

A mi familia

Agradecimientos

Para comenzar, me gustaŕıa dar las gracias a mis directores de tesis. En primer lugar,
al Prof. Josep Llúıs Rosselló por haberme guiado desde el primer d́ıa y preocuparse
de que tanto este como otros trabajos llegaran a buen puerto. En segundo lugar, al
Dr. Vicente Canals por compartir su know how para resolver mis incontables dudas y
aguantarme el d́ıa a d́ıa, haciendo posible que este trabajo finalmente haya visto la luz.
Por otro lado, quiero agradecer al Prof. Miquel Roca sus consejos y a mis compañeros
Christian y Erik nuestras fruct́ıferas charlas. Además, deseo dar las gracias a mis
padres, mi hermana y a Tania por haberme apoyado en todo momento.

Por último, reconocer mi agradecimiento por la financiación por parte del Ministerio
de Ciencia e Innovación al proyecto TEC2017-84877-R, en el cual se enmarca el objeto
de esta tesis.

i

Resumen

De manera similar a nosotros los humanos, las máquinas pueden aprender a partir de los datos
e incluso superarnos en ciertas tareas espećıficas, lo cual es conocido como rendimiento sobre-
humano. El proceso por el que una máquina construye conocimiento a partir de los datos se
conoce como Aprendizaje Automático, que no es nada nuevo, dicho término fue acuñado por
Arthur Samuel en 1959. Este enfoque difiere de la Inteligencia Artificial tradicional basada en
el conocimiento (los llamados sistemas expertos), que fueron la opción predominante durante
la década de 1980, ya que superaron a los enfoques de aprendizaje estad́ıstico de entonces.
Sin ánimo de quitar méritos a los pioneros del campo del Aprendizaje Automático gracias a
quienes hoy somos capaces de construir máquinas inteligentes de última generación de forma
relativamente sencilla, cabe destacar que una de las razones por las que el campo del Apren-
dizaje Automático no se popularizó y se convirtió en la opción preferida hasta los años 90,
superando a los sistemas expertos, fue la falta de potencia computacional disponible para
entrenar modelos complejos que trataran con grandes cantidades de datos. De hecho, es
razonable pensar que el aumento de la potencia computacional ha sido una parte clave de la
transición a lo que hoy conocemos como Aprendizaje Profundo, un subcampo del Aprendizaje
Automático que se ocupa de las Redes Neuronales Artificiales Profundas.

Los modelos de Aprendizaje Profundo han demostrado ser capaces de superar a los hu-
manos en ciertas tareas. Quizá el ejemplo más notable de los últimos años sea el acon-
tecimiento en el que la Inteligencia Artificial AlphaGo, desarrollada por Google DeepMind,
derrotó tres veces seguidas al jugador de Go número uno del mundo, Ke Jie, en una partida
de Go de tres juegos. Aunque el evento marcó un antes y un después en la historia de la
Inteligencia Artificial, desde el punto de vista del consumo energético de cada participante, no
fue una batalla justa. La potencia del cerebro de Jie es de unos 20 W mientras que la disipada
por AlphaGo es de unos 170 kW, es decir, el consumo de enerǵıa de AlphaGo seŕıa unas 8500
veces mayor si ambos jugadores emplearan el mismo tiempo de juego. ¿Seŕıa posible repetir
un avance similar con una potencia disipada del orden de 20 W? Es probable que no veamos
este cambio a corto plazo.

En este contexto, el objetivo de la tesis no es tan ambicioso en cuanto a mejorar la efi-
ciencia energética o intentar desarrollar un sistema de Aprendizaje Profundo distribuido tan
grande. En este trabajo, los modelos propuestos son mucho más pequeños y el objetivo es
contribuir a la exploración de arquitecturas de hardware simplificadas altamente/totalmente
paralelas hechas a medida y no basadas en una arquitectura de von Neumann, lo cual con-
lleva potenciales beneficios de eficiencia energética. En particular, se han propuesto varios
diseños de FPGA que implementan el proceso de inferencia de varios modelos de Apren-
dizaje Automático y se han probado en un conjunto de bases de datos de referencia. Las
implementaciones FPGA incluyen dos modelos de computación de reservorio basados en ar-
itmética de punto fijo de baja precisión y una Red Neuronal de Función de Base Radial
basada en Computación Estocástica. Además, se ha simulado y evaluado una Red Neuronal
Convolucional basada en dos variantes diferentes de computación estocástica para diferentes
precisiones de bits, ambas entrenadas utilizando un enfoque de cuantización consciente del
entrenamiento.

ii

Resum

De manera similar nosaltres els humans, les màquines poden aprendre a partir de les dades
i fins i tot superar-nos en certes tasques espećıfiques, el qual és conegut com a rendiment
sobrehumà. El procés pel qual una màquina construeix coneixement a partir de les dades es
coneix com Aprenentatge Automàtic, que no és res de nou, aquest terme ja va ser encunyat per
Arthur Samuel en 1959. Aquest enfocament difereix de la Intel·ligència Artificial tradicional
basada en el coneixement (els anomenats sistemes experts), que van ser l’opció predominant
durant la dècada de 1980, ja que van superar als enfocaments d’aprenentatge estad́ıstic de
llavors. Sense ànim de treure mèrits als pioners de el camp de l’Aprenentatge Automàtic
gràcies als quals avui som capaços de construir màquines intel·ligents d’última generació
de forma relativament senzilla, cal destacar que na de les raons per les que el camp de
l’Aprenentatge Automàtic no es va popularitzar i es va convertir en l’opció preferida fins als
anys 90, superant als sistemes experts, va ser la falta de potència computacional disponible
per entrenar models complexos que tractessin amb grans quantitats de dades. De fet, és
raonable pensar que l’augment de la potència computacional ha estat una part clau de la
transició al que avui coneixem com Aprenentatge Profund, un subcampo de l’Aprenentatge
Automàtic que s’ocupa de les Xarxes Neuronals Artificials Profundes.

Els models d’Aprenentatge Profund han demostrat ser capaços de superar els humans en
certes tasques. Potser l’exemple més notable dels últims anys sigui l’esdeveniment en el qual
la Intel·ligència Artificial AlphaGo, desenvolupada per Google DeepMind, va derrotar tres
vegades seguides a el jugador de Go número u de l’món, Ke Jie, en una partida de Go de
tres jocs. Encara que l’esdeveniment va marcar un abans i un després en la història de la
Intel·ligència Artificial, des del punt de vista de l’consum energètic de cada participant, no
va ser una batalla justa. La potència del cervell de Jie és d’uns 20 W mentre que la dissipada
per AlphaGo és d’uns 170 kW, és a dir, el consum d’energia de AlphaGo seria unes 8500
vegades més gran si els dos jugadors empressin el mateix temps de joc. Seria possible repetir
un avanç similar amb una potència dissipada de l’ordre de 20 W? És probable que no vegem
aquest canvi a curt termini.

En aquest context, l’objectiu de la tesi no és tan ambiciós pel que fa a millorar l’eficiència
energètica o intentar desenvolupar un sistema d’Aprenentatge Profund distribüıt tan gran. En
aquest treball, els models proposats són molt més petits i l’objectiu és contribuir a l’exploració
d’arquitectures de maquinari simplificades altament/totalment paral·leles fetes a mida i no
basades en una arquitectura de von Neumann, la qual cosa comporta potencials beneficis
d’eficiència energètica. En particular, s’han proposat diversos dissenys de FPGA que imple-
menten el procés d’inferència de diversos models d’Aprenentatge Automàtic i s’han provat en
un conjunt de bases de dades de referència. Les implementacions FPGA inclouen dos models
de computació de reservori basats en aritmètica de punt fix de baixa precisió i una Xarxa
Neuronal de Funció de Base Radial basada en Computació Estocàstica. A més, s’ha simulat
i avaluat una Xarxa Neuronal convolucional basada en dues variants diferents de computació
estocàstica per diferents precisions de bits, ambdues entrenades utilitzant un enfocament de
quantització conscient de l’entrenament.

iii

Abstract

Similar to us humans, machines can learn from data and even outperform us in certain specific
tasks (a.k.a. superhuman performance). The process by which a machine builds knowledge
from data is known as Machine Learning, which is nothing new, this term was already coined
by Arthur Samuel in 1959. This approach differs from traditional knowledge-based Artificial
Intelligence (the so called expert systems), which were the predominant choice during the
1980s since they outperformed statistical learning approaches back then. Without trying to
take away merits to the pioneers of the Machine Learning field thanks to whom today we are
able to build state-of-the-art intelligent machines in a relatively easy way, one of the reasons
why the Machine Learning field did not become popular and the preferred choice until the
1990s, outperforming expert systems, was the lack of available computational power to train
complex models dealing with large amounts of data. In fact, it is reasonable to think that
the increase in computational power has been a key part of the transition to what we know
today as Deep Learning, a subfield of Machine Learning dealing with Deep Artificial Neural
Networks.

Deep Learning models have been shown to be capable of surpassing humans in certain
tasks. Perhaps the most notable example in the recent years is the event in which the
AlphaGo artificial intelligence developed by Google DeepMind defeated the world’s number
one Go player Ke Jie three times in a row in a three-game Go match. Although the event
marked a before and after in the history of Artificial Intelligence, from the point of view
of the energy consumption of each participant, it was not a fair battle. Jie’s brain works
with 20 W and AlphaGo’s thermal power dissipation is about 170 kW, i.e. AlphaGo’s energy
consumption would be about 8500 times higher if both players spent the same playing time.
Would it be possible to repeat a similar breakthrough with a power consumption in the order
of 20 W? We are probably not going to see this change anytime soon.

In this context, the objective of the thesis is not nearly as ambitious in terms of improving
energy efficiency or attempting to develop such a big distributed Deep Learning system. In
this work, the proposed models are much smaller and the aim is to contribute to the explo-
ration of simplified highly/fully parallel (custom) non von Neumann hardware architectures
with potential energy efficiency benefits. In particular, several FPGA designs implementing
the inference process of several Machine Learning models have been proposed and tested on
a set of benchmark datasets. The FPGA implementations include two Reservoir Computing
models based on low precision fixed-point arithmetic and a Radial Basis Function Neural
Network based on Stochastic Computing. Additionally, a Convolutional Neural Network
based on two different Stochastic Computing variants has been simulated and evaluated for
different bit precision, both trained using a custom Training Aware Quantization approach.

iv

Contents

Notation vii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3
1.3 Limitations . 3
1.4 Structure of the thesis . 4

2 Background 5
2.1 Number representation and arithmetic 5

2.1.1 Representation . 6
2.1.2 Arithmetic . 7

2.2 Stochastic Computing . 9
2.2.1 Bitstream coding . 10
2.2.2 Domain conversion . 12
2.2.3 Operations . 13
2.2.4 Error analysis . 20
2.2.5 Noise tolerance . 22
2.2.6 Relative computational cost . 23

2.3 Pattern Recognition . 25
2.3.1 Learning . 26
2.3.2 Linear models . 27
2.3.3 Learning in Artificial Neural Networks 32

2.4 Energy efficient inference hardware . 40
2.4.1 Inference . 40
2.4.2 Dedicated hardware . 42

3 Methodology 43
3.1 General workflow . 43
3.2 Software and hardware . 45
3.3 Simulation and debug . 45
3.4 Communication interfaces . 46

4 Fixed-Point Implementations 48
4.1 Ring topology Echo State Networks . 48

4.1.1 Contribution . 49
4.1.2 Related work . 49
4.1.3 Theoretical foundations . 49
4.1.4 Methods . 53

v

Compact Reconfigurable Machine Learning Systems

4.1.5 Results . 57
4.1.6 Summary . 59

4.2 Reservoir Computing and Cellular Automata 60
4.2.1 Contribution . 60
4.2.2 Related work . 61
4.2.3 Theoretical foundations . 62
4.2.4 Methods . 66
4.2.5 Results . 70
4.2.6 Summary . 74

5 Stochastic Computing Implementations 76
5.1 Radial Basis Function Neural Networks 77

5.1.1 Contribution . 77
5.1.2 Related work . 77
5.1.3 Theoretical foundations . 77
5.1.4 Methods . 83
5.1.5 Results . 85
5.1.6 Summary . 86

5.2 Convolutional Neural Networks . 88
5.2.1 Contribution . 89
5.2.2 Related work . 90
5.2.3 Theoretical foundations . 90
5.2.4 Methods . 101
5.2.5 Results . 106
5.2.6 Summary . 109

6 Conclusions and Future Work 110
6.1 Conclusions . 110
6.2 Dissemination of results . 112

6.2.1 Contributions to indexed iternational journals 112
6.2.2 Contributions to international conferences 113

6.3 Future work . 114

A Gradient Descent Optimization 115
A.1 Single layer . 115
A.2 Momentum . 115
A.3 Adam . 115

B Fixed-Point Arithmetic 117

C Random Number Generation 118
C.1 Linear Feedback Shift Register . 118
C.2 rng n1024 r32 t5 k32 s1c48 . 118
C.3 The ROM approach . 119

vi Notation A. Morán Costoya

Notation

This section is devoted to describe a list of math symbols and conventions so as to
ensure coherency throughout the document. It is mostly inspired by the notation used
in [1], [2].

Scalars, Matrices and Tensors

a, a, A, A Scalar, vector, matrix and tensor, respectively
1 Column vector of ones
J Matrix of ones
J Tensor of ones
I Itentity matrix
ai ith element of a row or column vector a
Ai,j Element (i, j) (i.e. ith row and jth column) of a matrix A
Ai,j,k Element (i, j, k) of a 3-D tensor A
Ai,: ith row of A
A:,i ith column of A
A:,i,j 1-D slice of a 3-D tensor A
A:,:,j 2-D slice of a 3-D tensor A

Sets, Intervals and Graphs

N, Z, R, C Set of natural, integer, real and complex numbers, respectively
{a, b} Set containing a and b
(a, b] Interval of real numbers that range from a (not included) to b (included)

Z ∩ [a, b] Interval of integer numbers that range from a to b
G Graph

vii

Compact Reconfigurable Machine Learning Systems

Operations and Operators

Aᵀ Transpose operation applied to A
A+ Moore-Penrose pseudoinverse of A
AB Matrix multiplication of A and B
A ?B Discrete cross-correlation of A with a kernel B
A�B Hadamard product1 of A and B
A�B Hadamard division1 of A and B
d·e Scalar or elementwise1 ceiling operation
b·c Scalar or elementwise1 floor operation
‖a‖ L2 norm of a
‖A‖ Frobenius norm of A

det (A) Determinant of A

Probability Theory

P (A) Probability of event A
P (A | B) Probability of event A given B

E(X) Expected value of the random variable X
var(X) Variance of the random variable X
std(X) Standard deviation of the random variable X

cov(X, Y) Covariance of the random variables X and Y
corr(X, Y) Correlation of the random variables X and Y
X ∼ F Random variable X follows a distribution F
A ⊥ B A and B are independent events.

Bitstreams

x̃(t) Bitstream with activation probability px.
〈x̃(t)〉 Arithmetic mean of x̃(t).
x̃ ⊥ ỹ Bitstreams x̃(t) and ỹ(t) are uncorrelated.
x̃ ‖ ỹ Bitstreams x̃(t) and ỹ(t) are correlated.

1Elementwise (Hadamard) operations defined for tensors might be applied to the particular case
of matrices and vectors.

viii Notation A. Morán Costoya

Chapter 1

Introduction

The aim of this chapter is to present the motivation (Section 1.1), establishing the ob-
jectives (Section 1.2) and limitations (Section 1.3) of this thesis. Finally, the document
organization is described in Section 1.4.

1.1 Motivation

Nowadays, the semiconductor industry faces what appears to be (or will be in the
near future) the end of Moore’s Law [3]. G.E. Moore initially predicted the number
of transistors in a CPU would double every year based on observations from 1962 to
1966. However, he rectified the prediction in 1975 and based on the numbers from 1970
to 1975 said the number of transistors would double every two years, which is what is
known as Moore’s Law today. Although the prediction initially referred to transistor
count in single chip high performance Central Processing Units (CPUs), it is also
usually connected to other power laws in technology, e.g. industry revenues, transistor
price or total chip power dissipation [4], [5]. Also, this concept can be extended to other
computing devices such as Graphical Processing Units (GPUs) or Field Programmable
Gate Arrays (FPGAs). It is not just an empirical rule, Moore’s Law became a widely
accepted goal for the semiconductor industry and it has even been argued that it is a
self-fulfilling prophecy [6].

As regards transistor count, historical data is plotted on Fig. 1.1 for high perfor-
mance CPU, GPU and FPGA devices and widely known chip designers to illustrate
Moore’s Law.

Figure 1.1: Moore’s Law until 2020 for high performance CPUs, GPUs and FPGAs. *Intel® acquired Altera® at
the end of 2015. Data source: https://en.wikipedia.org/wiki/Transistor_count.

1

https://en.wikipedia.org/wiki/Transistor_count

Compact Reconfigurable Machine Learning Systems

Until now, the growing number of transistors in a single chip has been possible
year after year because the transistor size1 has been reduced thanks to the scientific
and technological advances put in practice by the main manufacturers’ Integrated Chip
(IC) foundries.

Going smaller allows to fit more transistors in the same die area and increasing
performance2. More specifically, doubling the transistor count every two years implies
doubling CPU performance every 18 months, or at least that is what was supposed to
happen. During the years it was so, it was a big deal because increasing performance
was possible without impacting the overall area and therefore energy consumption re-
mained nearly constant. This is known as Dennard scaling [7] and it ended around
2005–2007 mainly due to the MOSFET’s leakage current problem [8]. Then, CPU de-
signers tried to circumvent or minimize the problem by increasing the number of cores,
which was an improvement, but far less efficient than if Dennard scaling had continued.
Later, in 2012, Intel introduced the FinFET transistor [9], which is faster and more
power efficient, and is building block of today’s modern processors. Nevertheless, the
rate of improvement in performance has been drastically reduced during the last ten
years [10].

Notice during the years in which Dennard scaling was still alive, an IC design could
be manufactured for the first time and manufactured again years later with the latest
transistor technology, so that the last one would require less area and would be more
energy efficient than the former. This was certainly a great deal for battery powered
devices which did not require improving performance. However, it does not seem this
growth rate will resume in the near future. There is not even a certainty that Moore’s
Law will hold in the near future.

In addition to the current difficulties faced by manufacturing processes, there is an-
other challenge: the increasing demand of computational capacity and energy efficiency
requirements for certain tasks, including algorithms related to Artificial Intelligence
(AI) in general and Machine Learning (ML) in particular. A clear example to motivate
the benefits these improvements can bring is the development of efficient Internet of
Things (IoT) edge devices and simpler edge nodes with computing capabilities, which
could meet lower power specifications. This is not trivial since these algorithms (typi-
cally inference for pattern recognition) need to process large amounts of data in a short
time, requiring significant hardware parallelism to accelerate the process [11], which
might require large chip area compared to e.g. a baseline 32-bit RISC-V architecture
[12].

Recently, the state-of-the-art solution was to send data captured by sensor nodes
to the cloud and wait for the server’s response [13]. This server-dependent approach
requires a significant amount of data transmission, which in turn results in a network
congestion. Even though data transmissions with sufficient throughput would solve the
problem, increasing throughput increases energy consumption. Moreover, there exist
privacy issues related to sending sensor data directly to the cloud (e.g. sending images
with people faces). The solution to this issue is to enable data inference and analysis
capabilities at the edge, which are close to data sources. This approach is known as

1The transistor size is typically specified by its gate length. However, it is not always a represen-
tative number for the actual transistor dimensions.

2During the first 30 years of Moore’s Law the increase in performance was not only due to the
number of transistors, but also due to the fact that transistors with smaller gate lengths could switch
faster.

2 Chapter 1 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Edge Computing (EC). Compared to the straightforward data transmission, energy
consumption is potentially reduced since inference is done by low power edge devices,
there is not a latency problem if the device is capable of managing real-time inference,
and privacy is no longer an issue since raw data is not transmitted to the cloud, only
metadata (e.g. date, location and event duration) and inference results (e.g. detection
of chemical compounds in the air or gunshots or voice-based assistance) are sent.

This thesis is focused on prototyping FPGA pattern recognition inference solutions
with potential applications in EC, either at edge nodes or as part of IoT devices.

1.2 Objectives

The main objective of this thesis is to explore unconventional highly parallel digital
architectures focused on pattern recognition applications with potential improvements
in the energy efficiency while minimizing potential accuracy degradation due to low
precision computations. In this context, the research has the three following specific
objectives:

� Design and development of highly/fully parallel Reservoir Computing (RC) and
Artificial Neural Network (ANN) architectures presenting benefits in terms of
energy efficiency compared to other research works.

� Adaptation and improvement of several standard ML algorithms to maximize
accuracy in fixed-point and SC inference hardware.

� FPGA implementation and evaluation of the designs explored in this work.

1.3 Limitations

The main limitations of the hardware implementations is the lack of Very Large Scale
Integration (VLSI) chips. All the designs proposed are FPGA based. Once an FPGA
prototype is concluded, the VLSI equivalent implementation can be done based on the
same digital design and would be much better in terms of area and energy efficiency.
Moreover, in the case of the included SC implementations, there is another limitation,
which is the direct applicability to more complex or higher dimensional input data
than the used for testing purposes as it is not trivial because architectures are ad-hoc
and fully parallel. Finally, it is worth highlighting dealing only with digital circuits
is in fact an additional limitation when designs require a large number of registers to
perform parallel calculations. Especially in the case of the SC, due to the simplicity
of the internal logic, it would be much better in terms of area and power to integrate,
e.g. build the logic inside a 4T, 6T or 8T Static Random Access Memory (SRAM)
cells instead of using D-type flip-flops (FPGA registers) to hold numbers accessed in
parallel. Here, NT refers to N transistors, the standard D-type flip-flop is 12T and
requires more area than a SRAM memory cell3.

3However, the number of transistors is not necessarily a good metric for area [14].

Chapter 1 A. Morán Costoya 3

Compact Reconfigurable Machine Learning Systems

1.4 Structure of the thesis

The thesis contents are organized around six chapters as described below:

� Chapter 1. This chapter introduces the context in which the thesis is framed,
establishing the objectives and limitations of the research carried out.

� Chapter 2. It is intended to introduce Background theory. It includes a se-
lection of topics to facilitate the understanding of this work. In a nutshell, the
background is splited in three main topics. The first topic is number represen-
tation and computation, including conventional and SC. The second topic is ML
focused on ANNs and RC as well as several training methods. Finally, the last
part of the background chapter is focused on the available options for prototyping
energy efficient pattern recognition applications.

� Chapter 3. It describes the Methodology followed for each hardware implemen-
tations, going from an algorithmic description to the digital design simulation and
finally the FPGA implementation.

� Chapter 4. It explores two RC inference hardware implementations, both are
Fixed-Point Implementations. The first one is a ring-topology ANN trained
for Audio Event Detection (AED) using the UrbanSound8K dataset [15] and the
second one is based on Cellular Automata, trained to recognized handwritten
digits from the MNIST dataset [16].

� Chapter 5. It includes two SC inference hardware implementations. Both are
Stochastic Computing Implementations trained to recognize handwritten
digits from the MNIST dataset. The first is a Radial Basis Function Neural
Network (RBF-NN) and the second is a CNN. The main contribution is related to
the quantization aware training adapted to benefit the SC CNN implementation.

� Chapter 6. Finally, Conclusions and Future Work are discussed, including
potential improvements and this thesis results dissemination in international jour-
nals and conferences, as well as other publications not covered in this document.

This document contains four appendices too, which are conveniently referenced in
the text and include the following content.

� Appendix A. It summarizes Gradient Descent Optimization algorithms uti-
lized for training ANNs in this work.

� Appendix B. It contains a list of Fixed-Point Arithmetic operations.

� Appendix C. It introduces three different Random Number Generation ap-
proaches utilized in the SC implementations.

4 Chapter 1 A. Morán Costoya

Chapter 2

Background

This background chapter is focused to explain three widely known topics, which are
the cornerstones of the hardware implementations collected in the thesis and answer
the following questions:

� How to represent and compute numbers?
Section 2.1 introduces a generic view of number representation systems and the
most common choices in computer arithmetic. Moreover, the particular case of
SC is discussed in depth in section 2.2 due to its important role in this work.

� How computers learn to recognize patterns?
Knowing how ML algorithms are implemented and work is fundamental if one
aims to adapt certain aspects of well-known methods at the architectural and
algorithmic levels. Section 2.3 presents an overview of similarities and differences
between pattern recognition methods.

� How to design energy efficient pattern recognition applications? In
order to explore power/energy consumption improvements in front of MCUs,
CPUs or GPUs for an specific task, one should explore different approaches. In
this context, the development of specific hardware is one of the options adopted
by research groups and companies. Section 2.4 presents an overview of the en-
ergy efficiency design options that can be implemented on hardware, and more
specifically in reconfigurable hardware (FPGA).

2.1 Number representation and arithmetic

Throughout this document, different number representations are mentioned and ap-
plied in practice. Since the understanding of these representations is crucial to com-
prehend the basics of how digital hardware implementations work.

Nowadays, the vast majority of processor’s ALUs use weighted representations to
store and compute numbers [17]. This weighted code is a dense representation in
the sense that every code has a one-to-one mapping with a particular number, i.e.
it is optimal for data storage. Although there are other dense representations that
are non-weighted (e.g. gray code [18]) and thus optimal for data storage, operations
with/between numbers are not trivial or require conversions to weighted codes.

Even though a dense representation is optimal for data storage, it does not need to
be optimal for computation in terms of hardware complexity or energy consumption.
In this context, the concept of unary processing is introduced.

5

Compact Reconfigurable Machine Learning Systems

2.1.1 Representation

A number a with finite precision might be stored as a code containing m elements ai
and r possible values per element, so that each one can take integer values from 0 to
r − 1. In the literature, m is typically called width and r radix or base. The number
a is interpreted as the weighted sum of its elements, hence the name. The weights of
each element in the sum depend on its position as depicted in Fig. 2.1, given by the
following expression:

a =
m−1∑
i=0

air
i. (2.1)

a0a1a2a3a4· · ·am−2am−1

a0r
0a1r

1a2r
2a3r

3a3r
4· · ·aw−2r

m−2aw−1r
m−1

+

a =
∑m−1

i=0 air
i

Figure 2.1: Unsigned fixed-point linearly weighted code of a number a with: code elements ai, arbitraty radix r and
width w, i.e. a = (aw−1aw−2 . . . a1a0)r

For r > 1 weights represent jumps of r units going from left to right, so that every
element adds an independent contribution to the final result. That is the reason why
it is a dense representation.

One might ask which is the best radix choice for data storage in terms of theoretical
representational efficiency Reff . This question was answered by Stifler in 1950 [19]
assuming r need not to be an integral value and that the cost to represent each digit is
proportional to r [20]. So that the cost S to represent m elements of radix r is given
by (2.2).

S = k1mr, (2.2)

where k1 is a constant. Given that M = rm, M numbers can be represented and
substituting m = lnM

ln r
into (2.2), yields:

S = k2
r

ln (r)
, (2.3)

where k2 = k1 ln (M) and S does not depend on m. In order to get the optimal r value
of this function, its derivative is set to zero, as:[

dS

dr

]
ropt

= k2
ln (ropt)− 1

ln (ropt)
2 = 0 −→ rmin = e = 2.718 . . . (2.4)

This means the optimal radix ropt should be 3 for integer values. However, the relative
difference with respect to r = 2 or r = 4 is small. In this case, the representational
efficiency Reff is defined as a ratio w.r.t. the minimum cost Sopt ≡ S(r = e), i.e.

Reff =
1
S
1

Sopt

=
e ln (r)

r
(2.5)

6 Chapter 2 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

This representation efficiency is depicted in Fig. 2.2.
In Fig. 2.2, the case r = 1 has been ignored since its representational efficiency is

quite poor. Taking the limit r = 1 in (2.5) yields Reff = 0. Notice that for r = 1, the
elements ai could only take one value, so it is not possible to represent any number.
On the other hand, if the elements ai are allowed to be in two different states1 (0 or 1)
and the representation still sparse, then this is known as unary representation. This is
the limit in which all positional weights are equal and element positions are no more
relevant in such encoding scheme, i.e. any permutation of the elements ai does not
affect the value of a, which is never true for the traditional weighted representation
with r > 1 and M = rm possible values per element. In addition, the decoding is
not necessarily restricted to the sum of active elements, since other encoding/decoding
schemes exist, mostly inspired by the brain [21]–[24].

Nowadays, ASIC technology is based on 2-level logic, from a practical point of view
it makes sense to use radix 2 for data storage in modern digital computing devices. In
this case elements are bits and the width is often referred to as the bit width. Under
the assumptions in (2.2), note that the unary representation needs m bits to represent
a number with M possible values, that is:

S = k12M+1 (2.6)

Therefore, the representational efficiency exponentially decreases with the number of
unary bits:

Reff =
e ln (M)

2M+1
(2.7)

Even for M = 2 possible values, the efficiency is approximately Reff ≈ 0.236 and drops
to a half of this value for M = 4 (Reff ≈ 0.118). Therefore, a unary code is not viable
for data storage when compared to a dense representation.

Figure 2.2: Graphical representation of the representational efficiency Reff .

2.1.2 Arithmetic

So far, it has been discussed that radix 2 representation seems a reasonable choice in
terms of representational efficiency and considering the nature of transistors, which are

1Imposing at least two different states is necessary for representation and computation since for
r = 1, rm is always 1.

Chapter 2 A. Morán Costoya 7

Compact Reconfigurable Machine Learning Systems

the fundamental elements of the microelectronics industry. But, is it also better for
data processing when compared to the unary scheme? there is not a one-off answer.
It depends on the application and more specifically on the required precision. For
example, unary processing strategies are not suitable to run numerical simulations,
it requires negligible quantization error and are usually performed in double floating-
point precision. Instead, if an application does not require high precision to achieve a
desired model accuracy, e.g. inference in artificial neural networks, then some form of
unary processing might be a good candidate.

Radix 2 arithmetic is typically done in the space domain, i.e. using combinational
logic, and the result is instantaneous (or very fast). In the case of unary processing,
computations might be translated to time domain. In particular, SC (section 2.2) pro-
vides a simple framework in terms of arithmetic logic complexity. Therefore, switching
the computation paradigm would only make sense under certain circumstances. There
are several aspects to evaluate:

� Domain conversion
It is common to store input and parameter data as radix 2 numbers using e.g.
SRAM and standalone register arrays. So that a translation or domain conversion
between radix 2 and the unary code choice and viceversa is needed. However, in
some cases the domain conversion might be less efficient than operating directly
the source data. At the same time, it is possible to build highly parallel unary
processing systems, suitable for near-sensor scenarios [25] based on SC to reduce
data conversion hardware resources. In particular, they proposed to directly
convert analog input data to stochastic bitstreams in order to increase energy
efficiency in the first layer of SC CNNs.

� Noise tolerance
Any integrated circuit signal might be exposed to noise from external physical
sources, such as thermal noise, flicker noise, and shot noise [26]–[30]. Imagine
a bit flip in a radix 2 representation, the error propagation across the different
operations could be catastrophic. Instead, a bit flip in a unary bitstream would
cause a very small error. Therefore, if an application requires noise tolerance,
a unary processing technique such as SC or a deterministic variant should be a
good solution [31].

� Computational cost
Depending on the arithmetic operations and domain conversion resolution, a
unary processing system might not be advantageous compared to the equivalent
fixed or floating-point representation. There is a tredeoff between resolution and
efficiency.

These aspects are discussed for SC in section 2.2. For the sake of completeness, it is
worth mentioning that intermediate or mixed processing is possible, e.g. BURST [20].
Such work took ideas from binary weighted and SC processing schemes, which enables
trade-offs in terms of circuit size and noise immunity.

8 Chapter 2 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

2.2 Stochastic Computing

SC refers to a wide range of techniques in which continous (analog) or fixed point
(digital) values are represented as random bitstreams2 whose activation probability is
proportional or related to these values. The strong point of such randomized represen-
tation resides in the simplicity of arithmetic operations between bitstreams. Arithmetic
operations such as multiplication, absolute value difference, maximization or minimiza-
tion can be performed by simple bit-wise operations.

The origin of SC dates back to the 1950s, introduced by J. von Neumann in his
article Probabilistic logics and the synthesis of reliable organisms from unreliable com-
ponents [32]. This work was based on R.S. Pierce’s notes, inspired by the way nervous
systems propagate information through pulse trains in a network of interconnected
organisms, which process the information in such pulses. However, it was not until
the late 1960s that the SC theory was completely developed, together with some early
practical implementations [33].

In this period, two research laboratories working simultaneously on the SC prin-
ciples came up with a similar approach. On the one hand, B.R. Gaines and J.H.
Andrae implemented A stochastic analog computer [34] in 1965 when working at Stan-
dard Telecommunications Laboratories in England and later the researchers published
a conference paper jointly with J.W. Esch [31] in April 1967. They focused on SC archi-
tectures suitable for AI and control algorithms. On the other hand, W.J. Poppelbaum
and C. Afuso published Noise-computer [35] in 1965 at the University of Illinois (USA),
reported digital/analog stochastic computer called Paramatrix, and later published a
conference paper [36] in November 1967, also inspired by the ideas of J. von Neuman.
Their research included programmable image processing SC architectures. It is also
worth mentioning the contemporary work by S.T. Ribeiro [37] in 1964, who introduced
a set of arithmetic units using width-modulated pulses as inputs, which are converted
to pulse trains for computation and converted back to width-modulated pulses. In
addition, this work, Random-pulse machines [38], published in June 1967 describes SC
spatial integrators and matrix multipliers. By the end of the 1960s B.R. Gaines wrote
a detailed book chapter entitled Stochastic computing systems [39], which summarizes
the SC advances published up to that date.

There was an increasing interest in SC and its practical implementation during the
1970s. In fact, J.W. Esch built A programmable analog computer based on a regular
array of stochastic computing element logic [40] in 1969. Finally, at the early 1980s,
the SC research interest significantly dropped due to advances in integrated chip design
and the advantages offered by conventional digital arithmetic over SC architectures in
terms of versatility and precision.

Nevertheless, nowadays research interest in SC is growing [33], motivated by it’s
inherent noise-tolerant, e.g. [41], [42] and the increasing interest in energy efficient
hardware architectures for NN inference, e.g. [43]–[45] and learning, e.g. [46], [47], as
well as other highly parallelizable algorithms based on linear algebra, like the FFT [48].

This section is entirely devoted to introduce the foundations of SC, both from the
theoretical and practical perspectives. In particular, implementations are introduced
from a digital design point of view since all the designs explained in this document are
targeted to FPGA platforms. It is not intended to cover all the literature in this regard,
but to the end of the section the reader who is not familiar with SC will understand

2Bitstreams might be pseudorandom or even not random at all.

Chapter 2 A. Morán Costoya 9

Compact Reconfigurable Machine Learning Systems

how it works and the reasons why it is an attractive framework for the aftermentioned
applications.

At the architecture level, a system or subsystem based on SC is composed by three
main blocks: stochastic number generator (SNG), probabilistic computing circuit and
output decoder circuit, which are illustrated in Fig. 2.3. In this architecture, input
data might be presented in any format, so it is first converted to stochastic bitstreams
using SNGs. Then these bitstreams, which represent the original input data, feed the
probabilistic computing logic in which simple SC elements based on the integration of
SC bitstreams take place. Finally, the resulting bitstreams are decoded or converted
to a convenient output format.

Figure 2.3: Generic SC architecture.

Since there exist several encodings to interpret bitstreams’ information as numerical
values, some of these are enumerated in Section 2.2.1. Then, bitstream generation as
well as output bitstream decoding is explained in section 2.2.2, which we refer to as
domain conversion. Next, several operations between bitstreams are listed in Section
2.2.3.

2.2.1 Bitstream coding

There exist many ways to encode a n-bit binary weighted signal to a sequence of 2n bits.
However, arithmetic operations between bitstreams might become complex depending
on the bitstream coding.

All SC codes are entirely or partially based on representing quantities as one or
more bitstreams whith activation probabilities proportional to the original quantities
or related to a relationship between them.

Four different codings are described in this section: unipolar, bipolar, sign-magnitude
and extended. The first three are directly related to the SC implementations proposed
in this work and the fourth one (extended) has been included for completeness and
to include a less trivial example compared to the first three codes, proposed by the
supervisors of this thesis [49].

2.2.1.1 Unipolar

The unipolar coding was the initial approach to encode quantities as stochastic bit-
streams [34], [35] and it is the easiest yet the most limited approach. An input quantity
x is normalized in the range [0, 1] so that it represents an activation probability px.
Thus, the SC outputs are also restricted in the unit range. This approach is a good op-
tion when the task to be implemented does not require arithmetic operations between
signed quantities. On the other hand, its main advantages are: few logic resource re-
quirements, the fact that only one bitstream is required to represent each quantity and
multiplication by zero yields exactly zero, which is not the case for other SC codings.

10 Chapter 2 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

2.2.1.2 Bipolar

The bipolar coding was introduced as a method to represent a signed quantity with
a single bitstream so that the outputs from operations between bitstreams might rep-
resent signed quantities too. In this case an input quantity x is normalized in the
range [−1,+1] and denoted as p∗x, which is referred to as a bipolar variable. This bipo-
lar variable is interpreted as an activation probability px via the change of variables
(2.8). Despite this approach extends the unipolar code, the multiplication by zero does
not yield exactly zero because p∗x = 0 is represented by a bitstream with activation
px = 0.5, which might not coincide with the number of active states divided by length
of the bitstream. Also, even if the input bitstream has exactly 50% activation prob-
ability, the multiplicand3 might be a bitstream with an odd number of active states
since the resulting bitstream might not have exactly 50% activation probability.

px =
p∗x + 1

2
(2.8)

2.2.1.3 Sign-magnitude

In contrast to single bitstream unipolar and bipolar codings, the sign-magnitude (a.k.a.
two-line bipolar) codings needs two bitstreams to represent a single number. In this
case an input quantity x is normalized in the range [−1,+1] and denoted by p∗x, then
p∗x is decomposed according to (2.9).

p∗x = sgn(x) mgn(p∗x) (2.9)

where sgn(x) = sgn(p∗x) is the sign (+1 if x is positive and −1 otherwise) and mgn(p∗x)
is the absolute value.

Since the main idea behind this convention is to represent the sign and magnitude
as separate bitstreams, both quantities need to be converted to activation probabilities.
Notice the sign is a bipolar variable can be represented as an activation probability via
(2.8), so that the Heaviside function (2.10) represents this activation probability.

H(x) =

{
1 x > 0
0 otherwise

(2.10)

As regards the magnitude or absolute value, since it is already an unipolar variable,
the corresponding activation probability is given by mgn(p∗x) or the simplified notation

M(x) ≡ mgn(p∗x) (2.11)

so that (2.9) can be rewritten as:

p∗x = (2H(x)− 1)M(x) (2.12)

where H(x) and M(x) are the two bitstream activation probabilities, which define a
bipolar variable p∗x. Multiplication by zero is exact without a significative hardware
overhead and the needed computation time is generally reduced by 1/2 factor compared
to the bipolar case. However, in digital systems signed values are conveniently encoded
in its two’s complement representation, so that decomposition in sign and magnitude
requires additional operations, which is not a problem for parameters but can be an
overhead for input data.

3In this case, the number that gets multiplied by zero.

