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Abstract 

Network slicing is a key feature of 5G architecture that allows the partitioning of the network into multiple 

logical networks, known as network slices, where each of them is customised according to the specific 

needs of a service or application. Thus, network slicing allows the materialisation of multi-tenant networks, 

in which a common network infrastructure is shared among multiple communication providers, acting as 

tenants and each of them using a different network slice. The support of multi-tenancy through slicing in 

the Radio Access Network (RAN), known as RAN slicing, is particularly challenging because it involves 

the configuration and operation of multiple and diverse RAN behaviours over the common pool of radio 

resources available at each of the RAN nodes. Moreover, this configuration needs to be performed in such 

a way that the specific requirements of each tenant are satisfied and, at the same time, the available radio 

resources are efficiently used. Therefore, new functionalities that allow the deployment of RAN slices are 

needed to be introduced at different levels, ranging from Radio Resource Management (RRM) 

functionalities that incorporate RAN slicing parameters to functionalities that support the lifecycle 

management of RAN slices. This thesis has addressed this need by proposing, developing and assessing 

diverse solutions for the support RAN slicing, which has allowed evaluating the capacities, requirements 

and limitations of network slicing in the RAN from diverse perspectives.  

Specifically, this thesis is firstly focused on the analytical assessment of RRM functionalities that support 

multi-tenant and multi-services scenarios, where services are defined according to their 5G QoS 

requirements. This assessment is conducted through the Markov modelling of admission control policies 

and the statistical modelling of the resource allocation, both supporting multiple tenants and multiple 

services. Secondly, the thesis addresses the problem of slice admission control by proposing a methodology 

for the estimation of the radio resources required by a RAN slice based on data analytics. This methodology 

supports the decision on the admission or rejection of new RAN slice creation requests. Thirdly, the thesis 

explores the potential of artificial intelligence, and specifically, of Deep Reinforcement Learning (DRL) to 

deal with the capacity sharing problem in RAN slicing scenarios. To this end, a DRL-based capacity sharing 

solution that distributes the available capacity of a multi-cell scenario among multiple tenants is proposed 

and assessed. The solution consists in a Multi-Agent Reinforcement Learning (MARL) approach based on 

Deep Q-Network. Finally, this thesis discuses diverse implementation aspects of the DRL-based capacity 

sharing solution, including considerations on its compatibility with the standards, the impact of the training 

on the achieved performance, as well as the tools and technologies required for the deployment of the 

solution in the real network environment.   
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Resumen 

El Network Slicing es una tecnología clave de la arquitectura del 5G que permite dividir la red en múltiples 

redes lógicas, conocidas como network slices, que se configuran de acuerdo a las necesidades de servicios 

y aplicaciones específicas. Así, el network slicing permite la materialización de las redes con múltiples 

inquilinos, donde una infraestructura de red común se comparte entre diferentes proveedores de 

comunicaciones, que actúan como inquilinos y que usan network slices diferentes. El soporte de múltiples 

inquilinos mediante el uso del network slicing en la red de acceso radio (RAN), que se conoce como RAN 

slicing, es un gran reto tecnológico, ya que comporta la configuración y operación de múltiples y diversos 

comportamientos sobre los recursos radio disponibles en cada uno de los nodos de la red de acceso. Además, 

esta configuración debe realizarse de tal manera que los requisitos específicos de cada inquilino se 

satisfagan y, al mismo tiempo, los recursos radio disponibles se utilicen eficazmente. Por lo tanto, es 

necesario introducir nuevas funcionalidades a diferentes niveles que permitan el despliegue de las RAN 

slices, desde funcionalidades relacionadas con la gestión de recursos radio (RRM) que incorporen 

parámetros para el RAN slicing a funcionalidades que proporcionen soporte a la gestión del ciclo de vida 

de las RAN slices. Esta tesis ha abordado esta necesidad proponiendo, desarrollando y evaluando diversas 

soluciones para el soporte del RAN slicing, lo que ha permitido analizar las capacidades, requisitos y 

limitaciones del RAN slicing desde diversas perspectivas. 

