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Abstract
It has long been established that the brain is the most important element in the

nervous system which functions as a command and control junction for the nervous.
The nervous system then, in turn, regulates and supervises the biological, biochemical,
biomechanical and social functions of an organism. The brain itself is made of billions
of neural cells, the neurons, which are capable of communicating with each other.
These neurons themselves have limited information processing capacity, however, they
can form neuronal networks capable of more complex processing. The brain relies on
sensory inputs of different kinds (stimuli). The inputs of the sensors are processed
by neurons, a response is calculated and is carried upon by different organs. This
stimulus-response mechanism offers an interesting research challenge and has been the
subject of research for decades. Not only neuroscientists but behavioural scientists are
also interested in this area of research because understanding this stimulus-response
mechanism can lead to a better understanding of neuro-diseases as well as better
behavioural analysis.

The typical setup employed by neuroscientists is to study the response of labora-
tory animals to a stimulus while recording their neural activity at the same time. With
the advent of calcium imaging technology, researchers can now study neural activity
at sub-cellular resolutions in vivo. Similarly, recording the behaviour of laboratory
animals is also becoming cheaper. Although it is now easier to record behavioural
data and neural data, yet this data offers its own set of challenges. The biggest chal-
lenge is the annotation of the data due to its sheer volume. A traditional approach is
to annotate the data manually, frame by frame. In the case of behavioural data, the
manual annotation is done by looking at each frame and tracing the animals while
for neural data, the annotation is done by a trained neuroscientist. In this research,
we are proposing automated tools based on deep learning which can help behavioural
data and neural data. These tools will help neuroscientists annotate and analyze the
data they acquire in an automated and reliable way.

We have worked with locomotion data as the behavioural dataset and neural
activity data acquired in vivo. The behavioural data is acquired by recording head-
fixed mice running on a spherical treadmill from frontal and lateral angles. We
have manually annotated this dataset by tracing limbs of the mice in each frame,
thus generating locomotion masks. For neural activity data, we have worked with
open-source datasets which contain annotations in the form of spatial locations of all
the neurons visible in the field of view. For behavioural/locomotion annotation, we
trained a two-stage model; the first stage is a 3-dimensional Convolutional Neural
Network (3D-CNN) which extracts features from the videos and the second stage
is a Long Short Term Memory network (LSTM) which infers if a region belongs to
the limb or not. The model we designed is different from the state of the art in
the sense that it explicitly encodes the temporal information available in the videos.
We trained the models to detect the locations of limbs in each frame. For neural
activity detection, we created a dense segmentation model made of Convolutional
LSTM blocks which can process spatio-temporal information and trained it to detect
and segment neurons visible in the field of view. This model is better than the state
of the art in the sense that it is completely end-to-end and requires no human-in-the-
loop supervision. We validated our results by comparing them to the ground truth
and observed that for both behavioural and neural data, we got results comparable
to the state of the art.
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Resumen
Se ha establecido desde hace tiempo que el cerebro es el elemento más importante

del sistema nervioso que funciona como un centro de mando y control para el sistema
nervioso. El sistema nervioso, a su vez, regula y supervisa las funciones biológicas,
bioquímicas, biomecánicas y sociales de un organismo. El propio cerebro está formado
por miles de millones de células, las neuronas, que son capaces de comunicarse entre
sí. Estas neuronas tienen una capacidad individual limitada de procesamiento de in-
formación, sin embargo, pueden formar redes neuronales capaces de un procesamiento
más complejo. El cerebro depende de entradas sensoriales de diferentes tipos (estí-
mulos). Las entradas de los sensores son procesadas por las neuronas, se calcula una
respuesta y esta se ejecuta en los diferentes órganos. Este mecanismo de estímulo-
respuesta ofrece un interesante desafío de investigación y ha sido objeto de estudio
durante décadas. No sólo los neurocientíficos, sino también los científicos del com-
portamiento están interesados en esta área de investigación porque la comprensión
de este mecanismo de estímulo-respuesta puede conducir a una mejor comprensión
de las enfermedades neurológicas, así como a un mejor análisis del comportamiento.

La configuración típica empleada por los neurocientíficos consiste en estudiar la
respuesta de los animales de laboratorio a un estímulo y registrar al mismo tiempo su
actividad neuronal. Con la llegada de la tecnología de imágenes del calcio, los inves-
tigadores pueden ahora estudiar la actividad neuronal a resoluciones subcelulares in
vivo. Del mismo modo, el registro del comportamiento de los animales de laboratorio
también se está volviendo más asequible. Aunque ahora es más fácil registrar los datos
del comportamiento y los datos neuronales„ estos datos ofrecen su propio conjunto
de desafíos. El mayor desafío es la anotación de los datos debido a su gran volumen.
Un enfoque tradicional es anotar los datos manualmente, fotograma a fotograma. En
el caso de los datos sobre el comportamiento, la anotación manual se hace mirando
cada fotograma y rastreando los animales, mientras que para los datos neuronales, la
anotación la hace un neurocientífico capacitado. En esta investigación, proponemos
herramientas automatizadas basadas en el aprendizaje profundo que pueden ayudar
a procesar los datos de comportamiento y los datos neuronales.

Hemos trabajado con datos de comportamiento derivados del movimiento del roe-
dor y datos de actividad neuronal adquiridos en ambos casos in vivo. Los datos de
comportamiento se adquieren registrando ratones con la cabeza fija que corren en
una cinta esférica desde ángulos frontales y laterales. Hemos anotado manualmente
este conjunto de datos trazando las extremidades de los ratones en cada fotograma,
generando así máscaras de locomoción. Para los datos de actividad neuronal, hemos
trabajado con conjuntos de datos de código abierto que contienen anotaciones en
forma de ubicaciones espaciales de todas las neuronas observables en el campo de
visión. Para la anotación del comportamiento/locomoción, entrenamos un modelo
de dos etapas; la primera etapa es una red neuronal convolucional tridimensional
(3D-CNN) que extrae características de los vídeos y la segunda etapa es una red de
memoria a largo y corto plazo (LSTM) que infiere si una región pertenece al miembro
o no. El modelo que diseñamos es diferente del estado del arte en el sentido de que
codifica explícitamente la información temporal disponible en los videos. Entrenamos
a los modelos para detectar la ubicación de los miembros en cada fotograma. Para la
detección de la actividad neuronal, creamos un modelo de segmentación densa basada
en bloques LSTM convolucionales que pueden procesar información espacio-temporal
y lo entrenamos para detectar y segmentar las neuronas visibles en el campo de visión.
Este modelo mejora el estado del arte en el sentido de que se entrena mediante un
paradigma de principio a fin y no requiere supervisión humana en el bucle. Vali-
damos nuestros resultados comparándolos con los datos anotados y observamos que
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tanto para los datos conductuales como para los neuronales, obtuvimos resultados
comparables al estado del arte.
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Resum
S’ha establert des de fa temps que el cervell és l’element més important de el

sistema nerviós que funciona com una centre de comandament i control pel sis-
tema nerviós. El sistema nerviós, al seu torn, regula i supervisa les funcions bi-
ològiques, bioquímiques, biomecàniques i socials d’un organisme. El propicervell està
format per milers de milions de cèl·lules neuronals, les neurones, que són capacesde
comunicar-se entre si. Aquestes neurones tenen una capacitat limitada de processa-
ment d’informació, però, poden formar xarxes neuronals capaces d’un processament
més complex. El cervell depèn d’entrades sensorials de diferents tipus (estímuls).
Les entrades dels sensors són processades per les neurones, es calcula una resposta i
s’executa alsdiferents òrgans. Aquest mecanisme d’estímul-resposta ofereix un interes-
sant desafiament de recerca i ha estat objecte de recerca durant dècades. No només els
neurocientífics, sinó també els científics del comportament estan interessats en aque-
sta àrea d’investigació perquè la comprensió d’aquest mecanisme d’estímul-resposta
pot conduir a una millor comprensió de les malalties neurològiques, així com a un
millor anàlisi del comportament.

La configuració típica emprada pels neurocientífics consisteix a estudiar la re-
sposta dels animals de laboratori a un estímul i registrar al mateix temps la seva
activitat neuronal. Amb l’arribada de la tecnologia d’imatge basades en calci, els in-
vestigadors poden ara estudiar l’activitat neuronal a resolucions subcel·lulars in vivo.
De la mateixa manera, el registre del comportamentl’comportament dels animals de
laboratori també ha esdevingut molt més assequible. Tot i que ara és més fàcil regis-
trar les dades del comportamenti les dades neuronals, aquestes dades ofereixen el seu
propi conjunt de reptes. El major desafiament és l’anotació de les dades degut al seu
gran volum. Un enfocament tradicional és anotar les dades manualment, fotograma
a fotograma. En el cas de les dades sobre el comportament, l’anotació manual es fa
mirant cada fotograma i rastrejant els animals, mentre que per a les dades neuronals,
l’anotació la fa un neurocientífic capacitat. En aquesta investigació, proposem eines
automatitzades basades en l’aprenentatge profund que poden ajudar a modelar les
dades de comportament i les dades neuronals.

Hem treballat amb dades de comportament derivades del moviment del rosegador i
dades d’activitat neuronal adquirides in vivo. Les dades de comportament s’adquireixen
registrant ratolins amb el cap fix que corren en una cinta esfèrica des d’angles frontals
i laterals. Hem anotat manualment aquest conjunt de dades traçant les extremitats
dels ratolins en cada fotograma, generant així màscares de locomoció. Per a les dades
d’activitat neuronal, hem treballat amb conjunts de dades de codi obert que conte-
nen anotacions en forma d’ubicacions espacials de totes les neurones visibles en el
camp de visió. Per a l’anotació de comportament / locomoció, entrenem un model
de dues etapes; la primera etapa és una xarxa neuronal convolucional tridimensional
(3D-CNN) que extreu característiques dels vídeos i la segona etapa és una xarxa de
memòria a llarg i curt termini (LSTM) que infereix si una regió pertany al membre o
no. El model que vam dissenyar és diferent de l’estat de l’art en el sentit que codifica
explícitament la informació temporal disponible en els vídeos. Entrenem als mod-
els per detectar la ubicació dels membres en cada fotograma. Per a la detecció de
l’activitat neuronal, vam crear un model de segmentació densa que consta de blocs
LSTM convolucionals que poden processar informació espaciotemporal i l’ entrenem
per detectar i segmentar les neurones observables en el camp de visió. Aquest model
millora l’estat de l’art en el sentit que s’entrena seguint un paradigma de principi a fi i
no requereix supervisió humana en el bucle. Validem els nostres resultats comparant-
los amb les dades annotades i observem que tant per a les dades conductuals com per
als neuronals, obtenim resultats comparables a l’estat de l’art.
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Chapter 1

Introduction

The human brain is an amazing organ. With roughly 86 billion neural cells (neurons)
and around 100 trillion neural connections (synapses)(Herculano-Houzel, 2009), it
easily outshines any computing machine of similar size and will possibly do so for
many generations to come. Contrary to common wisdom, the number of neurons
and synapses do not increase with age but the opposite happens in a process called
synaptic pruning (Paolicelli et al., 2011). In synaptic pruning, the overall number
of neurons and synapses is reduced almost by half as certain neuron clusters are
replaced with smaller but more complex and efficient clusters. As synaptic pruning
suggests, the human brain is optimized for efficient learning and cognition; which
raises the question; how exactly does that happen? How exactly do the billions of
neurons and trillions of synapses come together to give rise to cognition? How do
individual neurons learn to connect and communicate? How do neurons in different
parts of the brain learn to perform specific cognitive tasks? All these questions are
asked and ascertained in computational neuroscience; a more specialized discipline of
neuroscience which focuses on understanding the computational model of the brain.

The term "computational neuroscience" was coined by Eric L. Schwartz in 1985,
at a conference to provide a review of a field, which until that point was referred to
by a variety of names, such as Neural modelling, Brain theory, and Neural Networks.
Earlier in the 1950s and 60s, two neuroscientists namely Professor David Hubel and
Professor Tortson Wiesel conducted a series of experiments, popularly referred to
as Hubel & Wiesel experiments which laid the foundations of modern computational
neuroscience. In one experiment, done in 1959, they inserted a microelectrode into the
primary visual cortex of an anaesthetized cat. They then exposed the cat to patterns
of light and dark on a screen. They found that some neurons fired more frequently
when the cats were exposed to lines at one angle, while others responded more to
another angle. Some of these neurons responded to light patterns and dark patterns
differently. Hubel and Wiesel called these neurons simple cells (Hubel and Wiesel,
2004). Other neurons, which they termed complex cells, detected edges regardless of
their spatial position in the receptive field of the neuron. These neurons were also
sensitive to motion in certain directions (Hubel, 1995). These studies showed how the
visual system constructs complex representations of visual information from simple
stimulus features (Goldstein, 2001).

Hubel and Wiesel research also demonstrated that to understand the computation
model of the brain, it needs to be studied on a cellular level and to understand
how individual neurons learn to form connections, the associated stimulus (or the
response the neural clusters being studied are controlling) also need to be modelled
and quantified. According to Suzana Herculano-Houzel (Herculano-Houzel, 2009),
the human brain is a scaled-up model of a primate brain and it can also be linearly
correlated with the brains of smaller animals. Therefore, the cellular dynamics of the
human brain can be understood by studying animal brains since studying an animal
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brain (mice brain for instance) is easier than studying a human brain. For this thesis,
we will focus on the mice in a laboratory setting.

The thesis will focus on developing computer vision tools to automate the anal-
ysis of large scale data from two linked sources: (i) behavioural data from the mice
locomotion and (ii) neuron segmentation from calcium images acquired in vivo. Since
we have established that to understand the cellular dynamics of the brain, we need to
understand the associated stimulus (or response they are controlling), we will focus
on quantifying locomotion of the mice as a physical response and to understand the
cellular dynamics in the mice brain, we will focus on quantifying and modelling of
the activity patterns of individual neural cells (neurons) in time-lapse videos of the
mice brain at sub-cellular resolution.

1.1 Quantifying the physical response: the locomotion
and (or) gesture tracking (limbs detection) (pose es-
timation)

Locomotion is a good "stimulus and response" option to quantify to understand the
neural dynamics since it is easy to model and represents a good example of neural
activity controlling a physical action. Also, the easy availability of affordable comput-
ing and sensing methods has made it easier to record milliseconds resolution videos
of behaving mice and monitor their neuronal activity at the same time. A general
trend is to record videos of the mice in a controlled but uninterrupted environment
for extended periods (Sousa, Almeida, and Wotjak, 2006). One of the commonly
used controlled environments is to make the mice walk on a spherical or cylindrical
treadmill with their heads fixed. This allows the mice to walk freely on the treadmill
with a minimal movement of their torso while reducing the stress associated with
head-fixation. The video cameras are usually placed either beside, above, below or in
front of the mice. The acquired video data are annotated manually, frame by frame.
As increasingly large volumes of data are generated, manual annotation becomes im-
practical for two reasons; the impossibility to scale up to hundreds of thousands of
frames and the lack of reproducibility. Indeed, high-quality research calls for reliable
automatic methods to replace manual labelling of animal behaviour.

Some of the commonly used methods for limb annotation either use specific hard-
ware for motion tracking or model the statistical properties of the background and
the animal (background subtraction) (Abbas and Masip, 2019). Hardware-based
approaches are usually difficult to reproduce in new scenarios. And background mod-
elling is vulnerable to noisy images and moderate periods with lack of significant
motion. Detecting only individual body parts of a moving animal becomes also chal-
lenging. Besides, due to motion and the change of perspective, limbs do not appear
rigid throughout the video. They present relevant deformations from frame to frame.
In these cases, traditional object recognition methods do not perform well. Robust
appearance-based methods solve these shortcomings by learning a classifier Mathis et
al., 2018b focused on diverse sets of image patches with the body part to be tracked.
Recently, this problem has been approached from a pose estimation perspective as
well (Mathis et al., 2018a; Arac et al., 2019; Graving et al., 2019; Mathis et al.,
2018b). In pose estimation approaches, the animal/mouse pose is modelled by a set
of posture points which are inferred in every video frame on a frame-by-frame basis.
These approaches themselves are built upon the pose estimation methods for humans
(Insafutdinov et al., 2016). In practice, these approaches work very well yet they lack
one key aspect. All of the pose estimation approaches discard temporal information
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from the video itself. We have attempted to solve this shortcoming by proposing a
pipeline which encodes the temporal information present in the video to infer limbs.

In the first contribution of this thesis, we develop a new automated limb annota-
tion algorithm that considers both the appearance of the body parts and the temporal
dynamics to infer the limb segmentation. Contrary to the state of the art methods for
limb segmentation (see section 2.1) which rely on frame-by-frame annotation, we pro-
pose a pipeline which is specifically targeted towards encoding the Spatio-temporal
information present in the videos. We propose to consider both the local appearance
of the limbs and their location in previous frames to infer segmentation. We have val-
idated the approach on videos of freely behaving head-fixed mice in two settings (see
section 2.1.1). Experimental results show promising tracking accuracies even when
only a small portion of training data is used. We also assess our proposal against
two state-of-the-art limb tracking algorithms, and show significant improvements, es-
pecially in noisy recordings. Moreover, we also validate that when Spatio-temporal
information in videos is properly encoded, tracking can be achieved even in noisy
datasets.

1.2 Neural activity segmentation
To understand how the cellular dynamics inside a brain evolve, we need to under-
stand the behaviour of individual neural cells (neurons). For this purpose, we need
to be able to record the activity of individual neurons. This is difficult to achieve
with traditional brain imaging techniques (Aine, 1995; Gazzaniga, 2006). To solve
this issue, fluorescent calcium imaging was introduced to record neuronal networks at
sub-cellular resolution in vivo (Stosiek et al., 2003a; Stosiek et al., 2003b; Grienberger
and Konnerth, 2012). The basic principle of calcium imaging is to record the chang-
ing concentrations of so-called calcium indicators in a cellular body with the help
of fluorescence microscopy. In the following sub-sections, we introduce the calcium
indicators and fluorescence microscopy.

1.2.1 Two-photon Fluorescence Calcium Imaging

Two-photon fluorescence calcium imaging technique is a revolutionary biological mi-
croscopy method which makes the imaging of a single biological cell possible in vivo.
It is the combination of two equally revolutionary technologies; calcium imaging and
two-photon fluorescence imaging. These technologies are explained below.

Calcium (Ca2+) imaging

Ca2+ is an intracellular messenger regulating multiple cellular functions such as cel-
lular excitability, secretion, contraction and gene expression. Calcium ions were rec-
ognized to be essential for regulating biological processes by Sydney Ringer, who
found that "lime salt" is necessary to maintain the contractions of an isolated frog
heart (Ringer, 1883). Therefore, understanding the spatial and temporal dynamics
of Ca2+ signals in cells and tissues can offer invaluable insights about cellular struc-
tures. In the 1970s, Roger Tsien and his colleagues pioneered the chemical synthesis
of organic Ca2+ indicators. This made direct monitoring of cellular Ca2+ signals pos-
sible (Tsien, 1980; Tsien, 1981; Grynkiewicz, Poenie, and Tsien, 1985). Early studies
focused on measuring Ca2+ signals in vitro. Since the true evolution of neuronal
networks in stimulus-response situations cannot be studied in vitro, it is essential to
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record and analyse Ca2+ signals in vivo. Fortunately, advances in optical and com-
puting technologies yielded powerful microscope systems that enabled the realization
of this goal. By combining appropriate Ca2+ indicators with appropriate optical
imaging techniques, cellular Ca2+ signals have been recorded with a high degree of
spatial and temporal resolution. This combination gave rise to the widely popu-
lar fluorescent calcium imaging technique which has been extensively used to record
neuronal networks with sub-cellular resolutions.

Fluorescence microscopy

Fluorescence microscopy aims to reveal only the (fluorescent) objects of interest in
an otherwise black background (Lichtman and Conchello, 2005; Denk, Strickler, and
Webb, 1990a). It requires that the objects of interest exhibit fluorescence; which is
the emission of light that occurs within nanoseconds after the absorption of light of
shorter wavelength. By filtering the exciting light and letting the emitted fluorescence
through, it is possible to see only the fluorescent objects. Therefore, in some cases,
certain molecules which exhibit fluorescence (called the fluorophores) are introduced
into the biological tissues being imaged.

Fluorescence calcium imaging

Fluorescence Ca2+ imaging is a type of calcium imaging extensively used for monitor-
ing neuronal activity. It exploits the fact that in living cells, most of the depolarizing
electrical signals are associated with Ca2+ influx which can be attributed to the ac-
tivation of one or more of the numerous types of voltage-gated Ca2+ channels (Tsien
and Tsien, 1990; Berridge, Lipp, and Bootman, 2000). These Ca2+ signals constitute
the elementary forms of neuronal communication (Neher, 1998; Südhof, 2000; Yuste
and Denk, 1995; Kovalchuk et al., 2000). Moreover, the Ca2+ signalling also plays an
important role in the induction of memory neuronal plasticity (Chittajallu, Alford,
and Collingridge, 1998).