Chapter 2 A. Morán Costoya 11

Compact Reconfigurable Machine Learning Systems

2.2.1.4 Extended

The extended representation uses two bitstreams encoding two bipolar variables p∗x and
q∗x to represent a quantity x, which does not need to be normalized since in this case
the range is not bounded. This approach is based on representing x as the quotient of
two bipolar bitstreams:

x =
p∗x
q∗x

(2.13)

so that arbitrarily large numbers can be represented. Although this smart represen-
tation has obvious advantages in terms of input/output representability, but some
problems arise in practice. Due to data quantization, as in the simple bipolar case,
multiplication by zero is not exact. Also, when q∗x is small and precision is limited, the
representation of big positive and negative numbers is limited by the quantization too.

2.2.2 Domain conversion

In any of the previously enumerated codings, it is necessary to convert input variables
to bitstreams with a certain activation probability. In particular, for the unipolar
and bipolar cases, and according to notation defined in Table 2.1, an input variable
x must be scaled in the interval [0, 1] (unipolar) or [−1,+1] (bipolar) to obtain the
corresponding normalized input variable. An unipolar activation probability coincides
with the normalized input px. In contrast, the bipolar scaled input p∗x represents an
activation probability px = 1

2
(p∗x+1). Even though the value encoded by px is different,

both scenarios are based on the conversion of each variable to a single bitstream. Given
an activation probability px, regardless of its arithmetic meaning, it is converted to a
bitstream x̃(t) by comparison with a sequence following some kind of distribution, e.g.
a random uniform sequence {Rx,n ∼ U [0, 1), n = 0, 1, 2, . . . N − 1}. These random
events are updated at regular time periods4 T . Therefore, if the observations of {Rx,n}
are {rx(nT)}, being rx(t) a continous-time function updated at regular intervals T and
the continous-time representation of the bitstream is generated by comparison with
these random observations:

x̃(t) =

{
1 px > rx(t)
0 otherwise

(2.14)

For a bitstream of length N , comparison 2.14 is updated each period T , so that the
evaluation time is NT . From this definition, the number of active states converges to
Npx as N increases. This means a bitstream activation probability px is approximately
recovered by counting active states in the bitstream. Since bitstreams have been defined
as a continous (boolean) function of time, the recovered activation probability might
be expressed using either continous or discrete time integration as reflected by (2.15).

px = 〈x̃(t)〉 = lim
N→∞

1

NT

∫ NT

0

x̃(t)dt︸ ︷︷ ︸
analog RC filter

= lim
N→∞

1

N

N−1∑
n=0

x̃(nT)︸ ︷︷ ︸
digital counter

(2.15)

4Although updates might happen at irregular time periods, using regular time intervals makes
more sense for synchronous digital hardware implementation.

12 Chapter 2 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

As highlighted in this expression, the physical implementation of the integral form may
be implemented by an RC filter5, while the discrete summation can be implemented
by a digital counter.

At this point, it has been already described how to encode some quantity as a
random bitstream and how to (approximately) recover it from its bitstream for unipolar
and bipolar SC codings. In the case of the sign-magnitude convention, we need two
bitstreams per variable and the sign bitstream H̃[x](t) is trivially obtained via:

H̃[x](t) = H(x) ∀t ∈ [0, NT) (2.16)

while the magnitude bitstream obtained just like in the unipolar case. The magnitude of
a bipolar quantity represents an activation probability, so that the magnitude bitstream
M̃[x](t) is given by (2.14), but replacing px by M(x). Therefore, the sign-magnitude
bitstream pair decoding is given by (2.17).

p∗x = lim
n→∞

1

NT

∫ NT

0

(2H[x](t)− 1)M[x](t)dt

= lim
n→∞

1

N

N∑
n=0

(2H[x](nT)− 1)M[x](nT)

(2.17)

Finally, notice the extended SC coding is also represented by two bitstreams, both
wires represent bipolar variables that are encoded and decoded separately. Bipolar
numerator and denominator bitstreams are independently obtained via (2.14) and are
approximately recovered via (2.15).

2.2.3 Operations

Operations between stochastic bitstreams typically require simple digital gates, spe-
cially in the case of the multiplication. In general, both DSP and ML algorithms
rely on linear algebra operations (multiplication, addition and subtraction) and other
simple operations such as maximum, minimum and absolute value as well as non-
linear functions used in ANN activations, e.g. ReLU or sigmoid. We can classify
these operations in two groups depending on their complexity. These two groups are
(a) combinational and quasi-combinational operations on bitstreams, and (b) Internal
feedback operations. While (a) comprehends a list of simple SC operations, (b) refers
to the implementation of intricate operations requiring memory elements and feedback.
However, in this work we will refer to the literature on this topic and discuss only the
SC summation operation.

Before introducing these operations, it is convenient to highlight the fact that some
of them have strict bitstream correlation requirements. Typically, SC correlation be-
tween bitstreams is controlled at the generation stage. On the one hand, if a pair of
input bitstreams x̃(t), ỹ(t) generated from activation ratios px, py by comparison with
the same random sequence, i.e. rx(t) = ry(t), then x̃(t) and ỹ(t) are maximally corre-
lated (or simply correlated for short) as depicted by blue time series in Fig. 2.4. On
the other hand, if the same pair of input activation ratios is compared to independent
random sequences rx(t), ry(t), then the generated bitstreams are maximally uncorre-
lated (or uncorrelated for short) as depicted by blue and orange time series in Fig.
2.5.

5The principle is the same than for PWM to analog converters.

Chapter 2 A. Morán Costoya 13

Compact Reconfigurable Machine Learning Systems

Figure 2.4: Example visualization of domain conversion for a pair of variables (x, y) generated by comparison with
the same random number and some SC operations.

Figure 2.5: Example visualization of domain conversion for a pair of variables (x, y) generated by comparison with
uncorrelated random numbers and some SC operations.

Therefore, if a bitstream results from a specific combination of input bitstreams,
its mean activation ratio might depend on whether the inputs were correlated (x̃ ‖
ỹ) or uncorrelated (x̃ ⊥ ỹ). As an example, notice correlated AND, OR and XOR
combinations depicted Fig. 2.4 result in different activation ratios compared to the
equivalent uncorrelated operations depicted in Fig. 2.5.

2.2.3.1 (a) Combinational and quasi-combinational operations

Most of this kind of operations can be implemented with a single logic gate per pair of
input bitstreams. Therefore, unipolar and bipolar basic operations are listed in Table
2.1. In this table, the most common operations are colored depending on whether input
bitstreams are correlated (blue), uncorrelated (orange) or correlation does not matter

14 Chapter 2 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

(green). These operations are listed and explained below.

Table 2.1: Unipolar and bipolar SC notation and correlation-aware single gate equivalent operations in the
normalized space. The most commonly used operations have been hightlighted with different colors depending on

input correlation requirements. (Blue) correlated input bitstreams. (Orange) Uncorrelated input bitstreams. (Green)
correlation does not matter.

unipolar bipolar

n
o
ta

ti
o
n

original inputs x, y x, y
scaling interval [0, 1] [−1,+1]
scaled inputs px, py p∗x, p

∗
y

activation probabilities px, py px, py
SC bitstreams x̃(t), ỹ(t) x̃(t), ỹ(t)

g
a
te

,
co

rr
e
la

ti
o
n NOT, - 1− px −p∗x

AND, correlated min{px, py} min{p∗x, p∗y}
AND, uncorrelated pxpy

1
2

(
p∗xp

∗
y + p∗x + p∗y − 1

)
OR, correlated max{px, py} max{p∗x, p∗y}

OR, uncorrelated px + py − pxpy 1
2

(
p∗x + p∗y − p∗xp∗y + 1

)
XOR, correlated |px − py| |p∗x − p∗y| − 1

XNOR, uncorrelated 2pxpy − px − py + 1 p∗xp
∗
y

� Complementary
The complementary is the simplest operation, it takes an input bitstream and the
output bit values are reversed, i.e. high values become low values and viceversa.
If this operation is applied to a bitstream with activation probability px then the
output activation probability becomes 1− px without error. The complementary
operation is achieved by a NOT logic gate as illustrated in Fig 2.6.

Figure 2.6: Digital logic schematic of the SC complementary operation and corresponding input and output
activation probabilities for different SC codes. Since it consists of combinational logic applied to a single bitstream,

the sequence from which the bitstream is generated does not play any role.

This operation is denoted as x̃(t), given the input bitstream x̃(t), so that the
output activation probability is

〈x̃(t)〉 = 〈1− x̃(t)〉 = 1− 〈x̃(t)〉 = 1− px (2.18)

If bitstreams come from unipolar variables, then the relation between input and
output is directly obtained via (2.18). In contrast, if bitstreams come from bipolar
variables then p∗x, which is represented by a bitstream with activation probability
px, it becomes −p∗x. Therefore, the bipolar variable is related to its activation
probability via (2.8), so that the input bitstream has the following activation
probability:

px =
1 + p∗x

2
(2.19)

Chapter 2 A. Morán Costoya 15

Compact Reconfigurable Machine Learning Systems

and accordingly, the output bitstream:

1− px =
1− p∗x

2
(2.20)

so, the complementary operation converts a bipolar variable p∗x into −p∗x.

� Multiplication
The SC multiplication is far simpler than the conventional digital counterpart.
In the unipolar case, two uncorrelated bitstreams x̃(t) and ỹ(t), with activation
probabilities px and py, results in an output bitstream with activation probability
pxpy by means of a simple AND logic gate. The AND logic gate outputs the high
state only when both inputs are high, so if these inputs have been generated from
independent random uniform sequences the probability of both inputs being high
at a given time is pxpy, i.e.

〈x̃(t) · ỹ(t)〉 = 〈x̃(t)〉〈ỹ(t)〉 = pxpy (2.21)

Figure 2.7: Digital logic schematic for the SC multiplication operation and corresponding input and output
probabilities for different SC codes. All pairs of bitstreams that are inputs to the same logic gate must be maximally

uncorrelated, except in the case of the sign-magnitude code, for which correlation does not matter for the sign
bitstreams.

In contrast, if bitstreams come from bipolar variables, then the multiplication
operation is obtained via an XNOR logic gate, that is:

〈x̃(t)⊕ ỹ(t)〉 = 〈max
{
x̃(t) · ỹ(t), x̃(t) · ỹ(t)

}
〉

= 〈max {x̃(t) · ỹ(t), (1− x̃(t))(1− ỹ(t))}〉
= 〈x̃(t) · ỹ(t)〉+ 〈(1− x̃(t))(1− ỹ(t))〉
= pxpy + (1− px)(1− py)
= 1 + 2pxpy − px − py

= 2
(1 + p∗x)(1 + p∗y)

4
− 1 + p∗x

2
−

1 + p∗y
2

+ 1

=
1 + p∗xp

∗
y

2

(2.22)

The multiplication digital SC designs for the different codings are depicted in
Fig. 2.7, including the implementation for sign-magnitude and extended codings.
Moreover, notice this implementation is also valid for the square operation if both
inputs represent the same value and are uncorrelated. This can be achieved by
delaying a single input bitstream (or bitstream pair) if self-correlations are not
present. This special case is described by Fig. 2.8, where black squares represent
time delays of at least one clock period, which can be achieved by flip-flops.

16 Chapter 2 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Figure 2.8: Digital logic schematic for the SC square operation and corresponding input and output probabilities for
different SC codes. Input bitstreams must not present self-correlations in time.

� Maximum and minimum
Both maximum and minimum SC operations require correlated input bitstreams,
i.e. inputs generated by comparison with the same sequence. If this condition is
met then the minimum operation requires a single AND gate in the unipolar and
bipolar codings, so that:

〈x̃(t) · ỹ(t)〉 = 〈(min {x̃(t), ỹ(t)}〉 = min {px, py} (2.23)

Similarly, the maximum operation requires a single OR gate, so that:

〈max {x̃(t), ỹ(t)}〉 = max {px, py} (2.24)

Notice min {px, py} = px or max {px, py} = px implies min
{
p∗x, p

∗
y

}
= p∗x or

max
{
p∗x, p

∗
y

}
= p∗x, respectively. Therefore, these operations are the same for the

unipolar and bipolar codings and the corresponding SC digital implementation
is depicted in Fig. 2.9.

Figure 2.9: Digital logic schematic for the SC maximum and minimum operations applied to unipolar and bipolar
bitstreams. Input bitstreams must be maximally correlated.

It is worth highlighting both maximum and minimum operations can also be im-
plemented by means of combinational logic in the case of sign-magnitude pairs of
bitstreams. Apparently, these implementations do not present a clear improve-
ment compared to other approaches.

� Absolute value subtraction

Figure 2.10: Digital logic schematic for the SC absolute value subtraction applied to unipolar bitstreams. Input
bitstreams must be maximally correlated.

Chapter 2 A. Morán Costoya 17

Compact Reconfigurable Machine Learning Systems

The SC absolute value subtraction operation is performed between pairs, which
must be correlated and coded in the unipolar representation. The operation is
done via a single XOR logic gate (see Fig. 2.10)

〈x̃(t)⊕ ỹ(t)〉 = 〈x̃(t) (1− ỹ(t))〉+ 〈ỹ(t) (1− x̃(t))〉
= −2〈x̃(t) · ỹ(t)〉+ 〈x̃(t)〉+ 〈ỹ(t)〉
= −2 min {px, py}+ px + py

= |px − py|

(2.25)

� Average addition (MUX)
The classical SC average addition is accomplished by time-division multiplexing
of the inputs to the output. The average addition of unipolar, bipolar, sign-
magnitude or extended bitstream pairs is done via digital multiplexers and a
random uniform selector signal, as depicted in Fig. 2.11. Notice the selector
signal with activation probability 1/2 selects each input 50% of the time, so that
the output has the average activation probability.

Figure 2.11: Digital logic schematic of the SC average operation using multiplexers. Correlation between bitstreams
does not matter.

The same concept can be extended to multiple (n) inputs or pairs of inputs using
an n : 1 multiplexer with an uniformly distributed selector signal containing
integers ranging from 0 to n − 1, so that each input is equally probable at the
output, resulting in the average bitstream.

2.2.3.2 (b) Internal feedback operations

The set of internal feedback operations and its implementations are heterogeneous. In
fact, many of these implementations are ad-hoc for a given application.

In particular, V. Canals collected many implementations of nonlinear functions ap-
proximations [50], e.g. division, hyperbolic tangent, sigmoid, exponentiation or Gaus-
sian, among other. B. D. Brown et al. proposed to implement functions in the SC
domain using finite state machines (FSMs) [51]. P. Li et al. proposed a general ap-
proach to implement functions from SC random bitstreams using finite state machines
(FSMs) [52].

In particular, the accumulative parallel counter (APC), depicted in Fig. 2.12, should
be introduced before the SC implementations presented in Chapter 5. In general, it
takes m input bitstreams and counts how many of them are in the high state using
a parallel counter, which outputs a dlog2 (m)e-bit binary weighted value and is accu-
mulated over time each clock cycle, being N the maximum number of clock cycles, so
that the register bit width has to be dlog2 (mN)e at least. Therefore, the output is a

18 Chapter 2 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Figure 2.12: Accumulative parallel counter digital design.

radix-2 unsigned integer with mean value n
∑m

i=0 pi. At the same time, n represents
the current time step, which is equal to the final number evaluation cycles N .

The APC might be used to compute the average and convert it back to a stochastic
bitstream for further computations, e.g. a three input bitstreams APC appointed as
stochastic accumulative parallel counter (SAPC) is illustrated in Fig. 2.13.

Figure 2.13: Accumulative parallel counter digital design incorporating an average bitstream output. Here the
threshold value is equal to the number of input bitstreams to obtain the average activation probability.

The SAPC is more accurate than the SC average addition based on the multiplexer-
based design, especially as the number of input bitstreams increases. In the multiplexer
case, an input per cycle is evaluated, so that for m inputs the length of the output
(average) bitstream is mN . However, in the case of the SAPC, every input bit is added
each clock cycle and accumulated in the register. So, the length of the output bitstream
is N assuming the same target precision obtained using the multiplexer approach.

However, the SAPC implementation is mainstream for unipolar and bipolar bit-
stream representations but not for sign-magnitude and extended codings.

Nevertheless, there exists a similar APC solution to sum numbers in the sign-
magnitude representation, see Fig. 2.14. This figure depicts an APC adapted to
integrate sign-magnitude bitstream pairs. This design is the same one illustrated in
Fig. 2.12, but now inputs are two’s complement streams representing either +1 or
−1. At the same time, other works proposed the scaling-free SC addition [48], which
outputs a bitstream not proportional to the addition or average operation and depends
on the number of inputs6.

6This was not a problem for the authors since they implemented the FFT, which can be decomposed
in pipelined two-input operations, i.e. the number of inputs is always the same and their addition
circuitry can be calibrated for that specific case.

Chapter 2 A. Morán Costoya 19

Compact Reconfigurable Machine Learning Systems

Figure 2.14: Accumulative parallel counter digital implementation adapted to integrate sign-magnitude bitstream
pairs.

2.2.4 Error analysis

When converting an activation probability px to the corresponding bitstream x̃(t) as de-
scribed in subsection 2.2.2, the value of x̃(t) at each time step follows Bernoulli random
variable. Therefore, repeating the experiment N times results in an integer number of
active states between 0 and N given by the random variable NB,x ∼ B(N, px). So that
NB,x follows a Binomial distribution with activation probability px and the probability
of getting n successes in N independent experiments is given by (2.26). This equation
holds as long as bitstreams are obtained by comparison with a sequence of indepen-
dent and identically distributed uniform random numbers, which means rx(nT) could
contain repeated values for different values of n.

P (NB,x = n) =

(
N

n

)
pnx(1− px)N−n (2.26)

It can be shown that the corresponding mean and variance are given by:

E (NB,x) = Npx (2.27)

var (NB,x) = Npx(1− px) (2.28)

Notice (2.15) is equivalent to the expected value expression above, but expressed
using a Bernoulli random variable instead of bitstream timeseries. Also, given the vari-
ance, it is possible to propagate the error through domain conversion stage and different
SC operations. According to (2.27) and (2.28), recovering an activation probability px

from the corresponding bitstream has a measurement deviation equal to std
(
NB,x
N

)
, so

that the measured activation probability assuming no intermediate SC operations is

1

N

N−1∑
n=0

x̃(nT)︸ ︷︷ ︸
measurement

= px ±
√
px(1− px)

N︸ ︷︷ ︸
1
N (E(NB,x)±std(NB,x))

(2.29)

Fig. 2.15 illustrates how the standard deviation std
(
NB,x
N

)
depends on the number of

Bernoulli experiments or bitstream length N . The left hand side figure shows mean
and maximum standard deviation compared to the corresponding quantization error
(1/N). Since the measurement error also depends on px, the right hand side figure
shows how the standard deviation depends on N and px. Notice the measurement
error is maximum for px = 0.5 and there is no associated conversion error for px = 0
and px = 1.

20 Chapter 2 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

In contrast, if bitstreams are obtained by comparison with a maximum length
random sequence, random number repetitions are not allowed and the measurement
error decreases to zero7. This idea was introduced in [53], inspired by Monte Carlo and
quasi-Monte Carlo integration methods [54], [55].

Figure 2.15: Binomial standard deviation.

The most relevant operations in this work are related to uncorrelated unipolar and
bipolar bitstream multiplications. Since the error is different from zero for uncorrelated
bitstream operations, the error analysis has been restricted to these two cases and
domain conversion error is neglected. First, according to Table 2.1, for the unipolar
multiplication:

1

N

N−1∑
n=0

x̃(nT) · ỹ(nT)︸ ︷︷ ︸
measurement

= pxpy︸︷︷︸
ideal outcome

± σxy︸︷︷︸
unipolar product error

(2.30)

where the error term refers to the standard deviation, which might come from e.g. ap-
plying error propagation assuming px and py can be approximated by (2.29). However,
carefully chosen random sequences to minimize the deviation term and a bitstream
might represent an integer with no associated error. So, the error term is reduced
compared to that propagated from the combined binomial distribution. In addition
(2.30) result is easily extended to the sign-magnitude coding for a bitstream length
equal to N/2. In practice N is finite and undesired correlations make the error greater
than zero. For the bipolar product, the same reasoning is applied: 1

N

N−1∑
n=0

x̃(nT)⊕ ỹ(nT)︸ ︷︷ ︸
measurement

∗

= p∗xp
∗
y︸︷︷︸

ideal outcome

± 4σxy︸︷︷︸
bipolar product error

(2.31)

The main difference compared to (2.30) is on the error term, which doubles compared
the unipolar case because 〈x̃(t)⊕ ỹ(t)〉 = pxpy + (1− px)(1− py) and the variance for
(1− px)(1− py) is the same than for pxpy. Notice this error term is also doubled when
the measurement is converted to the bipolar representation.

7Assuming no intermediate SC operations and input and output resolution are the same.

Chapter 2 A. Morán Costoya 21

Compact Reconfigurable Machine Learning Systems

As an example to estimate σxy in (2.30) and (2.31), let x̃(t) be a PWM-like bitstream

so that Npx = bNpxc =
∑Npx−1

n=0 x̃(nT) or Npx = bNpxc =
∑N−1

n=N(1−px) x̃(nT), which

can be easily generated by substituting the random sequence rx(t) by simple counter.
Also, assume ỹ(t) has been generated by comparison with a uniform random number
sequence ry(t), so that Nry(t) is a maximum length sequence returning numbers from
1 to N and there is an associated standard deviation to the measure of Npy. In this
case the PWM-like bitstream x̃(t) acts as a binary mask. The collision bitstream
x̃(t)ỹ(t) activation rate becomes zero for t ≥ NpxT , i.e. the measurement is given
by 1

N

∑Npx−1
n=0 ỹ(nT) because the maximum length sequence property is lost, i.e. the

maximum random number value is greater than the sequence length. The expected

value of this measurement is pxpy and its standard deviation is σxy =
√

py(1−py)

Npx
, as

in (2.29) but with a different sequence length. Recall this was just an example and
there are multiple possibilities depending on how the bitstreams are being generated,
generally more difficult to derive analytically, so some authors choose to perform a
simulation to characterize the error of their SC-based multipliers instead of providing
a theoretical proof [56], [57]. In any case, the error is not uniform for different input
activation probabilities, in particular, it is maximum when both activation probabilities
are 50% and zero if one of the input activation probabilities is either 0 or 1. In our
example σxy ≈ 0.044 for N = 256, i.e. probabilities encoded as 8-bit unsigned numbers.
Fortunately, this result can be improved using a maximum length random uniform
sequence for ry(t) or, even better, for both rx(t) and ry(t).

Instead, two’s complement multiplication between two dlog2Ne-bit numbers x and
y, and scaling to the same bit precision leads to an error given by xy

N/2
−b xy

N/2
c, which is

equivalent to xy
N/2

mod 1. This means the maximum error value is only one unit below
the ideal approximation and do not depend on the input values magnitude.

2.2.5 Noise tolerance

Usually, conventional arithmetic units operate m-bit numbers and the SC unipolar
or bipolar counterpart would need bitstream lengths of N = 2m to achieve a similar
precision on the output. Imagine an adverse environment in which our digital hardware
suffers from bit flips. Let pf be flipping probability of a 1 becoming 0 or viceversa within
a clock period, which is considered equally likely for illustration purposes. Under these
conditions, there would be an average of pfm bit flips per number in the conventional
binary weighted case and pf2

m in the SC case. A bit flip in a binary weighted number
could represent an error that ranges from 1 to 2m−1 depending on whether the bit flip
happened on the less or most significative bit. However, since bitstreams are longer
compared to the compact weighted representation, the maximum (and minumum) error
per bit flip is always 1 and might be compensated by a second bit flip.

The main problem with TC’s noise robustness relies on the standard deviation
of the absolute error due to bit flips. Notice for every TC bit flip, there would be
approximately m bit flips in a SC bitstream if pf is identical for both cases. However,
bitstream bit flips could be partially compensated with each other, e.g. if a high state
is flipped and then a low state is flipped the impact to the number representation is
effectively zero. In contrast, in the TC case, compensations are much less likely. In
addition, this refers to the impact in single number representations, but the errors
might be propagated through the whole TC or SC network. In this context, P. Li and
D. J. Lilja demonstrated the superiority of SC over TC experimentally for a simple

22 Chapter 2 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

image segmentation algorithm [41].
Nevertheless, this advantage is only optimally exploited avoiding the interaction

with external memory and controllers and receiving data to be processed directly from
sensors.

2.2.6 Relative computational cost

The comparison between TC and SC for specific applications in terms of computational
cost might depend on several factors. One of them is the number and type of opera-
tions needed for a specific application, e.g. low precision SC multiplications are much
cheaper, but additions are not as efficient as the TC equivalent. So that we expect
SC to be theoretically superior executing algorithms involving low precision matrix
multiplications, convolutions or L2 distances, as well as nonlinear or piecewise linear
activation functions. Another factor to consider is the current state of microelectron-
ics technology. In order to account for these two factors, it would be reasonable to
approximate the (static) energy cost S as something proportional to the area A and
number of evaluations N needed:

S ∝ AN (2.32)

While in the case of TC, a parallel operation would be performed with one evaluation
(N = 1), in the SC case it would need Q = 2m using an APC, being m the equivalent
TC bit width if the operation is performed in the time domain. The impact of having
a different number of evaluations is described by (2.33) for both cases.

STC ∝ ATC SAPCSC ∝ AAPCSC 2m (2.33)

A very common ML operation is multiply-and-accumulate (MAC). In the case of TC, a
MAC block is composed by a multiplier, adder and register. For this reason, the mean
MAC area is proportional to the number of FA needed, which is ultimately related to
the number of transistors needed. Assuming the multiplier, adder and accumulation
need m2 FA, 10m FA and 10m registers8 respectively, for a maximum accumulation of
210m − 1, the approximate cost would be:

STC ∝ 36m2 + 180m (2.34)

which assumes a very optimistic case of 6 transistors per FA and 12 transistors per
DFF [58]. The corresponding transistor counts are listed in Table 2.2.

In contrast, the equivalent SC MAC average size would be related to the number
of transistors needed for a single multiplication plus the average number of transistors
needed for every APC input. The (inverted) multiplication could be e.g. a single XOR
logic gate composed by only 2 transistors. However, the APC is more tricky, it is
composed by a PC and an accumulator. In the case of the 15-inputs APC, the PC
would be composed by 11 FAs and the accumulator would be composed m+ log2 (16)
DFFs and the same number of FAs. Knowing that a DFF could be implemented with
12 transistors, the average APC cost would be:

SAPCSC ∝ (9.73 + 9.53m) · 2m (2.35)

8Notice 10m-bit adder and register might be an arbitrary choice. It could be both lower or higher
depending on the specific application.

Chapter 2 A. Morán Costoya 23

Compact Reconfigurable Machine Learning Systems

which also accounts the 8m transistors per comparator for signal conversion (that is m
XOR and m FA). Notice this approximate calculation is similar for a MUX and simple
binary counter instead of an APC. The cost averaged for every 15 input pairs (i.e. 15
MUX inputs) would be:

SMUX
SC ∝ (8 + 8m) · 2m+1 (2.36)

which accounts for 5 4-input MUX with 18-transistors per MUX [58] divided by 15 to
get the average transistor count. The transistor count for the binary counter is not
taken into account because the output of the MUX is already stochastic. The SC APC
and MUX transistor counts are summarized in Table 2.3.

Table 2.2: TC CMOS MAC transistor count.

TC element transistor count

m×m-bit multiplier 36m2

10m-bit adder 60m
10m registers 120m

Total 36m2 + 180m

Table 2.3: Bipolar SC CMOS MAC transistor count.

SC-APC mean SC-MUX mean
element transistor count element transistor count

comparator 8m comparator 8m
multiplier 2 multiplier 2

APC 7.73 + 1.53m MUX 6
Total 9.73 + 9.53m Total 8 + 8m

The relation between SC and TC computational costs is represented in Fig. 2.16.
The blue and orange lines represent the APC and MUX cases respectively. The APC
implementation results clearly superior in all cases. As regards the comparison between
the SC APC approach and TC, there exists a limit in which SC outperforms the TC
approach in terms of computational cost. Since the relative computational cost has
been defined as the quocient between STC and SSC , TC is more efficient if this quocient
is less than 1, and less efficient otherwise. Therefore, using the dotted black line in
Fig. 2.16 as a reference, for m . 5 the SC approach would be a better choice in terms
of computational cost for MAC operations.

Nevertheless, there are cases in which SC solutions with m > 5 might be more
convenient than the equivalent TC, e.g.:

� Fully parallel TC systems require a lot of area compared to SC. For this reason
TC implementations are mostly based on datapath and controller designs. So
it is common that a fraction of available hardware resources remains active but
is not used. In addition, parallel implementations require less controller over-
head. Examples of this issue are instruction fetch and decode in a MCU or state
transitions in FSMs.

� MAC hardware might be followed by an activation function, e.g. ReLU or sig-
moid, or block reduction operations, e.g. max or average pooling. In this case the

24 Chapter 2 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

computational cost is more optimistic for SC than TC, but the exact difference
in computational cost depends on the number of stacked SC stages as well as the
hardware complexity and latency.

� If noise tolerance is a requirement, then one might choose to implement a SC
system in front of a TC system.

Figure 2.16: Ideal comparison between SC and TC in terms of computational cost based on CMOS transistor counts
and number of needed iterations. Notice the dotted line represents the TC solution by itself. These results are only

approximately valid for the specific case of the MAC operation.

2.3 Pattern Recognition

Pattern recognition refers to any process of signal identification. A signal might repre-
sent any object or abstract concept and is identified by predicting a label wich repre-
sents an arbitrary high level feature or decision.

The general pattern recognition pipeline is depicted in Fig.2.17. The sensor acquire
raw data, which might be pre-processed. Then, feature extraction is used to create
a higher level representation from pre-processed data. Finally, a decision is rendered
based on some model.

Sensor
Pre-

processing
Feature

extraction
Model

outside

world

raw

data

pattern features prediction

Figure 2.17: Generic pattern recognition pipeline.

Sensor and preprocessing stages might be very different depending on the type of
input signals. For example, in the case of object recognition, input signals are most
likely RGB pixel values from some CCD sensor and the pre-processing stage would
be used to e.g. resize the image so that it matches the size expected by the feature
extraction block. Instead, in the voice recognition case, raw data would be acquired by
a microphone and the pre-processing state would be e.g. a noise removal algorithm.

Nowadays, some relevant pattern recognition applications are related to: weather
forecasting [59], document recognition [16], voice recognition [60], cancer cell identifi-
cation [61], fingerprint recognition [62], face detection [63] and recognition [64], object
detection [65] or image segmentation [66] and captioning [67], among many others.

Chapter 2 A. Morán Costoya 25

Compact Reconfigurable Machine Learning Systems

As regards the feature extraction and model stages, there are three commonly used
strategies:

� Conventional ML: a pre-defined method is used to create feature maps, e.g.
histogram of oriented gradients (HOG) for image data [68] or mel-frequency cep-
strum (MFC) for audio data [69]. In these cases, after the feature extraction
step, it is common to use a support vector machine (SVM) model [70], but other
options like linear or logistic regression could also be good candidates for simpler
tasks.

� End-to-end: feature extraction is part of the model. All parameters are learned
from already seen data, e.g. backpropagation in Convolutional Neural Networks
(CNNs). This approach requires more training data than the previous one if
trained from scratch [71].

� Hybrid: as in the first case, a pre-defined method is used to create feature maps.
A common example is audio classification with 2-dimensional CNNs, which typ-
ically require the mel spectrogram9 as input data [72]. This approach might
require less training data than the previous one.

2.3.1 Learning

There are several methods to accomplish learning in ML systems, as: Gradient-based
learning, Moore-Penrose pseudoinverse and the use of Heuristic learning rules.

� Gradient-based learning: Nowadays, gradient-based learning is the most popular
optimization strategy for NNs and might be applied to supervised, unsupervised
and reinforcement learning [73]. The goal is to maximize/minimize a function
depending on some parameters to be optimized. It is accomplished through an
iterative algorithm, which might depend on some hyperparameters in order to
converge to a local optimum. The main idea behind this approach is to update
function parameters until convergence.

Since there are a lot of possible gradient-based optimization algorithms, we sum-
marized them in Fig. 2.1810. First, depending on whether the first or second
derivative, an optimization method is first or second order, respectively.

In the case of first order methods, the simplest method is known as gradient
descent and only the first derivative is considered to carry out the parameter
update. However, there are variations of this method which speedup convergence.
Moreover, if all available data is used to perform every iteration it is said to be
a full-batch method. On the contrary, if only a portion of the data is used, then
it is a mini-batch method.

In general, second-order algorithms use quasi-Newton methods since the Newton
method would require computing the Hessian. The Hessian is too expensive to
be computed at each iteration. This issue can be solved using a quasi-Newton

9The mel or mel-scaled spectrogram is just a part of the entire MFC pipeline, it does not involve
the discrete cosine transform.

10Notice there also exist zero-order optimization methods, which have not been discussed since
they are not gradient-based and do not provide relevant information to the reader regarding the work
embodied in this document

26 Chapter 2 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

approach, which approximates the Hessian to carry out the second order update
faster, e.g. BFGS [74].

Types of gradient descent algorithms

First-order

Full batch Mini batch

Second-order

Newton Quasi-Newton

... ...

Figure 2.18: Common types of optimization algorithms based on gradient descent.

� Moore-Penrose pseudoinverse: The Moore-Penrose pseudoinverse is a closed-form
solution to the multivariate least squares optimization problem.

� Heuristic learning rules: The heuristic learning approach is based on an educated
guess of how the system should evolve. Typically, the solution is not guaranteed
to be optimal but is sufficient to obtain a short-term goal or approximation to
some problems. In some cases, heuristic methods converge much faster to a
solution [75].

There exist a wide variety of ML models and some of them have been enumerated
in Fig. 2.19. The ones related to our research are highlighted.

All ML models are based on a hypothesis11 h parametrized by a set of parameters
θ that maps some input dataset X to an approximation of the desired outputs Ŷ , i.e.

Ŷ = hθ (X) (2.37)

This hypothesis might be different between different methods, but it might also change
how the parameterization θ is obtained depending on the training algorithm. In gen-
eral, input and output data are represented by tensors. The notation used from here
on assumes the first dimension of these input and output tensors is related to each
dataset sample, while the rest of dimensions represent actual spatial or spatio-temporal
dimensions for unstructured data. In this case there is not a pre-defined format or or-
ganization since individual values are meaningless. In contrast, structured data refers
to relational databases in which data fits in fixed fields and columns. In this case
individual values have a human-understandable meaning. Therefore, if input and/or
output data are structured, there is a single spatial dimension and tensors in (2.37) can
be represented by matrices in which each row represents a data sample and columns
represent features.

2.3.2 Linear models

Linear models are the simplest models, the output of which is just a linear transfor-
mation of the input. That is:

Ŷ = XW + B (2.38)

11The meaning of hypothesis in the ML literature is distinct (but related) to the same word in
statistics (i.e. statistical hypothesis).

Chapter 2 A. Morán Costoya 27

Compact Reconfigurable Machine Learning Systems

Figure 2.19: A map of ML methods. The ones highlighted in yellow have been needed for training or implemented in
hardware.

where W is the weight matrix and B is the broadcasted bias vector b. So that W and b
are the parameters of the linear model. Notice this notation is equivalent to Ŷ = XW
if X contains an additional column of ones. In this case W has an additional bias row.

Here we review two different linear models: linear and softmax regressions. Each
of these can be used to solve regression and classification tasks, respectively. Linear
and softmax regressions are convex optimization methods, i.e. are based on the mini-
mization of a cost function with a single global minimum (convex function). If instead
the method is based on the minimization of a cost function with multiple local minima
(non-convex function), then it is referred to as a non-convex optmization method. Fig.
2.20 illustrates the difference between convex and non-convex functions for an ideal
1-dimensional cost function with the global minimum highlighted in red.

2.3.2.1 Linear regression

Linear regression is a statistical model that approximates linear relationships between
input and target data via the minimization of a convex cost function. It is common
to use different names for the same approach depending on the input (independent
variables) and output (dependent variables) dimensionality. If the input and output
are scalar values, then it is referred to as simple linear regression. If the input has
more than one dimension but the output is a scalar, then it is referred to as multiple
linear regression. Finally, in the general case, if both input and output are vectors,
then it is referred to as multivariate linear regression. In the text we use the term

28 Chapter 2 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Figure 2.20: Convex vs non-convex 1-dimensional cost function. The global minimum is highlighted in red.

linear regression in its most general definition i.e. multivariate linear regression. Let x
and y be row vectors denoting an arbitrary data sample and the corresponding target,
respectively. Then, the loss function is the square error, given by (2.39).

L (xW ,y) =
∑
i

(xW:,i − yi)2 = (xW − y) (xW − y)ᵀ (2.39)

which can be derived from the maximum likelihood estimation (MLE) method assuming
the errors Ŷ − Y are normally distributed. Since the goal is to minimize the square
error of the whole dataset, then the cost function is defined as:

J (X,W ,Y) =
1

2m

∑
i

L (Xi,:W ,Yi,:) +

L2 regularization︷ ︸︸ ︷
λ

2m

∑
i,j

W 2
i,j

=
1

2m
‖XW − Y ‖2

F +
λ

2m
‖W ‖2

F

(2.40)

where m is the number of training samples and the L2 regularization term is optional
and penalizes large weight values to reduce overfitting. Notice increasing λ increases
regularization too. Therefore, the gradient of the cost is:

∇WJ (X,W ,Y) =
1

m
(XᵀXW −XᵀY + λW) (2.41)

At this point, there are two possible methods to obtain the model parameters. An
option is to solve (2.41) using normal equations by setting the gradient equal to zero
so that:

W = (XᵀX + λI)−1 XᵀY (2.42)

Notice it is a convex optimization method because the term (XᵀX + λI)−1 has a
unique solution. It is also common in the literature to use the Moore-Penrose pseu-
doinverse X+ of X, given by (2.43)12, so that the weight matrix would be W = X+Y
for λ = 0.

X+ = (XᵀX)−1 Xᵀ (2.43)

Another option is to minimize the cost (2.41) via (first order) gradient descent using
either full batch or mini-batch methods. The simplest iterative process is described by

12Here we assume X is a real matrix. If X is a complex matrix, then transpose operations would
be replaced by conjugate transpose operations.

Chapter 2 A. Morán Costoya 29

Compact Reconfigurable Machine Learning Systems

Algorithm 1 for the (2.41) cost gradient. Where α the learning rate, which might be
decreased over iterations.

Algorithm 1: Simple full batch gradient descent.

Input: Learning rate and initialized weight matrix
Result: Optimized weight matrix
repeat

W := W − α∇WJ (X,W ,Y);
until convergence;

There are also more effective update rules for first order gradient descent algorithms,
such as momentum [76] or Adam [77], which have been included in Appendix A.2 and
A.3 respectively. It is also possible to find the optimal parametrization using quasi-
Newton methods, such as L-BFGS [78].

2.3.2.2 Logistic and Softmax regression

Logistic regression is a statistical model that approximates linear relationships between
input and target data via the minimization of a convex cost function. However, its
interpretation is fundamentally different. In the case of linear regression the goal is
to approximate a continuous variable while in this case the goal is to model a binary
categorical output, i.e. label ”0” or ”1”. Therefore, a sigmoid or logistic function is
applied to the linear output, so that the it is interpreted as the probability of an input
vector Xi,: belonging to the class with label ”1”, i.e.

ŷ = σ (Xw + b) (2.44)

where σ is the sigmoid function (2.45) and the effect of the bias could be included
in the weight matrix by adding a column of ones to the input vector, so we will use
ŷ = σ (Xw) to simplify notation.

