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1. Colorectal cancer
1.1. Incidence and mortality

According to the Global Cancer Observatory (GCO) of the International Association for
Research on Cancer (IARC), in 2020 colorectal cancer (CRC) represented the second-
most and the third-most common cancer in women and men, respectively. Combined, in
both sexes, CRC is the third-most common cancer, accounting for 10% of all cases
(Figure 1A) (1). More than half of these cases occur in most-developed countries. The
age-standardized incidence rate (ASRi) of CRC in the world is higher in men (23.4 per
100.000 individuals) than in woman (16.2 per 100.000 individuals). Incidence varies
geographically, where Australia and New Zealand have the highest incidence while

Western Africa and South-Central Asia have the lowest rates (Figure 1B) (1).

Age-standardized incidence rates, colorectal cancer, by sex
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Figure 1. Incidence and mortality statistics of colorectal cancer in 2020 (Source: GLOBOCAN
2020). (A) Number of new cancer cases in both sexes worldwide. (B) Age-standardized incidence rates
of colorectal cancer in the world divided by sex. (C) Number of cancer deaths in both sexes worldwide.
(D) Age-standardized mortality rates of colorectal cancer in the world divided by sex.

In 2020, 935.173 people died as a result of CRC worldwide, making this disease the
second-most common of cancer-related deaths, only after lung cancer (Figure 1C). The
age-standardized mortality rate (ASRm) of CRC in different countries reflects incidence
rates’ values. For instance, ASRm continues to be higher in men (20.2 per 100.000
individuals) than in women (11 per 100.000 individuals). Furthermore, ASRm rates are

higher in more-developed countries in comparison with less-developed countries, such
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as Western Africa or South-Central Asia (Figure 1D) (1). Nevertheless, mortality of CRC
depends of the stage of the tumor at the moment of diagnosis, which is influenced by the

availability of population screening programs and the level of care of each country (2).

1.2. Prognosis

Based on data from the American Cancer Society (ACS) (3), the 5-year survival rate
approximates 90% when the colon cancer is detected at a “localized” stage (e.g., stages
[, 1A and IIB), which means there is no sign that the tumor has spread outside the colon
or the rectum. By contrast, when the tumor is diagnosed at an “advanced” stage (e.g.
stage V), where the tumor has spread to other organs of the body, this 5-year survival
rate decreases to 14%. This data confirms the importance of the tumor stage at diagnosis
for the consequent survival of the patient: when tumors are diagnosed at an early stage

the probability to overcome them is much higher than when the diagnosis is delayed (4).

1.3. Risk factors
It has been widely-reported that several factors may contribute to the etiology and
development of CRC. These factors could be divided into three main groups: genetic,

epigenetic and environmental.

The majority of CRC are sporadic (non-hereditary), thus present a negative family
history; however, there is a small subgroup in the patient population that present a
hereditary CRC syndrome, accounting for 5-10% of all patients. In this regard, the two
most common hereditary syndromes are Lynch syndrome and the familial adenomatous
polyposis coli. Lynch syndrome is caused by a mutation in one of the DNA mismatch-
repair genes (MLH1, MSH2, MSH6, PMS2 and EPCAM). During replication, as
mismatch-repair mechanisms are impaired in the cell, DNA mutations start to
accumulate, especially in microsatellite DNA repeats, which consist in arrays of tandemly
repeated (i.e. adjacent) DNA motifs that range in length from one to six or up to ten
nucleotides. This predisposition to mutation (genetic hypermutability or mutator
phenotype) has been designated as microsatellite instability (MSI), and plays an
important role in the development of CRC, also in sporadic cases (2,5-8). In the case of
the familial adenomatous polyposis coli, most patients develop a large number of
adenomas at a very young age due to mutations in APC gene, which is highly implicated
in WNT pathway (2,7,8).

There is also evidence that epigenetic silencing might also contribute to the early

formation of sporadic adenomas, that would later result into carcinomas following the
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model suggested by Vogelstein (9,10). In the late 1980s, he described a multistep model
for the development of malignant colorectal tumors from adenomas through the
sequential accumulation of mutations in oncogenes (i.e. mutations on RAS or MYC
genes) and tumor suppressor genes such as TP53. More recently, MGMT promoter has
been reported to be aberrantly methylated in the first stages of colon adenomas,
suggesting its potential as a marker of early-stage tumors (11-13). Moreover, a subset
of CRC tumors severely hypermethylated have been subclassified by a CpG island
methylator phenotype (CIMP) status (14), suggesting that defects in the maintenance of

global DNA methylation patterns may contribute to a specific subgroup of CRC tumors

(11).

Regarding the importance of the environment in CRC, aspects such as smoking,
excessive alcohol intake, high consumption of red and processed meat or obesity have
been proven to negatively impact the disease. Furthermore, the risk of suffering CRC is
higher in patients with type 2 diabetes mellitus or inflammatory bowel disease. By
contrast, daily physical activity and the consumption of fresh fruits and vegetables,
calcium, fiber and vitamin D are factors that contribute to reduce the probability of
developing CRC (2,7).

1.4. Pathophysiology
CRC is developed when normal colonic epithelial cells acquire several hallmarks of
cancer (15,16) through the accumulation of gene mutations and epigenetic alterations

that activate oncogenes and inactivate tumor suppressor genes.

CRC is a process that takes over 10-15 years to occur. In the most frequent model of
CRC development (Figure 2, top part), firstly dysplastic adenomas appear, which are the
most common form of premalignant precursor lesions. Mutations in APC gene are an
early event in this formation process, occurring in almost 70% of all non-hereditary cases
of colorectal adenomas. These adenomas can progress to advanced adenomas that can
finally result into colorectal carcinomas. This adenoma-carcinoma sequence is further
promoted by the accumulation of mutations in oncogenes such as KRAS or tumor
suppressor genes such as TP53. This characteristic sequence of gene mutations is often
accompanied by chromosomal instability (CIN), which accelerates the accumulation of
mutations and epigenetic alterations in oncogenes and tumor suppressor genes and
contributes to select by clonal expansion those cells with the most malignant behavior
(2,7,17).

19



Nevertheless, approximately 15% of sporadic CRC develop through different molecular
pathways from a subset of polyps, called serrated polyps (Figure 2, bottom part). This
type of polyps, when arise in the right colon, commonly present MSI and CIMP
phenotype; by contrast, when appear in the left colon, these polyps are microsatellite
stable (MSS) yet frequently present mutations in the oncogene KRAS and some of them
present an attenuated form of CIMP (2,7,17).

we B F q B -
APC_ & B NRAS g E o
Adenoma —cancer E,i KRAS SMAD# 3 t‘f TE33
(CIN and MS| ? ' | ® Y !
in Lynch syndrome) e N —r
Normal e;:ithelf:lm T siInalling MAPK signalling ' T ‘ I
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Figure 2. The polyp to colorectal cancer sequences. The traditional pathway (top) involves the
development of adenomas that can progress to adenocarcinomas from normal colonic epithelium. In the
bottom part, how serrated polyps progress to serrated colorectal cancer, which affects 15% of sporadic
CRC tumors. Image from: Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG,
Van De Velde CJH & Watanabe T. Colorectal cancer. Nat. Rev. Dis. Prim. 1: 1-25 (2015) (2).

PIK3CA

In general terms, the most common somatic mutations in CRC occur in the following
genes: APC, CTNNB1, KRAS, BRAF, SMAD4, TGFBR2, TP53, PIK3CA, ARID1A,
SOX9, FAM123B and ERBBZ2. All of them impact distinct pathways such as the WNT-
B-catenin, MAPK or the PI3K and TGF-B signaling pathways. In addition to gene
mutations, epigenetic alterations strongly contribute to the cancer progression. DNA
methylation alterations can result in two main issues: when CpG-rich regions (CpG
islands) in gene promoters become hypermethylated they can favor gene silencing of
tumor suppressor genes; when other genomic regions become hypomethylated they can
contribute to the expression of oncogenes (18). Moreover, global hypomethylation has
been observed for all cancers (19,20), mostly affecting repetitive elements (21), which
can facilitate chromosomal instability by mechanisms not completely understood (2,22—
25).

1.5. Diagnosis

Diagnosis of CRC patients can result from either an evaluation of a patient that already

presents symptoms or as a result of a screening program. The most common symptoms
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a patient can report include blood in the stools, abdominal pain or change in bowel habits,
among others. In the case of screening programs (colonoscopies and fecal occult blood
tests) it should be taken into account that CRC is more suitable for this type of
assessment than other tumors as has a long preclinical stage (over 10 years) and high

incidence in the population (2).

Nevertheless, final diagnosis of CRC should be histologically from biopsy samples taken
during colonoscopy, which is the gold standard for early diagnostic method in CRC. It
has a high accuracy and can perfectly assess the location of the tumor or tumors in the
colon. Indeed, colonoscopy provides also a therapeutic effect, as gives the opportunity
to remove adenomas, thus preventing their further development into carcinomas.
Therefore, colonoscopy has been proven to reduce cancer incidence and mortality (2,7).
For instance, several studies with follow-up data of more than 20 years have
demonstrated the reduction of colorectal cancer-related mortality when colonoscopy
screening is applied to a cohort of patients (26,27). However, another important aspect
in CRC diagnosis is to determine the presence or not of distant metastases. The most
frequent metastases locations are liver and lungs, despite this last is much less common
than liver metastases; for this reason, liver imaging by computed tomography scan is

recommended in all patients with CRC (7).

1.6. Management

1.6.1. Surgery

Surgery is the main curative treatment for patients with non-metastasized CRC. In colon
cancer, the tumor and the corresponding lymph vessels are removed. The extent of the
surgery strongly depends on the tumor localization and the supplying blood vessels. It
has been proved that either open surgery or laparoscopy resection are safe and present

the same long-term results (2,7).

1.6.2. Adjuvant therapy

Stage Il colon cancer patients are associated with statistically significant better disease-
free survival and overall survival ratios than stage Ill patients. It has been proven that
stage Il patients have a reduced benefit in survival when treated with adjuvant
chemotherapy (CT); for this reason, adjuvant therapies are only recommended in
patients with high relapse risk. This is the case of poorly differentiated tumors or when
there is vascular, lymphatic or perineural tumor invasion, among others. By contrast,
adjuvant therapies are standard for stage Il tumors, when the tumor might spread to

lymph nodes or even nearby organs or tissues. In these cases, an intravenous
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combination of 5-fluorouracil, leucovorin and oxaliplatin (FOLFOX protocol) or 5-
fluorouracil, leucovorin and irinotecan (FOLFIRI protocol), in combination or not with

targeted therapies, are the most common approaches currently used in the clinics (2,7).

1.6.3. Metastatic disease

Survival of patients with metastatic disease (stage IV) improved in the last decades,
achieving in clinical trials a median overall survival of 30 months. This improvement was
due to the implementation of chemotherapeutic treatments and the introduction of
targeted therapies. In the case of chemotherapeutic combinations, the first-line treatment
for metastatic disease has been established as an intravenous combination of FOLFOX
protocol or FOLFIRI protocol (2,7).

Regarding targeted therapies, they can be classified into four main groups:

a. Monoclonal antibodies against EGFR (cetuximab and panitumumab): more than
75% of CRC tumors overexpress EGFR, and this overexpression is associated
with a reduced survival and increased risk of metastases. Monoclonal antibodies
that block this receptor have proven their efficacy in patients that did not respond
to CT combinations. However, for the correct efficiency of these antibodies, is
crucial that tumors do not present activating mutations in KRAS and/or NRAS
(2,7), which are downstream effectors of the EGFR pathway.

b. Monoclonal antibodies against VEGF-A (bevacizumab): one of main hallmarks of
cancer is to establish a new vascular network for the tumor; thus, VEGF-A is a
key glycoprotein secreted during tumor angiogenesis. Bevacizumab has
demonstrated in several studies higher efficacy in combination with FOLFOX or
FOLFIRI than CT combinations alone; however, the mechanisms of action are
still poorly understood (2,7,28,29).

c. Fusion proteins that target multiple pro-angiogenic growth factors (aflibercept) or
small-molecule-based kinase inhibitors (regorafenib) (2,7).

d. Immunotherapy with checkpoint inhibitors: clinical trials testing antibodies against
PD1 (pembrolizumab or nivolumab) and CTLA-4 (ipilimumab) have shown
beneficial effects in MSI patients (those CRCs with higher mutational burden) by
inhibiting the blockade imposed to tumor-infiltrated T cells (30-34).

1.7. The consensus molecular subtypes of CRC
Despite many efforts invested on classifying the different subtypes of colorectal cancers
by establishing subcategories such as CIN, MSI or CIMP tumors (2,7,17), there were not

well-defined groups that may explain the differences between patients in terms of
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response to the treatment or overall survival ratios, among others. Thus, other
classifications were investigated based on global gene expression profiles. In 2015,
Guinney et al. (35) formed an international consortium and published an extensive study
based on large-scale data from 18 sources using six different classification methods that
revealed four consensus molecular subtypes (CMSs) with distinguishing features, which

are summarized in Figure 3.

CMS2 MS3 CMS4
Canonical letabolic Mesenchymal

14% 37% 13% 23%
MSI, CIMP high, . Mixed MSI status, .
hypermutation SCNA high SCNA low, CIMP low SCNA high
BRAF mutations KRAS mutations
Immune infiltration WNT and Metabolic S_lfg)lr:n gl;r;::l\j:;it;%n,
and activation MYC activation deregulation X L
angiogenesis
Worse survival Worse relapse-free
after relapse and overall survival

Figure 3. Classification of colorectal cancer tumors in four CMSs. Table with the
main characteristics of the four CMSs of CRC, reflecting significant biological differences
on gene expression throughout the different types. Image from: Guinney J, Dienstmann
R, Wang X, De Reynies A, Schlicker A, Soneson C, et al. The consensus molecular
subtypes of colorectal cancer. Nat. Med. 21(11): 1350—-1356 (2015) (35).

1.7.1. CMS1 (MSI immune subtype)

Samples of CMS1 group represent 14% of CRC patients. They present a high number
of mutations and a low prevalence of somatic copy number alterations (SCNAs),
containing the majority of MSI tumors, which also frequently present mutations on BRAF
gene. This type of tumors have also an overexpression of proteins involved in DNA
damage repair as well as a defective DNA mismatch repair mechanism. Methylation
profiles of CMS1 tumors show an extensive hypermethylation pattern, corresponding
with high CIMP status. Moreover, this subtype has the characteristic of an increased
expression of genes associated with a diffuse immune infiltrated, mainly Ty1 and
cytotoxic T cells, together with strong activation of immune evasion pathways, which
seems to be associated with MSI tumors (36).

In terms of epidemiology, CMS1 tumors are most commonly diagnosed in females with
right-sided lesions and present higher histopathological grade. This population presents
a poor survival rate after relapse, which has been proven to correlate with MSI and
BRAF-mutated tumors (37,38).
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1.7.2. CMS2 (canonical subtype)

CMS2 subtype includes 37% of all CRC cases. In contrast to CMS1 subtype, CMS2
tumors present high ratio of SCNAs, consistent with CIN. Indeed, they present more copy
number gains in oncogenes while copy number losses occur in tumor suppressor genes.
Moreover, these tumors exhibit epithelial differentiation and upregulation of WNT and
MYC downstream targets, two pathways classically involved in CRC pathogenesis.
Furthermore, CMS2 tumors mainly appear in the left side of the colon and show better

survival rates after relapse than CMS1 or CMS4 subtypes.

1.7.3. CMS3 (metabolic subtype)

Molecular subtype CMS3 is the smallest category, corresponding to 13% of CRC
patients. Samples of CMS3 present a characteristic global genomic and epigenomic
profile that clearly differs from the other CMS groups: KRAS gene is often mutated, have
low SCNAs, low prevalence of CIMP status as well, and 30% of samples show
hypermutated patterns, reminding of MSI status. In addition, enrichment for metabolism
signatures was found in CMS3 CRCs, which is in agreement with the occurrence of
KRAS-activating mutations, that have been described to induce strong metabolic
adaptation (39—-41). Furthermore, this is supported by a low expression of the let-7 miR

family, which is always accompanied by high KRAS expression levels (42,43).

1.7.4. CMS4 (mesenchymal subtype)

CMS4 subtype represents 23% of colorectal tumors. As CMS2 tumors, CMS4 also
presents an elevated number of SCNAs, correlating with high CIN status. However, this
subtype clearly shows an upregulation of genes implicated in epithelial-to-mesenchymal
transition (EMT), in the complement-mediated inflammatory system, and in the activation
of TGF-B signaling, angiogenesis or matrix remodeling pathways. Moreover, CMS4
tumors have gene expression profiles related to stromal infiltration and invasion,
overexpression of extracellular matrix proteins and higher genetic content of non-cancer
cells. Indeed, miR-200 family, which has been associated with EMT regulation (44,45),
is downregulated in CMS4 subtype. Furthermore, CMS4 patients are usually diagnosed
at more advanced stages (stages Ill and IV) and result in worse overall survival and

worse relapse-free survival ratios than other CMSs.

Intriguingly, a 13% of samples showed mixed features, highlighting a transition

phenotype or the intra-tumoral heterogeneity.
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2. Epigenetics and colorectal cancer

DNA and histones form a macromolecular complex, named chromatin, which provides a
scaffold for the packaging of our genome. The functional unit of chromatin is the
nucleosome, which is formed by 147 base pairs of DNA wrapped around a histone
octamer unit, composed by each of two histones H2A, H2B, H3 and H4 (46,47).

In general terms, chromatin can be subdivided into two different states: euchromatin and
heterochromatin. Euchromatin corresponds to an open and transcriptionally permissive
or active conformation, containing most of the active genes, while heterochromatin
presents a highly condensed and transcriptionally inert conformation, where inactive
genes are located (46,48). Indeed, heterochromatin has been proven to protect DNA
from being accessed by complexes that promote gene transcription. Furthermore,
heterochromatin has been subclassified into facultative heterochromatin, which mostly
contains genes that should be kept silent during all or some developmental stages, and
constitutive chromatin that contains gene-poor permanently silent regions such as

pericentromeres, centromeres or telomeres (48).

On the whole, there exists a complex network that regulates gene expression and
chromatin status, and epigenetics has arisen as a key regulator mechanism in these
processes (Figure 4). The term of “epigenetics” was firstly described by the
developmental biologist Conrad H. Waddington in 1942 (49) and was lately stablished
as “the study of heritable changes in gene expression mediated by mechanisms other
than alterations in the DNA sequence” (46,50-52). However, nowadays epigenetics is
understood as the combination of mechanisms that regulate DNA biology, without
necessarily being inherited. This epigenetic landscape includes modifications of the DNA
itself, cross-talk of post-translational histone modifications and an interplay of chromatin
topology-dependent factors (47). All these modifications alter chromatin structure by
changing interactions between nucleosomes. In general terms, this process is comprised
by initiators, such as some long non-coding RNAs (53), writers, which establish the
different epigenetic marks, readers, that recognize and interpret those epigenetic marks,
and regulatory elements, such as remodelers, which can reposition nucleosomes, or

insulators, that form boundaries between domains (46,54).
2.1. DNA methylation

DNA methylation is the most widely studied epigenetic modification. The best

characterized mark is the enzymatic addition of a methyl group to the 5’-position of
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Figure 4. Epigenetic landscape of regulation in colorectal cancer. The main epigenetic regulatory
mechanisms involved in CRC are presented in this figure, including DNA methylation, histone
modifications, INcRNAs and miRNAs. Image modified from: Jung G, Hernandez-lllan E, Moreira L,
Balaguer F & Goel A. Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat. Rev.
Gastroenterol. Hepatol. 17(2): 111-130 (2020) (52).

cytosine by DNA methyltransferases (DNMTSs) to produce 5-methyl-cytosine, a common
base in DNA. In humans, DNA methylation occurs predominately in cytosines that
precede guanines, forming a CpG dinucleotide. CpG sites are usually distributed in the
genome heavily methylated, including those within the gene bodies, to act as repressive
regulatory elements of transcription. However, there exists CpG-rich regions, also called
CpG islands, more likely associated to the 5’ region of vertebrate genes. They generally
are 200-2.000 base pairs long, have a CG content over 50%, and are commonly
demethylated in normal cells (17,50-52), therefore, they are considered predictors of

active or potentially active promoters.
In pathological scenarios, such as cancer, it has been observed dramatic changes in

DNA methylation patterns in normal vs. tumor tissue. Tumor cells present a global

hypomethylated pattern in relation with its normal tissue, resulting in transcriptional
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activation of repetitive elements, differential inclusion of introns involved in alternative
splicing or expression of genes that should be silent, such as oncogenes (46,50). The
opposite phenomena also occurs in cancer; malignant cells often show hypermethylation
of CpG islands, which has been demonstrated to transcriptionally repress key tumor
suppressor and DNA repair genes, thus contributing to cancer development (46,52). For
instance, hypermethylation of tumor suppressor genes has been characterized including
APC, MLH1 or CDKN2A (17,50-52).

This is specially the case of CRC, where genome-wide hypomethylation was one of the
first aberrant methylation events detected in all stages of the disease. While it has been
well-described an hypomethylated status at promoter regions of oncogenes, such as
MYC or HRAS (55,56), and in super-enhancers of the gene encoding for B-catenin,
hypomethylation of repetitive elements, which accounts for most of the global
hypomethylation observed in cancer, is less understood. Repetitive elements include an
heterogeneous class of sequences such as LINE-1 or macrosatellites, among others,
which should be normally silenced in adult somatic tissues. LINE-1 hypomethylation is
inversely correlated with MS| and CIMP status (50, 55), however, the consequences of
LINE-1 hypomethylation in the oncogenic process are not clear; it can be hypothesized
that if activated by hypomethylation, might act as retrotransposons that could be inserted
in genomic unstable regions to promote genomic instability, and indeed retrotransposon
proteins have been found in epithelial carcinomas (57). Macrosatellite hypomethylation
also associates with genomic instability in several cancer types (58-60), however
mechanisms explaining this connection are for the most part missing. Our group
described a novel INcRNA from demethylated NBL2 macrosatellites in a subset of CRC

patients; however, whether it contributes to the disease remains to be addressed.

Furthermore, as explained in previous sections, alterations in DNA methylation profiles
are associated with different malignant features and survival ratios in CRC. In this regard,
genomic instability through MSI has been widely detected in a subset of CRC tumors.
Most of MSI tumors usually arise from the inactivation of a DNA mismatch repair gene,
such as MLH1, by aberrant promoter hypermethylation. Absence of these genes, results
in the accumulation of DNA replication errors, especially in repetitive microsatellite
sequences, and has been associated with poor survival rates after relapse (35,51).
Additionally, it has been also characterized another group of tumors that are highly
hypermethylated, presenting a CIMP status, together with frequent mutations in KRAS
and BRAF genes, demonstrating the importance of DNA methylation patterns in the

prognosis and development of CRC (14,17,51).
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Introduction

There has been lots of efforts on integrating all these alterations’ data together with the
different features observed across colorectal tumors though combining genetic,
epigenetic and molecular alterations. Figure 5 shows an scheme trying to integrate all
the characteristics known to date (61); however, in the future years, this type of meta-
analysis will be complemented with new data since our capacity on improving high-

throughput techniques is increasing day by day.
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Figure 5. Meta-analysis integrating all the data from the different CMSs in CRC. Integration of
genetic, epigenetic and transcriptomic data known to date in the different molecular subtypes of CRC.
Image from: Wang W, Kandimalla R, Huang H, Zhu L, Li Y, Gao F, Goel A & Wang X. Molecular
subtyping of colorectal cancer: Recent progress, new challenges and emerging opportunities. Semin.
Cancer Biol. 55: 37-52 (2019) (61).
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Nevertheless, the mechanisms leading to altered DNA methylation in cancer are still not
well understood. As mentioned before, DNA methylation is catalyzed through DNMTs.
Four active DNMTs have been discovered: DNMT1, DNMT3A, DNMT3B and DNMT3L
(17,46,54,62). De novo methylation at CpG sites during embryogenesis is performed by
DNMT3A and DNMT3B enzymes in cooperation with DNMT3L, which has been
suggested to increase and/or modulate their activity at target sites (63,64). DNMT1 acts
as a maintenance methyltransferase, therefore it recognizes hemimethylated DNA
generated during replication and methylates the newly synthesized CpG dinucleotides
whose partners on the parental strand are already methylated. DNTM3A and DNTM3B
have been described as well to participate in the maintenance of DNA methylation in
addition to DNMT1 (17,46,54,62). However, global DNA hypomethylation observed in
virtually all cancer types does not associate clearly with mutations or alterations in the

expression of DNMTs, as these mutations are not frequent.

On the other hand, DNA demethylating enzymes for the moment have been only
observed in plants (65); passive DNA demethylation, though, might occur during DNA
replication in the absence of DNMT1 maintenance activity or proper recruitment to
genomic loci (46,62). However, in recent years, the ten-eleven translocation (TET) family
of proteins has emerged as an alternative to partially explain DNA demethylation. This
group of DNA hydroxylases are in charge of 5-methylcytosines oxidation, generating 5-
hydroxymethylcytosines that further derivate to 5-formylmethylcytosines and 5-
carboxylmethylcytosines. Despite all the implications of this process are still not well
understood, they seem to play an important role on regulating transcription: these final
products can be actively removed during DNA repair or passively disappear during
replication, thus contributing to DNA demethylation. In addition, they might change the
recruitment of some chromatin factors: for instance, they favor or preclude the binding
of several methyl binding proteins (MBD proteins) (66), and involve both insulator and
enhancer regions, therefore the TET family may be playing a dual role in transcriptional
regulation (46,62).

2.2. Histone modifications

Another level of epigenetic regulation that our genome presents comprises histone
proteins and all their modifications, that change depending on the needs of the cell.
Modifications on histone proteins directly impact DNA conformation by altering the three-
dimensional structure of nucleosomes; therefore, they might create a more compacted

state of chromatin to transcriptionally inactivate these regions whereas they can also
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open the chromatin conformation in other zones, thus promoting the transcription of

genes from those areas (51,67).

This type of modifications occur in the tails of all histone proteins and their variants, which
protrude from the nucleosome core, and have been mainly identified in lysine, arginine
and serine residues, involving different types of chemical groups, the most common
being methyl, acetyl, phosphate, ubiquitin and citrullin. However, other modifications
comprising biotinylation, sumoylation, ADP ribosylation, propionylation, butyrylation, or
glycosylation, to mention a few, are less understood with their functional meaning still
being under intense investigation. In contrast, histone methylation has been deeply
studied, identifying several degrees of methylation: monomethylation, dimethylation and
trimethylation. In general terms, histone acetylation has been associated with
transcriptional activation while histone methylation effects may depend on the type of
amino acid and its position in the histone tail (50). For instance, active transcriptional
states of chromatin are characterized by di- and trimethylation of histone H3 at lysine 4
(H3K4me2 and H3K4me3) and at lysine 36 (H3K36me2 and H3K36me3), and
acetylation of histones H3 and H4 at lysines 4, 9 and 14; by contrast, trimethylation of
histone H3 at lysine 9 and 27 (H3K9me3 and H3K27me3) are generally associated with
inactive transcription as are enriched in heterochromatin (51). However, a particular
combination of these modifications at a given loci ultimately shapes the transcriptional
status of a gene. Despite all, preferential combinations have been revealed as well as
their functional meaning. For instance, H3K4me3 and H3K27me3 co-occur in promoters
of silent loci, usually in genes that may become either activated (by losing H3K27me3)
or repressed (by losing H3K4me3) during embryonic development or cell differentiation.

Thus, understanding the histone code is far more complex than previously anticipated.

Furthermore, it should be taken into consideration that, besides the catalytic function
these modifications represent, the enzymes catalyzing them display “reader” domains to
recognize and bind specific areas (containing a particular combination of histone marks),
susceptible of being targeted. Moreover, these enzymes are controlled by upstream
signaling cascades. All these features may open new therapeutic windows; on one hand,
targeting the binding pocket could interfere on their catalytic or reader activity, whereas
targeting the residues outside the binding pocket could modify the histone sequence
specificity or impair their activation. Overall, it implies that histone proteins could dock at
different modified residues or at the same amino acid but promoting different

modifications and, as such, distinct epigenetic states (46).
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2.2.1. Histone acetylation

The acetylation of histones occurs at lysine residues and neutralizes the positive charge
of histone tails, thus weakens the interaction between the DNA and histones and
promotes a less-compacted state of the chromatin. This process is catalyzed by histone
acetyltransferases (HATs) and usually results in gene transcription activation through
exposing gene promoter sites to the transcriptional machinery. On the other hand, this
reaction can be reversed by histone deacetylases (HDACs) (46,52,67). Additionally, this
mark is mainly recognized by a family of proteins that contain bromodomains, present in
chromatin remodelers, transcriptional coactivators, HATs or histone methyltransferases
(HMTs) (46,67).

Importantly, this modification seems to play a crucial role in cancer development and
progression, since hyperacetylation of histones is associated with the aberrant activation
of oncogenes, whereas hypoacetylation can silence tumor suppressor genes as well,
therefore contributing to tumor growth and expansion (52). For instance, in CRC has
been demonstrated a higher level of HDAC2 in adenocarcinomas in comparison to
adenomas, suggesting a role on colorectal cancer progression (68,69); in addition, there
is also evidence pointing that colorectal cancer progression is accompanied by a
reduction on H4K16 acetylation (68,70).

2.2.2. Histone methylation

Histone tails can be methylated at arginine, lysine and histidine residues. The enzymes
in charge of catalyzing histone methylation and demethylation are HMTs and histone
demethylases (HDMs), respectively. Lysine residues may be mono-, di- or trimethylated
whereas arginine residues can be symmetrically or asymmetrically methylated. The
different states of histone methylation promote different biological outcomes: histone
methylation not only changes the compaction of DNA but also creates sites that can be
recognized by different protein complexes, such as the transcription initiation factor
TFIID subunit 3 (TAF3), which activates WNT—B-catenin target genes through PHD
domain when recognizes H3K4me3 mark (71-73). This may result on transcriptional
consequences that strongly influence normal cell differentiation. Indeed, alterations on
these transcription processes may lead to activation of oncogenes and potent silencing
of tumor suppressor genes, therefore it may also have a potential role in carcinogenesis

and tumor progression (46,52,67).

There are several marks that have been deeply studied and are well-characterized.
Methylation of H3K4, H3K36 and H3K79 have been associated mostly with active genes

in euchromatin, whereas methylation of H3K9, H3K27 and H4K20 are more present in
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heterochromatic regions with silenced genes. As mentioned above, the methylation state
affects the role of each mark as well. For instance, when H3K4 is monomethylated
(H3K4me1) is frequently associated with active enhancers, while H3K4me2/3 tend to be
more present at transcriptional start sites (TSSs). Likewise, H3K9 seems to have a dual
role: H3K9me3 is associated with gene repression whereas H3K9me1 is present at

active genes (46).

Regarding histone-associated proteins, one of the most studied complexes has been
Polycomb repressive complex 2 (PRC2), which belongs to the Polycomb group proteins
(PcG). The main core units of this complex are EZH2, EED, SUZ12 and JARID2; EZH2
is a H3K27 methyltransferase, thus, PRC2 complex is mainly involved in transcription
repression through depositing H3K27me3 mark, impacting different cell functions such
as cell proliferation and differentiation (48,54,74). Furthermore, due to its role on
regulating transcription, PRC2 has been reported to be implied in cancer: EZH2 is
commonly overexpressed in cancer, promoting aberrant histone methylation and,
therefore, silencing gene expression through modulating DNA compaction (17,75-77).
Interestingly, high expression of two PRC2 components, EZH2 and SUZ12, have been
correlated with better prognosis in CRC patients (52,78). Thus, the contribution of PRC2
complex to cancer is context-dependent, as often occurs with many alterations found in

oncogenic onset and progression.

2.3. Non-coding RNAs
During the past decades, it was firmly accepted that only the 2% of coding genome was
functional; the rest was considered as “junk DNA” or completely worthless. In the last
years, due to the implementation of high-throughput genomic platforms, the ENCODE
Project Consortium (79) revealed that 80% of the genome was transcribed, although was
not subsequently translated into protein, but nevertheless could have critical roles in
regulating a wide range of cell biology processes, from embryonic development to
malignant proliferation, among many others (80). These mediators are currently known
as non-coding RNAs (ncRNAs) and can be subdivided into two different categories
based on their size (46,51,52,80):

i.  Small ncRNAs: their sequence is less than 200 nucleotides, and comprise

mMiRNAs, siRNAs, piRNAs and snoRNAs.
i. Long ncRNAs (IncRNAs): are longer than 200 nucleotides.
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2.3.1. miRNAs

miRNAs are single-stranded RNA fragments of 18-25 nucleotides in length that regulate
gene expression by binding to complementary sequences in the 3-UTR regions of target
mMRNAs to promote their degradation or to inhibit the mRNA translation into protein. It
has been reported that miRNAs can target specific mMRNAs or regulate gene expression

profiles by targeting several genes simultaneously (50-52).

mMiRNAs expression might be deregulated by genetic alterations, such as mutations or
deletions; moreover, epigenetics strongly influence miRNAs expression as well through
DNA methylation. For this reason, deregulated miRNAs have demonstrated to be
potentially oncogenic by inhibiting tumor suppressor genes, while some of them can

acquire a tumor suppressive function by inhibiting oncogene’s expression (52).

Interestingly, several miRNAs have been shown to be up- or downregulated in
pathological scenarios, contributing to diseases such as cancer (50,51). In CRC, several
families of miRNAs have demonstrated to be involved in the development and
progression of the tumor. For instance, the miR-17-92a cluster, miR-135b or miR-145
regulate the WNT—f-catenin pathway, which is involved in CRC initiation (51,81-83);
likewise, p53, which is known to be a key tumor suppressor protein, is also regulated by
miR-34a/b/c, miR-133a or miR-143 (51,84-87).

