, interactions are diverse and identifying their ecological nature 

challenging. Several approaches are available but the best classifications may be reached 

when focusing on few associations to gather further evidence in biological-driven 

investigations. Providing life scientist with a selection of best interaction hypotheses will 

benefit their work. Thus, employing different data types into marine microbial studies 

may elucidate the potential ecological nature of microbial associations. 

 The graph-theoretic toolbox provides further valuable network-based approaches for 

marine microbial interaction studies. Determining the graphlet degree vector (network-

based roles) may aid identifying functional redundancy and dependence. Aligning 



 

167 

networks of different systems allows transferring knowledge from a well-studied system 

to a less known system. Different datatypes can be incorporated using a multilayer 

network or network fusion. Finally, going beyond pairwise interactions accounts for 

interactions of three or more partners (hypergraphs). 

 

Thesis conclusion 

Investigating microbial interactions is challenging due to microbial sampling problems and the 

challenges before, during, and after inferring microbial interactions through association networks. 

Although they do not provide complete information on the interactions inside the system, the 

network provides a system view, which has value on itself. Thus, networks are a valuable tool 

given their advantages. Subsequently, improving inferred networks before down-stream analysis 

will benefit microbial interaction studies. Here, the thesis presented our main ideas using network-

based approaches to help disentangle microbial interactions. They resulted in the following 

conclusions. 

 EnDED aims to disentangle true ecological interactions from environmentally-driven 

associations. It can be applied with abiotic environmental factors, nutrients, but also cell-

counts or specific microorganisms. Further, it may be promising to omit environmental 

factors during network construction but employ them post network construction. 

 We learnt from simulated networks, that a cut-off level on the association score is not 

sufficient to separate true from false interactions. 

 Other filter strategies should be applied and EnDED represents one puzzle piece, which 

may be followed by quantifying association recurrence. For that, current datasets may not 

provide sufficient numbers of samples but our approach generating monthly or sample-

specific subnetworks from a single static network is a step forward allowing new 

perspectives on the dynamics of microbial ecosystems. 

 The main environmental drivers of indirect dependencies in the BBMO network 

(temporal data including 120 months of ten years) were Temperature and Daylength, 

while nutrients were the main drivers in the global network (spatial data including 397 

samples covering the global ocean and Mediterranean Sea from the surface to the deep 

ocean). 

 The fraction of environmentally-driven associations among negative microbial 

associations increased rapidly with the number of network-based environmental triplets. 

In accordance, when adjusting the approach using artificially-generated triplets, we found 

a higher fraction of negative environmentally-driven edges. Similarly, a higher fraction 

of negative than positive edges was detected to be environmentally-driven when 

considering cell-counts or phytoplankton taxa. 
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 Associations may represent permanent, temporary, or seasonal associations. Networks 

constructed for each specific period (hour, day, week, or month) allow their detection but 

such sampling over longer periods of time is costly. Our approach allows determining 

monthly subnetworks, which provided a step forward into investigating dynamics at the 

model marine microbial ecosystem at the BBMO from a network perspective allowing 

the generation of hypothesis of temporal interaction patterns. 

 Associations could be global or regional. Similar to temporal data, spatial data usually 

provides one or (too) few samples per location to construct location-specific networks. 

Our approach allows determining sample-specific subnetworks, which is a step towards 

investigating the biogeography of marine microbial interactions allowing the generation 

of hypotheses of spatial, e.g., depth-related, patterns. 

 It is known that most deep ocean ASVs already appeared in upper layers. We expected 

to find similar results for associations. In contrast, most associations in the mesopelagic 

(81.77-90.90%) and bathypelagic (43.54-72.71%) appeared for the first time in these 

layers in the five ocean basins. In the MS, it was 71.24% and 22.44%, respectively. 

 This thesis provided several methodologies to aid marine microbial network-based 

investigations.  
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Appendix 
Long summary 

 

There is a myriad of microorganisms on Earth contributing to global biogeochemical cycles, and 

their interactions are considered pivotal for ecosystem function. Previous studies have already 

determined relationships between a limited number of microorganisms. Yet, we still need to 

understand a large number of interactions to increase our knowledge of complex microbiomes. 

This is challenging because of the vast number of possible interactions. Thus, microbial 

interactions still remain barely known to date. 