σ(z) =
1

1 + e−z
(2.45)

The logistic regression loss function for a single sample x and target y, derived from
the MLE, assuming the dependent variable follows a binomial distribution is given by
the binary cross-entropy (2.46)13 [79].

L(σ (xw) ,y) = −y log (σ (xw)) + (1− y) log (1− σ (xw)) (2.46)

Therefore, the cost function with L2 regularization is:

J (X,w,y) =
1

m

∑
i

(−yi log (σ(Xi,:w)) + (1− yi) log (1− σ (Xi,:w))) +
λ

2m
‖w‖2

(2.47)

Since the derivative of the sigmoid function is dσ(x)
dx

= σ(x)(1−σ(x)), then the gradient
of the cost is given by (2.48).

∇wJ (X,w,y) =
1

m
Xᵀ (σ(Xw)− y) +

λ

m
w (2.48)

13Cross-entropy is also known as Kullback-Leibler distance or relative entropy.

30 Chapter 2 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Moreover, logistic regression generalization to multiple classes is known as softmax
regression and the derivation is very similar. Now the model is:

Ô = s(XW) (2.49)

where the nonlinear function (2.45) converting logits to probabilities would be gener-
alized by (2.50).

s(Z) =
eZ

1ᵀeZ
(2.50)

The number of rows of Z is equal to the number of possible outputs (different classes)
and different rows represent different dataset samples.

Assuming mutually exclussive classes and targets following a multinomial distribu-
tion, MLE yields the loss function (2.51) for a single sample x and the corresponding
one-hot target o, which is the general form of the discrete cross-entropy [79].

L(s(xW),o) = −o log s(xW)ᵀ (2.51)

so that the cost function with L2 regularization is:

J(X,W ,O) = − 1

m
O log s (XW)ᵀ +

λ

2m
‖W ‖2

F (2.52)

Since the derivative of (2.50) is ∇Zs(Z) = s(Z)(I − s(Z)), then the cost function
gradient is:

∇WJ(X,W ,O) =
1

m
(Xᵀ (s(XW)−O)) +

λ

m
W (2.53)

Notice the logistic regression expression is recovered for the two-class case. Since it
is not possible to express the optimal weights as an analytical function of X and W ,
logistic and softmax regressions cannot be solved via normal equations. So, the optimal
weights are obtained by first or second order gradient descent methods. So the simplest
full batch method would be Algorithm 1. So that after training it converges to the
optimal because the cost function is convex [80].

It is worth clarifying some works use linear regression for classification tasks [81],
[82], but the least squares loss (2.40) is not optimal for discrete output values. How-
ever, it is possible to apply the linear hypothesis to a classification task by defining a
threshold yth, i.e.

ŷi =

{
1 hθ(Xi,:) > yth

0 hθ(Xi,:) ≤ yth
(2.54)

where the threshold value yth would be equal to 0.5 for logistic regression because the
model represents a probability, which is not true for linear regression, so that yth needs
to be tuned to reach optimum results.

In the linear regression case the threshold value yth needs to be tuned to reach
optimum results, meanwhile for logistic regresion yth it is assumed to be 0.5. A 1-
dimensional binary class example is illustrated in Fig. 2.21, which assumes yth for
both cases. Notice samples between the vertical dashed lines would be misclassified by
the linear regression method.

Chapter 2 A. Morán Costoya 31

Compact Reconfigurable Machine Learning Systems

Figure 2.21: Example 1-dimensional comparison between linear and logistic regression results. Blue and orange
dashed vertical lines are the decision boundaries for linear and logistic regression respectively.

2.3.3 Learning in Artificial Neural Networks

ANNs are computational models partially inspired by the structure and behavior of
the brain. Such inspiration or analogy with real neural systems comes from the fact
that brains are composed by interconnected excitable units that receive, compute and
transmit information. In this context, there exist different classification of ANN types
depending on the neuron architecture [83] or network connectivity [2], which is also
applicable to DL models [73].

Real neurons communicate with each other through spikes. These spikes are abrupt
changes in the membrane potential called action potentials, which travel from each
neuron terminal buttons to the dendrites of the neurons connected to those buttons.
The dendrites extend from the soma, which collects the contribution of all excitatory
and inhibitory incoming spikes to the membrane potential and generates an action
potential every time some threshold voltage is reached. Finally, the action potential
wave is transmitted from the soma to the terminal buttons though the axon.

Figure 2.22: Generations or types of artificial neuron models and their similarity to a biological neuron.

Generally, the behavior of artificial neurons used in AI applications is only partially
inspired on the biological counterpart, or at least this has been the trend observed so
far [73].

Three neuron model generations are depicted in Fig. 2.22 depending on how similar
the model is compared to a biological neuron:

32 Chapter 2 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

� 1st generation
Assume average rate coding for incoming spikes, so that inputs are represented
by static quantities. The role of the soma is replaced by a weighted sum of these
inputs, followed by a Heaviside activation function. An ANN composed by these
neurons is capable of modelling any boolean function.

� 2nd generation
As for 1st generation neurons, inputs are represented by static quantities. In this
case the role of the soma is replaced by a weighted sum of the inputs followed by a
smooth or piecewise-smooth activation function. In practice, multiple activation
functions can be used, e.g. radial basis function (RBF), sigmoid or rectifiers. An
ANN composed by these neurons is capable of modelling any continuous function.

� 3rd generation
There is a wide variety of 3rd generation models and all of them assume input
and output spike dynamics. Since the amplitude of an action potential is inde-
pendent of the amount of current that caused the event [84], i.e. it does not
carry relevant information in the amplitude but in the spike frequency or even
specific firing times, so the specific shape of the action potential is not taken
into account for AI applications [85], [86]. Also, spiking-neuron models includ-
ing biophysically meaningful measurable parameters are in general reserved for
computational neuroscience studies [87], [88].

Nowadays 2nd generation neurons are the preferred AI choice due to three main
reasons. First, since inputs and activations are represented by quantities, existing
CPUs and GPUs can be used to perform the corresponding floating point operations
at high speeds. Second, the derivative of the activation functions is not zero and exists
in (almost) the entire range of real numbers, allowing a relatively easy implementation
of error back-propagation algorithms [76], which is not true for the Heaviside activation
utilized in 1st generation neurons and is much more intricate in the case of 3rd generation
neurons [89]. Third, in contrast to 1st generation neurons, a sufficiently large ANN is
capable of modelling any continuous function no matter how complicated it is.

Regarding the connectivity of ANNs, it is common to distinguish two types of
networks: feedforward and recurrent. A feedforward NN (FFNN) is a directed graph
with no internal connectivity loops. An example of FFNN is depicted in Fig. 2.23
in which information flows from the input layer to the output layer with no feedback
loops, so that it represents a static function. In contrast, recurrent neural networks
(RNN) are represented by directed graphs in which (self) feedback loops are allowed.
An RNN represents a discrete dynamical system in which the inputs and outputs can
change every time step, so that present outputs depend on previous inputs, as depicted
in Fig. 2.24.

In the following sections, two types of FFNN and its corresponding learning strate-
gies are discussed. These two approaches are Prototype learning (section 2.3.3.1) and
Backpropagation in Multilayer Perceptrons (section 2.3.3.2). In addition, the Reser-
voir Computing (RC) framework (section 2.3.3.3), which includes a simplified learning
strategy for RNNs, is also discussed.

Chapter 2 A. Morán Costoya 33

Compact Reconfigurable Machine Learning Systems

Figure 2.23: Example fully connected feedforward neural network architecture.

Input layer Output layer

Hidden units

Figure 2.24: Example Recurrent neural network architecture.

2.3.3.1 Prototype learning

This kind of training strategy is typically applied to ANNs with a single hidden layer
in which each neuron activation is a radial basis functions (RBFs) [90]. This type
of network is often referred to as Radial Basis Function Neural Network (RBF-NN)
and prototype learning is not the only training option. There is a particular type of
RBF-NN in which input-to-hidden weights are initialized randomly and remain fixed,
while hidden-to-output weights are trained using a linear model. RBF-NNs based on
this simplified learning approach are known as Random Vector Functional Link Neural
Networks (RVFL-NN)14 [94], [95]. This concept can be extended to multiple hidden
layers and any kind of activation function. Notice the RVFL-NN approach is similar
to the Echo State Network (ESN) concept (see section 2.3.3.3), except for the fact that
an ESN is an RNN architecture.

Nevertheless, single hidden layer RVFL-NNs are not necessarily the best option
for neither accuracy nor explainability, which is the main strength of prototype learn-
ing approaches. Prototype learning approaches adjust input-to-hidden parameters,
resulting in accuracy improvements compared to random initialization. Once input-to-
hidden parameters are learned, these parameters tend to represent a set of meaningful
templates of the input data, referred to as prototypes. Suppose a single hidden layer
RBF-NN with already learned input-to-hidden weights W [1]. These parameters are

14As a curiosity, the reader might find in the literature some research papers citing a controversial
paper by G.B. Huang, who introduced the term Extreme Learning Machine (ELM) [91], an idea
similar to RVFL-NN published ten years later without giving proper credit to the original work. Since
it is not our intention to judge the intentionality of this fact or discuss whether there are significative
differences between ELMs and RVFL-NNs or not, we invite the interested reader to investigate such
controversy [92], [93].

34 Chapter 2 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

prototypes because after training tend to represent templates that are similar to in-
put data for a sufficiently large number of hidden units. Each row W

[1]
i,: represents a

prototype associated to the i-th hidden node and each hidden node resonates for large
enough similarities between input and prototype. A simple example is depicted in Fig.
2.25, in which the three hidden nodes detect upright triangles (W

[1]
:,0), squares (W

[1]
:,1)

and circles (W
[1]
:,2), respectively.

Each hidden node represents an RBF activation function g, which depends on a
distance (e.g. Euclidean distance) between the input and each prototype. The i-th

hidden activation is given by g
(∥∥∥x−W [1]

:,i

∥∥∥). Finally, these activations are processed

by a linear model.

Figure 2.25: RBF-NN example. This is an idealized example and figure distortions and size are not taken into
account by the model.

Suppose input x in Fig. 2.25 is an upright triangle exactly equal or very similar to
the one assigned for the first prototype, so that the first hidden node would return a
high value and the other two should be low, or at least lower.

The default choice for g is the Gaussian kernel (2.55) function. Where γ is an
additional hyperparameter to be tuned, but γ2 is usually related to the inverse of the
number of hidden units, i.e. Gaussian function narrows as the number of hidden units
increases to avoid multiple matches and thus increasing overfitting. The hyperparam-
eter γ is assumed to be constant for different hidden units, which is not necessarily the
case.

g(z) = e−γz
2

(2.55)

There exist multiple methods to obtain the prototypes. The straightforward ap-
proach is to randomly select input samples from the training set as prototypes, but
performance can be substantially improved by applying unsupervised learning tech-
niques such as K-means [96], [97], as reported by B. Scholkopf et al. [98]. K-means is
the unsupervised pre-training approach utilized in our RBF-NN implementation (Sec-
tion 5.1). The algorithm describes a clustering method that generates K prototypes
or centroids which split data samples in K different groups. So that each input sample
belongs to the the closest centroid15.

The same class of input data might be referred to more than one centroid. There-
fore, once prototypes are found the linear model is trained using labeled training data.
This fact is illustrated in Fig. 2.26 for 2-dimensional input data.

15The closest centroid depends on the distance metric; however, assume Euclidean distance by
default.

Chapter 2 A. Morán Costoya 35

Compact Reconfigurable Machine Learning Systems

Figure 2.26: Example synthetic 2-dimensional data representing 2 classes and corresponding centroids obtained
using K-means algorithm with K = 7.

Nevertheless, K-means is not the only option for clustering data or obtaining pro-
totypes, e.g. Expectation-Maximization [99]. Additionally, in this work the learning
process has been splitted in two different stages: unsupervised prototype learning and
supervised learning based on fixed prototypes. However, it is possible to obtain even
better accuracy using Autonomous Learning Multiple-Model First-order (ALMMo-1)
systems, which do not require two separate training stages, and learn from streaming
input data [100].

2.3.3.2 Backpropagation in Multilayer Perceptrons

A multilayer perceptron (MLP) is a network of interconnected neurons organized in
layers and is the most common example of FFNNs. In this type of architecture, layers
are connected sequentially, so that the i-th layer is only (fully) connected to the (i+1)-
th layer, as illustrated in Fig. 2.23. These architectures are typically trained via
a backpropagation algorithm, which extends the linear models ideas introduced in
Section 2.3.2.

First, suppose the network has been already trained and parameters (i.e. weights
and bias) do not need to be further modified. In this case the FFNN would be ready
to be used for inference, which refers to the fact that parameters are now constant
and the model has been deployed to solve certain task, see section 2.4.1 for further
details about inference. Inference in FFNN is the process of manipulating input to
obtain the output referred to as forward propagation. The MLP forward propagation
is as follows, each layer connected to the next one represents an additional matrix
multiplication between input and weight values followed by an elementwise activation
function. Suppose multiple input samples organized in rows represented by the matrix
X and results in activations A[L] for layer L. The input layer activations are A[0] = X,
so that the MLP forward propagation is defined by (2.57), given definition (2.56).

Z [L] ≡ A[L−1]W [L] + B[L], (2.56)

A[L] = g[L]
(
Z [L]

)
, L = 1, 2, . . . Lf (2.57)

where g[L] is the activation function for all units in layer L and Lf is the number of

36 Chapter 2 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

layers not including input layer. The forward propagation process is defined by the
iteration of (2.57) from L = 1 to L = Lf .

Now, suppose the MLP has been initialized with random weights and it has to be
trained to map input data X to output O. Here is where backpropagation comes into
play, performing a forward propagation and then, according to some cost function J ,
propagate the error back layer by layer while calculating the corresponding parameter
updates. This process is conceptually the same as for linear or softmax regression, i.e.
a parameter variation given the previous activation.

The backpropagation starts from the output layer, i.e. L = Lf − 1, and the goal is
to first calculate the error associated to the output layer in order to propagate it layer
by layer. This errors are denoted as δA[L] since these represent the desired corrections
for A[L] based on some cost function J . Then, the correction for the output layer is:

δA[Lf] ≡ ∇
A

[Lf]J
(
A[Lf],O

)
(2.58)

Once δA[Lf] is known, the rest of the backward propagation is systematic. The resulting
iterative relations in the backward propagation are as follows:

δZ [L] = g[L]′
(
Z [L]

)
δA[L] (2.59)

δW [L] =
1

m
A[L−1]ᵀδZ [L] (2.60)

δb[L] =
1

m
1ᵀδZ [L] (2.61)

δA[L−1] = δZ [L]W [L] (2.62)

If the cost function J is not scaled with the number of samples m, then the weight
variation is computed as in (2.53) layer by layer. The entire process scheme involving
both forward and backward propagation has been shown in Fig. 2.27.

Figure 2.27: Forward (blue) and backward (orange) propagation schemes for a MLP batch/mini-batch iteration.

Backpropagation methods involve computationally expensive matrix multiplication
calculations and depending on the layer sizes and network deepness. However, it is
the most widely extended approach to train ANNs, including MLPs, CNNs and RNNs
because of its superior performance on supervised learning tasks with large datasets.

Chapter 2 A. Morán Costoya 37

Compact Reconfigurable Machine Learning Systems

Nowadays researchers and engineers have many open source resources to create
ANNs without worrying about the backpropagation implementation. The programmer
would only specify the network architecture, so that the forward propagation (Fig.
2.27, blue) is completely defined, and the cost function, as well as the corresponding
hyperparameters related to regularization strategies and iterative update methods like
Adam. Once it is defined, the backward propagation (Fig. 2.27, orange) is also already
inferred behind the scenes using automatic differentiation techniques [101], which is
the approach implemented by most deep learning frameworks like PyTorch [102], [103]
or Tensorflow [104].

2.3.3.3 Reservoir Computing

Reservoir Computing (RC) is a generalization of the concepts of Echo State Network
(ESN) and Liquid State Machine (LSM), proposed by Jaeger [105] and Maass [106],
respectively. In both cases, the authors propose the use of RNNs to solve tasks requiring
certain memory and a supervised learning process, which is much simpler than the well-
known backpropagation trough time [107]–[109].

RNNs consists of several input units, connected to the hidden units and these are
connected between them and to the output layer16, just like in Fig. 2.24. While in
the most general case all model parameters are learned, Jaeger and Maass proposed
to randomly initialize model weights and modify only those weights connected to the
output units, as depicted in Fig. 2.28.

The main difference between Jaeger (ESN) and Maass (LSM) works lies in the fact
that ESNs are composed by 2nd generation neurons and LSMs are composed by 3rd

generation (spiking) neurons. Since they obtained similar conclusions independently,
both authors are considered the fathers of RC.

Input layer Output layer

Reservoir

Figure 2.28: Echo State Network or Liquid State Machine scheme. Three blocks: Input layer, reservoir and the
output layer compose the network. During the training process, solid line arrows correspond to weights are not

modified and dashed line arrows correspond to trainable weights, i.e. only the reservoir-to-output weights are modified.

In the case of ESN and LSM, hidden nodes are referred to as reservoir. However,
a reservoir can be any discrete or continous dynamical system. Fig. 2.29 shows a
generic scheme in which a reservoir or dynamical system is perturbed by an (optionally
encoded) input signal. Then, these perturbations change the reservoir state, which
are fed to a readout model to make a prediction. Just like in the ESN and LSM
cases, the only part in which parameters are optimized is this readout layer. In most
cases the readout is a linear transformation. In addition, one could use a compressed
representation of the reservoir state instead of feeding the whole reservoir state vector

16Input units could also be connected to the output ones and here we assume there is no feedback
from the output to the reservoir.

38 Chapter 2 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

to the readout model, e.g. Jin and Li applied principal component analysis (PCA) to
compress a LSM reservoir state [110].

Encoder Reservoir
State rep-
resentation

Trainable
readout
model

input

signal

encoded

input

reservoir

state

reduced

state

prediction

Figure 2.29: Reservoir Computing scheme.

Generally, an RC system has the following properties:

� Approximation
Let (x,y) be the input and output data, respectively. It must be fulfilled that
for very similar input samples x and x + δx, the responses are also very similar,
i.e.

(x→ y)⇔ (x + δx→ y + δy) (2.63)

� Separation
Even though the approximation property is met, the distance between reservoir
states must be sufficiently large to distinguish between two similar input samples
belonging to different classes or categories in a classification task.

� Memory
Since recurrent networks present feedback between their nodes, the reservoir re-
sponse to an input signal retains information from previous inputs, which might
be reflected in the output layer. The reservoir stored information is progressively
lost as the system evolves in time, i.e. the memory referred to an input received
at certain time t0 is lost as the difference t− t0 grows.

These characteristics are common to other RNNs, which may exhibit even longer-
term memory, e.g. long short-term memory (LSTM) blocks [111] or gated recurrent
units (GRUs) [112]. The RC systems main advantage is the training simplicity com-
pared to full backpropagation. Everything related to the input encoding, reservoir and
(optionally) the reservoir state representation (see Fig. 2.29) are hyperparameters,
which need to be explored via e.g. grid search, random search or heuristic rules [113].
The only parameters modified directly by training are those of the readout model.

In order to have a qualitative understanding on how the RC approach works, let the
input data be M -dimensional and the (reduced) reservoir state be represented by an
N -dimensional vector. If N > M , the input is being projected to a higher dimensional
feature space which contains information from previous inputs. If the encoder, reservoir
and state representation are such that the N features are linearly independent17, then
increasing N also increments the probability of the task being linearly adjustable or
separable. In this case, it is always possible to fit the training data if N is sufficiently
large. This is the reason why linear readout models, like linear or logistic/multinomial
regression described in section 2.3.2, are the most common choice in the RC framework.

The main hyperparameter tuning approach in ESN or LSM networks does not
account for any encoder nor state representation stages (Fig. 2.29). In this case the
whole training process is as follows [105], [114]. First, an sparse and random input-
to-reservoir weight matrix W in and internal reservoir weight matrix W reservoir are

17Notice this does not necessarily mean the reservoir performance is optimal.

Chapter 2 A. Morán Costoya 39

Compact Reconfigurable Machine Learning Systems

initialized and left constant18. Second, the network is fed with input training data U ,
obtaining the corresponding activation states X. Third, the readout model is trained
using either the generated reservoir activation states X or both input and activation
states, denoted by Z = (U |X). Finally, the network is tested on new data and its
performance is evaluated using some metric, e.g. accuracy or mean square error (MSE),
and the whole process is repeated for different initializations using e.g. grid search or
random search strategies.

In general, the random initialization of weight matrices is restricted to some target
spectral radius. So that each initialization is restricted to some pair of spectral radius
ρ (W in) and ρ (W reservoir). The spectral radius is defined as the largest eigenvalue of
the corresponding matrix, that is:

ρ (W) = max
i
‖λi‖ (2.64)

where the eigenvalues λi ∈ C are the solutions for λ of (2.65).

det (W − λI) = 0 (2.65)

Nevertheless, the random nature of weight matrices makes convenient to repeat the
whole process for each spectral radius pair in order to obtain average performance
metrics. Taking into account other hyperparameters related to these matrices is a
common practice, e.g. sparsity in W in and W reservoir, or the strength of reservoir
self-feedback loops when considered separately (a.k.a. leaking rate [114]).

Moreover, different physical reservoirs have been proposed, as: including digital
and analog circuits, nonlinear electronic networks, opto-electronic, optical or quantum
[115]–[121], among others, see e.g. [122] or [123] for an up to date detailed list of
physical implementations. As a curiosity, it is even possible to meet the RC conditions
with just a bucket filled with water as reservoir [124]. If the reservoir is a physical or
computational dynamical system, the hyperparameter search is not based on the weight
matrices’ spectral radius as in the case of ANNs, but on the design space exploration.

This thesis includes two RC FPGA implementations. Firstly, Section 4.1 presents
a simplified ESN approach with a constrained ring-topology architecture applied to
audio event detection (AED). Secondly, Section 4.2 presents an RC system based on a
cellular automata (CA) adapted to time-independent input samples, and applied to a
handwritten digit recognition benchmark.

2.4 Energy efficient inference hardware

2.4.1 Inference

After training a model to solve certain task, it is freezed, i.e. the model parameters are
fixed to values providing the highest performance on the validation set. Therefore, it is
possible to train a model with massive datasets on a GPU and deploy it to lower power
or faster devices for inference purposes. So, the main reason to deploy a model with
inference-only capabilities is to improve energy efficiency. Such advantage might be
exploited either at servers or low power devices. Energy efficiency results in speedups

18It is, however, very common to exploit the unsupervised learning capabilities of spiking neurons
in LSMs to tune the internal reservoir connectivity in an unsupervised manner.

40 Chapter 2 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

with the same power at the server level and longer battery durations for low power
devices.

The deployment of an ML system19 consists on the obtention of a freezed model
and its evaluation on test set. Such process is described in Fig. 2.30. First, the
model parameters are optimized using e.g. gradient descent and validation data. This
is usually repeated for different initializations and training hyperparameters, as well
variations for different models. Then, an unseen set of samples is used for testing
purposes and sometimes compared across different models. Under certain criteria,
which is not necessarily accuracy, the best model is freezed (its architecture and learned
parameters are stored). Until this step, everything is usually programmed in a general
purpose computer, based on CPU and/or GPU. The next step is to verify the predicted
test performance matches the inference device performance, which might be checked by
direct device measurements. Finally, once the device has been successfully evaluated
on the test set, it is ready to be used in real life applications.

Figure 2.30: High level view of the ML deployment process.

Energy efficiency improvements might be reached without impacting arithmetic
operations’ precision using e.g. new technologies [125], computer architectures [126],
[127] or application specific architectures [128], [129]. However, energy efficiency im-
provements can be achieved by enabling a tradeoff between simplicity and global per-
formance. Simplicity is a wide concept and allows many options to simplify a model.
The main idea is to simplify the model as much as possible with no or little impact
on the model performance. Examples of simplification are: weight pruning, com-
pression, quantization and approximate arithmetic [130]–[132], which might rely on
non-deterministic computations [133].

This thesis was focused on digital technologies and FPGA in particular and our
improvements rely on ANN model simplifications. In particular, our contribution in-
cludes parameter and operation quantization, as well as SC, which might introduce
non-deterministic results under certain conditions. However, other model simplifica-
tions such as weight pruning and compression are out of the scope of this work, which
are not necessarily incompatible with the proposed hardware implementations.

19ignoring a potential manual feature engineering work

Chapter 2 A. Morán Costoya 41

Compact Reconfigurable Machine Learning Systems

2.4.2 Dedicated hardware

When it comes to improving energy efficiency by simplification, there exist multiple
available options such as reducing parameter and operation precision, modifying com-
putational elements... In particular, those platforms based on digital logic are put
in the spotlight. Other approaches based on analog designs are feasible too and can
achieve higher energy efficiency. Its development is generally slower and its hardware
implementation is not easily scalable, partly due to industry’s long-time focus on dig-
ital systems miniaturization, which was not possible to the same extent for analog
circuitry.

Perhaps, this scenario may change for ML in the future in favor of analog chips or
other emerging technologies such as quantum computing, making them more viable for
the industry. On the other hand, general purpose CPUs and GPUs are designed to be
precise and flexible. This fact makes these solutions less energy efficient than specific
hardware solutions, which restrict the hardware topology, data paths and precision.
Thus achieving better parallelism in the same area at the cost of losing the general
purpose functionality. In order to handle these restrictions with today’s technology,
the most appropriate solution is to develop a custom ASIC. Usually, this is the best
commercially available option for optimizing power, performance and area (PPA). So,
in terms of PPA efficiency (i.e. energy efficiency and area), ASIC is the preferred
choice.

Nevertheless, a custom ASIC cannot be modified or reconfigured to meet new spec-
ifications or correct any error. As an intermediate solution, FPGAs allow the designer
to deploy reconfigurable digital systems. An FPGA is certainly not as flexible and
easy to use as a GPU and even less than a CPU, but it is far less restrictive than an
ASIC. This fact makes FPGAs optimal for rapid prototyping and testing of new de-
signs, typically without requiring long coverage and timing simulations in addition to
steps in the workflow for a specific technology (e.g. 22 nm) to finally achieve the tape-
out. Although some workflow steps are common to FPGAs, it is mostly automated by
design software tools because the FPGA architecture already is fixed. This flexibility
over ASICs is not for free. FPGAs are typically restricted to the synchronous digital
designs. Also, assuming the same technology, the same design in FPGA is less efficient
in terms of PPA than the ASIC counterpart.

In summary, the main types of devices in decreasing order of flexibility and pro-
gramming abstractions, and increasing order of PPA efficiency are as follows: CPU,
GPU, FPGA and ASIC. Also, due to the restrictive ASICs’ flexibility, FPGAs have
been the choice for this thesis, which explores several design prototypes.

Following the topic at hand, Chapter 3 enumerates the generic steps to follow, from
an inference model architecture to the final FPGA implementation.

42 Chapter 2 A. Morán Costoya

Chapter 3

Methodology

The methodology described in this chapter refers to the set of methods related to
the FPGA implementations, starting from an ML algorithm, which inference part is
adapted to be implemented in hardware. This process involves many subprocesses,
some of them are carried out using libraries and Electronic Design Automation (EDA)
tools, while others are done using custom tools. All these steps are related to each
other, indicated in Section 3.1 (General workflow). It should be noted that we include
all processes related to the designs implemented in this thesis. Specific implementation
details are discussed in the following sections. Section 3.2 introduces software and
hardware resources utilized to accomplish the steps enumerated in the general workflow.
Then, Section 3.3 describes the strategies followed to design, simulate and debug a
system to be implemented in FPGA. Finally, section 3.4 enumerates a list of several
hardware communication protocols utilized to evaluate the inference models based on
a test set.

3.1 General workflow

A summary of the steps to build an inference ML model is summarized in Fig. 3.1.

Figure 3.1: Design methodology workflow used in this thesis for hardware implementation.

The description of each step (1 to 5) is summarized below.

1. Idea and floating-point model
Depending on the nature of the task one is aiming to implement, some models
might be a better choice, e.g. RNN for text processing and timeseries prediction
or CNN for image classification. On the other hand, there are tasks that can be
properly solved with different models, e.g. tasks like sound or EEG classification,
which might be solved using RNN, CNN or even a combination of both.

43

Compact Reconfigurable Machine Learning Systems

However, in this thesis one of the goals is to create innovative models that at the
same time can be implemented in an FPGA. FPGA devices limit the model’s
parallelism as well as and the total number of inputs, outputs and parameters.
The corresponding designs might incorporate benefits with respect to other ap-
proaches, either referred to its FPGA implementation or by a potential ASIC.
Therefore, the level of parallelism and number of model parameters is limited by
the target hardware architecture.

Moreover, depending on the potential accuracy degradation due to quantization
(see step 2), the final result (accuracy) might be improved by taking into account
the precision of the target hardware model. This process is often referred to
as Quantization Aware Training (QAT). During training, it takes into account
the fact that input, output, some arithmetic operations, intermediate results and
parameters are typically low precision in hardware. As a result, the training
process provides already quantized parameters corresponding to certain input
and arithmetic operation precision. Nevertheless, quantization can be also done
a posteriori at the expense of accuracy degradation.

2. Fixed-point inference
If QAT is applied in step 1, the inference model does not need to be modified and
this step simply refers to reporting a result (e.g. accuracy) based on a test set.
Sometimes it is also convenient to store some intermediate results for debugging.

3. Other modifications
If the architecture is not strictly based on conventional arithmetic, then compu-
tations do not match exactly those of the previous step (step 2). In this case
other modifications before HDL simulation might be applied. For example, in
our case some designs are based on SC, so that potential arithmetic errors need
to be modeled. In this particular case, the SC inference process is simulated. As
in step 2, a result is reported based on validation data and SC parameters are
explored to minimize the differences between pure fixed-point inference and SC.

4. RTL simulation
HDL code can describe FPGA and ASIC behaviour or any hardware architecture,
which is used to synthesize our Design Under Test (DUT) and the corresponding
(non-synthesizable) testbench. Then, a Register Transfer Level (RTL) functional
simulation is performed, i.e. ideal, cycle accurate behaviour of the circuit is
verified. This means that timing issues due to e.g. combinational delays or
asynchronous behavior is not modeled at this stage.

5. FPGA compilation
Some details or nomenclature might be slightly different when it comes to FPGA
compilation from different vendors. In general, the workflow contains the follow-
ing steps1 (5.1 to 5.8).

5.1 IP Generation

5.2 Analysis & Synthesis

5.3 Fitter (Place & Route)

1This list has been taken from the different compilation processes utilized in the Intel® Quartus®

Prime software and other design suites like Vivado® are slightly different.

44 Chapter 3 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

5.4 Fast Forward Timing Closure Recommendations

5.5 Timing Analysis

5.6 Power Analysis

5.7 Assembler

5.8 EDA Netlist Writer

It is also possible to include in-circuit debugging tools before compilation and
analyze signals and registers once the configuration file has been downloaded,
using e.g. SignalTap II Logic Analyzer or In-System Memory Content Editor tools
available in Intel® Quartus® Prime. Finally, when the designer has verified the
FPGA works as expected, in-circuit debug resources are removed. These debug
resources are not needed anymore and the whole compilation process is repeated
without them in order to obtain the final configuration file and download it to
the FPGA.

3.2 Software and hardware

Different programming languages, frameworks and EDA softwares have been utilized
depending on the target step in Fig 3.1. The floating-point model training, fixed-
point inference and other modifications (steps 1, 2 and 3) are carried out using Python
together with PyTorch or TensorFlow programming frameworks and common linear
algebra libraries like NumPy. Once the inference model specifications are well estab-
lished, the DUT VHDL code and the corresponding testbench is created and simulated
(step 4) using ModelSim*-Intel® FPGA Edition software. Finally, the compilation
processes (step 5) are carried our within the Intel® Quartus® Prime FPGA design
software.

On the other hand, the list of Intel®/Altera® FPGAs utilized in this thesis is
presented in Table 3.1.

Table 3.1: Utilized FPGA design kits and some specifications.

Design kit FPGA ALM count HPS PCIe

Terasic® DE10-Nano Cyclone® V 5CSEBA6U23I7 41,500 3 7

Terasic® DE5-Net Stratix® V 5SGXEA7N2F45C2 234,720 7 3

Gidel® Proc10A Arria® 10 10AX115N2F45E1SG 427,200 7 3

3.3 Simulation and debug

Step 4 (RTL simulation) in Fig. 3.1 consists of synthesizing and accurately simulating
the VHDL functional description. Therefore, this description is actually designed for a
specific hardware architecture since there are infinitely many possible ways to process
the step 3 simplified inference model. Roughly, the possible ways in which the inference
algorithm operations can take place are: sequentially, fully parallel or a combination
of both. The latter is the most reasonable in most cases. The main synthesizable
design that implements the desired inference model behaviour is referred to as DUT.

Chapter 3 A. Morán Costoya 45

Compact Reconfigurable Machine Learning Systems

It is defined so that input and output buses are utilized to control and send/receive
data to/from memories and register maps. Then, to test the correctness of the DUT,
it has to be externally excited and its outputs asserted against the expected ones or
stored for a further analysis. This is where the testbench comes into play. In our case
the testbench is a separate VHDL description which is in charge of reading predefined
stimulus file(s) and writing signals and registers in output file(s). The output files can
contain internal signals and registers recorded for visual inspection. Finally, output
files are processed by a separate program to check its correctness.

Once FPGA compilation (step 5) is done, the resulting configuration file is loaded
to the FPGA. After the configuration, the design is debugged by visualizing some
signals with SignalTap II Logic Analyzer and verifying whether the behavior is as ex-
pected. The debugging process might require multiple iterations, i.e. modify, compile,
configure, debug and repeat.

3.4 Communication interfaces

The final goal is to evaluate the test set on the FPGA and store results to calculate
the desired performance metric, e.g. accuracy. A communication protocol between
the FPGA and an external source is required. Depending on the selected FPGA de-
velopment board the preferred communication interface and top level design might be
different. This means our design hierarchy requires additional logic to enable commu-
nication between the data source and the proposed inference design.

In this thesis, we use the Avalon® Interface, which is the default choice in the
Platform Designer (formerly Qsys) GUI, a Quartus® Prime tool that enables inter-
connection between different components such as CPU cores, Direct Memory Access
(DMA), memories, peripherals, custom logic, etc. In fact, it is a tool for System-on-
Chip (SoC) design and HDL generation. A relatively simple SoC example hierarchy
is depicted in Fig. 3.2, including top level components (gray) and interconnect (blue).
This figure may include other additional SoC components as streaming microphone,
camera sensor, HDMI controllers and other soft cores. Most frequently used compo-
nents are usually available as IP cores and there is no need to design each one from
scratch. These IP cores can be included in the design with the Platform Designer tool
and the designer can simply interconnect components in the GUI2. If a custom com-
ponent has to be added to the design, the designer can define and include it. In this
case the custom logic block depicted in Fig. 3.2 would contain the already simulated
and debugged inference model HDL description, which is interconnected to the rest of
components using the Platform Designer GUI. The tool automatically generates the
top level design, which includes all components and the corresponding interconnect
logic.

At this point, the whole system could be simulated using libraries incorporating
Bus Functional Models (BFMs) provided by the design software. However, we skip
this step and simply compile it, configure the FPGA and verify its functionality. In
order to verify the functionality, extra interface software development is needed.

2Even though the Platform Designer tool is our preferred choice for Terasic® FPGA boards, the
Gidel® ProcA10 has been set up using the Gidel® ProcWizzard application, which is similar to
Platform Designer, but it takes into account the specific on-board memory resources and their PCIe
drivers.

46 Chapter 3 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Figure 3.2: Simple SoC interconnect and example components. (Gray) IP and custom components. (Blue)
Interconnect logic.

Going back to Table 3.1, notice the DE10-Nano is a SoC FPGA which contains HPS
and FPGA integrated in the same die and the board to not have a PCIe interface. In
contrast, the other two FPGA boards (DE5-Net and ProcA10) do not integrate a
processor but incorporates PCIe ports to enable fast communication between a host
PC and FPGA. In addition, the DE5-Net and ProcA10 have different PCIe drivers
and corresponding C++ libraries. Therefore, different software interfaces are needed
for each board. Once the communication between host and FPGA has been checked,
the test set can be evaluated by our custom inference model.

Chapter 3 A. Morán Costoya 47

Chapter 4

Fixed-Point Implementations

Multiplications are expensive operations in terms of area and energy efficiency com-
pared to other arithmetic fixed-point operations. Modern FPGAs include adders inside
ALMs as well as integrated SRAM and Digital Signal Processing (DSP) units, which
are typically used to implement fixed-point multipliers. In fact, modern FPGAs in-
tegrate numerous highly efficient and optimized DSP units1. These units integrated
in the FPGA fabric make fixed-point implementations the preferred choice for pattern
recognition applications.

Even though floating-point inference acceleration based on FPGA is also a feasible
choice to increase energy efficiency and throughput compared to general purpose GPUs
[134], it is in low precision fixed-point implementations where FPGA acceleration really
makes a difference. Application specific [135], [136] and more general purpose archi-
tectures based on systolic arrays [131] bring benefits in this regard. Although these
modifications to simplify the model are especially common in the DL field, here they
are applied to smaller ANNs, with simpler training, based on RC.

In particular, this chapter is focused on two kinds of architecture. The first is the so
called ring topology ESN, which is introduced in section 4.1 and a low precision hard-
ware implementation for Audio Event Detection (AED). The results of this research
have been published in an international journal in collaboration with Endura Tech-
nologies2 [137]. The second RC implementation is described in Section 4.2 different
from the conventional ESN approach, which fits better in the more general RC defini-
tion since it is based on CA. Also, it does not present feedback connections between
data samples, so that it could be described as a feed-forward architecture and therefore
shares similarities with a multilayer RVFL. This research resulted in an international
journal article too [138].

4.1 Ring topology Echo State Networks

1Modern low-end FPGAs integrate on the order of 10–100 DSP units and the high-end ones on
the order of 1000–10,000.

2Endura Technologies (http://enduratechnologies.com/) describes itself as ”a R&D service
company providing development services of state of the art, disruptive solutions in power management,
artificial intelligence, and audio applications [...]”.

48

http://enduratechnologies.com/

Compact Reconfigurable Machine Learning Systems

4.1.1 Contribution

In this section, we present a simple hardware-optimized ring topology ESN circuit de-
sign, which presents high energy efficiency capacities that fulfill low power requirements
for edge intelligence applications. As a proof of concept, we used the proposed design
to implement a low power AED application in FPGA. The obtained results show that
the proposed approach may provide good accuracy with low power characteristics. In
fact, our approximation shows an energy consumption below the micro-joule per in-
ference. The proposed system is therefore optimal for edge applications requiring ML
capabilities, e.g. near sensor computing, in which energy efficiency and accuracy are
the key issues.

4.1.2 Related work

RC systems can be hardware optimized [139] using a ring topology [140], so that
neuron’s fan-in is drastically reduced. Along with this ring topology, the reservoir
connectivity may also be optimized by selecting specific weights so that only simple
shift-and-add operations are performed at each reservoir neuron instead of computa-
tionally expensive MAC operations. In this context, there exist previous works regard-
ing FPGA implementations focusing on the so-called single-node reservoir based on
only one physical node [141] which can represent a ring topology by time division mul-
tiplexing with an input mask [142], [143] and nonlinearities with feasible electronic and
optical implementations. Moreover, RC hardware implementations have been previ-
ously applied to spoken digit recognition [118], [143]. In this context, our contribution
in front of previous publications on FPGA implementations stand out in the training
method and the digital implementation. The first contribution is that training is per-
formed on a per frame basis using log-mel energies as the input features. Also, the node
states are register-based instead of stored in RAM and the reservoir implementation is
fully parallel with a simple nonlinearity at each node. This optimized RC model has
demonstrated to provide good accuracy and energy efficiency characteristics for time
series forecasting or equalization problems [139], [144], [145].