The development of two-photon fluorescence Ca2+ imaging has made the imaging
of neurons located up to 500 µm below the cortical surface possible (Svoboda et al.,
1997). Imaging in vivo has been mostly restricted to a single neuron at a given time
and, therefore, has not been used for monitoring neuronal networks. For in vitro ex-
periments, there is a simple method for loading cells with Ca2+ indicator dyes. Slices
or cell cultures are incubated in external saline containing the membrane-permeant
acetoxymethyl (AM) ester form of the dye (Tsien, 1981). When combined with two-
photon Ca2+ imaging, this method allows simultaneous monitoring of individual neu-
rons located up to 200 µm below the surface of a slice (Garaschuk et al., 2000). To
make in vivo observation of neuronal networks possible, a new breed of calcium in-
dicators and loading methods have gained popularity. The calcium indicators are
genetically engineered (called genetically encoded calcium indicators, GECIs) from
green fluorescent protein-like (GFP-like). Since the GECIs can be targeted towards
specific cell types, they can be used to observe neuronal networks in vivo (Stosiek
et al., 2003a; Miyawaki et al., 1997; Persechini, Lynch, and Romoser, 1997; Subach
et al., 2019). Over the past two decades, two-photon fluorescent calcium imaging has
seen steady growth in terms of acceptance in the research community. Fig. 1.1 shows
this growth in terms of the number of research articles on the subject and number of
times those articles were cited in other works.
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(a) Number of publications

(b) Number of citations

Figure 1.1: The steady gain in acceptance and popularity of fluo-
rescence calcium imaging. (A) Although the number of publications
tends to vary over years, the general trend is that more and more
works are being published in the field. (B) The story with the num-
ber of citations of works on fluorescence calcium imaging is completely
different. There is a strong upward trend in the number of citations
over the years which shows high acceptance of the imaging technology

among various fields. Source: Web Of Science 2019

1.2.2 Neural activity segmentation

The calcium indicators introduced in the earlier sections have a specific response
pattern to calcium transient events. When a calcium transient happens, the GECIs
respond and their fluorescence rises to a certain value within a very short time (short
rise time). Then, the fluorescence takes a longer time to go down to its equilibrium
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value (long decay time). The many different variants of GECIs available might have
different rise and decay times, but all of them follow the pattern illustrated in Fig.
1.2.

(a) One action potential

(b) Ten action potentials

Figure 1.2: This figure shows the rise and decay times of different
GECIs, jGCaMP7s, jGCaMP7f, jGCaMP7b, jGCaMP7c, GCaMP6s,
GCaMPf (Figures are taken from jGCaMP7 | Janelia Research Cam-
pus 2020). (A) shows the rise and decay of the six GECIs when they
are excited by one calcium transient. (B) shows the rise and decay
of the same GECIs when they are excited by a train of 10 calcium

transients.

The recent advancements in two-photon calcium imaging have sufficient Signal
to Noise Ratio (SNR) that single neural cells can be easily separated from the back-
ground. In the meantime, two-photon calcium imaging has also enabled the long term
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study of neuronal population activity during learning and behaviour (Peron, Chen,
and Svoboda, 2015). The size of a typical neuron is quite small. For example, the size
of a typical cortical neuron in a mouse brain is 10-20 µm. Therefore, the minimum
spatial resolution of calcium imaging should be at least 5 µm. When a brain region
is scanned with this resolution over a long time, it produces enormous amounts of
imaging data. This poses a considerable signal processing problem.

The data is in the form of time-lapse image stacks since the typical sampling rate of
calcium images is 5-10 frames per second. Individual neurons appear as small flashing
light bulbs in these image stacks; going on and off depending upon the calcium tran-
sients and neural firing. To decode spiking activity from imaging data, the first step is
to accurately detect regions of interest (ROIs), which may be cell bodies, neurites or
combinations of the two. The specific calcium indicator used also affects both a cell’s
resting fluorescence and its apparent shape. For example, some GECIs are excluded
from the nucleus and therefore produce fluorescent “doughnuts”. Moreover, imaging
data is contaminated with measurement noise and movement artefacts. Therefore, a
signal processing pipeline is necessary which can remove the measurement noise and
motion artefacts and can detect ROIs.

The crude approach towards this problem is manual segmentation of calcium
imaging datasets. A person goes through the whole of the dataset, frame by frame
and identifies ROIs. While manual segmentation offers the flexibility to use complex
selection criteria, it is neither reproducible nor scalable. No two people will agree on
the exact position, shape and size of the ROIs and the process becomes impractical
once the dataset size becomes large. Therefore, an automated method is needed to
segment ROIs (neurons) from the background.

To detect neurons in calcium imaging stacks, the GECIs dynamics, neurons spatial
organization and their firing patterns need to be taken into account. These factors give
rise to unique challenges while designing an automated neuron detection pipeline. As
mentioned earlier, the choice of GECI can lead to toroid (doughnut) shaped neurons.
Moreover, neurons might appear overlapped when observed from the experimenter’s
point of view. Also, some neurons might fire more often than the rest. These chal-
lenges make the mathematical modelling of the neurons close to impossible. Machine
learning especially supervised learning offers a possible solution to these problems.
Since in supervised learning, the inherent data distribution and model is learned
from the data itself, there is no need to develop the mathematical model explicitly.
Generally, an expert neuroscientist annotates all the detectable neurons in a calcium
imaging stack manually and then this annotated stack is used to train a supervised
algorithm to detect neurons in calcium imaging stacks acquired in similar settings. In
some cases, neurons might be annotated by using biological markers (Apthorpe et al.,
2016; Valmianski et al., 2010). Other approaches are also reported in the literature
which either models the Spatio-temporal dynamics of neurons by matrix factorization
approaches (Maruyama et al., 2014; Mukamel, Nimmerjahn, and Schnitzer, 2009) or
by using summary statistics (Ohki et al., 2005; Kaifosh et al., 2014) or by modelling
the expected shape and size of the neurons (Smith and Häusser, 2010).

As mentioned earlier, the supervised machine learning pipeline is trained on an
annotated calcium imaging stack. The annotation is in the form of a binary mask
where all the regions containing neurons are represented by a high value (1) and non-
neuron regions (the background) are represented by a low value (0). There are two
general approaches to do this. In one approach, the machine learning algorithm is
trained on summary images to produce the final inference of the neurons (see section
2.2.2 for details on summary images, Giovannucci et al., 2017b; Klibisz et al., 2017).
This approach has two significant shortcomings; one, the temporal information is lost
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while generating the summary images from the imaging stacks and two, it cannot
distinguish between spatially overlapped neurons. The second approach is to train
the algorithm over short segments of the image stack since processing the whole
stack in one go is computationally impractical. Moreover, the spatially overlapped
neurons are active at different times, therefore, their spatial footprint can be learned
by training the algorithm on short temporal segments of the image stacks. However,
this approach also faces two significant problems. One, we need to produce target
masks for the short temporal windows of the image stacks and two, we still cannot
be sure that overlapping neurons won’t be active at the same time in one window.
Moreover, the temporal masks need to be aggregated to get one final mask in the
post-processing stage.

The second contribution of this thesis mitigates these problems. , we have pro-
posed an end-to-end training pipeline which processes the whole stack without the
need for summary images or temporal windowing. This end-to-end pipeline is based
on a novel variant of popular U-net architecture (Ronneberger, Fischer, and Brox,
2015; Li et al., 2018), modified for processing spatial sequences. The pipeline can be
broken down in three hierarchical stages. Stage one consists of the basic processing
elements of the U-Net. We have designed a novel encoder cell based on Convolutional
LSTM (ConvLSTM) (Xingjian et al., 2015) and decoder based on the same ConvL-
STM cells. In the second hierarchy, we have used these novel encoder and decoder
cells to create the modified U-Net architecture (see section 4.1.5 for details). The
U-Net can be trained to segment a temporal window of the video or the whole video.
In the third stage, we have formulated an end-to-end training pipeline for the mod-
ified U-Net. As mentioned earlier, the current state of the art neuron segmentation
methods, which do not discard temporal information, rely on segmenting neurons in
temporal segments of the videos and then aggregating them in the end to create the
final mask. The image stack is processed in three stages by three copies of the same
neural networks with slightly different parameters in a hierarchical manner. First, we
divide the video into short temporal windows of equal length. Then the first neural
network processes those segments one by one, producing masks. Once we process the
same number of segments as the segment’s length, the generated masks are tempo-
rally aggregated to create the second hierarchical temporal segment. The second level
hierarchical segments are processed by the second level hierarchical neural network
to produce masks. The process is repeated until we generate the same number of
second hierarchical level masks as the mask length. We repeat this process until we
have processed the whole video (see 4.1.4). By this approach, we eliminate the need
to generate temporal masks for the temporal segments. This approach also helps us
avoid the trouble of choosing the correct length of temporal windows to minimize the
overlapping neuronal noise.

1.3 Thesis Outline
In this section, we discuss the outline of the thesis, with a summary of the chapters.
At the end of this section, we outline our main contributions.

The principal goal of this thesis is to demonstrate and validate the usefulness of
temporal information in gesture tracking (we will interchangeably use the terms ges-
ture tracking or pose estimation or limb detection) and neural activity segmentation.
In working towards this goal, we analyzed and curated two kinds of datasets; the first
one consists of videos of head-fixed behaving mice running on a spherical treadmill.
These videos were acquired both from frontal and lateral views. The second kind
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of dataset consists of time-lapse image stacks of neuronal networks of mouse brains
acquired by two-photon fluorescent imaging in vivo. To analyze the gesture track-
ing dataset, we developed a stacked architecture; consisting of two kinds of neural
networks. For neural activity segmentation, we developed the first of its kind neural
network which tracked neural activity by processing the whole video at once without
discarding any temporal information.

Chapter 1 gives a concise introduction to the need and nature of gesture tracking
and how it is related to "stimulus and response" neuronal network analysis. It also
introduces the two-photon fluorescent calcium imaging modality, the kind of datasets
it produces and the unique challenges it poses. We also provide an overview of the
neural activity detection and segmentation in this context;

Chapter 2 (see chapter 2 for details) covers the state of the art research being
done on gesture tracking and neural activity segmentation. It is to be noted that in
the literature review, we have only focused on approaches which are based on machine
learning. Therefore, the literature review is complete in the context of machine
learning while not thorough in a general context. For a comprehensive overview
of the literature on gesture tracking, please refer to our review paper published in
Sensors (Abbas and Masip, 2019). We prepared a comprehensive literature review
on neural activity segmentation (covering non machine learning approaches as well),
currently under review.

Chapter 3 (see chapter 3 for details) covers the gesture tracking dataset, the
problem statement, our proposed approach, experiments and results.

Chapter 4 (see chapter 4 for details) discusses the neural activity segmentation
problem, the Neurofinder challenge (neurofinder) benchmark, the dataset, our pro-
posed approach, experiments and results. We also discuss the building blocks of our
proposed approach in detail.

Chapter 5 (see chapter 5 for details) is an account of our conclusions, our
thoughts and observation on gesture tracking and neural activity segmentation. It
also outlines the potential impact of this research, its shortcoming and how they
might be corrected in future research.

Main contributions of this thesis are summarized below.

• Curation of completely new datasets for gesture tracking. We have manually
annotated 4 videos for gesture tracking in mice by tracking limb boundaries
in each video frame. For neural activity segmentation, we have also created a
frame by frame mask of all the active neurons in two calcium imaging stacks.
Although for our proposed approach, we do not need frame by frame masks,
yet these masks might be of tremendous use to other approaches.

• A stacked architecture for gesture tracking in head-fixed behaving mice. The
first stage consists of a CNN which acts as a feature extractor while the second
stage is an LSTM which infers if a given superpixel is part of the limb or not.

• A novel variant of U-Net built around a ConvLSTM cell which is capable of
processing spatio-temporal sequences. We have designed a novel training al-
gorithm around this U-Net capable of end-to-end training on calcium imaging
stacks without the need of any frame by frame temporal masks.

• Empirical experiments to demonstrate the effectiveness of temporal informa-
tion in gesture tracking and usefulness of end-to-end training in neural activity
segmentation.
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Chapter 2

Literature review

Due to the nature of the problem at hand, studying neural activity in conjunction
with physical activity needs the test subjects (mice/rodents in this case) to be studied
in a confined setting. A typical setup includes a closed environment (either a room
or a box), video cameras/acquisition hardware, the mouse, mini-size calcium imaging
hardware mounted on the mouse’s head, control systems, and processing hardware.
Depending upon the quality of neural activity recording setup, the mouse can either
be restrained or freely behaving. There might be just a single camera or multiple
video cameras recording the physical activity from different angles.

We can divide the task at hand into two sub-problems i.e. gesture tracking and
neural activity tracking.

2.1 Gesture tracking
In principle, gesture tracking for neuroscience applications is not different from general-
purpose gesture tracking; therefore, all the gesture tracking techniques can be applied
to it in one way or the other. Although the general idea is the same, the environ-
ment for such type of gesture tracking is more confined than general-purpose track-
ing. Broadly speaking, gesture tracking in rodents/small animals can be divided into
four main categories; hardware-based tracking, background modeling and subtrac-
tion based approaches, statistical approaches and machine-learning-based approaches.
The hardware-based tracking pipelines mostly or solely rely on specialized hardware
to track rodents’ limbs, tail, head or whiskers. The last three approaches employ
specialized hardware to varying extents. In this thesis, we will focus on machine-
learning-based approaches.

Machine-learning-based tracking can further be subdivided into two main ap-
proaches. In one approach, the problem is dealt with as an object detection task
while in the other approach, it is dealt with as a pose estimation task. Both the ap-
proaches have their advantages and disadvantages and both of them are intended to
extract different versions of the same information. For instance, if someone is inter-
ested in the general gait of the rodents, pose estimation approach is more appropriate
to use while if someone is interested in motion patterns, object detection/motion seg-
mentation is preferred.

Dankert et al. (Dankert et al., 2009) proposed a machine vision-based automated
micro-movements tracking in flies. Although this article does not directly deal with
rodents, the detection and tracking algorithms used for legs and wings can be used
for legs motion detection in rodents too. Videos of a pair of male and female flies are
recorded for 30 minutes in a controlled environment. Wingbeat and legs motion data
is manually annotated for lunging, chasing, courtship and aggression. The data anal-
ysis consists of four stages. In the first stage, the Foreground image FI is computed by
dividing the original image I by (µI + 3σI) (FI values in false-colours). In the second
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stage, the fly body is localized by fitting a Gaussian mixture model (Bishop, 2006)
(GMM) with three Gaussians; background, other parts, and body to the histogram of
FI values (grey curve) using the Expectation-Maximization (EM) algorithm (Bishop,
2006). First (top) and final (bottom) iterations of the GMM-EM optimization. All
pixels with brightness values greater than a threshold are assigned to the body and
are fitted with an ellipse. In the third stage, the full fly is detected by segmenting
the complete fly from the background, with body parts and wings (Otsu, 1979). In
the fourth stage, the head and abdomen are resolved by dividing the fly along the
minor axis of the body ellipsoid and comparing the brightness-value distribution of
both halves. The approach is built upon proven statistical models. It can handle
instrument noise. Since it has a learning element, the more data it sees, the better it
gets. However, since the learning is not end-to-end, and the data processing pipeline
is complex and need an in-depth understanding of statistical theory, therefore it is
hard to work with for a neuroscientist. Since it has a background modelling compo-
nent, therefore it also suffers from the inherent weaknesses of background subtraction
models i.e. sensitivity to sudden changes in the environment.

Palmer et al. (Palmér et al., 2014) proposed a paw-tracking algorithm for mice
when they grab food and can be used for gesture tracking as well. They developed
the algorithm by treating it as a pose estimation problem. They model each digit
(a limb such as a finger) as a combination of three phalanges (bones). Each bone is
modelled by an ellipsoid. For 4 digits, there are a total of 12 ellipsoids. The palm
is modelled by an additional ellipse. The forearm is also modelled as an ellipsoid
while the nose is modelled as an elliptic paraboloid. The paw is modelled using 16
parameters for the digits (four degrees of freedom per digit), four constant vectors
representing the metacarpal bones and 6 parameters for position and rotation of the
palm of the paw. Furthermore, the forearm is assumed to be fixated at the wrist and
can rotate along all three axes in space. This amounts to a total of 22 parameters. In
each frame, these ellipsoids are projected in such a way that they best represent the
edges. The best projection of ellipsoids is found by optimization and is considered a
paw. They haven’t reported any quantitative results. This approach is very useful if
the gesture tracking problem is treated as pose estimation with a temporal context.
Since the approach treats gesture tracking as a pose-estimation problem, it opens
the possibility of using state of the art pose-estimation methods in gesture tracking.
However, the computational cost is high for real-time deployment without graphical
accelerators.

In (Palmér et al., 2012), Palmer et al. extended their work from (Palmér et al.,
2014). The basic idea is the same. It models the paw made of different parts. Four
digits (fingers), each digit having 3 phalanges (bones). Each phalange is modelled by
an ellipsoid, so there is a total of 12 ellipsoids for the phalanges plus an additional
one for the palm. In this paper, the movement of the 13 ellipsoids is modelled by
vectors with 19 degrees of freedom, unlike 22 from (Palmér et al., 2014). The solution
hypothesis is searched not simultaneously, but in stages to reduce the number of
calculations. This is done by creating a different number of hypotheses for every joint
of every digit and then finding the optimum hypotheses.

A. Giovannucci et al. (Giovannucci et al., 2018) proposed an optical flow and cas-
cade learners-based approach for tracking of head and limb movements in head-fixed
mice walking/running on a spherical/cylindrical treadmill. Unlike other approaches,
only one camera installed from a lateral field of view was used for limb tracking and
one camera installed in front of the mouse was used for whisker tracking. They calcu-
lated dense optical flow fields in a frame-to-frame method for whisker tracking. The
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estimated optical flow fields were used to train dictionary learning algorithms for mo-
tion detection in whiskers. They annotated 4217 frames for limb detection and 1053
frames for tail detection and then used them to train Haar-Cascades classifiers for
both the cases. They have reported a high correlation of 0.78± 0.15 for whiskers and
0.85±0.01 for hind limb. The proposed hardware solution in the paper is low cost and
easy to implement. The tracking approach is also computationally not demanding
and can be run in real-time. They, however, did not deal with the micro-patterns in
motion dynamics which can be best captured with the inclusion of temporal context
to the tracking approach. Moreover, an accurate estimation of flow fields either takes
too much time or requires graphical processing units. Also, the Haar-cascades based
method cannot deal with occlusions.

Mathis et al. (Mathis et al., 2018a) introduced a user-defined body-parts tracking
method based on deep learning called DeepLabCut. The body-part (which can be
either limbs or tail or head) is built on top of the human pose estimation pipeline, the
DeeperCut (Insafutdinov et al., 2016). The DeepLabCut employs feature detectors
of DeeperCut to build user-defined body part detectors in laboratory animals. The
training procedure is standard, a user manually annotates all the limbs/tail/body
parts in some of the video frames which are used to fine-tune the DeeperCut feature
detectors. Then another prediction layer predicts the pose of the animal by labelling
the body parts in question. The authors have reported an error of 4.17± 0.32 pixels
on test data. The reported architecture is remarkable since it is a general-purpose
architecture and can be modified to track another body part relatively easily. Also,
since the architecture is built upon the existing state of the art deep networks for pose
estimation, it is easy to train and it inherits all the strengths of parent deep networks.
However, the reported pipeline can have a problem in the case of occlusions.

In DeepBehavior, the authors have proposed an open-source behavioural analysis
toolbox built on top of existing validated approaches (Arac et al., 2019). The tool-
box contains routines for gesture tracking, 3D kinematics analysis for humans and
rodents and behavioural analysis for rodents. The toolbox is built on top of three
existing and validated convolutional neural networks architecture named Tensorbox
(Russell91, 2018), YOLOv3 (Redmon et al., 2016), and Openpose (Cao et al., 2018).
For 3D kinematics tracking, the toolbox needs a stereo system with a properly cal-
ibrated camera. They recommend using Tensorbox if only one test subject needs
to be tracked, YOLOv3 if multiple test subjects need to be tracked and Openpose
if human subjects need to be tracked. They have initialized the networks by using
models trained on ImageNet and fine-tuned them with custom datasets. The authors
have not provided paw tracking results for rodents. This toolbox is a good example
of using gesture and pose tracking approaches developed and tested for humans to be
used for rodents and small animals. Since the system is built upon the existing state
of the art pose estimation architectures, it inherits their strengths and weaknesses.
For instance, Openpose can have a hard time identifying a pose it has not seen. It
also does not know how to tell two subjects apart, therefore it can try to impose one
pose upon two test animals in a situation in which one animal is partially occluded
by the other. Also, it can face difficulties in estimating the pose of animals at an
angle.