Networks are a great tool to handle the vast number of microorganisms and their 

connections, explore potential microbial interactions, and elucidate patterns of microbial 

ecosystems. The technological advances allowing omics-based censuses are helpful to infer 

microbial abundances over time or space. Such abundance-based data can be used to infer marine 

microbial association networks aggregated over time or spatial scales (single static networks). 

These association networks are a proxy to estimate ecological networks. Thus, microbial 

association networks are gaining popularity in marine microbial investigations. In these networks, 

nodes represent microorganisms and edges represent abundance-based associations between 

them. The associations provide microbial interaction hypotheses. Previous network-based 

investigations contributed to our understanding of marine microbial interactions. Much has been 

done in terms of network inference and there are numerous tools for that. However, there are 

diverse challenges beyond inference algorithms which need to be tackled to learn more from 

microbial networks. 

This thesis locates at the intersection of network inference and network analysis. The 

presented methodology aims to support and advance marine microbial investigations by reducing 

noise and elucidating patterns in inferred association networks for subsequent biological down-

stream analyses. The thesis comprises three main projects. 

 

Subproject 1 

The first challenge we tackled was the environmental influence on marine microbial association 

networks. An estimated association may represent a true ecological interaction or an indirect 

dependency due to environmental preference. Identifying indirect dependencies is a major 

challenge for inferring reliable microbial associations in the networks. Thus, such environmental 

effects need to be detected and excluded before downstream analysis. 

This thesis’s main contribution to marine microbial interactions studies is the 

development of the program EnDED (Environmentally-Driven Edge Detection), a computational 

framework to identify environmentally-driven associations inside microbial association 
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networks, inferred from omics datasets. Identifying and removing environmentally-driven 

associations results in networks with edges more likely representing the most important 

ecological interactions between microorganisms. The methodology includes one new and three 

established techniques, which can be used individually or in the newly developed combination 

approach to exploit the combined power of multiple algorithms. Having all of them available in 

a single tool is what makes EnDED useful for analyzing microbial association networks. EnDED 

is a post-network inference program, i.e., it can be applied to networks inferred by different tools. 

The code is freely available with user-instructions and example code. 

Moreover, since the evaluation of EnDED was hampered by the lack of gold-standard 

data, this thesis provided an adaptation of the generalized Lotka-Volterra (gLV) model to simulate 

relevant data on temporal microbial abundances influenced by environmental factors. We tested 

EnDED on the simulated data to systematically evaluate the different techniques performances 

with statistically sound metrics. The results showed that each individual method can detect 

moderate to high number of environmentally-driven edges (44-87%), and the combination 

approach resulted in retaining more associations but also more true interactions. 

Furthermore, we tested if a simple threshold on the association strength could separate 

true from false associations as such a filtering step appeared to be common in marine microbial 

association network studies. Our results indicated that such threshold is not sufficient showing 

that we should apply better filtering strategies, e.g., future marine microbial association studies 

should include indirect-dependencies detection and their removal. 

 

Subproject 2 

The second challenge revolved around the usage of single static networks constructed from 

temporal data. Often, marine microbial association networks inferred from temporal data 

represent an aggregation, i.e., they contain permanent, temporary, or seasonal associations. The 

nature of an association needs to be disentangled. It is challenging to construct a temporal network 

consisting of a layer (a network itself) for each time point because of data sampling. Thus, we 

proposed a post network-construction approach to circumvent current dataset limitations by 

generating time-specific subnetworks from a single static network for each time point. These 

subnetworks represented the layers of the temporal network. Our methodology is a step forward 

for the study of marine microbial associations in time. Moreover, time-specific subnetworks allow 

to quantify an associations temporal recurrence. Thus, our methodology allows to characterize 

further marine microbial associations. Furthermore, quantifying the temporal recurrence of the 

associations may improve and shorten the list of interaction hypotheses for experimental testing. 

We applied the methodology to a model marine microbial ecosystem at the Blanes Bay 

Microbial Observatory (BBMO) in the North-Western Mediterranean Sea (ten years of monthly 

sampling). Results indicated a one-year periodicity in the network topology. The temporal 
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architecture was not stochastic, but displayed a modest amount of recurrence over time, especially 

in winter. The marine microbial network appeared to collapse from winter to summer and 

reassemble from summer to winter each year during the ten years. Quantifying temporal 

recurrence indicated essential (core) associations within each season at the Blanes Bay microbial 

observatory. We found a much larger potential core in winter than in summer. Thus, the results 

indicated that marine microbial networks follow recurrent temporal dynamics, which need to be 

accounted to better understand the dynamics of the ocean microbiome. 

