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Abstract

Somatic mutations are an inevitable component of ageing and the most important
cause of cancer. The rates and types of somatic mutation vary across individuals,
but relatively few inherited influences on mutation processes are known. Here,
we performed systematic studies investigating the influence of rare and common
germline variants on somatic mutational processes. Firstly, we showed that in-
dependent component analysis and variational autoencoder neural networks can
be utilized to extract biologically relevant mutational components from an input
matrix covering different classes of mutations and genomic features from over
15,000 tumor genomes. Secondly, we identified via a gene-based rare damaging
variant association study with diverse mutational processes, using human cancer
genomes from over 11,000 individuals of European ancestry, that diverse genes
associate with many different mutational processes. Further, we learned that a
variance test can be utilized to compensate for inaccurate predictions of damag-
ing variants by in silico predictors. Thirdly, in a genome-wide association study
between common germline variants and different mutational processes, several
hits at genome-wide significance were identified. Fourthly, significant heritable
somatic mutational processes based on common variants were detected and her-
itability of the total mutation burden could be attributed to at least three different
mutational processes. Overall, we suggest that mutational processes in our cells
have an important heritable component, contributing to inter-individual differences
in somatic mutation accumulation.
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Resumen

Les mutacions somàtiques són un component inevitable de l’envelliment i la
causa més important del càncer. Les taxes i els tipus de mutació somàtica varien
entre els individus, però la base genètica d’aquesta variació encara no ha estat
estudiada sistemàticament. Aquí, hem realitzat estudis sistemàtics per investigar
la influència de variants genètiques rares i comunes de la línia germinal en els
processos mutacionals somàtics. En primer lloc, hem demostrat que l’anàlisi
de components independents i les xarxes neuronals d’autocodificadors varia-
cionals es poden utilitzar per extreure components mutacionals biològicament
rellevants d’una matriu d’entrada que cobreix diferents classes de mutacions i
característiques genòmiques de més de 15,000 genomes tumorals. En segon
lloc, mitjançant un estudi d’associació de variants perjudicials rares basat en
gens amb diversos processos mutacionals, utilitzant genomes de càncer humà
de més d’11,000 individus d’ascendència europea, hem identificat que diversos
gens s’associen amb molts processos mutacionals diferents. A més, hem après
que es pot utilitzar un test de variància per compensar prediccions inexactes de
variants perjudicials mitjançant predictors in silico. En tercer lloc, en un estudi
d’associació a tot el genoma entre variants comunes de línia germinal i diferents
processos mutacionals, hem identificat diversos gens que arriben al llindar de
significativitat a escala genòmica. En quart lloc, hem detectat processos mu-
tacionals somàtics hereditaris significatius basats en variants comunes i hem
atribuit l’heretabilitat en la càrrega total de mutacions a almenys tres processos
mutacionals diferents. En general, suggerim que els processos mutacionals a les
nostres cèl·lules tenen un component hereditari important, que contribueix a les
diferències interindividuals en l’acumulació de mutacions somàtiques.
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1 Introduction

Mutations in DNA cause disease, phenotypic variation and evolution. They are
the result of alterations in the nucleotide sequence which remain unrepaired,
predominantly due to replication errors and exogenous damaging agents. The
advent of next-generation sequencing (NGS) data in the last 15 years has
revolutionized the field of mutation research via the accumulation of variant data
from 1,0001, 10,0002 and recently even over 100,0003 human individuals.

In the field of cancer genomics the sources and distributions of somatic mutations
have been extensively studied and catalogued4,5,6. Somatic mutations are DNA
alterations which occur in cells of the body during cell divisions and most
importantly are largely not passed on to the offspring. In large-scale sequencing
efforts like the Cancer Genome Atlas Program (TCGA)7, the Pan-Cancer
Analysis of Whole Genomes (PCAWG)8 and the Pan-cancer whole-genome
analyses of metastatic solid tumours from the Hartwig Medical Foundation9,
tumor cells as well as patient-matched healthy cells were sequenced covering
a variety of tissues and covering over 30 different tumor types. Analysis of the
occurring somatic mutations in theses studies have helped to identify known and
new genes promoting oncogenesis (driver genes)10,11,12 and to catalogue the
causal point mutations in these cancer driver genes (driver mutations)4. Studies
mostly focussed on protein-coding genes and just recently also extended to the
non-coding regions13. Driver mutations are outnumbered by mutations which
do not lead to an apparent selective advantage of the cancer cell (passenger
mutations) and it has been an ongoing challenge to distinguish driver mutations
from passenger mutations. Even though passenger mutations do not result in
the development of cancer, the number, type and distribution of these mutations
have provided insights into the mechanisms generating mutations in the genome.
As it will be described in more detail, single nucleotide substitutions and other
mutation classes have been used to identify mutational patterns (’mutational
signatures’)5, which have led to the identification of known, novel and unknown
mutational processes5,6,14. While initially mutational signatures were mainly
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based on single nucleotide substitutions5,6, by now mutational signatures
have been generated based on insertions and deletions (indels)14, double
nucleotide substitutions14, clustered mutations15,16, copy number alterations17

and recently even on structural variants18, which are still more challenging to
be precisely identified. In addition, it has been also described how different
mutational processes can affect the distribution of mutations in a cancer genome
with respect to different genomic properties such as chromatin marks15,19,20,
replication timing21, chromatin accessibility22, and the direction of replication23

and transcription24 to only name a few. Furthermore, somatic mutations have
been used to analyse the effects of cancer therapies on the genome25,26,27

and to identify drug-resistance mutations28. Additionally, mutational analysis
has been used in the field of tumor evolution, which was significantly advanced
by the emergence of NGS technologies. Even though this field will not be
further covered in this thesis, fundamental insights into tumor evolution have
been provided via the analysis of mutations in tumor genomes from patients at
different time points and/or different regions of the same tumor. It was shown that
cancer genomes are heterogenous even within an individual tumor and highly
dynamic29,30.

The accumulation of sequencing data has drastically increased our under-
standing of the mutational processes occurring in the tumor genome and also in
healthy somatic cells. During the last years also the analysis of germline variants
has been studied. In contrast to somatic mutations, germline variants occur in
the germ line and thus, are passed on to the offspring. The number of germline
variants in the genome is higher than the number of somatic mutations by several
orders of magnitude. Studies have shown how germline variants can be highly
informative for cancer risk prediction, prognosis and prediction of response to
therapies31. Furthermore, a limited number of studies has shown that germline
variants can affect mutational processes in the tumor8,31,32. This information will
be crucial in the future to further improve cancer risk predictions of individuals
and to better tailor a therapeutic strategy to the patient.

Hence, this PhD thesis was performed with the goal to get a better under-
standing of how germline variants affect somatic events in the tumor genome.
The next sections of the introduction will to put this thesis into context. In the
first section, the incidence of cancer, the hallmarks of cancer and the process
of cancer evolution will be described (Section 1.1). Next, DNA repair pathways,
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1.1 Cancer in a Nutshell

DNA damaging agents and DNA damaging processes which play an important
role in generating mutations the cancer genome will be described (Section 1.2).
The different somatic mutational features which have been identified in the last
years will be outlined (Section 1.3). Further, it will be explained to what extent the
effects of germline variants on somatic events in the tumor genome have been
studied, what was learned from these studies and which methods have been
used (Section 1.4). Lastly, I will introduce the aim and objectives (Section 1.5)
and the study design of the work presented in this thesis (Section 1.6).

1.1 Cancer in a Nutshell

1.1.1 Cancer Incidence

Cancer is still one of the most lethal diseases in the world. According to the
International Agency for Research on Cancer (IARC), which is part of the World
Health Organization (WHO), over 19 million new cases of cancer were reported in
2018 and almost 10 million people died from the consequences of the disease33.
Most importantly, the number of cases are expected to rise to up to 30 million new
cases per year and over 16 million deaths per year by 2040. The expectation of
increasing number of cancer cases is connected to the growing lifespan34.

1.1.2 The Hallmarks of Cancer

Cancer comprises a group of over 100 different diseases with different char-
acteristics with respect to cell of origin, risk factors, incidence, mortality and
therapeutic treatment to only name a few. Tremendous work has been performed
since the early discoveries by David von Hansemann in 189035 and Theodor
Boveri in 191436 that cancer cells exhibit chromosomal abnormalities. The
common characteristics between all types of cancer have been summarised in
six hallmarks of cancer in the landmark paper of Douglas Hanahan and Robert
A. Weinberg37 in 2000. These hallmarks were later updated in 2011 by two
additional hallmarks and two enabling characteristics based on the advanced
understanding of the diseases38.

The six first hallmarks comprise resisting sustaining proliferative signalling, evad-
ing growth suppressors, resisting cell death, enabling replicative immortality, in-
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Figure 1.1: The hallmarks of cancer. Figure inspired from ref38.

ducing angiogenesis and activating invasion and metastasis38.

• Sustaining proliferative signaling: An essential characteristic of cancer
cells is their ability to grow infinitely which can be achieved via different
mechanisms such as the production of growth factor ligands by the can-
cer cell itself or by increased levels of growth receptors on the cancer cell.
Some cancer cells are also independent of growth factors through activating
mutations in downstream components of the respective pathways38.

• Evading growth suppressors: In the same way that cancer cell stimu-
late their growth by making use of growth stimulating pathways, they need
to deactivate pathways which control and suppress cell proliferation. This
is mostly achieved by inactivating mutations in tumor suppressor genes.
Notable examples here are the retinoblastoma protein Rb and the tumor
suppressor TP5338.

• Resisting cell death: Cancer cells develop during their molecular evolution
strategies to resist cell death (apoptosis). The most common mechanism
is a loss-of-function of the tumor suppressor TP53. Other mechanisms in-
volve the upregulation of antiapoptotic regulators, the increased expression
of surviving signals or a decreased expression of proapoptotic regulators38.

• Enabling replicative immortality: Normal cells go through a limited num-
ber of cell divisions and at last either enter the nonproliferative state of
senescence or die via apoptosis. This limited number of cell divisions in
normal cells has been attributed to the telomeres, which shorten after each
cell division until chromosomes are not protected anymore, resulting in end-
to-end fusions of chromosomes, and consequently leading to programmed
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cell death. Cancer cells found a way to circumvent this process. In over 90 %
of the cases, cancer cells upregulate the expression of the enzyme telom-
erase, which adds telomeric tandem repeats to the chromosomal ends38. In
rare cases, telomeric shortening is counteracted via a recombination-based
mechanism38.

• Inducing angiogenesis: To maintain their growth, tumor cells need to
transport oxygen and nutrients into their cell and carry off carbon dioxide
and other end products. Thus, cancer cells induce the growth and assem-
bly of new blood vessels. This is performed for instance via the upregulation
of angiogenesis inducers like vascular endothelial growth factor-A (VEGF-
A), which can be promoted via oncogenic signalling38.

• Activating invasion and metastasis: Another hallmark of many cancers,
especially carcinomas, is the ability to change shape, invade other tissues
and even spread to other places in the body. Studies so far have shown
how gains and losses of cell-to-cell (e.g. E-cadherin) and cell-to-matrix pro-
teins play a role here and overall the process of invasion and metastasis is
believed to be a multistep process38.

Overall, the six hallmarks of cancer describe how cancer cells manage to sur-
vive, proliferate and spread37. As discussed by Douglas Hanahan and Robert A.
Weinberg, two enabling characteristics make the acquisition of these hallmarks
possible in the first place: genomic instability and mutation, and tumor-promoting
inflammation38.

• Genomic instability and mutation: Many hallmarks of cancer are acquired
via genomic instability and mutations in the cell and thus unexpectedly,
many cancer types harbour defects in DNA repair and/or maintenance path-
ways. Loss-of-function in these pathways are essential for enabling a cell
to acquire beneficial mutations, which can ultimately lead to tumor progres-
sion38.

• Tumor-promoting inflammation: It has been reported how many tumors
are infiltrated by immune cells and specific antibodies, which surprisingly
promote tumorigenesis. Studies showed that inflammation can help the tu-
mor cells to grow and to acquire different hallmarks by providing essential
molecules such as proangiogenic factors and growth factors or by increas-
ing mutation rates via the release of reactive oxygen species (ROS)38.
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In addition, two emerging hallmarks of cancer have been added to the initial six
hallmarks: deregulating cellular energetics and avoiding immune destruction38.

• Deregulating cellular energetics: Cancer cells have an altered energy
metabolism to deal with the increased cell growth and increased number
of cell divisions. The most frequently occurring metabolic switch in can-
cer cell is the ’Warburg-effect’, which describes the observation that cancer
cells use glycolysis for their main source of energy production instead of
mitochondria. This state has been also termed as aerobic glycolysis. It
is suspected that the intermediate molecules from glycolysis are used in
cancer cells for biosynthesis of nucleotides, amino acids, proteins and or-
ganelles38.

• Avoiding immune destruction: This hallmark has also been added due
to the growing evidence that cancer cell growth is hold in check by the im-
mune system. Cancer cells need to find ways to evade the surveillance of
the immune system. Due to the complexity of the tumor microenviroment
and the immune system, our understanding of the exact mechanisms is still
rudimentary. Suggested mechanisms involve the recruitment of immuno-
suppressive cells by the cancer cells via promotion of inflammation and
secretion of immunosuppressive factors such as the cytokine transforming
growth factor beta (TGF-β )38.

1.1.3 Cancer Evolution

Tumor progression is a multi-step progress in which, in very simple terms, cells
with a favourable mutation outgrow the other cells. This process has been some-
times compared to Darwinian evolution39. In the end, cells acquiring a selective
advantage via the mechanisms described in the 6-8 hallmarks of cancer will out-
grow their neighbouring cells. The key point to remember here (especially for this
thesis) is the importance of the generation of somatic mutations, which enable
tumor transformation and progression in the first place, which is why it has been
also described as one of the enabling characteristics of cancer38. Studies so far
pointed out that depending on the cancer type, 2 to 10 mutations in cancer driver
genes are enough to lead to tumorigenesis10,40. Even though mutations are the
main focus of this thesis and most work so far, nongenetic factors can gener-
ate variation between cells leading to a selective advantage for specific cells as
well41.
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1.2 Sources of DNA Mutations

1.2 Sources of DNA Mutations

Sources of DNA mutations can by endogenous (e.g. spontaneous deamination
of cytosines, DNA replication errors) as well as exogenous (e.g. chemicals,
radiation). While we will go through the different processes in more detail here
separately, it should be noted that in the end the fixed mutations in the genome
are a consequence of the interplay between DNA damage and DNA repair42

(Figure 1.2).

endogenous source

exogenous source
DNA repair

total mutation
burden

Figure 1.2: Illustration of the interplay between endogenous and exogeneous
sources of DNA mutations and DNA repair. Normal cells as well as tumor
cells are constantly affected by DNA damage. A reduced activity of DNA re-
pair mechanisms or an excess of DNA damaging agents/processes will lead
to an increase in the total mutation burden132. Figure inspired from ref132.

1.2.1 DNA Repair Pathways

The different DNA repair pathways play a crucial role in identifying and repairing
DNA damage and thus, preventing DNA mutations43. The different pathways
have been extensively studied and each pathway has different characteristics
concerning repair efficiencies, time of action and types of mutations which are
recognized44. Deregulation of most of these pathways are not only often times
connected to increased numbers of mutations in the tumor genome, but also
frequently connected to specific diseases (DNA repair syndromes)45,46 (Figure
1.3). Notably, DNA repair pathways are sometimes not only responsible for the
repair of DNA mutations, but also a source of DNA mutations47.

DNA mismatch repair

The DNA mismatch repair pathway (MMR) recognizes primarily base-base
mismatches and indels. Its key function is the repair of mutations that are gen-
erated during replication. Thus, it prevents that replication-associated mutations
get fixed in the genome. The pathway is highly conserved and was initially
studied in detail in Escherichia coli. MMR is bidirectional (5’ to 3’ and 3’ to 5’),
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Figure 1.3: Illustration of DNA repair mechanisms, the DNA lesions they recognize,
and associated dieases. While different DNA repair mechanisms recognize
specific sets of DNA lesions, there is an overlap between DNA repair path-
ways. Deregulation of DNA repair pathway has been associated with different
diseases. Showing here examples for each pathway.

strand-specific by recognizing the newly synthesized strand and has a broad
substrate specificity49.

Firstly, mismatches are recognized. It is still unclear how exactly MMR is
able to discriminate the two strands from each other in eucaryotes. The most
prominent explanation is the presence of a nick. Ultimately, repair is initiated
either by MutSα or MutSβ . MutSα is a heterodimer consisting of MSH2 and
MSH6 and MutSβ is a heterodimer consisting of MSH2 and MSH3. While
MutSα preferentially binds base-base mismatches and indels with a length of 1
to 2 nucleotides50,51, MutSβ has a preference for indels with size of 2 or more
nucleotides52,53. Next, MutLα, which is a heterodimer comprised of MLH1 and
PMS2, cuts the new DNA strand via its endonuclease activity and the mispaired
bases and neighbouring bases are excised via EXO1. The gap is then re-filled
via DNA polymerase ε and sealed via DNA Ligase 1. Furthermore, also other
proteins have been reported to play a role in MMR such as RPA and PCNA49.
RPA is a single-strand DNA binding protein and thought to protect ssDNA during
MMR until re-synthesis. Before re-synthesis, RPA gets phosphorylated leading to
a decreased affinity of RPA to DNA55. The DNA clamp PCNA has been reported
to be required for the activations of the endonuclease activity of MutLα, which is
crucial of MMR initiation54.

Beside the essential function of MMR in the repair of replication associated
mutations, MMR has also been reported to have non-canonical roles56. While
in the replication-associated repair MMR can distinguish between the mother
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and daughter strand, this information is lost in the non-canonical MMR pathways.
The non-canonical MMR pathway has been reported to play a role in somatic
hypermutation at the immunoglobulin locus57 and also in the repair of DNA
lesions at A:T base pairs via the recruitment of the error-prone polymerase η

(POLH)58,15. In addition, a recent study suggested the involvement of MMR in a
replication independent, but error-free repair of deaminated 5-methyl cytosines59.
It was proposed that the recruitment of the MMR machinery is dependent on
histone mark H3K36me3, which has previously been reported to interact with the
MutSα complex20.

The importance of MMR becomes clear in the context of hereditary non-
polyposis colorectal cancer (HNPCC), also termed as Lynch syndrome, which
is caused by inherited rare damaging variants in MMR pathway components.
Genetic analyses revealed that germline mutations in MLH1, MSH2, MSH6
and PMS2 cause the disease60,61. A characteristic of MMR deficiency is an
increased number of mutations in genomic regions containing tandem repeats
of DNA motifs (microsatellites), which has been termed as microsatellite insta-
bility (MSI)62,63. MSI has also been detected in sporadic cancers caused by
somatically acquired mutations in these genes or by epigenetic silencing. The
most frequent cause of sporadic colorectal cancers is the inactivation of MLH1
by hypermethylation of its promoter64. Initially, MSI was detected via a PCR of
specific microsatellite regions (Bethesda panel) or via the immunohistochemistry
detection of the MMR proteins MSH2, MLH1, MSH6, and PMS265. By now,
different computational methods exist which are able to measure MSI such
as MSISensor66 and MANTIS67. A large-scale analysis of over 11,000 tumor
samples covering 39 cancer types, revealed that 3.8 % of all cancers had a MSI
phenotype and MSI phenotypes were found across 27 different cancer types.
The highest fraction of MSI was reported in endometrial, colorectal and stomach
adenocarcinomas68. Interestingly, even though MSI tumors have an increased
number of somatic mutations in the tumor genome due to the decreased MMR
activity, they have a better prognosis in comparison to microsatellite stable (MSS)
tumors69. In addition, they respond better to immune checkpoint inhibitors due to
the higher occurrence of neoantigens in these tumors70.

Nucleotide excision repair

The nucleotide excision repair (NER) pathway is mostly responsible for the repair
of bulky DNA lesions, which are caused by tobacco smoking, UV light and other
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carcinogens71. Inherited defects in NER components lead to the autosomal re-
cessive disease xeroderma pigmentosum (XP). Patients display a high sensitivity
to UV light and an almost 2000-fold increased risk for skin cancer due to the
inability of the cells to repair UV-induced lesions72. Also other diseases such as
Cockayne syndrome and trichothiodystrophy have been connected to damaging
variants in NER genes. These diseases do not predispose to skin cancer but are
connected to a broad number of diverse symptoms71.

Two main modes of NER have been described so far: global-genome NER
(GC-NER) and transcription-coupled NER (TC-NER). As described in the name,
GC-NER occurs everywhere in the genome, while TC-NER is only active in
the transcribed strand of expressed genes. The two processes are activated
by different proteins but the excision is believed to be performed by the same
core NER proteins. GC-NER is initiated by proteins which can sense DNA
lesions via helix distortions (e.g. XPC-Rad23B) or via proteins which specifically
recognize DNA damage such as damage specific DNA binding protein 2 (DDB2,
also termed as XPE). TC-NER is started when the RNA polymerase stops
transcription due to a lesion on its way. Other proteins such as CSA, CSB, and
XAB2 are recruited then to initiate TC-NER. In the next steps, different proteins
including transcription factor TFIIH bind at the site and excise a single-stranded
DNA stretch (ssDNA) of around 30 nucleotides around the DNA lesion. The gap
is then re-synthesized by a DNA polymerase (DNA polymerase α, ε or κ) and
ligated by DNA Ligase 1 or 371.

Base excision repair

While NER is mostly responsible for bulky DNA lesions due to exogenous factors,
base excision repair (BER) removes primarily small base lesions caused by
endogenous processes. These include base lesions such as deaminated bases,
alkylated bases or oxidized bases73.

Initially, the damaged site is recognized by a DNA glycosylase, which subse-
quently cleaves the base. Two types of DNA glycosylases exist: monofunctional
and bifunctional ones. Monofunctional DNA glycosylases leave an abasic site
behind, which is then removed by an apurinic endonuclease (APE1). APE1
generates a 3’ OH end and a 5’ deoxyribosephosphate terminus, which is
then excised by DNA polymerase β (Pol β ). In the case of bifunctional DNA
glycosylases, a single strand break (SSB) is generated via the associated lyase
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activity, which results either in a α,β -unsaturated aldehyde or a phosphate group
in the 3’ end. While the α,β -unsaturated aldehyde can be removed by the activity
of APE1, the phosphate group is removed by polynucleotide kinase (PNKP).
The missing base is inserted by Pol β and DNA ends are joined by DNA ligase
3, which is in a complex with the BER scaffold protein XRCC1. The repair of a
single base via BER is also called short patch BER73.

In long patch BER the gap is filled by DNA polymerase β , δ or ε. Even
though it is still investigated under which conditions short patch BER is initiated
and under which conditions long patch BER is initiated, it has been shown that
long patch BER is initiated when the 5’ sugar is modified since then it can’t be
processed by Pol β . In these cases, a DNA polymerase fills the one base gap
and keeps on synthesizing. The nucleotides downstream of the abasic site are
displaced and the created flap is cleaved via the endonuclease activity of FEN1.
In this way a stretch of 2 to 13 nucleotides is removed from the damage site and
re-filled again73.

As DNA bases can be damaged via different mechanisms, different types
of base modifications are recognized and repaired by different sets of specific
DNA glycosylases as show in Table 1.173.

Table 1.1: Overview of DNA gycosylases and their substrates.
DNA gycosylase Substrate/Target

SMUG1 uracil, 5-hydroxymethyluracil
UNG1 mitochondrial uracil
UNG2 uracil
MBD4 T:G mismatches
TDG T:G mismatches, 5-carboxylcytosine
MPG alkylated bases such as 3-methyladenine

OGG1 8-oxoguanine, FapyG
MUTYH 8-oxoguanine in mismatch with adenine
NTHL1 oxidized pyrimidines
NEIL1 oxidized pyrimidines, formamidopyrimidines and more
NEIL2 same as NEIL1, but preferentially in ssDNA
NEIL3 same as NEIL1

Inherited germline variants in different DNA glycosylases have been connected to
different types of cancer and hereditary diseases73. For instance, germline vari-
ants in MBD4 have been identified in stomach cancers in a Japanese cohort74

and have been connected to an increased risk of lung and esophageal cancer in a
Chinese cohort75. Individuals with inherited damaging germline variants in MBD4
have been reported to have an increased number of C>T mutations at CpG con-
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texts in several cancer types8,76,77. Furthermore, biallelic inactivation of the DNA
glycosylase predisposes to MUTYH-associated polyposis (MAP). The disease is,
in particular, connected with an increased risk of developing colorectal cancer78.
In addition, biallelic germline mutations in NTHL1 predispose to multiple cancer
types as well such as adenomatous polyposis and colorectal cancer79. These
examples of deficiencies in BER components causing carcinogenesis and/or in-
creasing cancer risk are in line with conclusions coming from many mice studies,
which showed that knock out of individual glycosylases can lead to an early onset
of cancer73.

Proofreading activities of the replicative DNA polymerases

Replicative DNA polymerase have the essential role of faithfully replicating the
genetic material with a high accuracy. In mammalian cells, DNA polymerase δ

(encoded by POLD) as well as DNA polymerase ε (encoded by POLE) have
proofreading capabilities to increase fidelity. During DNA elongation, the incorpo-
ration of an incorrect base is recognized and subsequently, the incorrect base is
excised via a 3’ to 5’ exonuclease activity80. Overall, it has been estimated that
the polymerase selectivity leads to a error rate of 1 nucleotide in every 104 - 105 81

nucleotides and that the proofreading activity increases the fidelity by 102 - 103 82.

Thus, it is no surprise that inherited damaging mutations in the proofread-
ing domains of POLE or POLD1 predispose to certain kinds of cancer, such as to
colorectal cancer83. Somatically acquired mutations in the exonuclease domain
of POLE lead to a ultra-mutator MSS phenotype, which has been found in many
sporadic colorectal as well as endometrial cancers85,84. Causative somatic
mutations for a mutator phenotype have been also discovered in POLD1, but
less frequently than in POLE. In contrast to POLE, somatic mutations in POLD1
less frequently affect the exonuclease domain84.

Translesion DNA synthesis

Translesion synthesis is a process which allows the cell to replicate DNA even
in the presence of DNA lesions, which would otherwise block DNA elongation,
and thus, cause replication stress, fork collapse and ultimately, apoptosis86.
In the translesion synthesis process, the regular DNA polymerase during DNA
elongation is switched out by a translesion polymerase when elongation is
blocked. Translesion polymerases are capable of replicating over the base lesion
due to a larger active site and are often specialized in inserting the correct
base opposite specific base alterations. In the same time they are also more
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error-prone87. Still, the increased risk of additional mutations is less harmful for
the cell than the consequences of fork collapse and DNA double-strand breaks.
A common mechanism for polymerase switching is initiated via ubiquitination of
PCNA, while also mechanisms independent of ubiquitinated PCNA have been
reported86.

As always the importance of these polymerases become more apparent in
the context of diseases such as cancer. A notable example is DNA polymerase
η , which is able to accurately replicate over UV-induced mutations88, even
though it is error-prone on undamaged DNA templates87. It has been shown that
certain inherited variants in POLH (encoding DNA polymerase η) can predispose
to skin cancer induced by UV light86,89.

Homologous recombination-directed repair

DNA double-strand breaks (DSBs) are caused by different factors such as
ionizing radiation or chemotherapeutic drugs. They are predominantly repaired
via two mechanisms90: homologous recombination (HR)- directed repair and
non-homologous end joining. HR is a highly regulated process and is specifically
active during the S and G2 phases of the cell since the repair process is guided
by the sister chromatid90,91.

Roughly, HR can be divided be into several steps. The first step involves
the generation of 3’-single-stranded DNA performed by endonucleases from
the MRN complex. Next, the ssDNA ends are bound by replication protein A
(RPA) and then replaced by the recombinase RAD51, which is promoted by
recombination proteins such as BRCA1 and BRCA2. Lastly, the ssDNA invades
into the intact sist er chromatid (strand invasion), new DNA is synthesized
by using the intact sister chromatid as template and consequently, the strand
information is restored and DSB repair can be completed92.

HR is important for DSB repair as well as chromosome segregation. Knockouts
in HR genes like BRCA1, BRCA2 or RAD51 lead to embryonic lethality in mice.
Heterozygous inactivations of these genes do not lead to embryonic lethality, but
predispose to cancer92. In fact, BRCA1 and BRCA2 are frequently mutated in
breast and ovarian cancer, RAD54 and CtIP in lymphomas and RECQL4 in dif-
ferent carcinomas to only name a few90. Furthermore, tumors with inactivations
in HR genes like BRCA1, BRCA2, RAD51C and PALB2 show distinct genomic
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alterations93,94,95.

Interestingly, it has been shown that cells with inactivations in HR proteins
such as BRCA1 and BRCA2 rely heavily on backup pathways. This observation
has been utilized in cancer therapy by targeting HR deficient tumors with
Poly(ADP-ribose) polymerase 1 (PARP1) inhibitors. One of the current hypoth-
esis is that PARP1 inhibitors block repair of SSBs, causing the accumulation of
DSBs via replication. This high accumulation of DSBs would be toxic for the cell
and result in cell death. In this case, PARP inhibitors would be the first successful
example of a synthetic lethal approach in cancer therapy90.

Non-homologous end joining

Non-homologous end joining (NHEJ) is also a pathway responsible for the repair
of DSBs. In contrast to homologous recombination directed repair, NHEJ occurs
during the whole cell cycle. The pathway is also estimated to be faster than HR
and importantly, more error-prone than HR-directed repair96.

In NHEJ, the two ends of the DSB are held in proximity to each other and
different proteins process the ends to make them compatible for subsequent
DNA synthesis and ligation. End joining efficiency is increased when the two
opposing strands have a stretch of 1-4 nucleotides of complementarity, also
termed as microhomology97. End joining at microhomology regions can lead to
the generation of several mutations at the joining site, which is also a feature often
occurring in tumor genomes with mutations in components of the HR-directed
repair pathway14,95. End joining can also occur when there is no microhomology
existing between the two ends, even though it has been reported to be less
preferred and less efficient97. Key components of the pathway include Ku70
and Ku86 for binding the ends, Artemis and DNA-PKCS for end-processing, and
XRCC4 and DNA Ligase 4 for ligation97.

Fanconi anaemia pathway

The Fanconi anaemia (FA) pathway is named after the disease Fanconi anae-
mia, which is caused by germline inactivations in any of the 19 core genes of this
pathway. It is mostly responsible for the repair of interstrand crosslinks (ICLs),
even though many of the components have also been reported to play roles in
other pathways such as FANCD1 and FANCS in HR. ICLs can be caused by
exogenous factors such as chemotherapeutic drugs or endogenous metabolites
such as nitrous acid or oxygen radicals. Consequently, people with the disease
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Fanconi anaemia develop predominantly cancer, especially leukemia, and are
very sensitive to drugs which generate ICLs98.

1.2.2 DNA Damaging Processes

DNA methylation and DNA replication induced mutagenesis

One of the most frequent mutations in the tumor genome6 as well as in normal
somatic cells99 is the transition from C>T at CpG sites. In most cases, cytosines
at CpG sites are methylated leading to a 5-methylcytosine (5mC). It has been
shown in vitro that the mutation rate of C>T is increased at 5mCs in comparison
to unmethylated cytosines100. While the deamination of 5mC leads to a thymine,
the deamination of unmethylated cyotsine leads to a uracil (Figure 1.4). Uracil
is a non naturally occurring base in DNA. Hence, uracils in the DNA due to
spontaneously deaminated cytosines are efficiently recognized and repaired101.
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Figure 1.4: Deamination of cytosine and 5-methylcytosine. Cytosines in the genome
can be deaminated via APOBEC/AID activity, while spontaneous deamina-
tion frequently occurs for 5-methylcytosines at CpG sites103.

As described above, BER is the key player in repairing small base lesions. The
DNA glycosylases UNG2, SMUG1, MBD4 and TDG have been reported to be
involved in the repair of U:G mismatches102. The repair of the more commonly
fixated mutation due to the deamination of 5mC, which results in a T:G mismatch,
is repaired by the glycosylases TDG and MBD4101. In accordance (and as
described before), tumors with germline inactivations in MBD4 exhibit a drastic
increase in C>T mutations at CpG sites, which further emphasizes the important
role of BER in repairing these mutations8,76,77. In addition, a recent study also
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suggested the involvement of a non-canonical MMR pathway in the repair of T:G
mismatches59.

Since BER and the suggested non-canonical MMR pathway are replication
independent, it would be expected that the distribution of C>T mutations in CpG
contexts would not have a strong replication strand asymmetry. However, tumors
with mutations in the exonuclease domain of POLE or tumors with MSI exhibit
a high mutation rate of CpG>TpG with a strong replication strand asymmetry.
Additionally, the CpG>TpG mutation rate has been reported to scale with the
number of cell divisions which also indicates that replication plays a significant
role in the generation of these mutations103. It has been hypot8,hesized that
during DNA replication, adenines are misincorporated opposite of 5mCs by the
replication machinery. The proofreading domain of DNA polymerase ε and MMR,
which is a co-replicative process, seem to play a major role in repairing these
mismatches in a replication dependent manner104.

Thus, there seem to be several mechanisms involved in the repair of C>T
mutations at CpG sites. Firstly, the spontaneous deamination of 5mCs are
recognized and repaired by components of the BER pathway101 as well as by
a non-canonical MMR pathway independent of replication59. Secondly, errors
during DNA replication at 5mC sites are repaired by the proofreading activity of
DNA polymerase ε and by the canonical MMR pathway103.

APOBEC and activation-induced deaminases AID

An important endogenous process contributing to mutagenesis are members of
the apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC)
family as well as activation-induced deaminases (AID). APOBEC enzymes are
part of the innate immunity by deaminating viral genomes and thus, protecting
the cell from viral infections. AID plays an important role in the adaptive immunity
by being crucial in the process of antibody diversification via somatic hypermu-
tation and class switch recombination103. AID/APOBEC deaminases are active
on ssDNA and create U:G mismatches via the deamination of cytosines. It
has been reported that AID/APOBEC deaminases have a higher efficiency on
unmethylated cytosines106,103.

The role of AID/APOBEC deaminases has also been connected to tumori-
genesis. In breast cancer genomes, an increased number of clustered C>T
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and C>G mutations at TpC sites were reported and these mutational patterns
were suggested to be generated by the activity of AID/APOBEC deaminases5.
These mutational patterns were also reported in many other cancer types6,15.
In accordance with the fact that these deaminases need ssDNA as a substrate,
the mutational patterns connected with AID/APOBEC activity were found, in
particular, in regions which are known to be single-stranded for some time such
as regions near DSBs107, the lagging strand during DNA replication108, the
non-transcribed strand during transcription109 as well as in regions susceptible
to certain secondary DNA structures110. Furthermore, it has been shown that
carriers of germline copy number deletions of APOBEC3B have increased levels
APOBEC directed mutagenesis111.

Interestingly, it has been shown that APOBEC3 proteins play a role in cre-
ating locally hypermutated sites5,107. These mutational showers, termed as
kataegis (greek for thunderstorm)111, consist of clustered mutations and were
identified in many different cancer types15,8. While the C>T mutations are likely
replication-induced as described above, C>G mutations are suggested to be
formed when the uracil is excised via the uracil-DNA glycosylase and a cytosine
is inserted opposite the abasic site by the mutagenic translesion polymerase
REV1. Deficiencies in these two genes (UNG and REV1) were reported in yeast
experiments to lead to a significantly decreased number of kataegis loci while
the total mutation load was increased113. Furthermore, recently a common mu-
tational pattern has been described, which is generated by APOBEC3 proteins
and directed via the activity of MMR. The mutational pattern consists of a diffuse
set of clustered mutations, which is why it has been termed as omikli (greek for
fog)16.

1.2.3 DNA Damaging Agents

There are many agents causing mutations in our genomes and in this section I
will focus on some frequent DNA damaging agents: ultraviolet radiation, tobacco
smoking, reactive oxygen species, and chemotherapeutics (Figure 1.5). Muta-
tional patterns caused by these factors have been identified in many large-scale
mutational tumor analyses6,14,27,114,115. Still, it should be noted that many other
DNA damaging agents exist. For instance, Kucab et al. performed in 2019 a
comprehensive analysis of 79 different environmental drugs and showed that 41
out of 79 drugs generated specific substitution signatures in the genome116.
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Figure 1.5: Overview of prominent DNA damaging agents. Showing different DNA
damaging agents, their caused DNA lesion and a potential mutational out-
come.

Ultraviolet radiation

UV-induced DNA damage leads primarily to the generation of cyclobutane pyrim-
idine dimers (CPD) and pyrimidine-pyrimidone (6–4) photoproducts (6-4PP). GC-
NER as well as TC-NER are involved in the repair of UV-induced DNA lesions103.
Notably, sun-exposed cancers exhibit a drastic increase in C>T and CC>TT muta-
tions117. C>T mutations are enriched in a CCN and TCN context. Two factors are
potentially responsible for this context dependency. First of all, the spontaneous
deamination rate of cytosines and 5mCs are significantly increased at CPDs. It
was shown that the deamination rate is context dependent with an increased
deamination rate in a TCG context compared to a CCG context118. Secondly,
repair of UV-induced mutations is performed by DNA polymerase η (POLH) via
translesion synthesis. While POLH is able to synthesize efficiently over CPDs
and thus, replicate UV-damaged DNA88, it was reported that POLH preferentially
creates C>T mutations in the TCG sequence context119. In fact, it was shown
that mice with inactive POLH had a decreased number of C>T mutation in a TCG
context, but overall an increased number of C>T mutations119. Thus, the context
dependent formation of C>T mutations could be explained by the fact that the
formation of CPDs is favoured at 5mCs and 5mCs quickly deaminate at CPDs
(especially at TCGs118). Deaminated 5mCs result in a thymine and C>T mu-
tations are caused by the "error-free" incorporation of an adenine opposite the
thymine by POLH119.
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Tobacco smoking

Tobacco smoking causes bulky DNA adducts on guanines, which are reported to
be generated by benzopyrene-7,8-diol-9,10-epoxide (BPDE). BPDE is the chem-
ically active metabolite of benzo(a)pyrene, which can be commonly found in to-
bacco smoke103. BPDE binding on guanines is enhanced at methylated CpG
sites and primarily causes C to A transversions120. Especially lung cancers of-
ten exhibit hotspot mutations in the tumor suppressor gene TP53, which have
been reported to be induced via tobacco induced mutagenesis121. In addition,
also other tobacco agents have been reported to enhance tumorigenesis such as
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N’-nitrosonornicotine
(NNN)122.

