

Solving the nearest rotation matrix
problem in three and four dimensions
with applications in robotics

 Soheil Sarabandi

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del repositori institucional UPCommons
(http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX (h t t p : / / w w w . t d x . c a t /) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei UPCommons o TDX.
No s’autoritza la presentació del seu contingut en una finestra o marc aliè a UPCommons
(framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus
continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
únicamente para usos privados enmarcados en actividades de investigación y docencia. No
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the institutional repository UPCommons (http://upcommons.upc.edu/tesis)
and the cooperative repository TDX (http://www.tdx.cat/?locale- attribute=en) has been authorized
by the titular of the intellectual property rights only for private uses placed in investigation and
teaching activities. Reproduction with lucrative aims is not authorized neither its spreading nor
availability from a site foreign to the UPCommons service. Introducing its content in a window or
frame foreign to the UPCommons service is not authorized (framing). These rights affect to the
presentation summary of the thesis as well as to its contents. In the using or citation of parts of the
thesis it’s obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Programa de Doctorat:

ENGINYERIA MECÀNICA, FLUIDS I AERONÀUTICA

Tesi Doctoral

Solving the Nearest Rotation Matrix Problem

in Three and Four Dimensions with

Applications in Robotics

Soheil Sarabandi

Director

Federico Thomas

Tutor

Josep M. Font Llagunes

February 10, 2021

i

Declaration

I certify that this work contains no material which has been accepted for the award of any other
degree or diploma in my name in any university or other tertiary institution and, to the best
of my knowledge and belief, contains no material previously published or written by another
person, except where due reference has been made in the text. In addition, I certify that no
part of this work will, in the future, be used in a submission in my name for any other degree
or diploma in any university or other tertiary institution without the prior approval of the
Universitat Politècnica de Catalunya and where applicable, any partner institution responsible
for the joint award of this degree.

The author acknowledges that the copyright of published works contained within this thesis
resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web,
via the University’s digital research repository, the Library Search, and also through web search
engines, unless permission has been granted by the University to restrict access for a period of
time.

ii

Abstract

Since the map from quaternions to rotation matrices is a 2-to-1 covering map, this map cannot
be smoothly inverted. As a consequence, it is sometimes erroneously assumed that all inversions
should necessarily contain singularities that arise in the form of quotients where the divisor
can be arbitrarily small. This misconception was clarified when we found a new division-free
conversion method. This result triggered the research work presented in this thesis. At first
glance, the matrix to quaternion conversion does not seem to be a relevant problem. Actually,
most researchers consider it as a well-solved problem whose revision is not likely to provide any
new insight in any area of practical interest. Nevertheless, we show in this thesis how solving the
nearest rotation matrix problem in Frobenius norm can be reduced to a matrix to quaternion
conversion. Many problems, such as hand-eye calibration, camera pose estimation, location
recognition, image stitching etc. require finding the nearest proper orthogonal matrix to a given
matrix. Thus, the matrix to quaternion conversion becomes of paramount importance. While a
rotation in 3D can be represented using a quaternion, a rotation in 4D can be represented using
a double quaternion. As a consequence, the computation of the nearest rotation matrix in 4D,
using our approach, essentially follow the same steps as in the 3D case. Although the 4D case
might seem of theoretical interest only, we show in this thesis its practical relevance thanks to
a little known mapping between 3D displacements and 4D rotations. In this thesis we focus our
attention in obtaining closed-form solutions, in particular those that only require the four basic
arithmetic operations because they can easily be implemented on microcomputers with limited
computational resources. Moreover, closed-form methods are preferable for at least two reasons:
they provide the most meaningful answer because they permit analyzing the influence of each
variable on the result; and their computational cost, in terms of arithmetic operations, is fixed
and assessable beforehand. We have actually derived closed-form methods specifically tailored
for solving the hand-eye calibration and the pointcloud registration problems which outperform
all previous approaches.

iii

Acknowledgements

First and foremost, I would like to express my profound gratitude to Professor Federico Thomas
as he has been a wonderful supervisor, and I feel deeply indebted for all he has taught me. He
has broadened my view on many areas and has given me advice that improved my skills as a
writer, speaker, and overall mathematician. I also thank him for all the time and energy he put
into the papers. Without doubt, it would have been quite impossible to carry on the research
work and put it into the final shape of a thesis without his ideas and able guidance. Furthermore,
I would like to thank Professor Josep Maria Porta, who acted as an unofficial co-advisor for this
thesis, for a great collaboration and also for introducing me to Professor Thomas in late summer
2017. In the winter of 2020, I visited REDS Lab at Imperial College London. I sincerely thank
Dr. Nicolas Rojas for hosting my visit and his collaboration. I would also like to thank my
friends at IRI for all the great times that we have shared. I am particularly thankful to Aria
Shabani for being supportive throughout my time here. I also want to extend my gratitude to
all IRI members, especially to the IRI’s administrative and IT staff. Finally, I cannot forget my
parents, who supported me with good educational conditions and who always encouraged me to
pursue my Ph.D.

I would also like to gratefully acknowledge the financial support of the Spanish Ministry of
Economy and Competitiveness through the projects DPI2017-88282-P and MDM-2016-0656.

iv

Contents

Declaration . i
Abstract . ii
Acknowledgements . iii
Preface . 1

I The 3D case 5

1 Rotations in 3D 7

1.1 Introduction . 7
1.2 3D rotation matrix to quaternion conversion . 9

1.2.1 Trigonometric methods . 9
1.2.1.1 Trigonometric method 1 . 9
1.2.1.2 Trigonometric method 2 . 10

1.2.2 Algebraic methods . 11
1.2.2.1 Chiaverini-Siciliano’s method . 12
1.2.2.2 Hughes’ method . 12
1.2.2.3 Shepperd’s method . 14
1.2.2.4 Sarabandi-Thomas’ method . 15
1.2.2.5 Arithmetic mean method . 16
1.2.2.6 Cayley’s method . 17
1.2.2.7 Dominant eigenvector method 18

1.2.3 Numerical methods . 19
1.2.3.1 Coope et al.’s method . 20
1.2.3.2 Bar-Itzhack’s method . 20

1.3 Performance comparison . 22
1.4 Distances between 3D rotations . 23

1.4.1 Chordal distance . 23
1.4.2 Angular distance . 23
1.4.3 Quaternion distance . 24
1.4.4 Axis-angle distance . 24

1.5 Conclusion . 25

2 The nearest rotation matrix problem in 3D 27

2.1 Introduction . 27
2.2 Geometric methods . 28

2.2.1 Dot product method and QR factorization 28
2.2.2 Cross product method . 29

v

vi CONTENTS

2.2.3 Iterative cross product method . 29

2.2.4 Equal mean direction method . 30

2.3 Algebraic methods . 31

2.3.1 Series expansion method . 31

2.3.2 Matrix sign function method . 34

2.3.3 Padé approximant method . 35

2.3.4 Continued fraction method . 35

2.3.5 Logarithm method . 36

2.3.6 Matrix factorization methods . 38

2.3.6.1 Polar decomposition method . 38

2.3.6.2 SVD method . 39

2.3.6.3 Closed-form diagonalization method 39

2.3.7 Closed-form quaternion methods . 42

2.4 Performance comparison of the closed-form methods 42

2.5 Conclusion . 44

3 Application to hand-eye calibration 45

3.1 Introduction . 45

3.2 Previous approaches and displacement representations 47

3.2.1 A rotation matrix and a translation vector 47

3.2.2 An axis-angle and a translation vector . 47

3.2.3 Screw parameters . 48

3.2.4 Two sets of Euler parameters . 48

3.3 Formulating the problem . 49

3.4 The proposed method . 51

3.5 Performance analysis . 53

3.5.1 Simulated data . 53

3.5.2 Experimental data . 58

3.6 Conclusion . 60

II The 4D case 63

4 Rotations in 4D 65

4.1 Introduction . 65

4.2 Isoclinic rotations . 66

4.3 4D rotation representations . 66

4.3.1 Matrix representation . 66

4.3.2 Double quaternion representation . 67

4.4 4D rotation matrix to double quaternion conversion 68

4.4.1 Rosen-Elfrinkhof method . 69

4.4.2 Linear algebra method 1: kernel computation 70

4.4.3 Linear algebra method 2: spectral decomposition 70

4.5 Mapping 3D displacements to 4D rotations . 71

4.6 3D homogeneous displacement matrix to dual quaternion conversion 72

4.7 Conclusion . 74

CONTENTS vii

5 The nearest rotation matrix problem in 4D 75

5.1 Introduction . 75
5.2 SVD method . 76
5.3 Closed-form diagonalization method . 76
5.4 Closed-form double quaternion method . 78
5.5 Performance comparison . 80
5.6 Conclusion . 81

6 Application to pointcloud registration 83

6.1 Introduction . 83
6.2 Previous approaches and displacement representations 85

6.2.1 A rotation matrix and a translation vector 86
6.2.2 An axis-angle and a translation vector . 87
6.2.3 Screw parameters . 88

6.3 The 4D rotation matrix method . 89
6.4 Discussion . 93
6.5 Performance analysis . 94

6.5.1 Spatial characterization of a pointcloud 95
6.5.2 Example I . 95
6.5.3 Example II . 98
6.5.4 Example III . 99

6.6 Conclusion . 100

7 Conclusions 103

Bibliography 105

Preface

The parameterization of rotations is a central topic in many theoretical and applied fields such as
rigid body mechanics, multibody dynamics, robotics, spacecraft attitude dynamics, navigation,
3D image processing, computer graphics, etc. Nowadays, the main alternative to the use of
rotation matrices, to represent 3D rotations, is the use of Euler parameters arranged in quaternion
form. Whereas the passage from a set of Euler parameters to the corresponding rotation matrix
is unique and straightforward, the passage from a rotation matrix to its corresponding Euler
parameters has been revealed to be somewhat tricky if numerical aspects are considered. Since
the map from quaternions to 3×3 rotation matrices is a 2-to-1 covering map, this map cannot
be smoothly inverted. As a consequence, it is sometimes erroneously assumed that all inversions
should necessarily contain singularities that arise in the form of quotients where the divisor can be
arbitrarily small. This misconception was clarified when we found a new division-free conversion
method. This rather unexpected result triggered the research work reported in this thesis.

It is usually admitted that the use of quaternions reduce the computational burden when op-
erating with rotations. Nevertheless, this is not true in all cases as it depends on the application.
For example, quaternions are the best choice to compose rotations, but it is certainly a bad one
if the we want to rotate a set of points. The number of multiplications and additions needed in
both cases are:

Computational cost of composing two rotations

Representation multiplications additions

Matrices 27 18

Quaternions 16 12

Computational cost of rotating a vector

Representation multiplications additions

Matrices 9 6

Quaternions 21 18

Thus, in general, we need to pass from one representation to the other depending on the
operations to be performed. Nevertheless, at first glance, these conversions do not seem to
be a relevant problem. Actually, most researchers consider it as a well-solved problem whose
revision is not likely to provide any new insight in any area of practical interest. Nevertheless,
we will show in this thesis how solving the nearest rotation matrix problem, in closed-form, can
be reduced to converting a given 3×3 matrix to quaternion form, normalizing the result, and
returning back to matrix representation. Then, choosing the right conversion methods to obtain
a meaningful solution becomes a non-trivial problem.

1

2 CONTENTS

A rotation matrix R is said to beorthogonal because RRT = I, with I the 3×3 identity
matrix, and proper because, in addition, det(R) = 1. In other words, the three row and column
vectors of R represent a right-handed orthonormal reference frame. There are some applications
in robotics, computer vision, and computer graphics in which noisy rotation matrices are gener-
ated. That is, rotation matrices that satisfy the two aforementioned conditions approximately.
We have that, for example, the result of cumulatively multiplying rotation matrices is a noisy ro-
tation matrix due to floating-point precision errors. Likewise, the integration of angular velocity
differential equations leads to a rotation matrix that progressively departs from orthogonality as
time increases. Noisy rotation matrices not only arise as the result of floating-point operations.
For example, one simple solution to the problem of determining the rotation matrix that is the
best fit to a given set of measured rotations consists in averaging all measurements. However,
the result is not, in general, a proper orthogonal matrix. It can actually be considered as a noisy
rotation matrix. Many other problems, such as hand-eye calibration, camera pose estimation, lo-
cation recognition, image stitching etc. also require finding the nearest proper orthogonal matrix
to a given matrix. Thus, efficiently solving this problem is of paramount importance in many
applications. In this thesis, we will use the hand-eye calibration problem and the pointcloud
registration problem as testbeds of our theoretical results.

A naive way to restore the orthonormality of a noisy rotation matrix consists in applying
the Gram-Schmidt process to its rows or columns. Despite its popularity due to its simplicity,
the result is rather arbitrary as it depends on the order in which the rows or the columns of the
matrix are taken. This is why most researchers solve the problem by relying on the Singular
Value Decomposition (SVD) of the given matrix. The result is a rotation matrix that minimizes
its Frobenius norm distance to the given matrix. Nevertheless, the idea of closeness between two
rotations can be formalized in many different ways. The standard choice is to take the Frobenius
norm. Although it does not seem to be a reasonable measure of angular difference, it has a
simple geometric interpretation, and it permits deriving closed-form formulas because it is easy
to obtain its derivatives. This will be also the measure of closeness adopted in this thesis.

The main problem of the SVD is that is an iterative method that converges towards the
solution. It stops when the improvement in an iteration is below a given threshold. Thus, it does
not return the optimum, but a very good approximation of it. One of the goal of this thesis is
the derivation of alternative new closed-form formulas. Methods expressible in terms of closed-
form formulas are preferable to those relying on iterative procedures for several reasons: (1)
they do not require the use of an initial guess; (2) they directly return the optimum, not a good
approximation; (3) they provide the most meaningful answer because they permit analyzing the
influence of each variable on the result; and (4) their computational cost, in terms of arithmetic
operations, is fixed and assessable beforehand. In this thesis we have paid particular attention to
closed-form methods that only involve the four basic arithmetic operations because they can be
easily implemented on microcomputers with limited computational resources. We have actually
derived closed-form methods specifically tailored for solving the hand-eye calibration and the
pointcloud registration problems.

Thank to the obtained results, we present, for example, what is probably the most compact
derivation of a method for solving the hand-eye calibration problem. It is shown, using simulated
and real experimental data, that our method compares favorably with all previously proposed
ones.

A rotation in 3D can be represented using a quaternion, and a rotation in 4D, using a double
quaternion. As a consequence, our methods for the computation of the nearest rotation matrix
in 4D essentially follow the same steps as in the 3D case. Although at first glance the 4D case
might seem of only theoretical interest, we show in this thesis its practical relevance thanks to a
little known mapping between 3D displacements and 4D rotations.

CONTENTS 3

No proper norm exists to measure the distance between two 3D displacements essentially
because a general pose is defined by a rotation and a translation, and thus it involves magnitudes
with different units. As a means to solve this dimensional-inhomogeneity problem, the concept of
characteristic length has been put forward in the area of kinematics. The idea consists in scaling
translations according to this characteristic length and then approximating the corresponding
3D displacement by a 4D rotation, for which a norm exists. This is how the interest of finding
the nearest 4D rotation matrix arises. This thesis sheds new light on this kind of approximations
which permits simplifying optimization problems whose cost functions involve translations and
rotations simultaneously. A good example of this kind of problems is the pointcloud registration
problem in which the optimal rotation and translation between two sets of corresponding 3D
point data, so that they are aligned/registered, have to be found. As a result of our research,
a simple closed-form formula for solving this problem is presented which is shown to be an
attractive alternative to the previous approaches because of its simplicity, despite its complex
derivation.

The contributions of this thesis include novel and efficient algorithms for solving the nearest
rotation matrix in 3D and in 4D. Probably the major contributions are:

� An fast closed-form method for the 3D nearest rotation matrix problem. The method pro-
vides a good approximation to the optimal using only the four elementary arithmetic oper-
ations. This method is numerically stable and greatly outperforms conventional methods.
It is particularly useful for implementation on microcomputers with limited computational
resources (see Chapter 2).

� A new fast method for hand-eye calibration. The proposed method is probably the simplest
available method for solving the hand-eye calibration problem. It is a closed-form method
that involves only the four elementary arithmetic operations. It is shown, using simulated
and real experimental data, that it compares favorably with all previously proposed ones
(see Chapter 3).

� An accurate closed-form method for the 4D nearest rotation matrix. This is the first
compact exact closed-form method that is numerically stable and provides us with the best
nearest orthonormal matrix in Frobenius norm (see Chapter 5).

� An accurate and fast closed-form method for the pointcloud registration problem. It has
been obtained by transforming this problem into a 4D nearest rotation matrix problem.
Again, it involves only the four elementary arithmetic operations (see Chapter 6).

This thesis is composed of two parts with the same structure and three chapters each. The
first part is devoted to 3D rotations. Chapter 1 mainly focuses on the conversion of 3D rotation
matrices to quaternion representation and introduces some basic facts that will be recurrent in
the rest of the thesis. Chapter 2 presents a review of all available methods, to the best of our
knowledge, for computing the nearest 3D rotation matrix and proposes different new approaches
to this problem. Chapter 3 reviews the available methods for the hand-eye calibration problem
and includes a new accurate closed-form method which outperforms all others. The second part
of this thesis is devoted to 4D rotations. In Chapter 4, we study the problem of converting 4D
rotations to double quaternion representation, the central role of Cayley’s factorization, and the
mapping between 3D displacements and 4D rotations. This is applied in Chapter 5, where all
methods for computing the nearest 4D rotation matrix are reviewed and new closed-formmethods
are presented for the first time. Chapter 6 surveys the bestknown methods for solving the
pointcloud registration problem, and proposes a simple new closed-form method which compares

4 CONTENTS

favorably with all others. Finally, the main findings of this thesis are summarized, conclusions
are drawn, and theoretical and practical implications are presented in Chapter 7.

Finally, it is also important to mention that all performance analyses reported in this thesis
have been implemented in MATLABr, running a PC with a 3.7 GHz Intelr Core

�

i7 and 32 GB
of RAM.

Part I

The 3D case

5

Chapter 1

Rotations in 3D

1.1 Introduction

3D rotations are commonly represented using proper orthogonal 3×3 matrices (also known as
direction cosine matrices or simply rotation matrices) of the form:

R =



r11 r12 r13
r21 r22 r23
r31 r32 r33


 . (1.1)

These matrices are said to be orthogonal because RRT = I and proper because, in addition,
det(R) = 1. In other words, the row and column vectors of R represent a right-handed orthonor-
mal reference frame.

Since rotation matrices have nine elements, while only three are needed to represent a 3D
rotation, this matrix representation is somewhat cumbersome to manipulate. As a consequence,
sets of fewer parameters have been proposed to represent rotations. These sets include Euler
parameters, Rodrigues parameters, Euler angles, Cayley-Klein parameters, etc. [1, 2]. Euler and
Cayley-Klein parameters require only 4 elements, which is the minimum number for a repre-
sentation of 3D rotations to be non-singular. Moreover, these two parameterizations are quite
convenient because, when concatenating rotations, they are manipulated using the algebra of
quaternions or the algebra of spinors, respectively.

Euler parameters arranged in quaternion form have gained the favor of the engineering com-
munity and, hence, the interest of computing them in a simple, fast, and numerically stable
way.

Euler’s theorem of rigid-body rotations states that the orientation of a body after having
undergone any sequence of rotations is equivalent to a single rotation of that body through an
angle θ about an axis that we will represent by the unit vector n = (nx ny nz)

T (see [3, pp.
118-123] for a proof of this theorem in terms of rotation matrices). The rotation matrix in (1.1),
expressed in terms of n and θ, has the following form (see [4, p. 30] for an elementary deduction):

R(n̂, θ) =




c+ n2
x(1− c) nxny(1− c)− nzs nxnz(1− c) + nys

nynx(1− c) + nzs c+ n2
y(1− c) nynz(1− c)− nxs

nznx(1− c)− nys nzny(1− c) + nxs c+ n2
z(1− c)


 (1.2)

7

8 CHAPTER 1. ROTATIONS IN 3D

where s = sin θ and c = cos θ. Now, if we introduce the following change of variables

e0 = cos(θ/2), (1.3)

e1 = nx sin(θ/2), (1.4)

e2 = ny sin(θ/2), (1.5)

e3 = nz sin(θ/2), (1.6)

then (1.2) can be rewritten as

R(e0, e1, e2, e3) =




2(e20+e21)−1 2(e1e2−e0e3) 2(e1e3+e0e2)
2(e1e2+e0e3) 2(e20+e22)−1 2(e1e3−e0e1)
2(e1e3−e0e2) 2(e2e3+e0e1) 2(e20+e23)−1


 . (1.7)

The parameters e0, e1, e2, e3 are defined as the Euler parameters. As expected, these parameters
are not independent because only three are needed to represent an arbitrary rotation in R

3. They
are related through the following equation:

e20 + e21 + e22 + e23 = 1. (1.8)

In practice, this condition can be relaxed so that (e0, . . . , e3) is treated as a vector of homogeneous
coordinates [5]. In this case, when (1.8) is not satisfied, a normalization is required prior to
obtaining the corresponding rotation matrix using (1.7). To avoid the square root, we can
directly integrate the normalization in (1.7), so that it now reads

R(e0, e1, e2, e3) =
1

e20+e21+e22+e23




2(e20+e21)−1 2(e1e2−e0e3) 2(e1e3+e0e2)
2(e1e2+e0e3) 2(e20+e22)−1 2(e1e3−e0e1)
2(e1e3−e0e2) 2(e2e3+e0e1) 2(e20+e23)−1


 . (1.9)

In what follows, we use the following notation:

e = (e1, e2, e3)
T
, (1.10)

ē = (e0 e)
T
= (e0 e1 e2 e3)

T . (1.11)

It is easy to conclude, by simply observing (1.7), that the Euler parameters provide a double
covering of the space of rotations in the sense that ē and −ē represent the same rotation matrix.
This fact is obviously present in all methods that compute these parameters: they all give the
same solution within an undetermined overall sign.

As we have already said, there are no singularities associated with Euler parameters, contrarily
to what happens for example with Euler angles [2]. However, this does not mean that the methods
to compute them could not introduce their own singularities, as we will see below.

The most straightforward way to obtain the set of Euler parameters consists in solving the
system of nonlinear equations resulting from equating the matrices in (1.1) and (1.7). From an
algebraic point of view, the solution to these non-linear equations must avoid dividing by zero
and taking the square root of negatives numbers. Nevertheless, from a computational point of
view, the conditions are more strict: the solution must minimize possible floating-point rounding
errors, which might be relevant, for example, when dividing by (or when taking the square root
of) a very small number [6]. As we will see, this loss of accuracy near singularities is the essential
problem in many methods despite their algebraic correctness.

The available methods for computing the Euler parameters from a rotation matrix are varied:
they are based on trigonometric, algebraic, or numerical techniques. In aerial navigation, some

1.2. 3D ROTATION MATRIX TO QUATERNION CONVERSION 9

of them have been named for their inventors. This is the case of Hughes’, Shepperd’s, and
Bar-Itzhack’s methods. Although, in general, the origin of most methods and their variations
is actually uncertain because of their trivial derivation, we mostly adhere to the names given to
the different methods by the aerial navigation community.

This rest of this chapter is organized as follows. We start in Section 1.2.1 with two trigonomet-
ric methods which can be seen as indirect methods because they consist in obtaining a different
set of parameters to represent an orientation which is then converted into Euler parameters.
Then, in Section 2.3, we review the algebraic methods such as the well-known Hughes’ and Shep-
perd’s methods. In this section, we also include some new methods. In Section 1.2.3, we review
two numerical methods. In Section 1.3, a detailed comparison in terms of computational cost
and error performance of all the described methods is presented. Finally, Section 1.5 summarizes
the main conclusions.

1.2 3D rotation matrix to quaternion conversion

1.2.1 Trigonometric methods

To the best of our knowledge, although trigonometric methods are implicit in the first docu-
ments dealing with orientation representation in aeronautics [7], it seems to have attracted little
subsequent attention.

1.2.1.1 Trigonometric method 1

This method consists in first extracting a set of Euler angles from R, and then converting the
result to Euler parameters. Different Euler angle conventions can be used to this end. For
example, in [8], the x−y−z convention is used. Nevertheless, here we propose to use the z−x−z
convention because the resulting formulas are much simpler.

Let us denote θ1, θ2, and θ3 a sequence of angles rotated, in local reference frames, about
the z, x, and z axes, respectively. Then, multiplying the corresponding three rotations matrices
yields [9]:

Rz(θ1)Rx(θ2)Rz(θ3) =




−s1 c2 s3 + c1 c3 −s1 c2 c3 − c1 c3 s2 s1
c1 c2 s3 + s1 c3 c2 c1 c3 − s1 s3 −s2 c1

s2 s3 s2 c3 c2



 , (1.12)

where si and ci stand for sin θi and cos θi, respectively. By equating this matrix to (1.7), we
can obtain θ1, θ2, and θ3 as a function of rij , 1 ≤ i, j ≤ 3. The simplest term to work with is
cos θ2 = r33, so θ2 = arccosr33. Then, there are three cases to consider (see [9] for details):

� If θ2 ∈ (0, π), then θ1 = atan2(r13,−r23), and θ3 = atan2(r31, r32).

� If θ2 = 0, then θ3 + θ1 = atan2(−r12, r11).

� If θ2 = π, then θ3 − θ1 = atan2(−r12, r11).

Now, the rotation described as a combination of the above Euler angles can be expressed as

10 CHAPTER 1. ROTATIONS IN 3D

Euler parameters as follows (see Appendix A in [7]):

e0 = cos

(
θ2
2

)
cos

(
θ1+θ3

2

)
, (1.13)

e1 = sin

(
θ2
2

)
cos

(
θ1−θ3

2

)
, (1.14)

e2 = sin

(
θ2
2

)
sin

(
θ1−θ3

2

)
, (1.15)

e3 = cos

(
θ2
2

)
sin

(
θ1+θ3

2

)
. (1.16)

This method requires only four additions, four multiplications, and the evaluation of eleven
trigonometric functions or their inverses. However, observe that it uses neither square roots nor
divisions by variable quantities, which is a good indication of numerical stability.

1.2.1.2 Trigonometric method 2

This other indirect method consist in first computing n and θ, and then converting them to Euler
parameters, which is a common practice in Robotics. Here we will follow the description given
in [4].

From equating the matrices in (1.1) and (1.2), it is possible to verify that

sin θ =
1

2

√
(r32 − r23)2 + (r13 − r31)2 + (r21 − r12)2, (1.17)

and

cos θ =
1

2
(r11 + r22 + r33 − 1). (1.18)

Therefore,

θ = arctan

(√
(r32 − r23)2 + (r13 − r31)2 + (r21 − r12)2

r11 + r22 + r22 − 1

)
. (1.19)

Moreover, it is possible to conclude that

nx =
r32 − r23
2 sin θ

, (1.20)

ny =
r13 − r31
2 sin θ

, (1.21)

nz =
r21 − r12
2 sin θ

. (1.22)

When the angle of rotation is very small, the axis of rotation is physically not well defined
due to the small magnitude of both numerator and denominator in (1.20)-(1.22). In this case, it
is important to ensure that n is a unit vector by renormalizing it. When the angle of rotation
approaches π radians, the vector n is once again poorly defined. In this case, for θ > π/2, n is
determined as follows:

nx = sign(r32 − r23)

√
r11 − cos θ

1− cos θ
, (1.23)

ny = sign(r13 − r31)

√
r22 − cos θ

1− cos θ
, (1.24)

nz = sign(r21 − r12)

√
r33 − cos θ

1− cos θ
. (1.25)

1.2. 3D ROTATION MATRIX TO QUATERNION CONVERSION 11

The idea here is that we only keep the largest of the three components of n given above, and
the other two are computed according to the following rules:

� If nx is the largest, then

ny =
r21 + r12

2nx(1− cos θ)
, (1.26)

nz =
r13 + r31

2nx(1− cos θ)
. (1.27)

� If ny is the largest, then

nx =
r21 + r12

2ny(1− cos θ)
, (1.28)

nz =
r32 + r23

2ny(1− cos θ)
. (1.29)

� If nz is the largest, then

nx =
r31 + r13

2nz(1− cos θ)
, (1.30)

ny =
r32 + r23

2nz(1− cos θ)
. (1.31)

This method is complicated compared to all others. We will show that, in general, it should
be avoided.

1.2.2 Algebraic methods

The algebraic methods are directly based on solving the system of equations resulting from
equating the matrices in (1.1) and (1.7), which can be expressed as:

4e20 = 1 + r11 + r22 + r33, (1.32)

4e21 = 1 + r11 − r22 − r33, (1.33)

4e22 = 1− r11 + r22 − r33, (1.34)

4e23 = 1− r11 − r22 + r33, (1.35)

4e2e3 = r23 + r32, (1.36)

4e1e3 = r31 + r13, (1.37)

4e1e2 = r12 + r21, (1.38)

4e0e1 = r32 − r23, (1.39)

4e0e2 = r13 − r31, (1.40)

4e0e3 = r21 − r12. (1.41)

This system of equations can be organized in a more compact way by defining the matrix of
products as:

P =




e0
e1
e2
e3



(
e0 e1 e2 e3

)
=




e0e0 e0e1 e0e2 e0e3
e1e0 e1e1 e1e2 e1e3
e2e0 e2e1 e2e2 e2e3
e3e0 e3e1 e3e2 e3e3


 . (1.42)

12 CHAPTER 1. ROTATIONS IN 3D

and the matrix

K =
1

4




r11+r22+r33+1 r32−r23 r13−r31 r21−r12
r32−r23 r11−r22−r33+1 r21+r12 r31+r13
r13−r31 r21+r12 r22−r11−r33 + 1 r32+r23
r21−r12 r31+r13 r32+r23 r33−r11−r22 + 1


 (1.43)

Then, equations (1.32)-(1.41) can be reformulated in matrix form as

P = K. (1.44)

1.2.2.1 Chiaverini-Siciliano’s method

This is the most straightforward algebraic method. It is used in [10] and hence the name adopted
here. From (1.32)-(1.35), we have that:

e0 =
1

2

√
1 + r11 + r22 + r33, (1.45)

e1 =
1

2

√
1 + r11 − r22 − r33, (1.46)

e2 =
1

2

√
1− r11 + r22 − r33, (1.47)

e3 =
1

2

√
1− r11 − r22 + r33. (1.48)

Due to the global undefined sign, if we assume that e0 is positive, according to (1.39)-(1.41),
we can give a consistent set of signs to the other elements of the quaternion by simply assigning
the signs of (r32 − r23), (r13 − r31), and (r21 − r12), to e1, e2, and e3, respectively. Alternatively,
if we assume that e1 is positive, a consistent set of signs to the other elements of the quaternion
result from assigning the signs of (r32 − r23), (r21 + r12), and (r1,3 + r3,1) to e0, e2, and e3,
respectively. The following table summarizes the four possible alternatives:

sign(e0) + sign(r32 − r23) sign(r13 − r31) sign(r21 − r12)
sign(e1) sign(r32 − r23) + sign(r21 + r12) sign(r13 + r31)
sign(e2) sign(r13 − r31) sign(r21 + r12) + sign(r32 + r23)
sign(e3) sign(r21 − r12) sign(r13 + r31) sign(r32 + r23) +

Any of these four alternatives gives a correct consistent set of signs. This method has no
singularities. It contains no multiplications nor divisions, and all Euler parameters are treated
in a similar way. It only requires 12 additions and 4 square roots. However, this method only
takes into account the elements of the diagonal of R. We will see how considering the values of
the diagonal of R is necessary to obtain numerically accurate results.