Pereira et.al. proposed an animal pose estimation pipeline called LEAP (LEAP
Estimates Animal Pose) (Pereira et al., 2019). It is built on top of a human pose
estimation pipeline, employing a fully convolutional architecture. The architecture
learns a mapping from raw images to a set of confidence maps (heatmaps). These
maps can be interpreted as the 2-d probability distribution centred at the spatial
coordinates of each body part within the image. The network consists of 15 layers of
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repeated convolutions and pooling. They tested their model on videos of Drosophila
fruit fly, using only 1500 frames for training. They model the pose by 32 points (4
points for each of 6 legs, two for wingtips, three points for abdomen and three points
for the head). The network was trained to produce heatmaps for all the 32 points.
They report that the network can be deployed at 185 frames (192×192 resolution) per
second on a GPU. To evaluate the performance, they calculated Euclidean distance
between the coordinates of a ground truth pose point and predicted pose point. The
report a maximum pixel error of 1.67 for the training set. In the testing phase, the
network was able to achieve error <2.5 pixels in 87% of the tested frames.

Graving. et. al. proposed a general-purpose open-source framework called "Deep-
PoseKit" for pose estimation in animals, confined or otherwise (Graving et al., 2019).
They proposed two models to efficiently and accurately solve the pose estimation
problems of animals. They model the pose of an animal with 32 points and employ
a confidence graph to illustrate the 32 point pose. Therefore, the confidence graph
has 32 layers, one layer representing one pose point. They proposed two models for
pose estimation. One model, called Stacked Densenet, implements a novel variant of
classical hourglass architecture proposed by Jegou arranged in a stacked hourglass
configuration. The Stacked DenseNet consists of an initial 7 × 7 convolutional layer
with stride 2, to efficiently downsample the input resolution. This is followed by a
stack of densely-connected hourglasses with intermediate supervision applied at the
output of each hourglass. It uses 1 × 1 convolution to inexpensively compress the
number of feature maps before each 3× 3 convolution as well as when downsampling
and upsampling. The second model is a modified version of the Stacked Hourglass
model from (Newell, Yang, and Deng, 2016) It includes hyperparameters for changing
the number of filters in each convolutional block to constrain the number of parame-
ters. It uses a block size of 64 filters (64 filters per 3×3 convolution) with a bottleneck
factor of 2 (64/2 = 32 filters per 1× 1 bottleneck block). For the Stacked DenseNet
model, they used a growth rate of 48 (48 filters per 3× 3 convolution), a bottleneck
factor of 1 (1× growth rate = 48 filters per 1 × 1 bottleneck block), and a com-
pression factor of 0.5 (feature maps compressed with 1× 1 convolution to 0.5m when
upsampling and downsampling, where m is the number of feature maps). The authors
have reported that both of their models, Stacked DenseNet and Stacked Hourglass
outperforms LEAP. They report that by reducing the number of hyperparameters
from 26 million to 0.5 million, the average pose prediction error increased only by
0.5 pixels. They further report that as compared to LEAP, their models produced
less variance in prediction, indicating that they don’t produce extreme predictions as
often as LEAP.

2.1.1 Data acquisition environment and dataset description

Animal Experiments

The gesture dataset was cordially provided by Dr Andrea Giovannucci working at
Center for Computational Biology, Flatiron Institute, Simons Foundation, New York,
NY, USA at the time. Experimental procedures were carried out as approved by the
Princeton University Institutional Animal Care and Use Committee and performed
following the animal welfare guidelines of the National Institutes of Health. The
same preparations we employed in our behavioural analysis were also used for some
imaging experiments. For a complete description of the surgical and behavioural
preparations refer to (Giovannucci et al., 2018; Giovannucci et al., 2017a). 4 males
12- to 16-week-old C57BL/6J mice (Jackson Laboratory) were used, housed in the
reversed light cycle. Mice underwent anaesthesia (isoflurane, 5% induction, 1.0-2.5%



2.1. Gesture tracking 15

maintenance) and a custom-made two-piece head plate (Dombeck et al., 2010) was
attached to the animal’s head. A 3mm or 5mm-wide craniotomy was drilled over
the paranormal area of cerebellar lobule VI. After 15 hrs delay for animal recovery
the top plate was removed for delivery of AAV1.Syn.GCaMP6f.WPRE.SV40 [Penn
Vector Core, lot AV-1-PV2822] virus (Giovannucci et al., 2017a). All animals were
placed back in their home cage for 2 weeks of recovery.

Animals were first habituated to a cylindrical or spherical treadmill that rotates
along a single axis for repeated intervals over 5 days of incremental exposure. Af-
ter habituation, animals were exposed to a variety of stimuli. Some of the movies
were taken from animals that were undergoing eyeblink conditioning (Giovannucci
et al., 2017a). Training consisted of repeated pairings of two stimuli, either whisker-
puff/eye-puff or light/eye-puff, separated by intervals of 250 or 440ms respectively.
This training often induced movements in an otherwise-still mouse. The stimuli con-
sisted of (i) a periorbital air puff (10-20psi, 30ms in duration, delivered via a plastic
needle placed 5mm from the cornea and pointed at it, (ii) a flash of light (400nm,
500ms), or (iii) an air puff to whisker vibrissae (2-3psi, 800ms).

Dataset

The pipeline for limbs detection and tracking is tested on two types of video data,
frontal videos and lateral videos. The frontal videos are recorded by a camera installed
in front of a mouse running on a spherical treadmill while the lateral videos are
recorded by a camera trained at the right side of the mouse. The mice are running
freely on a spherical treadmill with their heads fixed, so their heads cannot show
significant movements while their torsos are free to move. Both types of videos are
acquired at a frame rate of 120 frames per second and have a resolution of 240× 320.
The frontal videos have a higher amount of salt and pepper noise as well as equipment
noise than the lateral videos. Each of the frontal videos is 239 frames( 2 seconds)
long while each of the lateral videos is 767 frames(6.39 seconds) long. Typical frames
from both frontal and lateral videos are shown in Fig. 2.1c and 2.1a.

(a) A sample frame
with limbs annotated
from a lateral video.

(b) Detection results
overlaid on original

frame.

(c) A sample frame
with limbs annotated
from a frontal video.

(d) Predicted limbs
overlaid on a sample
frame of the frontal

video.

Figure 2.1: Sample frames from lateral videos (a,b) and frontal
videos (c,d). In (b,d) the areas overlaid by the green mask are correct
predictions while the areas overlaid by a red mask are missed limbs.

In the frontal videos, one limb (hind left limb) is not visible at all in the video
frames, so in best case scenario, only three limbs (front left, front right and hind right)
are visible in a video frame. In some cases, even two or three limbs are occluded.
This is illustrated in Fig. 2.2.

In lateral videos, due to the camera angle, all four of the limbs can be visible
(best case). There are some video frames where only three limbs are visible and in
extreme cases, only two are visible. In some cases, the front right and hind right limb
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(a) A sample video frame from frontal videos
with three limbs visible (Best case).

(b) A sample video frame from frontal videos
with only two limbs visible. The other two
are occluded due to posture of the mouse and

camera angle

Figure 2.2: Sample frames from frontal videos showing different
cases.

(these two limbs are more or less always visible) might overlap which might affect the
detectors training. These cases are shown in Fig. 2.3.

(a) A sample video frame
from frontal videos with all
the four limbs visible (Best

case).

(b) A sample video frame
from lateral videos with
only one limb occluded.

(c) A sample video frame
from lateral videos with
only two limbs visible. The
other two are occluded due
to posture of the mouse and

camera angle

Figure 2.3: Sample frames from lateral videos showing different
cases. The light purple color is due to false coloring to highlight the

limbs, the original videos are gray scale.

Quality of the videos (Signal to Noise Ratio (SNR))

In order to evaluate the quality of the videos, we calculated the average value of
SNR across all video frames. There are multiple methods reported in literature
for calculating SNR of an image. Three commonly used methods are expressed by
equations 2.1, 2.2 and 2.3.

SNR = 20log( µsignal

µbackground
) (2.1)

SNR = 20log(µsignal

σsignal
) (2.2)
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SNR = 20log( µsignal

σbackground
) (2.3)

where µsignal represents the average value of the signal, µbackground represents the av-
erage value of the background (noise), σsignal represents the standard deviation of the
signal. For better understanding, σbackground represents the standard deviation of the
background. To better evaluate the SNR, we considered two scenarios for considering
which region constitutes the signal and which region constitutes the background.

• Only limbs are considered as the signal and everything else as the background.

• The limbs and the mouse body are considered as signal and everything else as
the background

The SNR values in both scenarios calculated by equations 2.1, 2.2 and 2.3 are given
in Tables 2.1 and 2.2.

Table 2.1: Average SNR of frontal videos

Equation 2.1 Equation 2.2 Equation 2.3
SNR Scenario 1 (db) -2.9 1.5 -1.4
SNR Scenario 2 (dB) 4.8 5.0 2.6

Table 2.2: Average SNR of lateral videos

Equation 2.1 Equation 2.2 Equation 2.3
SNR Scenario 1 (db) 5.2 5.1 5.4
SNR Scenario 2 (dB) 18.6 8.8 13.6

Tables 2.1 and 2.2 show that regardless of the SNR equation or scenario, the
quality of lateral video is much higher than the quality of frontal videos.

2.2 Neural activity segmentation
The arrival of calcium imaging technology has made it easier to study neural activity
at cellular levels (Stosiek et al., 2003a). With the advantage of sub-cellular resolutions,
calcium imaging comes with its own challenges (Yang and St-Pierre, 2016). The
main challenge is the non-uniform, non-Gaussian noise in calcium imaging videos
which originates from the way calcium transients work, equipment noise and biological
matter. The second challenge is the non-uniform decay cycle of different calcium
indicators. The third challenge is the 2D nature of calcium imaging since it only
captures calcium transients in 2D if two neurons occupy similar XY coordinates but
different z-coordinates, they might appear overlapped. To address the above-stated
challenges, there are three main approaches for neural activity segmentation reported
in the literature.

One approach tries to solve neural activity segmentation problem by image and
signal processing methods. When analyzed by the naked eye, the calcium activity in
neurons appears in the form of blobs or doughnuts flashing on and off at different time
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intervals. This approach first collapses the time dimension of calcium imaging videos
to create what are called "summary images". Standard image and signal processing
techniques are then applied to the summary images to segment neurons from the
background.

The second approach tries to solve this problem by factorizing the calcium imaging
videos in temporal and spatial components by matrix factorization (Maruyama et al.,
2014; Mukamel, Nimmerjahn, and Schnitzer, 2009). The underlying hypothesis is
that since calcium imaging videos capture the spatial coordinates of the neurons as
well as their temporal activity, the activity every pixel of the video can be factorized
in spatial and temporal components. The spatial components refer to the location
of a neuron in the summary images while the temporal components refer to when a
specific neuron was active. There is no agreed-upon way for matrix factorization as
different researchers have proposed different methods.

The third approach treats it as a machine learning task. In this approach, machine
learning models are trained to infer the number and position of each neuron in calcium
imaging video. The standard approach is to feed calcium imaging video or summary
images to the pipeline and train it to infer a binary mask for neuron locations. The
inferred binary mask is then used for localizing the activity of every neuron present in
the mask. For this thesis, we will consider machine learning-based approaches only.

Valmianski et. al. (Valmianski et al., 2010) proposed a multi-staged classifica-
tion pipeline to determine which pixel belongs to a neuron or otherwise. First two
stages consist of Robust-boost classifiers (Schapire et al., 1998). The first stage clas-
sifier classifies every pixel into neuron and non-neuron classes based on 8 statistical
features. A median filter is then used to remove small regions falsely identified as
neurons. The second stage classifier is another Robust-Boost classifier which clas-
sifies if a candidate neuron is a neuron or false positive based on six morphological
features. The output probability map is then thresholded and neurons are segmented
using Connected Thresholds. The authors have tested their approach on 64 different
datasets; resulting from 16 different regions imaged over four trials each four mice.
Each data set consisted of 200 frames at a resolution of 256× 256 pixels. They have
reported a test error of 7% and ROC curve maxing at 0.97.

Xu. et. al. proposed a CNN architecture with a graph regularization term
which can utilize unlabeled data along with labelled data for neuron segmentation
(Xu et al., 2016). First, they over-segment a neuron image into superpixels (Achanta
et al., 2012). The superpixels are then fed to a CNN which minimizes a composite
loss function over the labelled and unlabeled superpixels. The CNN is composed of
two convolutional layers with 6 and 50 filters each. The loss function over labelled
superpixels is represented by a softmax loss while the loss function over unlabeled
superpixels is represented by a graph-regularized loss. The graph regularized loss
function is formulated on the assumption that neighbouring elements in a graph
will most likely share the same label. Therefore, they perform label propagation
from labelled superpixels onto unlabeled superpixels by Gaussian Field Harmonic
Functions (Zhu, Ghahramani, and Lafferty, 2003). They repeat the segmentation
process for all the images in a volume. Finally, they perform neuron segmentation in
3D volume by global association method (Zhang, Li, and Nevatia, 2008). They have
validated their approach on a private 1-photon data set. They manually annotated
2000 neuron regions spread over 1000 images (which form a 3D volume when stacked
up), with half of them used for training and the remaining used for testing. Along
with 2000 manually annotated regions, they include 70,000 more unlabelled regions
(superpixels) which include 4000 neurons. They have reported an F1 score of 0.96
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when they use as less as 40 images for training and an F1 score of 0.99 when they
use 1000 images for training.

Apthorpe. et.al.(Apthorpe et al., 2016) proposed a 3D (referred to as (2+1)D)
convolutional network-based neurons segmentation approach for calcium imaging
data. It accepts an input image stack containing T time slices. There are four 10×10
convolutional layers, a max-pooling overall time slices and two 1× 1 bottleneck fully
connected layers. The output layer is configured to yield two 2D grayscale images as
output, which together represent the softmax probability of each pixel being inside an
ROI centroid. The dimensions of the input image stack are 37× 37× T , therefore to
cover the whole spatial domain, the window is made to slide in two dimensions over
the input image stack to produce an output pixel for every location of the window
fully contained within the image bounds. The network was trained on Two-photon
calcium imaging data gathered from both the primary visual cortex (V1) and medial
entorhinal cortex (MEC) from awake-behaving mice. Human experts annotated ROIs
using the ImageJ Cell Magic Wand Tool (Cell Magic Wand - omicX 2020), which
automatically generates a region of interest (ROI) based on a single mouse click. The
human experts found 4006 neurons in the V1 dataset with an average of 148 neurons
per image series and 538 neurons in the MEC dataset with an average of 54 neurons
per image series. They have used the F1 score to evaluate the network performance
and reported F1 = 0.71.

Wen et. al. (Wen et al., 2018) proposed a 3D-UNet (Ronneberger, Fischer,
and Brox, 2015) based neuron segmentation approach on the calcium imaging data
acquired from nematode "Caenorhabditis elgans". The UNet accepts a 160×160×16
image stack and produces a binary mask of the same dimension, with every voxel
either represents a neuron or background. The 3D UNet consists of 3 encoding layers,
one middle layer and 3 decoding layers. 1st encoding layer consists of 2 convolutional
operations with 8 and 16 filters, second and third also consists of 2 convolutional
operations with 16,32 and 32,64 filters. Each encoding layer is followed by 2 × 2
downsampling. The middle layer has 2 convolutional operations with 64 filters each.
The output of each encoding layer is concatenated with the input of the decoding
layer at a similar level. The decoding layer consists of one convolutional operation
and one concatenation with 8, 16 and 32 filters respectively. The output probability
score for each voxel is thresholded at 0.5 and then neurons are segmented by Gaussian
Blurring and watershed segmentation. Original 3D image stack are 512× 1024× 28,
therefore they divided the initial raw images into 160×160×16 sized smaller images.
They have used one 3D stack for training and reported that the pipeline tracked 98%
of neurons in the test data. They have also reported that the pipeline was able to
track 91% of the neurons even when artificial noise was added.

Wang et. al. (Wang et al., 2019) proposed a two-staged neuron detection pipeline.
In the first stage, the raw image stack is first denoised by taking a moving average
along the temporal axis. Then they normalize the stack using local maxima and
minima along the temporal axis. After normalization, they generate a reference
image by taking the maximum value along the temporal axis and an average image
by taking the average value along the temporal axis. They binarize the reference
image using the Local Adaptive Thresholding Algorithm (LATA)(Singh et al., 2012).
After binarization, they use the watershed algorithm on the binary and reference
image to create an intermediate segmentation mask. To separate neurons from non-
neuron blobs in the segmentation mask, they train a three-layered CNN. First and
second layers consist of a convolutional layer followed by a max-pooling layer while
the third layer is a fully connected layer generating two outputs, 1 for neurons and
0 for otherwise. They have evaluated their pipeline on 9 manually annotated image
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stacks and reported F1 score of 0.85± 0.01. They haven’t reported the performance
of their pipeline on any benchmarks, so it is hard to compare their pipeline against
other state-of-the-art approaches.

Peterson et. al. (Petersen, Simon, and Witten, 2018) proposed a dictionary-
learning based approach, called SCALPEL, for neuron detection in calcium imaging
data. First, they binarize every frame in the image stack after standardization. Then
they use connected thresholds (Sonka, Hlavac, and Boyle, 2014) method to segment
candidate neurons from the background. After segmentation, they filter candidate
neurons which are smaller or larger than an expected size range. Then they generate
a dissimilarity matrix based on temporal and spatial properties of candidate neurons
in which each element represents how dissimilar a candidate neuron is compared to
another candidate neuron. Using the dissimilarity matrix, they cluster similar can-
didate neurons together by hierarchical clustering approach (Hastie et al., 2005). In
the final step, they optionally filter the refined dictionary elements, arguing that clus-
ters with a larger number of members are more likely to be true neurons. They have
validated their pipeline on three calcium videos/image stacks. The first video is a one-
photon video, collected by the lab of Ilana Witten (https://wittenlab.org/) at the
Princeton Neuroscience Institute, has 3000 frames of size 205× 226 pixels sampled at
10 Hz. They have only reported the successful detection of neurons, but no precision,
recall or F1 scores. The second and third videos are two-photon videos from Allen
Brain Observatory (http://observatory.brain-map.org/visualcoding), contain-
ing 105,698 and 105,710 frames respectively of size 512× 512. Once again, they have
reported successful detection of quite a large number of neurons but no precision,
recall or F1 scores.

Aleksander et. al. (Klibisz et al., 2017) proposed a standard UNet (Ronneberger,
Fischer, and Brox, 2015) based neurons segmentation pipeline. They create a single
mean summary image by taking the average value across the temporal dimension.
This operation flattens the temporal dimension and converts 3D stack into a 2D image.
Then they apply a UNet on 128 × 128 patch of the summary image to segment the
neurons. The UNet is composed of an input layer, three encoding layers, one middle
layer, three decoding layers and an output layer. The input layer has two 3 × 3
convolutional operations with 32 filters each. First encoding layer consists of two
3 × 3 convolutional layers with 64 filters each and a 0.25 dropout layer. The second
encoding layer consists of two 3 × 3 convolutional layers with 128 filters each and a
0.5 dropout layer. The third encoding layer consists of two 3× 3 convolutional layers
with 256 filters each and a 0.5 dropout layer. The Middle encoding layer consists of
two 3 × 3 convolutional layers with 512 filters each and a 0.5 dropout layer. Each
decoding layer consists of concatenation, two 3×3 convolutions, a 3×3 deconvolution
and dropout. The third decoding layer has 256,256 and 128 filters in each of its two
convolutional and one decovolutional layer, the second decoding layer has 128,128
and 64 filters in each of its two convolutional and one decovolutional layer, and the
first decoding layer has 64,64 and 32 filters in each of its two convolutional and one
decovolutional layer. The output layer has a concatenation, two 3 × 3 convolutions
with 32 filters each and output softmax layer. They have validated their approach on
the Neuronfinder challenge dataset (http://neurofinder.codeneuro.org/). They
trained their network on the top 75% of the summary images and validated it on
bottom 25%. In 2017, their pipeline stood third on Neurofinder challenge with an F1
score of 0.59± 0.16.

Soltanian-Zadeh et. al. proposed spatio-temporal neural network architecture for
segmenting active neurons in calcium imaging data (Soltanian-Zadeh et al., 2019).
Their architecture is based on DensVNet (Gibson et al., 2018). Like other popular

https://wittenlab.org/
http://observatory.brain-map.org/visualcoding
http://neurofinder.codeneuro.org/
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fully CNNs for semantic segmentation of medical images e.g., UNet (Ronneberger, Fis-
cher, and Brox, 2015) and VNet (Milletari, Navab, and Ahmadi, 2016), DenseVNet is
composed of encoding layers, decoding layers, and skip connection components. Each
encoder stage of DenseVNet is a dense feature stack. The input to each convolutional
layer of the stack is the concatenated outputs from all preceding layers of the stack.
The authors made the following two modifications to DenseVNet: (i) they changed
the last convolutional layer of DenseVNet to have 10 output channels instead of the
number of classes and (ii) they added a temporal max-pooling layer to the upsampled
features, followed by a 2D convolutional layer with 10 3×3 kernels, and a final convo-
lutional layer with two 3×3 kernels to the output of DenseVNet. They optimized the
network using the Dice-loss objective function. They validated their pipeline on a sub-
set of Allen Brain dataset (http://observatory.brain-map.org/visualcoding)
and Neurofinder Challenge dataset (http://neurofinder.codeneuro.org/). The
Neurofinder challenge dataset was improved by having it analyzed by two expert
human annotators. They compared their approach with four other state of the art
neuron segmentation approaches namely CaImAn (Giovannucci et al., 2019), Suite2P
(Pachitariu et al., 2017), HNCcorr (Spaen et al., 2019), and UNet2DS (Klibisz et al.,
2017). They have reported a superior true positive detection performance as com-
pared to the states approaches at lower PSNR values; with their approach detecting
80% true positives at PSNR = 10 while the mentioned approaches achieved 65%,
52%, 47% and 41% respectively. This approach achieved an average F1 score of 0.69
on Neurofinder challenge.