Reactive oxygen species

Reactive oxygen species (ROS) comprise highly reactive metabolites formed
by oxygen (O2) such as singlet oxygen (1O2) or hydrogen peroxide (H2O2). In
healthy cells, ROS are in balance with antioxidants. Oxidative stress alters this
balance leading to the generation of more ROS and/or less antioxidants. Oxida-
tive stress is caused by exogenous factors such as UV light and viral infections,
or by endogenous processes such as mitochondrial oxidative stress123.

ROS have an important role in the context of cancer due to their high mutagenic
potential and regulation of inflammation among others. The most common base
alteration caused by ROS is 8-oxoguanine. Normally, 8-oxoguanine mispairs with
an adenine, leading to a G>T substitution if unrepaired124. As described before
(Table 1.1), the main players repairing this alteration are the DNA glycosylases
OGG1 and MUTYH which are part of BER. Biallelic inactivation of MUTYH
has been connected to the inherited disease MAP, which is characterized by
an increased risk of developing colorectal cancer78. Furthermore, mutational
analysis led the identification of specific mutational patterns occurring in tumor
genomes with inactivations in MUTYH 125 and OGG1126. Interestingly, the
mutational patterns generated by inactivations of these genes are defined by
C>A mutations, but with enrichments in different trinucleotide contexts125,126.

Chemotherapeutics

Another important group of DNA damaging agents are chemotherapeutics, which
play particularly an important role in the treatment of cancer. Lots of different
types of chemotherapeutic agents exist (e.g. alkylating agents, antimetabolites
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and topoisomerase inhibitors) and they are commonly used as a non specific
cancer treatment strategy leading to a broad range of side-effects. Furthermore,
cancer resistance against many chemotherapeutic drugs is a frequent cause of
treatment failure127.

Many chemotherapeutic drugs induce DNA damage leading to programmed cell
death such as alkylating agents. Alkylating agents such as temozolomide (TMZ)
covalently bind to the DNA via their alkyl group resulting in methyl groups on
guanines and adenines. In particular, methylation of guanine at O6 can lead to
the insertion of a thymine opposite the guanine, which can ultimately result in cell
cycle arrest and apoptosis. TMZ has been widely used in the treatment of brain
cancers such as glioblistoma multifome128. The main action of TMZ resistance
has been connected to the O6-methylguanine methyltransferase (MGMT), which
can repair the TMZ induced base lesion O6-methylguanine back to guanine. In
accordance, a correlation between TMZ sensitivity and MGMT activity has been
shown129.

Another important group of chemotherapeutics are platinum-based drugs
such as cisplatin and carboplatin. Platinum-based drugs induce different types
of crosslinks in the DNA which ultimately lead to programmed cell death. They
have been applied in cancer therapeutics since the 1970s for the treatment of
diverse cancer types such a ovarian, lung, and bladder cancers130.

Fluorouracil (5-FU) is another commonly used drug, especially in the treat-
ment of colorectal as well as breast cancers. 5FU belongs to the group of
antimetabolites. The exact mode of action is still unclear, but it is an analogue
of uracil and it is believed to inhibit the thymidylate synthase (TS). Inhibition of
TS leads to a decrease in deoxythymidine triphosphate (dTTP), resulting in a
imbalance in the nucleotide pool. Lack of dTTP could impair DNA synthesis and
consequently, lead to apoptosis131.

Similarily like for the other DNA damaging agents, mutational patterns caused by
chemotherapeutic drugs have been identified in tumor genomes6,14,27,114,115.
In particular, comprehensive studies have described mutational patterns specific
for different cancer therapeutics such as 5-FU, carboplatin, oxaliplatin, and even
for specific drug combinations such as cisplatin+oxaliplatin27,115.
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1.3 Somatic Mutation Features in the Cancer

Genome

The number, type and distribution of mutations in the genome are the conse-
quence of the interplay(s) between different processes such as DNA repair and
DNA damage42. Sometimes these patterns can be informative about the under-
lying mutational process(es)132,144. During the last years, the comprehensive
mutational analysis of tumor genomes led to the discovery of many mutational
patterns. The underlying cause(s) of some of these patterns have been iden-
tified, while the cause for many other mutational patterns remain to be eluci-
dated6,14,132,144. In this section, the different identified patterns will be further
described with respect to their characteristics, underlying cause, and occurrence
in different cancer types. The focus will be set on the mutational features which
were also used in this thesis.

1.3.1 Mutational Signatures

The concept of mutational signatures was initially introduced in 2012 using 21
whole-genome sequenced breast cancer samples5 and further extended in 2013
using over 7,000 cancer samples covering 30 different cancer types6. Since then
the methodology has been further improved, sample sizes have increased and a
better understanding of the underlying mutational processes in the cell has been
achieved132.

Mutational signatures describe mutational patterns in the genome and it
has been hypothesized that these patterns are the result of the mutational
processes active in the cell. The initial mathematical framework was introduced
by Alexandrov et al. in 2013133. The method involves the deconvolution of a
mutational catalogue M into its signatures S and exposures E (Figure 1.6). The
mutational catalogue M can be expressed as a matrix counting the different
mutation types across all tumor genomes. While all kinds of mutation types can
be utilized, there has been a focus on SNVs. The framework of Alexandrov et
al.133 involved 96 mutations types covering the 6 possible substitutions types
(C>A, C>G, C>T, T>A, T>C, and T>G) and the sequence context using the
proximal 5’ and 3’ base next to the mutated base (6*4*4 = 96 possibilites). The
resulting signature matrix S contains the extracted mutational signatures and
the contribution of each mutation type to each signature (e.g. Signature 1 in
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Figure 1.7). The exposure matrix E involves the contribution of each signature
to each sample. It considers how some mutational processes are more active
in some tumors than in others (e.g. UV-directed damage). Ultimately, the total
mutation burden is the sum of all operative mutational signatures weighted by
the corresponding exposures (’activities’). In addition, it is expected that the
mutational catalogue contains some noise in the form of sequencing errors
and genuine signatures not captured by the NMF. Thus, the product of the two
matrices approximates the total mutation burden in each tumor genome and is
not exact (M≈E*S)133.

23
22
0
2
4

4
4
33
1
0

20
0
2
1
0

2
1
1
3
0

1
2
3
3
2

≈ *

85
0
0
3
0

9
42
0
12
10

4
13
118
4
0

0.2
0.4
0

0
0

0.3

0.2
0
0

0
0.1
0

0
0.1
0

tumor 1
tumor 2
tumor 3
tumor 4 
tumor 5

m
ut

at
io

n 
ty

pe
 1

m
ut

at
io

n 
ty

pe
 5

m
ut

at
io

n 
ty

pe
 4

m
ut

at
io

n 
ty

pe
 3

m
ut

at
io

n 
ty

pe
 2

m
ut

at
io

n 
ty

pe
 1

m
ut

at
io

n 
ty

pe
 5

m
ut

at
io

n 
ty

pe
 4

m
ut

at
io

n 
ty

pe
 3

m
ut

at
io

n 
ty

pe
 2

si
gn

at
ur

e 
1

si
gn

at
ur

e 
3

si
gn

at
ur

e 
2

signature 1
signature 2
signature 3

tumor 1
tumor 2
tumor 3
tumor 4 
tumor 5

Mutational catalogue M Signature Matrix SExposures E

Figure 1.6: Illustration of extraction of mutational signatures using NMF.. Mutational
matrix M containing 5 tumors and measuring 5 different mutations types is
deconvolved into an exposure matrix E and signature matrix S extracting 3
mutational signatures. Approach introduced in ref5.

Figure 1.7: Mutational profile of COSMIC signature 1 (v3.2 - March 2021).. Signature
profile showing percentage of contributions of each trinucleotide context (x-
axis) to signature (y-axis). Signature 1 has been connected to spontaneous
deamination of 5-methylcytosines. Figure downloaded from COSMIC4.

Deconvolution is performed via non-negative matrix factorization (NMF). Tech-
niques similar to NMF are princinpal component analysis (PCA) and independent
component analysis (ICA). In contrast to PCA and ICA, NMF enforces all values
to be non-negative and does not impose constraints such as orthogonality134.
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The application of NMF has been promoted by its success in other fields such as
astronomy. Since the publication of the original mutational signature extraction
framework by the Wellcome Sanger Institute133, extensions such as bayesian
NMF135 as well as other frameworks, for instance based on independent proba-
bilistic modelling136 or denoising sparse autoencoder neural networks137, have
been developed.

An important number of the mutational signature extraction framework is
the number of signatures, which needs to be defined a priori. Since the number
of signatures is usually not known a priori, most extraction frameworks test sev-
eral component extraction numbers and select the smallest number of signatures
optimizing some metric such as silhouette index or Frobenius reconstruction
error133,134. Finding the optimal number of signatures is not a trivial task and
also dependent on the selected statistical framework134.

Nowadays, mutational signature analysis is a routine technique applied in
the field of cancer genomics. Basically, two different approaches exist to assign
mutational signatures to the samples present in ones dataset. In the first
approach, signature extraction is performed from scratch (’de-novo extraction’).
The identified signatures are then correlated with the existing set of signatures
and assigned accordingly. Those are then fitted to the individual samples via
’signature fitting’. The second approach involves the usage of a set of already
identified signatures (e.g. from Alexandrov et al.14) without performing the
extraction and subsequent fitting to the mutational data in the dataset. As it will
be explained in the next section, both approaches have some pitfalls which need
to be taken into consideration132.

Limitations and improvements

The study of mutational signatures in the last years shed light to the limitations
of this approach. Major limitations, which have often been described are the
following:

• Power to extract signatures: An important factor for the identification of
mutational signatures is the sample size. For instance, while in the 2013
landmark paper6 21 SNV-based mutational signatures were extracted, in
the 2020 landmark paper14 49 different SNV-based mutational signatures
were extracted, which can be mainly attributed to the increased sample size
(∼9 times more whole-genome tumor samples). Another important factor
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to consider is the sequencing technology. Samples from whole-genome se-
quenced (WGS) tumor genomes usually have over thousands of SNVs and
hundreds of indels. In comparison, the exome only makes up 1-3 % of the
genome and thus, whole-exome sequenced (WES) samples have far less
mutations. This makes it more difficult to reliably extract mutational signa-
tures in WES data. For example, in the PCAWG study, only 17 SNV-based
signatures were extracted using WES data, while 48 SNV-based signatures
were extracted when using WGS data even though the sample size of the
WGS data was approximately 4 times smaller14.

• Biases from the dataset: Imbalanced datasets introduce potential biases
by overrepresenting certain mutational patterns. This becomes increasingly
important when tumor samples from different tissue types are aggregated.
In this way, signatures only operative in a small fraction of the data can
get lost. This problem was addressed in the work of Degasperi et al., in
which the authors suggest restricting the signature extraction to individual
tissues138. Furthermore, cases in which samples from the same individual
were taken at different time points or from different sites (e.g. biological
replicates) should only be included once in the dataset for the de-novo ex-
traction. Otherwise, this could also introduce a potential bias132.

• Flat signatures: While some signatures have distinct peaks at specific mu-
tation classes, other signatures are more flat and less distinctive (e.g. COS-
MIC signatures 3, 5, and 8)139. These signatures are more likely to be
miss-assigned132. In these cases, it is necessary to further check other ge-
nomic features, which have been connected with the corresponding signa-
ture and check to what extent the signature assignment aligns with previous
findings139.

• Localized processes: Usually, the information about where in the genome
the mutation happened gets lost. Hence, mutational processes, which affect
a large fraction of the genome usually still get identified, while mutational
processes only active in a specific region can get missed. It has been shown
that highly localized processes such as the somatic hypermutation event,
which occurs in B-cell receptors, can be identified by restricting signature
extraction only to specific regions in the genome139.

• Signature bleeding: Samples with an extremely high number of muta-
tions (e.g. due to POLE exonuclease mutation), which are generated by
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a very mutagenic process, can sometimes bleed over into other signatures.
For this reason, these hypermutated samples are often removed from the
dataset or the mutation numbers are capped139,132.

• Signature overfitting: During signature fitting, signature overfitting can oc-
cur when the user uses all existing signatures. The existing strategies to
extract mutational signatures are mathematical and do not consider biol-
ogy139. Thus, it has been advised to only use those signatures for fitting,
which have also been identified in the respective tissue138. Otherwise, a
signatures which does not exist in the respective tissue might be assigned
to a sample, leading to misinterpretations132.

Signature extraction by Degasperi et al.138

Many of the major issues in mutational signature analysis have been addressed
in the framework suggested by Degasperi et al 138. De-novo mutational signature
extraction was performed in each tissue/organ separately using over 3,000 WGS
tumor samples, leading to the delineation of organ-specific signatures. These sig-
natures were then fitted to the samples according to the matching tissue. In order
to perform a global analysis and to compare the over 190 organ-specific signa-
tures, all signatures were clustered together. In this way, a reference set of global
signatures was generated (38 SNV+indel based signatures and 20 signatures
based on structural variants), which were compared to the widely used COSMIC
signatures4. Furthermore, signature fitting was performed via a bootstrap-based
method, which produces a distribution of exposure assignments for each signa-
ture to each sample. The final exposures were calculated by taking the median
values and importantly, exposures were set to 0 if they did not reach a specific sta-
tistical threshold. This approach was implemented to prevent miss-assignments.
It was shown that the number of unassigned mutations rose when more signa-
tures were used during signature fitting. This result implies that a priori knowl-
edge of the contributing signatures in the corresponding tissue is crucial138. This
framework of using organ-specific cancer signatures for signature fitting and con-
verting them to a reference set for the global analysis, was also implemented in
this thesis.

Mutational signatures based on different mutation classes

The whole concept of mutational signatures is based on the different types of mu-
tations and the potential information they carry. Thus, the classes of mutations
which are initially used can be crucial to extract biologically relevant signatures.
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At the beginning, studies put the focus on SNVs and the 96 different mutational
classes6. By now, mutational signatures have been also extracted based on in-
dels14, double nucleotide variants (DNVs)14, clustered mutations15,16, copy num-
ber variants (CNVs)17 and structural variants (SVs)18. In addition, mutational
signatures based on SNVs extending the 96-channel trinucleotide context to a
1,536-channel pentanucleotide context have been generated as well14. Another
interesting extension has been the consideration whether mutations occurred on
the transcribed strand or on the untrabscribed strand133. On top of that, muta-
tional signatures have been extracted combining the different mutational classes
(SNVs5,6,14, DNVs14, indels14, clustered mutations15,16, and SVs18) and also
adding other genomic properties such as epigenetic marks and nucleosome
states among others115.

Single base substitution signatures

SNV-based mutational signatures are still the most widely extracted and used
signatures. In 2013, 21 SNV-based signatures were reported6, in 2020, 49
signatures were identified and in the latest release of COSMIC (v3.2, March
2021), 60 signatures were reported. During the time, some signatures got split
into multiple ones and other signatures got further refined. For instance, the
UV-induced signature SBS7, got split into SBS7a, SBS7b, SBS7c, and SBS7d
in the latest release. Experimental efforts are onging to further validate these
signatures243,126 and for many signatures it remains to be elucidated to which
extent they cover real biology and not mathematical artefacts132. In particular,
the causes for around 19 out of the 60 signatures are still unknown (based on
COSMIC v3.2). An overview of the different signatures and their associated
cause is shown in Table 1.2.

Interestingly, defective MMR has been associated with several signatures: SBS6,
SBS15, SBS21, SBS26, and SBS44. In addition, a signature due a deficiency
in MMR in combination with a defective DNA polymerase ε proofreading activ-
ity (SBS14) as well as a signature due a deficiency in MMR in combination with
a defective DNA polymerase δ proofreading activity (SBS20) has been reported
(COSMIC v3.2). The question remains whether these diverse signatures capture
different types of MMR deficiencies, tissue specificities, interactions of MMR with
other processes/drugs or whether they are just artefacts from the NMF frame-
work132. In experimental work, knock-out cell lines covering different DNA repair
genes (among others) were generated and mutational signatures were extracted
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Table 1.2: Overview of SNV based signatures and their associated cause based
on COSMIC v3.2. ROS: reactive oxygen species, AID: activation induced
deaminase, TMZ: temozolomide.

Signature(s) Underlying Process/Cause
SBS1 spontaneous deamination of 5-methylcytosine

SBS2 & SBS13 APOBEC activity
SBS3 defective HR

SBS4 & SBS92 tobacco smoking
SBS5 unknown, correlates with age

SBS6, SBS15, SBS21, SBS26 & SBS44 defective MMR
SBS7a, SBS7b, SBS7c & SBS7d UV exposure

SBS9 DNA polymerase η

SBS10a & SBS10b defective DNA polymerase ε proofreading
SBS10c & SBS10d defective DNA polymerase δ proofreading

SBS11 TMZ treatment
SBS14 defective MMR + defective DNA polymerase ε proofreading
SBS18 ROS
SBS20 defective MMR + defective DNA polymerase δ proofreading
SBS22 aristolochic acid exposure
SBS24 aflatoxin exposure
SBS25 chemotherapy treatment
SBS29 tobacco chewing
SBS30 defective BER due to NTHL1 mutations

SBS31 & SBS35 platinum chemotherapy treatment
SBS32 azathioprine exposure
SBS36 defective BER due to MUTYH mutations
SBS38 indirect UV exposure
SBS42 haloalkane exposure
SBS84 AID activity
SBS85 indirect effects of AID activity
SBS86 unknown chemotherapy treatment
SBS87 thiopurine chemotherapy treatment
SBS88 colibactin exposure
SBS90 duocarmycin exposure

rest unknown
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in absence of any exogenous process126. Interestingly, knowdowns of MSH2,
MSH6, and MLH1 generated similar mutational signatures, which correlated with
SBS6, SBS20, and SBS44126 (merged in Ref.Sig. MMR1 in Degasperi et al.138).
In contrast, knockdown of PMS2 led to a mutational signature correlating with
SBS12 and SBS26126 (merged in Ref.Sig. MMR2 in Degasperi et al.138). Thus,
at least two different types of gene-specific MMR deficiencies exist, which lead to
an increase in SNVs. In the future, experimental work combined with the analy-
sis of cancer-derived signatures could support further illuminating the potentially
different mechanisms.

Indel signatures

Indel signatures have been extracted based on 83 different indel types, consid-
ering the type of indel (insertion or deletion), length of indel, location of indel
(homopolymers, repetitive tracks or microhomology sequence) and/or affected
nucleotide (cytosine or adenine)14,132. In the current set of indel signatures
based on COSMIC v3.2, 18 signatures have been discovered and 9 out of the 18
signatures have an unknown cause as shown in Table 1.3.

Table 1.3: Overview of indel based signatures and their associated cause based on
COSMIC v3.2.

Signature(s) Underlying Process/Cause
ID1 slippage of nascent strand during DNA replication
ID2 slippage of template strand during DNA replication
ID3 tobacco smoking
ID6 defective HR
ID7 defective MMR
ID8 DSB repair by NHEJ or TOP2A mutations

ID13 UV exposure
ID17 TOP2A mutations
ID18 colibactin exposure
rest unknown

Double base substitution signatures

Signatures based on DNVs have been extracted using 78 different types of
double base substitutions. DNVs only make up approximately 1 % of the SNVs,
which is why it is more difficult to detect DNV based signatures reliably14.
The current COSMIC v3.2 set reports 11 different DNV based signatures. An
overview of the signatures and their connected mutational process is depicted in
Table 1.4.
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Table 1.4: Overview of DNVs based signatures and their associated cause based
on COSMIC v3.2.

Signature(s) Underlying Process/Cause
DBS1 UV exposure
DBS2 tobacco smoking or acetaldehyde exposure
DBS3 defective DNA polymerase ε proofreading
DBS5 platinum chemotherapy treatment

DBS7 & DBS10 defective MMR
rest unknown

Copy number based signatures

Several cancer types such as ovarian, esopagheal, prostate, non-small-cell
lung and triple-negative breast cancers are dominated by many copy number
changes140. This has motivated the extraction of copy-number based signatures.
So far most of these analyses restricted to specific cancer types17,141. In a no-
table study from Macintyre et al.17, seven copy number signatures were extracted
from over 100 WGS ovarian cancer samples. The different signatures could be
associated to different mechanisms such as CDK12 inactivation, or a deficiency
in HR via mutations in BRCA1 or BRCA2 17.

Structural variant based signatures

The extraction of signatures based on SVs has been hampered in the past by the
difficulties in calling SVs accurately142. As part of the PCAWG study, SV based
signatures were extracted and in total, 16 different signatures were identified. The
PCAWG group used different classes of rearrangements such as tandem dupli-
cations and deletion events and further divided them by size, replication timing
domain, and occurrence at fragile sites18.

TensorSignatures

While most signature detection tools extract signatures using each mutation class
separately (e.g. SNV, DNV, CNV), recent advances have integrated different mu-
tational classes to learn signatures across different classes of mutations115,143.
In the case of TensorSignatures, signatures are learned utilizing SNVs, multi nu-
cleotide variants (MNVs), indels, SVs, and several genomic features such as repli-
cation timing, direction of replication, and epigenetic marks115. Applying the Ten-
sorSignatures framework, 20 signatures were extracted from the PCAWG dataset
(∼2,700 whole genomes), out of which many signatures were replicated in an in-
dependent cohort115. In particular, it was shown how different mutational classes
and genomic properties contributed to many mutational processes and thus, pro-
viding a more refined reflection of each mutational process115 in comparison to

29



1 Introduction

the for example SNV-based signatures6,14. In addition, the framework has been
implemented in the user-friendly and highly efficient TensorFlow backend, which
will make it possible to run the tool in the future on even bigger WGS datasets
and to further expand the list of genomic features115.

1.3.2 Relative Mutation Rates across the Genome

Another important approach to extract mutational patterns are relative mutation
rates, which can be measured from regional mutation densities144. It has
been shown that due to diverse mutational processes, local mutation rates
differ at multiple resolutions (from 1 bp to 106 bp) (Figure 1.8). Understanding
relative mutation rates has helped to better understand the mechanisms creating
mutations in the genome, especially, in sites increasing the risk of cancer such
as oncogenes and tumor suppressor genes144. In this section, several features
associated with variations in mutation rates will be described with a focus on the
features which are also used in this thesis.
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Figure 1.8: Relative mutation rates vary along the genome. Local mutation rates differ
along the genome at different scales and have been associated with different
genomic properties144. Figure adapted from ref144.

Replication timing

Mutation rates vary at the scale of megabases, which has been shown to
correlate robustly with replicating timing (RT) even after controlling for other
confounders15,21,145. Mutation rates have been reported to be increased in late
replicating regions and decreased in early replicating regions. The cause for this
variability has been connected to MMR activity by showing that the variability
gets lost in MMR deficient cells, leading to ’flat’ mutation distributions21 (Figure
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1.9). Since early replicating regions are associated with euchromatic regions and
late replicating regions are associated with heterochromatic regions, chromatin
accessibility has been also associated with this mutation rate variability144.
However, just recently it has been shown that replication timing is responsible for
the organization of the epigenome, and thus, further emphasizing the important
role of replication timing146.
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Figure 1.9: Relative mutation rates with respect to replication timing are affected by
DNA mismatch repair. Deficiency of DNA mismatch repair leads to a ’flatter’
genome, in particular, due to the decreased DNA repair in early replicating
regions21.

DNase Hypersensitivity I sites

DNase Hypersensitivity I sites (DHS), which mark accessible DNA regions, have
also been connected with variations in mutation rates22. A reduced mutation rate
was observed in DHS regions (intergenic, intronic, coding, and coding flanks) in
comparison to flanking regions and the rest of the genome in skin, lung, colon,
and bone marrow cancers22. The reduced mutation density in DHS regions also
held true after accounting for replication timing, GC content, sequencing errors
and other potential biases22. The activity of GG-NER was connected to the re-
duced mutation rates since melanoma with somatic mutations in different NER
components showed increased mutations at DHS sites. Still, it should be noted
that the study was performed with limited data (34 WGS samples) and it could not
be excluded that also other mechanisms might play a role here22 . In addition,
a recent analysis, which utilized over 2,419 whole-genomes to measure muta-
tion enrichments across different regulatory elements, reported an enrichment
of mutations in open-chromatin regions in several cancer types such as breast,
liver, and prostate cancers147. Thus, mutation rate variability at accessible DNA
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regions also seems to be tissue-specific22,147.

H3K36me3-marked regions

During gene transcription elongation, the methyltransferase SETD2 is recruited
to the RNA polymerase II via its Ser2 phosphorylated C-terminal domain. Con-
sequently, transcribed gene bodies often have H3K36me3 marks, which are en-
riched in the 3’ ends148. Mutation rates have been reported to be decreased
in H3K36me3-marked regions, which has been connected to MMR activity20,15.
Reportedly, histone mark H3K36me3 can recruit the mismatch recognition pro-
tein MutSα (heterodimer of MSH2 and MSH6) via binding of MSH620. In this
way, gene bodies are enriched during replication with components of the MMR
pathway leading to an increased DNA repair efficiency in these regions20,15. The
causal role of H3K36me3 mark in increasing the DNA repair efficiency was fur-
ther shown by controlling for other confounders such as replication timing and by
showing that the effect was reduced in MMR deficient genomes20.

Transcriptional strand asymmetry

Another frequent pattern found in cancer genomes is strand asymmetry with re-
spect to the transcribed strand and the non-transcribed strand24. The strongest
strand biases were reported in liver cancers, lung cancers and skins cancers. In
skin cancers, UV-induced C>T mutations were decreased when the cytosine was
on the transcribed strand, and in lung cancers tobacco smoking-induced C>A
mutations were decreased when the guanine was on the transcribed strand. In
both cases, strand asymmetry was attributed to the activity of TC-NER, which re-
pairs lesions occurring on the transcribed strand. In liver cancers a strong strand
asymmetry was reported with respect to T>C mutations. Interestingly, on top of
having less T>C mutations when the adenine was on the transcribed strand, an
increase in T>C mutations was reported with increasing gene expression levels.
Normally, it would be expected that the number of mutations decrease with ris-
ing gene expression levels due to the activities of GG-NER and MMR, which are
more efficient in high expressing regions. Thus, it has been suggested that the
strong strand asymmetry for T>C mutations in liver cancer can be attributed to
an expression-level dependent increase in DNA damage (’transcription-coupled
damage’) in combination with TC-NER, which might be independent of the DNA
damage inducing process. The cause for the transcription-coupled damage is still
unclear24.
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Replicative strand asymmetry

In a similar vein like in the case of transcriptional strand asymmetry, strand asym-
metry has been also measured and observed with respect to the replication mode
of the strand: leading and lagging23,24. While the leading strand is replicated
continuously, the lagging strand is replicated discontinuously via Okazaki frag-
ments. Mechanisms contributing to the replicative strand asymmetry are report-
edly MMR, APOBEC, and the proofreading activites of DNA polymerase ε and
DNA polymerase δ 24,108,149. All cancer genomes with increased APOBEC ac-
tivity such as breast, bladder and head and neck cancers were reported to have
a strong replicative strand asymmetry with respect to C>T and C>G mutations
when the cytosine was located on the lagging strand. The increase in APOBEC
activity has been attributed to the increased exposure of the lagging strand to
ssDNA24,108, and additionally due to differential activity of MMR across the two
strands16. Furthermore, strong strand asymmetry with respect to C>A mutations
were observed in samples with mutations in the exonuclease domain of DNA
polymerase ε when the cytosine was on the leading strand. This observation
has been connected to the proofreading activity of DNA polymerase ε, which
acts primarily on the leading strand24,108. The opposite effect was reported for
samples with mutations in DNA polymerase δ , which acts primarily on the lag-
ging strand149. MMR deficient cells showed similar replicative strand biases as
samples which had mutations DNA polymerase δ and it has been suggested that
MMR repairs mutations occurring on the lagging strand more efficiently than mis-
matches occurring on the leading strand149.

Nucleosomes

An important feature of eucaryotic genomes are nucleosomes, which build the
first layer of DNA packaging. In brief, DNA is wrapped around a histone octamer
in 1.67 turns, forming one nucleosome. A nucleosome core is then connected via
a stretch of DNA (’linker DNA’), to the next nucleosome. Somatic mutation rates
have also been reported to correlate with nucleosome occupancy150. In a sys-
tematic analysis of over 3,400 tumors it was shown, that UV-induced mutations
are enriched in nucleosomes in comparison to linkers, which has been attributed
to the increased efficiency of GG-NER in the DNA linkers. In contrast, tobacco
smoking-induced mutations are enriched in linkers, because binding of the chem-
ically active agent BPDE is prevented at nucleosomes150. Furthermore, relative
mutation rates also differ within nucleosomes with respect to the orientation of
the DNA. DNA wrapped around nucleosomes can be divided into two structurally
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different regions: minor groove facing histones and minor groove facing out his-
tones. For instance, UV-induced CPDs preferentially occur on the minor groove
facing away from the histones. While these more exposed stretches also have a
higher efficiency to be repaired via NER in comparison to the minor-in stretches,
the effect of DNA damage outperforms the DNA repair activities and thus, result-
ing in increased mutations in minor-out stretches. Additionally, also other DNA
damages such as ROS and tobacco-induced mutations leave patterns behind,
which lead to differences in mutation rates within nucleosomes150.

CTCF/cohesin-binding sites

A notable example for a mutational feature occurring at the sub-gene scale are
CTCF/cohesin binding sites. These sites have been observed to be frequently
mutated especially in a subset of colorectal cancers151 and skin cancers152. In-
terestingly, these mutational hotspots were independent of MMR activity and de-
creased in samples with mutations in the exonuclease domain of POLE 151. The
exact mechanism responsible for the mutational peaks is still unknown and the
types of mutations differ between different cancer types. In colorectal cancer,
the peaks were enriched in SBS17 mutations. The underlying mechanism for
SBS17 (specifically SB17a and SBS17b) is still unknown, but might be caused by
oxidized guanines in the free nucleotide pool153. In skin cancer, the mutational
pattern was enriched in UV-induced C>T mutations144. While not further cov-
ered in this thesis, it should be noted that also other transcription factor binding
sites are frequently mutated in cancer genomes such as binding sites of the ETS
family144,154.

X-chromosomal hypermutation

Another mysterious somatic mutational feature is X-chromosomal hypermutation,
which was reported for the first time in 2013155. Initially, this feature was observed
predominantly in diverse brain cancers and leukemia, and later also discovered
in other adult cancer types156. The feature is characterized by up to 4 times
higher mutation rates on the X chromosome in comparison to the autosomes,
involving SNVs as well as indels. Interestingly, while mutation rates are increased
on the X chromosomes, the mutational spectrum has been reported to be similar
as on the autosomes. Furthermore, it was shown that the event takes place
on the inactive X chromosome since the feature was mostly detected in female
patients and in a male patient with two X chromosomes (Klinefelter syndrome).
Consistently, X-chromosomal hypermutation was not observed in female patients
lacking expression of XIST, which is the transcript responsible for the inactivation
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of the X chromosome. In addition, the feature was reported to occur early in
tumor evolution and was not observed in nonmalignant genomes155. All in all,
the characteristics of X-chromosomal hypermutation are known and the feature
can be easily spotted in WGS data155. Still, the underlying mechanism remains
to be elucidated.

1.3.3 Mutational Patterns in the Mitochondrial Genome

So far, all the mutational features described were based on patterns observed in
the nuclear genome. It should not be forgotten that mitochondria carry genetic
material. The mitochondrial genome is circular with a size of approximately
16.5 kb157. The number of copies of the mitochondrial genome per mitochondria
fluctuate since mitochondria constantly divide and merge158. In tumor genomes,
mitochondrial genomes have distinct mutational patterns, which have been
connected to the unique genome replication occurring in mitochondria157. Most
notably, specific signatures found in the nuclear genome, for instance due to
UV or tobacco exposure have not been identified in the mitochondrial genomes.
Thus, it is assumed that the mutational processes occurring in mitochondria are
mostly different to those occurring in the nuclear genome157.

In a comprehensive analysis of over 1,600 tumor genomes, at least one
somatic mutation was detected in 50 % of the samples in the mitochondrial DNA
(mtDNA). The number of mutations in the mtDNA varied across tumor types
and was increased in particular in stomach, liver, prostate, and colocrectal can-
cers157,159. The most frequent mutations in mtDNA are C>T and T>C mutations,
which show a strong strand bias and can be detected across all cancer types.
C>T mutations are enriched on the H-strand (H for heavy), and T>C mutations
are enriched on the L-strand (L for light). The cause for these mutations have
been connected to the replication process, which is mostly performed by the
mtDNA poylmerase (POLG). It has been shown that the mtDNA polymerase
preferentially causes C>T and A>G mutations on the H-strand, which would
explain the observed mutational strand bias. Furthermore, the involvement of
DNA repair processes has been suggested157.

Another interesting feature of the mitochondrial genome is the copy num-
ber variation, which has been observed across cancer types158. In specific
cancer types such as bladder, breast, and kidney cancer mtDNA is depleted
in the tumor sample in comparison to the sample-matched healthy sample158.
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It could be expected that the decrease in the mtDNA would be connected to
the preference of many cancer cells to use glycolysis as their primary source
of energy (Warburg-effect). While a positive correlation between copy number
of mtDNA and expression of mitochondrial respiratory genes was observed, it
varied between cancer types. In addition, some samples with low mitochondrial
copy number had high levels in the expression of metabolic mitochondrial genes.
Thus, copy number alone can not be used as a predictor of mitochondrial activity
and the consequences of this variation need to be further resolved158.

1.3.4 Somatic Mutations in Normal Cells

Several somatic mutational features which have been identified in can-
cer genomes, have been also identified in normal (non-tumor) cells of the
body160,161,162. Somatic mutation rates in normal human somatic cells have
been estimated across different tissues and range between 2 to 10 mutations
per cell division163, which is higher than in germ cells163,164. The investigation
of somatic mutations in normal cells has been mostly hindered by technical
difficulties to expand many different types of healthy cells in culture and/or the
high error-rate in single-cell sequencing164.

Cancer signature analysis of somatic mutations identified in adult stem cells
led to the identification of three signatures160 which were previously identified
in cancer genomes6: signature 56 (cause unknown, correlating with age238),
signature 15 (spontaneous deamination of 5-methylcytosine, correlates with
age238), and signature 186 (caused by damage by reactive oxygen species).
Further, it was shown that healthy human cells with acquired somatic mutations
in the exonuclease domain of POLE or POLD1 have elevated somatic mutation
rates161 as it has been also reported in tumor genomes14,85. In addition, in
a systematic analysis of somatic mutations (SNVs) from over 36 non-disease
tissues using GTEx data several somatic features, which were reported pre-
viously in tumor genomes, were also detected in normal cells such as strand
asymmetries with respect to DNA transcription (transcribed vs. non-transcribed
strand) and associations with chromatin states (e.g. positive correlation of
somatic mutation rate with heterochromatin mark H3K9me3)162.

Thus, analyses so far suggest that many of the somatic mutational fea-
tures, which were detected in tumor genomes, have likely been ’carried over’
from mutational processes already occurring in healthy somatic cells such as
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the spontaneous deamination of 5-methylcytosines. In the future, more studies
and data will help to elucidate the mutational processes occurring specifically
in healthy cells for instance by also analyzing indels, copy number variants and
structural variants on top of SNVs.

1.4 Inherited Variants Affecting Somatic Events in

the Tumor

Somatic mutations play a crucial role in the emergence of cancer39. Another
important role play inherited variants31. Initially, germline and somatic genomes
were studied separately. Similarly as in the case of somatic mutations, germline
variants have been associated with specific cancer subtypes and have been
correlated with clinical outcomes31. Furthermore, germline variants in many
different genes have bee reported to predispose to cancer165. On top of this,
over 1,300 single-nucleotide polymorphisms (SNPs) have been identified via
genome-wide association studies (GWAS) to increase cancer risk166. In an
analysis of three large-scale cancer datasets, it has been shown that individuals
with an increased number of rare damaging germline variants (RDGVs) in cancer
hallmark genes have an earlier onset of cancer compared to individuals with low
numbers of RDGVs. In line with this observation, the accumulation of somatic
mutations plays a bigger role in patients, which have a low number of RDGVs,
which is why these individuals tend to develop cancer at a higher age. The
hypothesis is that specific germline variants increase the susceptibility to develop
cancer166.

During the last years, the analysis of germline variants has been integrated
into the analysis of somatic mutations more frequently. It has been shown, that
germline variants can affect which types of somatic events occur and get selected
during tumorigenesis and affect somatic mutation rates167,168,169. While these
interactions have been shown via large-scale systematic studies167,168,169, the
initial idea that germline variants could affect the occurrence and selection of
somatic mutations in the tumor genome was initially observed and formulated by
Alfred Knudson in 1971170. Knudson predicted based on a statistical analysis
of retinoblastoma patients, that the inherited form of the disease would be
caused by an inherited mutation (first hit) and subsequent second somatic
mutation (second hit). Later it was confirmed and discovered that mutations
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need to occur on both alleles of the tumor suppressor gene Rb to lead to cancer
onset171. Patients without an inherited pathogenic variant in the Rb gene rarely
develop the disease since it would be statistically unlikely that both alleles get
inactivated during the lifetime of an individual, which also explains the late onset
of the nonhereditary form of retinoblastoma170. Knudson’s two-hit hypothesis
was further tested and validated once large numbers of tumor genomes were
sequenced. In a systematic analysis, it was shown how this concept can be used
to identify new cancer predisposition genes by investigating the combination of
rare germline variants with somatic loss of heterozygosity (LOH)167. Further, it
has been shown that tumor suppressor genes can also act as one-hit drivers and
more importantly, that depending on the cancer type and genomic background a
cancer gene can act either as a one-hit or two-hit driver169.

Beyond Knudon’s two-hit hypothesis and the interaction of germline vari-
ants with specific somatic mutations in either cis or trans167,168,169, it has been
also appreciated how germline variants in specific genes such as components of
the DNA mismatch repair pathway can have an affect on global somatic muta-
tions rates31. The investigation of how germline variants affect somatic mutations
rates is also the main focus of this thesis and thus, the current understanding of
this interplay will be further described in the following section.

1.4.1 Rare Variants affecting Somatic Events in the Tumor
Genome

Most studies distinguish between rare and common variants. Disease alleles
are often enriched in rare variants because they are under negative selection in
human populations and exhibit large effects (Figure 1.10). Thus, the analysis
of rare variants has been widely used to understand more about the causes
of different diseases172. In the context of cancer and somatic mutations, rare
germline variants in different genes have been reported to affect the occurrence
of somatic mutations in the genome31 (Table 1.5).