1.2.2.2 Hughes’ method

Despite its limitations which will become clear later, Hughes’ method [11] it is still commonly
used in many engineering areas (see, for example, [12, pp. 122-123] and [13, p. 153]). As in
Chiaverini-Siciliano’s method, the first Euler parameter is given by:

e0 = 1
2

√
r11 + r22 + r33 + 1, (1.49)

1.2. 3D ROTATION MATRIX TO QUATERNION CONVERSION 13

and if e0 6= 0, from (1.39)-(1.41), we have that:

e1 =
r32 − r23

4e0
, (1.50)

e2 =
r13 − r31

4e0
, (1.51)

e3 =
r21 − r12

4e0
. (1.52)

If e0 = 0, (1.32)-(1.41) can be rewritten as:

e1 = ±
√

1 + r11
2

, (1.53)

e2 = ±
√

1 + r22
2

, (1.54)

e3 = ±
√

1 + r33
2

, (1.55)

e1e2 =
r12
2

, (1.56)

e2e3 =
r23
2

, (1.57)

e3e1 =
r31
2

. (1.58)

Again, equations (1.56)-(1.58) can serve to resolve the sign ambiguities in (1.53)-(1.55). First,
observe from (1.56)-(1.58) that (a) r12, r23, and r31 cannot be simultaneously negative; and (b)
if one of them is negative, another one has also to be negative. Therefore, assuming that e1, e2,
and e3 are initially positive, their signs have to be changed according to the following rules:

� If r31 < 0 and r12 < 0, then we have to change the sign of e1.

� If r12 < 0 and r23 < 0, then we have to change the sign of e2.

� If r23 < 0 and r31 < 0, then we have to change the sign of e3.

To avoid this sign disambiguation, an alternative formulation can be found in [13, p. 153],
which is adapted from [12, p. 122], where the following formulas are given for the case in which
e0 = 0:

e1 =
r13r12√

r212r
2
13 + r212r

2
23 + r213r

2
23

, (1.59)

e2 =
r12r23√

r212r
2
13 + r212r

2
23 + r213r

2
23

, (1.60)

e3 =
r13r23√

r212r
2
13 + r212r

2
23 + r213r

2
23

. (1.61)

Unfortunately, these formulas fail if r12 = r13 = 0, or r12 = r23 = 0, or r23 = r13 = 0, because
they lead to indeterminations of the form 0/0. They correspond precisely to the cases in which
the input rotation matrix represents a pure rotation about the x, y, or z axis, respectively. Since
(1.59)-(1.61) are only used in the case in which e0 = 0, these situations are already excluded
except in those cases in which these rotations about the coordinate axes are of π radians.

14 CHAPTER 1. ROTATIONS IN 3D

The essential problem with Hughes’ method is its poor behavior when 1+r11+r22+r33 → 0.
To alleviate this situation, Grubin [14] proposed an algorithm that consisted in computing the
following three alternative solutions:

ē1 =
1

2




√
r11 + r22 + r33 + 1√

2(1 + r11)

(r11 + r21)/
√
2(1 + r11)

(r31 + r13)/
√
2(1 + r11)


 , (1.62)

ē2 =
1

2




√
r11 + r22 + r33 + 1

(r11 + r21)/
√
2(1 + r2,2)√

2(1 + r22)

(r32 + r23)/
√
2(1 + r2,2)


 , (1.63)

ē2 =
1

2




√
r11 + r22 + r33 + 1

(r31 + r13)/
√
2(1 + e3,3)

(r32 + r23)/
√
2(1 + e3,3)√

2(1 + r33)


 . (1.64)

Then, if we determine the ordinal number i of the largest element in of the following vector



r11
r22
r33


 , (1.65)

It is not difficult to prove that the best solution, from the numerical point of view, is ēi. Using
Grubin’s improvement, it is possible to compute the Euler parameters using Hughes’ method for
rotation matrices whose equivalent rotated angle is π − ε, where ε is as small as 2×10−4 [14].
Grubin introduced an idea further exploited by Shepperd’s method: we can choose from several
alternative solutions using a voting scheme.

1.2.2.3 Shepperd’s method

Since it was first proposed in [15], Shepperd’s method remains as one of the most popular
methods. It can be seen as an improvement on Hughes’ method in which the Euler parameters
are computed without numerical instabilities. It can be seen as an evolution of Grubin’s [16],
Klumpp’s [17], Spurrier’s[18], and Klumpp’s [19] methods.

Observe that, in Hughes’ method, e0 is calculated first, and then it is treated very differently
from the remaining three parameters. Since we can solve the system of equations (1.32)-(1.41)
for any of the four Euler parameters, there are four different formulas for computing the Euler
parameters as a function of the input rotation matrix, all of them formally equivalent. Numeri-
cally, however, these four formulas are not identical and, depending on the rotation matrix, one
of them is numerically better conditioned than the others.

1.2. 3D ROTATION MATRIX TO QUATERNION CONVERSION 15

From the system of equations (1.32)-(1.41), we arrive at these four different solutions:

ē1 =
1

2




(1 + r11 + r22 + r33)
1
2

(r32 − r23)/(1 + r11 + r22 + r33)
1
2

(r13 − r31)/(1 + r11 + r22 + r33)
1
2

(r21 − r12)/(1 + r11 + r22 + r33)
1
2


 , (1.66)

ē2 =
1

2




(r32 − r23)/(1 + r11 − r22 − r33)
1
2

(1 + r11 − r22 − r33)
1
2

(r12 + r21)/(1 + r11 − r22 − r33)
1
2

(r31 + r13)/(1 + r11 − r22 − r33)
1
2


 , (1.67)

ē3 =
1

2




(r13 − r31)/(1− r11 + r22 − r33)
1
2

(r12 + r21)/(1− r11 + r22 − r33)
1
2

(1− r11 + r22 − r33)
1
2

(r23 + r32)/(1− r11 + r22 − r33)
1
2


 , (1.68)

ē4 =
1

2




(r21 − r12)/(1− r11 − r22 + r33)
1
2

(r31 + r13)/(1− r11 − r22 + r33)
1
2

(r32 + r23)/(1− r11 − r22 + r33)
1
2

(1− r11 − r22 + r33)
1
2


 . (1.69)

Depending on the entries of R, some of these functions can even lead to complex solutions. To
avoid such a situation, we determine the ordinal number i of the largest element in the following
vector 



r11+r22+r33
r11
r22
r33


 . (1.70)

Then, the best solution, from the numerical point of view, is considered to be ēi. The result
is a method without numerical instabilities. This four-fold multiplicity of the solution arises
in other methods. For example, the one presented in [20], based on geometric arguments, was
shown to be equivalent to this method.

1.2.2.4 Sarabandi-Thomas’ method

This method, recently presented in [21], moves the voting scheme to the computation of each
Euler parameter.

If we only want to compute e0, we can directly use (1.45). That is,

e0 =
1

2

√
1 + r11 + r22 + r33. (1.71)

The term inside the square root lies in the interval [0, 4]. Indeed, observe that Tr(R) =
r11 + r22 + r33 = 2 cos θ + 1 [22, Section 2.3]. Unfortunately, numerical problems arise when
this term gets close to zero. In practice, it can even become negative due to rounding errors.
Since this term coincides with 2 + 2 cos θ, (1.71) becomes ill-conditioned when θ → π. Observe
that (1.71) only takes into account the diagonal entries of R. To obtain an alternative formula
involving all the elements of the rotation matrix, let us substitute in (1.8) the values of e20, e

2
1,

e22, and e23 obtained from (1.32), (1.39), (1.40), and (1.41), respectively. The result is:

1+r11+r22+r33
4

+

(
r32−r23
4e0

)2

+

(
r13−r31
4e0

)2

+

(
r21−r12
4e0

)2

= 1 (1.72)

16 CHAPTER 1. ROTATIONS IN 3D

Solving the above equation for e0, we obtain

e0 =
1

2

√
(r32−r23)2+(r13−r31)2+(r21−r12)2

3−r11−r22−r33
. (1.73)

Now, the term in the denominator of (1.73) also lies in the interval [0, 4]. Since this denom-
inator coincides with 2 − 2 cos θ, (1.73) is ill-conditioned for θ → 0. When this happens, the
diagonal of R is dominant and, as a consequence, the numerator in (1.73) tends also to be small.
Thus, (1.45) and (1.73) can be seen as complementary. As a consequence, it is reasonable to
establish a threshold for the trace of R, whose optimal value is found to be equal to 0 in [21],
above which it is preferable to use (1.73) instead of (1.45). In other words, we have that

e1 =





1
2

√
1+r11+r22+r33, if r11+r22+r33 > 0,

1
2

√
(r32−r23)2+(r13−r31)2+(r21−r12)2

3−r11−r22−r33
, otherwise.

(1.74)

Extending this reasoning to the computation of the other elements of the quaternion, the
result is:

e2 =






1
2

√
1+r11−r22−r33, if r11−r22−r33 > 0,

1
2

√
(r32−r23)2+(r12+r21)

2+(r31+r13)
2

3−r11+r22+r33
, otherwise.

(1.75)

e3 =






1
2

√
1−r11+r22−r33, if −r11+r22−r33 > 0,

1
2

√
(r13−r31)2+(r12+r21)

2+(r23+r32)
2

3+r11−r22+r33
, otherwise.

(1.76)

e4 =





1
2

√
1−r11−r22+r33, if −r11−r22+r33 > 0,

1
2

√
(r21−r12)2+(r31+r13)

2+(r32+r23)
2

3+r11+r22−r33
, otherwise.

(1.77)

Due to the presence of square roots, the signs of ei, i = 0, . . . , 3 are undefined. As in
Chiaverini-Siciliano’s method where these signs are undefined, if we assume that e0 is positive,
we have to assign e2, e3, and e4, the signs of r32−r23, r13−r31, and r21−r12, respectively.

Observe that this method computes two alternative solutions for each Euler parameter. This
implicitly means that this approach works with up to 16 alternative solutions for each set of Euler
parameters, which should obviously lead to a global better numerical behavior than Shepperd’s
method.

1.2.2.5 Arithmetic mean method

It was first noticed in [23], and later independently rediscovered in [24] and [25], that for exact
rotation matrices, all the columns of K in equation (1.44) are equal up to a scalar factor. The

1.2. 3D ROTATION MATRIX TO QUATERNION CONVERSION 17

same applies to its rows as it is symmetric. For erroneous rotation matrices, this is no longer
true. Then, assuming that the elements of the rotation matrix are contaminated by uncorrelated
noise, it is reasonable to average the column vectors of k in some way to get an estimation of the
sought quaternion. The average of a set of quaternions can be obtained by an arithmetic mean,
a squared mean root, the computation of a dominant eigenvector, etc. The method based on the
arithmetic mean was recently presented in [26]. Next, we briefly summarize it.

It we estimate e by obtaining the arithmetic mean of all rows of K, we obtain

ê =
4∑

i=1

ki, (1.78)

where ki denotes the i row of K. Nevertheless, this simple idea has a has a subtle flaw. Since
ki and −ki represent the same rotation (quaternions provide a double covering of the rotation
group), changing the sign of any ki should not change the average. Nevertheless, it is clear that
(1.78) does not have this property. To fix this problem, one possibility is to homogenize the signs
of ki before averaging them. A simple way to implement this idea reads as follows:

ê =

4∑

i=1

sign(kj ·ki)ki, (1.79)

where kj is chosen so that ‖kj‖ ≥ ‖ki‖, i = 1, . . . , 4.
Summing up, the method can be simply summarized as follows: given the rotation matrix

R, we compute K using (1.43), then ê using (1.79), and, depending on the application, we can
finally normalize it. This is probably the simplest of the methods. As we will see in Chapter 2,
it will allows us to derive a solution for the nearest rotation matrix problem that only requires
the four basic arithmetic operations.

1.2.2.6 Cayley’s method

This method was presented in [27] as a particularization of Cayley’s factorization (see Chapter
4)to 3D. In [27], it was shown to provide closer results to those obtained using the SVD than
Shepperd’s method. Now, we can derive it by simply substituting the arithmetic mean in (1.79)
by the squared mean root. The result reads as follows:

|e0| =
1

4

√
(r11+r22+r33 + 1)2 + (r32−r23)2 + (r13−r31)2 + (r21−r12)2, (1.80)

|e1| =
1

4

√
(r32−r23)2 + (r11−r22−r33 + 1)2 + (r21+r12)2 + (r31+r13)2, (1.81)

|e2| =
1

4

√
(r13−r31)2 + (r21+r12)2 + (r22−r11−r33 + 1)2 + (r32+r23)2, (1.82)

|e3| =
1

4

√
(r21−r12)2 + (r31+r13)2 + (r32+r23)2 + (r33−r11−r22+1)2. (1.83)

As in Chiaverini-Siciliano’s method, if we assume that e0 is positive, we can give a consistent
set of signs to the other Euler parameters by simply assigning e1, e2, and e3 the signs of (r32−r23),
(r13−r31), and (r21−r12), respectively. This method has important advantages:

1. It involves a single mapping. There is no voting scheme to select the best solution from a
set of possible solutions.

2. It requires no divisions.

18 CHAPTER 1. ROTATIONS IN 3D

3. The sum of terms under the square root symbol can never be negative independently of
any rounding error.

4. It involves all the elements of the rotation matrix in the computation of each Euler param-
eter.

According to these characteristics, it should perform much better than all other algebraic
methods. Since this method provides us with a single mapping that depends on all the entries
of the rotation matrix, it allows us to straightforwardly obtain the derivatives of any Euler
parameter with respect to any entry of the rotation matrix. For example,

∂e0
∂r11

=
r11 + r22 + r33 + 1

8 e0
, (1.84)

and
∂e0
∂r32

=
r32 − r23

8 e0
. (1.85)

Thus, it can be easily checked that the derivative of ei, i = 0, . . . , 3, with respect to any of the
entries of the rotation matrix tends to infinity as ei tends to 0.

1.2.2.7 Dominant eigenvector method

Markley proposed an approach for determining the average quaternion from a set of quaternions
based on the eigenanalysis of a matrix obtained from the given quaternions [28]. The idea is
simple: the average of the four quaternions ki, i = 1, . . . , 4, is considered to be the value of e
that minimizes

4∑

i=1

‖e− ki‖2 =

4∑

i=1

(
eTe+ kT

i ki − 2eTpi

)
, (1.86)

subject to the constraint eTe = 1. Expression (1.86) is minimized when its last term is maxi-
mized, which is equivalent to maximize [29]

êTGê, (1.87)

where G = K− I, subject to the constraint eTe = 1.
It is interesting to observe, that this result was obtained by Bar-Itzhack in [24] using a more

difficult mathematical machinery than the elementary one used here. It is shown in [23] that the
solution to this optimization problem is the dominant eigenvector (the eigenvector associated
with the eigenvalue whose absolute value is maximal) of G. Next, we give an alternative simpler
proof.

Using Lagrange multipliers, we have that the value of e that maximizes the quadratic form
eTGe subject to the constraint eTe = 1, is obtained by solving

∂(eTGe)

∂e
= λ

∂(eTe)

∂e
(1.88)

That is,
Ge = λe. (1.89)

Thus, we have four candidates: the four eigenvectors of G. Nevertheless, the one that maximizes
the quadratic form is clearly the one corresponding to the largest eigenvalue.

The determination of the largest eigenvalue requires computing the roots of a quartic poly-
nomial which can be performed using Ferrari’s method [23].

1.2. 3D ROTATION MATRIX TO QUATERNION CONVERSION 19

The characteristic polynomial of G can be expressed as

λ4 + τ3λ
3 + τ2λ

2 + τ1λ+ τ0, (1.90)

where

τ3 = Tr(G) = 0,

τ2 = −2
3∑

i=1

3∑

j=1

h2
i,j = −2Tr

(
RTR

)
,

τ1 = −8 det(R),

τ0 = det(G).

The roots of (1.90) are real because G is symmetric. The application of Ferrari’s method to
obtain these roots is simplified because τ3 is identically zero. In [30], it is shown that the largest
real root of (1.90) can be expressed as

λmax=





√
− τ1

2 , if |τ1| < ζ and | k1| < ζ,

1√
6

(
k1+

√
−k21−12τ2−12

√
6τ1

k1

)
, otherwise,

where

k0 = 2τ32 + 27τ21 − 72τ2τ0,

θ = atan2

(√
4(τ22 + 12τ0)

3 − k20 , k0

)
,

k1 = 2

√(√
τ22 + 12τ0

)
cos

θ

3
− τ2.

The threshold ζ is typically taken to be a small positive number, such as 10−5 [30]. Moreover,
it can be proven that all the rows of the cofactor matrix of (G− λmaxI) are proportional to the
eigenvector corresponding to λmax [23]. In [30], some computational time is saved by computing
only the last row of this cofactor matrix. Unfortunately, all the elements of this row are identically
zero for rotations whose rotation axis lies on the xy-plane. Although, at least in theory, rotations
whose rotation axes lie on the xy-plane can be seen as a set of measure zero in the space of
quaternions, in practice it is enough to be close to this situation to generate large errors. Similar
situations arise if we take any other row. Thus, for the sake of robustness, we have to compute
all rows and take the one with the largest norm [31].

1.2.3 Numerical methods

All numerical methods reduce the problem of computing the quaternion representation of a
given rotation matrix to obtain the eigenvector corresponding to a known eigenvalue, which in
turn reduces to finding a matrix null space. This problem can be numerically solved in many
different ways. To show how dependent these methods are on the adopted numerical method,
two alternatives will be considered in the analysis given in Section 1.3, one based on the singular
value decomposition (SVD) and the other on Gaussian elimination.

20 CHAPTER 1. ROTATIONS IN 3D

1.2.3.1 Coope et al.’s method

This method was proposed in [32]. In this case, e0 is initially computed using (1.49). If e0
is non-zero but below a certain threshold, for which numerical instabilities arise, the following
refinement for e0 is used

e0 ←
1

4
√
1− e20

norm



r32 − r23
r13 − r31
r21 − r12


 . (1.91)

This operation can actually be seen as a single step of a Newton-Raphson method to find a
better approximation of a root. In [32], the threshold is set at e0 = 0.1, which corresponds to
values of Tr(R) = −0.96. Nevertheless, after some experiments using single-precision floating-
point numbers, better results are obtained by increasing this threshold to Tr(R) = −0.3. To
compute e = (e1, e2, e3)

T , this method relies on the property

Re = e. (1.92)

Thus, the problem is reduced to compute the one-dimensional null space basis of R−I. The
approach adopted in [32] is slightly different because (1.92) can be rewritten as (R+RT)e = 2 e
to transform the problem into a real well-conditioned symmetric eigenvector problem for the
eigenvalue equal to 2. Nevertheless, we have observed that the results are numerically more
accurate when this extra transformation is not introduced when using Gaussian elimination. If
v is the obtained eigenvector for the eigenvalue 1, then

ei =
√
1− e20 vi, i = 1, 2, 3. (1.93)

Due to the presence of square roots, the signs of ei, i = 1, 2, 3 are undefined. Again, as in
Chiaverini-Siciliano’s if e0 is assumed to be positive, e1, e2, and e3 have to be assigned the signs
of r32−r23, r13−r31, and r21−r12, respectively.

1.2.3.2 Bar-Itzhack’s method

Almost all algorithms for estimating spacecraft attitude (orientation) from vector measurements
consists in finding the rotation matrix R that minimizes the function

∑

i

|bi −Rri|2 , (1.94)

where ri and bi are unit vectors in the global reference frame and the body reference frame,
respectively. This problem was first proposed by Wahba in 1965 [33]. The original formulation
included the possibility of weighting each measurement which is removed here for the sake of
simplicity.

Some early methods to solve this minimization problem can be found in [34]. The most robust
ones are Davenport’s q-method [35, 36] and the SVD method [37]. Markley and Morari showed
that the q-method performs better than the SVD method [38]. According to the q-method, the
quaternion corresponding to the sought rotation matrix R is the eigenvector corresponding to
the largest eigenvalue of the following 4×4 matrix [39, 2]:

K0 =

(
σ zT

z S−σI3

)
, (1.95)

1.2. 3D ROTATION MATRIX TO QUATERNION CONVERSION 21

where

σ =
∑

i

rTi bi, (1.96)

S =
∑

i

rib
T
i +

∑

i

bir
T
i , (1.97)

z =
∑

i

ri×bi. (1.98)

The definition of the matrix in (1.95) is not the same as the one given in [39, 2] because its
entries have been permuted, and an irrelevant change of sign has been introduced here to provide
a neat connection with the other methods reviewed in this thesis.

Several algorithms were presented to bypass the need of obtaining the maximum eigenvalue
and the corresponding eigenvector like the QUEST method [40], and its evolutions [41, 42, 43,
44, 45], the ESOQ method [46, 47], the ESOQ2 method [48, 49], the FOAM method [50], and the
TRIAD method [29, 51]. According to the analyses of Markley [38] and Duarte [52], the QUEST
method is the fastest one and performs similarly to the ESOQ and the ESOQ2 methods.

Bar-Itzhack proposed a method for the computation of the quaternion corresponding to a
given rotation matrix based on the above results, in particular on the q-method and the QUEST
method [24].

In the Bar-Itzhack method, the matrix in (1.95) is constructed using the elements of the
rotation matrix and then the quaternion is computed either using an eigenvector computation
routine or the QUEST method. If the given rotation matrix is not noisy (i.e., it is perfectly
orthogonal), then there is no need to compute the eigenvalues of K0 and thus the voting process,
necessary in other algorithms, can be avoided.

Since two vector measurements are enough to determine the matrix that describes the rotation
from the global reference frame to the body reference frame, we can take

r1 = (1, 0, 0)T , (1.99)

r2 = (0, 1, 0)T . (1.100)

Then, since bi = Rri, we have that

b1 = (r11, r21, r31)
T , (1.101)

b2 = (r12, r22, r32)
T . (1.102)

As a consequence, the problem of computing the quaternion representation of R reduces to
computing the eigenvector associated with the eigenvalue equal to 2 of the following matrix:

K1 =




r11+r22 r32 −r31 r21−r12
r32 r11−r22 r21+r12 r31
−r31 r21+r12 r22−r11 r32

r21−r12 r31 r32 −r11−r22


 . (1.103)

We could use other couples of vectors, instead of (1, 0, 0) and (0, 1, 0), thus leading to a
different expressions for the matrix in (1.103). With the taken choice, the elements of the third
column of R are not included in the computations. This column is certainty redundant, as it
can be obtained as the cross product of the other two, but from the numerical point of view,
it is better to take all the entries of R into account. Therefore, it seems reasonable to use the

22 CHAPTER 1. ROTATIONS IN 3D

triad r1 = (1, 0, 0)T , r2 = (0, 1, 0)T , and r3 = (0, 0, 1)T , in which case the problem reduces to
computing the eigenvector associated with the eigenvalue equal to 3 of the following matrix:

K2 =




r11+r22+r33 r32−r23 r13−r31 r21−r12
r32−r23 r11−r22−r33 r12+r21 r13+r31
r13−r31 r12+r21 r22−r11−r33 r23+r32
r21−r12 r13+r31 r23+r32 r33−r11−r22


 . (1.104)

In other words, the problem reduces to finding the base vector for the one-dimensional null
space either of K1−2I or of K2−3I. We analyze the behavior of both alternatives in the next
section where are referenced to as Bar-Itzhack-1 and Bar-Itzhack-2, respectively.

1.3 Performance comparison

All the described methods described in the previous section have been implemented in MATLABr,
running on an Intelr Core

�

i7 with 32 GB of RAM.
All comparisons have been performed using single-precision floating-point numbers according

to IEEE Standard 754. Using this representation, a number greater than approximately 3.4×1038
or less than approximately −3.4× 10−38 cannot be represented.

The following comparison is based on a statistical analysis. To this end, we first need to
generate random Euler parameters. Since this is equivalent to generate random points uniformly
distributed in S

3, we can use the algorithm described in [53]. For each generated set of Euler
parameters, we can generate a rotation matrix using (1.7), and then recover the original Euler
parameters using the reviewed methods. The committed error is evaluated as the norm of the
vector difference between the original and recovered parameters. In general, this is not a good
way to compute the distance between two orientations. Nevertheless, since in our case the error
is assumed to be very small, the length of the vector connecting both orientations in S

3 is going
to coincide with the value of the angle formed by them as seen from the center of S3. Now,
observe that this angle can be taken as a distance between any two elements of the 3D rotation
group SO(3) [54].

The time and error performances of the described methods for 106 random orientations are
compiled in Table 1.1 and Table 1.2, respectively.

In Table 1.1, the first column gives the average time required for each method to compute a
set of Euler parameters; and the second column, the time required in the best of the cases. The
time for the worst case is meaningless on a multitasking computer and hence it is excluded. In
Table 1.2, we have four columns. The first shows the number of cases, out of the 106 orientations,
in which the original orientation is recovered without error. The other three correspond to the
error committed in the worst-case, the average error, and the standard deviation of the error,
respectively. Observe that, for Chiaverini-Siciliano’s and Hughes’ methods, some orientations
could not be recovered because they lead to negative radicands in their formulations, and hence
the NaNs —standing for “not a number”— appearing in the corresponding rows.

We can draw three important conclusions from these results:

� Although they are used in Robotics, the second trigonometric method, Chiaverini-Siciliano’s
and Hughes’s method should be avoided.

� Cayley’s method and the arithmetic mean method besides being the simplest ones, they
are superior in terms of accuracy and speed.

Among the numerical methods, the second version of Bar-Itzhack’s method is the only one
that deserves some attention as it can be used to obtain the quaternion corresponding to a

1.4. DISTANCES BETWEEN 3D ROTATIONS 23

Table 1.1: Time performance for the computation of quaternions from rotation matrices

Method Average Best-case
µs µs

Trigonometric-1 16.5 7.5
Trigonometric-2 21.4 12.9

Chiaverini-Siciliano 13.2 5.3
Hughes 9.2 4.3
Shepperd 13.6 7.5
Sarabandi-Thomas 10.5 6.0
Arithmetic mean 7.9 4.1
Cayley 6.7 3.9
Dominant eigenvector 37.5 22.3

Coope et al. Gaussian 702.1 403.2
Coope et al. SVD 35.6 19.7
Bar-Itzhack-1 Gaussian 1094.0 608.3
Bar-Itzhack-1 SVD 36.7 21.7
Bar-Itzhack-2 Gaussian 1064.3 623.9
Bar-Itzhack-2 SVD 28.5 19.3

non-perfectly orthogonal rotation matrix [24]. In this case, the quaternion corresponds to the
nearest orthogonal matrix to the input non-orthogonal matrix, where closeness is expressed in the
Frobenius norm [55]. This is a very important property, also shared by the dominant eigenvector
method, that will be leveraged in the next chapter.

1.4 Distances between 3D rotations

All methods for determining the nearest rotation matrix come from the minimization of different
distances. Although we will use through this thesis the Frobenius-norm distance, for the sake
of completeness, we next list the most common used distances between rotations without going
into mathematical details (see [54, 56] for mathematical rigorous presentations).

1.4.1 Chordal distance

A simple way to measure distance between two rotation matrices is computing the Frobenius
norm of their difference, which is also known as chordal distance. Explicitly, the chordal distance
between rotations R1 and R1 is given by

dchordal (R1,R2) =
∥∥∥R̂−R

∥∥∥
F
. (1.105)

This distance has a simple geometric interpretation. Indeed, the column vectors of the rota-
tion matrix Ri can be made explicit as Ri = (ni oi ai) [4]. These vectors determine a reference
frame. Then, according to the figure 1.1, the Frobenius norm of the difference between R1 and
R2 is equal to

√
d21 + d22 + d23.

1.4.2 Angular distance

Another way to define a distance function between two rotations is to use the Riemannian
distance, also known as the angular distance, which takes values in the [0, π] interval. The

24 CHAPTER 1. ROTATIONS IN 3D

Table 1.2: Error performance for the computation of quaternions from rotation matrices

Orientations Standard
Method recovered Worst-case Average deviation

without error ×10−6
×10−6

×10−6

Trigonometric-1 22703 2749.20 0.0732 2.750
Trigonometric-2 48641 65447.00 0.2252 72.775

Chiaverini-Siciliano 51202 203.70 NaN NaN
Hughes 153211 1178700.01 NaN NaN
Shepperd 244191 0.17 0.0304 0.0407
Sarabandi-Thomas 254643 0.12 0.0248 0.0346
Arithmetic mean 225563 0.15 0.0248 0.0372
Cayley 318168 0.18 0.0247 0.0361
Dominant eigenvector 198122 0.19 0.0249 0.0385

Coope et al. Gaussian 27677 24911.03 0.0992 43.5392
Coope et al. SVD 16997 9.20 0.0929 0.0110
Bar-Itzhack-1 Gaussian 17909 59694.31 0.7151 79.7434
Bar-Itzhack-1 SVD 1448 0.88 0.0135 0.0150
Bar-Itzhack-2 Gaussian 26005 77301.52 0.6476 105.1176
Bar-Itzhack-2 SVD 8276 0.47 0.0100 0.0113

Riemannian distance between two rotations R1 and R2 is defined as [57, 58]:

d∠ (R1,R2) =
∥∥log

(
R1R

T
2

)∥∥
F
. (1.106)

If the quaternions corresponding to R1 and R2 are q1 and q2, respectively, the angular
distance can also be expressed as:

d∠ (R1,R2) = 2arccos
(∣∣qT

1 q2

∣∣) . (1.107)

1.4.3 Quaternion distance

The quaternion distance is the Euclidean distance of unit-quaternions in 4D Euclidean space. The
quaternion distance between the two unit-quaternions q1 and q2, with corresponding rotation
matrices R1 and R2, is defined as [59]:

dquaternion (R1,R2) = min {‖q1 − q2‖ , ‖q1 + q2‖} , (1.108)

which takes into account that q and −q represent the same rotation.

1.4.4 Axis-angle distance

If R1 = eN1 and R2 = eN2 , the axis-angle distance is defined as:

dlog (R1,R2) = min ‖N1 −N2‖F . (1.109)

In what follows, we will use the Frobenius norm as a measure of closeness between rotations.
The reasons for this choice are:

� Although it does not seem to be a reasonable measure of angular difference, it has a simple
geometric interpretation.

1.5. CONCLUSION 25

PSfrag replacements

d1 d2

d3

n1

n2

o1

o2

a1a2

Figure 1.1: Chordal distance between two rotation matrices

� It is easy to obtain its derivatives and hence to come up with a closed-form formula. If we
would use the 2-norm, the closeness measure would be given by the largest singular value
of R−R̂ which is not easy to deal with.

� Using it, the solution is unique. If we would use the 2-norm, the solution is not necessarily
unique [60].

1.5 Conclusion

We have reviewed 15 methods to compute the quaternion corresponding to a given rotation
matrix. These methods have been organized in three groups (trigonometric, algebraic and nu-
merical) and they have been compared based on their time and error performance. From this
review and comparison, we have concluded that Cayley’s method is the simplest, and yet the
best, in terms of time and error performance. Cayley’s method was previously used to obtain
the double quaternion representation of rotations in four dimensions (see Chapter 4). We have
simply particularized it to the three dimensional case.

So far, the most common method used in applications —Shepperd’s method— introduces
four different mappings, being thus necessary to select the one that is numerically most stable
in every case. We have shown that this strategy is not necessary as Cayley’s method provides a
single mapping that works well in all cases.

In our analysis, we have not taken into account the effect of noise. This is done in the next
chapter, where the dominant eigenvector method is revealed of maximum interest.

26 CHAPTER 1. ROTATIONS IN 3D

Chapter 2

The nearest rotation matrix

problem in 3D

2.1 Introduction

There are some applications in robotics, computer vision, and computer graphics in which noisy
rotation matrices are generated. That is, rotation matrices that satisfy approximately the condi-
tions of being proper and orthogonal. Then, the need arises for orthonormalizing them, a process
that essentially consist in finding a proper orthogonal rotation matrix that minimizes a certain
distance to the noisy rotation matrix.

Due to floating-point precision errors, we have that, for example, the result of cumulatively
multiplying rotation matrices is a noisy rotation matrix [61]. Likewise, the integration of an-
gular velocity differential equations leads to a rotation matrix that progressively departs from
orthogonality as time increases [62]. A way to alleviate these problems consists in representing
rotations using unit quaternions, which are only converted to rotation matrices when required.
Floating-point precision errors in these cases lead to non-unit quaternions, but normalizing them
is a trivial task. Unfortunately, using quaternions is not always desirable or even possible. For
example, as we already explained, rotating a vector by a quaternion using the sandwich formula
[63] is computationally much more expensive than rotating it using the standard multiplication
by the corresponding rotation matrix [64].

