
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Giant caloric and multicaloric effects in magnetic alloys 
 

Adrià Gràcia Condal 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
Aquesta tesi doctoral està subjecta a la llicència Reconeixement- CompartIgual 4.0. Espanya 
de Creative Commons. 
 
Esta tesis doctoral está sujeta a la licencia  Reconocimiento - CompartirIgual 4.0.  España de 
Creative Commons. 
 
This doctoral thesis is licensed under the Creative Commons Attribution-ShareAlike 4.0. Spain 
License.  
 



Giant caloric and multicaloric

e�ects in magnetic alloys

Doctoral thesis

Adrià Gràcia Condal





Giant caloric and multicaloric

e�ects in magnetic alloys

Programa de Doctorat en Física

Autor: Adrià Gràcia Condal

Department de Física de la Matèria Condensada

Director: Dr. Lluís Mañosa Carrera

Tutor: Dr. Giancarlo Franzese





Associeu-vos i sereu forts;

instruïu-vos i sereu lliures;

estimeu-vos i sereu feliços.

Josep Anselm Clavé i Camps

A la memòria d'en José, l'Antonio i la tieta Pilar:
perquè el seu record segueixi ben present.





Agraïments

La redacció d'aquest llibre ha estat la culminació d'un camí que va començar fa
cinc anys. No ha estat una tasca senzilla, però sí molt enriquidora, i m'emporto la
certesa d'haver crescut tan cientí�cament com personalment. Així mateix, cal dir
que si he pogut arribar �ns aquí és gràcies a l'empenta, l'energia, la complicitat
i l'empatia de moltes (moltissimes!) persones que, d'una manera o altra, hi han
deixat la seva empremta. Per tant, vull utlitzar aquestes pàgines de la meva tesi
doctoral per fer-los arribar el meu més sentit i profund agraïment per formar part
d'aquesta història.

En primer lloc, m'agradaria destacar l'importantissim paper que ha jugat en
Lluís Mañosa com a director d'aquesta tesi doctoral. Sempre que ho he necessitat
ha tingut la porta del seu despatx ben oberta per parlar del que calgués. N'he après
moltissim gràcies a ell (i en continuo aprenent!) tan d'aspectes purament cientí�cs
com d'altres que van més enllà de la recerca. Lluís, m'has deixat espai créixer i
avançar, i sense el teu mestratge, ni jo ni aquest treball haguéssim arribat �ns
aquí. Així mateix, també es mereixen un lloc ben destacat en aquests agraïments
els altres membres del grup de recerca: l'Antoni Planes, l'Eduard Vives i la Teresa
Castán. Durant aquests anys han compartit la seva enorme experiència amb mi en
incomptables ocasions, tot donant-me un cop de mà sempre que ho he necessitat per
tirar endavant. Tots ells formen, en conjunt, més que un grup de recerca. Formen
un equip que transmet passió per la investigació a les noves generacions.

Durant aquests cinc anys, he compartit moltes hores amb varis investigadors i
investigadores (tant doctorals com postdoctorals) al grup de recerca. En aquest
sentit m'agradaria destacar a en Daniel Soto, i els seus aperitius mexicans (tots
ells ben picants!), en Tino Gottschall, i la seva inesgotable font de coneixements
(i paciència!), en Lukas Pfeu�er, i la seva ajuda tant al laboratori com amb la
meva mudança, i a la Michela Romanini, per tantes estones compartides entre
experiments inacabables. De la mateixa menera, m'agradaria tenir una menció
especial per l'Enric Stern, amb qui vaig tenir el plaer de compartir els primers mesos
del meu doctorat (que justament van ser els últims mesos del seu doctorat). Tots
ells, a la seva manera, m'han permès créixer a llarg de les diferents etapes d'aquest
camí. Sempre disposats a discutir i ajudar-me desinteressadament a solucionar un
i mil contratemps, només desitjo que jo també hagi estat capaç d'ajudar-los a
solucionar uns quants dels seus.

Seguint dins de la Facultat de Física, hi ha una sèrie de persones que m'han
simpli�cat el meu dia a dia una in�nitat de vegades. Als tècnics del taller mecànic,
i en especial al Javier, per totes les hores dedicades a construir i redissenyar les



ii

nostres màquines. A l'Oriol, el Miquel i al personal de la secretaria de la planta 6
(Isabel, Rosa i Dolors), per la vostra ajuda desinteressada i els valuosos consells
que m'heu donat al llarg dels anys. A la Miriam, i en general a tot el personal de
neteja, per la vostra feina ben visible de cada dia i per fer-nos possible tornar a la
facultat malgrat la pandèmia. Des del meu punt de vista, tots vosaltres formeu part
del selecte grup d'imprescindibles de la facultat ja que si no hi estiguéssiu, aquesta
no seria la que molts coneixem i ens estimem. Així mateix, també m'agradaria fer
extensius aquests agraïments a en Félix Mata, del CCiTUB, per demostrar la seva
paciència amb mi, la polidora i la serra una i altra vegada (sempre acompanyada
de bon humor).

Durant aquests anys, he tingut el plaer de poder col·laborar amb diversos grups i
laboratoris de recerca punters. Als companys de ciutat del Grup de Caracterització
de Materials de la Universitat Politècnica de Catalunya, i en concret a en Josep
Lluís Tamarit, en Pol Lloveras i a l'Araceli Aznar. Per obrir-me les portes dels seus
laboratoris i per totes les hores compartides (i amenitzades) entre mesures al sin-
crotró ALBA. Al grup de Functional Materials de la Technische Universität Darm-
stadt, i en concret a l'Oliver Gut�eisch, en Tino Gottschall i en Lukas Pfeu�er. Per
les seves mostres excepcionals i les pro�toses discussions. Així mateix, m'agradaria
posar en especial valor la hospitalitat en terres germàniques que em van brindar en
Lukas, durant una estada breu a Darmstadt, i en Tino i l'Eduard Bykov, a Dres-
den, durant la meva estada al Helmholtz-Zentrum Dresden-Rossendorf a �nals del
2019.

El doctorat no només és feina, també són estones compartides entre amigues i
amics (alguns nous i d'altres no tan nous). A la facultat, he compartit una in�nitat
de converses durant l'hora de dinar amb la Clàudia, l'Albert, el Javi, els Marcs (Illa i
Oncins), l'Iván, la Glòria, l'Àlex o el Chiru. I la llista, sorprenetment, no acaba aquí!
A l'Andreu (l'original), la Carol, la Pam, els Joseps (l'1 i el 2), l'Helena, l'Antonio,
el Raúl, la Carla, el Mattia, el Gaspard, el Sergio, la Irina, l'Eric, l'Andreu i el
Joan. Tots vosaltres heu posat llum al dia a dia del doctorat, que no és poca cosa.
Així mateix, també vull tenir un record per a les companyes i companys que vam
re�otar l'associació D-Recerca Precària allà al 2018, amb l'objectiu de fer sentir el
col·lectiu d'investigadors i investigadores predoctorals dins la universitat.

No menys importants són els amics que ja arrosegava abans de començar aquest
camí. Al barri sempre hi he comptat amb la Gina, el Gerard, l'Albert, la Noe, el
Marcel i l'Andrea. Per tants i tants vespres (i els que vindràn!) que hem compartit
entre cerveses, vins (a vegades gintònics), billars o jocs de taula. Per altra banda,
com oblidar-me de l'Ignasi, la Cris (i el petitó o petitona que està de camí), el Joan,
la Judit, el Victor, el Max i els Marcs (Font i Ferrer). Tots ben diferents. Potser,
aquest es el ciment que ens ha mantingut junts, i n'estic segur que ho continuarà
sent per molts i molts anys. Finalment, a la bona colla d'amics i amigues que vaig
fer durant el grau de Física, i els que hem anat sumant durant el camí: el Sergi, el
Pérez, el Monty, el Fran, la Gemma, el Grau, la Raquel, l'Adri (i al León tambe!
un físic de segona generació), les Albes (la Física i la "Bollera"), la Irene, l'Isma,
el Joan, el Toni, el Grau i el Popep. Tinc una llista tan larga de bons records amb



iii

aquesta gent que en �...només espero i desitjo que segueixi creixent!

Durant tots aquests anys, i en especial al llarg del procés complicat d'escriptura
de la tesi, he comptat amb el suport incondicional de la meva família, i en especial
dels meus pares: en Lluís i la Esther. Sempre han estat al meu costat, tant als dies
bons com als no tant bons, i mai els hi ho podré agraïr prou. Així mateix, bona
part d'aquesta última etapa l'he pogut compartir també amb l'Andrea (i el Bowie
i el Vader). Vam compartir molts moments, i em vau donar energia en dies que
estava esgotat.

Per acabar, agraeixo el �nançament rebut per part de la Universitat de Barcelona,
en forma d'un contracte APIF, durant bona part del meu doctorat. Així mateix, vull
utilitzar les últimes linies per desitjar que el futur ens porti una millora dels recursos
destinats a la recerca i la investigació, especialment per millorar les condicions de
treball de les persones que ens hi dediquem en un o altre moment de la nostra vida.

Barcelona, febrer de 2022





Contents

Resum en català ix

Abstract xi

1 Introduction 1

1.1 Dissertation contents . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Fundamentals 11

2.1 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1 Caloric e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Multicaloric e�ects . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Phase transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Classi�cation of phase transitions . . . . . . . . . . . . . . . . 22
2.2.2 First-order phase transitions . . . . . . . . . . . . . . . . . . 25

3 Experimental techniques 33

3.1 Calorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.1 Di�erential scanning calorimetry . . . . . . . . . . . . . . . . 36

3.1.1.1 Isothermal DSC calorimetry . . . . . . . . . . . . . 41
3.1.1.2 Entropy curves . . . . . . . . . . . . . . . . . . . . . 43

3.1.2 Measurement protocols for DSC calorimetry . . . . . . . . . . 44
3.1.2.1 Isothermal measurements . . . . . . . . . . . . . . . 44
3.1.2.2 Iso�eld measurements . . . . . . . . . . . . . . . . . 47

3.1.3 DSC under magnetic �elds . . . . . . . . . . . . . . . . . . . 48
3.1.3.1 Setup calibration . . . . . . . . . . . . . . . . . . . . 48

3.1.4 DSC under magnetic �elds and uniaxial compressive stress . 52
3.1.4.1 Calorimeter design . . . . . . . . . . . . . . . . . . . 52
3.1.4.2 Setup calibration . . . . . . . . . . . . . . . . . . . . 55

3.2 Adiabatic thermometry . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.1 Measurement protocols for adiabatic thermometry . . . . . . 57
3.2.2 Direct thermometry with a bench-top electromagnet . . . . . 58

3.2.2.1 Setup design . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2.2 Setup calibration . . . . . . . . . . . . . . . . . . . . 61

3.2.3 Pulsed magnetic �elds . . . . . . . . . . . . . . . . . . . . . . 63
3.2.3.1 Setup design . . . . . . . . . . . . . . . . . . . . . . 63

3.3 CuZnAl: a calibration sample for the DSC under magnetic �elds and
uniaxial compressive stress . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.1 Sample details . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.2 Experimental details . . . . . . . . . . . . . . . . . . . . . . . 67



vi CONTENTS

3.3.3 Indirect derivation of the elastocaloric e�ect . . . . . . . . . . 68
3.3.4 Quasidirect derivation of the elastocaloric e�ect . . . . . . . . 75
3.3.5 Comparison between the indirect and quasidirect derivations

of the elastocaloric e�ect . . . . . . . . . . . . . . . . . . . . . 88
3.3.6 Summary and conclusions . . . . . . . . . . . . . . . . . . . . 88

4 Materials physical properties 91

4.1 The Fe-Rh system: an overview . . . . . . . . . . . . . . . . . . . . . 91
4.2 Heusler alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.1 The martensitic phase transition . . . . . . . . . . . . . . . . 95
4.2.2 Ni-Mn-based Heusler alloys . . . . . . . . . . . . . . . . . . . 99

4.2.2.1 Structural properties and phase diagrams . . . . . . 99
4.2.2.2 Magnetic properties . . . . . . . . . . . . . . . . . . 102
4.2.2.3 Challenges and future perspectives for technological

applications . . . . . . . . . . . . . . . . . . . . . . . 106

5 Results and discussion 107

5.1 Fe-Rh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1.1 Sample details . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1.2 Experimental details . . . . . . . . . . . . . . . . . . . . . . . 107
5.1.3 Adiabatic thermometry of the magnetocaloric temperature

change under a constant uniaxial stress . . . . . . . . . . . . 108
5.1.4 Magnetocaloric e�ect under a constant uniaxial stress . . . . 111
5.1.5 Elastocaloric e�ect in the absence of magnetic �eld . . . . . . 114
5.1.6 Elastocaloric e�ect under a constant magnetic �eld . . . . . . 116
5.1.7 Comparison of the elastocaloric properties of Fe-Rh with

other caloric materials . . . . . . . . . . . . . . . . . . . . . . 119
5.1.8 Summary and conclusions . . . . . . . . . . . . . . . . . . . . 121

5.2 Ni-Fe-Co-Mn-Sn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2.1 Sample details . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2.2 Experimental details . . . . . . . . . . . . . . . . . . . . . . . 124
5.2.3 Calorimetric characterization of the phase transition in the

absence of external �elds . . . . . . . . . . . . . . . . . . . . 124
5.2.4 Isothermal calorimetric measurements . . . . . . . . . . . . . 125
5.2.5 Direct computation of the magnetocaloric e�ect . . . . . . . . 127
5.2.6 Summary and conclusions . . . . . . . . . . . . . . . . . . . . 131

5.3 Ni-Mn-In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.1 Sample details . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.2 Experimental details . . . . . . . . . . . . . . . . . . . . . . . 134
5.3.3 Characterization of the martensitic phase transition with com-

mercial devices . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.3.3.1 Calorimetric characterization of the phase transi-

tion in the absence of external �elds . . . . . . . . . 135
5.3.3.2 Thermomagnetic characterization of the phase tran-

sition . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.4 Calorimetry under constant magnetic �eld and uniaxial stress 137

5.3.4.1 Transition temperature phase diagram . . . . . . . . 139



CONTENTS vii

5.3.4.2 Computation of the transition entropy change . . . 142
5.3.4.3 Construction of the iso�eld-isostress entropy curves 146
5.3.4.4 Elastocaloric and magnetocaloric e�ects under the

in�uence of a secondary �eld . . . . . . . . . . . . . 150
5.3.5 Simulation of the iso�eld-isostress entropy curves: an analyt-

ical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.3.5.1 Elastocaloric and magnetocaloric e�ects under the

in�uence of a secondary �eld . . . . . . . . . . . . . 159
5.3.5.2 Multicaloric e�ect . . . . . . . . . . . . . . . . . . . 163

5.3.6 Adiabatic thermometry of the magnetocaloric temperature
change under a constant uniaxial stress . . . . . . . . . . . . 165

5.3.7 Reproducibility of the caloric e�ects under �eld cycling . . . 168
5.3.7.1 Exploiting-hysteresis cycle: a novel multicaloric ap-

proach . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.3.8 Summary and conclusions . . . . . . . . . . . . . . . . . . . . 174

5.4 Ni-Mn-Ga-Cu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.4.1 Sample details . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.4.2 Experimental details . . . . . . . . . . . . . . . . . . . . . . . 180
5.4.3 Calorimetric characterization of the martensitic phase tran-

sition in the absence of external �elds . . . . . . . . . . . . . 181
5.4.4 Calorimetry under constant magnetic �eld and uniaxial stress 182

5.4.4.1 Transition temperature phase diagram . . . . . . . . 185
5.4.4.2 Computation of the transition entropy change . . . 187
5.4.4.3 Construction of the iso�eld-isostress entropy curves 192
5.4.4.4 Elastocaloric and magnetocaloric e�ects under the

in�uence of a secondary �eld . . . . . . . . . . . . . 196
5.4.5 Simulation of the iso�eld-isostress entropy curves: an analyt-

ical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
5.4.5.1 Elastocaloric and magnetocaloric e�ects under the

in�uence of a secondary �eld . . . . . . . . . . . . . 209
5.4.5.2 Multicaloric e�ect . . . . . . . . . . . . . . . . . . . 212
5.4.5.3 Cross-coupling contribution to the multicaloric e�ect218

5.4.6 Reproducibility of the caloric e�ects under �eld cycling . . . 226
5.4.7 Summary and conclusions . . . . . . . . . . . . . . . . . . . . 228

6 Conclusions and outlook 233

Bibliography 239

Appendix A Python program for the treatment of calorimetric curves255

Appendix B Ni-Mn-In: Single caloric thermal response under the

in�uence of a secondary �eld 285

Appendix C Ni-Mn-Ga-Cu: Single caloric thermal response under

the in�uence of a secondary �eld 287





Resum en català

La refrigeració arti�cial és fonamental i omnipresent a les societats dels països
desenvolupats, i l'escalfament global degut al canvi climàtic n'està impulsant una
demanda creixent a nivell planetari. Actualment, la tecnologia emprada en els sis-
temes de refrigeració es basa en l'expansió i compressió de gasos que són nocius
pel medi ambient i contribueixen de manera molt rellevant a l'efecte hivernacle i a
l'escalfament global. Tenint en compte la creixent necessitat de reduir les emissions
de gasos d'efecte hivernacle, és urgent i imprescindible desenvolupar nous sistemes
de refrigeració que siguin e�cients i respectuosos amb el medi ambient.

En aquest sentit, els dispositius basats en materials que presenten efectes calòrics
gegants representen avui en dia una de les millors alternatives a la tecnologia ac-
tual. L'origen físic dels efectes calòrics gegants és una transició de fase ferroica que
s'indueix en el material quan se li aplica un determinat camp extern. Són especial-
ment interessants els materials que presenten una transició de fase de primer ordre,
on l'alliberament o absorció de la calor latent en la transició dóna lloc a un canvi
d'entropia de gran magnitud en el cas que el camp s'apliqui de manera isoterma, o
a un canvi de temperatura important si el camp s'aplica de manera adiabàtica. En
funció de la natura del camp aplicat, poden donar-se els següents efectes calòrics:
magnetocalòric, electrocalòric i mecanocalòric si els camps aplicats són magnètic,
elèctric o mecànic, respectivament. Pel cas de l'efecte mecanocalòric, n'hi ha de dos
tipus: elastocalòric si s'aplica un esforç uniaxial i barocalòric si s'aplica una pressió
hidrostàtica.

Degut al seu gran interès tecnològic, l'estudi de materials amb efectes calòrics
gegants és, avui dia, un dels temes de recerca punters en la Física de Materials.
Tot i així, encara hi ha una sèrie d'obstacles a superar per tal que aquests ma-
terials puguin ser utilitzats en sistemes de refrigeració comercials. En primer lloc,
es necessiten camps intensos per induir efectes calòrics grans. En segon lloc, la
histèresi inherent a les transicions de fase de primer ordre pot reduir dràsticament
la reversibilitat de l'efecte calòric i la seva e�ciència.

Curiosament, la transició de fase que està en l'origen dels efectes calòrics gegants
de molts materials involucra canvis en més d'un paràmetre d'ordre, com ara el
magnètic, l'elèctric o l'estructural. De fet, degut al fort acoblament entre els dife-
rents graus de llibertat, aquests materials presenten una resposta creuada als camps
aplicats i és possible induir canvis en una propietat física mitjançant camps externs
que no són els conjugats d'aquesta propietat. Per exemple, és possible canviar la
imantació d'un material magnètic aplicant un esforç o una pressió hidrostàtica.
Aquests materials, que presenten transicions de fase mutiferròiques, possibiliten que



x Resum en català

la seva resposta tèrmica s'indueixi mitjançant l'aplicació simultània o seqüencial
de diversos camps, donant lloc als anomenats efectes multicalòrics.

L'interès en l'estudi dels efectes multicalòrics és molt recent malgrat que s'ha
predit que l'aplicació de més d'un camp pot ser la solució a alguns dels problemes
que s'han posat de manifest en els diferents efectes calòrics. A més a més, encara hi
ha molt pocs estudis experimentals basats en mesures directes ja que requereixen
l'ús de dispositius que no són comercials. La recerca que s'ha desenvolupat durant el
doctorat ha intentat donar-hi resposta, centrant-se en l'estudi dels efectes calòrics i
multicalòrics en materials que presenten transicions magnetoestructurals de primer
ordre amb un fort acoblament entre els graus de llibertat magnètic i estructural.
S'han dissenyat i calibrat diversos dispositius experimentals que permeten realitzar
mesures calorimètriques o termomètriques sota la in�uència de camp magnètic i es-
forç uniaxial. Al llarg del doctorat, aquests dispositius experimentals s'han emprat
en la caracterització de materials que pertanyen a dues famílies diferents: el Fe-Rh
i els aliatges tipus Heusler de base Ni-Mn. La recerca realitzada n'ha caracteritzat
els efectes calòrics i multicalòrics, tot discutint en detall els avantatges dels efectes
multicalòrics respecte els efectes calòrics (magnetocalòric i elastocalòric). En con-
cret, s'ha demostrant que la combinació de diversos camps permet reduir-ne la seva
intensitat per induir una resposta tèrmica gran, que permeten expandir el rang de
temperatura de treball dels materials i que proporcionen estratègies per controlar
o �ns i tot apro�tar la histèresi associada a la transició de fase.



Abstract

The urgent need to reduce our footprint on the earth environment is leading to
ever more stringent commitments to decrease greenhouse gases emissions, which
entails one of the greatest challenges that mankind has to tackle. As a direct
consequence, it is of utmost importance to develop novel, energy-e�cient and
environmentally-friendly refrigeration technologies that do not require the use of
climate-damaging substances. In this regard, solid-state refrigerants based on the
large thermal response exhibited by a variety of materials when �eld-inducing a
ferroic phase transition are among the best alternatives. Speci�cally, materials un-
dergoing a �rst-order phase transition are of particular interest as the latent heat
associated with the phase transition contributes on enhancing the magnitude of
the thermal response. Depending on the nature of the external �eld that drives
the phase transition one distinguishes between magnetocaloric, electrocaloric, elas-
tocaloric or barocaloric e�ects. In spite of all the intensive research devoted to the
study of the diverse caloric e�ects, there are still a series of bottlenecks to overcome.
Firstly, they require the application of strong external �elds in order to induce a
large thermal response. Secondly, the hysteresis associated with the phase transition
can drastically reduce the e�ciency and compromises its reversibility. A way out
of such issues can be provided by materials exhibiting a strong coupling between
the structural, magnetic or electronic degrees of freedom, denoted as multicaloric
materials, which allow to drive their phase transition by the combination of diverse
external �elds, giving rise to multicaloric e�ects. Despite the high potential they
exhibit, the research on multicaloric materials is germinal as it requires the use
of non-commercial experimental systems. In this dissertation, we have focused on
the study of materials displaying a magnetostructural �rst-order phase transition
with a strong coupling between the structural and magnetic degrees of freedom.
For such purpose, we have used distinct purpose-built calorimetric and adiabatic
thermometry systems to investigate their caloric and multicaloric e�ects by direct
methods. We have concentrated on two distinct families of multicaloric materials:
Fe-Rh and Ni-Mn-based Heusler alloys. Our research is aimed at thoroughly char-
acterizing the diverse advantages of multicaloric e�ects: showing that lower driving
�elds are required, that the operating temperature windows of the materials can
be enlarged and discussing how their inherent hysteresis can be mastered or even
exploited.
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The e�ects of global warming, resulting from the increasing levels of heat-trapping
greenhouse gases on the atmosphere due to human activities, are changing the world
as we know it today. With the passage of time, its e�ects are becoming more evi-
dent all around the globe, and this is happening at an unprecedented pace [1]. The
evidence is compelling: from the global temperature rise to the shrinking ice sheets,
the rising sea level or the increase of extreme weather events. 1 Global warming af-
fects us all, but it particularly worsens the living conditions of those that are more
vulnerable. In this regard, according to the United Nations High Commissioner for
Refugees (UNHCR), 2 extreme weather events during the last decade triggered on
average 21.5 million displacements per year worldwide (which is more than double
of the average displaced by armed con�icts during the same period). 3

Since the late nineteenth century, the earth surface temperature has risen about
1.2◦C [1] and undoubtedly, global warming represents one of the greatest challenges
that mankind has to tackle during this century. Based on the scienti�c evidence,
the need to reduce greenhouse gases emissions has been on the agenda since the
Kyoto Protocol (1997), and even more stringent commitments have been adopted
on the Paris agreement (2015) [2] and at the COP26 (2021) held in Glasgow. 4

Among the diverse contributors to global warming, the refrigeration sector plays
an important role. Cooling systems are ubiquitous in developed countries, they are
used in countless sectors of our society (from households to industry, agriculture or
healthcare) and nowadays they consume about 20 % of the electricity generated all
over the world [3]. Current cooling systems are based on a vapour-compression cycle
using HFCs as refrigerants, which are climate-damaging substances that exhibit a
strong global warming potential [4].

The impact of refrigeration on global warming is expected to drastically increase
during the next decades, particularly driven by the soaring growth of emerging
economies, such as China or India. For instance, as illustrated in Figure 1.1, while
refrigerators are common in the households of western countries, they are much less
common in the households of emerging economies [5]. Therefore, following the eco-
nomic prosperity and the improvement of living conditions in emerging economies,

1NASA, Climate change evidence: https://climate.nasa.gov/evidence/
2UNHCR website: https://www.unhcr.org/
3UNHCR, Displaced on the frontlines of the climate emergency: https://storymaps.arcgis.com/

stories/065d18218b654c798ae9f360a626d903
4COP26 agreements: https://ukcop26.org/the-conference/cop26-outcomes/

https://climate.nasa.gov/evidence/
https://www.unhcr.org/
https://storymaps.arcgis.com/stories/065d18218b654c798ae9f360a626d903
https://storymaps.arcgis.com/stories/065d18218b654c798ae9f360a626d903
https://ukcop26.org/the-conference/cop26-outcomes/
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Figure 1.1: Number of refrigerators versus the number of households (in million
units) for selected countries. The seize of each data point indicates the amount
of energy spent per country on domestic refrigeration. This �gure has been taken
from [6].

it is expected that millions of households will install a refrigerator for the �rst time
during the next decades. The same holds true for air conditioning systems, which
is expected to multiply the worldwide energy demand for refrigeration during this
century, even surpassing the energy demand for heating [5, 6]. Furthermore, the
vapour-compression technology, after two centuries of intensive research, develop-
ment and optimization for refrigeration applications is reaching its e�ciency limits
[7, 8].

On the whole, the increasing impact of refrigeration on global warming, the ever
more stringent commitments to reduce greenhouse gases emissions together with
the demands for higher energy e�ciencies on refrigeration highlight the urgent
need to develop novel, energy-e�cient and environmentally-friendly refrigeration
technologies [9, 10]. In this regard, the use of materials exhibiting large caloric
e�ects as solid-state refrigerants is a promising technological alternative.

In conventional cooling systems, based on vapour-compression cycles, the tem-
perature change of the refrigerant is induced by fast changes on pressure [11]. In
fact, the temperature of every material changes when exposed to a sudden change
of an external �eld (magnetic, electric or mechanical �eld), and this response is
known as the caloric e�ect [12]. From the thermodynamic point of view, an external
�eld change acts as the driving force that induces changes on the corresponding
conjugated generalized displacement, modifying the thermodynamic state of the
material, and generating an energy exchange. Depending on the nature of the ex-
ternal �eld that acts as the driving force, such as a magnetic (H), electric (E) or
mechanical (uniaxial stress (σ) or hydrostatic pressure (−p)) �eld, it will induce
changes on the magnetization (M), polarization (P ), strain (ε) or volume (V ) of
the material, which are the corresponding conjugated generalized displacements of
each external �eld, and the arising caloric e�ects can be classi�ed as magnetocaloric
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(MCE), electrocaloric (ECE) or mechanocaloric (which encompasses elastocaloric
(eCE) and barocaloric (BCE)) e�ects, respectively. When the external �eld is adi-
abatically modi�ed, the material will exhibit a temperature change whereas when
the external �eld is isothermally modi�ed, the material will exhibit an entropy
change.

The in�uence of external �elds on materials has been an active research �eld for
centuries. In 1805, John Gough, a blind natural philosopher, observed that India
rubber warms up when it is rapidly stretched by slightly touching a piece with his
lips [13]. The experience of Gough corresponds to the �rst description of what we
nowadays refer to as elastocaloric e�ect. In 1859, James P. Joule quantitatively
reported temperature changes induced by uniaxial stress in diverse materials such
as steel, copper, lead, glass or wood [14], and it was William Thomson (Lord Kelvin)
who established a thermodynamic interpretation of such e�ects [15], later predicting
the existence of magnetocaloric and electrocaloric e�ects [16]. In 1917, P. Weiss
and A. Piccard observed a reversible temperature change on nickel at the vicinity
of its Curie temperature when applying a magnetic �eld [17], which corresponds
to the �rst experimental observation and discussion of what they called a novel
magnetocaloric phenomenon. 5 Similarly, the �rst experimental observation of an
electrocaloric e�ect was performed in 1930 by P. Kobeko and J. Kurtschatov in
Rochelle salt [19].

For many materials, the magnitude of caloric e�ects is small around room tem-
perature and the �eld-induced temperature change only becomes relevant at very
low temperatures, where the speci�c heat becomes small [11, 12]. In this regard, the
�rst application based on a caloric e�ect was theoretically proposed in the midst
of 1920s decade, when P. Debye and W. F. Giauque independently recognised the
possibility to achieve cryogenic temperatures close to absolute zero based on the
adiabatic demagnetization of paramagnetic salts [18]. The idea of this novel tech-
nique was to cool down the paramagnetic salt down to cryogenic temperatures with
a liquid Helium bath, and isothermally apply a magnetic �eld. This process leads to
a decrease of the magnetic entropy of the salt while keeping the same temperature.
In a second step, the magnetized salt is thermally insulated from the Helium bath,
and �nally the magnetic �eld is adiabatically removed. This last process leads to
an increase of the magnetic entropy of the salt, which is compensated by a decrease
of its lattice entropy, resulting in a decrease of the salt temperature [20, 21]. The
experimental feasibility of such technique was proved for the �rst time in 1933 by
W. F. Giauque and D. P. MacDougall, reaching temperatures well below 1K [22,
23], and led W. F. Giauque to the Nobel Prize in Chemistry in 1949. 6 Neverthe-
less, such cryogenic temperatures below 1K could not be sustained over time until
the �rst magnetic refrigerators, cyclically exploiting the temperature decrease of
paramagnetic salts when adiabatically demagnetized, were developed during the
1950s decade [24, 25].

5It is worth to highlight that in 1881, E. Warburg reported an irreversible heating in pure iron
at room temperature when cyclically applying and removing a magnetic �eld. However, he did
not consider it to be a new thermal e�ect and attributed it to the magnetic hysteresis of iron [18].

6The Nobel Prize in Chemistry 1949 website: https://www.nobelprize.org/prizes/chemistry/

1949/giauque/facts/

https://www.nobelprize.org/prizes/chemistry/1949/giauque/facts/
https://www.nobelprize.org/prizes/chemistry/1949/giauque/facts/
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A breakthrough took place in 1976, when G. V. Brown showed that the magne-
tocaloric e�ect could be used for magnetic refrigeration around room temperature.
His demonstrator used the element Gd as a refrigerant, and took advantage of its
ferromagnetic phase transition (that takes place near room temperature) to in-
duce large reversible temperature changes under a cyclic magnetic �eld of 7T [26].
During the following decades, the research on materials exhibiting caloric e�ects
near room temperature started to gain relevance. In this regard, a crucial turn-
ing point took place in 1997 with the discovery by V. K. Pecharsky and K. A.
Gschneidner of the large magnetocaloric e�ect exhibited by Gd5(Si2Ge2) [27]. The
work on this compound, denoted as a giant magnetocaloric material, showed that
the occurrence of a �rst-order phase transition plays a key role in enhancing the
magnitude of the caloric e�ect, as the latent heat of the phase transition makes the
major contribution to the �eld-induced entropy change, and boosted the research
on magnetocaloric materials. 7

Similarly, the research on materials exhibiting electrocaloric e�ects near room
temperature was triggered in 2006 by a seminal work of A. S. Mischenko et. al.,
where they reported on the giant electrocaloric e�ect in thin �lms of PbZr0.95Ti0.05O3

near its ferroelectric transition [29]. With respect to the giant mechanocaloric ef-
fects, the work by E. Bonnot et. al. in 2008 reporting a giant elastocaloric e�ect
in Cu-Zn-Al [30] 8 and the work by L. Mañosa et. al. in 2010 reporting a gi-
ant barocaloric e�ect in Ni-Mn-In [32], both of them emerging in the vicinity of
martensitic phase transitions in these materials, strongly motivated the research
activity.

Nowadays, the study of materials exhibiting giant caloric e�ects is one of the
leading research �elds on material physics, as re�ected by the growing number of
publications on these topics [33]. During the last decades, an increasingly broad
variety of materials exhibiting giant isothermal entropy and adiabatic temperature
changes under the application of an external �eld have been discovered [34�39],
and their potential use for solid-state refrigeration has been extensively discussed
[12, 33, 40�42], leading to a growing number of solid-state cooling prototypes based
on di�erent caloric e�ects [43, 44]. In fact, as recently stated in a report of the U.S.
Department of Energy, solid-state refrigerants based on the giant caloric e�ects ex-
hibited by diverse materials undergoing a ferroic phase transition are considered to
be among the best technological alternatives to conventional refrigeration systems
[9, 10, 33], due to their high energy-conversion e�ciencies [42, 45, 46] together with
the fact that they are environmentally-friendly.

The working principle of a solid-state-based refrigeration cycle is thermodynami-
cally equivalent to that used for conventional systems based on vapour-compression.

7In 1990, previously to the work of V. K. Pecharsky and K. A. Gschneidner on Gd5(Si2Ge2),
S. A. Nikitin et. al. reported on the large magnetocaloric e�ect exhibited by Fe49Rh51 near room
temperature [28]. Nevertheless, the later report had a greater in�uence on sparking the research
interest on materials exhibiting giant magnetocaloric e�ects.

8It must be mentioned that in 1980, a giant elastocaloric e�ect was reported in a Cu-Al-Ni alloy
by C. Rodriguez and L. C. Brown [31]. However, this work did not have a signi�cant in�uence on
boosting the research on materials exhibiting giant elastocaloric e�ects.
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Figure 1.2: Schematic representation of a four-step cooling cycle based on a
solid-state refrigerant that exhibits a conventional giant magnetocaloric (MCE),
electrocaloric (ECE), elastocaloric (eCE) or barocaloric (BCE) e�ect in the vicin-
ity of a �rst-order phase transition. The atomic structure of the refrigerant mate-
rial is represented by dots, while the arrows superposed to the dots represent the
magnetic or electric dipoles if the material exhibits a magnetocaloric (MCE) or
electrocaloric (ECE) e�ect. The temperature of the refrigerant material in each
step of the cooling cycle is indicated by the colour code and the corresponding
thermometer.

Figure 1.2 schematically illustrates a general cooling cycle based on a solid-state
refrigerant that exhibits a conventional giant caloric e�ect in the vicinity of a �rst-
order phase transition under the application of magnetic �eld (H), electric �eld
(E), uniaxial stress (σ) or hydrostatic pressure (−p). Starting with the refriger-
ant material at a certain temperature in the absence of any applied external �eld
(top left panel illustrated in Figure 1.2), the cooling cycle comprises the following
processes:

1O Application of an external �eld (H, E, σ or − p) will favour the refrigerant
material phase that maximizes the corresponding generalized displacement
(M, P, ε or V ), acting as the driving force to induce the forward phase tran-
sition. As the external �eld is adiabatically applied, to keep the total entropy
constant, the refrigerant material will experience a temperature increase.



6 Introduction

2O The refrigerant material cools down under a constant external �eld by trans-
ferring heat to the hot reservoir.

3O The external �eld (H, E, σ or − p) is adiabatically removed, which acts as
the driving force to induce the reverse phase transition and leads to a further
temperature decrease of the refrigerant material.

4O The refrigerant material absorbs heat from the cold reservoir, which corre-
sponds to the refrigerator in Figure 1.2. Therefore, the refrigerator becomes
colder while the refrigerant material recovers its initial state.

In spite of all the intensive research devoted during the last decades on the
discovery of novel refrigerant materials exhibiting giant caloric e�ects near room
temperature, there are still a series of limitations to overcome that hinder the de-
velopment of commercial solid-state cooling devices. From a general point of view,
many of the promising materials that exhibit giant magnetocaloric, electrocaloric
or mechanocaloric e�ects undergo a �rst-order phase transition [37, 38, 47]. Con-
sequently, the inherent thermal hysteresis of the phase transition can signi�cantly
reduce the material isothermal entropy and adiabatic temperature changes upon
cycling the external �eld, thus compromising the reversibility of the giant caloric
e�ect [48].

So far, most of the research activity has been focused on materials exhibiting
a giant magnetocaloric e�ect, and many solid-state cooling prototypes based on
this caloric e�ect have been developed [33, 44]. However, most of the promising
magnetocaloric materials require the application of strong magnetic �elds in or-
der to induce large isothermal entropy and adiabatic temperature changes. The
vast majority of cooling prototypes use permanent magnets as a magnetic �eld
source, which limits the maximum attainable magnetic �elds up to 2T, leading to
moderate values of the reversible �eld-induced isothermal entropy and adiabatic
temperature changes which are currently in the order of ∆Siso ∼ 10 JK−1kg−1

and ∆Tad ∼ 5K, respectively [47]. Furthermore, as the refrigerant materials that
are currently used in such prototypes exhibit a signi�cant reversibility of the �eld-
induced magnetocaloric e�ect, the magnetic �eld needs to be continuously applied
during the heat exchange process and large amounts of permanent magnets (typ-
ically made of Nd-Fe-B) are required, which depend on critical materials such as
Nd and increase the costs of these prototypes [6, 49].

The use of materials exhibiting a giant electrocaloric e�ect as a solid-state refrig-
erant triggers di�erent bottlenecks in order to develop cooling prototypes. Despite
the fact that large electrocaloric e�ects have been theoretically predicted for di�er-
ent materials [37], the maximum experimentally reported values for the isothermal
entropy and adiabatic temperature changes are about ∆Siso ∼ 6 JK−1kg−1 and
∆Tad ∼ 5K, respectively [50]. Therefore, large electric �elds are needed in order to
obtain a signi�cant electrocaloric e�ect. Secondly, electrocaloric materials need to
be thin in order to apply large electric �elds and avoid the electrical breakdown,
which limits the size of the refrigerant material and thwarts the upscaling of such
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electrocaloric-based cooling prototypes.

Finally, although the use of materials exhibiting a giant elastocaloric or barocaloric
e�ect for solid-state refrigeration is still at its dawn [44], 9 diverse mechanocaloric
materials have been reported to display isothermal entropy and adiabatic tempera-
ture changes which clearly surpass the values reported for the best magnetocaloric
and electrocaloric materials [38, 39]. Nevertheless, for the sake of refrigeration pro-
totypes, the fatigue-life of the refrigerant material is a stringent bottleneck as they
are prone to breakdown.

Interestingly, most of the materials exhibiting a giant magnetocaloric or elec-
trocaloric e�ects are also prone to exhibit giant mechanocaloric e�ects, as the
�rst-order phase transition not only changes the magnetic or polar order of the
material but it also modi�es its crystal structure [37, 38]. In fact, the strong in-
terplay between the structural and magnetic (polar) degrees of freedom in many
of these materials confers the �rst-order character to the phase transition, which
is essential for enhancing the magnitude of the magnetic (electric) �eld-induced
isothermal entropy and adiabatic temperature changes.

The strong coupling between di�erent degrees of freedom confers these materials
with a cross-coupled response to di�erent external �elds, and their diverse giant
caloric e�ects can be in�uenced by non-conjugated external �elds. For instance,
application of uniaxial stress (σ) or hydrostatic pressure (−p) can in�uence the
magnetization (M) or polarization (P ) of a system, inducing changes on the gi-
ant magnetocaloric or electrocaloric e�ects. Conversely, application of magnetic
(H) or electric (E) �eld can in�uence the system structure, inducing a strain (ε)
or a change in volume (V ), which induces changes on the corresponding giant
mechanocaloric e�ects. Such materials, which exhibit a multiferroic phase transi-
tion that can be induced by diverse external �elds, are denoted as multicaloric
materials and the caloric e�ects that arise from simultaneous or sequential change
of more than one external �eld are referred to as multicaloric e�ects [51�53].

The research interest on multicaloric e�ects has been triggered from the parallel
research progress on the diverse caloric e�ects. Despite the early reports of N. A.
Nikitin et. al. at the beginning of the 1990s decade on the giant magnetocaloric
and elastocaloric e�ects exhibited by di�erent Fe-Rh samples [28, 54], it was M. P.
Annaorazov et. al at the mid 1990s who observed both a giant elastocaloric and
magnetocaloric e�ect in the same Fe-Rh specimen [55]. During the 2000s decade,
the research was mainly focused on the in�uence that a constant hydrostatic pres-
sure has on the magnetocaloric e�ect exhibited by diverse materials [38, 46], but
it was not until 2007 when N. A. de Oliveira �rstly emphasized the advantages
that a simultaneous change on more than one external �eld can have on inducing a
giant caloric e�ect in a material. In a theoretical study on the magnetocaloric and
barocaloric e�ects exhibited by ErCo2 at cryogenic temperatures [56], he predicted

9To our knowledge, there are no working solid-state cooling prototypes based on a refrigerant
material exhibiting a giant barocaloric e�ect, although there are some prototypes under develop-
ment [33].
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that the temperature window where the material exhibits a giant isothermal en-
tropy change can be broadened when simultaneously varying both magnetic �eld
and hydrostatic pressure. Despite of all these early studies, the term multicaloric
e�ect was coined in 2010 by L. Mañosa et. al. when discussing the possibility to in-
duce the martensitic phase transition of Ni-Mn-In with a combination of magnetic
�eld and hydrostatic pressure [32].

During the last decade the interest on multicaloric materials has signi�cantly
grown, and many striking results have already been achieved [57�61], as the pos-
sibility to induce large isothermal entropy and adiabatic temperature changes by
either a single external �eld (giant caloric e�ect) or multiple external �elds (giant
multicaloric e�ects) confers them with signi�cant advantages when compared to
materials that do not present a strong cross-coupled response to di�erent external
�elds. For instance, the combination of more than one external �eld can reduce
the �eld magnitudes required to induce a large caloric e�ect, and it can as well
enlarge the operational temperature window of a given material [62]. Addition-
ally, it has been shown that the combination of diverse external �elds provides a
strategy to master the hysteresis associated with the �rst-order phase transition,
and thus enhance the reversibility of a given caloric e�ect [51, 63]. Furthermore, a
novel multicaloric cooling cycle based on a suitable combination of magnetic �eld
and uniaxial stress has been recently proposed and tested by T. Gottschall et. al
[64], demonstrating the possibility to take advantage of the inherent hysteresis of
a multicaloric material to increase the reversibility of a given caloric e�ect while
drastically reducing the volume of the magnetic �eld source needed.

Promising perspectives are envisaged for the use of multicaloric materials for
refrigeration applications, as they can help on overcoming some of the previously
discussed bottlenecks that hinder the commercial development of solid-state cooling
devices [33, 46]. However, the research on multicaloric e�ects is still germinal, as
it requires the development of non-commercial advanced characterization systems
[65, 66]. Overall, despite the recent progress, many pages on this story still have to
be written.

1.1 Dissertation contents

This dissertation is centred on the study and characterization of the giant caloric
and multicaloric e�ects arising from materials displaying a magnetostructural �rst-
order phase transition near room temperature with a strong coupling between the
structural and magnetic degrees of freedom. It is divided into six chapters, which
are organized as follows.

After this general motivation and introduction, Chapter 2 provides the theoretical
framework used to describe caloric and multicaloric e�ects arising in a general
thermodynamic system. It provides a complete thermodynamic description of such
phenomena, and discusses in detail the nature of �rst-order phase transitions.
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Chapter 3 is a keystone of the present work, as therein we introduce the diverse
experimental techniques used for the quantitative study of the giant caloric and
multicaloric e�ects. In this regard, special attention is given to calorimetry and
adiabatic thermometry under the simultaneous in�uence of magnetic �eld and uni-
axial compressive stress. Furthermore, detailed descriptions of the bespoke setups
we have designed, assembled and calibrated for such purposes are also provided.

Before discussing the experimental results of our research, Chapter 4 renders an
overview of the physical properties exhibited by the di�erent families of multicaloric
materials under study. Firstly, the Fe-Rh system is introduced, which is nowadays
considered a benchmark multicaloric material. Secondly, the family of Ni-Mn-based
Heusler alloys is presented in detail, as such compounds are promising candidates
for future technological applications due to the strong coupling between the struc-
tural and magnetic degrees of freedom that they can exhibit at the martensitic
phase transition.

The corresponding results of our research on selected alloys belonging to those
families of multicaloric materials are presented in Chapter 5. It is divided into four
sections, each one corresponding to a di�erent alloy, which are organized as follows:

• Section 5.1: Fe-Rh

This section is devoted to thoroughly characterize the giant elastocaloric
e�ect of Fe-Rh under the application of uniaxial compressive stress. Further-
more, the e�ect of a constant magnetic �eld (uniaxial compressive stress) on
the giant elastocaloric (magnetocaloric) e�ect is also discussed in detail.

• Section 5.2: Ni-Fe-Co-Mn-Sn

In this section, we provide a detailed characterization of the giant magne-
tocaloric e�ect exhibited by a novel Ni-Co-Mn-Sn-based Heusler alloy, whose
composition has been tailored in order to confer it with outstanding elas-
tocaloric and magnetocaloric e�ects.

• Section 5.3: Ni-Mn-In

The advantages of the multicaloric e�ect with respect to the single caloric
(magnetocaloric and elastocaloric) e�ects are analysed in depth on a proto-
type Ni-Mn-based Heusler alloy exhibiting non-synergic single caloric e�ects.
Furthermore, the feasibility of the novel multicaloric cycle proposed by T.
Gottschall et. al. is experimentally tested and compared with a conventional
magnetic �eld refrigeration cycle.

• Section 5.4: Ni-Mn-Ga-Cu

For the �rst time, a thorough characterization of the multicaloric e�ect
and its advantages with respect to the corresponding elastocaloric and mag-
netocaloric e�ects is performed on a prototype Ni-Mn-Ga-based Heusler alloy
with a tailored composition in order to confer it with synergic single caloric
e�ects. Furthermore, the cross-coupling contribution to the multicaloric e�ect
is computed and discussed.
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Finally, Chapter 6 summarizes the main conclusions of this dissertation, and
sketches as well some future perspectives.



2 Fundamentals

Throughout the di�erent chapters of this dissertation, concepts such as heat �ow,
speci�c heat, temperature and entropy changes, order parameter, external �eld or
phase transition will be extensively used for the interpretation and discussion of
the presented results. The aim of this chapter is to provide a theoretical framework
to properly describe the experimentally studied caloric and multicaloric e�ects in
solids.

In this regard, a thermodynamic description of a general system under the in-
�uence of di�erent external �elds is provided as a framework for the derivation
of the Maxwell relations, followed by a discussion on the associated caloric and
multicaloric e�ects. By keeping the thermodynamic framework as a keystone, a
detailed section centred on the nature of �rst-order phase transitions is introduced,
where the Clausius-Clapeyron equation is derived and the nature of hysteresis is
discussed.

2.1 Thermodynamics

Let us consider a closed system under the in�uence of a certain set of external
�elds {xi}. A generalized displacement Xi can be associated to each applied ex-
ternal �eld xi forming a set of pairs of conjugated variables {xi, Xi}. For instance,
relevant examples of external �elds and associated generalized displacements are
such as magnetic �eld ~H and magnetization ~M , electric �eld ~E and polarization ~P
or stress σ and strain ε. 1

The state of this system can be described by a thermodynamic potential, such
as the internal energy, which will be a function of the entropy of the system S and
the set of generalized displacements {Xi} as U = U(S, {Xi}). If we now consider a
di�erential change in the internal energy of the system, it can be expressed as:

dU(S, {Xi}) =

(
∂U

∂S

)
{Xi}

dS +

n∑
i=1

(
∂U

∂Xi

)
S,{Xj 6=i}

dXi (2.1)

1For the sake of simplicity, the notation in the following dissertation will omit the tensorial
character of the applied external �elds and the generalized displacements. For instance, in the
case of the studied caloric and multicaloric e�ects, the applied external �elds are either magnetic
�eld and uniaxial stress. These external �elds are applied along a speci�c direction, and only
the parallel component of the generalized displacement will be considered. Therefore, under this
speci�c conditions, these vectors and tensors will take the form of scalars.
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where each right hand term of equation 2.1 accounts for the di�erent ways of the
system to change its internal energy. If we consider that the system is in equilibrium
at both initial and end state involved, and taking into account both �rst and second
laws of thermodynamics [67], we can introduce the temperature of the system T

from the �rst term of equation 2.1 as
(
∂U

∂S

)
{Xi}

= T and the conjugated external

�elds xi from the individual terms inside the summation as
(
∂U

∂Xi

)
S,{Xj 6=i}

= xi.

Therefore, equation 2.1 can be written as:

dU(S, {Xi}) = TdS +

n∑
i=1

xidXi (2.2)

where TdS accounts for the reversible heat �ow and the summation terms xidXi

refer to other forms of changing the internal energy of the system under certain
applied external �elds. Table 2.1 outlines this di�erent energy forms that can be
involved in the internal energy change of the system. It is important to point out
that the general magnetic and electric energy forms expressed in this table can be
separated in two di�erent contributions. As discussed in detail in [11], the magnetic
energy form can be expressed as d′W = µ0HdH +µ0HdM and the electric energy
as d′W = ε0EdE + EdP , where M and P correspond to the system magnetiza-
tion and polarization and µ0 and ε0 are the vacuum permeability and permittivity,
respectively. In these two expressions, the �rst term corresponds to the energy re-
quired to increase the magnetic (electric) �eld a di�erential dH (dE), while the
second term corresponds to the energy required to increase the system magnetiza-
tion (polarization) a di�erential dM (dP ), respectively. Therefore, in the case where
we only account for the energy forms that act on the system, we solely consider
the second terms of the above expressions as they express the di�erential energy
forms for the system to change its magnetization or polarization in a magnetic or
electric �eld, respectively.

Describing the thermodynamic state of the system with the internal energy
U(S, {Xi}) implies that we have to control its natural variables: the entropy S
and the set of generalized displacements {Xi}, which are not easily experimentally
controllable. We can de�ne new thermodynamic potentials that depend on di�erent
natural variables more suitable to be controlled in the laboratory, such as temper-
ature T and the applied external �elds {xi}, through the Legendre transforms.

With this purpose, we can introduce two new thermodynamic potentials: the
Helmholtz and the Gibbs free energies that are de�ned as F (T, {Xi}) = U − TS

and G(T, {xi}) = F −
n∑
i=1

xiXi, respectively. A di�erential change of these free

energies can then be expressed as:

dF (T, {Xi}) = dU − TdS − SdT = −SdT +

n∑
i=1

xidXi (2.3)
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Caloric e�ect
External �eld
(xi)

Generalized
displacement (Xi)

Energy form
(d′W )

MCE Magnetic �eld H
Magnetic
induction B HdB

ECE Electric �eld E
Electric
displacement D EdD

eCE Uniaxial stress σ Strain ε V σdε

BCE
Hydrostatic
pressure −p Volume V −pdV

Table 2.1: Summary of the relevant external �elds and generalized dis-
placements for the description of the caloric (magneto-, electro-, elasto- and
barocaloric) and multicaloric e�ects. Each pair of conjugated variables is associ-
ated with a di�erent energy form, such as magnetic, electric and mechanic work.
See [11] for a detailed description of the di�erent energy forms.

dG(T, {xi}) = dF −
n∑
i=1

xidXi −
n∑
i=1

Xidxi = −SdT −
n∑
i=1

Xidxi (2.4)

Since both Helmholtz and Gibbs free energies are thermodynamic potentials,
their second derivatives with respect to its natural variables are independent of the
order in which they are performed. For a general function f (y, z) this is expressed
as:

∂2f

∂y∂z
=

∂2f

∂z∂y
(2.5)

where f (y , z ) can either be the Helmholtz F (T, {Xi}) or the Gibbs G(T, {xi}) free
energies and y and z account for any pair of natural variables of the considered
thermodynamic potential. Therefore, if we take y = T and z = Xi as the variables
for the Helmholtz free energy and y = T and z = xi as the variables for the Gibbs
free energy, by applying equation 2.5 and taking into account equations 2.3 and
2.4, we obtain:

(
∂S

∂Xi

)
T,{Xj 6=i}

= −
(
∂xi
∂T

)
{Xj}

(2.6a)(
∂S

∂xi

)
T,{xj 6=i}

=

(
∂Xi

∂T

)
{xj}

(2.6b)

where equation 2.6a is obtained from the Helmholtz free energy and equation 2.6b
from the Gibbs free energy, respectively. These equations are two of the Maxwell
relations, and they relate the entropy change with respect to the external �eld
or the generalized displacement with the temperature derivative of the generalized
displacement or the external �eld. Another interesting Maxwell relation to be taken
into account is the one obtained when comparing the second derivative of the Gibbs
free energy with respect to two di�erent external �elds xi and xj , which leads to:
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(
∂Xj

∂xi

)
T,{xk 6=i}

=

(
∂Xi

∂xj

)
T,{xk 6=j}

(2.7)

This di�erent Maxwell relation links the response of the generalized displace-
ment Xi with the non-conjugated external �elds xj 6=i, quantifying the strength of
the cross-coupled response of the system. It is important to point out that this
Maxwell relation establishes the symmetry of the cross-coupled response, and will
be particularly convenient for the description of the multicaloric e�ect.

2.1.1 Caloric e�ects

The thermodynamic state changes of the considered system induced under a
change of an external �eld xi, while keeping the other applied external �elds con-
stant {xj 6=i}, are generally characterized by the �eld-induced isothermal entropy
change ∆Siso and the �eld-induced adiabatic temperature change ∆Tad [53]. For
the determination of these quantities, it is convenient to consider the state function
that expresses the entropy of the system S as a function of temperature T and the
applied external �elds {xi}, which are easily controlled variables in an experiment
that implies an external �eld change. This state function, expressed as S(T, {xi}),
is obtained from the �rst term of equation 2.4 and by taking into account equation

2.6b and the de�nition of the speci�c heat at constant �eld C as
C

T
=

(
∂S

∂T

)
{xi
}
,

a di�erential change of the entropy dS(T, {xi}) can be expressed as:

dS(T, {xi}) =

(
∂S

∂T

)
{xi}

dT+

n∑
i=1

(
∂S

∂xi

)
T,{xj 6=i}

dxi =
C

T
dT+

n∑
i=1

(
∂Xi

∂T

)
{xj}

dxi

(2.8)
Under isothermal conditions, the temperature T of the system is constant and

dT = 0. Thus, the isothermal entropy change under a variation of an external �eld
xi is expressed as:

∆S(T, xsi → xfi ) =

∫ xf
i

xs
i

(
∂Xi

∂T

)
x
′
i,{xj 6=i}

dx
′

i (2.9)

where xsi and x
f
i correspond to the start and end values of the modi�ed external

�eld xi. Conversely, if the external �eld is modi�ed adiabatically, the entropy of
the system S will be kept constant and dS = 0. Consequently, equation 2.8 yields

∆T (S, xsi → xfi ) = −
∫ xf

i

xs
i

T

C

(
∂Xi

∂T

)
x
′
i,{xj 6=i}

dx
′

i (2.10)

Both equations 2.9 and 2.10 describe the caloric response of the system and di-
rectly relate the induced isothermal entropy and the adiabatic temperature change
to the temperature derivative of the generalized displacement conjugated to the
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modi�ed external �eld. Therefore, the magnitude of
(
∂Xi

∂T

)
{xi}

will have an im-

portant role on tuning the caloric response of a system under the experimental
conditions considered in this section. Additionally, as it is deduced from equation
2.7, the generalized displacement Xi has to include a dependency on the other �elds
that are kept constant during the experiment under consideration {xj 6=i}. There-
fore, for a general description of the caloric response, the generalized displacement
can be expressed in the form Xi = Xi(T, x

′

i, {xj 6=i}). Nevertheless, this complete
variable dependency has been omitted from equations 2.9 and 2.10 for the sake of
simplicity.

Furthermore, equation 2.10 also depends on the iso�eld speci�c heat of the sys-
tem, that is inside the integral. Therefore, the speci�c heat magnitude will also tune
the induced thermal response under a certain external �eld change xsi → xfi . It is
also important to take into account that the speci�c heat includes a dependency
on temperature T and all the applied external �elds on the system, and it can be
expressed in the form C = C(T, x

′

i, {xj 6=i}), but it has been omitted for the sake
of clarity.

2.1.2 Multicaloric e�ects

Multicaloric e�ects are de�ned as the induced thermodynamic state change of the
considered system under the simultaneous (or sequential) change of more than one
of the applied external �elds {xi}. A detailed theoretical discussion of multicaloric
e�ects can be found in [52, 53].

For the sake of simplicity, and without loss of generality, this section will fo-
cus on describing the particular case where the considered system responds to a
change of two external �elds: xi and xj . As the entropy is a state function, the
entropy change induced between two states at equilibrium will only depend on the
initial and �nal values. Therefore, the multicaloric entropy change will be given by
∆S(T, xsi → xfi , x

s
j → xfj ) = S(T, xfi , x

f
j ) − S(T, xsi , x

s
j). Additionally, this �eld-

induced entropy change will be irrespective of the path followed between the start
and end equilibrium states and it can be separated into two processes as follows:

∆S(T, xsi → xfi , x
s
j → xfj ) = ∆S(T, xsi → xfi , x

s
j) + ∆S(T, xfi , x

s
j → xfj ) (2.11)

where both terms on the right hand side correspond to the entropy change of the
caloric e�ect, expressed in equation 2.9, under a constant external �eld. Thus, the
�rst right-hand term, under a constant external �eld xsj , can be expressed as:

∆S(T, xsi → xfi , x
s
j) =

∫ xf
i

xs
i

(
∂Xi

∂T

)
x
′
i,x

s
j

dx
′

i (2.12)

and the second right-hand term, under a constant external �eld xfi , can be expressed
as:
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∆S(T, xfi , x
s
j → xfj ) =

∫ xf
j

xs
j

(
∂Xj

∂T

)
x
′
j ,x

f
i

dx
′

j (2.13)

where the dependencies of the generalized displacements can be expressed as Xi =
Xi(T, x

′

i, x
s
j) and Xj = Xj(T, x

f
i , x

′

j), respectively, and have been omitted from
both equations for the sake of simplicity.

These two caloric contributions given by equations 2.12 and 2.13 can be alterna-
tively described in order to distinguish the e�ect of the secondary constant external
�eld on the computed caloric e�ect. A proper identi�cation of the e�ect of the sec-
ondary �eld will allow us to quantify the relevance of the cross-coupled contribution
on the caloric response of the system. To that end, from the de�nition of a partial
derivative, the caloric e�ect described by equation 2.12 can expressed as:

∆S(T, xsi → xfi , xj)−∆S(T, xsi → xfi , xj = 0) =

∫ xj

0

∂

∂x
′
j

∆S(T, xsi → xfi , x
′

j)dx
′

j

(2.14)
The left hand side of equation 2.14 accounts for the change induced from the

application of a constant secondary external �eld xj on the caloric e�ect induced
from a �eld change xsi → xfi , while the right hand side depends on the derivative of
the induced caloric e�ect with respect to the secondary external �eld. By replacing
equation 2.12 into the right hand side integral of equation 2.14, we obtain:

∆S(T,xsi → xfi , xj)

= ∆S(T, xsi → xfi , xj = 0) +

∫ xj

0

∂

∂x
′
j

[∫ xf
i

xs
i

(
∂Xi

∂T

)
x
′
i,x
′
j

dx
′

i

]
dx
′

j

=

∫ xf
i

xs
i

(
∂Xi

∂T

)
x
′
i,xj=0

dx
′

i +

∫ xj

0

∫ xf
i

xs
i

(
∂2Xi

∂x
′
j∂T

)
x
′
i

dx
′

idx
′

j

(2.15)

This equation separates the induced caloric e�ect under a constant secondary
external �eld into two di�erent contributions: the �rst term corresponds to the
caloric e�ect without any applied secondary �eld, while the second term depends

on the integrand

(
∂2Xi

∂x
′
j∂T

)
x
′
i

, that can also be expressed as
∂

∂T

(
∂Xi

∂x
′
j

)
T,x
′
i

. At

this point, it is useful to introduce the cross-susceptibility tensor as:

χij =

(
∂Xi

∂x
′
j

)
T,x
′
i

(2.16)

where its diagonal terms correspond to the standard susceptibilities that mea-
sure the response of a generalized displacement with its conjugated external �eld,
whereas the o�-diagonal terms, as discussed for equation 2.7, correspond to the
coe�cients that quantify the strength of the cross-coupled response of the system.
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The new term in equation 2.15 evidences that in the presence of interplay between
the two generalized displacements of the system and their non conjugated �elds
(Xi, xj) and (Xj , xi), the caloric e�ect obtained for a certain �eld change will also
depend on the secondary �eld applied, and the double integral quanti�es the cross-
coupling magnitude of the two considered conjugated displacements. Moreover, it
is important to point out that the cross-coupled contribution is signi�cant if the
cross-susceptibility exhibits a notable temperature dependence. A similar deriva-
tion and discussion holds true for equation 2.13.

Therefore, taking the above expressions into account we can rewrite the mul-
ticaloric entropy change expressed in equation 2.11 as:

∆S(T,xsi → xfi , x
s
j → xfj )

= ∆S(T, xsi → xfi , xj = 0) + ∆S(T, xi = 0, xsj → xfj )

+

∫ xs
j

0

∫ xf
i

xs
i

∂χij
∂T

dx
′

idx
′

j +

∫ xf
i

0

∫ xf
j

xs
j

∂χji
∂T

dx
′

jdx
′

i

(2.17)

Equation 2.17 corresponds to the general expression that quanti�es the induced
entropy change for a multicaloric e�ect under the sequential (or simultaneous) vari-
ation of two external �elds. The two �rst right hand terms correspond to the caloric
e�ects without any applied secondary �eld and the two last terms account for the
cross-coupled response of the system for each individual caloric e�ect. Figure 2.1
shows a a schematic representation of the isothermal multicaloric entropy change
under the variation of two external �elds. Two observations must be highlighted
from this schematic �gure. First of all, as the entropy is a state function, its vari-
ation is path independent and the same isothermal entropy change is achieved
(A→ D) irrespectively of the order of application of the external �elds. Secondly,
due the presence of a cross-coupled response, the magnitude of a caloric e�ect
driven by one external �eld depends on the magnitude of the secondary constant
external �eld. This e�ect can be easily observed by comparing each pair of red or
blue arrows represented in the �gure, which correspond to the two caloric e�ects
under di�erent applied secondary external �elds.

So far, we have only considered the �eld-induced isothermal entropy change of a
multicaloric e�ect, but in order to provide a complete characterization we also have
to consider the �eld-induced adiabatic temperature change [53], generally expressed
as ∆T (S, xsi → xfi , x

s
j → xfj ). For this purpose, a new state function that has the

entropy S and the applied external �elds {xi} as its natural variables is a suitable
function to describe the multicaloric adiabatic temperature change and has to be
considered. Such function, expressed as T (S, {xi}), can be obtained by performing
an inversion to the entropy state function considered in section 2.1.1.

As temperature is also a state function, a temperature change induced between
two states at equilibrium will be independent of the path followed between them.
Therefore, an equivalent expression to equation 2.11 can be written for the adiabatic
temperature change as:
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Figure 2.1: Illustrative representation of the isothermal entropy as a function
of both applied external �elds xi and xj for a system exhibiting a cross-coupled
response (χij 6= 0). Labels (A-D) indicate the entropy values of the system for
selected values the applied external �elds, and arrows represent particular paths
that correspond to the sequential (A→ B→ D or A→ C→ D) or simultaneous
(A→ D) variation of the two external �elds.

∆T (S, xsi → xfi , x
s
j → xfj ) = ∆T (S, xsi → xfi , x

s
j) + ∆T (S, xfi , x

s
j → xfj ) (2.18)

By following a similar derivation as for the multicaloric entropy change, and
additionally taking into account equation 2.10, it is straightforward to obtain an
equivalent expression to equation 2.17 giving the temperature change under the
sequential (or simultaneous) variation of two external �elds, that in its general
form is expressed as:

∆T (S,xsi → xfi , x
s
j → xfj )

= ∆T (S, xsi → xfi , xj = 0) + ∆T (S, xi = 0, xsj → xfj )

−
∫ xs

j

0

∫ xf
i

xs
i

∂

∂x
′
j

[
T

C

(
∂Xi

∂T

)
x
′
i,x
′
j

]
dx
′

idx
′

j

−
∫ xf

i

0

∫ xf
j

xs
j

∂

∂x
′
i

[
T

C

(
∂Xj

∂T

)
x
′
i,x
′
j

]
dx
′

jdx
′

i

(2.19)

The general multicaloric equations derived in this section for the isothermal
entropy change (equation 2.17) and the adiabatic temperature change (equation
2.19) encompass any possible external �eld change. Nevertheless, there are two
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di�erent relevant situations that have to be considered. For the sake of clarity
and simplicity, the following discussion will only focus on the multicaloric entropy
change, as the same holds true for the adiabatic temperature change, and we will
consider that either the end or the start value of each external �eld is zero.

1. Symmetric external �eld change

This particular case corresponds to either the application (xsi = 0, xsj =

0) → (xfi , x
f
j ) or the removal (xsi , x

s
j) → (xfi = 0, xfj = 0) of both external

�elds. Under these circumstances, and similarly to equation 2.11, the mul-
ticaloric entropy change for the application of both �elds can be expressed
as:

∆S(T, 0→ xfi , 0→ xfj ) = ∆S(T, 0→ xfi , x
s
j = 0) + ∆S(T, xfi , 0→ xfj )

(2.20)
while the multicaloric entropy change for the removal of both �elds can be
written as:

∆S(T, xsi → 0, xsj → 0) = ∆S(T, xsi → 0, xsj)+∆S(T, xfi = 0, xsj → 0) (2.21)

In both cases, as it can be deduced from equations 2.20 and 2.21, one of the
two terms accounting for the cross-coupled response of the system expressed
in equation 2.17 will be zero, while the other term will be di�erent from
zero. Therefore, the �eld-induced multicaloric e�ect will not be equivalent
to the simple sum of the two independent caloric e�ects in the absence of a
secondary external �eld.

2. Asymmetric external �eld change

This particular case corresponds to the application of one external �eld
while the other �eld is removed, and can be expressed as (xsi , x

s
j = 0) →

(xfi = 0, xfj ). For this case of interest, and similarly to equation 2.11, the
multicaloric entropy change can be expressed as:

∆S(T, xsi → 0, 0→ xfj ) = ∆S(T, xsi → 0, xsj = 0) + ∆S(T, xfi = 0, 0→ xfj )
(2.22)

As expressed by equation 2.22, the �eld-induced multicaloric e�ect can be
separated into two independent contributions that correspond to the respec-
tive caloric e�ects in the absence of any secondary external �eld. Therefore,
for this particular situation, the multicaloric e�ect corresponds to the simple
sum of both independent caloric e�ects as there will be no term that accounts
for the cross-coupled response of the system.



20 Fundamentals

2.2 Phase transitions

As shown in the previous section, the temperature derivative of the generalized

displacement
(
∂Xi

∂T

)
{xi}

has an important role on tuning the �eld-induced thermal

response of both the caloric and multicaloric e�ects. In the present section we will
see that signi�cant changes on this term are met in the vicinity of phase transitions,
where large changes in conjugate displacements are expected as thermodynamic
properties of the system will have a strong temperature dependence.

From the thermodynamics point of view, a phase is a region of matter at a
certain thermodynamic state, characterized by a set of homogeneous macroscopic
physical properties that take the form of a scalar, a vector or a tensor. Each macro-
scopic physical property will satisfy certain intrinsic symmetries that will reduce
its independent components. Associated with the system structure, certain coordi-
nates transformations (such as translations, rotations, inversions, or combinations
of those) leave the system invariant, thus de�ning a certain symmetry group. In
the particular case of crystalline systems, where at the atomic level, its compo-
nents are arranged in an ordered structure according to a certain crystal lattice,
the system symmetries will further condition the independent components of the
macroscopic physical properties. The Neumann principle, formulated in the 19th
century, expressed this fact as [68]:

The symmetry elements of any physical property of a crystal must include
all the symmetry elements of the point group of the crystal, which can
be otherwise stated as: If a crystal is invariant with respect to certain
symmetry operations, any of its physical properties must also be invariant
with respect to the same symmetry operations.

Let us consider the same thermodynamic system as in section 2.1. Under the
in�uence of a driving force, such as an applied external �eld (xi) or a change
on temperature (T ), the equilibrium state of the considered system can change,
as there may be another thermodynamic state that minimizes the system's free
energy under those new conditions. Under these circumstances, the system evolves
from one phase to another one, characterized by di�erent values of the macroscopic
properties, thus experiencing a phase transition.

Usually, the changes in the macroscopic properties when the considered system
undergoes a phase transition are linked to a symmetry breaking, e.g. breaking of
spatial inversion, time reversal or rotation symmetry. Although there are also phase
transitions which do not involve a symmetry breaking, e.g. a liquid to gas transition.
The close relation between symmetry and phase transitions was introduced by L.D.
Landau in a work published in 1937 entitled "On the Theory Phase Transitions"
[69], where he discussed that in a continuous phase transition (those without an
associated latent heat, as it will be addressed in section 2.2.1) there must be a
symmetry change at the phase transition. Landau introduced the concept of order
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parameter (η), which can take the form of a scalar, a vector or a tensor, to study
the behaviour of a system near a phase transition. From a general point of view,
an order parameter is a characteristic property of the system that measures the
degree of order across the boundaries of the phase transition, which vanishes at
one side of the phase transition and takes a non-zero value at the other side.

Let us consider a general phase transition taking place at a certain temperature
TC with an associated order parameter η. At the disordered phase, where η = 0, the
set of transformations that leave the system invariant is called the S0 group. The
emergence of the order parameter at the transition temperature induces a symmetry
breaking and reduces the symmetry of the system. For instance, let us suppose that
%0(r) de�nes the density function of the particular high symmetry phase of the
system, which is invariant under the S0 group. At the phase transition, the density
starts to change and can be expressed as %(r) = %0(r) + δ%(r), where δ%(r) is small
compared to %0(r) and has a lower symmetry. The set of transformations that
leave δ%(r) invariant constitutes the S group, which is a subgroup of S0. Then, the
density %(r) will also have the same symmetries as δ%(r). As soon as the transition
starts, and the order parameter emerges, the symmetry of the system changes from
the S0 group to the subgroup S.

Speci�cally, a particular case of interest for this dissertation are the ferroic tran-
sitions, which refer to those phase transitions in which a new macroscopic physical
property of the system spontaneously emerges at a certain critical temperature TC ,
thus breaking a given symmetry. The emerging macroscopic property, referred as
the ferroic property of the phase transition, couples to an external �eld. Therefore,
the ferroic property can be switched by the coupled external �eld, and thus the
phase transition can be �eld-induced [70].

A special case that has to be considered are the systems in which more than one
macroscopic property, coupled to di�erent external �elds, emerges at distinct phase
transitions that can occur at di�erent or at the same temperature [68]. Therefore,
these systems exhibit a so called multiferroic transition. A highly relevant feature of
multiferroic systems is the possibility of switching a ferroic property by means of a
non-conjugated external �eld, thus exhibiting a cross-coupled response. The inter-
play between the di�erent ferroic properties and the non-coupled external �elds will
be enhanced at the vicinity of the lower temperature phase transition, where both
ferroic properties will have emerged, thus enhancing the cross-coupled response and
allowing the system to exhibit multicaloric e�ects [53].

Typically, the macroscopic property of a ferroic transition emerges upon cooling
from the high-temperature phase (β) at the critical temperature TC , where the
system transforms to the low-temperature phase (α). Therefore, in this case, the
order parameter vanishes at the high-temperature phase (ηβ = 0), and it takes a
non-zero value at the low-temperature phase (ηα 6= 0). As a consequence, the high-
temperature phase is less ordered, and more symmetric, than the low-temperature
phase which means that the high-temperature phase has a higher entropy than the
low-temperature phase (Sβ > Sα). Nevertheless, in some cases the loss of entropy
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associated with the loss of symmetry is compensated by a gain of entropy from
another entropic contribution, related to a di�erent degree of freedom associated
with a distinct order parameter. A more detailed discussion and examples of these
situations will be provided in section 2.2.2.

2.2.1 Classi�cation of phase transitions

The phase transitions considered in this dissertation are induced by a driving
�eld such as an applied external �eld (xi) or a change on the system temperature
(T ). Such driving �elds can be easily controlled experimentally, and correspond to
the natural variables of the Gibbs free energy, introduced in section 2.1. Therefore,
this thermodynamic potential is particularly useful for the description of phase
transitions.

Moreover, the behaviour of some relevant parameters of a general thermodynamic
system, such as the generalized displacement (Xi), the entropy (S) and the speci�c
heat (C), can be computed from the derivatives of Gibbs free energy with respect
to its natural variables. Speci�cally, from the di�erent terms of equation 2.4 we can
write:

S = −
(
∂G

∂T

)
{xi}

, Xi = −
(
∂G

∂xi

)
T,{xj 6=i}

and
C

T
=

(
∂S

∂T

)
{xi}

= −
(
∂2G

∂T 2

)
{xi}

.

For the following discussion, let us consider a general phase transition between
two phases, labelled as α and β, where the former corresponds to the equilibrium
phase at low temperatures and the latter, to the equilibrium phase at high tempera-
tures. The equilibrium thermodynamic state of the system at a certain external �eld
and temperature will be determined by the phase that minimizes the system Gibbs
free energy. For the sake of simplicity, let's consider that we induce the phase tran-
sition by changing the temperature as a driving �eld. Then, there must be a certain
point where both phases have the same free energy Gα(Tt, {xi}) = Gβ(Tt, {xi}) at
a certain transition temperature Tt.

Paul Ehrenfest introduced in 1933 a classi�cation of phase transitions [71], where
the order of the phase transition was de�ned as the order of the lowest derivative
of the Gibbs free energy with respect to its natural variables that shows a disconti-
nuity at the transition temperature Tt between the phases involved. Thus, a phase
transition of order n ful�ls:

(
∂mGα
∂Tm

)
{xi}

=

(
∂mGβ
∂Tm

)
{xi}

,

(
∂mGα
∂xmi

)
T,{xj 6=i}

=

(
∂mGβ
∂xmi

)
T,{xj 6=i}

(2.23)

where m = 1, 2, ..., n− 1 while:

(
∂nGα
∂Tn

)
{xi}
6=
(
∂nGβ
∂Tn

)
{xi}

,

(
∂nGα
∂xni

)
T,{xj 6=i}

6=
(
∂nGβ
∂xni

)
T,{xj 6=i}

(2.24)
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However, the Ehrenfest classi�cation of phase transitions fails on classifying tran-
sitions showing a divergence in the derivatives of the Gibbs free energy at the tran-
sition temperature. For instance, this is the situation for a ferromagnet near its crit-
ical temperature TC , referred as the Curie temperature, where the system exhibits
a transition between a low temperature ferromagnetic phase and a high temper-
ature paramagnetic phase. Near this temperature, the behaviour of the magnetic

susceptibility can be expressed as χ =
M

H
∼ 1

(T − TC)γ
, where M is the system

magnetization and H the applied magnetic �eld. Therefore, another classi�cation
of phase transitions proves necessary in the light of this lack of completeness of the
considered classi�cation.

The concept of order parameter, closely related to the symmetries of both phases,
emerges as a useful feature that allows us to classify the di�erent phase transitions
in a more rigorous way as follows [72]:

1. First-order phase transitions:
They are characterized by a �nite discontinuity in one or more of the �rst

derivatives of the corresponding system free energy with respect to its nat-
ural variables at the phase transition. For a general system these deriva-
tives correspond to either the entropy (S) or the generalized displacement
(Xi), and their discontinuities at the phase transition can be expressed as
∆St = Sβ − Sα and ∆Xit = Xβ

i −Xα
i , respectively. If the system exhibits a

discontinuity in the entropy (∆St), it denotes that the phase transition has
an associated non-zero latent heat (L).

It is important to point out that not all �rst-order phase transitions can
be de�ned by an order parameter, associated with a symmetry change at the
phase transition. For instance, there are some �rst-order phase transitions in
which it is not possible to associate an order parameter (e.g. a liquid to gas
transition) and the symmetry group of the ordered phase is not strictly a
subgroup of the disordered phase.

2. Continuous phase transitions:
They are characterized by a continuous behaviour of the �rst derivatives of

the system free energy with respect to its natural variables, while the second
derivatives are discontinuous or show a divergence at the phase transition.

In contrast to �rst-order phase transitions, all continuous phase transitions
have a properly de�ned order parameter and exhibit a symmetry change at
the phase transition, where the symmetry group of the ordered phase (S) is
a subgroup of the disordered phase symmetry group (S0).

After the formal introduction of the order parameter, it is important to highlight
the fact that the generalized displacement (Xi) introduced in section 2.1 corre-
sponds in many cases to an associated order parameter (η) of a system. 2 For

2Nevertheless, in some cases the generalized displacement does not vanish at the disordered
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instance, the magnetization (M) of a ferromagnet corresponds to the order param-
eter de�ning a paramagnetic to ferromagnetic continuous phase transition and it
also corresponds to the generalized displacement of the system conjugated to the
applied magnetic �eld (µ0H). Therefore, the order parameter will be identi�ed as
the generalized displacement for the following parts of this dissertation.

Figure 2.2 shows illustrative examples of the temperature dependence of the
generalized displacement (Xi), the entropy (S) and the speci�c heat (C), together
with the Gibbs free energy, in the vicinity of a continuous (left) and a �rst-order
(right) phase transition, respectively. Additionally, for both considered types of
phase transitions illustrated in this �gure we have added tangent lines to the Gibbs
free energy at the transition temperature, representing the �rst derivative of the
free energy. As it can be seen, for a continuous phase transition the derivative is
continuous at the transition temperature, while for a �rst-order phase transition the
derivative changes abruptly at the transition temperature, leading to discontinuities
in the order parameter Xi and in the entropy S.

When comparing the temperature behaviour of the generalized displacement (Xi)
schematically represented in Figure 2.2 for a continuous and a �rst-order phase
transition, it is evident that the former will typically display a lower value for the

temperature derivative
(
∂Xi

∂T

)
{xi}

than the latter at the phase transition. 3 As

discussed in sections 2.1.1 and 2.1.2, this derivative has an important role on tuning
the �eld-induced thermal response. Therefore, systems exhibiting �rst-order phase
transitions are of particular interest for �eld-inducing giant caloric and multicaloric
e�ects, and will be discussed in detail in the following section. Nevertheless, signi�-
cant caloric e�ects are also expected in the vicinity of continuous phase transitions,
where the associated order parameter changes continuously at the phase transition.

Continuous phase transitions take place around a critical point, where the as-
sociated order parameter vanishes (η) → 0 when approaching the transition tem-
perature T → TC . When a system is in the vicinity of a critical point, de�ned
at a temperature TC , one can observe singularities of measurable physical proper-
ties such as the heat capacity, the magnetic susceptibility or the compressibility.
Additionally, when the critical point is approached, the �uctuations scale of the
associated order parameter gets arbitrarily large, only limited by the size of the
system. Despite the fundamental di�erences between the systems and the com-
pletely di�erent physical origin of the symmetry change at the phase transition,
the behaviour of the associated order parameters can be described in a similar

phase (Xβ
i 6= 0), where the order parameter must vanish (ηβ = 0), and a direct correspondence

between both is not possible. Under these circumstances, the order parameter is de�ned as:

η = Xi −Xβ
i

3For instance, for an ideal �rst-order phase transition the derivative

(
∂Xi

∂T

)
{xi}

diverges at

the transition temperature. However, for a real system, a �rst-order phase transition spreads over
a certain temperature range and the considered derivative will be properly de�ned, as it will be
discussed latter in this chapter.



