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SUMMARY






Patients with hereditary breast and ovarian cancer (HBOC) in whom a causative
pathogenic variant is not identified after genetic analysis may not benefit from
prevention, early detection, or precision treatment measures. This negative or
inconclusive results are due, among other causes, to the detection of variants
of uncertain significance (VUS).The main objective of this thesis is to increase
the capacity of genetic diagnosis of patients with HBOC, by focusing on i) the
optimisation in the interpretation of exonic and intronic variants that might
affect RNA quality or quantity but remain as variants of uncertain significance

(VUS) and ii) the identification of new susceptibility genes for HBOC.

The article included in this thesis, Moles-Fernandez et al.,, 2018 (DOI:
10.3389/fgene.2018.00366) explains an optimization in the identification of
potentially spliceogenic variants located near to splicing sites, and provides
recommendations to use for analysing donor and acceptor sites. Moreover, the
creation or activation of cryptic sites along deep intronic regions could alter
splicing causing the inclusion of intronic sequences in RNA. In the article, Moles-
Fernandez et al., 2021 (DOI: 10.3390/cancers13133341), a framework for the
identification of deep intronic spliceogenic is provided, after the performance
analysis of SpliceAl in silico tool in a dataset of spliceogenic and non-
spliceogenic deep intronic variants. In addition, the importance of the splicing

regulatory elements balance in the pseudoexon creation is described.

The American College of Medical Genetics (ACMG) variant interpretation
guidelines provide general recommendations to classify variants. In the
included article Feliubadalo et al., 2021 (DOI: 10.1093/clinchem/hvaa250),
ACMG guidelines were adapted to ATM gene. We focused on in silico splicing
evidence (PP3/BP4). After reclassification of variants following the adapted

guidelines, a reduction of VUS was obtained.
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On the other hand, in patients without pathogenic variants identified in HBOC
related genes, the phenotype could be due to deleterious variants in genes still
not known associated with the disease. For this reason, in Moles-Fernandez et
al., (article in preparation), the aim was to identify candidate genes through
exomes and extended panel analysis and validate their risk association by
performing a case-control study. The significant identification of loss-of-
function variants in ALKBH3, BLM, CAMKK1, FANCD2, FANCM, NEIL3, PER1,
RBL1, RECQL4, WRN and XRCC4 genes in patients with HBOC suggests that they

might be breast/ovarian cancer susceptibility genes.
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INTRODUCTION

1. Hereditary cancer

1.1 Epidemiology

According to estimates from the World Health Organization (WHO) in 2019,
cancer is the first or second leading cause of death before the age of 70 years

in 112 of 183 countries and ranks third or fourth in a further 23 countries.

Cancer disease occurring in an individual with a family history of the disease is
known as “familial” cancer. The term “hereditary” is used to describe families
in which there is a higher-than-normal occurrence of certain types of cancer,
caused by pathogenic variants in certain genes passed form parents to children
with a known genetic pattern of inheritance. When cancer occurs in an

individual without a family history is often referred to as “sporadic”.

Several cancer hereditary syndromes have been described among last decades
(Ngeow and Eng, 2016) related to affected tissues. Hereditary breast and
ovarian cancer syndrome (HBOC), hereditary colorectal cancer (Lynch
Syndrome), familial adenomatous polyposis (FAP), or hereditary prostate
cancer among others, are examples of the most common hereditary cancer
syndromes. In addition, a few hundreds of rare and extremely rare syndromes
have been described, such as Li-Fraumeni (Malkin, 2011), Cowden syndrome
(Pilarski et al., 2013), Fanconi Anaemia (Tischkowitz and Hodgson, 2003) and

xeroderma pigmentosum (Berneburg and Lehmann, 2001).

Overall, hereditary syndromes could collectively explain approximately 5-10%
of all cancer cases (Ngeow and Eng, 2016). They are usually characterized by
earlier ages of diagnosis, multiple incidences of cancer in an individual (or
bilaterality), and family history. Hereditary breast and ovarian cancer (HBOC) is
a syndrome that involves increased predisposition primarily to breast cancer

(BC) and/or to ovarian cancer (OC). Current estimates indicate that
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approximately 10-15% of breast and ovarian cancer cases can be explained by
inherited deleterious genetic variants in high and moderate penetrance genes
(Samadder et al., 2019; Gonzalez-Santiago et al., 2020). This percentage
comprises a high number of patients and families, since female breast cancer is
the leading cause of global cancer incidence in 2020, with an estimated 2.3
million new cases, namely 11.7% of all cancer cases. Similarly, ovarian cancer
accounts for 3.4% of female cancer incidence and 4.7% of female cancer deaths

(Sung et al., 2021).

1.2 Genetic predisposition to hereditary breast and

ovarian cancer

Hereditary cancers are characterized by the occurrence of germline pathogenic
variants in specific genes, such as BRCA1, MLH1 or TP53 (associated with breast
cancer, colon cancer, and Li-Fraumeni syndrome, respectively). Carriers of a
germline alteration in a cancer predisposition gene have a higher risk of
developing certain tumours throughout life and usually at a younger age than

in the general population (Sociedad Espaiola de Oncologia Médica, 2019).

Approximately a hundred genes for hereditary predisposition to cancer
associated with a large number of neoplasms have been described in the
literature (Sociedad Espafiola de Oncologia Meédica, 2019). Moreover,
pathogenic variants in specific genes have been associated with susceptibility
to more than one cancer hereditary disease (Bonadona et al., 2011; Nyberg et

al., 2020).

Focusing on the HBOC syndrome, multiple genes have been associated, being
the most important BRCAI and BRCA2 (BRCA1/2) (Hall et al., 1990; Miki et al.,
1994; Wooster et al., 1994). Pathogenic variants in these genes, involved in
homologous recombination repair, explain approximately 10-25% of all

hereditary breast/ovarian cancer cases (Petrucelli et al., 2016). More than
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65,000 unique variants have been described in these genes (BRCAExchange,
accessed July 2021) in multiple populations and different ethnicities. However,
variants with increased incidence, known as recurrent and founder variants,
have been described in specific populations (Diez et al., 2003; Ferla et al., 2007;
Fachal et al., 2014). It has been estimated that women carrying pathogenic
BRCA1 and BRCA2 variants have a cumulative risk by 80 years of age of
developing breast cancer of 55-72% and 69% and that of developing ovarian
cancer of 44% and 17%, respectively (Kuchenbaecker et al., 2017; Dorling et al.,
2021). Deleterious BRCA1/2 variants also increase the risk of prostate and
pancreatic cancer, primarily in individuals with a BRCA2 pathogenic variant

(Mersch et al., 2015).

Other high penetrance genes associated with rare hereditary syndromes also
cause breast cancers, among others. The TP53 gene has been implicated in
hereditary breast cancer as part of the Li-Fraumeni syndrome (Malkin, 1993),
and accounts for a small proportion of breast cancer patients diagnosed before
30 years of age (Woodward et al., 2021). The PTEN gene has been identified as
the causal gene in Cowden syndrome, in which early-onset breast cancer is
associated with a variety of other features, including hamartomas of the skin
and mucous membranes, thyroid adenomas, colonic polyps (including juvenile
polyps), and craneomegaly (Liaw et al., 1997). STK11 is associated with the
dominantly inherited condition Peutz-leghers syndrome, characterized by
benign polyps throughout the gastrointestinal tract and mucocutaneous
pigmentation (particularly on the lips) and confer a cumulative risk of breast
and gynaecological cancers (van Lier et al., 2011). Additionally, pathogenic
variants in the CDH1 gene cause the hereditary diffuse gastric and lobular breast
cancer, a dominantly inherited condition that confers to a carrier women a 40—

60% lifetime risk of breast cancer (Fitzgerald et al., 2010).

The spectrum of HBOC associated genes has been expanded during the last 20
years including a large number of genes with a critical role in homologous

recombination repair (Hoang and Gilks, 2018). Among these genes, PALB2
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(BRCA2 interactor), considered a breast cancer high-risk susceptibility gene
(Rahman et al., 2007), shows 3834 unique variants entry in ClinVar database
(accessed July 2021). Various studies indicate that odds ratio (OR) of PALB2
deleterious mutations for breast cancer was comparable to that of BRCA2
pathogenic variants (Dorling et al., 2021; Hu et al., 2021). Genes as CHEK2, ATM,
BRIP1, RAD51C, and RAD51D are related to moderate risks of developing
breast/ovarian cancer (Meijers-Heijboer et al., 2002; Renwick et al., 2006; Seal
et al., 2006; Meindl et al., 2010; Loveday et al., 2011) explaining 4.6% of cases
(Tung et al., 2016). Women with pathogenic variants in ATM or CHEK2 face a
breast cancer cumulative risk at 80 years of 20 to 30% (Dorling et al., 2021)
while RAD51C and RAD51D generate an ovarian cancer risk of 11% and 13%
(Yang et al., 2020). Also, some evidence of BARD1 as a breast cancer
susceptibility gene have been collected during the last decade (Alenezi et al.,

2020; Dorling et al., 2021).

Recently, population and family-based studies using a high number of cases and
healthy controls have been performed to determine the risk of the associated
genes to breast cancer (Dorling et al., 2021; Hu et al., 2021) (Figure 1). Protein-
truncating variants in five genes (ATM, BRCA1, BRCA2, CHEK2, and PALB2) were
associated with a significant risk of breast cancer overall (P<0.0001), and in four
other genes (BARD1, RAD51C, RAD51D, and TP53), albeit with a p of less than
0.05 in most of these genes, the odds ratio differed according to breast cancer

subtype (Dorling et al., 2021).
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Figure 1. Absolute risk of breast cancer in carriers of truncating variants of BRCA1,
BRCA2, PALB2, CHEK2, BARD1, ATM, RAD51C, and RAD51D compared with the general
population. Taken from Dorling et al., 2021.

These large studies (Dorling et al., 2021; Hu et al., 2021), defined the risk of the
susceptibility for breast cancer and evidence the stratification between high
penetrance and moderate penetrance risk genes, and discard other candidates
that did not show association with the disease (e.g., NBN). Nevertheless,
despite the size of these studies, the evidence of an association with breast
cancer risk for several of the genes that were analysed (e.g., FANCM, MSH6, and

NF1) remains equivocal (Dorling et al., 2021) (Table 1).

Table 1. Risk of breast cancer associated with protein-truncating variants in the
population-based study reported in Dorling et al., 2021. Adapted from Dorling et al.,
2021.

Breast Cancer
Controls Odds Ratio (95%
Gene Patients p
(n=50,703) Cl)
(n=48,826)

ATM 294 150 2.10(1.71-2.57) 9.2x10-13
BARD1 62 32 2.09 (1.35-3.23) 0.00098
BRCA1 515 58 10.57 (8.02-13.93) 1.1x10-62
BRCA2 754 135 5.85 (4.85-7.06) 2.2x10-75
CHEK2 704 315 2.54(2.21-2.91) 3.1x10-39

FANCM* 302 300 1.06 (0.90-1.26) 0.48

MSH6 39 23 1.96 (1.15-3.33) 0.013

NF1 31 17 1.76 (0.96-3.21) 0.068
PALB2 274 55 5.02 (3.73-6.76) 1.6x10-26

RAD51C 54 26 1.93 (1.20-3.11) 0.007
RAD51D 51 25 1.80(1.11-2.93) 0.018

*QOver-represented in ER-negative breast cancer (Dorling et al., 2021).

On the other hand, large genome-wide association studies have been
performed for longer than a decade to identify associations between common

variants and disease. These approaches have led to the robust identification of
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more than 300 single nucleotide polymorphisms (SNPs). These common low-
risk alleles only confer a small risk by themselves, but when combined in a
polygenic risk score (PRS) they provide a more significant risk estimate. It has
been calculated that these SNPs currently explain up to 28% of the familial risk
of breast cancer (Woodward et al., 2021). Similarly, it has been proposed that
these SNPs can modify the risk of pathogenic variant carriers (Barnes et al.,,

2020; Gallagher et al., 2020; Yanes et al., 2020).

In summary, the genetic landscape of hereditary breast and ovarian cancer is
heterogeneously composed of various high, moderate, and low susceptibility
genes (Figure 2). However, approximately half of hereditary breast-ovarian
cancer patients remain genetically undiagnosed (Couch et al., 2014).

Breast cancer genes and risk

15+

7
B 7P33 ] High nsk genes
BRCAT BRCA1/2
¥  Moderate risk genes
10 BRCA2
8 ® CDH1 SNPs
@
B ® PTEN
@ " sTK11
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w m PALB2
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Effect allele frequency

Figure 2. Relative risk and allele frequencies of high-, moderate-, and low-risk genetic
variants associated to breast and ovarian cancer. Taken from Woodward et al., 2021.

1.2.1. Clinical criteria for germline genetic analysis

Different European guidelines containing recommendations for BRCA1/2
testing have been published in the last years. These criteria are associated with
a probability of 210% pathogenic variant detection. Clinical criteria for genetic

testing differ between guidelines, but all of them are based on clinical risk
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factors such as age, hormone receptor status, ancestry with founder mutations,
and personal or family history of cancer (Table 2) (Gonzalez-Santiago et al.,

2020).

Table 2. SEOM clinical criteria for germline genetic analysis in hereditary breast and
ovarian cancer patients. Adapted from Gonzalez-Santiago et al., 2020.

Selection criteria for germline testing

Regardless of family history:

Women with synchronous or metachronous breast and ovarian cancer

Breast cancer < 40 years

Bilateral breast cancer (the first diagnosed < 50 years)

Triple-negative breast cancer < 60 years

High-grade epithelial non-mucinous ovarian cancer (or fallopian tube or primary
peritoneal cancer)

Ancestry with founder mutations

BRCA somatic mutation detected in any tumour type with a tumour allele frequency
> 30% (if it is known)

Metastatic HER2-negative breast cancer patients eligible to consider PARP inhibitor
therapy

2 or more first degree relatives with any combination of the following high-risk
features:

Bilateral breast cancer + another breast cancer < 60 years

Breast cancer < 50 years and prostate or pancreatic cancer < 60 years

Male breast cancer
Breast and ovarian cancer

Two cases of breast cancer diagnosed before age 50 years
3 or more direct relatives with breast cancer (at least one premenopausal) and/or

ovarian cancer and/or, pancreatic cancer or high Gleason (2 7) prostate cancer

Most of these guidelines are based predominantly on the probability of carrying

pathogenic variants in BRCA1 or BRCA2. Thus, the sensitivity of these criteria to
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identify other pathogenic alterations in different high or moderate-risk genes is
limited. Recent research supports BRCAI and BRCA2 testing in a broader range
of individuals, if not in every breast cancer patient. This recommendation is
based on the findings of studies that conclude that the traditional approach may
miss an elevate number of pathogenic variant carriers (Beitsch et al., 2019;
Gonzalez-Santiago et al., 2020).

New criteria for germline testing, regardless of family history, are arising thanks
to improvements in massive tumour sequencing techniques, as well as in
predicting response to new therapeutic agents. Following detection of a
somatic mutation in a cancer predisposition gene with high tumour allele
frequency, it is advisable to rule out or verify the existence of a germline

pathogenic variant considering possible implications in genetic counselling.

The Spanish Society of Medical Oncology (SEOM) recommends genetic risk
evaluation and genetic counselling (before and after germline testing) for
patients who are at high risk of harbouring a pathogenic variant in one of the
breast/ovarian cancer predisposition genes. Genetic counselling is a process
that guarantees a discussion about the benefits and limitations of genetic
testing, including information about cancer risk, recommendations for early
detection and risk reduction interventions, as well as advice regarding
reproductive options, and support for psychological well-being (Gonzalez-

Santiago et al., 2020).

1.2.2. Gene panel analysis

To identify pathogenic variants in susceptibility genes, customized massively
parallel sequencing panels are widely used in the clinical practice, allowing the
analysis of high and moderate penetrance associated risk genes in germline
DNA of affected patients (Bonache et al., 2018; Hauke et al., 2018; Tsaousis et
al., 2019).
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However, there are differences between the genes included in the panels across
hospital laboratories or commercial companies. In fact, some centres and
companies offer wide panels including genes that have never been linked
convincingly to breast/ovarian cancer and other hereditary cancers. Although
multi-gene panels differ among testing laboratories, they commonly include the
high penetrance genes BRCA1, BRCA2 and PALB2, other high-penetrance genes
associated with rare genetic syndromes (TP53, PTEN, CDH1, and STK11), and
genes associated with moderate risks such as CHEK2, ATM, RAD51C and
RAD51D (Woodward et al., 2021). The mismatch repair genes (MLH1, MSH2,
MSH6 and PMS2), may also be included in an opportunistic detection approach
(Feliubadalé et al., 2019).

In Spain, SEOM recommended to include BRCA1 and BRCA2, which are the most
common mutated susceptibility genes in breast/ovarian tumours, followed by
PALB2 (in BC) and genes with pathogenic variants that confer moderate
penetrance cancer risk, such as ATM and CHEK2 (in BC) and BRIP1, RAD51C,
RAD51D, MLH1, MSH2, and MSH6 (in OC) (Gonzalez-Santiago et al., 2020).
Clinical validity for BRCA1, BRCA2 and PALB2 (in BC/OC), and BRIP1, RAD51C,
RAD51D, MLH1, MSH2, and MSH6 (in OC) have been established with
subsequent surveillance and preventive clinical options (Domchek and Robson,

2019; Gonzalez-Santiago et al., 2020).

1.2.3. Clinical management in carriers of pathogenic variants in

HBOC related genes

The identification of pathogenic variants in genes associated with susceptibility
to the disease allows the genetic accurate risk assessment and medical

management of patients and families.
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Early detection, risk-reducing surgery or personalized therapy are clinical

strategies available to carriers of deleterious variants in BRCA1 or BRCA2

(Pashayan et al., 2020; Pujol et al., 2021):

34

Early detection strategies. Annual mammography and annual breast
magnetic resonance imaging in women with deleterious variants in
BRCA1/2 are recommended (Warner, 2018).

Risk-reducing surgery. Bilateral risk reduction mastectomy (BRRM)
decreases the occurrence of breast cancer in women with a moderate-
high risk by 90% without a decrease in all-cause mortality (Li et al.,
2016). Also, bilateral risk reduction salpingo-oophorectomy (RRSO)
demonstrated a risk reduction of OC, fallopian tube cancer, and primary
peritoneal cancer of ~80% in women with BRCA1/2 loss-of-function
variants. RRSO in carriers of moderately penetrant pathogenic alleles of
BRIP1, RAD51C or RAD51D should be contemplated on a case-by-case
basis, and is also an option to be considered in carriers of pathogenic
variants in Lynch syndrome genes (Gonzdlez-Santiago et al., 2020).
Chemoprevention. Preventive treatments such as tamoxifen are an
option for female BRCA1/2 carriers who do not want to undergo BRRM
(Gonzélez-Santiago et al.,, 2020). Oral contraceptives in BRCA1/2
carriers can reduce the risk of OC; however, there are discrepancies in
its recommendations of use (Huber et al., 2020).

Treatment strategies. Along last years, poly (ADP-ribose) polymerase
(PARP) inhibitors agents have shown their benefits in ovarian cancer
patients carrying BRCA1/2 deleterious variants (Ledermann, 2016;
Cook and Tinker, 2019; Mirza et al., 2020). In addition, these molecules
are prime candidates for the treatment of breast cancers associated
with germline or acquired mutations of BRCA1/2 and potentially also
PALB2 given their functional roles in homologous recombination

pathways (Woodward 2021). The identification of a germline BRCA1/2
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pathogenic variant in the oncology setting has important therapeutic
implications, with PARP inhibition of advanced breast cancers being
associated with increased progression-free survival over standard care
(Robson et al., 2017; Litton et al., 2018). Given their use now in a
maintenance setting in ovarian cancer, they would be employed after
primary treatment even for earlier-stage breast cancer (Woodward et
al., 2021). The use of this therapy in patients has an enormous potential
and interest and more than 350 clinical trials involving this molecule are
active (Clinicaltrials.gov, accessed July 2021). To date, PARP inhibitors
have been approved for the treatment of germline BRCA1/2-mutated
ovarian, breast, prostate, and pancreatic cancers (Lynparza | European
Medicines Agency. https://www.ema.europa.eu/en/medicines/human

J/EPAR/lynparza. Accessed July 2021).

1.3. Identification of new susceptibility genes

Susceptibility gene identification strategies have been evolved since 90s
decade. Initially, multiple-case families were studied to identify high-risk
susceptibility genes by linkage analysis, detecting markers that co-segregated
with the disease. This approach led to the identification of BRCA1 and BRCA2
genes (BRCA1/2) (Hall et al., 1990; Miki et al., 1994; Wooster et al., 1994). In
addition, multiple-case families were also used to know the role of high
penetrance genes in rare hereditary syndromes causing breast or ovarian
cancers, among others, such as TP53 (Malkin, 1993), PTEN (Liaw et al., 1997),
STK11 (van Lier et al., 2011) and CDH1 (Fitzgerald et al., 2010).

In the last two decades, following a case-control strategy and segregation
analysis strategies, PALB2 high-risk susceptibility gene was identified (Rahman

et al., 2007). Moreover, a higher proportion of truncating variants in affected

35



INTRODUCTION

individuals compared to healthy controls were identified in CHEK2, ATM, BRIP1,
RAD51C, RAD51D, and BARD1 genes, associating these genes with low to
moderate risks of developing breast/ovarian cancer (Meijers-Heijboer et al.,
2002; Renwick et al., 2006; Seal et al., 2006; Meindl et al., 2010; Loveday et al.,
2011; Dorling et al., 2021).

However, a part of the missing heritability in this disease may be due to new
genes related to the susceptibility to HBOC still unknown. The advent of
massively parallel sequencing has led to timely testing of multiple genes using
panels, whole-exome sequencing (WES), or whole-genome sequencing (WGS).
Interestingly, WES has become a common approach to identify rare variants by
performing a staged study starting with sequencing of cohorts of small number
of cases with strong familial aggregation of hereditary cancer, highlighting
potential candidate genes (Rotunno et al., 2020). In addition, functional analysis
or mutational tumour signature indicating the relevance of candidate genes in
developing the disease are also valuable approaches to identify potential risk
genes (Polak et al., 2017; Hernandez et al., 2018). Following this approach, a
few genes have been identified so far as potential candidates in colorectal
cancer and hereditary breast and ovarian cancer (Te Paske et al., 2020);
Rotunno et al., 2020; Subramanian et al., 2020). However, these genes have to
be validated in large case-control studies to clarify if they are associated with

the disease.

Published studies identifying candidate genes comprehend both the
identification and the validation using a different cohort of patients, and
sequencing healthy controls or using public control databases. For example,
germline RBBP8 variants have been recently associated with early-onset breast
cancer, firstly identifying potentially deleterious variants in a small cohort of
patients, and secondly validating its association by sequencing a large cohort of
patients and by functional assays (Zarrizi et al., 2020). In addition, RECQL5 gene

was highlighted as a potentially related gene by identifying a deleterious variant
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by WES in an HBOC family and observing an enrichment of deleterious variants
in affected patients after a comparison with healthy controls.

These genes are an example of how the identification of new candidate genes
is possible using massively parallel approaches in HBOC patients. In this thesis,
the author describes a study consisting of the identification of candidate genes
and their subsequent validation with an analysis of cases and controls. First
results are presented since the phase of validation and calculation of associated

risk is in process.

2. Variant interpretation

Most of the diagnostic panels performed in breast/ovarian cancer patients
focus on the sequencing of coding regions and exon-intron boundaries. Variants
identified in DNA could be single nucleotide variants (SNVs), insertions,
deletions, duplications, indels, or inversions. These types of variants can also
affect RNA processing. Moreover, copy number variations (CNV) or even Alu
insertions can be identified using massively parallel sequencing panels (Kerkhof
et al., 2017; Qian et al., 2017). In affected patients, the genetic test can result
in the identification of novel or already known benign or pathogenic variants or
variants that we can still not clearly define and classify, termed variants of
uncertain significance (VUS), or no identification of variants. The growing
accumulation of genetic data generates a high amount of percentages of VUS
(Lumish et al., 2017), and this is especially true in oncological diseases, for which
gene-panel sequencing is often required in large groups of cancer patients

(Federici and Soddu, 2020).
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2.1 Variant classification system

The variant classification has evolved since Cotton et al. (Cotton and Scriver,
1998), more than 20 years ago, delineated several types of evidence that could
prove helpful in understanding a missense variant role in disease causation,
including segregation analysis, nature of the amino acid substitution and

functional assays (Mester and Pesaran, 2019; Harrison et al., 2021).

Major steps forward in harmonizing the approach to variant classification
occurred with publications from the American College of Medical Genetics and
Genomics (ACMG) in 2000 ( Kazazian and Boehm, 2000) and 2008 (Richards et
al., 2008). However, these guidelines did not define what degree of certainty
was required to classify a variant as disease-causing or harmless, how much
weight should be assigned to different types of evidence, or how to combine
different pieces of evidence to reach a classification. The first effort toward
combining evidence types was published in 2004 by Goldgar et al., whose
multifactorial likelihood based-model incorporated several clinical data points
together with conservation and functional data to arrive at likelihood ratios that
the authors deemed high enough to support (1000:1) or refute (100:1) causality
for the BRCA1 and BRCA2 hereditary breast and ovarian cancer susceptibility
genes (Goldgar et al., 2004; Mester and Pesaran, 2019; Harrison et al., 2021).

A step forward in unifying variant classification terminology occurred in 2008
with the publication of a 5-tier classification system developed by the
International Agency for Research on Cancer (IARC) Unclassified Genetic
Variants Working Group (Plon et al., 2008). The IARC stated that it is essential
to discriminate between variants with scarce information (class 3) and variants
with strong but not undeniable evidence of association or not with the disease
(classes 4, “likely pathogenic” and 2, “likely not pathogenic”, respectively)

(Figure 3) (Plon et al., 2008; Moghadasi et al., 2016).
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Figure 3. Variant classification levels. Taken from Mester and Pesaran, 2019.

At that point, genome diagnostic laboratories and researchers had broadly
accepted the use of a standard, 5-tier scheme for classifying variants: benign,
likely benign, variant of uncertain significance (VUS), likely pathogenic, and
pathogenic also described as class 1 through 5, respectively. Although this
system standardized the naming of the different variant classifications, it did
not cover what evidence would be required to get a variant classified in each
category. This issue was tackled by the ACMG/AMP classification guidelines,
published in 2015 (Richards et al., 2015), giving detailed recommendations on
how to build up the evidence to classify a variant into one of these five
categories. Several improvements to the ACMG/ AMP guidelines have been
published since, as some of the original specifications were open to different
interpretations. Additional modifications were sometimes required to apply the

guidelines for certain genes and/or diseases (Harrison et al., 2021).

In addition, other classification guidelines exist following a 5-tier scheme, such
as ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant
Alleles), an international research consortium focused on developing and
applying methods to determine the clinical significance in breast-ovarian cancer
predisposition genes (Spurdle, et al., 2012). ENIGMA has developed variant
classification criteria that utilize both quantitative (multifactorial based-model)
and qualitative (rules-based) methods to assess the clinical significance of

variants in BRCA1 and BRCA2 (http://enigmaconsortium.org/) (Parsons et al.,

2019). InSiGHT (International Society for Gastrointestinal Hereditary Tumors)
also applied quantitative strategies to classify variants in the mismatch repair

genes associated with Lynch syndrome along with a qualitative system able to

39


http://enigmaconsortium.org/

INTRODUCTION

be utilized in the absence of data supporting a quantitative, multifactorial

analysis (Plazzer et al., 2013; Thompson et al., 2014).

2.1.1 ACMG/AMP classification guidelines

To standardize variant classification, the 2015 ACMG/AMP guideline outlines 28
types of evidence, or criteria, that are encountered during variant assessment
(Richards et al., 2015). Each criterion is assigned a direction, either pathogenic
(P) or benign (B), and a relative strength: stand-alone (A), very strong (VS),
strong (S), moderate (M), or supporting (P). The combination of the direction
and relative strength creates an evidence code that refers to a specific evidence
criterion. For example, pathogenicity (P) of moderate (M) strength and a
specific number assigned to the evidence. Each evidence code corresponds to

a single criterion (Harrison et al., 2021) (Table 3).

To assess and subsequently classify a variant, the variant curator must
determine which criteria are applicable based on all available evidence. All the
criteria are grouped into categories of evidence to aid in their assessment when
they are similar or use the same source of data (Table 3). In addition to
considering gene-level evidence, the 2015 guideline notes that with
professional judgment, some criteria listed at a certain strength can be moved

to a stronger or weaker level of evidence (Harrison et al., 2021).

Table 3. ACMG/AMP evidence codes by category (adapted from Harrison et al., 2021).

Evidence Benign Pathogenic

Case control studies,
Variant is too common
Population data multiple affected
for disorder (BA1, BS1)
probands (PS4)
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Variant identified in
unaffected individuals
(BS2)
Missense variant in a
gene where LOF is

mechanism (BP1)

In-frame indel in repeat

region (BP3)
Variant type, location, and

Benign in silico prediction

(BP4)

predictive data

Synonymous variant

(BP7)

Functional studies

Functional data demonstrating no effect
on gene product (BS3)

Lack of segregation with

disease (BS4)
Variant observed with
another pathogenic

variant in the same or

Case-level data
different gene (BP2, BP5)

INTRODUCTION

Variant is absent in
population databases
(PM2)

LOF or missense variant
in gene with relevant
mechanism (PVS1, PP2)
Different nucleotide
changes in same codon
(PS1/PMS5)
Pathogenic in silico
prediction (PP3)
Variant located in
functional domain (PM1)
Variant changes protein
length (PM4)
Functional studies
supporting
pathogenicity (PS3)
Co-segregation with

disease (PP1)

Variant in trans with
pathogenic variant in

recessive disorder (PM3)

De novo observation
(PS2, PM6)
Phenotype consistent

with disease (PP4)

These guidelines are intended to be generic, and thus some evidence codes will

not be relevant for variant curation for a specific gene. The ClinGen consortium

(Rehm et al., 2015), https://www.clinicalgenome.org/) has engaged with expert
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groups to develop adaptations of the guidelines to specify which rule codes and
strengths are appropriate for a specific gene-disease relationship and to
provide guidance on the phenotypic features that are most predictive of variant
pathogenicity (Rivera-Mufioz et al., 2018). To date, adaptations of the
ACMG/AMP criteria have been completed for hereditary cancer or rare diseases
related-genes such as PTEN (Mester et al., 2018), CDH1 (Lee et al., 2018), TP53
(Fortuno et al., 2021), LDLR
(https://www.medrxiv.org/content/10.1101/2021.03.17.21252755v1) or Rett

and Angelman-like disorders related genes

(https://clinicalgenome.org/site/assets/files/6050/clingen rettas acmg speci

fications v1.pdf) while other gene-adaptations are in development.

Other hereditary cancer-related genes, such as ATM, among others, remained
with no specific classification guidelines. The adaptation of ACMG guidelines to
specific hereditary cancer or rare diseases related genes will provide a
comprehensive framework to diminish the VUS number and optimize the
variant classification.

The thesis includes the collaborative work, with the participation of the author,
of the Spanish ATM hereditary cancer variant interpretation Working Group, to

develop a specific guide for ATM gene.

2.2 The challenge of interpretation of variants of

uncertain significance (VUS)

The type of VUS identified during routine genetic testing can include
synonymous, missense, small in-frame insertions/deletions, and intronic
variants, for which sequence information alone is not sufficient to infer a

cancer-associated risk. These variants have unknown functional effects on
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proteins and cannot be clinically classified as either “Pathogenic” or “Benign”.
As a result, VUS carriers and their family members cannot benefit from risk

assessment measures and personalized cancer screening programs.

In ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar), the genes with the

highest number of submitted variants include the most relevant tumour risk
genes, such as BRCA1 and BRCA2, APC, mismatch repair genes and ATM.
Moreover, many ClinVar submitted variants have conflicting interpretations,
and a large number of total variants in the database are VUS (Table 4) (Federici
and Soddu, 2020). Concerning HBOC-related genes, up to 35% of BRCA1/2
variants submitted in ClinVar are classified as VUS or have conflicting

interpretations (ClinVar database, accessed July 2021).

Table 4. Number of submitted variants per significance (of all variants included in
Clinvar) (adapted from Federici et al., 2020).

Submission significance Variants Genes
Uncertain significance 266,759 13,346
Likely benign 203,141 9,515
Benign 128,364 14,810
Pathogenic 91,322 9,998
Likely pathogenic 41,404 4,198

VUS are difficult to classify for several reasons (Federici and Soddu, 2020) such
as: i) lack of sufficient population-based statistical evidence, ii) scarcity of
functional evidence, and iii) different evaluations by clinicians and researchers.
In the first case, VUS might be not so rare, but found in many different
pathological conditions and population subgroups, impeding appropriate
statistical evaluations and classifications. The second reason is mainly due to
the nature of the variant itself: VUS are mainly missense or synonymous
substitutions, substitutions of biochemically similar residues, intronic SNVs, or

in-frame insertions/deletions. They may be found in non-coding regions, at less
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conserved residues, at splicing boundaries, or in less functionally relevant
domains compared to true pathogenic variants. Thus, the impact of such VUS
on the proteins and their functions is more difficult to uncover than nonsense
variants. The third reason is due to different approaches taken by scientists and
clinicians for classifying variants. Medical genetic counsellors mainly consider
pathogenic variants with documented involvement in the disease.
Furthermore, different laboratories do not necessarily adopt the same
standardized reporting format. These divergent approaches create a gap in
knowledge and make VUS challenging to use, overlooking potentially relevant

information for the disease (Federici and Soddu, 2020).

Moreover, it has been noted that hereditary cancer genes are highly susceptible
to splicing variants (Rhine et al., 2018). Exonic and intronic VUS in HBOC
associated risk genes can affect splicing, altering the RNA and leading to protein

defects, similar to truncating variants (Wai et al., 2020).

3. In silico tools usage in RNA splicing and

hereditary breast/ovarian cancer

In eukaryotic organisms, genes are organized in coding regions (exons)
separated by non-coding DNA (introns). The process by which introns are
excised from the pre-mRNA is named “splicing.” This process is dependent on
the presence and interaction between the called cis and trans elements. The
cis-elements are the conserved DNA sequences that define exons, introns, and
other regulatory sequences necessary for proper splicing. Spliceosome proteins

together with small nuclear RNAs (snRNAs), splicing repressors, and activators
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recognize the conserved DNA cis-splicing elements and are called trans-acting
elements (Anna and Monika, 2018; Ule and Blencowe, 2019).

The splicing process is performed in two steps. The first step is the recognition
of the splicing sites at intron/exon junctions, and the second one is the intron
removal and exon ends joining. During the splicing process, different complexes

between the pre-mRNA and spliceosome are formed (Anna and Monika, 2018).

3.1. Elements of Splicing

i) Cis-elements of splicing

The cis-acting core consensus sequences include: (i) the splice sites
evolutionarily conserved defined by GU at 1 and 2 of the 5" donor splice site
(DS) and AG at 1 and 2 of the 3’ acceptor splice site (AS); (ii) intronic and exonic
nucleotides adjacent to these invariable nucleotides also highly conserved:
CAG/GUAAGU in donor sites and NYAG/G in acceptor sites; (iii) the
polypyrimidine tract preceding the 3’ splicing site, and (iv) the branch point,
located anywhere from 18 to 40 nucleotides upstream from the 3’ end of an
intron (Ohno et al., 2018). Other cis-splicing regulatory elements (SREs)
modelling splicing are classified as exonic splicing enhancers (ESEs) or silencers
(ESSs) when they serve as promoters or inhibitors of exon inclusion, and as
intronic splicing enhancers (ISEs) or silencers (ISSs) when they enhance or
inhibit the use of adjacent splice sites or exons from an intronic location (Wang
and Burge, 2008), helping to the correct exon inclusion and intron exclusion. All
these elements shape a recognizable landscape to include a specific region in
mature mRNA. The high fidelity of splicing is critically dependent on the
recognition of the cis-acting pre-mRNA sequences (Fig. 5) (Dufner-Almeida et

al., 2019).
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Figure 5. Schematic representation of cis (DNA splicing sequences) and trans (protein
binding splicing elements). ESE (exonic splicing enhancer); ESS (exonic splicing silencer);
ISS (intronic splicing silencer); SR (Serine rich protein). Taken from Anna and Monika,
2018.

- Splicing sites
These sites are recognized multiple times during spliceosome assembly, and
introns are removed from the primary transcripts by cleavage at the splice sites.
In most cases (98.7%), the exon-intron boundary sequences contain GT and AG
motifs at the 5’ and 3’ ends of the intron, respectively. Non-canonical GC-AG
and AT-AC sequences at the splice sites occur in 0.56 and 0.09% of the splice
site pairs, respectively (Anna and Monika, 2018). Although the classic splicing
motifs are typically essential for splicing, it is not generally sufficient for

accurate splice-junction definition.

- Branch point and polypyrimidine tract
Branch point and polypyrimidine tract intronic sequences bind specific proteins
involved in the formation of splicing complexes (Figure 5). The branch point
motif, that might be localized between -9 and -400 bp upstream from the
acceptor site with the consensus sequence yUnAy in humans, is essential for
early spliceosome complex formation through the formation of a lariat RNA
intermediate which is debranched and subsequently degraded after exon

junction (Gao et al., 2008; Corvelo et al., 2010). As the sequences of the branch
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point are highly degenerated, their exact localization is difficult to determine,
but it is present mainly between -18 to -44 intronic nucleotides (Leman et al.,
2020).

The polypyrimidine tract with sequence enriched in pyrimidine nucleotides
/(Y)12-17/ is located between -5 and -40 bp from the acceptor splice site. This
sequence binds the U2AF65 spliceosome subunit and polypyrimidine tract-
binding protein. Any mutation in these sequences could lead to splicing

alterations (Ohno et al., 2018).

- Splicing regulatory elements (SREs)
SREs are cis-regulatory RNA motifs, often 6-8 nt long, degenerated, and
sometimes overlapping, that modulate RNA splicing by interacting with trans-
acting factors that either activate or repress the splice site recognition and
intron removal (Cartegni et al., 2002; Chasin, 2007). They include exonic splicing
enhancers and silencers (ESEs and ESSs, also called ESRs for exonic splicing
regulators), as well as their intronic counterparts (ISEs and ISSs, collectively
known as ISRs). Importantly, it has been estimated that ESEs cover about half
of all exonic nucleotides in the human genome (Chasin, 2007). These elements
serve as binding sites that recruit trans-acting factors (e.g., SR and hnRNP
proteins) that activate or suppress splice site recognition of spliceosome

assembly by various mechanisms (Fu and Ares, 2014).

ii) Trans-elements of splicing

The trans-elements include proteins and ribonucleoproteins required for the
splicing machinery (spliceosome) and its regulation. The spliceosome is a highly
dynamic and supramolecular ribonucleoprotein complex, composed of five
small nuclear ribonucleoproteins (snRNPs) and more than 100 proteins,
including kinases, phosphatases and helicases, many of which are required for

spliceosomal function, as well as associated proteins such as mRNA-export
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factors and transcription factors (reviewed in Wang and Cooper, 2007,
Wilkinson et al., 2020). The spliceosome assembly is further coordinated by the
interaction of auxiliary splicing cis-elements and enhancer or repressor protein
complexes, as exon splicing enhancers that bind serine/arginine (SR)-rich
related (SR) proteins and recruit and stabilize binding of spliceosome
components such as U2AF (reviewed in Wang and Cooper, 2007). Interestingly,
several studies have shown that mutations in components of the splicing
machinery can contribute to a dysregulated RNA splicing and tumorigenesis
(Wang and Aifantis, 2020). However, alterations in these trans-elements are out

of the scope of this thesis.

3.2. Spliceogenic variants in genetic diseases

A DNA variant disrupting any of the cis-acting core or regulating elements may
lead to incorrect splicing, resulting in partial or complete exon loss/intron gain
in the mature mRNA, thus generating aberrant non-functional transcripts
(truncating or in-frame) proteins which could cause disease (Baralle and Buratti,
2017) (Figure 6). According to HGMD, nearly 9% of all variants (ascertained
September 2020) leading to human genetic diseases affect pre-mRNA splicing.
However, the rate of miss-RNA splicing variants causing disease is thought to be
much higher as synonym, missense, and deep intronic variants outside the
donor and acceptor splicing site motifs are rarely considered and evaluated as

splicing disruptors (Polak et al., 2017; Canson et al., 2020).

In general, variants in the canonical acceptor and donor sites affect strongly
conserved sequences that define exon-intron boundaries. The most known
affect + 1 and + 2 residues at the 5’ donor splice site and -1 and - 2 residues at
the 3’ acceptor splice site (Anna and Monika, 2018). However, exonic/intronic

variants located within the proximity of canonical splice sites have also been
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shown to alter splicing (Montalban et al., 2018b, 2019; Duran-Lozano et al.,
2019).

Some variants create similar sequences to splicing sites, known as new splicing
sites. Intronic or exonic cis-acting variants also have the potential to disrupt the
use of alternative (cryptic) splice sites, changing the proportions of naturally
occurring mRNA transcripts which may also lead to disease (Wang and Cooper,

2007).

Moreover, variants affecting splicing regulatory elements have also been
described as causing non-functional proteins in HBOC syndrome and other
genetic diseases (Tubeuf et al., 2020). Variants disrupting polypyrimidine tract
or branch point sequences have been less reported, but recent studies have
identified many variants altering these elements (Anna and Monika, 2018;

Leman et al., 2020).

Along DNA intronic regions there are numerous sequences similar to authentic
splicing elements. The activation or disruption of these elements (such as
cryptic splice sites activation or SREs alteration) could lead to the formation of

pseudoexons (Vaz-Drago et al., 2017) (Figure 6).

On the other hand, due to the lack of sequencing of deep intronic regions in the
diagnostic panels, a reduced number of spliceogenic variants have been
identified in these regions in genes related to hereditary cancer or other rare
genetic diseases. Interestingly, in previous research conducted in our
laboratory, the first BRCA1 deep intronic pathogenic variant was identified

(Montalban et al., 2018a).
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Figure 6. Types of splicing variants. Consequences in mRNA caused by variants
disrupting DNA conserved elements. Taken from Anna and Monika, 2018.

3.3 Splicing in silico tools

Given that all types of genetic variation in any cis-splicing element may result in
RNA alteration, the potential effect on splicing of all identified genetic variants
should be evaluated (Canson et al., 2020). To detect splice alterations, in vitro
splicing assays with patient’s RNA or minigenes are widely used. However,
testing all detected potentially spliceogenic variants is time-consuming and
expensive. To prioritize variants to be experimentally evaluated, multiple
computational prediction tools have been developed to assess the effect of
DNA variants on splicing, based on scoring the functionality of the affected cis-
element (Ohno et al., 2018). Also, in silico algorithms are included as one of the
evidence criteria utilised for variant interpretation by the American College of

Medical Genetics and Genomics (Richards et al., 2015).

Current bioinformatic filtering strategies and clinical interpretation guidelines
tend to focus on amino acid level effects. This can lead to synonymous, intronic,
or missense variants being filtered out at an early stage of analysis, even though

such variants may affect splicing. Similarly, although deep intronic variant data
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are increasingly available via massively parallel sequencing in approaches like
exome or genome sequencing, such non-coding variants are rarely considered
owing to a lack of evidence on which to base interpretations. When
bioinformatic predictions suggest that a variant affects splicing, there can be

scope for additional RNA-based investigations (Wai et al., 2020).

In silico tools that analyse the splicing strength have evolved from approaches
based on position weight matrix (PWM) to machine learning and deep learning
methods (Rowlands et al.,, 2019). In general, bioinformatic tools predicting
donor and acceptor splicing sites alteration are more reliable than those applied
to more loosely conserved elements like SREs (Ohno et al., 2018; Canson et al.,

2020).

Historically, computational tools are based on different premises, the most
common being used based on position weight matrix (PWM), in which each
nucleotide on the splice site sequence is scored and ranked according to its
frequency from its aligned consensus sequence. Splicing Site Finder (SSF) and
Human Splice Finder (HSF) tools are based on PWM (Shapiro and Senapathy,
1987; Desmet et al., 2009).

Neural network programs, such as NNSplice (NNS), are previously trained on
examples with consensus splice sites. Based on the result of the network, the
exact location of the splice site is predicted without prior knowledge of the
donor or acceptor splice sites in the analysed sequence (Reese et al., 1997;
Johansen et al., 2009). Tools based on maximum entropy distribution models
such as MaxEntScan, take into account the dependencies between nucleotide
positions given a set of constraints defined as low-order marginal distributions,
and generates two models based on a set of real and decoy splice sites. It then
compares the probability that a given nucleotide sequence belongs to each of

the two distributions and returns how much more likely the sequence is to be
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areal site, rather than a decoy site (Yeo and Burge, 2004; Rowlands et al., 2019).
Also, the combination of different algorithms such as SpliceSiteFinder and
MaxEntScan (SPiCE tool) has been proved to be efficient to identify splicing sites

altering variants (Leman et al., 2018).

Interestingly, some in silico tools have been developed using experimentally
observed evidence, e.g. ESRseq (Ke et al., 2011) and HEXPLORER (Erkelenz et
al., 2014). Using in vitro RNA approaches, scores for each hexamer as splicing
regulatory element sequence were obtained. Then, after calculating the
difference between wild type and variant sequence, AESRseq and AHZEI scores

are retrieved (Ke et al., 2011; Erkelenz et al., 2014).

Some tools adopt a meta-analytical approach by incorporating output from
other tools as features, such as the use of different tool scores integrated into
S-CAP. This tool combines sequenced-based features, evolutionary
conservation, and existing metrics, including SPIDEX, CADD, and LINSIGHT, and
comprises six different splicing prediction models, each designed to predict the
pathogenicity of rare single nucleotide variants in a different splicing region

(Jagadeesh et al., 2019).

In recent years, splice prediction tools have incorporated a wide range of
machine learning-based models requiring training and testing. A key element of
machine learning is the use of features or variables that are incorporated into
the models and from which inferences are ultimately made. Many of these
features are often sequence-based, showing the frequency or position of
particular nucleotide sequences over a given region. Biochemical features, such
as GC content and thermodynamic properties, are often also employed

(Rowlands et al., 2019).
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One major contributing factor to the rapid upgrowth in the number of machine
learning-based splice prediction tools is the increased availability of publicly
available data. Particularly valuable are experimentally-derived RNA-seq
datasets. Many tools use raw sequence data as input. In such cases, these
sequences are taken from a reputed transcript model, as in the cases of
MMSplice (Cheng et al., 2019b) and SpliceAl (Jaganathan et al., 2019). SpliceAl
is one of the most interesting deep learning-based tools. It analyses each
position in a pre-mRNA transcript and evaluates whether it is likely to be a
donor and acceptor splice site or neither. To train the model, the authors
selected over 20,287 principal protein-coding transcripts from the GENCODE
v24 annotation and used those from a selection of particular chromosomes as
a training set. This tool is able to check any position in the genome and analyse
up to 10,000 nt from the location of the variant. The authors demonstrate the
ability of SpliceAl to faithfully identify authentic splice sites from nucleotide
sequence alone, allowing the recreation of entire gene transcripts. SpliceAl-10k
exhibits 95% top-k accuracy and an area under precision-recall curve (PR-AUC)
of 0.98 (Jaganathan et al., 2019). The tool has been built to identify the variant
impact on acceptor/donor loss or gain. However, the performances for the

identification of variants altering other elements like SREs remain unknown.

3.3.1 Splicing in silico tools for specific sequence regions

Some of the previously mentioned tools are dedicated to specific splicing
elements or regions, and others can analyse all types of splicing elements. For
example, SSF, HSF, MES, or SPiCE are in silico tools limited to identifying variants
altering natural splicing sites or creating similar sequences to them (Table 5).
These tools have been the most commonly used in spliceogenic variant
detection due to the more historical knowledge about these conserved splicing

sequences.

53



INTRODUCTION

Variants affecting the polypyrimidine tract located near the acceptor splicing
site can be optimally identified using MaxEntScan (Yeo and Burge, 2004). On
the other hand, the collection of experimental information of branch points
allowed the development of tools like Branch Point Prediction (BPP) and
Branchpointer (Zhang et al., 2017; Signal et al., 2018) (Table 5).

In addition, HAL (Rosenberg et al., 2015), a combination of machine learning
and synthetic biology trained with mini-gene sequences, ESRseq (Ke et al.,
2011), and HEXPLORER (Erkelenz et al., 2014) tools are designed to identify
variants creating or disrupting SREs (ESE/ESS or ISE/ISS) (Table 5).

Finally, some in silico tools like SpliceAl, SPANR, MMSplice, S-Cap or SPiP can
potentially identify alterations in various sequences or splicing elements (Table

5).

Table 5. Summary of commonly used in silico splicing tools, their targeted analysed
regions and elements and their model of analysis.

Region/element of

Tool Model base Citation
analysis
Splice Site Spl sites and (Shapiro and Senapathy,
PWM
Finder (SSF) new/cryptic sites 1987)
MaxEntScan Spl sites, Maximum
(MES) new/cryptic sites, (Yeo and Burge, 2004)
Entropy Principle
and PPT
Human
Spl sites and
Splice PWM (Desmet et al., 2009)

new/cryptic sites
Finder (HSF)

Adaptive
dbscSNV Spl sites boosting and (Jian et al., 2014)

random forests

PWM +
Spl sites and
SPiCE Maximum (Leman et al., 2018)
new/cryptic sites
Entropy Principle
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BranchPoint
Branch Points ML (Signal et al., 2018)
er
BPP Branch Points / PPT Mixture Model (zhang et al., 2017)
Splicing Regulatory Experimentally
ESRseq (Ke et al., 2011)
Elements inferred
Machine
Splicing Regulatory
HAL learning and (Colombo et al., 2021)
Elements
synthetic biology
Splicing Regulatory Experimentally
HEXPLORER (Erkelenz et al., 2014)
Elements inferred
ML (Deep neural
SpliceAl All sequences (Jaganathan et al., 2019)
network)
Exons, plus +-300 ML (Neural
SPANR (Xiong et al., 2015)
intronic nts network)
Exons, plus 50 bp
ML (Gradient
S-CAP flanking intronic (Jagadeesh et al., 2019)
boosting tree)
sequence
https://github.com/rapha
SPiP All sequences Meta-predictor elleman/spiP

PWM, Position Weight Matrix; ML, Machine Learning; PTT, Polypyrimidine Tract; Spl,

Splicing.

In summary, tools based on different approaches have been launched, some of
them dedicated to specific elements, and others able to compute various types
of splicing elements. Performance analysis comparing tools using different
datasets have been carried out (Tang et al., 2016; Tubeuf et al., 2020). However,
there is no consensus of which tool has to be used, in which conditions, or in
what type of variants has to be applied. Moreover, their inclusion in the ACMG
guideline is not clearly defined and do not cover the whole cis-splicing elements
landscape. For this reason, independent performance studies with a large set

of variants, comparing tools and optimizing their use, are needed.
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HYPOTHESIS

Patients with HBOC in whom a causative pathogenic variant is not identified
after genetic analysis may not benefit from prevention, early detection, or
precision treatment measures. This negative or inconclusive results are due,
among other causes, to the detection of variants of uncertain significance
(VUS), some of them potentially spliceogenic, and the existence of still unknown

susceptibility genes.

The hypotheses of this work consist of:

-Variants detected using massive parallel sequencing could disrupt or create
splicing elements and consequently alter RNA leading to non-functional or
partially functional proteins. The development of in silico tools to identify this
type of variants (including deep intronic variants), could help to select with high
grades of sensitivity and specificity those variants that should be prioritized for

subsequent RNA analysis, increasing the possibility of reaching a diagnosis.

-Improving the classification of variants of uncertain significance (VUS) by
adapting variant classification guidelines to specific genes, such as ATM, can
reduce the number of such variants and the uncertainty in patients and

clinicians.

-The analysis of exomes or extended panels in patients with HBOC negative for
known risk genes, could identify new candidate genes, that have to be validated
in later case-control studies. These new susceptibility genes will enlarge the

clinical benefit for patients who have not obtained a prior genetic diagnosis.
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OBJECTIVES

The main objective of this thesis is to increase the capacity of genetic diagnosis

of patients with HBOC, by focusing on i) the optimisation in the interpretation

of exonic and intronic variants that might affect RNA quality or quantity but

remain as variants of uncertain significance (VUS) and ii) the identification of

new susceptibility genes for HBOC. According to this, the specific aims of this

project are:

1)

2)

3)

4)

To evaluate the performance of native splicing site alteration
predictions made by commonly used in silico tools, comparing their
outputs with the experimental evidence obtained by in vitro RNA
analysis of variants detected in HBOC genes, for their implementation
in the clinical variant interpretation guidelines.

To provide an in silico framework to prioritize deep intronic variants for
their experimental RNA analysis and to elucidate the importance of the
landscape of splicing elements and SRE balance in the inclusion of
sequences in mature RNA.

To adapt the ACMG variant interpretation guideline to ATM gene for
patients with cancer predisposition syndromes, especially focusing on
splicing in silico.