Específicamente, esta tesis se centra, en primer lugar, en realizar un análisis de funcionalidades de RRM 

que soportan escenarios con múltiples inquilinos y múltiples servicios, donde los servicios se definen según 

sus requisitos de 5G QoS. Este análisis se lleva a cabo mediante la caracterización de políticas de control 

de admisión mediante un modelo de Markov y el modelado a nivel estadístico de la asignación de recursos, 

ambos soportando múltiples inquilinos y múltiples servicios. En segundo lugar, la tesis aborda el problema 

del control de admisión de network slices proponiendo una metodología para la estimación de los recursos 

radio requeridos por una RAN slice que se basa en análisis de datos. Esta metodología da soporte a la 

decisión sobre la admisión o el rechazo de nuevas solicitudes de creación de RAN slice. En tercer lugar, la 

tesis explora el potencial de la inteligencia artificial, y en concreto, de las técnicas de Deep Reinforcement 

Learning (DRL) para tratar el problema de compartición de capacidad en escenarios de RAN slicing. Para 

ello, se propone y evalúa una solución de compartición de capacidad basada en DRL que distribuye la 

capacidad disponible de un escenario multicelular entre múltiples inquilinos. Esta solución se plantea como 

una solución de Multi-Agent Reinforcement Learning (MARL) basado en Deep Q-Network. Finalmente, 

en esta tesis se tratan diversos aspectos relacionados con la implementación de la solución de reparto de 
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capacidad basada en DRL, incluyendo consideraciones sobre su compatibilidad con los estándares, el 

impacto del entrenamiento en el comportamiento y rendimiento conseguido, así como las herramientas y 

tecnologías necesarias para su despliegue en un entorno de red real. 
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Resum 

El Network Slicing és una tecnologia clau de l’arquitectura del 5G que permet dividir la xarxa en múltiples 

xarxes lògiques, conegudes com a network slices, on cada una es configura d’acord a les necessitats d’un 

servei o aplicació específic. Així, el network slicing permet la materialització de les xarxes amb múltiples 

inquilins, on una infraestructura de xarxa comuna es comparteix entre diferents proveïdors de 

comunicacions, que actuen com a inquilins i utilitzen network slices diferents. El suport de múltiples 

inquilins mitjançant l’ús del network slicing a la xarxa d’accés ràdio (RAN), que es coneix com a RAN 

slicing, és un gran repte tecnològic, ja que comporta la configuració i operació de múltiples i diversos 

comportaments sobre els recursos ràdio disponibles a cadascun dels nodes de la xarxa d’accés. A més a 

més, aquesta configuració s’ha de portar a terme de forma que els requisits específics de cada inquilí es 

satisfacin i, al mateix temps, els recursos ràdio disponibles s’utilitzin eficientment. Per tant, és necessari 

introduir noves funcionalitats a diferents nivells que permetin el desplegament de les RAN slices, des de 

funcionalitats relacionades amb la gestió dels recursos ràdio (RRM) que incorporin paràmetres per al RAN 

slicing a funcionalitats que proporcionin suport a la gestió del cicle de vida de les RAN slices. Aquesta tesi 

ha adreçat aquesta necessitat proposant, desenvolupant i avaluant diverses solucions pel suport del RAN 

slicing, que han permès analitzar les capacitats, requisits i limitacions del RAN slicing des de diferents 

perspectives.  

Específicament, aquesta tesi es centra, en primer lloc, en realitzar una anàlisi de les funcionalitats de RRM 

que suporten escenaris amb múltiples inquilins i múltiples serveis, on els serveis es defineixen d’acord amb 

els seus requisits de 5G QoS. Aquesta anàlisi es porta a terme mitjançant la caracterització de polítiques de 

control d’admissió amb un model de Markov i el modelat estadístic de l’assignació de recursos, ambdós 

suportant múltiples inquilins i múltiples serveis. En segon lloc, la tesi aborda el problema del control 

d’admissió de network slices proposant una metodologia per l’estimació dels recursos requerits per una 

RAN slice, que es basa en la anàlisi de dades. Aquesta metodologia dona suport a la decisió sobre l’admissió 

o rebuig de noves sol·licituds de creació de RAN slices. En tercer lloc, la tesi explora el potencial de la 

intel·ligència artificial, concretament, de les tècniques de Deep Reinforcement Learning (DRL) per a tractar 

el problema de la compartició de capacitat en escenaris amb RAN slicing. Amb aquest objectiu, es proposa 

i s’avalua una solució de compartició de capacitat basada en DRL que distribueix la capacitat disponible en 

un escenari multicel·lular entre múltiples inquilins. Aquesta solució es planteja com una solución de Multi-

