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Summary 
Nowadays, common medical problems such as obesity, metabolic syndrome, 

cardiovascular diseases, cancer, and neurodegenerative diseases, which are non-

communicable (NCD), are considered multifactorial diseases. This means that a cluster 

of risk factors, associated with disrupted metabolism, influence the development of 

NCDs. For this reason, as Van Ommen et al. proposed, the onset of NCDs arise from 

the imbalance of a few overarching processes that are mainly metabolic stress, 

inflammatory stress, oxidative stress, and psychological stress. Monitoring these 

overarching processes opens the door to the possibility of modulating them, therefore 

preventing the onset of different NCDs by designing more precise personalized 

interventions or treatments. Nevertheless, current disease biomarkers cannot assess 

the early alterations that might lead to the development of disease, highlighting the 

need to define new biomarkers to identify early deviations. 

Thus, the present work presents a characteristic metabolic signature for the 

detection of specific processes using omic technologies. These include the 

deregulation of carbohydrate metabolism and lipid metabolism, hypertension, and 

gut dysbiosis, as representative of metabolic stress; inflammation stress; oxidative 

stress and psychological stress. For this purpose, different animal models were 

developed using different induction approaches to isolate the different risk factors of 

interest. After the validation of the animal models by classical biomarkers, 

homeostasis disturbances were defined through the characterisation of the systemic 

metabolism using omics approaches. To assess the metabolic profile, GC-qTOF and 

UHPLC-qTOF were performed to evaluate plasma metabolome; 1H-NMR was used for 

the evaluation of urine metabolome; additionally, shotgun metagenomics sequencing 

was carried out for the characterization of the cecum microbiome. 

Finally, a metabolic profile was assessed for each risk factor and a predictive 

model was achieved which can discriminate among the different risk factors. The 

results indicated that, lipids and tricarboxylic acid (TCA) cycle intermediates are the 

most promising components of the metabolic profile. The lipid profile is unique for 

each one of the risk factors. Nevertheless, in all the risk factors, diacylglycerols (DGs) 

are the lipidic metabolites with the greatest impact on metabolic profiles. Specifically, 

DG 36:4 and DG 34:2 are the common compounds that link arachidonic acid 

metabolism with the different risk factors. In inflammation, oxidative and 

psychological stress, the other key player is the TCA cycle which is the central 

mitochondrial energetic pathway. Particularly, alpha-ketoglutarate is one of the most 

promising intermediates as a biomarker due to its multiple roles in mitochondrial 

metabolism. In consequence, the presented metabolic profile is a potential tool for 

the monitoring of risk factors and could open a window to target the onset of diseases 

and try to prevent and treat them. 
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Resum 
En la actualitat, els problemes mèdics més comuns com l'obesitat, la síndrome 

metabòlica, les malalties cardiovasculars, el càncer i les malalties neurodegeneratives, 

es consideren malalties multifactorials, a més a més de no ser transmissibles. Això 

significa que un grup de factors de risc, associats amb el metabolisme alterat, 

influeixen en el desenvolupament d’aquestes malalties. Per aquesta raó, com Van 

Ommen et al. va proposar, l'inici d’aquestes malalties es deu al desequilibri d'uns 

processos generals que són principalment estrès metabòlic, estrès inflamatori, estrès 

oxidatiu i estrès psicològic. El seguiment d'aquests processos obre la porta a la 

possibilitat de modular-los, evitant així l'inici de diferents malalties mitjançant el 

disseny d'intervencions o tractaments personalitzats més precisos. No obstant això, 

els biomarcadors de malalties actuals no poden avaluar les alteracions inicials que 

podrien portar al desenvolupament de la malaltia, destacant la necessitat de definir 

nous biomarcadors per identificar les desviacions primerenques. 

Per tant, el treball actual presenta una signatura metabòlica característica per a 

la detecció d’aquests processos específics utilitzant tecnologies òmiques. Aquests 

inclouen la desregulació del metabolisme dels carbohidrats i el metabolisme dels 

lípids, la hipertensió i la dysbiosis intestinal, com a representant de l'estrès metabòlic; 

l'estrès inflamació; l'estrès oxidatiu i l'estrès psicològic. Per a aquest propòsit, es van 

desenvolupar diferents models animals utilitzant diferents aproximacions per tal 

d’aïllar els diferents factors de risc d'interès. Després de la validació dels models 

animals pels biomarcadors clàssics, les pertorbacions de l'homeòstasi es van definir a 

través de la caracterització del metabolisme sistèmic utilitzant enfocaments òmics. 

Per avaluar el perfil metabòlic, GC-qTOF i UHPLC-qTOF es van realitzar per avaluar el 

metaboloma del plasma; 1H-NMR es va utilitzar per a l'avaluació del metaboloma de 

l'orina; addicionalment, es va dur a terme la seqüenciació de la metagenòmica 

mitjançant shotgun per a la caracterització del microbioma cecal. 

Finalment, es va avaluar un perfil metabòlic per a cada factor de risc i es va establir 

un model predictiu que pot discriminar entre els diferents factors de risc. Els resultats 

indicaven que, els lípids i els intermediaris del cicle de l'àcid tricarboxílic (TCA) són els 

components més prometedors del perfil metabòlic. El perfil lípid és únic per a 

cadascun dels factors de risc. En tots els factors de risc, els diacilglicerols (DG) són els 

metabòlits lipídics amb major impacte en els perfils metabòlics. Concretament, el DG 

36:4 i el DG 34:2 són els compostos comuns que uneixen el metabolisme de l'àcid 

araquidònic amb els diferents factors de risc. En inflamació, estrès oxidatiu i 

psicològic, l'altre protagonista clau és el cicle del TCA, que és la ruta energètica 

mitocondrial central. En particular, l'alfa-cetoglutarat és un dels intermedis més 

prometedors com a biomarcador a causa dels seus múltiples rols en el metabolisme 

mitocondrial. En conseqüència, el perfil metabòlic presentat és una eina potencial per 

al seguiment dels factors de risc i podria obrir una finestra per apuntar a l'inici de les 

malalties i intentar prevenir-les i tractar-les. 
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IL-6: interleukin-6 

IL-8: interleukin-8 

IP: intraperitoneal  

KEGG: Kyoto Encyclopaedia of Genes and 

Genomes  

LC: liquid chromatography 

LDH: lactate dehydrogenase 

LDL: low-density lipoprotein 

LOX: lipoxygenases  

Lp(a): lipoprotein(a) 

LPC: lysophospholipid 

LPS: lipopolysaccharide 

MetS: metabolic syndrome 

MINT: Multivariate INTegration  

miRNA:  micro-RNA  

MS: mass spectrometry 

MTNR1B: melatonin receptor 1B 

MWAS: microbiome wide association 

studies 

NAFLD: non-alcoholic fatty liver disease 

NCD: non-communicable disease 

ncRNA: noncoding RNA 

NEFA: non-esterified free fatty acid 

NeuroD1: neurogenic differentiation 1  

NMR: nuclear magnetic resonance 

O2
•-: superoxide anion 

OFT: open field test 

OGTT: oral glucose test tolerance 

OLPS-DA: Orthogonal Projections to 

Latent Structures Discriminant Analysis 

ONOO−: peroxynitrite anion 

OUT: operational taxonomic unit 

P407: poloxamer 407 

PAMP: pathogen-associated molecular 

pattern 

PC: phosphatidylcholine 

PCA: principal components analysis 

PCSK9: proprotein convertase 

subtilisin/kexin type 9  

PLA2: phospholipase A2 

PLC: phospholipase C  

PLD: phospholipase D  

PLS-DA: partial least squares-discriminant 

analysis 

PQ: paraquat or 1,10-dimethyl-4,40-
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rRNA: ribosomal RNA 

SAM: sympathetic-adrenal-medullary 

system 

SBP: systolic blood pressure 

SHR rats: spontaneously hypertensive rats 

SM: sphingomyelin 

SMPDB: Small Molecule Pathway 

Database 

SNP: single nucleotide polymorphisms 

SOD: superoxide dismutase 

SPT: sucrose preference test 

STZ: streptozotocin  

T1DM: type 1 diabetes mellitus 

T2DM: type 1 diabetes mellitus 

T3DM: type 3 diabetes mellitus 

TC: total cholesterol 

TCA cycle: tricarboxylic acid cycle 

TG: triglycerides  

TMAO: trimethylamine N-oxide 

TNF-α: tumour necrosis factor-alpha 

TOCSY: total correlation spectroscopy 

TOFMS: time-of-flight mass spectrometry 

TTM: total thiol molecules 

VLDL: very low-density lipoprotein 

WBC: white blood cells 

WGS: whole genome shotgun sequencing 

WHO: World Health Organization 

WKY rats: Wistar Kyoto rats 
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I. Introduction 

1. Non-communicable diseases (NCDs) 
Non-communicable diseases (NCDs), also known as chronic diseases, are a group 

of diseases that are not spread from person to person (non-contagious origin) [1]. In 

fact, NCDs are the result of a combination of multiple risk factors (i.e., genetic, 

physiological, environmental and behavioural factors) [2]. This means that this kind of 

diseases tend to be both long-term and slow progressing. Thus, NCDs are a subset of 

unnoticed harmful diseases that threaten public health without showing any 

symptoms until the clinical debut of the disease. Patients with NCDs, or people who 

are more susceptible to developing one of them, need long-term prevention/care that 

is personalized, proactive, and ongoing [3]. According to the World Health 

Organization (WHO), the main NCDs are cardiovascular diseases (CVDs), diabetes, 

cancer, neurodegenerative disorders, and chronic respiratory diseases (CRDs). 

Evolving over time, the concept  of NCDs has been widespread to cover a wider range 

of health problems, such as hepatic, renal, and gastroenterological diseases, 

endocrine, haematological, and neurological disorders, dermatological conditions, 

genetic disorders, trauma, mental disorders, and disabilities (e.g., blindness and 

deafness) [4]. 

1.1. Global impact of NCDs 
This silent epidemic is an under-appreciated cause of poverty and hinders the 

economic development of many countries. The burden of NCDs is growing every year 

regarding the number of people, families and communities affected. Annually, the 

WHO compiles a list of the biggest threats to highlight the current global health 

problems. In 2019, NCDs were considered the second-highest threat regarding its 

severity order (Figure 1). In 2021, NCDs fell to the eighth-highest threat position due 

to the outbreak of the coronavirus disease 2019 (COVID-19) (Figure 1). However, the 

current pandemic has aggravated the previous mentioned situation about NCDs. In 

fact, having a NCDs is associated with an increased risk of severe COVID-19, and more 

likely to die from it [5].  
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Figure 1. Global health issues to track in 2019 and 2021. List of the biggest threats to global health in 2019 
and 2021 compiled by the World Health Organisation and ranked by a community of healthcare 
professionals [6]. NCDs (in bold) are listed as a serious threat despite the outbreak of COVID-19. 
Abbreviations: NCD, non-communicable disease; VIH, human immunodeficiency virus; COVID-19, 
coronavirus disease 2019.  
 

These complex diseases are responsible for the death of 41 million people each 

year, which corresponds to 71% of global deaths. Focusing on the nature of people 

perished by NCDs, more than 15 million people die between the ages of 30 and 69 

from premature deaths, 85% of which are concentrated in low- and middle-income 

countries (31.4 million people) [6]. The most harmful NCD in terms of annual deaths 

is CVD that account for 17.9 million people died annually; followed by cancer (9.3 

million), CRD (4.1 million), and diabetes (1.5 million). Overall, the total amount of all 

premature deaths due to NCDs account are around the 80 % [6].  

One of the increasing concerns associated to premature NCD deaths are suicides 

that are included in the eighth-highest threat that were tracked in 2021 (Figure 1). In 

fact, every year 703,000 people commit suicide and even more attempt suicide, 

making it the fourth leading cause of death for those aged 15-29 in 2019. Despite the 

notion that this issue only occurs in high-income countries, suicide is a global 

phenomenon in all regions of the world. In fact, over 77% of global suicides occurred 

in low- and middle-income countries in 2019 [6]. 

The NCD epidemic has devastating consequences on the health of individuals, 

families, and communities, and threatens to overwhelm national health systems. The 

socioeconomic costs associated with NCDs make the prevention and control of these 

diseases a hot topic for the 21st century [6]. In this regard, there are increasing 

initiatives to control and prevent these diseases as the NCD Countdown 2030 that aim 
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to reduce the worldwide burden of NCDs [7]. The data collected by the NCD 

Countdown 2030 highlights the importance of detect their risk factors and tailor 

interventions toward reducing the burden of NCDs. 

1.2. Risk factors and metabolic risk factors for NCDs 
A risk factor is an aspect of personal behaviour or lifestyle, an environmental 

exposure, or a hereditary characteristic that is associated with an increase in the 

occurrence of a particular disease, injury, or other health condition [8]. Thus, different 

risk factors can increase the possibilities to develop NCDs and can be classically 

classified in different ways. As it is shown in Figure 2, risk factors can be grouped as 

non-modifiable and modifiable ones: non-modifiable risk factors are the one that 

cannot be reduced or controlled by an external intervention (e.g., age, gender, and 

genetics). In consequence, the focus of the scientific community has been to point 

modifiable risk factors that can be reduced or controlled by an early intervention, 

reducing in consequence the probability of disease [9]. The modifiable risk factors can 

be also classified into three classes: (1) biological factors, including overweight, 

dyslipidaemia, hyperinsulinemia and hypertension; (2) behavioural factors, including 

diet, physical inactivity, smoking and alcohol consumption; (3) social factors, including 

complex combinations of interacting socioeconomic, cultural and environmental 

parameters [10]. 

 

Figure 2. Modifiable and non-modifiable risk factors for NCDs.  
 

Generally, unhealthy diets, physical inactivity, smoking and alcohol consumption, 

which are the main four behavioural risk factors, are the most important and 

influential in the context of NCDs [4]. In this sense, unhealthy diets and a lack of 

physical activity may be evidenced in the population as raised blood pressure, 

increased blood glucose, elevated blood lipids and obesity (biological factors), among 
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others. These aspects are also called metabolic risk factors because they are referred 

to the biochemical processes involved in the normal functioning of metabolism. 

Furthermore, these metabolic risk factors are enclosed by the metabolic syndrome 

concept (MetS). Thus, a more precise definition of MetS defines it as a cluster of 

altered conditions that includes abdominal obesity and hyperglycaemia or glucose 

metabolic disorder, hypertension, and heterogenic dyslipidaemia. A great amount of 

NCD burden is caused by CVDs and diabetes, as well as cancer and CRDs that are 

affected by the high prevalence of MetS [11].  

Consequently, one of the critical challenges in the management of NCDs is to deal 

with MetS, which includes those common metabolic risk factors across the different 

diseases encompassed in the NCD term [12]. In fact, MetS has been considered by 

some researchers as a new NCD [13]. Nevertheless, in the context of NCDs, there are 

a complex pathophysiologic state that generates severe CVDs and diabetes [14,15]. In 

consequence, MetS represents a proper and suitable condition for detecting and 

diagnosing people that are threatened by NCDs. Therefore, the early detection of 

MetS among the population is pivotal for the public health systems. 

1.3 . Key diseases in NCDs 
Different diseases associated with NCDs are interconnected through the risk 

factors. For this reason, it is of vital importance to accurately target each disease 

according to its own risk factors. In this section, the most common diseases are 

highlighted, and their main characteristics and their modifiable risk factors are 

discussed. 

1.3.1. CVDs  

As it has been previously discussed, CVDs are the main contributors to the global 

burden of disease among the NCDs; in fact, they are the major cause of deaths 

worldwide each year. In this sense, the sum of the number of deaths from cancer and 

CRDs are lower than the ones originated by CVDs [6]. Specifically, CVDs are a group of 

hearth disorders (i.e., rheumatic, and congenital heart disease) and blood vessels (i.e., 

deep vein thrombosis, pulmonary embolism, coronary heart, peripheral arterial, and 

cerebrovascular disease), together with acute events such as heart attacks and 

strokes. It represents a set of heterogeneous diseases whose underlying cause of 

development is most often atherosclerosis [16]. The most important metabolic risk 

factors of CVDs are behavioural risk factors that have been previously described for 

general NCDs [17]. Particularly, obesity is the main risk factor for CVDs; in fact over-

weight is associated with a prevalence of comorbidities such as diabetes, 

hypertension, and MetS [18]. Another important risk factor gaining attention and 

relevance in recent times is psychological stress, which is often overlooked [19,20]. 

1.3.2. Cancer 

Cancer is a complex aggrupation of diseases that are originated in almost any 

organ or tissue of the body when abnormal cells grow uncontrollably and go beyond 

their usual boundaries to invade adjoining tissues spreading to other organs 
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(metastasizing), which is the major cause of death from cancer (around 90%). Lung, 

prostate, colon, stomach and liver cancer are the most common types of cancer in 

men, while breast, colon, lung, cervical and thyroid cancer are the most common 

among women [21]. Cancer is the second leading cause of death globally [6], due to 

this disease is highly heterogeneous varying in its geographical distribution, etiologic 

and pathology. Therefore, the classical risk factors shared among NCDs are insufficient 

for the prevention of many important types of cancer, because it is a disease 

influenced by multiple other identified and unidentified factors [22]. Among the 

identified risk factors, smoking is considered to be the main cause of cancer, followed 

by unhealthy diets [10,23]. Moreover, both body weight gain and lack of physical 

activity are also associated with the most common cancers types, including breast, 

colon, endometrium, kidney, and esophagus cancers [24]. It has been suggested that 

between the 30% and 50% of cancer deaths could be prevented by modifying or 

avoiding key risk factors and implementing existing evidence-based prevention 

strategies as, for example, modifying dietary patterns [25]. 

1.3.3. CRDs 

CRDs are a range of diseases related to airways and lungs, such as asthma and 

respiratory allergies, chronic obstructive pulmonary disease, occupational lung 

diseases, sleep apnea syndrome and pulmonary hypertension. Many risk factors for 

preventable CRDs have been identified being smoking and other forms of indoor air 

pollution the most dangerous, particularly in low- and middle-income countries [26]. 

Additionally, overweight associated with obesity has emerged as an important risk 

factor for these respiratory diseases, and in many instances weight loss is associated 

with important symptomatic improvements [27]. However, CRDs are not fully 

reversible, thus it is important to prevent the development and the progression of the 

disease managing the associated risk factors.  

1.3.4. Diabetes 

Diabetes occurs either when the pancreas does not produce insulin due to 

autoimmune issues (type 1 diabetes mellitus, T1DM) or when the body cannot 

effectively respond to the produced insulin and/or the pancreas produces it in lower 

amounts (type 2 diabetes mellitus, T2DM), leading to hyperglycaemia [28]. Other 

secondary types of diabetes are related to pregnant women with glucose intolerance 

(gestational diabetes mellitus, GDM) [29] and to a certain diabetic specific state, 

mainly associated with Alzheimer’s disease, where neurons cannot adequately 

respond to brain insulin (type 3 diabetes mellitus, T3DM) [30]. Furthermore, diabetes 

mellitus may be associated with other serious diseases such as heart diseases, kidney 

failure, and eye damage, which may subsequently lead to blindness, and foot ulcers, 

which may require limb amputation. Although diabetes can be partially inherited, 

several risk common factors with CVDs, such as obesity, high sugar consumption, and 

lack of physical activity significantly contribute to the progress of the diabetic state. 
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1.3.5. Neurodegenerative disorders 

Neurodegenerative disorders are a heterogeneous group of diseases generally 

characterized by progressive loss of neurons associated with deposition of proteins 

(showing altered physicochemical properties) in the brain and in peripheral organs,  

that induce effects on mobility, coordination, strength, emotion, and cognition [31]. 

The most frequent proteins involved in the pathogenesis of neurodegenerative 

diseases are amyloid-β, prion protein, tau, α-synuclein, TAR-DNA-binding protein 43 

kDa, and fused-in sarcoma protein. Interestingly, the most common 

neurodegenerative diseases include Alzheimer's disease and Parkinson's disease. 

Nevertheless, the overlap and combination of neurodegenerative diseases is 

frequent. Additionally to sex and age, environmental, metabolic and behavioural risk 

factors increase the susceptibility to suffer from neurodegenerative disorders [32]. 

1.4. Prevention and managing of NCD: personalized nutrition 
Nowadays, one of the most claimed ways of managing NCDs is through the 

regulation of the risk factors that lead to the disease development and can be largely 

preventable by several available mechanisms. The most promising approaches include 

an active and healthy lifestyle that implicates individual responsibility to manage the 

risk factors of NCDs [4]. The promotion of activities towards these goals are a low-cost 

way for countries and governments to reduce the number of NCD deaths. Tackling 

these risk factors cannot only save lives, but also reduce a significative economic 

burden for public health systems [33].  

Since diet is a common component among most NCDs, it attracts more attention 

in the efforts to find more effective strategies to prevent their advancement [34]. 

Nevertheless, dietary habits of populations in low-to-middle income countries have 

rapidly shifted to unhealthy diets (consisting of processed foods, away-from-home 

food intake, and increased use of edible oils and sugar-sweetened beverages) in line 

with the global nutrition transition [35]. In this context, numerous observational 

studies have established the health-promoting effects of two European diets (i.e., 

Mediterranean and Nordic diet) based on the consumption of rich nutrient-dense 

foods (mostly plant-derived foods) and low energy-dense foods (mainly of animal 

origin), particularly regulating CVDs and T2DM [36]. In large epidemiological studies, 

higher adherence to a traditional Mediterranean diet was associated with a significant 

lower rate of all-causes mortality [37,38]. The health benefits of the Nordic diet have 

also been investigated (through to a lesser extent than those of the Mediterranean 

diet) and the results associate this diet with improvements in CVDs [39]. However, 

more studies are needed to determine the long-term effects of adherence to both 

dietary styles on disease prevalence and incidence. 

Although health-promoting diets improve health, their results are not satisfactory 

enough to control risk factors because they neglect the variations inherent in the 

complexity of individual differences [40]. In this regard, over the past two decades, 

the scientific community has significantly advanced in analytical technologies, data 

science, molecular physiology, and nutritional knowledge to be able to stratify 
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populations at a more individual level [41]. This could be exemplified by the 

application of personalized nutrition, which is defined as tailor-made nutritional 

recommendations aimed at health promotion, health maintenance and disease 

prevention [42]. Personalized recommendations consider differential responses to 

different nutrients due to the interaction between nutrients and biological processes 

[43]. For this reason, different approaches such as genomics, epigenetics, 

metabolomics, and proteomics are used to target individual variability. The results of 

these methods generate a large amount of data that provides an overall picture at 

systemic level (systems biology). Therefore, the integration of this information is of 

paramount importance to obtain biomarkers, which are pivotal for developing a 

personalised nutritional approach [44].  

One of the main challenges of nutritional studies is a valid and reliable assessment 

of metabolic state and its effects on the body. Measurement of food intake is usually 

based on questionnaires, which have inherent limitations. This issue can be overcome 

using health status biomarkers that are capable of objectively assess metabolic state 

without the bias of food intake and self-reported dietary assessment. Currently, there 

are no health status biomarkers available to address the metabolic deviations that 

ultimately lead to the development of NCDs. Altogether, the challenge is to have 

integrative health status biomarkers as well as early disease-state biomarkers that can 

be corrected/modulated by personalised nutrition [45]. 

Indeed, the goals of personalized nutrition go beyond prevention and mitigation 

of NCDs, and include multiple aspects of health, such as mood, weight maintenance, 

medical conditions (e.g., glucose control or blood pressure management) among 

other multiple well-being aspects. Interestingly, the Diabetes Prevention Program, 

which is established by the US National Institute of Diabetes and Digestive and Kidney 

Diseases, provided evidence that a multiyear lifestyle modification program is more 

effective than metformin treatment in reducing the incidence of diabetes in high-risk 

people [46].  

2. Biomarkers of health status 
As it has been previously highlighted, the limitation of the dietary assessment to 

estimate homeostatic status determines the need for biomarkers of health status. 

Therefore, these biomarkers of health need to be able to identify and quantify disease 

states and progression by unbiased and accurate quantification of the metabolic 

status. These types of biomarkers represent a new approach that reflect the 

maintenance of optimal health that is the main objective of diet and nutrition. For this 

reason, it is highly important to provide biomarkers of the early stages of alterations 

before the unbalanced health status (homeostasis disruption) [45]. Accordingly, those 

biomarkers should be considered as health status biomarkers instead of disease 

biomarkers.  

With a focus on the general concept of health, the initial definition was “a state 

of complete physical, mental and social well-being and not merely the absence of 
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disease or infirmity” that was published in 1948 since the constitution of the WHO 

[47]. However, this concept has been evolving to be defined as a more flexible concept 

as the ability to adapt and self-manage to achieve homeostasis [48]. In the past 

decade, Van Ommen et al. proposed that many diseases emerge from the imbalance 

of a few overarching processes that are key in the maintenance of homeostasis [49]. 

Thus, they propose as key overarching processes: metabolic stress, inflammatory 

stress, oxidative stress and psychological stress [49]. This concept opens the door to 

new ways of interpreting the origin of prevalent NCDs and might provide the basis for 

quantifying health. 

In line with the concept of health status, the management of health must be done 

by using biomarkers of health status. The biomarker concept refers to the concise 

measure used to perform a clinical assessment for monitoring and predicting health 

status in individuals or across populations, so that an appropriate therapeutic 

intervention can be planned [50]. Thus, biomarkers of health indicate an end-point 

reflecting the different intermediate disease phenotypes or the severity of the disease 

and are extensively used in the clinical practise [45].  

Currently, the available technologies for the detection of these small changes are 

not powerful enough to elucidate these subtle deviations [45]. This is attributed to the 

fact that a functional, even suboptimal, homeostasis tends to maintain the levels of 

circulating molecules (i.e., hormones, cytokines, metabolites) within a certain range 

of values [45,51]. This means that these circulating molecules need great changes or 

the onset of disease to fall outside the boundaries of normality (when the homeostatic 

capacity of the individual has been overcome). Therefore, the measurement of the 

health status of a healthy individual without extensively stressing him is challenging. 

An alternative to target small deviations is the use of combinations of single 

biomarkers, which is known as biomarker profile, which is based on the additivity or 

multiplicity of effects [52]. This approach results in a more sensitive manner of 

assessing changes in the homeostasis of the overarching processes, since slight 

undetectable changes in different biomarkers might become detectable if the 

combination is considered. At the same time, important changes in a single, but 

relevant biomarker of the signature does not affect the capacity of detection. 

To further explore this issue, it has been proposed that challenging homeostasis 

through different punctual stressors could be a useful strategy to measure the 

adaptive capacity of the individual to counteract the effects of the stressor [51,53]. 

Disruption in the homeostatic capacity can result in metabolic alterations leading to 

the development of an unbalanced physiological state [49]. However, the individual 

characterization might involve multiple functional tests that are difficult to apply and 

extend in current health systems or in a personalized nutrition approach. An 

alternative approach should be based on the idea that the overarching processes 

previously mentioned are associated to different pathways and physiological 

processes that can be assessed and quantified by means of biomarkers measured by 

omics technologies. 
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In the past decades, the improvement in omics technologies has opened new 

research avenues in the biomarkers research field and have provided unprecedented 

insights in the responses of the genome, epigenome, transcriptome, proteome, and 

metabolome (Figure 3). In fact, the technological development has been continuous 

improving, especially with regards to DNA and RNA sequencing [54], mass 

spectrometry (MS) [55], single-cell omics [56] and, of course, bioinformatics [57]. 

Furthermore, rather than a single deviation as is previously described, it is likely that 

there will be a profiling of different biomarkers and omics that, together with 

machine-learning tools will provide a more sensitive and specific diagnostic and 

prognostic approaches to NCDs [58]. In this regard, systems approach allows the 

assessment of a comprehensive and in-depth view of the physiology/pathology of an 

individual and open the possibility for the identification of new biomarkers or profiles 

of biomarkers that link overarching processes with health and homeostasis. 

 
Figure 3. The omics cascade. This cascade represents from genomics (genes) to metabolomics 
(metabolites). Metabolomics represents the downstream output of the genome being the final step in the 
cascade, thus this omic is closer to the phenotype than the preceding omics. 
 

2.1. Genomic biomarkers 
A genomic biomarker is a measurable DNA or RNA feature that is an indicator of 

either anormal or pathogenic processes. Furthermore, it could be related to 

therapeutic or other kind of  intervention [59]. Due to the publication of the human 

genome project data, thousands of genes contributing to human diseases have been 

discovered facilitating  the characterisation of the different genotypes during the last 

years [60]. Those genes have provided a paramount tool for personalized medicine 

focusing on the genetic “architecture” of the diseases.  

Many of these genomic biomarkers have been identified by genome-wide 

association studies (GWAS) [61]. For example, in the case of T2DM, 300 loci have been 

robustly associated with higher disease risk [62]. One of this important region is 
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related to the regulation of melatonin receptor 1B (MTNR1B), the neurogenic 

differentiation 1 (NeuroD1) binding site in a DNA islet enhancer upstream of MTNR1B 

that influences the expression of MTNR1 [63]. In the case of CVDs, near 161 loci have 

been associated with the disease [64]. The first important biomarkers found in CVDs 

has been a single nucleotide polymorphisms (SNPs) on chromosome 9p21 and its 

variants [65]. In fact, several genes are presently targeted in a personalized therapy 

based on the genetic CVDs susceptibilities (e.g., proprotein convertase subtilisin/kexin 

type 9 (PCSK9), guanylate cyclase 1 soluble subunit alpha 1 (GUCY1A1), angiopoietin-

like 3 and 4 (ANGPTL3, ANGPTL4)) [64]. 

The research of genomic biomarkers has been intensified in the last years 

revealing that a significant proportion of clinical studies have been inconclusive or 

non-replicable [66]. For example, the SNPs variants to be tested are often identified 

according to their appearance in defined populations (i.e., Caucasians, Hispanics, 

Asians, Arabs, Africans) leading to errors due to the different geographical origins. In 

general, there are some limitations on the studies involving genetics: (1) poor quality 

of test samples; (2) analysing somatic instead of germline DNA; (3) noisy data; (4) poor 

quality of analytical methods; (5) lack of phenotype identification; (6) inadequate 

study design and statistical analysis planning [67]. These problems could be attributed 

to the lack of standardization and the continuous development of these 

methodologies. However, the lack of the phenotype association is related to the kind 

of target, which is DNA or RNA, thus a possible solution to this limitation is to target 

other types of biomarkers that connect the genotype with the environment.  

2.2. Epigenetic and transcriptional biomarkers 
The connection between genotype and environment could be studied by the use 

of epigenetics that is the study of changes in gene function that are heritable and not 

attributed to alterations of the DNA sequence [68]. This epigenetic features can be 

employed as biomarkers, thus explaining differences among patient phenotypes with 

a clear genetic connection (endophenotypes) [69]. Epigenetic modifications include 

large-scale DNA methylation changes throughout the genome as well as alterations in 

the compendium of post-translational chromatin modifications. These modifications 

involve changes in gene expression that change the accessibility to DNA without 

changing its sequence, leading to silencing or downregulation/upregulation of gene 

expression [70].  

Additionally, post-transcriptional regulation of gene expression by noncoding 

RNAs (ncRNAs) is also considered a part of the epigenetic machinery. Micro-RNAs 

(miRNAs) are small ncRNAs that contribute to regulation of the expression of different 

epigenetic regulators such as DNA methyltransferases (DNMTs) and histone 

deacetylases (HDACs), among others [71]. Similarly, DNA methylation and histone 

modifications can regulate the expression of miRNAs indicating a feedback 

mechanism. 
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For example, several epigenetic modifications have been detected in the 

progression of hypertension [72]: the 11 beta-hydroxysteroid dehydrogenase 2 

(HSD11B2) promoter, whose low activity has been associated with the induction of 

hypertension, is highly methylated favouring its low transcription [73]; histone 3 

(H3K4 or H3K9) demethylation is induced by lysine-specific demethylase-1 (LSD1) and 

modify, in consequence, gene transcription [74]. In the case of miRNAs, miRNA-9 and 

miRNA-126, they presented low expression levels in hypertensive patients and are 

related to hypertension prognosis and organ damage [75]. Therefore, although most 

of the epigenetic mechanisms are being intensively investigated, miRNAs are the most 

evaluated for their use as predictive biomarkers.  

For instance, epigenetic biomarkers overcome the limitation of genetic 

biomarkers regarding the phenotype consideration. However, some limitations 

should be considered: (1) lack of large multicentre studies to provide convincing 

evidence for clinical applicability; (2) technical challenges; (3) noisy data (high 

background level); (4) shortcomings related to the DNA or miRNA quality. Some of 

these challenges must be solved before the efficacious use of epigenetic biomarkers 

in the clinical field [72]. 

2.3. Proteomic biomarkers 
Proteomics involves the application of several technologies for the identification 

and quantification of overall present protein content of a cell, tissue or organism [76]. 

The use of proteins is widely carried out in reductionist approaches for clinical tests in 

the diagnosis and prognosis of diseases by Western blot, ELISA, or immunological 

assays. In this sense, proteomics provides a holistic view that offers high-throughput 

information on the global content of proteins, in contrast with the classical 

reductionist approximation [76]. Primarily, human diseases involve changes in the 

expression of normal proteins or the creation of abnormal proteins, which perturb the 

body homeostasis.  

Proteomics approaches for the identification of biomarker are delimited by the 

protein characteristics and the current available techniques. The initial proteomics 

methodology used was two-dimensional electrophoresis that presents several 

limitations: (1) bias toward the most abundant proteins; (2) non- detection of proteins 

with extreme properties (e.g., extreme size or pH); (3) time consuming and costly [77]. 

Recent advances in MS have overcome the problems with two-dimensional 

electrophoresis providing results with greater sensitivity, specificity and resolution 

[78]. Furthermore, a promising proteomic approach is the protein array capable to 

detect changes in protein expression and post-translational modifications of 

thousands proteins at the same time [77]. An example of the use of proteomic 

biomarkers is the detection of advanced glycation end-products (post-translational 

modifications of proteins) that are considered potential biomarkers for changes in 

glucose metabolism related to diabetes [79]. The use of proteomics together with 

metabolomics has been increasing and the creation of combined data bases is 

expected to help the identification of new metabolic profiles [80]. 
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2.4. Metabolomic biomarkers 
2.4.1. Characteristics of metabolomic biomarkers 

Metabolomics can be defined as the analysis or screening of small metabolites 

present in samples of biological origin [81]. In fact, metabolomic biomarkers are a 

downstream expression of the genome, the proteome, the transcriptome, and their 

modifications. Thus, metabolomics can closely represent the biochemical phenotype 

of an organism at any point in time, which is a notable advantage of the metabolome 

over the genome [82]. Another advantage is that current metabolomics tools offer 

some advantages like being faster, cheaper, and more sensitive compared to other 

techniques.  

In this regard, there are many published articles on the metabolomics field for the 

assessment of metabolic profiles; this fact highlights the advantages of metabolomic 

biomarkers. Those studies are focused on different objectives of general interest in 

clinical problems: new drug discovery [83]; early disease diagnosis as CVDs [84]; 

inborn errors of metabolism [85] or Alzheimer disease [86]; monitoring cancer 

prognosis, diagnosis, and treatment [87]. For example, the emerging role of 

metabolomic biomarkers in obesity disease research has opened new opportunities 

to improve early diagnosis and the subsequent prognosis with the identification of key 

metabolites [88]. The list of potential metabolomic biomarkers has been evidenced by 

the integration of the past, present, and future studies leading to an accurate 

metabolomic profile of biomarkers. In this sense, the data generated by these tools 

must be properly analysed for the construction of biochemical pathways and for 

understanding how these pathways interact in different states between health and 

disease states [89]. In general, metabolome-based biomarkers, along with others 

identified, using the previously described omics techniques, are of great interest in 

nutrition, because they can be used to monitor intake in epidemiological or 

intervention studies, which could complement the results of dietary questionnaires. 

2.4.2. Metabolomic pipeline 

The general pipeline that is mainly followed in metabolomic studies contains the 

following steps (Figure 4) [90]: (1) experimental design; (2) sample collection, 

preparation and metabolite extraction; (3) data acquisition and processing; (4) data 

analysis; and (5) biomarker identification.  
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Figure 4. Pipeline of metabolomic process. The first stage involves experimental design, followed by sample 
collection, preparation, and metabolite extraction. Next is acquisition and processing of data, then data 
analysis, and finally, making sense of the data through biomarker discovery. 
 

During the experimental design, different questions need to be answered before 

starting the procedure. The experimental design should start with a scientific question 

that need to be answered by the study. It is essential to choose the appropriate model 

to determine and examine the most influential factors that are relevant for the 

hypothesis under investigation. Therefore, some key questions need to be answered: 

(1) the type of model such as animal or human models, targeted or untargeted and 

healthy or unhealthy individuals; (2) whether to be cell based, tissue based (e.g., liver, 

adipose tissue, brain, muscular tissue), fluid-based (e.g., blood, urine, faeces, seminal 

fluid, saliva, bile, cerebrospinal fluid) or the whole organism [91].  

One of the first technical questions is about targeted and untargeted approaches 

that will determine the experimental design, sample preparation, and analytical 

techniques. On the one hand, the targeted approach focus on the accurate 

identification and quantitation of a defined set of metabolites related to a 

predetermined scientific question [92]. Normally, this set of metabolites are 

predetermined by the scientific question, which could be selected manually and 

considering the available metabolite library. For example, a targeted approach 

identified a set of amino acids (i.e., isoleucine, leucine, valine, tyrosine and 

phenylalanine) that strongly predict T2DM [93]. On the other hand, untargeted or 

global approach is used to measure all the possible metabolites from a biological 

sample thought the identification of as many signals as possible across a sample set, 

followed by the assignment of these signal to a metabolite by using datasets [94]. 

Untargeted studies are highly dedicated to the identification of unknown metabolites, 
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especially in the discovery of novel biomarkers. Metabolomics strategies, both 

targeted and untargeted, have clearly contributed to biomarker discovery over the 

last twenty years and many reports provide the evidence of metabolomics as a key 

tool for biomarker discovery on biomedical research [95]. Recently, the trend in 

metabolomics research indicated the need for coupling the two main approaches to 

form a hybrid approach. Being the greatest challenge the maximization on the 

detection; as well as on the accuracy during the identification of thousands of 

metabolites [96]. 

Once this has been stablished, the next phase is the sample collection, 

preparation, and metabolite extraction. Sample should be quenched immediately 

after harvesting with liquid nitrogen to arrest metabolism and prevent induction of 

“stress” metabolites which can mislead the analysis [91]. Sample preparation typically 

entails metabolite extraction and enrichment, depletion of proteins and removal of 

sample matrix depending on the approach. After the extraction protocols, the analysis 

is performed by the two main analytical platforms used in metabolomics that are 

nuclear magnetic resonance (NMR) and MS. Both approaches are capable of high 

throughput reproducible measurement of several metabolites. 

The fourth step is statistical analysis, which involves a univariate and a 

multivariate analytical approach. Finally, the last step of the pipeline is biomarker 

discovery using data libraries and bioinformatics tools.  

2.4.3. Analytical platforms for data acquisition 

Metabolomic biomarkers of health status can only be achieved by using powerful 

analytical tools, which are characterized by its high sensitivity, specificity, and 

precision, to obtain accurate metabolic profiles. In this context, many analytical 

platforms have been used in metabolomic studies. As has been previously described, 

the two predominant analytical platforms applied in this field are NMR and MS. In this 

sense, the global characterization of the metabolome requires the combination of 

different techniques, because both of these platforms have limitations in their 

applicability for the investigation of specific metabolites (as summarized in Table 1) 

[97].  
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Table 1. Comparison of the most common analytical platforms employed in metabolomics. Abbreviations: 
NMR, nuclear magnetic resonance; MS, mass spectrometry; GC, gas chromatography; LC, liquid 
chromatography; CE, capillary electrophoresis. 

 

 NMR 
MS 

GC-MS LC-MS CE-MS 

Sensitivity 
Low (limited to high 

abundance 
metabolites) 

High 

Resolution Low High 

Analysis time 
Reduced analysis 

time (high-
throughput analysis) 

High (long separation step) 

Reproducibility Very high High Relatively high 

Sample handling Minimum 
Derivatization 

step 
Relatively simple 

Destructive No Yes 

Metabolic 
coverage 

Limited to 100 
metabolites 

Low molecular 
weight (volatile) 

metabolites 

Hydrophobic and 
hydrophilic 
metabolites 

Polar and ionic 
metabolites 

Metabolite 
identification 

Easy (superior to MS) 
Easy (spectral 

libraries) 
Difficult (databases need to be 

improved) 

Targeted 
analysis 

Not optimal Better for targeted analysis than NMR 

Instrument cost 
More expensive than 

MS 
Cheaper than NMR 

Sample cost Low cost per sample High cost per sample 

 

Nuclear magnetic resonance (NMR) 

The use of NMR is extensive in metabolomics due to its high reproducibility and 

short analysis time, which allows a high throughput analysis of samples in a few 

minutes [98]. In NMR spectroscopy, a compound is placed in a magnetic field, then 

isotopes within the compound (e.g., 1H, 13C, 14N, 15N, 17O) absorb the radiation and 

resonate at a frequency which is dependent on its location in the small molecule [99]. 

Although the most common is the one dimensional 1H-NMR approach, two 

dimensional methods can also be employed to enlarge metabolome coverage, 

including COSY (correlated spectroscopy), TOCSY (total correlation spectroscopy) and 

HSQC (heteronuclear single-quantum correlation) [100].  

One advantage of NMR is that it is a non-destructive technique and requires a 

relatively simple sample preparation, thus those samples could be reused for further 

studies. Another advantage of NMR technique is its non-discriminant character, since 

its sensitivity does not depend on physicochemical characteristics of analytes, 

allowing the simultaneous determination of diverse metabolites. The NMR spectra 

provides important structural information and facilitates the identification of 

individual metabolites through the interpretation of chemical shifts and coupling 

constants. Nevertheless, some limitations must be considered like low spectral 

resolution and sensitivity, which limits its applicability to the detection of the highest 
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abundant metabolites in simple samples. These challenges are the focus of numerous 

research efforts to try to improve their performance like enhancing the sensitivity with 

the use of cryogenically cooled probes, micro probes and increasing magnetic field 

strength [101].  

Mass spectrometry (MS) 

MS is a more sensitive methodology that is capable to detect numerous classes 

of metabolites and identify them through fragmentation experiments using tandem 

MS. For this reason, there are multiple sample introduction systems and ionization 

sources that can be employed; expanding in consequence the analytical coverage of 

MS approaches [102]. Therefore, MS is the main methodology used for the metabolic 

characterization of complex systems despite its lower robustness compared to NMR. 

The simplest instrumental configuration is direct MS analysis without previous 

separation step as chromatographic or electrophoretic separation. Despite its high-

throughput screening capability due to the reduced analysis time, this technique 

presents important drawbacks making the use of complementary hyphenated 

approaches mandatory. Anyway, direct MS analysis stands out as a suitable 

metabolomic platform for fast and comprehensive first step approach [97]. 

Hence, the mass spectrometer could be combined with chromatographic and 

electrophoretic separation techniques as gas chromatography (GC), liquid 

chromatography (LC) and capillary electrophoresis (CE). Those separation techniques 

improve the results of MS reducing the complexity of metabolic profiles and 

facilitating the identification of individual metabolites [103]. The incorporation of the 

separation step increases the total time of analysis, but these hyphenated approaches 

introduce the “retention time” in resulting data and that provides additional 

information about physicochemical properties of the measured metabolites and the 

metabolome coverage increases.  

The combination of GC with MS provides a well-developed and robust tool 

presenting a high sensitivity and a good resolution [104]. The reproducibility of GC-MS 

is generally higher than the obtained with other hyphenated techniques as LC-MS and 

CE-MS in terms of ionization efficiency and chromatographic retention. Other 

advantage of GC-MS is the availability of spectral libraries due to the highly 

reproducible mass fragmentation observed under electronic impact (EI) ionization, 

which facilitates peak identification [105]. Additionally, dimensional GC (GC x GC) 

coupled to time-of-flight mass spectrometry (TOFMS) makes possible to detect more 

than 1200 compounds in a single analytical run increasing the sensitivity and 

separation efficiency [104]. In this case, metabolites are resolved according to their 

volatility in the first column and polarity in the second column. Despite their 

advantages, the derivatization step, which consists on the “methoximation” of 

carbonyl groups and substitution of active hydrogens with trimethylsilyl groups, can 

introduce technical variability and increases the data complexity [106]. This time-

consuming sample treatment, together with the long chromatographic running times, 

makes GC-MS a less profitable high-throughput technique for metabolomic 
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application. However, GC-MS is widely used for the metabolomic profiling of low 

molecular weight metabolites including organic and amino acids, carbohydrates, 

amines, fatty acids, among others.  

In fact, LC-MS covers a wide range of metabolites, extending from low molecular 

weight compounds detectable by GC-MS to non-volatile metabolites, without the 

derivatization step [103]. The coupling with MS is generally accomplished by using an 

atmospheric pressure ionization source, which allows the direct introduction of the 

liquid effluent from the LC system into the vacuum region of the mass spectrometer. 

Electrospray ionization (ESI) is the most common choice due to its high sensitivity and 

versatility, which is applicable for the detection of compounds with very different 

polarities and molecular weights. In this sense, there are other ionization sources 

specifically for different type of compounds, thus the combination of ionization 

sources is recommended to maximize the metabolome coverage. Conventional high 

performance liquid chromatography (HPLC) has been extensively employed in 

metabolomic research, but the resolution is usually not sufficient to resolve the huge 

complexity of the metabolome. Hence, numerous efforts have been made to improve 

analytical performance of LC [107]. A step forward has been done with capillary 

chromatography that provides a higher sensitivity and resolution than traditional 

HPLC and requires fewer amounts of sample and solvent consumption. Thus, the most 

employed platform is ultra-high-performance liquid chromatography (UHPLC) system 

that provides resolution equivalent to GC, as well as higher sensitivity, reproducibility 

and reduced time analysis compared to HPLC.  

Finally, CE coupled to MS completes the metabolome showing great potential for 

the analysis of highly polar and ionic metabolites that are not resolved by GC or LC 

[108]. This separation method presents high separation efficiency and low volume per 

sample. Separations are usually performed in bare or surface coated fused-silica 

capillaries, operating under strongly acidic or alkaline conditions to ensure the 

complete ionization of weakly ionic metabolites and generate stable electroosmotic 

flows. However, the low robustness and reproducibility of this separation technique 

makes this method only used in specific cases. Moreover, the interfacing of CE with 

MS is a great challenge because of the electrical requirements of these analytical 

techniques 

2.4.4. Data analysis  

Data processing aims to extract biologically relevant information from the 

acquired data, and it includes many steps that are similar both for NMR and MS. Prior 

to the analysis, data sets should be normalised and pre-filtered using appropriate 

computing/analytical techniques specific to the type of platform used. Depending on 

the scientific question the data analysis can follow different approaches as descriptive, 

exploratory, inferential or include modelling and prediction. 

Descriptive statistics precede the other type of analysis trying to anticipate future 

analytical challenges and obtaining a basic understanding of the data. These statistics 

include calculating the sample mean and standard deviation or plotting boxplots of 
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single variable (univariant analysis). Comparative analyses of the means can then be 

performed by calculating a fold change, F-ratios, t-tests, or ANOVA to assess the 

significance of the changes [109].  

Due to the large number of variables and complexity of the metabolomics data 

sets, multivariate methods are also used for exploratory and comparative analyses. 

The purpose of these methods is to reduce the dimensionality of the data set to better 

enable classification of individual samples and/or visualization of similarities and 

differences between samples. The initial step does not require a specific data 

distribution due to the fact that these types of analysis are conducted to understand 

the major sources of variation in the data (multivariate), by using dimension reduction 

methods such as Principal Component Analysis (PCA) [110]. Ideally, the results of PCA 

analyses would be used to formulate an initial biological conclusion; then, there are 

supervised forms of discriminant analysis such as Partial Least Squares (PLS-DA; 

alternatively Partial Least Squares Projections to Latent Structures) [111] and 

Orthogonal Projections to Latent Structures (OPLS) that includes orthogonal 

projections, improving the PLS method [112]. Multivariate analyses are available in 

many commercial software packages, including XLSTAT (an add-on to Excel, Microsoft 

Corp), JMP (SAS Institute Inc.), Pirouette (InfoMetrix, Woodinville, WA, USA), MATLAB 

(The MathWorks, Inc.), and various R programming packages (http://www.r-

project.org/). 

Altogether, inferential statistics allows the assumption that conclusions obtained 

by univariant analysis can be generalize to the whole population. In the omics era, 

statistical inference is difficult to achieve, and it is often unreliable due to insufficient 

sample size. In fact, inferential statistics can be achieved with, multivariate methods, 

when the number of samples is much higher than the number of variables. In the past 

few years, machine learning or the concept of ‘training’ computational methods which 

can improve given more ‘experience’ or data has been a revolutionizing approach in 

many disciplines complementing statistical inference. In particular, machine and 

learning method based on artificial neural networks has been increasingly applied to 

problems in metabolomics, which are very difficult or infeasible to solve by using 

conventional algorithms [113]. 

The last step in data processing is data visualization within a biological context. 

This process is necessary to visualize and understand the qualitative and quantitative 

changes in metabolite profiles at a pathway and system levels. This challenging task 

can be done by the assistance of several exciting tools (data bases) that are now 

emerging and are allowing the contextualization of metabolomics within a pathway 

context. In this regard, there are different data bases that could be consulted as Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) [114], Rat Genome Database (RGD) 

[115], Human Metabolome Database (HMDB) [116] and Small Molecule Pathway 

Database (SMPDB) [117].  
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2.5. Microbiome biomarkers  
Microbiome analysis, also called Microbiome Wide Association Studies (MWAS) 

[118], are transforming clinical investigation through the improvement of patient 

stratification and are a source of new biomarkers for health. These studies focus on 

different aspects of microbes as: their identification, the assessment of their genetic 

variability and metabolic activities of microbes (bacteria, viruses, archaea, and 

eukaryotes) associated with numerous sites in the body. In line with the metabolome, 

variations in the gut microbiome can reflect host lifestyle and behaviours that could 

influence disease biomarker levels in blood. Despite the influence of host lifestyle, 

several studies have reported associations between host genetics and the microbiome 

making this a promising approach [119–121]. The understanding of the relationships 

between the host genome, the host phenotype and the genome of this microbiome is 

critical for the recognition of health and disease states. However, in the microbiome 

context,  the mechanistic links between health and disease have not been  yet 

satisfactorily established [122].  

Microbiome studies have been possible in large part due to advances in next-

generation sequencing, high-throughput sequencing and mass-spectrometry 

platforms [123]. Sequencing platforms allow the assessment of microbiota 

composition via gene analysis, as for example the sequencing and classification of 16S 

ribosomal RNA (rRNA). This method consists on the amplification by PCR of the 16S 

rRNA region with primers that recognize highly conserved regions of this bacterial 

gene sequence [124]. The annotation is based on the putative association of the 16S 

rRNA gene within the taxon, defined as an operational taxonomic unit (OTU) and it is 

capable to determine phyla or genera; but it is less precise at species level. Hence, as 

specific genes are not directly sequenced and they are based on the OTUs, the lack of 

direct identification limits the understanding of the microbiome [125]. An alternative 

approach to the 16S rRNA amplicon sequencing method is whole genome shotgun 

sequencing (WGS) that consist of the sequencing with random primers to sequence 

overlapping regions of genome [126]. The major advantage of the WGS method is the 

accuracy and the capacity to define until species level. However, WGS is more 

expensive, requires a high coverage of the genome and demands  a complex data 

analysis [127]. In parallel, detection and identification of microbiome-associated 

products, including metabolites and proteins, have been facilitated by targeted and 

untargeted MS. 

The emerging field of microbiome has been promising in relation to the future 

elucidation of the relations between microbiome and health. However, there are 

some challenges that should be achieved related to experimental, computational and 

conceptual issues [128]. In fact, researchers in the field of microbiome faces with a 

huge complexity when are trying to define specific microbes at different taxa levels 

and the subsequent healthy gut microbiome. One of the key successes of this effort 

has been the identification of gaps in our technologies that would need to be filled to 

uncover the full potential of microbiome science. Additionally, faeces are currently 

the most used sample, but additional information is likely to be obtained by studying 
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other samples along the gastrointestinal tract. Future studies measuring responses to 

an exposure or intervention need to combine validated microbiome-related 

biomarkers and omics characterization of the microbiome [122].  

2.6. Systems biology approach  
Once single omics approach has been performed, systems biology is the next step 

to integrate the different mechanisms involved in health and disease; as well as an 

opportunity to define a larger picture of the biochemistry and dynamics of biological 

systems. After the outbreak of genomics, the scientific community has been trying to 

establish a correlation between the genotype and the phenotype in living organisms. 

Despite the development of strategies that have generated improved information 

which is closer to the phenotype (e.g., metabolomics), the individualized data 

provided by each one of these omics in an isolated way do not answer how the 

different biological processes are correlated and how to explain its complexity. 

Therefore, data integration from different omic sciences is a promising tool which 

fulfils the gap of the single omics studies. In consequence, the proper integration of 

multi-omics approaches has allowed a deeper insight into disease development. For 

example, Poore et al. by using multi-omics and machine learning tools, detected that 

microbial biomarkers from blood and tissues are capable to discriminate between 

healthy and cancer-free individuals, as well as between multiple cancer types [129].  

Several data integration methodologies have been developed to integrate certain 

types of omics data. Those methodologies are complex, and the available tools are not 

user-friendly for researchers with limited bioinformatics background. Many tools 

utilize the statistical language R, which requires programming expertise in addition to 

strong biostatistical knowledge. For example, the R package mixOmics uses 

multivariate analysis for data exploration, dimension reduction and visualization 

[130]. In this package, Data Integration Analysis for Biomarker discovery using Latent 

cOmponents (DIABLO) method stands out as an integration method that generalizes 

PLS for multiple matching datasets (same subjects, different omics) in order to 

evaluate the major sources of variation and to guide through the integration processes 

[131]. Other complementary tool in mixOmics is the Multivariate INTegration (MINT), 

which is a method based on multi-group PLS that includes information about samples 

belonging to independent groups o studies [130]. 

The addition of biological knowledge gained by omics integration increases the 

knowledge extracted from the available data. However, there is still a long way to go 

to get the maximum information from these data by discarding noise and redundant 

data. As discussed above, there is room for improvement in mathematics and 

bioinformatics, as well as the development of improved methodologies of high-

throughput data. Additionally, new omics are also emerging that could be considered 

in data integration as the case of omics related to phenotype. This is the case of the 

exposome that capture the diversity and range of exposures to synthetic chemicals, 

dietary constituents, psychosocial stressors, and physical factors, as well as their 

corresponding biological responses [132]. 
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3. Epidemiology, pathology, and animal models of 

NCDs risk factors 
This section describes the risk factors explored in this research for biomarker 

profiling, based on the concept of overarching processes placed by Van Ommen 

research et al. [49]. They are based on their characteristics that make them important 

for the development of NCDs (Figure 5). The selected risk factors are carbohydrate 

metabolism dysfunction, hyperlipidaemia, hypertension, and gut microbiota dysbiosis 

for metabolic stress; inflammation stress; oxidative stress; and psychological stress. 

The main characteristics of the biomarker profile is that each one recapitulates 

different and complementary aspects of the metabolic disruption. Thus, the 

biomarker profile can be conceived as an independent profile of different metabolites 

and proteins that are currently recognized as established clinical biomarkers or 

biomarkers from advanced research stages. In this section, the state of the art of these 

risk factors will be discussed focusing on epidemiology, pathology, and the available 

animal models. In the following section, studies using metabolomics will be reviewed 

to have an idea of the current potential as health status biomarkers. 

 

 

Figure 5. Summary of the relationship between risk factors, NCDs, and omics for health state biomarker 
discovery. The accumulation and persistence during time of different risk factors (e.g., carbohydrate 
dysfunction, hyperlipidaemia, hypertension, inflammation, oxidative stress, gut microbiota dysbiosis and 
anxiety or psychological stress) induces the development of diseases. The detection of these risk factors 
can be done by omic profiling and biomarkers obtained from omic approaches.  
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3.1. Carbohydrate metabolism dysfunction 

3.1.1. Epidemiology 

Carbohydrate metabolism dysfunction could be considered a main risk factor that 

directly influences many disorders such as obesity, insulin resistance and T2DM and 

other risk factors (e.g., hyperlipidaemia or hypertension). The assessment of this 

carbohydrate dysfunction as a risk factor and not as a disease state is complex because 

it has not been usually monitored at non-pathogenic levels. Furthermore, 

carbohydrate metabolism dysfunction is highly related to diabetes, which represents 

approximately the 95% of cases worldwide [133]. Thus, the only way to study the 

impact of this risk factor would be to look at the prevalence of obesity, diabetes and 

CVDs which is very high as previously mentioned. Indeed, Mustafina et al. highlighted 

that the epidemiological trends of glucose metabolism disorders especially in obese 

persons are understudied [134].  

3.1.2. Pathogenesis 

Carbohydrate metabolism dysfunction occur in many forms. However, the most 

common deficiencies are rare inborn errors of metabolism (i.e., genetic alterations). 

In fact, carbohydrate metabolism is a fundamental biochemical process that ensures 

a constant supply of energy to living cells. Currently, the uncontrolled intake of 

carbohydrates induces long-term alterations in carbohydrate metabolism. The 

complex hormonal control of nutrient homeostasis involves numerous tissues and 

organs, including liver, skeletal muscle, adipose, endocrine pancreas, and central 

nervous system. 

In general, fasting plasma glucose level higher than 7 mmol/L and fasting plasma 

insulin below 110 pmol/L are related to the carbohydrate metabolism pre-disease 

[135,136]. We are going to focus on the alterations of glucose metabolism in fasting 

and post-prandial hyperglycaemia in T2DM, because is one of the main hallmarks of 

carbohydrate metabolism dysfunction [137]. A peculiarity of the regulation of glucose 

metabolism is that many hormones exert a net hyperglycaemic effect, but only one, 

insulin, displays a direct hypoglycaemic action [138].  

In an altered carbohydrate metabolism, during the fasting state, gluconeogenesis 

along with other metabolic reactions proceeds at a high rate, producing an increased 

level of endogenous glucose output. Thus, reduced glucose homeostatic efficiency, 

both in glucose output and glucose utilisation, amplifies the degree of 

hyperglycaemia. A great proportion of glucose is channelled towards three-carbon 

glucose precursors, which fuels gluconeogenesis in the liver. Additionally, 

glucotoxicity and lipotoxicity may play a role in both directly maintaining endogenous 

glucose production and decreasing glucose efficiency [137]. 

In an altered carbohydrate metabolism, during the postprandial state, the 

disrupted response of both endogenous glucose output and glucose utilization to 

hyperglycaemia and/or hyperinsulinemia are responsible for altered glucose 

tolerance. Gluconeogenesis, glucose transport, glucose phosphorylation and glucose 
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oxidation are insulin-resistant and play quantitative roles. Impaired glucose efficiency 

abrogates the ability of glucose to limit the degree of hyperglycaemia. It is also 

suggested that lipotoxicity play a major role in the pathogenesis of these defects. An 

additional direct hyperglycaemic effect can be attributed to hyperglucagonemia [137]. 

3.1.3. Animal models 

Currently, the animal models used for the study of carbohydrate dysfunction are 

diabetes-based models, but more specific models are needed. Indeed, rodent animals 

are by far the most commonly used species for experimental studies of glucose 

homeostasis [139]. In fact, many rodent models already exist for the study of diabetes, 

with various mechanisms for inducing either T1DM or T2DM. These murine models 

can be classified into two categories: (1) genetically induced spontaneous diabetes 

models; and (2) experimentally induced non-spontaneous diabetes models [140].  

The popularity of using experimentally induced models compared to the 

genetically induced ones is due to their comparatively lower cost, ease of induction, 

ease of maintenance and wider availability. Different experimental approaches based 

on induced models are summarized in Table 2. The most commonly used diabetes 

model involves the administration of a single high dose of streptozotocin (STZ) or 

alloxan (ALX), which leads to the destruction of pancreatic β cells and causes 

hyperglycaemia as a direct consequence of deficient insulin production [140]. The 

understanding of changes in β cells of the pancreas as well as in the whole organism 

after ALX or STZ treatment is essential for using these compounds as diabetogenic 

agents [141]. The cytotoxic action of these diabetogenic agents is mediated by the 

generation of reactive oxygen species (ROS), however, the source of its generation is 

different in the case of STZ compared to ALX. In the case of ALX, the alteration 

produced is associated to T1DM and in our case the target of carbohydrate 

dysfunction is T2DM [142]. In fact, classically ALX induction of diabetes was 

administered alone [143] and trying to overcome the limitation of T1DM is also 

administrated together with high-fat diet (HFD) [144]. Indeed, STZ is the preferred 

inductor of carbohydrate disfunction and it is widely used experimentally to produce 

a model of T1DM and T2DM depending on the dose and the combination with other 

agents [145]. Normally, the induction by multiple [146] or single [147–149] 

administration of STZ is associated with T1DM. However, the combination of STZ 

together with other strategies as feeding the animals with HFD [150,151] and previous 

administration with nicotinamide [152–154] fits better with a T2DM condition. 
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Table 2. Animal-based studies of carbohydrate metabolism dysfunction. In this table a summary of the 
most used animal models for carbohydrate metabolism dysfunction research are represented, including the 
induction by streptozotocin (STZ), alloxan (ALX), high-fat diet (HFD). Abbreviations: HFD, high fat diet; OGTT, 
oral glucose test tolerance; IP, intraperitoneal injection; HbA1c, glycated haemoglobin; TG, triglycerides; 
TC, total cholesterol. 
 

 

3.2. Hyperlipidaemia and hypertension 

3.2.1. Epidemiology 

Hyperlipidaemia and hypertension are well-established risk factors for the 

development of NCDs, these risk factors are especially associated with cardiovascular 

disease susceptibility. For instance, the European Society of Cardiology states in their 

guidelines of management of dyslipidaemias [155] and hypertension [156] that the 

preventive targeting of these above mentioned risk factors could elude further CVD; 

avoiding in consequence billions of dead’s worldwide. Additionally, epidemiological 

studies have reported a 15-31% rate of coexistence of hyperlipidaemia and 

hypertension [157,158]. The coexistence of these risk factors has been suggested to 

multiply the development of diseases compared to the sum of the individual risk 

factors [159]. 

Model Induction Year Subject Biomarkers Ref 

ALX 
Single subcutaneous 

injection of 120 mg/kg 
2002 

Male 
Sprague-

Dawley rats 
Glucose [143] 

ALX + HFD 
Single injection of 105 

mg/kg + HFD 
2017 

Male 
Sprague-

Dawley rats 

OGTT, glucose, 
insulin, level of 

antioxidants, and β-
cell function 

[144] 

STZ 

Single IP 180 or 100 mg/kg 
and multiple IP of 40 
mg/kg/day for 5 days 

2009 
Swiss albino 

mice 
Glucose [146] 

Single IP of 70 mg/kg 2013 
Male 

Wistar rats 
Glucose, insulin and 

HbA1c 
[147] 

Single IP of 45 mg/kg 2017 
Male 

Wistar rats 

Glucose, insulin, 
HbA1c and level of 

antioxidants 
[148] 

Single tail vein injection of 
60 mg/kg 

2018 
Male 

Sprague-
Dawley rats 

Glucose [149] 

STZ + HFD 

HFD + after 2 weeks 35 
mg/kg of STZ 

2005 
Male 

Sprague-
Dawley rats 

Glucose, insulin, TG 
and TC 

[150] 

HFD + after 2 weeks single 
IP of 40 mg/kg of STZ 

2019 
Male 

Wistar rats 
OGTT, glucose, 

insulin, glucagon 
[151] 

STZ + 
Nicotinamide 

Single IP of STZ (55 mg/kg) 
after 15 min of 

nicotinamide injection 
(210 mg/kg IP)  

2012 
Sprague-

Dawley rats 
Glucose and level of 

antioxidants 
[152] 

2019 
Male 

Sprague-
Dawley rats 

Glucose, TG, TC, and 
level of antioxidants 

[153] 

Single IP of STZ (65 mg/kg) 
after 15 min of 

nicotinamide injection 
(230 mg/kg IP)  

2017 
Male 

Wistar rats 
Glucose, insulin, TG, 

and TC 
[154] 

UNIVERSITAT ROVIRA I VIRGILI 
MULTI-OMICS BIOMARKERS OF METABOLIC HOMEOSTASIS OF RISK FACTORS ASSOCIATED TO 
NON-COMMUNICABLE DISEASES 
Julia Hernandez Baixauli 



I. Introduction 

33 
 

The prevalence of hyperlipidaemia increases constantly at a drastic pace, in fact 

there are over three million adults that are diagnosed for hyperlipidaemia. In 2018, 

according to the WHO, the prevalence of hyperlipidaemia was the highest in Europe 

(54% for both sexes), followed by North and South America (48% for both sexes), 

whereas Africa and Southeast Asia had the lowest prevalence (22.6% and 29.0%, 

respectively) [155]. Globally, no change has been observed between 1980 and 2018, 

but several regions presented notable changes. In this case, high-income countries, 

which had the highest plasma cholesterol (TC) levels in 1980, underwent a substantial 

reduction in population plasma TC levels, whereas low-income and middle-income 

countries underwent a large increase in both population plasma TC and triglyceride 

(TG) levels. Indeed, the change of lifestyle habits and the use of statins has 

considerably impacted in high-income countries [160]. 

The prevalence of hypertension, as in the case of hyperlipidaemia, is rising 

globally possibly due to ageing of the population and increases in the exposition to 

lifestyle risk factors. In 2019, the global age-standardised prevalence of hypertension 

in adults (aged 30–79 years) was 32% in women and 34% in men [161]. Unlike the 

popular belief that hypertension is more important for high-income countries, people 

in low- and middle-income countries have more than two-fold the risk of dying from 

hypertension [162]. This fact may be attributed to some recent measures in high-

income countries as the increase on the availability and affordability of fresh fruits and 

vegetables, lowering the sodium content, and improving the offer of dietary salt 

substitutes that can help to lower blood pressure in the entire population [161]. 

3.2.2. Pathogenesis 

Hyperlipidaemia is a condition that includes various genetic and acquired 

disorders that describe elevated plasmatic lipid levels within the human body. In line 

with this, lipoproteins transport lipids from plasma to tissues for energy utilization, 

lipid deposition, steroid hormone production, and bile acid formation. There are six 

major lipoproteins in blood including chylomicrons, very low-density lipoprotein 

(VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL), high-

density lipoprotein (HDL) and LP(a) (Table 3). All the lipoproteins containing ApoB with 

<70 nm in diameter and rich TG lipoproteins can cross the endothelial barrier leading 

to the growth and progression of atherosclerotic plaques during long-term circulation 

in the system [163]. Particularly elevated plasma LDL-cholesterol level 

(hypercholesterolaemia) is a major risk factors for CVDs, but some forms, such as 

elevated TGs level (hypertriglyceridemia) are associated with severe pathological 

consequences in other organ systems, including non-alcoholic fatty liver disease 

(NAFLD) and acute pancreatitis [160]. Furthermore, the combination of high TGs level 

and low HDL-cholesterol level (together with the presence of small, dense LDL 

particles), referred to as atherogenic dyslipidaemia, is highly prevalent in patients with 

T2DM or MetS and increases their risk to develop CVDs. 
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Table 3. Physical and chemical characteristics of human plasma lipoproteins. Adapted from the European 
Society of Cardiology reports of management of dyslipidaemias [155]. Abbreviations: TG, triglyceride; ChoE, 
cholesteryl ester; PL, phospholipids; VLDL, very low-density lipoprotein; IDL, intermediate-density 
lipoprotein; LDL, low-density lipoprotein; HDL, high-density lipoprotein; Lp(a), lipoprotein(a); Apo, 
apolipoprotein. 
 

 
Density 
(g/mL) 

Diameter 
(nm) 

TG 
(%) 

ChoE 
(%) 

PL 
(%) 

CT 
(%) 

Apolipoproteins 

Major Others 

Chylomicrons <0.95 80-100 
90-
95 

2-4 2-6 1 ApoB-48 
ApoA-I, A-II, A-

IV, A-V 

VLDL 
0.95-
1.006 

30-80 
50-
65 

8-14 
12-
16 

4-7 ApoB-100 
ApoA-I, C-II, C-

III, E, A-V 

IDL 
1.006-
1.019 

25-30 
25-
40 

20-
35 

16-
24 

7-
11 

ApoB-100 
ApoC-II, C-III, 

E 

LDL 
1.019-
1.063 

20-25 4-6 
34-
35 

22-
26 

6-
15 

ApoB-100  

HDL 
1.063-
1.210 

8-13 7 
10-
20 

55 5 ApoA-I 
ApoA-II, C-III, 

E, M 

LP(a) 
1.006-
1.125 

25-30 4-8 
35-
46 

17-
24 

6-9 Apo(a) ApoB-100 

 

On the other hand, hypertension arises when the blood pressure is abnormally 

high, and it comprises a spectrum from uncontrolled hypertension to heart failure. 

This occurs when the arterioles narrow, causing the blood to exert excessive pressure 

against the vessel walls and forcing the heart to work harder to maintain the blood 

pressure. Despite the flexibility of the hearth and blood vessels, the heart may 

eventually enlarge (hypertrophy) and be weakened to the point of heart failure [164]. 

In fact, hypertension is diagnosed if the systolic blood pressure (SBP) is ≥ 140 mmHg 

and/or the diastolic blood pressure (DBP) is ≥ 90 mmHg and the health and pathology 

state could be divided in different categories, as summarized in Table 4 [156]. 

Hypertension rarely occurs as an isolated factor, and often clusters with hyperlipemia 

as well as carbohydrate metabolism dysfunction [165,166]. 

Table 4. Classification of blood pressure and definitions of hypertension grade. Adapted from the 
European Society of Cardiology reports of management of hypertension [156]. This classification is used for 
all ages from 16 years. For the case of the optimal category, both values are needed, while for the rest of 
the categories, if one is fulfilled, it is enough to assign it to that grade. Abbreviations: SBP, systolic blood 
pressure; DBP, diastolic blood pressure. 
 

Category SBP (mmHg) DBP (mmHg) 

Optimal <120 <80 

Normal 120-129 80-84 

High normal 130-139 85-89 

Grade 1 hypertension 140-159 90-99 

Grade 2 hypertension 160-179 100-109 

Grade 3 hypertension ≥180 ≥110 
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3.2.3. Animal models 

In the case of hyperlipidaemia, different approaches have been carried out to 

obtain animal models that allow the elucidation of hyperlipidaemia metabolic impact. 

However, there is no clear scientific consensus. In this regard, there are different 

approaches depending on the objective, the grade of hyperlipidaemia (from low grade 

of hyperlipidaemia to atherosclerosis) and the desired alteration (e.g., 

hypercholesterolemia and hypertriglyceridemia), as summarized in Table 5. The 

classical models are induced by high fat diet [167] that are low-cost, easy to obtain 

and robust, but when using this approach other problems as obesity and related 

complications appears. Nevertheless, there are also spontaneous genetic variants as 

Zucker (fa/fa) rats [168]. Additionally, in the field/era of genetic editing, due to the 

outbreak of CRISPR/Cas 9 recent transgenic rodent variants have been developed like 

animals deficient in apolipoprotein-E (apoE-/-) and LDL receptor (LDLr-/-) genes [169–

172]. However, genetic models, as already mentioned for carbohydrate dysfunction, 

are experimental methods that have several technical disadvantages compared to 

other models that are easier to obtain and manipulate.  

On the other hand, hyperlipidaemia could be also induced by administration of 

chemical compounds as poloxamer 407 (P407), thus the degree of hyperlipidaemia 

can be controlled through the regulation of the dosing of P407 [173]. For instance, 

P407 is one of the most interesting models of hyperlipidaemia characterized by the 

elevation of TG levels, which is attributed to: (1) the inhibition of lipoprotein lipase; 

(2) the elevation of TC levels, which is linked to indirect stimulation of the activity of 

3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase), the rate-

limiting enzyme in TC biosynthesis; and (3) the decreased LDL receptor expression in 

all synthesizing cholesterol cells [173]. The P407 animal model may be modulated by 

the selection of: (1) different rodent species [173–177], (2) dose concentrations 

between 300 mg/Kg [175] to 1500 mg/kg of body weight [178], being the former the 

popular one for low-grade hyperlipidaemia; and (3) single treatment [179] or chronic 

treatment [177,180] of an intraperitoneal (IP) injection have been also selected 

according to the expected effect [181]. 

  

UNIVERSITAT ROVIRA I VIRGILI 
MULTI-OMICS BIOMARKERS OF METABOLIC HOMEOSTASIS OF RISK FACTORS ASSOCIATED TO 
NON-COMMUNICABLE DISEASES 
Julia Hernandez Baixauli 



I. Introduction 

36 
 

Table 5. Animal-based studies of hyperlipidaemia. In this table a summary of the most used animal models 
for hyperlipidaemia research are represented, including the induction by high fat diet, genetic models, 
transgenic models, and administration of poloxamer-407 (P407). Abbreviations: HFD, high fat diet; TC, 
cholesterol; TG, triglycerides; NEFAs, Non-esterified free fatty acids; PL, phospholipids; HDL, high-density 
lipoprotein; LDL, low-density lipoprotein; LCAT, lecithin-cholesterol acyltransferase; sPLA2-IIA, group IIA 
secreted phospholipase A2; PON1, paraoxonase-1; IP, intraperitoneal injection; HMG-CoA, 3-hydroxy-3-
methylglutaryl coenzyme A. 
 

Model Induction Year Subject Biomarkers Ref 

High fat diet 

HFD 1996 
Male Wistar 

rats 
TC, TG, PL, NEFAs and 

glucose 
[182] 

HFD 1998 C57BL/6 mice 
TC, TG, NEFAs, 

glucose and insulin 
[183] 

HFD (360 kcal/kg/day) 2017 
Male Golden 

Syrian 
hamsters 

PL, NEFAs, TC, HDL, 
LDL, LCAT, sPLA2-IIA, 

PON1 
[177] 

Genetic 
models 

Spontaneous mutated 
leptin receptor (fa/fa) 

1992 Zucker rats 
TC, TG, LDL, and lipid 

peroxides 
[168] 

Transgenic 
models 

LDLr-/- (CRISPR/Cas 9) 2017 
Male Sprague-

Dawley rats 
All alipoproteins [170] 

ApoE-/- (CRISPR/Cas 9) 2018 
Bama 

miniature pigs 
TC, TG, HDL, and LDL [171] 

ApoE-/- and LDLr-/- 
(CRISPR/Cas 9) 

2018 
Male Sprague-

Dawley rats 
TC, TG, HDL, and LDL [172] 

P407 

Single IP of 0.3 g/kg 1997 
Male Sprague-

Dawley rats 
TC and HMG-CoA 
reductase activity 

[175] 

Single IP of 0.5 and 1 
g/kg 

2013 
Male Sprague-

Dawley rats 

TC, TG, HDL, 
adiponectin, and 

leptin 
[179] 

IP of 0.5 g/kg twice per 
week for 1 month 

2013 Male CBA mice TC, TG, HDL, and LDL [180] 

Periodically IP of 50 
mg/kg every 72 h until 4 

and 30 days 
2017 

Male Golden 
Syrian 

hamsters 

PL, NEFAs, TC, HDL, 
LDL, LCAT, sPLA2-IIA, 

PON1 
[177] 

Single IP of 0.5 g/kg 2017 
Male Wistar 

rats 
TC, TG, HDL, and LDL [184] 

Single IP of 0.4 g/kg 2018 
Male Sprague- 

Dawley rats 
TC, TG, HDL, and LDL [185] 

 

In the case of hypertension, the complex nature of hypertensive phenotypes 

complicates the establishment of an animal model for primary hypertension. For this 

reason, rat genetic models of hypertension have been widely used in the study of high 

blood pressure levels, as summarized in Table 6: spontaneously hypertensive (SHR) 

rats, Dahl salt-sensitive (DSS) rats, fawn-hooded hypertensive (FHH) rat, Milan 

hypertensive strain and Lyon hypertensive rat, among others [186,187]. Among these, 

the most studied model is the SHR, which is widely used in different studies as a rat 
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model of primary or essential hypertension [187–189]; the second one is the DSS rat 

[190] followed by other rat strains [191–193]. Additionally, there are transgenic 

models as the renin 2 (REN 2) that presents the overexpression of REN gene [194]. 

Table 6. Animal models of hypertension. In this table a summary of the most used animal models for 
hypertension research are represented, including genetic and transgenic models. Abbreviations: SHR rats, 
spontaneously hypertensive rat; DSS rat, Dahl salt-sensitive rats; FHH rat, fawn-hooded hypertensive rat; 
BP, blood pressure; TC, total cholesterol; SBP, systolic blood pressure; REN, renin. 
 

Model Induction 
Year 1st 

publication 
Subject Biomarkers Ref 

Genetic 
models 

Spontaneously 
hypertension 

1977 SHR rats 
SBP >150 mm 

Hg 
[188,189] 

Salt-sensitive 
hypertension 

1990 DSS rat Elevated BP [190] 

Spontaneously 
hypertension 

1986 FHH rat 
Elevated BP 
compared to 
Wistar rats 

[191] 

Spontaneously 
hypertension 

1986 
Milan 

hypertensive 
strain 

Renal 
abnormality 

[192] 

Low renin release 
and salt-sensitive 

1979 
Lyon 

hypertensive 
rat 

Elevated BP and 
TC 

[193] 

Transgenic 
model 

Overexpression 
REN gene 

1990 
REN2 

transgenic rats 
Elevated BP [194] 

 

3.3 . Gut microbiome dysbiosis 

3.3.1. Epidemiology 

Hundreds of clinical studies have demonstrated associations between the human 

microbiome and disease [195], but fundamental questions remain unanswered about 

how we can generalise this knowledge and how it can be traced epidemiologically. 

Some diseases are associated with more than 50 genera, while most show only 10-15 

changes at the genus level [196]. Some diseases are marked by the presence of 

potentially pathogenic microbes, while others are characterised by a decrease in 

health-associated bacteria [196]. In addition, about a half of the genera associated 

with individual studies are from bacteria that respond to more than one disease. 

Although we have a lot of information about microbiota dysfunction, the challenge 

will be to discover the key changes that are of paramount importance due to its effect 

on disease development.  

3.3.2. Pathogenesis 

The gut is composed of large microbial communities including bacteria, fungi, 

archaea and viruses [197]. The distribution of this microbial population is the lowest 

in the upper intestine (stomach, duodenum and jejunum), with approximately 103 

bacteria per mL, while there are approximately 107-1012 bacteria per mL in the lower 

intestine (ileum and proximal colon) [198]. The gut microbiome performs diverse 

functions such as helping on food digestion, production of essential vitamins, 

synthesis of metabolites, prevention of colonisation by pathogenic bacteria, intestinal 
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immune regulation, drug metabolism, detoxification and maintenance of 

physiological homeostasis of the gastrointestinal tract [199]. Therefore, the 

maintaining of a healthy proportion of beneficial microbes, also called eubiosis, is 

essential for human well-being and health.  

In contrast, gut microbial imbalance, known as dysbiosis, can include: (1) an 

increased ratio of small intestinal bacteria; (2) an alteration of the relative ratio of 

beneficial to pathogenic microbes; as well as (3) a translocation of colonic bacteria 

[200]. Fundamentally, there are several factors that contribute to the progression 

towards a pathologic state, including microbe-microbe interactions, microbial 

metabolites, host immune response, host physiology, diet and host environment 

[201,202]. 

In a healthy host, Bacteroidetes and Firmicutes are the predominant phyla in the 

gut, while Proteobacteria, Verrucomicrobia, Actinobacteria, Fusobacteria and 

Cyanobacteria are found in much lower proportions [203]. In general, if it occurs 

changes in the proportions of these phyla then a disturbance of microbial homeostasis 

could be assumed. 

3.3.3. Animal models 

Increasing evidence indicates that the gut microbiome responds to diet, 

antibiotics, and other external stimuli (Table 7). In consequence, these changes on the 

microbiome could have consequences on metabolism. Despite decades of research in 

the field of gut dysbiosis, the development of successful animal models remains very 

challenging and has been found to involve multiple challenges. Therefore, the existing 

models are usually associated with a disease-related dysfunction of the gut 

microbiome as for example in the case of obesity [204]. Dietary habits, which could 

be related to obesity and associated complications, are fundamental for the 

modulation of the gut microbiome, for this reason changes in healthy diet in favour of 

HFD or cafeteria diet leads to gut microbiome dysbiosis. Therefore, some animal 

models are based on the feeding for long periods (i.e., 4-6 months) with this type of 

diets [205,206]. Moreover, specific fetal surgeries have been used to mimic neonatal 

gut dysbiosis through the isolation of intestinal segments before birth [207].  

A classical inductor of gut microbiome dysbiosis are antibiotics that alters the 

composition and function of microbiota through its direct effect on bacteria. Different 

treatments can be performed using different antibiotics (e.g., penicillin, vancomycin, 

chlortetracycline, gentamicin, metronidazole) or a combination of them during short 

or long periods and the administration can be done via oral gavage or via drinking 

water depending on the desired effect [208–210].  

In line with this, the antibiotic treatment could be combined with microbial 

transplant leading to gut microbiome dysbiosis. This type of transplant involves 

transferring microbiota from a diseased (i.e., obese) donor to a healthy recipient to 

generate gut microbiome dysbiosis in the recipient. Interestingly, there are also 

opposite approaches, which involves the treatment of diseased recipients with 
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microbes from healthy donors, to revert the disbiotic condition as a treatment for 

related diseases. Focusing on the transplant leading to gut microbiome dysbiosis, 

there are mainly two approaches: (1) the use as a donor microbiota of the same animal 

species with disrupted microbiome[211] or (2) inter-species transplantation were the 

donors can be human [212].  

Table 7. Animal-based studies of gut microbiome dysfunction. In this table a summary of the most suitable 
animal models for gut microbiome dysfunction research are represented. Abbreviations: AB, antibiotic; LFD, 
low fat diet; HFD, high fat diet; CAF diet, cafeteria diet; OG, oral gavage. 
 

Model Induction Year Subject Effect Ref 

Diet 

CAF diet for 12 weeks 2018 
Male 

Wistar 
rats 

↓bacteria diversity [205] 

HFD for 9 weeks 2019 
Male 

Wistar 
rats 

↓bacteria diversity: 
specially Firmicutes 

[206] 

Fetal surgeries 
Isolated intestinal 

segments 15–20 cm 
before birth 

2019 Lambs 
↓bacteria diversity: 

specially 
↑Proteobacteria 

[207] 

AB Treatment 

Penicillin, vancomycin, 
penicillin plus 

vancomycin, or 
chlortetracycline via 

drinking water 

2012 
Female 

C57BL/6J 
mice 

Metabolome changes [208] 

Amoxicillin, gentamicin 
and 

Metronidazole in water 
for 14 days 

2019 

Male 
Sprague-
Dawley 

rats 

↓bacteria diversity: 
specially 

Bifidobacterium spp., 
Lactobacillus spp. 

[209] 

Moxifloxacin and 
clindamycin by 

subcutaneous injection 
for 5 days 

2018 
Syrian 

hamster 
- [210] 

Microbial 
transplantation 

AB treatment for 3 days 
and transplantation of a 
pool of cecum content 

from Wistar and 
Sprague-Dawley rats 

2010 Lewis rats - [211] 

Inoculated with human 
faeces by OG to germ-

free rats (Sterile pelleted 
feed) 

2013 

Male 
Sprague-
Dawley 

rats 

↓bacteria diversity: 
↓Firmicutes and ↑ in 

Actinobacteria and 
Proteobacteria 

[212] 

 

3.4 . Chronic inflammation 

3.4.1. Epidemiology 

Although occasional increases in inflammation are critical for survival during 

physical injury and/or infection, recent research has revealed that certain social, 

environmental and lifestyle factors can promote chronic systemic inflammation, 

[213]. Furthermore, chronic inflammatory diseases have been recognized as the most 

significant cause of death in the world today, with more than 50% of all deaths being 

attributable to inflammation-related diseases (e.g., CVDs, obesity, cancer or NAFLD) 

[214]. Indeed, it is difficult to assess the chronic inflammation overall impact on health 
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systems because it has been considered as a “silent” risk factor since it is arduous to 

track without the development of an associated disease linked to inflammation 

3.4.2. Pathogenesis 

In general, inflammation is a combination of biological processes characterized by 

the activation of immune and non-immune cells that protect the host from bacteria, 

viruses, toxins and infections by eliminating pathogens and promoting tissue repair 

and recovery [215]. Furthermore, there is also a long-term low-grade inflammation 

which can last for prolonged periods (from several months to years) and is 

characterized by the sustained elevation of inflammatory cytokines in serum due to 

the failure to resolve acute inflammation [216]. Even though acute and chronic 

inflammation share common mechanisms, there are some interesting differences. 

Initially, chronic inflammation is typically triggered by damage-associated molecular 

patterns (DAMPs) in the absence of activation of pathogen-associated molecular 

patterns (PAMPs) [217]. It is observed that chronic inflammation increases with age 

as it has been shown a higher circulating levels of cytokines, chemokines and genes 

involved in inflammation in elderly [218]. Additionally, chronic inflammation is a low-

grade and persistent type of inflammatory process, and subsequently it is the 

prolongation and accumulation during the time that causes collateral damage to 

tissues and organs until the development of NCDs. Despite the link between the 

disease and chronic inflammation, there are currently non-standard fully accepted 

biomarkers to indicate the presence of chronic inflammation [213]. 

3.4.3. Animal models 

Despite the need for a deeper understanding of the underlying chronic 

inflammation, there are few models that study this alteration from an isolated point 

of view. In general, animal models used to mimic acute and chronic inflammation are 

based on its induction by a chemical or biological stimuli [219,220], as summarized in 

Table 8. On the one hand, different chemical stimuli are used as magnesium silicate 

[221] or indomethacin [222]. On the other hand, lipopolysaccharide (LPS), which is a 

structure found in the outer membrane of gram-negative bacteria, is the preferred 

stimulus for acute as well as chronic inflammation [220,223–230]. Furthermore, 

different degrees of inflammation and related pathologies can be obtained by 

regulating the LPS administration (i.e., type administration, dosage, and frequency). 

However, it has been observed that repeated administration of LPS induces the 

development of tolerance to the endotoxin, thereby decreasing the inflammatory 

response [231]. For this reason, different procedures have been explored to overcome 

the endotoxin resistance generated by the animals. Several approaches have been 

developed: one of the most cutting-edge approaches consists of administering LPS via 

slow-release pellets for at least 30 days [226–229]; intermittent injection of LPS on 

different days is also quite effective in rats [223,230]; administration of IP three times 

a week with increasing dosage [220]. 
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Table 8. Animal-based studies of chronic inflammation. In this table a summary of the most suitable animal 
models for chronic inflammation research are represented. Abbreviations: LPS, lipopolysaccharide; COX2, 
cyclooxygenase-2; TNF-α, tumour necrosis factor-alpha; IL-1β, and interleukin-1β; WBC, white blood cells; 
IP, intraperitonially injection; CRP, C-reactive protein; IL-6, interleukin-6; IL-8, interleukin-8. 
 

Model Induction Year Subject Biomarkers Ref 

Magnesium 
silicate 

Injection of 1 g 1988 
Female 

Wistar rats 

Granulocytes, 
macrophages, 

and 
giant cells 

[221] 

Indomethacin 

Two subcutaneous 
injections of 

Indomethacin (7.5 
mg/kg) 

1993 

Male 
Sprague-
Dawley 

rats 

- [222] 

LPS 

Slow-release pellets 
(1.33 µg LPS/day) for 30 

days 
2007 

Female 
C57BL/6J 

mice 
TNF-α [226] 

Slow-release pellets (0, 
3.3, or 33.3 µg LPS/day) 

for 90 days 

2006, 
2009 

Male 
Sprague-
Dawley 

rats 

COX2, TNF-α, IL-
1β 

[227,228] 

Slow-release pellets 
(44.4 µg LPS/day) for 90 

days 
2012 

Male 
C57/BL6J 

mice 

WBC and 
neutrophils 

[229] 

Periodically IP of 0.25 
mg/kg twice weekly for 

up to 25 weeks 
2016 

Male 
C57/BL6J 

mice 
TNF-α and IL-6 [230] 

Periodically IP of 0.1 
mg/kg 

2017 
Male Wistar 

rats 
Insulin resistance [223] 

Periodically and 
intermittent IP (0.5, 1, 2 
mg/kg) thrice a week for 

30 days 

2018 
Male 

Sprague-
Dawley rats 

CRP, TNF-α, IL-6, 
IL-1β and IL-8 

[220] 

 

3.5 . Oxidative stress 

3.5.1. Epidemiology 

In line with other risk factors, the epidemiological monitorization of oxidative 

stress is difficult because it is not clinically diagnosed as an isolated risk factor, because 

it is rather associated with other related diseases. For example, many human 

epidemiological studies have demonstrated a close association between chronically 

oxidative conditions and carcinogenesis [232]. Additionally, the increase of 

environmental pollutants has been directly related to oxidative stress and has been 

considered as a growing threat for the global health [233]. 

3.5.2. Pathogenesis 

Oxidative stress is the homeostatic disruption that occurs when there is an 

imbalance between ROS generation and the body's antioxidant defence systems 

[234]. Many types of agents (chemical, physical and microbial) can cause oxidative 

stress in tissues and cells. In addition, oxidative stress is involved in many fundamental 

aspects of life processes, such as cellular respiration (mitochondria), lipid synthesis, 

cytochrome activities, lysosomes, phagocytosis of foreign bodies (immunity and 
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inflammation) and xenobiotic biotransformation of organic compounds. Oxidative 

stress could be related to the production of reactive species during oxidative stress 

such as hydroxyl radical (HO•), peroxynitrite anion (ONOO−) or hypochlorous acid 

(HOCl). 

ROS are mainly produced by mitochondria under both physiological and 

pathological conditions. Indeed, superoxide anion (O2
•-) is formed by cellular 

respiration through the activity of lipoxygenases (LOX) and cyclooxygenases (COX) 

during arachidonic acid metabolism, and by endothelial and inflammatory cells [235]. 

Although these organelles have an intrinsic ROS scavenging capacity [236], it should 

be noted that this is not sufficient enough to cope with the cellular needs to remove 

the ROS amount produced by mitochondria [237]. ROS have divergent effects on 

cellular function and contribute to disease through different mechanism [238]. The 

first mechanism involves is associated with the oxidation of important biomolecules 

(e.g., proteins, lipids, and nucleic acids) leading to disrupted homeostasis of cell 

function and death. The second mechanism involves aberrant redox signalling as the 

case of the oxidant hydrogen peroxide (H2O2) which could normally act as second 

messenger [239]. 

On the other hand, the antioxidant system of cells is based mainly on enzymatic 

components, such as superoxide dismutase (SOD), catalase (CAT) and glutathione 

peroxidase (GPx), to protect cellular systems from ROS-induced cellular damage [240].  

3.5.3. Animal models 

The animal models of oxidative stress rely on the rate of prooxidant generation 

and the effects of antioxidants. Consequently, experimental oxidative stress models 

can target either production of ROS or suppression of antioxidants [241]. Indeed, 

treatments that increase ROS production are particularly useful to evaluate oxidative 

stress. Among the most common chemicals for inducing oxidative stress through 

increased ROS (either by ingestion or injection), there are a group of oxidative stress 

generating molecules such as diazinon [242], diquat [243] or paraquat (PQ) [244–250], 

as summarized in Table 9. For example, diquat is a powerful inducer of oxidative 

stress, being the liver its main target organ, thus in this case the goal is mainly the 

hepatic oxidative stress study and it is mostly used in piglets or chickens [243].  

In fact, PQ (paraquat or 1,10-dimethyl-4,40-bipyridinium dichloride) is the most 

commonly used oxidative stress inducer, it should be noted that this herbicide is very 

toxic when is absorbed by ingestion, skin contact or inhalation [251–253]. The 

molecular effect of PQ is related to the induction of oxidative stress by generating ROS 

through redox cycling by microsomal NADPH-cytochrome P-450 reductase, xanthine 

oxidase and mitochondrial NADH-quinone oxidoreductase [252]. The high ROS 

production induces a non-selective oxidation of biomolecules such as lipids, proteins 

and nucleic acids that lead to cell damage and eventually result in death [253]. The 

administration of PQ by intragastric administration (IG) is widely related to PQ 

poisoning [244]. However, single or periodically IP of PQ induce oxidative stress in 

different degree depending on the rodent model and the dosage that has been used 
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[245–250]. Currently, PQ oxidative stress model is the most suitable experimental 

approach, but it should be evaluated with caution as it is associated with a high 

number of complications such as: (1) localized damage to lungs; (2) interaction with 

microglia to induce increased neural damage, particularly to dopaminergic neurons; 

and (3) researchers must take precautions to prevent their exposure [241].  