To analyse exomes and a panel of candidate genes in patients with
early-onset BC/OC and no pathogenic variant in known genes, to select
new genes potentially associated with risk, and validate their
relationship with susceptibility to HBOC in patients and healthy Spanish

controls.
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CONTENTS

The present thesis comprises four articles that follow the order of objective

section:

Article 1 “Computational tools for splicing defect prediction in breast/ovarian
cancer genes: How efficient are they at predicting RNA alterations?” Moles-
Fernandez A, Duran-Lozano L, Montalban G, Bonache S, Lépez-Perolio |,
Menéndez M, Santamariifia M, Behar R, Blanco A, Carrasco E, Lopez-Fernandez
A, Stjepanovic N, et al. 2018. Front Genet 9:366.

Article 2 “Role of Splicing Regulatory Elements and In Silico Tools Usage in the
Identification of Deep Intronic Splicing Variants in Hereditary Breast/Ovarian
Cancer Genes” Moles-Fernandez, A.; Domeénech-Vivd, J.; Tenés, A.; Balmana, J.;
Diez, 0, Gutiérrez-Enriquez, S. 2021. Cancers, 13, 3341.
https://doi.org/10.3390/cancers13133341

Article 3 “A Collaborative Effort to Define Classification Criteria for ATM
Variants in Hereditary Cancer Patients”. Feliubadalé L, Moles-Fernandez A,
Santamarina-Pena M, Sanchez AT, Lopez-Novo A, Porras L-M, Blanco A, Capella
G, la Hoya M de, Molina 1J, Osorio A, Pineda M, et al. 2021. Clin Chem 67:518—
533.

Article 4 “Unravelling genetic predisposition to familial breast and ovarian
cancer: identification of new susceptibility genes by case-control study” A.
Moles-Fernandez, E. Aguado-Flor, C. Zamarrefio-Pastor, Tu Nguyen-Dumont,
Melissa C Southey, M. Antolin, S. Bonache, A. Lopez-Fernandez, L. Feliubadal¢,
J. Fernandez-Navarro, C. Lazaro, J. Balmafia, O. Diez, S. Gutiérrez-Enriquez.

Article in preparation.
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SUMMARY OF RESULTS

This thesis aimed to provide tools for the classification of VUS identified in HBOC
risk-associated genes, to reduce the rate of undiagnosed patients. Variants of
uncertain significance could affect RNA due to disruption or creation of cis-
splicing elements, and in silico tools can help to identify these potential
alterations.

Splicing sites are one of the most important splicing conserved elements. Article
1 explains an optimization in the identification of potentially spliceogenic
variants located near to these sequences, comparing different in silico
algorithms, alone or in combination, and providing recommendations to use
HSF+SSF-like or HSF+SSF-like+MES for analysing donor sites and SSF-like for
acceptor sites, after their validation in a large set of data.

Moreover, the creation or activation of cryptic sites along deep intronic regions
could alter splicing causing the inclusion of intronic sequences in RNA,
potentially leading to non-functional proteins. In Article 2, a framework for the
identification of deep intronic spliceogenic was provided, after the performance
analysis of SpliceAl in silico tool in a dataset of spliceogenic and no-spliceogenic
deep intronic variants. In addition, the importance of the splicing regulatory
elements balance in the pseudoexon creation was described.

The ACMG variant interpretation guidelines provide general recommendations
to classify variants. This approach causes a non-totally accurate classification
because guidelines are not adjusted to specific gene characteristics, resulting in
a VUS over-classification. In Article 3, ACMG guidelines were adapted to ATM
gene. We focused on in silico splicing evidence (PP3/BP4). After reclassification
of variants following the adapted guidelines, a reduction of VUS from 58% to
42% was obtained.

On the other hand, in patients without pathogenic variants identified in HBOC
related genes, the phenotype could be due to deleterious variants in genes still
not known associated with the disease. For this reason, in Article 4, the aim was

to identify candidate genes through exomes and extended panel analysis and
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validate their risk association by performing a case-control study. After the
analysis of affected patients and healthy controls, a set of genes were

associated to susceptibility to hereditary breast/ovarian cancer.
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REPORT OF IMPACT FACTOR OF THE ARTICLES INCLUDED IN THE THESIS

Sara Gutiérrez Enriquez, PhD and Orland Diez Gibert, PhD, with DNI 23820736G
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Moles Fernandez in the articles included in this thesis:

Article 1. Computational Tools for Splicing Defect Prediction in Breast / Ovarian
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Contribution: First author. Conception and design, acquisition of data, data
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final approval of the version to be published.
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Cancer Genes. Moles-Fernandez, A.; Domeénech-Vivé, J.; Tenés, A.; Balmaiia, J.;
Diez, O.; Gutiérrez-Enriquez, S. Cancers 2021, 13. Impact factor: 6.639
Contribution: First author in co-authory. Conceptualization, methodology,
software, validation, formal analysis, research, data curation, writing -
preparing the original draft, writing - review and editing, visualization.
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author in co-authory. Conceptualization and design, data acquisition and
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intellectual content. Special involvement in the sections of in silico evidence and
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Article 4. Unravelling genetic predisposition to familial breast and ovarian
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article and final approval of the version to be published.
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Article 1

Computational tools for splicing defect prediction in
breast/ovarian cancer genes: How efficient are they

at predicting RNA alterations?

Moles-Fernandez A, Duran-Lozano L, Montalban G, Bonache S, Lépez-
Perolio I, Menéndez M, Santamarifia M, Behar R, Blanco A, Carrasco E,
Lépez-Fernandez A, Stjepanovic N, Balmaiia J, Capelld G, Pineda M,

Vega A, Lazaro C, de la Hoya M, Diez O, Gutiérrez-Enriquez S.

Frontiers in Genetics. 2018 Sep 5;9:366
doi:10.3389/fgene.2018.00366.
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In silico tools for splicing defect prediction have a key role to assess the impact
of variants of uncertain significance. Our aim was to evaluate the performance of
a set of commonly used splicing in silico tools comparing the predictions against
RNA in vitro results. This was done for natural splice sites of clinically relevant
genes in hereditary breast/ovarian cancer (HBOC) and Lynch syndrome. A study
divided into two stages was used to evaluate SSF-like, MaxEntScan, NNSplice, HSF,
SPANR, and dbscSNV tools. A discovery dataset of 99 variants with unequivocal
results of RNA in vitro studies, located in the 10 exonic and 20 intronic nucleotides
adjacent to exon-intron boundaries of BRCA1, BRCA2, MLH1, MSH2, MSH6E, PMS2,
ATM, BRIP1, CDH1, PALB2, PTEN, RAD51D, STK11, and TP53, was collected
from four Spanish cancer genetic laboratories. The best stand-alone predictors or
combinations were validated with a set of 346 variants in the same genes with clear
splicing outcomes reported in the literature. Sensitivity, specificity, accuracy, negative
predictive value (NPV) and Mathews Coefficient Correlation (MCC) scores were used to
measure the performance. The discovery stage showed that HSF and SSF-like were
the most accurate for variants at the donor and acceptor region, respectively. The
further combination analysis revealed that HSF, HSF+SSF-like or HSF+SSF-like+MES
achieved a high performance for predicting the disruption of donor sites, and SSF-
like or a sequential combination of MES and SSF-like for predicting disruption of
acceptor sites. The performance confirmation of these last results with the validation
dataset, indicated that the highest sensitivity, accuracy, and NPV (99.44%, 99.44%,
and 96.88, respectively) were attained with HSF+SSF-like or HSF+SSF-like+MES for
donor sites and SSF-like (92.63%, 92.65%, and 84.44, respectively) for acceptor sites.
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Performance Evaluation of Splicing Prediction Tools

We provide recommendations for combining algorithms to conduct in silico splicing
analysis that achieved a high performance. The high NPV obtained allows to select the
variants in which the study by in vitro RNA analysis is mandatory against those with a
negligible probability of being spliceogenic. Our study also shows that the performance
of each specific predictor varies depending on whether the natural splicing sites are

donors or acceptors.

Keywords: hereditary cancer genes, NGS of gene-panel, VUS classification, in silico tools, splicing, RNA

alteration

INTRODUCTION

The increasing use of massive parallel sequencing of customized
multi-gene panels, for germline clinical testing of hereditary
breast and ovarian cancer (HBOC) and Lynch syndrome, is
leading to higher detection of genetic variants of unknown
significance (VUS).

All exonic or intronic VUS can be potentially spliceogenic
by disrupting the cis DNA sequences that define exons, introns,
and regulatory sequences necessary for a correct RNA splicing
process. Specifically, the cis DNA elements include: (i) exon-
intron boundary core consensus nucleotides (GT at +1 and
+2 of the 5'donor site and AG at -1 and -2 of the 3'acceptor
site); (ii) intronic and exonic nucleotides adjacent to these
invariable nucleotides that are also highly conserved and have
been found to be critical for splice site selection: CAG/GUAAGU
in donor sites and NYAG/G in acceptor sites; (iii) branch
point and polypyrimidine tract sequence motifs, essential for
the spliceosome complex formation; (iv) intronic and exonic
sequences that act as splicing enhancers (ISE and ESE) or
silencers (ISS and ESS), regulatory motifs that are usually bound
by serine/arginine (SR)-rich proteins and heterogeneous nuclear
ribonucleoproteins (hnRNPs), respectively (Cartegni et al., 2002;
Soukarieh et al., 2016; Abramowicz and Gos, 2018). A nucleotide
change in any of these elements could lead to incorrect splice
site recognition, creating new ones or activating the cryptic ones,
resulting in aberrant transcripts and in non-functional proteins
associated with disease such as hereditary cancer.

Interestingly, it has recently been described that hereditary
cancer genes (including some HBOC and Lynch genes) are
enriched for spliceogenic variants (Rhine et al, 2018). This
finding highlights the importance of both the identification
and the functional interpretation of variants causing RNA
alterations in hereditary cancer genes. In HBOC syndrome
and Lynch Syndrome, the clinical classification of VUS is
essential since carriers of pathogenic variants may benefit from
cancer prevention and risk-reducing strategies, make informed
decisions about prophylactic surgery, and benefit from targeted
treatments (Moreno et al., 2016). Conversely, carriers of non-
pathogenic variants can be excluded from intensive follow-ups
and avoid unnecessary risk-reducing surgery (Eccles et al., 2015).

To detect splice site alterations, in vitro splicing assays with
patient’s RNA or minigenes are widely used. However, testing all
variants detected in the vicinity of exon-intron boundaries can be
time consuming and expensive. In consequence, to select variants
to be experimentally evaluated, a large number of prediction

Frontiers in Genetics | www.frontiersin.org

programs have been developed. These splicing computational
tools are based on different premises. The most commonly used
are based on Position Weight Matrix (PWM), in which each
nucleotide on the splice site sequence is scored and ranked based
on its frequency from its aligned consensus sequence (Shapiro
and Senapathy, 1987; Desmet et al., 2009). Neural network
programs use sets of sequences from databases to identify
splicing sites (Reese et al., 1997). Tools based on Maximum
Entropy Distribution models take into account the dependencies
between nucleotide positions (Yeo and Burge, 2004). Approaches
like SPANR (Xiong et al., 2015) use DNA and RNA sequence
information and a machine learning method, to predict splicing
alterations, enabling the identification of variants affecting cis
and trans splicing factors. Another type of splicing tool has been
developed using ensemble learning methods (adaptive boosting
and random forest) taking advantage of individual computational
tools (Jian et al., 2014a).

Several studies have analyzed the performance of these tools
for genes related to cancer and other diseases and report
discordant results without a consensus guideline recommending
which programs should be used (Houdayer et al., 2008, 2012;
Holla et al., 2009; Vreeswijk et al., 2009; Desmet et al., 2010;
Théry et al, 2011; Colombo et al, 2013; Jian et al, 2014a;
Tang et al., 2016) (Table 1). Here, we present an evaluation
of the performance of commonly used splicing in silico tools,
comparing their output with the experimental evidences obtained
by RNA in vitro analysis of variants detected in HBOC and
Lynch syndrome genes. In the first phase of the study, we
assessed the accuracy of the splicing in silico tools with a dataset
of RNA in vitro outcomes collected from four Spanish cancer
genetic units. Subsequently, we validated the best algorithms
obtained in the discovery phase, with findings obtained after RNA
analysis extracted from different curated databases and reported
literature.

MATERIALS AND METHODS

Variant Selection

Discovery Set

We restricted the study to variants located within the last
10 exonic and 20 first intronic nucleotides from the 5’ splice
donor site, and the last 20 intronic and the first 10 exonic
nucleotides from the 3’ splice acceptor site (—10 to 420 and
—20 to +10, respectively). BRCAI, BRCA2, MLHI, MSH2,
MSH6, and PMS2 variants were selected from HBOC and Lynch

September 2018 | Volume 9 | Article 366
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syndrome patients routinely analyzed for diagnostic purposes.
We also included ATM, BRIP1, CDH1, PALB2, PTEN, RAD51D,
STK11, and TP53 variants obtained in a research series of
BRCA1 and BRCA2 negative HBOC patients. Genetic variants
with unequivocal experimental evidences showing presence or
absence of alterations in the mRNA, were collected from four
different Spanish centers: Hospital Universitari Vall d'Hebron
(HUVH), Barcelona; Hospital Clinico San Carlos (HCSC)
Madrid; Fundaciéon Publica Galega de Medicina Xenomica
(FPGMX), Santiago de Compostela; Institut Catala d'Oncologia
(ICO), Hospital Duran i Reynals, Barcelona.

The variants included in the discovery set were analyzed
in vitro in carriers and controls. RNA was isolated from
whole blood leukocytes or short-term lymphocyte cultures,
phytohaemagglutinin stimulated, and treated with and without
puromycin. The contributing laboratories used diverse isolation
protocols and/or cDNA synthesis strategies following ENIGMA
recommendations (Colombo et al, 2014; Whiley et al,
2014). Briefly, the splicing products generated by reverse
transcription-polymerase chain reaction (RT-PCR) assays were
characterized using agarose gel or capillary electrophoresis in
a QIAxcel instrument with QIAxcel DNA High Resolution
Kit (QIAGEN) or an Agilent 2100 Bioanalyzer (Agilent), and
Sanger sequencing. PCR primers were designed to amplify at
least one whole exon 5" and 3’ flanking the exon harboring
the variant of interest. Primer sequences are available upon
request.

The study was approved by the Institutional Review Board
of each participating center. Patients received genetic counseling
and written informed consent was obtained for further genetic
and research studies.

Validation Set

At this stage, the predictors that presented the best performance
alone or in combination, were applied to compare their
predictions with the in vitro RNA results from the dataset
obtained through literature and databases. We chose a collection
of variants reported in INSIGHT, ClinVar and published works
that were (i) located within the regions defined for the
discovery set; (i) identified in the set of cancer risk genes
included above; (iii) experimentally confirmed as spliceogenic
and non-spliceogenic in blood samples or with minigene
assay at least by RT-PCR, agarose gel and Sanger Sequencing
analysis; and (iv) not located at exonic splicing enhancer (ESE)
regions with specific experimental evidence of causing splicing
alteration.

In silico Splice Tools

A total of six splice-site prediction software programs were
selected for this study. Two ensemble prediction scores
constructed by Jian et al. (2014a) using adaptive boosting
and random forests ensemble learning methods, were extracted
from dbscSNV database'. Splicing-based Analysis of Variants
(SPANR), a computational model of splicing derived from the
application of “deep learning” computer algorithms (Xiong

'https://sites.google.com/site/jpopgen/dbNSEP
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et al, 2015) was ascertained by its own web site’. Splice Site
Finder (SSF-like) (based on Shapiro and Senapathy, 1987),
MaxEntScan (MES) (Yeo and Burge, 2004), Splice Site Prediction
by Neural Network (NNPLICE) (Reese et al., 1997), and Human
Splicing Finder (HSF) (Desmet et al., 2009) accessed through
Alamut Visual 2.10 (Interactive Biosoftware). The GeneSplicer
program is also included in the splicing module of Alamut,
but it was excluded from the study since we noticed it
had an exceedingly high missing scores (no estimation was
obtained for 30% of the variants analyzed; data not shown),
which had also been reported by Jian et al. (2014a). SPANR
and dbscSNV do not analyze insertions and deletions and
dbscSNV  gives estimations for variants only located from
—3 to +8 at 5 and —12 to +2 at 3’ (Supplementary
Table 1).

To interrogate the splicing prediction tools, we calculated the
score variation caused by the variant in the donor site or acceptor
site. To do that, we compared the score computed in the wild-type
sequence (WT) to the score computed in the variant sequence
(VAR) as:

%scorevariation = (VARscore — WTscore)/ WTscore)*100

We calculated the % score variation for four out of the six
tools (SSF-like, HSE, MES, and NNSPLICE), since dbscSNV and
SPANR already provide a score change.

To consider a % score change as a positive prediction of a
splicing motif disruption caused by the variant, which would
lead to aberrant splicing, we adopted thresholds pre-established
in the literature (Supplementary Table 1). When two programs
were combined, a correct prediction of splicing alteration was
considered if at least one of them scored above the threshold.
When three, four, five, or six programs were combined, all tools
but one had to score above the threshold to indicate splicing
alteration.

Performance Assessment

In the discovery and validation phases, the experimental RNA
results for each collected variant were annotated as positive
splicing alteration when they unequivocally, verified by gel
electrophoresis and Sanger sequencing, lead to: exon skipping,
use of a new or cryptic splice site or altered alternative transcript
profile. In contrast, a negative splicing alteration was annotated
when the in vitro RNA result was exactly the same as that
obtained in control samples.

For both stages, we calculated the overall accuracy (ratio of
overall correct predictions to the total number of predictions),
specificity (correct identification of non-spliceogenic variants;
true negative rate), and sensitivity (correct identification of
deleterious variants; true positive rate). The positive predictive
values (PPV, proportion of positive predictions that were
true positives), negative predictive values (NPV, proportion of
negative predictions that were true negatives), false negative rates
(FNR, proportion of false negative detection), and false positive
rates (FPR, proportion of false positive detection) were also

Zhttp://tools.genes.toronto.edu/
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FIGURE 1 | In vitro RNA results collected in the discovery set. Experimental data are displayed according to variation location. Positive splicing alterations include:
exon skipping, use of a new or cryptic splice site or an altered-alternative transcript profile. Negative splicing alteration: in vitro RNA result was exactly the same as

calculated. Matthews correlation coefficient (MCC) was used to
provide a balanced comparison between i# silico tools.

RESULTS

Discovery Set

A total of 99 variants with unequivocal RNA in vitro results
were studied, located within positions —10 to 420 from the 5
donor site, and within —20 to +10 from the 3" acceptor site
(Supplementary Table 2). Forty-four of the 99 variants generated
a splice defect, with 11 and 9 disrupting the canonical GT
or AG dinucleotides, respectively. The 24 remaining variants
with aberrant splicing were located outside invariable GT or
AG positions, with 15 variants altering the 5" splice site and
nine altering the 3 splice site. Fifty-five variants did not yield
an aberrant splicing, all located outside invariant dinucleotides.
Figure 1 displays the number of positive and negative splicing
results relative to variant location.

Six in silico tools were used to interrogate the 99 variants,
and their corresponding % score variation was obtained. These
outputs were compared to the experimental RNA results. The
respective thresholds pre-established in the literature were
adopted for each program (Supplementary Table 1).

Supplementary Table 2 lists the % score variation obtained
from each splicing tool used to assess the 99 variants, highlighting
which scores were in agreement with the RNA analysis outcome.
Of note, seven insertions or deletions were not computed by
SPANR and dbscSNV, while estimations for 33 substitutions were
not provided by dbscSNV.

Table 2 shows separately, for 5 (52 variants), 3’ (47 variants),
and both splice sites (global, 99 variants), the results of
performance analysis for each one of the tools. The six predictors
detected wild type (WT) splice sites in reference sequences for all
the genes of interest.

On average, predictions for variants located in 5’ regions have
higher accuracy (90.98%), sensitivity (90.44%) and specificity
(91.28%) compared to those located in 3’ regions (83.74%,

Frontiers in Genetics | www.frontiersin.org

84.52%, and 82.30%, respectively) (Table 2). The predictions
computed by HSF (with a score change threshold of —2%)
were the most accurate and sensitive for variants at donor
site, while for variants at acceptor sites or affecting either
acceptor or donor sites (global), SSF-like were the most
accurate (with a score change threshold of —5%). MES
program (with a score change threshold of —15%) showed
100% of sensitivity on all predictions, but its specificity did
not reach 87% in any case. In contrast, SPANR program
showed the highest values of specificity for predictions of
variants at donor site or all variants affecting either at acceptor
or donor splice sites, but the lowest values of sensitivity
(Table 2).

Accordingly, the lowest false negative rates for 5'splice site
were reached by the HSF and MES predictors, while at 3'splice
sites, the SSF-like and MES predictors obtained the lowest false
negative rates (Table 2 and Figure 2). In contrast, SPANR
predictor had the highest false negative and the lowest false
positive rates in almost all cases (Table 2 and Figure 2). Regarding
the estimation of the proportion of negative predictions that
were true negatives (NPV), HSF or MES and SSF-like or MES
achieved the highest values (100%) for donor and acceptor sites,
respectively (Table 2).

The accuracy of all possible predictor combinations was
further assessed. For 5" donor splice sites, predictions of HSF
alone or HSF together with seven different combinations, SSF-
like+-SPANR and SSF-like+MES+SPANR reached a 98.08%
of accuracy with the highest sensitivity for all the models
(100%), obtaining 96.15% of specificity, 0.96 MCC and 100%
of NPV (Supplementary Table 3). For 3’ splice sites, a
sequential combination recommended by Houdayer et al.
(2012) using MES as first-line analysis with a cut-off of
15% followed by SSF-like with a 5% threshold achieved
the best performance, with a 100% of sensitivity, 96.55% of
specificity, 97.87 % of accuracy, 0.96 MCC, and 100% of NPV
(Supplementary Table 4). However, SSF-like alone and two
more combinations including it also showed a 100% of NPV
together with 100% sensitivity and high values of accuracy

September 2018 | Volume 9 | Article 366
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FIGURE 2 | False negative and false posilive rates for individual splicing
prediction tools in the discovery set. dbscSNV, database consulted for
extracting the adaptive boosting and random forests scores.

(for predictions at acceptor site, Supplementary Table 4).
Considering the tool combinations for predicting disruption
caused by variants located in any of the two splice sites
(global), MES and SSF-like sequential combination achieved
the best accuracy with a 96.97% and 0.94 of MCC, followed
for two combinations, including SSF-like and MES, which
showed 100% sensitivity and 100% of NPV (Supplementary
Table 5).

Validation Set

In order to validate the predictors with the best performance
obtained in the discovery set, we analyzed a dataset of 346
variants with RNA in vitro results published or detailed in free
available databases. At donor region, 210 variants were included,
177 showing in vitro splicing alterations (65 at intronic GT
positions) and 33 showing no splicing effects (all outside intronic

Frontiers in Genetics | www.frontiersin.org
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GT) (Figure 3 and Supplementary Table 6). One hundred thirty-
six variants were located at the acceptor region, 95 showing
splicing alterations (67 of them at intronic AG positions), and
41 with absence of alterations (40 of them outside intronic
AG) (Figure 3 and Supplementary Table 7). Only SSF-like and
SPANR were able to identify all WT splice sites in reference
sequences for all the genes of interest.

We selected for validation, the HSF stand-alone and
the combinations HSF+SSF-like and HSF+SSF-like+MES for
5'donor sites (Supplementary Table 3), and the SSF-like alone
and the sequential MES and SSF combination for 3'acceptor
sites (Supplementary Table 4), considering sensitivity, accuracy,
MCC and NPV scores. We excluded the combinations including
SPANR or dbscSNV since they do not provide predictions on
insertions and deletions.

Overall, the in silico predictions in the validation dataset were
more accurate for variants with effects on donor splice sites than
acceptor sites (Table 3 and Figure 4). These findings were in
agreement with those results obtained with the discovery set
(Table 2).

The data analysis indicated that for 5" donor sites the best
combinations, with 98.57% accuracy, 99.44% of sensitivity and
96.88% of NPV, are HSF+SSF-like or HSF+4SSF-like+MES
(Table 3) with very slight differences in performance, between the
estimations of splicing effects for all variants (including variants
placed at invariable dinucleotides) and for the group of variants
located outside the two invariable nucleotides. For acceptor sites,
the sequential combination of MES and SSF-like (Houdayer et al.,
2012) and SSF-like stand-alone reached a performance with the
same score of accuracy, 92.65%, but SSF-like showed a highest
NPV (Table 3). Unlike the donor site, the accuracy of these
predictors decreased (to 85.29%) when the variants analyzed did
not include those at the two nucleotide invariables (AG) of the 3’
acceptor splice site (Table 3). For predictions of variants outside
these dinucleotides, the rate of false negatives showed by SSF-like
is slightly lower than those rates of MES and SSF-like sequential
combination (25% versus 28.57%, respectively, Table 3).

DISCUSSION

The use of massive parallel sequencing in clinical diagnostics is
leading to a significant increase in data and the detection of a
high number of variants of uncertain significance (VUS) with
potential effect on splicing which need interpretation. Therefore,
prediction of the effect of DNA sequence variations on splicing
using in silico tools has become a common approach. Several
studies have been published on the performance and reliability
of in silico predictions of the splicing impact of variants (Jian
et al., 2014b). Table 1 details the results obtained in these studies
and shows that the recommendations provided about the most
appropriate to be used are not concordant. However, the studies
that give clear reccommendations, always include one of the HSE,
SSE, or MES programs, alternatively.

We have evaluated the reliability of in silico splicing effect
predictions of six programs (MES, HSF, SSF-like, SPANR,
NNSplice, and dbscSNV) comparing their scores with splicing
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or cryptic splice site or an altered-alternative transcript profile. Negative splicing alteration: in vitro RNA result was exactly the same as that obtained in control

samples. Spl, splicing.

in vitro analysis outcomes of variants identified in hereditary
cancer related genes. We elaborated the study in two stages,
discovery and validation, to identify the best predictors or the
best combination for their application in routine clinical testing,
taking into account the percentages reached for sensitivity,
specificity, accuracy and NPV as well as the score of Mathews
Coefficient Correlation (MCC).

In the discovery stage, significant performance differences
were appreciated among individual tools (Table 2). For global,
as well as for 5/, and 3’ splice sites, low accuracies of SPANR and
NNSplice contrasted with the high performance achieved by SSE,
MES, and HSE, while dbscSNV demonstrated an intermediate
accuracy.

At the second stage of our study, we validated the
combinations of HSF with SSF-like or HSF+4-SSF-like+MES as
the highest performance for splicing aberrations at donor sites,
and SSF-like stand-alone at acceptor sites (Table 3). All these
results are in agreement with the trend observed in the previous
published results, where HSF or SSF or MES outperformed other
methods (Table 1). Of note, besides high accuracy and sensitivity,
these validated tools, combined or as stand-alone, also had high
NPV. This is relevant in a clinical setting, since it allows to
separate the variants with an extremely low or non-existent
probability of being abnormally spliceogenic from those variants
in which in vitro RNA studies are of interest, with the consequent
saving of resources in the laboratory.

All of the three predictors are available through Alamut
Visual 2.10 (Interactive Biosoftware, Rouen), allowing a high
throughput analysis, which is essential in a massive parallel
sequencing annotation pipeline. Yet, in the newest version
of Alamut Visual (2.11) the HSF predictor is not included
in its splicing module, it is freely available at Human Splice
Finder website® or through VarAFT software’, which allows the
annotation of a large batch of variants. MES program is also freely

*http://www.umd.be/HSF3/
*https://varaft.eu/
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accessible via web®*, although caution should be taken when
obtaining predictions via Alamut or via web, since differences
have been reported (Tang et al., 2016). SSF-like tool is currently
only accessible through Alamut, yet it has been recently published
a free program named Splicing Prediction in Consensus Elements
(SPiCE’) that combines predictions from SSF-like and MES
(Leman et al., 2018). On the other hand, SPANR and dbscSNV are
free and could be easily implemented in a pipeline (Xiong et al.,
2015; Liu et al., 2017), but these tools are not able to interpret
splicing alterations caused by insertion or deletions (6.36% of
validation set variants), which represents a limitation for their use
compared to the other tools.

Non-canonical GC-AG and AT-AC sequences at the splice site
invariant positions occur in 0.56 and 0.09% of the splice site pairs,
respectively (Abramowicz and Gos, 2018). In the list of the genes
that we analyzed, only six splice sites vary from the canonical
splice site GT-AG: ATM exon 50 donor site (GC), BRCA2 exon 17
donor site (GC), MUTYH exon 14 donor site (GC), PALB2 exon
12 donor site (GC), STK11 exon 2 donor site (AT) and exon 3
acceptor site (AC). In our validation dataset, we only had variants
at atypical BRCA2 exon 17 donor site (GC), and among the
studied tools, only SSF-like and SPANR were able to identify these
atypical splicing sites and made a prediction for variants located
nearby. As the performance of SSF-like is better than SPANR, we
suggest the use of SSF-like to analyze these non-canonical splicing
sites.

The tools analyzed in this article have only been interrogated
to predict alteration at donor and acceptor splice sites. However,
alterations in RNA may be produced by variant effects on other
factors in cis (branch points, polypyrimidine tract, intronic and
exonic splicing silencers and enhancers) or create new splice sites
or activate cryptic ones. At the stage of validation, the rate of
false negative predictions is significantly higher for acceptor sites

b/maxent/X

“http://genes.mit.edu/b scan_scoreseq.html
Shttp://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq_acc.html

"https://sourceforge.net/projects/spicev2- 1/
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FIGURE 4 | Prediction performance of HSF+SSF-like for donor sites and SSF-like for acceptor sites with variants collected in the validation set. Correct prediction:
in silico and in vitro results are concordant. Incorrect prediction: in silico and in vitro results are discordant.

than for donor sites (Table 3). This difference may be due to
the greater complexity of the sequence adjacent to the 3', with
the presence of the branch point and the polypyrimidine tract.
Therefore, variants located in these two last elements could alter
RNA and not be detected as changes in the scores of the splicing
sites computed by the predictors. For example, the variant ¢.1066-
6T>G at ATM (included in the validation set), which is not
predicted correctly by MES and SSF-like sequential combination
(Supplementary Table 7), alters the polypyrimidine tract causing
an aberrant transcript (Dérk et al., 2001).

Likewise, the BRCA2 exonic variant c.467A>G, located nine
nucleotides upstream from the 5" donor site, causes the loss of
these last nine nucleotides, while the HSF and SSF-like predicts
that their scores for the native donor splice site of 88.9 and
84.5, respectively, are not changed by the variant, which it is
misinterpreted as a false negative (Supplementary Table 6).
Using some of the tools analyzed in our study to identify
enhanced cryptic sites or creation of new splice sites, the variant
is predicted to cause a new donor site at nine nucleotides from
5, in concordance with in vitro results: SSF-like indicates a new
donor site with a score of 96.9 against 84.5 of the natural splice
site, MES 11.1 vs. 9.5 and HSF 98.2 vs. 88.9.

Furthermore, variants located in the exonic regions collected
in our study could affect enhancer elements (ESEs) leading to
an exon skipping, but they would not be correctly predicted by
the analyzed tools. Although variants with specific experimental
evidence of suffering this type of alteration were not included in
our study, most articles consulted do not explicitly describe or
exhaustively exclude the effect of ESEs. As an example, the BRCAT
¢.557C> A altering splicing variant gathered at validation set is
not predicted to affect native acceptor site by SSF-like, but specific
tools to predict splicing defect caused by regulatory sequence
disruption indicates an ESE disturbance: ESRseq score of —1.567
(Ke et al., 2011) and HEXplorer AHZg = —30.24 (Erkelenz et al.,
2014).

Computational tools or programs able to perform predictions
on the disruption of all ¢is DNA elements would cover the whole
landscape of aberrant RNA splicing yielded by spliceogenic VUS.
Theoretically, SPANR is able to detect exon skipping caused by all

Frontiers in Genetics | www.frontiersin.org

of the elements above mentioned, although our study indicated
that this program has a low performance for at least to predict
correctly alterations of donor and acceptor sites (Table 2). The
HSF predictor accessed via its website®, also predicts the impact
of genetic variations on branch point elements and has been
improved for the identification of natural non-canonical splice
sites (Oetting et al.,, 2018). The breast cancer genes PRIORS
probabilities program’, gives MES estimations of disruption of
natural splice sites and also computes the creation of new donor
and acceptor splice sites using NNSplice, yet only for BRCAT and
BRCA2 genes (Vallée et al.,, 2016). However, the accuracy and
performance of SPANR, HSF, and PRIORS predictions of variants
placed in elements other than natural splice sites has not yet been
evaluated.

To our knowledge, our study is the only that evaluates the
accuracy of different tools separately for donor and acceptor sites,
resulting in different recommendations for each one with high
performance (Table 1).

One limitation of our study is the use of splicing in silico tools
through a non-free commercial program, Alamut Visual 2.10,
with the uncertainty of whether the predictions obtained through
Visual Alamut are the same as those estimated directly by the
tools in their respective free access websites. We have confirmed
that HSF via web (see footnote 8; data not shown) and MES via
SPICE (see footnote 7; Supplementary Table 8), at least for native
splice sites, provide the same estimations than those provided
by Alamut Visual 2.10. However, SSF-like predictions obtained
through Alamut Visual 2.10 slightly differ from the predictions
ascertained through SPICE (Supplementary Table 8). Therefore
and considering our findings, we recommend as a free pipeline
to use HSF accessed via web and MES via SPICE for donor and
acceptor site predictions, respectively.

Another limitation is the higher number of variants causing
splicing defects compared to the number of variants causing no

Shttp://www.umd.be/HSF3/
http://priors.hci.utah.edu/PRIORS/index.php
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splicing alteration in our validation dataset. This bias is due to
a tendency to report only variants that cause splicing defects.
Some studies, in order to avoid this bias, have included common
single nucleotide polymorphisms (SNPs) from control dataset,
assuming that they do not cause alterations (Table 1). Likewise,
reports of RNA in vitro effects of variants in the two invariable
dinucleotides GT-AG are overrepresented, while those located
further from splice junctions are less frequently analyzed.

CONCLUSION

In conclusion, to perform in silico analysis of VUS potentially
affecting natural splice sites in hereditary cancer genes, we
recommend the use of the HSF+SSF-like combination (with
A-2% and A-5% as thresholds, respectively) for donor sites
and SSF-like (A-5%) stand-alone for acceptor sites. These tools
have shown in the validation stage a high sensitivity and
especially a high NPV. Although the in vitro study of RNA
remains the gold standard to evaluate the process of splicing,
and it is not recommended to use these predictions as the
sole source of evidence to make clinical assertions (Richards
et al., 2015), our results indicate that these combined tools
can be used to filter out VUS with a very low probability of
altering splicing without losing true spliceogenic variants that
will need deeper experimental validation. Complementing the
analysis using specific predictors to identify variants that could
affect elements other than splice sites (such as branch points
or ESEs), may be useful for the screening of the whole RNA
defect landscape. Lastly, it is worth stating that (i) the aim of
this work was not to classify variants but to provide an in silico
algorithm with the highest performance to predict an altered
in vitro splicing regardless of whether the variants are benign
or pathogenic; and (ii) the detection of splicing defect does not
automatically denote the pathogenicity of the variant for which
a comprehensive qualitative and quantitative RNA analysis is
warranted as highlighted in ENIGMA!® or ACGM guidelines
(Richards et al., 2015) for variant classification.
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Simple Summary: There is a significant percentage of hereditary breast and ovarian cancer (HBOC)
cases that remain undiagnosed, because no pathogenic variant is detected through massively parallel
sequencing of coding exons and exon-intron boundaries of high-moderate susceptibility risk genes.
Deep intronic regions may contain variants affecting RNA splicing, leading ultimately to disease, and
hence they may explain several cases where the genetic cause of HBOC is unknown. This study aims
to characterize intronic regions to identify a landscape of “exonizable” zones and test the efficiency
of two in silico tools to detect deep intronic variants affecting the mRNA splicing process.

Abstract: The contribution of deep intronic splice-altering variants to hereditary breast and ovarian
cancer (HBOC) is unknown. Current computational in silico tools to predict spliceogenic variants
leading to pseudoexons have limited efficiency. We assessed the performance of the SpliceAl tool
combined with ESRseq scores to identify spliceogenic deep intronic variants by affecting cryptic
sites or splicing regulatory elements (SREs) using literature and experimental datasets. Our results
with 233 published deep intronic variants showed that SpliceAl, with a 0.05 threshold, predicts
spliceogenic deep intronic variants affecting cryptic splice sites, but is less effective in detecting those
affecting SREs. Next, we characterized the SRE profiles using ESRseq, showing that pseudoexons
are significantly enriched in SRE-enhancers compared to adjacent intronic regions. Although the
combination of SpliceAl with ESRseq scores (considering AESRseq and SRE landscape) showed
higher sensitivity, the global performance did not improve because of the higher number of false
positives. The combination of both tools was tested in a tumor RNA dataset with 207 intronic variants
disrupting splicing, showing a sensitivity of 86%. Following the pipeline, five spliceogenic deep
intronic variants were experimentally identified from 33 variants in HBOC genes. Overall, our results
provide a framework to detect deep intronic variants disrupting splicing.

Keywords: spliceogenic deep intronic variants; pseudoexons; cryptic splice sites; splicing regulatory
elements; hereditary breast ovarian cancer; in silico prediction tools

1. Introduction

Pathogenic variants in the tumor suppressor genes BRCAT and BRCA2 (BRCA1/2) and
other genes, mainly involved in DNA repair, have been linked to high or moderate risks
of developing hereditary breast and ovarian cancer (HBOC) [1,2]. The identification of
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pathogenic variants in these genes offers patients and families precise clinical management
based on personalized prevention and therapeutic strategies [3]. However, there is still
a significant fraction of cases for which the genetic analysis does not identify causative
variants underlying their predisposition to breast and/or ovarian cancer [4-6].

Currently, the detection of pathogenic variants is addressed mainly by massively
parallel sequencing of high-moderate penetrance gene panels. An important number of
identified deleterious variants affect pre-mRNA splicing and interestingly, hereditary can-
cer genes (including some HBOC and Lynch syndrome genes) are enriched for this type of
variants [7]. The spliceogenic variants may occur in both introns and exons and disrupt con-
sensus “cis” sequences such as canonical splice site nucleotides, branch point, polypyrimi-
dine tract motifs, and Splicing Regulatory Elements (SREs). SREs are sequences that act
as splicing intronic/exonic enhancers (ISE/ESE) or silencers (ISS/ESS), binding (SR)-rich
proteins and heterogeneous nuclear ribonucleoproteins (hnnRNPs), respectively [8,9]. Exon
definition is the initial step in pre-mRNA splicing, and it has been suggested that accurate
splice site recognition resides in a SRE balance, i.e., exons enriched with Exonic Splicing
Enhancers (ESEs) and introns with Intronic Splicing Silencers (ISSs) [10-12].

In contrast to several studies showing the spliceogenic effect of exonic variants, there
is a lack of information about the frequency of deleterious variants occurring in deep
intronic regions (420 bp from canonical splicing sites) since conventional genetic diagnosis
is usually restricted to coding exons and flanking intronic regions. However, nucleotide
changes in these regions could generate aberrant transcripts by introducing intronic se-
quences in mature mRNA [13-15]. In fact, pathogenic deep intronic variants have been
described in more than 75 disease-associated genes including monogenic disorders such as
hereditary cancer syndromes [16]. Deep intronic variants can alter splicing by two different
mechanisms [17]: the creation/enhancement of cryptic splice sites and the alteration of an
intronic SRE by the disruption of an ISS or the creation/strengthening of an ISE (Figure 1).
A few examples of diseases driven by the inclusion of a pseudoexon due to these phe-
nomena are HBOC caused by the ¢.4185 + 4105C > T variant in BRCA1, the first reported
deep intronic variant in this gene that activates a pre-existing cryptic donor site [18], and
the Ataxia-telangiectasia disease due to the ¢.2839-581_2839-578del variant in the ATM
gene, which creates an ISE [19]. These examples highlight the relevance of screening deep
intronic regions in HBOC patients to identify germline pathogenic variants leading to an
aberrant RNA processing.

Given that experimental testing of all possible spliceogenic detected variants is cur-
rently not feasible in a clinical setting, multiple computational prediction tools have been
developed to infer their effect and hence to prioritize variants to be experimentally evalu-
ated [20]. Moreover, computational predictions of splicing variants are part of the support-
ing evidence included in the variant interpretation guidelines of the American College of
Medical Genetics and Genomics (ACMG) [21]. Although different in silico tools have been
published that accurately identify splicing exonic variants affecting canonical splice sites
(MES, SSF, HSF) [21-24] or altering SREs (ESRseq, HZg;, HAL) [11,25-27], there has been
limited success in identifying deep intronic variants [18,27,28].

Deep learning tools such as SpliceAl, could outperform classical prediction approaches [29],
but little is known about its performance for identifying deep intronic variants affecting
splicing either by creating de novo/enhancing splice sites or SREs [27,28]. Our work
assesses the performance of the SpliceAl tool combined with ESRseq scores to identify
spliceogenic deep intronic variants using literature and experimental datasets.
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Figure 1. Splicing effects caused by deep intronic variants. (A) Normal splicing using natural splicing sites. (B) Deep intronic

variant creating/enhancing a cryptic splice site, resulting in the inclusion of a pseudoexon by using a complementary

cryptic site. (C) Intronic retention caused by a deep intronic variant that creates/enhances a cryptic site, which is used

instead of the canonical splice site. (D) Deep intronic variant creating/enhancing an ISE, resulting in the inclusion of a

cryptic exon using two cryptic splice sites. (E) Deep intronic variant disrupting an ISS, resulting in the inclusion of a cryptic
exon using two cryptic splice sites.

Moreover, the arrangement of cis splicing elements in deep intronic regions, especially
those corresponding to regulatory elements, would configure sequences with structures
similar to those of canonical exons [30,31]. This landscape of regulatory zones would favor
the generation of pseudoexons if a new deep intronic variant helps to define these structures.
Thus, in this study we also compare the SRE presence between canonical exons of HBOC
genes and published pseudoexons in order to characterize an “exon-like landscape” across
introns which would help to identify potentially “exonizable” intronic regions.

To our knowledge, we provide the first in silico framework to prioritize deep intronic
variants for their experimental RNA analysis, taking into account the landscape of splicing
elements and highlighting the importance of SRE balance in the inclusion of sequences in
mature RNA.

2. Materials and Methods
2.1. Datasets

Four datasets were used in this study: (i) 233 blood-detected germline deep intronic
variants (located >20 nt from known exon-intron boundaries) collected from literature
using the keywords “pseudoexon” and “deep intronic” (Table S1). Their splicing effect
had been assessed experimentally by gel electrophoresis or Sanger sequencing using
blood, lymphoblastoid cell lines, midigenes, or minigenes. We defined as deep intronic
variants those that were more than 20 nt away from the nearest exon-intron junction
because these nucleotides are outside of the known splice site consensus sequences [8,9];
(ii) 1161 exonic variants compiled by Tubeuf et al. [27] to compare the accuracy of SREs-
dedicated algorithms for predicting splicing alteration by affecting SREs (Table S2A); (iii) an
additional supportive dataset of 207 somatic deep intronic splice-altering variants detected
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and characterized in tumor by both whole-genome sequencing and RNA-sequencing,
retrieved from Jung et al. [32] (Table S3); and (iv) an experimental dataset from patients of
Hospital Universitari Vall d"Hebron, comprised of 33 unique intronic germline variants and
selected according to their blood RNA availability (Table S4). The splicing impact of all 33
variants was assessed in silico with SpliceAl and ESRseq and experimentally characterized
using whole blood RNA.

Additionally, we retrieved the sequences of all exons and adjacent 100 intronic nu-
cleotides of HBOC and Lynch genes (BRCA1, BRCA2, PALB2, BRIP1, RAD51C, RAD51D,
PTEN, TP53, CDH1, CHEK2, BARD1, STK11, MSH2, MSH6 and MLHT) according to their
NCBI reference transcripts (Table S5), to compare the splicing regulatory balance between
canonical exons and pseudoexons from the literature dataset. Taking into account that
most exons contain less than 300 nt, and that the mean length is 147 nt [33], exceptionally
long exons (e.g., exons 10 of BRCAT and 10 and 11 of BRCA2) were not included.

2.2. In Silico Variant Annotation and Analysis for All Datasets

SpliceAl (v1.3; https:/ /github.com/Illumina /Splice Al accessed on 1 January 2021)
was run to obtain the delta (A) score of a variant (DS), defined as the maximum of DS for
acceptor gain (DS_AG) and DS for donor gain (DS_DG) for deep intronic variants and
the maximum of DS for acceptor loss (DS_AL) and DS for donor loss (DS_DL) for exonic
variants [34]. The DS value ranges from 0 to 1 and can be interpreted as the probability of
a variant being splice-altering. We considered the Splice Al estimations of a gained /lost
splice site in the 4999 nucleotides located on each side of the variant.

For the prediction of variant-induced SREs alterations, the AESRseq value was calcu-
lated according to Ke., et al. [11] as the difference between the ESRseq scores of a variant
sequence of 11 nucleotides (5 nucleotides at each side of the variant) and wild type sequence
scores (ESRseq VAR- ESRseq WT).

To get the SRE distribution along any genomic region, we focused exclusively on the
ESRseq scores, which were also calculated according to Ke., et al., obtaining individual
nucleotide scores of each one of the positions of a sequence [11] (Table S6). The sum of
the scores for each nucleotide in a given sequence was defined as “area”. To account for
the differences in size between exons, the area was divided by the number of nucleotides
of each exon obtaining a normalized SRE area value (Normalized SRE area = } | ESRseq
scores of all nt of region of interest/size of region of interest). This value was used to
compare the SREs of all constitutive exonic sequences from HBOC and Lynch genes, with
all pseudoexons collected in the literature dataset.

Alamut Visual software v.2.10 (Interactive Biosoftware) was used for annotation of
variants included in the patients’ experimental validation dataset, providing data of allele
frequencies in general population from the Genome Aggregation Database (gnomAD 2.1)
and variant classification reported in ClinVar database (https:/ /www.ncbinlm.nih.gov/
clinvar/ accessed on 1 March 2021), considering the number of vatiant submitters and
reviews by expert panel.

2.3. Statistical Analysis

Performance values of sensitivity, specificity, overall accuracy, Positive and Negative
Predictive Values, False and Positive Discovery Rates, and Matthews correlation coefficient
(MCC) were calculated with different in silico tool thresholds individually and in sequential
combinations. The statistical measures used for evaluation of the performance are depicted
in Table 57.

The Splice Al (4999 bp) optimized threshold was calculated based on the highest MCC
using the literature dataset. In the case of ESRseq, the cut-off optimization was estimated
by maximizing the sum of specificity and sensitivity since in the optimization based on
MCC, the sensitivity /specificity was too unbalanced.

Analysis of variance (ANOVA) and T-test were used to compare the means of SRE
scores between canonical exons, adjacent intronic sequences and pseudoexons with their
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adjacent sequences. T-test was used to compare the absolute SRE differences between the
group of variants causing pseudoexons and variants without any effect. All tests were
performed using Graphad Prism 6.

2.4. Experimental RNA Analysis in Patient’s Data Set

The patient dataset included unrelated cases from HBOC families ascertained through
the Familiar Cancer Unit of Hospital Universitari Vall d"Hebron, HUVH (Barcelona, Spain).
A total of 33 unique intronic germline variants were selected based on blood RNA avail-
ability in ATM, BARD1, BRCA2, FAM175A, MLH1, MSH2, MUTYH, NF1, PTEN, RAD51C,
RBBP8, and TP53 (Table S4). All variants were identified in DNA by massively parallel
sequencing using Illumina technology with a diagnostic routine panel of coding exons and
exon-intron boundaries or by a research panel specifically designed to sequence whole
intronic regions and confirmed by Sanger sequencing [4,5]. Healthy individuals without
familial cancer history were included as negative controls.

2.4.1. Reverse Transcription-PCR (RT-PCR) and Sanger Sequencing

Total RNA from variant carriers and controls was isolated from 10 mL of peripheral
blood using Trizol reagent (Invitrogen, Waltham MS, USA) following the manufacturer’s
protocol. RNA was cleaned-up using RNeasy Mini Kit (QIAGEN, Hilden, Germany)
with an additional step of DNase digestion using RNase-Free DNase Set (QIAGEN) or
Ambion™ DNase I RNase-free (ThermoFisher, Waltham, MS, USA) in samples with a low
RNA concentration. A total of 100 ng of RNA were retrotranscribed to yield cDNA using
PrimeScript RT reagent kit (Takara Bio, Shiga, Japan), combining random and oligo-dT
primers. PCR primers were designed to amplify a whole exon upstream and downstream
from the intron containing the variant of interest. PCR assays were performed in 25 uL
reaction volume containing 50 ng of cDNA as template, using BioTaq DNA Polymerase
(Meridian Bioscience, Cincinnati OH, USA). Samples were denatured at 95 °C for 10 min,
followed by 35 cycles consisting of 95 °C for 30 s, 5662 °C for 30 s, and 72 °C for 1-7 min;
and a final extension step at 72 °C for 7 min. All primers used in this study and amplification
conditions are detailed in Table S8.

Capillary electrophoresis using the 4200 TapeStation device (Agilent, Santa Clara
CA, USA) with High Sensitivity D1000 ScreenTape reagents (Agilent) was used to assess
the quality of PCR products. These products were enzymatically cleaned using ExoSAP-
IT~ PCR Product Cleanup (Affimetrix, ThermoFisher Scientific, Waltham, MS, USA) and
bidirectionally sequenced using BigDye Terminator v3.1 Cycle Sequencing Kit (Applied
Biosystems, Waltham, MS, USA). Sequencing products were run in an ABI3130xI Genetic
Analyzer (Applied Biosystems) and were analyzed using Sequencing Analysis v6.0 soft-
ware (Applied Biosystems). The reference transcripts based on GRCh37 (hg19) genome
and listed in the Table S8 were used for sequence alignment and transcript annotation.

2.4.2. Qualitative Analysis by Capillary Electrophoresis of Fluorescent Amplicons

RT-PCRs using primers labelled with 6-Carboxyfluorescein (6-FAM) at the 5 end were
performed in triplicate (see labelled primers in Table S8). These fluorescent products were
assessed by high-resolution capillary electrophoresis to detect and annotate all amplified
transcripts. Specifically, 0.5 uL of the PCR products were run in an ABI3130x] Genetic
Analyzer instrument (Applied Biosystems) for fragment analysis. GeneScan 500 and 1000
ROX (Applied Biosystems) was used as internal size-standard. Electrophoresis conditions
were the same for all samples: 60 °C, 12 s injection at 1.2 KV and 2000 s run at 12 KV.
Data visualization and peak size-calling was performed using GeneMapper software v5.0
(Applied Biosystems).

The maximum fragment size that could be detected was 946 bp, using the internal
size-standard 1000 ROX.
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2.5. Editorial Policies and Ethical Considerations

This study was approved by the Clinical Research Ethics Committee (CEIC) of Hospital
Universitari Vall d’"Hebron, Barcelona, Spain. All individuals received genetic counseling
and signed written informed consent for HBOC panel genetic testing and research studies.

3. Results
3.1. Splice Al Optimally Predicts Deep Intronic Splice-Altering Variants but with Less Sensitivity
Those Affecting Splicing by Altering Regulatory Elenients

To establish the performance of SpliceAl in predicting deep intronic pseudoexon-
generating variants, we interrogated a set of variants collected from the literature, after
searching for variants located beyond 20 nucleotides from exon-intron boundaries and
for which RNA data was available (Table S1). This collection contains 233 deep intronic
variants from 80 HBOC and other rare mendelian disease genes, including 133 variants that
promote the creation of pseudoexons or intron retention events and 100 variants that do not
alter splicing. Once the delta (A) score for each variant was obtained by running Splice Al
(v1.3), it was compared with the experimental results in RNA to estimate sensitivity,
specificity, and accuracy. Then, we estimated the threshold at which the performance of
the tool was more optimal, obtaining at A score of 0.05 the highest MCC of 0.86 (Table 1
and Figure S1).

Table 1. Performance of SpliceAl for literature database with 233 deep intronic variants using the optimized threshold of

0.05.
Splicing Altering No Splicing Altering g o o
Dataset Variants Variants Sensitivity Specificity Accuracy MCC
All variants 133 100 93.99 92.00 93.13 0.86
Cryptic splice 117 100 95.73 92.00 94.01 0.88
SREs altering 16 100 81.25 92.00 90.52 0.66

Since Splice Al was specifically developed to detect altering splicing variants by activat-
ing or creating cryptic splice sites [34], we reassessed its predictions separately considering
two groups of intronic-splice altering variants according to the cis element affected. We ob-
tained better results with the group of cryptic splice variants than with the SRE disruptive
variants (0.88 vs. 0.66 of MCC, respectively; Table | and Figure S1).