Damaging variants (including germline variants) in BRCA1, BRCA2, PALB2, and
RAD51C have been reported in different studies to associate with several somatic
mutation features174: signature 3 mutations5, deletions of a size smaller than
50 bp at microhomology sites5, duplications with a size of more than 1 kb94,95, a
specific copy number signature17, and several structural rearrangement based
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Figure 1.10: Illustration of genetic variant effects along allele frequencies. Rare
variants (allele frequency < 0.5 %) are often enriched for disease causing
alleles, while common variants (allele frequency > 1 %) which are typically
identified in genome-wide association studies (GWAS), have often small
effect sizes. Figure inspired from ref173.

signatures18 (Figure 1.11). These signatures are likely the consequence of the
impairment of the cell to repair DSBs via homologous recombination, which
is why the cell needs to use other more error-prone mechanisms such as
microhomology-mediated end joining175.

Table 1.5: Overview of genes in which damaging variants (including germline) have
been associated with distinct somatic mutational features.

Gene Associated Somatic Mutational Feature
BRCA1, BRCA2, PALB2, RAD51C signature 3 mutations5

deletions 550 bp at microhomology regions5

duplications ≥ 1 kb94,95

copy number signatures17

structural rearrangement signatures18

MSH2, MSH6, MLH1, PMS2 SNV based signatures6

indel based signatures14

enrichment of SNVs in early replicating regions21

enrichment of SNVs in regions with increased H3K36me3 marks20

replicative strand asymmetry149

POLE SNV based signatures SBS10a & SBS10b14

POLD1 SNV based signatures SBS10c & SBS10d14

MUTYH SNV based signature SBS36125

NTHL1 SNV based signature SBS3079

MBD4 increase in C>T mutations at CpG sites76,77,8

TP53 massive chromosomal rearrangements (’chromothripsis’)178

Similarly, pathogenic germline variants in components of the DNA mismatch
repair pathway, which predispose to early-onset cancer of the colorectum and
other organs (Lynch syndrome)176, have been associated with several mutational
signatures31 as shown in Table 1.5. Pathogenic variants in genes such as MSH2,
MSH6, PMS2, and MLH1 have been associated with different kinds of small
indels at microsatellite regions14, different SNV-based mutational signatures6,
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Figure 1.11: Inherited pathogenic variants can impact somatic events in the tumor.
Inherited pathogenic variants in BRCA2 have been reported among others
to impact somatic mutational processes in the tumor31.

an enrichment in early replicating regions21, an enrichment in regions with high
levels of H3K36me3 marks20 and replicative strand asymmetry149 (also see
Sections 1.2.1 and 1.3.1).

Another interesting example is TP53. Inherited pathogenic variants in TP53
cause Li-Fraumeni syndrome, which is a rare, autosomal dominant inherited
disease resulting in a wide spectrum of different cancer types, which emerge
before the age of 40177. Sequencing data from tumors from patients with
inherited pathogenic variants in TP53 uncovered how these germline variants
can have disastrous effects on the genome. These tumors exhibit massive
chromosomal rearrangements, termed as chromothripsis (thripsis: greek for
shattered into pieces)178. Many of the listed associations influencing mutation
processes include variants that cause familial cancer syndromes165.

In addition, specific SNV based cancer signatures were extracted from pa-
tients with germline variants in the DNA glycosylases NTLH179 and MUTYH 125.
In the same way, cancer signatures were extracted from individuals with
pathogenic mutations in either POLE 14 or POLD114.

So far, there have been only a limited number of studies, which explored
the association of RDGVs with mutational patterns in a more systematic and
unbiased approach. The biggest study to date was performed as part of the
large-scale PCAWG study8. In the PCAWG study, over 1,600 whole-genome
primary cancers of European ancestry were utilized for a rare variant association
study. The association of RDGVs with different DNA rearrangement signatures,
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signature 1 (C>T mutations at CpG sites) and APOBEC signatures were tested
and subsequently replicated in a validation dataset consisting of over 8,000
whole-exome primary cancers. RDGVs were defined as variants with a fre-
quency of less than 0.5 %8 (some studies use 0.1 %167) in the human population,
which result in a protein-truncation via frameshift variants, nonsense variants,
or splicing variants. For testing, a gene-based aggregation test was used by
collapsing all RDGVs occurring the same gene (methodology will be described in
more detail in the next section). RDGVs in BRCA2 associated with a decreased
number of C>T mutations at CpG sites and several copy number-based pheno-
types8. RDGVs in the DNA glycosylase MBD4 associated with an increased
number of C>T mutations at CpG sites. This association was also found in
several independent studies76,77. The BRCA2 and MBD4 associations with
C>T mutations at CpG sites were both discovered at exome-wide significance
in the PCAWG cohort and further replicated in a validation cohort (TCGA-WES)8.

A similar approach was also applied at a smaller scale by a study which
was focussed on breast cancer samples32. In the study, WES and WGS samples
from around 1,000 individuals were utilized as the discovery cohort and a cohort
consisting of around 170 individuals from Nigeria were used as validation. The
association of RDGVs with 9 SNV-based mutational signatures was investigated
using a predefined set of genes. While several genes were identified in the
discovery cohort, none of the hits replicated at a p-value of 0.05 (without multiple
testing correction) in the validation cohort. However, it should be noted that
the study had a very limited sample size and that the initial discoveries would
still suggest that there might be several pathogenic germline variants affecting
mutational patterns, which might get replicated in higher powered studies32.

All in all, currently only a handful of rare inherited pathogenic variants have
been associated with distinct mutational patterns in the genome. A better under-
standing of this interaction will be crucial to better predict cancer risk, develop
new therapeutic strategies and ultimately, tailor cancer treatment to individual
patients. The major challenge to perform systematic rare variant association
testing originates from the fact that they are rare. In the next section, I will further
describe the different methodologies which can be utilized to perform a rare
variant association study and how power can be increased even at lower sample
sizes.
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1.4.2 Methodologies for Gene-based Rare Variant Association
Testing

It is challenging to perform association studies with individual variants if sample
size or effect size is not big enough. Thus, it has been common practice to
collapse rare variants based on different features such as domain, gene or
connected pathway. In a classic burden test such as in the cohort allelic sum
test (CAST)179, rare variants within a predefined region are collapsed into a
single binary value indicating whether a rare variant was found in the region
or not. Subsequently, the value is regressed against the phenotype in order to
test for association. This simple approach has been further extended in many
different ways such as by counting the number of rare variants within a region,
by collapsing the variants into several subgroups based on allele frequencies or
by estimating a weighted sum based on specific assumptions180. A drawback of
all these methods is that they assume that all variants within a region are causal
and that all of them have the same effect size direction. In this way, classic
burden tests are underpowered in cases in which these assumptions do not hold
true. These problems have been partly addressed in so called adaptive burden
tests which make less assumptions about the variants and incorporate the idea
that variants within a region could have opposing effects (e.g. data adaptive sum
method181). However, a major drawback of the adaptive burden tests is that they
are computationally expensive since they make use of permutation tests180.

A major advancement have been variance-component score tests, which
evaluate the distribution of the test statistics. These tests are not burden tests
anymore. First in class was the C-alpha test182, which tests in case-control
studies whether the allele frequencies have an altered variance in comparison
to an expected variance. This idea was further generalised in the sequence
kernel association test (SKAT)183, which can also control for covariates and
measure epistatic variant effects. SKAT assumes in the null hypothesis that the
regression coefficient from each variant within a certain region follows a random
distribution with the mean 0 and a variance of weightv∗τ. Here weightv is the
predefined weight for the respective variant and τ is the variance component.
The null hypothesis tests whether τ = 0. By default, the weight of each variant
is set as follows:

√
wv = Beta(MAF v; a1,a2). Here, Beta is the beta density

distribution function, MAF v the minor allele frequency (MAF) of the respective
variant in the dataset and a1 is set to 1 and a2 is set to 25. Since it is not known
a priori, which variants are causal, the weights are set in dependency on their
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allele frequencies. Thus, rare variants have a higher weight than more common
variants. The default settings were chosen by the authors to give variants with
a MAF between 1 % and 5 % a small, but nonzero weight. A good choice of the
weights can further improve the power of the test183. Ultimately, it has been
shown that SKAT outperforms burden tests when a region in the genome has
many noncausal variants and/or variants with opposite estimate size directions.
Vice versa, classic burden tests outperform SKAT in cases in which a genetic
region has many causal variants with the same effect size direction183.

Due to the different strengths of burden and nonburden tests, an approach
combining the two tests has been suggested184. This unified approach has been
executed in SKAT-O, which finds the optimal linear combination of both tests:
burden test and SKAT. The test statistic is calculated as follows: Qρ =ρ QB + (1-
ρ)QS. Here, QB is the test statistic from the burden test, QS is the test statistic
from SKAT, and ρ weights the two tests. If ρ = 1 the test statistic Qρ will follow
the burden test, and if ρ = 0, the test statistic Qρ will follow SKAT. Since the
optimal weight ρ is unknown, the default implementation of SKAT-O tests different
settings of ρ and chooses the one which minimizes the p-value184.

It should be noted, that no matter which test is used to find associations
between rare variants with different phenotypes/traits, the initial variant set needs
to be restricted when applying region-based tests. Even the nonburden tests
require some information about how to weight the different rare variants. Thus,
variant scoring algorithms which are able to predict pathogenicity185,186 still
have an important role in rare variant association studies in all cases in which
rare variants cannot be studied independently and region-based aggregation
tests need to be utilized. Most of these tools use various, diverse information to
predict variant pathogenicity such as conservation data from multiple sequence
alignments187 or utilizing common variants from primate species186. In addition,
ensemble and consensus methods have been applied such as CADD185 and
REVEL188. Recent approaches such as EVE (evolutionary model of variant
effect)189 or the autoregressive model by Shin et al.190 make use of deep neural
networks with generative properties (learn the distribution of the data). These
tools help to restrict the initial set of variants and/or to assign a weight to each
variant.
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1.4.3 Common Variants affecting Somatic Events in the Tumor
Genome

Rare variants are often studied with the goal to find disease alleles and to better
understand the mechanism behind the disease. Based on evolutionary theory it
is expected that highly penetrant disease alleles are rare172. Still, GWAS data
suggests that while rare variants explain a fraction of the heritability of many
diseases, they do not explain the majority172. This is also why the analysis of
common variants can be equally important to better understand the genetic basis
and mechanisms behind many diseases. In fact, via GWAS many thousands
of common variants affecting disease risk have been identified and for complex
diseases such as schizophrenia, the majority of the genetic variance is captured
by common variants172.

Similarly as for the analysis of rare variants affecting somatic mutations,
the same research groups also explored the association of common variants with
the same mutational patterns8,32. In the PCAWG study the association of com-
mon inherited variants (MAF > 5 %) with signature 1 and APOBEC mutations was
investigated. Several variants passed genome-wide significance and associated
with APOBEC mutagenesis. These variants were also subsequently replicated
in an independent cohort of Asian ancestry. The variant with the strongest
signal (rs12628403) was reported to alter APOBEC-directed mutagenesis and
to tag a germline APOBEC3B deletion8, which was also identified in previous
studies111,112. This deletion has also been reported to increase the risk of breast
cancer111. In addition, a novel nearby QTL locus associating with APOBEC
burden was identified as well8. In the smaller study conducted by Wang et al.32

several common variants associating with APOBEC-directed mutagenesis were
discovered as well. None of the top 30 SNPs replicated in the validation cohort
and only 12 out of the 30 SNPs had a consistent direction in the effect size
estimate. Here, it should be noted again that the limited sample size could be the
reason for the negative replication of the hits. Notably, no association between
common variants and other mutational signatures were identified in this study32.
In addition to the PCAWG study8 and the study by Wang et al.32, the association
of common variants with the total mutation burden was investigated by Sun et
al. in 2021191. While no association reached genome-wide significance in the
pan-cancer analysis, several hits were identified in specific cancer types such as
breast and stomach cancer. The study design did not include a validation cohort,
and thus, none of the hits were further followed up191.
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Our understanding of how common germline variants affect different muta-
tional somatic processes is still limited. The studies conducted so far all selected
a limited set of somatic mutational features and only associations between
common variants and APOBEC-directed mutagenesis have been identified and
replicated111,112,8. For the tumor-specific association between common variants
and the total mutation burden, replication of the hits is still missing191. Fur-
thermore, while many common cancer risk SNPs are known from case-control
studies, the underlying mechanisms are largely unknown176. We hypothesized
that some of them act via changes in mutation rates, which motivated us to test
for associations with common variants.

1.4.4 Heritability of Somatic Mutational Processes

An important concept to better understand to which extent inherited variants
affect a phenotype is heritability. It is used to get a better understanding of how
much variance in a phenotype is attributed to the environment and how much
to genetics in a particular population (at a particular time point). In the field,
different definitions of heritability exist and in this study we will mostly focus on
narrow-sense heritability. Narrow-sense heritability is defined as the total amount
of variation in a phenotype, which can be explained via additive genetic effects.
In contrast to broad-sense heritability, it does not consider genetic variance
coming from epistatic effects and from dominance effects. It should also be
noted here, that heritability estimates are not static. They are highly dependent
on the population, the environment and they can change over time for the same
population192.

Initially, heritability was estimated by regressing the phenotypes of the par-
ents against the one of the offspring and by looking at the difference between
monozygotic and dizygotic twins. The era of genomics opened the avenue
to estimate heritability from a large set of unrelated individuals. For instance,
SNPs reaching significance in GWAS studies have been used to estimate to
which extent they explain heritability of a trait. In most cases, SNPs which were
identified from GWAS studies only explained a small amount of heritability. This
could be due to the fact that the number of SNPs reaching significance in a
GWAS study depends largely on the sample size and study design. Thus, many
SNPs which potentially affect a trait might not be identified in a GWAS when they
are too rare or the effect size is small. This is one of the major reasons why
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most current methods which estimate heritability from genomics data consider all
(mostly common) SNPs193. A widely used method is GREML194 which estimates
heritability by using all SNPs and assuming an infinitesimal model. This model
assumes that all SNPs contribute to heritability of the diseases via an extremely
small contribution195.

In the context of somatic mutations, a few studies have also estimated the
heritability of several mutational patterns. As shown in Table 1.6, the heritability
of different somatic mutational processes is still mostly unexplored.

Table 1.6: Estimated SNP-heritability of several somatic mutational features.
Somatic Feature Heritability estimation via GREML Study Sample size

Total mutation burden 12.9±4.7 % Sun (2021)191 ∼7,000
APOBEC directed mutagenesis 43.2±27.2 % Wang (2019)32 ∼700

C>T mutations at CpG sites 40.0±31.3 % Wang (2019)32 ∼700
Deficiency in homologous recombination 15.5±35.8 % Wang (2019)32 ∼700

This can be largely attributed to the fact that the estimation of SNP heritability via
methods like GREML requires a sample size of at least 1,000, since the error is
approximately 318 divided by the sample size (error of ∼32% at a sample size
of 1,000). This becomes clear when looking at the estimated heritabilities from
the study by Wang et al., which were estimated based on ∼700 individuals32.
Interestingly, in a study which utilized pan-cancer data from over 7,000 individuals
a heritability of around 13 % was estimated for the total mutation burden, which
suggests that there is an important genetic component which contributes to the
accumulation of somatic mutations in the genome191.

All in all, there is a lack in understanding to which extent the different sources
of mutations contain genetic components and, so far, it is not known which
mutational mechanism(s) is (are) responsible for the heritability of the total
mutation burden. This is also one of the questions with will be addressed in this
thesis.

1.5 Aim and Objectives of this Study
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Aim

While genetic screens in model organisms have shown that mutations in many dif-
ferent genes can influence mutational processes196,197, our understanding of in-
herited variants influencing mutational processes in humans is still limited. Thus,
the aim of this thesis was to gain an understanding of the extent to which inher-
itance plays a role in impacting mutational processes in somatic cells. For this
purpose, association studies utilizing rare and common germline variants were
performed and heritability of somatic mutational processes were estimated (Fig-
ure 1.12). These approaches have previously been shown to be applicable for dis-
covering germline determinants of human somatic mutational processes8,32,191.

Objectives

• Extract somatic mutational features/components, which recapitulate the dif-
ferent mutational processes occurring in humans cancers (feature engineer-
ing).

• Test for associations between rare damaging germline variants (RDGVs)
and the compiled set of somatic mutational components in a gene-based
testing approach.

• Perform a genome-wide association study (GWAS) testing for associations
between common germline variants and somatic components.

• Assess the heritability of the different somatic mutational processes utilizing
common variants.
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Chapter 2.1: Extraction of Somatic Mutational Processes (”Somatic Components”)

cancer patients

~ 9,300 whole-exomes
 ~ 5,500 whole-genomes

Non-cancer tissue
Cancer tissue
Somatic Mutation
Germline Variants

X
Chapter 2.2: X= Inherited damaging rare variants affecting somatic components?
Chapter 2.3: X= Inherited common variants affecting somatic components?
Chapter 2.4: X= Are somatic components heritable (based on common variants)?

Figure 1.12: IIlustration of the study design and structure of the results presented
in the thesis.

1.6 Study Design

Genomic sequencing data from three large-scale projects were utilized: the
Cancer Genome Atlas Program (TCGA)7, the Pan-Cancer Analysis of Whole
Genomes (PCAWG)8, and the Hartwig Medical Foundation (Hartwig)9. Firstly,
somatic components were extracted from around 15,000 cancer genomes. Next,
associations between rare damaging germline variants (RDGVs) and somatic
components were tested and associations between common germline variants
and somatic components were tested (Figure 1.12). For both cases, associations
were initially detected in the discovery cohort and hits reaching significance were
re-tested in the validation cohort. TCGA whole-exome sequenced (WES) sam-
ples were used as the discovery cohort due to the bigger sample size and whole-
genome sequenced (WGS) samples from PCAWG and Hartwig were aggregated
and utilized as the validation cohort. Lastly, common variants were utilized to
answer the question which mutational processes are heritable.
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2.1 Somatic Mutational Components

In this study the effects of inherited variants on different somatic mutational pro-
cesses were studied. For this purpose, we generated a comprehensive list of
somatic mutational features, that were partly based on the many mutational pat-
terns, identified in cancer genomes6,14,144. Many of the generated features have
been extracted from WGS data, but not from WES data15,17,21,138,151 before.
For this reason, we checked for all features whether we could detect the same
effects in WES data as they were described before. Furthermore, since many of
the generated features (partly) correlated with each other, different approaches
were tested in order to embed all somatic mutational features in a lower dimen-
sional space. In particular, principal component analysis (PCA), independent
component analysis (ICA) and variational autoencoders (VAE) were tested. In
this way, the goal was to (i) extract components reflecting the underlying causal
mechanisms, (ii) increase interpretability, and (iii) improve power for subsequent
association testing. Of note, parts of this work such as the extraction of somatic
mutational components via ICA and VAE have been published on bioRxiv198.

2.1.1 Features based on Single Nucleotide Variants

Different somatic mutational features were generated based on single nucleotide
variants (SNVs). First of all, the total number of SNVs and the number of different
single nucleotide substitutions were counted (7 types of substitutions: C>A, C>G,
C>T at CpGs, C>T not at CpGs, T>C, T>A, and T>G). Further, the number of mu-
tations in different trinucleotide contexts were counted by considering the 5’ and
3’ flanking nucleotide of the base substitution. This information was used to ex-
tract organ-specific mutational cancer signatures138. Next, mutation enrichments
with respect to different genomic features were calculated.

49



2 Results

Distribution of SNVs varied between individuals with respect to tumor
tissue of origin and with respect to sequencing technology

As shown in Figure 2.1 the total number of SNVs and the total number of different
types of SNVs differed between tissues and cancer cohorts. The median num-
ber of SNVs per sample was around 80 SNVs in TCGA, around 3,700 SNVs in
PCAWG, and around 9,000 SNVs in Hartwig. The increased number of SNVs
in Hartwig and PCAWG can be attributed to the differences between WGS and
WES data. The differences in SNVs between the two WGS datasets PCAWG
and Hartwig could be attributed to the different types of tumor samples. PCAWG
mostly contains primary cancers8, while the tumor samples in Hartwig are all
metastatic9. In addition, many of the cancer types with high mutation load in
PCAWG were not included in this study (e.g. colon, rectum, and lung) since they
were also part of TCGA and we wanted to prevent an overlap between discovery
and validation cohort for the subsequent association studies. Further, it can be
seen how the median number of SNVs per individual was higher in tissues such
as skin, colon, rectum, stomach, esophagus and lung, and lower in tissues such
as thyroid and thymus in comparison to the other tissues. These observations
matched results from previous studies6,9.
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Figure 2.1: Distribution of SNVs varied across tissues and cancer cohorts in the
nuclear genome.

The total number SNVs in the mitochondrial genome was calculated (Figure 2.2).
In contrast to the distribution of SNVs across tissues in the nuclear genome, the
number of SNVs in the mitochondrial genome was especially increased in can-
cers with the tissue of origin in colon, rectum, ovary, pancreas and blood. The
average number of SNVs in the mitochondrial genome (∼16,500 bp in length)
was far lower than in the nuclear genome with less than 1 mutation per individual
in Hartwig, around 1 mutation per individual in TCGA and around 2 mutations
per individual in PCAWG. These differences in distributions of mutations across
tissues were also in accordance with previous studies157,159.
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Figure 2.2: Distribution of SNVs varied across tissues in the mitochondrial
genome.

Exposures of organ-specific signatures in whole exome sequenced
samples recapitulated known aetiologies

For signature extraction, NMF-derived organ specific signatures were utilized138

and signature exposures in each sample were estimated. In this way, exposures
of signatures were only estimated for signatures which were also detected
in the tissue of origin of the respective sample. Signature exposures were
only assigned to samples when they reached a certain confidence threshold.
Otherwise they were set to 0. Since this method was tested on WGS data138,
we investigated whether the exposure estimations for the TCGA -WES samples
agreed with previous studies.

For TCGA -WES, the fraction of unassigned mutations per sample was in-
creased with a median of 43 % in comparison to PCAWG_Hartwig -WGS,
where the median fraction of unassigned mutations per sample was around
15 %. Unexpectedly, the fraction of unassigned mutations decreased with an
increasing number of SNVs (Figure 2.3) with a Pearson correlation of R = -0.74 in
TCGA -WES and a Pearson correlation of R = -0.46 in PCAWG_Hartwig -WGS.

Investigating the distribution of different signature mutations across tissues,
known variations were captured as shown in Figure 2.4. Signature 1 (called
Ref.Sig. 1 here) has been associated with the number of cell divisions238 and
was also found across all tissue of origins. This was also the case for Ref.Sig.
5. Other signatures were exclusively detected in a few tissues. For instance
signature 7 mutations, which mark UV light exposure, were increased in skin
cancers and sparsely detected in a few other tissues.

We further investigated whether signature exposures matched known causes.
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R= −0.74 R= −0.46
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Figure 2.3: Fraction of unassigned mutations decreases with increasing number of
total SNVs in a sample. Pearson correlation shown in red (top right).

First of all, we could show that samples which were assigned to have a high
APOBEC activity (APOBEC high/not high assignment based on ratio r by
counting specific SNVs as performed in ref108) also had an increased number of
signature 2 and signature 13 mutations in the respective cancer types (Figure
2.5).

Similarly, samples with a somatic mutation in the exonuclease domain of POLE
had an increased number of signature Ref.Sig. 10 mutations (Figure 2.6), which
is the signature connected to POLE deficiency.

Also, samples which were reported to have microsatellite instability (MSI), which
is caused by a deficiency in DNA mismatch repair, had a significantly increased
number of either signature Ref.Sig. MMR1 or MMR2 mutations (Figure 2.7).
Signature Ref.Sig. MMR1 mutations were increased in samples with MSI in
endometrial, colon, rectal and stomach cancer, which are also the cancer types
which have been previsously reported to have the highest fractions of MSI in
the TCGA cohort68. Signature Ref.Sig MMR2 was not previously extracted from
colon, rectal and stomach cancers, and was predominantly detected in liver,
ovary, bone and soft tissue cancers138. While in liver cancers the number of
Ref.Sig. MMR2 mutations were increased in MSI samples, this was not the case
in ovary cancer.

Earlier studies have linked signature 11 to temozolomide (TMZ) treated cancers
due to the similarities of the signature to the detected patterns after treating
human cell lines with alkylating agents6. Further, this signature was associated
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Figure 2.4: Number of mutations contributing to signatures Ref.Sig. 1, 2, 4, 7, 11,
MMR1 and MM2 across different tissues and cohorts.
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Figure 2.5: Signature Ref.Sig. 2 and 13 mutations were increased in samples with
high APOBEC activity. APOBEC high/not high assignment based on ra-
tio r by counting specific SNVs as performed in ref108. Significance given
by two-tailed Mann-Whitney U test: ns: p > 0.05, *: p50.05., **: p50.01,
***: p50.001, ****: p50.0001 and NS: not enough observations to test.
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Figure 2.6: SNV-derived signature Ref.Sig. 10 mutations were increased in sam-
ples with somatic mutations in the exocnuclease domain of POLE.
TCGA tumor abbreviations in Table 4.3. Significance given by two-tailed
Mann-Whitney U test: ns: p > 0.05, *: p50.05., **: p50.01, ***: p50.001,
****: p50.0001 and NS: not enough observations to test.

54



2.1 Somatic Mutational Components

****

****

****

NS.

*

NS.

ns

**

NS.

ns

****

NS.

****

NS.

****

****

BRCA COAD KIRC LIHC OV READ STAD UCEC

R
ef.S

ig.M
M

R
1

R
ef.S

ig.M
M

R
2

M
S

I
M

S
S

M
S

I
M

S
S

M
S

I
M

S
S

M
S

I
M

S
S

M
S

I
M

S
S

M
S

I
M

S
S

M
S

I
M

S
S

M
S

I
M

S
S

0

5

10

0

5

10

lo
g2

(m
ut

at
io

ns
 +

 1
)

Figure 2.7: Enrichment of signature Ref.Sig. MMR1 and MMR2 mutations in mi-
crosatellite instable (MSI) samples across different cancer types. MSI
was assigned via the MSI detection tool MANTIS68. TCGA tumor abbrevi-
ations in Table 4.3. Significance given by two-tailed Mann-Whitney U test:
ns: p > 0.05, *: p50.05., **: p50.01, ***: p50.001, ****: p50.0001 and NS:
not enough observations to test.

with TMZ treated cancers in the presence of either MMR deficiency199 or MGMT
promoter methylation27. In addition, a highly similar signature was identified
in cells treated with the DNA methylating agent 1,2-Dimethylhydrazine116. To
further investigate this, we checked to which extent TMZ treated cancer had an
increased number of signature Ref.Sig. 11 mutations in the presence of these
factors. In neither TGCA -WES nor in Hartwig -WGS, TMZ treated cancer had
a significantly increased number of signature 11 mutations in comparison to
non-treated cancers. The number of mutations were also not increased in the
presence of MMR deficiency (Figure 2.8) or MGMT promoter methylation (Figure
2.9).

All in all, the results showed that signature exposures, which were estimated
based on the organ-derived signatures138, recapitulated the known tissue dis-
tributions (e.g. UV-derived signatures) and known causes of some of the sig-
natures (e.g. POLE, MSI, and APOBEC) also in the mutational data from WES
samples. While we could not associate signature 11 exposures with TMZ treated
cells and/or in combination with MMR and/or MGMT inactivations, previous stud-
ies also reported conflicting results27,116.
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Figure 2.8: Signature Ref.Sig. 11 mutations were not increased in samples treated
with temozolomide (TMZ) or dacarbazine irrespective of the occurrence
of MSI. MSI assignment from MANTIS for TCGA68 and from Hartwig flagship
paper9 for Hartwig. P-values from two-tailed Mann-Whitney U test.
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Figure 2.9: Signature Ref.Sig. 11 mutations were not increased in samples treated
with TMZ irrespective of the somatic promoter methylation status of
the O6-methylguanine-DNA methyltransferase (MGMT ) gene. Promoter
methylation status derived from ref128. Significance given by two-tailed
Mann-Whitney U test: ns: p > 0.05, *: p50.05., **: p50.01, ***: p50.001,
****: p50.0001 and NS: not enough observations to test.
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2.1 Somatic Mutational Components

Estimated transcriptional strand biases in whole exome sequencing data
matched previous studies

We estimated transcriptional stand biases by dividing the number of mutations
occurring on the untranscribed strand by the number of mutations occurring on
the transcribed strand, while stratifying for the six different possible base substitu-
tions. We investigated whether the estimations matched previous studies which
were based on WGS data only24. Lung cancer types showed a strong transcrip-
tional strand bias for C>A mutations, skin cancer types showed a strong bias for
C>T mutations and liver cancer types showed a strong bias for T>C mutations
(Figure 2.1). Thus, we were able to estimate this somatic feature from WES data.
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Figure 2.10: Strong transcriptional strand bias in lung, liver and skin cancers inde-
pendent of the sequencing technology. trx: transcriptional strand bias.

Extraction of a somatic feature based on the reported replicative strand
bias149 associated with a deficiency in DNA mismatch repair

Similarly, we estimated the replicative strand bias by dividing the number of muta-
tions occurring on the leading strand by the number of mutations occurring on the
lagging strand. We focussed for this feature exclusively on T>C, T>G, G>A and
C>A base substitutions, since those have been reported to have a strong replica-
tive strand bias in connection with a deficiency MMR149. However, it should also
be noted that APOBEC activity, a deficiency in DNA polymerase δ , and a de-
ficiency in DNA polymerase ε can result in a replicative strand bias108,149. As
described in the methods, only a small fraction of the genome was covered by
this feature (Table 4.1), in particular in WES data. Thus, we did not stratify for
the different base substitutions, but combined them. The feature captured the
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replicative strand bias differences between MSI vs. MSS samples in several tis-
sues (Figure 2.11). The differences were strongly visible in colon, rectal and
endometrial cancers, which also matched the previous study149. Additionally, it
can also be seen that this bias was also captured in other, previously not reported
cancer types such as breast, prostate, kidney, stomach and esophagus cancers,
even though with less significance, which can also be attributed to the lower oc-
currence of MSI in these tissues (e.g. kidney).
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Figure 2.11: Replicative strand bias differed between MSI and MSS samples across
tissues. Number of T>C, T>G, G>A and C>A mutations on the leading
strand were divided by the number of those mutations occurring on the lag-
ging strand. MSI assignment from MANTIS for TCGA68 and from Hartwig
flagship paper9 for Hartwig. Significance given by two-tailed Mann-Whitney
U test: ns: p > 0.05, *: p50.05., **: p50.01, ***: p50.001, ****: p50.0001
and NS: not enough observations to test.

Mutation enrichment calculations with regards to replication timing,
histone mark H3K36me3, DNase I hypersensitive sites, and RNA-seq
expression

The distribution of mutations along the genome can change for instance due
to a deficiency in DNA mismatch repair21,144. For this reason, we generated
somatic features estimating the mutation enrichment with regards to different
genomic properties. A feature calculating the enrichment of mutations in early
replicating regions in comparison to late replicating regions, a feature measuring
the enrichment of mutations in regions with a high amount of histone mark
H3K36me3 in comparison to regions with no amount of this histone mark, a
feature measuring the enrichment of mutations in regions with a high amount
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2.1 Somatic Mutational Components

of DNase I hypersensitive site in comparison to regions with no DNase I sites
and a feature corresponding to the enrichment of mutations in regions which
are highly expressed in comparison to regions which are not expressed, was
generated. We calculated these features via negative binomial regression and
also controlled for the different base substitution types (Section 4.1.13).

To check whether the estimation of these features worked, we looked again
at the differences between MSI and MSS samples as shown in Figure 2.12.
It can be seen how there were significant differences between MSI and MSS
samples for replication timing coefficients and histone mark H3K36me3 coeffi-
cients, especially in colon, rectal and endometrial cancers. This matched our
expectations and previous studies15,21. Significant differences between MSI and
MSS samples for the DNase and expression feature were not expected, but were
detected in a few cancer types (e.g. colon and rectal), even though effect sizes
were lower in comparison.
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Figure 2.12: Mutation enrichment estimations with regards to replication timing,
histone mark H3K36me3, DNase I hypersensitive sites and RNA-seq
expression across selected tissues. Samples were further split into
MSI vs. MSS samples. MSI assignment from MANTIS for TCGA68 and
from Hartwig flagship paper9 for Hartwig. RT: replication timing. Signif-
icance given by two-tailed Mann-Whitney U test: ns: p > 0.05, *: p50.05.,
**: p50.01, ***: p50.001, ****: p50.0001 and NS: not enough observa-
tions to test. DNase: DNase I hypersensitive sites, Expression: RNA-seq
expression, H3K36me3: histone mark H3K36me3, RT: replication timing.
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To further confirm that the coefficients from the regression correctly measured
mutation enrichments and that they were not influenced by the total number of
mutations in a sample, we also investigated the differences between MSI and
MSS samples in the presence of mutations in the exonuclease domain of POLE,
which lead to a hypermutator phenotype85 (Figure 2.13). Except for one case in
endometrial cancer for the DNase feature, there were no significant differences
in the coefficients due to the hypermutator phenotype caused by mutations in
POLE.
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Figure 2.13: Mutation enrichment differences between MSI and MSS sampes were
not affected by the presence of a hypermutator phenotype. Samples
were grouped into MSI and MSS samples68 and further stratified by the
presence of a somatic mutation in the exonuclease domain of POLE. TCGA
data only shown here. TCGA tumor abbreviations in Table 4.3. Signifi-
cance given by two-tailed Mann-Whitney U test: ns: p > 0.05, *: p50.05.,
**: p50.01, ***: p50.001, ****: p50.0001 and NS: not enough observa-
tions to test.

CTCF somatic feature only showed moderate differences between MSI and
MSS samples

CTCF/cohesin binding sites have mutation peaks in many cancer types151,152

and most importantly are largely unaffected by a deficiency in DNA mismatch
repair151. Inspired by this observation we generated a somatic feature dividing
the number of mutations occurring in CTCF/cohesin binding sites by the number
of mutations occurring in the flanking sites. It was anticipated that in samples
with a deficiency in DNA mismatch repair the number of mutations in the flanking
regions would be increased while the number of mutations in the binding site
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2.1 Somatic Mutational Components

would be unaffected. In TCGA, in stomach and esophagus cancers it could be
seen how the ratio was decreased in MSI samples in comparison to MSS samples
(Figure 2.14). In many other cancer types, the trend was visible but not strong
enough (e.g. prostate cancer in Hartwig -WGS) or lacking in sample size (e.g.
kidney in TCGA -WES) to be significant. In some other cancer types the effect
was not detected, such as in breast cancer and uterus and cervix tissue derived
cancers in Hartwig -WGS.
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Figure 2.14: CTCF somatic feature only showed moderate differences between MSI
vs. MSS samples. Samples were split into MSI vs. MSS samples. MSI
was assigned via the MSI detection tool MANTIS for the TCGA cohort. MSI
assignments for Hartwig were extracted from the flagship paper9. Signif-
icance given by two-tailed Mann-Whitney U test: ns: p > 0.05, *: p50.05.,
**: p50.01, ***: p50.001, ****: p50.0001 and NS: not enough observa-
tions to test.

X-chromosomal hypermutation predominantly in brain and blood cancers
in females

We also generated a feature to measure X-chromosomal hypermutation, which
has been predominantly identified in brain cancers, blood derived cancers155 and
head and neck cancers156 in females. The hypermutation phenotype on the X
chromosome has been largely attributed to an increasing number of mutations
on the inactive X chromosome, explaining why it has been only identified in fe-
males155. To measure this feature, we divided the number of mutations occurring
on the X chromosome by the average number of mutations occurring on the au-
tosomes. As shown in Figure 2.15, the mutational load was mostly increased in
the respective cancer types in females in comparison to males even after correct-
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ing for the missing inactive X chromosome in males by multiplying the number of
mutations times 2. Still, in pediatric brain cancers in the PCAWG cohort we could
not recapitulate the feature.
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Figure 2.15: Mutation load on the X chromosome predominantly increased in brain
cancers, blood cancers, and head and neck cancers in females com-
pared to males. Feature was calculated in males, who only have one ac-
tive X chromosome (Xa) and females, who have an inactive and an active
X chromosome (XaXi). To control for the lack of a second X chromosome
in males, we also calculated the feature after multiplying the number of mu-
tations occurring on the X chromosome in males times 2 (2xXa). Signif-
icance given by two-tailed Mann-Whitney U test: ns: p > 0.05, *: p50.05.,
**: p50.01, ***: p50.001, ****: p50.0001 and NS: not enough observa-
tions to test.

2.1.2 Features based on Double Nucleotide Variants

Double base substitution signatures (DBS) were extracted as described in Sec-
tion 4.1.14 and de-novo signatures were fitted to the established COSMIC sig-
natures4, which were then used to estimate exposures in each sample. Four
DNV-derived signatures, which were found in both cohorts TCGA -WES and
PCAWG_Hartwig -WGS were kept for further analysis. DBS1 has been con-
nected to UV-directed mutagenesis and the highest exposures were also detected
in our analysis in skin cancer (Figure 2.16). DBS2 has been attributed to tobacco
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smoking and also here it can be seen that the highest exposures were measured
in lung cancers. DBS4 has been suggested to be generated by an endogenous
process occurring in normal human cells, but has not been validated14. As it
can be seen in Figure 2.16 this signature was not significantly enriched in a spe-
cific tissue type, but rather detected across all tissues. DBS9 was in particular
enriched in adrenal and kidney cancers in PCAWG_Hartwig -WGS, but was also
observed in many other tissues. At the moment there is no existing aetiology for
this signature. In general, it can be seen how especially in TCGA -WES, most
samples did not contain any DBS signature mutation, which was expected since
DNVs are much rarer in comparison to SNVs14.

TCGA − WES PCAWG_Hartwig − WGS

D
B

S
1

D
B

S
2

D
B

S
4

D
B

S
9

te
st

is
th

ym
us ey
e

ad
re

na
l

liv
er

ki
dn

ey
th

yr
oi

d
m

es
ot

he
liu

m
br

ai
n

ut
er

us
_c

er
vi

x
co

lo
n_

re
ct

um

st
om

ac
h_

es
op

ha
gu

s
lu

ng
ov

ar
y

pr
os

ta
te

he
ad

_n
ec

k
ne

ur
oe

nd
oc

rin
e

re
st

bi
le

pa
nc

re
as

br
ea

st
bl

ad
de

r
bl

oo
d

bo
ne

sk
in

te
st

is
th

ym
us ey
e

ad
re

na
l

liv
er

ki
dn

ey
th

yr
oi

d
m

es
ot

he
liu

m
br

ai
n

ut
er

us
_c

er
vi

x
co

lo
n_

re
ct

um

st
om

ac
h_

es
op

ha
gu

s
lu

ng
ov

ar
y

pr
os

ta
te

he
ad

_n
ec

k
ne

ur
oe

nd
oc

rin
e

re
st

bi
le

pa
nc

re
as

br
ea

st
bl

ad
de

r
bl

oo
d

bo
ne

sk
in

0
5

10
15

0
5

10
15

0
5

10
15

0
5

10
15

tissue of origin

lo
g2

(m
ut

at
io

ns
 p

er
 in

di
vi

du
al

 +
 1

)

Figure 2.16: Distribution of double substitution signatures across tissues: DBS1,
DBS2, DBS4 and DBS9.