Erroneous rotation matrices not only arise as the result of floating-point operations. For
example, one simple solution to the problem of determining the rotation matrix that is the best
fit to a given set of measured rotations consists in averaging all measurements. However, the
result is not, in general, a proper orthogonal matrix which also needs to be orthonormalized [65].

In this chapter, all available methods for solving the nearest 3D rotation matrix problem are
presented under a unified treatment. A new matrix logarithm-based method is presented, but
of particular interest are three new closed-form methods which are shown to compare favorably
with the standard method based on the SVD. One advantage of a closed-form solution is that it
provides us in one step with the best possible solution. Another advantage is that one need not
find a good initial guess, as one does when an iterative method is used.

This chapter is organized as follows. Sections 2.2 and Section 2.3 review the geometric
methods and algebraic methods, respectively. Section 2.4 compares the performance of the
proposed new closed-form methods with respect to the SVD method, the standard method of
choice till now.

27

28 CHAPTER 2. THE NEAREST ROTATION MATRIX PROBLEM IN 3D

2.2 Geometric methods

The geometric methods are simple and intuitive. They consists in generating, by using simple
geometric constructions, an orthogonal reference frame from the column vectors of R = (noa)
(as in the previous chapter, we adhere to the standard robotics nomenclature [4, p. 26]). There
are two variants for all these methods: column- and row-oriented methods. We only present the
column version.

The main virtue of these methods is that they provide a fast estimation of the solution. Thus
the results they provide can be used as a starting point by any iterative scheme to converge
to the desired solution. Indeed, if Ř is the orthonormalized matrix resulting from R using a
geometric method, then we can find the nearest rotation matrix of ŘTR ≈ I using any other
more accurate method which is known to behave well for matrices close to the identity. If R̂
is the orthonormalized matrix resulting from this refinement, and the used method is invariant
with respect to the reference frame, then the sought orthonormalized matrix is clearly ŘT R̂.

2.2.1 Dot product method and QR factorization

This method can be seen as the particularization of the Gram-Schmidt orthonormalization pro-
cess [66] to three dimensions. It takes n as a base vector, then it subtracts from o its projection
onto n, then subtracts from a its projections onto n and o, and, finally, the three vectors are
normalized. In algebraic terms, this reads

n̂ =
n

‖n‖ , (2.1)

ô =
o− (o · n̂) n̂
‖o− (o · n̂) n̂‖ , (2.2)

â =
a− (a · n̂) n̂− (a · ô) ô
‖a− (a · n̂) n̂− (a · ô) ô‖ . (2.3)

Then, we have that the orthonormalized rotation matrix is given by R̂ = (n̂ ô â). It is not

difficult to prove that the original rotation matrix R and the resulting orthogonal matrix R̂ are
related through the expression

R = R̂U, (2.4)

where U is an upper triangular matrix with positive diagonal elements. Expression (2.4) is
technically known as the QR factorization of R [67]. There are other methods to compute this
decomposition, besides the just described one based on the Gram-Schmidt orthonormalization
process. They include the modified Gramm-Schmidt method, and the methods based on House-
holder transformations, or Givens rotations. All of them have a direct geometric interpretation.
Each has several advantages and disadvantages [68, 69]. The algorithm resulting from using
Householder transformations is consider superior in terms of the orthogonality of the resulting
matrix, especially if R is close to be singular.

Observe that in this method the sign of det(R̂) equals that of det(R) because the diagonal
elements of the upper triangular matrix U are positive. Thus, this method preserves the orien-
tation of the reference frame defined by R. When the result is desired to be proper orthogonal
even when det(R) < 0, the following method is preferable.

2.2. GEOMETRIC METHODS 29

2.2.2 Cross product method

Alternatively to the previous method, using cross products, we have that

n̂ =
o× a

‖o× a‖ , (2.5)

ô =
a× n̂

‖a× n̂‖ , (2.6)

â = n̂× ô. (2.7)

Both, the dot and the cross product methods, have the disadvantage that the result is biased
by the order of operations. Switching the order of the vectors yields a different result. The cross
product method is slightly less asymmetrical than the dot product method and it is why it is, in
general, preferred. The following two methods were designed to give an equal treatment of the
three vectors without preference to any one of them.

2.2.3 Iterative cross product method

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.2

0.4

0.6

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

10
-10PSfrag replacements

Level of noise (δ)Level of noise (δ)

M
e
a
n

F
ro

b
e
n
iu
s
n
o
rm

M
e
a
n
o
rt
h
o
g
o
n
a
li
ty

e
rr
o
r

Figure 2.1: Frobenius norm of R̂−R and orthogonality error of R̂ for the iterative cross product
method as a function of the level of noise, and for different number of iterations. 106 random
matrices are generated for each value of δ.

This method was proposed in [70]. It consists in obtaining each column from the other two
and averaging the result with the original value of the column. That is,

n′ =
(o× a) + n

2
, (2.8)

o′ =
(a× n) + o

2
, (2.9)

a′ =
(n× o) + a

2
. (2.10)

Then,

R̂ =

(
n′

‖n′‖
o′

‖o′‖
a′

‖a′‖

)
(2.11)

is clearly a new rotation matrix closer to be orthogonal. Then, the idea is simple: this operation
can be iteratively repeated until no relevant improvement is made.

In this method, an average of five iterations is enough to convergence with a variation in each
element of the matrix lower than 10−8 [70]. To verify this result, a set of 105 random rotation
matrices are generated using [53] whose elements are contaminated with additive uncorrelated
uniformly distributed noise in the interval [−δ, δ]. Then, we evaluate the mean Frobenius norm

30 CHAPTER 2. THE NEAREST ROTATION MATRIX PROBLEM IN 3D

between these noisy matrices and the estimated rotation matrices, and the mean orthogonality
error of the estimated rotation matrices, using an increasing number of iterations of this method.
The result of this experiment appears in Fig. 2.1 for values of δ ranging from 0 to 0.5. We
can see how the use of five iterations is enough to obtain excellent results, thus concurring with
the results presented in [70]. In [70], it is shown how this simple geometric iterative method
outperforms the two quadratically convergent methods explained in Section 2.3.

2.2.4 Equal mean direction method

This method was originally proposed in [65] and recently rediscovered in [71]. It consists in first
computing the mean direction of the column vectors, that is,

c =
1

3

(
n

‖n‖ +
o

‖o‖ +
a

‖a‖

)
. (2.12)

Then, the goal is to find the proper rotation matrix that has the same mean direction but its
columns are as close as possible to the columns of R.

Fist of all, let us define the plane Π : {x | (x− p) · p = 0}, where

p =
c

‖c‖
1√
3
. (2.13)

Then,

xp =
‖c‖
n · c

1√
3
n,

yp =
‖c‖
o · c

1√
3
o,

zp =
‖c‖
a · c

1√
3
a,

are the position vectors of the intersections of the lines defined by n, o, and a with Π.

Now, we can define the angles

φxy = arccos

(
(xp − p) · (yp − p)

‖xp − p‖ ‖yp − p‖

)
,

φyz = arccos

(
(yp − p) · (zp − p)

‖yp − p‖ ‖zp − p‖

)
,

and

θx =
2φxy + φyz − 2π

3
. (2.14)

This allows us to build the auxiliary rotation matrix

R′ =

(
xp − p

‖xp − p‖
c

‖c‖ a′ × n′
)
. (2.15)

Finally, we obtain

R̂ = (n̂ ô â) , (2.16)

2.3. ALGEBRAIC METHODS 31

where

n̂ = p+

√
2

3
R′ (cos θx sin θx 0)

T
,

ô = p+

√
2

3
R′
(
cos

(
θx +

2π

3

)
sin

(
θx +

2π

3

)
0

)T

,

â = p+

√
2

3
R′
(
cos

(
θx +

4π

3

)
sin

(
θx +

4π

3

)
0

)T

.

2.3 Algebraic methods

The algebraic methods are based on the minimization of a measure of closeness between the
noisy rotation matrix R and the estimated proper orthogonal matrix R̂. As justified in Section
1.4, we will adopt the Frobenius norm of their difference as the measure of closeness which will

be denoted as
∥∥∥R−R̂

∥∥∥
F
. Thus, the problem is stated as that of finding R̂ that minimizes

∥∥∥R̂−R
∥∥∥
2

F
= Tr

(
(R̂−R)(R̂−R)T

)
= ρ21+ρ22+ρ23, (2.17)

subject to R̂T R̂ = I, where ρi, i = 1, 2, 3, are the eigenvalues of R̂−R. Using Lagrange multi-
pliers, it can be proved that the optimal solution to this constrained optimization problem, in
the case that R is not singular, is given by [72, 55] (see also Section 5.1 for a complete proof):

R̂ = R
(
RTR

)− 1
2 = R (I+E)

− 1
2 , (2.18)

where
E = RTR− I (2.19)

can be seen as a error matrix.
It is easy to verify that R̂ thus obtained is orthonormal, i.e. R̂T R̂ = I. However, there is no

guarantee that det(R̂) = +1. To represent a proper rotation, the orthonormal matrix R̂ has to
satisfy this condition as well. Otherwise it represents a reflection, not a rotation. There is no
easy way to enforce this condition, and with poor measurements, the estimated rotation matrix
may very well lead to solution R̂ such that det(R̂) = −1.

Alternatively, (2.18) can also be expressed as:

R̂ =
(
RRT

) 1
2
(
RT
)−1

=
(
I+ Ē

) 1
2
(
RT
)−1

, (2.20)

where
Ē = RRT − I (2.21)

can also be seen as an error matrix.
While (2.18) is called the primal solution, (2.20) is referred to as the dual solution. A proof

of equivalence between them can be found in [73] or [74].

2.3.1 Series expansion method

This technique was first proposed in [75]. To obtain an approximate value of the primal solution
in (2.18), we can compute some terms of its Maclaurin series as follows:

32 CHAPTER 2. THE NEAREST ROTATION MATRIX PROBLEM IN 3D

R̂ = R(I+E)−
1
2 = R

(
I− 1

2
E+

3

8
E2 − 5

16
E3 +

35

128
E4 + . . .

)
. (2.22)

Likewise, to obtain an approximate value of the dual solution in (2.20), we can also compute
some terms of its Maclaurin series expansion as follows:

R̂ = (I+ Ē)
1
2 (RT)−1 =

(
I+

1

2
Ē− 1

8
Ē2 +

1

16
Ē3 − 5

128
Ē4 + . . .

)
(RT)−1. (2.23)

Obviously, in both cases, only the first few terms are worth using. In many applications, only
one term of the series expansion suffices to get the desired accuracy [75]. However, for highly
noisy systems, this method can not guarantee to converge to the optimal solution.

By taking up to the linear, quadratic, and cubic terms in (2.22) and (2.23), we obtain different
levels of approximation. As explained in [76], the resulting formulas can also be applied iteratively
in the hope that the result converges to the solution. They are compiled, after simplification in
Table 2.1. The iterative application of these formulas was rediscovered in [77, 78] as the result of
reformulating the problem as a dynamical system. However, solving the nearest rotation matrix
problem using these iterative methods can be computationally costly.

Table 2.1: Series expansion of the primal and dual solutions and derived iterative methods
(S = RTR).

Primal Dual

Noisy rotation matrix R R

Closed-form solution R̂ = R(RTR)−
1
2 R̂ = (RRT)

1
2 (RT)−1

Error matrix E = RTR − I Ē = RRT − I

Series solution R̂ = R
[

I − 1
2
E + 3

8
E2 − 5

16
E3 + . . .

]

R̂ =
[

I + 1
2
Ē − 1

8
Ē2 + 1

16
Ē3 − . . .

]

(

RT

)

−1

Quadratically convergent R0 = R R0 = R

iterative solution Rn+1 = 1
2
Rn(3I − Sn) Rn+1 = 1

2
(RT

n
)−1 + 1

2
Rn

Convergence det(R) 6= 0, 0 ≤ max{λi} ≤
√
3 det(R) 6= 0

References [70, 73, 76, 77, 78, 79, 80] [70, 73, 81, 82, 83]

Cubically convergent R0 = R R0 = R

iterative solution Rn+1 = 1
8
Rn(15I − 10Sn + 3S2

n
) Rn+1 = Rn(3I + Sn)(I + 3Sn)

−1

Convergence det(R) 6= 0, 0 ≤ max{λi} ≤ 1.5275 det(R) 6= 0

References [77, 78] [77, 78, 83]

Quartically convergent R0 = R R0 = R

iterative solution Rn+1 = 1
16

Rn(35I − 35Sn + 21S2
n
− 5S3

2) Rn+1 = Rn(I + 3Sn)(3Sn + S2
n
)−1

Convergence det(R) 6= 0, 0 ≤ max{λi} ≤
√
3 det(R) 6= 0

References [77, 78, 84] [77, 78, 85]

To see the influence of the number of iterations in the quality of the result, we can proceed
as in Section 2.2.3. Figs. 2.2, 2.3, and 2.4 show the results for the quadratically, cubically and
quadrically convergent formulas. Two conclusions can be drawn from these plots:

2.3. ALGEBRAIC METHODS 33

� The dual formulas perform much better than their primal counterparts. However, this does
not come without cost: the dual formulas require the computation of the inverse of RT .

� The quadrically convergent formulas do not provide an improvement, with respect to the
cubically convergent ones, that deserves the effort of their computation.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.5

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10
-10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.5

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10
-10

10
0

PSfrag replacements

Level of noise (δ)Level of noise (δ)

M
e
a
n

F
ro

b
e
n
iu
s
n
o
rm

M
e
a
n
o
rt
h
o
g
o
n
a
li
ty

e
rr
o
r

Figure 2.2: Frobenius norm of R̂−R and orthogonality error of R̂ for the primal quadratically
convergent formula (top row) and its dual (bottom row) as a function of the level of noise, and
for different number of iterations. 106 random matrices are generated for each value of δ.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.2

0.4

0.6

0.8

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10
-10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.2

0.4

0.6

0.8

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10
-10

PSfrag replacements

Level of noise (δ)Level of noise (δ)

M
e
a
n

F
ro

b
e
n
iu
s
n
o
rm

M
e
a
n
o
rt
h
o
g
o
n
a
li
ty

e
rr
o
r

Figure 2.3: Frobenius norm of R̂−R and orthogonality error of R̂ for the primal cubically
convergent formula (top row) and its dual (bottom row) as a function of the level of noise, and
for different number of iterations. 106 random matrices are generated for each value of δ.

There are other iterative methods, derived using other algebraic arguments. One example is
the one described in [55] resulting from a gradient projection technique. Unfortunately, its rate of
convergence was shown to be linear [79] and hence its little practical interest. Another example
if the two-step iterative algorithm proposed in [70] where it was also shown to be inferior to the
quadratically convergent primal and dual methods. A particularization of this latter method

34 CHAPTER 2. THE NEAREST ROTATION MATRIX PROBLEM IN 3D

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.5

1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10
-10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.5

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10
-10

PSfrag replacements

Level of noise (δ)Level of noise (δ)

M
e
a
n
F
ro

b
e
n
iu
s
n
o
rm

M
e
a
n

o
rt
h
o
g
o
n
a
li
ty

e
rr
o
r

Figure 2.4: Frobenius norm of R̂−R and orthogonality error of R̂ for the primal quadrically
convergent formula (top row) and its dual (bottom row) as a function of the level of noise, and
for different number of iterations. 106 random matrices are generated for each value of δ.

reappeared in [86] when using the matrix sign function to compute the square root of positive
definite matrices. Next, we analyze three other methods that deserve some attention due to their
simplicity: the matrix sign function, the Padé approximant and the continued fraction methods.
They can also been implemented in iterative form.

2.3.2 Matrix sign function method

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.5

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10
-10

10
0

PSfrag replacements

Level of noise (δ)Level of noise (δ)

M
e
a
n

F
r
o
b
e
n
iu

s
n
o
r
m

M
e
a
n

o
r
t
h
o
g
o
n
a
li
t
y

e
r
r
o
r

Figure 2.5: Frobenius norm of R̂−R and orthogonality error of R̂ for the sign matrix method as
a function of the level of noise and for different number of iterations. 106 random matrices are
generated for each value of δ.

Given the positive definite matrix A, its sign is defined as:

sign(A) = A
(
A2
)−1

. (2.24)

It is possible to derive iterative methods for computing the square root of a matrix by relying on
this function. In our case, the one described in [80], based on the matrix sign function algorithm
described in [87], permits computing the square root of RRT using the iterative application of
the following formula:

Sn+1 =
1

2

(
Sn + S0S

−1
n

)
, (2.25)

2.3. ALGEBRAIC METHODS 35

with S0 = RRT . This iterative formula converges to S∞ = (RRT)
1
2 . As a consequence,

R̂ = S∞
(
RT
)−1

. (2.26)

In [80], this method is compared with the quadratically convergent primal and dual methods
to conclude that it behaves better in terms of convergence. To verify this result, we can perform
a similar analysis to that in Section 2.2.3. The result appears in Fig. 2.5. If we compare it
with that in Fig. 2.2, it is easy to conclude that, while this method clearly preforms better than
the quadratically convergent primal method, it performs similarly to its dual counterpart. The
improvement reported in [80] is not remarkable.

2.3.3 Padé approximant method

Using Padé approximants, we have that [88, 89]

(
RTR

) 1
2 = (I+E)

1
2 ≈ I+

m∑

j=1

a
(m)
j

(
I+ b

(m)
j E

)−1

E, (2.27)

where

a
(m)
j =

2

2m+ 1
sin2

jπ

2m+ 1
, (2.28)

b
(m)
j = cos2

jπ

2m+ 1
. (2.29)

Observe that in this method, the values of the coefficients of the expansion vary with the
number of taken terms, or the order of the approximation.

2.3.4 Continued fraction method

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.5

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10
-10

10
0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.2

0.4

0.6

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10
-10

10
0

PSfrag replacements

Level of noise (δ)Level of noise (δ)

M
e
a
n

F
ro

b
e
n
iu
s
n
o
rm

M
e
a
n
o
rt
h
o
g
o
n
a
li
ty

e
rr
o
r

Figure 2.6: Frobenius norm of R̂−R and orthogonality error of R̂ for the Padé approximant
method (top row) and the continued fraction method (bottom row) as a function of the level of
noise and for different approximation orders. 106 random matrices are generated for each value
of δ.

36 CHAPTER 2. THE NEAREST ROTATION MATRIX PROBLEM IN 3D

Since S2 = RTR, we have that

(S− I)(S+ I) = S2 − I = E. (2.30)

Then,
S = I+E(I+ S)−1. (2.31)

Therefore, using rational notation and recursively substituting the value of S in the right-hand
side of (2.31) by (2.31) itself, we have that

(RTR)
1
2 = S = I+

E

I+
E

I+
E

I+ . . .

(2.32)

which leads to the following elegant formula

R̂ =
R

I+
E

I+
E

I+
E

I+ . . .

(2.33)

By truncating this matrix continued fraction, we get different approximation orders.
To observe the influence of the approximation order in the Padé approximant method and

this method on the result, we can perform a similar analysis to that in Section 2.2.3 where the
number of iterations is substituted with the approximation order. The results appear in Fig.
2.6. It can be concluded that the Padé approximant method performs better than the continued
fraction method for the same approximation order.

2.3.5 Logarithm method

As explained in Chapter 1, Euler’s theorem of rigid-body rotations states that the orientation of
a body after having undergone any sequence of rotations is equivalent to a single rotation of that
body through an angle θ about an axis that we will represent by the unit vector n = (nx, ny, nz)

T .
We can associate the following 3×3 skew-symmetric matrix with this unit vector

N =




0 −nz ny

nz 0 −nx

−ny nx 0



 . (2.34)

It is easy to see that, for every v ∈ R
3,

n× v = Nv, (2.35)

where × stands for the vector cross product.
Now, consider the following problem: given the unit vector n ∈ R

3 and an angle θ ∈ R, find
the rotation matrix R that rotates any vector though the angle θ about an axis given by n. The
matrix exponential gives the elegant solution

R = eθN, (2.36)

2.3. ALGEBRAIC METHODS 37

which can be computed, using the series expansion of the exponential, as

R =

∞∑

k=0

(θN)k

k!

= I+ θN+
1

2!
(θN)2 +

1

3!
(θN)3 + . . .

= I+ (sin θ)N+ (1− cos θ)N2, (2.37)

which is commonly known as Rodrigues’ formula.
Now, decomposing equation (2.37) into its symmetric and skew-symmetric components, we

have that

1

2
(R+RT) = I+(1− cos θ)N2, (2.38)

1

2
(R−RT) = sin θN. (2.39)

Then, from (2.38), it can be concluded that

Tr(R) = 1 + 2 cos θ. (2.40)

Moreover, from (2.39), we have that

N =
1

2 sin θ
(R−RT), (2.41)

which allows us to conclude, using (2.36), that

θN = log(R) =
θ

2 sin θ
(R−RT). (2.42)

This logarithm method can be summarized as follows. First, we compute M = log(R). If R
is an noisy rotation matrix, M is not skew-symmetric. Then, it can be decomposed into the sum
of a skew-symmetric matrix and a symmetric residual matrix as follows

M = 1
2

(
M+MT

)
+ 1

2

(
M−MT

)
. (2.43)

By simply canceling the symmetric residual, we have that

M̂ = 1
2

(
M−MT

)
. (2.44)

As a consequence,

θ̂ =
1√
2

∥∥∥M̂
∥∥∥
F

(2.45)

and

N̂ =
1

θ̂
M̂. (2.46)

Finally, we can recover a proper orthogonal rotation matrix, R̂ using Rodrigues’ formula.
Thus, the logarithm method essentially reduces to the computation of M = log(R) and hence
its name. The problem is that the computation of the logarithm of a matrix is not a trivial
operation as not all matrices have a logarithm, and those matrices that do have a logarithm
may have more than one. The function logm in Matlab implements the algorithm presented in

38 CHAPTER 2. THE NEAREST ROTATION MATRIX PROBLEM IN 3D

[90]. Since the exponential function is not one-to-one for complex numbers, numbers can have
multiple complex logarithms, and this is the ultimate reason why some matrices may have more
than one logarithm. If R is singular or has an eigenvalue on the negative real axis, its logarithm
is undefined [91]. Moreover, even if it is defined, it is not necessarily a real matrix. A real matrix
has a real logarithm if and only if it is invertible and each Jordan block belonging to a negative
eigenvalue occurs an even number of times [92].

Observe that, according to (2.39), even the logarithm of non-noisy rotation matrices may be
numerically imprecise for θ → nπ where n ∈ Z. Nevertheless, if ‖R− I‖2F < 1, the logarithm of
R can be computed by means of the following power series

log(R) =

∞∑

n=1

(−1)n+1

n
(R−I) = (R−I)−1

2
(R−I)2+1

3
(R−I)3 . . . (2.47)

As explained at the beginning of Section 2.2, we can change the reference frame so that
‖R − I‖2F < 1 and use few terms of the above power series to obtain a good approximation of
log(R). For example, the computation of the logarithm of

R =



0.8510 0.4687 0.2397
0.4684 −0.8823 0.0602
0.2402 0.0598 −0.9681


 (2.48)

fails because its eigenvalues are 1.0006, −1.0011, −0.9990, and the principal matrix logarithm is
not defined for matrices with nonpositive real eigenvalues . A way around this inconvenient is
to compute an estimation of the nearest rotation matrix using a fast geometric method that is
used to change the reference frame. If Ř is the estimation thus obtained, we can find the nearest
rotation matrix to Ř−1R. Let us call it R̂, as usual. Then, using the invariance with respect to
the reference frame, the nearest rotation matrix to R is ŘR̂.

2.3.6 Matrix factorization methods

We have shown how the dot product method can be formalized as the QR factorization of the
noisy rotation matrix, but this is not the only matrix factorization that can be useful to solve
our problem.

2.3.6.1 Polar decomposition method

The first use of the concept of polar decomposition in this context appears in [34].
It follows from Theorem 1 in [93, p. 169] (alternatively, see [94]), that a square matrix R can

be factorized as:
R = WY (2.49)

where W is an orthogonal matrix and Y is a positive semi-definite symmetric matrix. Matrix
Y is unique, even if R is singular, and is given by

Y =
(
RTR

) 1
2 . (2.50)

As a consequence, its substitution in (2.49) yields

W = R
(
RTR

)− 1
2 . (2.51)

Now, if we compare (2.18) and (2.51), we conclude that W in (2.49) coincides with R̂. In general,
to compute the polar decomposition, W is obtained using iterative algorithms [95, 96]. These

2.3. ALGEBRAIC METHODS 39

algorithms exactly correspond to the iterative formulas appearing in Table 2.1. In this context,
these formulas are called Heron’s, Halley’s, and Housholder’s formulas, depending on the order
of convergence. Thus, the polar decomposition itself does not provide any new insight into the
problem. It simply provides a more elegant formulation. The operations required to obtain it
are exactly the same as those described in Section 2.3.

2.3.6.2 SVD method

The singular value decomposition (SVD) was introduced in this context in [97]. The central role
of the SVD in matrix nearness problems was first identified by Golub [98], who gives an early
description of what is now the standard algorithm for computing the SVD. In our case, the SVD
of the noisy rotation matrix R can be expressed as

R = UΣVT , (2.52)

where UTU = VTV = I and Σ = diag(σ1 σ2 σ3). Σ is the diagonal matrix of singular values.
The singular values of R, σi, are nonnegative square roots of the eigenvalues of RtR. Then (see
5.2 for a detailed proof),

R̂ = UVT . (2.53)

The determinant of R̂ thus obtained has the same sign as that of R. To guarantee that the
result is proper orthogonal, one can write

R̂ = UΣ′VT , (2.54)

where Σ′ is a modified Σ, with the smallest singular value replaced by sign(det(UVT)) (+1 or

-1), and the other singular values replaced by 1, so that the determinant of R̂ is guaranteed to
be positive [99].

From the SVD of R, we have that

R = UΣVT = UVTVΣVT = WY (2.55)

where W = R̂UVTV and Y = ΣVT . In other words, the polar decomposition can be obtained
as a byproduct of the SVD.

It is finally interesting to mention that there are methods that compute the square of a
matrix based on its Schur complement. In this way the problem is reduced to compute the
square root of an upper triangular matrix [100, p. 313]. This method was first proposed in
[101]. Nevertheless, since in our case the matrix is real symmetric, the computation of its Shur
complement is equivalent to compute its SVD.

2.3.6.3 Closed-form diagonalization method

If det(R) 6= 0, A = RTR is symmetric, positive definitive. Then, it can be diagonalized as
follows:

A = ZT



λ1 0 0
0 λ2 0
0 0 λ3


Z, (2.56)

where {λi} is the set of non-negative real eigenvalues of A. Then, it can be proved that [102]

A− 1
2 = ZT




1√
λ1

0 0

0 1√
λ2

0

0 0 1√
λ3


Z. (2.57)

40 CHAPTER 2. THE NEAREST ROTATION MATRIX PROBLEM IN 3D

The problem is thus essentially reduced to diagonalize A. Although conceptually simple,
the derivation of a closed-form formula based on this idea is full of complications. Let us start
with the computation of {λi}. A simple method to compute {λi} can be found in [103]. Let us
define 3m = Tr(A), 2q = det(A−mI), and let 6p equal to the sum of squares of the elements of
(A−mI). Then, we have that

λ1 = m+ 2
√
p cos θ, (2.58)

λ2 = m− 2
√
p(cos θ +

√
3 sin θ), (2.59)

λ3 = m− 2
√
p(cos θ −

√
3 sin θ), (2.60)

where

θ =
1

3
atan2

(√
p3 − q2, q

)
. (2.61)

Since the characteristic polynomial of A is a third-order polynomial, it is not surprising to
recognize Cardano’s formulas in (2.58)-(2.61). We here use atan2, the 2-argument arctangent,
instead of the standard arctangent function, because it directly resolves the quadrant ambiguity
by taking into account the sign of q (for q > 0, the solution must lie in the first quadrant, for
q < 0 it must be located in the second). Moreover, atan2(x, 0) is well-defined contrarily to what
happens with its single argument counterpart. Furthermore, atan2(0, 0) is defined to be zero
in most implementations including MATLAB. Nevertheless, whatever the value returned in this
latter case, we will have that λ1 = λ2 = λ3 = m because p = 0.

Alternative formulations to the above one can be found, for example, in [104] and [105]. In
[104], the case in which p3−q2 is below a certain tolerance is treated separately. In [105], this term
is expanded and simplified to improve numerical accuracy. Nevertheless, the implementation of
these alternative formulations shows that they perform worse because they explicitly compute
the coefficients of the characteristic polynomial of A thus introducing unnecessary operations
that can be simplified.

The term p3−q2 corresponds to the discriminant of the characteristic polynomial of A [106].
When A has two equal eigenvalues, round-off errors might lead to a small negative value for this
discriminant. Any implementation should consider this possibility.

Now, we should compute the eigenvectors of A (i.e., the columns of Z). Nevertheless, for low
levels of noise, the three eigenvectors are arbitrarily close to 1, but finding the eigenvectors of a
multiple eigenvalue is numerically ill-conditioned. If we have an eigenvalue with multiplicity two,
the corresponding eigenvectors define a subspace of dimension two and any orthonormal basis
of this subspace gives us a correct set of eigenvectors. Thus, it is better to avoid the explicit
computation of these eigenvectors. To this end, two strategies can be found in the literature.

First, observe that Z in (2.56) can also be seen as a rotation matrix which can be factorized
using, for instance, XYZ Euler angles. Then, equation (2.56) can be expressed as

A = Rz(−φ3)Ry(−φ2)Rx(−φ1)



λ1 0 0
0 λ2 0
0 0 λ3


Rx(φ1)Ry(φ2)Rz(φ3), (2.62)

which can be solved for φi. This approach is followed in [107] and [108]. Unfortunately, the
resulting formulas become quite involved.

Alternatively, the approach presented in [104], which has received little attention, provides a
simpler solution to the problem. Indeed, if we apply Cayley-Hamilton theorem to the character-
istic polynomial of A

1
2 (which states that every square real matrix satisfies its own characteristic

polynomial), we have that
(
A

1
2 −

√
λ1I
)(

A
1
2 −

√
λ2I
)(

A
1
2 −

√
λ3I
)
= A

3
2 − a2A+ a1A

1
2 − a0I = 0, (2.63)

2.3. ALGEBRAIC METHODS 41

where

a2 =
√
λ1 +

√
λ2 +

√
λ3,

a1 =
√
λ1λ2 +

√
λ1λ3 +

√
λ2λ3,

a0 =
√
λ1λ2λ3.

Now, if we multiply (2.63) by A
1
2 and we substitute A

3
2 from (2.63) in the result, we obtain

A
1
2 =

1

a2a1 − a0

(
a2a0I+ (a22 − a1)A−A2

)
. (2.64)

Moreover, if we multiply (2.63) by A− 1
2 , we obtain

A− 1
2 =

1

a0

(
a1I− a2A

1
2 +A

)
. (2.65)

Finally, substituting (2.64) in (2.65), rearranging terms, and substituting the result in (2.18),
we have that

R̂ = RA− 1
2 = R(b2A

2 − b1A+ b0I), (2.66)

where

b2 =
a2

a0(a2a1 − a0)
, (2.67)

b1 =
a0 + a2(a

2
2 − 2a1)

a0(a2a1 − a0)
, (2.68)

b0 =
a2a

2
1 − a0(a

2
2 + a1)

a0(a2a1 − a0)
. (2.69)

Now, it is worth observing what happens for low levels of noise. In this case, λi ≈ 1. Then,
a2 ≈ 3, a1 ≈ 3, and a0 ≈ 1. As a consequence,

R̂ ≈ 1

8
R(3RTRRTR− 10RTR+ 15I). (2.70)

It is interesting to realize that this formula coincides with the one obtained by computing the
Taylor series expansion of E up to the third term and substituting the result in (2.18). This

formula is actually used in [78] in an iterative algorithm intended to converge to R̂.
Equation (2.66) clearly fails if one of the eigenvalues is zero. Moreover, since the sign of

det(R̂) is the same as that of det(R), it actually provides a closed-form formula for the nearest
orthogonal matrix, not the nearest rotation matrix. Thus, it is only valid if det(R)>0. That is,
if δ < 0.5. Unfortunately, this bound is actually too optimistic because the above formulation
leads to a loss of accuracy when the eigenvalues differ significantly in magnitude [109, 110].