2.2 Phase transitions 25

Figure 2.2: Illustrative representations of the temperature behaviour of the
Gibbs free energy (G) and the relevant parameters of the system in the vicinity
of a second (left) and a �rst-order (right) phase transition taking place at a
temperature T = TC . For each case, from top to bottom: Gibbs free energy,
generalized displacement or order parameter (Xi), entropy (S) and the speci�c
heat (C).

manner. For instance, a general order parameter around a critical point can be de-

scribed as η ∼ (−ε)β , where ε =
T − TC
TC

and β represents a certain critical-point

exponent. The theory of critical phenomena provides a solid framework to study
the behaviour of order parameters in the vicinity of critical points [73].

2.2.2 First-order phase transitions

As discussed in the previous section, there is a large entropy (∆St) and order
parameter (∆Xit) change associated with �rst-order phase transitions. Therefore,
with the possibility of inducing this phase transition by an applied external �eld,
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giant caloric and multicaloric e�ects are expected in its vicinity.

The equations derived in sections 2.1.1 and 2.1.2 for the computation of the
�eld-induced caloric and multicaloric e�ects, respectively, were derived for a gen-
eral thermodynamic system and are valid within the framework of thermodynamics.
However, as illustrated in Figure 2.2, an ideal �rst-order phase transition is char-
acterized by a discontinuity of the order parameter at the transition temperature.

Therefore, its temperature derivative
(
∂Xi

∂T

)
{xi}

diverges. Despite this fact, it has

been shown that these expressions, which were deduced from the Maxwell relations,
can be used to compute the thermal response around a �rst-order phase transition,
but special attention must be paid to the followed measurement protocols [74].

An alternative computation of the caloric e�ects associated with a �rst-order
phase transition can be performed by considering again the associated Gibbs free
energy. Let us reckon a closed system exhibiting a general transition between two
phases (α and β). As the system is closed, the total number of particles (N) will
be constant and it can be expressed as N = Nα + Nβ , where {N j} corresponds
to the number of particles of the system at each phase. Therefore, the Gibbs free
energy for such system is written as G(T, {xi}, {N j}) and a di�erential change can
be expressed as:

dG(T, {xi}, {N j}) = dGα + dGβ =

β∑
j=α

(
−SjdT −

n∑
i=1

Xj
i dxi + µjdN j

)
(2.25)

where µj corresponds to the chemical potential of the phase j, and accounts for
the associated free energy change of the system when the particle number at that
phase changes.

Let's suppose that the system is in equilibrium at a speci�c temperature T and
under a set of applied external �elds {xi} where both phases coexist. At this speci�c
conditions, the Gibbs free energy must be in a minimum. Therefore, all the partial
derivatives of the free energy with respect to its natural variables will be zero and
thus dG(T, {xi}, {N j}) = 0. Additionally, if the given phase equilibrium is kept at
constant temperature and applied external �elds, dT = 0 and dxi = 0∀i ∈ [1, n]
and equation 2.25 will lead to:

dG(T, {xi}, {N j}) = µαdNα + µβdNβ = 0 (2.26)

Since the total number of particles is constant, it is straightforward to deduce
that dNα = −dNβ . Therefore, from equation 2.26 we deduce that µα = µβ at
equilibrium conditions when both phases coexist.

At the transition temperature Tt, under a set of applied external �elds {xi},
in equilibrium conditions the Gibbs free energy of both phases must coincide
Gα(Tt, {xi}, Nα) = Gβ(Tt, {xi}, Nβ) as if one phase has a lower free energy than
the other one, the system would not be stable and it would evolve to a single phase
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to minimize its free energy. It is important to take into account that the applied
external �elds {xi} can a�ect the phase stability of the system, and therefore the
transition temperature will also depend on the applied external �elds Tt({xi}).

If we consider a di�erential change on one of the applied external �elds xi + dxi,
while keeping the others constant {xj 6=i}, the transition temperature, de�ning the
equilibrium between both phases, will be Tt + dTt. Thus, the system will move
along the coexistence line of the transition at the phase diagram. At these new
equilibrium conditions, the Gibbs free energies will be Gα + dGα and Gβ + dGβ ,
respectively. Consequently, as they must coincide in equilibrium conditions, we
deduce that dGα = dGβ . Therefore, from equation 2.25 we can write:

− SαdTt −Xα
i dxi = −SβdTt −Xβ

i dxi (2.27)

which can be simpli�ed if we take into account that for a �rst-order phase transition
∆Xit = Xβ

i − Xα
i and ∆St = Sβ − Sα, thus leading to the Clausius-Clapeyron

equation:

dxi
dTt

= − ∆St
∆Xit

(2.28)

The Clausius Clapeyron equation de�nes the phase coexistence curve in the tem-
perature T versus external �eld xi phase diagram, and relates the key parameters
for the computation of a caloric e�ect. On the one hand, to enhance the magnitude
of the caloric e�ect a large transition entropy change ∆St is necessary. On the other

hand, a large shift of the transition temperature with the applied external �eld
dTt
dxi

is required to �eld-induce the phase transition, which is achieved for large changes
of the conjugated displacement at the transition ∆Xit.

For instance, it has been shown that the Maxwell relations presented in 2.6
reduce to the Clausius-Clapeyron equation for the case of an ideal �rst-order phase
transition [75]. The behaviour of the conjugated displacement for an ideal �rst-order
phase transition around the transition temperature Tt can be written as:

Xi(T, {xi}) = X0
i + ∆XitH[T − Tt({xi})] (2.29)

where X0
i is a function describing its behaviour outside of the transition and H[T−

Tt({xi})] is a Heaviside step function centred at the transition temperature. As
discussed in section 2.1.1, equation 2.9 allows us to compute the �eld-induced
entropy change. Thus, by introducing equation 2.29 into 2.9, and assuming X0

i to
be constant, the following expression is obtained:

∆S(T, xsi → xfi ) =


−∆Xit

dxi
dTt

T ∈ [Tt({xsi}), Tt({x
f
i })]

0 T /∈ [Tt({xsi}), Tt({x
f
i })]

(2.30)

Therefore, it is clear that equation 2.30 is equivalent to equation 2.28 under the
particular conditions considered. Moreover, it is important to point out that, for
the above expression, the �eld-induced entropy change coincides with the transition
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entropy change ∆St, which sets a maximum boundary to the contribution of the
phase transition to the �eld-induced caloric e�ect for a system. 4

From the thermodynamic point of view, two di�erent situations have to be dis-
tinguished when considering the e�ect of an external �eld on a �rst-order phase
transition. As previously discussed, the order parameter exhibits a discontinuity
at the phase transition that can be expressed as ∆Xit = Xβ

i − Xα
i . When the

associated external �eld (xi) is applied, the phase that minimizes the Gibbs free
energy, which corresponds to the phase that maximizes the order parameter, will
be further stabilized. Consequently, depending on the phase at which the order
parameter is maximized we can distinguish between a conventional (Xβ

i < Xα
i ) or

an inverse (Xβ
i > Xα

i ) caloric e�ect.

Therefore, as the order parameter change when inducing the transition has a
di�erent sign if the system exhibits a conventional (∆Xit < 0) or an inverse
(∆Xit > 0) caloric e�ect, it is straightforward to deduce from equations 2.9, 2.10
and 2.28 that such systems will exhibit opposite features. Figure 2.3 schematically
represents the behaviour of the order parameter Xi (left panels) and the corre-
sponding entropy S (right panels) for a system exhibiting a conventional ((a) and
(b)) and an inverse ((c) and (d)) caloric e�ect, respectively. Before discussing in
detail both caloric e�ects, it is important to point out that the order parameters
represented in these �gures are inspired by the behaviour of the magnetization M
under an applied magnetic �eld µ0H for a system exhibiting an ideal �rst-order
magnetic transition between a high and a low magnetization state at a certain tem-
perature Tt({xi}) 5 together with a ferroic phase transition at a higher temperature
TC , where the associated macroscopic property of the system vanishes, undergoing
a continuous phase transition.

For a �rst-order phase transition exhibiting a conventional caloric e�ect, as repre-
sented in Figure 2.3 (a), the order parameter Xi is maximized at low temperatures.
Without any applied external �eld (xi = 0), the system exhibits a �rst-order phase
transition at a temperature Tt(0) and transforms towards the high-temperature
phase (β) with low Xi (red solid line). In principle, the low temperature phase (α)
should be stable up to the critical temperature, as illustrated by the red dashed line
in the �gure, but this behaviour is interrupted by the occurrence of the �rst-order
phase transition.

Under the application of a certain external �eld (xi = x), the low temperature
phase is further stabilized and thus, the transition temperature shifts up to Tt(x) as
dTt
dxi

> 0. If the system initially stays at a temperature between Tt(0) and Tt(x), the

application of the external �eld (0→ x) acts as the driving force of the �rst-order

4It must be mentioned that signi�cant caloric e�ects can arise from each phase outside the
phase transition region, which can enhance the �eld-induced thermal response of the system,
leading to a larger entropy change than that given by the transition entropy change [33].

5The fact that the magnetization of a system can exhibit a �rst-order phase transition is a
consequence of the coupling between di�erent degrees of freedom. For instance, this will be the
case for magnetostructural transitions, which will be addressed in Chapter 4.
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Figure 2.3: Schematic representations of the order parameter (left) and the cor-
responding entropy curves (right) for a system exhibiting a conventional caloric
e�ect (panels (a) and (b)) and an inverse caloric e�ect (panels (c) and (d)) near a
�rst-order phase transition in the absence of an applied external �eld (red curves)
and under an applied �eld xi = x (blue curves). At panels (b) and (d), black
lines indicate the associated adiabatic temperature ∆T and isothermal entropy
changes ∆S induced by an external �eld change 0→ x.

phase transition, inducing the transition β → α.

The temperature behaviour of the entropy S that corresponds to such order pa-
rameter is represented in Figure 2.3 (b). Without any applied external �eld (xi = 0),
the entropy of the system exhibits a discontinuity with an associated transition en-
tropy change ∆St(0) at the transition temperature Tt(0) (red solid line). While
under a certain applied external �eld (xi = x), the entropy curve exhibits a dis-
continuity with an associated transition entropy change ∆St(xi) at the transition
temperature Tt(xi) (blue solid line).
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Therefore, if the system stays at an initial temperature Tt(0) < T < Tt(x),
the isothermal application of the external �eld leads to a decease of the entropy
∆S(T, 0 → x) < 0 and the adiabatic application of the external �eld leads to an
increase of the temperature ∆T (S, 0→ x) > 0, as represented by the black lines in
Figure 2.3 (b).

For �rst-order phase transition exhibiting an inverse caloric e�ect, as represented
in Figure 2.3 (c), the order parameter Xi is maximized at high temperatures.
Therefore, when compared to a conventional caloric e�ect (see Figure 2.3 (a)) we
observe that it shows an opposite temperature behaviour of the order parameter.

Without any applied external �eld (xi = 0), the system exhibits a �rst-order
phase transition at a temperature Tt(0) and transforms towards the high temper-
ature phase (β) with high Xi which is stable up to the critical temperature, where
the system exhibits a continuous phase transition and the order parameter van-
ishes. Under the application of an external �eld (xi = x), the high-temperature
phase is further stabilized and the transition temperature shifts down to Tt(x) as
dTt
dxi

< 0.

The corresponding entropy S behaviour is represented in Figure 2.3 (d). As for the
conventional caloric e�ect, the entropy curves of the system present a discontinuity
associated with the transition entropy change ∆St(xi) at the transition temperature
Tt(xi). When comparing these curves with the ones presented in Figure 2.3 (b), we
notice that the red and blue curves have exchanged their positions. Therefore, if
the system stays at an initial temperature Tt(x) < T < Tt(0), the application
of the external �eld (0 → x) will induce the transition α → β, acting as the
driving force of the �rst-order phase transition. Thus, the isothermal application
of the external �eld leads to an increase of the entropy ∆S(T, 0→ x) > 0 and the
adiabatic application of the external �eld leads to an decrease of the temperature
∆T (S, 0→ x) < 0.

It is worth pointing out that in the di�erent panels of Figure 2.3, the order
parameter Xi and the entropy curves S do not overlap above and below the tran-
sition temperature. This e�ect accounts for an increased order of the system when
an external �eld is applied, as it partially counteracts the disorder due to thermal
�uctuations in the system. Consequently, the order parameter is slightly increased
and the entropy of the system is slightly reduced under an applied external �eld.
Moreover, the e�ect of the applied external �eld is more relevant at the phase where
the order parameter is maximized, which corresponds to the low temperature phase
for a conventional caloric e�ect or the high-temperature phase for an inverse caloric
e�ect.

So far, we have considered the total entropy S of the system, but we have not
discussed its di�erent contributions. Entropy can be understood as a measure of
the disorder in a system, and it can be introduced and modi�ed in many di�erent
ways [70]. A special case of interest to consider for this dissertation is a magnetic
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system, whose total entropy can be generally separated in the following terms [76,
77]:

S(T, xi) = Smag(T, xi) + Slat(T, xi) + Sel(T, xi) (2.31)

where Smag, Slat and Sel correspond to the magnetic, lattice and electronic con-
tributions, respectively. As the application of a certain external �eld xi a�ects the
order of the system, the di�erent terms that contribute to the total entropy of
the system can depend on the applied external �eld. Consequently, the transition
entropy change associated with a �rst-order phase transition, generally expressed
as ∆St = Sβ − Sα, can exhibit an external �eld dependence. To account for this
�eld-dependence, it can be generally expressed as ∆St(xi), as represented in Figure
2.3 (b) and (d).

Moreover, the distinction between the di�erent entropy contributions of a system
can give us a clue to understand why it can exhibit an inverse caloric e�ect. As
represented in Figure 2.3 (c) and (d), upon heating the system looses entropy of a
certain contribution at the phase transition as Xβ

i > Xα
i , but the total entropy of

the system increases with temperature as expected. At the beginning of this section,
it was mentioned that a system can loose entropy associated with a particular or-
der parameter if it is compensated by an increase of entropy from another entropic
contribution. Inverse caloric e�ects, described by an adiabatic decrease of tempera-
ture (∆T (S, 0→ x) < 0) or an isothermal increase of entropy (∆S(T, 0→ x) > 0)
when an external �eld is applied, have been reported on systems when applying
hydrostatic pressure [78], magnetic �eld [79] or electric �eld [80], where the lattice,
magnetic and dipolar entropy contributions, respectively, decrease when inducing
the phase transition.

So far, in this section we have considered the case of an ideal �rst-order phase
transition. A characteristic feature of �rst-order phase transitions is that they ex-
hibit a certain hysteresis, meaning that the back (α→ β) and forth (β → α) phase
transitions do not take place at the same transition temperature Tt.

Figure 2.4 illustrates the Gibbs free energy G as a function of temperature T of a
system that undergoes a �rst-order phase transition between two phases, generally
named α and β. As previously considered, an ideal �rst-order phase transition takes
place at the transition temperature Tt, where the Gibbs free energies of both phases
are equal. However, there will be a certain energy barrier between both initial and
�nal states, and it must be surpassed in order to start the phase transition, where
the system will follow a series of metastable states. Therefore, if temperature is the
driving �eld of the phase transition, the system has to be overheated (Tth > Tt)
or undercooled (Ttc < Tt) in order to start the back (α → β) and forth (β → α)
phase transitions, respectively. The system will have an excess of Gibbs free energy
at these transition temperatures, represented in Figure 2.4 as ∆Gα−β and ∆Gβ−α,
which describes how much energy can be gained when the phase transition takes
place. This decrease in the Gibbs free energy provides the driving force of the
temperature driven �rst-order phase transition, and it increases as the system is
further overheated or undercooled [81].
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Figure 2.4: Schematic representation of the Gibbs free energy (G) of a system
undergoing a �rst-order phase transition. The Gibbs free energy of the high-
temperature phase (β) is represented by a red line, while the free energy of
the low temperature phase (α) is represented by a blue line, respectively. At a
temperature Tt both phases have equal Gibbs free energies (Gα = Gβ), but an
overheating (undercooling) to Tth (Ttc) is necessary in order to induce the phase
transition. Vertical green arrows indicate the Gibbs free energy di�erence between
both phases at the respective forward and reverse phase transition temperatures.

For the sake of simplicity we have considered that temperature is the driving
�eld of the phase transition, thus giving place to a certain temperature hysteresis,
de�ned as ∆Thys = Tth−Ttc. It is important to point out that if the phase transition
is induced by an applied external �eld xi, the system will also exhibit a certain
hysteresis and both back and forth phase transitions will take place at di�erent
external �elds, generally named xth and xtc, respectively.

The presence of an inherent hysteresis on the systems exhibiting a �rst-order
phase transition will have important consequences on their �eld-induced caloric
response under cyclic operation, which will be discussed in detail along the following
chapters.

Furthermore, a real system exhibiting a �rst-order phase transition will generally
show a less abrupt behaviour than the schematically represented phase transitions
in Figure 2.3. In a real system, the presence of impurities, composition gradients or
lattice defects will a�ect the Gibbs free energy landscape within the system, thus
spreading the �rst-order phase transition over a certain temperature range.
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This chapter is of fundamental importance to provide robustness to the results
presented and discussed along this dissertation. Here we will summarize the fun-
damentals of the di�erent experimental techniques used for the quantitative deter-
mination of the relevant physical properties of a sample around a �rst-order phase
transition, and we will provide as well a detailed description of the bespoke exper-
imental setups designed and used during this thesis (DSC under magnetic �elds
and uniaxial compressive stress and adiabatic thermometry).

The most relevant physical properties to characterize giant caloric and mul-
ticaloric e�ects near a �rst-order phase transition when the material is subjected
to a change of one or more external �elds are the adiabatic temperature change
(∆Tad) and the isothermal entropy change (∆Siso). The heat exchange (Q) is also
a relevant physical parameter to characterize giant caloric and multicaloric e�ects,
and it is related to ∆Siso as Q = T∆Siso.

The di�erent methods used can be classi�ed into three groups depending on how
the thermal response of the sample is measured [41]:

1. Indirect methods:
They rely on the experimental measurement of the phase transition or-

der parameter Xi dependence on temperature and the applied external �elds
{xi}. As discussed in section 2.1, there are two methods to compute the
isothermal entropy change from these measurements for a �rst-order phase
transition: The Maxwell relations and the Clausius-Clapeyron relation. Ad-
ditionally, in order to compute the adiabatic temperature change from the
Maxwell relations, one needs accurate measurements of the speci�c heat de-
pendency with temperature and the applied external �elds.

In our case, for the di�erent caloric e�ects, the order parameters experi-
mentally measured are the uniaxial strain ε(T, µ0H,σ) and the magnetization
M(T, µ0H) for the computation of the elastocaloric and the magnetocaloric
e�ect, respectively. On the one hand, the general Maxwell relation for the
computation of the isothermal entropy change when one external �eld xi is
modi�ed while the others {xj 6=i} are kept constant is:

∆S(xsi → xfi ) =

∫ xf
i

xs
i

(
∂Xi

∂T

)
x
′
i,{xj 6=i}

dx
′

i (3.1)
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where xsi and xfi represent the start and end values of the applied external
�eld. Notice that for this general relation, the order parameter dependencies
should be expressed as Xi(T, x

′

i, {xj 6=i}) but it has been omitted from equa-
tion 3.1 for the sake of simplicity. On the other hand, the general Clausius-
Clapeyron relation can be used to compute the isothermal transition entropy
change when the external �eld xi is modi�ed as:

∆St = −∆Xit
dxi
dT

(3.2)

where ∆Xit is the change of the order parameter at the �rst-order phase
transition.

2. Quasi-direct methods:
They rely on the experimental measurement of the heat �ux and the heat

capacity dependency with temperature under a certain combination of con-
stant external �elds.

As it will be shown in the following section, the measurement of the heat
�ux as a function of temperature and under constant applied external �elds
in combination with heat capacity data allows us to construct the iso�eld
entropy curves of the studied material, with the isothermal entropy change
to be obtained as: ∆S(T, xs → xf ) = S(T, xf ) − S(T, xs). The adiabatic
temperature change can also be obtained from the inverted entropy curves
as: ∆T (S, xs → xf ) = T (S, xf )− T (S, xs).

3. Direct methods:
They rely on the direct measurement of the thermal response of the ma-

terial when the external �eld is scanned either isothermally or adiabatically.
These methods are the most reliable if the measurements are carried out un-
der proper adiabatic conditions for the measurement of temperature changes
∆T (S, xs → xf ) or isothermal conditions for the measurement of the heat
�ux and the determination of the entropy change ∆S(T, xs → xf ). These
measurements are specially useful to ascertain the values obtained from indi-
rect and quasidirect methods. Additionally, they are highly valuable to prove
the reliability of physical models that �t the experimental data obtained from
other methods.

However, performing this kind of measurements is challenging as there are
several issues that have to be properly addressed. First of all, they require
the use of bespoke setups that have to be designed and properly calibrated.
Secondly, the need of keeping proper experimental conditions and minimizing
leaks has to be addressed. Speci�cally, challenges such as heat leaks between
the sample and surroundings or keeping a good thermal contact with the
sample during the measurement have to be addressed in order to obtain high
quality and reliable direct measurements.
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3.1 Calorimetry

Calorimetry has been one of the essential techniques to study and characterize
the thermal response of the di�erent studied materials in this thesis. The purpose
of calorimetry is to measure the heat exchanged between a sample and its sur-
roundings associated with state changes of the sample (such as chemical reactions,
physical changes or phase transitions). The use of di�erent calorimetric techniques
provides access to diverse physically relevant properties such as the heat �ow, la-
tent heat, speci�c heat, the transition temperature or the kinetic parameters of a
chemical reaction which enable a proper characterization of the studied phase tran-
sitions and their thermal properties. The book of W. Hemminger and G. Höhne
[82] provides an exhaustive report of the diverse calorimetric techniques and details
the information that can be accessed by them.

The origins and advances on calorimetry techniques are linked to the progress
and development of thermodynamics as a framework for a well established theory
of heat. One of the �rst usable calorimeters was designed by the French scientists
Antoine Lavoisier and Pierre-Simon Laplace in 1783 [82]. Figure 3.1 shows a sketch
of the design of such calorimeter. The working principle of this device was as follows:
The sample chamber was surrounded by a double-walled vessel full of ice, with a
small hole at the bottom. This �rst vessel full of ice is surrounded by a second
double-walled vessel �lled with a mixture of water and ice, which keeps the entire
system in thermal equilibrium at 0◦C. When the sample under study is placed
inside the calorimeter, any heat released melts a certain amount of ice in the inner
vessel and the obtained water (∆m) is collected below. Thus, if the latent heat of
ice (L) is known, the heat involved can be estimated as: Q = L∆m

The development of such ice calorimeter involving a phase transition was possible
due to the observations of the Scottish chemist Joseph Black on the nature of heat
and temperature. In 1760 Black realized that the delivery of energy to melting ice
did not result in an increase of its temperature, and he concluded that the delivered
energy must be stored in the water itself in form of a so called transition latent
heat.

Among many other scienti�c contributions during the eighteen century, these
observations and �rst attempts on measuring and understanding the nature of
heat are fundamental contributions on the dawn of thermodynamics [83]. During
the nineteenth century, the development of accurate calorimeters by many di�erent
prominent scientists placed the study of heat at the frontier of science. Among
many contributions, the work by James Joule has to be highlighted. His work on
the determination of the electrical and mechanical equivalents of heat is one of the
most important contributions to calorimetry. As the passage of years gave a better
understanding of thermodynamics and the theory of heat, calorimetry became a
well established scienti�c technique to accurately measure and determine heat �ows.

Originally, the diverse calorimetric techniques operated without the in�uence of
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Figure 3.1: Representation of the calorimeter designed by Lavoisier and Laplace
in 1783 (Image taken from: M. Kleiber "Der Energiehaushalt bei Mensch und

Tier", Paul Parey, Hamburg)

any other applied external stimuli and temperature or heat �ow were the only
driving �elds of the sample phase transition. It was not until a few decades ago
that special calorimeters have been developed with the particular characteristic of
allowing the application of one or more external stimuli during the experiment.
Detailed reports can be found describing some of the �rst bespoke calorimeters
allowing the application of di�erent external �elds such as: magnetic �eld [84],
mechanical stress [85�88], hydrostatic pressure [89] and electric �elds [90�92]. It is
specially important to highlight the fundamental role that unconventional bespoke
calorimeters had to perform the experiments on the samples studied in this thesis.
The design and construction of bespoke calorimeters is a unique tool to study the
thermal response of the studied samples when subjected to multiple external �elds.

3.1.1 Di�erential scanning calorimetry

This section presents a general description of the working principles of Di�erential
Scanning Calorimetry, which is the basis beneath the design and construction of
the di�erent calorimetric setups presented in this thesis. The ideas discussed in [93]
served as inspiration for the following section.

Figure 3.2 shows a sketch of the basic elements of a Di�erential Scanning Calorime-
ter (DSC). The main parts of a DSC are a massive calorimetric block with high
thermal conductivity, which has two identical thermoelectric sensors on contact
with its surface. The sample under study (S) is placed on top of one sensor, and
the inert reference (R) 1 is placed on top of the other sensor. Therefore, both sam-
ple and reference have an indirect thermal contact with the massive calorimetric
block.

1A sample that does not undergo any phase transition for the full temperature range under
study. In our case, we used a copper piece as an inert reference for all measurements presented in
this thesis.
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Figure 3.2: Sketch of a DSC. The calorimetric block is at temperature TB(t) that
will change with time, the sample is at TS and the reference, at TR. JS and JR
represent the corresponding heat �uxes between the sample and the calorimetric
block, and between the reference and the calorimetric block, respectively.

As a di�erential method, a DSC measures the response di�erence between the
two sensors by subtracting their individual signals. Hence, it is important that both
sensors work under similar physical conditions and the design of a DSC has to take
into account the symmetry between the di�erent components of the system.

Let's suppose that the calorimetric block temperature is linearly scanned with

time as TB(t) = TB(t = 0) +
dTB
dt

t, where
dTB
dt

= ṪB is the scanning rate. Then,
the measured heat �ow can be separated into the following contributions:

dQ

dt
=
dQA
dt

+
dQCp
dt

+
dHt

dt
(3.3)

where
dQA
dt

accounts for an asymmetric term of the calorimeter,
dQCp
dt

comes from

the speci�c heat di�erence between the sample and reference and
dHt

dt
is the latent

heat contribution when the sample undergoes a �rst-order phase transition. In this
case, the thermal balance equations of the sample and reference can be exposed as:

dH

dt
= CS

dTS
dt

+ JS (3.4a)

0 = CR
dTR
dt

+ JR (3.4b)

where CS , CR, TS and TR are the speci�c heat and the temperature for the studied
sample and the reference, respectively, and JS and JR correspond to the heat �uxes
of each one with the calorimetric block. On the one hand, the �rst term on the

right hand side
(
Ci
dTi
dt

)
corresponds to the energy needed to change the sample

or reference temperature, while the second one (Ji) corresponds to the energy
that the sample or the reference exchanges with the surroundings due to existing

temperature gradients. On the other hand, on the left hand side the term
(
dH

dt

)
accounts for the energy released or absorbed by the sample during a �rst-order
phase transition.
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In the quasi-static approximation, the temperature gradients between the sample,
reference and the calorimetric block will be small. Therefore, we can assume that
the heat �uxes between these components will be proportional to the temperature
di�erence between them, and we use the Fourier law to express them as:

Ji =
Ti − TB
Ri

, where Ri is the thermal resistance (the reciprocal magnitude to

thermal conductance) of the medium that separates the sample or the reference
and the calorimetric block.

As the DSC is designed to provide similar physical conditions to both the sample
and reference environments, we can assume that their thermal resistances will be
very close to each other: RS ≈ RR ≡ R. 2 Therefore, if we subtract equations 3.4a
and 3.4b we obtain:

dH

dt
= CS

dTS
dt
− CR

dTR
dt

+
TS(t)− TR(t)

R
(3.5)

Additionally, in the quasi-static approximation, where the scanning rate is low
enough to allow the sample and reference temperatures to follow the calorime-

tric block temperature pro�le, we can further assume that:
dTS
dt
≈ dTR

dt
≈ dTB

dt
.

Therefore, equation 3.5 can be expressed as:

∆T ≡ TS(t)− TR(t) = R

[
dH

dt
+ (CR − CS)

dTB
dt

]
(3.6)

The thermoelectric sensors placed between the sample (and the reference) and
the calorimetric block provide a voltage that is proportional to the temperature
di�erence between their two faces. As each sensor has one side in contact with the
sample or reference and the other one in contact with the calorimetric block, its
single voltage output can be expressed as Yi = B [Ti(t)− TB(t)], where i stands
for either the reference (i = R) or the sample (i = S). Because both sensors
are di�erentially connected, their output will have di�erent sign and the global
measured voltage will be:

Y = YS − YR = B [TS(t)− TR(t)] = B∆T (3.7)

where B is a proportionality factor that depends on the sensors properties. There-
fore, the measured output from a DSC is expressed as:

Y (t) = S

[
dH

dt
+ (CR − CS)

dTB
dt

]
(3.8)

where S ≡ BR is the calorimeter sensitivity, which calibrates the electric output

directly measured from the sensors into heat �ow as
dQ

dt
=
Y

S
. Therefore, equation

3.8 can be rewritten as:
2As we use a copper piece as the reference, this approximation is only valid when the sample

also has a high thermal conductivity. If it is not the case, the samples geometry (their width, length
and height) will add a contribution to the thermal resistance. In our case, as all the studied alloys
are metallic compounds, this approximation is valid as the thermal conductivity of the studied
samples is high.
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dQ

dt
=
dH

dt
+ (CR − CS)

dTB
dt

(3.9)

Equations 3.8 and 3.9 display the main contributions to the measured signal in
a DSC calorimeter, either as a voltage or as heat �ow, respectively. The �rst term,
dH

dt
corresponds to the latent heat contribution of the sample when it undergoes

a �rst-order phase transition. The second term, (CR − CS)
dTB
dt

corresponds to
the energy di�erence between the sample and reference needed to change their
respective temperatures when scanning the calorimetric block temperature. It is
important to point out that this term will always be small, even if the experiment
is performed at relatively high temperature scanning rates. As this second term is
proportional to the speci�c heat di�erence between the sample and reference, it can
be minimized by properly selecting a reference with a similar speci�c heat to the
sample. Therefore, the key aspect of a DSC is that, as the sensors are connected
di�erentially, the sample heat �ow is subtracted from the reference heat �ow and
thus the overall measured signal will be small unless the studied sample undergoes

a �rst-order phase transition and
dH

dt
6= 0. Figure 3.3 shows an illustrative example

of a DSC measured signal when the studied sample undergoes a �rst-order phase
transition when sweeping the system temperature at a certain rate. In the absence
of any �rst-order phase transition, the signal measured shows a certain drift from
zero that comes from the speci�c heat di�erence between the sample and reference
and the temperature sweeping rate at which the calorimetric block temperature is
scanned (second term of equation 3.8). When the �rst-order phase transition takes
place, the �rst term of equation 3.8 becomes relevant and we observe a sharp peak
in our thermal curve (thermogram).

Changes in the measured signal before and after the �rst-order phase transition
will allow us to gain information on the speci�c heat of the sample. When a system
undergoes a �rst-order phase transition, it will transform from an initial state α to
an end state β with di�erent speci�c heats: CαS and CβS , respectively. From equation
3.8, the measured signal before and after the �rst-order phase transition will only

have the contribution of the second term as
dH

dt
= 0. Therefore, DSC becomes a

useful technique to measure speci�c heat changes around a phase transition:

∆Cα→βS = CβS − C
α
S =

Y β − Y α

S
dTB
dt

(3.10)

where Y α and Y β correspond to the measured signal when the sample is at the
initial or at the end state, respectively. Despite being a useful technique to measure
speci�c heat changes around a phase transition, it is not a suitable technique to
accurately measure the absolute value of the sample's speci�c heat, as the design
of a DSC minimizes the speci�c heat contribution to the measured signal.

To properly compare di�erent heat �ow measurements independently of the tem-
perature scanning rate at which they were performed, it is convenient to rescale
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Figure 3.3: Illustrative example of the DSC measured voltage response when
the sample exhibits a �rst-order phase transition from an initial phase α to an end
phase β. The measured voltage output (Y(t)) is displayed as a black continuous
line and the baseline is shown as a red dashed line. The insert shows a detail of
the background below the calorimetric peak.

equation 3.9 as a function of temperature rather than time. As
dQ

dT
=

Q̇

ṪB
, where

Q̇ =
dQ

dt
and ṪB =

dTB
dt

=
dT

dt
, we obtain:

dQ

dT
=
dH

dT
+ (CR − CS) (3.11)

From the measured heat �ow, we can determine the latent heat or transition
enthalpy (∆Ht) and entropy changes (∆St) associated with a �rst-order phase
transition. For this purpose, a proper integration of equation 3.11 must be done.
The challenge here is to properly separate the baseline from the �rst-order phase
transition signal in order to obtain accurate values to characterize the phase transi-
tion. The major contribution to the measured baseline is the speci�c heat di�erence
between the sample and reference (CR − CS) together with any asymmetric con-
tribution coming from the calorimeter design.

A good estimate of the baseline is to perform a linear �t above (CR − CαS )(T )

and another one below (CR − CβS )(T ) the phase transition, and then extrapolate
the baseline behaviour at the phase transition temperature range with a linear
combination of the two baselines together with a weight factor. At a certain tem-
perature T within the transition temperature range, an appropriate factor for the
linear combination of both background �ts is the transformed fraction, which cor-
responds to the portion of the sample that has transformed from the initial α state
to the end β state at that speci�c temperature: χ(T ). Therefore, the speci�c heat
behaviour of the sample within the transition temperature range can be expressed
as:
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CS(T ) = [1− χ(T )]CαS (T ) + χ(T )CβS (T ) (3.12)

where χ(T ) is the fraction of the sample in the β phase, which is bound by 0 6
χ 6 1. Thus, at low temperatures below the phase transition the sample is in the
α state and χ = 0 while above the phase transition, the sample has completely
transformed to the end state β and χ = 1. Thus, the background can be generally
expressed as ζ(T ) ∼ (CR−CS)(T ) and the transition enthalpy and entropy changes
will be computed as:

∆Ht =

∫ Tf

Ts

(
dQ

dT ′
− ζ
)
dT ′ (3.13)

∆St =

∫ Tf

Ts

1

T ′

(
dQ

dT ′
− ζ
)
dT ′ (3.14)

where Ts and Tf are the start and end integration temperatures, taken before and

after the phase transition and enclosing the temperature range where
dH

dT
6= 0.

It is important to take into account that the transition enthalpy and entropy
changes arise from the full transformation of the sample from the initial to the
end state. If we now consider an arbitrary end integration temperature T where
Ts 6 T 6 Tf , the entropy change can be expressed similarly to the transition
entropy change (equation 3.14) as:

S(T )− S(Ts) =

∫ T

Ts

1

T ′

(
dQ

dT ′
− ζ
)
dT ′ (3.15)

This partial entropy change from an initial reference value S(Ts) to an end value
S(T ) arises from the partial transformation of the sample from the initial state to an
intermediate state. As the sample fraction that has transformed at this intermediate
temperature (T ) is expressed by the transformed fraction as (χ(T )), the entropy
change of equation 3.15 can be rewritten as S(T ) − S(Ts) = χ(T )∆St. Therefore,
the transformed fraction at an arbitrary temperature will be generally expressed
as:

χ(T ) =
S(T )− S(Ts)

∆St
=

∫ T

Ts

1

T ′

(
dQ

dT ′
− ζ
)
dT ′

∆St
(3.16)

3.1.1.1 Isothermal DSC calorimetry

Commercial DSC calorimeters are designed to work under temperature scans.
However, when we want to characterize the caloric and multicaloric e�ects near a
�rst-order phase transition that is sensitive to di�erent applied external �elds, it is
necessary to develop bespoke setups that allow us to perform calorimetric measure-
ments under the in�uence of other external �elds {xi}. These unique setups give
us the possibility to perform calorimetric measurements at constant temperature
while scanning other external �elds.
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In this kind of measurements, the external �eld is linearly scanned with a rate
dxi
dt

while the calorimetric block temperature is kept constant at a certain temperature
TB . In this scenario, the thermal balance equations 3.4a and 3.4b still hold true,
and if we assume again that the thermal resistances are very close to each other
(RS ≈ RR ≡ R), we can rewrite equation 3.6 as:

∆T ≡ TS(t)− TR(t) = R

[
dH

dt
+ CR

dTR
dt
− CS

dTS
dt

]
(3.17)

As before, the electric output measured from both thermoelectric sensors can be

converted to heat �ow using the calorimeter sensitivity as
dQ

dt
=

Y

S(T, xi)
. It is

important to notice that under the new experimental conditions, we must know
the external �eld dependency of the sensitivity to convert the measured electric
output to heat �ow. Under these assumptions, equation 3.17 becomes:

dQ

dt
=
dH

dt
+ CR

dTR
dt
− CS

dTS
dt

(3.18)

This equation displays the main contributions to the heat �ow measured with
a DSC calorimeter working under isothermal conditions while scanning the exter-
nal �eld xi. In the absence of a �rst-order phase transition, the �rst term of the
equation vanishes and the measured signal corresponds to a combination from a
certain marginal �eld-induced signal of the sensors together with any asymmetric
contribution coming from the calorimeter design. As now the calorimetric block
temperature is kept constant, the signal coming from the last two terms of this
equation is rather small when compared to this same term when scanning the
temperature (equation 3.9).

To properly compare di�erent heat �ow measurements independently of the ex-

ternal �eld scanning rate used, it is convenient to rescale equation 3.18 as
dQ

dxi
=
Q̇

ẋi
,

where Q̇ =
dQ

dt
and ẋi =

dxi
dt

. Therefore:

dQ

dxi
=
dH

dxi
+ CR

dTR
dxi
− CS

dTS
dxi

(3.19)

From this measured heat �ow, a proper integration must be done to determine the
�eld-induced enthalpy or entropy changes. For this purpose, a suitable baseline has
to be chosen. Analogously to the previous case, the background can be generally

expressed as ζ(xi) ∼ CR
dTR
dxi

− CS
dTS
dxi

and the induced enthalpy and entropy

change will be computed as:

H(x)−H(xsi ) =

∫ x

xs
i

(
dQ

dx
′
i

− ζ
)
dx
′

i (3.20)

S(x)− S(xsi ) =

∫ x

xs
i

1

T

(
dQ

dx
′
i

− ζ
)
dx
′

i (3.21)
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where xsi and x are the start and end integration external �elds. It is important to
point out that in this case, xsi corresponds to the external �eld at which the phase
transition starts, while the end integration external �eld x is rather limited to the
available external �eld range of our setups. When performing a measurement under
speci�c conditions {T, xi(t)}), the available external �eld range may be enough to
fully induce the phase transition of the studied sample, or it may be able to induce
only a partial transformation of the sample. In the former case, equations 3.20
and 3.21 correspond to the transition enthalpy (∆Ht) and entropy (∆St) change
respectively, whereas in the latter case they correspond to the partial enthalpy
∆H(xsi → x) and entropy change ∆S(xsi → x).

3.1.1.2 Entropy curves

The diverse calorimetric thermograms measured under iso�eld conditions while
scanning the temperature can be used to create accurate entropy curves of the stud-
ied samples. For this purpose, we have to take under consideration the calorimetric

data
dQ(T, xi)

dT
together with measurements of the speci�c heat dependency with

temperature and the external �eld before and after the phase transition, expressed
as CαS (T, xi) and CβS (T, xi) respectively. By taking under consideration equations
3.15 and 3.16, from each calorimetric thermogram a corresponding entropy curve
can be computed by the following expression:

S(T, x)−S(T0, x) =



∫ T

T0

CαS (T ′, x)

T ′
dT ′ T ≤ Ts

S(Ts, x) +

∫ T

Ts

1

T ′

[
CS(T ′, x) +

dH(T ′, x)

dT ′

]
dT ′ Ts < T ≤ Tf

S(Tf , x) +

∫ T

Tf

CβS (T ′, x)

T ′
dT ′ T > Tf

(3.22)
where S(T0, x) is the sample entropy at a temperature T = T0 under an applied
external �eld xi = x, taken as the reference entropy for the particular entropy
curve, and the speci�c heat CS(T, x) can be expressed as CS = (1− χ)CαS + χCβS ,
where the transformed fraction and the di�erent single-phase speci�c heats depend
on both the temperature and applied external �eld.

Equation 3.22 divides into three di�erent temperature regions an entropy curve.
On the one hand, for the two regions below and above the phase transition temper-
ature range [Ts, Tf ], the entropy curve is computed from the single phase speci�c
heat behaviour with temperature and the applied external �eld by integrating the

expression dS =
CiS
T
dT . On the other hand, within the phase transition temper-

ature range we have two contributions: the speci�c heat contribution when the
sample is in a combination of both phases and the latent heat from the phase
transition, as expressed in equation 3.15.
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From a set of di�erent iso�eld entropy curves characterizing the studied material
under the in�uence of a certain applied external �eld, it is possible to compute its
thermal response, either as an isothermal entropy change or an adiabatic temper-
ature change, associated with the caloric e�ect when the material is subjected to
a change on the applied external �eld from xi = xs to xi = xf . For this purpose,
the isothermal entropy change arising from an external �eld change is obtained by
subtracting entropy curves at the initial and end external �eld values, and it is
expressed as:

∆S(T, xs → xf ) = S(T, xf )− S(T, xs) (3.23)

Conversely, to compute the adiabatic temperature change arising from this ex-
ternal �eld change we have to perform an inversion of both entropy curves involved
T (S, x), and it will be expressed as:

∆T (S, xs → xf ) = T (S, xf )− T (S, xs) (3.24)

Equation 3.23 provides the isothermal entropy change as a function tempera-
ture, while equation 3.24 provides the adiabatic temperature change as a function
of entropy. For the latter, it is customary to plot temperature changes as a func-
tion of temperature. Such temperature dependence is obtained by plotting each
∆T (S, xs → xf ) data at the temperature given by the initial entropy curve prior
to the change on the external �eld S(T, xs).

3.1.2 Measurement protocols for DSC calorimetry

So far, this section has focused on discussing the general methods to compute
the relevant physical parameters that characterize the caloric and multicaloric ef-
fects (such as the transition latent heat ∆Ht, the transition entropy change ∆St
and the isothermal entropy and adiabatic temperature changes) near a �rst-order
phase transition, obtained from calorimetric measurements performed under either
isothermal {T, xi(t)} or iso�eld {T (t), xi} conditions.

As discussed in section 2.2.2, inherent to the �rst-order character of the phase
transition, a certain temperature and external �eld hysteresis will take place in all
the studied materials. Therefore, the back and forth transitions between the low-
temperature (α) and the high-temperature (β) phases will not take place at the
same temperature and external �eld. This fact has far-reaching consequences on the
thermal response of the studied materials when subjected to cyclic external �eld
changes. Therefore, the thermal history of the sample has to be taken into account
and proper thermodynamic paths have to be designed in order to precisely control
the initial thermodynamic state of the sample before performing any calorimetric
experiment.

3.1.2.1 Isothermal measurements

As illustrated in Figure 3.4, isothermal measurements are performed under a
cyclic external �eld pro�le which allows us to properly determine the irreversible
and reversible contributions of the caloric e�ects at a certain constant temperature.
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Figure 3.4: Scheme of the measurement protocols followed for calorimetric runs
under isothermal conditions for a material displaying an inverse caloric e�ect
(second row) and a conventional caloric e�ect (third row). On the left side, the
transition temperature behaviour under an applied external �eld is plotted for a
material exhibiting either an inverse (top) or a conventional (bottom) caloric ef-
fect. The temperature regions at which the forward (β → α) and reverse (α→ β)
transitions take place are bounded by [αs(x), αf (x)] and [βs(x), βf (x)], respec-
tively. The temperature width of both transitions are indicated as blue (forward
transition) and red (reverse transition) shaded areas for both the lowest xi = 0
and highest xi = x external �eld applied, and act as guides to the eye for the
temperature pro�les for each measurement protocol. The top panels display the
time dependence of the applied �eld during both experiment protocols, and the
start time (ts) of the �rst �eld ramp is indicated by a vertical dashed line.

For this purpose, the measurement protocols have to take into account the ther-
mal history of the sample and di�erent temperature paths have to be performed in
order to control the sample's initial state before the measurement start, indicated
by ts in the �gure.

As discussed in detail in section 2.2.2, we can distinguish two di�erent situations
when considering the behaviour of a �rst-order phase transition under an applied
external �eld. On the one hand, a system where the order parameter is maximized
at the low temperature phase (Xβ

i < Xα
i ) will show a conventional caloric e�ect,

and under the application of an external �eld the transition temperature will shift

to higher temperatures as
dTt
dxi

> 0. On the other hand, a system where the order
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Figure 3.5: Scheme of the temperature dependence of the order parameter Xi
upon heating and cooling at zero �eld xi = 0 (red) and under an applied external
�eld xi = x (blue) for a material displaying an inverse (left) or a conventional
(right) caloric e�ect. In each �gure, the dotted vertical lines represent the change
in Xi as a consequence of the external �eld ramps of protocol 1 (yellow) or
protocol 2 (green). Numbers point out the start and end order parameter value of
the �rst �eld ramp 1O→ 2O and successive ramps 2O↔ 3O for each measurement
protocol at a certain constant temperature.

parameter is maximized at the high-temperature phase (Xβ
i > Xα

i ) will show an
inverse caloric e�ect, and under the application of an external �eld the transition

temperature will shift to lower temperatures as
dTt
dxi

< 0.

In light of this clear distinction of the phase transition behaviour under an applied
external �eld, the temperature paths needed for each measurement protocol will
depend on whether the sample exhibits a conventional or an inverse caloric e�ect.
Figure 3.5 shows the temperature dependence of the order parameter for both
caloric e�ects at zero �eld xi = 0 and under an applied external �eld xi = x. As
it can be seen, the order parameter change strongly depends on the measurement
temperature and will also signi�cantly di�er between the �rst and subsequent �eld
ramps. Therefore, the measurement protocols are designed as follows:

1. Protocol 1:
Before the measurement start at ts, the sample is brought to a state at

which the order parameter Xi is minimized at zero external �eld xi = 0.

For a material exhibiting an inverse (conventional) caloric e�ect, the ap-
plication of the external �eld 0 → x induces the reverse (α → β) (forward
(β → α)) phase transition. Therefore, before the experiment start the ma-
terial is completely transformed to the α (β) phase and then it is heated
(cooled) to the desired measurement temperature.
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2. Protocol 2:
Before the measurement start at ts, the sample is brought to a state at

which the order parameter Xi is maximized under an applied external �eld
xi = x.

For a material exhibiting an inverse (conventional) caloric e�ect, the re-
moval of the external �eld x → 0 induces the forward (β → α) (reverse
(α → β)) phase transition. Therefore, before the experiment start the ma-
terial is completely transformed to the β (α) phase and then it is cooled
(heated) to the desired measurement temperature.

3.1.2.2 Iso�eld measurements

Figure 3.6 shows a scheme of the applied external �eld and temperature pro�les
during an iso�eld calorimetric measurement. As the temperature pro�le depicted
in the �gure can be applied cyclically, a reasonable temperature margin below
αs(x) and above βs(x) has to be allowed in order to ensure that the forward and
reverse transitions are completed. Consequently, after a proper determination of
the calorimetric baseline these measurements will provide accurate values of the
transition entropy and enthalpy change.

Figure 3.6: Scheme of the measurement protocol followed for calorimetric runs
under iso�eld conditions. The top panel shows the applied external �eld during all
the experiment at xi = x. The temperature regions at which the forward (β → α)
and reverse (α → β) transitions take place are bounded by [αs(x), αf (x)] and
[βs(x), βf (x)], respectively. Two vertical dashed lines mark the start time (ts)
and end time (tf ) of the forward and reverse transitions.
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3.1.3 DSC under magnetic �elds

The DSC measurements under magnetic �eld have been performed with a be-
spoke calorimeter previously designed and built by our research group described
in [94]. Figure 3.7 shows a scheme of the experimental setup used to perform the
measurements with this device.

The calorimeter is placed on top of a copper container that is connected to a
RP − 890C Lauda® GmbH Proline thermal bath. The thermal bath uses silicon
oil that �ows through the cooper container, and controls its temperature and �ow
within this closed circuit (see panel (a) in Figure 3.7). The calorimeter and copper
container are placed into the bore of a 6T Cryogen-Free Magnet from Cryogenic
Ltd.®. Nitrile rubber pipe insulation is placed around the container and calorimeter
to isolate the system from the surrounding and guarantee a proper temperature
working range for the experiments. The height and centring of the calorimeter is
adjusted in order to place the sample in the region where the applied magnetic
�eld is homogeneous (see panel (b) in Figure 3.7). Two Peltier modules connected
di�erentially, made of a battery of P-N junctions, are used as thermoelectric sensors.
One side of each Peltier module is placed in contact with the calorimeter copper
block. On the free side of the Peltier module that lays next to the centre of the
calorimeter we place the sample under study, and on the other module, a copper
reference. A thin layer of silicone heat transfer compound (HTS) from Electrolube®

is placed on both surfaces of the Peltier modules to ensure a proper thermal contact
between the sensors and the calorimeter copper block, the sample and reference.
Additionally, sample, reference and the Peltier modules are tightly wrapped with
Te�on tape to keep them in place (see panel (c) in Figure 3.7). To increase the
thermal homogeneity of the calorimeter and minimize air convection, a copper cover
is placed on top of the calorimeter block. The temperature of the calorimeter is
measured with a Pt-100 platinum resistance that is embedded inside the calorimeter
copper block. Two Keithley® 2000 multimeters are used to measure the signal of
both the Pt-100 platinum resistance and the di�erentially connected thermoelectric
sensors. The whole system is controlled by a personal computer using Labview
software. Readings of the time, temperature and calorimetric output are performed
at typical rates of 0.5Hz.

3.1.3.1 Setup calibration

As previously stated, it is necessary to determine the sensitivity (S) of a calorime-
ter to be able to convert the directly measured voltage output of the thermoelectric
sensors (Y ) to the exchanged heat (Q̇). As the properties of the thermoelectric sen-
sors depend on the temperature, the sensitivity of the calorimeter will also depend
on the temperature. Therefore, to calibrate a calorimeter we have to measure the
sensitivity at di�erent temperatures ranging within the working temperature range
of the particular setup.
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Figure 3.7: Di�erent views of the di�erential scanning calorimeter under mag-
netic �elds. Panel (a) shows a representation of the 6T Cryogen-Free Magnet
from Cryogenic Ltd.® in which the purpose-built device is placed inside its bore.
A RP − 890C Lauda® GmbH Proline thermal bath is used to control the tem-
perature of a copper container placed below the calorimeter. Panel (b) illustrates
the ensemble of the di�erential scanning calorimeter and the copper container
which are placed inside the magnet bore and panel (c) shows a sketch of the
calorimeter and the corresponding picture, where the sample and reference are
covered by Te�on tape.
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To perform a calibration at a speci�c temperature, we have to dissipate a known
amount of energy (P ) onto the sample thermoelectric sensor and measure the elec-
trical output of the calorimeter (Y ) at the stationary state [93]. Figure 3.8 shows
a sketch of the electrical circuit used to determine the sensitivity of a calorimeter.
The sample is replaced by a resistor RS and when the circuit is closed, a current
of intensity IS circulates through it. The power dissipated by Joule e�ect onto the
thermoelectric sensor will be P = IS∆VS . The current intensity IS is determined
by measuring the voltage drop ∆VR at a standard resistor RR = 100 Ω connected

in series to the sample resistor as IS =
∆VR
RR

. Therefore, if we measure the volt-

age drop at the sample and standard resistors we can determine the sensitivity

as S =
Y − Y0
P

, where Y corresponds to the electrical output of the calorimeter
at the stationary state and Y0 to the output when no energy is being dissipated
at the sample sensor, which is subtracted as a base line. The voltage drops at the
sample and standard resistors (∆VS and ∆VR, respectively) are measured by Keith-
ley® 2000 multimeters, and the same copper reference is used for the calibration
measurements and the experiments carried out afterwards.

To calibrate the DSC under magnetic �elds, we applied a voltage of 3V with
the power supply and used a strain gauge (RS ≈ 120 Ω) as the sample resistor,
and a copper block as the reference. The circuit was closed for a period of v
100 s at each temperature until the stationary state was reached. Figure 3.9 (a)
shows the electrical output of the calorimeter as a function of time for calibration
measurements performed at di�erent constant temperatures. Before the energy
dissipation on the sample sensor takes place, the calorimetric signal exhibits a
certain constant drift from zero. When the electric circuit is closed, the dissipation

Figure 3.8: Sketch of the experimental setup mounted to perform the calibration
of a DSC.
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Figure 3.9: Illustrative examples of calibration measurements for the DSC un-
der magnetic �eld calorimeter. (a) : Voltage output (Y ) as a function of time
measured at di�erent constant temperatures for the calorimeter calibration.
(b) : Comparative plot of the calorimeter sensitivity as a function of temper-
ature. Red dots correspond to the sensitivities obtained from the measurements
shown in panel (a) and the dashed line corresponds to the sixth order poly-
nomial �t of the previous calibration (January of 2014): S(T ) = 412(0.4) +
1.625(8)T −0.007(0.1)T 2−5.9(0.1)10−5T 3−9.4(0.9)10−8T 4 +7.6(0.5)10−10T 5 +
2.9(0.3)10−12T 6 for T ∈ [−200, 150] ◦C.

process starts and we detect a sharp onset of the calorimetric signal that saturates
to a plateau. Once the circuit is opened again, the signal relaxes back to its baseline.
The obtained sensitivity values from these measurements compare well with the
previous calibration of the setup, as it can be seen in Figure 3.9 (b). The new
sensitivity measurements show a relative discrepancy within the range [0.8, 1.4]%
with the polynomial �t of the previous calibration (January of 2014) [92].

As the discrepancies obtained between the new sensitivity measurements and
the previous calibration polynomial �t are small, we conclude that the calibration
polynomial function (January of 2014) correctly describes the actual temperature
dependence of the DSC sensitivity in the temperature range T ∈ [260, 310]K.
Therefore, the same polynomial function will be used to compute the sensitivity of
the DSC under magnetic �elds to analyse the measurements performed with this
setup.

Besides, the dependence of the thermoelectric sensors voltage output with the
applied magnetic �eld was studied by means of measurements on a known diamag-
netic Cu-Zn-Al sample under di�erent applied magnetic �elds [84]. It was found
that the thermoelectric sensors voltage output is not a�ected by the applied mag-
netic �eld. Therefore, the calorimeter sensitivity was veri�ed to be independent of
the applied magnetic �eld [94].
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3.1.4 DSC under magnetic �elds and uniaxial compressive

stress

The study of materials exhibiting a cross-coupled response under di�erent exter-
nal �elds requires the development of bespoke experimental setups that allow the
simultaneous application of multiple external �elds. For this purpose, a bespoke
di�erential scanning calorimeter allowing the application of uniaxial compressive
stress together with magnetic �eld has been designed and built. This unique setup
aims for the analysis of the caloric and multicaloric e�ects arising from materi-
als displaying a magnetostructural transition with a strong coupling between the
structural and magnetic degrees of freedom, as these materials are prone to show
a cross-coupled response.

This device is an improved and upgraded version of a previous setup designed and
built by our research group, and presented in [92]. There was a twofold motivation
for the development of this unique experimental setup: First of all, there was an
absence of calorimetric techniques capable of measuring under applied uniaxial
stress. Secondly, there is scarce reported experimental data for multicaloric e�ects
among the di�erent families of multicaloric materials. The development of this new
setup is a step forward on addressing this lack of experimental data.

3.1.4.1 Calorimeter design

Figure 3.10 shows a scheme of the experimental system. The calorimeter core is
made of a 15mm diameter and 45mm length copper cylinder (1) with two Peltier
modules (2, 3) glued on the top and bottom surfaces by a thin layer of GE Varnish.
These Peltier modules are used as the thermoelectric sensors and are connected dif-
ferentially. The temperature of the calorimeter is measured with a Pt-100 platinum
resistance (4) that is embedded inside the calorimeter copper block. The free side
of the bottom module is in thermal contact with the reference (5). For all experi-
ments performed on this device, a copper sample of mass m = 601.195mg has been
used as reference. The free side of the top Peltier module is in thermal contact with
a 10mm diameter and 3mm thickness high-strength aluminium disk (6) and the
studied sample (7) is placed on top of this disk. A thin layer of silicone heat transfer
compound (HTS) from Electrolube® is placed on the surfaces of each Peltier mod-
ule to ensure a proper thermal contact. To protect the top Peltier module of any
damage from the applied uniaxial load to the studied sample, the high-strength alu-
minium disk is placed into a Polyether ether ketone (PEEK) holder (8) that leans
on the inner wall of the high-strength aluminium container (9) that surrounds the
calorimeter copper block. This aluminium container is connected to a RP − 890C
Lauda® GmbH Proline thermal bath (not shown in Figure 3.10 for the sake of sim-
plicity) through two copper pipes (10). The thermal bath uses silicon oil that �ows
through the aluminium container, and controls its temperature and �ow around
this closed circuit.

The ensemble of the calorimeter copper core and the surrounding aluminium
container is placed inside the bore of a 6T Cryogen-free Magnet from Cryogenic
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Ltd.® (11). Uniaxial load is applied to the sample through a high-strength alu-
minium rod (12) whose upper end is in contact with a free mobile platform (13)
outside of the cryogen-free magnet bore (see panel (a) in Figure 3.10). To minimize
the shear components of the stress applied to the studied sample, a cylindrical plas-
tic centring platform (14) that �ts to the diameter of the magnet bore is attached
to the high-strength aluminium rod. A second centring platform is placed at the
top of the magnet bore (15) that additionally improves the thermal insulation of
the calorimetric ensemble placed inside the magnet bore. At the bottom end of the
high-strength aluminium rod, a 10 mm thickness PEEK disk (16) is attached to the
aluminium rod in order to minimize the thermal coupling between the sample and
the rod. To increase the thermal homogeneity of the calorimeter and minimize both
the air convection around the sample and the thermal loses from the aluminium
container to the surrounding, a plastic cover is added around the container that
goes up to the plastic centring platform (not shown in Figure 3.10 for the sake of
simplicity). In addition to the calorimetric signal of the Peltier modules, the setup
is also designed to measure the length changes of the studied samples during the
experiments. A linear variable di�erential transformer (LVDT) sensor (17) from
Solartron Metrology® in contact with the mobile platform that measures its rela-
tive position is used with this purpose. The LVDT sensor is mounted onto a mobile
holder, whose position can be adjusted with a micrometer. The mobile holder has
a certain margin of movement along the side of a �x platform placed on top of
the Cryogen-free magnet. The uniaxial load is applied by adding the desired dead
weight from pre-weighted lead ingots (18) on top of the mobile platform.

The setup allows the performance of simultaneous calorimetric and dilatometric
measurements within the temperature range T ∈ [210, 360]K, under applied com-
pressive forces up to F = 1200N and magnetic �elds up to 6T. The LVDT sensor
is excited by applying 10V with an AC voltage source. The electric signals from
the di�erentially connected Peltier modules, the Pt-100 platinum resistance and
the LVDT sensor are read by two Two Keithley® 2000 and one Agilent® 34401A
multimeters, respectively. The whole system is controlled by a personal computer
using Labview software. Readings of time, temperature, calorimetric output and
length changes are performed at typical rates of 1Hz.

This new version of the calorimeter implied an in-depth redesign of the device,
incorporating several modi�cations with respect to the previous setup described
in [92]. When performing calorimetric measurements while scanning the tempera-
ture, the previous device showed a poor behaviour of the measured baselines, thus
hindering the calorimetric signal of the sample and reducing the information that
could be accessed. This major issue was addressed in the new version by including
a massive calorimeter copper block (1) that is embedded inside the high-strength
aluminium container, where the silicon oil �ows through. This massive calorime-
ter centre, that is in direct contact with both thermoelectric sensors, gives more
thermal inertia to the setup. As copper has a high thermal conductivity, it helps
to minimize temperature gradients of the system and reduces the e�ect of ther-
mal �uctuations from temperature changes of the silicon oil on both sample and
reference thermoelectric sensors when measuring.
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Figure 3.10: Di�erent views of the di�erential scanning calorimeter under mag-
netic �elds and uniaxial compressive stress. Panel (a) shows a picture of the 6T
Cryogen-Free Magnet from Cryogenic Ltd.® in which the purpose-built device is
coupled to its bore. Panel (b) illustrates the ensemble of the di�erential scanning
calorimeter and the aluminium container which are placed inside the magnet
bore and panel (c) shows the details of the calorimeter which is embedded in the
aluminium container.

Moreover, the sensitivity of the device is of crucial importance for the clear
measurement of the sample heat �ow during the experiments. In our device, a
high-strength aluminium disk (6) is placed between the sample and its thermoelec-
tric sensor, and its size has a critical e�ect on the sensibility of the calorimeter.
Nevertheless, the disk is of fundamental importance to ensure the protection of the
sample thermoelectric sensor when applying uniaxial compressive load. This issue
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Figure 3.11: Illustrative examples of calibration measurements for the DSC
under magnetic �eld and uniaxial compressive stress calorimeter. (a) : Voltage
output (Y ) as a function of time measured at di�erent constant temperatures
for the calorimeter calibration. (b) : Plot of the sensitivity of the calorimeter
as a function of temperature. Red dots correspond to the sensitivities obtained
from the experimental measurements and the dashed line corresponds to the
second order polynomial �t: S(T ) = −88(8) + 1.21(5)T − 2(0.08)10−3T 2 for
T ∈ [250, 360]K.

was addressed in the design of the device by modifying the diameter and thickness
of the high-strength aluminium disk in order to reduce its total mass and at the
same time guarantee the protection of the thermoelectric sensor. In the previous
version of the setup, the disk had a diameter of 15mm and a thickness of 2mm.
Therefore, the size of the high-strength aluminium disk has been reduced by one
third. Additionally, as the thickness of the disk has been increased, it is expected
that a negligible deformation of the disk will take place when applying uniaxial
compressive loads.

3.1.4.2 Setup calibration

The calibration of this calorimeter is performed by following the same general
procedure as previously described in section 3.1.3.1. An electric circuit similar to
the one schematically presented in Figure 3.8 is mounted onto the sample thermo-
electric sensor of the calorimeter.

For this setup, we use a copper block with dimensions 8.3× 7.8× 3.9mm3 that
has a resistance embedded inside (RS = 120 Ω) as the sample resistor of the cal-
ibration circuit. To perform each measurement, the circuit is closed for a period
of v 1200 − 1400 s at each temperature until the stationary state is reached, and
the applied voltage with the power supply is 9V for all the measurements. Figure
3.11 (a) shows the electrical output of the calorimeter as a function of time for
calibration measurements performed at di�erent constant temperatures. The start
of each measurement has been slightly shifted in time in order to facilitate the
comparison between the di�erent measurements and their corresponding plateaus.



56 Experimental techniques

Figure 3.12: (a): Picture of the DSC structure on top of the cryogenic free
magnet with the LVDT sensor from Solartron Metrology® (left) together with
a sketch of the LVDT sensor and its relative position with respect to the free
mobile platform (right). (b): Voltage output of the LVDT sensor with respect
to the distance from the free mobile platform. Red dots correspond to the
calibration measurements and the dashed line corresponds to the linear �t:
X(mm) = (−0.1519± 0.0003)V + (0.017± 0.002)

The values for the sensitivity obtained from each measurement are plotted as red
dots in Figure 3.11 (b), and the black dashed line is a second order polynomial �t
to the data.

If we compare the values obtained from this measurements with the calibration
of the previous setup presented in [92], we observe an increase of the sensitivity of
around 20% for our improved design in the full temperature range. This increase of
the sensibility is in accordance with the reduction of the size of the high-strength
aluminium disk.

The calibration of the linear variable di�erential transformer (LVDT) sensor is
performed by measuring the voltage output for di�erent �xed displacements, mea-
sured by means of a digital Varnier caliper, with respect to the free mobile platform.
Figure 3.12 shows a picture and a sketch of the LVDT sensor (a) and its voltage
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output measured for di�erent relative positions with respect to the platform (b).
In this con�guration, a zero distance corresponds to the contact position between
the tip of the sensor and the platform, and negative distances correspond to the
compression of the sensor against the platform. As expected, its voltage output
shows a great linearity with displacement within an operational range of 1.5mm.

3.2 Adiabatic thermometry

For the work presented in this dissertation, the performance of adiabatic ther-
mometry measurements has been an important complement to calorimetric tech-
niques in order to thoroughly characterize the induced thermal response on ma-
terials near a �rst-order phase transition that is sensitive to di�erent applied ex-
ternal �elds. The purpose of adiabatic thermometry is to directly measure the
adiabatic temperature change associated with state changes of the sample induced
by a change on the applied external �eld (xsi → xfi ).

Direct measurements of the �eld-induced adiabatic temperature change are gen-
erally performed under the in�uence of a single external �eld, such as magnetic �eld
[35, 95�98], mechanical stress [31, 54, 99�101], hydrostatic pressure [78, 102, 103]
or electric �eld [104]. However, the study of materials exhibiting a cross-coupled
response under di�erent external �elds requires the development of bespoke setups
that allow the simultaneous or sequential application of multiple external �elds.
The design and assembly of such purpose-built setups had an important role on
the work presented in this thesis, and they lay the �rst stone on the direct mea-
surement of �eld-induced multicaloric adiabatic temperature changes.

This section will focus on the description of two bespoke setups that were de-
signed and built during this thesis and allow us to perform direct contact ther-
mometry measurements under the in�uence of uniaxial load and magnetic �eld. A
fundamental di�erence between these setups is the magnetic �eld source used in
each case. The �rst described setup uses an electromagnet allowing us to apply or
remove the magnetic �eld in a few seconds, while the second setup is placed inside
a solenoid that allows us to apply magnetic �eld pulses that last few milliseconds.
The di�erent time scales involved in both measurements, together with the di�er-
ent available magnetic �eld intensities, allow us to access information on both the
thermal response and the dynamics of the �eld-induced phase transition [97].

3.2.1 Measurement protocols for adiabatic thermometry

Adiabatic temperature change measurements induced by an external �eld change
can be performed either under isothermal conditions at the desired starting mea-
surement temperatures T or under a continuously changing temperature T (t). As
previously discussed in section 2.2, the �rst-order character of the studied phase
transitions implies a certain temperature and external �eld hysteresis. Therefore,
the thermal history of the sample has to be taken into account to perform adia-
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batic thermometry measurements and the followed protocols have to be properly
designed in order to follow the desired thermodynamic paths. Taking all this into
account, we can de�ne the discontinuous and continuous measurement protocols,
respectively, as follows:

1. Discontinuous protocol:
The thermodynamic path followed for this protocol corresponds to the

isothermal protocol discussed in section 3.1.2.1 for DSC calorimetry. After
following a certain temperature path in order to control the initial thermody-
namic state of the sample, the system is brought to the desired measurement
temperature where a cyclic external �eld pro�le is applied. It is important to
point out that under the in�uence of multiple external �elds, we only apply a
cyclic pattern on one of the external �elds while keeping the others constant
during the experiment.

As the sample initial state is not a�ected by the previous measurements
performed, the application of a cyclic external �eld pattern allows us to di-
rectly determine the reversible and irreversible induced adiabatic temperature
changes of the sample under study.

2. Continuous protocol:
Under this measurement protocol, the sample is either continuously heated

or cooled at a certain rate, while single external �eld pulses are applied at
certain temperatures. It is important to point out that under the in�uence
of multiple external �elds, the successive applied single �eld pulses can be of
di�erent external �elds.

Under this measurement pattern, the thermodynamic state of the sample
is directly in�uenced by the previously applied external �eld pulses. There-
fore, the induced thermal response for a certain external �eld pulse not only
depends on the instantaneous measurement temperature, but also on the
previous thermodynamic end state after the last external �eld pulse applied.

3.2.2 Direct thermometry with a bench-top electromagnet

A bespoke setup to perform direct thermometry measurements under the simul-
taneous or sequential change of magnetic �eld and uniaxial compressive stress has
been designed and built. The aim of this setup is to complement the measurements
performed with the DSC that allows the application of magnetic �eld together
with uniaxial compressive stress presented in section 3.1.4. The combined mea-
surements of both setups allows us to perform in-depth analysis of the caloric and
multicaloric e�ects arising from materials displaying a magnetostructural transition
with a strong coupling between the structural and magnetic degrees of freedom, as
these materials are prone to show a cross-coupled response.

The setup described in this section is an upgraded version of a previous setup
presented in [65].
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3.2.2.1 Setup design

Figure 3.13 shows a detailed scheme of the experimental system: panel (a) shows
a 3D representation of the whole system, while panel (b) shows a vertical section of
the bespoke direct thermometry setup. The sample (1) is glued on top of a 1.5mm
thickness polyether ether ketone (PEEK) disk (2) by a thin layer of GE Varnish.
The PEEK disk sits on top of a high-strength aluminium container (3), which is
connected to a RP−890C Lauda® GmbH Proline thermal bath (not shown in Fig-
ure 3.13 for the sake of simplicity) through two copper pipes (4). The high-strength
aluminium container sits on top of a 2mm thickness PEEK disk (5) in order to
thermally isolate the aluminium container base from the surroundings. The thermal
bath uses silicon oil that �ows through the aluminium container, and controls its
temperature and �ow around this closed circuit. The temperature of the sample is
directly measured with a �ne gauge K-thermocouple (0.075mm diameter) (6) that
is attached to a free surface of the specimen under study. A small drop of silicone
heat transfer compound (HTS) from Electrolube® is placed on the sample surface
to ensure a proper thermal contact between the specimen and the thermocouple.
Additionally, the sample and the thermocouple are tightly wrapped with Te�on
tape to keep them in place.

Uniaxial load is applied to the sample by means of a screw (7) that compresses
a spring (8) and pushes a free-mobile high-strength aluminium rod (9) that is in
direct contact with the sample. The bottom end of the high-strength aluminium
rod is protected with a 10mm PEEK disk (2) to thermally isolate the sample from
the aluminium rod. To minimize any shear or torsion components from the screw to
the compression spring, a high-strength aluminium holding platform (10) is placed
between them. A second two-piece holding platform (11) is placed between the
spring and the high-strength aluminium rod that protects and keeps in place the
load cell (12) from Omega® that measures the applied force. Two high-strength
aluminium guides (13), isolated at the bottom side from the aluminium container by
two PEEK pieces (5), go through both holding platforms (10 and 11) and improve
the stability of the system under compression. A high-strength aluminium frame
(14) holds the guides, the screw and the aluminium container together. Two PEEK
pieces (not shown in Figure 3.13 for the sake of simplicity) are placed between
the aluminium frame and the aluminium container in order to reduce the heat
leaks between these two elements. The setup is placed between the bores of a
bench-top electromagnet (15) (see panel (a) in Figure 3.13) from GMW Magnet
Systems®. The direct thermometry setup has been designed in order to keep the
sample position in the centre of the region where the applied magnetic �eld is
homogeneous, which is measured by a Hall probe (16) that is placed next to the
sample. To isolate the system from the surrounding and improve the adiabaticity
of the experiments, plates of expanded polystyrene are placed around the direct
thermometry setup.

The setup allows the direct measurement of the sample's temperature change
under applied compressive forces up to F = 1000N and magnetic �elds up to 2T
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Figure 3.13: Di�erent views of the direct thermometry with a bench-top elec-
tromagnet setup. Panel (a) illustrates the bench-top electromagnet from GMW

Magnet Systems® in which the purpose-built device is placed between its bores.
Panel (b) shows a sketch of the direct thermometry setup and its components.
The electromagnet has been omitted from this view for the sake of clarity.

within a temperature range T ∈ [260, 350]K. The electromagnet is controlled by a
speci�c personal computer using a Labview software, and application and removal



3.2 Adiabatic thermometry 61

of the magnetic �eld is performed at a rate of v 1.5Ts−1. The load cell is excited
by applying 5V with a DC voltage source. The electric signals from the thermo-
couple, the load cell and the Hall probe are reecorded by three Keithley® 2000
multimeters. The whole system is controlled by a second personal computer using
Labview software. Readings of time, temperature, applied force and magnetic �eld
are performed at typical rates of 2Hz.

The setup described in this section incorporates several modi�cations in order
to improve its performance with respect to the previous version described in [65].
There is a threefold motivation for the introduced modi�cations: First of all, the
availability of higher magnetic �elds for the experiments. Secondly, an improvement
of the applied force control during the experiments. Thirdly, an improvement of the
thermal insulation to increase the working temperature range.

For these purposes, the diameter of the high-strength aluminium rod (9) has
been reduced, thus allowing to bring closer the electromagnet bores and achieve
higher magnetic �elds up to 2T. Additionally, the length of the high-strength alu-
minium rod has been increased by 10 cm in order to separate the load cell from
the electromagnet and minimize the e�ect of magnetic �eld pulses on the recorded
force. In order to increase the applied force control, the described system incorpo-
rates a compression spring (8) between the screw (7) and the load cell (12). The
purpose of the spring is to minimize the applied force change measured at the load
cell when the sample under study experiences a length change due to the �eld-
induced magnetostructural transition. Last but not least, the thermal loses of the
high-strength aluminium container (3) to its surroundings have been minimized
by adding PEEK pieces at the di�erent contact surfaces with other elements, such
as the hard-aluminium guides (13) and frame (14). Moreover, the thickness of the
PEEK disk below the sample has been optimized in order to increase the working
temperature range of the setup.

3.2.2.2 Setup calibration

The calibration of this setup consisted on the measurement of the load cell lin-
earity, the calibration of the �ne-gauge K thermocouple and the assessment of the
adiabaticity during the measurements.

Firstly, the load cell response is calibrated by measuring the voltage output for
di�erent applied forces, which are controlled by hanging di�erent calibrated weights
to the sensor. Figure 3.14 (a) shows the load cell voltage output for di�erent applied
forces. As expected, the sensor shows a great linearity within the full force range.

Secondly, the reference junction temperature of the �ne-gauge K thermocouple
has to be adjusted. In our case, it is simulated by a Keithley® 2000 multimeter,
which is the thermocouple measuring unit. This multimeter allows us to modify the
reference junction temperature, which is adjusted in order to measure zero degrees
Celcius when the thermocouple is immersed into a mixture of distilled water and
ice in equilibrium.
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Figure 3.14: (a): Voltage output of the load cell with respect to the applied
force. Red dots correspond to the calibration measurements and the dashed line
corresponds to the linear �t: F (N) = (332 ± 2)V − (97 ± 2). (b): Measured
temperature versus time pro�le for a Ni-Mn-In sample upon the application of a
µ0H = 1.6T constant magnetic �eld, together with an exponential �t (red dashed
curve) to the relaxation process (top). Time pro�le of the applied magnetic �eld
(bottom).

Thirdly, as the measured �eld-induced temperature change greatly depends on
the quality of the adiabatic conditions during the experiments, the adiabaticity of
the setup has to be addressed. As the sample is in thermal contact with its surround-
ings, the adiabatic conditions depend on the fast application or removal of the mag-
netic �eld in comparison to the time needed by the sample to exchange heat. There-
fore, if τm corresponds to the magnetic �eld application or removal time constant
and τs is the sample time constant characterizing its heat exchange with the sur-
roundings, the value of the ratio

τm
τs

will quantify how close the experiment is from

adiabatic conditions. For instance, the smaller the ratio is, the closer the experiment
will be from adiabatic conditions [105]. Figure 3.14 (b) shows a relaxation measure-
ment performed with this setup on a Ni-Mn-In sample under the application and
removal of 1.6T magnetic �eld. The details of the sample and its caloric and mul-
ticaloric e�ects are thoroughly discussed in section 5.3, here the measurement is
used as an example to study the adiabaticity of the system. The �eld-induced adia-
batic temperature change is computed as the temperature change before and after
the magnetic �eld application as ∆T (0 → 1.6T) = T (1.6T) − T (0T) ≈ −0.8K.
If we keep the magnetic �eld applied, a relaxation towards the initial temperature
can be seen. When the applied magnetic �eld is removed, we observe that the sam-
ple's temperature relaxes back to the initial temperature of the experiment. The
characteristic time constant magnitude of the relaxation process after the �eld ap-
plication (τs) can be determined by performing an exponential �t. The magnitude
of the sample's time constant is directly related to the capacity of the sample to
exchange heat with its surroundings, as a bigger time constant implies that the
sample exchanges less heat per unit time.

Therefore, on the one hand, the electromagnet allows a fast application or removal
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of magnetic �elds up to 2T with a time constant of τm ' 1 s. On the other hand, the
time constant of the relaxation process associated with the heat exchange with the
surroundings is found to be τs ' 70 s. Accordingly, as τm � τs, the application and
removal of magnetic �eld are performed with a negligible heat exchange between
the sample and its surroundings, and the measurements can be considered close to
adiabatic conditions.

Furthermore, the measured adiabatic temperature changes with this bespoke
setup on this Ni-Mn-In sample under an external �eld change of 1.6T (see section
5.3) show a good agreement with the adiabatic temperature changes reported in the
supplementary information of [64] for the same specimen, which were performed
under proper adiabatic conditions. The concordance found between these two sets
of measurements provides a solid proof on the close to adiabatic conditions of the
measurements performed on our bespoke setup.

3.2.3 Pulsed magnetic �elds

A bespoke setup to perform direct thermometry and strain measurements un-
der the in�uence of pulsed magnetic �elds and uniaxial compressive stress has
been designed and built during my stay at Helmholtz Zentrum Dresden-Rossendorf
(HZDR), in close collaboration with Dr. Tino Gottschall and Eduard Bykov.

The pulsed-�eld facility at the HZDR research institute Dresden High Magnetic
Field Laboratory (Hochfeld-Magnetlabor Dresden, HLD-EMFL 3) has di�erent
types of available solenoids, allowing the application of magnetic �eld pulses up
to 95T. This facility provides excellent conditions to perform direct measurements
of the �eld-induced multicaloric adiabatic temperature change under high-strength
magnetic �eld pulses and uniaxial compressive stress. The bespoke setup has been
speci�cally designed to be embedded inside the type E solenoids, 4 allowing the
application of magnetic �eld pulses up to 50T that last 75ms.

3.2.3.1 Setup design

Figure 3.15 shows a detailed scheme of the designed insert (panels (a) and (b))
and the experimental system (panel (c)). The sample (1) is cut in two pieces and
their surfaces are polished in order to be parallel. The sample temperature is di-
rectly measured by a T-type di�erential thermocouple (not shown in Figure 3.15),
made of copper and constantan wires with a thickness of 0.025mm. The di�eren-
tial thermocouple has a fork-like structure, where one end is glued between the
two sample pieces with silver epoxy in order to provide a good thermal contact,
and the reference end is placed near a Pt-100 platinum resistance (2), which is
embedded inside the surrounding Cu-Be cell (3), that monitors the absolute tem-
perature of the setup. The heater (4), made of two manganese wire coils placed
above and below the sample position on the Cu-Be cell surface, is controlled by
a Lakeshore cryotronics® 350 temperature controller that uses the reading from

3HDL-HZDR web site: https://www.hzdr.de/db/Cms?pNid=580
4Magnets speci�cations: https://www.hzdr.de/db/Cms?pNid=2686

https://www.hzdr.de/db/Cms?pNid=580
https://www.hzdr.de/db/Cms?pNid=2686
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Figure 3.15: Di�erent views of the pulsed thermometry setup. Panel (a) illus-
trates a 3D representation of the insert with all the main components. Panel (b)
shows a picture of the designed insert, with lines pointing at the visible compo-
nents. Two grey dashed lines from panel (a) to (b) show the equivalence of the
encompassed insert section between them. Panel (c) shows a simpli�ed sketch
of the con�guration of the complete experimental setup: the insert, the magnet
solenoid and the outside aluminium frame.

the Pt-100 platinum resistance, and it is meant to control the temperature of the
insert. Changes in the sample length are measured with a strain gauge (not shown
in Figure 3.15) that is attached to the lateral surface of one sample piece. The grid
size of the strain gauge used is 0.78 × 1.57mm2, and its output is measured by
means of a Wheatstone bridge circuit.