The lower sensitivity showed by SpliceAl in predicting the impact of only 16 deep
intronic variants on SREs prompted us to assess its performance with a large previous
published dataset, composed of 360 exonic variants that affect splicing by altering SREs
and 801 exonic variants without effect on splicing (Table S2A) [27]. The performance with
our pre-established 0.05 cut-off was 69.16% sensitivity, 84.27% specificity and 0.53 MCC,
while with the cut-off of 0.06 showing the highest MCC the prediction improves, reaching
0.548 MCC (Table S2B and Figure S2).

To supplement the performance of SpliceAl in identifying deep intronic variants dis-
rupting SREs, we consecutively added the ESRseq evaluation. ESRseq is a computational
algorithm specifically developed to predict SREs disruption that showed the best perfor-
mance in predicting both variant-induced exon skipping and exon inclusion in a recent
benchmarking study [27]. To do this, the AESRseq values (differences between wild type
(WT) ESRseq score and variant ESRseq score) were calculated as described in Ke et al. [11]
for intronic variants negatively predicted by SpliceAl (<0.05). The threshold optimization
by maximizing the sum of specificity and sensitivity, indicated that variants with a score
change equal or higher than 0.63 were predicted to promote pseudoexon inclusion by
altering SREs with higher sensitivity and specificity (Table S9). The performance of the
sequential pipeline applying to those variants with a Splice Al A score of <0.05 and the
AESRseq threshold of >0.63, showed higher sensitivity (96.24%) than those obtained by
SpliceAl alone, but lower specificity (69%) and MCC (0.69) (Table 2). We next sought to
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know if the optimized SpliceAl cut-off of 0.05 with the whole set of variants, regardless of
the cis-element affected, would be higher if they were evaluated using ESRseq primarily,
i.e., SpliceAl would exclusively compute for variants affecting cryptic sites. However, this
analysis of assessing the 233 intronic variants firstly with ESRseq and then with SpliceAl,
led to the same previous optimized SpliceAl threshold of 0.05.

Table 2. Prediction performances of Splice Al alone and sequentially combined with ESRseq tool with
233 intronic variants from the literature database (133 altering and 100 non altering splicing). Abs.
Dif.: absolute difference.

Pipeline Sensitivity Specificity = Accuracy MCC

(1) A Splice Al = 0.05 93.98 92.00 93.13 0.86
(2) A SpliceAl > 0.05 + SpliceAl < 0.05
and AESRseq > 0.63
(3) A SpliceAl = 0.05 + SpliceAl < 0.05
and AESRseq > 0.63 and Abs. Dif. 0.51

96.24 69.00 84.55 0.69

95.49 86.00 91.42 0.83

3.2. Splicing Regulatory Elements Balance Is Similar between Pseudoexons and Canonical Exons

To further investigate the role of splicing regulatory elements (SREs) in RNA included
sequences, we compared the SREs landscape between constitutive exons and pseudoexons.

First, we extracted, from canonical transcripts of HBOC and Lynch genes (Table S5),
the respective constitutional exon sequences and the 100 adjacent intron nucleotides for
each gene. Next, an ESRseq value was assigned to each nucleotide according to Ke et al. [11],
thus obtaining a map of the distribution of regulatory elements along the different exons.
In addition, we calculated the sum of the total values (area), and the normalized SRE area
score (sum of total scores/number of region length nucleotides), of each exonic and adjacent
intronic region for each gene. In Table 56, we show an example of the obtained data for
BARD1 gene; data for all other genes is available upon request. Comparing the values
obtained from canonical exons and adjacent upstream and downstream introns, significant
differences were observed. Exons were enriched in positive values, corresponding to
exonic splicing enhancers (ESE), while in intronic regions predominated the negative
values, indicating an abundance of intronic splicing silencers (ISS) (Figure 2A).

We then determined the presence and proportion of SREs in the pseudoexons in our
literature dataset. The sequences of the pseudoexonized regions or intron retentions and
the adjacent up and downstream 100 nucleotides were analyzed, following the cDNA
position indicated in the corresponding publication (Table S1). These sequences were
mapped with ESRseq scores obtained for each nucleotide, thus cbtaining the area and the
normalized SRE area values. Next, we compared the ESRseq values obtained between
the region included in the mRNA as a pseudoexon and in upstream and downstream
intronic regions. As with the canonical exons, significant differences were also observed.
The regions included in the mRNA as a pseudoexon due to the variant presented a higher
percentage of positive values and for those that remained as introns, a greater proportion
of negative values (Figure 2B; data in Table S1).

However, these differences were more pronounced between canonical exons and
their surrounding intronic regions (Figure 2C), since the presence of enhancer or silencer
regulatory elements is more abundant in exonic and intronic canonical regions respectively
(Figure S3).
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Figure 2. Definition of SREs abundance in different genomic regions, using the normalized SRE
area calculated with ESRseq scores. (A) Normalized SRE area using ESRseq scores of exonic and
adjacent 100 intronic nucleotides located upstream and downstream of canonical exons of HBOC
and Lynch genes. Significant differences were identified between exons and intronic regions (Pair-
wise significance levels calculated by Tukey test, **** p-value < 0.0001). (B) Normalized SRE Area
using ESRseq scores of pseudoexons and adjacent 100 intronic nucleotides located upstream and
downstream of pseudoexons listed in the literature dataset. Significant differences were identified
between pseudoexons and intronic regions (Pair-wise significance levels calculated by Tukey test,
w0 p-value < 0.0001). (C) Comparison of the exon-intron difference of normalized SRE areas between
canonical exons and pseudoexons. First, the mean of normalized SRE area of adjacent donor and
acceptor site intronic regions was calculated. Then, this mean was subtracted from the exon and
pseudoexon normalized SRE area value. The difference between exonic and intronic regions in
canonical exons was higher than in the case of pseudoexons, suggesting that they are more defined
by a SRE balance. (t-test, **** p-value < 0.0001). Mean + standard deviation is represented in each
graph. Intron. ACC: intronic sequence adjacent to acceptor site; Intron. DON: intronic sequence

adjacent to donor site.

We also estimated for each variant of the literature dataset, regardless of its splicing
effect, the ESRseq values for each position of the 100 intronic bases before and after the
variant (without including the hexamers affected by the variant), and then the absolute
difference of normalized SRE area between these two regions was calculated (Table S1).
This value was used to compare the two groups of deep intronic variants: 133 spliceogenic
vs. 100 no effect variants. Qur results demonstrated that variants with no effect presented
a very low difference between adjacent regions, compared to variants with a spliceogenic
effect (Figure 3). This is consistent with spliceogenic intronic variants being in regions
with a significant difference in the balance of SRE between exons and introns (in line
with the pseudoexon landscape showed in Figure 2B), while variants that do not cause
alteration are in intronic regions with no SREs that could make them susceptible to be
pseudoexonized. Overall, these results suggest that: (i) intronic regions with a similar
SRE balance to that of exons are more susceptible to be included in mature RNA; (ii) a
SRE balance is relevant in the RNA misplacing caused by deep intronic variants and; (iii)
bearing in mind this balance will facilitate the in silico identification of intronic variants
leading to pseudoexon inclusions.
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Figure 3. Comparison of the absolute difference of normalized SRE area from 100 nucleotides before
and after each deep intronic variant compiled from the literature. Absolute values of normalized SRE
area difference from 100 nucleotides upstream and downstream of each variant were used to compare
those spliceogenic with those without any effect. Splicing variants (SPL altering) showed higher
differences between previous and posterior sequences (f-test, ** p-value < 0.01). Mean =+ standard
deviation is represented.

3.3. Inclusion of SRE Landscape in the In Silico Detection of Deep Intronic
Splice-Altering Variants

Although SRE in silico tools (such as ESRseq) can detect variant-induced SRE alter-
ations, they are not able to identify whether the SRE landscape where the variant is located
presents similarities to those of an exon, and ignore the relevance of the SRE balance to
identify variant-induced pseudoexon events. To address this limitation, we included in the
pipeline of SpliceAI (A score cut-off of </>0.05) and ESRseq (A score cut-off of +0.63), the
estimation of the absolute difference between 100 nucleotides up and downstream for each
variant (Table S1). With the absolute difference threshold of 0.51 we obtained a MCC of
0.83, with 95.49% sensitivity, 86% specificity, and 91.42% accuracy (Table 2 and Table S10).
Although this pipeline would theoretically detect variants that alter SREs, the sensitivity of
95.49% only slightly improves that observed using SpliceAl alone (93.98%) (Table 2).

The performance of the last pipeline (SpliceAI A score 0.05 -> AESRseq 0.63 -> differ-
ence in absolute values 0.51), was tested with a set of 207 splicing-disrupting deep intronic
variants identified in tumors by RNAseq [32] with 86% sensitivity which again slightly
improves that observed using Splice Al alone (85.5%) (Table S3).

3.4. Experimental Analysis of Hereditary Cancer Gene Variants

Thirty-three unique variants were experimentally assessed. Thirteen variants passed
the 0.05 SpliceAl threshold and six presented AESRseq equal or greater than 0.63 and an
absolute difference value greater than 0.51 (Table S4). The remaining 14 variants were
not predicted as spliceogenic (Table S4). We characterized the variant effect by RT-PCR
assays comparing their splicing profiles (by high-resolution electrophoresis) with those
in the healthy controls, and posterior Sanger sequencing. This analysis detected the in-
clusion of intronic regions in mature mRNA in only 5 of the 13 variants prioritized by
SpliceAl alone (Table 3 and Figure 4): ATM variants ¢.1899-123A > G, ¢.2466 + 1552G > C,
¢.8850 + 2029A > G, FAM175A variant ¢.476 + 158G > T and MUTYH variant ¢.998-27G > A.
The six variants with a AESRseq equal or greater than 0.63 and absolute difference predic-
tion in favor of altering a SRE region did not show an aberrant splicing. All 14 variants
with a negative splicing alteration prediction presented a normal splicing pattern. Table 4
shows that sensitivity and specificity using Splice Al alone for all variants with the cut-off
of >0.05 is higher than the pipeline of applying AESRseq equal or greater than 0.63, and
an absolute difference value greater than 0.51 for those variants with A SpliceAl scores
of <0.05.
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Figure 4. Spliceogenic variants characterization in patients’ RNA. For each variant, there is an RT-PCR assay graphical
representation, the results of capillary electrophoresis of 6-FAM labelled amplicons and Sanger sequencing to confirm
the expression of additional transcripts. (A) The ATM ¢.1899-123A > G variant activates a cryptic donor site, which is
used to yield three different pseudoexons: ¥12A.1, ¥12A.2, and ¥12A.3, each generated as result of the usage of different
cryptic acceptor sites (c.1899-174, ¢.1899-177, and ¢.1899-213) and the cryptic donor site created by the variant. The ¥12A.1
and ¥12A.2 transcripts were equally expressed, and their abundance was greater than the ¥12A.3. (B) The ATM ¢.2466 +
1552G > C variant generates the ¥16A additional transcript. This pseudoexon comprises nucleotides from the acceptor
site created by the variant and the cryptic donor at ¢.2466 + 1650. (C) The ATM ¢.8850 + 2029A > G variant presents an
additional transcript (¥61A), from the cryptic acceptor site created by the variant to the cryptic donor at ¢.8850 + 2131. It
was not possible to clearly read the sequence of the aberrant transcript because of its low expression levels, but in the Sanger
sequence, we could detect the additional transcript with the insertion since it is marked by the FAM signal at the end of the
fragment. (D) The FAM175A c.476 + 156G > T variant leads to the inclusion of a pseudoexon (¥5A), which results in the
usage of the cryptic acceptor site activated by the variant and the cryptic donor at ¢.476 + 252. Its abundance was very low,
but the transcript with the insertion was also detected in the Sanger sequence since it is marked by the FAM signal at the
end of the fragment. (E) The MUTYH ¢.998-27G > A variant creates/enhances a cryptic acceptor site which is used instead
of the natural acceptor site of exon 12, generating an intronic retention (¥12A transcript).
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Table 4. Performance pipeline (experimental variants dataset) with 33 variants: 5 splicing altering
and 28 non-altering.

Pipeline Sensitivity ~ Specificity =~ Accuracy MCC
Splice > 0.05 100 71.42 75.75 0.62
Splice > 0.05; ESRseq > 0.63; Abs. Dif. 0.51 100 50.00 57.57 0.43

4. Discussion

The contribution of deep intronic variants to HBOC disease is not well known due to
their location in poorly screened regions, but their potential effect on transcript splicing
including intron sequences in mature RNA may be clinically significant [10,26]. For this
reason, the identification and subsequent RNA characterization of this type of variants
should be considered when conventional genetic analysis focused on coding regions and
exon/intron boundaries does not lead to the identification of pathogenic variants [35].

However, the identification of deep intronic variants is challenging due to the lack of
specific in silico pipelines [28]. Recently, some published studies using SpliceAl, a deep
learning-derived algorithm [34], suggest its utility to identify with high efficiency intronic
and exonic variants creating or enhancing cryptic splice sites and leading to splicing
alterations [36-39]. Nevertheless, to our knowledge, only small datasets of deep intronic
variants have been used to test the performance of the SpliceAl tool for identifying this
type of variants [27,28,34,37].

Our work provides a large dataset of deep intronic variants that are clinically relevant,
as they were tested in a clinical setting using blood, mini, or midigene assays and is well
balanced with 133 altering and 100 non-altering splicing events. Hence, this data can be
used as a positive control training set for further improvements of computational prediction
tools. With this data, we confirmed that Splice Al with a threshold of >0.05 has an optimal
predictive value in the identification of spliceogenic deep intronic variants, obtaining a
MCC of 0.86. Interestingly, Riepe et al. [37] with an optimized SpliceAl cut-off score of
0.18, also showed a high performance of 0.84 MCC for predicting 81 deep intronic variants
in the ABCA4 gene, that are also included in our literature dataset. The authors further
demonstrated that SpliceAI was the best tool for these 81 deep intronic variants compared
with other deep-learning based algorithms [37]. In this line, Jaganathan et al. [34] in their
SpliceAl development article, demonstrated that by applying SpliceAl with a cut-off of
>0.5 to GTEx RNAseq data, it achieved a sensitivity of 71% when the variants were near
exons (82 variants, overlapping exons or <50 nt from exon-intron boundaries), but dropped
to 41% when the variants were in deep intronic regions (37 variants, >50 nt from exons).
In sum, our study together with the two last works mentioned above, support that a low
SpliceAl threshold is needed to especially detect deep intronic splice-altering variants.
In our experimental dataset with clinical variants, using our optimized >0.05 threshold,
SpliceAl attained a performance of 0.62 MCC, predicting all five experimentally confirmed
spliceogenic variants, but with a low specificity of 71.42% due to a high number of false-
positives (Table 4).

Besides creating or enhancing cryptic splice sites, the intronic variants can lead to the
inclusion of pseudoexons by creating or disrupting intronic SREs. Our evaluation of the
prediction of splice alteration through SRE involvement of both deep intronic (Table 1 and
Figure 1) and exonic (Table S2B and Figure S2) variants pointed out that for SpliceAl, it is
more challenging to predict the impact of this type of variants. This is possibly due to the
fact that the deep learning network approach used for Splice Al development was not able
to account for the SREs, denoting that the performance of SpliceAl can still be improved.
To note, this is the first study testing the prediction capacity of a deep learning method
such as SpliceAl of exonic variants disrupting SREs leading to exon skipping.

To supplement lower SpliceAl performance for detecting SREs altering variants,
we added the ESRseq, which has a high capacity to recognize this type of variants [27],
obtaining an increase of sensitivity but a lower specificity (Table 2). We reasoned that this
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limitation was due to the fact that ESRseq evaluates on a hexamer local level, without
accounting for a SREs landscape that defines a region to be included as a pseudoexon.
This prompted us to characterize the landscape of SREs in pseudoexons using SRE scores,
showing that the relation of the SRE landscape between the pseudoexon and flanking
introns is similar to that of canonical exons, but less defined (Figure 2C and Figure S3).
In contrast, the ESRseq developers in Ke et al. [11] reported that the pseudoexons did
not present a different balance of SRE concerning the adjacent intronic regions. This
discrepancy could be due to the fact that the pseudoexons analyzed in the above-mentioned
work were theoretically defined, without an experimental RNA evaluation, as the intronic
sequences had lengths between 50 and 250 nt and consensus values based on the Shapiro-
Senapathy algorithm, of >75 for 3’ splice sites and >78 for 5’ splice sites, and were located
beyond 100 bp from the exons [11]. Instead, we collected 133 pseudoexons from literature,
experimentally confirmed using patient, mini, or midigene-derived RNA. Notably, similar
findings to our results using approaches other than ESRseq tools have been recently
reported, in 42 pseudoexons experimentally validated in the DMD gene, showing a smaller
density of exonic splicing enhancers (ESEs) together with a higher density of exonic splicing
silencers (ESSs) compared to canonical exons, which suggested that the pseudoexons
presented a weaker exon profile in terms of SREs [30]. Interestingly, these differences have
also been observed between alternative and canonical exons. The effect of variants altering
the balance of SREs appears to be greater in alternative exons, which have fewer redundant
enhancer elements, compared to constitutive ones [40]. Therefore, we suggest that deep
intronic variants that strengthen an enhancer or even decrease a silencer will have a greater
chance of being spliceogenic provided they are located in intron regions with an exon-like
SRE landscape, similar to what happens in alternative exons.

Given the role of an exon-like SRE landscape in the inclusion of pseudoexons, we
combined the ASpliceAl 0.05 and 0.63 AESRseq optimized thresholds, and the absolute
difference of SRE balance between the regions before and after a variant. This last value,
with the variants compiled from literature, indicates clear differences between splicing
altering variants and those without any effect (Figure 3) and helps to identify spliceogenic
variants, with high sensitivity and specificity (Table 2). The combination was assayed in a
tumor RNA-seq dataset (Table 53) [32] obtaining a sensitivity of 86%. Moreover, applying
the same in silico combination to a set of deep intronic variants from a cohort of HBOC
patients allowed us to identify five spliceogenic variants that were predicted by SpliceAl to
activate a cryptic splice site nearby, while assaying eight false positives (Table S4).

The low accuracy of the in-silico strategy combining ASpliceAl, AESRseq, and SRE
landscape using ESRseq scores can be explained by two reasons. First, our literature dataset
only contains 16 splice altering variants by affecting a regulatory element. Second, the
splicing aberrations of the literature and experimental datasets were assayed using RT-PCR,
which has an intrinsic bias towards smaller amplicons. This is especially relevant in the
case of pseudoexons as they generate larger fragments than normal transcripts and are
also less expressed if they cause a premature termination codon and are targeted by non-
sense mediated decay. Massively long-read RNA sequencing, such as those using Oxford
Nanopore Technologies, could address this limitation by allowing simultaneous detection
and quantification of all RNA transcripts avoiding the PCR amplification step [41].

Additionally, it is worth stating that the main purpose of this work was not the
clinical classification of the variants assessed but rather to investigate how to improve
the in silico identification of deep intronic splicing variants. Qualitative analysis can only
detect aberrant transcripts, but additional quantification of the functional transcripts, co-
segregation data or other functional assays are needed to classify the variants that induce
pseudoexons [42,43].

Overall, the results obtained with the three sets of deep intronic variants (literature,
tumor, and experimental) demonstrated that SpliceAl alone is able to identify variants
causing pseudoexons and that the addition of ESRseq increases the number of false pos-
itives. Moreover, our use of ESRseq values to map the SRE balance in canonical exons
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and pseudoexons differentiating exonic landscapes from intronic ones suggest that this
approach might be systematically used to identify exon-like landscapes in introns of HBOC
and Lynch genes, thus helping to interpret whether an intronic variant makes a region
much more exonizable.

5. Conclusions

We have provided evidence that SpliceAl, a deep learning-based in silico tool, can
predict splicing altering deep intronic variants with high-performance. However, its
accuracy is limited with variants affecting SREs, either with intronic variants introducing
pseudoexons or exonic variants inducing exon skipping. The addition of ESRseq, a specific
bioinformatic tool to detect SRE disruption/enhancement, did not increase the accuracy
of the deep intronic splicing-altering variants prediction. However, our findings show
that pseudoexons have a “SRE landscape” similar to that of exons. This indicates that
intronic regions with a high potential to be included as pseudoexons can be systematically
identified throughout the HBOC genes, facilitating the in silico detection of spliceogenic
deep intronic variants.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/10
.3390/cancers13133341/s1, Figure S1: ASpliceAl scores of spliceogenic and not spliceogenic variants
collected in the literature database, taking predictions of cryptic sites in a window of 50 bp or 4999
bp, Figure S2: Comparison of ASpliceAl scores between spliceogenic and not spliceogenic exonic
variants collected from Tubeuf et al. [27], Figure S3: Comparison of SREs abundance in different
genomic regions, using the Normalized SRE Area calculated by ESRseq scores, Table S1: Deep
intronic variants collected from literature (literature dataset), Table S2A: Exonic variants altering
splicing by affecting SREs and causing exon skipping and exonic non-splice altering variants obtained
from Tubeuf et al. [27] Hum Mut., and annotated using SpliceAl in silico tool with two windows,
4999 and 50 nt before and after the variant, Table S2B: Optimized threshold of SpliceAI (4999 nt
window) scores (MAX acceptor loss-AL donor loss-DL) for SREs disrupting variants identification
(variants database obtained from Tubeuf et al., Hum Mut [27]), Table S3: Tumor RNA-seq data
(Jung et al. [32]) analyzed with SpliceAl v1.3 (4999 window), Table S4: Deep intronic experimentally
assessed variants, Table S5: List of HBOC risk and Lynch genes and their respective NCBI reference
transcripts used to annotate with ESRseq scores canonical exons and adjacent intronic nucleotides,
Table S6: ESRseq scores from all BARD1 exons and adjacent intronic regions, obtained according
Ke et al. [11]; data for the other genes available upon request, Table S7: Formulas for performance
evaluation of in silico tools used stand-alone or in sequential combination, Table S8: Primers and
PCR conditions for characterizing the splicing effect of deep intronic variants with RNA extracted
from patient’s blood, Table 59: ESRseq threshold optimization (sensitivity + specificity), Table S10:
Pipeline performance values.
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BACKGROUND:  Gene panel testing by massive parallel
sequencing has increased the diagnostic yield bur also
the number of variants of uncertain significance.
Clinical interpretation of genomic data requires exper-
tise for each gene and disease. Heterozygous ATM path-
ogenic variants increase the risk of cancer, particularly
breast cancer. For this reason, A7M is included in most
hereditary cancer panels. It is a large gene, showing a
high number of variants, most of them of uncertain
significance. Hence, we initiated a collaborative effort to
improve and standardize variant classification for the

ATM gene.

METHODS: Six independent laboratories collected infor-
mation from 766 ATM variant carriers harboring 283
different variants. Data were submitted in a consensus
template form, variant nomenclature and clinical infor-
mation were curated, and monthly team conferences
were established to review and adapt American College
of Medical Genetics and Genomics/Association for
Molecular Pathology (ACMG/AMP) criteria to ATM,
which were used to classify 50 representative variants.

RrEsULTS: Amid 283 different variants, 99 appe:n‘ed
more than once, 35 had differences in classification
among laboratories. Refinement of ACMG/AMP crite-
ria to A7M involved specification for twenty-one
criteria and adjustment of strength for fourteen others.
Afterwards, 50 variants carried by 254 index cases were
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classified with the established framework resulting in a
consensus classification for all of them and a reduction
in the number of variants of uncertain significance from
58% to 42%.

coNCLUSIONS:  Our results highlight the relevance of
data sharing and data curation by multidisciplinary
experts to achieve improved variant classification that
will eventually improve clinical management.

Introduction

Genetic diagnosis for hereditary cancers (HC) has
changed over the past decade thanks to the introduction
of massive parallel sequencing (MPS) technologies
which allow the screening of multiple genes outright.
MPS diagnostic panels increase sensitivity but also the
number of variants of uncertain clinical significance
(VUS) identified; application of MPS panels poses a sig-
nificant challenge in the clinical management of patients
and evidences the need for standardization in variant
classification. The American College of Medical
Genetics and Genomics (ACMG) and the Association
for Molecular Pathology (AMP) have provided a general
framework for classification of genetic variants (1).
However, these universal guidelines need to be runed
according to the disease and the specific gene by a con-
sensus of experts. Currently ACMG/AMP guidelines
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Classification of ATM Variants

have been adapted for some hereditary cancer genes
such as PTEN (2), CDH1 (3), and TP53 (4).

Most of the currently used HC panels include
the ATM gene, mainly because heterozygous ATM
murations increase the risk of cancer, particularly breast
cancer (BC) (5), and have also been associated with
colorectal, prostate, and pancreatic cancer predisposition
(6-8). A moderate breast cancer risk of about 2.4-fold
was estimated from breast cancer families with A7TM
pathogenic variants (9). In this sense, ATM loss-of-
function variants confer an increase in breast cancer risk
10 times greater than that of missense variants (10);
however, the p.(Val2424Gly) missense variant seems to
confer a higher risk, comparable to that of BRCAZ2 var-
iants (11). For other cancers, an overall risk of 2.23
(94% CI 1.26—4.28) has been suggested to increase to
4.94 (95% CI = 1.90 to 12.9) in carriers under 50 years
of age (8).

ATM is also responsible for the autosomal recessive
genetic  disorder ataxia telangiectasia (AT) (MIM#
208900) (12). AT is a pleiotropic neurodegenerative
disease whose symptoms include malignancy and ge-
nome instability, often accompanied by immunodefi-
ciencies, premature aging, insulin resistance, and
infertility (13, 14). Most AT patients bear compound
heterozygous pathogenic variants from over 800 cur-
rently registered in the Human Genome Mutation
Database (15). A recent study in Spanish AT patients
identified discase-causing mutations in 96% of the
alleles studied, frameshift being the most common type
of variant (16). The ATM protein is a member of the
phosphatidyl inositol-3’ kinase-related protein kinase
(PIKK) family, which phosphorylates hundreds of tar-
gets containing Ser/Thr-Gln morifs, and plays critical
roles in double-strand break (DSB) DNA repair and cell
cycle (14). DNA breaks recruit inactive ATM dimers
through the Mrell-Rad50-NBS1 (MRN) sensor
complex, which allows ATM dissociation into Ser1981-
autophosphorylated active monomers, able to act upon
a number of direct substrates such as TP53 or indirect
such as histone H2AX (14). These events are key indica-
tors of ATM functional activity, and coordinated activ-
ity of phosphorylated downstream targets determines
whether the genomic instability resulting from DNA
damage can be prevented (17).

With the aim of improving and standardizing vari-
ant classification for HC genes in Spain, 6 indcpendcnt
molecular laboratories using MPS panels agreed to
create a common variant database. ATM was chosen for
the pilot study because it is a large gene included in the
majority of HC panels and shows a remarkable number
of VUS (18). After adapting ACMG/AMP classification
guidel[nes to ATM, 50 variants were dcsigna[cd for
classificarion with the established consensus.

Materials and Methods

A detailed description of the methodology used can be
found in the Supplemental Patients and Methods.
Bricfly, a mulddisciplinary group was built with com-
plementary expertise. Most of the members are molecu-
lar geneticists with experience in hereditary cancer and
RNA splicing. Some are members of gene-specific inter-
national endeavors such as Evidence-based Network for
thelnterpretation  of  Germline  Mutant  Alleles
(ENIGMA, hreps://enigmaconsortium.orgf),
International Society for Gastrointestinal Hereditary
Tumours (InSiGHT, https:/fwww.insight-group.org/),
and Clinical Genome Resource (ClinGen, hteps://clini-
calgenome.org/). In addition, the team had a Spanish
expert in AT and ATM functional assays and 2 experts
in computational biology and bioinformatics. Patients
included in this study were seen in the different genetic
counseling units of each reference laboratory. All
patients had a clinical suspicion of HC and were tested
by gene panel sequencing. All variants detected in the
ATM coding sequence and 20-bp surrounding regions
with minor allele frequency lower than 1% were col-
lected in the Spanish Hereditary Cancer Variant
Database (DB hereinafter) created for this purpose.
Cut-offs for allele frequency calculations, as well as
the selection of different splicing and protein prediction
assessment tools and the adjustment of the correspond-
ing threshold values, are described in the Supplemental
Methods. This section also details the process of func-
tional study type selection and the strategy for variant
classification of 50 pilot variants from our DB.

Results

ATM VARIANT DATABASE

In total, we collected information from 769 individuals
carrying 283 different ATM variants; 104 index cases
carried more than one ATM variant. Hereditary breast
and/or ovarian cancer was the most common clinical in-
dication in the whole cohort (67%) (Supplemental Fig.
1), being women 85% of individuals (Supplemental
Table 1). Ninety-nine of the 283 different variants col-
lected appeared in more than one family; 78 were found
in more than one laboratory, and 20 appeared in 10 or
more families (Supplemental Fig. 1). The 5-tier patho-
genicity classification given by each laboratory was
recorded, and 35 of the 78 variants detected by more
than one laboratory had discordant classifications
(45%). Thirty of these discordances were due to the var-
iant being classified as VUS wvs. likely bcnigﬂ (LB); the
remaining 5 discordances were as follows: 3 from likely
pathogenic (LP) vs. pathogenic (P), 1 from VUS vs. be-
nign (B), and 1 from VUS vs. LP.
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ATM-SPECIFIC REFINEMENT OF ACMG-AMP CLASSIFICATION
GUIDELINES

Based on previous studies of other HC genes (2, 3), we
decided to adapt the widely used ACMG/AMP classifi-
cation guidelines (1) to the characteristics of the A7M
gene and its associated phenotypes. From the 28 criteria
listed in the guidelines, several have been modified, re-
stricted, rejected as non-applicable or expanded to di-
verse strengths. The resulting criteria proposed are
detailed in Table 1. Criteria where modifications were
based on ATM-specific data and unpublished modifica-
tions are justified in the following sections. Some criteria
are not applied because they overlap with others (PP4),
ClinGen itself has discarded them (PP5 and BP6) (22)
or are not applicable to A7M (PP2, BP1, BP3 BP5, see
Table 1 footnotes). Combination rules are kept from
Richards et al. (1).

POPULATION EVIDENCE

Since allelic frequencies in general populations are power-
ful tools for identifying common benign variants, we used
the statistical framework defined by Whiffin et al. (23) to
calculate the maximum credible population allele fre-
quency (MCPAF) for ATM pathogenic variants with AT
data. We obtained a cut-off allele frequency in the general
population of 0.005 for BA1 and 0.0005 for BS1. We
[ral]slﬂted thc [hrcshold o Pﬂpulation dataSCtS as Ihc
lower boundary of their 99% confidence interval and pro-
pose to use any of the nonfounder GnomAD v2.1.1 non-
cancer populations (24). Due to the low penetrance of
ATM pathogenic variants for breast cancer, we cannot ap-
ply BS2 to healthy heterozygous variant carriers. BS2 is
met if we find one homozygous carrier without AT affec-
tation. BS2_Supporting will be applied to 2 homozygous
observations with no clinical data provided. As the main
manifestations of AT are neurologic, we propose to use
the GnomAD v2.1.1 non-neuro dataset.

PREDICTIVE EVIDENCE

Regarding splicing alterations, our performance assess-
ment of in silico predictors supports the election of the
predictor SPiCE (25) for variants affecting the canonical
donor splice site, applying PP3 when they exceed the
threshold of 0.240 (100% sensitivity), and BP4 when
they are below it (with a sensitivity of 89.9% to identify
variants not affecting splicing). For variants affecting the
canonical acceptor splice site, PP3 is assigned when ex-
ceeding the threshold of 0.789 (sensitivity 87.6%) and
BP4 when they are under 0.282 (with a sensitivity of
86.3% to identify variants not affecting splicing), no ev-
idence is considered for acceptor variants with scores be-
tween 0.282 and 0.789. No called variants account for
6.2% of splicing altering and 10.8% of splicing neutral
variants in our dataset (Supplemental Fig. 2). For

520 Clinical Chemistry 67:3 (2021)

activation or creation of splicing sites, we used a combi-
nation of predictors such as SpliceSiteFinder-like,
MaxEntScan and GeneSplicer, as detailed in Table 1.

In relation to protein predictors for missense var-
iants, we performed a comparative analysis of different
tools for the two ATM halves (see Supplemental
Methods and Supplemental Table 2). Our results sus-
tain the use of the following combinations of two pre-
dictors: REVEL plus VEST4 for the N-terminal half
(residues 1-1959) and REVEL plus PROVEAN for the
C-terminal half (residues 1960-3056). We proposed
the same procedure for both halves: PP3 or BP4 is
awarded when the 2 predictors assigned to the protein
half agree on a damaging effect or an absence of effect,
respectively; otherwise, the contribution of in silico evi-
dence is not considered.

FUNCTIONAL EVIDENCE

Spliceogenic variants are usually confirmed by the study
of the RNA of carriers or by mini-gene assays. Splicing
analysis in RNA from a carrier, if well designed and per-
formed quantitatively with the appropriate controls, can
demonstrate that a variant produces only aberrant tran-
scripts with premature termination codons undergoing
nonsense-mediated decay (NMD). We consider that such
cases deserve to be very strong pathogenic evidence,
PS3_VeryStrong, analogous to the strength bestowed in
ClinGen’s PVS1 decision tree (19). We propose a gradual
decrease of PS3 strength when the damaging effect is less
certain or less severe (Tables 1 and 2).

Protein function assays are quite specific to the
gene and associated conditions. AT-patient cells show
hypersensitivity to ionizing radiation and other DSB-
DNA-inducing agents manifesting as absence of ATM
serine 1981 phosphorylation (26), decrease in cell sur-
vival, an increased rate of chromosomal aberrations and
defects in cell cycle checkpoints (14, 27, 28). Null var-
jants that result in the absence or loss of ATM expres-
sion or prevent the Ser1981-mediated activation of
ATM, reduce the phosphorylation of numerous sub-
strates and increase the sensitivity to DNA damaging
agents have been associated with classical AT pheno-
types. On the other hand, missense and splicing var-
iants allowing some ATM expression, thus presenting
residual kinase activity and/or intermediate sensitivity
to agents that damage DNA, have been associated with
AT patients with milder or atypical phenotypes (16,
29). Consequently, we consider that these 3 functional
assays are useful for investigating the pathogenicity of
ATM variants for the 2 phenotypes (Fig. 1, A). We
propose to confer different strengths to PS3 depending
on how many of the 3 assays are found to be altered,
and the extent of the alteration. Thereby, PS3 will be
met when the 3 assays are completely altered,
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Table 1. ATM variant classification proposed criteria.

PATHOGENIC CRITERIA

Criteria Criteria description Specification
STAND-ALONE CRITERION
PVS1_StandAlone For a full gene deletion, a pathogenic classification is warranted (in the None
absence of conflicting data).”
VERY-STRONG CRITERIA
PVS1 -Null variant (nonsense, frameshift, canonical =1 or 2 splice sites, single None
or multi-exon deletion or tandem duplication) predicted to undergo
NMD.? OR
-Variants disrupting the initiation codon.”
PS2_VeryStrong AT patients with de novo score >4.0 as per ClinGen SVI Strength

or Recommendation for de novo Criteria (PS2 & PMé) - Version 1.0.¢
PMé6_VeryStrong

PS3_VeryStrong Splicing analysis in RNA from a carrier quantitatively proves that the vari- Strength
ant produces a splicing alteration predicted to undergo NMD, and the
variant allele does not produce any full-length transcript. See text and
Table 2 for details.
PS4_VeryStrong Sixteen AT families.” Strength
It can only be applied to AT families and NOT in: breast cancer families,
breast cancer case-control studies, variants that meet BA1 or BS1, nor
together with PM3 at any strength.
PM3_VeryStrong AT probands with in trans score >4.0 as per ClinGen SVI Strength
Recommendation for in trans Criterion (PM3) - Version 1.0.° It cannot
be applied to variants that meet BA1 or BS1, nor together with PS4 at

any strength.
STRONG CRITERIA

PS1 Same amino acid change as a previously established pathogenic variant None
regardless of nucleotide change (none of the variants affect splicing
according to predictors).

PS2 or AT patients with a de novo score 2.0-3.75 as per ClinGen SVI Strength

PMé_Strong Recommendation for de novo Criteria (PS2 & PMé6) - Version 1.0.

PS3 -SPLICING analysis in carrier RNA quantitatively proves that: ATM-specific

- the variant alters splicing resulting in a deletion or insertion NOT pre-
dicted to undergo NMD but to alter/truncate a region critical to pro-
tein function or remove >10% of protein, and the variant allele does
not produce any full-length transcript. See text and Table 2 for details.

- The three following PROTEIN studies performed in AT patients or trans-
fected cells show a strong alteration:
- levels of ATM protein (or ATM phosphorylated in Ser1981)
- levels of phosphorylation of two ATM substrates
- sensitivity to DNA damaging agents. See text and Fig. 1 for details.
PS4 Fourto 15 AT probands.® Strength

It can only be applied to AT families and NOT in: breast cancer families,
breast cancer case-control studies, variants that meet BA1 or BS1, nor
together with PM3 at any strength.
PVS1_Strong -Nonsense, frameshift, canonical +1 or 2 splice sites, single or multi-exon None
deletion NOT predicted to undergo NMD but to alter/truncate a region
critical to protein function or remove >10% of protein.®
-Also single or multi-exon duplication presumed in tandem with
prediction of NMD.?
PM3_Strong AT probands with in trans score 2.0-3.75 as per ClinGen SVI Strength
Recommendation for in trans Criterion (PM3) - Version 1.0.° It cannot
be applied to variants that meet BA1 or BS1, nor together with PS4 at
any strength.
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Table 1. (continued)

PATHOGENIC CRITERIA
Criteria Criteria description Specification
PP1_Strong Co-segregation with AT in multiple affected family members, with =7 Strength
meioses observed across at least two families.”"
MODERATE CRITERIA
PM1 Variant affecting the mutational hotspot codon p. R3008 (NP_000042.3; ATM-specific

see Results section) or the autophosphorylation codon p. $1981. See
text for reasoning.

PM2 Absent, or present at<0.00001 (0.001%) allele frequency in gnomAD or ATM-specific
another large sequenced population. If multiple alleles are present
within any subpopulation, allele frequency in that subpopulation must
be<0.00002 (0.002%)."

PM3 AT probands with in trans score 1.0-1.75 as per ClinGen SVI Strength
Recommendation for in trans Criterion (PM3) - Version 1.0.° It cannot
be applied to variants that meet BA1 or BS1, nor together with PS4 at

any strength.
PM4 Protein length changes as a result of in-frame deletions/insertions ATM-specific
impacting at least one residue in a critical functional region (see PM1)
PM5 Missense change at an amino acid residue where a different missense Restrictive

change determined to be pathogenic or likely pathogenic has been
seen before. In addition, variant being interrogated must have a
BLOSUM®2 score equal to or less than the known variant."9

PMé or AT patients with de novo score 1.0-1.75 as per ClinGen SVI Strength
PS2_Moderate Recommendation for de novo Criteria (PS2 & PMé) - Version 1.0.€
PVS1_Moderate Nonsense, frameshift, canonical £1 or 2 splice sites, single or multi-exon None

deletion NEITHER predicted to resultin NMD NOR to alter/truncate a
region critical to protein function, removing <10% of protein.?

PS3_Moderate - SPLICING analysis: Strength;
- in patient RNA quantitatively proves that the variant alters splicing result- ATM-
ing in a deletion or insertion NOT predicted to resultin NMD but to re- specific

move < 10% of protein, and the variant allele does not produce any
full-length transcript; OR

- in patient RNA quantitatively proves that the variant produces 90%-99%
of altered transcript predicted to undergo NMD; OR

- with a mini-gene quantitatively proves that the variant alters splicing
resulting in NMD, and the variant allele does not produce any full-
length transcript; OR

- in patient RNA with NMD inhibition, semi-quantitatively shows with simi-
lar band intensity that the variant alters splicing resulting in NMD, with-
out evidence that the variant allele produces any full-length transcript.
See text and Table 2 for details.

OR

-Two of the following PROTEIN studies in AT patients or transfected cells
show a strong alteration and the other one shows an intermediate al-
teration or has not been performed:

- levels of ATM protein (or ATM phosphorylated in Ser1981)

- levels of phosphorylation of two ATM substrates

- sensitivity to DNA damaging agents. See text and Fig. 1 for details.

PS4_Moderate Two to three AT probands.® Strength

It can only be applied to AT families and NOT in: breast cancer families,
breast cancer case-control studies, variants that meet BA1 or BS1, nor
together with PM3 at any strength.
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Table 1. (continued)

PATHOGENIC CRITERIA

Criteria Criteria description Specification

PP1_Moderate Co-segregation with A;I' in multiple affected family members, with 5-6 Strength

meioses observed.

SUPPORTING CRITERIA

PP1 Co-segregation with AT in multiple affected family members, with 3-4 ATM-specific
meioses observed.®

PP2 Missense variant in a gene that has a low rate of benign missense varia- N/A"
tion and in which missense variants are a common mechanism of
disease.

PP3 -Probability of splicing alteration of the closest natural site predicted with ATM-specific
SPIiCE 2.1 is > 0.240 for donor sites or > 0.789 for acceptor sites, OR a
splicing site is created/activated according to at |east 2 splicing predic-
tors of the set SpliceSiteFinderlike-MaxEntScan-NNSplice, with a score
higher than the score of the natural site in the mutated allele.' OR
-Only for missense variants, when the above splicing predictors indicate
no impact, but protein predictors do. For variants affecting codons
1-1959, PP3 is met when VEST4 and REVEL predict damaging effects
(scores >0.5). For variants affecting codons 1960-3056, PP3 is met
when PROVEAN (score <-2.5) and REVEL (score >0.5) predict damag-
ing effects.
PP4 Patient’s phenotype or family history is highly specific for a disease with a N/A (use PS4
single genetic etiology. instead)"

PR5 Reputable source recently reports variant as pathogenic, but the evidence N/A*
is not available to the laboratory to perform an independent evaluation.

PS1_Supporting Different variant at same nucleotide position as a pathogenic SPLICING ATM-specific
variant, where in silico models predict impact equal to or greater than
the known pathogenic variant.

PS2_Supporting AT patients with de novo score 0.5-0.75 as per ClinGen SVI ATM-specific
or Recommendation for de novo Criteria (PS2 & PM6) - Version 1.0.¢

PMé_Supporting

PS3_Supporting - SPLICING analysis: Strength;

- with NMD inhibition in carrier RNA shows by visual inspection that the ATM-
altered and wild-type electrophoretic bands have similar intensity, and specific
the altered transcript is predicted to undergo NMD;

OR

- found in peer-reviewed article(s), without gel shown or quantitation
mentioned, where authors declare that the variant produces a
splicing alteration predicted to undergo NMD. See text and Table 2
for details.

OR

-One of the following PROTEIN studies in AT patients or transfected cells
shows a strong alteration and the other two show an intermediate
alteration or have not been performed:

- levels of ATM protein (or ATM phosphorylated in Ser1981)

- levels of phosphorylation of two ATM substrates

- sensitivity to DNA damaging agents. See text and Fig. 1 for details.

PS4_Supporting One AT proband.¢ ATM-specific

It can only be applied to AT families and NOT in: breast cancer families,
breast cancer case-control studies, variants that meet BA1 or BS1, nor
together with PM3 at any strength.

PM1_supporting Missense or small in-frame deletion or insertion located in the kinase ATM-specific
(residues 2712-2962) or FATC (residues 3024-3056) functional
domains (NP_000042.3; see results section).
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PM3_Supporting AT probands with in trans score 0.5-0.75 as per ClinGen SVI None
Recommendation for in trans Criterion (PM3) - Version 1.0.° It cannot
be applied to variants that meet BA1 or BS1, nor together with PS4 at
any strength.
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Table 1. (continued)

PATHOGENIC CRITERIA

Criteria

BENIGN CRITERIA

Criteria

BA1

STRONG CRITERIA
BS1

BS2

BS3

BS4

BP1

BP2

BP3

BP4

BP5
BPé

BP7

SUPPORTING CRITERIA

Criteria description

Criteria description

STAND-ALONE CRITERION

99% confidence interval of the variant allele frequency in any of the NFE,
AFR, LAT, EAS, SAS GnomAD v2.1 (non-cancer) populations is > 0.5%.

99% confidence interval of the variant allele frequency in any of the NFE,
AFR, LAT, EAS, SAS GnomAD v2.1 (non-cancer) populations is >
0.05%).

Observed in the homozygous state in a healthy or AT-unaffected individ-
ual. One observation if homozygous status confirmed; two if not
confirmed.

Note that if BS1 is applied, BS2 must be downgraded to
BS2_Supporting.’

- SPLICING analysis in carrier RNA demonstrate (by Sanger sequencing or
a quantitative technique) biallelic expression of the full-length
transcript by an exonic SNV. See text and Table 2 for details.

OR

-In a variant not predicted or proven to alter RNA splicing, the three fol-
lowing PROTEIN studies in AT patients or transfected cells show results
similar to a wild-type control:

- levels of ATM protein phosphorylated in Ser1981

- levels of phosphorylation of 2ATM substrates

- sensitivity to DNA damaging agents. See text and Fig. 1 for details.

Lack of segregation in affected members of 2 or more AT families.”

Missense variant in a gene for which primarily truncating variants are
known to cause disease.

Co-occurrence in trans of the variant with a pathogenic or likely patho-
genic ATM variant in well phenotyped AT-unaffected individual from
internal cohort or the literature.

In-frame deletions/insertions in a repetitive region without a known
function

-For synonymous and intronic variants, probability of splicing alteration of
the closest natural site predicted with SPIiCE 2.1 is < 0.240 for donor
sites or < 0.282 for acceptor sites, AND no splicing site is created/
activated according to at least 2 splicing predictors of the set
SpliceSiteFinderlike-MaxEntScan-NNSplice (if a site is recognized, the
score is lower than the score of the natural site in the variant allele).'

-For coding non-synonymous variants, NEITHER splicing predictors as

above NOR protein predictors predict any impact. The latter is estab-
lished for variants affecting codons 1--1959 when both VEST4 and
REVEL (scores <0.5) predict NO alteration, and for variants affecting
codons 1960-3056 when both PROVEAN (score >-2.5) and REVEL
(score <0.5) predict NO alteration.

Variant found in a case with an alternate molecular basis for disease.

Reputable source recently reports variant as benign, but the evidence is
not available to the laboratory to perform an independent evaluation.

Synonymous variant where nucleotide is not highly conserved (100
vertebrates basewise conservation PhyloP score < 6.66, available at
the UCSC Browser).”

This evidence can be used with BP4, as appropriate, to classify variants
meeting both criteria as likely benign.

Specification

Specification

ATM-specific

ATM-specific

ATM:-specific

ATM-specific

None

N/A"

ATM-specific

N/A™

ATM-specific

N/A"
N/A*

ATM-specific

Continued
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Table 1. (continued)

PATHOGENIC CRITERIA

Criteria Criteria description Specification

BS2_Supporting Two homozygous observations with no clinical data provided, or meets ATM-specific
criteria for BS2 but BS1 is also applied. Observations without clinical

data provided can be retrieved from the GnomAD non-neuro dataset.

- SPLICING analysis in carrier RNA with NMD inhibition and proper
controls, shows only the wild-type transcript although do not demon-
strate biallelic expression by an exonic SNV. See text and Table 2 for
details. OR

-In a variant not predicted or proven to alter RNA splicing, two of the fol-
lowing PROTEIN studies in AT patients or transfected cells show results
similar to a wild-type control and the other one shows an intermediate
alteration or has not been performed:

- levels of ATM protein phosphorylated in Ser1981

- levels of phosphorylation of two ATM substrates

- sensitivity to DNA damaging agents. See text and Fig. 1 for details.

Lack of segregation in affected members of one AT family.’

BS3_Supporting ATM-specific

BS4_Supporting ATM-specific

NMD, nonsense-mediated decay; Al, ataxia-telangiectasia; N/A, Not applicable to ATM.

“Following Tayoun et al., decision tree {19, 20).

Yinitiation codon variants have been shown to cause (classic or atypical) AT and absence of ATM kinase (21, Expression studies performed in these patients show a shorter
underexpressed protein probably starting at the next in-rame methionine at codon 94 (21).

“Point-hased system to determine the strength of de novo evidence based upon confirmed versus assumed status, phenotypic consistency and number of de novo observa-
tions, available at https-/fclinicalgenome org/working-groug iant i

pplied analogously to COH1 ClinGen Specifications (3, 20).

“Point-based system to determine the strength of homazygaus and in trans observations based upon variant phasing and classification of the variant occurring on the other al-
lele, available at https://dinical ki it ion/

"pplied analagously to PTEN ClinGen Specifications (2, 20).

9If the other missense change is determined to be likely pathogenic, the variant being classified should not reach pathogenic classification.

"Both missense and frameshift variants contribute with comparable frequency to ATM-related diseases

"Splicing predictor assessment is detailed in the text. SPICE 2.1 predictions can be found at https://sourceforge netiprojects/spicev2-1/%.

Ipratein predictor assessment is detailed in the text. VESTA predictians can be found at http:ffcravat.us/CRAVAT/, REVEL predictions at hitps:H/sites.google.comisite/jpopyen/
dbNSFP and PROVEAN predictions at http://provean jovi.org/genome_submit_2.php? species=human

"Fn\lnwing Biesecker et al., recommendations (20, 22).

"The 99% confidence intervals can be calculated in the INVERSE AF tab of the website http:/icardiadb.org/allelefrequencyapp/; see Materials and metheds and Results sections
for details on cutoffs.

"A repetitive region without a known function has not been found in ATM.

"The frequency of pathogenic variants in ATM and other breast cancer predisposing genes is high enough to allow such combinations and a lethal or strikingly stranger phena-
type is not anticipated

“The 100 vertebrates basewise conservation PhyloP score can be seen as a graphic track at the UCSC Genome Browser (https://genome.ucsc.edu/), and the scores can be down
loaded for each position.

) ¥ /(20)

120z AInr €1 uo jsenb Aq Z06+Z09/8 | S/E/29/2I0IME/WBYDUID WO dNo dlWapeDe/SdRyY Wol) papeojumog

PS3_Moderate when 2 are altered and 1 has not been
performed or gives intermediate results, and
PS3_Supporting when 1 is altered and the other 2
have not been performed or give intermediare results,
as depicted in Fig. 1, B.

In cases where experimental data from RNA and
protein support the same damaging effect, the evidence
of higher strength will be used. When RNA data do not
support an effect in splicing, the protein data prevail to
reflect other defects in protein function.

Benign criterion BS3 has a similar approach
(Tables 1 and 2). If agsay(s) in carrier RNA demonstrate
biallelic expression of the variant or an exonic single

nucleotide variation (SNV), quantitatively or with simi-
lar peak height by Sanger sequencing, BS3 will be met.
BS3_Supporting is achieved when no additional band
to wild-type is detected in electrophoresis of carrier
RNA, although biallelic expression cannot be demon-
strated by an exonic variant. BS3 can be achieved by
protein assays when the 3 assays yield the same results as
the wild-type control (Fig. 1, B). BS3_Supporting is
met when 2 assays give the same results as wild-type and
the other one gives intermediate results or has not been
performed.