In this context, and inspired by the aftermentioned works, we developed a feasible
methodology for low power AI applications, it is based on a simplified ring topology
RC system. Such system is tested on an AED task, showing to be a feasible alternative
that may fit edge computing applications’ low power requirements. For example, if
an end user is interested in identifying a potential dangerous situation if the system
detects, e.g. gun shots or people screaming. AED or audio tagging system could
filter environmental sound and detect specific audio classes. Initially, the RC system
is trained and evaluated on a 2-class dataset to determine whether there is a gun shot
or not in a 4 s audio slice. Secondly, a 10-class dataset, the Urban Sound 8K [15], is
also used for training and evaluation purposes.

4.1.3 Theoretical foundations

Based on the standard foundations of the ESN framework summarized in Section
2.3.3.3, the structure and precision of the reservoir is modified in order to reduce logic
resources and power consumption. First, since this section is dealing with an ESN,
the system evolves in discrete time steps and its dynamics are governed by the input
distribution. The ESN dimensionality and connectivity matrix R are defined by (4.1).

Chapter 4 A. Morán Costoya 49

Compact Reconfigurable Machine Learning Systems

R =
(
W in|W reservoir

)
=

 v0,0 · · · v0,M−1 r0,0 · · · r0,N−1
...

. . .
...

...
. . .

...
vN−1,0 · · · vN−1,M−1 rN−1,0 · · · rN−1,N−1

 (4.1)

This connectivity matrix contains the input-to-reservoir weights vi,j and the reservoir
adjacency matrix3 defined by the weights ri,j. In the single sequence case, let the M -
dimensional input data and N -dimensional reservoir state at time step k be denoted
by the row vectors uk and xk, respectively. In this case input and the full reservoir
state vector feed the readout model. So, for a single sequence state, the readout model
inputs at time step k is conveniently defined as:

zk = (uk|xk) (4.2)

If these row vectors (uk, xk and zk) are aranged as matrices in which different rows
represent different time steps, for Ls time steps, then (4.2) is equivalent to (4.3).

Z = (U |X) (4.3)

then the reservoir states stored in matrix X evolve according to (4.4).

Xk,: = f(Zk−1,:R
ᵀ), k = 1, 2, 3, . . . , L− 1; X0,: = xinitial (4.4)

where f is a nonlinear elementwise function and xinitial is conveniently chosen. All the
components of this row vector are initially set to zero for simplicity. Since the main
target of this work is to obtain a hardware friendly design, several major simplifications
are made. The ESN ring topology can achieve competitive performance on certain
prediction tasks such as NARMA [147], the Santa Fe Laser [148] or nonlinear channel
equalization [149], just as Tino and Rodan reported in Minimum complexity echo state
networks [140].

In addition, the input-to-reservoir and internal (ring topology) reservoir weights are
restricted in order to reduce the hyperparameter search, circuit size and complexity. On
the one hand, input-to-reservoir weights are ternary, so that vi,j = ξi,jv with constant
v and ξi,j ∈ {−1, 0,+1} are chosen randomly with a given degree of sparsity and equal
probability of being negative (−1) and positive (+1). On the other hand, the internal
reservoir weights are set to a constant value r, i.e. ri,j = r, which is referred to as the
nonlinearity strength. Therefore, the simplified connectivity matrix is given by (4.5).

R =

vξ0,0 · · · vξ0,M−1 0 · · · · · · 0 r
vξ1,0 · · · vξ1,M−1 r 0 · · · · · · 0
vξ2,0 · · · vξ2,M−1 0 r 0 · · · 0

...
. . .

...
...

.
...

vξN−1,0 · · · vξN−1,M−1 0 · · · 0 r 0

 (4.5)

3An ESN reservoir can be represented by a directed graph and the adjacency matrix indicate
whether each node is connected to each other and itself or not, as well as the weight between adjacent
nodes [146, Chapter 2].

50 Chapter 4 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Furthermore, the nonlinear activation function (4.4) is chosen to be a simple piece-
wise linear function, often referred to as hard tanh or HTanh activation in the literature
[150], defined as

HTanh(x) ≡ max(−1,min(x, 1)) (4.6)

If the v and r values are restricted to inverse powers of 2 (i.e. v = 1/2n with
n = 0, 1, 2, 3, . . .), then multiplications can be replaced by shift right and add op-
erations. Fig. 4.1 presents the digital fixed-point implementation of each individual
node implemented in this work. This simplified activation function enables highly par-
allel reservoir architectures since there is no need to implement CORDIC algorithm
[151] or Taylor series expansion, which use more hardware. In contrast, we propose
simpler fixed-point operations listed in Appendix B to avoid the use of conventional
digital multipliers within the reservoir implementation. Thus reducing area and power.
In order to give an intuition about the area requirements, Table 4.1 lists the FPGA
resource utilization for the 8 and 16-bit adder, multiplier and maximum blocks. Notice
the multiplier is substantially more resource demanding than an adder or maximum
block, making the reservoir’s fully parallel implementation not feasible.

Figure 4.1: Digital node hardware architecture for the ring topology reservoir.

Table 4.1: Number of 8-bit hardware lookup tables required to perform an 8-bit and 16-bit binary operation. Data
obtained from Quartus Prime software for a Cyclone V FPGA device.

Adder Multiplier Maximum

8-bit 8 LUTs 91 LUTs 15 LUTs
16-bit 16 LUTs 171 LUTs 26 LUTs
Ratio 1 11 1.7

In this context, a similar reservoir architecture has been applied to 1-dimensional
prediction tasks showing similar results as other research groups for the same datasets
[139], [145]. Table 4.2 summarizes the FPGA works in this field (FPGA) compared
to other technologies (Numerical, Optoelectronic and Analog circuit). Notice most
hardware results are quite similar and all of them are within a similar order magnitude.

In this work the results from [139], [145] have been extended to M > 1, and applied
to AED for M = 64 inputs. In addition to dimensionality, the other main difference
is that it is no longer a question of predicting time series, but of a classification task.

Chapter 4 A. Morán Costoya 51

Compact Reconfigurable Machine Learning Systems

Table 4.2: Several 1-dimensional timeseries prediction results using hardware implementations based on the ring
topology reservoir approach. The corresponding datasets are Mackey Glass [152], Santa Fe laser data [148] and

nonlinear channel equalization (NCE) for different signal-to-noise raitos [149].

Implementation

Ref. [140] Ref. [153] Ref. [117] Ref. [139]

Dataset Metric Numerical N Optoelectronic N Analog circuit N FPGA N

Mackey Glass log10(RMSE) - - -1.24 615 - - -1.74 300

Santa Fe dataset NMSE 0.008 200 0.106 388 0.031 400 0.079 200

NCE (16dB)

SER

-

-

0.05

246

-

-

0.035

27
NCE (20dB) - 0.013 - 0.0095
NCE (24dB) - 0.007 - 0.007
NCE (28dB) - 0.0025 - 0.00055

Sound data is preprocessed and features represent filtered frequency channels so that
data is organized as a set of sequences containing a log-mel [154] spectrogram for each
sound sequence. Feature extraction in this section is obtained from a bit accurate
hardware simulation and the main parameters of this implementation are listed in
Table 4.3, see e.g. [155] for hardware implementation details.

Table 4.3: List of relevant log-mel spectral feature extraction parameters.

Parameter Value

Audio sampling rate 16 kHz
Window size 512

Window overlap 352
Mel bins 64

Output bit width 8

Since AED is a classification task, the objective is to assign a single label to each
sequence. There are two approaches to handle this problem when using RNNs regarding
the network memory and sequence length. If the sequence is short enough, after being
processed by a relatively simple RNN, it would be enough to perform a training based
on the state of the network at the end of the sequence. The last time step must contain
information about all the input sequence.

However, it can also be the case that the sequence is longer than the number of
time steps influencing the final state of the RNN. Therefore, it is possible that the final
state does not contain information related to the event contained in some interval of
the sequence. A possible solution is to consider all the time steps to train the network.

To get an idea of how many frames are needed to train a network based on the final
state of each sequence, we can take the example of the LSTM, which has a memory
capacity on the order of 20 previous entries4. This problem can also be solved using
attention models [156] but the approach requires the use of LSTMs and additional
RNN structures as well as fully connected nodes and hyperbolic tangent activations,

4RC models have similar memory capacity but it is typically evaluated on 1-dimensional data
[105], which is not the case. To the best of our knowledge, there are no research works evaluating
optimal memory capacity as a function of input data dimensionality for RC models. However, any
multidimensional input can be arranged as a 1-dimensional input array, so that the memory capacity
is less than in the 1-dimensional case and, in the worst case, inversely proportional to the number of
input timensions.

52 Chapter 4 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

which is far more complex than the proposed approach. In fact, it is also common
to tackle AED problems combining either CNN [72] or both CNN and RNN [157] to
overcome the memory problem.

Since the motivation of the work is to keep the model as simple as possible, we use
all sequence frames. The main disadvantage is that sequences must be labeled on a
per-frame basis and further postprocessing is needed to set a criterion to assign a label
to the whole sequence based on predicted frame labels. Training and postprocessing
methods are described in detail in Section (4.1.4).

4.1.4 Methods

The system consists of three main blocks, as illustrated in Fig. 4.2. These three blocks
correspond to: feature extraction, ESN and postprocessing steps. As mentioned above,
this section describes training and postprocessing. In addition, the evaluated datasets
and statistical performance metrics are also introduced in this section.

Moreover, individual calculations are done with the best known set of model hyper-
parameters, obtained using random search for r and v, and input-to-reservoir weights
are random uniform with certain degree of sparsity.

1

...

M

1

2
3

4

5

6N

fixed
internal
weights

1

...

K

Log-mel spectral energies

Postprocessing

random
weights

trainable
weights

R
e
se

rv
o
ir

C
o
m

p
u
ti

n
g

B
lo

c
k

Input audio

Per-frame predictionPredicted label

Figure 4.2: Ring topology RC applied to log-mel spectral energies. The input audio is first pre-processed to obtain
the log-mel features, so that a linear combination of these features are inputs to the reservoir, which in turn computes

a higher dimensional nonlinear mapping in the time domain. Finally, the reservoir states are linearly combined to
obtain a meaningful readout, which is post-processed to improve performance.

4.1.4.1 Training on a per-frame basis

Before training, all sound waves are converted to log-mel spectrograms. Fig. 4.3 (top,
middle) shows an example both sequences. Notice according to the feature extraction
parameter choice in Table 4.3, every second of sound wave sampled at 16 kHz is rep-
resented by 100 feature frames. As the example shown in Fig. 4.3, dataset samples
contain 400 frames5 As regards the labeling strategy, training on a per-frame basis

5The actual duration might be shorter but empty space is filled with silence to simplify matrix
notation.

Chapter 4 A. Morán Costoya 53

Compact Reconfigurable Machine Learning Systems

refers to the fact that individual time steps in a sequence are labeled separately. The
readout layer provides a real-time response, i.e. the output may change every time step,
and the supervised training method includes real-time labeling. Every single log-mel
frame is therefore labeled according to its corresponding value as depicted in Fig. 4.3
(bottom).

Figure 4.3: Audio, features and corresponding label assigned on a per-frame basis.

Since all frames are labeled, a linear model can be used to map each reservoir state
(concatenated with the current input frame) to real-time category scores. However,
there is a difference compared to the time series prediction task defined by (4.3) and
(4.4). In this case the dataset is composed by a collection of sequences and the reservoir
states are frozen to be reinitialized after each sequence, i.e. it is set to zero in this case.

4.1.4.2 Postprocessing

Suppose the concatenated inputs and reservoir states are given by the tensor Z, so that
Zi,j,: contains the inputs and reservoir states for the j-th frame of the i-th sequence.
So that the already trained readout layer provides an Immediate Category Score (ICS)
Y , such that Yi,j,: are the readout logits corresponding to the j-th frame from the
i-th sequence. An example containing dog barks (DB) is shown in Fig. 4.4 (top)
together with the correspondig ICS sequence (bottom). It is an example extracted
from an UrbanSound8K multiclass dataset, described below (4.1.4.4). In this specific
case the audio contains (correctly detected) dog barks (red, DB) and people speaking
in the background, which is identified by the model as children playing (green, CP),
a reasonable mistake given the low complexity of the model. The problem is the fact
that the whole sequence is weakly labeled, i.e. even though several events could be
identified, there is only one label assigned to each sequence (dog bark in this case). So,
based on an output ICS sequence like this, which unique category should be assigned to
the whole sequence? In this case, what has been done is to assign a label to each frame
based on the highest ICS whenever it is grater than some threshold value yth or not.
Whenever the ICS winner is greater than yth, the corresponding score associated to this

54 Chapter 4 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Figure 4.4: Example mel features and immediate category scores.

winner category accumulates 1, and 0 otherwise. This threshold-based Accumulated
Category Score (ACS) is denoted by S. The ACS associated to the j-th class from
the i-th sequence is therefore given by (4.7), where Ltran. is the number of time steps
needed to skip transient reservoir dynamics, which is set to Ltran. = 5, Li is the i-th
sequence length and H is the Heaviside step function.

Si,j =

Li∑
k=Ltran.

H (yth + Yi,k,j) (4.7)

These ACSs are finally utilized to assign a label for each sequence, grouped in vector l
and given by (4.8), where d are reduction factors, which are additional hyperparameters
needed to handle single sequence data imbalance. It contains as many components as
there are classes.

li = argmax
j

{
Si,:
dj

}
(4.8)

For example, if a sequence contains a single and brief gunshot but additional overlap-
ping audio is identified as another class and all d components are equal, the whole
sequence would be misclassified. Instead, d components are chosen according to the
typical single event length, it helps to reduce misclassifications due to single events
shorter than others since the decision (4.7) is based on accumulation.

Therefore, in Fig. 4.4 the predicted sequence label would be dog bark if the threshold
is set to e.g. yth = 0. However, in other cases, even if d is correctly chosen, the
fact that more than one source of sound is present and one of them is much more
frequent and above threshold than the actual sequence ground truth label would cause
a missclassification.

4.1.4.3 Gunshot detection database

The gunshot detection database contains a custom collection of ambient and gunshot
audio waves. However, for the frame-base labels, a third silence class is introduced,
created to take into account frames not containing either ambient or gunshot data.
The file count for sequence labels is shown in Table 4.4, with a total of 727 files.

Chapter 4 A. Morán Costoya 55

Compact Reconfigurable Machine Learning Systems

Table 4.4: Gunshot dataset wave file counts. It contains 727 files combining both ambient and gunshot audio data.

Ambient Gunshot

Train 400 111
Test 113 103

Total 513 214

4.1.4.4 Multiclass audio dataset

The UrbanSound8K dataset [15] contains ten different classes of urban sounds, listed
in Table 4.5. It contains 8732 labeled audio files with a duration that is less or equal
than 4 s combining background and foreground audio samples. The dataset classes are
listed in Table 4.5 in an environment containing additional street noise and sounds
such as people speaking. All wave files are preprocessed to obtain their corresponding
log-mel spectrograms, which are used for training and testing, following the 10-fold
cross-validation experimental setup explained in [15]. Therefore, results presented for
this dataset are averaged over the 10 possible train/test combinations.

Table 4.5: UrbanSound8K labels, abbreviation and meaning.

Label Abbreviation Meaning

0 AC Air conditioner
1 CH Car horn
2 CP Children playing
3 DB Dog bark
4 DR Drilling
5 EI Engine Idling
6 GS Gunshot
7 JH Jackhammer
8 SI Siren
9 SM Street music

4.1.4.5 Statistical performance metrics

In order to evaluate the goodness of a model, several statistical performance metrics
are introduced depending on the specific task to evaluate. In the gunshot detection
case, silence is excluded from the evaluation since it is part of the frame label options
but not class of interest. It is a binary classification task. In this kind of applications
it is desirable to be able to minimize the number of gunshots detected as ambient
without penalizing accuracy at all, i.e. it is better to trigger false alarms and detect
a gunshot that turned out not to be a shot than to classify it as ambient in order to
be sure all detected gunshots are in fact gunshots. So, Table 4.6 metrics have been
utilized to evaluate a possible tradeoff between these two behaviours while maintaining
reasonable accuracy. Overall accuracy is usually referred to as just accuracy and the

56 Chapter 4 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

other two, true positive rate and true negative rate, are also referred to as sensitivity
and specificity.

Table 4.6: Statistical performance metrics. (TP) True positives. (TN) True negatives. (FP) False positives. (FN)
False negatives.

Metric Expression

Overall accuracy TP+TN
TP+FP+FN+TN

True Positive Rate TP
TP+FN

True Negative Rate TN
TN+FP

In contrast, for the multiclass AED UrbanSound8K dataset, rather than focusing
on sensitivity or specificity, the goal is to compare obtained results in terms of ac-
curacy using a pre-defined 10-fold cross-validation for model performance evaluation,
as suggested by the original UrbanSound8K reference [15]. It consists of averaging
test accuracy results obtained for different pre-defined test set choices. In addition
to accuracy (i.e. top-1 accuracy), top-2 accuracy6 is also evaluated to justify the fact
that in our particular frame-base inference setup missclassification is not necessarily
missdetection.

4.1.5 Results

This section reports inference performance metrics obtained from the proposed ESN
implementation applied to input datasets described in Section 4.1.4 (Methods). As
explained in Section 4.1.3, to be able to evaluate model performance from the audio
datasets, which contain audio files, log-mel spectral features are obtained from a hard-
ware simulation. These features are 8-bit 64-dimensional features per frame. The RC
subsystem is implemented in an Intel Cyclone V FPGA and the postprocessing stage
is performed offline, i.e. the computation of (4.7) and (4.8) is done externally.

On the one hand, results associated to the gunshot dataset are summarized in
Table 4.7. These results correspond to a fairly small reservoir size composed by 192
nodes with 8-bit activations and readout parameters. The best result obtained is for
yth = 1. The other two options are also shown for comparison purposes. From left
to right, yth = 1.11 corresponds to a 100% specificity, but in this case the goal would
be to maximize sensitivity as long as accuracy is not degraded, so that yth = 1.0
would be a better choice, since it improves both accuracy and sensitivity. However,
further decreasing yth involves accuracy and specificity degradation with no additional
sensitivity benefits, so that yth = 1.0 is the best option.

On the other hand, results associated to the UrbanSound8K dataset have been
obtained in terms of both top-1 and top-2 accuracy, which are represented in Fig.
4.5. Individual data points correspond to accuracy averaged over the 10-fold cross-
validation train/test set combinations. Here, training has been performed over 250,000

6Top-N accuracy is computed by interpreting as correct those predictions for which the ground
truth is one of the N most likely categories.

Chapter 4 A. Morán Costoya 57

Compact Reconfigurable Machine Learning Systems

Table 4.7: Performance metric values (in %) for an ESN reservoir with 192 nodes, 8-bit input, activation and
parameters, for different postprocessing thresholds. The selected category factors are: = d0 = 64 (silence), d1 = 64

(ambient), d2 = 1 (gunshot).

Threshold (yth)

Performance metric 1.11 1.0 0.9

Accuracy 91.6 96.3 94.9
Sensitivity 82.5 94.2 94.2
Specificity 100 98.2 95.6

randomly selected frames and corresponding labels in each of the 10 training sets per
data point. Then, reduction factors are chosen so that they are inversely proportional
to the (frame-base) training occurrences for each class. As an example, suppose class
A has a training samples (i.e. frames with label A), then its reduction factor is chosen
to be proportional to a/250, 000. From Fig. 4.5, one can observe the model is able
to fit training data with an increasingly large reservoir. However, the improvement
is not translated into additional test set accuracy. Top-1 test accuracies are similar
or slightly higher than the ones obtained using decision trees (J48) and k-NN (k=5)
methods applied to the same problem [15]7 and using the same 4 s slice duration.

In this case, the difference in accuracy is not (or not only) due to an overfitting
problem related to the amount of data used for training, it is a postprocessing problem.
A way of thinking about this is to suppose the RC system is detecting the actual ground
truth category but it is not as frequent as it should be to be correctly classified. As
an example, suppose there were only one dog bark (DB) and the rest is people talking
confused with children playing (CP) in Fig. 4.4 and the corresponding reduction factor
is such that (4.7) divided by the reduction factors d yields highest score for CP, does
it mean DB was not detected even though the whole sequence is not correctly labeled?
The answer is no, DB would have been detected. Therefore, top-2 accuracy is also
represented in order to detect whether the ground truth corresponds at least to the
second highest score category, which means the correct class ICS was above threshold
at some time interval.

In addition to results related to model performance, reservoir’s energy efficiency
and number of required readout MAC operations are also considered and presented
in Fig. 4.6. Notice there are two different vertical axis with MACs per inference at
the left hand side (blue) and energy efficiency in nJ/inference at the right hand side
(orange). MAC operations are proportional to the number of classes, sequence length
and reservoir size. These numbers are obtained for 10 classes and 400 frames per
inference. As regards energy efficiency, it refers only to the reservoir subsystem and is
proportional to its size and sequence length, which is fixed to 400.

Compared to relatively small CNNs oriented to audio processing, the number of
MAC operations is much higher [72], [158] compared to the proposed model. While
the order of magnitude of MAC operations per inference is over 1000M for the case of
CNNs, the ESN implementation needs between 10M and 50M MACs per inference (see
Fig. 4.6). Nevertheless, this represents a decrease of about 15% accuracy in the 12288
nodes reservoir model compared to state-of-the-art CNN results on the UrbanSound8K

7The exact numbers are not available since these results were represented in a graphical format.

58 Chapter 4 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Figure 4.5: UrbanSound8K training (left) and testing (right) mean top-1 and top-2 accuracies, as well as
corresponding standard deviation, obtained from 10-fold cross-validation. Reduction factors have been selected so that

they are inversely proportional to the (frame-base) training set occurrences for each class.

Figure 4.6: Number of needed MAC operations per inference (left axis) and ESN reservoir efficiency (right axis) with
corresponding test set top-1 accuracies for each data point. The ideal energy efficiency approximation corresponds to

n 64-node reservoirs, with n=N/64.

dataset [158] without data augmentation.

As regards energy efficiency, there is a huge gap compared to existing low power
sound recognition systems. In particular, real-time bird sound recognition was imple-
mented in an ARM Cortex-M4F based TI TivaC TM4C1294NCPDT microcontroller
[159] in which the classification stage consumes 35 mJ per inference at 50 MHz clock
frequency, which is about 40× the energy consumption per inference for the 12288
nodes reservoir (worst case).

4.1.6 Summary

This design was motivated by the increasing demand in low-power pattern recognition
at the edge, which enables processing capabilities to increase energy efficiency and
reduces large sensor data transfers to the cloud and solves related privacy issues while

Chapter 4 A. Morán Costoya 59

Compact Reconfigurable Machine Learning Systems

maintaining reasonable accuracy.
Even though the results are not comparable to those obtained by CNNs for the

UrbanSound8K dataset [158], it is equivalent or slightly better than other ML methods
[15]. Also, top-1 classification accuracy could be possibly improved by modifying the
postprocessing stage and the model might be better suited to audio event tagging
or used to filter most environmental data, transmitting a signal indicating a class of
interest is present in the audio whenever it is detected, i.e. its ICS is the highest and
above threshold.

Moreover, the model is based on a fully parallel hardware architecture designed
to reduce energy consumption in very specific tasks related to AED. The fact it is
targeted to a very specific set of applications and further fixed-point optimization and
simplifications in terms of parameter, internal storage and computation in the reservoir
makes it at least about 40× more energy efficient than a low power software solution
applied to bird sound recognition [159]. Therefore, it is an attractive candidate for
a variety of battery-powered scenarios, such as always-on inference, which could also
benefit from mixed-signal implementations [160] or audio event data co-processing as
part of an SoC [161], suitable for smart watches or smart sensors. Furthermore, it is
not necessarily limited to audio classification and potential ML use cases might include
audio tagging, monitoring of physiological data [162] or channel equalization [163].

4.2 Reservoir Computing and Cellular Automata

It has been shown how RC can be applied to classify and detect certain types of
multidimensional time series, in particular, it has been applied to features extracted
from audio files. Notice the extracted features might be interpreted as grayscale images,
so that a similar approach might be useful for classifying images by processing image
rows or columns sequentially. Nevertheless, the low complexity ring topology reservoir
and further simplifications in bit width and activation function are great for reducing
energy consumption but makes it uncompetitive in terms of accuracy when applied to
image classification compared to more complex randomly connected reservoirs and DL
approaches [164], even if these images are small compared to image sizes handled today
in the DL field [165]. Therefore, in order to enable comparisons with other works, the
proposed methodology has been evaluated on the well-known MNIST dataset.

4.2.1 Contribution

Recently, CA spatio-temporal evolution has been proposed as a feasible way to obtain
reservoir states to implement RC systems in which the automaton rule is fixed and
the training is performed using a linear model. Based on this idea, this work contri-
butions are threefold. First, a new pattern recognition system has been proposed and
analyzed. Second, a systematic method to evaluate and discover the best model is
proposed, based on a reduced design space, smart initial conditions and data augmen-
tation (DA). Third, an FPGA implementation associated to the final inference model
has been developed. The pattern recognition system is based on feature expansion
generated by Elementary Cellular Automata (ECA) and classification by means of a
linear model. The model is potentially capable to handle pattern classification and
exploits 2-dimensional spatial correlations. It has been applied to handwritten digit
recognition from grayscale images, obtaining competitive results in terms of processing

60 Chapter 4 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

time, resource utilization, power and inference accuracy, which makes it a good can-
didate for edge AI. Even though the model is applied to grayscale images, it could be
extended to a higher number of spatially-correlated problem dimensions.

4.2.2 Related work

There are multiple examples of CA being applied to image analysis and processing
following knowledge-based approaches [166]–[169], which are actually not related to
this work since the proposed model is data-driven rather than knowledge-based. A
data-driven image saliency detection algorithm was proposed to exploit local similarity
using bayesian optimization combined with CA to obtain saliency maps [170]. Their
proposed CA forward propagation is generic, optimized and applied to superpixels,
while here CA is restricted to the ECA search space, not optimized, applied to single
bits and targets classification tasks. Moreover, multiple attractor CA (MACA) have
been used to classify 1-dimensional bit strings [171], [172], working as an associative
memory and processing is restricted to limit cycle dynamics, which is trained using
a genetic algorithm. Another application is this line is CA vector quantization [173],
which is also related to the MACA approach. In contrast, the system proposed in this
thesis implements RC based on CA (ReCA).

ReCA systems incorporate transient and chaotic or pseudorandom temporal evolu-
tion of the automata. Therefore, the fundamental difference compared to associative
memory approaches is the fact that dynamics are not restricted to fixed points and
limit cycles.

Following developments related to ReCA [174]–[179] , the CA spatio-temporal evo-
lution is used as the reservoir states. The original idea was first proposed by Yilmaz
[174], whose work was extended to deep RC models by Nichele and Molund [178]. As
regards the implementation described in this thesis, in the ReCA system the CA states
take input data as its initial state and the spatio-temporal volume is first reduced and
then interpreted by a readout linear model. An exhaustive study of the resulting accu-
racy for different ECA rules arranged in a specific configuration is carried out. After
this analysis, the most accurate rule is finally selected and implemented in FPGA using
simple digital circuitry. In this particular case, rule 90 provides the highest validation
fitting for the MNIST dataset. Interestingly, rule 90 was already proposed by Yilmaz
for metric learning as a computationally efficient alternative to RBFs in support vector
machines.

Oliveira et al. described an attempt based on the application of multiple 2-dimensional
CA rules with training based on a genetic algorithm [180], but limited to using only
1350 training and 150 test examples in which each pixel is represented by a single
bit. In contrast, in this work CA is composed by many simple 1-dimensional CA, all
automata follow the same rule and the entire MNIST is considered. MNIST images
are not thresholded to a single bit pixel representation and the training approach is
analogous to that of RC or RVFL-NN rather than based on genetic algorithms.

Although this is not the first time in which CA are implemented in digital hardware
for research purposes (see e.g. [181]), by the time the proposed model implementation
was published [138], to the best of our knowledge it was the first time in which a
full ReCA system oriented to pattern recognition had been hardware-implemented and
tested. In addition, the workflow to explore design space and the model itself include
novel ideas.

Chapter 4 A. Morán Costoya 61

Compact Reconfigurable Machine Learning Systems

Disclaimer

There exist other interesting papers connected to a greater or lesser extent to the
content described in this thesis. However, those research works were published
after ours [138].

The most significant contribution related to this topic is a conference paper
that reproduces a quite similar model and cleverly extends our contribution elimi-
nating all multiplications, achieving similar accuracy [182]. It proposes a different
readout based on random forest applied to single bit features, as well as low-cost
FPGA implementations based on 3-line buffer processing and simple ECA units for
different model variations. Moreover, it implements feature pruning by removing
CA iterations that are less relevant to the classification task to further optimize
resource utilization. Nevertheless, there is a subtle difference between our model
and what they consider to be a reproduction of our model, which has been clarified
in next section<.

Another interesting yet quite different approach which is also worth highlight-
ing is the self-classifying MNIST (software) implementation because it is the first
work in which end-to-end differentiable neural CA are trained for classification
purposes [183].

4.2.3 Theoretical foundations

The general ideas behind CA were first introduced by J. Von Neumann [184] and later
revisited by S. Wolfram. The latter introduced ECA and their naming convention
[185] described below. In addition, it is also described how ECA are used to build the
proposed classifier.

4.2.3.1 Elementary Cellular Automata

In a nutshell, ECA are deterministic and the simplest class of 1-dimensional CA pro-
viding a rich and complex dynamic behavior. ECA are discrete dynamical systems
with synchronous updates, each of which is composed by a 1-dimensional string of cells
with two possible states evolving according to simple rules. These rules dictate how
the string of binary cells should evolve based on cell states at the current time step
and limited to self and nearest neighbor interaction. Since self and nearest neighbor
interaction are represented by a group of three binary cells, a rule must be applicable
for each of the 23 = 8 possible configurations. Therefore, a rule specifies the next cell
state for each configuration, resulting in a total of 28 = 256 possible ECA rules. Ac-
cording to the standard naming convention proposed by [185], these rules are labeled
from 0 to 255 based on the binary weighted code extracted from the next cell state for
each of the 8 possible configurations. These configurations are in the following order,
from the most significative (MSB) bit to the less significative bit (LSB): 0.1112, 0.1102,
0.1012, 0.1002, 0.0112, 0.0102, 0.0012 and 0.0002. The 8 possible groups of previous
state configurations indicated from left to right are depicted in Fig. 4.7 for rule 86.

Over time, researchers have established several criteria to classify ECA in different
classes according to their properties. Perhaps the most intuitive classification criteria
is the one introduced by S. Wolfram [186], who established four classes according to

62 Chapter 4 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Figure 4.7: Rule 86 interactions according to notation described in the text. Self interaction is defined by the
previous center (C) state, and left (L) and right (R) previous states define nearest neighbour interactions.

the dynamical system evolution skipping transient dynamics and for random initial
conditions. These classes are: uniform (class 1), periodic (class 2), chaotic (class 3)
and complex (class 4). The different classes have been illustrated in Fig. 4.8, depicting
four examples per class. It is worth mentioning other classification criteria have been
proposed in the literature, e.g. including additional classes to Wolfram’s criteria [187],
based on topology [187] or power spectra [188]. This work follows the original Wolfram’s
classification proposal [186] since it is sufficient to qualitatively justify the obtained
results.

4.2.3.2 Model

Features are represented by numeric quantities, which can always be expressed in its
raddix-2 weighted representation. A simple way to perform feature expansion is to map
input features to input cells setting the initial state of an automaton. Therefore, an
n-dimensional input vector u represented by m-bit components would be mapped to
different ECA cells holding individual bits, so that there must be at least n ·m binary
cells. Then the ECA is evolved according to a given rule, generating a spatio-temporal
collection of binary states, which might include initial states. Then, depending on
whether input data is temporally correlated to previous inputs or not, feedback op-
erations are introduced in order to incorporate memory capabilities. Depending on
whether memory is incorporated or not, the system structure is more similar to either
RC or RVFL-NN, respectively. Also, notice another option to achieve the memory
property would be to choose the CA size (i.e. number of cells) much greater than the
number of input bits.

However, the proposed architecture is focused on time independent inputs, so that
the system resembles a RVFL-NN structure rather than a generic RC approach. Nev-
ertheless, since RC contemplates any physical or computational dynamical system, it
is better defined as a memoryless RC approach. In fact, one could interpret an M -step
CA evolution as a locally connected feedforward network with M equally sized layers
as illustrated by Fig. 4.9. Notice this architecture is different from a conventional
FFNN or multilayer RBF-NN with these characteristics, since cell state activations are
not restricted to nonlinearities applied to weighted sums or euclidean distances.

Moreover, unstructured input data might present correlation across more than one
spatial dimension, i.e. it might be conveniently represented by a matrix or tensor, which
have a rank greater than one. MNIST dataset contains 28 × 28 grayscale images, so
that an input image is naturally represented by a matrix. Therefore, a group of inputs
is conveniently represented by an m × b × h × w boolean tensor U, where m is the
number of grayscale images and h and w are the image height and width, respectively.
In addition, each pixel is explicitly splitted into b bits. As already described, the
straightforward approach would be to simply assign each bit to a different ECA cell
and generate the automaton evolution. Nevertheless, this straightforward approach

Chapter 4 A. Morán Costoya 63

Compact Reconfigurable Machine Learning Systems

Figure 4.8: Example ECA rules and temporal evolution for each of the four classes defined by S. Wolfram.

does not exploit 2-dimensional spacial correlation in a grayscale image. The system
would be naturally evolved with a 2-dimensional CA with 2b possible states per cell,
where b is the number of bits required to represent a pixel value and is equal to 8 (a
byte per pixel) in most cases, including MNIST samples. The problem with many-state
2-dimensional CA is the vast design space exploration requirements in order to find

64 Chapter 4 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

u1 u2 u3 uj uN Step 0

x1 x2 x3 xj−1 xj xj+1 xN Step 1

x1 x2 xj xN Step 2

x1 x2 xj xN Step M

Figure 4.9: 1-D cellular automaton network structure with self and two nearest neighbors interaction.

an appropriate reservoir rule. For example, for 2-dimensional 256-state with self and
four nearest neighbor interaction CA rule search space, the best candidate would be
one out of 2562565

. However, it would make sense to use rotational invariant rules8,
which would reduce the search space to 2562562

but it is still not feasible and would
be necessary to further delimit the search space. For this reason, the search space is
delimited to ECA rules, which are applied to rows and columns independently for each
bit layer.

Suppose the CA spatio-temporal evolution is represented by the rank-4 tensor X,
such that Xi,j,:,:,: represents the j-th CA iteration for the i-th sample. The proposed
evolution scheme, i.e. obtaining X:,i−1,:,:,: from X:,i,:,:,:, is as follows. There is no inter-
action across different bit layers and two different CA coexist, one of them is iterated
row by row (Xr) and the other column by column (Xc), with no interaction between
different rows or columns. Then both CA evolutions are combined into a single feature
expansion tensor X. At the beginning, all states are initialized with the input data

X
r
:,0,:,:,: = X

c
:,0,:,:,: = X:,0,:,:,: = U (4.9)

Let gk be the function g applied k times, e.g. g3(·) = g(g(g(·))). So that

X
r
i,j,:,:,: = gr

(
X
r
i,j−1,:,:,:

)
= gjr (Xi,0,:,:,:) ,

X
c
i,j,:,:,: = gc

(
X
c
i,j−1,:,:,:

)
= gjc (Xi,0,:,:,:) , 1 ≤ j ≤M

(4.10)

where the function gr : {0, 1}b×h×w → {0, 1}b×h·w iterates binary layers’ rows from the
most to the less significative bit, containing b·h ECA of length w, and gc : {0, 1}b×h×w →
{0, 1}b×h×w does so with the columns, containing b ·w ECA of length h. Finally, these
two boolean tensors obtained independently are combined using a bitwise XOR function

X = X
r ⊕Xc (4.11)

where this XOR combination is not an arbitrary choice, it is based on the fact that XOR
or XNOR do not change the mean number of high or low states, which is not the case for
other logical operations. For example, a bitwise AND/OR operation would effectively

8If the image is rotated 90, 180 or 270 degrees the CA evolution contains exactly the same infor-
mation.

Chapter 4 A. Morán Costoya 65

Compact Reconfigurable Machine Learning Systems

turn 25% high/low states into low/high states, which negatively affects classification
results. <As regards the discrepancy between the proposed model and the one A. López
et al. [182] refer to as a reproduction of it, the difference is that ECA rows and columns
are updated separately via (4.10) and joined together via (4.11).

Notice the same method can be generalized to higher dimensions to classify e.g.
RGB images, following the same convention used for rows and columns in equation
4.10, and combining both contributions using a multiple input XOR9 as in 4.11.

The resulting space-time evolution represented by X is coded as an integer by
combining states across the pixel bit dimension, from the most to the less significative,
denoted by X ′

X
′ =

b−1∑
i=0

2iX:,:,i,:,: (4.12)

which does not require any additional hardware if the bit width dimension is coded in
its radix-2 weighted representation. This is illustrated in Fig. 4.10 (Input & iterations).
Furthermore, to obtain invariance under small translations and reduce the number of
readout model parameters, max-pooling is applied as a feature reduction strategy, also
illustrated in Fig. 4.10. Assuming both h and w are multiples of 2 (as is the case
of MNIST samples), max-pooling is applied to 2 × 2 windows with stride 2 and zero
padding. Notice this step is a particular (arbitrary) state representation (see Fig. 2.29
in Section 2.3.3.3) borrowed from DL, introduced by [189].

After feature reduction H is applied to CA iterations in the grayscale representation
X ′, the readout model processes it and assigns a label per input sample. A linear
model has been chosen, so assume the feature reduction operation returns flattened

max-pooling operations, i.e. H : Nm×(M+1)×h×w → Nm× (M+1)·h·w
4 , so that inference is

given by (4.13). The full inference process is depicted in Fig. 4.10 for a single MNIST
sample.

Ô = s (H (X ′)W + B) , (4.13)

ŷi = argmax
j

{
Ôi,j

}
(4.14)

As a final remark on this particular ReCA model, the same ECA rule is utilized for
row and column iterations, for all bit significances, i.e. gr and gc in (4.10) are based on
the same ECA rule. Then, the search space is reduced to the 256 possible ECA rules.

4.2.4 Methods

At this point, the proposed model has already been defined. So, in this section the
training and validation process is described. The goal is to choose a particular (optimal)
ECA rule for a specific classification task. Therefore, first a systematic workflow has
been defined to find the best option within the model constraints and taking into
account additional techniques such as data augmentation (DA). Finally, the hardware
based on the best rule is described.

4.2.4.1 Training workflow

The flow chart in Fig. 4.11 summarizes all steps followed to train and validate the
model described in previous section. This chart includes several steps that are fixed to

9The multiple input XOR operation is equivalent to modulo-2 addition.

66 Chapter 4 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Figure 4.10: Scheme of the proposed classifier applied to a MNIST sample.

specific values or conditions listed in Table 4.8.

Figure 4.11: A flow chart of the proposed systematic procedure to obtain the best model.