Uniaxial load is applied to the sample by means of a stainless steel threaded rod
(5) that compresses a set of disk springs (6), encompassed by two high-performance
polymer Torlon® pistons (7). The sample is in direct contact with the second
Torlon® piston, which directly transmits the applied force. The sample lays on top
of a third Torlon® piston (8), and the applied force is measured with a piezoelectric
force sensor (9) model CLP/3kN from HBM® which is monitored by a Keithley®

6517B electrometer. The back pressure to hold the applied uniaxial load is gener-
ated by a Cu-Be threaded closure (10), that holds the force sensor. At the end of the
insert, a pick-up coil (11) is placed in order to measure the applied magnetic �eld
pulse close to the sample position. The insert is �xed with stycast two-component
glue to the housing (12), which is then tightly wrapped with Te�on tape (13) in
order to protect the wires of all the sensors and components (di�erential thermo-
couple, strain gauge, force sensor, Pt-100 platinum resistance, heater coils and the
pick-up coil). To ensure adiabatic conditions during the measurements, both insert
and housing are placed inside a stainless steel high-vacuum tube (14). The vacuum
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achieved during the experiments is typically of ∼ 1 · 10−6mbar.

The magnet solenoid (15) is kept at cryogenic temperatures inside a cryostat
(not shown in Figure 3.15 for the sake of simplicity) surrounded by liquid Nitrogen,
and �lled with Helium. The high-vacuum tube is introduced into the bore of this
cryostat, and the Helium inside acts as an exchange medium to cool down the
insert via thermal radiation. The length of the housing was chosen in order to keep
the sample position in the centre of the region where the applied magnetic �eld
is maximum and homogeneous. The force applied on the sample is tuned from
the outside with a wheel (16) that is connected to the threaded rod (5). To give
mechanical stability to the experimental system, an aluminium pro�le frame (17) is
placed onto the solenoid cryostat that �xes the wheel and the high-vacuum tube. A
vacuum connector adaptor (18) is placed at the top end of the high-vacuum tube in
order to connect the di�erent wires of the all sensors and components of the insert
to the di�erent measuring and controlling units, while allowing to keep a proper
vacuum level for the experiments.

Preliminary experiments have been conducted on a Ni-Mn-Ti-Co Heusler alloy to
test the performance of the system. Figure 3.16 shows the time dependence of a 10T
magnetic �eld pulse, together with the induced strain and adiabatic temperature
changes as a function of time for di�erent initial sample temperatures and applied
uniaxial stresses.

As shown in the magnetic �eld dependence (panel (a) of Figure 3.16), the maxi-
mum magnetic �eld intensity is reached after 13ms, and the maximum �eld sweep
rate is 1400Ts−1. As it can be seen in panel (b), at an initial temperature of 265K,
the sample cools down by 17.7K. It is important to point out that the reaction
of the thermocouple is almost instantaneous despite this rapid �eld sweep rates.
Therefore, a proper thermal coupling between the sample and the thermocouple
has been achieved. Additionally, after 100ms the applied magnetic �eld has prac-
tically returned to zero, but the temperature does not return to the initial value.
This e�ect is also observed for the measurements shown in panels (c) and (d), and
is related to the thermal hysteresis of the studied sample, which results on a par-
tial irreversibility of the �eld-induced phase transition. Moreover, as the sample
temperature remains constant after the magnetic �eld returns to zero, we conclude
that at the considered time scales of the experiments there is no signi�cant heat
exchange between the sample and the pistons. Therefore, adiabatic conditions are
achieved during the experiments to a very good extent.

When the initial starting temperature is increased to 270K, a reduction of the
maximum adiabatic temperature change is observed and a plateau appears, which
indicates that the phase transition is completed. Under the application of a uni-
axial load of 40MPa, a further reduction of the maximum adiabatic temperature
change is observed, together with a reduction of the plateau. On the other hand,
a peculiar behaviour of the strain measurements is observed. At panel (b), for an
initial temperature of 265K, we measured a length change of the sample 16ms after
the pulse start, which means that the length change started 3ms after the applied
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Figure 3.16: (a): Time dependence of the applied magnetic �eld pulse with
the solenoid. (b)− (d): Direct measurements of the sample strain ε(%) (left) and
adiabatic temperature change ∆Tad(K) (right). The �gure has been taken from
[66].

magnetic �eld reached its maximum. After a small plateau, the initially measured
length change of 0.8 % is reduced to 0.4 %. Conversely, at an initial temperature
of 270K, the measured length change is much smaller, around 0.1 %, and there is
no recovery afterwards. When we apply uniaxial load, as presented in panel (d),
the observed length change reverses its sign with respect to the previous measure-
ments, and relaxes back to zero slowly. The reason for the observed time-delay on
the strain gauge response with respect to the magnetic �eld pulse is not clear, and
further measurements are required in order to clarify the observed behaviour.

A detailed discussion on the multicaloric e�ects induced on this alloy under
pulsed magnetic �elds and uniaxial load can be found in [66].

As shown and discussed, promising results have already been obtained with this
bespoke setup on the direct measurement of pulsed-�eld induced multicaloric ef-
fects. It is anticipated that this setup will have an important role on further future
research, as it is a suitable and unique tool to gain insight on the dynamics of the
�eld-induced phase transition under the in�uence of multiple external �elds.
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3.3 CuZnAl: a calibration sample for the DSC

under magnetic �elds and uniaxial compressive

stress

Before using the bespoke DSC setup described in section 3.1.4 for the charac-
terization of the caloric and multicaloric e�ects arising from materials exhibiting
a cross-coupled response under the simultaneous application of magnetic �eld and
uniaxial compressive stress, a reference sample was studied in order to validate the
agreement between the measured data and the reported data in the literature. For
this purpose, we selected a Cu-Zn-Al shape-memory alloy as a calibration sample,
for which the elastocaloric properties are well established.

Cu-Zn-Al is a diamagnetic alloy that exhibits a structural (martensitic) tran-
sition between a high-temperature bcc (body centered cubic) phase and a low-
temperature martensitic phase (see section 4.2 for a discussion on structural tran-
sitions and Heusler alloys), and the associated transition entropy change has been
properly determined over a broad composition range [106, 107]. Associated with the
structural transition, these alloys exhibit a signi�cant length change at the phase
transition under the application of stress, thus leading to prominent elastocaloric
e�ects. An exhaustive discussion on the crystallographic characteristics and the
physical properties of these alloys is reported elsewhere [108].

3.3.1 Sample details

The calibration experiments have been performed on a single-crystalline
Cu68.3Zn14.2Al17.5 shape-memory alloy with dimensions 5.4× 5.3× 6.4mm3 and a
mass of 1.383 g. The same specimen was previously used in reference [109], where
a detailed discussion on the applicability of exploiting the associated elastocaloric
e�ect for an active regenerator-based cooling device is presented.

3.3.2 Experimental details

Simultaneous dilatometric and DSC measurements have been performed with the
bespoke DSC setup at typical temperature scanning rates of ±0.5Kmin−1 within a
temperature range T ∈ [270, 330]K under constant values of uniaxial compressive
stress {σi} = {1.7, 6.8, 13.6, 20.3, 27.1, 33.9}MPa. 5

5Along this dissertation, the uniaxial compressive stresses are computed as σi =
Fi

As
, where

Fi corresponds to the applied compressive force and As to the sample surface measured in the
absence of applied external �elds.
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3.3.3 Indirect derivation of the elastocaloric e�ect

For the indirect derivation of the elastocaloric e�ect, we will use the dilatomet-
ric measurements performed with the LVDT sensor. The strain of the sample is
computed as:

ε(T, σ) =
l(T, σ)− lref

lref
(3.25)

where l(t, σ) is the length of the sample parallel to the direction of the applied
force, and lref is the reference length measured beyond the phase transition re-
gion. Therefore, for heating measurements the reference length is taken at the low
temperature (martensitic) phase at 270K, i.e. lMref = 6.0mm, while for cooling mea-
surements it is taken at the high-temperature β phase at 330K, i.e. lAref = 6.4mm.

Figure 3.17 displays the raw measured ε−T curves for cooling and heating runs,
respectively. It must be mentioned that the origin of the ε−T cooling runs has been
shifted to T = 270K i order to simplify their comparison with the heating curves.

The �rst-order phase transition is seen as a sharp change in strain, which spreads
over a larger temperature range for cooling than for heating runs. Overlying the
�rst-order phase transition signal we identify a linear background, which exhibits a
similar behaviour for all the applied uniaxial stresses. The �rst-order phase transi-
tion shifts to higher temperatures when increasing the applied uniaxial compressive
stress, together with a decrease on the associated transition strain for both heating
and cooling runs.

The linear background mainly arises from the thermal expansion of the setup
components when scanning the temperature, as the LVDT sensor sits far away
from the sample (see Figure 3.10). To exclude this constant contribution from the

Figure 3.17: Strain as a function of temperature at selected values of uniaxial
compressive stress measured with the LVDT sensor for cooling (left) and heating
(right) runs.



3.3 CuZnAl: a calibration sample for the DSC under magnetic �elds

and uniaxial compressive stress 69

raw dilatometric signal, we measured an INCONEL sample with low thermal ex-
pansion during temperature scans at typical rates of ±0.5Kmin−1 under di�erent
applied uniaxial compressive stresses, and then we subtracted this signal from our
measurements. Figure 3.18 (a) and (b) display the background corrected ε−T curves
obtained for cooling and heating runs, respectively.

To validate the observed decrease of the transition strain with applied uniaxial
stress, a second set of dilatometric measurements was performed using a more ac-

Figure 3.18: Strain as a function of temperature at selected values of uniaxial
compressive stress measured with the LVDT sensor (left) and a dynamic exten-
someter (right) for cooling (panels (a) and (c)) and heating (panels (b) and (d))
runs. (e) Transition temperature as a function of stress for the forward (TM ) and
reverse (TA) transitions obtained from the in�ection points of the cooling and
heating ε−T curves, respectively. Solid symbols correspond to the transition tem-
peratures obtained from the LVDT curves and open symbols to the values from
the dynamic extensometer. (f) LVDT sensitivity factor as a function of stress for
both heating (red) and cooling (blue) runs. Dashed lines in panels (e) and (f)
correspond to linear �ts to the solid symbols.
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curate experimental setup, described in [110], where a dynamic extensometer from
Instron® model 2620−601 was used as a dilatometric sensor. The described setup
is mounted inside an environmental chamber from Instron® and a K-type thermo-
couple (0.075mm diameter), attached to a free surface of the sample, was used as
a temperature sensor. The experiments were performed at typical scanning rates
of ±1Kmin−1 within a temperature range T ∈ [270, 335]K under constant values
of uniaxial compressive stress {σi} = {1.7, 6.8, 13.6, 20.3, 27.1}MPa. The strain
of the sample is computed as before, and the associated ε−T curves are represented
in Figure 3.18 (c) and (d) for cooling and heating runs, respectively.

In contrast to the LVDT dilatometric measurements, the �rst-order phase transi-
tion strain does not show a dependency on the applied uniaxial compressive stress.
The strain change of the forward (cooling) and reverse (heating) martensitic tran-
sition are found to be ∆εMt = (6.9 ± 0.2) % and ∆εAt = (7.2 ± 0.2) %, respectively,
and are represented as dashed black lines in panels (a) - (d) in Figure 3.18. As both
transition strains are compatible and within the errors, they are taken as constant
for the forward and reverse martensitic transitions at ∆εM,A

t = (7.0 ± 0.3) %.

When comparing the ε−T curves obtained from both experimental setups for
cooling (panels (a) and (c)) and heating (panels (b) and (d)) runs, respectively,
two observations must be emphasised. Firstly, it is important to point out that at
low compressive stresses the measured transition strains are comparable, while for
higher stresses the behaviour observed with the LVDT sensor deviates from the
dynamic extensometer measurements. Secondly, the transition temperature values
of the forward (TMt ) and the reverse (TAt ) transitions, identi�ed as the in�ection
point of the ε−T curves, show a good agreement between both data sets.

Figure 3.18 (e) illustrates the behaviour of the transition temperature as a func-
tion of the applied uniaxial compressive stress. As represented in this �gure, the
transition has an associated hysteresis of TAt − TMt = 14K and takes place about
room temperature for low values of the applied compressive stress. Under the ap-
plication of higher stresses, the �rst-order phase transition shifts to higher temper-

atures at rates
dTMt
dσ

= (0.40 ± 0.02)KMPa−1 and
dTAt
dσ

= (0.45 ± 0.02)KMPa−1.
These rates agree with typical reported values for composition-related Cu-Zn-Al
shape-memory alloys [30, 111].

The origin of the transition strain decrease when increasing the applied compres-
sive stress measured with the LVDT sensor has not been clearly identi�ed, and a
systematic study with di�erent reference samples would be necessary. Still, it is
reasonable to partially attribute its origin to the fact that, according to the design
of our bespoke DSC, the dilatometric sensor is placed far away from the sample.
These measurements can be corrected by introducing an LVDT sensitivity factor
in order to correct their deviation from the more precise measurements performed
with the dynamic extensometer. This LVDT sensitivity factor is de�ned as:

XLVDT =
∆lt(σ = 1.7MPa)

∆lt(σ)
(3.26)
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where ∆lt(σ) = lA,M (σ)− lM,A
ref corresponds to the transition length change of the

sample measured by the LVDT sensor under a certain applied uniaxial compressive
stress. Figure 3.18 (f) illustrates the sensitivity factor directly obtained from the
LVDT measurements as a function of stress. The ε−T curves represented in Figure
3.18 (a) and (b) are rescaled according to the linear �ts on the LVDT sensitivity
factor, and the corrected curves are represented in Figure 3.19 (a) and (b) as solid
lines.

As discussed in section 2.1.1, and taking into account Table 2.1, the elastocaloric
entropy change can be obtained indirectly from the Maxwell relations as:

∆S(T, σs → σf ) = υ0

∫ σf

σs

(
∂ε(T, σ)

∂T

)
σ

dσ (3.27)

where υ0 corresponds to the speci�c volume, which is υ0 = 1.318 · 10−4m3kg−1 for
the studied sample.

A proper determination of the isothermal entropy change ∆S(T, σs → σf ) using
equation 3.27 requires knowledge of ε−T curves at close enough values of applied
uniaxial compressive stress in order to reduce the errors associated with the numer-
ical computation of the derivatives involved in the previous equation. If the tran-

sition temperature shift with the applied uniaxial compressive stress

(
dTA,Mt

dσ

)
is signi�cant and there are not enough dilatometric measurements in the studied
stress range, an analytical function of the strain ε(T, σ) can be determined in order
to phenomenologically reproduce its experimental behaviour, for either heating or
cooling processes, over the entire phase space ε(T, σ) under study.

In our case, the mathematical expression of the analytical function is de�ned in
order to reproduce the behaviour of the strain curves represented in Figure 3.19
(a) and (b). Several observations have to be stated in order to de�ne a suitable
analytical function.

First of all, to capture the sharp change in strain taking place at the �rst-order
phase transition, we have used an hyperbolic tangent centred at the transition
temperature. Secondly, it can be observed that the temperature range where the
phase transition takes place tends to spread over larger temperature spans when
increasing the applied uniaxial compressive stress, specially at the high temperature
side, for both cooling (panel (a)) and heating (panel (b)) runs. This asymmetric
behaviour of the strain curves suggests that more than one hyperbolic tangent is
necessary in order to properly reproduce the experimental measurements. Thirdly,
a linear background has to be included, with di�erent slope at both sides of the
phase transition, in order to incorporate the ε−T curves behaviour far away from
the transition temperature.

Therefore, the analytical function we used is composed of two hyperbolic tan-
gents, that may be centred at di�erent transition temperatures Tt,1 and Tt,2, which
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Figure 3.19: Strain as a function of temperature at selected values of uniaxial
compressive stress for cooling (a) and heating (b) runs. Solid lines refer to the
corrected experimental curves obtained with the LVDT sensor and dashed lines
are the corresponding analytical �ts. (c) Strain as a function of temperature and
the applied uniaxial compressive stress for heating (red surface) and cooling (blue
surface) processes, obtained from both analytical �ts.

are superposed to a linear background with di�erent slopes at each side of the phase
transition. Equation 3.28 represents the general form of this analytical function:

l(T, σ) = ∆l1 tanh(a1(T−Tt,1))+∆l2 tanh(a2(T−Tt,2))+b+


m · (T − Tt) T < Tt

n · (T − Tt) T ≥ Tt
(3.28)

where Tt =
Tt,1 + Tt,2

2
and the free parameters {∆l1,∆l2, a1, a2, Tt,1, Tt,2, b, m, n}

are allowed to depend only on the applied uniaxial compressive stress (σ).

For a better approach to the experimental behaviour, where the ε−T curves show
a di�erent shape for heating and cooling runs, the �tting procedure of the analytical
function is performed independently for heating and cooling processes.

For each experimental data set, consisting of either the heating or cooling strain
curves measured under di�erent stresses, an initial �t to all the single strain curves
is performed without applying any constrain to the free parameters. Each inde-
pendent �t provides di�erent values for all the free parameters of the analytical
function. Then, the stress dependence of each free parameter is evaluated by �t-
ting its di�erent values obtained from the �ts as a function of stress. It is important
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to point out that the free parameters are allowed to either be independent of stress,
thus constant, or to show a linear dependence with the stress. The purpose of this
constrain is to avoid an over �tting of the behaviour of the di�erent free param-
eters, and obtain an as simple as possible analytical function able to reproduce
the experimental measurements. Additionally, it must be mentioned that the free
parameters are �xed individually. Once a free parameter is constrained, new �ts
to all the single strain curves are performed, as the values of the remaining free
parameters may be a�ected by the previous constrains on other �xed parameters.
This process is sequentially repeated until all the free parameters have been prop-
erly �xed, thus leading to an analytical function that depends on temperature and
stress, and reproduces the experimental results over the phase space under study.

By following this �tting procedure, the parameters that de�ne the analytical
function to reproduce the experimental heating curves are:

∆l1(σ) = −4(0.5) · 10−4σ + 0.14(2) (mm) (3.29a)

∆l2(σ) = −1.4(1) · 10−3σ + 0.091(3) (mm) (3.29b)

Tt,1(σ) = Tt,2(σ) = 0.438(5)σ + 299.6(1) (K) (3.29c)

a1 = 1.15(3) (K−1) (3.29d)

a2 = 0.21(4) (K−1) (3.29e)

b(σ) = −1.1(2) · 10−3σ + 0.236(4) (mm) (3.29f)

m = 5(1) · 10−4 (mmK−1) (3.29g)

n(σ) = 1.4(6) · 10−4σ + 4(2) · 10−4 (mmK−1) (3.29h)

while for the experimental cooling curves, the parameters that de�ne the analytical
function are:

∆l1(σ) = −1.3(8) · 10−3σ + 0.14(2) (mm) (3.30a)

∆l2(σ) = 3(1) · 10−4σ + 0.085(4) (mm) (3.30b)

Tt,1(σ) = 0.40(2)σ + 285.1(4) (K) (3.30c)

Tt,2(σ) = 0.47(4)σ + 287.5(9) (K) (3.30d)

a1 = 0.55(7) (K−1) (3.30e)

a2 = 0.12(3) (K−1) (3.30f)

b(σ) = 6(4) · 10−4σ − 0.22(1) (mm) (3.30g)

m = 4(1) · 10−4 (mmK−1) (3.30h)

n(σ) = 3(2) · 10−5σ − 4(3) · 10−4 (mmK−1) (3.30i)

The dashed lines represented in Figure 3.19 (a) and (b) correspond to the re-
sults obtained from the cooling and heating analytical functions, respectively. An
excellent agreement between both experimental and simulated ε−T curves is found,
thus proving that the general mathematical expression of the analytical functions



74 Experimental techniques

correctly captures the strain behaviour around a �rst-order phase transition. A
tree-dimensional map of ε(T, σ) in the complete phase space studied is represented
in panel (c) of the same �gure. The overlap observed between the heating (red
surface) and cooling (blue surface) does not yield signi�cant consequences on the
indirect computation of the elastocaloric e�ect, and it is attributed to a certain
background in�uence magni�ed by the application of the LVDT sensitivity factor.

As discussed in detail is section 2.2.2, it is worth mentioning that the application
of uniaxial compressive stress favours the low temperature phase (the marten-
sitic phase), in agreement with the positive transition temperature shift observed.
Accordingly, the application of stress (∆σ > 0) will promote the forward phase
transition (from austenite to martensite), while the removal of stress (∆σ < 0)
will promote the reverse phase transition (from martensite to austenite). In light
of this clear distinction, a thermodynamic process in which stress is applied can
be identi�ed with a cooling process, as both induce the forward phase transition,
whereas a process in which stress is removed can be identi�ed with a heating pro-
cess, as both induce the reverse phase transition. Therefore, the caloric response
of a thermodynamic process in which stress is applied (∆σ > 0) will be computed
from the cooling analytical function (blue surface in Figure 3.19 (c)), whereas in
those processes in which stress is removed (∆σ < 0) it will be computed from the
heating analytical function (red surface in Figure 3.19 (c)).

Figure 3.20 displays the elastocaloric entropy change computed from the ε−T
curves obtained from both analytical functions, as expressed in equation 3.27. Panel
(a) displays the elastocaloric entropy curves ∆S(T, 1.7MPa↔ σ′), for the discrete
experimental values of the applied stress, where {σ′} = {6.8, 13.6, 20.3, 27.1, 33.9}
MPa. The shaded area of each curve accounts for a ±10 % estimated error. As the
analytical functions allow us to calculate any ε−T curve within the phase space
under study, the corresponding elastocaloric entropy change for the removal (σ′ →
1.7MPa) and application (1.7MPa→ σ′) of stress, where σ′ ∈ [1.7, 33.9]MPa, are
represented in panels (b) and (c) of the same �gure, respectively.

The magnitude of the induced elastocaloric entropy change increases with the
stress change |∆σ|, and the caloric e�ect expands towards higher temperatures,
as expected from the positive shift of the transition temperature. Moreover, at
high values of the applied uniaxial compressive stress, the maxima of the induced
elastocaloric entropy change tends to saturate at a constant value, indicating that
we are able to fully induce the phase transition with the applied stresses. For
instance, the saturation value for the forward and reverse transition are ∆S =
(−18 ± 2) JK−1kg−1 and ∆S = (19 ± 2) JK−1kg−1, respectively.

Additionally, when comparing panels (b) and (c) of Figure 3.20, it can be easily
seen that the temperature span associated with the reverse (∆σ < 0) transition is
narrower in comparison to the forward (∆σ > 0) transition. For a certain stress
change |∆σ|, the sharpness of the �eld-driven reverse transition gives rise to an en-
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Figure 3.20: (a) Indirect estimates of the elastocaloric entropy change com-
puted for the selected values of the stress change ∆S(σ′ → 1.7MPa) (positive
values) and ∆S(1.7MPa → σ′) (negative values) obtained from the set of ε−T
analytical �ts for heating and cooling processes, respectively. Coloured shaded
regions indicate an estimated error of ±10 %. Panels (b) and (c) display contour
colour maps of ∆S values as a function of temperature and the continuous spec-
tra of �eld changes ∆σ = σ′ → 1.7MPa < 0 and ∆σ = 1.7MPa → σ′ > 0,
respectively.

largement of the elastocaloric e�ect when compared to the forward transition, as
indicated by the closer level lines in panel (b). Consequently, the saturation of the
thermal response is achieved for lower values of the applied compression for the
reverse transition.

3.3.4 Quasidirect derivation of the elastocaloric e�ect

The raw DSC thermograms measured at selected values of applied uniaxial com-
pressive stress are shown in Figure 3.21 for heating (a) and cooling (b) runs, re-
spectively.

The latent heat associated with the martensitic transition gives rise to an exother-
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Figure 3.21: Calorimetric signal as a function of temperature at selected values
of uniaxial compressive stress. Panel (a) corresponds to heating runs and panel
(b) to cooling runs, respectively. Vertical blue lines indicate the position of the
calorimetric peak.

mal (negative) peak when inducing the forward transition (cooling) and to an en-
dothermal (positive) peak when inducing the reverse transition (heating). In accor-
dance with the strain measurements, an increase of the applied uniaxial compressive
stress shifts the calorimetric peaks to higher temperatures, which is in agreement
with a further stabilization of the martensitic phase upon compression.

As discussed in section 3.1.1, the measured thermograms at selected values of
uniaxial compressive stress must be properly corrected in order to compute the
transition entropy change associated with the induced �rst-order martensitic tran-
sition, which can be expressed as:

∆St(σ) =

∫ Tf

Ts

1

T ′

(
dQ(T ′, σ)

dT ′
− ζ(T ′, σ)

)
dT ′ (3.31)

where Ts and Tf are the start and �nish integration temperatures, taken before and
after the phase transition calorimetric peak, ζ(T, σ) corresponds to the baseline

signal and
dQ(T, σ)

dT
=

Q̇(T, σ)

Ṫ
=

Y (T, σ)dt

S(T )dT
, to the calorimetric signal where

Y (T, σ) corresponds to the raw calorimetric signal and S(T ) corresponds to the
DSC sensitivity.

To analyse calorimetric curves, a custom Python program has been developed
(see Appendix A for a detailed discussion), and the obtained corrected thermograms
after baseline subtraction are presented in Figure 3.22 (a). It is signi�cant to point
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out that the shape of the heating and cooling calorimetric peaks is clearly di�erent.
The reverse transition is sharp and spreads over 5K while the forward transition
is broader and spreads over 15K. Additionally, a decrease of the height of the
calorimetric peaks recorded upon heating is observed when increasing the applied
uniaxial compressive stress, whereas the shape of the calorimetric peaks recorded
upon cooling is not signi�cantly a�ected by stress.

The corresponding transition entropy changes (∆St(σ)) are computed using
equation 3.31, and the results are displayed in Figure 3.22 (b). Di�erent smoothing
processes (see Appendix A) are applied to the analysis of each thermogram. This
leads to small di�erences in the determination of the baseline, and provides a good
estimation of the error in determining the transition entropy change. For Cu-Zn-Al,
we have obtained an estimated error of ±1 JK−1kg−1.

The computed transition entropy change decreases when increasing the applied
uniaxial compressive stress for both heating and cooling runs. At the lowest com-
pressive stress, corresponding to an applied force of 50N, the transition entropy
change is found to be ∆SM,A

t (1.7MPa) = (20 ± 1) JK−1kg−1 for both forward and
reverse martensitic transitions, respectively.

To validate the transition entropy change measured with our bespoke DSC at low
compressive stresses, a high sensitivity DSC was used to measure the same sample
without any applied uniaxial compressive stress. The corresponding corrected ther-
mograms, together with the computed transition entropy change, for both heating
and cooling runs are displayed at panels (a) and (b) of Figure 3.22 as grey lines
and solid grey triangles, respectively. The associated transition entropy change for
the forward and reverse martensitic transition are found to be ∆SMt (0MPa) =
(−22.1 ± 0.5) JK−1kg−1 and ∆SAt (0MPa) = (22.4 ± 0.5) JK−1kg−1.

When comparing the results obtained for both setups, we notice that there is
approximately a 10 % di�erence on the measured transition entropy change at
low stresses. In order to shed light on this issue, these values can be compared
with the transition entropy change deduced from the application of the Clausius-
Clapeyron equation on the dilatometric measurements performed with the dynamic
extensometer. For this purpose, taking into account Table 2.1 and equation 2.28,
the Clausius-Clapeyron equation for the elastocaloric e�ect can be expressed as:

dσ

dTt
= − ∆St

υ0∆εt
(3.32)

where υ0 corresponds to the speci�c volume of the sample.

Therefore, from the transition strain (∆εt) and the average transition temper-

ature shift
(
dTt
dσ

)
obtained from the ε−T curves, we obtain a transition entropy

change of |∆St| ∼ 22 JK−1kg−1, which is in excellent agreement with the transition
entropy changes obtained from the high sensitivity DSC thermograms.
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Figure 3.22: (a) Calorimetric curves at selected values of uniaxial compressive
stress as a function of temperature recorded upon heating (positive peaks) and
cooling (negative peaks) after baseline subtraction. (b) Transition entropy change
as a function of uniaxial compressive stress (bottom axis) and the applied force
(top axis) for both heating (top triangles) and cooling (bottom triangles) runs.
For both data sets, open symbols correspond to di�erent background subtractions
of the thermograms and solid symbols correspond to the averaged transition
entropy change. The grey calorimetric curves, and the corresponding transition
entropy change values, were measured without any applied uniaxial compressive
stress by means of a high sensitivity bespoke DSC.

It is not straightforward to identify the origin of the lower transition entropy
change computed from our bespoke DSC setup at low applied compressive stresses
when compared to more accurate measurements performed in the absence of com-
pressive stress. Even so, two considerations must be taken into account in order to
gain some insight into this issue.
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First of all, it is signi�cant to point out that the martensite structure of the
sample will depend on the applied stress. For instance, as it will be discussed in
section 4.2.1, in the absence of applied stress a multivariant martensite is formed
whereas application of stress favours the growth of a speci�c martensite variant,
and under high stresses even a single variant martensite is formed. Previous ten-
sile experiments on a composition related Cu-Zn-Al shape-memory alloy reported
an enhancement of the transition entropy change when a multivariant martensite
is induced compared to the transition entropy change deduced from stress-strain
curves, where a single variant martensite was formed. The enhancement on the
transition entropy change was attributed to kinetic constraints occurring during
the phase transition that favour extra dissipative e�ects [30]. However, it must also
be considered that the applied compressive stress is much smaller in our case and
even if a particular variant is favoured, a single variant martensite is not expected
for these stress levels.

Secondly, the speci�c design of our bespoke calorimeter (see section 3.1.4) may
also contribute to this di�erence. As it can be seen from its design, the studied
sample is not directly in contact with the corresponding thermoelectric sensor,
as a 3mm thickness high-strength aluminium disk sits between both (see Figure
3.10). Therefore, when performing the calibration measurements, where a known
amount of energy is dissipated on top of the disk and the sensitivity as a function
of temperature is determined, a certain part of this energy will be dissipated to the
surroundings and consequently, it will not be detected by the thermoelectric sensor.
This possible energy loss mechanism is already captured by the sensitivity of the
calorimeter, and thus it is properly considered when measuring a real sample.

Nevertheless, the fact that a certain deviation between both measured transition
entropy changes on the same specimen is observed suggests that a certain energy
loss mechanism is enhanced with respect to the calibration measurements, and
thus it is not correctly captured by the sensitivity. In fact, this deviation can be
attributed to a bigger part of the energy exchanged by the sample when undergoing
the martensitic phase transition that is being dissipated to the surroundings, and
thus it is not being detected by the corresponding thermoelectric sensor.

The origin of this possible enhancement of the energy loss mechanism when
measuring this alloy can not be clearly identi�ed. Still, it is reasonable to partially
attribute its origin to the particular shape of the specimen. Speci�cally, to the fact
that this sample is signi�cantly higher than the calibration copper block. Therefore,
when performing a measurement the signal detected by the thermoelectric sensor
may be in�uenced by the part of the sample that is transforming at a speci�c time.
If a fragment that is far away from the thermoelectric sensor is undergoing the
phase transition, a bigger part of its exchanged energy can be dissipated to the
surroundings when compared to another sample fragment that sits closer to the
high-strength aluminium disk.

A this point, it is useful to compare the behaviour observed from the ε−T curves
presented in Figure 3.19 (a) with the corrected thermograms of Figure 3.22 (a).



80 Experimental techniques

Figure 3.23: Calorimetric curves after baseline subtraction (a) and the cor-
responding corrected strain measured with the LVDT sensor (b) as a function
of temperature recorded upon heating at selected values of uniaxial compres-
sive stress. (c) Transition temperatures of the forward (TM ) and reverse (TA)
transitions as a function of the applied stress. Solid symbols correspond to the
transition temperatures obtained from the calorimetric peaks and open symbols
to the values obtained from the LVDT curves, represented in Figure 3.18 (e).

Both data sets are plotted together in Figure 3.23 (a) for heating runs at se-
lected values of applied uniaxial compressive stress. As illustrated by the shaded
areas and the corresponding vertical lines centred at the calorimetric peaks, both
simultaneous measurements reveal the occurrence of the transition strain change
and the heat exchange associated with the transition latent heat centred at the
same temperature range, as a consequence of the fact that both phenomena arise
from the structural �rst-order phase transition. Additionally, both data sets also
show an agreement on the temperature span where the transition occurs, which is
broader for cooling runs than for heating runs.
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The transition temperatures of the forward (TMt ) and reverse (TAt ) transitions
can be identi�ed with the peak position of both heating and cooling corrected ther-
mograms, respectively. Figure 3.23 (b) illustrates the behaviour of the transition
temperature as a function of the applied uniaxial compressive stress, where solid
symbols correspond to the transition temperatures obtained from the thermograms,
whereas open symbols correspond to the transition temperatures obtained from the
ε−T curves.

Both data sets show a good agreement for both forward and reverse transitions,
exhibiting a thermal hysteresis of TMt − TAt = 14K which remains approximately
constant with applied compressive stress. From the calorimetric peak transition
temperatures, the �rst-order phase transition shifts to higher temperatures un-

der the application of higher stresses at rates
dTMt
dσ

= (0.43 ± 0.02)KMPa−1 and

dTAt
dσ

= (0.44 ± 0.02)KMPa−1, which are in good agreement with the results ob-
tained from the ε−T curves and previous reported values for composition-related
Cu-Zn-Al shape-memory alloys [30, 111].

As discussed in section 3.1.1.2, the quasidirect determination of the elastocaloric
e�ect relies on the construction of the corresponding accurate entropy curves. On
account of the small deviation observed between the transition entropy change
measured with our bespoke DSC setup and the accurate measurements performed
with the high sensitivity DSC, a constant calibration factor has been introduced:

γA,M =
∆SA,Mt (0MPa)

∆St(1.7MPa)
(3.33)

and the transition entropy changes will be computed as ∆Scalt (σ) = γA,M∆St(σ).
For the forward transition, the calibration factor is found to be γM = 1.12 while for
the reverse transition it is γA = 1.1. The transition entropy changes represented in
Figure 3.22 (b) are rescaled according to these factors, and the calibrated results are
represented in Figure 3.24 (a) together with two horizontal lines corresponding to
the transition entropy change values determined with the high sensitivity DSC for
the forward (blue dashed line) and reverse (red dashed line) martensitic transition.

After the application of these calibration factors, it is signi�cant to stress that
for applied forces up to F = 200N there is no signi�cant decrease on the measured
transition entropy change. When the applied force increases to F = 400N, a small
decrease on the transition entropy change can be observed, but still the deviation
is small and falls within the experimental error for both forward and reverse tran-
sitions. On the other hand, for higher applied compressive stresses, a signi�cant
decrease is observed.

This behaviour under high applied stresses is not consistent with the transition
strain observed from the ε−T curves measured with the dynamic extensometer (see
Figure 3.18 (c) and (d)). From these curves, where a constant transition strain
was found for all the measurements, the application of the Clausius-Clapeyron



82 Experimental techniques

Figure 3.24: (a) Calibrated transition entropy change as a function of uniaxial
compressive stress (bottom axis) and the applied force (top axis) for both heating
(red) and cooling (blue) runs. For both data sets, open symbols correspond to dif-
ferent background subtractions of the thermograms and solid symbols correspond
to the averaged transition entropy change. Red and blue dashed lines represent
the transition entropy change measured in the absence of applied uniaxial com-
pressive stress with the high sensitivity DSC for both heating and cooling runs,
respectively. (b) DSC sensitivity factor as a function of stress for both heating
(red) and cooling (blue) runs. Dashed lines correspond to linear �ts to the solid
symbols.

equation leads to a constant transition entropy change as a function of the applied
uniaxial compressive stress. In the same line, previous tensile experiments on a
composition-related Cu-Zn-Al shape-memory alloy already reported that the total
transition entropy change is independent of the applied stress [30]. Moreover, a good
agreement was also observed between the transition entropy change measured from
calorimetric runs in the absence of stress and the value determined from strain-
stress measurements for a Cu-Zn-Al single crystal [112].
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The origin of the transition entropy change decrease at high applied uniaxial
compressive stresses has not been systematically studied with di�erent reference
samples. Still, it is reasonable to partially attribute its origin to a change on the
thermal contact between the sample and its corresponding thermoelectric sensor.
When a signi�cant dead load is placed on top of the free mobile platform to apply
a high compressive force on the studied sample (see Figure 3.10), the di�erent
system components may experience a certain elastic deformation or bending. In
particular, the high-strength aluminium disk and its PEEK holder will hold all the
applied force in order to protect the thermoelectric sensor, and any deformation
of these components may a�ect the thermal contact between the sample and its
sensor, thus a�ecting the sensitivity of the calorimeter. These measurements at
high applied compressive stress can be corrected by introducing a DSC sensitivity
factor, which is de�ned as:

XDSC =
∆St(0MPa)

∆St(σ)
(3.34)

where ∆St(0MPa) corresponds to the transition entropy change measured with
the high sensitivity DSC and ∆St(σ) to the averaged transition entropy change
computed from the measurements performed with our bespoke DSC. Figure 3.24 (b)
illustrates the sensitivity factor obtained, and the corresponding transition entropy
changes under applied forces F ≥ 400N are rescaled according to the linear �ts on
the DSC sensitivity factor.

At this point, the corresponding entropy curves can be constructed. As discussed
in section 3.1.1.2, from the integration of the corrected thermograms, which provide
both the transformed fraction curves (χ(T, σ)) and the corresponding transition
entropy changes (∆St(σ)), and the reported speci�c heat data of the martensite
CM (T ) and austenite CA(T ) phases obtained from [113], yields the construction of
the entropy curves referenced to a certain temperature well below the martensitic
transition [114]:

S(T, σ)− Sref =

∫ T

Tref

1

T ′

(
C(T ′, σ) +

dQ(T ′, σ)

dT ′

)
dT ′ (3.35)

where Sref = S(T = 270K) and the speci�c heat of the sample C(T ′, σ) can be
expressed as C = (1 − χ)CM + χCA, where χ corresponds to the transformed
fraction (χ = 1 when the sample is completely in the austenitic phase). Figure
3.25 displays the computed entropy curves at selected values of applied uniaxial
compressive stress. It is signi�cant to point out that the computation of these
curves has assumed that the speci�c heat of both the martensite and austenite
phases does not exhibit any stress dependency.

Additionally, it is worth noting that the heating and cooling entropy curves have
distinct shapes around the phase transition region, where the former exhibit a
sharper transition than the latter. This di�erence is in accordance with the di�erent
shape of heating and cooling calorimetric peaks, where the former are sharper and
spread over a narrower temperature span than the latter, which leads to a similar
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Figure 3.25: Entropy curves referenced to Sref = S(T = 270K) at selected val-
ues of applied uniaxial compressive stresses for heating and cooling runs. Dotted
black arrows illustrate the resulting adiabatic temperature change ∆T (hori-
zontal arrows) and the isothermal entropy change ∆S (vertical arrows) for the
removal (33.9MPa→ 1.7MPa) and application (1.7MPa→ 33.9MPa) of stress.

behaviour on the computed transformed fraction curves and signi�cantly a�ecting
the corresponding entropy curves.

Reverting to section 3.1.1.2, the corresponding isothermal elastocaloric entropy
changes are computed by subtracting the entropy curves at the start and �nish
external �eld values:

∆S(T, σs → σf ) = S(T, σf )− S(T, σs) (3.36)

As for the indirect computation of the elastocaloric e�ect, presented in the pre-
vious section, a process in which stress is applied is associated with the cooling
entropy curves (as both promote the forward phase transition) and its isothermal
entropy change is computed as ∆S(T, 1.7MPa → σ′), whereas a process in which
stress is removed is associated with the heating entropy curves (as both promote
the reverse phase transition) and its isothermal entropy change is computed as
∆S(T, σ′ → 1.7MPa). These two processes are illustrated as vertical dotted arrows
in Figure 3.25, and the corresponding results are presented in Figure 3.26 (a) as a
function of temperature.

Conversely, adiabatic temperature changes are computed after inverting the cor-
responding entropy curves:

∆T (S, σs → σf ) = T (S, σf )− T (S, σs) (3.37)

As for the elastocaloric entropy changes, from the cooling entropy curves the
adiabatic temperature change is computed as ∆T (S, 1.7MPa→ σ′), whereas from
the heating entropy curves it is computed as ∆T (S, σ′ → 1.7MPa). These two
processes are illustrated as horizontal dotted arrows in Figure 3.25. Application of
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Figure 3.26: (a) Quasidirect estimates of the isothermal entropy change for
selected values of the stress change ∆S(T, σ′ → 1.7MPa) (positive values) and
∆S(T, 1.7MPa → σ′) (negative values) obtained from the heating and cooling
entropy curves, respectively. (b) Quasidirect estimates of the adiabatic tempera-
ture change corresponding to selected processes of application (∆σ > 0) (negative
values) and removal (∆σ < 0) (positive values) of uniaxial compressive stress.
Coloured shaded regions indicate an estimated error of ±10 %. Inserts in both
panels display the maxima of the �eld-driven |∆S| and |∆T | values as a function
of the applied uniaxial compressive stress. Blue down triangles correspond to
1.7MPa→ σ′ processes and red up triangles to σ′ → 1.7MPa.

equation 3.37 provides the adiabatic temperature change as a function of entropy,
but it is customary to represent it as a function of the temperature of the initial
state at which the stress is adiabatically applied or removed. The corresponding
results are presented in Figure 3.26 (b) as a function of temperature.

Additionally, the maxima of the stress-driven |∆S| and |∆T | are shown in the
inserts of panels (a) and (b), respectively, in Figure 3.26 as a function of the stress
change |∆σ| for both application (blue symbols) and removal (red symbols) of
stress.

As it can be seen from the quasidirect estimates of both the elastocaloric entropy
and temperature changes, the magnitude of the caloric response increases with
the stress change |∆σ|, and expands towards higher temperatures, in accordance
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with the positive shift of the transition temperature with stress. When considering
the elastocaloric entropy change, represented in Figure 3.26 (a), the �eld-induced
entropy change tends to saturate at a constant value, indicating that we are able
to fully transform the sample. For instance, the saturation value for the forward
and reverse transition is |∆S| = (22 ± 2) JK−1kg−1. Conversely, when looking at
the behaviour of the elastocaloric temperature change, represented in Figure 3.26
(b), we observe that it linearly increases with the stress change.

In this case, the maximum �eld-induced value for the forward and reverse transi-
tions are |∆T (1.7MPa→ 33.9MPa)| = (9.4± 1)K and |∆T (33.9MPa→ 1.7MPa)| =
(12.3 ± 1)K, respectively. The associated elastocaloric strengths can be determined
from the linear �ts �tted to the maxima of the stress-driven |∆T | represented in

the insert of panel (b) and they are found to be
|∆T |
|∆σ|

= (0.29 ± 0.01)KMPa−1 and

|∆T |
|∆σ|

= (0.38± 0.01)KMPa−1 for the forward and reverse transitions, respectively.

The di�erences between the forward and reverse stress-driven maxima thermal
response as a function of the stress change represented in both inserts emphasises
the e�ect of the distinct shape of the cooling and heating entropy curves. In this
regard, the sharpness of the heating entropy curves is responsible of an enlarge-
ment of the elastocaloric strength when �eld inducing the reverse phase transition
(σ′ → 1.7MPa), bringing its thermal response to saturation for lower values of
the stress change. Speci�cally, when looking at the maxima of the stress-driven
entropy change, it can be seen that a stress change of |∆σ| = 25.4MPa is necessary
to reach the saturation value for the forward transition, whereas a stress change of
just |∆σ| = 11.9MPa is required for the reverse transition.

The maxima of the stress-driven adiabatic temperature change will also reach a
saturation value, despite not being observed in the insert of panel (b). According
to the transition entropy change determined for this Cu-Zn-Al alloy, the maximum

expected adiabatic temperature change is given by |∆T | = T |∆S|
C

∼ 15K, which is

close to recent direct ∆T measurements on a Cu-Zn-Al single crystal [115]. Thus,
according to the determined elastocaloric strengths, the saturation value would be
achieved by a stress change of |∆σ| = 51MPa for the forward transition, whereas
a stress change of |∆σ| = 40MPa would be necessary for the reverse transition.

Moreover, the quasidirect estimates of both the stress-induced isothermal entropy
and adiabatic temperature changes allow us to compute the associated refrigerant
capacity (RC) of this alloy. This quantity provides an estimate of the transferred
heat from the cold end (Tcold) to the hot end (Thot) of a refrigerator during a
thermodynamic cycle [116] and it is usually estimated as RC = ∆SMAX∆TFWHM ,
where ∆SMAX corresponds to the maxima of the elastocaloric entropy change and
∆TFWHM to its temperature span, computed as the full width at half maximum
of the corresponding isothermal entropy change curves [34].
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In this regard, the temperature span of the elastocaloric entropy change curves
represented in Figure 3.26 (a), computed as ∆TFWHM , increases proportionally
to the martensitic phase transition temperature shift with the applied compressive

stress

(
dTA,Mt

dσ

)
and the stress change, and it can be expressed as ∆TFWHM =

dTA,Mt

dσ
∆σ. For instance, the full width at half maximum for the stress-induced

elastocaloric entropy change goes up to ∆TFWHM (33.9MPa→ 1.7MPa) = 14.5K
for the reverse transition. Therefore, taking into account that the elastocaloric en-
tropy change saturates at a constant value (|∆S| = (22 ± 2) JK−1kg−1) and con-
sidering the previous expression for ∆TFWHM , the refrigerant capacity will also
scale linearly with the stress change and the transition temperature shift with ap-
plied stress up to a maximum refrigerant capacity of RC(33.9MPa→ 1.7MPa) =
(330 ± 30) Jkg−1 for the reverse transition, in agreement with previously reported
results [109, 111]. The strong sensitivity of the transition temperature with the
applied compressive stress enhances ∆TFWHM and allows this alloy to exhibit a
large refrigerant capacity. In fact, it is predicted to increase linearly for larger val-
ues of stress change and overcome the values for the best magnetocaloric materials,
summarized in [117], for |∆σ| > 50MPa.

It is important to point out that the stress-induced thermal response can signif-
icantly di�er upon �eld cycling, as the irreversible processes associated with the
thermal hysteresis of the alloy contribute as an additional energy cost for cyclically
driving the phase transition. Therefore, a signi�cant drop on the �eld-induced ther-
mal response may take place after the �rst application or removal of the compressive
stress if the values of the driving �eld are not large enough.

For the particular case under study, the sample exhibits a thermal hysteresis
of TMt − TAt = 14K which remains approximately constant within the applied
compressive stress range. Taking into account the transition temperature shift with
the applied stress, it is possible to compute the stress needed in order to overcome

the thermal hysteresis, and it can be estimated as (TMt − TAt )
dσ

dTA,Mt

∼ 32MPa.

This estimation of the e�ective hysteresis on stress is in accordance with the entropy
curves represented in Figure 3.25, where the heating and cooling entropy curves
measured under applied uniaxial stresses of 1.7MPa and 33.9MPa, respectively,
are overlapped.

In this regard, the stress-induced thermal response of this alloy will persist upon
cyclic loading and unloading operation for values of the stress change |∆σ| >
32MPa, where the driving �eld will be large enough to overcome the e�ective
hysteresis and the forward and reverse transitions will be at least partially driven
during the successive cycles. Consequently, by taking into account that a stress
change of |∆σ| > 25.4MPa is necessary in order to reach the isothermal entropy
change saturation value, indicating that we are fully inducing the phase transition,
it is predicted that a stress change of |∆σ| > 57MPa will be needed in order to
cyclically induce the complete phase transition on this alloy.



88 Experimental techniques

3.3.5 Comparison between the indirect and quasidirect

derivations of the elastocaloric e�ect

When comparing both indirect and quasidirect computations of the elastocaloric
e�ect associated with the martensitic transition exhibited by the Cu-Zn-Al alloy
under study, respectively illustrated in Figures 3.20 and 3.26, we observe that they
provide a set of concordant results.

Nevertheless, it is important to stress that elastocaloric entropy changes com-
puted in each case show slightly di�erent saturation values. The major contribution
to the exchanged heat, which gives rise to the entropy change, is the latent heat
associated with the �rst-order martensitic transition. Therefore, the elastocaloric
entropy change saturation value is expected to coincide with the transition entropy
change, which was determined to be |∆St|= (22 ± 1)JK−1kg−1 from the corrected
thermograms.

While this is the case for the quasidirect saturation value, which is in agree-
ment with previously reported indirect data at larger stresses [109], the indirect
saturation value falls a little bit short. This di�erence is attributed to the minor
accuracy of the corrected strain measurements, which might lead to an underesti-
mation of the transition strain change. In particular, it is important to highlight
that the dilatometric sensor is placed far away from the sample. Hence, its output
data is expected to carry a larger error. Additionally, the use of an INCONEL
sample to exclude the background signal from the raw dilatometric measurements
may have introduced a further deviation on the corrected strain curves, as it may
have not completely removed the background signal from some measurements, thus
hindering the determination of the transition strain change.

3.3.6 Summary and conclusions

We have studied the giant elastocaloric e�ect in a Cu-Zn-Al shape-memory al-
loy, which was used as a calibration sample for our novel experimental setup that
provides simultaneous DSC and dilatometric data. Both measurements report a
martensitic phase transition, occurring around room temperature, that is highly
sensitive to the applied compressive stress on account of the large transition strain.
The output data allows the indirect estimate of the elastocaloric e�ect together
with a unique quasidirect approach of the stress-induced thermal response.

On the one hand, the dilatometric data allows us to construct the ε−T curves.
These measurements showed a decrease of the transition strain when increasing the
applied compressive stress, while more accurate dilatometric measurements found
a constant transition strain of ∆εM,A

t = (7.0 ± 0.3) %. Even though both mea-
surement sets were concordant at low compressive stresses, a sensitivity factor for
the LVDT sensor had to be introduced in order to correct the dilatometric mea-
surements performed with our bespoke setup. The indirect computation of the elas-
tocaloric e�ect relies on the use of the Maxwell relations on the ε−T curves obtained
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from two analytical functions that �t the experimental behaviour of the measured
strain curves. These analytical functions allow us to compute the elastocaloric ef-
fect over the continuous (T, σ) phase space. The isothermal stress-driven entropy
changes saturate at ∆S = (−18 ± 2) JK−1kg−1 and ∆S = (19 ± 2) JK−1kg−1 for
the forward and reverse transitions, respectively.

On the other hand, the DSC measurements allow us to determine the tran-
sition entropy change of the martensitic phase transition. At low compressive
stresses, the ∆St obtained with our bespoke setup was found to be a little bit
smaller when compared to more accurate DSC measurements from which a value of
∆SMt (0MPa) = (22.1 ± 0.5) JK−1kg−1 and ∆SAt (0MPa) = (22.4 ± 0.5) JK−1kg−1

was found for the forward and reverse transitions, respectively. This di�erence sug-
gested that a constant calibration factor had to be introduced in order to analyse
the thermograms measured with our bespoke setup, and a similar calibration factor
will have to be determined and introduced for further experiments performed with
this unique setup.

Additionally, the transition entropy change determined from the measured ther-
mograms decreases when increasing the applied compressive stress, while a con-
stant behaviour can be anticipated from the application of the Clausius-Clapeyron
relation on the ε−T curves determined from the accurate dilatometric measure-
ments. Even though the deviation is small and falls within the experimental error
for applied compressive forces up to F = 400N, a sensitivity factor for the DSC
measurements had to be introduced in order to correct the decrease observed for
higher stresses. The quasidirect derivation of the elastocaloric e�ect relies on the
computation of the entropy curves at selected applied uniaxial compressive stresses,
which are constructed from the corrected thermograms and the speci�c heat of the
studied alloy.

While the isothermal stress-driven entropy changes saturate at |∆St|= (22 ±
1)JK−1kg−1 for a stress change of |∆σ| > 25.4MPa, the stress-driven adiabatic
temperature changes increase linearly with the applied stress and are expected to
saturate at |∆T | ∼ 15K for a stress change of |∆σ| > 51MPa. The material exhibits
a giant elastocaloric e�ect within a broad temperature window together with high
refrigerant capacity (RC) values, which are predicted to be comparable with the
values for the best magnetocaloric materials for stress changes of |∆σ| > 50MPa.
The potential use of the Cu-Zn-Al alloy under study for refrigeration applications
would require large and reversible values of the elastocaloric thermal response under
�eld cycling. In our Cu�Zn�Al alloy, an additional stress change of |∆σ| = 32MPa is
needed in order to overcome the e�ective hysteresis and yield reversible values of the
stress-driven thermal response. To cyclically �eld-induce the complete martensitic
phase transition, it has been predicted that a stress change of |∆σ| > 57MPa is
necessary.

When comparing both indirect and quasidirect estimates of the thermal response
of this alloy, they provide concordant results. Nevertheless, the dilatometric mea-
surements carry a minor accuracy and the computed indirect elastocaloric e�ect
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is slightly underestimated. Therefore, for further experiments performed with this
setup the dilatometric data will be taken as complementary to the DSC measure-
ments but they will not be analysed in detail.

Overall, it has been shown that the development and implementation of calori-
metric techniques that allow the application of uniaxial compressive stresses can
yield an accurate characterization of the elastocaloric e�ect. Moreover, under the
simultaneous application of magnetic �eld and uniaxial compressive stress, this be-
spoke setup proves as a unique and useful tool for the study and characterization
of the thermal response arising from materials exhibiting a cross-coupled response.
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4.1 The Fe-Rh system: an overview

The �rst studies on the magnetic properties of the Fe-Rh alloy system were
performed on the late 1930s [118, 119], reporting that close to 1:1 stoichiometry
this alloy system exhibited a sudden increase on the magnetization upon heating.
During the following decades, intensive research was devoted at characterizing the
equilibrium phases of the Fe-Rh alloy system and their physical properties. A de-
tailed phase diagram of Fe-Rh over a broad composition range can be found in
[120, 121].

Nevertheless, for the purposes of the present work, a narrow region of interest is
de�ned near equiatomic compositions. For a Rhodium content between ∼ 48% and
∼ 55%, the Fe-Rh system exhibits a �rst-order metamagnetic phase transition,
taking place at a transition temperature that rapidly falls when decreasing the
Rhodium content within the range 300K ≤ Tt ≤ 370K.

Within this composition range, this alloy system solidi�es in a CsCl structure
(space group Pm3m), which orders ferromagnetically below its Curie temperature
(TC ∼ 680K). Upon further cooling, it exhibits a �rst-order phase transition from
a high-temperature ferromagnetic (FM) (α′ phase) to a low-temperature antiferro-
magnetic (AFM) phase (α′′ phase). There is no crystal symmetry change associated
with the phase transition, as both phases have a CsCl-type crystal structure. At
the high-temperature ferromagnetic phase, the Fe atoms present a magnetic mo-
ment of ∼ 3µB while the Rh atoms exhibit a magnetic moment of ∼ 1µB . At the
low-temperature antiferromagnetic phase, the Rh atoms do not exhibit a signi�cant
magnetic moment whereas the Fe atoms present a moment of ∼ 3µB with opposite
sign on successive layers of (111) planes [122]. Moreover, due to the strong coupling
between magnetic and structural degrees of freedom, the volume of the FM phase
is ∼ 1 % larger than that of the AFM phase. 1 Figure 4.1 illustrates a sketch of the
AFM and FM atomic structures.

Despite the fact that the magnetic properties of Fe-Rh are an object of study
since the late 1930s [118, 119], the physical origin of the mechanisms that give rise

1A detailed summary on the main contributions characterizing the diverse crystal structures
of the Fe-Rh alloy system, together with the magnetic moment values of the Fe and Rh atoms at
the di�erent phases, can be found in [120, 121].
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Figure 4.1: Schematic illustration of the AFM (left) and FM (right) atomic
structures for near equiatomic Fe-Rh. Red dots correspond to the Fe atoms,
whereas grey dots to the Rh atoms. The corresponding magnetic spin con�gura-
tions of each phase are indicated by the arrows. The green triangle at the AFM
atomic structure indicates the (111) plane that contains Fe atoms with parallel
magnetic spin con�guration.

to the �rst-order metamagnetic phase transition are still an active research �eld
[123�128].

Furthermore, due to the volume and magnetization change exhibited at the �rst-
order metamagnetic phase transition, it can be induced by the application (or
removal) of both magnetic and mechanical �elds. Therefore, as discussed in Chapter
2, giant caloric and multicaloric e�ects are expected in its vicinity. In the early
decade of 1990s, S. Nikitin et. al. reported that Fe-Rh exhibits giant magnetocaloric
[28] and elastocaloric [54] e�ects. Despite these early reports, studies on Fe-Rh were
very scarce as it was considered to be of no practical use because it was believed that
its caloric e�ects were not reproducible upon external �eld cycling [55, 129, 130].
Later reports showed that Fe-Rh exhibited a reproducible caloric e�ect upon �eld
cycling by following a suitable thermodynamic path in the phase space [131], but it
was not until the last decade that this alloy received considerable attention, after
its potential interest for a wide range of technological applications was suggested
[121].

Recently, giant and reproducible magnetocaloric and barocaloric e�ects have
been reported on Fe-Rh [114, 132, 133], and its multicaloric response under the
combined action of magnetic �eld and hydrostatic pressure has also been thor-
oughly studied [59]. Fe-Rh is nowadays considered one of the benchmark materials
exhibiting giant caloric and multicaloric e�ects [134].
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4.2 Heusler alloys

This material class is named after Friedrich Heusler, who discovered in 1903
that when alloying Cu-Mn bronze with di�erent elements such as Sn, Al, Sb, Bi
or B, the resulting compounds were ferromagnetic even though that the di�erent
base elements are non magnetic by themselves [135]. 2 It was not until 1934, with
the studies carried by Bradley and Rodgers on the Cu-Mn-Al compound, that
a relation between the stoichiometry X2YZ, the alloy crystal structure and its
magnetic properties was established [138].

Since these early studies, intensive research has been carried out on this alloy fam-
ily, and nowadays more than 1000 Heusler compounds are known [139]. The strong
interest on this material class comes from the prominent magnetic, structural and
electronic properties that many of them exhibit, which leads to functional and mul-
tifunctional properties such as giant magnetocaloric and mechanocaloric e�ects [32,
38, 79], magneto-optical properties [140], spin polarization of the conduction elec-
trons [141], tunability of the band gap and topological insulator behaviour [142], su-
perconductivity [143], thermoelectrical applications [144, 145], magnetoresistance,
magnetic shape-memory properties and magnetic superelasticity [75]. Moreover, it
is signi�cant to highlight that Heusler alloys have also drawn a lot of attention dur-
ing the last decades due to their suitability for spintronic applications [146, 147].

Heusler alloys are intermetallic compounds, conformed by three distinct elements
generally named as X, Y and Z. In general, one has to distinguish between two
distinct families [139]:

1. Full-Heusler compounds:
They correspond to the X2YZ stoichiometry and present a characteristic

cubic crystal structure L21 (space group Fm3̄m). The structure L21, repre-
sented in Figure 4.2 (a), can be interpreted as four interpenetrated fcc (face
centered cubic) sublattices. The X atoms are positioned on both the I and
II sublattices, whereas Y and Z atoms occupy the III and IV sublattices,
respectively.

2. Half-Heusler compounds:
They correspond to the XYZ stoichiometry and present a cubic crystal

structure C1b (space group F 4̄3m). This structure can be interpreted as an
L21 structure (see Figure 4.2 (a)) where one of the sublattices which is occu-
pied by the X element for the case of Full-Heusler compounds (sublattices I
or II) is substituted by vacant lattice sites.

Figure 4.3 shows an overview of the main X, Y and Z elements that contribute
to the crystallization of a Heusler phase. Usually, 3d and 4d transition metals are

2At the time when F. Heusler did his discoveries, it was not known that Mn atoms are magnetic.
Nowadays, it is known that the Mn element presents a complex magnetic behaviour due to the
variety of crystalline structures that it can exhibit [136, 137].
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Figure 4.2: Schematic illustration of the L21 (a), B2 (b) and A2 (c) crystal
structures, characteristic of Full-Heusler alloys (X2YZ). For the case of L21 phase
in (a), each of the four fcc sublattices (labelled from I to IV) is occupied by a
de�ned element (X, Y or Z). The atomic positions of each sublattice are indicated
as spheres with di�erent tones of grey. The lattice parameter is a. For the case
of the B2 phase in (b), only two sublattices are distinguished, as indicated by
the spheres with two di�erent tones of grey, whereas for the A2 phase (c) all the
sublattices atomic positions are randomly occupied. The lattice parameter for
the A2 and B2 structures is a' = a/2.

used as X and Y elements, but sometimes rare earths can be used as the Y element,
whereas the Z element is usually taken from the main group block. 3 Nevertheless,
these conditions do not guarantee the formation of a stable Heusler phase.

The physical properties of Heusler alloys, such as the electronic structure and its
magnetic properties, are strongly dependent on the degree of atomic order of their
constituents in the crystal structure [139]. For the case of Half-Heusler compounds,
it has been reported that their crystal structure retains its atomic order up to the
decomposition temperature [151]. Conversely, Full-Heusler compounds frequently
display considerable atomic disorder as they do not directly crystallize on the or-
dered L21 crystal structure [139]. These compounds solidify in a fully disordered
bcc (body centered cubic) phase (A2 phase), and on cooling they exhibit an order-
disorder transition to a partially ordered intermediate B2 phase, which consists on
a CsCl-type structure where the Y and Z atoms are mixed and randomly occupy
both III and IV sublattices while the X atoms already occupy both sublattices I
and II. On further cooling, another order-disorder transition takes place and the
L21 structure emerges [152, 153]. Both B2 and A2 structures are represented in
Figure 4.2 (b) and (c), respectively.

3Recently, Heusler alloys composed of only 3d transition metals have been reported (such as
Ni-Mn-Ti or Ni-Mn-Ti-Co), where Ti replaces the Z element [148, 149].
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Figure 4.3: Periodic table of the elements. The highlighted regions are indica-
tive of the typical X (red), Y (blue) and Z (green) elements used for Heusler
compounds. The �gure has been modi�ed from [150].

Typically, the degree of atomic order can be tuned by heat treatments [154] and
therefore the physical properties of Heusler alloys can be strongly in�uenced by the
annealing temperature [155]. Despite this fact, some Heusler alloys (such as Ni-Mn
based alloys) have di�culties to order completely at the L21 crystal structure, and
they display traces of retained B2 phase [152].

So far, we have only considered Heusler alloys with a stoichiometric composition.
Nevertheless, it is important to highlight that there is a rich variety of Heusler
alloys that have an o�-stoichiometric composition. Interestingly, small deviations
from the stoichiometric composition can be regarded as an intrinsic disorder of the
alloys, which can have a great in�uence on the material physical properties. In this
regard, a particular case of interest for the present work are quaternary Heusler
compounds, which are composed by two di�erent X and X' elements and their
composition can be generally expressed as (XX')YZ [139].

On cooling, the cubic crystal structure of some Heusler alloys becomes unstable
and they can exhibit a martensitic transition.

4.2.1 The martensitic phase transition

In recognition of the early studies of Adolf Martens on the structure of steels, M.
F. Osmond proposed in 1895 the term martensite to describe the microstructure
found in quenched steels [156]. Over time, the term martensitic transition has
been generalized to encompass the structural transformations that occur in other
materials and alloys by similar mechanisms than those observed in steel.
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Nowadays, a martensitic phase transition refers to a solid-to-solid �rst-order
structural transformation that is driven by the nucleation and growth of the new
phase, which takes place by a displacive and di�usionless rearrangement of atoms
from the parent phase and is dominated by shear-like displacements [157]. As the
phase transition is displacive, the chemical bonds between the diverse atoms are
not broken during their rearrangement to the new crystal structure. There is no
long-range movement of the atoms. Despite the structure and symmetry changes,
the individual atomic movements are smaller than the interatomic distances and
their local neighbourhood is maintained through the martensitic phase transition.

On the one hand, the high-temperature phase, with a cubic crystal structure,
is referred as the parent phase. Alternatively, this phase is commonly referred as
austenite, where this term was coined after William Chandler Roberts-Austen in
recognition of his early works on the physical properties of metals and alloys. On the
other hand, the low-temperature phase, which is induced at the martensitic phase
transition is usually referred as the product phase or martensite. On cooling, the
martensitic phase is induced from the high-temperature austenite, and this process
is referred as the forward martensitic phase transition. Conversely, on heating, the
austenitic phase is induced from the low-temperature martensite, and this process
is referred as the reverse martensitic phase transition.

For the purpose of the present work, the following discussion is centered on the
phenomenology exhibited at the martensitic phase transition by shape-memory
alloys. 4 When the martensitic transition starts, the nuclei of the new martensite
phase start to grow and they de�ne a phase boundary with the remaining austenite
phase, which is called the habit plane. As both phases have a crystal structure with
di�erent lattice parameters, there is a certain lattice mismatch at the habit plane
that generates stress on the crystal structure of both phases, and the phase bound-
ary has an energetic cost. The habit plane de�nes an energy barrier that has to
be overcome in order to start the nucleation and growth process of the martensitic
transformation. Therefore, as already discussed in section 2.2.2, the martensitic
transition will exhibit a certain thermal hysteresis. However, local defects of the
crystal structure or an improvement of the geometrical compatibility between both
martensitic and austenitic phases can reduce the energy barrier and enhance the
nucleation process, having a signi�cant impact on the thermal hysteresis of the
phase transition [158�161].

As the martensitic crystal structure has a lower symmetry than the cubic austenitic
phase, from a single austenite crystal the martensitic phase can be formed in a set of
di�erent equivalent orientations, which are called martensite variants. On cooling,
when the martensitic transition starts, none of the di�erent martensite variants is
favoured and all of them can nucleate and grow on the austenite matrix. However,
the cubic crystal structure of the austenitic phase at one side of the habit plane
constrains the martensitic variants that can be formed at the other side. In fact,
the nucleation of a single martensite variant can induce a strong elastic and plas-

4Other systems that present martensitic phase transitions, such as steels or ceramic materials,
do not necessarily exhibit the same phenomenology that is presented in this section.
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Figure 4.4: (a) Schematic representation of the change in crystal structure
under a martensitic transformation based on a tetragonal lattice distortion in a
2D system. Two equivalent martensite variants can be formed from an austenite
cubic unit cell. (b) Schematic illustration of the habit plane (grey shaded region)
de�ned between both martensite and austenite phases. The martensite phase
develops twin boundaries between both variants (red lines) to minimize the elastic
and plastic deformations of the crystal.

tic deformation of the crystal. This energy can be reduced by alternating di�erent
martensite variants along the habit plane, de�ning twin boundaries between them.
Therefore, the martensitic phase of a macroscopic sample is constituted by a com-
plex microstructure of martensite variants which are separated by hierarchically
distributed twin boundaries on many length scales [162]. Importantly, it must be
mentioned that a twin boundary between the di�erent martensite variants can be
moved by applying a certain mechanical stress, as it breaks the energetic equiva-
lence between the di�erent variants and favours the growth of some of them. This
process results in a macroscopic deformation of the material with strains as large
as 10 %. Furthermore, this deformation can be reverted when heating the mate-
rial back to the high-temperature austenitic phase, where the system recovers its
original shape, which gives rise to the so-called shape-memory e�ect [163].

Figure 4.4 schematically illustrates the martensite growth and twinning at the
nanoscale. For the sake of simplicity, a 2D system is considered for this example. In
comparison to the cubic austenite, the martensite is deformed tetragonally and it
can be formed in two di�erent equivalent orientations, thus de�ning two martensite
variants (illustrated in green and blue in Figure 4.4 (a)). On cooling, when the
martensitic phase transition starts, the new martensite phase nucleates and grows,
de�ning an habit plane between both austenite and martensite phases. The cubic
structure of the austenite constrains the growing martensite phase, which combines
the two variants (Figure 4.4 (b)). There is a certain lattice mismatch at the twin
boundaries, which has an energetic cost, but this scenario is more energetically
favourable than the transformation to a single martensite variant, as the elastic
and plastic deformation of the crystal are reduced.

When the martensitic transition starts, each nucleus of the new phase grows until
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Figure 4.5: Schematic representation of the strain of a system exhibiting a
martensitic phase transition as a function of temperature under a constant stress.
Vertical dashed lines indicate the temperature at the mid point of the forward
(Ttc) and reverse (Tth) martensitic phase transitions.

it encounters another nucleus or hits a high angle boundary [81]. As the diverse
nucleus start to present obstacles between them for their further growth, the driving
force of the phase transition has to increase in order to complete the martensitic
phase transformation. Therefore, the system has to be further undercooled (see
section 2.2.2) and consequently, the martensitic phase transition will spread over
a certain temperature range. Taking into account the thermal hysteresis and the
transition width inherent to a martensitic phase transition, Figure 4.5 illustrates
the temperature dependence of the strain of a system around a martensitic phase
transition. Under a certain applied mechanical stress, the growth of some martensite
variants will be favoured and the system will exhibit a strain change across the
martensitic transition (∆εt). Black arrows illustrate the di�erent transformation
paths followed for the forward (cooling) and reverse (heating) transitions, which
occur at a di�erent transition temperature as illustrated by vertical dashed lines.

So far, we have considered that temperature is the driving �eld of the martensitic
phase transitions. Nevertheless, as the system exhibits a strain change (∆εt), it
can also be induced by a mechanical stress. At temperatures above the austenite
�nish temperature, 5 application of stress will induce the forward phase transition,
favouring the formation of a single-variant martensitic phase. When the stress is
removed, the reverse phase transition will be induced with a certain hysteresis, and
the system will recover its initial shape. This process, which results in a reversible
macroscopic deformation of the sample, gives rise to the so-called superelastic e�ect.

Martensitic phase transitions are observed in a rich variety of materials, such
as metallic alloys, ceramics, polymers or superconductors [163]. Their study is of

5The austenite �nish temperature (Af ) corresponds to the temperature at which the reverse
phase transition is completed, which will be higher than the reverse transition temperature (Tth).
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fundamental and technological interest, as martensitic transitions not only play an
important role on the hardening of steel [164], but they are also important for the
development of sensors and actuators, as martensitic phase transitions confer some
alloys shape-memory and superelastic properties. For the sake of many technolog-
ical applications, the cyclability of the martensitic phase transition is of utmost
importance. In this regard, it is important to highlight that the lattice mismatch
between both martensitic and austenitic phases has a signi�cant impact on the
stresses generated at the habit plane, which leads to a gradual degradation of the
samples that is observed by the promotion of dislocations and microcracks at the
microstructure [161].

A detailed discussion on the martensitic phase transition, their crystallographic
and thermodynamic characteristics, the nucleation and growth mechanisms as well
as their properties can be found in [108, 163, 165, 166].

4.2.2 Ni-Mn-based Heusler alloys

For the purpose of the present work, our interest is focused on the Ni-Mn-Z
(Z = Ga, In, Sn, Sb, Al) Heusler alloys, as they exhibit a martensitic phase transi-
tion near room temperature that involves a change in both structural and magnetic
order [63, 75, 167�169]. These Heusler alloys have drawn a great deal of attention
over the last decades as they exhibit a strong coupling between the structural and
magnetic degrees of freedom at the martensitic phase transition, giving rise to
a cross-response to di�erent external stimuli and exhibiting a strong multicaloric
character that anticipates promising perspectives for future technological applica-
tions [51, 62�64, 170, 171].

4.2.2.1 Structural properties and phase diagrams

In the austenitic phase, as discussed in section 4.2, Heusler alloys exhibit a L21
crystal structure, illustrated in Figure 4.2, which is generally created after a series
of order-disorder transitions. At the stoichiometric composition, the Ni atoms oc-
cupy both sublattices I and II, whereas Mn and Z occupy the III and IV sublattices,
respectively. On cooling, these alloys can exhibit a martensitic phase transition. At
low concentrations of the Z element, Ni-Mn-based Heusler alloys transform to a
martensitic phase with a L10 tetragonal crystal structure (space group P4/mmm),
since it also corresponds to the ground-state crystal structure of the parent com-
pound Ni50Mn50 [75, 172]. Figure 4.6 schematically illustrates the L21 crystal struc-
ture and its relationship with the L10 tetragonal structure. Nevertheless, it has
been reported that Ni-Mn-based Heusler alloys can exhibit other related struc-
tures at the martensitic phase, specially for higher concentrations of the Z element.
In particular, monoclinic structures, which can be described as modulated varia-
tions of the L10 tetragonal structure stacked in a speci�c order, with a �ve-layered
(5M) or seven-layered (7M) periodicity have been observed [75]. 6 These modulated
martensitic structures have been interpreted as an adaptative phase constituted by

6Depending on how the periodicity of the modulated structure is de�ned, these structures are
labelled 5M and 7M or 10M and 14M, respectively, in the literature.
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Figure 4.6: (a) Schematic illustration of the L21 crystal structure, characteristic
of Full-Heusler alloys, and its relation to the tetragonal L10 crystal structure,
which is also illustrated separately in (b). As for Figure 4.2, the atomic positions
of each sublattice are indicated as spheres with di�erent tones of grey.

a nanoscale microstructure of the L10 tetragonal martensite variants stacked with
a certain order [173]. As discussed in section 4.2.1 and schematically illustrated in
Figure 4.4 (b) for a 2D system, the formation of these microstructures enables a
drastic reduction of the elastic and plastic deformation of the crystal at the habit
plane, which favours the nucleation process. Furthermore, some Heusler alloys can
exhibit a series of �rst-order phase transitions, which involve the presence of inter-
martensitic or premartensitic phases, before reaching the martensitic ground state
[174, 175].

Interestingly, Ni-Mn-Ga is the only Ni-Mn-based Heusler alloy that exhibits a
martensitic phase transition at the stoichiometric composition Ni2MnGa [170, 176],
exhibiting almost no volume change at the phase transition. For this particular
case, the atoms of each element occupy the positions of speci�c sublattices and its
crystal structures can be visualized as those illustrated in Figure 4.6. Conversely,
for the cases in which (Z 6= Ga), the martensitic transition takes place only for
o�-stoichiometric compositions, exhibiting a certain volume change at the phase
transition [177]. Despite this fact, similar crystal structures are observed on these
alloys at the martensitic phase [178, 179].

As previously discussed in section 4.2, the material physical properties such as
the magnetic order, the martensitic transition temperature or its crystal structures
will depend on the chemical composition of a Heusler alloy. Interestingly, some
of the physical properties of many Heusler compounds, including the Ni-Mn-based
ones, can be predicted from the average number of valence electrons per atom (e/a)
[139, 180]. Therefore, it is possible to represent a complete structural and magnetic
phase diagram for Ni-Mn-Z compounds with di�erent chemical compositions as a
function of the average valence electron concentration per atom (e/a), which are
illustrated in Figure 4.7 for Ni-Mn-Sn (a), Ni-Mn-In (b) and Ni-Mn-Ga (c).
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Figure 4.7: Magnetic and structural transition temperatures as a function of the
average valence electron concentration per atom (e/a) for Ni-Mn-Z Heusler alloys,
with Z as Sn (a), In (b) and Ga (c). The triangles and circles correspond to the
magnetic and martensitic transformation temperatures, respectively. The regions
corresponding to di�erent crystal structures are separated by dashed lines. Small
solid circles in (c) correspond to premartensitic transition temperatures. This
�gure has been taken from [75].

Each individual phase diagram starts from the parent compound Ni50Mn50,
which has an average number of valence electrons per atom of e/a = 8.5 and
is in the L10 tetragonal crystal structure even at high temperatures. When pro-
gressively increasing the concentration of the Z element, as these atoms provide less
valence electrons than Ni and Mn, it leads to a decrease of the average number of
valence electrons per atom (e/a) for the three di�erent families of Ni-Mn-Z Heusler
compounds under consideration.

On the one hand, when considering the structural phases of these compounds,
it has been reported that a decrease of the average number of valence electrons
per atom (e/a) leads to a shift of the martensitic start temperature (Ms)

7 to
lower temperatures with a good linearity. For the three di�erent families of Ni-Mn-
Z Heusler compounds illustrated in Figure 4.7, the ground state crystal structure
evolves as cubic → 10M → 14M → L10 when decreasing the concentration of the
Z element, which corresponds to an increase on e/a.

On the other hand, when considering the magnetic phases of these compounds,
it is shown that the austenitic Curie temperature (TAC ) does not signi�cantly
change when altering the chemical composition within each Heusler compound
family, although it shows a tendency to decrease when increasing e/a. Further-

7The martensitic start temperature (Ms) corresponds to the temperature at which the forward
phase transition is initiated, which will be higher than the forward transition temperature (Ttc)
considered in section 4.2.1.
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more, these families display comparable austenitic Curie temperatures in the range
TAC ∈ [300, 400]K, despite the fact that their magnetic interactions giving rise to
the ferromagnetic behaviour strongly di�er between them [181]. Interestingly, ex-
cept for Z = Ga, the martensitic Curie temperature (TMC ) exhibits a signi�cant
dependence on the chemical composition of the alloy, as it rapidly decreases when
increasing e/a. 8

Intensive research has been carried during the last decades on Ni-Mn-based
Heusler alloys owing to the strong coupling exhibited between the structural and
magnetic degrees of freedom. This unique interplay makes Ni-Mn-based Heusler
alloys suitable candidates to exhibit magnetic shape-memory e�ects, which corre-
sponds to the possibility of inducing large recoverable strains by the application
of magnetic �eld and represented a major breakthrough for the development of a
new generation of sensors and actuators [75]. Special attention has been given to
Ni-Mn-Ga-based Heusler compounds, as they can display strains within 10−12 %
[183, 184].

The magnetic anisotropy energy, which corresponds to the energy necessary to
rotate the magnetic moment of a single crystal from the easy to the hard direction,
as well as the mobility of twin boundaries play an important role on the mag-
netostructural properties of these alloys. While the cubic austenitic phase has a
low magnetocrystalline anisotropy, the low-temperature martensitic variants can
exhibit a signi�cant anisotropy, which is specially important for the case of Ni-
Mn-Ga alloys. At low temperatures, below the Curie point without any applied
magnetic �eld, the magnetization of the magnetic domains within the di�erent
martensite variants point along the easy axis and are oriented in a way to mini-
mize the magnetoelastic energy [185�187]. When a magnetic �eld is applied, the
magnetic moments within the twin variants tend align with the magnetic �eld di-
rection. At this point, if the magnetic anisotropy is weak, the magnetic moments
will rotate within each martensite variant, resulting in a small change of the sam-
ple dimensions. Nevertheless, if the magnetic anisotropy is high, the rotation of
the magnetic moments within each variant is less energetically favourable than the
movement of the twin boundaries in order to generate a single-variant martensitic
structure with the easy axis aligned with the magnetic �eld. In this process, mag-
netic �eld plays the same role that stress in shape-memory alloys, as both promote
the formation of single-variant martensite structures.

4.2.2.2 Magnetic properties

The magnetic behaviour of Ni-Mn-based Heusler alloys is strongly linked to their
crystal structure and the role of Mn atoms. From neutron scattering experiments,
it was found that the magnetic moment for most of the X2MnZ Heusler alloys
is mainly con�ned at the Mn atoms with a value in the range of 4µB [188, 189]

8The decrease on the austenitic and martensitic Curie temperatures when increasing e/a is
related to the weakening of the ferromagnetic coupling when increasing the Mn content. As
discussed in section 4.2.2.2, decreasing the interatomic distance between neighbouring Mn atoms
strongly enhances the antiferromagnetic exchange [75, 182].
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independently of the X and Z elements. 9 In 1983, Kübler et al. showed that the
electron density of states plays a major role on the origin of localized magnetic
moments at the Mn atoms. Based on the �rst density functional theory calculations
on a series of full-Heusler alloys with composition X2MnZ, they established that
Mn atoms give rise to con�ned magnetic moments due to the exclusion of the
minority-spin electrons [190].

For the particular case of Ni-Mn-based Heusler alloys in the austenitic phase,
where these alloys exhibit an L21 crystal structure, each Mn atom has eight Ni
atoms as nearest neighbours. In this case, theoretical studies have shown that
there is a hybridization between the 3d orbitals of Mn and Ni atoms [181, 190�193].
Consequently, whereas the majority spin-up states are almost completely occupied
as they lay below the Fermi energy, the minority spin-down states of the d-electrons
are partially empty as they are pushed up above the Fermi energy. The di�erence
between spin-up and spin-down occupied states gives rise to a net magnetic moment
localized at the Mn atoms which is composed of itinerant electrons that form a
common d band [191].