2.1.3 Features based on Insertions and Deletions

Similarly as for the DNVs, we also generated indel and deletion based signatures.
Indel signature ID2, ID3, ID4 and ID8 were extracted in both cohorts. ID2 has
been connected to a deficiency in DNA mismatch repair, ID3 has been connected
to tobacco smoking, the aetiology for ID4 is unknown, and ID8 has been primarily
connected to repair of DNA double strand breaks by non-homologous end
joining14. The distribution of mutations can be seen in Figure 2.17.

Furthermore, based on a previous study, which reported informative features
to predict homolgous recombination-directed repair95, we generated a feature
counting the number of deletions bigger than or equal to 10 bp, a feature counting
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Figure 2.17: Distribution of insertion and deletion signatures across tissues: ID2,
ID3, ID4 and ID8.

the number of deletions in microhomology-flanked regions with a size of 1 bp and
a feature counting the number deletions in microhomology flanked regions with a
size bigger than 1 bp.

Next, more features potentially covering a deficiency in DNA mismatch re-
pair were generated. The number of indels were counted in total as well as
of different sizes (1 bp or 2 to 5 bp) stratified by different genomic regions
(microsatellite regions and non-microsatellite regions). In addition, we also
counted the number of indels with a size of 6 to 10 bp. To check whether these
features could be useful to detect a deficiency in MMR, the differences in MSI vs.
MSS samples across tissues were checked (Figure 2.18). It can be seen that
even counting the total number of indels showed stronger differences in MSI vs.
MSS samples in comparison to the same analysis performed with SNV-derived
somatic features (Figures 2.7, 2.11 and 2.14). Furthermore, signature ID2 and
the feature counting the number of indels of 1 bp in size at microsatellite regions,
showed consistently the strongest effect across tissues. In some tissues such as
in prostate cancer in TCGA -WES or in brain cancer in Hartwig -WGS, the effect
was less strong when looking at the number of indels of a size of 2 to 5 bp in
non microsatellite regions in comparison to indels in microsatellite regions of the
same size. This was also expected since the MSI assignment was based on a
MSI detection tool, which counted mutations in microsatellite regions68.
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Figure 2.18: A deficiency in DNA mismatch repair can be measured by counting
small indels in repetitive elements. Samples were split into MSI vs. MSS
samples. MSI assignment from MANTIS for TCGA68 and from Hartwig flag-
ship paper9 for Hartwig. Total number of indels, number of signature ID2
mutations, number of indels of different sizes (1 bp or 2 to 5 bp) stratified by
genomic regions (microsatellite (MS) regions and non microsatellite regions
(nonMS)) are shown. Significance given by two-tailed Mann-Whitney U test:
ns: p > 0.05, *: p50.05., **: p50.01, ***: p50.001, ****: p50.0001 and NS:
not enough observations to test.
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2.1.4 Features based on Copy Number Variants

Features based on copy number alterations were split into amplification and dele-
tion events stratified by different sizes as it has been suggested in other stud-
ies18,94. Amplification events were split into four groups (1 to 10 kb, 10 to 100 kb,
100 kb to 1 mb and > 1 mb) and deletion events were split into three groups (1
to 10 kb, 10 to 100 kb and > 100 kb). In accordance with previous studies18, the
highest amount of amplifications were detected in esophagus and ovary cancers
2.19.
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Figure 2.19: Distribution of amplification and deletion events across tissues. Show-
ing the number of amplifications with a size of 100 kb to 1 mb and the num-
ber deletions with a size > 100 kb per individual.

2.1.5 Overview of all Somatic Features

All in all, somatic features were extracted from different mutation classes (SNVs,
DNVs, indels, and CNVs) utilizing different cancer cohorts (TCGA -WES cohort in
Figure 2.20 and PCAWG_Hartwig -WGS cohort in Figure 2.21).
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Figure 2.20: Distribution of 56 somatic features in TCGA -WES. Fork: replicative
strand bias, RT: replication timing, trx: transcription strand bias, Xhyper:
Chromosome X hypermutation.
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Figure 2.21: Distribution of 56 somatic features in PCAWG_Hartwig -WGS. Fork:
replicative strand bias, RT: replication timing, trx: transcription strand bias,
Xhyper: Chromosome X hypermutation.
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2.1 Somatic Mutational Components

2.1.6 Comparison between Whole-Exome and Whole-Genome
extracted Somatic Features

As described earlier, several somatic features such as the organ-specific SNV-
derived signatures138, transcriptional strand bias24, relative mutation rates with
respect to replication timing, expression and histone mark H3K36me315,21,144

and mutation peaks at CTCF/cohesin binding sites151 were only extracted from
WGS data so far. We showed that most features recapitulated known effects
also in WES data by checking reported effects (APOBEC signatures in Figure
2.5, signature Ref.Sig. 10 in Figure 2.6, transcriptional strand bias in Figure
2.10, relative mutations rates in Figure 2.12, and CTCF/cohesin feature in Figure
2.14). Only the effect of TMZ treatment on Ref.Sig.11 was not replicated in WES
data (Figure 2.8 and 2.9), but was also not replicated in WGS data (Figure 2.8).
Thus, in this case the missing effect could not be explained by the sequencing
technology.

Still, it should be noted that WES data usually covers around ∼2 % of the
genome. Thus, we wondered how the somatic features change when extracting
them from WES data compared to WGS data. For this purpose, we extracted
the same somatic features from WGS samples from TCGA, which were part of
PCAWG (Section 4.1.3) and compared them to the somatic features which were
extracted from TCGA -WES from the same individuals. In total, somatic features
were estimated for tumor genomes from around 530 individuals for which somatic
calls were called via WES and WGS.

As shown in Figure 2.22, Pearson correlation was higher than 0.5 for 31
out of 65 somatic features and higher than 0.8 for 11 out of 65 somatic features.
There was a significant correlation (p < 0.05 after correcting for multiple testing
via Bonferroni) between WGS and WES for 59 out of 65 somatic features. No
significant correlations were observed for the following six somatic features:
del_1to10kb, del_bigger100kb, amp_1to10kb, DBS4, replicative strand bias
(Fork), and CTCF/cohesin binding sites (CTCF). Especially, the low correlation
between WES and WGS for the somatic features capturing the replicative strand
bias (Fork) and CTCF/cohesin binding sites (CTCF) was not surprising, since
these features could only be measured at few loci (Table 4.1).

Taken together, while the correlation between WES and WGS extracted
components was low (R <0.5) for the majority of the features, most features still
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had significant correlations between each other indicating that the general trends
were still captured in WES data extracted components. This is supported by
the fact that global genomic events such as APOBEC activity or a deficiency in
DNA mismatch repair (leading to MSI) were captured in WES-extracted somatic
features.
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Figure 2.22: Comparison between WES and WGS extracted somatic features in
TCGA. Somatic features were extracted from around 530 individuals from
TCGA for which WES as well as WGS data was available. Somatic feature
measured in TCGA-WES on the x-axis and in TCGA-WGS on the y-axis.
One plot for each somatic features with Pearson correlation and associated
p-value. Fork: replicative strand bias, RT: replication timing, trx: transcrip-
tion strand bias, Xhyper: Chromosome X hypermutation.
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2.1.7 Application of Dimensionality Reduction Techniques

After generating the different somatic features, we tested different high-
dimensionality reduction techniques to embed the somatic features into a lower
dimensional space. We aimed to remove the redundancy in the extracted somatic
features, extract components which better reflect the underlying causal mech-
anisms, and to improve the statistical power to detect genetic associations by
reducing the multiple testing burden. For this purpose, we utilized 56 somatic fea-
tures as inputs (Sections 4.1.18-4.1.20) as shown in Table 2.1. We tested three
different techniques: principal component analysis (Section 4.1.18), independent
component analysis (Section 4.1.19) and a variational autoencoder neural net-
work (Section 4.1.20).

Table 2.1: Input somatic features for component extraction. 56 different somatic
mutation features were estimated in each cancer genome, covering different
types of mutations.

Mutation Class Features # Feature Name
SNV Organ-specific mutation signatures 17 Ref.Sig.X

based on trinucleotide context
Transcriptive strand asymmetry 6 Transcriptional strand bias XtoX
Replicative strand asymmetry 6 Replicative strand bias
Relative mutation rates with respect to 5 Replication timing, H3K36me3,
different genomic regions DNase, CTCF, Expression
X-chromosomal hypermutation 1 Chromosome X hypermutation
Mutation count on mitochondrial genome 1 Mitochondrial genome

DNV Mutational Signatures 4 DBS1, DBS2, DBS4, DBS9
Indels Mutational Signatures 4 ID2, ID3, ID4, ID8

Deletions = 10 bp 1 Deletions = 10 bp
Deletions of different lengths at 2 Mh_1bp, Mh=2bp
microhomology flanking sites
Indels in/outside microsatellite regions of 4 Indels_X_MS, Indels_X_nonMS
different lengths

CNV Amplifications of different lengths 4 Amp_X
Deletions of different lengths 4 Del_X
Ploidy/Whole genome duplications 2 Ploidy, WGS

2.1.8 Extraction of Principal Components

The first 17 components from the PCA explained more than 1.78 % of the
variance (expectation 1/56 of the variance explained; Figure 2.23). Further, we
looked into the first principal components and into the features which had the
highest contribution and correlation to a respective component (Figure 2.24).
Several indel and deletion features contributed highly to principal component 1
such as indels at microhomology flanking regions and indels of different sizes.
While the short indels are characteristic for a deficiency in DNA mismatch repair6,
deletions at microhomology flanking regions are characteristic for a deficiency
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2.1 Somatic Mutational Components

in homologous recombination directed repair5. Thus, this principal component
did not capture a specific mechanism but rather a high mutation load in general.
For the other principal components we observed that two different mechanisms
(or more) were often captured in one principal component with opposite signs.
For instance principal component 2 anticorrelated with a deficiency in DNA
mismatch repair (ID2, small indels in microsatellite regions, Ref.Sig. MMR1)
and correlated with amplification events. Principal component 7 correlated with
APOBEC activity (Ref.Sig. 2 and 13) and anticorrelated with a mix of different
signatures (Ref.Sig. 8, 19 and 3). Based on the current understanding of cancer
signatures, the principal components grouped different mechanisms into one
principal component and did not separate them into individual components.
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Figure 2.23: Dimensionality reduction via principal component analysis. Showing
the variance explained in % for the first 20 principal components.
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Figure 2.24: Overview of strongest contributing features to the first nine principal
components. Showing the Pearson correlation (white bars) and contribu-
tion (in %) (grey bars) of the 15 strongest somatic features to the respective
principal components. Fork: replicative strand bias, RT: replication timing,
trx: transcription strand bias, Xhyper: Chromosome X hypermutation.
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2.1 Somatic Mutational Components

2.1.9 Extraction of Independent Components

Next, since PCA did not lead to the goal of having individual sources of mutations
grouped into separate components, we tested ICA. For the ICA it is required to
set the number of components to be extracted a priori. Since the optimal number
was unknown, we ran the ICA at varying numbers of components (2 to 30).
Each component extraction was run 200 times at different random seeds and
k-medoid clustering was subsequently used to extract clusters (Section 4.1.19).
The optimal number of components was extracted by using the silhouette index
for guidance. The optimal number of clusters for a component extraction was
always times two the number of components (Figure 2.25). This was expected
since the sign of a component can randomly change with each extraction. In
this way each component was often present with opposite signs within the 200
extractions for a set number of components.

Looking more closely at the average, lowest and second lowest silhouette index of
the clusters (Figure 2.26), when using the number of clusters equal to the number
of components times two, a steep drop in the silhouette index was observed from
15 to 16 components. Thus, for the downstream analysis steps 15 independent
components were used. Those were identified using k-medoid clustering with
k = 30. As shown in Figure 2.27, two clusters (recapitulating one component with
opposite signs) always correlated with each other with a Pearson coefficient of
almost -1. One cluster of each pair was retained for further analysis.

To obtain a better overview of the different components, the contributions and
correlations of the input somatic features with the respective components were
visualized (Figure 2.28). Except for independent component 2, 7 and 15, all
components had at least one somatic feature which correlated with a Pearson
coefficient of more than 0.65 with one of the components. Some components
such as component 10 and 13 had a strong contribution from one somatic feature
(e.g. DBS9 for IC10 and ID4 for IC13) and other components such as component
3 and 12 had a strong contribution from several features.

In contrast to the components extracted from the principal component analysis,
many components could be linked to a single underlying cause of mutagenesis.
For instance independent component 3 could be linked to a deficiency in DNA
mismatch repair due to the high contributions from small indels in microsatellite
regions, DNA mismatch repair linked indel signature ID2 and DNA mismatch

75



2 Results

0.62
0.57
0.92
0.93
0.93
0.95
0.97
0.8

0.76
0.74
0.74
0.71
0.65
0.6

0.55
0.41
0.41
0.41
0.41
0.4
0.4
0.4
0.4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.49
0.43
0.52
0.52

1
0.53
0.53
0.53
0.42
0.42
0.42
0.42
0.42
0.42
0.42
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0.19
0.19
0.19
0.19
0.19
0.31
0.31
0.26
0.21
0.26
0.31
0.24
0.24
0.24
0.24
0.2
0.2
0.2
0.2
0.08
0.08
0.08
0.08
0.2

0.28
0.22
0.34
0.36
0.34
0.49

1
0.33
0.3
0.3
0.22
0.22
0.22
0.16
0.16
0.16
0.16
0.16
0.16
0.16
0.12
0.12
0.12
0.12
0.17
0.15
0.15
0.15
0.15
0.15
0.15
0.17
0.15
0.15
0.15

−0.02
−0.02

0
0
0
0

0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05

0.33
0.22
0.26
0.35
0.35
0.35
0.35
0.51
0.93
0.91
0.91
0.89
0.89

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.3
0.21
0.23
0.25
0.25
0.3
0.3

0.35
0.35
0.47
0.93
0.93
0.14

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.26
0.25
0.24
0.25
0.23
0.2
0.2
0.33
0.49
0.52
0.52
0.52
0.95
0.4
0.4
0.23
0.38
0.38

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.24
0.16
0.18
0.18
0.18
0.18
0.18
0.23
0.19
0.27
0.27
0.32
0.32
0.5
0.98
0.53
0.53
0.45
0.45
0.5
0.43
0.43
0.41
0.41
0.31
0.31
0.31
0.29
0.29
0.29
0.29
0.29
0.29
0.29
0.29
0.24
0.29
0.29
0.18
0.18
0.18
0.18
0.18
0.18
0.18
0.18
0.18
0.18
0.18

0.17
0.15
0.16
0.21
0.15
0.2
0.2

0.18
0.16
0.21
0.21
0.37
0.51
0.51
0.56
0.55
0.96

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.15
0.14
0.1

0.12
0.17
0.16
0.16
0.21
0.25
0.24
0.25
0.33
0.41
0.4
0.4

0.37
0.5
0.5

0.99
0.42
0.42
0.42
0.42
0.42
0.42
0.42
0.42
0.42
0.45
0.47
0.47
0.46
0.46
0.46
0.46
0.46
0.31
0.31
0.25
0.25
0.25
0.25
0.25
0.2
0.2
0.2
0.2
0.2
0.2

0.16
0.13
0.14
0.14
0.14
0.14
0.13
0.13
0.14
0.13
0.17
0.21
0.25
0.23
0.31
0.35
0.35
0.5
0.51
0.51
0.99
0.5
0.45
0.35
0.35
0.36
0.36
0.36
0.36
0.36
0.36
0.36
0.36
0.3
0.3
0.3
0.3
0.3
0.26
0.26
0.26
0.26
0.25
0.19
0.19
0.19
0.16
0.16
0.16

0.15
0.14
0.13
0.12
0.12
0.13
0.1
0.1
0.12
0.14
0.14
0.16
0.19
0.21
0.21
0.31
0.34
0.34
0.36
0.35
0.49
0.49
0.89
0.42
0.42
0.42
0.45
0.49
0.49
0.49
0.34
0.34
0.34
0.34
0.34
0.34

0
0
0
0
0
0
0
0
0
0
0
0
0

0.12
0.1

0.11
0.14
0.18
0.12
0.11
0.13
0.14
0.16
0.15
0.14
0.14
0.14
0.15
0.19
0.19
0.23
0.23
0.27
0.27
0.48
0.48
0.48
0.91
0.49
0.49
0.49
0.45
0.45
0.33
0.33
0.57
0.57
0.34
0.34

0
0
0
0
0
0
0
0
0
0
0
0
0

0.15
0.13
0.12
0.13
0.15
0.14
0.14
0.13
0.14
0.14
0.14
0.13
0.15
0.1

0.14
0.17
0.12
0.12
0.12
0.17
0.17
0.23
0.33
0.33
0.27
0.44
0.84
0.87
0.86
0.59
0.52
0.47
0.47
0.29
0.29
0.29
0.29
0.19
0.29
0.29
0.29
0.29
0.29
0.32
0.22
0.22
0.22
0.22
0.22

0.14
0.13
0.14
0.13
0.12
0.14
0.13
0.15
0.11
0.13
0.13
0.11
0.12
0.13
0.12
0.19
0.18
0.23
0.22
0.22
0.22
0.22
0.31
0.31
0.33
0.33
0.33
0.47
0.84
0.35
0.35
0.31

−0.06
−0.06
−0.06
−0.06
−0.06
−0.06
−0.06
−0.06
−0.06
−0.06
−0.06
−0.06
−0.06
−0.06
−0.06
−0.06
−0.06

0.13
0.13
0.12
0.1

0.12
0.1

0.12
0.07
0.08
0.11
0.11
0.12
0.08
0.11
0.05
0.05
0.07
0.08
0.08
0.1

0.09
0.09
0.12
0.11
0.09
0.26
0.26
0.41
0.41
0.46
0.59
0.52
0.47
0.47
0.44
0.44
0.44
0.44
0.44
0.32
0.31
0.25
0.29
0.29
0.37
0.37
0.37
0.37
0.37

0.13
0.13
0.13
0.13
0.12
0.12
0.14
0.12
0.12
0.11
0.1

0.12
0.04
0.04
0.08
0.1

0.08
0.11
0.12
0.12
0.14
0.17
0.17
0.19
0.19
0.22
0.22
0.25
0.25
0.44
0.45
0.45
0.77
0.75
0.74
0.71
0.34
0.53
0.45
0.45
0.45
0.45
0.45
0.45
0.27
0.27
0.27
0.27
0.27

0.13
0.12
0.13
0.12
0.14
0.13
0.12
0.11
0.11
0.13
0.14
0.12
0.12
0.11
0.16
0.15
0.11
0.12
0.12
0.12
0.12
0.14
0.13
0.15
0.19
0.19
0.19
0.23
0.23
0.23
0.32
0.32
0.46
0.46
0.64
0.63
0.59
0.55
0.48
0.48
0.48
0.53
0.53
0.53
0.5
0.5
0.5

0.39
0.39

0.12
0.1
0.12
0.11
0.12
0.11
0.13
0.11
0.11
0.1
0.1
0.09
0.09
0.08
0.07
0.05
0.05
0.07
0.07
0.09
0.09
0.09
0.09
0.11
0.19
0.19
0.18
0.18
0.19
0.2
0.2
0.24
0.24
0.24
0.46
0.52
0.7
0.5
0.47
0.47
0.39
0.39
0.39
0.39
0.38
0.35
0.33
0.33
0.33

0.1
0.09
0.08
0.1

0.08
0.1

0.11
0.1

0.09
0.09
0.08
0.1
0.1

0.09
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.14
0.13
0.11
0.11
0.11
0.19
0.19
0.24
0.24
0.24
0.3

0.28
0.33
0.4
0.4

0.49
0.54
0.66
0.64
0.48
0.48
0.45
0.58
0.58
0.5
0.5
0.5
0.5

0.09
0.02

0
0.02
0.02
0.04
0.05
0.06
0.05
0.08
0.09
0.1
0.1

0.07
0.07
0.07
0.07
0.07
0.1
0.1

0.13
0.15
0.15
0.15
0.15
0.15
0.15
0.2
0.2

0.21
0.21
0.21
0.21
0.28
0.28
0.35
0.4

0.46
0.46
0.48
0.7

0.66
0.59
0.58
0.58
0.58
0.58
0.42
0.42

0.1
0.09
0.01
0.01
0.01
0.04
0.05
0.06
0.07
0.07
0.07
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.07
0.07
0.06
0.06
0.07
0.09
0.09
0.14
0.19
0.22
0.22
0.22
0.22
0.22
0.22
0.26
0.25
0.24
0.24
0.24
0.24
0.32
0.31
0.49
0.85
0.88
0.88
0.89
0.55
0.55
0.55

0.07
0.06

−0.01
0.01
0.03
0.03
0.06
0.05
0.05
0.08
0.05
0.05
0.05
0.08
0.08
0.08
0.08
0.09
0.09
0.08
0.09
0.09
0.08
0.07
0.06
0.06
0.06
0.08
0.09
0.11
0.12
0.12
0.14
0.14
0.15
0.15
0.19
0.2
0.26
0.28
0.28
0.28
0.28
0.42
0.85
0.56
0.47
0.55
0.55

0.09
0
0

0.02
0.03
0.05
0.05
0.06
0.09
0.07
0.04
0.08
0.08
0.06
0.05
0.06
0.06
0.04
0.05
0.04
0.04
0.03
0.03
0.03
0.05
0.05
0.04
0.06
0.05
0.05
0.05
0.05
0.06
0.06
0.05
0.08
0.07
0.09
0.08
0.24
0.24
0.23
0.3

0.29
0.34
0.45
0.68
0.68
0.68

0.08
0.01
0.01
0.03
0.04
0.03
0.03
0.04
0.05
0.05
0.05
0.01
0.01
0.01

0
0.01
0.01
0.02
0.02
0.02
0.02
0.01
0.01
0.05
0.05
0.05
0.04
0.07
0.1

0.09
0.09
0.09
0.09
0.11
0.11
0.11
0.1

0.09
0.12
0.12
0.2

0.18
0.18
0.17
0.2
0.2

0.26
0.42
0.73

0.09
0.08
0.09
0.08
0.07
0.08
0.07
0.08
0.06
0.08
0.08
0.07
0.07
0.06
0.08
0.03
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.02

0
0.03
0.03
0.04
0.06
0.07
0.08
0.08
0.08
0.08
0.08
0.1
0.12
0.12
0.16
0.17
0.17
0.18
0.21
0.22
0.22
0.22
0.29
0.34
0.43

0.05
0.06
0.07
0.04
0.05
0.07
0.07
0.06
0.05
0.06
0.06
0.06
0.06
0.06
0.04
0.04
0.02
0.03
0.03
0.03
0.03
0.01
0.02
0.02
0.02
0.03
0.03
0.04
0.04
0.04
0.05
0.05
0.06
0.07
0.07
0.07
0.07
0.07
0.07
0.06
0.07
0.14
0.12
0.14
0.14
0.13
0.13
0.23
0.29

0.06
0.05
0.07
0.08
0.04
0.06
0.05
0.06
0.06
0.06
0.06
0.05
0.05
0.05
0.04
0.05
0.05
0.05
0.05
0.05
0.03
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.06
0.06
0.11
0.11
0.07
0.11
0.1
0.1

0.15
0.15
0.15
0.17
0.17

0.06
0.05
0.01
0.02
0.05
0.05
0.04
0.05
0.02
0.03
0.03
0.03
0.04
0.04
0.04
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.04
0.05
0.04
0.03
0.03
0.04
0.04
0.03
0.04
0.04
0.04
0.07
0.07
0.07
0.07
0.09
0.09
0.11
0.14
0.14
0.14
0.29
0.3

0.29

0.07
0.06
0.05
0.05
0.07
0.06
0.05
0.05
0.05
0.03
0.04
0.04
0.03
0.03
0.03
0.03
0.03
0.03
0.02
0.03

0
−0.01
−0.01
−0.01

0
−0.01
−0.01
−0.01

0
0
0
0
0

−0.01
−0.02
−0.02
−0.02

0
0
0
0

0.11
0.05
0.05
0.04
0.04
0.19
0.11
0.2

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
independent component

ex
tr

ac
te

d 
nu

m
be

r 
of

 c
lu

st
er

s

0.00 0.25 0.50 0.75
minimum silhouette index cluster

Figure 2.25: Finding the optimal number of independent components. Independent
component extraction was run with increasing number of independent com-
ponents (x-axis). Each extraction was performed 200 times and then fur-
ther clustered using k-medoid clustering with increasing number of clusters
(y-axis). Color code as well as number of each tile shows the minimum
silhouette index of a cluster.
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2.1 Somatic Mutational Components
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Figure 2.26: Selection of 15 independent components for further analysis. Showing
the average, minimum and second minimum silhouette index of the clusters
when extracting 2 times more clusters for a set number of components.
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Figure 2.27: Pearson correlations between all 30 independent components which
were extracted using 15 components and k-medoid clustering with
k = 30. Each component occurred twice with opposite signs.
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2 Results
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Figure 2.28: Overview of strongest contributing features to the independent com-
ponents. Showing the Pearson correlation (white bars) and contribution
(fraction of 1) (grey bars) of the 10 strongest somatic features to the respec-
tive components. Fork: replicative strand bias, RT: replication timing, trx:
transcription strand bias, Xhyper: Chromosome X hypermutation. Compo-
nents were renamed based on strongest correlating somatic features.
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2.1 Somatic Mutational Components

repair linked SNV signature Ref.Sig. MMR1. This was also shown by checkking
the scores for independent component 3 in MSI vs. MSS samples across
different tissues. MSI samples had significantly increased estimates of this
component in comparison to MSS samples across several tissues (Figure 2.29).
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Figure 2.29: Independent component 3 scores were increased in samples with a
deficiency DNA mismatch repair. Samples were split into MSI vs. MSS
samples across different tissues. MSI was assigned via the MSI detec-
tion tool MANTIS for the TCGA cohort. MSI assignments for Hartwig
were extracted from the flagship paper9. Significance given by two-tailed
Mann-Whitney U test: ns: p > 0.05, *: p50.05., **: p50.01, ***: p50.001,
****: p50.0001 and NS: not enough observations to test.

Further, based on the previously reported signatures for different sources of
mutations6,14, component 3 could be linked to a deficiency in homologous
recombination-directed repair, independent component 6 to APOBEC activity,
independent component 12 to smoking and independent component 14 to UV
exposure. Notably, somatic features based on different mutation classes were
often grouped together. For instance component 12 which was linked to smoking,
grouped a SNV based signature, a DNV based signature and a indel based
signature. Also features measuring strand biases and regional enrichments
grouped together with other cancer signatures, such as the mutation enrichment
with regards to replication timing grouped together with SNV based signature
17 in indepencent component 1. Copy number based features in particular all
grouped together in components 5 and 8, but also grouped together with other
mutation classes in components 2 and 15.

Next we also investigated to which extent some components were enriched
in specific tissues. It was tested within each cohort for each cancer type whether
its independent component scores were significantly different from the rest via a
unpaired Welch t-test (Section 4.1.21). Effect sizes were estimated by calculating

79



2 Results

Cohen’s d (difference in means divided by the standard deviation) and then
grouped by tissues and ordered by the mean value within a tissue (Figure 2.30).
As expected, component 14 (UV exposure) was strongly enriched in skin tissue
derived cancers, component 12 (smoking) was strongly enriched in lung tissue
derived tumors and component 3 scores (deficiency in DNA mismatch repair)
were increased in colon and rectal tissue derived cancers. Further, component
9 showed a clear enrichment in brain tissue derived cancers. We were not
able to link this component to a mutational cause. Some components such as
components 7, 8, 13, and 15 did not show a clear enrichment in a specific tissue.
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Figure 2.30: Several independent component scores were enriched in specific tis-
sue of origins. Cohen’s d (effect size estimate) was calculated for each
cancer type, grouped by tissue of origin and, then the average value was
estimated. Average effect size estimates were ordered by decreasing value
for each independent component. Components were renamed based on
strongest correlating somatic features.
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2 Results

2.1.10 Extracting Components using Variational Autoencoder
Neural Network

With the ICA we were able to extract some components which covered known
underlying causal mechanisms of mutagenesis. Since during the last years VAE
neural networks have shown promising results in capturing biologically relevant
representations267, we also tested VAEs as an alternative way of deconvolving
the input features into somatic mutational components. Our approach of com-
ponent extraction was inspired by the work of Way et al.267, who used a VAE
to compress gene expression data. Firstly, a parameter sweep was performed
to find the optimal settings for the hyperparameters (Section 4.1.20). The data
was split into 90 % training data and 10 % validation data and stratified for
gender and cancer type. Two different measurements were evaluated to access
performance: the correlation of the reconstructed input with the initial input and
the average correlation of the VAE-derived components, which had the highest
correlation with the four ICs which covered known mutational sources (UVICA,
smokingICA, dMMRICA and dHRICA). The correlation with the input increased
with increasing number of epochs, with increasing number of components and
was the highest at a batch size of 50 samples (Figure 2.31). At a high number
of epochs, the tested learning rate, number of extra hidden layers and the factor
kappa only had negligible effects on the correlation with the input. The correlation
was always above 0.95. In contrast, the average correlation with the four ICs
quickly reached saturation after 75 epochs and increased with higher batch
sizes. Further, the correlation was always higher when only using one hidden
layer compared to using two hidden layers. Here, the factor kappa again only had
small effects and correlations were higher on average at a learning rate of 0.0005.

Based on these results, we ran the VAE with increasing number of components
with the following settings: learning rate = 0.0005, batch size = 200, kappa = 0.5,
and number of epochs = 200. Since we wanted to check whether the extra layer
led to new, potentially interesting components, we ran the VAE using 1 and 2
hidden layer(s). For each component extracting we re-ran the VAE five times
with different random initiations. We evaluated the results again by looking at
the average correlation of the VAE-derived components, which had the highest
correlation with the four mentioned ICs since we already knew that these ICs
covered known mutational mechanisms and biological representation was more
important for our study than minimizing the reconstruction loss. As shown in
Figure 2.32, the average correlation increased quickly with increasing number
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Figure 2.31: Finding the optimal hyperparameters for the variational autoencoder.
Increasing number of epochs (x-axis), different kappa factors (point shape),
increasing batch sizes (point color), three different learning rates (0.001,
0.0005, and 0.0001), different number of hidden layers between latent
space and input/output (either 1 or 2) and different number of components
(4, 8, 10, 12, 16, 20, 25, 30, and 35) were tested. Evalutation by measuring
the average Pearson correlation with four ICs (UV, smoking, dMMR, and
dHR ICs) and by calculating the Pearson of the reconstructed input with the
initial input (y-axis).
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2 Results

of components, reached saturation around 14 components and then started to
decrease again. The inital increase in the correlation was expected since it was
unlikely to capture the four ICs with a latent space of less than 4. We observed
an optimum at 14 components for both scenarios (1 or 2 hidden layers between
latent space and input/output).

1 2

2 3 4 5 6 7 8 9 10 12 14 16 18 20 25 30 35 40 45 55 60 65 79 2 3 4 5 6 7 8 9 10 12 14 16 18 20 25 30 35 40 45 55 60 65 79

0.4

0.6

0.8

number of components

av
er

ag
e 

co
rr

el
at

io
n 

w
ith

 
se

le
ct

ed
 in

de
pe

nd
en

t c
om

po
ne

nt
s

Figure 2.32: Correlation with biologically relevant components increased with in-
creasing number of component extractions and quickly reached sat-
uration. Component extractions were run 5 times for each set component
number with different random initiations. Number of components (x-axis)
are shown against the average Pearson correlation with four biologically
relevant IC components (UV, smoking, dMMR, dHR). Facet for either using
1 hidden layer or 2 hidden layers between latent space and input/output.

Next, it was checked whether the components derived from the VAE using either
1 or 2 hidden layers between latent space and input/output differed. When
looking at the Pearson correlation between then different components it can
be seen that many components were extracted in both cases and showed
strong correlations between each other (Figure 2.33) such as VAE_depth1_1
with VAE_depth2_7, VAE_depth1_2 with VAE_depth2_2 and VAE_depth1_6
with VAE_depth2_14. 7 ouf 14 components had a Pearson correlation higher
than 0.8, 9 out of 14 had a Pearson correlation higher than 0.7, and 14 out
of 14 components has a Pearson correlation higher than 0.5 with at least one
component from the VAE component extraction with a different number of hidden
layers. Thus, no component was uniquely found with only one component
extraction. For this reason, we further focussed on the component extraction
using only one hidden layer since a simpler architecture was favored. From here
one, all VAE-derived components were extracted using 1 hidden layer between
latent space and input/ouput.

Having a closer look at the VAE-derived components (Figure 2.34), we ob-
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Figure 2.33: Number of hidden layers barely made a difference on the extracted
components in the latent space of the variational autoencoder. Pear-
son correlation between the 14 extracted components with the variational
autoencoder using either 1 hidden layer (depth = 1) or 2 hidden layers
(depth = 2) between latent space and input/output.

served as it was also optimized for, a component capturing tobacco smoking
induced mutagenesis (VAE_9), a components capturing UV-induced mutage-
nesis (VAE_5), components capturing a deficiency in DNA mismatch repair
(VAE_10 and VAE_13), and components capuring a deficiency in homologous
recombination-directed repair (VAE_6 and VAE_8). Further, VAE_4 correlated
strongly with cancer signatures Ref.Sig. 1 and 5 and anti-correlated with the
somatic feature for X-chromosomal hypermutation. VAE_7 showed a strong
correlation with the somatic feature measuring the number of mutations in the
mitochondrial genome and VAE_12 anticorrelated with several amplification
events, small indels in non microsatellite regions and some other types of indels.

Next, similarly as in the ICA, we also investigated tissues enrichments of the
individual components (Figure 2.35). Expectably, the VAE-derived component
capturing UV-induced mutagenesis (VAE_5) was enriched in skin cancers and
and the VAE-derived component capturing tobacco smoking-induced mutagene-
sis (VAE_9) was enriched in lung cancers. Component VAE_10, which covered
a form of dMMR was enriched in kidney cancers, while VAE_13, which also
covered a form of dMMR, was enriched in stomach, esophageal, colon, and
rectal cancers.

85



2 Results
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Figure 2.34: Overview of strongest contributing features to the variational autoen-
coder derived components. Showing the Pearson correlation (white bars)
of the 10 strongest somatic features to the respective components, which
were extracted via 1 hidden layer between latent space and input/output.
Fork: replicative strand bias, RT: replication timing, trx: transcription strand
bias, Xhyper: Chromosome X hypermutation. Components were renamed
based on strongest correlating somatic features.
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2.1 Somatic Mutational Components
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VAE_6: dHR_VAE1
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VAE_7: Mitochondria
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VAE_9: Smoking_VAE
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VAE_10: dMMR_VAE2
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VAE_11: APOBEC_VAE1
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VAE_12: X−hypermutation
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VAE_13: dMMR_VAE1
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VAE_14: Amplifications
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Figure 2.35: Several VAE-derived component scores were enriched in specific tis-
sue of origins. Cohen’s d (effect size estimate) was calculated for each
cancer type, grouped by tissue of origin and, then the average value was
estimated. Average effect size estimates were ordered by decreasing value
for each VAE-derived component. Components were renamed based on
strongest correlating somatic features.
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2 Results

2.1.11 Final Set of Somatic Components for Association
Testing

We further investigated which approach (ICA or VAE) was better suitable for
association testing. When looking at the Pearson correlations between the 14
VAE-derived components and 15 ICA-derived components (Figure 2.36), we
observed strong correlations between several components such as VAE_13 with
IC3 (dMMR), VAE_8 with IC3 (dHR), or VAE_9 with IC12 (smoking). Interestingly,
the components VAE_4 , VAE_7 and VAE_12 extracted from the VAE did not
have a strong correlation (R = < 0.5 and > -0.5) with any of the components
extracted from the ICA. Thus, some components were unique to the respective
technique.
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Figure 2.36: Some VAE-derived components were not captured in the independent
component analysis. Showing the Pearson correlation between the VAE-
derived components using 1 hidden layer (depth = 1) and the ICs.

Since it was not clear which set of components would be more appropriate
for associationg testing, both were kept (Figure 2.37). Thus, 14 VAE-derived
components and 15 ICA-derived components were retained for association
testing. The distribution of component scores across the discovery and validation
cohort are shown in Figures 2.38 and 2.39.

To get a better overview of all somatic compenents, which were extracted in this
study from over 15,000 cancer genomes, the components were clustered to-
gether and renamed based on the underlying mutational source of the feature(s)
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2.1 Somatic Mutational Components

Figure 2.37: Approach to extract final set of somatic components. Final set of so-
matic components was extracted by applying two methods to the input ma-
trix (samples as rows and somatic input features as columns): independent
component analysis (ICA) and a variational autoencoder (VAE). 15 ICA-
derived and 14 VAE-derived components were extracted.
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Figure 2.38: Distribution of all 29 somatic components in TCGA -WES.
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Figure 2.39: Distribution of all 29 somatic components in PCAWG_Hartwig -WGS.
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2.1 Somatic Mutational Components

which had the strongest correlation with a somatic component (Figure 2.40). Thir-
teen of the 29 components captured known mutagenic mechanisms, including
UV radiation exposure (UVICA and UVVAE , including CC>TT substitutions), to-
bacco smoking (SmokingICA and SmokingVAE), deficiencies in MMR (dMMRICA,
dMMRVAE1, and dMMRVAE2), deficiency in the repair of DSBs via homologous
recombination (dHRICA, dHRVAE1, and dHRVAE2), and APOBEC-directed mutage-
nesis (APOBECICA, APOBECVAE1, and APOBECVAE2). Many of the components
combined different classes of mutational features. For instance, dMMRVAE2, has
a high correlation with the SNV signature Ref.Sig. MMR, several types of short
indels at microsatellite loci and the relative mutation rate with respect to replica-
tion timing. The remaining 16 components did not have a known mechanistic
cause but could be further described via the features with which they are strongly
correlated. For instance, we extracted components covering X-chromosomal hy-
permutation (X-hypermutation), a component covering mitochondrial SNVs (Mi-
tochondria), and two components related to SNV-signature 5 mutations (Ref.Sig.
5ICA and Ref.Sig.5VAE).
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2 Results

Figure 2.40: Overview of somatic mutation components extracted from 15,000 hu-
man tumors. Overview of extracted somatic components (x-axis) and their
Pearson correlation (color code) with the input somatic features (y-axis).
Grey strip at the bottom displays whether the component was extracted via
ICA or VAE. Components were named based on the underlying mutational
process or strongest correlating input feature(s).
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2.2 Rare Damaging Germline Variant Association Testing

2.2 Rare Damaging Germline Variant Association

Testing

After extracting the different somatic mutational components as described above,
we investigated to which extent inherited variants impact the distribution of these
components across individuals. For this purpose, we started with rare damaging
germline variants (RDGVs) and performed RDGV association testing (Figure
2.41). Of note, all the results from this section have been published on bioRxiv198.