2.3.2. IncRNAs

IncRNAs are an heterogeneous group of ncRNAs involved in many biological processes.
They seem to have a critical function at chromatin, as they might act as molecular
chaperones or scaffolds for chromatin regulators, thus modifying chromatin access
and/or regulating nuclear architecture (46,52). Additionally, they can act as positive or
negative regulators of transcription by interacting with promoters or enhancers, and
regulating mRNA stability through direct interaction with target mRNAs or acting as a
binding site for multiple miRNAs (52).

IncRNAs have demonstrated to be involved in several biological processes such as cell
proliferation, differentiation or apoptosis. For this reason, deregulation of these ncRNAs
has been associated in many cancer-related pathways (52). One of the best-studied
IncRNA is HOTAIR, which acts as a scaffold for the PRC2 and the LSD1-containing
CoREST/REST complex, and is aberrantly expressed in CRC. It has been reported that
overexpression of HOTAIR correlates with the presence of liver metastases and worst

prognosis in CRC patients (46,88,89). Likewise, variations in HOTAIR levels directly alter
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PRC2 occupancy, which has been associated with changes on the invasive potential of
CRC malignant cells (46,90).

2.4. Chromatin remodelers

As mentioned above, chromatin might be regulated through different mechanisms: DNA
modifications, histone modifications as well as several protein complexes that change
chromatin architecture, also known as “remodelers”. These mechanisms can function
individually or can act together to modulate genome-wide topology and gene expression,
thus regulating many processes such as cell division and differentiation (91). Moreover,
it has been widely studied that, when chromatin regulation processes fail, it has an
important impact in development and disease. In this regard, data from The Cancer
Genome Atlas Research Network or the International Cancer Epigenome Consortium
has pointed out that mutations in chromatin remodelers are present in 50% of cancers;
indeed, in some tumors, like the pediatric glioblastoma multiforme, these mutations
represent the sole genetic abnormalities found, thus confirming the role of these genes

in oncogenic-causative functions (91-93).

Chromatin remodelers are multi-subunit complexes that use the energy derived from
ATP hydrolysis to reposition, eject, slide or alter the composition of nucleosomes, thus
modifying DNA structure to facilitate the access of DNA-binding proteins and the
transcriptional machinery to promote gene expression (47,91,94,95).

Nevertheless, the role that remodelers play in the cell is much more complex. Some
remodelers are enzymes that ensure the correct density and spacing of nucleosomes,
thus may also contribute to gene repression; other groups of remodelers cooperate with
transcription factors and histone-modification enzymes to move or eject histones,
improving the binding of transcription factors to DNA. Furthermore, a set of remodelers
is in charge of creating chromosomal regions where canonical histones can be replaced
by histone variants (95,96).

Based on phylogenetic and functional assays, chromatin remodelers have been
classified in four different groups: switch/sucrose non-fermentable (SWI/SNF) complex,
imitation switch (ISWI) complex, chromodomain helicase DNA-binding (CHD) complex,
and INO80 complex (91,95). One aspect that these complexes have in common is the
catalytic activity, which is based on a SWI/SNF2-like core ATPase/helicase; then, each
complex contains accessory subunits that include DNA and histone-binding motifs,
which provides and extensive complex diversity on each family (91). These four groups

of remodelers will be further explained in the next sections.
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2.4.1. SWI/SNF complex

The SWI/SNF complex, which was firstly characterized in S. cerevisiae, is conserved
throughout eukaryotes and has been the most studied remodeler complex. It contains
an ATPase subunit from the SNF2 family that alters chromatin organization through
sliding nucleosomes or evicting histones from chromatin to promote chromatin

accessibility during transcription and DNA repair mechanisms (97,98).

In mammals, SWI/SNF complex can be subdivided into three major complexes (Figure
6): a) cBAF (canonical BRG1/BRM-associated factor), b) PBAF (polybromo-associated
BAF), and c) ncBAF or GBAF (non-canonical BAF or GLTSCR1/1L-associated BAF)
(91,98,99).
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Figure 6. Structure of the different SWI/SNF complexes cBAF, PBAF and ncBAF. Structure with
the main subunits of each SWI/SNF complex. Image modified from: Harrod A, Lane KA & Downs JA.
The role of the SWI/SNF chromatin remodelling complex in the response to DNA double strand breaks.
DNA Repair (Amst). 93: 102919 (2020) (98).

Table 1 depicts the different subunits of the SWI/SNF complexes indicating their role,
gene and protein names, which not always coincide. All three complexes contain core
subunits that include Ini1, BAF170 and BAF155, and one of the ATPases (BRG1 or
BRM); however, they also contain several “accessory” subunits that provide a distinct
identity to each of them (97,99). For instance, cBAF complex, which is a 12-member
complex, contains one of two mutually exclusive ARID proteins, ARID1A or ARID1B;
combination of BRM and ARID1A has been proven to be required for efficient non-
homologous end joining (NHEJ) repair pathway, which is one of the main DNA repair
mechanisms, by promoting the association of KU70 and KU80 with double-strand breaks
(DSBs) (100-102). On the other hand, PBAF complex binds a distinct ARID protein,
ARID2, and also binds exclusively to PBRM1 and BRD7; PBAF has been involved in

homologous recombination (HR) through promoting sister chromatin cohesion in
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combination with Cohesin complex at DNA DSBs (100,103,104). More recently, it was
described the ncBAF complex, characterized for uniquely bind to the accessory subunits
GLTSCR1 and GLTSCR1L (100,105,106).

Uubls el GENE NAME | PROTEIN NAME INGEICREONECER

SUBUNIT cBAF PBAF ncBAF

core SMARCB1 Ini1 n n n

: SMARCC1 BAF155 + + +

Subunits

SMARCC2 BAF170 + + +

SMARCA4 BRG1 n n n

ATPases SMARCA2 BRM + + +

ARID1A (BAF250A) n ~ ~

ARID1B (BAF250B) + Z Z

ARID2 (BAF200) Z + Z

PBRM1 Z ¥ Z

BRD? Z ¥ Z

?J;zzﬁ;y BAF57 (SMARCE) ¥ ¥ -

BAF60A (SMARCD1) + + ¥

BAF60B (SMARCD2) + + ¥

BAF60C (SMARCD3) ¥ T +

GLTSCR1 (BICRA) = - ;

GLTSCRIL (BICRAL) = - ;

Table 1. Classification of different SWI/SNF subunits according to their function and to the

SWI/SNF complex type that they belong to (+ or —). Some have synonym terms for the protein, while

others show different gene and protein names whose acceptance has changed over the years.
SWI/SNF complex and its subunits are well-known to be involved in the regulation of
several cellular functions. For instance, mutations or loss of SWI/SNF subunits have
been reported to lead to sensitivity to DNA DSBs inducing agents in several cell types.
When a DSB occurs in the DNA, SWI/SNF complexes are rapidly recruited and have
been shown to be involved in two main DNA repair pathways: through NHEJ and by HR.
In this regard, subunits such as ARID1A and BRM of cBAF complex, or BRG1 from PBAF
complex, have demonstrated to be required for an efficient NHEJ as they seemed to re-
organize the chromatin flanking the DSB to improve binding of repair factors to DNA.
Moreover, PBAF complex seems to be required in response to DNA DSBs to efficiently
repress transcription as PBAF functions downstream of ATM, a well-known protein to be
involved in DNA DSBs repair. On the other hand, there is clear evidence that HR is not
efficient in cells deficient for SWI/SNF subunits; however, the exact mechanism by which

DNA repair is not optimal is still poorly understood (98,99).

Due to the many roles that remodelers have, should not be surprising that mutations in
members of SWI/SNF complex are involved in pathogenesis, specially the development
of cancer. The first strong link with this disease was the identification of the biallelic

inactivation of SMARCB1 (Ini1 subunit) as the main cause of ~98% of malignant rhabdoid
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tumors. Afterwards, several exome-wide sequencing studies have revealed that more
than 20% of all human cancers contain mutations in SWI/SNF-encoding genes. Some
of these mutations have been proven to be key drivers in the oncogenesis of different
types of tumors (91,99) mostly by impairing tumor suppressor functions (107). For
instance, inactivating mutations on PBRM1, an exclusive member of the PBAF complex,
are present in more than 40% of cases of clear cell renal cell carcinoma (ccRCC), and
seem to be associated with a better response in front of immune checkpoint therapy
(96,99,100). The mechanisms of action are still under investigation, but for BRG1
mutations there is a clear impairment of TOP2A recruitment to the chromatids during
mitosis, resulting in anaphase bridge formations that lead to chromosomal aberrations,
a hallmark of cancer development (108). However, upregulation of the expression of
selected SWI/SNF subunits in some cancers indicates that the role of this complex in
tumorigenesis is more intricate than previously anticipated, and probably genomic
location, timing, co-occurrent alterations and concomitant pathways may impact the final
output of SWI/SNF alterations.

2.4.2. ISWI complex

Chromatin remodeling complexes containing the ISWI ATPase were firstly discovered in
Drosophila melanogaster yet it was lately found in many organisms, including yeast and
humans. In Drosophila, it represents the catalytic core of three types of complexes:
NURF (nucleosome remodeling factor), CHRAC (chromatin accessibility complex), and
ACF (ATP-utilizing chromatin assembly and remodeling factor) (47,109,110). By
contrast, human ISWI remodelers might have two ATPase subunits, SNF2H
(SMARCADS) and SNF2L (SMARCA1); furthermore, SNF2H is the ATPase catalytic core
subunit equivalent to ACF, CHRAC and RSF (remodeling and spacing factor), whereas
SNF2L forms the human NURF complex (47).

Regarding the function of ISWI complexes, they are mainly involved in the assemble and
regulation of nucleosomes’ space, thus limiting chromatin accessibility and,
consequently, gene expression; however, NURF complex may also facilitate the access
to chromatin to promote transcription (95,109). In addition, some studies have shown an
implication of ACF complex in regulation of chromatin folding into loop domains,
therefore contributing to nucleosome positioning to organize large chromatin domains
(109). Moreover, there is evidence supporting that mammalian ISWI complex should be
required for DNA replication in highly condensed heterochromatin regions, specially
pericentromeric areas (109,111). Another potential function recently described is related
to the phosphorylation of histone H2A.X (y-H2A.X): two ISWI complexes, WICH and

37



CEREF, that contain SMARCAS5 and SMARCA1 ATPases respectively, have demonstrate
to affect H2A.X phosphorylation, which is a key event in the detection and response to
DNA damage, specially DSBs (112—-114).

2.4.3. CHD complex

Chromodomain helicase DNA-binding (CHD) proteins were initially identified as
mammalian DNA-binding factors with a SWi-like helicase domain (112); lately, it was
discovered that were composed of two tandem chromodomains in the N-terminal part
and the ATPase domain (115). Indeed, the ATPase domain of the CHD complex is highly
similar with the one of ISWI complexes; it only differs that bears on its amino terminus
these two chromodomains in tandem. For this reason, in general terms, CHD remodelers
present three main functions: a) nucleosome assembly and spacing, b) increase gene
access through exposing promoter areas, and c¢) nucleosome editing, mainly by

incorporating histone H3.3 (95).

The different enzymes that form CHD complexes can be subdivided in 3 groups: class |
(CHD1 and CHD2), class Il (CHD3, CHD4 and CHD5), which is also known as the NuRD
complex, and class Il (contains CHD6-CHD?9). In this manner, CHD1 has been shown
to promote the stabilization of H2A.X and increase the efficiency of DSBs repair through
HR; moreover, CHD2 protein interacts with PARP1 to facilitate histone H3.3 deposition
in NHEJ DNA-repair regions. Additionally, subfamily Ill of CHD remodelers have
demonstrated to interact with several transcription factors and to post-translationally
modify histone H3 as well (112).

Regarding the most-studied CHD subfamily of remodelers, the NuRD complex, it should
be remarked that has been reported its repressor role on transcription when binds DNA
due to its associated histone deacetylases; furthermore, NURD complex interacts with
GATAD2A/B proteins to activate a downstream pathway where GATAD2 members
interact with MDB2/3 to recruit HDAC1 and/or HDAC2 (95,112). For instance, it is well-
described that HDAC1 and HDAC2, when recruited through NuRD complex, can remove
acetyl groups on histone tails of proteins highly relevant in many cell processes, such as
the tumor suppressor p53. Nevertheless, the role of NURD complex in diseases such as
cancer remains unclear due to presenting opposite effects both promoting or inhibiting
tumor growth and metastasis depending on the tissue; this contradiction might be
explained by the NuRD complex capacity to associate or modulate the activity of not only

tumor suppressor genes, but also oncogenes such as Bcl-6 (116-118).
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2.4.4. INO80 complex

The INO80 subfamily of complexes was originally identified in a screen that pointed out
genes required to be activated and expressed in response to inositol starvation in S.
cerevisae; here, it was also identified the INOsitol-requiring INO80 gene as the one
encoding for the ATPase subunit of this complex (95,119,120).

Later on, it was identified that all members of INO80 complex contain actin-related
proteins (ARPs) (121). In this regard, it was also characterized a distinguishing feature
of INO80 subfamily: it has a split ATPase domain on its catalytic subunit. This unique
aspect enables INO80 catalytic subunit to associate at the same time with RVB1 and
RVB2 DNA helicases, which recruit ARP5 to the complex when DNA damage occurs

and needs to be repaired, or to regulate chromatin transcription (94).

Since its discovery, INO80 complex has been identified to be implicated in several
processes related to chromatin and DNA, such as transcription regulation, DNA
replication, DNA damage repair (especially when DSBs occur) or nucleosome sliding
(47,120).

Despite some of these functions may seem similar to other remodelers, INO80 complex
presents unique functions as well. For instance, INO80 subfamily is mainly in charge of
all nucleosome editing processes, which involves the incorporation or removal of histone
variants to create specialized chromatin regions in a replication-independent manner. In
this way, it should be highlighted the role of INO80 complex to incorporate the H2A
variant H2A.Z. Several studies showed how INO80C is required to remove H2A-H2B
dimers and replace them by H2A.Z-H2B; moreover, INO80C is also implicated on
nucleosome sliding to catalyze the eviction and replacement of these H2A.Z-H2B
dimers, thus demonstrating a role not only on facilitating chromatin access but also on

editing chromatin (95).

Furthermore, INO80 complex has been also described to influence DNA damage
checkpoint pathways and to regulate mitotic stability. Checkpoint pathways function in
cooperation with DNA repair pathways by altering cell cycle kinetics to facilitate the repair
of damaged DNA,; this process is tightly related to the appearance of y-H2A.X around
DNA damage areas to recruit other checkpoint proteins. Since it has been widely
observed that INO80 complex immediately binds y-H2A.X after a DSB, should not be
surprising altered checkpoints responses in mutants of INO80 complex (119,122).
Furthermore, mechanistic studies in INO80 complex mutants also described alterations

of chromatin structure around centromere regions, where there is an increase of histone
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variant H2A.Z, which correlates with defects in chromosome segregation and polyploidy
(119,123).

Due to the fact that INO80 complex presents several, yet highly important, regulatory
functions, its malfunction due to mutations or deregulations seems to result in pathogenic
situations, such as cancer. For instance, upregulation of INO80 has been correlated with
tumor proliferation in lung cancer cell lines; in the same line, high expression levels of
INO80 have been identified in melanoma patients (94,124). Nevertheless, since INO80
complex was discovered more “recently”, in the early 2000s, there is still few evidence

on the exact mechanisms where INO80 complex is involved during tumorigenesis.

2.5. Therapeutics

Since the discovery of epigenetics, understanding its chromatin regulation mechanisms
has contributed to what is called “epigenetic drug therapy”. As mentioned above,
epigenetics are not fixed modifications on the DNA sequence, yet they are potentially
reversible; thus, promoter hypermethylation observed in tumor suppressor genes might
be a promising target through the inhibition of DNMTs with azacytidine, resulting in cell

cycle arrest and increase of apoptosis in cancer cells (125-127).

There are two different types of drugs that target the epigenome currently on clinical
trials (128):

e Broad reprogrammers: also called genomic medicines, these type of drugs
promote large-scale changes in gene expression; this group includes DNMT
inhibitors (DNMTi), HDAC inhibitors (HDACI) and inhibitors of the bromodomain
and extra-terminal motif proteins (iBETSs).

e Targeted therapies: drugs developed to an specific patient subset, shifting
towards the concept of “precision medicine”. For instance, EZH2 inhibitors are
used to treat lymphomas with EZH2 activating mutations (129); additionally,
some IDH inhibitors have been effective in acute myeloid leukemia (AML) clinical
trials, where IDH1 and IDH2 are frequently mutated (130).

Nevertheless, it should be remarked that clinical studies evaluating epigenetic therapies
in CRC have been tested in patients with advanced stages of disease that have failed in
other treatments. In general terms, advanced tumors seem to be more heterogeneous
and present a higher accumulation of both genetic and epigenetic alterations. For this

reason, to increase its efficacy, it might be considered the use of epigenetic therapies as

40



adjuvant treatment at earlier stages of the tumor since epigenetic alterations manifest

early during tumor development and they present less genomic alterations as well (52).

2.5.1. DNA methyltransferase inhibitors (DNMTi)

DNMTi can be divided into two groups: nucleoside analogs, which covalently trap
DNMTs onto DNA, and non-nucleoside analogues, that directly bind the catalytic regions
of DNMTs. Currently, there are two DNMTi approved by the US Food and Drug
Administration (FDA) for the treatment of myelodysplastic syndrome (MDS) and AML:
azacytidine (also known as 5-azacytidine) and decitabine (also known as 5-aza-2’-

deoxycytidine), which both of them are nucleoside analogues (125,126,131).

In the case of CRC, DNMTi azacytidine has demonstrated a promising synergistic effect
in combination with chemotherapeutic agents such as 5-FU, irinotecan and oxaliplatin in
CRC celllines (52,132). In a phase I/1l clinical trial, refractory CIMP-high metastatic CRC
patients were treated with azacytidine in combination with CAPOX (capecitabine and
oxaliplatin), obtaining a good toleration with high rates of stable disease, although no

objective responses were reported (52,133).

Nevertheless, one of the main issues with these drugs is their specificity and toxicity.
Since these are agents that cause genome-wide decrease in DNA methylation levels,
genes can be randomly activated, including potential oncogenes. Indeed, it has also
been observed that DNA re-methylates after drug removal, thus sustaining therapeutic
drug levels to obtain a clinical benefit is challenging. Moreover, these compounds seem
to be cytotoxic for normal cells, interfering with DNA synthesis, and have shown low

efficacy in solid tumors due to a less efficient drug penetration (126,128,131).

For this reason, non-nucleoside analogues have gained interest since they are natural
molecules, thus they may be less toxic as do not require incorporation into the DNA
(126,131). For instance, sulforaphane, which is an isothiocyanate obtained by eating
cruciferous vegetables, seems to present anticancer properties through epigenetic
regulation. It has been demonstrated that sulforaphane reduces global methylation by
inhibiting DNMT1 and DNMT3A, resulting in demethylated CpG islands at CTCF binding
regions. Moreover, sulforaphane has also been shown to inhibit HDACs, thus promoting

cell cycle arrest, autophagy and apoptosis in colon cancer cells (126,134,135).
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2.5.2. Histone deacetylase inhibitors (HDACI)

The benefits of HDACi have been widely addressed in clinical trials. FDA approved
vorinostat, also known as SAHA (suberoylanilidehydroxamic acid) and depsipeptide
(romidepsin) for treating cutaneous T cell lymphomas, belinostat for the treatment of
peripheral T cell ymphoma, and panobinostat was recently approved for the treatment
of drug-resistance multiple myeloma in combination with the proteasome inhibitor
bortezomib (125,128,131).

HDACI are drugs that aimed to alter the balance between acetylation and deacetylation
of histone lysines; they have been tested to treat cancer in several clinical trials since
deacetylation of histones is precisely a cause of abnormal gene repression in cancer
(125). Despite the exact mechanism by which some genes are more susceptible than
others to be affected by these drugs, HDACi seem to reactivate the transcription of tumor
suppressor genes such as P21 through increasing histone acetylation; moreover, HDACi
also modulate the activity and stability of key genes in the development of tumors, such
as p53 or the nuclear factor kappa B (NF-«xB), as HDACs have demonstrated to
deacetylate non-histone proteins as well (125,131). Furthermore, it should be also
considered that HDACi present a high dose-dependent effect and, thus, may be
cytotoxic: at high doses, HDACi have demonstrated to induce DNA damage, especially

DSBs, promoting cell cycle arrest and apoptosis of normal cells (125,136).

Regarding to CRC, similarly to results with DNMTi, vorinostat and belinostat presented
synergistic effects in combination with FOLFOX or FOLFIRI in preclinical studies that
evaluated cell survival through MTT and immunohistochemistry techniques, and phase
I/ll trials (52,137). In addition, vorinostat demonstrated to be safe in a phase I/1l trial in
combination with 5-FU and folinic acid in patients with refractory metastatic CRC,
although the efficacy was very limited (52,138). Another example of a non-nucleoside
analogue would be the case of curcumin, an anti-inflammatory agent that has been
widely proved to inhibit cyclooxygenase and epigenetic enzymes such as both HDACs
and acetyltransferases (126,139-144); it seems to also regulate genome-wide DNA
methylation patterns in colon cancer cells (126,145). Nevertheless, non-nucleoside

analogues have not yet entered in clinical trials, thus further research is needed.

2.5.3. Inhibitors of the bromodomain and extra-terminal motif proteins (iBETs)
iBETs bind irreversibly to the bromodomains of BET proteins, which in turn bind to
acetylated histone lysine residues to regulate functions such as histone acetylation,

chromatin remodeling or transcriptional regulation (128,131). BET family of proteins have
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shown an oncogenic role since they may translocate with other genes to alter gene
regulation and expression and, thus, to promote the activation of potential oncogenes
(131). One of the BET proteins that has been proven to be involved in tumor development
is BRD4, which translocate with NUTM1 to form an oncoprotein that inhibits epithelial
differentiation and promotes proliferation by upregulating the expression of MYC through
an enhancer activity (128,131). In this regard, several drugs have been synthesized to
target BRD4. For instance, JQ1, originally created to treat autoimmune diseases,
displaces the BRD4-NUT oncoprotein from chromatin through competitive binding, thus
inhibiting the proliferation in NUT midline carcinoma cells both in vitro and in vivo
(131,146).

2.5.4. Targeted therapy

Targeted therapy has the purpose to find a specific drug for a subset of patients with
defined characteristics. One example would be targeting specific genetic activating
mutations identified in a type of cancer: in this regard, it has been reported activating
mutations in the H3K27 histone N-methyltransferase EZH2 in lymphomas; EZH2
inhibitors have demonstrated to induce a selective killing of cell lines carrying these
specific mutations (128,129,131,147).

Another strategy of targeted therapy is the so called “synthetic lethality”, where is aimed
to inhibit a specific gene in the presence of an inactivating mutation in another gene, thus
inhibition of both genes together leads cells to apoptosis. In other words, the loss of
either one alone of the genes has a little effect on cell viability yet the simultaneous loss
in both genes results in cell death (131). For instance, it has been shown in vitro that
drugs that inhibit H2K79 N-methyltransferase DOT1L increase the apoptosis of leukemia
cells that present MLL (also known as KMT2A) gene translocations (128,131,148).
Furthermore, SWI/SNF subunits PBRM1 and BRG1 have also been reported to be

synthetically lethal with EZH2 inhibition in several cancer cell lines (131,149).

2.5.5. Combined therapy

One of the epigenetic combinations that has been explored is combining DNMTi with
HDACI to simultaneously inhibit DNA methylation and histone deacetylation. The
rationale behind this idea is that highly methylated regions of the genome are associated
with transcriptionally repressed chromatin, which is usually accompanied by
deacetylated histone lysines. For this reason, several studies have shown that re-
expression of these genes is increased by initial treatment with low doses of DNMTi

followed by administration of HDACi (125,128,150). Moreover, multiple clinical trials are
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testing these combinations, mainly in hematopoietic diseases such as MDS or AML,

despite results are still unclear (125,151-153).

Another combination widely assessed in in vitro studies is the combination of DNMTi
and/or HDACi with other cancer therapies, such as cytotoxic drugs already given in the
clinics to patients. In this way, it should be remarked the idea that many acquired
resistance mechanisms to cytotoxic drugs might be related to epigenetic regulation,
therefore this resistance could be reversible with drugs that inhibit DNA methylation
and/or histone deacetylation (125,128). For instance, there are clinical trials suggesting
that the combination of vorinostat, an HDACI, with carboplatin and paclitaxel improved
response rates, progression-free and overall survival in patients with metastatic non-
small cell lung cancer (NSCLC) (125,154). Additionally, there are also clinical trials
showing promising results on sensitizing ovarian cancer to a combination of standard
cytotoxic drugs with DNMTi (128,155-157).

2.6. Biomarkers

The term “biomarker” has a dynamic definition that is constantly under revision due to
our evolving understanding of cancer. Currently, biomarkers could be described as
substances that: a) are easily measured to identify a patient’s cancer, b) identify patient’s

prognosis, and/or c) predict patient’s response to a treatment (51).

2.6.1. DNA methylation

In CRC, one of the most studied non-invasive DNA methylation biomarker for diagnosis
is the methylation of SEPT9 gene in plasma, which encodes a GTP-binding protein
involved in actin dynamics, cytoskeletal remodeling, vesicle trafficking and exocytosis.
The study of this biomarker in large cohorts of CRC patients gave a sensitivity ranging
from 48% to 90% and a specificity from 73% to 97%. For this reason, this biomarker was
approved in 2016 by the FDA to be commercialized as the first molecular blood-based
assay for CRC screening under the name of Epi proColon test (Epigenomics). A second
generation of this test, the Epi proColon 2.0, achieved to increase the sensitivity up to
70-90% and specificity increased above 90%. Nevertheless, all studies also shown
methylation of SEPT9 had a limited sensitivity to detect advanced adenomas, which
means CRC patients at stages Ill/IV (51,52,126,158).

Another non-invasive DNA biomarker widely studied to detect CRC is the methylation
status of vimentin (VIM), a gene highly methylated in adenomas and CRC tissues.

Methylation of vimentin can be detected in blood despite is in stool samples where
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sensitivity and specificity reach 81% and 95%, respectively, independently of the CRC
stage (51,52,159).

Nevertheless, there is an epigenetic biomarker that is currently used in CRC clinical
practices: the analysis of somatic MLH1 promoter methylation. Despite MLH1 is mainly
known to be involved in mismatch repair (MMR) pathways, it has been identified to cause
Lynch syndrome as well, which is a specific CRC hereditary syndrome. Moreover, it has
been observed that the most frequent cause of MLH1 inactivation is due to a somatic
inactivation of both alleles through promoter methylation. For this reason, evaluating the
hypermethylation of MLH7 has been implemented in the clinics to differentiate between

Lynch syndrome patients and sporadic CRC with MMR deficiency (52).

Regarding prognostic roles of DNA methylation biomarkers, despite there is still few
evidence, some interesting results have been reported. For instance, hypomethylation
of LINE-1 elements have been associated with poor survival outcomes in CRC patients
(562,160). Moreover, hypomethylated LINE-1 elements detected in plasma of CRC
patients were also correlated with disease progression, especially in patients with larger

tumors, advanced lymph node stages and with distant metastasis (52,161,162).

2.6.2. Histone modifications

In the case of histone modifications as biomarkers, there is little evidence mainly due to
technical limitations in quantitative analysis and because of their lack of specificity in
different cancer types.

Nevertheless, several histone marks have arisen as potential diagnostic biomarkers in
CRC. For instance, methylation of lysine 9 on H3 (H3K9) is higher in adenomas and
CRC respect to normal colonic mucosa. In the same way, acetylation of H3K27 and
H4K12 has been also reported to be increased in CRC (51,52,69,163,164). On the other
hand, reduced levels of H3K9me3 and H3K20me3 in circulating nucleosomes were

observed in CRC patients when compared with control individuals (52,165).

2.6.3. Non-coding RNAs

In the last years, ncRNAs, miRNAs and IncRNAs have arisen as future biomarkers for
diagnosis, prognosis and response prediction in CRC because of a higher stability
across different types of samples, such as tissue, blood or stool, and due to their easy
identification and quantification through routine laboratory techniques. Nevertheless, in
contrast to methylation biomarkers, commercialization and implementation of ncRNAs

biomarkers into clinical practice still needs large-scale validation studies (52).
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For instance, a study carried out in CRC tissue samples and ten different CRC cell lines
identified the top ten differentially deregulated miRNAs in CRC. miR-21 and miR-143,
the most abundantly expressed, might be playing key roles in CRC development since
they have oncogenic and tumor suppressor properties, respectively (52,166). Moreover,
miR-21 detection has demonstrated high sensitivity and specificity, 64% and 85%
respectively, in both blood and stool samples in terms of diagnostic purposes, although
seems to be a good biomarker for prognosis and survival (52,158,167-169). Indeed,
miR-21 seems to be deregulated at early stages of the adenoma-carcinoma sequence,
opening the possibility to identify patients that still have not developed a malignant tumor
(51,170).
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3. Chemoresistance in colorectal cancer

3.1. Chemoresistance and 5-Fluorouracil

5-Fluorouracil (5-FU) is a drug developed more than 50 years ago (171) and widely used
at the beginning to treat several types of cancer, such as breast or head and neck
tumors, despite best results were always obtained in CRC, especially in combination with
other chemotherapeutic agents such as oxaliplatin or irinotecan (172). Nevertheless,
resistance to 5-FU and other fluoropyrimidines is a major issue to succeed in advanced

CRC patients’ therapy.

5-FU is an antimetabolite drug, an analogue of uracil with a fluorine atom at the C-5
position in place of hydrogen. Figure 7 represents the pathways involved in 5-FU
metabolism; when enters in the cells, is rapidly converted to three different metabolites:
fluorodeoxyuridine monophosphate (FAUMP), fluorodeoxyuridine triphosphate (FAUTP)
and fluorouridine triphosphate (FUTP). These active metabolites block the main
molecular target of 5-FU, which is thymidylate synthase (TS), encoded by TYMS gene
(172-175). TS catalyzes the methylation of deoxyuridine monophosphate (dUMP) to
deoxythymidine monophosphate (dTMP) by using 5,10-methylenetetrahydrofolate as a

cofactor. Thus, TS a key enzyme in thymidylate de ] @
novo synthesis, an essential precursor for DNA ) i
replication and repair (172,173). m
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combination with folinic acid (leucovorin) in CRC

Nevertheless, it has been observed that an increased TS expression could be the main
molecular mechanism of 5-FU resistance. Several studies have tried to elucidate the
mechanisms by which TS expression is altered, but the exactly pathway remains
unclear. In some cases, an increase in TS activity may be explained by an increased

copy number of the gene or as a result of translational upregulation. Also, altered
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structural forms of TS with lower affinity for FAUMP have been associated with 5-FU
resistance (173,177).

Another key enzyme widely studied in 5-FU resistance is dihydropyrimidine
dehydrogenase (DPD), which is the main enzyme in charge of 5-FU catabolism. On one
hand, it has been reported that absence of DPD expression in CRC patients generates
a severe 5-FU toxicity due to decreased drug catabolism. On the other hand, it has been
stablished a correlation between high DPD mRNA expression levels and resistance to
5-FU in CRC tumors (172,173).

Furthermore, thymidine phosphorylase (TP), also known as the angiogenic platelet-
derived endothelial cell growth factor, is another enzyme involved in the metabolism, and
consequently the resistance, of 5-FU. Among several functions, it degrades 5-
fluorodeoxyuridine into a less potent form of 5-FU, but it can also catalyze the reverse
reaction. Thus, TP levels can modulate the sensitivity of cancer cells to
fluoropyrimidines. For instance, higher TP levels have been correlated with tumor
growth, invasion and metastasis in clinical studies, all of them related to worse prognosis
features (172,173).

3.2. Chemoresistance and Oxaliplatin

Oxaliplatin (OXA) is a third-generation platinum drug developed to overcome resistance
against cisplatin and carboplatin, first- and second-generation platinum drugs,
respectively. In OXA, amine groups of cisplatin are substituted by 1,2-
diaminocyclohexane (DACH) ligand, which is translated in higher water solubility, less
toxicity and lack of cross-resistance with cisplatin, together with higher cytotoxicity.
Moreover, differently from cisplatin and carboplatin, oxaliplatin is widely used in the
clinics in combination with 5-FU to treat adjuvant and metastatic CRC with proven clinical

efficacy and a good safety profile (173,178-180).

When oxaliplatin enters the cell is solubilized, and, consequently, able to interact with
nucleophilic molecules such as DNA, RNA and proteins, despite DNA is the preferred
target (181,182). The main mechanism of action is to form DNA adducts, through both
intra- and inter-strand crosslinks, between two adjacent guanine residues or, in less
frequency, between a guanine and an adenine; thus, oxaliplatin impairs DNA synthesis,

replication and transcription to promote apoptosis of cancer cells (173,175,176,182).
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Cell sensibility to this chemotherapeutic agent might be influenced by cell efficiency on
repairing these DNA lesions. Several repair molecular mechanisms have been proposed
to be involved in oxaliplatin resistance (173,176,182):

o Direct reversal repair mechanism.

e Decrease in cellular uptake and/or increase in cellular efflux.

e Base excision repair (BER) system.

¢ Nucleotide excision repair (NER) system.

e DNA MMR mechanism.

e Double-strand breaks repair mechanism.

For instance, some works presented that overexpression of CTR1 (copper transporter
1), which participates in the uptake of oxaliplatin, sensitized lung cancer cells to
oxaliplatin, although its specific role on resistance remains unclear (178,182,183).
Moreover, intracellular ATPases ATP7A and ATP7B have proven a role in resistance to
platinum drugs as demonstrated the capacity to sequester oxaliplatin into subcellular
compartments, thus limiting its cytotoxicity (182,184). Indeed, there is also evidence that
mRNA and protein expression of ATP7B is correlated with response to oxaliplatin in
metastatic CRC tumors. Patients with low ATP7B expression of both protein and mRNA
levels have the maximum benefit from FOLFOX treatment in comparison with patients
that presented high expression of ATP7B (185).