Agent Reinforcement Learning (MARL) basat en Deep Q-Network. Finalment, aquesta tesi tracta diversos 

aspectes relacionats amb la implementació de la solució de compartició de capacitat basada en DRL, 
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incloent-hi consideracions sobre la compatibilitat de la solució amb els estàndards, l’impacte de 

l’entrenament de la solució al seu comportament i rendiment, així com les eines i tecnologies necessàries 

per al desplegament de la solució en un entorn de xarxa real.  
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Chapter 1. Introduction 

1.1. Background 

1.1.1. Fifth Generation Systems (5G) 

The Fifth Generation (5G) of cellular networks was initially conceived to simultaneously support a wide 

range of application scenarios and vertical industries (e.g., automotive, transport, industry or health) [1]. 

The envisaged use cases for 5G, identified in the IMT-2020 vision by the International Telecommunication 

Union (ITU-R), were classified into three main 5G use cases [2]:  

 Enhanced mobile broadband (eMBB): Corresponds to the evolution of 4G mobile broadband 

services of today, which addresses the human-centric use cases for multi-media content, services and 

data. The demand for this kind of services will continue to increase and new application areas are 

emerging, establishing new and diverse requirements (e.g., higher data rates, hotspots, wide-area 

coverage, etc.).  

 Ultra-reliable and low-latency communications (URLLC): Use cases with stringent requirements 

for latency, reliability and high availability. It includes both human (e.g., tactile internet, mission-

critical applications) and machine-centric (e.g., vehicle-to-vehicle, industrial wireless control) 

communications.  

 Massive machine type communications (mMTC): Characterised by a large number of connected 

devices with generally transmitting low volume and non-delayed sensitive data with low energy 

consumption, such as the required in sensor networks for smart grids or smart cities. 

Fig. 1 includes the mapping of some examples of envisaged use cases to the main 5G use cases scenarios 

defined for the IMT-2020. Note that some use cases not exactly fit one of the main 5G use cases, such as 

the case of augmented reality, which requires the high data rates of eMBB and the low latencies of URRLC.  
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Fig. 1. IMT-2020 example use cases and main usage scenarios [2]. 

Despite this, the categorisation of the main use cases for 5G allowed identifying the main key capabilities 

required for 5G systems. The key capabilities and associated target values have been included in Fig. 2, 

which also depicts their level of relevance to each of the main use cases. In addition to the capabilities in 

Fig. 2, five more identified key capabilities are reliability, resilience, security and privacy, and operational 

lifetime. These capabilities are not included in the figure as they are not as easily quantifiable as the included 

in the figure, but are equally important. Notice that the challenging target values for the different key 

capabilities may not be simultaneously reached and some of them can be even mutually exclusive. 

 
Fig. 2. Key capabilities, requirements and their importance to the different use scenarios [2]. 

Besides, 5G is envisaged to facilitate the evolution of current business models but also will enable new 

ones. Partnerships will be established on multiple layers ranging from sharing the infrastructure to exposing 

specific network capabilities as an end-to-end service and integrating partners’ services into the 5G system 
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through a rich and software-oriented capability set [1]. The sharing of the mobile network infrastructure, 

owned by Infrastructure Providers (InPs), among multiple communication providers such as Mobile Virtual 

Network Operators (MVNOs) or vertical service providers, denoted as “tenants”, is one of the main 

characteristics of 5G architectures since the sharing process will reduce capital and operational costs [3].  

To enable the support of the identified use cases and associated requirements, as well as the envisaged 

business models and partnerships, the 3rd Generation Partnership Project (3GPP) initiated the development 

and standardisation of the new 5G systems architecture, defining a radio access network, known as Next-

Generation RAN (NG-RAN) [4] with a new radio access technology, known as New Radio (NR), and, in 

parallel, the development of the new 5G core network, referred to 5GC [5]. NR incorporates new features 

and technologies to achieve the challenging target values, such as the use of millimetre-Wave (mm-Wave) 

frequencies, massive Multiple-Input Multiple-Output (MIMO) antennas or beamforming, among others [6].  