Figure 2.41: Illustration of rare damaging variant association testing. Associations
were identified in the discovery cohort (TCGA -WES) and replicated in the
validation cohort (PCAWG + Hartwig -WGS).

First of all, sample level quality control was performed and to control for popu-
lation structure individuals of European ancestry were extracted since this was
the biggest group in our cohort (Section 2.2.1). RDGV association testing was
performed in the discovery cohort TCGA -WES and identified hits were re-tested
in the fully independent validation cohort PCAWG_Hartwig -WGS. Since RDGV
could not be tested individually due to the sample size, we performed gene-level
based rare variant association testing (Section 2.2.2).
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2.2.1 Sample Level Quality Control and Extraction of
Individuals of European Ancestry

Sample level filtering was performed to remove potential biases before perform-
ing associating testing. To minimize population-specific effects, individuals of
European ancestry were extracted by utilizing the common variants (MAF >5 %)
in the datasets and a PCA was performed to use the first PCs to control for
population substructure by using them as covariates. In line with the study design
of having a discovery and validation cohort, these steps were performed for the
discovery cohort TCGA -WES and the validation cohort PCAWG_Hartwig -WGS
separately.

First of all, individuals with an outlying total number of variants (Figures
2.42a and 2.43a and b) or outlying heterozygosity rate (Figures 2.42b and 2.43c
and d) were discarded. Next, duplicated or highly related samples were removed
by checking the proportion of IBD between all pairwise combinations of samples.
As it can be seen in Figures 2.42c or 2.42e, most samples were unrelated. In
TCGA -WES 542 samples and in PCAWG_Hartwig -WGS 479 samples with
an IBD > 0.185 (expectation for individuals between third- and second-degree
relatives) were discarded.

Next, a PCA was performed on the common variants (MAF >5 %) to check for
major confounding and to extract individuals of European ancestry. The first
6 PCs did not show any confounding due to the tissue of origin, sequencing
center, whole genome amplification status, sequencing system, gender, or age at
diagnosis (Figure 2.44). The same analysis was performed in PCAWG_Hartwig -
WGS as well and no confounding was detected when checking for cancer type,
center/study where the germline variants were called, gender, or age of diagnosis
(Figure 2.45).

As expected, the first two PCs in particular (as well as other PCs) recapitulated
the population structure (Figures 2.46a and 2.47a). To extract individuals of
European ancestry, the first 10 PCs were used for clustering and different
population ancestries were mostly captured in individual clusters as shown in
Figures 2.47b and 2.47c for TCGA -WES and in Figures 2.47b and 2.47c for
PCAWG_Hartwig -WGS. Subsequently, individuals in the respective clusters,
which were enriched for individuals with reported European ancestry, were kept.
A PCA was performed on the remaining samples and the estimated PCs were
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2.2 Rare Damaging Germline Variant Association Testing

Figure 2.42: Identification of individuals with outlying total number of variants, out-
lying heterozygosity rate or high relatedness in TCGA -WES. (a) Distri-
bution of total number of variants across samples. Red dashed lines at 1.5
standard deviations away from the mean. (b) Distribution of heterozygos-
ity rate across samples. Red dashed lines at 3 standard deviations away
from the mean. (c) Proportion of identity-by-descent (IBD) across all sam-
ple pairs. Solid red line at 0.185.
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Figure 2.43: Identification of individuals with outlying total number of variants,
outlying heterozygosity rate or high relatedness in PCAWG_Hartwig -
WGS. Distribution of total number of variants across samples in (a) Hartwig
and (b) PCAWG. Red dashed lines at 1.5 standard deviations away from
the mean. Distribution of heterozygosity rate across samples in (c) Hartwig
and (d) PCAWG. Red dashed lines at 3 standard deviations away from the
mean. (e) Proportion of identity-by-descent (IBD) across all sample pairs
(PCAWG and Hartwig merged). Solid red line at 0.185.
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2.2 Rare Damaging Germline Variant Association Testing

Figure 2.44: Principal component analysis on common germline variants in TCGA -
WES. Principal components 1 to 6 color coded by (a) TCGA project id, (b)
sequencing center, (c) whole genome amplification (WGA) status prior to
sequencing, (d) sequencing system, (e) gender, and (f) age of diagnosis.
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Figure 2.45: Principal component analysis on common germline variants in
PCAWG_Hartwig -WGS. Principal components 1 to 6 color coded by (a)
PCAWG project id or Hartwig tissue of origin, (b) center/study where
germline variants were called, (c) gender, (d) age of diagnosis.
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2.2 Rare Damaging Germline Variant Association Testing

used in association testing as covariates to control for population substructure
within the individuals of European ancestry.

Figure 2.46: Extraction of European individuals in TCGA -WES. Principal compo-
nents 1 to 6 color coded by (a) reported ethnicities and (b) clustering results
using the first 10 principal components. (c) Overview of clustering results.
Samples which could not be assigned to a cluster (cluster no. 0) were ex-
cluded.
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2 Results

Figure 2.47: Extraction of European individuals in PCAWG_Hartwig -WGS. Principal
components 1 to 6 color coded by (a) reported ethnicities and (b) clustering
results using the first 10 principal components. (c) Overview of clustering
results. Samples which could not be assigned to a cluster (cluster no. 0)
were excluded.
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2.2 Rare Damaging Germline Variant Association Testing

2.2.2 Gene-Based Rare Variant Association Testing

Rare variant association with a combined burden and variance test

To identify genes with rare germline variants that impact somatic mutational
processes, we defined five different sets of RDGVs using varying approaches
and stringency criteria for identifying causal variants, and tested three models
of inheritance by also considering RDGVs in combination with somatic loss-of-
heterozygosity (LOH)167. In total, 15 different models were tested (Figure 2.48
top). To increase statistical power, we restricted testing to a set of 892 genes
including known cancer predisposition genes, DNA repair genes and chromatin
modifiers. The combined test SKAT-O184, which unifies burden testing and the
SKAT variance test182,183, was utilized for testing (Figure 2.48 bottom). In brief,
the test statistic in SKAT-O is the weighted sum of the test statistic from a burden
test and a SKAT test. While in burden testing the variants are aggregated first
and then jointly regressed against a phenotype, in SKAT the individual variants
in a gene are regressed against the phenotype, and then the distribution of the
individual variant score statistics is tested. Importantly, the burden test is more
powerful when all RDGVs in a gene are causal, while SKAT is more powerful
when some RDGVs are not causal or when RDGVs are causal but with effects
in opposite directions184. In SKAT-O the parameter ρ controls the contribution
of the two tests and corresponds to the smallest reported p-value184, indicating
whether the burden or the variance test was used to identify the association.
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Figure 2.48: Rare damaging germline variant association testing study design. As-
sociations were tested via 15 models in total, by utilizing 3 models of in-
heritance and 5 (differently prioritized) SNP sets of rare variants (all with
population allele frequency < 0.1 %) (top). The combined test SKAT-O was
applied, which calculates a weighted sum between a burden test statistic
and the SKAT variance test statistic. When ρ = 1, the test reduces to a
burden test, and when ρ = 0, the test reduces to the variance (SKAT) test.
SKAT is more powerful when a fraction of the variants in the SNP set are
non-causal, while the burden test has higher power when all variants are
causal184.
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2.2 Rare Damaging Germline Variant Association Testing

42 genes robustly associated with somatic mutation phenotypes

Testing was performed in the discovery cohort (TCGA) across 6,799 individuals
of European ancestry and 12 different cancer types as well as in a pan-cancer
analysis (’pancan’) for all 15 models. Genes were only tested via the dominant
or additive model when at least 2 individuals carried a RDGV in that gene. For
the recessive model, genes were only tested when the gene was biallelically
affected in at least 2 samples either by a biallelic RDGV or via a RDGV + LOH
(see Methods). In total 594,462 tests were conducted. The tests showed little
evidence of inflation when considering models in which at least 100 genes were
tested. Overall there was slight deflation (median: 0.78; 1st quartile: 0.55; 3rd
quartile: 0.97; max: 2.27) (Figure 2.49), suggesting conservatively biased test
results. Inflated tests were discarded (cut-off at lambda = 1.5; 19 out of 1,909
discarded). We further estimated false discovery rates (FDRs) by randomization.
The link between somatic components and individuals was broken by randomly
shuffling the somatic component estimates of the individuals within each cancer
type. Empirical FDRs were estimated by comparing the observed p-value
distribution against the random one (Section 4.4.9 and Figure 2.50). As an
additional negative control, we considered a random set of genes, comparing the
number of replicated hits at a certain empirical FDR with the random gene set to
the number with our candidate gene list (Figure 2.50). It should be noted that this
yields a conservative upper limit since the random gene lists may also include
genes which affect somatic mutation processes.

In total, we identified 6,488 associations (out of 591,302 tests) in the discovery
phase at an empirical (randomization-based) FDR of 1 % (Figure 2.51a-d). Out
of the 6,488 hits, 3,807 had a sufficient number of RDGVs in the matching cancer
type (see Section 4.4.6) to allow re-testing in an independent validation cohort
(merged PCAWG and Hartwig) in the matching cancer type, consisting of 4,683
patients of European ancestry. 207 associations replicated in the validation
cohort at an empirical FDR of 1 %, covering 42 individual genes, 15 mutational
components, 46 unique gene-cancer type pairs, and 65 unique gene-cancer
type-component combinations (Figure 2.52). We also checked the number of
replicated associations at a more permissive FDR of 2 %. At an FDR of 2 %,
12,480 hits were detected in the discovery cohort, 7,290 hits were re-tested in
the validation cohort, out of which 356 associations were replicated covering 86
individual genes, 24 mutational components, 105 unique gene-cancer type pairs,
and 140 unique gene-cancer type-component combinations (Figure 2.53). No-
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Figure 2.49: Inflation analysis. Overview of inflation factors (y-axis) across RDGV
sets (x-axis), across cancer types (rows), and across models of inheritance
(columns). Color code for box plots illustrates the number of tested genes
for the respective scenario. Inflation factors were only calculated when at
least 100 genes were tested, and inflation factors = 1.5 were discarded
(red point). Each data point represents the calculated inflation factor for one
somatic component.
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Figure 2.50: Estimation of false discovery rates. Schematic illustration of the ap-
proach. Firstly, testing was performed using the pre-selected 874 genes.
Then, randomization was performed shuffling the rows within cancer types,
effectively breaking down the link between individuals and somatic com-
ponents. Testing was performed with the randomized somatic component
matrix as well and empirical FDRs were calculated based on the random-
ization for each cancer type (top half of plot). The same approach was
repeated with a random set of 1,000 genes after excluding the pre-selected
gene list and any gene interacting with a gene from the pre-selected gene
list (bottom half of plot). The number of genes replicating via the randomly
selected list of genes at a specific FDR was divided by the number of genes
replicating with the pre-selected list to get a conservative FDR estimate.
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tably, 7 genes associated across more than one cancer type, of which 3 (BRCA1,
EP300, MTOR) associated with the same somatic mutational component across
two different cancer types (Figure 2.54).
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Figure 2.51: Overview of number of discovered and validated hits. (a) Number of
discovered hits, number of replicated hits at a FDR of 1 % and number repli-
cated hits at a FDR of 2 % across RDGV sets, (b) somatic components, (c)
models of inheritance, and (d) cancer types. Log2 counts shown on the
y-axis for panels a-d. (e) Amount of replicated hits out the re-tested discov-
ered hits at a FDR of 1 % across different models of inheritance.

At an FDR of 1 %, most of the replicated hits were identified in the pan-cancer
analysis (57 %), followed by breast cancer (24 %), skin cancer (7 %), and prostate
cancer (4 %) (Figure 2.55a), reflecting differential sample sizes between cancer
types (Figure 2.56). Furthermore, approximately half of the components (15 out
of 29) were associated with at least one gene-cancer type pair (Figure 2.55b).
Many replicated hits were associated with features related with dHR (dHRICA:
21 %, dHRVAE1: 17 %; dHRVAE2: 16 %), followed by dMMR (dMMRICA: 11 %;
dMMRVAE1: 7 %), consistent with well-established roles of HR and MMR failures
in accelerating mutation rates in tumors31. Notably, 25 genes were only identified
via an ICA derived component, while 8 genes were only identified via a VAE
derived component (Figure 2.55c), suggesting a complementary role of the two
approaches to summarize mutation processes.
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Figure 2.52: Overview of replicated hits at a FDR of 1 %. Showing gene-cancer type
pairs (x-axis), the corresponding somatic mutational component (y-axis),
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Figure 2.53: Overview of replicated hits at a FDR of 2 %. Showing gene-cancer type
pairs (x-axis), the corresponding somatic component (y-axis), and the num-
ber of times they replicated at a FDR of 2 % (maximum of 15 models for
each gene-cancer type-somatic component tuple). Color code represents
the mean estimate of the regression coefficient from burden test for all repli-
cated hits at a FDR of 2 % for the respective gene-cancer type-somatic com-
ponent tuple. Previously associated dHR genes in orange and dMMR genes
in pink. Genes on the x-axis were ordered based on hierarchical cluster-
ing results using DepMap201 CRISPR-derived genetic fitness (Chronos202)
scores.
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We further tested three different models of inheritance for association testing
(Figure 2.48 top). While we only considered RDGVs for the dominant model, we
also tested to which extent an inactivation of a gene on both alleles would affect
a somatic mutational component via the additive and recessive model (Section
4.4.6). Many of the replicated associations were identified via the dominant
(42 %) and (39 %) additive model (Figure 2.55d), suggesting that heterozygous
variants can alter mutation rates in humans, as it was suggested in a yeast
screen196. The comparatively lower number of replicated hits of the recessive
model can be largely attributed to the fact that RDGV combined with somatic
LOH events are considerably less frequent and thus associations could not be
tested for many genes (only 4 % of the 591,302 tests performed in the discovery
phase came from the recessive model). Considering the proportion of replicated
hits to the number of re-tested hits, the validation rate was ∼2.5 times higher via
the recessive model (Figure 2.51e), which was expected since many DNA repair
genes are believed to be haplosufficient200.

We further considered the number of replicated associations using different
approaches and stringency thresholds for declaring a variant to be pathogenic.
The highest number of hits replicated using the more permissive thresholds,
using protein-truncating variants (PTVs) + missense variants at a CADD185 score
= 15 (79/207, 38 %), followed by PTVs + missense variants at a CADD score =
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25 (62/207, 30 %) and PTVs only (50/207, 24 %) (Fig. 2g). This suggests that
some missense variants that were assigned a lower pathogenicity score - likely
due to difficulties in assessing variant pathogenicity in silico203 - can nonetheless
bear on somatic mutation phenotypes. We further tested by only considering
RDGVs in conserved gene segments (via "constrained coding regions"272 and
"missense tolerance ratio"271 methods), however this yielded few replicated hits
(Figure 2.51e). It should be noted, however, that some hits were only identified
when using the PTV-only set and were not recovered in more permissive RDGV
sets, suggesting that very few missense RDGVs in those genes are causal.

In summary, with regards to the model of inheritance, RDGV set, and com-
ponent (mutational process) extraction method, there was no single best model
and most models added unique associations to the results.

More permissive thresholds for variant pathogenicity increase the utility of
a variance test over a burden test

The SKAT-O test we employed combines burden testing and a variance test
component (SKAT)184. The contribution of each test to the total test statistic
(Figure 2.48 bottom) is controlled via the parameter ρ. When ρ = 0 the test
becomes a variance test (SKAT) and when ρ = 1 the test becomes a burden
test. Examining the SKAT-O parameter ρ for the 207 validated hits, in both
the discovery and the validation cohort, revealed that most hits replicated via
the variance test (ρ < 0.5 in 393/414 tests) (Figure 2.57a). The variance test is
the more powerful test of the two when many variants in the tested set are not
causal184. We hypothesized that a common reason why allegedly pathogenic
RDGVs would not be causal is because of inaccurate prediction of damaging
variants by in silico predictors204. If so, at the more stringent settings more
hits would replicate via the burden test (which has higher power when many
variants in the set are causal), while at the less stringent settings more hits
would replicate via the variance test (which is robust to inclusion of non-causal
variants). Indeed, several hits replicated via the burden test when using the most
stringent RDGV set (PTVs only; Figure 2.57b), including MLH1, BRCA1, and
BRCA2. For the more permissive RDGV sets, the number of hits replicating via
the burden test decreased and all of the replicated hits had a ρ lower than 0.25
(meaning, they used nearly exclusively the variance component) for the RDGV
set including missense variants at CADD = 15. The positive control genes
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BRCA1 and BRCA2 still replicated in the PTV+missense CADD = 15 RDGV set,
but with a ρ of 0 (variance test exclusively used), suggesting that this variant set
included many non-causal variants.
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Figure 2.57: Hits mostly replicating via variance (SKAT) test. (a) Distribution of ρ

values from SKAT-O test (x-axis) for the 207 hits, which replicated at a FDR
of 1 %, in the discovery (grey) and validation cohort (red). (b) Distribution
of ρ values from SKAT-O test (y-axis) for the 207 hits, which replicated at a
FDR of 1 %, in the discovery (top row) and validation cohort (bottom row),
across models of inheritance (columns) and RDGV sets (x-axis).

In summary, many hits were recovered even with more permissive RDGV sets
by utilizing the combined testing approach of the SKAT-O method, suggesting the
variance (SKAT) component can partially compensate for the inaccuracy of the in
silico predictors. Most of the replicated hits would not have been identified by use
of classical burden testing in a data set of this size.

Novel genes associating with defects in homologous recombination

Within the set of 207 replicated associations at an FDR of 1 %, 117 (57 %)
involved associations of BRCA1, BRCA2, and PALB2 with various mutational
components associated with dHR (Figure 2.52), consistent with the known role
of these genes in the error-free repair of DSBs. All three genes associated
with features of defective HR, such as deletions at microhomology-flanked
sites (dHRICA and dHRVAE2) and SNV signature 3 mutations (dHRVAE1). In
addition, BRCA1, but not BRCA2, associated with component Sig.MMR2+ampli.,
reflecting an increased number of amplification events. This is in accordance
with a recent report, in which BRCA1-type dHR vs. BRCA2-type dHR were
differentiated via the presence of duplication events95.
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We also detected additional genes associating with these dHR mutational
components. In skin cancer, PAXIP1, EXO1, and RIF1 associated with dHRVAE1,
the component correlating with SNV signature 3 mutations. In support of this,
PAXIP1 and RIF1 have been implicated in the repair of DNA DSBs205,206,207 and
interact with each other208. Thus, these associations suggest that individuals
carrying damaging variants in either gene have an increase in signature 3
mutations, potentially reflecting a downstream effect of disrupted DSB repair.
Additionally, EXO1 knockout in a cell line model126 was reported to result in
a mutational signature correlating with signatures 3 (Pearson R = 0.71) and 5
(R = 0.71), supporting our association observed in tumors.

Furthermore, we identified pan-cancer replicated associations of APEX1,
RECQL, and DNMT1 with dHRICA (with DNMT1 additionally associating with
dHRVAE2). These associations with a microhomology deletion mutation phe-
notype are diagnostic of an increased activity of the microhomology-mediated
end joining (MMEJ), a highly error-prone DSB repair pathway, suggesting that
variants in these genes may disrupt normal functioning of the less error-prone
HR and/or NHEJ pathways.

Five additional genes (ATR, JADE2, SMARCAL1, TIMELESS, and WRN)
were identified at a more permissive threshold, associating with at least one
dHR-related component (dHRICA and/or dHRVAE2). Notably, ATR and WRN
physically interact with BRCA1 (Figure 2.58) and play known roles in repair
of DSBs209,210,211, which would support these associations. In particular,
pathogenic recessive variants in WRN cause Werner syndrome212 and it has
been suggested that the WRN helicase is crucial for the repair of MMR-induced
DSBs (MMR-failure can induce DSBs at AT repeats)213,214. Additionally, SMAR-
CAL1 and TIMELESS directly interact with ATR (Figure 2.58).

Our analyses therefore replicate well-known associations between rare in-
herited variants in HR genes and somatic mutational components, as well as
identifying new associations with additional genes.
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MTOR and interacting protein variants associate with mismatch repair
phenotypes

In the context of Lynch syndrome, germline variants in MLH1, MSH2, MSH6 and
PMS2 215 affect somatic mutation patterns via impairment of the DNA mismatch
repair pathway, observed as microsatellite instability (MSI, indels at simple DNA
repeats)62,63. MSI was also later associated with mutational signatures derived
from SNVs6, as well as with a ’redistribution’ of mutations across replication
timing domains21. In accordance with this, we detected associations of RDGVs
in MLH1 and MSH2 with multiple dMMR-related components i.e. those having
a high contribution of small indels at microsatellite regions (dMMRICA and
dMMRVAE1), and with SNV-derived signature MMR1 mutations and replication
timing (dMMRVAE2; for MLH1; Figure 2.52).

Beyond the known Lynch Syndrome genes, we also discovered associa-
tions between variation in EXO1, which has an established role in MMR216 and
increases the frequency of 1 bp indels when inactivated in cultured cells126, and
dMMRVAE1 and dMMRVAE2. However, EXO1 also associated with dHR-related
components, suggesting a more pleiotropic role for the encoded exonuclease
in shaping somatic mutational processes in human tumors. Consistent with the
association with dHR components, it was reported in yeast as well as human cell
lines that EXO1 processes DSB ends217 and is required for the repair of DSBs
via HR218.

Multiple other genes were associated with dMMR-directed phenotypes (all
associated with dMMRICA and dMMRVAE1), including the chromatin modifying
enzyme genes TRAAP in ovarian and SETD1A in breast, and the major growth
signalling gene MTOR in prostate cancer (and in stomach+esophagus cancer
with dMMRVAE1 only at a FDR of 2 %). Additionally, TTI2 in prostate, APC in
breast, MAD2L2 in pan-cancer, HERC2 in prostate, and MDN1 in brain cancer
associated with mutation component dMMRICA. There is additional evidence
supporting these associations for some of these genes from prior studies. MTOR
was identified as one of four genes that regulate MSH2 protein stability278.
Thus, a possible mechanism explaining the identified association of MTOR with
dMMR-linked components could be a decreased stability of MSH2 leading to
dMMR and consequently, an increased number of indels. A similar mechanism
could be speculated for TTI2, which binds MTOR via the TTT complex (TELO2-
TTI1-TTI2) and is important for mTOR maturation219. This hypothesis is further
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supported by TELO2 associating with the same component (dMMRICA) in kidney
cancer at a more permissive FDR of 2 % (Figure 2.53). Furthermore, SETD2
associated in colorectal cancer with dMMRVAE1 at a FDR of 2 %. It has been
shown in previous studies20, including in cancer genomes15, that the encoded
methyltransferase SETD2 regulates MMR activity by recruiting the MSH2-MSH6
complex to H3K36me3 marked regions.

Taken together, we recovered known associations of MMR genes with so-
matic mutational patterns and identified additional genes where germline
variants are associated with MMR phenotypes, suggesting that a broad network
of genes cooperates to maintain MMR efficiency in human cells.

MSH3 and additional genes associate with a distinct dMMR phenotype

Interestingly, we identified associations between RDGVs in several genes and a
somatic mutational component (Small indels 2 bp) that reflects indels of a size
of 2 bp and longer, which is in contrast to the predominantly 1 bp long indels
caused by dMMR. Furthermore, this component does not have any contribution
from SNV features, indicating that it is specifically capturing indels (Figure 2.40
and 2.28). Among others, the MMR gene MSH3 associated with this component
in the pan-cancer analysis. In contrast to the DNA mismatch repair genes PMS2,
MLH1, MSH2, and MSH6, germline variants in MSH3 have not been identified in
patients with Lynch syndrome, even though they were reported to increase can-
cer risk176. The MSH2-MSH3 complex has a role in repairing insertion/deletion
loops rather than for base-base mismatches52,220,221. This is in contrast to the
MSH2-MSH6 complex, which repairs base-base mismatches and indels shorter
than 2 nucleotides50,51. These prior mechanistic studies support our association
and suggest that loss of MSH3 in cancer cells results in an increased rate of
accumulation of indels of 2 bp and longer. Other genes associating with this
component were CHD3 in bladder cancer, HERC2 in ovary cancer, PIK3C2B in
lung squamous cell cancer, EP300 in skin cancer (and breast cancer at a FDR of
2 %), RBBP5 in pan-can, and SMC1B in pan-can. Additionally, MLH3 associated
with the same component at an FDR of 2 %. The MLH3 protein is a paralog of
MLH1 that interacts with other MMR proteins (Figure 2.58) and was previously
associated with microsatellite instability222.

Overall, we detected associations between germline variants in MSH3 and
several other genes and somatic indels of at least 2 bp, suggesting a causal role
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for MSH3 variants in a specific subtype of MMR failure which does not markedly
increase SNV rates.

Genes associating with a somatic feature enriched in brain and liver
cancer

Beyond the dHR and dMMR-related components, the component associated
with the largest number of genes was component Sig.11+19, which is enriched
for SNV signatures Ref.Sig. 11 and 19138 (Figure 2.55b). This component is
enriched in brain and liver cancers (Figure 2.30). Signature 11 has been reported
to be enriched in brain cancers, associated with temozolomide treatment6,
and is similar to the signature which results from the treatment with the DNA
methylating agent 1,2-Dimethylhydrazine223. The cause of Ref.Sig. signature 19
is unknown and it has been mostly identified in brain, liver and blood cancers138.
At a FDR of 1 %, the genes ASCC2, FANCC, NCAPG2 and POT1 associated
with this component in the pan-cancer analysis, as do NUDT7, PIF1, and SOS1
at a more permissive 2 % FDR. POT1 and PIF1 interact with each other280

(Figure 2.62) and both have functions in telomere maintenance225,226, but we
did not detect any correlation between this component and reported telomere
features227 (Figure 2.59).
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Telomere features were downloaded from ref227.

Variants in APEX1 associate with increased level of APOBEC-directed
mutagenesis

We discovered and replicated associations between APEX1 and three different
somatic components. APEX1 encodes for a purinic/apyrimidinic (AP) endonucle-
ase that cleaves at abasic sites, which can be formed spontaneously or during
base excision repair pathway by a DNA glycosylase73. At a FDR of 1 %, APEX1
associated with dHRICA in pan-can (Figure 2.52), and at a FDR of 2 % it asso-
ciated with dHRVAE2 in pan-can and with APOBECVAE2 in stomach/esophagus
cancer (Figure 2.53). The somatic components dHRICA and dHRVAE2 are
enriched for deletions at microhomology-flanked regions. Prior studies showed
that the encoded protein APE1 protein plays a role in the repair of DSBs and that
depletion of APE1 leads to an decrease of HR-directed repair228, suggesting a
higher reliance on alternative pathways.

The APOBECVAE2 component is enriched for SNV signature 13 (C>G) mu-
tations6. These can be formed when the APOBEC-induced uracil is excised via
the uracil-DNA glycosylase UNG and a cytosine is inserted opposite the abasic
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site by the mutagenic translesion polymerase REV1113. Conceivably, a mech-
anism underlying the higher burden of C>G mutations in tumors of individuals
with inherited damaging variants in APEX1 could be due to a decreased activity
leading to a slower repair of the abasic site and consequently, a preference for
lesion bypass via the error-prone REV1.

Network analysis reinforces the role of rare germline variants in somatic
mutation processes

The previously known dHR genes encode proteins that physically interact as part
of the same protein complexes229. Similarly, the products of the known dMMR
genes also physically interact229. We used protein-protein interactions curated
in the STRING279 database to test whether the genes identified as having rare
germline variants associating with somatic mutational phenotypes also encode
physically interacting proteins. Such ’guilt by association’ network analysis has
been used to support associations between somatic mutations and cancer231,232

and between common variants and disease phenotypes233 but has not yet been
widely adopted for the analysis of rare variants.

We first considered genes associated with somatic mutation phenotypes at
a FDR of 1 %. These genes are strongly enriched for encoding proteins with
physical interactions (Figure 2.60a; median difference in interactions between
observed value and randomization = 17 and P = 0.002 by randomisation, con-
trolling for interaction node degree). This also held true after removing genes
with previously reported associations between RDGVs and somatic mutational
processes (Figure 2.60c; median difference = 7 and P = 0.032 by randomisation).
Secondly, we considered the 44 genes with moderate statistical support of
association with somatic mutation phenotypes (those replicating at a FDR of
2 %). 21 of the encoded proteins interact with at least one of the proteins encoded
by the more stringent FDR 1 % genes. This is again higher than expected by
chance (Figure 2.60b; median difference = 6 and P = 0.021 by randomisation),
further prioritising these 21 genes for additional study. This also held true
after removing previously known genes (Figure 2.60d; median difference = 5 and
P = 0.033 by randomisation). Similar results were seen using the HumanNet gene
network280 that incorporates many data sources to predict functionally-related
genes (Figures 2.61 and 2.62).

Thus, genes with replicated associations with somatic mutation phenotypes
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preferentially encode proteins that physically interact in cellular networks with
genes replicating at a more permissive FDR also often connected to the same
sub-networks, illustrating the potential for network-based analyses to provide
supporting evidence in rare variant association studies.
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Figure 2.60: Network analysis supports the role of rare germline variation in so-
matic mutational processes. All panels in this figure were generated using
physical interactions from the STRING database having a combined score
= 80 %. (a) Number of physical interactions in a random subset of the tested
gene set (controlled for interaction node degree) (x-axis). Red line shows
the number of interactions within genes which replicated at a FDR of 1 %.
(b) Number of randomly selected genes from the tested gene set interacting
with at least one gene, which replicated at a FDR of 1 % (x-axis), (controlled
for interaction node degree). Red line shows the number of genes, out of
the ones which additionally replicated at a FDR of 2 %, interacting with at
least one gene replicating at a FDR of 1 %. (c) Same as in panel a, after
excluding known genes from the analysis (BRCA1, BRCA2, PALB2, MSH2,
and MLH1). (d) Same as in b after excluding known genes from the analysis
(BRCA1, BRCA2, PALB2, MSH2, and MLH1).
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Figure 2.61: Network analysis (HumanNet) supports the role of rare germline vari-
ation in somatic mutational processes. All panels in this figure were
generated using the functional gene network from HumanNet. (a) Number
of physical interactions in a random subset of the tested gene set (con-
trolled for interaction node degree) (x-axis). Red line shows the number of
interactions within genes which replicated at a FDR of 1 %. (b) Number of
randomly selected genes from the tested gene set interacting with at least
one gene, which replicated at a FDR of 1 % (x-axis), (controlled for interac-
tion node degree). Red line shows the number of genes, out of the ones
which additionally replicated at a FDR of 2 %, interacting with at least one
gene replicating at a FDR of 1 %. (c) Same as in panel a, after exclud-
ing known genes from the analysis (BRCA1, BRCA2, PALB2, MSH2, and
MLH1). (d) Same as in b after excluding known genes from the analysis
(BRCA1, BRCA2, PALB2, MSH2, and MLH1).
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Figure 2.62: Overview of replicated hits in HumanNet network. Visualisation of phys-
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sociated with (bottom panel). Line width corresponding to interaction score.

122



2.2 Rare Damaging Germline Variant Association Testing

Prevalence of damaging germline variants in genes associated with
somatic mutational phenotypes

To better estimate the contribution of RDGVs to differences in somatic mutational
processes, we counted how many individuals in our dataset had certain RDGVs
and compared this to randomly selected protein-coding genes while controlling
for covered gene length (Figure 2.63). Considering known mutator genes, 44
individuals (0.6 %) had PTVs in Lynch syndrome dMMR genes (MSH2, MLH1,
MSH6, PMS2), and 100 (1.5 %) had PTVs in in dHR genes (BRCA1, BRCA2,
PALB2, RAD51C) in the discovery cohort (TCGA). Considering only the newly
associated genes, 107 individuals (1.6 %) had a PTV in genes that replicated
at a FDR of 1 %, and 166 (2.4 %) in genes which replicated at a FDR of 2 %.
A similarly high prevalence of damaging variants in newly-discovered genes,
relative to known mutator genes, was seen in prioritized missense variants, via
the CADD score at stringent (=25) and permissive thresholds (=15; Figure
2.63). Additionally, when comparing this with prevalence of deleterious variants in
control sets of length-matched genes, there is an excess of damaging missense
variants in the known dHR and dMMR genes as well as in the newly-discovered
genes at 1 % and 2 % FDR thresholds (Figure 2.63).

Taken together, these results suggest that the novel candidate mutator genes are
affected by deleterious variants in a higher fraction of the population of cancer
patients than the known human germline dMMR and dHR genes.
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Figure 2.63: Frequency of RDGVs across cohorts. Showing the frequencies of
RDGVs within the individuals (y-axis) of the discovery cohort (TCGA -
WES) and validation cohort (PCAWG+Hartwig -WGS) (rows) across differ-
ent RDGV sets (columns) for different gene sets (x-axis). Known dHR gene
set includes BRCA1, BRCA2, PALB2, and RAD51C, known dMMR gene
set includes MSH2, MSH6, MLH1, and PMS2, the replicated 1 % FDR set
includes all genes replicating at a FDR of 1 % after excluding known dMMR
and dHR genes, and the replicated 2 % FDR only set includes all additional
genes which replicated at a FDR of 2 %. Color code for the real gene sets
(blue) and length-matched, randomly selected protein-coding gene sets
(red). Random selection for length-matched protein-coding genes was per-
formed 10 times, and distribution shown in boxplot.
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2.3 Common Variant Association Testing

2.3 Common Variant Association Testing

Next, we investigated to which extent common variants affect the different ex-
tracted somatic mutational components (Figure 2.64). In contrast to rare variants,
common variants can be tested independently. Similarly as for the rare variant
association testing we performed quality control steps and extracted individuals
of European ancestry. In addition, missing SNPs were imputed (Section 4.7.1)
In the discovery cohort TCGA common variants were extracted from SNP array
data, while in the validation cohort PCAWG_Hartwig common variants were ex-
tracted from WGS data. After checking data quality we performed genome-wide
common variant association testing.

Figure 2.64: Illustration of common variant association testing. Associations were
identified in the discovery cohort (TCGA -SNP array) and replicated in the
validation cohort (PCAWG + Hartwig -WGS).

2.3.1 Quality Control

As described in the methods (Section 4.7), 7,886 individuals of European ances-
try and 484,843 SNP with an allele frequency of at least 1 % were extracted from
the SNP array data in the discovery cohort TCGA. To investigate for confounding,
we performed a PCA and checked the first 10 PCs. As shown in Figure 2.65,
we did not detect any confounding with respect to the TCGA project id (Figure
2.65a), gender (Figure 2.65b), or age or onset of disease (Figure 2.65d). In
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the validation cohort PCAWG_Hartwig- WGS, 4,831 individuals of European
ancestry and 481,488 SNPs (same SNPs as in TCGA) were extracted from
the WGS data with an allele frequency at least 1 %. Similarly, as in TCGA, we
did not detect any confounding in the PCA with the respect to the project id
(Figure 2.66a), gender (Figure 2.66c), or age at diagnosis (Figure 2.66e). For the
validation cohort germline variants were called in 3 different centers: PCAWG,
Hartwig, and at the IRB (Section 4.7). Here, we could also not detect any major
batch effects (Figure 2.66b).

Figure 2.65: Principal component analysis on common germline variants in TCGA
SNP array data. Principal components 1 to 10 color coded by (a) TCGA
project id, (b) gender, (c) ethnic, and (d) age at diagnosis.
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2.3 Common Variant Association Testing

Next, we checked for batch effects between the discovery and validation cohort.
Common variants were extracted from SNP array data in the discovery cohort
and from WGS data in the validation cohort. In order to have a reference for
comparison, we performed a PCA merging the data from the discovery cohort,
validation cohort and from 1000 genomes (1KG). SNPs in 1KG were called from
WGS data. As shown, in Figure 2.67, there was no major batch effect directly
visible, meaning that the genotyped SNPs from the two different technologies did
not separate (Figure 2.67a). The first components mostly captured differences
with respect to ethnicity in the European population such as people with Finish
ancestry vs. the rest (Figure 2.67c). Still, we observed in several PCs a wider
distribution of PC values in the SNP array data compared to the WGS data
(Figure 2.67c). This became in particular visible when looking at PCs 3, 5, and 7
(Figure 2.68).

Taken together, even though we did not detect major batch effects between the
two data types (SNP array data and WGS), there was a higher variance visible
in the SNP array data compared to the WGS data. This increased variance was
most likely not connected to ethnicity, but to the genotyping technology, since
the distributions of the PCs from 1KG and the validation cohort were much more
similar, than the distributions from the discovery cohort to those two.
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Figure 2.66: Principal component analysis on common germline variants in
PCAWG-Hartwig -WGS data. Principal components 1 to 10 color coded
by (a) cancer project id, (b) center/project where common variants were
called, (c) gender, (d) ethnic, and (e) age at diagnosis.
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2.3 Common Variant Association Testing

Figure 2.67: Principal component analysis on common germline variants on
TCGA -WES SNP array data, PCAWG-Hartwig -WGS data and 1000
genomes (1KG)- WGS data together. Principal components 1 to 10 color
coded by (a) center/project where common variants were called, (b) gen-
der, (c) reported ethnicity in 1KG (only showing 1KG), and (d) different data
sources separately (top: PCAWG_Hartwig, middle: TCGA, bottom: 1KG).
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Figure 2.68: Wider distributions of principal components from samples which were
genotyped by SNP arrays in comparison to WGS data. Showing distribu-
tion of PC values (y-axis) based on center/cohort where common germline
variants were called (x-axis) for the first 10 PCs. Colored by data type which
was used for genotyping.