Regarding the BER system, it has been well-characterized a missense variation on
XRCC1 gene, 28152A>G (R399Q, rs25487), a critical subunit of the pathway. This
polymorphism has been correlated with a decreased repair activity of the system, thus
impairing the outcome of patients treated with FOLFOX CT (175,176,186).

Nevertheless, oxaliplatin-DNA adducts are mainly repaired through NER pathway, which
involves several steps and complex enzymes. The most studied NER mediator has been
ERCC1, together with its catalytic partner XPF, that are in charge of an excision step of
the damaged DNA fragment followed by the synthesis of a new DNA strand (175,187).
In some in vitro studies, down-regulation of ERCC1 has been strongly correlated with
sensitivity to oxaliplatin (187-189). Additionally, there is evidence that ERCC1 could act
as a predictive marker of poor response to oxaliplatin when is highly expressed in

patients, despite further validations in more clinical trials are still required (175,186,190).

Another oxaliplatin effect is to induce both intrinsic and extrinsic apoptosis pathways,

despite the exactly mechanism of action is still unclear. It seems that the most important
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component of this pathway would be the tumor-suppressor protein p53, which activates
cell-cycle control checkpoints after DNA damage to promote cell death. For instance,
gain-of-function mutations or loss of p53, that occur in a wide range of human tumors,

have been associated with intrinsic resistance to oxaliplatin in cancer cells (187).

Regarding epigenetics and resistance of oxaliplatin, there is evidence that, for instance,
inactivation of SRBC through its promoter hypermethylation is correlated with acquired
oxaliplatin resistance and poor outcome in both in vitro and in vivo studies. Since SRBC
interacts with BRCA1, a key participant in the repair of DNA DSBs caused by platinum
drugs, it might be considered an activating role of SRBC towards BRCA1, leading to an
opposite effect of a BRCA1 loss and, thus, promoting the acquisition of oxaliplatin
resistance (187,191).

3.3. Chemoresistance and Irinotecan

Irinotecan (7-ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyloxycamptothecin), also
known as CPT-11, is a camptothecin analog developed for the treatment of different
types of cancer in the clinics. The target of irinotecan is topoisomerase I (TOP17), an
enzyme involved in the relief of the torsional stress developed during DNA replication by
inducing single strand breaks. Indeed, irinotecan binds to this topoisomerase |-DNA
complex to prevent re-ligation of these breaks, resulting in irreversible DSBs and, thus,
leading to cell death (192—195). In other words, topoisomerases are a type of nuclear
enzymes involved in the maintenance of DNA topology during transcription and
replication, thus, reducing DNA twisting and supercoilings. They form covalent links to
DNA to allow the passage of single- or double-stranded DNA; specifically,
topoisomerase | binds to single-stranded DNA breaks (193,195). Despite the
topoisomerase I-irinotecan-DNA union is not lethal by itself, when impacts with the
replication forks promotes the formation of DSBs, leading to an irreversible arrest of

these replication forks and facilitating cell death (195).

Nevertheless, it has been recently observed that the mechanism of action of irinotecan
may also depend on the cell type: in cells with a quiescent proliferating rate but rich in
mitochondria, such as hepatocytes, the drug induces mitochondrial dysfunction and
oxidative stress; on the other hand, is in highly proliferative cells, such as cancer cells,

where the main target of irinotecan is topoisomerase | (193,196).

When irinotecan enters the cell, it has to be hydrolyzed to become its active metabolite,

SN-38, which is 1000-fold more potent than irinotecan, through the action of
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carboxylesterases CES1 and CES2 (192,195,197). SN-38 is deactivated through a
glucoronidation by UGT1A enzyme family (mainly UGT1A1 but also UGT1A7 and
UGT1A9), converting it in the liver to the inactive form SN-38G (SN-38 glucoronide)
(176,195,197). It is well-known that the missense variant UGT1A1*28, characterized by
an extra TA repeat in the promoter region of the gene, is responsible of a less efficient
bilirubin glucuronidation and, thus, contributes to severe irinotecan-associated toxicity,
such as severe neutropenia and diarrhea. This variant was the first one to be related to
Gilbert’s syndrome (176,192,195,197), and there is enough supporting evidence that
indicates UGT1A1 polymorphisms may be of clinical interest to predict, and

consequently prevent, irinotecan toxicity (192).

As irinotecan needs to be converted into SN-38, it requires several enzymes, such as
the above mentioned carboxylesterases. For this reason, it has been well established an
in vitro correlation between carboxylesterases levels and sensitivity to irinotecan in
human non-small cell lung cancer cell lines (195,198). Furthermore, several studies
pointed out that the main enzyme involved in irinotecan hydrolysis is CES2. In this way,
CRC HT-29 cell line that overexpress CES2 increased irinotecan hydrolysis ratio and,
thus, was more sensitive to the treatment than the same cell line with increased CES1

expression (192,199).

Another mechanism involved in irinotecan sensitivity includes ABC transmembrane
transporters. For instance, MRP member actively transports CT agents out of the cell

and has been proven to participate in the active efflux of both irinotecan and SN-38 (195).

Furthermore, failure on repairing irinotecan-induced DNA damage might contribute to
irinotecan resistance in cells in combination with RNA transcription processes. In this
regard, it has been reported that the collision between RNA polymerase complex and
topoisomerase | cleavable complex results in transcription arrest and the appearance of
single-strand breaks, thus, promoting topoisomerase | degradation through the
proteasome; when topoisomerase | is degraded, repair of the single-strand breaks might
occur. For this reason, it has been proposed that tumor sensitivity to proteasome may
serve as an indicator of irinotecan sensitivity or resistance. However, studies on CRC
cell lines have shown that the reduction of topoisomerase | caused by irinotecan is
defective, thus, impairing topoisomerase | degradation though proteasome; whether this
defect on topoisomerase | reduction contributes to irinotecan resistance in CRC is still
unclear (195,200).
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Additionally, NF-xB seems to play a central role in the treatment of irinotecan. NF-«xB is
an ubiquitous transcription factor that controls transcription through a wide range of
genes involved in inflammation and immunity. When cells receive irinotecan to promote
DNA damage, NF-«xB gets activated and acts as an antiapoptotic factor. In this way, NF-
kB inhibits the apoptotic cascade induced by tumor necrosis factor-alpha (TNF-a),
oncogenes and/or chemotherapeutic agents, especially irinotecan. For this reason, NF-
kB inhibition may contribute to irinotecan-induced apoptosis and, thus, contributing to

the therapy with this chemotherapeutic agent (195).

Nevertheless, recent studies have suggested that topoisomerase | is not the unique
target of irinotecan. It has been observed that SN-38 can interact with MDM2, a protein
involved in cell death mediated through p53 protein, and is also related to the anti-
apoptotic BCL-xL protein. In this way, in hepatocellular carcinoma cells, SN-38 seems to
induce p53 expression and phosphorylation, which activates a down-stream pathway
that includes proteins such as the apoptosis regulator BAX, caspase-3 and caspase-9,
together with a reduction on BCL-xL levels, thus triggering cell apoptosis in a p53-

dependent mechanism (193,201).
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As widely mentioned in the introduction, chromatin remodelers and epigenetic factors
seem to play key roles on regulating processes that drive the development of tumors,

although the mechanisms of action are still poorly understood in many cases.

Nevertheless, our group and some of our collaborators had found strong evidence that
chromatin factor genes might be deregulated in CRC. Our laboratory performed an
exome sequencing of 8 CRC samples and many chromatin remodelers, especially
SWI/SNF members, presented mutations; furthermore, the same gene could be mutated
at different sites within the same sample (Figure 8A). Moreover, when we were analyzing
SWI/SNF protein levels by Western Blot (WB) using histone H1 as a normalizer
(theoretically a nuclear stable protein), we observed surprising alterations on linker
histone H1 expression, where variants H1.3 (202) and H1.5 (unpublished) were
completely missing in the more malignant CRC cell lines (Figure 8B). Post-translational

modifications, such as citrullination on H1 variants, results in a loose of chromatin
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Figure 8. Preliminary results of chromatin remodelers and epigenetic factors altered in CRC. (A)
Exome sequencing identified several mutations in chromatin remodelers and epigenetic factors in 8
CRC tumor samples, especially in SWI/SNF members. (B) Western Blot of histone H1 subtypes 1.2 and
1.3 throughout different CRC cell lines. Image extracted from: Terme J-M, Millan-Arifio L, Mayor R,
Luque N, lzquierdo-Bouldstridge A, Bustillos A, Sampaio C, Canes J, Font I, Sima N, Sancho M,
Torrente L, Forcales S, Roque A, Suau P & Jordan A. Dynamics and dispensability of variant-specific
histone H1 Lys-26/Ser-27 and Thr-165 post-translational modifications. FEBS Lett. 588(14): 2353—2362
(2014) (202). (C) RT-gPCR of BAF60c1, BAF60c2 and PADI2 chromatin factors comparing their
expression in normal (in blue) vs. tumor (in red) patient samples (gift of Dr. Peinado’s group). (D)
Expression of PADIs’ chromatin factors comparing normal (in green), adjacent (in blue) and tumor tissue
(in red) according to Colonomics (top); changes of PADI2 expression comparing tumor vs. normal
sample in a cohort of CRC patients (bottom left); PADI2 expression in normal vs. tumoral tissue from a
TCGA CRC cohort (bottom right). Image from: Cantarifio N, Musulén E, Valero V, Peinado MA, Perucho
M, Moreno V, Forcales S-V, Douet J & Buschbeck M. Downregulation of the Deiminase PADI2 is an
Early Event in Colorectal Carcinogenesis and Indicates Poor Prognosis. Mol. Cancer Res. 14(9): 841—
848 (2016) (204). (E) RT-gPCR of PADI2 levels comparing HT-29 and Ls513 CRC cell lines to the same
cell lines resistant to OXA (HTOXA and LS513 OXA).
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structure that could facilitate replication during uncontrolled proliferation (203). Thus, it
became more evident that H1 implication in the oncogenic process could be more
relevant than previously thought. Citrullination is promoted by PADI enzymes, and two
groups in our institute were also studying the implication of PADIs in cell fate (Dr.
Buschbeck’s group) and in colorectal cancer (Dr. Martinez-Balibrea’s group). Their data
indicated that PADI2 RNA was significantly downregulated in CRC tumors (Figures 8C
and 8D) (204). Intriguingly, when some CRC cell lines, such as HT-29, were cultured in
vitro to become resistant to oxaliplatin, PADI2 was upregulated (Figure 8E). Additionally,
Dr. Forcales previous work during her postdoctoral research found that histone H1.3 and
H1.5 bind different SWI/SNF subunits during proliferation and differentiation, specifically
two variants of the BAF60c subunit. Those variants also presented altered expressions

in tumor samples compared to normal matched tissue (Figure 8C).

Altogether, taking into account published data, data from our collaborators and our own,
indicated an altered chromatin pathway involving subunits of SWI/SNF complex, histone
H1, and PADIs, in CRC tumors. Whether these alterations contribute to the onset,
progression and/or malignancy of the disease remained unclear; as well as if they could
represent diagnostic or prognostic markers. Moreover, while these alterations could be
“passengers”, but nevertheless they could give novel vulnerabilities to cytotoxic drugs
whose mode of action impacts DNA biology. Therefore, these data inspired the main

hypothesis of the present thesis.
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The hypothesis of the present thesis is that the presence or absence of some chromatin
factors may facilitate or impair the action of chemotherapeutic drugs in colorectal cancer
(CRC). Chromatin factors have been proven to modulate DNA structure; they can
contribute to an open chromatin, more accessible, or favor chromatin compaction, thus,
a more repressed state of DNA. For this reason, they might be playing a role on how
chemotherapeutic agents, which in CRC are mainly DNA damaging agents, can access
DNA. In this regard, facilitators could have synergistic effects with chemotherapy

whereas “obstructors” could promote chemoresistance (Figure 9).

Drug Access
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Figure 9. Scheme of how chromatin factors may facilitate or impair the DNA access of
chemotherapeutic drugs in CRC. Our and others’ lab data indicate a regulatory pathway between
SWI/SNF complex, histone H1 and PADIs. On one hand, our data (unpublished) demonstrates that
SWI/SNF complex interacts with several histone H1 variants; on the other hand, PADIs citrullinate
histone H1 to promote a less condensed status of chromatin. Therefore, chromatin factors such as
PADIs might be influencing DNA structure by promoting or preventing interactions of histones with
chromatin remodelers (e.g. SWI/SNF complex), thus affecting different aspects of DNA biology such as
gene expression, DNA replication and DNA damage response. Moreover, alterations in chromatin
structure may facilitate or impair the cytotoxic effects of chemotherapeutic drugs.

Therefore, the global aim of this thesis was to identify chromatin factors that could

represent novel therapeutic targets for the treatment of advanced CRC by synergizing

with chemotherapy, to prevent resistance to treatment, which is often the cause of

deficient therapies.
To achieve this goal, the specific aims of this thesis were:

1. To perform a pool approach loss-of-function screen using an improved retroviral
library of more than 7.300 shRNAs against 912 epigenetic and chromatin factors
in the presence of two chemotherapeutic approaches given in the clinics for
advanced CRC (FOLFOX and FOLFIRI).

2. To individually validate chromatin factors that could sensitize or impair

chemotherapy action.

3. Study the mechanisms of action of selected genes in terms of chemotherapy

synergistic or antagonistic effects by in vitro functional assays.
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4. To explore the biomarker significance, in terms of predictive value for response

to treatment, for top hit genes identified in the screen.
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1. Setting up of a loss-of-function screening

Genetic screenings are powerful tools to discover novel players in different model
settings. We decided to use a pool-approach loss-of-function (LOF) screen using a
shRNA library to uncover novel chromatin factors whose deregulation could synergize
with chemotherapy (CT). Nevertheless, screenings are noisy by nature and present a
high background. To minimize this issue and assure that the genes arisen from this
screening may be potential good candidates to overcome chemoresistance, a battery of

experiments were performed to set up this type of methodology.

1.1. Safe approach

The shRNA library targets several genes for 912 human chromatin factors (Annex 1),
some of them with potential tumor suppressor roles. To prevent harmful effects for the
researcher, we packaged the retroviral vectors containing the shRNAs into an ecotropic
packaging cell line (Plat-E), which produces viral particles that can only infect murine cell
lines. Therefore, we had to introduce a murine ecotropic receptor (EcoR) in the human
colorectal cancer cell line HT-29 by lentiviral infection. In this way, human HT-29 cells

were converted to “infectable” by a retroviral vector specific for murine cells.

Figure 10A shows the expression of EcoR receptor by RT-gPCR in HT-29 EcoR infected
cells with adequate controls. HT-29 EcoR cells and those selected with puromycin
showed the band corresponding to EcoR receptor, coincident with the band that appears
in the viral supernatant. Negative controls (no RNA or no RT) indicated that the band
obtained was specifically from cDNA synthesis and not from genomic or environmental
contamination. Moreover, another human CRC cell line, such as HCT116, did not show
amplification, as expected. To test whether this receptor was completely functional, HT-
29 +/- EcoR cells were infected with the ecotropic produced viral supernatants containing
a retroviral vector with a GFP (pMSCV-LEPG) or a mCherry fluorophore (pMSCV-
LENC). Figures 10B and 10C present the cytometry analysis and a table with the
resulting values of pMSCV-LEPG and pMSCV-LENC infections. In this regard, HT-29
EcoR cells were infected at 42.5% and 12.7% for GFP and mCherry vectors,
respectively, in comparison with HT-29 cell line (not infected). A positive control was also
used, the murine myoblast cell line C2C12, which was infected at higher efficiencies for
both pMSCV-LEPG (89.7%) and pMSCV-LENC (28.9%) vectors.

In conclusion, the EcoR receptor was functional and we could use the HT-29 EcoR cell

line as our model system for the screening in a safe manner.
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Figure 10. Introduction and validation of the ecotropic receptor EcoR in HT-
29 human colorectal cancer cell line. (A) 1% Agarose gel showing EcoR
amplification by RT-gPCR. EcoR receptor was correctly introduced and expressed
in HT-29 EcoR cells. As a positive control, EcoR was amplified from viral
supernatant (Ctrl3); as negative controls, HCT116 cells not infected with EcoR
lentivirus (Ctrl4 and Ctrl5), blank (Ctrl1), and no RT (Ctrl2). (B) Cytometry analysis
of cells infected with pMSCV-LEPG and pMSCV-LENC vectors. (C) Table detailing
the infection percentages of section B. HT-29 EcoR cells had 42.5% and 12.7% of
GFP and mCherry positive cells, respectively, whereas HT-29 were not infected;
positive control C2C12 cell line was infected at 89.7% and 28.9% for pMSCV-
LEPG and pMSCV-LENC, respectively.

1.2. Determination of viral supernatant dilution to obtain one shRNA per cell

The shRNA library was constructed by our collaborators in a modified backbone, which
is ten times more efficient in downregulating its targets than a regular one (205). This
potency allows for a pool-approach screening, since even at high supernatant dilution
rates (to avoid co-infections) the effects of the shRNAs should be observed. To
determine the dilution at which an infection of 1 shRNA/cell is achieved, we co-infected

HT29-EcoR cells with two retroviral vectors containing GFP or mCherry fluorophores
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(PMSCV-LEPG and pMSCV-LENC, respectively) at different dilutions. Also, vectors
were infected at the same proportion (1:1) and at 1:3 proportion, as mCherry vector was
observed to infect with less efficiency (compare in 1:1 proportion, where GFP gives
around 16% and mCherry 1% in replicate 1 and 9.5% in GFP and 2% in replicate 2).

Table 2 presents a summary of the flow cytometry analysis, indicating the percentages
of GFP positive, mCherry positive, and double positive (DP) infected cells. The dilution
at which DP cells disappear was slightly different in two independent replicates, ranging
between 1/3 and 1/6 of viral supernatant dilutions. Therefore, to ideally obtain no DP
cells, we decided to be stringent and the viral supernatant had to be diluted until no

higher than 1% of cells were infected.

VIRAL REPLICATE 1 REPLICATE 2
SUPERNATANT | GFP (%) | mCherry (%) | DP (%) | GFP (%) | mCherry (%) | DP (%)
Mock 0.2 0 0 0.1 0 0
pMSCV-LEPG 29.75 0 0 17.35 0 0
pMSCV-LENC 0 3.4 0 0 4.2 0
_ é 2X 16.65 1.1 0.5 9.5 2 0.15
<8
g 1X 16 1.05 0.4 8.5 1.75 0.15
1X 10.95 2 0.45 5.55 2.6 0.1
& | 23 dilution 9.85 1.85 0.25 3.75 1.8 0.1
by §_ 1/3 dilution 6.15 1.05 0.1 2.1 0.95
S [ /6 dilution 3.7 0.65 0 12 0.5
1/15 dilution 1.55 0.35 0 0.55 0.2

Table 2. Co-infection assay of pMSCV-LEPG and pMSCV-LENC vectors. Percentage of
fluorescent cells by cytometry analysis for GFP, mCherry and DP cells in two independent co-
infection assays in HT-29 EcoR cells. As controls, non-infected HT-29 EcoR cells (Mock) and
HT-29 EcoR cells only infected with pMSCV-LEPG or pMSCV-LENC vectors. In 1:1
proportion, 2X and 1X supernatant quantities were used, obtaining low levels of mCherry
infected cells but still obtaining DP cells. To obtain comparable infections, supernatants from
pMSCV-LEPG and pMSCV-LENC were used in a 1:3 ratio. Supernatant dilutions higher than
1/3 resulted in 0% DP cells.

1.3. Validation of RNAIi pathway with control shRNAs

Due to screenings’ high background, it was necessary to include robust internal controls
that minimize false positives. As we would monitor the presence and/or absence of clonal
populations of cells, adequate controls such as shRNAs that will kill all target cells
(positive controls) and shRNAs that do not bear any effect (negative controls) were
necessary. These shRNAs set up the threshold window where different degrees of
effects can be obtained by many different shRNAs. Moreover, this approach makes sure
that the siRNA pathway is not impaired in this cell line; otherwise, this screen could not

be performed.
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Figure 11 presents a kill curve assay analysed by flow cytometry, where all three control
vectors worked as expected. The strong positive control (in red), which has a shRNA
against RPA3 gene (a RNA polymerase Il subunit), killed almost all cells; another positive
control containing a shRNA against MYC gene (in blue), killed steadily dividing cells. As
a negative control, we used a shRNA that contains the luciferase gene from Renilla (in
green), not present in human cells, thus, having no effect on HT-29 EcoR cells. To have
an additional control vector, we also monitored the effects of HT-29 EcoR cells infected

with pMSCV-LENC alone. Therefore, controls behaved as expected.

Figure 11. Kill curve assay. mCherry
fluorescent levels (%) were monitored
67 by flow cytometry during 17 days after
infecting HT-29 EcoR cells with different
54 .\/\‘\-‘r/* control vectors that will provide us the
-+ HT-29 EcoR threshold window of harmful effects that

pMSCVALENG we should expect in the LOF screening.
In red, pMSCV-LENC-Rpa3 is the

~& pMSCV-LENC-Ren
strongest positive control, killing almost
] .\'—4‘\1\.__‘\_ o PUSCVLENGRRS )l cells after 10 days in culture; in blue,
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1 LENC-Myc, killed all dividing cells. In
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I T T A pa " s LENC-Ren, is represented.; a[so,
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1.4. Determination of chemotherapy concentrations to mimic clinical regimes
One of the main aims of this project is to find potential new therapeutic targets to
overcome patients’ chemoresistance to FOLFOX and FOLFIRI, the two major
chemotherapeutic treatments in CRC. These treatments consist in combinations of 5-FU
and Leucovorin with OXA (FOLFOX) or SN-38 (FOLFIRI). For this purpose, was
necessary to establish a culture protocol that mimics the regimes given in the clinics,
while setting the adequate concentrations allowing to identify synergistic effects of the
chemotherapeutic drugs and the shRNAs. For in vitro cultures, FUOX mimics FOLFOX
treatment without Leucovorin, which is given to patients for better absorption purposes
and, thus, it is not necessary in cell cultures; in this same way, FUIRI mimics FOLFIRI
treatment without Leucovorin. The first step to establish the desired concentrations of
FUOX and FUIRI for the screenings was to identify by XTT individual ICsos of the drugs
composing these treatments: 5-FU, OXA and SN-38. Figure 12 shows dose-response
curves of 5-FU (in blue), OXA (in red) and SN-38 (in yellow) at different drug
concentration points; we determined ICso values for these drugs at 10 yM for 5-FU, 2 uyM
for OXA, and at 5.5 nM for SN-38.

66



D Figure 12. Dose-response curves
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However, using the individual ICses concentrations in combinatorial treatments (FUOX
and FUIRI) resulted in higher mortality rates than expected. This data indicated that we
had to test directly several combinations of drug concentrations to determine 1Csos for
FUOX and FUIRI treatments.

Nevertheless, after several discussions with oncologists and researchers, we decided to
set up our screening using the concentrations of combined treatments that Kkill
approximately 20% of the cells (IC2) during a relatively long period (we arbitrarily set it
at three weeks), which comprised four cycles of treatment. Briefly, if harsh treatments
are used, such as ICgos, they will result in survival of cells enriched for shRNAs that
tolerate high CT levels; therefore, favoring the identification of “resistant genes” (when
downregulated or absent they confer resistance, resulting in cell survival). However, in
these treatments, relevant sensitizer genes would be difficult to be identified since many
shRNAs would drop-out from the culture, without being necessarily good sensitizers;
they might be still present in mild treatments. In mild treatments such as ICzs, drop-out
shRNAs would identify the most susceptible genes that when absent potentiate CT
effects resulting in cell death, what we would call “sensitizer genes”. In other words, 1Cgos
treatments would favor the identification of resistant profiles, whereas 1C2s would favor

the identification of sensitizer profiles.

Instead of using XTT, we decided to monitor cell survival by flow cytometry using dyes
that stain live cells (DiOC) and dead cells (DAPI). In this manner, transitory phenotypes
for apoptotic cells could also be quantified allowing for a more detailed analysis of the
combinatorial drug effects (and future synergies with shRNAs). Moreover, interactions
between CTs and XTT reagents could also interfere with the final result (206—208).

Figure 13 shows the percentage of live and dead cells for several drug concentrations
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of FUOX (left) and FUIRI (right). FUOX IC2 was achieved after four cycles of a
combination of 0.1 yM of 5-FU + 0.02 uM of OXA, and FUIRI ICy was achieved after
four cycles of a combination of 0.1 uM of 5-FU + 0.055 nM of SN-38. Additionally, we
performed a screening with harsh CT conditions (ICso achieved at 1.67 uM of 5-FU +
0.33 uM of OXA for FUOX, and at 1.67 uM of 5-FU + 0.92 nM of SN-38 for FUIRI).

Determination of IC,, for FUOX and FUIRI after 4 cycles of treatment

120+ 120+
1004 1004
I Live cells I Live cells
@ 80 Il Dead cells P 804 I Dead cells
8 604 [] Treatment 1 8 604 [] Treatment 1
3 {4 Treatment 2 x 4 Treatment 2
40 Treatment 3 40+ Treatment 3
= Treatment 4 = Treatment 4
20 20+
0- 0-
5-FU (uM) 0.21 0.13 0.1 5-FU (uM) 0.21 0.13 0.1
OXA (uM) 0.04 0.03 0.02 SN-38 (nM) 0.11 0.07 0.055
Concentrations of FUOX Concentrations of FUIRI

Figure 13. Determination of ICZO for FUOX and FUIRI after 4 cycles of treatment. Live (in green)

and dead (in red) cells at different concentrations of FUOX (left) and FUIRI (right) after 4 cycles of
treatment (marked with different patterns) to establish IC20 of combined therapies. In the case of the

higher drug concentrations tested, experiments were stopped after treatment 2 due to a high mortality
% of cells. In the case of FUOX, IC20 was established at 0.1 uM 5-FU + 0.02 uM OXA, whereas IC20 for

FUIRI was achieved at 0.1 yM 5-FU + 0.055 nM SN-38.
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2. Identification of chromatin regulators that affect cell survival in response
to chemotherapy

2.1. Loss-of-function screenings

One of the hurdles of a pool-approach method is that we had to scale up the quantity of
cells to obtain a full representation of all shRNAs, while trying to obtain individually

integrated molecules per cell.

Figure 14 summarizes how the experiment was performed; firstly, HT-29 EcoR cells were
infected with the improved retroviral library that contains 7.300 shRNAs against 912
chromatin factors. To obtain a 1.000X representativeness of each shRNA when DNA is
sequenced, we had to recover at least 7.3-10° live cells (7.300 shRNAs x 1.000) after 4
cycles of chemotherapy. Taking into account that we had previously determined that 1%
infected cells will ensure achieving an individual shRNA per cell (Table 2), we
consequently had to seed 100 times more cells, giving a seeding number of 730 million
HT-29 EcoR cells at the beginning of the experiment (section 3 of Materials and
Methods). After 21 days of treatment with FUOX and FUIRI, genomic DNA was extracted
and sequenced in parallel with lllumina HiSeq to compare the abundance of shRNAs in

control and treated cells.

21 days

(4 Treatments) Identify sensitizer or

h resistance genes

shRNA library @ Q Q@ RRR

/ Untreated

+G418 Next Generation 0
€ >y =20, @ — @ =0l L 9§05/ Enriched

Sequencing

HT-29 EcoR \ FUOX
1 5.9 5 Drop out

FUIRI ﬂ R

Figure 14. Scheme of how loss-of-function screenings were performed. HT-29 EcoR cell line was
infected with a shRNA library that contained 7.300 shRNAs against 912 chromatin factor genes. Two
types of screening were performed to identify possible drug targets and biomarkers: with low
chemotherapeutic regimens (IC), which puts more focus identifying shRNAs that disappear in treated
conditions respect to controls (drop-outs), and high chemotherapy (ICsgo) to identify enriched shRNAs
that favor resistance in treated conditions respect to controls.

No change

2.2. Analysis of sequenced data
Figure 15 presents volcano plots of differentially expressed shRNAs with top candidate
hits for FUOX (Figure 15A) and FUIRI (Figure 15B) treatments at ICxs. It should be
taken into account that there are:
e shRNAs that disappear (drop-outs) in the treated conditions respect to the
controls (left side of the volcano plot), which are shRNAs that target “sensitivity

genes” (required for survival): depletion of these genes sensitizes the cells to the
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chemotherapy and, thus, contribute to cell death. These genes are those suitable

to be considered as novel combinatorial drug targets.

o shRNAs that are enriched in the treated conditions respect to the controls (right
side of the volcano plot), which target "resistance genes”: downregulation of
these genes confers resistance to the cells in the presence of chemotherapy,
thus, their decrease contributes to cell survival. These genes could be considered
potential biomarkers that when absent or low expressed in primary tumors could

predict worst response (resistance to treatment).

A B

Volcano Plot FUOX Volcano Plot FUIRI

MORF4L2 ° UBE2M ATR GSG2 o o BTAF1
SMARCAS
PSIP1 MBTD!, MORFalz  GADDISA
H.FM‘ BRDHNRN.PA2§| PHFM.Z.NfZéqP
o GTAM 7 4 M2 epapi
ASF1A @ ®NONO ® © PBRM1 YBX2 o © ®KDM1B SMARCB1
WBSCR27 OCHAFIA STK3] JUHRF2 DDX39Aq RYIF23 ~ SMN1e SOXi5 o

') 2E3 ATXN7L3 [J
i ATR TF"M.5. NOP2 o DDX6 o UBE3A® ‘ATAD2

25
25

1

2.0

()
CHD4

o=y

—log10(PValue)
5
.
—log10(PValue)
15

A
1.0
1

1.0

0.5
1
0.5
1

0.0
1

.
0.0
1

-1.5 -1.0 -0.5 0.0 0.5 1.0 15 -1.5 -1.0 -0.5 0.0 0.5 1.0 15

logFC logFC

Figure 15. Volcano plots of FUOX (A) and FUIRI (B) top candidate hits from the screening.
In red, genes with p-value <0.1; in orange, genes with log2FC >0.5; and in green, genes with p-
value <0,1 and log2FC >0.5.

665 genes were identified to influence cell survival upon FUOX treatment: 338 genes
showed their shRNAs depleted and 327 genes whose shRNAs were enriched; for FUIRI
treatment shRNAs were depleted for 353 genes and enriched for 315 genes (Figure
16A). Tables 12-15 (Annex Il) summarize top 50 enriched and dropped-out shRNAs for
FUOX and FUIRI treatments. From these lists, we filtered the data by genes that had at
least 6 of the shRNAs behaving in the same direction; in other words, genes that
contained at least 6 out of 8 sShRNAs disappearing or over-represented in treated cells
in comparison to control condition. In this manner, we obtained several top candidate
genes distributed as Figure 16B and Tables 16 and 17 (Annex II) show. When performing
Gene Ontology (GO) analysis with these gene lists, sensitizer genes (Figure 16C)
appeared to be mainly involved in regulation of organelle assembly and response to DNA
damage in FUOX (in blue) whereas genes related to regulation of metabolic processes
were the most represented in FUIRI (in orange). In the case of resistant genes (Figure

16D), FUOX genes (in blue) were involved in several pathways such as nucleosome
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disassembling or ATP-dependent chromatin remodeling, while FUIRI genes (in orange)
were not only implicated in regulation of metabolic processes but also in ATP-dependent
chromatin remodeling and regulation of DSBs repair.
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Figure 16. Analysis of enriched and drop-out genes arisen from the screening. (A) Bar graph
representing the number of all enriched and depleted genes obtained from the screening for FUOX (in
blue) and FUIRI (in orange) treatments. (B) Bar graph representing the number of enriched and depleted
genes for FUOX (in blue) and FUIRI (in orange) treatments after filtering the data to obtain genes that
had at least 6 out of 8 shRNAs behaving in the same direction. (C and D) Gene Ontology analysis of
the biological processes where depleted (C) and enriched (D) genes (FUOX genes in blue and FUIRI
genes in orange) were involved. GO analysis was performed with PANTHER Overrepresentation Test
performed using a Fisher's Exact test without any correction; reference lists, which contained all
enriched or depleted genes obtained from the screening analysis (section A data), are in Annex .

At the end, we reduced the list of interest to 21 candidate genes for “sensitizing” to FUOX
treatment, 18 for FUIRI, and 8 candidate genes that were common for both treatments
(Figure 17A, left); the names of the sensitizers are shown in Figure 17B. Regarding
“resistant” genes, we selected 10 possible targets for FUOX, 11 for FUIRI, and only 1
common for both treatments (Figure 17A, right). These lists of resistant genes were also
compared with data from the screening experiment where we used high doses of FUOX
and FUIRI (ICgo); most of the cells died; however, we could recover enough material to
perform one sample for sequencing. Therefore, in absence of biological and technical

replicates, we cannot show the volcano plots. However, the lists of genes are shown in
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Tables 18 and 19 (Annex Il). Comparing both lists of resistant genes, the final list of

selected candidate genes is represented on Figure 17C.
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Figure 17. Pie charts
specifying the top
candidate sensitizer or
resistant genes obtained
in the LOF screenings for
FUOX and FUIRI
treatments. (A) Pie chart
presenting the distribution of
the number of sensitizer and
resistant genes for FUOX
and FUIRI treatments
obtained in the LOF
screenings. (B and C) Pie
charts showing the name of
all the top candidate
sensitizers (B) or resistant
(C) genes classified by
FUOX, FUIRI or common.