For exact rotation matrices, the three eigenvalues of A are equal to 1. To see what happens
with noisy matrices, we can randomly generate 106 rotation matrices whose elements are con-
taminated with additive uncorrelated uniformly distributed noise in the interval [−δ, δ]. Then,
we compute the range of the eigenvalues of these 106 matrices. If we repeat this experiment for
different values of δ, we obtain the region depicted in Fig. 2.7 (left). The ratio between the upper
and lower bound gives us a measure of dispersion between the eigenvalues. Observe that, since
A is symmetric, this ratio gives us an upper bound for its condition number. For δ > 0.5, the
condition number is clearly unbounded [Fig. 2.7 (right)]. As a rule of thumb, if the condition
number κ(A) = 10k, then one may lose up to k digits of accuracy. Therefore, for accurate results,
we could say that the level of noise should not exceed 0.4. This bound is more carefully evaluated
in Section 2.4.

42 CHAPTER 2. THE NEAREST ROTATION MATRIX PROBLEM IN 3D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

PSfrag replacements

R
a
n
g
e
o
f
va

lu
es

fo
r
λ
i
,
i
=

1
, 2
, 3

κ(A) = λmax/λmin

Level of noise (δ)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

100

105

1010

1015

PSfrag replacements

Range of values for λi, i = 1, 2, 3

κ
(A

)
=

λ
m
a
x
/
λ
m

in

Level of noise (δ)

Figure 2.7: Range of values for the eigenvalues of A (left), and its condition number (right) as
a function of the added noise.

2.3.7 Closed-form quaternion methods

The nearest 3D rotation matrix to a noisy rotation matrix can be calculated by converting the
noisy rotation matrix to quaternion form, normalizing the result, and then obtaining back the
corresponding proper rotation matrix. Although, at least in principle, all available methods for
computing the Euler parameters from a rotation matrix can be used to obtain the nearest 3D
rotation matrix using this procedure, only the closed-form methods based on averaging quater-
nions described in Section 1.2.2.5 are promising candidates. Actually, Markley proved that using
the dominant eigenvector method (see Section 1.2.2.7) permits obtaining the nearest rotation
matrix in Frobenius norm [28]. Alternatively, we can use the arithmetic mean method explained
in Section 1.2.2.5 and the squared mean root method (Cayley’s method) explained in Section
1.2.2.6. In the next Section, we include in our comparison these three methods.

2.4 Performance comparison of the closed-form methods

In this section, we compare all closed-form formulas with respect to the SVD in terms of accuracy
and computational cost. To this end, we have implemented:

� The SVD method described in Section 2.3.6.2.

� The diagonalization method described in Section 2.3.6.3.

� The arithmetic mean method described in Section 1.2.2.5.

� Cayley’s method described in Section 1.2.2.6.

� The dominant eigenvector method described in Section 1.2.2.7.

To assess the performance of these methods, we have implemented the following procedure
in MATLABr on a PC with a CoreTMi7 processor running at 3.70 GHz and 16 GB of RAM:

1. Generate 105 random quaternions using the algorithm detailed in [53], which permits to
generate sets of points uniformly distributed on S

3.

2.4. PERFORMANCE COMPARISON OF THE CLOSED-FORM METHODS 43

2. Convert these quaternions to rotation matrices whose elements are then contaminated with
additive uncorrelated uniformly distributed noise in the interval [−δ, δ].

3. Compute the nearest rotation matrices for these 105 noisy rotation matrices using each of
the above methods.

4. Compute the maximum and the mean Frobenius norm between the noisy matrices and the
obtained rotation matrices using each method.

5. Compute the maximum and the mean orthogonality error of the obtained results as the
Frobenius norm of R̂R̂T − I.

If the above procedure is repeated for values of δ ranging from 0 to 0.5, the plots in Figs.
2.8 and 2.9 are obtained. Fig. 2.8 shows the maximum and mean Frobenius norm between
randomly generated noisy rotation matrices and the corresponding nearest rotation matrices ob-
tained with the five compared methods implemented in single-precision arithmetic. The curves
for the mean Frobenius norm error obtained using the orthogonalization, dominant eigenvector,
and SVD methods overlap as they all provide the optimal result. The curves for the maximum
Frobenius norm error also overlap, except for the diagonalization method which is numerically
unstable for high levels of noise, as already predicted in Section 2.3.6.3. After linear regression,
the mean Frobenius norm error for the optimal results is found to be equal to 1.375 δ. Despite
the arithmetic mean method resulting from a heuristic argument, it performs better than Cay-
ley’s method. Its superiority is clear when observing the maximum error curves. After linear
regression, the mean Frobenius norm error for the arithmetic mean method results is 1.526δ.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PSfrag replacements

Level of noise (δ)Level of noise (δ)

M
a
x
im

u
m

F
ro
b
en

iu
s
n
o
rm

M
ea
n
F
ro
b
en

iu
s
n
o
rm

SVD

Diagonalization

Arithmetic mean

Cayley’s

Dominant eigenvector

Figure 2.8: Maximum Frobenius norm (left) and mean Frobenius norm (right) of R̂−R obtained
using the SVD method and the proposed closed-form methods.

To assess the orthogonality of the obtained results, we have also computed the maximum and
the mean Frobenius norm of R̂R̂T−I for δ ranging from 0 to 0.5. The results are plotted in Fig.
2.9. The arithmetic mean, Cayley’s, and the dominant eigenvector methods provide the lowest
errors. The maximum orthogonality error curve for the diagonalization method reveals that it
starts to have problems for δ > 0.4, as we already predicted in Section 2.3.6.3. Using single-
precision arithmetic, the average execution time of the five methods compared here is 1.28µs,
0.12µs, 0.04µs, 0.03µs, and 0.12µs, respectively.

44 CHAPTER 2. THE NEAREST ROTATION MATRIX PROBLEM IN 3D

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10
-15

10
-14

10
-13

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10
-15

PSfrag replacements

Level of noise (δ)Level of noise (δ)

M
a
x
im

u
m

o
rt
h
o
g
o
n
a
li
ty

er
ro
r

M
ea
n
o
rt
h
o
g
o
n
a
li
ty

er
ro
r

SVD
Diagonalization

Arithmetic mean
Cayley’s

Dominant eigenvector

Figure 2.9: Maximum orthogonality error (left) and mean orthogonality error (right) of R̂ ob-
tained using the SVD method and the proposed closed-form methods.

2.5 Conclusion

We have surveyed all available methods for the nearest 3D rotation problem and presented
new alternative closed-form methods. Experiments showed that the diagonalization method and
the dominant eigenvector method are one order of magnitude faster than the classical approach
based on the SVD. Moreover, the arithmetic mean method has been shown to be a highly efficient
alternative that, although it does not provide the optimal result, performs better than Cayley’s
method and it only requires the four basic arithmetic operations. The next chapter applies these
results to the hand-eye calibration problem.

Chapter 3

Application to hand-eye

calibration

3.1 Introduction

Many robotic applications require mounting a sensor, in particular a camera, on the end-effector
of a robot manipulator. Such a typical hand-camera system is depicted in Fig. 3.1, where the
robot appears in two different configurations. According to the spatial displacements represented
in this figure, we have that

Z = K0XC0 = KiXCi, (3.1)

where Ki is obtained from the forward kinematics of the robot, and Ci is calculated using a cam-
era calibration procedure that employes an a priori defined object, called the calibration object
[111]. In general, X and Z, usually defined as the hand-eye and the robot-world transformations,
respectively, are unknown. The estimation of these transformations from experimental data, by
simultaneously solving two or more matrix equations of the form given in (3.1), correspond to
the so-called hand-eye and robot-world calibration problems. Although the problem of simulta-
neously solving both calibration problems have been treated at least in [112, 113, 114, 115], we
focus here in providing a simpler and still reliable alternative to the existing hand-eye calibra-
tion methods, assuming that the computation of Z directly follows, once X is estimated, from
equation (3.1).

The right-hand side equality of equation (3.1) can be rewritten as

AiX = XBi, (3.2)

where Ai = K−1
i K0 and Bi = CiC

−1
0 are called the sensor motion and the end-effector motion

transformations, respectively. They express the relationship between two sensor poses and two
robot configurations, respectively. Although Ai is accurately obtained from the robot’s forward
kinematics, it is sometimes difficult to obtain accurate values for Bi depending on the quality of
the mounted sensor. In some particular applications, the set {Bi} can actually contain erroneous
elements. The elimination of these outliers is treated in [116]. In other cases, the correspondence
between the elements of {Ai} and {Bi} is uncertain due to the use of asynchronous sensors or
the presence of missing data. To cope with these rare situations, some probabilistic approaches
have been proposed in [117].

The matrix equation of the form given in equation (3.2) was first studied in [118]. It can be
seen as a particular case of the so-called Sylvester equation AX + XB = C [119] which often

45

46 CHAPTER 3. APPLICATION TO HAND-EYE CALIBRATION

PSfrag replacements

Z
Ai

Bi

C0

Ci

K0Ki

X

X

Figure 3.1: Rigid transformations involved in two configurations of a serial robot with a camera
attached to its end-effector. Four reference frames are involved: the world reference frame (in
blue), the robot’s hand reference frame (in yellow), the camera reference frame (in green), and
the object’s reference frame (in red). The hand-eye calibration problem consists in computing X

from the kinematic loop equation K0XC0 = KiXCi. For n+1 different posses, n independent
such loop equations are generated. Z is assumed to be unknown, otherwise the problem becomes
trivial.

occurs in system theory. The study of this equation for matrices of the Euclidean group, in the
context of hand-eye calibration, dates back to the 1980s when Shiu and Ahmad [120, 121] first
proposed a solution. After all this time, the topic still remains of interest due to its relevance
in many applications such as aerial vehicle sensor calibration, endoscopic surgery, mobile robot
self-localization, etc. As a consequence, a vast amount of literature connected to this problem is
available.

In this paper, we propose a method whose main aim is to attain a high computational effi-
ciency without compromising on either accuracy or robustness. It is based on a simple variation
of the axis-angle representation of rotations which leads to a closed-form formula that involves
only the four elementary arithmetic operations. It is thus useful for implementation in embedded
microcontrollers with limited computational resources because it requires neither square roots

3.2. PREVIOUS APPROACHES AND DISPLACEMENT REPRESENTATIONS 47

nor trigonometric computations.
The rest of this chapter is structured as follows. Section 3.2 provides an overview of exist-

ing approaches classified in terms of the used spatial displacement representation. Section 3.3
presents some preliminary algebraic manipulations that permit deriving the new method in Sec-
tion 3.4. Section 3.5 analyzes the performance of the presented method and compares it against
ten other methods that cover all used displacement representations. The analysis includes simu-
lated and real experimental datasets. This chapter concludes in Section 3.6 with a summary of
the main findings of this research.

3.2 Previous approaches and displacement representations

Much has been written on the hand-eye calibration problem making it difficult to give an ex-
haustive presentation of all available methods, in particular their connections and variations.
Nevertheless, a simple and meaningful classification can be achieved by attending to the way
the different methods represent a spatial displacement. Four alternatives can be found in the
literature that are next detailed.

3.2.1 A rotation matrix and a translation vector

Representing a spatial rotation in terms of a 3×3 orthogonal proper matrix is considered as a
highly redundant representation because four parameters are enough to have a singularity-free
representation. Thus, using directly the nine entries of the 3×3 rotation matrices to solve the
hand-eye calibration problem has received little attention. Nevertheless, this is the approach
adopted by Liang and Mao in [122], where the problem is reformulated in terms of Kronecker
products, and the solution is obtained by computing two singular value decompositions (SVDs),
one depending on the number of robot poses and the other of constant size. As we will see in
Section 3.5, this method leads to excellent results, the only disadvantage being its computational
cost.

3.2.2 An axis-angle and a translation vector

The representation of rotations using their equivalent axes of rotations and the angles rotated
about them has dominated the resolution of the hand-eye calibration problem since the very
beginning. In the late eighties, Shiu and Ahmad [120, 121] first derived a solution using this
representation. One disadvantage of their method is the large size of the generated system of
equations because they treat sin and cos functions in the rotated angles as independent terms.
Independently and almost simultaneously, Tsai and Lenz [123] solved the problem using a more
efficient approach where the number of unknowns in their method stays the same no matter
how many robot poses are considered. One important result of this latter work is that only the
rotation axes are relevant in the solution of the problem.

One disadvantage of the axis-angle representation is that the axis of rotation is ill-defined for
small rotations. This is why Euler parameters are used instead to encode the same information
without incurring in singularities. Since Euler parameters can be arranged as the elements of a
quaternion, the methods using this representation are usually called quaternion-based methods,
despite the algebra of quaternions is not always needed.

Chou and Kamel are credited to be the first to present an algorithm based on quaternions
[124]. In their approach, a system of nonlinear equations is iteratively solved using the Newton-
Raphson procedure. They later improved their method by transforming the rotational component
into a system of linear equations and the derivation of a closed-form solution to the system of

48 CHAPTER 3. APPLICATION TO HAND-EYE CALIBRATION

linear equations using a SVD [125]. Although quaternions were also used later by Zhuang and
Roth in [126] to come up with a non-iterative approach, the results were presented without
referring to quaternions, resulting in an algorithm that is easy to understand and implement.
This work was latter extended in [127] to solve both the hand-eye and the robot-world calibration
problems by representing the rotation matrices as quaternions, and the translation components
were found using linear least squares. Soon after, Horaud and Dornaika presented another
method for estimating the rotation components also using quaternions [128], which was later
also extended to simultaneously solve the hand-eye and the robot-world calibration problem
[112].

The axis-angle representation is also implicit in the Euclidean group method proposed by
Park and Martin in [129], and by Angeles et al. in [130].

3.2.3 Screw parameters

Except one of the two methods proposed in [128], where the translation and rotation error are
minimized simultaneously using weighted functions, all other methods based on the two previous
kinds of representations compute the rotation and the translation in a decoupled way such that
the original problem is reduced to: (a) obtaining the rotation that minimizes a certain error;
and (b) computing the translation corresponding to the obtained rotation. It is usually argued
that these two-stage methods have the important drawback that the rotation estimation errors
propagate to translation errors. Moreover, it is also said that although these two-stage algorithms
may be optimal in each stage, the final result may not be globally optimal due to the coupling
of the rotation and position equations. One-stage algorithms avoid this situation by essentially
using screw parameters which permit encapsulating both translations and rotations in a single
representation. Since screw parameters can be organized as the elements of a dual quaternion,
the methods using this kind of representation are called dual quaternion-based methods, despite
the algebra of dual quaternions is not always needed in the resolution of the problem.

Chen was the first to use screw parameters to analyze the hand-eye calibration problem in
[131]. Later, Lu and Chou introduced an eight-space quaternion space to solve the problem [132].
The idea was to represent the translation component also using quaternions, but the resulting
formulation is similar to that resulting from using dual quaternions. Other methods using the
same representation subsequently appear in the works of Kim [133], Daniilidis [134], and Zhao
[135].

3.2.4 Two sets of Euler parameters

A 3D spatial displacement can be approximated by a 4D rotation [63]. While a 3D displacement
can be represented using a dual quaternion, a 4D rotation can be represented by a double quater-
nion, that is, two independent sets of Euler parameters. Although the result is an approximation,
very recently this idea has successfully been used by Wu et al. to solve the hand-eye calibration
problem [136].

The use of dual quaternions or double quaternions avoids decomposing transformations into
their rotational and translational part. As a result, the rotation and the translation are simul-
taneously obtained. The error propagation resulting from decoupling rotations and translations
are eliminated, thus improving noise sensitivities, at least in theory. Nevertheless, we will see
in Section 3.5 that the differences between two-stage and one-stage methods are negligible in all
performed experiments using both simulated and experimental data.

3.3. FORMULATING THE PROBLEM 49

3.3 Formulating the problem

Using the Kronecker product, or tensor product, notation and the vectorization operator vec1,
(3.2) can be rewritten as

(
I4×4 ⊗Ai −BT

i ⊗ I4×4

)
vecX = 016×1, (3.3)

that is, as a homogeneous linear system of dimension 16×16. However, the solution obtained
for X using this formulation does not necessarily belong to the Euclidean group. Moreover, it
clearly depends on the unit used for the translation. Thus, it seems reasonable to separate the
translation and the rotation components of (3.2) by rewriting it as

(
RAi

tAi

0 1

)(
RX tX
0 1

)
=

(
RX tX
0 1

)(
RBi

tBi

0 1

)
. (3.4)

That is, (
RAi

RX RAi
tX + tAi

0 1

)
=

(
RXRBi

RXtBi
+ tX

0 1

)
. (3.5)

Therefore,

RAi
RX = RXRBi

, (3.6)

(RAi
− I3×3) tX = RXtBi

− tAi
, (3.7)

which are called the equation of rotation and the equation of translation, respectively.
Again, using the Kronecker product notation and the vectorization operator, (3.6) can be

rewritten as (
I3×3 ⊗RAi

−RT
Bi
⊗ I3×3

)
vecRX = 09×1. (3.8)

Moreover, since (3.7) can also be rewritten as

(tTBi
⊗ I3×3)vecRX + (I3×3 −RAi

)tX = tAi
, (3.9)

equations (3.8) and (3.9) can be organized into the following 12×12 non-homogeneous linear
system: (

I3×3 ⊗RAi
−RT

Bi
⊗ I3×3 09×3

tTBi
⊗ I3×3 I3×3 −RAi

)(
vecRX

tX

)
=

(
01×9

tAi

)
. (3.10)

This expression is studied in [137]. As in the case of equation (3.3), the solution depends on the

physical unit used for the translation [138], and it would not guarantee that the estimated R̂X

belongs to the 3D rotation group. Thus, it seems more appropriate to work with the rotation
and translation equations separately.

Apparently, the equation of rotation could be solved for RX and the result used in the
equation of translation to obtain tX . Since the latter is a simple linear equation which can
be readily solved, the complexity of the problem concentrates on how to solve equation (3.6).
Unfortunately, the solution for RX in the equation of rotation is not unique. To prove this,
we need to first remember that, according to Euler’s rotation theorem, any rotation in three-
dimensional space is determined by a rotation axis and an angle rotated about it. Therefore,
RAi

(RBi
) can be represented by the unit vector âi (b̂i), representing the rotation axis, and

1The vectorization of a matrix is a linear transformation which converts the matrix into a column vector by
stacking the columns of the matrix on top of one another.

50 CHAPTER 3. APPLICATION TO HAND-EYE CALIBRATION

αi (βi), representing the rotated angle about this axis. RAi
, âi and αi are related through the

expression [139]:

âi =
1

2 sinαi
ai, (3.11)

where

ai =



RAi

(3, 2)−RAi
(2, 3)

RAi
(1, 3)−RAi

(3, 1)
RAi

(2, 1)−RAi
(1, 2)


 , (3.12)

which involves all the elements off the diagonal of RAi
. Likewise, for RBi

, b̂i and βi. This does
not work if sinαi = 0 (sinβi = 0). That is, if αi=nπ (β=nπ), for n ∈ Z. When n is odd, âi
(b̂i) can still be computed by considering the elements of the diagonal of RAi

(RBi
), otherwise

the axis of rotation is undefined. Nevertheless, ai (bi) is always well-defined. As a consequence,

it is preferable to work directly with ai (bi) instead of âi (b̂i). This is the approach followed
in [130] and the one adopted in the next section. The methods that work with the unit vectors
representing the equivalent axis of rotation obviously fail when RAi

or RBi
is the identity.

Now, observe that the equation of rotation (3.6) can be rewritten as

RAi
= RXRBi

R−1
X . (3.13)

Therefore, RAi
is the conjugate of RBi

by RX . In three-dimensional space, the conjugate by a
rotation of a rotation about an axis a given angle is the corresponding rotation about the rotated
axis the same angle. In simpler words, if (3.13) is satisfied, then necessarily

ai = RXbi. (3.14)

Then, if we multiply both sides of (3.14) by a rotation, say Q, defining a rotation about ai an
arbitrary angle we have that

Qai = QRX bi. (3.15)

Thus,
ai = QRX bi. (3.16)

This means that the solution to equation (3.14) is not unique. Hence, more robot configurations
are needed to solve the problem. Shiu and Ahmad [120, 121] were apparently the first to prove
that (3.6) and (3.7) are both rank deficient, and so one needs to move the robot to several
locations to determine RX and tx.

If we have n+1 measurements instead of just two, we have n independent kinematic loop
equations. That is, we have n instances of the rotation and the translation equations which can
be organized as systems of equations. Depending on the version of the rotation equation we use,
the n instances of the rotation equation can be organized in the following three different ways:

1. if we use (3.6), we have that


RA1

...
RAn


RX = RX



RB1

...
RBn


 ; (3.17)

2. if we use (3.8), we have that


I3×3 ⊗RA1

−RT
B1
⊗ I3×3

...
I3×3 ⊗RAn

−RT
Bn
⊗ I3×3


 vecRX = 09n×1; (3.18)

3.4. THE PROPOSED METHOD 51

3. if we use (3.14), we have that

A = RX B, (3.19)

where

A = (a1 · · · an) (3.20)

B = (b1 · · ·bn) . (3.21)

For n instances of the equation of translation (3.7), we have the simple non-homogeneous
linear system

CtX = D, (3.22)

where

C =



RA1

− I3×3

...
RAn

− I3×3


 , (3.23)

D =



RXtB1

− tB1

...
RXtBn

− tBn


 . (3.24)

A two-stage method naturally arises: first an estimation of RX , say R̂X , is obtained by
solving either (3.17), (3.18), or (3.19), and then R̂X is used to obtain an estimation of tX , say
t̂X by solving (3.22). When applying this method, we essentially face two problems:

1. The systems of equations to be solved are overconstrained. Thus, an optimality criterion
has to be introduced to obtain the estimations. The usual practice consists in minimizing
the mean squared error function.

2. The result of the first step, R̂X , may not be a proper orthogonal matrix. To apply the
second step, we have to compute the nearest rotation matrix to R̂X by using one of the
methods described in Chapter 1.

While the estimation of RX by solving (3.17) becomes too complicated, and by solving (3.18)
has already been treated in [122], in the next section we explore the possibility of solving (3.19).

3.4 The proposed method

Since (3.19) and (3.22) are linear overconstrained systems, the values of RX and tX can be
obtained as the ones that minimize the mean squared error functions

Erot =
1

n

n∑

i=1

‖ai −RXbi‖2 , (3.25)

and

Etrans =
1

n

n∑

i=1

‖(RAi
− I3×3) tX −RXtBi

+ tAi
‖2 , (3.26)

respectively.

52 CHAPTER 3. APPLICATION TO HAND-EYE CALIBRATION

The possibility of minimizing the combined error

Etotal = λ1Erot + λ2Etrans (3.27)

is considered in [128]. The authors claim that the result of minimizing this function is more stable
than minimizing the rotation and translation separately. Unfortunately, this result depends on
the weights λ1 and λ2 and, what is even worse, on the unit used for the translation2.

It can be proved that the rotation matrix R̂X that minimizes Erot is the nearest rotation
matrix, in Frobenius norm, to H = ABT [74]. As it has been shown in Chapter 2, this optimum
can be expressed as

R̂X = H
(
HTH

)− 1
2 . (3.28)

There are many different ways of computing (3.28), as it have been seen in the Chapter 1.
Nevertheless, the standard one is based on the SVD of H. Let this decomposition be expressed
as H = UΛVT , where U and V are 3×3 orthogonal matrices, and Λ is a diagonal matrix
with nonnegative elements. Then, it can be proved that RX = UVT . This approach was first
proposed in [140] and later rediscovered in [141].

The matrix R̂X that minimizes Erot, without constraining the result to be a rotation matrix,
is given by

R̂X = AB+ = ABT
(
BBT

)−1
, (3.29)

where B+ denotes the right Moore-Penrose pseudoinverse of B. This formulation is used in [130],
though the identification is not straightforward because the use of pseudo inverses is not explicit.

Likewise, the vector t̂X that minimizes Etrans is

t̂X = C+D. (3.30)

Equation (3.29) is valid provided that BBT is invertible, i.e., the set {bi} contains the
position vectors of at least three non-coplanar points. It is well-known that an inherent problem
to all hand-eye calibration methods is that non-parallel rotation axes must be used; otherwise,
the calibration will fail [142].

It is very important to observe that, if we substitute (3.19) in (3.29), we have that R̂X =
RX . Unfortunately, since A and B are, in general, inaccurate because they are collected from
experimental data, R̂X departs from being proper orthogonal. In other words, its determinant
is not exactly equal to 1, and its rows, or columns, are not exactly orthogonal to each other.
Assuming that the errors are low, the nearest rotation matrix to R̂X , in Frobenius norm, can
be obtained by iteratively applying the following cubically convergent dual formula described in
Chapter 1

R̂X ← R̂X

(
3I3×3 + R̂T

XR̂X

)(
I3×3 + 3R̂T

XR̂X

)−1

. (3.31)

Besides its cubically convergence to the solution, in this particular application, only two iterations
of (3.31) lead to rotation matrices with negligible orthogonality errors, as we will see in the next
section.

It is finally worth to mention that a method exists that accepts the rather contrived case
in which Ai and Bi are not rigid displacements [122], but it is difficult to imagine a case in
which either the forward kinematics of the robot or the calibration method do not return a rigid
displacement.

2Our implementation of the algorithm described [128], used in Section 3.5 for comparison purposes, strictly
follows the presented formulation but the minimization is performed separately.

3.5. PERFORMANCE ANALYSIS 53

3.5 Performance analysis

Table 3.1: Implemented methods for comparison purposes

Method Authors, date and reference

A1 Liang and Mao, 2008 [122]

B1 Tsai and Lenz, 1989 [123]

B2 Shiu and Ahmad, 1989 [121]

B3 Park and Martin, 1989 [129]

B4 Wang, 1992 [143]

B5 Horaud and Dornaika, 1995 [128]

B6 Chou and Kamel, 1991 [125]

B7 Sarabandi et al., 2020 (Our Method)

C1 Lu and Chou, 1995 [132]

C2 Daniilidis, 1999 [134]

D1 Wu et al., 2020 [136]

The methods appearing in Table 3.1 have been implemented, for their performance analysis
using simulated and experimental data, in MATLAB on a PC with a 3.7 GHz Intel Core i7
processor using single-precision arithmetic. The first letter denoting the method indicates the
kind of representation used by the method according to the enumeration given in Section 3.2.
Method B7 is the new method proposed in this thesis.

3.5.1 Simulated data

First of all, we have to verify that all methods recover the original displacement for noiseless
data. To this end, as a particular case, let us set

X =

(
RX tx
01×3 1

)
, (3.32)

where

RX = Rx(π/3)Ry(π/6)Rz(π/4), (3.33)

and

tX = (10, 5, 4)T . (3.34)

Then, we apply the following procedure:

1. Randomly generateBi, for i = 1, . . . , 10. The rotational component is obtained by comput-
ing uniformly distributed points on S3⊂R4 and the translation component, by computing
points uniformly distributed in [−5, 5]3 ⊂ R

3.

2. Compute Ai = XBiX
−1.

3. Solve the hand-eye calibration problem for {Ai} and {Bi}, to obtain R̂X and t̂, using each
method in Table 3.1.

54 CHAPTER 3. APPLICATION TO HAND-EYE CALIBRATION

4. Compute the Frobenius norm of R̂X−RX for each method.

5. Compute the orthogonality error of R̂X as
∣∣∣det(R̂X)−1

∣∣∣ for each method.

6. Compute the translational error as
∥∥t̂X−tX

∥∥ for each method.

Table 3.2 presents the averaged results of repeating this procedure 1,000 times. The result of
averaging the Frobenius norm of (R̂X−RX) appears in the second column; the average orthogo-
nality error, in the third column; and the average translational error, in the fourth one. According
to these results, while the execution time and the error figures of method D1 make it of reduced
interest, the method proposed in this thesis, B7, compares favorably with all others.

Table 3.2: Performance comparison for random noiseless data

Method

Mean

Frobenius

norm

Mean

orthogonality

error

Mean

translational

error

Time

(ms)

A1 6.07·10−16 2.21·10−16 2.86·10−15 0.46

B1 3.52·10−15 1.85·10−16 5.43·10−15 0.18

B2 2.96·10−15 1.86·10−16 4.95·10−15 0.41

B3 4.22·10−15 9.94·10−16 5.60·10−15 0.16

B4 4.48·10−13 1.89·10−16 2.54·10−13 0.22

B5 3.82·10−15 1.98·10−16 5.53·10−15 0.16

B6 5.86·10−16 1.95·10−16 2.87·10−15 0.48

B7 3.54·10−16 1.83·10−16 2.84·10−15 0.15

C1 4.98·10−14 2.08·10−16 2.21·10−11 0.70

C2 3.57·10−15 1.99·10−16 1.46·10−14 0.71

D1 2.64·10−12 7.05·10−13 1.68·10−05 3.61

Now, if the same experiment is repeated with the only difference that one of the elements of
the set {Bi} is equal to the identity, the results in Table 3.3 are obtained. Clearly, methods B1,
B2, B3, B4, and B5 fail because the computation of the equivalent axis of rotation is ill-defined
for small rotations. If, instead, an element in {Bi} is equal to a rotation of π radians about the
x−axis, the results in Table 3.4 are obtained. Similar results are obtained for any rotation of π
radians about an arbitrary axis. In this case, methods B1, B4, and C1 fail. Although the lack of
robustness of the mentioned methods can be remedied by discarding those measurements whose
rotational components are close to the identified singularities, the situation is more complicated
because some singularities depend on the spatial displacement to be estimated. For example, if
the same experiment is repeated for RX in (3.33) equal to the identity, the results in Table 3.5
are obtained. In this case, B1 and B2 fail. If RX is made equal to a rotation of π radians about
the x−axis, the results in Table 3.6 are obtained. Now, B1, B4, and C1 fail. Summing up, we can
say that, besides the proposed method, B7, we have one robust method from each representation
approach: A1, B6, C2, and D1. Then, to evaluate the performance of these remaining methods
under the presence of noise, we can perturb the ten randomly generated elements of {Ai} as
follows:

Ai ← Ai δT, (3.35)

3.5. PERFORMANCE ANALYSIS 55

Table 3.3: Performance comparison for noiseless data when the rotational part of one of elements
of {Bi} is the identity

Method

Mean

Frobenius

norm

Mean

orthogonality

error

Mean

translational

error

A1 6.03·10−16 2.17·10−16 2.75·10−15

B1 NaN NaN NaN

B2 NaN NaN NaN

B3 NaN NaN NaN

B4 NaN NaN NaN

B5 NaN NaN NaN

B6 5.99·10−16 2.00·10−16 2.76·10−15

B7 3.58·10−16 1.82·10−16 2.73·10−15

C1 5.16·10−14 2.17·10−16 5.58·10−11

C2 3.63·10−15 2.03·10−16 1.48·10−14

D1 3.16·10−12 7.05·10−13 2.49·10−05

Table 3.4: Performance comparison for noiseless data when the rotational part of one of elements
of {Bi} is a rotation of π radians about the x−axis

Method

Mean

Frobenius

norm

Mean

orthogonality

error

Mean

translational

error

A1 5.97·10−16 2.19·10−16 2.87·10−15

B1 0.053 1.76·10−16 0.032

B2 0.366 4.42·10−16 0.217

B3 0.054 1.01·10−15 0.032

B4 0.556 2.00·10−16 0.339

B5 0.054 2.34·10−16 0.032

B6 5.98·10−16 1.96·10−16 2.83·10−15

B7 3.58·10−16 1.75·10−16 2.82·10−15

C1 1.06·10−13 2.18·10−16 1.05·10−9

C2 3.60·10−15 2.10·10−16 1.46·10−14

D1 4.20·10−12 7.04·10−13 2.83·10−05

where

δT =
1

n



Rx(δθx)Ry(δθy)Rz(δθz)

δx
δy
δz

0 0 0 1


 . (3.36)

56 CHAPTER 3. APPLICATION TO HAND-EYE CALIBRATION

Table 3.5: Performance comparison for noiseless data when RX is the identity

Method

Mean

Frobenius

norm

Mean

orthogonality

error

Mean

translational

error

A1 2.89·10−16 1.63·10−16 2.80·10−15

B1 NaN NaN NaN

B2 NaN NaN NaN

B3 1.03·10−15 9.20·10−16 2.87·10−15

B4 0 0 2.77·10−15

B5 0 0 2.77·10−15

B6 0 0 2.77·10−15

B7 1.36·10−16 5.55·10−18 2.80·10−15

C1 9.96·10−14 0 1.53·10−10

C2 3.52·10−15 0 1.14·10−14

D1 8.01·10−13 7.05·10−13 1.21·10−10

Table 3.6: Performance comparison for noiseless data when RX is a rotation of π radians about
the x−axis

Method

Mean

Frobenius

norm

Mean

orthogonality

error

Mean

translational

error

A1 2.93·10−16 1.55·10−16 2.80·10−15

B1 2.82 1.01·10−16 1.76

B2 4.45·10−16 2.51·10−16 2.81·10−15

B3 1.21·10−15 1.07·10−15 3.05·10−15

B4 1.42 1.28·10−17 0.84

B5 4.47·10−16 0 2.86·10−15

B6 7.91·10−15 0 6.37·10−15

B7 1.51·10−16 6.43·10−16 2.80·10−15

C1 1.13 2.36·10−16 4.60·10+16

C2 2.87·10−15 0 2.00·10−14

D1 8.00·10−13 7.04·10−13 1.49·10−09

If we perturb the translation component of Ai, then δx, δy, and δz are treated as uniformly
distributed random variables in the internal [−σtrans, σtrans], and θx=θy=θz=0. The plots ob-
tained for σtrans ∈ [0, 1] appear in Fig. 3.2(left column).