Table 9. Animal-based studies of oxidative stress. In this table a summary of the most suitable animal 
models for oxidative stress research are represented. Abbreviations: PQ, paraquat; IP, intraperitonially 
injection; IG, intragastric administration; LPO, lipid peroxidation; GSH-Px, glutathione peroxidase; AST, 
aspartate transaminase; ALT, alanine transaminase; ALP, alkaline phosphatase; TAC, total antioxidant 
capacity; GGT, ɣ-glutamyl transferase; TTM, total thiol molecules; 8-OHdG, 8-hydroxy-2'-deoxyguanosine; 
CAT, catalase; SOD activity, superoxide dismutase activity; LDH, lactate dehydrogenase 
 

Model Induction Year Subject Biomarkers Ref 

Diazinon 
Periodically IG 10 mg/kg 

per day for 7 weeks 
2018 

Male Wistar 
rats 

LPO, TTM, TAC, SOD and 
GSH-Px 

[242] 

Diquat Single IP of 10 mg/kg 2020 Male piglets 
ALT, AST, 8-OHdG, LPO, 

GSH-Px, SOD, CAT and TTM 
[243] 

PQ 

Single IP of 30 mg/kg 2012 
Male Wistar 

rats 
Glucose, AST, ALT, ALP, 

GGT, LPO, CAT SOD 
[245] 

Single IG of 36 mg/kg 2015 
Male Sprague-

Dawley 
rats 

- [244] 

Single IP of 10, 20 or 30 
mg/kg 

2016 
Male Wistar 

rats 
LPO, AST, ALT, 8-OHdG, 

CAT and SOD 
[246] 

Single IP of 50 mg/kg 2017 
Male Swiss 
albino mice 

LPO, AST, ALT [247] 

Periodically IP of 50 
mg/kg for 14 days 

2018 
Male Wistar 

rats 
LPO, TAC, TTM and 8-OHdG [249] 

Single IP of 10 mg/kg 2019 
Female 

C57BL/6 mice 
- [250] 

Single IP of 30 mg/kg 2019 
Male Wistar 

rats 
LDH, SOC, TAC, LPO [248] 

 

3.6. Psychological stress, anxiety, and related disorders 

3.6.1. Epidemiology 

Although psychological stress disorders have increased dramatically in recent 

decades, their importance as a global health problem has not received the attention 

it deserves until recent years. Nowadays, it affects the lives of almost 300 million 

people worldwide suffering from a range of different stress disorders [254]. Indeed, 

psychological disorders could lead to suicide, which its global annual mortality rate 

has been estimated to be around 10.7 per 100,000 individuals (with variations across 

age groups and countries) [255]. In fact, the WHO estimates that psychological 

disorders cost to the global economy around USD 1 trillion each year due to lost 

productivity [254]. Generally, stressful events are thought to influence the 

pathogenesis of other NCDs by causing negative affective states (e.g., feelings of 

anxiety and depression) [256,257].  
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3.6.2. Pathogenesis 

Physiological stress can be defined as any external or internal condition that 

challenges the homeostasis of a an organism [258]. In fact, psychological stress itself 

is not pathological as it is an adaptative mechanism of the animal to deal with stressful 

events. During stressful events, two endocrine response systems are activated: the 

hypothalamic-pituitary-adrenocortical (HPA) axis and the sympathetic-adrenal-

medullary (SAM) system. Thus, prolonged or repeated activation of the HPA and SAM 

systems can interfere with a broad range of physiological processes, resulting in 

anxiety or depression as an increased risk of NCDs [259]. Psychological disorders are 

complex conditions including genetic, neurological, neurochemical, and psychological 

factors involved in their development [260]. Among psychological disorders, the most 

common is anxiety, which occurs when the individual is not under a real 

danger/threat, but the body responds as if this stimulus would be real (stress). 

3.6.3. Animal models 

There are several animal models of stress disorders, although it should be noted 

that mimicking these disorders in animals is far from the real global condition in 

humans. Particularly rodent models, can only model specific aspects of stress 

disorders and not their full pathological characteristics [261]. Therefore, animal 

models do not intend to replicate all the features and symptoms of a specific disorder 

but rather generate a state of stress or anxiety that could be related to these 

disorders. For example, there are models that do not involve a direct stressor such as 

fear conditioning that involves learning the association of a neutral stimulus, such as 

a light, tone, or setting; with an aversive stimulus, such as an electric shock [262] [263]. 

Re-exposure to the neutral stimulus will activate a conditioned fear response which 

resembles the responses that occur in the real presence of danger. This type of models 

mimics traumatic memories representing a psychological stress without physical 

stimuli [264].  

Furthermore, there are different types of stressors that have been used to mimic 

acute and chronic stress inducing phycological and/or physical stress, as summarized 

in Table 10. Predator stress is an effective stressor used in rodents that can be 

manipulated by presenting the odours of the predator such as introducing bobcat 

urine into a test cage with the rat [265,266]. Early-life stressful experiences, such as 

neonatal isolation or early induction of stressors, promote long-lasting neural and 

behavioural effects and have profound consequences on subsequent quality of life 

[267,268]. Alterations in circadian rhythm changes consist of unexpected changes in 

the day-night light cycle inducing short-term stress related to melatonin secretion, as 

the case of continuous light [269]. Furthermore, in animal models, noisy stress can be 

induced by using loudspeakers to generate a noise exposure that exceeds 90 decibels 

(dB) for at least two weeks [270,271]. Changes in body temperature lead to stressful 

responses due to activation of the thermoregulatory centre and, subsequently, of the 

HPA axis through the immersion of the animals in cold water for a short period of time 

(5-30 min) or placing the animals (in their home cages) in a cold or isolated 

environment (4°C for 5-30 min) during one to several days [272,273]. Restraint stress 
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is usually induced by keeping the animals in a cylindrical or semi-cylindrical tube with 

ventilation holes; while in immobilisation stress protocol, the animals are restrained 

by gently wrapping their upper and lower limbs with adhesive tape for short periods 

of time [274]. The social defeat stress protocol consists of the introduction of a single 

mouse (known as the intruder) in the home cage of a resident male mouse (known as 

the aggressor) [275].  

Currently, the most commonly experimental approach to simulate the core 

behavioural characteristics of human depression for investigating the 

pathophysiology and assisting in diagnosis is the Chronic Unpredictable Mild Stress 

(CUMS) [276]. It involves presenting different randomly stressors to rodents daily to 

avoid the stress adaptation process observed in other chronic stress models. In this 

model, animals are exposed for 2-5 weeks to a wide range of stressors, including some 

of those previously exposed (e.g., electric foot shocks, restraint stress, light-dark cycle 

reversal, unpleasant noises, changes in the home cage) [277,278]. After several days 

of exposure to this regime, animals show a gradual increase in HPA axis sensitivity and 

a decrease in responses to pleasant stimuli, but no change in exploratory activity. This 

protocol has good face validity and seems to more realistically represent the stressors 

that humans face in everyday life.  
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Table 10. Animal-based studies on psychological stress, anxiety, and related disorders. In this table a 
summary of the most suitable animal models for anxiety, psychological stress and related disorders are 
represented. Abbreviations: IP, intraperitoneal injection; OFT, open field test; EPM, elevated plus maze; 
SPT, sucrose preference test; FST, forced swim test; dB, decibel; CMS, Chronic Mild Stress; CUMS, Chronic 
Unpredictable Mild Stress. 
 

Model Induction Year Subject Detection Ref 

Fear 
conditioning 

Source of shock + 
Electric foot shock 

1980 
Female 

Long-Evans 
rats 

Post-shock freezing [262] 

Tone stimulus 
+ Electric foot 

shock 
2020 

Male CHF 
and CLF 

rats 
Post-shock freezing [263] 

Predator stress Bobcat urine 

2014 
Male 

Wistar rats 

Acoustic startle response 
and operant alcohol oral 

self-administration 
[265] 

2019 
Male 

Wistar rats 
SPT, corticosterone and 
glucocorticoids assays 

[266] 

Neonatal stress 

1 h per day 
isolation on 

postnatal days 2-9 
2000 

Sprague-
Dawley rats 

Locomotor activity, food 
training and 

corticosterone assay 
[267] 

IP saline after 22h 
of birth 

2014 Wistar rats 
OFT, EPM, SPT, social 

investigation and 
corticosterone assay 

[268] 

Circadian 
rhythm changes 

Constant light 2009 
Male Swiss-

Webster 
mice 

OFT, EPM, SPT and FST [269] 

Noisy stimulus 

100 dB for 4 h/day 
for 15 days 

2005 
Male 

Wistar rats 

Norepinephrine, 
epinephrine, dopamine 

and 5-hydroxytryptamine  
[270] 

95 dB for 4 h/day 
for 28 days 

2019 
Male 

Sprague-
Dawley rats 

Glucose, insulin, and 
corticosterone 

[271] 

Low 
temperature 

Immerse in cold 
water at 4 °C for 5 

min 
2002 

Male 
Sprague-

Dawley rats 
- [273] 

Immerse in cold 
water at 15 °C for 5 
min for 1 day or 5 

days 

2011 
Male 

Wistar rats 

Locomotor activity, hole 
board test, OFT and social 

interaction test 
[272] 

Restraint and 
immobilization 

Single restrained 
for 2 h or 

immobilized 2 
h/day for 7 days 

2000 
Male 

Wistar rats 
EPM [274] 

Social defeat 
Chronic 

psychosocial defeat 
protocol 

2018 
Male  

C57BL/6J 
mice 

Locomotor activity [275] 

Depression 

CMS protocol for 8 
weeks 

2019 
Male 

Sprague-
Dawley rats 

SPT, FST and EPM [279] 

CUMS protocol for 
6 weeks 

2019 
Male 

Wistar rats 
SPT and FST [277] 

CUMS protocol for 
6 weeks 

2020 
Male 

Wistar rats 
SPT and FST [278] 
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3.6.4. Biomarkers of psychological stress, anxiety, and related disorders 

As for the rest of the previously mentioned factors, in the following section a 

compilation of the most promising metabolomic biomarkers will be made for this 

specific risk factor. Currently, the diagnosis and detection of these disorders is based 

on a symptom checklist, and there is a need to complement the current diagnose with 

objective laboratory analyses. For this reason, important efforts have been made to 

differentiate healthy from anxious subjects by the analysis of metabolomics (Table 

11). To date, the metabolites related to psychological disorders seem to be involved 

in oxidative stress, alteration in lipid and energy metabolism, and neurotransmission 

(i.e., glutamate-glutamine cycle or ɣ-aminobutyric acid (GABA) metabolism) [280].  

Table 11. Metabolic biomarkers involved in psychological stress, anxiety, and related disorders, identified 
in clinical studies. Abbreviations: GlycA, glycoprotein acetylation; TMAO, trimethylamine N-oxide; BCAA, 
branched-chain amino acid.  
 

Biofluid Study Metabolite Ref 

Plasma 

 

Netherlands Study for 

Depression and Anxiety 

(NESDA) 

↑ GlycA 

↓ Omega-3 fatty acids 
[281] 

The Brazilian longitudinal study 

of adult health (ELSA-Brazil) 
↑ GlycA [282] 

Bipolar depression and healthy 

control participants 

↑ Lactate 

↓ Glucose, TMAO and GlycA 
[283] 

Psychological suboptimal health 

status 

↑ Glutamine, GlycA, TMAO, citrate, tyrosine, 

and phenylalanine 

↓ Valine, isoleucine, and glucose 

[284] 

Serum 

Anxiety related to anorexia 

nervosa 

↑ Glutamine 

↓ Threonine, methanol, glucose, and GlycA 
[285] 

Environmental stress on 

subjects of sea-voyage and 

Antarctic-stay 

↑ Ketone bodies (3-hydoxybutyrate and 

acetone), glucose, arginine, BCAA, phosphoric 

acid, and D-galactose 

↓ Lactate and choline 

[286] 

 

Many early stress psychological disorders studies have focused on lipids 

(lipidomics) based on the fact that it has been postulated a connection between lipids 

and neuronal signalling disease [287]. Indeed, the brain is particularly enriched with 

PUFAs, which are mainly represented by omega-6 and omega-3 fatty acids. In a cohort 

of depressive and anxious subjects, the decrease of omega-3 fatty acids in plasma is 

proposed as a potential biomarker [281]. Interestingly, omega-3 have a 

neuroprotective effect [288]. Accumulating evidence situates GlycA, a robust 
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inflammatory biomarker, as a biomarker for anxiety and depression, and may drive to 

associate psychological stress with systemic inflammation [281–284]. However, this 

association varies depending on gender and age, which might also contribute to the 

association of lipid metabolism and inflammation with stress symptoms. 

Furthermore, glutamine, as the most abundant amino acid circulating in blood, is 

not only essential as a neurotransmitter but it is also a precursor for other 

neurotransmitters as glutamate and GABA, and might be considered as a biomarker 

for anxiety and depression [289]. Other amino acids have also been detected by 

metabolomic approaches in stressed subjects such as tyrosine, phenylalanine, 

branched-chain amino acid (BCAAs), arginine or choline, among others. However, 

glutamine stands out among other amino acids, because it shows an effect on the 

disruption of brain glutamate-glutamine cycle, which is suggested to be involved in 

different forms of anxieties and it is easily and abundantly detected by NMR [284,285]. 

Related to carbohydrate dysfunction, altered glucose levels are found in 

neurological disorders such as bipolar depression [283], psychological unhealthy 

health status [284], anxiety related to anorexia nervosa [285] or environmental stress 

[286]. The commonly assessed stress factor is the alteration of glucose levels; but this 

metabolite highly fluctuates in contrast with healthy subjects, which is a disadvantage 

for being reliable. However, this metabolite may be considered a key factor for 

psychological disorders as well as a potential biomarker, considering other 

metabolites to complete the profile of this risk factor.  
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4. Biomarkers associated to different risk factors.  

MANUSCRIPT 1. Literature review. 
Abstract: The metabolic syndrome is a multifactorial disease developed due to 

accumulation and chronification of several risk factors associated with disrupted 

metabolism. The early detection of the biomarkers by nuclear magnetic resonance 

(NMR) could be helpful to prevent multifactorial diseases. The exposure of each risk 

factor can be detected by traditional molecular markers, but the current biomarkers 

have not been enough precise to detect the primary stages of disease. Thus, there is 

a need to obtain novel molecular markers of pre-disease stages. A promising source 

of new molecular markers are metabolomics standing out the research of biomarkers 

in NMR approaches. An increasing number of nutritionists integrate metabolomics 

into their study design, making nutrimetabolomics one of the most promising avenues 

for improving personalized nutrition. This review highlights the major five risk factors 

associated with metabolic syndrome and related diseases including carbohydrate 

dysfunction, dyslipidemia, oxidative stress, inflammation and gut microbiota 

dysbiosis. Together, it is proposed a profile of metabolites of each risk factor obtained 

from NMR approaches to target them using personalized nutrition, which will improve 

the quality of life for these patients.  

Keywords: metabolic syndrome, metabolism deregulation, molecular biomarker, 

prevention, metabolomics, nutritional habits, carbohydrate dysfunction, 

dyslipidemia, oxidative stress, inflammation, gut microbiota.  
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1. Introduction 
Metabolic syndrome (MetS) is considered a multifactorial disease, which means 

that a cluster of risk factors associated with disrupted metabolism may influence in 

their development [1]. Multifactorial diseases are caused by different single factors 

but also by a combination of altered metabolic situations (genetic, environmental, 

physiological, metabolic, cellular and molecular elements) that working together and 

extended over time eventually lead to a pathologic state [2,3]. However, these 

processes are not fully understood yet and MetS has emerged as a worldwide health 

concern in the recent decades, which prevalence is growing in parallel with the 

incidence of obesity, type 2 diabetes (T2D) or insulin resistance (IR). Thus, MetS is 

mainly attributed to changes in lifestyle that may impact genetic and phenotypic 

susceptibility [4–6]. Subsequently, the opportunity to prevent this disease is 

presented as a medical challenge for the whole facultative and research community.  

Nowadays, there is a lack of efficient tools to prevent the development of MetS, 

obesity and their metabolic disarrangements, which essentially includes carbohydrate 

and lipid metabolism, inflammation, oxidative stress and gut microbiota [7]. 

Nevertheless, there are several lifestyle aspects that can be modified to prevent the 

development of these risk factors associated to MetS such as diet, nutritional habits 

and physical activity [8]. However, nutrition is probably the most important adaptable 

factor that regulates the expression of genes involved in several metabolic pathways 

[9]. Thus, driven changes in diet and nutritional habits, known as personalized 

nutrition, have been increasing as a promising tool and are taking more relevance in 

society to control and prevent metabolic diseases [10]. 

The classical concept of personalized nutrition is assisted by genetic assessment 

through an analysis of single nucleotide polymorphisms (SNPs), which may provide 

useful information about the genetically programmed response of a subject to a given 

food or nutrient (nutrigenomics) [11]. The phenotypic traits are dynamic markers and 

hence, more appropriate for defining the effects of lifestyle variables on the organism 

(diet, nutritional habits, physical activity, daylight rhythmicity, etc.). Advances in omics 

technologies have led to the possibility of characterizing the metabolism of every 

subject from a holistic point of view, thus opening a wide array of possibilities for 

phenotypic characterization and providing a more accurate health assessment 

contributing to improve quality of life [8].  

Recently, the concept of nutrigenomics has evolved to incorporate many 

integrative methods concerning high-throughput omics technologies such as 

genomics, transcriptomics, proteomics, metabolomics, metagenomics and 

epigenomics [12] because the personalized nutrition based in nutrigenomics is 

limited. Ideally, the optimal personalized nutrition should be based in this modern 

concept of nutrigenomics, but is reasonless in a practical way due to the methodology 

high cost and the technical difficulties [13].  
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An alternative of the classical and modern concept of nutrigenomics is the study 

of the metabolomic profile [14]. An increasing number of nutritionists integrate 

metabolomics into their study design, nutrimetabolomics, achieving to be one of the 

most promising avenues for improving personalized nutrition [15,16]. Personalized 

nutrition can target small deviations of the metabolism associated with the risk 

factors, before the onset of the disease. When the disease is finally developed, the 

problem escapes the field of personalized nutrition and medical drugs administration 

are required. Therefore, there is a real need for an early detection of the slight changes 

on different metabolic parameters that combined triggers the disease development. 

At present, the lack of robust health status biomarkers for the principal clusters of 

MetS and obesity is a bottleneck that slows down the personalized nutrition in 

metabolomics [17]. This fact has been taken up by the scientific community. For 

example, the BIOCLAIMS project (FP7-244995) which has established the principles to 

obtain robust biomarkers for health status, or the PREVENTOMICS project (DT-SFS-14-

2018-818318) which aims to use health biomarkers in applications for consumers.  

In order to introduce the advantages of metabolomics in the research of 

biomarkers, the common techniques used in metabolomics should be known. The two 

most common techniques used are nuclear magnetic resonance (NMR) spectroscopy 

and mass spectrometry (MS) hyphened to chromatographic techniques such as gas 

chromatography (GC), capillary electrophoresis (CE), liquid chromatography (LC) and 

ultra-high performance liquid chromatography (UHPLC). Each analytical platform has 

its own advantages and disadvantages, thus the choice of the platform principally 

depends on the objective of the study, the accessibility and expertise of the platform 

[18]. The NMR platform is proposed as an emerging tool for large-scale metabolomics 

studies in the personalized nutrition field. The NMR characteristics which make it a 

unique platform include its high level of experimental reproducibility, its simplicity in 

sample pre-processing and preparation, its capacity to handle diverse biofluids, its 

quantitative capabilities (with a high coverage and low detection limits [19]), and its 

utility in identifying unknown metabolites along with its non-destructive nature [20]. 

The inherent limitation of NMR is the low sensitivity compared to MS but there are 

emerging new NMR technologies that suggest a huge improvement in the NMR 

spectroscopy [21]. In order to highlight one of the NMR-approaches, quantitative 

proton 1H-NMR is the most useful NMR-based platform for metabolomics and has 

been successfully applied to early diagnostic and prognostic purposes [22,23]. The 

most popular biological fluids used in metabolomics are plasma, serum, urine and 

faeces, while other fluids and tissues are not yet well explored. Plasma and serum are 

the most common biofluids used in human metabolomic studies, because they are 

relatively easy to collect with minimal invasive procedures and their metabolome 

reflects individual changes in metabolism. On the other hand, the advantages of urine 

and faeces samples are that they are biological samples easy-to-access, which can be 

obtained using non-invasive procedures [15]. Between urine and faeces, urine is 

preferable as biofluid because the NMR techniques are optimized for early disease 

detection [24]. 
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Taking into account these necessities, the present review addresses the demand 

to have a list of the potential molecular markers obtained by NMR metabolomics to 

be targeted in personalized nutrition in plasma/serum and urine (Table 1). We 

propose five clusters of molecular markers associated with five of the most relevant 

risk factors associated with MetS and related diseases. Then we will discuss the 

involvement of new biomarkers in the early stages of MetS distributed in the following 

list of molecular clusters: carbohydrate metabolism, dyslipidaemia, inflammation, 

oxidative stress and gut microbiota dysbiosis.   

Table 1. Metabolomic biomarkers risk factors of MetS and related diseases by NMR approaches. 
Abbreviations: S, serum; P, plasma; U, urine; BCAA, branched chain amino acids; AAA, aromatic amino acids; 
TMAO, trimethylamine N-oxide; TCA cycle, tricarboxylic acid; TMA, trimethylamine; DMA, dimethylamine; 
NAG, N-acetylglycoprotein; LPC, lysophosphatidilcholine; SFA, saturated fatty acids; MUFA, 
monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; DHA, docosahexaenoic acid; EPA, 
eicosapentaenoic acid; ALA, alpha linoleic acid; AA, arachidonic acid; 1C metabolism, one-carbon 
metabolism.  
 

Biomarker Level Biofluid Risk factor 
Metabolic 
pathway 

Pre-
clinical 

evidence 

Clinical 
evidence 

Glucose ↑ S, U 
Carbohydrate 

disruption 

Glycolysis, 
gluconeogenesis, 

pyruvate 
metabolism 

[25,26] [19,27,28] 

Lactate 

↑ S, U 
Carbohydrate 

disruption Gluconeogenesis, 
Pyruvate 

metabolism 

[29,30] [27,31,32] 

↑ U 
Gut 

microbiota 
metabolism 

- [33] 

 
Uric acid 

 
↑ S, U 

Carbohydrate 
disruption 

Purine 
metabolism 

[34,35] [36] 

Propionylcarnitine ↑ P 
Carbohydrate 

disruption 
Lipid metabolism - [37–40] 

Leucine (BCAA) ↑ S/P, U 
Carbohydrate 

disruption 
Amino acid 
metabolism 

[25,26] 
[32,41–

43] 

Isoleucine (BCAA) ↑ S/P, U 
Carbohydrate 

disruption 
Amino acid 
metabolism 

[25,26] 
[32,41–

44] 

Valine (BCAA) ↑ S/P, U 
Carbohydrate 

disruption 
Amino acid 
metabolism 

[25,26] 
[32,41–

43,45,46] 

Phenylalanine 
(AAA) 

↑ S/P, U 
Carbohydrate 

disruption 
Amino acid 
metabolism 

[25,26] 
[32,41–
43,47] 

Tyrosine (AAA) ↑ S/P, U 
Carbohydrate 

disruption 
Amino acid 
metabolism 

[25,26] 
[32,41–
44,48] 

Glutamate ↑ S 
Carbohydrate 

disruption 
Amino acid 
metabolism 

[49] [39,50,51] 

Glutamine ↓ S, U 
Carbohydrate 

disruption 
Amino acid 
metabolism 

[30] [39,50] 

Citrate 
↑/ 
↓ 

S 
Carbohydrate 

disruption 
TCA cycle [29,52] [53] 

TMAO ↑ P/ U 
Gut 

microbiota 
metabolism 

Choline 
metabolism 

[54] [55,56] 
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Acetate ↑ P 
Gut 

microbiota 
metabolism 

Pyruvate 
metabolism 

[57] [58] 

TMA ↑/↓ P/ U 
Gut 

microbiota 
metabolism 

Choline 
metabolism 

[59–61] - 

DMA 
↑/ 
↓ 

P/ U 
Gut 

microbiota 
metabolism 

Choline 
metabolism 

[59,62] [27] 

Succinate ↑ P 
Gut 

microbiota 
metabolism 

Succinate 
metabolism 

[63] [64] 

NAG ↑ P/ S 
Inflammation 

pathway 
Protein 

Glycosylation 
- [65–67], 

LPCs ↑ P/ S 
Inflammation 

pathway 
Phospholipid 

hydrolysis 
- [68] 

SFA, MUFAs 
PUFAs: DHA, EPA 

/ ALA, AA 

↑/ 
↓ 

 

U/ S 
Inflammation 

pathway Lipid metabolism 
[69] - 

S Dyslipidemia [70] [43] 

3-hydroxybutirate ↑ U/P Dyslipidemia Ketogenesis [71] [72] 

Choline ↓ S Dyslipidemia 
Choline 

metabolism 
[73,74] [27] 

Allantoin ↑ U 
Oxidative 

stress 
Purine 

metabolism 
[26,75–

77] 
- 

Pseudouridine ↑ U 
Oxidative 

stress 
Nucleic acid 
metabolism 

- [78–80] 

Glycine ↓ P/S 
Oxidative 

stress 
1C metabolism - [81,82] 

Serine ↓ P/S 
Oxidative 

stress 
1C metabolism - [81,82] 

2. Carbohydrate dysfunction 
Carbohydrate metabolism dysfunction is highly related with IR and T2D, which 

represents approximately 95% of diabetes cases worldwide [83]. The standard clinical 

determinations of carbohydrate dysfunction include glucose and insulin 

determinations; HOMA-IR (homeostasis model assessment of IR) calculated by fasting 

plasma glucose and insulin levels; glycated hemoglobin (HbA1c) determination; and 

adiponectin and leptin levels, and the ratio of both, as hormones produced 

predominantly by adipocytes involved in carbohydrate dysfunction [84]. 

Fasting plasma glucose levels upper 7 mmol/L and fasting plasma insulin below 

110 pmol/L are related to the carbohydrate metabolism pre-disease [85,86]. HOMA-

IR, which is a widely accepted method to calculate IR state, determines the IR using 

the fasting glucose and insulin levels as described in different clinical guidelines 

[87,88], following the formula [HOMA-IR= Insulin (µU/ml)  x Glucose (mmol/l) / 22.5] 

[89]. A higher value of HOMA-IR corresponds to a more severe IR [90]. Additionally, 

the HOMA-B index has been used as a robust measure of beta cell function [HOMA-B 

= Insulin (µU/ml) / (Glucose (mmol/l) -3.5)] [89], as well as the QUICKI index [QUICKI 

=1/ [Log Insulin (µU/ml) + Log Glucose (mmol/l)] , which is considered a measure of 
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insulin sensitivity [91]. As a conclusion, nowadays HOMA-IR is the most frequently 

used index to determine IR using fasting blood levels of glucose and insulin [92].  

Other typical determination in T2D diagnosis is HbA1c, which was initially 

identified as an “unusual” hemoglobin, and has been correlated with glucose in 

several studies, suggesting the idea that HbA1c could be used as an objective measure 

of glycemic control [93]. HbA1c values represent the average glycemic control over 

the past 2-3 months and account for both, pre-prandial and post-prandial blood 

glucose levels [94]. Moreover, regular HbA1c measurement is recommended by 

different international guidelines for all patients with diabetes for the assessment of 

glycemic control [95]. Although the HbA1c concentration is used for diagnosis, the 

biological variation and non-standardized procedure limits its application [96]. 

In addition, some hormones secreted by the adipose tissue, such as the 

adipokines leptin and adiponectin, interact in modulating T2D risk, being adiponectin 

more strongly associated with T2D risk [97]. Specifically, the circulating levels of 

adiponectin are inversely associated with pre-diabetes and other metabolic traits [98–

100]. In the case of leptin, higher circulating levels are directly contributing to the 

development of IR. Moreover, the leptin/adiponectin (L/A) ratio is related with 

preventive measures in MetS [101] and highly associated with IR in non-diabetic 

patients [102]. In the ARIRANG study, low ratio of L/A is a predictor for the regression 

of MetS and L/A was proposed as a clinical biomarker to measure the risk to develop 

the syndrome [103]. Finally, L/A ratio and HOMA-IR index has been demonstrated that 

both can be used to identify obese patients with IR [104,105]. 

Regrettably, insulin, HbA1c, leptin and adiponectin levels detected by traditional 

methods are only useful when the disease is well-stablished and not in the preliminary 

states of the pathology. Thus, we propose different metabolites, that are detected by 

NMR approaches, as molecular markers of carbohydrate metabolism dysfunction that 

can be detected in the pre-disease state. Specifically, we propose glucose and lactate 

as principal bioenergetics molecules and, new emerging biomarkers, such as plasmatic 

levels of uric acid; branched chain amino acids (BCAA); aromatic amino acids (AAA); 

other amino acids as glutamate and glutamine; or propionylcarnitine. 

2.1. Glucose 
Glucose is a classic carbohydrate used as a biomarker for the diagnostic for 

carbohydrate dysfunction metabolism [106]. In the absence of more specific biological 

marker to define T2D, glucose has been used as a marker for diagnostic criteria for 

T2D and pre-diabetes according to the 2006/2013 World Health Organization (WHO) 

[84,107] and 2019 American Diabetes Association (ADA) recommendations [108]. 

Carbohydrate metabolism is important in the development of T2D, where insulin 

regulates the blood levels of glucose and its metabolism helping cells to take glucose 

or store it as glycogen, depending on the needed. To sum up, high blood levels of 

glucose finally results in alteration of pancreatic β-cell function carrying on with IR 

[109]. Moreover, glucose, which is the primary source of energy for living organisms, 
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could be broken down via glycolysis, enter into the TCA cycle and oxidative 

phosphorylation to generate nucleotide adenosine triphosphate (ATP). Other 

important pathways in carbohydrate metabolism are glycogenesis, glycogenolysis 

(conversion of glycogen polymers into glucose, stimulated by glucagon) and 

gluconeogenesis (de novo glucose synthesis) [110].  

There are several pre-clinical and clinical evidence about the potential of glucose 

as early biomarker of disease using NMR method. However, it is difficult to identify 

other metabolites in samples with an imbalance of glucose because the glucose signals 

(including other metabolites that overlap with the glucose region) suppress the other 

metabolite signals in the NMR spectrum [111]. In animal studies, high levels of glucose 

are shown in the metabolic profile. For example, Abu Bakar Sajak et al. [26] and 

Mulidiani et al. [25] detected and quantified glucose in urine in streptozotocin (STZ)-

induced diabetic rats. In recent clinical studies, glucose is significantly increased in 

adults with risk to develop MetS or related diseases [95]. In forty-six young adults of 

normal weight and overweight, the serum metabolite profile was analysed by NMR 

and high levels of glucose were detected in overweight adults compared to normal 

weight volunteers [27]. Moreover, the importance of using glucose in the profiling of 

a pre-disease state was stablished in another clinical trial, where healthy people and 

patients with different levels of T2D presented an increase on glucose concentration 

depending on the disease state (T2D and its complications) [28]. In addition, Zhang et 

al [19] aimed to identify the biomarker signature of pre-states in metabolic diseases 

by serum profiling with NMR. Principal components analysis and orthogonal partial 

least squares-discriminant analysis were used to distinguish between samples from 

patients and healthy controls. In this study, glucose was highly expressed and included 

in the suggested metabolic profile for the early prediction [19]. However, taking into 

account the wide and easy extended use of glucometers to measure glycaemia, 

measure glucose levels with NMR analysis will be not justified unless additional 

parameters would be obtained in the same NMR profile. 

2.2. Lactate  
Focus on carbohydrate metabolism dysfunction, lactate has been considered a 

disease biomarker but also a marker for the pre-disease stage [112]. It plays a role in 

several biochemical processes and it is also an end-product of bacterial fermentation, 

produced by lactic acid bacteria of the genera Lactobacillus and Bifidobacterium [113] 

(discussed below). Lactate is formed in mammalian cells predominantly from glucose 

and alanine through their conversion into pyruvate, which is reduced to lactate by 

lactate dehydrogenase. Besides, the same enzyme removes lactate via its oxidation to 

pyruvate. Pyruvate could be oxidized to carbon dioxide producing energy or 

transformed glucose. Lactate metabolism is directly implicated in the 

gluconeogenesis, indirectly in the TCA cycle and in the respiratory chain, which are 

metabolic pathways implicated in carbohydrate metabolism [114]. Changes in plasma 

lactate during an oral glucose tolerance test (OGTT) are inversely correlated with 

fasting insulin, indicating that IR can be reflected through this metabolite response to 

a glucose challenge [115,116]. Lactate homeostasis is related to glucose metabolism 
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and, therefore, diseases associated with glucose disruption, as MetS, obesity or 

diabetes, are associated with disturbed lactate metabolism [114,117]. Failures in the 

mitochondrial energy-generating system in the pancreatic β-cells may also lead to the 

abnormal accumulation of lactate in urine, blood, and cerebrospinal fluids [118]. 

The first metabolomic approach to quantify lactate urinary level, which 

determined lactate as a risk marker for T2D, was done by Chou and their colleagues 

[31]. In animal studies, high levels of lactate were shown in urine NMR metabolomic 

profile in rats feed with a high fat diet (HFD) and in obese rats [29,30]. In these studies, 

lactate was selected as key metabolite in the carbohydrate's disruption. In overweight 

volunteers, lactate was increased compared with normal weight patients in the serum 

metabolite profile [27]. In a longitudinal clinical study, OGTT was assessed in two 

Finnish population-based studies consisting of 1,873 individuals and re-examined 

after 6.5 years. Metabolites were quantified by NMR from fasting serum samples and 

the associations were studied by linear regression models adjusted for established risk 

factors. Lactate was determined as potential marker for long-term IR that could be 

related to glucose tolerance later in life [32]. Consequently, changes in lactate levels 

are a promising tool to monitor early disarrangements in the carbohydrate 

metabolism. 

2.3. Uric acid  
Uric acid, generated during ATP metabolism, is the end product of the exogenous 

pool of purines and endogenous purine metabolism [119]. In the purine metabolism, 

adenosine monophosphate (AMP) deaminase promotes fat storage and IR, whereas 

activation of AMP activated protein kinase stimulates fat degradation and decreases 

gluconeogenesis. Uric acid is a key factor that appears to promote the mechanism 

implicated in imbalanced carbohydrate metabolism [120,121]. Overproduction of uric 

acid has been implicated in chronic diseases states including MetS, pre-diabetes, 

hypertension and non-alcoholic fatty liver disease (NAFLD) [122–125]. In addition, uric 

acid has been described as an antioxidant molecule [126] which will be discussed in 

the oxidative stress section. Elevated uric acid may become one of the most important 

molecular markers for early-phase mechanisms in the development of MetS and other 

metabolic diseases [127,128]. 

In pre-clinical studies, elevated serum levels of uric acid, determined by NMR 

approach, were found in STZ rats [34] and in obese mice [35], compared to control 

animals, associating this metabolite with diabetes and obesity. In a clinical work 

focused on an NMR-based metabolomic investigation of the serum profiles of 

diabetic, higher concentration of uric acid was detected in T2M subjects [36]. All these 

evidence place uric acid as a promising new biomarker for the early detection of 

metabolic alterations. 

2.4. Propionylcarnitine 
Acylcarnitines play an essential role in the regulation of carbohydrate and lipid 

metabolism balance. They are esters of L-carnitine and fatty acids formed in the 
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cytosol to transport fatty acids into the mitochondrial matrix for β-oxidation as a 

major source of energy for cell activities. The involvement of acylcarnitines in the 

intermediary metabolism is essential to mammalian bioenergetics process, and it is 

needed for the carnitine-dependent production of energy from different fatty acids 

and for the cell membrane structure maintenance [129] Disruption in fatty acid 

oxidation results in elevated acylcarnitine concentrations, suggesting that more fatty 

acids are entering into the mitochondria [130]. It has been described that 

concentrations of some acylcarnitines are associated with MetS, obesity and pre-

diabetes [131–134]. The mechanisms by which acylcarnitines contribute to 

mitochondrial dysfunction have yet to be fully elucidated [135]. 

The acylcarnitines, which have been related to a pre-disease state, are not clear 

markers but, among the different types of acylcarnitines, the propionylcarnitine (C3) 

is the most promising short chain acylcarnitine to become a pre-disease biomarker. In 

general, the levels of blood acylcarnitines inadequately reflect tissue acylcarnitine 

metabolism [37], but C3 is one of them overcoming this impediment. In some studies 

of short-chain carnitine esters, C3 has been positively associated with T2D risk and IR 

[136]. On the other hand, the combination of C3 with other metabolites of interest as 

BCAAs, glutamate/glutamine and methionine, was particularly most robust to 

differentiate metabolically lean from obese patients [38,39]. In other clinical study, 

twenty-four acylcarnitines were measured in more than thousand subjects which 

were grouped by normal glucose tolerance, isolated impaired fasting glycaemia, 

impaired glucose tolerance or T2D [40]. Serum levels of C3 stood out significantly 

among the groups, proving its relevance as a robust biomarker of early stages of 

carbohydrate metabolism disorders [40]. Finally, the accuracy of MS in acylcarnitine 

profile determination is the main reason why most of the studies analysing 

acylcarnitines are performed by using this approach. In the latest years the NMR 

techniques have been improving to screen the acylcarnitine profile [137], what will 

allow to obtain a more precise vision of the early involvement of C3 in the 

development of metabolic diseases, and at the same time, to detect the contribution 

of other acylcarnitines in these critical phases that have so far gone unnoticed. 

2.5. BCAAs and AAAs  
BCAAs (isoleucine, leucine and valine) and AAAs (including phenylalanine and 

tyrosine) are essential amino acids; this means that they cannot be synthesized de 

novo by human cells, forcing to be obtained from the diet. Once inside the body, the 

levels of are relatively stable in blood and tissues (table 2 shows normal levels of these 

amino acids). BCAAs and AAAs are mainly regulated by their catabolic pathways 

(which are mainly localized in the mitochondria of all tissues), then higher plasma 

levels of these amino acids are well correlated with several pathologies. Consequently, 

BCAAs and AAAs are potential biomarkers which have been shown to be associated 

with a ~5-fold increased risk of developing T2D [138,139]. 
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Table 2. Standard levels of BCAAs and AAAs as essential amino acids in serum. 
 

BCAAs 

Valine mmol/L <0.2492 [140] 

Leucine mmol/L <0.1236 [141] 

Isoleucine mmol/L <0.0602 [141] 

AAAs 
Tyrosine mmol/L <0.0545 [142] 

Phenylalanine mmol/L <0.0781 [142] 

 

BCAAs cluster has been more exploited as a health marker than AAAs in the 

literature. An overwhelming number of publications and multiple studies support that 

concentrations of BCAAs in plasma and urine are associated with IR [143]. BCAAs play 

an important role in the regulation of energy homeostasis, nutrition metabolism, gut 

microbiome health, immunity and disease in humans and animals [144]. As the most 

abundant of essential amino acids, BCAAs are not only the substrates for synthesis of 

nitrogenous compounds, they also serve as signalling molecules regulating glucose, 

lipid, and protein synthesis [144]. Metabolomic profile of obese vs. lean subjects 

reveals a BCAA-related metabolite signature that is suggestive of increased catabolism 

of BCAAs and it is positively correlated with IR. The increased BCAAs was reported to 

stimulate gluconeogenesis and glucose intolerance via glutamate transamination to 

alanine [140]. In addition, BCCAs detection and quantification are highly correlated 

using both NMR and MS methods, becoming BCAAs as a suitable new biomarkers for 

disease prevention [145]. 

AAAs cluster has been less exploited but there is real evidence of two amino acids, 

phenylalanine and tyrosine, implicated in the pre-disease stages. Both amino acids are 

involved, as BCAAs, in protein synthesis. Tyrosine is considered a semi-essential amino 

acid because it can be synthesized from phenylalanine, and both are the initial 

precursors for the biosynthesis of fundamental neurotransmitters or hormones in 

animals and humans [146]. BCAAs and AAAs have been related to MetS, obesity and 

T2D in animal models and in human studies, both longitudinal and cross-sectional 

studies, having in common the usage of NMR metabolic profiles. For example, 

elevated levels of BCAAs and AAAs have been reported between diabetes and control 

group in STZ rat model [25,26]. In a longitudinal human studies, BCAAs were 

associated with higher glycaemia and IR and post-challenge glucose levels using NMR 

approach [32]. A recent meta-analysis of four groups of patients with pre-diabetes and 

diabetes showed that BCAAs were elevated by approximately 40% in the setting of 

poor glycemic control [41]. Moreover, BCAAs and AAAs were significantly different 

between metabolically healthy overweight/obese and MetS women, independent of 

other risk factors [43]. In other study of women transitioning from gestational 

diabetes mellitus to T2D, the BCAAs-related metabolite cluster was tightly associated 

with the incidence of T2D in the different groups [42].  

Altogether, the studies using NMR approaches have reported an increase level of 

circulating BCAAs and AAAs consequently of the dysfunction of carbohydrate 

metabolism. Some studies include BCAAs and AAAs together representing a profile 

biomarker, and others only use a specific BCAA or AAA. For example, isoleucine and 
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tyrosine were different between women who develop gestational diabetes and those 

who remained normal glucose tolerant [44]. Tyrosine was suggested as a particularly 

strong predictor of metabolic and obesity traits in South Asian individuals determined 

in a unique healthy cohort with follow-up during nineteen years by NMR approach 

between nine amino acids [48]. In some studies, valine stands out with an increase 

predisposition to develop T2D in the future. This fact is showed in the study of the 

relation between circulating metabolites and abdominal obesity in twin's brothers 

[45] or the study revealing the predisposition to develop T2D in Chinese population 

[46]. Moreover, in 263 healthy men with MetS and their control counterparts, 

Siomkajło et al. proposed a diagnostic model consisted of phenylalanine as a marker 

obtained from omics technologies and other classical determinations [47].  

All in all, the selection of the best option would be the utilization of BCAAs and 

AAAs as two clusters because the choice of one specific amino acid is controversial. 

There is a need of more robust studies using NMR methods to elucidate the 

implication of each amino acid in health metabolism and to elucidate a common 

outline.  

2.6. Glutamate family: glutamine and glutamate 
Besides BCAAs and AAAs, other common amino acids are potential biomarkers, 

as glutamine and glutamate, of the dysregulation of carbohydrates metabolism. In 

recent studies, the profile of amino acids, including BCAAs, AAAs and glutamine and 

glutamate, has been linked with risk factors related to T2D [28,147]. In this section, 

plasma glutamine, glutamate and their ratio will be discussed as potential biomarkers 

for T2D as it is showed in several studies [148]. Glutamine and glutamate are key 

amino acids in the mammal intermediary metabolism and, they are also associated 

with aerobic metabolism via the TCA cycle and with ammonia metabolism [149].  

Glutamine plays a crucial role in various cellular processes, such as in energy 

balance, apoptosis, and cell proliferation and, its deprivation can activate the fatty 

acid β-oxidation pathway [150,151]. For instance, there has been a controversy linking 

glutamine with the prediction of the T2D. An inverse association of glutamine with the 

risk of T2D has been hugely observed in the literature but some studies reported a 

positive association. This inconsistency was solved by Guasch-Ferré et al. after a 

systematic review. They concluded that the strongest association of glutamine is the 

inverse with the risk to develop T2D [50]. In a recent animal study, changed levels of 

glutamine were shown in HFD-fed rats compared with control group in urine NMR 

metabolomic profile [30].  

Glutamate is produced in the first step of BCAAs catabolism [152]. Different 

authors have proposed that glutamate likely stimulates glucagon release from 

pancreatic α cells and increases transamination of pyruvate to alanine, which strongly 

promotes gluconeogenesis in obesity [153]. Thus, circulating glutamate is positively 

related to visceral obesity and posterior development of MetS [154]. In a pre-clinical 

study, IR was correlated with glutamate in mice treated with monosodium glutamate 
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to develop obesity [49]. Moreover, in obese morbid patients, those with pre-diabetes 

were found to have higher serum glutamate levels compared to non-diabetic controls. 

It was speculated that glutamate was elevated in morbidly obese patients due to an 

increased need for α-ketoglutarate in the TCA cycle to compensate the IR. This same 

study also found that morbidly obese non-pre-diabetic group had increased levels of 

glutamate compared to non-obese and non-pre-diabetic groups, suggesting that 

obesity plays a role in glutamate metabolism [51]. As other amino acids, the detection 

and quantification of glutamine and glutamate by NMR methodology is evident and 

accessible as it has been shown. Therefore, they are promising metabolites for the 

prevention of carbohydrate metabolism dysfunction.  

2.7. Citrate 
Currently citrate has been studied as a metabolite that could be a good biomarker 

to detect carbohydrate dysfunction [29,52]. Citrate is an intermediary of the TCA 

cycle, being synthetized from fatty acids and glucose, and it is regulated by glucose 

levels and insulin [52]. It is mostly analysed in urine as a key metabolite contributing 

to the detection of metabolic disruptions. In a preclinical study, rats were fed with 

HFD or control diet and their urine was analysed by NMR. The results showed higher 

levels of citrate in the HFD group. The authors also found differences between high 

gainers and low gainers. Thus, citrate variation is associated to diet and physical 

constitution, being higher in these animals with obesity and a gainer constitution [29]. 

E-Y, Won et al. also showed an increase on citrate levels in the urine of obese mice in 

comparison with control group, analysed by NMR [52]. Corroborating this study, an 

increased levels of citrate were observed in other study of HFD-induced obese animals 

due to hyperglycaemia and IR [71]. These alterations in different studies of citrate 

levels suggest a closed relation with the disturbances in glucose and insulin in obesity 

[52]. Inversely, it was reported a depletion of the citrate levels in urine associated with 

a higher level of IR in humans [53]. Furthermore, in obese and IR animals a decrease 

on citrate urinary levels was also observed, and the opposite result was seen in obese 

animals without IR [155]. More clinical studies using NMR approach should be done 

to have more information about the possibility of citrate as a biomarker of MetS. It is 

hypothesized that the increase on citrate concentration might be originated through 

increased free fatty acid (FFA) oxidation due to higher levels of FFAs. This oxidation 

cause an elevation of acetyl-CoA:CoA and NADH: NAD+ ratios in the mitochondria, 

where pyruvate hydrogenase is inactivated, rising the levels of citrate, which inhibits 

phosphofructokinase activity, causing an accumulation of glucose-6-phosphate. The 

glucose-6-phosphate may inhibit hexokinase II, decreasing glucose uptake [156]. Thus, 

citrate became a key player in the carbohydrate and lipid metabolism as well a 

potential new biomarker for the metabolic syndrome. 

3. Dyslipidemia  
One of the main consequences of the MetS is cardiovascular disease (CVD), which 

remains as the leading cause of morbidity and mortality in the western countries and 

whose incidence is increasing daily mainly due to diet and lifestyle [157]. Numerous 
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risk scores have been developed to predict CVD risk (Atherogenic Index of Plasma –

AIF–; Framingham and Reynolds scores; etc.) [158,159]. These scores are based on 

clinical observations of individual traditional biomarkers of serum lipids, glucose and 

hormone profile [159]. Indeed, dyslipidemia is an abnormal amount of lipids in the 

blood that it is generally characterized by an elevation of triglycerides (TG), non-high-

density lipoprotein-cholesterol (non-HDL-C), and low-density lipoprotein-cholesterol 

(LDL-C), and in parallel, a reduction in the high-density lipoprotein-cholesterol (HDL-

C) [160]. In addition, dyslipidemia is also promoted in obesity, T2D and IR by a 

prolonged elevation of insulin levels. The association between obesity and CVD risk 

factors may be mediated by the ability of adipose tissue to synthesize and secrete 

several hormones with a systemic influence, including leptin and adiponectin. Leptin 

plays an important role in the regulation of feeding behaviour and their levels reflect 

the amount of energy reserves stored in adipose tissue [158]. On the other hand, 

adiponectin levels are inversely associated with body fat mass, inflammation, 

dyslipidemia, T2D and MetS; and their levels may be increased by healthy dietary 

patterns [161]. However, conventional algorithms to detect CVD risk factors are 

stablished in diseased population [159] and not in the preliminary stages of disease.  

Unfortunately, these traditional biomarkers are not enough to evaluate the 

disease progression and status of emerging risks in apparently healthy patients. 

Hence, other biomarkers, alone or in combination, should be incorporated into risk 

prediction models to determine whether their addition increases the model’s 

predictive accuracy and reliable estimation of CVD risk related to dyslipidemia. Thus, 

an early identification and treatment of risk factors are much needed to accelerate 

disease prevention and morbidity improvement. Consequently, in the absence of 

disease and, therefore, without pharmaceutical treatment, the robustness of this 

prediction model will allow to reduce the potential cardiovascular risk by acting on 

specific dyslipidemia cluster using precise nutritional recommendations. 

3.1. Fatty acids: saturated, monounsaturated and 

polyunsaturated  
Lipid and carbohydrates metabolism are closely interconnected. In fact, altered 

fatty acid profile affects IR and T2D; and vice versa [162]. Structurally, fatty acids can 

be splitted by the presence of double bounds in their backbone as saturated (SFA; 

absence of double bound) and unsaturated fatty acids [162]. Unsaturated fatty acids 

can be further divided by the number of double bounds as mono- (MUFAs; a single 

double bound) and poly-unsaturated fatty acids (PUFAs; more than one double 

bound) [163]. SFAs, MUFAs and PUFAs present different biological properties. The 

types of fatty acids present in various food groups are thought to play a pivotal role in 

whether or not such food is considered beneficial, neutral, or detrimental with respect 

to developing MetS and related diseases. It is well established an implication of dietary 

fats as risk factors for T2D and MetS, especially for long chain SFA (C14:0, C16:0 and 

C18:0) which could induce IR, whereas increased circulating levels of very long-chain 

SFA (C20:0, C22:0 and C24:0) are associated with reduced T2D risk [164,165]. In the 
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case of palmitate, its presence activates receptor FFA from beta-cells initiating a 

cascade with cell stress responses as ceramide formation, lipid droplets formation, 

endoplasmic reticulum stress, mitochondrial dysfunction and autophagy triggering an 

impairment of insulin secretion and damage in beta-cells [166]. PUFAs include some 

subgroups identified by the position of the last double bond in their molecular 

structure [164]. PUFA n-3 include mainly alpha linoleic acid (ALA), eicosapentaenoic 

acid (EPA) and docosahexaenoic acid (DHA), while PUFA n-6 include linoleic acid (LA) 

and arachidonic acid (AA) [162]. Thus, both MUFA and PUFA have been related to an 

improvement of insulin sensitivity.  

Numerous beneficial healthy effects have been attributed to unsaturated fatty 

acids, including protection from obesity, diabetes, cancer, and atherosclerosis 

[162,164]. The most abundant MUFA in typical diets is oleic acid (C18:1n-9) which is 

effective in lowering the inflammatory response and LDL levels; that together 

contribute in the reduction of CVD risk [162,163]. High levels of MUFAs were described 

in the prevention of abdominal fat accumulation. Moreover, the substitution of 

carbohydrates with MUFA cause a decrease on total blood cholesterol an TGs, 

reducing the levels of HDL-C [162,163]. The mechanism involved in the anti-

inflammatory effect of MUFAs is the inhibition of NF-kB activity [167]. In an animal 

study, Guo et al. demonstrated with NMR that high fat fed animals presented a 

significant increase on TG, LDL/VDL and SFAs levels and a decrease in the PUFA/MUFA 

ratio[168]. However, in a NMR study of hundred three obese women divided by the 

absence or presence of MetS, several species of PUFAs were associated with 

MetS[70]. In addition, different studies have been done to associate PUFAs with 

inflammatory parameters. EPA and DHA have been seen to exhibit anti-inflammatory 

properties and are also important to produce eicosanoids from the n-6 fatty acid like 

arachidonic acid [43]. Thus, even the generally beneficial effects attributed to PUFAs, 

deeper research is necessary to identify the relevance of every fatty acid species levels 

in the context of dyslipidemia as in the development of metabolic and CVD. 

3.2. 3-hydroxybutyrate 
Acetoacetate, 3-hydroxybutyrate (3-OHB) and acetone are ketone bodies, 

emerging as crucial regulators of metabolic health and produced in the liver from fatty 

acids that serve as a circulating energy in situations of glucose deprivation (i.e. fasting, 

carbohydrate restrictive diets, prolonged intense exercise, ketogenic diets, etc.) [169]. 

Ketone bodies have a characteristic smell, which can easily be detected in the breath 

of persons in ketosis and ketoacidosis [170]. 3-hydroxybutyrate (or β-

hydroxybutyrate) serum levels can increase thousands of times in their concentrations 

after a prolonged fasting and present a broad range of signalling and regulatory effects 

including inhibition of many deacetylases [170]. Moreover, 3-hydroxybutyrate is 

described to induce resistance to oxidative stress via deacetylases inhibition that may 

explain, at least partially, the therapeutic value of low-carbohydrate and ketogenic 

diets [170]. Mitochondrial β-oxidation of FFAs results in the production of Acetyl-CoA, 

which might go into the TCA cycle for further oxidation. Acetyl-coA is condensed to 

ketone bodies in the liver by ketogenic enzymes, for example 3-OHB [171]. Bugianesi 

UNIVERSITAT ROVIRA I VIRGILI 
MULTI-OMICS BIOMARKERS OF METABOLIC HOMEOSTASIS OF RISK FACTORS ASSOCIATED TO 
NON-COMMUNICABLE DISEASES 
Julia Hernandez Baixauli 



I. Introduction 

83 
 

et al. [172] found in NAFLD patients increased 3-OHB circulatory levels associated with 

hyperinsulinemia. Taken together, application of new diagnostic tools based in NMR 

will contribute to understand the uses of 3-hidroxybutirate as biomarker for MetS. 

Thus, hamsters fed with high-fat high-cholesterol diet showed an increase in the urine 

levels of 3-hydroxybutirate [173]. These results were corroborated at serum level, 

observing that high fat–fed mice showed an increase in 3-hydroxybutirate 

concentration [174] Similar results were observed at plasma, where T2D patients 

presented increased 3-hydroxybutirate levels [71]. Therefore, these evidences point 

3-hydroxybutirate as an important biomarker to taken in consideration for an early 

metabolic disarrangements' detection. 

3.3. Choline 
Choline is an essential nutrient for maintaining human health which is involved in 

the mobilization of fat from liver [72]. In animals, the 95% of the total choline in tissues 

is used for the formation of phosphatidylcholine (PC) via the Kennedy pathway. It was 

described circulatory PC levels were increased in high-fat diet fed animals. PC is 

essential for the packaging, exporting and secreting of TG in VLDL, and acts as an 

intermediary to maintain a balance between fat in plasma and in the liver [175]. 

Choline deficiency results in various disorders, as fatty liver and liver dysfunction, 

which leads to elevations in serum concentrations of the liver aminotransferases [27]. 

Moreover, choline is a precursor of the neurotransmitter acetylcholine and it is 

essential in the membrane phospholipids and lipoproteins structure [175]. 

Consequently, it performs important functions in signal transduction, 

neurotransmitter synthesis or lipid transport. Moreover, plasma choline levels 

exhibited a positive correlation with serum TG and glucose levels, showing its 

involvement in the pathogenesis of several diseases, including MetS, fatty liver, 

obesity or cardiovascular disease [175]. Indeed, monkeys fed with high fat and high 

cholesterol diet showed lower serum level of choline and an inverse correlation with 

TG levels, explaining the relation between the lack of choline and the accumulation of 

TG in the liver [74]. A clinical study based in the differences between overweight 

patients and control subjects about metabolites levels. In the case of choline, was 

decreased in overweight patients in comparison with healthy subjects, showing a 

relationship between choline and a disruption in the lipid metabolism [73]. Although 

thse evidence, more studies with NMR are necessary to decipher the specific 

contribution of choline as a new biomarker for the early MetS detection. 

4. Inflammation  
Obesity and MetS are described as risk factors for T2D and CVD, which are viewed 

as inflammatory diseases. One of the main causes of chronic inflammation is the 

constant overload of glucose and FFAs, that promote the production of pro-

inflammatory signals or elevates reactive oxygen species (ROS) levels. Chronic 

inflammation and immune cells are related to the pathogenesis of IR in obesity [27]. 

The best described markers of inflammation are cytokines released by immune cells, 

C-reactive protein (CRP) and monocyte chemoattractant protein 1 (MCP-1), 
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interleukin (IL)-6, IL-8, or tumour necrosis factor α (TNFα) [176]. As it happens with 

other common biomarkers, these cytokines are analysed by ELISA methods, which are 

time-consuming, laboured and less reproducible in comparison with NMR analysis. 

Therefore, to extract levels of other reliably biomarkers of inflammation from the 

NMR profiles it would be beneficial for the early detection of metabolic alterations. In 

this section we will focus on the role of N- acetylglycoproteins and lysophospholipids 

in the inflammation cluster, but other metabolites such as PUFAs (including EPA; DHA 

or ARA) also develop important inflammation roles as pointed in previous sections.  

4.1. N-acetylglycoproteins  
Glycosylation is one of the most common post-translational modification of 

secreted proteins and their misregulation is related with inflammation and multiple 

diseases (CVD, T2D, cancer, etc.) [177,178]. Therefore, human glycome is a novel tool 

to identify biomarkers and potential mechanistic mediators of pathogenesis. Indeed, 

increased serum glycoproteins levels are positively correlated with CRP levels [179]. 

The interest to study glycans, as an early biomarker of disease, is due to an altered 

glycosylation pattern might reflect the development of diseases [66]. Lawler et al. 

identified a glycoprotein-N-acetyl methyl group signature measured by NMR (GlycA) 

associated with CVD and T2D [66]. The two major contributors of the GlycA signal are 

α1-acid glycoprotein and haptoglobin, synthesized and secreted by neutrophils 

granules, as well by the liver [66]. The potential risk associated with elevated GlycA 

would relate to activation of systemic inflammatory pathways, because GlycA 

identifies aggregates of glycan moieties on circulating glycoproteins, which the 

majority of them are acute phase reactants and immunologic proteins [62,180]. In a 

large study with apparently healthy individuals, CVD mortality was significantly 

associated with elevated levels of GlycA [66]. The development of IR and β-cell 

dysfunction is triggered by low grade chronic systemic inflammation. Increased 

circulating levels of acute phase reactants are related to clinical expression of T2D, but 

is still unknown whether GlycA will be a proper marker for early detection of disease 

development [66]. 26,508 apparently healthy women described the first evidence for 

the potential role of GlycA as a biomarker predictor in development of T2D [181], 

providing evidence of the potential role of glycans in the development of the disease. 

Moreover, it was suggested that elevated high GlycA might be correlated with a 

chronic inflammatory state [65]. Bervoets et al. [67] studied the plasma metabolic 

profile of obese children with NMR, and found N-acetyl glycoprotein increased in 

obese children in comparison with healthy children, and it could be traduced in an 

activation of the hexosamine pathway related to lower levels of glutamine and 

glucose. These proofs pointed GlycA as a better biomarker option for a systemic 

inflammatory response compared to traditional inflammatory cytokines, which often 

exhibit high intra-individual variability. Therefore, GlycA integrates the protein levels 

and glycosylation states of the most abundant acute phase proteins in serum [182], 

allowing a more stable measure of inflammation with lower variability.  
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4.2. Lysophospholipids 
Lysophospholipids are molecules derived from the hydrolysis of phospholipids, 

which transport fatty acids, phosphatidylglycerol, and choline between different 

tissues [183]. They are signalling molecules which modulate processes such as insulin 

production, insulin sensitivity and inflammation through interactions with G protein–

coupled receptors [184], and are related to fatty liver, steatohepatitis, diabetes and 

obesity [184]. Different lysophospholipids species, mainly lysophosphatidilcholines 

(LPCs), have been identified as being altered in the plasma of obese individuals [185]. 

Significant amounts of circulatory levels of LPCs are synthetized by a specific enzyme 

activity lecithin, and lipoprotein-associated phospholipase A2 (Lp-PLA2), an 

inflammatory marker which has pro-inflammatory properties hydrolysing oxidized 

phospholipids generating LPC under inflammatory conditions [186]. LPCs activate 

signalling pathways promoting the release of second messengers, related to G 

protein-coupled receptors [186]. In obesity, significantly lower concentrations of most 

of the LPCs are detected [68], whereas LPCs concentrations were inversely correlated 

with the increased CRP levels [184]. Therefore, LPC could be useful early biomarkers 

to detect inflammatory states associated with MetS and related disorders.  

5. Oxidative stress 
Oxidative stress appears as a risk factor when an imbalance of homeostasis 

happens between oxidant and antioxidant agents. The oxidant agents, mainly ROS and 

reactive nitrogen species (RNS), are constantly produced in the aerobic organism by 

normal metabolic processes (cellular respiration, antibacterial defence, etc.) and 

external exposures (smoking, toxins, ionizing radiation, etc.). In order to regulate the 

reactive species, organism has endogenous antioxidant systems, or it obtains 

exogenous antioxidants from diet, that neutralizes these species and keeps the 

homeostasis of the body [68]. Production of free radicals and the resulting oxidative 

stress are part of the energy metabolism, emphasizing mitochondrial dysfunction in 

the development of disease. Finally, the oxidative stress accumulation leads to the 

development of pathological condition as MetS, obesity and diabetes [187]. The 

inference of oxidative stress in T2D is done by the alteration in enzymatic systems, 

lipid peroxidation, dysfunction in glutathione metabolism and decreased vitamin C 

level [188]. The recommended biomarkers for monitoring oxidative status over time 

are 8-hydroxy-2′-deoxyguanosine (8-OHdG), F2-isoprostane 8-iso-prostaglandin F2α 

(8-iso-PGF2α), 3-nitrotyrosine, malondialdehyde (MDA) and oxidized low-density 

lipoprotein (oxLDL) [189]. These determinations are performed by ELISA kits. One of 

the most used is 8-iso-PGF2α, which are products of free radical-mediated oxidation 

of arachidonic acid. It has been detected to be altered in T2D, hypercholesterolemia, 

hypertension and MetS. The main biofluid in where it is determined is urine [190]. 

Other widely used is 8-OHdG, which represents the oxidative DNA damages [191]. 

However, the most popular determinations in plasma are 3-nitrotyrosine and MDA. 3-

nitrotyrosine, the main product of tyrosine oxidation, has been described as a stable 

marker of ROS/RNS stress in inflammatory related diseases [192]. MDA, a small 
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reactive aldehyde end product of the lipid peroxidation pathway, is a frequently used 

biomarker that can also be determined in urine, or tissue as thiobarbituric acid-

reactive (TBAR) material, but the method is unstable and non-specific [193]. The last 

determination considered as classical is the oxLDL, which is the quantification of the 

oxidized LDL-C, but it is not stable in samples stored longer than a month [194]. All 

these determinations until the date are performed with expensive ELISA kits and 

sometimes the fine-tune determination depends on the storage time. Thus, it is 

essential to find different metabolites determined by NMR methods as new potential 

biomarkers in the risk factor of oxidative stress as allantoin, pseudouridine and finally 

GSH (reduced glutathione)/ GSSG (oxidized glutathione) ratio, glycine and serine as 

metabolites of the one-carbon metabolism.  

5.1. Uric acid and allantoin 
Uric acid is accepted as the major antioxidant in plasma that protects cardiac, 

vascular and neural cells from oxidative injury [195]. Uric acid, despite being a major 

antioxidant in the human plasma, it correlates and predicts positively and negatively 

the development of obesity and related diseases, conditions associated with oxidative 

stress and carbohydrate metabolism disruption as it is described in its section. Sautin 

& Johnson [196] tried to explain the paradox proposing that uric acid may function 

either as an antioxidant (primarily in plasma) or pro-oxidant (primarily within the cell). 

Therefore, considering the duality of the uric acid as a biomarker, we propose the end 

product of the uric acid oxidation from purine metabolism which is the allantoin as an 

alternative biomarker to uric acid [126]. Allantoin has been considered an oxidative 

stress biomarker as it also can be produced through non-enzymatic processes, 

especially when the levels of ROS are elevated [197]. While uric acid is considered 

antioxidant, allantoin is considered an pro-oxidant agent [198]. Urinary allantoin has 

been validated in a clinical model of oxidative stress, standing out its stability over 

different storage conditions as an oxidant biomarker [199]. 

There are several animal studies that determined allantoin as a biomarker in pre-

disease using NMR metabolomic approach. In STD-rats, allantoin levels in urine stand 

out, among other metabolites, in T2D and obesity risk factor [196]. In a project 

characterizing biomarkers associated with T2D in eighteen biological matrices in 

db/db mouse model, allantoin was elevated in urine and plasma [26]. In other study 

characterizing the urine metabolome between lean and overweight dogs during a 

feed-challenge, overweight dogs had higher postprandial allantoin concentrations 

compared with lean dogs [76]. However, there is a need for more studies in humans 

and NMR approaches because the evidence of the association in several animal 

studies should be confirmed with clinical studies. To date, only one study determined 

allantoin as a biomarker in humans, which aimed to predict gestational diabetes 

development using MS approach. This study showed higher levels of allantoin in the 

group of women with higher risk to develop diabetes [77]. 
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5.2. Pseudouridine 
Urinary excreted nucleic acids catabolites are used as non-invasive markers for 

oxidative processes related to resting metabolic rate and energy intake: 8-OHdG 

represents oxidative stress to DNA (considered a classical biomarker) and 

pseudouridine, the metabolite considered as a potential metabolic biomarker, 

determines oxidative stress to RNA [200]. Pseudouridine is an isomer of the 

nucleoside uridine in which the uracil is attached via a carbon-carbon instead of a 

nitrogen-carbon glycosidic bond. It is the most prevalent of the over one hundred 

different modified nucleosides found in RNA, being a marker of RNA degradation and 

damage in oxidative stress [201]. 

The trace of pseudouridine in NMR metabolic approaches had not been precise 

enough but nowadays there are promising studies in pseudouridine. For example, in 

a NMR metabolomics study trying to optimize quantitative urine metabolomics, urine 

and plasma samples from 1004 individuals correlated high levels of glucose and 

circulating amino acids with pseudouridine [202]. In a randomized controlled trial of 

VSL-based intervention (unknown product due to industrial interest) vs. control in 

children obesity complication leading to NAFLD, the pseudouridine was identified as 

a potential non-invasive metabolic biomarker by a urinary NMR metabolic profiling. 

Pseudouridine decreased in the VSL vs. the placebo group, concluding that 

pseudouridine may be increased in metabolic diseases as an oxidative risk factor [78]. 

5.3. One-carbon metabolism intermediates: GSH/GSSG ratio, 

glycine and serine  
One-carbon (1C) metabolism is associated with metabolic disease, overweight 

and obesity; higher levels of metabolites implicated in 1C metabolism are shown in 

healthy individuals [80]. The 1C metabolism consists on the transfer of one-carbon 

group and also, it is implicated in redox defence. The 1C metabolism is a reliable 

source of potential biomarkers as the selected, which are GSH/GSSG ratio, glycine and 

serine; thus, there are other with high probability to consider as betaine, 

dimethylglycine, methionine or cysteine [203]. One handicap to detect biomarkers of 

oxidative stress is the perception of oxidized metabolites, because the redox reactions 

could change the state of the metabolite (oxidized/reduced) during the manipulation 

of the sample and the redox ratio is difficult to determine. The GSH/GSSG ratio, which 

is an example in the 1C metabolism as an indicator of cellular health, is composed 

principally of reduced GSH constituting up to 98% of cellular GSH under normal 

conditions. The total quantification could be performed but the redox ratio calculation 

leads to more technical complications [204].  

In order to avoid the problems in the determinations of redox ratio, an alternative 

to GSH/GSSG ratio is the selection of other metabolites of 1C metabolism. Glycine and 

serine, which are key amino acids in 1C metabolism, are proposed as a potential 

alternative to classical biomarkers [205]. For one hand, chronic glycine deficiency may 

impact health status, because glycine was found to have a strong negative association 

UNIVERSITAT ROVIRA I VIRGILI 
MULTI-OMICS BIOMARKERS OF METABOLIC HOMEOSTASIS OF RISK FACTORS ASSOCIATED TO 
NON-COMMUNICABLE DISEASES 
Julia Hernandez Baixauli 



I. Introduction 

88 
 

with IR when measured as HOMA-IR score [206], or by other methods 

(hyperinsulinemic/euglycemic clamp) [140]. This amino acid of lowest molecular 

weight, incorporates a hydrogen atom as a side-chain [207]. Glycine is a precursor for 

many pathways as glutathione synthesis, which has been related with oxidative stress 

as the master antioxidant, but it participates in other metabolic processes being an 

unstable measure to detect the risk factor of interest [204]. Some glycine derivatives 

have also been found to be associated with IR and the risk of T2D, one of them with 

the strongest relation is serine. Serine and glycine are very related. Loss of the 

mitochondrial pathway, renders cells dependent on extracellular serine to make 1C 

units and on extracellular glycine to make GSH [208,209]. 

There are some studies standing out some metabolites implicated in the 1C 

metabolism related to oxidative stress and metabolism disorder by NMR approaches. 

Specifically, serum glycine and serine were found in lower concentrations in 

participants with more MetS risk factors and greater adiposity, using modifiable 

lifestyle factors to attenuate health effects of obesity [210]. Further, plasma glycine 

and serine level were lower in obese diabetic African-American women compared to 

obese non-diabetic African-American women [81]. 

6. Gut microbiota dysbiosis  
100 trillion microbes exist in a symbiotic relationship with human cells, and the 

metabolic state of the human is related, in many cases, with the composition of the 

gut microbiota [82]. Numerous studies have shown that the gut microbiota 

composition may differ between lean and obese individuals or between pre-diabetic, 

T2D and normoglycemic individuals [211]. Dysbiosis of the gut microbiota, which is an 

alteration of the bacterial intestinal composition, reflexed a decreasing number of 

species related to an increased intestinal barrier permeability, thus allowing the 

bacterial translocation and causing endotoxemia [212], which is an important risk 

factor for obesity development and related metabolic diseases, as it is confirmed in 

different studies [213]. The constant flow in the composition of the gut microbiota is 

due to changes in diet, environmental factors and lifestyle [214]. As an intrinsic factor, 

the immune system health may cause changes in gut microbiota composition that may 

promote the proliferation of specific bacterial species which could be harmful due to 

the immune deficiency or hyperimmunity [215]. Genetics, age or gender are factors 

that also affects in the human homeostasis [215]. The decrease of microbial diversity 

is triggered by different factors, such as the psychological stress, the type of diet or 

the higher sedentary lifestyle, causing dysbiosis [203]. Thus, this altered gut 

microbiota metabolizes different molecules, spreading metabolites in the blood, urine 

or faeces which would be detected and used as biomarkers [216]. 

6.1. Lactate 
Lactate, as it has been mentioned before, independent of participating in several 

biochemical processes is also an end-product of bacterial fermentation [217], 

produced by lactic acid bacteria of the genera Lactobacillus and Bifidobacterium [113]. 
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Lactate is an intermediate metabolite, such as succinate, from the carbohydrate 

fermentation of some bacterial species. Moreover, it contributes to the maintenance 

of diversity within the colonic microbiota and the synthesis of the principal short chain 

fatty acids (SCFAs) [113]. Lactate is not accumulated in colon of healthy subjects, 

although a big proportion of intestinal bacteria can synthetize this metabolite, which 

is metabolized in butyrate or propionate [218]. In NAFLD patients was studied the 

composition of gut microbiota and selected bacterial products related with the 

fermentation of SCFAs in serum and faeces by NMR analysis. The results showed 

higher levels of lactate in NAFLD patients, compared to control individuals, which was 

associated with reduced abundance of several bacterial species (Ruminococcus, 

Coprococcus and F. prausnitzii) [218]. The amount and type of products can vary 

depending on species [33]. If the number of bacteria which metabolize lactate is 

decreased, excessive lactate production could end in its accumulation in the colon, 

where the absorption of lactate is low, lowering colonic pH and inhibiting the activity 

of microorganisms that metabolize lactate, for example propionate-producing 

bacteria or butyrate-producing. Butyrate is an inhibitor of acetate synthesis and the 

main energy source for colonocytes, could prevent the accumulation of lactate, which 

could be a potential toxic metabolite [33]. 

6.2. Acetate 
Acetate, together with butyrate and propionate, is one of the three most 

common short chain fatty acid (SCFA) [219]. It is derived from intestinal microbial 

fermentation of dietary fibres in the colon [220] and acts as signalling ligand between 

host metabolism and the gut microbiome at different levels [221]. Acetate 

contribution leads to energy harvest participating in the human energy balance, with 

an important role in lipogenesis, cholesterol synthesis and accumulation in adipocytes 

[222]. Acetate affects substrate metabolism and host energy via an increase in energy 

expenditure and fat oxidation [223]. Via cross-feeding mechanisms branched-chain 

and aromatic amino acids might be produced and further metabolized, altering gut 

integrity and impairing insulin sensitivity. That is to say gut-derived acetate production 

is determined by the balance in gut between saccharolytic and proteolytic 

fermentation which is determined by the presence of acetogenic fibres [224]. 

Firmicutes are positive related to acetate, thus when dysbiosis cause an increase of 

Firmicutes in obese rats, plasma acetate levels increase, and it is linked to insulin 

action in morbidly obese individuals through circulating acetate. Fat cells release 

leptin in higher concentration by the presence of acetate [224]. In a human study with 

thirty-four morbidly obese women and men through NMR analysis, increased plasma 

levels of acetate were found, with a positive correlation with gut Firmicutes, and 

negatively correlated with HOMA-IR and fasting TG [224,225]. In a study with NAFLD 

patients, acetate was found increased in circulatory level and faecal level, analysed by 

NMR. This increase was correlated with the reduction of the abundance of several 

bacterial species as Ruminococcus, Coprococcus and F. prausnitzii [58]. HFD-induced 

obesity and IR in rats is associated with increased plasma concentration of acetate 

metabolized by the gut microbiota measured with GS-MS [33]. Less than 0.005% of 
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the SCFAs were excreted into urine because they are excreted via the lungs after 

oxidation, that is why acetate is mostly identified in blood and faeces [226]. Zang et 

al. studied female rats with diabetes by NMR urine analysis. It described acetate 

increased in diabetes group against control groups. The increase in the levels of 

acetate was correlated with higher levels of ethanol, and that suggested that the 

origin of this metabolites could be from microbial production, as in the case of K. 

pneumoniae [227]. 

6.3. Succinate 
Succinate, a metabolite produced in the human body but also by the gut 

microbiota, is described as the major intermediary in the citric acid cycle, where it 

stands between succinyl-CoA and fumarate in the carbohydrate metabolism but the 

gut-microbiota produced succinate is classically described as an intermediate of the 

propionate synthesis [57]. Succinate has been increased in hypertension, ischemic 

heart disease, and T2D, but also in obesity, which is associated with elevated plasma 

levels of succinate concomitant with impaired glucose metabolism [228] Alterations 

in circulating succinate levels were associated with specific metagenomics signatures 

linked to energy production and carbohydrate metabolism [64]. It has been related 

with a antilipolytic action in adipose tissue through the succinate receptor 1 (SUCNR1), 

inhibiting the release of fatty acid from adipocytes. Thus, succinate has been related 

to cardiovascular diseases and obesity. In humans is found a strong association 

between microbial community, gene composition, and metabolism and plasma levels 

of succinate. In a study of a cohort of ninety-one patients stratified according to 

obesity and T2D, plasma succinate levels, analysed by NMR and LC-MS, were 

significantly higher in obese than in lean individuals. A positive association was found 

between plasma levels of succinate and BMI, but also glucose, insulin, TG and HOMA-

IR [64]. This increase in circulating succinate levels was associated with specific 

changes in gut microbiota related to succinate metabolism. Prevotellaceae and 

Veillonellaceae, succinate-producing bacteria, increased their relative abundance 

level in obese individuals. On the other hand, Odoribacteraceae and Clostridaceae, 

succinate-consuming bacteria, decrease their relative abundance level in obese 

individual. A significant increase of glycaemia was presented in these patients who 

present high circulatory levels of succinate, related to changes in gut microbiota 

associated to higher barrier permeability. Therefore, it explains the association of 

succinate as a microbiota-derived metabolite with an important role in obesity and 

metabolic-associated cardiovascular disorders [64]. It is also described a study with 

diabetic mice analysed by NMR and the result was an increase of the succinate levels 

in urine [64]. Succinate has seen increased in faecal NMR analysis in NAFLD patients 

correlated to decreasing abundance of Ruminococcus, Coprococcus and F. prausnitzii 

bacteria in comparison with healthy individuals [63]. 

6.4. TMAO, TMA and DMA 
Trimethylamine (TMA) and trimethylamine N-oxide (TMAO) are metabolites 

which come from the choline metabolic pathway and L-carnitine [33]. Choline 
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deficiency, which might cause microbial dysbiosis, is modulated by the conversion of 

dietary choline in TMA by gut bacteria, reducing the bioavailability of choline to 

synthesize phosphatidylcholine [229]. This TMA is released in the liver and is 

transformed in TMAO by the enzyme flavin-containing monooxygenase 3 (FMO3) [62]. 

These metabolites are seen to be related to the development of metabolic diseases, 

modulating the glucose metabolism in the liver and causing obesity [230], triggering 

inflammation in the adipose tissue and influencing lipid absorption and cholesterol 

homeostasis [231]. The fundamental role of the microbiota is evidenced in TMA 

production is derived from germ-free mice, which do not excrete TMA [232]. Using 

the urine of obese mice analysed by NMR, TMA reflects metabolic changes related to 

HFD that follow body fat deposit [233]. An et al. studied the metabolic changes in HFD 

rats by NMR faecal analysis. HFD rats showed a level reduction of faecal TMA, which 

its origin is mostly from gut microbiota, probably resulted from its transportation to 

the liver, where is transformed in TMAO [59]. TMA showed positive correlation with 

gut microbiota from the genera Allobaculum and Clostridium [60,61]. 

TMAO present in urine and plasma is considered a biomarker for NAFLD, IR, and 

CVD [61]. Large perturbations in TMAO levels may result from dietary differences, and 

intestinal microbiota are suggested as playing a prominent role in the variation of 

TMAO levels. Some studies reinforced the importance of diet and microbiota in 

cardio-metabolic health, with the TMAO level emerging as a possible target for 

therapeutic interventions. Given that CVD risk in humans is linked to circulating levels 

of TMAO [234], and dietary supplementation with TMAO promotes atherosclerotic 

CVD in mice [235], a key opportunity for therapeutic research leads to blocking the 

ability of plasma TMAO to obtain a biological response. More than five hundred 

Finnish men with MetS was studied, the serum obtained was analysed by NMR, and 

the results described a positive correlation between plasma TMAO concentrations and 

gut microbiota Prevotella and Peptococcaceae, however a negative correlation with 

Faecalibacterium prausnitzii was detected. These correlations are linked to dysbiosis 

in human disorders, as obesity and diabetes [54]. A study analysed by HPLC in diabetic 

patients, high levels of TMAO were found as a strong marker of all cardiovascular 

events, like in diabetic patients who tend to have elevated TMAO plasma levels. Thus, 

diabetes disease accentuates the relationship of elevated levels of TMAO and 

increased cardiovascular risk [56]. 

Dimethylamine (DMA) is also a metabolite generated from the TMA absorbed in 

the liver. High plasma and/or urine levels of DMA was described to be related to HFD 

induced IR, fatty liver and T2D in mice [236]. In a mice study compared urinary 

metabolites of gut microbiota between HFD mice and control mice, this product of 

dietary choline processing by gut microbiota had a statistically significant result by 

NMR, showing a significant reverse correlation with total body fat. Thus, DMA could 

be considered a possible prospective biomarkers indicative of accumulation of body 

fat in obesity, being converted by the host liver to TMAO [62].   
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7. Relation between the proposed metabolites and 

related metabolic pathways 
 To further characterize the metabolic pathways affected by the proposed 

metabolites, the metabolites were first annotated with Kyoto Encyclopedia of Genes 

and Genomes (KEGG) [59]. Then, the MetaboAnalyst (v4.0) software was used for 

metabolic pathway analysis and interpretation [237]. Eight pathways were statistically 

affected (FDR<0.05) by the proposed profile of metabolites (see table 3), thus five 

pathways stand out with high impact: the aminoacyl-tRNA biosynthesis; the glyoxylate 

and dicarboxylate metabolism; the alanine, aspartate and glutamate metabolism; the 

phenylalanine, tyrosine and tryptophan biosynthesis; and the D-Glutamine and D-

glutamate metabolism. These five pathways with high impact mainly affect amino acid 

biosynthesis and metabolism, except the glyoxylate/dicarboxylate metabolism and 

the aminoacyl-tRNA biosynthesis. Besides being involved in the different discussed 

clusters in the review, the metabolites proposed as early biomarkers for MetS are 

closely related to amino acid pathways and protein synthesis, suggesting that amino 

acid metabolism and associated pathways may be fundamental to the biologic 

processes that may underline prevention of MetS and associated diseases [238].  

Table 3. Metabolic pathways significantly affected by the proposed metabolites. Adapted from the 
MetaboAnalyst results. Pathway name, match status (number of metabolites implicated in each pathway 
vs. the total implicated), metabolites involved, FDR and Impact are shown in the table.  
 

Pathway Name 
Match 
Status 

Metabolites involved FDR Impact 

Aminoacyl-tRNA 
biosynthesis 

9/48 
Phenylalanine, Glutamine, 

Glycine, Serine, Valine, Isoleucine, 
Leucine, Tyrosine, Glutamate 

1.4304E-6 0.167 

Glyoxylate and 
dicarboxylate metabolism 

6/32 
Citrate, Serine, Glycine, 

Glutamate, Acetate, Glutamine 
2.6791E-4 0.179 

Valine, leucine and 
isoleucine biosynthesis 

3/8 Leucine, Isoleucine, Valine 0.0055 0.0 

Alanine, aspartate and 
glutamate metabolism 

4/28 
Glutamate, Glutamine, Citrate, 

Succinate 
0.0175 0.311 

Phenylalanine, tyrosine 
and tryptophan 

biosynthesis 
2/4 Phenylalanine, Tyrosine 0.0208 1.0 

Butanoate metabolism 3/15 
3-Hydroxybutirate, Glutamate, 

Succinate 
0.0208 0.0 

Glutamine and glutamate 
metabolism 

2/6 Glutamate, Glutamine 0.0378 0.5  

Glutathione metabolism 3/28 
Glutathione disulfide, Glycine, 

Glutamate 
0.0869 0.135 

Phenylalanine metabolism 2/10 Phenylalanine, Tyrosine 0.0873 0.357 
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8. Future perspectives and conclusions 
In this review, the detection of early molecular biomarkers has been highlighted 

as a promising strategy to prevent the development of MetS. Indeed, the finding of 

alterations in these metabolic parameters, which are closely related with robust 

clinical biomarkers such as glucose, triglycerides and cholesterol through several 

signaling pathways, could avoid the deregulation of metabolic pathways directly 

related with the development of MetS. However, the analysis of the described 

biomarkers would be relevant not only for the prevention of this multifactorial 

disease, but also for a large number of diseases, as there is a complex crosstalk 

between most of the metabolic parameters described in this review and several 

diseases, such as cancer, diabetes and neuro-related diseases.  

As an example, the gut microbiome product TMAO has been considered a shared 

risk factor between numerous diseases, such as IR, cancer, Alzheimer Disease (AD) and 

schizophrenia, among others [239,240]. Clinical studies have described that higher 

circulating levels of TMAO are correlated with a higher inflammatory response (↑ C-

reactive protein, ↑ TNF-α, ↑ IL-6) [241]. Moreover, it is related to the synthesis of N-

Nitroso compounds, which are involved in epigenetic alterations and DNA-damage 

that can lead to the induction of cancer [242]. As another example, BCAA have been 

described to be altered in human diabetes, a risk factor for Alzheimer’s disease [243]. 

Preclinical studies have shown that the accumulation of these amino acids in brain 

promotes the phosphorylation of Tau proteins, which are involved in the development 

of Alzheimer [244]. Thus, the identification of alterations in these biomarkers and their 

precursors would be of high relevance. 

Although the detection of molecular biomarkers by NMR techniques is very 

promising, there are several factors that must be taken into consideration. As a clear 

example, the selection of the analysed biofluids is crucial. Blood and urine have been 

the preferred source of metabolites used by NMR analysis, but there are other useful 

and potential biofluids (Figure 1). One of them is faeces, which might be a suitable 

biofluid for NMR analysis. In this case, the recollection is non-invasive and neither 

need a specialized person to acquire the biofluid via needle extraction. The challenge 

is to extract useful information from a complex sample that contains end products of 

human metabolism, different species of bacteria, end products from bacterial 

processes and epithelial cells from the colorectal mucosa via faecal NMR 

metabolomics [245]. Other fluid of interest, which has the same advantages as faeces, 

is saliva, as it is also easy to obtain, and it could inform about several metabolic 

processes. As an example, saliva biomarkers in AD early diagnostic were detected in a 

pilot study with NMR metabolomics. The development of accurate and sensitive 

salivary biomarkers would be ideal for screening those individuals at greatest risk of 

developing disease, translating the AD example to other diseases as MetS, obesity and 

T2D [246]. Thus, there is a need to promote the use of these promising biofluids to 

improve the detection of new biomarkers.  
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Another factor that has a sharp influence on the detection and interpretation of 

new biomarkers is sample processing, which requires specific conditions depending 

on the analysed biomarkers. As an example, several oxidative stress biomarkers, such 

as glutathione, are unstable and unreliable to detect by NMR due to its oxidation 

during sample processing. Moreover, other biomarkers such as acetate, can be easily 

overestimated in different biofluids because of the contamination of samples during 

its manipulation. Therefore, specific extraction and quantification procedures must be 

taken into consideration depending on the analysed biomarkers and their chemical 

properties.  

 

Figure 1. Scheme of the research of biomarkers of health. Pipeline explaining the steps that should be 
followed for an early detection of pre-diseases states and prevention of the development of 
cardiometabolic diseases through the 1H NMR analysis of minimal invasive samples, thus getting 
metabolomics profile of the potential patients. Therefore, using this metabolomics information, we will be 
able to find a personalized interventional nutrition through the integration of studied algorithms to finally 
reduce or stop the development of the different cardiometabolic diseases.  
 

Several molecular biomarkers involved in metabolic disorders have been 

excluded from this review as there is not enough evidence to be considered as 

biomarkers of early stages of disease. Despite the fact that further research is needed 

in order to enlarge the list of robust biomarkers exposed in this review, identification 

and aggrupation of early biomarkers in different risk factor clusters can be of great 

help to a) make it easier to identify altered metabolic pathways when more than one 

early biomarker placed in the same cluster is changed; and b) design personalized 

diets with ingredients that are described to target the identified metabolic alterations. 

To sum up, from the identification and quantification of early biomarkers, 

different metabolic diseases could be treated in early states of the development of 

the diseases, before they could not be reversed. NMR metabolomics assessment is a 

reproducible and economic analysis of these metabolites which could be useful to 

detect these early disease development stages. This review summarizes some 

potential biomarkers that have been described in the literature related to different 

clusters which have been associated with metabolic diseases (carbohydrates 

metabolism, dyslipidemia, oxidative stress, inflammation and gut microbiota), and 

have been used to achieve health information about the patients who may have 

symptoms related to metabolic disorders. If these biomarkers are assessed together 

instead of individually, the information obtained would be more complete and it 

Apparently 
healthy subject 

Minimally invasive 
samples

1H NMR profile Algorithm 
integration

Personalized 
nutrition
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would be a good strategy to detect cardiometabolic diseases in their early stages. 

However, the lack of qualitative analysis through NMR assessments take us to improve 

the methods used to process the samples and the way to analyse the recently known 

metabolites. Besides, it is necessary to find more metabolites related to these early 

stages of development of diseases, being characterized and intensively studied. When 

these further studies advance, we will be able to establish a fast and accurate method 

to prevent cardiometabolic and metabolic syndrome diseases in pre-stages of their 

development.  
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II. Hypothesis & Objectives 
Nowadays, common medical problems such as obesity, MetS, CVD diseases, 

cancer and neurodegenerative diseases, are considered multifactorial diseases and/or 

non-communicable (i.e., NCDs) [1]. This means that a cluster of risk factors associated 

with disrupted metabolism influence the development of NCDs [2]. A decade ago, Van 

Ommen et al., proposed that the onset of diseases arise from the imbalance of a few 

overarching processes, namely metabolic stress, inflammatory stress, oxidative stress 

and psychological stress [3]. These general processes can be subdivided into different 

risk factors. In fact, the accumulation and combination of the risk factors working 

together and extended over time, eventually lead to a pathologic state [1,4]. 

Monitoring these overarching processes opens the door to the possibility of 

modulating them, therefore preventing the onset of different NCDs by designing more 

precise personalized interventions or treatments. Nevertheless, current disease 

biomarkers cannot capture the early alterations in these overarching processes that 

might lead to the development of disease. Thus, the opportunity to provide 

biomarkers to prevent these diseases is presented as a medical challenge for the 

whole facultative and research community.  

During the last decade, advances in high-throughput analytical platforms, mainly 
1H-NMR and MS coupled to different chromatographic techniques, either gas or liquid 

chromatography (GC-MS and LC-MS respectively), have provided advanced tools to 

study the human metabolome with an unprecedented detail. This has opened the 

window to a growing number of applications in biological and biomedical sciences. In 

the field of nutrition, metabolomics, together with other omics such as 

metagenomics, are proposed as an invaluable tool for providing nutritional 

recommendations based on the state of the metabolism at a stratified and a 

personalized level [5,6]. These new approaches have led to the definition of the so 

called precision nutrition, which has the final goal of providing nutritional 

recommendations based on specific traits of the individual metabolism [6]. To do so, 

a reliable strategy is to interrogate the metabolome of the person by omics such as 

metabolomics or proteomics in order to detect points of malfunction or altered 

homeostasis in order to restore them by means of nutritional interventions [7]. In fact, 

precision nutrition can target small deviations of the metabolism associated with the 

risk factors, before the onset of the disease. When the disease is finally developed, 

the problem escapes the field of nutrition and medical interventions are required. 

Therefore, there is a real need for an early detection of the slight changes on different 

metabolic parameters that combined triggers the development of disease. At present, 

the lack of robust health status biomarkers is a bottleneck that slows down the 

prevention based on metabolomics [8]. Thus, in parallel with the increasing 

knowledge on human metabolism, the use of these technologies allows to map 

elements of different metabolic pathways that are altered in human diseases. 
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The present work hypothesizes that each risk factor presents a characteristic 

metabolic signature that can be measured in standard conditions (i.e., in a basal fasted 

state) by means of omics technologies. To unravel this specific signature, the different 

overarching processes should be isolated to obtain pure biomarkers of each risk 

factor. Nevertheless, this is currently challenging since they appear concomitantly in 

humans. It is therefore proposed that preclinical models aimed to reproduce early 

alterations of the overarching processes separately might represent an opportunity to 

discover their metabolic signatures.    

With this premises, the main objective of the present work is to identify a 

metabolomic signature that can be used to detect early alterations in different risk 

factors.  

To achieve this main goal, the following specific objectives were set: 

▪ Selection, induction, and characterization of pre-clinical models of risk factors. 

A state-of-the-art study was carried out to define which risk factors are 

characteristics of the overarching processes. These include the deregulation of 

carbohydrate and lipid metabolism, hypertension, and gut dysbiosis, as 

representative of metabolic stress; chronic inflammation; oxidative stress and 

psychological stress. From here, rodent models were considered to study each 

risk factor individually in a controlled way, thus the most suitable models were 

selected to simulate these factors. Once the rodent models were established, 

they were characterised to assess the reproducibility and the degree of isolation 

(biochemical, analytical, and molecular analyses). Thus, the selected risk factors 

and their induction and further characterization are listed below: 

− Carbohydrate dysfunction. This model was based on a single IP injection 

of STZ mimicking a diabetic state in male Wistar rats. To characterise this 

model, the analysis of glucose and insulin was performed to establish the 

degree of dysfunction. 

− Hyperlipidaemia (manuscript 2). This model was based on a single IP 

injection of P407 in male Wistar rats. To characterise this model, the 

analysis of the main lipids altered in hyperlipidaemia were carried out in 

plasma and liver (TC, TGs, NEFAs). 

− Hypertension (manuscript 2). SHR rodent animals, which at 16 weeks-

old are spontaneously hypertensive, and their normotensive control 

(WKY) were used.  

− Gut dysbiosis (manuscript 3). This model was carried out in two stages 

in male Wistar rats: (1) Obtention of microbes from donor rats that were 

fed with cafeteria diet and control diet; (2) Transplant microbiota from 

donor rats to recipient rats that have been previously treated with 

antibiotics for microbiota depletion. This model was characterized by the 

analysis of the microbiome. 
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− Chronic inflammation (manuscript 4). Chronic inflammation was 

induced by the intermittent and increasing IP injection of LPS in male 

Wistar rats. To characterise this model, the main mediators of 

inflammation were measured as id the case of IL-6, MCP-1, TNF-α and 

PGE2. 

−  Oxidative stress (manuscript 5). Based on a single IP injection of PQ (15 

and 30 mg/kg) in male Wistar rats. We measured the markers of lipid 

oxidative damage with evaluation of MDA and 8-isoprostanes. To know 

the antioxidant capacity of the subjects, SOD activity was measured.  