3. Individual validation of each candidate gene
In total, we selected 69 top candidate sensitizer and resistance genes from the
screening; however, not all of them could be deeply assessed. For this reason, based
on the known characteristics of each gene and published bibliography, we narrowed the
list to 22 genes that showed interest based on diverse criteria such as:

1. Unknown functions and no available drugs,

2. Unknown mechanisms yet part of known complexes involved in DNA repair,

3. Roles in resistance in other cancer types.
In this manner, we could cover several scenarios in which some unprecedented but high-
risk targets could be further evaluated as well as more conventional ones but still new
as sensitizers for CRC. Once we decided our possible candidate genes from the
screening, they needed to be individually validated to verify their potential value as new
biomarkers or possible drug targets, or if they represented false positives that arose from

the noise of the screenings.

3.1. Validation of 70% of the candidate genes (15 out of 22)

Individual validation of the selected 22 candidate genes was first approached by RT-
gPCR and cell viability assays to test the efficiency of the individual knock-downs at the
RNA level, and whether their influence on cell survival when treated individually with
FUOX or FUIRI was still the same as predicted by the screening. Taking into account

these two types of approaches, four different scenarios were considered:

1) RT-gPCR and cell viability assay worked as expected: when successful results

were obtained in both assays (RNA downregulation and high mortality of
sensitizer or low mortality for resistant genes), we considered those genes as
validated; consequently, we assumed their potential role as biomarkers or drug
targets, despite a further study would be required. 15 genes fell in this category
(Table 3).

2) RT-gPCR demonstrated downregulation of targeted gene yet cell viability assay

did not present expected mortality tendencies: genes included in this group were

considered false positives arisen from the screenings’ background; thus, they

were discarded. 5 were found in this category (Table 3).

3) RT-gPCR did not show downregulation of targeted gene but cells presented

expected mortality tendencies: this group probably contained off-target effects.

These genes could not be directly discarded, as their downregulation was not
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achieved; with this group of genes we decided to analyze the effect of a second
shRNA. 2 genes appeared in this category although, after analyzing a 2" shRNA,
only 1 gene remained in this section (Table 3).

4) Neither RT-qPCR nor cell viability assays functioned as predicted: genes

whereby these two assays did not work could not be directly discarded although
they were not good candidates; again, we tried the second shRNA to decide
whether those genes were false positives or not. 3 genes were inside this group

although, after analyzing a 2™ shRNA, only 1 gene was maintained (Table 3).

Figure 18 presents all the validation results for sensitizer genes. In blue are represented
FUOX genes whereas FUIRI genes are in orange. On the left (Figure 18A), RT-gPCR
with two different normalizer genes (PUM1 and MRPL9) was used to measure the knock-
down efficiency at RNA level. Successful individual knock-downs were considered when
there was approximately less than 50% of expression respect to the shControl. Figures
18B and 18C present graphs of how live cells respond to chemotherapy at different
doses measured by flow cytometry (Figure 18B) and normalized graphs (Figure 18C) of
these values to better observe the scale of the response. The selected chemotherapeutic
doses ranged from twice the combination of the individual ICsos, several dilutions of the
ICsos, and the combined ICx.
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Figure 18. Individual validation of top candidate sensitizer genes. (A) Relative expression
measured by RT-qPCR in HT-29 EcoR cells infected with a shControl vs. shRNA of our candidate genes.
Two normalizer genes were used: PUM1 and MRPL9. In blue, shRNAs most efficient for FUOX
treatment; in orange, shRNAs most efficient for FUIRI treatment. In both colors, shRNAs that were most
efficient for both treatments. (B) Percentage of live cells in HT-29 EcoR cells infected with a shControl
vs. shRNA of our candidate gens after FUOX or FUIRI treatment at different doses measured by flow
cytometry in three biological replicates. Two-way ANOVA statistic test with multiple comparisons was
applied to all of the genes; differences on cell viability within the same treatment condition that were
statistically significant are represented as * (p-value < 0.05), ** (p-value < 0.005), *** (p-value < 0.0005)
or **** (p-value < 0.0001). (C) Normalized graphs of section’s B data after dividing live cells’ mean of
shGene between live cells’ mean of shControl cells. For (B) and (C), in blue are cells treated with FUOX
and in orange cells treated with FUIRI.

Firstly, in FUOX-related genes, neither ACTRS5 or TDRD5 presented any downregulation
at the RNA level, accompanied with an irrelevant mortality tendency on cell viability
assays. PAX9 presented a downregulation of around 60% at RNA level, and cell viability
experiments showed a slightly increase on cell mortality (around 15%) in comparison to
shControl cells. Similarly, TRIM28 was downregulated correctly by the shRNA; however,
cell viability experiments presented an unclear tendency of cell mortality. Surprisingly,
viability assays of PHC3 showed the expected mortality tendency, around 25% more
cells dying than shControl cells, despite there was no downregulation at RNA level.
Finally, despite expression levels showed only a downregulation of around 30% for
SETD?2, it resulted in 30% more cell death when compared to shControl cells in cell
viability assays, especially at the highest doses of FUOX.

In the case of genes assessed for FUIRI treatment, CDK2AP1 showed a downregulation
of RNA expression of over 70% although had an unclear mortality tendency. MIS718A
and PARP14 graphs presented a decrease on RNA expression of 50%, resulting in the
expected mortality tendencies in cell viability assays, where at highest doses of FUIRI
there was an increase of cell death of 30% and 25%, respectively, in comparison to
shControl cells. SMARCAS showed a reduction on expression of 60%, which was
translated in 40-50% more cell death than control cells in viability assays at all FUIRI
concentrations. Lastly, TRIM33 downregulation of 50% resulted in an increase of 25%
in cell death when treated at 1.67 yM 5-FU + 0.92 nM SN-38.

Regarding the genes that appeared in the screening for both treatments, ATR
downregulation reduced its expression around 40%, which produced a strong increase

on cell mortality (around 70%) when cells were treated with FUOX or FUIRI in cell viability
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assays; it should be remarked that mortality induced by FUIRI treatment was maintained
over 50% throughout all the different concentrations. Similarly, downregulation of 50%
of MORF4L2 expression resulted in 35% less viability at the highest doses of
chemotherapy; interestingly, cell viability was decreased and maintained around 35%
more than control cells throughout all FUIRI treatments. In the case of BRIP1, which had
a different top targeting shRNA when cells were treated with FUOX or FUIRI, both of
them presented a reduction on RNA levels of 75%; moreover, cell viability assays
demonstrated the expected mortality tendencies since shBRIP1 cells presented around
50% more cell mortality in comparison to shControl cells for both treatment conditions,
especially at highest chemotherapy concentrations. Finally, around 25% downregulation
of PARG was achieved with two different shRNAs (best targeting shRNA was different
for FUOX and FUIRI treatments); regarding cell viability assays, when FUIRI was
administered there was almost 50% less cell viability in comparison to control cells

whereas FUOX showed a decrease in cell viability of only 20%.

Taken all together, we considered as validated PAX9 and SETD2 genes for FUOX
treatment and MIS18A, PARP14, SMARCAS and TRIM33 for FUIRI chemotherapy; in
the case of common genes for both treatments (ATR, BRIP1, PARG and MORF4L2), all
of them were successfully validated. For these genes we obtained at least 50% of
downregulation in gene expression and, in viability assays, knock-down cells had lower
viability than control cells; in other words, cells infected with shRNAs against these
potential candidate genes died more than shControl cells in the presence of FUOX or
FUIRI (Figure 18C). Cells infected with shRNAs against genes such as ATR, BRIP1 or
SMARCAS behaved similar to control cells at dose 0 of chemotherapy; under
chemotherapy pressure there was a huge decrease on cell viability, especially at the

highest doses.

On the other hand, TRIM28 and CDK2AP1 were discarded since cell viability
experiments presented unclear tendencies, although downregulation at RNA level was
confirmed. PHCS3, despite there was no downregulation at RNA level, showed an effect
on cells’ viability when treated with FUOX, which indicates an off-target effect; however,
it cannot be directly discarded since the gene was not downregulated, thus, a second
shRNA was tested (Figure 20). In the case of ACTRS5 and TDRD5 genes, they were also
not discarded since their potential value could not be assessed due to a poor

downregulation effect on the RT-qPCRs; instead, a second shRNA was also tested.
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In the same way, Figure 19 presents all the validation results for resistant genes. Figure
19A shows RT-gPCR results; Figures 19B and 19C present the results of the viability
cells measured by flow cytometry.
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Figure 19. Individual validation of top resistant candidate genes. (A) Relative expression measured
by RT-gPCR in HT-29 EcoR cells infected with a shControl vs. shRNA of our candidate genes. Two
normalizer genes were used: PUM1 and MRPLY. In blue, shRNAs most efficient for FUOX treatment; in
orange, shRNAs most efficient for FUIRI treatment. In both colors, shRNAs that were most efficient for
both treatments. (B) Percentage of live cells in HT-29 EcoR cells infected with a shControl vs. shRNA
of our candidate gens after FUOX or FUIRI treatment at different doses measured by flow cytometry in
three biological replicates. Two-way ANOVA statistic test with multiple comparisons was applied and
differences on cell viability within the same treatment condition that were statistically significant are
represented as * (p-value < 0.05). (C) Normalized graphs of section’s B data after dividing live cells’
mean of shGene between live cells’ mean of shControl cells. For (B) and (C) in blue are cells treated
with FUOX and in orange cells treated with FUIRI.

Regarding resistant genes assessed for FUOX treatment, it can be observed that
INO80D was not downregulated by the shRNA although cell viability assays presented
more mortality in some FUOX doses in comparison to control cells, which is the opposite
expected tendency. In the case of RERE, despite having a reduction on RNA expression
of 30%, cell viability assays did not present an increase on cell survival at any FUOX
concentration.

For resistant genes that appeared with FUIRI treatment, BRD7 was well-downregulated
with 60% reduction at RNA level, which resulted in a slightly increase of 15% in cell
viavility in comparison to shControl cells at one of the highest FUIRI concentrations.
Concerning DPY30, a strong downregulation was achieved, reducing the expression
over 80%, which indeed was accompanied by 50% more cell survival of shDPY30 than
shControl cells at highest doses of FUIRI. Similarly, PBRM1 was downregulated around
80% at RNA level, although cell survival increased 25% in comparison to control cells in
cell viability assays. Moreover, a decrease on expression of 50% of SMARCA4 resulted
in 35% higher cell viability in comparison to shControl cells at the highest FUIRI doses.
ARID2, which was a resistant candidate gene common for FUOX and FUIRI treatments,
was correctly downregulated by shRNA, obtaining a reduction on expression of 60%;

however, cell viability assays did not show a clear increase on survival tendency,
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although an slight increase of 10% in the combination of 1.67 uM 5-FU + 0.33 uM OXA
for FUOX and 1.67 uM 5-FU + 0.92 nM SN-38 for FUIRI was observed.

In this case, we considered as validated those genes where the knock-down made cells
more resistant to chemotherapy, thus, cells grew more than shControl condition, together
with a downregulation of at least 50% at RNA level. BRD7, DPY30, PBRM1 and
SMARCA4 genes, which all of them were tested for FUIRI chemotherapy, were correctly
validated; as we previously observed, in genes such as DPY30 or SMARCA4 there was
a relevantincrease in cell survival of more than 50% respect to control cells. On the other
hand, a good downregulation of ARIDZ2 did not show a potent effect on increasing cell
viability, thus it was discarded as a good candidate. As RERE had not a potent
downregulation at RNA level yet seems to present a correct viability tendency, it was
decided to test a second shRNA. In the case of INO80D, as none of the validation assays

worked as expected, a second shRNA was also tested.

Figure 20 presents the results of HT-29 EcoR cells infected with a second shRNA against
genes that were not validated with the 1% shRNA, such as ACTR5, PHC3, TDRDS,
INO80OD, RERE and MIS18A genes; in the case of MIS18A, although it was correctly
validated with the first shRNA, we decided to try a second shRNA to improve the
downregulation at RNA level as we were especially interested on this gene for further
analysis. As mentioned above, Figure 20A shows RT-qPCRs and Figures 20B and 20C
present the results of the viability cells measured by flow cytometry.
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Figure 20. Individual validation of top candidate genes infected with a second shRNA. In blue,
genes that arisen when cells were treated with FUOX; in orange, genes that appeared when cells were
treated with FUIRI. (A) Relative expression measured by RT-gPCR in HT-29 EcoR cells infected with a
shControl vs. shRNA of our candidate genes. Two normalizers genes were used: PUM1 and MRPL9.
(B) Percentage of live cells in HT-29 EcoR cells infected with a shControl vs. shRNA of our candidate
gens after FUOX or FUIRI treatment at different doses measured by flow cytometry in three biological
replicates. Two-way ANOVA statistic test with multiple comparisons was applied and differences on cell
viability within the same treatment condition that were statistically significant are represented as * (p-
value < 0.05). (C) Normalized graphs of section’s B data after dividing live cells’ mean of shGene
between live cells’ mean of shControl cells.

Regarding sensitivity genes, ACTR5 did not present a clear downregulation and viability
results were not consistent, thus, it was discarded; TDRDS was correctly downregulated
at RNA level (60%) yet viability experiments failed and, therefore, it was discarded as
well. The second shRNA against PHC3 produced a similar effect than the first one: there
was not a good downregulation at expression level despite a good mortality tendency

can be observed in the cell viability assays with 25% more cell death than control cells;
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for this reason, this gene was discarded and considered as a false positive whose shRNA
provided off-target effects.

In the case of MIS18A, with the second shRNA we obtained a better downregulation,
which was over 80%, despite cell viability tendency was not as good as with the first
shRNA; it decreased 20% in comparison to control cells, whereas 30% was achieved
with the first shRNA; however, as long as we want to assure the maximum
downregulation of the gene, we decided to perform future experiments in cells infected
with the second shRNA.

Furthermore, regarding resistance genes such as INO80D and RERE, we correctly
validated /INO80D with a second shRNA as downregulation was under 50% of
expression and cells presented around 25% highest survival than shControl in the
presence of FUOX. Since downregulation at RNA level of RERE was not optimal (30%)

and viability assays presented an unclear survival tendency, this gene was discarded.

After performing all the battery of experiments, validation results can be summarized in
Table 3. On the top part, the validation results can be observed before trying a second
shRNA in all the scenarios; bottom part of the figure shows the results of this validation
step. At the end, we validated 15 out of 22 candidate genes coming from the screening
as “sensitizer” or “resistant” genes. At the beginning, only 3 genes were directly
discarded as false positives arisen from the background of the screenings; but finally 5
genes were discarded after the validation with the second shRNA. Nevertheless, we
were able to rescue one of the 5 possible genes with a second shRNA. Altogether, we

validated almost 70% of all candidate genes that were selected from the screening.

SCENARIO 1 | SCENARIO 2 | SCENARIO 3 | SCENARIO 4
g NUMBER OF GENES | 14 out of 22 3 out of 22 2 out of 22 3 out of 22
E PERCENTAGE 63% 14% 9% 14%
ﬁ NUMBER OF GENES 15 out of 22 5 out of 22 1 out of 22 1 out of 22
E' PERCENTAGE 68% 23% 4.5% 4.5%

Table 3. Summary of individual validation results. Top part represents the results
before trying a second shRNA in scenarios 3 and 4; bottom part shows the results
after the validation also with the second shRNAs experiments.

3.2. Selected validated genes were monitored for protein downregulation

Individual validation of all candidate genes lead us to 15 genes with great potential
involvement in the resistance to chemotherapy in CRC. Nevertheless, it was
unaffordable to study all of them in detail. After revising available information of each

gene in the bibliography and public databases, we decided to focus all our efforts in four
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candidate genes: BRIP1 and MIS18A, as sensitizers to chemotherapy and suitable drug
targets for combinatorial therapies, and PBRM1 and SMARCA4, which conferred
resistance and would present opposite behaviors to sensitizers.

For this reason, we firstly performed RT-gPCR in three biological replicates to confirm
the knock-down efficiency in the three replicates used for the viability assays; moreover,
WB was also conducted to confirm decreased protein levels in the three biological
replicates. In the left, Figure 21A presents the RT-gPCR results with two normalizer
genes (PUM1 and MRPL9); it should be remarked the robust downregulation achieved
for all four genes in all the biological replicates. WB results are shown in Figure 21B,
where it can be appreciated a good downregulation for BRIP1, MIS18A, PBRM1 and

SMARCA4 proteins.
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Figure 21. Expanded validation in three biological replicates of BRIP1, MIS18A, PBRM1 and
SMARCAA4. (A) Relative expression measured by RT-qgPCR in HT-29 EcoR cells infected with a
shControl vs. shBRIP1, shMIS18A, shPBRM1 or shSMARCAA4. (B) Protein levels of HT-29 EcoR
cells infected with shControl vs. shBRIP1, shMIS18A, shPBRM1 or shSMARCA4 monitored by
Western Blot. 3-Actin levels were sued as a normalizer.
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4. Generation of knock-out cell lines for the final candidate genes of interest
by CRISPR-Cas9 technology

To test the clinical relevance of the selected sensitizer and resistant genes, usually
researchers look for drugs that specifically inhibit their targets and analyze potential
beneficial therapies in combination with standard CT in vitro and in mice with
transplanted tumors. However, our selection included genes without commercial drugs
available, neither they present enzymatic domains that can be targeted straightforward.
Moreover, downregulation by shRNA results in fair decreased protein levels yet they are
not 100% efficient. For these reasons, we decided to generate knock-out (KO) HT-29
cell lines for BRIP1, MIS18A, PBRM1 and SMARCA4 genes by CRISPR-Cas9
technology. In this manner, we would have a robust absence of these genes, and as
such, a crucial tool to study the mechanisms of action where these genes affect cell

survival upon CT treatments.

To perform this objective, three different guide RNAs (QRNAs) were selected per gene
(Annex Ill), each one of them targeting different exons. HT-29 CRC cell line was infected
with a pool of the three gRNAs and single-cell clones were isolated to obtain
homogeneous populations; after clonal expansion, 48 clones per gene were analysed to
verify if our genes of interest were correctly edited. In addition, HT-29 cell line was also
infected with a non-target gRNA that will serve as the control condition. Figure 22 shows
the presence or absence at protein level of BRIP1, MIS18A and SMARCA4 in all clones
in comparison to the parental HT-29 cell line monitored by WB, which is a rapid technique
to obtain a first read-out of all clones; also, two clones of the control gRNA were included.
In the case of PBRM1, several problems appeared related to the antibody, therefore,
after several methodological changes without success, it was decided to postpone its

study and continue with the other targets for phenotypic and mechanistic experiments.

In general, it should be remarked that protein levels of BRIP1, MIS18A and SMARCA4
were similar between the parental HT-29 cell line and the two clones infected with the
control non-target gRNA (C1 and C2), pointing out that all the infection and selection
processes suffered by the clones did not affect our preferred genes. In the case of BRIP1
clones, absolute disappearance of the protein was less clear, although some clones
presented a good downregulation. For this reason, we decided to analyse the DNA
sequence of clones 11, 12, 27 and 43, which presented a range of almost no BRIP1
expression to approximately 50% of expression in comparison to control gRNAs’ clones

(C1 and C2), which indeed presented similar expression levels than parental HT-29 cell
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Figure 22. Protein levels
of BRIP1, MIS18A and
SMARCA4 KO clones.
Protein  expression of
parental HT-29 cell line,
two control gRNA clones
(C1 and C2) and all
expanded KO clones of
BRIP1, MIS18A and
SMARCA4 genes
monitored by Western
Blot. B-Actin levels were
sued as a normalizer.
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line. In MIS18A KO clones, WB showed 14 clones with no expression of this protein and
12 clones with low levels, thus, we decided to sequence and validate further clones 32,
34 and 35, which showed undetectable MIS18A protein levels. For SMARCA4 gene, the
difference between clones was clear as well by WB as some clones presented a

complete loss of SMARCA4; here, we decided to sequence clones 2, 5 and 30.

To confirm the genome editing of our target genes, DNA from the best downregulated
clones indicated above was sequenced by Sanger. Figure 23 presents an alignment of
sequences from parental HT-29 cell line, two control gRNAs clones (C1 and C2), and
several clones of BRIP1 (11, 12, 27 and 43) and MIS18A (32, 34 and 35) in the different
areas were the gRNAs should act (marked in red squares); in addition, base pairs that
differ from the parental HT-29 sequence are marked in yellow. Overall, for all sequences
it was confirmed that there were no changes in cells infected with the control gRNA
respect to the parental HT-29 cell line since C1 and C2 sequences were always identical
to HT-29.

In the case of BRIP1 clones, it can be observed how, with the gRNA1, clones 11 and 27
were edited: both of them presented a deletion in the area of the targeted sequence,
which consequently creates a change on the reading frame of all the sequence that
continues after the edited region. Similarly, clones 12, 27 and 43 were edited in the
region recognized by gRNA4: although clone 12 had only a punctual insertion of a “T”,
clones 27 and 43 showed several insertions and deletions in the squared area, which
affects all the remaining sequence as well, changing again the reading frame.

However, is also clear that gRNA3 had no effect in any of the clones; this was the same
case than gRNA4 of MIS18A clones, where there was no change on any of the
sequences. Regarding MIS18A clones 34 and 35, it can be appreciated a punctual “T”
insertion in clone 34 in the target region of gRNA3, whereas clone 35 suffers some
deletions in this region that probably affect the reading frame of all the remaining
sequence; however, clone 32 did not show a clear edition, thus it was not included in
downstream experiments. Regarding the sequences of the region that was targeted by
gRNAT1, there are not present due to problems on amplifying and sequencing this region
that are pending to be solved.

Unfortunately, several problems in amplifying and sequencing the target regions of
SMARCA4 gRNAs need still to be solved as well; for this reason, we cannot confirm the
editing of these clones at DNA level. However, since the absence of SMARCA4 protein
was extremely clear in some clones (Figure 22), we decided to further analyse clones 2,

5 and 30 in functional assays.
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Results
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I GGAAAATGGTTGGTGAGTAAAACTGTAT TTATATGAATATGTTAGAGAATTTTCTTTAATAAAAATCTTTY
GG AAAATGGTTGGTGAGTAAAACTGTAT TTATATGAATATGTTAGAGAATTTTCTTTAATAAAAATCTYTY
L GEAAAATGGTTGGETGAGTAAAACTGTATTTATATGAATATGTTAGAGAATTTTCTTTAATAAAAATCTTT,

Figure 23. DNA sequences of BRIP1 and MIS18A clones. Sequences’ alignment from parental HT-
29 cell line, two control gRNA clones (C1 and C2) and several BRIP1 (11, 12, 27 and 43) and MIS18A
(32, 34 and 35) clones; sequences were obtained by Sanger sequencing. In red squares are represented
the areas were the different gRNAs should act; in yellow, base pairs that differ from the sequence of
parental HT-29 cell line are marked.
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5. Characterization of several features in BRIP1, MIS18A and SMARCA4
knock-out clones

5.1. Phenotype of knock-out cell clones

Figure 24 presents bright-field microscope images (20X) of the different KO clones in
culture generated for BRIP1, MIS18A and SMARCA4 genes together with the control
non-target condition and parental HT-29 cell line. It can be appreciated that BRIP1 KO
cells presented a smaller and rounded shape in comparison to control cells, which are
bigger and present some lamellipodium. Moreover, the shape of BRIP1 KO clones
remind to parental HT-29 cell line. However, the shape of MIS18A and SMARCA4 clones
are maintained similar to control non-target clones, although they seem to present more

lamellipodium.
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Figure 24. Phenotype of parental HT-29, Control, BRIP1, MIS18A and SMARCA4 KO clones.
Microscope images (20X) of parental HT-29, Control (1 and 2), BRIP1 (11, 12, 27 and 43), MIS18A (34
and 35) and SMARCA4 (2, 5 and 30) KO clones.

5.2. Implication in cell viability in combination with FUIRI chemotherapy regimen
To corroborate the role of BRIP1, MIS18A and SMARCA4 in sensitizing or increasing
cell survival in front of chemotherapeutic agents such as FUIRI, firstly we performed cell

viability assays in the same way as in the individual validation phase. Knock-out cells
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were treated at different concentrations of FUIRI and live, apoptotic and dead cells were
monitored by flow cytometry. FUIRI treatments were chosen to be analyzed first because
our cohort of CRC primary tumors belongs to patients treated with FOLFIRI, and as such,
we thought it would be more reasonable to better characterize these gene’s effects upon

this treatment only, at least during a first approach.

Figure 25 presents a comparison of parental HT-29 and cells infected with the control
non-target gRNA to assure a similar behavior between these two conditions; in this
regard, cell viability was comparable (increased cell death was not significant for the
highest CT concentration) and, therefore, control non-target KO cells will be used as the

control condition from now on.
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Regarding BRIP1 KO clones (11, 12, 27 and 43), Figure 26 presents their results on cell
viability assays with two technical replicates. Figure 26A shows the percentage of live
(in green), apoptotic (in blue) and dead (in red) cells monitored by flow cytometry at
different doses of FUIRI treatment. It can be observed in all four clones a strong decrease
on cell viability, especially at higher doses of FUIRI. Figure 26B gives a deeper focus on
live cells’ behavior: these graphs present live cells’ tendency in comparison with control
KO cells when treated at the same doses of FUIRI. Here, the variations in cell viability
when BRIP1 is not present were evident in a dose-dependent manner; at higher doses
of FUIRI, cell viability strongly decreases, arriving to around 20% more dead and 60%
more apoptotic cells in comparison to control cells.

To better understand the magnitude of the differences in cell viability, Figure 26C shows
normalized graphs of live cells where BRIP1 KO mean live percentages were divided by
control KO mean on each treatment condition. It can be appreciated how, especially at
higher doses of FUIRI, cell viability decreases around 75% in comparison to control KO
cells in all BRIP1 KO clones, which is in agreement with obtained results in the validation

step.
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Figure 26. Cell viability assays of BRIP1 KO clones 11, 12, 27 and 43. (A) Live (in green), apoptotic
(in blue) and dead (in red) cells monitored by flow cytometry at different doses of FUIRI. (B) Percentage
of live cells in HT-29 cells infected with a control non-target gRNA (Control KO) vs. BRIP1 KO cells
(clones 11, 12, 27 and 43) monitored by flow cytometry at different doses of FUIRI in two technical
replicates. Two-way ANOVA statistic test with multiple comparisons was applied to all clones;
differences on cell viability within the same treatment condition that were statistically significant are
represented as *** (p-value < 0.0005) or **** (p-value < 0.0001). (C) Normalized graphs of section’s B
data after dividing live cells’ mean of BRIP1 KO clones between live cells’ mean of Control KO cells.

Figure 27 presents cell viability results of MIS18A clones 34 and 35 in two technical
replicates. MIS18A KO did not show clear changes on cell viability between control KO
cells and clones 34 and 35, where MIS18A gene was completely impaired through

CRISPR-Cas9 technology. Even though, there were some statistically significant
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differences that appeared in clone 35 by applying a two-way ANOVA statistic test with

multiple comparisons (represented as * [p-value < 0.05] or ** [p-value < 0.005]).
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Figure 27. Cell viability assays of MIS18A KO clones 34 and 35. (A) Live (in green), apoptotic (in
blue) and dead (in red) cells monitored by flow cytometry at different doses of FUIRI. (B) Percentage of
live cells in HT-29 cells infected with a control non-target gRNA (Control KO) vs. MIS18A KO cells
(clones 34 and 35) monitored by flow cytometry at different doses of FUIRI in two technical replicates.
Two-way ANOVA statistic test with multiple comparisons was applied to all clones; differences on cell
viability within the same treatment condition that were statistically significant are represented as * (p-
value < 0.05) or ** (p-value < 0.005). (C) Normalized graphs of section’s B data after dividing live cells’
mean of MIS18A KO clones between live cells’ mean of Control KO cells.

In the case of SMARCA4, we were evaluating a possible role on increasing HT-29 cell
survival in front of FUIRI, thus, contributing to CRC chemoresistance. As it can be
observed on Figure 28, there were no big differences in cell viability comparing
SMARCA4 clones 2, 5 and 30 to control KO cells. Despite we obtained good SMARCA4
knock-out cells, it seems that SMARCA4 disappearance does not contribute on

increasing cell survival per se under the pressure of FUIRI chemotherapy at the tested

concentrations.
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Figure 28. Cell viability assays of SMARCA4 KO clones 2, 5 and 30. (A) Live (in green), apoptotic
(in blue) and dead (in red) cells monitored by flow cytometry at different doses of FUIRI. (B) Percentage
of live cells in HT-29 cells infected with a control non-target gRNA (Control KO) vs. SMARCA4 KO cells
(clones 2, 5 and 30) monitored by flow cytometry at different doses of FUIRI in two technical replicates.
Two-way ANOVA statistic test with multiple comparisons was applied to all clones; differences on cell
viability within the same treatment condition that were statistically significant are represented as * (p-
value < 0.05). (C) Normalized graphs of section’s B data after dividing live cells’ mean of SMARCA4 KO
clones between live cells’ mean of Control KO cells.

5.3. DNA damage quantification in response to FUIRI

In the Introduction of this thesis, the mechanisms by which chemotherapeutic agents,
especially FUOX and FUIRI combinations, promote the death of CRC cells were
described. The main idea is that these drugs directly impact onto DNA to promote
enough DNA damage that leads cells to apoptosis. For this reason, we decided to
evaluate and quantify DNA damage promoted on HT-29 KO cells at the FUIRI doses that
resulted in viability differences. Figure 29A shows DNA damage monitored by
phosphorylated H2A.X (y-H2A.X) levels, which is a modification that appears when DSBs

occur. Figure 29B presents a bar graph of normalized results after band quantification.

It can be appreciated how, in control KO cells, there was not an evident increase on DNA
damage, even for the highest concentration of FUIRI, where total H2A.X protein was low;
thus, it is difficult to assess whether there was an increase on DNA damage at this
sample. However, in the case of BRIP1 KO clones, we observed two subpopulations:
DNA damage was slightly increased on clones 11 and 27 at higher doses of FUIRI,
around 1.5 times more than control cells; however, clones 12 and 43 showed a large
increase on DNA damage response in a dose-dependent manner, having three times

more y-H2A.X in comparison to control KO cells. Of note, for all clones tested, the highest
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Figure 29. Quantification of DNA damage in Control, BRIP1, MIS18A and SMARCA4 KO clones in
combination with FUIRI. (A) DNA damage from the clones of Control, BRIP1 (11, 12, 27 and 43),
MIS18A (34 and 35) and SMARCA4 (2, 5 and 30) was measured through H2A.X phosphorylation (y-
H2A.X) by Western Blot after FUIRI treatment at different doses. Total H2A. X was used as a normalizer.
(B) Relative protein levels were obtained by dividing y-H2A.X band intensities with their corresponding
total H2A.X values, quantified through ImageJ.

concentration of FUIRI treatment showed less total H2A.X. For SMARCA4 clones, we
observed higher levels of DNA damage at higher concentrations of chemotherapy in
clone 2, which was four times higher than control KO cells, although again there was
less total H2A.X protein than control KO cells as well. Clone 5 showed upregulation of
DNA damage in all FUIRI concentrations tested, and did not show a dose-dependent
behavior, however one must be cautious interpreting this data because the total protein
was really low, which then could result in an over estimation of the bands obtained. Of
note, clone 30 did not show a dose-dependent increase of DNA damage. MIS18A clones,

although seemed to behave differently between them if we look at the normalization, it
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seems clear that there was not a dose-dependent increase of DNA damage, and it was

not very superior to observed changes in control KO cells.

5.4. Evaluation of the colony formation capacity of knock-out cells in combination
with FUIRI

This type of colony formation assay measures the capacity of isolated cells (seed at very
low density to obtain single-cell populations) to divide and expand until a colony is
formed; in this manner, is obtained an idea of the ability of a cell to initiate growth, which

could be associated to metastatic potential.

Figure 30 presents a colony formation assay of control, BRIP1, MIS18A and SMARCA4
KO clones in combination with different concentrations of FUIRI. Figure 30A shows the
colony images extracted from 6-well cell culture plates and stained with crystal violet; in
a visual manner, it can be appreciated huge differences in the size and number of
colonies depending on the KO cell type and throughout the different FUIRI treatments.

The different parameters extracted from these images by ImageJ are presented on
Figures 30B, 30C and 30D. Figure 30B presents the total number of colonies quantified
for BRIP1 (in purple), MIS18A (in yellow) and SMARCA4 (in green) KO clones. In
addition, as the size of the colonies have shown high differences between conditions,
we also measured factors such as the area covered by colonies on each well (Figure
30C) and the intensity of these colonies (Figure 30D), which indicates the amount of cells

that are in the colonies of each well, thus, the ability of cells to grow densely.

In general terms, there was a tendency indicating that the number of colonies decreases
when FUIRI concentration increases; in other words, at highest doses of FUIRI, the
number of colonies was reduced. However, this reduction in colony number differed
between BRIP1, MIS18A and SMARCA4 KO clones: in the highest FUIRI concentration
(20 uM 5-FU + 11 nM SN-38), there were almost no colonies in MIS18A and SMARCA4
KO cells whereas BRIP1 KO clones had more than 100 colonies, but still notably smaller
than without FUIRI (Figure 30B).

Additionally, Figure 30C indicates that the area covered by BRIP1 KO clones was lower
at dose 0 compared to control cells; indeed, it decreased compared to controls (in clone
12 in a statistically significant manner) except for clone 11 and for the highest FUIRI
concentration, where BRIP1 KO showed a slightly higher number than control KO.
Similar results were observed when looking at the intensity percentage (Figure 30D): at

lower doses of chemotherapy BRIP1 KO clones presented less colony intensity,
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Figure 30. Colony formation assay of
Control, BRIP1, MIS18A and
SMARCA4 KO clones in combination
with FUIRI. (A) Colony images stained
with crystal violet of Control, BRIP1 (11,
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(D) Quantification by ImageJ of the
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forming the colonies, thus, the ability of
cells to grow densely. Two-way ANOVA
statistic test with multiple comparisons
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indicating a slower growth, yet these numbers were more maintained in the presence of
FUIRI than in control KO cells, which started decreasing the number of cells
progressively. In particular, at moderate concentrations of FUIRI, there were no big
differences on colony intensity respect to control condition: clones 12 and 27 presented
a slight decrease on this parameter whereas clones 11 and 43 showed a little increase
in colony intensity. However, at the highest dose of FUIRI (20 uM 5-FU + 11 nM SN-38),
all BRIP1 KO clones (except 27) strongly decreased their colony intensity, although it
was always maintained superior to control clone; in the case of clone 27, it slightly
increased colony intensity in the highest concentration of FUIRI, being above control

clone as well.