If we perturb the translation component of Ai, then θx, θy, and θz are treated as uniformly
distributed random variables in the internal [−σrot, σrot], and δx=δy=δz=0. The plots obtained
for σrot ∈ [0, 0.2] radians appear in Fig. 3.2(right column). From these plots, we conclude that:

3.5. PERFORMANCE ANALYSIS 57

0 0.2 0.4 0.6 0.8 1

10-15

10-10

10-5

0 0.01 0.02 0.03 0.04 0.05
10-15

10-10

10-5

100

0 0.2 0.4 0.6 0.8 1
10-16

10-15

10-14

10-13

10-12

0 0.01 0.02 0.03 0.04 0.05
10-16

10-15

10-14

10-13

10-12

0 0.2 0.4 0.6 0.8 1
10-15

10-10

10-5

100

0 0.01 0.02 0.03 0.04 0.05
10-15

10-10

10-5

100

Figure 3.2: Errors committed by methods A1, B6, B7, C2, and D1 for variable levels of noise in
the translational (left column) and in the rotational (right column) components in the elements
of {Ai}. Top row: Frobenius norm of the difference between the estimated rotation matrix and
the actual one. Middle row: orthogonality error of the estimated rotation matrix. Bottom row:
translation error.

1. method C1, based on a dual quaternion-like representation, couples rotations and transla-
tions in such a way that errors in translation have an exaggerated influence in the rotation
estimation, contrarily to what happens with the other methods. The bad behavior of
method C1 under the presence of noise makes it of little interest in most practical applica-

58 CHAPTER 3. APPLICATION TO HAND-EYE CALIBRATION

tions.

2. method D1 leads to higher levels of error in some cases because it is an approximate method.
Nevertheless, these errors are low enough to be acceptable in most applications.

3. method B7, the one proposed in this thesis, introduces an orthogonality error that increases
with the level of noise in the measured rotations. This error can be reduced by iterating the
application of the updating rule (3.31). Nevertheless, the error is still so low that applying
twice the updating rule (3.31) is enough for most applications.

3.5.2 Experimental data

-100

0

0

100 100
0

-100

13

-100

-200

-200

8

-300

-300

-400

9

6

2

4

10
11

-500

12

1

-600

1

2

3

4

5

6

7

8

9

10

11

12

13

3

5

7

4

10

PSfrag replacements
x

y

z

Figure 3.3: Using the experimental setup in Fig. 3.1, the pose of the camera with respect to a
fixed external pattern has been obtained for 13 different randomly selected robot configurations
to validate the proposed method and to compared its performance with the other implemented
methods.

The experimental setup to validate the presented method appears in Figure 3.1. It consists of
a 7-DOF Panda serial robot manipulator from Franka Emika with a Microsoft Kinect v2 camera
attached to its end-effector using a 3D printed flange. Both, the robot and the camera have been
connected to a PC running Ubuntu 18.04 from which the robot is controlled in real-time with a
1kHz control rate.

The robot has been randomly moved to 13 different configurations from which the camera
has full view of a checkered pattern, as shown in Fig. 3.3. The poses of the camera with respect
to this pattern have been obtained using the Matlab camera calibration Toolbox [144]. With
this information, together with the forward kinematics of the robot for the 13 configurations, 12
independent kinematic loop equations are obtained. Then, all the implemented methods have

3.5. PERFORMANCE ANALYSIS 59

been compared. The obtained results are summarized in Table 3.7. Since, in this case, we do not
know the ground truth, the errors have to be computed with respect to the input data. Thus,
the second column of the table gives the rotation error computed as

ε̂rot =
1

n

13∑

i=1

∥∥∥RAi
R̂X − R̂XRBi

∥∥∥ , (3.37)

the third column gives the orthogonality error computed as

ε̂orth =
∣∣∣det

(
R̂X

)
− 1
∣∣∣ , (3.38)

and the fourth column gives the translation error computed as

ε̂trans =

13∑

i=1

∥∥∥(RAi
− I3×3) tX − R̂XtBi

− tAi

∥∥∥ . (3.39)

Table 3.7: Performance comparison using experimental data

Method ε̂rot ε̂orth ε̂trans

A1 7.32·10−3 4.44·10−16 5.54

B1 7.85·10−3 2.22·10−16 6.70

B2 13.32·10−3 6.66·10−16 15.06

B3 7.28·10−3 8.88·10−16 5.52

B4 405.82·10−3 0 173.03

B5 7.28·10−3 2.22·10−16 5.52

B6 7.32·10−3 4.40·10−16 5.54

B7 8.07·10−3 6.6·10−16 5.80

C1 44.61·10−3 6.66·10−16 168.06

C2 9.41·10−3 4.44·10−16 8.01

D1 7.32·10−3 9.70·10−11 6.02

To better understand the calibration results, we can compute the roll, pitch, and yaw angles
corresponding to the estimated rotation matrices. That is, we can solve the equation

R̂X = Rx(θ̂x)Ry(θ̂y)Rz(θ̂z). (3.40)

for θ̂x, θ̂y, and θ̂z . Moreover, if we represent the estimated translation as t̂ = (t̂x, t̂y, t̂z), we
obtain the results presented in Table 3.8.

According to the obtained results, R̂X ≈ Rx(π)Rz(−π/2). This concurs with the orientation
of the camera with respect to that of the robot gripper obtained by visual inspection. This
rotation is equivalent to a rotation of π radians about the axis defined by the unit vector n =(
1/
√
2, 1/
√
2, 0
)
. This explains the erroneous results given by methods B4 and C1 because they

fail when trying to estimate rotations of π radians about arbitrary axes.
It is interesting to observe how methods A1 and B6 deliver exactly the same results despite

they are based on completely different approaches. Method B3 gives excellent results, but we

60 CHAPTER 3. APPLICATION TO HAND-EYE CALIBRATION

Table 3.8: Calibration results of the experiment depicted in Fig. 3.3. The angles are given in
degrees using the roll, pitch and yaw convention

Method θ̂x θ̂y θ̂z t̂x t̂y t̂z

A1 -179.6 -4.3 -88.2 84.7 80.6 -97.4

B1 -179.3 -4.8 -87.5 79.2 83.1 -96.2

B2 178.1 -3.9 -91.1 101.7 69.4 -101.3

B3 -179.8 -4.3 -88.4 86.2 79.7 -97.6

B4 -7.4 -10.7 -3.0 258.1 560.1 162.1

B5 -179.8 -4.3 -88.4 86.2 79.7 -97.6

B6 -179.6 -4.3 -88.2 84.7 80.6 -97.4

B7 -178.9 -4.2 -87.8 82.2 82.6 -97.4

C1 -171.3 -7.0 -77.5 696.2 448.3 -1043.9

C2 -179.1 -4.5 -86.6 96.9 78.9 -123.2

D1 -179.6 -4.3 -88.2 75.1 78.4 -87.4

have shown that it lacks robustness for small rotation angles. Among the classified as robust
methods, A1, B6 and B7 are the best in terms of errors. Nevertheless, while B7 does not rely on
any numerical method, A1 requires the computation of the SVD of a 9n×9 and a 3×3 matrix,
and B6 the SVD of a 4n×4 matrix. In terms of computational time, B7 also compares favorably
with A1 and B6.

3.6 Conclusion

It is usually argued that the two-stage methods (those that solve first the orientation and then
the translation) have the important drawback that the orientation estimation errors propagate
to the translation errors. Moreover, it is also said that although these two-stage algorithms
may be optimal in each stage, the final result may not be globally optimal due to the coupling
of the rotation and position equations. To provide a remedy to these problems, some authors
have proposed methods based on dual quaternions (e.g., methods C1 and C2), or on double
quaternions (e.g., method D1). Nevertheless, we have been unable to find any experimental
evidence to support these commonly accepted arguments in favor of the one-stage methods.

The most popular of the two-stage methods are those based on an angle-axis representation
of the orientation. The main problem of many algorithms based on this kind of representation
is that the equivalent axis of rotation is ill-defined for small rotations. A standard solution
to this problem consist in working with Euler parameters which encode the same information
but are free of this singularity (e.g., method B6). Other two-stage methods used directly the
nine entries of the proper orthogonal matrix representing the orientation (e.g., method A1),
which are obviously free from singularities. In general, either if we use an angle-axis or an
orthogonal matrix representation, these methods require the computation of SVDs to estimate
the calibration parameters.

The method proposed in this thesis exploits two observations on the hand-eye calibration
problem: (a) only the equivalent axes of rotations of the pose measurements are relevant, the
angles play no role; and (b) only under the presence of noise, the estimated rotation matrix
representing the orientation departs from being proper orthogonal, i.e., for reasonable levels of

3.6. CONCLUSION 61

noise the resulting estimated matrix is not necessarily far from being orthogonal. As a conse-
quence of the first observation, our method uses only three of the four Euler parameters, and,
as a consequence of the second, we avoid the use of SVDs and apply instead two iterations of
a formula that cubically converges to the nearest rotation matrix. The result is a closed-form
solution which can be implemented in few lines of code. We have shown how it outperforms pre-
viously proposed methods in terms of computational cost without introducing any degradation
in the quality of the results.

62 CHAPTER 3. APPLICATION TO HAND-EYE CALIBRATION

Part II

The 4D case

63

Chapter 4

Rotations in 4D

4.1 Introduction

Rotations in 4D are far from intuitive. Indeed, while a rotation in 3D is defined by an axis of
rotation and angle rotated about it, a rotation in four dimensions is defined by two orthogonal
planes and two angles of rotation, α1 and α2, one for each plane, through which points in the
planes rotate. All points not in the planes rotate through an angle between α1 and α2 (see
[145] for details on the geometric interpretation of rotations in four dimensions). Thus, any 4D
rotation can be seen as the composition of two rotations in a pair of orthogonal two-dimensional
subspaces [146]. When the module of the rotated angles in these two subspaces are equal, the
rotation is said to be isoclinic. It can be proved that any 4D rotation can be factored into the
commutative composition of two isoclinic rotations. Cayley realized this fact when studying the
double quaternion representation of 4D rotations in [147]. This is why this factorization is named
herein after him.

Cayley’s factorization, which can be easily performed using Elfrinkhof-Rosen method, has not
received the attention it deserves in engineering because it has many important applications. It
can be used to easily transform rotations from the matrix algebra to different Clifford algebras,
or to efficiently compute the screw parameters of 3D rigid-body transformations [148], as we will
show in this chapter.

In this chapter, we will present to alternative methods to Elfrinkhof-Rosen method based on
linear algebra arguments, and a mapping between 3D displacements and 4D rotations which will
make solving the nearest rotation matrix in 4D of practical interest.

This chapter is organized as follows. Section 4.2 summarizes the basic properties of isoclinic
rotations without relying on any particular representation. Section 4.3 explains the two most
common representations available for 4D rotations: 4×4 matrices and double quaternions, as well
as their connections in terms of matrix algebra. Section 4.4 presents different ways of performing
the conversion from matrix representation to double quaternion representation, and presents
two new methods. Section 4.5 describes a little known mapping that permits to represent a 3D
displacement as a 4D rotation. This mapping has applications that range from the computation
of the screw parameters, as explained in Section 4.6, to 3D pointcloud registration, as explained
in Chapter 6. Finally, Section 4.7 summarizes the points that will be used in the following
chapter.

65

66 CHAPTER 4. ROTATIONS IN 4D

4.2 Isoclinic rotations

4D rotations can be either simple or double rotations. Simple rotations have an invariant plane
of points, while double rotations have a single invariant point only, the center of rotation. In
addition, double rotations present at least a couple of invariant planes that are orthogonal. Then,
a 4D rotation has two angles of rotation, α1 and α2, one for each plane of rotation, through which
points in the planes rotate. All points not in the planes rotate through an angle between α1 and
α2.

Isoclinic rotations are a particular case of double rotations in which there are infinitely many
invariant orthogonal planes, with same rotation angles, that is, α1 = ±α2.

These rotations can be left-isoclinic, when the rotation in both planes is the same (α1 = α2),
or right-isoclinic, when the rotations in both planes have opposite signs (α1 = −α2).

Isoclinic rotation matrices have several important properties:

1. The composition of two right- (left-) isoclinic rotations is a right- (left-) isoclinic rotation.

2. The composition of a right- and a left-isoclinic rotation is commutative.

3. Any 4D rotation can be decomposed into the composition of a right- and a left-isoclinic
rotations.

Hence both form maximal and normal subgroups. Denote S3
R as the subgroups of right-

isoclinic rotations, and S3
R the subgroup of left-isoclinic rotations. The direct product S3

L×S3
R is

a double cover of the group SO(4), as four-dimensional rotations can be seen as the composition
of rotations of these two subgroups, and there are two expressions for each element of the group.

4.3 4D rotation representations

4.3.1 Matrix representation

The most common way to represent a 4D rotation is to use a proper orthogonal 4×4 matrix of
the form:

R =




r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
r41 r42 r43 r44


 . (4.1)

There are 16 elements in the matrix, but their values are not independent because the rows
and columns of this matrix must be orthogonal unit vectors and its determinant must be equal
to +1. As a consequence of these properties, the transpose of a rotation matrix is its inverse.

After a proper change in the orientation of the reference frame, an arbitrary 4D rotation
matrix can be expressed as [149, Theorem 4]:




cosα1 − sinα1 0 0
sinα1 cosα1 0 0
0 0 cosα2 − sinα2

0 0 sinα2 cosα2


 . (4.2)

This expression shows the 4D rotation as defined by the two mutually orthogonal planes of
rotation with rotation angles α1 and α2, each of the planes being fixed in the sense that points
in each plane stay within the planes.

4.3. 4D ROTATION REPRESENTATIONS 67

The left- and right-isoclinic rotations can be represented by rotation matrices of the form

RL =




l0 −l3 l2 −l1
l3 l0 −l1 −l2
−l2 l1 l0 −l3
l1 l2 l3 l0


 , (4.3)

and

RR =




r0 −r3 r2 r1
r3 r0 −r1 r2
−r2 r1 r0 r3
−r1 −r2 −r3 r0


 , (4.4)

respectively. In other words, left- and right-isoclinic rotations are completely determined by the
vectors

l = (l0 l1 l2 l3)
T (4.5)

and
r = (r0 r1 r2 r3)

T , (4.6)

respectively. Since (4.3) and (4.4) are rotation matrices, their rows and columns are unit vectors.
As a consequence,

lT l = 1 (4.7)

and
rT r = 1. (4.8)

Without loss of generality, we have introduced some changes in the signs and indices of (4.3)
and (4.4) with respect to the notation used by Cayley [147, 150] to ease the treatment given
below and to provide a neat connection with the standard use of quaternions for representing
rotations in three dimensions and the mapping presented in Section 4.5.

4.3.2 Double quaternion representation

According to the properties in Section 4.2, a 4D rotation matrix, say R, can be expressed as:

R = RLRR = RRRL (4.9)

where
RL = l0I+ l1A1 + l2A2 + l3A3 (4.10)

and
RR = r0I+ r1B1 + r2B2 + r3B3, (4.11)

where I stands for the 4× 4 identity matrix and

A1 =




0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


 , A2 =




0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0


 , A3 =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 ,

B1 =




0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0


 , B2 =




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 , B3 =




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


 .

68 CHAPTER 4. ROTATIONS IN 4D

Therefore, {I,A1,A2,A3} and {I,B1,B2,B3} can be seen, respectively, as bases for left- and
right-isoclinic rotations.

Now, it can be verified that

A2
1 = A2

2 = A2
3 = A1A2A3 = −I, (4.12)

and

B2
1 = B2

2 = B2
3 = B1B2B3 = −I. (4.13)

We can recognize in these two expressions the quaternion definition. Actually, (4.12) and
(4.13) reproduce the celebrated formula that Hamilton carved into the stone of Brougham Bridge.

Expression (4.12) determines all the possible products of A1, A2, and A3 resulting in

A1A2 = A3, A2A3 = A1, A3A1 = A2,

A2A1 = −A3, A3A2 = −A1, A1A3 = −A2. (4.14)

Likewise, all the possible products of B1, B2, and B3 can be derived from expression (4.13).
All these products can be summarized in the following multiplication tables:

I A1 A2 A3

I I A1 A2 A3

A1 A1 −I A3 −A2

A2 A2 −A3 −I A1

A3 A3 A2 −A1 −I

I B1 B2 B3

I I B1 B2 B3

B1 B1 −I B3 −B2

B2 B2 −B3 −I B1

B3 B3 B2 −B1 −I

(4.15)

Moreover, it can be verified that

AiBj = BjAi. (4.16)

which is actually a consequence of the commutativity of left- and right-isoclinic rotations. Then,
in the composition of two 4D rotations, we have:

R1R2 = (RL
1R

R
1)(R

L
2R

R
2) = (RL

1R
L
2)(R

R
1 R

R
2). (4.17)

It can be concluded that RL
i and RR

i can be seen either as 4×4 rotation matrices or, when
expressed as in (4.10) and (4.11) respectively, as unit quaternions. Therefore, a 4D rotation can
be represented by a double quaternion of the form (l, r).

4.4 4D rotation matrix to double quaternion conversion

We have seen how Cayley’s factorization solves the matrix to double quaternion conversion, but
we have not explained how to perform it. This section is devoted to explain Rosen-Elfrinkhof
method and two alternative methods that we have proposed over the past few years.

The development of the first effective procedure for computing Cayley’s factorization is at-
tributed in [151] to Van Elfrinkhof [152]. Since this work, written in Dutch, remained unnoticed,
other sources (see, for example, [150]) attribute to Rosen, a close collaborator of Einstein, the
first procedure to obtain it [153]. The methods of Elfrinkhof and Rosen are equivalent. They
are based on a clever manipulation of the 16 algebraic scalar equations resulting from imposing
the factorization to an arbitrary 4D rotation matrix (see [151, 63] for alternative explanations of
this method).

4.4. 4D ROTATION MATRIX TO DOUBLE QUATERNION CONVERSION 69

The matrix to double quaternion conversion of 4D rotations consists in finding l and r that
satisfy the following matrix equation:

R=




r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
r41 r42 r43 r44


=




l0 −l3 l2 −l1
l3 l0 −l1 −l2
−l2 l1 l0 −l3
l1 l2 l3 l0







r0 −r3 r2 r1
r3 r0 −r1 r2
−r2 r1 r0 r3
−r1 −r2 −r3 r0


 . (4.18)

Next, we explain three different methods to solve it, starting with the classic Rosen-Elfrinkhof
method.

4.4.1 Rosen-Elfrinkhof method

It has recently been proven in [27] that a slight variation on Rosen-Elfrinkhof method leads to a
division-free formulation, which is the method next explained.

Let us first define the matrix of products as:

P = lrT =




l0r0 l0r1 l0r2 l0r3
l1r0 l1r1 l1r2 l1r3
l2r0 l2r1 l2r2 l2r3
l3r0 l3r1 l3r2 l3r3


 , (4.19)

and the matrix

K =
1

4




r11+r22+r33+r44 −r41+r32−r23+r14 −r31−r42+r13+r24 r21−r12−r43+r34
r41+r32−r23−r14 r11−r22−r33+r44 r21+r12+r43+r34 r31−r42+r13−r24
−r31+r42+r13−r24 r21+r12−r43−r34 −r11+r22−r33+r44 r41+r32+r23+r14
r21−r12+r43−r34 r31+r42+r13+r24 −r41+r32+r23−r14 −r11−r22+r33+r44


 .

(4.20)
It can be verified that equation (4.18) can be reformulated as:

lrT = P = K. (4.21)

Now, observe that the norm of row i of P is

+
√
l2i−1(r

2
0 + r21 + r22 + r23) = |li−1| , (4.22)

and the norm of column j is

+
√
r2j−1(l

2
0 + l21 + l22 + l23) = |ri−1| . (4.23)

As a consequence, since P = K, the norms of the row and column vectors of K gives us the
absolute values of the elements of l and r, respectively. To assign a consistent set of signs to
them, we can take any positive entry in K, say the element (k, l). Then, according to (1.42),
lk−1 and rl−1 are both positive or both negative. If we assume that they are both positive, then
we have that:

sign(li−1) = sign(pi,l), i ∈ {1, 2, 3, 4}\k, (4.24)

and
sign(rj−1) = sign(pk,j), j ∈ {1, 2, 3, 4}\l. (4.25)

Another set of consistent signs is obtained if we assume that lk−1 and rl−1 are both negative,
thus accounting for the double covering of the space of rotations.

70 CHAPTER 4. ROTATIONS IN 4D

4.4.2 Linear algebra method 1: kernel computation

This method was proposed in [27]. It results from observing that, if we right-multiply (4.21) by
r, we obtain

l = Kr. (4.26)

Likewise, if we transpose (4.21) and right-multiply it by l, we obtain

r = KT l. (4.27)

Then, from (4.26) and (4.27), we conclude that

(
KKT − I

)
l = 0 and rT

(
KKT − I

)
= 0. (4.28)

Thus, the double quaternion (l, r) corresponding to R can be obtained by computing the kernel
and the cokernel of (KKT −I). The kernel (cokernel) of (KKT −I) is the orthogonal complement
to the row (column) space.

The main practical problem with this method is that a floating-point matrix has almost
always a full rank, even when it is an approximation of a matrix of a much smaller rank.

4.4.3 Linear algebra method 2: spectral decomposition

This method was proposed in [148]. It results from observing that the set of matrices {I,A1,A2,A3}
form an orthogonal basis in the sense of Hilbert-Schmidt for the real Hilbert space of 4× 4 real
orthonormal matrices representing left-isoclinic rotations. Then, (4.10) can be seen as a spectral
decomposition. If we left-multiply it by each of the elements of the set {I,A1,A2,A3}, to obtain
the different projection coefficients, we have that

l0I = −RL + l1A1 + l2A2 + l3A3, (4.29)

l1I = −A1R
L − l0A1 + l2A3 − l3A2, (4.30)

l2I = −A2R
L − l0A2 − l1A3 + l3A1, (4.31)

l3I = −A3R
L − l0A3 + l1A2 − l2A1. (4.32)

Then, by iterative substituting and rearranging terms in (4.29)-(4.32), we conclude that the
coefficients of the spectral decomposition (4.10) can be expressed as:

l0I = −
1

4

(
−RL +A1R

LA1 +A2R
LA2 +A3R

LA3

)
, (4.33)

l1I = −
1

4

(
RLA1 +A1R

L +A3R
LA2 −A2R

LA3

)
, (4.34)

l2I = −
1

4

(
RLA2 +A2R

L +A1R
LA3 −A3R

LA1

)
, (4.35)

l3I = −
1

4

(
RLA3 +A3R

L +A2R
LA1 −A1R

LA2

)
. (4.36)

Likewise, we can consider the set of matrices {I,B1,B2,B3} as an orthogonal basis in the
sense of Hilbert-Schmidt for right-isoclinic rotations. Then, the coefficients in (4.11) could also
be obtained as above.

4.5. MAPPING 3D DISPLACEMENTS TO 4D ROTATIONS 71

Let us define the following matrix linear operators for arbitrary 4D rotation matrices:

L0(R) = −1

4
(−R+A1RA1 +A2RA2 +A3RA3) ,

L1(R) = −1

4
(RA1 +A1R+A3RA2 −A2RA3) ,

L2(R) = −1

4
(RA2 +A2R+A1RA3 −A3RA1) ,

L3(R) = −1

4
(RA3 +A3R+A2RA1 −A1RA2) . (4.37)

According to (4.33)-(4.36), Li(R
L) = liI, i = 0, . . . , 3. Then, using the commutativity

property of left- and right-isoclinic rotations, it is straightforward to prove that

Li(R) = Li(R
LRR) = Li(R

L)Li(RR) = liR
R. (4.38)

We arrive at an important conclusion: Li(R) and RR are equal up to a constant factor.
Moreover, since RR is a rotation matrix, the norm of any of the rows and columns of Li(R) is
l2i . This provides a straightforward way to compute l.

We can proceed as above with the set of matrices {I,B1,B2,B3} to define the linear operator
Ri(·) (analogous to Li(·)) to obtain r.

4.5 Mapping 3D displacements to 4D rotations

Chasles’ theorem states that the general spatial motion of a rigid body can be produced a rotation
about an axis and a translation along the direction given by the same axis. Such a combination of
translation and rotation is called a general screw motion [154]. In the definition of screw motion,
a positive rotation corresponds to a positive translation along the screw axis by the right-hand
rule.

PSfrag replacements

t

qp

q = p× n

dn

θ

dn

Figure 4.1: Geometric parameters used to describe a general screw motion.

In Fig. 4.1, a screw axis is defined by n = (nx, ny, nz)
T , a unit vector defining its direction,

and qp, the position vector of a point lying on it, where p = (px, py, pz)
T is also a unit vector.

72 CHAPTER 4. ROTATIONS IN 4D

The angle of rotation θ and the translational distance d are called the screw parameters. These
screw parameters together with the screw axis completely define the general displacement of a
rigid body.

In [63], the following mapping between 3D transformations in homogeneous coordinates and
a subset of 4D rotation matrices was proposed:

T =

(
R3×3 t

0T 1

)
� T̃ =

(
R3×3 εt

−εtTR3×3 1

)
, (4.39)

where ε is the standard dual unit (ε2 = 0). The interesting thing about this mapping is that the

Cayley’s factorization of T̃ can be expressed as T̃LT̃R where

T̃R = cos
(

θ̂
2

)
I+ sin

(
θ̂
2

)
(n̂xB1 + n̂yB2 + n̂zB3) (4.40)

where n̂ = (n̂x, n̂y, n̂z)
T = n + ε q (p×n) and θ̂ = θ + ε d (see [63] for details). Thus, the

coefficients of the Cayley’s factorization of T̃ give us the screw parameters of T.
The above result also gives us a simple way to obtain the dual quaternion representation of

a 3D displacement. This is explained in detail in the next section through an example.

4.6 3D homogeneous displacement matrix to dual quater-

nion conversion

Now, it is straightforward to obtain the dual quaternion representation of a 3D displacement.
Let us consider, as an example, the transformation in homogeneous coordinates

T =




0 0 1 4
1 0 0−3
0 1 0 7
0 0 0 1


 . (4.41)

Then, according to (4.39),

T̃ =




0 0 1 4ε
1 0 0 −3ε
0 1 0 7ε
3ε −7ε −4ε 1


 , (4.42)

and, according to (4.37),

L0(T̃) = −1

4

(
−T̃+A1T̃A1 +A2T̃A2 +A3T̃A3

)

= −1

4




1 −1− 11ε 1 + 4ε 1 + ε
1 + 11ε 1 −1− ε 1 + 4ε
−1− 4ε 1− ε 1 1 + 11ε
−1− ε −1− 4ε −1− 11ε 1




= −1

4
[I+ (1 + ε)B1 + (1 + 4ε)B2 + (1 + 11ε)B3] (4.43)

Therefore,

T̃R = − 1

4l0
[I+ (1 + ε)B1 + (1 + 4ε)B2 + (1 + 11ε)B3]. (4.44)

4.6. 3D HOMOGENEOUSDISPLACEMENTMATRIX TODUAL QUATERNION CONVERSION73

Since, according to (4.8), r20 + r21 + r22 + r23 = 1, we have that

1

16l20

[
1 + (1 + ε)2 + (1 + 4ε)2 + (1 + 11ε)2

]
=

4 + 32ε

16l20
= 1. (4.45)

Thus,
l0 = ±

(
1
2 + 2ε

)
. (4.46)

If we take the negative sign (remember that the solution is unique up to a sign change), we
conclude that

r0 =
1

2 + 8ε
= 1

2 − 2ε, r1 =
1 + ε

2 + 8ε
= 1

2 − 3
2ε,

r2 =
1 + 4ε

2 + 8ε
= 1

2 , r3 =
1 + 11ε

2 + 8ε
= 1

2 + 7
2ε.

That is, the unit dual quaternion representing the transformation in homogenous coordinates
given by T can be expressed as:

T̃R =
(
1
2 − 2ε

)
I+

(
1
2 − 3

2ε
)
B1 +

(
1
2

)
B2 +

(
1
2 + 7

2 ε
)
B3. (4.47)

To obtain the corresponding screw parameters for this displacement, we can simply identify
(4.47) with (4.40). This identification yields:

cos
(

θ̂
2

)
= 0.5− 2ε, (4.48)

n̂x sin
(

θ̂
2

)
= 0.5− 1.5ε, (4.49)

n̂y sin
(

θ̂
2

)
= 0.5, (4.50)

n̂z sin
(

θ̂
2

)
= 0.5 + 3.5ε. (4.51)

Solving (4.48) for θ̂ = θ + εd we get

θ = 2
3π and d = 8√

3
. (4.52)

Then, substituting θ̂ = 2
3π + ε 8√

3
in (4.49)-(4.51), we conclude that

n =
(

1√
3
, 1√

3
, 1√

3

)T
, (4.53)

and

q(p× n) =
(
− 6

√
3−1
6 ,− 1

6 ,
14

√
3−1
6

)T
. (4.54)

If p and n are assumed to be orthogonal, it is concluded from (4.54) that q =

√
699−40

√
3

36 .
As a consequence,

p× n = (−0.3742,−0.03984, 0.9264)T . (4.55)

Finally, using (4.53) and (4.55), we have that

p = n× (p× n) = (−0.5579, 0.7509,−0.1930)T . (4.56)

The interest of the described mapping in combination with Cayley’s factorization is better
appreciated in Chapter 6 where it is applied to the resolution of the pointcloud registration
problem.

74 CHAPTER 4. ROTATIONS IN 4D

4.7 Conclusion

In this chapter we have presented the main properties of 4D rotations and the central role of
Cayley’s factorization in the conversion of 4D rotation matrices to double quaternions. This will
be of particular interest to solve the 4D nearest rotation matrix in Frobenius norm, as explained in
Chapter 5. Moreover, using the described mapping between 3D displacements and 4D rotations,
it is possible to attack problems that involve translations and rotations simultaneously. This is
extensively treated in Chapter 6 where the pointcloud registration problem is solved using this
mapping.