2.2.1 Data acquisition

For benchmarking purposes, we have validated our approaches on the datasets pro-
vided by Neurofinder challenge (http://neurofinder.codeneuro.org/). The chal-
lenge was launched by a collective of neuroscientists called CodeNeuro (http:
//codeneuro.org/). The collective strives to bring neuroscience and data science
together. This particular challenge was launched to encourage other researchers to
develop neuron segmentation pipelines. The CodeNeuro have provided time-lapse
images of mice brains in the form of image stacks and a JSON file containing the
spatial coordinates of all the neurons present in the field of view. The task of this
challenge is to locate each neuron in the image stack.

The datasets are acquired using two-photon calcium imaging techniques. The
challenge consists of 19 (prefixed by 00, 01, 02, 03 and 04) training and 9 testing
datasets acquired and annotated by four different laboratories. These datasets are
diverse: They reported activity from different cortical and subcortical brain regions
and varied in imaging conditions such as excitation power and frame rate. The ground
truth labels (JSON files containing spatial coordinates) were available for the training
sets, while they were held out for the test set. The first dataset (numbered by a prefix
00 and 03 in the challenge) segmented neurons using fluorescently labelled anatomical
markers, while others were either manually marked or curated with a semiautomatic
method. Based on the calcium indicators used in the data collection process and the
activation dynamics of neurons, following observations need to be taken into account
while analyzing the datasets.

• Different calcium indicators have a different set time, decay time and decay
profile. Therefore, if the decay time of a calcium indicator is larger than the
silent time of a neuron, that particular neuron will appear to be always active.

http://observatory.brain-map.org/visualcoding
http://neurofinder.codeneuro.org/
http://neurofinder.codeneuro.org/
http://codeneuro.org/
http://codeneuro.org/
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• Due to the 2D nature of calcium imaging, two neurons which are not in the
same z-plane might appear overlapped in the x-y plane.

To elaborate on the above-mentioned observations, we will use summary images,
ground truth and calcium activity traces over time (see Appendix A for details). Fig.
2.4 shows the calcium traces of two neurons, one neuron spiking frequency is higher
enough that the calcium indicator doesn’t get enough time to decay while the other
neurons’ spiking frequency is comparatively lower.

(a) Frequently spiking neuron (b) Sparsely spiking neuron

Figure 2.4: Two different spiking behaviours of neurons. (A) The
neuron is spiking frequently. In some cases, the time between two
spikes is smaller than the decay time of the calcium indicator (Build
up to first large spike; the smaller peaks before also represent spikes)
while in other cases, a neuron might spike sparsely, thus giving ample

time to the calcium indicator to return to equilibrium (B)

Figure 2.5: Overlapping neurons. The left panel shows a summary
image (mean image across the temporal dimension) while the right
panels show an enlarged view of the neurons overlapped in z-domain.
Although the calcium imaging technique takes images of a very thin
slice of the brain, yet two neurons might likely overlap in the XY plane
(signified by width and height in these images) while having a different

z-coordinate.
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Fig. 2.6 compares two neurons based on their average activity. Since some of
the neurons spike more frequently than the others while some neurons barely spike,
their activity averaged over time is significantly different as illustrated in Fig. 2.5.
Moreover, the calcium indicators distribution is not uniform throughout the brain
regions being images, therefore some neurons appear inherently brighter than the
rest.

Figure 2.6: This figure shows the temporal activity of two neurons;
neuron one (bounded by a green square in the left panel) appears much
brighter than neuron 2 (bounded by a red box in the left panel) for a
variety of reasons (see Appendix A for details) while the right panel
contains their fluorescence traces (signified by corresponding colours)
plotted against time. It is worth noting that the bright neuron is
visible in the summary image while the darker neuron is hardly visible

in the summary image.

Because of the inadequacies in the calcium imaging, some areas in the field of
view appear darker than the rest. This is illustrated in Fig. 2.7.

2.2.2 Summary images

The image stacks acquired by two-photon calcium imaging cannot be visualized by
standard image visualization tools since they have a temporal dimension; therefore,
researchers often use summary images. A standard summary image is obtained by
applying a specific function across the temporal dimension which collapses the tem-
poral dimension and gives a 2D image representation of the stacks. Based on the
collapsing function used, we can divide the summary images into the following two
categories.

Statistical summary images

The statistical summary images are obtained when pixels in the 2D image are replaced
by a statistical measurement of all the pixels on that specific location across temporal
domain (Klibisz et al., 2017). Widely used statistical summary images include the
mean image, standard deviation image and max image. For instance, when calculating
a mean summary image, the value at a specific spatial location is calculated by taking
the mean of all pixels on that specific location across the temporal dimension.

Correlation summary images

The correlation summary images are obtained by finding the mean temporal corre-
lation of a pixel with its neighbours (Giovannucci et al., 2017b). For instance, to
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Figure 2.7: Bright and dark regions. The left panel shows a summary
image in which two regions are bounded by two boxes; the yellow
bounding box is for the darker region while the green bounding box is
for the brighter region. There is a visible difference between the two

regions as evident in their enlarged view on the right side.

find a pixel value on a specific location in the correlation image, first, the temporal
correlation of the pixel on that location is calculated with its immediate neighbours
(4 or 8 neighbours). Then mean of the temporal correlations is placed as the pixel
value at that specific location.
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Chapter 3

Gesture tracking

In this chapter, we discuss our proposed deep learning pipeline and related concepts
used for gesture tracking in mice. At the end of the chapter, we present the perfor-
mance of our pipeline.

3.1 Methods

3.1.1 Problem statement

Gesture tracking can be approached in two manners; one, using pose estimation
methods and two, by segmenting each limb of the mouse in every frame. We will
use the latter approach. Therefore, we postulate that for proper gesture tracking, we
need to track all the limbs, head, tail and whiskers of the mouse. This chapter focuses
on the limb parts. For successful limbs tracking, we need to consider the following.

• The shape of the limbs is deformable i.e. the limbs might appear to change
shape from frame to frame.

• The limbs might be occluded in some frames

• Since limbs are part of the larger torso, therefore the motion of the torso should
also be taken into consideration. The limbs might not move or move very
slowly in some frames.

Therefore, to successfully track limbs in every situation, we have to take both its
deformable shape and how it moves into consideration.

3.1.2 A Haar cascades based approach

In this approach, we try to locate every limb in a frame by training Haar cascades
to detect limb-like shapes (Giovannucci et al., 2018). It requires training with a
moderate quantity of labelled samples, and operates at faster than realtime speeds. In
labelled samples, we draw bounding boxes around all visible limbs. The classification
algorithm is composed of two steps (Fig. 3.1(a)–(c)): (i) Feature extraction using
Haar filters on all the possible rectangular sub-windows present in the Region of
Interest (sliding windows search); and (ii) efficient classification of each sub-window
as limb/non-limb using a cascade of Adaboost classifiers. We computed the Haar-
like features as described in Viola and Jones (Viola and Jones, 2001). Haar filters
convolve the image with rectangular functions, and have been extensively used in
computer vision tasks such as face detection (Viola and Jones, 2001) and object
recognition (Lienhart and Maydt, 2002). The computation of the Haar descriptors can
be significantly sped up using the integral image (Ehsan et al., 2015). Convolutions
with rectangular Haar filters can be expressed in terms of sums of rectangular areas
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of pixels and can be reduced to three fixed-point operations (two subtractions and
one addition) on the integral image regardless of the size of the filter. The resulting
features are used to train a cascade of classifier ensembles. The Adaboost (Freund
and Schapire, 1997) algorithm is used to train a robust combination of weak decision
stump classifiers on the Haar features within a sliding window (Fig. 3.1(c)). Each
classifier is trained to discard a large number of subwindows at early stages of the
cascade, and the final classifiers are specialized to process the most difficult examples.
At the detection phase, only a few sub-windows pass through all layers of the cascade,
and each sub-window is classified as limb/no limb or tail/no tail.

Figure 3.1: Block-Loc. (a) Illustration of the mouse with two ex-
amples of manually labelled paws (yellow squares). (b) Left: Convo-
lution of a bank of rectangular filters (Haar filters, left). This step
is optimized using the integral image, which takes advantage of the
rectangular structure of the Haar filters. The integral image (right) is
constructed in such a way that each pixel (i, j) in the integral image
is the result of adding all the image pixels from the previous pixels in
both coordinates. The convolution with a rectangular filter becomes
a simple addition of four numbers. (c) Cascade of boosted classifiers.
All the cropped windows are extracted from the image following a
sliding-windows approach and the Haar features are computed. Then
the sub-windows are processed in a cascade of classifiers that discard
the vast majority of crops at early stages. (d–f) Empirical evaluation
of Block-Loc. (d) Examples of overlaid detected and manually iden-
tified limbs in the case of 2 (left), 3 (middle) and 4 (right) detected
limbs. (e) Left: Overlaid ground truth (yellow) and inferred (purple)
horizontal position for hindlimb (top) and forelimb (bottom). The
horizontal axis represents time. (f) Histogram describing the number
of limbs detected per frame. In purple the detected and in yellow the
ground truth. (f) Examples of overlaid detected and manually iden-
tified tail location. (h) Overlaid ground truth (yellow) and inferred
(purple) horizontal (top) and vertical (bottom) positions for the tail.
The purple asterisk indicates time points where the detected location

was substantially far from the ground truth.
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3.1.3 Gesture tracking by limbs segmentation: CNN and LSTM
based motion tubes

Notation

In Table 3.1 we summarize the notation employed in this dissertation. As a general
rule, we use (blackboard) boldface capital letters to denote matrices, (normal) capital
letters to denote scalars, boldface small letters to denote vectors and normal small
letters to denote indices. To be consistent, IW ×H×T denotes the whole video (or image
stack), IW ×H

i denotes ith frame of the video (or image stack), Is:W s×Hs
i,j denotes jth

superpixel of ith frame. We will consistently use i for frame index in a video and j for
jth superpixel in a video frame. If an index appears in small brackets, it corresponds
to the exact locations of the matrix elements. For example, I(xk, yk, i) corresponds
to a pixel (element) in I at kth x and kth y location in frame i.

Method overview

This approach is based on the intuition that a limb can be told apart from its sur-
roundings by its shape and how it moves. Figure 3.2 summarizes the three main steps
of the proposed method. Given a video IW ×H×T consisting of T frames:

1. For each frame, we compute the superpixels of the image. For each superpixel,
we look Dcnn frames into the past, we find the closest matches for the superpixel
on the time axis, and we stack them in chronological order to construct what
we name motion tubes Mi,j (a tensor of size Ws×Hs×Dcnn).

2. We extract appearance features from each motion tube using a trained CNN
as a feature extractor. It will produce a feature vector of length Lf for each
motion tube. The CNN parameters are previously learned with a training set
containing motion tubes from limb and non-limb regions (see section 3.1.3).

3. We stack sets of Dlstm features extracted from the CNNs to construct the mo-
tion sequences Xi,j (size Dlstm × Lf). The motion sequences are used to
train an LSTM that performs the image segmentation taking into account the
temporal coherence of the motion tubes.

In the following subsections, we detail the methods we used to build the motion
tubes, extract the feature vectors and obtain the LSTM output for each sequence.

Motion tubes

Motion tubes are defined as the 3D structures with the temporal history of groups
of similar pixels that move similarly through time. We first reduce the complexity of
a frame by grouping all the pixels into superpixels and then track their progression
through time. A superpixel refers to a polygonal part of an image, larger than a
normal pixel, that is rendered in a similar colour and brightness (Superpixel, Empir-
ical Studies and Applications 0202; Stutz, Hermans, and Leibe, 2018). To overcome
the computational cost of over-segmenting a frame into superpixels, we used the effi-
cient SLIC (Simple Linear Iterative Clustering) method proposed by Achanta et. al.
(Achanta et al., 2012). (refer to Appendix A for more details).

Superpixels (especially the ones located in mice skin) may have very similar ap-
pearance regardless of their state of motion. To effectively use superpixels, we in-
troduce temporal context to them, treating time as the third dimension. Besides,
superpixels differ in shape and size. In order to find where a superpixel is located
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Table 3.1: Notations used in this chapter

Notation Meaning
Dcnn Depth of CNN input (motion tube)
Dlstm Depth of LSTM sequence
Ws,Hs width and height of a superpixel window
W,H, T Width, height and duration of the video
N Number of superpixels in one video frame
I Video consisting on T frames (size W ×H × T )
Ii Frame at the i-th time step (size W ×H)
F Optical flow tensor (size W ×H × 2× T − 1)
Fi Optical flow associated with Ii (size W ×H × 2)
Ii,j j-th superpixel of Ii (size Ws×Hs)

Mi,j Motion tube tensor associated with j-th superpixel of Ii

(size Ws×Hs×Dcnn)
Xi,j Motion sequence associated with j-th superpixel of Ii

(size Dlstm × Lf )
Lf length of feature vector extracted by CNN

in the next frame (motion path), we propose to use optical flow tracking (Horn and
Schunck, 1981a) (refer to Appendix B for more details). Notice that the shape of the
superpixels forming the motion tube is deformable. To make the method computa-
tionally tractable, we used a fixed-sized window to construct the tube. Also, temporal
window slices from superpixels of the motion tube (along the depth dimension) may
not necessarily refer to the same fixed spatial locations in successive frames, as body
parts migrate along with the image coordinates. Fig. 3.3 shows an example of a su-
perpixel tracked backwards through time. The depth of the tube (Dcnn) is controlled
by the user and can be varied to change the extent of temporal context captured by
the tube.

More formally, let’s assume we are dealing with a video with W, H and T dimen-
sions (width, height and number of frames). Row elements are denoted by r, column
elements are denoted by c while time dimension is denoted by t. A frame I can be
represented by: 3.1

Ii = I(r, c, ti) (3.1)

The SLIC algorithm clusters all the points in IW ×H
i in N superpixels. The su-

perpixels generated from the current frame are not guaranteed to be present on the
same spatial coordinates in the next (or previous) frame. Also, a direct temporal
link between superpixels generated from the current frame to superpixels generated
in the next (or previous) frame cannot be established. However, the apparent motion
of superpixel centroids can give a rough estimate for its closest relatives in the next
(or previous) frame if we assume that there aren’t any abrupt changes in luminosity,
shape and position of the objects in successive frames. We establish a temporal link
between the superpixel in the current frame and its closest match in the previous or
next frame and we stack them up to generate a 3D tube.

To generate the motion tubes of depth Dcnn for the N superpixels per each frame
i ∈ 1...T , we proceed as follows:

1. We compute the optical flow from the 3D structure I (size W × H × T ) rep-
resenting the video (being Ii the ith frame). We store it in a flow field F
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Figure 3.2: Master Flowchart: The image slice in the tubes Ms
i,j

represents a specific superpixel and the corresponding fixed window
which encloses it in frame i and its various matches tracked through
time. Double headed arrow represents the flow of time, so superpixel
at time i − 1 was the predecessor of superpixel at position i. The
shaded 3D structures on the left represent the 3D motion tubes formed
by stacking Dcnn superpixels together chronologically while the blue-
bordered matrix on the right represents the motion sequence. An
enlarged view of a motion tube with its constituent superpixel shaded
in green is shown in Fig. 3.3. The individual feature vector extracted
from the tube (formed by a specific superpixel number j from frame
number i) is represented by a row vector of length Lf as xl,m =
[xl,1,xl,2, ...,xl,Lf ]. Dcnn represents the depth of the motion tube and
Dlstm represents the length of the motion sequence which is given as
input to the LSTM. A single motion sequence is formed by stacking
feature vectors extracted from Dlstm motion tubes by the CNNs in the

correct chronological sequence.

size(W × H × 2 × T − 1). Fi (size W × H × 2) represents the optical flow
associated with frame i.

2. We compute the centroid Is
i,j of each jth superpixel Is:W s×Hs

i,j at frame i.

3. We estimate the coordinates of the centroid on the previous frame i − 1 using
the current coordinates and the optical flow vector.

4. We compute the distance from the estimated centroid Is
i−1,j and all the super-

pixels in the previous frame.

5. We add the window of fixed size Ws ×Hs centered on the closest centroid at
frame i− 1 to the motion tube MW s×Hs×Dcnn

i,j .
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Figure 3.3: Enlarged view of how the constituent superpixel of a mo-
tion tube is tracked backwards through time. The superpixel shaded
in green color is forming the tube whose closest relatives are tracked

backward in time.

Notice that the procedure of locating the closest match of superpixels in previous
frames allows us to handle situations where two superpixels converge in time (typically
because the limb regions shrink as movement dynamics evolve). The algorithm 1
details the main steps of the procedure that outputs N motion tubes for each frame.

To reduce the dimensionality of the data and to extract meaningful appearance
features, we use a 4-layer Convolutional Neural Network (CNN) (Abbas, Masip, and
Giovannucci, 2020). We conjecture that since we train the CNN to learn how to
discriminate between limb/non-limb categories from motion tubes, the features ex-
tracted will be more descriptive than handcrafted features. The input to the first
convolutional layer is a 3D motion tube MW s×Hs×Dcnn where Ws and Hs represents
spatial dimensions while Dcnn represents tube depth. The output of the CNN is a
feature vector x1 obtained from the last layer (fully connected), of length Lf . Table
3.2 details the parameters for each layer used in this paper.

Motion sequences

Motion sequences integrate several temporally consecutive motion tubes to learn a
sequential classifier that performs the image segmentation for limb tracking. For a
given superpixel j in frame i, we extract one dimensional motion tube vector x1.
Then we do the same process for the closest match of this superpixel in the previous
frame and extract another one-dimensional feature vector x2. We repeat the process
for the previous Dlstm frames. Finally we stack all these one dimensional feature
vectors to form the motion sequence X (size Dlstm × Lf) = [x1; x2; ...; xDlstm

]. We
compute one motion sequence per superpixel and we train an LSTM Neural Network
(Hochreiter and Schmidhuber, 1997a) to predict the probability of the sequence of
belonging to a limb (see Appendix A).

Training data for the CNN and LSTM regressors

We use a CNN for the feature extraction and an LSTM for the image segmentation.
In both cases, we train these models to provide a probability of the superpixel of
being limb /non-limb. We use a mean squared error loss for the regression task.
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Algorithm 1 Motion tubes construction
Result: Motion tubes for superpixel Is

i,j

k = 0; M = { };
if i < Dcnn then

. Not traversed the minimum number of frames yet while Number of available
frames is less than required (i < Dcnn) do

Append Ii to I at position i;
Append Fi to F at position i;

end
else

Start from 1st superpixel (j = 0)
while we have available superpixels (j < N) do

Start from current frame i (k = 0)
while we haven’t traversed backwards Dcnn frames (k < Dcnn) do
if current frame i (k==0) then

Place Is
i,j at last location of the tube

else
Find centroid of superpixel Is

i,j and store in (xs:j , ys:j).

Project it onto frame Ii−k using optical flow as (xs:j∗, ys:j∗) =
(xs:j , ys:j) + Fi−k(x = xs:j , y = ys:j).

Find the distance between the centroid of the projected superpixel
and centroids of all superpixels in the previous frame and store it in
Ds:. The closest relative of superpixel with centroid (xs:j , ys:j) is the
one returned by
Is

j∗ = argmin(Ds:).

Append Is
i,j∗ at location Dcnn − k of motion tube Ms

i−k,j .
end
k = k + 1;

end
j = j + 1

end
end
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Training data are manually annotated in binary terms (limbs/non-limb) at a pixel
level (segmentation mask). Nevertheless, the training algorithm requires a unique
probabilistic value for all the pixels forming a superpixel. The training data is gener-
ated by manually annotating limbs in video frames. The limbs (moving or still) are
labelled accurately by tracing their boundaries and then extracting a mask.

To generate a target label for a superpixel Is
i,j(x, y), the corresponding superpixel

with same spatial coordinates x, y is extracted from the labelled frame. Let’s say
xs:j , ys:j correspond to the x and y coordinates of all the pixels of Is

i,j , the label Ys:j
(label for superpixel j) is determined by Eq. 3.2 and 3.3.

Ys:j∗ = {(x, y)|x ∈ xs:j , y ∈ ys:j ∧ I(xs:j , ys:j) = 1}
{(x, y)|x ∈ xs:j , y ∈ ys:j}

(3.2)

Ys:j =
{

0 Y s
j∗ <= 0.1

Ys:j∗ Y s
j∗ > 0.1 (3.3)

The ’limb-ness’ score is then associated with every pixel within such a superpixel.
These new pixel values are used to generate a dense segmentation frame with the same
width and height as the original frame. A simple thresholding on such segmentation
frames produces a mask (Eq. 3.3). Such a mask can be compared to the manually
annotated ground truth for evaluation.