 

Subproject 3 

Similarly, to networks inferred from temporal data, networks that were inferred from spatial data 

represent an aggregation, i.e., they contain global and regional associations. In the third challenge, 

associations’ biogeography, which is the distribution of associations, needs to be disentangled. 

We adapted the time-specific subnetwork approach to generate sample-specific subnetworks. 

These subnetworks allow to quantify an associations spatial recurrence allowing to determine 

global and regional associations. Thus, quantifying spatial recurrence characterized further 

marine microbial associations. Selecting high recurrent associations may improve and shorten the 

list of interaction hypotheses for experimental testing. 

We applied the methodology to a dataset compilation covering six global-ocean regions 

from the surface (3 m) to the deep ocean (down to 4539 m). Thus, our methodology provided a 

step towards studying the marine microbial distribution in space via the horizontal (ocean regions) 

and vertical (water column) axes. We found the highest and the lowest fractions of global 

associations in the deep chlorophyll maximum (DCM) layer and the bathypelagic zone, 

respectively, whereas regional associations increased with depth. Our results indicated that 

associations have specific spatial distributions that are not just mirroring microbial distributions. 

In addition, we employed local network metrics (based on graphlets) to cluster similar 

sample-specific subnetworks. Commonly, samples have been clustered on the basis of pre-

defined grouping, e.g., ocean region and depth, or microbial compositions. However, pre-defined 

groups may introduce a bias, and the presence of two microorganisms is a necessary but not 

sufficient condition for the presence of a microbial interaction. Here, we introduced a new 

approach employing sample-specific subnetworks and local network metrics to cluster similar 

subnetworks. Our methodology was entirely focusing on network architecture, i.e., it is free from 

pre-defined groupings and does not take into account which specific microorganisms are present. 

We identified 36 clusters. Of these, 13 (36.1%) were dominated by surface subnetworks, and 11 

(30.6%) by a deeper layer: 2 (5.6%) DCM, 5 (13.9%) mesopelagic, and 4 (11.1%) bathypelagic 

zone. Region-wise, we found 11 (30.6%) clusters exclusively or mainly containing subnetworks 

of the Mediterranean Sea, and only one (2.8%) cluster dominated by an ocean basin (North 

Atlantic Ocean). 
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Significance 

This thesis focused on improving association networks for downstream analysis by disentangling 

environmental effects, temporal patterns, and the biogeography of associations. It did so by 

primarily employing graph-theoretic concepts, but it also drew from other fields: modeling 

microbial associations via an adjusted gLV model; or using information theoretic properties to 

determine indirect dependencies, and statistical measurements for evaluation. To reach accurate 

interaction hypotheses, it is important to determine, quantify, and remove environmentally-driven 

associations from marine microbial association networks. Thus, EnDED should be included in 

filter strategies. Moreover, our results underlined the need to study the dynamic nature of 

networks, in contrast to using single static networks aggregated over time or space. Our novel 

methodologies can be used by a wide array of researchers investigating networks and interactions 

in diverse microbiomes. 
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Resumen extenso 

 

Hay una gran cantidad de microorganismos en la Tierra que contribuyen a los ciclos 

biogeoquímicos globales, y sus interacciones se consideran fundamentales para la función del 

ecosistema. Estudios previos ya han determinado relaciones entre un número limitado de 

microorganismos. Sin embargo, todavía necesitamos comprender una gran cantidad de 

interacciones para aumentar nuestro conocimiento de los microbiomas más complejos. Esto 

representa un gran desafío debido a la gran cantidad de posibles interacciones. Por lo tanto, las 

interacciones microbianas son aun poco conocidas. 