In these Heusler alloys, the interatomic distance between neighbouring Mn atoms
is large, preventing a signi�cant direct interaction between them. Therefore, indi-
rect coupling mechanisms play a major role in de�ning the magnetic ordering. The
interaction between Mn atoms can be described in terms of the model proposed by
Ruderman, Kittel, Kasuya and Yosida, known as RKKY model [194�196], which
supposes that the indirect coupling mechanism between localized magnetic mo-
ments is mediated by the conduction electrons, which belong to the s and p energy
levels. In this model, a localized magnetic moment spin-polarizes the conduction
electron gas, which in turn couples to another localized magnetic moment at a dis-
tance r. The corresponding exchange energy given by this model depends on the
distance between the magnetic moments and has as oscillatory character, which
can give rise to either ferromagnetic or antiferromagnetic order depending on the
distance between the localized magnetic moments.

Whereas elementary Mn exhibits a variety of crystal structures with antiferro-
magnetic coupling [136, 137], an increase on the distance between neighbouring Mn
atoms can lead to a ferromagnetic coupling. This behaviour can be described in
terms of the Bethe-Slater curve, which is schematically illustrated in Figure 4.8.
As it can be seen, the elements with positive exchange energy order ferromagnet-
ically, such as Fe, Co or Ni. Elementary Mn has a negative exchange energy, but
an increase on the distance between neighbouring Mn atoms can lead to a positive
exchange energy thus giving rise to a ferromagnetic coupling.

Even if the Mn atoms exhibit a similar magnetic moment for most of the X2MnZ
Heusler alloys, the fact that the interaction between them is indirect and mediated
by the conduction electrons gives rise to diverse magnetic behaviours depending

9However, when the X element presents a signi�cant magnetic moment such as for Co, there
is nearest neighbours interaction between magnetic atoms and the system will present a tendency
to itinerant magnetism.
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Figure 4.8: Schematic representation of the Bethe-Slater curve, which illustrates
the exchange energy as a function of the ratio between the interatomic distance
(ra−b) and the radius of the 3d orbital (rd) for di�erent elements [197]. The
blue arrow illustrates the change from an antiferromagnetic to a ferromagnetic
ordering for Mn atoms when increasing their interatomic distance.

on the X and Z elements. While the X element plays an important role in de�ning
the lattice parameter of the alloy, 10 the Z element has a strong in�uence on the
concentration of sp-conduction electrons, which mediate the exchange interaction
between Mn atoms [181, 190, 200]. These factors highlight the strong in�uence of
the crystal structure, which directly tunes the distance between Mn atoms, on the
magnetic behaviour of Ni-Mn-based Heusler alloys [181, 201].

Moreover, as previously discussed in section 4.2, the magnetic behaviour of a
Heusler alloy will depend on its speci�c chemical composition. Speci�cally, alloys
that have an o�-stoichiometric composition will have a certain disorder in their
crystal structure. In this regard, the excess Mn atoms will decrease the distance
between neighbouring Mn atoms and will a�ect their exchange interaction, thus
modifying the magnetic behaviour of the alloy [75, 202].

Furthermore, the magnetic moment per atom will also depend on the chemi-
cal composition of a Heusler alloy, which determines the number of valence elec-
trons per atom (e/a) [139]. This dependency follows the Slater-Pauling behaviour
[20, 203], which is illustrated in Figure 4.9 for diverse 3d metals and alloys, to-
gether with some Ni-Mn-based Heusler alloys. For each compound, the number
of valence electrons per atom (e/a) is given by a number of majority spin-up
(N↑) and minority spin-down (N↓) electrons, and can be generally expressed as
e/a = N↑ + N↓. Accordingly, the average magnetic moment per atom is given
by the di�erence between both electrons populations, and can be expressed as
µ = (N↑ − N↓)µB = (e/a − 2N↓)µB . Therefore, for a �xed number of minority

10Nevertheless, the X element can also in�uence on other aspects. For instance, for the particular
case of Ni-Mn-based Heusler alloys, the Ni atoms also exhibit a certain magnetic moment [198,
199], which is signi�cantly smaller than that associated with Mn atoms.
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Figure 4.9:Magnetic moment as a function of the valence electron concentration
per atom (e/a) for diverse 3d metals and alloys (open symbols), Ni-Mn-Z Heusler
alloys (solid triangles), calculated full-Heuslers and half-Heuslers (solid circles)
and some antiferromagnets (solid squares). The alloys that lay above the zero
magnetic moment line exhibit a ferromagnetic (FM) order, whereas those that
lay below exhibit an antiferromagnetic (AF) order. The �gure has been taken
from [75].

spin-down electrons per atom, there is a direct proportionality between the aver-
age magnetic moment per atom (µ) and the number of valence electrons per atom
(e/a) [193, 204].

When changing the composition for diverse 3d alloys in order to modify the
number of valence electrons per atom (e/a), represented in Figure 4.9 as open
symbols, their associated magnetic moments follow the increasing (e/a < 8.5) and
decreasing (e/a > 8.5) branches of the Slater-Pauling curve. Typically, materials
with e/a > 8.5 display an fcc structure, whereas they display a bcc structure for
e/a < 8.5. For the sake of completeness, the magnetic moment of some antiferro-
magnets is also included in Figure 4.9, illustrated as solid squares. Interestingly,
deviations from the Slater-Pauling curve can occur, as it can be seen for certain
Fe-Ni alloys, which is indicative of changes on the magnetic behaviour for those
particular compositions.

When considering the case of Heusler alloys, the calculated magnetic moments
for full-Heusler and half-Heusler alloys (solid circles in Figure 4.9) perfectly �t on
the increasing branch of the Slater-Pauling curve. Furthermore, the experimental
values for diverse Ni-Mn-Z Heusler alloys are represented as solid triangles. As it
can be seen, these experimental values nearly follow the Slater-Pauling curve with
the same slope but they deviate from it at high e/a values, which corresponds to o�-
stoichiometric compositions with an excess of Mn atoms. As previously discussed,
an excess of Mn atoms decreases the distance to neighbouring Mn atoms and a�ects
the magnetic behaviour of the alloy. Eventually, for a high excess of Mn atoms, their
magnetic behaviour would approach to that of the parent compound Ni50Mn50, as
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indicated by the black dashed line in Figure 4.9, which is antiferromagnetic.

4.2.2.3 Challenges and future perspectives for technological applica-

tions

During the last years many e�orts have been devoted at developing high-performa-
nce Ni-Mn-based magnetic shape-memory alloys, characterized by exhibiting giant
mechanocaloric [205, 206] and magnetocaloric [207] e�ects as well as an enhanced
cyclability of their thermal response [208, 209], which is of utmost importance for
any technological application. In spite of the signi�cance of such achievements,
there are a series of bottlenecks mostly related to the �rst-order character of the
martensitic phase transitions that need to be further addressed. On the one hand,
the required external �elds in order to achieve a giant caloric e�ect are still too
large. On the other hand, the inherent hysteresis associated with the �rst-order
character of the martensitic phase transition reduces the reversibility of the �eld-
induced caloric e�ects and compromises the possible technological applications [48].

Di�erent strategies have been recently proposed in order to overcome some of
these limitations by taking advantage of the magnetostructural character of the
martensitic phase transition exhibited by these alloys, and its sensitivity to diverse
external �elds. For instance, a suitable combination of more than one external
�eld can help in increasing the reversibility of the �eld-induced thermal response
[51, 210]. To address this issue, di�erent approaches have already been taken into
practice, and it has been shown that a suitable combination of magnetic �eld
and hydrostatic pressure or uniaxial stress drastically reduces the magnetic-�eld-
e�ective hysteresis [59, 61, 63, 65]. Furthermore, a novel multicaloric cycle that
takes advantage of the inherent thermal hysteresis of these alloys and operates
under the sequential application of magnetic �eld and uniaxial compressive stress
has very recently been proposed and successfully tested [64].
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5.1 Fe-Rh

Regardless of the early studies performed by S. Nikitin et. al. on the giant elas-
tocaloric e�ects exhibited by this alloy [54], where a giant adiabatic temperature
change was reported when applying tensile stresses, no further studies were per-
formed on this line and a complete characterization of the elastocaloric e�ect was
lacking until a few years ago. 1

The present work on this alloy has a twofold objective. First of all, it is aimed
at providing a thorough characterization of the giant elastocaloric e�ect of Fe-Rh
when subjected to a uniaxial compressive stress. Secondly, it is intended to provide
a detailed discussion on the e�ect of the combined action of magnetic �eld and
uniaxial compressive stress on the caloric properties of Fe-Rh.

5.1.1 Sample details

The experiments were performed on a polycrystalline Fe49Rh51 sample prepared
by arc melting with dimensions 3.3 × 3.0 × 5.6mm3, shaped as a parallelepiped.
This sample was fabricated at the Indian Association for the Cultivation of Science
(IACS), Kolkata (India), and details of the sample preparation and heat treatment
are given in [59, 114, 132].

5.1.2 Experimental details

Direct measurements of the adiabatic temperature change induced under a cyclic
external �eld in the range 0 � 1.7T and a constant compressive stress of σ =
100MPa have been performed with the bespoke setup described in section 3.2.2.
Following the discontinuous measurement protocol, discussed in section 3.2.1, suit-
able thermal excursions were performed prior to each measurement to control the
initial thermodynamic state of the sample. Afterwards, the sample was brought to
the desired measurement temperature, which was within the range T ∈ [295, 330]K
for all measurements.

1The results of these studies are published in reference [65].
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5.1.3 Adiabatic thermometry of the magnetocaloric

temperature change under a constant uniaxial stress

As discussed in section 2.2.2, the �rst-order character of the metamagnetic phase
transition exhibited by Fe-Rh implies that it will present a certain temperature
and external �eld hysteresis. Therefore, as described in section 3.2, the thermal
history of the sample has to be taken into account in order to properly measure
the reversible and irreversible �eld-induced adiabatic temperature change under a
cyclic external �eld.

The design of suitable thermodynamic paths before the measurement start has
to take into account the phase transition behaviour under the application of the
di�erent considered external �elds. As stated before in section 2.2.1, a system
exhibiting a �rst-order phase transition is characterized by a discontinuity on the
corresponding order parameter and under the application of a certain external
�eld, as discussed in section 2.2.2, the phase that maximizes the conjugated order
parameter will be favoured.

For the particular case of the �rst-order metamagnetic phase transition in Fe-
Rh, a discontinuity on both the magnetic order and the lattice parameter of the
unit cell occur at the phase transition. Therefore, application of magnetic �eld will
favour the phase that maximizes the magnetization, which corresponds to the high-
temperature FM phase, and the transition temperature will shift to lower values
as the material will exhibit an inverse magnetocaloric e�ect. Conversely, applica-
tion of hydrostatic pressure will favour the phase where the crystal structure is
more compact, which corresponds to the low-temperature AFM phase, and the
transition temperature will shift to higher values as the material will exhibit a con-
ventional barocaloric e�ect. The inverse character of the magnetocaloric e�ect and
the conventional character of the barocaloric e�ect have been thoroughly studied
in previous studies such as [59, 114, 132, 133].

When considering the e�ect of uniaxial stress on the metamagnetic phase tran-
sition, a distinct behaviour has been observed between the application of a tensile
stress [54] and a compressive stress [65]. For instance, the transition temperature in-
creases when applying a compressive stress, which corresponds to the stabilization
of the low-volume AFM phase, while it decreases when applying a tensile stress,
re�ecting a stabilization of the high-volume FM phase.

The volume change experienced at the phase transition gives rise to a uniaxial

strain component ∆εt ≈
1

3

∆υ

υ
, where

∆υ

υ
corresponds to the relative volume

change at the FM to AFM phase transition. Some insight on the relative phase
stability between the FM and AFM phases under the application of uniaxial stress
can be gained from the the Clausius-Clapeyron equation for the elastocaloric e�ect
(see Table 2.1 and equation 2.28), which can be written as:

dTt
dσ

= −υ0
∆εt
∆St

≈ −υ0
3

∆υ/υ

∆St
(5.1)
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Consequently, for a compressive stress (σ < 0) the transition temperature shift

is positive
(
dTt
d|σ|

> 0

)
and the low-volume AFM phase is stabilized, whereas for

a tensile stress (σ > 0) the transition temperature shift is negative
(
dTt
d|σ|

< 0

)
and the large-volume FM phase is stabilized. Furthermore, it is important to high-
light that as uniaxial stress is not the conjugated �eld for a volume change, a
much smaller sensitivity of the transition temperature is expected when applying
a uniaxial stress when compared to hydrostatic pressure [92].

Taking into account that the application of magnetic �eld stabilizes the high-
temperature FM phase, promoting the AFM to FM phase transition (as a heating
process does), while the removal of magnetic �eld stabilizes the low-temperature
AFM phase and promotes the FM to AFM phase transition (as a cooling process
does), which gives rise to an inverse magnetocaloric e�ect, the protocols described
in section 3.1.2.1 that correspond to an inverse caloric e�ect were followed to carry
out the direct measurements of the adiabatic temperature change under a cyclic
magnetic �eld. In this regard, to characterize the thermal response when inducing
the AFM to FM phase transition (heating protocol), the sample is initially fully
transformed to the AFM phase in the absence of magnetic �eld, and then it is
heated up to the initial measurement temperature. Once the sample is at isothermal
equilibrium, the magnetic �eld is cycled, starting with a 0 → 1.7T scan. By
contrast, to characterize the thermal response when inducing the FM to AFM
phase transition (cooling protocol), the sample is initially fully transformed to the
FM phase under a constant magnetic �eld, and then it is cooled down to the
initial measurement temperature. Once the sample is at isothermal equilibrium,
the magnetic �eld is cycled, starting with a 1.7T → 0 scan.

Figure 5.1 illustrates examples of the temperature (top) and magnetic �eld
(bottom) measurements recorded upon cycling the magnetic �eld in the range
0 � 1.7T under a constant compressive stress of σ = 100MPa for both heat-
ing (left) and cooling (right) protocols. Consistently with the inverse nature of the
magnetocaloric e�ect in Fe-Rh, we measured a temperature decrease upon appli-
cation of an external magnetic �eld and a temperature increase upon removal of
the magnetic �eld. As it can be seen in both panels (a) and (b), the temperature
changes measured for the �rst magnetic �eld scan (n = 1) are larger than the tem-
perature changes measured for the subsequent magnetic �eld scans (n > 1). The
reduction of the �eld-induced adiabatic temperature change between the �rst and
subsequent magnetic �eld scans is due to the hysteresis inherent to the �rst-order
character of the metamagnetic phase transition.

The adiabatic temperature change for a certain magnetic �eld scan (µ0H
s →

µ0H
f ) is determined as ∆Tad(µ0H

s → µ0H
f ) = T (µ0H

f ) − T (µ0H
s), where

T (µ0H
s) and T (µ0H

f ) correspond to the sample temperature before and after the
magnetic �eld scan, respectively. The whole set of measurements is compiled in
Figure 5.2, where the adiabatic temperature changes are plotted as a function of
the initial temperature of the sample.
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Figure 5.1: Illustrative examples of the recorded temperature ((a) and (b))
and magnetic �eld ((c) and (d)) for heating (left) and cooling (right) protocols
under a constant applied compressive stress of 100MPa. Red and blue dashed
vertical lines (n = 1) indicate the �rst application and removal of magnetic �eld,
respectively, while green dashed vertical lines (n = 2) indicate the second removal
and application of magnetic �eld.

The maximum adiabatic temperature change values measured for the �rst appli-
cation and removal of the magnetic �eld are around |∆T | ≈ 5K, while it decreases
to |∆T | ≈ 2K upon successive magnetic �eld scans. These values are smaller than
previous measurements in the absence of applied uniaxial compressive stress [114].
This di�erence between both measurement sets can be mainly attributed to the
fact that the current adiabatic temperature measurements were performed with the
thermocouple attached to the sample surface, while for previous measurements the
thermocouple was embedded into the sample, which worsens the thermal contact
between the sample and the thermocouple. Additionally, for the present measure-
ments the sample is in direct contact with two PEEK discs (see the scheme of the
setup in Figure 3.13) which reduces the adiabaticity of the measurements.

The e�ect of the uniaxial compressive stress on the adiabatic temperature change
can be noticed when comparing the present results with previously reported data
in the absence of compressive stress [114]. When comparing the temperature at
which the measured adiabatic temperature change is maximum (or minimum),
we observe that the present measurements are shifted to higher temperatures as
δT = (3.1 ± 0.3)K. Taking into account that the present measurements were
performed under a constant uniaxial compressive stress of σ = 100MPa, the cor-
responding transition temperature shift with uniaxial compressive stress will be
dTt
d|σ|

= (0.031 ± 0.003)KMPa−1, which is in agreement with previous results ob-

tained from calorimetric measurements [65, 92].
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Figure 5.2: Adiabatic temperature change corresponding to the application and
removal of a 1.7T magnetic �eld under a constant applied compressive stress of
100MPa. Red and blue symbols correspond to the �rst application and removal
(n = 1) of the magnetic �eld for the heating and cooling protocols, respectively.
Green symbols correspond to the subsequent �eld cycles (n > 1), and lines are
guides to the eye.

5.1.4 Magnetocaloric e�ect under a constant uniaxial stress

Previous studies on the caloric and multicaloric e�ects exhibited by Fe-Rh under
the in�uence of magnetic �eld and hydrostatic pressure showed an excellent agree-
ment between indirect [59], quasidirect [132] and direct [114, 132] estimates of the
�eld-induced thermal response.

In order to complement the direct measurements of the adiabatic temperature
change presented in the previous section, and those reported in reference [65], the
computation of the corresponding quasidirect estimates of the �eld-induced ther-
mal response under a magnetic �eld change (0 � µ0H) and a constant uniaxial
compressive stress of σ = 100MPa proves as a good approach to further charac-
terize the e�ect of the combined action of magnetic �eld and uniaxial compressive
stress on the caloric properties of Fe-Rh.

As discussed along Chapter 3 and exempli�ed for the elastocaloric e�ect of Cu-
Zn-Al, the quasidirect computation of the �eld-induced thermal response is based
on the construction of the corresponding iso�eld entropy curves from calorimetric
measurements and heat capacity data. For the case of Fe-Rh, high-quality iso�eld
calorimetric measurements under the in�uence of magnetic �eld without any ap-
plied uniaxial compressive stress were previously performed [132], whereas iso�eld
calorimetric measurements under the combined in�uence of magnetic �eld and uni-
axial compressive stress performed with a previous version of the bespoke setup de-
scribed in section 3.1.4 showed a poor baseline and could not be properly integrated
for the construction of the corresponding entropy curves [92]. Nevertheless, a good



112 Results and discussion

approach to construct the iso�eld-isostress entropy curves, generally expressed as
(S(T, µ0H,σ)), is to use the iso�eld entropy curves computed from the high-quality
calorimetric measurements in the absence of stress (S(T, µ0H,σ = 0MPa)) [114]
and assume that the e�ect of uniaxial compressive stress on the entropy curves is a
pure shift of the transition temperature without any signi�cant change in its shape
[38]. Under this assumption, the iso�eld-isostress entropy curves will be computed
as:

S(T, µ0H,σ) = S(T, µ0H,σ = 0MPa)
dTt
dσ

σ (5.2)

From these curves, as described in section 3.1.1.2, we have computed the quasidi-
rect estimates of the adiabatic temperature (∆T (S, 0 � µ0H,σ = 100MPa)) and
isothermal entropy (∆S(T, 0 � µ0H,σ = 100MPa)) changes. In accordance with
the inverse nature of the magnetocaloric e�ect, application of magnetic �eld is as-
sociated with a heating process, as both promote the AFM to FM phase transition,
and the corresponding adiabatic temperature and isothermal entropy changes are
computed as ∆T (S, 0 → µ0H,σ = 100MPa) and ∆S(T, 0 → µ0H,σ = 100MPa),
respectively, whereas removal of magnetic �eld is associated with a cooling process,
as both promote the FM to AFM phase transition, and the corresponding adia-
batic temperature and isothermal entropy changes are computed as ∆T (S, µ0H →
0, σ = 100MPa) and ∆S(T, µ0H → 0, σ = 100MPa), respectively. Results cor-
responding to magnetic �elds of 1.7 and 6T under a constant compressive stress
of σ = 100MPa are shown as lines in Figure 5.3. The corresponding shaded green
areas account for the reversible regions for each magnetic �eld.

The results for the direct adiabatic temperature measurements presented in the
previous section are shown as solid symbols in Figure 5.3 (a). Red and blue sym-
bols correspond to the �rst application and removal (n=1) of the magnetic �eld,
respectively, while green symbols correspond to the measured adiabatic tempera-
ture changes under successively cycling the magnetic �eld (n>1). As it can be seen,
there is a good coincidence between direct and quasidirect measurements, but di-
rectly measured ∆T values are lower than quasidirect ones. As mentioned before,
this di�erence is mainly attributed to the fact that the thermocouple was attached
to the sample surface, which worsens the thermal contact between the sample and
sensor, an to a reduced adiabaticity.

In order to provide further reliability to the quasidirect estimates of the thermal
response of Fe-Rh, it proves useful to compare them with previous direct isothermal
entropy change measurements. Under isothermal conditions, calorimetric thermal
curves recorded upon increasing and decreasing the magnetic �eld in the range
0 � 6T under a constant applied compressive stress of σ = 100MPa showed a
good baseline and could be integrated, as discussed in section 3.1.2.1. These direct
isothermal entropy change measurements were taken from reference [92].

The results for the direct isothermal entropy change measurements are shown
as solid symbols in Figure 5.3 (b). Red and blue symbols correspond to the �rst
application and removal of the magnetic �eld, respectively, while green symbols cor-
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Figure 5.3: Adiabatic temperature (a) and isothermal entropy (b) changes cor-
responding to the magnetocaloric e�ect under an applied uniaxial compressive
stress of 100MPa. Lines correspond to the quasidirect estimates computed from
the entropy curves S(T, µ0H,σ), where dashed curves correspond to a magnetic
�eld of 1.7T and solid curves to a magnetic �eld of 6T. Symbols stand for di-
rectly measured values, where isothermal entropy change data were taken from
[92]. Red lines and symbols indicate the thermal response for the �rst (n=1)
magnetic �eld application, blue lines and symbols correspond to the �rst (n=1)
magnetic �eld removal, and green lines and symbols correspond to the successive
�eld cycling. The green shaded areas represent the reversible regions for each
magnetic �eld.

respond to the measured isothermal entropy changes for successive cycles. Within
experimental uncertainity, there is a good coincidence between both quasidirect
estimates and direct measurements.

Furthermore, by comparing the directly measured data under a constant uniaxial
compressive stress (represented in Figure 5.3) to data recorded in the absence of
stress [114, 132], it is observed that application of uniaxial compressive stress shifts
the thermal response of the sample without increasing its maximum values. This
behaviour is similar, but of lower magnitude, to the e�ect of applying hydrostatic
pressure [59], which is consistent with the pure dilation that takes place at the
phase transition.
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5.1.5 Elastocaloric e�ect in the absence of magnetic �eld

Given that the reliability of the quasidirect computation of the thermal response
has been corroborated in the previous section, where direct measurements and
quasidirect estimates of the magnetocaloric e�ect under a constant uniaxial com-
pressive stress showed a good agreement, we have proceeded with the computation
of the elastocaloric e�ect of Fe-Rh using the same procedure.

Even though previous iso�eld-isostress calorimetric measurements can not be
properly integrated, a good approach to construct the corresponding isostress en-
tropy curves in the absence of magnetic �eld, generally expressed as (S(T, µ0H =
0T, σ)), is to use a high-quality calorimetric measurement in the absence of stress
and magnetic �eld [114] and assume, as in the previous section, that the e�ect of
uniaxial compressive stress is a pure shift of the transition temperature without
any signi�cant change in its shape [38].

The isostress entropy curves, computed from the previous high-quality calori-
metric measurement and the speci�c heat data from [126], in the absence of stress
and under an applied compressive stress of 100MPa are plotted in Figure 5.4 (a).
It is important to highlight that the computation of these curves has assumed that
the speci�c heat of both the AFM and FM phases does not exhibit any stress
dependency.

From these curves, the quasidirect estimates of the adiabatic temperature (∆T (S,
µ0H = 0T, 0 � 100MPa)) and isothermal entropy (∆S(T, µ0H = 0T, 0 �
100MPa)) changes are computed as described in section 3.1.1.2. The corresponding
results are shown in Figures 5.4 (b) and (c), respectively. As illustrated by the red
arrows in Figure 5.4 (a), the adiabatic application of compressive stress leads to
a temperature increase whereas if it is isothermally applied, it leads to a decrease
of the entropy. Therefore, as described in section 2.2.2, uniaxial compressive stress
induces a conventional elastocaloric e�ect. In this regard, application of compres-
sive stress shifts the transition temperature upwards, further stabilizing the AFM
phase, and induces the FM to AFM phase transition (as a cooling process does),
whereas removal of compressive stress shifts the transition temperature downwards,
further stabilizing the FM phase, and induces the AFM to FM phase transition (as
a heating process does). These two processes are illustrated as red and blue arrows
in Figure 5.4 (a), respectively, where horizontal arrows stand for stress-induced adi-
abatic temperature changes and vertical ones stand for stress-induced isothermal
entropy changes.

As previously mentioned, this result is in contrast with earlier adiabatic temper-
ature change measurements under a tensile stress [54]. Such a di�erent elastocaloric
behaviour is in concordance with the promotion of the FM to AFM phase transi-
tion upon application of compressive stress and the promotion of the AFM to FM
phase transition upon application of tensile stress.

The maximum stress-induced isothermal entropy change is |∆S| = 7.9 JK−1kg−1,
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Figure 5.4: (a) Entropy curves referenced to Sref = S(T = 250K) at zero (black
curves) and at 100MPa (grey curves) applied uniaxial compressive stress in the
absence of magnetic �eld. Vertical and horizontal arrows indicate respectively
the isothermal entropy and adiabatic temperature changes corresponding to the
�rst (n=1) application and removal of a 100MPa stress. The resulting adiabatic
temperature and isothermal entropy changes are represented in panels (b) and
(c), respectively. Red arrows and lines indicate the thermal response for the
application of stress, whereas blue arrows and lines correspond to the removal of
stress.

which is lower than the transition entropy change determined from previous calori-
metric measurements |∆St| = 11 JK−1kg−1 [92]. This di�erence indicates that a
stress of 100MPa is not enough to fully drive the phase transition. When consider-
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ing the stress-induced adiabatic temperature change, a maximum of |∆T | = 2.6K
is obtained. This value is similar to the adiabatic temperature change directly mea-
sured under a tensile stress of 150MPa [54], but it is worth mentioning that direct
measurements tend to be smaller than quasidirect estimates due to the di�culty
of performing the measurements under adiabatic conditions [38].

Moreover, it is important to point out that the stress-induced thermal response
is not expected to be reversible under stress cycling for the low-stress considered
here. As it can be clearly seen in Figure 5.4 (a), a stress of 100MPa is not enough
to overcome the thermal hysteresis inherent to the �rst-order metamagnetic phase
transition, which was found to be of TAFMt − TFMt ∼ 13K from iso�eld-isostress
calorimetric measurements [92]. For instance, we can compute the stress needed
to overcome the thermal hysteresis by taking into account the transition temper-
ature shift with uniaxial stress previously determined, and it can be estimated as

(TAFMt − TFMt )
dσ

dTt
∼ 430MPa.

5.1.6 Elastocaloric e�ect under a constant magnetic �eld

For the sake of completeness on the discussion of the combined e�ect of magnetic
�eld and uniaxial compressive stress on the caloric properties of Fe-Rh, in the
present section we discuss the e�ect of a constant magnetic �eld on the elastocaloric
e�ect.

The corresponding iso�eld-isostress entropy curves, generally expressed as
S(T, µ0H,σ), are constructed by following the same procedure described in sec-
tion 5.1.4. Form these curves, we have computed the quasidirect estimates of
the adiabatic temperature (∆T (S, µ0H, 0 � 100MPa)) and isothermal entropy
(∆S(T, µ0H, 0 � 100MPa)) changes for applied magnetic �elds of 0, 1.7 and 6T.
The corresponding results are shown in Figures 5.5 (a) and (b), respectively.

From these results, we observe that application of magnetic �eld shifts the stress-
induced elastocaloric e�ect towards lower temperatures without modifying its over-
all magnitude. It is relevant to emphasize that application of moderate magnetic
�elds (< 2T) enables to tune the elastocaloric e�ect within a temperature win-
dow of ∼ 20K. Although the elastocaloric e�ect is not expected to be reversible
under compressive stress cycling for stresses below ∼ 430MPa, which corresponds
the previously estimated e�ective hysteresis in stress, application of a secondary
�eld can help us to obtain a reversible elastocaloric e�ect under stress cycling with
lower stresses, as it has been proven that a secondary �eld can drastically reduce
the e�ective hysteresis in the given external �eld [51, 63].

The reproducibility of a caloric e�ect under �eld cycling is an important fea-
ture for potential technological applications. A suitable combination of low stresses
and low magnetic �eld can enhance the reversibility of the elastocaloric e�ect,
and some estimates on its reproducibility and the required external �elds can be
made when considering the previously determined thermal hysteresis of ∼ 13K,
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Figure 5.5: Quasidirect estimates computed from the entropy curves
S(T, µ0H,σ) of the adiabatic temperature (a) and isothermal entropy (b) changes
corresponding to the elastocaloric e�ect without any applied magnetic �eld (dot-
ted lines) and under a magnetic �eld of 1.7T (dashed lines) and 6T (solid lines).
Red lines correspond to the thermal response for the �rst (n=1) stress applica-
tion whereas blue lines correspond to the thermal response for the �rst (n=1)
stress removal.

together with representative values of the reported transition temperature shifts
with magnetic �eld and stress, determined from the iso�eld-isostress calorimetric

measurements reported in [92], which were found to be
dTt
dµ0H

∼ −10KT−1 and

dTt
dσ
∼ 0.03KMPa−1, respectively. According to these results, Fe-Rh exhibits an

e�ective hysteresis on magnetic �eld of ∼ 1.3T, and the magnetocaloric e�ect is
expected to be reproducible for higher �elds, whereas it exhibits an e�ective hys-
teresis on uniaxial compressive stress of ∼ 430MPa.

Application of a moderate magnetic �eld is enough to overcome the e�ective
hysteresis, and the elastocaloric e�ect is expected to be reproducible under the
sequence represented in Figure 5.6. In order to illustrate the sample fraction that
can be reversibly driven across the phase transition, each panel of the sketched
multicaloric cycle shows the corresponding sample fraction at the high-temperature
FM phase as a function of temperature at the initial (dashed lines) and �nal (solid
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Figure 5.6: Sketch of a multicaloric reversible cycle showing the fraction of
the sample at the high-temperature FM phase as a function of temperature, for
selected values of magnetic �eld and uniaxial stress. Panel 1: Removal of stress
under an applied (constant) magnetic �eld. Panel 2: Removal of magnetic �eld
in the absence of stress. Panel 3: Application of stress in the absence of magnetic
�eld. Panel 4: Application of magnetic �eld under an applied (constant) stress.

lines) con�guration of applied compressive stress and magnetic �eld. Before the
discussion of each cycle step, it is important to point out that partial hysteresis
loops have not been considered for the sake of simplicity.

1. Panel 1:
While keeping the magnetic �eld constant, removal of the compressive

stress shifts the phase transition to lower temperatures (blue curves) and
the sample, initially in the low-temperature AFM phase, partially transforms
to the high-temperature FM phase, as indicated by the black arrow.

2. Panel 2:
Removal of the 1.1T applied magnetic �eld 2 shifts the phase transition to

higher temperatures (orange curves) in a way that the state of the sample
(in the absence of magnetic �eld and stress) lies on the cooling branch of the
inherent hysteresis of the phase transition.

3. Panel 3:
Application of the compressive stress shifts the phase transitions to higher

2The selected magnitude of the applied magnetic �eld is smaller than the �eld necessary
to overcome the e�ective hysteresis, which would induce the back transformation to the low-
temperature AFM phase.
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temperatures (red curves) and the sample transforms back to the low-temperature
AFM phase, as indicated by the black arrow.

4. Panel 4:
Application of the magnetic �eld of 1.1T shifts the phase transition to

lower temperatures (grey curves) in a way that the state of the sample (un-
der magnetic �eld and compressive stress) lies on the heating branch of the
hysteresis loop, thus recovering the initial state of the �rst panel.

Furthermore, it is signi�cant to highlight that T. Gottschall et. al. recently pro-
posed a novel multicaloric cycle that takes advantage of the inherent hysteresis of
materials exhibiting a �rst-order magnetostructural phase transition [64], termed
as exploiting-hysteresis cycle. The behaviour observed for Fe49Rh51 under mag-
netic �eld and uniaxial compressive stress make it a suitable candidate to study
its performance under this exploiting-hysteresis cycle, which will be discussed in
greater detail in section 5.3.7.1.

5.1.7 Comparison of the elastocaloric properties of Fe-Rh

with other caloric materials

Shape-memory alloys are prototype elastocaloric materials, and a thorough com-
parison of their properties with Fe-Rh will be provided in this section.

As discussed in detail in section 4.2, shape-memory alloys undergo a marten-
sitic phase transition from a high-temperature cubic phase (austenite) towards a
low-temperature phase with lower symmetry (martensite). The major contribution
to the exchanged heat when inducing the �rst-order martensitic phase transition,
which gives rise to the elastocaloric entropy change, comes from its associated
latent heat [38, 39]. The category of shape-memory alloys is broad and includes
non-magnetic materials, where the transition is purely structural, as well as mag-
netic materials, where the transition involves both a structural and magnetic order
change. In the latter case, due to the sensitivity of the martensitic transition to
diverse external �elds, they are also prone to exhibit giant magnetocaloric [75]
and barocaloric [32] e�ects. It is signi�cant to point out that non-magnetic shape-
memory alloys exhibit excellent mechanical properties, whereas most magnetic
shape-memory alloys are brittle, which limits the supported stresses and decimates
their mechanocaloric performance [38]. Nevertheless, recent reports have shown
that colossal elastocaloric [206] and barocaloric [211] e�ects can be achieved for al-
loys composed of all-d-metal elements, which have superior mechanical properties.

There are a number of di�erences between the elastocaloric e�ect in Fe-Rh and
the reported typical values of shape-memory alloys. First of all, the sensitivity of
the transition temperature with stress is signi�cantly lower for Fe-Rh, where we

reported
dTt
dσ
∼ 0.03KMPa−1, than for shape-memory alloys, for which typically

dTt
dσ
∼ 0.1 − 1KMPa−1. This di�erence is a consequence of the lower uniaxial
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strain exhibited by Fe-Rh at the phase transition, which can be estimated as ∆εt ≈
1

3

∆υ

υ
∼ 0.33 %, when compared to typical values for shape-memory alloys, around

∆εt ∼ 3− 10 % [38].

Secondly, it has been shown that the transition temperature of Fe-Rh increases
when applying compressive stress, while it decreases when applying a tensile stress.
Conversely, for shape-memory alloys the transition temperature increases for both
tensile and compressive stresses. The di�erent behaviour of the phase stability of
Fe-Rh when applying compressive or tensile stresses gives rise to a conventional [65]
or an inverse [54] elastocaloric behaviour, respectively, whereas for shape-memory
alloys a conventional elastocaloric e�ect is observed for both compressive and tensile
stresses.

The origin of this distinct behaviour between both materials arises from a di�er-
ent nature of the structural distortion that takes place at the phase transition. For
instance, as discussed in section 4.1, the magnetostructural phase transition of Fe-
Rh from the high-temperature FM phase to the low-temperature AFM phase does
not involve a crystal symmetry breaking, as the lattice distortion corresponds to a
pure dilation, which results in ∆εt < 0 for both compressive and tensile stress. Con-
versely, the structural change that takes place at the martensitic phase transition of
shape-memory alloys between the high-temperature cubic and the low-temperature
lower symmetry phase involves a crystal symmetry breaking, and the lattice distor-
tion can be described by a combination of shear and dilation strains. As discussed
in section 4.2.1, symmetry enables a number of di�erent deformations at the low-
temperature martensite phase, which are called martensite variants, and under the
application of an external �eld the formation of the speci�c variant that is energet-
ically favoured is promoted. Accordingly, application of a compressive stress will
lead to ∆εt < 0 whereas application of a tensile stress will lead to ∆εt > 0, as
di�erent martensite variants will be energetically favoured in each case [212].

Lastly, the quasidirect estimate of the maximum stress-induced isothermal en-
tropy (|∆S| = 7.9 JK−1kg−1) and adiabatic temperature (|∆T | = 2.6K) changes
for Fe-Rh under a stress change of 100MPa are lower than typical reported values
for shape-memory alloys under similar stresses, where standard values of isother-
mal entropy and adiabatic temperature changes are in the ranges of |∆S| =
10− 20 JK−1kg−1 and |∆T | = 5− 10K respectively [38].

The similarities and di�erences in the stress-induced mechanocaloric properties
of Fe-Rh, non-magnetic and magnetic shape-memory alloys are summarized in
Table 5.1, and they provide a guide to anticipate the mechanocaloric e�ects of
other caloric materials. Speci�cally, we will consider the case of La-Fe-Si, which
undergoes a magnetostructural transition from a high-temperature paramagnetic
(PM) phase to a low-temperature ferromagnetic (FM) phase. There is no symmetry
change associated with the phase transition, as both phases have a cubic crystal
structure (Fm3c space group), but a volume increase of ∼ 1 % takes place when the
sample transforms from the high-temperature to the low-temperature phase. Due
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Caloric e�ect Fe49Rh51
SMA
(non-magnetic)

SMA
(magnetic)

BCE C
(
dTt
dp

> 0

) (
dTt
dp
∼ 0

)
C
(
dTt
dp

> 0

)
eCE
(compressive, σ < 0) C

(
dTt
d|σ|

> 0

)
C
(
dTt
d|σ|

> 0

)
C
(
dTt
d|σ|

> 0

)
eCE
(tensile, σ > 0) I

(
dTt
d|σ|

< 0

)
C
(
dTt
d|σ|

> 0

)
C
(
dTt
d|σ|

> 0

)
Table 5.1: Mechanocaloric properties of selected materials. C and I refer to a
conventional or an inverse caloric e�ect, respectively.

to the volume and magnetization change exhibited, magnetic and mechanical �elds
can induce the magnetostructural transition. In this regard, giant magnetocaloric
and barocaloric e�ects have been reported.

As a consequence of the larger volume of the low-temperature FM phase, ap-
plication of hydrostatic pressure will further stabilize the high-temperature PM
phase, leading to an inverse barocaloric e�ect [78], whereas application of magnetic
�eld will further stabilize low-temperature FM phase, leading to a conventional
magnetocaloric e�ect [213].

Accordingly, it can be anticipated that application of a compressive stress will
further stabilize the high-temperature low-volume PM phase, leading to an inverse
elastocaloric e�ect, whereas application of a tensile stress will further stabilize the
low-temperature high-volume FM phase, leading to a conventional elastocaloric
e�ect. Moreover, as uniaxial stress is not the conjugated �eld for a volume change,
it is also reasonable to expect a lower sensitivity of the phase transition to uniaxial
stress than to hydrostatic pressure.

5.1.8 Summary and conclusions

We have used a bespoke setup to directly measure the adiabatic temperature
change of Fe49Rh51 induced under the simultaneous application of cyclic magnetic
�eld and constant uniaxial compressive stress. Consistently with previous mea-
surements, the �eld-induced magnetocaloric e�ect shows an inverse nature. When
comparing these results with previously reported data in the absence of stress, we
observe that the application of uniaxial compressive stress shifts the magnetocaloric
thermal response to higher temperatures. This e�ect is consistent with a further
stabilization of the low-temperature AFM phase for compressive stresses.

Despite the lack of high-quality iso�eld-isostress calorimetric measurements, the
corresponding entropy curves were computed from previous iso�eld entropy curves
in the absence of stress, where the e�ect of compressive stress was taken as a
pure shift of the transition temperature. A good concordance between direct mea-
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surements and the quasidirect estimates, obtained from the constructed iso�eld-
isostress entropy curves, of the magnetocaloric e�ect under a constant uniaxial
stress was found, providing reliability to the quasidirect computation of the ther-
mal response and to the construction method of the entropy curves.

A similar procedure was followed to construct the isostress entropy curves from
previous high-quality calorimetric measurements in the absence of stress and mag-
netic �eld together with previously reported speci�c heat measurements. The qua-
sidirect estimates of the elastocaloric e�ect showed a maximum stress-driven isother-
mal entropy change of |∆S| = 7.9 JK−1kg−1 under a stress change of 100MPa,
which is lower than the transition entropy change and indicates that higher com-
pressive stresses are needed in order to fully drive the phase transition. Further-
more, a maximum stress-driven adiabatic temperature change of |∆T | = 2.6K was
computed. However, it is important to point out that the elastocaloric e�ect is not
expected to be reversible for stresses below ∼ 430MPa.

The present results show that Fe49Rh51 exhibits a conventional elastocaloric
e�ect under compressive stresses, whereas an inverse elastocaloric e�ect was previ-
ously reported under tensile stresses. This di�erence arises from a distinct behaviour
of the magnetostructural phase transition under compressive or tensile stresses. For
instance, compressive stress stabilizes the low-temperature AFM phase, increasing
the transition temperature, whereas tensile stress stabilizes the high-temperature
FM phase, decreasing the transition temperature.

For the sake of completeness, a thorough characterization of the thermal response
of Fe49Rh51 when subjected to the combined action of uniaxial compressive stresses
and magnetic �eld has been provided. No signi�cant increase of the maximum �eld-
induced thermal response corresponding to the magnetocaloric and elastocaloric
e�ects has been observed when applying a secondary non-conjugated external �eld.
Nevertheless, it is important to highlight that application of a secondary �eld shifts
the temperature window where the giant elastocaloric and magnetocaloric e�ect
occur.

It has been shown that the sensitivity of the phase transition to a secondary
�eld enables tuning the inherent hysteresis of the metamagnetic phase transition,
and the combined action of two �elds opens up the possibility of further boosting
the potential interest of Fe-Rh for diverse technological applications. In particu-
lar, an enhancement of the reversibility of the �eld-induced thermal response of
Fe49Rh51, together with a decrease of the needed external �elds for such purposes,
can be achieved by a suitable combination of magnetic �eld and uniaxial compres-
sive stress.
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5.2 Ni-Fe-Co-Mn-Sn

Many of the reported Ni-Mn-based magnetic shape-memory alloys exhibiting a
strong metamagnetic transition and a large elastocaloric e�ect still require the ap-
plication of large driving �elds to induce giant caloric e�ects. Moreover, they display
an inadequate cyclic stability of the elastocaloric e�ect for technological applica-
tions [208, 209, 214]. Therefore, it is imperative to develop Ni-Mn-based shape-
memory alloys simultaneously exhibiting a strong metamagnetic transition that
requires low driving magnetic �elds, accessible by permanent magnets, together
with a cyclically stable giant elastocaloric e�ect. Ni-Co-Mn-Sn-based alloys are
suitable candidates for these purposes, as they exhibit relatively good mechanical
properties together with a large transition entropy change arising from a �rst-order
metamagnetic phase transition taking place between a high-temperature ferromag-
netic austenitic phase and a low-temperature low-magnetization martensitic phase
[215, 216], anticipating a good mechanical stability upon cyclic operation together
with a large �eld-induced caloric e�ect. Moreover, the low cost of the di�erent raw
materials that conform this alloy, together with the fact that there are no toxic
constituents, make it an appealing candidate for diverse technological applications.

Nevertheless, the martensitic phase transition of Ni-Co-Mn-Sn-based alloys oc-
curs above room temperature [216], and for the sake of multifunctional applications
it is highly convenient to develop Heusler alloys where the phase transition takes
place near room temperature. In this regard, it has been shown that the substitu-
tion of Ni by Fe rapidly decreases the martensitic transition temperature together
with its associated transition entropy change, without signi�cantly a�ecting the
austenitic Curie temperature [61]. For Fe concentrations up to 1 at%, the marten-
sitic transition temperature can be tuned within a broad temperature window of
∼ 100K while keeping a relatively large transition entropy change. Furthermore,
for these low Fe concentrations, the associated thermal hysteresis of the martensitic
phase transition, as well as its temperature width, are not signi�cantly modi�ed
while the alloy keeps exhibiting a strong metamagnetic phase transition that re-
quires low driving magnetic �elds. Therefore, we have selected a Ni-Fe-Co-Mn-Sn
alloy with low Fe concentration as a suitable candidate for multifunctional appli-
cations.

The present work on this alloy has a twofold objective. On the one hand, it is
aimed at providing a detailed characterization of the giant magnetocaloric e�ect.
On the other hand, it is intended to confer reliability on the di�erent methods used
to compute the �eld-induced magnetocaloric and multicaloric e�ects. Speci�cally,
a comparison between direct measurements and two di�erent indirect estimates of
the �eld-induced magnetocaloric e�ect is provided, where the �rst indirect method
consists on the application of the Maxwell relation to isothermal M(H) curves
reported in [61] and the second one is based on a phenomenological model described
in detail in [63] to simulate the austenite transformed fraction and compute the
corresponding caloric or multicaloric e�ects.
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5.2.1 Sample details

The experiments were performed on a polycrystalline Ni42.5Fe1.0Co6.5Mn39.5Sn10.5
sample prepared by arc melting with dimensions 2.1× 1.9× 0.5mm3 and a mass of
11.7mg, shaped as a parallelepiped. This sample was fabricated at the University
of Science and Technology, Beijing (China), and details of the sample preparation
and heat treatment are given in [61].

5.2.2 Experimental details

1. A previous calorimetric characterization of the �rst-order martensitic phase
transition in the absence of any applied external �eld was performed by
means of a DSC Q2000 setup from TA Instruments®, at a scanning rate
of ±5Kmin−1.

2. Isothermal calorimetric measurements have been performed with the bespoke
DSC setup described in section 3.1.3 under a cyclic external magnetic �eld

in the range 0 � 6T, with typical scanning rates of
dµ0H

dt
∼ 0.32Tmin−1.

From these measurements, as discussed in section 3.1.1.1, the �eld-induced
entropy change can be directly computed.

Following the measurement protocols described in section 3.1.2.1, suitable
thermal excursions were performed prior to each measurement to control
the initial thermodynamic state of the sample. Afterwards, the sample was
brought to the desired measurement temperature, which was selected within
the range T ∈ [250, 295]K for all measurements.

5.2.3 Calorimetric characterization of the phase transition in

the absence of external �elds

Before characterizing the �rst-order martensitic phase transition of Ni-Fe-Co-Mn-Sn
under the application of an external magnetic �eld with a bespoke DSC setup, it
is useful to perform a previous measurement in the absence of any applied external
�eld with a commercial DSC setup. The corresponding recorded thermograms for
heating and cooling runs are illustrated in Figure 5.7.

The latent heat associated with the martensitic phase transition gives rise to
an exothermal (negative) peak when inducing the forward transition (cooling),
and to an endothermal (positive) peak when inducing the reverse transition (heat-
ing). Interestingly, the recorded calorimetric peaks look very di�erent between both
thermograms. While a smooth peak is recorded upon heating, a spiky calorimetric
peak is observed upon cooling. As discussed in section 4.2.1, the forward martensitic
phase transition is driven by the formation of martensite nuclei in the austenite ma-
trix, and the spikes observed in calorimetry are due to their avalanche-like growth
[217].
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Figure 5.7: Calorimetric signal as a function of temperature recorded upon
heating (positive peak) and cooling (negative peak), measured at a scanning
rate of ±5Kmin−1 with a DSC Q2000 from TA Instruments®

As discussed in section 3.1.1, the corresponding transition entropy changes (∆St)
can be computed after a proper baseline correction. For these thermograms, the
baseline signal can be accurately approximated by a straight line, �tted before
and after the temperature range where the calorimetric peak spreads [Ts, Tf ].
This straight line de�nes the baseline signal of the complete thermogram, and
the corresponding transition entropy changes for the forward and reverse marten-
sitic transition are found to be ∆SMt = (−19.5 ± 0.5) JK−1kg−1 and ∆SAt =
(20.3 ± 0.5) JK−1kg−1. Moreover, the calorimetric peak position of each thermo-
gram de�nes its transition temperature, which are found to be TMt = 282.5K and
TAt = 290.7K respectively, de�ning a thermal hysteresis of TMt − TAt = 8K in the
absence of external �elds.

5.2.4 Isothermal calorimetric measurements

As discussed in section 3.1.1.1, isothermal DSC calorimetry is a unique tool to
directly measure the �eld-induced isothermal entropy change of a sample when
scanning the external �eld. Moreover, these measurements allow us to determine
the reversible and irreversible �eld-induced caloric e�ect under a cyclic external
�eld pro�le, and the reproducibility of the caloric e�ect can be studied.

In the present case, we performed isothermal DSC measurements under a cyclic
magnetic �eld. As previously discussed in section 3.1.2.1, in order to properly mea-
sure the reversible and irreversible contributions, suitable temperature paths have
to be performed before the measurement start in order to control the sample's
initial state. Previous magnetization measurements in Ni-Co-Mn-Sn-based shape-
memory alloys showed that the transition temperature shifts to lower values when

an external magnetic �eld is applied
(

dTt
dµ0H

< 0

)
[207, 216], leading to an inverse

magnetocaloric e�ect. Therefore, the measurement protocols described in section
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Figure 5.8: Isothermal calorimetric signal at selected temperatures (a) and the
corresponding cyclic magnetic �eld (b) for the heating (red lines) and cooling
(blue lines) protocols as a function of time.

3.1.2.1 that correspond to an inverse caloric e�ect were followed. In this regard, to
characterize the thermal response when inducing the martensite to austenite (re-
verse) phase transition (heating protocol), the sample is initially fully transformed
to the the low-temperature martensitic phase in the absence of magnetic �eld,
and then it is heated up to the desired measurement temperature. Once it is at
isothermal equilibrium, the magnetic �eld is cycled starting with a 0 → 6T scan.
By contrast, to characterize the austenite to martensite (forward) phase transition
(cooling protocol), the sample is initially fully transformed to the high-temperature
austenitic phase and then it is cooled down, under a constant applied magnetic
�eld, to the desired measurement temperature. Once the isothermal equilibrium
is reached, the magnetic �eld is cycled starting with a 6T → 0 scan. Figure 5.8
illustrates examples of the raw isothermal DSC thermograms (top) and magnetic
�eld (bottom) measurements recorded upon cycling the magnetic �eld in the range
0 � 6T for the heating (red lines) and cooling (blue lines) protocols.

Both measurements show a good reversibility of the isothermal calorimetric signal
under successive magnetic �eld scans. When cyclically �eld-inducing the marten-
sitic phase transition, the associated latent heat gives rise to an exothermal (neg-
ative) peak when the forward transition is induced (decreasing the magnetic �eld)
and to an endothermal (positive) peak when the reverse transition is induced (in-
creasing the magnetic �eld). This is in accordance with the stabilization of the
austenitic phase under the application of magnetic �eld, which is in accordance
with the expected behaviour for a material exhibiting an inverse magnetocaloric
e�ect.

As discussed in section 3.1.1.1, the measured isothermal DSC thermograms must
be properly corrected in order to compute the reversible and irreversible �eld-
induced isothermal entropy changes. For such purpose, the measured raw calori-
metric signal is analysed separately for each magnetic �eld scan, and the corrected
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calorimetric signal is computed as:

dQ

dµ0H
=
Q̇(T, µ0H)

µ0Ḣ
=
Y (T, µ0H)dt

S(T )dµ0H
(5.3)

where Y (T, µ0H) corresponds to the raw calorimetric signal and S(T ) to the DSC
sensitivity previously determined.

Figure 5.9 displays the complete set of corrected isothermal DSC thermograms
at selected temperatures for the cooling (left) and heating (right) measurement
protocols. Panels (a) and (c) display the recorded thermograms during the �rst
magnetic �eld scan (n=1), whereas panels (b) and (d) display the corresponding
thermograms during the second magnetic �eld scan (n=2).

When comparing the measured isothermal calorimetric signal between the �rst
and second magnetic �eld scans for each measurement protocol, we observe that
there is a good reversibility of the �eld-induced martensitic transition for a broad
temperature range. The calorimetric peak of the di�erent thermograms de�nes the
magnetic �eld necessary to drive the martensitic phase transition at each tem-
perature. As it can be seen, a higher magnetic �eld is necessary when decreasing
the measurement temperature, which is consistent with the inverse nature of the
magnetocaloric e�ect.

It is possible to determine the equilibrium lines of the forward (TMt ) and reverse
(TMt ) phase transitions from each measurement temperature and the magnetic
�eld at the calorimetric peak, deduced from the �rst magnetic �eld scan of the
cooling and heating protocols, respectively. These results are illustrated in Figure
5.9 (e) as solid symbols. Additionally, the transition temperatures deduced from
iso�eld magnetization measurements M(T ) reported in [207] are represented as
open symbols.

Both data sets show a good agreement for both forward and reverse transi-
tions, exhibiting a thermal hysteresis of TMt − TAt = 9K at low magnetic �elds
of µ0H = 1T that increases up to TMt − TAt = 11K at µ0H = 5T. From the
linear �ts �tted to the solid symbols, the rates at which the �rst-order martensitic
phase transition shifts under the application of magnetic �eld are determined to

be
dTMt
dµ0H

= (−4.99 ± 0.06)KT−1 and
dTAt
dµ0H

= (−4.58 ± 0.08)KT−1, which are in

good agreement with previous reported values for composition-related Ni-Mn-Co-
Sn-based alloys [207, 218].

5.2.5 Direct computation of the magnetocaloric e�ect

As discussed in section 3.1.1.1, from each isothermal DSC thermogram measured
at a certain temperature T , the corresponding magnetic �eld-induced isothermal
entropy change is computed as:
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Figure 5.9: Isothermal calorimetric curves obtained by scanning the magnetic
�eld in the range 0 � 6T for the cooling (left) and heating (right) protocols at
selected temperatures. Panels (a) and (c) correspond to the calorimetric curves
recorded under the �rst magnetic �eld scan (n=1), whereas panels (b) and (d)
correspond to the calorimetric curves recorded under the second magnetic �eld
scan (n=2). Arrows in each panel indicate whether the magnetic �eld is ap-
plied or removed. (e) Transition temperature as a function of magnetic �eld for
the forward (TM ) and reverse (TA) transitions. Solid symbols correspond to the
temperatures obtained from the isothermal calorimetric peaks and open symbols
correspond to the values obtained from the iso�eld magnetization curves (M(T ))
reported in [61]. Dashed lines correspond to linear �ts to the solid symbols.

∆S(T, µ0Hs → µ0Hf ) =

∫ µ0Hf

µ0Hs

1

T

(
dQ(T, µ0H

′
)

dµ0H
′ − ζ(T, µ0H

′
)

)
dµ0H

′
(5.4)
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where µ0Hs and µ0Hf correspond to the start and �nish integration magnetic
�elds, taken before and after the phase transition calorimetric peak, ζ(T, µ0H)

corresponds to the baseline signal and
dQ(T, µ0H)

dµ0H
to the corrected calorimetric

signal.

As it can be seen for the complete set of isothermal DSC thermograms illustrated
in Figure 5.9 (a)-(d), the baseline has much lower values than the magnitude of
the respective calorimetric peaks. The behaviour observed for these measurements
is in contrast to that observed for previous iso�eld DSC measurements, where the
baseline signals were signi�cant. As discussed in section 3.1.1.1, the fact that the
temperature of the calorimeter is kept constant during isothermal measurements
reduces the magnitude of the heat �ux coming from the speci�c heat di�erence
between the sample and reference, and improves the signal-to-baseline ratio.

For these measurements, the baseline signal is approximated by a straight line,
�tted before and after the magnetic �eld range where the calorimetric peak spreads
[µ0Hs, µ0Hf ]. This straight line de�nes the baseline signal of the complete ther-
mogram, and the corresponding �eld-induced isothermal entropy changes are com-
puted after subtracting the respective baseline from each thermogram.

Figure 5.10 illustrates the isothermal entropy changes induced under three con-
secutive magnetic �eld scans in the range 0 � 6T as a function of the measurement
temperature for the heating (red symbols) and cooling (blue symbols) measurement
protocols.

When looking at the �eld-induced magnetocaloric isothermal entropy change
obtained for the �rst magnetic �eld scan (n=1), we observe that it saturates at a
constant value, indicating that we are able to fully induce the phase transition with
the applied or removed magnetic �eld within a temperature range of ∼ 20K. For
instance, the saturation value for the forward and reverse martensitic transition
are ∆S = (−18 ± 1) JK−1kg−1 and ∆S = (19 ± 1) JK−1kg−1, respectively, which
are in good agreement with the forward and reverse transition entropy changes de-
termined with the commercial DSC in the absence of magnetic �eld. Furthermore,
the fact that the �eld-induced isothermal entropy change shows a constant satura-
tion value within a broad temperature range indicates that, within the error, the
transition entropy change of this alloy does not show a signi�cant dependence on
the applied magnetic �eld. This behaviour is in agreement with that observed for
iso�eld magnetization measurements M(T ) reported in [207], where the magneti-
zation change across the phase transition does not show a signi�cant dependence
on the applied magnetic �eld.

When considering the entropy change induced under successive magnetic �eld
scans (n>1), we observe that the magnetocaloric e�ect displays an excellent repro-
ducibility, and the martensitic phase transition can be reversibly driven within a
temperature range of ∼ 15K.
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Figure 5.10: Isothermal entropy change corresponding to the application and
removal of a 6T magnetic �eld as a function of temperature. Symbols correspond
to the computed results from the isothermal calorimetric curves for the heating
(red) and cooling (blue) protocols and lines are guides to the eye. Solid symbols
correspond to the �rst magnetic �eld scan (n=1), while half-solid symbols corre-
spond to successive �eld scans (n>1) for each protocol.

In order to study the potential of Ni-Mn-Co-Sn-based alloys for future techno-
logical applications, it is interesting to characterize its magnetocaloric e�ect exhib-
ited under the cyclic application and removal of a low magnetic �eld in the range
0 � 2T. For this purpose, the corrected isothermal DSC thermograms presented
in Figure 5.9 (a) and (c) can be analysed within this reduced magnetic �eld range
(omitting the thermal response recorded for higher magnetic �elds). The corre-
sponding �eld-induced isothermal entropy changes are computed applying equation
5.4, and the same procedure is applied in order to correct the background signal.

Figure 5.11 illustrates the isothermal entropy changes induced under the �rst
magnetic �eld scan (n=1) in the range 0 � 2T as a function of the measurement
temperature for the heating (red solid symbols) and cooling (blue solid symbols)
measurement protocols. Due to the reduction of the considered magnetic �eld range,
it is important to point out that the isothermal entropy changes induced under suc-
cessive magnetic �eld scans (n>1) have not been computed from the thermograms
illustrated in Figure 5.9 (b) and (d), as the end state after the �rst reduced mag-
netic �eld scan may be di�erent than the end state after the complete magnetic
�eld scan, inducing some partial hysteresis loops that can a�ect the initial state of
the sample before the second reduced magnetic �eld scan.

The maximum �eld-induced isothermal entropy change for the forward and re-
verse martensitic transition are ∆S = (−17 ± 1) JK−1kg−1 and ∆S = (17 ±
1) JK−1kg−1, respectively, which are slightly lower than previously determined val-
ues when considering the complete magnetic �eld scanning range. The lack of sat-
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Figure 5.11: Isothermal entropy change corresponding to the application and
removal of a 2T magnetic �eld as a function of temperature. Solid symbols
correspond to the computed results from the isothermal calorimetric curves for
the heating (red) and cooling (blue) protocols, whereas open symbols correspond
to the computed results from the Maxwell relation (orange) and the transformed
fraction method (wine) based on M(H) data reported in reference [61]. The
di�erent represented lines are guides to the eye for each data series.

uration indicates that a magnetic �eld change of |µ0∆H| = 2T falls a little bit
short to fully drive the martensitic phase transition. For the sake of completeness,
two di�erent indirect methods have been used to estimate the �eld-induced isother-
mal entropy change. On the one hand, isothermal magnetization curves (M(H))
reported in [61] have been used to compute the �eld-induced isothermal entropy
change based on the Maxwell relation for the magnetocaloric e�ect. The corre-
sponding results have been added to Figure 5.11 as orange open symbols. On the
other hand, a phenomenological model described in detail in [63] to simulate the
austenite transformed fraction has been used to compute the corresponding �eld-
induced isothermal entropy change, and the results obtained have been added to
Figure 5.11 as wine open symbols.

As it can be seen, within experimental errors, there is a good coincidence between
the directly measured �eld-induced isothermal entropy change and the computed
estimates from both indirect methods.

5.2.6 Summary and conclusions

We have used a bespoke setup to directly measure the isothermal DSC thermo-
grams of Ni42.5Fe1.0Co6.5Mn39.5Sn10.5 under a cyclic magnetic �eld in the range
0 � 6T. From the calorimetric peaks of these thermograms, we built the corre-
sponding phase diagram of the transition temperatures under an applied magnetic
�eld, verifying that this alloy exhibits an inverse magnetocaloric e�ect, in agreement
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with the behaviour observed for previous iso�eld magnetization measurements.

After a proper baseline correction of the recorded �eld-induced isothermal DSC
thermograms, integration of the corresponding calorimetric peaks allows us to di-
rectly compute the reproducible �eld-induced isothermal entropy changes. When
the magnetic �eld is cycled within the range 0 � 6T, the �eld-induced isother-
mal entropy change saturates at ∆S = (−18 ± 1) JK−1kg−1 and ∆S = (19 ±
1) JK−1kg−1 for the forward and reverse transitions, respectively. Such saturation
indicates that we are able to fully induce the martensitic phase transition within
a temperature range of ∼ 20K. Furthermore, the �eld-induced isothermal entropy
change shows an excellent reproducibility for subsequent magnetic �eld scans within
a temperature window of ∼ 15K, indicating that the complete martensitic phase
transition can be reversibly driven within that temperature range.

Furthermore, when considering future technological applications, it is interesting
to characterize the �eld-induced magnetocaloric e�ect under the application and
removal of a low magnetic �eld, which can be provided by permanent magnets,
in the range 0 � 2T. To address this issue, we analysed the measured isother-
mal DSC thermograms within the reduced magnetic �eld range, and the maximum
�eld-induced isothermal entropy change for the forward and reverse martensitic
transition are ∆S = (−17 ± 1) JK−1kg−1 and ∆S = (17 ± 1) JK−1kg−1, respec-
tively. These values are slightly smaller than the saturation �eld-induced isothermal
entropy change values previously determined, indicating that the considered low
magnetic �eld is not enough to fully induce the martensitic phase transition. Signif-
icantly, these direct measurements show an excellent agreement with the indirect
estimates computed from two di�erent methods currently used in the analysis of
magnetocaloric materials, where the �rst one consists on the application of the cor-
responding Maxwell relation on isothermal magnetization measurements and the
second one consists on the simulation of the austenite transformed fraction based
on a phenomenological model.

The good agreement between these three data sets provides reliability to the
indirect estimates of the �eld-induced magnetocaloric e�ect, allowing to compute
further indirect estimates of the �eld-induced multicaloric thermal response from
the phenomenological model.
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5.3 Ni-Mn-In

As discussed in Chapters 2 and 4, materials with a strong coupling between
di�erent degrees of freedom are prone to exhibit a cross-response to di�erent exter-
nal stimuli. In those materials, entropy and temperature changes can be driven by
either a single stimulus (single caloric e�ect) or by multiple stimuli (multicaloric ef-
fect), which can be applied/removed either simultaneously or sequentially [51, 53].
The study of multicaloric materials and e�ects is a quite novel research �eld and
very interesting and signi�cant results have already been achieved [57�61, 63�65].

However, the study of multicaloric e�ects is still challenging. Although the theo-
retical thermodynamic framework is well established [52, 53], 3 experimental studies
are scarce as the obtention of the physical properties quantifying these multicaloric
e�ects requires the development of non-commercial advanced characterization sys-
tems [65, 66, 88].

Taking advantage of the experience gained from the analysis of the Cu-Zn-Al
calibration sample presented in section 3.3, we have used the same purpose-built
DSC setup described in section 3.1.4 to study the caloric and multicaloric response
in terms of the isothermal entropy and adiabatic temperature changes of a proto-
type Ni-Mn-based magnetic shape-memory alloy subjected to the combined e�ect
of magnetic �eld and uniaxial compressive stress. Speci�cally, we have selected a
Ni-Mn-In alloy with a martensitic transition temperature close to the austenitic
Curie temperature. The proximity between both phase transitions in this alloy
anticipates a pronounced coupling between the structural and magnetic degrees
of freedom, so that application of magnetic �eld has a strong in�uence on the
martensitic transition.

The present work on this alloy has a twofold objective. On the one hand, it is
aimed at thoroughly characterizing the advantages of the multicaloric e�ect with
respect to the single caloric (magnetocaloric and elastocaloric) e�ects. On the other
hand, the present work is intended to test the technical feasibility of a novel mul-
ticaloric cycle proposed by T.Gottschall et. al. in [64], and compare its performance
with respect to the results obtained under a conventional magnetic �eld refrigera-
tion cycle.

5.3.1 Sample details

The experiments were performed on a sample with nominal composition
Ni50Mn35.5In14.5 prepared by arc melting, and further treated using the suction-
casting option of the arc melter. This sample was fabricated at the Technical Uni-
versity of Darmstadt, Darmstadt (Germany), and details of the sample preparation
and heat treatment are given in [64].

3See section 2.1.2 for a detailed discussion on the thermodynamic framework of multicaloric
e�ects.
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A sample, shaped as a rod, with 3mm diameter and 5.5mm length that had a
mass of 301.7mg was cut from the ingot prepared by arc melting. A small piece
was cut from the sample (12.62mg) to perform a previous characterization with a
commercial DSC in the absence of any applied external �eld. The remaining part
of the sample, with 3mm diameter and 4.9mm length (268.8mg), was polished and
used to perform both di�erential scanning calorimetry and adiabatic temperature
change measurements under the in�uence of magnetic �eld and uniaxial stress.
Thermomagnetization and speci�c heat measurements were performed on smaller
pieces cut from the initial ingot.

5.3.2 Experimental details

1. A previous calorimetric characterization of the �rst-order martensitic phase
transition in the absence of any applied external �eld was performed by
means of a DSC Q2000 setup from TA Instruments®, at a scanning rate
of ±5Kmin−1.

2. The magnetic measurements were made on a commercial PPMS from Quan-
tum Design®, using the vibrating sample magnetometer mode, in the absence
of any applied uniaxial compressive stress at a temperature scanning rate of
±2Kmin−1.

3. Simultaneous dilatometric and DSC measurements have been performed with
the bespoke DSC setup described in section 3.1.4 at typical temperature scan-
ning rates of ±0.5Kmin−1 within a temperature range T ∈ [260, 315]K under
constant values of uniaxial compressive stress {σi} = {0, 10, 20, 30, 40, 50}MPa
and magnetic �eld {µ0Hj} = {0, 1, 2, 3, 4, 5, 6}T.

The applied compressive stresses required the application of forces {Fi} =
{0, 68, 137, 205, 273, 342}N to the sample. Therefore, as discussed in detail
for Cu-Zn-Al in section 3.3, as Fi < 400N it is not necessary to introduce
a stress sensitivity factor to correct the DSC thermograms and compute the
corresponding transition entropy changes, as any possible deviation on the
calorimetric signal from the e�ect of the applied stress on the bespoke setup
would fall within the experimental error.

4. Direct measurements of the adiabatic temperature change have been per-
formed with the bespoke setup described in section 3.2.2. Two di�erent sets
of measurements were performed by following the continuous and discontin-
uous measurement protocols, 4 respectively.

In the former case, the sample was continuously heated in the background
with a rate of 0.25Kmin−1 while single alternate pulses of of magnetic �eld
0 � 1.8T and uniaxial stress 0 � 80MPa were applied. In the latter

4See section 3.2.1 for detailed descriptions of both measurement protocols
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case, measurements following the discontinuous measurement protocol were
performed under a cyclic magnetic �eld in the range 0 � 1.64T in the
absence of stress and under a constant compressive stress of σ = 40MPa.

5. Speci�c heat measurements of the martensitic and austenitic phases were per-
formed using two di�erent systems. On the one hand, a bespoke AC calorime-
ter [219] was used to perform measurements at temperatures up to 310K
under constant applied magnetic �elds {µ0Hj} = {0, 1, 2}T. On the other
hand, a commercial relaxation calorimeter implemented in a PPMS from
Quantum Design® was used to measure at temperatures up to T = 380K
under constant applied magnetic �elds {µ0Hj} = {0, 1, 2, 3, 4}T.

5.3.3 Characterization of the martensitic phase transition

with commercial devices

Before characterizing the �rst-order martensitic phase transition of Ni-Mn-In
with our bespoke setups under the in�uence of uniaxial compressive stress and
magnetic �eld, we performed a previous characterization with two commercial de-
vices: a DSC and a vibrating sample magnetometer.

5.3.3.1 Calorimetric characterization of the phase transition in the ab-

sence of external �elds

A commercial DSC (model Q2000) was used to perform a DSC measurement
in the absence of any applied external �eld. The corresponding thermograms for
heating and cooling runs are illustrated in Figure 5.12.

The martensitic phase transition gives rise to an exothermal (negative) peak
when cooling and to an endothermal (positive) peak when heating, arising from

Figure 5.12: Calorimetric signal as a function of temperature recorded upon
heating (positive peak) and cooling (negative peak), measured at a scanning rate
of ±5Kmin−1 with a DSC Q2000 from TA Instruments®



136 Results and discussion

the associated latent heat of the phase transition.

The base line signal of both thermograms can be accurately approximated by
a straight line, �tted before and after the temperature range where the calori-
metric peak spreads [Ts, Tf ]. This straight line de�nes the baseline for the com-
plete thermogram, and after performing the corresponding baseline correction as
discussed in section 3.1.1, the transition entropy changes for the forward and re-
verse martensitic transitions are found to be ∆SMt = (−37.3 ± 0.5) JK−1kg−1 and
∆SAt = (37.7 ± 0.5) JK−1kg−1, respectively, which are in excellent agreement with
previously reported values for composition-related Ni-Mn-In shape-memory alloys
[178, 220, 221]. Moreover, the transition temperature is de�ned by the calorimet-
ric peak position of each thermogram, which are found to be TMt = 295K and
TAt = 302K respectively, de�ning a thermal hysteresis of TMt − TAt = 7K in the
absence of external �elds.

5.3.3.2 Thermomagnetic characterization of the phase transition

A commercial vibrating sample magnetometer was used to record thermomagne-
tization curves as a function of temperature at selected values of applied constant
magnetic �eld in the absence of applied uniaxial compressive stress. The corre-
sponding curves are illustrated in Figure 5.13.

The sample under study exhibits a �rst-order magnetostructural phase tran-
sition, together with a ferromagnetic phase transition at a higher temperature
(TC ∼ 303K). This behaviour is in accordance with previously reported measure-
ments on composition-related metamagnetic Ni-Mn-In Heusler alloys [75, 178].

On cooling, the magnetization increases due to the onset of the ferromagnetic
order in the austenitic phase at the Curie temperature (TC), and upon further
cooling the sample undergoes a �rst-order magnetostructural phase transition and

Figure 5.13: Thermomagnetization curves at selected values of applied magnetic
�eld in the absence of applied uniaxial stress.
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transforms to the low-temperature martensitic phase. As a consequence of the
short range antiferromagnetic correlations in the martensitic phase of Ni-Mn-In
alloys [222], the �rst-order martensitic phase transition leads to a sharp decrease
on the magnetization.

Under the application of a magnetic �eld, the martensitic phase transition shifts
to lower temperatures, which is in agreement with a further stabilization of the
high-magnetization austenitic phase. Therefore, as discussed in section 2.2.2, ap-
plication of a magnetic �eld will lead to an inverse magnetocaloric e�ect on this
metamagnetic alloy.

The transition temperatures of the forward and reverse martensitic transitions
can be identi�ed as the in�ection point of the corresponding thermomagnetization
curves. Under an applied magnetic �eld of µ0H = 0.1T, they are found to be
TMt = 293K and TAt = 299K respectively, de�ning a thermal hysteresis of TMt −
TAt = 5K. These values are in accordance with the previously determined values
from the calorimetric measurements in the absence of any applied external �eld.
Moreover, it is important to highlight that the heating and cooling branch of the
thermomagnetization curves measured under a magnetic �eld of µ0H = 2T and
µ0H = 0.1T, respectively, are almost superposed. Therefore, an applied magnetic
�eld of µ0H ∼ 2T is approximately enough to overcome the thermal hysteresis.
The rate at which the �rst-order martensitic phase transition shifts under the

application of magnetic �eld is
dTt
dµ0H

∼ −2.5KT−1.

5.3.4 Calorimetry under constant magnetic �eld and

uniaxial stress

The raw DSC thermograms measured with our bespoke setup at selected con-
stant values of applied uniaxial compressive stress and magnetic �eld are shown
in Figure 5.14. Panels (a), (c), (e), (g), (i) and (k) illustrate the recorded thermo-
grams for the heating runs, whereas panels (b), (d), (f), (h), (j) and (l) illustrate
those corresponding to the cooling runs. The �rst-order martensitic phase transi-
tion gives rise to an exothermal calorimetric peak on cooling and to an endothermal
calorimetric peak on heating.

Under a certain constant uniaxial compressive stress, an increase of the applied
magnetic �eld shifts the calorimetric peaks to lower temperatures, which is in ac-
cordance with the behaviour observed for the thermomagnetization measurements
and corresponds to a stabilization of the austenitic phase. Conversely, under a cer-
tain constant magnetic �eld, an increase of the applied compressive stress shifts
the calorimetric peaks to higher temperatures, which is in accordance with a sta-
bilization of the martensitic phase.

Consequently, as discussed in detail in section 2.2.2, as the application of mag-
netic �eld stabilizes the high-temperature austenitic phase (shifting the transition
temperature to lower values), the studied material will exhibit an inverse magneto-
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Figure 5.14: Calorimetric signal as a function of temperature at selected values
of uniaxial compressive stress and magnetic �eld. Panels (a), (c), (e), (g), (i) and
(k) correspond to heating runs and panels (b), (d), (f), (h), (j) and (l) to cooling
runs, respectively. Vertical black lines indicate the position of the calorimetric
peaks. A vertical shift has been applied to selected curves for the sake of clarity.

caloric e�ect. Conversely, as the application of stress stabilizes the low-temperature
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Figure 5.15: Strain as a function of temperature at selected values of uniaxial
compressive stress in the absence of magnetic �eld (a) and under
an applied magnetic �eld of µ0H = 1T (b).

martensitic phase (shifting the transition temperature to higher values), this ma-
terial will exhibit a conventional elastocaloric e�ect.

To complement the DSC measurements, it is interesting to compare them with
the specimen's strain, which is computed from the dilatometric measurements as:

ε(T, µ0H,σ) =
l(T, µ0H,σ)− lref

lref
(5.5)

where l(T, µ0H,σ) is the length of the sample parallel to the direction of the ap-
plied force, and lref is the reference length, measured in the absence of stress and
magnetic �eld at a temperature Tref = 291KT.

As previously discussed for Cu-Zn-Al in section 3.3, the dilatometric measure-
ments performed with our bespoke setup will not be analysed in detail. Therefore,
for the sake of simplicity, Figure 5.15 only illustrates selected examples of the com-
puted strain for the heating runs at selected values of stress and magnetic �eld.

The �rst-order phase transition is seen as a sharp change in strain, which in-
creases with increasing the applied uniaxial stress as a result of the increase of the
percentage of favourably oriented martensitic variants [223]. Moreover, it is worth
noticing the good correlation of the transition temperature region between both sets
of measurements (DSC and dilatometric), which indicates that both phenomena
arise from the �rst-order magnetostructural phase transition.

5.3.4.1 Transition temperature phase diagram

The transition temperatures of the forward (TMt ) and reverse (TAt ) martensitic
transitions can be identi�ed with the calorimetric peak position of the heating
and cooling runs, respectively. Figure 5.16 (a) illustrates the phase diagram of the
transition temperatures in the magnetic �eld and compressive stress coordinate
space. The experimental values are plotted as blue and red solid symbols for the
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forward and reverse martensitic transitions, respectively, and their behaviour is
parametrized by two non-linear surface �ts with equations:

TMt (µ0H,σ) = 286.0(2)− 1.6(1)µ0H + 0.10(1)σ − 0.15(2)µ0H
2

− 8(3) · 10−4σ2 + 0.010(2)µ0Hσ (K) (5.6a)

TAt (µ0H,σ) = 299.8(1)− 1.17(7)µ0H + 0.038(8)σ − 0.13(1)µ0H
2

+ 6(14) · 10−5σ2 + 0.005(1)µ0Hσ (K) (5.6b)

On the one hand, the red surface corresponds to the reverse martensitic tran-
sition, which can be induced by either increasing the temperature, increasing the
magnetic �eld or decreasing the stress. On the other hand, the blue surface cor-
responds to the forward martensitic transition, which can be induced by either
decreasing the temperature, decreasing the magnetic �eld or increasing the stress.
All these di�erent possibilities to induce both forward and reverse transitions are
indicated by black arrows in the �gure.

It is important to highlight that the martensitic phase transition spreads over a
certain temperature range. Therefore, each forward and reverse transition surfaces
have a certain thickness, which has been omitted from the �gure for the sake of clar-
ity. Thus, well above the red surface the sample will completely be in the austenitic
phase, whereas well below the blue surface the sample will be in the martensitic
phase. Furthermore, the temperature region between both surfaces accounts for the
hysteresis of the martensitic phase transition, and within that range the sample's
thermodynamic state will depend on its thermal history.

From the tree dimensional representation of the transition temperature phase
diagram as a function of magnetic �eld and stress, the corresponding projections
on the T−µ0H and T−σ planes are shown in Figures 5.16 (b) and (c), respectively.

For all values of applied stress, both forward and reverse martensitic transition
temperatures linearly decrease when increasing the applied magnetic �eld, with

slopes in the range
dTt
dµ0H

∈ [−2.6,−1.7]KT−1 that compare well with typical

data for Ni-Mn-based magnetic shape-memory alloys with similar compositions
[75]. Likewise, for all values of applied magnetic �eld, both forward and reverse
martensitic transition temperatures linearly increase when increasing the applied

stress, with slopes in the range
dTt
dσ
∈ [0.03, 0.13]KMPa−1. In this case, the slope

determined in the absence of magnetic �eld is lower but comparable to the values
reported for Ni-Mn-based magnetic shape-memory alloys with similar compositions
[223].

The slopes determined from the linear �ts to the forward and reverse martensitic
transition temperatures as a function of magnetic �eld (Figure 5.16 (b)) and as a
function of compressive stress (Figure 5.16 (c)) have been found to depend on the
secondary applied �eld. These dependencies are illustrated in Figure 5.16 (d),
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Figure 5.16: (a) Transition temperature as a function of magnetic �eld and
uniaxial stress. Solid symbols correspond to the transition temperatures obtained
from the calorimetric peaks, and surfaces to the best �ts to these values. Upper
red surface corresponds to the reverse (TA) martensitic transition, whereas the
lower blue surface to the forward (TM ) martensitic transition. The arrows in
each surface indicate the changes in temperature, magnetic �eld and uniaxial
stress to cross each surface and induce the forward or reverse martensitic phase
transition, respectively. (b) Transition temperatures as a function of magnetic
�eld at constant uniaxial stress, and as a function of stress at constant magnetic
�elds (c). For both panels, solid symbols stand for the reverse transition and open
symbols stand for the forward transition. (d) Stress dependence of the slope of
the �tted transition temperature as a function of magnetic �eld. (e) Magnetic
�eld dependence of the slope of the �tted transition temperature as a function
of stress. Lines are linear �ts to the data.
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which shows a decrease in
∣∣∣∣ dTtdµ0H

∣∣∣∣ when increasing the applied compressive stress,

and in Figure 5.16 (e), which shows an increase in
dTt
dσ

when increasing the applied
magnetic �eld. There are very few studies characterizing the thermal response of
materials when subjected to the combined action of more than one external �eld,
where most of them were performed under the combined action of hydrostatic
pressure and magnetic �eld [59, 60, 224]. The combined e�ect of uniaxial stress
and magnetic �eld has been previously studied for the �rst-order metamagnetic
phase transition in Fe-Rh (see section 5.1), where no e�ect of the secondary �eld
was found on the values of the transition temperatures shift rates with magnetic

�eld
(

dTt
dµ0H

)
and uniaxial stress

(
dTt
dσ

)
[65].