Figure 30B (middle) demonstrates that MIS718A KO clones grow much less than control
clones: in absolute numbers, while we found more than 100 colonies in control conditions
(except at the highest dose of FUIRI), MIS18A KO clones had less than 30 colonies in
clone 34 and less than 60 colonies in clone 35, even in non-treated conditions.
Furthermore, these differences between clones 34 and 35 were also translated in colony
areas (Figure 30C, middle) and intensities (Figure 30D, middle): in both parameters,
clone 35 presented a decrease on colony area and intensity as long as FUIRI
concentration is increased, and was always maintained below control condition. Clone
34 showed a flat tendency in both parameters due to the lack of growth of the colonies

in all the different conditions, even in the non-treated.

Regarding SMARCA4 KO clones, although they seemed to appear less colonies than in
the control clone (Figure 30B, bottom), intensities and areas were clearly above control
in all FUIRI doses except the highest one (Figures 30C and 30D, bottom). This behavior
clearly differed from the BRIP1 and MIS18A KOs. Therefore, even though the absolute
number of colonies was lower, these colonies were occupying more space and had more
cells throughout different FUIRI treatments, indicating a higher capacity to survive and

expand than control cells.

97



6. Analysis of BRIP1, MIS18A, PBRM1 and SMARCA4 in patients’ samples
6.1. Analysis in primary tumor samples by NanoString technology

We next monitored candidate’s gene expression in 96 primary tumor samples of CRC
patients. These patients were subsequently treated with FOLFIRI and their response
outcome recorded following the RECIST criteria (209). As such, it was considered as
responsive to FOLFIRI when the tumor followed the criteria of complete remission (CR)
and partial response (PR), whereas non-responders included those that fell in the
category of progressive disease (PD). A customized panel of 25 genes (Annex IV) which
included top validated hits coming from the screening and selected genes involved in
immunoresponse, was used to analyze RNA expression by NanoString technology. This
technique allows to detect small and/or degraded RNA fragments. Therefore, this
approach seemed the best option since samples were processed from paraffin-
embedded tissue and were quite old, suspecting high RNA degradation, which would
prevent a robust analysis by gqPCR even if using TagMan probes.

Figure 31 presents a heat map of expression levels from all the genes that were analyzed

based on their z score, which ranges from -3 (in blue) to 3 (in brownish). It can be
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Figure 31. Heat map of expression levels from the 25 genes analyzed by NanoString. In the right,
there are specified all the genes analyzed by NanoString. The columns comprise the 96 samples.
Expression levels are plotted based on their z score, which ranges from -3 (in blue) to 3 (in brownish).
IFNG and IDO1 failed on the sequencing. In the upper legend are represented responders (“R”; in
orange), non-responders (“NR”; in blue) and in grey samples that finally did not show clear data (“N”).
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observed that in this unsupervised analysis, there were no clear clusters or groups of

genes created based on their expression levels association to treatment responses.

Next, we performed a more detailed analysis for our four genes of interest by monitoring
their expression status in this cohort of patients associated to responses, progression
free survival and overall survival probabilities. BRIP1 expression levels were similar in
average between patients that responded or not to FOLFIRI (Figure 32A). Figure 32B
presents Kaplan-Meier curves of the Progression Free Survival (PFS) from these
patients divided by high (in green) or low (in blue) levels of BRIP1 expression; PFS
indicates the time between treatment initiation until disease progression. In this case,
there were no differences on PFS according to BRIP1 expression levels. In Figure 32C
is shown the Kaplan-Meier curves of the Overall Survival (OS), which is the time a patient
survives since the moment of diagnosis or treatment initiation; again, in this case there

were no differences on OS when patients were stratified by BRIP1 expression.
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Figure 32. BRIP1 implication in primary tumor samples. (A) Box plot of BRIP1 expression levels
comparing responders vs. non-responders to FOLFIRI. (B) Kaplan-Meier curves of PFS probability
comparing high BRIP1 expression levels (in green) vs. low BRIP1 expression levels (in blue). (C)
Kaplan-Meier curves of OS probability comparing high BRIP1 expression levels (in green) vs. low BRIP1
expression levels (in blue). Mantel-Cox test was used to compare between the two survival conditions
and p-values (log-rank values) are plotted on each graph. High expression levels were considered above
the median and low expression levels were considered below the median.

Figure 33 presents the results of MIS18A expression levels in this patient cohort. MIS18A
expression levels did not vary between responders and non-responders to FOLFIRI
(Figure 33A). Figures 33B and 33C present Kaplan-Meier curves with PFS and OS,
respectively; again none of the ratios showed a difference on patients’ survival when
stratified by MIS18A expression. Figures 33D and 33E show PFS and OS Kaplan-Meier
curves were MIS18A expression has been divided by terciles; in this case, Tercile 1 (in
blue) represents samples expressing low MIS18A levels, Tercile 2 (in green) are

samples expressing middle levels of MIS18A, and Tercile 3 (in yellow) present the
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samples with the highest levels of MIS18A expression. In PFS graph (Figure 33D) it can
be observed a tendency where patients expressing the highest levels of MIS18A had
better survival, although this was not statistically significant; on the other hand, OS graph
divided by terciles (Figure 33E) did not indicate a tendency on better outcome according

to MIS18A expression.
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Figure 33. MIS18A implication in primary tumor samples. (A) Box plot of MIS18A expression levels
comparing responders vs. non-responders to FOLFIRI. (B) Kaplan-Meier curves of PFS probability
comparing high MIS18A expression levels (in green) vs. low MIS718A expression levels (in blue). (C)
Kaplan-Meier curves of OS probability comparing high MIS718A expression levels (in green) vs. low
MIS18A expression levels (in blue). (D) Kaplan-Meier curves of PFS probabilities comparing MIS18A
expression levels divided by Tercile 1 (in blue), Tercile 2 (in green) and Tercile 3 (in yellow). (E) Kaplan-
Meier curves of OS probabilities comparing MIS718A expression levels divided by Tercile 1 (in blue),
Tercile 2 (in green) and Tercile 3 (in yellow). Mantel-Cox test was used to compare between the survival
conditions and p-values (log-rank values) are plotted on each graph. High expression levels were
considered above the median and low expression levels were considered below the median. Tercile 1
was samples expressing the lowest levels of MIS18A (1-33%), Tercile 2 was samples expressing middle
levels of MIS18A (34-66%), and Tercile 3 was samples expressing the highest levels of MIS18A (67-
100%).

Regarding the results of PBRM1 expression, they are plotted on Figure 34. PBRM1
expression levels were similar on average between patients that responded or not to
FOLFIRI (Figure 34A). Regarding PFS and OS probabilities, when patients were
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Figure 34. PBRM1 implication in primary tumor samples. (A) Box plot of PBRM1 expression levels
comparing responders vs. non-responders to FOLFIRI. (B) Kaplan-Meier curves of the PFS probability
comparing high PBRM1 expression levels (in green) vs. low PBRM1 expression levels (in blue). (C)
Kaplan-Meier curves of the OS probability comparing high PBRM1 expression levels (in green) vs. low
PBRM1 expression levels (in blue). (D) Kaplan-Meier curves of the PFS probabilities comparing PBRM 1
expression levels divided by Tercile 1 (in blue), Tercile 2 (in green) and Tercile 3 (in yellow). (E) Kaplan-
Meier curves of the OS probabilities comparing PBRM1 expression levels divided by Tercile 1 (in blue),
Tercile 2 (in green) and Tercile 3 (in yellow). (F) Kaplan-Meier curves of the PFS probability comparing
PBRM1 expression levels divided by Tercile 1 (in blue) and Tercile 2 + 3 (in green). (G) Kaplan-Meier
curves of the OS probability comparing PBRM1 expression levels divided by Tercile 1 + 2 (in blue) and
Tercile 3 (in green). Mantel-Cox test was used to compare between the survival conditions and p-values
(log-rank values) are plotted on each graph. High expression levels were considered above the median
and low expression levels were considered below the median. Tercile 1 corresponded to samples
expressing the lowest levels of PBRM1 (1-33%), Tercile 2 to samples expressing middle levels of
PBRM1 (34-66%), and Tercile 3 to samples expressing the highest levels of PBRM1 (67-100%).
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stratified by high (in green) or low (in blue) levels of PBRM1 expression (Figures 34B
and 34C), there were no significant differences between the two groups. If PBRM1
expression levels were divided by Terciles, in both PFS and OS Kaplan-Meier curves
(Figures 34D and 34E) seemed that there was a tendency where patients having middle
PBRM?1 expression levels (Tercile 2; in green) had worst progression of the disease,
albeit without significant p-values. When samples from Terciles 2 and 3 were plotted
together (in blue) vs. samples of Tercile 1 (in green), it also appeared that patients with
middle-high levels of PBRM1 had worst progression of the tumor (Figure 34F). However,
these associations were not significant, with p-values above 0.05. OS of patients
expressing the highest levels of PBRM1 (Tercile 3; in green) was higher than in patients

with middle-low PBRM1 expression (Figure 34G), again without significance.
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Figure 35. SMARCA4 implication in primary tumor samples. (A) Box plot of SMARCA4 expression
levels comparing responders vs. non-responders to FOLFIRI. (B) Kaplan-Meier curves of PFS
probability comparing high SMARCA4 expression levels (in green) vs. low SMARCA4 expression levels
(in blue). (C) Kaplan-Meier curves of OS probability comparing high SMARCA4 expression levels (in
green) vs. low SMARCA4 expression levels (in blue). (D) Kaplan-Meier curves of OS probabilities
comparing SMARCA4 expression levels divided by Tercile 1 (in blue), Tercile 2 (in green) and Tercile 3
(in yellow). (E) Kaplan-Meier curves of OS probabilities comparing SMARCA4 expression levels divided
by Tercile 1 (in blue) and Tercile 2 + 3 (in green). Mantel-Cox test was used to compare between the
survival conditions and p-values (log-rank values) are plotted on each graph. High expression levels
were considered above the median and low expression levels were considered below the median.
Tercile 1 corresponds to samples expressing the lowest levels of SMARCA4 (1-33%), Tercile 2 samples
expressing middle levels of SMARCA4 (34-66%), and Tercile 3 samples expressing the highest levels
of SMARCA4 (67-100%).
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In the case of SMARCA4, expression levels were similar, on average, when responders
and non-responders were compared (Figure 35A). Regarding PFS and OS rates, when
SMARCA4 levels were divided by high (in green) or low (in blue) expression levels
(Figures 35B and 35C, respectively), there were no significant differences on survival or
prognosis in both cases.

However, if SMARCA4 levels of expression were divided by Terciles, OS Kaplan-Meier
curves were separated (Figure 35D), revealing a tendency where patients expressing
the lowest SMARCA4 levels (Tercile 1; in blue) presented the worst survival ratio (35
months vs. 45 months in Tercile 2 and almost 50 months in Tercile 3). Furthermore,
when samples from Terciles 2 and 3 were plotted together (in green) vs. samples of
Tercile 1 (in blue), there was a statistically significant difference on OS (Figure 35E),
where patients with lowest SMARCA4 expression levels had worst survival (35 months)

in contrast to patients expressing middle-high levels of SMARCA4 (almost 50 months).

6.2. In silico analysis in public databases (GSEs)

6.2.1. In silico analysis in GSE104645 cohort

GSE104645 is a public available cohort of 193 CRC patients (210) treated with FOLFOX
or FOLFIRI where gene expression was analyzed by microarray from the primary tumor
tissue. In this database, there is clinicopathological information about tumor stage,
number of metastases, type of response to chemotherapy, CMS classification and

information about months of PFS and OS.

Figure 36 presents the implication of BRIP1 in this cohort of patients. Figure 36A
presents a box plot of BRIP1 expression levels at different tumor stages (I, II, lll or IV),
where BRIP1 levels were, in average, similar between stages Il, Ill and IV, although the
number of cases and deviation per condition was slightly different. Figure 36B shows in
a box plot BRIP1 expression divided by the number of metastases that these patients
further developed (1, 2 or 3), where BRIP1 expression was decreased as long as more
metastases appeared, although there was not a significant association. The type of
response that these patients had in front of FOLFOX (left) or FOLFIRI (right) according
to BRIP1 expression is shown in Figure 36C: in patients treated with FOLFOX, BRIP1
expression was slightly elevated in those patients that progress on the disease in
comparison to those ones that partially responded to chemotherapy; patients treated with
FOLFIRI had a similar BRIP1 expression in average between those who partially
responded and patients that presented an stabilization of the tumor. In Figure 36D is
shown a box plot of BRIP1 levels according to the CMS classification; it can be observed

that patients belonging to CMS3, which is the “metabolic” subtype characterized by
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Figure 36. Exploration of BRIP1 expression in GSE104645 cohort of CRC patients. (A) BRIP1
expression levels in the different stages of CRC. (B) BRIP1 expression levels divided by the number of
metastases. (C) BRIP1 expression levels throughout the different type of responses to FOLFOX (left)
or FOLFIRI (right). (D) BRIP1 expression levels according to the different CRC CMSs. (E) Kaplan-Meier
curves of PFS percentages comparing high BRIP1 expression levels (in pink) vs. low BRIP1 expression
levels (in blue) in patients treated with FOLFOX (left) or FOLFIRI (right). (F) Kaplan-Meier curves of OS
percentages comparing high BRIP1 expression levels (in pink) vs. low BRIP1 expression levels (in blue)
in patients treated with FOLFOX (left) or FOLFIRI (right). (G) Kaplan-Meier curves of the PFS comparing
high BRIP1 expression levels (in pink) vs. low BRIP1 expression levels (in blue) in patients treated with
FOLFOX that had a partial response. (H) Kaplan-Meier curves of the PFS comparing high BRIP1
expression levels (in pink) vs. low BRIP1 expression levels (in blue) in KRAS wild-type patients treated
with FOLFOX. In graphs A-D, unpaired T-test comparing two subgroups was performed in all conditions
and statistically significant differences are represented as * (p-value < 0.05), ** (p-value < 0.005) and
*** (p-value < 0.0005); in graphs E-H, Mantel-Cox test was used to compare between the two survival
conditions and p-values (log-rank values) are plotted on each graph. High expression levels were
considered as = 0.5, and low expression levels were considered as < -0.5.
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metabolic deregulation and mutations on KRAS, had the highest expression of BRIP1,
whereas CMS1 patients, which are MSI, have high immune infiltration and are BRAF
mutated, presented the lowest levels of BRIP1. Figure 36E presents Kaplan-Meier
curves of PFS in patients treated with FOLFOX (left) and FOLFIRI (right) where BRIP1
expression levels have been separated by high (in pink) and low (in blue) levels; in this
case, the tendency presented by the two graphs was the opposite: in patients treated
with FOLFOX, higher levels of BRIP1 were significantly correlated with better survival of
patients (30 months) with significant value (p-value = 0.0322), whereas in patients
treated with FOLFIRI higher BRIP1 levels were correlated with worst progression of CRC
(less than 15 months). In Figure 36F are shown OS Kaplan-Meier curves comparing
patients with high (in pink) and low (in blue) levels of BRIP1 expression. In the left,
patients that received FOLFOX chemotherapy presented better prognosis when they
had higher BRIP1 levels (110 months) in comparison to patients with low BRIP1 levels
(80 months); patients that received FOLFIRI (in the right) showed an unclear tendency
of better outcome based on BRIP1 expression. These associations were not significant
but followed the same tendencies as Kaplan-Meier curves of PFS. Figure 36G shows
PFS Kaplan-Meier curves of patients that were treated with FOLFOX and responded
partially to it; of note, there was a clear and significant difference on disease progression
when patients were stratified by high or low BRIP1 levels; patients with high BRIP1 levels
presented a PFS of around 2.5 months in contrast to 25 months if BRIP1 levels were
low. Since the CRC cell line used during the thesis (HT-29) was KRAS wild-type, it was
analysed the PFS of KRAS wild-type patients treated with FOLFOX from GSE104645
cohort (Figure 36H); in this regard, higher BRIP1 levels of expression were correlated
with better PFS (30 months) in comparison to the group with low BRIP1 expression (25

months).

In the same way, Figure 37 presents the implication of MIS18A expression in this cohort
of CRC patients. In Figure 37A is represented MIS18A expression throughout the
different stages of these patients; there was a non-significant tendency of decreased
MIS18A expression when the tumor stage was more advanced. Figure 37B shows
increasing MIS18A expression levels in patients that presented 1, 2 or 3 metastases;
MIS18A levels classified by the type of response that patients had to FOLFOX (left) and
FOLFIRI (right) are shown in Figure 37C; in average, there were no differences on
MIS18A expression levels. Figure 37D shows MIS18A levels according to the different
CMS: in this case, patients belonging to CMS3 had lowest MIS718A expression levels,
while CMS1 patients presented the highest MIS18A levels. In Figure 37E are
represented Kaplan-Meier curves with the PFS of patients treated with FOLFOX (left) or
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FOLFIRI (right) according to their MIS18A level of expression; differences between
having high (in pink) or low (in blue) levels of MIS18A seemed unclear for both
chemotherapies, presenting a PFS of 30 months in FOLFOX-treated patients and a PFS
of 15 months in FOLFIRI-treated patients. Figure 37F shows OS Kaplan-Meier curves of
CRC patients treated with FOLFOX (left) or FOLFIRI (right); again, there were no

differences in prognosis if MIS18A expression levels were considered.
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Figure 37. Exploration of MIS18A expression in GSE104645 cohort of CRC patients. (A) Box plot
of MIS18A expression levels in the different stages of CRC. (B) Box plot of MIS718A expression levels
divided by the number of metastases. (C) Box plot of M/S718A expression levels throughout the different
type of responses to FOLFOX (left) or FOLFIRI (right). (D) Box plot of MIS18A expression levels
according to the different CRC CMSs. (E) Kaplan-Meier curves of the PFS comparing high MIS18A
expression levels (in pink) vs. low MIS18A expression levels (in blue) in patients treated with FOLFOX
(left) or FOLFIRI (right). (F) Kaplan-Meier curves of the OS comparing high MIS18A expression levels
(in pink) vs. low MIS18A expression levels (in blue) in patients treated with FOLFOX (left) or FOLFIRI
(right). In graphs A-D, unpaired T-test comparing two subgroups was performed in all conditions and
statistically significant differences are represented as * (p-value < 0.05), ** (p-value < 0.005) and *** (p-
value < 0.0005); in graphs E and F, Mantel-Cox test was used to compare between the two survival
conditions and p-values (log-rank values) are plotted on each graph. High expression levels were
considered as = 0.5, and low expression levels were considered as < -0.5.
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Figure 38. Exploration of PBRM1 expression in GSE104645 cohort of CRC patients. (A) Box plot
of PBRM1 expression levels in the different stages of CRC. (B) Box plot of PBRM1 expression levels
divided by the number of metastases. (C) Box plot of PBRM1 expression levels throughout the different
type of responses to FOLFOX (left) or FOLFIRI (right). (D) Box plot of PBRM1 expression levels
according to the different CRC CMSs. (E) Kaplan-Meier curves of the PFS comparing high PBRM1
expression levels (in pink) vs. low PBRM1 expression levels (in blue) in patients treated with FOLFOX
(left) or FOLFIRI (right). (F) Kaplan-Meier curves of the OS comparing high PBRM1 expression levels
(in pink) vs. low PBRM1 expression levels (in blue) in patients treated with FOLFOX (left) or FOLFIRI
(right). In graphs A-D, unpaired T-test comparing two subgroups was performed in all conditions and
statistically significant differences are represented as * (p-value < 0.05), *** (p-value < 0.0005) and ****
(p-value < 0.0001); in graphs E and F, Mantel-Cox test was used to compare between the two survival
conditions and p-values (log-rank values) are plotted on each graph. High expression levels were
considered as = 0.5, and low expression levels were considered as < -0.5.

Regarding the implication of PBRM1 in GSE104645 cohort, Figure 38A shows PBRM1
expression at the different stages of these patients whereas Figure 38B presents PBRM1
expression in patients that developed 1, 2 or 3 metastases; in general, there were no
differences in the average expression of PBRM1 in none of the two graphs. Figure 38C
shows in box plots PBRM1 expression depending on the type of response that patients
did when treated with FOLFOX (left) or FOLFIRI (right); overall, there is a slightly

decrease on PBRM1 expression in patients that suffered a progression of the disease in
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comparison to those patients that partially responded to chemotherapy or that stabilized
the disease. Figure 38D shows PBRM1 expression classified by the CMS of each
patient; in this regard, PBRM1 was expressed the highest in patients from CMS3
(metabolic subtype), although differences with patients from CMS1 (immune subtype)
were not big and not significant. Here, PBRM1 showed the lowest expression levels in
patients belonging to CMS2, which is the “canonical” subtype characterized by high
SCNAs and MYC activation. Figure 38E presents the PFS Kaplan-Meier curves of
patients treated with FOLFOX (left) or FOLFIRI (right) divided by high (in pink) or low (in
blue) PBRM1 expression; none of the graphs presented big differences on disease
progression: in patients treated with FOLFOX, PFS was around 25-30 months while in
FOLFIRI-treated patients PFS was around 15 months. Kaplan-Meier curves with OS
ratios are represented in Figure 38F; of note, there was a worst OS tendency of patients
with low PBRM1 levels compared to high-expressing ones, while there was unclear
tendency in patients treated with FOLFIRI (right). Importantly, when positive vs. negative
PBRMT1 levels were plotted (not using cut-offs of higher of 0.5 FDR or lower than -0.5)
worst OS with significant p-value (0.0102) was obtained for PBRM1 negative expressing

tumors (data not shown).

In the case of SMARCA4 implication in this cohort of patients, Figure 39A presents a
tendency to show decreased SMARCA4 expression levels in more advanced tumor
stages. Regarding SMARCA4 expression in patients that develop 1, 2 or 3 metastases
(Figure 39B), there was a significant increase on SMARCA4 expression in patients that
present 2 metastases in comparison to those ones presenting only 1 (p-value = 0.0058).
Figure 39C shows SMARCA4 expression levels depending on the type of response that
patients had to FOLFOX (left) or FOLFIRI (right), presenting less SMARCA4 expression
in those patients that progressed on the disease in comparison to those that partially
responded to chemotherapy or stabilized the disease. In Figure 39D is clear that patients
belonging to CMS3 (metabolic subtype) presented the lowest expression levels of
SMARCAA4. Figure 39E presents the Kaplan-Meier curves of the PFS in patients treated
with FOLFOX (left) or FOLFIRI (right) according to high expression levels of SMARCA4
(in pink) or low SMARCA4 expression levels (in blue). In FOLFOX-treated patients,
although the PFS was of 30 months for both groups, there was a tendency to worst PFS
in low expressing SMARCA4 patients, but not significant, whereas PFS in FOLFIRI-
treated patients was around 15 months and there were no differences between high and
low SMARCA4 levels. Figure 39F shows OS Kaplan-Meier curves of patients treated
with FOLFOX (left) or FOLFIRI (right) depending on SMARCA4 expression levels; in
FOLFOX-treated patients OS was 110 months when SMARCA4 was low in comparison
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to patients with high SMARCA4 levels (50 months); in the case of patients treated with
FOLFIRI, OS was similar when patients were stratified by low and high SMARCA4

expression (around 50 months), although it seems there was a worst but not significant

tendency in patients with lower levels of SMARCA4.
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Figure 39. Exploration of SMARCA4 expression in GSE104645 cohort of CRC patients. (A) Box
plot of SMARCA4 expression levels in the different stages of CRC. (B) Box plot of SMARCA4 expression
levels divided by the number of metastases. (C) Box plot of SMARCA4 expression levels throughout the
different type of responses to FOLFOX (left) or FOLFIRI (right). (D) Box plot of SMARCA4 expression
levels according to the different CRC CMSs. (E) Kaplan-Meier curves of the PFS comparing high
SMARCA4 expression levels (in pink) vs. low SMARCA4 expression levels (in blue) in patients treated
with FOLFOX (left) or FOLFIRI (right). (F) Kaplan-Meier curves of the OS comparing high SMARCA4
expression levels (in pink) vs. low SMARCA4 expression levels (in blue) in patients treated with FOLFOX
(left) or FOLFIRI (right). In graphs A-D, unpaired T-test comparing two subgroups was performed in all
conditions and statistically significant differences are represented as * (p-value < 0.05), ** (p-value <
0.005) and *** (p-value < 0.0005); in graphs E and F, Mantel-Cox test was used to compare between
the two survival conditions and p-values (log-rank values) are plotted on each graph. High expression
levels were considered as = 0.5 for FOLFOX and = 0 for FOLFIRI, and low expression levels were
considered as < -0.5.
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6.2.2. In silico analysis in GSE62322 cohort

GSE62322 is a public available cohort of advanced CRC patients (211) treated with
FOLFIRI where gene expression was analyzed by microarray from the normal colon
tissue, primary tumor tissue and liver metastases. In this database, there is information

about the response to FOLFIRI (responder vs. non-responder).

Again, a possible predictive role for our candidate genes was explored. Figure 40A
shows a before-after plot assessing BRIP1 expression in matched normal, tumor and
liver metastases of each patient. In addition, Figure 40B presents the same data in a box
plot to monitor how BRIP1 expression changes in average; it can be observed a
significant increase on BRIP1 expression in primary tumor samples compared to normal
colon. In Figure 40C is presented a box plot of BRIP1 expression comparing responders
vs. non-responders to FOLFIRI throughout the different sample types (normal colon in
green, primary tumor in blue, and liver metastases in red). There were no big differences
between responders and non-responders inside the same sample type (normal colon,
primary tumor or liver metastases); however, there was a significant increase on BRIP1

expression when normal colon is compared to primary tumor tissue of responders.
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Figure 41 presents MIS18A implication in this cohort of patients. Figure 41A presents a
before-after plot comparing MIS18A expression of the same patient throughout the
different types of samples (normal colon, primary tumor and liver metastases). Figure
41B presents the same data in a box plot to observe MIS718A expression in average;

there was a slightly but significant increase on MIS18A expression when normal colon
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and primary tumor samples were compared. Figure 41C shows a box plot of MIS718A

expression levels that separates patients responding or not to FOLFIRI in the different

sample types (normal colon in green, primary tumor in blue, and liver metastases in red).

It seems there is a tendency of increased MIS18A expression in primary tumor samples

from responder patients in comparison to the normal colonic tissue of responder patients,

but with no significance.
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Figure 41. MIS18A implication in
GSE62322 cohort of CRC patients
treated with FOLFIRI. (A) Before-after
plot of MIS18A expression levels in the
different samples throughout the
different tissue types (normal colon,
primary tumor or liver metastases). (B)
Box plot of MIS18A expression levels
divided by normal colonic tissue (in
green), primary tumor tissue (in blue) or
tissue from liver metastases (in red).
(C) Box plot of MIS18A expression
levels comparing Responders vs. Non-
responders to FOLFIRI in normal
colonic tissue (in green), primary tumor
tissue (in blue) or tissue from liver
metastases (in red). Unpaired T-test
comparing two subgroups was
performed in all conditions and
statistically significant differences are
represented as * (p-value < 0.05).

Regarding PBRM1 implication, Figure 42A presents a before-after plot to observe its

expression throughout the different sample types (normal colon, primary tumor and liver

metastases) of the same patient; it seems there was a tendency of decreased PBRM1

levels when the sample evolves from normal colonic tissue to liver metastases. In Figure
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Figure 42. PBRM1 implication in
GSE62322 cohort of CRC patients
treated with FOLFIRI. (A) Before-after
plot of PBRM1 expression levels in the
different samples throughout the
different tissue types (normal colon,
primary tumor or liver metastases). (B)
Box plot of PBRM1 expression levels
divided by normal colonic tissue (in
green), primary tumor tissue (in blue) or
tissue from liver metastases (in red).
(C) Box plot of PBRM1 expression
levels comparing Responders vs. Non-
responders to FOLFIRI in normal
colonic tissue (in green), primary tumor
tissue (in blue) or tissue from liver
metastases (in red). Unpaired T-test
comparing two subgroups was
performed in all conditions and
statistically significant differences are
represented as * (p-value < 0.05) and **
(p-value < 0.005).
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42B is presented the same data in a box plot; here, was clear and statistically significant
a decrease on PBRM1 expression levels when the stage of the sample is more
advanced. PBRM1 expression levels in responders vs. non-responders are shown in
Figure 42C, where there were also classified by the type of sample (normal colon in
green, primary tumor in blue, and liver metastases in red). It should be remarked a
significant decrease (p-value = 0.0212) on PBRM71 expression levels where the sample
was in a more advanced stage (liver metastases) (Figure 42B). Indeed, Figure 42C
presents a statistically significant decrease in PBRM1 expression levels when normal
colon and primary tumor samples were compared between responders (p-value =
0.0387); also, when normal colon was compared to liver metastases sample in non-
responder patients, there was a significant decrease on PBRM1 expression (p-value =
0.0094).

In the case of SMARCA4 implication, Figure 43A shows a before-after plot to follow
SMARCA4 expression throughout the different sample types (normal colon, primary
tumor and liver metastases) of the same patient; in general, it seems a tendency of
increased SMARCA4 expression when compared primary tumor vs. normal colon
samples. In Figure 43B is represented the same data but in a box plot, showing an
increase on SMARCA4 expression in primary tumor samples compared to normal
colonic tissue. Figure 43C presents SMARCA4 expression when responders vs. non-
responders are compared for each sample type (normal colon in green, primary tumor
in blue, and liver metastases in red). It can be observed a significant increase on
SMARCA4 expression when normal colon vs. primary tissue was compared in responder

patients as well as in non-responder patients.
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7. Contributions
This project was originated by sharing data and discussions between Dr. Marcus

Buschbeck and Dr. Sonia Forcales. Dr. Forcales was awarded by Fundaci6 Olga Torres
with a grant in 2016, which inspired the present “Response Project”, conceived by Dr.
Buschbeck that expanded the study to elucidate chromatin factors’ roles in resistance to
chemotherapy in three cancer types: AML/MDS, CRC and lung cancer. The project is
multidisciplinary and includes basic research and translational groups from the Can Ruti
Campus. Dr. Sonia Forcales, Dr. Eva Martinez-Balibrea, Dr. Cristina Queralt (Dr. Eva
Martinez-Balibrea’s Lab) and | designed and supervised the realization of this project in
CRC disease.

Dr. Cristina Queralt and | performed all the experiments included in the setting of the
LOF, the realization of the LOF and the individual validation of candidate genes. DNA
extraction for NGS was performed in collaboration with Raquel Casquero (Dr. Marcus
Buschbeck Lab); analysis of NGS data following Zuber’s lab pipeline was performed by

Dr. Jeannine Diesch (Dr. Marcus Buschbeck Lab).

Gene expression data and associated clinicopathological information extracted from two
public datasets (GSE104645 and GSE62322) was performed by Dr. Mireia Ramos (Dr.
Lorenzo Pasquali Lab) and Dr. Lorenzo Pasquali; the study of the implication of our
preferred genes in these CRC cohorts of patients by in silico and associative analysis
(mostly Kaplan-Meier curves) were performed by myself.

Colorectal cancer patient’s cohort analyzed by NanoString was provided by Dr. Eva
Martinez-Balibrea’s Lab. Dr. Cristina Queralt and | purified and prepared the 96 samples

for sequencing; expression data analysis was performed by Dr. Cristina Queralt.

I generated CRISPR-Cas9 KO cell lines and performed the characterization of KO

clones.
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Chemoresistance is one of the main obstacles to cure advanced CRC. Newer
treatments, such as immune checkpoint inhibitors or targeted therapies have
represented remarkable breakthroughs, for instance, for advanced melanoma. Some
CRCs share key mutations with melanoma, such as in BRAF. Therefore, oncologists
suspected that these innovative therapies would also benefit advanced CRC patients.
Unfortunately, this has not been the case, leaving CRC cases with the same treatments
that have been the gold-standard for the past decades, which consist on the combination
of cytotoxic drugs. This fact contrasts with the huge efforts that have been made to
characterize CRC tumors at the genetic, epigenetic and molecular levels, being one of
the cancer types where the different layers of alterations have been put together in the
consensus molecular subtypes classification.

This categorization, albeit not perfect, highlights that CRCs are highly heterogeneous,
and that perhaps we should consider CRC as several different diseases, which require
distinct treatments based on the characteristics of each particular tumor. On the other
hand, some researchers consider that founder driver alterations should be the ones
targeted in synthetic lethality combinations, getting rid of all subsequent clones that
complicate downstream treatments, arguing that, otherwise, resistances are more likely

to appear.