Las redes representan una gran herramienta para analizar la gran cantidad de 

microorganismos y sus conexiones, explorar posibles interacciones y dilucidar patrones en 

ecosistemas microbianos. Los avances tecnológicos que hoy permiten censos microbianos 

basados en aproximaciones ómicas son útiles para inferir abundancias microbianas en el tiempo 

o el espacio. Estos datos basados en abundancias microbianas se pueden utilizar para inferir redes 

de asociación entre microbios marinos agregadas a lo largo del tiempo o a escalas espaciales 

(redes estáticas). Estas redes de asociación permiten estimar redes ecológicas. Por lo tanto, las 

redes de asociación microbiana están ganando popularidad en las investigaciones microbianas 

marinas. En estas redes, los nodos representan microorganismos y las conexiones representan 

asociaciones basadas en correlaciones de abundancia entre ellos. Las asociaciones proporcionan 

hipótesis de interacción microbiana. Investigaciones previas basadas en redes contribuyeron a 

nuestra comprensión de las interacciones microbianas marinas. Se ha avanzado 

significativamente en términos de inferencia de redes y existen numerosas herramientas para ello. 

Sin embargo, existen diversos desafíos más allá de los algoritmos de inferencia que deben 

abordarse para comprender más las redes microbianas. 

Esta tesis se ubica en la intersección entre la inferencia de redes y el análisis de redes. La 

metodología presentada tiene como objetivo avanzar las investigaciones sobre interacciones 

microbianas marinas mediante la reducción del ruido en las inferencias de redes y elucidar 

patrones en redes de asociación permitiendo análisis biológicos posteriores. La tesis comprende 

tres proyectos principales. 

Subproyecto 1 

El primer desafío que abordamos fue la influencia ambiental en las redes de asociaciones de 

microbios marinos. Una asociación en las redes puede representar una interacción ecológica 

verdadera o una dependencia indirecta debido a la preferencia ambiental. La identificación de 

dependencias indirectas es un desafío importante para inferir asociaciones microbianas confiables 

en las redes. Por lo tanto, dichos efectos ambientales deben detectarse y excluirse antes del 

análisis posterior. 
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La principal contribución de esta tesis a los estudios de interacciones microbianas marinas 

es el desarrollo del programa EnDED (Environmentally-Driven Edge Detection), un marco 

computacional para identificar asociaciones generadas por el medio ambiente en redes de 

asociaciones microbianas, inferidas a partir de datos ómicos. La identificación y eliminación de 

asociaciones generadas por el medio ambiente da como resultado redes con conexiones que 

probablemente representan las interacciones ecológicas más importantes entre microorganismos. 

La metodología incluye una técnica nueva y tres establecidas, que se pueden utilizar 

individualmente o combinadas para explotar el poder de múltiples algoritmos. Tener a todos ellos 

disponibles en una sola herramienta es lo que hace que EnDED sea útil para analizar redes de 

asociación microbiana. EnDED es un programa de inferencia a posteriori, es decir, se puede 

aplicar a redes inferidas por diferentes herramientas. El código está disponible gratuitamente con 

instrucciones para el usuario y código de ejemplo. 

Dado que la evaluación de EnDED se vio obstaculizada por la falta de datos estándares, 

esta tesis proporcionó una adaptación del modelo generalizado de Lotka-Volterra (gLV) para 

simular datos relevantes sobre abundancias microbianas temporales influenciadas por factores 

ambientales. Probamos EnDED en los datos simulados para evaluar sistemáticamente el 

rendimiento de las diferentes técnicas. Los resultados mostraron que cada método individual 

puede detectar un número entre moderado y alto de conexiones generadas por el medio ambiente 

(44-87%). En cambio, el enfoque combinado retuvo más asociaciones pero también más 

interacciones verdaderas. 

Además, probamos si el uso de un umbral de fuerza de la asociación por si sola podría 

separar las asociaciones verdaderas de las falsas, ya que tal paso de filtrado es común en los 

estudios de redes de asociaciones microbianas marinas. Nuestros resultados indicaron que dicho 

umbral no es suficiente, lo que demuestra que deberíamos aplicar mejores estrategias de filtrado, 

por ejemplo, los futuros estudios de asociación de microbios marinos deberían incluir la detección 

de dependencias indirectas y su eliminación. 