5.3.4.2 Computation of the transition entropy change

Due to the complexity of our bespoke DSC setup, the recorded thermograms
illustrated in Figure 5.14 (a)-(l) under the simultaneous application of magnetic
�eld and uniaxial compressive stress exhibit a poorer baseline when compared to
the recorded thermograms with a commercial DSC. In particular, the calorimetric
peaks recorded on cooling runs are less pronounced than those recorded on heating
runs, and they spread over a wider temperature range. Additionally, under the
application of high magnetic �elds (µ0H > 4T), the signal-to-baseline ratio worsens
for both heating and cooling runs, increasing the di�culty to properly analyse those
thermograms.

As a consequence of the poor signal-to-baseline ratio, a reliable analysis could
not be performed for the thermograms recorded for cooling runs and under high
magnetic �elds. For this reason, the analysis in the following sections has been
restricted to the thermograms recorded for heating runs under applied magnetic
�elds of µ0H ≤ 4T.

As discussed in section 3.1.1, the measured thermograms at selected values of
applied magnetic �eld and uniaxial compressive stress have to be properly corrected
in order to compute the transition entropy change associated with the induced �rst-
order martensitic phase transition, which can be expressed as:

∆St(µ0H,σ) =

∫ Tf

Ts

1

T ′

(
dQ(T ′, µ0H,σ)

dT ′
− ζ(T ′, µ0H,σ)

)
dT ′ (5.7)

where Ts and Tf are the start and �nish integration temperatures, taken before
and after the phase transition calorimetric peak, ζ(T, σ) corresponds to the baseline

signal and
dQ(T, µ0H,σ)

dT
=
Q̇(T, µ0H,σ)

Ṫ
=
Y (T, µ0H,σ)dt

S(T )dT
, to the calorimetric

signal where Y (T, µ0H,σ) corresponds to the raw calorimetric signal and S(T )
corresponds to the DSC sensitivity.

The measured thermograms were analysed with a custom Python program (dis-
cussed in detail in Appendix A) and the corrected thermograms after baseline
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Figure 5.17: Calorimetric curves after baseline subtraction as a function of
temperature recorded upon heating at selected values of magnetic �eld {µ0Hj} =
{0, 1, 2, 3, 4}T under di�erent constant uniaxial compressive stresses, indicated
by the labels in each panel.

subtraction are presented in Figure 5.17 (a)-(f). It is signi�cant to point out that
under the application of magnetic �eld, the calorimetric peaks tend to be broader
and spread over a wider temperature range. Moreover, the corrected thermograms
recorded under an applied compressive stress of σ = 50MPa, which corresponds to
a compressive force of F = 342N, are systematically smaller than the thermograms
recorded for lower values of applied compressive stress. Although this deviation is
not expected to arise from a systematic e�ect of our bespoke setup, as the ap-
plied compressive forces are small, it is not possible to anticipate if it corresponds
to a real e�ect of the sample due to the lack of measurements at higher applied
compressive stresses.

Therefore, the measured thermograms under an applied compressive stress of
σ = 50MPa will not be considered for the following analysis of the transition
entropy change.

The corresponding transition entropy changes (∆St(µ0H,σ)) are computed us-
ing equation 5.7. As discussed in detail for Cu-Zn-Al along section 3.3, a constant
calibration factor has to be introduced in order to analyse the thermograms mea-
sured with our bespoke setup. For the sample under study, the constant calibration
factor is de�ned as:

γA =
∆SAt (0T, 0MPa)

∆St(0T, σ)
(5.8)
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where ∆SAt (0T, 0MPa) corresponds to the transition entropy change computed
from the heating thermogram measured with the commercial DSC, and ∆St(0T, σ)
corresponds to the average of the computed transition entropy changes from the
corrected thermograms represented in Figure 5.17 (a)-(e) under di�erent compres-
sive stresses up to σ = 40MPa in the absence of magnetic �eld. The corresponding
transition entropy changes are computed as ∆Scalt (µ0H,σ) = γA∆St(µ0H,σ), and
they are illustrated in Figure 5.18 as a function of the applied magnetic �eld for
all the analysed thermograms. As for Cu-Zn-Al, di�erent smoothing processes (see
Appendix A) are applied to analyse each thermogram, leading to small di�erences
in the determination of the baseline. These di�erences provide a good estimation
of the error in determining the transition entropy change, which are found to be of
±1−2 JK−1kg−1 for the studied sample.

For applied compressive stresses up to σ = 40MPa, we have not found any
systematic dependence of the transition entropy change with applied stress. By
contrast, under an applied compressive stress of σ = 50MPa, as anticipated from
the smaller calorimetric peaks of the corrected thermograms illustrated in Figure
5.17 (f), the computed transition entropy changes are systematically smaller than
the values obtained from the other measurement series.

Conversely, the computed transition entropy changes decrease when increasing
the applied magnetic �eld for all applied compressive stresses. An average transition
entropy change at each magnetic �eld was computed taking into account the mea-
surements performed under a compressive stress up to σ = 40MPa, and by �tting
a linear regression the transition entropy change behaviour can be parametrized
as:

∆St(µ0H) = 38(1)− 1.9(5)µ0H (JK−1kg−1) (5.9)

de�ning a transition entropy change decrease rate when increasing the applied

magnetic �eld of
d∆St(µ0H)

dµ0H
= (−1.9 ± 0.5) JK−1kg−1T−1.

To gain some light onto the origin of this dependency under the application of
magnetic �elds, one has to take into account that, as discussed in section 2.2.2, the
transition entropy change can be generally separated into the following contribu-
tions [220]:

∆St = ∆Slat + ∆Smag + ∆Sel (5.10)

where the distinct terms correspond to the entropy change of the lattice (∆Slat), of
the magnetic ordering (∆Smag) and of the electronic system (∆Sel), respectively.
As discussed in section 2.2.2, the distinct transition entropy contributions may
depend on the applied external �elds, but this notation has been omitted from
equation 5.10 for the sake of simplicity.

T. Kihara et. al experimentally demonstrated that the electronic contribution is
negligibly small for Ni-Mn based Heusler alloys [225]. Therefore, the transition en-
tropy change associated with a magnetostructural phase transition of these Heusler
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Figure 5.18: Transition entropy change as a function of magnetic �eld at con-
stant uniaxial stress computed from the heating runs. Solid triangles correspond
to the averaged transition entropy change from di�erent background subtractions
of each thermogram, whereas solid circles correspond to the average of the com-
puted transition entropy changes under di�erent uniaxial compressive stresses up
to σ = 40MPa. Black dashed line corresponds to a linear �t to the solid circles.

alloys can be mainly attributed to changes on the lattice vibrations (phonons) of
the alloy and to changes on the magnetic ordering between both high and low
temperature phases.

With respect to the lattice entropy change, it has been reported that the vibra-
tional entropy contribution is lower in the martensitic phase than in the austenitic
phase (SMlat < SAlat) in magnetic shape-memory alloys [226]. The higher lattice en-
tropy in the high-temperature phase is closely associated with the phonon modes in
the transverse TA2 branch. In fact, these phonon modes represent the major contri-
bution to the vibrational entropy change, as they have signi�cantly lower energies
than phonons in other branches and are more likely to be excited [107]. For the par-
ticular case of Ni-Mn-In alloys, the energy of the phonons lying on the TA2 branch
linearly decreases when decreasing the temperature but does not exhibit a signif-
icant softening at the Curie temperature, where the high-temperature austenitic
phase orders ferromagnetically [182]. Therefore, it is a reasonable approximation
to assume that the vibrational entropy contribution does not signi�cantly depend
on magnetic �eld.

When considering the magnetic entropy contribution, it is important to take
into account that the studied Ni-Mn-In Heusler alloy exhibits an inverse magne-
tocaloric e�ect. As illustrated from the thermomagnetization curves (Figure 5.13),
the austenitic phase is more magnetically ordered than the martensitic phase.
Therefore, the martensitic phase will have a larger magnetic entropy contribution
than the austenitic phase (SMmag > SAmag).

Therefore, for a shape-memory alloy exhibiting an inverse magnetocaloric e�ect,
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the vibrational and magnetic entropy contributions will have opposite signs. When
increasing the temperature, while the vibrational entropy change is found to be
positive, constituting the dominant contribution that drives the martensitic phase
transition [107], the magnetic entropy change is negative and competes with the
vibrational contribution [220]. Under these circumstances, the transition entropy
change expressed in equation 5.10 can be rewritten as:

∆St(µ0H) = ∆Slat − |∆Smag(µ0H)| (5.11)

Under the application of an external magnetic �eld, the martensitic transition
temperature decreases as the high-magnetization austenitic phase is further sta-
bilized. The decrease on the transition temperature leads to an increase of the
saturation magnetization of the austenitic phase, as the transition temperature is
further separated from the Curie temperature. Therefore, the magnetization change
across the phase transition increases when increasing the applied magnetic �eld,
and the magnetic entropy contribution is enhanced as well. As a consequence, we
observe a decrease of the transition entropy change when increasing the applied
magnetic �eld.

At this point, it is interesting to compare our estimate of the transition entropy
change decrease under the application of magnetic �elds, with the detailed study
on the transition entropy change dependency with the transition temperature for
a set of Ni-Mn-In Heusler alloys reported in [220]. In that work, T. Gottschall et.
al. reported a decrease of the transition entropy change below the austenitic Curie
temperature as the transition temperature was lowered by small changes on the
alloys composition. Below the austenitic Curie temperature, the magnetic entropy
contribution gained importance when the transition temperature was taking place
at lower temperatures, and therefore it was compensating a larger fraction of the
vibrational entropy change, which was approximated as constant for the diverse
samples as the composition changes were small.

Around room temperature, they found a transition entropy change decrease of
d∆St
dTt

∼ −0.6 JK−2kg−1. In our case, from the transition temperature shift under

the application of a magnetic �eld, we can approximate the transition entropy de-

crease as a function of the transition temperature as
d∆St(µ0H)

dTt
=
d∆St(µ0H)

dµ0H

dµ0H

dTt
∼ (−0.9 ± 0.3) JK−2kg−1. Despite the complexity of our calorimetric measure-
ments, both estimates show a good agreement.

5.3.4.3 Construction of the iso�eld-isostress entropy curves

As discussed in section 3.1.1.2, the corresponding iso�eld-isostress entropy curves
(S(T, µ0H,σ)) can be constructed from the integration of the corrected thermo-
grams, which provide both the transformed fraction curves (χ(T, µ0H,σ)) and the
corresponding transition entropy changes (∆St(µ0H)), and from speci�c heat data
of both martensitic (CM ) and austenitic (CA) phases [38]. Combining all these el-
ements, the entropy curves referenced to a certain temperature (Tref ) well below
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the martensitic transition can be generally expressed as [114]:

S(T, µ0H,σ)− Sref =

∫ T

Tref

1

T ′

(
C(T ′, µ0H,σ) +

dQ(T ′, µ0H,σ)

dT ′

)
dT ′ (5.12)

where Sref = S(Tref ) corresponds to the entropy at the reference temperature
in the absence of any applied external �eld and the speci�c heat of the sample
C(T ′, µ0H,σ) can be expressed as C = (1− χ)CM + χCA, where χ corresponds to
the transformed fraction (χ = 1 when the sample is completely in the austenitic
phase).

In these computations, as previously considered for Cu-Zn-Al in section 3.3.4, it
is common to assume that the speci�c heat does not depend on the applied external
�elds. While the assumption that the speci�c heat is independent of stress is still
a good approximation in our case, the proximity between the �rst-order marten-
sitic phase transition and the ferromagnetic phase transition (see Figure 5.13) in
this sample implies that the speci�c heat will depend on the applied magnetic
�eld. Therefore, we have measured the temperature dependence of the martensitic
and austenitic speci�c heats at selected values of applied magnetic �elds. Figure
5.19 (a) illustrates the speci�c heat measurements for the sample under study
(Ni50Mn35.5In14.5) in the absence of magnetic �eld and under an applied magnetic
�eld of µ0H = 2T.

From the C−T curves illustrated in this �gure, three distinct regions can be iden-
ti�ed. At temperatures below the �rst-order martensitic phase transition, there is
no dependence of the speci�c heat of the martensite (CM ) with the applied mag-
netic �eld. As illustrated in the insert of panel (a) with a black line, its temperature
dependence can be parametrized with a linear regression expressed as:

CM (T ) = 132(16) + 1.16(6)T (JK−1kg−1) (5.13)

Around room temperature, within the transition region, the latent heat asso-
ciated with the �rst-order martensitic phase transition gives rise to an apparent
peak in the speci�c heat. Under the application of magnetic �eld, this peak shifts

to lower temperatures at an approximate rate of
dTt
dµ0H

∼ −2KT−1, which is in

excellent agreement with the shift observed from the DSC thermograms recorded
upon heating (see Figures 5.14 and 5.16).

Above the martensitic transition, a small peak (centred at a temperature T =
303K) associated with the Curie point of the austenitic phase is clearly visible for
the measurement performed in the absence of magnetic �eld. Under an applied
magnetic �eld of µ0H = 2T, this peak is smoothed and spreads over a wider
temperature range.

At this point, when comparing the speci�c heat measurements (see Figure 5.19)
with the calorimetric measurements performed with the commercial (see Figure
5.12) and the bespoke (see Figure 5.14) DSC setups on the sample under study, it
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Figure 5.19: (a) Speci�c heat of Ni50Mn35.5In14.5 as a function of temperature
in the absence of magnetic �eld (red lines) and under an applied �eld of µ0H =
2T (yellow lines) for both heating (solid lines) and cooling (dashed lines) runs,
measured with a bespoke AC calorimeter [219]. The inset shows an enlarged view
of the speci�c heat below the �rst-order martensitic phase transition. The black
line is a linear �t to the data. (b) Speci�c heat of Ni50Mn34In16 as a function of
temperature under applied magnetic �elds {µ0Hj} = {0, 1, 2, 3, 4}T for heating
runs, measured using a commercial relaxation calorimeter (PPMS from Quantum

Design®). Insets: (i) Enlarged view of the speci�c heat above the austenitic
Curie temperature. (ii) Average speci�c heat of the paramagnetic austenite as a
function of magnetic �eld. The black dashed line is a linear �t to the data.

is worth noting that in the absence of applied external �elds the heat �ow related
to the second-order transition around the austenitic Curie temperature can not be
distinguished from the �rst-order calorimetric peak for both DSC setups, as both
contributions are overlapped. This overlap is attributed to the much faster scanning
temperature rates used for both DSC devices when compared to the scanning rate
used for the AC calorimeter, which was around 0.05Kmin−1.

Furthermore, it is signi�cant to highlight that after a proper baseline correction,
the transition entropy change of this sample can also be computed from the speci�c
heat measurements as:

∆St =

∫ Tf

Ts

(
C(T ′)

T ′
− ζ
)
dT ′ (5.14)

where Ts and Tf are the start and �nish integration temperatures, taken below and
above the apparent peak associated with the phase transition, and ζ corresponds
to the baseline signal.

For the measurement performed the absence of applied magnetic �eld, when in-
tegrating both the apparent peak of the �rst-order martensitic phase transition and
the small peak of the austenitic Curie temperature, the baseline can be accurately
approximated as a straight line, �tted below the martensitic phase transition and
above the austenitic Curie peak. After performing the corresponding baseline cor-
rection, the transition entropy change for the reverse martensitic transition is found
to be ∆SAt (µ0H = 0T) = (37.6 ± 0.5) JK−1kg−1, which is in excellent agreement
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with the transition entropy change determined with the commercial DSC in the
absence of applied external �elds (see section 5.3.3).

As the bespoke AC calorimeter is limited at high temperatures, it is not possible
to accurately determine the speci�c heat of the paramagnetic austenite (CA) under
di�erent applied magnetic �elds. For this reason, we have used a second (commer-
cial) relaxation calorimeter to measure the speci�c heat under di�erent applied
magnetic �elds over a broader temperature range. In order to separate the contri-
butions from the �rst-order martensitic phase transition and the Curie point of the
austenitic phase, a second sample (Ni50Mn34In16) for which its martensitic phase
transition takes place at a temperature well below its Curie point was used. It has
been previously reported that small composition di�erences do not have a signi�-
cant in�uence on the Curie temperature in Ni-Mn-In Heusler alloys [155, 178], and
it is not expected that such changes a�ect the speci�c heat of the paramagnetic
austenitic phase (CA). Figure 5.19 (b) illustrates the corresponding speci�c heat
measurements around the Curie point under di�erent applied magnetic �elds.

As for the C−T curves illustrated in Figure 5.19 (a), the peak associated with
the austenitic Curie temperature smooths and spreads over a wider temperature
range under the application of magnetic �eld. The speci�c heat behaviour above
the Curie temperature, where the austenitic phase is paramagnetic, is illustrated
in the insert (i) of Figure 5.19 (b). Within this temperature range, the speci�c
heat is almost independent of temperature, but it shows a small dependence on
the applied magnetic �eld. The average speci�c heat of the paramagnetic austenite
(CA) under each applied magnetic �eld can be computed, and its dependence with
the applied magnetic �eld is illustrated in the insert (ii) of Figure 5.19 (b), and by
�tting a linear regression its behaviour can be parametrized as:

CA(µ0H) = 410.6(3) + 1.3(1)µ0H (JK−1kg−1) (5.15)

Therefore, from the parametrized dependencies of the transition entropy change
(see equation 5.9), and the martensitic (see equation 5.13) and austenitic (see
equation 5.15) speci�c heats, together with the transformed fraction curves ob-
tained from the base-line corrected thermograms (see Figure 5.17), we have com-
puted the iso�eld-isostress entropy curves (S(T, µ0H,σ)) referenced to Sref =
S(T = 256K) in the absence of stress and magnetic �eld. Figure 5.20 (a)-(e)
displays the computed entropy curves at selected values of uniaxial stress {σi} =
{0, 10, 20, 30, 40}MPa under di�erent constant applied magnetic �elds, whereas
Figure 5.21 (a)-(e) displays the computed entropy curves at selected values of mag-
netic �eld {µ0Hj} = {0, 1, 2, 3, 4}T under di�erent constant applied compressive
stresses.

As illustrated in Figure 5.20 (a)-(e), for each constant magnetic �eld the com-
puted entropy curves shift towards higher temperatures when increasing the ap-
plied stress. It is important to notice that in the high-temperature region, all the
entropy curves merge, indicating a stress-independent entropy in the austenitic
phase. On the other hand, as illustrated in Figure 5.21 (a)-(e), for each constant
compressive stress, the computed entropy curves shift towards lower temperatures
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when increasing the applied magnetic �eld. Signi�cantly, in the high-temperature
region, the entropy curves exhibit a crossover, indicating a decrease of the entropy
at the austenitic phase when increasing the applied magnetic �eld. Such decrease
re�ects the reduction of the transition entropy change when increasing the applied
magnetic �eld, as illustrated in Figure 5.18.

As previously discussed in section 3.1.1.2, from the set of iso�eld-isostress en-
tropy curves we can compute the corresponding elastocaloric and magnetocaloric
isothermal entropy (∆S) and adiabatic temperature (∆T ) changes. As these en-
tropy curves were computed from the thermograms recorded for heating runs, they
correspond to the reverse phase transition (from martensite to austenite). There-
fore, the elastocaloric and magnetocaloric thermal responses presented in the fol-
lowing section will correspond as well with the �eld-induced reverse phase tran-
sition (application of magnetic �eld and removal of stress), which corresponds to
trajectories from below to above the red surface in Figure 5.16 (a).

5.3.4.4 Elastocaloric and magnetocaloric e�ects under the in�uence of

a secondary �eld

On the one hand, to compute the elastocaloric thermal response under the in�u-
ence of a constant magnetic �eld, it is important to highlight that the application
of uniaxial stress favours the low-temperature martensitic phase, which is in agree-
ment with the positive transition temperature shift when increasing the applied
stress reported in section 5.3.4.1.

Accordingly, the removal of stress (∆σ < 0) will promote the reverse phase tran-
sition (from martensite to austenite), and consequently a thermodynamic process in
which stress is removed is associated with the heating entropy curves. Speci�cally,
the elastocaloric isothermal entropy change under a certain constant magnetic �eld
will be computed as:

∆S(T, µ0H,σ → 0) = S(T, µ0H, 0)− S(T, µ0H,σ) (5.16)

and the corresponding results are illustrated in Figure 5.20 (f)-(j) under di�erent
constant applied magnetic �elds. Conversely, adiabatic temperature changes are
computed after inverting the corresponding entropy curves (T (S, µ0H,σ)) as:

∆T (S, µ0H,σ → 0) = T (S, µ0H, 0)− T (S, µ0H,σ) (5.17)

While this expression provides the adiabatic temperature change as a function
of entropy, it is customary to represent it as a function of temperature. Such tem-
perature dependence is obtained by plotting each ∆T (S, µ0H,σ → 0) data at the
temperature given by the initial entropy curve prior to the removal of the uniax-
ial stress. Figure 5.20 (k)-(o) illustrates the corresponding adiabatic temperature
changes under di�erent constant applied magnetic �elds.

In light of all the results illustrated in Figure 5.20, the computed elastocaloric
e�ect has been found to be conventional. At this point, it is important to highlight
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Figure 5.20: (a)-(e) Entropy curves (referenced to Sref = S(T = 256K) in the
absence of stress and magnetic �eld) as a function of temperature at selected
values of uniaxial stress {σi} = {0, 10, 20, 30, 40}MPa under di�erent constant
magnetic �elds. Elastocaloric isothermal entropy changes ((f)-(j)), and adiabatic
temperature changes ((k)-(o)) corresponding to the removal of uniaxial stress
(σ → 0). Each row corresponds to a di�erent constant applied magnetic �eld
{µ0Hj} = {0, 1, 2, 3, 4}T, and the value of the uniaxial stress is indicated by
the colour code.

that under low applied magnetic �elds ({µ0Hj} = {0, 1}T), the transition tem-
perature shift with stress is very small (see Figure 5.16 (e)), and the �eld-induced
elastocaloric e�ect at low stresses shows small �uctuations for both isothermal en-
tropy and adiabatic temperature changes around zero. These �uctuations can not
be considered physically meaningful within experimental errors.
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On the other hand, to compute the magnetocaloric thermal response under the
in�uence of a constant stress, it is important to highlight that the application of
magnetic �eld favours the high-temperature austenitic phase, which is in agreement
with the negative transition temperature shift when increasing the applied magnetic
�eld reported in section 5.3.4.1.

Accordingly, the application of magnetic �eld (∆µ0H > 0) will promote the re-
verse phase transition (from martensite to austenite), and consequently a process
in which magnetic �eld is applied is as well associated with the heating entropy
curves. Therefore, similarly to the elastocaloric e�ect, the magnetocaloric isother-
mal entropy change under a certain constant stress will be computed as:

∆S(T, 0→ µ0H,σ) = S(T, µ0H,σ)− S(T, 0, σ) (5.18)

and the corresponding results are illustrated in Figure 5.21 (f)-(j) under di�erent
constant applied stresses. Conversely, the magnetocaloric adiabatic temperature
changes are computed as:

∆T (S, 0→ µ0H,σ) = T (S, µ0H,σ)− T (S, 0, σ) (5.19)

and the corresponding results, represented as a function of the temperature given
by the initial entropy curve prior to the application of the magnetic �eld, are
illustrated in Figure 5.21 (k)-(o) under di�erent constant applied stresses.

Interestingly, the computed magnetocaloric thermal response has been found to
exhibit a crossover from inverse (at low temperatures) to conventional (at high tem-
peratures). The inverse magnetocaloric e�ect arises from the �eld-induced marten-
sitic phase transition, whereas the arising conventional magnetocaloric e�ect is
associated with changes in the ferromagnetic order in the vicinity of the Curie
point of the austenite phase.

Additionally, it is important to notice that for both elastocaloric and magne-
tocaloric thermal responses under the in�uence of a secondary �eld, an increase
in the external �eld change that drives the martensitic phase transition (stress for
the elastocaloric e�ect, represented in Figure 5.20, and magnetic �eld for the mag-
netocaloric e�ect, represented in Figure 5.21) enlarges the temperature window of
the corresponding caloric e�ect.

Furthermore, it is particularly interesting to examine the behaviour of the ex-
treme values of the isothermal entropy (∆Smax) and the adiabatic temperature
(∆Tmax) changes as a function of the driving �eld that induces the martensitic
phase transition for both caloric e�ects. Figure 5.22 illustrates the isothermal en-
tropy (a) and the adiabatic temperature (b) changes for the magnetocaloric e�ect as
a function of the applied magnetic �eld (∆µ0H) (under di�erent constant applied
stresses), whereas the isothermal entropy and the adiabatic temperature changes
for the elastocaloric e�ect as a function of the absolute value of the released stress
(|∆σ|) (under di�erent constant magnetic �elds) are shown in panels (c) and (d),
respectively.
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Figure 5.21: (a)-(e) Entropy curves (referenced to Sref = S(T = 256K) in the
absence of stress and magnetic �eld) as a function of temperature at selected
values of magnetic �eld {µ0Hj} = {0, 1, 2, 3, 4}T under di�erent constant uni-
axial stresses. Magnetocaloric isothermal entropy changes ((f)-(j)), and adiabatic
temperature changes ((k)-(o)) corresponding to the application of magnetic �eld
(0→ µ0H). Each row corresponds to a di�erent constant applied uniaxial stress
{σi} = {0, 10, 20, 30, 40}MPa, and the value of the magnetic �eld is indicated
by the colour code.

As it can be seen from the quasidirect estimates of both the magnetocaloric
isothermal entropy (∆Smax) and adiabatic temperature (∆Tmax) changes, the mag-
nitude of the �eld-induced thermal response increases for higher magnetic �elds for
all applied stresses. While the increase in ∆Tmax is found to be linear, the in-
crease in ∆Smax shows a tendency to saturate at high �elds. The fact that ∆Smax
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Figure 5.22: Left: Magnetic �eld dependence of the maximum values for the
�eld-driven magnetocaloric isothermal entropy (a) and adiabatic temperature
(b) changes under di�erent constant values of applied stress. Right: Stress de-
pendence of the maximum values for the �eld-driven elastocaloric isothermal en-
tropy (c) and adiabatic temperature (d) changes under di�erent constant values
of applied magnetic �eld. Solid symbols correspond to the experimental values
whereas lines are guides to the eye for each data series.

values are lower than the transition entropy changes (∆St(µ0H), illustrated in Fig-
ure 5.18), together with the fact that we do not observe a complete saturation of
the magnetocaloric isothermal entropy change, indicate that the sample does not
completely transform for the studied range of applied magnetic �elds.

On the other hand, for the quasidirect estimates of both elastocaloric ∆Smax
and ∆Tmax, they exhibit a signi�cant scattering but the magnitude of the �eld-
induced thermal response also increases for higher stress changes (|∆σ|) for all
applied magnetic �elds. As for the magnetocaloric e�ect, ∆Smax values are lower
than the transition entropy changes (∆St(µ0H)), indicating that larger stresses are
required in order to completely drive the martensitic phase transition.

When considering the e�ect of the secondary constant �eld on ∆Smax and
∆Tmax, we could not observe a systematic dependence of the magnetocaloric e�ect
on the applied stress within the studied range. Conversely, the elastocaloric ther-
mal response clearly depends on the secondary constant external �eld, increasing
both ∆Smax and ∆Tmax values for higher applied magnetic �elds. Although this
behaviour seems to be in contrast with the transition entropy change decrease when
increasing the applied magnetic �eld, it is important to take into account that the

transition temperature shift with the applied stress
(
dTt
dσ

)
, illustrated in Figure
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5.16 (e), increases with the applied magnetic �eld. Therefore, for the same stress
removal, the transition temperature will shift more when a higher magnetic �eld is
applied, thus leading to an increase of the sample fraction in the martensitic phase
that transforms to the austenitic phase upon stress removal, and leading to a larger
elastocaloric thermal response.

5.3.5 Simulation of the iso�eld-isostress entropy curves: an

analytical model

The experimental iso�eld-isostress entropy curves (S(T, µ0H,σ)), constructed
in section 5.3.4.3 and illustrated in Figure 5.20 (a)-(e) and Figure 5.21 (a)-(e),
are only known for given values of uniaxial stress {σi} = {0, 10, 20, 30, 40}MPa
and magnetic �eld {µ0Hj} = {0, 1, 2, 3, 4}T. Therefore, the corresponding caloric
e�ects can only be computed at certain points of the entire (T, µ0H,σ) coordinate
space under study. Moreover, there are not enough available experimental entropy
curves to accurately compute the corresponding multicaloric e�ect. 5

In order to overcome these issues, it is necessary to de�ne a numerical function
(S(T, µ0H,σ)) and �t it to the experimental entropy curves in order to phenomeno-
logically reproduce their behaviour. The purpose of such numerical function is to
simulate the entropy curves for any combination of magnetic �eld and uniaxial
stress within the entire thermodynamic coordinate space under study, allowing us
to accurately compute the corresponding caloric and multicaloric e�ects.

At this point, it is useful to rewrite the expression that de�nes the iso�eld-
isostress experimental entropy curves (see equation 5.12) by taking into account
the de�nition of the transformed fraction (see equation 3.16). For the particu-
lar case of the sample under study (Ni50Mn35.5In14.5), taking into account the
parametrized behaviour of the transition entropy change ((∆St(µ0H)), see Figure
5.18 and equation 5.9) together with the dependencies of both martensitic (CM (T ))
and austenitic (CA(µ0H)) speci�c heats (see Figure 5.19 and equations 5.13 and
5.15, respectively), the equation that de�nes the iso�eld-isostress entropy curves
can be expressed as:

S(T, µ0H,σ)− Sref =

∫ T

Tref

C(T ′, µ0H,σ)

T ′
dT ′ + ∆St(µ0H)χ(T, µ0H,σ) (5.20)

where Sref = S(T = 256K) and C(T, µ0H,σ) = [1− χ(T, µ0H,σ)]CM (T ) +
χ(T, µ0H,σ)CA(µ0H).

It is important to highlight that all the di�erent elements that constitute equation
5.20, except the austenitic transformed fraction (χ(T, µ0H,σ)), have already been
accurately parametrized within the complete (T, µ0H,σ) coordinate space along
the previous sections. Therefore, it necessary to de�ne an analytical function to re-
produce the experimental behaviour of the transformed fraction over the complete

5See section 2.1.2 for a detailed discussion on the multicaloric e�ects
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thermodynamic phase space under study in order to de�ne a suitable numerical
function (S(T, µ0H,σ)) that reproduces the complete set of iso�eld-isostress ex-
perimental entropy curves.

For such purpose, two observations have to be stated in order to de�ne a suitable
analytical function. On the one hand, as previously discussed in section 3.1.1, it
is important to take into account that the transformed fraction at a certain tem-
perature is computed from the partial integration of the corrected thermograms
with respect to the integration over the complete transition temperature range,
which provides the transition entropy change (see equation 3.16). Therefore, it is
a normalized function that de�nes the portion of the sample that has transformed
to the high-temperature austenitic phase. As a consequence, it will vanish (χ = 0)
at the low-temperature martensitic phase and at the high-temperature austenitic
phase it takes the value χ = 1.

On the other hand, as it can be seen from the corrected thermograms illustrated
in Figure 5.17 (a)-(f), the calorimetric signal is mainly given by a single peak
spreading over a certain transition temperature range that depends on the applied
external �elds. Therefore, the transformed fraction obtained from the integration
of these peaks will provide a single S-shaped curve, which will sharply change over
the transition temperature range from χ = 0 to χ = 1.

Therefore, the analytical function we used includes a sigmoid function, centred
at the transition temperature, expressed as:

χ(T, µ0H,σ) = 1− 1

eB(T−Tt) + 1
(5.21)

where the free parameters {B, Tt} are allowed to depend only on the applied mag-
netic �eld and the uniaxial compressive stress.

Similarly to the �tting procedure described for Cu-Zn-Al in section 3.3.3, an
initial �t to all the single transformed fraction curves is performed without applying
any constrain to the free parameters. Each independent �t provides di�erent values
for both free parameters of the analytical function. Then, the magnetic �eld and
stress dependence of each free parameter is evaluated by �tting its di�erent values
obtained from the individual �ts with a non-linear surface �t. It is important to
point out that, as for Cu-Zn-Al, the free parameters are �xed individually. Once the
�rst free parameter is constrained, new �ts to all the single transformed fraction
curves are performed, as the values of the remaining free parameter may be a�ected
by the previous constrains. This process is sequentially repeated, until all the free
parameters have been properly �xed, thus leading to an analytical function that
depends on temperature, magnetic �eld ans stress, and reproduces the experimental
results over the phase space under study.

By following this �tting procedure, the parameters that de�ne the analytical
function to reproduce the experimental transformed fraction curves are:
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Figure 5.23: (a)-(e) Austenitic transformed fraction as a function of tempera-
ture at selected values of magnetic �eld {µ0Hj} = {0, 1, 2, 3, 4}T under di�erent
constant uniaxial stresses, indicated by the labels in each panel. Solid lines cor-
respond to the experimental data obtained from the corrected thermograms, and
dashed lines, to the �tted analytical function χ(Tµ0H,σ) expressed in equation
5.21.

Tt(µ0H,σ) = 299.1(2)− 1.14(14)µ0H + 0.016(15)σ − 0.15(3)µ0H
2

+ 4(3) · 10−4σ2 + 0.008(3)µ0Hσ (K) (5.22a)

B(µ0H,σ) = 0.74(2)− 0.032(18)µ0H + 0.0019(17)σ − 0.004(4)µ0H
2

− 2(4) · 10−5σ2 − 0.2(4) · 10−4µ0Hσ (K−1) (5.22b)

Figure 5.23 (a)-(e) illustrates the agreement between the simulated (dashed lines)
and experimental (solid lines) transformed fraction curves at selected values of mag-
netic �eld and uniaxial stress. As it can be seen, the deviation between both data
sets is small, proving that the analytical function correctly captures the transformed
fraction behaviour around the martensitic phase transition.

Consequently, taking into account that all the distinct elements that de�ne the
iso�eld-isostress entropy curves, expressed in equation 5.20, have been successfully
parametrized within the complete (T, µ0H,σ) coordinate space, we have all the
necessary ingredients to phenomenologically reproduce their behaviour. For the
particular case of the sample under study, taking into account that equation 5.13
can be generally expressed as CM (T ) = αMT +βM , introducing equation 5.21 into
equation 5.20 leads to:
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Figure 5.24: (a)-(e) Entropy curves (referenced to Sref = S(T = 256K) in the
absence of stress and magnetic �eld) as a function of temperature at selected
values of magnetic �eld {µ0Hj} = {0, 1, 2, 3, 4}T under di�erent constant uni-
axial stresses, indicated by the labels in each panel. Solid lines correspond to the
experimental data, and dashed lines, to the �tted analytical function.

S(T, µ0H,σ)− Sref =

αM (T − Tref ) + βM ln

(
T

Tref

)
− αM

B
ln

[
eB(T−Tt) + 1

eB(Tref−Tt) + 1

]
+ [CA(µ0H)− βM ]

∫ T

Tref

χ(T ′, µ0H,σ)

T ′
dT ′ + ∆St(µ0H)χ(T, µ0H,σ)

(5.23)

where the parameters {B, Tt} depend on both the applied magnetic �eld and stress
according to equations 5.22b and 5.22a, respectively, and the integral over tem-

perature of
χ(T ′, µ0H,σ)

T ′
was computed numerically by a cumulative trapezoidal

integration for any point of the (T, µ0H,σ) coordinate space under study.

Figure 5.24 (a)-(e) illustrates the good agreement between the numerically com-
puted (dashed lines) and experimental (solid lines) iso�eld-isostress entropy curves
at selected values of magnetic �eld and stress. Therefore, from the numerical
S(T, µ0H,σ) function, the corresponding caloric and multicaloric e�ects can be
computed for any combination of temperature, magnetic �eld and stress within the
entire phase space under study.

It is worthwhile to remember that the experimental iso�eld-isostress entropy
curves were computed from the thermograms recorded for heating runs and thus,
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they correspond to the reverse phase transition. As a result, the analysis of the
caloric e�ects (see section 5.3.4.4) was restricted to the application of magnetic �eld
and the removal of stress, as they both induce the reverse phase transition, and
correspond to trajectories from below to above the red surface illustrated in Figure
5.16 (a). Furthermore, when considering trajectories that involve a simultaneous or
sequential change on both external �elds, both of them have to promote the phase
transition in the same direction. Otherwise, due to the hysteresis of the phase
transition, they would drive the sample through a minor hysteresis loop within the
two-phase coexistence region (which corresponds to the temperature range between
both surfaces illustrated in Figure 5.16 (a)), for which no experimental data are
available.

Consequently, the numerically simulated entropy curves are only representative
for the reverse phase transition, and the computation of the corresponding caloric
and multicaloric e�ects will be restricted to the diverse trajectories in the phase
space from below to above the red surface.

Figures 5.25 (a) and (b) illustrate respectively the numerically simulated iso�eld
and isostress entropy surfaces as a function of temperature and stress (a), and as
a function of temperature and magnetic �eld (b). The crossover behaviour for the
iso�eld entropy surfaces (see Figure 5.25 (a)) is evident within all the range of
temperatures and stresses under study. Furthermore, the isostress entropy surfaces
also evidence the transition entropy change decrease when increasing the applied
magnetic �eld (see Figure 5.25 (b)), together with the weak dependence in stress.

Moreover, equation 5.23 allows us to compute the corresponding isothermal en-
tropy surfaces as a function of stress and magnetic �eld, illustrated in Figure 5.25
(c)-(f) at selected values of temperature. For temperatures at the onset of the
reverse phase transition, the entropy increase when removing the stress is more
pronounced. Accordingly, for temperatures above the phase transition, the entropy
increase when removing the stress in drastically reduced. On the other hand, the
entropy increases when applying the magnetic �eld up to a maximum, and then de-
creases for larger �elds. The value of the magnetic �eld where the maximum occurs
depends on the temperature. For temperatures above the reverse phase transition,
the entropy decreases when increasing the applied magnetic �eld, which re�ects the
decrease of the entropy at the austenitic phase when increasing the magnetic �eld,
in accordance with its ferromagnetic nature.

5.3.5.1 Elastocaloric and magnetocaloric e�ects under the in�uence of

a secondary �eld

Similarly to the results presented in section 5.3.4.4, we can compute the elas-
tocaloric e�ect under a certain constant applied magnetic �eld and the magne-
tocaloric e�ect under a certain constant applied stress from the numerical S(T, µ0H,σ)
function. The corresponding results are illustrated in Figures 5.26 and 5.27, re-
spectively, as colour contour plot maps. Additionally, the corresponding three-
dimensional representations of both caloric e�ects are shown in Appendix B.
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Figure 5.25: (a) Iso�eld entropy surfaces as a function of stress and temperature
at selected values of magnetic �eld in the range {µ0Hj} ∈ {0, 4}T. (b) Isostress
entropy surfaces as a function of magnetic �eld and temperature at selected values
of stress in the range {σi} ∈ {0, 40}MPa. (c)-(d) Isothermal entropy surfaces as
a function of magnetic �eld and stress. In all cases, the entropy is referenced to
Sref = S(T = 256K) in the absence of stress and magnetic �eld. Arrows indicate
the direction of the temperature, magnetic �eld and uniaxial stress change.

Overall, there is an excellent agreement between both numerically simulated and
experimentally computed elastocaloric (Figures 5.20 and 5.26) and magnetocaloric
(Figures 5.21 and 5.27) thermal responses, respectively. Such an agreement con�rms
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Figure 5.26: Contour plots of the elastocaloric isothermal entropy (panels (a)
and (b)) and adiabatic temperature (panels (c) and (d)) changes resulting from
the removal of uniaxial stress (σ → 0) as a function of temperature. Left side
panels ((a) and (c)) correspond to the elastocaloric thermal response in the ab-
sence of magnetic �eld, whereas right side panels ((b) and (d)) to data under an
applied magnetic �eld of µ0H = 4T. Arrows along the axis indicate the direction
of the temperature and uniaxial stress changes.

the robustness of our analytical model in order to phenomenologically reproduce
the experimentally computed entropy curves, thus providing con�dence in the com-
putation of the multicaloric e�ect, which will be discussed in detail in the following
section.

Let us �rst discuss the elastocaloric e�ect, illustrated in Figure 5.26. As it can
be clearly seen when comparing panel (a) with panel (b), and panel (c) with panel
(d), application of magnetic �eld shifts the stress-induced elastocaloric e�ect to-
wards lower temperatures. In addition, application of magnetic �eld enlarges the
temperature window where the elastocaloric e�ect occurs, and it also enhances
the magnitude of its thermal response, which is in agreement with the fact that
the transition temperature shift with stress in strongly enhanced when applying
magnetic �eld (see Figure 5.16 (e)). In particular, for the maximum stress removal
(40MPa → 0MPa), in the absence of magnetic �eld the elastocaloric thermal re-
sponse renders ∆S = 8.7 JK−1kg−1 and ∆T = −1.0K, whereas under an applied
magnetic �eld of µ0H = 4T these values increase to ∆S = 10.4 JK−1kg−1 and
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Figure 5.27: Contour plots of the magnetocaloric isothermal entropy (panels
(a) and (b)) and adiabatic temperature (panels (c) and (d)) changes resulting
from the application of magnetic �eld (0→ µ0H) as a function of temperature.
Left side panels ((a) and (c)) correspond to the magnetocaloric thermal response
in the absence of stress, whereas right side panels ((b) and (d)) to data under
an applied stress of σ = 40MPa. Arrows along the axis indicate the direction of
the temperature and magnetic �eld changes.

∆T = −1.9K.

In relation to the magnetocaloric e�ect, illustrated in Figure 5.27, when compar-
ing panel (a) with panel (b), and panel (c) with panel (d), we observe a slight shift
of the �eld-induced magnetocaloric e�ect towards higher temperatures when apply-
ing stress. Due to the restricted range of applied stresses, the in�uence of uniaxial
stress on the magnetocaloric e�ect is weaker than the in�uence that magnetic �eld
has on the elastocaloric e�ect. Furthermore, we observe a small shift of the thermal
response to higher magnetic �elds when applying uniaxial stress. For instance, if we
focus on the contour line corresponding to ∆S = 19 JK−1kg−1 illustrated in both
panels (a) and (b), we observe that a magnetic �eld of µ0H = 2.7T is necessary
to �eld-induce such entropy change in the absence of stress, whereas a magnetic
�eld of µ0H = 3.3T is necessary to induce the same entropy change under an
applied stress of σ = 40MPa. This shift of the magnetocaloric thermal response
towards higher magnetic �eld values is due to the fact that application of uniaxial
stress further stabilizes the martensitic phase. For the maximum applied magnetic
�eld (0T → 4T), in the absence of stress the magnetocaloric thermal response
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renders ∆S = 23.1 JK−1kg−1 and ∆T = −5.0K, whereas under an applied stress
of σ = 40MPa these values decrease to ∆S = 21.4 JK−1kg−1 and ∆T = −4.1K.

5.3.5.2 Multicaloric e�ect

As discussed in section 2.1.2, the multicaloric e�ect refers to the �eld-induced
isothermal entropy and adiabatic temperature changes under the simultaneous or
sequential change of more than one external �elds. As the numerically simulated
entropy curves are only representative for the reverse phase transition, we are
restricted to processes in which stress is removed and magnetic �eld is applied.
Therefore, the multicaloric isothermal entropy change at a certain temperature
will be computed as:

∆S(T, 0→ µ0H,σ → 0) = S(T, µ0H, 0)− S(T, 0, σ) (5.24)

and the corresponding results are illustrated in Figure 5.28 (a)-(f) as contour colour
maps at selected temperatures. Conversely, the multicaloric adiabatic temperature
change is computed after inverting and interpolating the numerically simulated
entropy curves as:

∆T (S, 0→ µ0H,σ → 0) = T (S, µ0H, 0)− T (S, 0, σ) (5.25)

As for the single caloric e�ects, the corresponding multicaloric adiabatic tem-
perature changes are plotted as a function of the temperature given by the initial
entropy curve (S(T, 0, σ)) prior the simultaneous or sequential external �eld change.
Figure 5.29 (a)-(f) illustrates the corresponding adiabatic temperature changes as
contour colour maps at selected initial temperatures.

As a result of the combined e�ect of the two external stimuli, the multicaloric
�eld-induced thermal response, illustrated in both Figures 5.28 and 5.29, shows a
clear improvement with respect to the single caloric thermal response (illustrated in
Figures 5.26 and 5.27 for the elastocaloric and magnetocaloric e�ects, respectively)
for the studied alloy.

Let us �rst focus on the isothermal entropy change. On the one hand, the max-
imum values achieved for the multicaloric e�ect are ∆Smax = 25.2 JK−1kg−1 at
T = 296K and ∆Smax = 24.9 JK−1kg−1 at T = 297K, which clearly exceed the
values obtained for the single elastocaloric and magnetocaloric e�ects. Furthermore,
values exceeding the single caloric e�ect maxima can be obtained within a range of
stress and magnetic �eld. In particular, at T = 297K (see Figure 5.28 (d)), if we
focus on the contour line corresponding to ∆S = 24 JK−1kg−1, we can obtain equal
or larger entropy changes for the combination of magnetic �eld and stress changes
ranging in a window limited by the following values: ((0T, 30MPa)→ (4T, 0MPa))
and ((0T, 40MPa) → (3T, 0MPa)). On the other hand, it is possible to induce
large entropy changes for relatively low values of applied magnetic �eld. In partic-
ular, if we focus on an applied magnetic �eld of µ0H = 1T, which is readily ac-
cessible by permanent magnets, the �eld-induced magnetocaloric entropy changes
are in the range ∆S(T, 0→ 1T, σ) = 4−7 JK−1kg−1 (see Figures 5.22 (a) and 5.27
(a)-(b)). Interestingly, this values can be doubled when combining the application
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Figure 5.28: Contour plots of the multicaloric isothermal entropy changes re-
sulting from the application of magnetic �eld and the removal of uniaxial stress
((0, σ)→ (µ0H, 0)) at selected temperatures. Arrows along the axis indicate the
direction of the magnetic �eld and uniaxial stress changes.

of magnetic �eld (µ0H : 0 → 1T) with the removal of stress (σ : 40 → 0MPa).
Speci�cally, the achieved multicaloric entropy changes are ∆S = 10.5 JK−1kg−1

at T = 297K, ∆S = 13.9 JK−1kg−1 at T = 298K and ∆S = 15.1 JK−1kg−1 at
T = 299K.

When considering the adiabatic temperature change, similar trends are also ob-
served when comparing the multicaloric e�ect with the single caloric e�ects. On the
one hand, the maximum values achieved for the multicaloric e�ect are ∆Tmax =
−5.7K at T = 297K, ∆Tmax = −5.9K at T = 298K and ∆Tmax = −5.8K at
T = 299K, which clearly exceed the values obtained for the single elastocaloric
and magnetocaloric e�ects. As for the isothermal entropy change, such larger val-
ues can be obtained within a range of stress and magnetic �eld. In particular, at
T = 298K (see Figure 5.29 (e)), if we focus on the contour line corresponding to
∆T = −5K, we can obtain equal or larger temperature changes for the combination
of magnetic �eld and stress changes ranging in a window limited by the following
values: ((0T, 10MPa) → (4T, 0MPa)) and ((0T, 40MPa) → (3.4T, 0MPa)). On
the other hand, at low applied magnetic �elds accessible by permanent magnets,
the �eld-induced magnetocaloric temperature changes are in the range |∆T (S, 0→
1T, σ)| = 0.5−1K (see Figures 5.22 (b) and 5.27 (c)-(d)). Interestingly, when com-
bining the application of magnetic �eld (µ0H : 0→ 1T) together with the removal
of stress(σ : 40 → 0MPa) , the multicaloric temperature change increases up to
∆Tmax = −2K at T = 299K.

At this point, it is important to highlight that in general, as discussed in section
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Figure 5.29: Contour plots of the multicaloric adiabatic temperature changes
resulting from the application of magnetic �eld and the removal of uniaxial stress
((0, σ)→ (µ0H, 0)) at selected temperatures. Arrows along the axis indicate the
direction of the magnetic �eld and uniaxial stress changes.

2.1.2, the �eld-induced multicaloric thermal response is not given by the sum of
the single caloric e�ects [51, 53], as there is also a contribution from the cross-
coupled response of the material to the application of non-conjugated external
�elds. Nevertheless, in the present case under study there is no contribution from
the cross-coupled response of the material as we are performing an asymmetric
external �eld change 6 and the multicaloric iso�eld entropy change can be separated
into the following contributions:

∆S(T, 0→ µ0H,σ → 0) =

∆S(T, µ0H = 0T, σ → 0) + ∆S(T, 0→ µ0H,σ = 0MPa)
(5.26)

As expressed by equation 5.26, the �eld-induced multicaloric e�ect corresponds
to the direct sum of each respective single caloric e�ects in the absence of any
applied secondary �eld.

5.3.6 Adiabatic thermometry of the magnetocaloric

temperature change under a constant uniaxial stress

With the aim of corroborating the magnetocaloric thermal response crossover
from inverse (at low temperatures) to the conventional (at high temperatures), il-
lustrated in Figures 5.21 and 5.27, and to con�rm the temperature region where the

6As discussed in section 2.1.2, it refers to the particular case where one external �eld is applied
while the other one is removed.
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Figure 5.30: Illustrative examples of the recorded temperature ((a) and (b))
and magnetic �eld ((c) and (d)) for the heating protocol in the absence of applied
stress. Red dashed vertical lines (n = 1) indicate the �rst magnetic �eld ramp,
while green dashed lines (n = 2) indicate the second magnetic �eld ramp.

inverse magnetocaloric e�ect takes place, we have performed direct measurements
of the adiabatic temperature change under a cyclic magnetic �eld in the absence
of stress and under an applied compressive stress of σ = 40MPa.

Taking into account that application of magnetic �eld promotes the reverse phase
transition, leading to an inverse magnetocaloric e�ect, the protocols described in
section 3.1.2.1 that correspond to an inverse caloric e�ect were followed. In this
regard, as our study has been restricted to the reverse phase transition, to char-
acterize its thermal response (heating protocol), the sample is initially fully trans-
formed to the low-temperature martensitic phase in the absence of magnetic �eld,
and then it is heated up to the initial measurement temperature. Once the sample
is at isothermal equilibrium, the magnetic �eld is cycled, starting with a 0→ 1.64T
scan.

Figure 5.30 illustrates selected examples of the temperature (top) and magnetic
�eld (bottom) measurements recorded upon cycling the magnetic �eld in the range
0 � 1.64T in the absence of stress for the heating protocol at di�erent initial
temperatures.

At low temperatures, consistently with the inverse nature of the magnetocaloric
e�ect, we measured a temperature decrease upon application of an external mag-
netic �eld and a temperature increase upon removal. Conversely, at higher tem-
peratures, we measured a temperature increase upon application of an external
magnetic �eld and a temperature decrease upon removal, which is consistent with
a conventional magnetocaloric e�ect. Interestingly, at low temperatures (see panel
(a)), the temperature change measured for the �rst magnetic �eld scan (n = 1) is
larger than the temperature changes measured for the subsequent magnetic �eld
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Figure 5.31: Adiabatic temperature changes resulting from the �rst application
(n = 1) of a 1.64T magnetic �eld in the absence of applied stress (cyan symbols
and line), and under an applied compressive stress of σ = 40MPa (red sym-
bols and line). Symbols correspond to directly measured values and lines, to the
magnetocaloric adiabatic temperature change computed from the numerically
simulated iso�eld-isostress entropy curves (S(T, µ0H,σ)).

scans (n > 1). This behaviour is in agreement with the thermal hysteresis inherent
to the �rst-order martensitic phase transition. Oppositely, at high temperatures
(see panel (b)), the measured temperature change is almost constant between the
�rst (n = 1) and subsequent (n > 1) magnetic �eld scans. This behaviour is in
agreement with the fact that the conventional magnetocaloric e�ect at high tem-
peratures is associated with changes in the ferromagnetic order in the vicinity of
the Curie point of the austenite, which exhibits a negligible thermal hysteresis as
illustrated in Figures 5.13 and 5.19 (a). A similar behaviour was observed for the
measurements performed under an applied compressive stress of σ = 40MPa.

As for the direct thermometry measurements presented in section 5.1.3, the adi-
abatic temperature change for a certain magnetic �eld scan (µ0H

s → µ0H
f ) is

determined as ∆Tad(µ0H
s → µ0H

f ) = T (µ0H
f )− T (µ0H

s), where T (µ0H
s) and

T (µ0H
f ) correspond to the sample temperature before and after the magnetic �eld

scan, respectively. The whole set of measurements for the �rst magnetic �eld scan
(n = 1) is compiled in Figure 5.31, where the adiabatic temperature change mea-
surements are plotted as a function of the initial temperature of the sample in
the absence of stress (cyan symbols) and under an applied compressive stress of
σ = 40MPa (red symbols). Furthermore, the direct measurements can be com-
pared with the corresponding values of the magnetocaloric e�ect computed from
the numerical iso�eld-isostress entropy curves (S(T, µ0H,σ)), which are illustrated
as dashed lines in Figure 5.31.

At low temperatures, where the magnetocaloric e�ect is inverse, the maximum
adiabatic temperature change values directly measured are |∆T | ≈ 0.9K, whereas
at high temperatures, where the e�ect is conventional, the maximum values are
found to be ∆T ≈ 1.2K. Signi�cantly, it is important to highlight that the com-
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parison between direct and numerically simulated data provides a con�rmation of
the temperature region where the inverse magnetocaloric e�ect occurs, including
the crossover temperature from an inverse to a conventional magnetocaloric e�ect.
Furthermore, it also con�rms the temperature shift of magnetocaloric e�ect with
the application of uniaxial compressive stress.

Nevertheless, as it can be clearly seen in Figure 5.31, it is noteworthy that the
directly measured values are systematically smaller than the numerically simulated
ones. At the inverse magnetocaloric temperature region, the di�erences between
both data sets are ∼ 0.7K and can be mainly attributed to the lack of absolute
adiabaticity of our bespoke setup (see section 3.2.2), together with the fact that
the thermocouple is attached to the sample surface, which worsens the thermal
contact between the sensor and the sample under study. In contrast, larger di�er-
ences are found for the conventional magnetocaloric e�ect temperature region. In
this case, the discrepancy between both data series must be ascribed to the fact
that our method based on the construction of iso�eld-isostress entropy curves, and
their numerical simulation, provides accurate data for the caloric and multicaloric
entropy and temperature changes arising from �rst-order phase transitions, but it
is less suited to study the arising caloric e�ects around continuous phase transi-
tions. For that reason, although our numerically simulated data correctly captures
the crossover of the magnetocaloric e�ect from inverse to conventional, actual data
for the entropy and temperature changes associated with the conventional magne-
tocaloric e�ect around the Curie temperature (TC) might be inaccurate.

5.3.7 Reproducibility of the caloric e�ects under �eld cycling

The characterization of the reproducibility of a caloric e�ect under �eld cycling is
a relevant feature for potential technological applications. Nevertheless, a thorough
analysis of the reproducibility of the caloric and multicaloric e�ects in the Ni-Mn-In
alloy under study has not been possible as our analysis has been restricted to the
thermograms recorded for heating runs.

Despite this fact, some estimates on the reproducibility and the required external
�elds can be made when considering the previously determined thermal hysteresis
of the martensitic transition, together with representative values of the reported
dependences of the transition temperature with stress and magnetic �eld. By con-
sidering a thermal hysteresis of ∼ 12K, and taking representative values (see Figure
5.16 (d) and (e)) for the shift of the martensitic transition with magnetic �eld and

stress of
dTt
dµ0H

∼ −2KT−1 and
dTt
dσ
∼ 0.08KMPa−1, respectively, the Ni-Mn-In

alloy under study exhibits an estimated e�ective hysteresis on magnetic �eld of
∼ 6T, and the magnetocaloric e�ect is expected to be reproducible for higher �eld
changes, 7 whereas it exhibits an e�ective hysteresis on uniaxial compressive stress

7Nevertheless, as illustrated in Figure 5.30 (a), a certain reversible adiabatic temperature
change can be induced upon cycling a lower magnetic �eld. This behaviour is in accordance with
the fact that minor hysteresis loops have a smaller thermal hysteresis than the complete phase
transition, leading to an enhancement of the reversibility upon cycling the external �eld [227].
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Figure 5.32: Sketch of a multicaloric reversible cycle showing the fraction of the
sample at the high-temperature austenitic phase as a function of temperature,
for selected values of magnetic �eld and uniaxial stress. Panel 1: Application of
magnetic �eld in the absence of stress. Panel 2: Application of stress under an
applied (constant) magnetic �eld. Panel 3: Removal of magnetic �eld under an
applied (constant) stress. Panel 4: Removal of stress in the absence of magnetic
�eld.

of ∼ 150MPa.

While application of magnetic �elds in the order of ∼ 6T are unfeasible for
practical technological applications, it is important to take into account that ap-
plication of a secondary external �eld can drastically reduce the e�ective hysteresis
in a given external �eld [51, 63]. For the case under study, taking advantage of
the magnetostructural character of the martensitic phase transition, application of
stress can enhance the reproducibility of the magnetocaloric e�ect.

Considering the cyclic application and removal of a moderate magnetic �eld in
the range of |µ0∆H| ∼ 1T, the magnetocaloric e�ect is expected to be repro-
ducible under the sequence represented in Figure 5.32. Each panel of the sketched
multicaloric cycle shows the corresponding sample fraction at the high-temperature
austenitic phase as a function of temperature at the initial (dashed lines) and �nal
(solid lines) con�guration of magnetic �eld and applied stress. Before the discussion
of each cycle step, it is important to point out that partial hysteresis loops have
not been considered for the sake of simplicity.

1. Panel 1:
Application of magnetic �eld shifts the phase transition to lower tempera-

tures (blue curves) and the sample, initially in the low-temperature marten-
sitic phase, partially transforms to the high-temperature austenitic phase, as
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indicated by the black arrow.

2. Panel 2:
Application of a 125MPa compressive stress 8 shifts the phase transition

to higher temperatures (orange curves) in a way that the state of the sample
(under magnetic �eld and compressive stress) lies on the cooling branch of
the inherent hysteresis of the phase transition.

3. Panel 3:
While keeping the stress constant, removal of magnetic �eld shifts the phase

transitions to higher temperatures (red curves) and the sample transforms
back to the low-temperature martensitic phase, as indicated by the black
arrow.

4. Panel 4:
Removal of the 125MPa applied stress shifts the phase transition to lower

temperatures (grey curves) in a way that the state of the sample (in the
absence of magnetic �eld and compressive stress) lies on the heating branch
of the hysteresis loop, thus recovering the initial state of the �rst panel.

Hence, it is seen that application of a moderate stress turns Ni-Mn-In into a
suitable material for refrigeration devices using permanent magnets.

5.3.7.1 Exploiting-hysteresis cycle: a novel multicaloric approach

Recently, T. Gottschall et. al. proposed a novel multicaloric cycle that exploits
the inherent thermal hysteresis of magnetostructural �rst-order phase transitions,
rejecting the conventional idea that it must be minimized in order to enhance
the reversibility of a given caloric e�ect under a cyclic application and removal of
external �elds [64].

From a general point of view, as discussed along sections 2.2.1 and 2.2.2, let us
consider a thermodynamic system exhibiting a discontinuity of the corresponding
order parameter (∆Xit = Xβ

i −Xα
i ) at a �rst-order phase transition taking place

at a certain temperature between two phases (α and β). As previously discussed,
application of an external �eld drives the phase transition towards the phase that
maximizes the corresponding order parameter. When the external �eld is removed,
due to the inherent hysteresis of the phase transition, the system is locked and
remains at the same phase. However, a second external �eld is required in order
to drive the reverse phase transition and return the system to its initial thermo-
dynamic state. Therefore, a system exhibiting a �rst-order phase transition that
is sensitive to multiple external �elds is a prerequisite to take advantage of the
inherent hysteresis.

8The selected magnitude of the applied stress is smaller than the �eld necessary to overcome the
e�ective hysteresis, which would induce the back transformation to the low-temperature marten-
sitic phase.
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Figure 5.33: Recorded adiabatic temperature change of the sample under study
as a function of time when it is alternatively exposed to uniaxial stress pulses
of 80MPa (odd minutes) and magnetic �eld pulses of 1.8T (even minutes, indi-
cated by vertical purple lines), while it is continuously heated at a sweeping rate
of 0.25Kmin−1. The absolute temperature of the sample along the experiment
is shown on the right-hand side axis, and illustrated as a red line, whereas the
baseline-subtracted temperature pro�le of the sample is shown on the left-hand
side axis, illustrated as black solid symbols. The background colour of the �gure
separates the measured thermal response in three regions, corresponding to di�er-
ent behaviours of the magnetocaloric e�ect (MCE) exhibited by the alloy under
study within the measured temperature window T ∈ [290, 298]K. Blue: The
sample exhibits an inverse MCE that is reversible. Green: The sample exhibits
an inverse MCE that is irreversible. Red: The sample exhibits a conventional
MCE that is reversible. The �gure has been taken from [64].

Such exploiting-hysteresis cycle has been proposed to take advantage of magne-
tostructural �rst-order phase transitions, as they can be driven by both magnetic
�eld and stress. A detailed discussion of the corresponding cycle and its advantages
with respect to other refrigeration cycles can be found in [64].

As a proof of concept, we have applied the corresponding exploiting-hysteresis
cycle to the same Ni-Mn-In alloy under study, as it exhibits a martensitic phase
transition and application of magnetic �eld favours the high-temperature austenitic
phase whereas application of stress favours the low-temperature martensitic phase,
allowing us to recover the initial state of the sample. We have performed direct mea-
surements of the adiabatic temperature change using the bespoke setup described
in section 3.2.2 and following the continuous measurement protocol. According to
the di�erent steps of the exploiting-hysteresis cycle, alternate pulses of magnetic
�eld (0� 1.8T) and stress (0� 80MPa) were applied to the sample at minute in-
tervals, while the system was continuously heated on the background at a sweeping
rate of 0.25Kmin−1 within the temperature range T ∈ [290, 298]K in order to test
the response of the alloy at di�erent regions of the martensitic phase transition.
The corresponding results are illustrated in Figure 5.33.

The diagonal red line of the �gure represents the absolute temperature of the
sample during the complete experiment, referenced at the right-hand side axis. Ad-
ditionally, in order to enhance the clarity of the temperature pro�le of the sample,
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allowing us to easily identify the �eld-induced adiabatic temperature changes, the
heating baseline was subtracted and the corrected temperature of the sample is
illustrated as solid black dots, referenced at the left-hand side axis.

Three di�erent regions can be identi�ed from the magnetic �eld-induced thermal
response of the sample. At low temperatures, below approximately T ≈ 292K (min-
utes 0-7, blue shaded region), the sample is predominantly at the low-temperature
martensitic phase. Upon application of an external magnetic �eld, we measure a
small temperature decrease, consistently with the inverse nature of the magne-
tocaloric e�ect. Interestingly, when the magnetic �eld is removed, the temperature
of the sample immediately increases and almost reverts to its initial value before the
magnetic �eld pulse, meaning that the magnetocaloric e�ect is predominantly re-
versible at this temperature range. This behaviour is in agreement with the fact that
only a small fraction of the sample can be transformed and locked to the austenitic
phase when the magnetic �eld is applied. Consequently, we also measure a small
temperature increase upon application of stress, consistently with the conventional
nature of the elastocaloric e�ect. When the stress is removed, the temperature of
the sample almost reverts to its initial value before the stress pulse, meaning that
the elastocaloric e�ect is also predominantly reversible at this temperature range.
Therefore, only a small fraction of the sample that was at the austenitic phase is
transformed back to the low-temperature martensite. In consequence, at this tem-
perature range, the sample is mainly at the martensitic phase along the di�erent
steps of the exploiting-hysteresis cycle.

At intermediate temperatures, above T ≈ 292K (minutes 7-23, green shaded
region), an increasing amount of martensite is transformed to austenite when the
magnetic �eld is applied, leading to an increase of the inverse magnetocaloric e�ect
thermal response. Furthermore, when the magnetic �eld is removed, the temper-
ature of the sample is not reverting immediately to its initial value before the
magnetic �eld pulse. Interestingly, it rather takes a certain time (t ∼ 60 s) until the
initial temperature is recovered. This behaviour is further enhanced for higher abso-
lute temperatures of the sample within the green shaded region. The measurement
of an irreversible �eld-induced adiabatic temperature change indicates that increas-
ing amounts of austenite are locked by the thermal hysteresis of the sample after
the magnetic �eld removal, which prevents it to transform back to the martensitic
phase. As a bigger fraction of the sample is retained at the austenitic phase, when
we apply the uniaxial stress pulse we also observe an enhancement of the conven-
tional elastocaloric e�ect, meaning that a larger fraction of austenite is transformed
back to martensite. Interestingly, when the stress is removed, we measure an imme-
diate temperature decrease followed by a small irreversible stress-induced adiabatic
temperature change. Therefore, even if a certain part of the recovered martensite
immediately transforms back to the high-temperature austenitic phase, the irre-
versible temperature change indicates that a certain amount of martensite is locked
by the thermal hysteresis of the sample after the stress removal. Overall, despite
the fact that a certain part of the sample is not locked by the thermal hystere-
sis along the di�erent steps, the exploiting-hysteresis cycle provides an irreversible
�eld-induced adiabatic temperature change of |∆T | ≈ 1.2K around T ≈ 296K.
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In contrast, at temperatures above T ≈ 296K (minutes 23-29, red shaded region),
the sample is predominantly at the high-temperature austenitic phase. Upon ap-
plication of an external magnetic �eld, as the absolute temperature of the sample
is close to the austenitic Curie temperature (TC ∼ 303K), an arising conventional
magnetocaloric e�ect associated with changes in the ferromagnetic order in the
vicinity of the Curie point of the austenite starts to gain importance with respect
to the inverse magnetocaloric e�ect associated with the sample fraction that trans-
forms from the martensitic to the austenitic phase. When the magnetic �eld is re-
moved, consistently with the negligible thermal hysteresis of the Curie point of the
austenite, we observe that the �eld-induced conventional magnetocaloric e�ect is
reversible. Interestingly, the remaining inverse magnetocaloric e�ect is irreversible,
indicating that still a certain amount of austenite is locked by the thermal hys-
teresis. This behaviour is further enhanced for higher absolute temperatures of the
sample within the red shaded region. When the uniaxial stress pulse is applied, only
a small fraction of the austenite can be transformed back to the martensitic phase,
leading to a reduction of the corresponding conventional elastocaloric e�ect. When
the stress is removed, we still observe a small irreversible stress-induced adiabatic
temperature change, meaning that a shrinking part of the recovered martensite is
still locked by the thermal hysteresis after the stress removal. For higher absolute
temperatures of the sample, the e�ect of the stress pulse is further reduced and the
amount of locked martensite keeps fading away. In consequence, at this tempera-
ture range, the sample is mainly at the austenitic phase along the di�erent steps
of the exploiting-hysteresis cycle.

When comparing these results with the previously measured temperature pro-
�le of the sample under a cyclic magnetic �eld (see Figure 5.30 (a)), we clearly
see the signi�cant advantage that this new approach provides on enhancing the
reversibility of the �eld-induced magnetocaloric e�ect. For instance, a signi�cant
decrease of the �eld-induced adiabatic temperature change between the �rst (n
= 1, |∆T | ≈ 0.8K) and successive (n > 1, |∆T | ≈ 0.3K) magnetic �eld scans
was previously reported around the �rst-order martensitic phase transition. Con-
versely, an adiabatic temperature change of |∆T | ≈ 1.2K can be cyclically obtained
(within a certain working temperature range) when following the recently proposed
exploiting-hysteresis cycle.

Furthermore, it is particularly important to highlight that this novel multicaloric
cycle only requires the application of magnetic �eld over a small region to induce
the irreversible phase transition, as the inherent hysteresis of the phase transition
locks-in the high-temperature austenitic phase when the magnetic �eld is removed.
Therefore, this recently proposed multicaloric approach drastically reduces the re-
quired amount of permanent magnets (typically made of Nd-Fe-B) when compared
to conventional magnetic refrigerators [43, 44, 228], where the magnetic �eld has to
be applied continuously while the heat-exchange process of the refrigerant material
takes place, as the �eld-induced phase transition is mostly reversible.



174 Results and discussion

5.3.8 Summary and conclusions

Taking advantage of the experience gained during the analysis of the Cu-Zn-Al
calibration sample, we have used our unique DSC that allows the simultaneous ap-
plication of compressive stress and magnetic �eld to study the giant elastocaloric,
magnetocaloric and multicaloric e�ects in a Ni-Mn-In alloy. A previous charac-
terization of the sample was performed with two commercial devices (a DSC and
a vibrating sample magnetometer), reporting a martensitic phase transition that
takes place around room temperature, which is close to the austenitic Curie point.
The proximity between both martensitic and ferromagnetic phase transitions con-
fer this alloy a signi�cant interplay between the structural and magnetic degrees
of freedom. The associated martensitic transition entropy change in the absence of
applied external �elds was determined to be ∆SMt = (−37.3 ± 0.5) JK−1kg−1 and
∆SAt = (37.7 ± 0.5) JK−1kg−1 for the forward and reverse martensitic transitions,
respectively.

The calorimetric measurements performed with our bespoke setup allowed us to
determine both the transition temperature phase diagram and the transition en-
tropy change behaviour within the magnetic �eld and compressive stress coordinate
space under study.

The transition temperature of the forward and reverse martensitic transitions was
identi�ed by the calorimetric peak position of the DSC measurements. For all val-
ues of applied compressive stress, both forward and reverse martensitic transition
temperatures linearly decreased when increasing the applied magnetic �eld with

slopes in the range
dTt
dµ0H

∈ [−2.6,−1.7]KT−1, thus giving rise to an inverse mag-

netocaloric e�ect. Conversely, for all values of applied magnetic �eld, both forward
and reverse martensitic transition temperatures linearly increased when increasing

the applied compressive stress with slopes in the range
dTt
dσ
∈ [0.03, 0.13]KMPa−1,

leading to a conventional elastocaloric e�ect. Interestingly, as anticipated by the
proximity between the martensitic phase transition and the austenitic Curie point,
we found that a secondary applied external �eld has an important e�ect on the
transition temperatures shift rates with either magnetic �eld and uniaxial stress.
Therefore, the sample exhibits a signi�cant cross-coupled response.

The DSC measurements allowed us to determine the transition entropy change of
the martensitic phase transition. Due to the complexity of our bespoke DSC setup,
some of the recorded thermograms exhibit a poor signal-to-baseline ratio. There-
fore, we restricted our analysis to the thermograms recorded for the heating runs un-
der applied magnetic �elds of µ0H ≤ 4T. As for the Cu-Zn-Al calibration sample,
a constant calibration factor had to be introduced to the baseline corrected thermo-
grams in order to properly determine the corresponding transition entropy changes.
For all values of applied compressive stress, the transition entropy change decreases
when increasing the applied magnetic �eld. This behaviour is a consequence of the
increase in the magnetic entropy change contribution when increasing the applied
magnetic �eld, which opposes the vibrational entropy change, associated with the
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phonon modes of the alloy crystal lattice, which is larger than the magnetic contri-
bution in absolute value. Interestingly, we could not observe any systematic depen-
dence of the transition entropy change for applied stresses up to σ = 40MPa and
the corresponding average transition entropy change behaviour (for stresses up to
σ = 40MPa) was parametrized as ∆St(µ0H) = 38(1)− 1.9(5)µ0H (JK−1kg−1).

The quasidirect derivation of the elastocaloric and magnetocaloric e�ects relies
on the computation of the corresponding experimental iso�eld-isostress entropy
curves, which are constructed from the integration of the corrected thermograms
together with the speci�c heat data at the martensitic and austenitic phases. While
it is common to assume that the speci�c heat does not depend on the applied
external �eld, due to the proximity between the martensitic and ferromagnetic
phase transitions for the alloy under study, its speci�c heat will exhibit a certain
dependence on the applied magnetic �eld. On the one hand, the speci�c heat of the
martensitic phase, measured with a bespoke AC calorimeter, was found to increase
linearly with temperature but it was independent of the applied magnetic �eld. On
the other hand, the speci�c heat of the austenitic phase for a Ni-Mn-In alloy with
a similar composition, measured with a commercial relaxation calorimeter (that
allowed us to reach higher temperatures), was found to be constant in temperature
but it linearly increased when increasing the applied magnetic �eld.

The �eld-induced isothermal entropy and adiabatic temperature changes for the
elastocaloric and magnetocaloric e�ects were computed by subtracting the corre-
sponding experimental iso�eld-isostress entropy curves. As expected, the computed
elastocaloric e�ect has been found to be conventional. Interestingly, the magne-
tocaloric thermal response has been found to exhibit a crossover from inverse (at
low temperatures) to conventional (at high temperatures). While the inverse mag-
netocaloric e�ect is associated with the �eld-induced martensitic phase transition,
the arising conventional magnetocaloric e�ect is associated with changes in the
ferromagnetic order of the austenitic phase in the vicinity of its Curie point.

For both caloric e�ects, an increase of the martensitic phase transition driving
�eld (stress for the elastocaloric e�ect and magnetic �eld for the magnetocaloric
e�ect) enlarges the �eld-induced thermal responses for all values of the applied sec-
ondary external �eld. Moreover, application of a secondary external �eld shifts the
temperature window where the giant elastocaloric and magnetocaloric e�ects oc-
cur. The maximum �eld-induced entropy changes are ∆Smax = 24 JK−1kg−1 and
∆Smax = 14 JK−1kg−1 for the magnetocaloric and elastocaloric e�ects, respec-
tively. The fact that these values are smaller than the transition entropy change
of this alloy indicate that we are not able to fully induce the martensitic phase
transition for the studied range of external �elds.

In order to compute the corresponding caloric and multicaloric e�ects for any
combination of magnetic �eld and compressive stress changes, we have de�ned an
analytical function to phenomenologically reproduce the behaviour of the iso�eld-
isostress entropy curves. The numerical treatment of our calorimetric data enabled
us to accurately reproduce the entropy of the alloy over the whole temperature,
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magnetic �eld and uniaxial compressive stress phase space under study. We found a
good agreement between the numerically simulated and the quasidirectly computed
elastocaloric and magnetocaloric �eld-induced thermal responses, con�rming the
robustness of our analytical model in order to phenomenologically reproduce the
experimentally computed entropy curves.

Furthermore, with the aim of providing reliability to both the quasidirect and
the numerically simulated thermal responses, we have used a bespoke setup to di-
rectly measure the magnetocaloric adiabatic temperature change induced under
the application of a cyclic magnetic �eld and di�erent applied constant stresses.
Signi�cantly, the comparison between the directly measured and the numerically
simulated data con�rmed the temperature region where the inverse magnetocaloric
e�ect takes place, including the crossover temperature from an inverse to a con-
ventional magnetocaloric e�ect. Moreover, it also con�rmed the temperature shift
of the magnetocaloric e�ect with the application of uniaxial stress. Nevertheless,
both data series exhibit a signi�cant di�erence at the conventional magnetocaloric
e�ect temperature region, which is ascribed to the fact that our method based
on iso�eld-isostress calorimetric measurements is less suited to study the arising
caloric e�ects around continuous phase transitions. Even so, it is important to em-
phasize that both data series compare well at the temperature region where the
�eld-induced caloric e�ect arises from the �rst-order martensitic phase transition,
and around this temperature range both quasidirect and numeric methods provide
accurate values for the �eld-induced caloric and multicaloric thermal responses.

Concerning the numerically simulated multicaloric e�ect, our results show that
a suitable combination of magnetic �eld and stress give rise to isothermal entropy
and adiabatic temperature changes larger than those achievable when only a sin-
gle external �eld is swept. Speci�cally, the maximum isothermal entropy changes
that can be obtained are ∆Smax = 25.2 JK−1kg−1 at T = 296K and ∆Smax =
24.9 JK−1kg−1 at T = 297K. Furthermore, the combination of two external �elds
enlarges the temperature window where the alloy exhibits a giant �eld-induced
thermal response.

When considering the relevance of multicaloric e�ects to future technological
applications, it is particularly important to highlight that the application of a
moderate magnetic �eld of µ0H = 1T, which is readily accessible by permanent
magnets, together with a stress removal of σ = 40MPa yields an isothermal entropy
change of ∆Smax = 13.9 JK−1kg−1 at T = 298K and ∆Smax = 15.1 JK−1kg−1 at
T = 299K, which are more than double the maximum single caloric isothermal
entropy changes achievable by the same moderate external �elds. Similar trends
are observed when considering the �eld-induced adiabatic temperature changes of
both single caloric and multicaloric e�ects.

The reversibility of the �eld-induced thermal response is of utmost importance
when considering the applicability of multicaloric materials for diverse technological
applications. In this regard, two di�erent approaches have been discussed for the
alloy under study.
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On the one hand, taking advantage of the magnetostructural character of the
martensitic phase transition, it has been shown that its sensitivity to a secondary
�eld enables tuning the inherent hysteresis of the martensitic phase transition.
In particular, an enhancement of the reversibility of the �eld-induced thermal re-
sponse, together with a decrease of the needed external �elds for such purposes, can
be achieved by a suitable combination of magnetic �eld and uniaxial compressive
stress.

On the other hand, the Ni-Mn-In alloy under study has been used to test the
feasibility of a novel multicaloric cycle, proposed by T. Gottschall et. al. in [64], that
instead of trying to minimize the inherent hysteresis of �rst-order phase transitions,
takes advantage of it to lock-in the sample at a certain phase and prevent the
back transformation when removing the phase transition driving �eld. As a proof
of concept, we have performed direct measurements of the adiabatic temperature
change with a bespoke setup when the sample is subjected to alternate pulses
of magnetic �eld and compressive stress. The results showed that the exploiting-
hysteresis cycle provides an adiabatic temperature change of |∆T | ≈ 1.2K that can
be cyclically obtained around T = 296K, which clearly outperforms the reversible
adiabatic temperature change measured under a cyclic magnetic �eld for the same
sample.
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5.4 Ni-Mn-Ga-Cu

So far, experimental studies on multicaloric materials subjected to the combined
e�ect of magnetic �eld and uniaxial stress have only been conducted on alloys ex-
hibiting an inverse magnetocaloric e�ect and a conventional mechanocaloric e�ect,
such as Fe-Rh [65] or several Ni-Mn-based Heusler alloys [61, 62, 66]. In the latter
case, as discussed in section 5.3.4.2, the magnetic entropy contribution competes
against the vibrational one, which plays a dominant role on driving the phase tran-
sition between the low-temperature low-magnetization martensitic phase and the
high-temperature ferromagnetic austenitic phase. 9 Furthermore, due to the di�er-
ent nature of both caloric e�ects, these materials require an asymmetric external
�eld change 10 in order to �eld-induce the �rst-order phase transition via the si-
multaneous or sequential change of both magnetic �eld and uniaxial compressive
stress. Therefore, as discussed in section 2.1.2, their multicaloric thermal response
corresponds to the simple sum of both single caloric e�ects in the absence of a
secondary �eld.

In light of these facts, multicaloric materials exhibiting a �rst-order magne-
tostructural phase transition between a high-temperature low-magnetization phase
and a low-temperature ferromagnetic phase, where both magnetocaloric and mecha-
nocaloric e�ects are conventional, can present signi�cant advantages. On the one
hand, their vibrational and magnetic contributions to the transition entropy change
will not compete against each other as they will have the same sign. On the other
hand, as both caloric e�ects will have the same nature, the �rst order phase transi-
tion can be �eld-induced via a symmetric external �eld change 11 of both magnetic
�eld and uniaxial compressive stress. Therefore, as discussed in section 2.1.2, their
multicaloric thermal response will not correspond to the simple sum of both single
caloric e�ects in the absence of a secondary �eld, as the cross-coupled response of
the system will play a role. These multicaloric materials, which will exhibit syner-
gic single caloric e�ects, are very appealing for technological applications based on
multicaloric e�ects.