  (a) (b)

Figure 3.4: Example of how a label is given to a superpixel. First,
the original frame is over-segmented into superpixels. To find out the
target label for a superpixel, shaded in green in (a), the corresponding
superpixel, also shaded in green in (b) is extracted and then evaluated

according to Eq. 3.2 and 3.3

3.2 Experiments

3.2.1 Annotation

Two frontal videos (478 frames) and two lateral videos (1534 frames) are annotated
by three human annotators independently. The degree of agreement between the
three human annotators is higher than 95% on average, therefore the annotation is
reliable to be used for training and testing purposes. The limbs (moving or still) are
labeled accurately by tracing their boundaries and then extracting a mask.
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To generate a target for a a motion tube created by algorithm 1 for, say, super-
pixel IS

1,j , the corresponding superpixel with same spatial positions as that of IS
i,j is

extracted from the labeled frame and the masks are then generated according to Eq.
3.2 and 3.3.

3.2.2 Motion tubes generation

We have experimented with a tube depth of 9 frames (75 ms). The size of the
superpixels is controlled by the number of superpixels N in a frame. To include
some spatial context to the individual slice of the tube, we have included an image
patch of size 61 with the corresponding superpixel at its centre. Each superpixel slice
is resized to 41 × 41 to keep the size uniform throughout. So for a tube of depth
Dcnn = 9 frames, its size will be 41× 41× 9. The tubes can only be generated once
have traversed at least Dcnn frames of the video, so with a video length of 239 frames,
Dcnn = 9, N = 100 and size of a superpixel patch being 41×41, we will have a total of
230×100 tubes, and the resultant data will have the dimension of 41×41×9×23000.

3.2.3 Building motion sequences from features extracted by CNN

A 20 layered CNN is trained on motion tubes with an input layer, 4 hybrid layers
of convolutional and pooling operations, a dropout layer with a dropout ratio of
0.5, a fully connected layer and a regression layer. The hybrid layers consist of
a convolutional layer, a ReLu activation layer, a batch normalization layer and an
average pooling layer with parameter values given in Table 3.2. An illustration of
CNN is shown in Fig. 3.5

Figure 3.5: Illustration of the CNN employed for features extraction.
It has four layers with 8, 16, 32 and 64 filters respectively. Each
layer has 3 × 3 convolution followed by a batch normalization, ReLu

activation and average pooling.
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Table 3.2: Parameter values for the layers

Layer 1 Layer 2 Layer 3 Layer 4
Number of filters 8 16 32 64

Filter size 3 3 3 3
Stride of pooling 2 2 2 2

We train the CNN as a feature extractor for later stages. The CNN is trained
to predict the amount of "limbness" of a superpixel (see Eq. 3.2). Once the CNN is
trained, we apply it on a motion tube and extract the output generated by the fully
connected layer as the feature vector. Since the fully connected layer size is 64, the
superpixel is represented by a vector of 64 features which are learned, not handcrafted.
Since the motion tubes, width and height are dictated by the associated superpixels
and their depth behaviour is dictated by the temporal history of the superpixels, we
can loosely call the extracted features as spatiotemporal features.

3.2.4 Limbs detection by LSTM

Once the features are generated by CNN from motion tubes, they are used to create
motion sequences for LSTMs (see algorithm 1). We generated 15 features-vectors-
deep sequences. The length of sequence depth = 15 was chosen empirically. Therefore,
a superpixel is represented by 15 spatio-temporal feature vectors of length 64 each,
stacked together in a temporal sequence in correct chronological order.

We generated motion sequences for all the superpixels. So for a video of 239
frames, with a motion tube depth of 9 frames and motion sequence depth of 15
frames, the first motion sequence will be available after 24 frames which will leave
239− 24 = 215 frames. With 100 superpixels in each frame, feature length of 64 and
motion sequence depth of 15, we will end up with a training data of 15× 64× 21500
motion sequences.

A 6 layered LSTM is trained with the generated motion sequence data which have
following architectures.

• An input layer

• An lstm layer with 64 neurons generating sequence as an output

• An lstm layer with 32 neurons generating sequence as an output

• A bi-lstm layer with 16 neurons generating a vector as an output

• A fully connected layer

• A regression layer

3.2.5 Experimental settings

Experiment 1 (setting 1)

In this setting, we trained the proposed pipeline on one video and tested it on the
other video (767 frames for training and 767 frames for testing or 6.3 seconds of video
for training and 6.3 seconds for testing).
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Experiment 2 (setting 2)

In setting 2, we trained the proposed pipeline on 30% of available frames and tested
it on the remaining 70% frames (460 frames for training and 1074 frames for testing
or 3.8 seconds of video for training and 8.9 seconds for testing).

Experiment 3 (setting 3)

In setting 2, we trained the proposed pipeline on 10% of available frames and tested
it on the remaining 90% frames (154 frames for training and 1380 frames for testing
or 1.3 seconds of video for training and 11.5 seconds for testing).

3.3 Results
The primary goal of gesture tracking is to detect all four limbs (in some cases, detect
tail and head too) in all of the video frames. If there are occlusions, the pipeline should
be able to avoid false positives and when the limb reappears after some time, the
pipeline should be able to detect it right away (avoid false negatives). In this section,
we present the results of the proposed pipeline on the dataset discussed in 2.1.1. We
present both qualitative (visual) and quantitative results. For qualitative results, we
present figures illustrating successful detection, false positives, false negatives and
outliers. For quantitative results, we present the standard performance metrics for
detection problems.

3.3.1 Qualitative results

Success cases

As discussed in earlier chapters, the apparent shape and size of the limbs are de-
formable because of locomotion. Therefore, successful detection depends upon the
generalization capability of the pipeline. In Fig. 3.6 and 3.7, we show that the
proposed pipeline has a good generalization capability in different conditions.

(a) A sample frame with limbs annotated
from a frontal video

(b) Predicted limbs overlaid on a sample
frame of frontal video

Figure 3.6: Sample frames from frontal videos. In (b), the areas
overlaid by green mask are correct predictions while the areas overlaid

by a red mask are missed limbs
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(a) A sample frame with limbs annotated
from a lateral video

(b) A sample frame from a lateral video with
detection results overlaid on original frame

Figure 3.7: Sample frames from lateral videos. In (b), the areas
overlaid by green mask are correct predictions while the areas overlaid

by a red mask are missed limbs

Failure cases

Since the successful detection of limbs depends upon a variety of factors (superpixel
size, illumination, occlusion, presence of other body parts which might look or move
like limbs etc.), therefore, the pipeline is not always able to infer correct results. In
some cases, it might miss to detect a limb (false negative) or give high probability to
superpixels not part of the limbs (false positives). In Fig. 3.8 and 3.9, we have shown
some failure cases.

3.3.2 Quantitative results

For quantitative analysis, we calculated Jaccard Index (Levandowsky and Winter,
1971), precision, recall and detection accuracy according to the following formulae.
Let’s say in the video frame Ii, the limb is represented by mask IL

i with same size as
Ii, the detected limb is represented by mask IL∗

i ,then Jaccard Index can be defined
by Eq. 3.4

Ji = IL
i ∩ IL∗

i

IL
i ∪ IL∗

i

(3.4)

The Jaccard Index helps us decide if a limb is present or absent. If the Jaccard Index
is higher than a threshold (0.5 in this case), we conclude we have detected the limb,
and vice versa.

To understand the performance in terms of precision, recall and accuracy, we first
define the true positives and negatives. A true positive (TP) refers to a case when
a limb is present in both the actual frame and predicted result, true negative (TN)
refers to a case when a limb is absent from both original frame and predicted result,
false positive (FP) refers to a case when a limb is not present in the original frame
but it is still detected, false negative (FN) refers to a case when a limb is present in
the original frame while missing from the predicted result. With these definitions of
TP, TN, FP and FN, we define precision, recall and accuracy in Eq. 3.5, 3.6 and 3.7.

Precision = TP

TP + FP
(3.5)
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(a) Failure case 1, false positive

(b) Failure case 2, false negative

Figure 3.8: Sample failure cases. Sample failure cases are shown
along with the original frame. In the left panel, we have the origi-
nal frame and in the right panel, we have the prediction overlaid on
the original frame. (a) shows a false positive while (b) shows a false

negative.

Recall = TP

TP + FN
(3.6)

Accuracy = TP + TN

TP + TN + FP + FN
(3.7)

3.3.3 Lateral videos

Lateral videos have low noise ratio and the limbs are visible and identifiable in most of
the frames. As seen in Fig. 2.3, the limbs can be told apart from the background eas-
ily. To understand the impact of the number of frames used for training the pipeline,
we conducted experiments with lateral videos according to the settings described in
3.2.5. The results for these three settings are summarized in Tables 3.3,3.4 and 3.5
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(a) Failure case 1, false positive

(b) Failure case 2, false negative

Figure 3.9: Sample failure cases for lateral videos. Sample failure
cases are shown along with the original frame. In the left panel, we
have the original frame and in the right panel, we have the prediction
overlaid on the original frame. (a) shows a false positive while (b)

shows a false negative.

Table 3.3: Performance measure for lateral videos in setting 1

Precision Recall Accuracy
Front left limb 88.2% 38.8% 81.2%
Front right limb 98.0% 98.5% 96.6%
Hind right limb 96.8% 98.3% 95.3%

3.3.4 Frontal Videos

Compared to lateral videos, frontal videos contain high amounts of noise (both salt
and pepper and equipment noise). The limbs are not always identifiable from the body
or background due to heavy noise. Therefore, the detection and tracking performance
is worse than that for lateral videos. A sample annotated frame is shown in Fig. 2.2.

The quantitative results for setting 1, 2 and 3 (see section 3.2.5) are shown in
tables 3.6, 3.7 and 3.8.
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Table 3.4: Performance measure for lateral videos in setting 2

Precision Recall Accuracy
Front left limb 86.9% 40.2% 81.0%
Front right limb 96.6% 91.3% 88.5%
Hind right limb 97.6% 96.2% 95.0%

Table 3.5: Performance measure for lateral videos in setting 3

Precision Recall Accuracy
Front left limb 77.4% 38.7% 77.0%
Front right limb 97.8% 94.8% 92.8%
Hind right limb 94.7% 95.0% 90.1%

Table 3.6: Performance measure for frontal videos in setting 1

Precision Recall Accuracy
Front left limb 91.5% 71.4 % 79.1%
Front right limb 92.9% 91.7% 88.2%
Hind right limb 89.1% 70.7% 80.5%

Table 3.7: Performance measure for frontal videos in setting 2

Precision Recall Accuracy
Front left limb 95.7% 71.0% 77.8%
Front right limb 93.8% 87.9% 86.3%
Hind right limb 92.1% 72.5% 82.2%

Table 3.8: Performance measure for frontal videos in setting 3

Precision Recall Accuracy
Front left limb 94.3% 68.3% 74.3%
Front right limb 93.4% 87.6% 85.1%
Hind right limb 91.8% 67.4% 78.0%

As evident from Tables 3.3,3.4,3.5, 3.6,3.7 and 3.8, the detection performance does
drop as we reduce the number of training samples, however, the drop in performance
is not as high as the drop in number of samples (A maximum drop of 8.1% in accuracy
for lateral videos while a maximum drop of 4.2% in accuracy for lateral videos against
a 60% drop of number of training samples). The reason behind this phenomenon is
that since the mouse is head fixed, therefore, from the camera perspective, the limbs
are moving in a (rough) cyclic fashion. So if we can train the network with enough
samples that it covers one motion cycle, the network should be able to learn properly.
Moreover, since fewer frames are enough to identify the apparent changes in the shape
of the limbs, the pipeline can learn despite the small number of frames.

To evaluate the tracking performance of the proposed pipeline, we tracked the
centroids of the front left limb in both manually annotated (Ground Truth) and
predicted frames. We compared them qualitatively by plotting the annotated and
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actual tracks side by side and then for compared them quantitatively by finding the
mean distance between manually annotated and predicted positions (centroids) of the
front left limb according to equation 3.8.

Dp
i =

√
(xc

G − xc
P )2 + (yc

G − yc
P )2 (3.8)

where xc
G and yc

G are the coordinates of the front left limb coordinates in ground
truth frames and xc

P and yc
P are the coordinates of the front left limb coordinates in

predicted frames.
The manually annotated and predicted limbs in frontal videos are separated by a
mean distance of 3.84 pixels. Tracks (plots of centroids as a function of position)
of the left frontal limb from a frontal video are shown in Fig. 3.10.

Figure 3.10: Actual path and path predicted by our approach and
DeepLabcut (Mathis et al., 2018a) of front left limb in a frontal video.

To compare the effectiveness of our approach, we compared it on tracking perfor-
mance to the Haar cascades based approach proposed by (Giovannucci et al., 2018)
because they have used the same lateral videos as we have. We plotted the tracks of
limbs extracted from the annotated video along with tracks of predicted limbs and
calculated the distance between centroids of manually annotated limbs and predicted
limbs. We found out that the manually annotated limbs and the limbs predicted by
the proposed approach are separated by 2.24 pixels on average in lateral videos.
The same separation grows to 9.5 pixels on average when limbs are predicted by
Haar cascades. The tracks of a right hind limb from a lateral video are shown in Fig.
3.11 and 3.12.

The average distance between (defined by Eq. 3.8) the centroids of a detected
limb and ground truth for all of the trajectories shown in Fig. 3.10 and 3.11 reflects
the average tracking accuracy of the pipelines. Table. 3.9 summarizes this average
distance for DeepLabcut, Deepposekit and the proposed pipeline.

From the qualitative and quantitative results, we can draw the following conclu-
sions.

• Learning based approaches perform better than unsupervised statistical ap-
proaches.
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Figure 3.11: Actual path and path predicted by our approach and
DeepLabcut (Mathis et al., 2018a) of hind right limb in a lateral video.
The path is calculated by finding centroids of hind right limb in each
frame and then plotting its y coordinate against its x coordinate.

Figure 3.12: Actual path and path of hind right limb predicted by
Haar cascades as proposed by (Giovannucci et al., 2018) in a lateral
video. The path is calculated by finding centroids of hind right limb in
each frame and then plotting its y coordinate against its x coordinate.

• The proposed pipeline has comparable and sometimes superior performance
than state of the art in term of tracking accuracy.

• The proposed pipeline is superior to the current state of the art in terms of its
explicit consideration of the temporal nature of the problem.

• The proposed pipeline can be optimized to be less data hungry and more effi-
cient.
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Table 3.9: Tracking mean squared error of the trajectories in the
frontal and lateral settings.

Method Frontal Lateral
Deeplabcut 5.5 6.35

Deepposekit (StackedHourglass) 3.97 5.39
Deepposekit (StackedDensenet) 4.74 5.63

Motion Tubes 2.24 3.84
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Chapter 4

Neural activity (neurons)
segmentation

As mentioned in earlier chapters, action potentials cause transient changes in the
intracellular concentration of calcium ions which are detected by observing the flu-
orescence of calcium indicator molecules, typically using two-photon microscopy in
the mammalian brain (Denk, Strickler, and Webb, 1990b). When a single image
plane is scanned repeatedly, we get a time series of 2D neural activity images. This
is effectively a video in which neurons blink whenever they are active (Chen et al.,
2013).

In the traditional workflow for extracting neural activities from the video, a human
expert manually annotates the regions of interest (ROIs) corresponding to individual
neurons (Dombeck et al., 2007). Within each ROI, pixel values are summed for each
frame of the video, which yields the calcium signal of the corresponding neuron versus
time. A subsequent step may deconvolve the temporal filtering of the intracellular
calcium dynamics for an estimate of neural activity with better time resolution. The
traditional workflow has the deficiency that manual annotation becomes laborious
and time consuming for very large datasets. Furthermore, manual annotation does
not demix the signals from spatially overlapping neurons.

4.1 Methods

4.1.1 Problem statement

To trace neuron activity in the 3D image stacks (neuron activity videos) produced
by calcium imaging, the following challenges need to be taken into consideration.

• The temporal dynamics (rise time, decay time, decay constant) of different cal-
cium indicators are different, therefore, a unified framework to define temporal
profiles of different calcium indicators cannot be defined.

• When a single image plane (x,y) is recorded over an extended time, two neurons
which are located at different z-coordinates might appear spatially overlapped
(partially or fully). They can only be told apart when they are active at different
times.

• The many different neurons do not share the same activation pattern, some
might fire more often than others.

• Due to the way calcium indicators work, they might accumulate near cell borders
in some cases instead of getting distributed uniformly across the neuron cell
body, thus creating a toroid shape instead of solid disc shape in fluorescence
images.
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4.1.2 Spatio-temporal U-Net (STUNet)

U-Net is a convolutional neural network architecture designed for medical image seg-
mentation (Ronneberger, Fischer, and Brox, 2015). It is based on an encoder-decoder
architecture with one arm encoding input images into compact representations and
the other arm unfolds that representation into dense segmentation maps. The succes-
sive stages of encoder arm compress (downsample) the input image into compact fea-
ture maps while the successive decoding stages upsample the encoded feature maps.
The encoder arm intermediate outputs are copied to the decoder arm which then
guides the upsampling of feature maps. This architecture has delivered many break-
throughs in medical image segmentation (Ronneberger, Fischer, and Brox, 2015; Li
et al., 2018; Klibisz et al., 2017).

Despite its performance on dense segmentation of medical images, U-Net archi-
tecture was primarily designed for 2D image segmentation. We have designed a new
U-Net inspired architecture for neuron segmentation in 3D image stacks which not
only exploits the segmentation power of U-Net but it also does not discard the infor-
mation contained in the temporal activity of neurons. We have designed a modular
U-Net; a network which can be tweaked to process 3D spatio-temporal stacks of differ-
ent temporal dimensions by including or excluding some layers. The U-Net consists of
encoding layers, spatio-temporal downsampling layers, middle layer, decoding layers,
spatial upsampling layers and an output layer. In the following sections, we explain
the internal architecture of encoding, decoding, spatio-temporal downsampling, mid-
dle, spatial upsampling and output layers and how the connectivity works. We also
illustrate and explain two variants of the U-Net. The encoding and decoding layers
are based on the relatively new architecture of LSTM which implements an LSTM
pipeline for images. This LSTM architecture is called Convolutional LSTM (which
we will refer to as ConvLSTM or CLSTM) and is explained below.

Convolutional LSTM (ConvLSTM)

Introduced by Xingjian. et al. (Xingjian et al., 2015), convolutional LSTM is a
hybrid of convolutional operations and LSTM network. ConvLSTM is an extension
of Fully Connected LSTM (FC-LSTM) (Sainath et al., 2015) architecture to have
convolutional structures in both the input-to-state and state-to-state transitions. The
FC-LSTM, though powerful for handling temporal correlation, contains too much
redundancy for spatial data. The ConvLSTM mitigates this problem by replacing
point operations in input-to-state and state-to-state transition by convolutions. An
LSTM cell processes sequential data by updating it’s hidden states through which
information flow is regulated by gates (see Appendix A for details). Input gate
regulates the inputs, forget gate regulates how much information flows between state
transitions and output gate regulates the outputs. The architecture of a typical LSTM
cell is shown in Fig. 4.1.

For a ConvLSTM cell, the input sequence X1,X2, .....,Xt, cell outputs C1, C2, ....., Ct,
hidden states H1,H2, .....,Ht, and gates it,ft,ot of the ConvLSTM are 3D tensors
whose last two dimensions are spatial dimensions (rows and columns). For better vi-
sualization, let’s assume the ConvLSTM cell is a three dimensional grid with x and y
dimensions representing the spatial information associated with the image sequences
and z dimension representing vectors associated with the inputs and hidden states.
It is to be noted that if only one pixel is considered in the image sequence, the input
sequence it forms and the hidden states it will produce can be represented by one
dimension temporal vectors. Therefore, the inputs and states of a pixel can be per-
ceived as vectors standing on a spatial grid. The ConvLSTM determines the future
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Figure 4.1: Illustration of the inner structure of an LSTM. Source:
Understanding LSTM Networks – colah’s blog 2020

state of a certain cell in the grid by the inputs and past states of its local neighbors.
This can easily be achieved by using a convolution operator in the state-to-state and
input-to-state transitions (see Fig. 4.2). The key equations of ConvLSTM, modified
from the state equations of FC-LSTM (see Appendix A) are shown in Eq. (4.1) be-
low, where ’*’ denotes the convolution operator, ’◦’, denotes the Hadamard product
and σ denotes non-linear activation function:

it = σ(Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi)
ft = σ(Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bi)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt +Whc ∗ Ht−1 + bc)
ot = σ(Wxo ∗ Xt +Who ∗ Ht−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)

(4.1)

If the states are viewed as the hidden representations of moving objects, a Con-
vLSTM with a larger transitional kernel should be able to capture faster motions and
vice versa. Usually, all the states of the LSTM are initialized to zero which corre-
sponds to “total ignorance” of the future. Similarly, zero-padding of the hidden states
sets the state of the outside world to zero and assumes no prior knowledge.