Subproyecto 2 

El segundo desafío de esta tesis gira en torno al uso de redes estáticas únicas construidas a partir 

de datos temporales. A menudo, las redes de asociación de microbios marinos inferidas a partir 

de datos temporales representan una agregación, es decir, contienen asociaciones permanentes, 

temporales o estacionales. Es necesario determinar la naturaleza de cada asociación. Construir 

una red temporal que consta de una capa (una red en sí misma) para cada punto de tiempo es un 

desafío debido al muestreo de datos. Por lo tanto, propusimos un enfoque posterior a la 

construcción de la red para eludir las limitaciones actuales del conjunto de datos mediante la 

generación de subredes específicas en el tiempo a partir de una única red estática. Estas subredes 

representaron las capas de la red temporal. Nuestra metodología es un paso adelante para el 

estudio de las asociaciones microbianas marinas en el tiempo. Además, las subredes específicas 
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en el tiempo permiten cuantificar la recurrencia temporal de una asociación. Por lo tanto, nuestra 

metodología permite caracterizar más asociaciones microbianas marinas. Además, la 

cuantificación de la recurrencia temporal de las asociaciones puede mejorar y acortar la lista de 

hipótesis de interacción para las pruebas experimentales. 

Aplicamos la metodología a un modelo de ecosistema microbiano marino en el 

Observatorio Microbiano de la Bahía de Blanes (BBMO) en el Mar Mediterráneo Noroccidental 

(diez años de muestreo mensual). Los resultados indicaron una periodicidad de un año en la 

topología de la red. La arquitectura temporal no fue estocástica, pero mostró una modesta cantidad 

de recurrencia en el tiempo, especialmente en invierno. La red microbiana marina pareció 

colapsar de invierno a verano y volver a formarse de verano a invierno cada año durante los diez 

años. La cuantificación de la recurrencia temporal indicó asociaciones esenciales (centrales) 

dentro de cada temporada en el observatorio microbiano de la bahía de Blanes. Encontramos un 

microbioma núcleo potencial mucho mayor en invierno que en verano. Por lo tanto, los resultados 

indicaron que las redes microbianas marinas siguen dinámicas temporales recurrentes, que deben 

tenerse en cuenta para comprender mejor la dinámica del microbioma oceánico. 

Subproyecto 3 

De manera similar a las redes inferidas a partir de datos temporales, las redes inferidas a partir de 

datos espaciales representan una agregación, es decir, contienen asociaciones globales y 

regionales. En el tercer desafío, se busca identificar la biogeografía de las asociaciones, que es la 

distribución de las mismas en el espacio. Adaptamos el enfoque de subred de tiempo específico 

para generar subredes espaciales específicas de muestra. Estas subredes permiten cuantificar la 

recurrencia espacial de las asociaciones, permitiendo identificar asociaciones globales y 

regionales.  La selección de asociaciones de alta recurrencia puede mejorar y acortar la lista de 

hipótesis de interacción para pruebas experimentales. 

Aplicamos la metodología a una compilación de conjuntos de datos que cubren seis 

regiones oceánicas globales desde la superficie (3 m) hasta las profundidades del océano (hasta 

4539 m). Por lo tanto, nuestra metodología significa un paso adelante hacia el estudio de la 

distribución microbiana marina en el espacio a través de los ejes horizontal (regiones oceánicas) 

y vertical (columna de agua). Encontramos las fracciones más alta y más baja de asociaciones 

globales en la capa máxima de clorofila profunda (DCM) y la zona batipelágica, respectivamente, 

mientras que las asociaciones regionales aumentaron con la profundidad. Nuestros resultados 

indicaron que las asociaciones tienen distribuciones espaciales específicas que no solo reflejan 

las distribuciones taxonómicas microbianas. 

Además, empleamos métricas de red local (basadas en graphlets) para agrupar subredes 

similares específicas de muestras. Por lo general, las muestras se han agrupado sobre la base de 

agrupaciones predefinidas, por ejemplo, región y profundidad del océano, o composiciones 

microbianas. Sin embargo, los grupos predefinidos pueden introducir un sesgo, y la presencia de 
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dos microorganismos es una condición necesaria pero no suficiente para la presencia de una 

interacción microbiana. Aquí, presentamos un nuevo enfoque que emplea subredes específicas de 

muestra y métricas de red local para agrupar subredes similares. Nuestra metodología se centró 

completamente en la arquitectura de red, es decir, está libre de agrupaciones predefinidas y no 

tiene en cuenta qué microorganismos específicos están presentes. Identificamos 36 

conglomerados. De estos, 13 (36,1%) estaban dominados por subredes de superficie y 11 (30,6%) 

por una capa más profunda: 2 (5,6%) DCM, 5 (13,9%) mesopelágicas y 4 (11,1%) zona 

batipelágica. Por región, encontramos 11 (30,6%) conglomerados que contienen exclusiva o 

principalmente subredes del Mar Mediterráneo, y solo un conglomerado (2,8%) dominado por 

una cuenca oceánica (Océano Atlántico Norte). 