2.3.2 Genome-Wide Association Study (GWAS)

For the GWAS, we tested for associations between around 484k SNPs and all 29
somatic mutational components as it was performed before for the rare variant
association testing. Testing was only performed for cancer types in which the
sample size was above 200 in the discovery and in the validation. In total, testing
was performed in 8 different cancer types (brain glioma, breast, colon + rectum,
lung adenocarcinoma, lung squamous carcinoma, prostate, skin, stomach +
esophagus) and in pan-can. Inflation factors λ were all distributed between 0.97
and 1.02 with the median at 1.0, indicating that the tests were well calibrated
(Figure 2.69).
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Figure 2.69: GWAS were well-calibrated. Showing inflation factors (y-axis) across all
cancer types and pan-can. Each point represents one estimated inflation
factor for one component. 29 components were tested in each cancer type
or in pan-can. Color code for the sample size in the discovery cohort TCGA -
WES.
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2.3 Common Variant Association Testing

In total, 10 SNPs reached genome-wide significance (p < 5*10−8; p-value af-
ter performing Bonferroni correction on all possible common independent human
SNPs234) covering 5 out of 9 cancer types and 9 out of 29 somatic mutational
features. All 10 hits were re-tested in the validation cohort in the corresponding
cancer type. One SNP (rs17177814) had an allele freuency of less than 1 % in the
validation cohort. None of the 10 re-tested hits replicated in the validation cohort
at a p-value of 0.05 (corrected by multiple testing via Bonferroni). Still, one hit
reached at least a p-value < 0.05 (SNP id: rs635332). This SNP is located in the
intron of the gene TSPAN9 and associated in colorectal cancer with an increase
of a somatic component (Sig.MMR2+ampli.), which has large contributions from
the SNV-derived cancer signature Ref.Sig. MMR2138 and amplification events.
This gene encodes a cell surface protein which has cell developmental functions
and has no clear link to DNA repair pathways. In addition, only 5 out of 10 of
the re-tested hits had the same effect size direction as in the discovery cohort.
We also evaluated whether any of the 10 hits and associated SNPs (by clumping,
Section 4.7.3) have been previously reported in the GWAS catalog from EMBL-
EBI (October 2020) as a cancer risk SNP, which was not the case.
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Table 2.2: Overview of common SNPs reaching genome-wide significance in asso-
ciation study and asociations in validation cohort
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2.3 Common Variant Association Testing

To further investigate potential reasons why all of the hits did not replicate in
the validation cohort, we performed a power analysis (Section 4.7.4). In GWAS,
the statistical power depends on different factors: sample size, effect size of the
causal genetic variant, allele frequency, and amount of linkage disequilibrium
(LD) between the genotyped SNP and causal SNP247. As shown in Figure 2.70,
the statistical power to detect any association with an effect size of around 0.1
would be at the sample size of the discovery cohort at an allele frequency of
50 % at ∼70 % and at an allele frequency of 25 % at ∼40 %. For the individual
cancer types the statistical power would be even lower. Lower powered studies
do not only increase the chance of false-negatives, but also the probabil-
ity of finding false-positives235. Thus, this study was underpowered to detect
potential small true effects. In particular, when comparing with effect sizes of can-
cer risks SNPs, one would expect that most SNPs would have low effect sizes246.

All in all, we performed GWAS to find associations between common SNPs and
different types of somatic mutational patterns. Several hits reached genome-wide
significance in the discovery cohort, but none of them replicated in the validation
cohort after correcting for multiple testing. Furthermore, there was no overlap be-
tween the hits and known cancer risk SNPs. As shown in the power analysis, one
of the reasons could be due to low statistical power235. Other potential reasons
for the lack in replication could originate from batch effects due to the two differ-
ent genotyping technologies which were utilized or differences in the estimation
of the somatic features (WES in discovery, WGS in validation).
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Figure 2.70: GWAS power analysis. Theoretical statistical power for genome-wide sig-
nificance was estimated (color code) at varying allele frequencies (y-axis)
and effect sizes (x-axis) for different sample sizes (subplots). Nine hits,
which were identified in the discovery cohort (Table 2.2) are marked on the
plots based on with which effect size, allele frequency and in which cancer
type they were identified. One hit (rs17177814) not marked, but expected
power at 100 %.
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2.4 SNP-Heritability of Somatic Mutational Processes

2.4 SNP-Heritability of Somatic Mutational

Processes

We further asked the question to which extent the different somatic features
and components are heritable (Figure 2.71). For this purpose, with estimated
SNP heritabilities utilizing common SNPs with two commonly used methods
GREML194 and LDSC284. Both methods make use of all common SNPs with
the assumption of an infinitesimal model236. The infinitesimal model assumes
that a trait is influenced by an infinitely high number of genes and that each gene
makes a small contribution to the variation of a trait.

Figure 2.71: Illustration of estimation of SNP-heritabiites. SNP-heritabilities were es-
timated in the TCGA cohort (SNP-array data) and in PCAWG + Hartwig
(WGS data).

2.4.1 Signature Ref.Sig. MMR1 Mutations and the Total
Number of C>T Mutations have a Heritable Component

First of all, SNP heritabilities of the input somatic features were estimated with
both methods across the two cohorts. We only calculated SNP heritabilities
in pan-can, while controlling for the individual cancer types. Since errors in
the estimation of the SNP-heritability by GREML are around 318 divided by
the sample size191 (∼32 % at a sample size of 1,000), sample sizes were too
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low to estimate heritabilites for the specific cancer types (n < 1,000; Table 4.7).
Still, errors in the estimation of SNP heritabilities were high due to the sample
sizes (around 6,900 in TCGA and 4,800 in PCAWG_Hartwig). For GREML, the
median error of SNP heritability was at 4.6 % (1st quantile: 4.6 %, 3rd quantile:
4.8 %) in TCGA-WES and at 6.6 % (1st quantile: 6.5 %, 3rd quantile: 6.6 %) in
PCAWG_Hartwig-WGS. For LDSC, the median error of SNP heritability was at
7.5 % (1st quantile: 7.1 %, 3rd quantile: 8.0 %) in TCGA-WES and at 10.6 % (1st
quantile: 10.3 %, 3rd quantile: 10.9 %) in PCAWG_Hartwig-WGS.

There were differences in the estimated heritabilities between the two co-
horts and methods (Figure 2.74). When comparing the estimated heritabilities
between LDSC and GREML within the same cohort, Pearson correlation was
at 0.37 for TCGA-WES and at 0.32 for PCAWG_Hartwig-WGS (Figure 2.72).
The Pearson correlation for the estimated heritabilities between the two cohorts
was at 0.09 for GREML and 0.17 for LDSC (Figure 2.73). For instance, in
TCGA-WES amplification events of a size of between 10 and 100 kb had the
highest heritability via GREML with around 13 %, while in PCAWG_Hartwig-WGS
the same feature had a heritability of around 3 %. In PCAWG_Hartwig-WGS,
very high heritabilities were estimated for SNV-derived signatures 11 (around
35 %) and 19 (around 28 %) via GREML. The same features had low heritabilities
in TCGA-WES with 5.3 % and 0.3 %, respectively. There could be several
reasons why SNP heritabilities varied so much between the cohorts and methods
such as sample size, data type to extract common variants (SNP array vs
WGS), data source to estimate somatic features (WES in TCGA and WGS in
PCAWG_Hartwig), or differences in the number and distribution of cancer types
in each cohort. The potential reasons will be covered in more detail in the
discussion (Section 3.4).
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Figure 2.72: Correlations of heritability estimates between methods. Pearson cor-
relation (red) shown for heritability estimates between the methods for both
cohorts separately.
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Figure 2.73: Correlations of heritability estimates between cohorts. Pearson cor-
relation (red) shown for heritability estimates between the cohorts for both
methods separately.

Next, we focussed on the features, that had increased heritabilities in both
cohorts. We combined p-values from each method between the two cohorts via
Fisher’s method for the 65 somatic mutation features and then adjusted for mul-
tiple testing. For GREML, 6 out of 65 features were significant at a FDR of 20 %
and 2 features were significant at a FDR of 5 % (Figure 2.75). While four of them
(Ref.Sig 11, Ref.Sig 19, amp_10to100kb, trx_TtoA) were only significant due to
the very high heritabilities in one of the two cohorts, the somatic features covering
the total number of C>T mutations and SNV-derived cancer signature Ref.Sig.
MMR1 had increased heritabilities in both cohorts with at least 8 % in GREML.
Signature Reg.Sig. MMR1 has been connected to defective mismatch repair,
and in particular, to the signature generated by knockout of MSH6 138. Hereditary
colorectal cancer (Lynch syndrome) is caused by a deficiency in MMR and so
far, several common variants have been reported to increase the risk of this dis-
ease176. Thus, the increased heritability of the somatic cancer signature Ref.Sig.
MMR1 could be explained via common SNPs which affect DNA mismatch repair.
The increased heritability of C>T mutations could be attributed to many different
sources of mutagenesis such as smoking, reactive oxygen species, dMMR, dHR,
and many more14. It is unclear which mutational processes cause this increased
heritability. The total mutation burden (total_SNV) was consistently increased in
both cohorts as well with a SNP heritability of around 5.6 % in TCGA-WES and
of around 6.6 % in PCAWG_Hartwig-WGS for GREML, which was lower than the
previously estimated heritability of around 12.9 %191.

For LDSC, none of the features were significant after adjusting for multiple
testing, which can be attributed to the lower power of this method compared
to GREML. Still, it could be seen that the somatic feature for C>T mutations,
similarly as in GREML, had an increased heritability in both cohorts (16.7 % in
TCGA and 9.3 % PCAWG_Hartwig) as well as signature MMR1 (6.6 % in TCGA
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Figure 2.74: Overview of estimated SNP heritabilities for somatic input features.
SNP heritabilities were calculated via GREML and LDSC for the two cohorts
TCGA-WES and PCAWG_Hartwig-WGS (x-axis) for 65 somatic features (y-
axis). Color code shows estimated SNP-heritability h2 in %. Fork: replicative
strand bias, RT: replication timing, trx: transcription strand bias, Xhyper:
Chromosome X hypermutation.
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and 9.6 % PCAWG_Hartwig). In addition, heritability for the total mutation burden
was increased in both cohorts (9.8 % in TCGA and 11.4 % PCAWG_Hartwig),
which was closer to the results from a previous study191.

Taken together, we detected in particular two somatic features with increased
heritability estimates in both cohorts: signature Ref.Sig. MMR1 and the total
number of C>T mutations. The estimated heritability for the total mutation burden
was consistently increased across cohorts and methods, but lower in comparison
to what was reported before191.
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Figure 2.75: Pooled p-values for SNP-heritabilities of somatic input features. P-
values from estimated heritabilities across cohorts were combined via
Fisher’s method across all features (x-axis) for both methods GREML and
LDSC. Transformed p-value shown on the y-axis and color code multiple
testing correction via Benjamini-Hochberg. Fork: replicative strand bias,
RT: replication timing, trx: transcription strand bias, Xhyper: Chromosome
X hypermutation.

2.4.2 Heritability Estimates for Somatic Components Varied
across Cohorts and Methods

We also investigated the heritability estimates for our extracted somatic compo-
nents. The estimated errors were in the same range as for the somatic features.
There was no correlation between the estimated heritabilities between the two
cohorts: -0.018 for GREML and -0.017 for LDSC. Correlations were even lower
than for the raw somatic features and heritabilities varied between the different
cohorts and methods (Figure 2.76).

139



2 Results

0.95

0

0.38

2.27

0
0

10.15
7.25

1.96

0
0
0
0

1.29

0
0
0

10.25

0

2.42

7.2

0

0.56

6.94

2.47

3.36
5.27

0

2.77

0

0

0

0

0
3.35

0.89
4.2

4.53

0
1.5
0

9.74

2.41

7.37
3.31

0

0

0

0

8.28

8.77

0

0

2.77

6.66
0

0.59

0

0

0

0

3.13

0
1.55

5.55
0.09

9.97

0
0
0
0

0

0
0
0

12.2

0

0

0.97

0

0

7.1

4.04

0
0

2.98

14.26

0

0.8

0

0

10
5.29

14.13
0.59

2.29

0
12.7

0
0

6.82

5.82
7.03

0

0

0.11

0

3.84

20.88

0

0

13.79

0
0

0.87

3.42

GREML LDscore

TCGA−WES PCWAG_Hartwig−WGS TCGA−WES PCWAG_Hartwig−WGS

DBS2
Small indels 2bp

UV_ICA
dHR_ICA

Deletions_ICA
APOBEC_ICA

Sig.18
Sig.11+19

APOBEC_VAE2
dMMR_VAE2

X−hypermutation
Deletions_VAE

dHR_VAE2
Sig.5_ICA
Sig.5_VAE

Sig.17
Ploidy

dMMR_ICA
Smoking_ICA
dMMR_VAE1

UV_VAE
Smoking_VAE

dHR_VAE1
Mitochondria

Sig.1
Amplifications

Sig.MMR2+ampli.
Sig.8

APOBEC_VAE1

0

5

10

15

20
h2 (%)

Figure 2.76: Overview of estimated SNP heritabilities for somatic components.
SNP heritabilities were calculated via GREML and LDSC for the two co-
horts TCGA-WES and PCAWG_Hartwig-WGS (x-axis) for the 29 extracted
somatic components (y-axis). Color code shows estimated SNP-heritability
h2 in %.

We checked by combining p-values from the heritability estimates from the two
cohorts via Fisher’s method whether any components had consistently increased
heritabilities. For both methods, none of the components were significant at a
FDR lower or equal to 20 % (Figure 2.77).

In conclusion, we did not extract somatic components which consistently had
an increased heritability across cohorts and/or methods. This was in contrast
to the raw somatic features, where we found several features with significantly in-
creased heritability estimates. Still, independent of the somatic feature or somatic
component which was utilized, most heritability estimates for somatic mutational
processes based on common SNPs were below 15 % (Figures 2.74 and 2.76).
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Figure 2.77: Pooled p-values for SNP-heritabilities of somatic components. P-
values from estimated heritabilities across cohorts were combined via
Fisher’s method across all features (x-axis) for both methods GREML and
LDSC. Transformed p-value shown on the y-axis and color code multiple
testing correction via Benjamini-Hochberg.

2.4.3 Contribution of Heritability to Total Mutation Burden
originating from different Cancer Types

To further investigate which mutational processes contribute to the heritability
of the total SNV-based mutation burden, we removed individual cancer types
from the analysis and then calculated the difference in heritability in compar-
ison to the total SNV heritability before dropping out the respective cancer
type. To check whether the difference was significant, we randomly removed the
same number of individuals from the analysis 1,000 times to get a null distribution.

For several cancer types, the heritability estimate changed significantly when it
was dropped (Figure 2.78). For instance, the heritability of the total mutation
burden decreased when removing biliary cancer, ER-positive_HER2-negative
breast cancer, or stomach cancer. The heritability of the total mutation burden
increased when removing ER-negative_HER2-positive breast cancer, cancer
types of the nervous system, or head and neck cancer. A decrease in the heri-
tability after removing a cancer type would indicate that the corresponding cancer
type contributes significantly to the total mutation heritability. This information
could be utilized to pin down which mutational processes are responsible for the

141



2 Results

increased heritability and/or exclude several mutational processes. For instance,
if mutations due to UV-light exposure would have had a high contribution to the
heritability of the total mutation burden, one would have expected that dropping
skin cancers of the analysis would lead to a decreased heritability estimate.

As shown in Figures 2.79 and 2.80, we pooled p-values either from an upper-
or lower-tailed test for the corresponding cancer types within the same tissue or
origin to examine whether a specific tissue contributes significantly to the total
mutation heritability. None of the tissues were significant after controlling for
multiple testing.

Taken together, while we observed that several cancer types contributed signifi-
cantly to the heritability of the total mutation burden, we could not pin down which
mutational processes are responsible and we also did not find specific tissues
contributing to the total heritability. For some cancer types such as skin or lung
cancer, the majority of samples can be connected to a specific mutational process
(such as smoking or UV light), while other cancer types comprise a much more
diverse set of underlying mutational processes237. This makes it more challeng-
ing to pin down the underlying mechanisms when solely dropping samples based
on cancer types.
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Figure 2.78: Heritability for total mutation burden when removing individual cancer
types. Heritabilities were estimated via GREML. Y-axis showing difference
in heritability for total mutation burden after removing an individual cancer
type. Color code for the two cohorts (red, blue) and randomization (grey;
1,000 data points). Faceting for tissue of origin. Cancer types annotated
with ** when p-value < 0.05 either for upper- or lower-tailed test.

143



2 Results

0

1

2

ne
ur

oe
nd

oc
rin

e
ut

er
us

_c
er

vi
x

bo
ne

 a
nd

 s
of

t t
is

su
e

br
ai

n
th

ym
us

he
ad

_n
ec

k
br

ea
st

liv
er

lu
ng

m
es

ot
he

liu
m

pa
nc

re
as

th
yr

oi
d

ey
e

bl
oo

d
pr

os
ta

te
bl

ad
de

r
ki

dn
ey

co
lo

n_
re

ct
um sk

in
ad

re
na

l
bi

le
re

st
ov

ar
y

st
om

ac
h_

es
op

ha
gu

s

tissue of origin

−
lo

g1
0(

po
ol

ed
 p

−
va

lu
e

up
pe

r 
ta

il)

Figure 2.79: Pooled p-values for change in heritability of total mutation burden es-
timates across tissues - upper tailed test. P-values (upper tailed test)
from individual cancer types (small points) for influence on total mutation
burden were pooled via Fisher’s method (y-axis) across tissues (x-axis).
Thin dashed line at p-value of 0.05 and thick dashed line at 0.05/24 (num-
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Figure 2.80: Pooled p-values for change in heritability of total mutation burden esti-
mates across tissues - lower tailed test. P-values (lower tailed test) from
individual cancer types (small points) for influence on total mutation bur-
den were pooled via Fisher’s method (y-axis) across tissues (x-axis). Thin
dashed line at p-value of 0.05 and thick dashed line at 0.05/24 (number of
tissues).
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2.4.4 Several Mutational Processes contribute to the
Heritability of the Total Mutation Burden

Since we could not pin down the underlying mutational processes contributing
to the heritability of the total mutation by dropping individual cancer types, we
applied a different approach. This time, we took the whole data set and removed
individual mutation types in their trinucleotide context from an individual cancer
type from the whole data set. For instance, we removed all C>T mutations in a
CCC context from lung cancer samples, estimated the heritability, and calculated
the difference to the total heritability when counting all SNVs. We performed
this analysis for all 96 possible SNV-trinucleotide combinations across all cancer
types (Figure 2.81).

To find specific mutational processes contributing to the total SNV heritability, we
performed a PCA on the dataset after capping an outlier h2 value (Section 4.8.3).
The input matrix consisted of 96 rows (for each SNV-trinucleotide pair) and 104
columns (different cancer types). The first PCs explained a significant amount
of the variance in the data (expectation at ≈1 %) and, in particular, the first four
PCs were able to explain around 40 % of the variance (Figure 2.82).

We investigated the individual cancer types contributing to the first components
(Figure 2.83), the SNV-trinucleotide contexts having the highest contributions
to the PCs (Figure 2.84), and the correlations between the SNV-trinucleotide
contributions to the individual PCs and the established COSMIC signatures4

(Figure 2.85). In this way, we aimed to examine to which extent the different
components captured specific mutational processes, aiming to identify specific
mutational processes contributing to the heritability of the total mutation burden.

PC1 had high negative correlations with C>G and C>T mutations in TCA
and TCT contexts, which are typical for APOBEC-directed mutagenesis signa-
tures (Signature 2 and 136). Accordingly, this component also had high negative
correlations with cancer types that are enriched for APOBEC-directed mutage-
nesis (e.g. Hartwig-Biliary and Hartwig-Breast_ER-positive_HER2-positive). In
addition, PC2 had a high correlation with APOBEC activity connected COSMIC
signature 2.

PC2 was enriched for a diverse set of cancer types such as Hartwig-Pancreas
and Hartwig-Breast_Subtypeunknown and had high positive correlations with
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Figure 2.81: Change in total mutation burden heritabiity when dropping specific
trinucleotide contexts from cancer types. Showing heritability difference
between total mutation burden heritability and calculated heritability when
dropping a specific SNV-trinucleotide context from a cancer type via GREML
(color code). Different cancer types on y-axis (104 in total) and dropped
SNV in trinucleotide context on x-axis (96 in total).
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2.4 SNP-Heritability of Somatic Mutational Processes

C>T mutations at ACG, CCG, GCG, and TCG contexts. Expectably, clock-like
COSMIC signature 1, which has been reported to correlate with age and the
number of cells divisions in some tissues238, had the highest correlation with this
component.

PC3 had the highest contributions from Hartwig-Lung_Non-Smallcell and
Hartwig-Liver_Hepatocellular. This component correlated with several COSMIC
signatures such as signature 92 (tobacco smoking), signature 16 (unknown),
signature 5 (unknown, clock-like), and signature 19 (unknown). It also had
increased contributions from other lung and liver cancer. In total lung cancers
contributed to this component by 17 % and liver cancers by 12 %. This would
speculatively connect this PC to an environmental and/or metabolic process.

PC4 could be connected to COSMIC signature 17b. The underlying muta-
tional process causing this signature has not been identified yet, but it has been
speculated that this signature might be caused by increased levels of 8-oxo-dGTP
via bile acids and/or gastric acids, which can lead to A>C transversions239,240.
In accordance, PC4 had high contributions from signature 17 enriched cancer
types such as Hartwig-Esophagus and TCGA-ESCA and in total esophagus
cancers contributions to this component were around 20 %.

The remaining PCs could not be clearly connected to specific mutational
processes and/or COSMIC signatures.

Taken together, we identified several mutational processes contributing to
the heritability of the total mutation burden via dropping all possible SNV-
trinucleotide contexts from each cancer type and estimating the change in
the heritability. Via a PCA, we identified several components which could
be connected to different mutational processes. We identified a component
capturing APOBEC-directed mutagenesis (PC1), a component capturing cancer
signature 1 (PC2), a component being enriched in lung and liver cancer types
(PC3) and a component capturing signature 17b (PC4). These results would
suggest that several mutational processes contribute to the heritability of the total
mutation burden. In the future, higher sample sizes and analyses of individual
cancer types will help to further obtain a more fine-grained view of which variants
contribute to the heritability of which mutational somatic process.
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Figure 2.83: Overview of first 10 PCs and the corresponding 15 cancer types with
the strongest contribution to the respective component. .Showing the
contribution and correlation (y-axis) of each cancer type with the respective
component (y-axis). Color code for tissue of origin.
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2.4 SNP-Heritability of Somatic Mutational Processes
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Figure 2.84: Overview of SNV-trinucleotide contexts and correlations with the first
10 PCs. Showing SNV-trinucleotide context on the x-axis, PC on y-axis and
PC value encoded in color (0 equals white).
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Figure 2.85: Pearson correlation between the 96 SNV-trinucleotide contexts con-
tributing to the PCs and COSMIC signatures. Showing in each facet
the 10 COSMIC signatures v3.2 (x-axis) with highest Pearson correlation
(y-axis) to the respective component.
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3 Discussion

In this study, the goal was to gain understanding of the role inheritance plays in
shaping somatic mutational processes. Studying this question was encouraged
by genetic screens from model organisms (yeast and bacteria) which showed that
many different genes impact mutational processes196,197. Further, association
studies utilizing rare and common germline variants to investigate this question
showed how this approach would be applicable to find novel germline determi-
nants of somatic mutational processes8,32. To comprehensively investigate this
question, we extracted a set of mutational features covering a broad spectrum of
somatic mutational processes from ∼15,000 tumor genomes. To increase inter-
pretability, remove redundancy and increase statistical power, we applied differ-
ent dimensionality reduction techniques to extract informative somatic mutational
components (Section 2.1). These components were then used to answer the
question whether inherited variants have an affect on a specific somatic muta-
tional process. We performed for this purpose a gene-based rare variant asso-
ciation study (MAF < 0.1 %) (Section 2.2) and a genome-wide association study
utilizing common variants (MAF > 1 %) (Section 2.3). Further, we examined to
which extent somatic mutational processes contain a heritable component (Sec-
tion 2.4). The main outcomes from this analysis will be further discussed in the
next sections.

3.1 Extraction of Somatic Mutational Components

capturing Somatic Mutational Processes

Extraction of informative somatic mutational features from whole-exome
and whole-genome sequencing data

To extract somatic components covering different somatic mutational pro-
cesses, somatic features based on previous reports were extracted based on
SNVs5,6,14,132, DNVs14, indels14, and copy number variants17,18. Further we
also generated features incorporating relative mutation rates144 with respect
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to different genomic properties such as replication timing21, chromatin mark
H3K36me315,20, the direction of DNA replication (leading vs lagging strand)23,24,
the direction of transcription (transcribed vs. untranscribed strand)24, chro-
matin accessibility via DNase I hypersensitive sites22, CTCF/cohesin binding
sites151,152, and the inactive X-chromosome155. Moreover, mutations occurring
on the mitochondrial genome were counted157,159 (Table 2.1).

Since many of these features were not extracted from WES data before,
we tested whether the described effects in WGS data could also be seen in WES
data. We showed that except for Ref.Sig. 11, the reported effects in WGS data
were also replicated in WES data (Figures 2.5, 2.6, 2.10, 2.12, and 2.14). The
missing effect between TMZ treatment and Ref.Sig. 11 (Figure 2.8) would most
likely not be due to the sequencing technology since it was also not detected
in WGS data (Figure 2.9). Associations in combination with MGMT promoter
methylation or MMR inactivations, which were previously reported27,199, were
not replicated as well. Potential reasons could be missing patient information
about TMZ treatment as it was suggested in ref27, difficulties in assigning this
signature to samples as it was reported in the same study or too small sample
sizes (e.g. samples with MGMT promotor methylation + TMZ treated).

Furthermore, we showed that while the correlation was significant when
comparing features extracted from the same patients from WES and WGS data
(59 out of 65), the correlation coefficient was only higher than 0.8 for 11 out of 65
somatic features. In particular, somatic features which could only be measured
from a limited number of loci such as CTCF/cohesin-binding site mutation peaks
and replicative strand asymmetry had correlation coefficients smaller than 0.2
(Figure 2.22). Still, even here significant mutational differences between MSI and
MSS samples were detected in several tissues (Figures 2.11 and 2.14).

Thus, while extracting somatic features from WES data will lead to less ac-
curate estimations of features in comparison to extracting them from WGS data,
global mutational processes such as APOBEC activity or a deficiency in DNA
mismatch repair can still be detected. These results suggest that WES data is a
viable source to investigate many different kinds of somatic mutational patterns,
especially since openly available WGS data is still a limiting factor, and for
association studies high sample sizes are required.
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3.1 Extraction of Somatic Mutational Components capturing Somatic Mutational
Processes

Extraction of somatic mutational components via ICA and VAE

Dimensionality reduction techniques were applied to deconvolve the 56 input
somatic mutation features (Table 2.1) into ’somatic components’. The aim was
to find components that are biologically relevant by capturing the underlying
mutational process, reducing the dimensionality to increase statistical power, and
increase interpretability. Basically, there were two factors to consider here: the
algorithm and the number of components to extract. Selecting the ’best’ algorithm
and the optimal number of components is not trivial since most methods extract
components by optimizing a function (e.g. neg-entropy in ICA), which does not
necessarily result in biologically relevant representations.

In a study by Way et al.267, gene expression data was compressed using
five different compression methods including ICA and VAE and it was com-
prehensively tested with which algorithm and which number of component
extractions the most number of biologically relevant components were ex-
tracted267. It was shown that there was no single best algorithm267 and that even
the same algorithm could capture different biological relevant components when
using different numbers of components267. While these results would imply that
using many different algorithms and including more components would increase
the chances of capturing many different (aiming at all) mutational processes, this
would also decrease the statistical power by increasing the burden of multiple
testing correction, which would have been unfeasible in this study due to the
main limitation coming from the sample size.

In consideration of the previous study267, we started by testing three differ-
ent methods (PCA, ICA, and VAE) and selected for the ICA the number of
components optimizing the silhouette index (Figure 2.26) and for the VAE the
number of components which optimized the correlation with four biologically
relevant independent components (Figure 2.32). The ability of the components
to capture mutational processes was assessed before performing the germline
association studies by checking the somatic input features which had the highest
correlations with the respective components (Figures 2.24, 2.28, and 2.34) and
by investigating tissue enrichments (Figures 2.30 and 2.35) of the components,
and comparing it to our current understanding of which features contribute to a
specific mutational process6,14,95,21 (Section 1.3). Based on this examination,
principal components were not further tested since we observed that often
different mutational processes were grouped into one component with opposite
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signs (Figure 2.24). With the ICA and VAE-derived components 13 out of 29
components (5 for the ICA and 8 for the VAE) covered known, individual bio-
logically relevant mutational processes such as UV-light exposure and tobacco
smoking (Figure 2.40).

It can be also noted that we used existing signature detection tools14,138

to extract mutational signatures for each mutation class separately and then
utilized them as input next to other generated somatic features to extract com-
ponents via ICA and VAE. This approach offers flexibility since any somatic
feature could be included in the input matrix. In the past, mutational signatures
have been extracted based on each mutational class separately (SNVs5, in-
dels14, DNVs14, clustered mutations15,16, CNVs17 and structural variants18) via
NMF133, updated versions of NMF135,248 or via other approaches such as a
probabilistic modelling approach136, denoising sparse autoencoder neural net-
works137, topic modelling143, or mixture modelling249. More recent approaches
have integrated different mutational classes to jointly learn mutational signatures
and to characterize the different mutational processes more precisely115,143.
These newer approaches could also be used in the future as an alternative
approach to extract somatic mutational components, which combine different
types of mutations and mutations occurring in different genomic regions together.

All in all, we showed here how ICA and VAE neural networks can be ap-
plied to extract biologically relevant mutational processes from high-dimensional
data covering different mutational classes and including somatic features based
on different genomic properties.

3.2 Rare Damaging Germline Variants Associating

with Somatic Mutational Processes

We used the extracted somatic mutational components to test whether rare
damaging germline variants impact any mutational process. We showed via a
gene-based rare damaging germline variant association study that rare inherited
variants in diverse genes associate with different mutational processes. Our
approach incorporated a variance-based test via SKAT-O184, two different
dimensionality reduction algorithms to extract somatic mutation patterns, the
usage of different in silico variant prioritization tools185,272,271 and the use of
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3.2 Rare Damaging Germline Variants Associating with Somatic Mutational
Processes

different models of inheritance for association testing. This experimental design
allowed us to identify multiple new replicating associations between genes and
somatic mutation phenotypes.

Most of the associations we identified were replicated only via the variance-based
test SKAT183, which suggests that variants predicted to be damaging still contain
many non-causal variants. More accurate variant effect prediction tools should
further increase the power of these kinds of analyses204,189,241. We also found
that using the two techniques to derive informative somatic mutation components
(ICA and VAE) identified more replicated associations than using either approach
alone. This is consistent with findings in other fields, where different algorithms
have also been found to capture complementary information, for example in gene
expression analysis267 and genetic variant analysis from genomic data242.

We identified novel genes associating with dHR-related repair (e.g. RIF1,
PAXIP1, WRN, EXO1, and ATR) and with components connected to dMMR (e.g.
MTOR, TTI2, SETD2, EXO1, MSH3, and MLH3). Several novel associations are
supported by strong evidence from prior studies such as EXO1 with dHR217,218

and dMMR243,216,126, SETD2 with dMMR20,15 and MSH3 with a different form
of dMMR126,52,220. On top of the associations with dHR- and dMMR-related
components, we also identified an association of APEX1 with APOBEC-directed
mutagenesis (as well as dHR), and additionally several genes associating with
a component enriched in brain and liver cancers with an unknown underlying
mechanism. ’Guilt by association’ network analysis has not yet been widely
adopted in rare variant association studies but we found that it was useful for both
connecting high stringency replicating genes to each other and for connecting
lower confidence hits to the high confidence genes. These interactions are useful
for prioritising the newly associated genes and provide specific hypotheses
connecting to known germline mutator genes.

Interestingly, the genetic associations distinguish between two different dMMR
mutational phenotypes. Firstly, the common dMMR signature, enriched for 1 bp
indels and the SNV-signature MMR1; these associations involved e.g. the Lynch
syndrome genes MSH2 and MLH1, and some additional genes e.g. MTOR, and
SETD2. Secondly, a distinct set of associations involved a mutational component
enriched for 2 bp and longer indels, but did not encompass a notable increase in
SNVs, e.g. involving the core MMR gene MSH3, and additionally MLH3, EP300,
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and PIK3C2B.

Our findings support observations from genetic screens in model organ-
isms suggesting that mutational processes can be affected by variation in diverse
genes196,197. In particular, in a previous study heterozygous mutations in diverse
genes in yeast were reported to cause genetic instability196. Out of the 50
identified human homologs in that study196, RDGVs in 3 genes (MSH2, MDN1,
MTOR) also associated in our study with a somatic component at a FDR of 1 %
and 6 genes (MSH2, MUS81, MDN1, MTOR, NUDT7, RBBP6) at a FDR of 2 %.
Further, in a different screen performed in bacteria, 284 human homologs were
reported to cause DNA damage when upregulated197. Out of the 284 genes197,
42 of them were also tested in our study, and RDGVs in 7 genes (MSH2, MSH3,
REV3L, DNMT1, RECQL, SMC2, TOP2A) also associated in our study with a
somatic component at a FDR of 1 % and 12 genes (ASCC3, FANCM, MSH2,
MSH3, REV3L, WRN, DNMT1, RECQL, SMC1A, SMC2, TOP2A, TOP3B) at a
FDR of 2 %.

This study has some limitations resulting from technical factors. The de-
sign is likely to result in a conservative bias in the number of replicated hits,
because the discovery and validation cohorts were based on different sequencing
technologies (WES versus WGS, respectively). WES data yields more noisy
somatic mutation features, as it covers ∼2 % of the genome and some features
(e.g. replicative strand asymmetry, mutations at CTCF/cohesin binding sites) are
measurable at few loci (Table 4.1) and so enrichments are difficult to estimate
due to low mutation counts. Moreover the power to call germline variants at
certain loci may be different for WGS and WES data. The TCGA WES data
also has batch effects originating from the different sequencing centers and
sequencing technologies244,245. To offset this risk, we only extracted germline
variants from regions with enough coverage in each of three sequencing centers
as previously shown167. This limited the number of RDGVs, and thus potentially
also the number of discoveries.

In order to increase the sample size and thus power, we combined the
cancer cohorts that contained both primary7,8 and metastatic9 cancers, as
well as treatment-naive and pretreated. Similarly, in the pan-cancer analyses,
we aggregated data from all cancer types, with the result that the distribution
of cancer types between the discovery and validation cohort was somewhat
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3.3 Common Germline Variants Associating with Somatic Mutational Processes

different. It is possible that some hits did not replicate due to these differences in
cancer type composition.

Our initial set of somatic mutational features was largely motivated by re-
cent reports5,6,14,20,21,22,23,24,94,95,132,144,149,151,155,157. Consideration of
additional, complementary features could identify additional associations in
future studies. Lastly, our analysis was performed on samples with European
ancestry since this was the most numerous group and including sequencing data
from more diverse populations is also likely to identify additional associations.

In the future, larger sample sizes with WGS data and better variant pathogenicity
prediction tools will enable higher-powered association studies. Recent advances
in the field of variant pathogenicity prediction include EVE (evolutionary model of
variant effect), which is based on a deep generative model (VAE) and only needs
the multiple sequence alignment of the protein of interest as input189. Another
new tool is based on an autoregressive generative model, which does not need
any alignment as input and is even able to predict indels190. These advances
will further help elucidating the potentially very numerous set of genes which
determine human somatic mutation rates. The identification of additional genes
altering human mutation processes may have important implications for under-
standing, preventing and treating cancer and other somatic mutation-associated
disorders.

3.3 Common Germline Variants Associating with

Somatic Mutational Processes

After showing how rare damaging germline variants in many different genes
can have an impact on somatic mutational processes, the effects of common
germline variants on the same somatic components were investigated. Previ-
ously, a common deletion polymorphism in the coding region of APOBEC3B,
altering APOBEC-signature mutagenesis, was discovered and replicated in
several studies111,112. In addition, in the PCAWG study, another nearby but
independent SNP was identified which affected APOBEC mutagenesis8. In
another pan-cancer study, which did not include a validation cohort in the study
design, no genome-wide significant association between common variants and
total mutation burden were identified, but several hits in specific cancer types
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such as breast and stomach cancer were reported191. Furthermore, in a smaller
study, which focussed on breast cancer, several associations between common
variants and APOBEC-directed mutagenesis were identified. While none of the
hits replicated in the validation cohort, several hits had matching effect size
directions in the validation cohort32.

Thus, to date, the association between common variants and somatic mu-
tational processes has only been performed with a few somatic processes. Here,
we identified 10 associations at genome-wide significance in the discovery cohort
covering 4 different cancer types (including pan-cancer) and 9 different somatic
mutational features (Table 2.2). None of the hits replicated in the validation
cohort after correcting for multiple testing. One hit had a p-value < 0.05 and 5 out
of 10 hits shared the same effect size direction as in the discovery (Table 2.2).
In addition, none of the ten hits were previously reported as cancer risk SNPs in
the GWAS catalog from EMBL-EBI.

Consequently, the impact of common germline variants on somatic muta-
tion processes remains inconclusive. There could be several reasons, apart
from the technical limitations which were already described for the rare variant
association study (e.g. composition of cohorts, inaccuracies in estimating
somatic features from WES; Section 3.2). Common germline variants were
identified via different technologies. In the discovery cohort, common germline
variants were called from SNP-array data, while in the validation cohort WGS
data was utilized. A PCA performed on both cohorts together including 1000
genomes data showed that while all cohorts overlapped with each other in the
first PCs, the PC scores from samples in which germline variants were called via
SNP-array data were much wider compared to the ones which were extracted
from WGS data (Figure 2.68). Further, GWAS hits usually have small effect
sizes173 and this also holds true for GWAS hits which were reported to alter
cancer risk246. Small effect sizes require high sample sizes to be detected and
our power analysis showed that even in pan-cancer this study was underpowered
to detect small effect SNPs. Thus, potential small true effects could not have
been detected in this study. Fourthly, genetic architectures vary between cancer
types246, and thus, one could expect that cancer-specific associations would not
be detected in the pan-cancer analysis due to the lacking effects in the other
cancer types. Further, they would also not be identified in the cancer-specific
GWAS due to the low sample sizes of the individual cancer types (Table 4.7).
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3.4 Heritability of Somatic Mutational Processes

All in all, several associations between common germline variants and dif-
ferent mutational processes were identified, but none of them replicated in an
independent cohort. The most likely explanations would be low sample size
(leading to an underpowered study) and differences in sequencing technology
(SNP-arrays vs. WGS) and component extractions (WES vs. WGS). In the
future, larger sample sizes will be required to perform association studies like
these in pan-cancer and across all cancer types to further investigate to which
extent inherited common germline variants affect somatic mutational processes.