The first step is to choose a sufficiently large number of CA iterations M0 to try for
the first time and check the performance for a subset of ECA rules. It is not necessary
to try all 256 ECA rules since some of them are symmetric and it does not make sense
to try Class 1 ECA rules without transient evolution. Choosing an appropriate value
for M0 is important because it is used to discover which is the winner rule based on
some score metric, e.g. validation set accuracy in this case. On the one hand, if M0 is
too small, it is possible to end up with a bad decision, e.g. selecting a Class 1 rule that
returns the best results for M0 iterations, but these results are the same for M = M0+1
iterations because it has converged to an uniform state. On the other hand, if M0 is

Chapter 4 A. Morán Costoya 67

Compact Reconfigurable Machine Learning Systems

too large, overfitting might be a problem. One way to rule out the overfitting problem
is to check that the same solution (ECA rule) is reached using one less iteration.

Table 4.8: Design choices for this work.

Flow chart feature This work

Initial CA iterations M0 10
Dataset MNIST

Preprocessing None
CA subset Combinations of ECA rules given by (4.10) and (4.11)

Feature reduction Max-pooling (2× 2 with stride 2 and zero padding)
Readout model Maximum entropy classifier

Score metric Accuracy
Stop condition M = 16

Overfitting condition No improvement in validation score
Data augmentation method Elastic distortions (αd = 30, σd = 5)
Data augmentation per step 100% of training set

Once the best rule candidate has been identified, training is repeated for an increas-
ing number of iterations (M > M0) in order to obtain better results at the expense of
a more complex model, increasing its size and trainable parameters at each additional
CA iteration. However, if as M is increased the model complexity is increased too,
there will be overfitting at some point unless the validation score reaches its maximum
value, e.g. 100% accuracy. An option to mitigate this problem is to use DA techniques.
In this case elastic distortions [190] increase the training set size by a 100% every time
it is applied. Nine different elastic distortions for the same parameters are depicted in
Fig. 4.12 for illustration purposes. This DA method is controlled by two parameters,
one denoted as αd, which quantifies the amount of displacement per pixel and the other
is denoted as σd, which is the standard deviation of a Gaussian kernel that is applied
to convolve the image. Both parameters are specified in Table 4.8.

4.2.4.2 Hardware inference model

The proposed hardware design is fixed to a single rule since it uses hardwired ECA
rules to reduce resource utilization. The implementation has been outlined in a simple
manner in Fig. 4.13. Since ECA rules are synthesized with simple logic functions,
it is feasible to implement in parallel registers holding the state of each automaton
along with the logic necessary to compute the next state. In fact, most logic resources
are allocated to implement registers holding ECA states, depicted in green in Fig.
4.13a and 4.13f, resulting in the combined state (4.11), depicted in blue. The raddix-2
weighted interpretation of this combined state, illustrated in Fig. 4.13b, is actually
not a logical operation. The reduced state vector is obtained by applying a 2 × 2
max-pooling operation. Each 2 × 2 window depicted in Fig 4.13b (or 2 × 2 × 8 in
4.13a) results in a single 8-bit signal representing the reduced state vector component
in 4.13c. If the 4 components in a 2× 2 window are denoted as a, b, c and d, then each
output is given by max {a, b, c, d}. So, max-pooling operations are also implemented by

68 Chapter 4 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Figure 4.12: Example of 9 elastic distortions applied to an MNIST digit using αd = 30 and σd = 5.

relatively simple logic functions10 and therefore implemented in parallel. In contrast,
the logits contribution (Fig. 4.13d) is not computed with fully parallel logic since it
would require too many multipliers. It has been serialized using 40 multipliers (four
multipliers per MNIST class) as well as additional control logic. The results are then
accumulated in registers storing the logits iteration by iteration (Fig. 4.13e), so that
the results are valid when all iterations are done.

In addition, as documented in the results section below, the best choice is Rule 90
and is the one implemented in this work. Each row or column that can be updated
with this rule, implemented by the Rule 90 Processing Unit (R90PU), described in Fig.
4.14. The R90PU integrates an L-bit register and simple boolean logic. Since the rule
is 0.010110102, it does not include self interaction and returns a high state when left
and right nearest neighbors are different, so that the next state is obtained with an
XOR logic function of the nearest neighbors.

The digital design has been implemented with a VHDL code defining three 28 ·28 =
784 arrays of 8-bit registers: the first to store initial state, the second to store row-
wise iterations and the third to store row iterations, requiring a total of 2352 (8-bit)
registers for these arrays. Since it is also necessary to store each 14 × 14 (8-bit)
reduced state vector, as well as 10 (8-bit) registers for the logits contribution and 10
(16-bit) additional registers to store inference results. All of them add up to a total
of 2578 (8-bit) registers. Control and accumulation hardware resources are negligible
compared to rule 90, max-pooling and multiplier logic. Parallel CA implementation
requires 2 · 8 · 28 = 448 R90PUs, with 26 XOR gates per R90PU and 8 · 784 = 6272
additional XOR gates for bit-wise combination of row and column CA. Adding up all
gates related to this part results in a total of 17, 920 XOR gates. Each 2 × 2 parallel
max-pooling requires 3 (8-bit) comparators and 3 (16-to-8) multiplexers, i.e. 588 (8-
bit) comparators and 588 (16-to-8) multiplexers are needed (and described in VHDL)
for the max-pooling applied to the whole grayscale image. Finally, since multipliers are
more expensive in terms of area, it is not feasible to implement all of them in parallel
(each iteration requests 1960 MAC operations), so only 40 MACs are implemented in

10At least much simpler than multipliers.

Chapter 4 A. Morán Costoya 69

Compact Reconfigurable Machine Learning Systems

Figure 4.13: A scheme of the hardware implementation of the proposed classifier. (a) 3D boolean tensor
representation of 2D grayscale data, this tensor representation is organized in 2D layers from the most significative

bits (MSB) to the less significative bits (LSB) of the grayscale image. (b) The 8 binary layers are interpreted as
unsigned integers. (c) Max pooling filter applied to the raddix-2 representation of the current iteration. (d)

Contribution to the logits is computed using the pre-stored weights obtained offline. (e) Current contribution to the
logits is accumulated until the final iteration is reached. (f) Rows and columns are iterated independently using rule
90 and combined to obtain an updated 3D boolean tensor using a bitwise XOR operation. This process is repeated

until the final iteration is reached. Once the contibution of the final iteration is accumulated, the logits are valid data.

parallel and iterated 49 times per iteration using few additional control logic. Notice
using 40 multipliers is an arbitrary choice since 40 is the maximum number less than
112 by which 1960 is divisible, with 112 being the number of available DSP blocks in
the selected FPGA.

4.2.5 Results

As described in the previous methods section, the first step is to discover which is the
best ECA rule candidate to fit the MNIST dataset. This process is carried out using
M0 = 10, which is sufficiently large to avoid vanishing and periodic dynamics after the

Figure 4.14: Digital scheme of the rule 90 processing unit (R90PU). The present state is indexed from 1 to L
(L = 28 in the case of the MNIST digits for both height and width automata) and rule 90 is implemented by

computing the XOR of the nearest neighbours except for the first and last elements (for which we consider fixed
boundary conditions). The state register is composed by synchronous D-type flip-flops with an enable signal.

70 Chapter 4 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

transient evolution, and it is sufficiently low to avoid overfitting. After following all
steps indicated in Fig. 4.11, the final inference model is retrained to obtain low precision
two’s complement parameters. Finally, the test accuracy is verified and additional
results related to the FPGA implementation are reported too.

4.2.5.1 Software exploration

A first screening through ECA rules using fixed boundary conditions11 was done, ex-
cluding symmetrical (both left/right and color symmetries) and trivial Class 1 rules
without transient states. The top-30 ECA rules with lowest validation error are re-
ported in Fig. 4.15, indicating the corresponding training errors as well. These results
present a clear relationship with the corresponding class of ECA rule:

� Class 1: Once a uniform state is reached, adding more iterations does not im-
prove precision. The only Class 1 rule with a large enough transient evolution
before reaching the uniform state that appears in the top-30 is rule 168. It is an
exception providing better results than three of the four Class 4 rules included in
the search, i.e. it is better than rules 41, 106 and 110, which are not even in the
top-30, but it provided slightly worse results than rule 54. However, in general
Class 4 rules outperform Class 1 rules.

� Class 2: There are two different cases for this class of ECA rules. The first
case is similar to Class 1, once the evolution reaches periodic12 dynamics with
short periods, i.e. period-1 or period-2, the accuracy is no longer improved as
the number of iterations increase, e.g. rule 44 with 5.8% associated validation
set error. The second case are ECA rules that have higher precision and reach
periodic dynamics too. In this case the maximum period is on the order of the
automaton length (L = 28) and the number of transient states is larger compared
to previous cases, e.g. rule 14, the fourth best result in Fig. 4.15.

� Class 3: Since each automaton is finite, at some point the behaviour will become
cyclic, but the period is much higher than Class 2 ECA rules and the evolution
appears to be random. In addition, dynamics are more complex than in previous
cases, so that finding linear dependencies between the the new iteration and
linear combinations of previous ones is less likely. Thus providing potentially
higher accuracy, e.g. top-3 best results: rules 90, 126 and 18.

� Class 4: As for Class 3 ECA rules, since each automaton is finite, the evolution
must become cyclic after some large period. These rules form areas of repetitive
structures that interact in complicated ways. Therefore, it is possible to obtain
linearly independent new iterations for a long period, but it does not need to
be the base for each new iteration, since repetitive structures, despite not being
exactly the same throughout iterations, they may have certain linear dependence
with previous rules due to aligned structures. For this reason, direct application
of Class 4 rules do not provide better results compared to Class 3 and some Class
2 rules.

11Since no difference in terms of accuracy has been observed when comparing fixed and periodic
boundary conditions, the actual implementation was done using the former.

12Periodic includes period-1, which is also counts as Class 2 ECA, it is different from Class 1 because
uniform means that all states are either high or low.

Chapter 4 A. Morán Costoya 71

Compact Reconfigurable Machine Learning Systems

Interestingly, most of the top-30 better validation results are Class 2. However,
10 of them are Class 3 and there are 11 Class 3 ECA rules discarding symmetries.
Unlike chaotic rules, periodic rules more common, there are a total of 65 but only 19
of them are in the top-30. In fact, the most remmarkable result is that the top-3 rules
are chaotic. From these results, rule 90 is selected to be implemented in hardware
since it is the one with lowest validation error. Moreover, it has a fairly simple digital
implementation, already discussed in the methods section.

Figure 4.15: Performance of the proposed architecture using M0 = 10 iterations of different, non-symmetric
elementary cellular automata rules. Rules with vanishing or period 2 and temporal evolution without transient state

are not shown in this figure.

As indicated by the Fig. 4.11 flow chart, after checking different ECA rules and
selecting rule 90, the training process continues for an incremental number of iterations
in order to improve accuracy. Fig. 4.16 shows training (blue circles), validation (green
triangles) and test (red stars) results for up to M = 16 iterations. Notice different
background tones represent different DA stages, so that at the beginning, and until
M = 10 (w/o DA), the training set is not augmented. Then data augmented twice,
first for M = 11 (DA ×2) and then for M = 14 (DA ×3). Therefore, each Fig. 4.16
region has a different training set size; from left to right: 55, 000, 110, 000 and 165, 000,
respectively.

Therefore, the digital design depicted in Fig. 4.13 accounts for 16 iterations of rule
90 with hardwired readout weights. The difference between the hardware and software
models is the weight bit width and format. While in the software case weights are in
32-bit floating point precision, in the digital design these weights have been restricted
to 8-bit two’s complement numbers. Despite this, a very similar accuracy has been
achieved by re-training the model with direct fake quantization after each gradient
descent iteration, using Adam optimization technique (see Appendix A). Finally, the
model evaluation on the test set reported 1.92% classification error in the test set.
Hyperparameters related to Adam optimization are listed in Table 4.9. In this context,
it is important to highlight that more accurate and advanced QAT approaches exist in
the literature, which is further explored for SC CNNs in Chapter 5. However, for this
shallow readout model direct fake quantization after each optimization step has been
sufficient to recover floating-point results.

An example optimization process is presented in Fig. 4.17, showing the error for

72 Chapter 4 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Figure 4.16: MNIST training, validation and test accuracy, using rule 90 as described by (4.10) and (4.11), adding
55000 additional training samples when needed, illustrated by the filled rectangles. (w/o DA) without data

augmentation. (DA ×2) 110000 total training samples. (DA ×2) 165000 total training samples. The regularization
parameter is C = 0.04 and the maximum number of limited memory BFGS iterations is fixed to 1000.

each training mini batch (blue) as well as the whole validation set (green) as a function
of the number of elapsed mini batch steps. After a large number of steps, poor perfor-
mance peaks might appear due to 8-bit weight restrictions. However, by stopping the
training process when the validation accuracy is equal or higher than the one obtained
in Fig. 4.16 for M = 16, the obtained test results are almost the same.

4.2.5.2 FPGA metrics

Additionally, the present implementation has been compared to other FPGA research
works implementing popular CNN models in terms of accuracy, latency, maximum
performance, power, efficiency, power-delay product, logic utilization and DSP blocks,
which are listed in Table 4.10. Accuracy refers to test set classification accuracy, with

Table 4.9: This table specifies model hyperparameters for the 8-bit weight model. (a) In reality there are 17 because
the initial state is included. (b) Implemented using Tensorflow’s AdamOptimizer class with β1 = 0.9 and β2 = 0.999.

(c) Mini batches are chosen at random for each optimization step.

Hyperparameter Value

ECA rule 90
CA iterationsa (M) 16

Optimization method Adamb

Learning rate 0.00012
Batch sizec 17,000

Distortions per image 3

Chapter 4 A. Morán Costoya 73

Compact Reconfigurable Machine Learning Systems

Figure 4.17: Example training error evolution obtained using direct fake quantization.

(w/) and without (w/o) DA. Clock freq. is the global clock frequency, which might
change depending on the development board or whether the implementation is making
use of a phase-locked loop (PLL) block. Latency is the time required to compute a
single inference. Max. performance is reported as the the number of kiloinferences per
second (KIPS) normalized by the global clock frequency. Power is the thermal power
dissipation related to the inference model implementation. Efficiency is the number
of kiloinferences (KI) per Joule invested. Logic utilization is the number of FPGA
building blocks needed, reported either in terms of LUT and FF or ALM, which depends
on vendor’s hardware architecture and design software. DSP blocks is related to the
number of required multiplier or MAC units, e.g. in this case the FPGA is making
use of 40 DSP blocks because the design needs 40 parallel MAC blocks. Notice the
proposed implementation is faster than most conventional CNN implementations and
reports competitive accuracy while maintaining low power consumption and resource
utilization.

Table 4.10: Metrics extracted from the proposed FPGA implementation using 8-bit precision weights compared to
some previous works.

Model
Accuracy (%)

w/o DA w/ DA
Clock freq.

(MHz)
Latency

(ms)
Max. performance

(KIPS/MHz)
Power
(W)

Efficiency
(KI/J)

Power-delay
product (mJ)

Logic
utilization

DSP
blocks

Ref. [191] 99.52 - 100 4-6 (approx.) 0.002 - - - 36.4K LUT + 41.1K FF 8
Ref. [192] 98.62 - 100 26.37 0.00038 - - - 14.8K LUT + 54.1K FF 20
Ref. [193] 98.32 - 150 0.0034 1.96 26.2 11.22 0.0891 182.3K ALM 20
This work 97.10 98.08 50 0.020 1.00 0.289 173 0.00578 22.6K ALM 40
Ref. [194] 96.80 - 150 0.0254 0.262 - - - 51.1K LUT + 66.3K FF 638
Ref. [195] 96.33 - 100 0.924 0.011 - - - 16.1K LUT + 6K FF 12

4.2.6 Summary

A simple memoryless ReCA model composed by many ECA implementing the same rule
has been introduced and evaluated for the MNIST dataset. A careful analysis based on
a custom workflow is described in Fig. 4.11, indicating the best model variant is the one
based on rule 90, achieving 1.92% test set classification error on FPGA implementation.
Moreover, this digital design is compared to other works, all related to CNN FPGA

74 Chapter 4 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

implementations for the MNIST dataset. From the results reported in Table 4.10
it is concluded that the proposed implementation achieves competitive accuracy, low
latency, very high energy efficiency and relatively low resource utilization compared to
other works. Although the obtained accuracy is still not as good as that of state-of-
the-art floating-point models, it represents the first proof of concept for the successful
applicability of ReCA systems in image classification, both at software and hardware
level. Moreover, its energy efficiency makes it a perfect candidate for edge applications,
which usually require relatively low area and high energy efficiency. Further work
in this line might be related to simple RGB image classification, such as CIFAR-10
[196], or time dependent data, such as ECG [197] or EEG [198]. Another option is to
consider higher dimensional CA and/or larger CA neighbothood, performing weight
binarization [199], substituting the readout by a random forest with binary features
[182], or even including unconventional arithmetic hardware based on SC in the readout
layer to reduce the number of logic elements and DSP blocks for larger images while
maintaining a fully parallel architecture.

Chapter 4 A. Morán Costoya 75

Chapter 5

Stochastic Computing
Implementations

In the previous chapter, simplifications applied to the inference algorithm were pro-
posed and studied in order to enable highly parallel digital implementations, preserving
the traditional fixed-point logic. In contrast, in the present chapter, what is proposed
is not to simplify the inference model itself, but the way in which arithmetic operations
are implemented. For this purpose, SC elements are implemented, which are already
introduced in Chapter 2. It allows implementing common arithmetic operations with
low-cost hardware compared to its fixed-point counterpart, even including potential
benefits in terms of energy efficiency in the case of multiplication operations, which are
at the core of most ML and DL inference algorithms.

Therefore, the implementation of SC systems mimicking or approximating fixed-
point operations of the original algorithm, together with simplifications to reduce the
required parameter accuracy in the model, allows such a system to be highly or even
fully parallel.

As far as the content of this chapter is concerned, two well-known algorithms im-
plemented with SC elements are studied. The first is the RBF-NN, for which we
investigate how to reduce the error associated with the autocorrelation of stochastic
bitstreams using a RNG, and also introducing a new type of APC and radial basis acti-
vation function. Secondly, the SC CNN implementations and more specifically the SC
LeNet-5 [16] is discussed, since it is one of the most widely used CNNs for the MNIST
task. However, it should be noted that in the latter case the hardware implementation
has been done by C.F. Frasser and our contribution is related to the deployed weight
quantization technique. In addition, two possible mathematical models for mapping a
conventional CNN to SC are presented.

Moreover, throughout this chapter several RNG methods utilized for bitstream gen-
eration are utilized, including on-chip (LFSR and rng n1024 r32 t5 k32 s1c48) ROM
based approaches, documented in Appendix C.

76

Compact Reconfigurable Machine Learning Systems

5.1 Radial Basis Function Neural Networks

5.1.1 Contribution

There are three main contributions related to the proposed SC RBF-NN. First, there
is a contribution to the SC paradigm in general, being the most remarkable a new
APC design with non-local and spatially extended memory, which returns an output
bitstream. Second, the classical LFSR utilized to generate pseudorandom bitstreams
is substituted by a high quality RNG to avoid autocorrelation effects in the SC blocks.
Third and most remarkable, a parallel SC RBF-NN design is implemented and tested on
FPGA, taking advantage of the other two contributions. Results are compared to the
equivalent fixed-point software version and simulated SC version in which activations
are exactly computed.

5.1.2 Related work

This is not the first time an RBF-NN is implemented using SC arithmetic since Y. Ji
et al. already proposed a fully parallel SC architecture for RBF-NNs [200]. However,
the contribution described in this work is differs from it in several aspects.

First, Y. Ji et al. architecture exploits the fact that a product of exponentials
results in the sum of its exponents, i.e.∏

i

e−p
2
d;i = e−

∑
i p

2
d;i (5.1)

which is an smart approach to save resources since SC multiplication (AND gate with
multiple inputs) is much simpler than addition (APC or MUX). However, this compu-
tation is accurate only if the bitstreams representing p2

d;i are uncorrelated. One might
think if there were as many different random numbers as there are p2

d;i components,
then the problem would be solved. Although this solution can solve the problem for
a reduced number of inputs, implementing many RNGs in parallel can be costly in
terms of logic resources. Also, if the number of inputs is huge, there might be partially
correlated bitstreams, increasing the error in the final result. This issue arises because
each bitstream representing p2

d;i is obtained from the XOR between a pair of corre-

lated signals, which feeds a FSM to compute the bitstream representing each ep
2
d;i by

exploiting self decorrelation, resulting in signals with common self-correlation patterns
induced by such FSM. Also, for a high number of inputs, it is more likely to introduce
correlations if one is using e.g. LFSRs as RNGs. To avoid this issue, in this work
Euclidean distance bitstreams are computed explicitly and then pass through an RBF
activation, using a single shared RNG.

In addition, the RBF activation is computed by a feed-forward digital circuit in-
stead of a 2-dimensional FSM and the proposed design is applied to several pattern
recognition tasks, including the MNIST, which is significantly higher dimensional than
the tests done in [200].

5.1.3 Theoretical foundations

The main idea is to take the RBF-NN model introduced in the Background chapter
(Section 2.3.3.1) as starting point and then describe an equivalent inference model

Chapter 5 A. Morán Costoya 77

Compact Reconfigurable Machine Learning Systems

based on SC. As a remainder, recall the NN has only one hidden layer with pattern-
matching units based on Euclidean distances followed by RBF activations. So, the
activation on the j-th squared Euclidean distance due to the i-th input sample is given
by (5.2).

Di,j = ‖Xi,: −W h
:,j‖2 (5.2)

So, hidden activations are given by (5.3), where it is conveniently assumed that each
RBF activation is given as a function of the squared distance, which makes the SC
model notation easier. Also, the simplest model case is assumed, i.e. γj = γ ∀j.

Ai,j = e−γjDi,j (5.3)

These hidden activations are linearly combined to generate outputs (5.4). Then, for
classification tasks the predicted label is given by (5.5).

Ô = s (AW o + B) , (5.4)

ŷi = argmax
j

{
Ôi,j

}
(5.5)

Also, remember the parameters W h, W o as well as the hyperparameters K and γ
are obtained offline. First the prototypes W h are obtained via the K-means algo-
rithm. Then, prototypes are quantized and used to obtain the activations. Once this
is done, the readout part is trained taking into account that the objective is to obtain
a fixed-point inference model. For this purpose, training is performed using direct fake
quantization as in Section 4.2.5.

Figure 5.1: Example prototypes (100 out of 1023) obtained using K-means algorithm on the MNIST training set.

5.1.3.1 An equivalent unipolar/bipolar SC model

If input data samples X are normalized in the unit range, these features can be ex-
pressed as activation probabilities PX = X. Since prototypes must be represented in
the same scale as input data because X and W h represent the same quantities, then
prototypes can also be expressed as activation probabilities PWh = W h. Therefore
(5.2) and (5.3) are equal in terms of activation probabilities. However, intermediate

78 Chapter 5 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

SC bitstreams representing squared Euclidean distances are normalized by the number
of inputs, so that (5.2) is conveniently rewritten as:

PD;i,j =
‖PX;i,: − PWh;:,j‖2

d
(5.6)

where d is the number of input features and PD represents an activation probability
equal to the squared Euclidean distances scaled by the number of inputs, so that the
results are in the unit range. Which implies that (5.3) can be rewritten as:

PA;i,j = g (PD;i,j) ≈ e−γeffPD;i,j (5.7)

where g is a custom RBF activation function and γeff = γd, so that PA ≈ A. Up to
this point, everything is interpreted in the unipolar SC coding. The corresponding SC
operations required for (5.6) are:

S̃i,j,:(t) =
(
X̃i,:(t)⊕ W̃:,j(t)

)
· S̃i,j,:(t− T) (5.8)

where S̃(t) contains bitstreams representing each squared difference needed to com-
pute Euclidean distances and inputs and prototypes must be maximally correlated, i.e.
generated by the same random sequence, so that:

X̃i,j ‖ W̃ h
j,k ∀i,j,k (5.9)

which means pairs of components related to the same feature index are correlated.
In this implementation all components share the same random number for simplicity.
From this expression, scaled Euclidean distances could be computed as:

PD;i,j ≈
1

Nd

N−1∑
n=0

d−1∑
k=0

S̃i,j,k(nT) (5.10)

however, intermediate domain conversion is avoided by using APC blocks which directly
return bitstreams D̃(t).

Next, the RBF activations (5.7) are computed by a more complex set of opera-
tions. The particular implementation might be either programmable or hardwired and
performs the following parametrized computations for input and output bitstreams
denoted as x̃(t) and ỹ(t), respectively.

a(t) =
15∑
n=0

x̃(t− nT), (5.11)

ãi(t) = H (a(t)− αi) , i = 0, 1, 2, 3, (5.12)

ỹ(t) = max
{

max
{

max
{
ã0(t)c̃0(t), ã1(t)c̃0(t)

}
c̃1(t), ã2(t)c̃1(t)

}
c̃2(t), ã3(t)c̃2(t)

}
(5.13)

where c̃i are coefficient bitstreams. Notice (5.13) might seem complicated but is com-
posed by three 2-to-1 multiplexers and its implementation is further discussed after
the SC model formulation. Ideally, if a(t) is computed from a much larger line buffer

Chapter 5 A. Morán Costoya 79

Compact Reconfigurable Machine Learning Systems

it would be constant in time and proportional to the input activation px. So that ãi(t)
in (5.12) would be constant too and integration in time would result in piecewise func-
tion, result of the superposition of four different step functions. However, the input
line buffer is finite, which introduces some standard deviation in a(t) and smoothens
the boundaries between active and inactive regions in each step function. Therefore,
integration in time of the output ỹ(t) would return a weighted superposition of smooth
step functions and its shape depends on coefficients αi and ci.

As regards the readout part, it can be implemented using either bipolar, sign-
magnitude or extended representations. Since the readout layer is fine-tuned using
intermediate activations extracted from the actual hardware implementation, it is not
necessary to work with high precision parameters, which would also contribute to
increase logic resources. So, the SC extended representation is discarded. Also, there
are two main reasons to choose bipolar instead of sign-magnitude coding. First, in
the last layer small errors due to variations near the bipolar zero (50% activation
probability) are not be propagated further. Second, sign-magnitud is a good choice
to reduce evaluation time by a half at expenses of slightly higher resource utilization,
which does not make sense in this case because the readout is computed in parallel
and less overall evaluation time would impact precision because hidden (unipolar)
activations would have less evaluation time too. Therefore, only the bipolar readout
layer architecture has been considered. That is:

P ∗
Ô;i,j

=
1

K

K∑
k=0

P ∗A;i,kP
∗
W o;j,k ≈

 1

NK

N−1∑
n=0

K∑
k=0︸︷︷︸
APC

Ãi,k(nT)⊕ W̃ o
k,j(nT)︸ ︷︷ ︸

bipolar product

∗

(5.14)

where k = 0 is reserved to the bias, i.e. PA;:,0 = 1, and bitstream pairs must be
maximally uncorrelated

Ãi,j ⊥ W̃ o
j,k ∀i,j,k (5.15)

In practice all readout weight bitstreams are generated from the same random number,
which is different from the one used to generate input and prototype bitstreams.

5.1.3.2 Hardware description

In order to explain how previous operations are described by parallel digital logic
circuits, several small block diagrams are introduced to describe RBF and linear units.
Finally, these building blocks are put in the context of the circuit describing the RBF-
NN.

Each scaled Euclidean distance is computed by adding d-dimensional groups of
squared subtractions, as described by (5.8). The SC design utilized to obtain squared
differences for a pair of bitstream vectors is illustrated in Fig. 5.2. Then, each group of
d squared differences are inputs to a new APC block, as a result it returns a bitstream
with the average activation probability.

As regards the APC design, a similar idea was already introduced in Section 2.2.3
for the SAPC (Fig. 2.13). The general case is depicted in Fig. 5.3. Notice when the
threshold value is equal to a power of 2, the SAPC can be simplified by substituting
the comparison block by simply choosing the MSB. In order to increase the bandwidth,
for large input sizes d, smaller SAPCs are connected in a feed-forward tree structure,

80 Chapter 5 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Figure 5.2: Bitstream-wise squared differences block diagram. It operates on two bitstream vectors of size d and
requires correlated input pairs, so that each of the 2d input pulses might be generated from the same random sequence.

see e.g. Fig. 5.4, which describes an SAPCN for 32 input bitstreams. This approach
is necessary to avoid timing issues with large critical paths when the number of input
bitstreams is large as in the case of MNIST (d = 784). The main reason for this is the
use of resource optimized parallel counters composed by full and half adders, which
increase the critical path length as the number of inputs increases.

Figure 5.3: SAPC block diagram for an arbitrary number of input bitstreams.

Figure 5.4: Example SAPCN block diagram for 32 input bitstreams.

After each scaled squared Euclidean distance is obtained, the RBF activation is
computed by the Fig. 5.5 circuit, which implements logic operations in (5.11), (5.12)
and (5.13). Notice this circuit needs to be parametrized correctly depending on the
required γeff (see (5.7)).

At this point we have all the necessary ingredients for the RBF unit and still need to
define the hardware required to implement the bipolar readout linear unit. The bipolar
multiplications described by (5.14) in the readout layer are calculated through several
parallel circuits such as the one shown in Fig. 5.6. Then, linear readout bitstreams are
obtained using SAPCNs too, and bitstream-wise multiplications (Fig. 5.6) instead of
squared differences as inputs (Fig. 5.2), without further activations.

Chapter 5 A. Morán Costoya 81

Compact Reconfigurable Machine Learning Systems

Figure 5.5: SC RBF activation block diagram.

Figure 5.6: Bitstream-wise multiplications block diagram. It operates on two bitstream vectors of size d and requires
uncorrelated input pairs, so that each of the 2d input pulses might be generated from a different, uncorrelated random

sequence.

Both SC RBF and linear readout units are constructed by the components described
above, as illustrated in Fig. 5.7. So the next level of abstraction in the RBF-NN design
already provides a global view of the implemented circuit, as shown in Fig. 5.8, which
also includes input and output registers as well as domain conversion components. In
addition, there is a global counter for setting up the number of integration steps and a
flag rises when the inference is done.

Figure 5.7: High level block diagram description of SC RBF and linear units utilized in the SC RBF-NN design.

82 Chapter 5 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Figure 5.8: Fully parallel RBF-NN block diagram description. Wires with the same color coming from SNG arrays
represent indicate whether the resulting bitstream vectors with maximally correlated components, i.e. different colors

indicate a different random number driving the SNG array. (*) The fully parallel FPGA implementation utilizes
hardwired prototypes, coefficients and readout weights to save logic resources.

5.1.4 Methods

The goal is to replicate the RBF-NN inference model using SC arithmetic in the form
of a fully parallel design as shown in Fig. 5.8. Due to the relevant role of autocorrela-
tion in random number generation, we pay special attention to its impact on distance
calculations. Therefore, the first step has been the choice of an RNG, comparing the
LFSR with another one that has better statistical properties.

The most common option for on-chip random number generation in SC designs is
based on the generation of maximum length sequences, mainly with LFSRs. Most SC
applications consist of replacing conventional multiplications by a few AND (unipolar)
or XNOR (bipolar) logic gates and the multiplications are usually between pairs of
different quantities and less frequently for squaring operations. This means that a
good seeds’ choice for a pair of LFSRs minimizes the error made, approaching the
computational accuracy of the equivalent fixed-point operation. In the case of the SC
square operation, what is done is to delay in time the corresponding bitstream.

The reader might think a possible solution is to create a second bitstream from the
same quantity, which is generated from a different seed. However, this would involve
a large amount of additional logical resources and in our case this is not possible since
in our case bitstreams do not come directly from SNGs (5.2, square operations occurr
after absolute value difference operations). Another possible solution is to incorporate a
seed choice based on several clock cycle delays instead of just one, so that the hardware
overhead is feasible as long as the required delay is not too high. More delay clock cycles
results in more D-type flip-flops, one per each squaring operation and per additional
clock cycle delay. Finally, if this solution is not satisfactory, one can change the RNG
by another one that presents much less autocorrelation from one cycle to the next, as
done in this study.

Before changing the LFSR to another RNG, it was analyzed whether it would
make sense to use more than one delay cycle in the circuits implementing the squaring
operations. Several numbers of delay cycles were analyzed and represented in Fig. 5.10,
where the mean absolute percentage error (MAPE) and the corresponding standard
deviation are shown as a function of the number of delay cycles and the required
correction factor at the output (hardware scaling factor in Fig. 5.10). Ideally, the
scaling factor should be 1/255 ≈ 0.00392 so that the correction does not have to

Chapter 5 A. Morán Costoya 83

Compact Reconfigurable Machine Learning Systems

be applied a posteriori. The best option would be the 3-cycle delay (green) because
the minimum MAPE and its deviation are lower than for 1 and 2 cycles, and almost
the same as for 4, 5 and 6 cycles. Nevertheless, from this graph it can be seen that
increasing the delay does not make a big difference in the error. In order to avoid
possible problems related to this issue and the impossibility to modify the scaling
factor as bitstreams flow into the parallel RBF-NN logic, the LFSR has been replaced
by another RNG.

Figure 5.9: Block diagram of the RNG module.

To guarantee the randomness of bitstreams, especially with regard to minimizing
autocorrelation, a good quality RNG is needed. A True Random Number Generator
(TRNG) specifically designed for FPGA was introduced in [201], which seems a reason-
able choice since it passes NIST and DIEHARD statistical tests and requires few logical
resources. However, the TRNG implementation is based on ring oscillators, which have
a high power consumption when implemented in FPGA [202]. Therefore, from a power
consumption point of view, it makes more sense to use a Pseudo-Random Number
Generator (PRNG) in this case. These two types of RNGs (TRNG and PRNG) are
combined in such a way that the TRNG generates a seed value to set up the PRNG and
then the former is switched off, as illustrated in Fig. 5.9. The corresponding HDL code
has been developed by Prof. Luis Parrilla (University of Granada), who contributed
to this work. The RNG is composed of a TRNG to generate a random seed based
on 50 ring oscillators with 3 inverters per oscillator, and the PRNG reproduces the
rng n1024 r32 t5 k32 s1c48 design from [203]. The TRNG initialization needs 64 clock
cycles and 1024 additional cycles are required to generate the seed. After the seed is
generated, the PRNG returns a 32-bit random number per cycle, which is splitted into
4 bytes. In this application only 3 of them are actually utilized to generate bitstreams
as indicated by SNGs depicted in Fig. 5.8 (blue, orange and green SNGs).

Once the RNG choice has been justified, the K-means pretrained parameters are
loaded as prototypes. Using an architecture similar to Fig. 5.8 in which there is no
output layer and the counter array is connected the RBF units (red wires) to create
a new feature set from training data directly from the hardware. Therefore, instead
of using readout weights obtained from exact features, these weights are obtained by
fitting a linear model to the feature set obtained from training data in order to minimize
the error due to small discrepances between the fixed-point and SC models. The model
differences are mainly due to discrepancies between the SC RBF hardware activation
and (5.7), and not so much due to slight variations in the distance calculations. These
are only present for relatively small SC integration times. In this sense, the output layer
is fine-tuned to adapt to the true shape of the SC activation function and accounting for
random fluctuations related to short evaluation times. This method has been utilized

84 Chapter 5 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Figure 5.10: MAPE and the corresponding standard deviation with respect to the equivalent fixed-point
implementation for scaled SC Euclidean square distances. The distances are evaluated on the MNIST training set and
the RNG is an 8-bit LFSR. Different colors represent different delay values (D) for the computation of the SC square

operation. The dotted vertical lines correspond to the optimum scaling factor for each delay value.

to evaluate different datasets, including different integration periods for the MNIST
dataset.

In addition to MNIST, the design has been also tested with lower dimensionality
datasets to check its performance. These datasets are summarized below:

� Iris flower [204]. It is probably the best known dataset in the ML community
and one of the simplest classification problems based on real world data. The
goal is to classify 4-dimensional features (sepal length, sepal width, petal length
and petal width) in three different classes corresponding to a specific type of iris
plant (setosa, versicolour or virginica), which cannot be done by a simple linear
model because one of the three classes is not linearly separable from the other
two. This small dataset contains 50 instances per class.

� Banknote authentication [205]. It consists of 4-dimensional features that are
claimed to be obtained from banknote-like images via feature extraction based
on a Wavelet Transform tool. It is a binary classification benchmark containing
762 data samples for class 0 and 610 for class 1.

� Breast cancer Wisconsin (diagnostic) [206]. Features are computed from image
data of a breast mass and describe 32 different features of cell nuclei in the image.
It is a binary classification benchmark which has 569 data samples and the goal is
to predict whether the breast mass is malignant (212 observations) or benignant
(357 observations).

� Optical recognition of handwritten digits [207]. Tiny 32×32 bitmaps containing
handwritten digits are divided into 4 × 4 nonoverlapping windows, so that the
output is an 8 × 8 5-bit map in which each number represents the bit count in
the corresponding 4 × 4 window. The 64-dimensional digits range from 0 to 9
and the dataset contains 5620 data samples.

5.1.5 Results

The aftermentioned datasets have been evaluated by the RBF-NN model with 8-bit pro-
totypes and readout weights. In Table 5.1 both fixed-point and SC results are reported.
Notice in the SC case the number of evaluation cycles is N = 511, and in the partic-
ular case of K = 1023, results do not correspond to those directly obtained from the

Chapter 5 A. Morán Costoya 85

Compact Reconfigurable Machine Learning Systems

fully parallel FPGA implementation. Instead, in the K = 1023 case, a programmable
RBF-NN SC design containing 31 parallel prototypes is utilized to iteratively obtain
the results. These results are the same than for a hardware simulation model of the
fully parallel design. As can be seen in the table, all the results are close (or equal) to
those obtained by fixed-point inference. Moreover, the results are also close to those
obtained in [16] (1000 RBF + linear classifier), which utilizes floating-point precision
for the parameter storage, computation of distances and activations, obtaining 96.4%
accuracy for the MNIST dataset.

Table 5.1: Accuracy percentage comparison between fixed-point and SC inference models. The number of evaluation
cycles for al SC results is N = 511. (a) Fully parallel hardware. (b) Co-processing with 31 programmable hidden units.

Dataset d K Fixed-point SC

Iris 4 17 97.33 97.33
Banknote 4 30 99.63 99.51

Breast cancer 32 34 97.34 97.34
Digits 64 48 96.95 96.89

MNISTa 784 255 94.11 94.05
MNISTb 784 1023 96.25 96.2

In the MNIST case (d = 784), it is also reported how the number of evaluation cycles
N affect test accuracy (see Fig. 5.11a), obtaining almost no improvement for N ≥ 511
compared to N = 511 when the number of prototypes is sufficiently high. Therefore,
from an energy efficiency point of view, N = 511 is the best choice since it corresponds
to the lowest evaluation time with almost zero (∼ 0.05%) accuracy degradation in
front of N = 8191. Differences are small because the output layer was fine-tuned by
training with the activation values calculated with the SC model, which allows the
model to take into account variability related to bitstream randomness and the specific
activation function shape. Moreover, Fig. 5.11b represents the expected growth in
logic utilization, which should grow linearly with d and the number of parallel (physical)
prototypes. Since programmable RBF units need parameter storage in FPGA registers,
which represents a serious constraint in FPGAs due to the limited number of embedded
registers. It requires more resource utilization per RBF unit (red) than the hardwired
fully parallel version (blue).