− Early psychological stress (manuscript 6). A combination of protocols 

based on CUMS from the literature was used to induce the early 

psychological stress model. To evaluate the stress grade, behavioural 

and biochemical tests were performed: (1) behavioural test (OFT) was 

performed before the end of the study; (2) and after the study, serotonin 

and corticosterone were measured in plasma. 

▪ Characterization of the metabolic profile of the risk factors using omic 

approaches (manuscript 2-6). To accomplish this goal, cutting-edge omic tools 

were applied: (1) for plasma profiling, the abundance of almost 200 well-

characterised metabolites were obtained from GC-MS and LC-MS approaches; (2) 

for urine profiling, 1H-NMR was selected to detect general metabolite signals; (3) 

for microbiome analysis, 16S and shotgun sequencing was carried out. Thee 

above methodologies involve the generation of a large volume of data that 

requires the capacity of perform analysis at different levels.  

▪ Data integration and pathway analysis of the different risk to evaluate the 

metabolic profile (manuscript 2-6). Data integration was performed to elucidate 

the metabolic profile and the subsequent biomarkers implicated in the 

development of NCDs. 
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II. Hipòtesis i Objectius 
Actualment, els problemes mèdics més comuns com l'obesitat, la síndrome 

metabòlica, les CVDs, el càncer i les malalties neurodegeneratives es consideren 

malalties multifactorials i a més a més són no transmissibles  [1]. Això significa que un 

grup de factors de risc associats amb el mal funcionament del metabolisme afavoreix 

el desenvolupament d’aquestes malalties [2]. Fa unes dècades, Van Ommen et al., va 

proposar que l'aparició de malalties sorgeix del desequilibri d’uns processos generals, 

es a dir, l'estrès metabòlic, l'estrès inflamatori, l'estrès oxidatiu i l'estrès psicològic [3]. 

Aquests processos generals poden subdividir-se en diferents factors de risc. De fet, la 

combinació i l’acumulació al llarg del temps dels factors de risc condueixen a un estat 

patològic [1,4]. El seguiment d'aquests processos generals podria obrir la porta a la 

possibilitat de modular-los, evitant així l'inici de diferents malalties mitjançant el 

disseny d'intervencions o tractaments personalitzats més precisos. No obstant això, 

els biomarcadors de malalties actuals no són capaços de capturar les alteracions 

primerenques que podrien portar al desenvolupament de la malaltia. Per tant, 

l'oportunitat de proporcionar biomarcadors per prevenir aquestes malalties es 

presenta com un desafiament per a la comunitat científica.  

Durant l'última dècada, els avenços en plataformes analítiques d'alt rendiment, 

principalment 1H-NMR i MS acoblat a diferents cromatografies, com la cromatografia 

de gas i líquida (GC-MS i LC-MS respectivament), han proporcionat eines avançades 

per estudiar el metaboloma humà amb un detall sense precedents. Aquestes 

metodologies han obert la finestra a un nombre creixent d'aplicacions en ciències 

biològiques i biomèdiques. En el camp de la nutrició, la metabolòmica i la proteòmica 

juntament amb altres òmiques com la metagenòmica, es proposen com una eina 

inestimable per proporcionar recomanacions nutricionals basades en l'estat del 

metabolisme a un nivell estratificat i personalitzat [5,6]. Aquests nous enfocaments 

han donat lloc a la definició de l'anomenada nutrició de precisió, que té com a objectiu 

final proporcionar recomanacions nutricionals basades en trets específics del 

metabolisme individual [6]. Per fer-ho, una estratègia fiable és interrogar el 

metaboloma individual mitjançant òmiques, per tal de detectar alteracions en la 

homeòstasi i corregir-les mitjançant intervencions nutricionals [7]. De fet, la nutrició 

de precisió pot corregir petites desviacions del metabolisme associat amb els factors 

de risc, abans de l'aparició de la malaltia. Quan finalment es desenvolupa la malaltia, 

el problema escapa a l'àmbit de la nutrició i les intervencions farmacològiques són 

necessàries. Per tant, existeix una necessitat real d'una detecció precoç dels lleugers 

canvis en els diferents paràmetres metabòlics que combinats desencadenen el 

desenvolupament de les malalties no transmissibles. En l'actualitat, la manca de 

biomarcadors robustos és un coll d'ampolla que alenteix la prevenció basada en la 

metabolòmica [8]. Per tant, en paral·lel amb el creixent del coneixement sobre el 

metabolisme humà, l'ús d'aquestes tecnologies permet cartografiar elements de 

diferents vies metabòliques que s'alteren en malalties humanes. 

UNIVERSITAT ROVIRA I VIRGILI 
MULTI-OMICS BIOMARKERS OF METABOLIC HOMEOSTASIS OF RISK FACTORS ASSOCIATED TO 
NON-COMMUNICABLE DISEASES 
Julia Hernandez Baixauli 



II. Hypothesis & Objectives 

119 
 

 

La tesi actual planteja la hipòtesi de que cada factor de risc presenta una signatura 

metabòlica característica que es pot mesurar en condicions estàndard (és a dir, en un 

estat de dejuni basal) per mitjà de tecnologies òmiques. Per a desenvolupar aquesta 

signatura específica, en un marc ideal s’haurien d'aïllar els diferents factors de risc de 

l’individu per tal d'obtindre biomarcadors purs. De fet, aïllar els diferents factors de 

risc és un repte, ja que apareixen de manera concomitant en humans. Per tant, 

s’utilitzen models pre-clínics destinats a reproduir aquestes alteracions i obtindré un 

perfil metabòlic.    

Amb aquestes premisses, l'objectiu principal d’aquest projecte és identificar una 

signatura metabolòmica per a detectar alteracions primerenques en diferents factors 

de risc.  

Per aconseguir aquest objectiu principal, es van establir els següents objectius 

específics: 

▪ Selecció, inducció i caracterització de models pre-clínics de factors de risc. Es va 

dur a terme un estudi de l'estat de l'art per definir quins factors de risc són 

característics dels processos generals. Aquests inclouen la desregulació del 

metabolisme dels carbohidrats i dels lípids, la hipertensió i la dysbiosis intestinal, 

com a representants de l'estrès metabòlic; inflamació crònica; l’estrès oxidatiu i 

l’estrès psicològic. A partir d'aquí, es va determinar quins models de rosegadors 

estudiaven cada factor de risc individualment d'una manera controlada, de 

manera que els models més adequats van ser seleccionats per estudiar aquests 

factors. Una vegada es van establir els models de rosegadors, es van caracteritzar 

per avaluar la seva reproductibilitat i el seu grau d'aïllament (bioquímica, analítica 

i anàlisi molecular). Així, els factors de risc seleccionats, la seva inducció i posterior 

caracterització s'enumeren a continuació: 

− Disfunció de carbohidrats. Aquest model es basa en una única 

administració IP de STZ imitant un estat diabètic en rates de Wistar 

mascles. Per caracteritzar aquest model, es va realitzar l'anàlisi de la 

glucosa i la insulina per establir el grau d’hiperglucèmia. 

− Hiperlipèmia (manuscrit 2). Aquest model es basa en una única 

administració IP de P407 en rates Wistar mascles. Per caracteritzar 

aquest model, l'anàlisi dels lípids principals alterats en la hiperlipèmia es 

va dur a terme en plasma i fetge (TC, TGs, NEFAs). 

− Hipertensió (manuscrit 2). S’utilitzaren les rates SHR, que amb 16 

setmanes d'edat són hipertenses espontàniament, i el seu control nomo-

tensiu (WKY). 

− Dysbiosis intestinal (manuscrit 3). Aquest model es va dur a terme en 

dues etapes en rates Wistar mascles: (1) obtenció de microbiota de rates 

donants que s'alimentaven amb dieta cafeteria i dieta control; (2) 

transplantament de microbiota de rates donants a rates receptores que 
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anteriorment havien estat tractades amb antibiòtics per a eliminar la 

microbiota de l’hoste. Aquest model es va caracteritzar per l'anàlisi del 

microbioma. 

− Inflamació crònica (manuscrit 4). La inflamació crònica va ser induïda 

per l'administració intermitent i incrementada IP de LPS en rates Wistar 

mascles. Per caracteritzar aquest model, els principals mediadors de la 

inflamació es van mesurar com a cas de MCP-1, IL-6, TNF-2 i PGE2. 

− Estrès oxidatiu (manuscrit 5). Basat en una única IP de PQ (15 i 30 

mg/kg) en rates Wistar mascles. Caracteritzat per marcadors oxidatius 

lipídics amb l'avaluació de MDA i 8-isoprostans. Per conèixer la capacitat 

antioxidant dels subjectes, quantifiquem l'activitat de SOD.  

− Estrès psicològic (manuscrit 6). Es va utilitzar una combinació de 

protocols basats en el model CUMS de depressió per tal d’induir un 

model d'estrès psicològic. Per tal d’avaluar el grau d'estrès, es van 

utilitzar test de comportament i bioquímics: (1) la prova de 

comportament (OFT) es va realitzar abans del sacrifici de rates; (2) i al 

final del estudi, la serotonina i la corticosterona es van mesurar a plasma. 

▪ Caracterització del perfil metabòlic dels factors de risc utilitzant aproximacions 

òmiques (manuscrit 2-6). Per aconseguir aquest objectiu, s’han utilitzat eines 

òmiques d'avantguarda: (1) per a l'elaboració de perfils de plasma, l'abundància 

de gairebé 200 metabòlits ben caracteritzats van ser obtinguts a partir 

d’aproximacions basades en GC-MS i LC-MS; (2) per a l'elaboració de perfils 

metabolòmics d'orina, es va utilitzar 1H-NMR per detectar senyals generals de 

metabòlits; (3) per a l'anàlisi de microbis, la seqüenciació mitjançant 16S i shotgun 

es va utilitzar. Les metodologies anteriors impliquen la generació d'un gran volum 

de dades que requereixen la capacitat de realitzar anàlisi a diferents nivells.  

▪ Integració de les dades i anàlisi de les rutes metabòliques afectades als diferent 

factors de risc per avaluar el perfil metabòlic (manuscrit 2-6). La integració de 

dades es va realitzar per dilucidar el perfil metabòlic i els possibles biomarcadors 

implicats en el desenvolupament i inici de les malalties no transmissibles. 
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Abstract: Currently, hyperlipidemia and hypertension are coexisting risk factors, 

for a diverse type of non-communicable diseases (NCD), that have been emerged as 

an important health problem worldwide. In this sense, the actual clinical standards to 

detect hyperlipidemia and hypertension lack the required sensitivity in 

early/prodromal stages, thus a pressing need to shift the focus to detect accurately 

the onset of these risks have been increasing. Therefore, the aim of this study was to 

identify a metabolic pattern in the prodromal stage of hyperlipidemia and 

hypertension across species in preclinical and clinical studies. The preclinical studies 

were composed by the hyperlipidemia rat model, which was induced by a single 

intraperitoneal injection of 150 mg/kg of poloxamer 407 (P407) in male Wistar rats, 

and the hypertension rat model, which was based in the spontaneous hypertensive 

rats (SHR) and its normotensive control (WKY). In the clinical study, 140 healthy 

subjects were divided into normal and moderate group according to their risk to suffer 

hyperlipidemia and hypertension. Metabolomic approach on plasma (UHPLC-qTOF) 

and urine (1H-NMR) were performed to explore the metabolome and find early key 

biomarkers. On the one hand, 11 metabolites were identified as potential biomarkers 

of hyperlipidemia in the preclinical model. Translating those results to the clinic, 5 

metabolites were considered potential biomarkers for men (i.e., DG 34:2, TG 46:0, 

ChoE (17:0), PC 36:4 and PC 38:4) and 4 for woman (i.e., DG 34:2, DG 34:3, ChoE (17:0), 

ChoE (18:0)). On the other hand, 52 metabolites were identified as potential 

biomarkers of hypertension in the preclinical model. In the clinical study, 7 

metabolites were considered potential biomarkers for moderate hypertension for 

men [i.e., SM 34:1, SM 34:2, SM 40:1, SM 41:1, LPC 16:0 e, ChoE (22:6) and 3-

hydroxybutiric acid] and 6 for woman (i.e., SM 32:1, SM 33:1, SM 38:1, SM 40:1, SM 

41:1 and LPC 16:0 e). The identified potential biomarkers were lipid metabolites in 

hyperlipidemia and hypertension, mainly involved in lipid signalling pathway. These 

findings provide further insights into the prodromal stage and, consequently potential 

biomarkers in early hyperlipidemia and hypertension using metabolomic approaches. 

Keywords: hyperlipidaemia, hypertension, metabolomics, biomarker, metabolic 

profiling, metabolic pathway. 
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1. Introduction 
Hyperlipidaemia and hypertension are a well-established risk factors for the 

development of non-communicable diseases (NCDs), which are considered 

multifactorial diseases, thus the accumulation during long periods of these risk factors 

drive to complex diseases, as cardiovascular diseases (CVD), diabetes and metabolic 

syndrome (MetS), among others. For instance, the European Society of Cardiology 

reports in their guidelines of management of dyslipidaemias [1] and hypertension [2] 

that the prevention targeting these risk factors could elude further CVD, avoiding 

billions of dead’s worldwide. In fact, epidemiological studies have reported a 15-31% 

rate of coexistence of hyperlipidaemia and hypertension [3,4]. In this line, the 

coexistence of these risk factors has been suggested to multiplicate the development 

of diseases compared with the sum of the individual risk factors [5]. 

In this context, the metabolic impact of hyperlipidaemia and hypertension and 

their early detection has not been completely elucidated. There is an interest to 

prevent the development of hyperlipidaemia and hypertension exploring new early 

biomarkers to characterise the prodromal stage of this health problem. Currently, 

prodromal stage has only been related to fully developed diseases, such as CVD, but 

has not considered within early stages of risk factors. The prodromal phase connotes 

a time interval between the early symptoms and signs that differ from those of acute 

clinical phase [6]. Essentially, monitoring circulating lipids for hyperlipidaemia and 

blood pressure for hypertension provides an invaluable tool for the tracking of these 

risk factors [1,2]. Unfortunately, these current clinical biomarkers lack the required 

sensibility to evaluate the degree of the risk factors [7]. 

In the case of hyperlipidaemia, different approaches have been carried out to 

obtain isolated animal models trying to elucidate its metabolic impact without a 

scientific consensus: some of them are genetic variants as Zucker rats [8], induced by 

high fat diet [9,10] or treated by chemical compounds as poloxamer 407 (P407) [11]. 

For instance, P407 is one of the most interesting models of hyperlipidaemia inducing 

hypertriglyceridemia and hypercholesterolemia that acts through the inhibition of the 

heparin-releasable fraction of lipoprotein lipase (LPL) and the cholesterol 7α-

hydroxylase (CYP7A1), respectively [11]. The P407 animal model has been extensively 

selected by different researchers to study lipidemic alterations presenting different 

characteristics: different rodent species [11–15], concentrations between 300 mg/Kg 

[14] to 1500 mg/kg of body weight [16], being the lowest the popular one; and single 

dose [17] or chronic dose [13] of an intraperitoneal (IP) injection have been also 

selected according to the expected effect [18]. 

In the case of hypertension, the complex nature of hypertensive phenotypes 

complicates the establishment of an animal model for the study of metabolism. For 

this reason, rat genetic models of hypertension have been widely used in the study of 

high blood pressure levels (e.g., spontaneously hypertensive rats (SHR), Dahl salt-
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sensitive (DSS) rats) [19,20]. Of these, the most studied model is the SHR with more 

than 4,600 articles indexed in PubMed under the term spontaneously hypertensive 

rats in the past 10 years. The SHR model is widely used in different studies as a rat 

model of primary or essential hypertension [20]. 

In this context, metabolomics have been increasing as a powerful tool for the 

prognosis, and diagnosis, of early stages, by investigating the endogenous levels of 

small metabolites in clinical practice from different biofluids (i.e., plasma/serum and 

urine) [21,22]. In this context, omics-based strategies allowed us to provide a global 

characterization of the changes in the metabolic profile associated with 

hyperlipidaemia and hypertension prodromal stage, being a possible solution to the 

lack of sensitivity of classical clinical biomarkers in prodromal stages [23]. Numerous 

metabolomic studies have been focus on hyperlipidaemia and hypertension in animal 

models and profiling human samples [24–26]. However, none of these metabolomic 

studies have focused on the prodromal stage of these risk factors in animals and the 

posterior translation to healthy human subjects to evaluate their risk. 

Therefore, we performed two murine models of hyperlipidaemia and 

hypertension to profile their metabolome in plasma and urine, trying to elucidate the 

metabolic profile and potential biomarkers of early stages. Once the metabolic profile 

was stabilised in rats, the plasma metabolome of a cohort of 140 healthy humans was 

studied to compare the metabolic profile of the risk factors. Novel potential 

biomarkers and metabolic pathways of hyperlipidaemia and hypertension were stand 

out that could underlie the pathological foundation and the metabolic profile of early 

stages. Furthermore, similarities and differences of the metabolic profiles are 

highlighted to understand their relationships and mutual interactions. 

2. Methods 

2.1. Hyperlipidaemic and hypertensive rat models 
Animals were housed individually under a fully controlled condition including 

temperature (22 ± 2°C), humidity (55± 5%) and light (12 h-light-dark cycle and lights 

on at 9:00 a.m.). All rats were fed with a standard rat chow diet ad libitum (Teklad 

Global 18% Protein Rodent Diet 2014, Harlan, Barcelona, Spain). The Animal Ethics 

Committee of the University Rovira i Virgili (URV,Tarragona, Spain) approved all the 

procedures for the hyperlipidaemic model (code 10025) and the hypertensive model 

(code 10522). The experimental protocol followed the “Principles of Laboratory Care” 

and was carried out in accordance with the European Communities Council Directive 

(86/609/EEC). 

The hyperlipidaemic rat model consists of twenty 8-week-old male Wistar rats 

(Harlan Laboratories, Barcelona, Spain). After a 1-week acclimation period, the 

animals were weighted and randomly divided into two experimental groups (n = 10): 
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control group (CON) or P407-induced hyperlipidaemic group. The P407 group received 

a single IP injection of a 150 mg dose of P407 (Fluka/Sigma-Aldrich, Madrid, Spain) per 

kg body weight in a sterile solution of cold NaCl at 0.9%. The CON group received a 

single IP injection with the same volume of vehicle (sterile cold 0.9% NaCl). Body 

weight was recorded at the day of IP injection and at the end of the study. Food intake 

was estimated once, the weight of chow was recorded before the IP injection and 24 h 

after. 

The hypertensive rat model consists into two experimental groups (n = 8): 20-

week-old male spontaneously hypertensive (SHR) rats and their control consisting of 

20-week-old male Wistar Kyoto (WKY) rats (Janvier Labs, Saint-Berthevin, France). The 

blood pressure of SHR rats increase at 6-7 weeks of age and reach a stable level of 

hypertension by 17-19 weeks of age [19]. The rats arrive at the age of 15 weeks and 

the samples were collected at the age of 20 weeks. Body weight was recorded to 

monitor the state of the animals and food intake was estimated before the sacrifice. 

2.2. Sample collection  
Urine samples were collected the day before the end of the study with the 

hydrophobic sand method, which is less stressful for the animals [27]. For each rat, 

300 g of hydrophobic sand was spread (LabSand, Coastline Global, Palo Alto, CA) on 

the bottom of a mouse plastic micro-isolation cage. Urine was collected with sodium 

azide (Sigma, St Louis, MO, USA) as preservative every half hour for 6 hours and was 

pooled at the end of the session. On the day of the sacrifice, animals were euthanized 

by guillotine under anaesthesia (pentobarbital sodium, 50 mg/kg per body weight) 

after 7 hours of fasting. Blood was collected and centrifuged at 3,000 g at 4 °C for 15 

min to recover plasma. Tissues were rapidly removed, weighted and snap-frozen in 

liquid nitrogen (i.e., RWAT, MWAT, muscle, liver, and cecum). All the samples were 

stored at -80°C until further analysis. 

2.3. Plasma and liver measurements 
Enzymatic colorimetric kits were used for the plasma determination of TC, TG, 

glucose (QCA, Barcelona, Spain), non-esterified free fatty acids (NEFAs) (WAKO, 

Neuss, Germany) and LPL enzymatic activity (Roar Biomedical, New York, USA). 

Circulating insulin levels were measured using rat ELISA kits (Merck, Madrid, Spain). 

Monocyte chemoattractant protein-1 (MCP-1), as an inflammatory biomarker, was 

measured by the Rat MCP-1 Instant ELISA Kit (Invitrogen, Vienna, Austria). The 

oxidative stress was evaluated by the determination of aspartate aminotransferase 

(AST) and alanine aminotransferase (ALT) activity in plasma (Sigma-Aldrich, St. Louis, 

USA) and 8-isoprostane in urine (Cayman chemical, Ann Arbor, MI, USA). 

Liver lipids were extracted and quantified from a tissue piece of approximately 

100 mg from the frozen liver following a method previously described in the literature 

[28]. Briefly, lipids were extracted with 1 ml of hexane/isopropanol (3:2, v/v), 
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degassed with gas nitrogen before left overnight under orbital agitation at room 

temperature protected from light. After an extraction with 0.3 ml of Na2SO4 (0.47 M), 

the lipid phase was dried with nitrogen gas and total lipids quantified gravimetrically 

before emulsifying as described previously [29]. TG, TC and phospholipids were 

assayed with commercial enzymatic kits (QCA, Barcelona, Spain). 

2.4. Study population  
The volunteer’s data was provided by the biobank of the URV from arbitrary 

subjects (n = 140) that were men and women from 43 to 65 years. At the time of 

sampling, all subjects were defined as healthy with no diagnosis of any significant 

disease. On the one hand , the subjects were divided according to their TG levels in 

normal and moderate group following the guidelines for the management of 

dyslipidaemia [1]: (1) normal: less than 150 mg/dL, or less than 1.7 mmol/L; (2) 

moderate risk of hyperlipidaemia: above 150 mg/dL or above 1.7 mmol/L. On the 

other hand, the blood pressure was categorized based on systolic blood pressure (SBP) 

and diastolic blood pressure (DBP) following the guidelines for the management of 

hypertension [2]: (1) normal blood pressure: SBP < 129 mmHg and DBP < 84 mmHg; 

(2) moderate blood pressure/risk of hypertension: SBP 130 to 159 mmHg and DBP 85 

to 99 mmHg. The plasma samples were profiled using classical determinations and 

metabolomics.  

2.5. Plasma metabolomics  
Plasma metabolites were analysed by gas Chromatography coupled with 

Quadrupole Time-of-Flight (GC-qTOF). For the extraction, a protein precipitation 

extraction was performed by adding eight volumes of methanol:water (8:2, v/v) 

containing internal standard mixture (succinic acid-d4, myristic acid-d27, glicerol-13C3 

and D-glucose-13C6) to plasma samples. Then, the samples were mixed and incubated 

at 4 °C for 10 min, centrifuged at 21.420 g and supernatant was evaporated to dryness 

before compound derivatization (metoximation and silylation). The derivatized 

compounds were analysed by GC-qTOF (model 7200 of Agilent, USA). The 

chromatographic separation was based on the Fiehn Method, using a J&W Scientific 

HP5-MS (30 m x 0.25 mm i.d.), 0.25 µm film capillary column and helium as carrier gas 

using an oven program from 60ºC to 325ºC. Ionization was done by electronic impact 

(EI), with electron energy of 70eV and operated in full Scan mode. The identification 

of metabolites was performed by matching their EI mass spectrum and retention time 

to metabolomic Fiehn library (Agilent, Santa Clara, CA, USA) which contains more than 

1.400 metabolites. After putative identification of metabolites, these were semi-

quantified in terms of internal standard response ratio. 

Plasma lipids were analysed by Ultra High Perfomance Liquid Chromatography 

coupled with Quadrupole Time-of-Flight (UHPLC-qTOF). For the extraction of the 

hydrophobic lipids, a liquid-liquid extraction based on the Folch procedure was 

performed by adding four volumes of chloroform:methanol (2:1, v/v) containing 
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internal standard mixture (Lipidomic SPLASH®, Avanti Polar Lipids, Inc., Alabaster, AL, 

USA) to plasma. Then, the samples were mixed and incubated at -20 °C for 30 min. 

Afterwards, water with NaCl (0.8 %) was added and the mixture was centrifuged at 

21.420 g. Lower phase was recovered, evaporated to dryness and reconstituted with 

methanol:methyl-tert-butyl ether (9:1, v/v) and analyzed by UHPLC-qTOF (model 6550 

of Agilent, USA) in positive electrospray ionization mode. The chromatographic 

consists in an elution with a ternary mobile phase containing water, methanol, and 2-

propanol with 10 mM ammonium formate and 0.1% formic acid. The stationary phase 

was a C18 column (Kinetex EVO C18 Column, 2.6 µm, 2.1 mm X 100 mm) that allows 

the sequential elution of the more hydrophobic lipids such as TG, diacylglycerols 

(DGs), phosphatidylcholines (PCs), cholesterol esters (ChoEs), lysophospholipids 

(LPCs) and sphingomyelins (SMs), among others. The identification of lipid species was 

performed by matching their accurate mass and tandem mass spectrum, when 

available, to Metlin-PCDL from Agilent containing more than 40,000 metabolites and 

lipids. In addition, chromatographic behaviour of pure standards for each family and 

bibliographic information was used to ensure their putative identification. After 

putative identification of lipids, these were semi quantified in terms of internal 

standard response ratio using one internal standard for each lipid family. 

A pooled matrix of samples was generated by taking a small volume of each 

experimental sample to serve as a technical replicate throughout the data set. As the 

study took multiple days, a data normalization step was performed to correct variation 

resulting from instrument inter-day tuning differences. Essentially, each compound 

was corrected in run-day blocks through quality controls, normalizing each data point 

proportionately 

2.6. Urine metabolomics 
Urine metabolites were analysed by proton Nuclear Magnetic Resonance (1H-

NMR). The urine sample was mixed (1:1, v/v) with phosphate buffered saline 

containing with 3-(Trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (TSP) (Sigma 

Aldrich) and placed on a 5 nm NMR tube for direct analysis by 1H-NMR. 1H-NMR 

spectra were recorded at 300 K on an Avance III 600 spectrometer (Bruker®, Bremen, 

Germany) operating at a proton frequency of 600.20 MHz using a 5 mm PBBO gradient 

probe. Diluted urine aqueous samples were measured and recorded in procno 11 

using a One-dimensional 1H pulse experiments were carried out using the nuclear 

Overhauser effect spectroscopy (NOESY). NOESY presaturation sequence (RD–90°–t1–

90°–tm–90° ACQ) to suppress the residual water peak, and the mixing time was set at 

100 ms. Solvent presaturation with irradiation power of 150 μW was applied during 

recycling delay (RD = 5 s) and mixing time. (noesypr1d pulse program in Bruker®, 

Bremen, Germany) to eliminate the residual water. The 90° pulse length was 

calibrated for each sample and varied from 11.21 to 11.38 ms. The spectral width was 

9.6 kHz (16 ppm), and a total of 128 transients were collected into 64 k data points for 

each 1H spectrum. The exponential line broadening applied before Fourier 
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transformation was of 0.3 Hz. The frequency domain spectra were manually phased 

and baseline-corrected using TopSpin software (version 3.2, Bruker, Bremen, 

Germany). Data has been normalized by two different ways, by probabilistic to avoid 

differences between sample due to different urine concentration, and by ERETIC. The 

acquired 1H-NMR were compared to references of pure compounds from the 

metabolic profiling AMIX spectra database (Bruker®, Bremen, Germany), HMDB, and 

Chenomx databases for metabolite identification. In addition, we assigned 

metabolites by 1H-1H homonuclear correlation (COSY and TOCSY) and 1H-13C 

heteronuclear (HSQC) 2D NMR experiments and by correlation with pure compounds 

run in-house. After pre-processing, specific 1H-NMR regions identified in the spectra 

were integrated using MATLAB scripts run in house. Curated identified regions across 

the spectra were exported to excel spreadsheet to evaluate robustness of the 

different 1H-NMR signals and to give relative concentrations. 

2.7. Statistical analysis  
Statistical analysis was performed using the R software (version 4.0.1, R Core 

Team 2021) and different libraries, included in Bioconductor (version 3.11, 

Bioconductor project), were used. All data was expressed as the mean ± standard 

error of the mean (SEM). For the animal model, after the normality study, parametric 

unpaired t-test was used for single statistical comparisons, thus a two-tailed value of 

p < 0.05 was considered. For metabolomic data, the Mann-Whitney (MW) test was 

performed in this case because the variables follow the assumption of a non-

parametric. The p-value adjustment for multiple comparisons was carried out 

according to the Benjamin-Hochberg (BH) correction considering a 5% of false 

discovery rate (FDR). The magnitude of difference between populations are presented 

as fold change (FC) relative to the control groups [30]. Multivariate analysis, both an 

unsupervised method (Principal Component Analysis, PCA) and a supervised method 

(Orthogonal Partial Least-Squares Discriminant Analysis, OPLS-DA) were employed to 

reveal the global metabolic changes between groups using the ropls R package 

(version 1.19.16) [31]. The predictive performance of the test set was estimated by 

the Q2Y parameter calculated through cross-validation. The values of Q2 < 0 suggests 

a model with no predictive ability, 0 < Q2 < 0.5 suggests some predictive character and 

Q2 > 0.5 indicates good predictive ability [32]. The corresponding Variable Importance 

in the Projection (VIP) value was calculated to select the metabolites responsible of 

the difference between groups. Using the criteria of FDR < 0.05 and VIP > 1, 

metabolites were ultimately selected as biomarkers of hyperlipaemia and 

hypertension in the animal model. After the selection of the potential biomarkers in 

rats, those metabolites were studied in human subjects performing one-way ANOVA 

test to evaluate the effect of sex and the Tukey's test for post-hoc analysis. The 

resulting significant differential features were analysed through different data bases 

to identify related pathways and elucidate the global effect in the metabolism of the 

study. The main data bases consulted are listed below: Kyoto Encyclopaedia of Genes 
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and Genomes (KEGG) [33], Rat Genome Database (RGD) [34], Human Metabolome 

Database (HMDB) [35] and Small Molecule Pathway Database (SMPDB) [36]. 

3. Results 

3.1. Characterization of the hyperlipidemic rat model  
Biometric measurements, plasma parameters and liver biochemistry were 

determined to confirm the success of the P407-induced hyperlipidaemic rat model 

(Table 1). Food intake was higher in the P407 group, although no differences were 

observed in body weight. In addition, P407 group showed a tendency to increase 

muscle and liver weight (Table 1). The hypertriglyceridemia and hypercholesterolemia 

were confirmed by the significant increase of TG and TC in plasma, additionally 

increased liver TC was confirmed in the P407 group without noticing other significant 

changes in liver (i.e., total lipids, TC, and phospholipids). As it is described before, 

according to the TG increase in plasma, the LPL activity was decreased significantly in 

the P407 group. Different parameters related to carbohydrate dysfunction were also 

analysed to discard other related metabolic alterations; no significant differences 

were found in glucose, non-esterified fatty acids (NEFAs) and insulin resistance 

parameters [i.e., Homeostatic Model Assessment Insulin Resistance (HOMA-IR), 

Homeostatic Model Assessment β-cells (HOMA-β) and Revised - Quantitative Insulin 

Sensitivity Check Index (R-QUICKI)]. Additionally, the inflammation level and the 

oxidative stress was evaluated presenting an increase of MCP-1 in the P407 group, 

and no significant differences were found in AST, ALT and 8-isoprostane. 

Table 1. Characteristics of the P407-induced hyperlipidaemic rat model. The results are presented as the 
mean ± SEM (n = 10). The statistical comparisons among groups were conducted using Student’s t test. * 
Denotes p < 0.1 (tendency), ** p < 0.05 (significantly different) and *** p < 0.01 (high significantly different) 
compared with control. Abbreviations: RWAT, retroperitoneal white adipose tissue; MWAT, mesenteric 
white adipose tissue; TG, triglycerides; TC, total cholesterol; NEFAs, non-esterified fatty acids; HOMA-IR, 
Homeostatic Model Assessment Insulin Resistance; HOMA-β, Homeostatic Model Assessment β-cells: R-
QUICKI, Revised - Quantitative Insulin Sensitivity Check Index; au, arbitrary units; LPL activity, lipoprotein 
lipase activity (Δ nmol/ 0.2 mL per 15 min); MCP-1, monocyte chemoattractant protein-1; AST, aspartate 
aminotransferase (one unit of AST is the amount of enzyme that will generate 1.0 µmole of glutamate per 
minute at pH 8.0 at 37 °C); ALT, alanine aminotransferase (one milliunit of ALT is defined as the amount of 
enzyme that generates 1.0 nmole of pyruvate per minute at 37 °C). 
 

  CON P407 p-value 

Biometric parameters 

Initial body weight (g) 300.28 ± 4.09 300.33 ± 3.06 0,99 

Final body weight (g) 302.09 ± 3.85 304.57 ± 3.28 0,63 

Food intake (g) 18.49 ± 0.70 20.49 ± 0.48 0.03** 

RWAT weight (g) 3.52 ± 0.34 3.59 ± 0.27 0,87 

MWAT weight (g) 2.58 ± 0.21 2.54 ± 0.17 0,89 

Muscle weight (g) 1.78 ± 0.03 1.86 ± 0.04 0.09* 

Liver weight (g) 9.28 ± 0.54 10.38 ± 0.25 0.09* 
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Cecum weight (g) 4.35 ± 0.18 4.15 ± 0.19 0,44 

Plasma parameters 

Glucose (mM) 132.45 ± 2.22 130.21 ± 4.73 0,68 

TG (mM) 92.84 ± 9.71 157.11 ± 18.26 0.01*** 

TC (mM) 73.02 ± 2.58 81.10 ± 2.74 0.04** 

NEFAs (mM) 0.48 ± 0.04 0.50 ± 0.05 0,67 

Insulin (µg/L) 1.04 ± 0.18 0.91 ± 0.11 0,54 

HOMA-IR (au) 0.34 ± 0.06 0.30 ± 0.04 0,5 

HOMA-β (au) 5.34 ± 0.89 4.95 ± 0.64 0,75 

R-QUICKI (au) 0.59 ± 0.03 0.60 ± 0.04 0,89 

LPL activity (Δ) 1.64 ± 0.02 1.57 ± 0.02 0.03** 

MCP-1 (ng/mL) 9.78 ± 0.83 11.40 ± 0.44 0.10* 

AST (mU/mL) 1.25 ± 0.62 1.35 ± 0.67 0.29 

ALT (mU/mL) 2.57 ± 0.16 2.67 ± 0.17 0.82 

Urine parameters 8-isoprostanes (ng/mL) 2.5 ± 0.78 2.66 ± 0.44 0.87 

Liver biochemistry 

Total lipids (mg/g) 41.48 ± 2.01 43.27 ± 3.18 0,64 

TC (mg/g) 1.31 ± 0.07 1.48 ± 0.13 0,3 

Phospholipids (mg/g) 11.56 ± 0.48 11.97 ± 0.78 0,66 

TG (mg/g) 3.70 ± 0.18 4.77 ± 0.43 0.04** 

 

3.2. Characterization of the hypertension rat model 
The SHR rats differed from their control in terms of increased body weight, food 

intake and tissue weight (Table 2). In this line, SHR group had increase TC levels 

without showng other significant changes in plasma TG and liver-specific lipids (i.e., 

TC, and phospholipids). Additionally, different parameters related to other related 

metabolic alterations were analysed: no significant differences were found in glucose 

and non-esterified fatty acids (NEFAs); while significant differences were found in 

insulin levels and insulin resistance parameters (i.e., HOMA-IR, HOMA-β and R-

QUICKI). Moreover, no significant differences were observed in MCP-1, a biomarker 

of inflammation, although significant differences were observed in 8-isoprostane, a 

biomarker of oxidative stress. 

Table 2. Characteristics of the SHR/WKY hypertension rat model. The results are presented as the mean ± 
SEM (n = 10). The statistical comparisons among groups were conducted using Student’s t test. * Denotes 
p < 0.1 (tendency), ** p < 0.05 (significantly different) and *** p < 0.01 (high significantly different). 
Abbreviations: RWAT, retroperitoneal white adipose tissue; MWAT, mesenteric white adipose tissue; TG, 
triglycerides; TC, total cholesterol; NEFAs, non-esterified fatty acids; HOMA-IR, Homeostatic Model 
Assessment Insulin Resistance; HOMA-β, Homeostatic Model Assessment β-cells: R-QUICKI, Revised - 
Quantitative Insulin Sensitivity Check Index; AU, arbitrary units; LPL activity, lipoprotein lipase activity (Δ 
nmol/ 0.2 mL per 15 min); MCP-1, monocyte chemoattractant protein-1; AST, aspartate aminotransferase 
(one unit of AST is the amount of enzyme that will generate 1.0 µmole of glutamate per minute at pH 8.0 
at 37 °C); ALT, alanine aminotransferase (one milliunit of ALT is defined as the amount of enzyme that 
generates 1.0 nmole of pyruvate per minute at 37 °C). 
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  WKY SHR p-value 

Biometric parameters 

Initial body weight 15w (g) 293.35 ± 3,42 307.77 ± 1.89 0.004*** 

Final body weight 20w (g) 368.32 ± 4.62 405.69 ± 5.40 0.001*** 

Food intake (g) 18.56 ± 0.74 21.56 ± 0.42 0.005*** 

RWAT weight (g) 4.28 ± 0.32 6.71 ± 0.33 0.001*** 

MWAT weight (g) 3.35 ± 0.26 4.18 ± 0.13 0.01** 

Muscle weight (g) 2.01 ± 0.13 2.41 ± 0.07 0.01** 

Liver weight (g) 10.38 ± 0.18 12.19 ± 0.38 0.01** 

Cecum weight (g) 3.56 ± 0.28 4.98 ± 0.41 0.01** 

Plasma parameters 

Glucose (mM) 103.40 ± 7.33 114.86 ± 2.27 0,16 

TG (mM) 106.27 ± 9.82 98.49 ± 3.65 0,47 

TC (mM) 76 ± 3.54 116.12 ± 3.05 0.001*** 

NEFAs (mM) 0.59 ± 0.04 0.52 ± 0.04 0,22 

Insulin (µg/L) 1.62 ± 0.25 2.65 ± 0.18 0,01** 

HOMA-IR (AU) 0.42 ± 0.07 0.75 ± 0.05 0.004*** 

HOMA-β (AU) 11.33 ± 1.45 18.79 ± 1.61 0.006*** 

R-QUICKI (AU) 0.55 ± 0.03 0.45 ± 0.01 0.02** 

MCP-1 (ng/mL) 6.26 ± 0.48 7.37 ± 0.80 0.26 

AST (mU/mL) 2.57 ± 0.16 2.63 ± 0.17 0.82 

ALT (mU/mL) 3.11 ± 0.09 3.33 ± 0.12 0.15 

Urine parameters 8-isoprostanes (ng/ml) 0.58 ± 0.18 2.15 ± 0.30 0.002*** 

Liver biochemistry 

Total lipids (mg/g) 32.08 ± 0.69 38.07 ± 2.60 0.06* 

TC (mg/g) 1.99 ± 0.08 2.29 ± 0.21 0.22 

Phospholipids (mg/g) 10.72 ± 0.40 11.86 ± 0.79 0.22 

TG (mg/g) 7.06 ± 0.34 7.69 ± 0.70 0.44 

 

3.3. Metabolomic profiling and biomarker identification of 

the hyperlipidemic rat model 
The metabolome of the hyperlipidemic rat model consisted of 130 metabolites 

from plasma and 43 from urine. A preliminary univariate analysis was performed on 

the plasma (Table S1) and urine data set (Table S2) to obtain a preliminary list of 

altered metabolites prior to multivariate analysis. Focusing on plasma, 44 out 130 

metabolites were significantly altered between groups after MW test. After the BH 

correction, 11 specific lipids prevailed among the 44 metabolites, including DGs, TGs, 

ChoEs, PCs and LPCs, which were mainly overrepresented in the P407 group. On the 

other hand, 4 out 43 metabolites were significantly different between groups in urine 

after the MW test (i.e., trimethylamine N-oxide (TMAO), phenylacetylglycine (PAG), 2-
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deoxycytidine and leucine). Although, after BH correction none of these metabolites 

remain altered, the changes in magnitude were distinctive. 

Unsupervised analysis (PCA) was performed to find intrinsic variation in the 

plasma (Figure S1) and urine datasets (Figure S2). The P407 and CON groups were not 

separated in either plasma or urine in the PCA. In plasma, the OPLS-DA model was 

able to differentiate between the two groups (Figure 1a). The fitness and prediction 

accuracy of the plasma model were established by the values of R2X(cum) = 0.377, 

R2Y(cum) = 0.862, and Q2Y(cum) = 0.567. Since the Q2Y value (0.567) was greater than 

the pQ2 value (0.01) and 0.5, we can conclude that the OPLS-DA model has a good 

predictive capacity (Figure 1b). These results indicate that it is possible to predict if an 

animal has a hyperlipidaemic profile, based on the analysis of plasma lipidomics and 

metabolomics. Specifically, it was found 39 significantly altered plasma features with 

a VIP threshold of 1 (Table 2). Specifically, the main altered lipid metabolites were PC 

36:4 and PC 38:4 (VIP > 2 and q-value < 0.01 in univariate analysis) (Table 2). In urine, 

although both groups were partially separated in the OPLS-DA analysis (Figure 1c), the 

low value of Q2Y (-0.029) and the higher value of pQ2 in the permutation test (Figure 

1d) suggest that this model is overfitted.  

 
 

Figure 1. OPLS-DA of plasma and urine metabolomics of the P407-induced hyperlipidaemic rat model. 
Blue represents CON group and red P407 group. Plasma (a) and urine (c) X-score plot (OPLS-DA). The 
number of components and the cumulative R2X, R2Y and Q2Y are indicated below the plot. Plasma (b) and 
urine (d) significance diagnostic: The R2Y and Q2Y of the model are compared with the corresponding values 
obtained after random permutation of the y response. 
 

a b

c d
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Given the above, 11 plasma metabolites pointed out the metabolic profile of 

hyperlipidaemic subjects in plasma, which are TG 46:0, PC 38:4, PC 36:4, LPC 18:0, DG 

36:4, DG 34:3, DG 34:2, ChoE (18:1), ChoE (18:0) and ChoE (17:0) and ChoE (16:0) 

(Table 2). Additionally, urine metabolites were not considered because the analysis 

were not enough robust. 

Table 3. Summary of the potential biomarkers in the P407-induced hyperlipidaemic rat model in plasma. 
The results are presented as the mean ± SEM per group (n = 10); summary of univariant analysis include p-
value, q-value (pFDR) and FC (P407/CON); VIP values of OPLS-DA (multivariant analysis); and metabolism 
pathway (KEGG). Metabolites are listed by q-value. * Denotes p < 0.05 (significantly different) and ** p < 
0.01 (high significantly different). Abbreviations: TG, triglyceride; PC, phosphatidylcholine; LPC, 
lysophospholipid; DG, diacylglycerol; ChoE, cholesterol ester. 
 

Metabolite CON P407 p-value q-value FC VIP Pathway 

DG 36:4 1.53 ± 0.05 2.02 ± 0.03 <0.01** <0.01** 1.33 1.81 
Glycerolipid 
metabolism 

PC 38:4 14.02 ± 0.61 20.4 ± 0.88 <0.01** <0.01** 1.46 2.05 
Glycerophospholipid 

metabolism 

DG 34:3 0.2 ± 0.01 0.31 ± 0.02 <0.01** 0.01* 1.50 1.45 
Glycerolipid 
metabolism 

ChoE (17:0) 0.13 ± 0 0.16 ± 0.01 <0.01** 0.01* 1.28 1.79 Steroid biosynthesis 

PC 36:4 13.76 ± 0.61 17.73 ± 0.7 <0.01** 0.01* 1.29 1.81 
Glycerolipid 
metabolism 

ChoE (18:0) 0.12 ± 0.01 0.18 ± 0.01 <0.01** 0.02* 1.51 1.73 Steroid biosynthesis 

LPC 18:0 50.4 ± 1.83 58.86 ± 1.39 <0.01** 0.03* 1.17 1.88 
Glycerophospholipid 

metabolism 

DG 34:2 0.85 ± 0.04 1.05 ± 0.05 <0.01** 0.03* 1.24 1.71 
Glycerolipid 
metabolism 

TG 46:0 0.84 ± 0.05 1.16 ± 0.07 <0.01** 0.03* 1.37 1.21 
Glycerolipid 
metabolism 

ChoE (18:1) 2.52 ± 0.11 3.54 ± 0.25 <0.01** 0.03* 1.41 1.74 Steroid biosynthesis 

ChoE (16:0) 2.02 ± 0.09 2.39 ± 0.07 <0.01** 0.04* 1.18 1.7 Steroid biosynthesis 

 

3.4. Metabolomic profiling and biomarker identification of 

the hypertension rat model 
The metabolome of the hypertension rat model was composed by 128 

metabolites from plasma and 32 from urine. A preliminary univariate analysis was 

performed in plasma (Table S3) and urine data set (Table S4) to obtain a preliminary 

list of altered metabolites before multivariate analysis. On the one hand, 62 out 128 

plasma metabolites were significant altered between the groups after the MW test. 
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After the BH correction, 52 metabolites prevailed among the 62 metabolites (i.e., 

threonic acid, PCs, LPC, ChoEs, SMs, among other metabolites). On the other hand, 10 

out 32 urine metabolites were significantly different between groups after the MW 

test and 2 out 10 remain significative altered after de BH correction (i.e., fumarate and 

4-Guanidinobutanoate).  

The multivariate analysis presented differences in the unsupervised analysis 

(PCA) in the plasma data set (Figure S3) and urine data set (Figure S4). In this case, 

groups were separated by the PCA at the first components analyzed. In the plasma 

data set, the OPLS-DA model was able to differentiate between both groups (Figure 

2a). The fitness and prediction accuracy of the plasma model were established by the 

values of R2X(cum) = 0.493, R2Y(cum) = 0.95, and Q2Y(cum) = 0.826. Since the Q2Y value 

(0.826) was greater than the pQ2 value (0.01) (Figure 2b). Specifically, it was found 56 

plasma features with a VIP threshold of 1. In the urine data set, the OPLS-DA model 

was also able to differentiate between both groups (Figure 2c). The fitness and 

prediction accuracy of the plasma model were established by the values of R2X(cum) = 

0.38, R2Y(cum) = 0.905, and Q2Y(cum) = 0.613. Since the Q2Y value (0.6013) was greater 

than the pQ2 value (0.01) (Figure 2d). Specifically, it was found 14 urine features with 

a VIP threshold of 1. These results indicate that it is possible to predict if an animal is 

classified in the group of SHR or WKY based on the analysis of plasma and urine 

metabolomics. 

The metabolites selected as potential biomarkers considering the statistical 

analysis and the prediction power are constituted by 50 plasma metabolites and 2 

urine metabolites (Table 2) which are mainly implicated in lipid metabolism.  
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Figure 2. OPLS-DA of plasma and urine metabolomics of the SHR/WKY hypertension rat model. Green 
represents WKY group and orange SHR group. Plasma (a) and urine (c) X-score plot (OPLS-DA). The number 
of components and the cumulative R2X, R2Y and Q2Y are indicated below the plot. Plasma (b) and urine (d) 
significance diagnostic: The R2Y and Q2Y of the model are compared with the corresponding values 
obtained after random permutation of the y response. 
 
Table 4. Summary of the potential biomarkers of the SHR/WKY hypertension rat model in plasma and 
urine. The results are presented as the mean ± SEM per group (n = 8); summary of univariant analysis 
include p-value, q-value (pFDR) and FC (SHR/WKY); VIP values of OPLS-DA (multivariant analysis); and 
metabolism pathway (KEGG). Metabolites are listed by q-value. * Denotes p < 0.05 (significantly different) 
and ** p < 0.01 (high significantly different). Abbreviations: PC, phosphatidylcholine; LPC, lysophospholipid; 
ChoE, cholesterol ester; SM, sphingomyelin; DG, diacylglycerol. 
 

Metabolite WKY SHR p-value q-value FC VIP Pathway 

Threonic acid 3.19 ± 0.15 
1.07 ± 
0.07 

<0.01** <0.01** 0.34 1.62 
Ascorbate and 

aldarate 
metabolism 

PC 32:0 0.98 ± 0.03 
1.44 ± 
0.04 

<0.01** <0.01** 1.47 1.62 
Glycerophospholipid 

metabolism 

PC 36:4 30.51 ± 1.27 
43.46 
± 1.1 

<0.01** <0.01** 1.42 1.54 
Glycerophospholipid 

metabolism 

PC 34:1 5.36 ± 0.29 
8.87 ± 
0.37 

<0.01** <0.01** 1.66 1.53 
Glycerophospholipid 

metabolism 

LPC 16:1 e 0.13 ± 0 
0.18 ± 
0.01 

<0.01** <0.01** 1.38 1.49 
Glycerophospholipid 

metabolism 

ChoE (18:3) 1.45 ± 0.11 
3.05 ± 
0.22 

<0.01** <0.01** 2.10 1.59 Steroid biosynthesis 

ChoE (20:2) 3 ± 0.46 
6.58 ± 
0.21 

<0.01** <0.01** 2.20 1.44 Steroid biosynthesis 

SM 34:1 22.65 ± 1.16 
31.41 
± 1.03 

<0.01** <0.01** 1.39 1.53 
Sphingolipid 
metabolism 
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SM 34:2 1.72 ± 0.05 
2.36 ± 
0.09 

<0.01** <0.01** 1.37 1.56 
Sphingolipid 
metabolism 

SM 41:1 7.36 ± 0.16 
8.87 ± 

0.2 
<0.01** <0.01** 1.20 1.58 

Sphingolipid 
metabolism 

SM 41:2 1.57 ± 0.07 
2.09 ± 
0.05 

<0.01** <0.01** 1.33 1.52 
Sphingolipid 
metabolism 

ChoE (22:5) 1.8 ± 0.29 
3.78 ± 
0.19 

<0.01** <0.01** 2.10 1.43 Steroid biosynthesis 

PC 34:0 0.5 ± 0.02 
0.63 ± 
0.01 

<0.01** <0.01** 1.26 1.47 
Glycerophospholipid 

metabolism 

SM 40:2 1.03 ± 0.05 
1.36 ± 
0.04 

<0.01** <0.01** 1.32 1.50 
Sphingolipid 
metabolism 

ChoE (22:4) 18.21 ± 2.96 
37.47 
± 1.3 

<0.01** <0.01** 2.06 1.37 Steroid biosynthesis 

PC 30:0 0.06 ± 0 
0.11 ± 
0.01 

<0.01** <0.01** 1.84 1.46 
Glycerophospholipid 

metabolism 

ChoE (20:4) 64.55 ± 4.42 
97.45 
± 5.14 

<0.01** <0.01** 1.51 1.36 Steroid biosynthesis 

ChoE (16:1) 0.28 ± 0.03 
0.62 ± 
0.06 

<0.01** <0.01** 2.17 1.42 Steroid biosynthesis 

SM 42:1 23.82 ± 0.55 
28.34 
± 0.76 

<0.01** <0.01** 1.19 1.46 
Sphingolipid 
metabolism 

Glutamine 0.23 ± 0.02 
0.09 ± 
0.02 

<0.01** <0.01** 0.49 1.31 
Arginine 

biosynthesis 

LPC 16:0 e 0.37 ± 0.02 
0.46 ± 
0.01 

<0.01** <0.01** 0.41 1.39 
Glycerophospholipid 

metabolism 

PC 32:1 0.57 ± 0.07 
1.26 ± 
0.13 

<0.01** <0.01** 1.24 1.38 
Glycerophospholipid 

metabolism 

PC 32:2 0.24 ± 0.02 
0.37 ± 
0.02 

<0.01** <0.01** 2.19 1.30 
Glycerophospholipid 

metabolism 

PC 38:4 33.55 ± 1.24 
40.71 
± 1.08 

<0.01** <0.01** 1.55 1.34 
Glycerophospholipid 

metabolism 

PC 40:5 1.26 ± 0.05 
1.67 ± 
0.07 

<0.01** <0.01** 1.21 1.37 
Glycerophospholipid 

metabolism 

SM 32:1 0.23 ± 0.02 
0.32 ± 
0.01 

<0.01** <0.01** 1.32 1.34 
Sphingolipid 
metabolism 

Asparagine 0.43 ± 0.04 
0.24 ± 
0.03 

<0.01** <0.01** 1.36 1.28 
Alanine, aspartate 

and glutamate 
metabolism 

SM 36:2 0.52 ± 0.01 
0.67 ± 
0.03 

<0.01** 0.01* 0.55 1.49 
Sphingolipid 
metabolism 

Tyrosine 0.91 ± 0.07 
0.54 ± 
0.06 

<0.01** 0.01* 1.30 1.23 

Phenylalanine, 
tyrosine and 
tryptophan 
metabolism 

LPC 16:0 88.34 ± 3.31 
105.66 
± 2.98 

<0.01** 0.01* 0.59 1.26 
Glycerophospholipid 

metabolism 

PC 31:0 0.06 ± 0 
0.08 ± 

0 
<0.01** 0.01* 1.20 1.26 

Glycerophospholipid 
metabolism 

DG 36:4 3.45 ± 0.19 
2.63 ± 
0.06 

<0.01** 0.01* 1.32 1.26 Lipid metabolism 

SM 33:1 0.45 ± 0.01 
0.51 ± 
0.01 

<0.01** 0.01* 0.76 1.37 
Sphingolipid 
metabolism 

Glyceric acid 0.84 ± 0.04 
1.15 ± 
0.08 

<0.01** 0.02* 1.15 1.29 
Glycine, serine and 

threonine 
metabolism 
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ChoE (18:2) 19.66 ± 1.2 
25.35 
± 1.24 

0.01* 0.02** 1.38 1.17 Steroid biosynthesis 

PC 33:1 0.09 ± 0.01 
0.13 ± 
0.01 

0.01* 0.02* 1.29 1.09 
Glycerophospholipid 

metabolism 

LPC 18:1 16.17 ± 0.98 
20.26 
± 0.86 

0.01* 0.02* 1.41 1.07 
Glycerophospholipid 

metabolism 

Serine 0.48 ± 0.05 
0.66 ± 
0.03 

0.01* 0.02* 1.25 1.04 
Glycine, serine and 

threonine 
metabolism 

Glycine 7.35 ± 0.13 
8.39 ± 
0.29 

0.01* 0.03* 1.38 1.18 
Glycine, serine and 

threonine 
metabolism 

3-hydroxybutiric 
acid 

2.76 ± 0.3 
1.76 ± 
0.08 

0.01* 0.03* 1.14 1.08 
Synthesis and 
degradation of 
ketone bodies 

Beta-alanine 0.11 ± 0.01 
0.16 ± 
0.01 

0.01* 0.03* 0.64 1.19 
Pyrimidine 

metabolism 

ChoE (22:6) 3.57 ± 0.2 
4.58 ± 
0.27 

0.01* 0.03* 1.45 1.17 Steroid biosynthesis 

Citric acid 4.88 ± 0.21 
4.18 ± 
0.07 

0.01* 0.03* 1.28 1.07 
Citrate cycle (TCA 

cycle) 

Ribose 15.87 ± 1.61 
31.01 
± 4.47 

0.01* 0.03* 0.86 1.23 
Pentose phosphate 

pathway 

SM 40:1 7.56 ± 0.27 
8.69 ± 
0.27 

0.01* 0.03* 1.95 1.27 
Sphingolipid 
metabolism 

PC 40:4 0.35 ± 0.02 
0.51 ± 
0.05 

0.01* 0.03* 1.15 1.21 
Glycerophospholipid 

metabolism 

DG 36:2 1.19 ± 0.06 
1.52 ± 

0.1 
0.01* 0.03* 1.45 1.03 Lipid metabolism 

SM 38:1 0.71 ± 0.04 
0.85 ± 
0.03 

0.02* 0.04* 0.84 1.25 
Sphingolipid 
metabolism 

Valine 1.8 ± 0.05 
1.55 ± 
0.07 

0.02* 0.04* 1.28 1.06 
Valine, leucine and 

isoleucine 
metabolism 

ChoE (17:0) 0.03 ± 0.01 
0.07 ± 
0.01 

0.02* 0.04* 1.19 0.95 Steroid biosynthesis 

Fumarate (Urine) 5.62 ± 0.34 
3.11 ± 
0.42 

<0.01** 0.01* 0.55 1.63 
Citrate cycle (TCA 

cycle) 

4-
Guanidinobutanoate 

(Urine) 
6.1 ± 1.23 

13.17 
± 0.33 

<0.01** 0.01* 2.16 1.86 
Arginine and proline 

metabolism 

 
 

3.5. Characteristics of the human population 
Subjects were divided according to two independent criteria: (1) the 

hyperlipidemia and the hypertension risk; (2) gender as sex-differences were 

observed. In this sense, Table 3 shows the characterisation of the subjects divided by 

the hyperlipidaemia risk and hypertension risk that includes age, body mass index 

(BMI), blood pressure levels (SPB/DBP), TG, TC, LDL, HDL, APOB and LPL activity. 

Regarding the risk of hyperlipidemia, the increase in TG correlates with the significant 

decrease in HDL in both genders. Additionally, an increase in apolipoprotein B-100 

(APOB) was observed in the moderate hyperlipidaemic man, as it is widely known that 
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lipids levels are lower in women than in men. Those facts correspond with our results. 

The other parameters were similar between the normal and moderate 

hyperlipidaemic men and women groups. Regarding the risk of hypertension, the 

population showing moderate risk to develop hypertension were older than the 

population without risk. Both genders presented significant differences in SBP and 

DBP. Thus, men were also presenting a significant increase in the BMI, TC, LDL and 

APOB, while woman were showing a significant increase in LPL activity.  
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3.6. Hyperlipidemia biomarkers in the human population  
The hyperlipidemia biomarker’s validation was focused on the above preselected 

metabolites in the hyperlipidemic rat model to check their discriminatory potential 

(Table S5). In this sense, the altered metabolites in both species were higligted in 

Figure 3. Specifically, ChoE (17:0) levels were increased 4-fold as well as DG 34:2 levels 

that were also increased of moderate group. Thus, ChoE (17:0) and DG 34:2 were 

discriminative in hiperlipidemia across species and gender. Furthermore, TG 46:0 was 

increased almost 2-fold in moderate group, which is significantly different in man and 

presents a tendency in woman. Following the trend of TG 46:0, PC 36:4 and PC 38:4 

were significantly increased in moderate in man. Other potential DG is DG 34:3 that 

was higher in moderate hyperlipidemic, and the increase was more pronounced in 

woman. Regarding ChoEs, ChoE (18:0) was the only metabolite significantly decreased 

in the case of woman. 

 

Figure 3. Changes in the preselected metabolites to evaluate hyperlipidaemia in human plasma. The 
results are presented as the mean ± SEM per gender (men and women) and the level of TG (normal and 
moderate). The statistical comparisons among groups were conducted using one-way ANOVA and the post-
hoc Tukey’s test. * Denotes p < 0.1 (tendency), ** p <0.05 (significantly different) and *** p < 0.01 (high 
significantly different). Abbreviations: DG, diacylglycerol; TG, triglyceride; ChoE, cholesterol ester; PC, 
phosphatidylcholine. 
 

3.7. Hypertension biomarkers in the human population 
The hypertension biomarker’s validation was focused on the above preselected 

metabolites in the hypertension rat model to doble check their discriminatory 

potential (Table S6). In men, 14 metabolites differentiate between normal and 

moderate risk to suffer hypertension, while in women this number decrease to 8 

metabolites (Figure 4). Specifically, LPC 16:0 was decreased in moderate hypertensive 

individuals. Additionally, the metabolites related to SM metabolism were altered in 

the population with higher risk to suffer hypertension. 
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Figure 4. Changes in the preselected metabolites to evaluate hypertension in human plasma. The results 
are presented by the mean ± S.E.M per sex (men and women) and the level of hypertension risk (normal 
and moderate). The statistical comparisons among groups were conducted using one-way ANOVA and the 
post-hoc Tukey’s test. * Denotes p < 0.1 (tendency), ** p < 0.05 (significantly different) and *** p < 0.01 
(high significantly different). Abbreviations: PC, phosphatidylcholine; SM, sphingomyelin; ChoE, cholesterol 
ester. 
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4. Discussion 
This study explored the metabolic signature associated with hyperlipidemia and 

hypertension across species in preclinical and clinical studies. On the one hand, 11 

metabolites, involved in glycerolipid, glycerophospholipid and steroid metabolism, 

were identified as potential biomarkers of hyperlipidemia in the preclinical model. 

Translating those results to the clinic, 5 metabolites were consistent for moderate 

hyperlipidemia for men and 4 for woman. On the other hand, 52 metabolites, involved 

in glycerophospholipid, steroid and sphingolipid metabolism among others, were 

identified as potential biomarkers of hypertension in the preclinic model. In the clinic 

study, 7 metabolites were considered potential biomarkers for moderate 

hypertension for men and 6 for woman. The identified and proposed as potential 

biomarkers were lipid metabolites, mainly involved in lipid signalling pathway, in 

hyperlipidemia and hypertension. 

4.1. Metabolic profiling in hyperlipidemia 
To date, the single dose of 150 mg/kg P407 is the lowest dose used in the 

literature [11–18,37] that is capable to induce low levels of hyperlipidemia and the 

subsequent changes in the metabolic signature. The mechanism of action was 

effective inhibiting LPL as it could be observed a decrease of this lipase in the P407 

group, which is characteristic of P407 models [11]. The main characteristics defining 

this early hyperlipidemia model were slightly high plasma levels of TG and TC in the 

P407 group, without reaching values described in other models of P407, highlighting 

that the classical biomarkers were 10-fold lower than other studies with doses 

between 300 mg/Kg to 1500 mg/kg [14,16] and single or multiple injections [38–40]. 

Interestingly, these clinical biomarkers do not reach the characteristic elevated levels 

associated with pathological states [1]. To complete the overall picture of the model, 

carbohydrate alterations, inflammation and oxidative stress were not detected in the 

hyperlipidemic group, which are also associated to the development of CVD and are 

considered risk factors for NCDs [41,42]. These allows us to consider this model 

suitable for monitoring and explore potential biomarkers in the hyperlipidemia 

prodromal stage. In this line, the healthy population with moderate risk to suffer 

hyperlipidemia presented higher levels of TG, as well as lower levels of HDL compared 

to the subjects with normal risk in concordance with the guidelines [1]. Those 

parameters allowed us to discriminate between individual with normal and moderate 

risk to suffer hyperlipidaemia, with low level of overweight according the BMI (24.9 to 

39.9 BMI), which is not the best index to assess the health status [43]. However, the 

BMI together with other classical biomarkers lack the enough sensitivity to 

discriminate between the development of early risk factors and healthy stages. 

 Focusing on the need of the assessment of metabolic health and offering an 

alternative to BMI index and other classical determinations, metabolomic profiling has 

been increasing as a tool for early assessment and prevention of early hyperlipidaemia 
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among others risk factors as hypertension [44]. In the hyperlipidemic animal model, 

many specific lipids were found to be up regulated in plasma (e.g., DGs, PCs, ChoEs, 

LPCs and TGs), these specific lipids may help to elucidate key biomarkers for the early 

assessment of prodromal stages of hyperlipidemia. Translating those lipids to the 

healthy population, some DGs, TG, ChoEs and PCs stand out as discriminatory lipids 

across species. The vast majority of long-chain DGs were increased in hyperlipidemic 

subjects in concordance with other metabolomic studies [26]. In fact, those specific 

lipids are precursors of TGs which are the main lipids determined in classical 

determinations characteristics of hyperlipidemia, thus those results suggests that the 

determination of DGs are key metabolites of prodromal lipid alteration [45]. In this 

case, DG 34:2 was the metabolite with the highest discriminative power across species 

and genera. In this line, DG 34:4 was found elevated in preclinical and clinical studies 

related to hyperlipidemia, as the case of animals with transplanted microbiota from 

cafeteria diet induced-obesity [46] and patients with MetS [47]. In the case of other 

specific DGs, woman presented more differences regarding DGs than men (DG 34:3 

and DG 36:4). Despite, men and women presented the same tendencies, the 

magnitude and tendency of some metabolites were different due to gender-

differences. In fact, women have a higher percent body fat of their body weight 

compared to men from puberty onward due to physiological events and genetic 

composition and women also tend to gain more fat during adult life than men. 

Additionally, women may experience persistent increases in body weight and fat 

distribution after pregnancy or gain weight due to menopause [43]. This data helps to 

elucidate gender-differences in lipid metabolism, which are complex and involve 

hormonal effects that are distributed across tissues and involve effects in gene 

expression of X-chromosome [48].  

Following with TGs, the total sum of TG was higher in the hyperlipidaemic 

animals, although only the specific TG 46:0 presented a significantly increased in the 

model. In previous studies, several long chain TGs were increased in hyperlipidaemic 

subjects [49], thus, it was expected to obtain more individual TG altered in this model, 

in contrast, precursors of TG (DGs) had presented greater impact in early stages 

instead the levels of specific TGs. In different studies focused on hyperlipidemia, 

several ChoEs were increased as the main characters of fatty acid metabolism [26,50]. 

A number of experimental investigations have revealed that unsaturated and 

saturated fatty acids metabolism are disturbed in hyperlipidemia as well as fatty acids 

with carbon chain lengths from 14 to 24 carbon atoms [51,52]. According those 

previous studies, ChoE 17:0 was increased almost 3-fold in the P407 model in line with 

other studies [53]. In prior metabolomic characterization, specific PCs (PC 36:4 and PC 

38:4) has been specifically reported as potential biomarkers in hyperlipidemia and 

healthy subjects [26,49,50,54]. Elevated PCs, which are precursors of DGs implicated 

in lipid signaling, can cause the autoimmune response and inflammation in 

hyperlipidemia-related diseases [55].  
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To complement the metabolic profiling of hyperlipidemia, urine metabolome was 

elucidated by NMR approaches, highlighting that TMAO and PAG were decreased by 

a half and increased almost twice in the P407 group, correspondently. Interestingly, 

TMAO and PAG were key metabolites in urine produced by gut bacteria and the 

increase of those metabolites are related to obesity, CVD and MetS [56][57]. 

Nevertheless, some limitations should be considered in the urine metabolic profiling: 

(1) the collection method implicated 6 hours of collection with an hour of fasting, 

while in plasma all the samples were collected at the same time with 7 hours of 

fasting; (2) the NMR method is often 10 to 100 times less sensitive compared to mass 

spectroscopy [58]. Thus, there is a need to optimize the procedure to collect urine and 

perform further experiments with metabolomic approaches more sensitive. 

Consequently, only the plasma metabolites were studied in humans.  

4.2. Metabolic profiling in hypertension 
In hypertension research, the SHR animal model has been used as the popular 

genetic model to study hypertension, thus, in the current study, we interrogated this 

model as their pathophysiological processes have been recognized to be related to 

essential hypertension [19]. The SHR rats blood pressure gradually rises with aging 

and becomes significantly increased after approximately 17-19 weeks of age 

compared with healthy matched normotensive pairs (WTK) [19]. The characterization 

of SHR rats presented several differences disturbances in body weight and plasma 

parameters corresponding to hypercholesterolemia, carbohydrate dysfunction and 

oxidative stress which are previously described in this model [59]. In line with the SHR 

model, individual volunteers presenting moderate risk were older than those without 

apparent risk of hypertension, due to this condition is a metabolic disorder being the 

actual causes unclear though the risk appears to increase with age, usually influenced 

by unhealthy lifestyles, obesity and physical inactivity [2]. In the case of men, the risk 

to suffer hypertension is associated with overweight, while in women these 

differences were not observed presenting low degree of overweight in both groups 

regarding our clinical studies [48].  

Several plasma metabolites from the SHR model were significantly altered 

including lipids (e.g., PCs, LPCs, ChoEs, SMs), amino acids (threonic acid, glutamine, 

asparagine, tyrosine, serine, glycine, beta-alanine, valine), 3-hydroxybutiric acid, citric 

acid and ribose. In consistence with previous research, those metabolites were found 

to be significantly altered in SHR compared to WKY rats [60]. In addition, fumarate and 

4-guanidinobutanoate, which are related to urea metabolism, were altered in urine. 

Urea has become an independent predictor of hypertension, and those metabolites 

are implicated in the urea metabolism and could be key biomarkers for hypertension 

in early stages [45]. However, the efforts to find biomarkers in humans remain in 

plasma biofluid due to the limitations previously outlined in hyperlipidemia. 

Specifically, the remaining metabolites were only lipids discarding amino acids and 
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carbohydrates that were related to other risk factors associated to CVD, which were 

also pointed by other studies without clarifying the nature of the alteration [60].  

In our study, sphingolipids and glycerolipids were associated with blood pressure, 

supporting the major role of sphingolipid and glycerolipid metabolism in blood 

pressure regulation [61,62]. Interestingly, an increasing number of studies has 

emerged revealing associations of long-chain circulating sphingolipids (i.e., more than 

30 total carbons) with pathological conditions as hypertension or further 

complications as atherosclerosis and CVD [63]. The elevation of vascular SMs in SHR 

induces a marked endothelium-dependent release of thromboxane A2 that may 

contribute to endothelial dysfunction in hypertension [64]. Integrating that tendency 

with our results, the main significantly altered circulating metabolites were 

unsaturated long-chain SMs in both rats and human studies including men and 

woman: (1) SM 34:1, SM 34:2, SM 40:1, SM 41:1 were up-regulated in men as in the 

hypertensive rat model; (2) SM 32:1, SM 33:1, SM 38:1, SM 40:1, SM 41:1 were down-

regulated in woman presenting a different bias compared to the rat model; (3) SM 

40:1 and SM 41:1 were different in all the studies and genera. Previous investigations 

had focus on gender differences in the association of SMs concluding that SMs 

concentrations increase more rapidly in women than in men, although younger age 

women have lower levels of SMs than men and this fact tends to reverse in older age 

[65]. This fact supports the idea of performing hypertension studies and treatment 

strategies for hypertension and CVD that are tailored according to sex and age [66].  

In preceding studies, higher levels of PCs and LPCs were identified in hypertensive 

subjects compared with normal controls in consistency with our results [26]. In 

contrast to those preliminary results, the population with moderate hypertension risk 

presented a tendency to decrease the levels of PCs (e.g., PC 36:4 and PC 40:0) and a 

significantly decrease of LPC 16:0 e. In addition, LPC potentially plays an important 

role in atherosclerosis and inflammatory diseases by altering various functions in a 

number of cell-types [67]. In the rat model, ChoEs were up regulated in SHR animals 

compared to the normotensive group. In the human population, the up regulation 

prevails in ChoE (18:2) and ChoE (22:6) in men, while the tendency is to decrease in 

women as in the case of ChoE (22:6). Furthermore, glyceric acid was up regulated in 

the animal model and a tendency to increase was shown in humans. This metabolite 

is obtained from the oxidation of glycerol and it is related to carbohydrate metabolism 

alterations in hypertension playing an important role through sodium retention, renal 

tubular sodium reabsorption, sympathetic nervous system and adverse effects of anti-

hypertensive drugs [45]. One ketone body, the 3-hydroxybutiric acid was significantly 

down-regulated in the animal model and in men in the line with other studies 

identifying a protective effect of this ketone body on salt-sensitive hypertension [68]. 
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4.3. Comparison between hyperlipidemia and hypertension 
The metabolic profiling of hyperlipidemia and hypertension confirm the clear link 

between these metabolism disorders which have been described by many 

epidemiological studies in different diseases [26]. Indeed, prospective cohorts have 

reported that hyperlipidemia can serve as a predictor for future risk of hypertension 

[69,70], as well as the treatment of hyperlipidemia has been reported to be beneficial 

on blood pressure and vice versa [5]. The fact that the coexistence of the two risk 

factors has more than an additional adverse effect indicate that hyperlipidemia and 

hypertension may develop and progress both independently and collaborative [3–5]. 

We observed in our approach between species that the remaining metabolites 

were lipids, mainly implicated in signalling pathways, discarding other metabolites 

described in other studies as amino acids or intermediate metabolites of the TCA 

cycle. Dysregulation of the signalling pathway contribute to the pathogenesis of 

human diseases as CVDs and MetS [71]. In fact, the lipid signalling pathway consists 

on the breakdown of SMs that generate PCs and LPCs, which may accelerate the 

formation of DGs and the posterior synthesis of TGs, the key lipids implicated in lipid 

alteration in hyperlipidemia and hypertension [45]. Thus, direct metabolic similarities 

include up-regulated glycerolipids implicated in signalling pathways, while the 

changing trends in some lipids suggest different mechanisms of hyperlipidemia and 

hypertension together with inflammation and oxidative stress that has been 

implicated in multiple pathologies.  

5. Conclusions 
To sum up, we systematically explored the metabolic signatures associated with 

a prodromal hyperlipidemia animal model, achieved successfully by a single low dose 

of P407 (150 mg/kg) in male Wistar rats, and an hypertense animal model, which is 

the extensively used the SHR model and its normotensive control (WKY). Due to the 

key role of lipids in the development of different multifactorial diseases, 

hyperlipidemia and hypertension are considerate primary risk factors being 

asymptomatically for years. Therefore, we propose in this article an early 

hyperlipidemia and hypertension metabolic profile across species in plasma using 

UHPLC/GC-qTOF approach, discarding urine as a source of metabolites due to the high 

variability. In hyperlipidemia, 11 metabolites were identified as potential biomarkers 

of the P407-induced hyperlipidaemic rat model. Translating those results to the clinic, 

5 metabolites were considered potential biomarkers for men [i.e., DG 34:2, TG 46:0, 

ChoE (17:0), PC 36:4 and PC 38:4] and 4 for woman [i.e., DG 34:2, DG 34:3, ChoE (17:0), 

ChoE (18:0)]. In hypertension, 52 metabolites were identified as potential biomarkers 

of SHR/WTK model. In the clinical study, 7 metabolites were considered potential 

biomarkers for moderate hypertension for men [i.e., SM 34:1, SM 34:2, SM 40:1, SM 

41:1, LPC 16:0 e, ChoE (22:6) and 3-hydroxybutiric acid] and 6 for woman (i.e., SM 

32:1, SM 33:1, SM 38:1, SM 40:1, SM 41:1 and LPC 16:0 e). This metabolic profile could 
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assist the exhaustive diagnosis and management of lipid and blood pressure disorders 

since they provide information about the stage of the alteration and, furthermore, 

allow researchers to determine the stage of the risk factor. Further extensive 

validation of this metabolic profile in different cluster of subjects are needed to verify 

the suitability of the biomarkers described here for use in the general population. In 

the future, prospective cohort studies deserve to be conducted to establish the causal 

relationship between metabolite biomarkers and hyperlipidaemia/hypertension.  
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Annex. Supplementary Material of Manuscript 2 

Supplementary table 1. Plasma univariate analysis of the P407-induced hyperlipidemic rat model. 139 
metabolites are presented by the mean ± S.E.M per group; the summary of univariant analysis includes p-
value, q-value (pFDR) and FC (P407/CON). Metabolites are listed by q-value. * Denotes p < 0.1 (tendency), 
** p < 0.05 (significantly different) and *** p < 0.01 (high significantly different). DG, diacylglycerol; PC, 
phosphatidylcholine; ChoE, cholesterol ester; LPC, lysophospholipid; TG, triglyceride; SM, sphingomyelin. 
 

Metabolite CON P407 p-value q-value FC 

DG 36:4 1.53 ± 0.05 2.02 ± 0.03 <0.01*** <0.01*** 1.33 

PC 38:4 14.02 ± 0.61 20.4 ± 0.88 <0.01*** <0.01*** 1.46 

DG 34:3 0.2 ± 0.01 0.31 ± 0.02 <0.01*** 0.01** 1.50 

ChoE (17:0) 0.13 ± 0 0.16 ± 0.01 <0.01*** 0.01** 1.28 

PC 36:4 13.76 ± 0.61 17.73 ± 0.7 <0.01*** 0.01** 1.29 

ChoE (18:0) 0.12 ± 0.01 0.18 ± 0.01 <0.01*** 0.02** 1.51 

LPC 18:0 50.4 ± 1.83 58.86 ± 1.39 <0.01*** 0.03** 1.17 

DG 34:2 0.85 ± 0.04 1.05 ± 0.05 <0.01*** 0.03** 1.24 

TG 46:0 0.84 ± 0.05 1.16 ± 0.07 <0.01*** 0.03** 1.37 

ChoE (18:1) 2.52 ± 0.11 3.54 ± 0.25 <0.01*** 0.03** 1.41 

ChoE (16:0) 2.02 ± 0.09 2.39 ± 0.07 <0.01*** 0.04** 1.18 

PC 36:2 11.88 ± 0.63 14.81 ± 0.67 <0.01*** 0.06* 1.25 

ChoE (20:4) 65.98 ± 1.98 74.78 ± 2.06 <0.01*** 0.06* 1.13 

PC 31:0 0.03 ± 0 0.04 ± 0 <0.01*** 0.06* 1.19 

TG 54:6 15.66 ± 1.84 32.62 ± 4.94 <0.01*** 0.07* 2.08 

PC 34:3 e 0.02 ± 0 0.02 ± 0 0.01** 0.13 1.00 

TG 48:0 1.26 ± 0.11 2.19 ± 0.31 0.01** 0.13 1.73 

TG 46:2 0.37 ± 0.03 0.5 ± 0.04 0.01** 0.13 1.34 

Fructose 0.4 ± 0.02 0.34 ± 0.01 0.01** 0.13 0.86 

TG 54:4 10.76 ± 1.6 25.48 ± 5.24 0.02** 0.13 2.37 

TG 54:2 0.69 ± 0.07 1.36 ± 0.24 0.02** 0.13 1.97 

TG 52:1 0.65 ± 0.06 1.22 ± 0.21 0.02** 0.13 1.88 

TG 50:2 10.73 ± 1.62 22 ± 4.08 0.02** 0.13 2.05 

TG 50:1 3.12 ± 0.45 6.46 ± 1.23 0.02** 0.13 2.07 

PC 35:2 0.35 ± 0.02 0.42 ± 0.02 0.02** 0.13 1.19 

TG 54:3 3.84 ± 0.45 7.75 ± 1.47 0.02** 0.13 2.02 

TG 52:3 40.05 ± 6.14 81.4 ± 15.33 0.02** 0.13 2.03 

TG 50:0 0.42 ± 0.03 0.74 ± 0.12 0.02** 0.13 1.77 

PC 34:0 0.29 ± 0.01 0.32 ± 0.01 0.03** 0.13 1.13 
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TG 54:7 6.06 ± 0.92 12.67 ± 2.51 0.03** 0.13 2.09 

TG 52:2 10.05 ± 1.59 20.73 ± 4.05 0.03** 0.13 2.06 

PC 38:6 e 0.05 ± 0 0.04 ± 0 0.03** 0.14 0.83 

Phenylalanine 0.58 ± 0.04 0.44 ± 0.04 0.03** 0.14 0.77 

PC 40:4 0.14 ± 0.01 0.18 ± 0.01 0.03** 0.14 1.26 

TG 51:2 0.76 ± 0.07 1.34 ± 0.24 0.03** 0.15 1.77 

TG 52:5 8.05 ± 1.17 16.74 ± 3.57 0.04** 0.15 2.08 

TG 50:4 1.7 ± 0.27 3.21 ± 0.61 0.04** 0.15 1.89 

LPC 18:2 33.17 ± 1.34 29.66 ± 0.86 0.04** 0.15 0.89 

SM 36:1 1.09 ± 0.05 0.93 ± 0.05 0.04** 0.15 0.85 

TG 52:6 1.25 ± 0.2 2.32 ± 0.45 0.04** 0.16 1.87 

TG 48:2 1.4 ± 0.15 2.18 ± 0.33 0.05** 0.16 1.56 

LPC 16:0 e 0.51 ± 0.02 0.47 ± 0.01 0.05** 0.18 0.91 

ChoE (22:4) 3.88 ± 0.24 4.49 ± 0.17 0.05** 0.18 1.16 

TG 50:3 5.61 ± 0.98 10 ± 1.87 0.05** 0.18 1.78 

Malic Acid 0.38 ± 0.05 0.28 ± 0.02 0.06* 0.20 0.74 

PE 36:4 4.39 ± 0.37 5.73 ± 0.6 0.07* 0.23 1.30 

TG 48:3 0.48 ± 0.05 0.68 ± 0.09 0.07* 0.23 1.42 

ChoE (20:2) 0.79 ± 0.05 0.93 ± 0.06 0.08* 0.23 1.18 

SM 39:1 0.14 ± 0.01 0.11 ± 0.01 0.08* 0.23 0.78 

Hydroxyproline 0.87 ± 0.08 1.1 ± 0.1 0.08* 0.24 1.27 

Lactic Acid 7.79 ± 0.31 6.92 ± 0.39 0.09* 0.25 0.89 

2-hydroxyglutaric 0.54 ± 0.05 0.44 ± 0.03 0.10 0.27 0.82 

LPC 16:1 e 0.14 ± 0.01 0.13 ± 0 0.10 0.27 0.89 

Threonine 1.18 ± 0.08 1.01 ± 0.05 0.11 0.28 0.86 

Beta-Alanine 0.05 ± 0 0.06 ± 0.01 0.11 0.28 1.24 

ChoE (22:5) 0.58 ± 0.07 0.71 ± 0.03 0.11 0.28 1.23 

SM 42:3 4.71 ± 0.28 4.15 ± 0.19 0.11 0.28 0.88 

TG 48:1 1.63 ± 0.16 2.18 ± 0.3 0.12 0.29 1.34 

PC 38:3 0.78 ± 0.09 0.97 ± 0.08 0.13 0.30 1.24 

Lysine 0.66 ± 0.04 0.76 ± 0.05 0.13 0.30 1.15 

Alpha-Tocopherol 0.66 ± 0.05 0.55 ± 0.05 0.13 0.30 0.84 

TG 46:1 0.68 ± 0.07 0.84 ± 0.07 0.13 0.30 1.23 

LPC 18:0 e 0.1 ± 0 0.09 ± 0 0.14 0.31 0.92 

Glycolic Acid 2.99 ± 0.13 2.68 ± 0.16 0.14 0.31 0.90 

Alpha-Ketoglutarate 1.12 ± 0.05 1 ± 0.06 0.15 0.32 0.90 
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LPC 20:0 0.29 ± 0.02 0.33 ± 0.02 0.15 0.32 1.12 

Glyceric Acid 1.15 ± 0.1 0.96 ± 0.08 0.16 0.33 0.84 

3-Hydroxybutiric Acid 1.61 ± 0.08 1.44 ± 0.08 0.15 0.33 0.90 

Methionine 0.1 ± 0.01 0.12 ± 0.01 0.17 0.35 1.15 

PC 36:2 e 0.01 ± 0 0.02 ± 0 0.17 0.35 1.25 

PC 38:4 e 0.04 ± 0 0.05 ± 0 0.18 0.35 1.12 

LPC 18:1 13.89 ± 0.48 13.02 ± 0.42 0.18 0.35 0.94 

Glucose-6-phosphate 0.15 ± 0.01 0.18 ± 0.02 0.19 0.35 1.21 

Proline 0.24 ± 0.01 0.27 ± 0.01 0.19 0.35 1.09 

Glycerol 3.68 ± 0.22 4.2 ± 0.32 0.19 0.35 1.14 

PC 33:1 0.06 ± 0 0.07 ± 0 0.20 0.36 1.13 

SM 35:1 0.16 ± 0.01 0.15 ± 0.01 0.20 0.36 0.90 

SM 42:2 9.81 ± 0.63 8.8 ± 0.46 0.21 0.37 0.90 

Glycine 2.02 ± 0.07 2.16 ± 0.09 0.22 0.38 1.07 

Alanine 0.31 ± 0.04 0.39 ± 0.05 0.22 0.38 1.25 

DG 34:1 1.02 ± 0.04 1.11 ± 0.06 0.22 0.38 1.09 

PC 32:0 0.59 ± 0.02 0.62 ± 0.01 0.24 0.41 1.06 

SM 42:1 13.11 ± 0.53 12.31 ± 0.41 0.25 0.41 0.94 

ChoE (18:2) 16.99 ± 0.99 18.25 ± 0.4 0.25 0.41 1.07 

Glucose 0.71 ± 0.01 0.75 ± 0.03 0.25 0.41 1.06 

Asparagine 0.15 ± 0.02 0.18 ± 0.01 0.26 0.42 1.18 

Fructose-6-phosphate 0.15 ± 0.02 0.18 ± 0.02 0.28 0.44 1.20 

PC 38:5 e 0.08 ± 0.01 0.09 ± 0 0.28 0.44 1.10 

SM 38:1 0.47 ± 0.02 0.44 ± 0.02 0.28 0.44 0.93 

Serine 0.26 ± 0.01 0.29 ± 0.03 0.29 0.44 1.13 

SM 32:1 0.22 ± 0.01 0.2 ± 0.01 0.29 0.44 0.94 

SM 34:2 1.53 ± 0.08 1.44 ± 0.02 0.29 0.44 0.94 

Glutamic Acid 0.1 ± 0.01 0.11 ± 0 0.29 0.44 1.09 

PC 30:0 0.04 ± 0 0.04 ± 0 0.30 0.45 1.07 

SM 43:1 0.97 ± 0.04 0.92 ± 0.04 0.31 0.46 0.94 

PC 32:1 0.29 ± 0.03 0.26 ± 0.01 0.36 0.51 0.89 

PC 36:0 0.07 ± 0 0.07 ± 0 0.38 0.54 1.07 

PC 40:5 0.16 ± 0.02 0.19 ± 0.02 0.40 0.56 1.15 

PC 36:3 e 0.05 ± 0 0.05 ± 0 0.40 0.56 1.07 

ChoE (18:3) 1.32 ± 0.08 1.4 ± 0.06 0.41 0.56 1.06 

SM 34:1 15.83 ± 0.76 15.09 ± 0.48 0.42 0.56 0.95 
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LPC 15:0 0.91 ± 0.04 0.87 ± 0.02 0.42 0.56 0.96 

PC 34:1 e 0.1 ± 0.01 0.1 ± 0 0.42 0.56 0.94 

SM 41:1 3.54 ± 0.17 3.37 ± 0.13 0.45 0.60 0.95 

PC 32:2 0.19 ± 0.01 0.2 ± 0.01 0.46 0.60 1.06 

Histidine 0.12 ± 0.01 0.14 ± 0.03 0.46 0.60 1.18 

Citric Acid 3.87 ± 0.11 3.75 ± 0.12 0.47 0.61 0.97 

SM 36:2 0.4 ± 0.02 0.38 ± 0.02 0.48 0.62 0.96 

PC 42:4 e 0.01 ± 0 0.01 ± 0 0.50 0.63 1.25 

PC 34:1 3.59 ± 0.21 3.78 ± 0.18 0.50 0.64 1.05 

SM 40:1 3.3 ± 0.16 3.16 ± 0.13 0.51 0.64 0.96 

Pyruvic Acid 15.87 ± 1.01 14.88 ± 1.19 0.53 0.66 0.94 

ChoE (16:1) 0.56 ± 0.05 0.52 ± 0.05 0.56 0.68 0.93 

Ribose 3.69 ± 0.23 4.03 ± 0.56 0.58 0.71 1.09 

Tryptophan 1.24 ± 0.06 1.29 ± 0.05 0.59 0.71 1.04 

Urea 2.18 ± 0.1 2.11 ± 0.1 0.59 0.71 0.96 

Succinic Acid 0.64 ± 0.03 0.62 ± 0.03 0.60 0.71 0.97 

PC 38:2 0.11 ± 0.01 0.12 ± 0.02 0.62 0.74 1.10 

Ornithine 2.4 ± 0.22 2.55 ± 0.21 0.64 0.74 1.06 

SM 41:2 0.56 ± 0.03 0.58 ± 0.03 0.64 0.74 1.04 

Valine 0.48 ± 0.02 0.46 ± 0.03 0.65 0.74 0.97 

ChoE (17:1) 0.09 ± 0.01 0.1 ± 0.01 0.67 0.76 1.04 

Tyrosine 0.59 ± 0.04 0.61 ± 0.03 0.67 0.76 1.03 

DG 36:2 1.26 ± 0.09 1.31 ± 0.05 0.68 0.76 1.03 

Leucine 0.05 ± 0.0 0.04 ± 0.0 0.69 0.76 0.96 

Aspartic Acid 0.55 ± 0.04 0.57 ± 0.04 0.73 0.79 1.04 

ChoE (22:6) 2.03 ± 0.14 1.97 ± 0.12 0.74 0.80 0.97 

SM 40:2 0.66 ± 0.04 0.68 ± 0.03 0.76 0.82 1.02 

LPC 16:0 78.98 ± 1.7 79.45 ± 1.23 0.82 0.88 1.01 

Glutamine 1.19 ± 0.22 1.14 ± 0.2 0.85 0.90 0.95 

Fumaric Acid 0.86 ± 0.09 0.84 ± 0.1 0.92 0.97 0.98 

Threonic Acid 2.08 ± 0.13 2.07 ± 0.08 0.93 0.97 0.99 

Isoleucine 0.12 ± 0.01 0.12 ± 0.01 0.93 0.97 1.01 

SM 33:1 0.31 ± 0.01 0.31 ± 0.01 0.94 0.97 1.00 

Oleic Acid 1.6 ± 0.12 1.6 ± 0.08 0.96 0.98 1.00 

PE 38:5 e 1.47 ± 0.4 1.46 ± 0.25 0.98 0.99 0.99 

Aconitic Acid 0.01 ± 0 0.01 ± 0 1.00 1.00 1.00 
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PC 33:0 0.03 ± 0 0.03 ± 0 1.00 1.00 1.00 

 
Supplementary table 2. Urine univariate analysis of the P407-induced hyperlipidemic rat model. 43 
metabolites are presented by the mean ± SEM per group; the summary of univariant analysis includes p-
value, q-value (pFDR) and FC (P407/CON). Metabolites are listed by q-value. * Denotes p < 0.1 (tendency), 
** p < 0.05 (significantly different) and *** p < 0.01 (high significantly different). TMAO, trimethylamine N-
oxide; PAG, phenylacetylglycine; DG, diacylglycerol; PC, phosphatidylcholine; ChoE, cholesterol ester; LPC, 
lysophospholipid; TG, triglyceride; sphingomyelin, SM. 
 

Metabolite CON P407 p-value q-value FC 

TMAO 2.31 ± 0.26 1.28 ± 0.09 <0.01*** 0.15 0.55 

PAG 39.07 ± 3.42 63.78 ± 7.31 0.01** 0.23 1.63 

2-deoxycytidine 1.89 ± 0.19 1.36 ± 0.11 0.03** 0.35 0.72 

Leucine 11.97 ± 1.03 9.23 ± 0.38 0.03** 0.35 0.77 

3-hydroxyisovalerate 3.38 ± 0.15 2.9 ± 0.16 0.06* 0.55 0.86 

Betaine 25.78 ± 2.25 21.36 ± 0.62 0.09* 0.62 0.83 

HPPA sulfate 6.98 ± 1.77 14.91 ± 3.68 0.10* 0.62 2.14 

o-Coumaric acid 3.48 ± 0.58 4.99 ± 0.75 0.13 0.67 1.44 

Creatinine 126.44 ± 6.22 114.02 ± 4.64 0.13 0.67 0.90 

Trimethylamine 0.91 ± 0.12 1.37 ± 0.26 0.18 0.79 1.50 

Malate 1.92 ± 0.12 2.84 ± 0.65 0.20 0.79 1.48 

Tyrosine 14.15 ± 3.39 21.75 ± 4.56 0.21 0.79 1.54 

N,N-Dimethylglycine 6.09 ± 1.19 4.53 ± 0.52 0.26 0.79 0.74 

2-Hydroxyisobutyrate 0.004 ± 0.001 0.003 ± 0.0007 0.27 0.79 0.62 

Formate 1.6 ± 0.25 2.14 ± 0.39 0.27 0.79 1.34 

Glycine 10.24 ± 0.78 9.21 ± 0.5 0.28 0.79 0.90 

4-PY 2.98 ± 0.55 2.31 ± 0.34 0.32 0.81 0.78 

3-HPPA 9.9 ± 2.38 14.22 ± 3.47 0.35 0.81 1.44 

Fumarate 3.78 ± 0.52 3.1 ± 0.39 0.36 0.81 0.82 

Allantoin 230.44 ± 5.54 222.16 ± 7.86 0.41 0.81 0.96 

Sarcosine 3.99 ± 0.36 4.36 ± 0.26 0.43 0.87 1.09 

Indoxyl Sulphate 7.5 ± 0.73 8.39 ± 1.01 0.48 0.87 1.12 

Tryptophan 7.52 ± 0.74 8.4 ± 1.02 0.49 0.87 1.12 

Alanine 3.97 ± 0.28 3.74 ± 0.16 0.50 0.87 0.94 

Methylamine 5.17 ± 0.21 4.97 ± 0.2 0.52 0.87 0.96 

N-acetylglycoproteins 73.29 ± 8.32 66.48 ± 5.35 0.54 0.87 0.91 

2-Oxoglutarate 142.06 ± 13.08 129.55 ± 15.72 0.56 0.87 0.91 

3-methyl-2-oxovalerate 4.2 ± 0.39 3.95 ± 0.2 0.59 0.87 0.94 

Hippurate 267.88 ± 27.15 245.29 ± 32.31 0.60 0.87 0.92 
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Acetate 4.74 ± 0.58 5.07 ± 0.39 0.64 0.87 1.07 

1-methylnicotinamide 0.02 ± 0.01 0.03 ± 0.01 0.65 0.87 1.24 

Pseudouridine 10.38 ± 0.73 10.14 ± 0.5 0.79 0.88 0.98 

α-hydroxyhippurate 1.09 ± 0.11 1.12 ± 0.09 0.82 0.88 1.03 

Succinate 43.05 ± 3.57 43.96 ± 2.8 0.84 0.95 1.02 

Taurine 417.08 ± 39.53 428.39 ± 40.02 0.84 0.95 1.03 

Dimethylamine 49.3 ± 2.54 48.57 ± 2.33 0.86 0.95 0.99 

N-Acetylglycine 29.61 ± 2.69 29.02 ± 1.87 0.87 0.95 0.98 

Citrate 252.17 ± 20.74 258.04 ± 28.6 0.88 0.95 1.02 

Fucose 10.19 ± 0.38 10.26 ± 0.54 0.92 0.95 1.01 

NAD+ 0.3 ± 0.04 0.3 ± 0.04 0.92 0.95 0.98 

Valine 1.11 ± 0.12 1.1 ± 0.02 0.93 0.95 0.99 

N6-Acetyllysine 16.84 ± 0.91 16.72 ± 1.02 0.93 0.95 0.99 

Lactate 10.19 ± 0.97 10.17 ± 0.76 0.99 0.95 1.00 

 

 
 

Supplementary figure 1. Plasma multivariate analysis of the P407-induced hyperlipidemic rat model: PCA 
summary plot. (a) Explained variance. The scree plot suggests that 3 components may be sufficient to 
capture most of the variance. (b) Observation diagnostics. This graphics shows the distances within and 
orthogonal to the projection plane the name of the samples with a high value for at least one of the 
distances is indicated. (c) Score plot (PCA). The total variance explained is 40%: PC1 explains the 27 % and 
the PC2 explains the 13%, represented the CON group in blue and P407 group in red. (d) The variables with 
most extreme values (positive and negative) for each loading are black coloured and labelled. 
 