Speci�cally, we have selected a Ni-Mn-Ga-Cu alloy as a prototype material. The
substitution of Mn by Cu in Ni2MnGa Heusler alloy shifts the martensitic phase
transition to higher temperatures while decreasing the austenitic Curie tempera-
ture, and both transitions join at a triple point close to 6 at% of Cu [229]. There-
fore, the proximity between both phase transitions increases when increasing the
Cu content, which anticipates a pronounced coupling between the structural and
magnetic degrees of freedom. Speci�cally, a martensitic phase transition between

9Conversely, the magnetostructural phase transition of Fe-Rh is driven by electronic and mag-
netic entropy contributions, while the vibrational competes against them. Furthermore, it must
be mentioned that there is still some controversy on whether the electronic or magnetic entropy
contribution is the dominant one [132].

10As discussed in section 2.1.2, it refers to the particular case where one external �eld is applied
while the other one is removed.

11As discussed in section 2.1.2, it refers to the particular case where both external �elds are
either applied or removed.
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a high-temperature paramagnetic phase to a low-temperature ferromagnetic phase
will take place for Cu concentrations above 6 at%.

Taking advantage of the experience gained from the analysis of both the Cu-Zn-Al
calibration sample, presented in section 3.3, and the metamagnetic Ni-Mn-In shape-
memory alloy, presented in section 5.3, we have used the same purpose-built DSC
setup described in section 3.1.4 to study the caloric and multicaloric response in
terms of the isothermal entropy and adiabatic temperature changes of a prototype
Ni-Mn-Ga-Cu magnetic shape-memory alloy when subjected to the combined e�ect
of magnetic �eld and uniaxial compressive stress. The present work on this alloy is
aimed at thoroughly characterizing the advantages of the multicaloric e�ect with
respect to the single caloric (magnetocaloric and elastocaloric) e�ects in alloys
exhibiting synergic single caloric e�ects.

5.4.1 Sample details

The experiments were performed on a sample with nominal composition
Ni50Mn18.5Ga25Cu6.5 prepared by arc melting, and further treated using the suction-
casting option of the arc melter. This sample was fabricated at the Ningbo Institute
of Materials Technology and Engineering, Ningbo (China), and details of the sam-
ple preparation and heat treatment are given in [229].

A sample, shaped as a rod, with 3.2mm diameter and 6.7mm length that had a
mass of 419.06mg was cut from the ingot prepared by arc melting. A small piece
was cut from the sample (19.74mg) to perform a previous characterization with a
commercial DSC in the absence of any applied external �eld. The remaining part
of the sample, with 3.2mm diameter and 6.1mm length (380.23mg), was polished
and used to perform the di�erential scanning calorimetry measurements under the
in�uence of magnetic �eld and uniaxial stress. Speci�c heat measurements were
performed on a smaller piece cut from the initial ingot.

5.4.2 Experimental details

1. A previous calorimetric characterization of the �rst-order martensitic phase
transition in the absence of any applied external �eld was performed by
means of a DSC Q2000 setup from TA Instruments®, at a scanning rate
of ±5Kmin−1.

2. Simultaneous dilatometric and DSC measurements have been performed with
the bespoke DSC setup described in section 3.1.4 at typical temperature scan-
ning rates of ±0.5Kmin−1 within a temperature range T ∈ [280, 340]K under
constant values of uniaxial compressive stress {σi} = {0, 5, 10, 20, 30}MPa
and magnetic �eld {µ0Hj} = {0, 1, 2, 3, 4, 5, 6}T.

The applied compressive stresses required the application of forces {Fi} =
{0, 40, 80, 160, 240}N to the sample. Therefore, as discussed in detail for
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Cu-Zn-Al in section 3.3, as Fi < 400N it is not necessary to introduce a
stress sensitivity factor to correct the DSC thermograms and compute the
corresponding transition entropy changes, as any possible deviation on the
calorimetric signal from the e�ect of the applied stress on the bespoke setup
would fall within the experimental error.

3. Speci�c heat measurements of the martensitic and austenitic phases were per-
formed using two di�erent systems. On the one hand, a bespoke Peltier cell
calorimeter [230, 231] was used to perform measurements within a tempera-
ture range T ∈ [50, 350]K under constant applied magnetic �elds {µ0Hj} =
{0, 1, 2 3}T. On the other hand, a commercial relaxation calorimeter imple-
mented in a PPMS from Quantum Design® was used to measure the speci�c
heat within a temperature range T ∈ [330, 400]K under constant applied
magnetic �elds {µ0Hj} = {0, 1, 2, 3, 4, 5, 6}T.

5.4.3 Calorimetric characterization of the martensitic phase

transition in the absence of external �elds

Before characterizing the �rst-order martensitic phase transition of Ni-Mn-Ga-
Cu with our bespoke DSC setup under the in�uence of uniaxial compressive stress
and magnetic �eld, it is useful to perform a previous measurement in the absence
of any applied external �eld with a commercial DSC. The corresponding recorded
thermograms for heating and cooling runs are illustrated in Figure 5.34.

The latent heat associated with the martensitic phase transition gives rise to an
exothermal (negative) peak when inducing the forward transition (cooling), and to
an endothermal (positive) peak when inducing the reverse transition (heating).

Figure 5.34: Calorimetric signal as a function of temperature recorded upon
heating (upper curve) and cooling (lower curve), measured at a scanning rate of
±5Kmin−1 with a DSC Q2000 from TA Instruments®
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The base line signal of both thermograms can be accurately approximated by
a straight line, �tted before and after the temperature range where the calori-
metric peak spreads [Ts, Tf ]. This straight line de�nes the baseline for the com-
plete thermogram, and after performing the corresponding baseline correction as
discussed in section 3.1.1, the transition entropy changes for the forward and re-
verse martensitic transitions are found to be ∆SMt = (−27.9 ± 0.5) JK−1kg−1 and
∆SAt = (27.2 ± 0.5) JK−1kg−1, respectively, which are in agreement with previ-
ously reported values for composition-related Ni-Mn-Ga-Cu shape-memory alloys
[229, 232]. Interestingly, the forward phase transition displays two clearly distinct
contributions to its calorimetric signal, centred at di�erent temperatures, and the
whole phase transition spreads over a signi�cantly broader temperature range than
that of the reverse phase transition. Nevertheless, the transition temperature can
still be de�ned by the main calorimetric peak position of each thermogram, which
are found to be TMt = 298K and TAt = 305K respectively, de�ning a thermal
hysteresis of TMt − TAt = 7K in the absence of external �elds.

5.4.4 Calorimetry under constant magnetic �eld and

uniaxial stress

The raw DSC thermograms measured with our bespoke setup at selected constant
values of applied uniaxial compressive stress and magnetic �eld are shown in Figure
5.35. Panels (a), (c), (e), (g) and (i) illustrate the recorded thermograms for the
heating runs, whereas panels (b), (d), (f), (h) and (j) illustrate those corresponding
to the cooling runs. The �rst-order martensitic phase transition gives rise to an
exothermal calorimetric peak on cooling and to an endothermal calorimetric peak
on heating.

Under a certain constant uniaxial compressive stress, an increase of the applied
magnetic �eld shifts the calorimetric peaks to higher temperatures, which corre-
sponds to a stabilization of the martensitic phase. In the same way, under a certain
constant magnetic �eld, an increase of the applied compressive stress also shifts the
calorimetric peaks to higher temperatures, indicating that the martensitic phase is
also stabilized by magnetic �eld.

Consequently, as discussed in detail in section 2.2.2, as the application of mag-
netic �eld and stress stabilizes the low-temperature martensitic phase (shifting the
transition temperature to higher values), the material under study will exhibit
conventional magnetocaloric and elastocaloric e�ects.

Furthermore, it is interesting to compare the DSC measurements with the spec-
imen's strain, which is computed from the dilatometric measurements as:

ε(T, µ0H,σ) =
l(T, µ0H,σ)− lref

lref
(5.27)

where l(T, µ0H,σ) is the length of the sample parallel to the direction of the applied
force, and lref is the sample length measured at a reference temperature (Tref ).



5.4 Ni-Mn-Ga-Cu 183

Figure 5.35: Calorimetric signal as a function of temperature at selected values
of uniaxial compressive stress and magnetic �eld. Panels (a), (c), (e), (g) and (i)
correspond to heating runs and panels (b), (d), (f), (h) and (j) to cooling runs,
respectively. Vertical black lines indicate the position of the calorimetric peaks.
A vertical shift has been applied to selected curves for the sake of clarity.

For the cooling runs, lref is taken as the sample length at the high-temperature
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Figure 5.36: Strain as a function of temperature at selected values of uniaxial
compressive stress in the absence of magnetic �eld (left) and under an applied
magnetic �eld of µ0H = 1T (right) for both heating ((a) and (c)) and cooling
((b) and (d)) runs.

austenitic phase. As the material under study is paramagnetic at the austenitic
phase, and the applied compressive stresses are small, it is assumed that the sample
length at the austenitic phase shows a negligible dependence on the applied external
�elds. Therefore, it is taken as lref = lA = 6.22mm for all cooling runs, which
corresponds to the sample length measured in the absence of external �elds.

Conversely, for heating runs, lref is taken as the sample length at the low-
temperature martensitic phase. As the application of external �elds can increase the
percentage of favourably oriented martensite variants [223], the sample length at the
martensitic phase can depend on the speci�c combination of applied external �elds.
Therefore, lref for each heating run is computed from the corresponding transition
strain associated with the forward martensitic phase transition under each speci�c
combination of applied external �elds as: lref (T, µ0H,σ) = (1−∆εt(µ0H,σ))lA.

As previously discussed for Cu-Zn-Al in section 3.3, the dilatometric measure-
ments performed with our bespoke setup will not be analysed in detail. Therefore,
for the sake of simplicity, Figure 5.36 only illustrates selected examples of the com-
puted strain for the heating ((a) and (c)) and cooling ((b) and (d)) runs at selected
values of stress and magnetic �eld.
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The �rst-order phase transition is seen as a sharp change in strain, which spreads
over a broader temperature range when inducing the forward phase transition than
the reverse phase transition. In this regard, it is worth noticing the good correla-
tion of the transition temperature region between both sets of measurements (DSC
and dilatometric) for both heating and cooling runs, which indicates that both
phenomena arise from the �rst-order magnetostructural phase transition. Further-
more, the sharp change in strain increases when increasing the applied uniaxial
stress as a result of the increase of the percentage of favourably oriented marten-
sitic variants [223]. Nevertheless, the measured transition strains under an applied
compressive stress of σ = 30MPa are systematically lower than the strains mea-
sured under σ = 20MPa. In this regard, it must be mentioned that the specimen
under study exhibited visible cracks after completing the measurement series under
an applied compressive stress of σ = 30MPa. Therefore, it is reasonable to ascribe
this decrease to the sample degradation.

5.4.4.1 Transition temperature phase diagram

The transition temperatures of the forward (TMt ) and reverse (TAt ) martensitic
transitions can be identi�ed with the calorimetric peak position of the heating
and cooling runs, respectively. Figure 5.37 (a) illustrates the phase diagram of the
transition temperatures in the magnetic �eld and compressive stress coordinate
space. The experimental values are plotted as blue and red solid symbols for the
forward and reverse martensitic transitions, respectively, and their behaviour is
parametrized by two non-linear surface �ts with equations:

TMt (µ0H,σ) = 294.4(2) + 1.97(14)µ0H + 0.28(3)σ

− 0.08(2)µ0H
2 + 2.9(0.8) · 10−3σ2 (K) (5.28a)

TAt (µ0H,σ) = 312.7(2) + 1.21(13)µ0H + 0.26(2)σ

− 8(20) · 10−3µ0H
2 + 7(8) · 10−4σ2 (K) (5.28b)

On the one hand, the red surface corresponds to the reverse martensitic transi-
tion, which can be induced by either increasing the temperature or decreasing the
applied external �elds (magnetic �eld and/or stress). On the other hand, the blue
surface corresponds to the forward martensitic transition, which can be induced by
either decreasing the temperature or increasing the applied external �elds. All these
di�erent possibilities to induce both forward and reverse transitions are indicated
by black arrows in the �gure.

It is important to highlight that the martensitic phase transition spreads over a
certain temperature range. Therefore, each forward and reverse transition surfaces
have a certain thickness, which has been omitted from the �gure for the sake of clar-
ity. Thus, well above the red surface the sample will completely be in the austenitic
phase, whereas well below the blue surface the sample will be in the martensitic
phase. Furthermore, the temperature region between both surfaces accounts for the
hysteresis of the martensitic phase transition, which slightly decreases when
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Figure 5.37: (a) Transition temperature as a function of magnetic �eld and
uniaxial stress. Solid symbols correspond to the transition temperatures obtained
from the calorimetric peaks, and surfaces to the best �ts to these values. Upper
red surface corresponds to the reverse (TA) martensitic transition, whereas the
lower blue surface to the forward (TM ) martensitic transition. The arrows in
each surface indicate the changes in temperature, magnetic �eld and uniaxial
stress to cross each surface and induce the forward or reverse martensitic phase
transition, respectively. (b) Transition temperatures as a function of magnetic
�eld at constant uniaxial stress, and as a function of stress at constant magnetic
�elds (c). For both panels, solid symbols stand for the reverse transition and open
symbols stand for the forward transition. (d) Stress dependence of the slope of
the �tted transition temperature as a function of magnetic �eld. (e) Magnetic
�eld dependence of the slope of the �tted transition temperature as a function
of stress. Lines are linear �ts to the data.
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increasing the applied external �elds. Within this temperature range, the sample's
thermodynamic state will depend on its thermal history.

From the tree dimensional representation of the transition temperature phase
diagram as a function of magnetic �eld and stress, the corresponding projections
on the T−µ0H and T−σ planes are shown in Figures 5.37 (b) and (c), respectively.

For all values of applied stress, both forward and reverse martensitic transition
temperatures linearly increase when increasing the applied magnetic �eld, with

slopes in the range
dTt
dµ0H

∈ [0.9, 1.6]KT−1 that compare well with previously

reported values for Ni-Mn-Ga-Cu magnetic shape-memory alloys with similar com-
positions in the absence of applied stress [229, 233]. Likewise, for all values of
applied magnetic �eld, both forward and reverse martensitic transition tempera-
tures linearly increase when increasing the applied stress, with slopes in the range
dTt
dσ
∈ [0.27, 0.38]KMPa−1. In this case, the slope determined in the absence of

magnetic �eld is larger but comparable to the values reported for Ni-Mn-Ga-Cu
magnetic shape-memory alloys with similar compositions [233].

Interestingly, as illustrated in Figure 5.37 (d) and (e), no e�ect of the secondary
�eld has been found on the slopes determined from the linear �ts to the forward
and reverse martensitic transition temperatures as a function of magnetic �eld(

dTt
dµ0H

)
and compressive stress

(
dTt
dσ

)
.

5.4.4.2 Computation of the transition entropy change

Due to the complexity of our bespoke DSC setup, the recorded thermograms
illustrated in Figure 5.35 (a)-(j) under the simultaneous application of magnetic
�eld and stress exhibit a poorer baseline when compared to the recorded thermo-
grams with a commercial DSC. In particular, the measurements performed under
an applied compressive stress of σ = 30MPa (illustrated in Figure 5.35 (i) and
(j)) exhibit a poorer signal-to-baseline ratio, particularly signi�cant for the cooling
runs, and a proper analysis of these curves is not possible.

As a consequence, and taking into account that the sample exhibited a visible
degradation after completing this measurement series, we decided to restrict the
analysis in the following sections on the thermograms recorded for heating and
cooling runs under applied compressive stresses up to σ = 20MPa.

As discussed in section 3.1.1, the measured thermograms at selected values of ap-
plied magnetic �eld and uniaxial compressive stress have to be properly corrected
in order to compute the transition entropy change associated with the �rst-order
martensitic phase transition. The baseline subtraction is performed following the
same procedure as for the previously studied Ni-Mn-In magnetic shape-memory
alloy (see section 5.3.4.2), and the corresponding corrected thermograms are illus-
trated in Figure 5.38 for both heating (top panels) and cooling (bottom panels)



188 Results and discussion

Figure 5.38: Calorimetric curves after baseline subtraction as a function of tem-
perature recorded upon heating (panels (a)-(d)) and cooling (panels (e)-(h)) at
selected values of magnetic �eld {µ0Hj} = {0, 1, 2, 3, 4, 5, 6}T under di�erent
constant uniaxial compressive stresses, indicated by the labels in each panel.

runs. It is important to highlight that the application of magnetic �eld or uniaxial
compressive stress has a clear in�uence on the shape of the calorimetric peak of
the corrected thermograms.

When either increasing the applied magnetic �eld or the compressive stress while
keeping the secondary �eld constant, the calorimetric peaks tend to decrease. This
e�ect is particularly signi�cant for the cooling runs when increasing the applied
compressive stress. Furthermore, the calorimetric peaks also tend to be broader
and spread over a wider temperature range. Interestingly, a similar broadening
e�ect was also observed for the baseline corrected thermograms of the previously
studied Ni-Mn-In alloy (see Figure 5.17) when increasing the applied magnetic �eld.

The corresponding transition entropy changes (∆St(µ0H,σ)) are computed us-
ing equation 5.7. As discussed in detail for Cu-Zn-Al along section 3.3, a constant
calibration factor has to be introduced in order to analyse the thermograms mea-
sured with our bespoke setup. For the sample under study, the constant calibration
factors for the forward (M) and reverse (A) martensitic transitions are de�ned as:

γA,M =
∆SA,Mt (0T, 0MPa)

∆St(0T, 0MPa)
(5.29)

where ∆SA,Mt (0T, 0MPa) corresponds to the transition entropy change for the for-
ward (M) and reverse (A) martensitic transition computed from the thermograms
measured with the commercial DSC, and ∆St(0T, 0MPa) corresponds to the tran-
sition entropy change computed from the corrected thermograms measured in the
absence of any applied external �eld represented in Figure 5.38 (a) and (e) upon
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heating and cooling, respectively. The corresponding transition entropy changes
are computed as ∆Scalt (µ0H,σ) = γA,M∆St(µ0H,σ), and they are illustrated in
Figure 5.39 as a function of magnetic �eld under constant stress (panels (a) and
(b)) and as a function of stress under constant magnetic �eld (panels (c) and (d))
for both heating and cooling runs, respectively. As for Cu-Zn-Al, di�erent smooth-
ing processes (see Appendix A) are applied to analyse each thermogram, leading
to small di�erences in the determination of the baseline. These di�erences provide
a good estimation of the error in determining the transition entropy change, which
are found to be of ±1−2 JK−1kg−1 for the studied sample.

For all values of applied stress, both forward and reverse transition entropy
changes linearly decrease when increasing the applied magnetic �eld, with slopes in

the range
d∆St
dµ0H

∈ [−1.1,−0.7] JK−1kg−1T−1. Interestingly, the transition entropy

change linearly decreases when increasing the applied stress with slopes in the range
d∆St
dσ

∈ [−0.5,−0.2] JK−1kg−1MPa−1 for all values of applied magnetic �eld. In
this regard, it must be highlighted that the highest applied stress is σ = 20MPa,
which corresponds to a compressive force of F = 160N. Taking into account that
for the previously studied Ni-Mn-In alloy, as discussed in section 5.3.4.2, we could
not observe any systematic dependence of the transition entropy change with ap-
plied stress when applying compressive forces up to F = 273N, we consider that
the behaviour observed for the Ni-Mn-Ga-Cu alloy corresponds to a real e�ect of
the sample.

Furthermore, as illustrated in Figure 5.39 (e) and (f), no systematic e�ect of the
secondary �eld has been found of the slopes determined from the linear �ts to the
forward and reverse transition entropy changes as a function of magnetic �eld and
stress.

Figure 5.39 (g) illustrates the behaviour of the transition entropy change within
the complete magnetic �eld and compressive stress coordinate space under study.
The experimental values are plotted as blue and red solid symbols for the forward
and reverse martensitic transitions, respectively, and their behaviour is parametrized
by two planes with equations:

∆SMt (µ0H,σ) = 27.9(5)− 0.8(3)µ0H − 0.35(2)σ (JK−1kg−1) (5.30a)

∆SAt (µ0H,σ) = 27.2(5)− 0.8(3)µ0H − 0.31(2)σ (JK−1kg−1) (5.30b)

Firstly, let us focus on the origin of the transition entropy change decrease when
increasing the applied magnetic �eld. Even though this behaviour is not straight-
forward to understand, some insight into this issue can be gained when considering
the di�erent contributions to the transition entropy change.

As discussed in section 5.3.4.2, the transition entropy change associated with the
magnetostructural phase transition in Ni-Mn-based Heusler alloys can be mainly
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Figure 5.39: Averaged transition entropy change as a function of magnetic
�eld at constant uniaxial stress computed for both heating (a) and cooling (b)
runs. Averaged transition entropy change as a function of stress at constant
magnetic �elds computed for both heating (c) and cooling (d) runs. Solid and
dashed lines correspond to linear �ts to heating and cooling data, respectively.
(e) Stress dependence of the slope of the �tted transition entropy change as a
function of magnetic �eld. (f) Magnetic �eld dependence of the slope of the �tted
transition entropy change as a function of stress. (g) Transition entropy change
as a function of magnetic �eld and uniaxial stress. Solid symbols correspond to
the averaged transition entropy changes from di�erent background subtractions
of each thermogram, and planes to the best �ts to these values. Red symbols
and plane correspond to the reverse martensitic phase transition (∆SAt ) whereas
blue symbols and plane to the forward martensitic phase transition (∆SMt ).

attributed to the lattice entropy change (∆Slat), associated with changes on the lat-
tice vibrations (phonons) of the alloy, and to the magnetic entropy change (∆Smag),
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associated with changes on the magnetic ordering, as the electronic contribution is
negligibly small [225].

On the one hand, as for the previously studied Ni-Mn-In alloy, the phonon modes
in the transverse TA2 branch provide the major contribution to the vibrational
entropy change, as they have signi�cantly lower energies than phonons in other
branches and are more likely to be excited [107].

On the other hand, when considering the magnetic entropy contribution, it is im-
portant to take into account that the studied Ni-Mn-Ga-Cu Heusler alloy exhibits
a conventional magnetocaloric e�ect. Therefore, in contrast to the previously stud-
ied Ni-Mn-In alloy, the martensite phase is more magnetically ordered than the
austenite phase. 12 Therefore, the austenite phase will have a larger magnetic
entropy contribution than the martensite phase (SAmag > SMmag). Consequently,
the vibrational and magnetic entropy contributions will have the same sign and
they synergically contribute to the transition entropy change. Under these circum-
stances, the transition entropy change expressed in equation 5.10 can be rewritten
as:

∆St(µ0H) = ∆Slat + ∆Smag(µ0H) (5.31)

Under the application of an external magnetic �eld, the magnetization change
across the martensitic phase transition slightly increases, and the magnetic entropy
contribution should be enhanced as well. However, the analysis of our thermograms
indicates a transition entropy change decrease when increasing the applied magnetic
�eld.

This apparent contradicting behaviour may point to a certain interplay between
vibrational entropy contribution and the applied magnetic �eld (∆Slat(µ0H)), in
such a way that it decreases when increasing the magnetic �eld.

While it is usually assumed that the vibrational entropy contribution does not
signi�cantly depend on the magnetic �eld [220], it may not hold true for Ni-Mn-Ga
alloys. In fact, the vibrational entropy change is expected to be di�erent in Ni-Mn-
Ga Heusler alloys with respect to that of Ni-Mn-In or Ni-Mn-Sn. This is suggested
when comparing the transition entropy change of all these Ni-Mn-based Heusler
alloys for compositions where the martensitic phase transition takes place above
the austenitic Curie temperature, where the alloy is paramagnetic and the magnetic
entropy contribution does not play a role in the transition entropy change in the
absence of magnetic �eld. Under these conditions, the transition entropy change of
Ni-Mn-Ga alloys is in the order of ∆St ∼ 20− 30 JK−1kg−1 [182, 233], whereas for
Ni-Mn-In and Ni-Mn-Sn it is around ∆St ∼ 40− 50 JK−1kg−1 [220, 221].

Furthermore, for the particular case of Ni-Mn-Ga alloys, the energy of the phonons
lying on the TA2 branch exhibit an enhanced softening at the Curie temperature,

12The thermomagnetization curves at selected values of applied magnetic �eld for the Ni-Mn-
Ga-Cu alloy under study can be found in [229].
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where the sample orders ferromagnetically [182], indicating a signi�cant coupling
between the magnetic and structural degrees of freedom.

Secondly, with respect to the origin of the transition entropy change decrease
when increasing the applied stress, it must be taken into account that the marten-
sitic structure of the sample can be in�uenced by the applied stress. As discussed in
section 4.2.1, the application of stress breaks the energetic equivalence between the
di�erent martensite variants, favouring the growth of some of them. In this regard,
a previous study on a Cu-Zn-Al shape-memory alloy has reported a lower transition
entropy change when inducing a single variant martensite structure with respect to
the transition entropy change measured when inducing a multivariant martensite
[30]. Consequently, the behaviour observed for the sample under study may point
to a rearrangement of the martensite variants when inducing the martensitic phase
transition under a certain applied stress.

Overall, despite the experimental observation of the transition entropy change
decrease when increasing either the applied magnetic �eld or the compressive stress,
further studies are required in order to clarify this issue and gain some light onto
this aspect.

5.4.4.3 Construction of the iso�eld-isostress entropy curves

As discussed in section 3.1.1.2, the corresponding iso�eld-isostress entropy curves
(S(T, µ0H,σ)) can be constructed from the integration of the corrected thermo-
grams, which provide both the transformed fraction curves (χ(T, µ0H,σ)) and the
corresponding transition entropy changes (∆St(µ0H,σ)), and from speci�c heat
data of both martensitic (CM ) and austenitic (CA) phases [38].

In these computations, as previously considered for Cu-Zn-Al in section 3.3.4,
it is common to assume that the speci�c heat does not depend on the applied
external �elds. However, as previously discussed for Ni-Mn-In (see section 5.3.4.3),
this assumption does not apply for alloys exhibiting a strong coupling between
the structural and magnetic degrees of freedom. While the assumption that the
speci�c heat is independent of stress is still a good approximation, the phonons
of the sample under study are sensitive to the applied magnetic �eld. Therefore,
we have measured the temperature dependence of the martensitic and austenitic
speci�c heats at selected values of applied magnetic �elds.

Figure 5.40 (a) illustrates the speci�c heat measurements at selected values of
magnetic �eld performed with a bespoke Peltier cell calorimeter. Within the tran-
sition region, the latent heat associated with the �rst-order martensitic phase tran-
sition gives rise to an apparent peak in the speci�c heat. Under the application
of magnetic �eld, this peak sharpens and shifts to higher temperatures at an ap-

proximate rate of
dTt
dµ0H

∼ 1.4KT−1, which is in excellent agreement with the

shift observed from the DSC measurements performed with our bespoke setup (see
Figures 5.35 and 5.37).
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Figure 5.40: (a) Temperature dependence of C/T under applied magnetic �elds
{µ0Hj} = {0, 1, 2, 3}T, measured with a bespoke Peltier cell calorimeter [230,
231]. Insets: (i) Enlarged view of C/T below the �rst-order martensitic phase
transition. (ii) Average transition entropy change as a function of magnetic �eld
computed from the C/T measurements. (b) Temperature dependence of C/T un-
der applied magnetic �elds {µ0Hj} = {0, 1, 2, 3, 4, 5, 6}T above the �rst-order
martensitic phase transition, measured using a commercial relaxation calorime-
ter (PPMS from Quantum Design®). (c) Slope of the linear �ts on the C/T
curves at the martensitic (black) and austenitic (red) phases as a function mag-
netic �eld. (d) Intercept of the linear �ts on the C/T curves at the martensitic
(black) and austenitic (red) phases as a function magnetic �eld. Dashed lines in
the di�erent panels and inserts are linear �ts to the data.

At temperatures below the martensitic transition, the speci�c heat of the fer-
romagnetic martensite phase (CM ) shows a dependence on both the temperature
and the applied magnetic �eld. As illustrated in the insert (i) of Figure 5.40 (a),
for each applied magnetic �eld, its temperature dependence can be parametrized
with a linear regression expressed as:

CM (T, µ0H)

T
= mM (µ0H)T + bM (µ0H) (JK−2kg−1) (5.32)

where the slope (mM (µ0H)) and the intercept (bM (µ0H)) depend on the applied
magnetic �eld.

Furthermore, as for the previously studied Ni-Mn-In alloy, the transition en-
tropy change can be computed from the speci�c heat measurements after a proper
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baseline correction, as expressed by equation 5.14. For the diverse iso�eld measure-
ments illustrated in Figure 5.40 (a), the baselines can be accurately approximated
as a straight line, �tted above and below the apparent peak of the speci�c heat.
The corresponding transition entropy changes for the reverse martensitic transition
(∆SAt ) are illustrated in the insert (ii) of Figure 5.40 (a) as a function of the applied
magnetic �eld.

In the absence of magnetic �eld, the transition entropy change is found to be
∆SAt (µ0H = 0T) = (23.8 ± 0.5) JK−1kg−1, which is slightly smaller that the
transition entropy change determined with the commercial DSC in the absence
of applied external �elds (see section 5.4.3). The di�erence between both values
may arise from small composition di�erences within the initial Ni-Mn-Ga-Cu in-
got from which both samples were cut. Nevertheless, it is particularly important
to highlight that the transition entropy change computed from the speci�c heat
measurements linearly decreases when increasing the applied magnetic �eld with a

slope of
d∆SAt
dµ0H

= (−0.5 ± 0.1) JK−1kg−1T−1, which is consistent with the decrease

computed from our calorimetric measurements discussed in section 5.4.4.2.

In order to accurately determine the temperature and magnetic �eld dependence
of the speci�c heat of the paramagnetic austenite (CA), we have used a commer-
cial relaxation calorimeter that allows us to perform measurements under di�erent
applied magnetic �elds up to higher temperatures.

The corresponding results are illustrated in Figure 5.40 (b). As for the marten-
sitic phase, the speci�c heat of the paramagnetic austenite depends on both the
temperature and the applied magnetic �eld. For each applied magnetic �eld its
temperature dependence can be parametrized with a linear regression expressed
as:

CA(T, µ0H)

T
= mA(µ0H)T + bA(µ0H) (JK−2kg−1) (5.33)

where the slope (mA(µ0H)) and the intercept (bA(µ0H)) depend on the applied
magnetic �eld.

The magnetic �eld dependence of the slopes and intercepts of the linear regres-
sions for both the ferromagnetic martensite and paramagnetic austenite speci�c
heats are illustrated in panels (c) and (d) of Figure 5.40, respectively. On the one
hand, for both austenite and martensite phases, an increase on the applied mag-
netic �eld linearly increases the absolute value of the speci�c heat slope. Their
behaviour can be respectively parametrized as:

mM (µ0H) = −8(1) · 10−5µ0H − 3.86(2) · 10−3 (JK−3kg−1) (5.34a)

mA(µ0H) = −2.8(8) · 10−5µ0H − 3.00(3) · 10−3 (JK−3kg−1) (5.34b)

On the other hand, for both austenite and martensite phases, an increase on the
applied magnetic �eld linearly increases the intercept of the speci�c heat, and their
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behaviour can be parametrized as:

bM (µ0H) = 8(3) · 10−3µ0H + 2.535(5) (JK−2kg−1) (5.35a)

bA(µ0H) = 12(3) · 10−3µ0H + 2.27(1) (JK−2kg−1) (5.35b)

Therefore, as for the previously studied Ni-Mn-In alloy, from the parametrized
dependencies of the transition entropy change for both forward and reverse marten-
sitic transitions (see equation 5.30), and the martensitic and austenitic speci�c
heats (see equations (5.32) to (5.35)), together with the transformed fraction curves
obtained from the base-line corrected thermograms for both forward and reverse
transitions (see Figure 5.38), we can compute the iso�eld-isostress entropy curves
(S(T, µ0H,σ)) upon heating and cooling.

For the sample under study, we have referenced all the entropy curves at Sref =
S(T = 426K) in the absence of any applied external �eld. This reference tempera-
ture has been selected as it corresponds to the point where the speci�c heat of the
paramagnetic austenite, extrapolated from equation 5.33, is expected to become
independent of the applied magnetic �eld. Even though the reference temperature
has been taken well above the martensitic transition, the iso�eld-isostress entropy
curves can still be generally expressed by equation 5.12, but the speci�c heat of the
sample C(T, µ0H,σ) is expressed as C = χCM + (1− χ)CA, where χ corresponds
to the martensitic transformed fraction (χ = 1 when the sample is completely in
the martensitic phase). Figure 5.41 (a)-(g) displays the computed entropy curves
at selected values of uniaxial stress {σi} = {0, 5, 10, 20}MPa under di�erent con-
stant magnetic �elds, whereas Figure 5.42 (a)-(d) displays the computed entropy
curves at selected values of magnetic �eld {µ0Hj} = {0, 1, 2, 3, 4, 5, 6}T under
di�erent constant compressive stresses.

As illustrated in Figure 5.41 (a)-(g), for each constant magnetic �eld the com-
puted entropy curves shift towards higher temperatures when increasing the applied
stress. Similarly, as illustrated in Figure 5.42 (a)-(d), for each constant compres-
sive stress, the computed entropy curves also shift towards higher temperatures
when increasing the applied magnetic �eld. It is important to notice that at the
low-temperature region, the heating and cooling entropy curves illustrated in both
�gures exhibit a crossover, which re�ects the decrease of the transition entropy
change when increasing either the applied magnetic �eld or the compressive stress,
as illustrated in Figure 5.39 (g).

As previously discussed in section 3.1.1.2, from the set of iso�eld-isostress en-
tropy curves we can compute the corresponding elastocaloric and magnetocaloric
isothermal entropy (∆S) and adiabatic temperature (∆T ) changes. As these en-
tropy curves were computed from the thermograms recorded for both heating and
cooling runs, they correspond to the reverse (from martensite to austenite) and
forward (from austenite to martensite) phase transitions, respectively. Therefore,
in the following section we will be able to compute the �eld-induced elastocaloric
and magnetocaloric thermal responses for both the reverse and forward phase tran-
sitions. In accordance to the transition temperature phase diagram illustrated in
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Figure 5.37 (a), the reverse phase transition corresponds to trajectories from below
to above the red surface, whereas the forward phase transition to trajectories from
above to below the blue surface.

5.4.4.4 Elastocaloric and magnetocaloric e�ects under the in�uence of

a secondary �eld

To compute the elastocaloric (magnetocaloric) thermal response under the in�u-
ence of a constant magnetic �eld (stress), it is important to highlight that the ap-
plication of stress (magnetic �eld) favours the low-temperature martensitic phase,
which is in agreement with the positive transition temperature shift when increas-
ing the applied stress (magnetic �eld) reported in section 5.4.4.1. Accordingly, the
removal of stress (magnetic �eld) favours the high-temperature austenitic phase.

Consequently, the application of stress (magnetic �eld) will promote the forward
phase transition, whereas the removal of stress (magnetic �eld) will promote the
reverse phase transition. Therefore, a thermodynamic process in which stress (mag-
netic �eld) is applied is associated with the entropy curves for the cooling runs,
whereas a thermodynamic process in which stress (magnetic �eld) is removed is
associated with the entropy curves for the heating runs.

On the one hand, for the elastocaloric e�ect, the corresponding isothermal en-
tropy change induced by the application of stress under a certain constant magnetic
�eld is computed from the entropy curves for the cooling runs as:

∆S(T, µ0H, 0→ σ) = S(T, µ0H,σ)− S(T, µ0H, 0) (5.36)

whereas the isothermal entropy change induced by the removal of stress is computed
from the entropy curves for the heating runs as:

∆S(T, µ0H,σ → 0) = S(T, µ0H, 0)− S(T, µ0H,σ) (5.37)

The corresponding results are illustrated in Figure 5.41 (h)-(n) under di�erent ap-
plied magnetic �elds. Conversely, the adiabatic temperature changes are computed
after inverting the corresponding iso�eld-isostress entropy curves (T (S, µ0H,σ)).
Thus, the adiabatic temperature change induced by the application of stress under
a certain constant magnetic �eld is computed from the inverted entropy curves for
the cooling runs as:

∆T (S, µ0H, 0→ σ) = T (S, µ0H,σ)− T (S, µ0H, 0) (5.38)

whereas the adiabatic temperature change induced by the removal of stress is com-
puted from the inverted entropy curves for the heating runs as:

∆T (S, µ0H,σ → 0) = T (S, µ0H, 0)− T (S, µ0H,σ) (5.39)

As for the previously studied Ni-Mn-In alloy (see section 5.3.4.4), the adiabatic
temperature changes are represented as a function of the temperature given by the
initial entropy curve prior to the external �eld change. The corresponding results
are illustrated in Figure 5.41 (o)-(u) under di�erent applied magnetic �elds.
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Figure 5.41: (a)-(g) Entropy curves (referenced to Sref = S(T = 426K) in
the absence of stress and magnetic �eld) as a function of temperature at se-
lected values of uniaxial stress {σi} = {0, 5, 10, 20}MPa under di�erent con-
stant magnetic �elds for heating and cooling runs. Elastocaloric isothermal en-
tropy changes ((h)-(n)), and adiabatic temperature changes ((o)-(u)), corre-
sponding to the removal (top, σ → 0) and application (bottom, 0 → σ) of uni-
axial stress. Each row corresponds to a di�erent constant applied magnetic �eld
{µ0Hj} = {0, 1, 2, 3, 4, 5, 6}T, and the value of the uniaxial stress is indicated
by the colour code.

At this point, it is important to highlight that under certain constant magnetic
�elds, as the transition temperature shift with stress for the reverse phase tran-
sition is small (see Figure 5.37), the temperature shift at low stresses falls within
experimental errors. Therefore, some entropy curves at low stresses are overlapped
or partially transposed, and the corresponding �eld-induced elastocaloric thermal
response at low stress changes shows an opposite behaviour when compared to the
thermal response induced at higher stress changes. These isothermal entropy and
adiabatic temperature change curves showing an opposite behaviour can not be
considered physically meaningful.

On the other hand, for the magnetocaloric e�ect, the corresponding isothermal
entropy change induced by the application of magnetic �eld under a certain con-
stant stress is computed from the entropy curves for the cooling runs as:

∆S(T, 0→ µ0H,σ) = S(T, µ0H,σ)− S(T, 0, σ) (5.40)

whereas the isothermal entropy change induced by the removal of magnetic �led is
computed from the entropy curves for the heating runs as:

∆S(T, µ0H → 0, σ) = S(T, 0, σ)− S(T, µ0H,σ) (5.41)

The corresponding results are illustrated in Figure 5.42 (e)-(h) under di�erent
applied stresses. Conversely, as for the elastocaloric e�ect, the magnetocaloric adi-
abatic temperature change induced by the application of magnetic �eld under a
certain constant stress is computed from the inverted entropy curves for the cool-
ing runs as:

∆T (S, 0→ µ0H,σ) = T (S, µ0H,σ)− T (S, 0, σ) (5.42)
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Figure 5.42: (a)-(d) Entropy curves (referenced to Sref = S(T = 426K) in the
absence of stress and magnetic �eld) as a function of temperature at selected
values of magnetic �eld {µ0Hj} = {0, 1, 2, 3, 4, 5, 6}T under di�erent constant
uniaxial stresses for heating and cooling runs. Magnetocaloric isothermal entropy
changes ((e)-(h)), and adiabatic temperature changes ((i)-(l)), corresponding to
the removal (top, µ0H → 0) and application (bottom, 0 → µ0H) of magnetic
�eld. Each row corresponds to a di�erent constant applied uniaxial stress {σi} =
{0, 5, 10, 20}MPa, and the value of the uniaxial stress is indicated by the colour
code.

whereas the adiabatic temperature change induced by the removal of magnetic �eld
is computed from the inverted entropy curves for the heating runs as:

∆T (S, µ0H → 0, σ) = T (S, 0, σ)− T (S, µ0H,σ) (5.43)

The corresponding results, represented as a function of the temperature given by
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the initial entropy curve prior to the external �eld change, are illustrated in Figure
5.42 (i)-(l) under di�erent applied stresses.

In light of all the results illustrated in Figures 5.41 and 5.42, the computed
elastocaloric and magnetocaloric e�ects have been found to be conventional.

Interestingly, the thermal response computed for both caloric e�ects exhibits a
crossover from inverse (at low temperatures) to conventional (at high tempera-
tures). While the conventional caloric e�ects arise from the �eld-induced marten-
sitic phase transition, the inverse caloric e�ects observed below the martensitic
phase transition are associated with the transition entropy change decrease when
increasing either the applied magnetic �eld or the compressive stress.

Additionally, it is important to notice that for both elastocaloric and magne-
tocaloric thermal responses under the in�uence of a secondary �eld, an increase
in the external �eld change that drives the martensitic phase transition (stress for
the elastocaloric e�ect, represented in Figure 5.41, and magnetic �eld for the mag-
netocaloric e�ect, represented in Figure 5.42) enlarges the temperature window of
the corresponding caloric e�ect.

Furthermore, as for the previously studied Ni-Mn-In alloy, it is particularly in-
teresting to examine the behaviour of the maximum isothermal entropy and the
adiabatic temperature changes as a function of the driving �eld that induces the
martensitic phase transition for both caloric e�ects. Figure 5.43 illustrates the ab-
solute values of the maximum isothermal entropy (|∆Smax|, (a)) and the adiabatic
temperature (|∆Tmax|, (b)) changes for the magnetocaloric e�ect as a function of
the absolute value of the magnetic �eld change (|∆µ0H|) (under di�erent constant
applied stresses), whereas the absolute values of the maximum isothermal entropy
and the adiabatic temperature changes for the elastocaloric e�ect as a function of
the absolute value of the stress change (|∆σ|) (under di�erent constant magnetic
�elds) are shown in panels (c) and (d), respectively.

On the one hand, for the magnetocaloric e�ect, the magnitude of the �eld-induced
isothermal entropy (|∆Smax|) and adiabatic temperature (|∆Tmax|) changes in-
crease when increasing the magnetic �eld change for all applied stresses. While the
increase in |∆Tmax| is found to be linear, |∆Smax| initially increases but it satu-
rates for magnetic �eld changes in the range |µ0∆H| ∼ 3 − 4T, which indicates
that we are able to fully drive the martensitic phase transition. Interestingly, for
higher magnetic �eld changes |∆Smax| slightly decreases, which arises from the
transition entropy change decrease when increasing the applied magnetic �eld (see
Figure 5.39).

In addition, it is particularly important to highlight that under a low magnetic
�eld change of |µ0∆H| = 1T, the current alloy under study exhibits a �eld-induced
isothermal entropy change of |∆Smax| ∼ 15 JK−1kg, which surpasses the values
reported for most of the Heusler alloys under the same magnetic �eld change [234�
236].
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Figure 5.43: Left: Magnetic �eld dependence of the maximum values for the
�eld-driven magnetocaloric isothermal entropy (a) and adiabatic temperature
(b) changes under di�erent constant values of applied stress. Right: Stress de-
pendence of the maximum values for the �eld-driven elastocaloric isothermal
entropy (c) and adiabatic temperature (d) changes under di�erent constant val-
ues of applied magnetic �eld. Solid symbols stand for the experimental values
obtained from the heating entropy curves whereas open symbols stand for the
values obtained from the cooling entropy curves. Lines are guides to the eye for
each data series.

On the other hand, for the elastocaloric e�ect, the �eld-induced isothermal en-
tropy (|∆Smax|) and adiabatic temperature (|∆Tmax|) changes exhibit a larger
scattering but their magnitude also increases for higher stress changes for all ap-
plied magnetic �elds. While the increase in |∆Tmax| is found to be linear, |∆Smax|
shows a tendency to saturate for high stress changes. The fact that a complete
saturation is not reached under all the applied constant magnetic �elds indicates
that we can not fully drive the martensitic phase transition for the considered stress
changes within the complete coordinate space under study. Interestingly, for the
data series that exhibit a complete saturation of the elastocaloric isothermal en-
tropy change, we also observe a slight decrease of the isothermal entropy change
for higher stress changes, which arises from the transition entropy change decrease
when increasing the applied stress (see Figure 5.39).

When considering the e�ect of the secondary constant �eld on the �eld-induced
thermal responses, we have to distinguish between the isothermal entropy and the
adiabatic temperature changes. In the former case, we observe that |∆Smax| de-
creases when increasing the secondary �eld for both caloric e�ects. This behaviour
is in agreement with the transition entropy change decrease when increasing ei-
ther the applied magnetic �eld or the compressive stress. In the latter case, no
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systematic dependence of |∆Tmax| on the secondary �eld can be observed. In this
regard, it is important to take into account that the transition temperature shift

with either the applied magnetic �eld
(

dTt
dµ0H

)
or the compressive stress

(
dTt
dσ

)
,

respectively illustrated in Figure 5.37 (d) and (e), do not signi�cantly change when
increasing the secondary �eld. Therefore, the transition temperature will shift ap-
proximately the same independently of the applied secondary �eld, leading to a
similar �eld-induced adiabatic temperature change.

5.4.5 Simulation of the iso�eld-isostress entropy curves: an

analytical model

As previously discussed for Ni-Mn-In in section 5.3.5, to compute the correspond-
ing caloric and multicaloric e�ects for any combination of magnetic �eld and uni-
axial stress changes within the entire (T, µ0H,σ) thermodynamic coordinate space
under study it is necessary to de�ne a numerical function (S(T, µ0H,σ)) and �t it
to the experimental iso�eld-isostress entropy curves in order to phenomenologically
reproduce their behaviour.

For the particular case under study (Ni50Mn18.5Ga25Cu6.5), taking into account
the parametrized behaviour of the transition entropy change for both forward
and reverse martensitic phase transition ((∆SM,A

t (µ0H), σ), see Figure 5.39 and
equation 5.30) together with the dependencies of both martensitic (CM (T, µ0H))
and austenitic (CA(T, µ0H)) speci�c heats (see Figure 5.40 and equations (5.32)
to (5.35)), the general expression that de�nes the iso�eld-isostress entropy curves
(see equation 5.12) can be rewritten by taking into account the de�nition of the
transformed fraction (see equation 3.16) as:

S(T, µ0H,σ)− Sref =

∫ T

Tref

C(T ′, µ0H,σ)

T ′
dT ′ −∆SA,Mt (µ0H,σ)χ(T, µ0H,σ)

(5.44)

where Sref = S(T = 426K) and, as the reference temperature has been taken
above the martensitic transition, the speci�c heat of the sample is expressed as
C(T, µ0H,σ) = χ(T, µ0H,σ)CM (T, µ0H)+[1− χ(T, µ0H,σ)]CA(T, µ0H). It is im-
portant to highlight that all the di�erent elements that constitute equation 5.44,
except the martensitic transformed fraction (χ(T, µ0H,σ)), have already been ac-
curately parametrized within the complete (T, µ0H,σ) coordinate space along the
previous sections.

Therefore, as for the previously studied Ni-Mn-In alloy, it is necessary to de�ne
an analytical function to reproduce the experimental behaviour of the transformed
fraction over the complete phase space under study in order to de�ne a suitable
numerical function (S(T, µ0H,σ)).

For such purpose, it is noteworthy that the corrected calorimetric curves, illus-
trated in Figure 5.38 for both heating (panels (a)-(d)) and cooling (panels (e)-(h))
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runs, exhibit irregular shapes and can not be simply approximated by a single peak
spreading over a certain temperature range. Furthermore, the shape of the calori-
metric peaks for both forward and reverse transitions changes di�erently when in-
creasing the applied external �elds, which is particularly noticeable for the applied
compressive stress. Accordingly, the martensitic transformed fraction obtained from
the integration of these calorimetric peaks will provide an S-shaped curve, which
can exhibit signi�cant tails and will change over the transition temperature range
from χ = 1 (at the martensitic phase) to χ = 0 (at the austenitic phase).

Therefore, we have de�ned two distinct analytical functions, one for the forward
and another one for the reverse phase transition, that are composed of two sigmoid
functions with di�erent widths, centred at slightly di�erent transition temperatures,
that can be generally expressed as:

χ(T, µ0H,σ) =
1−D

eB1(T−Tt1) + 1
− D

eB2(T−Tt2) + 1
(5.45)

where the free parameters {D,B1, B2, Tt1, Tt2} are allowed to depend only on the
applied magnetic �eld and the uniaxial compressive stress.

By following the same �tting procedure as for the transformed fraction analytical
function of the previously studied Ni-Mn-In magnetic shape-memory alloy (see
section 5.3.5), the parameters that de�ne the analytical function to reproduce the
experimental transformed fraction curves upon heating are:

Tt1(µ0H,σ) = 313.1(3) + 1(0.2)µ0H + 0.21(5)σ + 0.04(3)µ0H
2

+ 0.03(2)σ2 (K) (5.46a)

Tt2(µ0H,σ) = 312.3(6) + 1.6(3)µ0H + 0.3(1)σ − 0.10(6)µ0H
2

− 3(4) · 10−3σ2 (K) (5.46b)

B1 = 1.5(4) (K−1) (5.46c)

B2(µ0H,σ) = 5.5(8)− 4(2)µ0H + 1(0.7)σ + 0.7(4)µ0H
2

− 0.03(3)σ2 − 0.11(9)µ0Hσ (K−1) (5.46d)

D(µ0H,σ) = 0.96(7)− 3(2) · 10−3µ0Hσ (1) (5.46e)

whereas for the experimental transformed fraction curves upon cooling, the param-
eters that de�ne the analytical function are:

Tt1(µ0H,σ) = 294.7(2)) + 2.1(1)µ0H + 0.22(3)σ − 0.10(2)µ0H
2

+ 6(2) · 10−3σ2 (K) (5.47a)

Tt2(µ0H,σ) = 294.9(8) + 0.7(5)µ0H − 0.2(1)σ + 0.07(7)µ0H
2

+ 0.017(5)σ2 (K) (5.47b)

B1(µ0H,σ) = 2.1(1)− 0.09(2)µ0H − 0.041(6)σ (K−1) (5.47c)



204 Results and discussion

Figure 5.44: Martensitic transformed fraction as a function of temperature
upon heating (panels (a)-(d)) and cooling (panels (e)-(h)) at selected values of
magnetic �eld {µ0Hj} = {0, 1, 2, 3, 4, 5, 6}T under di�erent constant uniaxial
stresses, indicated by the labels in each panel. Solid lines correspond to the
experimental data obtained from the corrected thermograms, and dashed lines,
to the �tted analytical function χ(Tµ0H,σ) expressed in equation 5.45.

B2(µ0H,σ) = 1.4(2)− 0.04(4)µ0H − 0.04(1)σ (K−1) (5.47d)

D(µ0H) = 0.71(7) + 0.08(3)µ0H − 0.013(5)µ0H
2 (1) (5.47e)

Figure 5.44 illustrates the agreement between the simulated (dashed lines) and
experimental (solid lines) transformed fraction curves at selected values of magnetic
�eld under di�erent constant uniaxial stresses upon heating (panels (a)-(d)) and
cooling (panels (e)-(h)). On the whole, both data sets show a good agreement over
the complete phase space under study, proving that the analytical functions cor-
rectly capture the transformed fraction behaviour around the forward and reverse
martensitic phase transition.

Consequently, taking into account that all the distinct elements that de�ne the
iso�eld-isostress entropy curves, expressed in equation 5.44, have been successfully
parametrized within the complete (T, µ0H,σ) coordinate space, we have all the
necessary ingredients to phenomenologically reproduce their behaviour. For the
particular case under study, introducing equation 5.33 into equation 5.44 leads to:

S(T, µ0H,σ)− Sref =∫ T

Tref

[
CM (T ′, µ0H)

T ′
− CA(T ′, µ0H)

T ′

]
χ(T ′, µ0H,σ)dT ′

+
1

2
mA(µ0H)

[
T 2 − T 2

ref

]
+ bA(µ0H) [T − Tref ]

−∆SA,Mt (µ0H,σ)χ(T, µ0H,σ)

(5.48)
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Figure 5.45: Entropy curves (referenced to Sref = S(T = 426K) in the absence
of stress and magnetic �eld) as a function of temperature upon heating at selected
values of magnetic �eld {µ0Hj} = {0, 1, 2, 3, 4, 5, 6}T under di�erent constant
uniaxial stresses, indicated by the labels in each panel. Solid lines correspond to
the experimental data, and dashed lines, to the �tted analytical function for the
heating runs.

where the integral over temperature was computed numerically by a cumulative
trapezoidal integration for any point of the (T, µ0H,σ) coordinate space under
study.

Figures 5.45 and 5.46 illustrate the agreement between the numerically com-
puted (dashed lines) and experimental (solid lines) iso�eld-isostress entropy curves
at selected values of magnetic �eld under di�erent constant uniaxial stresses upon
heating and cooling, respectively. Therefore, from the numerical S(T, µ0H,σ) en-
tropy curves, the corresponding caloric and multicaloric e�ects can be computed
for any combination of magnetic �eld and uniaxial stress changes within the entire
(T, µ0H,σ) thermodynamic coordinate space under study.

At this point, it is important to emphasize that from the experimental iso�eld-
isostress entropy curves upon heating (cooling), we were able to compute the el-
stocaloric and magnetocaloric e�ects that correspond to the induction of the reverse
(forward) phase transition (see section 5.4.4.4). These processes, in accordance to
the transition temperature phase diagram illustrated in Figure 5.37 (a), correspond
to trajectories from below to above the red surface and to trajectories from above
to below the blue surface, respectively. When considering trajectories that involve
a simultaneous or sequential change on both external �elds, both of them have to
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Figure 5.46: Entropy curves (referenced to Sref = S(T = 426K) in the absence
of stress and magnetic �eld) as a function of temperature upon cooling at selected
values of magnetic �eld {µ0Hj} = {0, 1, 2, 3, 4, 5, 6}T under di�erent constant
uniaxial stresses, indicated by the labels in each panel. Solid lines correspond to
the experimental data, and dashed lines, to the �tted analytical function for the
cooling runs.

promote the phase transition in the same direction. Otherwise, due to the hystere-
sis of the phase transition, they would drive the sample through a minor hysteresis
loop within the two-phase coexistence region (which corresponds to the tempera-
ture range between the upper and lower surfaces illustrated in Figure 5.37 (a)), for
which no experimental data are available.

Consequently, the numerically simulated entropy curves upon heating are only
representative for the reverse phase transition, allowing us to compute the caloric
and multicaloric e�ects that are associated with trajectories in the phase space from
below to above the red surface, whereas the numerically simulated entropy curves
upon cooling are only representative for the forward phase transition, allowing us
to compute the caloric and multicaloric e�ects that are associated with trajectories
in the phase space from above to below the blue surface.

The numerically simulated iso�eld entropy surfaces as a function of temperature
and stress, and the isostress entropy surfaces as a function of temperature and mag-
netic �eld, are illustrated in panels (a) and (b) of Figures 5.47 (upon heating) and
5.48 (upon cooling), respectively. All these entropy surfaces evidence the transition
temperature shift towards higher temperatures when increasing either the applied
stress or the magnetic �eld. Additionally, the iso�eld and isostress entropy surfaces
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Figure 5.47: Entropy surfaces obtained from the analytical function upon heat-
ing. (a) Iso�eld entropy surfaces as a function of stress and temperature at se-
lected values of magnetic �eld in the range {µ0Hj} ∈ {0, 6}T. (b) Isostress
entropy surfaces as a function of magnetic �eld and temperature at selected val-
ues of stress in the range {σi} ∈ {0, 20}MPa. (c)-(d) Isothermal entropy surfaces
as a function of magnetic �eld and stress. In all cases, the entropy is referenced to
Sref = S(T = 426K) in the absence of stress and magnetic �eld. Arrows indicate
the direction of the temperature, magnetic �eld and uniaxial stress change.

also evidence the transition entropy change decrease when increasing either the
applied stress or the magnetic �eld, respectively. Furthermore, it is particularly
important to highlight that the crossover behaviour at the low-temperature region
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Figure 5.48: Entropy surfaces obtained from the analytical function upon cool-
ing. (a) Iso�eld entropy surfaces as a function of stress and temperature at se-
lected values of magnetic �eld in the range {µ0Hj} ∈ {0, 6}T. (b) Isostress
entropy surfaces as a function of magnetic �eld and temperature at selected val-
ues of stress in the range {σi} ∈ {0, 20}MPa. (c)-(d) Isothermal entropy surfaces
as a function of magnetic �eld and stress. In all cases, the entropy is referenced to
Sref = S(T = 426K) in the absence of stress and magnetic �eld. Arrows indicate
the direction of the temperature, magnetic �eld and uniaxial stress change.

can be clearly observed for both iso�eld and isostress entropy surfaces upon heating
and cooling within the complete temperature, magnetic �eld and stress coordinate
space under study.
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Moreover, the numerically simulated iso�eld-isostress entropy curves, generally
expressed by equation 5.48, also allow us to compute the corresponding isother-
mal entropy surfaces as a function of stress and magnetic �eld. The corresponding
entropy surfaces at selected values of temperature are illustrated in panels (c)-(f)
of Figures 5.47 and 5.48 upon heating and cooling, respectively. For temperatures
before the onset of the �eld-induced martensitic phase transition (T = 314K upon
heating and T = 309K upon cooling), the removal (application) of large external
�elds leads to an increase (decrease) of the entropy, as the reverse (forward) phase
transition is induced. Interestingly, at T = 314K upon heating, we observe an
initial entropy decrease before inducing the reverse phase transition, which arises
from the crossover behaviour at the low-temperature region and re�ects the de-
crease of the transition entropy change when increasing either the applied mag-
netic �eld or the compressive stress. At temperatures within the transition region
({T} = {318, 320}K upon heating and {T} = {301, 305}K upon cooling), we ob-
serve that the increase (decrease) of the entropy is more pronounced when removing
(applying) the external �elds. Furthermore, it is worth pointing out that smaller
external �eld changes are required to induce the phase transition. At tempera-
tures after the onset of the �eld-induced martensitic phase transition (T = 324K
upon heating and T = 297K upon cooling), the removal (application) of the ex-
ternal �elds leads to a smaller increase (decrease) of the entropy. Interestingly, at
T = 297K upon cooling, we observe an entropy increase after inducing the forward
phase transition. As previously mentioned, this feature arises from the crossover
behaviour at the low-temperature region.

5.4.5.1 Elastocaloric and magnetocaloric e�ects under the in�uence of

a secondary �eld

Similarly to the results presented in section 5.4.4.4, we can compute the sin-
gle caloric e�ects under the in�uence of a constant secondary external �eld from
the numerically simulated S(T, µ0H,σ) entropy curves. Figure 5.49 illustrates the
elastocaloric e�ect under selected constant magnetic �elds upon heating (panels
(a)-(f)) and cooling (panels (g)-(l)), whereas Figure 5.50 illustrates the magne-
tocaloric e�ect under selected constant stresses upon heating (panels (a)-(f)) and
cooling (panels (g)-(l)). These �gures show both the isothermal entropy and adi-
abatic temperature changes for each single caloric e�ect as colour contour plot
maps. The corresponding three dimensional representations of both caloric e�ects
are shown in Appendix C.

Overall, there is a good agreement between both numerically simulated and ex-
perimentally computed elastocaloric (Figures 5.41 and 5.49) and magnetocaloric
(Figures 5.42 and 5.50) thermal responses, respectively. As for the previously stud-
ied Ni-Mn-In alloy, such an agreement con�rms the robustness of our analytical
model to phenomenologically reproduce the iso�eld-isostress experimental entropy
curves upon heating and cooling, and provides con�dence in the computation of
the multicaloric thermal response of the alloy under study.

Let us �rst discuss the elastocaloric e�ect, illustrated in Figure 5.49. The max-
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Figure 5.49: Contour plots of the elastocaloric isothermal entropy (panels (a)-
(c) and (g)-(i)) and adiabatic temperature (panels (d)-(f) and (j)-(l)) changes
computed from the entropy curves upon heating (panels (a)-(f)) and cooling
(panels (g)-(l)) as a function of temperature at selected values of magnetic �eld
{µ0Hj} = {0, 3, 6}T. Arrows along the axis indicate the direction of the tem-
perature and uniaxial stress changes.

imum stress-induced elastocaloric thermal response is obtained in the absence of
magnetic �eld. Upon the removal of stress, it accounts for ∆Smax = 21.1 JK−1kg−1

and ∆Tmax = −4.5K, whereas upon the application of stress it accounts for
∆Smax = −17.4 JK−1kg−1 and ∆Tmax = 5.0K. Furthermore, as it can be clearly
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Figure 5.50: Contour plots of the magnetocaloric isothermal entropy (panels
(a)-(c) and (g)-(i)) and adiabatic temperature (panels (d)-(f) and (j)-(l)) changes
computed from the entropy curves upon heating (panels (a)-(f)) and cooling
(panels (g)-(l)) as a function of temperature at selected values of applied stress
{σi} = {0, 10, 20}MPa. Arrows along the axis indicate the direction of the
temperature and uniaxial stress changes.

seen when comparing the di�erent panels in each row of the �gure, when increas-
ing the applied magnetic �eld the stress-induced elastocaloric e�ect shifts towards
higher temperatures upon heating and cooling but, in addition, it decreases the
elastocaloric thermal response. Interestingly, this decrease can be clearly seen for
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the isothermal entropy change, whereas it is less pronounced for the adiabatic tem-
perature change. In particular, the elastocaloric thermal response upon heating for
the maximum stress removal (20MPa → 0MPa) renders ∆S = 20.9 JK−1kg−1

and ∆T = −4.5K in the absence of magnetic �eld, whereas these values decrease
to ∆S = 15.3 JK−1kg−1 and ∆T = −3.8K under an applied magnetic �eld of
µ0H = 6T. Similarly, the elastocaloric thermal response upon cooling for the
maximum stress application (0MPa → 20MPa) renders ∆S = −17.4 JK−1kg−1

and ∆T = 5.0K in the absence of magnetic �eld, whereas these values decrease
to ∆S = −11.8 JK−1kg−1 and ∆T = 4.6K under an applied magnetic �eld of
µ0H = 6T. The signi�cant decrease of the elastocaloric isothermal entropy change
is in agreement with the transition entropy change decrease when increasing the
applied magnetic �eld upon heating and cooling (see Figure 5.39 (e)), whereas the
smaller in�uence on the adiabatic temperature change is in agreement with the fact
that the transition temperature shift with stress is not signi�cantly in�uenced by
the applied magnetic �eld (see Figure 5.37 (e)).

In relation to the �eld-induced magnetocaloric e�ect, illustrated in Figure 5.49,
the maximum thermal response is also obtained in the absence of applied stress.
Upon the removal of magnetic �eld, it accounts for ∆Smax = 22.4 JK−1kg−1 and
∆Tmax = −6.0K, whereas upon the application of magnetic �eld it accounts for
∆Smax = −24 JK−1kg−1 and ∆Tmax = 7.1K. When comparing the di�erent pan-
els in each row of the �gure, similar trends can be observed when increasing the
applied stress with respect to the elastocaloric e�ect when increasing the applied
magnetic �eld. In particular, the magnetocaloric thermal response upon heating
for the maximum magnetic �eld removal (6T→ 0T) renders ∆S = 21.9 JK−1kg−1

and ∆T = −6.0K in the absence of applied stress, whereas these values de-
crease to ∆S = 16.5 JK−1kg−1 and ∆T = −5.2K under an applied stress of
σ = 20MPa. Similarly, the magnetocaloric thermal response upon cooling for the
maximum magnetic �eld application (0MPa→ 6T) renders ∆S = −23 JK−1kg−1

and ∆T = 7.1K in the absence of applied stress, whereas these values decrease to
∆S = −13.4 JK−1kg−1 and ∆T = 5.9K under an applied stress of σ = 20MPa.
The signi�cant decrease of the isothermal entropy change when increasing the ap-
plied stress upon heating and cooling is in agreement with the transition entropy
change decrease when increasing the applied stress (see Figure 5.39 (f)), whereas
the smaller in�uence on the adiabatic temperature change is in agreement with the
fact that the transition temperature shift with magnetic �eld is not signi�cantly
in�uenced by the applied stress (see Figure 5.37 (d)).

5.4.5.2 Multicaloric e�ect

As discussed in section 2.1.2, the multicaloric e�ect refers to the �eld-induced
isothermal entropy and adiabatic temperature changes under the simultaneous or
sequential change of more than one external �eld. As the numerically simulated
S(T, µ0H,σ) entropy curves upon cooling and heating are representative of the
forward and reverse phase transitions, respectively, we will be able to completely
characterize the multicaloric thermal response for any trajectory in the phase space
(see Figure 5.37 (a) for the complete transition temperature phase diagram) from
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below to above the red surface and from above to below the blue surface. Specif-
ically, as the removal of either magnetic �eld or uniaxial stress favours the high-
temperature austenitic phase, the entropy curves upon heating will allow us to
compute the multicaloric thermal response under the simultaneous or sequential
removal of magnetic �eld and stress. Accordingly, as the application of either mag-
netic �eld or uniaxial stress favours the low-temperature martensitic phase, the
entropy curves upon cooling will allow us to compute the multicaloric thermal
response under the simultaneous or sequential application of magnetic �eld and
stress.

Therefore, at a certain constant temperature, the multicaloric isothermal entropy
change induced by the removal of stress and magnetic �eld is computed from the
entropy curves upon heating as:

∆S(T, µ0H → 0, σ → 0) = S(T, 0, 0)− S(T, µ0H,σ) (5.49)

whereas the multicaloric isothermal entropy change induced by the application of
stress and magnetic �eld is computed from the entropy curves upon cooling as:

∆S(T, 0→ µ0H, 0→ σ) = S(T, µ0H,σ)− S(T, 0, 0) (5.50)

The corresponding results are illustrated in Figures 5.51 (a)-(h) and 5.52 (a)-
(h), respectively, as contour colour plot maps at selected temperatures. Conversely,
the multicaloric adiabatic temperature changes are computed after inverting and
interpolating the corresponding numerically simulated entropy curves. Thus, the
multicaloric adiabatic temperature change induced by the removal of stress and
magnetic �eld is computed from the inverted entropy curves upon heating as:

∆T (S, µ0H → 0, σ → 0) = T (S, 0, 0)− T (S, µ0H,σ) (5.51)

whereas the multicaloric adiabatic temperature change induced by the application
of stress and magnetic �eld is computed from the inverted entropy curves upon
cooling as:

∆T (S, 0→ µ0H, 0→ σ) = T (S, µ0H,σ)− T (S, 0, 0) (5.52)

As for the single caloric e�ects, the multicaloric adiabatic temperature changes
are represented as a function of the temperature given by the initial entropy curve
prior to the external �eld change, and the corresponding results are illustrated in
Figures 5.53 (a)-(h) and 5.54 (a)-(h), respectively, as contour colour plot maps at
selected temperatures.

As for the previously studied Ni-Mn-In alloy, the combined e�ect of both exter-
nal �elds leads to a clear improvement of the multicaloric �eld-induced thermal
response with respect to the single caloric e�ects, illustrated in Figures 5.41 and
5.21 respectively.

Let us �rst focus on the isothermal entropy change, illustrated in Figures 5.51
and 5.52. The maximum values induced by the removal of the applied external �elds
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Figure 5.51: Contour plots of the multicaloric isothermal entropy changes com-
puted from the entropy curves upon heating resulting from the removal of uni-
axial stress and magnetic �eld ((µ0H,σ) → (0, 0)) at selected temperatures.
Arrows along the axis indicate the direction of the magnetic �eld and uniaxial
stress changes.

are ∆Smax = 22 JK−1kg−1 at T = 315K, ∆Smax = 22.4 JK−1kg−1 at T = 316K
and ∆Smax = 22.1 JK−1kg−1 at T = 317K, whereas upon the application of the
external �elds the maximum values induced are ∆Smax = −23.7 JK−1kg−1 at T =
298K, ∆Smax = −24 JK−1kg−1 at T = 297K and ∆Smax = −22.7 JK−1kg−1 at
T = 296K. It is relevant to highlight that these values clearly exceed the maximum
stress-induced elastocaloric e�ect in the absence of magnetic �eld, whereas they
match the maximum �eld-induced magnetocaloric e�ect in the absence of stress.
This behaviour is indicative that we are able to fully drive the forward and reverse
martensitic phase transitions when simultaneously changing both external �elds.
Furthermore, the combined e�ect of both external �elds allows us to drastically
reduce the magnitude of the �elds needed to yield the same thermal response when
compared to the single caloric e�ects. For example, at T = 316K (see Figure 5.51
(d)), if we focus on the contour line corresponding to ∆S = 20 JK−1kg−1, to obtain
such thermal response in the absence of stress we need to remove a magnetic �eld of
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Figure 5.52: Contour plots of the multicaloric isothermal entropy changes com-
puted from the entropy curves upon cooling resulting from the application of
uniaxial stress and magnetic �eld ((0, 0) → (µ0H,σ)) at selected temperatures.
Arrows along the axis indicate the direction of the magnetic �eld and uniaxial
stress changes.

µ0H = 3.7T. However, if we also remove a stress of σ = 12MPa the magnetic �eld
needed to obtain the same thermal response decreases to µ0H = 1T. Similar trends
are observed as well at other selected temperatures illustrated in Figure 5.51 and for
the thermal response induced upon the application of the external �elds at selected
temperatures, represented in Figure 5.52. Likewise, when considering the potential
of multicaloric e�ects for future technological applications, it is particularly impor-
tant to compare their thermal response under moderate magnetic �eld changes of
|µ0∆H| = 1T, which can be readily provided by permanent magnets, with that
of single caloric e�ects. Under these conditions, the �eld-induced magnetocaloric
isothermal entropy changes are in the range ∆S(T, 1→ 0T, σ) = 8.5−9.3 JK−1kg−1
and |∆S(T, 0 → 1T, σ)| = 7.6−17.3 JK−1kg−1 for both reverse and forward phase
transitions (see Figure 5.21), respectively. Interestingly, when combining the mag-
netic �eld change with a moderate stress change of |∆σ| = 20MPa, these values
increase up to ∆Smax = 19.3 JK−1kg−1 at T = 315K, ∆Smax = 20.3 JK−1kg−1 at
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Figure 5.53: Contour plots of the multicaloric adiabatic temperature changes
computed from the entropy curves upon heating resulting from the removal of
uniaxial stress and magnetic �eld ((µ0H,σ) → (0, 0)) at selected temperatures.
Arrows along the axis indicate the direction of the magnetic �eld and uniaxial
stress changes.

T = 316K and ∆Smax = 20.4 JK−1kg−1 at T = 317K for the reverse phase transi-
tion, and up to ∆Smax = −17.5 JK−1kg−1 at T = 298K, ∆Smax = −18 JK−1kg−1

at T = 297K and ∆Smax = −16.6 JK−1kg−1 at T = 296K for the forward phase
transition. Furthermore, it is particularly important to highlight that the mul-
ticaloric e�ect not only provides a larger thermal response, but it also spreads over
a signi�cantly wider temperature window with respect to single caloric e�ects.

When considering the adiabatic temperature change, illustrated in Figures 5.53
and 5.54, the maximum values induced by the removal of the applied external
�elds are ∆Tmax = −8.3K at T = 322K, ∆Tmax = −9.0K at T = 323K and
∆Tmax = −9.2K at T = 324K, whereas upon the application of the external �elds
the maximum values induced are ∆Tmax = 8.7K at T = 299K, ∆Tmax = 9.1K at
T = 298K and ∆Tmax = 9.3K at T = 297K. It is relevant to highlight that these
values clearly exceed the maximum values obtained for the single elastocaloric
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Figure 5.54: Contour plots of the multicaloric adiabatic temperature changes
computed from the entropy curves upon cooling resulting from the application of
uniaxial stress and magnetic �eld ((0, 0) → (µ0H,σ)) at selected temperatures.
Arrows along the axis indicate the direction of the magnetic �eld and uniaxial
stress changes.

and magnetocaloric e�ects. Furthermore, similar trends are also observed when
considering the advantages that combining changes on both external �elds pro-
vide with respect to the single caloric e�ects. Speci�cally, it is particularly rele-
vant to compare their thermal response under moderate magnetic �eld changes
of |µ0∆H| = 1T. While the �eld-induced magnetocaloric adiabatic temperature
changes are in the range |∆T (S, 1→ 0T, σ)| = 0.9−1.7K for both forward and re-
verse transitions, when combining the magnetic �eld change with a moderate stress
change of |∆σ| = 20MPa, these values increase up to ∆T = −4.9K at T = 318K or
∆T = −5.4K at T = 319K for the reverse phase transition, and up to ∆T = 6.5K
at T = 296K or ∆T = 6.2K at T = 297K for the forward phase transition.



218 Results and discussion

5.4.5.3 Cross-coupling contribution to the multicaloric e�ect

As discussed in section 2.1.2, the �eld-induced multicaloric thermal response is
not generally given by the direct sum of the two single caloric e�ects [51, 53], as
there can be a contribution from the cross-coupled response of the material to the
application of non-conjugated external �elds. Certainly, as for the sample under
study we are performing a symmetric external �eld change 13 to �eld-induce the
multicaloric e�ect, the cross-coupled response of the system will play a role.

In particular, for a thermodynamic process in which stress and magnetic �eld
are applied, the general equation for the multicaloric iso�eld entropy change (see
equation 2.17) can be split into the following contributions:

∆S(T, 0→ µ0H, 0→ σ) =

∆S(T, 0→ µ0H,σ = 0MPa) + ∆S(T, µ0H = 0T, 0→ σ)

+

∫ µ0H

0

∫ σ

0

∂χ21

∂T
dσ
′
dµ0H

′

(5.53)

Similarly, for a thermodynamic processes in which stress and magnetic �eld are
removed, the general equation for the multicaloric iso�eld entropy change can be
written as:

∆S(T, µ0H → 0, σ → 0) =

∆S(T, µ0H = 0T, σ → 0) + ∆S(T, µ0H → 0, σ = 0MPa)

−
∫ σ

0

∫ µ0H

0

∂χ12

∂T
dµ0H

′dσ
′

(5.54)

where the two �rst right hand terms of both equations correspond to the single
caloric e�ects in the absence of a secondary �eld, whereas the last terms depend

on χ21 =

(
∂ε

∂µ0H

)
T,σ

and χ12 =

(
∂M

∂σ

)
T,µ0H

, which are o�-diagonal coe�cients

of the cross-susceptibility tensor (see equations 2.7 and 2.16) that quantify the
strength of the cross-coupled response of the system to the application of non-
conjugated external �elds. Along the following discussion, we will refer to the last
right hand terms of equations 5.53 and 5.54 as ∆Scoupling for the sake of simplicity,
as they quantify the cross-coupling magnitude between magnetization (M) and the
applied stress (σ) and strain (ε) and the applied magnetic �eld (µ0H) for the system
under study.

As the numerically simulated S(T, µ0H,σ) entropy curves allowed us to compute
both single caloric e�ects in the absence of a secondary �eld (see section 5.4.5.1)
together with the multicaloric e�ect induced by either the application or removal of
the external �elds (see section 5.4.5.2), the corresponding cross-coupling magnitude
to the multicaloric isothermal entropy changes can be computed as:

13As discussed in section 2.1.2, it refers to the particular case where both external �elds are
either applied or removed.
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Figure 5.55: Contour plots of the cross-coupling contribution to the multicaloric
isothermal entropy changes computed from the entropy curves upon heating
resulting from the removal of uniaxial stress and magnetic �eld ((µ0H,σ) →
(0, 0)) at selected temperatures. Arrows along the axis indicate the direction of
the magnetic �eld and uniaxial stress changes.

∆Scoupling(T, 0� µ0H, 0� σ) = ∆S(T, 0� µ0H, 0� σ)

−∆S(T, µ0H = 0T, 0� σ)−∆S(T, 0� µ0H,σ = 0MPa)

(5.55)

where the double arrows indicate that either the external �elds are removed or
applied, which corresponds to the thermodynamic processes that �eld-induce either
the reverse or forward phase transition. The corresponding results are illustrated
in Figures 5.55 (a)-(h) and 5.56 (a)-(h), respectively, as contour colour plot maps
at selected temperatures.

At low temperatures, when �eld-inducing the reverse (forward) phase transi-
tion upon the removal (application) of large external �elds (see Figure 5.55 (a)-(b)
and Figure 5.56 (g)-(h), respectively), the cross-coupling contribution to the mul-
ticaloric isothermal entropy change is negative (positive) and opposes the corre-
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Figure 5.56: Contour plots of the cross-coupling contribution to the mul-
ticaloric isothermal entropy changes computed from the entropy curves upon
cooling resulting from the application of uniaxial stress and magnetic �eld
((0, 0) → (µ0H,σ)) at selected temperatures. Arrows along the axis indicate
the direction of the magnetic �eld and uniaxial stress changes.

sponding �eld-induced multicaloric isothermal entropy changes, illustrated in Fig-
ures 5.51 (a)-(b) and 5.52 (g)-(h). Despite this opposing behaviour, when decreasing
the change on one of the removed (applied) external �elds the cross-coupling con-
tribution tends to increase (decrease), and it vanishes at the single caloric e�ect
limit, where only one external �eld is changed in the absence of a secondary �eld.

To gain some insight into the origin of the cross-coupling contributions that op-
pose the corresponding �eld-induced multicaloric e�ects, it is particularly instruc-
tive to consider a particular combination of applied or removed external �elds at
a certain temperature. For instance, let us consider the application of µ0H = 3T
and σ = 10MPa at T = 296K. Under these conditions, on the one hand, the
elastocaloric e�ect in the absence of magnetic �eld (see Figure 5.49 (g)) renders
∆S(T, µ0H = 0T, 0 → 10MPa) = −13.9 JK−1kg−1 whereas the magnetocaloric
e�ect in the absence of stress (see Figure 5.50 (g)) renders ∆S(T, 0 → 3T, σ =
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0MPa) = −22.6 JK−1kg−1. On the other hand, the �eld-induced multicaloric ef-
fect (see Figure 5.52 (g)) renders ∆S(T, 0→ 3T, 0→ 10MPa) = −18.8 JK−1kg−1.
Consequently, in accordance to equation 5.55, the cross-coupling contribution to the
multicaloric isothermal entropy change is ∆Scoupling(T, 0 → 3T, 0 → 10MPa) =
17.7 JK−1kg−1. Similarly, when considering the removal of µ0H = 5T and σ =
20MPa at T = 313K, the elastocaloric and magnetocaloric e�ects in the absence
of a secondary �eld, illustrated in Figures 5.49 (a) and 5.50 (a), respectively ren-
der ∆S(T, µ0H = 0T, 20 → 0MPa) = 7.8 JK−1kg−1 and ∆S(T, 5 → 0T, σ =
0MPa) = 9.1 JK−1kg−1, while the �eld-induced multicaloric e�ect (see Figure 5.51
(a)) renders ∆S(T, 5→ 0T, 20→ 0MPa) = 2.8 JK−1kg−1. Consequently, in accor-
dance to equation 5.55, the cross-coupling contribution to the multicaloric isother-
mal entropy change is ∆Scoupling(T, 5 → 0T, 20 → 0MPa) = −14.1 JK−1kg−1.