To conclude this section, Table 5.2 has been included too, which lists several metrics
related to the FPGA implementation, comparing it with the memoryless ReCA model.
These metrics come from Table 4.10. Notice the last column provides (FP-BNN model)
high maximum performance and energy efficiency numbers while maintaining good
accuracy, so it is included here too for comparison purposes.

5.1.6 Summary

This work is focused on the implementation of a fully parallel RBF-NN based on SC,
highlighting the importance of avoiding self correlation in bitstreams when computing
square operations using a high quality RNG. Moreover, a new SAPC and activation
function designs are introduced. The SAPCN could be used for any other ANN, but
in this case it maps input bitstreams to an accurate output bitstream with a mean

86 Chapter 5 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Figure 5.11: MNIST accuracy results and FPGA resource utilization. (a) Accuracy obtained from the stochastic
RBFNN implementation for different number of kernels and evaluation times. (b) FPGA resource utilization for both

programmable and hardwired architectures with d = 784. Here K = 511 and K = 1023 results are obtained from
simulations since fully parallel designs do not fit on the FPGA.

Table 5.2: Comparison between SC based RBFNN, ReCA and an energy efficient CNN implementation. (a) Fully
parallel hardwired with K = 255 and N = 511, tested on FPGA. (b) Fully parallel with K = 1023 and N = 511, not
tested on FPGA; power and hardware utilization are extrapolated and accuracy is obtained from an equivalent SC

simulation model.

Hardwireda Hardwiredb ReCA (Section 4.2) Ref. [193]

Model SC RBF-NN SC RBF-NN Memoryless ReCA FP-BNN
Accuracy (%) 94.1(2) 96.2(1) 98.08 98.32

Clock frequency (MHz) 50.0 50.0 50.0 150.0
Latency (ms) 10.5 10.5 0.0 3.4

KIPS 95.2 95.2 50.0 294.0
Max. performance (KIPS/MHz) 1.90 1.90 1.00 1.96

Power (W) 5.90 23.6 0.289 26.2
Energy efficiency (KI/J) 16.14 4.03 173 11.22
Logic utilization (ALM) 168K 673K 22.3K 182.3K

DSP blocks 0 0 40 20
On-chip memory (bytes) 0 0 0 NA

activation probability. At the same time, this is the input of the RBF activation. This
SC approach works fine for several datasets, obtaining similar results compared to the
fixed-point implementations.

As listed in Table 5.2, the final RBF-NN FPGA implementation is not optimal in
terms of accuracy, performance, logic resources nor energy efficiency for the MNIST
classification task. In fact, there are other implementations resulting in higher accu-
racy, which are smaller, faster and more energy efficient based on other computation
paradigms [138], [193].

Nevertheless, the proposed inference model is almost equivalent to its floating-point
counterpart in the MNIST case [16], even with 8-bit parameters for relatively small
evaluation times when the readout layer is fine tuned to account for real hidden layer
activations. The main result is the successful usage of the proposed SAPCN and RBF
activation units, achieving results equivalent to those obtained by a fixed-point model.
Also, there is room for several variations or improvements such as lower precision (or
simply binary) prototypes, different kernel functions or smaller evaluation times. These
modifications would represent an improvement in terms of logic utilization and energy

Chapter 5 A. Morán Costoya 87

Compact Reconfigurable Machine Learning Systems

efficiency if accuracy is preserved. So that it might serve as the baseline for comparison
with further works incorporating architecture improvements.

5.2 Convolutional Neural Networks

The origin of the ideas that gave rise to what we know today as CNN dates back to the
1950s and 1960s. Back then, Hubel and Wiesel concluded that the visual cortex of the
cat and monkey contains neurons that fire individually because they are related to small
areas of the visual field. Each of these fields, the contents of which cause a single neuron
to fire, is known as a receptive field, which vary in size and each neuron has its own
receptive field [208]. These receptive fields overlap in different regions of the visual field
and are very similar for spatially correlated neurons. Moreover, there are two types of
cells in charge of this task depending on its size and complexity of the pattern detected
by the receptive field: simple and complex [209]. While simple cells essentially detect
edges with different orientations, complex cells have more connections, i.e. its receptive
fields are larger, and detect more complex patterns.

These advances in the field of neurophysiology inspired K. Fukushima, who intro-
duced in 1980 the main CNNs components used today. K. Fukushima proposed a new
network architecture for pattern recognition unaffected by shift in position: neocogni-
tron [210]. Both supervised and unsupervised local parameter optimization approaches
were proposed, including different types of cells in a biologically inspired self-organizing
structure. However, nowadays the backpropagation supervised training is the best op-
tion.

Backpropagation in combination with an explicit weight sharing training approach
together with an idea similar to a CNN, known as time-delay neural network (TDNN)
was first introduced by A. Waibel et al. some years later and applied to phoneme
recognition [211]. The TDNN input was a 16-coefficient mel spectrogram and the
network architecture can be described as a 2-dimensional CNN with a kernel width
including several time steps and kernel height equal to the number of mel coefficients,
i.e. 16 in that case, and time integration of the last convolution outputs. Therefore,
the architecture is invariant to time shifts by construction. Similar ideas were applied
to image processing applications too.

Perhaps, one of the most successful advances in this context was by Y. LeCun et
al. in 1989 [212], who built an small CNN to classify handwritten numbers based on
backpropagation with weight sharing based Fukushima’s ideas, including multi-channel
2-dimensional convolution operations and average pooling for downsampling purposes.
Over the years, the computational capacity growth made it possible to increase the
number of ANN hidden layers. In 1998, Y. LeCun et al. introduced the LeNet-5 [16],
a CNN with which they broke the MNIST accuracy record. The paper also includes
comparisons with a wide variety of alternative ML algorithms and how to use the
inference mechanism to recognize documents.

A slightly modified version of the so called LeNet-5 is depicted in Fig. 5.12. While
the original model uses average pooling and sigmoid hidden activations, here it is in-
troduced with max-pooling filters after each convolution and hidden activations are
ReLUs. In this figure, the notation c@h×w refers to the number of channels c, height
h and width w at each stage. Even though there are 7 different layers represented in
Fig. 5.12, the CNN is called LeNet-5 because max-pooling layers are not parametrized
and CNN convolution layers usually include multiple multi-channel convolution (or

88 Chapter 5 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

simply convolution in a DL context) followed by pooling operations. Similar architec-
tures along with the application of backpropagation-based training are the foundation
of DL applied to computer vision. In fact, a lot of the breakthroughs with great impact
in the DL area are based on essentially the same type of architectures for larger im-
ages and deeper networks. Fortunately, researchers managed to accelerate the training
process using GPUs, allowing its application to process higher resolution input RGB
images [213] and networks with more and more parameters and layers [214], [215].
Many advances related to CNNs are quite recent, both at the level of network architec-
ture and implementation of ever deeper networks as well as at the level of parameter
optimization, but these are topics beyond the scope of the work described here.

This section is focused on the hardware simplification of operations and memory
required for the inference process in a CNN. In this context, low precision fixed-point
inference is currently a hot topic in the DL field and thanks to the advances in QAT
approaches, these changes do not lead to significant degradation in overall accuracy
[150], [199]. The ANN training process focusing on obtaining fixed-point parameters
and activations by the end of the backpropagation process is known as quantization
aware training (QAT) and a specific algorithm is proposed. Furthermore, two dif-
ferent SC descriptions of the CNN inference are described and simulated in order to
evaluate the quantization algorithm performance. All experiments are on the LeNet-5
architecture described in Fig. 5.12, including results obtained from a fully parallel
SC design proposed and implemented in FPGA by C.F. Frasser et al., including VLSI
implementation metrics too [216].

Figure 5.12: LeNet-5 neural network architecture.

5.2.1 Contribution

The contribution of this section arises from the need to create a quantization scheme
for an already implemented 2-dimensional CNN design based on SC [216]. For this
purpose, and inspired by existing QAT methods adopted when targeting low precision
fixed-point hardware [150], [199], a similar technique is developed to obtain fixed-point
parameters suitable for fully parallel SC implementations.

Therefore, two different SC inference models based on the LeNet-5 CNN are eval-
uated on the MNIST test set with quantized parameters and intermediate operations.
One of the simulation models is based on the bipolar SC coding and the other on the
sign-magnitude coding. Finally, the inference results are reported too, comparing it
with other SC and fixed-point implementations. It should be noted that results re-
lated to FPGA implementation and potential VLSI implementation are not part of
this thesis.

Chapter 5 A. Morán Costoya 89

Compact Reconfigurable Machine Learning Systems

5.2.2 Related work

There are no quantization aware backpropagation training methods oriented to SC
models. However, the proposed method is inspired by existing approaches targeting
fixed-point inference models, but existing approaches currently applied to obtain fixed-
point models might work as well under certain modifications. Some of those approaches
explore low bit width quantization, with [217] or without [218] including it in the
training process, while others are more focused on especial cases, including binary [150],
[199], [219], [220] and ternary [221]–[223] weighted CNNs. In both cases, it might make
sense to use different bit precisions for parameter storage and arithmetic operations.
The content presented in this section utilizes these ideas and introduces some new
simplifications to scale CNN signals layer-wise instead of filter-wise. Moreover, these
scales are restricted to powers of two to meet the SC hardware specifications.

In SC, the parameter bit width does not matter as long as it is less or equal than
blog2Nc, where N is the bitstream length, and ideally, increasing N smoothly increases
precision in arithmetic operations. Here a dlog2Ne-bit bipolar signal refers to the
ideal maximum representational precision in intermediate operations obtained from
the interaction between bipolar bitstreams with length N or sign-magnitude bitstreams
with length bN/2c. In this context, we proposed a quantization method that takes into
account the SC operations imprecisions, the closer the parameters are to their limit
values (+1 and −1), the more accurate the multiplications are. In the bipolar coding,
the bitstreams representing 0 values increases the error propagated to activations in the
next layer. Since our hardware implementation is in fact based on bipolar coding, this
effect is also sought to be minimized. The SC formulation and simulations presented
here are mainly inspired by an existing hardware implementation [216], extending it
to the sign-magnitude SC coding. There exist other SC CNN implementations in the
literature [45], [57], [224], [225], but their approach to implement SC blocks performing
(multi-channel) 2-dimensional convolutions, max-pooling and activation function is
based on approximate pooling and activation operations. Instead, in our approach the
SC error source comes from the stochastic multiplications inside the convolution sub-
blocks, then max-pooling and ReLU are computed by comparing correlated bitstreams,
so that the result is evaluated without any error. Therefore, besides potential bitstream
generation issues, the proposed SC architectures are more accurate than previous SC
implementations for a generic number of parameter and signal bit width.

5.2.3 Theoretical foundations

To understand how a CNN works it is necessary to know the convolution operation
details. Convolutions can be discrete or continuous and applied to one or more spatio-
temporal dimensions. Since it is one of the main ingredients of CNNs, the first part
of this section has briefly reviewed this concept. Moreover, assuming that the reader
is already familiar with the inference mechanism of a fully-connected FFNN or MLP,
which is described in Section 2.3.3. In addition, the way in which inference happens in
a CNN is also reviewed. We also focus on model quantization, which occurs along the
training process, i.e. during backpropagation (see Section 2.3.3.2).

Finally, and to conclude with the theoretical foundations of this research, two
SC-based models are described, one based on bipolar coding and the other on sign-
magnitude coding, as well as the digital block diagrams for the corresponding SC
equations.

90 Chapter 5 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

5.2.3.1 Convolution operation

The convolution operation is usually introduced as a continuous mathematical oper-
ation between two functions gx and gw denoted by the operator ∗, so that (gx ∗ gw)
is the function resulting from the convolution and the simplest case is 1-dimensional
convolution. Formally, the integral of the product of both functions is calculated, with
one of them reversed and shifted to obtain the resulting function, i.e.:

(gx ∗ gw)(t) =

∫ ∞
−∞

gx(t− τ)gw(τ)dτ, gx, gw : R→ R (5.16)

The same type of operation can be applied to a finite number of points. So in the
one-dimensional case, instead of functions gw and gw, one can refer to the arguments
x and w as row vectors, so that:

z = x ∗w, zi =

f−1∑
j=0

xsi+jwf−1−j (5.17)

where w is usually referred to as kernel or filter, s is the stride and f the filter size. A
discrete convolution can be either valid, same or full. Both same and full variants can
be achieved by padding zeros to the vector being convolved and performing the valid
convolution on already padded data with the same filter. Therefore, z has

⌊
h−f
s

⌋
+ 1

elements because (5.17) describes a valid convolution.
In practice, the filters are model parameters obtained during the training pro-

cess, so that it does not matter whether the filter parameters are reversed in order
to perform each multiplication. In fact, CNNs implement cross-correlations instead
of convolutions, the only difference between these two operations being whether the
filter is rotated or not. Similarly to (5.16) and (5.17), the cross-correlation operation
is denoted by ? and given by (5.18) in the continuous case and (5.19) in the discrete
case.

(gx ? gw)(t) =

∫ ∞
−∞

gx(t+ τ)gw(τ)dτ, gx, gw : R→ R (5.18)

z = x ?w, zi =

f−1∑
j=0

xsi+jwj (5.19)

The same concept can be generalized to multiple input channels and filters, which
is how a 1-dimensional CNN layer would operate. As an example, Fig. 5.13 illustrates
how a single channel pattern (top left) is cross-correlated with multiple filters (top
right), obtaining the cross-correlation results (bottom left). In this example the input
pattern is the superposition of two amplitude modulated sinusoidal waves at 20 and
30 Hz represented by 512 input vector elements. Filters are pure sinusoidal waves
with linearly increasing frequencies and 64 elements per filter. As a result, cross-
correlation amplitudes (bottom right) are higher at 20 and 30 Hz, making them easier
to be detected. In fact two filters would be sufficient to detect these two frequencies.
Nevertheless, if the target is to accurately detect any frequency, many different filters
are needed. The best approach is to use the Discrete Fourier Transform (DFT) since
the Fast Fourier Transform (FFT) algorithm is a much more efficient approach.

The cross-correlation concept can be extended to an arbitrary number of dimen-
sions. However, it is sufficient to introduce the 2-dimensional cross-correlation, which

Chapter 5 A. Morán Costoya 91

Compact Reconfigurable Machine Learning Systems

Figure 5.13: Example 1-dimensional discrete cross-correlation for a single input channel and multiple filters.

is the core of the LeNet-5 and by extension modern computer vision and audio pro-
cessing based on DL. The 2-dimensional continuous operation extends (5.18) to cross-
correlation applied to 2-variable functions, that is:

(gX ? gW) (u, v) =

∫ +∞

−∞

∫ ∞
−∞

gX(u+ τ0, v + τ1)gW (τ0, τ1)dτ0dτ1, gX , gW : R2 → R2

(5.20)
so, in analogy with (5.19), the valid discrete 2-dimensional cross-correlation operates
on the pattern X and filter W matrices, given by:

Z = X ?W , Zi,j =
h−1∑
i0=0

w−1∑
i1=0

Xsi+i0,sj+i1Wi0,i1 (5.21)

where X is an h×w matrix, usually representing a byte map with height h and width
w, respectively. While Fig. 5.13 shows the result of applying various filters in the
1-dimensional case, the Fig. 5.14 shows it for the 2-dimensional case taking a grayscale
image as input. Notice how filters applied to image data work as edge or primitive shape
detectors, e.g. horizontal lines, diagonal lines or specific vertex shapes. This is the base
of how a CNN works. The composition of several concatenated cross-correlation layers
combined to other (simpler) operations allows the trained network to recognize features
with a higher level of abstraction. In fact, a CNN detects increasingly complex and
larger shapes as a network grows in depth.

The operations performed in 2-dimensional CNN layers are multi-channel cross-
correlations, which is a particular case of 3-dimensional cross-correlation in which the
number of channels is equal to the filter depth, so that the filter is not strided across
the channel dimension. Therefore, assuming rank-3 tensors X, W and resulting matrix
Z, the discrete, valid, multi-channel and 2-dimensional cross-correlation (from now on,
simply cross-correlation for short) is given by:

Z = X ?W , Zi,j =
c−1∑
i0=0

h−1∑
i1=0

w−1∑
i2=0

Xi0,si+i1,sj+i2Wi0,i1,i2 (5.22)

An example is the case of RGB images (three channels), since each of the applied
filters must have three channels (c = 3). This is necessary even if we are dealing with

92 Chapter 5 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Figure 5.14: Example 2-dimensional discrete cross-correlation for a 32× 32 image with a single input channel and
multiple 5× 5 filters. The highest resulting pixel values are highlighted in red.

grayscale (c = 1) images and there is more than one convolutional layer, as is the
case of LeNet-5 (Fig. 5.12). In the general case, each tensor filter is c × f1 × f2, so
blocks of the same size are obtained by sliding a cubic window through the c× h× w
input tensor X with stride s. This input tensor represents multi-channel data with two
spatial dimensions and cubic windows are not strided across channels. For each filter
to be applied, each c×f1×f2 block is multiplied element-wise by the filter of the same
size and all resulting elements are added together (dot product) as described by (5.22),
this can be generalized to the multiple filter case. In the single filter case, results are
represented by a

(
bh−f1

s
c+ 1

)
×
(
bw−f2

s
c+ 1

)
matrix Z, however, if d different filters

have to be applied, it might be a good option to use a more compact notation in
which results are organized in a d ×

(
bh−f1

s
c+ 1

)
×
(
bw−f2

s
c+ 1

)
tensor and a single

d×c×f1×f2 filter tensor W containing all d filters, so that resulting cross-correlations
are given by:

Zi,:,: = X ?Wi,:,:,: (5.23)

The Fig. 5.14 example has a single-channel input X that would be a 1× h×w tensor
to which d = 6 different 1 × 5 × 5 filters are applied, i.e. the filters can be described
by a 6× 1× 5× 5 tensor W . Each single filter cross-correlation results in a slice Zi,:,:,
so that all results are grouped in a d×

(
bh−f1

s
c+ 1

)
×
(
bw−f2

s
c+ 1

)
tensor Z.

5.2.3.2 Forward propagation

In order to keep the notation as similar as possible to the corresponding implementa-
tion, tensor dimensions are the same as in PyTorch. The specific dimension sizes are
indicated in Table 5.3, where c is the number of input channels, d is the number of
output channels, h is the image height, w is the image width, f1 is the filter height and
f2 is the filter width.

The layer L cross-correlation output, denoted by the tensor Z [L] is given by the
cross-correlation operation (5.22) between activations from previous layer A[L−1] and
filters W [L]:

Z
[L]
i,:,: = A

[L−1] ?W
[L]
i,:,:,: (5.24)

After a convolution operation, it is a common practice to apply q× q max-pooling and
ReLU. Both operations are applied in layer L and given by (5.25) and yield the output

Chapter 5 A. Morán Costoya 93

Compact Reconfigurable Machine Learning Systems

Table 5.3: Tensor types and the corresponding ranks and dimension sizes consistent with this document.

Tensor type rank sizes

input from previous layer 3 (c, h, w)
cross-correlation filters 4 (d, c, f1, f2)

resulting cross-correlations 3 (d, h, w)

valid convolution w/ stride s 3
(
d,
⌊
h−f1

s

⌋
+ 1,

⌊
w−f2

s

⌋
+ 1
)

p× p pooling w/ stride p 3
(
d, 1

p2

(⌊
h−f1

s

⌋
+ 1
)
, 1
p2

(⌊
w−f2

s

⌋
+ 1
))

activations in layer L.

A
[L]
i,j,k = max

{
0,max

a,b
Z

[L]
i,qj+a,qk+b

}
, a, b ∈ Z ∩ [0, q − 1] (5.25)

Applying (5.24) and then (5.25) is illustrated in 5.15 and these two operations
result in the most common type of CNN layer. The typical forward propagation in a
CNN concatenates one or more CNN layers, combined with simple MLP architectures
at the end, as is the case of the LeNet-5 architecture depicted in Fig. 5.12. Each
convolution1, max-pooling and activation2 sequence is a CNN layer. Therefore, the
LeNet-5 is composed by 2 CNN layers and a 3-layer MLP. Despite convolutional and
fully connected layers are part of a standard CNN, fully connected layers are not
discussed. Notice that a fully connected layer can be described as a cross-correlation in
which the input and each filter have the same shape, so that the stride s = 0, f1 = h,
f2 = w and d is the number of units.

5.2.3.3 Quantization aware training

Inference in SC systems does not necessarily require a QAT method as long as the
resulting model accuracy is not affected at all. However, this is not our case. So the
idea arose to apply a relatively simple quantization algorithm to improve the results
in order to bring them closer to the floating-point model results. Quantization is quite
common in the literature, especially in point-fixed models. Here the idea is very similar
since the arithmetic operations are carried out via SC logic but parameters need to be
stored in a fixed-point format as in previous case.

Understanding how backpropagation works is helpful since the training carried out
with quantized weights requires the utilization of this algorithm too. The standard
training approach is the same as for the MLP since cross-correlations can be expressed
as matrix multiplications by manipulating feature and filter tensors [226]. The main
difference is related to the error propagation through max-pooling operations, since
the gradient does not propagate through non-maximal values. Moreover, the max
operation is locally linear (proportional with slope 1) with respect to each maximum
value through which the error is propagated. So, it does not require any additional
operation other than addressing the gradient descent only to the maximum arguments,
for each window p× p.

1It is actually cross-correlation, but in the DL literature these terms are used interchangeably
because filter weights are trainable and both operations become equivalent if filters are flipped.

2Activations are implicit after each max-pooling or dense layer.

94 Chapter 5 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Figure 5.15: Example illustrating tensor shapes in a typical CNN layer, including both cross-correlation and
max-pooling followed by a ReLU activation.

As regards QAT, there are several approaches and the one selected is just an-
other quantization algorithm. It is important to differentiate between two training ap-
proaches. If a training algorithm is intended to be implemented on a device (on-device
learning), in which the model parameters must always be in a fixed-point format, then
intermediate parameter updates must be fixed-point too. Instead, if the training algo-
rithm is intended to be run on a server or desktop PC for subsequent implementation
of the inference on another device (off-device learning), in which the model parameters
can be stored in a floating-point format during training and converted to a fixed-point
format at the end of the process. In this work, the model is trained in floating-point
on a desktop PC and these parameters are forced to converge to integer values by the
end of the process.

Here, a step towards integer quantization is done after every backpropagation step
as described by Algorithm 2. Forward, backward and optimization steps are done as
usual, the innovation is that each optimization step is potentially followed by an step
towards quantization.

5.2.3.4 An equivalent bipolar SC inference model

The equivalent SC inference model implemented in this work requires all input and
intermediate calculations to be normalized in the range [−1,+1], since these numbers
represent activation probabilities with the bipolar change of variables already applied.
So the first step is to convert (5.24) and (5.25) to quantities in the bipolar range. The

cross-correlation outputs are denoted by P
∗[L]
Z

and are given by (5.26). These quantities
are mostly proportional to the original cross-correlation outputs.

P
∗[L]
Z

= s[L] � HTanhrth

(
P
∗[L−1]
A

? P
∗[L]
W ;i,:,:,:

)
(5.26)

Chapter 5 A. Morán Costoya 95

Compact Reconfigurable Machine Learning Systems

Algorithm 2: NN quantization step after each backpropagation step

Input: Input mini-batch data samples X and targets O, current weights{
W [1], . . . ,W [Lf]

}
, a boolean applyQuant to control whether to apply

an step towards quantization or not, and hyperparameters as well as
other arguments (denoted as optimizerArgs[i] and quantizerArgs[i],
respectively, for layer i)

Result: Updated weights
/* obtain intermediate linear transformations and predicted output */{{
Z [1], . . . ,Z [Lf]

}
, Ô
}
← forwardPropagation(X,

{
W [1], . . . ,W [Lf]

}
);

/* obtain weight errors based on some cost function by propagating errors

backwards */{
δW [1], . . . , δW [Lf]

}
← backwardPropagation(Ô,O,

{
Z [1], . . . ,Z [Lf]

}
);

/* weight update for all layers */

for i← 1 to Lf do
optimizerStep(W [i], δW [i], optimizerArgs[i]);

end
/* weight manipulation for all layers */

if applyQuant then
for i← 1 to Lf do

quantizerStep(W [i], quantizerArgs[i]);
end

end

Here s
[L]
j are appropriate scaling factors. Although this is a relatively general form

for these (output filter-wise) scaling factors, for simplicity, assume a common scaling

factor for a given layer, that is s[L] = s
[L]
j ∀j. Also, the HTanh ensures the outputs are

in the interval [−1, 1]3. As regards the fused max-pooling and ReLU outputs, bipolar

quantities are denoted by P
∗[L]
A

and given by: (5.27).

P
∗[L]
A;i,j,k = max

{
0,max

a,b
P
∗[L]
Z ;i,qj+a,qk+b

}
, a, b ∈ Z ∩ [0, q − 1] (5.27)

From (5.26) and (5.27), it is also possible to formulate a fixed-point forward prop-
agation hardware model with quantized activations, inputs and weights. Instead, the
goal is to formulate a bipolar SC model. The straightforward approach would be to
compute the equivalent SC of (5.26), then convert quantities back to the SC domain
and compute the equivalent of (5.27). However, to formulate the SC model in this work
we apply the equivalent (5.27) for layer L− 1 and then (5.26), so that no intermediate
domain conversions are required to perform this sequence of operations (first fused
max-pooling and ReLU, then cross-correlation). Therefore, (5.27) and (5.28) would be
our reference expressions expressed with bipolar quantities.

P
∗[L]
Z ;i,j,k = s

[L]
i HTanhrth

(
c−1∑
i0=0

f1−1∑
i1=0

f2−1∑
i2=0

P
∗[L−1]
A;i0,sj+i1,sk+i2

P
∗[L]
W ;i,i0,i1,i2

)
, a, b ∈ Z ∩ [0, q − 1]

(5.28)

3Applying ReLU after HTanh function results in a saturated ReLU operation and the saturation

threshold depends on scales s
[L]
j .

96 Chapter 5 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

In order to describe the SC equations, the original tensors listed in Table 5.3 are now
bitstreams, i.e. boolean functions of time. These bitstreams are denoted with a tilde
and evaluated each clock period T . According to section 2.2, the bipolar multiplication
is implemented by the XNOR of the uncorrelated inputs and the maximum is obtained
by the logical disjunction (OR gate) of the correlated inputs. Then (5.28) can be
approximated by (5.29) and (5.30) for large N values.

~A
[L−1]
i,j,k (t) =

Fused max-pooling and ReLU︷ ︸︸ ︷
max

{
p̃ 1

2
(t),max

a,b

~Z
[L−1]
i,qj+a,qk+b(t)

}
︸ ︷︷ ︸

(q2+1)-input OR logic gate

(5.29)

P
[L]
Z ;i,j,k ≈

s
[L]
i

N
ReLUrth

(
N−1∑
n=0

∑
i0,i1,i2︸ ︷︷ ︸

APC

~A
[L−1]
i0,sj+i1,sk+i2

(nT)⊕ ~W [L]
i,i0,i1,i2

(nT)

)
, a, b ∈ Z∩[0, q−1]

(5.30)

The resulting quantities approximate P
[L]
Z ;i,j,k, which represents a probability, ready to

be converted to stochastic bitstreams again to feed the next layer. This probability
would be converted to the equivalent bipolar variable under the change of variables
P
∗[L]
Z

= 2P
[L]
Z
− J.

The bitstream p̃ 1
2
(t) is the result of converting the bipolar zero to a stochastic

bitstream, which has 50% activation probability. Moreover, in (5.30) correlation and
decorrelation of bitstreams play an important role, as described by C.F. Frasser et al.
[216]. Fused max-pooling and ReLU operate with correlated bitstreams, meanwhile
multiplications require uncorrelated bitstreams, as reflected by (5.31).

p̃ 1
2
‖ ~Z [L]

i,j,k ∀i,j,k, p̃ 1
2
⊥ ~W

[L]
i,j,k,l ∀i,j,k,l (5.31)

Then, obtaining the bitstream representing the largest value becomes trivial using a
simple (q2 + 1)-input OR gate. Also, each multiplication requires an XNOR logic gate.
Equivalently, these two operations can be concatenated using a (q2 + 1)-input NOR
and an XOR gate.

5.2.3.5 An equivalent sign-magnitude SC inference model

We take (5.27) and (5.26) as the starting point. Since bipolar quantities take values in
the interval [−1,+1], which can be directly mapped to the sign-magnitude SC inference
model. In order to simplify the final expression, let us first define sign and magnitude
as separate variables sgn(X) and mgn(P ∗

X
) that fully determine the bipolar equivalent

PX from a tensor X, that is:

P
∗[L]
X

= sgn(X)�mgn(P ∗
X

), (5.32)

The sign function can be expressed in terms of the (elementwise) Heaviside function
H:

sgn(X) =
1

2
(H(X) + J) (5.33)

Chapter 5 A. Morán Costoya 97

Compact Reconfigurable Machine Learning Systems

In addition, for the sake of simplicity it is also convenient to define the following short
notation:

M(X) = mgn(P ∗
X

) (5.34)

with the corresponding bitstreams denoted as M̃[X](t).
Using this notation, the fused max-pooling and ReLU applied to a q × q pairs of

sign-magnitude bitstreams representing the activations in layer L − 1 are given by
(5.35), which are the input bitstreams to the next cross-correlation in layer L.

M̃
[
A

[L−1]
i,j,k

]
(t) =

q2 AND gates and q2-input OR gate︷ ︸︸ ︷
max
a,b

(
H
(
Z

[L−1]
i,qj+a,qk+b

)
· M̃

[
Z

[L−1]
i,qj+a,qk+b

]
(t)
)
,

a, b ∈ Z ∩ [0, q − 1]

(5.35)

Since multiplication operations involving the sign and magnitude can be decoupled
and operated separately, signs are interpreted as bipolar variables that remain constant
in time, representing either −1 or +1 and operated accordingly. That is, the multipli-
cation of two numbers a and b with the same sign results in a positive number c = ab,
i.e. H(c) = 1, in contrast, if the sign of a and b is different, then c is negative, i.e.
H(c) = 0. At the same time, decoupled magnitudes are simply multiplied as unipolar
bitstreams. Therefore, the cross-correlation operation in layer L is described by:

P
[L]
Z ;i,j,k ≈

s
[L]
i

N
HTanhrth

(
N−1∑
n=0

∑
i0,i1,i2︸ ︷︷ ︸

APC

(
2

addition (1) or subtraction (0)︷ ︸︸ ︷(
H
(
A

[L−1]
i0,sj+i1,sk+i2

)
⊕H

(
W

[L]
i,i0,i1,i2

))
−1

)

·

unipolar product︷ ︸︸ ︷
M̃
[
A

[L−1]
i0,sj+i1,sk+i2

]
(nT) · M̃

[
W

[L]
i,i0,i1,i2

]
(nT)

)
(5.36)

In this expression, magnitude multiplications are unipolar, sign multiplications are
bipolar and each resulting bitstream pair contributes to the parallel count, which can
be implemented by a parallel counter (PC). Each bitstream pair contribution for a
single time step n can be either positive or negative, being the parallel count a signed
quantity too. The result is then accumulated for N clock cycles to approximate (5.28),
which can be implemented by an APC that accounts for two’s complement (signed)
quantities.

5.2.3.6 Hardware description

An appropriate logic and block diagram description is helpful for simulation and hard-
ware implementation purposes. The aim of the following block diagrams is to present
the overall system structure according to previous equations. The main ingredients for
both SC models are the scalar product and fused max-pooling and ReLU operations
for a given p× p window. Both components are depicted in Fig. 5.16 and 5.18 for the
bipolar and sign-magnitude cases.

On the one hand, Fig. 5.16 presents the digital design implementing fused max and
ReLU SC operations, which is the basic building block for the fused max-pooling and
ReLU for bipolar and sign-magnitude cases, given by (5.29) and (5.35), respectively.

98 Chapter 5 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Both blocks operate with correlated bitstreams and the activation probabilities are
equivalent to (5.27) if the p×p window is unrolled as a p2 vector. In the fused max and
ReLU bipolar case, the implementation is based on Section 2.2.3 demonstrations, while
for the sign-magnitude case the principle is similar but with additional AND logic gates
so that for each sign-magnitude bitstream pair, a negative sign bit inhibits the mag-
nitude bitstream. Since the sign bit remains constant, correlation between magnitude
bitstreams is not lost after each AND gate. Following the same notation as in Fig. 5.16,
the output activation probabilities in Fig. 5.17 are pz = max {px;0, px;1, . . . , px;p2−1, 0.5}
for the bipolar ReLU-max (BRM) andM(z) = max {M(x0),M(x1), . . . ,M(xp2−1), 0}
for the sign-magnitude ReLU-max. As depicted in Fig. 5.17, organizing these blocks
according to the corresponding tensor shape enables the fully-parallel computation of
bitstreams representing all left hand side tensor elements in (5.27). This block dia-
gram depicted in Fig. 5.17 is referred to as bipolar ReLU-max-pool (BRMP) or sign-
magnitude ReLU-max-pool (SMRMP) depending on whether the coding is bipolar or
sign-magnitude, respectively.

Figure 5.16: Fused max and ReLU SC logic for both bipolar (left) and sign-magnitude (right) bitstream number
representations.

Figure 5.17: SC CNN fused ReLU and max-pooling block diagram for either bipolar bitstreams or sign-magnitude
bitstream pairs. Notice in this example p = 2 and the input bitstreams represent a 14× 14 channel with 2 spatial (or

spatio-temporal) dimensions, so that the outputs represent a downsampled 7× 7 channel.

On the other hand, The dot product implementation is similar to that proposed for
RBF-NN, but with different APC blocks. Fig. 5.18 depicts the digital design for the SC
dot product, which is an element of the cross-correlation block. Each cross-correlation
output can be interpreted as the dot product between the unrolled c × f1 × f2 input
block and the corresponding filter. Therefore, combining bipolar dot product (BDot) or

Chapter 5 A. Morán Costoya 99

Compact Reconfigurable Machine Learning Systems

sign-magnitude dot product (SMDot) with BRMP or SMRMP blocks (Fig. 5.17) allows
to implement an complete convolutional layer. Fig. 5.19 depicts the digital design for a
single convolutional layer, where input and output data signals are bitstreams. Notice
only one intermediate APC array per layer is needed, since output bitstreams are the
next layer inputs without additional domain conversion.

Figure 5.18: Dot product SC logic for both bipolar (left) and sign-magnitude (right) bitstream number
representations. (*) The depicted APC and SMAPC have a registered output to enable pipelining trough different

layers and provide binary weighted numbers that are already apropriately scaled by a power of 2.

Figure 5.19: SC CNN layer block diagrams for either bipolar bitstreams or sign-magnitude bitstream pairs. Notice
in this example d = 4, c = 6, h = w = 16, s = 1, p = 2.

100 Chapter 5 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

5.2.4 Methods

This section describes the quantization method, as well as the general workflow once
the final parameters have been obtained. So far, a general introduction on model
quantization has been described (Algorithm 2) and the equations and hardware blocks
required to evaluate inference in a SC CNN layer have also been presented.

The proposed quantization method is built on the idea that trained ANN weights
follow a normal distribution4. Therefore, there are a few large weights and most of them
are concentrated around zero. The main issue with normally distributed weights is that
linear quantization results in large overall quantization relative errors since values near
zero are much more frequent than weight values beyond two or three times the standard
deviation. To tackle this problem, there are two main quantization methods5: applying
a nonlinear quantization scheme or modifying the final weight distribution to obtain
better linear quantization error.

The nonlinear quantization approach reduces the model size since there is no need
to store floating-point weights but codebooks of them instead. However, in this work
this approach is discarded because the intermediate operations require high precision,
e.g. floating-point multiplications. In fact, we work with SC bitstreams that can only
represent integers, so it is not the most appropriate method for our case. Instead,
modifying the weight distribution in order to reduce relatively large errors related
to quantization can result in a model accuracy closer to that obtained in floating-
point. This is done during training using labeled data, which allows more control
over the resulting weight distribution. Optionally, the impact of quantizing activations
could be taken into account, but in this work it is not considered since the weight
distribution manipulation method contributes to reduce the inherent error to bitstream
multiplications.

From simulation results [57], we know the SC multiplication error is maximum when
input and parameter bitstreams have 50% activation rate and are generated from un-
correlated maximum length random uniform sequences. For any input activation prob-
ability, the maximum multiplication error occurs when the parameter bitstream has
50% activation probability. Since weights are normally distributed after a standard
ANN training, this effect becomes relevant for the bipolar SC multiplication since the
bipolar zero corresponds to 50% activation probability. At the same time, the most
common weight values are distributed around zero, which contributes to increase the
error too. In contrast, multiplying an input bipolar quantity p∗x by another bipolar
quantity p∗w representing either a -1 or +1 does not have any associated error if the
input bitstream is generated from a maximum length sequence. Similarly, in the sign-
magnitude case, the SC multiplication result is exact as long as the weight magnitude
probabilityM(w) is either 0 or 1 and the input magnitude probabilityM(x) is gener-
ated from a maximum length sequence.

Therefore, a more SC hardware-friendly weight distribution could take into account
the following tips in order to reduce the error:

� As done in fixed-point models, weight clipping between −nlim and +nlim can be
set to avoid long normal distribution tails, i.e. outlier weight values, which would

4This does not only happen by the end of the training process. The weights are initialized so that
they follow a normal distribution with a specific mean and variance to accelerate learning, but what
is interesting here is the distribution in the final state.

5The literature on this subject is extensive but the vast majority of approaches can be classified
into one of the two methods mentioned in the text or a combination of both [227].

Chapter 5 A. Morán Costoya 101

Compact Reconfigurable Machine Learning Systems

increase linear quantization errors. In this case, a small variance is related to
small quantization errors.

� Modifying the weight distribution so that values are more evenly distributed in
order to reduce the relative error associated to smaller values due to quantization.
In addition, this reduces large relative errors in bipolar SC multiplications because
parameters that were near zero are spread out.

� Increasing the number of exact multiplication results can be accomplished by
increasing the number of weights represented by bipolar quantities equal to −1
and +1. These values correspond to 0 and 1 activation rates in the bipolar
coding, respectively. In turn, these values correspond to a magnitude activation
rate equal to 1 in the sign-magnitude coding, since the computation between sign
bits is done separately.

These three tips can be achieved using a simple weight update rule, which is as
follows. Let the symmetric clipping function be:

clipnlim(x) = HTanhnlim(x) (5.37)

so that applying it to a weight distribution increases the frequency of the limit weight
values ±nlim. Suppose the weight distribution has mean zero and standard deviation
σ, so that nlim is defined to be proportional to σ, i.e. nlim = nσσ.

Figure 5.20: Multiple weight distributions after applying several 1, 2, 3 and 4 weight clipping iterations (columns)
for different nσ values (rows) utilized to update nlim based on the distribution standard deviation.

As the original weight distribution is transformed from normal to pseudo-uniform,
the variance decreases and the number of weight values within a given number of
standard deviations increases. The first column of plots in Fig. 5.20 shows this weight
clipping effect applied to a normal weight distribution with mean 0 and variance 1. In

102 Chapter 5 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

addition, it is also shown how repeatedly applying this weight clipping transformation
is equivalent to choosing slightly lower nσ values for sufficiently small values since
the standard deviation of the resulting distribution is smaller and nlim decreases. In
Fig. 5.20, (5.37) is repeatedly applied for several iterations without including weight
updates. However, if this clipping transformation is applied during training, weights
are slightly different from one iteration to the next, so that the clipped distribution is
slightly different because new weight values beyond ±nlim might appear, i.e. weight
clipping might affect training performance if nσ is too small. Therefore, there is a
tradeoff between how uniform is the resulting distribution transformation and training
performance. That is, the lower nσ, the lower the quantization error and training
performance compared to that obtained without weight clipping.