We have found germline deleterious missense
variants in AT patients, located throughout the ATM

Clinical Chemistry 67:3 (2021) 525
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3 Study types to combine for evidence strength

ATM levels (nuclear or total)
only as pathogenicity
evidence AND

levels of

phosphoryl- .o
ation of 2 ATM

sensitivity to DNA damaging
agents: arrest in G2-M,
chromosomal aberrations,
micronuclei assays, colony

@ @@

1 PS3_Supporting

L Teelt

LeGenD: @ Deleterious

Ser1981 ATM phosphorylation substrates ’
levels forming assays,...
B
PATHOGENIC EVIDENCE BENIGN EVIDENCE
| PS3 BS3
-+ D+ D oD D
‘ PS3_Moderate BS3_Supporting

U Intermediate

L 2i 25 Jee

@) AsWT Not performed

bined. Regarding ATM exp and ATM

Fig. 1. Detailed functional criteria PS3 and BS3 based on protein data. A) Description of the 3 types of studies that can be com-
i phosphorylation in p. Ser1981, if both are available the latter will prevail.
Studies must be performed i) by directed mutagenesis in ATM-null human cells or ii) for nonc
BS1), in AT-patient derived cell lines that are homozygous or compound heterozygous for the test variant, where the other vari-
ant is predicted to truncate the protein and undergo NMD). B) Description of the possible combinations of the 3 different study
types to reach the specified strength levels. Note that for benign evidence, only ATM autophosphorylated levels can be used.

ts (not ti

£

protein and a similar distribution was observed in breast,
pancreatic, and prostate tumors (Fig. 2, A and B). In
contrast, missense variants with a MAF > 0.05%
(gnomAD 2.1 controls) are distributed throughout the
ATM regions except for phosphoinositide 3-kinase
(PI3K) and FRAP, ATM, TRRAP C-terminal (FATC)
domains (Fig. 2, A). The absence of germline frequent
variants in PI3K and FATC C-terminal domains sug-
gests their critical role. For this, we propose applying
PM1_supporting to variants located in these speciﬁc
domains. We have also found some candidate codons
for a PM1 hotspot, according to the ClinGen
Germline/Somatic  Variant Curation Subcommittee
(30). Two ATM codons accumulate >10 somatic

missense occurrences in  cancerhotspots.org  (v2)
(Supplemental Fig. 3). Codon 337 has 31 observations
of p.(Arg337His) and 9 of p.(Arg337Cys); codon 3008
has 15 observations, distributed between
p.(Arg3008Cys), p.(Arg3008His), and p.(Arg3008Leu).
In GnemAD v2.1.1 (noncancer) variants ¢.1009C>T
p.(Arg337Cys) and ¢.1010G>A p.(Arg337His) have 26
and 20 counts, respectively, whereas only variants
¢9022C>T  p.(Arg3008Cys) and  c.9023G>A
p-(Arg3008His) have been detected, with 3 and 2
counts, respectively. For this reason, we only consider
codon 3008 as a hotspot. In addition, we propose
applying PM1 to codon p. Ser1981, since autophos-
phorylation of this residue has been found to be

Clinical Chemistry 67:3 (2021) 527
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Fig. 2. Distribution of missense variants along the ATM protein. A) Germline variants. Pathogenic missense variants (in blue) in
AT patients were obtained from the literature (reported as pathogenic in AT patients), LOVD and/or HGMD). Benign missense
variants (in green) were present with a MAF greater than 0.05% in the GnomAD v2.1.1 control database. B) Location of missense
variants identified in breast, pancreatic, and prostate tumors in the cBioportal database. The protein domains are based on infor-
mation from UniProt and Pfam databases. The figure has been built using the software ProteinPaint, available at https:/protein-

paint.stjude.org/.

required for sustained retention of ATM at DSBs.
Furthermore, its directed mutagenesis affects the abil-
ity of ATM to phosphorylate its downstream targets
after DNA damage and correct the radiosensitivity of
an AT cell line (31).

DE NOVO, ALLELIC AND SEGREGATION EVIDENCE

De novo criteria (PS2, PM6) and allelic evidence PM3
are applied following the ClinGen SVI recommenda-
tions (32, 33); segregation criteria (PP1, BS4) are for-
mulated as in published guidelines (2) only for AT
families, whereas the benign allelic evidence BP2 has

been simplified (Table 1).

PILOT CLASSIFICATION OF 50 ATM VARIANTS

We performed a pilot classification of 50 A7M variants
ﬂ’()l‘ﬂ our databasc WhiCh were SClCC(Cd to l"Cpl"CSCIl[ [hc
variant type proportions of the whole set. The evidence

528 Clinical Chemistry 67:3 (2021)

assigned to each variant, the data and publications on
which they are based and the resulting pathogenicity
classes are displayed in Table 3 and Supplemental
Table 3. All this information together with the clinical
information (Supplemental Table 4) will be submitted
to ClinVar database (34) to be made publicly available
to the whole community.

The pilot reclassification of 50 variants with the
adapted criteria allowed us to reassign 18 cases from
VUS to a more clinically meaningful class; of the
remaining cases, 4 were moved to class 3 and 28 were
left unchanged (Table 3, Supplemental Fig. 1). Of note,
establishing A7M-adjusted cut-offs for BA1 and BS1 fa-
vored the classification of several recurrent variants as
class 1 or 2. The BS2_supporting criterion, applied to
variants with at least 2 appearances in the GnomAD
non-neuro dataset in the homozygous state, supported
by the high penctrance and young age of onset observed
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Classification of ATM Variants

Table 3. Result of the 50-variant pilot classification.

cDNA name
cb1A>G
c.162T>C
496 +AT>C
c.609C>T
c.826A>G
c.998C>T
c.1380G>C
c.1463G>A
c.1564_1565del
c.1810C>T
c.1899T=>G
c.2012T=A
c.2250G>A
c.2362A>C
c.2386A>C
c.2839-2A>G
c.2921 +1G>A
c.2921+1G>T
c.3747-1G>C
c.3802del
c.4060C=A
c.4110-9C=G
c.4396C>G
c.4802G=>A
c4852C>T
c.5071A=C
c.5373T>C
c.5558A>T
c.5623C>T
c.6067G>A
c.6115G>A
c.6203T>C
c.6315G=>C
c.6679C>T
c.6848C>T
¢.6860G>C
c.7135C>G
c.7191A>G
c.7375C>G
c.7381C>T

Protein name Nr carriers
p.Thr21Ala) 1
p.(Tyr54=) G
p.? 3
p.(Asp203=) 14
pLys276Glu) 1
p{Ser333Phe) 60
p.(Thrd60=) 2
pATrp488*) 1
p.(Glu522llefs*43) 2
p.(Pro604Ser) 48
pACys633Trp) 1
p-(lle671Lys) 1
plys750=) 1
p.(Ser788Arg) 1
p.(Asn796His) 1
p.? 1
p.? 2
p.? 1
p:? 2
p.Val1268*) 3
p{Pro1354Thr) 2
p.? 1
p.(Arg1466Gly) 4
p.(Ser1601Asn) 2
plArg1618*) 1
p.(Ser1691Arg) 9
p{Asp1791=) 1
p.(Asp1853Val) 32
p.{Arg1875%) 2
p.(Gly2023Arg) 19
p{Glu2039Lys) 1
p.{Leu2068Ser) 1
p-(Arg2105Ser) 1
p.(Arg2227Cys) 1
p.(Ser2283Leu) 2
p{Gly2287Ala) 1
pALeu2379Val) 1

p(GIn2397=)

p.(Arg2459Gly) 10
p.(Arg2461Cys) 1

Initial
Submitted
Classification

3
2,3

3
23

3

W W WA WW R WWW

Consensus
classification

w

W WN W W WO WE KW= Wa W W WWO U R W= 0 WW= RN WD NN

Evidence combination®
PM2 -+ BP4
BS1 4+ BP4 -+ BP7
BP4 4 BS3_P
BS1+BP4+BP7
PM2
BS1+BS2_P
BS1+BP4+BP7
PVS1+PM2 + PM3 +PS3_P
PVS1 + PM3_VS
BA1(+BS1+BS2_P)
PM2
BP4
PP3+PS3_M + PM3_VS + BP7
BA1 (+ BS1+BS2_P)
PM2+BP4
PVS1+PM2
PVS1+PM3_VS + PS3_P
PVS1 +~PM2+4PS1_P
PVS1+PS4_P + PM2+PS3_M
PVS1+PM3_VS + PS3
BP4
PS3_P + PM3_P + PP3 + PM2
PM2 - PP3
BP4
PVS1+PS4_M + PM2
BS1 4+ BS2_P 4 BS3
PM2 -+ BP4 4 BP7
BA1 (4 BS1+BS2_P + PP3)
PVS1+PM3_S 4 PS3_M
BS1+PP3
PS4_P + PM2+ PP3
PM2+PS4_M + PS3_M + PP3
PP3
PM2+ PS4+ PP3+PS3_M + PP1
PM2 -+ BP4
BP4
PS3_M + PP3
BP4 + BP7
PP3
PP3

Continued

Clinical Chemistry 67:3 (2021) 529

RESULTS

L2002 Nﬂ[‘ €L uo 1sanB ACF 20617209[8LQ/EILQIG\O\]JE/LUQUDUHOJ‘WOO'GHO O!UJGDEDB/]TSd})Ll wolj papeojumoq

117



RESULTS

118

Table 3. (continued)
Initial
Submitted Consensus

cDNA name Protein name Nrcarriers  Classification  classification Evidence combination®
¢.7390T>C p.(Cys2464Arg) 1 3 3 BS1 4 PP3
c.7788 + 3A>G p.? 1 4 4 PM2 4 PM3 -+ PP3+ PS3_P
c.8122G>A p.(Asp2708Asn) 1 4 4 PM2 + PP3 + PS3_M + PM3_S
c.8269-5T>G p.? 1 3 3 PM2
c.8734A>G p(Arg2912Gly) 4 S 3 PP3+PM1_P
c.8786 +1G>T p.? 1 5 5 PVS1+PS3_M + PM2
c.8876_8879del  p.(Asp2959Glyfs*3) 2 5 S PVS1+PS3_P + PM3
c.9007_9034del  p.(Asn3003Aspfs*6) 2 4 5 PVS1_S + PS3 +PM2 +PM3
c.9023G>A p-(Arg3008His) 1 4 4 PM1+PM2+PS4_M
¢.9079dup p.(Ser3027Lysfs*36) 1 4 4 PVS1_S + PM2+PS4 M

See evidence details in Supplemental Table 3.

*code for evidence strength modifications: VS, Very Strong; S, Strong; M, Moderate; P, Supporting.

in AT patients, allowed the classification of 5 variants as
likely benign by its combination with BS1, without any
other evidence needed. Similarly, our DB recorded the
appearance of 3 variants in homozygosis in well-
phenotyped individuals not presenting AT. This infor-
mation allowed us to classify variant ¢.998C>T as likely
benign; this variant was present in 60 patients in our
DB but did not reach BS2_P requirements with
GnomAD data.

Nineteen out of 50 variants of the pilot study were
classified as class 4 or 5 being present in 27 patients
from our Spanish cohort. Most of these patients had
breast/ovarian cancer although there were cases of other
tumors (Supplemental Table 5). Cosegregation data was
available in a few of these families and, as expected for
a moderate penetrance cancer risk gene, was not very
informative (Supplemental Table 5).

Discussion

Variant classification is one of the main clinical chal-
lenges in the MPS era, being an enormous bottle neck
in most genetic testing laboratories. In this article, we pre-
sent the seed for a Spanish database of hereditary cancer
variants, beginning with 6 laboratories and 1 gene, ATM.
We identified A7M as a good candidate since it is one of
the genes with more identified VUS (18) and it has been
associated with different cancer syndromes (6-8, 10), mak-
ing it well worth the joint effort to refine variant classifica-
tion. Since there were no specific criteria for A7M variant
classification, we also made an effort to adapt the ACMG/
AMP guidelines (1) to ATM.

In our pilot classification study, the use of ATM-
specific guidelines and data sharing amongst experts and

530 Clinical Chemistry 67:3 (2021)

clinical laboratories led to a decrease in VUS from 58%
to 42%, with the identification of 27 carriers of ATM
(likely) pathogenic variants. Because pathogenic A7M
variants predispose to potentially lethal cancers for
which there are clinical management recommendations
(35), these findings are clearly clinically actionable for
carrier individuals and their relatives.

Since the ACMG/AMP classification guidelines were
proposed for high-penetrance genes in classical Mendelian
disorders (1), their adaptation to moderate/low-penetrance
genes, such as ATM, is challenging and requires collabora-
tive efforts. In this respect, we analyzed every ACMG/AMP
classification criterion in the context of reported knowledge
about the A7M gene, ATM protein function and A7M re-
lated phenotypes, with the aim of better adjusting each cri-
terion and eventually facilitating variant classification in
routine clinical laboratories. In this process, we took advan-
tage of the fact that biallelic A7 variant carriers present
the highly penetrant AT disease, allowing the use of criteria
for recessive phenotypes. Our adjusted cut-offs for popula-
tion variant frequency enabled the classification of a large
quantity of recurrent variants as (likely) benign that would
have been classified as VUS with the original general
ACMG/AMP thresholds (1). In this sense, although our
DB only contains variants below the common population
frequency cut-off of 1%, 39 out of 283 unique variants
meet the adjusted BS1 and 12 of these also meet the
adjusted BA1. The 39 BS1 variants account for 51% of the
individual entries in (448 out of 882, data not shown).

We found it especially challenging to establish func-
tional evidence for or against parhogcniciry. At the protein
level, the selected assays were based on relevant functional
characteristics of ATM that are altered in AT patients and
are involved in oncogenic mechanisms, such as double-
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strand break signaling (presence and activation of ATM,
phosphorylation of its substrates), and mitosis checkpoints
and chromosomal stability. We set the splicing-related cri-
teria at the RNA level on the basis of previous ENIGMA
and InSiGHT recommendations and the authors’ own ex-
perience. Additional considerations will be required if
ATM nawrally occurring in-frame transcripts are described
that would rescue the variant allele effect. Functional evi-
dence has helped us to classify 18 out of 50 variants.
Luckily, splicing data from 5 of the 8 variants came from
our own laboratories, Unfortunately, protein functional
studies are not available in our teams. In this sense, the de-
velopment of calibrated high-throughput A7M functional
assays, similar to the saturation genome editing study pub-
lished for BRCAI (36) will provide more power to PS3
and BS3 criteria.

The presence of a rare variant in AT families or #
rrans with a (likely) pathogenic variant in an AT patient
has allowed us to classify 12 of 50 variants, while co-
scgrega[inﬂ AT data l]ﬂj [urnﬁd out to bﬁ scarce ill [hl:
literature, Conversely, ATM variant classification is
most frcqucnﬂy I'qulcslcd f’Df beﬂS[ cancer fisk ASSCSS-
ment, but the great heterogeneity and numerous pheno-
copies of breast cancer impairs its use in co-segregation or
family counting evidence. Large case-control studies by in-
ternational hereditary cancer consortia like BRIDGES (37)
in Europe and CARRIERS (38) in US will hopefully help
to classify some of these variants.

An underlying assumption of this and other studies
in the field is that the very same spectrum of ATM
variants causing autosomal recessive AT disease when
present in both alleles, cause increased BC risk when
present in one allele. Overall, the assumption is proba-
bly true, and as far as we know, it holds true for
premarure termination codon variants expected to cause
NMD. Nevertheless, some evidence suggests that subtle
differences might also exist. For instance, variant
p.(Val2424Gly) is associated with a 6-fold increased BC
risk, much highcr than average truncating variants.
Conversely, the same variant does not cause classical
AT, but an attenuated form (11, 39). Another study
suggested that the risk of malignancies is higher in indi-
viduals with mild A7M missense variants producing
proteins with residual kinase activity (40).

In summary, by pooling variant information cur-
rently stored in individual clinical laboratories, we have
dCVCiOPCd a gCﬂCI'ZIJ ffﬂmcwﬁfk f{)l’ hUngCﬂEUUS Zlﬂd
clinically useful variant interpretation in our country. It
will also serve for the identification of Spanish founder/
recurrent variants and analysis of their associated cancer
risk. Moreover, it will facilitate sharing of curated data
to international databases. In recent years, similar initia-
tives focused on the generation of clinical-grade genetic
variant databases have been conducted in other coun-
tries (41-44). In our case, we have started by adjusting

general ACMG/AMP guidelines to a single gene, ATM,
with the aim of using them within the framework of
molecular diagnostics for HC. In our joint effort we
performed a pilot study and classified 50 ATM variants
carried by 257 index cases. Qur results highlight the rel-
evance of data sharing and data curation by multidisci-
plinary experts to achieve improved variant classification
that will eventually improve clinical management.

Supplemental Material

Supplemental material is available at Clinical Chemistry
online.

Nonstandard Abbreviations: HC, hereditary cancer; MPS, massive
parallel sequencing: VUS, variants of uncertain clinical significance;
ACMG, American College of Medical Genetics and Genomics; AMP,
Association for Molecular Pathology; BC, breast cancer; AT, ataxia tel-
angicctasia; PIKK, phosphatidyl inositol-3" kinase-related protein ki-
nase; DSB, double-strand break; MRN, Mrel 1-Rad50-NBS1; DB,
Spanish Heredirary Cancer Variant Darabase; 1B, likely benign; LP,
likely pathogenic; I, pathogenic; B, benign: NMD, nonsense mediared
decay; SNV, single nucleotide variation; PI3K, phosphoinositide 3-ki-
nase; FATC, FRAP, ATM, TRRAP C-terminal (domain)

Human Genes: ATM, ATM serine/threonine kinase:  BRCAI,
BRCAIT DNA repair associated; BRCAZ2, BRCA2 DNA repair associ-
ated; PTEN, phosphatase and tensin homolag; CDHZ, cadherin 13
TP53, tumor protein p53
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Introduction

The identification of new susceptibility-related genes to hereditary breast and ovarian cancer
(HBOC) could explain the missing heritability in this disease. The advent of massively parallel
sequencing has led to testing of multiple genes using panels, whole-exome sequencing (WES) or
whole-genome sequencing (WGS) with the objective of uncovering the genetic landscape
underlying Mendelian diseases as well as complex traits. WES has become a common approach
to identify rare deleterious variants by performing a staged study starting with the sequencing
of small cohorts of cases with strong familial aggregation of cancer, highlighting potential
candidate genes (Rotunno et al., 2020). Functional analyses or mutational tumor signatures
indicating the relevance of candidate genes in developing the disease are also valuable
approaches to identify potential risk genes (Polak et al., 2017; Hernandez et al., 2018). Following
these approaches, a number of genes have been identified as potential candidates in colorectal
cancer and polyposis (Te Paske et al., 2020) and hereditary breast and ovarian cancer over the
last decade (Rotunno et al., 2020; Subramanian et al., 2020). However, these genes have to be

validated in large case-control studies to verify if they are associated with the disease.

Published studies reporting candidate genes comprehend both the identification and the
validation using a different cohort of patients and sequencing healthy controls or using public
controls databases. For example, germline RBBP8 variants have recently been associated with
early-onset breast cancer by sequencing and functional approaches, firstly identifying
potentially deleterious variants in a small cohort of patients, and secondly validating their
association by sequencing a large cohort of patients and by functional assays (Zarrizi et al., 2020).
In addition, RECQL5 was highlighted as a related gene by identifying a deleterious variant by
WES in an HBOC family and observing an enrichment of deleterious variants in affected patients
after comparing with healthy controls (Tavera-Tapia et al., 2019). Other genes such as NTHL1 or
EDC4, have also been also associated with a low to moderate risk to develop breast cancer
(Hernandez et al., 2018; Li et al., 2021b). These are examples of how using massively parallel
approaches in patients enables the identification of candidate genes. Our goal is to identify
candidate genes in Spanish HBOC families testing negative for BRCA1 and BRCA2 genes and their

posterior validation by the analysis of cases and controls.
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Patients, materials and methods
Selection of patients
i) Candidate gene identification set: 25 HBOC female patients from 13 Spanish
families without pathogenic variants detected in BRCA1 and BRCA2 recruited from
2013 to 2015 were selected to be analyzed using exome sequencing. All cases were
assessed by High Risk and Cancer Prevention Unit at Vall d'Hebron University
Hospital to be eligible for clinical genetic testing for HBOC (Supplementary table 1).
ii) Candidate gene validation dataset 1: was composed by 1,012 HBOC female index
patients from Vall d'Hebron University Hospital (without pathogenic variants
identified in BRCA1 and BRCA2) and 488 healthy female control samples. All cases
were assessed by High Risk and Cancer Prevention Unit at Vall d'Hebron University

Hospital to be eligible for clinical genetic testing for HBOC (Supplementary table 1).

Control samples were gathered from the Spanish National DNA Bank (Salamanca,
Spain) and selected randomly from a population of healthy women with an average

age of 58.16 (range 47 - 93) years of age with no personal or family history of cancer.

iii) Candidate gene validation dataset 2: at the moment of the thesis submission is
composed of a different group of 638 HBOC patients from Vall d'Hebron University
Hospital and Catalan Institute of Oncology (with no identified pathogenic variants
in HBOC genes, such as BRCA1, BRCA2, PALB2, ATM, CHEK2, TP53, RAD5IC,
RAD51D, PTEN, CDH1, BRIP1 and STK11), and 202 healthy control samples from the
Spanish National DNA Bank (Salamanca, Spain). At the end of the project, it is
planned to include a total of 1,100 patient samples and 500 healthy controls. The
criteria for cases and controls selection were the same for than candidate gene

validation dataset 1.

Massive parallel sequencing

The patient’s genomic DNA was extracted from whole blood using Puregene Genome DNA
purification Kit (Gentra System, Minneapolis, MN, USA), according to the manufacture's
standard protocol. DNA concentration was assessed with the Qubit dsDNA BR Assay kit

(ThermoFisher Scientific, Florida, USA).



RESULTS

i) Library preparation for the identification of candidate genes

Genomic library was prepared from 1 pg of DNA. Exome enrichment was performed
using the SureSelect XT HumanAllExan 50Mb (Agilent). Sequencing was performed on a
HiSeq2000 instrument (Illumina) with paired-end (2x100) reads, with a coverage of 72%
10X (Fig 1).

i) Library preparation for candidate gene validation dataset 1

All exons and ten bp into each exon-intron boundary of ALKBH1, ALKBH3, BLM, CAMKK1,
FANCD2, FANCF, FANCM, NEIL3, NTHL1, PER1, RASSF7, RBL1, RECQL, RECQL4, RINTI,
RUVBL1, SALL2, SLX4, STRADA, WRN, XRCC4, and ZNHIT1 genes, selected by COMPLEXO
consortium (Southey et al., 2013), were sequenced using a customized, targeted
HaloPlex HS Targeted Enrichment Assay panel (Agilent Technologies, Santa Clara, CA)
(Hammet et al., 2019). Library pools were sequenced, 2x100 bp paired-end reads, by the
Australian Genome Research Facility (North Melbourne, VIC, Australia) on an Illumina
Hiseq2500 sequencer (Illumina, San Diego, CA) with a minimum read depth target of 10x
coverage of 94.44% in cases (1,186 mean reads) and 92.86% in controls (1,097 mean

reads).

iii) Library preparation for candidate gene validation dataset 2

All exon and 50 bp into each exon-intron boundary of DMC1, EDC4, MACROD1, RALGDS,
RBBP8, RECQL5, TDP2, and TPMT selected candidate genes enrichment were sequenced
using PARAGON CleanPlex Custom Amplicon Sequencing Targeted Panel. Sequencing,
paired-end 2x250, was performed on a MiSeq Genome Analyzer (lllumina, San Diego,

CA) with a resulting coverage of 30x in the 98% of targeted sequences.

Bioinformatic analysis
i) Candidate genes identification. FASTQs were first checked for quality using the tool
fastQC and then paired-end aligned to the human genome (hg19) using Burrows-
Wheeler Alignment (BWA v. 0.6.2) (Li and Durbin, 2009) with default settings. GATK
and VarScan2 (v.2.3.7) (Koboldt et al., 2009) were used to generate variant calls.
Finally, ANNOVAR (Wang et al., 2010) was used to annotate single nucleotide
variants (SNVs) and insertions/deletions, report functional importance scores, and

identify variants reported in the 1000 Genomes Project and dbSNP (Fig 1).
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i) Candidate genes validation dataset 1. Sequencing data were processed, aligned,
and analyzed through a pipeline constructed using Segliner v0.1a
(http://bioinformatics.petermac.org/seqliner) by Bioinformatic Core Facility of
Peter MacCallum Cancer Centre. GATK Unified Genotyper v2.4 (Broad Institute,
Cambridge, MA), HaplotypeCaller, and PLATYPUS were used for variant calling.

iii) Candidate genes validation dataset 2. FASTQs were first checked for quality using
the tool fastQC and then paired-end aligned to the human genome (hg38) using
Burrows-Wheeler Alignment (BWA v. 0.6.2) (Li and Durbin, 2009) with default

settings. Strelka2 and HaplotypeCaller were used to perform the variant calling.

Variant filtering and annotation

i) Exome candidate identification

Variants with >10 reads and alternative allele read frequency higher than 8% were
considered. Then, variants were annotated using Alamut Batch software (Interactive
Biosoftware). For the in silico protein effect, we used AGVD (>C45), SIFT, and
MutationTaster through Alamut Visual. In addition, missense variants were manually
annotated with PolyPhen2 (http://genetics.bwh.harvard.edu/pph2/). The missense
variants with at least three deleterious predictions out of the four in silico were
prioritized as VUS potentially leading to a functional effect. For variants located in the
surrounding exon-intron junction, the in silico splicing tools Splice Site Finder (SSF) and
Human Splice Finder (HSF) were used as described in Moles-Ferndndez et al., 2018. (Fig

1).

i) Candidate genes validation 1 and 2

Variants with at least 20 reads and alternative allele read frequency >15% were
annatated with Alamut Visual 2.10. For removing sequencing errors and common
variants in the data sets, we excluded all variants detected in 21% in the cases or control
sequenced individuals, a frequency that can be regarded as common and therefore not
likely to be related to HBOC. In silico splicing tools Splice Site Finder (SSF) and Human
Splice Finder (HSF) were used as described in Moles-Ferndndez et al., 2018 for testing
disruption of natural splice sites by variants outside intronic di-nucleotides of donor and
acceptor sites. In addition, SpliceAl (threshold 0.2) tool was used to identify exonic and
intronic variants creating new splicing sites outside + 1 and 2 intronic splicing site

positions.



Carrier frequencies in the HBOC cases were compared for each candidate gene in the
two sequencing panels with those from GnomAD v2.1.1 healthy non-cancer controls
non-Finnish European (NFE) ethnic background (Karczewski et al., 2020). Hence, the
variants occurring in each candidate gene were downloaded from GnomAD, and were

annotated following the same criteria as those applied for the candidate genes

validation sets.
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Figure 1. Candidate gene identification pipeline through exome sequencing of 25 individuals from 13
families negative for BRCA1 and BRCA2 genes.

Statistical analysis

Odds ratios (ORs), p and confidence intervals for every gene for the case-control comparisons
were calculated using a two-tailed Fisher's exact test in GraphPad Prism v6. All graphs were
plotted using GraphPad Prism v6. Given that in GnomAD 2.1 control database the number of
called high quality genotypes, in which the alternate allele count is annotated, is usually not the
same among variants, we sought to account for this variability by using the mean of the total
number of alleles listed for that gene, instead of using the maximum number of alleles from the
population. Then, the sum of these normalised averaged alleles counts in each gene from
GnomAD database (for LoF, potentially spliceogenic or missense) was compared with the
incidence of variants of interest in cases. To note, that the number of subject carriers was

considered to compute ORs.
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Results

Candidate genes identification

Whole exome sequencing was performed in 25 members of 13 multiple-case families affected
with early-onset BC without identified BRCAI or BRCAZ pathogenic variant. Rare variants (0.5%
minor allele frequency in the non-Finnish European population according to ExAc) shared
between the affected sequenced relatives were selected. Then, truncating (except these located
in last exons of the genes), potentially spliceogenic or missense variants highlighted as
deleterious by in silico tools and located in functional protein domains were retained. Then, we
selected variants in genes with gene ontology functions related to DNA repair, cellular
maintenance, apoptosis or DNA binding domains obtaining a set of 35 potentially deleterious
variants (Supplementary Table 2). To prioritize the initial identified variants, we performed a co-
segregation analysis (when it was feasible) in affected relatives. The variant c.238G>C in TPMT
gene showed a co-segregation pattern in two families and the c.82C>G in TDP2 gene in one
family. DMC1, MACROD1 and RALGDS genes were further selected because were the top
deleterious candidate genes in their respective families. Taking together the segregation
evidence, type of variant, and gene function, we selected a list of genes that could be linked with

the disease: DMC1, MACROD1, RALGDS, TDP2, and TPMT (Figure 2; Supplementary Table 2).

Moreover, in previous research performed in our group, an extended panel of 34 known
high/moderate-risk cancer genes and 63 “promising candidate” genes related to HBOC was
sequenced in 192 BRCA1 and BRCA2 negative patients, identifying two RBBP8 truncating
variants in two early onset BC patients without family history of BC (Bonache et al., 2018). The
protein coded by this gene is associated with BRCA1 and with a role in homologous
recombination repair and transcriptional regulation of cell cycle checkpoint control (Mozaffari
et al., 2021). Thus, we selected RBBP8 as a candidate to perform a validation analysis. In
addition, RECQL5 and EDC4 were also selected as candidate genes due to promising results
obtained in other Spanish HBOC cohorts (Hernandez et al., 2018; Tavera-Tapia et al., 2019).
Taking all this evidence together, we decided to explore the association of these eight genes,
DMC1, MACROD1, RALGDS, TDP2, TPMT, RBBP8, RECQL5 and EDC4, with HBOC disease in a

cohort of cases and healthy controls (Figure 2).



RESULTS

Selected candidate genes 25 exomes from high 63 target genesfrom
from Spanish cohorts risk HBOC patients 192 patients
Prioritization
- Type of variant

- Segreggation in affected relatives
- Gene function

| |

EDC4 TPMT RBBP8
RECQLS RALGDS

MACROD1

DMC1

TOP2

Case - control study

Figure 2. Summary of the process followed to select the candidate genes dataset 2 for case-control
validation.

Separately, in collaboration with the COMPLEXOQ consortium (Southey et al., 2013), a set of 22
candidate genes was selected due to previous results suggestive of their association with HBOC
or with cellular functions similar to those of HBOC risk genes; ALKBH1, ALKBH3, BLM, CAMKK1,
FANCDZ, FANCF, FANCM, NEIL3, NTHL1, PER1, RASSF7, RBL1, RECQL, RECQL4, RINT1, RUVBLI,
SALL2, SLX4, STRADA, WRN, XRCC4, and ZNHITI.

Candidate genes dataset 1 validation

Coding and adjacent intronic regions of candidate genes ALKBH1, ALKBH3, BLM, CAMKK1,
FANCD2, FANCE, FANCM, NEIL3, NTHL1, PER1, RASSF7, RBL1, RECQL, RECQL4, RINT1, RUVBLI,
SALL2, SLX4, STRADA, WRN, XRCC4, ZNHIT1 were sequenced in 1,012 HBOC patients and 488
healthy controls. Stop gain, frameshift and +-1,2 intronic splicing donor and acceptor variants,
considered as protein-coding loss-of-function (LoF), were identified in all genes. After variant
annotation, the incidence of this type of variants in both groups was compared.

Due to the small number of identified LoF variants in the healthy Spanish controls, variant
frequencies were compared between patients and GnomAD v2.1.1 controls. Protein truncating
variants in CAMKK1, WRN, PERI, FANCD2, FANCM, NEIL3, RBL1, XRCC4, BLM, and ALKBH3 were
associated with a significant (P <0.05) risk of breast cancer, reaching an OR above 2 (Table 1

comparative OR and Fig 3).
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Table 1. Overall hereditary breast ovarian cancer risk associated with LoF Variants in candidate gene
dataset 1. No LoF variants were detected in RUVBL1 and ZNHIT genes. The genes are listed in decreasing
order of estimated odds ratio for breast cancer.

n2 of carriers
n2 of carriers

n2 of carriers of LoF of LoF
of LoF
variants in OR (95%Cl) cases and variants
Genes variants p
GnomAD GnomAD controls in controls
in cases (%)
controls* (%) (%)
(n=1,012)
(n=488)
CAMKK1 5(0.494) 4.493 (0.023) 21.09 (5.890 - 75.53) < (0,0001 0 (0)
WRN  21(2.075) 64.71(0.328) 6.432 (3.915 - 10.56) <0,0001 7(1.434)
PER1 5(0.494) 14.71 (0.079) 6.235 (2.256 - 17.23) 0.0005 0(0)
FANCD2 10(0.988) 32.70 (0.168) 5.915 (2.905 - 12.04) < (0.0001 0(0)
FANCM 29 (2.865) 135.0 (0.686) 4.265 (2.841 - 6.402) < 0.0001 1(0.205)
NEIL3 7 (0.691) 32.37 (0.166) 4.184 (1.844 - 9.496) 0.0007 0(0)
SALL2 2(0.197) 10.92 (0.055) 3.556 (0.786 - 16.07) 0.2675 0(0)
RBL1 14 (1.383) 76.50 (0.414) 3.368 (1.898 - 5.976) < 0.0001 0(0)
FANCF  2(0.197) 12.37 (0.059) 3.340 (0.749 - 14.89) 0.2774 0(0)
RECQL4  12(1.185) 69.79 (0.382) 3.128 (1.689 - 5.790) <0.0001 1(0.205)
XRCC4  7(0.691) 46.39 (0.238) 2.915 (1.313 - 6.470) 0.0138 0(0)
STRADA  1(0.098) 6.902 (0.037) 2.640 (0.323 - 21.52) 0.8941 0(0)
RINT1 3(0.296) 22.21(0.114) 2.601 (0.777 - 8.700) 0.2433 0(0)
BLM 8 (0.790) 60.32 (0.307) 2.582 (1.231-5.413) 0.0192 0(0)
SLX 5(0.494) 39.89 (0.197) 2.505 (0.986 - 6.363) 0.1 0(0)
ALKBH3 13 (1.284) 120.7 (0.592) 2.183(1.227 - 3.882) 0.0119 0(0)
ALKBH1  3(0.296) 28.46 (0.142) 2.082 (0.632 - 6.855) 0.3994 0(0)
RASSF7 2 (0.197) 36.87 (0.228) 0.863 (0.207 - 3.586) 0.8946 1(0.205)
NTHLI ~ 4(0.395) 98.56 {0.527) 0.748 (0.274 - 2.038) 0.7235 3(0.615)
RECQL 3 (0.296) 171.5 (0.926) 0.318 (0.101 - 0.997) 0.0566 0(0)
ALL 158 (15.61) 1106.45 (5.748) 3.033(2.533-3.632) < 0.0001 14 (2.869)

* GnomAD LoF carriers are normalised values (described in methods section).
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Figure 1. Risk of hereditary breast ovarian cancer associated with LoF variants in candidate dataset 1.
0Odds ratios and 95% confidence intervals (Cls) for breast cancer associated with LoF variants in 22 genes
and its combination (ALL). The genes are listed in decreasing order of estimated odds ratios for breast
cancer. ZNHIT and RUVBL1 is indicated as OR = 1, due to no LoF variant was identified in cases.

In addition, after the identification of variants potentially altering splicing sites located outside
+-1,2 intronic splicing donor and acceptor positions or creating new splicing sites (using in silico
tools and thresholds described in methods), the incidence of predicted spliceogenic variants
were compared between cases and GnomAD controls (Table 2, Fig 4). CAMKK1, PER1, NTHL1,
RBL1, FANCD2, FANCM, WRN, and RECQL4 , showed significants ORs higher than 2.
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Table 2. Overall risk of hereditary breast ovarian cancer associated with predicted spliceogenic variants,
located outside +-1,2 intronic splicing donor and acceptor positions in candidate dataset 1. No predicted
spliceogenic variants were identified in ALKBH1,FANCF, SALL2, and ZNHIT1. Genes are ranked according
their estimated ORs.

ne of
n? of carriers of  n2 of carriers of
carriers of
spliceogenic spliceogenic
spliceogenic
Genes variants in variants in OR (95%Cl) P
variants
cases (%) GnomAD
in controls
(n=1,012) controls* (%)
(%) (n=488)
CAMKK1 5 (0.494) 6.952(0.036)  13.63 (4.311-43.09) 0.0002 1(0.205)
PER1 13 (1.284) 44.34(0.239)  5.412 (2.907-10.07) <0.0001 3 (0.615)
NTHL1 3(0.296) 10.56 (0.056)  5.256 (1.456-18.97) 0.0322 0(0)
RBL1 12 (1.185) 50.98 (0.276)  4.329 (2.301-8.146) <0.0001  1(0.205)
FANCD2 11 (1.086) 56.95(0.293)  3.735(1.953-7.146) 0.0005  4(0.820)
FANCM 11 (1.086) 92.83(0.472)  2.316(1.235-4.341) 0.0176  6(1.230)
WRN 9 (0.889) 77.02 (0.390)  2.287(1.143-4.574) 0.0377 0(0)
RECQL4 25 (2.470) 200.1(1.096)  2.285(1.500-3.480) 0.0004 5 (1.025)
NEIL3 3(0.296) 28.05(0.144)  2.061(0.625-6.792) 0.1957  1(0.205)
STRADA 1(0.098) 12,50 (0.067)  1.456 (0.189-11.17) 0.5270  1(0.205)
ZNHIT 1(0.098) 16.77 (0.083)  1.188 (0.157 - 8.944) >0.9999 0(0)
RASSF7 3(0.296) 50.80 (0.315)  0.939(0.292-3.016) >0.9999 0(0)
SLX4 2(0.197) 45.47 (0.225)  0.876(0.212-3.616) >0.9999  3(0.615)
RINT1 2(0.197) 49.27 (0.253)  0.779(0.189-3.211) >0.9999 0(0)
RUVBL1 1(0.098) 30.67 (0.158)  0.623 (0.084-4.571) >0.9999  1(0.205)
RECQL 3(0.296) 158.1(0.853)  0.345(0.109-1.083) 0.0702 0(0)
BLM 1 (0.098) 193.7(0.988)  0.099 (0.013-0.707) 0.0012 0(0)
ALKBH3 1(0.098) 2455 (1.204)  0.081(0.011-0.578)  0.0002 1(0.205)
ALL 107 (10.57) 1386.59 (7.203)  1.522 (1.237-1.874) 0.0002  27(0.055)

* GnomAD individuals with spliceogenic variants are normalised values (described in methods section)
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Figure 2. Risk of hereditary breast ovarian cancer associated with predicted spliceogenic variants in
candidate dataset 1. Odds ratios and 95% confidence intervals (Cls) for breast cancer associated with
potentially spliceogenic variants in 22 genes and its combination (ALL). The genes are listed decreasing
order of estimated odds ratios for breast cancer. ALKBH1, FANCF, SALLZ and ZNHIT are indicated as OR =
1, since no predicted spliceogenic variant was identified in these genes.

Furthermore, incidence of rare missense (GnomAD controls NFEF <0.5%) were compared

between 1,012 cases and 488 healthy Spanish controls, and GnomAD controls 2.1 (Table 3 and

Figure 5).
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Table 3. Overall risk of hereditary breast ovarian cancer associated with missense variants in candidate
dataset 1. Genes are ranked according their estimated ORs.

Genes

BLM
ZNHIT
ALKBH1
RUVBL1
FANCD2
NEIL3
RBL1
FANCM
RASSF7
WRN
XRCC4
RECQL4
SLX4

RINT1

STRADA
ALKBH3
RECQL
SALL2
PER1

FANCF
CAMKK1

NTHL1
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n? of carriers of
rare missense
variants in

cases (%) (n=1,012)

74 (7.312)
8 (0.790)
22 (2.173)
12 (1.185)
82(8.102)
42 (4.150)
59 (5.830)
41 (4.051)
101 (9.980)
98 (9.683)
23 (2.272)
135 (13.33)
24 (2.371)
17 (1.679)
16 (1.581)
123 (12.15)
37 (3.656)
29 (2.865)
59 (5.830)

8 (0.790)
15(1.482)

9 (0.889)

N2 of carriers of rare
missense variants in

Spanish controls (%)

114.436 (0.583)
49.1049 (0.243)
141.801 (0.710)
84.4582 (0.436)
614.908 (3.166)
361.457 (1.855)
541.719 {2.936)
326.093 (2.024)
1081.99 (5.503)
1154.66 (5.858)
266.872 (1.370)
1829.03 (10.01}
336.872 (1.731)
256.941 (1.260)
220.207 (1.194)
1919.92 (9.516)
557.969 (2.841)
426.938 (2.304)
1360.21 (7.356)

240.111 (1.149)
472.691 (2.475)

303.074 (1.621)

OR {95% Cl)

13.44 (9.961 - 18.13)
3.265 (1.542 - 6.912)
3.106 (1.973 - 4.890)
2.738 (1.491 - 5.030)
2.696 (2.121 - 3.426)
2.290 (1.653 - 3.173)
2.046 (1.552 - 2.698)
2.043 (1.467 - 2.846)
1.903 (1.536 - 2.359)
1.722 (1.387 - 2.139)
1.673 (1.087 - 2.573)
1.383 (1.146 - 1.668)
1.378 (0.906 - 2.096)
1.338 (0.816 - 2.195)
1.328 (0.796 - 2.215)
1.315 (1.083 - 1.597)
1.297 (0.924 - 1.821)
1.250 (0.853 - 1.831)
0.779 (0.595 - 1.019)

0.685 (0.337 - 1.389)
0.592 (0.353 - 0.994)

0.544 (0.279 - 1.059)

<0.0001

0.0054
<0.0001
0.0027
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
0.0191
<0.0001
0.1083
0.2451
0.2359
0.0003
0.0964
0.1943
0.224
0.361

0.0562

0.0889

n? of
carriers of
rare
missense
variants
in controls
(%) (n=488)
17 (3.483)
0(0)

7 (1.434)
2 (0.409)
17 (3.483)
8(1.639)
11 (2.254)
10 (2.049)
16 (3.278)
29 (5.942)
5(1.024)
43 (8.811)
6(1.229)
4 (0.819)
1 (0.204)
39(7.991)
15 (3.073)
5(1.024)
18 (3.688)
7 (1.434)

5 (1.024)

2 (0.409)
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Figure 5. Risk of hereditary breast ovarian cancer associated with missense variants in candidate genes
dataset 1. Odds ratios and 95% confidence intervals (Cis) for breast cancer associated with predicted
deleterious missense variants in 22 genes and its combination (ALL). The genes are listed in decreasing
order of their estimated odds ratios for breast cancer. Only showed ORs of genes with identified variants

in the sequenced cohort.

Candidate genes dataset 2

Coding and adjacent intronic regions of selected candidate genes DMCI1, EDC4, MACRODI,

RALGDS, RBBP8, RECQL5, TDP2, and TPMT were sequenced in 638 HBOC patients and 206

healthy controls. Stop gain, frameshift, and +-1,2 intronic splicing donor and acceptor variants

considered as protein-coding loss-of-function (LoF), were identified in DMC1, MACROD1,

RALGDS, and RECQL5 (Table 4). No LoF variant was identified in the 206 healthy controls.
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Table 4. LoF variants identified in cases in candidate genes dataset 2 validation.

Gene Coding Effect cNomenclature pNomenclature Ne patients
DMC1 frameshift c.804_807del p.(Asn268Lysfs*2) 1
MACROD1 frameshift c.866_867del p.(Glu289Valfs*58) i
RALGDS frameshift c.2183_2184del p.(Pro728Argfs*4) 7
RECQL5 stop gain €.2308C>T p.(Arg770%) 2

splicing €.1812+2T>C 1

splicing €.1948-1G>A 1

Since no LoF variants were detected in controls due to the small number of sequenced DNAs,

the number of individuals with LoF variants were compared between patients and GnomAD

v2.1.1 controls (Table 5, Fig 6). LoF variants in RALGDS, MACROD1 and RECQL5 showed an OR

value above 2 (Table 5 and Figure 6). However, none of the genes reached a significant (p < 0.05)

association. A higher number of patients will be analyzed to complete this validation dataset

study.

Table 5. Risk of hereditary breast ovarian cancer associated with protein-coding LoF variants in candidate
dataset 2. No LoF variants were detected in EDC4, TDP2, TPMT and RBBP8. The genes are ranked according
to their OR estimated value. ALL includes EDC4, TDP2, TPMT and RBBP8 genes.

n2 of carriers of n2 of carriers of

LoF variants

Genes
in cases (%)
(n=638)
RALGDS 1(0.156)

MACROD1 1(0.156)

RECQL5 4(0.626)
DMC1 1(0.156)
ALL 7 (1.097)

LoF variants in
GnomAD

controls* (%)

4.798 (0.028)
6.231 (0.036)
47.202 (0.258)
33.712 (0.168)

158.299 (0.849)

OR (95%Cl)

5.593 (0.647 - 48.30)
4.258 (0.514 - 35.22)
2.435(0.874 - 6.778)
0.929 (0.127 - 6.806)

1.293 (0.604 - 2.767)

* GnomAD LoF variant carriers are normalised values (described in methods section).

P

0.197

0.228

0.092
>0.999

0.5064

n? of
carriers of
LoF variants
in controls
(%) (n=206)
0(0)
0(0)
0(0)
0(0)
0(0)

15



RESULTS

RALGDSH F— i

MACROD1- |-— |
RECQL5 F —

ALL- 4
Epca-
pmct ¢
TDP2-
TPMT

RBBPS- !

0 20 40
OR

Figure 6. Risk of hereditary breast ovarian cancer associated with LoF variants in candidate dataset 2.
Odds ratios and 95% confidence intervals (Cis) for breast cancer associated LoF variants in 8 genes and its
combination (ALL). The genes are listed in decreasing order of estimated odds ratio for breast cancer.
EDC4, DMC1, TDP2, TPMT and RBBPS are indicated as OR = 1, due to no LoF were identidied in cases.

In addition, after the identification of variants potentially altering splicing sites or creating new
splicing site (in silico tools used and threshold described in methods), the incidence of
spliceogenic variants were compared between cases and GnomAD controls. The results show no

statistical ORs for the analysed genes (Table 6, Fig 7).
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Table 6. Table Risk of hereditary breast ovarian cancer associated with variants predicted as spliceogenic
in candidate dataset 2 (truncating variants excluded). No spliceogenic variants were predicted in TPMT
and MACROD1. The genes are ranked according their OR values.

n2 of carriers of
ne of carriers of  n2 of carriers of

spliceogenic

spliceogenic * spliceogenic
Genes OR (95%Cl) P variants
variants in variants in GnomAD
in controls (%)
cases (%) (n=638) controls (%)
(n=206)
EDC4 4 (0.626) 74.08 (0.372)  1.686(0.614-4.626) 0.3092 a(0)
pmci 1(0.156) 19.65(0.098)  1.596(0.213-11.92) 0.4665 0(0)
RALGDS 5(0.783) 120.86 (0.706)  1.109 (0.452 - 2.724) 0.8066 0(0)
TDP2 1(0.156) 30.31(0.168)  0.929 (0.126 - 6.825) >0.9999 2(0.971)
RECQL5 3(0.470) 127.54 (0.698) 0.671(0.213-2.116) 0.8046 1(0.485)
RBBP8 1(0.156) 46.1(0.237)  0.660 (0.090 - 4.798) >0.9999 0(0)
ALL 15 (2.351) 448.10 (2.404)  0.977 (0.580 - 1.645) >0.9999 4(1.941)

*Spliceogenic refer to those variants located outside intonic -1 -2 / +1 +2 constitutive positions of the acceptor and

donor splice sites, respectively.

EDC4+

pmMC1-  +—-
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ALLo kA

P - ———
RECQL5 i
RBBPE i
MACROD1-
TPMTA
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Figure 7. Risk of hereditary breast ovarian cancer associated with variants in silico predicted as
spliceogenic {outside +-1,2 intronic splicing donor and acceptor positions) in candidate dataset 2. Odds
ratios and 85% confidence intervals (Cls) for breast cancer associated splicecgenic variants in eight genes
and its combination (ALL). The genes are listed in order of decreasing estimated odds ratios for breast
cancer. TPMT and MACROD1 are indicated as OR = 1, due to no spliceogenic variant was identidied in

cases.

Regarding missense variants, rare variants in TPMT and, DMC1 were associated with a risk of

cancer (Table 7 and Figure 8).

Table 7. Overall risk of hereditary breast ovarian cancer associated with missense variants in candidate
dataset 2. Genes are ranked according their estimated ORs.

Genes

TPMT
DMC1
RALGDS
EDC4
RECQLS
RBBPS
MACROD1

TDP2

n? of carriers of n? of carriers of

missense
variants
in cases (%)

(n=638)

9(1.410)
8 (1.253)
22 (3.448)
10 (1.567)
26 (4.075)
6 (0.940)
4(0.626)

8(1.253)

missense
variants in OR (95%Cl)
GnomAD

controls* (%)

100.712 (0.515) 2.758 (1.388 - 5.482)
106.705 (0.533) 2.367 (1.149 - 4.878)
411.292 (2.405) 1.449 (0.936 - 2.242)
275.000 (1.383) 1.135 (0.600 - 2.143)
702.360 (3.845) 1.062 (0.712 - 1.584)
334.191(1.718) 0.542 (0.241-1.221)
268.299 (1.586) 0.391 (0.145 - 1.053)

674.265 (3.750) 0.325(0.161 - 0.657)

0.0078

0.0252

0.1144

0.6074

0.7531

0.1592

0.05

0.0003

n? of
carriers of
missense

variants
in controls
(%) (n=206)
0(0)
0(0)
7 (3.398)
7 (3.398)
9 (4.368)
3 (1.456)
2 (0.970)

5(2.427)
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Figure 8. Risk of hereditary breast ovarian Cancer Associated with missense variants in candidate dataset
2. Odds ratios and 95% confidence intervals (Cls) for breast cancer associated with predicted deleterious
missense variants in n genes and its combination (ALL). The genes are listed in decreasing order of their
estimated odds ratios for breast cancer. Only showed ORs of genes with identified variants in the
sequenced cohort.

Discussion

Since up to 50% of HBOC patients remain without a genetic diagnosis, identifying new
susceptibility-related genes to HBOC could explain the missing heritability in this disease. For
this reason, the aim of this work was to identify candidate genes related to the HBOC and
validate them using a case-control approach. For this purpose, two different sets of candidate
genes were separately analyzed. To maximize the identification of deleterious variants, in silico
splicing tools were used and their incidence was compared between cases and controls. To our
knowledge, this is the first case-control study that uses in silico splicing tools to enrich the
genetic landscape with variants potentially affecting splicing outside the intronic +-1,2 of donor

and acceptor sites.

In candidate genes dataset 1, twenty-two genes selected in collaboration with COMPLEXO

consortium (Southey et al., 2013) were sequenced in 1,012 HBOC Spanish patients without
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identified BRCA1 or BRCAZ2 pathogenic variants and 488 Spanish healthy women. The ORs
calculation for classic LoF variants indicates that ALKBH3, BLM, CAMKK1, FANCD2, FANCM,
NEIL3, PER1, RBL1, RECQL4, WRN and XRCC4 were associated with a significant (p < 0.05) risk of
breast cancer overall, reaching an OR above 2. The identification of an enrichment in cases for
deleterious variants in these genes is consistent with the possibility that an impaired function of

these genes may predispose to breast cancer.

Of note, ALKBH3, BLM, CAMKK1, FANCD2, FANCM, NEIL3, PER1, RBL1, RECQL4, WRN and XRCC4
genes showed significant ORs above 2 (p < 0.05), in at least two of the three assessed groups of
variants with potential deleterious effect: LoF, potentially spliceogenic or missense variants. Of
the genes mentioned above, BLM, FANCD2, FANCM, NEIL3, RECQL4 and WRN are involved in
DNA repair, and some publications have suggested association with cancer risk. BLM has been
associated with prostate cancer and mesothelioma risk (Ledet et al., 2019; Bononi et al., 2020).
FANCDZ2 gene has been linked to hereditary breast cancer susceptibility (Mantere et al., 2017).
Interestingly, FANCM showed some evidence of an association as a risk factor for BC (Peterlongo
etal., 2015), and with ER-negative breast cancerin Dorilng et al., 2021. In addition, WRN helicase
gene has been associated with recessive Werner Syndrome, a genetic instability/cancer
predisposition disorder (Lebel and Monnat, 2018). On the other hand, limited results have been
published related to NEIL3 and cancer risk (Rolseth et al., 2017; Li et al., 2020). The inactivation
of RBL1, a tumor suppressor gene involved in cell cycle regulation, has been associated with
retinoblastoma susceptibility (Di Fiore et al., 2013). Furthermore, some evidence suggested a
relationship between RINTI gene (interactor of RADS0 gene) and breast cancer and Lynch
syndrome risk (Park et al., 2014). PER1 (involved in circadian rithym maintenance) and CAMKK1
(calcium/calmodulin-dependent kinase cascade) are genes not related to DNA repair and have

not been previously associated to breast cancer risk.

Recently, Li et al 2021 in a large multicenter study with Australian familial breast cancer analyzed
26 of the 30 genes included in this study (Suppl table 3). They sequenced candidate genes in
3,892 BC cases and controls, and then validated 145 shortlisted genes in 7,619 subjects (cases
and controls), identifying an overall excess of LoF and rare missense variants in cases. However,
candidate genes with LoF variants with ORs of 2-4 did not account for even a 1% of cases in Li et
al., study. This result suggests that much of the remaining genetic causes of high-risk BC families
are due to genes in which pathogenic variants are both infrequent and convey only low to
moderate risk. Larger cases and controls must be sequenced to determine the relevance and

association between these genes and the disease. In addition, there are discrepancies between
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our work and results observed in Li et al., 2021, being BLM and WRN the only ones of 26 genes

analyzed in both studies that reached significant ORs above 2 (Suppl. table 3).

In candidate gene dataset 2, DMC1, MACROD1, RALGDS, TPMT, TDP2, RBBP8, EDC4 and RECQL5
genes have been sequenced so far in DNA samples of 638 HBOC patients without pathogenic
variants identified in known genes and 206 healthy women. ORs were calculated using LoF and
potentially splicing variants in both groups and GnomAD controls database v2.1.1 (Karczewski
et al., 2020). The final objective of the study is to analyze the candidate genes in up to 1,100
cases and 500 control samples. Our first results to date indicate that TPMT and TDP2 genes are
either not related to HBOC genetic susceptibility or they might confer a low risk that cannot be
confirmed by the size of the study. In a recently published article (Li et al., 2021), the DMC1,
RBBP8, RECQL5 and TDP2 genes were sequenced in at least 1,027 patients and 943 controls, and
the obtained results did not supported a role of these genes in the susceptibility to familiar
breast cancer.