4.1.3 Layers

Encoding Layer

The encoding layer is built upon ConvLSTM layers and normal convolutional layers.
The architecture of an encoding layer is shown in Fig. 4.3. As shown in Fig. 4.3, the
encoding layers accept one 3D tensor as input and have 4 outputs, two 3D tensors
(one 3D tensor can be fed as the input of next encoding stage while the other 3D



46 Chapter 4. Neural activity (neurons) segmentation

Figure 4.2: Architecture of a ConvLSTM cell.

tensor is copied to the decoding stage of a similar level), a 2D tensor and hidden
states of the ConvLSTM. The 3D input tensor is fed into a ConvLSTM whose 3D
output is copied to the decoding stage. The 3D output then passes into two 3× 3× 3
convolutional stages (the number of filters is decided by the user) followed by 3D
downsampling. Finally, the downsampled 3D tensor is passed through a batch-norm
and reLu activation layer (see Appendix B for more details on reLu activation). The
first hidden state of the ConvLSTM is passed through two 3× 3 convolutional stages
followed by 2D downsampling, batch-norm and reLu activation. The downsampled
2D output is copied to a similar level decoding stage after the reLu activation. All
the hidden states are copied to a similar level decoding stage as well.

The encoding layer has two processing streams; one processes the 3D input in 3D
(3D convolutions and 3D pooling) while the other processes it in 2D (2D convolutions
and 2D pooling). The split between 3D and 2D occurs at the ConvLSTM which
forwards its 3D output to the 3D arm while the first 2D hidden state is forwarded to
the 2D processing arm. The intuition behind simultaneous 2D and 3D processing is
that the 3D arm will learn information from temporal and spatial domains while the
2D arm will learn a better spatial representation of the input 3D tensor. Since the
encoding layer accepts a 3D tensor and has a downsampled 3D tensor (along with a
downsampled 2D tensor, the original 3D output of the ConvLSTM, and hidden states
of the ConvLSTM), multiple encoding layers can be stacked on top of each other to
form the encoding arm of the spatio-temporal U-Net. This layer can be summarized
as follows.

• It accepts a 3D input.

• It processes the 3D input by first passing it through a convolutional LSTM and
then through 2D convolutional layers, so it produces 3 kinds of outputs; 3D, 2D
and LSTM states.

• It produces both 3D and 2D downsampled outputs. So this layer acts as a
spatio-temporal downsampling layer and can be used for downsampling both in
spatial and temporal domains.

Decoding Layer

The decoding layer is also built around a ConvLSTM at the beginning of the layer.
A decoding layer accepts 4 inputs, a 3D input, initial hidden states (copied from the
encoding layer at a similar level), a 2D tensor copied from the encoding layer (output
of the 2D processing arm of the encoding layer) and another 2D tensor which is the
output of the previous decoding layer. A standard decoding layer is shown in Fig. 4.4.
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Convolutional LSTM (C−LSTM )

Hidden states of C−LSTM

output

3DTensor flowing

3×3×3convolution

copy hidden state [0 ]

3×3convolution

3Ddonwsampling

2Ddonwsampling

Batch−norm followed by leaky−reLu

C−LSTM output copy

Output for next stage

Encoder 2D output copy

C−LSTM hidden states copy

Input

2DTensor flowing

hidden states flowing

Figure 4.3: The encoding layer is built around a ConvLSTM cell. It
accepts a 3D input (a video segment or a spatio-temporal image stack)
as an input. First, the 3D inputs are processed by a ConvLSTM cell;
we copy the hidden states and 3D output of the ConvLSTM to be
used as inputs in a decoding layer at a similar level. The 3D output
is then passed through a 3 × 3 × 3 convolutional layer followed by
3D downsampling, batch-norm and leaky-relu. The output of this
operation is then fed into the next encoding layer. Simultaneously,
the first hidden state (a 2D tensor) is taken and fed into two 3 × 3
convolutional layers followed by 2D downsampling, batch norm and
leaky-relu. The output of this operation is then copied to the decoding
layer at a similar level. Therefore, two data-streams are running inside
an encoding layer, a 3D data stream which processes the input both in
temporal and spatial domains (to learn spatio-temporal features) while
another 2D data stream processes the input in 2D (spatial domain

only).

As shown in this figure, the 3D tensor and hidden states copied from the encoding
layer initialize the ConvLSTM. The first hidden state of this ConvLSTM is passed
through a 3 × 3 convolutional stage. The 2D tensor copied from the encoding stage
and output of previous decoding stage is concatenated and then passed through an
upsampling and deconvolutional layer. The resultant 2D tensor and the output of 3×3
convolutional stage are concatenated and passed through another 3× 3 convolutional
layer. Finally, the output is passed through a batch-norm and reLu activation layer
resulting in a final upsampled 2D tensor. This upsampled 2D tensor can be fed to
the next stage decoding layer or the output layer. This layer can be summarized as
follows.

• It accepts a 3D input, LSTM states and a 2D input.

• It passes the 3D input and LSTM states through a CLSTM.
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• The 2D input is upsampled and added to one of the output states of the CLSTM.

• This layer produces a spatially upsampled output, so given the LSTM states,
this layer can be used a spatial upsampling layer.

Hidden states of C−LSTM

2DTensor copy / flow

3×3convolution

Batch−norm followed by leaky−reLu

copy hidden state [0 ]

Deconvolution∧upsampling

C−LSTM initiated by encoder outputs , hidden states

Encoder copied hidden states

Encoder C−LSTM copied outputs Encoder 2−D output Previousdecoder output

3DTensor copy / flow

hidden states copy / flow

Figure 4.4: The decoding layer is also built around a ConvLSTM cell
but in this case, the ConvLSTM cell is initialized by outputs and states
copied from the encoding layer at a similar level. Once the ConvLSTM
cell is initialized, its first hidden state is copied and passed through a
3×3 convolutional layer. The 2D output copied from encoding layer at
a similar level is concatenated with the 2D output of earlier decoding
layer and then passed through deconvolution and upsampling stage.
The upsampled 2D tensor is then concatenated with the first hidden
state of the ConvLSTM and passed through another 3×3 convolutional
layer. The 2D output of this convolutional layer is passed through a
batch-norm and leaky-relu layer and then fed into the next decoding

layer.

Middle (Bottleneck) Layer

The bottleneck layer is composed of 2 3× 3 convolutional layers followed by a batch-
norm and leaky reLu activation layer. The middle/bottleneck layer simply adds
another layer of feature extraction in the spatial domain. The input to the bottleneck
layer is a 2D tensor and the output is another 2D tensor with the same dimensions.
This 2D output tensor is fed to the last decoding layer. A standard middle layer is
shown in Fig. 4.5.

Spatio-Temporal Downsampling Layer

This layer is specifically designed to downsample stacks in temporal dimension as
well as spatial dimensions. It consists of 3D convolution followed by downsampling
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Figure 4.5: The middle layer consists of two 3 × 3 convolutional
layers followed by the batch norm and leaky-relu. This layer simply
acts as a bridge between the last encoding layer and first decoding
layer. The output layer consists of a 1 × 1 convolutional layer which
maps the outputs of the network onto the desired number of labels in

the predicted mask.

in temporal dimension and batch normalization. The 3D convolution makes sure
that information loss from downsampling the temporal dimension does not affect the
learning ability of the network. Although every encoding layer also has a temporal
downsampling block, inserting more encoding block can either overload the memory
or the spatial dimensions of the input stack might not allow it since the encoding layer
also has a spatial downsampling block. The temporal downsampling layer solves both
of these problems. This layer can be summarized as follows.

• It accepts a 3D input.

• It can perform downsampling either in the spatial domain or temporal domain
or both.

• Given a 3D input, this layer can be used for downsampling both in spatial
and/or temporal domain

The block diagram of a temporal downsampling layer is shown in Fig. 4.6

Spatial Upsampling Layer

This layer is designed to upsample images in the spatial domain. If there are memory
and processing power constraints, this layer can be used instead of the decoding layer
to upsample the feature maps in the spatial domain. It receives two inputs; one is the
feature map from the corresponding level in the encoding arm of the network copied
directly and the other one is the feature map coming from the preceding layer in the
decoding arm. The feature map coming from the encoding arm passes through a 1×1
convolution, the feature map from the previous decoding layer passes through a 3×3
convolution and then they are added. This is followed by a transpose convolutional
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Figure 4.6: The temporal downsampling layer consists of one 3×3×3
convolutional layer followed a (2, 1, 1) downsampling layer which only
downsamples in the temporal domain (In our case, the first dimen-
sion is the temporal dimension). This is followed by a batch norm
and leaky-relu layer. This layer downsamples the input 3D spatio-
temporal stack only in the temporal domain while keeping the learned
feature space relatively constant by including 3D convolution before

downsampling.

block/upsampling block supported by a 3 × 3 convolution. The convolution is then
followed by a reLu activation and batch norm. This layer can be summarized as
follows.

• It accepts a 2D and a 3D input.

• It generates a 2D tensor from the 3D input by collapsing the temporal dimension
and then add it to the 2D input.

• It upsamples the tensor in the spatial domain.

• This layer can be used as a general-purpose upsampling layer with more learning
power than a standard upsampling layer.

The block diagram of a spatial upsampling layer is shown in Fig. 4.7

Output Layer

The output layer transforms the output of the final decoding layer in the required
shape. Depending upon the number of filters employed, the output of the final de-
coding layer might have multiple layers while we might need just two output layers or
three output layers depending on the choice of masks. Therefore, the output layer is
composed of one 1× 1 convolution with the number of filters equal to the number of
required classes. It is followed by sigmoid activation. A typical output layer is shown
in Fig. 4.8.

4.1.4 End to end training

As mentioned in 4.1.1, the neurons which are spatially overlapped in x,y dimensions
but non overlapped in z dimension pose a challenge due to the nature of imaging
modality since they appear overlapped in the acquired image stacks when viewed
through a summary image. The only way to tell them apart is to observe their
temporal activity. Although they are spatially overlapped, yet they might not be
active at the same time. The simple way to incorporate this information for neu-
rons segmentation is to split the image stacks into multiple smaller stacks along the
temporal dimension. By doing so, we increase the chances of creating temporal win-
dows where the overlapped neurons are active at different times. But to train our
network on this dataset, we need to create a target mask for each of these windows
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Figure 4.7: The spatial upsampling layer consists of two convolu-
tional layers (one 1×1 convolutional layer to match feature map of 2D
input from the previous decoding layer and a 3× 3 convolutional layer
applied on the input coming from the encoding arm. The encoding arm
input is first averaged on temporal axis), one transpose convolutional
layer followed by a 3×3 convolution, the temporal downsampling layer
consists of one 3×3×3 convolutional layer. This is followed by a batch

norm and leaky-relu layer.

Figure 4.8: The output layer.

which is time-consuming. There are automated ways of creating the temporal masks
(Soltanian-Zadeh et al., 2019) but those masks are not guaranteed to be accurate.
We have designed an end-to-end pipeline which deals with both of these problems.
We have made the following assumptions:

• All the neurons in the field of view will fire at least once when we consider a
large portion of the stack (say 90%).

• We know the spatial coordinates of all the neurons at training time, not just
the combined binary masks of all the neurons.
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With the above-mentioned assumptions in mind, we propose two processing pipelines.

4.1.5 Hierarchical Training

For this training, we use the network illustrated in Fig. 4.9. The training pipeline is
created in steps. For the sake of simplicity, let’s assume we have 512 frames in the
input stack to process.
Step 1: First 64 frames are divided into 8 stacks, with each stack containing 8
frames.
Step 2: The network is repeatedly applied to the 8 stacks, resulting in 8 output
masks. These masks are concatenated in correct chronological order to create a stack
of 8 masks.
Step 3: Steps 1 and 2 are repeated for frames 65 to 128, then 129 to 192 until 512.
By the end of step 3, we have 8 stacks of output masks with each stack containing 8
output masks.
Step 4: Once again, we apply the network to the stacks obtained in step 3 repeatedly,
resulting in 8 new masks. These masks are again concatenated in correct chronological
order to create a final stack of 8.
Step 5: Apply the network once again to the final stack to get the final mask. In
the training stage, this mask is used for error backpropagation while at the inference
stage, this mask is used as the final output. The 5-steps pipeline is illustrated in Fig.
4.10.

4.1.6 Single Stage Training

For single-stage training, we either increase the number of layers in the network
illustrated in Fig. 4.9 or we introduce temporal downsampling layers, depending on
the computing capacity available and the temporal depth of the stacks. In our case,
we introduced temporal downsampling layers in the network so it can be trained on
the same hardware. With a total of 6 temporal downsampling operations (3 encoding
layers and 3 temporal downsampling layers), the network can process spatio-temporal
stacks consisting of 64 frames (26 = 64). The network is shown in Fig. 4.11.

4.2 Mask generation for an end to end training
Even if the second assumption we made in 4.1.4 is true and we have the spatial
coordinates of all the neurons, we still have to define a proper target mask with the
following properties.

• The mask should be dense and should be of the same spatial dimensions as the
input stack.

• The target mask should include all neurons. It should not be formed by deleting
the overlapping neurons.

• The probability of overlap between binary masks of two individual neurons
should be as small as possible.

• We should not make any assumption about the number of neurons in the stack.

By keeping the above-mentioned assumptions in mind, we decided to experiment
with different target masks explained in the following subsections.
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Figure 4.9: The architecture of proposed U-Net used in end-to-end
training. The U-Net has three encoding layers, three decoding layers,
a middle (bottleneck) layer, an output layer (Explained in 4.1.3) and a
logical layer used to determine if the input stack is from initial steps or
intermediate steps. The signal flows from top to bottom in encoding
layers while it flows bottom to top in decoding layers. For better visu-
alization, we have named all the layers (encoding and decoding) from
top to bottom although the signal flows in reverse order in decoding
layers (from layer 3 to layer 1, not the other way around). This way,
we can visualize that three tensors are copied from the first encoding
layer to first decoding layer and so on. The bottleneck layer trans-
forms one of the outputs of the 3rd encoding layer to be fed at one of
the inputs of the 3rd decoding layer and the output layer transforms
the signal into the desired shape. The logical layer determines if the
input sequence is coming from the original stack or if it was created by
intermediate steps of the pipeline. Since the original stack is grayscale,
therefore, there the frames have 1 colour channel. The logical layer
applies a 3× 3 convolutional with three filters to transform the input

into three colour channels.

4.2.1 4 layered target mask with overlapping neurons in different
layers

The principle behind this target mask is to separate the overlapping neurons by
placing them in different layers under the assumption that no more than three neurons
can overlap in a stack. This assumption is made to limit the number of layers in the
target mask to four, three for the neurons and one for the background. The mask is
created in the following steps.

1. Create a matrix with the same spatial dimensions as the input stack and four
layers.
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Proposed variant of U-Net

Image sequence input for the U-Net

Image sequence formed by concatenating 
2D outputs of previous stages "in" correct 
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Legend

Figure 4.10: Graphical illustration of end to end training pipeline.
The original stack is represented by the long tube in the bottom. The
group of coloured lines (8 in a group) slicing the stack represent indi-
vidual frames in the stack. One coloured group goes into the network
as input and produces one output (frame) represented by a line slic-
ing through the mini-stack. When this process is repeated 8 times,
8 create a coloured-lines group (another sequence) in the mini stack.
The mini stack contains 8 such groups. These coloured-lines groups
(signifying the sequences of step 3 in 4.1.4) are again fed into the net-
work repeatedly. The outputs are then again concatenated in the final
cube. The final cube signifies the sequence formed by the outputs of
step 4 in 4.1.4. Finally, the network is applied once again to the cube

to arrive at the final output mask.

2. Select a neuron randomly. Place its binary mask in the first layer.

3. Select another neuron randomly. Check if it has any overlap with the first layer
of the mask. If there is no overlap, place its binary mask in the first layer. If
there is an overlap, check if it has an overlap with the second layer of the mask
as well. If there is no overlap with the second layer, place its binary mask in
the second layer of the target mask. If there is an overlap with the second layer
as well, check if it has an overlap with the third layer. If it has no overlap in
the third layer, place its binary masks in the third layer, otherwise, go to step
4.

4. By now, we know that the neuron in question has an overlap with all the three
layers. Find the intersection over the union of current neuron with all the layers.
Then place it in the layer with the smallest value of intersection over the union.

5. Repeat step 2 to 4 for all the remaining neurons.
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Figure 4.11: The architecture of proposed single-stage U-Net used in
end-to-end training. The U-Net has two spatial downsampling layers,
three encoding layers, three decoding layers, three temporal downsam-
pling layers (embedded in the encoding arm after each encoding block),
two spatial upsampling layers, a middle (bottleneck) layer and an out-
put layer (Explained in 4.1.3). The first two layers on the encoding
arm are spatial downsampling layers, then three pairs of encoding and
temporal sampling layers. The decoding arm has one decoding layer
at the same level as the corresponding encoding layer in the encoding
arm and two spatial upsampling layers at the same level as the spatial
downsampling layers of the encoding arm. Encoding layers included,
there are a total of 6 temporal downsampling steps (3 from temporal
downsampling layers and 3 from encoding layer) thus downsampling
temporal dimension from 64 to 1. The three encoding layers down-
sample the spatial dimensions from 256× 256 to 8× 8 in the encoding
arm. Therefore, this network accepts mini-stacks of size 256×256×64

and returns an output of 256× 256× numberofrequiredlabels

6. Check the number of neurons in each layer after step 5. Move neurons between
layers in such a way that there are more or less equal numbers of neurons in
each layer and the overlap is as small as possible.

7. Create a background layer by taking a complement of the first three layers.

A sub-window from the 4 layered target mask is shown in Fig. 4.12

4.2.2 3 layered target mask with overlapping regions in one layer

The principle behind this target mask is to identify those regions in which neurons
are overlapped and put them in a separate layer. This mask has a layer for neurons, a
layer for the overlapping regions and a background layer. It is created in the following
steps.
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(a) (b) (c) (d)

Figure 4.12: Four layered mask: (A), (B) and (C) show masks of
randomly placed neurons in first three layers minimizing the chance of
overlap, (D) shows the mask for background class created by taking

compliment of first three layers

1. Create a matrix with the same spatial dimensions as the input stack and three
layers.

2. Select a neuron randomly. Place its binary mask in the first layer.

3. Select another neuron randomly. Check if it has any overlap with the first layer
of the mask. If there is an overlap, find the spatial coordinates of the overlap
and place the overlap in the second layer.

4. Repeat step 2 and 3 for all the remaining neurons.

5. Create a background layer by taking a compliment of the first two layers.

A sub-window from the 3 layered target mask is shown in the Fig. 4.13

(a) (b) (c)

Figure 4.13: Three layered mask: (A) shows the mask of all neurons
excluding the overlapping regions (B) shows the mask for all the over-
lapping regions (overlap class) and (C) shows the mask for background

class created by taking compliment of first two layers

4.2.3 Gaussian masks

The target mask introduced in 4.2.1 suffers from the effects of randomness. Since
the neurons are randomly placed in the first three layers, it is not guaranteed that a
neuron will always go to a specific layer each time the mask is created for a specific
stack although the stack and physical location of the neurons remain constant. This,
in turn, can confuse the network about which layer it should put the detected neurons
in. The target mask introduced in 4.2.2 suffers from the effects of class imbalance.
Usually, the overlapping regions are much smaller in size and numbers than the actual
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neurons. The disparity is even bigger when compared to the background class. This,
in turn, can skew the network learning against the overlapping class. Moreover, since
the overlapping regions for different neurons have very different expression profiles,
the network might struggle with consistent learning of these regions.

To mitigate these problems, we have introduced target masks based on a Gaussian
kernel placed at the centre of each neuron. We have proposed two masks based on
Gaussian kernels.

Circular Gaussian kernels

To create this mask, we place a circular Gaussian kernel at the centre of each neuron
in such a way that its value is 1 at the centre and decrease in an exponential manner
as we travel radially away from the centre. The rate of decay is controlled by the
variance of distances computed over a circle with a radius big enough to inscribe the
neuron. This way, we get a decaying exponential function with a maximum value
at the centre of the neuron and minimum at the boundaries. If two neurons overlap
each other, the maximum of two masks is placed in the overlapping regions. Finally,
we create a second layer by subtracting the first layer from 1. Let’s assume xd(i)
represents the distance of a pixel i to the closest edge in the mask and xd represents
a set of all such distances, the Gaussian counterpart xdg(i) can be calculated by Eq.
4.2.

xdg(i) = 1
σ
√

2π
exp (−1

2(xd

σ
)2)

xdg(i) = xdg(i)
max(xd(i))

xdg(i) = 1− xdg(i)

(4.2)

A sub-window from the circular Gaussian kernels target mask is shown in the Fig.
4.14

(a) (b)

Figure 4.14: Probability mask produced by placing circular Gaussian
kernels at the center of each neuron: (A) shows the Gaussian mask of
all neurons and (B) shows the mask for background class created by

subtracting first layer from 1
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Gaussian kernels based on distance transform

The Gaussian kernels proposed in the earlier section might not necessarily capture
the complete structural details of the neurons and might struggle to accommodate for
the structural difference among neurons. We have proposed Gaussian Kernels based
on distance transform to reduce the effect of this phenomenon. This mask is created
in the following steps.