In general, for sufficiently high bit precision (e.g. 7 or 8-bit weight values) post-
training quantization might be good enough for the weight clipping method described
above, for either fixed-point or SC models. However, a lower bit precision might require
exact weight values at the end of the training process to reduce weight quantization er-
rors to zero. Assuming the maximum absolute value of weights W is nlim, quantization
to 2nvalues different integer weights is given by:

Wq =

⌊
W nvalues
nlim

⌉
nlim
nvalues

= Wint
nlim
nvalues

(5.38)

so that nvalues is the number of different positive weight values and the resulting integer
weights are Wint the scaled version is Wq. Notice this is known as restricted range
quantization because it assumes the same number of positive and negative values,
which is different from rounding to the nearest two’s complement number because it
includes an additional negative number. While restricted quantization returns values
in the range [−nlim, nlim], so that the scale is common for both negative and positive
numbers, rounding to the nearest two’s complement representation requires full range
quantization to represent values in the range [−nlim − 1, nlim]. In this work, only
restricted range quantization is considered since full range quantization results in higher
accuracy loss for small bit widths.

Directly quantizing weight values after each training epoch might not work. If
weight updates are smaller than 1

2nlimnvalues
, then no update occurs in practice. To

overcome this issue, most ANN quantization approaches use floating-point weights
to account for small weight updates and the quantized version is used for the forward
propagation. This approach is better than direct weight quantization in DNNs and can
be improved if the backward propagation is modified to include quantization errors.
However, in this work a simple heuristic rule is applied to evolve weight values so that
they converge to integer values at the end of the training process. A quantized weight
tensor Wq is obtained from W via (5.38), so that weights are updated as

W ← W + ε (Wq −W) (5.39)

where the rounding rate ε controls how close is each updated weight to its quantized
version.

Both weight clipping and the update towards quantized weight values are applied
after each training epoch as described by Algorithm 3. This algorithm includes an
additional step to obtain layer scaling factors as powers of 2. However, this additional
step decreases performance and we observed that it is better to explore different scaling
factors experimentally to find the best combination. Moreover, notice convergence to

Chapter 5 A. Morán Costoya 103

Compact Reconfigurable Machine Learning Systems

quantized weight values is not guaranteed unless ε = 1, which corresponds to simplest
quantization scheme. Therefore, both nσ and ε are tuned after every epoch to speed
up training6 and gradually reduce quantization errors. In order to accomplish gradual
adaptation towards quantization with reduced errors, nσ is monotonically decreased
from a maximum to a minimum value, and ε is monotonically increased from 0 to 1.
At the beginning, large nσ values do not impact training performance and if ε is small
at the beginning, quantization errors are small. In contrast, for a sufficiently large
number of epochs, nσ is near its minimum value and ε has increased. In this case, a
small nσ modifies the weight distributions so that quantization errors are smaller even
if ε has been increased.

6Based on experience, the smaller nσ, the slower the training process compared to standard back-
propagation training without quantization using the same hyperparameters.

104 Chapter 5 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Algorithm 3: Proposed quantization step for 3 bits or more

Input: Weights W , enabled width factor nσ, rounding rate ε, a flag (flag)
indicating the weight scale has been converted to a power of 2,
maximum ReLU value rth, number of integer values nvalues

Result: Updated weights
flag must be initialized to 0 and there must be a different flag and nlim if the
algorithm is applied to multiple weight matrices every quantization step, i.e.
different layers require a different flag and nlim;

/* the limit value is chosen to be proportional to the weight’s standard

deviation and depends on the enabled width factor nσ */

nlim,next ← nσ std (W);
if W are not the output layer weights then

if flag then
nlim,next ← nlim;

else if (|nlim,next − nlim| < ε) and (nσ < nσ,th) then
/* round to the nearest power of 2 */

nlim,next ← rth

2blog2(rth/nlim,next)e ;

flag ← 1;
/* update limit value */

nlim ← nlim,next;

end
/* the weight value’s range is restricted between −nlim,next and +nlim,next */

W ← clip(W ,−nlim,next,+nlim,next);
/* nearest integer weights assuming restricted range quantization */

Wq ←
⌊
W nvalues
nlim,next

⌉
nlim,next
nvalues

;

if this is the last epoch then
/* the objective is to obtain integer weights at the end of the training

process, i.e. after the last epoch */

W ← Wq;

else
/* real weights get closer to the rounded version, with greater or lesser

intensity depending on the monotonically increasing rounding rate ε */

W ← W + ε (Wq −W);

end

Chapter 5 A. Morán Costoya 105

Compact Reconfigurable Machine Learning Systems

In our experiments nσ is exponentially decreased between a maximum and minimum
value and ε follows a logistic function, so that it is nearly 0 at the beginning and very
close to 1 by the end of the training process. The parameter functions utilized for
training are represented in Fig. 5.21 for 60 epochs.

Figure 5.21: Example nσ and ε hyperparameter sequences for 60 epochs.

The training scheme described above is applied to both SC CNN models, which re-
produce a LeNet-5 (see Fig. 5.12) architecture simulating concatenated SC CNN layers
described in previous section (Fig. 5.19), as well as SC FC layers. Results have been
evaluated in terms of test set accuracy for different signal and parameter bit widths.
The models describe bit accurate parallel SC logic, which has been implemented and
tested in FPGA within the research group, including its corresponding VLSI synthesis
in collaboration with another research group. This is a fully parallel SC LeNet-5 im-
plementation based on the bipolar coding. Therefore, several hardware performance,
area, power and energy efficiency metrics are included too.

5.2.5 Results

This section includes several results related to the SC LeNet-5 simulations as well as
results on the bipolar FPGA implementation and VLSI synthesis.

Simulations reveal that the SC sign-magnitude provides almost the same accuracy
results than the equivalent fixed-point implementation and the SC bipolar models
require large bitstream periods in order to obtain similar performance. These results
are summarized in Fig. 5.22. In this figure signal bit width refers to the inputs, outputs
and intermediate activations7 maximum resolution. Different weight bit widths (rows)
correspond to different models while different signal bit widths (columns) are obtained
using the same parametrization for a constant weight bit width, i.e. intermediate signal
quantization is not taken into account during the training process. As regards layer-
wise scaling constants, these have been tuned to maximize validation set accuracy.
However, the main and most time-consuming challenge has been to choose a good pair
of maximum length random sequences to generate bitstreams and maximize validation
set accuracy. All maximum length random sequences utilized to obtain results in Fig.
5.22 have been created by randomly permuting ordered natural sequences.

Notice the bipolar model does not provide reasonable results for signal bit widths
smaller than 8 bits, i.e. N = 255. Although the bipolar accuracy difference is not
significative for 8-bit weights and 8-bit signals (8-bit/8-bit) case (0.04% below the fixed-
point reference), the sign-magnitude model is much more convenient in general. Notice

7Recall that sign-magnitude bitstreams are two-wire bipolar representations and thus require half
length bitstreams compared to the simple bipolar representation for the same signal bit width.

106 Chapter 5 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

accuracy differences equal or better than the 8-bit/8-bit bipolar result are highlighted
with bold numbers. In fact, these simulation results show that the proposed sign-
magnitude model is almost equivalent to the fixed-point reference for most weight and
signal bit width configurations. In the bipolar case, the main reason behind accuracy
drops compared to fixed-point and sign-magnitude models are arithmetic errors in
multiplication operations, which are propagated layer by layer. As explained in Section
2.2.4, the error in a single bipolar multiplication is doubled compared to the unipolar
representation utilized in sign-magnitude operations. Since the bipolar zero does not
exist in practice, activations that are supposed to represent a zero propagate additional
errors to the next layer. Such error sources are the main bipolar model issue, especially
for low signal bit widths. As an example, Fig. 5.23 represents intermediate APC array
measurements compared to the fixed-point ones for 100 different (random) MNIST
samples. The 8-bit/8-bit case represented in this figure presents less variance for the
sign-magnitude model with respect to fixed-point data. In this 8-bit/8-bit case both
SC models successfully propagate meaningful information through the whole network
since data points are perfectly correlated to fixed-point data. However, the lower is
the signal bit width, the higher is the variance compared to the ideal values. Also, in
the 4-bit/4-bit case, the sign-magnitude model presents much larger errors but despite
this discrepancy compared to the fixed-point reference, signals are still meaningful at a
glance. The accuracy reported in Fig. 5.22 for this specific configuration (98.96) is not
significantly affected. The same is not true for the bipolar case, in which large errors
do not enable the signal to propagate properly even up to the second convolution, i.e.
the second APC array in Fig. 5.23.

Nevertheless, the 8-bit/8-bit fixed-point model is the most common type of quan-
tized forward propagation scheme in DL programming frameworks [103], [104] and the
equivalent SC bipolar alternative provides competitive results with this specific config-
uration. In fact, recent experiments suggest that a pair of carefully designed random
sequences might improve the bipolar model accuracy. Table 5.4 lists the obtained re-
sults using different random sequences for the 8-bit/8-bit bipolar model. The best
results are for uncorrelated sobol sequences, which is in line with S. Liu and J. Han
work [56]. In fact, recent works implementing other SC LeNet-5 variants utilize Sobol
sequences to generate bitstreams [228].

Table 5.4: 8-bit/8-bit accuracy results for both fixed-point and different SNG random sequence types.

8-bit/8-bit bipolar accuracy (%)

Random permutation 99.01
Best 8-bit LFSR pair 98.96

Sobol 99.06

Moreover, the 8-bit/8-bit SC bipolar model developed by C.F. Frasser et al. at
the UIB Electronic Engineering Group, for which an FPGA implementation is already
available and the VLSI synthesis results are known. Even though SC models are usually
not optimal for FPGA implentations as it is the case for the RBF-NN due to the
large amount of required registers to hold inputs and activations in parallel (Section
5.1). However, parallel SC CNN implementations benefit from input data sharing
in convolution operations. According to the results reported in [216], the resulting

Chapter 5 A. Morán Costoya 107

Compact Reconfigurable Machine Learning Systems

Figure 5.22: SC bipolar and sign-magnitude accuracies for different wight and signal bit widths compared to
equivalent fixed-point models. All results are obtained from software simulations. SC results were obtained using

maximum length sequences for bitstream generation (see text).

implementation requires more logic resources but no DSP blocks and the maximum
throughput is much higher, which makes it more energy efficient than other fixed-point
LeNet-5 implementations.

As an example, a throughput-optimized fixed-point FPGA implementation [229]
requires about 233 · 103 ALM and 2907 DSP blocks to classify 10, 617 MNIST sam-
ples per second, i.e. 10.617 KIPS, resulting in an efficiency of about 0.421 KI/J. This
efficiency can be improved using e.g. binary weights as in the FP-BNN FPGA imple-
mentation reported in [193], obtaining 11.22 KI/J (see Table 4.10 or 5.2 for additional
details). On the other hand, the FPGA implementation of the bipolar SC LeNet-5 has
a throughput of 294.118 KIPS and energy efficiency of 14.006 KI/J for the 8-bit/8-bit
case. Therefore, this energy efficiency and the corresponding test set accuracy are much
higher than those of the FP-BNN [193]. Moreover, the bipolar SC LeNet-5 authors
showed that these numbers are significantly higher for the equivalent VLSI implemen-
tation using a TSMC 40 nm library. They obtained a throughput of 400.312 KIPS
and energy efficiency of 614.920 KI/J for the 8-bit/8-bit model. Notice this energy
efficiency is about 44 times higher than for the FPGA implementation.

These optimizations could also benefit from a bipolar SC implementation.

108 Chapter 5 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

Figure 5.23: Fixed-point intermediate results as a function of simulated measurements at the corresponding
intermediate APC arrays for both bipolar and sign-magnitude inference models. All data points are represented in the

bipolar format after scaling, except the last one, which is not scaled in order to get more precision in the last layer.
Here the notation n-bit/m-bit means that n bits are used to represent signals and the model parameters are 4-bit

integers. Data points have been sampled from 100 different MNIST input samples.

5.2.6 Summary

A new quantization aware training approach targetting SC ANNs has been introduced
to reduce the overall arithmetic error by modifying the resulting parameter distribu-
tions and iteratively quantizing parameter values, so that weights can be represented by
integers with certain bit precision. Moreover, two different SC CNN layer models have
been introduced for two different SC codings: bipolar and sign-magnitude. An SC ver-
sion of the LeNet-5 has been simulated using both schemes, comparing the results with
those obtained using an equivalent fixed-point forward propagation for different signal
and weight bit widths. The simulations are based on a verified FPGA implementation
for the bipolar case, together with corresponding VLSI synthesis. Moreover, according
to the reported results, the quantization algorithm provides slightly better results for
fixed-point models and improves those based on SC bipolar and sign-magnitude. The
latter being almost equivalent to the fixed-point version. Further work in this line
might explore e.g. binary or ternary weight quantization, which has not been included
in this work, or sign-magnitude SC hardware implementations, which is as precise as
fixed-point arithmetic and its latency is a half of the equivalent bipolar SC hardware.

Chapter 5 A. Morán Costoya 109

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In the present work, three main tasks have been developed according to the objectives
initially established in Section 1.2. The first objective was related to the design and
development of new hardware RC and ANN architectures to exploit the potential
benefits of unconventional computing methodologies in terms of energy efficiency. The
second objective was related to parallel hardware resource optimization strategies of ML
algorithms. Additionally, the final system accuracy has been modeled and improved
offline for fixed-point and SC implementations. The third and final objective was
related to the FPGA implementation and evaluation of the proposed RC and ANN
designs along this work. Since the main contributions are essentially structured in four
sections, the relationship between each section and the three objectives is summarized
below.

Ring topology Echo State Networks

(a) The proposed design includes architectural simplifications and low precision weights
and activations, which contributes to make it more energy efficient than a floating-
point ring topology reservoir with smooth activation functions.

(b) No fine tuning methods were required to match the overall accuracy obtained by
the equivalent floating-point readout software implementation.

(c) The corresponding fixed-point FPGA implementation and evaluation was carried
out successfully.

Reservoir Computing and Cellular Automata

(a) The proposed RC based on ECA feature expansion is more than 15 times more
energy efficient than a binary weighted CNN implementation and requires about
8 times less FPGA logic resources, while maintaining a competitive accuracy
(0.24% accuracy degradation w.r.t. the binary weighted CNN).

(b) An iterative first order gradient descent approach with direct fake 8-bit weight
quantization has been proposed, achieving equivalent accuracy to that obtained
by the limited memory BFGS algorithm with floating-point weights.

110

Compact Reconfigurable Machine Learning Systems

(c) The corresponding fixed-point FPGA implementation and evaluation has been
carried out successfully.

Radial Basis Function Neural Networks

(a) The proposed RBF-NN SC hardware design obtained accuracies equivalent to
those obtained in fixed-point for several datasets and there is still room for further
optimizations in terms of weight and/or signal bit width, or even different RBF
activations.

(b) The two RBF-NN layers were trained separately and the readout one is fine tuned
using FPGA measurements from the hidden layer. Then the readout layer was
trained with direct fake 8-bit weight quantization.

(c) The SC RBF-NN FPGA implementation and evaluation was successfully carried
out for several datasets.

Convolutional Neural Networks

(a) The proposed parallel SC CNN designs are more energy efficient than other con-
ventional approaches, mainly due to register sharing in CNN input feature maps
feeding SC dot products.

(b) A specific backpropagation QAT approach was developed to improve SC LeNet-5
results. The simulations show the bipolar SC model reports competitive accuracy
only for 8-bit signals, while the sign-magnitude SC model is almost equivalent to
the fixed-point one for all weight and signal bit widths ranging from 3 to 8-bit.

(c) The corresponding bipolar SC FPGA implementation and VLSI synthesis was
successfully carried out within the research group in collaboration with IMSE-
CNM researchers1.

Overall, the set of tasks carried out comply with the objectives set at the beginning
of this thesis by far. It is worth highlighting the fact that some topics included here are
probably consequence from the work done by previous PhD candidates who graduated
within the research group. In chronological order, Dr. V. Canals (co-director of this
thesis) already suggested the implementation of SC RBFNNs in 2012 as a possible
extension to his PhD thesis [50], which has been successfully implemented in FPGA.
Later, in 2017 M.L. Alomar proposed a multiplier-less ring topology RC architecture
[230], which shares some similarities with the one introduced in Section 4.1, however,
the original multiplier-less design was restricted to very low dimensional data and the
training and evaluation approach was different from this work. Also in 2017, A. Oliver
suggested the implementation of SC NNs to accelerate drug discovery in large data
bases as a possible extension to his PhD thesis [231], which is not included in this
thesis but hope the SC NN content described here will be helpful for any specific real
life application such as drug discovery.

Additionally, during my PhD I participated in many interdisciplinary research ac-
tivities. However, there are several activities which have not been included in this

1http://www.imse-cnm.csic.es/

Chapter 6 A. Morán Costoya 111

http://www.imse-cnm.csic.es/

Compact Reconfigurable Machine Learning Systems

thesis due to two main reasons. First, collaboration in works not directly related to
the objectives set for this thesis. Second, work in progress with not enough conclu-
sive results, mainly focused on exploring on-chip learning based on SC, including both
supervised and unsupervised learning.

Finally, along the realization of the research work documented in this thesis, several
publications have come to light and are listed in next section.

6.2 Dissemination of results

The aim of this section is to list our main contributions to the state of the art, including
indexed international journals and international conference papers.

6.2.1 Contributions to indexed iternational journals

The following research papers are directly related to RC based on fixed-point imple-
mentations described in Chapter 4.

[138] A. Morán, C. F. Frasser, M. Roca, and J. L. Rosselló, “Energy-efficient pattern
recognition hardware with elementary cellular automata,” IEEE Transactions on
Computers, vol. 69, no. 3, pp. 392–401, 2019

[137] A. Morán, V. Canals, F. Galan-Prado, C. F. Frasser, D. Radhakrishnan, S. Safavi,
and J. L. Rosselló, “Hardware-optimized reservoir computing system for edge
intelligence applications,” Cognitive Computation, pp. 1–9, 2021

There are also two papers directly related to this thesis that are currently under review.
The first one incorporates the SC RBFNN work described in Chapter 5.1 and the second
one is partially related to the SC CNN work, respectively.

� A. Morán, V. Canals, L. Parrilla, C. F. Frasser, M. Roca, and J. L. Rosselló, “In-
ference based on stochastic computing radial basis functions,” IEEE transactions
on neural networks, 2021, under review

� C. F. Frasser, P. Linares-Serrano, A. Morán, J. Font-Rosselló, V. Canals, M.
Roca, T. Serrano-Gotarredona, and J. L. Rosselló, “Fully-parallel stochastic com-
puting design of convolutional neural networks for edge computing applications,”
IEEE transactions on neural networks, 2021, under review

In addition, I collaborated in the elaboration of a publication related to SC and SNNs,
which has not been included as a separate hardware implementation since SNNs are
out of the scope of this thesis. This was mainly developed by F. Galán-Prado as part
of his thesis.

[234] F. Galán-Prado, A. Morán, J. Font, M. Roca, and J. L. Rosselló, “Compact
hardware synthesis of stochastic spiking neural networks,” International journal
of neural systems, vol. 29, no. 08, p. 1 950 004, 2019

Finally, I published an additional paper that is not related to this thesis. This paper
was the result of my MSc thesis, developed in collaboration with Dr. M.C. Soriano,
but made during my PhD.

[235] A. Morán and M. C. Soriano, “Improving the quality of a collective signal in a
consumer eeg headset,” Plos one, vol. 13, no. 5, e0197597, 2018

112 Chapter 6 A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

6.2.2 Contributions to international conferences

The contributions directly related to ideas exposed throughout this document have
been listed below.

[145] E. S. Skibinsky-Gitlin, M. L. Alomar, V. Canals, C. F. Frasser, E. Isern, F.
Galán-Prado, A. Morán, M. Roca, and J. L. Rosselló, “Fpga-based echo-state
networks,” in International Conference on Time Series and Forecasting, Springer,
2018, pp. 135–146

[236] A. Morán, V. Canals, M. Roca, E. Isern, and J. L. Rosselló, “Fpga implemen-
tation of random vector functional link networks based on elementary cellular
automata,” in 2020 XXXV Conference on Design of Circuits and Integrated Sys-
tems (DCIS), IEEE, 2020, pp. 1–6

Additionally, there is a recently submitted (unpublished) contribution:

� C. F. Frasser, P. Linares-Serrano, A. Morán, J. Font-Rosselló, V. Canals, M.
Roca, T. Serrano-Gotarredona, and J. L. Rosselló, “Exploiting correlation in
stochastic computing based deep neural networks,” in 2021 XXXVI Conference
on Design of Circuits and Integrated Systems (DCIS), IEEE, 2021, pp. 1–6, ac-
cepted for oral presentation

There is also a contribution based on the research paper from reference [234], however,
it is not directly related to the topics discussed within this document. It exploits ideas
from both SC and SNNs:

[238] F. Galán-Prado, A. Morán, J. Font, M. Roca, and J. L. Rosselló, “Stochastic
radial basis neural networks,” in 2019 29th International Symposium on Power
and Timing Modeling, Optimization and Simulation (PATMOS), IEEE, 2019,
pp. 145–149

There are two additional contributions in international conferences not related to the
content exposed so far. These contributions reflect the first attempts to implement an
unsupervised learning algorithm using SC digital hardware and are listed below.

[239] A. Morán, J. L. Rosselló, M. Roca, E. Isern, V. Mart́ınez-Moll, and V. Canals,
“Self-organizing maps hybrid implementation based on stochastic computing,” in
2019 XXXIV Conference on Design of Circuits and Integrated Systems (DCIS),
IEEE, 2019, pp. 1–6

[240] A. Morán, J. L. Rosselló, M. Roca, and V. Canals, “Soc kohonen maps based on
stochastic computing,” in 2020 International Joint Conference on Neural Net-
works (IJCNN), IEEE, 2020, pp. 1–7

Finally, very recent (unpublished) work also related to unsupervised on-chip learning
describing how SC can be exploited to implement the evolving Autonomous Data
Partitioning algorithm [241] has been submitted as a conference paper, see reference
below.

� A. Morán, V. Canals, M. Roca, E. Isern, P. Angelov, and J. L. Rosselló, “Stochas-
tic computing co-processing elements for evolving autonomous data partitioning,”
in 2021 XXXVI Conference on Design of Circuits and Integrated Systems (DCIS),
IEEE, 2021, pp. 1–6, accepted for oral presentation

Chapter 6 A. Morán Costoya 113

Compact Reconfigurable Machine Learning Systems

6.3 Future work

The knowledge acquired throughout the realization of this thesis encourage us to con-
sider the following research lines may be of great interest for the future embedded
ML/DL systems in the industry.

� The RC implementations described here are simple enough because the main goal
was to reduce the overall energy consumption but these architectures might not
be suitable for certain real life scenarios. Therefore, if the current architectures
are not complex enough and increasing the reservoir size do not yield acceptable
results, then it makes sense to implement higher complexity architectures, e.g.
the ring topology ESN might be replaced by higher dimensional grid reservoirs
with more than two nearest neighbors, and the ECA based reservoir or RVFL-like
feature expansion might be substituted by unconstrained nearest neighbor rules
for any number of spatial dimensions at the cost of having a much larger search
space.

� Even though fully parallel SC implementations are very fast and in the case of the
SC CNN more energy efficient than conventional instruction based computations,
we have to admit that the required logic resources make the silicon implementa-
tion of large state-of-the-art CNNs not feasible in practice. Therefore, it would
be interesting to implement an SC co-processor to accelerate the inference pro-
cess in CNNs and ANNs in general, so that calculations would be sequenced and
controlled by additional custom logic or a soft core rather than fully parallel.

� A relatively new research on on-chip learning motivated by a recent collabora-
tion with the Lancaster Intelligent, Robotic and Autonomous systems (LIRA)
Research Centre2 is currently a work in progress and some preliminary are al-
ready documented. Current results are based on SC co-processing elements but
in this case, we should not rule out the possibility of ending up manufacturing
a more conventional design, which might be more suitable in terms of precision
and flexibility.

� Finally, as already mentioned in the beginning (see Section 1.3) here we limited
the scope of this thesis to digital designs and mainly FPGA prototyping but in
the case of SC logic, it would benefit from a mixed-signal in-memory computing
scheme, reducing the implementation cost by substituting expensive D-type flip-
flops by simpler and cheaper SRAM memory cells and being able to introduce
further optimizations by implementing APC logic with analog components. Al-
though there is nothing done on this line, it is certainly a topic that would be
worth exploring in the near future.

2https://www.lancaster.ac.uk/lira/

114 Notation A. Morán Costoya

https://www.lancaster.ac.uk/lira/

Appendix A

Gradient Descent Optimization

A.1 Single layer

A.2 Momentum

Taking as starting point Algorithm 1, gradient descent with momentum or Nesterov
accelerated gradient borrows from physics the momentum term to move the parameter
vector towards an optimal value with some inertia. If the momentum term is γM and
the parameters to be updated are W , then computing W−γM gives an approximation
of the next position of the parameters. This fact is reflected in Algorithm 4, which has
the same purpose as Algorithm 1 iteration, but Adam converges faster [243]. Here γ
is an additional hyperparameterl, however it is usually set to γ = 0.9 by default.

Algorithm 4: Nesterov accelerated gradient descent step.

Input: Hyperparameters α, γ and weight matrix W
Result: Updated weight matrix
M := γM + α∇WJ(X,W − γM ,Y);
W := W − γM ;

A.3 Adam

Adaptive moment estimation (Adam) stores the exponential moving average (EMA)
of the past gradients and squared gradients [77]. As regards the first momentum, the
motivation is similar to Momentum, except that in this case M is the EMA of the
Momentum, i.e. it is updated as

M := β1M + (1− β1)∇WJ(X,W ,Y) (A.1)

where β1 is the corresponding EMA coefficient. Similarly, for the second moment

V := β2V + (1− β2)(∇WJ(X,W ,Y))2 (A.2)

where V is the second momentum EMA and β2 is the corresponding EMA coefficient.
Since EMA approximations need to be initialized before starting the training pro-

cess, if M and V are initialized with zeros, then EMAs will be biased towards zero, at
least during the initial iterations. This is a problem the authors of Adam solved using

115

Compact Reconfigurable Machine Learning Systems

the bias-corrected first and second moment estimates M̂ and V̂ , given by (A.3).

M̂ =
M

1− βt1
V̂ =

V

1− βt2
(A.3)

where t is the time step or iteration index. Finally, the weights are updated according
to (A.4).

W := W − α√
V̂ + ε

� M̂ (A.4)

All these steps have been summarized in Algorithm 5. The authors proposed β1 = 0.9,
β2 = 0.999 and ε = 10−8 as default hyperparameters after comparing their simulations
against other adaptive gradient descent methods.

Algorithm 5: Adam gradient descent step.

Input: Hyperparameters α, β1, β2, ε, time step t and weight matrix W
Result: Updated weight matrix
G := ∇WJ(X,W ,Y);
M := β1M + (1− β1)G;
V := β2V + (1− β2)G2;

M̂ := M
1−βt1

;

V̂ := V
1−βt2

;

W := W − α√
V̂ +ε
� M̂ ;

116 Chapter A A. Morán Costoya

Appendix B

Fixed-Point Arithmetic

This appendix contains common unsigned and signed fixed point arithmetic operations
used throuout this document and listed in Table B.1 and B.2.

Unsigned Binary Weighted

Description Operation Condition Output range

division by 2n (shift right) z =
⌊ 2
2n
⌋

- Z ∩
[
0, 2Bx−n − 1

]
multiplication by 2n (shift left) z = 2nx Bz ≥ n + Bx Z ∩

[
0, 2Bx+n − 1

]
multiplication by 1− 1

2n
z = x−

⌊ x
2n
⌋

- Z ∩
[
0, 2Bx−n − 1

]
multiplication by n z = nx Bz ≥ log2 dne + Bx Z ∩

[
0, 2Bx+dlog2 ne − 1

]

Table B.1: Quantization behaviour for binary weighted coded unsigned numbers under the operations listed in this
table. Shift operations are padded with zeros and Bx represents the bitwidth of x.

Two’s Complement

Description Operation Condition Output range

sign flip z = −x - Z ∩
[
−2Bx−1, 2Bx−1 − 1

]
division by 2n (shift righta) z =

⌊ 2
2n
⌋

n ≥ 0 Z ∩
[
−2Bx−1−n, 2Bx−1−n − 1

]
multiplication by 2n (shift leftb) z = 2nx Bz ≥ n + Bx Z ∩

[
−2Bx−1+n, 2Bx−1+n − 1

]
multiplication by 1− 1

2n
z = x−

⌊ x
2n
⌋

- Z ∩
[
−2Bx−1−n, 2Bx−1−n − 1

]
multiplication by n z = nx Bz ≥ log2 dsgn(n)ne + Bx Z ∩

[
−2Bx−1+dlog2 ne, 2Bx−1+dlog2 ne − 1

]

Table B.2: Quantization behaviour for two’s complement coded unsigned numbers under the operations listed in this
table. Shift operations are padded with zeros and Bx represents the bitwidth of x. (a, b) Operations to perform

division (multiplication) by a power of 2 are not exactly shift right (left) operations, see a detailed explanation in the
text.

117

Appendix C

Random Number Generation

C.1 Linear Feedback Shift Register

An n-bit LFSR is composed by an n-bit shift register, i.e. an array of D-type flip-flops
connected in series, and a feedback bit obtained by combining certain current state bit
values, which is connected to the first flip-flop. Fig. C.1 shows an example LFSR block
diagram for n = 8.

Figure C.1: Maximum length 8-bit LFSR block diagram.

In particular, we are interested in maximum length LFSR sequences (period 2n−1,
i.e. the zero is excluded since it results in all zeros next state) since in some cases
it might be desirable to maximize SC number representation resolution. In order
to obtain a maximum length sequence, the feedback bit must be generated from the
XNOR combination of coprime taps, i.e. D-type flip-flop states from coprime positions,
and the number of taps must be even, as in the 8-bit LFSR example shown in Fig.
C.1. The interested reader can find a very complete list of taps corresponding to
maximum length LFSR sequences for different n values in [244]. Due to its compact
hardware implamentation compared to the rest of required SC logic resources, LFSRs
are typically implemented on-chip.

C.2 rng n1024 r32 t5 k32 s1c48

A general class of uniform random number generators based on LUT and shift register
FPGA logic (LUT-SR) was introduced in [203] and the one utilized here is just a
particular implementation within this more general framework. An example block
diagram description of this type of design has been included in Fig. C.2.

Based on 5 different parameters (n, r, t, k and s), the PRNG structure becomes
completely defined. Where n is the number of internal state bits in the RNG, so that the

118

Compact Reconfigurable Machine Learning Systems

Figure C.2: Block diagram and connection characteristics of the LUT-SR class of PRNG. This figure has been
adapted from [203].

period is 2n−1, r is the output bit width, t is the number of single bit signals connected
to XOR gate inputs, k is the maximum shift-register length and s is a parameter which
needs to be chosen carefully for each parameter set (n, r, t, k). Fortunately, the paper
provides a set of valid s values for some parameter combinations and C++ source code
to generate hardwired HDL connections, defining a specific architecture. In our case
we used a VHDL source code provided by Dr. L. Parrilla, which implements the PRNG
for the following parameter set: n = 1024, r = 32, t = 5, k = 32 and s = 0.1C4816,
hence the name. This PRNG has been synthesized on-chip for the RBFNN bitstream
generation. Even though it requires more logic resources than a simple LFSR, the
required resources are negligible compared to the whole SC RBFNN design.

C.3 The ROM approach

Another possible and more flexible approach is to store pre-computed random sequences
in a ROM and use them for bitstream generation, so that the stored numbers are not
limited to any specific class of sequence generator. Although the hardware overhead is
higher than in the previous on-chip implementations it allows the user to store any finite
sequence and do not represent significative resource utilization when compared to a fully
parallel SC design for relatively short sequences (e.g. 8-bit SC signal). In addition,
the required logic is reduced by more than a half for a sign-magnitude implementation
compared to the equivalent bipolar implementation because each number requires 1 bit
less resolution and the sequence length required to achieve the same signal resolution
is reduced by a half.

Chapter C A. Morán Costoya 119

Bibliography

[1] M. P. Deisenroth, A. A. Faisal, and C. S. Ong, Mathematics for machine learn-
ing. Cambridge University Press, 2020.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[3] G. E. Moore et al., Cramming more components onto integrated circuits, 1965.

[4] N. S. Kim, T. Austin, D. Baauw, et al., “Leakage current: Moore’s law meets
static power,” computer, vol. 36, no. 12, pp. 68–75, 2003.

[5] G. E. Moore et al., “Moore’s law at 40,” Understanding Moore’s law: four
decades of innovation, pp. 67–84, 2006.

[6] C. Disco and B. van der Meulen, Getting new technologies together: Studies in
making sociotechnical order. Walter de Gruyter, 1998, vol. 82.

[7] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and
A. R. LeBlanc, “Design of ion-implanted mosfet’s with very small physical di-
mensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268,
1974.

[8] M. Bohr, “A 30 year retrospective on dennard’s mosfet scaling paper,” IEEE
Solid-State Circuits Society Newsletter, vol. 12, no. 1, pp. 11–13, 2007.

[9] K. Mistry, “Tri-gate transistors: Enabling moore’s law at 22nm and beyond,”
Presentation at Semicon West, 2014.

[10] J. L. Hennessy and D. A. Patterson, “A new golden age for computer archi-
tecture: Domain-specific hardware/software co-design, enhanced security, open
instruction sets, and agile chip development,” Turing Lecture, 2018.

[11] D. Chen, J. Cong, S. Gurumani, W.-m. Hwu, K. Rupnow, and Z. Zhang, “Plat-
form choices and design demands for iot platforms: Cost, power, and perfor-
mance tradeoffs,” IET Cyber-Physical Systems: Theory & Applications, vol. 1,
no. 1, pp. 70–77, 2016.

[12] K. Asanović and D. A. Patterson, “Instruction sets should be free: The case
for risc-v,” EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2014-146, 2014.

[13] D. E. O’Leary, “Artificial intelligence and big data,” IEEE intelligent systems,
vol. 28, no. 2, pp. 96–99, 2013.

[14] Y. Morita, H. Fujiwara, H. Noguchi, et al., “Area optimization in 6t and 8t
sram cells considering v th variation in future processes,” IEICE transactions
on electronics, vol. 90, no. 10, pp. 1949–1956, 2007.

120

http://www.deeplearningbook.org

Compact Reconfigurable Machine Learning Systems

[15] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy for urban
sound research,” in Proceedings of the 22nd ACM international conference on
Multimedia, 2014, pp. 1041–1044.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[17] E. Blem, J. Menon, and K. Sankaralingam, “A detailed analysis of contemporary
arm and x86 architectures,” UW-Madison Technical Report, 2013.

[18] F. Gray, “Pulse code communication,” United States Patent Number 2632058,
1953.

[19] E. R. Associates, High-speed Computing Devices by the Staff of Engineering
Research Associates, Inc. McGraw-Hill, 1950.

[20] W. Poppelbaum, A. Dollas, J. Glickman, and C O’Toole, “Unary processing,”
in Advances in computers, vol. 26, Elsevier, 1987, pp. 47–92.

[21] J. J. Hopfield, “Pattern recognition computation using action potential timing
for stimulus representation,” Nature, vol. 376, no. 6535, pp. 33–36, 1995.

[22] T. D. Sanger, “A probability interpretation of neural population coding for
movement,” in Advances in Psychology, vol. 119, Elsevier, 1997, pp. 75–116.

[23] L. C. Gouveia, T. J. Koickal, and A. Hamilton, “An asynchronous spike event
coding scheme for programmable analog arrays,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 58, no. 4, pp. 791–799, 2010.

[24] C. R. Gallistel, “The coding question,” Trends in Cognitive Sciences, vol. 21,
no. 7, pp. 498–508, 2017.

[25] V. T. Lee, A. Alaghi, J. P. Hayes, V. Sathe, and L. Ceze, “Energy-efficient
hybrid stochastic-binary neural networks for near-sensor computing,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017, IEEE,
2017, pp. 13–18.

[26] A Van der Ziel, “Thermal noise in field-effect transistors,” Proceedings of the
IRE, vol. 50, no. 8, pp. 1808–1812, 1962.

[27] H. Tian, B. Fowler, and A. E. Gamal, “Analysis of temporal noise in cmos
photodiode active pixel sensor,” IEEE Journal of Solid-State Circuits, vol. 36,
no. 1, pp. 92–101, 2001.

[28] L. B. Kish, “End of moore’s law: Thermal (noise) death of integration in micro
and nano electronics,” Physics Letters A, vol. 305, no. 3-4, pp. 144–149, 2002.

[29] K. H. Lundberg, “Noise sources in bulk cmos,” Unpublished paper, vol. 3, p. 28,
2002.

[30] G. Ghibaudo and T Boutchacha, “Electrical noise and rts fluctuations in ad-
vanced cmos devices,” Microelectronics Reliability, vol. 42, no. 4-5, pp. 573–582,
2002.

[31] B. R. Gaines, “Stochastic computing,” in Proceedings of the April 18-20, 1967,
spring joint computer conference, 1967, pp. 149–156.

[32] J. Von Neumann, “Probabilistic logics and the synthesis of reliable organisms
from unreliable components,” Automata studies, vol. 34, pp. 43–98, 1956.

Chapter C A. Morán Costoya 121

Compact Reconfigurable Machine Learning Systems

[33] B. R. Gaines, “Origins of stochastic computing,” in Stochastic Computing: Tech-
niques and Applications, Springer, 2019, pp. 13–37.

[34] B. Gaines, “A stochastic analog computer,” Standard Telecommunication Lab-
oratories Internal Memorandum, pp. 1–10, 1965.

[35] W. Poppelbaum and C Afuso, “Noise-computer,” Univ. Illinois, Urbana, Dept.
Computer Science, Quart. Tech. Progress Rep, 1965.

[36] W. Poppelbaum, C Afuso, and J. Esch, “Stochastic computing elements and
systems,” in Proceedings of the November 14-16, 1967, fall joint computer con-
ference, 1967, pp. 635–644.

[37] S. T. Ribeiro, “Comments on pulsed-data hybrid computers,” IEEE Transac-
tions on Electronic Computers, no. 5, pp. 640–642, 1964.

[38] ——, “Random-pulse machines,” IEEE Transactions on Electronic Computers,
no. 3, pp. 261–276, 1967.

[39] B. R. Gaines, “Stochastic computing systems,” in Advances in information sys-
tems science, Springer, 1969, pp. 37–172.

[40] J. W. Esch, “-rascel-a programmable analog computer based on a regular array
of stochastic computing element logic,” 1969.

[41] P. Li and D. J. Lilja, “Using stochastic computing to implement digital image
processing algorithms,” in 2011 IEEE 29th International Conference on Com-
puter Design (ICCD), IEEE, 2011, pp. 154–161.

[42] A. Alaghi, C. Li, and J. P. Hayes, “Stochastic circuits for real-time image-
processing applications,” in Proceedings of the 50th Annual Design Automation
Conference, 2013, pp. 1–6.

[43] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, “Dynamic energy-accuracy
trade-off using stochastic computing in deep neural networks,” in Proceedings
of the 53rd Annual Design Automation Conference, 2016, pp. 1–6.