Moreover, 5G architecture is defined as service-based architecture, focusing on network functionalities 

rather than network nodes, with decoupled control and user planes that supports network slicing, which is 

a central feature of 5G that is detailed in the following.  

1.1.2. Network slicing 

Previous mobile communication network architectures lack of the flexibility and scalability required to 

support the multi-tenancy and multi-service requirements of 5G. Therefore, network slicing is one of the 

key features of 5G architecture that relies on Software-Defined Networking (SDN) and Network Function 

Virtualisation (NFV) technologies [7], which combined enable the network softwarisation and provide the 

network with the required programmability, flexibility and modularity required for 5G. Based on this, 

network slicing allows creating end-to-end (self-contained) multiple logical networks, denoted as network 

slices, each tailored for a given use case, on the top of a common infrastructure [8]. Network slices are 

composed of mobile Network Functions (NF), as depicted in Fig. 3, which are appropriately combined to 

satisfy the requirements of a particular purpose or service category (e.g., applications with different access 

and/or functional requirements) or even individual customers (e.g., enterprises, third party service 

providers). Therefore, network slicing allows sharing a common network infrastructure among multiple 

tenants by providing each tenant with a network slice optimised to the tenants’ specific requirements. 
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Fig. 3. Network slicing scheme [9]. 

Network slices are specified by a number of specific policies and configuration that allow supporting 

service-specific requirements such as the Radio Access Technology (RAT), bandwidth, latency, guaranteed 

Quality of Service (QoS), security level, etc. Moreover, a fundamental property of network slicing is the 

isolation, which assures the performance guarantees and security for each tenant when different tenants use 

network slices with conflicting performance requirements [10]. Each slice may be fully or partly isolated 

from other slices at different levels (physical, management, data), depending on the level of exposure 

requirements. Hence, the isolation can be achieved by using different physical resources, separating by 

virtualization means a shared resource and through sharing a resource with the guidance of a respective 

policy that defines the access rights for each tenant. In addition, network slicing can be composed of 

different hierarchy levels, enabling the possibility to create slices inside a higher-level slice, offering a 

greater abstraction with a broader scope. For example, a tenant who acquired a network slice from an InP, 

offers a partial amount of such resources to enable a utility provider that uses its virtual network to form an 

Internet of Things (IoT) slice. 

Each network slice in the system is composed by a 5G Core Network (CN) part, denoted as CN slice, and 

a NG-RAN part, denoted as RAN slice [11]. The deployment of CN slices can be deployed by appropriately 

instantiating a combination of 5GC NFs for the different CN slices depending on the specific slice 

requirements [12]. These 5GC NFs may include different functionalities included in the 5GC architecture 

[5] for both control and user planes, such as the access and mobility management function (AMF), user 

plane function (UPF), the session management function (SMF). The 5GC NFs are expected to be 

implemented as virtualized network functions (VNFs) running on multi-tenant cloud infrastructures, which 

allow flexibly orchestrating the different CN slices and scaling the number of slices and combination of 

NFs for each of the CN slices.  

Regarding RAN slices, their deployment needs to deal with the appropriate management of the common, 

and scarce, pool of radio resources (i.e., RF bandwidth) available at each of the NG-RAN nodes (i.e., gNB 
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or eNB) in order to simultaneously deliver multiple and diverse RAN behaviours required by the different 

RAN slices [13]. Therefore, the realization of RAN slices is an especially challenging task, which requires 

the definition of strategies and algorithms at diverse layers that allow managing the physical resources with 

the objective of maximizing the overall utility and the satisfaction of the requirements of the different RAN 

slices as is further discussed in the following section. In addition to the spectrum constraint, RAN slicing 

needs to address other aspects such as its operation when considering multi-RAT, the level of information 

exposure or sharing constraints when configuring and partitioning the slices. Also, the RAN 

programmability and virtualization are key elements to enable RAN slicing [10]. The RAN 

programmability and virtualization, also referred to as Software Defined RAN (SD-RAN), is a key attribute 

of RAN slicing abstracting the underlying RAN resources and facilitating open APIs toward third parties 

via a Service Orchestrator entity that dynamically manages the resources dedicated to a network slice.  In 

turn, the RAN virtualization is based on the notion of base station softwarization, which allows certain 

RAN functions to run at remote cloud platforms and has gained momentum within the emergence of Cloud-

RAN (C-RAN) concept.   