Chapter 5

The nearest rotation matrix

problem in 4D

5.1 Introduction

The problem of finding the nearest proper orthonormal matrix R̂ to a noisy matrix R, in Frobe-
nius norm, can be formulated as the minimization of the expression

ε =
∥∥∥R− R̂

∥∥∥
2

F
= Tr

(
(R− R̂)T (R− R̂)

)
, (5.1)

subject to the orthogonality constraint of R̂. We can deal with this constraint by introducing a
symmetric Lagrangian multiplier matrix Λ and looking for stationary values of

ε(R̂,Λ) = Tr
(
(R− R̂)T (R− R̂)

)
+Tr

(
Λ(R̂T R̂− I)

)
. (5.2)

Since the derivative of a scalar with respect to a matrix is defined as the matrix of derivatives
of the scalar with respect to each element of the matrix, it is easy to obtain the following useful
identities [155]

d

dX
Tr(X) = I,

d

dX
Tr(XTX) = 2X,

d

dA
Tr(AB) = BT ,

d

dB
Tr(AB) = AT ,

d

dA
Tr(AXB) = ATBT ,

d

dB
Tr(AXTX) = X(A+AT).

The differentiation of ε(R̂,Λ) with respect to R yields the condition

−2(R− R̂) + R̂(Λ+ΛT) = 0. (5.3)

75

76 CHAPTER 5. THE NEAREST ROTATION MATRIX PROBLEM IN 4D

Then, since ΛT = Λ, we have that
R = R̂(I+Λ), (5.4)

which is a useful decomposition of R into the product of an orthonormal and a symmetric matrix
[74]. Now,

RTR = (I+Λ)R̂T R̂(I+Λ) = (I+Λ)2. (5.5)

Hence,
(I+Λ) = (RTR)

1
2 . (5.6)

Finally,
R̂ = R(I+Λ)−1 = R(RTR)−

1
2 = (RRT)

1
2R−1. (5.7)

Therefore, as in the 3D case, the nearest rotation matrix problem boils down to calculate the
square root of matrix A = RTR.

The rest of this chapter is organized as follows. Section 5.2 shows how (5.7) can be computed
using the SVD. Sections 5.3 and 5.4 present two new closed-form methods that generalize the
explicit diagonalization method and a quaternion method presented for the 2D case. Section 5.5
compares the performance of these two new methods with respect to the SVD method. Finally,
Section 5.6 summarizes the main points.

5.2 SVD method

Let us suppose that the SVD of R can be expressed as

R = U∆VT (5.8)

and that R̂ is an orthogonal matrix that minimizes (5.1). Then, we have that

ε =
∥∥∥R− R̂

∥∥∥
2

F
=
∥∥∥U∆VT −UUT R̂VVT

∥∥∥
2

F
=
∥∥∥∆− R̃

∥∥∥
2

F
. (5.9)

where R̃ = UT R̂V is another orthogonal matrix. Now, observe that minimizing 5.9 is equiva-

lent to minimizing
∥∥∥R̃T∆− I

∥∥∥
2

F
, which in turn is equivalent to maximizing Tr(∆R̃), which is

maximized for R̃ = I. Thus, the optimal rotation matrix is R̂ = UVT , if det(U)det(V) = +1,
or R = Udiag {1, 1, 1,−1}VT , if det(U)det(V) = −1.

5.3 Closed-form diagonalization method

Since A = RTR is symmetric non-negative definitive, it has non-negative real eigenvalues. The
square root of matrix A can thus be computed by applying Cayley-Hamilton theorem to the
characteristic polynomial of A

1
2 . That is, to the polynomial

(
A

1
2 −

√
λ1I
)(

A
1
2 −

√
λ2I
)(

A
1
2 −

√
λ3I
)(

A
1
2 −

√
λ4I
)
= A2 − a3A

3
2 + a2A− a1A

1
2 + a0I,

(5.10)
where

a3 =
√
λ1 +

√
λ2 +

√
λ3 +

√
λ4,

a2 =
√
λ1λ2 +

√
λ1λ3 +

√
λ1λ4 +

√
λ2λ3 +

√
λ2λ4 +

√
λ3λ4,

a1 =
√
λ1λ2λ3 +

√
λ1λ2λ4 +

√
λ1λ3λ4 +

√
λ2λ3λ4,

a0 =
√
λ1λ2λ3λ4.

(5.11)

5.3. CLOSED-FORM DIAGONALIZATION METHOD 77

Now, if we multiply (5.10) by A
1
2 and A and we substitute A

3
2 from (5.11) in the result, we

obtain

A
1
2 =

1

−a0 + a1a2

a3
− a2

1

a2
3

·
[
1

a3
R3 +

(
−a3 −

a1
a23

+
2a2
a3

)
R2

+

(
a22
a3

+
a0
a3
− a1a2

a23
− a1

)
R+

(
−a0a1

a23
+

a0a2
a3

)
I

]
. (5.12)

Therefore, we have to find the roots of the characteristic polynomial of A to calculate the square
root of A. That is, the roots of

det(A− λI) = λ4 + pλ3 + qλ2 + rλ+ s, (5.13)

where

p = −Tr(A),

q =
1

2

[
p2 − Tr(A2)

]
,

r =
1

6
p3 − 1

2

[
pTr(A2)

]
− 1

3
Tr(A3),

s = det(A).

The roots of the above quartic polynomial can be obtained using the method variation on Ferrari’s
method described in [156], which can be summarized as follows. First, we define

a =
−q2
3
− 4s+ pr,

b = −sp2 + pqr

3
− r2 +

8qs

3
− 2q3

27
.

From which, we can define

y′ =
3

√√√√− b

2
+

√
b

2

2

+
a

3

3
+

3

√√√√− b

2
−

√
b

2

2

+
a

3

3
+

q

3
(5.14)

Then, we can compute

D =





√
3
4p

2 − 2q + 2
√
y′2 − 4s, if C = 0,√

3
4p

2 − C2 − 2q + 1
4 (4pq − 8r − p3)C−1, otherwise.

(5.15)

E =





√
3
4p

2 − 2q − 2
√
y′2 − 4s, if C = 0,√

3
4p

2 − C2 − 2q − 1
4 (4pq − 8r − p3)C−1, otherwise.

(5.16)

where

C =

√
1

4
p2 − q + y′. (5.17)

78 CHAPTER 5. THE NEAREST ROTATION MATRIX PROBLEM IN 4D

Finally, we have that the sought roots are:

λ1 = −p

4
+

1

2
(C +D), (5.18)

λ2 = −p

4
+

1

2
(C −D), (5.19)

λ3 = −p

4
− 1

2
(C −E), (5.20)

λ4 = −p

4
− 1

2
(R +E). (5.21)

Moreover, it can be proved that λ1 ≥ λ2 ≥ λ3 ≥ λ4. Finally, A
1
2 can be calculated by substituting

λi in (5.11) and substituting the result in (5.12). Then, the nearest 4D rotation matrix obtained
using (5.7).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.5

1

1.5

2

2.5

3

1

2

3

4

PSfrag replacements

E
ig
en

va
lu
es

Level of noise (δ)

Figure 5.1: Expected values for the eigenvalues of A = RRT as a function of the added noise.

To see the effect of noise on the eigenvalues ofA, we can compute the eigenvalues of a noiseless
rotation matrix whose elements are contaminated with additive noise uniformly distributed in
the interval [−δ, δ]. If this operation, for each value of δ, is repeated 106 times and the average
of the obtained eigenvalues is computed, we obtain the plot shown in Fig. 5.1.

Clearly, the four eigenvalues of A are equal to 1 for noiseless rotation matrices. Then, for
low levels of noise, we have that a3 ≈ 4, a2 ≈ 6, a1 ≈ 4, and a0 ≈ 1. As a consequence,

R̂ ≈
(

1

16
R3 − 5

16
R2 +

15

16
R+

5

16
I

)
R−1, (5.22)

which is the 4D counterpart of the formula obtained in Section 2.3.6.3 for low levels of noise in
the 3D case.

5.4 Closed-form double quaternion method

Similarly to the 3D case, the nearest 4D rotation matrix can be calculated by converting the
noisy rotation matrix to double quaternions representation, normalizing both quaternions, and

5.4. CLOSED-FORM DOUBLE QUATERNION METHOD 79

then obtaining back the corresponding proper rotation matrix.
It was proved in [63], that for exact rotation matrices, all the columns and rows of P in

equation (4.20) are equal up to a scalar factor. For erroneous 4D rotation matrices, this is no
longer true. Then, assuming that the elements of the 4D rotation matrix are contaminated by
uncorrelated noise, it is reasonable to average the row and column vectors of P in some way to
get an estimation of l and r, respectively. A closed-form matrix solution for this problem can be
found in [27] based on the squared mean root, but it is not the optimal solution, and it leads to
some inconveniences when dealing with noisy rotation matrices.

The minimization of equation (5.1) is equivalent to the maximization of Tr(RR̂T) can be
rewritten as:

Tr
(
RR̂T

)
= l̂TPr̂. (5.23)

Since l = Kr and r = KT l (see Section 4.4.2), maximizing lTKr is equivalent to maximizing
lTKKT l or rTKTKr.

As we already shown in Section 1.2.2.7, a quadratic form qTNq, where N is a symmetric
matrix, is maximized for q equal to the dominant eigenvector of N. Therefore, l and r are the
unit eigenvectors corresponding to the most positive eigenvalues of KKT and KTK, respectively.
The 4D rotation R̂ corresponding to the double quaternions (̂l, r̂) can be obtained using equation
(4.18).

The largest real root of the characteristic polynomial ofKKT andKTK can be obtained using
the same variation on Ferrari’s method given above where the maximum eigenvalue is given by
5.18. Moreover, as in the 3D case, it can be proved that all the columns of the co-factor matrix
of (F = K− λmaxI) are proportional to the eigenvector corresponding to λmax [23]. Therefore,
we obtain the four following equivalent solutions:

q1 =




f22f33f44 − f22f34f43 − f23f32f44 + f23f34f42 + f24f32f43 − f24f33f42
f21f34f43 − f21f33f44 + f23f31f44 − f23f34f41 − f24f31f43 + f24f33f41
f21f32f44 − f21f34f42 − f22f31f44 + f22f34f41 + f24f31f42 − f24f32f41
f21f33f42 − f21f32f43 + f22f31f43 − f22f33f41 − f23f31f42 + f23f32f41


 , (5.24)

q2 =




f12f34f43 − f12f33f44 + f13f32f44 − f13f34f42 − f14f32f43 + f14f33f42
f11f33f44 − f11f34f43 − f13f31f44 + f13f34f41 + f14f31f43 − f14f33f41
f11f34f42 − f11f32f44 + f12f31f44 − f12f34f41 − f14f31f42 + f14f32f41
f11f32f43 − f11f33f42 − f12f31f43 + f12f33f41 + f13f31f42 − f13f32f41


 , (5.25)

q3 =




f12f23f44 − f12f24f43 − f13f22f44 + f13f24f42 + f14f22f43 − f14f23f42
f11f24f43 − f11f23f44 + f13f21f44 − f13f24f41 − f14f21f43 + f14f23f41
f11f22f44 − f11f24f42 − f12f21f44 + f12f24f41 + f14f21f42 − f14f22f41
f11f23f42 − f11f22f43 + f12f21f43 − f12f23f41 − f13f21f42 + f13f22f41


 , (5.26)

q4 =




f12f24f33 − f12f23f34 + f13f22f34 − f13f24f32 − f14f22f33 + f14f23f32
f11f23f34 − f11f24f33 − f13f21f34 + f13f24f31 + f14f21f33 − f14f23f31
f11f24f32 − f11f22f34 + f12f21f34 − f12f24f31 − f14f21f32 + f14f22f31
f11f22f33 − f11f23f32 − f12f21f33 + f12f23f31 + f13f21f32 − f13f22f31


 , (5.27)

where fij stands for element (i, j) of F. The best solution, from the numerical point of view, is
assumed to be the vector qi, i = 1, . . . , 4, with the largest module. In this way, after normalizing
the results, we can compute l and r. Substituting them in (4.18), R̂ is finally obtained. Nev-
ertheless, since (l, r) and (−l,−r)represent the same rotation, it might happen that we obtain
(−l, r) or (l,−r) because we have obtained l and r separately without taking into account their
sign consistency. Nevertheless, observe that this problem can be easily fixed by changing the
sign of R̂ if det(R̂) = −1.

80 CHAPTER 5. THE NEAREST ROTATION MATRIX PROBLEM IN 4D

5.5 Performance comparison

0 0.005 0.01 0.015 0.02
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

0 0.005 0.01 0.015 0.02
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

PSfrag replacements

Level of noise (δ)Level of noise (δ)

M
a
x
im

u
m

F
ro
b
en

iu
s
n
o
rm

M
ea
n
F
ro
b
en

iu
s
n
o
rm

SVD

Diagonalization

Double quaternion

Figure 5.2: Maximum (left) and mean (right) Frobenius norm of R̂−R for the two closed-form
methods compared to the SVD as a function of the level of noise δ added to the elements of R.
For higher levels of noise the three curves are almost indistinguishable.

In order to compare the two presented closed-form methods with respect to the SVD, we
have implemented in MATLABr, on a PC with a CoreTMi7 processor running at 3.70 GHz and
16 GB of RAM, the following procedure using single-precision arithmetic:

1. Generate two sets of 105 quaternions ql and qr using the algorithm, for generating uni-
formly distributed points on S

4, described [53].

2. Convert these quaternions to 4D rotation matrices using equation (4.18) whose elements are
then contaminated with additive uncorrelated uniformly distributed noise in the interval
[−δ, δ].

3. Compute the nearest rotation matrices for these 105 noisy rotation matrices using the SVD,
the diagonalization and the double quaternion methods.

4. Compute the maximum and the average Frobenius norm between the noisy matrices and
the obtained matrices for each method.

5. Compute the maximum and the average orthogonality error of the obtained matrices as
the Frobenius norm of R̂R̂T−I.

If this procedure is repeated for values of δ ranging from 0 to 0.2, the plots in Figs. 5.2
and 5.3 are obtained. Fig.5.2 shows the maximum and mean Frobenius norm between the
noisy rotation matrices and the corresponding nearest rotation matrices obtained with the three
compared methods. Fig. 5.3 shows the maximum and the mean orthogonality error of the

5.6. CONCLUSION 81

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
10

-40

10
-35

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
10

-40

10
-35

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

PSfrag replacements

Level of noise (δ)Level of noise (δ)

M
a
x
im

u
m

o
rt
h
o
g
o
n
a
li
ty

er
ro
r

M
ea
n
o
rt
h
o
g
o
n
a
li
ty

er
ro
r

SVD

Diagonalization

Double quaternion

Figure 5.3: Maximum (left) and mean (right) orthogonality error of R̂ for the two proposed
closed-form methods compared with the SVD as a function of the level of noise δ added to the
elements of R.

obtained rotation matrices. Although for all practical applications the orthogonality errors are
neglectable for the three methods, this is particularly true for the double quaternion method.

From the obtained plots, we can draw the following important conclusion: the double quater-
nion method performs better than the other methods, including the SVD method, which is
assumed to provide the optimal result. The reason is simple: the SVD method relies on an
iterative algorithm that stops when the improvement in an iteration is below a certain threshold.
Actually, the obtained solution using the SVD method is not the optimum, but a very good
approximation of it. The presented closed-form double quaternion method directly delivers the
optimum up to numerical inaccuracies.

5.6 Conclusion

This section we have presented two closed-form methods for solving the nearest 4D matrix
problem. Their analysis has shown that the double quaternion method performs better than
even the SVD method, the method of choice till now.

Although solving the 4D nearest rotation matrix problem might seem of very little practical
interest in engineering, in the next chapter we explain how the pointcloud registration problem
can be reduced to a nearest 4D rotation matrix problem.

82 CHAPTER 5. THE NEAREST ROTATION MATRIX PROBLEM IN 4D

Chapter 6

Application to pointcloud

registration

6.1 Introduction

It is well-known that there is no proper definition of norm for rigid-body displacements because
of the disparity of the units of translations and rotations. Various approaches have been proposed
in the literature to provide ways around this inconvenience (see [157] and the references therein).
The problem is of particular relevance when performing optimizations of cost functions that
involve both translations and rotations.

Norms obviously exist for displacements that are either pure translations or pure rotations.
The existence of norms for rotations in R

3 [54] was exploited in [158] to define a norm for
a planar displacement by approximating the displacement in R

2 by a rotation in R
3. This

work was extended in [159] to the approximation of a displacement in R
3 by a rotation in

R
4. Since rigid displacements in R

3 can be represented using dual quaternions, and rotations
in R

4 by double quaternions, the problem can be reduced to approximate dual quaternions
by double quaternions [63]. This kind of approximation has been successfully used in [160] to
solve the inverse kinematics of 6R serial robots by expressing all displacements in terms of double
quaternions. An alternative approach, which avoids the use of quaternions, consists in computing
the singular-value decomposition, or the polar decomposition, of the homogeneous transformation
matrix representing the rigid displacement to approximate it by a rotation [161, 63]. In all these
approximations, distances are actually scaled according to a characteristic length. This leads
to a homogenization of units which allows, in turn, for a consistent addition of translation and
rotation terms.

In [157], an exact expression for the error of the approximation as a function of the char-
acteristic length is derived to arrive at the rather obvious conclusion that this approximation
is improved monotonically as the characteristic length tends to infinity. Nevertheless, in prac-
tice, the value of the characteristic length is limited by the numerical errors that arise if it is
set to very high values, a limit that depends on the used floating-point representation. As a
consequence, up to the present time, the choice of the characteristic length value is based on
application-dependent rules of thumb. For example, in [157], the synthesis of a planar mechanism
is solved by taking this value as ten times the root mean square of all involved distances. In
[160], the inverse kinematics of a 6R robot is solved taking it as L/η2, where η is the desired
accuracy level and L is the maximum distance from the base to the end-effector of the ma-

83

84 CHAPTER 6. APPLICATION TO POINTCLOUD REGISTRATION

nipulator. More recently, the characteristic length used in [162], based upon the investigations
reported in [158, 163], is 24T/π, where T is the maximum translational component in all involved
displacements. This characteristic length is the radius of the hypersphere that approximates the
translational terms by angular displacements that are lower than 7.5 degrees. It was shown in
[163] that this characteristic length yields a good balance between translational and rotational
displacement terms.

Once assuming that we have solved the problem of approximating 3D displacements by 4D
rotations, an additional challenge remains: the application of a 4D rotation metric is not well-
defined in this case because of the dependence on the choice of the fixed reference frame. To
mitigate this problem, the concept of principal frame is introduced in [162]. This frame is unique
for a finite set of displacements and invariant with respect to the choice of fixed coordinate frame
and the system of units. All of the displacements are then expressed with respect to the principal
frame and all distances are measured with respect to this same frame.

There are many problems in which we have to optimize a function that involves both transla-
tions and rotations. Hence, it is interesting to attempt the introduction of a characteristic length
in this kind of problems to verify whether the obtained results outperform those obtained using
standard approaches. In this sense, the pointcloud registration problem is an excellent testbed
where to perform this attempt. This paper is devoted to this analysis to conclude that the in-
troduction of a characteristic length in the pointcloud registration problem leads to a simple (in
the sense that it only involves the four basic arithmetic operations) closed-form formula which
is finally independent, curiously enough, of the introduced characteristic length. Moreover, the
resulting method is faster than all previously proposed ones.

When dealing with the displacement of 3D rigid bounded object poses, it is possible to define
some metrics, also called object norms, based only on geometric properties of the object (for ex-
ample, based on the distances between corresponding points) that avoids the use of characteristic
lengths. A good example of this kind of metrics can be found in [164], which can be considered
as a generalization of the one proposed in [165]. Actually, we can say that all the methods
proposed to date to solve the pointcloud registration problem implicitly use an object norm be-
cause they are based on minimizing the sum of the distances between corresponding points. This
avoids having to weight translations and rotations differently. Thus, although our formulation
of the pointcloud registration problem is certainty more complicated, the obtained solution is
outstandingly simple as it boils down to compute a pseudoinverse (which could be performed
off-line because it only depends on the coordinates of the points in the reference poincloud) and
a matrix product.

This chapter is outlined as follows. Section 6.2 reviews the pointcloud registration problem.
In this section the three methods proposed in the literature for its resolution are presented in
an unified way. Although they differ in the way they represent a spatial displacement, they
minimize the same cost function. As a consequence, despite the literature is confusing at this
point, it is not surprising that the solutions using them all coincide, as we will see in Section
6.5. In Section 6.3 we present the new method based on the introduction of a characteristic
distance that allows us to approximate an homogeneous transformation matrix by a rotation
matrix. Section 6.4 discusses the main features of the obtained closed-form formula, including
the effect of noisy measurements. Section 6.5 analyzes the performance of the presented method.
This paper concludes in Section 6.6 with a summary of the main findings of this research.

6.2. PREVIOUS APPROACHES AND DISPLACEMENT REPRESENTATIONS 85

6.2 Previous approaches and displacement representations

The goal of pointcloud registration is to find the optimal rigid transformation between two
pointclouds. This problem arises in many applications of computer vision and pattern recognition
(see [166, 167, 168] for reviews on the different proposed methods to solve it and applications
where it arises). We herein assume that the exact correspondence between the points in both
pointclouds is known. An acceptable solution in such case consists in minimizing the square of the
sum of the squared Euclidean distances between corresponding points of the two pointclouds. The
methods designed following this approach are usually called analytical methods [141, 23, 74, 169,
30] (see [167] and [170] for performance comparisons). The first methods for solving the general
case in which we do not have the point correspondence were independently proposed during the
early nineties in [131], [171] and [172]. The name given in [171] for their method was the Iterative
Closest Point (ICP) method. Nowadays, the three methods and those which have evolved from
them (see, for example, [173, 166]) are referred collectively in the literature as ICP methods.
Broadly speaking, these methods iteratively generate hypothetical point correspondences using
a local search scheme until an optimal correspondence is obtained. In general, these methods
require a good starting estimate, otherwise they could get trapped in local minima of the error
function. As a consequence, even if we use an ICP method, we have to rely on a fast analytic
method to obtain the rigid transformation from which we can evaluate the error function at each
iteration.

The existing analytic methods essentially differ in the way they represent a rigid displace-
ments. Three alternatives can be found in the literature that consist in using:

1. A rotation matrix and a translation vector [174]. In this case, the problem is essentially
reduced to compute the nearest rotation matrix to a 3×3 matrix using the SVD. The
method based on this representation is reviewed in Section 2.3.6.2.

2. A set of Euler parameters and a translation vector [23, 171]. In this case the problem is
reduced to compute the dominant eigenvector of a 4×4 matrix. The method based on this
representation is reviewed in Section 6.2.2.

3. A set of screw parameters [169, 134]. In this case the problem is also reduced to compute
the dominant eigenvector of a 4×4 matrix. The method based on this representation is
reviewed in Section 6.2.3.

As we already know, Euler parameters can be arranged as the elements of a quaternion. Thus,
although the algebra of quaternions is not strictly necessary to solve the pointcloud registration
problem, the methods using the second kind of representation are usually called quaternion-
based methods. Likewise, since screw parameters can be organized as the elements of a dual
quaternion, the methods using the third kind of representation are called dual quaternion-based
methods, despite the algebra of dual quaternions is not strictly needed in the resolution of the
pointcloud registration problem.

The methods based on the first two representations compute the rotation and the translation
in a decoupled way. This is accomplished by first centering both pointclouds by subtracting
their centroid coordinates and thus reducing the problem to optimize a rotation. Therefore, the
original problem is reduced to two parts: (a) obtaining the rotation that minimizes the reg-
istration error between the two centered pointclouds; and (b) computing the translation from
both centroids and the obtained rotation. To avoid this decoupling, the representation based
on screw parameters has been used to encapsulate the rotation and the translation in a single
representation. This idea was first presented in [169], and later extended in [134]. Unfortunately,

86 CHAPTER 6. APPLICATION TO POINTCLOUD REGISTRATION

all analytic methods are equivalent after all, they just differ in the way the problem is repre-
sented. All experimental comparisons have found that the differences are negligible in practical
applications with nondegenerate data [99], [167]. This conclusion is confirmed in the analysis
included in this chapter.

6.2.1 A rotation matrix and a translation vector

Let {Ai} and {Bi}, i = 1, . . . , n, denote two sets of n 3D points whose position vectors are
given by ai = (aix aiy aiz)

T and bi = (bix biy biz)
T , respectively. These point coordinates can be

organized in matrix form as

A = (a1 a2 · · · an) , and B = (b1 b2 · · · bn) . (6.1)

Now, if {Bi} is the result of applying a noisy rigid spatial transformation to {Ai}, we have
that

bi = Rai + t+ ni. (6.2)

where R is a 3×3 rotation matrix, t, a translation vector, and ni, a noise vector.
The problem consists in finding R and t that minimizes the error function

E =
n∑

i=1

‖bi − (Rai + t)‖2 . (6.3)

If the rigid transformation is not contaminated by noise, the centroids of {Ai} and {Bi} (say
a and b, respectively) are clearly governed by the same rotation matrix and translation vector
[174]. Then, if we define

aci = ai − a, where a =
1

n

n∑

i=1

ai, (6.4)

bci = bi − b, where b =
1

n

n∑

i=1

bi, (6.5)

the error function (6.3) can be rewritten as

E =

n∑

i=1

‖bci −Raci‖2 . (6.6)

Therefore, the original least-squares problem is reduced to two subproblems:

(a) obtaining R̂ that minimizes (6.6); and

(b) obtaining the translation vector as

t̂ = b− R̂a. (6.7)

The original problem is thus simplified by decoupling the rotation and the translation. Al-
though this is the usual approach, it should be seen as an approximation as it does not necessarily
lead to the best solution both in terms of rotational and translational error under the presence
of noise, as it is proved in Section 6.5.2.

6.2. PREVIOUS APPROACHES AND DISPLACEMENT REPRESENTATIONS 87

The expansion of (6.6) yields

E =

n∑

i=1

(
aTcipci + bT

cibci − 2bT
ciRaci

)
. (6.8)

E is minimized when the last term is maximized. That is, when

E ′ =
n∑

i=1

bT
ciRaci = Tr(RTH), (6.9)

is maximized, where

H =

n∑

i=1

bcia
T
ci =

n∑

i=1

(bi − b)(ai − a)T =

n∑

i=1

bia
T
i − nbaT = BAT − nbaT . (6.10)

H is defined as the centered cross-correlation matrix between both sets of pointclouds. It is
important to observe that it is not necessary to explicitly center the pointclouds to obtainH. This
is very important when having thousands of points in the pointclouds, a fact that is not taken
into account in some implementations (for example, see the recent MATLAB implementation
due to Jin Wu [30]).

As explained in Chapter 5, the matrix R that maximizes (6.9) is the nearest rotation matrix,
in Frobenious norm, to H [74]. Analytically, this optimum can be expressed as [55]:

R̂ = H
(
HTH

)− 1
2 . (6.11)

There are many different ways to compute (6.11) that have been reviewed in Chapter 2, but
the standard one is based on the SVD of the cross-correlation matrix H which has explained in
Section 2.3.6.2. Let this decomposition be expressed as H = UΛVT , where U and V are 3×3
orthogonal matrices, and Λ is a diagonal matrix with nonnegative elements. Then, it can be
proved that R̂ = UVT . This approach was first proposed in [140] and later rediscovered in [141].
It remains as the standard one ever since. A simple later improvement, that has been broadly
adopted, was introduced in [175] for better robustness when the point measurements are severely
corrupted by noise. This method is usually referenced to as the Kabsch-Umeyana’s method in
recognition of the authors of [140] and [175].

6.2.2 An axis-angle and a translation vector

Since, according to Euler’s theorem, any spacial rotation is equivalent to a rotation by some
amount about some axis [1], we can represent an arbitrary rotation using

1. v = (vx vy vz)
T , a unit vector in the direction of the rotation axis; and

2. θ, a rotation angle.

Then, we can define the following vector whose elements are called Euler parameters:

e =




e1
e2
e3
e4


 =




cos
(
θ
2

)

sin
(
θ
2

)
v


 . (6.12)

88 CHAPTER 6. APPLICATION TO POINTCLOUD REGISTRATION

From a given set of Euler parameters, the corresponding rotation matrix can be obtained
using (1.7)

Now, given H = (hij)1≤i,j≤3, let us define the associated 4×4 symmetric matrix

G =




h11+h22+h33 h32−h23 h13−h31 h21−h12

h32−h23 h11−h22−h33 h21+h12 h31+h13

h13−h31 h21+h12 h22−h11−h33 h32+h23

h21−h12 h31+h13 h32+h23 h33−h11−h22


 (6.13)

It was proved in [23, 171], and later independently rediscovered in [24] and [25], that the
dominant eigenvector of G can be interpreted as a vector of Euler parameters, in the form given
in (6.12), whose corresponding rotation matrix is R̂ (see Section 1.2.2.7for more details).

The computation of the maximal eigenvalue requires computing the roots of a quartic polyno-
mial which can be performed using Ferrari’s method, as done in [23]. Alternatively, a numerical
method is proposed in [25]. A simple closed-form solution has been explained in Section 1.2.2.7
to obtain the maximal eigenvalue λmax.

Since the rows of the cofactor matrix of (G − λmaxI) are proportional to the eigenvector
corresponding to λmax [23]. In [30], some computational time is saved by computing only the
last row of this cofactor matrix. Unfortunately, all the elements of this row are identically zero
for rotations whose rotation axis lies on the xy-plane. Although, at least in theory, rotations
whose rotation axes lie on the xy-plane can be seen as a set of measure zero in the space of
quaternions, in practice it is enough to be close to this situation to generate large errors. Similar
situations arise if we take any other row. Thus, for the sake of robustness, we have to compute
all rows and take, for example, the one with the largest norm, say ê. Then, using (1.7), we have

that R̂ = R(ê).

6.2.3 Screw parameters

The use of screw parameters, also known as Study parameters, is based on Chasles’ theorem,
which states that any rotation and translation can be expressed as a translation along a line,
called screw axis, and a rotation around that line [176]. According to this theorem, any rigid
displacement can be expressed using

1. v = (vx vy vz)
T , a unit vector in the direction of the screw axis;

2. u = (ux uy uz)
T , a vector from the origin of coordinates to any point on the screw axis;

3. θ, a rotation angle; and

4. d, translation distance;

Notice that the sign of d can be set arbitrarily, but once this sign is fixed, the positive sense
of angle θ is determined according to the right-hand rule.

Now, let us define e as in (6.12) and

s =




s1
s2
s3
s4


 =




−d
2 sin(

θ
2)

d
2cos(

θ
2)v + sin(θ2)(u×v)


 . (6.14)

6.3. THE 4D ROTATION MATRIX METHOD 89

Then, the rotation matrix can be obtained from e using equation (1.7), and the translation
vector as

t = 2




−e2 e1 −e4 e3
−e3 e4 e1 −e2
−e4 −e3 e2 e1



 s. (6.15)

Now, the goal is to obtain r and s that minimizes (6.3). Let us call them r̂ and ŝ, respectively.
It can be proved that the cost function given in (6.3) can be expressed as a quadratic function

in terms of r and s as follows (see [169] for details):

rTC1r+ sTC2s+ sTC3r+ constant (6.16)

where

C1 =
1

2

n∑

i=1

QiWi,

C2 = nI,

C3 =

n∑

i=1

(Wi −Qi) ,

and

Qi =




0 −bix −biy −biz
bix 0 −biz biy
biy biz 0 −bix
biz −biy bix 0


 , (6.17)

Wi =




0 −aix −aiy −aiz
aix 0 aiz −aiy
aiy −aiz 0 aix
aiz aiy −aix 0


 . (6.18)

In order to minimize (6.16), the two constraints eTe = 1 and sTe = 0 are incorporated using
Lagrange multipliers. Then, it can be concluded that r̂ is the dominant eigenvector of

A =
1

2n
CT

3 C3 −C1 −CT
1 , (6.19)

and

ŝ = − 1

2n
C3r. (6.20)

We have given here a simplified version of the extensive formulation presented in [169]. The
original presentation considered in the cost function not only the distances between the corre-
sponding points but also the error between unit vectors representing the direction of edges or
the normal to faces of the model. This formulation was even later extended to deal with scale
factors in [177].