 

Significado 

Esta tesis se centró en mejorar las redes de asociación para el análisis posterior al identificar los 

efectos ambientales, los patrones temporales y la biogeografía de las asociaciones. Lo hizo 

empleando principalmente conceptos de teoría de gráficos, pero también se basó en otros campos: 

modelado de asociaciones microbianas a través de un modelo de gLV ajustado; o usar propiedades 

teóricas de la información para determinar dependencias indirectas y mediciones estadísticas para 

evaluación. Para llegar a hipótesis de interacción precisas, es importante determinar, cuantificar 

y eliminar las asociaciones generadas por el medio ambiente en las redes de asociaciones 

microbianas marinas. Por tanto, EnDED debería incluirse en las estrategias de filtrado. Además, 

nuestros resultados subrayaron la necesidad de estudiar la naturaleza dinámica de las redes, en 

contraste con el uso de redes estáticas únicas agregadas en el tiempo o el espacio. Nuestras nuevas 

metodologías pueden ser utilizadas por una amplia gama de investigadores que investigan redes 

e interacciones en diversos microbiomas. 
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Resum extens 

 

Hi ha una infinitat de microorganismes a la Terra que contribueixen als cicles biogeoquímics 

mundials i les seves interaccions es consideren fonamentals pel funcionament dels ecosistemes. 

Estudis previs ja han determinat les relacions entre un nombre limitat de microorganismes. Tot i 

això, encara hem d’entendre un gran nombre d’interaccions per augmentar el nostre coneixement 

dels microbiomes complexos. Això és un repte a causa del gran nombre d'interaccions possibles. 

Per això, les interaccions microbianes encara són poc conegudes fins ara. 

Les xarxes són una gran eina per tractar el gran nombre de microorganismes i les seves 

connexions, explorar interaccions microbianes potencials i dilucidar patrons d’ecosistemes 

microbians. Els avenços tecnològics que permeten censos basats en òmics són útils per inferir 

abundàncies microbianes al llarg del temps o de l’espai. Aquestes dades basades en l’abundància 

es poden utilitzar per inferir xarxes d’associació microbiana marina agregades al llarg del temps 

o en escales espacials (xarxes estàtiques individuals). Aquestes xarxes d'associació són una 

referencia per estimar les xarxes ecològiques. Així, les xarxes d’associació microbiana guanyen 

popularitat en investigacions microbianes marines. En aquestes xarxes, els nodes representen 

microorganismes i les vores representen associacions basades en l’abundància entre ells. Les 

associacions proporcionen hipòtesis d’interacció microbiana. Les investigacions prèvies basades 

en xarxes han contribuït a la nostra comprensió de les interaccions microbianes marines. S’ha fet 

molt en termes d’inferència de xarxes i hi ha nombroses eines per fer-ho. No obstant això, hi ha 

diversos reptes més enllà dels algorismes d’inferència que cal abordar per obtenir més informació 

de les xarxes microbianes. 

Aquesta tesi es sitúa a la intersecció de la inferència de xarxes i l’anàlisi de la xarxes. La 

metodologia presentada té com a objectiu donar suport i avançar en investigacions microbianes 

marines reduïnt el soroll i dilucidant patrons en xarxes d’associació inferides per a posteriors 

anàlisis biològiques. La tesi comprèn tres projectes principals. 

 

Subprojecte 1 

El primer repte que vam abordar va ser la influència ambiental en les xarxes d’associació 

microbiana marina. Una associació estimada pot representar una interacció ecològica real o una 

dependència indirecta a causa de la preferència ambiental. Identificar dependències indirectes és 

un repte important per inferir associacions microbianes fiables a les xarxes. Per tant, aquests 

efectes ambientals han de ser detectats i exclosos abans de l'anàlisi posterior. 