1.1.3. RAN Slicing management. 

One of the main challenges in implementing RAN slicing consists of designing and managing several slices, 

while guaranteeing the Service Level Agreement (SLA) for each of them. The implementation of RAN 

slices can be performed considering diverse levels of isolation, which depend on how the radio resources 

are shared and how the RAN slices are multiplexed [14]. Fig. 4 illustrates the trade-off between the level 

of isolation and sharing efficiency for different RAN slice multiplexing options. At the extreme left, a slice 

corresponds to a standalone network with its specific spectrum and infrastructure. In this case, the 

maximum level of isolation is achieved but at the cost of a low sharing efficiency with higher needs in 

terms of infrastructure deployment. At the extreme right, a slice that is only limited to the CN is depicted, 

where the RAN is slice unaware. In this case, high sharing is achieved but at the cost of low isolation where 

the actions for a RAN slice can have huge impact in the performance of the rest of slices. Intermediate 

solutions with slices going lower in the protocol stack when moving left are also possible. All these RAN 

slice multiplexing options are possible, and the adoption of one of them will depend on the requirements of 

the RAN slices.  
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Fig. 4. RAN slice multiplexing options [14].  

To enable the above RAN slice multiplexing options, the split of radio resources at RAN slice can be 

conducted by different Radio Resource Management (RRM) functionalities [15]:  

 Spectrum planning: This function decides how the spectrum resources are arranged in carriers and 

how these carriers are assigned to the different cells. RAN slicing at spectrum planning can be 

implemented by arranging the spectrum resources into a number of carriers and assigning different 

carriers to each tenant, so that the required capacity and coverage by the tenant over the scenario is 

achieved. In this way, isolation is achieved at radio-electrical and traffic levels in the rest of RRM 

functionalities below.   

 Inter-cell Interference Coordination (ICIC): This function intends to mitigate the inter-cell 

interference between neighbour cells that use the same carrier by determining the set of Resource 

Blocks (RBs), which constitute the basic physical radio resource unit for the dynamic allocation, that 

each cell is allowed to use in each of its allocated carriers as well as the maximum transmission power 

for each RB. RAN slicing at ICIC level can be implemented by establishing a tenant-specific ICIC 

policy to determine the set of RBs of each carrier that the tenant can use in the different neighbour cells 

to mitigate the inter-cell interference within the RAN slice of the tenant.  

 Packet Scheduling (PS): This function decides how the set of available RBs for each carrier are used 

to transfer the data traffic of the established Radio Access Bearers (RABs), which are the data delivery 

services offered for data exchange between the user equipment (UE) and the mobile core network, and 

selects the physical layer parameters used in the RB transmission (e.g., modulation and coding scheme, 

antenna mapping in multi-antenna transmission, etc.), which controls the bit rate delivered to each 

RAB. At PS level, RAN slicing can be implemented by distributing the RBs among the tenants, so that 

traffic isolation is ensured within each cell. This admits the definition of tenant-specific PS algorithms 
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that allow deciding how the capacity provided to the slice is distributed among the RABs of the RAN 

slice.  

 Admission Control (AC): This function determines whether the establishment request of a new RAB 

is accepted or rejected in a given cell, which is decided based on the QoS requirements of the active 

RABs and the requirements of the new RAB. At AC level, RAN slicing can be implemented by defining 

tenant-specific AC polices that decide whether a new RAB belonging to a tenant can be accepted or 

not. This decision considers the overall situation of all the tenants to ensure a proper split of the 

capacity.  

The definition of algorithms for these RRM functionalities that consider the QoS requirements and SLA of 

RAN slices is identified as a challenge for the realization of RAN slices. Along with these RRM 

functionalities, new parameters and slice descriptors need to be introduced across the protocol layers of the 

NG-RAN nodes for the specification of the operation of the RRM functionalities, as discussed in [12].  