UNIVERSITAT ROVIRA I VIRGILI 
MULTI-OMICS BIOMARKERS OF METABOLIC HOMEOSTASIS OF RISK FACTORS ASSOCIATED TO 
NON-COMMUNICABLE DISEASES 
Julia Hernandez Baixauli 



III. Results: Manuscript 2 

 

164 
 

 

 
 
Supplementary figure 2. Urine multivariate analysis of the P407-induced hyperlipidemic rat model: PCA 
summary plot. (a) Explained variance. The scree plot suggests that 4 components may be sufficient to 
capture most of the variance. (b) Observation diagnostics. This graphics shows the distances within and 
orthogonal to the projection plane the name of the samples with a high value for at least one of the 
distances are indicated. (c) Score plot (PCA). The total variance explained is 37%: PC1 explains the 21 % and 
the PC2 explains the 16%, represented the CON group in blue and P407 group in red. (d) The variables with 
most extreme values (positive and negative) for each loading are black coloured and labelled. 
 
Supplementary table 3. Plasma univariate analysis of the SHR/WKY model. 128 metabolites are presented 
as the mean ± S.E.M per group; the summary of univariant analysis include p-value, q-value (pFDR) and FC 
(SHR/WKY). Metabolites are listed by q-value. * Denotes p < 0.1 (tendency), ** p < 0.05 (significantly 
different) and *** p < 0.01 (high significantly different). DG, diacylglycerol; PC, phosphatidylcholine; ChoE, 
cholesterol ester; LPC, lysophospholipid; TG, triglyceride; SM, sphingomyelin. 
 

Metabolite WKY SHR p-value q-value FC 

Threonic acid 3.19 ± 0.15 1.07 ± 0.07 <0.01*** <0.01*** 0.34 

PC 32:0 0.98 ± 0.03 1.44 ± 0.04 <0.01*** <0.01*** 1.47 

PC 36:4 30.51 ± 1.27 43.46 ± 1.1 <0.01*** <0.01*** 1.42 

PC 34:1 5.36 ± 0.29 8.87 ± 0.37 <0.01*** <0.01*** 1.66 

LPC 16:1 e 0.13 ± 0 0.18 ± 0.01 <0.01*** <0.01*** 1.38 

ChoE (18:3) 1.45 ± 0.11 3.05 ± 0.22 <0.01*** <0.01*** 2.10 

ChoE (20:2) 3 ± 0.46 6.58 ± 0.21 <0.01*** <0.01*** 2.20 

SM 34:1 22.65 ± 1.16 31.41 ± 1.03 <0.01*** <0.01*** 1.39 

SM 34:2 1.72 ± 0.05 2.36 ± 0.09 <0.01*** <0.01*** 1.37 

SM 41:1 7.36 ± 0.16 8.87 ± 0.2 <0.01*** <0.01*** 1.20 
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SM 41:2 1.57 ± 0.07 2.09 ± 0.05 <0.01*** <0.01*** 1.33 

ChoE (22:5) 1.8 ± 0.29 3.78 ± 0.19 <0.01*** <0.01*** 2.10 

PC 34:0 0.5 ± 0.02 0.63 ± 0.01 <0.01*** <0.01*** 1.26 

SM 40:2 1.03 ± 0.05 1.36 ± 0.04 <0.01*** <0.01*** 1.32 

ChoE (22:4) 18.21 ± 2.96 37.47 ± 1.3 <0.01*** <0.01*** 2.06 

PC 30:0 0.06 ± 0 0.11 ± 0.01 <0.01*** <0.01*** 1.84 

ChoE (20:4) 64.55 ± 4.42 97.45 ± 5.14 <0.01*** <0.01*** 1.51 

ChoE (16:1) 0.28 ± 0.03 0.62 ± 0.06 <0.01*** <0.01*** 2.17 

SM 42:1 23.82 ± 0.55 28.34 ± 0.76 <0.01*** <0.01*** 1.19 

Glutamine 0.23 ± 0.02 0.09 ± 0.02 <0.01*** <0.01*** 0.41 

LPC 16:0 e 0.37 ± 0.02 0.46 ± 0.01 <0.01*** <0.01*** 1.24 

PC 32:1 0.57 ± 0.07 1.26 ± 0.13 <0.01*** <0.01*** 2.19 

PC 32:2 0.24 ± 0.02 0.37 ± 0.02 <0.01*** <0.01*** 1.55 

PC 38:4 33.55 ± 1.24 40.71 ± 1.08 <0.01*** <0.01*** 1.21 

PC 40:5 1.26 ± 0.05 1.67 ± 0.07 <0.01*** <0.01*** 1.32 

SM 32:1 0.23 ± 0.02 0.32 ± 0.01 <0.01*** <0.01*** 1.36 

Asparagine 0.43 ± 0.04 0.24 ± 0.03 <0.01*** <0.01*** 0.55 

SM 36:2 0.52 ± 0.01 0.67 ± 0.03 <0.01*** 0.01** 1.30 

Tyrosine 0.91 ± 0.07 0.54 ± 0.06 <0.01*** 0.01** 0.59 

LPC 16:0 88.34 ± 3.31 105.66 ± 2.98 <0.01*** 0.01** 1.20 

PC 31:0 0.06 ± 0 0.08 ± 0 <0.01*** 0.01** 1.32 

DG 36:4 3.45 ± 0.19 2.63 ± 0.06 <0.01*** 0.01** 0.76 

SM 33:1 0.45 ± 0.01 0.51 ± 0.01 <0.01*** 0.01** 1.15 

Glyceric acid 0.84 ± 0.04 1.15 ± 0.08 <0.01*** 0.02** 1.38 

ChoE (18:2) 19.66 ± 1.2 25.35 ± 1.24 0.01** 0.02*** 1.29 

PC 33:1 0.09 ± 0.01 0.13 ± 0.01 0.01** 0.02** 1.41 

LPC 18:1 16.17 ± 0.98 20.26 ± 0.86 0.01** 0.02** 1.25 

Serine 0.48 ± 0.05 0.66 ± 0.03 0.01** 0.02** 1.38 

Glycine 7.35 ± 0.13 8.39 ± 0.29 0.01** 0.03** 1.14 

3-hydroxybutiric acid 2.76 ± 0.3 1.76 ± 0.08 0.01** 0.03** 0.64 

Beta-alanine 0.11 ± 0.01 0.16 ± 0.01 0.01** 0.03** 1.45 

ChoE (22:6) 3.57 ± 0.2 4.58 ± 0.27 0.01** 0.03** 1.28 

Citric acid 4.88 ± 0.21 4.18 ± 0.07 0.01** 0.03** 0.86 

Ribose 15.87 ± 1.61 31.01 ± 4.47 0.01** 0.03** 1.95 

SM 40:1 7.56 ± 0.27 8.69 ± 0.27 0.01** 0.03** 1.15 

PC 40:4 0.35 ± 0.02 0.51 ± 0.05 0.01** 0.03** 1.45 
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Urea 0.94 ± 0.04 0.79 ± 0.02 0.01** 0.03** 0.84 

DG 36:2 1.19 ± 0.06 1.52 ± 0.1 0.02** 0.04** 1.28 

SM 38:1 0.71 ± 0.04 0.85 ± 0.03 0.02** 0.04** 1.19 

Valine 1.8 ± 0.05 1.55 ± 0.07 0.02** 0.05* 0.87 

ChoE (17:0) 0.03 ± 0.01 0.07 ± 0.01 0.02** 0.05* 2.12 

SM 39:1 0.28 ± 0.02 0.34 ± 0.01 0.02** 0.06* 1.21 

Methionine 0.22 ± 0.01 0.19 ± 0.01 0.03** 0.07* 0.86 

PC 33:0 0.05 ± 0 0.06 ± 0 0.03** 0.07* 1.23 

SM 43:1 1.39 ± 0.14 1.77 ± 0.04 0.03** 0.07* 1.27 

Succinic acid 0.46 ± 0.01 0.43 ± 0.01 0.03** 0.07* 0.93 

TG 52:5 10.79 ± 1.32 7.26 ± 0.54 0.03** 0.08* 0.67 

Fructose-6-phosphate 0.52 ± 0.09 0.29 ± 0.04 0.04** 0.10 0.56 

Alpha-tocopherol 0.31 ± 0.02 0.43 ± 0.05 0.05* 0.10 1.40 

SM 35:1 0.26 ± 0.02 0.3 ± 0.01 0.05* 0.10 1.18 

Glutamic acid 0.2 ± 0.01 0.18 ± 0.01 0.05* 0.10 0.88 

TG 52:3 65.43 ± 7.39 47.77 ± 3.27 0.05* 0.11 0.73 

LPC 18:0 e 0.07 ± 0 0.09 ± 0 0.06* 0.11 1.17 

DG 34:1 1.27 ± 0.1 1.56 ± 0.1 0.06* 0.12 1.23 

LPC 15:0 0.88 ± 0.04 1.01 ± 0.05 0.06* 0.13 1.14 

TG 50:4 1.8 ± 0.25 1.23 ± 0.11 0.07* 0.13 0.68 

PC 38:2 0.24 ± 0.02 0.28 ± 0.02 0.07* 0.13 1.19 

SM 42:3 6.78 ± 0.18 7.41 ± 0.27 0.08* 0.15 1.09 

SM 36:1 1.47 ± 0.12 1.73 ± 0.07 0.08* 0.15 1.18 

PC 35:2 0.52 ± 0.04 0.6 ± 0.02 0.09* 0.16 1.16 

PC 36:2 14.82 ± 0.8 16.57 ± 0.5 0.09* 0.16 1.12 

DG 34:3 0.55 ± 0.04 0.63 ± 0.02 0.10 0.18 1.15 

LPC 20:0 0.32 ± 0.02 0.36 ± 0.02 0.10 0.18 1.12 

Histidine 0.16 ± 0.01 0.13 ± 0.02 0.11 0.18 0.80 

Lysine 0.53 ± 0.04 0.43 ± 0.04 0.11 0.18 0.80 

TG 54:7 6.96 ± 0.84 5.33 ± 0.43 0.11 0.18 0.77 

TG 52:6 1.45 ± 0.18 1.11 ± 0.07 0.12 0.20 0.77 

Malic acid 0.43 ± 0.04 0.36 ± 0.01 0.12 0.20 0.84 

Fumaric acid 0.82 ± 0.07 0.69 ± 0.03 0.12 0.20 0.84 

Ornithine 6.5 ± 0.34 5.46 ± 0.54 0.13 0.20 0.84 

Lactic acid 4.86 ± 0.11 4.5 ± 0.19 0.13 0.21 0.93 

ChoE (18:1) 2.5 ± 0.15 2.78 ± 0.09 0.13 0.21 1.11 
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PC 38:3 0.68 ± 0.07 0.83 ± 0.07 0.14 0.22 1.21 

Glycolic acid 11.31 ± 0.57 12.27 ± 0.26 0.16 0.24 1.08 

TG 52:1 0.86 ± 0.1 0.68 ± 0.07 0.17 0.25 0.79 

SM 42:2 23.85 ± 0.75 26.03 ± 1.28 0.17 0.25 1.09 

TG 54:4 16.78 ± 2.34 12.94 ± 1.24 0.18 0.26 0.77 

Threonine 2.64 ± 0.1 2.84 ± 0.1 0.19 0.27 1.08 

Isoleucine 0.99 ± 0.12 0.79 ± 0.08 0.19 0.28 0.80 

Glucose-6-phosphate 0.8 ± 0.12 0.6 ± 0.08 0.20 0.28 0.75 

ChoE (18:0) 0.13 ± 0.01 0.19 ± 0.04 0.20 0.28 1.44 

Cholesterol 0.15 ± 0 0.15 ± 0 0.21 0.29 0.96 

TG 48:1 0.98 ± 0.15 1.24 ± 0.13 0.21 0.29 1.27 

ChoE (16:0) 1.03 ± 0.09 1.17 ± 0.06 0.22 0.29 1.14 

Leucine 0.29 ± 0.03 0.25 ± 0.02 0.28 0.37 0.86 

TG 51:2 0.75 ± 0.1 0.63 ± 0.05 0.30 0.40 0.84 

TG 50:0 0.31 ± 0.08 0.21 ± 0.04 0.32 0.42 0.69 

Alpha-ketoglutarate 2.43 ± 0.16 2.63 ± 0.12 0.35 0.44 1.08 

Aspartic acid 1.19 ± 0.03 1.26 ± 0.07 0.35 0.44 1.06 

Tryptophan 3.01 ± 0.2 2.77 ± 0.18 0.37 0.47 0.92 

TG 54:6 29.61 ± 2.43 27.31 ± 1.11 0.41 0.51 0.92 

Fructose 1.69 ± 0.07 1.55 ± 0.17 0.43 0.54 0.91 

2-hydroxyglutaric 0.75 ± 0.06 0.84 ± 0.1 0.45 0.56 1.12 

TG 46:1 0.07 ± 0.01 0.07 ± 0.01 0.49 0.59 1.12 

Hydroxyproline 3.34 ± 0.28 3.12 ± 0.15 0.50 0.61 0.93 

DG 34:2 2.38 ± 0.07 2.3 ± 0.09 0.52 0.62 0.97 

TG 48:0 0.88 ± 0.08 0.8 ± 0.08 0.53 0.63 0.92 

Phenylalanine 2.14 ± 0.05 2.09 ± 0.08 0.56 0.64 0.97 

Pyruvic acid 24.34 ± 2.58 22.24 ± 2.35 0.56 0.64 0.91 

TG 50:3 7.8 ± 1.26 6.95 ± 0.61 0.56 0.64 0.89 

TG 54:3 6.09 ± 0.76 5.54 ± 0.49 0.55 0.64 0.91 

ChoE (17:1) 0.02 ± 0.01 0.02 ± 0.01 0.65 0.73 1.21 

TG 50:2 14.25 ± 1.92 13.3 ± 1.1 0.67 0.75 0.93 

TG 54:2 3.36 ± 0.41 3.15 ± 0.26 0.67 0.75 0.94 

TG 48:3 0.24 ± 0.04 0.22 ± 0.02 0.69 0.76 0.92 

Glucose 0.25 ± 0.01 0.24 ± 0.02 0.70 0.77 0.97 

Oleic acid 1.81 ± 0.07 1.85 ± 0.09 0.72 0.78 1.02 

TG 46:0 0.09 ± 0.01 0.09 ± 0.01 0.74 0.79 0.95 
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LPC 18:0 51.64 ± 2.31 52.59 ± 1.73 0.75 0.80 1.02 

Alanine 1.08 ± 0.09 1.11 ± 0.05 0.77 0.81 1.03 

Glycerol 2.98 ± 0.29 2.86 ± 0.26 0.76 0.81 0.96 

LPC 18:2 51.01 ± 2.66 52.13 ± 2.65 0.77 0.81 1.02 

TG 48:2 0.77 ± 0.12 0.8 ± 0.08 0.85 0.87 1.04 

TG 50:1 4.04 ± 0.58 4.14 ± 0.36 0.89 0.91 1.02 

Proline 1.01 ± 0.05 1.01 ± 0.05 0.90 0.92 0.99 

TG 46:2 0.04 ± 0.01 0.04 ± 0 0.93 0.94 0.98 

TG 52:2 15.55 ± 2.31 15.67 ± 1.31 0.97 0.97 1.01 

 
Supplementary table 4. Urine univariate analysis of the SHR/WKY model. 32 metabolites are presented 
as the mean ± SEM per group; the summary of univariant analysis include p-value, q-value (pFDR) and FC 
(SHR/WKY). Metabolites are listed by q-value. * Denotes p < 0.1 (tendency), ** p < 0.05 (significantly 
different) and *** p < 0.01 (high significantly different). TMAO, trimethylamine N-oxide; PAG, 
phenylacetylglycine; DG, diacylglycerol; PC, phosphatidylcholine; ChoE, cholesterol ester; LPC, 
lysophospholipid; TG, triglyceride; sphingomyelin, SM. 
 

Metabolite WKY SHR p-value q-value FC 

Fumarate 5.62 ± 0.34 3.11 ± 0.42 <0.01*** 0.01** 0.55 

4-Guanidinobutanoate 6.1 ± 1.23 13.17 ± 0.33 <0.01*** 0.01** 2.16 

Pyruvate 8.61 ± 1.13 4.2 ± 0.25 0.01** 0.08* 0.49 

Alanine 8.98 ± 0.59 7.01 ± 0.39 0.02** 0.10 0.78 

2-Oxoglutarate 370.5 ± 38.42 235.97 ± 31.6 0.02** 0.10 0.64 

3-HPPA 11.01 ± 1.35 26.41 ± 5.21 0.02** 0.10 2.40 

Lactate 28.09 ± 4.13 15.71 ± 2.06 0.03** 0.10 0.56 

Phenylacetylglycine 96.34 ± 9.9 135.46 ± 11.92 0.03** 0.10 1.41 

Choline 6.93 ± 0.53 8.82 ± 0.57 0.03** 0.11 1.27 

3-HPPA Sulfate 3.21 ± 0.25 8.34 ± 2.02 0.04** 0.12 2.60 

Trigonelline 0.63 ± 0.14 0.97 ± 0.08 0.05* 0.15 1.56 

Citrate 354.81 ± 41.9 246.6 ± 30.65 0.06* 0.16 0.70 

Betaine 9.4 ± 1.68 12.86 ± 0.77 0.10 0.24 1.37 

1-Methylnicotinamide 0.08 ± 0.03 0.03 ± 0.01 0.16 0.36 0.35 

Allantoin 204.41 ± 8.15 225.61 ± 13.96 0.22 0.44 1.10 

Hippurate 59.91 ± 7.85 48.21 ± 4.03 0.22 0.44 0.80 

Acetate 26.44 ± 16.81 4.77 ± 1.03 0.25 0.46 0.18 

N-Acetylglycoproteins 86.39 ± 8.23 96.01 ± 3.1 0.31 0.54 1.11 

Glucose 4.44 ± 0.44 3.83 ± 0.39 0.32 0.54 0.86 

Dimethylsulfone 16.44 ± 1.97 14.34 ± 0.65 0.34 0.55 0.87 

Glyoxylic acid 0.26 ± 0.09 0.36 ± 0.05 0.36 0.55 1.39 
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Creatinine 358.31 ± 21.53 335.86 ± 15.78 0.42 0.57 0.94 

Taurine 341.46 ± 77.14 274.59 ± 22.27 0.43 0.57 0.80 

Isoleucine 18.87 ± 1.77 17.02 ± 1.44 0.43 0.57 0.90 

Pseudouridine 8.24 ± 0.45 8.75 ± 0.46 0.45 0.57 1.06 

N,N-Dimethylglycine 7.28 ± 1.26 6.46 ± 0.74 0.59 0.72 0.89 

Formate 2.28 ± 0.61 1.92 ± 0.27 0.60 0.72 0.84 

Succinate 40.88 ± 5.66 38.42 ± 4.49 0.74 0.85 0.94 

Fucose 7.61 ± 1.5 8.26 ± 1.95 0.80 0.87 1.09 

Indoxyl sulfate 10.68 ± 0.68 10.44 ± 0.87 0.83 0.87 0.98 

Methylamine 8.13 ± 1.14 7.8 ± 1.15 0.84 0.87 0.96 

Glycine 15.98 ± 1.23 15.99 ± 2.04 1.00 1.00 1.00 

 

 
 
Supplementary figure 3. Plasma multivariate analysis of the SHR/WKY model: PCA summary plot. (a) 
Explained variance. The scree plot suggests that 2 components may be sufficient to capture most of the 
variance. (b) Observation diagnostics. This graphics shows the distances within and orthogonal to the 
projection plane the name of the samples with a high value for at least one of the distances is indicated. (c) 
Score plot (PCA). The total variance explained is 55%: PC1 explains the 36 % and the PC2 explains the 19%, 
represented the WKY group in green and SHR group in orange. (d) The variables with most extreme values 
(positive and negative) for each loading are black coloured and labelled. 
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Supplementary figure 4. Urine multivariate analysis of the SHR/WKY model: PCA summary plot. (a) 
Explained variance. The scree plot suggests that 3 components may be sufficient to capture most of the 
variance. (b) Observation diagnostics. This graphics shows the distances within and orthogonal to the 
projection plane the name of the samples with a high value for at least one of the distances is indicated. (c) 
Score plot (PCA). The total variance explained is 42%: PC1 explains the 25 % and the PC2 explains the 17%, 
represented the WKY group in green and SHR group in orange. (d) The variables with most extreme values 
(positive and negative) for each loading are black coloured and labelled. 
 
Supplementary table 5. Summary of the analysis of the preselected metabolites in human plasma 
grouped by sex (men and women) and the hyperlipidemia risk (normal and moderate). The statistical 
comparisons among groups were conducted using one-way ANOVA and the post-hoc Tukey. * Denotes p or 
q < 0.1 (tendency), ** p or q < 0.05 (significantly different) and *** p or q < 0.01 (high significantly different). 
DG, diacylglycerol; TG, triglyceride; ChoE, cholesterol ester; PC, phosphatidylcholine; LPC, lysophospholipid; 
N, normal; M, moderate. 
 

 Men Women 

Metabolite N (n = 24) M (n = 50) p-value N (n = 14) M (n = 52) p-value 

DG 34:2 2.10 ± 0.05 2.44 ±0.03 <0.01*** 1.90 ± 0.05 2.31 ± 0.06 <0.01*** 

DG 34:3 0.43 ± 0.02 0.50 ± 0.01 0.08* 0.39 ± 0.02 0.50 ± 0.02 0.01** 

TG 46:0 0.70 ± 0.05 1.16 ± 0.17 <0.01*** 0.51 ± 0.08 0.96 ± 0.18 0.07* 

ChoE (17:0) 0.07 ± 0.01 0.25 ± 0.05 <0.01*** 0.07 ± 0.01 0.27 ± 0.13 <0.01*** 

ChoE (18:0) 0.63 ± 0.02 0.55 ± 0.04 0.34 0.65 ± 0.02 0.49 ± 0.05 0.04** 

PC 36:4 19.76 ± 0.70 23.21 ± 1.45 0.05** 19.00 ± 0.65 20.79 ± 1.13 0.73 

DG 36:4 1.75 ± 0.07 1.96 ± 0.11 0.42 1.75 ± 0.07 2.16 ± 0.15 0.10* 

PC 38:4 12.23 ± 0.48 14.35 ± 0.92 0.05** 12.30 ± 0.50 13.29 ± 0.89 0.73 

LPC 18:0 13.81 ± 0.37 15.51 ± 0.70 0.17 14.12 ± 0.52 13.45 ± 0.73 0.93 

ChoE (16:0) 6.45 ± 0.17 7.12 ± 0.28 0.11 6.86 ± 0.15 6.44 ± 0.34 0.72 

ChoE (18:1) 27.09 ± 0.63 27.49 ± 0.91 0.99 27.35 ± 0.66 26.58 ± 1.55 0.96 

 
 

Supplementary table 6. Summary of the analysis of the preselected metabolites in human plasma 
grouped by sex (men and women) and the hypertension risk (normal and moderate). The statistical 
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comparisons among groups were conducted using one-way ANOVA and the post-hoc Tukey. * Denotes p or 
q <0.1 (tendency), ** p or q<0.05 (significantly different) and *** p or q<0.01 (high significantly different). 
PC, phosphatidylcholine; LPC, lysophospholipid; ChoE, cholesterol ester; SM, sphingomyelin; DG, 
diacylglycerol; N, normal; M, moderate.  

 

 Men Women 

Metabolite N (n = 24) M (n = 50) p-value N (n = 14) M (n = 52) p-value 

Threonic acid 1.45 ± 0.08 1.66 ± 0.06 0.45 1.58 ± 0.12 1.64 ± 0.07 0.99 

PC 32:0 1.4 ± 0.06 1.48 ± 0.04 0.59 1.4 ± 0.05 1.39 ± 0.02 1.00 

PC 36:4 22.92 ± 0.29 19.82 ± 0.16 0.08* 21.13 ± 0.2 18.81 ± 0.16 0.46 

PC 34:1 26.15 ± 0.22 28.1 ± 0.17 0.55 24.17 ± 0.2 26.79 ± 0.16 0.46 

LPC 16:1 e 0.32 ± 0.02 0.3 ± 0.02 0.54 0.32 ± 0.04 0.29 ± 0.02 0.15 

ChoE (18:3) 15.63 ± 0.46 18.14 ± 0.18 0.35 20.82 ± 0.3 18.56 ± 0.16 0.61 

ChoE (20:2) 0.33 ± 0.05 0.37 ± 0.04 0.65 0.35 ± 0.06 0.36 ± 0.04 0.99 

SM 34:1 85.73 ± 0.42 97.57 ± 0.22 0.03** 108.09 ± 0.44 98.78 ± 0.24 0.27 

SM 34:2 9.08 ± 0.14 10.56 ± 0.09 0.02** 11.64 ± 0.11 11.84 ± 0.09 0.99 

SM 41:1 10.17 ± 0.17 11.81 ± 0.08 0.03** 14.47 ± 0.25 12.57 ± 0.08 0.04** 

SM 41:2 5.03 ± 0.11 5.58 ± 0.07 0.30 7.83 ± 0.13 7.01 ± 0.07 0.14 

ChoE (22:5) 0.63 ± 0.05 0.65 ± 0.03 0.92 0.74 ± 0.06 0.58 ± 0.03 0.03** 

PC 34:0 0.28 ± 0.03 0.31 ± 0.01 1.00 0.31 ± 0.03 0.37 ± 0.14 0.94 

SM 40:2 10 ± 0.14 11.42 ± 0.11 0.14 16 ± 0.21 14.05 ± 0.1 0.08 

ChoE (22:4) 0.18 ± 0.06 0.15 ± 0.04 0.59 0.16 ± 0.06 0.14 ± 0.04 0.96 

PC 30:0 0.22 ± 0.05 0.22 ± 0.03 1.00 0.22 ± 0.06 0.23 ± 0.03 0.99 

ChoE (20:4) 70.95 ± 0.59 69.56 ± 0.26 0.99 73.71 ± 0.4 67.08 ± 0.27 0.57 

ChoE (16:1) 3.38 ± 0.25 3.81 ± 0.14 0.75 3.07 ± 0.11 3.36 ± 0.11 0.94 

SM 42:1 16.42 ± 0.23 19.02 ± 0.14 0.08* 20.56 ± 0.35 18.47 ± 0.12 0.38 

Glutamine 1.86 ± 0.06 1.47 ± 0.08 0.64 1.45 ± 0.13 1.96 ± 0.2 0.59 

LPC 16:0 e 0.36 ± 0.02 0.31 ± 0.01 0.02** 0.36 ± 0.04 0.31 ± 0.02 0.03** 

PC 32:1 1.61 ± 0.13 1.81 ± 0.12 0.81 1.35 ± 0.14 1.68 ± 0.08 0.63 

PC 32:2 0.34 ± 0.05 0.37 ± 0.03 0.85 0.45 ± 0.1 0.43 ± 0.03 0.97 

PC 38:4 14.09 ± 0.23 12.31 ± 0.14 0.21 14.06 ± 0.17 12.03 ± 0.15 0.26 

PC 40:5 0.6 ± 0.04 0.65 ± 0.03 0.65 0.59 ± 0.06 0.57 ± 0.02 0.97 

SM 32:1 5.54 ± 0.16 5.92 ± 0.08 0.75 8.04 ± 0.19 5.99 ± 0.08 <0.01*** 

Asparagine 0.15 ± 0.03 0.14 ± 0.03 1.00 0.22 ± 0.05 0.3 ± 0.14 0.86 

SM 36:2 6.11 ± 0.13 7.18 ± 0.08 0.05* 8.2 ± 0.18 7.92 ± 0.09 0.95 

Tyrosine 2.23 ± 0.12 2.1 ± 0.08 1.00 2.36 ± 0.1 3.21 ± 0.29 0.65 
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LPC 16:0 48.73 ± 0.26 48.51 ± 0.19 1.00 47.85 ± 0.38 43.93 ± 0.16 0.45 

PC 31:0 0.07 ± 0.02 0.07 ± 0.01 0.86 0.07 ± 0.03 0.07 ± 0.01 0.99 

DG 36:4 1.9 ± 0.06 1.78 ± 0.06 0.80 1.79 ± 0.09 1.83 ± 0.06 1.00 

SM 33:1 2.79 ± 0.09 2.96 ± 0.06 0.75 3.7 ± 0.11 2.95 ± 0.05 <0.01*** 

Glyceric acid 0.53 ± 0.02 0.6 ± 0.02 0.08* 0.59 ± 0.03 0.55 ± 0.03 0.70 

ChoE (18:2) 127.4 ± 0.4 141.57 ± 0.25 0.05* 130.33 ± 0.38 131.4 ± 0.29 1.00 

PC 33:1 0.25 ± 0.02 0.25 ± 0.02 1.00 0.22 ± 0.03 0.25 ± 0.02 0.48 

LPC 18:1 11.56 ± 0.15 10.86 ± 0.11 0.72 9.8 ± 0.26 10.07 ± 0.12 0.99 

Serine 0.21 ± 0.03 0.18 ± 0.03 0.92 0.26 ± 0.03 0.29 ± 0.09 0.96 

Glycine 8.37 ± 0.14 7.41 ± 0.16 1.00 9.01 ± 0.21 26.3 ± 1.96 0.57 

3-
hydroxybutiric 

acid 
2 ± 0.13 1.27 ± 0.1 <0.01*** 1.24 ± 0.15 1.12 ± 0.07 0.93 

Beta-alanine 0.73 ± 0.05 0.52 ± 0.06 0.96 0.55 ± 0.33 1.09 ± 0.39 0.75 

ChoE (22:6) 12.45 ± 0.3 17.49 ± 0.16 <0.01*** 17.79 ± 0.36 16.52 ± 0.14 0.81 

Citric acid 6.43 ± 0.1 5.73 ± 0.09 0.27 5.21 ± 0.12 5.8 ± 0.1 0.60 

Ribose 0.23 ± 0.03 0.27 ± 0.03 0.35 0.23 ± 0.05 0.23 ± 0.03 1.00 

SM 40:1 25.15 ± 0.26 29.67 ± 0.16 0.03** 37.74 ± 0.37 31.25 ± 0.15 0.01** 

PC 40:4 0.34 ± 0.05 0.28 ± 0.03 0.05* 0.27 ± 0.04 0.23 ± 0.02 0.72 

DG 36:2 6.69 ± 0.11 6.71 ± 0.08 1.00 5.7 ± 0.17 6.59 ± 0.1 0.29 

SM 38:1 9.42 ± 0.17 10.8 ± 0.09 0.09* 15.12 ± 0.26 11.6 ± 0.08 <0.01*** 

Valine 3.63 ± 0.09 3.11 ± 0.12 1.00 3.45 ± 0.23 6.63 ± 0.96 0.77 

ChoE (17:0) 0.12 ± 0.07 0.13 ± 0.08 1.00 0.02 ± 0.02 0.13 ± 0.09 0.26 
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Abstract: Obesity is one of the most incident and concerning disease worldwide. 

Definite strategies to prevent obesity and related complications remain elusive. 

Among the risk factors of the onset of obesity, gut microbiota might play an important 

role in the pathogenesis of the disease, and it has received extensive attention 

because it affects the host metabolism. In this study, we aimed to define a metabolic 

profile of the segregated obesity-associated gut dysbiosis risk factor. The study of the 

metabolome, in an obesity-associated gut dysbiosis model, provides a relevant way 

for the discrimination on the different biomarkers in the obesity onset. Thus, we 

developed a model of this obesity risk factors through the transference of gut 

microbiota from obese to non-obese male Wistar rats and performed a subsequent 

metabolic analysis in the receptor rats. Our results showed alterations in the lipid 

metabolism in plasma and in the phenylalanine metabolism in urine. In consequence, 

we have identified metabolic changes characterized by: (1) an increase in DG:34:2 in 

plasma, a decrease in hippurate, (2) an increase in 3-HPPA, and (3) an increase in o-

coumaric acid. Hereby, we propose these metabolites as a metabolic profile 

associated to a segregated dysbiosis state related to obesity disease. 

Keywords: microbial dysbiosis, gut microbiota, metagenomics, metabolomics, 

dysbiosis biomarkers, metabolic profile, diacylglycerol 34:2, hippurate, 3-HPPA, o-

coumaric acid. 
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1. Introduction 
Obesity has been defined as an excessive or abnormal accumulation of fat that 

represents a significant health risk [1]. The dramatical increase in the incidence of 

obesity worldwide, during the last 20 years across all ages, has changed the health 

perspective regarding this condition [2]. In fact, the term has evolved to “globesity,” 

referring to the acquired pandemic characteristic of this condition due to globalization 

[3]. 

Lots of efforts have been devoted to try to decrease the incidence and 

prevalence, as well as the health complications associated to obesity [4]. For instance, 

obesity-associated risk factors have been associated with a large number of chronic 

diseases, including cardiovascular diseases (e.g., heart disease or stroke), which are 

the leading causes of death worldwide [5]. Furthermore, being obese can also lead to 

important disorders, including diabetes and its associated conditions [6] and 

musculoskeletal disorders, such as osteoarthritis [7]. In accordance to that, since 

1980, the rates of diabetes have quadrupled around the world [8]. Finally, even some 

cancers (including endometrial, breast, ovarian, prostate, liver, gallbladder, kidney, 

and colon cancers) have also been associated with obesity [9], [10]. Interestingly, the 

risk of these noncommunicable diseases significantly increases even when a person is 

only slightly overweight and grows more seriously as the body mass index (BMI) rises 

[11], [12]. 

Unfortunately, definite strategies to tackle the prevention of obesity, and its 

related complications, remain elusive. In this regard, epidemiological studies have 

highlighted some potential environmental exposures, including diet, energy 

expenditure, early life influences, sleep deprivation, endocrine disruptors, chronic 

inflammation, and altered gut microbiota (GM) status, as important contributors to a 

higher obesity risk [13]–[15]. Among these, the GM has received extensive attention 

during the previous decade because it has been shown that manipulation of the GM 

may affect the host metabolism. In this sense, it has been proved that obesity is 

accompanied by a deep alteration of the host microbiota, and such condition has been 

defined as intestinal or gut dysbiosis [16]–[18]. 

In consequence, it has been demonstrated that the variation in GM might play an 

important role in the pathogenesis of obesity [19]. Although in healthy individuals the 

composition of intestinal microbiota is highly diverse, those exhibiting obesity, insulin 

resistance, and dyslipidaemia are characterized by low bacterial richness [20]. 

Moreover, the GM composition differs between obese and lean individuals [20], e.g., 

Bacteroidetes abundance is lower in obese individuals [20], and this proportion 

increases along with weight loss based on a low-calorie diet [21]. Lactobacillus and 

Clostridium spp. are associated with insulin resistance, being Lactobacillus positively 

correlated with fasting glucose and HbA1c levels, whereas Clostridium showed a 

negative correlation with these parameters [22], [23]. These data suggest that specific 

bacteria, as well as certain microbial metabolic activities, could be beneficial or 
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detrimental to the onset of obesity. Therefore, the GM has been suggested to be a 

driving force in the pathogenesis of obesity [24]. 

Although the evidence for many classical obesity biomarkers (i.e., adiponectin 

and C-reactive protein) has been initially promising in disease ethology, the evidence 

for a clear causal role in humans remains limited [25]. Furthermore, the ability to 

improve disease prediction has been little demonstrated beyond classical biomarkers. 

Hereby, it is time to focus on the risk factors of the onset of obesity to open to novel 

biomarkers discerning between health and disease. Consequently, in the “precision 

medicine” era, there is an increasing demand of novel and growing sources of 

potentially promising biomarkers, such as adipokines, cytokines, metabolites, and 

microRNAs, which are related to obesity and could bring new improvement to 

personalized prevention [26]. The field of metabolomics has been increasing as an 

important tool for the prognosis, and diagnosis, of different diseases stages, by 

investigating the endogenous levels of small metabolites in clinical practice from 

different biofluids standing out plasma/serum and urine [27], [28]. Furthermore, the 

scientific community has been called to use these tools to obtain information about 

the metabolism and potential biomarkers of obesity-associated risk factors [29]. 

Importantly, reshaping the GM has been shown as an effective strategy in weight 

loss and metabolic diseases amelioration [30]. To illustrate this fact, in a recent study 

with obese participants for avoiding weight gain after a weight reduction treatment, 

an autologous fecal microbiota transplantation was proposed to prevent weight 

regain (instead to modify the diet). The experimental approach focused on the idea 

that microbiota is more important to modulate obesity than diet [31]. Interestingly, 

the results showed that the autologous fecal microbiota transplantation preserved 

weight loss, and it was useful for glycemic control [31]. 

However, the gradual changes in the GM during weight gain and the related onset 

of metabolic abnormalities is still unclear in obesity [32]. In this sense, due to the 

urgent need of development of new and more effective strategies for disease 

prevention, a better understanding of the obesity pathophysiology, as well as new 

obesity-related biomarkers, are constantly demanded. In consequence, as GM plays 

such important role in obesity, a myriad of GM obesity associated biomarkers has 

been discovered. For example, it has been shown that the size and composition of bile 

acid pool can change due to GM’s alterations, and this may evolve with subsequent 

altered signalling and activation of bile acid receptors such as farnesoid X receptor 

(FXR) and Takeda G protein-coupled receptor 5 (TGR5) and perturb, in consequence, 

lipid and glucose homeostasis [33], [34]. Moreover, dysbiosis alters short-chain fatty 

acids (SCFA) production with a consequent altered secretion of gut peptide YY(PYY) 

and glucagon-like peptide 1 (GLP-1), thus affecting appetite and satiety [35], [36]. 

Similarly, biomarkers for GM metabolites and by-products may increase gut 

permeability and nutrient absorption and therefore, additionally contribute to 

obesity. On the other hand, the main factor responsible for inducing increased gut 

permeability and microbiota translocation into host interior is the bacterial by-
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product lipopolysaccharide. Nevertheless, due to the diverse outcomes of obesity-

related complications (e.g., insulin resistance, inflammation, or gut dysbiosis), that are 

intimately related to each other, there is a lack of knowledge about the segregated 

effect of each obesity-related complications on metabolism and its specific 

biomarkers. 

In this study, we have stablished a pilot study for metabolic profiling of obesity-

associated microbial gut dysbiosis. In this sense, the transference of GM from obese 

to non-obese rats could allow us the discovery of novel discriminatory biomarkers 

related to this GM alterations, providing valuable information about the origin of 

obesity-associated biomarkers. 

2. Materials and Methods 

2.1. Animal Procedure 
The Animal Ethics Committee of the Universitat Rovira i Virgili (Tarragona, Spain) 

approved all the procedures (code 10454). The experimental protocol followed the 

“Principles of Laboratory Care” and was carried out in accordance with the European 

Communities Council Directive (86/609/EEC). All animals were housed individually at 

22 °C with a light/dark cycle of 12 h (lights on at 9 a.m.) and were given access to food 

and water ad libitum during all the experiment. Individual housing allows to determine 

an accurate estimation of food intake and to avoid crossed effects on microbiota 

because of the “coprophagy effect” usually shown in rats. Animals were randomly 

assigned to the different groups considering similar average body weight. Body weight 

and food intake were recorded weekly. For food intake estimation, the chow weight 

was assessed before and after 24 h of the consumption.  

The whole study was planned in two differentiated steps: in the first experimental 

part, the CEC of cafeteria diet donors (CAF-D) and standard diet donors (STD-D) groups 

were obtained to collect the cecal content, and in the second experimental part, 

healthy rats corresponding to the cafeteria receptors (CAF-R) and the standard 

receptors (STD-R) groups received the cecal content of the donors, including a control 

group receiving the vehicle (CNT-R) (Figure 1). 

2.1.1. Obtention of Cecal Donors Induced by Cafeteria Diet and Standard Diet 

The first part of the experiment was performed using 14 male 8-week-old Wistar 

rats (Harlan Laboratories, Barcelona, Spain), which were randomly distributed into 

two experimental groups (n = 7). Afterwards, they were fed with two different diets 

depending on the group for 12 weeks (Figure 1a): the animals from the STD-D group 

were fed with standard chow diet (Tecklad Global 18% Protein Rodent Diet 2014, 

Harlan, Barcelona, Spain), and the animals from the CAF-D group were fed with a 

cafeteria diet with the following components (quantity per rat): bacon (8–12 g), biscuit 

with pâté (12–15 g), biscuit with cheese (10–12 g), muffins (pastry) (8–10 g), carrots 

(6–8 g), milk with sugar (220 g/L; 50 mL), water (ad libitum), and also with standard 

chow. Sample size and nutrient compositions of CAF-D and STD-D used herein have 
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been previously described in the literature [37]. The day before the sacrifice, feces 

(FCS) were collected to perform metagenomics. The animals were killed after 7 h of 

fasting by guillotine under anaesthesia (pentobarbital sodium, 50 mg/kg per body 

weight), and cecum (CEC) was rapidly removed, weighed, frozen in liquid nitrogen, 

and stored at −80 °C for GM preservation. For the preparation of the second part of 

the experiment, the cecal content of each group was pooled and diluted in 0.5% PBS-

cys (4 g of CEC/15 mL of 0.5% PBS-cys). The cecal mixture was centrifuged to eliminate 

solid residues and to facilitate the subsequent administration by oral gavage. Finally, 

the mixture of each group was aliquoted (single-dose of 1.1 mL) and stored at −80 °C 

for further treatment. 

 
Figure 1. Schematic representation of the experimental design. (a) Obtention of cecum (CEC) donors 
induced by a cafeteria diet (CAF-D) and a standard diet (STD-D) (b) Obesity-associated gut dysbiosis with a 
healthy phenotype induced by cecal donors transplantation, including the previous depletion of host 
microbiota and the cecal content transplantation in healthy population. Brown arrow, feces (FCS) collection; 
green arrow, control group (CNT-R); blue arrow, standard receptors (STD-R); red arrow, cafeteria receptors 
(CAF-R). Abbreviations: OG, oral gavage; AB, antibiotic. 
 

2.1.2. Model of Obesity-Associated Gut Dysbiosis with a Healthy Phenotype 

Induced by Cecal Transplantation  

The second part of the experiment was carried out using 21 8-week-old male 

Wistar rats (Harlan Laboratories, Barcelona, Spain) and the procedure consisted into 

two parts (Figure 1b). First, all the rats were treated with an antibiotic cocktail to 

deplete the host microbiota. After the antibiotic treatment, the rats were randomly 

distributed into three experimental groups (n = 7) for the restoration of the microbiota 
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Acclimatization

1 week 2 weeks 3 weeks 4 weeks

21 male
Wistar rats

CNT-R (n = 7) | PBS-cys 0,5% OG

5 weeks
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(2 dose per day) STD-R (n = 7) | STD-D Mix CEC OG

CAF-R (n = 7) | CAF-D Mix CEC OG

Microbiota transplant

14 male
Wistar rats
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Previous
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Starting
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3 weeks 6 weeks 9 weeks 12 weeks

CAF-D (n=7)

STD-D (n=7)

Acclimatization

(a)

(b)
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by the administration of the vehicle or the external GM (CNT-R, STD-R, and CAF-R 

groups). The animals were fed with a standard chow diet ad libitum (Teklad Global 

18% Protein Rodent Diet 2014, Harlan, Barcelona, Spain). All the procedure was 

carried out with the maximum sterility. 

The antibiotic cocktail was administered by oral gavage twice daily for 13 

consecutive days to all groups (at 10:00 a.m. and 5:00 p.m.). It included a mixture of 

vancomycin (50 mg/kg), neomycin, and metronidazole (each at 100 mg/kg). In 

addition, the drinking water was supplemented with ampicillin (1 g/L) during the 

antibiotic treatment to avoid the growing of microorganism during the treatment [38]. 

At the end of the antibiotic treatment, FCS were collected to check the depletion of 

the host microbiota. 

All animals received omeprazole (20 mg/kg) by oral gavage 24 h after the last 

antibiotic treatment and 4–5 h before every transplant to reduce the acidification of 

the environment and to allow the survival of microorganisms through the 

gastrointestinal tract. All the treatments were administered by oral gavage, and they 

consisted of following treatments: the CNT group was treated with 0.5% PBS-cys and 

the STD-R and CAF-R groups with STD-D and CAF-D cecal mix prepared in the first 

experiment, respectively. The microbiota transplant consisted of 4 consecutive days 

of treatment during the first week, 2 reminders on the second week, and finally, a 

weekly reminder over the last 2 weeks with 4 weeks of total duration. The day before 

the sacrifice, FCS and urine were collected to perform metagenomics and 

metabolomics, respectively. Urine was collected following the recommended 

hydrophobic sand method (avoiding stress and metabolic changes) [39]. For each rat, 

a single 300 g pack of hydrophobic sand was spread (LabSand, Coastline Global, Palo 

Alto, CA, USA) on the bottom of a mouse plastic microisolation cage. Urine was 

gathered with sodium azide (Sigma, St Louis, MO, USA) as preservative every half hour 

for 6 h and was subsequently pooled at the end of the session. The FCS and pooled 

urine samples for each animal were stored at − 80 °C until further analysis. At the end 

of the study, rats were killed under anaesthesia (pentobarbital sodium, 50 mg kg−1 

body weight) by guillotine after 7 h of fasting to avoid interferences of the early 

postprandial state in plasma metabolites. Blood was collected, and plasma was 

obtained by centrifugation (2000× g for 15 min at 4 °C) and stored at −80 °C until 

analysis. Tissues were rapidly removed, weighted, snap-frozen in liquid nitrogen, and 

stored at −80 °C until further analyses. 

2.2. Biochemical Parameters 

2.2.1. Plasma Parameters 

Enzymatic colorimetric kits were used for the determination of plasma total 

cholesterol, triglycerides, and glucose (QCA, Barcelona, Spain) and non-esterified free 

fatty acids (NEFAs) (WAKO, Neuss, Germany). 
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2.2.2. Liver Lipid Parameters 

Liver lipids were extracted and quantified from a 100–120 mg liver piece using a 

method previously described in the literature [40]. Briefly, lipids were extracted with 

1 mL of hexane/isopropanol (3:2, v/v) and degassed with gas nitrogen before leaving 

overnight under orbital agitation at room temperature protected from light. After an 

extraction with 0.3 mL of Na2SO4 (0.47 M), the lipid phase was dried with nitrogen gas 

and total lipids were quantified gravimetrically before emulsifying as described 

previously [41]. Triglycerides, cholesterol, and phospholipids were measured with 

commercial enzymatic kits (QCA, Barcelona, Spain). 

2.3. Metagenomic Analysis 
The genomic bacterial DNA was obtained from 700 to 1000 mg of FCS and CEC of 

previously collected with the QIAamp DNA stool kit (Qiagen, Hilden, Germany; cat. no. 

51504) following the manufacturer’s protocol. Partial 16S ribosomal RNA gene 

sequences were amplified from 20 ng of extracted DNA using three primer pairs, 

which target the V3, V4, and V6 regions, respectively. Equimolar pools of each 

fragment were combined to create the DNA library, which was subjected to a clonal 

amplification by an emulsion PCR. After an Ion Sphere Particle enrichment process, 

samples were loaded onto 318 chips and sequenced using the Ion Torrent PGM (Life 

Technologies, Carlsbad, CA, USA). The individual sequence reads were filtered by the 

PGM software (Life Technologies, Carlsbad, CA, USA) to remove low-quality and 

polyclonal sequences. Those reads were processed using QIIME [42], selecting only 

sequences with 150–200 bp and omitting homopolymers. 16S ribosomal RNA 

operational taxonomic units (OTUs) were assigned using uclust (>97% sequence 

homology) and a reference data set from Greengenes (Lawrence Berkeley National 

Laboratory, Berkeley, CA, USA). 

2.4. Metabolomic Analysis: Plasma and Urine Approach 
The method for the extraction of plasma lipids was ultrahigh performance liquid 

chromatography coupled with quadrupole time-of-flight (UHPLC-qTOF). For the 

extraction of the hydrophobic lipids, a liquid–liquid extraction based on the Folch 

procedure was performed by adding four volumes of chloroform:methanol (2:1, v/v) 

containing internal standard mixture (Lipidomic SPLASH®) to plasma. Then, the 

samples were mixed and incubated at −20 °C for 30 min. Afterwards, water with NaCl 

(0.8%) was added, and the mixture was centrifuged at 21.420× g. Lower phase was 

recovered, evaporated to dryness, reconstituted with methanol:methyl-tert-butyl 

ether (9:1, v/v), and analysed by UHPLC-qTOF (model 6550 of Agilent, Santa Clara, CA, 

USA) in positive electrospray ionization mode. The chromatographic consists in an 

elution with a ternary mobile phase containing water, methanol, and 2-propanol with 

10 mM ammonium formate and 0.1% formic acid. The stationary phase was a C18 

column (Kinetex EVO C18 Column, 2.6 µm, 2.1 mm × 100 mm) that allows the 

sequential elution of the more hydrophobic lipids such as TG, diacylglycerols (DG), 

phosphatidylcholines (PC), cholesterol esters (ChoE), lysophospholipids (LPC), and 

sphingomyelins (SM), among others. The identification of lipid species was performed 
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by matching their accurate mass and tandem mass spectrum, when available, to 

Metlin-PCDL from Agilent containing more than 40,000 metabolites and lipids. In 

addition, chromatographic behaviour of pure standards for each family and 

bibliographic information was used to ensure their putative identification. After 

putative identification of lipids, these were semiquantified in terms of internal 

standard response ratio using one internal standard for each lipid family. 

The methodology followed for the extraction of plasma metabolites was gas 

chromatography coupled with quadrupole time-of-flight (GC-qTOF). For the 

extraction, a protein precipitation extraction was performed by adding eight volumes 

of methanol:water (8:2, v/v) containing internal standard mixture (succinic acid-d4, 

myristic acid-d27, glicerol-13C3, and D-glucose-13C6) to plasma samples. Then, the 

samples were mixed and incubated at 4 °C for 10 min and centrifuged at 21.420× g, 

and supernatant was evaporated to dryness before compound derivatization 

(metoximation and silylation). The derivatized compounds were analysed by GC-qTOF 

(model 7200 of Agilent, Santa Clara, CA, USA). The chromatographic separation was 

based on the Fiehn method, using a J&W Scientific HP5-MS (30 m × 0.25 mm i.d.), 0.25 

µm film capillary column, and helium as carrier gas using an oven program from 60 to 

325 °C. Ionization was done by electronic impact (EI), with electron energy of 70 eV 

and operated in full scan mode. The identification of metabolites was performed by 

matching their EI mass spectrum and retention time to metabolomic Fiehn library 

(Agilent, Santa Clara, CA, USA), which contains more than 1400 metabolites. After 

putative identification of metabolites, these were semiquantified in terms of internal 

standard response ratio. 

The methodology followed for the extraction of urine metabolites was proton 

nuclear magnetic resonance (1H-NMR). The urine sample was mixed (1:1, v/v) with 

phosphate buffered saline containing with 3-(Trimethylsilyl)propionic-2,2,3,3-d4 acid 

sodium salt (TSP) (Sigma Aldrich) and placed on a 5 nm NMR tube for direct analysis 

by 1H-NMR. 1H-NMR spectra were recorded at 300 K on an Avance III 600 

spectrometer (Bruker®, Karlsruhe, Germany) operating at a proton frequency of 

600.20 MHz using a 5 mm PBBO gradient probe. Diluted urine aqueous samples were 

measured and recorded in procno 11 using a one-dimensional 1H pulse. Experiments 

were carried out using the nuclear Overhauser effect spectroscopy (NOESY). NOESY 

presaturation sequence (RD–90–t1–90–tm–90 ACQ) was used to suppress the residual 

water peak, and the mixing time was set at 100 ms. Solvent presaturation with 

irradiation power of 150 μW was applied during recycling delay (RD = 5 s) and mixing 

time (noesypr1d pulse program in Bruker®) to eliminate the residual water. The 90-

pulse length was calibrated for each sample and varied from 11.21 to 11.38 ms. The 

spectral width was 9.6 kHz (16 ppm), and a total of 128 transients were collected into 

64 k data points for each 1H spectrum. The exponential line broadening applied before 

Fourier transformation was of 0.3 Hz. The frequency domain spectra were manually 

phased and baseline-corrected using TopSpin software (version 3.2, Bruker). Data was 

normalized by two different ways, by probabilistic method, to avoid differences 

between sample due to different urine concentration, and by ERETIC software. The 
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acquired 1H-NMR spectra were compared to references of pure compounds from the 

metabolic profiling AMIX spectra database (Bruker®), HMDB, and Chenomx databases 

for metabolite identification. In addition, we assigned metabolites by 1H-1H 

homonuclear correlation (COSY and TOCSY) and 1H-13C heteronuclear (HSQC) 2D NMR 

experiments and by correlation with pure compounds run in-house. After pre-

processing, specific 1H-NMR regions identified in the spectra were integrated using 

MATLAB scripts run in house. Curated identified regions across the spectra were 

exported to excel spreadsheet to evaluate robustness of the different 1H-NMR signals 

and to give relative concentrations. 

2.5. Pathway Analysis 
The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway map was used 

to interpret the metabolomic data in the context of biological processes, pathways, 

and networks [43]. The most important features were analysed through KEGG to 

elucidate the global effect in metabolism. 

2.6. Statistical Analysis 
The statistical analysis was performed using the R software (version 4.0.1) and 

different libraries included in Bioconductor (version 3.11). The biochemical data are 

expressed as the mean ± standard error of the mean (SEM). Parametric unpaired t-

test after a normality study was used for single statistical comparisons, thus a two-

tailed value of p < 0.05 was considered. After parametric unpaired t-test, p-value 

adjustment for multiple comparisons was performed according to the Benjamin-

Hochberg (B-H) correction considering a 5% of false discovery rate (FDR). The 

magnitude of difference between populations was determined by the determination 

of Fold Change (FC). For metagenomics, the number of OTUs per sample were scaled 

so each sample had the same mean and were filtered to only include OTUs that were 

present at 0.1% of the total counts in at least 3 samples [44]. Further, the random 

forest classifier was calculated to sort the most important metabolites that distinguish 

between the control (STD-R) and obesity-associated gut dysbiosis (CAF-R) group. 

Finally, correlation analysis between metagenomics and metabolomics were 

performed by kernel density plot and the correspondent test of equal densities.  

2.7. Limitations 
However, this research is limited by several shortcomings. As occurs in some 

studies, the design of the current study must be considered as a “pilot study” because 

the number of the animals is not high enough (n = 7 per group) to provide a strong 

statistical conclusion about the biomarkers. In addition, females must be included for 

further studies. Nonetheless, these metagenomic results must be interpreted with 

caution because 16S sequencing was performed. These issues should be considered 

to perform further experiments. 
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3. Results 

3.1. Characterization and Metagenomic Analysis of Donor 

Animals: Induced by Cafeteria Diet and Standard Diet 
Animals fed with an obesogenic diet presented a significant increase in body 

weight (g) (CAF-D = 550.09 ± 18.17 and STD-D = 443.05 ± 24.92; p = 0.005) and a huge 

decrease in CEC weight (g) (CAF-D = 4.34 ± 0.17 and STD-D = 5.59 ± 0.19; p < 0.001), 

respect those fed with a standard diet, in agreement with other researchers [45], [46].  

To study the metabolic alterations of obesity-associated gut dysbiosis with a 

healthy phenotype, the previous step was the obtention of CEC donors for further 

transplant. Therefore, a metagenomic analysis was performed in donor groups (CAF-

D and STD-D) in CEC and FCS to check the success on the obesity-associated gut 

dysbiosis. The reads count in 16S rRNA gene sequencing were 200.624–988.148 per 

sample.  

Results from CEC showed a significant change in the two major phyla of the GM: 

Firmicutes (STD-D: 85.26%, CAF-D: 49.39%; q = 0.001) decreased and Bacteroidetes 

(STD-D: 12.83%, CAF-D: 34.77%; q = 0.025) increased in CAF-D group. Thus, there was 

an increase of the ratio of Bacteroidetes/Firmicutes in the CAF-D group (STD-D = 0.16 

± 0.04 and CAF-D = 0.81 ± 0.21; p = 0.009). Nevertheless, these alterations were not 

observed in FCS. Moreover, the results showed some changes in less represented 

phyla, e.g., the phylum Tenericutes was significantly decreased in the CAF-D group 

(STD-D: 0.29%, CAF-D: 0.11%; q = 0.034), the Proteobacteria (STD-D: 0.31%, CAF-D: 

3.47%; q = 0.034) was increased, and the phylum Verrucomicrobia was almost 

significantly increased (STD-D: 1.21%, CAF-D: 12.01%; q = 0.053).  

Focusing on genera, the differences between donor groups were summarized in 

Table S1 standing out that Clostridiales and Bacteroidales were the most altered taxa 

representing the main differences in Firmicutes and Bacteroidetes phyla, respectively. 

In the CAF-D group, some genera experienced changes as well: there was a significant 

increase of Ruminococcus, Blautia, and Parabacteroides. Some differences were 

common between FCS and CEC at genus level, as both experienced a significant 

decrease in an uncharacterized genus belonging to of Clostridiales (STD-D: 29.73%, 

CAF-D: 5.59%; q = 0.019) and an increase of Parabacteroides genus (STD-D: 0.42%, 

CAF-D: 3.44%; q = 0.047) in the CAF-D group. Other genus significantly decreased in 

CAF-D FCS group were, e.g., two Clostridiales, Oscillospira (STD-D: 5.03%, CAF-D: 

1.93%; q = 0.027), and Dehalobacterium (STD-D: 0.16%, CAF-D: 0.05%; q = 0.047), and 

an uncharacterized genus of the Rikenellaceae family in the Bacteroidales order (STD-

D: 2.17%, CAF-D: 0.83%; q = 0.019). 

Alpha diversity values, which are measures of variability within a sample, were 

calculated with a variety of indices that measure richness and variation (including 

Shannon, Simpson, chao1, observed OTUs index, and phylogenetic diversity) (Figure 

S1). Shannon and Simpson indices showed evenness in the population of both groups. 
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The observed OTUs index was significantly decreased in FCS in the CAF-D group, 

though it was non-significantly decreased in CEC (FCS p = 0.036; CEC p = 0.066). 

However, chao1 was significantly lower in both, FCS and CEC (FCS p = 0.036; CEC p = 

0.048). In addition, the phylogenetic diversity was significantly lower in CAF-D (FCS p 

= 0.030; CEC p = 0.012). The estimation of beta diversity, i.e., an indication of variability 

among groups, by means of a Principal Coordinate Analysis (PCoA) (Figure 2b) showed 

a clear and statistically significant separation between the STD-D and CAF-D groups (q 

< 0.001). 

3.2. Depletion of Microbiota in Receptor Animals after the 

Antibiotic Treatment 
After the obtention of the donors cecal content, the transplant in healthy animals 

was performed. Previously, the experimental procedure required a previous depletion 

of the host microbiota by means of an antibiotic treatment, and a subsequent 

metagenomic analysis of the FCS to evaluate the success of the depletion. The reads 

count in 16S rRNA gene sequencing were 188–342.242 per sample. The low minimum 

reads corresponds with a low quantity of bacterial DNA, which was also difficult to 

amplify. Data from the STD-D group were used to compare the microbiota after the 

antibiotic treatment. At the phylum level, all FCS samples had similar taxonomic 

relative abundance, composed mainly by Firmicutes (57%) and Bacteroidetes (30.09%) 

(Figure S2a). Other less abundant phyla included Proteobacteria (3.8%), 

Verrumicomicrobia (2.6%), Spirochaetes (1.6%), Actinobacteria (1%), Cyanobacteria 

(1%), and additional phyla not listed due to represent <1%. Thus, there is an 

emergence of less abundant phyla and a decrease in most abundant phyla (Figure 

S2b). Alpha diversity indices confirmed the decrease in bacteria after the treatment 

(Figure S2c). More concisely: (1) FCS samples showed lower levels of OTUs index per 

genus compared to the STD-D group; (2) Shannon and Simpson indices were 6.63 ± 

0.12 and 0.99 ± 0.002, respectively; (3) the average of observed OTUs (124 ± 5.90) and 

chao 1 (465.65 ± 55.86) in the FCS were three orders of magnitude lower compared 

to the STD-D group; and 4) the phylogenetic diversity was 14.69 ± 1.38, being values 

too low compared to other studies. Moreover, the PCoA confirmed the homogeneity 

of the beta diversity of the host microbiota after the depletion treatment with 

antibiotics (Figure S2d). 
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Figure 2. Changes in the metagenome of rats fed with cafeteria diet (CAF-D) and chow diet (STD-D). (a) 
the 5 phyla represented by relative abundance and (b) analysis of beta diversity represented by scores of 
each STD-D (blue) and CAF-D (red) groups in FCS (light color) and CEC (dark color) after Principal Coordinate 
Analysis (PCoA) with unweighted UniFrac. 
 

3.3. Metagenomic Characterization of the Model of Obesity-

Associated Gut Dysbiosis with a Healthy Phenotype 
The biometric and biochemical parameters, plasma parameters, and liver 

biochemistry, which are summarized in Table S2, were carried out to better 

characterize the model of obesity-associated gut dysbiosis in the context of a healthy 

phenotype. Focusing on biometric parameters, the total white adipose tissue weight 

(gr.) increased in CAF-R group compared to the STD-R group; concretely a tendency to 

increase in MWAT (STD-R: 4.04 ± 0.26, CAF-R: 5.16 ± 0.52; p = 0.09) was observed and 

a slight increase in RWAT (STD-R: 7.14 ± 0.90, CAF-R: 9.70 ± 1.70; p = 0.22) was also 

assessed. Once the transplant was done, the effect of the cecal content transplant was 

mainly observed by a significant decrease in CEC weight (gr.) in the cecal content 

receptors groups versus the control group (CNT-R: 8.43 ± 0.63, STD-R + CAF-R: 5.28 ± 

STD-D CAF-D

Bacteroidetes
Firmicutes
Verrucomicrobia
Proteobacteria
Tenericutes

(a)

(b)
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PC1 (24.45%)

PC2 (6.05%)
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0.32; p = 0.002). Some plasma parameters presented a tendency to increase, including 

TG (STD-R: 80.91 ± 14.01, CAF-R: 117.30 ± 17.12; p = 0.1), TC (STD-R: 44.81 ± 9, CAF-R: 

68.19 ± 11; p = 0.1), and NEFAs (STD-R: 0.37 ± 0.02, CAF-R: 0.43 ± 0.03; p = 0.1), while 

glucose remained unaltered. However, total liver lipids (STD-R: 38.57 ± 2.20, CAF-R: 

28.99 ± 2.22; p = 0.01) significantly decreased in the CAF-R group, and specifically 

phospholipids (STD-R: 12.85 ± 0.60, CAF-R: 10.67 ± 0.67; p = 0.03) presented the 

highest decrease. 

The reads count in 16S rRNA gene sequencing were 151.796–522.785 per sample. 

After the microbiota transplant, the composition of the communities showed a 

separation of the FCS and CEC samples in the second component (PC2) of the PCoA 

(Figure 3). The first component (PC1) of the PCoA clearly separates CNT-R and the 

transplanted rats (STD-R and CAF-D) (Figure 3). Thus, PC1 and PC2 explain 13.42% and 

7.65% of the variability, respectively. Furthermore, the CNT-R group versus the 

transplanted microbiota rats (STD-R and CAF-D) had a smaller number of species, as 

shown by a significant decrease in the alpha diversity indices in CEC, i.e., chao1, 

observed OTUs and phylogenetic diversity. This decrease was not-significantly 

decreased in FCS (Figure S3).  

 
Figure 3. Analysis of beta diversity after the transplant represented by scores after PCoA (unweighted 
UniFrac). Green, CEC CNT-R; light green, FCS CNT-R; blue, CEC STD-R; light blue, FCS STD-R; red, CEC CAF-R; 
light red, FCS CAF-R. 
 

At phylum level, the effect of the transplant in STD-R promoted an establishment 

of Firmicutes in CEC (CNT-R: 71.82% vs. STD-R: 91.02%; p = 0.05; q = 0.09) and in FCS 

(CNT-R: 40.5% vs. STD-R: 52.59%; p = 0.14; q = 0.28), whereas Bacteroidetes remained 

low in CEC (CNT-R: 18.86% vs. STD-R: 7.86%; p = 0.15; q = 0.18) and almost unaltered 

in FCS (CNT-R: 44.88% vs. STD-R: 43.2%; p = 0.79; q = 0.79). Otherwise, minor 

represented phyla such as Verrucomicrobia (CNT-R: 8.46% vs. STD-R: 0.78%; p = 0.02; 

q = 0.07), Proteobacteria (CNT-R: 0.66% vs. STD-R: 0.21%; p = 0.05; q = 0.09), and 

CNT-R CEC CNT-R FCS STD-R CEC STD-R FCS CAF-R CEC CAF-R FCS

PC1 (13.42%)

PC 2 (7.65%)
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Actinobacteria (CNT-R: 0.14% vs. STD-R: 0.03%; p = 0.008; q = 0.05) were decreased in 

CEC. The sorted minor phyla had more presence in CNT-R CEC instead of STD-R CEC 

compensating the non-establishment of the two major phyla (Figure 4a). Focusing on 

genera, the differences between CNT-R and STD-R are summarized in Table S3. Thus, 

the differences in Firmicutes were characterized in the cecum of STD-R group by the 

significative alteration of Ruminococcus, Oscillospira, and Coprococcus and an 

uncharacterized genus in the Clostridiales order (Figure 4d). Moreover, some 

differences were also found in feces of STD-R group characterized by changes in rc4-4 

genus and an uncharacterized genus.  

 
Figure 4. Microbiota composition between CNT-R, STD-R, and CAF-R groups represented by abundance. 
(a) phylum level in CNT-R vs. STD-R, (b) phylum level in CNT-R vs. CAF-R, (c) phylum level in STD-R vs. CAF-
R, (d) genus level in CNT-R vs. STD-R, (e) genus level in CNT-R vs. CAF-R, (f) genus level in STD-R vs. CAF-R. 

 
Regarding the CAF-R group, the differences were similar as previously described 

for the STD-R group with the establishment of Firmicutes in CEC (CNT-R: 71.82% and 

CAF-R: 89.3%) and in FCS (CNT-R: 40.5% and CAF-R: 52.05%), while Bacteroidetes 

remain low in CEC (CNT-R: 18.86% and CAF-R: 9.14%) and almost equal in FCS (CNT-R: 

44.88% and STD-R: 43.89%). Besides, Verrucomicrobia phylum was increased in the 

CNT-R group having more differences in CEC than in FCS group (Figure 4b). Focusing 

on genera, the differences between CNT-R and CAF-R are summarized in Table S4. 

Thus, Oscillospira genus was the main altered genus presenting a significative increase 

in both sample types among other interesting changes in CEC genera as Coprococcus 

and Ruminococcus (Figure 4e). 

The receptors of cecal content, the STD-R and the CAF-R groups, had a similar 

phyla composition (Figure 4c). Focusing on genera, the statistical analysis between 

STD-R and CAF-R are summarized in Table S5. Although the animals presented a 

similar phyla composition, some differences could be observed in genera as it is shown 
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in Figure 4f. In this case, more differences were observed in FCS than in CEC. In the 

case of CEC, an uncharacterized genus of Lachnospiraceae family presented a 

significant one-half decrease in CAF-R. Although there were not any more statistically 

significant differences, there were some genera with interesting fold changes as the 

case of Parabacteroides. 

3.4. Metabolomic Characterization of the Model of Obesity-

Associated Gut Dysbiosis with a Healthy Phenotype 
The plasma metabolomic approach was based on a multiplatform global analysis 

including 139 metabolites belonging to: the metabolism of lipids as a wide diversity of 

different triglycerides (TG), ester cholesterols (ChoE), diacylglycerols (DG), 

sphingomyelins (SM), phosphatidylcholines (PC), and lysophospholipids (LPC); 

metabolism of carbohydrates as the main metabolites of citric acid pathway were 

included; and metabolism of the main amino acids affecting the microbiota and diet 

were included among other interesting metabolites. The analysis showed differences 

on the lipid metabolism in the CAF-R group in comparison to the STD-R group (Table 

S6). After the parametric unpaired t-test, 7 different significant lipids were determined 

as potential biomarkers in plasma (DG 34:2, DG 34:3, DG 36:2, DG 36:4, LPC 20:0, DG 

34:1, and PC 31:0). However, only one plasma metabolite was significantly 

differentiated after the multivariate correction, which was the DG 34:2. Specifically, 

the DG 34:2 was significantly increased in CAF-R compared to CNT-R (q = 0.009) and 

STD-R (q = 0.045) (Table 1). Moreover, DG 34:2 is the most important feature in the 

model after applying the Random Forest classifier presenting the highest value by far 

in comparison to the second metabolite in the list (Table S7). 

The urine metabolomic approach was based on untargeted 1H-NMR methodology 

detecting 45 metabolites belonging, mainly, to the metabolism of amino acids (e.g., 

phenylalanine, tyrosine, and tryptophan metabolism; glycine, serine, and threonine 

metabolism; alanine, aspartate, and glutamate metabolism; glutathione metabolism; 

and taurine and hypotaurine metabolism) and the energetic metabolism (e.g., citrate 

cycle, pyruvate metabolism, and glycolysis/gluconeogenesis) (Table S8). After the 

parametric unpaired t-test, 6 different significant metabolites were determined as 

potential biomarkers in urine (hippurate, o-coumaric acid, 3-HPPA, HPPA sulfate, 

tyrosine, and phenylacetylglycine). After the multivariate correction, the results 

pointed out three metabolites involved in the phenylalanine metabolism that were 

significantly altered in the CAF-R group compared to the STD-R group (hippurate, o-

coumaric acid, 3-HPPA). On the one hand, the o-coumaric acid (q = 0.035) and the 3-

hydroxyphenylpropionate (3-HPPA) (q = 0.039) were significantly increased in the CAF-

R group compared with the STD-R group, almost 3 and 10 times more elevated, 

respectively. On the other hand, the hippurate (q = 0.013) was significantly decreased 

by a half in the CAF-R group in comparison to the STD-R group (Table 1). Moreover, 

those metabolites are the most important features in the model after applying the 

Random Forest classifier being the top metabolites to discern between the STD-R and 

CAF-R groups (Table S9). 
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Table 1. Metabolites significantly altered affected by the microbiota transplant in plasma and urine. The 
statistically significant p-values (p < 0.05) and q-values (q < 0.05) are highlighted in bold. Abbreviations: DG 
34:2, diacylglycerol 34:2; 3-HPPA, 3-hydroxyphenylpropionate. Bold figures mean significant. 
 

 Biofluid Plasma Urine Urine Urine 

 Metabolite DG 34:2 Hippurate o-Coumaric Acid 3-HPPA 

Mean ± SEM 

CNT-R 0.40 ± 0.03 192.13 ± 48.87 4.36 ± 0.84 15.58 ± 5.87 

STD-R 0.42 ± 0.04 295.91 ± 20.55 2.16 ± 0.20 2.31 ± 0.60 

CAF-R 0.72 ± 0.05 145.49 ± 21.45 6.14 ± 0.76 21.30 ± 3.91 

CNT-R vs STD-R 

p-value 0.549 0.086 0.039 0.064 

q-value 0.963 0.351 0.290 0.290 

FC 1.07 1.54 0.50 0.15 

CNT-R vs CAF-R 

p-value <0.001 0.407 0.141 0.435 

q-value 0.009 0.770 0.770 0.783 

FC 1.82 0.77 1.41 1.37 

STD-R vs CAF-R 

p-value <0.001 <0.001 0.002 0.003 

q-value 0.045 0.013 0.035 0.039 

FC 1.69 0.49 2.84 9.24 

 

3.5. Correlation between Metagenomics and Metabolomics 

in the Obesity-Associated Gut Dysbiosis 
Focusing on the metabolic differences between the STD-R and the CAF-R groups, 

none of the metabolites (n = 4) used in this study were correlated with values of 

metagenomic diversity (Table S10). Nevertheless, we focused on specific genus. In this 

case, the Kernel density distribution of altered metabolites was correlated with some 

genus normalizing the relative values of the metabolites by the different genus, 

discerning between STD-R and CAF-R groups. Thus, 28 genera with a higher 

abundance of 0.1% were selected to study the density distribution. Interestingly, the 

density distribution of the STD-R and the CAF-R groups was significantly different in 3 

genera for DG 34:2, 19 genera for 3-HPPA, 9 genera for Hippurate, and 14 genera for 

o-coumaric acid (Table S11). Indeed, Firmicutes was the phylum with the great part of 

genus affecting the distribution between groups. For example, the Oscillospira genus 

was differently distributed between groups in the four selected metabolites (Figure 

5), and differences were found in donors and receptors. In addition, besides 

Oscillospira genus, other genera from the Clostridiales order have at least 3 altered 

metabolites (i.e., Coprococcus and an uncharacterized genus of Lachnospiraceae 

family; Dehalobacterium genus of Dehalobacteriaceae family; and an uncharacterized 

genus of uncharacterized family) (Figure 5).  
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Figure 5. Kernel density plot of the altered metabolites normalized by genus for the STD-R and CAF-R 

group. The statistical comparisons between metabolites normalized by genus were conducted using test of 

equal densities. The X axis represents the values of Kernel density while the Y axis represents the metabolite 

values. Each row represents the metabolites normalized by one selected genus. Each column shows the 

metabolites represented in the Kernel density plot. The significant differences are highlighted by an asterisk. 

Green line: STD-R; red line: CAF-R. 

4. Discussion 
In the present study, a pilot metabolomic approach in healthy rats, that received 

cecal microbiota from obese ones, has been carried out to find a metabolic profile of 

obesity-associated GM with a healthy phenotype, avoiding metabolic disturbances 

related to other risk factors. Importantly, the transference of GM from obese to non-

obese rats could help to discover new biomarkers exclusively related to this GM 

alterations that could provide interesting information about the metabolic profile of 

a segregated obesity-associated gut disbiotic state. 

Interestingly, focusing on biometric parameters, a huge significant decrease in 

CEC weight was observed which could be directly induced by the effect of the cecal 

content. Additionally, there was a tendency to increase in the total weight of white 

adipose tissue, which was more evident in MWAT although a slight increase was also 

observed in RWAT. Thus, the transplanted cecal content affected the weight of the 

white adipose tissue. Focusing on plasma biochemistry, the glucose levels remained 

unaltered but TG, TC, and NEFAs presented a clear tendency to increase in the CAF-R 

group supporting the changes observed in MWAT and RWAT. On the other hand, the 

total liver lipids decreased in the CAF-R group, and specifically the phospholipids were 

the representative lipid species that also correlated with this decrease. Globally, all 

these changes demonstrate the impact of the different cecal donors’ content in 

transplant on some biometric and biochemical parameters.  

In our study, the depletion of host microbiota after the antibiotic treatment, 

which produces a decrease in the number of microbes, was characterized by an 

DG 34:2
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emergence of less abundant phyla and a decrease in most abundant phyla in receptors 

animals (CNT-R, STD-R, and CAF-R). In our pilot model of obesity-associated gut 

dysbiosis in rats, we altered the microbiota of cecal receptors (STD-R and CAF-R) by 

oral gavage of cecal donors content (STD-D and CAF-D), which were fed with a 

standard diet. First, to determine the success of the transplant, the control group 

(CNT-R) and CEC receptors groups were compared (STD-R and CAF-R). Results showed 

an increase of bacteria and diversity in CEC receptors groups, as well as a decrease in 

CEC weight. Moreover, we observed slight differences between STD-R and CAF-R, 

where there was a change in the distribution of bacteria. Significant increases in 

genera of the STD-R group were induced in the Clostridiales spp.; Ruminococcus, 

Oscillospira, Coprococcus; and an uncharacterized genus (which were increased in 

CEC). On the other hand, an uncharacterized genus of Ruminococcaceae and rc4-4 

genus was significantly increased in FCS. In the case of CAF-R versus CNT-R, 

Oscillospira genus was increased either in CEC or FCS following the trend of STD-R. The 

differences in Oscillospira genus were maintained between the donors and receptors, 

which has been defined as a component of the GM related to leanness or lower BMI, 

confirming our model of obesity-associated to GM in a healthy phenotype [47]. Finally, 

some minor changes in the genera could be observed, including some important 

genera in the development of obesity (e.g., changes in the composition of Clostridiales 

spp.). Although, clear statistical differences between STD-R and CAF-R groups were 

not observed in metagenomics analysis, if we consider all these changes together with 

the biometric and biochemical parameters, we could sense a segregated model of 

obesity-associated gut dysbiosis. 

In addition, some metabolic changes were observed in the host, induced by the 

alteration of the complexity microbial biofilm. In fact, the most interesting altered 

metabolites included those in plasma (e.g., DG 34:2) and urine (e.g., Hippurate, 3-

HPPA, and o-coumaric acid), pointing out urine as a fundamental part of the metabolic 

profile of our model. These metabolic variations provide another hint to prove the 

achievement of the segregated dysbiosis between STD-R and CAF-R groups. In this 

sense, taking together the biometric and biochemical parameters, the metagenomics 

and, finally, the metabolomics, the general picture of the model would be elucidated. 

Thus, we can consider the experiment as a successful pilot model of obesity-

associated gut dysbiosis.  

DG were the main metabolites with altered circulating plasma levels that were 

found in transplanted rats; being increased in CAF-R compared to CNT-R and STD-R. 

However, after the multivariate correction, only the DG 34:2 was statistically 

significant. DG are glycerides consisting of two fatty acid chains covalently bonded to 

a glycerol molecule through ester linkages [48] and, apart from being the central 

intermediate in the synthesis of membrane phospholipids and the lipid storage [49], 

they are key regulators of cell physiology, controlling the membrane recruitment and 

activation of signalling molecules [50]. For example, Backhed and collaborators have 

suggested that because of dysbiosis, GM can stimulate the levels of TG and DG 

through the suppression of the intestinal epithelial expression of the fasting-induced 
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adipose factor (Fiaf), a natural inhibitor of circulating lipoprotein lipase (LPL) [51], 

which is the main rate-limiting enzyme in lipid metabolism, catalysing the hydrolysis 

of TGs and DG [52]. Our results suggest that microbial alteration associated to obesity 

could stimulate Fiaf expression, potentiating the inhibition of LPL and therefore, 

increasing the circulating levels of DG, specifically the DG 34:2. In this sense, the DG 

34:2 is a diacylglycerol with fatty acids containing a total of 34 carbons and 2 double 

bonds joined via ester linkages at unknown positions (sn1, sn2, or sn3), it is mainly 

implicated in the novo triacylglycerol biosynthesis of several TG as other DG [53]. This 

specific lipid has been attracting attention in studies of lipidomics in diverse fields 

focusing on, e.g., diabetic kidney tissue of diabetic rats [54] and liver tissue of 

hypertensive rats [55]. Despite this metabolite was found as a biomarker in several 

pathologies and tissues in rats as it has been described before, we also propose this 

specific lipid to do further studies in obesity-associated to gut dysbiosis. Although the 

first lipidomic biomarkers are entering in the clinic, certain analytical standards need 

to be established in order to make lipidomic measurements generally accepted in 

clinical settings [56]. However, tissues responsible for DG levels in plasma are still 

unknown. Several authors have pointed out the utility of increased levels of plasma 

DG, as well as its composition, as biomarkers of metabolic syndrome and obesity in 

rodents [57], [58], rhesus monkeys [59], and humans [60], although without specifying 

the type/s of DG. 

On the other hand, a relevant finding in our pilot study is the alteration on hepatic 

lipids observed in transplanted animals. CAF-R group showed decreased levels of total 

hepatic lipids and phospholipids compared to STD-R and CNT-R groups. Interestingly, 

it has been recently shown [61] that the transfer of disbiotic gut microbiota from 

obese to antibiotic-free conventional mice changes gut microbiota and microbiome of 

recipient mice, ameliorates hepatic gluconeogenesis, and prevents high-fat diet-

induced dysmetabolism. These results agree with our present results and point out 

the potential success of our dysbiosis model. Additionally, despite not directly related 

to microbiota transfer, another interesting study [62], where the connection of the 

antifungal carbendazim (CBZ) on lipid metabolism was studied discovered that CBZ 

chronic treatment induced gut microbiota dysbiosis in mice and such dysbiosis was 

associated with a reduced lipid liver synthesis and an increased lipid storage in the fat. 

More concisely, regarding the liver, some genes involved in TG synthesis, such as 

Dgat1 and Gpat, were significantly downregulated by the CBZ chronic treatment.  

Furthermore, there are, mainly, two enzymes, the diacylglycerol acyltransferase 

(DGAT) and ethanolamine phosphotransferase, which control the use of DG for lipid 

synthesis, suggesting the presence of a common DG pool for lipid synthetic pathways 

[63]. Another DG pool is also available for glycerolipid synthesis because DG that is 

released from TG stores in human fibroblasts can be converted to phospholipids [64]. 

Segregation of DG toward different metabolic routes seems to occur according to the 

cell’s needs. For instance, the DG originally destined to form phospholipids is re-

directed toward TG when phospholipid synthesis is inhibited [65]. In our animal 

model, the obesity-associated gut dysbiosis model produces a significant increase in 

UNIVERSITAT ROVIRA I VIRGILI 
MULTI-OMICS BIOMARKERS OF METABOLIC HOMEOSTASIS OF RISK FACTORS ASSOCIATED TO 
NON-COMMUNICABLE DISEASES 
Julia Hernandez Baixauli 



            III. Results: Manuscript 3 

194 
 

plasma DG levels, as the DG 34:2, and a decrease in hepatic phospholipids. Thus, it 

would be expected an increase in plasma or liver TG, although they were not changed. 

Further studies are needed to elucidate the relation between microbes, DG 34:2, and 

liver phospholipids. 

The obesity-associated to gut dysbiosis in a healthy phenotype also produced the 

alteration of three main metabolites, i.e., hippurate, o-coumaric acid, and 3-HPPA, in 

urine. These metabolites, which belong to the phenylalanine metabolism, have also 

been related to the degradation of phenolic compounds that have been traditionally 

associated with the ingestion of polyphenols-rich food [66]. In this sense, diet is one 

of the major environmental factor that modulates the composition and the metabolic 

activity of GM, forming the food–gut axis [67]. Polyphenols are plant secondary 

metabolites, and there are many studies that support the idea that phenolic 

compounds modulate the composition and metabolic activities of GM, as well as GM 

metabolize polyphenols into bioactive compounds that produce clinical benefits [68], 

[69]. Hence, it has been postulated that changes in the species population or GM 

activities result in changes in the metabolic processing of polyphenolic compounds 

that can be observed in the derived urinary metabolites [70].  

In our case, the changes in urine metabolomics are explained by the microbiota 

transplant and not by the modulation of dietary polyphenols, because all the animals 

received the same diet (without differences in trace polyphenols). The phenolic 

compounds that have been found altered in our urine model are included in the group 

of chlorogenic acids, standing out the contradictory information in literature about 

the bioavailability and effects of these type of polyphenols [66]. Interestingly, Clayton 

and collaborators proposed two distinct rat urinary compositional phenotypes, i.e., 

these may arise from differences in the gut microbially mediated metabolism of 

phenylalanine that are characterized by differences in hippurate and 3-HPPA, among 

other metabolites [71].  

Hippurate is a glycine conjugate of benzoic acid formed in the mitochondria of 

the liver and kidneys and then excreted in the urine [72] and is considered a gut 

microbial-mammalian co-metabolite that can be made by Clostridium spp., primarily 

from polyphenols [73]. In our study, hippurate was reduced by a half in the CAF-R 

group compared to the STD-R group. In this sense, hippurate excreted in urine has 

been found as a distinguishing feature of different range on physiological and 

pathological conditions (e.g., obese phenotypes [74], [75], metabolic syndrome [76], 

Crohn’s disease [77], psychological disorders [78], among others). Additionally, many 

studies have shown an increased excretion of hippurate resulted from the ingestion 

of specific dietary components containing phenolic molecules, as teas [79], [80] or 

edible fruits [81]. Considering the previous information, hippurate could be 

considered as a biomarker of health but this concept is ambiguous, since the source 

has not been robustly addressed. Thus, the wide associations of hippurate to different 

conditions support the idea of our findings that the changes in its excretion are caused 

by the GM and not by the disease. These results are in agreement with a recent review 
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showing that the differences in hippurate excretion are due, at least in part, to 

functional or compositional differences in GM, regardless of the specific diet [70]. 

Related to hippurate, the 3-HPPA is a phenol derivative formed through 

fermentation of tyrosine by Clostridium spp., that could be further metabolized to 

benzoic acid and excreted as hippurate [82], [83]. Interestingly, related to chlorogenic 

acids availability, 3-HPPA has been shown to be able to freely cross the gut epithelium 

[84] into the blood and brain [85]. In our animal model, 3-HPPA was increased almost 

10 times in the CAF-R group compared to the STD-R. In a recent study, the effect of 

procyanidin A2, and its major colonic metabolite 3-HPPA, was investigated on the 

suppression of macrophage foam cell formation. The results showed a significant 

reduction in the cellular lipid accumulation and the inhibition of foam cell formation 

by both compounds [86]. According to our study, we speculate that the increased level 

of 3-HPPA urine excretion in CAF-R could be related to the reduction in lipid 

accumulation because CAF-R showed a lower 3-HPPA compared to STD-R. However, 

this mechanism would not directly explain the reduction in total lipids in liver showed 

in CAF-R animals. Altogether, we hypothesize that 3-HPPA could be a direct 

explanation of the decrease in hippurate because of elevated excretion levels in the 

urine profile. In agreement, there was no 3-HPPA availability in the CAF-R animals to 

metabolize hippurate. Furthermore, dietary modulation was found to cause a change 

in the excretion of 3-HPPA, which was replaced by hippurate in Wistar rats [87]. 

Surprisingly, the excretion of hippurate persisted when the animals returned to the 

original diet. It was proposed that, in addition to the precursors available in the diet, 

the absence or presence of urinary hippurate and 3-HPPA was influenced by variation 

on the GM. Additionally, this research proposed that a change in diet could potentially 

have caused a redistribution of the microbiota, resulting in the production of 

hippurate as the primary excretion product, regardless of the specific diet [87]. 

o-coumaric acid, which is an hydroxycinnamic acid, has been described to act as 

powerful antioxidant and as an important biological protector from oxidation [88]. 

Interestingly, our findings showed that o-coumaric acid excretion in urine was 

increased three times in the CAF-R group compared to the STD-R. Related to this, a 

research performed in rats fed with high-fat diet (HFD) showed that supplementing 

the HFD with o-coumaric acid for 8 weeks suppressed the increases in body weight, 

liver weight, and adipose tissue weights of peritoneal and epididymal fat induced by 

the hypercaloric diet [89]. Thus, in our case, the high increase in the o-coumaric 

secretion in urine may be hypothetically related to a decreased systemic protective 

effect in the CAF-R group, having, in consequence, a predisposition to develop obesity 

in the future. As far as we know, this is the first time that o-coumaric acid is proposed 

as a dysbiosis biomarker. 

Finally, some correlations will be discussed to directly connect the obesity-

associated gut dysbiosis with the host metabolism. There was a significant correlation 

between some genera in Clostridiales order and the metabolites included in the profile 

of metabolic changes. The Oscillospira genus was highly correlated with the selected 
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metabolites followed by other genus with three out of four metabolites including the 

following genera: Coprococcus and an uncharacterized genus of Lachnospiraceae 

family, Dehalobacterium genus of Dehalobacteriaceae family, and an uncharacterized 

genus of uncharacterized family. Previous intervention studies in humans showed 

minor effect on the metabolism of phospholipids and cholesterol (in large VLDL), after 

changes in the metagenomic composition induced by moderate exercise [90]. Other 

studies have shown correlation of metagenomics with imbalanced metabolome, 

resulting in a source of potential biomarkers of obesity [91], chronic obstructive 

disease in humans [92], the dietary effect of the insulin feeding in pigs [93], the 

quantifying diet effect in humans [94], or tracking a healthy dietary pattern [95]. Thus, 

external factors that induce changes in the microbial community, lead to changes in 

the metabolism.  

Previous studies have found that changes in the microbiota produce metabolic 

alterations, however, to the best of our knowledge, this is the first study that focuses 

on changes in the metabolism caused by obesity-associated gut dysbiosis with a 

healthy phenotype. This study, under controlled experimental conditions, elucidates 

the metabolic changes caused by an obesity-associated gut dysbiosis. This fact opened 

a window of opportunities to propose metabolic biomarkers of segregated obesity-

associated gut dysbiosis in a healthy population. 

5. Conclusions 
The important point in the present study is that we have developed a pilot 

experiment trying to isolate dysbiosis from the rest of obesity-associated 

complications (e.g., hyperglycemia, hyperinsulinemia, hyperlipidemia, 

hypercoagulable state, etc.). In this sense, we have been able to discriminate the 

alterations induced by the dysbiosis component of obesity in a relative isolated way. 

Our model of obesity-associated microbial gut dysbiosis in healthy rats produced 

biometric and biochemical changes, as well as metabolic changes, mainly in the lipid 

(DG 34:2 in plasma) and phenylalanine (hippurate, 3-HPPA, and o-coumaric acid in 

urine) metabolism. In consequence, we propose that external factors that induce 

changes in the microbial community may trigger the mechanism of obesity by altering 

mainly the lipid and phenylalanine metabolism of the host. To the best of our 

knowledge, this is the first study proposing this model of a segregated risk factor of 

obesity, expanding, in consequence, the knowledge about the metabolism on obesity-

associated microbial gut dysbiosis as well as the determination of a metabolic profile 

of the risk factor. Hereby, we propose an obesity-associated metabolic profile, 

including DG 34:2, hippurate, 3-HPPA, and o-coumaric, that can be utilized as tentative 

biomarkers of an obesity-prone state mainly related to a disbiotic state. These pilot 

approach and associated results provide the basis for a better understanding of the 

biological role played by GM and for the discovery of novel biomarkers in future 

obesity studies. 
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Annex. Supplementary Material of Manuscript 3 

 

Supplementary figure 1. Characterization of the alpha diversity indices derived from the QIIME command 
α rarefaction of rats fed with a STD (blue boxplots) and CAF diet (red boxplots) in different metagenomic 
biofluids (CEC and FCS). (a) Shannon index, (b) Simpson index, (c) Chao1, (d) Observed OTUs, (e) 
Phylogenetic diversity. Different lowercase letters a and b indicate significant (p < 0.05) changes between 
diets.
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CEC FCS
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CEC FCS
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a

a

a

a

a

a

b

b

b
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Supplementary table 1. Summary of metagenomics in the STD-D and the CAF-D groups in CEC and FCS focusing on taxonomic data. Taxonomic data presented as the mean ± SEM (n = 7) per group shorted by q-value 
of CEC. The summary of univariant analysis is shown including p-value, q-value and FC, the statistically significant p-values and q-values (< 0.05) are highlighted in bold. 
      