In this article, we have identified candidate genes and suggested their association by a case-
control approach. In the last decade, more than 200 candidate genes in HBOC and other
hereditary cancer types have been evaluated (Rotunno et al., 2020). However, only a few genes
are recognized as HBOC susceptibility cancer by the consensus of the scientific community

(Dorling et al., 2021; Hu et al., 2021).

Various limitations have already been noted in previously published candidate genes
identification and validation articles (Rotunno et al., 2020). Most of the studies focused their
efforts on sequencing only cases and use the GnomAD database to compare the incidence of
variants and calculate their ORs. Usually, the highest number of sequenced individuals in
GnomAD for a specific gene is used to obtain an OR estimation. However, not all alleles for each
variant has been sequenced in all subjects (i.e. due to sequencing failure or differences between
dataset that make up GnomAD). Consequently, assuming the higher value of sequenced patients
will lead to underestimating the allele frequency in controls, leading to an overestimation of
ORs. To address this bias, we calculated a normalised variant allele count which was obtained
by adjusting its GnomAD reported allele frequency to the average of the total list of number of
alleles (termed in GnomAD as number of called high quality genotypes) specified for that gene
of interest, and then the sum of these normalised variant alleles and the allele mean number
were taken to compare cases with controls and estimate the respective ORs.

Another common limitation is the size of studied cohorts. For example, Rotunno et al., 2020

indicate that 53% of studies selected candidate genes after analyzing ten or fewer families
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(thirteen in this article), and 43% of publications did not perform an independent validation
analysis. Finally, another limitation that must be noted is the bias on the candidate gene
selection, where genes in specific pathways related to DNA repair or replication pathways are

selected.

In summary, this study provides evidences of potentially association to HBOC susceptibility of
ALKBH3, BLM, CAMKK1, FANCD2, FANCM, NEIL3, PER1, RBL1, RECQL4, RINT1, WRN and XRCC4
genes. However, sequencing in more cases and controls will provide further data for or against
risk association. Our results suggest that deleterious variants identified in various genes related
but not limited to DNA repair could explain a small percentage of the genetic landscape of
affected HBOC patients. Furthermore, they support the hypothesis that the genetic
susceptibility of an significant fraction of families with breast/ovarian cancer is heterogeneous

with multiple /oci of rare frequency and penetrance.
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Supplementary material

Supplementary table 1. SEOM clinical criteria for germline genetic analysis in hereditary breast and
ovarian cancer patients. Adapted from Gonzalez-Santiago et al., 2020.

Selection criteria for germline testing

Regardless of family history:

Women with synchronous or metachronous breast and ovarian cancer

Breast cancer < 40 years

Bilateral breast cancer (the first diagnosed < 50 years)

Triple-negative breast cancer < 60 years

High-grade epithelial non-mucinous ovarian cancer (or fallopian tube or primary peritoneal
cancer)

Ancestry with founder mutations

BRCA somatic mutation detected in any tumor type with a tumor allele frequency > 30% (if it
is known)

Metastatic HER2-negative breast cancer patients eligible to consider PARP inhibitor therapy
2 or more first degree relatives with any combination of the following high-risk features:
Bilateral breast cancer + another breast cancer < 60 years

Breast cancer < 50 years and prostate or pancreatic cancer < 60 years

Male breast cancer

Breast and ovarian cancer

Two cases of breast cancer diagnosed before age 50 years

3 or more direct relatives with breast cancer (at least one premenopausal) and/or ovarian
cancer and/or, pancreatic cancer or high Gleason (= 7) prostate cancer
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Supplementary table 2. Genes with prioritized variants in candidate genes identification dataset.

Gene

AHCTF1

ALKBH3

APOBEC1

AT™M

CEP164

DHTKD1

DMC1

DOTIL

DPPA4

DTHD1

ELPS

ERCC6

FCGR2A

INSRR

LARP1B

MACROD1

MED23

Var
type

Coding
effect

SL

SE

SE

SE

SL

Biological process

Cytokinesis, Mitotic Cycle, mRNA transport, etc.

DNA alkylation damage repair, Cell proliferation,
ete.

DNA demethylation, RNA processing, Cell
proliferation regulation, etc

DNA damage check point, DNA damage response,
Cell Cycle control, etc.

G2 DNA damage control, Involved in ATM/ATR
pathway on DNA damage response.

Hematopoietic progenitor cell differentiation factor,
Glycolitic process, etc.

DNA Meiotic Recomhinase

Chromatine organization and silencing, Cell Cycle
regulation, Hystone metilation, etc.

Mesenchymal development, Transcription
regulation, etc.

Proteosome regulation.

Chromatine organization, Positive regulation of
cellular migration, etc.

DNA repair, Apoptotic pathway involved in DNA
damage response, etc.

Fc-gamma pathway receptor.

Cytoeskeletal actine organization, Alkalyne pH
cellular response, etc.

Mitophagia activation as response to mitocondrial
depolarization, etc.

DNA damage response, purine metabolism, etc.

Protein ubiquitination, Expression regulation, etc.

Segregation
study

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA
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MZF1

NOB1

NOTCH3

PFKM

POLR2A

POLR3B

PSMD3

RALGDS

RNF216

SLCO1B3

TDP2

TPMT

TSHZ3

ZFHX3

ZNF268

ZNF439

ZNF491

ZNF626

Dup

S

S

SE

N

N

Negative regulation of transcription of RNA pol Il
promotor.

rRNA Processing, Visual perception, etc.
Cell differentiation, Notch pathway component, etc.

Glucose metabolism, Regulation of insuline
secretion, etc.

RNA polymerization DNA-dependent.

RNA Pol lll promotor transcription.

DNA damage response, G1 DNA damage control,
etc.

RAS metabolic pathway signal transduction.

Apoptotic process, etc.

Transport of organic anions.

Double strand DNA repair, Nucleic acid
Phospodiester bonds hydrolisis, etc.

Methilation, Xenobiotic metabolism, etc

Transcription negative regulation, CASP4 Inhibition,
etc.

Cell Cycle regulation, Positive regulation of myoblast
differentiation, etc.

Cell differentiation, Negative regulation of
apoptosis, Negative response to necrosis tumoral
factor, etc.

Transcription regulation.

Transcription regulation.

Transcription regulation.

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Yes

Yes

NA

NA

No

NA

NA

NA

Highlighted in red genes selected for validation; D, deletion; S, single nucleotide variation; Dup,
duplication, F, frameshift; N, nonsense; M, missense. NA, not available.
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Supplementary table 3. LoF incidence in cases and controls, and OR values for shared genes between Li
et al., 2021 and this study. EDC4, TPMT, MACROD1 and RALGDS were not included. Bold: genes with LoF

variants which reached significant OR. Bold and underlined: genes with LoF variants which reached

significant OR in our study and Li et al., 2021.

Genes

ALKBH1

ALKBH3

BLM

CAMKK1

DMC1

FANCD2

FANCF

FANCM

NEIL3

NTHL1

PER1

RASSF7

RBBP8

RBL1

RECQL

n? of LoF
alleles in
cases (%)

3(0.296)

13
(1.284)

8 (0.790)

5 (0.494)

1(0.156)

10
(0.988)

2(0.197)

30
(2.964)

7(0.691)

4(0.395)

5(0.494)

2(0.197)

NA

14
(1.383)

3(0.296)

n? of LoF
alleles in
GnomAD
controls*
(%)

28.46
(0.142)

120.7
(0.592)

60.32
(0.307)

4.493
(0.023)

33.712
(0.168)

32.70
(0.168)

12.37
(0.059)

135.0
(0.686)

32.37
(0.166)

98.56
(0.527)

14.71
(0.079)

36.87
(0.228)

NA

76.50
(0.414)

1715
(0.926)

OR
(95%CI)

2.082
(0.632-
6.855)
2.183
(1.227 -
3.882)
2.582
(1.231-
5.413)
21.09
(5.890 -
75.53)
0.929
(0.127 -
6.806)
5.915
(2.905 -
12.04)
3.340
(0.749 -
14.89)
4.416
(2.958 -
6.594)
4.184
(1.844 -
9.496)
0.748
(0.274 -
2.038)
6.235
(2.256 -
17.23)
0.863
(0.207 -
3.586)

NA

3.368
(1.898 -
5.976)
0.318
(0.101 -
0.997)

Lietal.,
2021 n®
of LoF
alleles in
cases (%)

14
(0.250)

20
(0.278)

20
(0.139)

0(0.026)

0(0)

7 (0.083)

8(0.209)

27
(0.439)

5(0)

38
(0.313)

1(0.026)

4(0.156)

2(0.105)

13
(0.260)

12
(0.480)

Lietal.,
2021 n? of
LoF alleles

in
GnomAD
controls
(%)
12 (0.250)
16 (0.278)
8(0.139)
1(0.026)
0(0)
4 (0.083)
10 (0.209)
21(0.439)
0(0)
15(0.313)

1(0.026)

6 (0.156)
2(0.105)

10 (0.260)

23(0.480)

Lietal.,
2021
LoF_OR
(95%Cl)

1.16 (0.5-
2.75)

1.24 (0.61-
2.57)

2.49 (1.05-
6.55)

0.34 (0-
39.61)

0.92 (0-Inf)

1.74 (0.44-
8.12)

0.8(0.27-
2.24)

1.28(0.7-
2.39)

10.95
(0.91-Inf)

2.53 (1.36-
4.96)

1.02 (0.01-
79.7)

0.68 (0.14-
2.86)

0.96 (0.07-
13.19)

1.32(0.53-
3.37)

0.52 (0.23-
1.09)

Cases
sample
size

4807

5770

5770

3780

1027

4807

4807

4807

4807

4807

3780

3780

1990

3780

4807

Controls
sample
size

4782

5741

5741

3839

943

4782

4782

4782

4782

4782

3839

3839

1902

3839

4782
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RECQL4

RECQLS

RINT1

RUVBL1

SALL2

SLX

STRADA
TDP2

WRN

XRCC4

ZNHIT1

152

12
(1.185)

4(0.626)

3(0.296)

1(0.098)

2(0.197)

5(0.494)

1(0.098)

NA

21
(2.075)

7 (0.691)

NA

69.78
(0.382)

47.202
(0.258)

2221
(0.114)

0.5
(0.002)

10.92
(0.055)

39.89
(0.197)

6.902
(0.037)

NA

64.71
(0.328)

46.39
(0.238)

NA

3.128
(1.689 -
5.790)

2.435
(0.874 -
6.778)
2.601
(0.777 -
8.700)
38.29
(1.284 -
1142.)
3.556
(0.786 -
16.07)
2.505
(0.986 -
6.363)
2.640
(0.323 -
21.52)

NA

6.432
(3.915 -
10.56)
2.915
(1.313-
6.470)

NA

16
(0.355)

1(0.212)

2(0.062)

0(0)

1(0.041)

9(0.188)

1(0.078)

0(0)
34
(0.355)

1(0.106)

1(0.062)

17 (0.355)

2(0.212)

3(0.062)

0(0)

2(0.041)

9(0.188)

3(0.078)

0(0)

17 (0.355)

1(0.106)

3(0.062)

0.94 (0.44-
1.97)

0.46 (0.01-
8.83)

0.66 (0.06-
5.79)

0.92 (0-Inf)

0.5 (0.01-
9.56)

0.99 (0.35-
2.83)

0.34 (0.01-
4.22)
0.92 (0-Inf)
2 (1.08-
3.82)
0.92 (0.01-
72.11)

0.33 (0.01-
4.13)

4807

1027

4807

1027

4807

4807

3780

1027

4807

1027

4807

4782

943

4782

943

4782

4782

3839

943

4782

943

4782
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DISCUSSION

Hereditary breast and ovarian cancer (HBOC) patients without pathogenic
variants identified in susceptibility genes represent a mis-opportunity to benefit
from a personalized and precise medical management. The lack of a definitive
genetic diagnosis after a germline molecular test in patients with a suspected
HBOC disorder is driven mainly by an inconclusive result with the detection of
variants of unknown significance (VUS) or a negative result with no detected
pathogenic variant in known risk genes. This thesis proposes that an improved
genetic diagnostic will be achieved through the optimization of the use of
computational in silico algorithms for interpreting VUS spliceogenic effects as
well as of the variant classification process (Articles 1, 2 and 3) and the

identification of new HBOC susceptibility genes (Article 4 in preparation).

1. In silico tools for spliceogenic variants

identification in HBOC genes

The use of massive parallel sequencing in clinical diagnostics is leading to a
significant increase in genomic data and the detection of a high number of
variants of uncertain significance (VUS) with potential effects on splicing that
need interpretation. DNA variant disrupting any of the cis-acting core or
regulating elements may lead to incorrect splicing, generating aberrant
transcripts and hence non-functional proteins. Therefore, prediction of the
effect of DNA sequence variations on splicing using in silico tools has become a
common approach. In ACMG guidelines, the likely consequences predicted by
in silico tools are essential for application of the supporting evidence PP3
(multiple lines of computational evidence support a deleterious effect) and BP4
(multiple lines of computational evidence suggest no impact on gene or gene
product). However, there is no consensus or unified way about which tool has
to be used and how to identify the effect caused by variants disrupting the

different cis-elements.
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DISCUSSION

1.1 Identification of variants altering donor and

acceptor splice sites in HBOC using in silico tools

Splicing acceptor and donor sites are critical elements for the correct exon
inclusion in RNA, delimiting exons and introns. These regions are recognized by
DNA binding proteins of the spliceosome complex, and variants located in these
highly conserved sequences could impede this recognition leading to a splicing
alteration. Due to the importance of these elements, several in silico tools for
their analysis have been developed and a few studies have been published on
their reliability in predicting the impact of variants on splicing sites. Their results
show that the recommendations provided on the most appropriate use are not

concordant (Jian et al., 2014a and Table 1 in Article 1).

The main objective in Article 1 was to provide a framework to detect exonic and
intronic spliceogenic variants affecting acceptor and donor splicing sites (-10 to
+20 and -20 to +10 in donor and acceptor, respectively) using in silico tools. We
collected variants identified in hereditary cancer-related genes and compared
the in silico predicted effect of six programs (MES, HSF, SSF-like, SPANR,
NNSplice, and dbscSNV), with splicing in vitro outcomes, thus evaluating the
reliability of the predictions. We elaborated the study in two stages, discovery
and validation, to identify the best predictors or the best combination for their
application in routine clinical testing, taking into account sensitivity, specificity,
accuracy, and negative predictive value as well as the score of Mathews
Coefficient Correlation (MCC). In the discovery stage, significant performance
differences were appreciated among individual tools. Globally, as well as for 5',
and 3' splice sites, low accuracies of SPANR and NNSplice contrasted with the

high performance achieved by SSF, MES, and HSF.
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At the second stage of the study, we validated the combinations of HSF with
SSF-like or HSF+SSF-like+MES (at least one of them indicating alteration) as the
highest performances for splicing aberrations at donor sites, and SSF-like stand-
alone at acceptor sites.

These results provided recommendations for identifying splicing site altering
variants using in silico tools with a high level of confidence, based on MCC,
sensitivity and negative predictive values. This framework is relevant in a clinical
setting since it allows to separate the variants with an extremely low or non-
existent probability of being abnormally spliceogenic from those variants in
which in vitro RNA studies are of interest. For example, the use of Article 1 in
silico splicing recommendations helped us (Duran-Lozano et al., 2019;
Montalban et al., 2019) (Articles 5 and 6 in the Appendix section) and other
groups (Sanoguera-Miralles et al., 2020) to classify pathogenic variants altering

splicing in HBOC related genes.

The recommendations provided in our study are partially in concordance with
previously published papers, most of them indicating SSF-like, MES, or HSF as
high-performance tools. In Houdayer et al., 2012, using a dataset of HBOC
spliceogenic variants affecting splicing sites and not spliceogenic variants, the
authors recommended a sequential approach for both acceptor and donor
sites, using MES first and SSF-like second. However, this combination reached
a lower performance with variants located in the donor site in the discovery
step of our Article 1. On the other hand, SPiCE tool (Leman et al., 2018) showed
high sensitivity and specificity in a dataset of 395 HBOC variants. This user-
friendly and freely available tool combines SSF (modified from original Position
Weigh Matrix published by Shapiro and Senapathy, 1987) and MES, providing a
unique probability score, allowing a high throughput variant analysis.
Interestingly, SPiCE showed a similar performance than our recommended tools
(inferred from Supplementary table 8 of Article 1). Finally, according to

previously published studies, NNS and GS showed low performances (Houdayer
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et al., 2012; Tang et al., 2016), and their use should be avoided due to the high
rate of false positives and negatives.

To note, the rate of false-negative predictions in our study was significantly
higher for acceptor sites than donor sites. This difference may be due to the
greater complexity of the sequence adjacent to the 3', with the presence of the
branch point and the polypyrimidine tract. Moreover, conserved splicing site
sequences are different between acceptor and donor sites, i.e.,11 bases for the
5' splice site (from the three last exonic to the eight first intronic bases) and 14
bases for the 3' splice site (from the 12 last intronic to the first two exonic bases)
(Burge et al., 1999). To our knowledge, our study is one of the few that
evaluates the accuracy of different tools separately for donor and acceptor
sites, resulting in different recommendations for each one with high
performance. Interestingly, Danis et al. (2021) reported the development of a
new machine learning method for predicting splicing alterations of non-
canonical variants located outside AG/GT intronic dinucleotides, considering
and training two site-specific models to differentiate splice variants from
neutral variants, one for the donor variants and the other for the acceptor

variants.

The tools analysed in Article 1 have only been interrogated to predict
alterations at donor and acceptor splice sites. However, alterations in RNA may
be produced by variants that affect other factors in cis (branch point,
polypyrimidine tract, intronic and exonic splicing silencers and enhancers),
create new splice sites or activate cryptic ones. In silico tools able to analyse
different cis-splicing sequences could increase the spliceogenic variants
detection. For example, SPANR, included in our performance analysis, is the first
approach of a machine learning splicing tool integrating different conserved
elements. Moreover, after Article 1 was published, new in silico tools
addressing this point have been developed, by combining in separated modules

different tools in a "meta-predictor" approach, such as SPiP
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(https://github.com/raphaelleman/SPiP) or machine learning tools integrating
the identification of potentially spliceogenic variants related to different cis-
elements (SpliceAl or MMSplice). SPiP is a freely available and user-friendly tool
that provides a probability score obtained from the separate and independent
analysis of each splicing element by its dedicated tool. For example, SPiP
includes SPiCE for splicing sites and new or cryptic sites creation, ESRseq for
exonic splicing silencers and enhancers, and BPP in silico tool for the
identification of branch point regions. In other words, it is a predictor that
analyses different elements without integrating its balance or interdependence

between regions.

One of the most noteworthy aspects of the new generation tools is the use of
machine learning approaches, which enables the consideration of the fact that
the functionality of a splicing element depends on its interactions with the other
cis-elements. Hence, these predictors take into account large sequences to
assess the effect of a variant to accurately predict which splicing elements are
altered. SpliceAl (Jaganathan et al., 2019), for example, is able to analyse the
effect of a variant taking into account the surrounding 10,000 nucleotides to
the variant. In addition, MMSplice (Cheng et al., 2019b) considers competitive
interactions among close splicing sites together with changes in splicing
efficiency. This tool ranked first at the Critical Assessment of Genome
Interpretation 5 (CAGI5) exon skipping prediction challenge (Cheng et al,,
2019a), in which two splicing prediction challenges were proposed based on
two experimental perturbation minigene high-throughput assays: Vex-seq,
assessing exon skipping, and MaPSy, assessing splicing efficiency. Using these
pre-established datasets, the performance of in silico tools to correctly
discriminate altering and not altering variants were compared. These
challenges are an unbiased option to compare the utility of different tools with
an independent set of variants and an opportunity to train and improve

different predictors.
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The CAGI 5 also included a challenge for predicting which of the about 400
BRCA1 or BRCAZ2 variants was associated with increased risk for breast cancer
(CAGI 5 ENIGMA challenge) (Cline et al., 2019) Article 7, Appendix). The Article
1 recommendations were included in the "BRCA1- and BRCA2-specific in silico
tools for variant interpretation in the CAGI 5 ENIGMA challenge" (Padilla et al.,
2019), which ranked second being the only participant that included splicing
interpretation, that supports the importance of splicing analysis in identifying

pathogenic variants (Article 8, Appendix).

In a clinical setting, the selection of splicing algorithms should be based on the
reliability of their predictions of the variant functional impact, facility of their
implementation and output interpretation (i.e., what sequence features lead to
the prediction score that reflects the probability that a given variant is
spliceogenic) (Lord and Baralle, 2021). However, to date there is no defined
process of how to establish the precise degree of confidence that in silico
predictions must have for their clinical application. For example, the selection
of a score as cut-off to distinguish a variant as splice disrupter is usually arbitrary
or estimated from the evaluation of relatively small number of variants with
known splicing effect (Lord and Baralle, 2021). Since an evidence-based, unified
splicing in silico approach is still needed in the clinical setting, further
independent studies with a high number of variants are required, comparing
the performance of an increasing list of tools, to establish which ones have to
be used (Lord and Baralle, 2021). Highlighting the still need of benchmarking
splicing in silico predictions with experimental data to better handle their
reliability, is the recent launch (on June 2021) of the CAGI 6 challenge for
predicting splicing disruption from variants of unknown significance. In this
project, participants are asked to provide a prediction “score” in the range of 0
to 1 to distinguish splicing altering variants among a set of variants of unknown
significance clinically ascertained and experimentally assessed by the organizers

(https://genomeinterpretation.org/cagi6-splicing-vus.html).
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1.2 Deep intronic variant identification using in silico

tools

Despite the advances in sequencing technologies, there is still an important
fraction of HBOC cases without a genetic diagnosis. A percentage of this fraction
may include variants in non-coding deep intronic regions. The contribution of
deep intronic variants to HBOC disease is not well known due to their location
in poorly screened regions, but their potential effect on transcript splicing,
including intron sequences in mature RNA, may be clinically significant since
several spliceogenic variants have been detected (Vaz-Drago et al., 2017;
Montalban et al., 2018a). However, identifying these variants is challenging due
to the lack of specific in silico pipelines (Canson et al., 2020). For this reason,
the work developed in this thesis aimed to provide a framework to identify

spliceogenic variants in regions historically under-analysed (Toland et al., 2018).

Jaganathan et al., 2019, in their SpliceAl development article, demonstrated
that applying SpliceAl with a cut-off of 20.5 (Jaganathan et al., 2019), achieved
a sensitivity of 71% when the analysed variants were near to exons, but fell to
41% when the variants were in deep intronic regions (37 variants, >50 nt from
exons). In Article 2, using a large dataset of deep intronic variants clinically
relevant, we confirmed that SpliceAl in silico tool with a threshold of >0.05
reaches an optimal predictive value in identifying spliceogenic deep intronic

variants.

Moreover, recently published papers such as Riepe et al., 2021, with an
optimized SpliceAl cut-off score of 0.18, also showed a high performance, with
a 0.84 MCC for predicting 81 deep intronic variants in the ABCA4 gene; these

variants had also been included in our dataset. In addition, Riepe et al.
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demonstrated that SpliceAl was the best tool to identify spliceogenic deep
intronic variants compared with other deep-learning based algorithms such as
SPANR (Xiong et al., 2015) and the "classical" tools SSF-like or MES, based on

Position Weight Matrix or Maximum Entropy SSF-like, respectively.

Most of the spliceogenic deep intronic variants reported create sequences
similar to splicing sites or activate cryptic splicing sites (Vaz-Drago et al., 2017).
However, variants disrupting or creating intronic SREs can also lead to the
inclusion of pseudoexons in RNA. In Table 1 and Supplementary Figure 1 of the
Article 2, we can observe a lower performance of SpliceAl detecting SREs-
related variants (MCC=0.66) than intronic variants that create or activate cryptic
splicing sites (MCC=0.88). Also, we show that SpliceAl performance in predicting
the impact of SREs by exonic variants is limited (MCC=0.53). This low
performance is possibly due to the fact that the deep learning network
approach used for SpliceAl is not able to account for the SREs because of their
limited presence in the tool training dataset (Jaganathan et al., 2019). This
indicates that the performance of SpliceAl to identify SREs-related variants can
still be improved, or other in silico tools could be used for this purpose.
Particularly, ESRseq, HAL, and HEXPLORER tools have been developed to
identify variants affecting splicing regulatory elements, but most of the
performance studies have been done using exonic variants (Canson et al., 2020;
Tubeuf et al., 2020). In Tubeuf et al., 2020, the authors used these tools with a
large set of exonic variants that only affected SREs, altering or not exonic
splicing. They showed that ESRseq achieved the highest performance to detect
exon skipping after optimizing the threshold to -0.50 score. Moreover, focusing
on identifying variants that increase exon inclusion by creating or enhancing
ESEs using a dedicated dataset, they adapted the ESRseq threshold, optimizing
it at +0.36. The authors selected this threshold to use ESRseq to detect deep
intronic variants creating pseudoexons (n = 13), due to the impossibility of HAL

and SPANR to analyse in deep intronic regions (Tubeuf et al., 2020). Ten variants

164



DISCUSSION

were correctly identified, and the authors suggested that this tool may be useful
for predicting the creation of variant-induced pseudoexons. This result is
slightly different from that obtained in the Article 2 of the present thesis, in
which the addition of ESRseq to SpliceAl analysis improves the sensitivity values
but did not show improvement in the MCC. This discordance could be explained
by the absence of no-spliceogenic variants in Tubeuf et al., 2020 dataset, and
also because the authors aimed to detect only SREs altering intronic variants, in
contrast to Article 2. In addition, we also reasoned that the limitation of
improvement in the identification of SRE-altering variants using ESRseq, was
due to the fact that this tool evaluates at a local hexamer level, without
accounting for the SREs landscape that defines a region to be included as a

pseudoexon.

In summary, SpliceAl alone is able to identify variants causing pseudoexons with
a high performance, and the addition of ESRseq has limited success in the

identification of SREs-altering deep intronic variants.

1.3 Importance of SREs balance in the pseudoexon

inclusion caused by deep intronic variants

The lack of improvement in the detection of spliceogenic deep intronic variants
following the addition of ESRseq tool scores to SpliceAl led us to further
investigate the characteristics and relevance of the SREs. Using ESRseq scores
inferred from experimental results in Ke et al., 2011, we characterized the
landscape of SREs along the exonic and adjacent intronic regions of HBOC genes
(Article 2, Figure 2A) by scoring and mapping each nucleotide and its hexamer
surrounding region. As expected, an exonic enhancers (ESEs) enrichment was

observed in exons compared to intronic regions, and conversely a lower exonic
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splicing silencers (ESSs) density in the exonic regions than in introns. These
results are in agreement with other articles (Wang et al., 2005; Caceres and
Hurst, 2013; Erkelenz et al.,, 2014), indicating that ESRseq mapping is an

interesting option to identify SREs along DNA sequences (Fig 7).
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Figure 7. SRE mapping of exonic and intronic regions. Representative image showing
ESRseq scores used to map SREs sequences along exon and adjacent intronic regions.
Nucleotides with negative values mean that they may act as silencer elements.

Nucleotides with positive values may act as enhancer elements.

Then, we characterized the pseudoexonized regions included in RNA caused by
deep intronic spliceogenic variants collected in Article 2 and their surrounding
intronic sequences. We observed that the relation of the splicing regulatory
elements (SREs) landscape between the pseudoexon and flanking introns is
similar to that of canonical exons. In contrast, the ESRseq developers reported
that the pseudoexons did not present a different balance of SRE than the
adjacent intronic regions (Ke et al., 2011). This discrepancy could be because
the pseudoexons analysed in the above-mentioned work were theoretically
defined, without an experimental RNA evaluation, instead of using
experimentally confirmed variants, as collected in Article 2. In addition,
surrounding sequences to non spliceogenic deep intronic variants showed poor
differences in the SREs balance compared with spliceogenic ones (Article 2,
Figure 3). To our knowledge, up to date, this is the most extensive
characterization of SREs in pseudoexonized regions caused by deep intronic

variants experimentally assessed.

The analysis of Article 2 shows that the balance of SREs between exons and

introns was less defined in pseudoexons than in HBOC canonical exons. Similar
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findings to our results using approaches other than ESRseq tools have been
recently reported, showing that in pseudoexons there is a smaller density of
ESEs together with a higher density of ESSs compared to canonical exons, that
is, the pseudoexons presented a weaker exon profile in terms of SREs (Xie et al.,
2020). Collectively, these results suggest that SREs balance is critical for the
exon inclusion or the recognition of an intronic region to be included into the
RNA together with other splicing elements. It is worth to note that the presence
in deep intronic regions of cryptic branch points or cryptic polypyrimidine tracts
might also have a role in the inclusion of pseudoexons and their consideration
in the in silico prediction of deep intronic splice altering variants has not been

yet addressed.

The density of ESEs in exons and ISSs in adjacent introns can be variable (Figure
2A in Article 2). This observation agrees with Tubeuf et al., 2020 analysis, in
which the in silico tools performances was separately analysed in specific exons
using a pre-stablished threshold. Their results showed differences in MCC
between groups, and they decided to optimize the threshold to each specific
exon, improving the tool performance. This specific exon effect could be driven
by differences in density, balance, or strength SREs landscape, and indicates the
need of considering these features for a correct detection of variants disrupting

all the regulatory cis-splicing elements.

In this sense and in favour of the SRE density importance, Baeza-Centurion et
al. suggested that the effect of variants altering the balance of SREs appears to
be greater in alternative exons, which have fewer redundant enhancer
elements, compared to constitutive ones (Baeza-Centurion et al.,, 2020).
Therefore, we suggest that deep intronic variants that strengthen an enhancer
or even decrease a silencer will have a greater chance of being spliceogenic
provided that they are located in intron regions with an exon-like SRE
landscape, similar to what happens in alternative exons. Moreover, in an exonic

context, Baeza-Centurion et al., 2020 and Tubeuf et al., 2020 results suggest
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that there exist a potentially sequence redundancy of ESEs in some exons (high
ESEs density), which results in a "tolerance" to SREs disruption avoiding exon
skipping. On the contrary, constitutive exons with a lower ESEs density would
be more susceptible to suffer splicing alteration, due to the essentialness of

these elements.

Regarding the importance of an interplay between SRE and other cis-elements,
Tubeuf et al., 2020 showed (in supplementary figure 12 of their manuscript),
that exon-skipping SREs altering variants were more frequently found in exons
with weaker 3'ss, suggesting a relevant interdependence between splicing
conserved elements, and that this effect can play a role in the in silico tools

usage.

Taken together our results generated in Article 2 and those mentioned above,
we hypothesize that mapping and scoring SREs using ESRseq in exons and
introns, could find out regions susceptible to be altered by SREs-related variants
(for example exons with low presence of ESEs), and sequences with "tolerance"
to be splicing-altered (exons with ESE "redundancy"). This information will
facilitate the detection of splice altering variants using "classical" in silico
approaches or even be used as a variable to be included in machine learning
algorithms for improving its performance. To address this point, at the moment
of the thesis presentation, a Phyton-based script is being developed by the
Hereditary Cancer Genetics Group at VHIO, that will allow to i) map and score
each nucleotide of a sequence located within an initial and final genomic
position, and ii) calculate AESRseq scores caused by a variant in comparison
with the wild type sequence in a high-throughput way with genomic
coordinates as input. This initial resource, together with future improvements
will be published to be used by the scientific community. One example of its
utility could be to map and target exonic regions of interest, identifying

enhancers and silencers, thereby, assisting to the experimental identification of
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SREs sequences in exons using minigenes (such as Sanoguera-Miralles et al.,

2020 and Bueno-Martinez et al., 2021).

1.4 Future of splicing variants identification: through a

unified in silico pipeline and in vitro RNA sequencing

The development of integrative tools including different splicing cis-elements,
considering their interdependences, would improve the current identification
of spliceogenic variants by in silico tools. It seems that this complexity might be
tackled using the most advanced machine learning techniques as it has been
recently demonstrated with the development of tools like SpliceAl or SQUIRLS
algorithms (Jaganathan et al., 2019; Danis et al., 2021) or instead using meta-
predictor in silico tools like SPIP (https://github.com/raphaelleman/SPiP). Thus,
it could be included in the ACMG guidelines as computational splicing evidence
(PP3 and BP4), which use are still very limited and without established

consensus recommendations.

In silico tools capable of analysing stand-alone elements or more recently
multiple elements, have been published. However, there is currently no single
in silico tool with a verified performance of detection of splicing disrupting
variants due to alteration or creation of any cis DNA elements. Thanks to the
experience and knowledge gained along this thesis, we proposed a pipeline of
in silico splicing analysis (Table 6) that covers the detection of spliceogenic
variants located in all cis-splicing elements. This pipeline needs to be refined
and validated with large variant datasets from HBOC patients before applying it

in a real clinical setting.
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Table 6.: In silico splicing analysis proposed pipeline. Different tools with its respective

thresholds recommended to analyse potentially spliceogenic variants.

Cis-element/

RL link
type of Cover.ed Tools Threshold URClinky
X nucleotides reference
alteration
. Donor S: SSF-like .
oo | v | sisnor | S
. Acceptor S: SSF- 2% (HSF) / pathy, !
exonic+8 . Desmet et al.,
P - ) like (Alamut -5% (SSF)
Splicing Site intronic Visual) 2009)
Acceptor site: - 024/
14 intronicto | Donor S: SPIiCE / 0 é82 or (Leman et al.,
) . . pi .
+2 exonic Acceptor S: SPiCE 0.789 2018)
New All the exonic (Jaganathan et
sites/Cryptic | and intronic SpliceAl >0.05 &
e ) al., 2019)
activation region
Y, B
From -18 to -12 (Yeo and Burge,
. . 2004) /
Polypyrimidin Intronic MaxEntScan (via (https://github
o tract nucleotides SPIP) -15% (MES) S ub-C
adjacent to the om/raphaellema
Acceptor site n/SPiP)
Zh tal,
From -44 to -18 Indicated by ( ;glg; /a
intronic SPiP as )
Branch Point nucleotides BPP located in the (https://github.c
adjacent to the branch point Mw
Acceptor site (motif: TRAY) n/SPiP)
Splicing All the exonic
Regulatory and intronic ESRseq -0.5 (Ke et al., 2011)
Element region
Pseudoexons
Py dee.p All the |‘ntron|c SpliceAl 50.05 (Jaganathan et
intronic region al., 2019)
variants

The development of an integrative in silico tool pipeline, considering splicing

element interdependences, will enhance the identification and analysis of

potentially altering RNA variants in the massively parallel sequencing approach,

particularly in a clinical context, where variants outside di-nucleotide acceptor

and donor sites are not usually explored, and will result in a significant

improvement in diagnosis in HBOC (Wai et al., 2020), but also in rare diseases

(Lord and Baralle, 2021). In fact, the spliceogenic potential of synonymous and
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intronic variants outside of dinucleotide consensus splice sites is frequently

overlooked in bioinformatic pipelines, both in somatic and germline settings.

Predictions made by in silico tools assist to the identification of variants in DNA
(as evidenced Articles 1 and 2), but the potential effect in the RNA of the patient
has to be verified by in vitro approaches. The recommendations for mRNA
analysis best practice in clinical testing published by ENIGMA (Whiley et al.,
2014) include a qualitative RNA analysis in order to find aberrant splicing
profiles. In addition, the use of minigenes to functionally test variants (in
absence of patient samples) is widely extended (Gaildrat et al., 2010;
Sanoguera-Miralles et al.,, 2020; Bueno-Martinez et al., 2021). ENIGMA
recommends the use of RT-PCR and digital or capillary electrophoresis to detect
transcripts with abnormal length, followed by cloning and Sanger sequencing
to characterize their sequence (Whiley et al., 2014). However, it is essential to
know the level at which these transcripts are expressed in order to determine
their functional significance. Thus, a combination of qualitative and quantitative
analysis is needed to provide proper characterization of spliceogenic variants

(Montalban et al., 2019).

However, this approach includes several time-consuming assays that
diminishes their feasibility in a clinical setting. A promising alternative is the
long-read RNA massively sequencing approach which allows the parallel
evaluation of alterations in RNA splicing, RNA expression and changes in the
RNA sequence in one assay (Sedlazeck et al., 2018; Sakamoto et al., 2020). This
approach would simplify and accelerate the RNA analysis, coupled to the

potentially spliceogenic variant identification by in silico tools.
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2. Adaptation of ACMG guidelines to the ATM

gene

The American College of Medical Genetics and Genomics (ACMG) and the
Association for Molecular Pathology (AMP) have provided a general framework
for the classification of genetic variants (Richards et al., 2015). However, to
improve classification and reduce the number of variants of unknown
significance (VUS), these universal guidelines need to be tuned according to the
disease and the specific gene. With this aim, ClinGene Variant Curation Expert
Panels (https://clinicalgenome.org/affiliation/vcep/#ep_table_heading) are
focused on developing adapted guidelines for specific genes or diseases. Given
that the ACMG/AMP classification guidelines were proposed for high-
penetrance genes in classical Mendelian disorders (Richards et al., 2015), their
adaptation to moderate/low-penetrance genes, such as ATM, is challenging and
requires multidisciplinary collaborative efforts. ATM gene is included in
hereditary cancer panels, mainly because heterozygous ATM deleterious
mutations increase the risk of cancer, particularly breast cancer (BC), and have
also been associated with colorectal, prostate, and pancreatic cancer
predisposition (Roberts et al., 2012; Na et al.,, 2017; Jerzak et al., 2018).
Moreover, biallelic ATM loss-of-function variant carriers present the highly

severe Ataxia Telangiectasia disease.

Article 3 tackled the necessity of adapting the ACMG variant interpretation
guideline to the ATM gene to ultimately reduce the VUS rate. The author of this
thesis besides to be involved in the whole process of rules adaptation, focused
also on the specific adjustment of the splicing predictive evidence: multiple
lines of computational data support a deleterious effect (pathogenic
supporting, PP3) or suggest no impact (benign supporting, BP4). Thus,

considering that public access to the SSF-like and HSF tools is limited, since they
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are included in Alamut Visual (Interactive Biosoftware), the SPiCE in silico tool
(Leman et al., 2018) was selected after a performance assessment in Article 3,
due to its free availability, user-friendly interface and high performance. For
variants affecting the canonical donor splice site, it is proposed applying PP3
when the SPiCE score exceed the threshold of 0.240 (100% sensitivity), and BP4
when they are below it (89.9% sensitivity). For variants affecting the canonical
acceptor splice site, PP3 is assigned when exceeding the threshold of 0.789
(87.6% sensitivity) and BP4 when they are under 0.282 (86.3% sensitivity). No
evidence is considered for acceptor variants with scores between 0.282 and
0.789 (Article 3, Supplementary Fig 2).

The general ACMG variant interpretation guideline (Richards et al., 2015),
suggested the use of some tools for computational splicing evidence (such as
MES, Gene Splicer, NNSplicer, HSF, NetGene2, or FSPLICE) and recommended
to use them in combination (assuming potential pathogenicity if all the tools
identify the variant as deleterious). However, it did not specify which tools or
what cut-off had to be used, nor the sensitivity or specificity that should be

reached if in silico splicing tool is applied in this evidence module.

There are already some HBOC genes adapted guidelines with detailed mention
for computational splicing evidence: i) Mester et al. (2018) recommended for
PTEN gene the same combination of tools indicated by Richards et al., 2015,
based on a small dataset of 23 variants. Moreover, it specified the in silico
splicing tools use to characteristics of PTEN gene (such as a non-canonical donor
splice site in exon 1); ii) For CDH1 gene Lee et al. (Lee et al., 2018) indicated
that at least three in silico splicing predictors (such as HSF, MES, Berkeley
Drosophila Genome Project (BDGP), and ESEfinder), must be in agreement to
apply the supporting rule for variants likely to impact splicing. Interestingly, the
authors proposed to analyse coding and non-coding variants predicted to either
have an impact on the native site, or result in activation/creation of

cryptic/novel splice sites. The use of these tools is supported after positive
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correlation between prediction and experimental validation with only three
CDH1 variants; iii) To identify spliceogenic variants in TP53 Fortuno et al. (2021),

suggested the use of SpliceAl or VarSEAK (https://varseak.bio/) tools.

As can be observed, there are different recommendations of use, and there is
no clear indication of their performance. Interestingly, following the acquired
knowledge in Article 1, a separate analysis of donor and acceptor splicing sites
was recommended for ATM in silico analysis (Article 3). These indications
together with other adapted evidence, led to a VUS reduction from 58% to 42%
in the pilot set of classified ATM variants. The use of SPiCE in ATM gene allows
an accurate splicing variant identification, although limited to splicing sites, still
lacking a proven recommendation for the remaining cis-elements. Therefore,
there is still room for improvement in ATM adapted in silico evidence. However,
taken together, our ATM proposal and PTEN, CHD1 and TP53 examples,

highlight the importance of developing specific and adapted ACMG guidelines.

Finally, despite of the improvement of the variant classification system for
HBOC genes achieved over last years, there is still a main challenge that requires
innovative solutions: a validated automatization of variant classification
including adapted gene evidence. In this sense, an attractive approach is the
proposal recently published named RENOVO (Favalli et al., 2021), a machine
learning-based tool, that classifies variants as pathogenic or benign on the basis
of publicly available information and provides a pathogenicity likelihood score
(PLS). This tool was trained with ClinVar pathogenic and benign variants, and
validated by the authors with BRCA1, BRCA2 and SCN5A variants. The authors
proposed a reclassification for 67% with >90% estimated precision after analyse
all ClinVar VUS with RENOVO (Favalli et al.,, 2021). However, independent

studies must validate its performance.
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3. Candidate genes identification and validation in

a case-control analysis

Since up to a 50% of HBOC patients remains without genetic diagnosis, the
identification of new susceptibility genes could explain the missing heritability
in this disease, giving the opportunity to develop preventive and therapeutic

strategies for the benefit of patients.

For this reason, the aim of Article 4 was to identify candidate genes related to
the HBOC and validate them using a case-control approach. Two different sets

of candidate genes were separately analysed.

One of the sets was sequenced in collaboration with COMPLEXO consortium
(Southey et al., 2013), evaluating twenty-two genes, previously selected as
candidate by its members, in 1,012 HBOC patients without pathogenic variants
identified and 488 healthy women. After truncating and potentially spliceogenic
variants detection, OR was calculated comparing cases with gnomAD database
controls. Our results show that CAMKK1, WRN, PER1, FANCD2, FANCM, NEIL3,
RBL1, XRCC4, BLM, and ALKBH3 were associated with a significant (p<0.05) risk

of breast cancer, reaching an OR above 2.

The genes included in the second set were selected from three different
sources:

i) Whole exome sequencing analysis of thirteen HBOC genetically

undiagnosed families. DMC1, MACROD1, RALGDS, TPMT and

TDP2 were selected after the identification of deleterious or

potentially deleterious variants shared in affected members of

the families.
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ii) Extended massively parallel sequencing targeted panel
(including known susceptibility and “promising candidate”
genes) performed in 192 HBOC patients. RBBP8 was selected
due the identification of truncating variants in two unrelated
patients (Article 9, Appendix) (Bonache et al., 2018).

iii) Candidate genes EDC4 and RECQL5 were selected due to the
promising results showed in Spanish cohorts (Hernandez et al.,

2018; Tavera-Tapia et al., 2019).

These eight genes were sequenced in DNA samples of 638 HBOC patients
without pathogenic variants identified and 206 healthy women. After
bioinformatic analysis and variant annotation, ORs were calculated considering
truncating and potentially splicing variants in both groups and GnomAD
controls database v2.1.1 (Karczewski et al., 2020). Loss-of-function variants in
RALGDS, MACROD1 and RECQL5 showed an OR value above 2. However, none
of the genes reached a significant (p<0.05) association. More patients and

controls are being sequenced to validate the association of the candidate genes.

Interestingly, Subramanian et al., 2020, after analysing WES in more than 500
high risk ovarian cancer patients, showed an enrichment of LoF variants in forty-
three genes compared to gnomAD. The genes act in diverse functional
pathways and relatively few were involved in DNA repair, suggesting that much
of the remaining heritability is explained by previously underexplored genes

and pathways.

In addition, Li et al., 2021, in a well-conducted study, sequenced candidate
genes in 3,892 BC cases and controls, and then validated 145 shortlisted genes
in 7,619 subjects. Their results identified an overall excess of LoF and missense
variants in cases. However, candidate genes with LoF variants with ORs of 2-4

did not account even 1% of cases. This suggests that much of the remaining
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genetic causes of high-risk BC families are due to genes in which pathogenic

variants are both very rare and convey only low to moderate risk.

Considering the results of Li et al.,, 2021, Subramanian et al., 2020, articles
reviewed in Rotunno et al., 2020, and Article 4, we expected that newly
associated genes will be part of a diversity of pathways, not only DNA repair.
Moreover, we hypothesize that the landscape of gene susceptibility will be
completed by various genes explaining a reduced percentage of patients, with
a variable penetrance between moderate and low. These genes will have to be
validated in large cases and controls studies similar to Dorling et al., 2021 and
Hu et al., 2021, where thousands of unselected and familial breast cancer cases
were sequenced together with thousands of non-cancer controls and using

multiethnicity cases and control populations.

In addition, most of the candidate genes or validation studies are focused on
LoF and missense variants. Considering the expertise acquired in Articles 1 and
2, we decided to analyse in silico potentially splicing variants in Article 4
(outside +-1 and 2 intronic positions) and perform a separate ORs analysis. Up
to our knowledge, this is the first study that considers this kind of variants, that

may outperform the identification of potentially deleterious variants.

During the last years, more than 200 candidate genes in HBOC and other
hereditary cancer types have been highlighted (Rotunno et al., 2020). However,
only a few are recognized as susceptibility cancer genes by the scientific
community (Dorling et al., 2021; Hu et al., 2021). In Article 4, we have identified
genes and suggested risk association by a case control approach, being the size

the main limitation of this study, in particular that of the control group.

There exist various limitations in the investigations to identify and validate

candidate genes (Rotunno et al., 2020). Most of the studies focus their efforts
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on sequencing cases rather than controls and use gnomAD controls database
to compare the incidence of variants and calculate ORs. Authors use for
comparisons the highest number of sequenced patients for the set of genes.
However, not all alleles have been annotated in all patients of gnomAD (due to
sequencing failure or differences between dataset that make up gnomAD).
Consequently, assuming the highest value of alleles included in gnomAD leads
to an underestimation of the allele frequency in controls, and therefore to an
overestimation of ORs. To address this point, in Article 4, the ORs have been
calculated by estimating the number of each allele according to the mean of all

annotated alleles for that gene in gnomAD database.

Other weakness is the size of analysed cohorts. For example, Rotunno et al.,
2020 indicates that the 53% of studies selected candidate genes after analysing
ten or less families, and a 43% of articles did not perform an independent
validation analysis, although some recent articles, such as Li et al., 2021
analysed a total of 11,511 samples for a selected number of genes, avoiding this
limitation. Also, to note the existence of bias on the candidate gene selection in
many studies (including Article 4), in favour of genes of specific pathways

related with DNA repair or replication pathways.

Finally, recent studies indicate that non-conventional strategies by analysing
the genomic tumoral landscape of HBOC patients could be an effective way to
identify new related genes. Two recent examples combine breast and ovarian
cancer GWAS datasets with transcriptome imputation from normal and tumour
breast and ovarian tissues (Kar et al.,, 2021), or somatic whole-exome
sequencing was performed to identify candidate genes in serrated polyposis

syndrome (Soares de Lima et al., 2021)

Collectively, the findings from this thesis on the performance of in silico splicing

tools, the optimization of variant classification guidelines, and the indication of
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new susceptibility genes will contribute to the more precise diagnosis of familial
breast and ovarian cancer, ensuring that more patients and their families can
benefit of preventive measures to reduce the risk of developing cancer, as well

as of personalised anti-cancer therapies.
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- Analysing the Donor and Acceptor splice sites separately improve the
identification of spliceogenic variants.

- The use of in silico tools SSF-like, and SSF-like and/or HSF in Acceptor and
Donor sites respectively, allows to discriminate spliceogenic variants with a high
performance.

- SpliceAl is an efficient in silico tool to identify deep intronic variants that create
pseudoexonizations.

- The balance of splicing regulatory elements is essential for the pseudoexon
formation.

- Mapping splicing regulatory elements is a promising way to identify regions
susceptible to be pseudoexonized.

- The adaptation of the variant classification guidelines in the ATM gene,
together with a validated in silico analysis of potential alterations in splicing,
reduces the number of variants of uncertain significance.

- The significant identification of loss-of-function variants in ALKBH3, BLM,
CAMKK1, FANCD2, FANCM, NEIL3, PER1, RBL1, RECQL4, WRN and XRCC4 genes
in patients with HBOC suggests that they may be susceptibility genes.

- Caution should be exercised when comparing allele frequencies of patient
cohorts with those of the gnomAD control population.
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Abstract

Purpose Disruption of splicing motifs by genetic variants can affect the correct generation of mature mRNA molecules
leading to aberrant transcripts. In some cases, variants may alter the physiological transcription profile composed of several
transcripts, and an accurate in vitro evaluation is crucial to establish their pathogenicity. In this study, we have characterized
anovel PALB2 variant ¢.32014+5G>T identified in a breast cancer family.

Methods Peripheral blood RNA was analyzed in two carriers and ten controls by RT-PCR and Sanger sequencing. The
splicing profile was also characterized by semi-quantitative capillary electrophoresis and quantitative PCR. RADS51 foci
formation and PALB2 LOH status were evaluated in primary breast tumor samples from the carriers.

Results PALB2 ¢.32014+5G>T disrupts intron 11 donor splice site and modifies the abundance of several alternative tran-
scripts (A11, A12, and A11,12), also present in control samples. All transcripts are predicted to encode for non-functional
proteins. Semi-quantitative and quantitative analysis of PALB2 full-length transcript indicated haploinsufficiency in carri-
ers. One tumor exhibited PALB2 LOH and RADS1 assay indicated homologous recombination deficiency in both tumors.
Conclusions Our results support a pathogenic classification for PALB2 ¢.3201+5G>T, highlighting the impact of variants
causing an imbalanced expression of natural RNA isoforms in cancer susceptibility.

Keywords Hereditary breast cancer - PALB2 - Alternative splicing - RNA isoforms
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Genetic variants that disrupt splicing motifs can lead to RNA
mis-splicing, contributing to human hereditary diseases. The
most common type of variants that alter splicing are located
in highly conserved GT and AG dinucleotides (positions + 1

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s10549-018-05094-8) contains
supplementary material, which is available to authorized users.

B4 Sara Gutiérrez-Enriquez

sgutierrez@vhio.net

4 Orland Diez

odiez@ vhio.net

Oncogenetics Group, Vall d’Hebron Institute of Oncology,
VHIO, 08035 Barcelona, Spain

Area of Clinical and Molecular Genetics, University Hospital
of Vall d’Hebron, 08035 Barcelona, Spain

Experimental Therapeutics Group, Vall d’Hebron Institute
of Oncology, VHIO, 08035 Barcelona, Spain

High Risk and Cancer Prevention Group, VHIO,
08035 Barcelona, Spain

Medical Oncology Department, University Hospital of Vall
d’Hebron, 08035 Barcelona, Spain

Published online: 14 December 2018

and + 2 of the 5'donor site, and positions —2 and — 1 of the
3" acceptor site, respectively). Other exonic and intronic
nucleotides surrounding these positions are also conserved
and critical for a correct splice site selection [1, 2]. Yet,
their potential effects on splicing are scarcely assayed in the
clinical setting.

Routine splicing analysis in clinical diagnostics is usually
performed by RT-PCR, agarose gel examination and Sanger
sequencing. However, splicing profiles can be complex to
interpret when several alternative transcripts are present,
especially if these transcripts are in-frame events that might
rescue gene functionality [3]. Moreover, the variant allele
may still be able to produce full-length transcript [4], which

@ Springer
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may affect the resulting cell phenotype. High-resolution
electrophoresis and expression assays can provide a compre-
hensive qualitative and quantitative screening of the whole
mRNA landscape [5].

PALB?2 (Partner and Localizer of BRCA2) encodes for
a nuclear protein of 1186 amino acids, that interacts with
BRCA1, BRCA2, and other DNA repair proteins like
RADS]1 paralogs, to promote DNA double-strand break
repair by homologous recombination (HR) [6-8]. PALB2
is now unquestionably present in multi-gene panel testing
for hereditary breast cancer (BC) individuals, since large
studies of patients and controls found that PALB2 patho-
genic variants conferred high risk of developing BC [9, 10].
PALB?2 is also linked with male BC and pancreatic cancer
[11, 12], and recent works also found an association with
colorectal cancer [13], although larger epidemiological stud-
ies are still needed to definitely consider PALB2 as a colo-
rectal cancer susceptibility gene.

In this work, we have characterized at RNA level a novel
PALB?2 ¢.32014+5G>T variant, located outside the canonical
donor splice site from intron 11. Our study highlights the
complexity to interpret the pathogenicity of variants causing
an imbalanced expression of natural RNA isoforms.