In any case, CRC needs novel therapeutic strategies, especially for tumors that do not
respond to chemotherapy or that become resistant. Our approach has tried to
preferentially identify “sensitizers”, genes that when targeted could improve responses
to two main chemotherapy regimens given in the clinics, such as FOLFOX and FOLIFIRI.
Moreover, since the approach allowed to identify factors that when missing provided
higher cell survival, we also explored their biomarker value in primary tumors, and in this
way attempt to predict better or worst responses to chemotherapy. We were skeptical to
find predictive values: identifying downregulated expression of a gene that may be
present in a small subclone of a primary tumor is likely to be masked by the rest of the
clones that bear normal levels of expression. Nevertheless, that particular small
subclone could be the one that survives once chemotherapy selective pressure is
applied. In other words, we suspected that finding a biomarker with value in terms of
predicting response to treatment in a high heterogenic disease such as CRC would be a
complicated task. However, chances were that in some tumors, these alterations could
be present in predominant clones or appeared early along the oncogenic process.
Therefore, it was worth to explore this possibility because prognostic factors that predict
outcomes are major areas of research in clinical oncology. We will discuss all the data

gathered in the following sections.
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Discussion

1. A loss-of-function screening to search for novel drug targets

We have performed a loss-of-function screening in combination with chemotherapies to
identify novel targets that synergize with chemodrugs and as such, that could result in
better responses to treatments. To achieve this objective, we firstly invested our efforts
on setting up the different conditions to minimize false positive candidate genes. These
types of screenings are noisy by nature; they have a lot of background. In this regard,
one of the main concerns was to avoid the entry of more than one shRNA per cell.
Therefore, we first dealt with the appropriate dilution at which double positive infections
were avoided; however, we could not be 100% sure this was not occurring until we would

validate the top hit genes individually.

An additional challenge was to find the correct chemotherapeutic concentrations that
mimic the ones given in the clinics, but also that allowed us to find the sensitizers. We
were very conscious to apply adequate concentrations of chemotherapy, and reasoned
that high concentrations of chemodrugs (ICso, even ICses) could be suitable to identify
genes that when targeted enhance resistance (Figure 44). However, as | mentioned, we
were more interested in finding genes that when targeted could synergize with the drugs

already given in the clinics, so that the cells die more. Therefore, we agreed a sort of

-~
Resistant: target genes give tolerance to CT, resulting in higher survival

: Confounding: target genes can be synergistic or tolerogenic depending in CT levels

: Sensible: target genes give synergistic effect with CT when downregulated, resulting in
L higher cell death /

Figure 44. Representation of how chemotherapy doses affect shRNA presence or absence. At
mild CT levels, drop-out shRNAs can be identified as sensitizers (in purple); at higher CT doses (ICSO),

enriched shRNAs (in black) can be correctly identified as resistant genes. However, even at mild doses
of CT, confounding shRNAs (in orange) may appear, which indicates false positive genes.
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“Goldilocks concentration”, which would be around ICys, the one that favors the

identification of these sensitizers.

IC2 determination was a challenge: combining individual 1C2s for 5-Fluorouracil and
oxaliplatin or irinotecan resulted in higher cell death than expected by individual
calculated ICsos. Moreover, since we were trying to mimic the regimes given in the clinics,
treating the cells in four consecutive cycles resulted as well in higher toxicity than
expected; thus, combined IC2 needed to be carefully adjusted in periods of 21 days (4
cycles of chemotherapy). However, achieving 1Cx was crucial to identify synergistic
effects of “disappearing genes”; again, if cells died too much, probably the effect of the
shRNA would have not been detected (Figure 44).

After the analysis of genome integrated shRNAs by NGS and obtaining the final lists of
top candidate genes, we were moderately optimistic that most of them were reliable.
Supporting our rationale, both enriched and drop-out lists include well-described genes
involved in chemotherapy response of different cancer types, such as ATR in the drop-
out and HDAC4 in the enriched (212-215). This fact, indicated that part of our targets
were in agreement with the work of other groups, somehow reassuring us that the
screening was performed correctly. Additionally, we tried to implement another screening
at ICsgo, but cells died massively, which resulted in insufficient material to perform three
different sequencing experiments as required to reach statistical significance.
Nevertheless, we decided to sequence the remaining material, generating one replicate
at ICg treated cells. It resulted in enriched shRNAs for several genes, and some of them
also appeared as hits for resistance in the 1C2 screening (enriched shRNAs), such as
SMARCA4, PBRM1 or ARID2. Again, this concordance of hits in both screenings
supported the idea that absence or downregulation of these genes’ contributed to
chemoresistance. For all these reasons, we argued that less-known genes could also
probably be authentic targets implicated in modulating the chemotherapy response in
CRC.

In summary, even if screenings need to be carefully planned and set up, we consider
that they are excellent tools for discovery purposes, allowing the identification of factors
involved in unexpected functions. A “Fishing Expedition” has associated negative
connotations, related to science that relies in the analysis of huge amounts of data
without pursuing a relevant biological question. However, we combined it with an
hypothesis-driven question, the potential role of chromatin factors as facilitators or

obstructors for chemotherapy. This hypothesis directed us to perform a LOF screening
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focused on chromatin factors and not on the whole genome, therefore, limiting the size
of the experiment, which we think benefited the quality of the data obtained. Indeed, even
before the validation step, we observed that many top hit genes fell in the category of
chromatin remodelers, coinciding with some of our preliminary observations where
members of the SWI/SNF family appeared altered at low frequencies. This low frequency
alteration rate could signify a passenger (inconsequential) role in CRC pathogenesis, but
also they could contribute to respond better or worse to chemotherapy. This fact also
gave us some confidence that we were on the right path.

Moreover, the methodology of a pool-approach, where you can evaluate in only one
experiment the potential implication of hundreds of genes is timesaving, representing an
interesting technique from which loads of information can be extracted if data is
rigorously analysed. Therefore, our experience with this type of approach demonstrated
its capacity to generate reliable data as we could individually validate numerous top

candidate genes.
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2. Validation of top candidate genes arisen in the screening

From a list of hundreds of possible candidate genes, we decided to narrow the list to 15
to 20, and individually validate them. This reduced list was delineated after going through
several criteria, such as the same behavior of all shRNAs used for any candidate gene,
their function in terms of DNA biology, or their implication in resistance known for other
cancers. We also considered an attractive candidate when little information was
available, since it could uncover a complete unprecedented player. We validated each
candidate by individual downregulation and observed the expected mortality tendencies
in vitro. Despite having promising candidates that had to be discarded during the
validation process, as they resulted to be false positive genes, we were able to validate
15 out of 22 candidate genes, which is almost the 70% of the initial selected candidates.
These validation numbers are higher than what we expected given that previous data
from collaborators showed much lower success rates. We could demonstrate that the
previously effect observed in cell viability was the result of the combination of the shRNA
+ chemotherapy. When there was no chemotherapy (dose 0) cells presented almost no
change in viability but together with the shRNA the chemotherapeutic pressure

contributed to the mortality or the survival of these cells (Figures 18, 19 and 20).

We had 15 candidate genes validated, but it was unaffordable to study all of them in
detail. To select the most interesting genes, we analysed the available bibliography
together with an in silico analysis of public databases, such as cBioPortal for Cancer
Genomics (216) or the The Cancer Genome Atlas program (TCGA) (217), to identify
which genes seemed to be most relevant in patients’ CRC cohorts. At the end, we
decided to focus our efforts on elucidating the role in modulating chemotherapeutic
drugs’ action of BRIP1, MIS18A, PBRM1 and SMARCA4 genes. This selection includes
two genes that when absent or downregulated are involved in sensitizing cells to
chemotherapy (BRIP1 and MIS18A) and two genes that when absent or downregulated
promote cell survival under the pressure of chemotherapy (PBRM1 and SMARCA4).
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3. BRIP1 (BRCAT1 Interacting Protein C-Terminal Helicase 1)

BRIP1, also known as BACH1 or FANCJ, is a DNA-dependent ATPase and a 5-3’
helicase required for the maintenance of chromosomal stability; moreover, is implicated
in the repair of DNA DSBs by HR when is associated with the BRCA1 complex, thus,
appears to be highly involved in DNA damage repair (218,219). In this regard, it has
been widely demonstrated that BRCA1 recognizes phosphorylated BRIP1 through
BRCT motifs, which are tandem repeats implicated in DNA damage and repair
responses; in the case of BRCA1, BRCT motifs seems to present an important role on
its tumor suppressor function as they appeared frequently mutated in breast and ovarian
cancers (220-224). Missense mutations found in these BRCT motifs have been proven
to impair the binding between BRCA1 and BRIP1 (218,225). Furthermore, there is strong
evidence supporting that BRIP1 is essential for BRCA1 to correctly repair DNA damage
by HR: mutations on the catalytic domain of BRIP1 have been demonstrated to interfere
with DBSs repair in a dependent-manner to BRCA1 binding (218,226). Also breast
cancer cell lines deficient for BRIP1 failed in repairing these DSBs through HR (227).
Moreover, it has been reported that BRCA1 binding to BRIP1 regulates the choice of the
DNA damage repair mechanism: when the binding between BRCA1 and BRIP1 is
depleted, DNA damage repair by HR is blocked and replaced by a poln-dependent
bypass, which might contribute to resistance to some drugs through an interaction with
the MMR protein MLH1 (227).

Nevertheless, BRIP1 has been mainly studied in breast and ovarian cancer due to its
link with BRCA1. Therefore, the role of BRIP1 in CRC remains mostly unexplored. There
is a study where BRIP1 is linked to hereditary nonpolyposis colon cancer (HNPCC)
through MLH1, which presents several mutations in the binding region to BRIP1 that
resulted in alterations on the MMR signalling pathways and apoptotic responses.
However, the MMR pathway seems not to be depleted but just delayed; with this delay,
the MMR-independent methylation reversal by MGMT has time to enhance DNA
methylation resistance. Whether this delay in MMR signalling pathway may constitute a

mechanism linked to cancer or chemoresistance needs still to be addressed (227).

In the present thesis, BRIP1 was one of the candidate genes arisen in the screening for
both FUOX and FUIRI treatments. Since the beginning, BRIP1 appeared as one of the
most interesting candidates due to its clear implication in DNA damage repair and its
links to BRCA1 complex, which is one of the main tumor suppressor genes involved in
breast and ovarian cancers. In addition, the little evidence reported in CRC suggested a

novelty aspect that we were also looking for when the screening was planned.
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When BRIP1 had to be individually validated by shRNA to confirm it was a good
candidate, it turned out to be one of the genes with best validation ratios presenting more
than 70% downregulation by RT-qPCR, which was translated in strong decreases on the
cell viability when cells were treated at different FUIRI concentrations. Since BRIP1 was
extracted from the drop-out lists, this means that theoretically cells are more sensible to
chemotherapy when is absent, thus, BRIP1 could have a potential role as a sensitizer to
FUOX and FUIRI. In this regard, at the highest doses of chemotherapy, there was a
decrease on cell viability of 25-30% in comparison with the control condition; these
results were accompanied by fair downregulation of BRIP1 at protein level as well. These

consistent results converted BRIP1 in an interesting hit for further analysis.

Nevertheless, targeting BRIP1 with specific drugs to perform several functional assays
was impossible because there are no commercially available compounds that inhibit
BRIP1. This issue led us to find techniques more robust than shRNAs to expand the
study on the mechanism of action of BRIP1 in CRC; for this reason, generating a HT-29

knock-out cell line for BRIP1 by CRISPR-Cas9 technology seemed the best option.

We successfully edited several clones for BRIP1 in HT-29 cell line, which provided us
with a crucial tool to study the implication of this gene in chemoresistance. It should be
remarked that in a first WB (Annex V) a complete absence of BRIP1 protein was not
observed in any clone, although clones with higher than 50% of downregulated
expression showed gRNA target regions clearly edited. A subsequent WB with improved
conditions indicated that perhaps a complete KO was achieved in clone 15. This clone
will be further analysed in the future. Nevertheless, these selected edited clones, single-
cell derived, although presenting a normal growth, showed higher residual mortality than
control targeted cells or even the parental HT-29, which led us to think that a complete
loss of BRIP1 may trigger apoptosis. Thus, cells able to be maintained in culture might
present BRIP1 edited in heterozygosis. However, this reasoning is not supported by in
vivo models, since KO mice for BRIP1 in homozygosis are not embryonically lethal
according to data showed by the international mouse phenotyping consortium (228).
Nevertheless, we suspected that complete absence of BRIP1 was not well tolerated. In

the future, we will also sequence clone 15 and probably use it as a bona-fide KO.

Once we obtained the confirmation of BRIP1 clones correctly edited, the main feature
that we wanted to analyse was if the mortality tendencies that we observed in the
screening and validation steps were maintained (synergy with chemodrugs). For this

reason, viability assays were performed in 4 edited clones and results were stunning: in

123



a clearly dose-dependent manner, HT-29 BRIP1 KO cells treated with FUIRI presented
around 80% less viability than control cells; clone 27 seems to present the lowest
decrease in cell viability but still shows around 50% increased cell death than control
cells. Thus, it seems clear that BRIP1 absence promotes a higher sensitivity to FUIRI in
HT-29 cell line, which is in concordance to what we observed in the validation step when
BRIP1 was downregulated by shRNA.

As explained above, BRIP1 is involved in DNA damage repairing pathways, thus, it was
of interest the analysis of DNA damage in KO clones treated at different concentrations
of FUIRI. An easy approach to assess DNA damage is to measure phosphorylated levels
of H2A X variant by Western Blot. The results of this experiment in control cells were a
little bit confusing: it seems to be more DNA damage in non-treated cells than in treated
conditions; we believe this might be a combination of a non-efficient extraction of all
histone proteins combined with the fact that cells treated with chemotherapy, perhaps
because they are already compromised, resulted in lower extractions of total histones.
However it may be, this issue complicates the comparison of obtained results to a control
condition. Nevertheless, all BRIP1 clones showed a tendency to increase DNA damage

in a FUIRI dose-dependent manner, especially at higher doses of chemotherapy.

When BRIP1 KOs were more carefully analysed we observed that there were two
subgroups. On one hand, clones 11 and 27 presented a consistent increment on DNA
damage when FUIRI concentration increased. On the other hand, clones 12 and 43
presented an increase as well on DNA damage in a dose-dependent manner, and a
dramatic increase at the highest FUIRI concentration in comparison with non-treated
cells. These results reinforce the role of DNA damage repair already described for BRIP1
but in a colorectal cancer cell line, which has not been previously described; altogether,
it appears that BRIP1 absence is correlated with an increment on DNA damage in HT-

29 cells when chemotherapeutic pressure is applied.

Furthermore, we also evaluated the capacity of KO clones to grow in a colony formation
assay, where cells are seeded at low density, in order to be isolated. This approach gives
a hint of the possible ability of these cells to start metastatic disease by colonizing new
tissues. In this regard, at simple sight there was a clear difference on the type of growth
of BRIP1 KO clones in comparison with the control condition: BRIP1 KO clones had
small colonies whereas control colonies were bigger and wider. This could be due to a
faster growth of control colonies, with some of the bigger colonies containing several

smaller colonies; in this way, we would be underestimating the number of control
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colonies. However, to overcome this issue, we analysed not only the absolute number
of colonies, but also the area covered by colonies and their intensity. With these
parameters, we were able to discriminate areas covered by BRIP1 KO clones in
comparison to control clones, indicating a slower growth of BRIP1 KO colonies.
Additionally, colony intensity indicates the amount of cells forming the colony, with BRIP1
KO clones showing fewer cells than controls. However, if we take into account when
colonies were treated at different concentrations of FUIRI, surprising results appeared:
the number of control colonies almost disappeared at the highest dose of FUIRI whereas
the four BRIP1 KO clones had more than 100 colonies in this condition. Moreover, the
colony area and intensity, at the highest dose of FUIRI, were maintained above control
ratios in all BRIP1 KO clones.

These results are somehow puzzling since BRIP1 seemed to have a clear role on
sensitizing cells to chemotherapy as supported by viability data, thus, we expected less
colonies than the controls. It should be taken into account that experimental conditions
are completely different between this approach and cell viability or DNA damage assays:
in a colony formation assay, cells are practically isolated at the beginning of the
experiment, whereas in cell viability assays cells are seeded at a confluence of around
50%. These differences on seeding conditions imply that several aspects, such as the
cell-to-cell contact or the chemokines and signals that are released to the media, might
be completely different when cells are single or in confluence. For this reason, we
hypothesized that the absence of BRIP1 might deregulate different pathways depending
on the external signals or stimuli that cancer cells receive, which could be in close
relation with the fact of how cells were seeded in the different approaches tested; we are
planning to check senescent markers as well as EMT markers, to evaluate whether

BRIP1 may play a role in these pathways as well.

Nevertheless, the analysis of the BRIP1 KO features needs further studies to unravel
whether it has mild, average, or strong synergizing effects with chemotherapy. Probably
in vivo assays in transplanted immunodeficient mice could help us to evaluate the
combinatorial effects at different timings and with different doses. For instance, we could
also evaluate whether BRIP1 KO alone impairs tumor growth in vivo as in vitro colony
assays indicate. If so, it could indicate BRIP1 as a target per se, without necessarily be
considered a combinatorial target with FOLFOX and FOLFIRI chemotherapies.
Moreover, regarding the DNA damage data, aside from the control values that were

unexpected, earlier time points should be also evaluated.
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Regarding a possible biomarker role for BRIP1, our data is unclear. NanoString data for
responders and non-responders to treatment showed no differences in BRIP1
expression between these two groups. On one hand, in the cohort of FOLFIRI-treated
patients analysed by NanoString we did not find any tendency on PFS or OS indicating
that stratifying patients by BRIP1 levels would not imply a better or worst outcome.
However, in the GSE104645 cohort that we analysed (Figure 36), it appears a division
on PFS and OS whereby patients having low BRIP1 levels treated with FOLFOX would
have a worst progression of the tumor. This is somehow the opposite tendency that we
would expect since, in our hands, low BRIP1 levels would give an advantage to FOLFOX

treated patients in responding to chemotherapy indicated by survival assays on shRNAs.

Of note, in the case of patients treated with FOLFIRI, Kaplan-Meier survival curves gave
somehow more expected tendencies where patients with low BRIP1 levels have a better
PFS. For patients treated with FOLFOX, if we only consider those that partially
responded to chemotherapy and analysed the PFS, the obtained ratios were remarkable:
patients expressing high levels of BRIP1 showed a PFS of 2.5 months while patients
with low BRIP1 levels had a PFS of 25 months, which is ten times higher; this would be
in agreement with low BRIP1 being a good response factor, but with little value for
prediction since these are all partial responders, which cannot be a priori identified.
Nevertheless, this data supports what we found in the screening: that BRIP1 low levels
could synergize with chemotherapy at least for a subgroup of patients. At this point we
do not know what other particularities the subgroup of better responders to FOLFOX
have in common that could help identify these two groups in the general patient
population. Moreover, since HT-29 cell line is KRAS wild-type, we analysed PFS in
KRAS wild-type patients treated with FOLFOX: the results resembled those of PFS in
FOLFOX-treated patients.

Furthermore, data from GSE62322 cohort shows that the tumors from patients
responding to FOLFIRI had higher levels of BRIP1 than the normal colon tissues (Figure
40C), which is the opposite to what is shown in the GSE104645 cohort for FOLFIRI
(Figure 36E), whereby patients with higher BRIP1 levels had worst PFS; moreover, as
we were evaluating a sensitizer role of BRIP1, we would expect that patients responding

to chemotherapy would be the ones with lower BRIP1 expression.

Given the unclear data obtained, we cannot assess a biomarker value for BRIP1 in terms
of prognostic (prediction) to better or worst response to FOLFOX and FOLFIRI.

Nevertheless, even if BRIP1 could not be considered a good biomarker of response, it
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does not mean that it could not be a good target for therapy. Preliminary data suggests
that it actually might; BRIP1 KO cells are more sensitive to DNA damage and their
viability is also impaired. However, colony formation assays suggest that at higher doses
of chemotherapy, the combination of targeting BRIP1 may not be as beneficial; this is
important when considering combinatorial treatments, which probably need to be fine-
tuned in terms of concentrations alongside monitorizations of the tumor evolution. In vivo
experiments would probably help to answer this and other questions, such as when it
would be the best moment to give the combinatorial drug treatment. In this regard, it
would be better to have an inducible KO system or drugs that specifically target BRIP1,
to evaluate in detail all these issues. Moreover, whether BRIP1 could also be considered

a good sensitizer for KRAS mutated cells, remains to be addressed.
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4. MIS18A (MIS18 Kinetochore Protein A)

MIS18A is required together with MIS18B and MIS18BP1 for the recruitment of CENP-
A, a histone H3 variant only present in centromeres, thus, is involved in chromosomal
segregation during mitosis (229). Furthermore, it has been well stablished that MIS18A
has to form an heterotetramer with MIS18B, so that MIS18BP is able to bind the complex;
in this manner, this complex is active and recruits the chaperone HJURP, which is in
charge of finally deposit CENP-A nucleosomes (230,231). To maintain the homeostasis
in this CENP-A deposition process across cell cycle, the active complex formed by
MIS18A, MIS18B and MIS18BP1 needs to be carefully regulated. In this regard, CDK1
has arisen as one of the main regulators since it has been reported to phosphorylate
several MIS18BP1 residues in order to avoid the assembly of the functional complex
MIS18A-MIS18B-MIS18BP1 in early G1 phase, thus restricting temporally CENP-A
deposition (232,233).

More recently, other mechanisms of regulation, such as deSUMOylation, have
appeared: absence of SENP6, which is responsible of SUMO chains’ depolymerization,
leads to poly-SUMOylation of MIS18A and MIS18BP1 and, consequently, CENP-A
accumulation at centromeres is reduced (234,235). Overall, despite MIS18A seems not
to play a direct role on damage repair, it has a crucial role on avoiding chromosomal
instability, which has been described as one of the hallmarks of cancer (16,236,237).
Nevertheless, there are few studies where the direct implication of MIS18A in cancer is
assessed. There are a couple of recently published studies where MIS18A could be
deregulated in MSI CRC tumors (238,239). On one hand, it was observed in deficient
Mih1 mice where CRC was not developed, that there was a subsequent downregulation
of a group of genes, especially Mis18a; furthermore, Mis18a downregulation was
accompanied by Cenpa downregulation, which resulted in improper chromosome
segregation, suggesting that these changes might be a signal of carcinogenesis in
normal colon mucosa (238). On the other hand, Sun et al. reported in vitro that ATG5,
which is a cytoplasmic factor that can be aberrantly translocated into the nucleus in the
presence of DNA damaging agents such as 5-FU, would bind MIS18A in the nucleus to
hypermethylate MLH1 promoter, therefore, favoring MMR deficiency in MSI CRC (239).

MIS18A arose as a drop-out gene from FUIRI-treated cells in the screening. In the
validation phase we achieved a good downregulation of around 50% by RT-qPCR, which
was translated in 30% less cell viability at higher doses of FUIRI in comparison to control
cells; downregulation at protein levels was also satisfactory. Altogether, these data

indicated that MIS718A could be a good potential candidate to further validate and study
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its role as a sensitizer to chemotherapy; additionally, the fact that little to nothing was
known about its implication in CRC represented a challenge, but would give also the
novelty aspect sought. Finally, MIS18A has a role in chromosome segregation through
CENPA binding at centromeric regions, and our group is also interested in studying a
deregulated macrosatellite repeat in cancer, recently mapped to centromeric areas. For
all these reasons, it was decided to include MIS18A as one of the selected genes for a
deeper study; again, since compounds targeting MIS18A were not available, we
generated knock-out HT-29 cell lines for MIS18A by CRISPR-Cas9 technology.

We successfully obtained several clones that presented clear edited characteristics:
protein levels completely disappeared in at least 2 clones; and we could corroborate the

editing of the targeted areas by Sanger sequencing in clones 34 and 35.

Cell viability assays were surprising: on the one hand, clone 34 presented a viability
tendency similar to control cells, which means that MIS718A KO in this clone was not
promoting more cell death in the presence of FUIRI; nevertheless, these cells presented
an extremely slower growth in culture in comparison to clone 35 or controls. We
hypothesized that this growth impairment might be related to a senescence/quiescent
state of these cells, which has been proven to be a protective mechanism against
damaging agents such as chemotherapy (240,241). On the other hand, clone 35
presented around 10% less cell viability in comparison to control cells, although it was

not observed any clear dose dependent effect.

When DNA damage was measured by y-H2A.X we obtained slightly different results for
clones 34 and 35: both clones showed stable DNA damage levels that did not seem to
increase with higher doses of FUIRI; however, clone 35 showed higher y-H2A X levels
than clone 34. Although MIS18A is not directly involved in DNA damage repair pathways,
it is involved in chromosomal instability, which is tightly related to genomic instability and
DNA damage (242,243). The data showed that DNA damage did not increase in a dose-
dependent manner when combined with FUIRI, which is different from what happens
with BRIP1. Although BRIP1 and MIS18A are potentially involved in synergistic effects
with chemotherapy, the mechanisms of action seem to be quite different, which is in

agreement with the different known functions of these proteins.

Regarding the colony formation assay that we performed with MIS718A KO clones, there
was an evident growth difference between clone 34 and 35; the number of colonies in

clone 34 was lower than in clone 35, even at non-treated condition. Furthermore, the
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different parameters analysed in this assay (number of colonies, colony area and colony
intensity) clearly indicated that there were less colonies in MIS18A KO clones than in
control cells at all time points (without and with chemotherapy). In the case of clone 34,
colony area and intensity parameters presented a flat tendency near 0, probably due to
the slower growth that we observed in culture. However, in clone 35 there were less
colonies since colony areas and intensities were also maintained below control
parameters and decreased in a dose-dependent manner. Since MIS18A was also a gene
selected for its potential role on sensitizing cells to chemotherapy, these results are in
agreement with the screening: a decreased capacity to grow and resist FUIRI when
MIS18A is absent. Of note, both clones showed lower levels of colony growth even
without chemotherapy, again supporting a possible individual target value independent
of FOLFIRI.

When MIS18A implication was analysed in the cohort of CRC patients sequenced by
NanoString, it appeared that no differences of MIS18A expression were present in
responders vs. non-responders. Moreover, better PFS and OS ratios associated with
extremely high MIS18A levels (Tercile 3) in comparison with patients expressing the
lowest levels of MIS18A (Tercile 1), although it was not statistically significant. These
results were somehow not expected according to our data of the screening for MIS18A,
where it clearly presented a role on sensitizing cells to chemotherapy when
downregulated, and as such, we would had expected better outcomes for patients with
low levels of MIS18A.

However, as we stated at the beginning of the Discussion, finding biomarker values
relevant for a subclone in a heterogeneous primary tumor such as CRC, is improbable.
The contradictory data obtained along with the non-significance, indicates that this may
be indeed the case. In this same line, the results of MIS18A analysis in the GSE104645
cohort did not give clear survival tendencies for neither PFS nor OS parameters. Of note,
in this cohort, MIS18A expression was highest in the CMS1 subtype, which is
characterized by a MSI status, high immune infiltration and BRAF mutations. It should
be remarked that HT-29 cell line (used to perform the screening) is BRAF-mutated and
the role of MIS18A in chromosomal instability has been widely mentioned. Both aspects
are in concordance with the characteristics of CMS1, which may indicate a potential role
of this gene in this subset of patients. Of note, CMS1 has been proven to present worst
survival after relapse; for this reason, whether MIS18A could contribute to better

sensitize this subset of patients under chemotherapy should be deeper explored.
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5. PBRM1 (Protein Polybromo-1)

PBRM1 is an accessory subunit of the PBAF complex required for its stability, thus, is
also involved in regulating transcription activation or repression through chromatin
remodelling, as it was commented in the Introduction. Of note, PBRM1 is not only
strongly associated with clear cell renal cell carcinoma (ccRCC) when mutated, but also
low levels have been correlated with increased expression of proinflammatory
chemokines in patients with Crohn’s disease (97,99,100,244). In fact, the Catalogue Of
Somatic Mutations In Cancer (COSMIC) (245) considers PBRM1 as a hallmark cancer

genes since it appears truncated in several cancer types.

PBRM1 appeared in the screening as one of the enriched genes in cells treated with
FUIRI at IC and ICg concentrations, while it appeared in FUOX treated cells at 1Cx.
Therefore, its down-regulation may contribute to cell survival in the presence of
chemotherapy, having perhaps a potential role as a biomarker for predicting response
to treatment. PBRM1 validation yielded great results: around 80% of downregulation was
efficiently achieved at the RNA level together with an increment on cell viability of 25%
in comparison to control cells; in addition, there was a good downregulation at protein
level as well. Although PBRM1 has been well-described and characterized, there are still
no drugs available to block this PBAF complex member. Nevertheless, since many
SWI/SNF subunits arose from the screening, a further study of PBRM1 seemed
worthwhile; for this reason, we also decided to create a PBRM1 KO HT-29 cell line by
CRISPR-Cas9 technology. As previously done with the other genes, all the process to
edit PBRM1 seemed to be done correctly; however, when the different clones had to be
analysed by Western Blot to observe which ones were edited, it was impossible to
successfully analyse them. This issue was not solved when other antibodies were tested
and several conditions were changed, therefore, due to the lack of time, we decided to

leave apart these clones temporally until this problem could be properly assessed.

Although we postponed the analysis of the function of PBRM1 in KO clones, it was
possible to perform the analysis of its involvement in patients’ cohorts. Since PBRM1
was identified as a “resistant” gene, it would be expected that lower PBRM1 expression
levels could associate with worst outcomes in patients, as these low PBRM1 tumors
would be resistant to chemotherapy. In the cohort of patients analysed by NanoString
(Figure 34), this is only the case when OS was analysed by comparing expression levels
of Terciles 1 + 2 vs. Tercile 3; here, a clear tendency was observed whereby patients
expressing the highest PBRM1 levels had better survival to FOLFIRI than patients

expressing middle-low PBRM1 levels, although p-values were above 0.05. However, the
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OS of FOLFOX-treated patients from the GSE104645 cohort (Figure 38F), where
PBRM1 expression levels were stratified by high and low, did present a clear difference
between patients with higher PBRM1 levels with an OS of 110 months while low PBRM1
expressing patients showed an OS of less than 60 months. This association was close
to be statistically significant (p-value = 0.0583). Of note, this p-value becomes significant
when PBRM1 expression levels are divided in positive or negative values (p-value =
0.0102). Similarly, OS in FOLFIRI-treated patients presented exactly the same tendency;
however, in this subtype of patients there were too few cases, which made this
association far from being statistically significant. Interestingly, regarding patients treated
with FOLFIRI in the GSE62322 cohort (Figures 42A and 42B), there was a clear
tendency to decrease PBRM1 expression levels along tumor progression (as the normal
colon evolves to a malignant state, first primary tumor and, afterwards, metastases);
indeed, this association was significant in non-responder patients when comparing the
expression in normal vs. liver metastases (Figure 42C). There was also an association
showing a decrease on PBRM1 expression in responder patients comparing normal vs.

primary tumor samples.

Taken all together these results suggest a potential biomarker role of PBRM1; patients
with low expressing PBRM1 tumors could have a worst OS if treated with FOLFOX but
not with FOLFIRI. Additional analyses increasing the number of samples should be

performed to further consolidate this data.
Nevertheless, we still need to elucidate what happens with KO clones and whether this

possible value for predicting chemoresistance could be further corroborated in our model

system.
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6. SMARCA4 (SWI/SNF Related, Matrix Associated, Actin Dependent
Regulator Of Chromatin, Subfamily A, Member 4)

SMARCA4 was also introduced in the present thesis as one of the ATPases of SWI/SNF
complexes, with a critical role on chromatin remodelling to modulate DNA structure and
transcription, among other important functions (97-100,246); indeed, SMARCA4 is the
most frequently mutated chromatin-remodelling ATPase component in cancer, such as

in small cell ovarian cancer (247,248) or in a subset of NSCLC patients (249).

SMARCA4 appeared as a resistant gene in FUIRI-treated samples in the screening. Due
to the expertise in our laboratory working on SWI/SNF members, SMARCA4 seemed an
attractive candidate to further study. It was successfully validated individually, with a
downregulation of 50% at RNA level as well as at protein level, which resulted in an
increment on cell viability of 40% respect to control cells. Thus, it seemed clear that
SMARCA4 could act as a resistance marker when absent since cells survived more in

the presence of FUIRI.

Surprisingly, despite SMARCA4 is one of the two ATPases of the SWI/SNF complex,
currently there are not commercially available specific inhibitors to target it. Foghorn
Therapeutics has developed FHD-286, which inhibits both SWI/SNF ATPases (BRG1
and BRM); moreover, clinical trials are underway for uveal melanoma and AML. For this
reason, with SMARCA4 it was also decided to create a KO cell line by CRISPR-Cas9 in
order to generate a tool to explore SMARCA4 implication in resistance to CT. When
SMARCA4 KO clones had to be analysed to assure the correct edition of the gene,
Western Blot images clearly revealed the clones that were knocked-out; many showed
a complete disappearance of SMARCA4 protein (BRG1). However, sequencing of DNA
target regions to confirm genome editing was an issue impossible to solve. Several
primers were tested for all the regions and several conditions were changed in order to
amplify the DNA region of interest, but none of them worked. Nevertheless, as Western
Blot images were robust, we decided to further study three KO clones (2, 5 and 30) and

leave the confirmation of the edition changes for later.

Cell viability assays performed in SMARCA4 KO clones revealed surprising results: the
behavior of all three clones was similar to the control; cell viability did not decrease,
which is what we would expect taking into account the increased cell survival data in
SMARCA4 shRNA analyses. Also, there was not an increment on cell survival respect
to control cells. Therefore, the KO clones were not growing faster than the control

condition, but they were not growing slower either; they had a similar viability tendency
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as control KO. Recent studies are starting to suggest that BRG1 and BRM are mutually
exclusive, yet they might replace each other function when one is absent (250).