CEC FCS 

Phylum Class Order Family Genus STD-D (%) CAF-D (%) p-
value 

q-
value 

FC STD-D (%) CAF-D (%) p-
value 

q-
value 

FC 

Firmicutes Clostridia Clostridiales - - 53.47 ± 
5.66 

9.31 ± 3.54 <0.01 <0.01 0.17 29.73 ± 
4.17 

5.59 ± 1.84 <0.01 0.02 0.19 

Firmicutes Clostridia Clostridiales Lachnospiraceae Ruminococcus 0.69 ± 0.19 1.96 ± 0.2 <0.01 0.01 2.83 0.55 ± 0.1 1.05 ± 0.18 0.03 0.13 1.93 

Firmicutes Bacilli Turicibacterales Turicibacteraceae Turicibacter 0.14 ± 0.03 0.02 ± 0.01 <0.01 0.02 0.13 0.15 ± 0.06 0.26 ± 0.12 0.42 0.58 1.76 

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Parabacteroides 0.22 ± 0.08 3.92 ± 0.81 <0.01 0.03 17.86 0.42 ± 0.1 3.44 ± 0.75 0.01 0.05 8.15 

Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia 0.12 ± 0.02 2.63 ± 0.62 0.01 0.04 21.65 0.08 ± 0.02 2.59 ± 0.81 0.02 0.1 32.14 

Bacteroidetes Bacteroidia Bacteroidales S24-7 - 9.61 ± 2.04 23.43 ± 
4.04 

0.01 0.07 2.44 33.08 ± 4.8 33.9 ± 3.51 0.89 0.93 1.02 

Firmicutes Clostridia Clostridiales Peptostreptococcacea
e 

- 0.58 ± 0.15 0.12 ± 0.05 0.02 0.09 0.2 0.53 ± 0.34 0.63 ± 0.2 0.82 0.92 1.17 

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 0.65 ± 0.14 5.98 ± 1.81 0.03 0.09 9.13 1.62 ± 0.33 1.96 ± 0.27 0.44 0.58 1.21 

Firmicutes Clostridia Clostridiales Peptococcaceae rc4-4 0.39 ± 0.1 0.96 ± 0.2 0.03 0.11 2.48 0.25 ± 0.04 0.22 ± 0.06 0.65 0.79 0.86 

Proteobacteria Gammaproteobacteri
a 

Enterobacteriales Enterobacteriaceae - 0.29 ± 0.18 3.06 ± 1.08 0.04 0.12 10.68 1.13 ± 0.86 2.72 ± 0.78 0.2 0.42 2.4 

Verrucomicrobi
a 

Verrucomicrobiae Verrucomicrobiale
s 

Verrucomicrobiaceae Akkermansia 1.21 ± 0.36 12.01 ± 4.5 0.05 0.12 9.94 2.28 ± 0.75 11.11 ± 
3.82 

0.06 0.21 4.88 

Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Eubacterium 0 0.11 ± 0.04 0.05 0.12 76.02 0 0.17 ± 0.09 0.1 0.27 39.76 

Tenericutes Mollicutes RF39 - - 0.25 ± 0.05 0.09 ± 0.05 0.06 0.13 0.38 0.6 ± 0.18 0.43 ± 0.15 0.48 0.61 0.72 

Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira 5.62 ± 0.84 3.55 ± 0.72 0.09 0.17 0.63 5.03 ± 0.63 1.93 ± 0.54 <0.01 0.02 0.38 

Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea 0.1 ± 0.01 0.24 ± 0.07 0.11 0.2 2.42 0.13 ± 0.03 0.28 ± 0.09 0.16 0.38 2.15 

Firmicutes Clostridia Clostridiales Clostridiaceae SMB53 0.2 ± 0.05 0.08 ± 0.04 0.12 0.2 0.43 0.22 ± 0.14 0.42 ± 0.19 0.43 0.58 1.88 

Firmicutes Clostridia Clostridiales Clostridiaceae - 0.07 ± 0.01 0.03 ± 0.02 0.12 0.21 0.42 0.11 ± 0.04 0.11 ± 0.05 0.93 0.93 1.06 

Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 4.42 ± 1.23 9.81 ± 3.32 0.17 0.26 2.22 4.95 ± 2.17 16.25 ± 5.8 0.11 0.27 3.29 

Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae - 2.25 ± 0.46 1.41 ± 0.37 0.18 0.26 0.63 2.17 ± 0.26 0.83 ± 0.13 <0.01 0.03 0.38 

Firmicutes Clostridia Clostridiales Ruminococcaceae - 4.79 ± 0.73 3.21 ± 0.94 0.21 0.29 0.67 5.2 ± 0.48 3.53 ± 1.42 0.3 0.56 0.68 

Firmicutes Clostridia Clostridiales Dehalobacteriaceae Dehalobacteriu
m 

0.31 ± 0.05 0.19 ± 0.07 0.22 0.29 0.62 0.16 ± 0.02 0.05 ± 0.02 0.01 0.05 0.34 

Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia 0.24 ± 0.09 1.79 ± 1.25 0.26 0.33 7.56 0.21 ± 0.12 0.16 ± 0.1 0.76 0.89 0.77 

Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus 3.04 ± 0.74 4.46 ± 1.04 0.29 0.35 1.47 2.08 ± 0.5 3.35 ± 1.27 0.38 0.58 1.61 
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Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Allobaculum 0 1.71 ± 1.65 0.34 0.4 3220.
5 

0 0.3 ± 0.23 0.24 0.48 1024.
8 

Firmicutes Clostridia Clostridiales Lachnospiraceae - 9.04 ± 2.13 7.17 ± 1.01 0.45 0.5 0.79 6.36 ± 1.38 6.04 ± 1.78 0.89 0.93 0.95 

Firmicutes Clostridia Clostridiales Mogibacteriaceae - 0.12 ± 0.03 0.15 ± 0.03 0.49 0.53 1.22 0.22 ± 0.06 0.1 ± 0.03 0.1 0.27 0.46 

Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus 1.45 ± 0.3 1.22 ± 0.39 0.65 0.67 0.84 1.08 ± 0.18 0.79 ± 0.25 0.36 0.58 0.73 

Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium 0.14 ± 0.11 0.18 ± 0.09 0.81 0.81 1.25 0.44 ± 0.21 0.9 ± 0.42 0.36 0.58 2.04 
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Supplementary figure 2. Microbiota analysis after the AB treatment compared with a control group (STD-

D group). (a) Phyla relative abundance, (b) Genus relative abundance, (c) Density plot of OTU vs genus: STD-

D (black line) and after treatment (red line) with significant differences in area (p = 0.04), (d) Analysis of 

beta diversity represented by scores after the AB treatment with PCoA (unweighted unifrac). 

Supplementary table 2. Biometric parameters, plasma parameters and liver biochemistry of transplant 

model. Data are presented as the mean ± SEM (n = 7). The statistical comparisons among groups were 

conducted using Student’s t-test, the statistically significant p-values (p < 0.05) are highlighted in bold. 

Abbreviations: RWAT, retroperitoneal white adipose tissue; MWAT, mesenteric white adipose tissue; TG, 

triglycerides; TC, total cholesterol; NEFAs, non-esterified fatty acids. 

 
Mean ± SEM p-values 

CNT-R STD-R CAF-R 
CNT-R vs 

STD-R 
CNT-R vs 

CAF-R 
STD-R vs 

CAF-R 

B
io

m
e

tr
ic

 p
ar

am
e

te
rs

 

Initial body 
weight (g) 

334.55 ± 
17.02 

341.55 ± 
9.62 

341.13 ± 
12.16 

0.37 0.42 0.94 

Final body 
weight (g) 

415.24 ± 
10.86 

407.10 ± 
7.56 

420.47 ± 
11.98 

0.55 0.74 0.34 

Food intake 
(g) 

24.06 ± 
0.80 

23.26 ± 
1.06 

23.97 ± 
1.01 

0.56 0.95 0.64 

RWAT 
weight (g) 

6.73 ± 
0.96 

7.14 ± 
0.90 

9.70 ± 
1.70 

0.76 0.17 0.22 

MWAT 
weight (g) 

4.40 ± 
0.46 

4.04 ± 
0.26 

5.16 ± 
0.52 

0.5 0.29 0.09 

Muscle 
weight (g) 

2.49 ± 
0.08 

2.51 ± 
0.06 

2.49 ± 
0.08 

0.86 0.97 0.89 

Liver 
weight (g) 

11.61 ± 
0.50 

11.57 ± 
0.52 

11.92 ± 
0.59 

0.96 0.69 0.66 

CEC weight 
(g) 

8.43 ± 
0.63 

5.23 ± 
0.26 

5.33 ± 
0.38 

0.002 0.002 0.82 

P
la

sm
a 

b
io

ch
em

is
tr

y 

Glucose 
(mM) 

74.20 ± 
2.45 

77.88 ± 
5.81 

74.46 ± 
1.88 

0.58 0.93 0.59 

TG (mM) 
77.06 ± 

4.07 
80.91 ± 
14.01 

117.30 ± 
17.12 

0.8 0.07 0.13 

TC (mM) 
42.34 ± 

2.62 
44.81 ± 9 

68.19 ± 
11 

0.8 0.07 0.13 

STD-D STD-DAB AB

(a) (b)

(d)

(c)

PC1 (14.76%)

PC 2 (8.99%)
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NEFAs 
(mM) 

0.35 ± 
0.02 

0.37 ± 
0.02 

0.43 ± 
0.03 

0.69 0.04 0.11 

Li
ve

r 
b

io
ch

em
is

tr
y 

Total lipids 
(mg/g) 

40.98 ± 
3.54 

38.57 ± 
2.20 

28.99 ± 
2.22 

0.58 0.02 0.01 

TC (mg/g) 
1.83 ± 
0.08 

1.98 ± 
0.11 

1.83 ± 
0.08 

0.28 0.97 0.27 

Phospholipi
ds (mg/g) 

12.25 ± 
0.67 

12.85 ± 
0.60 

10.67 ± 
0.67 

0.52 0.12 0.03 

TG (mg/g) 
4.10 ± 
0.27 

4.22 ± 
0.23 

4.07 ± 
0.34 

0.75 0.94 0.72 

 

 

Supplementary figure 3. Characterization of the alpha diversity indices derived from the QIIME command 

α rarefraction after the microbiota transplant in different metagenomic biofluids (CEC and FCS). (a) 

Shannon index, (b) Simpson index, (c) Chao1, (d) Observed OTUs, (e) Phylogenetic diversity. Different 

lowercase letters a and b indicate significant (p < 0.05) changes between diets. Green, CNT-R; blue, STD-R; 

red, CAF-R. 

 

CEC FCS

(a)

CEC FCS

(b)

CEC FCS

(c)

CEC FCS
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CEC FCS
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a

a

a

a

a, b

a
b
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c
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Supplementary table 3. Summary of metagenomics in the CNT-R and the STD-R groups in CEC and FCS focusing on taxonomic data. Taxonomic data is presented as the mean ± 

SEM (n = 7) per group shorted by q-value of CEC. The summary of univariant analysis is shown including p-value, q-value and FC, the statistically significant p-values and q-values (< 

0.05) are highlighted in bold. 

     CEC FCS 

Phylum Class Order Family Genus 
CNT-R 

(%) 
STD-R 

(%) 
p-

value 
q-

value 
FC 

CNT-R 
(%) 

STD-R 
(%) 

p-
value 

q-
value 

FC 

Firmicutes Clostridia Clostridiales Ruminococcaceae 
Ruminococc

us 
0.68 ± 
0.26 

2.1 ± 
0.79 

<0.01 <0.01 
3.0
9 

2.41 ± 
0.91 

2.63 ± 1 0.85 0.92 1.09 

Firmicutes Clostridia Clostridiales Lachnospiraceae - 
3.27 ± 
1.24 

2.85 ± 
1.08 

<0.01 0.01 
0.8
7 

18.3 ± 
6.91 

8.59 ± 
3.25 

0.15 0.3 0.47 

Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira 
2.51 ± 
0.95 

2.31 ± 
0.87 

<0.01 0.01 
0.9
2 

7.51 ± 
2.84 

4.58 ± 
1.73 

0.72 0.81 0.61 

Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus 
1.05 ± 

0.4 
1.22 ± 
0.46 

<0.01 0.02 
1.1
5 

3.77 ± 
1.43 

2.72 ± 
1.03 

0.25 0.38 0.72 

Actinobacteri
a 

Coriobacteriia 
Coriobacteriale

s 
Coriobacteriaceae 

Adlercreutzi
a 

0.09 ± 
0.04 

0.09 ± 
0.03 

0.01 0.06 
0.9
9 

0.02 ± 
0.01 

0.06 ± 
0.02 

<0.01 0.02 3.33 

Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia 
0.07 ± 
0.03 

0.03 ± 
0.01 

0.02 0.08 
0.4
7 

0.38 ± 
0.14 

0.18 ± 
0.07 

0.39 0.54 0.47 

Firmicutes Clostridia Clostridiales Peptococcaceae rc4-4 
0.07 ± 
0.03 

0.17 ± 
0.06 

0.02 0.08 
2.4
6 

0.18 ± 
0.07 

0.47 ± 
0.18 

0.43 0.57 2.63 

Verrucomicr
obia 

Verrucomicrobiae 
Verrucomicrobi

ales 
Verrucomicrobiace

ae 
Akkermansi

a 
8.46 ± 

3.2 
12.9 ± 
4.88 

0.03 0.08 
1.5
3 

0.78 ± 
0.3 

2.97 ± 
1.12 

0.98 0.98 3.79 

Bacteroidete
s 

Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 
0.43 ± 
0.16 

5.07 ± 
1.92 

0.05 0.14 
11.
9 

0.09 ± 
0.03 

0.42 ± 
0.16 

0.02 0.12 4.65 

Proteobacter
ia 

Gammaproteobac
teria 

Enterobacterial
es 

Enterobacteriacea
e 

- 
0.62 ± 
0.24 

0.79 ± 
0.3 

0.06 0.16 
1.2
6 

0.21 ± 
0.08 

0.22 ± 
0.08 

0.93 0.97 1.06 

Firmicutes Clostridia Clostridiales Ruminococcaceae - 
2.52 ± 
0.95 

2.35 ± 
0.89 

0.11 0.24 
0.9
4 

4.54 ± 
1.72 

6.7 ± 
2.53 

0.63 0.75 1.48 

Bacteroidete
s 

Bacteroidia Bacteroidales S24-7 - 
17.7 ± 
6.68 

38.3 ± 
14.5 

0.15 0.31 
2.1
7 

6.96 ± 
2.63 

41.1 ± 
15.5 

0.03 0.17 5.91 

Firmicutes Clostridia Clostridiales Lachnospiraceae 
Anaerostipe

s 
0.03 ± 
0.01 

0.13 ± 
0.05 

0.26 0.5 
3.7
1 

0.07 ± 
0.03 

0.23 ± 
0.09 

0.21 0.37 3.37 

Actinobacteri
a 

Actinobacteria 
Bifidobacterial

es 
Bifidobacteriaceae 

Bifidobacteri
um 

0.02 ± 
0.01 

0.25 ± 
0.09 

0.31 0.51 
12.
4 

- 
0.57 ± 
0.21 

<0.01 <0.01 
133.
67 

Firmicutes Clostridia Clostridiales Clostridiaceae SMB53 
0.07 ± 
0.03 

0.31 ± 
0.12 

0.29 0.51 
4.4
9 

0.19 ± 
0.07 

0.41 ± 
0.16 

0.12 0.26 2.19 
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Firmicutes Clostridia Clostridiales Lachnospiraceae 
[Ruminococc

us] 
1.45 ± 
0.55 

1.11 ± 
0.42 

0.33 0.51 
0.7
6 

0.91 ± 
0.34 

0.42 ± 
0.16 

0.15 0.3 0.46 

Firmicutes Bacilli 
Turicibacterale

s 
Turicibacteraceae Turicibacter 

0.06 ± 
0.02 

0.59 ± 
0.22 

0.45 0.66 9.6 
0.04 ± 
0.02 

0.41 ± 
0.15 

0.06 0.18 9.86 

Firmicutes Clostridia Clostridiales 
[Mogibacteriacea

e] 
- 

0.12 ± 
0.04 

0.2 ± 
0.08 

0.48 0.66 
1.6
8 

0.08 ± 
0.03 

0.2 ± 
0.07 

0.07 0.18 2.41 

Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 
3.46 ± 
1.31 

11.4 ± 
4.33 

0.59 0.7 3.3 
2.8 ± 
1.06 

6.27 ± 
2.37 

0.04 0.17 2.24 

Firmicutes Clostridia Clostridiales - - 
55.4 ± 
20.9 

12.4 ± 
4.68 

0.55 0.7 
0.2
2 

48.8 ± 
18.5 

17 ± 
6.42 

0.06 0.18 0.35 

Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium 
0.23 ± 
0.09 

0.51 ± 
0.19 

0.57 0.7 
2.1
9 

0.16 ± 
0.06 

0.73 ± 
0.28 

0.12 0.26 4.72 

Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia 
0.34 ± 
0.13 

1.38 ± 
0.52 

0.65 0.74 
4.1
3 

0.28 ± 
0.11 

0.13 ± 
0.05 

0.24 0.38 0.46 

Bacteroidete
s 

Bacteroidia Bacteroidales Rikenellaceae - 
0.69 ± 
0.26 

1.13 ± 
0.43 

0.79 0.86 
1.6
4 

0.76 ± 
0.29 

1.25 ± 
0.47 

0.02 0.12 1.64 

Firmicutes Clostridia Clostridiales 
Peptostreptococca

ceae 
- 

0.16 ± 
0.06 

0.3 ± 
0.11 

0.91 0.95 1.9 
0.17 ± 
0.06 

0.29 ± 
0.11 

0.52 0.65 1.74 

Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea 
0.07 ± 
0.02 

0.18 ± 
0.07 

0.99 0.99 
2.7
3 

0.07 ± 
0.02 

0.09 ± 
0.03 

0.28 0.4 1.39 

 

Supplementary table 4. Summary of metagenomics in the CNT-R and the CAF-R groups in CEC and FCS focusing on taxonomic data. Taxonomic data is presented as the mean ± 

SEM (n = 7) per group shorted by q-value of CEC. The summary of univariant analysis is shown including p-value, q-value and FC, the statistically significant p-values and q-values (< 

0.05) are highlighted in bold. 

     CEC FCS 

Phylum Class Order Family Genus 
CNT-R 

(%) 
CAF-R 

(%) 
p-

value 
q-

value 
FC 

CNT-R 
(%) 

CAF-R 
(%) 

p-
value 

q-
value 

FC 

Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira 
2.51 ± 
0.95 

7.45 ± 
3.04 

<0.01 0.01 2.97 
2.31 ± 
0.87 

4.63 ± 
1.75 

<0.01 0.04 2 

Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus 
1.05 ± 

0.4 
3.01 ± 
1.23 

<0.01 0.04 2.85 
1.22 ± 
0.46 

1.79 ± 
0.68 

0.23 0.53 
1.4
7 

Firmicutes Clostridia Clostridiales Ruminococcaceae 
Ruminococcu

s 
0.68 ± 
0.26 

2.24 ± 
0.92 

<0.01 0.04 3.3 
2.1 ± 
0.79 

2.59 ± 
0.98 

0.46 0.6 
1.2
3 

Firmicutes Clostridia Clostridiales Lachnospiraceae - 
3.27 ± 
1.24 

9.31 ± 
3.8 

0.01 0.06 2.85 
2.85 ± 
1.08 

3.26 ± 
1.23 

0.59 0.72 
1.1
4 
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Actinobacteri
a 

Coriobacteriia 
Coriobacteriale

s 
Coriobacteriaceae - 

0.02 ± 
0.01 

- 0.02 0.1 0.21 
0.02 ± 
0.01 

0.01 ± 0 0.29 0.55 
0.5
4 

Verrucomicro
bia 

Verrucomicrobiae 
Verrucomicrobi

ales 
Verrucomicrobiace

ae 
Akkermansia 

8.46 ± 
3.2 

0.73 ± 
0.3 

0.02 0.1 0.09 
12.9 ± 
4.88 

2.23 ± 
0.84 

0.03 0.24 
0.1
7 

Actinobacteri
a 

Coriobacteriia 
Coriobacteriale

s 
Coriobacteriaceae Adlercreutzia 

0.09 ± 
0.04 

0.03 ± 
0.01 

0.03 0.11 0.37 
0.09 ± 
0.03 

0.1 ± 
0.04 

0.79 0.82 
1.1
1 

Firmicutes Erysipelotrichi 
Erysipelotrichal

es 
Erysipelotrichacea

e 
- 

0.05 ± 
0.02 

0.02 ± 
0.01 

0.03 0.11 0.28 
0.21 ± 
0.08 

0.09 ± 
0.04 

0.2 0.53 
0.4
5 

Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea 
0.07 ± 
0.02 

0.26 ± 
0.11 

0.1 0.3 4.01 
0.18 ± 
0.07 

0.29 ± 
0.11 

0.22 0.53 
1.6
1 

Firmicutes Clostridia Clostridiales Peptococcaceae rc4-4 
0.07 ± 
0.03 

0.14 ± 
0.06 

0.13 0.36 2.11 
0.17 ± 
0.06 

0.27 ± 
0.1 

0.27 0.54 
1.6
1 

Firmicutes Clostridia Clostridiales Lachnospiraceae 
[Ruminococc

us] 
1.45 ± 
0.55 

0.64 ± 
0.26 

0.16 0.41 0.44 
1.11 ± 
0.42 

0.42 ± 
0.16 

0.01 0.17 
0.3
8 

Bacteroidete
s 

Bacteroidia Bacteroidales S24-7 - 
17.7 ± 
6.68 

7.94 ± 
3.24 

0.2 0.44 0.45 
38.4 ± 
14.5 

41.1 ± 
15.5 

0.69 0.75 
1.0
7 

Tenericutes Mollicutes RF39 - - 
0.03 ± 
0.01 

0.39 ± 
0.16 

0.2 0.44 
15.4

1 
0.12 ± 
0.04 

0.58 ± 
0.22 

0.14 0.5 
5.0
2 

Proteobacter
ia 

Gammaproteobac
teria 

Enterobacterial
es 

Enterobacteriacea
e 

- 
0.62 ± 
0.24 

0.33 ± 
0.14 

0.24 0.47 0.54 
0.79 ± 

0.3 
0.52 ± 

0.2 
0.34 0.58 

0.6
6 

Bacteroidete
s 

Bacteroidia Bacteroidales 
Porphyromonadac

eae 
Parabacteroi

des 
0.05 ± 
0.02 

0.13 ± 
0.06 

0.26 0.49 2.65 
0.15 ± 
0.06 

0.69 ± 
0.26 

0.02 0.22 
4.4
8 

Firmicutes Clostridia Clostridiales Ruminococcaceae - 
2.52 ± 
0.95 

3.65 ± 
1.49 

0.28 0.5 1.45 
2.35 ± 
0.89 

4.52 ± 
1.71 

0.05 0.25 
1.9
2 

Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia 
0.34 ± 
0.13 

0.21 ± 
0.09 

0.38 0.59 0.63 
1.38 ± 
0.52 

0.13 ± 
0.05 

0.12 0.48 
0.0
9 

Firmicutes Clostridia Clostridiales 
Peptostreptococca

ceae 
- 

0.16 ± 
0.06 

0.11 ± 
0.04 

0.36 0.59 0.66 
0.3 ± 
0.11 

0.68 ± 
0.26 

0.25 0.53 
2.2
7 

Firmicutes Clostridia Clostridiales Clostridiaceae SMB53 
0.07 ± 
0.03 

0.05 ± 
0.02 

0.51 0.75 0.76 
0.31 ± 
0.12 

0.55 ± 
0.21 

0.42 0.58 
1.7
8 

Bacteroidete
s 

Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 
0.43 ± 
0.16 

0.33 ± 
0.13 

0.66 0.84 0.77 
5.07 ± 
1.92 

1 ± 0.38 0.24 0.53 0.2 

Firmicutes Bacilli 
Turicibacterale

s 
Turicibacteraceae Turicibacter 

0.06 ± 
0.02 

0.04 ± 
0.02 

0.6 0.84 0.67 
0.59 ± 
0.22 

1.22 ± 
0.46 

0.35 0.58 
2.0
8 

Firmicutes Clostridia Clostridiales Lachnospiraceae Anaerostipes 
0.03 ± 
0.01 

0.03 ± 
0.01 

0.65 0.84 0.77 
0.13 ± 
0.05 

0.16 ± 
0.06 

0.67 0.75 
1.2
5 

Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium 
0.23 ± 
0.09 

0.18 ± 
0.07 

0.72 0.88 0.78 
0.51 ± 
0.19 

1.25 ± 
0.47 

0.05 0.25 
2.4
6 
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Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 
3.46 ± 
1.31 

3.16 ± 
1.29 

0.82 0.95 0.91 
11.4 ± 

4.3 
12.7 ± 
4.81 

0.69 0.75 
1.1
1 

Firmicutes Clostridia Clostridiales - - 
55.3 ± 
20.9 

57.4 ± 
23.4 

0.86 0.96 1.04 
12.3 ± 

4.6 
16.3 ± 
6.15 

0.37 0.58 
1.3
1 

Bacteroidete
s 

Bacteroidia Bacteroidales Rikenellaceae - 
0.69 ± 
0.26 

0.72 ± 
0.3 

0.9 0.97 1.05 
1.13 ± 
0.43 

1.14 ± 
0.43 

0.98 0.98 
1.0
1 

Actinobacteri
a 

Actinobacteria 
Bifidobacterial

es 
Bifidobacteriaceae 

Bifidobacteri
um 

0.02 ± 
0.01 

0.02 ± 
0.01 

0.98 0.98 0.97 
0.25 ± 
0.09 

0.44 ± 
0.17 

0.4 0.58 
1.7
6 

Firmicutes Clostridia Clostridiales 
[Mogibacteriaceae

] 
- 

0.12 ± 
0.04 

0.12 ± 
0.05 

0.95 0.98 1.03 
0.2 ± 
0.08 

0.27 ± 
0.1 

0.47 0.6 
1.3
5 

 

Supplementary table 5. Summary of metagenomics in the STD-R and the CAF-R groups in CEC and FCS focusing on taxonomic data. Taxonomic data is presented as the mean ± 

SEM (n = 7) per group shorted by q-value of CEC. The summary of univariant analysis is shown including p-value, q-value and FC; the statistically significant p-values and q-values (< 

0.05) are highlighted in bold. 

     CEC FCS 

Phylum Class Order Family Genus STD-R (%) CAF-R (%) 
p-

value 
q-

value 
FC STD-R (%) CAF-R (%) 

p-
value 

q-
value 

FC 

Firmicutes Clostridia Clostridiales Lachnospiraceae - 
18.29 ± 

6.91 
9.31 ± 3.8 0.02 0.46 

0.5
1 

8.59 ± 3.25 3.26 ± 1.23 0.01 0.1 
0.3
8 

Bacteroidetes Bacteroidia Bacteroidales 
Porphyromonadacea

e 
Parabacteroide

s 
0.03 ± 0.01 0.13 ± 0.06 0.08 0.65 

4.6
9 

0.16 ± 0.06 0.69 ± 0.26 0.01 0.1 
4.2
8 

Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea 0.07 ± 0.02 0.26 ± 0.11 0.09 0.65 
3.9
9 

0.09 ± 0.03 0.29 ± 0.11 0.02 0.1 
3.1
6 

Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia 0.38 ± 0.14 0.75 ± 0.31 0.09 0.65 
1.9
7 

0.18 ± 0.07 0.29 ± 0.11 0.37 0.61 1.6 

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 0.09 ± 0.03 0.33 ± 0.13 0.17 0.67 
3.6
5 

0.42 ± 0.16 1 ± 0.38 0.06 0.23 
2.4
1 

Firmicutes Clostridia Clostridiales [Mogibacteriaceae] - 0.08 ± 0.03 0.12 ± 0.05 0.24 0.67 1.5 0.2 ± 0.07 0.27 ± 0.1 0.2 0.44 
1.3
6 

Firmicutes Clostridia Clostridiales 
Peptostreptococcace

ae 
- 0.17 ± 0.06 0.11 ± 0.04 0.2 0.67 

0.6
4 

0.29 ± 0.11 0.68 ± 0.26 0.22 0.44 
2.3
8 

Tenericutes Mollicutes RF39 - - 0.07 ± 0.03 0.39 ± 0.16 0.26 0.67 
5.3
3 

0.26 ± 0.1 0.58 ± 0.22 0.29 0.51 
2.2
6 

Firmicutes Clostridia Clostridiales Lachnospiraceae Anaerostipes 0.07 ± 0.03 0.03 ± 0.01 0.18 0.67 
0.3
8 

0.23 ± 0.09 0.16 ± 0.06 0.46 0.71 
0.6
8 

Firmicutes Clostridia Clostridiales Clostridiaceae SMB53 0.19 ± 0.07 0.05 ± 0.02 0.25 0.67 
0.2
8 

0.41 ± 0.16 0.55 ± 0.21 0.62 0.86 
1.3
2 
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Firmicutes Clostridia Clostridiales - - 
48.8 ± 
18.45 

57.49 ± 
23.47 

0.25 0.67 
1.1
8 

16.99 ± 6.42 16.28 ± 6.15 0.81 0.98 
0.9
6 

Firmicutes Clostridia Clostridiales Lachnospiraceae 
[Ruminococcus

] 
0.91 ± 0.34 0.64 ± 0.26 0.3 0.69 

0.7
1 

0.42 ± 0.16 0.42 ± 0.16 0.99 0.99 1 

Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus 3.77 ± 1.43 3.01 ± 1.23 0.36 0.77 0.8 2.72 ± 1.03 1.79 ± 0.68 0.18 0.44 
0.6
6 

Firmicutes Clostridia Clostridiales Ruminococcaceae - 4.54 ± 1.72 3.65 ± 1.49 0.44 0.78 
0.8
1 

6.7 ± 2.53 4.52 ± 1.71 0.08 0.28 
0.6
7 

Proteobacteria 
Gammaproteobacte

ria 
Enterobacteriale

s 
Enterobacteriaceae - 0.21 ± 0.08 0.33 ± 0.14 0.44 0.78 1.6 0.22 ± 0.08 0.52 ± 0.2 0.12 0.33 

2.3
5 

Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae 
Bifidobacteriu

m 
- 0.02 ± 0.01 0.39 0.78 

4.6
3 

0.57 ± 0.21 0.44 ± 0.17 0.65 0.86 
0.7
8 

Firmicutes Clostridia Clostridiales Peptococcaceae rc4-4 0.18 ± 0.07 0.14 ± 0.06 0.49 0.79 
0.7
9 

0.47 ± 0.18 0.27 ± 0.1 0.02 0.1 
0.5
6 

Firmicutes Clostridia Clostridiales Clostridiaceae - 0.04 ± 0.01 0.07 ± 0.03 0.53 0.79 
2.0
5 

0.19 ± 0.07 0.46 ± 0.17 0.24 0.45 
2.4
4 

Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia 0.28 ± 0.11 0.21 ± 0.09 0.51 0.79 
0.7
6 

0.13 ± 0.05 0.13 ± 0.05 0.94 0.99 
0.9
8 

Firmicutes Clostridia Clostridiales Dehalobacteriaceae 
Dehalobacteriu

m 
0.19 ± 0.07 0.21 ± 0.09 0.63 0.88 

1.0
9 

0.09 ± 0.04 0.05 ± 0.02 0.02 0.1 
0.5
2 

Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 2.8 ± 1.06 3.16 ± 1.29 0.73 0.9 
1.1
3 

6.27 ± 2.37 12.73 ± 4.81 0.01 0.1 
2.0
3 

Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus 2.41 ± 0.91 2.24 ± 0.92 0.74 0.9 
0.9
3 

2.63 ± 1 2.59 ± 0.98 0.94 0.99 
0.9
8 

Bacteroidetes Bacteroidia Bacteroidales S24-7 - 6.96 ± 2.63 7.94 ± 3.24 0.7 0.9 
1.1
4 

41.15 ± 
15.55 

41.04 ± 
15.51 

0.98 0.99 1 

Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium 0.16 ± 0.06 0.18 ± 0.07 0.8 0.93 
1.1
7 

0.73 ± 0.28 1.25 ± 0.47 0.12 0.33 1.7 

Verrucomicrob
ia 

Verrucomicrobiae 
Verrucomicrobial

es 
Verrucomicrobiacea

e 
Akkermansia 0.78 ± 0.3 0.73 ± 0.3 0.9 0.97 

0.9
3 

2.97 ± 1.12 2.23 ± 0.84 0.57 0.83 
0.7
5 

Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae - 0.76 ± 0.29 0.72 ± 0.3 0.88 0.97 
0.9
5 

1.25 ± 0.47 1.14 ± 0.43 0.7 0.89 
0.9
1 

Firmicutes Bacilli Turicibacterales Turicibacteraceae Turicibacter 0.04 ± 0.02 0.04 ± 0.02 0.99 0.99 
1.0
1 

0.41 ± 0.15 1.22 ± 0.46 0.21 0.44 
3.0
2 

Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira 7.51 ± 2.84 7.45 ± 3.04 0.96 0.99 
0.9
9 

4.58 ± 1.73 4.63 ± 1.75 0.96 0.99 
1.0
1 
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Supplementary table 6. Statistical analysis of plasma metabolites in the STD-R and the CAF-R groups. 139 

metabolites presented as the mean ± SEM per group shorted by p-value. The summary of univariant analysis 

is shown including p-value, q-value and FC; the statistically significant p-values and q-values (< 0.05) are 

highlighted in bold. Abbreviations: DG, diacylglycerol; LPC, lysophospholipid; PC, phosphatidylcholine; 

ChoE, cholesterol ester; SM, sphingomyelin; TG, triglyceride; PE, phosphatidylethanolamine. 

Metabolite STD-R CAF-R p-value q-value FC 

DG 34:2 0.42 ± 0.04 0.72 ± 0.04 <0.01 0.05 0.09 

DG 34:3 0.08 ± 0.02 0.17 ± 0.02 0.01 0.58 0.23 

DG 36:2 0.9 ± 0.09 1.31 ± 0.12 0.01 0.64 0.14 

DG 36:4 0.7 ± 0.07 0.96 ± 0.06 0.02 0.72 0.09 

LPC 20:0 0.35 ± 0.02 0.3 ± 0.01 0.03 0.74 0.03 

DG 34:1 0.78 ± 0.05 1.02 ± 0.07 0.03 0.80 0.10 

PC 31:0 0.04 ± 0 0.03 ± 0 0.04 0.88 0.12 

Glyceric acid 1.22 ± 0.07 1.42 ± 0.05 0.06 0.89 0.04 

PC 42:4 e 0.01 ± 0 0.01 ± 0 0.07 0.89 0.10 

PC 36:3 e 0.06 ± 0 0.05 ± 0 0.07 0.89 0.05 

ChoE (16:0) 2.57 ± 0.22 2.08 ± 0.15 0.10 0.89 0.06 

Oleic acid 1.46 ± 0.1 1.72 ± 0.13 0.12 0.89 0.09 

ChoE (18:2) 20.18 ± 1.95 16.1 ± 1.27 0.12 0.89 0.06 

PC 35:2 0.42 ± 0.04 0.34 ± 0.03 0.13 0.89 0.06 

Ribose 4.37 ± 0.35 3.28 ± 0.51 0.13 0.89 0.12 

Fumaric acid 0.71 ± 0.07 0.88 ± 0.08 0.14 0.89 0.12 

ChoE (18:1) 3.04 ± 0.29 2.5 ± 0.17 0.15 0.89 0.06 

LPC 15:0 0.98 ± 0.06 0.85 ± 0.06 0.15 0.89 0.06 

SM 42:3 5.67 ± 0.45 4.87 ± 0.23 0.15 0.89 0.04 

TG 52:3 39.46 ± 10.4 62.08 ± 11.23 0.16 0.89 0.28 

Aconitic acid 0.01 ± 0 0.01 ± 0 0.16 0.89 0.10 

TG 54:6 13.27 ± 1.87 19.03 ± 3.23 0.18 0.89 0.24 

Threonic acid 1.68 ± 0.27 2.13 ± 0.15 0.19 0.89 0.09 

ChoE (18:0) 0.15 ± 0.01 0.12 ± 0.01 0.19 0.89 0.07 

PC 33:0 0.04 ± 0 0.03 ± 0 0.19 0.89 0.07 

SM 43:1 1.34 ± 0.1 1.14 ± 0.1 0.20 0.89 0.07 

TG 54:4 11.42 ± 3.18 17.76 ± 3.49 0.20 0.89 0.31 

Cholesterol 0.51 ± 0.1 0.37 ± 0.02 0.20 0.89 0.04 

TG 48:0 1.24 ± 0.19 1.88 ± 0.43 0.23 0.89 0.35 

TG 50:0 0.37 ± 0.04 0.5 ± 0.08 0.23 0.89 0.22 

SM 35:1 0.18 ± 0.01 0.16 ± 0.01 0.24 0.89 0.05 

PC 40:5 0.33 ± 0.07 0.53 ± 0.14 0.24 0.89 0.42 

TG 54:3 4.01 ± 1.08 5.87 ± 1.15 0.26 0.89 0.29 
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TG 54:2 0.66 ± 0.16 0.96 ± 0.19 0.27 0.89 0.29 

Glucose-6-phosphate 0.17 ± 0.02 0.14 ± 0.02 0.27 0.89 0.11 

TG 54:7 4.94 ± 1.19 6.91 ± 1.18 0.27 0.89 0.24 

SM 41:2 0.65 ± 0.03 0.69 ± 0.03 0.29 0.89 0.05 

TG 52:1 0.63 ± 0.14 0.91 ± 0.2 0.29 0.89 0.32 

Malic acid 0.38 ± 0.03 0.44 ± 0.04 0.29 0.89 0.11 

TG 52:5 7.38 ± 2.04 10.47 ± 1.92 0.29 0.89 0.26 

TG 52:2 13.12 ± 5.39 22.41 ± 6.39 0.30 0.89 0.49 

α-Ketoglutarate 1.27 ± 0.07 1.43 ± 0.13 0.30 0.89 0.10 

LPC 16:0 83.94 ± 2.63 79.81 ± 2.68 0.30 0.89 0.03 

TG 48:1 1.82 ± 0.51 3.29 ± 1.13 0.30 0.89 0.62 

PE 38:5 e 1.91 ± 0.32 2.78 ± 0.67 0.31 0.89 0.35 

TG 50:1 3.77 ± 1.33 6.83 ± 2.45 0.32 0.89 0.65 

PC 38:3 0.97 ± 0.15 1.21 ± 0.17 0.33 0.89 0.17 

TG 50:2 13.23 ± 4.96 22.99 ± 7.66 0.33 0.89 0.58 

TG 52:6 1.13 ± 0.36 1.61 ± 0.31 0.33 0.89 0.28 

LPC 16:0 e 0.56 ± 0.04 0.51 ± 0.02 0.35 0.89 0.04 

Glucose 0.77 ± 0.04 0.72 ± 0.03 0.35 0.89 0.04 

ChoE (17:0) 0.16 ± 0.02 0.14 ± 0.01 0.35 0.89 0.08 

TG 50:3 7.94 ± 3.58 13.26 ± 4.12 0.36 0.89 0.52 

SM 40:2 0.69 ± 0.08 0.77 ± 0.04 0.38 0.89 0.05 

PC 32:0 0.7 ± 0.04 0.64 ± 0.05 0.38 0.89 0.07 

TG 46:1 0.63 ± 0.08 0.8 ± 0.15 0.38 0.89 0.25 

Citric acid 3.9 ± 0.13 3.67 ± 0.19 0.38 0.89 0.05 

SM 32:1 0.28 ± 0.02 0.32 ± 0.03 0.41 0.89 0.11 

TG 50:4 1.86 ± 0.75 2.73 ± 0.69 0.41 0.89 0.37 

PC 36:0 0.09 ± 0.01 0.11 ± 0.02 0.42 0.89 0.20 

TG 46:0 0.85 ± 0.09 0.96 ± 0.09 0.43 0.89 0.11 

ChoE (16:1) 0.77 ± 0.13 0.92 ± 0.14 0.43 0.89 0.18 

TG 51:2 0.83 ± 0.26 1.16 ± 0.3 0.43 0.89 0.36 

TG 48:2 1.9 ± 0.77 3.19 ± 1.29 0.43 0.89 0.68 

PC 38:6 e 0.07 ± 0.01 0.06 ± 0.01 0.44 0.89 0.09 

Urea 2.76 ± 0.18 2.58 ± 0.15 0.45 0.89 0.05 

PE 36:4 4.09 ± 0.7 4.78 ± 0.6 0.45 0.89 0.15 

ChoE (18:3) 1.55 ± 0.11 1.4 ± 0.15 0.46 0.89 0.10 

PC 38:4 e 0.06 ± 0.01 0.06 ± 0 0.47 0.89 0.08 

Isoleucine 0.3 ± 0.16 0.69 ± 0.45 0.49 0.89 1.49 

SM 34:2 1.58 ± 0.07 1.7 ± 0.14 0.49 0.89 0.09 

Leucine 0.11 ± 0.06 0.24 ± 0.16 0.49 0.89 1.53 
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Fructose-6-phosphate 0.16 ± 0.02 0.14 ± 0.02 0.50 0.89 0.12 

ChoE (22:5) 0.82 ± 0.06 0.92 ± 0.12 0.50 0.89 0.15 

TG 46:2 0.38 ± 0.06 0.46 ± 0.1 0.50 0.89 0.25 

Tyrosine 0.74 ± 0.09 0.91 ± 0.21 0.50 0.89 0.28 

Succinic acid 0.68 ± 0.03 0.65 ± 0.02 0.51 0.89 0.03 

TG 48:3 0.6 ± 0.21 0.84 ± 0.27 0.51 0.89 0.46 

Valine 0.93 ± 0.35 1.67 ± 0.93 0.51 0.89 1.00 

PC 32:1 0.48 ± 0.14 0.61 ± 0.13 0.51 0.89 0.27 

Pyruvic acid 13.39 ± 1.64 15.12 ± 1.88 0.52 0.89 0.14 

LPC 16:1 e 0.16 ± 0.01 0.16 ± 0 0.53 0.89 0.02 

SM 38:1 0.49 ± 0.09 0.56 ± 0.05 0.54 0.90 0.10 

ChoE (20:2) 1.16 ± 0.12 1.06 ± 0.09 0.55 0.91 0.07 

Glycine 2.42 ± 0.32 3.12 ± 1.01 0.56 0.91 0.42 

LPC 18:0 e 0.11 ± 0.01 0.1 ± 0.01 0.57 0.91 0.06 

PC 40:4 0.22 ± 0.03 0.24 ± 0.04 0.57 0.91 0.17 

SM 33:1 0.4 ± 0.03 0.38 ± 0.03 0.58 0.91 0.06 

Hydroxyproline 0.65 ± 0.11 0.81 ± 0.24 0.58 0.91 0.38 

PC 36:2 e 0.01 ± 0 0.02 ± 0 0.59 0.91 0.09 

Glycerol 3.33 ± 0.22 3.49 ± 0.2 0.60 0.91 0.06 

PC 38:5 e 0.1 ± 0.01 0.11 ± 0.01 0.61 0.91 0.10 

Phenylalanine 0.76 ± 0.09 0.9 ± 0.24 0.62 0.93 0.31 

Lysine 0.98 ± 0.13 1.1 ± 0.21 0.64 0.93 0.21 

PC 36:2 12.51 ± 0.71 13.16 ± 1.08 0.64 0.93 0.09 

PC 38:2 0.11 ± 0.02 0.13 ± 0.02 0.65 0.93 0.20 

3-hydroxybutiric acid 1.84 ± 0.26 1.7 ± 0.17 0.65 0.93 0.09 

SM 36:1 1.3 ± 0.1 1.39 ± 0.15 0.66 0.93 0.11 

Proline 0.27 ± 0.02 0.29 ± 0.05 0.67 0.93 0.19 

LPC 18:2 37.67 ± 2.31 36.37 ± 1.77 0.67 0.93 0.05 

Methionine 0.12 ± 0.02 0.14 ± 0.03 0.71 0.97 0.20 

PC 34:1 4.55 ± 0.61 4.86 ± 0.53 0.72 0.97 0.12 

Serine 0.3 ± 0.03 0.28 ± 0.04 0.74 0.97 0.13 

PC 38:4 18.05 ± 0.86 18.77 ± 1.8 0.75 0.97 0.10 

SM 41:1 4.43 ± 0.22 4.32 ± 0.25 0.75 0.97 0.06 

Fructose 0.43 ± 0.02 0.44 ± 0.04 0.76 0.97 0.10 

SM 42:1 16.98 ± 0.71 16.52 ± 1.2 0.76 0.97 0.07 

ChoE (20:4) 80.31 ± 6.86 77.25 ± 6.67 0.76 0.97 0.08 

Glutamine 1.2 ± 0.24 1.11 ± 0.2 0.78 0.97 0.16 

Alanine 0.4 ± 0.07 0.45 ± 0.15 0.78 0.97 0.37 

β-Alanine 0.08 ± 0.01 0.07 ± 0.02 0.79 0.97 0.28 
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SM 40:1 4.15 ± 0.29 4.27 ± 0.38 0.79 0.97 0.09 

PC 34:3 e 0.02 ± 0 0.02 ± 0 0.80 0.97 0.08 

SM 36:2 0.45 ± 0.03 0.47 ± 0.04 0.80 0.97 0.09 

Histidine 0.16 ± 0.05 0.18 ± 0.05 0.81 0.97 0.33 

SM 39:1 0.16 ± 0.02 0.15 ± 0.03 0.81 0.97 0.19 

ChoE (17:1) 0.11 ± 0.01 0.12 ± 0.01 0.82 0.97 0.10 

PC 33:1 0.09 ± 0.01 0.08 ± 0.01 0.84 0.98 0.08 

ChoE (22:4) 5.71 ± 0.53 5.59 ± 0.47 0.87 0.99 0.08 

PC 34:1 e 0.13 ± 0.01 0.12 ± 0.01 0.88 0.99 0.08 

Threonine 1.47 ± 0.19 1.52 ± 0.27 0.88 0.99 0.19 

PC 32:2 0.21 ± 0.04 0.21 ± 0.03 0.89 0.99 0.13 

Asparagine 0.17 ± 0.02 0.17 ± 0.04 0.89 0.99 0.23 

Ornithine 2.72 ± 0.52 2.86 ± 0.81 0.90 0.99 0.30 

LPC 18:1 18.71 ± 1.24 18.91 ± 1.09 0.90 0.99 0.06 

Aspartic acid 0.51 ± 0.1 0.49 ± 0.11 0.90 0.99 0.21 

SM 34:1 19.47 ± 0.89 19.66 ± 1.29 0.90 0.99 0.07 

Lactic acid 7.09 ± 0.55 7.17 ± 0.43 0.91 0.99 0.06 

Glutamic acid 0.11 ± 0.02 0.11 ± 0.03 0.95 1.00 0.26 

2-hydroxyglutaric 0.69 ± 0.06 0.7 ± 0.04 0.96 1.00 0.06 

Glycolic acid 3.3 ± 0.21 3.28 ± 0.17 0.96 1.00 0.05 

ChoE (22:6) 2.4 ± 0.27 2.38 ± 0.37 0.96 1.00 0.15 

PC 30:0 0.05 ± 0 0.05 ± 0.01 0.97 1.00 0.11 

α-tocopherol 0.91 ± 0.06 0.91 ± 0.08 0.97 1.00 0.09 

LPC 18:0 59.41 ± 2.44 59.28 ± 4.04 0.98 1.00 0.07 

SM 42:2 13.08 ± 0.92 13.11 ± 0.84 0.98 1.00 0.06 

PC 34:0 0.35 ± 0.02 0.35 ± 0.03 0.99 1.00 0.10 

PC 36:4 16.73 ± 0.54 16.72 ± 1.17 1.00 1.00 0.07 

Tryptophan 1.84 ± 0.34 1.84 ± 0.39 1.00 1.00 0.21 

 

Supplementary table 7. Plasma feature importance of Random Forest Classifier. The Random Forest 

Classifier was calculated to sort the most important metabolites in plasma that distinguish between the 

STD-R and the CAF-R groups. It is shown here only the first 10 metabolites to avoid showing long list. To test 

it, all metabolites were taken without any filter. Abbreviations: DG, diacylglycerol; PC, phosphatidylcholine; 

LPC, lysophospholipid; SM, sphingomyelin; PE, phosphatidylethanolamine. 

Plasma metabolite Feature Importance 

DG 34:2 0.267 

Glyceric acid 0.103 

Fumaric acid 0.069 

PC 31:0 0.060 
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DG 34:3 0.034 

LPC 16:1 e 0.034 

SM 34:2 0.034 

SM 32:1 0.034 

PE 38:5 e 0.034 

DG 36:2 0.034 

 

Supplementary table 8. Statistical analysis of urine metabolites in the STD-R and the CAF-R groups. 45 

metabolites are represented as the mean ± SEM per group shorted by p-value. The summary of univariant 

analysis is shown including p-value, q-value, FC, right and left chemical shift (ppm); the statistically 

significant p-values and q-values (< 0.05) are highlighted in bold. Abbreviations: 3-HPPA, 3-

hydroxyphenylpropionate; HPPA sulfate, hydroxyphenylpropionic acid sulfate; DMA, Dimethylamine; 4-PY, 

methyl-4-pyridone-5-carboxamide; NAD+, nicotinamide adenine dinucleotide; TMAO, trimethylamine N-

oxide; ppm, parts-per-million. 

Metabolite STD-R CAF-R p-value q-value FC 
Right 
(ppm) 

Left 
(ppm) 

Hippurate 295.91 ± 20.55 145.49 ± 21.45 <0.01 0.01 0.49 7.53 7.66 

o-Coumaric acid 2.16 ± 0.2 6.14 ± 0.76 <0.01 0.04 2.84 6.52 6.56 

3-HPPA 2.31 ± 0.6 21.3 ± 3.91 <0.01 0.04 9.24 6.79 6.81 

HPPA sulfate 1.92 ± 0.32 16.32 ± 3.61 0.01 0.08 8.52 2.89 2.92 

Tyrosine 7.81 ± 0.5 28.02 ± 6 0.01 0.13 3.59 6.85 6.88 

Phenylacetylglycine 30.47 ± 1.63 47.65 ± 5.64 0.02 0.17 1.56 7.34 7.38 

Malate 8.51 ± 1.31 4.8 ± 1.29 0.07 0.43 0.56 2.64 2.65 

Citrate 309.65 ± 46.82 214.1 ± 33 0.12 0.66 0.69 2.52 2.58 

Fumarate 2.54 ± 0.3 1.88 ± 0.28 0.13 0.66 0.74 6.51 6.53 

Sarcosine 4.52 ± 0.31 3.85 ± 0.32 0.16 0.69 0.85 3.59 3.60 

N-Acetylglycine 21.66 ± 1.35 19.25 ± 0.9 0.17 0.69 0.89 2.03 2.04 

Valine 1.16 ± 0.11 1.43 ± 0.18 0.24 0.84 1.23 0.98 1.00 

Allantoin 200.61 ± 9.28 184.5 ± 10.19 0.27 0.84 0.92 5.37 5.41 

Creatinine 155.24 ± 5.74 142.99 ± 8.97 0.28 0.84 0.92 3.03 3.05 

N-acetylglycoproteins 50.71 ± 3.06 47.11 ± 1.45 0.32 0.89 0.93 1.99 2.08 

1-methylnicotinamide 0.11 ± 0.03 1.4 ± 1.34 0.38 0.91 12.35 9.26 9.28 

DMA 40.6 ± 1.94 37.71 ± 2.58 0.39 0.91 0.93 2.71 2.73 

2-Oxoglutarate 197.62 ± 41.42 151.94 ± 30.02 0.39 0.91 0.77 2.42 2.46 

N.N-Dimethylglycine 10.55 ± 1.67 12.95 ± 2.38 0.43 0.91 1.23 2.92 2.93 

Pseudouridine 9.96 ± 0.53 9.29 ± 0.66 0.45 0.91 0.93 7.67 7.68 

3-methyl-2-oxovalerate 4.41 ± 0.33 4.79 ± 0.37 0.46 0.91 1.09 1 1.09 

Trimethylamine 0.89 ± 0.21 1.09 ± 0.17 0.48 0.91 1.22 2.88 2.89 

4-PY 5.17 ± 0.76 4.34 ± 0.89 0.49 0.91 0.84 8.53 8.55 

Leucine 13.19 ± 1.05 12.43 ± 0.52 0.53 0.91 0.94 0.91 0.95 

Acetate 8.37 ± 2.76 6.66 ± 0.82 0.57 0.91 0.80 1.91 1.92 

Glycine 7.19 ± 0.63 7.61 ± 0.4 0.59 0.91 1.06 3.56 3.57 

Methylamine 4.21 ± 0.39 4.44 ± 0.19 0.60 0.91 1.06 2.60 2.61 

Taurine 501.98 ± 67.25 545.59 ± 47.5 0.61 0.91 1.09 3.24 3.29 
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3-hydroxyisovalerate 4 ± 0.34 4.24 ± 0.33 0.62 0.91 1.06 1.26 1.27 

Succinate 57.3 ± 6.5 52.19 ± 7.87 0.63 0.91 0.91 2.39 2.41 

2-deoxycytidine 3.41 ± 0.29 3.21 ± 0.39 0.70 0.93 0.94 6.25 6.27 

NAD+ 0.24 ± 0.04 0.22 ± 0.03 0.70 0.93 0.91 9.35 9.36 

Fucose 8.75 ± 0.41 9.06 ± 0.69 0.71 0.93 1.03 1.24 1.26 

Alanine 5.07 ± 0.75 4.82 ± 0.33 0.77 0.93 0.95 1.47 1.49 

Tryptophan 6.59 ± 0.74 6.34 ± 0.55 0.80 0.93 0.96 7.69 7.72 

Betaine 28.95 ± 3.53 27.5 ± 4.22 0.80 0.93 0.95 3.89 3.90 

N6-Acetyllysine 23.17 ± 1.7 23.67 ± 1.27 0.82 0.93 1.02 1.97 1.99 

Indoxyl Sulphate 6.51 ± 0.69 6.35 ± 0.55 0.86 0.93 0.98 7.69 7.72 

TMAO 1.95 ± 0.33 1.85 ± 0.47 0.87 0.93 0.95 3.24 3.24 

Formate 6.45 ± 1.4 6.23 ± 0.67 0.89 0.93 0.97 8.45 8.47 

α-hydroxyhippurate 0.81 ± 0.13 0.84 ± 0.13 0.89 0.93 1.03 5.51 5.52 

Lactate 12.08 ± 1.45 12.04 ± 0.69 0.98 0.99 1.00 1.32 1.34 

 

Supplementary table 9. Urine feature importance of Random Forest Classifier. The Random Forest 

Classifier was calculated to sort the most important metabolites that distinguish between the STD-R and 

CAF-R groups. It is shown here only the first metabolites to avoid showing long list. To test it, all metabolites 

were taken without any filter. Abbreviations: 3-HPPA, 3-hydroxyphenylpropionate; DMA, Dimethylamine; 

HPPA sulfate, hydroxyphenylpropionic acid sulfate.  

Urine metabolite Feature importance 

o-Coumaric acid 0.232 

3-HPPA 0.196 

HPPA sulfate 0.125 

Hippurate 0.120 

Sarcosine 0.036 

Phenylacetylglycine 0.036 

DMA 0.018 

Tyrosine 0.018 

1-methylnicotinamide 0.018 

 

Supplementary table 10. Correlation between altered metabolites and alpha diversity. None of the 

correlations were significative using the correlation test of Spearman. Abbreviations: 3-HPPA, 3-

hydroxyphenylpropionate; DG 34:2, diacylglycerol 34:2. 

  
Metabolites altered 

  
DG 34:2 Hippurate o-Coumaric acid 3-HPPA 

A
lp

h
a 

d
iv

er
si

ty
 Shannon -0.181 -0.181 -0.302 -0.187 

Simpson -0.176 -0.192 -0.324 -0.187 

Chao1 -0.148 -0.044 -0.451 -0.264 

Observed OTUs -0.022 -0.192 -0.269 -0.121 

Phylogenetic diversity 0.044 -0.154 -0.126 -0.033 
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Abstract: Chronic inflammation is an important risk factor in a broad variety of 

physical and mental disorders leading to highly prevalent non-communicable diseases 

(NCDs). However, there is a need for a deeper understanding of this condition and its 

progression to the disease state. For this reason, it is important to define metabolic 

pathways and complementary biomarkers associated with homeostatic disruption in 

chronic inflammation. To achieve that, male Wistar rats were subjected to 

intraperitoneal and intermittent injections with saline solution or increasing 

lipopolysaccharide (LPS) concentrations (0.5, 5 and 7.5 mg/kg) thrice a week for 31 

days. Biochemical and inflammatory parameters were measured at the end of the 

study. To assess the omics profile, GC-qTOF and UHPLC-qTOF were performed to 

evaluate plasma metabolome; 1H-NMR was used to evaluate urine metabolome; 

additionally, shotgun metagenomics sequencing was carried out to characterize the 

cecum microbiome. The chronicity of inflammation in the study was evaluated by the 

monitoring of monocyte chemoattractant protein-1 (MCP-1) during the different 

weeks of the experimental process. At the end of the study, together with the 

increased levels of MCP-1, levels of interleukin-6 (IL-6), tumour necrosis factor alpha 

(TNF-α) and prostaglandin E2 (PGE2) along with 8-isoprostanes (an indicative of 

oxidative stress) were significantly increased (p-value < 0.05). The leading features 

implicated in the current model were tricarboxylic acid (TCA) cycle inter-mediates (i.e., 

alpha-ketoglutarate, aconitic acid, malic acid, fumaric acid and succinic acid); lipids 

such as specific cholesterol esters (ChoEs), lysophospholipids (LPCs) and 

phosphatidylcholines (PCs); and glycine, as well as N, N-dimethylglycine, which are 

related to one-carbon (1C) metabolism. These metabolites point towards 

mitochondrial metabolism through TCA cycle, β-oxidation of fatty acids and 1C 

metabolism as interconnected pathways that could reveal the metabolic effects of 

chronic inflammation induced by LPS administration. These results provide deeper 

knowledge concerning the impact of chronic inflammation on the disruption of 

metabolic homeostasis. 

Keywords: chronic inflammation, lipopolysaccharide, biomarker, metabolome, 

microbiome, energy metabolism, one-carbon metabolism, mitochondria.  
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1. Introduction 
Inflammation is a part of a complex biological process characterized by the 

activation of immune and non-immune cells that protect the host from bacteria, 

viruses, toxins and infections, eliminating pathogens and promoting tissue repair and 

recovery [1]. Chronic inflammation is defined as a long-term inflammation lasting for 

prolonged periods, from several months to years in humans, and is characterized by 

the sustained elevation of inflammatory cytokines in serum due to the failure to 

resolve acute inflammation, oxidative stress or metabolic dysfunction [2]. Generally, 

the extent and effects of chronic inflammation vary depending on the cause of the 

injury and the ability of the body to repair and overcome the damage [3]. One of the 

most remarkable medical discoveries of the past two decades has been that the 

inflammatory processes are intimately involved in the onset of numerous NCDs such 

as cardiovascular diseases (CVDs), neurodegenerative processes, diabetes, cancer, 

auto-immune disease, non-alcoholic fatty liver disease (NAFLD) as the main liver 

disease and renal disease, among others [3]. Thus, chronic inflammation might be 

understood as a main risk factor, and, consequently, we have a long way to go before 

achieving full understanding about the role that chronic inflammation plays in disease 

risk, biological aging and NCDs evolution and mortality [4]. 

Current research on inflammation has focused on the causes of chronic 

inflammation, the discovery of inflammation-associated biomarkers and the 

associations between inflammation and disease. Nevertheless, further research is 

needed to better understand this condition and its progression towards the 

development of individual disease status [5]. In line with this, different studies have 

shown that current biomarkers of inflammation need complementary information to 

be applied for the monitoring of chronic inflammation. For example, monitoring the 

levels of general biomarkers of inflammation has been shown as a promising strategy 

for the prediction of morbidity and mortality in cross-sectional and longitudinal 

studies related to inflammation in aging [6]. However, alteration of cytokines (e.g., 

interleukin-1 (IL-1) and interleukin-6 (IL-6)) was discordant between studies [7–9]. 

Hereby, the assessment of chronic inflammation as a risk factor requires novel 

biomarkers and approaches to complement the information provided by the classical 

ones. 

Consequently, there is an increasing demand for novel and growing sources of 

potentially promising biomarkers, such as adipokines, cytokines, metabolites and 

microRNAs, that are related to inflammation, as well as for a multi-dimensional 

approach/integration of them. This could bring huge improvements in the 

personalized prevention and treatment of some inflammatory-related pathologies 

[10]. In this regard, metabolomics is a very powerful tool for the study of the living 

organism thanks to the direct involvement of metabolite homeostasis in the final 

phenotype, which in turn is affected by the proper functioning of higher levels of 

biochemical organization, including the genome, the transcriptome and the proteome 
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[11]. Recently, the field of integrative omics has been growing as an important tool for 

the prognosis and diagnosis of different diseases by investigating the endogenous 

levels of metabolites of different biofluids (i.e., plasma/serum and urine) [11,12]. 

Additionally, besides the need for a deeper understanding of chronic 

inflammation, there is a strong need to target accurate animal models that reflect the 

biochemical and metabolic manifestations of the homeostatic disruption, which is 

generated by chronic inflammation. In this sense, a variety of studies have developed 

models to mimic acute or chronic inflammation using chemical or biological stimuli 

[13,14]. However, the isolation of chronic inflammation is challenging because it 

appears concomitantly with other conditions, and it does not exist separately in 

humans. Experimentally, one of the preferred stimuli for inducing chronic 

inflammation is the administration of lipopolysaccharide (LPS), a structure found in 

the outer membrane of gram-negative bacteria, which could be injected either 

intravenously or intraperitoneally, with different doses and frequency [14–17]. 

Furthermore, adjustment of administration, dose and frequency, together with 

additional approaches, allowed the development of different models of chronic 

inflammation diseases (e.g., CVDs or NAFLD) [18,19]. Nevertheless, it has been 

reported that repeated administration of LPS may reduce the ability of animals to 

respond to endotoxin, due to the development of endotoxin tolerance and the 

subsequent decrease in the inflammatory response [20]. For this reason, different 

procedures have been explored to overcome animal-generated endotoxin resistance, 

considering time and cost. One of the cutting-edge approaches consists of using LPS 

infusion delivered by time-release pellets for at least 60 days [19,21], but this 

technique failed to induce chronic inflammation, suggesting that intermittent 

injection of LPS on different days might be more effective in rats [14,22]. Several 

studies with encouraging results appeared to solve the LPS-resistance problem by 

means of intraperitoneal (IP) injections thrice a week, starting with doses between 1 

ng/kg and 20 mg/kg and steadily increasing LPS doses [14,20,23]. 

In the present work, we hypothesized that chronic inflammation is accompanied 

by a characteristic metabolic signature that might allow the detection of a different 

range of inflammatory states affecting metabolism homeostasis. When applied 

together with classic inflammatory biomarkers, this metabolic signature might 

provide valuable information on chronic inflammation as a risk factor for the 

development of metabolic alterations leading to different diseases such as CVDs, 

NAFLD and neurodegeneration, among others. Therefore, the objective was to assess 

new metabolomic features of chronic inflammation to gain a deeper understanding of 

the metabolic signatures associated with inflammatory-involved diseases. To this end, 

we stablished a model of chronic inflammation in rodent based on injections of LPS at 

increasing doses. Subsequently, we interrogated the chronic inflammation model to 

unravel the affected metabolic pathways and identify characteristic profiles 

employing a multi-omics approach, including the metabolome of different biofluids 

(i.e., plasma and urine). Finally, we propose a biomarker/metabolic profile for the 
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assessment of metabolic alterations associated with chronic inflammatory states 

underlying different metabolic diseases. Furthermore, we highlight the corresponding 

metabolic pathways that might be most altered and therefore studied to understand 

the underlying mechanisms. 

2. Results 

2.1. Characterization of the LPS-Induced Inflammation Model 
The stability of inflammation was evaluated during the entire experimental period 

thanks to the monitorization of monocyte chemoattractant protein-1 (MCP-1) during 

the second week, the third week and at the end of the study (Figure 1). The results 

indicate that MCP-1 was elevated during the entire experimental procedure, 

indicating a constant effect of the LPS treatment in inflammation. Thus, the recurrent 

administration of LPS induced a stable inflammatory state. At the end of the study, 

the impact of LPS treatment on inflammation was evaluated by assessing classical 

inflammatory biomarkers in plasma, which showed an increase in MCP-1, as well as 

an increase in tumour necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and 

prostaglandin E2 (PGE2) (Table 1). These results indicate an alteration in inflammation 

during the experimental period and at the end of the study due to the LPS treatment. 

As both conditions (inflammation and oxidative stress) are often present together, the 

level of oxidative stress was also assessed by measuring urinary 8-isoprostanes level, 

which was increased by a factor of 5 in the LPS-induced inflammation model. 

Therefore, an alteration of oxidative levels was also observed in the LPS group. 

 

Figure 1. Assessment of inflammation levels during the experimental period by MCP-1 monitoring. The 
results are presented as the mean ± SEM (n = 10 animals per group). * Indicates significant differences using 
t-student test between CON and LPS group (p < 0.05). Abbreviations: MCP-1, monocyte chemoattractant 
protein-1; W, study’s week. 
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Table 1. Characteristics of the LPS-induced inflammation model. The results are presented as the mean ± 
SEM (n = 10 animals per group). The biometric parameters are represented as a ratio (g/kg BW × 100) to 
properly compare the parameters. The statistical comparisons among groups were conducted using t-
student test, and fold change (FC) was calculated (LPS/CON). * p < 0.05 (significantly different) and ** p < 
0.01 (high significantly different) compared with control. BW, body weight; RWAT, retroperitoneal white 
adipose tissue; MWAT, mesenteric white adipose tissue; MCP-1, monocyte chemoattractant protein-1; IL-
6, interleukin-6; PGE2, prostaglandin E2; TNF-α, tumour necrosis factor alpha; TG, triglycerides; TC, total 
cholesterol; NEFAs, non-esterified fatty acids. 

  Control LPS p-Value FC 

Biometric 
parameters 

Initial BW (g) 303.37 ± 4.45 306.6 ± 3.13 0.67 1 

Final BW (g) 386.33 ± 10.28 365.29 ± 10.85 0.17 0.95 

Total food 
consumption (AUC) 

604.09 ± 16.27 492.59 ± 17.04 <0.01 ** 0.82 

RWAT/BW 1.83 ± 0.13 1.57 ± 0.15 0.21 0.86 

MWAT/BW 1.07 ± 0.09 0.96 ± 0.09 0.44 0.89 

Muscle/BW 0.63 ± 0.01 0.57 ± 0.02 0.02 * 0.90 

Liver/BW 2.73 ± 0.09 3.09 ± 0.07 <0.01 ** 1.13 

Cecum/BW 1.22 ± 0.05 1.2 ± 0.04 0.73 0.98 

Plasma 
parameters 

MCP-1 (ng/mL) 4.59 ± 0.21 66.53 ± 19.14 <0.01 ** 14.49 

IL-6 (ng/mL) 117.37 ± 5.97 172.80 ± 51.83 0.04 * 1.47 

PGE2 (ng/mL) 2.53 ± 2.67 4.42 ± 5.29 <0.01 ** 1.75 

TNF-α (pg/mL) 8.75 ± 2.13 80.43 ± 23.68 0.03 * 9.18 

Glucose (mM) 101.09 ± 4.24 104.62 ± 2.27 0.47 1.03 

TG (mM) 107.76 ± 10.11 82.46 ± 4.15 0.03 * 0.76 

TC (mM) 63.02 ± 5.16 64.36 ± 3.31 0.83 1.02 

NEFAs (mM) 0.93 ± 0.08 0.77 ± 0.04 0.11 0.83 

Liver 
biochemistry 

Total lipids (mg/g) 34.53 ± 2.23 32.67 ± 1.99 0.54 0.95 

TC (mg/g) 1.32 ± 0.07 1.50 ± 0.14 0.26 1.14 

Phospholipids (mg/g) 11.53 ± 0.61 12.16 ± 0.91 0.57 1.05 

TG (mg/g) 3.39 ± 0.14 4.51 ± 0.47 0.04 * 1.33 

Urine 
parameters 

8-isoprostane (ng/mL) 0.81 ± 0.09 4.22 ± 0.70 <0.01 ** 5.21 

 

Regarding other important characteristics of animals, body weight (BW) and food 

consumption were modified by LPS inoculation; thus, the decrease in BW and food 

consumption appeared to be related with the initial injection of LPS (Figure 2). Despite 

BW being similar between control (CON) group and LPS group at the end of the study 

(Figure 2a, Table 1), BW was significantly influenced by the LPS. During the entire 

experimental period, food consumption remained significantly decreased despite the 

different tendencies (Figure 2b, Table 1). It could be observed that BW gain was 

significantly decreased during the first days until a moment where the LPS group 

presented higher BW gain than the CON group (Figure 2c) and a corresponding 

improvement in feed efficiency (Figure 2d). Additionally, muscle weight was 

significantly decreased, while liver weight was significantly increased in the LPS group 

(Table 1). Among the most interesting changes in the biochemical parameters, plasma 

triglycerides (TG) were decreased, while liver TGs were increased (Table 1). 
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Figure 2. Body weight (BW) (a), BW gain (b), food consumption (c) and feed efficiency (d) of the LPS-
induced inflammation model. Blue represents CON group and orange LPS group. Each point of represented 
data corresponds to the mean ± SEM (n = 10 per group). * Indicates significant differences using repeated-
measures ANOVA followed by t-student test between CON and LPS group (p < 0.05). T indicates treatment 
effect; t, indicates time effect; T*t interaction between treatment and time. Abbreviations: BW, body 
weight. 
 

2.2. Plasma Metabolome of the LPS-Induced Inflammation 

Model 
The plasma metabolomic approach was based on a global multiplatform analysis 

including 128 metabolites (Table S1). This platform is able to discriminate between 

metabolites implicated in lipid metabolism as TGs, diacylglycerols (DGs), 

phosphatidylcholines (PCs), cholesterol esters (ChoEs), lysophospholipids (LPCs) and 

sphingomyelins (SMs); carbohydrate metabolism (mainly the tricarboxylic acid (TCA) 

cycle); and amino acid metabolism, among other interesting metabolites. The 

summary of analysis is shown in Table S1, including the univariate, multivariate and 

prediction analysis. After the Mann–Whitney (MW) test, 40 out of 128 metabolites 

were significantly different, and the subsequent Benjamini–Hochberg (BH) correction 

highlighted 24 out of 47 different metabolites (Table 2). 
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Principal component analysis (PCA) was performed to explore and identify the 

largest source of variation in the data, showing a modest clustering (Figure S1). 

Additionally, orthogonal partial least-squares discriminant analysis (OPLS-DA), which 

performs classification tasks and could predict the class, showed clear differences 

between groups, confirming the robustness of the LPS-induced inflammation model 

(Figure 3). The proportion of variance in the plasma data explained by the model (R2X) 

was 59.34%. The percentage of Y variability explained by the model (R2Y) was 96.6%, 

and the estimation of the predictive performance of the models (Q2) was 87.2%, as it 

is greater than 50%; thus, the model is considered to have good predictability. The 

highest variable importance in projection (VIP) values is shown in Table 2, with alpha-

ketoglutarate and malic acid being the most important discriminative metabolites (VIP 

> 2) in the model, followed by other metabolites (e.g., ChoE 22:6, fumaric acid and DG 

36:4, among others). Finally, the feature importance was also assessed using RF 

focusing on the selected metabolites, thus, PC 34:0, malic acid, TG 54:7, alpha-

ketoglutarate and succinic acid presented outstanding results in the evaluation of 

prediction power (Table S1). 

 

Figure 3. OPLS-DA of plasma metabolomics in the LPS-induced inflammation model. The Score plot is 
represented, and it includes the number of components and the cumulative R2X, R2Y and Q2Y. Blue 
represents CON group and orange LPS group (n = 10 animals per group). 
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2.3. Urine Metabolome of the LPS-Induced Inflammation 

Model 
The urine metabolomic approach was based on untargeted 1H-NMR methodology 

detecting 33 metabolites related to metabolism of amino acids (e.g., phenylalanine, 

tyrosine and tryptophan metabolism; glycine, serine and threonine metabolism; 

alanine, aspartate and glutamate metabolism; glutathione metabolism; and taurine 

and hypotaurine metabolism) and energetic metabolism (e.g., TCA cycle, pyruvate 

metabolism, and glycolysis/gluconeogenesis) (Table S2). The summary of univariate 

and multivariate analysis is shown in Table S2. After the MW test, N,N-dimethylglycine 

was significantly altered in LPS versus the CON group. After the BH correction, none 

of these metabolites remained significantly modified. In the case of multivariant 

approaches, no clustering was distinguished in PCA (Figure S2), and OPLS-DA was not 

significative for predictive power (data not shown). Additionally, N,N-dimethylglycine, 

which is almost duplicated in the LPS group, is the metabolite presenting the highest 

RF value, as is shown in Table S2. 

2.4. Microbiome of the LPS-Induced Inflammation Model 
In this research, the aim of the microbiota study was to enrich the full 

characterization of the effects of the LPS-induced inflammation model. The most 

abundant microbes were the bacterial ones, followed by virus and other microbes 

(less than 1%). For instance, 67% of the readings generated were assigned to bacteria 

and 33% to virus in CON group, and in the case of the LPS groups, the bacteria level 

was decreased to 58% and virus was increased to 42% in comparison to CON group. 

On the one hand, beta diversity, which is represented by a PCA constructed with the 

Aitchison distances, was not clearly clustering the different groups in bacteria (Figure 

4a) and virus (Figure 4b). In the same way, PERMANOVA results were not statistically 

different, neither in bacteria (F = 1.11, p-value = 0.34) nor virus (F = 1.10, p-value = 

0.30). On the other hand, alpha diversity, which is the measure of richness in the same 

group, was statistically decreased in bacteria (p-value < 0.01, Figure 4c) and virus (p-

value < 0.01, Figure 4d) considering Chao1 index. 
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Figure 4. Summary of the microbiome statistical analysis in the LPS-induced inflammation model. Beta 
diversity: PCA plot calculated by Aitchison distance for bacteria (a) and virus (b). Alpha diversity (AU): chao1 
index in bacteria (c) and virus (d). Taxonomic differences represented as relative distribution of species in 
bacteria (e) and virus (f); these figures show a bar graph at the level of both bacterial and viral species 
(relative %), comparing the animals in all groups. Blue represents CON group and orange LPS group (n = 8 
animals per group). 
 

In terms of the bacterial microbiome, the communities of both groups were 

mostly formed by the phyla Bacteroidetes (CON: 49% and LPS: 64%), Verrucomicrobia 

(CON: 14% and LPS: 18%), Firmicutes (CON: 11% and LPS: 9%), Deferribacteres (CON: 

13% and LPS: 5%), Proteobacteria (CON: 12% and LPS: 4%) and Actinobacteria (CON: 

1% and LPS: 0%). Focusing on bacterial species (Figure 4e), 19 species were found with 

a relative abundance above 0.01% (Table S3), and 3 of them were statistically different 

after the MW test: Muribaculum intestinale (p-value = 0.03, q-value = 0.55, CON: 21% 

and LPS: 28%) and Lachnospiraceae bacterium A4 (p-value = 0.03, q-value = 0.55, CON: 

0.13% and LPS: 0.32%) were increased, while Firmicutes bacterium ASF500 was 

decreased (p-value = 0.03, q-value = 0.61, CON: 2.27% and LPS: 0.36%). In terms of the 

virus microbiome, 14 species were found with a relative abundance above 0.01% 

(Table S4), and 2 species were statistically increased after the MW test in LPS group, 

an unknown virus of Alphabaculovirus genera (p-value = 0.02, q-value = 0.38, CON: 

0.1% and LPS: 0.27%) and an unknown virus of Pestivirus genera (p-value = 0.03, q-

value = 0.52, CON: <0.01% and LPS: 0.23%). 

2.5. Multi-Omics Data Integration 
The multi-omics integrative analysis was performed with the Data Integration 

Analysis for Biomarker discovery using Latent cOmponents (DIABLO) method that was 

able to discern a multi-omic profile of eight plasma metabolites (alpha-ketoglutarate, 

PC 34:0, aconitic acid, LPC 16:0 e, malic acid, SM 42:3, PC 38:4, ChoE 18:3), six urine 

metabolites (N,N-dimethylglycine, fucose, citrate, dimethylsulfone, formate, 2-
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oxoglutarate) and five microbes (Escherichia coli, Pestivirus Giraffe 1, Anaerotruncus 

sp G3 2012, Oscillibacter sp 1 3, Firmicutes bacterium ASF500). The correlation 

method, which is built on the Generalised Canonical Correlation Analysis (GCCA), 

revealed a correlation between the three data sets with coefficients above 0.6: plasma 

and urine metabolome (r = 0.79); plasma metabolome and microbiome (r = 0.64); and 

urine metabolome and microbiome (r = 0.67). The three data sets were able to 

discriminate between groups (Figure S3); in this case, plasma features presented 

major impact in the correlation between data sets (Figure S4). The variable effect in 

the first component, which explains the highest correlations between data, and the 

impact of each feature on the data sets, are shown in Figure S5a, c and e for plasma 

metabolomics, urine metabolomics and metagenomics, respectively. 

The correlation between the features is represented in Figure 5, to show 

connections within and between blocks and expression levels of each variable 

according to each class. In the DIABLO model, the 3-HPPA sulphate (urine metabolite) 

was negatively correlated with several LPCs and other plasma metabolites together 

with some bacteria (i.e., Oscillibacter sp 1 3 and Escherichia coli). Another urine 

metabolite, N,N-dimethylglycine, was correlated with alpha-ketoglutarate and malic 

acid, which are metabolites identified in plasma related to the TCA cycle. In this sense, 

the general correlation between plasma and urine metabolites was negative, while 

the correlation between microbes and plasma metabolites was positive. 
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Figure 5. Multi-omics integration of plasma metabolome, urine metabolome and microbiome in the LPS-
induced inflammation model. (a) Circos plot output from DIABLO. Each quadrant indicates the type of 
features: plasma metabolites (purple), urine metabolites (red), microbiome (green). (b) Further 
visualization of the network from DIABLO using Cytoscape. The shape of the features indicates the type of 
feature: plasma metabolites (square), urine metabolites (triangle) and metagenomics (diamond). The 
colour indicates the degree of each feature in the network (i.e., nodes with more connections). 
Abbreviations: ChoE, cholesterol ester; TG, triglyceride; PC, phosphatidylcholine; SM, sphingomyelin; LPC, 
lysophospholipid. 
 

Finally, the overall error rate was calculated (0.3) for the first component to 

evaluate the performance of the omic profile generated by DIABLO. To give an idea, 

receiver operating characteristic (ROC) curve analysis showed that the optimal omic 

profile with the combination of eight plasma metabolites effectively separated both 

groups with an area under the curve (AUC) of 1 (p-value < 0.01, Figure S5b). A 
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combination of six plasma metabolites optimally dichotomized the groups with an 

AUC of 0.89 (p-value < 0.01, Figure S5d). In the microbiome, the microbes presented 

an AUC of 0.95 (p-value < 0.01, Figure S5f). These results support these features as key 

mediators of the LPS-induced inflammation model considering plasma metabolome, 

urine metabolome and microbiome. In this sense, the best correlations were 

associated with plasma metabolome, as was elucidated in the previous statistical 

analysis. Thus, the most optimal source of biomarkers in this study was the plasma. 

3. Discussion 
The evolution of chronic inflammation causes “silent” damage in the 

development of NCDs, partly favoured by the lack of knowledge about its mechanism 

and evolution. In this sense, the current study presents deeper understanding of this 

condition and novel insights through the use of a rodent inflammatory model induced 

by intermittent (1- and 2-day intervals) and increasing LPS IP injections (0.5, 5 and 7. 

5 mg/kg). Hence, this approach was tried to overcome the problems related to LPS-

habituation and ineffective establishment of chronic inflammation in rodent models. 

In previous studies, doses of 2 mg/kg reduced the survival rate to 50% compared to 

control groups [14], while in our case, the survival rate was 100% compared to the 

untreated animals. In other studies comparing the LPS in humans and rodents, LPS 

injections of 10 mg/kg in rodents showed similar scalable levels in humans [16], which 

are comparable to LPS levels in human diseases [24]. Consequently, we suggest that 

the rodent ability to tolerate frequent LPS challenges facilitates the dose increment 

up to 7.5 mg/kg, used in our approach, to carry out chronic studies related to 

inflammation. Furthermore, the LPS reached levels that are close to previously 

described LPS levels related to human diseases [20]. The intermittent and increasing 

LPS treatment, which resulted in BW changes due to the effect of LPS on appetite, was 

reflected in food consumption, which was in agreement with other studies [14,25]. 

The initial injection had a huge impact on BW and food consumption; then, the 

animals compensated for the initial response with higher feed efficiency rates, and at 

the end of the study, both groups presented the same pattern. These changes are not 

in line with the general features of NCDs, as in this chronic inflammation model, the 

intention was to isolate the risk factor, considering that it would not occur in a real 

individual. 

The mechanism of inflammation induced by LPS consists of the activation of Toll-

like receptors (TLRs), which lead to the activation of macrophages and lymphocytes 

and the production of inflammatory cytokines (i.e., TNF-α, IL-6, PGE2) [26], which is in 

agreement with our experimental results. Although those cytokines have several roles 

in different tissues and cell types related to the inflammatory response, many 

cytokines have other effects on neuroendocrine and metabolic functions and on the 

maintenance of tissue homeostasis in general [27]. In the case of MCP-1, which 

attracts inflammatory monocytes and stimulates the production of other cytokines, it 

was the selected cytokine to monitor the sustained inflammation during the 
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experimental procedure [28]. Those inflammatory monocytes have been involved in 

low-grade inflammation and altered lipid metabolism through the release of various 

pro-inflammatory mediators [29]. The systemic increase in oxidative stress detected 

in the LPS group in urine is associated with the immune response that could be 

attempting to kill the invading agents through the releasing of toxic content from cells 

(including reactive oxygen species (ROS)) [30]. 

As far as we know, this study is the first to evaluate the omic profile of a chronic 

inflammation model with the objective of elucidating the metabolic mechanism and 

finding potential biomarkers for early detection of metabolic alterations associated 

with chronic inflammation, which leads to the onset of different diseases. The study 

of chronic systemic inflammation is important because it can trigger and propagate 

metabolic inflexibility; this fact can cause a vicious circle, because such metabolic 

inflexibility can also trigger systemic inflammation [31]. Recent studies focused on 

those pathologies (CVDs [32], NAFLD [33], arthritis [34], obesity and diabetes [35]) 

have suggested an alteration in metabolomic and lipidomic signatures implicated in 

the onset of NCDs development. Nevertheless, these signatures cannot discern 

between chronic inflammation and other factors influencing the development of the 

disease. In our approach, we have detected three key pillars of metabolic disruption 

associated with chronic inflammation: lipidic metabolism (mainly focused on specific 

fatty acids (FAs) metabolism), TCA cycle and one-carbon (1C) metabolism, as 

summarized in Figure 6. 
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Lipids play an important role in the pro-inflammatory and anti-inflammatory 

response; thus, lipidic dynamics disruption leads to unbalanced homeostasis and the 

subsequent development of pathologies. In fact, lipids act as mediators on important 

immune receptors to induce chronic tissue inflammation that leads to adipocyte and 

metabolic dysfunction [36]. In our LPS-induced inflammation model, diverse types of 

lipids were increased. ChoEs, PCs and LPCs stand out among other lipids as the 

important ones, due to their influence in chronic inflammation and interactions in 

energetic metabolism. 

Identification and quantification of circulating FAs, which are involved in critical 

cellular functions such as storage of energy and signalling pathways, have attracted 

attention as potential inflammatory status biomarkers [37]. The leading circulating 

FAs are made up of even-chains of 18 to 22 carbons, and regarding the saturations, 

we could find poly-unsaturated FAs (PUFAs) and saturated FAs (SFAs) on the LPS-

induced chronic inflammation rodent model. Accumulating evidence suggests that 

ChoE 18:0, which is the main even SFA altered in our study, is the main even-chain SFA 

associated with lipid metabolism, liver function, glycaemic control and chronic 

inflammation leading to CVDs [38]. Additionally, ChoE (18:0) accumulation in 

macrophages has been related to the induction of inflammation by TLR 4/2 inducing 

endoplasmic reticulum stress-mediated apoptosis [39] and is considered to induce 

lipotoxicity in adipocytes [40]. These hypertrophied adipocytes enriched in SFAs 

secrete pro-inflammatory agents that promote systemic inflammation [41] and the 

subsequent obesity-associated adipose tissue inflammation [42]. 

Circulating phospholipids (LPCs and PCs) have been reported to reflect FAs 

metabolism, thus pointing to long-term storage of FAs indicating a long-standing 

exposure to FAs that are classically used as dietary biomarkers [43,44]. On the one 

hand, in the current experimental approach, circulating LPCs, which were composed 

by SFAs of 16 and 18 carbons, were also affected. Interestingly, phospholipids have 

been associated with pro-inflammatory and pro-atherogenic activities, which are 

critical factors underlying CVDs and several pathological conditions, in consistence 

with previous studies [38,45–47]. In fact, LPC can induce expression of COX2, a key 

pro-inflammatory mediator, via the p38/CREB or ATF-1 pathways in vascular 

endothelial cells [48]. For example, a study focused on asthma, which is a chronic 

inflammatory disease of the airways, presented elevated LPC 16:0 and LPC 18:0 

together with activity increase in phospholipase A2 (PLA2) [49]. On the other hand, 

PCs, which carry two chains of FA, presented a predominance of chains from 16 to 20 

carbons, with the SFAs predominant over MUFAs and PUFAs. This could be indicative 

that chronic inflammation is characterized by an increase in even SFAs between 16 

and 18 carbons [50–52]. This observation suggests that chronic inflammation could 

induce long-term changes in the metabolism of SFAs through increasing their 

circulation bound to phospholipids [53]. Similarly, previous studies have shown that 

increased levels of PCs are positively correlated with obesity, insulin resistance, 

tumours and psoriasis among other inflammatory pathologies [54]. 
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Therefore, after activation of cytosolic PLA2, important lipid mediators of 

inflammatory response (FAs and LPCs) are generated, among which PUFAs are the 

most interesting hydrolysed FAs regarding their effects during inflammation [55]. For 

instance, ChoE 20:4, commonly known as arachidonic acid, is metabolized to form 

eicosanoids by the action of cyclooxygenases (COX1 and COX2), which generates 

prostaglandins and thromboxanes, or by lipoxygenases, that subsequently generate 

leukotrienes and lipoxins, which are associated with a pro-inflammatory response 

[26]. Alternatively, ChoE 18:3, commonly known as linolenic acid, is a precursor of 

ChoE 22:6 or docosahexaenoic acid or omega 3, and it is associated with anti-

inflammatory response. The synthesis of ChoE 20:4 from ChoE 18:2 seems to be 

reduced in favour of the synthesis of ChoE 22:6 from ChoE 18:3 due to both syntheses 

competing for the same enzymes (Δ6 desaturase, elongase and Δ5 desaturase) [56]. 

The significant increase in ChoE 18:3 (precursor of ChoE 22:6) instead of ChoE 18:2 

(precursor of ChoE 20:4) suggests that the synthesis of ChoE 22:6 reaction is favoured. 

During periods of stress in the cell, intermediary metabolites of the TCA cycle, 

which occurs completely in mitochondria, can be released, acting as a danger signals 

in cytosol and regulating immune response [57]. The decrease in TCA intermediaries 

(i.e., alpha-ketoglutarate, aconitic acid, malic acid, fumaric acid and succinic acid) 

might be indicative of a systemic inhibition of the intracellular TCA cycle (Figure 6) that 

could be associated with the regulation of immune response and activation of other 

energy pathways [58]. In fact, metabolic flexibility is essential for immune function; 

during immune response, the immune cells shift to aerobic glycolysis for energy 

production, a less-efficient but fast-acting pathway [59]. Additionally, the switch to 

glycolysis enables glycolysis, and TCA cycle intermediates may be used as key sources 

of carbon molecules for biosynthesis of nucleotides, amino acids and lipids [59]. 

Several metabolomic studies point out the decrease in TCA cycle activity as a key 

characteristic of chronic inflammation, related to alterations in lipid and fatty acid 

metabolism [60–62]. The connection between TCA cycle and FAs could be due to the 

β-oxidation of FAs. In fact, FAs enter the cell to be degraded into acetyl-CoA in the 

mitochondria as the end product of β-oxidation; this end product is the starting point 

of the TCA cycle [63]. 

Furthermore, other metabolites could be related to the inhibition of TCA cycle 

activity as 1C-metabolism-related metabolites (Figure 6). Specifically, 1C metabolism 

consists in methionine and folate cycles, involving multiple molecules of the cytosolic 

and mitochondrial compartments; moreover, the folate cycle is a major player in 

NADPH generation. In fact, production of NADH by mitochondrial 5,10-methylene-

tetrahydrofolate (THF) dehydrogenase activity links 1C metabolism to the respiratory 

state of the cell. Glycine (circulating in plasma) and N,N-dimethylglycine (excreted in 

urine), which were increased in the metabolome, are amino acids essentially involved 

in the modulation of oxidative stress presenting antioxidant activity. For instance, 

previous experimental evidence has been generated in favour of the anti-

inflammatory, immunomodulatory and cytoprotective effects of glycine [64]. 
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Regarding the secreted urine amino acids, N,N-dimethylglycine, a glycine tertiary 

amino acid produced by the degradation of choline, was almost duplicated in the LPS 

group; this fact is in agreement with other animal studies suggesting that N,N-

dimethylglycine enhances immune response due to intensifying oxygen utilization by 

tissue and complex with free radicals, as is the case for glycine [65]. Despite the 

antioxidant activity of glycine, their increased metabolism related to 1C metabolism 

has been associated with the development of tumorigenesis [66]. Maynard and 

Kanarek recently discovered the association of 1C cycle and TCA cycle through the 

accumulation of NADH in the mitochondria [67]. The 1C cycle becomes a major source 

of glycine and NADH when cellular respiration is inhibited, and the accumulated NADH 

inhibits the TCA cycle and slows proliferation due to its toxicity in high concentrations; 

thus, the unbalanced concentrations of NADH condition health and the pathological 

state (Figure 6). Additionally, mitochondrial NAD+/NADH ratios are maintained by 

oxidative phosphorylation, and initial experiments in isolated mitochondria showed 

that formate production from serine was respiration-dependent [68].This fact could 

be likely suggested in the present work linked to the increase in excreted formate in 

urine (despite being statistically significant). Within the mitochondria, 1C units can be 

made from serine, glycine, sarcosine or N,N-dimethylglycine and secreted into the 

cytosol as formate [69]. In this regard, the elevation in urinary excretion of formate 

was observed in folate-deficient rats [70]. Thus, formate may play a role in some of 

the pathologies associated with defective 1C metabolism, but there is a need for more 

studies to confirm this implication [71]. 

Interestingly, the profile obtained by DIABLO, in trying to maximize the 

correlation between the different data sets, highlights feature from different data 

sets, although no differences were found in statistical analysis in urine metabolome 

and microbiome. This omic profile contemplated features that could complete the 

metabolic context of chronic inflammation. One of the most interesting relations is 

the association of N,N-dimethylglycine urine levels and TCA cycle intermediates (i.e., 

malic acid and alpha-ketoglutarate), which is in line with the previous discussion about 

the relation of 1C cycle and TCA cycle [67]. 

Although no major differences were found in the LPS- induced inflammation 

model, the microbiome has a close connection to systemic metabolism, highlighting 

the underlying crosstalk between the microbiome and inflammation [72]. However, 

the presence of these microbes or their metabolites may not represent the best 

source for biomarkers of inflammation, because the microbiome highly depends on 

the individual and the environment. Nevertheless, the microbiome can provide 

supplementary information indirectly related to the metabolome. In previous studies, 

low-grade inflammation has been related to alterations in the gut microbiota 

composition and increased plasma LPS levels [73]. In our case, as LPS has been 

administered, it is not originated by the individual’s microbiota, so the effect on 

inflammation due to the altered microbiota may be masked. For example, 

Akkermansia muciniphila has been shown to improve metabolic profiles by reducing 
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chronic low-grade inflammation induced by chow diet in mice, linking this bacterium 

to the host immune system [74]. 

Finally, several shortcomings need to be taken into account in order to 

contextualize this experimental approach. The present study design should be 

considered as a pilot study due to the following factors: (1) there are limitations in 

obtaining a pure model of low-grade chronic inflammation, because although an 

attempt has been made to make the present model as close as possible to chronic 

inflammation, it is ultimately based on repeated induction of acute inflammation 

stimuli; (2) the low number of animals is not high enough (n = 10 per group) to provide 

a robust conclusion on biomarkers; (3) other omics approaches could be added to 

obtain a more robust metabolic profile; (4) urine is a complex fluid to collect in 

animals, as it is not possible to stablish the collecting time, which can lead to high 

variability of results. These issues should be considered for further experiments. 