[44] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross, “Vlsi
implementation of deep neural network using integral stochastic computing,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 10, pp. 2688–2699, 2017.

[45] A. Ren, Z. Li, C. Ding, et al., “Sc-dcnn: Highly-scalable deep convolutional
neural network using stochastic computing,” ACM SIGPLAN Notices, vol. 52,
no. 4, pp. 405–418, 2017.

[46] K. Kollmann, K.-R. Riemschneider, and H. C. Zeidler, “On-chip backpropa-
gation training using parallel stochastic bit streams,” in Proceedings of Fifth
International Conference on Microelectronics for Neural Networks, IEEE, 1996,
pp. 149–156.

[47] S. Liu, H. Jiang, L. Liu, and J. Han, “Gradient descent using stochastic circuits
for efficient training of learning machines,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37, no. 11, pp. 2530–2541,
2018.

[48] B. Yuan, Y. Wang, and Z. Wang, “Area-efficient scaling-free dft/fft design using
stochastic computing,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 63, no. 12, pp. 1131–1135, 2016.

122 Chapter C A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

[49] V. Canals, A. Morro, A. Oliver, M. L. Alomar, and J. L. Rosselló, “A new
stochastic computing methodology for efficient neural network implementation,”
IEEE transactions on neural networks and learning systems, vol. 27, no. 3,
pp. 551–564, 2015.

[50] V. J. Canals Guinand et al., “Implementación en hardware de sistemas de alta
fiabilidad basados en metodoloǵıas estocásticas,” Ph.D. dissertation, Universitat
de les Illes Balears, 2017.

[51] B. D. Brown and H. C. Card, “Stochastic neural computation. i. computational
elements,” IEEE Transactions on computers, vol. 50, no. 9, pp. 891–905, 2001.

[52] P. Li, W. Qian, M. D. Riedel, K. Bazargan, and D. J. Lilja, “The synthesis of
linear finite state machine-based stochastic computational elements,” in 17th
Asia and South Pacific Design Automation Conference, IEEE, 2012, pp. 757–
762.

[53] P. K. Gupta and R. Kumaresan, “Binary multiplication with pn sequences,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 36, no. 4,
pp. 603–606, 1988.

[54] R. Eckhardt, S. Ulam, and J. Von Neumann, “The monte carlo method,” Los
Alamos Science, vol. 15, p. 131, 1987.

[55] R. E. Caflisch et al., “Monte carlo and quasi-monte carlo methods,” Acta nu-
merica, vol. 1998, pp. 1–49, 1998.

[56] S. Liu and J. Han, “Energy efficient stochastic computing with sobol sequences,”
in Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017, IEEE, 2017, pp. 650–653.

[57] J. Yu, K. Kim, J. Lee, and K. Choi, “Accurate and efficient stochastic comput-
ing hardware for convolutional neural networks,” in 2017 IEEE International
Conference on Computer Design (ICCD), IEEE, 2017, pp. 105–112.

[58] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolić, Digital integrated circuits:
a design perspective. Pearson education Upper Saddle River, NJ, 2003, vol. 7.

[59] R. H. Johns and C. A. Doswell III, “Severe local storms forecasting,” Weather
and Forecasting, vol. 7, no. 4, pp. 588–612, 1992.

[60] L. Muda, M. Begam, and I. Elamvazuthi, “Voice recognition algorithms us-
ing mel frequency cepstral coefficient (mfcc) and dynamic time warping (dtw)
techniques,” arXiv preprint arXiv:1003.4083, 2010.

[61] Z.-H. Zhou, Y. Jiang, Y.-B. Yang, and S.-F. Chen, “Lung cancer cell identifi-
cation based on artificial neural network ensembles,” Artificial Intelligence in
Medicine, vol. 24, no. 1, pp. 25–36, 2002.

[62] P. Baldi and Y. Chauvin, “Neural networks for fingerprint recognition,” neural
computation, vol. 5, no. 3, pp. 402–418, 1993.

[63] J. Zhang, Y. Yan, and M. Lades, “Face recognition: Eigenface, elastic matching,
and neural nets,” Proceedings of the IEEE, vol. 85, no. 9, pp. 1423–1435, 1997.

[64] Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face representation by
joint identification-verification,” in Advances in neural information processing
systems, 2014, pp. 1988–1996.

Chapter C A. Morán Costoya 123

Compact Reconfigurable Machine Learning Systems

[65] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Uni-
fied, real-time object detection,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2016, pp. 779–788.

[66] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for image segmentation,” IEEE transactions on
pattern analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[67] J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille, “Deep cap-
tioning with multimodal recurrent neural networks (m-rnn),” arXiv preprint
arXiv:1412.6632, 2014.

[68] R. K. McConnell, Method of and apparatus for pattern recognition, US Patent
4,567,610, 1986.

[69] M. Xu, L.-Y. Duan, J. Cai, L.-T. Chia, C. Xu, and Q. Tian, “Hmm-based audio
keyword generation,” in Pacific-Rim Conference on Multimedia, Springer, 2004,
pp. 566–574.

[70] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,
no. 3, pp. 273–297, 1995.

[71] J. Hestness, S. Narang, N. Ardalani, et al., “Deep learning scaling is predictable,
empirically,” arXiv preprint arXiv:1712.00409, 2017.

[72] M. Meyer, L. Cavigelli, and L. Thiele, “Efficient convolutional neural network
for audio event detection,” arXiv preprint arXiv:1709.09888, 2017.

[73] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural net-
works, vol. 61, pp. 85–117, 2015.

[74] R. Fletcher, Practical methods of optimization. John Wiley & Sons, 2013.

[75] J. Pearl, “Intelligent search strategies for computer problem solving,” Addision
Wesley, 1984.

[76] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[77] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[78] J. Nocedal, “Updating quasi-newton matrices with limited storage,” Mathemat-
ics of computation, vol. 35, no. 151, pp. 773–782, 1980.

[79] S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals of
mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[80] J. D. Rennie, “Regularized logistic regression is strictly convex,” Unpublished
manuscript. URL people. csail. mit. edu/jrennie/writing/convexLR. pdf, vol. 745,
2005.

[81] Y. Peng, J. Ke, S. Liu, J. Li, and T. Lei, “An improvement to linear regression
classification for face recognition,” International Journal of Machine Learning
and Cybernetics, vol. 10, no. 9, pp. 2229–2243, 2019.

[82] X. Huang and W. Pan, “Linear regression and two-class classification with gene
expression data,” Bioinformatics, vol. 19, no. 16, pp. 2072–2078, 2003.

[83] W. Maass, “Networks of spiking neurons: The third generation of neural network
models,” Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.

124 Chapter C A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

[84] T. Sasaki, N. Matsuki, and Y. Ikegaya, “Action-potential modulation during
axonal conduction,” Science, vol. 331, no. 6017, pp. 599–601, 2011.

[85] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, et al., “A million spiking-neuron
integrated circuit with a scalable communication network and interface,” Sci-
ence, vol. 345, no. 6197, pp. 668–673, 2014.

[86] M. Davies, N. Srinivasa, T.-H. Lin, et al., “Loihi: A neuromorphic manycore
processor with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[87] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane
current and its application to conduction and excitation in nerve,” The Journal
of physiology, vol. 117, no. 4, p. 500, 1952.

[88] C. Morris and H. Lecar, “Voltage oscillations in the barnacle giant muscle fiber,”
Biophysical journal, vol. 35, no. 1, pp. 193–213, 1981.

[89] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural networks
using backpropagation,” Frontiers in neuroscience, vol. 10, p. 508, 2016.

[90] D. S. Broomhead and D. Lowe, “Radial basis functions, multi-variable functional
interpolation and adaptive networks,” Royal Signals and Radar Establishment
Malvern (United Kingdom), Tech. Rep., 1988.

[91] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: A new
learning scheme of feedforward neural networks,” in 2004 IEEE international
joint conference on neural networks (IEEE Cat. No. 04CH37541), Ieee, vol. 2,
2004, pp. 985–990.

[92] L. P. Wang and C. R. Wan, “Comments on” the extreme learning machine,”
IEEE Transactions on Neural Networks, vol. 19, no. 8, pp. 1494–1495, 2008.

[93] G.-B. Huang, “Reply to “comments on “the extreme learning machine””,” IEEE
Transactions on Neural Networks, vol. 19, no. 8, pp. 1495–1496, 2008.

[94] Y.-H. Pao, G.-H. Park, and D. J. Sobajic, “Learning and generalization char-
acteristics of the random vector functional-link net,” Neurocomputing, vol. 6,
no. 2, pp. 163–180, 1994.

[95] B. Igelnik and Y.-H. Pao, “Stochastic choice of basis functions in adaptive func-
tion approximation and the functional-link net,” IEEE transactions on Neural
Networks, vol. 6, no. 6, pp. 1320–1329, 1995.

[96] H. Steinhaus, “Sur la division des corps matériels en parties,” Bull. Acad. Polon.
Sci, vol. 1, no. 804, p. 801, 1956.

[97] J. MacQueen et al., “Some methods for classification and analysis of multivariate
observations,” in Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, Oakland, CA, USA, vol. 1, 1967, pp. 281–297.

[98] B. Scholkopf, K.-K. Sung, C. J. Burges, et al., “Comparing support vector ma-
chines with gaussian kernels to radial basis function classifiers,” IEEE transac-
tions on Signal Processing, vol. 45, no. 11, pp. 2758–2765, 1997.

[99] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from
incomplete data via the em algorithm,” Journal of the Royal Statistical Society:
Series B (Methodological), vol. 39, no. 1, pp. 1–22, 1977.

Chapter C A. Morán Costoya 125

Compact Reconfigurable Machine Learning Systems

[100] P. P. Angelov, X. Gu, and J. C. Pŕıncipe, “Autonomous learning multimodel
systems from data streams,” IEEE Transactions on Fuzzy Systems, vol. 26,
no. 4, pp. 2213–2224, 2017.

[101] R. D. Neidinger, “Introduction to automatic differentiation and matlab object-
oriented programming,” SIAM review, vol. 52, no. 3, pp. 545–563, 2010.

[102] A. Paszke, S. Gross, S. Chintala, et al., “Automatic differentiation in pytorch,”
2017.

[103] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-
performance deep learning library,” arXiv preprint arXiv:1912.01703, 2019.

[104] M. Abadi, P. Barham, J. Chen, et al., “Tensorflow: A system for large-scale
machine learning,” in 12th {USENIX} symposium on operating systems design
and implementation ({OSDI} 16), 2016, pp. 265–283.

[105] H. Jaeger, “The “echo state” approach to analysing and training recurrent neu-
ral networks-with an erratum note,” Bonn, Germany: German National Re-
search Center for Information Technology GMD Technical Report, vol. 148,
no. 34, p. 13, 2001.

[106] W. Maass, T. Natschläger, and H. Markram, “Real-time computing without
stable states: A new framework for neural computation based on perturbations,”
Neural computation, vol. 14, no. 11, pp. 2531–2560, 2002.

[107] A. Robinson and F. Fallside, The utility driven dynamic error propagation net-
work. University of Cambridge Department of Engineering Cambridge, MA,
1987.

[108] P. J. Werbos, “Generalization of backpropagation with application to a recurrent
gas market model,” Neural networks, vol. 1, no. 4, pp. 339–356, 1988.

[109] M. C. Mozer, “A focused back-propagation algorithm for temporal pattern
recognition,” Complex systems, vol. 3, no. 4, pp. 349–381, 1989.

[110] Y. Jin and P. Li, “Ap-stdp: A novel self-organizing mechanism for efficient reser-
voir computing,” in 2016 International Joint Conference on Neural Networks
(IJCNN), IEEE, 2016, pp. 1158–1165.

[111] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-
tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[112] K. Cho, B. Van Merriënboer, C. Gulcehre, et al., “Learning phrase represen-
tations using rnn encoder-decoder for statistical machine translation,” arXiv
preprint arXiv:1406.1078, 2014.

[113] A. A. Rad, M. Jalili, and M. Hasler, “Reservoir optimization in recurrent neural
networks using kronecker kernels,” in 2008 IEEE International Symposium on
Circuits and Systems, IEEE, 2008, pp. 868–871.

[114] M. Lukoševičius, H. Jaeger, and B. Schrauwen, “Reservoir computing trends,”
KI-Künstliche Intelligenz, vol. 26, no. 4, pp. 365–371, 2012.

[115] B. Schrauwen, M. D’Haene, D. Verstraeten, and J. Van Campenhout, “Compact
hardware liquid state machines on fpga for real-time speech recognition,” Neural
networks, vol. 21, no. 2-3, pp. 511–523, 2008.

126 Chapter C A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

[116] F. Schürmann, K. Meier, and J. Schemmel, “Edge of chaos computation in
mixed-mode vlsi-a hard liquid,” Advances in neural information processing sys-
tems, vol. 17, pp. 1201–1208, 2004.

[117] M. C. Soriano, S. Ort́ın, L. Keuninckx, et al., “Delay-based reservoir computing:
Noise effects in a combined analog and digital implementation,” IEEE trans-
actions on neural networks and learning systems, vol. 26, no. 2, pp. 388–393,
2014.

[118] L. Larger, M. C. Soriano, D. Brunner, et al., “Photonic information process-
ing beyond turing: An optoelectronic implementation of reservoir computing,”
Optics express, vol. 20, no. 3, pp. 3241–3249, 2012.

[119] Y. Paquot, F. Duport, A. Smerieri, et al., “Optoelectronic reservoir computing,”
Scientific reports, vol. 2, no. 1, pp. 1–6, 2012.

[120] K. Vandoorne, W. Dierckx, B. Schrauwen, et al., “Toward optical signal pro-
cessing using photonic reservoir computing,” Optics express, vol. 16, no. 15,
pp. 11 182–11 192, 2008.

[121] K. Fujii and K. Nakajima, “Harnessing disordered-ensemble quantum dynamics
for machine learning,” Physical Review Applied, vol. 8, no. 2, p. 024 030, 2017.

[122] G. Tanaka, T. Yamane, J. B. Héroux, et al., “Recent advances in physical reser-
voir computing: A review,” Neural Networks, vol. 115, pp. 100–123, 2019.

[123] K. Nakajima, “Physical reservoir computing—an introductory perspective,” Japanese
Journal of Applied Physics, vol. 59, no. 6, p. 060 501, 2020.

[124] C. Fernando and S. Sojakka, “Pattern recognition in a bucket,” in European
conference on artificial life, Springer, 2003, pp. 588–597.

[125] M.-S. Lin, T.-C. Huang, C.-C. Tsai, et al., “A 7-nm 4-ghz arm1-core-based
cowos1 chiplet design for high-performance computing,” IEEE Journal of Solid-
State Circuits, vol. 55, no. 4, pp. 956–966, 2020.

[126] A. Boutros, S. Yazdanshenas, and V. Betz, “You cannot improve what you do
not measure: Fpga vs. asic efficiency gaps for convolutional neural network infer-
ence,” ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 11, no. 3, pp. 1–23, 2018.

[127] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “Neurostream: Scalable and en-
ergy efficient deep learning with smart memory cubes,” IEEE Transactions on
Parallel and Distributed Systems, vol. 29, no. 2, pp. 420–434, 2017.

[128] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu, “An opencl�
deep learning accelerator on arria 10,” in Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2017, pp. 55–64.

[129] S.-C. Luo, “Customization of a deep learning accelerator,” in 2019 International
Symposium on VLSI Design, Automation and Test (VLSI-DAT), IEEE, 2019,
pp. 1–2.

[130] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and huffman coding,” arXiv
preprint arXiv:1510.00149, 2015.

Chapter C A. Morán Costoya 127

Compact Reconfigurable Machine Learning Systems

[131] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learn-
ing with limited numerical precision,” in International conference on machine
learning, PMLR, 2015, pp. 1737–1746.

[132] A. Goel, C. Tung, Y.-H. Lu, and G. K. Thiruvathukal, “A survey of methods for
low-power deep learning and computer vision,” in 2020 IEEE 6th World Forum
on Internet of Things (WF-IoT), IEEE, 2020, pp. 1–6.

[133] D. Miyashita, S. Kousai, T. Suzuki, and J. Deguchi, “A neuromorphic chip
optimized for deep learning and cmos technology with time-domain analog and
digital mixed-signal processing,” IEEE Journal of Solid-State Circuits, vol. 52,
no. 10, pp. 2679–2689, 2017.

[134] X. Lian, Z. Liu, Z. Song, J. Dai, W. Zhou, and X. Ji, “High-performance fpga-
based cnn accelerator with block-floating-point arithmetic,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 8, pp. 1874–1885,
2019.

[135] G. Feng, Z. Hu, S. Chen, and F. Wu, “Energy-efficient and high-throughput
fpga-based accelerator for convolutional neural networks,” in 2016 13th IEEE
International Conference on Solid-State and Integrated Circuit Technology (IC-
SICT), IEEE, 2016, pp. 624–626.

[136] E. Nurvitadhi, G. Venkatesh, J. Sim, et al., “Can fpgas beat gpus in accelerating
next-generation deep neural networks?” In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2017, pp. 5–14.

[137] A. Morán, V. Canals, F. Galan-Prado, et al., “Hardware-optimized reservoir
computing system for edge intelligence applications,” Cognitive Computation,
pp. 1–9, 2021.

[138] A. Morán, C. F. Frasser, M. Roca, and J. L. Rosselló, “Energy-efficient pattern
recognition hardware with elementary cellular automata,” IEEE Transactions
on Computers, vol. 69, no. 3, pp. 392–401, 2019.

[139] M. Alomar, E. S. Skibinsky-Gitlin, C. F. Frasser, et al., “Efficient parallel imple-
mentation of reservoir computing systems,” Neural Computing and Applications,
vol. 32, no. 7, pp. 2299–2313, 2020.

[140] A. Rodan and P. Tino, “Minimum complexity echo state network,” IEEE trans-
actions on neural networks, vol. 22, no. 1, pp. 131–144, 2010.

[141] L. Appeltant, M. C. Soriano, G. Van der Sande, et al., “Information processing
using a single dynamical node as complex system,” Nature communications,
vol. 2, no. 1, pp. 1–6, 2011.

[142] M. L. Alomar, M. C. Soriano, M. Escalona-Morán, et al., “Digital implemen-
tation of a single dynamical node reservoir computer,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 62, no. 10, pp. 977–981, 2015.

[143] B. Penkovsky, L. Larger, and D. Brunner, “Efficient design of hardware-enabled
reservoir computing in fpgas,” Journal of Applied Physics, vol. 124, no. 16,
p. 162 101, 2018.

[144] E. S. Skibinsky-Gitlin, M. L. Alomar, E. Isern, M. Roca, V. Canals, and J. L.
Rossello, “Reservoir computing hardware for time series forecasting,” in 2018
28th International Symposium on Power and Timing Modeling, Optimization
and Simulation (PATMOS), IEEE, 2018, pp. 133–139.

128 Chapter C A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

[145] E. S. Skibinsky-Gitlin, M. L. Alomar, V. Canals, et al., “Fpga-based echo-
state networks,” in International Conference on Time Series and Forecasting,
Springer, 2018, pp. 135–146.

[146] A.-L. Barabási, “Network science,” Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences, vol. 371, no. 1987,
p. 20 120 375, 2013.

[147] A. F. Atiya and A. G. Parlos, “New results on recurrent network training:
Unifying the algorithms and accelerating convergence,” IEEE transactions on
neural networks, vol. 11, no. 3, pp. 697–709, 2000.

[148] H. Jaeger, M. Lukoševičius, D. Popovici, and U. Siewert, “Optimization and
applications of echo state networks with leaky-integrator neurons,” Neural net-
works, vol. 20, no. 3, pp. 335–352, 2007.

[149] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic systems and
saving energy in wireless communication,” science, vol. 304, no. 5667, pp. 78–80,
2004.

[150] Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning with low precision
by half-wave gaussian quantization,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 5918–5926.

[151] J. S. Walther, “The story of unified cordic,” Journal of VLSI signal processing
systems for signal, image and video technology, vol. 25, no. 2, pp. 107–112, 2000.

[152] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological control
systems,” Science, vol. 197, no. 4300, pp. 287–289, 1977.

[153] S Ort́ın, M. C. Soriano, L Pesquera, et al., “A unified framework for reser-
voir computing and extreme learning machines based on a single time-delayed
neuron,” Scientific reports, vol. 5, no. 1, pp. 1–11, 2015.

[154] S. S. Stevens and J. Volkmann, “The relation of pitch to frequency: A revised
scale,” The American Journal of Psychology, vol. 53, no. 3, pp. 329–353, 1940.

[155] W. Han, C.-F. Chan, C.-S. Choy, and K.-P. Pun, “An efficient mfcc extrac-
tion method in speech recognition,” in 2006 IEEE international symposium on
circuits and systems, IEEE, 2006, 4–pp.

[156] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-
based models for speech recognition,” arXiv preprint arXiv:1506.07503, 2015.

[157] C.-C. Kao, W. Wang, M. Sun, and C. Wang, “R-crnn: Region-based convo-
lutional recurrent neural network for audio event detection,” arXiv preprint
arXiv:1808.06627, 2018.

[158] J. Salamon and J. P. Bello, “Deep convolutional neural networks and data aug-
mentation for environmental sound classification,” IEEE Signal Processing Let-
ters, vol. 24, no. 3, pp. 279–283, 2017.

[159] O. Kücüktopcu, E. Masazade, C. Ünsalan, and P. K. Varshney, “A real-time bird
sound recognition system using a low-cost microcontroller,” Applied Acoustics,
vol. 148, pp. 194–201, 2019.

Chapter C A. Morán Costoya 129

Compact Reconfigurable Machine Learning Systems

[160] B. Liu, Z. Wang, W. Zhu, et al., “An ultra-low power always-on keyword
spotting accelerator using quantized convolutional neural network and voltage-
domain analog switching network-based approximate computing,” IEEE Access,
vol. 7, pp. 186 456–186 469, 2019.

[161] R. Saleh, S. Wilton, S. Mirabbasi, et al., “System-on-chip: Reuse and integra-
tion,” Proceedings of the IEEE, vol. 94, no. 6, pp. 1050–1069, 2006.

[162] M. A. Escalona-Morán, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Elec-
trocardiogram classification using reservoir computing with logistic regression,”
IEEE Journal of Biomedical and health Informatics, vol. 19, no. 3, pp. 892–898,
2014.

[163] J. C. Patra and R. N. Pal, “A functional link artificial neural network for adap-
tive channel equalization,” Signal Processing, vol. 43, no. 2, pp. 181–195, 1995.

[164] N. Schaetti, M. Salomon, and R. Couturier, “Echo state networks-based reser-
voir computing for mnist handwritten digits recognition,” in 2016 IEEE Intl
Conference on Computational Science and Engineering (CSE) and IEEE Intl
Conference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Sym-
posium on Distributed Computing and Applications for Business Engineering
(DCABES), IEEE, 2016, pp. 484–491.

[165] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in 2009 IEEE conference on computer
vision and pattern recognition, Ieee, 2009, pp. 248–255.

[166] C. R. Dyer and A. Rosenfeld, “Parallel image processing by memory-augmented
cellular automata,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, no. 1, pp. 29–41, 1981.

[167] R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image analysis using math-
ematical morphology,” IEEE transactions on pattern analysis and machine in-
telligence, no. 4, pp. 532–550, 1987.

[168] P. G. Tzionas, P. G. Tsalides, and A. Thanailakis, “A new, cellular automaton-
based, nearest neighbor pattern classifier and its vlsi implementation,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 2, no. 3,
pp. 343–353, 1994.

[169] W. Ge, R. T. Collins, and R. B. Ruback, “Vision-based analysis of small groups
in pedestrian crowds,” IEEE transactions on pattern analysis and machine in-
telligence, vol. 34, no. 5, pp. 1003–1016, 2012.

[170] Y. Qin, H. Lu, Y. Xu, and H. Wang, “Saliency detection via cellular automata,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2015, pp. 110–119.

[171] M. Chady and R. Poli, “Evolution of cellular-automaton-based associative mem-
ories,” COGNITIVE SCIENCE RESEARCH PAPERS-UNIVERSITY OF BIRM-
INGHAM CSRP, 1997.

[172] N. Ganguly, P. Maji, S. Dhar, B. K. Sikdar, and P. P. Chaudhuri, “Evolving
cellular automata as pattern classifier,” in International Conference on Cellular
Automata, Springer, 2002, pp. 56–68.

130 Chapter C A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

[173] P. Maji, C. Shaw, N. Ganguly, B. K. Sikdar, and P. P. Chaudhuri, “Theory
and application of cellular automata for pattern classification,” Fundamenta
Informaticae, vol. 58, no. 3-4, pp. 321–354, 2003.

[174] O. Yilmaz, “Reservoir computing using cellular automata,” arXiv preprint arXiv:1410.0162,
2014.

[175] ——, “Symbolic computation using cellular automata-based hyperdimensional
computing,” Neural computation, vol. 27, no. 12, pp. 2661–2692, 2015.

[176] ——, “Machine learning using cellular automata based feature expansion and
reservoir computing.,” Journal of Cellular Automata, vol. 10, 2015.

[177] S. Nichele and M. S. Gundersen, “Reservoir computing using non-uniform binary
cellular automata,” arXiv preprint arXiv:1702.03812, 2017.

[178] S. Nichele and A. Molund, “Deep learning with cellular automaton-based reser-
voir computing,” 2017.

[179] N. McDonald, “Reservoir computing & extreme learning machines using pairs
of cellular automata rules,” in 2017 International Joint Conference on Neural
Networks (IJCNN), IEEE, 2017, pp. 2429–2436.

[180] C. Oliveira and P. P. B. de Oliveira, “An approach to searching for two-dimensional
cellular automata for recognition of handwritten digits,” in Mexican Interna-
tional Conference on Artificial Intelligence, Springer, 2008, pp. 462–471.

[181] M. Halbach and R. Hoffmann, “Implementing cellular automata in fpga logic,”
in 18th International Parallel and Distributed Processing Symposium, 2004. Pro-
ceedings., IEEE, 2004, p. 258.

[182] Á. L. Garćıa-Arias, J. Yu, and M. Hashimoto, “Low-cost reservoir computing
using cellular automata and random forests,” in 2020 IEEE International Sym-
posium on Circuits and Systems (ISCAS), IEEE, 2020, pp. 1–5.

[183] E. Randazzo, A. Mordvintsev, E. Niklasson, M. Levin, and S. Greydanus, “Self-
classifying mnist digits,” Distill, vol. 5, no. 8, e00027–002, 2020.

[184] J. Von Neumann et al., “The general and logical theory of automata,” 1951,
pp. 1–41, 1951.

[185] S. Wolfram, A new kind of science. Wolfram media Champaign, IL, 2002, vol. 5.

[186] ——, “Theory and applications of cellular automata,” World Scientific, 1986.

[187] W. Li and N. Packard, “The structure of the elementary cellular automata rule
space,” Complex systems, vol. 4, no. 3, pp. 281–297, 1990.

[188] S. Ninagawa, “Power spectral analysis of elementary cellular automata,” Com-
plex Systems, vol. 17, no. 4, p. 399, 2008.

[189] J. J. Weng, N. Ahuja, and T. S. Huang, Learning recognition and segmentation of
3-d objects from 2-d images. in 1993 (4th) international conference on computer
vision, 1993.

[190] P. Y. Simard, D. Steinkraus, J. C. Platt, et al., “Best practices for convolutional
neural networks applied to visual document analysis.,” in Icdar, Citeseer, vol. 3,
2003.

Chapter C A. Morán Costoya 131

Compact Reconfigurable Machine Learning Systems

[191] J.-H. Lin, T. Xing, R. Zhao, et al., “Binarized convolutional neural networks
with separable filters for efficient hardware acceleration,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops,
2017, pp. 27–35.

[192] S. Ghaffari and S. Sharifian, “Fpga-based convolutional neural network acceler-
ator design using high level synthesize,” in 2016 2nd International Conference
of Signal Processing and Intelligent Systems (ICSPIS), IEEE, 2016, pp. 1–6.

[193] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei, “Fp-bnn: Binarized neural network
on fpga,” Neurocomputing, vol. 275, pp. 1072–1086, 2018.

[194] Y. Zhou and J. Jiang, “An fpga-based accelerator implementation for deep con-
volutional neural networks,” in 2015 4th International Conference on Computer
Science and Network Technology (ICCSNT), IEEE, vol. 1, 2015, pp. 829–832.

[195] T.-H. Tsai, Y.-C. Ho, and M.-H. Sheu, “Implementation of fpga-based acceler-
ator for deep neural networks,” in 2019 IEEE 22nd International Symposium
on Design and Diagnostics of Electronic Circuits & Systems (DDECS), IEEE,
2019, pp. 1–4.

[196] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny
images,” 2009.

[197] G. B. Moody and R. G. Mark, “The impact of the mit-bih arrhythmia database,”
IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 3, pp. 45–50,
2001.

[198] X. L. Zhang, H. Begleiter, B. Porjesz, W. Wang, and A. Litke, “Event related po-
tentials during object recognition tasks,” Brain research bulletin, vol. 38, no. 6,
pp. 531–538, 1995.

[199] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet
classification using binary convolutional neural networks,” in European confer-
ence on computer vision, Springer, 2016, pp. 525–542.

[200] Y. Ji, F. Ran, C. Ma, and D. J. Lilja, “A hardware implementation of a radial
basis function neural network using stochastic logic,” in 2015 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), IEEE, 2015, pp. 880–
883.

[201] K. Wold and C. H. Tan, “Analysis and enhancement of random number gen-
erator in fpga based on oscillator rings,” in 2008 International Conference on
Reconfigurable Computing and FPGAs, IEEE, 2008, pp. 385–390.

[202] L. Parrilla, E. Castillo, E Todorovich, A. Garćıa, D. P. Morales, and G. Botella,
“Improvements for the applicability of power-watermarking to embedded ip
cores protection: E-coreipp,” Digital Signal Processing, vol. 44, pp. 110–122,
2015.

[203] D. B. Thomas and W. Luk, “Fpga-optimised uniform random number genera-
tors using luts and shift registers,” in 2010 International Conference on Field
Programmable Logic and Applications, IEEE, 2010, pp. 77–82.

[204] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” An-
nals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

132 Chapter C A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

[205] Banknote authentication dataset, accessed on April 8, 2021. [Online]. Available:
https://archive.ics.uci.edu/ml/datasets/banknote+authentication.

[206] W. N. Street, W. H. Wolberg, and O. L. Mangasarian, “Nuclear feature extrac-
tion for breast tumor diagnosis,” in Biomedical image processing and biomedical
visualization, International Society for Optics and Photonics, vol. 1905, 1993,
pp. 861–870.

[207] C Kaynak, “Methods of combining multiple classifiers and their applications to
handwritten digit recognition,” Unpublished master’s thesis, Bogazici Univer-
sity, 1995.

[208] H. D. W. TN, “Receptive fields of single neurones in the cat’s striate cortex,”
Journal of Physiology, vol. 148, p. 574 591, 1959.

[209] D. H. Hubel and T. N. Wiesel, “The period of susceptibility to the physiological
effects of unilateral eye closure in kittens,” The Journal of physiology, vol. 206,
no. 2, pp. 419–436, 1970.

[210] K. Fukushima, “A self-organizing neural network model for a mechanism of pat-
tern recognition unaffected by shift in position,” Biol. Cybern., vol. 36, pp. 193–
202, 1980.

[211] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, “Phoneme
recognition using time-delay neural networks,” IEEE transactions on acoustics,
speech, and signal processing, vol. 37, no. 3, pp. 328–339, 1989.

[212] Y. LeCun, B. Boser, J. S. Denker, et al., “Backpropagation applied to hand-
written zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551,
1989.

[213] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks
for image classification,” in 2012 IEEE conference on computer vision and pat-
tern recognition, IEEE, 2012, pp. 3642–3649.

[214] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Advances in neural information processing
systems, vol. 25, pp. 1097–1105, 2012.

[215] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[216] C. F. Frasser, P. Linares-Serrano, V Canals, M. Roca, T Serrano-Gotarredona,
and J. L. Rossello, “Fully-parallel convolutional neural network hardware,”
arXiv preprint arXiv:2006.12439, 2020.

[217] R. Krishnamoorthi, “Quantizing deep convolutional networks for efficient infer-
ence: A whitepaper,” arXiv preprint arXiv:1806.08342, 2018.

[218] R. Zhao, Y. Hu, J. Dotzel, C. De Sa, and Z. Zhang, “Improving neural network
quantization without retraining using outlier channel splitting,” in International
conference on machine learning, PMLR, 2019, pp. 7543–7552.

[219] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized
neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830, 2016.

Chapter C A. Morán Costoya 133

https://archive.ics.uci.edu/ml/datasets/banknote+authentication

Compact Reconfigurable Machine Learning Systems

[220] A. Bulat and G. Tzimiropoulos, “Xnor-net++: Improved binary neural net-
works,” arXiv preprint arXiv:1909.13863, 2019.

[221] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint arXiv:1605.04711,
2016.

[222] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,” arXiv
preprint arXiv:1612.01064, 2016.

[223] L. Deng, P. Jiao, J. Pei, Z. Wu, and G. Li, “Gxnor-net: Training deep neural
networks with ternary weights and activations without full-precision memory
under a unified discretization framework,” Neural Networks, vol. 100, pp. 49–
58, 2018.

[224] Z. Li, J. Li, A. Ren, et al., “Heif: Highly efficient stochastic computing-based in-
ference framework for deep neural networks,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 38, no. 8, pp. 1543–1556,
2018.

[225] H. Sim and J. Lee, “Cost-effective stochastic mac circuits for deep neural net-
works,” Neural Networks, vol. 117, pp. 152–162, 2019.

[226] R. M. Gray, “Toeplitz and circulant matrices: A review,” 2006.

[227] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A
survey of quantization methods for efficient neural network inference,” arXiv
preprint arXiv:2103.13630, 2021.

[228] S. R. Faraji, M. H. Najafi, B. Li, D. J. Lilja, and K. Bazargan, “Energy-efficient
convolutional neural networks with deterministic bit-stream processing,” in 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE,
2019, pp. 1757–1762.

[229] Z. Liu, Y. Dou, J. Jiang, et al., “Throughput-optimized fpga accelerator for deep
convolutional neural networks,” ACM Transactions on Reconfigurable Technol-
ogy and Systems (TRETS), vol. 10, no. 3, pp. 1–23, 2017.

[230] M. L. A. Barceló, “Methodologies for hardware implementation of reservoir
computing systems,” Ph.D. dissertation, Universitat de les Illes Balears, 2017.

[231] A. O. Gelabert, “Desarrollo y aceleración hardware de metodoloǵıas de de-
scripción y comparación de compuestos orgánicos,” Ph.D. dissertation, Uni-
versitat de les Illes Balears, 2018.

[232] A. Morán, V. Canals, L. Parrilla, C. F. Frasser, M. Roca, and J. L. Rosselló,
“Inference based on stochastic computing radial basis functions,” IEEE trans-
actions on neural networks, 2021, under review.

[233] C. F. Frasser, P. Linares-Serrano, A. Morán, et al., “Fully-parallel stochastic
computing design of convolutional neural networks for edge computing applica-
tions,” IEEE transactions on neural networks, 2021, under review.

[234] F. Galán-Prado, A. Morán, J. Font, M. Roca, and J. L. Rosselló, “Compact
hardware synthesis of stochastic spiking neural networks,” International journal
of neural systems, vol. 29, no. 08, p. 1 950 004, 2019.

[235] A. Morán and M. C. Soriano, “Improving the quality of a collective signal in a
consumer eeg headset,” Plos one, vol. 13, no. 5, e0197597, 2018.

134 Chapter C A. Morán Costoya

Compact Reconfigurable Machine Learning Systems

[236] A. Morán, V. Canals, M. Roca, E. Isern, and J. L. Rosselló, “Fpga implemen-
tation of random vector functional link networks based on elementary cellular
automata,” in 2020 XXXV Conference on Design of Circuits and Integrated
Systems (DCIS), IEEE, 2020, pp. 1–6.

[237] C. F. Frasser, P. Linares-Serrano, A. Morán, et al., “Exploiting correlation in
stochastic computing based deep neural networks,” in 2021 XXXVI Conference
on Design of Circuits and Integrated Systems (DCIS), IEEE, 2021, pp. 1–6,
accepted for oral presentation.

[238] F. Galán-Prado, A. Morán, J. Font, M. Roca, and J. L. Rosselló, “Stochastic
radial basis neural networks,” in 2019 29th International Symposium on Power
and Timing Modeling, Optimization and Simulation (PATMOS), IEEE, 2019,
pp. 145–149.

[239] A. Morán, J. L. Rosselló, M. Roca, E. Isern, V. Mart́ınez-Moll, and V. Canals,
“Self-organizing maps hybrid implementation based on stochastic computing,”
in 2019 XXXIV Conference on Design of Circuits and Integrated Systems (DCIS),
IEEE, 2019, pp. 1–6.

[240] A. Morán, J. L. Rosselló, M. Roca, and V. Canals, “Soc kohonen maps based
on stochastic computing,” in 2020 International Joint Conference on Neural
Networks (IJCNN), IEEE, 2020, pp. 1–7.

[241] X. Gu, P. P. Angelov, and J. C. Pŕıncipe, “A method for autonomous data
partitioning,” Information Sciences, vol. 460, pp. 65–82, 2018.

[242] A. Morán, V. Canals, M. Roca, E. Isern, P. Angelov, and J. L. Rosselló, “Stochas-
tic computing co-processing elements for evolving autonomous data partition-
ing,” in 2021 XXXVI Conference on Design of Circuits and Integrated Systems
(DCIS), IEEE, 2021, pp. 1–6, accepted for oral presentation.

[243] Y. E. Nesterov, “A method for solving the convex programming problem with
convergence rate o (1/kˆ 2),” in Dokl. akad. nauk Sssr, vol. 269, 1983, pp. 543–
547.

[244] M. George and P. Alfke, “Linear feedback shift registers in virtex devices,”
Xilinx apprication note XAPP210, 2007.

Chapter C A. Morán Costoya 135

	Notation
	Introduction
	Motivation
	Objectives
	Limitations
	Structure of the thesis

	Background
	Number representation and arithmetic
	Representation
	Arithmetic

	Stochastic Computing
	Bitstream coding
	Domain conversion
	Operations
	Error analysis
	Noise tolerance
	Relative computational cost

	Pattern Recognition
	Learning
	Linear models
	Learning in Artificial Neural Networks

	Energy efficient inference hardware
	Inference
	Dedicated hardware

	Methodology
	General workflow
	Software and hardware
	Simulation and debug
	Communication interfaces

	Fixed-Point Implementations
	Ring topology Echo State Networks
	Contribution
	Related work
	Theoretical foundations
	Methods
	Results
	Summary

	Reservoir Computing and Cellular Automata
	Contribution
	Related work
	Theoretical foundations
	Methods
	Results
	Summary

	Stochastic Computing Implementations
	Radial Basis Function Neural Networks
	Contribution
	Related work
	Theoretical foundations
	Methods
	Results
	Summary

	Convolutional Neural Networks
	Contribution
	Related work
	Theoretical foundations
	Methods
	Results
	Summary

	Conclusions and Future Work
	Conclusions
	Dissemination of results
	Contributions to indexed iternational journals
	Contributions to international conferences

	Future work

	Gradient Descent Optimization
	Single layer
	Momentum
	Adam

	Fixed-Point Arithmetic
	Random Number Generation
	Linear Feedback Shift Register
	rng_n1024_r32_t5_k32_s1c48
	The ROM approach