Materials and methods

The proband was diagnosed with a breast invasive ductal
carcinoma (IDC) at age 45 and with a second primary lung
cancer at age 62. Two first-degree relatives (brother and
mother) were also affected with breast IDCs at the ages of 54
and 82, respectively. Hormonal status from the three IDCs
was ER+, PR+, and HER2—. A paternal cousin was affected
with BC at age 66, and two paternal uncles had stomach
cancer (age unknown). The mother was also diagnosed with
colorectal cancer at age 86, and the brother had colon poly-
posis at age 40 (Fig. 1a). Patients received genetic counsel-
ling and written informed consent was obtained for further
genetic and research studies.

PALB?2 ¢.3201+5G>T variant was identified by multi-
gene panel testing as described in a previous work from our
laboratory [14], and confirmed by Sanger sequencing. Pro-
tocols for germline DNA, RNA, and tumor DNA extraction,
as well as in silico splicing analysis, RT-PCR experiments,
sequencing methodologies and immunofluorescence for
RAD51 foci detection, are extensively described in Supple-
mentary Material. In brief, RT-PCR primers were designed
to amplify the PALB2 region comprised between exons 9
and 13 (Supplementary Table 1) in two carriers (proband
and brother) and 10 healthy controls. RT-PCR products
were qualitatively analyzed by capillary electrophoresis
in a QIAxcel Advanced system (QIAGEN) and by Sanger

@ Springer

Fig. 1 Family pedigree and qualitative analysis of the RNA effect
caused by PALB2 ¢.32014+5G>T variant. a The index case is indi-
cated with an arrow head and ages of cancer onset are specified
between brackets. Confirmed PALB2 ¢.3201+5G>T carriers are
marked with a+symbol. Sanger electropherogram confirming the
presence of the variant in proband’s germline DNA is shown. b Cap-
illary electrophoresis in a QIAxcel instrument of RT-PCR products
from two carriers (proband and brother) and one control showing
different abundance of PALB2 isoforms. Forward and reverse electo-
pherograms show ¢cDNA sequences of PALB2 ¢.3201+5G>T carrier
and a healthy control. Isoforms lacking exon 11, exon 12 and both 11
and 12 were confirmed. ¢ Diagram showing the different PALB2 iso-
forms detected: reference full-length isoform (solid gray lines), A1l
(discontinuous line), A12 (spotted line) and A11,12 (solid black line).
d Fluorescence fragment profiles of the two carriers and one control
showing the presence of Al1, A12 and A11,12 in all samples but at
different expression levels

sequencing. Semi-quantitative analysis was performed by
capillary electrophoresis of FAM-labeled amplicons in a
Genetic Analyzer ABI3130xI (Applied Biosystems); and
PALB2 expression was measured by quantitative real-time
PCR (qPCR) using predesigned human-specific primers and
TagMan probes. PALB2 loss of heterozygosity (LOH) was
determined in primary breast tumors from the proband’s
mother and brother by Sanger sequencing and targeted gene
sequencing. Homologous recombination repair activity was
also assessed in the tumor specimens by immunofluores-
cence detection of RADS1 foci as previously described [15]
(see Supplementary Material for further details).

Results

PALB?2 variant ¢.3201+5G>T was identified in a breast
cancer family by multi-gene panel testing. This variant was
confirmed by Sanger sequencing in blood DNA from the
proband and her brother, also affected with BC (Fig. la). To
our knowledge, this variant is not present in ClinVar (https
//www.ncbi.nlm.nih.gov/clinvar/), LOVD (Leiden Open
Variation Database, http://www.lovd.nl/3.0/home), gnomAD
(Genome Aggregation Database, http://gnomad.broadinsti
tute.org/), FLOSSIES (https://whi.color.com/) and HGMD
(The Human Gene Mutation Database, http://www.hgmd.
cf.ac.uk/ac/index.php) databases, and it is not reported in the
literature. In silico analysis showed a reduction of the natural
donor splice site, indicating a potential splicing alteration
(Supplementary Table 2).

Qualitative cDNA study of the two carriers and 10 con-
trols by QIAxcel capillary electrophoresis revealed in all
samples the presence of four transcripts corresponding to
the reference full-length transcript (516 bp), A11 (428 bp),
A12 (367 bp), and A11,12 (279 bp) (Fig. 1b, c). All tran-
scripts were confirmed by Sanger sequencing (Fig. 1b). Cap-
illary electrophoresis of FAM-labeled amplicons revealed
a variation in the proportion of the alternative transcripts
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All, A11,12, and A12 in variant carriers compared to
controls (Fig. 1d). Semi-quantitative data obtained from
QIAxcel electrophoresis showed a> 0.5 reduction of full-
length transcript levels in both carriers compared to con-
trols, suggesting that the variant allele is not producing
normal transcripts (Fig. 2a). Splicing fraction estimation
obtained from capillary electrophoresis of FAM-labeled
amplicons indicated that isoform A11,12 substantially
contributes to the total splicing fraction in carriers: this
isoform was present at higher proportion in both carriers
(48.50%) compared to controls (11.94%) (Fig. 2b), and it
causes an in-frame deletion resulting in a PALB2 protein
lacking 79 aa (p.Asn1039_Argl117del) that are part of
the WD40 domain (Supplementary Fig. 1). Isoform A1l
was also increased in carriers (24.14%) compared to con-
trols (5.27%), and it is predicted to introduce a premature
stop codon (p.Asn1039Glyfs*7). Finally, the proportion
of isoform A12, also predicted to introduce a premature
stop codon (p.Gly1068Valfs*5), diminishes in carriers
(11.88%) compared to controls (24.83%) (Fig. 2b). Quanti-
tative measurement of PALB2 global expression and PALB2
full-length expression using Tagman assays targeting exon
5-6 and exon 11-12 junctions, respectively, showed a sig-
nificant reduction in carriers compared to controls: carri-
ers=0.67+0.18 vs. controls=1.42+0.11, p=0.0175; car-
riers =0.36+0.07 vs. controls =1.90+0.19, p=0.0059,
respectively (Mean +95% CI, t-test of unpaired samples)
(Fig. 2c¢).

We also examined PALB2 LOH status in breast tumor
samples from the proband’s mother and brother. Targeted
gene sequencing and Sanger sequencing revealed the loss
of the wild-type allele in the mother’s tumor (80% cel-
lularity; Variant Allele Frequency (VAF)=81.82%),
whereas the brother did not exhibit LOH (70% cellularity;
VAF=56.52%) (Fig. 3a). Immunofluorescence assay did
not show RADS51 foci in breast tumor-FFPE from carriers
(see Fig. 3b for mother’s tumor; refer to [16] for brother’s
tumor), indicating homologous recombination deficiency in
both carriers.

Discussion

We have characterized a novel PALB2 variant ¢.3201+5G>T
identified in a family with breast cancer history. The variant
is located at + 5 position from intron 11 donor splice site
(CAG/GTAAGTAT) and in silico analysis predict the dis-
ruption of the splice site (Supplementary Table 2). Results
obtained from RNA analysis confirmed a splicing alteration
consisting of an imbalanced expression of several PALB2
alternative RNA isoforms. The variant up-regulates isoforms
A11,12 (in-frame) and A11 (frameshift), and down-regulates
isoform A12 (frameshift). The splicing profiles detected in

@ Springer

peripheral blood from control samples are consistent with
RNAseq results obtained from lymphoblastoid cell lines
[17], i.e., A12 isoform is predominant over A11 and A11,12
(Fig. 2b). Isoform A11,12 presumably contributes to variant
pathogenicity by encoding a PALB2 protein lacking 79aa of
the WD40 domain. Protein alignment of the deleted region
in 10 reference model species, shows high conservation of
this region with 2 50% of the residues conserved across spe-
cies (Supplementary Fig. 1). WD40 domain mediates direct
interactions between PALB2 and key proteins involved
in homologous recombination (HR), such as BRCA2 and
RADS51 [18], RAD51C and XRCC3 [8], as well as the bind-
ing to POLH which mediates recombination-associated
DNA synthesis [19]. Hence, the loss of amino acids 1039
to 1117 from WDA40, comprising the PALB2 key residues
(Leul046, Lys1047, Leul070, Pro1097, and Lys1098) that
provide interaction with BRCA2 [18], is probably related
to HR repair impairment. In fact, functional studies evalu-
ating interactions between PALB2 WD40 domain and HR
proteins found that breast cancer-associated missense vari-
ants (L939W, T1030I, L1143P) gave rise to unstable PALB2
proteins that altered the binding to BRCA2, RADSIC,
and RADS51 [20]. In addition, WD40 domain contains a
nuclear export sequence (NES) (amino acids 852-987) that
would be exposed to an export protein if a premature stop
codon is present after aa 987, leading to an unusual cyto-
plasmic localization and aberrant function of PALB2 [21].
Therefore, isoforms A1l and A12 would also contribute
to variant pathogenicity by producing truncated proteins
(p.Asn1039Glyfs*7 and p.Gly1068Valfs*5, respectively)
exposing NES and in consequence inducing a cytoplasmic
mislocalization of PALB?2 along with its interacting proteins,
preventing their access to sites of DNA damage [21].

Semi-quantitative analysis showed a drastic reduction
of full-length transcript levels in carriers. Unfortunately,
none of the carriers had informative heterozygous exonic
variants to perform allele-specific assays and formally
exclude the possibility that the variant allele produces
a certain amount of full-length transcript. Alternatively,
specific amplification and measurement of full-length
transcript by qPCR (exons 11-12 probe), showed a sig-
nificant reduction in carriers compared to controls, sup-
porting that the variant allele is not transcribing full-length
transcripts (Fig. 2c).

The loss of the wild-type allele in one tumor sample also
supports a potential causality of the variant. However, the
second tumor did not exhibit LOH and massive sequencing
of PALB2 whole coding region ruled out the presence of
somatic deleterious mutations. In this regard, some PALB2
heterozygous tumors with no LOH and high HR deficiency
scores have been described, suggesting alternative mecha-
nisms of PALB2 functional loss [22] or a dominant negative
effect of PALB2 mutated proteins [23].
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A Forward sequence

Reverse sequence

€.3201+5G>T

\J/ Tumor DNA (breast)
M " ? (proband’s mother)
exon 11 intron 11 intron 11 exon 11
Forward sequence Reverse sequence
€.320145G>T
\]/ \L Tumor DNA (breast)
(proband’s brother)
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YH2AX Geminin DAPI

Positive control

Patient

Fig.3 LOH analysis and RADSI assay in tumor samples. a Sanger
analysis in primary breast tumor samples detected LOH in one
tumor (mother). b Detection of YH2AX and RADS1 foci (red) in S/
G2-phase cells (geminin-positive; green) by immunofluorescence.

Previous works have proposed RADS1 foci formation
as predictive biomarker of response to PARP inhibitors

(PARPi) in homologous recombination (HR) deficient
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RADS51(sc-83a9) Geminin DAPI

RADS51ab133534) Geminin DAPI

Scale bar: 10um

RADS]1 foci were not detected in mother’s tumor (patient). Nuclei
were visualized with DAPI (blue). A PALB2 wild-type patient-
derived xenograft model of a breast tumor sample was used as posi-
tive control

tumors [15, 24] and demonstrated that RADS1 foci detec-
tion is feasible in formalin-fixed paraffin-embedded breast
cancer samples to accurately detect HR activity [15].
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Interestingly, tumor samples from carriers did not dis-
play RADSI1 foci, supporting that HR-deficiency is due
to non-functional PALB2 proteins generated from PALB2
¢.3201+5G>T alleles.

PALB?2 has been defined as a crucial mediator of HR in
human cells, and PALB2-deficient cells have been shown
to be sensitive to PARPi [25]. In this regard, the promising
clinical applicability of PARP inhibitors in HR-deficient
tumors is likely to be feasible in the short term for carriers
of germline PALB2 pathogenic variants [26, 27].

According to ACMG (American College of Medical
Genetics and Genomics) guidelines for variant inter-
pretation [28], PALB2 ¢.32014+5G>T variant should be
classified as likely pathogenic: there are well-established
in vitro functional studies supporting a damaging effect
(PS3), the variant is present in affected individuals and
absent in gnomAD controls (PM2), it cosegregates with
disease in multiple-affected family members (PP1) and
there is computational evidence supporting a deleterious
effect (PP3).

Other PALB2 variants affecting intron 11 donor site
(intronic + 1,+2 positions, or beyond) have been described
in breast cancer families and received different types of
classification. Some variants were predicted to alter splic-
ing, but to our knowledge, no experimental characteriza-
tion has been performed (Supplementary Table 2).

The lack of studies evaluating the functionality of pro-
teins generated from in-frame RNA isoforms, questions
whether PALB2 isoform A11,12 could retain some func-
tionality and modulate ¢.3201+5G>T cancer risk. How-
ever, our study supports a pathogenic role for the variant
based on: (i) segregation in three relatives affected with
BC (Fig. 1a); (ii) reduction of PALB2 global expression in
carriers (exons 5-6 probe; Fig. 2¢) which would indirectly
indicate less amount of PALB2 proteins; (iii) reduction
of PALB2 full-length transcript levels in carriers (exons
11-12 probe; Fig. 2¢); (iv) detection of isoforms A11,12,
A11 and A12 that encode proteins lacking totally or par-
tially an important functional domain (WD40); (v) absence
of RADS1 foci in tumor samples from the variant carriers,
indicating homologous recombination deficiency (Fig. 3b).

In all, our study shows how an imbalanced expression
of natural occurring PALB2 RNA isoforms can predispose
to breast cancer disease, and highlights the use of accurate
qualitative, quantitative and functional assays as a key pro-
cedure to correctly interpret genetic variants that generate
complex splicing landscapes.
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Screening of BRCA1/2 deep intronic regions by
targeted gene sequencing identifies the first germline
BRCAT variant causing pseudoexon activation in a
patient with breast/ovarian cancer

Gemma Montalban,' Sandra Bonache,' Alejandro Moles-Fernandez,’
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Sara Gutiérrez-Enriquez’

ABSTRACT

Background Genetic analysis of BRCAT and BRCA2
for the diagnosis of hereditary breast and ovarian cancer
(HBOC) is commonly restricted to coding regions and
exon-intron boundaries. Although germline pathogenic
variants in these regions explain about ~20% of HBOC
cases, there is still an important fraction that remains
undiagnosed. We have screened BRCA1/2 deep intronic
regions to identify potential spliceogenic variants that
could explain part of the missing HBOC susceptibility.
Methods We analysed BRCA1/2 deep intronic

regions by targeted gene sequencing in 192 high-risk
HBOC families testing negative for BRCA1/2 during
conventional analysis. Rare variants (MAF <0.005)
predicted to create/activate splice sites were selected
for further characterisation in patient RNA. The

splicing outcome was analysed by RT-PCR and Sanger
sequencing, and allelic imbalance was also determined
when heterozygous exonic loci were present.

Results A novel transcript was detected in BRCAT
¢.4185+4105C>Tvariant carrier. This variant promotes the
inclusion of a pseudoexon in mature mRNA, generating an
aberrant transcript predicted to encode for a non-functional
protein. Quantitative and allele-specific assays determined
haploinsufficiency in the variant carrier, supporting a
pathogenic effect for this variant. Genotyping of 1030 HBOC
cases and 327 controls did not identify additional carriers in
Spanish population.

Conclusion Screening of BRCA1/2 intronic regions
has identified the first BRCAT deep intronic variant
associated with HBOC by pseudoexon activation.
Although the frequency of deleterious variants in

these regions appears to be low, our study highlights
the importance of studying non-coding regions and
performing comprehensive RNA assays to complement
genetic diagnosis.

INTRODUCTION

Pathogenic germline variants in the tumour
suppressor genes BRCAT (MIM# 113705) and
BRCA2 (MIM# 600185) (BRCA1/2) predispose to
breast and ovarian cancer (BC/OC). To date, more
than ~3500risk-associated variants in BRCA1/2
have been reported in the ClinVar database (https://

www.ncbi.nlm.nih.gov/clinvar/). Carriers of patho-
genic variants in BRCA1 result in an increased
cumulative risk of developing BC and OC that
reaches 66% and 41% at age 70, respectively. Simi-
larly, for BRCA2, the cumulative risks for BC and
OC reach 61% and 15%, respectively.! The identi-
fication of pathogenic variants in BRCA1/2 provides
accurate clinical management of hereditary breast
and ovarian cancer (HBOC) families based on
personalised prevention and therapeutic strate-
gies.”™ However, pathogenic mutations in these
genes explain less than 20% of HBOC cases.

In recent years, causative genetic variants in other
tumour suppressor genes involved in homologous
recombination DNA repair have also been linked to
moderate risks of developing BC/OC.”™ The appli-
cation of massive sequencing technologies in the
clinical setting allows the simultaneous screening
of risk-associated HBOC genes, improving
the effectiveness of identifying new families at
risk.” '” However, there is still an important frac-
tion of HBOC cases for which genetic analysis
does not identify causative variants underlying the
predisposition to BC/OC.

Genetic testing commonly identifies variants
that generate truncated proteins (nonsense, frame-
shift, splicing variants) or alter functional domains
(missense, in-frame variants). However, deep intronic
regions may also contain nucleotide changes that
could alter splicing by creating/activating splice sites or
by disrupting cis-regulatory splicing elements (intronic
enhancers/silencers). These variants have the poten-
tial to generate aberrant transcripts by introducing
pseudoexons in the mature mRNA."""* Such events
have been reported in a variety of human genetic
syndromes, including cancer," ¥ but their associa-
tion with HBOC remains largely unexplored. Given
that conventional BRCA1/2 analysis in the majority
of clinical laboratories is restricted to coding regions
and exon-intron boundaries, there is currently a lack
of information about the frequency of deleterious spli-
ceogenic variants occurring in deep intronic regions of
these genes. Previous works based on RNA analysis
of patients with HBOC with uninformative BRCA1/2
results (i.e., no pathogenic variant identified) have

BM)
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also proposed the existence of spliceogenic variants in deep intronic
regions that could explain part of the missing HBOC genetic
susceptibility.'™® In the present study, we have analysed BRCA1/2
introns by targeted gene sequencing in a group of Spanish patients
with high-risk HBOC testing negative for BRCA1/2. Candidate spli-
ceogenic variants have been selected using in silico approaches and
their impact has been characterised in patient RNA. To our knowl-
edge, this is the first study aiming to screen BRCA1/2 deep intronic
regions in clinical samples and determine the frequency of spliceo-
genic variants in these regions in the Spanish population.

MATERIALS AND METHODS

Patient and control samples acquisition

A total of 192 patients with hereditary BC/OC testing negative
for BRCA1/2 were selected according to the following inclusion
criteria: personal history of BC before age 36 (n=77), BC with
two or more first or second-degree relatives with BC/OC (n=60),
personal history of OC before age 60 (n=38). Additionally, we
included six patients diagnosed with two BC (bilateral or ipsi-
lateral with or without BC family history); seven patients with
BC diagnosed after age 36, with one male BC, OC or pancreatic
cancer-affected relative and four patients with BC/OC history
affected with colon, endometrium, sarcoma or stomach cancer.
All patients were referred for genetic counselling at the High-
risk and Prevention Cancer Unit from Vall d’Hebron Hospital,
Barcelona and they provided written informed consent for
BRCA1/2 testing and research studies. Patients were screened
for BRCA1/2 point mutations and large genomic rearrangements
by Sanger sequencing and Multiplex ligation-dependent probe
amplification (MLPA) (MRC-Holland), respectively.

A total of 327 non-affected control samples were recruited
from the Spanish National DNA Bank (Salamanca, Spain).
Controls were selected randomly from a population of healthy
women above 50 years of age with no personal or family history
of cancer. Similarly, control RNAs were obtained from 20 healthy
individuals without HBOC history and from four normal breast
tissue samples supplied by Biochain (AMSBIO).

Patient DNA was obtained from 10mL of peripheral blood
and isolated using Gentra Puregene Blood Kit (QIAGEN),
following manufacturer’s protocol. DNA concentrations were
determined using Qubit dsDNA BR Assay kit (ThermoFisher).
RNA from variant carriers and controls (n=20) was isolated
from 10mL of peripheral blood samples using Trizol Reagent
(ThermoFisher). RNA was cleaned up using RNeasy Minikit
(QIAGEN) and treated with RNase-Free DNase Set (QIAGEN)
to remove traces of genomic DNA. RNA integrity was deter-
mined in E-Gel Precast agarose gels (Invitrogen) and concen-
trations were measured using a NanoDrop Spectrophotometer
(ThermoFisher).

Massively parallel sequencing of BRCA1/2 intronic regions

Agilent SureDesign web-based tool (Agilent Technologies) was
used to design a custom Agilent SureSelect bait library of probes
targeting whole coding, non-coding and intronic sequences
with additional flanking 10kb genomic sequences of BRCA1
and BRCA2. Captured genomic regions from BRCAI and
BRCA2 spanned chrl17: 41,186,312-41,287,500 and chr13:
32,879,617-32,983,809, respectively (see online supplemen-
tary figure 1 for BRCA1/2 genomic coverage). Deep sequencing
was performed in a MiSeq Instrument (Illumina). DNA library
preparation, sequencing protocols and bioinformatics pipeline
for sequencing data alignment and variant calling have been
extensively described in a previous work from our laboratory.'’

In silico analysis and variant prioritisation

Variants were annotated with ANNOVAR tool using GRCh37/
hg19 genome assembly. Variants with a minimum of 10 reads
per base, with at least one read in sense (+) and antisense (-)
strands, with a variant allele frequency between 75% and 8%
and a Minor Allele Frequency (MAF) <0.01 at 1000 Genomes
Project database, were included for reannotation using Alamut
software v2.10 (Interactive Biosoftware). Reference transcripts
NM_007294.3 (BRCA1) and NM_000059.3 (BRCA2) were used
for variant reannotation. Population data from the Genome
Aggregation Database (gnomAD) (http://gnomad.broadinstitute.
org/) and splicing predictions from SpliceSiteFinder-like (SSF),
MaxEntScan (MES), HumanSplicingFinder (HSF), GeneSplicer
and Splice Site Prediction by Neural Network (NNSPLICE) were
incorporated.

Variants located beyond +20/-20 positions from canonical
donor (GT) and acceptor (AG) splice sites, respectively, were
prioritised for RNA analysis when: (1) MAF in non-Finnish
European population (NFE)<0.005; (2) a local splicing effect
(i.e., creation of new splice sites or activation of existing cryptic
sites) was predicted according to Alamut’s interpretation algo-
rithm , which uses splice site signal scores from MES, NNSPLICE
and SSF tools (https://www.interactive-biosoftware.com/alamut-
visual/). We applied a final filtering step that consisted of removing
variants occurring in >1patient. A diagram summarising the
strategy followed for deep intronic regions screening and variant
prioritisation is depicted in figure 1.

Characterisation of BRCA1/2 variants in patient RNA

A total of 500ng of RNA from carriers and controls was
retrotranscribed using PrimeScript RT Reagent kit (Takara),
combining oligo-dT and random primers. Long PCR fragments
(1.5-6kb) were obtained using Expand Long Range dNTPack
(Roche), and short PCR fragments (up to 1.5kb size) were
obtained with EcoTaq (Ecogen). Amplified fragments covered
the exons adjacent to intron containing the variant. Primer
sequences and PCR conditions are described in online supple-
mentary table 1A. We used 2-5 uL of cDNA to a final PCR reac-
tion of 25-35 uL. Cycling conditions were performed according
to manufacturer’s instructions, with elongation times of 2min
for amplicons<1kb and 7min for amplicons>1kb, to allow
the amplification of potential long aberrant transcripts present
in the samples. RT-PCR products were qualitatively assessed by
capillary electrophoresis (CE) in a QIAxcel instrument, using
QIAxcel DNA High-resolution kit (QIAGEN). Controls were
run in parallel with patient samples and were used as reference
to compare RNA patterns. RT-PCR products were purified using
ExoSAP-IT PCR Product Cleanup Reagent (ThermoFisher) and
sequenced using BigDye Terminator v3.1 Cycle Sequencing
kit (Applied Biosystems). Sequencing products were run in a
Genetic Analyzer ABI3130x] (Applied Biosystems) and Sanger
electropherograms were visualised using SeqScape v2.6 and
Sequencing Analysis v2.6 softwares (Applied Biosystems). Poly-
morphic exonic variants in BRCA1 [¢.4308T>C (rs1060915);
c.4837A>G (151799966)] and BRCA2 [c.-52A>G (rs206118);
c-26G>A (151799943); c.865A>C (rs766173); c.1114A>C
(rs144848); ¢.7242A>G (rs1799955)] or other exonic vari-
ants present in samples were used to determine potential allelic
imbalance derived from frameshift events degraded by the
nonsense-mediated decay (NMD). PCR primers and internal
sequencing primers used for allelic imbalance assessment are
listed in online supplementary table 1B
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Selection of 192 high-risk

HBOC probands
(uninformative BRCA1/2 results after
Sanger sequencing and LGR screening)

L3

Massive sequencing of BRCA1/2
whole genomic regions by targeted

1. Variant selection for RNA analysis:

3 1- Located beyond +20/-20 from splice sites

2- MAF in NFE <0.005 (gnomAD):

gene sequencing BRCA1=319 7
(MISEQ lllumina) BRcAZ=300 allelic imbalance
assessment
3 3- In silico predictions of local splice effect 1 \
(SSF, MES, NNSPLICE):
Variant annotation BRCA1= 39 Negative result Positive result
(ANNOVAR; BRCA2=50 = =
GRCh37/hg19 genome assembly) no splicing alteration _ splicing alteration
1 4- Removal of variants present in > 1 patient
CE analysis of FAM-
Variant selection for re-annotation ‘ labelled amplicons.
in Alamut: +
1. 10reads/base ToTAL: ‘BRCA1=30 aPCR
2. 1readin both strands BRCAZe37 +
3. Variant allele frequency = 8% - 75% Allele-specific assays
4. MAF <001 (1000Genomes)

1l. RNA analysis:

RT-PCR analysis in patient RNA
(carrier + 10 controls)

+*
QlAxcel electrophoresis and
Sanger sequencing

4

BRCA1=431
BRCA2=414

TOTAL:

Figure 1

Strategy followed for the study of BRCA1/2 deep intronic regions in patients with HBOC. The diagram summarises the steps followed from

patient selection to RNA analysis of the selected variants. The total number of unique BRCA 1/2 variants is denoted in each filtering step. CE, capillary
electrophoresis; HBOC, hereditary breast and ovarian cancer; LGR, large genomic rearrangements; MAF, minor allele frequency; MES, MaxEntScan; NFE, non-
Finnish European population; NNSPLICE, SpliceSitePrediction by Neural Network; SSF, SpliceSiteFinder-like.

Qualitative analysis by capillary electrophoresis of
fluorescent amplicons

Analysis by CE of FAM-labelled amplicons was performed
to characterise aberrant splicing patterns, providing higher
sensitivity and resolution®’?' to rule out the presence of aber-
rant products not detected with QIAxcel electrophoresis and
Sanger sequencing. Amplicons were generated with primers
labelled with a FAM molecule at the 5” end. RT-PCR products
were diluted 1:30 and run into a Genetic Analyzer ABI3130x]
(Applied Biosystems) under the following electrophoresis
conditions: temperature 60°C, 125 injection at 1.2 kV, 20005
run at 12 kV. GeneScan ROX500 (Applied Biosystems) was
used as internal size standard and peak electropherograms
were visualised using GeneMapper Software 5 (Applied
Biosystems).

BRCAT expression analysis by quantitative PCR

Global BRCA1 expression levels were measured in variant carrier
and 10 controls in two independent quantitative PCR (qPCR)
assays, using Tagman probes targeting exons 5-6 junction
(Hs01556196_m1) and exons 23-24 junction (Hs01556193_
m1), respectively. A known pathogenic BRCA1 splicing mutation
¢.302-1G>A% was used as positive control. Tagman Universal
Master Mix II (ThermoFisher) was used for qPCR reactions, and
reference genes GAPDH (Hs02758991_g1), B2M (Hs99999907_
ml), ACTB (Hs03023880_g1) and HPRT1 (Hs99999909_m1)
were used for data normalisation. Experiments were run in a
7900HT Fast Real-Time PCR System (Applied Biosystems) using
default cycle conditions. BRCA1 global expression levels were
calculated using qBASE +software (Biogazelle), which applies
the multiple-gene reference normalisation method.* All gPCR
experiments were performed in triplicate.

Allele-specific assessment of BRCAT normal transcript

The ability of the variant allele to generate normal transcripts was
investigated with a specific RT-PCR assay. Full-length (FL) tran-
script specific amplification was performed using a forward primer
complementary with the last 21 nucleotides of exon 12 and the
first two nucleotides of exon 13 (5-AGTGACATTTTAACCA
CTCAGCA-3’) and a reverse primer located in exon 18 (5-TCCG
TTCACACACAAACTCAG-3’) (amplicon size=934bp). PCR
cycling conditions consisted in: denaturing step at 95°C for 5 min;
35 cycles of 95°C for 155, 56°C for 5s and 72°C for 1min 30sand a
final elongation step of 10 min at 72°C. Products were sequenced by
Sanger and heterozygous exonic loci ¢.4308T>C (rs1060915; exon
13) and ¢.4837A>G (rs1799966; exon 16) were used to determine
biallelic contribution to FL transcript expression.

Levels of BRCA1 FL transcript were estimated using CE data
obtained from QIAxcel instrument. Variant carrier and 10 controls
were analysed in four RT-PCR experiments spanning exons 11-13
(see primers in online supplementary table 1) and peak areas
corresponding to the FL transcript (275bp) were used to esti-
mate its relative abundance. FL levels in one carrier of the BRCA2
€.6937+594T>Gdeep intronic variant'® were also measured in
three RT-PCR experiments, with a forward primer located in exon
12 (5-AGGCTTCAAAAAGCACTCCA-3’) and a reverse primer
located in exon 14 (5 TCATCAGAGCCATGTCCATC-3") (ampl-
icon size=294bp). FL data were normalised by dividing each FL
peak area with the FL mean obtained from the control group. Data
were analysed using GraphPad Prism software.

We also measured BRCA1 FL transcripts by qPCR using a
Tagman assay targeting exons 12-13 junction (Hs00173233_
m1), which is only present in the reference FL transcript but
absent in the aberrant transcript. The splicing mutation ¢.302-
1G>A and a large BRCA1 deletion spanning exons 1-13 were
used as positive controls. Cycling conditions and data analysis
were performed as described in the previous section.
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Variant genotyping in BRCA1/2 negative families and controls
We additionally genotyped BRCAI ¢.4185+4105C>T in
1030 HBOC Spanish families testing negative for BRCA1/2
and 327 Spanish controls to determine the frequency of this
variant in our population. Genotyping of 380 HBOC samples
was performed by conventional PCR using intron 12 primers
F-AAGCCCCTTGGAGTTGTCAA and R-TTGACAGAGTC-
CCAAACCCA (amplicon size=184bp) and posterior Sanger
sequencing. The remaining 650 samples and the controls were
genotyped using a custom TagMan SNP assay (ThermoFisher)
containing unlabelled PCR primers (F-GTCACCAGTATT
CICCACTTCTTCA, R-GCAAAGAGAGAAAAGGCCTC
CTAAA), one VICdye-MGB-labelled probe to detect allele C
and one FAMdye-MGB-labelled probe to detect allele T. Tagman
Universal Master Mix II (ThermoFisher) was used and 5-20ng
DNA were loaded in each reaction. Allelic discrimination assays
were run in a 7900HT Fast Real-Time PCR System (Applied
Biosystems) under default cycling conditions. Allelic discrimina-
tion plots were obtained using SDS 2.4 software (Applied Biosys-
tems). A positive control (variant carrier) was used in all assays.

RESULTS

RNA analysis of BRCA1/2 deep intronic variants with

potential splicing effects

The strategy followed for the study of BRCA1/2 deep intronic
regions in 192 high-risk HBOC families identified 30 BRCA1
and 37 BRCA2 candidate splicing variants in 53 patients (28%)
(figure 1). Variants are listed in table 1 with detailed informa-
tion from in silico predictions, gnomAD population frequen-
cies, ClinVar review status and RNA results obtained in this
study (splicing analysis +allelicimbalance assessment).

A total of 31 variants were not present in gnomAD, which
includes whole-genome data from =15 500 unrelated individ-
uals. According to Alamut’s in silico predictions, 29 variants
(43.3%) were predicted to create new splice sites (11 donor
sites and 18 acceptor sites) and 38 variants (56.7%) were
predicted to activate pre-existing splice sites (7 cryptic donor
sites and 31 cryptic acceptor sites).

Patient RNA could be obtained to assess the effect of 27
BRCA1 and 27 BRCA2 variants. All variants were character-
ised by RT-PCR assays comparing splicing profiles with healthy
controls and posterior Sanger sequencing. Visual inspection of
RT-PCR products in QIAxcel and Sanger electropherograms did
not detect splicing alterations in any variant carrier (see table 1
and online supplementary figures 2 and 3), with the exception
of BRCAT ¢.4185+4105C>T carrier which generated an extra
transcript absent in control samples (figure 2A). BRCA1/2 allelic
imbalance was ruled out in 28 patients (table 1) by inspection
of Sanger electropherograms at heterozygous exonic loci (see
online supplementary figure 4), but an allelic imbalance was
detected in BRCA1 ¢.4185+4105C>T carrier (figure 2B).

A total of 16 variants occurring in >1 patient (6 BRCA1 and 10
BRCA2) were also identified but not prioritised for RNA analysis
(online supplementary table 2). Among these, two individuals
carried the BRCA2 ¢.6937+594T> Gvariant previously detected
in the French population and reported as the first BRCA2 deep
intronic variant generating an aberrant transcript by activation
of a cryptic splice site.'®

Family origin and clinical features from BRCA1
¢.4185+4105C>T carrier

The family is originally from Lleida (western Catalonia). The
proband was diagnosed with a high-grade ovarian carcinoma

with papillary serous histology at age $8. The proband’s father
was diagnosed with prostate cancer at age 70, and a paternal
female cousin was diagnosed with BC at age 40. After 2years of
follow-up, the patient was diagnosed with a grade 1 infiltrating
ductal breast carcinoma, with positive hormonal receptors
(ER+,PR+) and negative HER2 receptors (see family pedigree
in online supplementary figure 5).

In silico splicing analysis of BRCAT c.4185+4105C>T

BRCA1 ¢.4185+4105C>T variant was detected in co-occurrence
with BRCA1 ¢.80+909T>C (MAF: ALL=0.11%, AFR=0.40%)
(rs186169069). In silico analysis of BRCA1 ¢.80+909T>C using
Alamut visual v2.10 (including MES, NNSPLICE, GeneSplicer,
Human Splicing Finder and SSF tools) predicted the activation
of a pre-existing donor site. For BRCA1 ¢.4185+4105C>T, only
SSF-like predicted the activation of a pre-existing atypical GC
donor site (wild-type=75.9 vs variant=78.5), and the remaining
tools predicted the creation of a de novo donor site, probably
due to their inability to detect GC sites (online supplementary
figure 6). The Alamut’s algorithm that uses SSF-like, NNSPLICE
and MES to predict a local splice effect, defined this variant as
creating a new donor splice site (table 1). To our knowledge,
BRCAT1 ¢.4185+4105C>T variant is not present in genetic data-
bases Leiden Open Variation Database (LOVD), Breast Cancer
Information Core (BIC), BRCA Share, Human Gene Mutation
Database (HGMD) and ClinVar, as of April 2018. Moreover, it
is not present in gnomAD and it has not been reported before in
the literature.

Characterisation of BRCAT c.4185+4105C>Tsplicing effect in
patient RNA

RT-PCR experiments were performed covering exons 11-13
(275bp) in variant carrier and 10 control samples. Experi-
ments were performed in duplicate with mRNA from variant
carrier drawn at two different time-points. Products visualised
in QIAxcel instrument revealed an extra band in patient sample
at ~400bp (figure 2A). Sanger sequencing confirmed the inser-
tion of a pseudoexon, consisting of 114 nucleotides from intron
12 (figure 2C). To determine whether this transcript could be
a minor alternative BRCA1 isoform, we performed high-sensi-
tivity CE of fluorescent amplicons in variant carrier, 20 blood
and 4 breast tissue samples from healthy controls. The novel
transcript was only present in variant carrier and was detected in
the two mRNA extractions (figure 3).

In vitro results were concordant with in silico predictions,
indicating that BRCA1 ¢.4185+4105C>Tvariant converts a
pre-existing GC site into a strong GT donor site that, together
with an upstream cryptic acceptor site (online supplementary
figure 6), promotes the inclusion of a pseudoexon between
exons 12 and 13. We annotated this new transcript as W12A
(r.4185_4186ins4185+3990_4185+4103), which is predicted
to introduce four new amino acids and a stop codon, generating
a truncated BRCA1 protein (p.GIn1395_GIn1396insSerLys-
SerLeu”) (figure 2C).

BRCAT1 global expression was measured in two independent
qPCR assays using probes located in exons 5-6 and exons 23-24,
respectively. Results showed a notable reduction (>2-fold)
of BRCA1 expression levels in carrier compared with controls
(figure 4). This reduction was similar to a known BRCA1 patho-
genic splicing variant ¢.302-1G>A, used as positive control.

BRCA1 reference FL transcript specific assessment was
determined by qualitative, semiquantitative and quantitative
approaches. Qualitative allele-specific analysis was performed
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Figure 2 BRCAT c.4185+4105C>T characterisation in patient RNA. (A): QlAxcel electrophoresis of RT-PCR assay covering exons 11-13 (275bp).

An extra band of ~400bp was detected in variant carrier (ins114nt), not present in controls. (B): Sanger electropherogram showing allelic imbalance at
polymorphisms ¢.4308T>C and c.4837A>G. (C): Sanger sequencing confirmed the insertion of 114 nucleotides (nt) between exons 12 and 13, generating a
new transcript that we annotated as W 12A (r.4185_4186ins4185+3990_4185+4103). This transcript is predicted to encode for a truncated BRCA1 protein

(p.GIn1395_GIn1396insSerlysSerLeu®).

by FL specific amplification and posterior Sanger sequencing of
two exonic polymorphisms (rs1060915, rs1799966) known to
be heterozygous at DNA level in variant carrier. Visual examina-
tion of RT-PCR products by CE detected less amplification of
FL transcript in variant carrier, and visual inspection of Sanger
peaks at polymorphic positions showed main contribution from
only one allele (figure SA). Semiquantitative measurement of FL
transcript using QIAxcel CE data showed a 2-fold reduction of
FL levels in carrier sample compared with controls (figure 5B),
suggesting that variant allele does not produce normal tran-
script. Accordingly, specific amplification of FL transcript by
qPCR using a probe targeting exons 12-13 junction also showed
a significant reduction of FL levels (figure 5C). Consistent with
data obtained from qualitative and semiquantitative experi-
ments, these data indicate that the variant allele is not generating
normal transcript.

Furthermore, we compared FL levels between BRCA1
c.4185+4105C>Tand the BRCA2 ¢.6937+594T>Gdeep
intronic variant reported to alter splicing by Anczukéw
and colleagues.'® Semiquantitative CE data from QIAxcel
showed lower FL levels in BRCA1 ¢.4185+4105C>T carrier
(mean=0.27) compared with BRCA2 ¢.6937+594T>Gcarrier
(mean=0.74) (figure 5D).

Variant genotyping in Spanish HBOC families and controls
A total of 1030 index cases from Spanish HBOC families testing
negative for BRCA1/2 and 327 Spanish controls were genotyped

at BRCA1 ¢.4185+4105C>T position. The variant was not
identified in any additional family or control, suggesting that
this variant is a very rare event (online supplementary figure 7).
Moreover, this variant is not reported in 1000 genomes database
which includes a set of 165 Spanish controls (77 females and 88
males) and has not been reported in gnomAD which includes
whole-genome data from =15500 unrelated individuals.

DISCUSSION

The aim of this study was to identify novel germline BRCA1/2
variants in deep intronic regions that could explain hereditary
predisposition to BC/OC in high-risk families with uninforma-
tive BRCA1/2 test results. The analysis of 192 high-risk HBOC
families by targeted gene sequencing identified 28% of patients
carrying rare (MAF <0.005) BRCA1/2 deep intronic vari-
ants located beyond positions +20/-20 from canonical splice
sites, with indicative in silico predictions of altering splicing.
Overall, our results ruled out the presence of predominant
splicing alterations occurring in variant carriers, indicating a
low specificity for in silico tools used in this study. Only BRCA1
¢.4185+4105C>T variant was correctly predicted and its effect
was confirmed in patient RNA, producing a novel frameshift
transcript W12A due to the activation of a cryptic donor site
(figure 2A—C). High-resolution CE did not identify this transcript
in control samples (blood and normal breast tissue) (figure 3),
and it has not been reported in previous RNA studies.”* * The

Montalban G, et al. J Med Genet 2018;0:1-12. doi:10.1136/jmedgenet-2018-105606
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presence of this transcript was confirmed in a second RNA
extraction, indicating that W12A is a true splicing event and it
is not a product of illegitimate splicing occurring due to tech-
nical artefacts, such as blood processing or blood ageing.*® %
This transcript introduces a premature stop codon (PTC) 99nt
upstream of the next exon-exon junction (pseudoexon-exon13
junction), making the transcript highly likely to be degraded by
the NMD system. This mechanism by which PTC transcripts are
detected and degraded within cells has been well described in
eukaryotes,” % and it is considered a surveillance mechanism
to target aberrant mRNAs that would lead to the synthesis of
proteins with deleterious effects for the organism. The activity
of NMD has been well documented for BRCAT PTC transcripts,
showing that NMD is triggered by the majority of BRCA1 PTC
mutations, resulting in a 1.5-fold to 5-fold reduction in mRNA
abundance.” We quantified global BRCA1 expression in variant

carrier by quantitative PCR, obtaining an indirect measure of
NMD activity. We used two different Tagman assays and both
showed a >2-fold decrease of BRCA1 mRNA levels in carrier
compared with controls (figure 4), indicating the degradation
of transcripts produced by the variant allele and leading to a
state of haploinsufficiency. Another approach indicating tran-
script degradation was the examination of heterozygous BRCAT
exonic positions in variant carrier, which showed differential
allelic expression (figure 2B).

Nucleotide conservation analysis across 100 vertebrate
species using PyloP, PhastCons and Multiz Alignment tools,
showed less conservation in the pseudoexon from BRCAT
WI12A transcript compared with exons 12 and 13 (online
supplementary figure 8), suggesting a non-functional role for
this region. Furthermore, nucleotide conservation comparison
between the pseudoexon included in the aberrant transcript

. " L] Y . J e .. = = n .= *» i -
g1 FL extraction 1
= v12A
. A13p | 1
Variaﬂt ca"iar FS 5% 5 s e s 405 4 485 4o
(blood) o FL extraction 2
o
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i
m w m 1\: 0 - - @ “w =
2100 L
-
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. e s e s s w - M -
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s
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= = - " s n - - - -
o) FL
Controls 1-5 |
(blood) i e,
- - - s . m . - - -
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» - m s s m = - - -
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-
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s s s s . » - - i -
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Figure 3  Capillary Electrophoresis (CE) assays in carrier and controls, CE of FAM-labelled amplicons from variant carrier, five blood controls and four
narmal breast tissues. Results from two different RNA extractions in variant carrier are shown. Full-length transcript and the minor alternative isoform A13p
were detected in all samples, whereas aberrant transcript 'W 12A was only detected in variant carrier. FL, full-length.
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Figure 4 BRCAT expression in carrier and controls by qPCR. BRCAT
global expression was measured in two independent qPCR assays, using
two probes targeting exons 5-6 and 23-24 junctions, respectively. Both
assays show a reduction of BRCAT levels in ¢.4185+4105C>T carrier
compared with controls (C1-C10). Grid lines represent BRCA1 expression
levels in controls (mean=1.2). Variant carrier and a pathogenic splicing
variant ¢.302—1G>A show similar BRCA1 levels. Mean+95% Cl are shown.

BRCA1 ¥12A and the pseudoexon included in the alternative
isoform BRCA1 ¥13A, indicated a higher conservation in the
alternative isoform (online supplementary figure 9). The alter-
native transcript W13A has been detected in human control
blood tissue and breast tissue,>* ** whereas W12A has not been
described previously.

BRCA1 ¢.4185+4105C>Tvariant was identified in co-oc-
currence with BRCAI ¢.80+909T>C, located in intron 2.
A recent study analysing the functional impact of non-coding
BRCA1 variants remarked the importance of this intron because
it contains regulatory regions that may affect BRCA1 promoter
activity.” In our study, we could not formally exclude that this
variant contributes to the allelic imbalance observed in the
carrier. However, this variant is located outside the non-coding
regulatory sequences from intron 2 (CNS-1 and CNS-2), known
to alter transcriptional activity when mutated,” supporting a
non-functional role for this variant.

A systematic BRCA1/2 RNA analysis in patients with HBOC in
the French population identified the first BRCA2 deep intronic
variant (¢.6937+594T>G) causing the inclusion of a pseudo-
exon by activation of a cryptic donor site.'® Authors identified
this variant in eight additional HBOC families and indicated a
pathogenic role for the variant. However, a recent study based
on case-control analysis did not observe an association between
BRCA2 ¢.6937+594T>Gand BC risk,” and the variant has
been classified as benign by the Evidence-based Network for
the Interpretation of Germline Mutant Alleles (ENIGMA)
expert panel (https://enigmaconsortium.org/). The differences
observed in FL levels from BRCAI ¢.4185+4105C>Tand
BRCA2 ¢.6937+594T>G carriers measured by semiquantitative

CE, suggested that BRCA2 ¢.6937+594G allele still generates
FL transcripts (figure 5D), in agreement with its clinical classi-
fication as benign. Although these results need to be confirmed
with quantitative approaches and allele-specific assays, semi-
quantitative measurement of FL transcripts could serve as
indicative of variant pathogenicity. The frequency of BRCA1
c.4185+4105C>Tvariant in Spanish HBOC cases and control
population was also investigated to collect more clues about its
pathogenicity, and genotyping analysis did not identify addi-
tional carriers in either group. Although variant absence in a
larger control group (>1000 individuals) is required to consider
evidences of moderate pathogenicity,’® there is a general assump-
tion that high-penetrance disease-causative variants occur at very
low population frequencies. This, combined with the clinical
phenotype from variant carrier (BC+OC), supports pathoge-
nicity for BRCAT ¢.4185+4105C>T.

Additionally, the analysis by targeted sequencing of other BC/
OC susceptibility genes in BRCA1 ¢.4185+4105C>T carrier,
including ATM, BRIP1, CHEK2, EPCAM, MLH1, MSH2, MSHé6,
PALB2, PMS2, PTEN, RADS1C, RAD5 1D, STK11 and TPS3, did
not identify any deleterious variant that could explain the family
phenotype,'? supporting also a pathogenic role for the BRCA1
deep intronic variant.

According to the ENIGMA guidelines for BRCA1/2 variant
classification, when the variant allele is assessed by specific tran-
scriptional assays and reveals only the expression of aberrant tran-
scripts, the variant should be classified as pathogenic. In our case,
although semiquantitative and quantitative analyses supported a
monoallelic contribution to FL transcript expression (figure SB-C),
a residual signal (=5%-10%) from variant allele was observed
at heterozygous sites after the specific amplification of FL tran-
script (figure SA). However, whether this is a true contribution
from variant allele or a PCR artefact caused by unspecific primer
hybridisation cannot be concluded from our results. In any case,
the production of functional BRCA1 protein from the variant
allele would be lower than the rescue threshold (=30%) proposed
in de la Hoya work,”” supporting a likely pathogenic role for our
variant. Taking this into account and from an analytical point of
view, the variant should be classified as likely pathogenic (Class-4).
Further evidence from segregation analysis within family relatives
and loss of heterozygosity analysis in tumour samples could help to
unequivocally define a pathogenic classification, but unfortunately
no samples were available.

In clinical laboratories, deep intronic regions of HBOC genes
are generally not screened, and the frequency of pathogenic
mutations in these regions could account for a proportion of
HBOC cases by either affecting splicing, transcriptional activa-
tion or mRNA stability.’® Pseudoexon insertion events directly
related to cancer pathologies caused by the creation of new
splicing donor or acceptor sites represent the more frequent
occurrence of this type of mutational events.” The identifica-
tion of pseudoexons is particularly interesting for the design of
novel therapeutic molecules based on RNA biology.*” The use
of therapies based on antisense oligonucleotides has shown to
prevent the inclusion of cryptic exons by blocking the binding
of trans-splicing regulatory factors to mutant 5’ or 3’ splice sites
and restore the correct reading frame.'®*4!

Here, we report the first deep intronic mutation occurring
at BRCA1 locus that promotes the inclusion of a pseudoexon
in mature mRNA and is associated with HBOC risk. Although
the frequency of pseudoexon events caused by spliceogenic vari-
ants in BRCA1/2 deep intronic regions appears to be low in our
population, our findings highlight the relevance of integrating
massive sequencing of whole genomic regions of HBOC genes

Montalban G, et al. J Med Genet 2018;0:1-12. doi:10.1136/jmedgenet-2018-105606
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Figure 5 Specific assessment of BRCAT full-length transcript. (A) Specific amplification of FL transcript by RT-PCR shows less amplification in carrier
compared with controls. Sanger inspection shows main contribution to FL from only one allele. (B) FL levels measured by semiquantitative CE experiments
show a >2-fold reduction in variant carrier. Grid line represents mean of normalised FL levels in control group (y=1). Mean+SEM are shown. (C) FL transcript
measurement by gPCR using a Tagman probe targeting exons 12—13 junction. FL levels show a >2-fold reduction in variant carrier. BRCA1 pathogenic
variants ¢.302-1G>A and exon1-13 deletion were used as positive controls (in red). Mean+95% Cl are shown. (D) RT-PCR evaluation of BRCAT and BRCA2
deep intronic variants and semiquantitative measurement by QIAxcel electrophoresis of FL transcript. Variant carriers were analysed in parallel with non-
carrier controls (10 for BRCA1 and 20 for BRCA2). Full-length levels were not drastically reduced in the BRCAZ carrier, compared with BRCA 1. Grid line
represents mean of normalised FL levels in control group (y=1). Mean +SEM are shown. B, blank; FL, full-length transcript.
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and RNA analysis to complement genetic diagnosis of familial

breast and ovarian cancers.
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1 | INTRODUCTION

While women have a 12% lifetime risk of breast cancer on average
(Howlader et al., 2017), that risk rises to roughly 70% in women with
pathogenic variants in BRCA1/2 (Kuchenbaecker et al., 2017). For
ovarian cancer, the average lifetime risk is approximately 1.3% for
women in the general population, while the risk is 44% for BRCA1
carriers and 17% for BRCA2 carriers. These facts and the decreasing
cost of sequencing have led to an upsurge of BRCA1/2 testing in recent
years (Kolor et al., 2017). This increased rate of BRCA1/2 testing has
led to an increasing discovery of new variants, and this rate of variant
discovery has outpaced the rate of variant interpretation. Out of
21,695 variants currently listed at BRCA Exchange, the largest public
source of BRCA1/2 variation data (Cline et al, 2018), almost half
(9,225) have no clinical interpretation in either ClinVar (Landrum &
Kattman, 2018) or the Leiden Open Variation Database (LOVD)
(Fokkema et al., 2011). Further, only 7,225 so far have expert
interpretations by the ENIGMA Consortium (Spurdle et al., 2012), the
ClinGen expert panel for curation of variants in BRCA1/2. These
numbers underscore the need for both developing robust, high-
throughput methods for BRCA1/2 variant interpretation and gaining a
clear understanding of the capabilities of the existing methods.

The CAGI5 ENIGMA Challenge provided an opportunity to
evaluate the current state of the art in predicting the clinical
significance of BRCA1/2 variants, leveraging blind prediction. The
ENIGMA Consortium provided the CAGI organizers with not-yet-
published clinical interpretations for hundreds of BRCA1/2 variants.
Six research teams predicted the clinical significance of these variants,
using 14 methods altogether. In this paper, we compare results from
these 14 prediction methods, as well as three widely-used reference

methods from the literature, against the expert clinical interpretations,
with the goals of evaluating what types of approaches were most
effective and identifying areas for further improvement.

2 | METHODS

This challenge featured 326 variants that were recently interpreted by
the ENIGMA Consortium, as detailed in another paper in this issue
(Parsons, Tudini, Li, Goldgar, & Spurdle, 2019). This paper also details
the variant classification process used by ENIGMA researchers. Briefly,
unclassified variants were prioritized by the ENIGMA Consortium for
classification based on the amount of available evidence and/or prior
likelihood of pathogenicity based on variant location and predicted
effect (Tavtigian, Byrnes, Goldgar, & Thomas, 2008; Vallée et al.,, 2016).
These variants were classified using multifactorial analysis (Goldgar
et al, 2008, 2004). While the standard ACMG guidelines evaluate
multiple lines of evidence by qualitative rules (Richards et al., 2015), the
multifactorial analysis combines evidence types quantitatively in a
Bayesian network to estimate the overall likelihood of pathogenicity. Of
the 326 variants that were shared with the prediction teams, all were
exonic and were either missense variant or in-frame deletions (ENIGMA
had provided additional intronic variants that were not shared with the
predictors). All of these variants were assessed as Benign, Likely Benign,
Likely Pathogenic or Pathogenic at the time of submission to CAGIS5.
None of the variants had a population frequency of 1% or greater in any
reference population studied, and none were predicted truncating
variants (Parsons et al., 2019).