4. Materials and Methods 

4.1. LPS-Induced Chronic Inflammation Model 
Twenty 8-week-old male Wistar rats (Harlan Laboratories, Barcelona, Spain) were 

housed individually in a fully controlled environment including temperature (22 ± 2 

°C), humidity (55 ± 5%) and light (12 h-light-dark cycle and lights on at 9:00 a.m.). The 

Animal Ethics Committee of the University Rovira i Virgili (Tarragona, Spain) approved 

all the procedures (code 10049). The experimental protocol followed the “Principles 

of Laboratory Care” and was carried out in accordance with the European 

Communities Council Directive (86/609/EEC). 

After an acclimation period, animals were randomly assigned to two different 

groups considering similar average BW divided into two experimental groups (n = 10 

animals per group): CON group and LPS-induced inflammation group. Regarding LPS 

(Sigma-Aldrich, St. Louis, MO, USA), a stock solution of 500 µg/mL was prepared in 

sterile saline solution (NaCl 0.9%) and stored in aliquots of 1 mL at −20 °C until 

administration. The experiment was conducted during the light phase (8:30–10:00 

am) and was carried out for 31 days. In that period, rats were administered with 

increasing doses of LPS (LPS group) or saline solution (CON group) (Figure 7). The LPS 

group received nine IP injections of 0.5 mg/kg of LPS, four injections of 5 mg/kg and a 

final injection of 7. 5 mg/kg (6 h before the sacrifice). 
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Figure 7. Schematic representation of the LPS-induced chronic inflammation model. The experimental 
model consisted of two groups that received intraperitoneal (IP) injections of increasing LPS and saline 
solution (NaCl 0.9%) for 31 days. Abbreviations: W, week; CON, control group; LPS, LPS-induced 
inflammation group. 
 

To evaluate the effect of the LPS injections, mean daily BW gains were calculated 

for each group at each interval of three days per week and for the overall experimental 

period. Animals were allowed ad libitum access to food throughout the entire study 

period. Food consumption was measured once a week on days 1 (prior to dosing), 8, 

15, 22, and 29, coinciding with the days of BW measurements. Mean food 

consumption was calculated for each group during each interval. Feed efficiency was 

also calculated for each group based on BW gain and food consumption data with the 

following equation: feed efficiency = food consumption (g/d)/BW gain (g/d). 

4.2. Sample Collection 
Blood was collected from the lateral saphenous vein in the second, third and 

fourth week to monitor the inflammation level. Urine was collected the day before 

the sacrifice following the hydrophobic sand method, which is less stressful for the 

animals [75]. For each rat, 300 g of hydrophobic sand was spread (LabSand, Coastline 

Global, Palo Alto, CA, USA) on the bottom of a mouse plastic micro-isolation cage. 

Urine was collected and stored with sodium azide (Sigma, St. Louis, MO, USA) as 

preservative every half an hour for 6 h and was finally pooled at the end of the session. 

On the day of the sacrifice, animals were euthanized by guillotine under anaesthesia 

(pentobarbital sodium, 50 mg/kg per BW) after 7 h of fasting. Blood was collected and 

centrifuged at 3000 g at 4 °C for 15 min to recover plasma. Tissues were rapidly 

removed, weighted and snap-frozen in liquid nitrogen (i.e., retroperitoneal white 

adipose tissue (RWAT), mesenteric white adipose tissue (MWAT), muscle, liver, and 

cecum). All the samples were stored at -80 °C until further analysis. 

4.3. Plasma, Urine, and Liver Measurements 
Enzymatic colorimetric kits were used for the determination of plasma total 

cholesterol (TC), TG, glucose (QCA, Barcelona, Spain) and non-esterified free fatty 

acids (NEFAs; WAKO, Neuss, Germany). Plasma concentrations of rat IL-6 (Cusabio 

Biotech Co., Wuhan, Hubei, China), MCP-1 (Thermo Fisher Scientific, Dublin, Ireland), 

TNF-α (Invitrogen, Vienna, Austria) and PGE2 (Bio-Techne Ltd., Minneapolis, MN, USA) 

Sacrifice

Acclimation
period

-1W 0W 1W 2W 3W 4W

20 male
Wistar rats

LPS (n = 10)

CON (n = 10); NaCl (0.9%) 

0.5 mg/kg 5 mg/kg 7.5 mg/kg

5W
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were measured by enzyme-linked immunosorbent assay (ELISA) kits according to the 

manufacturer’s instructions. Additionally, urine 8-isoprostane was evaluated using an 

ELISA kit (Cayman chemical, Ann Arbor, MI, USA). 

Liver lipids were extracted and quantified from a tissue piece of approximately 

100 mg from the frozen liver using methods described previously [76]. Briefly, lipids 

were extracted with 1 mL of hexane:isopropanol (3:2, v/v), degassed with gas nitrogen 

before being left overnight under orbital agitation at room temperature protected 

from light. After an extraction with 0.3 mL of Na2SO4 (0.47 M), the lipid phase was 

dried with gas nitrogen and total lipids quantified gravimetrically before emulsifying 

as described previously [77]. TG, TC and phospholipids were assayed with commercial 

enzymatic kits (QCA, Barcelona, Spain). 

4.4. Plasma Metabolome (GC-qTOF and UHPLC-qTOF) 
Plasma metabolites were analysed by gas chromatography coupled with 

quadrupole time-of-flight (GC-qTOF). For the extraction, a protein precipitation 

extraction was performed by adding eight volumes of methanol:water (8:2, v/v) 

containing internal standard mixture (succinic acid-d4, myristic acid-d27, glicerol-13C3 

and D-glucose-13C6) to plasma samples. Then, the samples were mixed and incubated 

at 4 °C for 10 min and centrifuged at 21.420 g, and the supernatant was evaporated 

to dryness before compound derivatization (metoximation and silylation). The 

derivatized compounds were analysed by GC-qTOF (model 7200 of Agilent, USA). The 

chromatographic separation was based on the Fiehn Method [78], using a J&W 

Scientific HP5-MS (30 m × 0.25 mm i.d.), 0.25 µm film capillary column and helium as 

carrier gas using an oven program from 60 °C to 325 °C. Ionization was done by 

electronic impact (EI), with electron energy of 70 eV and operated in full scan mode. 

The identification of metabolites was performed by matching two different 

parameters to a metabolomic Fiehn library (Agilent, Santa Clara, CA, USA): EI mass 

spectrum was considered stable and reproducible and as having good retention time. 

To avoid annotation errors, metabolites with very high molecular weights were 

cleared. After putative identification of metabolites, these were semi-quantified in 

terms of internal standard response ratio. 

Plasma lipids were analysed by ultra-high-perfomance liquid chromatography 

coupled with quadrupole time-of-flight (UHPLC-qTOF). For the extraction of the 

hydrophobic lipids, a liquid–liquid extraction based on the Folch procedure [79] was 

performed by adding four volumes of chloroform:methanol (2:1, v/v) containing 

internal standard mixture (Lipidomic SPLASH®, Avanti Polar Lipids, Inc., Alabaster, AL, 

USA) to plasma. Then, the samples were mixed and incubated at −20 °C for 30 min. 

Afterwards, water with NaCl (0.8%) was added, and the mixture was centrifuged at 

21.420 g. Lower phase was recovered, evaporated to dryness, reconstituted with 

methanol:methyl-tert-butyl ether (9:1, v/v) and analysed by UHPLC-qTOF (model 6550 

of Agilent, Santa Clara, CA, USA) in positive electrospray ionization mode. The 

chromatographic consists in an elution with a ternary mobile phase containing water, 
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methanol, and 2-propanol with 10 mM ammonium formate and 0.1% formic acid. The 

stationary phase was a C18 column (Kinetex EVO C18 Column, 2.6 µm, 2.1 mm × 100 

mm) that allowed the sequential elution of the more hydrophobic lipids such as TGs, 

DGs, PCs, ChoEs, LPCs and SMs, among others. The identification of lipid species was 

performed by matching their accurate mass and tandem mass spectrum, when 

available, to Metlin-PCDL from Agilent containing more than 40.000 metabolites and 

lipids. In addition, chromatographic behaviour of pure standards for each family and 

bibliographic information was used to ensure their putative identification. After 

putative identification of lipids, these were semi-quantified in terms of internal 

standard response ratio using one internal standard for each lipid family. 

A pooled matrix of samples was generated by taking a small volume of each 

experimental sample to serve as a technical replicate throughout the data set. As the 

study took multiple days, a data normalization step was performed to correct variation 

resulting from instrument inter-day tuning differences. Essentially, each compound 

was corrected in run-day blocks through quality controls, normalizing each data point 

proportionately. 

4.5. Urine Metabolome (1H-NMR) 
Urine metabolites were analysed by proton nuclear magnetic resonance (1H-

NMR). The urine sample was mixed (1:1, v/v) with phosphate buffered saline 

containing with 3-(Trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (TSP) (Sigma 

Aldrich, St. Louis, MO, USA) and placed on a 5 nm NMR tube for direct analysis by 1H-

NMR. 1H-NMR spectra were recorded at 300 K on an Avance III 600 spectrometer 

(Bruker®, Bremen, Germany) operating at a proton frequency of 600.20 MHz using a 5 

mm PBBO gradient probe. Diluted urine aqueous samples were measured and 

recorded in procno 11 using a one-dimensional 1H pulse. Experiments were carried 

out using the nuclear Overhauser effect spectroscopy (NOESY). NOESY presaturation 

sequence (RD–90°–t1–90°–tm–90° ACQ) suppressed the residual water peak, and the 

mixing time was set at 100 ms. Solvent presaturation with irradiation power of 150 

μW was applied during recycling delay (RD = 5 s) and mixing time (noesypr1d pulse 

program in Bruker®, Bremen, Germany) to eliminate the residual water. The 90° pulse 

length was calibrated for each sample and varied from 11.21 to 11.38 ms. The spectral 

width was 9.6 kHz (16 ppm), and a total of 128 transients were collected into 64 k data 

points for each 1H spectrum. The exponential line broadening applied before Fourier 

transformation was of 0.3 Hz. The frequency domain spectra were manually phased 

and baseline-corrected using TopSpin software (version 3.2, Bruker, Bremen, 

Germany). Data were normalized in two different ways: probabilistically, to avoid 

differences between samples due to different urine concentrations, and by ERETIC. 

The acquired 1H-NMR were compared to references of pure compounds from the 

metabolic profiling AMIX spectra database (Bruker®, Bremen, Germany), HMDB and 

Chenomx databases for metabolite identification. In addition, we assigned 

metabolites by 1H-1H homonuclear correlation (COSY and TOCSY) and 1H-13C 
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heteronuclear (HSQC) 2D NMR experiments and by correlation with pure compounds 

run in-house. After pre-processing, specific 1H-NMR regions identified in the spectra 

were integrated using MATLAB scripts run in-house. Curated identified regions across 

the spectra were exported to Excel spreadsheet to evaluate robustness of the 

different 1H-NMR signals and to give relative concentrations. 

4.6. Microbiome Analysis (Shotgun Metagenomics 

Sequencing) 
DNA was extracted from faeces using the PowerSoil DNA extraction kit (MO BIO 

Laboratories, Carlsbad, CA, USA) following the manufacturer’s protocol. Between 400 

and 500 ng of total DNA was used for library preparation for Illumina sequencing 

employing Illumina DNA Prep kit (Illumina, San Diego, CA, USA). All libraries were 

assessed using a TapeStation High Sensitivity DNA kit (Agilent Technologies, Santa 

Clara, CA, USA) and were quantified by Qubit (Invitrogen,Waltham, MA, USA). 

Validated libraries were pooled in equimolar quantities and sequenced as a 

paired-end 150-cycle run on an Illumina NextSeq2000. A total of 1548 million reads 

were generated, and raw reads were filtered for QV > 30 using an in-house phyton 

script. Filtered reads were aligned to unique clade-specific marker genes using 

MetaPhlAn 3 [80] to assess the taxonomic profile. The alignment was done indicating 

the closest name of species to the sequence (the best hit). The relative proportions 

calculated from MetaPhlAn were used to calculate relative abundances, alpha 

diversity measure (chao1 index) and beta diversity measures (Aitchison distance). 

4.7. Statistical Analysis 
4.7.1. General Statistical Analysis 

Statistical analysis was performed using the R software (version 4.0.2, R Core 

Team 2021), and different libraries, included in Bioconductor (version 3.11, 

Bioconductor project), were used. The continuous variables of biological assay were 

showed as mean ± standard error of the mean (SEM). After the normality study, 

parametric unpaired t-test was used for single statistical comparisons and repeated-

measures analysis of variance (ANOVA) for multiple statistical comparisons repeated 

during time. In all the statistical comparisons, a two-tailed value of p < 0.05 was 

considered. 

4.7.2. Metabolomic Data Analysis 

Individual comparisons between metabolites were determined by the MW test, 

because the variables follow the assumption of a non-parametric test. The p-value 

adjustment for multiple comparisons was carried out according to the BH correction 

considering a 5% false-discovery rate (FDR). The magnitude of difference between 

populations is presented as fold change (FC), which is relative to the control group. In 

parallel, a predictive analysis was done to evaluate the prediction power of the LPS-

induced chronic inflammation model. On the one hand, PCA, an unsupervised 
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multivariate data projection method, was performed to explore the native 

relationship between groups. On the other hand, OPLS-DA, a supervised multivariate 

data projection method, was calculated to explore the possible relationships between 

the observable variables (X) and the predicted variables or target (Y), extracting the 

maximum information reflecting the variation in the dataset. No data transformation 

was applied before conducting the analysis. The predictive performance of the test 

set was estimated by the Q2Y parameter calculated through cross-validation. The 

values of Q2 < 0 suggest a model with no predictive ability, 0 < Q2 < 0.5 suggests some 

predictive character and Q2 > 0.5 indicates good predictive ability [81]. The feature 

importance was calculated through the VIP, which reflects both the loading weights 

for each component and the variability of the response explained by the component. 

Additionally, the random forest classifier (RF) was calculated to sort the 10 most 

important metabolites that distinguish between the CON and LPS groups. 

4.7.3. Metagenomic Data Analysis 

Centred log-ratio (CLR) normalization was performed before any statistical test. 

The beta diversity was calculated from the Aitchison distance, and PERMANOVA test 

was performed with 100 permutations to assess the differences between groups. The 

alpha diversity was calculated by Chao1 index. Taxonomic abundances were 

compared between experimental groups using the BH adjustment on MW test that is 

presented by relative abundance (%). The relative abundance was filtered to only 

include variables that were present above 0.01% in at least 3 samples [82]. The 

magnitude of difference between populations was determined by the determination 

of FC. 

4.7.4. Integration Data Analysis 

Multiblock sPLS-DA is a holistic approach with the potential to find new biological 

insights not revealed by any single-data omics analysis, as some pathways are 

common to all data types, while other pathways may be specific to data. DIABLO 

implementation, which is built on the GCCA [83], in the mixOmics R package (version 

6.18.1, mixOmics project), was used to integrate plasma and urine metabolome and 

microbiome [84]. The goal of the data integration with this method is to extract 

complementary information between omics datasets, resulting in an improved ability 

to associate biomarkers across multiple functional levels with the phenotype of 

interest. This statistical integrative framework facilitates the interpretation of 

complex analyses and provides significant biological insights. 

To summarize, the first step is the parameter choice of the design matrix, the 

number of components and the number of variables to select: (1) a design matrix of 

0.1 was used to focus primarily on the discrimination between the groups; (2) the perf 

function was used to estimate the performance of the model, and the overall error 

rates per component were displayed to select the optimal number of components; (3) 

the number of variables was chosen using the tune.block.splsda function that is run 

with 10-fold cross validation and repeated 10 times, and thus this tuning step led to a 
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selection of 8 plasma metabolites, 6 urine metabolites, and 5 microbes. Thereafter, 

the final model was computed, and different sample and variable plots were 

performed. The circosPlot function represents the correlations between variables of 

different types, represented on the side quadrants that are built based on a similarity 

matrix, which was extended to the case of multiple data sets [85]. The resulting 

network from circus plot with a threshold above 0.7 was further analysed using the 

MEtScape [86] and NetworkAnalyzer [87] packages from Cytoscape (version 3.8.2, 

Institute of Systems Biology, Seattle, WA, USA)[88]. 

The final performance of the model was evaluated by the perf function using 10-

fold cross-validation repeated 10 times. The ROC curve analysis was conducted to 

determine the optimal metabolite combination patterns that could correctly 

dichotomize the stressed and healthy groups at acceptable sensitivity and specificity 

(defined as greater than 80% for both). The AUC value was used as a measure of the 

prognostic accuracy. An AUC value of 1 indicates a perfect test due to absence of 

overlap of the test data between the control and anxiety state; an AUC value >0.85 

was considered for inclusion in the model. 

4.7.5. Pathway Analysis 

The resulting significant differential features were analysed through different 

databases to identify related pathways and elucidate the global effect on the 

metabolism of the LPS-induced inflammation model. The main database consulted 

was the Kyoto Encyclopaedia of Genes and Genomes (KEGG) [89]. To show those 

results, a mapping tool (version XMind 2020, XMind Ltd., Virginia, ON, Canada) was 

used to incorporate the information about pathway analysis. 

5. Conclusions 
In conclusion, intermittent (1- and 2-day intervals) and increasing (0.5, 5 and 7. 5 

mg/kg) dose IP administration of LPS thrice per week for 31 days induced chronic 

inflammation. In general, biometric, and biochemical changes observed were in 

concordance to those seen in chronic inflammatory events. Thus, this model could be 

considered for the study of chronic inflammation in rodents, mimicking this risk for 

the development of inflammatory diseases. 

The present study using omic approaches elucidates an altered profile associated 

with the current model of LPS-induced inflammation. In the metabolome, there is a 

clear disruption of the mitochondrial metabolism due to three key pathways in 

metabolism, which are β-oxidation of FAs, TCA cycle and 1C metabolism. Lipids related 

to β-oxidation play an important role in the unbalanced homeostasis during chronic 

inflammation. The main even SFA altered in our study was ChoE 18:0, which is 

associated with metabolic complications [38]. Other FAs related to pro-inflammatory 

activity such as ChoE 20:4 and anti-inflammatory activity were increased. In fact, the 

significant increase in ChoE 18:3 (precursor of ChoE 22:6) instead of ChoE 18:2 

(precursor of ChoE 20:4) suggests that the synthesis of ChoE 22:6 reaction is favoured. 
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Additionally, circulating phospholipids reported the long-term storage of FAs [43,44]. 

The decrease in TCA intermediaries (i.e., alpha-ketoglutarate, aconitic acid, malic acid, 

fumaric acid and succinic acid) was indicative of a systemic inhibition of the 

intracellular TCA cycle that could be associated with the regulation of immune 

response and activation of other energy pathways [58]. Additionally, the disruption of 

β-oxidation plays a key role in the TCA cycle due to the end product of this pathways 

being the starting point of TCA cycle [63]. Additionally, 1C metabolism is mainly 

represented in our model by glycine (circulating in plasma) and N,N-dimethylglycine 

(excreted in urine), which suggests a disruption in 1C metabolism [67]. 

Hence, the imbalance in FAs, TCA cycle intermediates and 1C intermediates 

metabolites are characteristics of our rodent model of chronic inflammation that leads 

to the disruption of homeostasis in mitochondrial metabolism (β-oxidation, TCA cycle 

and 1C metabolism). Those results provide novel clues on the impact of a model of 

chronic inflammation in the metabolism that tries to mimic chronic low-grade 

inflammation in humans. 
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Annex. Supplementary Material of Manuscript 4 

Supplementary table 1. Statistical analysis of plasma metabolites in the LPS-induced inflammation model. 
CON and LPS groups (n = 10 animals per group) are represented by the relative abundances (AU). Relative 
abundances of metabolites are presented by the mean ± SEM. Plasma metabolites are sorted by p-value. 
The summary of analysis includes p-value, q-value, VIP value, random forest classifier (RF) and fold change 
(FC). The statistically significant p-values and q-values are highlighted in bold. Abbreviations: DG, 
diacylglycerol; ChoE, cholesterol ester; TG, triglyceride; PC, phosphatidylcholine; SM, sphingomyelin; LPC, 
lysophospholipid; PE, phosphatidylethanolamine. 
 

Metabolite CON LPS p-value q-value VIP RF FC 

Alpha-ketoglutarate 2.05 ± 0.1 0.87 ± 0.09 <0.01 0.01 2.05 0.06 0.4 

Malic acid 0.44 ± 0.02 0.19 ± 0.02 <0.01 0.01 2.02 0.08 0.4 

ChoE (18:3) 1.55 ± 0.12 2.48 ± 0.17 <0.01 0.01 1.76 0.02 1.6 

ChoE (22:6) 2.67 ± 0.19 4.28 ± 0.28 <0.01 0.01 1.96 0.03 1.6 

LPC 16:0 e 0.34 ± 0.03 0.52 ± 0.03 <0.01 0.01 1.67 0.02 1.5 

PC 34:0 0.29 ± 0.02 0.46 ± 0.02 <0.01 0.01 1.74 0.09 1.6 

PC 32:0 0.7 ± 0.06 1.08 ± 0.05 <0.01 0.01 1.67 0.02 1.5 

SM 42:3 4.64 ± 0.39 7.07 ± 0.4 <0.01 0.01 1.61 0.03 1.5 

Fumaric acid 0.63 ± 0.04 0.34 ± 0.04 <0.01 0.01 1.95 0.02 0.5 

LPC 18:0 e 0.07 ± 0 0.1 ± 0.01 <0.01 0.01 1.61 0.03 1.4 

PC 38:4 24.61 ± 1.61 35.21 ± 1.52 <0.01 0.01 1.71 0.02 1.4 

Succinic acid 0.51 ± 0.02 0.41 ± 0.01 <0.01 0.01 1.85 0.04 0.8 

ChoE (18:0) 0.09 ± 0.01 0.15 ± 0.01 <0.01 0.01 1.69 0.04 1.7 

TG 54:7 5.21 ± 0.65 1.82 ± 0.39 <0.01 0.01 1.56 0.08 0.3 

Cholesterol 0.11 ± 0 0.15 ± 0.01 <0.01 0.01 1.78 - 1.4 

SM 42:2 15.64 ± 1.49 23.35 ± 1.29 <0.01 0.01 1.65 - 1.5 

DG 36:4 3.42 ± 0.21 2.43 ± 0.11 <0.01 0.02 1.89 0.02 0.7 

Aconitic acid 0.02 ± 0 0.01 ± 0 <0.01 0.02 1.64 0.04 0.5 

PC 40:4 0.25 ± 0.02 0.37 ± 0.04 <0.01 0.02 1.47 0.02 1.5 

ChoE (20:4) 59.73 ± 3.98 80.04 ± 3.21 <0.01 0.03 1.76 - 1.3 

Glycine 4.57 ± 0.2 5.8 ± 0.36 <0.01 0.03 1.55 0.03 1.3 

DG 34:1 1.46 ± 0.08 1.84 ± 0.08 0.01 0.03 1.71 0.02 1.3 

PC 34:1 4.84 ± 0.53 6.85 ± 0.44 0.01 0.03 1.36 0.04 1.4 

PC 30:0 0.06 ± 0.01 0.09 ± 0.01 0.01 <0.05 1.43 0.03 1.5 

SM 34:1 17.9 ± 1.47 23.29 ± 0.87 0.01 0.06 1.36 0.03 1.3 

Hydroxyproline 1.03 ± 0.03 0.81 ± 0.06 0.01 0.07 1.30 0.01 0.8 

Alanine 0.78 ± 0.05 1.12 ± 0.13 0.02 0.08 1.43 - 1.4 

ChoE (16:0) 0.94 ± 0.07 1.22 ± 0.06 0.02 0.08 1.40 - 1.3 

TG 52:5 8.63 ± 1.04 5.14 ± 0.63 0.02 0.09 1.27 0.02 0.6 
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PC 36:2 12.78 ± 1.21 16.44 ± 1.07 0.03 0.13 1.11 - 1.3 

Pyruvic acid 26.89 ± 2.5 40.27 ± 5.19 0.03 0.13 0.87 0.01 1.5 

Glutamine 0.04 ± 0 0.02 ± 0.01 0.04 0.14 1.31 - 0.5 

TG 52:6 1.16 ± 0.15 0.74 ± 0.09 0.04 0.14 1.03 - 0.6 

Threonine 2.15 ± 0.07 2.69 ± 0.22 0.04 0.14 1.29 - 1.3 

Aspartic acid 0.68 ± 0.04 0.82 ± 0.05 <0.05 0.14 1.10 - 1.2 

Histidine 0.07 ± 0.01 0.1 ± 0.01 <0.05 0.14 0.70 - 1.4 

Leucine 0.15 ± 0.01 0.12 ± 0.01 <0.05 0.14 0.94 - 0.8 

PC 32:2 0.24 ± 0.03 0.33 ± 0.03 <0.05 0.14 1.09 0.02 1.4 

PC 36:4 23.43 ± 1.55 28.01 ± 1.21 <0.05 0.14 1.05 0.01 1.2 

SM 35:1 0.18 ± 0.02 0.23 ± 0.02 <0.05 0.14 1.06 - 1.3 

TG 50:4 1.82 ± 0.28 1.02 ± 0.15 0.05 0.16 1.05 - 0.6 

TG 54:4 14.62 ± 1.88 9.97 ± 1.44 0.05 0.16 0.93 - 0.7 

LPC 18:0 40.88 ± 2.53 51.91 ± 3.4 0.06 0.19 1.19 0.01 1.3 

PC 40:5 0.62 ± 0.06 0.77 ± 0.03 0.06 0.19 1.09 - 1.2 

ChoE (18:2) 19.3 ± 1.52 22.57 ± 0.9 0.08 0.21 0.99 0.02 1.2 

Tryptophan 0.82 ± 0.16 1.32 ± 0.18 0.08 0.21 0.91 - 1.6 

ChoE (22:5) 0.94 ± 0.09 1.14 ± 0.06 0.09 0.24 1.16 - 1.2 

Glucose 0.22 ± 0.01 0.24 ± 0.01 0.10 0.25 0.72 - 1.1 

PC 33:0 0.04 ± 0 0.04 ± 0 0.10 0.25 0.94 - 1 

PC 38:3 0.96 ± 0.12 1.14 ± 0.1 0.10 0.25 0.85 - 1.2 

Proline 0.65 ± 0.04 0.57 ± 0.03 0.10 0.25 0.76 - 0.9 

SM 38:1 0.44 ± 0.04 0.55 ± 0.04 0.10 0.25 1.05 - 1.3 

TG 52:3 60.57 ± 6.94 43.35 ± 4.91 0.10 0.25 0.93 - 0.7 

2-hydroxyglutaric 0.8 ± 0.07 0.62 ± 0.08 0.12 0.27 1.03 - 0.8 

Glycolic acid 12.61 ± 0.46 11.65 ± 0.43 0.12 0.27 0.73 - 0.9 

PC 31:0 0.04 ± 0 0.05 ± 0 0.12 0.27 0.84 - 1.3 

SM 40:1 4.31 ± 0.35 5.17 ± 0.34 0.12 0.27 0.96 0.01 1.2 

TG 48:1 1.37 ± 0.32 2.69 ± 0.77 0.12 0.27 1.00 - 2 

Fructose 1.85 ± 0.16 1.54 ± 0.11 0.14 0.29 0.78 - 0.8 

PC 32:1 0.77 ± 0.13 1.13 ± 0.17 0.14 0.29 1.00 - 1.5 

SM 32:1 0.2 ± 0.02 0.22 ± 0.01 0.14 0.29 0.63 - 1.1 

Threonic acid 1.71 ± 0.07 1.52 ± 0.1 0.14 0.29 0.98 - 0.9 

LPC 18:1 13.7 ± 1.28 11.38 ± 0.55 0.16 0.33 0.74 - 0.8 

DG 34:2 2.44 ± 0.08 2.51 ± 0.07 0.19 0.37 0.49 - 1 

TG 54:3 6.14 ± 0.73 4.92 ± 0.59 0.19 0.37 0.55 - 0.8 

PC 33:1 0.1 ± 0.01 0.12 ± 0.01 0.21 0.40 0.77 - 1.2 
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TG 50:1 3.92 ± 0.52 6.87 ± 1.63 0.21 0.40 1.02 - 1.8 

Urea 0.92 ± 0.03 1.01 ± 0.05 0.21 0.40 0.79 - 1.1 

Phenylalanine 2.08 ± 0.06 2.24 ± 0.09 0.24 0.44 0.99 0.01 1.1 

SM 36:1 1.16 ± 0.09 1.41 ± 0.11 0.24 0.44 0.92 - 1.2 

Beta-alanine 0.07 ± 0.01 0.09 ± 0.02 0.27 0.49 0.70 0.01 1.3 

Oleic acid 1.61 ± 0.05 1.75 ± 0.09 0.27 0.49 0.86 - 1.1 

Methionine 0.12 ± 0.01 0.13 ± 0.01 0.31 0.52 0.58 - 1.1 

Ornithine 2.55 ± 0.24 2.78 ± 0.25 0.31 0.52 0.37 - 1.1 

Tyrosine 0.26 ± 0.05 0.33 ± 0.06 0.31 0.52 0.72 - 1.3 

Lactic acid 5.28 ± 0.22 4.95 ± 0.21 0.34 0.57 0.56 - 0.9 

LPC 18:2 40.43 ± 4.01 34.65 ± 2.35 0.34 0.57 0.58 - 0.9 

SM 39:1 0.18 ± 0.02 0.19 ± 0.02 0.34 0.57 0.46 - 1.1 

Isoleucine 0.43 ± 0.03 0.59 ± 0.23 0.38 0.62 0.07 - 1.4 

SM 34:2 1.48 ± 0.13 1.63 ± 0.07 0.38 0.62 0.66 - 1.1 

Glutamic acid 0.09 ± 0.01 0.11 ± 0.01 0.43 0.65 0.71 0.01 1.2 

LPC 15:0 0.74 ± 0.08 0.67 ± 0.05 0.43 0.65 0.37 - 0.9 

TG 46:1 0.11 ± 0.03 0.16 ± 0.05 0.43 0.65 0.58 - 1.5 

TG 48:2 1.13 ± 0.28 1.45 ± 0.37 0.43 0.65 0.48 - 1.3 

PC 35:2 0.39 ± 0.04 0.44 ± 0.04 0.47 0.70 0.44 - 1.1 

SM 42:1 17.87 ± 1.52 19.93 ± 1.01 0.47 0.70 0.70 - 1.1 

TG 50:2 14.09 ± 2.18 18.19 ± 3.48 0.47 0.70 0.61 - 1.3 

ChoE (17:1) 0.02 ± 0.01 0.02 ± 0.01 0.52 0.75 0.23 - 1 

TG 52:1 0.96 ± 0.1 1.19 ± 0.21 0.52 0.75 0.61 - 1.2 

Alpha-tocopherol 0.42 ± 0.04 0.48 ± 0.06 0.57 0.77 0.43 - 1.1 

Asparagine 0.18 ± 0.03 0.16 ± 0.02 0.57 0.77 0.50 - 0.9 

ChoE (22:4) 9.95 ± 0.84 11.14 ± 0.74 0.57 0.77 0.69 - 1.1 

Glucose-6-phosphate 0.67 ± 0.08 0.82 ± 0.15 0.57 0.77 0.29 - 1.2 

TG 46:0 0.1 ± 0.01 0.15 ± 0.04 0.57 0.77 0.65 - 1.5 

Valine 1.25 ± 0.05 1.38 ± 0.13 0.57 0.77 0.61 - 1.1 

ChoE (18:1) 2.65 ± 0.23 2.51 ± 0.14 0.62 0.82 0.20 - 0.9 

DG 36:2 1.63 ± 0.07 1.66 ± 0.07 0.62 0.82 0.44 - 1 

ChoE (20:2) 1.81 ± 0.19 1.67 ± 0.16 0.68 0.84 0.30 - 0.9 

Lysine 0.11 ± 0.03 0.12 ± 0.03 0.68 0.84 0.44 - 1.1 

SM 33:1 0.34 ± 0.03 0.37 ± 0.01 0.68 0.84 0.63 - 1.1 

TG 48:0 0.67 ± 0.08 0.92 ± 0.22 0.68 0.84 0.62 - 1.4 

TG 50:0 0.17 ± 0.05 0.22 ± 0.06 0.68 0.84 0.42 - 1.3 

TG 50:3 8.63 ± 1.48 7.69 ± 1.39 0.68 0.84 0.14 - 0.9 
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Glyceric acid 0.92 ± 0.06 0.98 ± 0.1 0.73 0.89 0.13 - 1.1 

TG 46:2 0.06 ± 0.02 0.07 ± 0.02 0.73 0.89 0.28 - 1.2 

TG 48:3 0.32 ± 0.07 0.28 ± 0.06 0.73 0.89 0.07 - 0.9 

3-hydroxybutiric acid 2.04 ± 0.13 2.08 ± 0.19 0.79 0.92 0.01 - 1 

ChoE (17:0) 0.02 ± 0.01 0.02 ± 0.01 0.79 0.92 0.27 - 1 

LPC 20:0 0.26 ± 0.02 0.27 ± 0.01 0.79 0.92 0.16 - 1 

TG 54:2 3.67 ± 0.47 3.45 ± 0.45 0.79 0.92 0.01 - 0.9 

PC 38:2 0.2 ± 0.02 0.21 ± 0.01 0.85 0.95 0.41 - 1.1 

Serine 0.5 ± 0.03 0.56 ± 0.08 0.85 0.95 0.25 - 1.1 

TG 51:2 0.86 ± 0.13 0.78 ± 0.12 0.85 0.95 0.09 - 0.9 

TG 52:2 19.11 ± 2.93 18.4 ± 2.94 0.85 0.95 0.08 - 1 

TG 54:6 21.68 ± 2.17 20.48 ± 1.86 0.85 0.95 0.24 - 0.9 

Fructose-6-phosphate 0.46 ± 0.06 0.54 ± 0.12 0.91 0.98 0.01 - 1.2 

Ribose 26.67 ± 3.59 26.14 ± 3.57 0.91 0.98 0.05 - 1 

SM 41:1 4.85 ± 0.35 5.1 ± 0.3 0.91 0.98 0.39 0.01 1.1 

SM 41:2 1.18 ± 0.11 1.19 ± 0.05 0.91 0.98 0.19 - 1 

Citric acid 3.93 ± 0.12 3.94 ± 0.24 0.97 1.00 0.02 - 1 

Glycerol 3.6 ± 0.28 3.56 ± 0.26 0.97 1.00 0.05 - 1 

LPC 16:0 73.27 ± 5.3 75 ± 3.44 0.97 1.00 0.19 - 1 

SM 36:2 0.42 ± 0.04 0.43 ± 0.02 0.97 1.00 0.24 - 1 

ChoE (16:1) 0.59 ± 0.09 0.58 ± 0.08 1.00 1.00 0.13 - 1 

DG 34:3 0.73 ± 0.06 0.7 ± 0.05 1.00 1.00 0.11 - 1 

LPC 16:1 e 0.11 ± 0.01 0.12 ± 0.01 1.00 1.00 0.43 - 1.1 

SM 40:2 0.77 ± 0.07 0.78 ± 0.04 1.00 1.00 0.18 - 1 

SM 43:1 1.59 ± 0.14 1.61 ± 0.07 1.00 1.00 0.20 0.01 1 
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Supplementary Figure 1. PCA of plasma metabolomics in the LPS-induced inflammation model. Blue 
represents CON group and orange LPS group (n = 10 animals per group). 
 
Supplementary Table 2. Statistical analysis of urine metabolites in the LPS-induced inflammation model. 
CON and LPS groups (n = 10 animals per group) are represented by the relative abundances (AU). Relative 
abundances of metabolites are presented by the mean ± SEM. Plasma metabolites are sorted by p-value. 
The summary of univariant and multivariate analysis is shown including p-value, q-value, random forest 
classifier (RF) and fold change (FC) The statistically significant p-values and q-values (< 0.05) are highlighted 
in bold. Abbreviations: 3-HPPA, 3-hydroxyphenylpropionate. 
 

Metabolite CON LPS p-value q-value RF FC 

N,N-Dimethylglycine 3.59 ± 0.41 7.47 ± 1.44 <0.01 0.25 0.17 2.1 

Dimethylsulfone 14.66 ± 1.11 11.93 ± 0.67 0.07 0.78 0.09 0.8 

Fucose 2.64 ± 1.44 2.02 ± 0.33 0.13 0.78 0.06 0.8 

Fumarate 3.87 ± 0.35 5.08 ± 0.82 0.13 0.78 0.06 1.3 

Citrate 291.02 ± 26.18 234.34 ± 20.97 0.18 0.78 0.05 0.8 

Formate 2.77 ± 0.22 3.72 ± 0.55 0.21 0.78 0.04 1.3 

Succinate 31.64 ± 2.28 35.55 ± 2.06 0.24 0.78 0.04 1.1 

Choline 6.41 ± 0.8 7.9 ± 0.76 0.31 0.78 0.04 1.2 

Hippurate 79.56 ± 5.07 72.33 ± 5.2 0.31 0.78 0.04 0.9 

Isoleucine 14.69 ± 0.78 16.18 ± 1.45 0.31 0.78 0.04 1.1 

N-Acetylglycoproteins 102.1 ± 4.33 106.23 ± 5.52 0.31 0.78 0.03 1 

Glucose 3.23 ± 0.4 2.94 ± 0.17 0.35 0.78 0.03 0.9 
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3-HPPA Sulfate 4.01 ± 0.7 5.83 ± 1.28 0.39 0.78 0.03 1.5 

4-Guanidinobutanoate 12.38 ± 0.66 13.04 ± 0.47 0.39 0.78 0.03 1.1 

Lactate 9.66 ± 1.16 9.76 ± 1.61 0.39 0.78 0.03 1 

Methylamine 4.32 ± 0.7 3.69 ± 0.38 0.39 0.78 0.02 0.9 

Trigonelline 1.26 ± 0.07 1.15 ± 0.06 0.44 0.82 0.02 0.9 

2-Oxoglutarate 373.05 ± 42.57 341.04 ± 34.71 0.49 0.82 0.02 0.9 

Alanine 5.44 ± 0.57 6.03 ± 0.41 0.54 0.82 0.02 1.1 

Allantoin 213.8 ± 14.49 229.6 ± 9.79 0.54 0.82 0.02 1.1 

Pseudouridine 9.32 ± 0.79 10.07 ± 0.51 0.54 0.82 0.02 1.1 

Glyoxylic acid 0.33 ± 0.04 0.33 ± 0.04 0.60 0.87 0.02 1 

Acetate 5.55 ± 0.89 6.43 ± 1.72 0.65 0.87 0.01 1.2 

Phenylacetylglycine 55.78 ± 6.22 58.17 ± 5.19 0.65 0.87 0.01 1 

3-HPPA 14.37 ± 1.45 14.22 ± 1.52 0.78 0.89 0.01 1 

Creatinine 347.25 ± 13.61 346.44 ± 17.76 0.78 0.89 0.01 1 

1-Methylnicotinamide 0.12 ± 0.04 0.14 ± 0.04 0.84 0.89 0.01 1.2 

Indoxyl sulfate 5.51 ± 0.46 5.59 ± 0.56 0.84 0.89 0.01 1 

Pyruvate 4.81 ± 0.48 5.37 ± 0.82 0.84 0.89 0.01 1.1 

Taurine 389.61 ± 66.45 372.46 ± 40.77 0.84 0.89 0.01 1 

Glycine 11.22 ± 1.78 11.04 ± 1.57 0.90 0.93 - 1 

Betaine 16.7 ± 2.4 16.23 ± 1.3 0.97 0.99 - 1 

 
  

UNIVERSITAT ROVIRA I VIRGILI 
MULTI-OMICS BIOMARKERS OF METABOLIC HOMEOSTASIS OF RISK FACTORS ASSOCIATED TO 
NON-COMMUNICABLE DISEASES 
Julia Hernandez Baixauli 



III. Results: Manuscript 4 

 

259 
 
 

Supplementary Figure 2. PCA of urine metabolomics in the LPS-induced inflammation model. Blue 
represents CON group and orange LPS group (n = 10 animals per group). 

 

Supplementary table 3. Summary of bacteria species in the LPS-induced inflammation model. The 
summary of univariant analysis of CON group and LPS group (n = 8 animals per group) includes the results 
of MW test (p-value), MW corrected by BH (q-value) and FC. The alignment was done indicating the closest 
name of specie to the sequence (the best hit). Taxonomic data is presented by the mean of relative 
abundance (%) and shorted by p-value. The statistically significant values (< 0.05) are highlighted in bold. 
 

Specie CON LPS p-value q-value FC 

Muribaculum intestinale 21.46% 28.03% 0.03 0.55 1.3 

Lachnospiraceae bacterium A4 0.13% 0.32% 0.03 0.55 2.6 

Firmicutes bacterium ASF500 2.27% 0.36% 0.03 0.61 0.2 

Akkermansia muciniphila 14.42% 17.86% 0.05 0.76 1.2 

Muribaculaceae bacterium DSM 103720 18.50% 27.66% 0.06 0.82 1.5 

Bacteroides uniformis 4.94% 6.21% 0.09 0.82 1.3 

Lachnospiraceae bacterium COE1 1.06% 0.09% 0.11 0.82 0.1 

Anaerotruncus sp G3 2012 5.25% 2.99% 0.16 0.90 0.6 

Romboutsia ilealis 0.14% 0.25% 0.16 0.90 1.8 

Oscillibacter sp 1 3 1.66% 0.68% 0.25 0.96 0.4 

Bifidobacterium pseudolongum 0.54% <0.01% 0.25 0.96 - 

Lachnospiraceae bacterium 10 1 0.08% <0.01% 0.25 0.96 - 

Acutalibacter muris 0.03% <0.01% 0.25 0.96 - 
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Escherichia coli 12.23% 4.16% 0.28 0.96 0.3 

Parabacteroides goldsteinii 4.27% 2.33% 0.32 0.96 0.5 

Bacteroides caecimuris 0.11% 0.27% 0.32 0.96 2.5 

Mucispirillum schaedleri 12.74% 4.89% 0.36 0.96 0.4 

Lactobacillus murinus 0.14% 3.90% 0.48 0.96 27.2 

Enterorhabdus caecimuris 0.02% <0.01% 0.48 0.96 - 

 

Supplementary table 4. Summary of virus species in the LPS-induced inflammation model. The summary of 
univariant analysis of CON group and LPS group (n = 8 animals per group) includes the results of MW test 
(p-value), MW corrected by BH (q-value) and FC. The alignment was done indicating the closest name of 
specie to the sequence (the best hit). Taxonomic data is presented by the mean of relative abundance (%) 
and shorted by p-value. The statistically significant values (< 0.05) are highlighted in bold. 
 

Genera Specie CON LPS p-value q-value FC 

Alphabaculovirus Chrysodeixis chalcites nucleopolyhedrovirus 1.00% 0.27% 0.02 0.38 0.3 

Siphoviridae unclassified Lactobacillus prophage Lj928 1.73% 0.00% 0.11 0.92 - 

Gammaretrovirus Abelson murine leukemia virus 8.95% 13.57% 0.16 0.97 1.5 

Gammaretrovirus Murine osteosarcoma virus 15.00% 20.02% 0.16 0.97 1.3 

Simplexvirus Human alphaherpesvirus 2 0.14% <0.01% 0.22 0.99 - 

Myoviridae unclassified Lactobacillus prophage Lj771 13.61% 10.29% 0.28 1.00 0.8 

Cyprinivirus Anguillid herpesvirus 1 5.18% 3.38% 0.28 1.00 0.7 

Cyprinivirus Cyprinid herpesvirus 3 41.97% 38.53% 0.32 1.00 0.9 

Rhadinovirus Alcelaphine gammaherpesvirus 1 4.74% 6.10% 0.28 1.00 1.3 

Herpesviridae unclassified Ateline gammaherpesvirus 3 6.79% 7.04% 0.32 1.00 1.0 

Gammaretrovirus Koala retrovirus 0.34% 0.40% 0.40 1.00 1.2 

Potyvirus Zantedeschia mild mosaic virus <0.01% 0.06% 0.32 1.00 - 

Varicellovirus Bovine alphaherpesvirus 1 0.56% 0.10% 0.48 1.00 0.2 
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Supplementary figure 3. Integration of plasma metabolomics, urine metabolomics and metagenomics 
data using DIABLO in the LPS-induced inflammation model. (a) The sample plot projects each sample into 
the space spanned by the components of each block. The first components from each data set are highly 
correlated to each other. (b) Arrow plot: the start of the arrow indicates the centroid between all data sets 
for a given sample and the tips of the arrows the location of that sample in each omic, highlighting the 
agreement between the 3 data sets at the sample level. LPS in orange and CON in blue. 
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Supplementary figure 4. Correlation circle plot in the LPS-induced inflammation model (DIABLO). This plot 
highlights the contribution of each selected variable to component 1 and 2. Clusters of points indicate a 
strong correlation between variables. Each colour and shape indicate the type of features: i.e., plasma 
metabolites (purple square), urine metabolites (red triangle) and finally, bacteria and virus species (green 
circle). 
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Supplementary figure 5. Feature integration in plasma metabolomics, urine metabolomics and 
metagenomics in the LPS-induced inflammation model (DIABLO). (a) (c) (e) Feature impact in each data 
set in component 1. (b) (d) (f) ROC curve and AUC averaged using one-vs-all comparisons in the different 
data set. LPS in orange and CON in blue. 
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Abstract: Oxidative results in the progression of major health problems in 

humans. Despite this fact, it is difficult to track, and it is only detected with the 

presence of developed diseases. For this reason, the characterisation of the metabolic 

profile of oxidative stress might be of considerable importance for the prevention and 

diagnosis of this risk factor before the onset of diseases. To determine the metabolic 

effects of oxidative stress, male Wistar rats were subjected to a single intraperitoneal 

injection of paraquat (PQ) of 15 and 30 mg/kg. To confirm and characterize the model, 

biochemical and oxidative biomarkers were measured at the end of the study. To 

assess the omics profile, GC-qTOF and UHPLC-qTOF were performed to evaluate 

plasma metabolome; 1H-NMR was used to evaluate urine metabolome; and shotgun 

metagenomics sequencing was carried out to study the gut microbiome. The classical 

biomarkers of oxidative stress were different between the groups treated with PQ and 

the control group. Both PQ groups were characterized by an excess of intracellular 

SOD, that leads to an increase of hydrogen peroxide (H2O2). The metabolome is 

highlighted by 3-hydroxibutiric acid, SMs and LPCs that were altered in a dose-

dependent manner in all groups, thus those metabolites could be considered key 

features for monitoring mitochondrial oxidative stress. Thus, β-oxidation of fatty acids 

together with other related lipid pathways are important in this experimental 

approach. Additionally, disrupted tricarboxylic acid (TCA) cycle and one-carbon 

metabolism seems to play an important role in this metabolic profile. Collateral effects 

on gut microbiome indicated different sensibility of microbes to H2O2. Overall, these 

results indicate the complexity of the metabolic profile depending on the PQ-dose, 

being different across different metabolic pathways, with some potential shared 

metabolites.  

Keywords: oxidative stress, biomarkers, animal model, paraquat, metabolomics, 

metagenomics.  
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1. Introduction 
Recent milestones in scientific research have shown that oxidative stress is 

implicated in the progression of major health problems in humans by inactivating 

metabolic enzymes, damaging important cellular components or oxidising nucleic 

acids, that leads to non-communicable diseases (NCD) such as cardiovascular disease, 

neurological diseases, atherosclerosis, and cancer, among others [1]. However, 

oxidative stress is difficult to track epidemiologically in the population. This is due 

there is a lack of tools to diagnose it clinically as an isolated risk factor, thus it is 

currently detected when it is associated with diseases. A reflection of this fact is the 

example of epidemiological studies in humans that have shown a close association 

between chronic oxidative conditions and carcinogenesis, where the latter does have 

a high incidence in the population [2].  

Indeed, oxidative stress is a set of reactions that occurs when there is an 

imbalance between oxygen and nitrogen reactive species (ROS/RNS) generation and 

the body's antioxidant defence systems [3]. Many types of agents (chemical, physical 

and microbial) can cause oxidative stress in tissues and cells, as the case of increasing 

environmental pollutants that are considered a growing threat to global health [4]. In 

addition, oxidative stress is involved in many fundamental aspects of life processes, 

such as cellular respiration (mitochondria), lipid synthesis, metal metabolism, 

lysosomes, phagocytosis of foreign bodies (immunity and inflammation) and 

xenobiotic biotransformation of organic compounds. Concretely, ROS are mainly 

produced by mitochondria under both physiological and pathological conditions. 

Generally, superoxide radical (O2
•-) is formed by cellular respiration through the 

activity of lipoxygenases (LOX) and cyclooxygenases (COX) during arachidonic acid 

metabolism, and by endothelial and inflammatory cells [5]. Although these organelles 

have an intrinsic ROS scavenging capacity [6], it should be noted that this is not 

sufficient to cope with the cellular need to remove the amount of ROS produced by 

mitochondria [7]. ROS have divergent effects on cellular function and contribute to 

disease through different mechanism [8]. The first mechanism involves the production 

of reactive species during oxidative stress such as hydroxyl radical (HO•) or 

peroxynitrite anion (ONOO−) that oxidize molecules (e.g., proteins, lipids, and nucleic 

acids) leading to disrupted homeostasis of cell function and death. The second 

mechanism involves aberrant redox signalling as the case of the oxidant hydrogen 

peroxide (H2O2) that can act as second messenger [9]. On the other hand, the 

antioxidant system of cells is based mainly on enzymatic components, such as 

superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and 

glutathione peroxidase (GPx), to protect themselves from ROS-induced cellular 

damage [10].  

Due to the great impact of oxidative stress on the development of disease, 

oxidative stress markers are taking more importance as a tool to assess the biological 

redox status, disease state and progression, and the health-enhancing effects of 
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antioxidants in humans [1]. The identification of biomarkers has been the focus of 

many studies, and several biomarkers from various biomolecule sources have been 

proposed over the past decades. However, there is a lack of consensus concerning 

validation, standardization, and reproducibility for some of them. Within the current 

biomarkers, 8-hydroxy-2′-deoxyguanosine (8-OHdG), 8-isoprostane, 3-nitrotyrosine, 

malondialdehyde (MDA) and oxidized low-density lipoprotein (oxLDL) are the main 

biomarkers for monitoring oxidative status over time [11]. All these determinations 

until the date are performed with expensive kits and sometimes the fine-tune 

determination depends on the storage time. Regarding the novel approaches for the 

identification of new potential biomarkers, omics profiling seems to be a promising 

methodology for the identification of early biochemical changes in disease. Thereby, 

omics approaches provides an opportunity to discriminate a profile of candidate 

features that can provide valuable tools to prevent the development of diseases 

[12,13]. 

Since oxidative stress is not isolated in humans, this fact is a handicap for 

monitoring this risk factor before the onset of disease. For this reason, animal models 

of oxidative stress are adopted to study the biochemical and metabolic alterations of 

the homeostasis disruption. Current animal models of oxidative stress depend on the 

rate of prooxidant generation and the effects of antioxidants, thus experimental 

oxidative models can target either production of ROS or suppression of antioxidants 

[14]. Therefore, treatments that increase ROS production are particularly useful to 

evaluate oxidative stress through ingestion or injection of oxidative stress generating 

molecules such as diazinon [15], diquat [16] or paraquat (PQ) [17–23]. Concretely, PQ 

(1,10-dimethyl-4,40-bipyridinium dichloride) is the most commonly used oxidative 

stress inducer, it should be noted that it is a very toxic herbicide when absorbed by 

ingestion, skin contact or inhalation [24–26]. Despite lung is the primary organ 

affected, PQ toxicity affects other organs such as the liver that has a high potential for 

generating ROS and has considered a key target for PQ [27]. However, PQ alternatives, 

as inducers of oxidative stress, present more drawbacks than PQ administration due 

to their greater toxicological effects.  

The systemic effect of PQ is related to its redox cycle [25]. PQ is reduced, mainly 

by NADPH-cytochrome P-450 reductase [28], NADPH-cytochrome c reductase [29] 

and the mitochondrial complex I [30] to form a monocation free radical of PQ (PQ•+). 

The PQ•+ is then rapidly re-oxidised in the presence of oxygen generating O2
•- [31], that 

is physiologically generated by the activity of LOX and COX during cellular respiration 

and arachidonic metabolism, respectively [5]. Then, it follows the well-known cascade 

leading to the generation of other ROS such as H2O2 and HO• generating the 

subsequent effects on homeostasis. This high ROS production induces a non-selective 

oxidation of biomolecules such as lipids, proteins and nucleic acids that lead to cell 

damage and eventually result in death [26]. In fact, HO• have been implicated in the 

initiation of membrane damage by lipid peroxidation during the exposure to PQ 

[31,32]. Besides the administration of PQ by intragastric administration is widely 

UNIVERSITAT ROVIRA I VIRGILI 
MULTI-OMICS BIOMARKERS OF METABOLIC HOMEOSTASIS OF RISK FACTORS ASSOCIATED TO 
NON-COMMUNICABLE DISEASES 
Julia Hernandez Baixauli 



III. Results: Manuscript 5 

 

270 
 
 

related to PQ poisoning [17], single or periodically intraperitoneal injection (IP) of PQ 

induce oxidative stress in different degree from a risk factor to a toxic effect 

depending on the rodent model and the dosage [18–23]. Therefore, this oxidative 

stress model is the most suitable experimental approach that should be evaluated 

with caution as it is associated with a some complications: such as localized damage 

to lungs; interacts with microglia to induce increased neural damage, particularly to 

dopaminergic neurons [14]. In this line, this model is widely adopted and studied as a 

factor of different diseases such as the case of Parkinson’s disease [33,34] and lung 

diseases [35]. 

In this study, we hypothesized that oxidative stress is associated by a 

characteristic metabolic signature that might allow the detection of oxidative stress 

states affecting homeostasis. This metabolic signature along with classic oxidative 

biomarkers could provide valuable information about oxidative stress as a risk factor 

the onset of diseases. To achieve that, we explore and interrogate the oxidative model 

based on the use of low doses of PQ to mimic the systemic influence of oxidative stress 

in our rodent model. Different omic sources were performed to obtain a metabolic 

profile of biomarkers, which included the metabolome of different biofluids (plasma 

and urine) and the microbiome. This approximation enriches the knowledge related 

to disrupted homeostasis due to this stressor effect on metabolism. 

2. Materials and Methods 

2.1. LPS-Induced Chronic Inflammation Model 
Thirty 8-week-old male Wistar rats (Harlan Laboratories, Barcelona, Spain) were 

housed individually under a fully controlled condition including temperature (22 ± 

2°C), humidity (55± 5%) and light (12 h-light-dark cycle and lights on at 9:00 a.m.). The 

Animal Ethics Committee of the University Rovira i Virgili (Tarragona, Spain) approved 

all the procedures (code 10049). The experimental protocol followed the “Principles 

of Laboratory Care” and was carried out in accordance with the European 

Communities Council Directive (86/609/EEC). 

After an acclimation period, rodents were randomly divided into 3 groups (n = 10 

animals per group) consisting of the control group (CON, 0.9% NaCl solution), the 

oxidative stress dose A group (OXS A, 15 mg/kg of BW of PQ) and the oxidative stress 

dose B group (OXS B, 30 mg/kg of BW of PQ). Focusing on the treatment, PQ (Sigma-

Aldrich, St. Louis, MO, USA) was dissolved in 0.9% NaCl saline solution and a single IP 

dose depending on BW. Control rats were treated with saline solution (0.9% NaCl) 

depending on BW.  
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2.2. Sample Collection 
Urine samples were collected the day before the sacrifice with the hydrophobic 

sand method [36]. For each rat, 300 g of hydrophobic sand was spread (LabSand, 

Coastline Global, Palo Alto, CA, USA) on the bottom of a mouse plastic micro-isolation 

cage. Urine was collected with sodium azide (Sigma-Aldrich, St Louis, MO, USA) as 

preservative every half hour for 6 hours and was finally pooled at the end of the 

session.  

On the last day of the study, animals were euthanized by guillotine under 

anaesthesia (pentobarbital sodium, 50 mg/kg per body weight) after 7 hours of 

fasting. Blood was collected and centrifuged at 3,000 g at 4 °C for 15 min to recover 

plasma. Tissues were rapidly removed, weighted and snap-frozen in liquid nitrogen 

(i.e., retroperitoneal white adipose tissue (RWAT), mesenteric white adipose tissue 

(MWAT), muscle, liver, and cecum). All the samples were stored at -80°C until further 

analysis. 

2.3. Pl General measurements for the characterization of the 

experimental approach  
2.3.1. General determinations 

Enzymatic colorimetric kits were used for the general determination of plasma 

total cholesterol (TC), triglycerides (TG), glucose (QCA, Barcelona, Spain) and non-

esterified free fatty acids (NEFAs, WAKO, Neuss, Germany).  

For the determination of oxidative stress, we measured the markers of lipid 

oxidative damage with the measure of malondialdehyde (MDA, TBARS assay kit, 

Cayman Chemical Company, Ann Arbor, MI, USA) and 8-isoprostane (8-Isoprostane 

ELISA Kit, Cayman Chemical Company, Ann Arbor, MI, USA). To know the antioxidant 

capacity of the subjects, we quantified the activity of the main antioxidant enzyme 

that is the superoxide dismutase (SOD, SOD Colorimetric Activity Kit, Thermo Fisher 

Scientific, Waltham, MA, USA). The overall inflammatory response was measured with 

the level of the monocyte chemoattractant protein-1 (MCP-1, MCP-1 Rat Instant 

ELISA™ Kit, Thermo Fisher Scientific, Waltham, MA, USA) one of the main pro-

inflammatory cytokines. The manufacture’s protocol was followed in all the 

determinations.  

2.3.2. RNA extraction and qPCR  

Total RNA was obtained from liver samples using TriPure reagent (Roche 

Diagnostic, Barcelona, Spain) and RNeasy Mini Kit (QIAgen, Madrid, Spain) as 

described in supplier’s protocol. RNA concentration and purity were measured by the 

determination of the absorbance at 260 and 280 nm with a nanophotometer (Implen, 

Munich, Germany). RNA was converted to cDNA using a High-Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Wilmington, DE, USA) with a RNase Inhibitor 

(Applied Biosystems, Wilmington, DE, USA) as described in manufacturer’s protocol. 
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The expression of genes related with oxidative stress (i.e., Cu/Zn SOD, Mn SOD, 

CAT, GPx1) were evaluated by quantitative polymerase chain reaction (qPCR). For this 

purpose, cDNAs samples were diluted 1:10 before being incubated with commercial 

LightCycler® 480 SYBR Green I Master on a LightCycler® 480 II (Roche Diagnostics, 

Manheim, Germany). Table 1 shows a list of primers used and verified with Primer-

Blast software (National Centre for Biotechnology Information, Bethesda, MD, USA) 

and the selected housekeeping gene was PPIA. Thermal cycling comprised an initial 

step at 95 °C for 5 min and a cycling step with the following conditions: 45 cycles of 

denaturation at 90 °C for 10 s, annealing at 60 °C for 10 s and extension at 72 °C for 

10 s. Fluorescence data were acquired at 72 °C of cycling step. 

Table 1. Detailed sequences of the oligonucleotides used in q-PCR. 
 

Gene Forward Primer (5’-3’) Reverse Primer (5’-3’) 
Accession 
number 

Size 
(bp) 

Cu/Zn 
SOD 

GGTGGTCCACGAGAAACAAG CAATCACACCACAAGCCAAG NM_017050.1 98 

Mn SOD AAGGAGCAAGGTCGCTTACA ACACATCAATCCCCAGCAGT NM_017051.2 94 

Catalase GAATGGCTATGGCTCACACA CAAGTTTTTGATGCCCTGGT NM_012520.2 100 

GPx1 TGCAATCAGTTCGGACATC CACCTCGCACTTCTCAAACA NM_030826.4 120 

PPIA CCTCGAGCTGTTTGCAGACAA AAGTCACCACCCTGGCACATG NM_017101.1 138 

 

2.3.3. Protein Extraction and Western Blot Analysis 

Liver samples were homogenated in RIPA buffer (50 mM Tris-HCL, 150 mM NaCl; 

pH 7.4, 1% Tween 20, 0,25% Na-deoxycholate) containing PMSF (Sigma-Aldrich, 

Madrid, Spain), phosphatase cocktails 2 and 3 (Sigma-Aldrich, Madrid, Spain) and 

protease inhibitor cocktail (Sigma-Aldrich, Madrid, Spain) with TissueLyser LT (QIAgen, 

Madrid, Spain) for 50 s. After shaking samples for 30 min at 4 °C, the lysates were 

centrifuged at 16,300 g for 15 min at 4 °C. Finally, protein concentration was measured 

by BCA protein assay (Thermo Fisher Scientific, Madrid, Spain).  

50 μg of protein per sample were electrophoretically separated on 10% SDS-

polyacrylamide gels (TGX FastCast Acrylamide Kit, Bio-Rad, Madrid, Spain) and 

transferred to PVDF membranes (Trans-Blot Turbo System, Bio-Rad, Barcelona, Spain). 

Protein transfer efficiency was evaluated by Pounceau-S stain. Then, membranes were 

blocked with 5% non-fat milk in TBS-Tween (0.2%) for one hour at room temperature. 

After blocking, membranes were blotted overnight at 4 °C with rabbit or ¿mouse? 

antibodies (dilution 1:1,000): Monoclonal antibody for Glutathione Reductase and 

Monoclonal antibody for β-Actine were used. After 3 washings with TBS-Tween, 

membranes were hybridized with anti-rabbit secondary antibody (Amersham, Cytiva, 

Barcelona, Spain) (dilution 1:10,000) conjugated with horseradish peroxidase for 1 h 

at room temperature. After 3 more washings, immunoreactive proteins were 

visualized using a chemiluminescence substrate kit (Amersham ECL Select, Cytiva, 

Barcelona, Spain) following the supplier’s protocol. Digital images were obtained with 
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a G:BOX Chemi XL1.4 (Syngene, Cambridge, UK) and densitometry analysis were 

evaluated using ImageJ Software (NIH, Bethesda, MD). 

2.4. Plasma metabolomics (GC-qTOF and UHPLC-qTOF) 
Plasma metabolites were analysed by gas Chromatography coupled with 

Quadrupole Time-of-Flight (GC-qTOF). For the extraction, a protein precipitation 

extraction was performed by adding eight volumes of methanol:water (8:2, v/v) 

containing internal standard mixture (succinic acid-d4, myristic acid-d27, glicerol-13C3 

and D-glucose-13C6) to plasma samples. Then, the samples were mixed and incubated 

at 4 °C for 10 min, centrifuged at 21,420 g and supernatant was evaporated to dryness 

before compound derivatization (metoximation and silylation). The derivatized 

compounds were analysed by GC-qTOF (model 7200 of Agilent, Santa Clara, CA, USA). 

The chromatographic separation was based on the Fiehn Method, using a J&W 

Scientific HP5-MS (30 m x 0.25 mm i.d.), 0.25 µm film capillary column and helium as 

carrier gas using an oven program from 60 °C to 325 °C. Ionization was done by 

electronic impact (EI), with electron energy of 70 eV and operated in full Scan mode. 

The identification of metabolites was performed by matching their EI mass spectrum 

and retention time to metabolomic Fiehn library (Agilent, Santa Clara, CA, USA) which 

contains more than 1,400 metabolites. After putative identification of metabolites, 

these were semi-quantified in terms of internal standard response ratio. 

Plasma lipids were analysed by Ultra High Perfomance Liquid Chromatography 

coupled with Quadrupole Time-of-Flight (UHPLC-qTOF). For the extraction of the 

hydrophobic lipids, a liquid-liquid extraction based on the Folch procedure [37] was 

performed by adding four volumes of chloroform:methanol (2:1, v/v) containing 

internal standard mixture (Lipidomic SPLASH®, Avanti Polar Lipids, Inc., Alabaster, AL, 

USA) to plasma. Then, the samples were mixed and incubated at -20 °C for 30 min. 

Afterwards, water with NaCl (0.8 %) was added and the mixture was centrifuged at 

21,420 g. Lower phase was recovered, evaporated to dryness and reconstituted with 

methanol:methyl-tert-butyl ether (9:1, v/v) and analysed by UHPLC-qTOF (model 6550 

of Agilent, Santa Clara, CA, USA) in positive electrospray ionization mode. The 

chromatographic consists in an elution with a ternary mobile phase containing water, 

methanol, and 2-propanol with 10 mM ammonium formate and 0.1% formic acid. The 

stationary phase was a C18 column (Kinetex EVO C18 Column, 2.6 µm, 2.1 mm x 100 

mm) that allows the sequential elution of the more hydrophobic lipids such as 

triglycerides (TGs), diacylglycerols (DGs), cholesterol ester (ChoEs), 

phosphatidylcholines (PCs), phosphatidylethanolamine (PE), lysophospholipids (LPCs) 

and sphingomyelins (SMs), among others. 

The identification of lipid species was performed by matching their accurate mass 

and tandem mass spectrum, when available, to Metlin-PCDL from Agilent containing 

more than 40,000 metabolites and lipids. In addition, chromatographic behaviour of 

pure standards for each family and bibliographic information was used to ensure their 

putative identification. After putative identification of lipids, these were semi 
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quantified in terms of internal standard response ratio using one internal standard for 

each lipid family. A pooled matrix of samples was generated by taking a small volume 

of each experimental sample serving as a technical replicate throughout the data set. 

As the study took multiple days, a data normalization step was performed to correct 

variation resulting from instrument inter-day tuning differences. Essentially, each 

compound was corrected in run-day blocks through quality controls, normalizing each 

data point proportionately. 

2.5. Urine metabolome (1H-NMR) 
Urine metabolites were analysed by proton nuclear magnetic resonance (1H-

NMR). The urine sample was mixed (1:1, v/v) with phosphate buffered saline 

containing with 3-(Trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (TSP) (Sigma-

Aldrich, St. Louis, MO, USA) and placed on a 5 nm NMR tube for direct analysis by 1H-

NMR. 1H-NMR spectra were recorded at 300 K on an Avance III 600 spectrometer 

(Bruker®, Bremen, Germany) operating at a proton frequency of 600.20 MHz using a 

5 mm PBBO gradient probe. Diluted urine aqueous samples were measured and 

recorded in procno 11 using a One-dimensional 1H pulse experiments were carried out 

using the nuclear Overhauser effect spectroscopy (NOESY). NOESY presaturation 

sequence (RD–90°–t1–90°–tm–90° ACQ) to suppress the residual water peak, and the 

mixing time was set at 100 ms. Solvent presaturation with irradiation power of 150 

μW was applied during recycling delay (RD = 5 s) and mixing time. (noesypr1d pulse 

program in Bruker®) to eliminate the residual water. The 90° pulse length was 

calibrated for each sample and varied from 11.21 to 11.38 ms. The spectral width was 

9.6 kHz (16 ppm), and a total of 128 transients were collected into 64 k data points for 

each 1H spectrum. The exponential line broadening applied before Fourier 

transformation was of 0.3 Hz. The frequency domain spectra were manually phased 

and baseline-corrected using TopSpin software (version 3.2, Bruker). Data has been 

normalized by two different ways, by probabilistic to avoid differences between 

sample due to different urine concentration, and by ERETIC. The acquired 1H-NMR 

were compared to references of pure compounds from the metabolic profiling AMIX 

spectra database (Bruker®), HMDB, and Chenomx databases for metabolite 

identification. In addition, we assigned metabolites by 1H-1H homonuclear correlation 

(COSY and TOCSY) and 1H-13C heteronuclear (HSQC) 2D NMR experiments and by 

correlation with pure compounds run in-house. After pre-processing, specific 1H-NMR 

regions identified in the spectra were integrated using MATLAB scripts run in house. 

Curated identified regions across the spectra were exported to excel spreadsheet to 

evaluate robustness of the different 1H-NMR signals and to give relative 

concentrations. 

2.6. Shotgun metagenomics sequencing 
DNA was extracted from faeces using the PowerSoil DNA extraction kit (MO BIO 

Laboratories, Carlsbad, CA, USA) following the manufacturer's protocol. Between 400 

and 500 ng of total DNA was used for library preparation for Illumina sequencing 
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employing Illumina DNA Prep kit (Illumina, San Diego, CA, USA). All libraries were 

assessed using a TapeStation High Sensitivity DNA kit (Agilent Technologies, Santa 

Clara, CA, USA) and were quantified by Qubit (Invitrogen, Waltham, MA, USA).  

Validated libraries were pooled in equimolar quantities and sequenced as a 

paired-end 150-cycle run on an Illumina NextSeq2000. A total of 1548 million reads 

were generated, and raw reads were filtered for QV > 30 using an in-house phyton 

script. Filtered reads were aligned to unique clade-specific marker genes using 

MetaPhlAn 3 [38] to assess the taxonomic profile. The alignment was done indicating 

the closest name of specie to the sequence (the best hit). The relative proportions 

calculated from MetaPhlAn were used to calculate relative abundances, alpha 

diversity measure (chao1 index) and beta diversity measures (Aitchison distance).  

2.7. Statistical Analysis 
2.7.1. General statistical analysis 

The results were expressed as the mean ± SEM and statistical comparisons were 

carried out using one-way ANOVA, followed by Tukey’s multiple comparison test after 

the study of the normality. In all the statistical comparisons, a two-tailed p-value < 

0.05 was considered. Across the different statistical analysis, the magnitude of 

difference between populations is presented as fold change (FC). The statistical 

analysis was performed using different software: (1) the R statistical software v4.0.2 

(R Core Team 2021) and different libraries, included in Bioconductor v3.11 

(Bioconductor project) as rolps and mixOmics; (2) SPSS v25.0 (SPSS Inc, Chicago, IL, 

USA); (3) GraphPad Prism v8.0.0 (GraphPad Software, San Diego, CA, USA). 

2.7.2 Metabolomic data analysis 

Individual comparisons between metabolites were determined by the Kruskal-

Wallis H-test, a non-parametric version of ANOVA, due to the variables follow the 

assumption of a non-parametric test. The p-value adjustment for multiple 

comparisons was carried out according to the Benjamin-Hochberg (BH) correction 

method with a false discovery rate (FDR) of 5%, and a Post-hoc Dunn. In parallel, a 

predictive analysis was done to evaluate the prediction power of the oxidative stress 

model. On the one hand, principal component analysis (PCA), an unsupervised 

multivariate data projection method, was performed to explore the native variance of 

the samples. On the other hand, partial least squares discriminant analysis (PLS-DA) 

was performed to determine the prediction power that supervised multivariate data 

projection method explores, possible relationships between the observable variables 

(X) and the predicted variables or target (Y) by regression extensions. The predictive 

performance of the test set was estimated by the Q2Y parameter calculated through 

cross-validation. The values of Q2 < 0 suggests a model with no predictive ability, 0 < 

Q2 < 0.5 suggests some predictive character and Q2 > 0.5 indicates good predictive 

ability [39]. The feature importance was calculated through the variable importance 

in projection (VIP), which reflects both the loading weights for each component and 

the variability of the response explained by the component.  
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2.7.3. Metagenomic data analysis 

Centred log-ratio (CLR) normalization was performed before any statistical test. 

The beta diversity was calculated from the Aitchison distance and PERMANOVA test 

was performed with 100 permutations to assess de differences between groups. The 

alpha diversity was calculated by Chao1 index. Taxonomic abundances, which are 

presented by relative abundance (%), were compared between experimental groups 

using the Holm-Šídák (HS) post-hoc adjustment on Kruskal-Wallis test. The relative 

abundance was filtered to only include variables that were present above 0.01% in at 

least 3 samples [40].  

2.7.4. Integration data analysis 

Multiblock sPLS-DA, which is also known as Data Integration Analysis for 

Biomarker discovery using Latent cOmponents (DIABLO), is a holistic approach with 

the potential to find new biological insights not revealed by any single-data omics 

analysis, as some pathways are common to all data types, while other pathways may 

be specific to data. DIABLO is built on the Generalised Canonical Correlation Analysis 

(GCCA) [41] in the mixOmics R package (version 6.18.1, mixOmics project) and in our 

case it was used to integrate plasma and urine metabolome and microbiome [42].  

To summarize, the first step is the parameter choice of the design matrix, the 

number of components and the number of variables to select: (1) a design matrix 

based on pairwise correlations was used to be more accurate; (2) the perf function 

was used to estimate the performance of the model and the balanced error rate (BER) 

and overall error rates per component were displayed to select the optimal number 

of components; (3) the number of variables was chosen using the tune.block.splsda 

function that is run with 10-fold cross validation and repeated 10 times. Thereafter, 

the final model was computed, and different sample and variable plots were 

performed. The circosPlot function represents the correlations between variables of 

different types, represented on the side quadrants that is built based on a similarity 

matrix, which was extended to the case of multiple data sets [43].  

The final performance of the model was evaluated by the perf function using 10-

fold cross-validation repeated 10 times. The receiver operating characteristic (ROC) 

curve analysis was conducted to determine the optimal metabolite combination 

patterns that could correctly dichotomize the stressed and healthy groups at 

acceptable sensitivity and specificity (defined as greater than 80% for both). The area 

under the ROC curve (AUC) value was used as a measure of the prognostic accuracy.  

2.7.5. Pathway Analysis 

The resulting significant differential features were analysed through different 

data bases to identify related pathways and elucidate the global effect in the 

metabolism of the LPS-induced inflammation model. The main data base consulted 

was the Kyoto Encyclopaedia of Genes and Genomes (KEGG) [44], among others. To 

show those results, a mapping tool (XMind 2020, version XMind 2020, XMind Ltd., 
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Virginia, ON, Canada) was used to incorporate the information about pathway 

analysis. 

3. Results  

3.1. Characterization and validation of the PQ model 

3.1.1. General changes  

The effect of the PQ dose had repercussions on the animal through body changes 

and biochemical changes that are summarized in Table 2. Initially, a decrease in BW 

together with a decrease of food consumption was observed in the OXS A and OXS B 

group versus controls. In this line, different tissues weights were decreased as liver, 

muscle, and cecum while the dose increases. Other interesting general parameters, as 

plasma TG were decreased in both treated groups while TC was increased. 

Focusing on the plasma biomarkers of oxidative stress, MDA was increased in 

both doses while SOD was only decreased in OXS B. For liver, MDA and SOD was 

increased in the OXS B group with statistical differences. The increasing level of 8-

isoprostane correlates with the increasing dose of PQ. For the characterization of 

inflammation response, MCP-1 was increased in the two treated groups in contrast to 

the CON group. 

UNIVERSITAT ROVIRA I VIRGILI 
MULTI-OMICS BIOMARKERS OF METABOLIC HOMEOSTASIS OF RISK FACTORS ASSOCIATED TO 
NON-COMMUNICABLE DISEASES 
Julia Hernandez Baixauli 



III. Results: Manuscript 5 

 

278 
 
 

 
Table 2. General characteristics of the oxidative stress model. The results are presented as the mean ± SEM (n = 10 animals per group). The biometric parameters are represented 
as a ratio (g/ kg BW * 100) to properly compare the parameters. The statistical comparisons among groups were conducted using 1-way ANOVA and post hoc (Tukey) test. * Denotes 
p < 0.1 (tendency), ** p < 0.05 (significantly different) and *** p < 0.01 (high significantly different) compared with control. Abbreviations: BW, body weight; MWAT, mesenteric white 
adipose tissue; RWAT, retroperitoneal white adipose tissue; MDA, malondialdehyde; SOD, superoxide dismutase; MCP-1, monocyte chemoattractant protein-1; TG, triglycerides; TC, 
total cholesterol; NEFAs, non-esterified fatty acids.  
 

  Control OXS A OXS B p-value CON vs OXS A CON vs OXS B OXS A vs OXS B 

Biometric parameters 

Inicial BW (g) 286.21 ± 4.24 286.37 ± 3.24 300.85 ± 8.28 0.11 0.94 0.7 0.33 

Final BW (g) 293.77 ± 3.90 271.59 ± 5.54 263.35 ± 7.37 <0.01*** 0.03** <0.01*** 0.58 

Total food consumption (g) 21.19 ± 0.77 11.47 ± 1.44 0.65 ± 0.20 <0.01*** <0.01*** <0.01*** <0.01*** 

MWAT/BW 0.86 ± 0.02 0.87 ± 0.5 0.71 ± 0.06 0.05* 0.99 0.09* 0.76 

RWAT/BW 1.09 ± 0.5 1.03 ± 0.09 0.88 ± 0.13 0.36 0.91 0.31 0.55 

Muscle/BW 0.63 ± 0.01 0.60 ± 0.01 0.56 ± 0.01 <0.01*** 0.17 <0.01*** <0.01*** 

Liver/BW 3.61 ± 0.04 3.26 ± 0.10 2.55 ± 0.06 <0.01*** <0.01*** <0.01*** <0.01*** 

Cecum/BW 1.55 ± 0.09 1.37 ± 0.07 0.97 ± 0.11 <0.01*** 0.37 <0.01*** 0.13 

Plasma parameters 

MDA (µM) 11.62 ± 0.33 12.73 ± 1.25 17.66 ± 2.23 0.01** 0.83 0.01** 0.04** 

SOD (U/ml) 7.33 ± 0.31 7.15 ± 0.27 4.48 ± 0.33 <0.01*** 0.91 <0.01*** <0.01*** 

MCP-1 (pg/ml) 6.48 ± 1.10 9.94 ± 0.59 9.72 ± 1.13 0.03** 0.04** 0.05* 0.98 

Glucose (mM) 114.39 ± 1.63 108.47 ± 3.74 119.10 ± 5.33 0.17 0.53 0.67 0.14 

TG (mM) 81.05 ± 7.96 55.29 ± 12.11 57.12 ± 5.70 0.09* 0.13 0.16 0.98 

TC (mM) 67.44 ± 3.09 76.62 ± 5.55 94.33 ± 4.83 <0.01*** 0.35 <0.01*** 0.03** 

NEFAs (mM) 0.70 ± 0.04 0.63 ± 0.03 0.68 ± 0.05 0.39 0.39 0.95 0.56 

Liver biochemistry 
MDA (µM) 9.50 ± 0.56 8.90 ± 0.29 12.61 ± 0.70 <0.01*** 0.72 <0.01*** <0.01*** 

SOD (U/ml) 62.80 ± 3.90 66.97 ± 6.26 78.86 ± 4.55 0.08* 0.82 0.07* 0.23 

Urine parameters Isoprostanes (µM) 1.14 ± 0.12 1.35 ± 0.34 5.95 ± 0.99 <0.01*** 0.97 <0.01*** <0.01*** 
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3.1.2. PQ altered the oxidative stress state in liver tissue 

To further understand how the oxidative stress produced by PQ affects the liver 

tissue, we assessed an expression analysis of some of the most important enzymes 

involved in the detoxification of ROS by qPCR in this tissue. On the one hand, as shown 

in Figure 1a, the cytoplasmatic SOD (SOD1 or Cu/Zn SOD), responsible for 

approximately 90% of the SOD activity in eukaryotic cells, shows a significant increase 

at both doses of PQ, being statistically significant at the higher dose. Moreover, a 

similar result is presented by mitochondrial SOD (SOD2 or Mn SOD), which shows 

statistically significant differences at the highest dosage, confirming that described by 

Krall et al. (Figure 1b) [45]. On the other hand, the expression of the CAT gene, 

responsible for detoxifying hydrogen peroxide, decreased statistically in both doses 

regarding with control group (Figure 1c). For its part, the expression levels of GPx1, 

responsible for detoxifying hydrogen peroxide but from a different biochemical 

pathway, also changed showing a decrease for the lowest dose of PQ with respect to 

the control group, while it is at the same level at the highest dose with respect to the 

control group (Figure 1d). However, there were no significant differences between 

groups. These results could suggest PQ effects are related, at least partially, with the 

accumulation of hydrogen peroxide caused by the reduction of the expression of the 

enzymes responsible for its detoxification. 

 

Figure 1. PQ induces altered expression of oxidative stress-related genes. The values represented are the 
mean ± SEM (n = 6-7 animals per group). Comparison among the three groups were analyzed by a one-way 
ANOVA test, followed by a Tukey’s post-hoc test. The limit of statistical significance was set at p < 0.05. * 
Denotes p < 0.1 (tendency), ** p < 0.05 (significantly different) and *** p < 0.01 (high significantly different) 
compared with control. Statistical differences between treated groups are indicated by lines. Abbreviation: 
ns, no significant differences. 
 

3.1.3. PQ increased the amount of GR, and thus GSH available to detoxify ROS 

As it is well known, the glutathione (GSH), a tripeptide formed by the amino acids 

glutamate, cysteine and glycine, plays an important role in the defense against ROS-

induced damage. To carry out its functions, the enzyme glutathione reductase (GR) 

must catalyze the reduction of glutathione disulfide (GSSG) to obtain GSH. For this 

reason, we assessed a Western blotting analysis of GR, determinant enzyme for the 

GSSG/GSH ratio. The results obtained showed treatment with PQ significantly 
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increased the total amount of GR enzyme, obtaining a similar response after both 

doses of treatment (Figure 2).  

3.2 Plasma metabolic profiling and biomarker identification 
Our plasma metabolomics approach is based on a multiplatform global analysis 

(GC-qTOF and UHPLC-qTOF) that determined the relative abundance (AU) of 128 

metabolites (Table S1). We obtained 109 metabolites with a different mean between 

groups by Kruskal-Wallis H-test. Then, we corrected the multiple hypothesis testing p-

values with False discovery rate Benjamin/Hochberg method and we obtained 107 

metabolites having at least two groups with different means. After the post-Hoc test 

to check from which of the 3 relations is coming the difference in the mean, 74 

metabolites were different between CON and OXS A; 70 metabolites were different 

between CON and OXS B; 58 metabolites were different between OXS A and OXS B 

(Figure S1).  

As it is shown in Figure 3, 12 metabolites were significantly different between all 

groups (CON, OXS A and OXS B) that are aconitic acid, fructose, cholesterol, citric acid, 

3-hydroxybutiric acid, serine, LPCs (LPC 18:1 and LPC 15:0) and SMs (SM 34:1, SM 34:2, 

SM 36:2 and SM 36:1) (Figure 3a). The distribution of the 12 metabolites were 

visualized with boxplot graphs to analyse the distribution of them in the different 

groups (Figure 3a). The expected pattern considering the dose-effect was a decrease 

or an increase starting in the control group. However, we found that aconitic acid, 

citric acid, serine, cholesterol, and fructose did not follow this patron. Further 

comparisons between groups are necessary to understand the metabolic profile. 
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Figure 3. Graphical summary of plasma metabolome analysis. (a) Boxplot of the 12 metabolites 
significantly different between CON, OXS A and OXS B. Blue, CON; orange, OXS A; green, OXS B. Box denotes 
25th and 75th percentiles; line within box denotes 50th percentile (median); whisker denotes standard 
deviation. (b) PCA scores of plasma metabolome. (c) PLS-DA scores of plasma metabolome. The Score plot 
is represented, and it includes the number of components, the cumulative R2X, R2Y and Q2Y. Groups (n = 
10 animals per group): CON, blue; OXSA, orange; OXSB, green. Abbreviations: SM, sphingomyelin; LPC, 
lysophospholipid.  

 
In the case of control versus OXS A, 10 metabolites altered with high impact were 

lipids that include mainly a group of TGs (TG 48:3, TG 48:1, TG 48:2, TG 46:1, TG 46:0, 

TG 52:6, TG 50:4) and specific lipids as DG 34:3, PC 38:3 and SM 35:1. In the case of 

control versus OXS B, the 10 metabolites altered with high impact were two groups of 

lipids, which are LPCs (LPC 18:1, LPC 18:2 and LPC 15:0) and SMs (SM 34:1, SM 34:2, 

SM 36:1, SM 36:2, SM 38:1), and a ketone body (i.e., 3-hydroxybutiric acid). Focusing 

on the differential metabolites between OXS A and OXS B, there were intermediate 

metabolites of TCA cycle (i.e., aconitic acid, citric acid and fumaric acid), cholesterol, 

serine, fructose, glycolytic acid and ChoE (22:5) among others. 

The PCA explains the variance in the plasma metabolome showing that the data 

tend to be segregated in the three different groups (Figure 3b). Additionally, PLS-DA 

was performed to assess the discriminative power of the different groups (Figure 3c). 

The proportion of variance explained by the model (R2X) was 47% in the plasma data. 
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The percentage of Y variability explained by the model (R2Y) was 65,5% and, the 

estimation of the predictive performance of the models (Q2) was 57,8%. A model is 

considered to have good predictability when the Q2 is greater than 50% [46], thus the 

predictive power of the model in plasma was good. The main metabolites with the 

highest VIP values, which reflects both the loading weights for each component and 

the variability of the response explained by this component, coincide with the 12 

differential metabolites between groups and presented values near to 2 (Table S1). 

3.3 Urine metabolome profiling  
Our urine metabolomics approach is based on H1-NMR that method determined 

the relative abundance (AU) of 21 metabolites (Table S2). We obtained 15 metabolites 

having at least two groups with different means by Kruskal-Wallis H-test and corrected 

by Benjamin/Hochberg method. After the post-Hoc test to check from which of the 3 

relations is coming the difference in the mean, 4 metabolites were different between 

CON and OXS A; 13 metabolites were different between CON and OXS B; 10 

metabolites were different between OXS A and OXS B (Figure S2). 

The common metabolites between the pair-wise comparisons are shown in 

Figure 4a. The differences between CON and OXS A groups were attributed to the 

levels of creatinine, pseudouridine, 1-methylmicotinamide and N-acetylglycoproteins. 

The differences between CON and OXS B groups were attributed to common 

metabolites previously differentiated in CON vs OXS A (creatinine and N-

acetylglycoproteins), TCA intermediates (fumaric acid, citric acid and succinic acid), 

nicotinamide intermediates (1-methylnicotinamide and trigonelline), amino acids 

(tryptophan, glycine, alanine and hippurate) and lactate. Finally, the differences 

associated to the different doses (OXS A and OXS B group) were similar to the 

differences of CON against OXS B group including the TCA intermediates, nicotinamide 

intermediates, some previously described amino acids (tryptophan, glycine and 

hippurate) including a derivate of glycine (N,N-dimethylglycine) and pseudouridine.  
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Figure 4. Graphical summary of urine metabolome analysis. (a) Boxplot of the 12 metabolites significantly 
different in pair-wise comparisons between CON, OXS A and OXS B. Box denotes 25th and 75th percentiles; 
line within box denotes 50th percentile (median); whisker denotes standard deviation. (b) PCA scores of 
urine metabolome. (c) PLS-DA scores of urine metabolome. The Score plot is represented, and it includes 
the number of components, the cumulative R2X, R2Y and Q2Y. Groups (n = 10 animals per group): CON, 
blue; OXSA, orange; OXSB, green. 
 

PCA shows that the variance of the data was able to discriminate the OXS B group 

in front the others (Figure 4b). Furthermore, PLS-DA was performed to assess the 

discriminative power of the different groups (Figure 4c). The proportion of variance in 

the urine data explained by the model (R2X) is 52.6%. The percentage of Y variability 

explained by the model (R2Y) is 66.1% and, the estimation of the predictive 

performance of the models (Q2) is 58.1%. A model is considered to have good 

predictability when the Q2 is greater than 50%, [46], thus the predictive power of the 

model in urine was good. However, we observed the same tendency as PCA showing 

that OXS B segregates and OXS A and CON are close. The main metabolites with the 

highest VIP values, which reflects both the loading weights for each component and 

the variability of the response explained by this component (Table S2). 
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3.4 Microbiome profiling 
The metagenomic analysis characterized the effect of oxidative stress on the 

microbiome of the cecum section to evaluate the highest variability and diversity of 

the gut tract. The taxonomic assignment has made possible to detect the presence of 

bacteria and viruses. In the case of the control group, 76% of readings generated have 

been assigned to bacteria and the rest to viruses; following the same pattern as 

control group, 73% of readings were assigned to bacteria in the OXS A; in contrast, 

95% of readings were associated to bacteria in the OXS B group. The differences 

between the OXS B group and the rest were statistically significant (p-value < 0.02).  

The representation of the bacterial communities in the PCA (beta diversity) shows 

that the communities of the OXS B group are remarkably different from the other 

groups (Figure 5a). Additionally, PERMANOVA showed statistical differences (F = 

13.51, p-value < 0.01) indicating differences in bacteria composition/beta diversity, 

those differences are clearly associated with the OXS B group. The comparison of 

alpha diversity values (index that measures the richness of the sample) showed a clear 

decrease in chao 1 index in the OXS B group (Figure 5b), as it has been already 

observed in the beta diversity (Figure 5a).  

 

Figure 5. Summary of the bacteria statistical analysis in the oxidative stress model. (a) Beta diversity: PCA 
plot calculated by Aitchison distance. (b) Alpha diversity (AU): Chao1 index. (c) Relative distribution of 
bacterial phylum. (d) Relative distribution of bacterial species. Groups (n = 8 animals per group): CON, blue; 
OXSA, orange; OXSB, green. 
 

In terms of bacterial diversity, the communities of the CON and OXS A groups are 

mainly formed by the phylum Bacteroidetes (CON: 58% and OXS A: 70%) and 

Firmicutes (CON: 27% and OXS A: 19%) while the OXS B group is dominated by 

Proteobacteria (76%) and Verrucomicrobes (19%) (Figure 5c). The relative proportions 

of all phyla reported by the OXS B group are statistically different from those reported 

in the other groups (Table S3). Focusing on species, 27 species were found with a 

relative abundance above 0.01% at least in one group (Figure 5d, Table S4). In the CON 
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(b)
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and OXS A groups the species Muribaculum intestinale and Murobaculaceae 

bacterium predominate above the others. In contrast, Escherichia coli and 

Akkermansia muciniphila predominate in the OXS B group that could be explained by 

a decrease of the other species. Overall, the OXS B group is very different from the 

other two groups, with the main statistically significant differences that are indicated 

in table 3.  

Table 3. Taxonomic statistical analysis of bacterial species between the CON, OXS A and OXS B group. 
Taxonomic data is presented as the mean of relative abundance (%). The summary of the analysis is shown 
including results of Kruskal-Wallis corrected by HS. * Denotes p < 0.1 (tendency), ** p < 0.05 (significantly 
different) and *** p < 0.01 (high significantly different). 
  

 Corrected p-value Relative abundance (%) 

Specie 
CON vs 

OXS A vs 
OXS B 

OXS A 
vs OXS 

B 

CON vs 
OXS B 

CON 
vs 

OXS 
A 

CON OXS A OXS B 

Muribaculaceae bacterium DSM 103720 < 0.01*** 0.02** < 0.01*** 1.00 30.40% 34.43% 0.03% 

Akkermansia muciniphila < 0.01*** 0.02** < 0.01*** 1.00 2.30% 2.75% 19.31% 

Muribaculum intestinale < 0.01*** 0.02** < 0.01*** 1.00 18.49% 18.51% - 

Bifidobacterium pseudolongum 0.01** 0.02** < 0.01*** 1.00 - - 0.15% 

Anaerotruncus sp G3 2012 0.01** 0.02** < 0.01*** 1.00 1.87% 1.44% 0.04% 

Escherichia coli 0.01** 0.02** < 0.01*** 1.00 10.79% 6.09% 76.00% 

Oscillibacter sp 1 3 0.01** 0.02** 0.08* 0.55 1.90% 3.80% 0.09% 

Lactobacillus johnsonii 0.02** 0.03** 0.01** 1.00 0.07% 0.01% 0.16% 

Bacteroides uniformis 0.03** 0.28 0.01** 0.92 4.55% 2.18% 0.10% 

Ruthenibacterium lactatiformans 0.03** 0.02** 0.04** 1.00 0.23% 0.03% 0.69% 

Faecalibaculum rodentium 0.04** 0.05* 0.04** 1.00 - - 0.04% 

 

The representation of the virus communities in the PCA (beta diversity) shows 

that the communities of the different groups were similar (Figure S3a). In this line, the 

PERMANOVA test (F = 0.80, p-value > 0.05) indicates that there were no differences 

in bacteria composition/beta diversity. The comparison of Chao1 (index that measures 

the richness of the sample) indicated that the different groups presented similar alpha 

diversity (Figure S3b) following the same tendency as beta-diversity (Figure S3a). In 

terms of virus diversity, the communities of virus are mainly formed by the order of 

Herpesvirales, Ortevirales and Caudovirales (Figure S3c) without reporting differences 

between groups (data not shown). Focusing on species, 18 species were found with a 

relative abundance above 0.01% at least in one group (Table S5). We observed that 

some residual virus trend to differ between group, however these differences were 
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not considered due to beta diversity was not different and those residual differences 

could be associated to technical variability. In this case, Cyprinid hespervirus 3 was the 

highest represented virus in all groups. 