La principal contribució d’aquesta tesi als estudis d’interaccions microbianes marines és 

el desenvolupament del programa EnDED (Environmentally-Driven Edge Detection), un marc 

computacional per identificar associacions impulsades pel medi ambient dins de xarxes 
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d’associació microbiana, inferides a partir de conjunts de dades òmics. La identificació i 

eliminació d’associacions impulsades pel medi ambient dóna lloc a xarxes amb arestes que 

probablement representen les interaccions ecològiques més importants entre microorganismes. 

La metodologia inclou una tècnica nova i tres establertes, que es poden utilitzar individualment o 

en un nou enfocament combinat, desenvolupat per explotar la potència combinada de múltiples 

algorismes. Tenir-los tots disponibles en una sola eina és el que fa que EnDED sigui útil per 

analitzar xarxes d’associació microbiana. EnDED és un programa d'inferència post-xarxa, és a 

dir, que es pot aplicar a xarxes inferides per diferents eines. El codi està disponible gratuïtament 

amb instruccions d’usuari i codi d’exemple. 

A més, atès que l’avaluació d’EnDED es va veure obstaculitzada per la manca de dades 

estàndard, aquesta tesi va proporcionar una adaptació del model generalitzat de Lotka-Volterra 

(gLV) per simular dades rellevants sobre les abundàncies microbianes temporals influïdes per 

factors ambientals. Hem provat EnDED amb les dades simulades per avaluar sistemàticament les 

diferents tècniques de rendiment amb mètriques estadísticament sòlides. Els resultats van mostrar 

que cada mètode individual pot detectar un nombre moderat a elevat d’arestes ambientals (44-

87%), i l’enfocament combinat va donar lloc a mantenir més associacions però també interaccions 

més genuines. 

A més, vam provar si un llindar simple sobre la força de l'associació podia separar-se de 

les associacions falses, ja que aquest pas de filtratge semblava ser comú en els estudis de xarxes 

d'associació microbiana marina. Els nostres resultats van indicar que aquest llindar no és suficient 

per demostrar que hauríem d’aplicar millors estratègies de filtratge, per exemple, els futurs estudis 

d’associació microbiana marina haurien d’incloure la detecció de dependències indirectes i la 

seva eliminació. 

 

Subprojecte 2 

El segon repte va girar al voltant de l’ús de xarxes estàtiques individuals construïdes a partir de 

dades temporals. Sovint, les xarxes d’associació microbiana marina inferides a partir de dades 

temporals representen una agregació, és a dir, contenen associacions permanents, temporals o 

estacionals. Cal desentranyar la naturalesa d’una associació. És difícil crear una xarxa temporal 

que consisteixi en una capa (una xarxa pròpia) per a cada punt temporal a causa del mostreig de 

dades. Per tant, vam proposar un enfocament post-construcció de xarxes per eludir les limitacions 

actuals dels conjunts de dades mitjançant la generació de subxarxes específiques en el temps a 

partir d’una única xarxa estàtica per a cada punt de temps. Aquestes subxarxes representaven les 

capes de la xarxa temporal. La nostra metodologia és un pas endavant per a l’estudi de les 

associacions microbianes marines en el temps. A més, les subxarxes específiques en el temps 

permeten quantificar una recurrència temporal de les associacions. Per tant, la nostra metodologia 

permet caracteritzar altres associacions microbianes marines. A més, quantificar la recurrència 
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temporal de les associacions pot millorar i escurçar la llista d’hipòtesis d’interacció per a proves 

experimentals. 

Vam aplicar la metodologia a un model d’ecosistema microbià marí a l’Observatori 

Microbià de la Badia de Blanes (BBMO) al mar Mediterrani nord-occidental (deu anys de 

mostreig mensual). Els resultats van indicar una periodicitat d’un any en la topologia de la xarxa. 

L’arquitectura temporal no era estocàstica, sino que presentava una petita quantitat de recurrència 

al llarg del temps, especialment a l’hivern. La xarxa microbiana marina semblava col·lapsar-se 

d’hivern a estiu i es tornava a muntar d’estiu a hivern cada any durant els deu anys. Quantificar 

la recurrència temporal va indicar associacions essencials (bàsiques) dins de cada temporada a 

l’observatori microbià de la badia de Blanes. Hem trobat un nucli potencial molt més gran a 

l’hivern que a l’estiu. Així, els resultats van indicar que les xarxes microbianes marines segueixen 

dinàmiques temporals recurrents, que cal tenir en compte per comprendre millor la dinàmica del 

microbioma oceànic. 