Table 1 summarizes the 326 ENIGMA Challenge variants included
in the CAGI5 challenge, comprising 318 single-nucleotide variants and

TABLE 1 Summarizes the variants of the BRCA challenge according to gene, domain region, and clinical significance as interpreted by the
ENIGMA Consortium. Note: The Domain column indicates which variants were part of a clinically-significant protein domain, by the criteria of
the ENIGMA Consortium (ENIGMA Consortium, 2017). The rows marked “None” indicate variants that are not part of a clinically-significant
domain; 318 of the variants were single-nucleotide substitutions, while the remaining eight were in-frame deletions.

Gene Domain Benign Likely benign
BRCA1 BRCT 2 7
None 29 90
RING 1 4
BRCA2 DNB 11 27
None 20 110
TR2/RADS5 1 2
Total 64 240

Uncertain
significance Likely pathogenic Pathogenic Total
1 4 1 15
2 2 123
4 9
3 3 44
2 132
3
5 7 10 326
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TABLE 2 Summary of the BRCA challenge blind prediction teams and methods

Predictor Method

Lichtarge lab Evolutionary action (EA)

Normalized EA

Mooney-Radivojac 2018 MutPred2

TransBio-Inf TBI_1
TBI_2
TBI3
TBI 4

Bologna bio-computing SNPs&GO

Disease Index Matrix

Brief description

Estimates pathogenicity from evolutionary and phylogenic information, and
substitution likelihood.

Normalizes EA predictions with the estimated fraction of BRCA isoforms affected
by the mutation.

Machine learning predictor with features including estimated changes in structural
and functional properties for single-nucleotide variants augmented with an
unpublished method for in-frame deletions.

Neural network trained to predict clinical significance from estimated splice site
impact and sequence-based features.

Similar to TBI_1, but with multiple linear regression prediction of functional assay
scores.

Similar to TBI_1, but with no estimated splicing impact.

Similar to TBI_2, but with no estimated splicing impact.

Machine learning predictor that integrates features extracted from the sequence,
sequence profile and GO functional annotation of the input protein.

Statistical scale estimating the probability of a variation type to be associated with

disease.

Weakly supervised linear regression using categorized inexact labels from ClinVar,
15 selected features from MutPred2, and designed loss functions.

Two-class logistic regression using function predictions, splicing predictions,
frequency of cancer in individuals and their families, co-occurrence with
pathogenic variants, andliterature and cancer associations from HGMD.

AIBI AlBI

Color genomics LEAP 1
LEAP 2
LEAP 3
LEAP 4

eight in-frame deletions. All BRCA1 variants reflect the NM_007294.3
transcript, and all BRCA2 variants reflect NM_000059.3. Although the
ENIGMA Consortium had prioritized some variants according to the
prior likelihood of pathogenicity, most of the variants were either
Benign or Likely Benign. This skew is consistent with the actual
proportions of the different clinical significance annotations for BRCA1/
2 variants (Cline et al, 2018). During the course of the CAGI
experiment, the ENIGMA Consortium reclassified several of these
variants with new evidence. Five variants were reclassified from Likely
Benign to VUS after ENIGMA received new evidence that conflicted
with previous evidence, and these variants were omitted from the
assessment. Seventeen variants were reclassified from Likely Benign to
Benign, and one was reclassified from Likely Pathogenic to Pathogenic.
That is, the majority of the reclassifications increased certainty in the
assignment. Since the CAGI5 challenge examined benign and likely
benign as one group, and pathogenic and likely pathogenic as another,
these reclassifications did not affect the assessment except for
removing five variants from the assessment pool.

The fact that 23 variants were reclassified illustrates two things:
all interpretations have some uncertainty, the level of which is
inherent in the probability of pathogenicity and the class assigned;
additional data are helpful to move variants from “likely” categories
to outer categories with higher probabilities in favor of a benign or

pathogenic classification

As LEAP 1, but with publicly-available information only.
As LEAP 1, but with random forest classifier rather than logistic regression.

As LEAP 1, but with three-class logistic regression rather than two-class.

2.1 | Prediction methods

Six teams submitted blind predictions, using a total of 14 methods.
The methods are summarized in Table 2 and summarized below.
Most teams have submitted methods papers to the CAGI5 publica-
tion set, and we have referenced those methods for further detail.
We have also indicated which methods were executed as published;
for the others, further details are available in the Supporting
Information section.

e The Lictarge Lab submitted predictions with Evolutionary Action
(EA; special issue; Katsonis & Lichtarge, 2019). EA estimates
variant pathogenicity through evolutionary information by using
an analytic equation. The components of the equation are the
likelihood that the reference and alternative amino acids sub-
stitute to each other in numerous multiple sequence alignments
(MSA), and the sensitivity of the protein function to residue
changes calculated by the Evolutionary Trace method (Lichtarge,
Bourne, & Cohen, 1996; Mihalek, Res, & Lichtarge, 2004) using
MSA and phylogenic information. The Normalized EA predictions
had the EA scores adjusted to the fraction of the isoforms affected
by the mutation. See Supporting Information for further details.

The Mooney-Radivojac 2018 team submitted predictions for
single-nucleotide variants with MutPred2 (Pejaver et al., 2017), a
machine learning predictor that incorporates contextual features
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from protein sequence, conservation, and homology, along with
features that encode mutation-induced changes in protein struc-
ture and function, as predicted by over 50 built-in machine
learning models. The in-frame deletions were scored using
MutPred-indel, a neural network-based pathogenicity prediction
method that incorporates similar features, representative of
protein structure, function, and conservation (unpublished).

The TransBiolnf (Vall d'Hebron University Hospital) team sub-
mitted four sets of predictions, as detailed in the CAGI5 special
issue (Padilla et al, 2019). TBIL1 and TBI_3 predict clinical
significance with neural networks, given features including
sequence alignment conservation and biophysical measures of
the differences between the reference and alternative amino acids.
TBI_2 and TBI_4 predict functional assay scores with multiple linear
regression and a similar set of input features. In addition, TBI_1 and
TBI_2 incorporate estimates of the impact of the mutation on
existing splice sites, while TBI.3 and TBI_4 do not.

Bologna Biocomputing submitted predictions with SNPs&GO
(Calabrese, Capriotti, Fariselli, Martelli, & Casadio, 2009) and the
Disease Index Matrix (Casadio, Vassura, Tiwari, Fariselli, & Luigi
Martelli, 2011), both executed as published. SNPs&GO is a
machine learning predictor that estimates pathogenicity from
information on the Gene Ontology terms associated with the
protein, as well as features describing amino acid conservation, the
local sequence environment, and the evolutionary likelihood of the
reference and alternative amino acids. The Disease Index Matrix
(P4) is a scale that associates each variant type (i.e., pair of wild
type and variant residues) with the probability of being related to
the disease. The scale has been estimated with a statistical analysis
of a large data set of disease-related and neutral variations
retrieved from UniProtKB and dbSNP databases.

AlBI directly predicted the probability of pathogenicity with weakly
supervised linear regression, as detailed in the CAGIS5 special issue
(Cao et al, 2019) as the exact probabilities are not available for
supervised machine learning. They used variants annotated with
the class of pathogenicity in ClinVar, selected from MutPred2 15
features about molecular impacts upon variation, and designed
parabola-shaped loss functions that penalize the predicted prob-
ability of pathogenicity according to its supposed class.

Color Genemics submitted four sets of predictions with LEAP (Lai
et al, 2018), a machine learning framework that predicts variant
pathogenicity according to features including:

» population frequencies from gnomAD;

e function prediction from SnpEFF (Cingolani et al., 2012), SIFT
(Ng & Henikoff, 2003), PolyPhen-2 (Adzhubei, Jordan, &
Sunyaev, 2013) and MutationTaster2 (Schwarz, Cooper,
Schuelke, & Seelow, 2014);

splice impact estimation from Alamut (Interactive Biosoftware,
Rouen, France) and Skippy (Woolfe, Mullikin, & Elnitski, 2010);
indications of publications mentioning the variant and cancer
associations from the subscription version of HGMD, indicating

whether or not the variant is included in HGMD, whether or not
it is associated with one or more articles curated by HGMD, and

whether HGMD associates the variant with cancer (Stenson
et al, 2017); and
aggregate information from individuals who have undergone

genetic testing. This information consists of frequencies of
cancer in the individuals tested, and within the individuals’
families (covering many cancer types, not simply breast and
ovarian cancer), and co-occurrence of pathogenic variants in
the same individual.

LEAP 1 estimates pathogenicity with a two-class regularized logistic
regression model, LEAP 2 serves as a control and is equivalent to LEAP 1
except for omitting any inputs that are not publicly-available (including
data from HGMD). LEAP 3 uses a random forest rather than regularized
logistic regression. LEAP 4 uses a three-class regularized logistic
regression model (Benign, VUS, Pathogenic) rather than a two-class
model (Benign, Pathogenic). While the LEAP method is not publicly-
available at this time, Color Genomics anticipates making the
predictions by LEAP publicly available during 2019 (Lai et al., 2018).
The authors of LEAP are preparing a publication on their method, which
will be added to the CAGI5 collection upon publication.

For reference, we analyzed the variants with the popular
methods SIFT Version 5.2.2 (Ng & Henikoff, 2003), PolyPhen-2
Version 2.2 (Adzhubei et al., 2013) and REVEL (Version December
2018; loannidis et al., 2016). SIFT applies substitution matrices to
estimate the likelihood that a variant is pathogenic. PolyPhen-2
scores variants based on substitution matrices, evolutionary in-
formation, differences in the biophysical properties of the reference
and alternative amino acids, functional residue and domain annota-
tions, and predicted secondary structure. REVEL is a meta-predictor
that estimates variant pathogenicity on the basis of several individual
predictors, including SIFT, PolyPhen-2, MutPred, and MutationTa-
ster. We generated scores for these methods via the Ensembl Variant
Effect Predictor (McLaren et al., 2016) in December 2018.

The ENIGMA Consortium incorporates “priors” of variant
pathogenicity prediction as part of its variant interpretation process
(Parsons et al., 2019). This pathogenicity prediction incorporates
splice site impact, protein conservation, and expert knowledge, as
detailed in a recent publication (Tavtigian et al., 2008; Vallée et al.,
2016). Briefly, the impact of a variant on known splice sites and the
likelihood of a variant introducing an ectopic splice site, are
assessed by MaxEntScan (Yeo & Burge, 2004). To estimate the
impact of missense variants, the variants are binned according to
two factors: whether or not the variant is inside a clinically-
important protein domain (Tavtigian et al., 2008); and ranges of
substitution scores from Align-GVGD (http://agvgd.iarc.fr/), which
estimates substitution likelihoods from alignments of orthologous
protein sequences. The variants within each bin are assigned a
probability of pathogenicity which was estimated from previous
analyses of disease-causing variation (Easton et al, 2007). This
approach share features with some of the predictors in this
experiment; the TransBiolnf and LEAP methods use similar splicing
information, and many methods use genomic conservation (which is
related to the protein conservation implicit in Align-GVGD).
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However, these similarities are minor. Moreover, ENIGMA variant

interpretation is based on many lines of evidence beyond
pathogenicity prediction, namely several forms of clinical observa-
tion. None of the predictors use such lines information except for
LEAP, and LEAP uses similar observations that were collected
independently. The LEAP predictors reflect individuals who have
been tested by Color Genomics (which was founded in 2013), while
ENIGMA priors reflect individuals who had been tested before the
mid-2000s. These sets of individuals could overlap, but this overlap
is likely to be minor given the gap in time. In summary, the ENIGMA
priors include similar information to some of the prediction
methods, but the risk of bias from this similarity is minimal.

2.2 | Assessment methods

The 326 variants that were submitted for prediction analysis in the
CAGI5 ENIGMA Challenge had all been interpreted by the ENIGMA
Consortium, the ClinGen-approved expert panel for BRCA1/2 variant
interpretation. Table S1 lists these variants along with the ENIGMA
interpretation, and the predicted probability of pathogenicity and
prediction standard deviation by all 14 prediction methods and the
three reference methods (see Table S1).

Of the 326 BRCA1/2 variants that were shared with the CAGI5
prediction teams, ENIGMA interpreted 64 as Benign (Class 1), 240 as
Likely Benign (Class 2), 5 as VUS (Class 3), 7 as Likely Pathogenic (Class
4), and 10 as Pathogenic (Class 5). As described earlier, these were the
final interpretations by ENIGMA,; the consortium had interpreted these
variants when they were submitted to CAGI, and subsequently revised
the interpretation of several variants according to new evidence that
became available during the CAGI experiment. By IARC classification
criteria (Plon et al., 2008), Benign variants include those with posterior
estimates of pathogenicity of less than 0.001 in the multifactorial
estimation, while the threshold posteriors for Likely Benign variants is
0.049; the threshold for Likely Pathogenic variants is 0.95 while that for
Pathogenic variants is 0.99. Two aspects of this statistical modeling are
the evidence that the variant is damaging or increases disease risk and
the strength of the evidence. For example, suppose two variants have a
similar impact on the protein function, but one is observed in a very few
individuals while the second is observed much more frequently. The
first variant might be classified, as Likely Pathogenic while the second is
Pathogenic, because the smaller amount of evidence might not reach
the threshold for Pathogenic classification. The amount of evidence on a
variant is not relevant to pathogenicity prediction, while the predicted
impact on function is. In our assessment, we grouped the Benign and
Likely Benign variants together (assigning them a target probability of
0.025), grouped the Pathogenic and Likely Pathogenic variants together
(assigning them a target probability of 0.975), omitted the VUS (each of
which had been classified previously as Likely Benign but were
reclassified based on additional evidence), and evaluated the prediction
methods on their accuracy at predicting these target probabilities.

Most predictors submitted numerical predictions of pathogeni-
city ranging from 0.0 (predicted benign) to 1.0 (predicted patho-
genic). One team submitted class labels (Class 1-5), which we

translated to random probabilities selected from within ENIGMA’s
posterior probability ranges (ENIGMA Consortium, 2017). Most
predictors submitted standard deviations to accompany their
estimated probabilities, and some submitted comments on their
predictions.

We approached the assessment by computing several different
summary statistics, as each can offer distinct insights. These included
both threshold-dependent and threshold-independent metrics. The
threshold-dependent metrics included:

Precision: the ratio of true positives to true and false positives, or
variants accurately predicted as pathogenic as related to all
pathogenic predictions;

Recall: the ratio of true positives to true positives and false

.

negatives, or variants accurately predicted as pathogenic as
related to all pathogenic variants (also known as sensitivity);

Accuracy: the ratio of true positive and true negative predictions to
all true and false predictions, or the fraction of variants accurately
classified as benign or pathogenic relative to the number of
variants;

F1: the harmonic mean of precision and recall.

A contrast between Accuracy and F1 is that Accuracy reflects in
part the number of True Negatives, benign variants predicted as
such, while F1 does not. In cases such as this, with a large skew
between the positive and negative sets, F1 is generally considered
more meaningful. Accordingly, we leveraged F1 for threshold
selection, and empirically selected one threshold for each predictor
by sampling candidate thresholds across the prediction range and
selecting the threshold that yielded the largest F1. We applied these
thresholds in measuring Precision, Recall, and Accuracy. Table S2
lists these thresholds along with these performance metrics.

We applied the following threshold-independent methods:

ROC AUC: area under the ROC curve, which relates sensitivity
(recall) to specificity (which in this context represents the fraction
of benign variants correctly classified as benign). ROC AUC is a
widely-used classification metric, which lends itself easily to
probabilistic interpretation.

P/R AUC: area under the Precision-Recall curve. This metric is
similar to ROC AUC but is more effective for datasets such as this

one with a large skew between positives and negatives.

RMSD: root-mean-squared deviation describes the numerical
distance between the prediction and its target value.

Pearson correlation: this is a standard parametric correlation metric.
Like RMSD, it tends to rewards predictions that are numerically
close to the target value.

We also evaluated Kendall correlation but found that for these
data, it was redundant with ROC AUC (data not shown).

To evaluate significance in predictor performance, with con-
fidence intervals, we performed 10,000 iterations of bootstrapping.
For predictors that supplied standard deviations (as most did), in
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each bootstrapping iteration, we added a small amount of noise,
sampled at random from a normal distribution with a mean of zero
and the standard deviation supplied by the predictor, and measured
all summary statistics on these data. We computed the standard
deviation of these bootstrapped summary statistics. We considered
the difference between two prediction methods to be significant if
their summary statistics differed by more than one standard
deviation. When a prediction was accompanied by a large standard
deviation (which communicates a high degree of uncertainty), the
bootstrapping communicated wide confidence intervals around the
prediction metrics; small or no standard deviations translated to
greater certainty around the summary statistics. Note that the
bootstrapping was used only to estimate the error bars around the
summary statistics, and the summary statistics themselves were
computed on the actual prediction values.

One last component of the assessment was to identify a subset of
variants that had proved to be challenging in general and analyze the
commonalities of these variants. To identify these difficult variants,
we computed the median predicted probability from all prediction
methods and selected the pathogenic variants with lower median
predictions and the benign variants with higher median predictions.

All of the software used in this assessiment is publicly available at
https://github.com/melissacline/CAGI5-BRCA-Assessment. Table 52
provides all of the assessment statistics for each method assessed
(see Table S2).

3 | RESULTS

We evaluated results from 14 blind prediction methods and three
reference methods. With few exceptions, the blind prediction
methods reported values for the same variants, so their results can
be compared directly. The three reference methods did not report
values for many of these variants, and due to the number of missing
values, their results should be viewed as only rough approximations
of their performance. Figure 1 shows a dendrogram of the
predictions and indicates the missing values. As shown, there were

FIGURE 1 Dendrogram illustrating the
predictions on all variants by all prediction
methods

Predictors

very few missing values. Almost all predictors submitted predictions
on the same variants; the results were not confounded by missing
values. The dendrogram shows that, unsurprisingly, different
methaods by the same teams tend to cluster together.

Figure 51 shows the distributions of probabilities estimated by
each method and contrasts the probabilities for Benign and Likely
Benign variants to those for Pathogenic and Likely Pathogenic
wvariants (Figure S1). Figure S2 breaks this down further by separately
showing predictions for the Benign, Likely Benign, Likely Pathogenic,
and Pathogenic classes (Classes 1, 2, 4, and 5 respectively; see Figure
$2). This figure illustrates that the predictions were not necessarily
stronger for Pathogenic versus Likely Pathogenic variants, nor for
Benign versus Likely Benign variants. This supports the assertion that
the difference between Benign and Likely Benign, and between
Pathogenic and Likely Pathogenic, reflects the strength of the clinical
evidence rather than the expected functional impact of the variant,
and is not relevant to this assessment.

Figure 2 summarizes the performance of the methods in terms of
four metrics chosen as most illustrative: ROC AUC, P/R AUC,
Precision and Recall. Table 52 lists the complete set of performance
metrics (see Table $2). While each metric has nuances, the rank order
was largely consistent between the metrics. As a reflection of the
overall performance accuracy, the strongest F1 accuracy was
achieved by LEAP 4 at 0.83. In other words, on this particular
dataset, the state of the art methods were correct in roughly four out
of five cases, which illustrates that variant prediction remains a hard
problem.

Overall, most methods fared better at predicting pathogenic
variants as pathogenic than predicting benign variants as benign, as
seen by comparing the Precision and Recall graphs in Figure 2. The
LEAP methods were an exception, with strong precision as well as
recall at the best empirically-selected threshold.

Interpretability was a design objective for the LEAP methods.
LEAP 1 and LEAP 2, which are both regularized logistic regression
methods, listed the input features which were most significant for
each prediction. These include, scores from LRT, MutationTaster,
SIFT, PalyPhen 2, and phastCons 100way vertebrate conservation.
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FIGURE 2 Shown is the performance of the 14 blind prediction methods and three reference methods (denoted with R), for four selected
performance metrics. The bar lengths and the error bars reflect the mean performance and standard deviation observed in random benchmarks,
where each estimated probability was permuted according to standard deviation supplied by the predictor. No benchmarking was performed on
methods for which the predictor supplied no standard deviation, or on the reference methods

These features are also inputs to the reference method REVEL, which
did not score quite as well on these variants. One possible
explanation for LEAP's performance advantage concerns differences
in what the methods were trained to do. REVEL was trained to
predict variants that are pathogenic in disease in general, and there
may have been some variation in the methods that were used to
interpret the variants in its training set. LEAP was trained to predict
pathogenicity in cancer specifically and was trained on variants that
were interpreted consistently, according to the ACMG Guidelines, by
board-certified medical geneticists. In general, the methods that had
been trained to identify disease variants, in general, did not fare as
well on this challenge. This includes PolyPhen-2 and Disease Index
Matrix. Arguably, LEAP addressed an easier problem by limiting its
scope to cancer.

A second explanation is that features shared by LEAP and REVEL
were necessary but not sufficient, and LEAP's performance can be
attributed to additional features. Important features that were

distinct to LEAP included patient-derived information. Co-occurrence
with known pathogenic variants was valuable in the accurate
prediction of roughly one-third of the benign variants. Information
on individuals who carry the variant and the frequency of cancer in
these individuals and their families was a strong predictor for a few
difficult pathogenic variants (Lai et al, 2018). Since patient-level
information informs clinical variant interpretation, including the
ENIGMA variant interpretations, it comes as no surprise that it is also
valuable for improving variant pathogenicity prediction above that
based on bicinformatic information alone.

Another form of information that benefitted LEAP was popula-
tion frequencies from gnomAD. Higher minor allele frequencies
within a distinct out-bred population is a characteristic of benign
variants. While ENIGMA omitted variants with sufficiently high
population frequencies to meet the ACMG Guidelines as benign,
higher population frequencies still suggested benign variants. Since

population frequency repositories are publicly-available, and growing
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FIGURE 3 Of the four methods by the TransBiolnf team, two (left) used predicted splicing information while two (right) did not. Further, the
methods used two different learning frameworks and objective functions: neural network prediction of clinical significance (top), and multiple
linear regression of functional assay scores (bottom). These boxplots show that in both architectures, including the splicing information

improved prediction accuracy

in size and quality, their demonstrated value to LEAP's performance
suggests that they may be valuable to other methods as well.
While the variants interpreted by ENIGMA had no publicly-
available interpretations at the time of the challenge, many of them
proved to be in HGMD, where additional information is available to
paid subscribers. The information in HGMD includes assigned
categories (particularly, the “Disease-causing mutation” or DM
category) and the presence of the variant in the literature. This
proved to be a strong source of information for the methods that
included data from HGMD in their input set (LEAP 1, LEAP 3, LEAP
4, and REVEL). In fact, for pathogenic variants, the data from HGMD
was among the more important inputs to LEAP 1: the presence of
the variant in the literature was instrumental inaccurate prediction
15 of the 17 pathogenic variants, and the HGMD-assigned category
of DM was an instrumental inaccurate prediction of 12 of these
variants. There were two pathogenic variants for which LEAP 1 did
not indicate HGMD features as key inputs (BRCA2 ¢.7819A>C and

BRCA2 ¢.8975_9100del), and LEAP 1 mispredicted on these two
variants. Since HGMD features papers on pathogenic or damaging
variants, it makes sense that the mere fact that the mere mention a
variant in HGMD is a strong predictor of pathogenicity. The rules of
the CAGI experiment stipulate that each prediction team can use
whatever information they have available, including private
information. While the merits of subscription databases can be
argued elsewhere, the scientific lesson is that the added information
in these databases appears to be valuable. The lesson for the larger
scientific community is that there exists additional data that could
in theory be shared publicly (should its owner so decide), and
sharing these data would advance the science of variant
interpretation.

While most pathogenic variants were accurately predicted as
pathogenic, there were a few that received lower predictions on
average, and a review of these variants was instructive. A number of
mispredicted pathogenic variants were proximal to splice sites.
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Examples include BRCA1:c.4675G>A and BRCA1:c.4484G>C (which
are adjacent to splice sites) and BRCA1:c.5144G>A and BRCAZ:
¢.7819A>C (which are in close proximity to splice sites). The
TransBiolnf team further illustrated the impact of splicing informa-
tion in the construction of their four methods, which themselves
were a controlled experiment. Two included the predicted splicing
impact, while two did not. In addition, the methods used two
different learning frameworks: neural network prediction of clinical
significance and multiple linear regression estimation of functional
assay scores. As shown in Figure 3, including the predicted splicing
impact improved prediction accuracy in both learning frameworks.
Splicing-related information was also valuable to LEAP, such as the
distance to the nearest splice site and exon length. Exon length is an
interesting quantity that other researchers have also found to be
valuable in such prediction; there appears to be valuable information
encoded in exon length, beyond whether or not this length is of
modulo three (Jagadeesh et al., 2019), to indicate information such as
if the loss of the exon would introduce a frameshift. This further
suggests that future method development may benefit from a greater
emphasis on splicing information and might look beyond the splice
sites themselves to additional regulatory features.

We reviewed a number of variants that were annotated as
Benign or Likely Benign by ENIGMA, yet predicted as pathogenic
by most predictors. Many of these variants were in conserved,
clinically-important domains, yet in solvent-exposed, loop regions
within these domains. Examples include BRCA1:¢.5312C>G and
BRCAZ2:c.8764A>G. Many predictors in this experiment use protein
structure information, either directly or indirectly through predictors
they incorporate, yet perhaps the protein structure information is
being masked by the strong conservation signal.

4 | CONCLUSION

In the CAGI5 ENIGMA Challenge, six teams submitted blind predictions
with 14 methods on a set of 326 BRCA1/2 exonic variants (mostly
missense variants plus a few in-frame indels). These variants all had a
minor allele frequency of less than 1%, and had recently been assessed
for clinical significance by the ENIGMA Consortium using multifactorial
likelihood analysis methodology. While this set of variants was skewed
to the Benign and Likely Benign category, this skew is representative of
the BRCA1/2 variants encountered in clinical practice. Yet it should be
noted that given the small size of the data, and particularly the small
number of pathogenic variants, this assessment should not be over-
interpreted. For example, a predictor who predicts 100% sensitivity on
a set of 17 pathogenic variants can still have a Wilson confidence
interval as low as 82% (Wilson, 1927). Predicting the clinical impact of
variants remains a hard problem. This experiment showed that the best
methods achieved an F1 accuracy of just over 0.8, implying that variant
prediction might be the wrong one out of every five variants, at bestx.
Variant prediction is not yet ready for clinical application in the absence
of other data. With that said, this assessment may provide useful
qualitative information.

A confounding factor in this experiment was that most of the
pathogenic variants were in the subscription version HGMD and
were predicted as pathogenic (‘Disease-causing Mutations”) by
HGMD. This information was only available to HGMD subscribers.
In theory, paid HGMD subscriptions are available to anyone; in
practice, the subscription fees are beyond the means of many
academic labs and smaller institutions. This information was available
to the LEAP methods (minus LEAP 2, which used publicly-available
information only), and appears to have been instrumental in many
correct pathogenic predictions by LEAP 1. Recognizing this potential
bias, the results of this experiment should best be used as a
motivation for methods development rather than a guide for direct
clinical interpretation. Yet these results present a powerful lesson for
the scientific community that there is private data that shows value
invariant prediction. By extension, efforts to make such data more
broadly-available are likely to advance the science of variant
prediction.

Nonetheless, we learned several valuable lessons in this experi-
ment, including the value of population frequency data. The LEAP
methods leveraged population frequencies from gnomAD, which were
instrumental in many accurate predictions. This is an information
source that was not used by most of the variant prediction methods,
yet is available now and stands to improve as more population-scale
sequencing studies become available (Lek et al., 2016).

While the pathogenic variants were few in number, they presented
a clear story on the importance of splicing information. In the LEAP
methods, splicing information as instrumental at predicting both
pathogenic variants as pathogenic, and benign variants as benign. The
results of the TransBiolnf team demonstrated that splicing information
improved prediction in two distinct architectures. When we assessed
the pathogenic variants that were not predicted as pathogenic by many
methods, many of them were proximal to splice sites. Our observations
suggest that predictive methods should routinely include prediction of
splicing impact. As our knowledge of splicing regulation improves, this
improved knowledge may translate to further improvements invariant
prediction methods.

The LEAP team from Color Genomics was able to draw upon
their large database of patient-level clinical results, as well as a
subscription to HGMD. They observed that the cancer frequencies of
individuals and their families ware valuable input for some variants
that would otherwise be difficult to classify. We observed that
variant co-occurrence information was an important factor in their
correctly predicting many of the benign variants as benign. It should
come as no surprise that the types of information that are valuable
for variant interpretation are also informative for predicting variant
pathogenicity. This offers an optimistic note on how data sharing
might improve the practice of variant prediction. While individual-
level (or case-level) data is difficult to share for privacy reasons, case-
derived information such as family history summary statistics and
variant co-occurrences can be shared in ways that do not
compromise patient privacy. As progress is made to share such
information, those who benefit will include the developers and users
of variant prediction methods.
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1 | INTRODUCTION

Abstract

BRCA1 and BRCA2 (BRCA1/2) germline variants disrupting the DNA protective role of
these genes increase the risk of hereditary breast and ovarian cancers. Correct
identification of these variants then becomes clinically relevant, because it may
increase the survival rates of the carriers. Unfortunately, we are still unable to
systematically predict the impact of BRCA1/2 variants. In this article, we present a
family of in silico predictors that address this problem, using a gene-specific approach.
For each protein, we have developed two tools, aimed at predicting the impact of a
variant at two different levels: Functional and clinical. Testing their performance in
different datasets shows that specific information compensates the small number of
predictive features and the reduced training sets employed to develop our models.
When applied to the variants of the BRCA1/2 (ENIGMA) challenge in the fifth Critical
Assessment of Genome Interpretation (CAGI 5) we find that these methods,
particularly those predicting the functional impact of variants, have a good
performance, identifying the large compositional bias towards neutral variants in
the CAGI sample. This performance is further improved when incorporating to our
prediction protocol estimates of the impact on splicing of the target variant.

KEYWORDS

bioinformatics, breast cancer, functional assays, gene-specific predictor, homology-directed
DNA repair (HDR), molecular diagnosis, ovarian cancer, pathogenicity predictions, protein-
specific predictor, splicing predictions

these individuals to surveillance, prevention programs and

targeted therapies (Paluch-Shimon et al., 2016). As a result, these

Germline variants disrupting the DNA protective role of BRCA1
and BRCA2 (BRCA1/2) result in an increased risk of developing
hereditary breast and ovarian cancers (HBOC; Roy, Chun, &
Powell, 2012; Venkitaraman, 2014). Identification of the carriers
of these variants is clinically relevant because it allows channeling

patients increase their survival rates; however, not all of them will
benefit equally, because we lack an exact knowledge of the
functional impact of BRCA1/2 variants. In these cases, a straight-
forward decision can only be taken when the variant is overtly
deleterious (insertions, deletions, and substitutions codifying

Human Mutation. 2019;40:1593-1611.
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FIGURE 1 Prediction protocol. In this article, we present a protocol for the prediction of missense variants that includes assessment of the
impact of this variant on splicing and protein function. This protocol has been used to interpret the variants of the ENIGMA challenge in the
CAGI 5 community experiment. MLR and NN refer to our two protein-specific predictors, based on a multiple linear regression model and a
neural network model, respectively. AS refers to the procedure to predict variants resulting in affected splicing (Moles-Fernandez et al., 2018).
Abbreviation: CAGI 5, fifth Critical Assessment of Genome Interpretation

truncated proteins). When the variant has an uncertain effect on
protein function (e.g., missense, synonymous, intronic, and 5'-
untranslated region [5'-UTR] or 3'UTR variants) the best course of
action becomes unclear. Solving this problem is not easy because
experimentally measuring the impact of these variants on the
activity of BRCA1 and BRCA2 (BRCA1/2), requires complex cell-
based assays (reviewed in Guidugli et al., 2013; Millot et al., 2012)
that are technically challenging for a systematic application
(Starita et al., 2015).

In these circumstances, in silico pathogenicity predictors of
missense substitutions—Align-GVGD (Tavtigian et al., 2006), Poly-
Phen-2 (Adzhubei et al., 2010), SIFT (Kumar, Henikoff, & Ng, 2009),
PON-P2 (Niroula, Urolagin, & Vihinen, 2015) and so on—are
employed as an inexpensive, easy-to-use alternative. The predictions
obtained are applied for prioritizing variants for experimental
evaluation and as a contribution to decision models that integrate
different sources of evidence (Karbassi et al., 2016; Lindor et al.,

2012; Moghadasi, Eccles, Devilee, Vreeswijk, & van Asperen, 2016;
Vallée et al., 2016). However, the moderate success rate of these
tools is an obstacle for their extended use in a clinical environment
(Riera, Lois, & de la Cruz, 2014). In the specific case of BRCA1/2,
Ernst et al. (2018) suggest, after testing the performance of Align-
GVGD, SIFT, PolyPhen-2, and MutationTaster2 on a set of 236
BRCA1/2 variants of known effect, that in silico results cannot be
used as stand-alone evidence for diagnosis. In terms of molecular
effect, two independent, massive functional assays of BRCA1 variants
(Findlay et al., 2018; Starita et al., 2015) show that in silico predictors
provide only a limited view of the functional impact of these variants.
In summary, we need to improve the predictive power of these tools,
if we want to increase their usage in the clinical setting and augment
their value for healthcare stakeholders.

The slow progression in performance displayed by pathogenicity
predictors along time shows that ameliorating them is a difficult task
(Riera et al.,, 2014). In this scenario, the use of rigorous performance
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estimates becomes an important factor, since improvements are
expected to be small and hard to establish. Generally, these
estimates are obtained using a standard N-fold cross-validation
procedure (Baldi, Brunak, Chauvin, Andersen, & Nielsen, 2000; Riera
2014; Vihinen, 2012).

availability of variant data, independent testing of predictors is

et al, However, given the increasing
emerging as a valuable option to complement cross-validated
performance estimates. Sometimes this testing is done in specific
systems for which new variants with impact annotations become
available, either at specific/general databases or through experi-
mental testing of their function. For example, Riera et al. (2015)
cross-validate their Fabry-specific predictor with a set of 332
pathogenic and 48 neutral variants, and provide independent
validation, using a set of 65 pathogenic variants obtained from an
update of the Fabry-specific database. Wei and Dunbrack (2013) test
five in silico predictors using an independent set of 204 variants (79
deleterious, 125 neutral) of the human cystathionine beta-synthase
whose impact they establish with an in vitro assay. Large variant sets,
including data from different genes, are also frequently used to
assess and compare the performance of several predictors simulta-
neously (reviewed in Niroula & Vihinen, 2016). While relevant, the
value of these approaches to validation is limited by different factors,
such as the fact that the standard of performance evaluation may
vary between works, the manuscripts may not always be easy to find,
and so on. In this situation, Critical Assessment of Genome
Interpretation (CAGI) (Hoskins et al., 2017), a community experiment
where developers can assess the performance of their methods in
specific challenges, offers an excellent opportunity to obtain an
independent view on their work. For users, it allows having an idea
on the state of the art for a protein or disease of their interest.

In this manuscript, we present: (a) A novel family of pathogenicity
predictors for scoring BRCA1 and BRCA2 missense variants; and (b)
their performance in the recently held CAGI 5 community experi-
ment.

The four tools described in this work (two for BRCA1 and two for
BRCA2) are protein-specific (Crockett et al., 2012; Ferrer-Costa,
Orozco, & de la Cruz, 2004; Pons et al., 2016; Riera, Padilla, & de la
Cruz, 2016), that is, only variants for a given protein are used to train
its two predictors. These two predictors differ on their objective:
One is trained to estimate the molecular-level impact of variants and
the other their clinical impact (neutral/pathogenic). Technically, for
the first predictor we employed a standard multiple linear regression
(MLR) approach and for the second, a neural network (NN) model
with no hidden layers.

Once obtained, these predictors were applied to the variants
constituting the BRCA1/2 (ENIGMA) challenge in CAGI 5. This was
done following a protocol that combined predictions of AS and
protein impact and was the same for both proteins (Figure 1).
Evaluating these two effects of genetic variants (on splicing and
protein function) is routine in general diagnostic procedures
(Richards et al., 2015) and there are specific tools in the case of
BRCA1/2 variants (Vallée et al., 2016; http://priors.hci.utah.edu/
PRIORS/). In our protocol, given an unknown variant, it was first

tested for its effect on the splicing pattern, using a recently
developed approach (Moles-Fernandez et al., 2018). If the variant
had no detectable effect, it was subsequently tested for its impact on
protein function, using the predictors here presented. Our results
show that all our protein-specific predictors can discriminate (with
different degrees of success) between neutral and pathogenic
variants, both for BRCA1 and BRCA2. For this binary discrimination
problem (neutral/pathogenic) their performances are comparable
with, or better than, those of general predictors (CADD, PolyPhen-2,
PON-P2, PMut, and SIFT). When applied to the variants of the CAGI
challenge, where the goal is to classify them in one of the IARC 5-tier
classes (or a reduced version with three classes) we see the same
trend. In spite of a decrease in performance, our methods are able to
predict the biased composition of the dataset, mainly our predictors
trained using data from the homology-directed DNA repair (HDR)
assay. Most of the neutral variants are correctly identified by these
predictors and, for pathogenic variants, in silico prediction of AS
enhances the final success rate.*

2 | MATERIALS AND METHODS

In this work, we present: (a) The development of a family of
predictors for BRCA1/2 missense variants, and (b) the use of these
tools to predict the pathogenicity of the ENIGMA variants in the
CAGI challenge. We first describe the overall prediction protocol
(Figure 1), which integrates predictors of splicing and protein impact,
and then focus on the description of the specific predictors.?

2.1 | Overall prediction protocol

In this section and in Figure 1, we describe the protocol followed in
our contribution to the CAGI 5 experiment, an experiment that
presents participants with different challenges revolving around a
central theme (Hoskins et al., 2017): The prediction of variant
pathogenicity and its applications. We focused our efforts on the set
of BRCA1 and BRCA2 variants provided by the ENIGMA consortium
(Spurdle et al., 2012), and we submitted four sets of predictions per
protein (Table S1). These four sets correspond to different
combinations of our approaches for the prediction of variants
leading to affected splicing (AS; one method; Moles-Fernandez
et al., 2018) or affecting protein function/structure (two methods:
MLR and NN). They are the following:

*Note on terminology: We have italicized the gene symbols (BRCA1 and BRCA2) and not the
protein symbols (BRCA1 and BRCA?2). In general, because we are presenting protein-specific
predictors, when referring to them, to the training variants, and so on, we have utilized the
non-italicized version. However, we are aware that at some points it is unclear which option
is preferable and our decision may be arbitrary.

“When referring to a variant regarding its impact on protein function, we will speak of
“functional”, "intermediate”, or “non-functional” variants, as those that result in a protein
that preserves its function, has lost part of it or has lost all of it, respectively. We will
preserve the terms “neutral”, "unknown” (or “uncertain”), and “pathogenic” to refer to the
clinical phenotype of the variant.
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. Set MLR+AS: AS impact+protein impact with MLR

. Set NN+AS: AS impact+protein impact with NN

. Set MLR+nAS: Predict protein impact with MLR, no AS predic-
tions used

W N e

o

Set NN+nAS: Predict protein impact with NN, no AS predictions
used

The submission format was the same for each set and was
provided by the organizers. It comprised the following information
per variant: Three fields for the identification (DNA variant; Gene;
protein variant); three fields for the prediction (predicted IARC 5-tier
class;® probability of the variant being pathogenic, which we call “p";
confidence of each prediction probability, which we call “sd”); and one
field for "Comments.”

For the sets MLR+AS and NN+AS, any variant predicted as
“pathogenic” by the AS predictor was arbitrarily assigned values of
p=1 and sd=0, and the ENIGMA class “5". Otherwise, the variant
was annotated using our protein impact predictors, which were
obtained as explained below. That is, the protein impact was
estimated only if the variant had no predicted effect on AS. One
can distinguish these situations by the text in the “Comments”
column: (a) “Splicing,” which means that the variant is annotated with
the AS predictor; (b) “protein,” which means that the variant is
annotated with the protein-based predictors (MLR or NN); (c)
“arbitrary,” which is only used for variants for which we have not a
predictor (annotation is arbitrarily set to the following: ENIGMA
class =5; p=.5; and sd =0.5).

For the sets MLR+nAS and NN+nAS we did not use AS predictors.
All the variants are annotated using our protein impact predictors
(obtained as explained below). As before, these situations are
distinguished in the “Comments” field with the labels “protein,” if
the variant is annotated with the protein-based predictors (MLR or
NN).

2.2 | Prediction of AS variants

To score the effect on splicing of the CAGI variants from the
ENIGMA challenge, we have used the results of our recent work
(Moles-Fernandez et al, 2018) where we identified the best
combination of in silico tools for predicting splice site alterations,
among those predictors available in the package Alamut Visual v2.10.
More precisely, we showed that the HSF+SSF-like combination (with
A-2% and A-5% as thresholds, respectively) for donor sites and the
SSF-like (A-5%) for acceptor sites, exhibited an optimal performance
in a benchmark combining RNA in vitro testing and a dataset of
variants retrieved from public databases and reported in the
literature. For the CAGI challenge (Figure 1), a variant predicted to
produce splice site alterations was arbitrarily assigned Class 5, p=1

The five ENIGMA classes used correspond to the IARC 5-tier classification system (Goldgar
et al., 2008; Plon et al., 2008:; 1 ="Not p: ic,” “Likely not ic,”
3="Uncertain,” 4 = "Likely pathogenic,” 5 = “Pathogenic”) and were taken from CAGI's
website for the BRCA1 and BRCA2 challenge (https://genomeinterpretation.org/content/
BRCA1_BRCA2).

and sd =0; in the comments column it was identified as “splicing”.
Variants giving no signal for splice site alterations were directly
channeled to the protein predictors.

2.3 | Protein-based predictors

We have developed two methods for predicting the impact of protein
sequence variants of BRCA1 and BRCA2, One is based on a NN and
is trained to produce a binary output reflecting the pathogenic nature
—cancer risk (high/low)—of a cancer variant. The other method is
based on an MLR and is trained to predict the values of the HDR
assay for a variant. Both methods are protein-specific: There is a
version of MLR for BRCA1 and another for BRCA2, and the same for
NN. We describe them below; we start with the NN because it
employs more predictive features (6) than the MLR, which only uses a
subset of these (3).

2.3.1 | The NN method

We have followed our approach to produce protein-specific
predictors (Riera et al, 2016), which comprises the three steps
described below: (a) Obtention of a variant dataset true to the
prediction goal; (b) labeling of variants with chosen features; and (c)
obtention of the NN model.

Obtention of BRCA1 and BRCAZ2 variants

Missense variants in this dataset were selected with clinical impact in
mind. This was done by manually reviewing several gene-specific
databases that collect BRCA1 and BRCA2 variants along with
published literature: Leiden Open Variation Database (LOVD)
describing functional studies of specific BRCA1 and BRCA2 variants
(http://databases.lovd.nl/shared/genes/BRCA1; http://databases.
lovd.nl/shared/genes/BRCA2), LOVD-IARC dedicated to variants
that have been clinically reclassified using an integrated evaluation
(http://hci-exlovd.hci.utah.edu/home.php?select_db=BRCA1), BRCA
Share™ (formerly Universal Mutation Database UMD-BRCA muta-
tions database http://www.umd.be/BRCA1/; http://www.umd.be/
BRCAZ2/), CLINVAR, that provides clinical relevance of genetic
variants (https://www.ncbi.nlm.nih.gov/clinvar/), and BRCA1 CIRCOS
which compiles and displays functional data on all documented
BRCA1 variants (https://research.nhgri.nih.gov/bic/circos/). Finally,
each variant was validated by combining different sources of
evidence.

Variants for which the pathogenic role was attributable to splice
site alterations (assessed using Alamut Visual biosoftware 2.6, from
Interactive Biosoftware) were eliminated. This was done to ensure, as
far as possible, that our model was trained using variants whose
damaging/neutral nature was a consequence of their impact in
protein function/structure only.

The final datasets (Table S1) were constituted by Table 1: (a)
BRCA1: 77 "pathogenic” and 149 “neutral” variants; and (b) BRCAZ2:
36 “pathogenic” and 105 “neutral” variants.
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Features

We used a total of six features to label the variants for the predictor
training. We have previously used them for the development of
protein-specific predictors (Riera et al, 2016). We describe them
below for the benefit of the reader.

Two features are based on the use of multiple sequence
alignments (MSA): Shannon’s entropy and position-specific scoring
matrix element. Shannon’s entropy is equal to —Xj,.log(,), where the
index i runs over all the amino acids at the variant’'s MSA column.
Position-specific scoring matrix element for the native amino acid
(pssMpat) is equal to 10g(frati/fatmsa), Where foa; is the frequency of
the native amino acid at the locus i of the variant and framsa is the
frequency of the same amino acid in the whole MSA. We used two
different MSA, psMSA, and oMSA, which resulted in two versions of
the NN predictor. psMSA were obtained using the same protocol

utilized for the protein-specific predictors (Riera et al., 2015, 2016)
which, briefly, consists of two steps: (a) Recovery of BRCA1/2
homologs using a query search of UniRef100; (b) elimination of
remote homologs (<40% sequence identity); alignment of the
remaining sequences with muscle (Edgar, 2004). The resulting MSA
is available on demand from the authors. The oMSA, available from

the group of Sean Tavtigian (Tavtigian, Greenblatt, Lesueur, &
Byrnes, 2008), comprise only orthologs of BRCA1 and BRCA2, and
are publicly available at the web of the Huntsman Cancer Institute,
University of Utah (http://agvgd.hci.utah.edu/alignments.php). The
NN predictions submitted to CAGI were those obtained with the
method developed using the psMSA, although results for the second

predictor are mentioned below.

Three features, each measuring the difference between native
and mutant amino acids for a single physicochemical property: van
der Waals volume (Bondi, 1964), hydrophobicity scale (estimated
from water/octanol transfer free energy measurements) (Fauchere &
Pliska, 1983), and the element of the Blosumé2 matrix (Henikoff &
Henikoff, 1992) corresponding to the amino acid replacement.

Finally, a sixth feature, that is, binary (1/0) and summarizes the
information available on the functional/structural role of the native
residue at the UniProt database. It is set to “1” when the native
residue has a functional annotation on that database, and “0” if this is
not the case.

NN predictor

The NN predictor was built using WEKA (v3.6.8; Hall et al., 2009).
After our experience in the development of protein-specific
predictors with small datasets (Riera et al., 2016), we employed the
simplest NN model: a single-layer perceptron. Sample imbalances in
the training set were corrected with SMOTE (Chawla, Bowyer, Hall,
& Kegelmeyer, 2002).

The NN model gives two outputs: (a) a binary prediction for the
variant, either pathogenic or neutral; (b) a continuous score,
comprised between O and 1, that reflects the probability of
pathogenicity.

A Leave-one-out cross-validation (LOOCV) of the model was
done also using the WEKA (v3.6.8; Hall et al., 2009) package.

CAGI output

As mentioned above, the CAGI submission requires three pieces of
information for each variant prediction: The predicted IARC 5-tier
class, p (probability of pathogenicity), and sd (reliability). We took as
“p" the output from the NN: It varies between O (minimal probability
of pathogenicity) and 1 (maximal probability of pathogenicity). For
the sd value, we used the following formula (Ferrer-Costa et al.,
2004): sd =0.5-]0.5-p|. It goes from O (maximal reliability) to 0.5
(minimal reliability). Finally, the predicted IARC 5-tier class was
obtained from the p, using the ENIGMA conversion table at the CAGI
site (Class 5: p>.99; Class 4: .95<p<.99; Class 3: .05<p<.949;
Class 2: .001 < p <.049; Class 1: p<.001).

2.3.2 | The MLR method

This method aims to predict the values of the HDR assay for a given
variant, which is a measure of the impact of this variant on BRCA1/2
molecular function. Because the output of the HDR assay is a
continuous value, we opted for using an MLR as a modeling tool, as
implemented in the python package Scikit-learn (Pedregosa et al.,
2011). The LOOCYV of the model was done with the same package.
For a given variant, the output of our model is HDR 4, the predicted
value of the HDR assay.*

To develop our method we used experimental HDR results
available from the literature: 44 variants for BRCA1 (Starita et al.,
2015) and 185 variants for BRCA2 (Guidugli et al., 2013, 2018)
proteins. However, to reinforce the strength of the signal, relative to
experimental noise, we did not employ the full datasets. The BRCA1
training dataset was constituted by those variants used to build the
NN predictor (see the previous section) for which HDR values were
available; for BRCA2 we followed the same approach. The final
number of HDR values was 28 for BRCA1. For BRCA2, we worked
with 92 HDR values that corresponded to 56 variants (some had
been tested twice; Guidugli et al., 2013, 2018).

Given the small size of these variant datasets, to try to minimize
overfitting problems, we used only three of the previous features
(see Section 3.1.2, Shannon’s entropy, pssm,., and Blosumé2
element) as independent variables in the regression model. Like for
NN methods, the MSA-based features were computed with the
psMSA and the oMSA, thus leading to two versions of the MLR. Only
the predictions for the oMSA-based MLR were submitted to CAGI;
however, the results for the second predictor are also provided in

this manuscript.

CAGlI output
To adapt the MLR predictions to the CAGI format, we used the
following steps:

“When obtaining the HDR predicted values using this method, in a few cases the result was
a slightly negative number. In these cases, the predicted value was set to 0, because the
output of the HDR experiment is always a positive number.



PADILLA €T AL

=

. Obtain HDR.q4, the MLR predictions for the variants in the
BRCA1 and BRCAZ2 training datasets.

. Separately for BRCA1 and BRCA2, compute the mean and
standard deviations of the HDR values of the known “pathogenic”

N

and “neutral” variants. At this point, we have four values for each
protein: mp, sdp, My, sdn.

. After the “pathogenicity” assignment, we computed CAGI's “p” as

w

follows: N(x; mp, sdp)/(N[x; mp, sdp] + N[x; my, sdn]), where N(x; m,
sd) represents a normal probability distribution of mean m and
standard deviation sd. The resulting value is comprised between O
(“neutral”) and 1 (“pathogenicity”) and reflects the probability of a
variant being “pathogenic”, according to our model.

>

The sd value was obtained, as for the NN methods, using the
following formula (Ferrer-Costa et al., 2004): sd = 0.5-|0.5-p|.

2.4 | Performance assessment

As mentioned before, during the development process predictor
performance was estimated using a standard LOOCV procedure for
each predictor (Riera et al., 2016), regardless of whether it was MLR
or NN.

The parameters used to measure the success rate of the
predictors vary depending on the number of classes predicted.
During the development process, the NN method predicted only two
classes: Pathogenic and neutral; in subsequent validations, including
that of the CAGI submissions, three and five classes were considered.
We describe below the performance parameters employed in each

case.

2.4.1 | Binary performance assessment

Here success rate was measured with four commonly employed
parameters for binary predictions (Baldi et al., 2000; Vihinen, 2013):
sensitivity, specificity, accuracy, and Matthews correlation coefficient
(MCC). They are computed as follows:

-Sensitivity:

_TP__

TP + FN
~Specificity:

_IN __

TN + FP
~Accuracy:

TP + TN

TP+ FP+ TN + FN

-MCC:

TP-TN — FP-FN
JCTP + FN)-(TN + FP)-(TP + FP)-(TN + FN)

where TP and FN are the numbers of correctly and incorrectly
predicted pathological variants; TN and FP are the numbers of
correctly and incorrectly predicted neutral variants, respectively.

2.4.2 | Multiclass performance assessment

In our case, we need to evaluate the performance of our methods
when their score is transformed into a five or three class prediction;
for example, this happens when assessing the CAGI submission (we
predict five classes) and the application of our MLR to the recently
published exhaustive, functional assay of BRCA1 variants (Findlay
et al., 2018), where we predict three classes. For multiclass problems,
the number of options available is smaller than for binary problems
(Baldi et al, 2000; Vihinen, 2013). Here we have utilized the
following: The confusion matrices, the accuracies per class, the
overall accuracy, and the multiclass MCC (Gorodkin, 2004; Jurman,
Riccadonna, & Furlanello, 2012).

For a multiclass problem with M classes the confusion matrix,
C = (cy), is an (M x M) matrix where c; is the number of times a class i
input is predicted as class j. The sum of the c; corresponds to the
sample size N, which in our case is the total number of variants
predicted. This matrix provides the simplest description of the
performance of a predictor; its diagonal and off-diagonal elements
correspond to the predictor’s successes and failures, respectively. If
we normalize each diagonal element by its row total (c;/ Zc;, where
j=1, M) we obtain the accuracy of the predictor for class i. If we add

all the diagonal elements and divide the result by N (Zic;/N, where
i=1, M), we obtain the overall accuracy.