6.3 The 4D rotation matrix method

If point coordinates are represented using homogeneous coordinates, rotations and translations
can be more compactly expressed using homogeneous transformations. In this case, equation

90 CHAPTER 6. APPLICATION TO POINTCLOUD REGISTRATION

(6.3) can be rewritten as:

E =
n∑

i=1

‖δbi − δ (Rai + t)‖2 =
n∑

i=1

‖pi −Tqi‖2 , (6.21)

where

T =

(
R δt
0T 1

)
, (6.22)

and

qi =

(
δai
1

)
, pi =

(
δbi

1

)
. (6.23)

We have introduced the scale factor δ which clearly does not modify the optimum location
and whose reciprocal, 1/δ, plays the role of a characteristic distance.

Now, let us suppose that we want to approximate T by a 4×4 rotation matrix. It can be
proved that the value of R that minimizes the Frobenius norm of (R−T) is given by [75, 26]:

R̃ = T(I+E)−
1
2 , (6.24)

where

E = TTT− I = δ

(
0 RT t

tTR δtT t

)
. (6.25)

In [157], an exact expression for (I + E)
1
2 is obtained using the polar decomposition. Thus, by

inverting it and substituting the result in (6.24), the exact expression for R̃, as a function of δ,
is obtained. This permits deriving an exact expression for the error of the approximation as a
function of δ to conclude that this approximation is improved monotonically, at least in theory,
as 1

δ→∞. Nevertheless, this is limited by numerical errors that arise for very low values of δ
that depend on the used floating-point representation. Moreover, larger characteristic lengths
result in an increase in the weight on the rotational terms whereas smaller ones result in an
increase in weight on the translational terms. The used metric is therefore dependent on the
choice of characteristic length which is not a desirable property. As a consequence, here we follow
a different approach: we use δ as a symbol that represents a very small number. Therefore, it is
reasonable to keep, in all algebraic expressions involving δ, only the term of the lowest degree in
it. We will see how the resulting approximation is finally independent of δ. This should not be
surprising. It is like introducing reference frames to solve a geometric problem whose solution is
independent of them after all.

First of all, observe that applying the Newton’s generalized binomial theorem on matrices to
(6.24) yields

R̃ = T

(
I−1

2
E+

3

8
E2− 5

16
E3+

35

128
E4− . . .

)
(6.26)

= T

(
I+

1

2
E−1

8
E2+

1

16
E3− 1

128
E4− . . .

)−1

, (6.27)

which are obviously not guaranteed to converge in all cases [91]. Now, the substitution of (6.25)
in (6.26) yields

R̃

∣∣∣
δ→0

=

(
R δt
0T 1

)[
I− δ

2

(
0 RT t

tTR δtT t

)]
=

(
R δ

2t

− δ
2t

TR 1

)
, (6.28)

6.3. THE 4D ROTATION MATRIX METHOD 91

where the higher-order terms in δ have been neglected. This formula was already presented,
without proof, in [63]. Now, we have that the nearest 4D rotation to the 3D homogeneous
transformation in (6.22), in Frobenius norm and for δ→0, is given by (6.28). It is important
to realize that the converse is not true: the nearest 3D homogeneous transformation to the 4D
rotation in (6.28) is not given by (6.22). Indeed, it is not difficult to check that it is given by

T̃ =

(
R δ

2t

0T 1

)
. (6.29)

We can actually repeat the process. That is, we can approximate the 3D homogeneous transfor-
mation in (6.29) by the 4D rotation

˜̃
R =

(
R δ

4t

− δ
4t

TR 1

)
, (6.30)

whose nearest 3D homogeneous transformation is, in turn,

˜̃
T =

(
R δ

4t

0T 1

)
. (6.31)

If this is infinitely repeated, the result is an alternating projection process [178] converging to

(
R 0

0T 1

)
, (6.32)

which can be seen both as a 3D homogeneous transformation and a 4D rotation. Fig. 6.1 gives
an intuitive graphical representation of this process.

Once we have clarified how to project 3D homogeneous transformations onto 4D rotations
and vice versa, we can approximate (6.21), assuming that δ → 0, by

E ∼=
n∑

i=1

∥∥∥pi − R̃qi

∥∥∥
2

=
n∑

i=1

(
qT
i qi + pT

i pi − 2pT
i R̃qi

)
, (6.33)

whose minimization is equivalent to maximize [23]

n∑

i=1

pT
i R̃qi = Tr(R̃TM). (6.34)

In other words, we have to find the nearest 4D rotation matrix to

M =

(
δ2
∑n

i=1 bia
T
i δ

∑n
i=1 bi

δ
∑n

i=1 a
T
i n

)
=

(
δ2BAT δnb
δnaT n

)
. (6.35)

Since it is not difficult to prove that the nearest rotation matrix to kM, k ∈ R\0, is the same
independently of the value of k, the problem boils down to compute the nearest rotation matrix
to

M′ =

(
δ2

n BAT δb
δaT 1

)
. (6.36)

Then, it can be checked that

E|δ→0 =
[
(M′)TM′ − I

]∣∣
δ→0

=

(
δ2

n AAT − I δa
δaT 0

)
. (6.37)

92 CHAPTER 6. APPLICATION TO POINTCLOUD REGISTRATION

3D homogeneous tranformations

4D rotations

PSfrag replacements

(

R δt
0T 1

)

(

R δ
2
δt

−
δ
2
tTRT 1

)

(

R δ
2
δt

0T 1

)

(

R 0

0T 1

)

Figure 6.1: The approximation of a 3D homogeneous transformation by a 4D rotation matrix,
or vice versa, can be seen as a projection between two smooth manifolds embedded in R

4×4.
The result of iteratively repeating this operation leads to an alternating projection process that
converges to a 3D rotation.

Moreover, it can also be checked that

En|δ→0 =

{
− E|δ→0 , n even,
E|δ→0 , n odd.

(6.38)

The series expansion resulting from substituting this value of Ei in (6.26) does not converge.
Nevertheless, using the series expansion (6.27), and after some tedious algebraic manipulations
including neglecting again the high order terms in δ, we have that

(
R̂ δt̂

−δt̂T R̂ 1

)
=

(
δ2

n BAT δb
δaT 1

)(
δ2

n AAT δa
δaT 1

)−1

=

(
δ
nBAT b

aT 1
δ

)(
δ
nAAT a

aT 1
δ

)−1

.

(6.39)
The block matrix inversion of the matrix on the right-hand side yields [179, pp. 217-218]

(
δ
nAAT a

aT 1
δ

)−1

=

(
n
δK −nKa

−naTK δ + δnaTKa

)
, (6.40)

where

K =
(
AAT − naaT

)−1
(6.41)

is the inverse of the centered correlation matrix of the pointcloud {Ai}. Finally, by substituting
(6.40) in (6.39) and computing the block matrix product, we conclude that

R̂ =
(
BAT − nbaT

)
K = HK, (6.42)

t̂ = (1 + aTKa)b −BATKa. (6.43)

6.4. DISCUSSION 93

Formulas (6.42) and (6.43) give the rotation and the translation, respectively, that solve the
registration problem from the point coordinates of the two pointclouds using no other mathe-
matical operations than the standard four basic arithmetic operations. Contrarily to the recent
closed-form formulas presented in [30], they involve neither square roots nor trigonometric func-
tions.

6.4 Discussion

To get some insight into the obtained formulas, let us suppose that the reference pointcloud
{Ai} is centered with respect to its centroid. In this particular case, a = (0, 0, 0)T and, as a
consequence, (6.43) simplifies to

t̂ = b, (6.44)

as one might anticipate. Thus, the relevance of (6.43) is that it permits obtaining t̂ without

neither centering the pointcloud nor computing R̂. Nevertheless, since in most cases we also
need to explicitly compute R̂, it is still advantageous to use equation (6.7) instead of (6.43).
Thus, we next focus our attention on the analysis of equation (6.42).

The substitution of a = (0, 0, 0)T in (6.42) yields

R̂ = BAT
(
AAT

)−1
= BA+, (6.45)

where A+ denotes the right Moore-Penrose pseudoinverse of A. It is important to observe that
equation (6.42) can be recovered from equation (6.45) by using equation (6.10) to obtain the
effect of translating the pointcloud {Ai} on the matrix products BAT and AAT . Since (6.42)
and (6.45) imply each other, they are equivalent. Therefore, without loss of generality, we can
proceed with our analysis using (6.45).

Now, if {Bi} is the result of applying a general displacement to {Ai}, that is, B = RA+T,
where T = (t t . . . t). The substitution of this expression for B in (6.45) yields

R̂ = R+TA+. (6.46)

Now, it is easy to prove that TA+ is a null matrix. Indeed, since the sum of the entries of each
row of A is zero (because {Ai} corresponds to a pointcloud whose centroid is at the origin), and
the entries of each row of T are equal, TAT is a 3×3 null matrix. As a consequence, TA+ is also
a null matrix. Then, we can conclude that (6.42) returns the exact rotation matrix provided that
AAT is invertible, i.e., {Ai} contains at least four points defining a non-degenerate tetrahedron.

Under the presence of additive noise, according to (6.2), we have that B = RA+T+N, where
N = (n1n2 . . .nn), ni being the error vector added to bi. The substitution of this expression for
B in (6.45) yields

R̂ = R+∆, (6.47)

where ∆ = NA+. If the entries of N are assumed to be independent zero mean random variables
with equal variance, say σ, the mean value of the entries of ∆ is zero (i.e., E(R̂) = E(R)), and
their variances,

Var(δij) =

n∑

k=1

Var(nik)(a
+
kj)

2 = σ

n∑

k=1

(a+kj)
2 = σ

∥∥a+j
∥∥2 , (6.48)

where δij denotes the (i, j) entry of ∆ = R̂−R, and a+j , the j column of A+. Thus, the variance

of the entries of R̂ depends linearly on the modules of the three columns of A+. Actually, as
the points in the pointcloud are close to be coplanar or collinear, these modules tend to infinity.

94 CHAPTER 6. APPLICATION TO POINTCLOUD REGISTRATION

PSfrag replacements

x

y

PSfrag replacements

x

y

Figure 6.2: A pointcloud (left) and its reciprocal pointcloud (right) together with the ellipsoids
associated with their covariance matrices. Both pointclouds have been centered with respect to
their centroids and normalized with respect to their intrinsic scales.

Thus, the shape of the pointcloud has a direct influence on the error of the estimations. We
can conclude that, using the presented method and under the presence of zero mean additive
uncorrelated noise, the expected value of R̂ is R. Nevertheless, a certain orthogonality error
should be expected, according to (6.48), in the estimated rotation matrices that directly depends
on the noise perturbing the measured point locations and the shape of the pointcloud itself. This
is discussed in Section 6.5.4.

Finally, it is interesting to observe that, if the registration operation has to be repeated
iteratively, A+ can be precomputed so that each registration is simply reduced to compute a
matrix product. The reduction in computational burden with respect to all other methods is
thus important. Moreover, observe that the rows of A+ can be interpreted as point coordinates.
Therefore, every pointcloud has an associated reciprocal pointcloud which plays a fundamental
role in the proposed method. To better understand the concept of reciprocal pointcloud, let
us take the Stanford Bunny data model [180]. After centering it with respect to its centroid
and normalizing their point coordinates according to its intrinsic scale (see the next section), we
obtain the pointcloud represented in Fig. 6.2(left). Then, if we compute its reciprocal pointcloud,
and we also normalize it with respect to its intrinsic scale, we obtain the pointcloud represented
in Fig. 6.2(right). The ellipsoids associated with the covariances of both pointclouds (see also
the also the next section) have aligned principal axes. If the length of a semiaxis is ζ, the length
of the corresponding semiaxis in the reciprocal pointcloud is 1/ζ. The product of the three semi-
axes lengths of both ellipsoids is one owing to the normalization of the pointclouds with respect
to their intrinsic scales.

6.5 Performance analysis

Since in our analysis we need to evaluate the robustness of our method as a function of the
pointcloud shape, we next introduce some parameters for pointcloud shape characterization that
will be used in the experiments.

6.5. PERFORMANCE ANALYSIS 95

6.5.1 Spatial characterization of a pointcloud

If a pointcloud, say {Ai}, is seen as a random set of points in R
3, its covariance matrix is defined

as

ΣA =
1

n− 1

n∑

i=1

(ai − a)(ai − a)T . (6.49)

where a is the centroid of the pointcloud.
ΣA is a positive semi-definite 3×3 matrix, i.e., det (Σ) ≥ 0. Then, the set

ΞA =
{
x|xTΣAx ≤ 1

}
(6.50)

is an ellipsoid in R
3, centered at the origin. The semi-axes of this ellipsoid are given by si =

±
√
λiri, where λi is eigenvalue i, i = 1, 2, 3, and ri, its corresponding eigenvector. In other

words, eigenvectors determine the directions of the semi-axes and eigenvalues determine their
lengths. The axes of ellipsoid ΞA are aligned with the principal axes of the pointcloud {A}.
Thus, we can say that ΞA captures the spatial distribution of {Ai}.

We define the following three coefficients associated with a pointcloud

1. Eccentricity. The eccentricity of a pointcloud is defined as

ς =
√
λmax/λmin. (6.51)

2. Volume. The volume of a pointcloud is defined as

υ =
√
det (Σ) =

√
λ1 λ2 λ3. (6.52)

The larger υ, the greater the pointcloud dispersion. If υ = 0, the points lie on a line or a
plane.

3. Intrinsic scale. The intrinsic scale of a pointcloud is defined as

κ = υ1/3. (6.53)

6.5.2 Example I

As a first example, we have taken the Stanford Bunny data model as the reference pointcloud
[180]. It contains 35947 points, its enclosing box is

B = [−0.095, 0.061]×[0.033, 0.187]×[−0.062, 0.059], (6.54)

and its centroid is
p = (−0.0268, 0.0952, 0.0089)T . (6.55)

The target pointcloud has been obtained by applying to all points in the reference pointcloud
the following rotation

R = Rx

(π
3

)
Ry

(π
6

)
Rz

(π
4

)
=




0.6124 −0.6124 0.5000
0.6597 0.0474 −0.7500
0.4356 0.7891 0.4330



 , (6.56)

and then the translation given by t=(0.2, 0.5, 0.1)
T
. The vector of Euler parameters corre-

sponding to R is
e = (0.7233, 0.5320, 0.0223, 0.4397)T . (6.57)

96 CHAPTER 6. APPLICATION TO POINTCLOUD REGISTRATION

0.1

0.2

-0.05 0

0

0.3

0.05 0.1

0.4

0.15

0.5

0.2 0.25

0.6

0.1

0.2

0.3

0.6

0.55

0.5

0.45

0.15

0

0.4

0.05

0.1

0.15

0.2

0.2

0.25

0.25

0.3

0.35

Figure 6.3: Top: the reference and target pointclouds in magenta and green, respectively. Bot-
tom: Registration result (there are no noticeable differences to the naked eye between the regis-
trations obtained using all the analyzed methods).

6.5. PERFORMANCE ANALYSIS 97

Then, we have perturbed some point locations in the target pointcloud. A noise with Gaussian
distribution N (0, 0.02) has been added to the three coordinates of 20% of the points, with
distribution N (0.005, 0.018) to 10% of the points, and with distribution N (−0.005, 0.018) to
another 10% of the points. These three sets are disjoint and randomly selected. The reference
and the resulting target pointclouds are depicted in Fig. 6.3(top).

The implemented methods to register the reference pointcloud with respect to the target
pointcloud have been:

1. The method based on the SVD as described in Section 6.2.1.

2. The standard quaternion method based on the computation of a dominant eigenvector as
described in Section 6.2.2

3. Wu et al.’s improved quaternion method based on the closed-form formulas also included
in Section 1.2.2.7.

4. The dual quaternion method described in Section 6.2.3.

5. The new method derived in Section 6.3.

Their accuracy was evaluated in terms of:

1. The error in the recovered rotation, computed as arccos(|êi·e|), where ei is the unit quater-
nion (strictly speaking it is just a vector of Euler parameters) corresponding to the esti-
mated rotation matrix. This metric was apparently first used in [181] for 3D object pose
estimation. It is a pseudo metric in the unit quaternions but it is a metric in SO(3) [54].

2. The error of translations computed simply as
∥∥t̂i − t

∥∥, where t̂i is the estimated translation.

These errors vary each time the program is executed because the perturbed points in the
target pointcloud are randomly selected at each execution.

It has been verified that the rotational and translational errors are always the same for the
methods based on the SVD, quaternions, or dual quaternions. The only truly distinguishing
factor is execution time. This concurs with the results presented in [99]. The conclusion of
superior accuracy of the method based on dual quaternions, as assured in [169], is thus incorrect.

Table 6.1: Error figures and execution times for the five compared methods in a particular case.

Method Rotational error Translational error Time

(rad·10−3) (m·10−3) (ms)

SVD 1.4146 0.33677 2.10

Quaternion 1.4146 0.33677 4.40

Wu et al.’s 1.4146 0.33677 5.47

Dual quaternion 1.4146 0.33677 95.61

4D rotation 1.2779 0.23559 1.30

The new method leads to completely different error figures when compared to the other meth-
ods. In one particular execution, we obtained the results compiled in Table 6.1. We have chosen
this instance because an important conclusion can be drawn from it: all analytical methods used
so far are not optimal because it is possible to obtain solutions that are better both in terms

98 CHAPTER 6. APPLICATION TO POINTCLOUD REGISTRATION

Table 6.2: Translational and rotational error statistics for 104 random displacements using Wu
et al.’s and the proposed method.

Method Maximum Average Standard

rotation rotation deviation

error (rad·10−3) error (rad·10−3) (rad·10−6)

Wu et al.’s 3.51 1.07 0.21

4D rotation 4.72 1.16 0.26

Method Maximum Average Standard

translation translation deviation

error (m·10−3) error (m·10−3) (m·10−6)

Wu et al.’s 0.65 0.19 0.0080

4D rotation 0.87 0.29 0.0015

of translations and rotations. In this particular case, the determinant of the estimated rotation
matrix using the new method is 1.0042 (see Example III for a discussion on orthogonality errors).
Nevertheless, it is important to remark that the rotational error has been computed from the
corresponding unit quaternion which is not affected by this error.

In all cases, no differences between the registrations obtained using all the analyzed methods
are noticeable to the naked eye [see Figure 6.3(bottom)].

While Wu et al.’s and the new method simply evaluate some formulas, the other three rely
on iterative numerical methods that either compute the SVD or the dominant eigenvector. This
has important consequences in the execution times using MATLAB. For example, the SVD
implemented in MATLAB calls the xGESVD routine of LAPACK (Linear Algebra Package).
Thus, it does not make much sense to compare execution times of functions fully written in
interpretable code and others calling optimized compiled routines. Due to this fact, it is even
more remarkable the low computational cost of the new method. The time performance of Wu
et al.’s method is not as good as that reported by their authors probably because, for the sake
of robustness, we had to introduce the computation of all cofactors of a 4×4 matrix as explained
in Section 1.2.2.7.

6.5.3 Example II

In the above example, the new method delivered better results both in terms of the rotation and
the translation, but this is not the general case. To properly assess the quality of its results, we
have executed the following procedure 104 times to compare them with those obtained using Wu
et al.’s method:

1. Generate a random vector point in S
3 using the algorithm detailed in [53], identify it as a

quaternion, and convert it to the rotation matrix Ri.

2. Generate a random vector point in S
2, say pi, using the algorithm also detailed in [53] and

set the translation vector ti = rpi.

3. Rotate and translate the reference pointcloud according to Ri and ti, respectively.

6.5. PERFORMANCE ANALYSIS 99

-0.8
-1

-0.6
-0.4

-0.8

-0.2
0

-0.6

0.2
0.4

-0.4

0.6
-0.2

0.8

0

0.6

0.2

0.4

0.2

0.4

0

0.6

-0.2

-0.4

0.8

-0.6

PSfrag replacements

x

y

z

Figure 6.4: A pointcloud representing a chair.

4. Contaminate the obtained pointcloud with noise following the process described above to
get the target pointcloud.

5. Registrate the reference pointcloud with respect to the target poincloud using the new
method and Wu et al.’s method.

6. Compute the rotational and translational error of the registration.

We have repeated this procedure for different values of r and the results are essentially the
same even for values of r as high as 100 (an amount three orders of magnitude higher than the
mean side of the enclosing box of the reference pointcloud). The resulting statistics appear in
Table 6.2. This table has two separated parts for the rotational and translational errors with
three columns each. The first column in each part refers to the attained maximum error; the
second one, to the average error; and the third one, to the standard deviation. Observe that the
standard deviation is given in micro radians. The maximum obtained orthogonally error for the

new method has been 0.0138 (evaluated as
∣∣∣1− det(R̂)

∣∣∣); its average, 0.00286; and its variance,

4.5·10−6.
We can conclude that the main advantage of the new method is its low computational cost

and simplicity. Nevertheless, as already observed in Section 6.4, the estimated rotation matrix
departs from orthogonality under the presence of noise. This latter point is further discussed in
the following example.

6.5.4 Example III

To examine the influence of the level of noise in the estimated rotations and translations using the
new method, we have used the pointcloud appearing in Fig. 6.4, which has been taken from the
Princeton Segmentation Benchmark [182]1. The target pointcloud has been obtained by applying
the same transformation as in Example I. Then, the coordinates of the resulting points have
been perturbed with additive uncorrelated zero-mean Gaussian noise with a standard deviation

1freely available at: https://segeval.cs.princeton.edu/.

100 CHAPTER 6. APPLICATION TO POINTCLOUD REGISTRATION

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
10

-4

0.014792

PSfrag replacements

σ2

σ2

R
o
ta

ti
o
n
a
l
e
rr
o
r

Translational error

Orthogonality error
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0

0.5

1

1.5
10

-4

0.012382

PSfrag replacements

σ2

σ2

Rotational error T
ra

n
sl
a
ti
o
n
a
l
e
rr
o
r

Orthogonality error
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0

1

2

3

4

5

6

7
10

-4

0.037883

PSfrag replacements

σ2

σ2

Rotational error

Translational error

O
rt
h
o
g
o
n
a
li
ty

e
rr
o
r

Figure 6.5: Rotational, translational, and orthogonality errors, as a function of the added noise
standard deviation, for the registration of the pointcloud in Fig. 6.4 using the proposed method.

ranging from 0 to 0.1. After recovering the applied rotation and translation using the proposed
method, the committed rotational, translational, and orthogonality errors have been evaluated.
If this is repeated ten times for each value of the standard derivation of the added noise, and the
results averaged, the plots in Fig. 6.5 are obtained. Using linear regression, these three plots can
be approximated by the linear functions εrot = crot σ

2, εtrans = ctrans σ
2, and εortho = cortho σ

2,
where crot = 0.014792, ctrans = 0.012382, and cortho = 0.037883, respectively. To examine how
these three coefficients vary with the shape of the pointcloud, we have segmented the analyzed
pointcloud into the ten disjoint point sets appearing in Fig. 6.6, and the above experiment has
been repeated for each of them. A table with the parameters that characterize the shape of each
point set (see the Appendix 6.5.1), as well as the obtained values for crot, ctrans, and cortho, is
also included in Fig. 6.6.

While it is true that, for large levels of noise, some orthogonality errors arise in the pro-
posed method, it is no less true that restoring the orthogonality of a rotation matrix with the
observed small orthogonality errors can be performed by applying two or three iterations of the
simple “cross-product method” proposed in [70], or the “equal-mean direction method” originally
proposed in [65], and recently rediscovered in [71].

6.6 Conclusion

In this chapter we have presented all available methods for the pointcloud registration problem
and we have explored the idea of using a characteristic length to solve the pointcloud registration
problem. We have used the reciprocal of this length as a symbol that represents a very small
number. Therefore, only the terms of the lowest degree in this symbol have been kept in all
algebraic expressions generated during the resolution of the problem. As a result, a closed-form
formula is obtained which turns out to be independent of the characteristic length. It may seem
surprising at first that such property exists at all. But in fact, it does. The characteristic length
has been introduced into the formalism only to be eliminated again, as an irrelevance, from those
quantities which one is finally concerned with.

Besides the interesting way in which the new closed-form formula for the pointcloud registra-
tion problem has been obtained, it is finally worth remarking that it has been proved to be an
attractive alternative to the previous analytic methods. It is indeed useful for implementation
in embedded microcomputers with limited computational resources because it requires neither
square roots nor trigonometric computations.

6.6. CONCLUSION 101

PSfrag replacements

1 2 3 4 5

6 7 8 9 10

Point set 1 2 3 4 5 6 7 8 9 10

Number of points 7697 922 934 911 869 700 491 511 2216 722

Eigenvalues 0.0021 0.0015 0.0015 0.0015 0.0015 0.0009 0.0005 0.0006 0.0040 0.0009

0.0707 0.0016 0.0017 0.0016 0.0016 0.0010 0.0005 0.0006 0.0071 0.0011

0.0806 0.0350 0.0364 0.0349 0.0315 0.0301 0.0255 0.0258 0.0807 0.0313

Eccentricity 6.16 4.80 4.89 4.78 4.57 5.67 7.07 6.80 4.48 5.79

Volume·103 3.50 0.29 0.30 0.29 0.28 0.17 0.08 0.09 1.50 0.17

crot 0.0790 0.3948 0.3742 0.3819 0.3966 0.5765 0.9684 0.8586 0.1379 0.5670

ctrans 0.0337 0.4467 0.4136 0.6475 0.6221 0.7537 1.0785 1.0733 0.3198 0.7708

cortho 0.2132 0.9053 1.0077 0.9965 0.9805 1.3817 2.2943 2.2613 0.3114 1.3770

Figure 6.6: The chair model in Fig. 6.4 is segmented into ten disjoint point sets. The shape
characteristics of each set appear in the bottom table. This table also includes the coefficients
that indicate the sensitivity of each set to rotational, translational, and orthogonality errors. As
expected, the smaller the volume of the point set, the higher the sensitivity to noise.

102 CHAPTER 6. APPLICATION TO POINTCLOUD REGISTRATION

Chapter 7

Conclusions

We have presented new closed-form methods for solving the nearest rotation matrix problem in
3D and 4D. The presented results can be applied in many areas of robotics, computer graphics,
and computer vision. We have only included in this thesis their application to the hand-eye and
the pointcloud registration problems. Nevertheless, we are currently exploring their application
to two other relevant problems: the simultaneous robot-world hand-eye calibration problem, and
the geometric skinning problem.

We have presented exact and approximate closed-form methods. Their numerically stability
and lower computational complexity, in comparison with standard approaches, have been shown
using extensive analyses that included simulated and experimental data. We think that their
superiority with respect to the standard method of choice, the SVD, is remarkable.

A mapping between 3D displacements and 4D rotations, in combination with closed-form
solutions to the 4D nearest rotation matrix problem, has been shown to be a fruitful idea. It
have been used to derive a new closed-form formula for the pointcloud registration problem which
has been proved to be an attractive alternative to the previous analytic methods. We think that
other optimization problems, involving translations and rotations at the same time, might be
benefited from the ideas put forward in this thesis.

Finally, it is worth enumerating the publications directly related to the research reported in
this thesis:

Accepted journals papers

[J1] S. Sarabandi and F. Thomas, “A Survey on the computation of quaternions from rotation
matrices,” ASME Journal of Mechanisms and Robotics, Vol. 11, No. 2, 021006, 2019.

[J2] S. Sarabandi, A. Pérez-Gracia, and F. Thomas, “On Cayley’s factorization with an appli-
cation to the orthonormalization of noisy rotation matrices,” Advances in Applied Clifford
Algebras, pp. 29-49, July 2019.

[J3] S. Sarabandi, A. Shabani, J.M. Porta, and F. Thomas, “On closed-form formulas for the
3D nearest rotation matrix problem,” IEEE Transactions on Robotics, Vol. 36, No. 4, pp.
1333-1339, 2020,.

103

104 CHAPTER 7. CONCLUSIONS

Submitted journal papers

[J4] F. Thomas and S. Sarabandi, “Approximating displacements in R3 by rotations in R4 and
its application to pointcloud registration,” submitted to the IEEE Transactions on Pattern
Analysis and Machine Intelligence.

[J5] S. Sarabandi, J.M. Porta, and F. Thomas, “A computationally-efficient closed-form solution
to the hand-eye calibration problem”, submitted to the IEEE Transactions on Instrumen-
tation and Measurement.

Journal papers in preparation

[J6] S. Sarabandi and F. Thomas, “The 4D nearest rotation matrix problem”

[J7] S. Sarabandi, A. Shabani, and F. Thomas, “The nearest rotation matrix in R
3: a compar-

ative survey”

[J8] S. Sarabandi, and F. Thomas, “Geometric skinning reduced to a 4D nearest rotation matrix
problem”

[J9] J. Wu, S. Sarabandi, J.M. Porta, M. Liu, and F. Thomas, “Yet a better closed-form formula
for the 3D nearest rotation matrix problem,”

[J10] S. Sarabandi and F. Thomas, “A reformulation of the simultaneous robot-world and hand-
eye calibration problem”

Accepted conferences papers

[C1] S. Sarabandi and F. Thomas, “Accurate computation of quaternions from rotation matri-
ces,” 16th International Symposium on Advances in Robot Kinematics, Bologna, Italy, 1-4
July, 2018.

[C2] S. Sarabandi, A. Pérez-Gracia, and F. Thomas, “Singularity-free computation of quater-
nions from rotation matrices in E4 and E3,” 7th Conference on Applied Geometric Algebras
in Computer Science and Engineering (AGACSE 2018), Campinas, Brazil, 23-27 July, 2018.

Bibliography

[1] K. Spring, “Euler parameters and the use of quaternion algebra in the manipulation of
finite rotations: a review,” Mechanism and Machine Theory, vol. 21, no. 5, pp. 365–373,
1986.

[2] M. D. Shuster, “A survey of attitude representations,” Journal of the Astronautical Sci-
ences, vol. 41, no. 4, pp. 439–517, 1993.

[3] H. Goldstein, Classical Mechanics. Cambridge, MA: Addison-Wesley, 1951.

[4] R. Paul, Robot Manipulators: Mathematics, Programming, and Control. Cambridge, MA:
MIT Press, 1982.

[5] A. Purwar and Q. J. Ge, “On the effect of dual weights in computer aided design of rational
motions,” Journal of Mechanical Design, vol. 127, no. 5, pp. 967–972, 2005.

[6] D. Goldberg, “What every computer scientist should know about floating-point arith-
metic,” ACM Computing Surveys (CSUR), vol. 23, no. 1, pp. 5–48, 1991.

[7] D. M. Henderson, “Euler angles, quaternions, and transformation matrices—working rela-
tionships,” McDonnell Douglas Technical Services Co. Inc. NASA Technical Report NASA-
TM-74839, Tech. Rep., 1977.

[8] J.-L. Blanco, “A tutorial on SE(3) transformation parameterizations and on-manifold op-
timization,” University of Málaga, Technical Report, vol. 3, 2013.

[9] D. Eberly, “Euler angle formulas,” Geometric Tools, LLC, Technical Report, pp. 1–18,
1999.

[10] S. Chiaverini and B. Siciliano, “The unit quaternion: A useful tool for inverse kinematics
of robot manipulators,” Systems Analysis Modelling Simulation, vol. 35, no. 1, pp. 45–60,
1999.

[11] P. C. Hughes, Spacecraft attitude dynamics. John Wiley & Sons, Inc, 1986.

[12] G. S. Chirikjian, A. B. Kyatkin, and A. Buckingham, “Engineering applications of non-
commutative harmonic analysis: with emphasis on rotation and motion groups,” Applied
Mechanics Reviews, vol. 54, no. 6, pp. B97–B98, 2001.

[13] S. M. LaValle, Planning algorithms. Cambridge University Press, 2006.

[14] G. Grubin, “Quaternion singularity revised,” Journal of Guidance and Control, vol. 2,
no. 3, pp. 255–256, 1979.

105

106 BIBLIOGRAPHY

[15] S. W. Shepperd, “Quaternion from rotation matrix,” Journal of Guidance and Control,
vol. 1, no. 3, pp. 223–224, 1978.

[16] C. Grubin, “Derivation of the quaternion scheme via the Euler axis and angle,” Journal of
Spacecraft and Rockets, vol. 7, no. 10, pp. 1261–1263, 1970.

[17] A. R. Klumpp, “Singularity-free extraction of a quaternion from a direction-cosine matrix,”
Journal of Spacecraft and Rockets, vol. 13, no. 12, pp. 754–755, 1976.