3.4 Heritability of Somatic Mutational Processes

While we did not find many common variants affecting mutational processes,
we further asked to which extent the different mutational processes would be
heritable. If the different mutational processes would be polygenic, as it was
suggested for the total mutation burden191, it would be reasonable to expect that
many SNP contribute to the overall heritability by a tiny fraction, which is why they
would not be detected in the genome-wide association study (since very small
effect size), but in the SNP-heritability estimate. If a somatic feature or somatic
mutational component had an increased heritability it would suggest a genetic
cause or genetic contribution on the corresponding feature/component.

To date, only the heritability of the total mutation burden has been esti-
mated in a pan-cancer analysis and has been calculated to be around 13 %
(Table 1.6). The heritability of APOBEC-directed mutagenesis, C>T mutations at
CpG sites and dHR has been only estimated in a breast cancer cohort with high
errors (> 20 %) due to the low sample size. Thus, the heritability of the different
mutational processes has not been investigated on a considerable sample size
before.

Here, we calculated SNP-heritabilities by two different approaches. Firstly,
heritabilities of the 65 somatic mutational features and of the 29 extracted
somatic components were calculated across the two cohorts (TCGA and
PCAWG_Hartwig) and compared. There were high differences in the heritability
estimates between the two cohorts (R <0.2). Still, two mutational somatic
features had SNP-heritabilities above 8 % in both cohorts: signature Ref.Sig.
MMR1 and the total number of C>A mutations (Figure 2.74). In a previous
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meta-analysis of all reported SNPs contributing to the risk of colorectal cancer,
several SNPs within DNA mismatch repair genes such as MLH1 and MSH3 were
identified176. Thus, speculatively common variants in DNA repair genes resulting
in inefficiencies of the DNA mismatch repair machinery could explain the in-
creased heritability of somatic signature Ref.Sig. MMR1 mutations. Heritability of
the total number C>A mutations could be connected to many different mutational
processes. One of them could be tobacco smoking since it dominantly results
in C>A mutations6 and also in a previous study a genetic correlation between
smoking initiation and the total mutation burden was identified191. Another
potential mechanism which predominantly creates C>A mutations in the genome
would be oxidative damage124 (signatures 186,126 and 3614,125). The total mu-
tation burden itself also had increased heritabilities in both cohorts but to a lesser
extent than it was reported before with approximately 6 %. Further, APOBEC
signatures, which were previously predicted to have a heritability of > 20 % in a
breast cancer cohort (sample size ≈700)32, had a heritability of 0 % in our pan-
cancer study for both APOBEC signatures (Ref.Sig.2 & Ref.Sig.13) via both tools.

Secondly, individual mutation types in their trinucleotide context (e.g. C>T
in CCC context) were dropped from the total mutation burden from a specific
cancer type and the difference in the SNP-heritability was calculated. With the
second approach, the idea was to find the mutational processes contributing to
the heritability of the total mutation burden. A PCA was performed on the dataset
and it was investigated which cancer types contributed the strongest (Figure
2.83) and which signatures had the highest correlations (Figure 2.85) with the
first PCs. At least three different mutational processes were identified, which
contributed to the heritability of the total mutation burden: APOBEC mutagenesis,
cancer signature 1 (correlating with age and number of cell divisions across
many tissues238), and signature 17b (most likely due to oxidative damage in
the nucleotide pool239,240). Another PC captured a mutational process with
the strongest contributions coming from lung and liver cancers, which could
speculatively point to an environmental factor or metabolic process. The contexts
with the strongest contributions to this PC were T>C in ATA (6.1 %), C>T in CCT
(5.8 %), and C>A in CCT (4.5 %), resulting in a positive correlation with COSMIC
signature 92 (tobacco smoking) and signature 16 (unknown, enriched in liver
cancer among others).

The main limitation of this analysis was the sample size. Heritability can’t
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be robustly measured at sample sizes below 1,000 since on average the errors
of the SNP-heritability estimates via GREML scale by 318/n191 (n equals the
sample size), which has not made it possible to measure heritability in the
respective cancer types separately. This would be an important analysis in the
future since different mutational processes drive different cancer types237 and
the genetic architecture has also been reported to be different across cancer
types246. Thus, heritability estimates from the pan-cancer analysis can be
regarded as averages and it would be highly likely that specific processes have
higher or lower heritabilities in individual cancer (sub)types. Moreover, even in
the pan-cancer analysis the heritability estimates had high errors. The high errors
in the estimation could be one reason why the heritability estimates between
the two cohorts had low correlations. Another highly likely reason could be the
low correlation between WES- and WGS-extracted somatic features (Figure
2.22). Other limitations are similar to the ones discussed before (Sections 3.2
and 3.3), such as differences originating from different sequencing technologies
(SNP-arrays vs. WGS).

All in all, we showed that despite limitations originating mostly from the low
sample sizes, cancer signature Ref.Sig. MMR1, the total number of C>A muta-
tions and the total mutation burden have a heritable component. Furthermore,
heritability of the total mutation burden could be attributed to at least three
different mutational processes (APOBEC, signature 1, and signature 17b). In
the future, higher sample sizes will make it possible to accurately estimate the
heritability of different somatic mutational processes across cancer types. This
will be an important step to better understand the factor inheritance plays next to
environmental factors in gaining somatic mutations, which could possibly lead to
tumorigenesis or other somatic mutation-associated disorders. In addition, this
approach shows how estimating heritability of somatic mutational features or of
traits in general can be utilized to infer a genetic cause/contribution.
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4 Methods

4.1 Extraction of Somatic Mutational Features

4.1.1 Data Sources in the Discovery Cohort

For the somatic features which were based on single nucleotide variants (SNVs),
double nucleotide variants (DNVs), and insertions or deletions (indels), the so-
matic calls from the MC3 Project250 were used. For the somatic features based
on copy number alterations (CNAs), TCGA exome data was downloaded from the
GDC Data Portal252 and processed as described in ref253. Copy numbers were
identified with the tool FACETS251. The tool used as input data the BAM file of
the tumor sample, the BAM file of the sample-matched normal sample, and a vcf
file of common human SNPs. Furthermore, 93 individuals, which were reported
to be positive for human papillomaviruses in head and neck cancer samples254,
were excluded from the analysis. In total, this yielded somatic calls from 10,033
individuals.

4.1.2 Data Sources in the Validation Cohort

Mutation calls for PCAWG8 were obtained from the ICGC data portal. Somatic
mutation calls and copy number calls were obtained from the DKFZ/EMBL vari-
ant call pipeline. All samples were downloaded except for ESAD-UK, MELA-
AU and all project id’s ending with ‘-US’ in order to prevent an overlap with
the discovery cohort. In total, samples from 1,662 donors were downloaded.
In short, single nucleotide variants were called via samtools255 and bcftools
0.1.19256, and indels were called via Platypus 0.7.4257. Copy number alter-
ations were estimated with ACEseq v1.0.189258 (Supplementary information in
PCAWG flagship paper8). Data access to the estimated somatic nucleotide
variants and copy number variants from Hartwig were acquired as well (https:
//www.hartwigmedicalfoundation.nl/en/), making up 3,613 samples in total.
In Hartwig nucleotide variants were called with Strelka259 1.0.14 and copy num-
ber alteration with the Purple tool9. BAM files for the melanoma dataset MELA-
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AU (dataset ID: EGAD00001003388; 183 individuals) and the esophagus dataset
ESAD-UK (dataset ID: EGAD00001003580; 303 individuals) were downloaded
from the European Genome-Phenome Archive (EGA). Somatic mutations were
called via Strelka260 2.9.10 and copy number alterations were extracted as de-
scribed above with the tool FACETS251.

4.1.3 Data Sources to check Overlap between WES and WGS
Features

To check how somatic features changed when extracting them from WES data
compared to WGS data, we also downloaded WGS-based somatic calls from
TCGA, which were generated within the PCAWG project8. Somatic calls were
obtained from the ICGC portal in the same way as it was performed for the other
PCAWG samples. It should be noted that these samples were not used for any
other analysis in order to keep the discovery and validation cohort independent
of each other.

4.1.4 Further Processing of Somatic Calls

For all datasets, regions which are known to be difficult to be aligned were ex-
cluded as well as regions which have been blacklisted by the UCSC Genome
Browser261. As described previously21,15 blacklisted regions by Duke and DAC
were removed and the CRG75 alignability track was applied to only keep regions
where 75-mers in the genome can be uniquely aligned in the human reference
genome hg19.

4.1.5 Single Nucleotide Variants - Total Mutation Counts

Based on the number of SNVs in the nuclear genome, 8 different somatic mu-
tational somatic features were estimated: the total number of SNVs, the number
of C>A substitutions, the number of C>G substitutions, the number C>T substitu-
tions in regions where the 3’ flanking site was not a G (non CpGs), the number of
C>T substitutions in regions where the 3’ flanking site was a G (CpGs), the num-
ber of T>A substitutions, the number of T>C substitutions and the number of T>G
substitutions. The number of C>T substitutions was divided into two groups (at
CpG sites vs. non-CpGs sites) due to the effect of CpG sites on mutation rates
(due to DNA methylation)103. A pseudocount of 1 was added to each somatic
mutational feature and all features were log transformed to the base 2.

164



4.1 Extraction of Somatic Mutational Features

4.1.6 Single Nucleotide Variants in Mitochondrial DNA - Total
Mutation Counts

As other studies have pointed, WES data can be used to extract mutations occur-
ring in the mitochondrial DNA, due to the large amount of off-target reads157,158.
The coverage file of each sample was used to estimate to which extent the mi-
tochondrial genome in each sample was sequenced. Only samples in which at
least 50 % of the mitochondrial genome were covered by at least 4 reads were
kept for further analysis. Furthermore, following a previous study157, only variants
were kept which had an allele frequency of at least 3 % in order to remove poten-
tial false-positive calls. For the cancer cohorts Hartwig, ESAD-UK and MELA-AU,
which were all based on WGS data, somatic variants in the mtDNA with a fre-
quency of less than 3 % were filtered out as well. After filtering, the total number
of SNVs in the mtDNA in each sample was calculated. For PCAWG, mutation
calls on the mitochondrial genome were downloaded from the respective study
(https://ibl.mdanderson.org/tcma/mutation.html)159. At last, a pseudocount
of 1 was added to each individual and the feature was log transformed to the base
2.

4.1.7 Single Nucleotide Variants - NMF-derived Organ-specific
Signatures

First of all, the python tool SigProfilerMatrixGenerator262 was used to generate
for each dataset a matrix counting all mutations in the 96 possible trinucleotide
contexts by considering the adjacent 5’ and 3’ base of the somatic variant (16
trinucleotides for each single nucleotide variant). Next, exposures of the organ-
specific signatures, which were derived in the work of Degasperi et al.138 were
assigned to each sample as described in ref138. Organ-specific signature expo-
sures were estimated by selecting for each sample the respective organ-specific
signature set based on the tissue it was derived from. In cases in which no organ-
specific signature set was existing due to its low sample size (e.g. mesothelioma,
thymoma, penile, and vulva), the reference mutational signature set was used. In
short, this aims to only fit signatures to a sample which were also identified in the
according tissue. The tool uses a bootstrap-based method to only assign signa-
tures to a sample when they reach a specific threshold (p < 0.05), otherwise they
are set to 0. The goal of this approach is to decrease the probability of overfitting
and miss-assignment of signatures138. In the discovery cohort the median frac-
tion of unassigned mutations was 47 % and in the validation cohort 15 %, which is
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likely due to the low number of somatic mutations in the discovery cohort. To have
a common set of signatures, all signature exposures were then converted to the
reference signature set via the conversion matrix provided in ref138. For further
analysis we only kept 17 signatures, which had in the discovery and in the valida-
tion cohort an activity of > 5 % in at least one matching cancer type or in the pan-
cancer analysis ’pancan’: Ref.Sig.1, Ref.Sig.2, Ref.Sig.3, Ref.Sig.4, Ref.Sig.5,
Ref.Sig.7, Ref.Sig.8, Ref.Sig.11, Ref.Sig.13, Ref.Sig.17, Ref.Sig.18, Ref.Sig.19,
Ref.Sig.22, Ref.Sig.30, Ref.Sig.33, Ref.Sig.MMR1 and Ref.Sig.MMR2. A pseu-
docount of 1 was added and each estimated signature count was log transformed
to the base 2.

4.1.8 Single Nucleotide Variants - Transcriptive Strand Bias

To estimate this strand bias24, the number of mutations occurring on the un-
transcribed strand and on the transcribed strand were calculated. This was per-
formed by the python tool SigProfilerMatrixGenerator262. Based on the six possi-
ble base substitutions, six different somatic features were generated (C>A, C>T,
C>G, T>A, T>C, T>G). For each one, the number of base substitutions occurring
on the untranscribed strand were divided by the number of mutations occurring
on the transcribed strand. A pseudocount of 1 was added to the numerator and
denominator before division and the resulting quotient was log transformed to the
base 2.

4.1.9 Single Nucleotide Variants - Replicative Strand Bias

To estimate this strand bias23, replication timing data from lymphoblastoid cell
lines was downloaded (http://mccarrolllab.org/resources/)263. The fork po-
larity, which is a derivative of the replication timing estimate, was estimated as
described by Seplyarskiy et al.108. In brief, the slope/derivative at each coordi-
nate of the replication timing landscape was calculated by considering the region
approximately ±5 kb of the coordinate. The fork polarity value reflects whether
the reference strand is more likely to be replicated as the leading strand (fork
polarity > 0) or as the lagging strand (fork polarity < 0). Next, the genome was
divided into equal sized bins of the length of 10 kb and the average fork polarity in
each bin was calculated. Further, the whole genome was split into 10 equal sized
bins. To calculate the replicative strand bias, we only considered the two low-
est bins (reference strand more frequently replicated as the lagging strand) and
the two highest bins (reference strand more frequently replicated as the leading
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strand). From the perspective of the reference strand, we divided the total num-
ber of T>C, T>G, G>A, and C>A mutations occurring on the leading strand by
the total number of T>C, T>G, G>A, and C>A mutations occurring on the lagging
strand. This would mean for instance that a A>G mutation occurring on the lead-
ing strand was counted as a mutation occurring on the lagging strand (since T>C
on the other strand). We focused on these four mutation types since replicative
strand biases have been previously reported for these in connection with a defi-
ciency in DNA mismatch repair149. This feature was only calculated in samples,
in which at least 20 of the 4 single substitutions types were counted within the
covered region. The estimated values were log transformed to the base 2.

4.1.10 Single Nucleotide Variants - X-Chromosomal
Hypermutation

For generating a somatic mutational feature for X-Chromosomal hypermuta-
tion155, first of all the total number of single nucleotide variants per MB on each
chromosome was counted. Next, the number of mutations per MB occurring on
the X chromosome was divided by the average number of mutations per MB oc-
curring on the autosomes. A pseudocount of 0.1 was added to the numerator and
denominator before division and the resulting quotient was log transformed to the
base 2.

4.1.11 Single Nucleotide Variants - CTCF/Cohesin Binding
Sites

CTCF/cohesin binding sites are often mutated in cancer151,152. To capture this
somatic mutational feature, we counted the number of single nucleotide variants
occurring in CTCF/cohesion binding site and divided them by the number of mu-
tations occurring in the flanking site (±500 bp) of the binding site. CTCF/cohesin
binding sites were obtained from Roadmap and averaged over 8 cell types264.
Genomic regions, that were bound by CTCF in at least one cell type and by co-
hesin in at least two cell types were set as CTCF/cohesin binding sites. All sites
±500 bp of the sites that were bound by CTCF in at least one cell type were set
as the flanking site. Length of covered genomic regions can be found in Table 4.1.
This somatic feature was only estimated in samples which had at least 10 SNVs
counted in total within the CTCF/cohesin binding and/or flanking site. At last, we
were able to calculate the CTCF somatic feature for 38 % of the samples in the
discovery cohort and 98 % of the samples in the validation cohort. The ratio was
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log transformed to the base 2.

4.1.12 Extraction of Genomic Region Densities of Expression,
Histone Mark H3K36me3, Replication Timing and
DNase I Hypersensitive Sites

Features measuring mutation rate variation with regards to expression, histone
mark H3K36me3, replication timing, and DNase I hypersensitive sites were cal-
culated using negative binomial regression in order to reduce the correlation of
these features with each other and to control for mutation substitution types. For
this purpose, regional data from a previously published study15 was used. In
brief, levels of histone mark H3K36me3 (averaged over 8 cell types) and DNase I
hypersensitive sites were downloaded from Roadmap Epigenomics264. Genomic
regions with no signal for the corresponding feature were set as ‘bin 0’ and the re-
maining genomic regions were split into 5 equal-sized bins with increasing signal.
In this way, genomic regions with the highest amount of histone mark H3K36me3
were put into bin 5, regions with the lowest amount into bin 1 and regions with no
signal into bin 0. Replication timing information was derived from the ENCODE
project using the average over 8 cell lines. Genomic regions were split into 6 equal
sized bins, where bin 1 corresponded to the latest replicating region and bin 6 to
the earliest replicating region. Expression levels were based on RNA-seq data,
which was obtained from Roadmap264 and averaged over 8 cell types as well. Bin
0 represented regions with no expression (RPKM = 0) and the remaining 5 bins
were split equally by increasing expression levels. All these genomic masks were
further processed by applying the CRG75 alignability track. For the whole- exome
sequencing data specifically, the masks were intersected with the coverage mask
from the MC3 project, since the somatic WES mutation calls were derived from
there. Furthermore, the 4 masks (expression, histone mark H3K36me3, replica-
tion timing, and DNase I hypersensitive sites) were intersected with each other for
the subsequent regression. Several bins extracted from the whole exome mask
covered only a small region in the genome (< 5 MB), which was expected since
the exomic regions in the genome are known to be enriched for early replicating
regions and histone mark H3K36me3. Since we observed that the regression
often failed when bin sizes were too small, some bins were merged: replicating
timing bins 1 and 2, histone mark H3K36me3 bins 1 and 2, expression bins 0 and
1, and DNase I hypersensitive site bins 1 and 2. This step was not performed
for the whole-genome masks since the covered regions for each bin were big

168



4.1 Extraction of Somatic Mutational Features

enough. Length of covered genomic regions can be found in Table 4.1.

4.1.13 Single Nucleotide Variants - Mutation Enrichment
Calculations with regards to Expression, Histone Mark
H3K36me3, Replication Timing and DNase I
Hypersensitive Sites

The individual features corresponding to the enrichment of mutations in a partic-
ular genomic region were calculated via negative binomial regression using the
function glm.nb from the R package MASS (version 7.3.53) in R 3.5.0. The regres-
sion was performed for the different features in each tumor sample as follows:

(i) mutation count ∼ replication timing + mutation type + offset

(ii) mutation count ∼ replication timing + DNase + mutation type + offset

(iii) mutation count ∼ replication timing + expression + mutation type + offset

(iv) mutation count ∼ replication timing + H3K36me3 + mutation type + offset

In the discovery cohort (WES only) the mutation type variable had 7 possible en-
codings (C>A, C>T at CpG sites, C>T at non-CpG sites, C>G, T>A, T>C and
T>G), and in the validation cohort (WGS only) the mutation type variable encom-
passed all 96 possible substitutions within the trinucleotide context (e.g. C>A
mutation within ACA context). The offset represents the nucleotide-at-risk and
is the natural log of the number of nucleotides covering the respective region.
As described previously15, the coefficients obtained from the regression for the
different genomic regions represent the log enrichment of mutations in each bin
in comparison to the reference bin. For replication timing, the latest replicating
bin was set as the reference, for expression the lowest expressing bin was set
as the reference and for histone mark H3K36me3 and DNase I hypersensitive
sites the bins with no signal were set as the reference. This would mean that for
instance the coefficient obtained from regression (iv) for bin 5 from the histone
mark H3K36me3 variable describes the log enrichment of mutations in regions
with a high signal of this histone mark in comparison to regions with no histone
mark signal, while controlling for replication timing and the mutational context. In
this way we aimed to control for the correlation of expression levels, histone mark
H3K36me3 and DNase I hypersensitive sites with replication timing and the muta-
tional context. Especially, for WES data this approach was limited by the reduced
covered genomic region and the decreased number of mutations in comparison
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to whole-genome sequencing data. The regression was only performed in sam-
ples, that had at least 30 SNVs counted. The coefficient obtained in regression
(i) for the earliest replicating bin was extracted for the replication timing (RT) fea-
ture, the coefficient obtained in regression (ii) for the bin with the highest amount
of signal in DNase I hypersensitive sites was extracted for the DNase I hypersen-
sitive site (DNase) feature, the coefficient obtained in regression (iii) for the bin
with the highest expressing regions was extracted for the expression (Expression)
feature, and the coefficient obtained in regression (iv) for the bin with highest
amount of signal in histone mark H3K36me3 was extracted for the H3K36me3
(H3K36me3) feature. High errors in the regression coefficients (standard error >
100) indicated that the regression failed to converge for the corresponding coef-
ficient and thus, were removed. In the discovery cohort, 7,650 RT coefficients,
7,684 H3K36me3 coefficients, 7,471 DNase coefficients and, 7,664 Expression
coefficients were extracted in total. In the validation cohort, 5,759 RT coefficients,
5,749 H3K36me3 coefficients, 5,752 DNase coefficients and, 5,759 Expression
coefficients were extracted in total.

4.1.14 Double Nucleotide Variants - NMF-derived Signatures
and Fitting

Double nucleotide variants were extracted with the python tool SigProfilerMatrix-
Generator262. The tool counted the occurrence of 78 double nucleotide variants
(AC, AT, CC, CG, CT, GC, TA, TC, TG, or TT to NN). The matrix was used as
an input to extract Double Base Substitution (DBS) signatures using the python
tool SigProfilerExtractor14. In brief, the tool uses non-negative matrix factoriza-
tion (NMF) to extract mutation signatures. Since the exact number of mutation
signatures is not known, the tool extracted 1 to 25 signatures. For each signa-
ture extraction 100 iterations were performed adding poisson noise to the sam-
ples during each iteration. For the discovery cohort the optimal solution were 3
signatures and for the validation cohort 11. Next, the tool fitted the established
DBS signatures from COSMIC4 v3.2 to the extracted de-novo signatures. Then,
signature exposures were estimated by fitting the extracted COMISC signatures
to each sample. In the discovery cohort the COSMIC4 DBS signatures DBS1,
DBS2, DBS4, DBS9 and DBS10 were extracted and in the validation cohort the
DBS signatures DBS1, DBS2, DBS4, DBS5, DBS6, DBS7 and DBS9 were ex-
tracted. The 4 DBS signatures which were found in both cohorts were kept for
association testing: DBS1, DBS2, DBS4 and DBS9. Next, a pseudocount of 1
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was added to each estimated signature exposure and each estimated exposure
was log transformed to the base 2.

4.1.15 Insertions and Deletions - Total Mutation Counts

Different insertion and deletion somatic mutational features were generated. First
of all, the total number of indels occurring in each sample was counted. Next,
the number of indels in microsatellite (MS) regions was counted due to its fre-
quent occurrence in sample with deficient mismatch repair6,265. For this pur-
pose, the number of indels with a length of 1 bp and the number of indels
with a length of 2 to 5 bp were counted within and outside MS regions. MS
locations were identified via the tandem repeat search tool Phobos (https:
//www.ruhr-uni-bochum.de/ecoevo/cm/cm_phobos.htm). Next, the total number
of indels with a length of 6 to 10 bp was counted. Due to the low number of indels
of this length, especially in whole-exome sequencing data, this feature was not
further split into MS vs non-MS regions. Furthermore, since deletions have often
been reported to be predictive of deficiency in homologous recombination95, dif-
ferent deletion features were created. The total number of deletions with a length
of bigger than or equal to 10 bp was created. Also, the number of deletions at
flanking microhomology sites of either 1 bp or more than 1 bp was counted by us-
ing the output matrix from the python tool SigProfilerMatrixGenerator262. A pseu-
docount of 1 was added to each feature and each feature was log transformed to
the base 2.

4.1.16 Insertions and Deletions - NMF-derived Signatures and
Fitting

Small insertion and deletion (ID) signatures were extracted in the same way as
described for the DBS signatures. For the discovery cohort the optimal solution
were 4 signatures and for the validation cohort 10. The COSMIC4 ID signatures
were fit to the de-novo signatures and in the discovery cohort COSMIC4 ID signa-
tures ID2, ID3, ID4, ID7, ID8 and ID15 were extracted and in the validation cohort
ID signatures ID1, ID2, ID3, ID4, ID5, ID6, ID8, ID9, ID10, ID12, ID13 and ID14
were extracted. The 4 ID signatures which were found in both cohorts were kept
for further association testing: ID2, ID3, ID4 and ID8. Next, a pseudocount of 1
was added to each estimated signature exposure and each estimated exposure
was log transformed to the base 2.
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4.1.17 Copy Number Variants - Total Mutation Counts, Ploidy
and Whole Genome Duplications

Copy number based features were generated by splitting amplification and dele-
tion events by different sizes. The number of amplifications with a size of 1 to
10 kb, 10 to 100 kb, 100 to 1000 kb, and bigger than 1000 kb were counted. Sim-
ilarly, the number of deletions with a size of 1 to 10 kb, 10 to 100 kb, and bigger
than 100 kb were counted. Next, a feature was generated based on the estimated
ploidy of the tumor sample from the corresponding copy number detection tool.
The number of whole genome duplication (WGD) events were calculated by di-
viding the ploidy by 2 via integer division. A pseudocount of 1 was added to the
amplification and deletion based features, a pseudocount of 0.1 was added to the
WGD feature and no pseudocount was added to the ploidy feature since ploidy
can never be 0. At last, each feature was log transformed to the base 2.

4.1.18 Principal Component Analysis

For the PCA all somatic features described above were used except for the fol-
lowing 9 somatic features: total number of SNVs, total number of indels and total
number of the 7 different single mutation substitutions types. These were ex-
cluded since they were already represented by the different NMF- derived signa-
tures. Further, all samples were removed in which 20 % of the features were not
estimated due to low mutation counts. Thus, 9,235/9,425 samples were left in the
discovery cohort and 5,597/5,613 samples were left in the validation cohort. Next,
missing values were replaced by the median value of the respective columns and
each feature was centered and standardized to a mean of 0 and standard devia-
tion of 1. This step was performed for the somatic features, which were extracted
from three different cohorts (TCGA, Hartwig, PCAWG), separately in order to con-
trol for potential biases. Then, the three matrices were merged and used as input
for the PCA (samples as rows, features as columns). PCs were extracted using
the funcion PCA in the R package FactoMineR (version 2.4). Correlations were
estimated by calculating the pearson correlation of each input somatic feature
with each estimated score of each PC. Contributions were calculated by squaring
the estimated loading matrix and dividing the squared loading by the sum of the
loadings for the respective PC. Thus, the sum of the contributions (56 somatic
input features for each PC) for each PC equals 1 (100 %).
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4.1.19 Independent Component Analysis

The ICA was run on the same 56 somatic feature using the input matrix as de-
scribed above. Similarly, as for the NMF, the number of ICs needs to be set
before running the ICA. The methodology to extract the optimal number of com-
ponents was adapted from the methodology applied previously15 to extract the
optimal number of NMF derived components. For the extraction of ICs the R
package fastICA (version 1.2.1) in R 3.5.0 was used. The ICA was run by varying
the number of extracted components from 2 to 30. For each component extrac-
tion the ICA was run 200 times and the seed for the random number generator
was changed before every iteration. In each iteration the ICA decomposes the
input matrix into a loadings matrix (corresponding to the components and their
attributed weight from each somatic feature) and a scoring matrix (also called
source matrix; samples projected to new component axes). After 200 iterations,
the 200 loadings matrices were combined and clustered using k-medoids cluster-
ing with varying k from 2 to 50. Clustering was performed with the function pam
from the R package cluster (version 2.0.6). For each clustering the average of
the mean silhouette indexes of each cluster were saved as well as the lowest and
second lowest mean silhouette index of a cluster extraction. Later, extracted sum-
mary silhouette indexes for different extracted IC numbers were plotted against
the different number of extracted clusters (Figure 2.25). The optimal number of
components was decided on visually (Figure 2.26). For a given extracted number
of ICs, the optimal number of clusters was always times 2 since during each iter-
ation signs flipped randomly and thus, each component always had a ‘mirrored’
counterpart with opposite signs (Figure 2.27). In the end always one component
of the mirrored pair was kept. For the ICA with 56 somatic features as input, 15
individual ICs (using 30 clusters) were extracted. Correlations and contributions
of each input somatic feature were estimated as described above (Figure 2.28).

4.1.20 Extraction of Components via a Variational
Autoencoder

The architecture of the VAE was adapted from studies from Way et al.266,267

(https://github.com/greenelab/tybalt/blob/master/tybalt_vae.ipynb),
where they applied a VAE to compress gene expression data to extract biolog-
ically relevant representations. The script was modified for our purposes. In
short, it is a simple ladder-VAE architecture268 consisting of one encoding and
one decoding layer to generate a generalizable representation of the input and
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to use this representation to reconstruct the input. Batch normalization was
performed in the encoding layer before applying the activation function ReLu.
In the encoding layer the VAE learned a distribution of means and standard
deviations to generate the latent space. This latent representation was then
decoded in the decoding layer by applying the tanh function as the final activation
function. Weights were initialized via the Glorot uniform initializer269. We also
tested adding an additional layer between the input and the encoding layer and
between the latent space and the decoding layer. The extra layer always had 2
times more dimensions than the latent space and involved a batch normalization
step before applying the ReLu activation function. The reconstruction loss was
the sum of the mean squared error and the KL-divergence loss. To encour-
age learning, the ladder-VAE makes use of a so called warm start, meaning
that it starts training without the KL divergence loss and linearly increases
the contribution of the KL divergence loss after each cycle via the parameter
beta (mean squared error+beta*KL divergence loss). The linear increase of
the contribution of the KL divergence loss was controlled via the parameter kappa.

In contrast to a previous VAE architecture266,267, we applied the tanh func-
tion in the final decoding layer and used the mean squared error as part of the
reconstruction loss since our input was not binary. To reconstruct the input via the
tanh function, all the somatic features were transformed to a range of -1 to 1 prior
to running the VAE. The data was split into 90 % training data and 10 % validation
data and stratified by gender and cancer type. Performance was evaluated
by checking the mean correlation of the reconstructed validation set with the
validation input set and by calculating the correlation with selected ICs, which
were shown to represent biologically relevant components. For this purpose, we
calculated the maximum correlation of the components from the latent space
of the VAE to the ICs 3 (dMMR_ICA), 4 (dHR_ICA), 12 (Smoking_ICA) and 14
(UV_ICA) and then calculated the average. To find the optimal hyperparameters
we performed a grid search testing over 4,300 hyperparameter combinations
(Figure 2.31). After finding the optimal hyperparameters, the VAE was run for
different latent space dimensionalities 5 times with different random initializations
(Figure 2.32). In the end, the results from using a latent space with 14 dimensions
was extracted for further downstream analysis using the architecture with no
extra layer between input and encoder and with no extra layer between decoder
and output (Figures 2.33 and 2.34).
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The VAE was run in a singularity container. A docker file was generated
based on the docker image tensorflow/tensorflow:1.15.5-gpu-py3-jupyter and
the python modules scipy, scikit-learn, and seaborn were added. The resulting
docker image was then uploaded into Docker Hub and run in a singularity
container. Python version 3.6.9, keras version 2.2.4 and tensorflow version
1.15.5 were used in this environment.

4.1.21 Estimation of Tissue Enrichments of Components

Tissue enrichments of individual components (Figures 2.30 and 2.35) were calcu-
lated as follows. For each component it was tested whether the component scores
from one cancer type were significantly different to the scores of the remaining
cancer types via a two-sided Welch’s t-test. In addition, Cohen’s d statistic was
calculated between the two groups. This test was performed for each cancer
type and separately for the two cohorts (TCGA and PCAWG + Hartwig). Cancer
types were then grouped into their corresponding tissue of origin and the average
Cohen’s d statistic was calculated.

4.2 Identification of Rare Damaging Germline

Variants

4.2.1 Extraction of Rare Germline Variants in the Discovery
Cohort

TCGA bam files were downloaded as described here253. Strelka260 2.9.7 was run
on TCGA WES normal and tumor samples to extract germline variants. Germline
variants called in the tumor samples (will be a mix of germline and somatic muta-
tions) were used later in a downstream step to only keep germline variants which
were identified in the normal and tumor tissue. In this way, we aimed to remove
potential false-positive germline calls in the normal sample and to remove vari-
ants which were selected out in the tumor and thus, irrelevant for our association
analysis. Germline variants which were called in the normal sample with the filter
PASS were kept as well as variants which were called with the filter LowGQX but
had a GQX of at least 10. Variants which were found inside gnomAD3 with the
filter PASS and had a GQX of at least 10 were kept as well as variants which
were not found inside gnomAD3, but had a GQX of at least 20. Next, variants
were annotated via ANNOVAR270 (version 2019-10-24), CADD185 v.1.6 scoring
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was added, and only exonic, and splicing variants were kept. Furthermore, only
variants which had allele frequency of less than 0.1 % in gnomAD3 (overall and
in each subpopulation) were kept as well as variants which were not found inside
gnomAD3. Variants with a frequency equal to or higher than 1 % within the co-
hort were removed. Additionally, rare germline variants were only kept when they
were also found in the matching tumor sample.

4.2.2 Generation of a Coverage File for TCGA

We used the same methodology as described in previous work167 to only extract
genomic regions with sufficient coverage to be sure that regions in which no dam-
aging germline variant was called was not due to lacking coverage. In brief, within
each sequencing center (BI, WU, and BCM) 100 coverage files were randomly se-
lected. Genomic regions which were covered by at least 8 reads in 90 % of the
samples within each sequencing center were kept. Next, the coverage masks of
the 3 sequencing centers were intersected, making up in total a genomic mask
of 60 MB in length. Only genomic regions within these sites were kept for further
analysis.

4.2.3 Extraction of Germline Variants in the Validation Cohort

Germline variants from PCAWG, Hartwig, ESAD-UK and MELA-AU were all pro-
cessed in the same way if not indicated otherwise. Each cohort was processed
at the beginning separately due to the different formats. The files were com-
bined in the end. While germline calls from PCAWG and Hartwig were obtained
as described above, germline variants in ESAD-UK and MELA-AU were called
via Strelka 260 2.9.10 (same approach as in TCGA), and derived from the same
datasets from which the somatic calls were obtained as well. Thus, for ESAD-UK
and MELA-AU the same approach as for TCGA was applied. For PCAWG and
Hartwig, germline calls with the filter PASS by the respective germline detection
tool were kept. Next, variants which were found inside gnomAD3 and had the fil-
ter PASS were kept as well as variants which were not found inside gnomAD (rare
singletons). Variants were annotated via ANNOVAR270 (2019-10- 24). All vari-
ants which were found inside gnomAD3 were required to have an allele frequency
of less than 0.1 % (overall and in each subpopulation). Exonic and splicing vari-
ants were extracted. Furthermore, variants outside the CRG75 alignability mask
were filtered out and variants with a frequency equal to or higher than 1 % within
each cohort were discarded as well. The rare germline calls from the different
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cohorts were combined. Further, in all cases in which germline calls were also
available for the matching tumor sample, variants were filtered out if they were
not found in the matching tumor sample. Germline calls for matching tumor sam-
ples were available for whole PCAWG, ∼80 % of Hartwig, and not available for
ESAD-UK and MELA-AU.

4.2.4 Definition of Rare Damaging Germline Variants

In this study 5 definitions of Rare Damaging Germline Variants (RDGVs) were
applied in addition to requiring an allele frequency of < 0.1 % (described above):

(i) RDGV = protein truncating variants (PTVs)

(ii) RDGV = PTVs + Missense variants with a CADD185 = 25

(iii) RDGV = PTVs + Missense variants with a CADD185 = 15

(iv) RDGV = Missense variants with a ’missense tolerance ratio’271 5 25th per-
centile

(v) RDGV = Missense variants with a ’constrained coding region’272 value =

90th percentile

For case (i) only PTVs were considered. PTVs comprised in this study frameshift
deletions, frameshift insertions, stoploss variants, stopgain variants, startloss
variants and splicing variants. Splicing variants comprise the canonical splice
variants annotated by ANNOVAR270 (version 2019-10-24) and variants with a pre-
dicted donor loss or acceptor loss higher than 0.8 by SpliceAI273. Pre-computed
SpliceAI score files were downloaded from Illumina Basespace and annotations
were added to each variant (hg38 for the discovery cohort and hg19 for the
validation cohort). For cases (ii) and (iii) potentially damaging missense SNVs
were added on top of the PTVs. Deleteriousness was assigned via the phred-
scaled CADD185 scores. For case (iv) we only considered missense SNVs with
a missense tolerance ratio (MTR)271 lower or equal to the 25th percentile and
for case (v) we only considered missense SNVs with a constrained coding region
(CCR)272 value equal or bigger than the 90th percentile. On top of these variant
filtering steps, two additional filtering steps were applied to all five RDGV sets in
order to discard potential false-positive RDGVs: the proportion expressed across
transcripts (PEXT) metric274 and the terminal truncating exon rule3.
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4.2.5 Filtering out Non-Expressed Variants via the PEXT
Metric

The PEXT score was introduced in one of the gnomAD articles and in brief, es-
timates to which extent a variant is expressed in a tissue based on isoform tran-
scription levels from RNA-seq data. PEXT scores were estimated using over
11,000 tissue samples from GTEx274. Thus, PEXT scores were downloaded and
added to the variant annotations. Since hg38 was used for the germline calls in
the discovery cohort, PEXT annotations were first converted from hg19 to hg38
via the liftover tool from UCSC261 (version 021620). This step was not necessary
for the validation cohort. Variants were only kept when they had a PEXT value
higher than 0.1 in the matching GTEx tissue. Matching a cancer type with the
most appropriate GTEx tissue was mostly guided by a previous study275. For
cases in which no matching GTEx tissue was available for a cancer type, the
mean PEXT value was used. This filter was applied to all variants not affecting
splicing since many splicing variants are close to exon borders and thus, don’t
have a PEXT score.