Furthermore, 37 functions were detected with a representation higher than 1% 

at least in one group, standing out the fermentation of pyruvate, which is the most 

abundant in the three groups. The groups present different distribution of the other 

functions with statistically significant differences, especially the OXS B group with 

respect to the rest (Table S6). 

3.5 Multi-omics data integration  
Previously, regression analyses were performed with PLS to further understand 

the cross-correlation between different omics. The data sets taken in a pairwise 

manner are highly correlated: plasma and urine metabolome (r = 0.93); plasma 

metabolome and microbiome (r = 0.97); urine metabolome and microbiome (r = 0.91). 

These correlations are used to tune the final DIABLO model that is constructed with 2 

components (low error rate) and the selection of the optimal number of variables 

based on these 2 components: this selection includes 6 and 9 plasma metabolites; 20 

and 5 urine metabolites; and 5 and 30 microbes for the 1-2 component, respectively. 

The final model was able to discriminate between the different omics in Figure 

S4a and S4b, as it is observed there are some dissimilarities between animals across 

data sets (Figure S4b). The variables with higher impact were represented in Figure 

S4c. In general, the correlation structure in component 1 shows correlation between 

specific variables at different omics, while some plasma and urine metabolites seem 

to highly contribute to component 2. Focusing on component 1, the most important 

variables are LPC 18:2 (plasma metabolite), succinic acid (urine metabolite) and 

Escherichia Coli (microbes) among others (Figure 6a). Focusing on the multi-omics 

signature selected on component 2, the most important variables are a group of TGs 

plasma metabolites and a group of urine metabolites as Pseudouridine, 1-

Methylnicotinamide and N,N-Dimethylglycine (Figure 6a). Additionally, the cross-

correlations between omics, and the nature of these correlations are represented in 

Figure 6b, thus we can observe that correlations are between plasma metabolites and 

some urine metabolites and microbes. The majority negative correlations are 

observed between Pseudouridine and plasma metabolites. Additionally in plasma, 

LPCs and two amino acids (proline and hydroxyproline) are positive correlated with 

other omics as succinic acid and fumaric acid in urine. Escherichia coli and 

Muribaculaceae bacterium DSM 103720 targets the negative and positive correlations 

between the other omics.  

Finally, the performance of the model was assessed indicating a BER of 0.12. This 

error rate is almost null in the OXSB group, while CON presents the highest error. To 

complement the analysis, ROC and AUC shows that OXSA is the most difficult group 

to classify with DIABLO compared to the other groups (Figure S5). Thus, multi-omics 
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data integrations present a high prediction power highlighting the discrimination of 

OXSB versus CON and OXSA groups.  

 
Figure 6. Multi-omics data integration of plasma metabolome, urine metabolome and microbiome using 
DIABLO in the oxidative stress model. (a) Loading plot for the variables selected in each data set and the 2 
components. The most important variables are ordered from bottom to top. Colours indicate the group for 
which the median expression value is the highest for each feature: CON, blue; OXSA, orange; OXSB, green. 
(b) Circos plot. The plot represents the correlations greater than 0.7 between variables of different omics. 
Each quadrant indicates the type of features: plasma metabolites (purple), urine metabolites (red), 
microbes (yellow). The lines show the positive (red) and negative (blue) correlations. Abbreviations: LPC, 
lysophospholipid; PC, phosphatidylcholine; SM, sphingomyelin; TG, triglyceride. 
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4. Discussion 
To determine the metabolic effects of oxidative stress, we explored the response 

of a PQ model in male Wistar rats with different degrees of oxidative stress. We 

generated oxidative stress chemically through a single IP administration of 15 and 30 

mg/kg PQ [19,21]. Initially, the animals showed a decrease in BW as the dose 

increased, thus suggesting that increasing the dose of PQ is directly related to a 

greater impact on weight. The same weight observation carries over to the weight of 

specific tissues such as liver, which is the target of PQ [27], and food consumption, 

having a dose-dependent relationship.  

Focusing on the classical biomarkers related to oxidative stress, an alteration in 

lipid peroxidation was observed both in liver and in plasma, represented by the high 

levels of MDA, as it is previously reported in PQ animal models [31,32]. Furthermore, 

trying to observe the systemic effect on other biofluid available, urine 8-isoprostanes 

were also increased in a dose-dependent manner as observed in previous studies [47]. 

Related to the PQ mechanism, the H2O2 accumulation is evidenced because both 

mitochondrial (SOD1) and cytoplasmic (SOD2) SOD expression are elevated in liver 

suggesting the increment of dismutation of O2
•- to H2O2. Additionally, elevated levels 

of expression of CAT were observed indicating that the decomposition of H2O2 was 

reduced in liver. Those results were in the line of previous studies that indicate 

increase of SOD activity as a main characteristic of the oxidative model with PQ 

administration [48]. To further confirm our results, SOD activity was measured 

indicating an increase in liver, while SOD activity was not altered in plasma. One of the 

major antioxidant elements is GSH that plays an important role in the defence against 

oxidative stress damage due to the increment of GR that catalyse the reduction of 

GSSG to obtain GSH. Its major antioxidant properties are further manifested in direct 

scavenging of hydroxyl radicals and singlet oxygen, while it can also detoxify H2O2 and 

lipid peroxides in tandem with enzymatic action of GPx and glutathione transferases 

[49]. Finally, H2O2 decomposition is not increased because GPx1 values have not 

changed, therefore, it is another feature indicating H2O2 accumulation along with the 

decrease of CAT.  

NLRP3 inflammasome plays a key role in sensing mitochondrial stress and 

responding with the activation and secretion of inflammatory cytokines such as 

interleukin 1 beta (IL-1β) to trigger inflammation [50,51]. The mechanism of PQ 

induces elevated mitochondrial H2O2 leading to mitochondrial stress and plays a key 

role in mediating PQ-induced NLRP3 inflammasome activation and elevation of brain 

inflammation [52]. Thus, circulating levels of IL-1β and MCP-1 were previously 

proposed as biomarkers for monitoring PQ-mediating inflammation [53]. In 

concordance, elevated levels of MCP-1 were assented in both groups independently 

to the dosage. Additionally to elevated levels of MCP-1, the treated groups presented 

higher excretion levels of N-acetylglycoproteins in urine that are biomarkers of 

systemic inflammation [13]. Those results suggest that the levels of oxidative stress 
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led to the activation of systemic inflammation as a consequence of the level of 

oxidative stress.  

The mitochondrial stress generated by PQ administration, which has been 

confirmed by classical biomarkers such as MDA, SOD, CAT, GR and GPx1, was also 

observed in the plasma metabolic profile. Therefore, the plasma metabolic profile is 

characterised by altered metabolites associated with mitochondrial metabolism along 

with other related pathways, as summarised in Figure 7. In fact, it has long been 

recognized that energy metabolism is linked to the production of ROS and critical 

metabolites allied to metabolic pathways can be affected by redox reactions [54]. 

Mammals produce the majority metabolic energy from carbohydrates, with glucose 

as the principal substrate for energy production (ATP), that is produced through three 

well-known pathways: glycolysis, tricarboxylic acid (TCA) cycle and the electron 

transport chain. 

 
 
Figure 7. Overview of the candidate biomarkers and the main metabolic pathways implicated in the 
oxidative stress model. Abbreviations: TG, triacylglycerol; FA, fatty acid; SM, sphingomyelin; GSH, 
glutathione; NAD, nicotinamide adenine dinucleotide. 
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The TCA cycle, which constitutes an epicentre in cell metabolism because multiple 

substrates can feed into it, is one of the main altered pathways in the mitochondria 

that is considered a key cycle controlling physiology and diseases [55]. In the current 

research, citric acid and aconitic acid, which are intermediates of TCA cycle, were 

increased in the OXS A group while they were decreased in the OXS B. Thereby, our 

experimental approach suggests that in early oxidative stages (OXS A), TCA cycle 

increases in parallel to ketonic bodies accumulation; while in advanced oxidative 

stages (OXS B), the TCA cycle was disrupted, and the ketone bodies accumulation 

continue increasing. The H2O2 accumulation leads to the suppression of TCA cycle 

through the inhibition of enzymes implicated in the process that limits the availability 

of reduced nicotinamide adenine dinucleotide (NADH) for the respiratory chain under 

oxidative stress. On the assumption that H2O2 levels determine their effect on the TCA 

cycle and taking into account the results obtained for dose A and B, we can suggest 

two states for each dose in the line of previous studies [56,57]: (1) low H2O2 

concentrations inactivate aconitase that is the most sensitive enzyme in the TCA cycle 

to H2O2 inhibition, thus glutamate fuels the TCA cycle and NADH generation is 

unaltered (OXS A), (2) high H2O2 concentrations also inhibits α-ketoglutarate 

dehydrogenase limiting the amount of NADH available for the respiratory chain (OXS 

B). This disruption of TCA cycle is shown also in urine metabolites of the group OXS B.  

A crucial key metabolite linking TCA cycle and glycolysis is acetyl-CoA, a 

fundamental intermediate for ATP production as a main characteristic [58]. In fact, 

acetyl-CoA is the major product of fatty acid catabolism, thus plays a major role in 

ketogenesis that is the formation of ketone bodies [58]. The main altered ketone body 

in our animal model was 3-hydroxybutiric acid that functions as a stress molecule 

response and helps organisms to overcome stressful/pathological situations by 

triggering a molecular program for stress resistance similar to calorie restriction [59]. 

In fact, prolonged fasting events cause a decrease of glucose levels while the 

production of ketone bodies increases at the expense of liver β-oxidation of adipose 

tissue-derived fatty acids [60]. In our study, the oxidative stress response leads to a 

decrease of calorie intake mimicking a fasting reaction to overcome the increase of 

ROS. Thus, it has been shown a clear relation between the calorie restriction 

mechanism and stress resistance, however the exact mechanism linking calorie 

restriction to enhanced stress resistance, and particularly of reducing oxidative stress, 

is still missing [59]. It has been suggested that 3-hydroxybutiric acid mediates the 

beneficial effects of calorie restriction through its antioxidant activity: (1) acts as a 

direct antioxidant [61]; (2) inhibits mitochondrial ROS production through NADH 

oxidation [62]; (3) and promotes transcriptional activity of antioxidant defences [63].  

In fasting episodes, ketone bodies are the alternative energy source of brain. 

However this shift to ketogenic metabolism is associated to the mitochondrial 

respiration dysfunction and an increase in H2O2 production in different 

neurodegenerative diseases [64]. These changes in mitochondrial function and shift 

to ketone body utilization in brain, have been linked to a mechanistic pathway that 
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connects early decline in mitochondrial respiration and H2O2 production to activation 

of pathway to catabolize myelin lipids (myelin to SMs, SMs to ceramide, ceramide to 

FAs and FAs to ketone bodies) resulting in white matter degeneration [65]. These lipids 

act as a local source of ketone body generation via astrocyte mediated β-oxidation of 

fatty acids. Astrocyte derived ketone bodies can then be transported to neurons 

where they undergo ketolysis to generate acetyl-CoA for TCA derived ATP generation 

required for synaptic and cell function [65]. This mechanism suggests a similar effect 

in our model due to the same pattern of increasing expression of 3-hydroxybutiric acid 

linked to the increase of SMs in both doses.  

Indeed, the generation of ROS regulates SMs pathways, specifically this pathway 

is reversibly activated by H2O2 and reversibly inhibited by GSH. In our experimental 

approach, we suggest that the SMs pathway is up-regulated due to the high amount 

of H2O2 as well as GSH could not inhibit the activation of the pathway due to the large 

amount of H2O2 available. In previous studies, SM signalling cascade has been 

connected to oxidation in cell cycle and apoptotic signalling [66]. The SMs are 

recognized as a ubiquitous signalling system that links specific cell-surface receptors 

and environmental stresses to the nucleus [67]. Thus, the crosstalk between oxidation 

system and SM metabolism could have important implication for developing 

apoptosis which plays important role in NCD. In concordance, our data reflects an 

increase of total SMs in the treated groups being more pronounced in the OXS B group 

following a dose-dependent pattern.  

Serine, which was increased in OXS A and decreased in OXS B, is a key amino acid 

acting as a central node linking glycolysis to GSH synthesis and one-carbon (1C) 

metabolic cycle, which are closely related to its antioxidant capacity [68]. 1C 

metabolism intermediate metabolites regulates oxidative stress with the production 

of NADH and GSH, which have an intrinsic ROS scavenging capacity, as has been 

previously described those metabolites are potential biomarker for oxidative stress 

[13]. In previous studies, serine decreases when oxidative rises, thus favouring the 

development of metabolic syndrome and obesity [69,70]. In this line, our results are 

the line with the decreased values of serine for OXS B group while we suggest that the 

increased levels of serine in the OXS A group were trying to regulate the ROS 

production in our experimental study. In addition, in vitro study declares that serine 

deficiency causes a higher response to oxidative stress and higher ROS content as is 

shown in group B [71]. 

Generally, elevated levels of LPC are associated with oxidative stress through the 

generation of ROS and systemic inflammation [72]. Interestingly, the LPC levels were 

decreased in the animals suffering oxidative stress in our model. LPC, which is the 

main component of oxLDL, originates from the cleavage of the membrane PC by 

phospholipase A2 (PLA2). In this sense, inactivation of PLA2, which could explain the 

low LPC levels, was detected in PQ exposed rats attributed to Fenton reaction as it is 

previous report [73]. Additionally, it has been be proposed that LPC-induced oxidative 
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stress may have a dual effect depending upon the amount and type of ROS, the 

duration of exposure and the type cell [74].  

In this experimental approach, plasma metabolome provides a superior picture 

of the metabolic changes compared to urine metabolome, nonetheless there are 

interesting metabolites that could be discussed and linked to the plasma metabolic 

profile. Related to energy metabolism, the TCA cycle was decreased in group OXS B as 

it is previously described for plasma. For instance, 1-methylnicotinamide, a major 

urinary product of nicotinamide metabolism, was increased in animals with oxidative 

stress. This key metabolite was shown to inhibit NAD+ synthesis participating in redox 

homeostasis, making it central to energy metabolism [75]. Additionally, trigonelline a 

methylated 1-methylnicotinamide was decreased in the OXS B group. In the context 

of NAD+ synthesis, tryptophan is degraded to produce NAD+ in the kynurenine 

pathway that can be activated by stress and immunocytokines. The decrease of 

tryptophan in OXS B groups suggest that the tryptophan was displaced to generate 

NAD+. Those altered metabolites reflects the importance of NADH metabolism in 

energy metabolism and the subsequent development of metabolic disorders [76]. In 

previous studies, pseudouridine has been considered a secreted urinary oxidative 

stress biomarker, reflecting RNA turnover due to it is originated mainly from degraded 

rRNA and tRNA [77]. The OXS A group followed the general tendency of increased 

pseudouridine related to oxidative stress [78], while the OXS B group presented 

similar values to CON group. That fact could be explained due to pseudouridine could 

be accumulated in other tissue as it is previous report in the case of renal failure [79], 

and it is in consistence with the heterogenous results obtained in urine metabolomics 

across studies [13].  

Our microbiome results, indicate a systemic alteration of microbes in the higher 

dose (OXS B group) due to the only difference was the injection of PQ and the diet was 

the same, as is in concordance with previous studies focused on injected insecticides 

[80,81] and their transfer to gastrointestinal track [82]. We suggest that the transfer 

of oxidative stress elevated H2O2 in the gut microbiome, leading to high dose killing of 

some microbes that are sensitive to different doses, which would explain the lack of 

homogeneous decrease of microbes in the gut microbiome. For example, one of the 

latest studies on early PQ exposure indicated that PQ reduced gut microbiota diversity 

and altered the structure of gut microbiota in adulthood in a murine model [83]. In 

this study, relative abundance of Firmicutes decreased, which is widely associated 

with obesity, as it was shown in the OXS A group while in OXS B group the relative 

abundance of Firmicutes and Bacteroidetes dramatically decreased in favour of 

Proteobacteria and Verrucomicrobia. Those changes suggested that Proteobacteria 

and Verrucomicrobia have efficient mechanism to manage oxidative stress in 

comparison to other phyla. For example, Escherichia coli, which was the main specie 

altered in Proteobacteria, has several major regulators activated during oxidative 

stress that are functionally conserved in a broad range of bacterial groups in 

Proteobacteria (SoxRS and RpoS), probably reflecting positive selection of these 
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regulators [84]. This could explain that Escherichia coli presented a different pattern 

being the most resistant in the OXS B group.  

5. Conclusions 
We have used a PQ-induced oxidative model to examine the metabolic effects of 

oxidative stress and have drawn a metabolic profile looking at specifically changed 

metabolites and the related pathways. Both groups were characterized by an excess 

of ROS, specifically H2O2, and mainly an excess of intracellular SOD, but each group 

presented some differences and similarities.  

In both groups, 3-hydroxibutiric acid, SMs and LPCs were altered in a dose-

dependent manner being key metabolites for monitoring the mitochondrial oxidative 

stress produced by PQ. Those metabolites are linked to lipid peroxidation, which was 

represented by high levels of MDA and 8-isoprostane, that are related to lipid 

metabolism as β-oxidation of fatty acids. Mitochondrial oxidative stress influences the 

membrane degradation and could be a key point to monitor the ROS impact on the 

individual before the onset of diseases. In fact, SMs degradation is related to 

neurobiological disorders as Parkinson or Alzheimer disease.  

In contrast, TCA cycle was altered in both group but following different patterns 

that are related to the effort to return to homeostasis. In fact, the dose A was able to 

overcome the inhibition of TCA cycle by H2O2 and even increased, while dose B was 

found to inhibit both plasma and urine metabolites. Additionally, 1C cycle followed 

the same tendency has TCA Cycle being related to the effect of H2O2 and the available 

pool of NADH. In fact, 1C metabolism is involved in GDH synthesis a key redox 

molecule as the case of NADH. Collateral effects on gut microbiome were detected. 

The observed effect was based in the resistance of each microbe to ROS presenting 

different killing patterns depending on the dosage.  

These findings provide an overview of systematic responses to PQ exposure and 

metabolomic insight into the oxidative stress mechanism induced by different doses 

of PQ. Although PQ is considered to be relatively toxic, it is a very close approximation 

to a hypothetical model of oxidative stress that is useful for exploring the impact of 

stress on the metabolome. Further research on oxidative stress is needed to develop 

more accurate models trying to avoid single chemical and toxicological procedures to 

confirm those results.  
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Annex. Supplementary Material of Manuscript 5 

Supplementary table 1. Statistical analysis of plasma metabolites in the oxidative stress model. CON, OXS A and OXS B groups (n = 10 animals per group) are represented by 
relative abundances (AU). Relative abundances of metabolites are presented by the mean ± SEM. Plasma metabolites are shorted by VIPs. The summary of univariant and multivariate 
analysis is shown including p-value (Kruskal-Wallis test), q-value (correction with False discovery rate Benjamini-Hochberg test), post-Hoc test between groups if there are significant 
differences in Krustal-Wallis test and VIP value of PLS-DA. The statistically significant values (< 0.05) are highlighted in bold. Abbreviations: DG, diacylglycerol; ChoE, cholesterol ester; 
TG, triglyceride; PC, phosphatidylcholine; SM, sphingomyelin; LPC, lysophospholipid; PE, phosphatidylethanolamine. 
 
 

Metabolite CON OXS A OXS B p-value q-value CON vs OXS A CON vs OXS B OXSA vs OXS B VIP 

Aconitic acid 0.005 ± 0.0002 0.011 ± 0.0011 0.002 ± 0.0002 <0.01 <0.01 <0.01 <0.01 <0.01 1.7 

Citric acid 4.41 ± 0.11 5.09 ± 0.11 2.75 ± 0.14 <0.01 <0.01 <0.01 <0.01 <0.01 1.6 

SM 36:1 1.39 ± 0.05 2.19 ± 0.28 5.28 ± 0.34 <0.01 <0.01 0.02 <0.01 0.02 1.6 

3-hydroxybutiric acid 1.61 ± 0.06 2.54 ± 0.29 4.58 ± 0.19 <0.01 <0.01 0.02 <0.01 0.02 1.6 

LPC 20:0 0.31 ± 0.01 0.34 ± 0.02 0.14 ± 0.01 <0.01 <0.01 0.39 <0.01 <0.01 1.6 

LPC 15:0 0.96 ± 0.02 0.81 ± 0.06 0.45 ± 0.02 <0.01 <0.01 0.02 <0.01 0.02 1.6 

SM 36:2 0.53 ± 0.02 0.74 ± 0.07 1.41 ± 0.09 <0.01 <0.01 0.02 <0.01 0.02 1.6 

ChoE (22:6) 5.09 ± 0.41 5.16 ± 0.58 13.07 ± 0.66 <0.01 <0.01 0.83 <0.01 <0.01 1.6 

SM 34:1 22.72 ± 0.67 31.58 ± 2.67 46.87 ± 1.81 <0.01 <0.01 0.01 <0.01 0.03 1.6 

Serine 0.5 ± 0.04 0.74 ± 0.04 0.16 ± 0.03 <0.01 <0.01 0.02 <0.01 <0.01 1.5 

SM 34:2 1.93 ± 0.06 2.42 ± 0.14 3.36 ± 0.13 <0.01 <0.01 0.02 <0.01 0.03 1.5 

SM 38:1 0.56 ± 0.02 0.88 ± 0.11 1.49 ± 0.09 <0.01 <0.01 0.01 <0.01 0.06 1.5 

LPC 18:1 17.22 ± 0.7 11.85 ± 0.83 8.15 ± 0.35 <0.01 <0.01 0.01 <0.01 0.03 1.5 

LPC 18:2 52.7 ± 1.09 46.39 ± 4.11 24.49 ± 1.2 <0.01 <0.01 0.08 <0.01 0.01 1.5 

Cholesterol 0.11 ± 0.01 0.16 ± 0 0.08 ± 0.01 
<0.01 

  
<0.01 <0.01 0.02 <0.01 1.5 

UNIVERSITAT ROVIRA I VIRGILI 
MULTI-OMICS BIOMARKERS OF METABOLIC HOMEOSTASIS OF RISK FACTORS ASSOCIATED TO 
NON-COMMUNICABLE DISEASES 
Julia Hernandez Baixauli 



III. Results: Manuscript 5 

 

301 
 
 

Urea 0.77 ± 0.02 0.8 ± 0.03 1.11 ± 0.05 <0.01 <0.01 0.76 <0.01 <0.01 1.4 

PC 32:2 0.36 ± 0.02 0.21 ± 0.04 0.12 ± 0.01 <0.01 <0.01 <0.01 <0.01 0.09 1.4 

SM 35:1 0.23 ± 0.01 0.39 ± 0.04 0.42 ± 0.03 <0.01 <0.01 <0.01 <0.01 0.33 1.4 

DG 34:3 0.79 ± 0.06 0.36 ± 0.03 0.41 ± 0.04 <0.01 <0.01 <0.01 <0.01 0.54 1.4 

Fumaric acid 0.9 ± 0.04 0.6 ± 0.04 1.12 ± 0.08 <0.01 <0.01 <0.01 0.07 <0.01 1.4 

PC 33:1 0.13 ± 0.01 0.08 ± 0.01 0.06 ± 0 <0.01 <0.01 <0.01 <0.01 0.25 1.3 

ChoE (20:4) 103.57 ± 11.17 71 ± 3.79 171.05 ± 4.16 <0.01 <0.01 0.37 <0.01 <0.01 1.3 

PC 38:2 0.28 ± 0.01 0.25 ± 0.02 0.15 ± 0.01 <0.01 <0.01 0.13 <0.01 0.01 1.3 

ChoE (16:1) 0.59 ± 0.06 0.27 ± 0.04 0.15 ± 0.01 <0.01 <0.01 <0.01 <0.01 0.06 1.3 

SM 42:3 6.6 ± 0.23 8.87 ± 0.83 11.52 ± 0.86 <0.01 <0.01 0.02 <0.01 0.06 1.3 

LPC 16:0 80.8 ± 1.99 83.7 ± 3.85 61.2 ± 1.08 <0.01 <0.01 0.67 <0.01 <0.01 1.3 

Fructose 2.17 ± 0.17 1.34 ± 0.05 2.76 ± 0.17 <0.01 <0.01 <0.01 0.05 <0.01 1.3 

SM 33:1 0.38 ± 0.01 0.47 ± 0.03 0.54 ± 0.03 <0.01 <0.01 0.01 <0.01 0.14 1.3 

LPC 16:1 e 0.13 ± 0 0.16 ± 0.01 0.17 ± 0.01 <0.01 <0.01 <0.01 <0.01 0.44 1.2 

PC 38:3 1.45 ± 0.11 0.76 ± 0.18 0.68 ± 0.06 <0.01 <0.01 <0.01 <0.01 0.91 1.2 

TG 46:0 0.35 ± 0.06 0.05 ± 0.02 0.44 ± 0.03 <0.01 <0.01 <0.01 0.49 <0.01 1.2 

ChoE (22:5) 1.46 ± 0.12 1.1 ± 0.1 2.13 ± 0.15 <0.01 <0.01 0.06 0.01 <0.01 1.2 

ChoE (16:0) 1.18 ± 0.06 1.6 ± 0.09 1.04 ± 0.12 <0.01 <0.01 <0.01 0.44 <0.01 1.2 

DG 34:2 2.62 ± 0.11 2.01 ± 0.07 2.52 ± 0.09 <0.01 <0.01 <0.01 0.88 <0.01 1.2 

PC 32:1 0.96 ± 0.12 0.4 ± 0.08 0.35 ± 0.04 <0.01 <0.01 <0.01 <0.01 0.72 1.2 

SM 40:1 5.74 ± 0.23 7.6 ± 0.7 8.33 ± 0.44 <0.01 <0.01 0.02 <0.01 0.19 1.1 

SM 40:2 0.93 ± 0.03 1.2 ± 0.09 1.34 ± 0.1 <0.01 <0.01 <0.01 <0.01 0.35 1.1 

DG 34:1 1.45 ± 0.06 1.07 ± 0.07 1.23 ± 0.06 <0.01 <0.01 <0.01 0.10 0.10 1.1 
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Oleic acid 1.38 ± 0.04 1.6 ± 0.08 1.25 ± 0.03 <0.01 <0.01 0.06 0.03 <0.01 1.1 

TG 46:1 0.2 ± 0.04 0.03 ± 0.02 0.18 ± 0.01 <0.01 <0.01 <0.01 0.89 <0.01 1.1 

DG 36:2 1.6 ± 0.09 1.16 ± 0.06 1.22 ± 0.05 <0.01 <0.01 <0.01 0.01 0.66 1.1 

TG 46:2 0.13 ± 0.02 0.02 ± 0.01 0.11 ± 0.01 <0.01 <0.01 <0.01 0.90 <0.01 1.1 

PC 38:4 26.42 ± 0.86 33.53 ± 3.19 35.9 ± 1.41 <0.01 <0.01 0.06 <0.01 0.13 1.1 

ChoE (18:1) 3.2 ± 0.13 3.84 ± 0.21 2.81 ± 0.16 <0.01 <0.01 0.04 0.08 <0.01 1.0 

Glycolic acid 12.88 ± 0.44 13.1 ± 0.58 28.56 ± 5.95 <0.01 <0.01 0.89 <0.01 <0.01 1.0 

Alpha-ketoglutarate 2.46 ± 0.13 1.85 ± 0.11 1.9 ± 0.1 <0.01 <0.01 <0.01 0.01 0.66 1.0 

Glucose-6-phosphate 0.6 ± 0.05 0.77 ± 0.07 0.38 ± 0.06 <0.01 <0.01 0.10 0.02 <0.01 1.0 

TG 50:4 1.99 ± 0.3 0.74 ± 0.41 0.4 ± 0.09 <0.01 <0.01 <0.01 <0.01 0.89 1.0 

SM 39:1 0.22 ± 0.01 0.28 ± 0.04 0.36 ± 0.03 <0.01 <0.01 0.09 <0.01 0.09 1.0 

TG 52:6 1.29 ± 0.17 0.56 ± 0.26 0.34 ± 0.06 <0.01 <0.01 <0.01 <0.01 0.89 1.0 

PC 40:5 0.83 ± 0.04 0.81 ± 0.08 1.12 ± 0.05 <0.01 <0.01 0.64 <0.01 <0.01 1.0 

ChoE (22:4) 12.04 ± 0.8 11.08 ± 1.02 17.31 ± 1.43 <0.01 0.01 0.60 0.01 0.01 1.0 

TG 48:3 0.39 ± 0.07 0.09 ± 0.06 0.13 ± 0.02 <0.01 <0.01 <0.01 0.06 0.08 1.0 

SM 32:1 0.25 ± 0.01 0.22 ± 0.02 0.32 ± 0.02 <0.01 0.01 0.26 0.02 0.01 1.0 

ChoE (18:0) 0.1 ± 0.01 0.16 ± 0.01 0.14 ± 0.02 <0.01 <0.01 <0.01 0.09 0.21 1.0 

PC 30:0 0.07 ± 0 0.05 ± 0.01 0.05 ± 0.01 <0.01 <0.01 0.01 0.01 0.88 1.0 

SM 41:2 1.39 ± 0.04 1.74 ± 0.11 1.79 ± 0.15 <0.01 <0.01 0.01 0.01 0.97 1.0 

Glyceric acid 1.1 ± 0.08 0.84 ± 0.06 0.72 ± 0.06 <0.01 <0.01 0.06 <0.01 0.28 1.0 

TG 54:7 6.07 ± 0.67 3.3 ± 1.26 2.19 ± 0.36 <0.01 <0.01 <0.01 <0.01 0.77 1.0 

PC 32:0 0.9 ± 0.03 1.03 ± 0.08 1.16 ± 0.05 <0.01 <0.01 0.22 <0.01 0.13 1.0 

TG 50:3 8.43 ± 1.46 2.71 ± 1.61 2.55 ± 0.71 <0.01 <0.01 <0.01 0.01 0.41 0.9 
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LPC 18:0 e 0.08 ± 0 0.09 ± 0 0.08 ± 0.01 <0.01 0.01 0.02 0.41 0.01 0.9 

SM 42:2 22.62 ± 0.86 28.47 ± 2.98 30.21 ± 1.78 <0.01 <0.01 0.11 <0.01 0.24 0.9 

PC 34:0 0.4 ± 0.02 0.44 ± 0.03 0.52 ± 0.02 <0.01 <0.01 0.29 <0.01 0.05 0.9 

TG 48:2 1.26 ± 0.25 0.34 ± 0.21 0.37 ± 0.06 <0.01 <0.01 <0.01 0.03 0.13 0.9 

TG 48:1 1.57 ± 0.3 0.41 ± 0.2 0.71 ± 0.11 <0.01 <0.01 <0.01 0.09 0.06 0.9 

LPC 16:0 e 0.4 ± 0.01 0.47 ± 0.02 0.43 ± 0.03 0.02 0.02 0.01 0.24 0.23 0.9 

TG 54:4 14.67 ± 1.6 8.1 ± 3.06 6.04 ± 0.91 <0.01 <0.01 <0.01 <0.01 0.97 0.9 

PC 35:2 0.56 ± 0.02 0.52 ± 0.05 0.4 ± 0.02 <0.01 <0.01 0.15 <0.01 0.04 0.9 

ChoE (20:2) 2.46 ± 0.16 1.75 ± 0.26 1.69 ± 0.16 <0.01 <0.01 0.02 0.02 0.88 0.9 

Malic acid 0.44 ± 0.02 0.33 ± 0.02 0.42 ± 0.03 0.01 0.02 0.02 0.89 0.03 0.9 

SM 41:1 6.17 ± 0.21 7.73 ± 0.61 7.43 ± 0.58 0.02 0.03 0.05 0.06 0.76 0.9 

TG 48:0 0.97 ± 0.1 0.52 ± 0.15 0.79 ± 0.06 0.02 0.02 0.01 0.39 0.13 0.9 

TG 52:5 9.05 ± 1.17 4.73 ± 1.96 3.68 ± 0.73 <0.01 <0.01 0.01 0.01 0.80 0.9 

ChoE (18:3) 2.39 ± 0.21 1.82 ± 0.14 1.53 ± 0.1 <0.01 <0.01 0.06 <0.01 0.24 0.9 

Histidine 0.09 ± 0.01 0.16 ± 0.02 0.08 ± 0.03 <0.01 <0.01 0.02 0.26 <0.01 0.9 

PC 34:1 6.84 ± 0.45 4.93 ± 0.55 6.71 ± 0.48 0.02 0.02 0.02 0.91 0.02 0.9 

TG 51:2 0.81 ± 0.11 0.41 ± 0.17 0.35 ± 0.06 <0.01 <0.01 <0.01 0.01 0.62 0.9 

2-hydroxyglutaric 0.76 ± 0.05 0.73 ± 0.06 1.22 ± 0.22 0.04 0.05 0.77 0.04 0.04 0.9 

TG 54:3 4.82 ± 0.51 3.48 ± 1.18 1.67 ± 0.23 <0.01 <0.01 0.03 <0.01 0.17 0.8 

SM 42:1 23.01 ± 0.85 27.7 ± 1.9 25.74 ± 1.4 0.06 0.07 - - - 0.8 

SM 43:1 1.79 ± 0.08 2.16 ± 0.15 1.8 ± 0.1 0.07 0.08 - - - 0.8 

TG 50:2 14.57 ± 2.28 6.37 ± 2.89 7.49 ± 1.7 <0.01 <0.01 <0.01 0.08 0.19 0.8 

PC 40:4 0.29 ± 0.02 0.27 ± 0.04 0.38 ± 0.02 0.01 0.01 0.25 0.03 0.01 0.8 
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PC 33:0 0.04 ± 0 0.05 ± 0.01 0.03 ± 0 0.05 0.06 - - - 0.8 

LPC 18:0 48.71 ± 1.03 55.14 ± 3.51 49.58 ± 1.05 0.31 0.33 - - - 0.8 

Pyruvic acid 30.87 ± 2.02 23.77 ± 1.8 31.08 ± 1.56 0.02 0.02 0.02 0.84 0.02 0.8 

TG 50:1 3.83 ± 0.55 1.89 ± 0.84 2.07 ± 0.48 <0.01 <0.01 <0.01 0.07 0.25 0.8 

TG 54:6 19.84 ± 1.92 12.89 ± 3.24 22.01 ± 3.29 0.05 0.06 - - - 0.7 

TG 52:2 15.48 ± 2.48 7.62 ± 3.91 7.4 ± 1.85 <0.01 <0.01 <0.01 0.05 0.30 0.7 

TG 54:2 2.05 ± 0.3 2.1 ± 0.72 0.49 ± 0.07 <0.01 <0.01 0.60 <0.01 <0.01 0.7 

Threonic acid 1.86 ± 0.16 2.1 ± 0.12 1.43 ± 0.13 0.02 0.03 0.15 0.12 0.02 0.7 

TG 52:3 54.19 ± 6.72 29.27 ± 12.27 36.46 ± 8.08 0.02 0.03 0.02 0.22 0.22 0.7 

Beta-alanine 0.23 ± 0.07 0.11 ± 0.01 1.02 ± 0.54 <0.01 <0.01 0.12 0.02 <0.01 0.7 

Phenylalanine 1.77 ± 0.14 2.33 ± 0.09 3.74 ± 1.31 0.01 0.02 0.01 0.17 0.17 0.6 

Isoleucine 0.95 ± 0.5 0.8 ± 0.14 14.07 ± 9.56 <0.01 <0.01 0.02 <0.01 0.41 0.6 

Valine 1.91 ± 0.83 1.56 ± 0.1 20.64 ± 13.75 <0.01 <0.01 0.01 0.01 0.76 0.6 

PC 31:0 0.06 ± 0 0.06 ± 0 0.05 ± 0 0.05 0.06 - - - 0.6 

Leucine 0.33 ± 0.18 0.28 ± 0.04 4.39 ± 2.99 <0.01 <0.01 0.01 0.01 0.83 0.6 

Glycerol 2.87 ± 0.16 2.53 ± 0.14 2.47 ± 0.12 0.16 0.17 - - - 0.6 

Aspartic acid 1.19 ± 0.4 1.14 ± 0.08 4.7 ± 2.76 0.01 0.01 0.03 0.22 0.01 0.6 

Glutamine 0.31 ± 0.18 0.15 ± 0.01 1.63 ± 1.11 0.08 0.09 - - - 0.5 

Tyrosine 1.08 ± 0.32 0.76 ± 0.05 3.21 ± 1.81 0.45 0.47 - - - 0.5 

ChoE (18:2) 29.79 ± 1.56 26 ± 1.42 28.56 ± 1.48 0.30 0.32 - - - 0.5 

Methionine 0.22 ± 0.05 0.23 ± 0.01 0.72 ± 0.43 <0.01 0.01 0.03 0.13 <0.01 0.5 

Glycine 6.48 ± 1.36 8.09 ± 0.27 19.98 ± 11.45 0.01 0.01 0.01 0.51 0.01 0.5 

Tryptophan 2.13 ± 0.46 2.51 ± 0.17 6.45 ± 3.69 0.02 0.02 0.03 0.44 0.02 0.5 
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TG 50:0 0.22 ± 0.04 0.15 ± 0.07 0.25 ± 0.02 0.04 0.05 0.06 0.47 0.05 0.5 

TG 52:1 0.8 ± 0.08 0.55 ± 0.24 0.58 ± 0.11 0.04 0.05 0.05 0.15 0.52 0.5 

Ribose 30.94 ± 3.05 26.44 ± 3.09 38.01 ± 6.78 0.44 0.46    0.5 

Lactic acid 4.52 ± 0.13 4.61 ± 0.15 4.91 ± 0.21 0.32 0.34    0.5 

Ornithine 6.18 ± 1.64 6.41 ± 0.32 17.84 ± 10.54 <0.01 <0.01 0.03 0.10 <0.01 0.5 

Alanine 1.42 ± 0.32 1.4 ± 0.08 3.43 ± 1.92 0.01 0.02 0.08 0.08 0.01 0.5 

Asparagine 0.17 ± 0.03 0.31 ± 0.02 0.43 ± 0.27 <0.01 <0.01 0.02 0.17 <0.01 0.5 

DG 36:4 3.79 ± 0.15 3.52 ± 0.17 3.87 ± 0.05 0.27 0.30    0.5 

ChoE (17:1) 0.03 ± 0.01 0.02 ± 0.01 0.04 ± 0.02 0.42 0.43    0.4 

Lysine 0.49 ± 0.13 0.53 ± 0.05 1.05 ± 0.51 0.13 0.14    0.4 

Threonine 2.31 ± 0.24 2.93 ± 0.12 4.22 ± 2.13 <0.01 0.01 0.07 0.07 <0.01 0.4 

ChoE (17:0) 0.07 ± 0.03 0.03 ± 0 0.06 ± 0.02 0.88 0.88    0.4 

PC 36:4 25.43 ± 0.81 27.26 ± 2.13 26.93 ± 1.04 0.62 0.63    0.4 

Hydroxyproline 3.82 ± 1.27 2.9 ± 0.23 6.8 ± 4.06 0.01 0.02 0.43 0.02 0.02 0.3 

Glutamic acid 0.16 ± 0.03 0.24 ± 0.01 0.23 ± 0.13 <0.01 <0.01 0.01 0.09 <0.01 0.3 

Proline 0.65 ± 0.06 0.83 ± 0.07 0.67 ± 0.34 0.01 0.01 0.16 0.04 0.01 0.3 

Fructose-6-phosphate 0.47 ± 0.05 0.48 ± 0.05 0.41 ± 0.06 0.40 0.42    0.3 

Alpha-tocopherol 0.55 ± 0.06 0.63 ± 0.06 0.54 ± 0.14 0.17 0.18    0.3 

Glucose 0.22 ± 0.01 0.24 ± 0.01 0.22 ± 0.05 0.04 0.05 0.14 0.22 0.03 0.2 

PC 36:2 18.99 ± 0.64 18.62 ± 2.1 17.96 ± 0.65 0.37 0.39    0.2 

Succinic acid 0.49 ± 0.01 0.49 ± 0.02 0.48 ± 0.03 0.78 0.78    0.2 
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Supplementary figure 1. Venn-diagram of plasma metabolites with statistical differences. The numbers correspond to the total of metabolites presenting statistical differences 
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Supplementary table 2. Statistical analysis of urine metabolites in the oxidative stress model. CON, OXS A and OXS B groups (n = 10 animals per group) are represented by relative 
abundances (AU). Relative abundances of metabolites are presented by the mean ± SEM. Urine metabolites are shorted by VIPs. The summary of univariant and multivariate analysis 
is shown including p-value (Kruskal-Wallis test), q-value (correction with False discovery rate Benjamini-Hochberg test), post-Hoc test between groups if there are significant 
differences in Krustal-Wallis test and VIP value of PLS-DA. The statistically significant values (< 0.05) are highlighted in bold. 
 

Metabolite CON OXS A OXS B p-value q-value CON vs OXS A CON vs OXS B OXSA vs OXS B VIP 

Hippurate 160.93 ± 8.42 166.66 ± 6.1 - <0.01 <0.01 0.79 <0.01 <0.01 1.52 

Trigonelline 2.59 ± 0.13 2.48 ± 0.04 0.04 ± 0.04 <0.01 <0.01 0.24 <0.01 <0.01 1.44 

Fumaric acid 6.62 ± 0.42 5.44 ± 0.75 0.59 ± 0.13 <0.01 <0.01 0.15 <0.01 <0.01 1.39 

Succinic acid 53 ± 2.82 51.42 ± 2.07 18.94 ± 1.86 <0.01 <0.01 0.80 <0.01 <0.01 1.34 

Creatinine 228.98 ± 8.09 290.18 ± 9.37 319.77 ± 16.44 <0.01 <0.01 <0.01 <0.01 0.46 1.25 

Pseudouridine 12 ± 0.47 14.98 ± 0.43 12.11 ± 0.49 <0.01 <0.01 <0.01 0.94 <0.01 1.18 

1-Mehtylnicotinamide 0.09 ± 0.02 0.25 ± 0.04 0.21 ± 0.03 <0.01 <0.01 <0.01 0.01 0.66 1.14 

Methylamine 5.87 ± 0.33 6.24 ± 0.4 3.28 ± 0.4 <0.01 <0.01 0.93 <0.01 <0.01 1.05 

Tryptophan 7.46 ± 0.47 6.67 ± 0.54 4.41 ± 0.26 <0.01 <0.01 0.57 <0.01 0.01 0.97 

Citric acid 405.1 ± 17.52 375.34 ± 42.58 29.56 ± 9.7 <0.01 <0.01 0.67 <0.01 <0.01 0.92 

Alanine 6.44 ± 0.32 7.46 ± 0.47 9.36 ± 0.68 <0.01 <0.01 0.11 <0.01 0.11 0.91 

Glycine 12.06 ± 0.74 12.7 ± 0.87 17.19 ± 0.75 <0.01 <0.01 0.50 <0.01 0.01 0.90 

Lactate 13.52 ± 0.77 15.94 ± 0.84 17.76 ± 0.88 <0.01 0.01 0.12 <0.01 0.19 0.87 

Dimethylsulfone 15.41 ± 0.54 21.67 ± 2.94 17.27 ± 1.73 0.20 0.21 - - - 0.81 

N-Acetylglycoproteins 157.07 ± 5.95 178.33 ± 6.24 171.61 ± 5.94 0.01 0.01 0.01 0.04 0.57 0.80 

Formate 2.27 ± 0.21 18.35 ± 11.88 4.36 ± 0.76 0.09 0.10 - - - 0.79 

N,N-Dimethylglycine 11.18 ± 1.16 7.75 ± 1.2 17.49 ± 3.34 0.03 0.04 0.12 0.20 0.03 0.72 

Taurine 201.52 ± 22.06 236.57 ± 23.81 278.47 ± 28.9 0.08 0.10 - - - 0.64 
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Glucose 7.63 ± 1.63 8.57 ± 0.73 6.11 ± 0.83 0.08 0.10 - - - 0.50 

Pyruvic acid 6.88 ± 0.41 6.93 ± 0.3 5.91 ± 0.33 0.10 0.11 - - - 0.43 

Acetate 5.62 ± 0.37 6.05 ± 0.51 5.51 ± 0.3 0.80 0.80 - - - 0.30 

 
 

 
 
Supplementary figure 2. Venn-diagram of urine metabolites with statistical differences. The numbers correspond to the total of metabolites presenting statistical differences. 
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Supplementary table 3. Summary of bacteria phyla in the CON, OXS A and OXS B group (n = 8 animals per group). The summary of univariant analysis is shown including results of 
Kruskal-Wallis (p-value), Kruskal-Wallis corrected by HS (q-value) and FC, the statistically significant values (< 0.05) are highlighted in bold. Taxonomic data is presented as the mean 
of relative abundance (%). 
 

 CON vs OXS A vs OXS B OXS A vs OXS B CON vs OXS B CON vs OXS A Relative abundance (%) 

Phylum p-value q-value p-value q-value FC p-value q-value FC p-value q-value FC CON OXS A OXS B 

Bacteroidetes <0.01 <0.01 <0.01 <0.01 0.02 <0.01 <0.01 0.02 0.90 0.95 1.20 58 70 1 

Firmicutes <0.01 <0.01 <0.01 0.01 0.15 <0.01 <0.01 0.10 0.14 0.53 0.70 27 19 3 

Proteobacteria <0.01 0.01 0.01 0.01 12.48 <0.01 0.02 7.05 0.76 0.95 0.56 11 6 76 

Verrucomicrobia <0.01 <0.01 <0.01 0.01 7.02 <0.01 <0.01 8.38 0.62 0.95 1.19 2 3 19 

Deferribacteres 0.02 0.02 0.03 0.01 0.20 0.01 0.05 0.33 0.22 0.63 1.60 1 2 0.3 

Actinobacteria 0.01 0.01 0.02 0.01 - 0.01 0.05 2.16 0.06 0.30 - 0.1 0.0 0.2 
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Supplementary table 4. Summary of bacteria species in the CON, OXS A and OXS B group (n = 8 animals per group). The summary of univariant analysis is shown including results 
of Kruskal-Wallis (p-value), Kruskal-Wallis corrected by Holm-Šídák (q-value) and FC, the statistically significant values (< 0.05) are highlighted in bold. Taxonomic data is presented as 
the mean of relative abundance (%).  
 

 CON vs OXS A vs OXS B OXS A vs OXS B CON vs OXS B CON vs OXS A Relative abundance (%) 

Specie p-value q-value p-value q-value FC p-value q-value FC p-value q-value FC CON OXS A OXS B 

Muribaculaceae bacterium DSM 103720 <0.01 <0.01 <0.01 0.02 - <0.01 <0.01 - 0.46 1.00 1.1 30.40 34.43 0.03 

Muribaculum intestinale <0.01 <0.01 <0.01 0.02 - <0.01 <0.01 - 0.71 1.00 1 18.49 18.51 - 

Escherichia coli <0.01 0.01 <0.01 0.02 12.4 <0.01 <0.01 7- 0.81 1.00 0.6 10.79 6.09 76.00 

Lachnospiraceae bacterium 28 4 0.35 0.82 0.17 0.66 0.1 0.50 0.97 - 0.30 1.00 0.8 8.60 6.94 0.32 

Lachnospiraceae bacterium 10 1 0.01 0.10 0.34 0.66 - <0.01 0.02 - 0.16 0.98 0.7 6.44 4.46 0.06 

Lactobacillus murinus 0.02 0.17 0.14 0.66 1.3 0.20 0.83 0.2 0.01 0.19 0.1 5.88 0.84 1.07 

Parabacteroides goldsteinii 0.03 0.22 0.02 0.24 0.1 0.27 0.89 0.2 0.04 0.71 3.2 4.80 15.13 1.15 

Bacteroides uniformis <0.01 0.03 0.04 0.28 - <0.01 0.01 0.02 0.10 0.92 0.5 4.55 2.18 0.10 

Akkermansia muciniphila <0.01 <0.01 <0.01 0.02 7 <0.01 <0.01 8.4 0.50 1.00 1.2 2.30 2.75 19.31 

Oscillibacter sp 1 3 <0.01 0.01 <0.01 0.02 - 0.01 0.08 0.1 0.03 0.55 2 1.90 3.80 0.09 

Anaerotruncus sp G3 2012 <0.01 0.01 <0.01 0.02 - <0.01 <0.01 - 0.85 1.00 0.8 1.87 1.44 0.04 

Lachnospiraceae bacterium COE1 0.35 0.82 0.14 0.66 - 0.62 0.97 - 0.30 1.00 0.7 1.63 1.12 0.00 

Mucispirillum schaedleri 0.08 0.43 0.05 0.31 0.2 0.27 0.89 0.3- 0.09 0.90 1.6 1.00 1.60 0.33 

Lactobacillus taiwanensis 0.01 0.12 <0.01 0.02 - 0.07 0.50 1 0.18 0.99 - 0.26 - 0.27 

Ruthenibacterium lactatiformans <0.01 0.03 <0.01 0.02 22 <0.01 0.04 3 0.58 1.00 0.1 0.23 0.03 0.69 

Firmicutes bacterium ASF500 0.01 0.14 0.01 0.11 0.10 0.06 0.48 0.2 0.08 0.88 1.9 0.21 0.39 0.04 

Lachnospiraceae bacterium A4 0.77 0.82 0.29 0.66 - 0.76 0.97 - 0.90 1.00 1 0.17 0.17 - 
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Bacteroides caecimuris 0.41 0.82 0.29 0.66 2.02 0.54 0.97 0.4 0.24 1.00 0.2 0.13 0.03 0.05 

Lactobacillus reuteri 0.24 0.74 0.14 0.66 0.39 0.13 0.70 0.3 1.00 1.00 0.7 0.11 0.08 0.03 

Enterorhabdus caecimuris 0.01 0.14 0.01 0.11 - 0.01 0.14 0.4 0.58 1.00 - 0.08 - 0.03 

Lactobacillus johnsonii <0.01 0.02 <0.01 0.03 31.23 <0.01 0.01 2.2 0.50 1.00 0.1 0.07 0.01 0.16 

Romboutsia ilealis 0.02 0.17 0.03 0.24 0.48 0.01 0.10 0.2 0.50 1.00 0.3 0.04 0.01 0.01 

Acutalibacter muris 0.12 0.55 0.02 0.24 - 0.67 0.97 - 0.20 0.99 - 0.04 - - 

Bifidobacterium pseudolongum <0.01 0.01 <0.01 0.02 - <0.01 <0.01 - 0.54 1.00 - - - 0.15 

Enterococcus faecalis <0.01 0.09 0.02 0.24 - <0.01 0.04 - 0.54 1.00 - - - 0.01 

Blautia coccoides 0.01 0.10 0.02 0.24 - <0.01 0.04 - 0.54 1.00 - - - 0.02 

Faecalibaculum rodentium <0.01 0.04 <0.01 0.05 - <0.01 0.04 - 0.54 1.00 - - - 0.04 
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Supplementary figure 3. Summary of the virus statistical analysis in the oxidative stress model. (a) Beta diversity: PCA plot calculated by Aitchison distance. (b) Alpha diversity (AU): 
Chao1 index. (c) Relative distribution of virus phylum. (d) Relative distribution of virus species. Groups (n = 8 animals per group): CON, blue; OXSA, orange; OXSB, green. 
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Supplementary table 5. Summary of virus species in the CON, OXS A and OXS B group (n = 8 animals per group). The summary of univariant analysis is shown including results of 
Kruskal-Wallis (p-value), Kruskal-Wallis corrected by Holm-Šídák (q-value) and FC, the statistically significant values (< 0.05) are highlighted in bold. Taxonomic data is presented as 
the mean of relative abundance (%). 
 

 CON vs OXS A vs OXS B OXS A vs OXS B CON vs OXS B CON vs OXS A Relative abundance (%) 

Specie p-value q-value p-value q-value FC p-value q-value FC p-value q-value FC CON OXS A OXS B 

Cyprinid herpesvirus 3 <0.01 0.06 0.02 0.29 1.5 0.46 0.99 1 <0.01 0.02 0.8 48.08 38.45 47.96 

Lactobacillus prophage Lj771 0.25 0.90 0.17 0.78 1.2 0.13 0.93 1.1 0.85 0.97 1 15.51 14.80 16.99 

Abelson murine leukemia virus 0.79 0.96 1.00 1.00 0.7 0.81 0.99 0.8 0.43 0.97 1 12.82 14.10 10.23 

Murine osteosarcoma virus 0.78 0.96 0.40 0.88 0.7 0.95 0.99 1.3 0.62 0.97 1.7 10.12 16.98 12.61 

Lactobacillus prophage Lj928 0.07 0.53 0.03 0.34 - 0.08 0.82 - 0.39 0.97 0.5 6.68 3.53 0.16 

Alcelaphine gammaherpesvirus 1 0.57 0.96 0.29 0.88 1.1 0.43 0.99 1.6 0.76 0.97 1.5 2.41 3.56 3.83 

Ateline gammaherpesvirus 3 0.08 0.58 0.14 0.75 1.3 0.04 0.58 3 0.36 0.97 2 2.06 4.32 5.53 

Anguillid herpesvirus 1 0.55 0.96 0.60 0.88 0.6 0.39 0.99 0.6 0.39 0.97 1 1.91 1.85 1.17 

Pestivirus Giraffe 1 0.15 0.77 0.07 0.66 0.8 0.24 0.99 2.2 0.22 0.89 2.5 0.16 0.40 0.34 

Human alphaherpesvirus 2 <0.01 0.02 0.01 0.17 - 0.10 0.89 - <0.01 0.02 - 0.14 0.00 0.00 

Bovine alphaherpesvirus 1 0.39 0.92 0.17 0.78 0.8 0.39 0.99 3 0.50 0.97 3.6 0.13 0.45 0.37 

Salmonella phage RE 2010 0.04 0.41 0.07 0.66 - 0.22 0.99 - 0.02 0.26 - - 0.67 - 

Enterobacteria phage mEp460 0.04 0.41 0.07 0.66 - 0.22 0.99 - 0.02 0.26 - - 0.22 - 

Enterococcus phage phiEf11 <0.01 0.04 0.01 0.14 - 0.71 0.99 - <0.01 0.02 - - 0.00 0.81 

Feline leukemia virus 0.04 0.41 0.07 0.66 - 0.22 0.99 - 0.02 0.26 - - 0.21 - 

Koala retrovirus 0.25 0.90 0.34 0.88 - 0.22 0.99 - 0.18 0.88 - - 0.14 - 

Chrysodeixis chalcites nucleopolyhedrovirus 0.25 0.90 0.34 0.88 - 0.22 0.99 - 0.18 0.88 - - 0.26 - 

Molluscum contagiosum virus 0.04 0.41 0.07 0.66 - 0.22 0.99 - 0.02 0.26 - - 0.04 - 
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Supplementary table 6. Statistically significant differences in functions between the experimental groups of the oxidative stress model.  In this table, the most abundant functions 
are represented in CON, OXS A and OXS B groups (n = 8 animals per group). The summary of analysis is shown including results of Kruskal-Wallis corrected by HS (q-value) and % 
relative of each function, the statistically significant values (< 0.05) are highlighted in bold. 
 

 Corrected p-value Relative % 

 
CON vs OXS 

A vs 
OXS B 

CON vs 
OXS A 

OXS A vs 
OXS 

B 

CON vs 
OXS 

B 
CON 

OXS 
A 

OXS 
B 

PWY-7111: pyruvate fermentation to isobutanol (engineered) 0.001 0.462 0.001 0.001 3.60 2.44 1.31 

PWY-7219: adenosine ribonucleotides de novo biosynthesis 0.001 0.854 0.001 0.001 2.95 2.04 0.65 

PWY-6122: 5-aminoimidazole ribonucleotide biosynthesis II 0.001 0.582 0.001 0.001 2.56 2.15 0.69 

PWY-6277: superpathway of 5-aminoimidazole 
ribonucleotide biosynthesis 

0.001 0.582 0.001 0.001 2.56 2.15 0.69 

DTDPRHAMSYN-PWY: dTDP-L-rhamnose biosynthesis I 0.001 0.540 0.001 0.001 2.43 1.65 0.14 

VALSYN-PWY: L-valine biosynthesis 0.004 0.854 0.001 0.004 2.30 2.45 1.21 

ILEUSYN-PWY: L-isoleucine biosynthesis I (from threonine) 0.003 0.582 0.001 0.003 2.21 2.32 1.21 

PWY-6609: adenine and adenosine salvage III <0.001 0.270 0.001 0.000 1.86 1.50 0.41 

PWY-1042: glycolysis IV (plant cytosol) 0.002 0.501 0.001 0.003 1.81 2.02 0.67 

SER-GLYSYN-PWY: superpathway of L-serine and glycine 
biosynthesis I 

0.000 0.245 0.001 0.001 1.80 1.52 0.48 

TRNA-CHARGING-PWY: tRNA charging 0.002 0.358 0.001 0.004 1.70 1.98 0.55 

PWY-6121: 5-aminoimidazole ribonucleotide biosynthesis I 0.002 0.391 0.001 0.003 1.67 1.87 0.64 

BRANCHED-CHAIN-AA-SYN-PWY: superpathway of branched 
amino acid biosynthesis 

0.003 0.713 0.001 0.003 1.64 1.68 0.94 

PWY-3841: folate transformations II 0.001 0.111 0.001 0.004 1.57 1.92 0.40 

PWY-5103: L-isoleucine biosynthesis III 0.003 0.668 0.001 0.003 1.52 1.54 0.90 

PWY-5104: L-isoleucine biosynthesis IV 0.004 0.713 0.001 0.004 1.37 1.46 0.51 
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CALVIN-PWY: Calvin-Benson-Bassham cycle 0.002 0.854 0.001 0.002 1.33 1.44 0.67 

PWY-6123: inosine-5'-phosphate biosynthesis I 0.003 0.759 0.001 0.004 1.25 1.43 0.45 

PWY-7400: L-arginine biosynthesis IV (archaebacteria) 0.002 0.713 0.001 0.003 1.19 1.29 0.49 

ARGSYN-PWY: L-arginine biosynthesis I (via L-ornithine) 0.002 0.759 0.001 0.003 1.18 1.28 0.49 

GLYCOGENSYNTH-PWY: glycogen biosynthesis I (from ADP-D-
Glucose) 

0.003 0.759 0.001 0.004 1.18 1.25 0.42 

PWY-6124: inosine-5'-phosphate biosynthesis II 0.003 0.624 0.001 0.003 1.17 1.34 0.44 

PWY-7229: superpathway of adenosine nucleotides de novo 
biosynthesis I 

0.002 0.178 0.001 0.005 1.17 1.46 0.51 

PWY0-1296: purine ribonucleosides degradation 0.001 0.426 0.015 0.000 1.17 0.68 0.40 

PWY-5686: UMP biosynthesis 0.003 0.854 0.001 0.004 1.14 1.27 0.52 

ARGSYNBSUB-PWY: L-arginine biosynthesis II (acetyl cycle) 0.004 0.713 0.001 0.006 1.07 1.14 0.63 

PWY-6700: queuosine biosynthesis 0.002 0.327 0.001 0.004 1.04 1.28 0.45 

PWY-6126: superpathway of adenosine nucleotides de novo 
biosynthesis II 

0.005 0.221 0.001 0.016 1.01 1.27 0.45 

 

UNIVERSITAT ROVIRA I VIRGILI 
MULTI-OMICS BIOMARKERS OF METABOLIC HOMEOSTASIS OF RISK FACTORS ASSOCIATED TO 
NON-COMMUNICABLE DISEASES 
Julia Hernandez Baixauli 



III. Results: Manuscript 5 

 

316 
 
 

 
Supplementary figure 4.  Multi-omics data integration of plasma metabolome, urine metabolome and microbiome using DIABLO in the oxidative stress model. (a) Sample plot. 
The samples, which are plotted according to their scores on the 2 components for each data set, are associated showing the degree of agreement between the different data sets 
and the discriminative ability of each data set. Samples are coloured by group: CON is blue, OXSA is orange and OXSB is green. (b) Arrow plot. The samples are projected into the 
space spanned by the first 2 components for each data set then overlaid across data sets. The start of the arrow indicates the centroid between all data sets for a given sample and 
the tip of the arrow the location of the same sample in each block. Arrows further from their centroid indicate some disagreement between data sets. Samples are coloured by group 
(CON is blue, OXSA is orange and OXSB is green) and data sets are shaped (plasma metabolome is a circle, urine metabolome is a triangle and microbiome is a cross). (c) Correlation 
circle plot. The plot highlights the potential associations within and between different variable types. Clusters of points indicate a strong correlation between variables. Each colour 
and shape indicate the type of features: plasma metabolome (purple circle), urine metabolites (red triangle) and finally, microbiome (yellow cross). 
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Supplementary figure 5. ROC and AUC based on DIABLO performed on the oxidative stress model. This figure shows the ROC curve and AUC for one class versus the others for each 
data set (plasma metabolome, urine metabolome and microbiome) and the 2 components. The Wilcoxon test p-value is calculated to assess the differences between the predicted 
components from one class versus the others.  * Denotes p < 0.1 (tendency), ** p < 0.05 (significantly different) and *** p < 0.01 (high significantly different). 
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Abstract: Stress disorders have dramatically increased in recent decades 

becoming the most prevalent psychiatric disorder in the United States and Europe. 

However, the diagnosis of stress disorders is currently based on symptom checklist 

and psychological questionnaires, thus making the identification of candidate 

biomarkers necessary to gain better insights into this pathology and its related 

metabolic alterations. Regarding the identification of potential biomarkers, omic 

profiling and metabolic footprint arise as promising approaches to recognize early 

biochemical changes in such disease and provide opportunities for the development 

of integrative candidate biomarkers. Here, we studied plasma and urine metabolites 

together with metagenomics in a 3 days Chronic Unpredictable Mild Stress (3d CUMS) 

animal approach that aims to focus on the early stress period of a well-established 

depression model. The multi-omics integration showed a profile composed by a 

signature of eight plasma metabolites, six urine metabolites and five microbes. 

Specifically, threonic acid, malic acid, alpha-ketoglutarate, succinic acid and 

cholesterol were proposed as key metabolites that could serve as key potential 

biomarkers in plasma metabolome of early stages of stress. Such findings targeted the 

threonic acid metabolism and the tricarboxylic acid (TCA) cycle as important pathways 

in early stress. Additionally, an increase in opportunistic microbes as virus of the 

Herpesvirales spp. was observed in the microbiota as an effect of the primary stress 

stages. Our results provide an experimental biochemical characterization of the early 

stage of CUMS accompanied by a subsequent omic profiling and a metabolic 

footprinting that provide potential candidate biomarkers. 

Keywords: early stress, biomarker, animal model, chronic unpredictable mild 

stress, metabolome, microbiome, energy disruption. 
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1. Introduction 
Psychological stress disorders have dramatically increased in recent decades, 

becoming a prevalent global health problem. Nowadays, it affects the lives of almost 

300 million people worldwide suffering from a range of different stress disorders [1]. 

In line with this, the World Health Organization (WHO) estimates that stress disorders, 

anxiety and depression cost to the global economy around USD 1 trillion each year 

due to lost productivity [1]. Generally, stressful events are thought to influence the 

pathogenesis of other non-communicable diseases (NCDs) by causing negative 

affective states (e.g., feelings of anxiety and depression) [2]. During stressful events, 

two endocrine response systems are activated: the hypothalamic–pituitary–

adrenocortical axis (HPA) and the sympathetic–adrenal–medullary (SAM) system. 

Thus, prolonged or repeated activation of the HPA and SAM systems can interfere with 

a broad range of physiological processes, resulting in an increased risk of NCDs, 

particularly cardiovascular diseases, in addition to the traditional psychiatric disorders 

related with stressful events [3]. 

The diagnosis of stress disorders, like all psychiatric disorders, is mainly based on 

symptom checklists and psychological questionnaires referring to a single diagnosis, 

while patients commonly present symptoms that fit multiple diagnoses [4]. Therefore, 

the identification of biomarkers and altered metabolic pathways in stress disorders 

are necessary to gain better insights into the mechanisms that promote metabolic 

alterations that usually come along with stressful events. This knowledge will allow 

either: (a) early and accurate diagnosis (by means of biomarkers discovery) and/or, (b) 

prevention treatments, tailored interventions and general treatments based on the 

direct or indirect restoration of metabolic parameters. 

Regarding the novel approaches for the identification of new potential 

biomarkers, omics profiling seems to be a promising methodology for the 

identification of early biochemical changes in disease and thus provides an 

opportunity to discriminate a footprint of candidate biomarkers that can favour the 

initiation of earlier interventions; for example, through personalized nutrition and life-

style modifications to avoid future drug treatments [5,6]. In this sense, the most 

relevant biological material for the study of biomarkers in psychiatric disorders derives 

from the brain [7]. Nevertheless, human brain samples are only available for post-

mortem analysis; in consequence, animal models are essential for translating these 

results to more feasible tissues for the detection of molecular pathways implicated in 

the pathology and for finding candidate biomarkers of stress disorders [8]. Thus, the 

use of plasma, serum and urine has been increasing in the metabolomic study of 

mental disorders, which also provides valuable information about the effect of the 

disorder throughout the body, as the brain is engaged in all physiological functions of 

the body [9]. 

Metabolomic approaches point out that oxidative stress, alterations in lipid and 

energy metabolism (i.e., mitochondrial regulation), glutamine metabolism and 

neurotransmitters metabolism could be involved in stress disorders [10]. These 
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metabolic alterations could overlap with depressive disorder—which often occur 

simultaneously in individuals with stressful events—where changes in the glutamate–

glutamine cycle, as well as changes in lipid and energy metabolism, have been found 

to be related to the pathogenesis of major depressive disorder [11]. For this reason, it 

could be interesting to study the early stress episodes to further differentiate between 

depression and psychological stress. The Chronic Unpredictable Mild Stress (CUMS) 

model is an experimental approach commonly used to simulate the core behavioural 

characteristics of human depression for investigating the pathophysiology and 

assisting in diagnosis [12]. Therefore, the study of CUMS during an initial short period 

could provide a valuable tool for studying the effects of early stressful events before 

the animals develop depression disorder. Previous metabolomic studies have fully 

profiled the metabolic patterns of the rodent CUMS model [13]; nevertheless, it is of 

interest to distinguish between a classical CUMS and an early CUMS to determine 

early biomarkers of nerve-wracking events. 

To summarize, depressive-related states are the most prevalent psychiatric 

disorder, but no early metabolic biomarkers have been clearly identified for their early 

diagnosis, accurate patient subcategorization, treatment or effective prevention. In 

this study, we explore and interrogate a CUMS experimental model during a period of 

3 days (3d) to unravel the neurobiological underpinnings and to identify candidate 

biomarkers and affected pathways of harsh stress episodes, using the metabolome of 

different biofluids (plasma and urine) and the microbiome. 

2. Results 

2.1. Characterization of the Early Stress Stage in Male Wistar 

Rats 
Thigmotaxis is “wall-hugging” behaviour. For example, this conduct is frequently 

exhibited by humans when they enter an elevator with strangers. In an open field 

experiment, rodents will typically exhibit less thigmotaxis as they become acclimatized 

to the chamber. In this regard, the anxiety-like behaviour level of the animals was 

measured on the open field test (OFT) and is summarised in Figure 1. The number of 

entries and the total time in the zones were determined to analyse such behaviour 

(anxious or fearful animals will spend less time in the centre of the field and more time 

next to the walls, yielding a decreased centre-to-total time ratio). Interestingly, the 

number of crosses between zones decreased in the 3d CUMS group (p-value = 0.02), 

indicating less motor activity than in the control (CON) group (Figure 1a). Generally, 

the total time in the outer zone was lower than the total time spent in the inner zone 

in all the animals. However, the total time in the inner zone was not statistically 

different (data not shown). Additionally, to further evidence an anxiety-like behaviour, 

we observed that the 3d CUMS group exhibited a significant increase in fecal boli 

deposits (p-value = 0.02, Figure 1b), and the rearing pattern was significantly 

decreased in 3d CUMS group (p-value < 0.01, Figure 1c); such rearing evaluation 
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consisted in the assessment of the total number of erect postures, thorough the full 

test period, adopted by the rodent with the intention of exploring 

 

Figure 1. Evaluation of the anxiety-like behaviour on the OFT test in the early stress stage. CON and 3d 
CUMS (n = 10 animals per group) rats were subjected to the OFT for 5 min. (a) Number of crosses between 
inner and outer zone. (b) Total number of fecal boli deposits. The number of defecations was counted by 
the researcher after the rats were removed. (c) Rearing behaviour. The statistical comparisons among 
groups were conducted using Student’s t test; the statistically significant p-values versus CON (p < 0.05) are 
highlighted with an asterisk (*). 

The main endocrine hormones related to the stress response were measured in 

plasma (i.e., corticosterone and serotonin) (Table 1). The results showed that both 

hormones were significantly increased in the 3d CUMS group. In this regard, 

corticosterone (p-value < 0.01) and serotonin (p-value = 0.01) were increased in the 

3d CUMS group approximately more than six times and four times, respectively. 

To obtain a broader description of the rodent, the biometric and plasma 

parameters were also measured (Table 1). The body weight was constant during the 

three days of the experiment, and no differences were observed in food intake. 

Furthermore, no differences were observed in the weight of the analysed tissues. 

Focusing on the plasma parameters, the 3d CUMS group presented an increase in 

glucose concentration (p-value < 0.01), as well as a rise in triglycerides (TG, p-value = 

0.2), total cholesterol (TC, p-value = 0.06) and non-esterified fatty acids (NEFAs, p-

value = 0.02). 

Table 1. Biometric and plasma parameters of the early stress stage. Data are presented as the mean ± SEM 
(n = 10 animals per group). (*) Represent statistically significant differences among groups (p < 0.05) using 
Student’s t-test (p-value), and the FC represents the change magnitude. Abbreviations: RWAT, 
retroperitoneal white adipose tissue; MWAT, mesenteric white adipose tissue; TG, triglycerides; TC, total 
cholesterol; NEFAs, non-esterified fatty acids. 

  CON 3d CUMS p-Value FC 

B
io

m
e

tr
ic

 
p

ar
am

e
te

rs
 Initial body weight (g) 476.67 ± 10.99 467.29 ± 12.04 0.57 0.98 

Final body weight (g) 476.50 ± 10.69 468.26 ± 10.44 0.59 0.98 

Food intake (g) 21.23 ± 0.76 20.71 ± 0.7 0.63 0.98 

RWAT weight (g) 11.33 ± 1.22 12.11 ± 1.3 0.67 1.07 

(a) (b) (c)
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MWAT weight (g) 5.96 ± 0.52 7.28 ± 0.73 0.16 1.22 

Muscle weight (g) 2.97 ± 0.33 2.84 ± 0.45 0.67 0.96 

Liver weight (g) 12.26 ± 0.43 11.51 ± 0.3 0.17 0.94 

Cecum weight (g) 4.95 ± 0.26 4.51 ± 0.22 0.22 0.91 

P
la

sm
a 

b
io

ch
em

is
tr

y 

Corticosterone (ng/mL) 58 ± 6.6 374.5 ± 24.8 <0.01 * 6.46 

Serotonin (ng/mL) 49.99 ± 9.95 211.55 ± 50.95 0.01 * 4.32 

Glucose (mM) 67.56 ± 1.71 82.63 ± 2.60 <0.01 * 1.22 

TG (mM) 71.15 ± 4.34 82.75 ± 7.89 0.2 1.16 

TC (mM) 67.12 ± 2.92 79.30 ± 5.09 0.06 1.18 

NEFAs (mM) 0.42 ± 0.03 0.56 ± 0.04 0.02 * 1.33 

 

2.2. Plasma Metabolic Profiling and Biomarker Identification 
The plasma metabolomic approach was based on a global multiplatform analysis 

including 138 metabolites (Table S1). This platform was associated with the following 

biochemical processes: the lipid metabolism (represented as a wide diversity of 

different triacyclglycerols (TGs), diacylglycerols (DGs), phosphatidylcholines (PCs), 

cholesterol esters (ChoEs), lysophospholipids (LPCs) and sphingomyelins (SMs), 

among others); the carbohydrate metabolism (where the main metabolites of 

tricarboxylic acid cycle (TCA cycle) were included); and the amino acid metabolism. 

The summaries of the univariate and multivariate analyses are shown in the Table S1. 

After the Mann–Whitney (MW) test, 23 out 138 metabolites were significantly 

different, and the subsequent Benjamin–Hochberg (BH) correction highlighted 6 out 

of 23 different metabolites that were as follows: succinic acid, malic acid, threonic 

acid, alpha-ketoglutarate, pyruvic acid, cholesterol, oleic acid and 3-hydroxybutitic 

acid (Table 2). 

Table 2. Summary of the significant differential plasma metabolites in the early stress stage. CON and 3d 
CUMS groups (n = 10 animals per group) are represented by the relative abundances (AU). Relative 
abundances of metabolites are presented by the mean ± SEM. Plasma metabolites are sorted by p-value. 
The summary of the analysis is shown and includes the relative abundances of metabolites, p-value, q-value, 
VIP value, RF, FC, the effect of the 3d CUMS versus the CON group and the related metabolic pathway. 

Metabolite CON 3d CUMS 
p-

Value 
q-

Value 
VIP RF FC Effect 

Metabolic 
Pathway 

Malic acid 0.36 ± 0.03 0.74 ± 0.07 <0.01 0.03 2.4 0.03 2.1 ↑ TCA cycle 

Threonic acid 2.55 ± 0.21 0.8 ± 0.17 <0.01 0.03 2.6 0.03 0.3 ↓ 
Ascorbate and 

aldarate 
metabolism 

Alpha-
ketoglutarate 

1.21 ± 0.08 1.94 ± 0.13 <0.01 0.03 2.3 0.03 1.6 ↑ TCA cycle 

Succinic acid 0.61 ± 0.04 0.86 ± 0.04 <0.01 0.03 2.3 0.03 1.4 ↑ TCA cycle 
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Pyruvic acid 14.68 ± 0.85 25.39 ± 3.14 <0.01 0.03 2.1 0.03 1.7 ↑ Glycolysis 

Cholesterol 0.33 ± 0.02 0.6 ± 0.05 <0.01 0.05 2.4 0.05 1.8 ↑ 
Steroid 

biosynthesis 

 

The distribution of the six metabolites were visualized with boxplots to evaluate 

the distribution between groups and the impact in the early stress stage (Figure 2): 

Threonic acid was decreased more than three times in the 3d CUMS group, while the 

other metabolites were increased. 

 

Figure 2. Box-whisker plots of the differential metabolites in the early stress stage. Relative abundance of 
metabolites (AU) is represented: blue represents CON group and orange the 3d CUMS group (n = 10 animals 
per group). Box denotes 25th and 75th percentiles; line within box denotes 50th percentile (median); 
whisker denotes standard deviation. 

Despite no clustering being distinguished in the principal component analysis 

(PCA, Figure S1), differences in orthogonal the partial least squares discriminant 

analysis (OPLS-DA) were observed between groups (Figure 3). OPLS-DA was 

performed in parallel to the statistical analysis to assess the prediction power of the 

key plasma metabolites. The proportion of variance explained by the model (R2X) was 

45.1% in the plasma data. The percentage of Y variability explained by the model (R2Y) 

was 95.1% and the estimation of the predictive performance of the models (Q2) was 
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67.8%; as it is greater than 50%, the model is considered to have good predictability. 

The highest variable importance in projection (VIP) values are shown in Table 2, 

threonic acid (2.6) being the most important metabolite in the model, followed by 

malic acid, cholesterol, alpha-ketoglutarate and succinic acid. Finally, the feature 

importance was also assessed using a random forest classifier (RF) to complete the 

evaluation of the prediction power (Table S1). In this case, the most important feature 

was the malic acid followed by threonic acid, oleic acid and alpha-ketoglutarate, with 

values above 0.1. 

 

Figure 3. OPLS-DA of plasma metabolomics in the early stress stage. Blue represents the CON group and 
orange the 3d CUMS group (n = 10 animals per group). The Score plot is represented, and it includes the 
number of components, the cumulative R2X, R2Y and Q2Y. 

2.3. Urine Metabolic Profiling and Biomarker Identification 
The urine metabolomic approach, which was based on the untargeted 1H-NMR 

methodology, detected 42 metabolites mainly belonging to the amino acid 

metabolism (e.g., phenylalanine, tyrosine and tryptophan metabolism; glycine, serine 

and threonine metabolism; alanine, aspartate and glutamate metabolism; glutathione 

metabolism; and taurine and hypotaurine metabolism) and the energetic metabolism 

(e.g., TCA cycle, pyruvate metabolism and glycolysis/gluconeogenesis) (Table S2). The 

summary of the univariate and multivariate analysis is shown in the Table S2. After 

the MW test, N,N-dimethylglycine and taurine were significantly altered in the 3d 

CUMS group versus the CON group. After the BH correction, none of these metabolites 

UNIVERSITAT ROVIRA I VIRGILI 
MULTI-OMICS BIOMARKERS OF METABOLIC HOMEOSTASIS OF RISK FACTORS ASSOCIATED TO 
NON-COMMUNICABLE DISEASES 
Julia Hernandez Baixauli 



III. Results: Manuscript 6 

328 
 

remained significantly modified. The distribution was also analysed, noticing a 

decrease in N,N-dimethylglycine and an increase in taurine (Figure 4a). 

Differences were observed between groups in OPLS-DA (Figure 4b), despite no 

clustering being distinguished in the PCA (Figure S2). The proportion of variance 

explained by the OPLS-DA model (R2X) was 32.3% in the urine data. The percentage 

of Y variability (R2Y) was 91.3% and the estimation of the predictive performance (Q2) 

was 41.8%. In this case, the predictive power in urine metabolites is not strong enough 

to discriminate between groups. The highest VIP values are shown in Table S2, being 

the before-mentioned metabolites the most important in urine with higher VIP values. 

In this case, the most important features were also N,N-dimethylglycine (0.21) and 

taurine (0.18) applying RF to elucidate the evaluation of this metabolites (Table S2). 

 

Figure 4. Box-whisker plots and OPLS-DA representation of urine metabolomics in the early stress stage. 
Blue represents the CON group and orange the 3d CUMS group (n = 10 animals per group). (a) Box-whisker 
plots of the major impact metabolites in urine represented by the relative abundance of metabolites (AU). 

(b)

(a)

UNIVERSITAT ROVIRA I VIRGILI 
MULTI-OMICS BIOMARKERS OF METABOLIC HOMEOSTASIS OF RISK FACTORS ASSOCIATED TO 
NON-COMMUNICABLE DISEASES 
Julia Hernandez Baixauli 



III. Results: Manuscript 6 

329 
 

Box denotes 25th and 75th percentiles; line within box denotes 50th percentile; whisker denotes standard 
deviation. (b) OPLS-DA of plasma metabolomics. The score plot that is represented includes the number of 
components, and the cumulative R2X, R2Y and Q2Y (indicated below the plot). 

2.4. Microbiome Profiling 
The taxonomic assignment detected the presence of the most abundant microbes 

in the cecum section to evaluate the highest variability and diversity of the gut tract 

(i.e., bacteria, viruses and <1% of other microbes). Making a general overview related 

to the abundance of microbes, we can see that 78% of the generated readings were 

assigned to bacteria and 22% to viruses in the CON group, and in the case of the 3d 

CUMS group, the readings assigned to bacteria were slightly decreased to 69% and 

the viruses were increased to 31% in comparison to CON (not statistically significant). 

The beta diversity, which is represented by a PCA of Aitchison distances, were highly 

overlapped between bacterial groups (Figure 5a) and between viruses (Figure 5b). In 

this regard, the PERMANOVA showed a tendency in bacteria (F = 1.89, p-value = 0.09) 

indicating differences in bacteria composition/beta diversity, while there were no 

significant differences in viruses (F = 0.93, p-value = 0.5). The alpha diversity (measure 

of richness in the same group) showed a tendency to decrease in the microbiome of 

the 3d CUMS group, without being statistically significant in neither bacteria (Figure 

5c) nor viruses (Figure 5d). 

 

Figure 5. Summary of the microbiome statistical analysis in the early stress stage. Blue represents the CON 
group and orange the 3d CUMS group (n = 8 animals per group). Beta diversity: PCA plot calculated by 
Aitchison distance for bacteria (a) and viruses (b). Alpha diversity (AU): chao1 index in bacteria (c) and 
viruses (d). Taxonomic differences represented as relative distribution of species in bacteria (e) and viruses 
(f); these figures show a bar graph at the level of both bacterial and viral species (relative %) comparing the 
animals in all groups. 

Regarding the bacterial microbiome, the communities of both groups were 

mostly formed by the phyla Bacteroidetes (CON: 51% and 3d CUMS: 49%), 

Verrucomicrobia (CON: 26% and 3d CUMS: 42%), Firmicutes (CON: 12% and 3d CUMS: 

4%), Proteobacteria (CON: 6% and 3d CUMS: 2%), and Deferribacteres (CON: 5% and 
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3d CUMS: 4%). Although these differences were not statistically significant, interesting 

results could be found on the magnitude of the different phyla. Thus, the relative 

abundance of Verrumicrobia was increased almost twice, while Firmicutes and 

Proteobacteria decreased three times in the 3d CUMS group. Focusing on bacterial 

species (Figure 5e), 12 species were found to have a relative abundance above 0.01% 

(Table S3). Interestingly, the Akkermansia muciniphila species was the most abundant 

one (CON: 26% and 3d CUMS: 42%), being the main species implicated in the increase 

in the Verrucomicrobia phylum in both groups (Figure 5a). However, the difference 

was not significant, even though the values almost doubled (p-value = 0.1 and q-value 

= 0.4). The higher increase in Akkermansia muciniphila indirectly affects the relative 

abundance of other species, for example, Lactobacillus murinus (CON: 11% and 3d 

CUMS: 2%), Escherichia coli (CON: 6% and 3d CUMS: 2%) or Bacteroides uniformis 

(CON: 8% and 3d CUMS: 5%) (Figure 5a). 

In the case of the virus microbiome, the communities of both groups were mostly 

formed by the following orders: Herpesvirales (CON: 54% and 3d CUMS: 73%), 

Ortervirales (CON: 24% and 3d CUMS: 12%) and Caudovirales (CON: 23% and 3d 

CUMS: 14%). Thus, the relative abundance of Herpesvirales increased almost 1.5 times 

in the 3d CUMS group; however, Ortervirales and Caudovirales decreased twice in the 

same group. Focusing on virus species (Figure 5f), 13 species were found to have a 

relative abundance above 0.01% (Table S4). In both groups, the most represented 

virus was an uncharacterized herpesvirus (CON: 39% and 3d CUMS: 61%) that was 

increased in the 3d CUMS group (p = 0.02). This virus is the main species implicated in 

the Herpesvirales order (Figure 5b). Other relative abundant species were Abelson 

murine leukemia virus (CON: 14% and 3d CUMS: 6%), Murine osteosarcoma virus 

(CON: 9% and 3d CUMS: 6%), Lactobacillus prophage Lj771 (CON: 7% and 3d CUMS: 

5%), Stx2 converting phage 1717 (CON: 7% and 3d CUMS: 4%), Alcelaphine 

gammaherpesvirus (CON: 6% and 3d CUMS: 3%) and Ateline gammaherpesvirus (CON: 

5% and 3d CUMS: 4%), among others (Figure 5b). 

2.5. Multi-Omics Data Integration 
The multi-omics integrative analysis with Data Integration Analysis for Biomarker 

discovery using Latent cOmponents (DIABLO) identified a highly associated profile of 

eight plasma metabolites (threonic acid, alpha-ketoglutarate, malic acid, 3-

hydroxybutiric acid, DG 34:2, succinic acid, aspartic acid and cholesterol); six urine 

metabolites (taurine, α-hydroxyhippurate, N-acetylglycine, malic acid, N,N-

dimethylglycine and betaine); and five microbes, including bacteria and viruses 

(Escherichia coli, Lactobacillus murinus, Akkermansia muciniphila, uncharacterized 

Herpesvirus and Bacteroides uniformis). This analysis revealed a high correlation 

between data sets with coefficients above 0.6 (Figure S3a), specifically between the 

plasma metabolome that correlated with the urine metabolome (r = 0.82) and 

microbiome (r = 0.81). Moreover, the data sets were able to discriminate between 

groups (Figure S3b), highlighting the relationship between plasma and the urine 

metabolome (Figure S3c). The variable effect in the first component and the impact 

of each feature in the data set are shown in Figure S4 a,c,e for plasma metabolomics, 
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urine metabolomics and metagenomics, respectively. The correlation between the 

variables from the three different blocks is shown in Figure 6a (cut-off was set at 0.7). 

Further visualization in Cytoscape revealed the highest correlations between the 

different omics (Figure 6b). 

To evaluate the performance of the proposed omics profile, the overall error was 

calculated as 0.2 in the first component. Additionally, the receiver operating 

characteristic (ROC) curve analysis showed that the optimal omics profile with the 

combination of eight plasma metabolites effectively separated both groups with an 

area under the ROC curve (AUC) of 1 (p-value < 0.01, Figure S4b). A combination of six 

plasma metabolites optimally dichotomized the groups with an AUC of 0.86 (p-value 

= 0.02, Figure S4d). In the metagenomics data, the combination of five bacteria and 

viruses grouped the animals with an AUC of 0.92 (p-value < 0.01, Figure S4f). These 

results support the above-selected features as a representative omics profile of the 

early stress stage. 
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Figure 6. Multi-omics integration of plasma metabolome, urine metabolome and microbiome in the early 
stress stage. (a) Circos plot output from DIABLO. Each quadrant indicates the type of features: plasma 
metabolites (purple), urine metabolites (red), bacteria species (green) and virus species (orange); lines 
indicate measure of association (correlation), either positive or negative. (b) Further visualization of the 
network from DIABLO using Cytoscape. The shape of the features indicates the type of feature: plasma 
metabolites (square), urine metabolites (triangle) and metagenomics (circle). The colour indicates the 
degree of each feature in the network (i.e., nodes with more connections). Abbreviations: DG, 
diacylglycerol; ChoE, cholesterol ester; TG, triglyceride; PC, phosphatidylcholine; SM, sphingomyelin; LPC, 
lysophospholipid. 
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3. Discussion 

In the present study, differences in the patterns of anxiety-like behaviour were 

found in 5–6 months old male Wistar rats in the early stress stage. Generally, younger 

animals (with ages between 6 and 9 weeks) have been used for these kinds of 

experiments. These animals could be more resilient and adaptive to stressful events 

than the older ones [14,15]. Interestingly, even rat and mice pups have also been used 

to study anxiety-like behaviour [16]. However, it is not until 5–6 months old that rats 

are fully grown in terms of social competence, brain development and 

musculoskeletal maturity [17]. Therefore, the use of adult animals is especially 

interesting because a lot of physiological and molecular phenomena are still changing 

over the first 3 months of age [18]. Thus, increasing data indicate that important 

changes in the emotional behaviour occur with aging [19]. The evaluation of 

exploratory behaviour and general activity was evaluated showing an alteration in 

anxiety-like behaviour that was characterized by a decrease in motor activity 

(decrease in the number of crosses between zones in the OFT) in the 3d CUMS group 

[20]. Furthermore, defecation was increased and was inversely correlated with 

rearing, suggesting adverse conditions as an initial depressive behaviour [21]. The 

increased levels of corticosterone and serotonin confirmed the activation of the HPA 

axis and thus a high increase in the activity of endocrine pathways that could lead to 

NCDs [3]. In this regard, it has been found in different studies that corticosterone has 

an impact on hepatic lipid metabolism, energy metabolism and the subsequent 

metabolite profile [22,23]. Moreover, some biochemical parameters were increased 

(i.e., glucose concentration) in the 3d CUMS group, as other evidence of the activation 

of the endocrine response from a metabolic point of view. 

The metabolome was investigated for the elucidation of neurobiological 

underpinnings and for the identification of candidate biomarkers in the affected 

pathways in this early stress stage approach (summarized in Figure 7). Interestingly, 

one main impact on the metabolome was characterized by a decrease in threonic acid, 

which is the major breakdown product of ascorbate, being a distinctive metabolite of 

the 3d CUMS approach compared to other metabolomic classic CUMS studies [13]. In 

this sense, the presence of high levels of ascorbate in neurons seems to be related to 

high levels of aerobic respiration rates that could lead to superoxide production and 

prooxidant effects in mitochondria [24]. Additionally, the control of threonic acid 

levels have been described as a promising strategy for predicting the subtypes of 

depressive disorders [25]. In line with this, different strategies have been tailored, 

focusing on threonic acid, to try to improve multiple brain disorders (e.g., dietary 

treatment with magnesium-L-threonate) [26]. 

Several studies have demonstrated a potential link of stressful events with the 

alteration of energy metabolism thought the stress response [27]. In the 3d CUMS 

group, increased key intermediate products of the TCA cycle are indicative of the 

overstimulation of this cycle (i.e., alpha-ketoglutarate, malic acid and succinic acid) 

due to the stress response. This fact differentiates the 3d CUMS from the classical 
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CUMS that is associated with energy disruption or deficiency (being one of the most 

represented depressive symptoms associated to the reduction of the activity and 

curiosity in animal models) [26]. These results supports the idea that, lately, 

mitochondrial organelles and the energetic metabolism are emerging as modulators 

of anxiety-related behaviour both in rodent and human studies [28]. One of the 

intermediate products of the TCA cycle, alpha-ketoglutarate, is an important source 

of neurotransmitters (i.e., glutamate and gamma aminobutyric acid (GABA)), which 

are the major brain neurotransmitters mediating excitatory and inhibitory signalling, 

respectively [29]. Moreover, the alpha-ketoglutarate pathway can synthesize other 

important amino acids, including proline, hydroxyproline and ornithine, which tend to 

be increased in the 3d CUMS group as in the case of CUMS model [13]. Related to the 

energy metabolism, pyruvic acid, which is increased in the 3 CUMS group, is the end-

product of glycolysis, a major substrate for oxidative metabolism and a branching 

point for glucose, lactate, fatty acid and amino acid synthesis [30]. In previous CUMS 

studies, pyruvic acid was disturbed without being significant, and for this reason, we 

suggest that the increased pyruvic acid is related to the early response to stress 

instead of depression when pyruvic acid returns to its normal levels, leading to other 

metabolic changes [31]. 

 

Figure 7. Metabolic profiling of candidate biomarkers and the main metabolic pathways implicated in the 
early stress stage. It is presented the metabolites with highest influence on the model (match in all the 
statistical methods, green dot), influence on metabolites (partial match in the statistical methods, yellow 
dot) and other metabolites presenting an impact on metabolism. The up- and downregulated metabolites 
are indicated with up and down arrows, respectively. Abbreviations: DG, diacylglycerol; ChoE, cholesterol 
ester; TMAO, trimethylamine N-oxide; TMA, trimethylamine; GABA, gamma aminobutyric acid. 

The slightly plasmatic increase in 3-hydroxybutiric acid, a known ketone body, 

reflects an increase in energy production through fatty acid oxidation, supporting the 

idea that the disruption of carbohydrate and energy metabolism might be disrupted 

in the 3d CUMS group. Hereof, the production of ketone bodies has been shown to 

have a positive influence on the production of GABA, which is illustrated by reduced 
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plasma levels in depressed patients [25]. In contrast, in the present study, we suggest 

that, paradoxically to depression, an increment in ketone bodies could be associated 

with stress states. Furthermore, the increased urine excretion of taurine has been 

highly related to the stress response [32]. This amino acid plays a vital role in the 

central nervous system acting as a neurotransmitter and in the regulation of oxidative 

and energy metabolism. In this regard, taurine raises fatty acid oxidation and ketone 

bodies levels, which is connected with the increase in fatty acids and other related 

lipids and the increase in 3-hydroxybutiric acid, as has been previously discussed [33]. 

According to previous studies, taurine embraces antidepressant and anxiolytic 

activities in different animal models using different doses and types of administration 

[34]. 

In studies focused on lipidomics, the connection between lipids, neuronal 

signalling, and NCDs stands out [35]. In our case, we observed an increase in this group 

of metabolites characterized by the cholesterol increase, as well as others lipids less 

relevant in the experimental statistical approach, such as the case of complex lipids 

(i.e., DG 34:2) and polyunsaturated fatty acids (PUFAs) (i.e., ChoE (18:3), also known 

as linolenic acid, and ChoE (18:2), also known as linoleic acid) and monounsaturated 

fatty acid (MUFA) (i.e., ChoE (18:1), also known as oleic acid). Those fatty acids are 

precursors of other important fatty acids, supporting the evidence of a potential 

crucial role of membrane lipids and lipid oxidation in mental disorders [24]. In fact, 

disturbances in those PUFAs, precursors of arachidonic acid and docosahexaenoic 

acid, were associated with inflammation response and further complications as type 

2 diabetes and cardiovascular diseases that were also altered in CUMS studies [31]. 

Interestingly, a major finding regarding the metabolites excreted in urine is their 

relation to methylamine metabolism that has been critically related to stressed 

phenotype through the decrease in choline (precursor of neurotransmitters in the 

brain) [36]. Furthermore, methylamines have been defined as microbiota-derived 

metabolites [37]. N,N-dimethylglycine and related metabolites of methylamine 

metabolism are mainly produced when choline is catabolized into other metabolites 

via gut microbiota [38], and they are finally excreted in urine. This fact could suggest 

that the proposed early stress stage may be associated with alterations on the 

intestinal microorganism populations. 