1. Create a matrix with the same spatial dimensions as the input stack and two
layers.

2. Select a neuron randomly. Create it’s binary mask and then apply the distance
transform. The distance transform will replace all the pixels in the mask with
the distances to the closest boundary.

3. Apply a Gaussian kernel to the distance transform with the variance of distances
controlling the decay of Gaussian as it moves from the center to the edges. Let’s
assume xd(i) represents the distance of a pixel i to the closest edge in the mask
and xd represents a set of all such distances, the Gaussian counterpart xdg(i)
can be calculated by eq. 4.3.

xdg(i) = 1
σ
√

2π
exp (−1

2(xd(i)
σ

)2)

xdg(i) = xdg(i)
max(xd)

(4.3)

4. Repeat step 2 and 3 for all the remaining neurons.

5. Create a background layer by subtracting the first layer from 1.

A sub-window from the distance transform based Gaussian kernels target mask is
shown in the Fig. 4.15.

(a) (b)

Figure 4.15: Probability mask produced by placing Gaussian ker-
nels produced by distance transform the location of each neuron: (A)
shows the Gaussian mask of all neurons and (B) shows the mask for

background class created by subtracting first layer from 1.

To create this mask, first, we place a circular Gaussian kernel at the centre of each
neuron in such a way that its value is 1 at the centre and decrease in an exponential
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manner as we travel radially away from the centre. The rate of decay is controlled by
the variance of distances computed over a circle with a radius big enough to inscribe
the neuron. This way, we get a decaying exponential function with a maximum value
at the centre of the neuron and minimum at the boundaries. If two neurons overlap
each other, the maximum of two masks is placed in the overlapping regions.

4.3 Dataset and training data generation

4.3.1 Dataset

We have tested our pipelines on the Neurofinder Community Benchmark. The Neu-
rofinder community benchmark CodeNeuro (2016) is an initiative of the CodeNeuro
collective of neuroscientists that encourages software tool development for neuro-
science research (neurofinder ; codeneuro/neurofinder ; Spaen et al., 2019). The
Neurofinder benchmark aims to provide a collection of datasets with ground truth la-
bels for benchmarking the performance of cell detection algorithms. The benchmark
consists of 28 motion-corrected calcium-imaging movies provided by four different
laboratories. Datasets are annotated manually or based on anatomic markers. They
differ in recording frequency, length of the movie, magnification, signal-to-noise ratio,
and in the brain region that was recorded. The datasets are split into two groups:
training datasets and test datasets. The 18 training datasets are provided together
with reference annotations, whereas the reference annotations for the 9 test datasets
are not disclosed. The test datasets and their undisclosed annotations are used by
the Neurofinder benchmark to provide an unbiased evaluation of the performance of
the algorithms. The characteristics of the test datasets are listed in 4.1.

Table 4.1: Characteristics of the test datasets of the Neurofinder
benchmark and their corresponding training datasets

Name Source Resolution Length (sec) Frequency (Hz) Brain region
00.00 Svoboda Lab 512× 512 438 7.00 vS1
00.01 Svoboda Lab 512× 512 458 7.00 vS1
01.00 Hausser Lab 512× 512 300 7.50 v1
01.01 Hausser Lab 512× 512 667 7.50 v1
02.00 Svoboda Lab 512× 512 1000 8.00 vS1
02.01 Svoboda Lab 512× 512 1000 8.00 vS1
03.00 Losonczy Lab 512× 512 300 7.50 dHPC CA1
04.00 Harvey Lab 512× 512 444 6.75 PPC
04.01 Harvey Lab 512× 512 1000 3.00 PPC

The reference annotations for a specific training dataset are in the form of a JSON
file which contains the information about the spatial location of every annotated
neuron in the dataset. We use this information to create the training masks explained
in 4.2. All datasets can be downloaded directly from the Neurofinder benchmark for
cell identification (neurofinder).

4.3.2 Training data generation

For the sake of consistency, we will represent the whole video stack by IW ×H×T =
f(x, y, t) as a function of spatial dimensions x, y and temporal dimension t. The
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superscript in IW ×H×T denotes the width, height and length of the spatio temporal
stack. Following this notation, a frame is denoted by I(x, y, tk) and a pixel at location
(xi, yj) and time step k is denoted by I(xi, yi, tk).

Preprocessing

We first downsample the calcium imaging stacks in the temporal domain by a moving
average with an overlap between successive downsampling steps. After temporal
downsampling, we apply homomorphic filtering to correct non-uniform background
illumination (Oppenheim, Schafer, and Stockham, 1968; Pitas and Venetsanopoulos,
1990; Soltanian-Zadeh et al., 2019).

Training data generation for hierarchical training

The hierarchical pipeline processes the stacks in three stages; each stage accepts a
mini-stack of 8 frames. The first stage processes 8 mini-stacks whose outputs are then
concatenated to generate input for stage two and so on. Therefore, for all the three
stages, the minimum number of frames in 512(83). Let’s denote the input tensor to the
network by Xth×w×h×temp where th represents the temporal dimensions of input mini-
stacks (th is 8 in this case), w, h represent the width and height of the mini-stacks and
temp represents a temporary dimension which holds the mini-stacks for hierarchical
stages. Because of memory consumption problems, we fixed w, h to be 64 each,
therefore, Xth×w×h×temp = X8×64×64×64 (Since the input stack is 512 frames long,
which is divided in mini-stacks of 8 frames, the temp dimension has to be 64 to hold all
of the mini-stacks). Similarly, the target masks will be Yw×h×layers = Y64×64×layers

where layers represents the number of layers in the target mask which depends upon
the choice of target masks explained in 4.2. Depending on the choice of dataset
and the values of downsampling, the final number of frames in a downsampled stack
cannot be lower than 512. We performed our training with the datasets contributed
by Svoboda and Hausser labs because those datasets are acquired at the same frame
rates. The details of downsampled datasets are shown in table 4.2.

Table 4.2: Details of downsampled datasets

Name Original frames Downsampling factor Overlap Downsampled frames
00.00 3066 7 2 613
00.01 3206 7 2 641
01.01 2250 7 3 561
04.00 2997 7 2 599

We generate training samples for an epoch by following steps.

1. Calculate the number of extra frames available Textra in the downsampled stack
by subtracting 512 from the number of frames in the downsampled stack.

2. Choose a random index between 1 and Textra (say Trand) and pick all the frames
from Trand to Trand+512 and store them in a tensor Xin

512×512×512 ex expressed
in eq. 4.4

Xin = f(X,Y, t), t ∈ Textra + {1, 2, ..., 512} (4.4)

3. Create a tensor X8×64×64×64
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4. Generate the target mask.

5. Pick a neuron from the annotation. Place a window of 64× 64 with the neuron
at it’s centre.

6. Apply this window to the first 8 frames of the stack and put the resulting
mini-mask in the first temp dimension of X.

7. Repeat step 6 for all the frames in the stack, processing the next 8 frames in
each iteration and placing the resultant mini-stacks in the next temp dimension
of X.

8. Apply the window to the target mask as well. This way, the target mask for
this mini-stack will have at least one neuron.

9. Repeat this process for all the neurons available in the target annotations.

This way, we can generate as many training samples as we want since, for each new
training sample, we will pick a random index between 1 and Textra resulting in a
slightly different mini-stack. This can be made even more robust by random flipping
or rotation of the mini-stacks and their target masks. At inference time, we simply
split Xin in smaller mini-stacks with the same dimensions as X by sliding a window
of the same size over it.

Training data generation for single stage training

The single-stage pipeline processes the whole stack in one step. Therefore, if there
are no processing or memory constraints, the stacks can be fed directly into the
pipeline. As explained in 4.1.6, the pipeline can process stacks of 64 frames. Let’s
denote the input tensor to network by Xth×w×h where th represents the temporal
dimensions of input mini-stacks (th is 64 in this case), w, h represent the width and
height of the mini-stacks. Because of memory consumption problems, we fixed w, h
to be 256 each, therefore, Xth×w×h = X64×256×256. Similarly, the target masks will
be Yw×h×layers = Y256×256×layers where layers represents the number of layers in
the target mask which depends upon the choice of target masks explained in 4.2. We
generate training samples for an epoch by following steps.

1. Calculate the number of extra frames available Textra in the downsampled stack
I by subtracting 64 from the number of frames in downsampled I.

2. Choose a random index between 1 and Textra (say Trand) and pick all the frames
from Trand to Trand + 64 and store them in a tensor Xin

64×512×512 according to
eq. (4.4)

3. Create a tensor X64×256×256

4. Generate the target mask.

5. Pick a neuron from the annotation. Place a window of 256 × 256 with the
neuron at it’s centre.

6. Apply this window to all the frames in Xin put the resulting mini-mask in X
(with dimensions flipped, now the temporal dimension is represented by the
first dimension instead of the last).
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7. Apply the window to the target mask as well. This way, the target mask for
this mini-stack will have at least one neuron.

8. Repeat this process for all the neurons available in the target annotations.

The process explained above will generate as many mini-stacks as the neurons in the
target annotation. If the whole process is repeated, it will generate another batch of
slightly different mini-stack. Random flipping and rotation can be performed on the
resultant mini-stacks to make them as diverse as possible and reduce the chance of
over-fitting.

Data generation for single stage testing and inference

We cannot use the data generation pipeline presented in the previous section at testing
and inference time because this pipeline generates mini-stacks from an input image
stack without respecting the spatial position of that mini-stack in the original stack.
At testing and inference time, we need to keep the spatial cohesion of mini-stacks
intact. For instance, the previous pipeline picks up a neuron randomly and creates
a window around it without considering where this neuron is located. At inference
time, we don’t have the location of neurons, so we cannot centre the window around
one. To get around this problem, we slide a window on the spatial dimension of the
stack and introduce an overlap. For example, for stack with spatial dimensions of
512 × 512, mini-stack size of 256 × 256 and overlap of 50%, the first mini-stack will
be created by sub-sampling the input stack from row 0 to 256 and column 0 to 256.
For the next mini-stack, we slide horizontally by 128 to let a 50% overlap, so the next
mini-stack will be created by sub-sampling the input stack from row 0 to 256 and
column 128 to 384. We repeat this process until we run out of mini-stacks. For this
specific case, we can slide 3 steps horizontally and 3 steps vertically, so a total of 9
mini-stacks with spatial dimensions of 256 × 256 can be created. These mini-stacks
are given to the network as inputs in proper order which generates an output for
each mini-stack. To stitch the mini-stacks back together, we assign a weight matrix
to the output of every stack. The weight matrix of a mini-stack will be a matrix
of ones if this specific mini-stack was created without an overlap. But if there is an
overlap involved, weights of the overlapping regions will be an average of the number
of overlap steps involved. The weight matrix for this setting is shown in Fig. 4.16.

4.4 Experiments
We have two training frameworks explained in 4.1.4 and four proposed target masks
as explained in 4.2. Therefore, we can design 8 experiments under these conditions
which are described below.

4.4.1 Post processing for Gaussian masks

The Gaussian masks are tailored to favour the nucleus region of the neurons, so the
predicted output masks may not necessarily represent the true shape of the neurons.
For Distance transform-based Gaussian masks, this problem is solved by morpholog-
ical dilation by a small number of pixels. Since predicted output masks for circular
Gaussian might be circular instead of representing the true shape of the neuron, we
pass only the masked area to another copy of the same network which is trained with
only one neuron present and everything other than neurons is masked. Along with
some constraints (size of the neuron and location of the neuron), this step gives us
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Figure 4.16: Weight matrix: Spatial dimensions of input stack =
512 × 512. Spatial dimensions of required mini-stacks = 256 × 256.

Overlap = 128

boundaries for each of the detected neurons. It is to be noted that the window centred
around the detected neuron is different from the window centred around neurons in
training stages because in this case, only a specific area of the window is visible to
the network instead of the whole window.

4.4.2 Hierarchical and single-stage training experiments

Let’s denote the hierarchical training protocol by H (see Section 4.1.4, Fig. 4.9 and
Fig. 4.10), single stage training by S (see Section 4.1.6 and Fig. 4.11), 4 layered
mask by M4layers, 3 layered mask by M3layers, circular Gaussian mask by Mgcirc and
distance Gaussian by Mgdist (see Section 4.2 for details). The experiments created
by iterating through the two training pipelines and four masks are listed in table 4.3

Table 4.3: Different experiments resulting from combining the two
training frameworks with four choices of target masks

H +M4layers H +M3layers H +Mgcirc H +Mgdist

S +M4layers S +M3layers S +Mgcirc S +Mgdist
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For our best network, we use the following training parameters.
Learning rate: We used an exponentially decaying leaning rate starting from 0.001
with an exponential decay rate of 0.998 after every 400 epochs.
Optimizer: Adam (Kingma and Ba, 2014)
Number of training epochs: 3000
Loss function: Pixel-wise Kullback–Leibler divergence (Kullback and Leibler, 1951;
Van Erven and Harremos, 2014)

4.4.3 Evaluation of the results

We will evaluate the results of the network, both qualitatively and quantitatively.
For qualitative evaluation, we will compare the output predicted masks with the
original target masks by placing them side by side. Moreover, we will also impose
the boundaries of the predicted and real masks on summary images of the input
stacks to see how much they agree. Finally, we will compare the visuals of some
selected individual neurons to see the prediction performance in finer details. For
quantitative performance evaluation, we have used the comparison app provided by
the Neurofinder challenge (codeneuro/neurofinder) organizers. We have used this app
to validate our results locally for those datasets which are annotated. We will validate
our results against the published benchmark for those datasets whose annotations are
not released by the organizers. This app compares predicted neuron masks to ground
truth neuron masks and calculates the following metrics.

Precision

Precision is the percentage of all the positively detected neurons which are neurons
to all positively detected neurons. This is a measure of how accurate the positive
detection is in discarding false positives. Precision can be calculated by Eq. 4.5

Precision = TP

TP + FP
(4.5)

where TP and FP correspond to true positives and false positives.

Recall

The recall is the percentage of all the positively detected neurons which are neurons
to all neurons in the ground truth. This is a measure of how accurate the positive
detection is in avoiding false negatives. Recall can be calculated by Eq. 4.6

Recall = TP

TP + FN
(4.6)

where TP and FN correspond to true positives and false negatives.

F1-score

F1-score is the harmonic mean of precision and recall and can be described by Eq.
4.7

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(4.7)
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4.4.4 Results

Network training

We got the best results when we used single stage training coupled with Gaussian
masks (see Section 4.2). We trained the network illustrated in Fig. 4.11 for 3000
epochs and saved the training status after every 60 epochs. We used the dataset
02.00 from table 4.1 as test data and the remaining three datasets (01.00, 01.01,
04.00) as training data. The details of the downsampling are listed in table 4.4.

Table 4.4: Details of downsampled datasets

Name Original frames Downsampling factor Overlap Downsampled frames
01.00 2250 30 5 89
01.01 5502 30 0 165
03.00 2250 30 5 89
04.00 2997 30 5 119

The network appears to reduce the loss rapidly in the beginning and then starts
to plateau. We observed that although the loss decreases very slowly in later stages
of the training, yet there is a significant change in the visual quality of the predicted
masks as we train the network for more epochs. The epoch loss is illustrated in Fig.
4.17

Figure 4.17: Epoch loss visualized after saving the epoch loss value
after every 50 epochs. One step on the x-axis indicate that the network

has been trained for 50 epochs

Qualitative results

In this section, we will compare the visual outputs of the trained network. It is to
be noted that when the Gaussian masks are converted to binary masks, the size of
a neuron might be smaller in the converted binary mask than the original neuron
mask. This is because when we are creating a Gaussian mask, we are making the
edges of the neuron weaker than its centre by assigning it a smaller probability which
is inversely proportional to the distance of the edges from the centre as illustrated in
Fig. 4.18.

To compare the ground truth and predicted binary masks visually, we have placed
them side by side in Fig. 4.19. Fig. 4.20 shows the same two Gaussian masks
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(a) (b)

Figure 4.18: Ground truth masks for test data: (A) shows the
ground truth mask converted from the Gaussian distance mask (B)
shows the actual ground truth mask. The difference in scale is due to
the decaying nature of Gaussian kernels used to represent the neurons.

converted to binary masks and Fig. 4.21 shows the binary masks zoomed on specific
regions for better comparison.

(a) (b)

Figure 4.19: Ground truth Gaussian mask for test data compared
to predicted Gaussian mask for test data: (A) Ground truth Gaussian

distance mask (B) Predicted Gaussian distance mask

In order to visualize the comparative boundaries of the neurons, we overlaid the
boundaries of neurons in the ground truth and predicted masks and visualized them
with different colors. We also indicated the neurons which are present in the ground
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(a) (b)

Figure 4.20: Binary masks extracted from Fig. 4.19: (A) Ground
truth (B) predicted

(a) (b)

Figure 4.21: Zoomed masks from Fig. 4.20: (A) Ground truth (B)
Predicted

truth but missing in the predicted masks (false negatives). Fig. 4.22 shows the
boundaries overlaid on the neurons shown in Fig. 4.21.

In order to visualize the temporal activity of detected neurons, we averaged the
neurons in the spatial domain while keeping the temporal domain intact. This resulted
in an activity trace for the neuron over time. We observed that for most of the
detected neurons, the activity traces were very similar to the activity traces of ground
truth neurons. This is illustrated in Fig. 4.24.
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Figure 4.22: Failure case: False negatives. Boundaries of neurons
from Fig. 4.21: Green represents the neurons detected by the network,
blue represents the neuron from ground truth and red represents the

neurons missed by the network.

Figure 4.23: Failure case: False positives. Boundaries of neurons
from Fig. 4.21: Green represents the neurons detected by the net-
work, blue represents the neuron from ground truth and red represents
the neurons predicted by the network but missing from ground truth
(false positives). Note that there are multiple ground truth boundaries
without any predicted boundaries, they are false negatives but omitted

from this illustration since they are illustrated in Fig. 4.22
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(a)

(b)

Figure 4.24: Neural activity traces of neurons: (A) Neural activity
trace of a single neuron (B) Neural activity traces of multiple neurons

visualized simultaneously

Quantitative results

For the datasets described above, we ran the pipeline multiple times with slightly
different settings to get a good picture of the network performance. For each setting,
we trained the network slightly more and then tested it. Since the network loss enters
a plateau after a while (see Fig. 4.17), we assume that the network achieves a baseline
performance after a certain number of epochs. Treating that network as a baseline,
we train it further and then evaluate its performance. For validation, the network is
trained on three stacks and tested on one which is not included in the training data.
Table 4.5 shows the settings and results for the trained network proposed in 4.1.6.

Table 4.6 illustrate the statistics of the network performance.
To benchmark the results, we compared the performance of our pipeline to two

other approaches which are benchmarked against the Neurofinder challenge. To keep
the comparison fair, we tested both of those approaches on the same test data we
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Table 4.5: Quantitative results

number of training epochs precision recall F1
19,000 0.73 0.68 0.70
20,000 0.80 0.70 0.74
21,000 0.82 0.75 0.78
22,000 0.92 0.82 0.87
23,000 0.90 0.85 0.87
24,000 0.98 0.81 0.88
25,000 0.99 0.89 0.93

Table 4.6: Statistics of quantitative results

. precision recall F1
Minimum 0.73 0.68 0.70
Maximum 0.99 0.89 0.93
Mean 0.88 0.78 0.82
Std 0.09 0.07 0.08

used in our analysis and trained one of them on the same data as we used to train
our pipeline. One of the approaches is called ’HNCCorr’ (Spaen et al., 2019). This
is an unsupervised approach which segments neurons pixel by pixel by searching and
grouping all those neurons which show similar temporal behaviour. This is achieved
by temporal correlation of pixels with their neighbourhoods. The other approach is
called ’UNet2DS’ and it employs a standard UNet applied on 2D summary images
of the neuronal stacks (Klibisz et al., 2017) (see Section 2.2.2 for details on sum-
mary images). Table 4.7 shows the comparison of our approach to the mentioned
approaches. We chose these approaches for comparison because they are among the
top-performing in state of the art and their results are comparatively easier to repro-
duce and there is open-source code available for them. Moreover, we chose HNCCorr
as a representative of the unsupervised approaches and UNet2DS for supervised ap-
proaches. We chose UNet2DS because it is built around the same architecture as
STUNet.

Table 4.7: Comparison of our approach to the state of the art

. precision recall F1
HNCCorr 0.84 0.42 0.56
UNet2DS 0.85 0.72 0.78

STUNet (ours) 0.88 0.78 0.82

From the qualitative and quantitative results, we can draw the following conclu-
sions.

• The proposed approach performs better than the state of the art unsupervised
approaches.
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• Proposed approach also performs better than supervised state of the art ap-
proaches in a test setting, although this need to be further validated on other
open source datasets.