At this point, as previously discussed in section 2.1.2, it is important to highlight
that the �eld-induced multicaloric entropy change is irrespective of the thermody-
namic path followed between the initial and �nal states. Therefore, taking into
account the general equation 2.11, we can alternatively separate the multicaloric
isothermal entropy change induced upon the application of stress and magnetic
�eld (see equation 5.53) as:

∆S(T, 0→ µ0H, 0→ σ) =

∆S(T, 0→ µ0H,σ = 0MPa) + ∆S(T, µ0H, 0→ σ)
(5.56)

Similarly, for a thermodynamic processes in which stress and magnetic �eld are
removed (see equation 5.54), the multicaloric iso�eld entropy change can be alter-
natively written as:

∆S(T, µ0H → 0, σ → 0) =

∆S(T, µ0H → 0, σ) + ∆S(T, µ0H = 0T, σ → 0)
(5.57)

where in the former case, the magnetocaloric e�ect is induced in the absence
of a secondary �eld while the elastocaloric e�ect is induced under a constant
applied magnetic �eld. Conversely, in the latter case, we have the opposite sit-
uation. The single caloric e�ects under a constant secondary �eld can also be
computed from the numerically simulated S(T, µ0H,σ) entropy curves (see sec-
tion 5.4.5.1) and evidently, the sum of both single caloric e�ects in these expres-
sions yields the same values of the �eld-induced multicaloric isothermal entropy
change when compared to the values computed in section 5.4.5.2. When con-
sidering the same particular combinations of applied or removed external �elds
that were previously discussed, the stress-induced elastocaloric e�ect when apply-
ing σ = 10MPa under a constant magnetic �eld of µ0H = 3T at T = 296K
(see Figure 5.49 (h)) renders ∆S(T, µ0H = 3T, 0 → 10MPa) = 3.8 JK−1kg−1,
whereas the �eld-induced magnetocaloric e�ect when removing µ0H = 5T un-
der a constant stress of σ = 20MPa at T = 313K (see Figure 5.50 (c)) renders
∆S(T, 5→ 0T, σ = 20MPa) = −5.0 JK−1kg−1.
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In accordance to the discussion presented in section 5.4.5.1, an increase of the
secondary constant �eld shifts the single caloric e�ects towards higher tempera-
tures and drastically reduces its magnitude. Furthermore, as illustrated in Figures
5.49 and 5.50, the single caloric e�ects exhibit a crossover from inverse (at low
temperatures) to conventional (at high temperatures) below the martensitic phase
transition, which is associated with the transition entropy change decrease when
increasing the applied external �elds. Consequently, at a certain constant tempera-
ture around the martensitic phase transition, an increase of the secondary constant
�eld can lead to an inversion (from conventional to inverse) of the �eld-induced
single caloric e�ects, which in fact corresponds to the situation for both particular
examples under consideration.

Overall, these factors highlight the fact that, at temperatures where the forward
(reverse) martensitic phase transition can be partially or completely induced by
the application (removal) of each external �eld in the absence of a secondary �eld,
the additional application (removal) of a secondary �eld can lead to a signi�cant
decrease of �eld-induced multicaloric e�ect when compared to the individual single
caloric e�ects in the absence of a secondary �eld. Therefore, as de�ned by equa-
tion 5.55, these scenarios lead to a cross-coupling contribution that opposes to the
corresponding multicaloric isothermal entropy change. In consequence, at a certain
temperature, a positive (negative) cross-coupling contribution to the �eld-induced
multicaloric isothermal entropy change upon the application (removal) of a certain
combination of external �elds indicates that the multicaloric e�ect does not rep-
resent a gain with respect to the simple sum of both single caloric e�ects in the
absence of a secondary �eld.

Interestingly, when further increasing the temperature, a positive (negative)
cross-coupling contribution appears when �eld-inducing the reverse (forward) phase
transition upon the removal (application) of small external �elds, as illustrated in
Figure 5.55 (c)-(d) and Figure 5.56 (e)-(f), respectively. In this regard, it must
be highlighted that the emergence of a positive (negative) cross-coupling contribu-
tion indicates that the multicaloric e�ect induced upon the removal (application)
of the external �elds represents a gain with respect to the simple sum of both
single caloric e�ects in the absence of a secondary �eld. For example, the �eld-
induced multicaloric isothermal entropy change when applying µ0H = 1T and
σ = 10MPa at T = 298K (see Figure 5.52 (e)) renders ∆S(T, 0 → 1T, 0 →
10MPa) = −16.1 JK−1kg−1, from which the cross-coupling contribution accounts
for ∆Scoupling(T, 0 → 1T, 0 → 10MPa) = −9.6 JK−1kg−1. Similarly, the �eld-
induced multicaloric isothermal entropy change when removing µ0H = 1T and
σ = 10MPa at T = 316K (see Figure 5.51 (d)) renders ∆S(T, 1 → 0T, 10 →
0MPa) = 16.8 JK−1kg−1, from which the cross-coupling contribution accounts for
∆Scoupling(T, 1 → 0T, 10 → 0MPa) = 8.8 JK−1kg−1. Consequently, the cross-
coupling contribution plays an important role in increasing the entropy change at
low external �eld changes. Furthermore, it is also important to notice that these
positive (negative) cross-coupling contributions at the low external �eld regions
positively contribute at the edge of the corresponding �eld-induced multicaloric
isothermal entropy changes (where the contour lines are close to each other), il-
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lustrated in Figures 5.51 (c)-(d) and 5.52 (e)-(f). Therefore, the cross-coupling
contribution also helps on enlarging the window of external �eld changes where gi-
ant multicaloric isothermal entropy changes can be induced. Nevertheless, at these
temperatures, a negative (positive) cross-coupling contribution persists when �eld-
inducing the reverse (forward) phase transition upon the removal (application) of
large external �elds.

At even higher temperatures, as illustrated in Figure 5.55 (e)-(h) and 5.56 (a)-(d),
the window of external �eld changes where a positive (negative) cross-coupling con-
tribution that favours the corresponding multicaloric isothermal entropy changes
when �eld-inducing the reverse (forward) phase transition is enlarged. Further-
more, the cross-coupling contribution is gradually intensi�ed and moves towards
the region of large external �eld changes. Eventually, at the highest temperatures
represented in both �gures, the cross-coupling term becomes the main contribution
of the multicaloric isothermal entropy change when inducing the reverse (forward)
phase transition over a broad window of external �eld changes, as it can be seen
when comparing Figure 5.55 (h) with Figure 5.51 (h) and Figure 5.56 (a) with
Figure 5.52 (a), respectively.

So far, we have only considered the cross-coupling contribution to the �eld-
induced multicaloric isothermal entropy change, but in order to provide a com-
plete discussion we also have to consider its e�ect on the �eld-induced multicaloric
adiabatic temperature change. By following a similar derivation procedure as for
the isothermal entropy change, and taking into account that the general expression
for the multicaloric adiabatic temperature change is given by equation 2.19, we
can also compute the corresponding cross-coupling magnitude to the multicaloric
adiabatic temperature change as:

∆T coupling(S, 0� µ0H, 0� σ) = ∆T (S, 0� µ0H, 0� σ)

−∆T (S, µ0H = 0T, 0� σ)−∆T (S, 0� µ0H,σ = 0MPa)

(5.58)

In this regard, it is important to highlight that the numerically simulated entropy
curves were inverted and interpolated (T (S, µ0H,σ)) in order to compute both the
single caloric adiabatic temperature changes in the absence of a secondary �eld
(see section 5.4.5.1) and the multicaloric adiabatic temperature changes induced
by either the application or removal of the external �elds (see section 5.4.5.2).
The corresponding results are illustrated in Figures 5.57 (a)-(h) and 5.58 (a)-(h),
which respectively correspond to thermodynamic processes that �eld-induce either
the reverse or forward phase transition, as contour colour plot maps at selected
temperatures.

Overall, the cross-coupling contribution to the multicaloric adiabatic tempera-
ture change shows similar trends than those observed for the cross-coupling contri-
bution to the multicaloric isothermal entropy change. At low temperatures, when
�eld-inducing the phase transition with large external �elds (see Figures 5.57 (a)
and 5.58 (g)-(h)), the cross-coupling contribution opposes the corresponding mul-
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Figure 5.57: Contour plots of the cross-coupling contribution to the multicaloric
adiabatic temperature changes computed from the entropy curves upon heating
resulting from the removal of uniaxial stress and magnetic �eld ((µ0H,σ) →
(0, 0)) at selected temperatures. Arrows along the axis indicate the direction of
the magnetic �eld and uniaxial stress changes.

ticaloric adiabatic temperature change. Interestingly, as it can be clearly seen when
comparing Figures 5.56 and 5.58, this behaviour is only observed within a smaller
window of external �eld changes. In this regard, as discussed in section 5.4.5.1, it
must be mentioned that the application of a secondary �eld had a smaller in�uence
on the magnitude of the single caloric adiabatic temperature changes. Consequently,
the additional application (removal) of a secondary �eld will lead to smaller changes
on the �eld-induced multicaloric adiabatic temperature change which in turn, as
de�ned by equation 5.58, lessens the window of external �eld changes where the
cross-coupling contribution opposes the multicaloric e�ect.

When increasing the temperature (see Figures 5.57 (b)-(c) and 5.58 (e)-(f)), a re-
gion where the cross-coupling contribution favours the corresponding multicaloric
adiabatic temperature change emerges when �eld-inducing the phase transition
with small external �elds. Speci�cally, when considering the potential of mul-
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Figure 5.58: Contour plots of the cross-coupling contribution to the multicaloric
adiabatic temperature changes computed from the entropy curves upon cooling
resulting from the application of uniaxial stress and magnetic �eld ((0, 0) →
(µ0H,σ)) at selected temperatures. Arrows along the axis indicate the direction
of the magnetic �eld and uniaxial stress changes.

ticaloric e�ects for future technological applications, it is particularly relevant to
compute the cross-coupling contribution to the multicaloric adiabatic tempera-
ture change under moderate magnetic �eld changes of |µ0∆H| = 1T, which can
be readily provided by permanent magnets. For example, the �eld-induced mul-
ticaloric adiabatic temperature change when applying µ0H = 1T and σ = 20MPa
at T = 298K (see Figure 5.54 (e)) renders ∆T (S, 0 → 1T, 0 → 20MPa) = 5.5K,
from which the cross-coupling contribution accounts for ∆T coupling(S, 0→ 1T, 0→
20MPa) = 1.1K. Similarly, the �eld-induced multicaloric adiabatic temperature
change when removing µ0H = 1T and σ = 20MPa at T = 319K (see Figure
5.53 (c)) renders ∆T (S, 1 → 0T, 20 → 0MPa) = −5.4K, from which the cross-
coupling contribution accounts for ∆T coupling(S, 1 → 0T, 20 → 0MPa) = −1.2K.
Therefore, the cross-coupling contribution to the multicaloric adiabatic temper-
ature change also plays an important role on increasing the multicaloric thermal
response at low external �eld changes. Furthermore, as the cross-coupling contribu-
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tion is relevant at the edge of the multicaloric adiabatic temperature change (where
the contour lines are close to each other) induced by low external �eld changes,
it is important to highlight that it additionally helps on expanding the window of
external �eld changes were a giant multicaloric thermal response can be induced.

At even higher temperatures (see Figures 5.57 (d)-(h) and 5.58 (a)-(d)), the
cross-coupling contribution that favours the corresponding multicaloric adiabatic
temperature change is gradually intensi�ed, and moves towards the region of large
external �eld changes.

5.4.6 Reproducibility of the caloric e�ects under �eld cycling

The characterization of the reproducibility of a caloric e�ect under �eld cycling
is a relevant feature for potential technological applications. Nevertheless, as illus-
trated in Figures 5.41 and 5.42, the sample under study exhibits a poor reversibil-
ity of the single caloric e�ects for the magnetic �eld and stress changes considered
along this chapter to �eld-induce the phase transition. For instance, if we consider
that the Ni-Mn-Ga-Cu alloy under study exhibits a thermal hysteresis of ∼ 16K
(see Figure 5.37 (d) and (e)), and taking representative values for the shifts of
the transition temperature with magnetic �eld and stress (see Figure 5.37 (d) and

(e)) of
dTt
dµ0H

∼ 1.3KT−1 and
dTt
dσ
∼ 0.3KMPa−1, respectively, the alloy under

study exhibits an estimated e�ective hysteresis on magnetic �eld of ∼ 12T, and
of ∼ 54MPa on stress. Therefore, the single caloric e�ects are only expected to
be reproducible for higher external �eld changes than the corresponding e�ective
hysteresis.

While the application of such magnetic �elds is unfeasible for practical techno-
logical applications, the combined action of magnetic �eld and stress can enhance
the reproducibility of the magnetocaloric e�ect under �eld cycling by taking ad-
vantage of the magnetostructural character of the martensitic phase transition. In
particular, considering the cyclic application and removal of a moderate magnetic
�eld of |µ0∆H| ∼ 1T, the magnetocaloric e�ect is expected to be reproducible un-
der the sequence presented in Figure 5.59. Each panel of the sketched multicaloric
cycle shows the corresponding sample fraction at the high-temperature austenitic
phase as a function of temperature at the initial (dashed lines) and �nal (solid
lines) con�guration of magnetic �eld and applied stress. Before the discussion of
each cycle step, it is important to point out that partial hysteresis loops have not
been considered for the sake of simplicity.

1. Panel 1:
Removal of magnetic �eld shifts the phase transition to lower tempera-

tures (blue curves) and the sample, initially in the low-temperature marten-
sitic phase, partially transforms to the high-temperature austenitic phase, as
indicated by the black arrow.
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Figure 5.59: Sketch of a multicaloric reversible cycle showing the fraction of the
sample at the high-temperature austenitic phase as a function of temperature, for
selected values of magnetic �eld and uniaxial stress. Panel 1: Removal of magnetic
�eld in the absence of stress. Panel 2: Application of stress in the absence of
magnetic �eld. Panel 3: Application of magnetic �eld under an applied (constant)
stress. Panel 4: Removal of stress under an applied (constant) magnetic �eld.

2. Panel 2:
Application of a 50MPa compressive stress 14 shifts the phase transition

to higher temperatures (orange curves) in a way that the state of the sample
(in the absence of magnetic �eld and under compressive stress) lies on the
cooling branch of the inherent hysteresis of the phase transition.

3. Panel 3:
While keeping the stress constant, application of magnetic �eld shifts the

phase transitions to higher temperatures (red curves) and the sample trans-
forms back to the low-temperature martensitic phase, as indicated by the
black arrow.

4. Panel 4:
Removal of the 50MPa applied stress shifts the phase transition to lower

temperatures (grey curves) in a way that the state of the sample (under
magnetic �eld and in the absence of compressive stress) lies on the heating
branch of the hysteresis loop, thus recovering the initial state of the �rst
panel.

14The selected magnitude of the applied stress is smaller than the �eld necessary to overcome the
e�ective hysteresis, which would induce the back transformation to the low-temperature marten-
sitic phase.
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Hence, application of a moderate stress turns Ni-Mn-Ga-Cu into a suitable ma-
terial for refrigeration devices using permanent magnets.

Furthermore, it is also worth mentioning that the novel multicaloric cycle pro-
posed by T. Gottschall et. al in [64], which consists on the "hysteresis-positive"
approach discussed in section 5.3.7.1, can be adapted for materials exhibiting con-
ventional elastocaloric and magnetocaloric e�ects.

In such cases, application of magnetic �eld favours the low-temperature marten-
sitic phase, as does the application of uniaxial compressive stress. Therefore, to
induce the reverse phase transition, we can remove a previously applied uniaxial
compressive stress. Keeping the same working idea that the inherent hysteresis
of the magnetostructural �rst-order phase transition locks the sample phase af-
ter the external �eld pulses, thus preventing the back transformation, the mag-
netic �eld has to be applied under a constant compressive stress, favouring the
low-temperature martensitic phase, whereas the removal of the previously applied
compressive stress is used to favour the high-temperature phase and return the
system to the initial thermodynamic state.

5.4.7 Summary and conclusions

Employing our unique DSC that works under the simultaneous application of
magnetic �eld and compressive stress, we have been able to study the giant elas-
tocaloric, magnetocaloric and multicaloic e�ects in a Ni-Mn-Ga-Cu alloy. The com-
position of the studied sample, and in particular its Cu content, has been selected
in order to overlap the martensitic transition temperature and the austenitic Curie
temperature, which confers this alloy a pronounced coupling between the struc-
tural and magnetic degrees of freedom and leads to the exhibition of synergic
single caloric e�ects. A previous characterization of the sample was performed
with a commercial DSC, reporting a martensitic phase transition near room tem-
perature. The associated martensitic transition entropy change in the absence of
applied external �elds was determined to be ∆SMt = (−27.9 ± 0.5) JK−1kg−1 and
∆SAt = (27.2 ± 0.5) JK−1kg−1 for the forward and reverse martensitic transitions,
respectively.

The calorimetric measurements performed with our bespoke setup allowed us to
determine both the transition temperature phase diagram and the transition en-
tropy change behaviour within the magnetic �eld and compressive stress coordinate
space under study.

On the one hand, the transition temperature of the forward and reverse marten-
sitic transitions was identi�ed by the calorimetric peak position of the DSC mea-
surements. For all values of applied compressive stress, both forward and reverse
martensitic transition temperatures linearly increased when increasing the applied

magnetic �eld with slopes in the range
dTt
dµ0H

∈ [0.9, 1.6]KT−1, thus giving rise

to a conventional magnetocaloric e�ect. Likewise, for all values of applied mag-
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netic �eld, both forward and reverse martensitic transition temperatures linearly
increased when increasing the applied compressive stress with slopes in the range
dTt
dσ
∈ [0.27, 0.38]KMPa−1, leading to a conventional elastocaloric e�ect. Interest-

ingly, no e�ect of the secondary �eld has been found on the transition temperatures
shift rates with either magnetic �eld and uniaxial stress.

On the other hand, the DSC measurements allowed us to determine the tran-
sition entropy change of the forward and reverse martensitic phase transitions.
Due to the complexity of our bespoke DSC setup, some of the recorded ther-
mograms exhibit a poor signal-to-baseline ratio and a proper analysis of these
curves is not possible. Therefore, we have restricted our analysis to the thermo-
grams recorded for heating and cooling runs under applied compressive stresses
up to σ = 20MPa. As for the Cu-Zn-Al calibration sample, a constant calibra-
tion factor had to be introduced to the baseline corrected thermograms in or-
der to properly determine the corresponding transition entropy changes. Interest-
ingly, for all values of applied stress, both forward and reverse transition entropy
changes linearly decrease when increasing the applied magnetic �eld with slopes

in the range
d∆St
dµ0H

∈ [−1.1,−0.7] JK−1kg−1T−1. Furthermore, for all values of

applied magnetic �eld, both forward and reverse transition entropy changes lin-

early decrease when increasing the applied stress with slopes in the range
d∆St
dσ

∈
[−0.5,−0.2] JK−1kg−1MPa−1. These external �eld dependencies are not straight-
forward to understand, as they are in apparent contradiction with the fact that, for
the alloy under study, both vibrational and magnetic entropy contributions have
the same sign and synergically contribute to the transition entropy change. On
the one hand, the transition entropy change decrease when increasing the applied
magnetic �eld may point to a certain interplay between the vibrational entropy con-
tribution and the applied magnetic �eld, in a way that it decreases when increasing
the applied magnetic �eld. On the other hand, the transition entropy change de-
crease when increasing the applied stress may arise from a rearrangement of the
martensite variants when inducing the phase transition under a certain applied
stress. Overall, despite the experimental observation of these dependencies, further
studies are required in order to gain some insight into their origin.

The quasidirect derivation of the elastocaloric and magnetocaloric e�ects relies on
the computation of the corresponding experimental iso�eld-isostress entropy curves,
which are constructed from the integration of the corrected thermograms together
with the speci�c heat data at the martensitic and austenitic phases. As for the
previously studied Ni-Mn-In alloy, due to the strong coupling between the structural
and magnetic degrees of freedom, its speci�c heat will exhibit a certain dependence
on the applied magnetic �eld. Whereas a bespoke Peltier cell calorimeter was used
to measure the speci�c heat of the martensitic phase, a commercial relaxation
calorimeter (that allows us to reach higher temperatures) was used to measure the
speci�c heat of the austenitic phase. For both phases, the speci�c heat showed a
dependency on both the temperature and the applied magnetic �eld. Furthermore,
the speci�c heat measurements performed with the bespoke Peltier cell calorimeter
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allowed us also to compute the transition entropy change for the reverse martensitic
phase transition, which was found to linearly decrease when increasing the applied

magnetic �eld at a rate of
d∆SAt
dµ0H

= (−0.5± 0.1) JK−1kg−1T−1. The fact that we

have observed the same behaviour for the transition entropy change when increasing
the applied magnetic �eld with two distinct experimental setups provides reliability
to the performance of our bespoke DSC.

The �eld-induced isothermal entropy and adiabatic temperature changes for the
elastocaloric and magnetocaloric e�ects were computed by subtracting the cor-
responding experimental iso�eld-isostress entropy curves. As expected, both elas-
tocaloric and magnetocaloric e�ects have been found to be conventional. Inter-
estingly, both caloric e�ects show a crossover from inverse (at low temperatures)
to conventional (at high temperatures). While the conventional caloric e�ects are
associated with the �eld-induced martensitic phase transition, the inverse e�ects
that arise below the martensitic phase transition are associated with the transition
entropy change decrease when increasing either the applied magnetic �eld or the
compressive stress.

For both caloric e�ects, an increase of the external �eld change that drives the
martensitic phase transition (stress for the elastocaloric e�ect and magnetic �eld
for the magnetocaloric e�ect) enlarges the temperature window of the giant thermal
response for all values of the applied secondary �eld. Additionally, an increase of the
secondary �eld shifts towards higher temperatures the temperature window where
the giant caloric e�ects occur. While the maximum �eld-induced adiabatic tem-
perature change is found to increase linearly when increasing the driving �eld for
both caloric e�ects, the maximum �eld-induced isothermal entropy change initially
increases but then it shows a tendency to saturate. The saturation is completely
reached for the magnetocaloric e�ect under all applied stresses, whereas it is only
reached for the elastocaloric e�ect under certain applied magnetic �elds. This dif-
ferent behaviour indicates that we are able to fully drive the martensitic phase
transition with magnetic �eld, while we are close to fully drive the phase transi-
tion with compressive stress. Upon the removal of the external �eld, the maximum
isothermal entropy changes for the magnetocaloric and elastocaloric e�ects are
∆Smax = 24 JK−1kg−1 and ∆Smax = 22 JK−1kg−1, whereas upon the applica-
tion of the external �eld the maximum values are ∆Smax = −24 JK−1kg−1 and
∆Smax = −16.5 JK−1kg−1, respectively. Interestingly, after reaching saturation,
the maximum isothermal entropy change exhibits a certain decrease when further
increasing the driving �eld. This behaviour is in accordance with the transition
entropy change decrease when either increasing the applied magnetic �eld or the
compressive stress.

Additionally, it is signi�cant to highlight that under a moderate magnetic �eld
change of |µ0∆H| = 1T, the alloy under study exhibits a �eld-induced isothermal
entropy change of |∆Smax| ∼ 15 JK−1kg, which surpasses the values reported for
most of the Heusler alloys under the same magnetic �eld change [234�236].
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In order to compute the corresponding caloric and multicaloric e�ects for any
combination of magnetic �eld and uniaxial stress changes, we have de�ned two
di�erent analytical functions (one for the forward and the other one for the reverse
phase transition) to phenomenologically reproduce the behaviour of the iso�eld-
isostress entropy curves. The numerical treatment of our calorimetric data enabled
us to correctly reproduce the entropy of the alloy over the complete tempera-
ture, magnetic �eld and compressive stress coordinate space under study. Based
on the numerically simulated iso�eld-isostress entropy curves, we computed the
�eld-induced elastocaloric and magnetocaloric thermal responses. Upon the re-
moval of the external �eld, the maximum isothermal entropy changes for the sim-
ulated magnetocaloric and elastocaloric e�ects are ∆Smax = 22.4 JK−1kg−1 and
∆Smax = 21.1 JK−1kg−1, whereas upon the application of the external �eld the
maximum values are ∆Smax = −24 JK−1kg−1 and ∆Smax = −17.4 JK−1kg−1, re-
spectively. Overall, there is a good agreement between the numerically simulated
and the quasidirectly computed single caloric thermal responses, con�rming the
robustness of our analytical functions in order to phenomenologically reproduce
the experimental entropy curves.

As the analytical functions have been shown to be reliable over the complete
coordinate space under study, we have been able to completely characterize the
multicaloric thermal response for any external �eld change that �eld-induces either
the forward or reverse phase transition.

On the one hand, with respect to the multicaloric isothermal entropy changes,
the maximum values induced upon the removal of the applied external �elds are
∆Smax = 22.4 JK−1kg−1 at T = 316K and ∆Smax = 22.1 JK−1kg−1 at T = 317K,
whereas upon the application of the external �elds the maximum values induced
are ∆Smax = −23.7 JK−1kg−1 at T = 298K and ∆Smax = −24 JK−1kg−1 at
T = 297K. These values clearly exceed the maximum isothermal entropy change of
the simulated elastocaloric e�ect, whereas they match the maximum values for the
simulated magnetocaloric e�ect, meaning that we are able to fully drive the for-
ward and reverse phase transitions. When considering the potential of multicaloric
e�ects for technological applications, it is important to highlight that a moderate
magnetic �eld change of |µ0∆H| = 1T, which can be readily provided by perma-
nent magnets, combined with a moderate stress change of |∆σ| = 20MPa yields an
isothermal entropy change of ∆Smax = 20.3 JK−1kg−1 at T = 316K and ∆Smax =
20.4 JK−1kg−1 at T = 317K when �eld-inducing the reverse phase transition,
and of ∆Smax = −17.5 JK−1kg−1 at T = 298K and ∆Smax = −18 JK−1kg−1 at
T = 297K when �eld-inducing the forward phase transition. These values clearly
exceed the isothermal entropy changes obtained from the single caloric e�ects under
the same moderate external �eld changes.

On the other hand, with respect to the adiabatic temperature changes, the max-
imum values induced are found to clearly exceed the maximum adiabatic temper-
ature changes obtained for both single caloric e�ects. In addition, under the same
moderate external �eld changes previously considered, similar trends are observed
with respect to the isothermal entropy change when comparing the multicaloric
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e�ect with the single caloric e�ects.

On the whole, it is noteworthy that the combined change of two external �elds,
even if they are of moderate magnitude, signi�cantly enlarges the temperature
window where the alloy exhibits a giant �eld-induced thermal response.

In contrast to the previously studied Ni-Mn-In alloy, the multicaloric thermal
response of the alloy under study does not simply correspond to the sum of both
single caloric e�ects in the absence of a secondary �eld, as the cross-coupling contri-
bution between the structural and magnetic degrees of freedom will also play a role.
The numerically simulated entropy curves allowed us to compute the cross-coupling
contributions for both isothermal entropy and adiabatic temperature changes when
�eld-inducing either the forward or reverse phase transition. Interestingly, it has
been found that the cross-coupling contribution plays an important role on in-
creasing the multicaloric thermal response induced by low external �eld changes.
Furthermore, it is important to highlight that the cross-coupling contributions are
relevant at the edge of the multicaloric thermal response, where the contour lines
are close to each other, and they contribute on expanding the window of temper-
atures and external �eld changes where giant multicaloric e�ects can be induced.

The reversibility of the �eld-induced thermal response is of utmost importance
when considering the applicability of multicaloric materials for diverse technological
applications. In this regard, by taking advantage of the magnetostructural character
of the martensitic phase transition, a secondary �eld allows us to tune the e�ective
hysteresis of the phase transition. In particular, it has been shown that under a
suitable sequence of moderate magnetic �eld and compressive stress changes, the
reversibility of the �eld-induced thermal response can be improved. Furthermore,
it has been suggested that a modi�ed version of the multicaloric cycle proposed by
T. Gottschall et. al in [64] can be employed on materials exhibiting a conventional
magnetocaloric and elastocaloric e�ect, which also takes advantage of the inherent
hysteresis of �rst-order phase transitions to lock-in the sample at a certain phase.
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In this work, we have extensively investigated the giant caloric and multicaloric
e�ects arising from multiferroic materials displaying a magnetostructural �rst-order
phase transition with a strong coupling between the structural and magnetic de-
grees of freedom, which gives rise to a cross-coupled response to the application of
non-conjugated external �elds. The quantitative characterization of the caloric and
multicaloric thermal responses is based on the indirect, quasidirect or direct de-
termination of the adiabatic temperature and isothermal entropy changes induced
when the materials are subjected to a certain external �eld change.

The study of multiferroic materials exhibiting a cross-coupled response requires
the development of non-commercial advanced characterization systems that allow
the simultaneous application of diverse external �elds. The process of design, as-
sembly and calibration of such bespoke systems has been a keystone of this work.

Firstly, a bespoke di�erential scanning calorimeter allowing the application of
uniaxial compressive forces up to F = 1000N together with magnetic �elds up
to µ0H = 6T has been designed and built (see section 3.1.4). This setup is an
improved and upgraded version of a previous purpose-built DSC of our research
group, described in [92], that can simultaneously perform dilatometric measure-
ments and allows us to characterize the caloric and multicaloric thermal response
of multiferroic materials via the quasidirect and indirect methods. The performance
of this setup was initially tested with a Cu-Zn-Al shape-memory alloy, for which a
constant transition strain of ∆εM,A

t = (7.0 ± 0.3) % and transition entropy change
of ∆SM,A

t = (22.3 ± 0.5) JK−1kg−1 have been reported with accurate experimen-
tal setups. On the one hand, a constant calibration factor had to be introduced in
order to compute the transition entropy change from the thermograms measured
with our bespoke setup. While a constant behaviour within experimental errors
was reported for applied compressive forces up to F = 400N, a decrease was ob-
served under higher loads and a sensitivity factor had to be introduced in order
to correct those measurements. On the other hand, the dilatometric measurements
showed a decreasing tendency when increasing the applied stress and had to be cor-
rected with a sensitivity factor. After the correction of both measurement series,
the thermal response computed from both indirect and quasidirect methods showed
a concordant behaviour, but the minor accuracy of the dilatometric measurements
lead to a slight underestimation of the computed elastocaloric e�ect via the indirect
method. It is predicted that the complete martensitic phase transition of this alloy
can be cyclically induced under stress changes of |∆σ| > 57MPa, leading to a large
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refrigerant capacity comparable to the best magnetocaloric materials [117]. These
results, which are presented in section 3.3 and published in [88], envisage promising
perspectives for the development of refrigeration devices based on the elastocaloric
e�ect. Overall, these experiments have demonstrated that using a constant calibra-
tion factor, the performance of our bespoke di�erential scanning calorimeter allows
an accurate characterization of the thermal response under applied compressive
forces up to F = 400N via the quasidirect method, proving it as a unique tool for
the characterization of multiferroic materials.

Secondly, two distinct setups to perform direct adiabatic thermometry measure-
ments under the in�uence of uniaxial compressive stress and magnetic �eld have
been designed and built. On the one hand, the �rst setup uses an electromagnet
as the magnetic �eld source, and allows the application of uniaxial compressive
forces up to F = 1000N together with magnetic �elds up to µ0H = 2T. This
setup, which is described in section 3.2.2, is complementary to the bespoke DSC,
allowing us to compare direct measurements with quasidirect or indirect results of
the �eld-induced thermal response. On the other hand, the second setup is em-
bedded inside a solenoid, which allows us to apply high-strength magnetic �eld
pulses up to µ0H = 50T that last few milliseconds, and can simultaneously per-
form strain measurements of the sample. This setup, described in section 3.2.3,
was designed and built during my stay at the Dresden High Magnetic Field Labo-
ratory (HLD-EMFL) in close collaboration with Dr. Tino Gottschall and Eduard
Bykov. Preliminary experiments were conducted on a Ni-Mn-Ti-Co Heusler alloy,
which was selected due to its enhanced mechanical properties together with the gi-
ant elastocaloric and magnetocaloric e�ects that it displays around the �rst-order
martensitic phase transition. Despite the complexity of this bespoke setup, our de-
vice allows to directly measure the multicaloric thermal response under uniaxial
load and pulsed magnetic �elds with high quality, as discussed in [66].

Due to the di�erent time scales involved on the magnetic �eld sweeping rates in
both setups, they also allow us to gain insight into the dynamics of the �eld-induced
phase transition, and lay the �rst stone on the direct thermometry of �eld-induced
multicaloric e�ects.

Our research has focused on two distinct families of multiferroic materials, Fe-Rh
and Ni-Mn-based Heusler alloys, when inducing their magnetostructural �rst-order
phase transition with magnetic �eld, uniaxial compressive stress or a combination
of both, which gives rise to magnetocaloric, elastocaloric or multicaloric e�ects,
respectively.

Nowadays, Fe-Rh is considered one of the benchmark materials exhibiting gi-
ant caloric and multicaloric e�ects [134]. Nevertheless, despite the early studies
performed by S. Nikitin et. al. on the giant elastocaloric e�ect exhibited by this
alloy [54], no further studies were performed and a complete characterization of
the elastocaloric e�ect was lacking. We have used the setup described in section
3.2.2 to perform direct thermometry measurements of the magnetocaloric e�ect un-
der a constant compressive stress. Interestingly, application of compressive stress
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shifts the thermal response to higher temperatures, which is consistent with a con-
ventional elastocaloric e�ect, and is in contrast with the inverse e�ect previously
reported under tensile stresses [54]. A detailed justi�cation for this apparent dis-
crepancy has been provided. The good concordance between direct measurements
and quasidirect estimates, computed from iso�eld entropy curves where the e�ect of
stress was taken as a pure shift to the transition temperature, provided reliability to
the quasidirect computation of the thermal response of this alloy and allowed us to
completely characterize the elastocaloric thermal response under di�erent constant
magnetic �elds. The application of a constant secondary �eld drastically tunes the
temperature widow where the giant elastocaloric e�ect occurs without signi�cantly
increasing the maximum thermal response. Despite the fact that the elastocaloric
e�ect is only expected to be reversible for stress changes of |∆σ| > 430MPa, it has
been shown that a suitable combination of a moderate magnetic �eld and compres-
sive stress can tune the e�ective hysteresis of the alloy and enhance the reversibility
of the elastocaloric e�ect. These results are presented in section 5.1 and published
in [65].

The development of new multiferroic Ni-Mn-based Heusler alloys exhibiting a
strong metamagnetic phase transition that requires low driving magnetic �elds to-
gether with a good cyclical stability of the elastocaloric e�ect is of utmost impor-
tance for the sake of technological applications. In this regard, a Ni-Fe-Co-Mn-Sn
Heusler alloy with a tailored composition has been selected as a suitable candidate.
We have performed isothermal DSC measurements with a bespoke setup previ-
ously designed and built by our research group, described in section 3.1.3. These
measurements reported a strong increase of the magnetic �eld necessary to drive
the metamagnetic phase transition when decreasing the temperature, which is con-
sistent with an inverse magnetocaloric e�ect, and allowed us to perform a direct
characterization of the magnetocaloric isothermal entropy change within a broad
temperature range. Under a moderate magnetic �eld change of |µ0∆H| = 2T, the
alloy under study yields |∆S| = (17 ± 1)JK−1kg−1. The direct characterization of
�eld-induced caloric e�ects is crucial, as these measurements are highly reliable but
scarce in the literature. Furthermore, the excellent agreement reported between the
direct measurements and the indirect estimates computed by two di�erent meth-
ods, which are described in [61], has been essential for providing reliability to the
computation of the corresponding multicaloric e�ects. These results are discussed
in section 5.2 and published in [61].

The potential of our bespoke DSC to thoroughly characterize the caloric and mul-
ticaloric thermal response of a multiferroic material was investigated on a prototype
Ni-Mn-In alloy with a martensitic transition temperature close to the austenitic
Curie temperature, which conferred it a pronounced coupling between the struc-
tural and magnetic degrees of freedom.

The calorimetric measurements allowed us to characterize the transition temper-
ature phase diagram within the complete coordinate space under study, reporting
an inverse magnetocaloric e�ect and a conventional elastocaloric e�ect. Neverthe-
less, some thermograms show a poor signal-to baseline ratio due to the complexity
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of our setup, and the transition entropy change could only be computed for the
thermograms recorded upon heating within a region of the coordinate space. The
transition entropy change was found to decrease when increasing the applied mag-
netic �eld, and was parametrized as ∆St(µ0H) = 38(1)− 1.9(5)µ0H (JK−1kg−1).
The reported decrease rate with magnetic �eld is in accordance with previous stud-
ies on the transition entropy change dependency with the transition temperature for
a set of Ni-Mn-In alloys [220], and it arises from the competition between the vibra-
tional and magnetic entropy contributions to the transition entropy change in alloys
exhibiting an inverse magnetocaloric e�ect. The quasidirect estimates of the giant
elastocaloric and magnetocaloric e�ects could only be computed for the thermody-
namic processes that �eld-induce the reverse phase transition (which corresponds
to a heating process). Interestingly, while application of a constant compressive
stress did not signi�cantly in�uence the magnitude of the magnetocaloric e�ect,
application of a constant magnetic �eld signi�cantly enhanced the corresponding
elastocaloric e�ect.

The computation of the multicaloric thermal response for any external �eld
change within the coordinate space under study requires the de�nition of a numer-
ical function to phenomenologically reproduce the experimental iso�eld-isostress
entropy curves. The robustness of this numerical analysis is con�rmed by the good
agreement between the numerically simulated and quasidirectly computed elas-
tocaloric and magnetocaloric e�ects. With respect to the multicaloric e�ect, our
results show that the combined change of magnetic �eld and compressive stress
not only increases the �eld-induced thermal response with respect to single caloric
e�ects, but also enlarges the temperature window where the alloy exhibits a giant
thermal response. Furthermore, when combining a moderate magnetic �eld change
of |µ0∆H| = 1T with a stress change of |∆σ| = 40MPa, the multicaloric thermal
response yields ∆Smax = 15.1 JK−1kg−1 at T = 299K, which is more than double
the maximum magnetocaloric isothermal entropy change that can be obtained from
the same moderate magnetic �eld change. Similar trends are also observed when
considering the adiabatic temperature change, and it is expected that they may be
also valid for other multiferroic materials.

The reversibility of the �eld-induced thermal response is of utmost importance
for the sake of technological applications. Taking advantage of the magnetostruc-
tural character of the martensitic phase transition, two di�erent approaches have
been discussed. As previously considered for Fe-Rh, it has been shown that a suit-
able combination of a moderate magnetic �eld and compressive stress can tune
the e�ective hysteresis of the alloy and enhance the reversibility of the magne-
tocaloric e�ect. In contrast, the feasibility of a novel multicaloric cycle proposed
by T. Gottschall et. al. in [64] has been tested in this alloy, where instead of min-
imizing the inherent hysteresis of �rst-order phase transitions, we take advantage
of it to lock-in the sample at a certain phase. Direct thermometry measurements
were performed with the bespoke setup presented in 3.2.2, showing that under this
novel exploiting-hysteresis cycle an adiabatic temperature change of |∆T | ≈ 1.2K
at T = 296K can be cyclically obtained, which clearly outperforms the reversible
adiabatic temperature change under a cyclic magnetic �eld for the same sample.
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Furthermore, it is important to highlight that this novel multicaloric cycle only
requires the application of magnetic �eld over a small region to induce the irre-
versible phase transition, as the inherent hysteresis locks-in the sample phase when
the magnetic �eld is removed. All these results are discussed along section 5.3 and
published in [62, 64].

So far, the combined e�ect of magnetic �eld and compressive stress has only
been studied on multiferroic alloys with non-synergic caloric e�ects, exhibiting an
inverse magnetocaloric e�ect together with a conventional elastocaloric e�ect. For
those alloys, due to the di�erent nature of both caloric e�ects, an asymmetric
external �eld change is necessary in order to �eld-induce the multicaloric thermal
response and as a consequence, it corresponds to the simple sum of the single caloric
e�ects in the absence of a secondary �eld. Conversely, for multiferroic materials
with synergic caloric e�ects, where both magnetocaloric and elastocaloric e�ects
are conventional, the multicaloric thermal response does not correspond to the
simple sum of both single caloric e�ects in the absence of a secondary �eld, as
the cross-coupled response of the material will also play a role. Such multiferroic
materials are particularly appealing with respect to their potential for technological
applications based on multicaloric e�ects.

In this regard, a Ni-Mn-Ga-Cu Heusler alloy with a tailored composition in order
to overlap the martensitic transition temperature and the austenitic Curie temper-
ature, conferring it a pronounced coupling between the structural and magnetic de-
grees of freedom, has been selected as a prototype multiferroic material exhibiting
synergic caloric e�ects. A thorough characterization of the caloric and multicaloric
thermal response, including the computation of the cross-coupled contribution to
the multicaloric e�ect, has been performed with our bespoke DSC.

The calorimetric measurements allowed us to characterize the transition tem-
perature phase diagram within the complete coordinate space under study, report-
ing both a conventional magnetocaloric and elastocaloric e�ects. Nevertheless, the
transition entropy change could only be computed for the thermograms recorded
upon heating and cooling within a portion of the coordinate space under study.
Interestingly, for all values of applied compressive stress, both forward and reverse
transition entropy changes were found to linearly decrease when increasing the ap-

plied magnetic �eld with rates in the range
d∆St
dµ0H

∈ [−1.1,−0.7] JK−1kg−1T−1.

Furthermore, for all values of applied magnetic �eld, both forward and reverse
transition entropy changes were also found to linearly decrease when increasing

the applied stress with rates in the range
d∆St
dσ

∈ [−0.5,−0.2] JK−1kg−1MPa−1.
Although further studies are required in order to gain some light into the ori-
gin of such behaviour, it must be mentioned that a decrease with a similar rate
when increasing the applied magnetic �eld has also been observed from speci�c
heat measurements. The quasidirect estimates of the �eld-induced elastocaloric
and magnetocaloric e�ects were computed for both the forward and reverse phase
transitions, providing a complete characterization of the thermal response. Under
a moderate magnetic �eld change of |µ0∆H| = 1T, the alloy under study yields an
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isothermal entropy change around |∆Smax| ∼ 15 JK−1kg, which outperforms most
of the reported Heusler alloys [234�236]. Interestingly, while application of a con-
stant secondary �eld decreased the magnitude of the isothermal entropy change,
no systematic dependence was observed for the adiabatic temperature change.

In a similar way to that followed for Ni-Mn-In, two numerical functions are de-
�ned in order to phenomenologically reproduce the experimental iso�eld-isostress
entropy curves upon heating and cooling. The good agreement between the nu-
merically simulated and quasidirectly computed elastocaloric and magnetocaloric
e�ects con�rms the robustness of our numerical analysis and allows us to com-
pletely characterize the multicaloric thermal response for any external �eld change
under study. When combining a moderate magnetic �eld change of |µ0∆H| = 1T
with a stress change of |∆σ| = 20MPa, the multicaloric thermal response increases
to ∆Smax = 20.4 JK−1kg−1 at T = 317K when inducing the reverse phase transi-
tion, and up to ∆Smax = −18 JK−1kg−1 at T = 297K when inducing the forward
phase transition. These values clearly exceed the isothermal entropy changes that
can be obtained from the single caloric e�ects under the same moderate external
�eld changes, and similar trends are also observed for the adiabatic temperature
change. Furthermore, the combined change of magnetic �eld and stress, even if
they are of moderate magnitude, enlarges the temperature window where the alloy
exhibits a giant �eld-induced thermal response.

To complete the analysis of the multicaloric thermal response, we have com-
puted the cross-coupled contribution between the structural and magnetic degrees
of freedom to the isothermal entropy and adiabatic temperature changes. Interest-
ingly, we found that the cross-coupled contribution not only plays an important
role on increasing the multicaloric thermal response induced by moderate external
�eld changes, but also contributes on expanding the window of temperature and
external �eld changes where the alloy exhibits a giant multicaloric e�ect. All these
results are discussed along section 5.4.

Overall, this work has shown that the development of advanced characterization
devices that allow the simultaneous application of magnetic �eld and uniaxial com-
pressive stress is a unique strategy to accurately characterize the thermal response
of multiferroic materials with a strong coupling between the structural and mag-
netic degrees of freedom. For the purpose of the present work, we have focused on
Ni-Mn-based Heusler alloys, thoroughly characterizing the advantages of the mul-
ticaloric e�ect with respect to the single caloric (elastocaloric and magnetocaloric)
e�ects in alloys exhibiting either synergic or non-synergic single caloric e�ects. It is
expected that many of the trends found along sections 5.3 and 5.4 may also be valid
for other multiferroic materials with a strong coupling between di�erent degrees of
freedom when subjected to the combined e�ect of diverse external �elds.

Moreover, while many e�orts are being devoted on the development of refrigera-
tion devices based on single caloric e�ects [44], the prominent results found along
this thesis should inspire the development of novel refrigeration devices that take
advantage of the multicaloric thermal response exhibited by multiferroic materials.



Bibliography

[1] Intergovernmental Panel on Climate Change. �Sixth Assessment Report,
Summary for Policymakers�. (2021), [Online]. Available: https://www.ipcc.
ch/report/ar6/wg1/#SPM.

[2] United Nations. �Paris Agreement�. (2015), [Online]. Available: https://
unfccc.int/process- and- meetings/the- paris- agreement/the- paris-

agreement.

[3] J. L. Dupont, P. Domanski, P. Lebrun, and F. Ziegler. �38th Note on Re-
frigeration Technologies: The Role of Refrigeration in the Global Economy�,
International Institute of Refrigeration. (2019), [Online]. Available: https:
//iifiir.org/en/fridoc/the-role-of-refrigeration-in-the-global-

economy-2019-142028.

[4] N. Shah et al. �Opportunities for simultaneous e�ciency improvement and
refrigerant transition in air conditioning�, International Energy Analysis De-
partment, Lawrence Berkeley National Laboratory. (2017), [Online]. Avail-
able: https : / / international . lbl . gov / publications / opportunities -

simultaneous-efficiency.

[5] International Energy Agency. �The Future of Cooling�. (2018), [Online].
Available: https://www.iea.org/reports/the-future-of-cooling.

[6] R. Gauÿ, G. Homm, and O. Gut�eisch, �The resource basis of magnetic
refrigeration�, Journal of Industrial Ecology, vol. 21, pp. 1291�1300, 2017.

[7] O. Sari and M. Balli, �From conventional to magnetic refrigerator technol-
ogy�, International Journal of Refrigeration, vol. 37, pp. 8�15, 2014.

[8] O. Gut�eisch, M. A. Willard, E. Brück, C. H. Chen, S. G. Sankar, and J. Pin
Liu, �Magnetic materials and devices for the 21st century: Stronger, lighter
and more energy e�cient�, Advanced Materials, vol. 23, pp. 821�842, 2011.

[9] W. Goetzler, R. Zogg, J. Young, and C. Johnson. �Energy savings poten-
tial and RD&D opportunities for non-vapor-compression HVAC technolo-
gies�, US Department of Energy. (2014), [Online]. Available: https://www.
energy.gov/eere/buildings/downloads/non- vapor- compression- hvac-

technologies-report.

[10] W. Goetzler, R. Shandross, J. Young, O. Petritchenko, D. Ringo, and S.
McClive. �Energy savings potential and RD&D opportunities for commer-
cial building HVAC systems�, US Department of Energy. (2017), [Online].
Available: https://www.energy.gov/sites/prod/files/2017/12/f46/bto-
DOE-Comm-HVAC-Report-12-21-17.pdf.

https://www.ipcc.ch/report/ar6/wg1/#SPM
https://www.ipcc.ch/report/ar6/wg1/#SPM
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://iifiir.org/en/fridoc/the-role-of-refrigeration-in-the-global-economy-2019-142028
https://iifiir.org/en/fridoc/the-role-of-refrigeration-in-the-global-economy-2019-142028
https://iifiir.org/en/fridoc/the-role-of-refrigeration-in-the-global-economy-2019-142028
https://international.lbl.gov/publications/opportunities-simultaneous-efficiency
https://international.lbl.gov/publications/opportunities-simultaneous-efficiency
https://www.iea.org/reports/the-future-of-cooling
https://www.energy.gov/eere/buildings/downloads/non-vapor-compression-hvac-technologies-report
https://www.energy.gov/eere/buildings/downloads/non-vapor-compression-hvac-technologies-report
https://www.energy.gov/eere/buildings/downloads/non-vapor-compression-hvac-technologies-report
https://www.energy.gov/sites/prod/files/2017/12/f46/bto-DOE-Comm-HVAC-Report-12-21-17.pdf
https://www.energy.gov/sites/prod/files/2017/12/f46/bto-DOE-Comm-HVAC-Report-12-21-17.pdf


240 BIBLIOGRAPHY

[11] M. W. Zemansky and R. H. Dittman, Heat and Thermodynamics. US:
McGraw-Hill Inc., 1981.

[12] L. Mañosa, A. Planes, and M. Acet, �Advanced materials for solid state
refrigeration�, Journal of Materials Chemisty A, vol. 1, pp. 4925�4936, 2013.

[13] J. A. Gough, �A description of a property of caoutchouc, or Indian rub-
ber; with some re�ections on the cause of the elasticity of this substance�,
Memoirs of the Literacy and Philosophical Society of Manchester, vol. 1,
pp. 288�295, 1805.

[14] J. P. Joule, �On some thermo-dynamic properties of solids�, Philosophical
Transactions of the Royal Society, vol. 149, pp. 91�131, 1859.

[15] W. Thomson, �On the thermoelastic and thermomagnetic properties of mat-
ter�, The Quarterly Journal of Pure and Applied Mathematics, vol. 1, pp. 57�
77, 1855.

[16] W. Thomson, �On the thermoelastic, thermomagnetic, and pyroelectric prop-
erties of matter�, The London, Edinburgh, and Dublin Philosophical Maga-
zine and Journal of Science, vol. 5, pp. 4�27, 1878.

[17] P. Weiss and A. Piccard, �Le phénomène magnétocalorique�, Journal de
Physique Théorique et Appliquée, vol. 7, pp. 103�109, 1917.

[18] A. Smith, �Who discovered the magnetocaloric e�ect?�, The European Phys-
ical Journal H, vol. 38, pp. 507�517, 2013.

[19] P. Kobeko and J. Kurtschatov, �Dielektrische eigenschaften der seignette-
salzkristalle�, Zeitschrift für Physik, vol. 66, pp. 192�205, 1930.

[20] K. H. J. Buschow and F. R. de Boer, Physics of Magnetism and Magnetic
Materials. New York: Kluwer Academic Publishers, 2003.

[21] C. Kittel, Introduction to Solid State Physics. US: John Wiley & Sons, Inc.,
2004.

[22] W. F. Giauque and D. P. MacDougall, �Attainment of temperatures below
1◦ absolute by demagnetization of Gd2(SO4)3 · 8H2O�, Physical Review,
vol. 43, p. 768, 1933.

[23] W. F. Giauque and D. P. MacDougall, �The production of temperatures
below one degree absolute by adiabatic demagnetization of Gadolinium Sul-
fanate�, Journal of the American Chemical Society, vol. 57, pp. 1175�1185,
1935.

[24] S. C. Collins and F. J. Zimmerman, �Cyclic adiabatic demagnetization�,
Physical Review, vol. 90, pp. 991�992, 1953.

[25] C. V. Heer, C. B. Barnes, and J. G. Daunt, �The design and operation of a
magnetic refrigerator for maintaining temperatures below 1◦K�, Review of
Scienti�c Instruments, vol. 25, pp. 1088�1098, 1954.

[26] G. V. Brown, �Magnetic heat pumping near room temperature�, Journal of
Applied Physics, vol. 47, pp. 3673�3680, 1976.

[27] V. K. Pecharsky and K. A. Gschneidner Jr., �Giant magnetocaloric e�ect
in Gd5(Si2Ge2)�, Physical Review Letters, vol. 78, pp. 4494�4497, 1997.



BIBLIOGRAPHY 241

[28] S. A. Nikitin, G. Myalikgulyev, A. M. Tishin, M. P. Annaorazov, K. A.
Asatryan, and A. L. Tyurin, �The magnetocaloric e�ect in Fe49Rh51 com-
pound�, Physics Letters A, vol. 148, pp. 363�366, 1990.

[29] A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur,
�Giant electrocaloric e�ect in thin-�lm PbZr0.95Ti0.05O3�, Science, vol. 311,
pp. 1270�1271, 2006.

[30] E. Bonnot, R. Romero, L. Mañosa, E. Vives, and A. Planes, �Elastocaloric
e�ect associated with the martensitic transition in shape-memory alloys�,
Physical Review Letters, vol. 100, 125901−1�125901−4, 2008.

[31] C. Rodriguez and L. C. Brown, �The thermal e�ect due to stress-induced
martensite formation in β-CuAlNi single crystals�, Metallurgical Transac-
tions A, vol. 11A, pp. 147�150, 1980.

[32] L. Mañosa et al., �Giant solid-state barocaloric e�ect in the Ni−Mn−In mag-
netic shape memory alloy�, Nature Materials, vol. 9, pp. 478�481, 2010.

[33] X. Moya and N. D. Mathur, �Caloric materials for cooling and heating�,
Science, vol. 370, pp. 797�803, 2020.

[34] K. A. Gschneidner Jr., V. K. Pecharsky, and A. O. Tsokol, �Recent develop-
ments in magnetocaloric materials�, Reports on Progress in Physics, vol. 68,
pp. 1479�1539, 2005.

[35] A. Smith, C. R. H. Bahl, R. Bjørk, K. Engelbrecht, K. K. Nielsen, and N.
Pryds, �Materials challenges for high performance magnetocaloric refriger-
ation devices�, Advanced Energy Materials, vol. 2, pp. 1288�1318, 2012.

[36] V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, and
A. Conde, �Magnetocaloric e�ect: From materials research to refrigeration
devices�, Progress in Materials Science, vol. 93, pp. 112�232, 2018.

[37] M. Valant, �Electrocaloric materials for future solid-state refrigeration tech-
nologies�, Progress in Materials Science, vol. 57, pp. 980�1009, 2012.

[38] L. Mañosa and A. Planes, �Materials with giant mechanocaloric e�ects:
Cooling by strength�, Advanced Materials, vol. 29, 1603607−1�1603607−25,
2017.

[39] L. Mañosa and A. Planes, �Solid-state cooling by stress: A perspective�,
Applied Physics Letters, vol. 116, 050501−1�050501−5, 2020.

[40] S. Fähler et al., �Caloric e�ects in ferroic materials: New concepts for cool-
ing�, Advanced Engineering Materials, vol. 14, pp. 10�19, 2012.

[41] X. Moya, S. Kar-Narayan, and N. D. Mathur, �Caloric materials near ferroic
phase transitions�, Nature Materials, vol. 13, pp. 439�450, 2014.

[42] I. Takeuchi and K. Sandeman, �Solid-state cooling with caloric materials�,
Physics Today, vol. 68, pp. 48�54, 2015.

[43] F. Scarpa, G. Taglia�co, and L. A. Taglia�co, �A classi�cation methodology
applied to existing room temperature magnetic refrigerators up to the year
2014�, Renewable and Sustainable Energy Reviews, vol. 50, pp. 497�503,
2015.



242 BIBLIOGRAPHY

[44] A. Greco, C. Aprea, A. Maiorino, and C. Masselli, �A review of the state of
the art of solid-state caloric cooling processes at room-temperature before
2019�, International Journal of Refrigeration, vol. 106, pp. 66�88, 2019.

[45] X. Moya, E. Defay, V. Heine, and N. D. Mathur, �Too cool to work�, Nature
Physics, vol. 11, pp. 202�205, 2015.

[46] H. Hou, S. Qian, and I. Takeuchi, Materials, physics, and systems for mul-
ticaloric cooling, 2021. arXiv: 2111.12180 [cond-mat.mtrl-sci].

[47] T. Gottschall et al., �Making a cool choice: The materials library of magnetic
refrigeration�, Advanced Energy Materials, vol. 9, 1901322−1�1901322−13,
2019.

[48] O. Gut�eisch et al., �Mastering hysteresis in magnetocaloric materials�,
Philosophical Transactions of the Royal Society A, vol. 374, p. 20 150 308,
2016.

[49] B. Monfared, R. Furberg, and B. Palm, �Magnetic vs. vapor-compression
household refrigerators: A preliminary comparative life cycle assessment�,
International Journal of Refrigeration, vol. 42, pp. 69�76, 2014.

[50] B. Nair et al., �Large electrocaloric e�ects in oxide multilayer capacitors
over a wide temperature range�, Nature, vol. 575, pp. 468�472, 2019.

[51] E. Stern-Taulats, T. Castán, L. Mañosa, A. Planes, N. D. Mathur, and X.
Moya, �Multicaloric materials and e�ects�, MRS bulletin, vol. 43, pp. 295�
299, 2018.

[52] M. M. Vopson, �The multicaloric e�ect in multiferroic materials�, Solid State
Communications, vol. 152, pp. 2067�2070, 2012.

[53] A. Planes, T. Castán, and A. Saxena, �Thermodynamics of multicaloric
e�ects in multiferroics�, Philosophical Magazine, vol. 94(17), pp. 1893�1908,
2014.

[54] S. A. Nikitin, G. Myalikgulyev, M. P. Annaorazov, A. L. Tyurin, R. W.
Myndyev, and S. A. Akopyan, �Giant elastocaloric e�ect in FeRh alloy�,
Physics Letters A, vol. 171, pp. 234�236, 1992.

[55] M. P. Annaorazov, S. A. Nikitin, A. L. Tyurin, K. A. Asatryan, and A. K.
Dovletov, �Anomalously high entropy change in FeRh alloy�, Journal of
Applied Physics, vol. 79(3), pp. 1689�1695, 1996.

[56] N. A. de Oliveira, �Entropy change upon magnetic �eld and pressure varia-
tions�, Applied Physics Letters, vol. 90, 052501−1�052501−3, 2007.

[57] Y. Y. Gong et al., �Electric �eld control of the magnetocaloric e�ect�, Ad-
vanced Materials, vol. 27, pp. 801�805, 2015.

[58] Y. Liu, L. C. Phillips, R. Mattana, M. Bibes, A. Barthélémy, and B. Dkhil,
�Large reversible caloric e�ect in FeRh thin �lms via a dual-stimulus mul-
ticaloric cycle�, Nature Communications, vol. 7, 11614−1�11614−6, 2016.

[59] E. Stern-Taulats et al., �Giant multicaloric response of bulk Fe49Rh51�,
Physical Review B, vol. 95, 104424−1�104424−11, 2017.

https://arxiv.org/abs/2111.12180


BIBLIOGRAPHY 243

[60] F. X. Liang et al., �Experimental study on coupled caloric e�ect driven by
dual �elds in metamagnetic Heusler alloy Ni50Mn35In15�, Applied Physics
Letters Materials, vol. 7, 051102−1�051102−8, 2019.

[61] Y. Qu et al., �Outstanding caloric performances for energy-e�cient mul-
ticaloric cooling in a Ni−Mn-based multifunctional alloy�, Acta Materialia,
vol. 177, pp. 46�55, 2019.

[62] A. Gràcia-Condal, T. Gottschall, L. Pfeu�er, O. Gut�eisch, A. Planes, and
L. Mañosa, �Multicaloric e�ects in metamagnetic Heusler Ni−Mn−In un-
der uniaxial stress and magnetic �eld�, Applied Physics Reviews, vol. 7,
041406−1�041406−14, 2020.

[63] J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore, and O. Gut�eisch, �Giant
magnetocaloric e�ect driven by structural transitions�, Nature Materials,
vol. 11, pp. 620�626, 2012.

[64] T. Gottschall et al., �A multicaloric cooling cycle that exploits thermal hys-
teresis�, Nature Materials, vol. 17, pp. 929�934, 2018.

[65] A. Gràcia-Condal, E. Stern-Taulats, A. Planes, and L. Mañosa, �Caloric
response of Fe49Rh51 subjected to uniaxial load and magnetic �eld�, Physical
Review Materials, vol. 2, 084413−1�084413−8, 2018.

[66] T. Gottschall et al., �Advanced characterization of muticaloric materials
in pulsed magnetic �elds�, Journal of Applied Physics, vol. 127, 185107−1�
185107−7, 2020.

[67] F. W. Sears and G. L. Salinger, Thermodynamics, Kinetic theory and Sta-
tistical Thermodynamics. Massachusetts: Addison-Weisley Pub. Co., 1975.

[68] V. Wadhawan, Introduction to Ferroic Materials. US: CRC Press, 2000.

[69] L. D. Landau, �On the theory of phase transitions�, in Collected Papers of
L.D. Landau, D. Ter Haar, Ed., London: Pergamon press, 1965, pp. 193�
216.

[70] R. E. Newnham, Properties of Materials. New York: Oxford University
Press, 2005.

[71] G. Jaeger, �The Ehrenfest classi�cation of phase transitions: Introduction
and evolution�, Archive for History of Exact Sciences, vol. 53, pp. 51�81,
1998.

[72] J. M. Yeomans, Statistical Mechanics of Phase Transitions. New York: Ox-
ford University Press, 1992.

[73] J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. Newman, The Theory of
Critical Phenomena: an Introduction to the Renormalization Group. New
York: Oxford University Press, 1992.

[74] L. Caron, Z. Q. Ou, T. T. Nguyen, D. T. Cam Thanh, O. Tegus, and E.
Brück, �On the determination of the magnetic entropy change in materials
with �rst-order transitions�, Journal of Magnetism and Magnetic Materials,
vol. 321, pp. 3559�3566, 2009.



244 BIBLIOGRAPHY

[75] A. Planes, L. Mañosa, and M. Acet, �Magnetocaloric e�ect and its relation
to shape-memory properties in ferromagnetic Heusler alloys�, Journal of
Physics: Condensed Matter, vol. 21(23), p. 233 201, 2009.

[76] A. M. Tishin and Y. I. Spichkin, The Magnetocaloric E�ect and its Appli-
cations. US: CRC Press, 2003.

[77] A. M. Tishin, �Magnetocaloric e�ect in strong magnetic �elds�, Cryogenics,
vol. 30(2), pp. 127�136, 1990.

[78] L. Mañosa et al., �Inverse barocaloric e�ect in the giant magnetocaloric
La−Fe−Si−Co compound�, Nature Communications, vol. 2:595, pp. 1�5, 2011.

[79] T. Krenke et al., �Inverse magnetocaloric e�ect in ferromagnetic Ni−Mn−Sn
alloys�, Nature Materials, vol. 4, pp. 450�454, 2005.

[80] J. Peräntie, J. Hagberg, A. Uusimäki, and H. Jantunen, �Electric-�eld-
induced dielectric and temperature changes in a <011>-oriented
Pb(Mg1/3Nb2/3)O3PbTiO3 single crystal�, Physical Review B, vol. 82,
134119−1�134119−8, 2010.

[81] D. A. Porter, K. E. Easterling, and M. Y. Sherif, Phase Transformations in
Metals and Alloys. US: CRC Press, 2009, pp. 383�435.

[82] W. Hemminger and G. Höhne, Calorimetry. Fundamentals and Practice.
Weinheim: Verlag Chemie GmbH, 1984.

[83] G. T. Armstrong, �The calorimeter and its in�uence on the development of
Chemistry�, Journal of Chemical Education, vol. 41(6), pp. 297�307, 1964.

[84] J. Marcos, F. Casanova, X. Batlle, A. Labarta, A. Planes, and L. Mañosa,
�A high-sensitivity di�erential scanning calorimeter with magnetic �eld for
magnetostructural transitions�, Review of Scienti�c Instruments, vol. 74(11),
pp. 4768�4771, 2003.

[85] M. M. Gilbert Sinicki and J.-L. Macqueron, �Calorimétrie�, Comptes Rendus
de l'Académie des Sciences de Paris - Série B, vol. 264, pp. 1697�1699, 1967.

[86] J. Ortin, L. Mañosa, C. M. Friend, A. Planes, and M. Yoshikawa, �Calori-
metric measurements on the β 
 γ‘ and β 
 β‘ martensitic transformations
in a Cu−Al−Ni single crystal subjected to uniaxial tensile stress�, Philosoph-
ical Magazine A, vol. 65(2), pp. 461�475, 1992.

[87] M. C. Gallardo, J. Jiménez, and J. del Cerro, �Experimental device for
measuring the in�uence of a uniaxial stress on speci�c heat: Application to
the strontium titanate ferroelastic crystal�, Review of Scienti�c Instruments,
vol. 66(11), pp. 5288�5291, 1995.

[88] A. Gràcia-Condal, E. Stern-Taulats, A. Planes, E. Vives, and L. Mañosa,
�The giant elastocaloric e�ect in a Cu−Zn−Al shape-memory alloy: A calori-
metric study�, Physica Status Solidi B, vol. 255, 1700422−1�1700422−7, 2018.

[89] J. D. Baloga and C. W. Garland, �AC calorimetry at high pressure�, Review
of Scienti�c Instruments, vol. 48(2), pp. 105�110, 1977.

[90] G. C. Lin, X. M. Xiong, J. X. Zhang, and Q. Wei, �Latent heat study of
phase transition in Ba0.73Sr0.27TiO3 induced by electric �eld�, Journal of
Thermal Analysis and Calorimetry, vol. 81, pp. 41�44, 2005.



BIBLIOGRAPHY 245

[91] S. G. Lu et al., �Organic and inorganic relaxor ferroelectrics with giant
electrocaloric e�ect�, Applied Physics Letters, vol. 97, 162904−1�162904−3,
2010.

[92] E. Stern-Taulats, �Giant caloric e�ects in the vicinity of �rst-order phase
transitions�, Ph.D. dissertation, Universitat de Barcelona, 2017.

[93] L. Mañosa, M. Bou, C. Calles, and A. Cirera, �Low-cost di�erential scanning
calorimeter�, American Journal of Physics, vol. 64(3), pp. 283�287, 1996.

[94] B. Emre et al., �Large reversible entropy change at the inverse magne-
tocaloric e�ect in Ni−Co−Mn−Ga−In magnetic shape memory alloys�, Journal
of Applied Physics, vol. 113(21), 213905−1�213905−8, 2013.

[95] J. Kamarád, J. Ka²til, and Z. Amold, �Practical system for the direct mea-
surement of magneto-caloric e�ect by micro-thermocouples�, Review of Sci-
enti�c Instruments, vol. 83, 083902−1�083902−7, 2012.

[96] F. Cugini et al., �Millisecond direct measurement of the magnetocaloric
e�ect of a Fe2P-based compound by the mirage e�ect�, Applied Physics
Letters, vol. 108, 012407−1�012407−4, 2016.

[97] T. Gottschall et al., �Dynamical e�ects of the martensitic transition in
magnetocaloric Heusler alloys from direct ∆Tad measurements under di�er-
ent magnetic-�eld-sweep rates�, Physical Review Applied, vol. 5, 024013−1�
024013−8, 2016.

[98] J. Lyubina, �Magnetocaloric materials for energy e�cient cooling�, Journal
of Physics D: Applied Physics, vol. 50, 053002−1�053002−28, 2017.

[99] E. Vives et al., �Temperature contour maps at the strain-induced marten-
sitic transition of a Cu−Zn−Al shape-memory single crystal�, Applied Physics
Letters, vol. 98, 011902−1�011902−3, 2011.

[100] G. J. Pataky, E. Ertekin, and H. Sehitoglu, �Elastocaloric cooling potential
of NiTi, Ni2FeGa and CoNiAl�, Acta Materialia, vol. 96, pp. 420�427, 2015.

[101] L. Ianniciello, M. Romanini, L. Mañosa, A. Planes, K. Engelbrecht, and
E. Vives, �Tracking the dynamics of power sources and sinks during the
martensitic transformation of a Cu−Al−Ni single crystal�, Applied Physics
Letters, vol. 116, 183901−1�183901−5, 2020.

[102] E. L. Rodriguez and F. E. Filiski, �Thermoelastic temperature changes
in poly(methyl methacrylate) at high hydrostatic pressure: Experimental�,
Journal of Applied Physics, vol. 53(10), pp. 6536�6540, 1982.

[103] D. Matsunami, A. Fujita, K. Takenaka, and M. Kano, �Giant barocaloric ef-
fect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN�,
Nature Materials, vol. 14, pp. 73�78, 2014.

[104] Y. Liu, J. F. Scott, and B. Dkhil, �Direct and indirect measurements on
electrocaloric e�ect: Recent developments and perspectives�,Applied Physics
Reviews, vol. 3, 031102−1�031102−18, 2016.

[105] A. M. Tishin et al., �Magnetocaloric e�ect near a second-order magnetic
phase transition�, Journal of Magnetism and Magnetic Materials, vol. 310,
pp. 2800�2804, 2007.



246 BIBLIOGRAPHY

[106] R. Romero and J. L. Pelegrina, �Entropy change between the β phase
and the martensite in Cu-based shape-memory alloys�, Physical Review B,
vol. 50, pp. 9046�9052, 1994.

[107] A. Planes and L. Mañosa, �Vibrational properties of shape-memory alloys�,
Solid State Physics, vol. 55, pp. 159�267, 2001.

[108] M. Ahlers, �Martensite and equilibrium phases in Cu−Zn and Cu−Zn−Al al-
loys�, Progress in Materials Science, vol. 30, pp. 135�186, 1986.

[109] J. Tu²ek et al., �The elastocaloric e�ect: A way to cool e�ciently�, Advanced
Energy Materials, vol. 5, 1500361−1�1500361−5, 2015.

[110] E. K. H. Salje, D. E. Soto-Parra, A. Planes, E. Vives, M. Reinecker, and W.
Schranz, �Failure mechanism in porous materials under compression: Crack-
ling noise in mesoporous SiO2�, Philosophical Magazine Letters, vol. 91(8),
pp. 554�560, 2011.

[111] L. Mañosa, S. Jarque-Farnos, E. Vives, and A. Planes, �Large temperature
span and giant refrigerant capacity in elastocaloric Cu−Zn−Al shape memory
alloys�, Applied Physics Letters, vol. 103, 211904−1�211904−4, 2013.

[112] A. Planes, R. Romero, and M. Ahlers, �Thermal properties of the marten-
sitic transformation of Cu−Zn and Cu−Zn−Al shape memory alloys�, Scripta
Metallurgica, vol. 23, pp. 989�994, 1989.

[113] J. C. Lashley et al., �Contribution of low-frequency modes to the spe-
ci�c heat of Cu−Zn−Al shape-memory alloys�, Physical Review B, vol. 75,
064304−1�064304−7, 2007.

[114] E. Stern-Taulats et al., �Reversible adiabatic temperature changes at the
magnetocaloric and barocaloric e�ects in Fe49Rh51�, Applied Physics Letters,
vol. 107, 152409−1�152409−4, 2015.

[115] Y. Wu, E. Ertekin, and H. Sehitoglu, �Elastocaloric cooling capacity of
shape memory alloys - Role of deformation temperatures, mechanical cy-
cling, stress hysteresis and inhomogeneity of transformation�, Acta Materi-
alia, vol. 135, pp. 158�176, 2017.

[116] M. E. Wood and W. H. Potter, �General analysis of magnetic refrigera-
tion and its optimization using a new concept: Maximization of refrigerant
capacity�, Cryogenics, vol. 25(12), pp. 667�683, 1985.

[117] L. Huang, D. Y. Cong, H. L. Suo, and Y. D. Wang, �Giant magnetic refriger-
ation capacity near room temperature in Ni40Co10Mn40Sn10 multifunctional
alloy�, Applied Physics Letters, vol. 104, 132407−1�132407−5, 2014.

[118] M. Fallot, �The alloys of Iron with metals of the Platinum family�, Annales
de Physique, vol. 10, pp. 291�332, 1938.

[119] M. Fallot and R. Hocart, �On the appearance of ferromagnetism upon el-
evation of temperature of Iron and Rhodium�, Revue Scienti�que, vol. 77,
pp. 498�501, 1939.

[120] L. J. Swartzendruber, �The Fe−Rh (Iron - Rhrodium) System�, Bulletin of
Alloy Phase Diagrams, vol. 5(5), pp. 456�462, 1984.



BIBLIOGRAPHY 247

[121] L. H. Lewis, C. H. Marrows, and S. Langridge, �Coupled magnetic, struc-
tural and electronic phase transitions in FeRh�, Journal of Physics D: Ap-
plied Physics, vol. 49, 323002−1�323002−18, 2016.

[122] G. Shirane, R. Nathans, and C. W. Chen, �Magnetic moments and unpaired
spin densities in the Fe−Rh alloys�, Physical Review, vol. 134(6A), A1547�
A1553, 1964.

[123] S. O. Mariagner et al., �Structural and magnetic dynamics of a laser in-
duced phase transition in FeRh�, Physical Review Letters, vol. 108, 087201−1�
087201−5, 2012.

[124] A. X. Gray et al., �Electronic structure changes across the metamagnetic
transition in FeRh via hard X-ray photoemission�, Physical Review Letters,
vol. 108, 257208−1�257208−5, 2012.

[125] P. M. Derlet, �Landau-Heisenberg hamiltonian model for FeRh�, Physical
Review B, vol. 85, 174431−1�174431−15, 2012.

[126] D. W. Cooke, F. Hellman, C. Baldasseroni, C. Bordel, S. Moyerman, and
E. E. Fullerton, �Thermodynamic measurements of Fe−Rh alloys�, Physical
Review Letters, vol. 109, 255901−1�255901−5, 2012.

[127] M. A. de Vries, M. Loving, A. P. Mihai, L. H. Lewis, D. Heiman, and
C. H. Marrows, �Hall-e�ect characterization of the metamagnetic transition
in FeRh�, New Journal of Physics, vol. 15, 013008−1�013008−12, 2013.

[128] J. B. Staunton, R. Banerjee, M. dos Santos Dias, A. Deak, and L. Szunyogh,
�Fluctuating local moments, itinerant electrons, and the magnetocaloric ef-
fect: Compositional hypersensitivity of FeRh�, Physical Review B, vol. 89,
054427−�054427−7, 2014.

[129] V. Franco, J. S. Blázquez, B. Ingale, and A. Conde, �The magnetocaloric ef-
fect and magnetic refrigeration near room temperature: Materials and mod-
els�, Annual Review of Materials Research, vol. 42(1), pp. 305�342, 2012.

[130] V. K. Pecharsky and K. A. Gschneidner Jr., �Tunable magnetic regenerator
alloys with giant magnetocaloric e�ect for magnetic refrigeration from ∼ 20
to ∼ 290K�, Applied Physics Letters, vol. 70(24), pp. 3299�3301, 1997.

[131] M. Manekar and S. B. Roy, �Reproducible room temperature giant magne-
tocaloric e�ect in Fe−Rh�, Journal of Physics D: Applied Physics, vol. 41,
192004−1�192004−4, 2008.

[132] E. Stern-Taulats et al., �Barocaloric and magnetocaloric e�ects in Fe49Rh51�,
Physical Review B, vol. 89, 214105−1�214105−8, 2014.

[133] A. Chirkova, K. P. Skokov, L. Schultz, N. V. Baranov, O. Gut�eisch, and
T. G. Woodcock, �Giant adiabatic temperature change in FeRh alloys ev-
idenced by direct measurements under cyclic conditions�, Acta Materialia,
vol. 106, pp. 15�21, 2016.

[134] K. G. Sandeman, �Magnetocaloric materials: The search for new systems�,
Scripta Materialia, vol. 67(6), pp. 566�571, 2012.

[135] F. Heusler, Über magnetische Manganlegierungen. Braunschweig: Verhand-
lungen der Deutsche Physikalischen Gesellschaft, 1903, pp. 219�223.



248 BIBLIOGRAPHY

[136] D. Hobbs, J. Hafner, and D. Spi²ák, �Understanding the complex metallic
element Mn. I. Crystalline and noncollinear magnetic structure of α-Mn�,
Physical Review B, vol. 68, 014407−1�014407−18, 2003.

[137] J. Hafner and D. Hobbs, �Understanding the complex metallic element Mn.
II. Geometric frustration in β-Mn, phase stability, and phase transitions�,
Physical Review B, vol. 68, 014408−1�014408−15, 2003.

[138] A. J. Bradley and J. W. Rodgers, �The crystal structure of the Heusler
alloys�, Proceedings of the Royal Society of London A, vol. 144, pp. 340�359,
1934.

[139] T. Graf, C. Felser, and S. S. P. Parkin, �Simple rules for the understanding
of Heusler compounds�, Progress in Solid State Chemistry, vol. 39, pp. 1�50,
2011.

[140] P. G. van Engen, K. H. J. Buschow, R. Jongebreur, and M. Erman, �PtMnSb,
a material with very high magneto-optical Kerr e�ect�, Applied Physics Let-
ters, vol. 42, pp. 202�204, 1983.

[141] T. Graf, C. Felser, and S. S. P. Parkin, �Heusler compounds: Applications
in spintronics�, in Handbook of Spintronics, Y. Xu, D. D. Awschalom, and
J. Nitta, Eds., Dordrecht: Springler, 2016, pp. 335�364.

[142] S. Chadov, X. Qi, J. Kübler, G. H. Fecher, C. Felser, and S. C. Zhang, �Tun-
able multifunctional topological insulators in ternary Heusler compounds�,
Nature Materials, vol. 9, pp. 541�545, 2010.

[143] T. Klimczuk et al., �Superconductivity in the Heusler family of intermetallics�,
Physical Review B, vol. 85, 174505−1�174505−8, 2012.

[144] S. Sakurada and N. Shutoh, �E�ect of Ti substitution on the thermoelectric
properties of (Zr,Hf)NiSn half-Heusler compounds�, Applied Physics Letters,
vol. 86, 082105−1�082105−3, 2005.

[145] J. Krez and B. Balke, �Thermoelectric Heusler compounds�, in Heusler al-
loys: Properties, Growth, Applications, C. Felser and A. Hirohata, Eds.,
Cham.: Springler, 2016, pp. 249�267.

[146] W. E. Pickett and J. S. Moodera, �Half metallic magnets�, Physics Today,
vol. 54, pp. 39�44, 2001.

[147] G. A. Prinz, �Magnetoelectronics�, Science, vol. 282, pp. 1660�1663, 1998.

[148] Z. Y. Wei et al., �Realization of multifunctional shape-memory ferromagnets
in all-d-metal Heusler phases�, Applied Physics Letters, vol. 107, 022406−1�
022406−5, 2015.

[149] Z. Y. Wei et al., �Magnetostructural martensitic transformations with large
volume changes and magneto-strains in all-d-metal Heusler alloys�, Applied
Physics Letters, vol. 109, 071904−1�071904−5, 2016.

[150] A. Hirohata et al., �Heusler alloy/semiconductor hybrid structures�, Current
opinion in Solid State and Materials Science, vol. 10, pp. 93�107, 2006.

[151] I. Skovsen et al., �Multi-temperature synchrotron PXRD and physical prop-
erties study of half-Heusler TiCoSb�,Dalton Transactions, vol. 39, pp. 10 154�
10 159, 2010.



BIBLIOGRAPHY 249

[152] X. Moya, �Comportament vibracional i magnètic d'aliatges funcionals tipus
Heusler�, Ph.D. dissertation, Universitat de Barcelona, 2008.

[153] S. Aksoy, �Magnetic interactions in martensitic Ni-Mn-based Heusler sys-
tems�, Ph.D. dissertation, Universität Duisburg-Essen, 2010.

[154] T. Miyamoto, W. Ito, R. Y. Umetsu, T. Kanomata, K. Ishida, and R.
Kainuma, �In�uence of annealing conditions on magnetic properties of
Ni50Mn50−xInx Heusler-type alloys�,Materials Transactions, vol. 52, pp. 1836�
1839, 2011.

[155] W. Ito, M. Nagasako, R. Y. Umetsu, R. Kainuma, T. Kanomata, and K.
Ishida, �Atomic ordering and magnetic properties in the Ni45Co5Mn36.7In13.3
metamagnetic shape memory alloy�,Applied Physics Letters, vol. 93, 232503−1�
232503−3, 2008.

[156] M. F. Osmond, �Méthode générale pour l'analyse micrographique des aciers
au carbone�, Arts Chemiques, vol. 94, pp. 480�518, 1895.

[157] J. W. Christian, G. B. Olson, and M. Cohen, �Classi�cation of displacive
transformations: What is a Martensitic transformation?�, Journal de Physique
IV, vol. 5, C8−3�C8−10, 1995.

[158] R. Niemann et al., �Reducing the nucleation barrier in magnetocaloric Heusler
alloys by nanoindentation�, APL Materials, vol. 4, 064101−1�064101−7, 2016.

[159] Z. Zhang, R. D. James, and S. Müller, �Energy barriers and hysteresis in
martensitic phase transformations�, Acta Materialia, vol. 57, pp. 4332�4352,
2009.

[160] V. Srivastava, X. Chen, and R. D. James, �Hysteresis and unusual magnetic
properties in the singular Heusler alloy Ni45Co5Mn40Sn10�, Applied Physics
Letters, vol. 97, 014101−1�014101−3, 2010.

[161] Y. Song, X. Chen, V. Dabade, T. W. Shield, and R. D. James, �Enhanced
reversibility and unusual microstructure of a phase-transforming material�,
Nature, vol. 502, pp. 85�88, 2013.