 

Subprojecte 3 

De manera similar a les xarxes inferides a partir de dades temporals, les xarxes inferides a partir 

de dades espacials representen una agregació, és a dir, contenen associacions globals i regionals. 

En el tercer desafiament, cal desentrellaçar la biogeografia de les associacions, que és la 

distribució de les associacions. Vam adaptar l'enfocament de subxarxes específiques del temps 

per generar subxarxes específiques de mostra. Aquestes subxarxes permeten quantificar una 

recurrència espacial de les associacions permetent determinades associacions globals i regionals. 

Per tant, quantificar la recurrència espacial va caracteritzar altres associacions microbianes 

marines. La selecció d’associacions recurrents altes pot millorar i escurçar la llista d’hipòtesis 

d’interacció per a proves experimentals. 

Vam aplicar la metodologia a una recopilació de dades que cobreix sis regions oceàniques 

globals des de la superfície (3 m) fins a l'oceà profund (fins a 4539 m). Per tant, la nostra 

metodologia va proporcionar un pas cap a l’estudi de la distribució microbiana marina a l’espai a 

través dels eixos horitzontal (regions oceàniques) i vertical (columna d’aigua). Hem trobat les 

fraccions més altes i les més baixes d’associacions mundials a la capa clorofil·la profunda màxima 

i a la zona batipelàgica, respectivament, mentre que les associacions regionals augmentaven amb 

la profunditat. Els nostres resultats van indicar que les associacions tenen distribucions espacials 

específiques que no són només rèpliques de distribucions microbianes. 

A més, hem emprat mètriques de xarxa local (basades en gràfics) per agrupar subxarxes 

similars específiques de mostra. Normalment, les mostres s’han agrupat sobre la base d’un 

agrupament predefinit, per exemple, la regió i la profunditat de l’oceà o les composicions 

microbianes. No obstant això, els grups predefinits poden introduir un biaix i la presència de dos 

microorganismes és una condició necessària però no suficient per a la presència d’una interacció 
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microbiana. Aquí hem introduït un nou enfocament que utilitza subxarxes específiques de mostra 

i mètriques de xarxa local per agrupar subxarxes similars. La nostra metodologia es va centrar 

completament en l’arquitectura de xarxa, és a dir, està lliure d’agrupacions predefinides i no té en 

compte quins microorganismes específics hi són presents. Vam identificar 36 clústers. D’aquests, 

13 (36,1%) estaven dominats per subxarxes superficials i 11 (30,6%) per una capa més profunda: 

2 (5,6%) de DCM, 5 (13,9%) mesopelàgica i 4 (11,1%) zona batipelàgica. Per regions, vam trobar 

11 (30,6%) clústers que contenien exclusivament o principalment subxarxes del mar Mediterrani, 

i només un (2,8%) dominat per una conca oceànica (oceà Atlàntic Nord). 

 

Importància 

Aquesta tesi s’ha centrat en la millora de les xarxes d’associacions per a l’anàlisi posterior, desfent 

els efectes ambientals, els patrons temporals i la biogeografia de les associacions. Això s’ha fet 

emprant principalment conceptes de teoría de grafs, però també s’ha basat en altres camps: 

modelatje d’associacions microbianes mitjançant un model de gLV ajustat; o l’ús propietats 

teòriques de la informació per determinar dependències indirectes i mesures estadístiques per a la 

seva avaluació. Per arribar a hipòtesis d’interacció precises, és important determinar, quantificar 

i eliminar associacions impulsades pel medi ambient de les xarxes d’associació microbiana 

marina. Per tant, EnDED s'hauria d'incloure a les estratègies de filtratge. A més, els nostres 

resultats van subratllar la necessitat d'estudiar la naturalesa dinàmica de les xarxes, en contrast 

amb l'ús de xarxes estàtiques individuals agregades al llarg del temps o l'espai. Les nostres noves 

metodologies poden ser utilitzades per una àmplia gamma d’investigadors que investiguen xarxes 

i interaccions en diversos microbiomes. 
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