• The main strength of the proposed approach is its tandem operation of 2D and
3D information streams, which make it an appropriate candidate for spatiotem-
pral segmentation.
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Chapter 5

Discussion

In this research, we have proposed deep-learning-based solutions for behaviour anno-
tation and neural activity annotation which can help behavioural and computational
neuroscientists establish a causal link between behaviour and neural activity. Since
we were dealing with two very different aspects of essentially one problem, the causal
relationship between behaviours and neural activity, we had to establish two differ-
ent pipelines to deal with those separately. The first aspect of this problem is how
to quantify behaviours and the second aspect is how to detect and quantify neural
activity. We decided to treat them as separate but similar problems. For behavioural
annotation, we selected to work with locomotion data of head-fixed mice running
on a spherical treadmill which were being recorded from frontal and lateral angles
(please refer to section 2.1.1 for details about experiment settings). The dataset
consists of RGB videos in different lighting conditions with a mouse in the field of
view. Part of this dataset was manually annotated to generate training data. The
annotation was done by tracing limbs boundaries in each frame and the proposed
pipeline was trained to detect the limbs in each frame based on the previous seg-
ments of the videos. Since the detection was done by analysing previous segments of
the video in a spatio-temporal manner, this problem can also be treated as spatio-
temporal localization. For neural activity detection, we decided to test the proposed
pipeline on an open benchmark, the Neurofinder challenge (see section 4.3.2 and refer
to codeneuro/neurofinder for more details). This dataset consists of spatio-temporal
stacks of calcium imaging data contributed by different laboratories. The training
dataset contains information about all of the neurons visible in the field of view.
The neuron’s spatial annotation is done automatically for some of the videos using
anatomical markers while manually for others. The core challenge is to infer the
spatial position of each neuron and separate them from each other, therefore, it can
also be treated as a spatio-temporal localization.

5.1 Gesture Tracking
Based on the spatio-temporal nature of the data at hand, we have proposed a deep
learning-based spatio-temporal solution to annotate the behavioural data. In a typ-
ical behavioural neuroscience data set, researchers aim to identify limbs in every
frame. We started from the widely popular approaches of object detection: the
Haar cascades. Although Haar cascades gave us good results on one dataset (lateral
video), it failed to produce promising results on frontal videos. So we moved towards
a deep-learning-based solution. Conventional techniques rely on a frame by frame
image segmentation or object detection. Our approach is based on the notion that
limbs are regions of the frames which feature specific and learnable spatio-temporal
characteristics.
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We defined the notion of motion tubes and motion sequences, that use compact
representations (superpixels) to simultaneously extract appearance and temporal fea-
tures on videos. In other words, we treat the limbs as a collection of superpixels which
moves coherently. Under this assumption, we track the superpixels in time and build
a 3D tube representing the journey of these superpixels. We used features learned by
training a CNN to classify if a constructed temporal tube belongs to a limb or not.
We extract a feature vector for each temporal tube and then stack feature vectors
on the temporal axis to get a temporal representation of the features extracted from
successive temporal tubes. The resulting feature sequence is essentially a temporal
sequence (we refer to it as a motion sequence) and we train an LSTM to classify this
sequence into the limb and non-limb regions. Since we create the temporal tubes
and subsequently the motion sequence by tracking the journey of superpixels in time,
when we classify a motion sequence, we can essentially segment part of the limbs.

We obtained promising results on two different acquisition conditions (lateral and
frontal videos) and under different noise patterns. We have developed this approach
under the assumption that the animal, in this case, the mouse, is head-fixed. There-
fore, for our approach to work in freely moving animals, additional steps need to be
included. Moreover, we have also compared our work to the state of the art tracking
and pose estimation approaches and concluded that our pipeline produces results at
par with state of the art.

We have published three papers which describe parts of our gesture tracking work.
The first paper summarizes our work on Haar cascade (Giovannucci et al., 2018). The
second paper is a comprehensive literature review of gesture tracking/pose estimation
methods for laboratory animals/mice (Abbas and Masip, 2019). The third paper
covers our work on the deep-learning-based pipeline for limbs segmentation/tracking
(Abbas, Masip, and Giovannucci, 2020).

5.2 Neural activity detection/segmentation
As mentioned earlier, although gesture/activity tracking by limbs segmentation and
neural activity detection/segmentation are primarily different tasks, yet both share
similarities since both of them are done by analyzing spatio-temporal data. Therefore
some of the concepts from gesture tracking can also be imported into neural activity
detection. For instance, we can/did exploit the sequence learning ability of LSTMs
to learn temporal sequences. In the case of gesture tracking, we used LSTMs to
annotate motion sequences if they were created from limbs or non-limbs superpixels
while in the case of neural activity detection, we used a special kind of LSTMs to learn
binary masks of neurons from spatio-temporal calcium imaging data. The LSTMs we
employed are referred to as convolutional LSTMs and unlike conventional LSTMs,
ConvLSTMs can learn the representation of image sequences (videos). Because of the
increased interest in neural activity detection/segmentation due to the Neurofinder
challenge, there are other promising approaches as well which have been proposed
by other researchers (see section 2.2). Some of the recent approaches are based
on deep models, especially the UNet and DenseNet, however, these approaches are
lacking in two key areas; one, they need temporal masks for neurons so they are not
end-to-end and two, they do not expressly treat the problem as a spatio-temporal
problem. We have addressed these two problems by building on top of the classical
UNet architecture by replacing its blocks by custom blocks. The custom blocks are
based on ConvLSTMs and they process the stacks in two streams, a 2D stream which
learns a spatial representation of the data and a 3D stream which learns the 3D
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spatio-temporal structure of the data. The 2D stream is built by employing standard
convolutional, deconvolutional and sampling blocks while the 3D stream relies on
ConvLSTMs. We address the problem of end to end training by proposing a novel
target mask pipeline which creates a Gaussian instead of a binary ROI for each
neuron. The Gaussian of each neuron is strong at the centre and becomes weak at
the edges, so even if we have overlapping binary masks for two neurons, they can
be easily separated by their Gaussian masks. This allows us to train the proposed
network in an end-to-end manner and eliminate the need to create temporal masks of
the neurons. Therefore, all this network needs is an input stack of calcium imaging
data and the locations of neurons it is supposed to learn.

Preliminary results of this network are very promising (see section 4.4.4). The
network generates good neuron masks which are very similar to the ground truth
masks in most of the cases. We have some instances of false negatives while very
few instances of false positives, therefore we can conclude that the network does not
annotate wrong regions as neurons, although it might miss annotating the neurons
correctly sometimes. Moreover, the network can also separate neurons which appear
overlapped in the 3rd dimension. This network still needs to be refined and validated
on more datasets but we can safely conclude that the proposed network has a proven
ability to separate neurons from the background. This part of our research is under
review for publication.

5.3 Future work
The idea which was driving this research was to pave the way for finding a causal
relationship between physical activity (gestures/limbs movements) and neural activ-
ity. This was out of scope for the research goals we set for this thesis but we have
suggestions to expand this work into that direction. We believe the following research
directions can be interesting to explore in future work.

• Refine the gesture tracking pipeline by pursing the following directions.

– Replace the two-stage pipeline (the CNN and the LSTM) by a single net-
work, preferably a ConvLSTM.

– Create better training data set by using more data and better masks for
limbs.

– Explore domain adaptation for better tracking i.e. a well known tracking
dataset (Ruffieux et al., 2014) can be used as the source domain and gesture
tracking for mice dataset can be treated as the target domain.

• Refine the neural activity segmentation pipeline by pursing the following direc-
tions.

– Refine the pipeline for more optimized computation.
– Validate the pipeline on more datasets.
– Explore more robust target masks.
– Explore variable temporal domain network. For instance, the network

in its current form can only process calcium imaging stack with a fixed
number of frames (temporal steps). This way, the pipeline can be used to
process arbitrarily long stacks without worrying about losing neurons.

• Validate the neural activity segmentation pipeline against published bench-
marks.



76 Chapter 5. Discussion

• Create a biological neuronal network of the neurons segmented by the pipeline.

• Establish a causal relationship between the biological neuronal network and
gesture tracking.

• Create a pipeline which can learn to do both the gesture tracking and neural
activity detection/segmentation simultaneously.

• If synchronized behavioural and neuronal data becomes available, explore the
joint learning of both tasks in a self-supervised manner, at large scale, with no
need for human annotations.
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Chapter 6

Contributions

This chapter provides a summary of our research contributions.

6.1 1st paper
The first paper summarizes our work on Haar cascades (Giovannucci et al., 2018).

6.1.1 title

Andrea Giovannucci, EA Pnevmatikakis, B Deverett, T Pereira, J Fondriest, MJ
Brady, SS-H Wang, W Abbas, P Pares, and David Masip. “Automated gesture
tracking in head-fixed mice” Journal of neuroscience methods, Vol. 300, 15 April 2018,
Pp 184-195. ISI JCR IMPACT FACTOR: 2.554 (2016). 2nd quartile.. Biochemical
Research Methods.

6.1.2 Abstract

Background

The preparation consisting of a head-fixed mouse on a spherical or cylindrical tread-
mill offers unique advantages in a variety of experimental contexts. Head fixation pro-
vides the mechanical stability necessary for optical and electrophysiological recordings
and stimulation. Additionally, it can be combined with virtual environments such as
T-mazes, enabling these types of recording during diverse behaviors.

New method

In this paper we present a low-cost, easy-to-build acquisition system, along with
scalable computational methods to quantitatively measure behavior (locomotion and
paws, whiskers, and tail motion patterns) in head-fixed mice locomoting on cylindri-
cal or spherical treadmills.Existing methods: Several custom supervised and unsu-
pervised methods have been developed for measuring behavior in mice. However, to
date there is no low-cost, turn-key, general-purpose, and scalable system for acquiring
and quantifying behavior in mice.

Results

We benchmark our algorithms against ground truth data generated either by man-
ual labeling or by simpler methods of feature extraction. We demonstrate that our
algorithms achieve good performance,both in supervised and unsupervised settings.
Conclusions: We present a low-cost suite of tools for behavioral quantification, which
serve as valuable complements to recording and stimulation technologies being devel-
oped for the head-fixed mouse preparation.
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6.2 2nd paper
The second paper is a comprehensive literature review of gesture tracking/pose esti-
mation methods for laboratory animals/mice (Abbas and Masip, 2019).

6.2.1 Title

Abbas, W., Masip, D. Computer Methods for Automatic Locomotion and Gesture
Tracking in Mice and Small Animals for Neuroscience Applications: A Survey. Sen-
sors, 19(15), 3274. (2019). ISI JCR IMPACT FACTOR: 3.031 (2018). 1st quartile.
Instruments and instrumentation.

6.2.2 Abstract

Neuroscience has traditionally relied on manually observing laboratory animals in
controlled environments. Researchers usually record animals behaving freely or in
a restrained manner and then annotate the data manually. The manual annotation
is not desirable for three reasons;(i) it is time-consuming,(ii) it is prone to human
errors, and (iii) no two human annotators will 100% agree on annotation, therefore,
it is not reproducible. Consequently, automated annotation for such data has gained
traction because it is efficient and replicable. Usually, the automatic annotation of
neuroscience data relies on computer vision and machine learning techniques. In this
article, we have covered most of the approaches taken by researchers for locomotion
and gesture tracking of specific laboratory animals, ie rodents. We have divided these
papers into categories based upon the hardware they use and the software approach
they take. We have also summarized their strengths and weaknesses

6.3 3rd paper
The third paper covers our work on the deep learning based pipeline for limbs seg-
mentation/tracking (Abbas, Masip, and Giovannucci, 2020).

6.3.1 Title

Abbas, W., Masip, D., & Giovannucci, A. (2020). Limbs detection and tracking
of head-fixed mice for behavioral phenotyping using motion tubes and deep learn-
ing. IEEE Access, 8, 37891-37901. SI JCR IMPACT FACTOR: 4.098 (2018). 1st
quartile.

6.3.2 Abstract

The broad accessibility of affordable and reliable recording equipment and its relative
ease of use has enabled neuroscientists to record large amounts of neurophysiological
and behavioral data. Given that most of this raw data is unlabeled, great effort is
required to adapt it for behavioral phenotyping or signal extraction, for behavioral
and neurophysiological data, respectively. Traditional methods for labeling datasets
rely on human annotators which is a resource and time intensive process, which of-
ten produces data that is prone to reproducibility errors. Here, we propose a deep
learning-based image segmentation framework to automatically extract and label limb
movements from movies capturing frontal and lateral views of head-fixed mice. The
method decomposes the image into elemental regions (superpixels) with similar ap-
pearance and concordant dynamics and stacks them following their partial temporal
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trajectory. These 3D descriptors (referred as motion cues) are used to train a deep
convolutional neural network (CNN). We use the features extracted at the last fully
connected layer of the network for training a Long Short Term Memory (LSTM) net-
work that introduces spatio-temporal coherence to the limb segmentation. We tested
the pipeline in two video acquisition settings. In the first, the camera is installed on
the right side of the mouse (lateral setting). In the second, the camera is installed
facing the mouse directly (frontal setting). We also investigated the effect of the
noise present in the videos and the amount of training data needed, and we found
that reducing the number of training samples does not result in a drop of more than
5% in detection accuracy even when as little as 10% of the available data is used for
training.
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Appendix A

Long Short Term Memory
(LSTM) Network

Long Short-Term Memory neural networks are a special kind of recurrent neural
networks (RNN) designed to overcome these error back-flow problems Hochreiter
and Schmidhuber, 1997a. RNNs are specifically designed for learning sequences with
some form of memory to remember its state from previous examples. They have
loops, allowing information to persist. A recurrent neural network can be thought
of as multiple copies of the same network, each passing a message to a successor.
The loops can be unraveled to form sequences which make RNNs incredibly useful
for sequence learning. This usefulness comes at a cost. As the memory span grows,
the back propagated error increases. An LSTM is designed to overcome these error
backflow problems. It can learn to bridge time intervals in excess of 1000 steps
even in case of noisy, in-compressible input sequences, without loss of short time
lag capabilities. The key to LSTMs is the cell state, which can be visualized as a
conveyor belt. It runs straight down the entire chain, with only some minor linear
interactions. The LSTMs have the ability to remove or add information to the cell
state, carefully regulated by structures called gates. Gates are a way to optionally
let information through. They are composed of a sigmoid neural net layer and a
point wise multiplication operation. The major innovation of LSTM is its memory
cell ct which essentially acts as an accumulator of the state information. The cell is
accessed, written and cleared by several self-parameterized controlling gates. Every
time a new input comes, its information will be accumulated to the cell if the input
gate it is activated. Also, the past cell status ct−1 could be “forgotten” in this process
if the forget gate ft is on. Whether the latest cell output ct will be propagated to
the final state ht is further controlled by the output gate ot. The architecture of an
LSTM cell is shown in Fig. A.1

One advantage of using the memory cell and gates to control information flow is
that the gradient will be trapped in the cell (also known as constant error carousels
(Hochreiter and Schmidhuber, 1997b)) and be prevented from vanishing too quickly,
which is a critical problem for the vanilla RNN model (LeCun, Bengio, and Hinton,
2015; Hochreiter and Schmidhuber, 1997b; Pascanu, Mikolov, and Bengio, 2013).

A.1 Fully connected LSTM (FC-LSTM)
FC-LSTMmay be seen as a multivariate version of LSTM where the input, cell output
and states are all 1D vectors. The key equations are shown in Eq. A.1, where ’◦’
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Figure A.1: Illustration of the inner structure of an LSTM. Source:
Understanding LSTM Networks – colah’s blog 2020

denotes the Hadamard product and σ represents any non-linear activation function:

it = σ(Wxixt +Whiht−1 +Wci ◦ ct−1 + bi)
ft = σ(Wxfxt +Whfht−1 +Wcf ◦ ct−1 + bf )

ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt +Whcht−1 + bc)
ot = σ(Wxoxt +Whoht−1 +Wco ◦ ct + bo)

ht = ot ◦ tanh(ct)

(A.1)
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Appendix B

Supplemental information for
Chapter 4

B.1 Leaky reLu Activation
A rectifier is an activation function defined by the following equation

f(x) = x+ = argmax(0, x) (B.1)

where x is the input. This is also alternatively known as a ramp function.
This activation function was first introduced by Hahnloser et al. in (Hahnloser

and Seung, 2001; Hahnloser et al., 2000). Glorot et. al. demonstrated for the first
time in 2011 that this activation function can better train deeper networks (Glorot,
Bordes, and Bengio, 2011). When a small, positive gradient is allowed even when the
unit is not active, the typical reLu activation becomes leaky reLu, represented by the
following equation.

f(x) =
{

x if x > 0
0.01x otherwise

(B.2)

The leaky relu activation function is illustrated in Fig. B.1
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Figure B.1: Illustration of Leaky ReLu activation function. Source:
Activation Functions : Sigmoid, ReLU, Leaky ReLU and Softmax ba-

sics for Neural Networks and Deep Learning 2020
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Appendix C

Simple Linear Iterative
Clustering (SLIC) Algorithm

SLIC stands for Simple Linear Iterative Clustering. This algorithm clusters pixels
in the combined five-dimensional color and image plane space (labxy) to efficiently
generate compact, nearly uniform superpixels where [lab] is the pixel color vector
in CIELAB color space and xy is the pixel position. The spatial distances need
to be normalized so the Euclidean distance can be used in this 5D space because
the maximum possible distance between two colors in the CIELAB space is limited
whereas the spatial distance in the xy plane depends on the image size. SLIC takes
as input a desired number of approximately equally-sized superpixels K. At the onset
of the algorithm, K superpixel cluster centers Ck = [lk, ak, bk, xk, yk] are chosen with
k= [1,K] at regular grid intervals S. Since the spatial extent of any superpixel is
approximately S2(the approximate area of a super-pixel), it is safely assumed that
pixels that are associated with this cluster center lie within a 2S × 2S area around
the superpixel center on the xy plane. The normalized distance measure (Ds) to be
used in the 5D space is defined as :

Ds = dlab + (m/S) ∗ dxy (C.1)

dlab =
√

(lk − li)2 + (ak − ai)2 + (bk − bi)2 + (xk − xi)2 + (yk − yi)2 (C.2)

dxy =
√

(xk − xi)2 + (yk − yi)2 (C.3)

The variable m is introduced in Ds to control the compactness of a superpixel. The
greater the value of m, the more compact the cluster.

First, K regularly spaced cluster centers are sampled and moved to seed locations
corresponding to the lowest gradient position in a 3×3. Image gradients are computed
as:

G(x, y) = ‖I(x+ 1, y)− I(x− 1, y)‖2 + ‖I(x, y + 1)− I(x, y − 1)‖2 (C.4)

where I(x,y) is the lab vector corresponding to the pixel at position (x,y), and ‖.‖
is the L2 norm. Each pixel assigned to the nearest cluster center whose search area
overlaps the pixel. After pixels association to the nearest cluster center, the cluster
center is updated. This process is repeated until there is no significant change in
cluster membership.
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Appendix D

Optical Flow

Optic flow or optical flow is defined as the apparent change of structured light in
the image due to a relative motion between the camera and the scene. According to
Helmholtz: "My belief too is that it is mainly by variations of the retinal image due
to bodily movements that one-eyed persons are able to form correct apperceptions of
the material shapes of their surroundings." (Helmholtz, 2013)

According to Gibson: "Analytically, this total transformation of the array appears
to mean that the elements of this texture are displaced, the elements being considered
as spots. Introspectively, the field is everywhere alive with motion when the observer
moves." (Gibson, 1966)

According to Horn: "The apparent motion of brightness patterns observed when
a camera is moving relative to the objects being imaged is called optical flow." (Horn
and Schunck, 1981b; Horn, Klaus, and Horn, 1986)

Let’s assume that a video or an image sequence is described by a gray-value
function f(x,y,t), where x and y denote the spatial Cartesian coordinates and t
the time or temporal dimension. We are interested in the local, dense vector field
(u(x,y,t),v(x,y,t)) to be estimated from that video/image sequence. The optical flow
methods try to calculate the motion between two image frames in the form of dense
fields which are taken at times t and t + δt at every voxel position. These methods
are based on local Taylor series approximations of the image signal as they use par-
tial derivatives with respect to the spatial and temporal coordinates. Optical flow
is computed under brightness constancy constraint which can be expressed as
follows.

I(x, y, t) = I(x+ δx, y + δy, t) (D.1)

If we assume that the pixel movement between two adjacent frames is small, the
Taylor series can be approximated as follows.

I(x+ δx, y + δy, t) = I(x, y, t) + ∂I

∂x
δx+ ∂I

∂y
δy + ∂I

∂t
δt (D.2)

Ingnoring higher order terms of the Taylor series, we can linearize the above aquation
as follows.

∂I

∂x
δx+ ∂I

∂y
δy + ∂I

∂t
δt = 0 (D.3)

∂I

∂x

δx

δt
+ ∂I

∂y

δy

δt
+ ∂I

∂t

δt

δt
= 0 (D.4)

∂I

∂x
Vx + ∂I

∂y
Vy + ∂I

∂t
= 0 (D.5)
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where Vx, Vy are the x and y components of the optical flow and ∂ represents the
partial derivative. Summarizing the above equation.

IxVx + IyVy = −It (D.6)

∇.~V = −It (D.7)

We have two unknowns in this equation, so it cannot be solved straight away. There-
fore, multiple researchers have proposed different approaches to estimate the flow
fields (Beauchemin and Barron, 1995).
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