The multiclass MCC (Gorodkin, 2004; Jurman et al., 2012) was
obtained using the implementation in the python package Scikit-learn
(Pedregosa et al., 2011).

3 | RESULTS

In this article, we describe the obtention of a novel family of
pathogenicity predictors specific for BRCA1/2 proteins (MLR and
NN) and their application to the variants in the CAGI challenge,
within a protocol that also includes AS predictions (Figure 1).
Sections 3.2-3.5 correspond to the first part, and Section 3.6
corresponds to the second part.

As we have seen in Section 2, we have considered the use of
different MSA (psMSA and oMSA) to develop our predictors.
However, we center our descriptions on the versions employed for
the CAGI challenge: MLR based on oMSA and NN based on psMSA.
For completeness, we also provide the performance of our methods
when developed using psMSA (for MLR) and oMSA (for NN).

3.1 | The variant datasets

In Table 1a we give the size of the datasets employed in this work. In
Table 1b, we report the overlap between the CAGI and the remaining
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TABLE 1a Size of the datasets used in this work (CAGI: missense
+AS)

NN MLR CAGI SGENaN
BRCA1 226 (P=77/N =149) 28 144 1,837
BRCA2 141 (P =36/N = 105) 56 174 =

Abbreviations: AS, affected splicing; CAGI, Critical Assessment of
Genome Interpretation; MLR, multiple linear regression; N, neutral; NN,
neural network; P, pathogenic; SGE, saturation genome editing.
“Dataset extracted from Findlay et al. (2018)

TABLE 1b Overlap between datasets (CAGI: missense+AS)

NN-CAGI MLR-CAGI MLR-SGENaN
BRCA1 18 (P=7/N=11) 2 28
BRCA2 5(P=2/N=3) 4 =

Abbreviations: AS, affected splicing; CAGI, Critical Assessment of
Genome Interpretation; MLR, multiple linear regression; N, neutral; NN,
neural network; P, pathogenic; SGE: saturation genome editing.
?Dataset extracted from Findlay et al. (2018)

datasets. Note that the CAGI class information on each variant was
made public only after the challenge was closed.

3.1.1 | Training datasets for NN and MLR

The number of missense variants in the NN training sets (BRCA1,
226; BRCA2, 141) is comparable with that used for developing
protein-specific predictors with the same NN model and variant
features (Riera et al., 2016). The situation is different for the MLR
training sets, which were small (BRCA1, 28; BRCA2, 56), thus
imposing a severe limitation in the number of features that can be
used in the model (see Section 2).

3.1.2 | Validation dataset for BRCA1 MLR

This set is obtained from the results of a recently published
(Findlay et al., 2018) experiment for BRCA1. The authors

functionally score a large number of single-nucleotide variants;
we retrieved the 1,837 cases corresponding to missense variants.
We refer to this dataset as SGE (from “saturation genome
editing”). We used SGE to further test the performance of our
BRCA1 MLR because Findlay et al. (2018) find that there is a
correspondence between their functional score and the score of
the HDR assay.

3.1.3 | CAGI datasets

Their size (BRCA1, 144; BRCA2, 174) is of the same magnitude as
that of the NN training datasets. In Table 2 we provide two
partitions of these datasets, corresponding to: (a) the original,
5-class ENIGMA partition; and (b) a reduced, 3-class partition.
For the latter, the “Pathogenic” and “Likely pathogenic” classes
have been unified into a single “Pathogenic class” and the “Likely
not pathogenic” and “Not pathogenic” classes have been unified
into a single “Neutral class”. The “Uncertain class” (or “Unknown”)
has been left untouched. It must be noted the high compositional
imbalance of the CAGI dataset, with the total of classes 1 and 2
being 10 and 25 times higher than that of the remaining classes,
for BRCA1 and BRCA2, respectively. In particular, the absolute
numbers of variants for classes 3, 4, and 5 are so low that they
can hardly lead to reliable estimates for class-dependent
parameters. For example, there are only two variants of class 3
for both BRCA1 and BRCA2; two and three variants for classes 4
and 5, respectively, in BRCA2; and four and seven variants for
classes 4 and 5, respectively, in BRCA1.

3.2 | Predicting the functional impact of BRCA1/2
variants: The MLR predictor

We have developed two MLR methods, one per protein. The goal
of these methods is to predict the impact of a given variant on
protein function, as measured by the HDR experiment. To this
end, they were trained with a set of variants with known

experimental values for the HDR assay and the features chosen

TABLE 2 Composition of the ENIGMA dataset in the CAGI 5 challenge

(A) BRCA1

IARC 5-tier class 1 (<0.001) 2 (0.001-0.049)
CAGI 31 100

Three Class® Neutral

CAGI 131

(B) BRCA2

IARC 5-tier class 1 (<0.001) 2 (0.001-0.049)
CAGI 31 136

Three Class® Neutral

CAGI 167

3 (0.05-0.949) 4 (0.95-0.99) 5(>0.99)
2 4 7
Unknown Pathogenic

2 11

3 (0.05-0.949) 4 (0.95-0.99) 5(>0.99)
2 2 3
Unknown Pathogenic

2 5

Abbreviations: CAGI, Critical Assessment of Genome Interpretation; IARC, International Agency for Research on Cancer.
AThis classification is a simplified version of the IARC 5-tier scheme (see manuscript) where the Neutral class corresponds to IARC classes 1 and 2, the
Pathogenic class corresponds to IARC classes 4 and 5, and Unknown corresponds to IARC class 3.
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FIGURE 2 Observed versus predicted HDR values for (a) BRCA1 and (b) BRCAZ2. In blue, we show the variants used for the training/testing
of our MLR method (the version trained with oMSA, used to generate CAGI predictions). The HDR predicted values are cross-validated
(LOOCV, see Section 2). For completeness, we show in gray the points from the original HDR experiments that were excluded from the training
process after applying our filtering procedure (see Section 2). CAGI, Critical Assessment of Genome Interpretation; HDR, homology-directed
DNA repair; LOOCYV, leave-one-out cross-validation; MLR, multiple linear regression; MSA, multiple sequence alignment

are related to the effect variants can have on protein structure,
protein-protein interactions, and so on. (Ferrer-Costa, Orozco, &
de la Cruz, 2002; Riera et al., 2014). In Figure 2, we see that there
is a statistically significant correlation between observed versus
predicted (LOOCV) HDR values (BRCA1, 0.72; p=1.5x10">;
BRCA2, 0.73; p=3.3x 10""7). Visual inspection reveals that the
variants tend to group into two clusters, showing that MLR
predictions approximately reproduce the bimodal pattern of HDR
assays (Guidugli et al., 2013; Starita et al., 2015). We also show
(gray color), the predictions for the variants which were left
outside the training set, after applying the pathogenicity condi-
tion (see Section 2); they are more scattered than those forming
the training set, illustrating how the filtering worked.

We explored how good this level of accuracy is for a standard
two-class (pathogenic/neutral) prediction of the variant’s patho-
genicity. To this end we discretized the predictions applying a
decision boundary: A variant was called pathogenic or neutral
when its predicted HDR score was below or above a given
threshold, respectively. These thresholds, taken from the experi-
mental papers, where: 0.53 for BRCA1 (Starita et al., 2015) and
2.25 for BRCA2 (Guidugli et al., 2013). In Table 3 we give the
parameters measuring the success rate of the discretized MLR
methods. Their accuracies, 0.75 for BRCA1 and 0.86 for BRCA2,
fall within the 0.79-0.99 accuracy range for protein-specific
predictors (Riera et al,, 2016); the same happens for the MCC,
0.50 for BRCA1 and 0.71 for BRCA2. We detect that specificity
(0.85) and sensitivity (0.86) are closer for BRCA2 than for BRCA1
(spec, 0.87; sens, 0.62). Actually, for BRCA1 sensitivity tends to
be small when compared with that of protein-specific predictors
(Riera et al, 2016). Overall, these results indicate that the
continuous HDR predictions of our MLR model can be trans-
formed into binary predictions preserving a non-random

prediction power, comparable with that of predictors trained
with binary encodings (pathogenic/neutral) of the variant impact.

3.3 | Validation of the BRCA1 MLR predictor with
functional data

The recent publication (Findlay et al, 2018) of a massive functional
assay of BRCA1 variants has given us the opportunity to check the
performance of our MLR model on a set of 1,837 variants. The output
of this experiment is a continucus value measuring the impact of
sequence variants on BRCA1 function. When we represent these
values against our HDR predictions (Figure 3a) we observe two
clusters of points (below and above SGE=-1) that reflect the
bimodal behavior of both assays, with a statistically significant rank
correlation (Spearman’s p=0.47; p~0). This overall coincidence is

TABLE 3 Two-class (binary) performance of our predictors

Protein Method SN SP ACC MCC
BRCA1 MLR (psMSA) 0692 0933 0821 0651
MLR-CAGI (oMSA)  0.615 0867 075 0.502
NN (oMSA) 0922 0852 0876 0746
NN-CAGI (psMSA) 0857 0718 0765 0546
BRCAZ MLR (psMSA) 0828 0741 0786 0571
MLR-CAGI (oMSA) 0.862 0852 0857 0714
NN (oMSA) 0.75 0.867 0837 0592

NN-CAGI (psMSA)  0.75 0771 0766 0473

Note: “CAGI" identifies the predictors used for this challenge.
Abbreviations: ACC, accuracy; CAGI, Critical Assessment of Genome
Interpretation; MCC, Matthews correlation coefficient; MLR, multiple
linear regression; MSA, multiple sequence alignment; NN, neural network;
SN, sensitivity; SP, specificity.
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FIGURE 3 Prediction of the “saturation genome editing” (SGE) experiment in BRCA1. We use our impact prediction to check the
correspondence between our HDR predictions and the results of the SGE experiment (Findlay et al., 2018). (a) Scatterplot representing SGE
values versus HDR predictions for the 1,837 missense variants from (Findlay et al., 2018; Spearman’s p =0.47; p ~ 0). (b) Violin plot showing the
distribution of variants for the different combinations of SGE and HDR functional categories: “functional” (FUNC), “intermediate” (INT), and
“non-functional”’(NOF). Points in the off-diagonal quadrants correspond to outliers: Points whose SGE (observed) and HDR (predicted)
functional classes do not coincide. (c) Principal component analysis of three variant populations (HDR-SGE classes): FUNC-FUNC (dark blue),
NOF-NOF (red) and the outliers NOF-FUNC plus INT-FUNC (light blue). (d) Principal component analysis of three variant populations (HDR-
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limited by a substantial scatter. Part of it may be due to technical/
biological (intraexon normalization procedures, the impact of RNA
levels, etc.) differences between the SGE and HDR experiments that
introduce some dispersion in the comparison between both experi-
ments (see Figure 9m from Extended Data Section in Findlay et al.,
2018). Another part of the scatter is due to limitations of our model.
To better understand these, we divided the SGE-HDR plane into nine

regions, corresponding to the 3x3 combinations of SGE (“func-
tional,” “intermediate,” and “non-functional”; Findlay et al., 2018) and
HDR (“High,” “Int,” and “Low”; Starita et al., 2015) equivalent,
functional classes. The main blocks of outliers correspond to the two
top-left and the two bottom-right regions. We separately used the
variants inside each block for a principal component analysis (PCA),
using as variables the three features in our model (Shannon's
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entropy, pssmy,, and Blosumé2 element). As a reference, for each
PCA we also included the variants from the upper (“functional”) and
lower (“non-functional”) diagonal regions. In the plane of the first two
principal components (PC1 and PC2 in Figure 3c,d) the chosen
variants adopt a three-layered disposition, where we successively
find the “functional,” the outliers and the “non-functional” ones. This
disposition reflects the contrast between the bimodal nature of the
SGE experiment and the smoother nature of our model.

In fact, in Figure S1 we can see that those outlier variants indeed
tend to have intermediate values (comprised between those of the
“functional” and “non-functional” populations’) for the features in our
model. This suggests that for these variants we need to improve our
representation of protein impact with new properties, to reproduce
more accurately the results of the SGE experiment. However, it may
also indicate the need to consider the effect of variants on other
aspects of gene function, like RNA levels (Findlay et al., 2018).

3.4 | Predicting the clinical impact of BRCA1/2
variants: The NN predictors

We have developed two NN methods, one per protein. These
methods were trained with the idea of predicting the clinical impact
of a given variant. To this end, during the training process, each
variant was labeled with a binary version of this clinical impact:
Pathogenic/neutral. Here, the larger amount of data (Table 1aa)
allowed us to work with three additional features, fully adhering to
our protocol for the obtention of protein-specific predictors (Riera
et al., 2016). As for the MLR predictors, the results obtained (Table 3)
are comparable to those of other protein-specific predictors. Their
accuracies, 0.77 for both BRCA1 and BRCAZ2, are almost within the
0.79-0.99 accuracy range for protein-specific predictors; the same
happens for the MCC, 0.55 for BRCA1 and 0.47 for BRCA2. The
sensitivities and specificities are more balanced for both BRCA1
(spec, 0.72; sens, 0.86) and BRCA2 (spec, 0.77; sens, 0.75) when
compared with what happened for the MLR predictors.

Overall, as in the case of MLR, the results indicate that the more
clinically flavored NN predictors have a prediction power comparable
to that of other protein-specific predictors (Riera et al., 2016).

3.5 | Comparison with general pathogenicity
predictors

To put in context the results of our protein-specific predictors, we
give the performance, on our training datasets, of a representative
set of general predictors: CADD (Kircher et al., 2014), PolyPhen-2
(Adzhubei et al., 2010), SIFT (Kumar et al., 2009), PON-P2 (Niroula
et al., 2015), and PMut (Lopez-Ferrando, Gazzo, De La Cruz, Orozco,
& Gelpi, 2017). Care must be exercised when considering the results
of this comparison, because the variants in our datasets can be found
in databases, like UniProt (Bateman et al., 2017), commonly used to
develop pathogenicity predictors (Riera et al.,, 2014). Therefore, it is
likely that some of these variants have been used in the training of
the general methods, thus leading to optimistic estimates of their

performance. An additional limitation of the comparison is the small
sample size involved, for example, training of BRCA1 MLR was done
using only 28 variants.

In general, we observe (Figure 4) that our specific methods have
success rates comparable with those of general methods. For MCC,
our methods are only surpassed by PMut. For BRCA2, our NN is
slightly surpassed by PON-P2 (MCC of 0.47 vs. 0.49), but our MLR
surpasses PON-P2 (MCC of 0.71 vs. 0). The sensitivities and
specificities of our methods are generally smaller and larger,
respectively than those of other methods. However, our methods
have an equilibrated performance for pathogenic and neutral
variants (Figure 4ef), because they display the smallest differences
between sensitivity and specificity, 0.14 (BRCA1) and 0.021 (BRCA?2)
for NN, respectively, and 0.25 (BRCA1) and 0.01 (BRCA2) for MLR.
Only PMut has closer values for the MLR training set of BRCA1, 0.06.

3.6 | Results of the predictors in the CAGI
experiment

In this section, we present the results of applying our prediction
protocol (Figure 1) to the CAGI variants. For each protein, we
submitted to the CAGI challenge the results of four versions of this
protocol (Figure 1): MLR+AS, NN+AS, MLR, and NN. For simplicity,
we will restrict our analysis to the complete protocols (MLR+AS, NN
+AS), mentioning protein predictions (MLR, NN) only for discussing
the contribution of the AS predictors. The performance was assessed
using the class assignments provided by the CAGI organizers after
the challenge was closed. More precisely, we computed the ability of
our protocols to correctly assign a variant to its class in two different
classification schemes. One is the IARC 5-tier classification system
(Goldgar et al., 2008; Plon et al., 2008), which was the one requested
by the organizers; the other is a 3-class version of this system (see
Section 2).

The fact that we must consider the performance for more than
two classes makes the evaluation problem more difficult: In multi-
class problems confusion matrices retain their explanatory power,
but summary measures are not easy to generalize, nor to interpret
(Baldi et al., 2000; Vihinen, 2012). In our case, the severity of this
problem is augmented by the compositional imbalance in the CAGI
dataset (Table 2). For these reasons, we focus our analysis mainly on
the confusion matrices (represented as heatmaps) because they
provide the basal information in any prediction process and allow a
direct interpretation. More concretely, we consider: (a) The diagonal
elements to see how good our predictions are; and (b) the off-
diagonal elements to see how incorrect predictions distribute among
classes. We treat separately BRCA1 and BRCA2 cases because the
performance of specific and general pathogenicity predictors is gene-
dependent (Riera et al., 2016).

3.6.1 | BRCA1 variants

Looking at the diagonals of their confusion matrices (Figure 5), we
observe that MLR+AS and NN+AS can recognize, with varying
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accuracies, members from three (1,2,5) and two classes (2,5),
respectively. This overall trend is reflected in the class accuracies,
which are higher for MLR-based protocols than for NN-based ones
(Table 4). If AS predictions are not included, the two methods also fail
to recognize class 5 variants (Table 4). In fact, for MLR+AS and NN
+AS protocols AS predictions are responsible for the accuracy of
class 5, which is 0.43 (3 out of 7 correctly predicted variants) in both
cases; AS predictions lead to a single failure, for a class 2 variant.

To understand the distribution of incorrect predictions among
classes, we consider the off-diagonal elements of the confusion
matrices (Figure 5). For MLR+AS, incorrect predictions mostly group
at positions adjacent to the diagonal, with only 9 out of 144 variants
breaking this trend. For NN+AS this number grows to 31 and
predictions (both correct and incorrect) seem to cluster around the
class 3 column.

If we analyze the predictions within the unified 3-class frame-
work, we find that the class accuracies increase for MLR+AS: 0.82
and 0.56 for “Neutral” and “Pathogenic,” respectively. For NN+AS,
this is not the case, due to the previously mentioned clustering of
predictions around class 3. Accuracy for the “Unknown” class is the
same as that for IARC 5-tier class 3 because the classes are the same.

Finally, we compare the performance of our predictors with that
for the general predictors for which the output directly corresponded

to a probability of pathogenicity (we only excluded CADD, because
the score has another scale; Figure 5). For the chosen predictors
(PMut, PolyPhen-2, PON-P2, and SIFT) their score is a probability of
pathogenicity that can be transformed into an equivalent of the IARC
5-tier classes, using the ENIGMA conversion table (see Section 2).
Focusing on the most frequent CAGI variants (31 from class 1; 100
from class 2), we see that MLR+AS performs better than general
methods; for class 5, all general methods, except SIFT, identify fewer
correct variants. The case of SIFT is of interest since some of the
class 5 variants appear to be splicing variants according to our AS
predictions: At this point, and without further evidence, it is unclear
which is the correct view, the amino acid view provided by SIFT or
the nucleotide view provided by AS predictions. For classes 3 and 4,
the size of the sample, two and four variants, respectively, limits the
value of the results, which are: For the two variants of class 3, MLR
+AS performs worse than general methods; for the four variants of
class 4, only PolyPhen-2 correctly identifies two of them. A
remarkable feature of MLR+AS, relative to general methods, is that
its predictions form a band around the diagonal, while general
methods either scatter their predictions (PolyPhen-2, SIFT) or cluster
them around class 3 (PON-P2 and PMut). Comparison of NN+AS
with general methods (Figure 5) shows similarities with PON-P2 and
PMut, and a failure to identify members of class 1 that is shared with
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TABLE 4 Class accuracies for the CAGI variants (IARC 5-tier and 3-class unified classes)

Human Mutation Uy B Save e

(A) BRCA1
e (<o})01) (0.001%0.049) (0.05-30.949) (0.95‘}0.99) (>05.99)
MLR 0.323 0.37 0 0 0
MLR +AS 0.323 0.37 0 0 0.429
NN 0 0.29 0 0 0
NN + AS 0 0.29 0 0 0.429
Three Class Neutral Unknown Pathogenic
MLR 0.817 0 0.273
MLR +AS 0.817 0 0.545
NN 0.275 0 0
NN + AS 0.275 0 0.273
(B) BRCA2
ARG et (<0.1001) (0.001%0.049) (0.05-::)).949) (0.95‘-‘0.99) (>05.99)
MLR 0.871 0.007 0 0 0
MLR +AS 0.871 0.007 0 0 0.333
NN 0.194 0.382 0.5 0.5 0
NN + AS 0.194 0.382 0.5 0.5 0.333
Three Class Neutral Unknown Pathogenic
MLR 0.97 0 0
MLR +AS 0.964 0 0.2
NN 0.701 0.5 0.4
NN + AS 0.701 0.5 0.6

Note: The color shading reflects the correspondence between the two class systems.
Abbreviations: AS, affected splicing; CAGI, Critical Assessment of Genome Interpretation; IARC, International Agency for Research on Cancer; MLR,

multiple linear regression; NN, neural network.

all general methods, except PolyPhen-2; again, AS predictions favor
our method for class 5, except in the case of SIFT.

The comparison within the three-class framework (Figure S2)
confirms the previous trends, with MLR+AS having the largest class
accuracy for “Neutral,” 0.82, well over that of general methods (0.33

for PolyPhen-2; 0.04 for SIFT; 0.02 for PMut; and O for PON-P2).
MLR+AS displays the second best accuracy for “Pathogenic,”
together with PolyPhen-2 and behind SIFT. NN+AS again shows a
performance below that of these two general methods, but above
that of PON-P2 and PMut.
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3.6.2

| BRCAZ2 variants

For BRCA2, the situation is somewhat different. The diagonal
elements of the canfusion matrix (Figure 5) show that NN+AS can
recognize variants from the five classes, with varying accuracies
(Table 4), while MLR+AS recognizes only variants from classes 1, 2,
and 5. In addition, for the most frequent classes (1, 2) NN+AS is more
balanced than MLR+AS (Figure 5; Table 4): 0.19 (1) and 0.38 (2) vs.
0.87 (1) and 0.01 (2), respectively. Inspection of the off-diagonal
elements shows that wrong predictions are more spread for NN+AS
than for MLR+AR. For example, for MLR+AS, essentially all (97%) the
incorrect predictions of Class 2 go to Class 1, while this figure drops
to 55% for NN+AS. As before, the tiny number of variants in the
remaining classes reveals no clear trends. The AS predictions result in
one correctly identified member of Class 5 for the two versions of
our protocol; AS predictions lead to a single failure, for a Class 2
variant.

As for BRCA1, reduction of the five IARC 5-tier classes to a 3-
class system reveals a reversion in the previous trend, with a high-
class accuracy for “Neutral,” higher for MLR+AS (0.96) than for NN
+AS (0.70). Accuracy for the “Unknown” class is the same as that for
IARC 5-tier Class 3 because the classes are the same. For the
“Pathogenic” class, NN+AS still performs better than MLR+AS (Figure
5; Table 4).

Finally, we compare the performance of our predictors with that
for the general predictors for which the output directly corresponded
to a probability of pathogenicity (we only excluded CADD, because
the score has another scale; Figure 5). Focusing on the most frequent
CAGI variants (31 from Class 1; 136 from class 2), we see that NN
+AS performs better than general methods; MLR+AS is only better
for Class 1; for Class 2 its accuracy is low, the same as SIFT, and
below that of PolyPhen-2 and PMut. For Classes 3, 4, and 5, the
sample size is smaller than that of BRCA1 (2, 4, 7 vs. 2, 2, 3 variants
for BRCA1 and BRCA2, respectively); for this reason, we believe that
for these variants it is preferable to wait for next rounds of the CAGI
challenge to assess the performance of the different in silico tools,
including ours.

The comparison within the three-class framework (Figure 52)
confirms the previous trends, showing that for the “Neutral” class
(167 out of 174 CAGI variants) both MLR+AS and NN+AS surpass
general methods (Figure $2). For the “Pathogenic” class (5 variants),
PolyPhen-2, and SIFT have the best performances, while our methods
rank third (MLR+AS) and fourth (MLR+AS).

4 | DISCUSSION

Obtaining good estimates of the functional impact and cancer risk of
BRCA1 and BRCAZ2 sequence variants plays a vital role in the
diagnosis and management of inherited breast and ovarian cancers
(Eccles et al., 2015; Findlay et al., 2018; Guidugli et al., 2018; Moreno
et al., 2016; Paluch-Shimon et al,, 2016). A priori, in silico tools, can
be used to obtain these estimates; however, their moderate success

rate restricts their applicability (Ernst et al., 2018). In this work, we
have addressed this issue focusing on the problem of predicting the
pathogenicity of BRCA1/2 missense variants using protein-specific
information (Riera et al., 2014). This approach has been validated in
different proteins (Crockett et al, 2012; Riera et al., 2016); recent
results (Hart et al., 2019) show that it can improve the identification
BRCA1/2 pathogenic variants. Here, we present a new family of
BRCA1- and BRCAZ2-specific tools that we validate in two different
ways: (a) In isolation, using manually curated sets of functionally and
clinically annotated variants; and (b) in combination with predictors
of splicing impact (Figure 1), to interpret the variants from the
ENIGMA challenge of the CAGI 5 experiment.

4.1 | The performance of BRCA1- and BRCA2-
specific predictors in isolation

When tested in isolation, we find that our two methods (MLR and
NN) are competitive when compared with general methods (Section
3.5; Table 3; Figure 4), for both BRCA1 and BRCAZ2. In particular,
their specificities are among the best, a property desirable from the
point of view of HBOC diagnosis requirements (Ernst et al., 2018);
they also have the best balances between specificity and sensitivity,
with the only exception of PMut in BRCA1, which has slightly better
figures for the MLR training set. General methods also show good
success rates in our training sets (Figure 4), in contrast with the
usually lower performance estimates cited in the literature. For
example, the last version of PMut displays an MCC of 0.31 for both
BRCA1 (63 variants) and BRCA2 (104 variants; Lopez-Ferrando et al.,
2017). In the same work, we find MCC values for other tools,
computed on the same dataset: For BRCA1 they vary between 0.17
(PROVEAN) and 0.38 (LRT); for BRCA2 they vary between 0.01
(PROVEAN) and 0.19 (Mutation Assessor). In a previous study, using
a small dataset of BRCA2 variants, Karchin, Agarwal, Sali, Couch, and
Beattie (2008) find that general tools display good sensitivities but
low specificities. A similar trend has been recently reported by Ernst
et al. (2018), after testing PolyPhen-2, SIFT, Align-GVGD, and
MutationTaster2 in a set of 236 BRCA1/2 variants. These authors
express concern about the moderate performance observed, parti-
cularly about the low specificities observed relative to HBOC
diagnosis requirements (e.g., PolyPhen-2: 0.67 and 0.72 for BRCA1
and BRCAZ, respectively). We believe that our higher estimates for
general predictors (Table 3; Figure 4), relative to those in the
literature, may partly result from the overlap between their training
sets and our manually curated dataset.

Presently, stand-alone use of in silico methods for HBOC
diagnosis is discouraged (Ernst et al, 2018). Nonetheless, it is
considered that these methods can be fruitfully combined with the
results of functional assays, to provide an alternative to multifactorial
models in the absence of family information (Guidugli et al., 2018).
The tools presented in this work are amenable to this type of
approach because of their extreme simplicity and interpretability.
This is a consequence of the small number of features utilized (3 and
6 for MLR and NN, respectively) and of the low complexity of our
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models (Riera et al., 2014). In addition, our MLR models allow a direct
interpretation of a variant's impact at the molecular level, because
they produce estimates of the HDR assay for the target variant. In
this sense, the MLR approach resembles that of Starita et al. (2015)
who estimate HDR values using the results of other functional assays
(E3 ligase scores and BARD1-binding scores). In our case, we use
instead of a few sequence-based features, with two conservation
measures (Shannon's entropy and psssm,,,) standing among them
given their recognized predictive power (Ferrer-Costa et al.,, 2004).
Conceptually, this makes MLR methods an implementation of the
idea of addressing pathogenicity prediction problems focusing on
endophenotypes, rather than on clinical phenotypes. Endopheno-
types are quantitative measures of intermediate phenotypes with
clinical relevance (Masica & Karchin, 2016); they are closer to the
genotype and, for this reason, may result in predictors with high
success rates, given the small contribution of genetic background and
environmental effects to the outcome of the variant. In general, this
is the case when looking at the clinical performance (Table 3; Figure
4). However, for BRCA1, the sensitivity (0.62) is low compared with
specificity (0.87); while this may be a consequence of the discretiza-
tion of the HDR prediction, it may also be a consequence of the
extreme simplicity of our model. When testing the MLR model with
SGE data we observe a significant correlation (Spearman’s p = 0.47;
p ~0), comparable with that of Align-GVGD (p = 0.46) and better than
that of CADD (p=0.40), PhyloP (p=0.36), SIFT (p=0.36), and
PolyPhen-2 (p=0.28; values obtained from Figure 9 in Extended
Data Section in Findlay et al, 2018). However, visual inspection
shows the presence of substantial deviations from a monotonic
relationship (Figure 3a,b). If we analyze the population of outliers
using PCA and value distributions of the features in our model
(Figure S1) we see that, generally, they have an intermediate
behavior between “functional” and “non-functional” variants for all

BRCA1

[Zinc finger

[ISerine-rich ENBRCT

features. This points to an aspect of the variant’s impact that is
poorly represented by our present set of features, like the effect of
the mutation in RNA levels.

Finally, it is worth mentioning that our MLR predictors have been
trained with small sets of variants that are concentrated in a reduced
region of BRCA1 and BRCA2 (Figure 6). This is in contrast with the
broader range of positions covered by the NN and the CAGI datasets.
The fact that, in spite of this situation, the MLR tools are competitive
suggests that they capture some general effect of variants on protein
function/structure, like impact on stability (Yue, Li, & Moult, 2005).

42 | The performance of BRCA1- and BRCA2-
specific predictors in the CAGI 5 experiment

The ENIGMA challenge within the CAGI experiment provides a good
opportunity to independently validate the performance of patho-
genicity predictors for BRCA1/2. Two aspects are specific to the
ENIGMA challenge. First, if some of the target variants are
pathogenic, the participants do not know what molecular effect
originates their pathogenicity: It can be the impact on protein
function, but it can also be the impact on splicing (Eccles et al., 2015).
For this reason, we decided to combine predictions for these two
effects in our protocol (Figure 1). A second, distinctive aspect of the
challenge is that the submissions had to provide the predicted IARC
5-tier class for each variant (see Section 2.1). This is relevant since
this classification is strongly related to the clinical actions associated
to each class (Goldgar et al., 2008; Moghadasi et al., 2016; Plon et al.,
2008) which are in turn related to factors such as the impact on the
counselee or cost to the healthcare system. Collective consideration
of these factors crystallizes into five decision regions (Plon et al.,
2008) that are applied to the posterior probability of pathogenicity, a
probability obtained after integrating different sources of clinical/

BRCA2
Training MLR

Training NN

(b)

ATAET RITTIEA I M LTT FIIAMTONT TS

——— I

i R
[IBRCA2 repeat . Tower
[IBreast Cancer Type2 suscep. EOB3
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FIGURE 6 Distribution of the variants along the BRCA1 and BRCA2 sequences. Each variant dataset used in this work is represented with a
set of pins (indicating the location of each variant) and a colored surface that provides a general, smoothed view of the distribution. The

different functional domains in each structure are represented with boxes; for representation purposes, BRCA1 (1863 aa) and BRCA2 (3418 aa)
are displayed with the same length. The color codes for the different sets are: CAGI (lilac), SGE (green), MLR training (blue), and NN training
(orange). CAGlI, Critical Assessment of Genome Interpretation; MLR, multiple linear regression; NN, neural network; SGE, saturation genome
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TABLE 5 Overall accuracies (ACC) and MCC for our two methods (MLR and NN, with and without splicing) and the general methods (PMut,

PolyPhen-2, PON-P2, and SIFT) in the CAGI dataset

(A) BRCA1

IARC 5-tier MLR MLR+AS NN NN+AS PMut PolyPhen-2 PON-P2 SIFT
ACC 0.326 0.347 0.201 0.222 0.028 0.208 0.014 0.049
MCC -0.041 0.006 0015 0.056 -0.002 0.031 0 0021
Three Class MLR MLR+AS NN NN+AS PMut PolyPhen-2 PON-P2 SIFT
ACC 0.764 0.785 0.25 0.271 0.035 0.354 0.014 0.118
MccC -0.237 0.354 -0.012 0.055 0.026 0136 0 0123
(B) BRCA2

IARC 5-tier MLR MLR+AS NN NN+AS PMut PolyPhen-2 PON-P2 SIFT
ACC 0.161 0.167 0.345 0.351 0.144 0.305 0.011 0.034
MCC -0.109 -0.068 -0.017 -0.006 -0.029 0.078 0 0.017
Three Class MLR MLR+AS NN NN+AS PMut PolyPhen-2 PON-P2 SIFT
ACC 0.931 0.931 0.69 0.695 0.184 0431 0.011 0.086
MCC 0.18 0.277 0.185 0213 -0.013 0.125 0 0.022

Abbreviations: ACC, accuracy; AS, affected splicing; IARC, International Agency for Research on Cancer; MCC, Matthews correlation coefficient; MLR,

multiple linear regression; NN, neural network.

biomedical evidence. In our case, this probability was estimated using
only molecular information; nonetheless, to adapt our output to the
CAGI requirements we directly applied the ENIGMA boundaries
(Sections 2.3.1 and 2.3.2, “CAGI output’). We computed our
performances on the basis of this assignment; however, we also
obtained the performances for a simplified version of the ENIGMA
classification, separately collapsing its neutral and pathogenic classes
(Table 2).

Assessment of the results obtained (Figure 5; Figure 52; Tables 4
and 5) shows some clear trends. For the 5-class problem, all the
methods (both ours and the general methods) have poor per class
performances; however, our methods are more successful at
reproducing the compositional bias of the sample and outperform
general methods for the most abundant classes (1 and 2) in BRCA1/2,
with only one exception, for Class 2 in BRCAZ2, both PolyPhen-2 and
PMut surpass MLR+AS; our methods also have a better distribution
of wrong predictions among classes, because they tend to cluster
nearby the correct class. These trends are reinforced when reducing
the number of classes from five to three. Overall, the results for the

CAGI challenge show that our methods can identify low-risk variants

with an accuracy higher than that of general methods, a desirable
property for HBOC diagnosis (Ernst et al, 2018). Part of this
improved performance could be attributed to an unequal effect of
applying the ENIGMA decision boundaries to the posterior prob-
ability generated by general methods. We believe that this mapping
procedure may play a role, but not a determining one since
comparison of the original, binary predictions of the general methods
with those of the binary versions of our tools (MLR scores binarized
as explained in Section 3.2) gives a similar result (Table 6) again. MLR
+AS has the top specificities for BRCA1/2 and high sensitivities; NN
+AS has the same sensitivities but lower specificities, nonetheless
these are only surpassed by PMut.

In summary, we have applied the protein-specific approach to
building a pathogenicity predictor for BRCA1/2 variants, using either
clinical phenotypes or endophenotypes. The results obtained from
our methods indicate that this approach can contribute to improving
our ability to discriminate between high- and low-risk variants for
BRCA1/2. Of particular interest is the MLR+AS tool, because it gives
an estimate of the molecular impact of a sequence replacement that
is easy to interpret because it corresponds to an in the silico version

TABLE 6 Binary performances (sensitivities and specificities) for our predictors and the general predictors (PMut, PolyPhen-2, PON-P2, SIFT)

(A) BRCA1

MLR+AS NN+AS CADD PMut PolyPhen-2 PON-P2 SIFT
Sensitivity (P = 11) 0.909 0.909 1 0818 0727 1 1
Specificity (N = 131) 0.977 0718 0.456 0817 0557 0.188 0435
(B) BRCA2

MLR+AS NN+AS CADD PMut PolyPhen-2 PON-P2 SIFT
Sensitivity (P = 5) 038 08 1 06 1 1 08
Specificity (N = 167) 097 0886 0533 0958 0653 0625 0731

Abbreviations: AS, affected splicing; MLR, multiple linear regression; N, neutral; NN, neural network; P, pathogenic.
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of the HDR assay. Participation in the CAGI experiment has allowed
us to obtain independent estimates of the performance of our
predictors, to compare them with other predictors and to help us
clarify the classification level at which in silico tools could be useful
for HBOC diagnosis. This participation has also underlined the role
that splicing predictions can play in the correct annotation of BRCA1/
2 variants, particularly when integrated into protocols that combine
different views of a variant’s impact.
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increased risk of OC (Nakonechny and Gilks 2016). Finally,
published genome-wide association studies provide evidence
for approximately a 100 of common variants with low pen-
etrance, conferring breast cancer risks below 1.5 times the
risk in the general population (Easton et al. 2015; Fachal
and Dunning 2015). Yet the contribution of variants in high,
moderate and common low penetrance account for only
40-50% of the familial relative risk (Fachal and Dunning
2015). Therefore, it is very likely that there are other genes
associated with HBOC.

Compared to the US (Susswein et al. 2016; Buys et al.
2017; Couch et al. 2017; Kurian et al. 2017), smaller Euro-
pean HBOC cohorts have been tested using massively paral-
lel sequencing to estimate the prevalence of pathogenic vari-
ants in high- and moderate-risk genes (Castéra et al. 2014;
Schroeder et al. 2015; Lhota et al. 2016; Eliade et al. 2017;
Feliubadalé et al. 2017; Kraus et al. 2017; Tavera-Tapia et al.
2017; Tedaldi et al. 2017). Our aim was to identify deleteri-
ous variants in high and moderate cancer penetrance genes
and describe their clinical actionability, as well as, to deter-
mine the genetic profile of potentially associated genes (the
so-called candidate genes), in a cohort of HBOC BRCA1/2
negative Spanish families.

Patients and methods
Patients

The study included a total of 192 unrelated index cases from
breast cancer high-risk Spanish families ascertained through
the unit of familial cancer of Vall d’Hebron Hospital from
Barcelona: 77 (40%) had BC at a young age (< 36 years), 60
(31%) had BC and belonged to a family with two or more
relatives with BC or OC, 38 probands (20%) had OC (8 of
them also had BC or endometrial cancer), seven (4%) had
BC after 36 with one first/second degree relative with BC,
OC or pancreatic cancer, six (3%) had two BC (bilateral or
ipsilateral) regardless of BC family history and four (2%)
had colon, endometrium, sarcoma or stomach cancer and
a BC/OC family history. All index cases were previously
screened for single nucleotide variants and large rearrange-
ments in BRCAT and BRCA2 genes and no pathogenic vari-
ant was identified. All were afterwards enrolled for panel
testing between January 2013 and December 2015 and
received genetic counselling and signed informed consent
for the research study, approved by the Clinical Research
Ethics Committee of the Hospital Vall d"Hebron. Clinical
data including personal and family cancer histories, tumour
histology and receptor status of breast tumours were col-
lected through medical chart review. Confirmation of cancer
among first- and/or second-degree relatives was obtained
whenever possible.

@ Springer

Massively parallel sequencing and variant
classification

Ninety-seven genes were included in our research panel.
Thirty-four genes were well-known high/moderate-risk
cancer genes (16 related to BC/OC and 18 associated to
other cancers), and 63 were candidate genes with only initial
evidence of cancer risk association and/or related to DNA
repair (Supplementary Table 1 lists all the sequenced genes,
also providing reference to publications that point to the
potential link between each candidate gene and the familiar
breast and ovarian cancer predisposition). The protocols and
methodology for DNA extraction, capture design, library
preparation, sequencing, data alignment, variant calling and
variant prioritization are described in detail in Supplemen-
tary Methods and summarized in Fig. 1.

The frameshift, nonsense and exonic or intronic variants
with a RNA analysis data that indicated a protein impact,
were classified as pathogenic for the risk-associated genes
but as deleterious for candidate genes. For a detailed RNA
evaluation protocol, see qualitative and quantitative cDNA
analysis section in Supplementary Methods. Missense vari-
ants with well-known reported clinical effect were also clas-
sified as pathogenic for the risk-associated genes. Variants
were classified as variants of uncertain significance (VUS) if
no functional data were available or the risk was not clearly
established according literature or gene databases. These

[ 3 pg germinal DNA ]
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GATK and VarScan2

Variant annotation and filtering:
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in Table 1 and complete in silico predictions as well as
other relevant annotations are in Supplementary Table 4.
The highest number of pathogenic variants, excluding het-
erozygous MUTYH variants, was in PALB2 (four variants,
three of them novel) and ATM (three variants, one not
previously described). These were all identified in fami-
lies with BC and no OC cases. One out of PALB2 variants
(¢.32014+5G>T) alters the splicing process through an
imbalanced expression of natural RNA isoforms (Table 1).
Results obtained from RNA analysis confirmed a splic-
ing alteration consisting of an imbalanced expression of
several PALB?2 alternative RNA isoforms (Duran-Lozano
et al. 2018). The variant up-regulates isoforms A11,12
(in-frame) and A 11 (frameshift), and down-regulates iso-
form A12 (frameshift). All transcripts are predicted to
encode for non-functional proteins. Isoform A11,12 pre-
sumably contributes to variant pathogenicity by encod-
ing a PALB2 protein lacking 79aa of the WD40 domain
that mediates direct interactions between PALB2 and key
proteins involved in homologous recombination. Semi-
quantitative and quantitative analysis of PALB2 full-length
transcript indicated haploinsufficiency in carriers (Duran-
Lozano et al. 2018). One stop gain variant in PTEN was
found in a patient with BC diagnosed at 46, a suggestive
Cowden syndrome and a family history of BC/OC. Two
TP53 pathogenic variants (¢.587G>C, p.Argl196Pro, and
¢.783-1G>A) were found in probands with early onset BC
(before age 30) and the absence of Li—Fraumeni family
history. The missense variant is predicted to be deleteri-
ous by three bioinformatics in silico tools (Supplementary
Table 4) and it is placed at the DNA-binding domain of
TP53 (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb
.cgi?seqinput=NP_000537.3). The effect of the splicing
variant in 7P53 was confirmed by RNA analysis, show-
ing the retention of intron 7 (r.782+1_783-1ins) and dele-
tion of the first 24 nucleotides of exon 8 (r.783_806del) as
aberrant transcripts, which would encode a truncated and
in frame proteins, respectively (Table 1; Fig. 3a). Semi-
quantitative QIAxcel CE data showed > 0.5 reduction of
FL transcript levels in the carrier compared to controls,
suggesting that the variant allele is unable to produce
FL transcript (Fig. 4b). Splicing fraction (SF) estimation
showed that the isoform retaining intron 7 was the most
expressed (54.4%), whereas the isoform lacking the first
24 nucleotides of exon 8 was present in a 14.5% (Fig. 4c¢).
Both TP53 variants (¢.587G>C, p.Arg196Pro, and ¢.783-
1G>A) are listed in the IARC TP53 database (http://p53.
iarc.fr/TP53GeneVariations.aspx, R18) (Bouaoun et al.
2016) reported in Li—Fraumeni and Li—Fraumeni like fam-
ilies, and in ClinVar as pathogenic or likely pathogenic.
Regarding OC-associated genes, two RADS5/D vari-
ants were identified in two OC patients (c.94_95delGT,
¢.694C>T), and one pathogenic variant (c.1702_1703delAA)

@ Springer

in BRIPI was identified in a young onset (32y) BC patient
without OC family history.

The PMS2 variant ¢.989-2A>G was identified in a
proband with personal and family history of BC who did not
meet Amsterdam or Bethesda criteria. The splicing effect,
confirmed by RNA analysis (Table 1; Fig. 3b), results in an
in-frame exon 10 skipping (r.989_1144del), with the loss of
part of the PMS2 dimerisation domain. Semi-quantitative
analysis showed a 0.5 reduction of the FL transcript in the
carrier (Fig. 4b) compared to controls. Splicing fraction esti-
mation showed that the A10 isoform was higher expressed
(58%) than the FL (41.8%) in the carrier allele (Fig. 4c).
The same splicing alteration was also obtained by Borras
et al. (Borras et al. 2013) and it appears as likely pathogenic
in InSIGHT (The International Society for Gastrointestinal
Hereditary Tumours) database. The same patient carries a
frameshift variant (c.580_581del) in BARDI (Supplemen-
tary Fig. 1), a BC candidate gene whose protein interacts
with BRCA1. The proband’s mother, diagnosed with bilat-
eral BC, is an obligate carrier of both BARDI and PMS2
variants (data not shown).

Three monoallelic pathogenic variants in MUTYH
were found in seven patients, the novel c.1101dup, and
the recurrent ¢.536A>G (p.Tyr179Cys) and ¢.1187G>A
(p.Gly396Asp), also known as p.Tyr165Cys and
p.Gly382Asp (Lipton and Tomlinson 2004), respectively.
The expected carrier rate for MUTYH monoallelic patho-
genic variants in healthy controls of 1.5-2% (Nielsen et al.
2011) is lower than that observed in our series of 192 HBOC
patients (3.6%).

The APC moderate risk variant for colorectal can-
cer in people of Ashkenazi Jewish decent ¢.3920T>A
(p.Ile1307Lys) (Liang et al. 2013) was found in two BC
patients. This variant is present in 0.3% of the Spanish
population (CIBERER Spanish Variant Server, http://csvs.
babelomics.org/) and has recently been associated with
BC (Leshno et al. 2016). The CHEK?2 variant ¢.470T>C
(p.Ile157Thr), a founder variant in Northern European popu-
lations and considered a low penetrance variant for BC (Han
et al. 2013), was found in one BC family originally from
East Germany.

In the 34 risk-associated cancer genes, from a total of 427
unique variants we categorized 383 as VUS (Fig. 2). After
an in silico analysis, literature and database revision, only
8% (35/427) were prioritized as deleterious (Table 2, Sup-
plementary Table 5). The genetic characteristics, familial
phenotype, as well as published data for these prioritized
VUS are described in Supplementary Data. The remaining
82% in silico non-prioritized VUS (348/427) may be con-
sidered as either simply VUS or likely benign variants (Sup-
plementary Data and Supplementary Table 6). The number
of VUS prioritized and non-prioritized for each known-pre-
disposition cancer gene is shown in Fig. 5, where the genes
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is based on NCBI entries NM_000546.4 (TP53). NM_000535.5
(PMS2), NM_020937.3 (FANCM), NM_000123.3 (ERCC5) and

NM_024596.3 (MCPHI)
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Table3 Overview of
surveillance and/or prevention
options carried out in the
patients with high and moderate

Gene Paticnt 1D

Proband actionability

Cascade testing
in relatives/at risk
(53/71)

pathogenic variants High breast cancer risk

PALB2 14-424
PALB2 13-352
PALB2 12-336
PALB2 13-051
PTEN 14-006
TP33 13-412
TP53 13-331
Moderate breast cancer risk
ATM 14-172
ATM 14-171
ATM 14-086
Ovarian cancer risk
BRIPI 14-430
RADSID 14-530
RADSID 15-312
Lynch syndrome
PMS2 11-204
Moderate colorectal cancer risk
APC 12-070
APC 15-123
MUTYH monoallelic
MUTYH 11-018
MUTYH 15-499
MUTYH 14-155
MUTYH 15-292
MUTYH 08-048
MUTYH 15-03334

MUTYH 13-148
Low risk cancer
CHEK?2 08-147

BC screening (MRI)

BC screening (MRI)+RRM

BC screening (MRI)

NA (deceased)

RRM + hysterectomy

LF surveillance + reproductive decision-making
LF surveillance

NA (previous bilateral mastectomy)
BC screening (MRI)

Yes 3 out of 4
Yes 11 out of 14
Yes 5 outof 8
Yes 5 outof 5
No

Yes 3 outof 4
Yes 1 outof 3

Yes I outof 1
Yes 3 outof 5

BC screening (MRI)
OC risk assessment
NA (previous oophorectomy for prior OC)
NA (previous oophorectomy for prior OC)

LS surveillance

CRC screening
CRC screening

None out of 2
Yes Soutof 6
Yes 4 out of 7
Yes 4 out of 4

Yes 8 outof 8

No relatives at risk
No relatives at risk

Pending NA
Pending NA
Pending NA
Pending NA
Pending NA
Pending NA
Pending NA

NA

The number of predictive tests is also shown

BC breast cancer, MRI magnetic image resonance, RRM risk reducing mastectomy, NA not applicable, LF
Li-Fraumeni, OC ovarian cancer, LS Lynch syndrome, CRC colorectal cancer

variants was found in the PALB2 and ATM genes, both previ-
ously associated with BC, and reinforces the role of these
two genes as essentially BC risk genes (Easton et al. 2015;
Tung et al. 2016). Our results add clinical evidence of the
benefit of sequencing through panel testing of several BC/
OC susceptibility genes compared to the strategy of sequen-
tial testing. Our study also demonstrates the utility of mul-
tigene panels in patients who previously underwent non-
informative BRCA1/2 genetic screening. The panel approach
provides a high number of variants of unknown significance
that require the use of a prioritization system to select those
with the highest probability of being associated with risk.
In our study, we used in silico and database information
to prioritize 35 variants in known cancer genes that merit

@ Springer

additional studies to unequivocally define them as patho-
genic. Excluding the two patients who carried concurrently
a VUS and a pathogenic variant in high- or moderate-risk
cancer genes, 17% of the patients (33/192) harboured a pri-
oritized VUS (Fig. 6).

Identification of deleterious variants in ATM, BRIPI,
PALB2, PMS2, PTEN. RAD51D, TP53 and APC genes had
a clinical impact, resulting in a change in the medical man-
agement of the probands and/or cascade testing in relatives.
Overall, 12 out of 16 (75%) of the variants identified in high
and moderate penetrance genes were clinically actionable.
Other studies have reported an actionability of pathogenic
variants in new genes between 69 and 91%, depending on
the criteria used to define clinical actionability (Eliade et al.
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| Patients with pathogenic variants conferring
high or moderate cancer risk

H Patients with "in silico" prioritized VUS in risk
cancer associated genes *

® Patients harboring deleterious variants in
candidate genes *

= Patients with monoallelic pathogenic variants.
in MUTYH and patients with CHEK2 low risk
variants**

m Others (Patients with "in silico” non prioritized
Vus)

Fig.6 Patient distribution according to the variant classification. *Not included patients with pathogenic variants. **Not included patients with

potentially pathogenic VUS in risk cancer-associated genes

2017; Frey et al. 2017). In this regard, we did not consider
actionable the CHEK?2 ¢.470T>C low penetrance variant,
and the heterozygous MUTYH variants had not been dis-
closed at the time of submission. There has been much
debate over whether MUTYH heterozygotes also have an
increased risk of developing colorectal cancer (CRC) or
other types of tumours such as BC (Nielsen et al. 201 1; Win
et al. 2016). Starting colonoscopy at age 40 every 5 years
has been proposed and there are no recommendations for
BC screening.

Some of the variants we detected would have not been
identified without the multiplex testing. The PM52 ¢.989-
2A>G variant was found in a family with mainly BC, who
did not meet Amsterdam or Bethesda criteria. Recent stud-
ies have found pathogenic variants in PMS2 in BC families
undergoing panel testing, suggesting that the use of this
methodology might expand the PMS2-associated cancer
risks (Ten Broeke et al. 2015; Eliade et al. 2017; Espen-
schied et al. 2017). A patient with early onset BC was found
to have the BRIPI ¢.1702_1703delAA variant. Large studies
have established BRIPI as being associated with a moder-
ately increased risk of epithelial OC, but association with
BC risk is not robust (Ramus et al. 2015; Easton et al. 2016;
Couch et al. 2017). However, the BRIPI ¢.1702_1703delAA
variant had previously been associated with significant risk
of both OC and BC in Spanish patients and it was also
identified in one individual with lung cancer (LC) out of
2,758 Spanish individuals with other cancer types (Rafnar

@ Springer

et al. 2011). Additionally, this variant was also identified in
one out of 40 unrelated Spanish CRC patients with strong
CRC familial aggregation (Esteban-Jurado et al. 2016). In
our study, this variant was identified in the proband’s father
diagnosed with LC and one paternal aunt with CRC. Overall,
¢.1702_1703delAA might be a Spanish founder allele that
deserves further research on its association with different
cancer types. Neither of the two families with TP53 muta-
tions fulfilled the 2009 Chompret criteria (Tinat et al. 2009).
When these criteria were revised in 2015 it was suggested
to consider women diagnosed with BC before the age of
31 to be eligible for TP53 testing. Our results reinforce the
application of these criteria, feasible through panel testing,
especially if it impacts the patient’s medical management.
The identification of secondary findings is a challenge for
health care professionals in two different ways: one is the dif-
ficulty in determining the best screening for a patient with a
pathogenic variant in the absence of the classical phenotype
(Rana et al. 2018), and the other one is helping the patient
understand and adapt to the implications of this findings
during the pre-test and post-test genetic counselling. New
prospective studies are warranted to update the cancer spec-
trum and cancer risk of mutation carriers identified in set-
tings that do not resemble the classical phenotype, as well
as the psychological impact associated with these findings.
In addition, the health care professional needs to discuss the
possibility of finding VUS or moderate penetrance variants,
which have been associated with increased uncertainty and
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