Additionally, analysis from the Connectivity Map (251) revealed an upregulation of BRM
in HT-29 cell line when SMARCA4 gene is knocked-out (data not shown); in this regard,
we are planning to study BRM protein levels in our SMARCA4 KO clones to see whether
these association is corroborated in our model system. Altogether, these results may be
indicating a regulatory role of BRG1 inhibiting BRM expression in normal conditions,
although if BRG1 is completely absent, then BRM might be supplementing BRG1
function more efficiently than when BRG1 is just downregulated. This hypothesis could
explain our results since a partial absence of BRG1 (downregulation by shRNA) gives a
resistant capacity to cells whereas a complete BRG1 absence (knock-out by CRISPR-
Cas9) promotes a replacement of its functions by BRM. Furthermore, this theory would
also explain the results of SMARCA4 KO clones in the colony formation assay: although
SMARCA4 KO clones present a lower number of colonies in all conditions respect to
control, the reduction of this number of colonies is dose-dependent, similarly to the
behavior of control clones. Intriguingly, the area covered by SMARCA4 KO clones was
higher than the control condition, which was accompanied by a higher number of cells
forming each colony (colony intensity), which goes in favor of a resistant contribution
when BRG1 is absent. Regarding the evaluation of DNA damage, results were unclear:
in general terms, there was a moderate increase on DNA damage in a dose-response
manner. However, normalization with total protein of these samples was inconclusive,
with no consistent results when different clones were compared. Probably DNA damage

experiments should be reconsidered in terms of time points.

Despite these shortcomings, regarding the implication of SMARCA4 in patients’ cohorts,
in the NanoString analysis, patients presenting lower levels of SMARCA4 have poorer
OS ratios than patients expressing middle-high levels of SMARCA4; moreover, in a
statistically significant association, patients with low SMARCA4 levels had an OS of
around 35 months whereas patients with middle-high SMARCA4 levels showed an OS
of almost 50 months (Figure 35E). Thus, the possible predictive role of SMARCA4 to
chemoresistance in CRC was reinforced. Furthermore, in patients from the GSE104645
cohort, despite not being statistically significant, there was a clear tendency of worst
progression and outcome (PFS and OS) when SMARCA4 expression levels were low,
which agrees to observed results in our cohort of patients and with the screening
findings. However, results obtained from the analysis in the GSE62322 cohort were
ambiguous: there was an increase on SMARCA4 expression in primary tumors when

compared to the counterpart normal colonic tissue in both responders and non-
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responders groups of patients. According to our working hypothesis, we could expect an
increment in expression in responding patients, since cells should be resistant when
SMARCA4 is lower expressed; however, the fact that SMARCA4 expression levels
increased as well in the non-responding group of patients is at variance with all our
previously presented results. Whether other parameters could further classify or
differentiate between these subsets of patients that could explain this conflicting behavior

is unclear, but it could be the case given that CRC is characterized by its heterogeneity.

135



7. Future perspectives

We have generated crucial tools to further study the role of our selected genes. On one
hand, several functional in vitro assays, such as wound-healing or invasion assays, are
still pending to be performed to correctly characterize KO clones. KO cells can be
evaluated through RNA-seq and ChIP-seq to elucidate which partners are altered in the
absence of our preferred genes. Furthermore, since these KO cells were prepared to be
used in in vivo assays, several experiments on mice can be designed to evaluate the
role of KO genes in tumor growth and metastasis in combination with chemotherapy

administration.

One of the limitations that this thesis had was that all the assays, including the screening,
were performed in only one CRC cell line. We are conscious that the results obtained
here may not be extrapolated to other CRC cell lines, with a different mutational
background. However, due to all the time required to set up the screening, together with
having several types of chemotherapy to be administered and the huge amount of cells
that needed to be cultured, it became practically impossible to perform this screening in
more than one cell line. In the near future we are planning to validate our results in the
Colo205 CRC cell line, which presents a similar background to HT-29 (MSI —, CIMP +,
KRAS wild-type and BRAF mutated); moreover, we would like to test our candidate
genes in additional CRC cell lines that present different characteristics such as SW48
(MSI +, CIMP +, KRAS and TP53 wild-type). Of note, we have a SW48 cell line where
KRAS has been mutated; this is a great tool to investigate the role of KRAS status in the

same cell background when our favourite genes will be targeted and challenged with CT.

Another field that should be explored is finding drugs against these genes. KO cells are
incredible tools to study the mechanism of action of our selected genes; however, this
technique cannot be applied to the clinics. Since this project aimed to be translational,
discovery of compounds able to target our preferred genes would represent a leap from
bench to bedside. In this regard, several approaches can be considered: on one hand,
we are contemplating to collaborate with 3D-modelling laboratories that could search for
the best domains of our proteins to be targeted, thus, a process to design and develop
a drug could start there. On the other hand, we recently discovered an interesting tool
on Connectivity Map (251), which is called Repurposing (252), where identifies the best
domains of proteins and compares them with a library of already available compounds
to see whether one of these drugs could target your protein of n. In this manner, we could
also start testing these already available compounds in our CRC cell lines to corroborate

the potential role of our genes as biomarkers or sensitizers to chemotherapy.
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Furthermore, this tool can compare the expression profile of HT-29 cell line with several
KO genes (BRIP1 among others), with the expression profile generated by the above
mentioned library of commercial drugs; therefore, it allows to find drugs that promote the
same expression profile than the KO of the preferred target, which can be tested as

potential drugs that mimic the effect of having, for instance, BRIP1 absent.
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The main conclusions that can be extracted from the present thesis are:

1. By performing a loss-of-function screening with two types of chemotherapies,
FUOX and FUIRI, targeting 912 chromatin factors using a pool-approach method
with an improved retroviral shRNAs library, we learned that:

a. The use of mild concentrations of chemotherapy, such as ICys, was
crucial to favor the identification of sensitizers.
b. Appropriate shRNA controls that set upper and lower viability ratios were

essential to delineate the window of possible outcome responses.

2. We achieved an individual validation of 70% of the selected candidate genes
arisen from the loss-of-function screening. This efficiency is unusually high for
these type of screenings since efficacies of gene silencing and off-target effects

continue to create significant limitations to RNA interference-based approaches.

3. Functional assays with downregulated BRIP1 and MIS18A levels indicate they
can be promising targets for individual or combined therapies in CRC, but a
deeper understanding of the mechanisms that play needs to be further explored,
in combination with in vivo experiments. However, BRIP1 and MIS18A do not
seem to be good biomarkers for predicting response to FOLFOX or FOLFIRI, at

least in the cohorts examined.

4. PBRM1 and SMARCA4 low levels seem to be crucial to potentiate resistant
behaviors in CRC, therefore therapeutic approaches undertaken in other cancer
types to individually block these SWI/SNF subunits may not be adequate for
CRC.

5. A clear biomarker value for predicting response to FOILFIRI in CRC was not

found in any of the genes evaluated by NanoString.

6. PBRM1 shows a potential biomarker value for worst response to FOLFOX,
suggesting that patients with low PBRM1 expression in primary CRC tumors
should not be treated with FOLFOX.
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1. Cell culture
All the different cell lines that were used during the development of the present thesis

with their culture conditions are shown in the following table:

. . Incubator’s
Cell line Type Culture media conditions
s Human colorectal McCoy’s 5A medium
cancer cell line (GlutaMAX™)
+10% FBS
HT-29 Human colorectal cancer cell | + 1% Penicillin-Streptomycin-
EcoR line with an ecotropic receptor Amphotericin B
Human lentiviral 37°C
: o
293T packaging cell line DMEM/F 12 medium 5% CO2
+10% FBS
Platinum-E Ecotropic retroviral + 1% L-Glutamine
(Plat-E) packaging cell line + 1% Penicillin-Streptomycin-
C2C12 Murine myoblast cell line Amphotericin B

Table 4. Cell lines. Type and cell culture characteristics of all the cell lines used in this thesis.

Based on Berg et al. (253), the main characteristics of the CRC cell line that was used

to perform all the experiments are:

Cellline MSI CIMP KRAS BRAF TP53 PIK3CA PTEN CMS

HT-29 - + wild-type V600E pR273H wild-type wild-type 3

2. Lentiviral production and infection

2.1. Production of lentiviral supernatants

293T packaging cells were plated the day before transfection at a seeding density of 3
millions cells per 10 cm dish to obtain a 70% density at the moment of transfection. Two
types of lentiviral vectors were used in this thesis: one to transduce the Eco receptor,
present in a lentiviral-derived vector named pWPXLd-rtTA3-IRES-EcoRec-PGK-Puro;
and another one to transduce the gRNAs and Cas9 protein, present in a lentiviral-derived
vector that contains a resistance cassette to puromycin (pLentiCRISPR v2; GenScript®)
(Annex VI). Both were co-transfected with the packaging vectors psPAX2 and pMD2.G
in 293T cells using Lipofectamine™ 2000 or 3000 Transfection Reagents (ThermoFisher
Scientific) following manufacturer's protocols. Briefly, 8 ug of each vector were
transfected (Moore 1:1:1 ratio); 48 hours post-transfection, the supernatant containing
lentiviruses was harvested and filtered (0.45 um; Merck-Millipore). HT-29 cells were
titrated with a range of 0.1 to 2 yg/mL of puromycin, and 0.35 pg/mL resulted as the

minimum concentration at which non-transduced cells die.
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2.2. Infection with EcoR lentiviral supernatant

HT-29 cells were plated the day before infection at a seeding density of 2.9 millions cells
per 10 cm dish to obtain a 70% density at the moment of infection. The day after, 4 mL
of supernatant containing EcoR lentiviral particles were added in the presence of 8 ug/uL
of Polybrene (Merck-Sigma Aldrich). After 4 hours, fresh media up to 10 mL was added.
72 hours post-infection, HT-29 EcoR-transduced cells were placed in selection media
containing 0.35 pyg/mL of puromycin. Cells were selected for one week and resistant cells

were further amplified in selection media.

2.3. Infection with guide RNAs / CRISPR-Cas9 lentiviral supernatants

HT-29 cells were plated the day before infection in 6-well plates at a seeding density of
500.000 cells/well to obtain a 70% density at the moment of infection. The day after, 1
mL of lentiviral supernatant diluted 40 times was added in the presence of 8 pg/uL of
Polybrene (Merck-Sigma Aldrich); in this case, we infected with a pool of the three
gRNAs from the same gene mixed in a 1:1:1 proportion (8.3 pL of each virus). After 4
hours, 1 mL of fresh media was added; 24 hours later, another 1 mL of fresh media was
added. 72 hours post-infection, HT-29 transduced cells were placed in selection media
containing 0.35 pg/mL of puromycin. Cells were selected for 10 days and resistant cells

were further amplified in selection media.

3. Retroviral production and infection

17.5 yg of pMSCV-LEPG, pMSCV-LENC, pMSCV-LENC-Rpa3, pMSCV-LENC-Myc,
pMSCV-LENC-Ren, pMSCV-LENC cloned with individual shRNAs vectors (Annex VI)
and the retroviral hEpi9 library were separately transfected into the retroviral packaging
cell line Plat-E. Plat-E cells were seed the day before transfection at a density of 2.9
million cells per 10 cm dish to obtain a 70% of confluence at the moment of transfection.
Transfection was performed using Lipofectamine™ 3000 Transfection Reagent (for
pMSCV-LEPG and pMSCV-LENC) or Lipofectamine™ 2000 Transfection Reagent (for
pPMSCV-LENC cloned with individual shRNAs and hEpi9 library) (ThermoFisher
Scientific) following manufacturer’s protocol. However, instead of using Opti-Mem™
Medium, it was used DMEM/F12 Medium without adding any extra compound. 60 hours
post-transfection, viral supernatant was collected and filtered with 0.45 um filters (Merck-
Millipore).

For pMSCV-LEPG and pMSCV-LENC vectors, HT-29, HT-29 EcoR and C2C12 cells
were seed in 6-well plates at a density of 500.000 cells/well to obtain a confluence of
70% at the moment of infection. The day after, 1 mL of viral supernatant per well was

added in the presence of 8 pg/uL of Polybrene (Merck-Sigma Aldrich). After 4 hours,
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fresh media up to 3 mL per well was added. 72 hours post-infection, HT-29 EcoR-
infected cells were analysed by flow cytometry to monitor the percentages of GFP and
mCherry-positive cells (section 15). For pMSCV-LENC vector cloned with the individual
shRNAs, HT-29 EcoR cells were seed at a density of 2.9 million cells in 10 cm dishes to
obtain a confluence of 70% at the moment of infection. The day after, 3 mL per plate of
viral supernatant were added in the presence of 8 ug/uL of Polybrene (Merck-Sigma
Aldrich). After 4 hours, fresh media up to 10 mL per plate was added. 72 hours post-
infection, part of HT-29 EcoR-infected cells were analysed by flow cytometry to monitor
the percentage of mCherry-positive cells (section 15). The remaining HT-29 EcoR-
infected cells were seed again in 10 cm dishes and selected during 10 days by changing
the media every 2-3 days and adding Geneticin (G418) at a final concentration of 600
pug/mL until at least 60% of cells were mCherry positive. At this point, dry pellets were
collected for RNA and protein extraction, part of the cells were frozen in Recovery™ Cell
Culture Freezing Medium (ThermoFisher Scientific), and the remaining cells were used
to perform cell viability assays. In the case of infected HT-29 EcoR cells with hEpi9
library, our previous data demonstrated us that mCherry vectors usually infect HT-29
EcoR cells at a percentage of 1%. Taking into account that we had 7.300 different
shRNAs in the library and we wanted to achieve a 1.000X representativeness of each
one, 730 million HT-29 EcoR cells should be infected in order to obtain 7.3 million
positive cells with, at least, 1.000 times each shRNA. For this reason, 440 million HT-29
EcoR cells were seed in twenty-two 15 cm dishes at a density of 20 million cells per
plate. They day after, 8 mL of viral supernatant per plate were added in the presence of
8 pg/uL of Polybrene (Merck-Sigma Aldrich). After 4 hours, fresh media up to 20 mL per
plate was added. 72 hours post-infection, each plate was split in three parts:

a) 1/3 of HT-29 EcoR-infected cells were analysed by flow cytometry to monitor the
percentage of mCherry-positive cells (section 15). This time, the shRNA library
infected at a percentage of 8.7% instead of 1%, therefore we had to assume that
the probability of double-infected cells or multiple-infected cells is higher.

b) 1/3 of HT-29 EcoR-infected cells were frozen in FBS + 10% DMSO and stored
at -80°C.

c) The remaining 1/3 of HT-29 EcoR-infected cells were seed again in 15 cm dishes
and selected during 10 days by changing the media every 2-3 days and adding
G418 at a final concentration of 600 ug/mL until at least 70% of cells were

mCherry positive.
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4. RNA extraction

RNA was extracted from HT-29 EcoR cells (selected and non-selected with puromycin)
to synthetized afterwards the cDNA to monitor the presence of EcoR receptor in HT-29
cell line; in addition RNA was extracted from HT-29 EcoR cells infected with the different
shRNAs (including a control shRNA: shRenilla) to perform afterwards the cDNA
synthesis and verify the knock-down efficiency of the shRNAs by RT-gPCR. RNA
extraction was performed using the Maxwell® 16 LEV simplyRNA Cells Kit (Promega),
which is an automatic procedure performed by a machine that uses paramagnetic
particles (PMPs) to expose samples to different purification solutions to isolate the RNA.

The only change in the protocol is that 10 uL of DNAse | were added instead of 5 pL.

5. DNA extraction

DNA was extracted from selected HT-29 KO clones to further sequence the edited
regions. DNA extraction was performed using the Maxwell® RSC Cultured Cells DNA Kit
(Promega), which is an automatic procedure performed by a machine that uses PMPs

to expose samples to different purification solutions to isolate the DNA.

6. cDNA synthesis

cDNA synthesis was performed with the SuperScript™ IV First-Strand Synthesis System
of ThermoFisher Scientific. It was done following manufacturer’s protocol, except in step
two, on which it was not added the Ribonuclease Inhibitor; and in step four, where the

reaction was incubated 10 minutes at 52°C.

7. Real-time PCR (RT-qPCR)

To monitor EcoR expression, synthetized cDNA’s from HT-29 EcoR cells were amplified
by real time qPCR. Reaction mix was set up following the datasheet of SYBR® Green
master mix (Roche). Briefly, it included per sample 5 uL of SYBR® Green, 0.5 uL of
forward and reverse primers (10 uM), 1 uL of cDNA, and 3 pL of H20 (Vfina = 10 yL). Two
different sets of primers were used: EcoR and PUM1 (Annex VII). The PCR reaction
was: 1 cycle of pre-incubation (95°C during 10 minutes), 40 cycles of amplification
divided on denaturalization (95°C during 15 seconds), annealing (60°C during 25
seconds) and extension (72°C during 30 seconds), 1 cycle of melting curve (95°C during
15 seconds and 65°C during 1 minute) and the cooling (40°C during 30 seconds). To
visualize the RT-qPCR products, 10 uL of each sample were run in a 1% agarose gel at
100V during 35 minutes. The correct size bands were monitored by UV light in the

Molecular Imager® Gel Doc™ XR+ System with Image Lab™ Software (Bio-Rad).
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For cDNA’s coming from HT-29 EcoR cells infected with the different shRNAs, reaction
mix was also set up following the datasheet of SYBR® Green master mix (Roche). Briefly,
in the case of normalizer genes (PUM1 and MRPLY), it included per sample 5 pL of
SYBR® Green, 0.5 L of forward and reverse primers (10 uM), 1 uL of cDNA, and 3 pL
of H20. To monitor candidate genes’ expression, 1 uL of pre-designed assays (10 uM)
from IDT™ company was used for each reaction (Annex VII). The PCR reaction was: 1
cycle of pre-incubation (95°C during 10 minutes), 45 cycles of amplification divided on
denaturalization (95°C during 15 seconds), annealing (55°C during 25 seconds) and
extension (72°C during 30 seconds), 1 cycle of melting curve (95°C during 15 seconds

and 65°C during 1 minute) and the cooling (40°C during 30 seconds).

8. PCR and Sanger sequencing

DNA was amplified by PCR using Phusion™ High-Fidelity DNA Polymerase (2 U/uL)
(ThermoFisher Scientific) following manufacturer’s protocol. Briefly, reaction mix
included per sample 50 ng of DNA, 4 uyL GC Buffer (5X) (except for MIS18A gRNA4,
where HF Buffer (5X) was used), 0.4 yL dNTPs (10 mM), 0.5 uL of forward primer and
reverse primers (10 uM) (Annex VII), 0.4 pL Phusion™ High-Fidelity DNA Polymerase
(2 U/uL), and H20O until Vsina of 20 pL. The PCR reaction was: 1 cycle of pre-incubation
(98°C during 3 minutes), 30 cycles of amplification divided on denaturalization (98°C
during 10 seconds), annealing (20 seconds) and extension (72°C), 1 cycle of final
extension (72°C during 5 minutes) and the hold (4°C). Annealing temperatures and

extension times are specified on Table 5.

Gene | gRNA | Annealing Temperature | Extension Time
1 60°C 10 seconds
BRIP1 3 58°C 20 seconds
4 61°C 10 seconds
3 62°C 11 seconds
MIS18A
4 57°C 8 seconds

Table 5. PCR conditions. Annealing temperatures and extension times

used for DNA amplification of the different gRNAs target areas of BRPI1

and MIS18A genes.
5 pL of PCR products correctly amplified were cleaned using ExoSAP-IT™ PCR Product
Cleanup Reagent (ThermoFisher Scientific) following manufacturer's protocol.
Afterwards, 1 uL of 5 uM forward primer (depending on the type of gene knocked-out)
was added and samples were dried at 80°C during 20 minutes. Samples were

sequenced by Sanger sequencing in the genomic unit of CCiTUB.
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9. Co-infection assay of pMSCV-LEPG and pMSCV-LENC vectors
Co-infection assays of pMSCV-LEPG and pMSCV-LENC vectors were performed to
observe when DP cells disappear. The transfection in Plat-E cells was performed as
explained in section 3. HT-29 EcoR cells were seed in 6-well plates at a density of
500.000 cells/well to obtain a confluence of 70% at the moment of infection. The day
after, cells were infected with the individual vectors and in combination (1:1 proportion)
at different concentrations:

e 2X: contained the double amount of viral supernatant than a normal well,
therefore we added 1 mL of viral supernatant of pMSCV-LEPG vector and 1 mL
of viral supernatant of pMSCV-LENC vector.

¢ 1X: contained 500 uL of pMSCV-LEPG viral supernatant and 500 uL of pMSCV-
LENC viral supernatant (Vfina = 1 mL).

Also, viral supernatants of pMSCV-LEPG and pMSCV-LENC vectors were mixed in a
1:3 proportion to try to equilibrate them, as it was always observed that mCherry vector
infected at lower percentage than vector containing GFP. From this stock mix, several
dilutions were made to infect HT-29 EcoR cells (Viina = 1 mL/well):

¢ 1X: contained 1 mL of vector's mix in a 1:3 proportion.

e 2/3 dilution: contained 667 pL of vectors’ mix + 333 pL of media.

e 1/3 dilution: contained 333 pL of vectors’ mix + 667 uL of media.

e 1/6 dilution: contained 167 pL of vectors’ mix + 833 pL of media.

e 1/15 dilution: contained 67 pL of vectors’ mix + 933 pL of media.

In all wells was also added Polybrene (Merck-Sigma Aldrich) at a concentration of 8
Mg/uL. After 4 hours, fresh media up to 3 mL was added on each well. 72 hours post-
infection, cells were analysed by flow cytometry to monitor GFP and mCherry levels as

explained on section 15.

10. Kill curve assays of control vectors

Control vectors that will be used in LOF screening (PMSCV-LENC-Rpa3, pMSCV-LENC-
Myc and pMSCV-LENC-Ren) were tested performing kill curve assays. HT-29 EcoR
cells were seed in 6-well plates at a density of 500.000 cells/well to obtain a confluence
of 70% at the moment of infection. The day after, 1 mL of viral supernatant per well
(produced as explained on section 3) was added in the presence of 8 ug/uL of Polybrene
(Merck-Sigma Aldrich). After 4 hours, fresh media up to 3 mL per well was added. 72
hours post-infection, part of HT-29 EcoR-infected cells were analysed by flow cytometry
to monitor the percentage of mCherry-positive cells; the rest were maintained in culture.

Cells were split every 2-3 days in a 1/3 dilution during 17 days in total; in every split, part
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of infected-cells were analysed by flow cytometry to monitor the evolution of mCherry

levels (section 15).

11. Individual ICsos of 5-Fluorouracil, Oxaliplatin and Irinotecan

Individual I1Csos of 5-FU (provided by the pharmacy of Germans Trias i Pujol Hospital),
OXA (Sanofi) and SN-38 (Merck) in HT-29 EcoR cell line were established by XTT
method (Roche). Briefly, HT-29 EcoR cells were seed in 96-well plates at a density of
1.500 cells/well. The day after, cells were treated with a wide range of doses from each
chemotherapeutic drug (5-FU, OXA or SN-38). 24 hours post-treatment, media was
changed to remove the drugs. 72 hours later, XTT reagent was added following
manufacturer’s protocol. After 6 hours, plates were read at a A = 492 nm in the
spectrophotometer SPECTROstar® Nano (BMG Labtech).

12. Combined IC2 and ICg of FUOX and FUIRI treatments

To achieve the most accurate IC2 and ICgo of the combination of 5-FU + OXA (FUOX)
and 5-FU + SN-38 (FUIRI) in HT-29 EcoR cell line, cells infected with the shRNA library
were seed at a density of 12 million cells per 15 cm dish. The day after, cells were treated
at different dilutions with the combination of the individual ICsos of FUOX and FUIRI:

R Dilution | 16 | 112 | 124 | 148 | 175 | 1100
FUox |_5Fluorouraci (uM) | 1.67 | 083 | 042 | 021 | 013 | o
Oxaliplatin (uM) | 033 | 017 | 0083 | 0042 | 0026 | 0.02
FUIR| | 5-Fluorouracil (uM) | 1.67 | 083 | 042 | 021 | 043 | O
Irinotecan (nM) 0.92 0.46 0.23 0.1 0.073 0.055

Table 6. Determination of FUOX and FUIRI ICz and ICg. Concentration of FUOX and FUIRI
treatments given at different dilutions to HT-29 EcoR cells to set up ICz and 1Cg for the screening.

24 hours post-treatment, media was changed to remove drugs. 72 hours later, part of
the cells were analysed by flow cytometry to measure cell viability (section 13) and, thus,
establish the IC20 and the 1Cg. Remaining cells were seed again in a density of 12 million
per 15 cm dish to start the process explained above again. Four consecutive treatments
were made trying to mimic chemotherapeutic regimes given in the clinics to patients. ICz

and ICg doses were determined after these four rounds of treatments (21 days in total).

13. Cell viability assays
To perform cell viability assays, HT-29 EcoR cells infected with shRNAs or HT-29 KO
clones were seed in 6-well plates at a density of 500.000 cells/well. The day after, they

were treated at different doses with the combination of the individual ICses of FUOX and
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FUIRI (KO clones were only treated with FUIRI). Table 7 shows the chemotherapeutic
doses for HT-29 EcoR cells:

Chemotherapy - 2X 116 1/50 11100
Dilution
5-Fluorouracil (uM) 20 1.67 0.2 0.1
FUOX
Oxaliplatin (uM) 4 0.33 0.04 0.02
5-Fluorouracil (uM) 20 1.67 0.2 0.1
FUIRI
Irinotecan (nM) 11 0.92 0.1 0.055

Table 7. Concentration of FUOX and FUIRI treatments given at different dilutions to HT-29 EcoR and
HT-29 KO cell lines to perform cell viability assays.

24 hours post-treatment, media was changed to remove drugs. 72 hours later, cells were
analysed by flow cytometry to measure cell viability: live cells (stained with DiOC), dead
cells (stained with DAPI) and apoptotic cells (stained with both dyes). Briefly, trypsinized
cells (live cells) were centrifuged at 1.200 rpm during 5 minutes together with the
supernatant (where dead cells remain). The pellet was resuspended in 1 mL of PBS (1X)
and live cells were stained with 5 pyL of DiIOC 10 uM (ThermoFisher Scientific) for 30
minutes at 37°C; then, cells were washed twice with PBS (1X) and dead cells were
stained with DAPI (Merck-Sigma Aldrich) at a final concentration per sample of 3 uM in
1 mL of PBS (1X). Fluorescent levels were measured by flow cytometry as explained on

section 15.

14. Chemotherapeutic treatments with FUOX and FUIRI in the screening

HT-29 EcoR cells infected with the shRNA library were divided in triplicates into three
different conditions: untreated, treated with FUOX, and treated with FUIRI. Cells were
seed in 15 cm dishes at a density of 12 million cells per plate and were biological and
technically independent from now on. Also, control 10 cm dishes were seed (4 million
cells per dish) to monitor live and dead cells by flow cytometry without manipulating the
15 cm plates that should be used for Next Generation Sequencing (NGS). The remaining
cells were all frozen in Recovery™ Cell Culture Freezing Medium (ThermoFisher
Scientific) and stored at -80°C. All conditions were treated four consecutive times during
three weeks following this scheme: 24 hours after seeding the cells, they were treated
with FUOX or FUIRI; 24 hours post-treatment, media was changed to remove the drugs
and cells were left recovering for 72 hours. At this point, the process starts again by
counting and seeding 12 million cells per 15 cm dish; remaining cells of each condition
at the different time points were frozen in Recovery™ Cell Culture Freezing Medium
(ThermoFisher Scientific) and stored at -80°C. The drug doses administered were 0.1
MM of 5-FU and 0.02 uyM of OXA for FUOX treatment whereas FUIRI treatment had a
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concentration of 0.1 uM of 5-FU and 0.055 nM of SN-38. Every time that a cycle of
treatment was finished, control 10 cm dishes were analysed by flow cytometry to monitor
live and dead cells, stained with DIOC and DAPI respectively (section 15), to assure that

the treatments were acting as expected.

15. Cytometry analysis

Fluorescent levels of HT-29 EcoR cells were measured in LSRFortessa SORP Flow
Cytometry (BD Biosciences) at the IGTP facilities. GFP fluorophore of pMSCV-LEPG
vector was excited at a A = 488 nm and emitted at a A = 530 nm £10; mCherry fluorophore
of pMSCV-LENC vector was excited at a A =532 nm and emitted ata A =616 nm £11.5.
Fluorescent levels of DIOC and DAPI from the cell viability assays were measured in
LSRFortessa SORP Flow Cytometry (BD Biosciences) or in the cytometry platform of
CCiTUB by using the Gallios™ Flow Cytometer (Beckman Coulter). DiOC was excited
at a A =488 nm and emitted at a A = 530 nm, and DAPI was excited at a A =405 nm and
emitted at a A =450 nm.

16. DNA extraction and preparation for Next Generation Sequencing by
Solexa Technology

DNA extraction and sample preparation for NGS of the samples from the screening was
performed following a confidential protocol provided by Johannes Zuber’s laboratory, as
samples were sequenced there. First of all, genomic DNA was isolated by a phenol
extraction. Briefly, each cell pellet was resuspended in 400 uL of DNA Extraction Buffer
(10 mM Tris-HCI (pH = 8), 150 mM NaCl and 10 mM EDTA). 4 pL of 10% SDS and 4 pL
of Proteinase K (20 mg/mL) were added per sample and the mixture was incubated
overnight at 55°C. The next day, after centrifuging at maximum speed for 3 minutes at
RT, 400 uL of phenol were added per sample. Mixture was centrifuged at maximum
speed for 8 minutes at RT and top 300 uL were removed from the water phase. Then,
DNA precipitation was performed by adding 1 volume of NaAc 3M (pH = 5.2) and 3
volumes of 100% ethanol (at -20°C), and mixture was left 1 hour at -80°C. Samples were
centrifuged at maximum speed during 30 minutes at 4°C and supernatant was
immediately removed; pellets were washed with 200 uL of 70% ethanol and centrifuged
again 5 minutes at 4°C. Supernatant was removed immediately and pellets were air-
dried for 5 minutes; then, resuspended in 100 uL of Elution Buffer. To facilitate pellet
resuspension, samples were left overnight at -80°C. The day after, 10 cycles of Freeze-

Thawing were done to better resuspend the DNA, passing samples from -80°C to 55°C.
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Afterwards, DNA concentration was quantified at NanoDrop™ 1000 Spectrophotometer
(ThermoFisher Scientific), and final concentrations were adjusted to 0.5 pg/uL.

To verify that samples would amplify correctly and to add a barcode to each sample
(untreated 1, 2 and 3; treated with FUOX 1, 2 and 3; treated with FUIRI 1, 2 and 3), a
PCR test was performed. Briefly, reaction mix included per sample 5 yL of Buffer Il 10X,
0.5 yL of dNTPs (25 mM), 4 uL MgCl, (25 mM), 1.5 pL of barcoded forward primer
p7+Loop (10 pM), 1.5 pL of reverse primer p5+PGK (10 uM) (Annex VII), 0.5 uL of
AmpliTaq Gold™ DNA Polymerase (ThermoFisher Scientific), 1 uL of template DNA (0.5
pg/uL) and 36 L of H20 (Viina = 50 pL). The PCR reaction was: 1 cycle of pre-incubation
(95°C during 10 minutes), 31 cycles of amplification divided on denaturalization (95°C
during 30 seconds), annealing (52°C during 45 seconds) and extension (72°C during 1
minute), 1 cycle to finish the extension (72°C during 7 minutes) and the hold (4°C). To
visualize the PCR products, 5 uL of each sample were run in a 1% agarose gel at 120V
during 30 minutes. The correct size bands (340 bp) were monitored by UV light in the
Molecular Imager® Gel Doc™ XR+ System with Image Lab™ Software (Bio-Rad).

To amplify the shRNA library that contains 7.300 shRNAs in order to have a
representativeness of 1.000 times each shRNA, and taking into account that ideally we
had 1 shRNA/cell, we needed to have on each sample 7.3 million genomes. As 1 cell
contains 6 pg of DNA, we needed 43.8 ug of DNA in total; as our samples were at a
concentration of 0.5 ug/uL and we could only add 1 uL of template DNA per PCR
reaction, 88 PCR reactions needed to be performed in total for each sample to amplify
the whole shRNA library and reach the representativeness that we want. In this way,
each sample reaction was done in a 96-well plate and the reaction mix included per well
the same reagents and amounts of previous step. The PCR reaction was also the same
of previous step. Once the PCR reactions finished, all the PCR products from the same
plate (same sample) were collected and half of them was frozen at -80°C as a back-up.
The rest was column-purified with the FavorPrep™ Gel/PCR Purification Mini Kit
(Favorgen Biotech Corp.) following manufacturer’s protocol, except in step five, on which
centrifugation time was 4.5 minutes instead of 3. Purified products were run in an
agarose gel at 80V for 2 hours to assure that the shRNA library was correctly amplified.
The correct size bands (340 bp) were monitored by UV light in the Molecular Imager®
Gel Doc™ XR+ System with Image Lab™ Software (Bio-Rad), and they were all quickly
cut. Afterwards, they were purified with the FavorPrep™ Gel/PCR Purification Mini Kit
(Favorgen Biotech Corp.) following manufacturer’s protocol, except in step seven, where
the wash step was done twice. At the end, DNA concentration of all samples was
quantified by NanoDrop™ 1000 Spectrophotometer (ThermoFisher Scientific). As DNA

concentration of all samples was correct, they were deeply analysed by 2100
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Bioanalyzer Instrument. It appeared the correct peak at 370 bp in all samples, therefore,

they were sent to sequence by NGS to Johannes Zuber’s laboratory in Vienna.

17. Analysis of NGS data

Sequenced DNA FASTA files were processed using bash commands. Firstly, read
sequences were trimmed to contain the guide strand and barcode sequences, and
counted; the reverse complement sequences of counted reads were aligned to the hEpi9
shRNA library hairpins. Only counts with at least one read count per million (CPM) were
took into account, which is equivalent to a log-CPM value of 0. shRNA hairpin log-CPM
values were normalized by the trimmed mean of M-values method (254); normalized
factors were afterwards used as a scaling factor for the library sizes. At the end, R
programme edgeR was used to calculate log-fold change (logFC) values, counts per
millions and significance values, p-values and false discovery rates (FDR). Only genes
with at least 6 out of 8 hairpins behaving in the same direction were selected and ranked

according to mean, p-value and FDR values.