Accordingly, the gut microbiota has been widely studied in psychological 

disorders, and it has been proposed as a pivotal axis in the regulation of anxiety-like 

behaviour. Even though the 3d CUMS group was absent of important differences in 

the gut microbiome, there were some microbes and metabolites that were altered 

related to a hypothetical gut microbiome disruption. Recent studies in rats subjected 

to CUMS revealed that the changes in the gut microbiome were associated with the 

dysregulation of plasma metabolites related to the metabolism of 

glycerophospholipids, glycerolipids, fatty acyls and sterols [39]. In consequence, this 

metabolite alteration could be caused by the synergistic effect of the altered 

microbiome and the stress response. Blacher and colleagues identified that 
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nicotinamide (a vitamin enrolled in the production of steroid hormones synthesized 

by the adrenal gland and stress-related hormones) is produced by Akkermansia 

muciniphila, and when it was injected into diseased mice, it improved their anxiety-

like behaviour [40]. This vitamin may be involved in minimizing oxidative stress and 

the consequent preservation of neuronal health. Accumulating evidence suggests that 

gut microbes can also produce metabolites with high neuroactive potential 

(neurotransmitters) [41]. The interaction between gut microbiota and gut hormones 

has been greatly evidenced in gut–brain cross-talk [42]. Recently, Bacteroides spp. 

have been confirmed as producers of GABA as a mechanism of stress tolerance in 

humans [43]. Furthermore, other bacteria taxa, which were altered in our 

experimental approach, such as Escherichia coli and lactic acid bacteria have been 

found to also produce neurotransmitters such as serotonin [44] and GABA [45], 

respectively. Interestingly, it has been described an increment in opportunistic 

microbes [46] as in the case of some bacteria (e.g., Lactobacillus) and some viruses 

(e.g., Herpesvirus order) as consequence of stressful events. 

Finally, previous studies that profiled stress for finding potential candidate 

biomarkers presented some drawbacks when trying to obtain pure stress biomarkers 

because of the existing similarities between early stress stages and the development 

of depressive disorder [8,11,47–51]. In our study, a comparison between univariate 

and multivariate analyses, RF and multi-omics integration was performed to check the 

robustness among methods of the candidate biomarkers and try to determine the 

essence of stress (Table S5). The full matching metabolites are malic acid, threonic 

acid, alpha-ketoglutarate, succinic acid and cholesterol in plasma metabolomics 

(Figure 7), showing their importance as key metabolites in the 3d CUMS study. 

Additionally, pyruvic acid and 3-hydroxibutiric acid in plasma metabolomics and N,N-

dimethylglycine and taurine in urine metabolomics match as candidate biomarkers in 

two different statistical methodologies (Figure 7). Globally, considering the results of 

the present 3d CUMS study and previous CUMS studies, we have observed that energy 

metabolism has a greater impact together with fatty acids, while in CUMS, energy 

metabolism does not have much impact while there is greater alteration of amino 

acids associated with the monitoring of depression [31,52]. 

4. Materials and Methods 

4.1. Animal Experimental Design 
A total of 20 22-week-old male Wistar rats (Harlan Laboratories, Barcelona, Spain) 

were housed individually with a shelter (i.e., cardboard tube) to enrich the cage 

environment, under fully controlled conditions including temperature (22 ± 2 °C), 

humidity (55 ± 5%) and light (12 h light–dark cycle and lights on at 9:00 am). All rats 

were given standard chow diet and tap water ad libitum. The Animal Ethics Committee 

of the University Rovira i Virgili (Tarragona, Spain) approved all the procedures (code 

10049). The experimental protocol followed the “Principles of Laboratory Care” and 

UNIVERSITAT ROVIRA I VIRGILI 
MULTI-OMICS BIOMARKERS OF METABOLIC HOMEOSTASIS OF RISK FACTORS ASSOCIATED TO 
NON-COMMUNICABLE DISEASES 
Julia Hernandez Baixauli 



III. Results: Manuscript 6 

337 
 

was carried out in accordance with the European Communities Council Directive 

(86/609/EEC). 

Animals with similar body weight were randomly assigned to two different groups 

(n = 10 animals per group): the CON group and the 3d CUMS group. The early stress 

approach is a short-adapted version of the classical CUMS model of behavioural stress 

to mimic a short stressor effect during the first 3 days of the CUMS model (Figure 8). 

Animals from the CON group were not subjected to any stress, and they were only 

handled to habituate them to the manipulator contact. Animals from the 3d CUMS 

group were subjected to different stressors for three consecutive days. The stressors 

included in the protocol were physical restriction for 30 min and 5 min; bedding 

wetting for 12 h (consisting of mixing 300 mL of water with 1 L of sawdust bedding); 

light flashes (120 flashes/minute for 15 s, followed by one minute of rest, and this 

procedure was repeated 5 times); 45° cage tilt for 15 h; and the combination of light 

flashes and physical restriction before the sacrifice. 

 

Figure 8. Schematic representation of an early stress stage based on a 3 days CUMS showing the CON and 

3d CUMS groups (n = 10 animals per group) during the 3 experimental days. The different stressors are 

represented with a dot if they are punctual or with a line if they last for a period. Abbreviations: R30, 

restriction during 30 min; BW, bedding wetting; R5, restriction during 30 min; LF, light flashes; CT, cage tilt; 

LFR, light flashes with restriction. 

4.2. OFT 
To assess anxiety-like behaviour, at the end of the 3d CUMS (7 h before sacrifice) 

rats were individually placed in a grey wooden box (70 × 45 × 45 cm) and allowed to 

explore it for 5 min. A central area (20 × 40 cm) was considered for scoring time and 

number of entries in the inner zone. Locomotor activity, fecal boli deposits and rearing 

were also recorded and analysed using a tracking system (ANY-Maze, version 4.82, 

Stoelting Co., Wood Dale, Il, USA). The box was wiped clean with 70% ethanol before 

testing each animal. 

4.3. Sample Collection 
Urine samples were collected the day before the sacrifice through hydrophobic 

sand method, which is less stressful for the animals than others classical 

methodologies [53]. For each rat, 300 g of hydrophobic sand was spread (LabSand, 

Coastline Global, Palo Alto, CA, USA) on the bottom of a mouse plastic micro-isolation 

cage. Urine was collected every half hour for 6 h with sodium azide (Sigma, St Louis, 
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Previous
days

Starting
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MO, USA) as preservative and was finally pooled at the end of the session. On the day 

of the sacrifice, animals were killed by guillotine under anaesthesia (sodium 

pentobarbital, 50 mg/kg per body weight) after 7 h of fasting. Blood was collected and 

centrifuged at 3000× g at 4 °C for 15 min to recover plasma. Tissues were rapidly 

removed, weighted and snap-frozen in liquid nitrogen (i.e., RWAT, MWAT, muscle, 

liver and cecum). All the samples were stored at −80 °C until further analysis. 

4.4. Plasma Biochemistry 
Concentrations of serotonin (#ab133053, Abcam, Cambridge, UK) and 

corticosterone (#EIACORT, Invitrogen, Carlsbad, CA, USA) were measured in plasma 

by ELISA according to the manufacturer’s protocol. Enzymatic colorimetric kits were 

used for the plasma determination of TC, TG, glucose (QCA, Barcelona, Spain) and 

NEFAs (WAKO, Neuss, Germany). 

4.5. Metabolome Analysis 
4.5.1. Plasma Metabolome (GC-qTOF and UHPLC-qTOF) 

Plasma metabolites were analysed by gas Chromatography coupled with 

Quadrupole Time-of-Flight (GC-qTOF). For the extraction, a protein precipitation 

extraction was performed by adding eight volumes of methanol:water (8:2, v/v) 

containing internal standard mixture (succinic acid-d4, myristic acid-d27, glicerol-13C3 

and D-glucose-13C6) to plasma samples. Then, the samples were mixed and incubated 

at 4 °C for 10 min, centrifuged at 21,420× g and the supernatant was evaporated to 

dryness before compound derivatization (metoximation and silylation). The 

derivatized compounds were analysed by GC-qTOF (model 7200 of Agilent, Santa 

Clara, CA, USA). The chromatographic separation was based on the Fiehn Method, 

using a J&W Scientific HP5-MS (30 m × 0.25 mm i.d.), 0.25 µm film capillary column 

and helium as carrier gas using an oven program from 60 °C to 325 °C. Ionization was 

performed by electronic impact (EI), with electron energy of 70 eV and operated in 

full Scan mode. The identification of metabolites was performed matching two 

different parameters to metabolomic Fiehn library (Agilent, Santa Clara, CA, USA): EI 

mass spectrum, considered stable and reproducible and retention time. To avoid 

annotation errors, metabolites with very high molecular weights were cleared. After 

the putative identification of metabolites, these were semi-quantified in terms of the 

internal standard response ratio. 

Plasma lipids were analysed by Ultra-High-Performance Liquid Chromatography 

coupled with Quadrupole Time-of-Flight (UHPLC-qTOF). For the extraction of the 

hydrophobic lipids, a liquid–liquid extraction based on the Folch procedure [54] was 

performed by adding four volumes of chloroform:methanol (2:1, v/v) containing 

internal standard mixture (Lipidomic SPLASH®, Avanti Polar Lipids, Inc., Alabaster, AL, 

USA) to plasma. Then, the samples were mixed and incubated at −20 °C for 30 min. 

Afterwards, water with NaCl (0.8%) was added, and the mixture was centrifuged at 

21,420× g. Lower phase was recovered, evaporated to dryness and reconstituted with 

methanol:methyl-tert-butyl ether (9:1, v/v) and analysed by UHPLC-qTOF (model 6550 

of Agilent, Santa Clara, CA, USA) in positive electrospray ionization mode. The 
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chromatographic consists in an elution with a ternary mobile phase containing water, 

methanol, and 2-propanol with 10 mM ammonium formate and 0.1% formic acid. The 

stationary phase was a C18 column (Kinetex EVO C18 Column, 2.6 µm, 2.1 mm × 100 

mm) that allows the sequential elution of the more hydrophobic lipids such as TGs, 

DGs PCs, ChoEs, LPCs and SMs, among others. The identification of lipid species was 

performed by matching their accurate mass and tandem mass spectrum, when 

available, to Metlin-PCDL from Agilent containing more than 40,000 metabolites and 

lipids. In addition, chromatographic behaviour of pure standards for each family and 

bibliographic information was used to ensure their putative identification. After 

putative identification of lipids, these were semi-quantified in terms of internal 

standard response ratio using one internal standard for each lipid family. 

A pooled matrix of samples was generated by taking a small volume of each 

experimental sample serving as a technical replicate throughout the data set. As the 

study took multiple days, a data normalization step was performed to correct variation 

resulting from instrument inter-day tuning differences. Essentially, each compound 

was corrected in run-day blocks through quality controls, normalizing each data point 

proportionately. 

4.5.2. Urine Metabolome (1H-NMR) 

Urine metabolites were analysed by proton nuclear magnetic resonance (1H-

NMR). The urine sample was mixed (1:1, v/v) with phosphate buffered saline 

containing with 3-(Trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (TSP) (Sigma 

Aldrich) and placed on a 5 nm NMR tube for direct analysis by 1H-NMR. 1H-NMR 

spectra were recorded at 300 K on an Avance III 600 spectrometer (Bruker®, Bremen, 

Germany) operating at a proton frequency of 600.20 MHz using a 5 mm PBBO gradient 

probe. Diluted urine aqueous samples were measured and recorded in procno 11 

using one-dimensional 1H pulse experiments and were carried out using the nuclear 

Overhauser effect spectroscopy (NOESY). NOESY presaturation sequence (RD–90°–t1–

90°–tm–90° ACQ) was used to suppress the residual water peak, and the mixing time 

was set at 100 ms. Solvent presaturation with irradiation power of 150 μW was 

applied during recycling delay (RD = 5 s) and mixing time (noesypr1d pulse program in 

Bruker®) to eliminate the residual water. The 90° pulse length was calibrated for each 

sample and varied from 11.21 to 11.38 ms. The spectral width was 9.6 kHz (16 ppm), 

and a total of 128 transients were collected into 64 k data points for each 1H spectrum. 

The exponential line broadening applied before Fourier transformation was of 0.3 Hz. 

The frequency domain spectra were manually phased and baseline-corrected using 

TopSpin software (version 3.2, Bruker). Data were normalized by two different ways, 

by the probabilistic method to avoid differences between samples due to different 

urine concentration and by ERETIC. The acquired 1H-NMR were compared to 

references of pure compounds from the metabolic profiling AMIX spectra database 

(Bruker®), HMDB and Chenomx databases for metabolite identification. In addition, 

we assigned metabolites by 1H-1H homonuclear correlation (COSY and TOCSY) and 1H-
13C heteronuclear (HSQC) 2D NMR experiments and by correlation with pure 

compounds run in-house. After pre-processing, specific 1H-NMR regions identified in 
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the spectra were integrated using MATLAB scripts run in-house. Curated identified 

regions across the spectra were exported to an Excel spreadsheet to evaluate 

robustness of the different 1H-NMR signals and to give relative concentrations. 

4.6. Microbiome Analysis (Shotgun Metagenomic 
Sequencing) 

The shotgun metagenomic sequencing was performed in 8 animals per group. 

DNA was extracted from cecum content using the PowerSoil DNA extraction kit (MO 

BIO Laboratories, Carlsbad, CA, USA) following the manufacturer’s protocol. Between 

400 and 500 ng of total DNA was used for library preparation for Illumina sequencing 

employing Illumina DNA Prep kit (Illumina, San Diego, CA, USA). All libraries were 

assessed using a TapeStation High Sensitivity DNA kit (Agilent Technologies, Santa 

Clara, CA, USA) and quantified by Qubit (Invitrogen, Waltham, MA, USA). 

 Validated libraries were pooled in equimolar quantities and sequenced as a 

paired-end 150-cycle run on an Illumina NextSeq2000. A total of 1548 million reads 

were generated, and raw reads were filtered for QV > 30 using an in-house phyton 

script. Filtered reads were aligned to unique clade-specific marker genes using 

MetaPhlAn 3 [55] to assess the taxonomic profile. The alignment was performed 

indicating the closest name of species to the sequence (the best hit). The relative 

proportions calculated from MetaPhlAn were used to calculate relative abundances, 

alpha diversity measure (chao1 index) and beta diversity measure (Aitchison 

distance). 

4.7. Statistical Analysis 
4.7.1. General Statistical Analysis 

The statistical analysis was performed using the R statistical software (version 

4.0.2, R Core Team 2021) and different libraries included in Bioconductor (version 

3.11, Bioconductor project) were used [56]. The continuous variables of biological 

assay were shown as mean ± standard error of the mean (SEM) per group. After the 

normality study, parametric unpaired t-test was used for single statistical 

comparisons; thus, a two-tailed value of p-value < 0.05 was considered. 

4.7.2. Metabolomic Data Analysis 

For metabolomics, the MW test was performed in this case because the variables 

follow the assumption of a non-parametric test. The p-value adjustment for multiple 

comparisons was carried out according to the BH correction considering a 5% of FDR. 

The magnitude of difference between populations was presented as fold change (FC) 

relative to the control group. In parallel, a predictive analysis was conducted to 

evaluate the prediction power of the experimental model. On the one hand, PCA, an 

unsupervised multivariate data projection method, was performed to explore the 

native relationship between groups. On the other hand, OPLS-DA, a supervised 

multivariate data projection method, was calculated to explore the possible 

relationships between the observable variables (X) and the predicted variables or 

target (Y), reflecting the variation in the data set. No data transformation has been 
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applied before conducting the analysis. The predictive performance of the test set was 

estimated by the Q2Y parameter calculated through cross-validation. The values of Q2 

< 0 suggests a model with no predictive ability, 0 < Q2 < 0.5 suggests some predictive 

character and Q2 > 0.5 indicates good predictive ability [57]. The feature importance 

was calculated through the VIP values that reflect both the loading weights for each 

component and the variability in the response explained by the component. 

In this case, we followed a pipeline, which was previously described [58,59], 

considering statistical significance and predicting capability of individual metabolites 

to capture the major differences in the experimental study: (1) the metabolites 

reflecting general metabolic differences were selected according to the MW statistical 

test (p-value < 0.05) and the VIP (>1.0) values to present an overview of the impact in 

the metabolism of early stress stage; (2) the individual discriminating metabolites 

associated with stress and controls were selected primarily according to the MW 

statistical test (p-value < 0.01) and the BH correction (q-value < 0.05) and the VIP (>1.5) 

values to propose candidate biomarkers. 

Additionally, RF was calculated to sort the most important metabolites that 

distinguish between the CON and 3d CUMS groups. The whole data set was used 

without rejecting the metabolites where no differences were observed using the MW 

test. Therefore, the 10 most relevant metabolites were presented. 

4.7.3. Metagenomic Data Analysis 

For microbiome data, centred log-ratio (CLR) was performed before any statistical 

test. The beta diversity was calculated from the Aitchison distance, and PERMANOVA 

test was performed with 100 permutations to assess the differences between groups 

(n = 8 animals per group). The alpha diversity was calculated by Chao1 index. 

Taxonomic abundances were compared between experimental groups using the BH 

adjustment on MW test that is presented by relative abundance (%). The relative 

abundance was filtered to only include variables that were present above 0.01% in at 

least 3 samples [60]. The magnitude of difference between populations was 

determined by the determination of FC. 

4.7.4. Integration Data Analysis 

For multi-omics data integration, DIABLO implementation in the mixOmics R 

package (version 6.18.1, mixOmics project) was used to integrate plasma and urine 

metabolome and microbiome [61]. The R script was added as supplementary data 

with the steps to perform all the integration analysis. To summarize, the first step is 

the parameter choice of the design matrix, the number of components and the 

number of variables to select: (1) a design matrix of 0.1 was used to focus primarily on 

the discrimination between the groups; (2) the perf function was used to estimate the 

performance of the model and the balanced error rate (BER) and overall error rates 

per component were displayed to select the optimal number of components; and (3) 

the number of variables was chosen using the tune.block.splsda function that is run 

with 10-fold cross validation and repeated 10 times, thus this tuning step led to a 

selection of 8 plasma metabolites, 6 urine metabolites and 5 microbes. Thereafter, 
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the final model was computed, and different sample and variable plots were 

performed. In Figure 6a, the correlations greater than 0.7 between variables of 

different types were represented using the function circosPlot. In Figure 6b, the 

resulting network, which was calculated with the network function, was further 

analysed using Cytoscape (version 3.8.2, Institute of Systems Biology, Seattle, WA, 

USA) [62]. 

The final performance of the model was evaluated by the perf function using 10-

fold cross-validation repeated 10 times. Additionally, the ROC curve analysis was 

conducted to evaluate the metabolite combination patterns that could correctly 

dichotomize the stressed and healthy groups at acceptable sensitivity and specificity 

(defined as greater than 80% for both). The AUC value was used as a measure of the 

prognostic accuracy, thus, an AUC value of 1 indicates a perfect test due to the 

absence of overlap of the test data between the groups. In this case, an AUC value 

above >0.85 was considered for inclusion in the model. 

4.7.5. Pathway Analysis 

Finally, a comparison between univariate (MW test adjusted by BH) and 

multivariate analyses (PCA and OPLS-DA), RF and multi-omics integration (DIABLO) 

was performed to check the robustness among methods of the candidate biomarkers. 

The weights of the methods can be 0 (no influence) or 1 (influence), and the final value 

is a summatory of the weights of the different methods of analysis: Features with a 

weight of 3 (positive in all the methods) presented the highest impact on the model 

followed by weights of 2. The key features were analysed through different databases 

to identify related pathways and elucidate the global effect in the metabolism of an 

early stress stage. The main database consulted was the Kyoto Encyclopaedia of Genes 

and Genomes (KEGG) [63], among others. To show those results, XMind (version 

XMind 2020, XMind Ltd., Virginia, ON, Canada) was used to incorporate the 

information about pathway analysis (Figure 7). 

5. Conclusions 

In summary, differences between the groups were observed in the behaviour, 

biochemical parameters and metabolic patterns. Specifically, an omics profile was 

elucidated and was composed by a signature of eight plasma metabolites (threonic 

acid, alpha-ketoglutarate, malic acid, 3-hydroxybutiric acid, DG 34:2, succinic acid, 

aspartic acid and cholesterol); six urine metabolites (taurine, α-hydroxyhippurate, N-

acetylglycine, malic acid, N,N-dimethylglycine and betaine); and five microbes, 

including bacteria and viruses (Escherichia coli, Lactobacillus murinus, Akkermansia 

muciniphila, uncharacterized Herpesvirus and Bacteroides uniformis). Finally, seven 

metabolites may be considered a metabolic footprint from plasma (malic acid, 

threonic acid, alpha-ketoglutarate, succinic acid, cholesterol and pyruvic acid) and 

urine metabolomics (N,N-dimethylglycine). Furthermore, the full matching 

metabolites are malic acid, threonic acid, alpha-ketoglutarate, succinic acid and 

cholesterol in plasma metabolomics, these being the key metabolites of the early 
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stress stage based on a 3d CUMS approach targeting the TCA cycle and energy 

metabolism. In addition, more studies profiling the early stress stage are 

recommended for the further exploration and validation of these omics profiles, 

metabolic footprints and potential candidate biomarkers.  
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Annex. Supplementary Material of Manuscript 6 

Supplementary table 1. Statistical analysis of plasma metabolites in the early stress stage. CON and 3d 

CUMS groups (n = 10 animals per group) are represented by relative abundances (AU). Relative abundances 

of metabolites are presented by the mean ± SEM. Plasma metabolites are sorted by p-value. The summary 

of univariant and multivariate analysis is shown including p-value, q-value, VIP value, RF and FC. The 

statistically significant p-values and q-values are highlighted in bold. Abbreviations: DG, diacylglycerol; 

ChoE, cholesterol ester; TG, triglyceride; PC, phosphatidylcholine; SM, sphingomyelin; LPC, 

lysophospholipid; PE, phosphatidylethanolamine. 

Metabolite CON 3d CUMS p-value q-value VIP RF FC 

Malic acid  0.36 ± 0.03 0.74 ± 0.07 <0.01 0.03 2.42 0.23 2.1 

Threonic acid  2.55 ± 0.21 0.8 ± 0.17 <0.01 0.03 2.63 0.15 0.3 

Alpha-ketoglutarate  1.21 ± 0.08 1.94 ± 0.13 <0.01 0.03 2.30 0.10 1.6 

Succinic acid  0.61 ± 0.04 0.86 ± 0.04 <0.01 0.03 2.25 0.04 1.4 

Pyruvic acid  14.68 ± 0.85 25.39 ± 3.14 <0.01 0.03 2.09 0.05 1.7 

Cholesterol  0.33 ± 0.02 0.6 ± 0.05 <0.01 0.05 2.38 0.05 1.8 

Oleic acid  1.71 ± 0.09 2.47 ± 0.22 <0.01 0.06 1.80 0.12 1.4 

3-hydroxybutiric acid  2.03 ± 0.19 2.76 ± 0.08 0.01 0.09 1.91 0.04 1.4 

Citric acid  3.04 ± 0.14 3.8 ± 0.2 0.01 0.10 1.89 0.01 1.3 

Phenylalanine  0.87 ± 0.15 0.55 ± 0.11 0.01 0.16 1.44 0.01 0.6 

Threonine  1.35 ± 0.13 0.97 ± 0.11 0.01 0.16 1.56 - 0.7 

DG 34:2  1 ± 0.05 0.84 ± 0.05 0.02 0.19 1.28 0.01 0.8 

Glucose  0.78 ± 0.04 0.9 ± 0.04 0.02 0.19 1.53 0.01 1.2 

Valine  1.69 ± 0.64 0.94 ± 0.42 0.02 0.19 0.85 - 0.6 

Aspartic acid  0.53 ± 0.1 0.68 ± 0.04 0.03 0.21 1.49 0.02 1.3 

Fructose  0.4 ± 0.02 0.3 ± 0.02 0.03 0.21 1.94 - 0.8 

Glyceric acid  1.75 ± 0.12 1.33 ± 0.11 0.03 0.24 1.84 0.02 0.8 

2-hydroxyglutaric  0.69 ± 0.07 0.51 ± 0.02 0.05 0.32 1.56 - 0.7 

Asparagine  0.17 ± 0.02 0.24 ± 0.02 0.05 0.32 1.55 - 1.4 

ChoE (18:2)  13.81 ± 0.53 15.18 ± 0.6 0.05 0.32 1.13 - 1.1 

ChoE (18:3)  1.27 ± 0.09 1.74 ± 0.18 0.05 0.32 1.19 0.02 1.4 

Hydroxyproline  0.54 ± 0.1 0.7 ± 0.07 0.05 0.32 1.35 0.01 1.3 

Methionine  0.12 ± 0.02 0.17 ± 0.02 0.08 0.44 1.41 - 1.4 

Tyrosine  0.9 ± 0.15 0.72 ± 0.09 0.09 0.49 0.57 - 0.8 

Beta-alanine  0.08 ± 0.01 0.1 ± 0.02 0.10 0.52 0.80 - 1.3 

TG 46:0  0.77 ± 0.05 0.66 ± 0.03 0.10 0.52 1.35 - 0.9 

ChoE (16:0)  1.8 ± 0.06 1.97 ± 0.09 0.12 0.52 0.93 - 1.1 

Histidine  0.14 ± 0.01 0.11 ± 0.01 0.12 0.52 1.10 - 0.8 

Ornithine  3.12 ± 0.6 3.71 ± 0.36 0.12 0.52 0.90 - 1.2 

Proline  0.26 ± 0.02 0.29 ± 0.01 0.12 0.52 1.06 0.02 1.1 

Serine  0.26 ± 0.02 0.22 ± 0.01 0.12 0.52 1.06 - 0.8 

ChoE (22:6)  1.67 ± 0.12 2.08 ± 0.17 0.14 0.54 1.38 - 1.2 

DG 36:4  1.97 ± 0.13 1.88 ± 0.07 0.14 0.54 0.09 - 1 

TG 52:1  0.98 ± 0.46 0.45 ± 0.05 0.14 0.54 1.32 - 0.5 

TG 54:2  1.06 ± 0.52 0.48 ± 0.05 0.14 0.54 1.22 - 0.5 

Glucose-6-phosphate  0.14 ± 0.02 0.18 ± 0.02 0.16 0.55 0.94 - 1.3 

Glutamic acid 0.09 ± 0.01 0.12 ± 0.01 0.16 0.55 1.36 - 1.3 

Lysine  1 ± 0.17 0.76 ± 0.1 0.16 0.55 0.71 - 0.8 

PC 42:4 e  0.01 ± 0 0.01 ± 0 0.16 0.55 0.66 - 1 

SM 33:1  0.34 ± 0.02 0.38 ± 0.02 0.16 0.55 0.92 - 1.1 

ChoE (18:0)  0.11 ± 0.02 0.14 ± 0.01 0.19 0.60 0.89 - 1.3 

TG 50:0  0.44 ± 0.13 0.28 ± 0.02 0.19 0.60 1.25 - 0.6 

LPC 16:1 e  0.13 ± 0 0.14 ± 0 0.21 0.65 0.99 - 1.1 

LPC 15:0  0.68 ± 0.03 0.74 ± 0.04 0.24 0.65 0.81 - 1.1 
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LPC 16:0  67.34 ± 1.75 71.03 ± 1.93 0.24 0.65 0.81 - 1.1 

PC 33:1  0.04 ± 0.01 0.06 ± 0.01 0.24 0.65 0.83 - 1.5 

PC 34:1  3.07 ± 0.26 3.59 ± 0.28 0.24 0.65 0.63 - 1.2 

SM 34:2  1.65 ± 0.07 1.75 ± 0.1 0.24 0.65 0.44 - 1.1 

SM 43:1  1.13 ± 0.04 1.03 ± 0.05 0.24 0.65 1.15 0.01 0.9 

TG 52:5  13.23 ± 6.44 6.29 ± 1.23 0.24 0.65 1.18 - 0.5 

LPC 18:2  31.95 ± 1.27 34.19 ± 1.03 0.27 0.67 0.80 - 1.1 

TG 46:1  0.67 ± 0.15 0.5 ± 0.03 0.27 0.67 1.12 - 0.7 

TG 48:1  1.64 ± 0.43 1.22 ± 0.17 0.27 0.67 1.03 - 0.7 

TG 54:3  6.28 ± 3.07 2.83 ± 0.34 0.27 0.67 1.19 - 0.5 

Fumaric acid  1.04 ± 0.15 1.25 ± 0.1 0.31 0.67 0.91 - 1.2 

PC 35:2  0.38 ± 0.02 0.4 ± 0.02 0.31 0.67 0.26 - 1.1 

Ribose  4.05 ± 0.33 3.66 ± 0.39 0.31 0.67 0.88 - 0.9 

SM 35:1  0.16 ± 0.01 0.17 ± 0.01 0.31 0.67 0.80 - 1.1 

TG 48:0  1.24 ± 0.31 0.86 ± 0.04 0.31 0.67 1.19 - 0.7 

TG 54:4  17.8 ± 8.18 8.52 ± 1.28 0.31 0.67 1.17 - 0.5 

Tryptophan  1.75 ± 0.26 1.55 ± 0.26 0.31 0.67 0.44 - 0.9 

ChoE (20:4)  62.3 ± 3.02 67.79 ± 3.27 0.34 0.67 0.92 - 1.1 

ChoE (22:4)  4.72 ± 0.26 5.18 ± 0.3 0.34 0.67 0.59 - 1.1 

PE 38:5 e  2.07 ± 0.36 2.64 ± 0.56 0.34 0.67 0.63 - 1.3 

SM 32:1  0.24 ± 0.01 0.27 ± 0.02 0.34 0.67 0.47 - 1.1 

TG 46:2  0.39 ± 0.08 0.3 ± 0.02 0.34 0.67 1.05 - 0.8 

TG 51:2  1.03 ± 0.45 0.58 ± 0.08 0.34 0.67 1.01 - 0.6 

TG 52:3  52.41 ± 16.39 33.45 ± 5.31 0.34 0.67 1.09 - 0.6 

TG 52:6  1.91 ± 1.01 0.94 ± 0.22 0.34 0.67 1.04 - 0.5 

TG 54:7  8.71 ± 4.11 4.34 ± 0.75 0.34 0.67 1.16 - 0.5 

Alanine  0.39 ± 0.07 0.45 ± 0.08 0.38 0.70 0.63 - 1.2 

ChoE (18:1)  2.35 ± 0.07 2.43 ± 0.18 0.38 0.70 0.09 - 1 

PC 34:3 e  0.02 ± 0 0.02 ± 0 0.38 0.70 0.83 - 1 

ChoE (17:0)  0.13 ± 0.01 0.13 ± 0 0.43 0.70 0.48 - 1 

ChoE (20:2)  0.86 ± 0.05 0.91 ± 0.06 0.43 0.70 0.08 - 1.1 

DG 36:2  1.39 ± 0.06 1.45 ± 0.06 0.43 0.70 0.66 - 1 

LPC 18:0  49.81 ± 1.79 51.54 ± 2.09 0.43 0.70 0.35 - 1 

PC 36:2  12.64 ± 0.81 13.17 ± 0.67 0.43 0.70 0.17 - 1 

TG 50:2  15.37 ± 7.15 8.76 ± 1.9 0.43 0.70 0.95 - 0.6 

TG 52:2  21.51 ± 13.25 8.94 ± 1.76 0.43 0.70 0.84 - 0.4 

TG 54:6  16.71 ± 3.96 12.25 ± 1.56 0.43 0.70 1.04 - 0.7 

ChoE (17:1)  0.07 ± 0 0.07 ± 0 0.47 0.70 0.40 - 1 

Fructose-6-phosphate  0.14 ± 0.02 0.16 ± 0.02 0.47 0.70 0.38 - 1.1 

PC 32:0  0.58 ± 0.03 0.6 ± 0.03 0.47 0.70 0.11 - 1 

PC 38:6 e  0.05 ± 0 0.06 ± 0 0.47 0.70 0.81 - 1.2 

SM 34:1  17.31 ± 0.65 18.33 ± 0.97 0.47 0.70 0.57 - 1.1 

SM 36:1  1.14 ± 0.05 1.21 ± 0.07 0.47 0.70 0.54 - 1.1 

SM 36:2  0.42 ± 0.02 0.44 ± 0.02 0.47 0.70 0.63 - 1 

TG 48:2  2.31 ± 1.29 1.17 ± 0.25 0.47 0.70 0.87 - 0.5 

TG 48:3  0.7 ± 0.37 0.37 ± 0.07 0.47 0.70 0.87 - 0.5 

TG 50:1  6.36 ± 3.98 2.51 ± 0.48 0.47 0.70 0.96 - 0.4 

TG 50:4  2.91 ± 1.73 1.3 ± 0.32 0.47 0.70 0.94 - 0.4 

Alpha-tocopherol  0.56 ± 0.04 0.53 ± 0.03 0.52 0.73 0.45 - 0.9 

ChoE (22:5)  0.55 ± 0.03 0.58 ± 0.04 0.52 0.73 0.25 - 1.1 

LPC 20:0  0.31 ± 0.01 0.32 ± 0.01 0.52 0.73 0.53 - 1 

PC 34:1 e  0.11 ± 0 0.11 ± 0.01 0.52 0.73 0.41 - 1 

PC 36:4  15.99 ± 0.86 16.57 ± 0.89 0.52 0.73 0.12 - 1 

PC 38:3  0.61 ± 0.12 0.68 ± 0.08 0.52 0.73 0.47 - 1.1 

DG 34:3  0.37 ± 0.02 0.4 ± 0.03 0.57 0.76 0.50 - 1.1 

LPC 18:1  12.68 ± 0.59 13.55 ± 0.61 0.57 0.76 0.66 - 1.1 
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PC 32:1  0.26 ± 0.04 0.3 ± 0.06 0.57 0.76 0.03 - 1.2 

PC 36:2 e  0.01 ± 0 0.01 ± 0 0.57 0.76 0.68 - 1 

DG 34:1  1.14 ± 0.03 1.12 ± 0.03 0.62 0.77 0.38 - 1 

PC 40:4  0.13 ± 0.01 0.14 ± 0.01 0.62 0.77 0.07 - 1.1 

SM 38:1  0.49 ± 0.02 0.51 ± 0.03 0.62 0.77 0.32 - 1 

SM 39:1  0.16 ± 0.03 0.14 ± 0.02 0.62 0.77 0.75 - 0.9 

SM 40:1  3.58 ± 0.08 3.83 ± 0.18 0.62 0.77 0.70 - 1.1 

SM 40:2  0.79 ± 0.06 0.81 ± 0.06 0.62 0.77 0.07 - 1 

SM 42:1  13.2 ± 0.37 13.47 ± 0.68 0.62 0.77 0.07 - 1 

TG 50:3  11.1 ± 6.87 5.07 ± 1.39 0.62 0.77 0.85 - 0.5 

ChoE (16:1)  0.38 ± 0.03 0.4 ± 0.03 0.68 0.81 0.18 - 1.1 

Isoleucine  0.71 ± 0.32 0.41 ± 0.19 0.68 0.81 0.34 - 0.6 

LPC 18:0 e  0.08 ± 0 0.08 ± 0 0.68 0.81 0.12 - 1 

PE 36:4  3.24 ± 0.31 2.98 ± 0.3 0.68 0.81 0.68 - 0.9 

Lactic acid  6.9 ± 0.46 7.11 ± 0.36 0.73 0.85 0.40 - 1 

PC 32:2  0.15 ± 0.02 0.16 ± 0.01 0.73 0.85 0.10 - 1.1 

PC 38:2  0.11 ± 0.01 0.09 ± 0.01 0.73 0.85 0.92 - 0.8 

PC 38:4 e  0.05 ± 0 0.05 ± 0 0.73 0.85 0.10 0.01 1 

Leucine  0.26 ± 0.12 0.14 ± 0.08 0.79 0.89 0.51 - 0.5 

PC 33:0  0.03 ± 0 0.03 ± 0 0.79 0.89 0.48 - 1 

SM 42:2  8.38 ± 0.2 8.27 ± 0.47 0.79 0.89 0.34 - 1 

Urea  2.94 ± 0.11 2.86 ± 0.12 0.79 0.89 0.42 - 1 

Glycine  2.74 ± 0.55 2.25 ± 0.36 0.85 0.92 0.37 - 0.8 

PC 36:3 e  0.05 ± 0 0.05 ± 0 0.85 0.92 0.13 - 1 

PC 38:5 e  0.09 ± 0.01 0.09 ± 0.01 0.85 0.92 0.05 - 1 

PC 40:5  0.16 ± 0.03 0.14 ± 0.01 0.85 0.92 0.45 - 0.9 

SM 41:1  3.49 ± 0.09 3.59 ± 0.14 0.85 0.92 0.28 - 1 

Glutamine  1.13 ± 0.17 1.03 ± 0.19 0.91 0.95 0.29 - 0.9 

Glycolic acid  3.79 ± 0.12 4 ± 0.35 0.91 0.95 0.02 - 1.1 

PC 30:0  0.04 ± 0 0.04 ± 0 0.91 0.95 0.41 - 1 

PC 36:0  0.09 ± 0 0.09 ± 0.01 0.91 0.95 0.15 - 1 

LPC 16:0 e  0.39 ± 0.02 0.39 ± 0.02 0.97 0.98 0.10 - 1 

PC 38:4  19.45 ± 1.2 19.4 ± 0.93 0.97 0.98 0.14 - 1 

SM 41:2  0.66 ± 0.04 0.65 ± 0.04 0.97 0.98 0.23 - 1 

SM 42:3  3.95 ± 0.16 3.97 ± 0.17 0.97 0.98 0.07 - 1 

PC 31:0  0.03 ± 0 0.03 ± 0 1.00 1.00 0.82 - 1 

PC 34:0  0.31 ± 0.01 0.32 ± 0.02 1.00 1.00 0.05 - 1 

 

UNIVERSITAT ROVIRA I VIRGILI 
MULTI-OMICS BIOMARKERS OF METABOLIC HOMEOSTASIS OF RISK FACTORS ASSOCIATED TO 
NON-COMMUNICABLE DISEASES 
Julia Hernandez Baixauli 



III. Results: Manuscript 6 

352 
 

 

Supplementary Figure 1. PCA of plasma metabolomics in the early stress stage. Blue represents CON group 

and orange 3d CUMS group (n = 10 animals per group). 

Supplementary table 2. Statistical analysis of urine metabolites in the early stress stage. CON and 3d CUMS 

groups (n = 10 animals per group) are represented by relative abundances (AU). Relative abundances of 

metabolites are presented by the mean ± SEM. Urine metabolites are sorted by p-value.  The summary of 

univariant and multivariate analysis is shown including p-value, q-value, VIP value and FC. The statistically 

significant p-values and q-values (< 0.05) are highlighted in bold. Abbreviations: TMAO, trimethylamine N-

oxide; 3-HPPA, 3-hydroxyphenylpropionate; 4-PY, methyl-4-pyridone-5-carboxamide; DMA, 

Dimethylamine; NAD+, nicotinamide adenine dinucleotide.  

Metabolite CON 3d CUMS p-value q-value VIP  RF FC 

Taurine 442.78 ± 38.45 644.38 ± 53.46 0.01 0.38 2.57 0.18 1.5 

N.N-Dimethylglycine 3.71 ± 0.59 2.18 ± 0.21 0.02 0.38 2.27 0.21 0.6 

Methylamine 5.09 ± 0.44 4.15 ± 0.37 0.08 0.88 1.52 0.07 0.8 

N-Acetylglycine 29.45 ± 1.25 31.9 ± 2.26 0.11 0.88 0.69 0.07 1.1 

Glycine 7.75 ± 0.65 6.39 ± 0.43 0.13 0.88 1.78 0.04 0.8 

TMAO 3 ± 0.21 2.52 ± 0.16 0.13 0.88 1.98 - 0.8 

Pseudouridine 9.09 ± 0.81 9.42 ± 0.68 0.21 0.88 0.08 - 1 

2-Oxoglutarate 292.51 ± 36.51 244.45 ± 36.43 0.24 0.88 0.72 0.09 0.8 

Betaine 28.54 ± 3.05 32.05 ± 2.64 0.24 0.88 0.50 - 1.1 
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Malate 6.94 ± 1.01 8.84 ± 0.73 0.24 0.88 1.21 - 1.3 

Alanine 4.3 ± 0.48 3.56 ± 0.27 0.31 0.88 1.31 - 0.8 

Hippurate 235.99 ± 18.29 211.23 ± 13.23 0.31 0.88 1.12 0.02 0.9 

α-hydroxyhippurate 0.74 ± 0.1 0.89 ± 0.11 0.31 0.88 0.59 - 1.2 

Citrate 336.66 ± 36.14 320.26 ± 32.95 0.35 0.88 0.12 0.01 1 

Phenylacetylglycine 34.25 ± 6.33 40.12 ± 4.67 0.35 0.88 0.39 0.01 1.2 

N-acetylglycoprteins 63.31 ± 2.81 64.9 ± 4.13 0.39 0.88 0.02 0.05 1 

Trimethylamine 0.51 ± 0.14 0.89 ± 0.25 0.39 0.88 1.62 0.05 1.7 

Tyrosine 7.43 ± 1.49 8.06 ± 1.24 0.39 0.88 0.09 0.03 1.1 

NAD+ 0.35 ± 0.07 0.31 ± 0.05 0.44 0.90 0.47 0.01 0.9 

2-deoxycytidine 1.24 ± 0.16 1.36 ± 0.16 0.49 0.90 0.49 - 1.1 

Creatinine 185.21 ± 10.84 166.45 ± 11.89 0.49 0.90 1.54 - 0.9 

Leucine 13.3 ± 0.73 12.25 ± 0.83 0.49 0.90 1.15 0.01 0.9 

Formate 2.33 ± 0.37 2.08 ± 0.28 0.54 0.90 0.44 - 0.9 

Fumarate 3.02 ± 0.45 2.57 ± 0.43 0.54 0.90 0.60 0.01 0.9 

Succinate 41.36 ± 2.33 43.83 ± 3.83 0.54 0.90 0.68 - 1.1 

1-methylnicotinamide 0.11 ± 0.08 0.07 ± 0.03 0.60 0.90 0.43 0.04 0.6 

Allantoin 196.28 ± 11.94 181.57 ± 10.82 0.60 0.90 1.25 0.02 0.9 

o-Coumaric acid 1.57 ± 0.4 1.77 ± 0.39 0.65 0.90 0.30 - 1.1 

Sarcosine 10.39 ± 1.27 9.73 ± 1.09 0.65 0.90 0.60 - 0.9 

Dimethylamine (DMA) 14.68 ± 3.03 11.5 ± 1.22 0.71 0.90 0.16 0.01 0.8 

Indoxyl Sulphate 5.19 ± 0.4 5.5 ± 0.6 0.71 0.90 0.13 - 1.1 

3-methyl-2-oxovalerate 4.92 ± 0.39 5.7 ± 0.83 0.78 0.90 0.69 - 1.2 

N6-Acetyllysine 30.2 ± 2.44 31.7 ± 2.03 0.78 0.90 0.37 - 1 

3-HPPA 4.86 ± 2.09 2.77 ± 0.71 0.84 0.90 0.96 - 0.6 

3-hydroxyisovalerate 3.65 ± 0.33 3.53 ± 0.25 0.84 0.90 0.40 - 1 

4-PY 5.86 ± 0.64 6.31 ± 0.39 0.84 0.90 0.38 - 1.1 

Acetate 5.31 ± 0.76 6.29 ± 1.19 0.84 0.90 0.57 - 1.2 

HPPA sulfate 3.44 ± 0.95 2.63 ± 0.37 0.84 0.90 0.94 - 0.8 

Tryptophan 5.21 ± 0.4 5.5 ± 0.6 0.84 0.90 0.08 - 1.1 

Valine 1.16 ± 0.1 1.32 ± 0.2 0.84 0.90 0.45 - 1.1 

Lactate 11.55 ± 1.09 11.25 ± 0.7 0.90 0.94 0.26 - 1 

Fucose 8.57 ± 0.55 8.48 ± 0.5 1.00 1.00 0.39 0.01 1 
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Supplementary Figure 2. PCA of urine metabolomics in the early stress stage. Blue represents CON group 

and orange 3d CUMS group (n = 10 animals per group). 

Supplementary table 3. Summary of bacteria species in the early stress stage. The summary of univariant 

analysis includes the results of MW test (p-value), MW corrected by BH (q-value) and FC; between CON 

group and 3d CUMS group (n = 8 animals per group). The alignment was done indicating the closest name 

of specie to the sequence (the best hit). Taxonomic data is presented by the mean of relative abundance 

(%) and shorted by p-value. The statistically significant values (< 0.05) are highlighted in bold. 

Specie CON 3d CUMS p-value q-value FC 

Bacteroides uniformis 7.71% 4.93% 0.05 0.32 0.6 

Escherichia coli 6.27% 1.75% 0.05 0.32 0.3 

Lactobacillus murinus 10.68% 2.24% 0.06 0.32 0.2 

Akkermansia muciniphila 25.84% 41.66% 0.11 0.42 1.6 

Firmicutes bacterium ASF500 0% 0.03% 0.28 0.43 10.0 

Muribaculaceae bacterium DSM 103720 24.09% 25.33% 0.30 0.43 1.1 

Muribaculum intestinale 14.31% 13.61% 0.30 0.43 1.0 

Mucispirillum schaedleri 5.26% 3.81% 0.34 0.43 0.7 

Bacteroides caecimuris 0.02% 0.03% 0.34 0.43 1.7 

Anaerotruncus sp G3 2012 0.89% 0.98% 0.41 0.44 1.1 

Oscillibacter sp 1 3 0.46% 0.41% 0.41 0.44 0.9 

Parabacteroides goldsteinii 4.47% 5.21% 0.48 0.48 1.2 
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Supplementary table 4. Summary of virus species in the early stress stage. The summary of univariant 

analysis includes results of MW test (p-value), MW corrected by BH (q-value) and FC; between CON group 

and 3d CUMS group (n = 8 animals per group). The alignment was done indicating the closest name of specie 

to the sequence (the best hit). Taxonomic data is presented by the mean of relative abundance (%) and 

shorted by p-value. The statistically significant values (< 0.05) are highlighted in bold. 

Specie CON 3d CUMS p-value q-value FC 

uncharacterized herpesvirus 38.50% 61.01% 0.02 0.31 1.6 

Human alphaherpesvirus 2 0% 0.33% 0.05 0.40 - 

Alcelaphine gammaherpesvirus 1 5.94% 3.05% 0.07 0.40 0.5 

Lactobacillus prophage Lj928 0.14% 2.02% 0.13 0.40 14.9 

Koala retrovirus 0.33% 0.06% 0.25 0.50 0.2 

Lactobacillus prophage Lj771 7.11% 5.48% 0.30 0.50 0.8 

Abelson murine leukemia virus 13.90% 6.14% 0.34 0.50 0.4 

Pestivirus Giraffe 1 0.18% 0.30% 0.34 0.50 1.6 

Murine osteosarcoma virus 9.29% 6.15% 0.41 0.50 0.7 

Ateline gammaherpesvirus 3 5.29% 3.62% 0.43 0.50 0.7 

Stx2 converting phage 1717 6.93% 4.40% 0.45 0.50 0.6 

Bovine alphaherpesvirus 1 0.33% 0.78% 0.47 0.50 2.4 

Anguillid herpesvirus 1 3.57% 4.21% 0.50 0.50 1.2 
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Supplementary figure 3. Integration of plasma metabolomics, urine metabolomics and metagenomics data 

using DIABLO in the early stress stage. (a) Global overview: correlation values between data at the 

component level (component 1). The first components from each data set are highly correlated to each 

other. (b) Arrow plot: the start of the arrow indicates the centroid between all data sets for a given sample 

and the tips of the arrows the location of that sample in each omic, highlighting the agreement between 

the 3 data sets at the sample level. In the figure (a) and (b) the group 3d CUMS is represented by orange 

and the CON group by blue. (c) Correlation circle plot: This plot highlights the contribution of each selected 

variable to component 1 and 2. Clusters of points indicate a strong correlation between variables. Each 

colour and shape indicate the type of features, i.e., plasma metabolites (purple square), urine metabolites 

(red triangle) and finally, bacteria and virus species (green circle). 3d CUMS in orange and CON in blue. 

(a)

(b)

(c)
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Supplementary figure 4. Feature integration in plasma metabolomics, urine metabolomics and 

metagenomics in the early stress stage. (a) (c) (e) Feature impact in each data set in component 1. 3d CUMS 

in orange and CON in blue. (b) (d) (f) ROC curve and AUC averaged using one-vs-all comparisons in the 

different data set.  
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Supplementary table 5. Summary of the comparison between univariate and multivariate analysis, random 

forest, and multi-omics integration in the early stress stage. The different methods of analysis are 

represented in the table - univariate and multivariate (U/M) analysis, random forest (RF) and the multi-

omics integration (DIABLO) – and the weights of the features in the different omic approaches. The values 

of the methods can be 0 (no influence) or 1 (influence). The final value is the summatory of the weights of 

the different methods of analysis: features with weight of 3 (green) presented the highest impact on the 

model followed by weights of 2 (yellow). Abbreviations: DG, diacylglycerol; ChoE, cholesterol ester. 

Source Feature U/M analysis RF DIABLO Weight 

P
la

sm
a 

m
e

ta
b

o
lo

m
ic

s 
 

Malic acid 1 1 1 3 

Threonic acid 1 1 1 3 

Alpha-ketoglutarate 1 1 1 3 

Succinic acid 1 1 1 3 

Cholesterol 1 1 1 3 

3-hydroxybutiric acid 0 1 1 2 

Pyruvic acid 1 1 0 2 

Oleic acid 0 1 0 1 

ChoE (18:3) 0 1 0 1 

Glyceric acid 0 1 0 1 

Aspartic acid 0 0 1 1 

DG 34:2 0 0 1 1 

U
ri

n
e

 m
e

ta
b

o
lo

m
ic

s 
 

N,N-Dimethylglycine 0 1 1 2 

Taurine 0 1 1 2 

2-Oxoglutarate 0 1 0 1 

N-Acetylglycine 0 0 1 1 

Methylamine 0 1 0 1 

Trimethylamine 0 1 0 1 

N-acetylglycoprteins 0 1 0 1 

2-oxoglutarate 0 1 0 1 

1-methylnicotinamide 0 1 0 1 

Glycine 0 1 0 1 

α-hydroxyhippurate 0 0 1 1 

Malic acid 0 0 1 1 

Betaine 0 0 1 1 

M
e

ta
ge

n
o

m
ic

s 
 

Escherichia coli 0 0 1 1 

Lactobacillus murinus 0 0 1 1 

Akkermansia muciniphila 0 0 1 1 

uncharacterized herpesvirus 0 0 1 1 

Bacteroides uniformis 0 0 1 1 
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IV. General discussion 
NCDs is the umbrella term that covers a set of diseases that are developed mainly 

as a consequence of the accumulation and persistence of different risk factors over 

long periods of time [1]. As Van Ommen et al., proposed, the onset of NCDs arises 

from the imbalance of a few overarching processes that are mainly metabolic stress, 

inflammatory stress, oxidative stress and psychological stress [2]. This premise has 

offered new opportunities to discern early alterations that are responsible for onset 

of NCDs. Thus, the present work unfolds a characteristic metabolic signature that can 

be measured by omics technologies for specific risk factors associated to general 

processes. These include the deregulation of carbohydrate metabolism, lipid 

metabolism, hypertension, and gut dysbiosis, as representative of metabolic stress; 

inflammation stress; oxidative stress and psychological stress. 

In this sense, it has been feasible to isolate 7 risk factors in rodent models which 

usually in the pathological state tend to occur in concomitantly. These metabolic 

profiles have been previously discussed in the results section, except the 

carbohydrates disfunction risk factor. In this regard, carbohydrate dysfunction has 

been excluded from the results section due to time issues. In addition, the proposed 

experimental model (based on STZ administration) [3] has also been extensively 

studied at the metabolic level and, consequently, it has been one of the less likely to 

provide new relevant information [4]. To date, STZ preclinical model is the closest 

approach to human carbohydrate dysfunction. Besides this inconvenient, other risk 

factors have been developed by: (a) for the induction of early stages of 

hyperlipidaemia, a low dose of P407 was administered [5]; (b) for hypertension, which 

is a risk factor similar to the preceding conditions, we used the genetically well-

established SHR model in which rats are spontaneously hypertensive [6]; (c) in the 

case of gut dysbiosis, it was achieved by the transplantation of microbiota from rats 

with obesity (induced by cafeteria diet treatment to healthy rats) [7]; (d) the 

inflammation stress model was generated by the intermittent and increasing 

administration of LPS that caused a chronic inflammation model [8]; (e) the oxidative 

stress model was obtained by the administration of two increasing doses of the 

pesticide PQ [9]; finally, (f) the psychological stress was achieved by the adaptation of 

a model of depression (CUMS) [10]. In general, the different preclinical models were 

based on those that have been widely used before by the scientific community, and 

their mechanism of action are widely known. In this case, animal models are the 

means to underline the metabolic alterations associated to the different risk factors 

that are associated to overarching processes.  

In the current work, different metabolic profiles have been analysed for different 

risk factors presenting both common and different characteristics between them. 

Therefore, each risk factor has been analysed in an isolated way. Additionally, we have 

further deep into the results with the intention of integrating their metabolic 

signature into a general predictive model. To do that, a final analysis has been 
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performed in order to identify a metabolomic signature that can be used to detect 

early alterations for different risk factors in plasma. Although the metabolomic 

analysis of urine samples has been successfully used to identify a variety of 

metabolomic profiles and potential biomarkers under a range of different conditions, 

our results are not powerful enough to obtain a specific metabolic profile for urine. 

On the other hand, despite the microbiome profiling has provided new opportunities 

to further characterise the metabolic state of several animal models, there are no 

conclusive results of promising biomarkers regarding the microbiome. Thus, this deep 

integrative analysis has been performed only with the plasma metabolome from the 

different experimental models due to the success on obtaining significant reliable 

biomarkers in the different risk factor modelling studies. 

Regarding the data integration, we have carried out a previous step which 

consisted of data harmonization before the integrative analysis. Thus, since 

experiments for each risk factor were conducted independently, the metabolomics 

values of each risk factor were normalized by their respective control groups in order 

to avoid the inter-experiment variability. The first step consisted of an unsupervised 

analysis based on T-SNE to determine the variance between groups and studies 

(Figure 1). Results show that: (1) as expected, there are profound differences in the 

plasma metabolome between control groups and risk factors’ animals; (2) a closer 

view on risk factors alone (Figure 1 inset) shows that inflammation, oxidative and 

psychological stress almost fully segregates from the metabolic stressors (i.e., 

dyslipidemia, carbohydrate dysregulation, hypertension, microbiota dysbiosis). 

Metabolic stress-related risk factors tend to present greater clustering between them 

except for hypertension; this segregation could be explained by the genetic 

background of the models [6]. In fact, these results reflect reality and highlight the 

difficulty of isolating a risk factor, as they tend to appear concomitantly. However, 

considering that this is an unsupervised unbiased method, these results suggest that 

the initial hypothesis, based on the idea that overarching processes present a 

distinctive metabolomic signature, is confirmed.  

  

UNIVERSITAT ROVIRA I VIRGILI 
MULTI-OMICS BIOMARKERS OF METABOLIC HOMEOSTASIS OF RISK FACTORS ASSOCIATED TO 
NON-COMMUNICABLE DISEASES 
Julia Hernandez Baixauli 



IV. General discussion 

 

363 
 

 

Fi
gu

re
 1

. 
T-

SN
E 

p
lo

t 
o

f 
th

e
 a

n
al

ys
is

 o
f 

al
l 

th
e

 r
is

k 
fa

ct
o

rs
 in

cl
u

d
in

g 
co

n
tr

o
ls

 a
n

d
 f

o
cu

si
n

g 
o

n
 r

is
k 

fa
ct

o
rs

. 
Th

e 
fi

rs
t 

p
lo

t 
w

as
 c

al
cu

la
te

d
 w

it
h

 a
ll 

av
ai

la
b

le
 d

at
a.

 

O
n

ce
 w

e 
o

b
se

rv
ed

 t
h

at
 C

O
N

 a
n

d
 R

F 
se

gr
eg

at
e 

d
if

fe
re

n
tl

y,
 t

h
e

 a
n

al
ys

is
 w

as
 p

er
fo

rm
ed

 o
n

ly
 w

it
h

 R
F.

 A
b

b
re

vi
at

io
n

s:
 N

F,
 i

n
fl

am
m

at
io

n
; 

G
D

, 
gu

t 
d

ys
b

io
si

s;
 H

L,
 

h
yp

er
lip

id
ae

m
ia

; P
S,

 p
sy

ch
o

lo
gi

ca
l s

tr
es

s;
 O

S,
 o

xi
d

at
iv

e 
st

re
ss

; H
T,

 h
yp

er
te

n
si

o
n

; C
D

, c
ar

b
o

h
yd

ra
te

 d
ys

fu
n

ct
io

n
. G

ro
u

p
s:

 c
o

n
tr

o
l; 

C
O

N
, c

o
n

tr
o

l; 
R

F,
 r

is
k 

fa
ct

o
r.

 

UNIVERSITAT ROVIRA I VIRGILI 
MULTI-OMICS BIOMARKERS OF METABOLIC HOMEOSTASIS OF RISK FACTORS ASSOCIATED TO 
NON-COMMUNICABLE DISEASES 
Julia Hernandez Baixauli 



IV. General discussion 

 

364 
 

The second step has been to identify a metabolic profile that can discriminate 

between the different isolated risk factors. For this purpose, a random forest approach 

(a supervised machine learning method) has been used. Thus, we have been able to 

elucidate a metabolic profile that is able to predict the presence of the different risk 

factors. The model has been trained with 51 animals that showed 95 % accuracy 

during the training phase and tested with 13 animals that showed 92 % accuracy in 

the testing phase (Figure 2). In general, this predictive model could differentiate each 

risk factor by means of metabolomic data. Among the 13 animals tested, the 

prediction of inflammation, oxidative stress and psychological stress was 100% 

accurate. On the other hand, interestingly the only mismatching has been derived 

from animals of the risk factor associated with metabolic stress. More precisely, one 

animal was grouped as hypertension, but it really corresponded to the gut dysbiosis 

risk factor (Figure S1). Despite this mismatch, the model has obtained very good 

results and is therefore a good initial and robust approximation.  

 

 

Figure 2. Confusion matrix of random forest test for risk factors. On the X-axis the predicted labels and on 

the y-axis the true labels are represented. Thirteen variables have been used for training, of which two do 

not coincide with the real ones. Abbreviations: NF, inflammation; GD, gut dysbiosis; HL, hyperlipidaemia; 

PS, psychological stress; OS, oxidative stress; HT, hypertension; CD, carbohydrate dysfunction.at control; 

CON, control; RF, risk factor.  

The efficiency of the predictive model can be explained by the 20 metabolites 

presented in Figure 3; the results show that DG 36:4, followed by alpha-ketoglutarate 

and glycerol present the highest predictive power in almost all groups. These 

metabolites provided an interesting metabolic profile for monitoring the progression 

of different risk factors. Additionally, it has been possible to determine the 

metabolites that most influence the modelling for each risk factor (Figure S2-S8). 
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Altogether, the results of this thesis suggest that the monitoring of DGs along with 

other lipids such as phospholipids and derived lysophospholipids, as well as TCA cycle 

intermediates, can be used to differentiate the status of different overarching 

processes.  

 

Figure 3. Variable importance plot of random forest (SHAP values) for risk factors. The following variable 

importance plot lists the most significant biomarkers in descending order for the RF model. The top 

biomarkers contribute more to the model than the bottom ones and thus have high predictive power. 

Abbreviations: INF, inflammation; GD, gut dysbiosis; HL, hyperlipidaemia; PS, psychological stress; OS, 

oxidative stress; HT, hypertension; CD, carbohydrate dysfunction.at control; CON, control; RF, risk factor.  

The introduction of lipids as biomarkers has gained importance over the last 

couple of decades. Many lipids have been closely implicated in the onset and 

progression of different diseases. In fact, almost 35,000 articles have been published 

in the last two decades (a search in Pubmed using “lipid”, “biomarkers” and “disease” 

as keywords was performed). Of these, although it can be intuitively assumed that the 

vast majority are related to CVDs [11], lipid biomarkers have been also found to be 

discriminative for other important conditions. Recent evidence indicates that lipid 

metabolism is affected in numerous neurodegenerative diseases including 

Alzheimer’s [12] or Parkinson’s disease [13]. These dysfunctions lead to abnormal 
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levels of certain lipids in the brain, cerebrospinal fluid and plasma that are of interest 

to establish lipid profiles in neurodegenerative diseases [14]. Another case would be 

cancer in which these biomarkers have been of great utility, as they contribute to the 

monitoring of tumours and could also provide some information about tumoral 

heterogeneity [15]. These results postulate the lipidomic approach as a way for the 

discovery of integrative biomarkers capable to overcome the intricacy of pathological 

conditions and could help on the diagnosis as well as on the understanding of such 

complex pathologies.  

Specifically, DGs are the lipids with the greatest impact on the models used in the 

present work, either in the analysis of the different risk factors or in the integrative 

analysis discussed above. Structurally, a DG is a glyceride consisting of two fatty acid 

chains covalently bonded to a glycerol. Functionally, its small size and simple 

composition confer exceptional properties to DG as: a basic component of biological 

membranes, an intermediate in lipid metabolism and a second messenger in lipid 

mediated signalling [16]. In fact, DGs are tightly regulated because of the critical 

structural and signalling roles. Focusing on their structural functions, DGs are 

precursors of other lipids (i.e., glycerophospholipids and triacylglycerols (TGs)), which 

are required in the Golgi apparatus for the formation of vesicles for outer transport; 

and are also fundamental in the structuration endoplasmic reticulum and nuclear 

envelope [16]. Regarding their signal transduction, DGs can modulate nuclear signal 

transduction via activation of protein kinase C (PKC) that was the first receptor to be 

described for DG [17]. Although PKC is the most recognizable target of DG, there are 

other DG receptors that have also been discovered, including chimaerins, Ras guanyl-

releasing proteins (RasGRPs), Munc13, protein kinase Ds (PKDs) and DG kinases [18]. 

Additionally, it has been described that immune function is also modulated by the 

action of DG [19]. Given such diverse roles and functions of DGs, slight alterations in 

these tightly regulated systems can yield dramatic effects on normal cell processes. 

Thus, DGs have been described as a key molecule with severe effects on organ 

development and cell growth associated with diseases such as cancer, diabetes, 

immune system disorders and Alzheimer's disease [16].  

Specifically, DG 36:4 and DG 34:2 are the DGs with the greatest impact on the 

integrative analysis and in the different risk factors studied in this work. Although the 

structure of the carbons and saturations has not been identified by our methodology, 

based on the scientific literature it is likely to think that DG 36:4 could be composed 

by palmitic acid (C16:0) and arachidonic acid (AA, C20:4) while DG 34:2 share palmitic 

acid with DG 36:4 and the second FFA could be linoleic acid (C18:2). AA is a long-chain 

polyunsaturated FFA of the omega-6 group and represents 7-10 % of total circulating 

FFAs; it is the second most abundant omega-6 fatty acid in the human body, with 

linoleic acid being the first [20]. Endogenous AA generation mainly occurs via the 

release of AA from cell membrane phospholipids. It has been described that multiple 

stimulus lead to the release of membrane-bound AA via the activation of cellular 

phospholipases, principally the phospholipase A2 (PLA2) family [21]. This cleavage step 

is rate limiting on the production of biologically relevant arachidonate metabolites. In 
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the case of PLA2 activation, membrane receptors activate guanine nucleotide-binding 

(G) proteins, leading to the release of AA directly from membrane phospholipids. On 

the other hand, activation of phospholipase C (PLC) or phospholipase D (PLD) releases 

AA via the sequential action of the phospholipase-mediated production of DG, with 

the subsequent release of AA from DG by the action of DG lipase [22]. For instance, 

AA is metabolized to form eicosanoids by the action of cyclooxygenases (COX1 and 

COX2), which generates prostaglandins and thromboxanes; or by lipoxygenases, that 

subsequently generate leukotrienes and lipoxins, which are associated with the pro-

inflammatory response [23]. Additionally, AA can be synthesized in the body from 

linoleic acid through three steps mediated by two enzymes, desaturase and elongase, 

and may also be derived from the diet. Thus, our results suggest a relation between 

the altered DGs and AA metabolism, which is the major precursor of a series of 

bioactive metabolites (eicosanoids), which regulate several physiological processes.  

In line with of our results, there are studies that suggest that DG composition 

reflects differences in underlying lipid metabolism between healthy and several 

pathological conditions. On the one hand, DG 36:4 was decreased in hypertension, 

inflammation, and oxidative stress model which could suggest, as it has been 

previously stated, that they are being hydrolysed in favour of metabolites related to 

the AA metabolism [11]. On the other hand, DG 36:4 and DG 34:2 were increased in 

hyperlipidaemia and gut dysbiosis suggesting a role in body lipid storage as it has been 

previously described for FFAs containing molecules, such as DG [24,25]. Thus, DGs 

could play important roles in inflammatory processes and oxidative stress-related 

pathologies as well as in obesity and disrupted metabolic conditions and, 

consequently, could be considered a good candidate for this set of biomarkers that 

form part of the metabolic signature unfolded in this thesis. Altogether, DGs 

circulation could be important for the monitoring of FFAs, because pathways of FFA 

elongation and desaturation are differentially regulated during disease progression. 

However, the mechanism by which the DGs are altered in the risk factors studied is 

currently unknown. 

Additionally, glycerol, which is the backbone in glycerides (e.g., DGs or TGs) and 

is a precursor of TGs and phospholipids in liver and adipose tissue [26], have appeared 

as an important metabolite in the integration analysis. Glycerol along with FFAs are 

released into the bloodstream when fats are metabolised, thus the alteration of this 

three-carbon metabolite might indicate lipid disfunction. In fact, elevated levels of 

glycerol are related to the progression of diabetes. For example, a large population-

based study showed that serum levels of glycerol and FFAs are biomarkers associated 

to an increased risk of development of hyperglycemia and T2DM in Finnish men [27]. 

Although it has no major impact on the risk factors studies at the individual level, 

subtle variations in glycerol may be a sign of altered lipid metabolism, which also 

supports the variations on DGs previously discussed. Furthermore, glycerol is an 

important metabolite in the human body, connecting the metabolic pathways of 

carbohydrates (glycolysis and gluconeogenesis) and lipids. 
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Moreover, TCA cycle intermediates, which are also implicated in the oxidative 

phosphorylation pathway of mitochondria, plays an important role controlling 

physiology and disease [28]. In fact, mitochondria are cellular organelles that generate 

ATP and metabolites for survival and growth, respectively. In addition, several 

metabolic processes are associated with TCA cycle as gluconeogenesis, lipogenesis, 

cholesterol and heme biosynthesis, urea cycle, and inter-conversion of amino acids. 

This means that monitoring TCA cycle intermediates provide a large amount of 

information about the individuals’ status, and therefore might be considered as an 

important source of biomarkers [28]. For example, TCA cycle intermediates have been 

linked to ageing. This link could have an important role in translating basic knowledge 

of the biology of aging into health and disease status [29]. In line with this, BMI, a risk 

factor for CVDs, is associated to metabolites included in the TCA cycle (i.e., alpha-

ketoglutarate and aconitic acid) [30]. In fact, these metabolites are directly related to 

diabetes alterations. Thus, the serum profiling of TCA intermediates has emerged as a 

key approach for its early diagnosis [31]. For example, perturbations in serum and 

urine TCA cycle intermediaries (citric acid, malic, acid, succinic acid, and aconitic acid) 

was observed in diabetic db/db mice and could be considered as an early diagnosis 

tool for diabetes and associated alteration (e.g. nephropathy) [32]. Additionally, the 

relative abundance of TCA intermediates in urine relative to those in serum were 

suggested as an index of metabolic damage [32]. Moreover, TCA intermediates play 

an important role in cancer monitoring for glioma [33], colorectal cancer [34] or lung 

cancer [35], among others.  

Interestingly, the risk factors presenting major alterations in the metabolic profile 

related to the TCA cycle are inflammation, oxidative and psychological stress. In this 

sense, those studies presented alterations in the TCA cycle intermediates in the 

independent and in the integrative analysis. In fact, 6 metabolites out of the top 20 

are intermediates of the TCA cycle.  

During periods of stress in the cell, intermediary metabolites of the TCA cycle can 

be released acting as a danger signals in cytosol and regulating immune response [36]. 

In the case of the inflammation model, the decrease of TCA intermediaries (i.e., alpha-

ketoglutarate, aconitic acid, malic acid, fumaric acid and succinic acid) might be 

indicative of a systemic inhibition of the intracellular TCA cycle that could be 

associated with the regulation of immune response and activation of other energy 

pathways [37]. In fact, metabolic flexibility is essential for immune function. During 

immune response, the immune cells shift to aerobic glycolysis for energy production, 

a less-efficient, but fast-acting pathway [38]. Additionally, the switch to glycolysis 

enables TCA cycle intermediates to be used as key sources of carbon molecules for 

biosynthesis of nucleotides, amino acids, and lipids [38]. In this sense, several 

metabolomic studies point out the decrease of TCA cycle activity as a key 

characteristic of chronic inflammation, related to alterations in lipid and FFA 

metabolism as has been previously discussed [39–41]. In the case of the oxidative 

stress model, TCA intermediates tend to decrease or increase depending on the 

degree of the stressor. In this sense, the TCA cycle is intimately linked to oxidative 
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phosphorylation which implicates multiple reactions of oxidation and reduction that 

are closely related to oxidative stress [28]. 

It is noteworthy to mention that, as has been observed in the inflammatory and 

oxidative stress, several studies have demonstrated a potential link between stressful 

events and the alteration of energy metabolism [42]. More concisely, the stress 

response induced an increase on key intermediate products of the TCA cycle which 

are indicative of the overstimulation of this cycle (i.e., alpha-ketoglutarate, malic acid, 

and succinic acid). This fact differentiates the early psychological stress model from 

the classical CUMS model of depression. Thus, CUMS model is associated with energy 

disruption or deficiency (being one of the most represented depressive symptoms 

associated with the reduction of the activity and curiosity in animal models) [43]. 

These results supports the idea that mitochondria and the energetic metabolism are 

emerging as modulators of behaviour both in rodent and human studies [44].  

Within the TCA cycle, alpha-ketoglutarate is one of the most promising 

intermediates that could be considered as a biomarker, due to its occurrence as one 

of the metabolites with the highest predictive power both in the isolated risk factors 

and in integrative analysis. In addition, due to its crucial role in the TCA cycle, alpha-

ketoglutarate plays a critical role in multiple metabolic processes in experimental 

animals and humans. Alpha-ketoglutarate is a co-substrate for 2-oxoglutarate-

dependent dioxygenases (2-OGDD), which catalyse hydroxylation reactions on various 

types of substrates, including proteins, nucleic acids, lipids, and metabolic 

intermediates producing CO2 and succinic acid. The activity of 2-OGDD is dependent 

on the intracellular ratio of alpha-ketoglutarate to succinic acid or other inhibitors. 

Thus, the disruption of homeostasis of 2-OGDD and alpha-ketoglutarate have 

consequences for health status [28]. The availability of alpha-ketoglutarate has a 

direct impact on gene expression due to its role in regulating epigenetic changes, and 

thus can modulate cellular fate decision by regulating histones and DNA demethylases 

[28]. In macrophages, an important functional role has been attributed to alpha-

ketoglutarate. In this sense, alpha-ketoglutarate favours the anti-inflammatory profile 

while represses the pro-inflammatory responses [45]. Additionally, alpha-

ketoglutarate is an important source of neurotransmitters (i.e., glutamate, glutamine 

and gamma aminobutyric acid (GABA)), which are the major brain neurotransmitters 

mediating excitatory and inhibitory signalling, respectively [46]. As a precursor of 

glutamate and glutamine, alpha-ketoglutarate acts as an antioxidant agent as it 

directly reacts with H2O2 with formation of CO2 and succinic acid [47]. In fact, due to 

its characteristics it is considered a key metabolite regulating aging [48], thus it has 

been proposed as an effective supplement for improving metabolism and reducing 

biological aging (e.g., “Rejuvant” supplement) [49].  

Nowadays, metabolomic profiling is becoming a promising tool for the screening, 

the diagnosis, and the prognosis of NCDs. In our case, the next steps to be followed 

would be the use of the metabolomic data to integrate human data into a predictive 

model containing the metabolomic signatures of the overarching processes. Such 
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approach would allow to determine the global processes mostly altered in a person. 

Hence, nutritional, or medical personalisation strategies could be established based 

on this stratification. To do so, the preclinical results showed herein would need to be 

translated to human metabolome. But the first step, which is the proof of concept 

about the feasibility of such approach has already been achieved here with promising 

results. 

Currently, there are important projects related to the search of robust health 

biomarkers and metabolic profiles to overcome the limitations to understand the 

onset and development of NDCs. In fact, Food and Drug Administration (FDA) and the 

National Institutes of Health (NIH) have worked together to create a set of definitions 

that should guide researchers in developing needed evidence and practitioners in the 

application of biomarkers in health care [50]. Whilst other organizations, such as the 

Clinical Trials Transformation Initiative and the Foundation for the National Institutes 

of Health Biomarkers Consortium, are following these recommendations [50]. For 

example, euCanSHare that is a joint EU-Canada project aimed to establish a cross-

border data sharing and multi-cohort cardiovascular research platform. It is composed 

by more than 35 cohorts that include biomarkers from omics data (e.g., 

metabolomics). 

In the case of personalized nutrition, there are different research groups working 

on the research of biomarkers for personalized nutrition that are useful for the food 

industry. One of these projects is PREVENTOMICS, a project funded by the European 

Union’s program Horizon 2020 under the call of Personalized Nutrition, that aims to 

use health biomarkers for dietary advice applications directed to consumers. Other 

initiative is BIOCLAIMS, a collaborative research project carried out at the European 

level, which has established the principles to identify, establish and validate robust 

biomarkers to quantify the health status.  

Despite the advantages and opportunities, there are various limitations in the 

present thesis. For example, the modelling of risk factors in an isolated way is 

challenging because this situation would not exist in nature, and this entails that only 

relatively mild “close-to-reality” models can be developed. On the other hand, the size 

of our cohort is other of the main limitations of our work because this modest animal 

numbers can certainly limit the power of the statistical and predictive analysis that 

could somehow limit our conclusions. Additionally, the results are limited to the 

selected omic approaches but we must consider that there is other possible 

combination of methodologies that could cover a higher range of features.  

The use of metabolic profiling in the future seems promising because of the 

valuable findings that are emerging from current studies. Furthermore, it seems likely 

that future applications will include novel innovations that brings metabolic profiling 

into the nutritionist and physician's office or even into the surgeon's hands in the 

operating room (e.g., smart knife) [51]. Altogether, the contributions of this thesis 

provide a novel approach about the metabolic profiling of risk factors in different 

animal models, which we hope will stimulate both interest and future applications.  
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Annex I. General discussion: Methods for analysis of 

all risk factors  

7 studies were included in the analysis and each risk factors were standardized 

regarding its control to be able to compare the different studies. Once the 

standardization was done, we work with two groups of data: (1) the whole data 

including controls (CON) and risk factors (RF) that is composed of 129 animals and 124 

variables; (2) and a subset that includes only the RF, thus, this subset is composed of 

64 animals and 124 variables. 

First, unsupervised learning was performed to show how the data is distributed 

in the space and determine if the internal grouping in a set of unlabelled data are the 

samples corresponding to the same risk factor. For this purpose, we used t-distributed 

Stochastic Neighbour Embedding (t-SNE) instead of PCA because it is a non-linear 

Dimensionality reduction technique, involves hyperparameters such as perplexity, can 

handle outliers and is a non-deterministic or randomised algorithm. 

Once the data has been visualized with unsupervised learning, we proceed to use 

a supervised learning technique to be able to interpret our data and see which 

biomarkers are the most influential in separating the different groups. For this 

purpose, the Random Forest classifier was used that is a machine learning method 

that creates decision trees on randomly selected data samples, obtains a prediction 

from each tree, and selects the best solution. It is also a good indicator of the feature 

importance so that we can obtain the most important biomarkers in predicting the 

presence of the different risk factors. In this case, only the RF’s subset was used, thus 

51 animals were used for training the model and 13 for test it. To increase the model 

transparency and explain the output of our random forest model (trained with rodent 

data), we have used the SHAP (SHapley Additive exPlanations) values. SHAP values 

interpret the impact of having a certain value for a given variable in comparison to the 

prediction we had make if that variable took the baseline value. 
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Annex II. General discussion: results analysis 

 

Supplementary figure 1. Individual SHAP value for the gut dysbiosis individual tested in the random 

forest. This plot evaluates each prediction indicating the output value, the base value and the features that 

push the prediction higher (red), and those pushing the prediction lower (blue). In this case the gut dysbiosis 

(GD) rodent is predicted to be associated to hypertension (HT) with higher output value followed by 

carbohydrate dysfunction (CD) and hyperlipidemia (HL). This plot shows the importance of each variable in 

the prediction in which it is observed that the difference between the prediction and the real value is 

minimal: (1) the two factors are favoured in the prediction by alpha-ketoglutarate and glycerol; (2) the 

predicted risk factor is also pushed by DG 36:4 and SM 34:2 and decreased by 34:2 and PC 34:1; (3) the real 

value is favoured by DG 34:2. Thus, the main differences in the prediction are associated to DG 34:2 and DG 

36:4. Abbreviations: SM, sphingomyelin; DG, diacylglycerol; PC, phosphatidylcholine; LPC, lysophospholipid. 
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Supplementary figure 2. Variable importance of random forest (SHAP values) for carbohydrate 

dysfunction (CD-RF). The 25 variables with the highest SHAP values are represented in the figure that can 

further show the positive and negative relationships of the variables. It demonstrates the following 

information: (1) feature importance: variables are ranked in descending order; (2) impact, the horizontal 

location shows whether the effect of that value is associated with a higher or lower prediction. The red 

colour means a biomarker is positively correlated with the target variable. The blue colour means a 

biomarker negatively correlated. Abbreviations: DG, diacylglycerol; LPC, lysophospholipid; PC, 

phosphatidylcholine; SM, sphingomyelin; ChoE, cholesterol ester. 
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Supplementary figure 3. Variable importance of random forest (SHAP values) for gut dysbiosis (GD-RF). 

The 25 variables with the highest SHAP values are represented in the figure that can further show the 

positive and negative relationships of the variables. It demonstrates the following information: (1) feature 

importance: variables are ranked in descending order; (2) impact, the horizontal location shows whether 

the effect of that value is associated with a higher or lower prediction. The red colour means a biomarker 

is positively correlated with the target variable. The blue colour means a biomarker negatively correlated. 

Abbreviations: DG, diacylglycerol; LPC, lysophospholipid; ChoE, cholesterol ester; PC, phosphatidylcholine; 

SM, sphingomyelin. 
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Supplementary figure 4. Variable importance of random forest (SHAP values) for hyperlipidaemia (HL-

RF). The 25 variables with the highest SHAP values are represented in the figure that can further show the 

positive and negative relationships of the variables. It demonstrates the following information: (1) feature 

importance: variables are ranked in descending order; (2) impact, the horizontal location shows whether 

the effect of that value is associated with a higher or lower prediction. The red colour means a biomarker 

is positively correlated with the target variable. The blue colour means a biomarker negatively correlated. 

Abbreviations: DG, diacylglycerol; PC, phosphatidylcholine; ChoE, cholesterol ester; LPC, lysophospholipid; 

TG, triacylglycerol. 

UNIVERSITAT ROVIRA I VIRGILI 
MULTI-OMICS BIOMARKERS OF METABOLIC HOMEOSTASIS OF RISK FACTORS ASSOCIATED TO 
NON-COMMUNICABLE DISEASES 
Julia Hernandez Baixauli 



IV. General discussion 

 

380 
 

 

Supplementary figure 5. Variable importance of random forest (SHAP values) for hypertension (HT-RF). 

The 25 variables with the highest SHAP values are represented in the figure that can further show the 

positive and negative relationships of the variables. It demonstrates the following information: (1) feature 

importance: variables are ranked in descending order; (2) impact, the horizontal location shows whether 

the effect of that value is associated with a higher or lower prediction. The red colour means a biomarker 

is positively correlated with the target variable. The blue colour means a biomarker negatively correlated. 

Abbreviations: DG, diacylglycerol; PC, phosphatidylcholine; ChoE, cholesterol ester; LPC, lysophospholipid; 

TG, triacylglycerol. 
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Supplementary figure 6. Variable importance of random forest (SHAP values) for inflammation (INF-RF). 

The 25 variables with the highest SHAP values are represented in the figure that can further show the 

positive and negative relationships of the variables. It demonstrates the following information: (1) feature 

importance: variables are ranked in descending order; (2) impact, the horizontal location shows whether 

the effect of that value is associated with a higher or lower prediction. The red colour means a biomarker 

is positively correlated with the target variable. The blue colour means a biomarker negatively correlated. 

Abbreviations: DG, diacylglycerol; PC, phosphatidylcholine; TG, triacylglycerol; LPC, lysophospholipid; SM, 

sphingomyelin; ChoE, cholesterol ester. 
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Supplementary figure 7. Variable importance of random forest (SHAP values) for oxidative stress (OS-RF). 

The 25 variables with the highest SHAP values are represented in the figure that can further show the 

positive and negative relationships of the variables. It demonstrates the following information: (1) feature 

importance: variables are ranked in descending order; (2) impact, the horizontal location shows whether 

the effect of that value is associated with a higher or lower prediction. The red colour means a biomarker 

is positively correlated with the target variable. The blue colour means a biomarker negatively correlated. 

Abbreviations: LPC, lysophospholipid; DG, diacylglycerol; SM, sphingomyelin; PC, phosphatidylcholine; 

ChoE, cholesterol ester; TG, triacylglycerol. 
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Supplementary figure 8. Variable importance of random forest (SHAP values) for psychological stress (PS-

RF). The 25 variables with the highest SHAP values are represented in the figure that can further show the 

positive and negative relationships of the variables. It demonstrates the following information: (1) feature 

importance: variables are ranked in descending order; (2) impact, the horizontal location shows whether 

the effect of that value is associated with a higher or lower prediction. The red colour means a biomarker 

is positively correlated with the target variable. The blue colour means a biomarker negatively correlated. 

Abbreviations: DG, diacylglycerol; PC, phosphatidylcholine; LPC, lysophospholipid; SM, sphingomyelin. 
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V. Conclusions 
▪ The different rodent models based on the overarching processes present the 

targeted characteristics for each risk factor and different omic profiles.  These 

include the deregulation of carbohydrate metabolism, lipid metabolism, 

hypertension, and gut dysbiosis, as representative of metabolic stress; chronic 

inflammation; oxidative stress and psychological stress. 

▪ Hyperlipidaemia has been induced by a single IP injection of 150 mg/kg of P407 

in male Wistar rats. This model is characterized by elevated levels of TGs and TC 

that confirms the state of dyslipidaemia. In addition to the total levels of TGs and 

TC, specific lipids are altered in the metabolic profile of hyperlipidaemia (TGs, PCs, 

LPCs, DGs, and ChoEs) in plasma. 

▪ SHR and its normotensive control (WKY) have been selected to establish the 

hypertension rodent model. Being threonic acid and several lipids (SMs, PCs, LPCs 

and ChoEs) characteristics of the hypertension’s metabolic profile of this model.  

▪ Gut dysbiosis has been achieved through the transference of gut microbiota from 

obese to non-obese male Wistar rats. The study of the metabolome, in an obesity-

associated gut dysbiosis model, provides a relevant way for the discrimination on 

the different biomarkers in the obesity onset that are characterised by lipid 

alteration being DG 34:2 a key discriminative feature. 

▪ Chronic Inflammation has been established by IP and intermittent injections with 

saline solution or increasing LPS concentrations (0.5, 5 and 7.5 mg/kg) thrice a 

week for 31 days in male Wistar rats. The chronicity of inflammation throughout 

the study has been evaluated by the monitoring of MCP-1, and other 

inflammatory biomarkers confirming the inflammation state at the endpoint. The 

leading metabolites implicated in the current model are TCA cycle intermediates 

(i.e., alpha-ketoglutarate, aconitic acid, malic acid, fumaric acid and succinic acid); 

specific lipids (ChoEs, LPCs and PCs); and glycine that is related to one-carbon (1C) 

metabolism. Those metabolites point out to mitochondrial metabolism through 

TCA cycle, β-oxidation of FFA and 1C metabolism, as interconnected pathways 

revealing the metabolic effects of chronic inflammation induced by LPS 

administration. 

▪ Oxidative stress has been caused by intraperitoneal administration of PQ (15 and 

30 mg/kg) that is characterized by high amounts of H2O2 in male Wistar rats. The 

metabolic profile is highlighted by 3-hydroxibutiric acid, SMs and LPCs that are 

altered in a dose-dependent manner in all groups, thus those metabolites could 

be considered key features for monitoring mitochondrial oxidative stress.  

▪ Psychological stress has been studied in a 3d CUMS rodent approach in male 

Wistar rats that aims to focus on the early stress period of a well-established 

depression model. The metabolic profiling suggests alteration in threonic acid 
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metabolism and TCA cycle as important pathways in early stress. Specifically, 

threonic acid, malic acid, alpha-ketoglutarate, succinic acid and cholesterol are 

key metabolites that could serve as key potential biomarkers in plasma 

metabolome of early stages of stress.  

▪ Lipids present specific features for each risk factor and stand out as a potential 

source of biomarkers of metabolic profiling. Across risk factors, DGs are the 

determined lipids with the greatest impact on metabolic profiles. Specifically, DG 

36:4 and DG 34:2 are the common features that links arachidonic acid metabolism 

with different risk factors. 

▪ TCA cycle intermediates, as well as playing a major role in energy metabolism, 

have emerged as potential biomarkers for inflammation, oxidative and 

psychological stress. Thus, TCA cycle intermediates play an important role 

controlling physiology and disease through the regulation of homeostasis 

alteration. In fact, mitochondria disruption is attributed to these risk factors due 

to TCA cycle is the central metabolic pathway of mitochondria. Specifically, alpha-

ketoglutarate is one of the most promising intermediates as a biomarker due to 

its multiple roles in mitochondrial metabolism.  

▪ The establishment of a metabolic profile is plausible and feasible through 

predictive models that allow the study of metabolic dysregulation 

representative of overarching processes. In this work, the model of 7 risk factors 

is built by applying a predictive model capable of differentiating between their 

unique characteristics that make them distinguishable from each other. 

Theoretically, the model could be tested with problem individuals, and it could be 

determined to which group they pertain. Thus, this work provides a profile of 

metabolites that may be able to differentiate between risk factors for possible 

prevention through personalised nutrition or treatment. 
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V. Conclusions 
▪ Els diferents models de rosegadors basats en els processos generals presenten 

característiques de cada factor de risc i diferents perfils òmics.  Aquests inclouen 

la desregulació del metabolisme dels carbohidrats, el metabolisme dels lípids, la 

hipertensió i la dysbiosis intestinal, com a representant de l'estrès metabòlic; 

inflamació crònica; estrès oxidatiu i estrès psicològic. 

▪ La hiperlipèmia ha estat induïda per una única injecció IP de 150 mg/kg de P407 

en rates Wistar mascles. Aquest model es caracteritza per nivells elevats de TGs i 

TC que confirmen l'estat de la dislipèmia. A més dels nivells totals de TGs i TC, els 

lípids específics presenten alteracions específics en el perfil metabòlic plasmàtic 

(TGs, PCs, LPCs, DGs i ChoEs). 

▪ S'han seleccionat rates SHR i el seu control normo-tensiu (WKY) per establir el 

model de rosegador d'hipertensió. L’àcid treònic i diversos lípids (SMs, PCs, LPCs 

i ChoEs) són característics del perfil metabòlic de la hipertensió en aquest model.  

▪ La dysbiosis intestinal s'ha aconseguit mitjançant la transferència de microbiota 

intestinal de rates de Wistar mascles obeses a no-obeses. L'estudi del 

metaboloma, en el model de dysbiosis intestinal associada a l'obesitat, 

proporciona una forma rellevant per a la discriminació dels diferents 

biomarcadors a l'inici de l'obesitat, que es caracteritzen per alteració de lípids 

com el DG 34:2. 

▪ La inflamació crònica ha estat establerta per injeccions IP, intermitents i 

incrementades de LPS (0,5, 5 i 7,5 mg/kg) tres cops a la setmana durant 31 dies 

en rates Wistar mascle. La cronicitat de la inflamació al llarg de l'estudi ha estat 

avaluada pel seguiment del MCP-1, posteriorment, altres biomarcadors 

inflamatoris que confirmen l'estat d'inflamació al punt final. Els metabòlits 

principals implicats en el model actual són els intermediaris del cicle del TCA (per 

exemple, l'alfa-cetoglutarat, l'àcid aconític, l'àcid màlic, l'àcid fumàric i l'àcid 

succínic), els lípids específics (ChoEs, LPCs i PCs) i la glicina relacionada amb el 

metabolisme d’1C. Aquests metabòlits apunten al metabolisme mitocondrial a 

través del cicle de TCA, l'oxidació dels FFA i el metabolisme d’1C, com a vies 

interconnectades que revelen els efectes metabòlics de la inflamació crònica 

induïda per l'administració de LPS. 

▪ L'estrès oxidatiu ha estat causat per l'administració IP de PQ (15 i 30 mg/kg) que 

es caracteritza per altes quantitats de H2O2 en rates Wistar mascles. El perfil 

metabòlic es destaca per l’àcid 3-hidroxibutíric, SMs i LPC que s'alteren de manera 

dosi-dependent en tots els grups, de manera que aquests metabòlits es podrien 

considerar característiques clau per controlar l'estrès oxidatiu mitocondrial.  

▪ L'estrès psicològic s'ha estudiat en un enfocament de rosegador de 3d CUMS en 

rates de Wistar mascles que té com a objectiu centrar-se en el període d'estrès 

primerenc d'un model de depressió ben establert. L'elaboració de perfils 
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metabòlics suggereix alteració en el metabolisme de l'àcid treònic i el cicle TCA 

com a rutes importants en l'estrès primerenc. Específicament, l'àcid treònic, l'àcid 

màlic, l'alfa-cetoglutarat, l'àcid succínic i el colesterol són metabòlits clau que 

podrien servir com a biomarcadors potencials clau en el metaboloma del plasma 

de les primeres etapes de l'estrès.  

▪ Els lípids presenten característiques específiques per a cada factor de risc i 

destaquen com una font potencial de biomarcadors del perfil metabòlic. A 

través dels factors de risc, les DG són els lípids amb major impacte en els perfils 

metabòlics. Concretament, el DG 36:4 i el DG 34:2 són característics relacionant 

el metabolisme de l'àcid araquidònic amb diferents factors de risc. 

▪ Els intermediaris del cicle del TCA, a més de tenir un paper important en el 

metabolisme energètic, han sorgit com a potencials biomarcadors per a la 

inflamació, l'estrès oxidatiu i psicològic. Degut a que aquests metabòlits tenen 

un paper important en el control de la fisiologia i la malaltia mitjançant la 

regulació de l'homeòstasi. De fet, un mal funcionament dels mitocondris 

s'atribueix a aquests factors de risc a causa d’alteracions del cicle de TCA ja que 

és la ruta metabòlica central dels mitocondris. En concret, l'alfa-cetoglutarat és 

un dels intermediaris més prometedors com a biomarcador a causa dels seus 

múltiples rols en el metabolisme mitocondrial.  

▪ L'establiment d'un perfil metabòlic és plausible i factible a través de models 

predictius que permeten l'estudi de la desregulació metabòlica representativa 

dels factors de risc. En aquest treball, el model de 7 factors de risc es construeix 

aplicant un model predictiu capaç de diferenciar entre les seves característiques 

úniques que les fan distingibles entre si. Teòricament, el model es pot provar amb 

individus problema, i es podia determinar a quin grup pertanyen. Per tant, aquest 

treball proporciona un perfil de metabòlits que poden ser capaços de diferenciar 

entre factors de risc per a la possible prevenció mitjançant nutrició  o tractament 

personalitzat. 
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Non-communicable diseases, such as obesity, metabolic syndrome,
cardiovascular diseases, cancer and neurodegenerative diseases, are
considered multifactorial diseases. For this reason, it has been
proposed that the occurrence of these diseases is due to an
imbalance of overarching processes (i.e., metabolic, inflammatory,
oxidative, and psychological stress). Monitoring these overarching
processes opens the door to the possibility of modulating them, and
thus preventing the occurrence of different process through the
design of more precise personalised interventions or treatments.
However, current biomarkers of disease cannot assess early
alterations that could lead to the development of disease,
highlighting the need to define new biomarkers. Thus, the present
work presents a characteristic metabolic signature for the detection
of specific processes using omic technologies: carbohydrate
dysfunction, hyperlipidaemia, hypertension and intestinal dysbiosis,
as representative of metabolic stress; inflammatory stress; oxidative
stress and psychological stress.
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