[162] S. Kaufmann et al., �Modulated martensite: Why it forms and why it de-
forms easily�, New Journal of Physics, vol. 13, 053029−1�053029−24, 2011.

[163] K. Otsuka and C. M. Wayman, Shape Memory Materials. Cambridge: Cam-
bridge University Press, 1998.

[164] H. K. D. K. Bhadeshia, �21 - Physical Metallurgy of Steels�, in Physical Met-
allurgy (Fifth Edition), D. E. Laughlin and K. Hono, Eds., Oxford: Elsevier,
2014, pp. 2157�2214.

[165] C. M. Wayman, Introduction to the crystallography of martensitic transfor-
mations. New York: Macmillan, 1964.

[166] J. Ortin and A. Planes, �Thermodynamic analysis of thermal measurements
in thermoelastic martensitic transformations�, Acta Metallurgica, vol. 36,
pp. 1873�1889, 1988.

[167] Y. Sutou et al., �Magnetic and martensitic transformations of NiMnX (X
= In, Sn, Sb) ferromagnetic shape memory alloys�, Applied Physics Letters,
vol. 85, pp. 4358�4360, 2004.



250 BIBLIOGRAPHY

[168] I. Dubenko, M. Khan, A. K. Pathak, B. R. Gautam, S. Stadler, and N. Ali,
�Magnetocaloric e�ects in Ni−Mn−X based heusler alloys with X=Ga, Sb,
In�, Journal of Magnetism and Magnetic Materials, vol. 321, pp. 754�757,
2009.

[169] R. Kainuma, W. Ito, R. Y. Umetsu, K. Oikawa, and K. Ishida, �Magnetic
�eld-induced reverse transformation in B2-type NiCoMnAl shape memory
alloys�, Applied Physics Letters, vol. 93, 091906−1�091906−3, 2008.

[170] K. Ullakko, J. K. Huang, C. Kantner, R. C. O'Handley, and V. V. Korokin,
�Large magnetic-�eld-induced strains in Ni2MnGa single crystals�, Applied
Physics Letters, vol. 69, p. 1966, 1996.

[171] R. Kainuma et al., �Magnetic-�eld-induced shape recovery by reverse phase
transformation�, Nature, vol. 439, pp. 957�960, 2006.

[172] N. A. Gokcen, �The Mn−Ni (Manganese - Nickel) System�, Journal of Phase
Equilibria, vol. 12, pp. 313�321, 1991.

[173] S. Kaufmann et al., �Adaptative modulations of martensites�, Physical Re-
view Letters, vol. 104, 145702−1�145702−4, 2010.

[174] A. Çak�r, L. Rigi, F. Albertini, M. Acet, M. Farele, and S. Aktürk, �Extended
investigation of intermartensitic transitions in Ni−Mn−Ga magnetic shape
memory alloys: A detailed phase diagram determination�, Journal of Applied
Physics, vol. 114, 183912−1�183912−9, 2013.

[175] V. A. Chernenko, J. Pons, C. Seguí, and E. Cesari, �Premartensitic phe-
nomena and other phase transformations in Ni−Mn−Ga alloys studied by
dynamical mechanical analysis and electron di�raction�, Acta Materialia,
vol. 50, pp. 53�60, 2002.

[176] R. Ranjan, S. Banik, S. R. Barman, U. Kumar, P. K. Mukhopadhyay, and
D. Pandey, �Powder X-ray di�raction study of the thermoelastic marten-
sitic transition in Ni2Mn1.05Ga0.95�, Physical Review B, vol. 74, 224443−1�
224443−8, 2006.

[177] A. Aksoy et al., �Magnetization easy axis in martensitic Heusler alloys esti-
mated by strain measurements under magnetic �eld�, Applied Physics Let-
ters, vol. 91, 251915−1�251915−3, 2007.

[178] T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes,
�Ferromagnetism in the austenitic and martensitic states of Ni−Mn−In al-
loys�, Physical Review B, vol. 73, 174413−1�174413−10, 2006.

[179] T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A.
Planes, �Martensitic transitions and the nature of ferromagnetism in the
austenitic and martensitic states of Ni−Mn−Sn alloys�, Physical Review B,
vol. 72, 014412−1�014412−9, 2005.

[180] P. Entel et al., �Modelling the phase diagram of magnetic shape memory
Heusler alloys�, Journal of Physics D: Applied Physics, vol. 39, pp. 865�889,
2006.



BIBLIOGRAPHY 251

[181] E. �a³�o§lu, L. M. Sandratskii, and P. Bruno, �First-principles calculation of
the intersublattice exchange interactions and Curie temperatures of the full
Heusler alloys Ni2MnX (X = Ga, In, Sn, Sb)�, Physical Review B, vol. 70,
024427−1�024427−5, 2004.

[182] M. Acet, L. Mañosa, and A. Planes, �Magnetic-�eld-induced e�ects in marten-
sitic Heusler-based magnetic shape memory alloys�, in Handbook of Magnetic
Materials, K. H. J. Buschow, Ed., New Holland: Elsevier Science & Tech-
nology, 2011, pp. 231�289.

[183] A. Sozinov, A. A. Likhachev, N. Lanska, and K. Ullakko, �Giant magnetic-
�eld-induced strain in NiMnGa seven-layered martensite phase�, Applied
Physics Letters, vol. 80, pp. 1746�1748, 2002.

[184] A. Sozinov, N. Lanska, A. Soroka, and W. Zou, �12 % Magnetic �eld-induced
strain in Ni−Mn−Ga-based non-modulated martensite�, Applied Physics Let-
ters, vol. 102, 021902−1�021902−5, 2013.

[185] R. Tickle, R. D. James, T. Shield, M. Wuttig, and V. V. Kokorin, �Fer-
romagnetic shape memory in the NiMnGa system�, IEEE Transactions on
Magnetics, vol. 35, pp. 4301�4310, 1999.

[186] Q. Pan and R. D. James, �Micromagnetic study of Ni2MnGa under applied
�eld (invited)�, Journal of Applied Physics, vol. 87, pp. 4702�4706, 2000.

[187] Y. W. Lai et al., �Absence of magnetic domain wall motion during magnetic
�eld induced twin boundary motion in bulk magnetic shape memory alloys�,
Applied Physics Letters, vol. 90, 192504−1�192504−3, 2007.

[188] Y. Ishikawa, �Di�erent degrees of itineracy in 3d alloys revealed by measure-
ments of neutron spin wave scattering�, Physica B & C, vol. 91B, pp. 130�
137, 1977.

[189] P. J. Webster and R. S. Trebble, �The magnetic and chemical ordering of the
Heusler alloys Pd2MnIn, Pd2MnSn and Pd2MnSb�, Philosophical Magazine,
vol. 16, pp. 347�361, 1967.

[190] J. Kübler, A. R. Williams, and C. B. Sommers, �Formation and coupling of
magnetic moments in Heusler alloys�, Physical Review B, vol. 28, pp. 1745�
1755, 1983.

[191] E. �a³�o§lu, �First-principles study of the exchange interactions and curie
temperature in Heusler alloys�, Ph.D. dissertation, Martin-Luther-Universität,
1975.

[192] P. Borogohain and M. B. Sahariah, �E�ect of compositional and antisite dis-
order on the electronic and magnetic properties of Ni−Mn−In Heusler alloy�,
Journal of Physics: Condensed Matter, vol. 27, p. 175 502, 2015.

[193] I. Galanakis, �Theory of Heusler and full-Heusler compounds�, in Heusler
alloys: Properties, Growth, Applications, C. Felser and A. Hirohata, Eds.,
Cham.: Springler, 2016, pp. 3�36.

[194] M. A. Ruderman and C. Kittel, �Indirect exchange coupling of nuclear mag-
netic moments by conduction electrons�, Physical Review, vol. 96, pp. 99�
102, 1954.



252 BIBLIOGRAPHY

[195] T. Kasuya, �A theory of metallic ferro- and antiferromagnetism on Zener's
model�, Progress of Theoretical Physics, vol. 16, pp. 45�57, 1956.

[196] K. Yosida, �Magnetic properties of Cu−Mn alloys�, Physical Review, vol. 106,
pp. 893�898, 1957.

[197] J. C. Slater, �Cohesion in monovalent metals�, Physical Review, vol. 35,
pp. 509�529, 1930.

[198] P. J. Brown, A. Y. Bargawi, J. Crangle, K. U. Neumann, and K. R. A.
Ziebeck, �Direct observation of a band Jahn-Teller e�ect in the marten-
sitic phase transition of Ni2MnGa�, Journal of Physics: Condensed Matter,
vol. 11, pp. 4715�4722, 1999.

[199] Z. Islam et al., �An X-ray study of non-zero nickel moment in a ferromag-
netic shape-memory alloy�, Journal of Magnetism and Magnetic Materials,
vol. 303, pp. 20�25, 2006.

[200] E. �a³�o§lu, L. M. Sandratskii, and P. Bruno, �Role of conduction electrons
in mediating exchange interactions in Mn-based Heusler alloys�, Physical
Review B, vol. 77, 064417−1�064417−15, 2008.

[201] V. D. Buchelnikov et al., �First-principles and Monte Carlo study of magne-
tostructural transition and magnetocaloric properties of Ni2+xMn1−xGa�,
Physical Review B, vol. 81, 094411−1�094411−19, 2010.

[202] A. Planes, �Viewpoint: Controlling the martensitic transition in Heusler
shape-memory materials�, Physics, vol. 3,36, 2010.

[203] J. M. D. Coey, Magnetism and Magnetic Materials. Cambridge: Cambridge
University Press, 2010.

[204] I. Galanakis, P. H. Dederichs, and N. Papanikolaou, �Slater-Pauling be-
haviour and origin of the half-metallicity of the full-Heuslers alloys�, Physical
Review B, vol. 66, 174429−1�174429−9, 2002.

[205] Z. Yang, D. Y. Cong, X. M. Sun, Z. H. Nie, and Y. D. Wang, �Enhanced cy-
clabillity of the elastocaloric e�ect in boron-microalloyed Ni−Mn−In magnetic
shape memory alloys�, Acta Materialia, vol. 127, pp. 33�42, 2017.

[206] D. Y. Cong et al., �Colossal elastocaloric e�ect in ferroelastic Ni−Mn−Ti
alloys�, Pysical Review Letters, vol. 122, 255703−1�255703−7, 2019.

[207] Y. Qu et al., �Giant and reversible room-temperature magnetocaloric e�ect
in Ti-doped Ni−Co−Mn−Sn magnetic shape memory alloys�, Acta Materialia,
vol. 134, pp. 236�248, 2017.

[208] D. W. Zhao et al., �Giant caloric e�ect of low-hysteresis metamagnetic
shape memory alloys with exceptional cyclic functionallity�, Acta Materi-
alia, vol. 133, pp. 217�223, 2017.

[209] Z. Yang et al., �Ultrahigh cyclability of a large elastocaloric e�ect in multi-
ferroic phase-transforming materials�, Materials Research Letters, vol. 7(4),
pp. 137�144, 2019.

[210] A. Czernuszewicz, J. Kaleta, and D. Lewandowski, �Multicaloric e�ect: To-
ward a breakthrough in cooling technology�, Energy Conversion and Man-
agement, vol. 178, pp. 335�342, 2018.



BIBLIOGRAPHY 253

[211] A. Aznar et al., �Giant barocaloric e�ect in all-d-metal Heusler shape mem-
ory alloys�, Physical Review Materials, vol. 3, 044406−1�044406−7, 2019.

[212] V. Novák and P. �ittner, �Micromechanics modelling of NiTi pollycrystalline
aggregates transforming under tension and compression stress�, Materials
Science and Engineering A, vol. 378, pp. 490�498, 2004.

[213] A. Fujita, S. Fujieda, Y. Hasegawa, and K. Fukamichi, �Itinerant-electron
metamagnetic transition and large magnetocaloric e�ects in La(FexSi1−x)13
compounds and their hydrides�, Physical Review B, vol. 67, 104416−1�104416−12,
2003.

[214] Y. Shen, W. Sun, Z. Y. Wei, Q. Shen, Y. F. Zhang, and J. Liu, �Orientation
dependent elastocaloric e�ect in directionally solidi�ed Ni−Mn−Sn alloys�,
Scripta Materialia, vol. 163, pp. 14�18, 2019.

[215] D. M. Liu et al., �Low-hysteresis tensile superelasticity in a Ni−Co−Mn−Sn
magnetic shape memory microwire�, Journal of Alloys and Compounds,
vol. 728, pp. 655�658, 2017.

[216] L. Huang et al., �Large magnetic entropy change and magnetoresistance in
a Ni41Co9Mn40Sn10 magnetic shape memory alloy�, Journal of Alloys and
Compounds, vol. 647, pp. 1081�1085, 2015.

[217] F. J. Pérez-Reche, M. Stipcich, E. Vives, L. Mañosa, A. Planes, and M.
Morin, �Kinetics of martensitic transitions in Cu−Al−Mn under thermal cy-
cling: Analysis at multiple length scales�, Physical Review B, vol. 69, 064101−1�
064101−7, 2004.

[218] N. M. Bruno et al., �The e�ect of heat treatments on Ni43Mn42Co4Sn11
meta-magnetic shape memory alloys for magnetic refrigeration�, Acta Ma-
terialia, vol. 74, pp. 66�84, 2014.

[219] T. Stöter et al., �Tuning the interactions in the spin-ice materials Dy2Ge2−xSixO7

by silicon substitution�, Physical Review B, vol. 100, 054403−1�054403−8,
2019.

[220] T. Gottschall, K. P. Skokov, D. Benke, M. E. Gruner, and O. Gut�eisch,
�Contradictory role of the magnetic contribution in inverse magnetocaloric
Heusler materials�, Physical Review B, vol. 93, 184431−1�184431−6, 2016.

[221] W. Ito, Y. Imano, R. Kainuma, Y. Sutou, K. Oikawa, and K. Ishida, �Marten-
sitic and magnetic transformation behaviors in Heusler-type NiMnIn and
NiCoMnIn metamagnetic shape memory alloys�, Metallurgical and Materi-
als Transactions A, vol. 38, pp. 759�766, 2007.

[222] A. Aksoy, M. Acet, P. P. Deen, L. Mañosa, and A. Planes, �Magnetic corre-
lations in martensitic Ni−Mn-based Heusler shape-memory alloys: Neutron
polarization analysis�, Physical Review B, vol. 79, 212401−1�212401−4, 2009.

[223] H. E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y. I. Chumlyakov, and
H. J. Maier, �Magnetic �eld-induced phase transformation in Ni−Mn−Co−In
magnetic shape-memory alloys - A new actuation mechanism with large
work output�, Advanced Functional Materials, vol. 19, pp. 983�998, 2009.

[224] J. Z. Hao et al., �Multicaloric and coupled-caloric e�ects�, Chinese Physics
B, vol. 29(4), 047504−1�047504−10, 2020.



254 BIBLIOGRAPHY

[225] T. Kihara, X. Xu, W. Ito, R. Kainuma, and M. Tokunaga, �Direct mea-
surements of inverse magnetocaloric e�ects in metamagnetic shape-memory
alloy NiCoMnIn�, Physical Review B, vol. 90, 214409−1�214409−6, 2014.

[226] V. Recarte, J. I. Pérez-Landázabal, V. Sánchez-Alarcos, V. Zablotskii, E.
Cesari, and S. Kustov, �Entropy change linked to the martensitic transfor-
mation in metamagnetic shape memory alloys�, Acta Materialia, vol. 60,
pp. 3168�3175, 2012.

[227] T. Gottschall, K. P. Skokov, B. Frincu, and O. Gut�eisch, �Large reversible
magnetocaloric e�ect in Ni−Mn−In−Co�, Applied Physics Letters, vol. 106,
021901−1�021901−4, 2015.

[228] J. Romero Gómez, R. Ferreiro Garcia, A. De Miguel Catoira, and M. Romero
Gómez, �Magnetocaloric e�ect: A review of the thermodynamic cycles in
magnetic refrigeration�, Renewable and Sustainable Energy Reviews, vol. 17,
pp. 74�82, 2013.

[229] D. Zhao, T. Castán, A. Planes, Z. Li, W. Sun, and J. Liu, �Enhanced caloric
e�ect induced by magnetoelastic coupling in NiMnGaCu Heusler alloys:
Experimental study and theoretical analysis�, Physical Review B, vol. 96,
224105−1�224105−7, 2017.

[230] G. Porcari and ohers, �Convergence of direct and indirect methods in the
magnetocaloric study of �rst order transformations: The case of Ni−Co−Mn−Ga
Heusler alloys�, Physical Review B, vol. 86, 104432−1�104432−5, 2012.

[231] F. Guillou, G. Porcari, H. Yibole, N. van Dijk, and E. Brück, �Taming the
�rst-order transition in giant magnetocaloric materials�, Advanced Materi-
als, vol. 26, pp. 2671�2675, 2014.

[232] S. K. Sarkar, Sarita, P. D. Babu, A. Biswas, V. Siruguri, and M. Krish-
nan, �Giant magnetocaloric e�ect from reverse martensitic transformation
in Ni−Mn−Ga−Co ferromagnetic shape memory alloys�, Journal of Alloys and
Compounds, vol. 670, pp. 281�288, 2016.

[233] C. Seguí, J. Torrens-Serra, E. Cesari, and P. Lázpita, �Optimizing the caloric
properties of Cu-doped Ni−Mn−Ga alloys�, Materials, vol. 13, pp. 1�14, 2020.

[234] T. Gottschall, K. P. Skokov, R. Burriel, and O. Gut�eisch, �On the S(T)
diagram of magnetocaloric materials with �rst-order transition: Kinetic and
cyclic e�ects of Heusler alloys�, Acta Materialia, vol. 107, pp. 1�8, 2016.

[235] R. Wroblewski, K. Sielicki, and M. Leonowicz, �Magnetocaloric properties
of Ni49.9Mn19.6Cu5.7Ga24.8 single crystal processed by Bridgman method
with stationary crucible�, Materials Letters, vol. 218, pp. 83�85, 2018.

[236] P. Czaja, M. Kowalczyk, and W. Maziarz, �On the magnetic contribution to
the inverse magnetocaloric e�ect in Ni−Co−Cu−Mn−Sn metamagnetic shape
memory alloys�, Journal of Magnetism and Magnetic Materials, vol. 474,
pp. 381�392, 2019.

[237] J. Ortin, �Thermally induced martensitic transformations: Theoretical anal-
ysis of a complete calorimetric run�, Thermochimica Acta, vol. 121, pp. 397�
412, 1987.



Appendix A

Python program for the

treatment of calorimetric

curves

A custom Python program has been developed to perform the signal treatment
and the corresponding thermodynamic calculations on DSC thermograms that cor-
respond to thermally-induced martensitic phase transitions. It is important to em-
phasize that the custom Python program can be easily adapted to analyse DSC
thermograms corresponding to �eld-induced martensitic phase transitions.

The program presented in this appendix is based on a previous script from 2001
written in QBasic, where improvements on the signal smoothing �lters and the
baseline correction have been implemented. The working procedure of both data
treatment programs is based on the discussion reported in reference [237].

The general working procedure of the custom Python program can be summa-
rized in the following steps:

1. Reading the measurement data �le
The Python program reads the �le recorded from the experimental device,

which consists of a two column data �le with the raw calorimetric signal
(Y (T )) and the temperature (T ), expressed in units of Volt and Kelvin, re-
spectively. After introducing the sampling period of the measurement, it cre-
ates the time axis (t) and plots the calorimetric signal and the temperature
as a function of time.

2. Smoothing on the raw data �le

It gives the possibility to apply a smoothing �lter on the calorimetric signal
and the temperature before performing the corresponding thermodynamic
calculations. The applied �lters can be di�erent for each data column, and
the current version of the program provides �ve di�erent smoothing options:
no smoothing, Moving average, 1 Savitzky-Golay �lter, 2 Butterworth �lter,

1Average:
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.mean.html

2Savitzky-Golay documentation:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html#scipy.

signal.savgol_filter

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.mean.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html#scipy.signal.savgol_filter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html#scipy.signal.savgol_filter
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3 and Percentile �lter. 4

After the smoothing process, it displays a comparative �gure for the raw
and smoothed data as a function of time for both the calorimetric signal and
the temperature. At this point, the user can decide to repeat the smoothing
procedure.

3. Correction of the calorimetric signal

The gradient function 5 is used to compute the time derivative of the tem-

perature
(
dT

dt

)
, and the program gives the possibility of applying two consec-

utive smoothing �lters from the ones mentioned before. After the smoothing
process, a comparative �gure of the raw time derivative of the temperature
together with the results of the smoothing processes as a function of time is
displayed. At this point, the user can decide to repeat the smoothing proce-
dure.

After a successful smoothing of the temperature derivative, the user selects
the sensitivity function of the calorimeter used in the experiments (S(T )).
Then, as discussed in section 3.1.1, the raw calorimetric signal is corrected
as:

dQ(T )

dT
=

˙Q(T )

Ṫ
=
Y (T )dt

S(T )dT
(A.1)

4. Baseline selection

The corrected calorimetric signal
(
dQ(T )

dT

)
is plotted as a function of

temperature, where the �rst-order phase transition is seen as a peak spreading
within a certain temperature range [Ts, Tf ]. In order to separate the baseline
from the �rst-order phase transition signal, the user has to select four data
points (T bgi , where i ∈ [1, 4]) on the displayed plot, two below (T bgi < Ts,
where i = 1, 2) and two above (T bgi > Tf , where i = 3, 4) the �rst-order
phase transition temperature range. The selected data points de�ne two data
ranges where the measured signal only comes from the baseline contribution,
one below [T bg1 , T bg2 ] and the other one above [T bg3 , T bg4 ] the phase transition
temperature range.

After the selection of these data points, two di�erent functions can be
3Butterworth �lter documentation:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html#scipy.signal.

butter
4Percentile moving �lter:

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.window.rolling.

Rolling.quantile.html
5Gradient documentation:

https://numpy.org/doc/stable/reference/generated/numpy.gradient.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html#scipy.signal.butter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html#scipy.signal.butter
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.window.rolling.Rolling.quantile.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.window.rolling.Rolling.quantile.html
https://numpy.org/doc/stable/reference/generated/numpy.gradient.html
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selected in order to de�ne the baseline behaviour of the corrected calorimetric
signal.

On the one hand, two di�erent linear functions are �tted to identify the
baseline behaviour, one below (ζ1(T )) and the other one above (ζ2(T )) the
phase transition temperature range. Each linear �t is �tted to each data range
selected by the user.

On the other hand, a third order polynomial function can be �tted to
identify the baseline behaviour (ζpoly(T )). It is important to point out that
the third order polynomial function is �tted to both data ranges, and a single
function de�nes the baseline of the corrected calorimetric signal.

5. Baseline correction and integration

The baseline correction process is di�erent depending on the function that
has been chosen to de�ne the baseline behaviour.

If two linear functions have been selected to de�ne the baseline of the
corrected calorimetric signal, the user has to identify the peak position of
the �rst-order phase transition signal (T peak). Then, each linear �t is ex-
trapolated within the phase transition temperature range, de�ning the �rst
approximation of the complete baseline:

ζ(T ) =


ζ1(T ) T < T peak

ζ2(T ) T ≥ T peak
(A.2)

The �rst approximation of the baseline allows us to compute a �rst estimate
of both the transition entropy change (∆St) and the transformed fraction
(χ(T )), which were de�ned in section 3.1.1 as:

∆St =

∫ Tf

Ts

1

T ′

(
dQ(T ′)

dT ′
− ζ(T ′)

)
dT ′ (A.3)

χ(T ) =
S(T )− S(Ts)

∆St
=

∫ T

Ts

1

T ′

(
dQ(T ′)

dT ′
− ζ(T ′)

)
dT ′

∆St
(A.4)

At this point, it is important to point out that the integrals expressed
in these equations are computed numerically by a cumulative trapezoidal
integration. 6

In order to improve the baseline to subtract from the corrected calorimetric
signal, de�ned by equation A.2, the transformed fraction is used as a weight
factor to de�ne a linear combination of the two baseline functions �tted at

6Cumulative trapezoidal integration documentation:
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.integrate.cumtrapz.html

https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.integrate.cumtrapz.html
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each side of the phase transition temperature range. Therefore, the complete
baseline can be de�ned as:

ζ(T ) = [1− χ(T )]ζ1(T ) + χ(T )ζ2(T ) (A.5)

This new baseline is used to compute again the transition entropy change
and the transformed fraction, expressed in both equations A.3 and A.4, re-
spectively, which allows us to compute again a new baseline, as expressed in
equation A.5. The rede�nition of the baseline to be subtracted and the com-
putation of both the transition entropy change and the transformed fraction
is done iteratively, seeking a convergence of the computed transition entropy
change with respect to the previous integration performed, within a certain
de�ned tolerance margin.

Conversely, if a third order polynomial function has been selected to de�ne
the baseline of the corrected calorimetric signal, the transition entropy change
and the transformed fraction are computed as expressed in equations A.3 and
A.4, respectively, but they are not further corrected in an iterative process.

6. Computed results and storage

After the integration process, the corrected calorimetric signal
(
dQ(T )

dT

)
and the �nal baseline (ζ(T )) are plotted together as a function of temperature.
Moreover, for the sake of clarity the resulting transformed fraction (χ(T )) as
a function of temperature is also displayed. At this point, the user can decide
to repeat the integration procedure and the program resumes from the fourth
step, allowing to select a new baseline for the corrected calorimetric signal.

Once the baseline correction and integration results are accepted by the
user, the program computes the start (Ts) and �nish (Tf ) phase transition
temperatures, estimated from the transformed fraction as the temperatures
where the phase transition is completed at 5 % and 95 %, respectively. Ad-
ditionally, after the introduction of the sample mass, the transition entropy
(∆St) and enthalpy (∆Ht) changes per mass unit are computed.

Finally, a data �le consisting of four columns (the temperature (T ), the cor-

rected calorimetric signal
(
dQ(T )

dT

)
, the baseline (ζ(T )) and the transformed

fraction (χ(T ))) is created and stored.

For further details on the computation of the di�erent parameters, the code of
this Python program is included in the following pages of this appendix.
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# --------------------------------------------------------------------- #

# #

# CALATO 1.0 #

# Improved version of CALATO9.BAS, version 6.0 (January 2001) #

# #

# Signal treatment and thermodynamic calculations on thermograms #

# corresponding to thermally-induced martensitic transformations. #

# #

# This program automatically ccomputes and corrects the base-line #

# of the signal. #

# #

# INPUT: Two-columns file containing the temperature (K) and #

# the calorimetric signal (V) #

# #

# OUTPUT: The program can create the following plotting files: #

# 1. Temperature (K) vs. time (s) #

# 2. Thermogram (V) vs. temperature (K) #

# 3. Thermogram and baseline (J/K) vs. temperature (K) #

# 4. Transformed fraction vs. temperature (K) #

# #

# --------------------------------------------------------------------- #

# Import the necessary libraries

import numpy as np

import scipy.integrate as sp_int

import scipy.signal as sp_sig

import scipy.optimize as sp_opt

import pandas as pd

import matplotlib.pyplot as plt

from matplotlib.widgets import Cursor

import sys

sys._enablelegacywindowsfsencoding()

# -----------------------------FUNCTIONS------------------------------- #

# --------------------------------------------------------------------- #

# #

# Single plot #

# #

# --------------------------------------------------------------------- #

def single_plot(file1, file2, title, label_1, label_2, col_1x, col_1y, col_2x, col_2y):

"""This function displays a plot with two curves"""

# We obtain the headers list of the two files

header1 = list(file1)

header2 = list(file2)

single_fig = plt.figure()

plt.plot(file1[header1[col_1x]], file1[header1[col_1y]], color=’k’, label=label_1)

plt.plot(file2[header2[col_2x]], file2[header2[col_2y]], color=’r’, label=label_2)

plt.title(title)

plt.legend()

plt.ylabel(header1[col_1y])

plt.xlabel(header1[col_1x])

return plt.show(single_fig)
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# --------------------------------------------------------------------- #

# #

# Double plot #

# #

# --------------------------------------------------------------------- #

def double_plot(file1, file2, title, pl_1_x, pl_1_y, pl_2_x, pl_2_y):

"""This function displays a double plot with two curves per plot"""

# We obtain the headers list of the two files

header1 = list(file1)

header2 = list(file2)

double_fig = plt.figure()

plt.subplot(211)

top_plot = plt.plot(file1[header1[pl_1_x]], file1[header1[pl_1_y]],

file2[header2[pl_1_x]], file2[header2[pl_1_y]])

plt.title(title)

plt.setp(top_plot[0], color=’k’, label=’Raw data’)

plt.setp(top_plot[1], color=’r’, label=’Smoothed data’)

plt.legend([’Raw data’, ’Smoothed data’])

plt.ylabel(header1[pl_1_y])

plt.xlabel(header1[pl_1_x])

plt.subplots_adjust(hspace=0.3)

plt.subplot(212)

bottom_plot = plt.plot(file1[header1[pl_2_x]], file1[header1[pl_2_y]],

file2[header2[pl_2_x]], file2[header2[pl_2_y]])

plt.setp(bottom_plot[0], color=’k’, label=’Raw data’)

plt.setp(bottom_plot[1], color=’r’, label=’Smoothed data’)

plt.legend([’Raw data’, ’Smoothed data’])

plt.ylabel(header1[pl_2_y])

plt.xlabel(header1[pl_2_x])

return plt.show(double_fig)

# --------------------------------------------------------------------- #

# #

# Smoothing routine #

# #

# --------------------------------------------------------------------- #

def smoothing_function(file, file_length: int, columns: list):

"""

This function performs a smoothing onto a desired file.

The user can choose between five different smoothing methods:

1. No smoothing

2. Moving average

3. Savitzky-Golay

4. Frequency filter

5. Percentile filter

INPUT: File (data frame), file length (integer), file columns to smooth (list)

OUTPUT: Smoothed file (data frame), file length (integer)

"""

print("There are five available smoothing methods:"

"\n\t 1. No smoothing"

"\n\t 2. Moving average"
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"\n\t 3. Savitzky-Golay"

"\n\t 4. Frequency filter"

"\n\t 5. Percentile filter")

answer = input("Introduce the smoothing method you want to use [1,2,3,4,5]:")

while answer not in [’1’, ’2’, ’3’, ’4’, ’5’]:

print(’\nPlease introduce a suitable answer [1,2,3,4,5]’)

answer = input("Select a suitable smoothing method number [1,2,3,4,5]:")

i = int(answer)

while i != 1 and i != 2 and i != 3 and i !=4 and i != 5:

i = int(input("Please, select a suitable smoothing method number [1,2,3,4,5]:"))

# We get the headers list of the file we import with this function

header_f = list(file)

if i == 1:

# No smoothing is performed to the data

# Creation of the smoothed file

smoothed_file = pd.DataFrame()

# Iteration to perform the smoothing method onto the desired columns

for j in columns:

smoothed_file[j] = file[header_f[j]]

NS = int(len(smoothed_file)) # Calculation of the file length

return smoothed_file, NS

elif i == 2:

# NX is the window size to perform the temperature and data smoothing

NX = int(input("\nIntroduce the half window size to perform the moving average"

" smoothing"

"\n[Recommended values range: 10 - 100]:"))

# Total window size to perform the smoothing. Always an odd number

ws = 2 * NX + 1

# We assure that the introduced window size is smaller than the file length

while ws > file_length:

NX = int( input("The selected window size is bigger than the file length."

"\nPlease, select a new half window size to perform the "

"smoothing:"))

ws = 2 * NX + 1

# Creation of the smoothed file

smoothed_file = pd.DataFrame()

# Iteration to perform the smoothing method onto the desired columns

for j in columns:

smoothed_file[j] = file[header_f[j]].rolling( window=ws, center=True ).mean()

NS = int(len(smoothed_file)) # Calculation of the file length

return smoothed_file, NS

elif i == 3:

# NX is the window size to perform the temperature and data smoothing

NX = int(input("\nIntroduce the half window size to perform the Savitzky-Golay"

" smoothing"

"\n[Recommended values range: 50-200]:"))

# Total window size to perform the smoothing. Always an odd number
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ws = 2 * NX + 1

# We assure that the introduced window size is smaller than the file length

while ws > file_length:

NX = int( input("The selected window size is bigger than the file length."

"\nPlease, select a new half window size to perform the"

" smoothing:"))

ws = 2 * NX + 1

# Polynomial order to perform the smoothing. It must be smaller than the length

# of the window

pol = int( input("Introduce the order of the polynomial to perform the "

"Savitzky-Golay smoothing"

"\n[Recommended values range: 3-4]:"))

# Creation of the smoothed file

smoothed_file = pd.DataFrame()

# Iteration to perform the smoothing method onto the desired columns

for j in columns:

smoothed_file[j] = sp_sig.savgol_filter(file[header_f[j]], ws, pol)

NS = int(len(smoothed_file)) # Calculation of the file length

return smoothed_file, NS

elif i == 4:

# The Butterworth filter has the following default values

print( "\nThe default values used for the Butterworth filter are:"

"\n\tOrder of the filter: 8"

"\n\tNormalized critical frequency: 0.02 Hz")

# The default values of the filter are specified here

par_1 = 8

par_2 = 0.02

# The default values of the filter can be modified here

answer2 = input("\nDo you want to use alternative parameters? [Y/N]:")

# Loop to filter the possible wrong inputs introduced by the user

while answer2 not in [’Y’, ’y’, ’yes’, ’Yes’, ’YES’, ’N’, ’n’, ’no’, ’No’, ’NO’]:

print(’\nPlease introduce a suitable answer [Y/N]’)

answer2 = input("Do you want to use alternative parameters? [Y/N]:")

if answer2 in [’Y’, ’y’, ’yes’, ’Yes’, ’YES’]:

# We introduce the new parameter values for the Butterworth filter

par_1 = int(input("Introduce the order of the Butterworth filter:"))

par_2 = float(input("Introduce the normalized critical frequency of the"

" filter [0-1 Hz]:"))

# This while loop assures that the introduced normalized frequency is in the

# range 0-1 Hz

loop = 0

while loop == 0:

if par_2 <= 0 or par_2 >= 1:

print("The normalized critical frequency introduced is not in the"

" specified range")

par_2 = float(input("Please, introduce a new value for this parameter"

" [0-1 Hz]:"))

else:

loop = 1
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else:

print("The default parameters will be used")

# Create a low pass Butterworth filter

b, a = sp_sig.butter(par_1, par_2, btype=’low’, analog=False)

# Creation of the smoothed file

smoothed_file = pd.DataFrame()

# Iteration to perform the smoothing method onto the desired columns

for j in columns:

smoothed_file[j] = sp_sig.filtfilt(b, a, file[header_f[j]])

NS = int(len(smoothed_file)) # Calculation of the file length

return smoothed_file, NS

elif i == 5:

# The Percentile filter has the following default values

print("\nThe default values used for the Percentile filter are:"

"\n\tWindow size: 50"

"\n\tPercentile: 0.5")

# The default values of the filter are specified here

percent = 0.5

ws = 50

# The default values of the filter can be modified here

answer3 = input("\nDo you want to use alternative parameters? [Y/N]:")

# Loop to filter the possible wrong inputs introduced by the user

while answer3 not in [’Y’, ’y’, ’yes’, ’Yes’, ’YES’, ’N’, ’n’, ’no’, ’No’, ’NO’]:

print(’\nPlease introduce a suitable answer [Y/N]’)

answer3 = input("Do you want to use alternative parameters? [Y/N]:")

if answer3 in [’Y’, ’y’, ’yes’, ’Yes’, ’YES’]:

# NX is the window size to perform the temperature and data smoothing

NX = int(input("\nIntroduce the half window size to perform the"

" percentile filter"

"\n[Recommended values range: 10 - 100]:"))

# Total new window size to perform the smoothing. Always an odd number

ws = 2 * NX + 1

# We assure that the introduced window size is smaller than the file length

while ws > file_length:

NX = int(input("The selected window size is bigger than the file length."

"\nPlease, select a new half window size to perform the"

" smoothing:"))

ws = 2 * NX + 1

percent = float(input("Introduce the percentile to compute with the filter"

" [0-1]"))

# Creation of the smoothed file

smoothed_file = pd.DataFrame()

# Iteration to perform the smoothing method onto the desired columns

for j in columns:

smoothed_file[j] = file[header_f[j]].rolling(window=ws, center=True)\

.quantile(percent)

NS = int(len(smoothed_file)) # Calculation of the file length
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return smoothed_file, NS

# --------------------------------------------------------------------- #

# #

# Sensitivity #

# #

# --------------------------------------------------------------------- #

def sensitivity(temp: float):

"""Calculates and returns the sensitivity of the Strain-DSC calorimeter"""

# The sensitivity is calculated in units of mV/W.

# Calibration from 2019 (range: 250 K < T < 360 K)

sens = -2.0E-3 * temp ** 2 + 1.20626 * temp - 87.71754

return sens

# --------------------------------------------------------------------- #

# #

# Signal correction #

# #

# --------------------------------------------------------------------- #

def signal_correction(signal, sens, temp_deriv):

"""

Performs the signal correction for the sensitivity (mV/W)

and the dT/dt (K/s) value

"""

# The factor 1E6 comes from two sides:

# 1. Signal: V to mV conversion

# 2. corr_value: J to mJ conversion

corr_value = 1E6 * ((signal / sens) / temp_deriv)

return corr_value

# --------------------------------------------------------------------- #

# #

# Indexing function #

# #

# --------------------------------------------------------------------- #

def indexing(file, column, temp, tol):

"""

This function returns the row index of the temperature point

closest (with a certain margin of tolerance) to the temperature

value introduced by the user

"""

k = 0

l = 0

dist = abs(temp - file.loc[k, column])

while l == 0:

if dist > tol:

k = k + 1

dist = abs(temp - file.loc[k, column])

else:

break
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return k

# --------------------------------------------------------------------- #

# #

# Picking points function #

# #

# --------------------------------------------------------------------- #

def select(num_points):

"""

This function shows the dQ/dT (mJ/K) vs T (K) plot and

allows the user to select a certain number of data points

"""

# ---------------Plot of dQ/dT (mJ/K) vs Temperature(K)---------------- #

header_s = list(smoothed_thermogram)

# We display the plot of the Corrected signal vs Temperature

corrected_fig = plt.figure()

ax = corrected_fig.add_subplot(111)

plt.plot(smoothed_thermogram[header_s[0]], smoothed_thermogram[header_s[6]],

color=’k’, label=’dQ/dT (mJ/K)’, picker=5)

plt.legend()

plt.title(’Corrected data plot’)

plt.ylabel(’dQ/dT (mJ/K)’)

plt.xlabel(’Temperature (K)’)

# We define the cursor properties

cursor = Cursor(ax, useblit=True, color=’k’, linewidth=1)

print(’Click once on the plot with the right mouse button to select a point’)

print(’We have to select {} points in total’.format(num_points))

# lists to store the x and y values of the selected points

temp = list()

signal = list()

# Necessary indexes for the while loop

n = 0

# Loop to select the number of points desired

loop = 0

while loop == 0:

if n < num_points:

# We allow the user to zoom in or out in the plot

zoom = False

print(’Pres any kayboard to select a new data point’)

while not zoom:

zoom = plt.waitforbuttonpress()

# This returns a list (x,y) of the data point clicked with the mouse

data_point = plt.ginput(1)

one_point = pd.DataFrame(data_point)

# We just keep both temperature and signal of the point selected

temp_point = one_point.loc[0,0]

signal_point = one_point.loc[0,1]

# We append it to create a list with the temperatures and signals selected

temp.append(temp_point)

signal.append(signal_point)

if n == 0:

# We plot the data point selected

plt.plot(temp[n], signal[n], marker=’v’, color=’r’,

label=’First temperature range’)

plt.legend()
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plt.draw()

elif 0 < n < 2:

plt.plot( temp[n], signal[n], marker=’v’, color=’r’)

plt.draw()

elif n == 2:

# We plot the data point selected

plt.plot(temp[n], signal[n], marker=’^’, color=’r’,

label=’Second temperature range’)

plt.legend()

plt.draw()

else:

plt.plot( temp[n], signal[n], marker=’^’, color=’r’)

plt.draw()

n = n + 1

else:

break

plt.show()

return temp

# --------------------------------------------------------------------- #

# #

# Background regression #

# #

# --------------------------------------------------------------------- #

# We define the equation for a line

def lin_funct(x,a,b):

return a*x + b

# We define the equation for a 3rd order polynomial

def poly_funct(x,a,b,c,d):

return a*x**3 + b*x**2 + c*x + d

def regression_fit(file, i_start, i_end, col_x, col_y, index):

"""

This function calculates a linear or a 3rd order polynomial regression to the

specified x and y data and returns the regression coefficients and their covariances

"""

header = list(file)

# We define the x and y ranges to fit the linear regression

x = file.loc[i_start:i_end, header[col_x]]

y = file.loc[i_start:i_end, header[col_y]]

if index == 1:

# We perform the linear regression

popt,pcov = sp_opt.curve_fit(lin_funct, x, y)

else:

# We perform the 3rd order polynomial regression

popt, pcov = sp_opt.curve_fit(poly_funct, x, y)

return popt, pcov

# --------------------------------------------------------------------- #

# #

# Background point values #

# #

# --------------------------------------------------------------------- #
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def regression_calc(xdata, popt, index):

"""This function calculates the y = f(x,*parameters), where x and the parameters

are given. The function can be a linear regression or a 3rd order polynomial"""

if index == 1:

# We have a linear regression

ydata = lin_funct(xdata, *popt)

else:

# We have a 3rd order polynomial regression

ydata = poly_funct(xdata, *popt)

return ydata

# --------------------------------------------------------------------- #

# #

# Signal correction #

# #

# --------------------------------------------------------------------- #

def dS_computation(temp, signal, background):

"""

Performs the signal (dQ/dT) correction fot the

background and the temperature, to compute entropy changes

"""

corr_value = (1/temp * (signal - background))

return corr_value

# --------------------------------------------------------------------- #

# #

# Transition temperatures determination #

# #

# --------------------------------------------------------------------- #

def transition_temp_1(file, start_count, end_count, X_value, step):

"""This function identifies the start and end temperatures of the

transition once a certain tolerance (from 0 to 1) on the transformed

fraction is specified"""

count = start_count

while count <= end_count:

X = file.loc[count, header_s[10]]

X_diff = abs(X - X_value)

if X_diff <= 0.005:

T_1 = file.loc[count,header_s[0]]

break

else:

count = count + step

return T_1

def transition_temp_2(file, start_count, end_count, X_value, step):

"""This function identifies the start and end temperatures of the

transition once a certain tolerance (from 0 to 1) on the transformed

fraction is specified"""

# We start from the other side

count = start_count

while count >= end_count:
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X = file.loc[count, header_s[10]]

X_diff = abs(X - X_value)

if X_diff <= 0.005:

T_2 = file.loc[count,header_s[0]]

break

else:

count = count + step

return T_2

# --------------------------------------------------------------------- #

# #

# Transformed fraction tolerance #

# #

# --------------------------------------------------------------------- #

def tolerance_function(tolerance):

"""This function checks if the transformed fraction is inside the tolerance margin.

If not, a backup tolerance is taken and the iterative calculation keeps going"""

count = i_temp[1]

while count <= i_temp[2]:

X = smoothed_thermogram.loc[count, header_s[10]]

if X <= (-tolerance):

smoothed_thermogram[header_s[10]] = backup[’Transformed fraction’]

print( ’X < {}. We took the backup Transformed fraction’.format(-tolerance))

break

elif X >= (1 + tolerance):

smoothed_thermogram[header_s[10]] = backup[’Transformed fraction’]

print( ’X > {}. We took the backup Transformed fraction’.format(1+tolerance))

break

count = count + 1

return smoothed_thermogram[header_s[10]]

# -------------------------------SCRIPT-------------------------------- #

# --------------------------------------------------------------------- #

# Package 1: Introduction of the parameters to read the file properly #

# --------------------------------------------------------------------- #

print("Welcome to CALATO 1.0!"

"\nI will guide you through all the steps to properly analyse your thermogram")

# Directories to read the data to analyse and to storage the results obtained

data_DR = "< data directory path >"

storage_DR = "< storage directory path >"

FN = input("Write the name and the extension (e.g: .dat) of the data file: ")

dt = str(input("Introduce the sampling period (s): ")) # dt is a float here

# If the decimal delimiter is a comma, it is replaced by points, else the program

# continues.

if dt.__contains__(’,’) is True:

print(’The decimal separator is a comma, and will be replaced to points’)

dt = float(dt.replace(’,’,’.’))

else:

dt = float(dt)
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# ------------------------Opening the data file------------------------ #

path = data_DR + FN

# We define the variable that controls the smoothing loop

loop = 0

while loop == 0:

try:

# Read the file. The spacer between columns is a tab, and the first row

# is the header

thermogram_file = pd.read_csv(path, sep=None, header=0, engine=’python’,

keep_default_na=False)

break

except IOError:

print(’\nThere is no file with this name in the current data directory’)

print(’Please introduce a suitable file name!’)

# We introduce the new file name and we define again the file path

FN = input( ’\nWrite the name and the extension (e.g: .dat) of the data file:’)

path = data_DR + FN

loop = 0

# We get the number of rows we have in the file

N = int(len(thermogram_file))

print(’The imported file has {} rows in total.’.format(N))

# --------------------------------------------------------------------- #

# Package 2: Plot of the raw data and computing the smoothed file #

# --------------------------------------------------------------------- #

# -----------------------Creating the time axis------------------------ #

header = list(thermogram_file) # We get the headers list

length = len(header) # We get the headers list length

# We identify the delimiter from the first element of the first column

element = str(thermogram_file.loc[0,header[0]])

# If the decimal delimiter is a comma, it is replaced by points, else the program

# continues.

if element.__contains__(’,’) is True:

print(’The decimal separator is a comma, and will be replaced to points’)

thermogram_file = thermogram_file.apply(lambda x: x.str.replace(’,’,’.’).

astype(float))

else:

print(’The decimal separator are points’)

# If the column separator is a tab, an extra column is created when reading a file

# and we replace it for the time. While if the separator is a space, the imported

# file has only two columns and the third one will be the time.

if length > 2:

# We create the column Time(s), taking into account the sampling period

thermogram_file[header[2]] = pd.Series(np.arange(0, dt * N, dt))

thermogram_file.rename(columns={header[2]:’Time (s)’}, inplace=True)

header = list(thermogram_file) # We get the headers list

elif length <= 2:

# We create the column Time(s), taking into account the sampling period

thermogram_file[’Time (s)’] = pd.Series(np.arange(0, dt * N, dt))

header = list(thermogram_file) # We get the headers list
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# -------------Temperature(K) and Signal(mV) vs t(s) plot-------------- #

fig = plt.figure()

plt.subplot(211)

plt.plot(thermogram_file[header[2]], thermogram_file[header[0]], color=’k’,

label=’Temperature (K)’)

plt.title(’Raw imported data of file {}’.format(FN))

plt.ylabel(’Temperature (K)’)

plt.xlabel(’Time (s)’)

plt.legend()

plt.subplots_adjust(hspace=0.3)

plt.subplot(212)

plt.plot(thermogram_file[header[2]], thermogram_file[header[1]], color=’k’,

label=’Signal (V)’)

plt.ylabel(’Signal (V)’)

plt.xlabel(’Time (s)’)

plt.legend()

plt.show(fig)

# -------------Smoothing both Temperature(K) and Signal(V)------------- #

print(’\nNow we will perform a smoothing to both Temperature (K) and Signal (V) columns’)

# We define the variable that controls the smoothing loop

loop = 0

while loop == 0:

answer_loop = input("Do you want to do the same smoothing procedure to both "

"Temperature (K) and Signal (V)? [Y/N]:")

while answer_loop not in [’Y’, ’y’, ’yes’, ’Yes’, ’YES’, ’N’, ’n’, ’no’, ’No’, ’NO’]:

print(’\nPlease introduce a suitable answer [Y/N]’)

answer_loop = input("Do you want to do the same smoothing procedure to both"

"Temperature (K) and Signal (V)? [Y/N]:")

# We create a new matrix to store the smoothed variables computed by this function

smoothed_thermogram = pd.DataFrame()

if answer_loop in [’Y’, ’y’, ’yes’, ’Yes’, ’YES’]:

# We call the smoothing function. It smooths the Temperature(K)

# and Signal(V) columns

smoothed_file, NS = smoothing_function(thermogram_file, N, columns=[0, 1])

# Creation of the Smoothed Temperature column

smoothed_thermogram[’Temperature (K)’] = smoothed_file[0]

# Creation of the Smoothed Signal column

smoothed_thermogram[’Signal (V)’] = smoothed_file[1]

elif answer_loop in [’N’, ’n’, ’no’, ’No’, ’NO’]:

print(’\nWe will start with the Temperature (K) smoothing’)

# We call the smoothing function. It smooths the Temperature (K) column

smoothed_file, NS = smoothing_function(thermogram_file, N, columns=[0])

print(’\nWe will continue with the Signal (V) smoothing’)

# Creation of the Smoothed Temperature column

smoothed_thermogram[’Temperature (K)’] = smoothed_file[0]

# We call the smoothing function. It smooths the Signal (V) column
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smoothed_file, NS = smoothing_function(thermogram_file, N, columns=[1])

# Creation of the Smoothed Signal column

smoothed_thermogram[’Signal (V)’] = smoothed_file[1]

# Creation of the time axis for the smoothed file

smoothed_thermogram[’Time (s)’] = pd.Series(np.arange(0, dt * NS, dt))

# We call the plotting function to display the results of the smoothing

title = ’Comparison of raw and smoothed temperature and signal’

double_plot(thermogram_file, smoothed_thermogram, title, pl_1_x=2, pl_1_y=0,

pl_2_x=2, pl_2_y=1)

# Loop to filter the wrong inputs introduced by the user

answer_loop = input("\nDo you want to repeat the smoothing procedure? [Y/N]:")

while answer_loop not in [’Y’, ’y’, ’yes’, ’Yes’, ’YES’, ’N’, ’n’, ’no’, ’No’, ’NO’]:

print(’\nPlease introduce a suitable answer [Y/N]’)

answer_loop = input("Do you want to repeat the smoothing procedure? [Y/N]:")

if answer_loop in [’Y’, ’y’, ’yes’, ’Yes’, ’YES’]:

loop = 0

elif answer_loop in [’N’, ’n’, ’no’, ’No’, ’NO’]:

break

# --------------------------------------------------------------------- #

# Package 3: Computation of dT/dt (K/s) and smoothing #

# --------------------------------------------------------------------- #

# ----------------------Calculation of dT/dt(K/s)---------------------- #

# We get the headers list of the smoothed file

header_s = list(smoothed_thermogram)

# We compute the derivative of the smoothed temperature using the gradient function

smoothed_thermogram[’dT/dt (K/s)’] = np.gradient(smoothed_thermogram[header_s[0]], dt)

# Creation of a dataframe to compare the different smoothings of dT/dt (K/s)

comparison_file = pd.DataFrame()

# Creation of the Temperature and raw smoothed dT/dt columns

comparison_file[’Time (s)’] = smoothed_thermogram[’Time (s)’]

comparison_file[’Temperature (K)’] = smoothed_thermogram[’Temperature (K)’]

comparison_file[’Raw dT/dt (K/s)’] = smoothed_thermogram[’dT/dt (K/s)’]

# We get the number of rows we have in the file

N = int(len(comparison_file))

# ----------------Smoothing the dT/dt(K/s) calculation----------------- #

print(’\nNow we will perform a smoothing to dT/dt (K/s)’)

# We define the variable that controls the smoothing loop

loop = 0

while loop == 0:

# We call the smoothing function. It smooths the dT/dt (K/s) column of the

# comparison file

smoothed_file, NS = smoothing_function(comparison_file, N, columns=[2])

# Creation of the 1st smoothed dT/dt column
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comparison_file[’1st smoothed dT/dt (K/s)’] = smoothed_file[2]

# We call the plotting function to display the results of the first smoothing

title = ’Comparison of raw and 1st smoothed Temperature derivatives’

label_1 = ’raw dT/dt (K/s)’

label_2 = ’1st smoothed dT/dt (K/s)’

label_3 = ’Temperature (K)’

# We obtain the headers list of the comparison file

header_c = list(comparison_file)

# ------------------Identifying a cooling or a heating----------------- #

# We get the index of the first element of the file

i_startfile = smoothed_thermogram.index[0]

t_start = smoothed_thermogram.loc[i_startfile, header_s[0]]

# We get the index of the last element of the file

i_endfile = smoothed_thermogram.index[-1]

t_end = smoothed_thermogram.loc[i_endfile, header_s[0]]

if t_start > t_end:

# The data file is a Cooling

ymax = 0.995 * comparison_file[header_c[3]].max()

ymin = 1.005 * comparison_file[header_c[3]].min()

elif t_start < t_end:

# The data file is a Heating

ymax = 1.005*comparison_file[header_c[3]].max()

ymin = 0.995*comparison_file[header_c[3]].min()

fig, ax1 = plt.subplots()

plt.plot(comparison_file[header_c[0]], comparison_file[header_c[2]], color=’k’,

label=label_1)

plt.plot(comparison_file[header_c[0]], comparison_file[header_c[3]], color=’r’,

label=label_2)

ax1.set_ylim([ymin,ymax])

plt.legend()

ax2 = ax1.twinx()

plt.plot(comparison_file[header_c[0]], comparison_file[header_c[1]], color=’b’,

label=label_3)

ax2.tick_params(axis=’y’, labelcolor=’b’)

plt.legend()

plt.title(title)

ax1.set_ylabel(’dT/dt (K/s)’)

ax2.set_ylabel(’Temperature (K)’, color=’b’)

ax1.set_xlabel(’Time (s)’)

plt.show()

# -------------------Second smoothing of dT/dt(K/s)-------------------- #

# We give the possibility to perform a second smoothing on the Temperature derivative

answer_loop = input("\nDo you want to perform a second smoothing on dT/dt (K/s)?"

" [Y/N]:")

# Loop to filter the wrong inputs introduced by the user

while answer_loop not in [’Y’, ’y’, ’yes’, ’Yes’, ’YES’, ’N’, ’n’, ’no’, ’No’, ’NO’]:
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print(’\nPlease introduce a suitable answer [Y/N]’)

answer_loop = input("Do you want to perfotm a second smoothing on dT/dt (K/s)?"

" [Y/N]:")

if answer_loop in [’Y’, ’y’, ’yes’, ’Yes’, ’YES’]:

# We call the smoothing function. It smooths the dT/dt (K/s) column

smoothed_file, NS = smoothing_function(comparison_file, N, columns=[3])

# Creation of the 2nd smoothed dT/dt column

comparison_file[’2nd smoothed dT/dt (K/s)’] = smoothed_file[3]

# We copy this smoothed curve to the smoothed thermogram data frame

smoothed_thermogram[’Smoothed dT/dt (K/s)’] = \

comparison_file[’2nd smoothed dT/dt (K/s)’]

# We call the plotting function to display the results of the second smoothing

title = ’Comparison of 1st and 2nd smoothed Temperature derivatives’

label_1 = ’raw dT/dt (K/s)’

label_2 = ’1st smoothed dT/dt (K/s)’

label_3 = ’2nd smoothed dT/dt (K/s)’

label_4 = ’Temperature (K)’

# We obtain the headers list of the comparison file

header_c = list(comparison_file)

fig, ax1 = plt.subplots()

plt.plot(comparison_file[header_c[0]], comparison_file[header_c[2]], color=’k’,

label=label_1)

plt.plot(comparison_file[header_c[0]], comparison_file[header_c[3]], color=’r’,

label=label_2)

plt.plot(comparison_file[header_c[0]], comparison_file[header_c[4]],

color=’deepskyblue’, label=label_3)

ax1.set_ylim([ymin, ymax])

plt.legend()

ax2 = ax1.twinx()

ax2.plot(comparison_file[header_c[0]], comparison_file[header_c[1]], color=’b’,

label=label_4)

ax2.tick_params(axis=’y’, labelcolor=’b’)

plt.legend()

plt.title(title)

plt.legend()

ax1.set_ylabel(’dT/dt (K/s)’)

ax2.set_ylabel(’Temperature (K)’, color=’b’)

ax1.set_xlabel(’Time (s)’)

plt.show()

elif answer_loop in [’N’, ’n’, ’no’, ’No’, ’NO’]:

print("No additional smoothing will be performed")

smoothed_thermogram[’Smoothed dT/dt (K/s)’] = \

comparison_file[’1st smoothed dT/dt (K/s)’]

answer_loop = input("\nDo you want to repeat the smoothing procedure? [Y/N]:")

# Loop to filter the wrong inputs introduced by the user

while answer_loop not in [’Y’, ’y’, ’yes’, ’Yes’, ’YES’, ’N’, ’n’, ’no’, ’No’, ’NO’]:
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print(’\nPlease introduce a suitable answer [Y/N]’)

answer_loop = input("Do you want to repeat the smoothing procedure? [Y/N]:")

if answer_loop in [’Y’, ’y’, ’yes’, ’Yes’, ’YES’]:

loop = 0

elif answer_loop in [’N’, ’n’, ’no’, ’No’, ’NO’]:

break

# --------------------------------------------------------------------- #

# Package 4: Calculation of the Sensitivity #

# --------------------------------------------------------------------- #

print(’\nNow we can perform the correction of the Signal(V)’

’\nwith the calorimeter sensitivity S(mV/W). There are two options:’

’\n\t1. Strain-DSC sensitivity’

’\n\t2. No sensitivity correction (S = 1 mV/W)’)

i = int(input("Introduce the sensitivity correction you want to perform [1,2]:"))

while i != 1 and i != 2:

i = int(input("Please, select a suitable option number [1,2]:"))

if i == 1:

# We calculate the sensitivity column

smoothed_thermogram[’sensitivity (mV/W)’] = smoothed_thermogram.apply(

lambda x: sensitivity(x[header_s[0]]), axis=1)

else:

print(’The sensitivity is set to 1 mV/W. Therefore, no correction on the data’

’ will be performed’)

# We calculate the sensitivity column

smoothed_thermogram[’sensitivity (mV/W)’] = smoothed_thermogram.apply(

lambda x: 1, axis=1)

# --------------------------------------------------------------------- #

# Package 5: Correction for the Sensitivity and dT/dt #

# --------------------------------------------------------------------- #

# We get the headers list of the smoothed file

header_s = list(smoothed_thermogram)

smoothed_thermogram[’dQ/dT (mJ/K)’] = smoothed_thermogram.apply(

lambda x: signal_correction(x[header_s[1]], x[header_s[5]], x[header_s[4]]),

axis=1)

# --------------------------------------------------------------------- #

# Package 6: Base-line correction and integration #

# --------------------------------------------------------------------- #

print(’\nNow we will perform the base-line correction’)

# We define the variable that controls the full integration loop

loop_int = 0

# This loop allows to repeat all the integration procedure

while loop_int == 0:

# We define a variable to control the loop for the first background

loop_background = 0

# This loop allows to repeat the background selection before starting the
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# integration routine

while loop_background == 0:

print(’\nPlease, select two points on the dQ/dT vs T plot before and’

’ two more after the transition peak to perform the background correction’)

# We call the function to select four temperature points

num_points = 4

temp_values = select(num_points)

# ----------------Indexing the introduced temperatures----------------- #

# We define a temperature tolerance, in K units

tolerance = 5e-2

# We define an empty index list

i_temp = list()

# We compute the indexes of the temperature values introduced by the user

for i in range(num_points):

i_point = indexing(smoothed_thermogram, header_s[0],temp_values[i],tolerance)

i_temp.append(i_point)

print(’Data point index: {}’.format(i_temp[i]))

# We sort the index values of the index list to order them

i_temp = sorted(i_temp)

# We find the temperatures corresponding to the indices found

# First temperature range before the peak

t1s = smoothed_thermogram.loc[i_temp[0],header_s[0]]

t1e = smoothed_thermogram.loc[i_temp[1], header_s[0]]

# Second temperature range after the peak

t2s = smoothed_thermogram.loc[i_temp[2], header_s[0]]

t2e = smoothed_thermogram.loc[i_temp[3], header_s[0]]

print(’\nThe temperatures selected on the corrected file are:’)

print(’First temperature range: {} K, {} K’.format(t1s, t1e))

print(’Second temperature range: {} K, {} K’.format(t2s, t2e))

# ------------------Computing the linear regressions------------------- #

print(’Which type of function do you want to fit for the background?’

’\n\t 1. Two linear functions (before and after the peak)’

’\n\t 2. One 3rd order polynomial function for the full data range’)

i = int(input("Introduce the function type you want to use [1,2]:"))

while i != 1 and i != 2:

i = int(input("Please, select a suitable function type number [1,2]:"))

header_s = list(smoothed_thermogram)

# We save the index value in order to distinguish between linear and polynomial

# background functions

index = i

if index == 1:

# We calculate the first regression in the index range [i_start:i_end]

popt_1, pcov_1 = regression_fit(smoothed_thermogram, i_temp[0], i_temp[1],

col_x=0, col_y=6, index=i)
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print(’Fit parameters 1st regression:’,popt_1)

# We calculate the second regression in the index range [i_start:i_end]

popt_2, pcov_2 = regression_fit(smoothed_thermogram, i_temp[2], i_temp[3],

col_x=0, col_y=6, index=i)

print(’Fit parameters 2nd regression:’,popt_2)

elif index == 2:

# We calculate a single background for all the points selected as background

background_polyfit = pd.DataFrame()

# We add the data of the first background range i_start_1:i_end_1

bg = pd.DataFrame()

bg[’Temperature (K)’] = smoothed_thermogram.loc[i_temp[0]:i_temp[1],

header_s[0]]

bg[’Background (mJ/K)’] = smoothed_thermogram.loc[i_temp[0]:i_temp[1],

header_s[6]]

background_polyfit = background_polyfit.append(bg, ignore_index=True)

bg = pd.DataFrame()

# We add the data of the second background range i_start_2:i_end_2

bg[’Temperature (K)’] = smoothed_thermogram.loc[i_temp[2]:i_temp[3],

header_s[0]]

bg[’Background (mJ/K)’] = smoothed_thermogram.loc[i_temp[2]:i_temp[3],

header_s[6]]

background_polyfit = background_polyfit.append(bg, ignore_index=True)

# We get the start and end index of the background file

i_poly_start = background_polyfit.index[0]

i_poly_end = background_polyfit.index[-1]

# We calculate the background regression in the full index range

popt_poly, pcov_poly = regression_fit(background_polyfit, i_poly_start,

i_poly_end, col_x=0, col_y=1, index=i)

print(’Fit parameters of the polynomial regression:’, popt_poly)

# ------------------Identifying a cooling or a heating----------------- #

# We get the index of the first element of the file

i_startfile = smoothed_thermogram.index[0]

t_start = smoothed_thermogram.loc[i_startfile,header_s[0]]

# We get the index of the last element of the file

i_endfile = smoothed_thermogram.index[-1]

t_end = smoothed_thermogram.loc[i_endfile, header_s[0]]

if t_start > t_end:

data_type = ’Cooling’

print(’The data file is a Cooling’)

else:

data_type = ’Heating’

print(’The data file is a Heating’)

# -----------------------Background calculation------------------------ #

if index == 1:

print(’\nPlease, select the peak position of the the dQ/dT vs T plot’)
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# We get the headers list of the smoothed file

header_s = list(smoothed_thermogram)

# We call the function to select four temperature points

num_points = 1

temp_values = select(num_points)

# -----------------Indexing the introduced temperature----------------- #

# We define a temperature tolerance, in K units

tolerance = 5e-2

# We compute the index of the peak position introduced by the user

i_peak = indexing(smoothed_thermogram, header_s[0], temp_values, tolerance)

# We find the temperature corresponding to the index found

# First temperature range before the peak

t_peak = smoothed_thermogram.loc[i_peak, header_s[0]]

print(’\nThe thermogram peak position selected is:’)

print(’Index: {}, Temperature: {} K’.format(i_peak, t_peak))

# We define the initial background with the two linear regressions calculated

count = 0

while count <= i_endfile:

xdata = smoothed_thermogram.loc[count, header_s[0]]

if count < i_peak:

# Background function before the peak position

smoothed_thermogram.loc[count, ’Background (mJ/K)’] =\

regression_calc(xdata, popt_1, index)

else:

# Background function after the peak position

smoothed_thermogram.loc[count, ’Background (mJ/K)’] =\

regression_calc(xdata, popt_2, index)

count = count + 1

elif index == 2:

# We define the background with the 3rd order polynomial regression

count = 0

while count <= i_endfile:

xdata = smoothed_thermogram.loc[count, header_s[0]]

# Polynomial background function

smoothed_thermogram.loc[count, ’Background (mJ/K)’] =\

regression_calc(xdata, popt_poly, index)

count = count + 1

# Plot of the signal with the first background

title = ’Plot of the corrected signal and background’

label_1 = ’dQ/dT (mJ/K)’

label_2 = ’Background (mJ/K)’

single_plot(smoothed_thermogram, smoothed_thermogram, title, label_1, label_2,

col_1x=0, col_1y=6, col_2x=0, col_2y=7)

answer_loop = input( "\nDo you want to repeat the background selection? [Y/N]:" )

# Loop to filter the wrong inputs introduced by the user

while answer_loop not in [’Y’, ’y’, ’yes’, ’Yes’, ’YES’, ’N’, ’n’, ’no’, ’No’,
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’NO’]:

print( ’\nPlease introduce a suitable answer [Y/N]’ )

answer_loop = input( "Do you want to repeat the the background selection?"

" [Y/N]:" )

if answer_loop in [’Y’, ’y’, ’yes’, ’Yes’, ’YES’]:

loop_background = 0

elif answer_loop in [’N’, ’n’, ’no’, ’No’, ’NO’]:

break

# We get the headers list of the smoothed file

header_s = list(smoothed_thermogram)

# We correct the signal with the initial signal background

smoothed_thermogram[’1/T dQ/dT (mJ/K^2)’] = smoothed_thermogram.apply(

lambda x: dS_computation(x[header_s[0]], x[header_s[6]], x[header_s[7]]), axis=1)

# --------------------------First integration-------------------------- #

# We get the headers list of the smoothed file

header_s = list(smoothed_thermogram)

# We perform an integration using the trapezoidal rule between the end point

# of the first temperature range and the start point of the second range.

integration = pd.DataFrame()

integration[’Integral (mJ/K)’] = \

sp_int.cumtrapz(smoothed_thermogram.loc[i_temp[1]:i_temp[2], header_s[8]],

smoothed_thermogram.loc[i_temp[1]:i_temp[2], header_s[0]],

initial=0)

# We modify the index labels of the integration file

new_index = list(range( i_temp[1], i_temp[2] + 1, 1))

integration.index = new_index

# We assign values to the integral before and after the defined

# integration range [i_temp1e:i_temp2s]

count = 0

while count <= i_endfile:

if count < i_temp[1]:

smoothed_thermogram.loc[count,’Entropy integration (mJ/K)’] = float(0)

elif i_temp[1] <= count <= i_temp[2]:

smoothed_thermogram.loc[count,’Entropy integration (mJ/K)’] =\

integration.loc[count,’Integral (mJ/K)’]

else:

header_s = list(smoothed_thermogram)

smoothed_thermogram.loc[count,’Entropy integration (mJ/K)’] = \

smoothed_thermogram.loc[i_temp[2], header_s[9]]

count = count + 1

# We store the value of the first integration

S_0 = smoothed_thermogram.loc[i_temp[2], header_s[9]]

print(’Transition entropy change: {} mJ/K \n’.format(S_0))

# We define the transformed fraction as the normalized portion of

# sample that has transformed at that temperature

smoothed_thermogram[’Transformed fraction’] = smoothed_thermogram.apply(

lambda x: 1 - (x[header_s[9]] / S_0), axis=1)
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header_s = list(smoothed_thermogram)

# We create a backup of the transformed fraction

backup = pd.DataFrame()

backup[’Temperature (K)’] = smoothed_thermogram[header_s[0]]

backup[’Transformed fraction’] = smoothed_thermogram[header_s[10]]

# Plot of the transformed fraction

plt.plot(smoothed_thermogram[header_s[0]], smoothed_thermogram[header_s[10]],

color=’k’, label=’Transformed fraction’, picker=5)

plt.legend()

plt.title(’Plot of the transformed fraction’)

plt.ylabel(’Transformed fraction (normalized)’)

plt.xlabel(’Temperature (K)’)

plt.show()

# ------------------------Iterative integration------------------------ #

if index == 1:

loop_num = 0

cond = 0

# We start the iterative calculation of the integral

while cond == 0:

S_1 = 0

# We get the headers list of the smoothed file

header_s = list(smoothed_thermogram)

# We define the new background in the integration region

# [i_temp1e:i_temp2s] using the transformed fraction calculated

count = i_temp[1]

while count <= i_temp[2]:

# We define the variables temperature (temp) and

# martensite transformed fraction (X) to simplify

temp = smoothed_thermogram.loc[count, header_s[0]]

X = smoothed_thermogram.loc[count, header_s[10]]

# We define the new background

smoothed_thermogram.loc[count, ’Background (mJ/K)’] = \

regression_calc(temp, popt_1, index) * X + \

regression_calc(temp, popt_2, index) * (1 - X)

count = count + 1

# We correct the signal with the new signal background

smoothed_thermogram[’1/T dQ/dT (mJ/K^2)’] = smoothed_thermogram.apply(

lambda x: dS_computation(x[header_s[0]], x[header_s[6]], x[header_s[7]]),

axis=1)

# We perform a new integration of the corrected signal

integration[’Integral (mJ/K)’] = \

sp_int.cumtrapz(smoothed_thermogram.loc[i_temp[1]:i_temp[2], header_s[8]],

smoothed_thermogram.loc[i_temp[1]:i_temp[2], header_s[0]],

initial=0)

# We modify the index labels of the integration file

integration.index = new_index

count = i_temp[1]

while count <= i_endfile:

if count <= i_temp[2]:

smoothed_thermogram.loc[count, header_s[9]] =\
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integration.loc[count, ’Integral (mJ/K)’]

else:

smoothed_thermogram.loc[count, header_s[9]] = \

smoothed_thermogram.loc[i_temp[2], header_s[9]]

count = count + 1

# We store the value of the iterative integration

S_1 = smoothed_thermogram.loc[i_temp[2], header_s[9]]

smoothed_thermogram[’Transformed fraction’] = smoothed_thermogram.apply(

lambda x: 1 - (x[header_s[9]] / S_1), axis=1)

if loop_num < 100:

convergence = 0.00000001

smoothed_thermogram[header_s[10]] = tolerance_function(tolerance=0.01)

elif 100 < loop_num < 250:

convergence = 0.0000001

smoothed_thermogram[header_s[10]] = tolerance_function(tolerance=0.02)

elif 250 < loop_num < 450:

convergence = 0.000001

smoothed_thermogram[header_s[10]] = tolerance_function(tolerance=0.03)

elif loop_num > 450:

convergence = 0.00001

smoothed_thermogram[header_s[10]] = tolerance_function(tolerance=0.04)

# We define the integral difference as:

integ_diff = abs(1 - abs(S_1/S_0))

# The iterative background calculation and integration goes on until

# the result between two successive integrations converges.

if integ_diff > convergence:

S_0 = S_1

print(’Loop {}, Transition entropy change: {} mJ/K’.format(loop_num, S_0))

loop_num = loop_num + 1

else:

break

print(’\nThe integration has converged!!’)

elif index == 2:

# As no iterative integration is done for a polynomial baseline, the final

# integration value is set equal to the first one.

S_1 = S_0

print(’\nNo iterative integration was done’)

# ---------------------Enthalpy change calculation--------------------- #

# We correct the dQ/dT (mJ/K) data with the background

smoothed_thermogram[’dQ/dT corrected (mJ/K)’] = smoothed_thermogram.apply(

lambda x: x[header_s[6]] - x[header_s[7]], axis=1)

# We get the headers list of the smoothed file

header_s = list(smoothed_thermogram)

# We calculate the Enthalpy change of the transition

H_integ_trapz = \

sp_int.trapz(smoothed_thermogram.loc[i_temp[1]:i_temp[2], header_s[11]],

smoothed_thermogram.loc[i_temp[1]:i_temp[2], header_s[0]])
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# -------------------Display the integration results------------------- #

print(’\nTne transition entropy change is {} mJ/K’.format(S_1))

print(’Alternative calculations of this integral:’)

# We calculate the integral by the trapezoidal method

S_integ_trapz = \

sp_int.trapz(smoothed_thermogram.loc[i_temp[1]:i_temp[2], header_s[8]],

smoothed_thermogram.loc[i_temp[1]:i_temp[2], header_s[0]])

print(’\t 1. Trapeziodal integration: {} mJ/K’.format(S_integ_trapz))

# We calculate the integral by the Simpsons method

S_integ_simp = \

sp_int.simps(smoothed_thermogram.loc[i_temp[1]:i_temp[2], header_s[8]],

smoothed_thermogram.loc[i_temp[1]:i_temp[2], header_s[0]])

print(’\t 2. Simpsons integration: {} mJ/K’.format(S_integ_simp))

print(’\nWe will plot the results obtained with the integration performed’)

# We call the plotting function to display the results of the integration

title = ’Plot of the corrected signal and background’

label_1 = ’dQ/dT (mJ/K)’

label_2 = ’Background (mJ/K)’

single_plot(smoothed_thermogram, smoothed_thermogram, title, label_1, label_2,

col_1x=0, col_1y=6, col_2x=0, col_2y=7)

# ------------------------Transformed fraction------------------------- #

# Now we will distinguish between the heating and cooling cases to compute

# the martensite transformed fraction. So far, we have only considered the

# heating case.

if data_type == ’Cooling’:

smoothed_thermogram[’Transformed fraction’] = smoothed_thermogram.apply(

lambda x: 1 - (x[header_s[10]]), axis=1)

# Plot of the transformed fraction

plt.plot(smoothed_thermogram[header_s[0]], smoothed_thermogram[header_s[10]],

color=’k’, label=’Transformed fraction (mJ/K)’, picker=5)

plt.legend()

plt.title(’Plot of the transformed fraction’)

plt.ylabel(’Transformed fraction (normalized)’)

plt.xlabel(’Temperature (K)’)

plt.show()

answer_loop = input("\nDo you want to repeat the integration procedure? [Y/N]:")

# Loop to filter the wrong inputs introduced by the user

while answer_loop not in [’Y’, ’y’, ’yes’, ’Yes’, ’YES’, ’N’, ’n’, ’no’, ’No’, ’NO’]:

print(’\nPlease introduce a suitable answer [Y/N]’)

answer_loop = input("Do you want to repeat the integration procedure? [Y/N]:")

if answer_loop in [’Y’, ’y’, ’yes’, ’Yes’, ’YES’]:

loop_int = 0

elif answer_loop in [’N’, ’n’, ’no’, ’No’, ’NO’]:

break
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# --------------------------------------------------------------------- #

# Package 7: Display the results and data storage #

# --------------------------------------------------------------------- #

# --------------------Show the main results obtained------------------- #

# We print the main results obtained with the signal integration

print(’Yay! The integration was OK. The main results are printed below:\n’)

print(’Transition temperatures:’)

if data_type == ’Heating’:

T_As = transition_temp_1(smoothed_thermogram, i_temp[1], i_temp[2],

X_value=0.95, step=1)

T_Af = transition_temp_2(smoothed_thermogram, i_temp[2], i_temp[1],

X_value=0.05, step=-1)

print(’Austenite start (As): {} K \t Austenite finish (Af): {} K\n’.

format(T_As,T_Af))

elif data_type == ’Cooling’:

T_Ms = transition_temp_1(smoothed_thermogram, i_temp[1], i_temp[2],

X_value=0.05, step=1)

T_Mf = transition_temp_2(smoothed_thermogram, i_temp[2], i_temp[1],

X_value=0.95, step=-1)

print(’Martensite start (Ms): {} K \t Martensite finish (Mf): {} K\n’.

format(T_Ms,T_Mf))

print(’Entropy and enthalpy:’)

mass = str(input(’Please introduce the sample mass (mg):’))

# If the decimal delimiter is a comma, it is replaced by points,

# else the program continues.

if mass.__contains__(’,’) is True:

print(’The decimal separator is a comma, and will be replaced to points’)

sample_mass = float(mass.replace(’,’,’.’))

else:

sample_mass = float(mass)

# The factors 1000 are for the g to kg conversion

H_mass = 1000 * H_integ_trapz/sample_mass

S_mass = 1000 * S_1/sample_mass

print(’Enthalpy change: {} J/kg’.format(H_mass))

print(’Entropy change: {} J/K kg’.format(S_mass))

# --------------------Creation of the corrected file------------------- #

# We create a file to store the corrected signal

corrected_thermogram = pd.DataFrame()

# We create the Temperature column

corrected_thermogram[’Temperature (K)’] = smoothed_thermogram[header_s[0]]

# We cretate the corrected signal column

corrected_thermogram[’dQ/dT (mJ/K)’] = smoothed_thermogram[header_s[6]]

# We create the background signal column

corrected_thermogram[’Background (mJ/K)’] = smoothed_thermogram[header_s[7]]

# We create the transformed fraction column
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corrected_thermogram[’Transformed fraction (normalized)’] = \

smoothed_thermogram[header_s[10]]

# ----------------------Storing the corrected file--------------------- #

# We distinguish in the file name between the type of background that we have chosen

if index == 1:

bg = ’lin_bg_’

elif index == 2:

bg = ’pol_bg_’

# We define the file path of the corrected file

corrected_path = storage_DR + ’corrected_’ + bg + FN

# We store the corrected file at the same location as the imported file

corrected_thermogram.to_csv(corrected_path, sep=’\t’, index=False, mode=’a’)

# ---------------------Storing the dT/dt data file--------------------- #

# We define the file path of the corrected file

comparison_path = storage_DR + ’temperature_’ + bg + FN

# We store the corrected file at the same location as the imported file

comparison_file.to_csv(comparison_path, sep=’\t’, index=False, mode=’a’)





Appendix B

Ni-Mn-In: Single caloric

thermal response under the

in�uence of a secondary �eld

Figure B.1: Three-dimensional plots of the elastocaloric isothermal entropy
(panels (a) and (b)) and adiabatic temperature (panels (c) and (d)) changes
under the removal of uniaxial stress (σ′ → 0MPa) as a function of temperature.
Left side panels ((a) and (c)) correspond to the elastocaloric thermal response
in the absence of magnetic �eld, whereas right side panels ((b) and (d)) to data
under an applied magnetic �eld of µ0H = 4T. Arrows along the axis indicate
the direction of the temperature and uniaxial stress changes.
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Ni-Mn-In: Single caloric thermal response under the in�uence of a

secondary �eld

Figure B.2: Three-dimensional plots of the magnetocaloric isothermal entropy
(panels (a) and (b)) and adiabatic temperature (panels (c) and (d)) changes un-
der the application of magnetic �eld (0T→ µ0H

′) as a function of temperature.
Left side panels ((a) and (c)) correspond to the magnetocaloric thermal response
in the absence of stress, whereas right side panels ((b) and (d)) to data under
an applied stress of σ = 40MPa. Arrows along the axis indicate the direction of
the temperature and magnetic �eld changes.



Appendix C

Ni-Mn-Ga-Cu: Single caloric

thermal response under the

in�uence of a secondary �eld



288

Ni-Mn-Ga-Cu: Single caloric thermal response under the in�uence of a

secondary �eld

Figure C.1: Three-dimensional plots of the elastocaloric isothermal entropy
(left side) and adiabatic temperature (right side) changes computed from the
entropy curves upon heating (panels (a)-(f)) and cooling (panels (g)-(l)) as a
function of temperature at selected values of magnetic �eld {µ0Hj} = {0, 3, 6}T.
Arrows along the axis indicate the direction of the temperature and uniaxial
stress changes.
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Ni-Mn-Ga-Cu: Single caloric thermal response under the in�uence of a

secondary �eld

Figure C.2: Three-dimensional plots of the magnetocaloric isothermal entropy
(left side) and adiabatic temperature (right side) changes computed from the en-
tropy curves upon heating (panels (a)-(f)) and cooling (panels (g)-(l)) as a func-
tion of temperature at selected values of applied stress {σi} = {0, 10, 20}MPa.
Arrows along the axis indicate the direction of the temperature and magnetic
�eld changes.
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