[18] R. A. Spurrier, “Comment on ′singularity-free extraction of a quaternion from a direction-
cosine matrix′,” Journal of Spacecraft and Rockets, vol. 15, no. 4, pp. 255–255, 1978.

[19] A. R. Klumpp, “Reply to comment on singularity-free extraction of a quaternion from a
direction-cosine matrix,” Journal of Spacecraft and Rockets, vol. 13, no. 4, pp. 256–256,
1978.

[20] M. D. Shuster and G. A. Natanson, “Quaternion computation from a geometric point of
view,” The Journal of the Astronautical Sciences, vol. 41, no. 4, pp. 545–556, 1993.

[21] S. Sarabandi and F. Thomas, “Accurate computation of quaternions from rotation matri-
ces,” in International Symposium on Advances in Robot Kinematics, 2018, pp. 39–46.

[22] J. Angeles, Fundamentals of robotic mechanical systems: theory, methods and algorithms.
Springer-Verlag, New York, 1997.

[23] K. H. Berthold and P. Horn, “Closed-form solution of absolute orientation using unit
quaternions,” Journal of the Optical Society of America, vol. 4, no. 4, pp. 629–642, 1987.

[24] I. Y. Bar-Itzhack, “New method for extracting the quaternion from a rotation matrix,”
Journal of Guidance, Control, and Dynamics, vol. 23, no. 6, pp. 1085–1087, 2000.

[25] N. J. Higham and V. Noferini, “An algorithm to compute the polar decomposition of a
3×3 matrix,” Numerical Algorithms, vol. 73, no. 2, pp. 349–369, 2016.

[26] S. Sarabandi, A. Shabani, J. M. Porta, and F. Thomas, “On closed-form formulas for the
3-d nearest rotation matrix problem,” IEEE Transactions on Robotics, vol. 36, no. 4, pp.
1333–1339, 2020.

[27] S. Sarabandi, A. Perez-Gracia, and F. Thomas, “On Cayley’s factorization with an appli-
cation to the orthonormalization of noisy rotation matrices,” Advances in Applied Clifford
Algebras, vol. 29, no. 3, p. 49, 2019.

[28] F. L. Markley, Y. Chang, J. L. Crassidis, and O. Oshman, “Averaging quaternions,” Jour-
nal of Guidance and Control and Dynamics, vol. 30, pp. 1193–1196, 2007.

[29] M. D. Shuster and S. D. Oh, “Three-axis attitude determination from vector observations,”
Journal of Guidance and Control, vol. 4, no. 1, pp. 70–77, 1981.

[30] J. Wu, M. Liu, Z. Zhou, and R. Li, “Fast symbolic 3D registration solution,” IEEE Trans-
actions on Automation Science and Engineering, vol. 17, no. 2, pp. 761–770, 2019.

[31] J. Wu, S. Sarabandi, J. Porta, M. Liu, and F. Thomas, “Yet a better closed-form formula for
the 3d nearest rotation matrix problem,” submitted to IEEE Transactions on Automation
Science and Engineering, 2020.

BIBLIOGRAPHY 107

[32] I. Coope, A. Lintott, G. Dunlop, and M. Vuskovic, “Numerically stable methods for
converting rotation matrices to Euler parameters,” in Advances in Robot Kinematics.
Springer, 2000, pp. 35–42.

[33] G. Wahba, “A least squares estimate of satellite attitude,” SIAM Review, vol. 7, no. 3, pp.
409–409, 1965.

[34] J. L. Farrell, J. C. Stuelpnagel, R. H. Wessner, J. R. Velman, and et al., “A least squares
estimate of spacecraft attitude. Solution 65-1,” SIAM Review, vol. 8, no. 3, pp. 384–386,
1966.

[35] J. Keat, “Analysis of least-squares attitude determination routine DOAOP,” Technical
Report CSC/TM-77/6034, Computer Science Corporation, Tech. Rep., 1977.

[36] G. M. Lerner, “Three-axis attitude determination,” Spacecraft Attitude Determination and
Control, vol. 73, pp. 420–428, 1978.

[37] F. L. Markley, “Attitude determination using vector observations and the singular value
decomposition,” Journal of the Astronautical Sciences, vol. 36, no. 3, pp. 245–258, 1988.

[38] F. L. Markley and D. Mortari, “How to estimate attitude from vector observations,” in
AAS/AIAA Astrodynamics Specialist Conference, Girdwood, Alaska, USA, 1999.

[39] F. L. Markley, “Parameterization of the attitude,” Spacecraft Attitude Determination and
Control, pp. 414–416, 1978.

[40] M. D. Shuster, “Approximate algorithms for fast optimal attitude computation,” in Guid-
ance and Control Conference, 1978, pp. 7–9.

[41] I. Y. Bar-Itzhack, “REQUEST-A recursive QUEST algorithm for sequential attitude de-
termination,” Journal of Guidance, Control, and Dynamics, vol. 19, no. 5, pp. 1034–1038,
1996.

[42] M. D. Shuster, “A simple Kalman filter and smoother for spacecraft attitude,” Journal of
the Astronautical Sciences, vol. 37, no. 1, pp. 89–106, 1989.

[43] ——, “Kalman filtering of spacecraft attitude and the QUEST model,” Journal of the
Astronautical Sciences, vol. 38, pp. 377–393, 1990.

[44] ——, “The quest for better attitudes,” The Journal of the Astronautical Sciences, vol. 54,
no. 3, pp. 657–683, 2006.

[45] Y. Cheng and M. D. Shuster, “Improvement to the implementation of the QUEST algo-
rithm,” Journal of Guidance, Control, and Dynamics, vol. 37, no. 1, pp. 301–305, 2014.

[46] D. Mortari, “Esoq: A closed-form solution to the wahba problem,” Journal of the Astro-
nautical Sciences, vol. 45, no. 2, pp. 195–204, 1997.

[47] ——, “N-dimensional cross product and its application to the matrix eigenanalysis,” Jour-
nal of Guidance, Control, and Dynamics, vol. 20, no. 3, pp. 509–515, 1997.

[48] ——, “Esoq2 single-point algorithm for fast optimal attitude determination,” in
AAS/AIAA Space Flight Mechanics Meeting, Huntsville, AL, USA, 1997.

[49] ——, “Second estimator of the optimal quaternion,” Journal of Guidance, Control, and
Dynamics, vol. 23, no. 5, pp. 885–888, 2000.

108 BIBLIOGRAPHY

[50] F. L. Markley, “Attitude determination using vector observations: A fast optimal matrix
algorithm,” Journal of the Astronautical Sciences, vol. 41, no. 2, pp. 261–280, 1993.

[51] M. D. Shuster, “The optimization of TRIAD,” The Journal of the Astronautical Sciences,
vol. 55, no. 2, pp. 245–257, 2007.

[52] R. Duarte, L. Martins, and H. K. Kuga, “Performance comparison of attitude determina-
tion algorithms developed to run in a microprocessor environment,” in 20th International
Congress of Mechanical Engineering, Gramado, RS, Brazil, 2009.

[53] G. Marsaglia, “Choosing a point from the surface of a sphere,” The Annals of Mathematical
Statistics, vol. 43, no. 2, pp. 645–646, 1972.

[54] D. Q. Huynh, “Metrics for 3d rotations: comparison and analysis,” Journal of Mathematical
Imaging and Vision, vol. 35, no. 2, pp. 155–164, 2009.

[55] I. Y. Bar-Itzhack, “Iterative optimal orthogonalization of the strapdown matrix,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 11, no. 1, pp. 30–37, 1975.

[56] R. Hartley, J. Trumpf, Y. Dai, and H. Li, “Rotation averaging,” International journal of
computer vision, vol. 103, no. 3, pp. 267–305, 2013.

[57] F. C. Park, “Distance metrics on the rigid-body motions with applications to mechanism
design,” Journal of Mechanical Design, vol. 117, no. 1, pp. 48–54, 1995.

[58] F. C. Park and B. Ravani, “Smooth invariant interpolation of rotations,” ACM Transac-
tions on Graphics (TOG), vol. 16, no. 3, pp. 277–295, 1997.

[59] B. Ravani and B. Roth, “Motion synthesis using kinematic mappings,” ASME Journal of
Mechanisms, Transmissions, and Automation in Design, vol. 105, no. 3, pp. 460–467, 1983.

[60] W. Kahan. (2011) The nearest orthogonal or unitary matrix. [Online]. Available:
https://people.eecs.berkeley.edu/∼wkahan/Math128/NearestQ.pdf

[61] D. Herbison-Evans and D. S. Richardson, “Control of round-off propagation in articulating
the human figure,” Computer Graphics and Image Processing, vol. 17, no. 4, pp. 368–393,
1981.

[62] C. Rucker, “Integrating rotations using non-unit quaternions,” IEEE Robotics and Au-
tomation Letters, vol. 3, no. 4, pp. 2979–2986, 2018.

[63] F. Thomas, “Approaching dual quaternions from matrix algebra,” IEEE Transactions on
Robotics, vol. 30, no. 5, pp. 1037–1048, 2014.

[64] D. Eberly. (2008) Rotation representations and performance issues. [Online]. Available:
https://www.geometrictools.com/Documentation/RotationIssues.pdf

[65] H. Zhuang, Z. S. Roth, and R. Sudhakar, “Practical fusion algorithms for rotation matrices:
A comparative study,” Journal of Robotic Systems, vol. 9, no. 7, pp. 915–931, 1992.

[66] C. M. Werneth, M. Dhar, K. M. Maung, C. Sirola, and J. W. Norbury, “Numerical
Gram–Schmidt orthonormalization,” European Journal of Physics, vol. 31, no. 3, pp. 1058–
1087, 2010.

[67] G. W. Stewart, Matrix algorithms. Volume I: basic decompositions. Society for Industrial
and Applied Mathematics, 1998.

BIBLIOGRAPHY 109

[68] A. S. Nugraha and T. Basaruddin, “Analysis and comparison of qr decomposition algorithm
in some types of matrix,” in Federated Conference on Computer Science and Information
Systems (FedCSIS), 2012, pp. 561–565.

[69] C. Moler. (2016) Compare Gram-Schmidt and Householder orthogonaliza-
tion algorithms. [Online]. Available: https://blogs.mathworks.com/cleve/2016/07/25/
compare-gram-schmidt-and-householder-orthogonalization-algorithms

[70] I. Bar-Itzhack and K. A. Fegley, “Orthogonalization techniques of a direction cosine ma-
trix,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-5, no. 5, pp.
798–804, 1964.

[71] M. Costandin, B. Costandin, and P. Dobra, “A new orthogonalization and sensor fusion
algorithm for attitude estimation,” in 2018 IEEE International Conference on Automation,
Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 2018, pp. 1–6.

[72] C. R. Giardini, R. Bronson, and I. Wallen, “An optimal normalization scheme,” IEEE
Transactions on Aerospace and Electronic Systems, vol. AES-11, no. 4, pp. 443–446, 1975.

[73] I. Bar-Itzhack, J. Meyer, , and P. A. Fuhrmann, “Strapdown matrix orthogonalization: the
dual iterative algorithm,” IEEE Transactions on Aerospace and Electronic Systems, vol.
AES-12, no. 1, pp. 32–38, 1976.

[74] B. K. P. Horn, H. M. Hilden, and S. Negahdaripour, “Closed form solution of absolute
orientation using orthonormal matrices,” Journal of the Optical Society A, vol. 5, no. 7,
pp. 1127–1135, 1988.

[75] H. T. Gains, “Attitude matrix orthonormality correction,” Honeywell Interoffice Corre-
spondence, 1965.

[76] . Björek and C. Bowie, “An iterative algorithm for computing the best estimate of an
orthogonal matrix,” SIAM Journal on Numerical Analysis, vol. 8, no. 2, pp. 358–364,
1971.

[77] M. A. Hasan, “Families of orthonormalization algorithm,” in International Joint Confer-
ence on Neural Networks, Atlanta, Georgia, USA, 2009, pp. 14–19.

[78] ——, “Square-root free orthogonalization algorithms,” in IEEE International Conference
on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 2009, pp. 3173–3176.

[79] I. Bar-Itzhack and J. Meyer, “On the convergence of iterative orthogonalization processes,”
IEEE Transactions on Aerospace and Electronic Systems, vol. AES-12, no. 2, pp. 1946–
1951, 1976.

[80] J. Mao and B. Yin, “An orthonormalization algorithm for inertial navigation systems by
using matrix sign function,” in IFAC 12th Triennial World Congres, Sydney, Australia,
1993, pp. 801–804.

[81] R. W. Priester and E. D. Denman, “Orthogonalization of a direction cosine matrix by
iterative techniques,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-
8, no. 5, pp. 692–694, 1972.

[82] I. Bar-Itzhack, J. Meyer, and P. A. Fuhrmann, “Correction to strapdown matrix orthogo-
nalization: the dual iterative algorithm,” IEEE Transactions on Aerospace and Electronic
Systems, vol. AES-12, no. 1, pp. 32–38, 1976.

110 BIBLIOGRAPHY

[83] N. J. Higham, “Newton’s method for the matrix square root,” Mathematics of Computa-
tion, vol. 46, pp. 537–550, 1986.

[84] Z. Liu and Q. Yan, “New iterative algorithm for attitude determination,” in 2010 Inter-
national Conference on E-Product, E-Service and E-Entertainment, Henan, China, 2010,
pp. 1–4.

[85] M. A. Hasan, “Orthonormalization learning algorithm,” in International Joint Conference
on Neural Networks, Orlando, Florida, USA, 2007, pp. 12–17.

[86] N. J. Higham, “Stable iterations for the matrix square root,” Numerical Algorithms, vol. 15,
no. 2, pp. 227–242, 1997.

[87] E. D. Denman and A. N. Beavers, “The matrix sign function and computations in systems,”
Applied Mathematics and Computation, vol. 2, no. 1, pp. 63–94, 1976.

[88] Y. Y. Lu, “A Padé approximation method for square roots of symmetric positive definite
matrices,” SIAM Journal on Matrix Analysis and Applications, vol. 19, no. 3, pp. 833–845,
1998.

[89] W. B. Jones and W. J. Thron, Continued fractions, analytic theory and applications.
Addison-Wesley, Reading, MA, 1990.

[90] A. H. Al-Mohy and N. J. Higham, “Improved inverse scaling and squaring algorithms for
the matrix logarithm,” SIAM Journal on Scientific Computing, vol. 34, no. 4, pp. 153–169,
2012.

[91] N. J. Higham, Functions of matrices: theory and computation. SIAM, 2008.

[92] W. J. Culver, “On the existence and uniqueness of the real logarithm of a matrix,” Pro-
ceedings of the American Mathematical Society, vol. 17, no. 5, pp. 1146–1151, 1966.

[93] P. R. Halmos, Finite dimensional vector spaces, 2nd ed. Van Nostrand, Princeton, N.J,
1958.

[94] N. J. Higham, “Computing the polar decomposition with applications,” SIAM Journal on
Scientific and Statistical Computing, vol. 7, no. 4, pp. 1160–1174, 1986.

[95] K. Du, “The iterative methods for computing the polar decomposition of rank-deficient
matrix,” Applied Mathematics and Computation, vol. 162, no. 1, pp. 95–102, 2005.

[96] F. Soleymani, P. S. Stanimirović, and I. Stojanović, “A novel iterative method for polar
decomposition and matrix sign function,” Discrete Dynamics in Nature and Society, vol.
2015, 2015.

[97] J. Mao, “Optimal orthonormalization of the strapdown matrix by using singular value
decomposition,” Computers and Mathematics with Applications, vol. 12, no. 3, pp. 253–
262, 1986.

[98] G. H. Golub, “Least squares, singular values and matrix approximations,” Aplikace Matem-
atiky, vol. 13, pp. 44–51, 1968.

[99] D. W. Eggert, A. Lorusso, and R. B. Fisher, “Estimating 3-d rigid body transformations:
a comparison of four major algorithms,” Machine Vision and Applications, vol. 9, no. 5,
pp. 272–290, 1997.

BIBLIOGRAPHY 111

[100] G. H. Golub and C. F. van Loan, Matrix computations. Johns Hopkins University Press,
1983.

[101] A. Björck and S. Hammarling, “A Schur method for the square root of a matrix,” Linear
Algebra and Applications, vol. 52-53, pp. 127–140, 1983.

[102] H. C. Schweinler and E. P. Wigner, “Orthogonalization methods,” Journal of Mathematical
Physics, vol. 11, no. 5, pp. 1693–1694, 1970.

[103] O. K. Smith, “Eigenvalues of a symmetric 3×3 matrix,” Communications of the ACM,
vol. 4, no. 4, p. 168, 1961.

[104] L. P. Franca, “An algorithm to compute the square root of a 3×3 positive definite matrix,”
Computers Mathematics and Applications, vol. 18, no. 5, pp. 459–466, 1989.

[105] J. Kopp, “Efficient numerical diagonalization of Hermitian 3×3 matrices,” International
Journal of Modern Physics C, vol. 19, no. 3, pp. 523–548, 2008.

[106] J. F. Blinn, “How to solve a cubic equation, part 1: The shape of the discriminant,” IEEE
Computer Graphics and Applications, vol. 26, no. 3, pp. 84–93, 2006.

[107] A. W. Bojanczyk and A. Lutoborski, “Computation of the Euler angles of a symmetric
3×3 matrix,” SIAM Journal of Matrix Analysis and Application, vol. 12, no. 1, pp. 41–48,
1991.

[108] M. J. Kronenburg, “A method for fast diagonalization of a 2×2 or 3×3 real symmetric
matrix,” arXiv preprint arXiv:1306.6291v4, 1991.

[109] W. Kahan. (1986) Lecture notes for a numerical analysis course. [Online]. Available:
ttps://people.eecs.berkeley.edu/∼wkahan/Math128/Cubic.pdf

[110] J. F. Blinn, “How to solve a cubic equation, part 5: Back to numerics,” IEEE Computer
Graphics and Applications, vol. 27, no. 3, pp. 78–89, 2007.

[111] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330–1334, 2000.

[112] F. Dornaika and R. Horaud, “Simultaneous robot-world and hand-eye calibration,” IEEE
Transactions on Robotics and Automation, vol. 14, no. 4, pp. 617–622, 1998.

[113] A. Li, L. Wang, and D. Wu, “Simultaneous robot-world and hand-eye calibration using
dual-quaternions and Kronecker product,” International Journal of the Physical Sciences,
vol. 5, no. 10, 2010.

[114] J. Heller, D. Henrion, and T. Pajdla, “Hand-eye and robot-world calibration by global
polynomial optimization,” in Proceedings of the 2014 IEEE International Conference on
Robotics and Automation, 2014, pp. 3157–3164.

[115] Z. Zhao, “Simultaneous robot-world and hand-eye calibration by the alternative linear
programming,” Pattern Recognition Letters, vol. 127, pp. 174–180, 2019.

[116] J. Schmidt, F. Vogt, and H. Niemann, “Robust hand–eye calibration of an endoscopic
surgery robot using dual quaternions,” in Pattern Recognition. DAGM 2003. Lecture Notes
in Computer Science, vol 2781, Springer, Berlin, Heidelberg, 2003, pp. 548–556.

112 BIBLIOGRAPHY

[117] Q. Ma, H. Li, and G. S. Chirikjian, “New probabilistic approaches to the AX = XB hand-
eye calibration without correspondence,” in Proceedings of the 2016 IEEE International
Conference on Robotics and Automation, 2016, pp. 4365–4371.

[118] J. Sylvester, “Sur l’equations en matrices px = xq,” Comptes Rendus de l’Académie des
Sciences Paris, vol. 99, no. 2, p. 67–71 and 115–116, 1884.

[119] R. H. Bartels and G. W. Stewart, “Solution of the matrix equation AX + XB = C,”
Communications of the ACM, vol. 15, no. 9, pp. 820–826, 1972.

[120] Y. Shiu and S. Ahmad, “Finding the mounting position of a sensor by solving a homoge-
neous transform equation of the form AX = XB,” in 1987 IEEE International Conference
on Robotics and Automation, vol. 4, 1987, pp. 1666–1671.

[121] Y. C. Shiu and S. Ahmad, “Calibration of wrist-mounted robotic sensors by solving homo-
geneous transform equations of the form AX = XB,” IEEE Transactions on Robotics and
Automation, vol. 5, no. 1, pp. 16–29, 1989.

[122] R.-h. Liang and J.-f. Mao, “Hand-eye calibration with a new linear decomposition algo-
rithm,” Journal of Zhejiang University-SCIENCE A, vol. 9, no. 10, pp. 1363–1368, 2008.

[123] R. Y. Tsai and R. K. Lenz, “A new technique for fully autonomous and efficient 3D robotics
hand/eye calibration,” IEEE Transactions on Robotics and Automation, vol. 5, no. 3, pp.
345–358, 1989.

[124] J. C. K. Chou and M. Kamel, “Quaternions approach to solve the kinematic equation
of rotation, AaAx = AxAb, of a sensor-mounted robotic manipulator,” in 1988 IEEE
International Conference on Robotics and Automation, 1988, pp. 656–662.

[125] ——, “Finding the position and orientation of a sensor on a robot manipulator using
quaternions,” The International Journal of Robotics Research, vol. 10, no. 3, pp. 240–254,
1991.

[126] H. Zhuang and Z. S. Roth, “Comments on ′Calibration of wrist-mounted robotic sensors
by solving homogeneous transform equations of the form AX = XB ′,” IEEE Transactions
on Robotics and Automation, vol. 7, no. 6, pp. 877–878, 1991.

[127] H. Zhuang, Z. S. Roth, and R. Sudhakar, “Simultaneous robot/world and tool/flange
calibration by solving homogeneous transformation equations of the form AX = Y B,”
IEEE Transactions on Robotics and Automation, vol. 10, no. 4, pp. 549–554, 1994.

[128] R. Horaud and F. Dornaika, “Hand-eye calibration,” The International Journal of Robotics
Research, vol. 14, no. 3, pp. 195–210, 1995.

[129] F. C. Park and B. J. Martin, “Robot sensor calibration: solving AX = XB on the Eu-
clidean group,” IEEE Transactions on Robotics and Automation, vol. 10, no. 5, pp. 717–
721, 1994.

[130] J. Angeles, G. Soucy, and F. P. Ferrie, “The online solution of the hand-eye problem,”
IEEE Transactions on Robotics and Automation, vol. 16, no. 6, pp. 720–731, 2000.

[131] H. H. Chen, “A screw motion approach to uniqueness analysis of head-eye geometry,” in
1991 Conference on Computer Vision and Pattern Recognition, 1991, pp. 145–146.

BIBLIOGRAPHY 113

[132] Y.-C. Lu and J. C. Chou, “Eight-space quaternion approach for robotic hand-eye calibra-
tion,” in 1995 IEEE International Conference on Systems, Man and Cybernetics, vol. 4,
1995, pp. 3316–3321.

[133] D. Kim, “Dual quaternion application to kinematic calibration of wrist-mounted camera,”
Journal of Robotic Systems, vol. 13, no. 3, pp. 153–162, 1996.

[134] K. Daniilidis, “Hand-eye calibration using dual quaternions,” The International Journal of
Robotics Research, vol. 18, no. 3, pp. 286–298, 1999.

[135] Z. Zhao and Y. Liu, “Hand-eye calibration based on screw motions,” in 18th International
Conference on Pattern Recognition (ICPR’06), vol. 3, 2006, pp. 1022–1026.

[136] J. Wu, Y. Sun, M. Wang, and M. Liu, “Hand-eye calibration: 4D Procrustes analysis
approach,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 6, pp.
2966–2981, 2020.

[137] N. Andreff, R. Horaud, and B. Espiau, “On-line hand-eye calibration,” in Proceedings of the
Second International Conference on 3-D Digital Imaging and Modeling, 1999, pp. 430–436.

[138] G. Wei, K. Arbter, and G. Hirzinger, “Active self-calibration of robotic eyes and hand-eye
relationships with model identification,” IEEE Transactions on Robotics and Automation,
vol. 14, no. 1, pp. 158–166, 1998.

[139] S. Sarabandi and F. Thomas, “A survey on the computation of quaternions from rotation
matrices,” ASME Journal of Mechanisms and Robotics, vol. 11, no. 2, p. 021006, 2019.

[140] W. Kabsch, “A solution for the best rotation to relate two sets of vectors,” Acta Crystal-
lographica, vol. A32, pp. 922–923, 1976.

[141] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of two 3-D point
sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 9, no. 5, pp.
698–700, 1987.

[142] I. Fassi and G. Legnani, “Hand to sensor calibration: A geometrical interpretation of the
matrix equation AX = XB,” Journal of Robotic Systems, vol. 22, no. 9, pp. 497–506, 2005.

[143] C.-C. Wang, “Extrinsic calibration of a vision sensor mounted on a robot,” IEEE Trans-
actions on Robotics and Automation, vol. 8, no. 2, pp. 161–175, 1992.

[144] J.-Y. Bouguet. (2004) Camera calibration toolbox for Matlab. [Online]. Available:
http://www.vision.caltech.edu/bouguetj/calib\ doc/index.html

[145] P. Lounesto, Clifford algebras and spinors. Cambridge University Press, 2001.

[146] J. Weiner and G. Wilkens, “Quaternions and rotations in E4,” The American Mathematical
Monthly, vol. 112, no. 1, pp. 69–76, 2005.

[147] A. Cayley, “Recherches ultérieures sur les déterminants gauches,” The Collected Mathe-
matical Papers of Arthur Cayley, article 137, pp. 202–215, 1891.

[148] A. Perez-Gracia and F. Thomas, “On Cayley’s factorization of 4D rotations and applica-
tions,” Advances in Applied Clifford Algebras, vol. 27, no. 1, pp. 523–538, 2017.

[149] C. Hsiung and G. Mao, Linear Algebra. Allied Publishers, 1998.

114 BIBLIOGRAPHY

[150] F. Hitchcock, “Analysis of rotations in Euclidean four-space by sedenions,” Journal of
Mathematics and Physics, vol. 9, no. 3, pp. 188–193, 1930.

[151] J. Mebius, “Applications of quaternions to dynamical simulation, computer graphics and
biomechanics,” Ph.D. dissertation, Delft University of Technology, 1994.

[152] L. van Elfrinkhof, “Eene eigenschap van de orthogonale substitutie van de vierde orde,”
Handelingen van het zesde Nederlandsch Natuur- en Geneeskundig Congres (Acts of the
sixth Dutch nature and medical congress), pp. 237–240, 1897.

[153] N. Rosen, “Note on the general Lorentz transformation,” Journal of Mathematics and
Physics, vol. 9, pp. 181–187, 1930.

[154] J. Davidson and K. Hunt, Robots and Screw Theory: Applications of Kinematics and
Statics to Robotics. Oxford: Oxford University Press, 2004.

[155] B. K. P. Horn, Robot vision. McGraw-Hill, New York, 1986.

[156] Y. Jia, “Roots of polynomials,” 2005, unpublished.

[157] J. Angeles, “Is there a characteristic length of a rigid-body displacement?” Mechanism
and Machine Theory, vol. 41, no. 8, pp. 884–896, 2006.

[158] P. Larochelle and J. M. McCarthy, “Planar motion synthesis using an approximate bi-
invariant metric,” ASME Journal of Mechanical Design, vol. 117, no. 4, pp. 646–651, 1995.

[159] K. Etzel and J. M. McCarthy, “A metric for spatial displacements using biquaternions on
SO(4),” in Proceedings of the IEEE International Conference on Robotics and Automation,
Minneapolis, USA, 1996, pp. 3158–3190.

[160] S. Qiao, Q. Liao, S. Wei, and H.-J. Su, “Inverse kinematic analysis of the general 6R serial
manipulators based on double quaternions,” Mechanism and Machine Theory, vol. 45, pp.
193–199, 2010.

[161] P. M. Larochelle, A. P. Murray, and J. Angeles, “SVD and PD based projection metrics on
SE(n),” in On Advances in Robot Kinematics, J. Lenarčič and C. Galletti, Eds. Dordrecht:
Springer Netherlands, 2004, pp. 13–22.

[162] P. Larochelle and V. Venkataramanujam, “An improved principal coordinate frame for use
with spatial rigid body displacement metrics,” in Advances in Mechanism and Machine
Science (IFToMM WC 2019), T. Uhl, Ed., vol. 73. Cham: Springer, 2019, pp. 319–328.

[163] P. Larochelle, “On the geometry of approximate bi-invariant projective displacement met-
rics,” in Proceedings of the World Congress on the Theory of Machines and Mechanisms,
1999.

[164] R. Brégier, F. Devernay, L. Leyrit, and J. L. Crowley, “Defining the pose of any 3d rigid
object and an associated distance,” International journal of Computer Vision, vol. 126,
pp. 571–596, 2018.

[165] K. Kazerounian and J. Rastegar, “Object norms: a class of coordinate end metric indepen-
dent norms for displacements,” in Proceedings of the ASME Design Engineering Technical
Conferences, vol. 47. ASME Press, New York, 1992, pp. 271–275.

BIBLIOGRAPHY 115

[166] D. S. Grant, “Cloud to cloud registration for 3D point data,” Ph.D. dissertation, Purdue
University, 2013.

[167] B. Bellekens, V. Spruyt, R. Berkvens, and M. Weyn, “A survey of rigid 3D pointcloud
registration algorithms,” The Fourth International Conference on Ambient Computing,
Applications, Services and Technologies (AMBIENT 2014), pp. 8–13, 2014.

[168] F. Pomerleau, F. Colas, and R. Siegwart, “A review of point cloud registration algorithms
for mobile robotics,” Foundations and Trends in Robotics, vol. 4, no. 1, pp. 1–104, 2015.

[169] M. Walker, L. Shao, and R. Volz, “Estimating 3-D location parameters using dual number
quaternions,” CVGIP: Image Understanding, vol. 54, no. 3, pp. 358–367, 1991.

[170] B. Bellekens, V. Spruyt, R. Berkvens, R. Penne, and M. Weyn, “A benchmark survey
of rigid 3D point cloud registration algorithms,” International Journal on Advances in
Intelligent Systems, vol. 8, no. 1–2, 2015.

[171] P. Besl and N. McKay, “A method for registration of 3-D shapes,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239–256, 1992.

[172] Z. Zhang, “Iterative point matching for registration of free-form curves and surfaces,”
International Journal of Computer Vision, vol. 13, no. 2, pp. 119–152, 1994.

[173] D. Zhengl, D. Yue, and J. Yue, “Geometric feature constraint based algorithm for building
scanning point cloud registration,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 37, no. 4, pp. 464–468, 2008.

[174] Z.-C. Lin, T. Huang, and S. Blostein, “Motion estimation from 3-D point sets with and
without correspondences,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 1986, pp. 94–201.

[175] S. Umeyama, “Least-squares estimation of transformation parameters between two point
patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 4,
pp. 376–380, 1991.

[176] M. Chasles, “Note sur les propriétés générales du système de deux corps semblables
entr’eux,” Bulletin des Sciences Mathématiques, Astronomiques, Physiques et Chemiques,
no. 14, pp. 321–326, 1830.

[177] C. Wang, Y. Cho, and J. Park, “Performance tests for automatic 3D geometric data regis-
tration technique for progressive as-built construction site modeling,” in 2014 International
Conference on Computing in Civil and Building Engineering, Orlando, Fl, USA, 2014, pp.
1053–1061.

[178] A. Lewis and J. Malick, “Alternating projections on manifolds,” Mathematics of Operations
Research, vol. 33, no. 1, pp. 216–234, 2008.

[179] E. Bodewig, Matrix Calculus. North-Holland Publishing Company, 1956.

[180] The Stanford 3D scanning repository. [Online]. Available: http://www.graphics.stanford.
edu/data/3Dscanrep/

[181] P. Wunsch, S. Winkler, and G. Hirzinger, “Real-time pose estimation of 3D objects from
camera images using neural networks,” in IEEE International Conference on Robotics and
Automation, vol. 4, 1997, pp. 3232–3237.

116 BIBLIOGRAPHY

[182] X. Chen, A. Golovinskiy, and T. Funkhouser, “A benchmark for 3D mesh segmentation,”
ACM Transactions on Graphics, vol. 28, no. 3, article 73, 2009.