18. Cloning of the individual shRNAs into a retroviral backbone

After selecting the two best shRNAs that target each gene based on their p-value (Annex
VIIl), they were individually ordered to IDT™ company as 97 bp ultramers. To clone the
individual shRNAs into the retroviral backbone pMSCV-LENC, firstly restriction sites of
EcoRI and Xhol were introduced to the ultramers by PCR. Reaction mix was set up
following the datasheet of Phusion™ High-Fidelity DNA Polymerase (ThermoFisher
Scientific). Briefly, it included per sample 10 uL of Buffer GC (56X), 1 uL of dNTPs (10
mM), 2.5 pL of forward primer 5 miRE-Xhol (10 yM), 2.5 uL of reverse primer 5’ miRE-
EcoRI (10 uM) (Annex VII), 0.5 uL of Phusion™ High-Fidelity DNA Polymerase (2 U/uL),
1 ug of the 97 bp ultramer and H20 until final volume (Viina = 50 pL). PCR reaction was:
1 cycle of pre-incubation (98°C during 30 seconds), 30 cycles of amplification divided on
denaturalization (98°C during 10 seconds), annealing (72°C during 20 seconds) and
extension (72°C during 10 seconds), 1 cycle to finish the extension (72°C during 5
minutes) and the hold (4°C). Successful oligo amplification was confirmed by running 2
uL of the PCR product on 2% agarose gel, which showed a single band at 131 bp. PCR
products were purified with the FavorPrep™ Gel/PCR Purification Mini Kit (Favorgen
Biotech Corp.) following manufacturer’s protocol, except in step four, where the wash
step was done twice, and in step five, where the centrifugation time was 6 minutes
instead of 3. Afterwards, they were digested with EcoRI and Xhol restriction enzymes
(both from ThermoFisher Scientific) during 1 hour at 37°C. Briefly, reaction mix included
per sample 11 pL of Tango Buffer (2X), 0.2 pL of EcoRI (10 U/uL), 0.6 pL of Xhol (10
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U/uL), 40 pL of purified PCR product and 3.2 uL of H2O (Vfinai = 55 uL). Digested shRNAs
were run in a 2% agarose gel and 110 bp bands were obtained. These bands were cut
and gel purified with the FavorPrep™ Gel/PCR Purification Mini Kit (Favorgen Biotech
Corp.) following manufacturer’s protocol, except in step seven, where the wash step was
done twice, and in step eight, where the centrifugation time was 6 minutes instead of 3.
At the end, DNA concentration was measured at NanoDrop™ 1000 Spectrophotometer
(ThermoFisher Scientific).

In parallel, pMSCV-LENC vector was digested with EcoRI and Xhol restriction enzymes
during 1 hour at 37°C. Briefly, reaction mix included 6 uL of Tango Buffer (2X), 0.6 uL of
EcoRI (10 U/uL), 1.8 pL of Xhol (10 U/uL), 3 ug of vector and H20 until final volume (Viinal
= 30 pL). To avoid re-ligation, pPMSCV-LENC vector was treated afterwards with a Calf
Intestinal Phosphatase (CIP; New England Biolabs) during 30 minutes at 37°C. The
reaction mix included 4 pL of CutSmart Buffer (10X), 6 U of CIP (1 pyL) and 5 pL of H20.
Digested vector was run in a 2% agarose gel and a 8 kb band was obtained. This band
was cut and gel purified with the FavorPrep™ Gel/PCR Purification Mini Kit (Favorgen
Biotech Corp.) following manufacturer’s protocol, except in step seven, where the wash
step was done twice, and in step eight, where the centrifugation time was 6 minutes
instead of 3. At the end, DNA concentration was measured at NanoDrop™ 1000
Spectrophotometer (ThermoFisher Scientific).

Ligation of each individual shRNA into the backbone was done with a T4 DNA Ligase
(ThermoFisher Scientific) following manufacturer’s protocol. Briefly, reaction mix
included per sample 2 pL of Buffer (10X), 100 ng of pMSCV-LENC vector, 5.25 pL of
insert, 0.5 L of T4 DNA Ligase (5 U/uL) and H2O until final volume (Vfina = 20 pL). The
reactions were incubated overnight at 16°C. The next day, 5 yL of each ligation reaction
were transformed into 50 pL of StbI3 bacteria by a heat-shock method. Briefly, mixtures
were incubated on ice for 30 minutes, 45 seconds at 42°C and back on ice for 2 minutes.
Then, 1 mL of pre-warmed SOC media was added per sample and bacteria were left
recovering for 1 hour at 37°C with shacking (300 rpm). Afterwards, 200 pL of each
reaction mixture were spread in LB plates with ampicillin, that were growing overnight at
37°C. The day after, 10 colonies per each shRNA were individually pick up and put to
grow in culture tubes with 5 mL of LB media + 5 pyL of ampicillin (100 pg/mL) overnight
at 37°C. 12 hours later, minipreps were performed to purify the plasmids using the
NucleoSpin® Plasmid DNA Purification EasyPure Kit (Macherey-Nagel) following
manufacturer’s protocol. To verify that the shRNAs were correctly cloned into pMSCV-
LENC vector, all minipreps were sent to sequence to GATC Services (Eurofins

Genomics). Sequencing reactions included per sample 500 ng of plasmid, 2.5 pL of ZUB-
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SEQ-SH primer at 10 yM (Annex VII) and H2O until final volume (Vfina = 10 pL). The

insertions were checked by CLC Sequence Viewer 6 software.

19. Total protein extraction and quantification

For HT-29 EcoR cells infected with shRNAs, total protein was extracted from dry cell
pellets stored at -20°C. Pellets were resuspended in 100 yL approximately (depending
on pellet size) of RIPA buffer (for a Viina of 5 mL contained 3.88 mL PBS (1X), 500 yL
Sodium deoxycholate (0.5%), 400 uL PMSF protease inhibitors (25X), 100 yL Sodium
Fluoride (NaF; 2.5 M), 50 yL SDS (10%), 50 uL NP-40, 10 yL EDTA (0.5 M) and 10 pL
Sodium Orthovanadate (NasVOs; 2.5 M)) and homogenized with a low-intensity
sonicator. For KO clones, pellets were resuspended in 60 uL approximately (depending
on the size) of another type of RIPA buffer (for a Viina of 50 mL contained 40 mL milliQ
H20, 5 mL Sodium deoxycholate (10%), 500 yL SDS (10%), 500 uL NP-40, 2.5 mL
HEPES (1 M), 1.5 mL NaCl (5 M), PMSF (250X; 1/250 dilution), Leupeptin (10 mg/mL;
1/1.000 dilution), Aprotinin (10 mg/mL; 1/1.000 dilution) and lodoacetamide (86 mg/mL;
1/1.000 dilution)) and homogenized with a low-intensity sonicator.

In both cases, samples were incubated with RIPA on ice (4°C) for 15 minutes and
centrifuged afterwards at highest speed (13.000 rpm) during 15 minutes. Total proteins
are present in the supernatant that appears after centrifugation. The quantification of the
protein concentration of these samples was done using Pierce™ BCA Protein Assay Kit

(ThermoFisher Scientific) following manufacturer’s protocol.

20. Western Blot

During this thesis, two type of protocols were used to perform Western Blot. On one
hand, a protocol based on the NUPAGE™ system (ThermoFisher Scientific) for the
electrophoresis and on the LI-COR Odissey Imaging System to block, incubate with
secondary antibody and reveal the membranes. Here, protein samples were prepared
by mixing 11.25 yL NuPAGE™ LDS Sample Buffer (4X), 50 ug of protein, 4.5 uL of
Reductor Agent Novex™ NuPAGE™ (10X) and H20 (Viina = 45 pL), and denatured at
95°C during 5 minutes. Denatured samples were charged in NUPAGE™ 8 or 10% Bis-
Tris Midi Protein Gels (1.0 mm). Electrophoresis tray has to be filled with 1X MOPS
Buffer (pH = 7.7). Electrophoresis was performed at 200V during 1 hour. Dry
transference was performed in PVDF membranes using the iBlot 2 Dry Blotting System
(ThermoFisher Scientific) following manufacturer’s protocol. Blocking of the membranes
was done during 1 hour at RT in Intercept® (TBS) Blocking Buffer (LI-COR). Incubation
of the membranes with the primary antibody (Table 8) was done overnight at 4°C diluting
the antibody in Intercept® (TBS) Blocking Buffer (LI-COR). Membranes were washed 3
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times of 5 minutes each one in Intercept® (TBS) Blocking Buffer (LI-COR), and then
incubated with the secondary antibody (Table 8) at RT during 45 minutes in the dark.
Membranes were washed 3 times of 5 minutes each one in Intercept® (TBS) Blocking
Buffer (LI-COR), and then revealed in the LI-COR Odyssey 9120 Digital Imaging System.

On the other hand, the second protocol used was the classic. Briefly, protein samples
were prepared by mixing 8.33 pL Laemmli Buffer (3X), 50 ug of protein and RIPA buffer
(Vfinat = 20 pL), and denatured at 95°C during 5 minutes; in the case of histone proteins,
samples were prepared by mixing 80 uL Laemmli Buffer (3X) with 160 pL of histone
proteins (Viina = 240 pL), and denatured at 95°C during 5 minutes. Denatured samples
were charged in 8 or 10% Acrylamide Gels (1.5 mm) for KO clones and 50uL/well of
histone proteins’ samples were charged in 12% Acrylamide Gels (1.5 mm).
Electrophoresis tray has to be filled with 1X SDS-PAGE Buffer; electrophoresis was
performed at 145V during 1.5 hours. Wet transference was performed in PVDF
membranes during 75 minutes at 100V; the tray has to be filled with 1X Transfer Buffer.
Blocking of the membranes was done during 30 minutes at RT in StartingBlock™ (TBS)
Blocking Buffer (ThermoFisher Scientific). Incubation of the membranes with the primary
antibody (Table 8) was done overnight at 4°C diluting the antibody in TBS-T (0.05%).
Membranes were washed 3 times of 5 minutes each one in TBS-T (0.05%), and then
incubated with the secondary antibody (Table 8) at RT during 1.5 hours. Membranes
were washed 3 times of 5 minutes each one in TBS-T (0.05%) and then revealed in the
Amersham™ Imager 680 system using ECL™ Western Blotting Reagents (Amersham™
— Sigma Aldrich (Merck)). For histone proteins, to normalize the result, total H2A.X levels
had to be evaluated, which is a protein of the same size as y-H2A.X; for this reason,
membranes were stripped using the ReBlot Plus Mild Antibody Stripping Solution 10X
(Merck-Millipore) following manufacturer’s protocol. Membranes were blocked again
during 30 minutes at RT in StartingBlock™ (TBS) Blocking Buffer (ThermoFisher
Scientific) and incubated with the primary antibody (Table 8) overnight at 4°C diluting the
antibody in TBS-T (0.05%). Membranes were washed 3 times of 5 minutes each one in
TBS-T (0.05%), and then incubated with the secondary antibody (Table 8) at RT during
1.5 hours. Membranes were washed 3 times of 5 minutes each one in TBS-T (0.05%)
and then revealed in the Amersham™ Imager 680 system using ECL™ Western Blotting

Reagents (Amersham™ — Sigma Aldrich (Merck)).
To be able to plot WB results in graphs, the bands were quantified by ImageJ. Briefly, in
the pipeline used, images were transformed to 8-bit (black & white). Then, a rectangle

that contained the biggest band of the image was made and saved; the intensity mean
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of all the bands was measured by putting this square over the band and pressing “3+M”.
This process was repeated for the normalizer images and also was made in the
background part of each image, where there was no band. All the values were saved in
an Excel file where firstly was created the “inverted values” column by subtracting “255
— Mean value”; afterwards, a “net values” column was created by subtracting the values
of our bands of interest minus the values of the background from the same image. Lastly,
net values of our bands of interest were divided into net values of normalizer bands to

obtain a relative protein level quantification.

All the antibodies used in WBs are specified in Table 8:

Gene Brand Reference Type Dilution Protocol
a-Tubulin Sig(r;\‘ﬂaefgg)r N oot | Primary | 120000 | TASEY
B—Actin Sig(r;\‘ﬂaefgg)r ich A3854 Primary | 1/20.000 Classic
y—H2A X (M“ﬁ'ﬁégfe) Clor?eE’J'g?/S% .| Primary | 1/1.000 Classic
Anti-mouse LI-COR 926-32210 | Secondary | 1/10.000 | "¢TASEY
Anti-rabbit LI-COR 926-68071 | Secondary | 1/7.500 '\é(uff‘ggg

Anti-rabbit Bio-Rad 1721019 Secondary | 1/10.000 Classic
BRIP1 Abcam ab180853 Primary 1/1.000 Both
H2A.X Abcam ab11175 Primary 1/5.000 Classic
MIS18A CTe” Signaling 69625 Primary | 1/1.000 Both
echnology
PBRMH1 Cfgcﬁfggggg 91894 Primary | 1/1.000 '\é(uff‘ggg
SMARCA4 Cfgcﬁfggggg 49360 Primary | 1/1.000 Both

Table 8. Antibodies. Characteristics of all the antibodies used in this thesis.

21. Amplification of the CRISPR-Cas9 gRNAs

The three different DNA of gRNAs from BRIP1, MIS18A, PBRM1 and SMARCA4 genes,
together with the control non-target gRNA (Annex Ill), were ordered to GenScript®
company and arrived at a concentration of 0.2 pg/uL. As it was not enough to perform

the lentiviral transfection (section 2), each gRNA was transformed into competent
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bacteria to expand them. Briefly, 50 ng of each gRNA were transformed into 50 pL of
competent bacteria by a heat-shock method: mixtures were incubated on ice for 30
minutes, 45 seconds at 42°C and back on ice for 2 minutes. Then, 1 mL of pre-warmed
SOC media was added per sample and bacteria were left recovering for 1 hour at 37°C
with shacking (300 rpm). Afterwards, 100 pL of each reaction mixture were spread in LB
plates with ampicillin, that were growing overnight at 37°C. The day after, 2 colonies per
each gRNA were individually pick up and put to grow in culture tubes with 5 mL of LB
media + 5 pL of ampicillin (100 ug/mL) overnight at 37°C. 12 hours later, minipreps were
performed to purify the plasmids using the QIAprep Spin Miniprep Kit (QIAGEN)

following manufacturer’s protocol.

22. Single-cell sorting and clonal expansion of HT-29-transduced KO cells
HT-29-transduced KO cells selected with puromycin were trypsinized to perform a
single-cell sorting in the cytometry platform of CCiTUB by using the MoFlo Astrios EQ
Sorter (Beckman Coulter). Three 96-well plates were seed for each gene knock-out
condition; after 4 hours post-sorting, all wells were analysed in the microscope and
around 50% of wells contained only one cell. To expand single-cell populations of the
different KOs, media was regularly changed until it was observed an 80% of confluence
by microscope. At this point, 48 clones of each KO condition were randomly selected,
trypsinized and seed into 24-well plates; again, media was regularly changed until it was
observed an 80% of confluence. Then, all clones (90% of them survived) were
trypsinized and seed into 6-well plates. Cells were maintained in 6-well plates culture
until cell pellets were collected to further extract DNA and protein; remaining cells of all
clones were frozen in Recovery™ Cell Culture Freezing Medium (ThermoFisher
Scientific) and stored at -80°C.

23. Treatment of KO cells with DNA damaging agents

In our case, since chemotherapy is a DNA damaging agent, we treated HT-29 KO cells
at different concentrations of FUIRI to further analyse the phosphorylation levels of
H2A.X. Briefly, infected HT-29 KO cells were seed in 6-well plates at a density of 500.000
cells/well. The day after, they were treated at different doses with the combination of the
individual ICsps of FUIRI. Table 9 shows the chemotherapeutic doses for HT-29 KO cells:

Chemotherapy
Dilution 2X 1/6
5-Fluorouracil (uM) 20 1.67
FUIRI
Irinotecan (nM) 11 0.92

Table 9. Concentration of FUIRI given at different dilutions to
HT-29 KO cells to induce DNA damage.
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24 hours post-treatment, media was changed to remove drugs. 72 hours later, cells were

collected in pellets to perform the acid extraction of histone proteins (section 24).

24. Acid extraction of histone proteins

To evaluate DNA damage through phosphorylated H2A.X, histone proteins have to be
extracted by an acid method. Firstly, total protein extraction was performed as explained
on section 19. Total proteins present in the supernatant that appeared after
centrifugation were kept at -80°C; histone proteins remained in the pellet, that was
resuspended in 100 uL of HCI (0.2 M) and incubated in rotation at 4°C during 15 minutes.
Afterwards, samples were neutralized by adding 60 uL of Tris-HCI (1 M; pH = 8).

25. Colony formation assay

Since colony formation assays aimed to identify the capacity of isolated KO clones to
expand, they have to be seed at really low density by counting cells and making several
dilutions in order to accurate the number of cells seed. In this way, infected HT-29 KO
cells were seed in 6-well plates at a density of 500 cells/well. The day after, they were
treated at different doses with the combination of the individual ICses of FUIRI. Table 10

shows the chemotherapeutic doses for HT-29 KO cells:

Chemotherapy 2X 116 110
Dilution
5-Fluorouracil (uM) 20 1.67 1
FUIRI
Irinotecan (nM) 11 0.92 0.55

Table 10. Concentration of FUIRI given at different dilutions to HT-29 KO
cells in the colony formation assay.

24 hours post-treatment, media was changed to remove drugs. 72 hours later, media
was changed again and from now on media was regularly changed every 2-3 days during
10 days. Afterwards, media was removed and colonies were washed with PBS (1X).
Colonies were fixed by adding 2 mL/well of a methanol and acetic acid solution (3:1
proportion) during 10 minutes; afterwards, cells were washed with PBS (1X). Staining of
colonies was performed by adding 2 mL/well of a 0.5% crystal violet solution during 10
minutes; then, cells were washed 3 times with PBS (1X).

Stained plates were scanned and colonies quantified through Imaged. The pipeline
followed included transforming the image to 8-bit (black and white). Afterwards, a circle

was created surrounding the desired well and was cut by pressing “Edit > Clear
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Outside”; then, the threshold between real colonies and background needed to be
adjusted by pressing “Image - Adjust - Threshold”. Afterwards, individual colonies
were detected by pressing “Process - Binary - Watershed”; finally the number of
colonies was obtained by pressing “Analyze > Analyze Particles”. Colony area and
intensity percentages were quantified in Imaged using the plugin ColonyArea and
following the pipeline developed by Guzman et al. (255). Briefly, wells were selected and
cropped from the image and converted to 8-bit images; then, threshold of each well was
detected to eliminate background. Afterwards, colony area and intensity were measured

on each well.

26. NanoString expression data analysis

Gene expression raw data from a customized panel of 25 genes (Annex IV) generated
by NanoString technology in 96 CRC primary tumor samples was firstly analysed with
their own software (nSolver 4.0 Analysis Software). It was followed their pipeline to
assure the quality of the data and normalize it according to internal and external controls
(housekeeping genes) included in the sequencing. Final expression levels of each
patient were analysed by PASW® Statistics (18.0 version) through SPSS to obtain

Kaplan-Meier curves of PFS and OS with their log-rank values.
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ENRICHED SELECTED GENES DROP-OUT SELECTED GENES
IN FUOX SCREENING IN FUOX SCREENING
GENE | hits (>0) | mean (>0) GENE hits (<0) mean (<0)
PBRM1 8 0,55 ATR 7 -0,81
RNF168 7 0,46 TRIM28 6 -0,76
UHRF2 6 0,40 EDFA1 7 -0,64
STK31 7 0,33 GLYR1 6 -0,61
G2E3 6 0,52 METTL12 6 -0,56
NOP2 6 0,62 PARG 7 -0,54
BRD7 7 0,40 DHX29 6 -0,53
HPRT1 7 0,62 BRIP1 6 -0,52
SMARCB1 8 0,63 DDX52 6 -0,51
HDAC9 6 0,41 PHF23 6 -0,50
ARID2 7 0,54 TBL1XR1 6 -0,49
DDX43 6 0,39 BRCA1 6 -0,46
RCORS3 7 0,49 SMYD4 6 -0,44
ARID1A 7 0,56 AICDA 6 -0,44
SMARCA4 6 0,62 RPS6KA5 7 -0,42
KEAP1 6 0,64 SETD2 7 -0,41
PADI4 7 0,56 EP400 7 -0,39
ERCC6 6 0,38 PRKCD 7 -0,36
FMR1 8 0,42 NCOR1 6 -0,36
BRD1 6 0,43 APOBEC2 7 -0,34
RING1 7 0,47 FANCM 6 -0,33
FTSJ3 6 0,48 SMARCA5 7 -0,33
HDGFL1 6 0,51 ACTR5 6 -0,32
HUWEA1 7 0,37 TOX4 6 -0,32
UBE3A 6 0,43 TDRD5 6 -0,31
PHC3 6 -0,30
SMN2 7 -0,30
PAX9 6 -0,29
MORF4L2 6 -0,29
METTL21D 6 -0,23

Table 16. Selected enriched (left) and drop-out (right) genes found in the screening after treating the
cells with FUOX. Table presenting the final lists of selected genes after filtering the number of shRNAs that
behave in the same direction (equal or over 6) and ordered by mean.
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ENRICHED SELECTED GENES IN
FUIRI SCREENING

DROP-OUT SELECTED GENES IN
FUIRI SCREENING

GENE hits (<0) | mean (<0)
ATR 7 -0,95
SMARCA5 6 -0,80
ATM 6 -0,70
ATXN7L3 6 -0,68
TOX4 6 -0,58
BRD4 7 -0,57
ING3 6 -0,55
MIS18A 7 -0,54
SCMH1 6 -0,53
TBL1XR1 7 -0,51
TADA3 6 -0,51
PARG 7 -0,49
FBXL19 6 -0,45
KDM5A 6 -0,43
PRKAA1 7 -0,42
BRCA1 6 -0,42
GLYR1 7 -0,41
DHX35 7 -0,41
PARP14 6 -0,37
CDK2AP1 6 -0,37
TRIM33 6 -0,36
MECOM 6 -0,35
BRIP1 6 -0,34
INTS12 6 -0,31
AFF4 7 -0,28
MORF4L2 6 -0,23

GENE hits (>0) | mean (>0)
SMARCB1 7 0,84
SUV39H1 6 0,65

PBRM1 8 0,65

SOX15 7 0,55
SMARCA4 7 0,55

KDM4A 6 0,53

ARID1A 7 0,52

ARID2 7 0,51

KAT2A 6 0,50

LMNB2 7 0,49
SMARCE1 6 0,48

BRD7 6 0,47

MIER2 7 0,47

PADI4 7 0,46

PARP9 6 0,46

UBE3A 6 0,44

EYA2 6 0,44
DDX1 6 0,43
PHRF1 6 0,43
TSSK6 6 0,43
FBXO10 8 0,40
GADDA45A 6 0,40

BANP 7 0,40

ERCC6 6 0,37

UBE2N 6 0,37

RNF217 6 0,34
UBR1 6 0,30

PHF14 7 0,28

SP140L 6 0,28
ZCWPW2 6 0,26

Table 17. Selected enriched (left) and drop-out (right) genes found in the screening after treating the
cells with FUIRI. Table presenting the final lists of selected genes after filtering the number of shRNAs that
behave in the same direction (equal or over 6) and ordered by mean.
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lll. Sequences of the CRISPR-Cas9 guide RNAs

e | TN | aseres |
Control Gﬁ?gg;é?ﬁﬂ&ga%i%%a ACGGAGGCTAAGCGTCGCAA -
gRNAT / crRNA1 3 TCACTTACGCCCTCATCTGC-5 Exon 4
BRIP1 gRNA3 / crRNA3 3 TTCATCATAGCAAGCTGTGA-5' Exon 2
gRNA4 / crRNA4 3_TGCTAAAGCAGAACAAAGTA-5' Exon 3
gRNAT / crRNA1 3_CACCGACGCGTCTTCGCTCA-5' Exon 1
MIS18A gRNA3 / crRNA3 5_CCTTGAGACTTTGTGCTGCG-3' Exon 3
gRNA4 / crRNA4 5_GAAGCTATCCAAACGTGAAA-3 Exon 2
gRNAT / crRNA1 5_TAATACCATCCGAGACTATA-3 Exon 3
PBRM1 gRNA2 / crRNA2 5_CAAACTCATTTCTTGTTCGA-3" Exon 5
gRNA3 / crRNA3 3_GAAACCACTTCATAATAGTC-5 Exon 4
gRNAT / crRNA1 3_.CTGGCCGAGGAGTTCCGCCC-5' Exon 1
SMARCA4 gRNA2 / crRNA2 3_CATCCCGGGGGGCACGCCCG-5' Exon 4
gRNA3 / crRNA3 3_CCTGTTGCGGACACCGAGGG-5' Exon 3

Table 20. CRISPR-Cas9 gRNAs. Sequences of all the gRNAs used for developing KO clones by CRISPR-
Cas9 technology with the exon location on the genome.
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IV. Customized panel of genes analyzed by NanoString

Type of gene Name
ATR
Sensitizer BRCAT
Common BRIP1
MORF4L2
PARG
Sensitizer MIST8A
FUIRI SMARCA5
TRIM33
Resistant
FUOX RERE
BRD7
DPY30
Resistant HUWE1
FUIRI PBRM1
SMARCA4
TDRD7
CXCL9
CXCL10
CXCL16
Immune HLA-DRA
Response 1DO1
IFNG
NTE5
STAT1
Others PARP1
ACTB
Housekeeping HPRT1
TUBB

Table 21. Genes of the customized panel analyzed by
NanoString. In this panel were included sensitizer candidate
genes common for both chemotherapies and only specific of
FUIRI, resistant candidate genes common in both
chemotherapies and only specific of FUOX and FUIRI, several
genes related with the immune response, and PARP1 since its
link with PARG. Three housekeeping genes were included:
ACTB, HPRT1 and TUBB. In total, 28 genes were analyzed.
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V. Western Blot of BRIP1 KO clones.

HT—29
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BRIP1 [N 8 S . e w141 kDa
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BAC | o e ———————e

Figure 45. Western Blot of some BRIP1 KO clones. Protein expression of parental HT-29 cell line, two
control gRNAs (C1 and C2) and some expanded BRIP1 KO clones.
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VI. Vectors.
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Figure 46. SnapGene circular maps of all the vectors used in this thesis. (A) pMSCV-LEPG vector
used to monitor EcoR functionality and in co-infection assays. (B) pMSCV-LENC vector used to monitor
EcoR functionality, in co-infection assays, and in kill curve assays. (C) pLentiCRISPR v2 backbone
where all the different gRNAs were cloned; used to generate KO cell lines. (D) pMSCV-LENC vector
indicating the area were all the individual shRNAs were cloned in the validation step; also, shRNAs of

control vectors were cloned in this area (p(MSCV-LENC-Rpa3, pMSCV-LENC-Myc and pMSCV-LENC-
Ren).
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VII. Sequences of primers

EcoR RECEPTOR
Name Sense Sequence (5' - 3')
EcoR Forward GGG TTT ATG CCC TTT GGA TT
receptor  Reverse CAC GCC AAA GTA CGC TAT GA

CLONING OF INDIVIDUAL shRNAs

Name Sense Sequence (5' - 3')

miRE-Xhol  Forward TAC AAT ACT CGA GAAGGT ATATTG CTG TTG ACAGTG AGC G

miRE-EcoRl Reverse TTA GAT GAATTC TAG CCC CTT GAA GTC CGA GGC AGT AGG CA

ZUB-SEQ-SH Forward TGT TTG AAT GAG GCT TCAGTAC

DNA PREPARATION FOR NGS

Name Sense Sequence (5' - 3')
p7+Loop+
Untreated 1 Forward  CAA GCA GAA GAC GGC ATA CGA CAG ATA GTG AAG CCA CAG ATG T
p7+Loop+
Untrentayp Forward  CAA GCA GAA GAC GGC ATA CGA ATC CTA GTG AAG CCA CAG ATG T
p7+Loop+
Untreated 3 Forward  CAA GCA GAA GAC GGC ATA CGA AAT GTA GTG AAG CCA CAG ATG T
P7+Loop*  £oard  CAA GCA GAA GAC GGC ATA CGA ACT CTA GTG AAG CCA CAG ATG T
FUOX 1 orwar
p7+Loop+
FUOX >  Forward CAA GCA GAA GAC GGC ATA CGA TGT TTA GTG AAG CCA CAG ATG T
P7T+LOOP* L vard CAA GCA GAA GAC GGC ATA CGA TCG ATA GTG AAG CCA CAG ATG T
FUOX 3 orwar
p7+Loop+
FUIRL1 ~ Forward CAA GCA GAA GAC GGC ATA CGA GAG TTA GTG AAG CCA CAG ATG T
p7+Loop+
FUIRlo  Forward CAA GCA GAA GAC GGC ATA CGA ATA GTA GTG AAG CCA CAG ATG T
p7+Loop+
FUIRI3  Forward CAA GCA GAA GAC GGC ATA CGA CTC ATA GTG AAG CCA CAG ATG T

p5+PGK Reverse  AAT GAT ACG GCG ACC ACC GAT GGA TGT GGA ATG TGT GCG AGG

RT-qPCR OF INDIVIDUAL shRNAs

Name Sense Sequence (5' - 3')
ACTR5  Forward CTG TTG GAG ATG AGA CCC TTC
IDT™ assay Reverse TTC ATA CTC TTT CCT GGT GAT CC
ARID2  Forward ACT AAA CAC ATC CGA CTA ACA GC
IDT™ assay Reverse CAT GTT ACT AAT GGC TAG CAC TG
ATR Forward GAA GAT GAT GAC CAC ACT GAG A
IDT™ assay Reverse CCC AGA CAA GCA TGA TCC AG
BRD7 Forward TGA AGG AAT CTG GAG GAA AGC
IDT™ assay Reverse CAG GAT GGA GAA GTC CCA AC
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BRIP1 Forward CTC CGC TTT ATT TGC TCT CAG A
IDT™ assay Reverse TGC TTT CCTGTT TAT TTC AGA TTC C
CDK2AP1 Forward AAG GAG ATC AGACCCACGTA
IDT™ assay Reverse AAC AAG GCA GCT AGG ATC TG
DPY30 Forward TGC CTACCT GGATCAGACA
IDT™ assay Reverse CGA TCT TCA AAC TGT GCC TTG
INOSOD Forward CCA AGT ATA ACA GCC AACGC
IDT™ assay Reverse AGC CAA GTA CCT GCA AGT G
MIS18A Forward AGC CAG GAG GAC ACC AA
IDT™ assay Reverse ACG CAA CCATTT TCCTTTTCAC
MORF4L2 Forward GTG CGT ATT TGC CTG AAG AAG
IDT™ assay Reverse TCC TCA CTA TAC AGC AAA CTT AGC
PARG Forward TGC TGA GAC ATA TCG TTG GTC
IDT™ assay Reverse GAG GTA GCG TCT GAA GTG AA
PARP14 Forward ACT TGA ACA CAT ACA CTG CCA
IDT™ assay Reverse TTC TGC TGC TTC ATATCACTC C
PAX9 Forward GGA AGC CAA GTACGG TCA G
IDT™ assay Reverse GTC CAG CAA CAT AAC CAG AAG
PBRM1 Forward CTG AAG GTT GGC GAC TGT
IDT™ assay Reverse AGC TCC ATC TCG AAC CCA TA
PHC3 Forward TGC CAT TTC AGA CTC TTC CTC
IDT™ assay Reverse CTT CTT CAC ACA CAT CTT CTA CCT
RERE Forward CAA CAT GAG GAA CTG GTC TGG
IDT™ assay Reverse TCT GTA GAG CCT CCA TCA CA
SETD2?  Forward CAG AGT CAG CAT CAG AGC AG
IDT™ assay Reverse ACC CTC ACC ATT TTC CAT CA
SMARCA4 Forward CAT CAC TGA GAA GCT GGA GAAG
IDT™ assay Reverse GCT GGA GAA TGC TAT TGA GGT
SMARCA5 Forward GTG GTC TTG GCA TCA ATC TTG
IDT™ assay Reverse AAA GCG GAA CAC TCT GAC TG
TDRD5 Forward GCTTCC AGC TCAGGC TATC
IDT™ assay Reverse CCA TCT ACA TAT TCA TCC ACT ACC C
TRIM28 Forward GTC CTG GCA CTA ACT CAA CAG
IDT™ assay Reverse TTG AGT AGG GAT CAT CTC CTG A
TRIM33 Forward TCC CAA CAC TAC CAAATC CC
IDT™ assay Reverse CTG CCT GAG CTACTT CTG AATC
RT-qPCR OF KNOCK-OUT CLONES
Name Sense Sequence (5' - 3')
BRIP1 Forward TGACCAGCTTGTCCAGGTTT
gRNA1 Reverse TTC AGA AGG TGG TGT GCT TG
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BRIP1 Forward GGT TTT CTT TGT AAG GCG TGT C
gRNA3  Reverse TCT TCC AAG TGA ACC CAG AAA
BRIP1 Forward TGC AAT CTC ACT TTT CCT TGC
gRNA4  Reverse ACA GCA TGG CTG AAC CAG TC
MIS18A  Forward CCT AGT GTG GTC AGAATAGCAT
gRNA3  Reverse GTT CTG ACAATT CCG TGC CT
MIS18A  Forward TGT GTG TTT GAC TTT GGG CT
gRNA4  Reverse ACT GAT ATA TGC GAA CGA CTG A
HOUSEKEEPING GENES
Name Sense Sequence (5' - 3')
SAPDH Forward TCG ACA GTC AGC CGC ATC T
Reverse CTAGCCTCCCGG GTTTCTCT
Forward CAG TTT CTG GGG ATT TGC AT
MRPL Reverse TAT TCA GGA AGG GCA TCT CG
Forward CGG TCG TCC TGA GGA TAA AA
PUMT Reverse CGT ACG TGA GGC GTG AGT AA

Table 22. Primers. Sequences of all the primers used in this thesis.
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