4.2.6 Exclusion of Terminal Truncating Exon Variants (with
exceptions)

Terminal truncating variants might not have a deleterious loss-of-function effect
since they can escape non-sense mediated decay ref and still be functional. For
these reasons, they have been also removed in the loss-of-function transcript ef-
fect estimator (LOFTEE) of gnomAD3. Hence, variants occurring in the terminal
exon were removed. This filter was not applied in cases in which the variant was
predicted to have a deleterious effect by CADD=15 or in cases in which the vari-
ant was predicted to have a splicing effect. In this way, we aimed to reduce the
risk of loosing potentially harmful variants, which as described in the gnomAD
flagship paper3, can be the case when the C-terminal domain of a protein exerts
a crucial function. To identify variants occurring in the last exon, gene coordinates
were downloaded from UCSC261 using the NCBI RefSeq track276. Exon coordi-
nates of the last exon of the longest transcript were kept. These coordinates were
then intersected with the variant coordinates in order to detect variants occurring
in terminal exons.
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4.3 Detecting and Assigning putative Loss of

Heterozygosity (LOH)

4.3.1 Detecting and Assigning putative LOH in the Discovery
Cohort TCGA

To detect LOH, we considered the copy number calls from FACETS251. FACETS
calls were available for 9,814 samples. We extracted all ’LOH’ and ’DUP-LOH’
calls and assigned them to genes by intersecting the extracted coordinates with
gene coordinates from NCBI Refseq276 hg38. We assigned LOH to a gene in
samples in which LOH was called via FACETS + the variant allele frequency of
the RDGV was not higher in the normal sample than in the tumor sample and
the variant allele frequency of the RDGV was not higher than 0.8 in the tumor
and sample-matched normal sample. In this way, we aimed to only consider LOH
events, when the putative RDGV of interest got enriched in the tumor via LOH
since this was the tested hypothesis for the recessive and additive model. For
441 samples for which we did not have any FACETS calls, we assigned LOH
to a gene in a sample when the difference in the variant allele frequency of the
putative RDGV between tumor and normal sample was higher than 0.25 and
when the variant allele frequency of the putative RDGV was higher than 0.8 in the
tumor and sample-matched normal sample.

4.3.2 Detecting and Assigning putative LOH in the Validation
Cohort

For PCAWG (excluding ESAD-UK and MELA-AU), CNV calls from ACEseq258

v1.0.189 were further processed. All passed calls with the assignments ’LOH’,
’LOHgain’ or ’cnLOH’ were extracted and genes were assigned to the LOH
events as before (using NCBI Refseq276 hg37). We excluded LOH calls when
the corresponding RDGV in the respective gene had a lower allele frequency in
the tumor than in the sample-matched normal sample and the allele frequency
was not higher than 0.8 in both tissues.

For ESAD-UK and MELA-AU, CNV calls were available via FACETS251

and LOH was called as described for TCGA. In contrast to the steps performed
for TCGA, germline calls from the tumor tissue were not available for ESAD-UK
and MELA-AU. Thus, LOH calls were not further filtered.
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For Hartwig, CNV calls were provided via the tool Purple9. LOH was as-
signed to locations in which the minor allele ploidy was lower than 0.4. LOH calls
were excluded in cases in which the allele frequency of the RDGV was lower in
the tumor than in the sample-matched normal tissue and the allele frequency of
the RDGV was not higher than 0.8 in the normal and tumor tissue. This was only
applicable to the samples in which germline calls from the tumor genome were
available (678 samples with germline calls from tumor genomes not available).

4.4 Gene-Based Rare Variant Association Testing

4.4.1 Extraction of Common Germline Variants and
Sample-level Quality Control

Common variants were extracted from the normal samples to apply some sample-
level quality control as well as to prepare the data to perform a PCA for ex-
tracting population ancestry. The following steps were performed for the dis-
covery cohort (TCGA) and the validation cohort (PCAWG and Hartwig) sepa-
rately. Germline variants which were called with the filter PASS were kept. Also,
in accordance with the extraction of rare germline variants, variants with the filter
LowGQX but a GQX=10 were kept in the respective cohorts (TCGA, ESAD-
UK and MELA-AU). Common variants were extracted by only keeping variants
which were identified inside gnomAD3 with the filter PASS and with an allele
frequency > 5 % within the overall population. In TCGA all variants within the gen-
erated genomic mask were retained and in the other cohorts all variants within
the CRG75 alignability mask were retained. Loci, in which more than 2 alleles
existed were removed. The total number of common variants inside each sam-
ple was calculated and within each cohort (TCGA, Hartwig, PCAWG) samples
in which the total number of variants was 1.5 standard deviations away from the
mean were discarded (214 samples in TCGA, 212 samples in Hartwig, 204 sam-
ples in PCAWG) (Figures 2.42a and 2.43a). Next, common variants for each
cohort were uploaded into PLINK v1.90b6.1 and further processed there. Miss-
ing genotypes were set as homozygous for the reference allele. Only variants
with a MAF > 5 % were retained and samples with a heterozygosity rate ±3 stan-
dard deviations away from the mean were removed (127 samples in TCGA, 54
samples in Hartwig, 39 samples in PCAWG) (Figures 2.42b and 2.43b). For the
following steps, variants on the sex chromosomes, on the mitochondrial chromo-
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some and within regions with high amount of linkage disequilibrium (LD) (https:
//github.com/meyer-lab-cshl/plinkQC/tree/master/inst/extdata) were re-
moved. Also, variants extensively deviating from the Hardy-Weinberg-equilibrium
with p < 10−6 were excluded.

4.4.2 Identification of Duplicated or Related Individuals

The dataset was pruned on the discovery cohort (TCGA) and on the merged
validation cohort (PCAWG and Hartwig) separately, applying a window size of 50
bp, a step size of 5 and a r2 threshold of 0.2. The identity-by-state (IBS) matrix
was calculated for all pairs of individuals within each cohort. Within all pairs of
individuals with identity-by-descent (IBD) > 0.185 (0.185 would be the expected
value for individuals between third- and second-degree relatives) one individual
was removed (542 samples in TCGA, and 479 samples in PCAWG and Hartwig)
(Figures 2.42c and 2.43c).

4.4.3 Extraction of European Individuals

To extract individuals of European ancestry the pruned dataset was used and a
principal component analysis (PCA) was performed. The PCA was run on the
discovery cohort and on the merged validation cohort (Figures 2.44 and 2.45).
The first ten principal components were used for clustering using the R pack-
age tclust (version 1.4.2), which trimmed 1 % of the outlying samples as de-
scribed previously167. Individuals were grouped into k = 10 clusters and European
groups were selected based on the reported TCGA/PCAWG annotations. In total
7,864 individuals were retained in the discovery cohort and 4,691 individuals were
retained in the validation cohort. The PCA was repeated on the pruned dataset
for the individuals of European ancestry in the respective cohorts to extract the
PCs, which were used as covariates in the association testing (Figures 2.46 and
2.47).

4.4.4 Gene-Based Rare Variant Burden Testing

As described above 29 somatic mutational components were extracted from
the discovery and validation cohort from the tumor genomes. Rare damag-
ing germline variants (RDGVs) were extracted from the sample-matched normal
samples. Gene-based rare variant burden testing was only performed on sam-
ples which survived the quality control filters (as described above). We limited the
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analysis to individuals with European ancestry due to the bigger sample size. In
addition, only samples in which at least 10 SNVs were counted were kept. In total
6,799 samples were left in the discovery cohort for testing and 4,683 samples
were left in the validation cohort for testing.

4.4.5 Gene Set

For testing, RGDVs occurring in 892 different genes were extracted. The
gene set covered DNA damage response genes277, known cancer pre-
disposition genes165, genes involved in chromatin organization (https://
pathcards.genecards.org), genes involved in DNA double strand repair (https:
//pathcards.genecards.org), genes which were reported to regulate MSH2 sta-
bility278, and human homologs of genes, in which heterozygous mutations cause
genetic instability in Saccharomyces cerevisiae196. Effectively, out of the 892 in-
dividual genes 746 genes were tested in the most permissive RDGV set (set iii)
in pan-can. The remaining genes were not tested in the discovery cohort since
not enough RDGVs were identified in these genes to test them.

4.4.6 Association Testing via SKAT-O

Association testing was performed in each cancer type separately and with all
cancer types together (pan-can). The effect of a gene on a somatic component
was only tested when a RDGV in that gene was identified in at least two
individuals. Testing was performed across 12 cancer types as shown in Table
4.5. Accordingly, depending on the cancer type different numbers of genes were
tested in total.

Association testing was conducted via the unified testing approach of SKAT-O184.
In short, SKAT-O combines the tests SKAT and burden via a weighted mean:

Qρ =ρ QB + (1-ρ)QS.

Here, Qρ is the final statistic from the weighted mean of the burden statistic
QB and SKAT statistic QS. The parameter ρ influences how strongly each test
is weighted. SKAT-O testing was performed via the R package SKAT184. For
testing, the covariates were firstly regressed against the somatic components
with the function SKAT_Null_Model. When applicable, age of diagnosis, sex,
ancestry (first 6 PCs) and cancer type were used as covariates. Categorical
variables were encoded as dummy variables with the R package dummy. Missing
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age information was imputed by taking the median value in the respective cohort.
After initializing the null model, SKAT-O was run by using the function SKAT and
setting the method to SKATO. The function ran SKAT-O with 10 different values
of ρ (from 0 to 1) and reported the ρ value which led to the lowest p-value.

Three models of inheritance were tested in total and individual variants
were encoded as follows:

(i) Dominant: no RDGV = 0; RDGV = 1

(ii) Additive: no RDGV = 0; RDGV = 1; RDGV + somatic LOH or biallelic
RDGV = 2

(iii) Recessive: no RDGV = 0; RDGV + somatic LOH or biallelic RDGV = 1;
RDGV without somatic LOH = excluded sample

Taken together, 3 models of inheritance were tested with 5 different RDGV sets,
making up in total 15 models to test across 12 different cancer types and pan-
can. In total, 15*12*29 = 5,655 model scenarios could have been tested at most.
Ultimately, 4,693/5,655 out of scenarios were tested in the discovery phase, since
in particular the recessive model could not be tested in many cancer types since
not enough RDGV + somatic LOH events in the selected genes were detected.

4.4.7 Estimation of Effect Sizes via Burden Testing

Since no effect sizes were reported in SKAT-O, we also performed gene-based
burden testing (aggregating variants occurring in the same gene) applying the
same models as above. Association testing was performed via linear regression
with the lm function of the R base package stats in R 3.5.0 as follows:

(i) Somatic Component ∼ Gene + Covariates

The somatic components were coded as quantitative variables as described
above. The gene variable was encoded as a binary categorical variable depend-
ing on the model of inheritance (additive, recessive, dominant). When applicable,
we controlled for age of diagnosis, sex, cancer type and ancestry (first 6 PCs) as
covariates. In total, burden testing was performed for each scenario which was
also tested via SKAT-O.
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4.4.8 Quantile-Quantile Plots for Quality Control

To check for potential biases in testing, we plotted quantile-quantile plots (QQ-
plots) for each somatic component tested for each scenerio (model of inheritance,
RDGV set) in the respective cancer type and calculated the corresponding infla-
tion factor λ . For the QQ-plots, the expected p-value was calculated by ranking
all tested genes and dividing the rank of a gene by the total number of genes
tested. The idea behind the QQ-plots was that most genes were expected to not
have an effect on a somatic feature and thus, most p-values would be distributed
randomly and fall on a linear line when ordered. The inflation factor λ was calcu-
lated to check for inflation, which would be indicated by λ > 1. The inflation factor
λ was estimated by dividing the median of the chi-squared test statistic of the
p-values (in R: qchisq(1-p_values,1)) by the expected median of the chi-squared
distribution, which would be a chi-squared distribution with one degree of freedom
(in R: qchisq(0.5,1)). QQ-plots with no inflation would have an inflation factor of
λ ≈1 and deflated QQ-plots would have an inflation factor of λ < 1. Ultimately,
we excluded model scenarios in which at least 100 genes were tested and the
inflation factor was =1.5 (19 ot ouf 1,909).

4.4.9 Estimation of False Discovery Rates

We calculated false discovery rates (FDRs) via two approaches: empirical FDR
and via a random set of genes. To estimate the empirical FDR, the somatic
component matrix (somatic components as columns and sample IDs as rows)
were randomly shuffled within each cancer type. Importantly, the link between in-
dividuals and somatic components was broken, but correlation structure between
features was conserved. Then, with the randomized somatic component matrix
testing was performed in the same way as it was performed before. We calcu-
lated empirical FDR thresholds for each cancer type (or pan-can) separately.
For instance, the p-value at which 1 % of the associations from the randomized
run would have been called as a hit (false discovery) corresponds to a FDR of 1 %.

For our second approach, we repeated the whole analysis using 1,000 ran-
dom genes. We generated a list of genes, which were not in our pre-selected
gene list of 892 genes and in which RDGVs according to RDGV set (iii) were
identified in at least 2 samples. In addition, we discarded all genes which were
reported to have a physical interaction with any gene from our pre-selected gene
list according to the reported physical interactions from STRING v11.5279 with a
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combined score of at least 50 %. Out of 11,408 remaining genes, 1,000 genes
were randomly selected and used for testing. Next, we performed the same steps
as it was performed for the pre-selected list of genes, including the calculation
of empirical FDRs via randomization and the exclusion of model scenarios with
high inflation factors (31 out of 1,885). Based on the conservative hypothesis that
there would be no real associations from the random list of genes, we calculated
FDRs at different empirical FDR thresholds by dividing the number of hits, which
were detected via the random list of genes by the number of genes detected
at the same empirical FDR with our pre-selected list of genes. For instance,
at an empirical FDR of 1 % we identified 44 hits with our random list of genes
and 207 hits with out pre-selected list of genes. Thus, we estimated a FDR of
44/207≈21 % at our empirical FDR of 1 %. This is a very conservative estimate
of the FDR since the random gene lists may also include genes which affect
somatic mutation processes.

4.4.10 Identification of Associations in the Discovery Cohort
and Re-Testing in the Validation Cohort

Hits were identified in the discovery cohort when they were significant either at
a FDR of 1 % or 2 % based on the estimation of the empirical FDR. These were
then re-tested in the matching cancer type based on the tissue of origin (see Table
4.3). In total, for 12 individual cancer types a matching cancer type based on the
tissue of origin was available in the validation cohort with a sample size of at least
50 samples: bladder cancer, brain glioma multiforme, low-grade glioma, breast
cancer colorectal cancer, kidney cancer, lung adenocarcinoma, lung squamous
carcinoma, ovary cancer, prostate cancer, skin cancer, stomach and esophagous
cancer. Hits which were identified with all cancer types together (pan-can) were
re-tested in the validation cohort in the same way. We called a hit as replicated
when it reached the empirical FDR of either 1 % or 2 % and had the same estimate
effect direction as in the discovery cohort. Effect size directions were extracted
from the performed burden tests.

4.5 Network anaysis

For the network analysis, we downloaded protein network data from STRING
v11.5279 involving only physical links, and from HumanNet v3280 the functional
gene network (HumanNet-FN). From STRING we only kept interactions which
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had a combined confidence score (based on experimental, database, and text
mining) of at least 80 %. The following steps were performed for each protein
network separately.

Firstly, we extracted all interactions which involved interactions between
genes from our pre-selected gene list of 892 genes. We calculated the total
number of interactions our replicated genes had at an empirical FDR of 1 % with
each other. It was tested via randomization whether this number was higher
than one would expect at random. For this purpose, we selected randomly the
same number of genes and calculated the total number of interactions these
genes had with each other. We controlled for the total number of interactions
each gene had, since some genes (e.g. BRCA1) have in general a lot of physical
interactions, which would confound our results. To control for this, we counted
the total number of interactions our replicated genes had, split them into 10 equal
sized bins, assigned all our pre-selected genes a bin, and then selected randomly
the same number of genes from each bin. Randomization was performed 1,000
times.

Next, we counted how many genes, which only replicated at an FDR of
2 %, had at least one interaction with a gene which replicated at an FDR of
1 %. Here, we applied the same approach. We counted the total number of
interactions each gene, which only replicated at an FDR of 2 %, had in total and
split the number of interactions into 10 equal sized bins. Each gene from our list
of genes was assigned a bin and then we randomly selected 1,000 times the
same number of genes from each bin and performed the same calculation.

4.6 Calculation of Frequency of RDGVs in Length

Matched Randomly Selected Genes

To calculate the number of RDGVs occuring in a control set of genes, we matched
each replicated gene randomly with a gene covering the same length. For this
pupose, we intersected the TCGA coverage file (see Methods 4.2.2) with the
reported exonic coordinates provided by NCBI RefSeq track276 hg38. We only
considered protein-coding genes. The covered length of each gene was cal-
culated in kilobases and each replicated gene was randomly matched 10 times
with a gene, which covered the same length in our data. Subsequently, RDVGs
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based on different sets (see Methods 4.2.4) were counted in the replicated gene
sets as well as in the length matched control genes. For the validation cohort
PCAWG_Hartwig-WGS, the same approach was applied. Here, the coordinates
from the CRG75 alignability track were intersected with the exonic coordinates
provided by NCBI RefSeq track276 hg19 to determine the length of the coding
region for a gene.

4.7 Common Germline Variant Association Testing

4.7.1 Discovery cohort - TCGA SNP Array Data

TCGA genotype data from Affymetrix 6.0 SNP arrays were downloaded from the
Genome Data Commons (GDC) legacy archive. Genotypes from the GDC were
called via the tool Birdseed and files from blood derived normal tissue or normal
solid tissue were further processed (TCGA sample codes 10-14). Genotypes
called with an error rate > 10 % were set as missing and unplaced SNPs were
removed. Files were uploaded into PLINK v1.9 via a custom R script and all
subsequent steps were handled in PLINK v1.9 starting with 905,420 SNPs and
10,128 samples.

Quality Control Steps on the SNP Array Data

Further processing of the data was performed following the recommendations of
previous studies281. Samples with a SNP missing rate > 5% were removed and
samples with an altered heterozygosity rate +/- 3 standard deviations from the
mean were removed. SNPs with a missing rate > 5% across the samples were
discarded. SNPs with a MAF < 1% and a significant deviation from the Hardy-
Weinberg equilibrium P < 10−6 were filtered out. The SNP dataset was reduced
via LD pruning to calculate the homozygosity rate and in order to calculate the
identity-by-state (IBS) matrix. The data was pruned applying a window size of 50
bp, a step size of 5 bp and r2 threshold of r2 > 0.2. Individuals with discordant
sex information with respect to the TCGA annotation were removed based on the
homozygosity rate estimation. The IBS matrix was used to remove one individual
from each pair removed when the calculated relatedness was > 0.185 (between
second- and third-degree relatives). Next, SNPs on the sex chromosomes or
mitochondrial chromosome were discarded from the not-pruned SNP set. SNPs
in high LD regions ref were filtered out as well as SNPs from regions which are
difficult to be aligned according to the CRG75 alignability track. In the end, 9,806
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individuals and 567,769 SNPs were retained for the next steps.

Extraction of European Individuals

To extract individuals of European ancestry, the SNP set was pruned again as
described above and a PCA was performed. The first ten principal components
were used for clustering using the R package tclust (version 1.4.2), which trimmed
1 % of the outlying samples as described previously167. Individuals were grouped
into k = 10 clusters and European groups were selected based on the reported
TCGA annotation. In total 1,920 individuals were discarded.

Concordance Check with 1000 Genomes and GnomAD

1,000 genomes was used as the reference panel for imputation. Thus, it was
checked whether SNP annotations from the array matched the reference. A/T
and C/G SNPs, which were not concordant with 1000 genomes, were removed.
Strand orientation of SNPs were flipped if necessary in order to match the strand
orientation of the reference panel. Furthermore, a small number of SNPs that
were triallelic in 1000 genomes (n = 70) were removed. Minor allele frequencies
of all SNPs were calculated and compared against allele frequencies of the same
SNPs in the non-Finnish European population in gnomAD v2 ref. SNPs with
an allele frequencies difference bigger than 5 % in comparison to whole-genome
gnomAD were removed (n = 12,332 SNPs). Next, SNPs with a MAF < 1 % were
removed. In total, 7,886 individuals of European ancestry and 488,613 SNPs
were left.

Imputation

Missing SNPs were imputed via Beagle282 phase 3 version 5a (hg19), using the
corresponding genetic maps provided by Beagle. Imputation was performed by
Tiffany Delhomme from the Genome Data Science group at IRB. 503 samples
from individuals of European ancestry from 1,000 genomes were used as the
reference panel.

Post-Imputation Filtering and Extraction of Principal Components

Imputed SNPs with a dosage squared r2 < 0.3 were removed from further analy-
sis. LD pruning was performed as described above and a PCA was performed to
extract the first 6 principal components, which were used in later steps as covari-
ates.
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4.7.2 Validation Cohort - Common Variant Processing

Extraction of Common Variants

Similar steps were performed as described above for the discovery cohort. In
contrast to the discovery cohort, WGS data was used for genotyping since data
from SNP arrays was not available. Variants called with the filter PASS were set
according to their determined genotype, variants which were not called as PASS
were set as missing and variants which were not in the sample file but in the
dataset were set as homozygous using the reference allele. Only biallelic SNPs
were kept. Since the validation is constrained by the SNPs which were tested in
the discovery cohort, only SNPs which were extracted from the TCGA SNP array
data, were extracted (n = 488,613). Next, within each cohort, samples with a
missing SNP rate of > 5 % were removed and samples with an altered heterozy-
gosity rate +/- 3 standard deviations from the mean were removed as well. All
samples were loaded into one PLINK file, making up in total 5,569 samples and
488,592 SNPs. SNPs with an missing rate > 50 % and SNPs deviating from the
Hardy-Weinberg equilibrium with P < 10−6 were excluded from further analysis.
Furthermore, the next steps were performed as described before in the discovery
cohort. Highly related individuals were excluded, individuals of European ances-
try were retained using the available PCAWG annotation8 and SNPs were flipped
if necessary in order to match 1000 genomes. SNPs with an altered MAF with
respect to gnomAD were removed and the remaining 4,831 samples and 475,044
SNPs were used as input for imputation. Imputation was performed as described
above and after imputation, SNPs with a dosage squared r2 > 0.3 were kept. A
PCA was performed on the imputed, LD pruned set of SNPs and the first 6 prin-
cipal components were extracted, which were used during association testing as
confounders.

4.7.3 Genome-Wide Association Analysis

First of all, all samples were retained for which somatic components were
estimated. Similarly as for the rare variant association study, TCGA SNP array
data was treated as the discovery cohort and PCAWG and Hartwig WGS data
were treated as the validation cohort. The following steps were conducted for
the two cohorts separately. Each somatic mutation phenotype was regressed
against the confounders (age at onset of disease, sex, ancestry (first 6 PCs),
and cancer type if applicable) and residuals were transformed via the rank based
inverse normal transformation (RINT). Thus, we performed association testing
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via a indirect RINT-based approach, which has been reported to be robust when
phenotypes are not normally distributed283.

Association testing was performed via PLINK v2.00a3LM via the additive
model. Only variants having an allele frequency of at least 1 % in the respective
cancer type were tested. For the association tests the RINT transformed
phenotypes were used and it was controlled for sex, cancer type, age at onset
of disease, and ancestry (first 6 PCs). Association test were only performed in
cancer types which had a sample size of at least 200 in the discovery cohort
and in the validation cohort. These were the following: breast cancer (TCGA
ID: BRCA), brain gliomas (TCGA ID: GBM + LGG), colorectal cancer (TCGA
ID: COAD + READ), lung adenocarcinomas (TCGA ID: LUAD), lung squamous
carcinomas (TCGA ID: LUSC), prostate cancer (TCGA ID: PRAD), skin cancer
(TCGA ID: SKCM), stomach and esophagus cancer (TCGA ID: STAD + ESCA),
and pan-can (TCGA ID: all combined). Matching cancer types in the validation
cohort are shown in Table 4.5. In total, samples from 6,993 individuals and
484,781 SNPs were left for testing in pan-can in the discovery cohort. In the
validation cohort, samples from 4,827 individuals and 481,475 SNPs were left.

Association testing was performed initially in the discovery cohort across
all cancer types and somatic mutational components. SNP clumping was per-
formed after association testing to report uncorrelated hits. SNPs within a radius
of 500 kb, a p-value not bigger than 1*10−5 and a r2 of at least 0.5 were clumped
together by taking the hit with the lowest p-value as the central variant. Hits
reaching genome-wide significance (p < 5*10−8) we re-tested in the validation
cohort.

4.7.4 GWAS Power Analysis

GWAS power analysis was performed with an openly available R function
from GitHub (https://github.com/kaustubhad/gwas-power), which is based on
power calculations formulae presented by Visscher et al.247. The theoretical
power was estimated to identify a hit at genome-wide significance (p < 5*10−8)
at varying effect sizes (0.1-0.7), varying minor allele frequencies (0.1-0.5), and
varying sample sizes (300, 400, 500, 600, 700, 4800, and 7000. Tested effect
sizes were selected based on the effect sizes of the individual cancer types and
pan-can (Table 4.7).
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4.8 SNP Heritability Estimation

ISNP heritability was estimated via two methods: single-component GREML194

and LD score regression284. GREML is higher powered than LD score regression
and requires a sample size of at least 1,000 since the error at sample size of
1,000 is approximately 32 %, at a sample size of 5,000 samples around 6 % and
at sample size of 7,000 samples around 5 % (318 divided by the sample size191.
Thus, SNP heritabilities were primarily only calculated for pan-can and not for the
individual cancer types since sample sizes were too low.

4.8.1 Single Component GREML

SNP heritabilities via single-component GREML were calculated via the pub-
lished software package in GCTA194. In short, based on the extracted SNPs
a genetic relationship matrix was calculated, which was then used for the main
GREML analysis. RINT transformed somatic components were used as the phe-
notype inputs and sex, age at diagnosis, ancestry (first 6 PCs), and cancer type
were used as covariates if applicable.

4.8.2 LD Score Regression

LD score regression (LDSC)284 was used as the second method for calculating
SNP heritabilities. LDSC based heritabilites were calculated by utilizing the pub-
lished tool https://github.com/bulik/ldsc. The tool used as input the GWAS
summary statistics from the conducted GWAS to regress the GWAS statistics
against the LD scores. Pre-calculated LD scores based on individuals of Euro-
pean ancestry from 1000 genomes were utilized.

4.8.3 Estimation of SNP-heritabilities changes

First of all, individual cancer types from the respective cohorts (TCGA and
PCAWG+Hartwig) were dropped, heritability of the total mutation burden was
estimated via GREML, and the difference to the heritability of the total mutation
burden without dropping the cancer types was calculated. A null distribution was
obtained via randomization. For each tested cancer type, the same number of
samples was randomly selected in the dataset and dropped and the heritability
was estimated in the same way as described above. Randomization was
performed for each cancer type 1,000 times. A p-value was estimated via a
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lower- and upper-tailed test, by calculating the probability to obtain the same
difference in heritability or a more extreme value. P-values from cancer types
derived from the same tissues were combined via Fisher’s method.

Secondly, as shown in Section 2.4.4, SNV-based counts for each mutation
type in its trinucleotide context (96 possibilities, e.g. C>A in CCC context) were
dropped from each cancer type and the resulting somatic feature was used to
estimate the heritability via GREML. Again, the difference in heritability was
calculated by subtracting the estimated heritability, from the heritability which
was measured when using the total mutation burden with all SNVs. In total,
there were 96 different contexts and 104 cancer types, leading to 96*104 = 9,984
heritability estimations. A PCA was run on the matrix (Figure 2.81), after capping
a clear outlier value (C>T in ACG context in TCGA_PRAD estimated difference
of 49 %) at the second-highest value, since 99 % of the estimated differences in
heritability were 56 %.

4.9 Supplementary Tables

4.9.1 Genomic Regions
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Table 4.1: Covered Genomic Regions with WES and WGS Masks. Estimated lengths
of different genomic regions in megabases after applying CRG75 alignability
mask on WES and WGS data respectively.

Region Bin Size in WES in Megbases Size in WGS in Megbases
RT 1of6 (late) 1.62 345

2of6 4.03 382
3of6 7.94 381
4of6 12.0 379
5of6 16.7 373
6of6 (early) 29.2 356

H3K36me3 0of5 (no marks) 71.0 3,705
1of5 6.63 143
2of5 8.54 143
3of5 11.3 144
4of5 16.1 147
5of5 (high density of marks) 29.4 152

Expression 0of5 (no expression) 7.54 2,050
1of5 14.9 374
2of5 17.0 425
3of5 24.2 523
4of5 34.9 531
5of5 (high expression) 44.4 531

DNase I 0of5 (no marks) 95.7 3,758
1of5 6.89 137
2of5 7.68 136
3of5 8.85 135
4of5 9.95 134
5of5 (high density of marks) 9.95 134

CTCF/cohesin flanking site ±500 bp 7.04 83.2
binding site 1.56 17.38

Fork polarity 1of10 (lagging strand) 7.71 199
2of10 7.65 196
9of10 6.75 195
10of10 (leading strand) 5.54 200
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4.9.2 Somatic Components

Table 4.2: Somatic Component Names.
Component Name
IC1 Sig.17
IC2 Sig.MMR2+ampli.
IC3 dMMRICA
IC4 dHRICA
IC5 DeletionsICA
IC6 APOBECICA
IC7 Sig.18
IC8 Ploidy
IC9 Sig.11+19
IC10 DBS2
IC11 Sig.5ICA
IC12 SmokingICA
IC13 Small indels 2bp
IC14 UVICA
IC15 Sig.8
VAE_1 APOBECVAE2
VAE_2 DeletionsVAE
VAE_3 Sig.5VAE
VAE_4 Sig.1
VAE_5 UVVAE
VAE_6 dHRVAE1
VAE_7 Mitochondria
VAE_8 dHRVAE2
VAE_9 SmokingVAE
VAE_10 dMMRVAE2
VAE_11 APOBECVAE1
VAE_12 X-hypermutation
VAE_13 dMMRVAE1
VAE_14 Amplifications

4.9.3 Cancer Types
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Table 4.3: TCGA Study Abbreviations. https://gdc.cancer.gov/
resources-tcga-users/tcga-code-tables/tcga-study-abbreviations.
List of studies, which were ultimately used in association testing (after filtering
steps).

Study Abbreviation Study Name
ACC Adrenocortical carcinoma
BLCA Bladder Urothelial Carcinoma
BRCA Breast invasive carcinoma
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma
CHOL Cholangiocarcinoma
COAD Colon adenocarcinoma
DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
ESCA Esophageal carcinoma
GBM Glioblastoma multiforme
HNSC Head and Neck squamous cell carcinoma
KICH Kidney Chromophobe
KIRC Kidney renal clear cell carcinoma
KIRP Kidney renal papillary cell carcinoma
LAML Acute Myeloid Leukemia
LGG Brain Lower Grade Glioma
LIHC Liver hepatocellular carcinoma
LUAD Lung adenocarcinoma
LUSC Lung squamous cell carcinoma
MESO Mesothelioma
OV Ovarian serous cystadenocarcinoma
PAAD Pancreatic adenocarcinoma
PCPG Pheochromocytoma and Paraganglioma
PRAD Prostate adenocarcinoma
READ Rectum adenocarcinoma
SARC Sarcoma
SKCM Skin Cutaneous Melanoma
STAD Stomach adenocarcinoma
THCA Thyroid carcinoma
THYM Thymoma
UCEC Uterine Corpus Endometrial Carcinoma
UCS Uterine Carcinosarcoma
UVM Uveal Melanoma
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Table 4.4: PCAWG Study Abbreviations. https://dcc.icgc.org/projects/details.
List of studies, which were ultimately used in association testing (after filtering
steps).

Study Abbreviation Study Name
BOCA-UK Bone Cancer - UK
BRCA-EU Breast ER+ and HER2- Cancer - EU/UK
BRCA-UK Breast Triple Negative/Lobular Cancer - UK
BTCA-SG Biliary Tract Cancer - SG
CLLE-ES Chronic Lymphocytic Leukemia - ES
CMDI-UK Chronic Myeloid Disorders - UK
EOPC-DE Early Onset Prostate Cancer - DE
ESAD-UK Esophageal Adenocarcinoma - UK
LICA-FR Liver Cancer - FR
MALY-DE Malignant Lymphoma - DE
MELA-AU Skin Cancer - AU
OV-AU Ovarian Cancer - AU
PACA-AU Pancreatic Cancer - AU
PACA-CA Pancreatic Cancer - CA
PAEN-AU Pancreatic Cancer Endocrine neoplasms - AU
PAEN-IT Pancreatic Endocrine Neoplasms - IT
PBCA-DE Pediatric Brain Cancer - DE
PRAD-CA Prostate Adenocarcinoma - CA
PRAD-UK Prostate Adenocarcinoma - UK
RECA-EU Renal Cell Cancer - EU/FR

Table 4.5: Cancer Type Names. Cancer type names used in this study and respective
cancer types from TCGA, PCAWG, and Hartwig which were assigned to it.
EAC: oesophageal adenocarcinoma.

Cancer Type Name Discovery Validation
TCGA Cancer Type PCAWG Project ID(s) Hartwig Cancer Type(s)

Bladder BLCA - Urinarytract
Brain_glioma_low LGG PBCA-DE Nervoussystem_Gliomas or _NA
Brain_glioma_multi GBM PBCA-DE Nervoussystem_Gliomas or _NA
Breast BRCA BRCA-EU, BRCA-UK Breast
Colon_Rectum COAD, READ - Colon_Rectum
Kidney KIRC, KIRP RECA-EU Kidney
Lung_ad LUAD - Lung
Lung_sq LUSC - Lung
Ovary OV OV-AU Ovary
Prostate PRAD PRAD-CA, PRAD-UK Prostate
Skin SKCM MELA-AU_Cutaneous Skin_Melanoma or _NA
Stomach_Eso STAD, ESCA (EAC only285) GACA-CN, ESAD-UK Stomach, Esophagus

Table 4.6: Overview of sample sizes in rare variant association study. Correspond-
ing cancer types for the cancer type names can be found in Table 4.5.

Cancer Type Name Discovery cohort sample size Validation cohort sample size
Bladder 323 87
Brain_glioma_low 405 283
Brain_glioma_multi 253 283
Breast 684 656
Colon_Rectum 410 417
Kidney 445 168
Lung_ad 434 299
Lung_sq 373 299
Ovary 199 180
Prostate 386 443
Skin 403 370
Stomach_Eso 363 431
Pan-can 6,799 4,683
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Table 4.7: Overview of sample sizes in common variant association study. Corre-
sponding cancer types for the cancer type names can be found in Table 4.5.c

Cancer Type Name Discovery cohort sample size Validation cohort sample size
Brain_glioma 714 249
Breast 688 680
Colon_Rectum 395 435
Lung_ad 427 312
Lung_sq 403 312
Prostate 378 448
Skin 414 423
Stomach_Eso 381 453
Pan-can 6,993 4,827
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5 Conclusions

• While somatic mutational features can be more accurately measured via
whole-genome sequencing data, whole-exome sequencing data is also a
viable source to extract somatic mutational patterns.

• ICA and VAE neural networks can be utilized to extract biologically relevant
mutational components from an input matrix containing mutation counts and
ratios based on different mutation classes and genomic properties.

• Rare damaging inherited variants in diverse genes associated with many
different mutational processes.

• Novel genes associated in the rare germline variant association study with
dHR-related repair (e.g. RIF1, PAXIP1, WRN, EXO1, and ATR), with dMMR
(e.g. MSH3, MTOR, TTI2, SETD2, EXO1, and MLH3), and with APOBEC-
directed mutagenesis (e.g. APEX1) among others.

• Network analysis in rare variant association testing is a useful approach for
prioritising newly associated genes and generating hypotheses.

• In SNP-set level tests, the variance-based test SKAT can be utilized to com-
pensate for inaccurate predictions of damaging variants by in silico predic-
tors.

• Several hits were identified in the common germline variant association
studies, but none of them replicated, potentially due to low power, batch
effects from genotyping (SNP-arrays vs. WGS), or differences in measuring
somatic components (WES vs. WGS).

• Sample sizes for common germline variant association studies were too low
to identify potential small true effect SNPs.

• Heritability estimates showed that at least somatic mutations due to DNA
mismatch repair deficiencies, the total burden of C>A mutations, and the
total mutation burden have a heritable component originating from common
germline variants, but mostly 510%.
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5 Conclusions

• Heritability of the total mutation burden can be attributed to at least three
different mutational processes: APOBEC activity, signature 1 (∼ number
of cell divisions), and signature 17b (∼ oxidative damage in the nucleotide
pool).

• In the future, larger sample sizes and more whole-genome sequencing data
will make it possible to study the effects of germline variants on somatic
mutational processes at an even higher resolution across individual cancer
(sub)types and populations.
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7 Acronyms

1KG 1000 genomes

5-FU fluorouracil

5mC 5-methylcytosine

6-4PP pyrimidine-pyrimidone (6–4) photoproduct

AID activation-induced deaminase

APE1 apurinic endonuclease 1

APOBEC apolipoprotein B mRNA editing enzyme catalytic polypeptide-like

BER base excision repair

BPDE benzopyrene-78-diol-910-epoxide

CCR constrained coding region

CNV copy number variant

CPD cyclobutane pyrimidine dimer

dHR deficient homologous recombination

DHS DNase Hypersensitivity I sites

dMMR deficient DNA mismatch repair

DNV double nucleotide variant

DSB double-strand break

dTTP deoxythymidine triphosphate

FA Fanconi anaemia

FDR False Discovery Rate
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7 Acronyms

GC-NER global-genome nucleotide excision repair

GWAS genome-wide association study

HNPCC hereditary non-polyposis colorectal cancer

HR homologous recombination

IBD identity-by-descent

IC independent component

ICA independent component analysis

ICL interstrand crosslink

KL Kullback-Leibler

LD linkage disequilibrium

LDSC LD score regression

LOH loss of heterozygosity

MAF minor allele frequency

MAP MUTYH-associated polyposis

MGMT O6-methylguanine methyltransferase

MMR DNA mismatch repair

MNV multi nucleotide variant

MSI microsatellite instability

MSS microsatellite stable

mtDNA mitochondrial DNA

MTR missense tolerance ratio

NER nucleotide excision repair

NGS next-generation sequencing

NHEJ non-homologous end joining
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NMF non-negative matrix factorization

NNK 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone

NNN N’-nitrosonornicotine

PARP1 Poly(ADP-ribose) polymerase 1

PC principal component

PCA principal component analysis

PNKP polynucleotide kinase

Pol β DNA polymerase β

POLH DNA polymerase η

PTV protein-truncating variant

RDGV rare damaging germline variant

RINT rank based inverse normal transformation

ROS reactive oxygen species

RT replication timing

SKAT sequence kernel association test

SNP single-nucleotide polymorphism

SSB single strand break

ssDNA single-stranded DNA

SV structural variant

TC-NER transcription-coupled nucleotide excision repair

TGF-β transforming growth factor beta

TMZ temozolomide

TS thymidylate synthase

VAE variational autoencoder
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7 Acronyms

WES whole-exome sequencing

WGS whole-genome sequencing

XP xeroderma pigmentosum
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