Another relevant perspective for the realization of RAN slicing is from an orchestration and management 

view. 3GPP has already specified a management architecture for 5G systems that includes the operations 

and procedures for network and network slicing provisioning management services in [16], which includes 

the description of the LifeCycle Management (LCM) of network slices. For the case of network slices for 

NG-RAN (i.e., RAN slices) this embraces the creation, modification and termination of RAN slices, so that 

RAN slices can be dynamically managed over time through a network slicing management system. Given 

the complexity that implies the provisioning and management of RAN slices, Self-Organizing Network 

(SON) functionalities are identified as a key for the automation of the LCM of RAN slices. Remarkably, 

the automation of the LCM of RAN slices requires two main functionalities: slice admission control, which 

decides on the acceptance or rejection of a new RAN slice creation request with specific coverage, 

functional (i.e. features) and performance (e.g. service quality, capacity) requirements, and cross-slice 

resource optimization, which deals with the dynamic allocation of radio resources to RAN slices in each 

cell to ensure both the fulfilment of the RAN slice requirements and an efficient use of the available radio 

resources and can be used by RRM functionalities above.  

1.2. Motivation, Objectives, Methodology and Contributions 

Considering the above, the realization of network slicing in the RAN requires the definition of 

functionalities that allow the proper management of RAN slices and the configuration the NG-RAN nodes 

to support them. To this end, the adaptation of existing RRM functionalities at the different levels of the 

protocol stack to incorporate RAN slicing parameters has been identified as one of the potential solutions 

to support RAN slicing. Furthermore, the development of functionalities that enable the automatisation of 

the LCM of RAN slices, such as SON functions, is also envisaged to play a fundamental role to the 

realization of RAN slicing. To support these functionalities, Artificial Intelligence (AI) techniques are 

expected to be a key enabler due to its capability to deal with highly complex scenarios such as RAN slicing 

management. Nevertheless, the definition of RRM and AI-based solutions to support RAN slicing requires 
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the study of their requirements and limitations in order to be deployed in practice in the real network when 

supporting the envisaged multi-tenant and multi-service 5G scenarios. Also, the impact of these solutions 

on the achieved performance requires to be carefully assessed.  

Therefore, the main aim of this thesis is the definition and development of both RRM and AI-based 

solutions that allow evaluating the capacities of network slicing in the RAN and the potential of AI 

in the 5G scope. To achieve this objective, the thesis has been divided in four main parts. The first part has 

focused on the assessment of RRM solutions at the different layers of the protocol stack. Specifically, an 

analytical model to assess admission control policies with RAN slicing capabilities at layer 3 and resource 

allocation solution at layer 2 has been proposed. This study has relied on the Markov characterization of 

admission control policies and a statistical modelling of the resource allocation for multi-tenant and multi-

service scenarios, which has considered services with different 5G QoS requirements. The second part has 

addressed the problem of Slice Admission Control (SAC) by proposing a methodology for the estimation 

of the radio resources required by a RAN slice based on data analytics. Based on the estimated resources 

and considering the availability of radio resources, the decision on the admission or rejection of a RAN 

slice can be taken. The third part has focused on the problem of Cross Slice Resource Optimisation, referred 

hereto as the capacity sharing problem, which has been addressed by proposing a Multi-Agent 

Reinforcement Learning (MARL) capacity sharing solution based on Deep Q-Network (DQN), designed 

as a SON function. The solution aims at dynamically distributing of the capacity available in multi-cell 

scenarios among multiple tenants in order to fulfil the requirements of the different RAN slices and to 

efficiently use the resources available in the different cells. Based on this solution, insights into the impact 

and capabilities of DRL-based solutions for RAN slicing management have been analysed. In the fourth 

part, diverse implementation aspects regarding the application of DRL-based solutions for capacity sharing 

in RAN slicing scenarios have been discussed, including considerations on the compliance with O-RAN 

and 3GPP standards, the impact of the training on the performance, or the tools and technologies required 

for the deployment of these solutions in the real network environment.  

The methodology followed during this thesis has included the definition of analytical models, their 

evaluation and validation through simulations, and their assessment in terms of the practicality.  

With all the above considerations, the main thesis contributions (TC) can be summarized as follows:    

[TC.1] Conception, development and evaluation of a Markov model for the characterization of the 

problem of RAN slicing for multi-tenant and multi-service scenarios. The developed Markov 

model allows the assessment of RRM policies with RAN slicing capabilities at different layers of 

the protocol stack and the relationships among the different dimensions of the RAN slicing problem, 

including aspects of the radio environment, services types and configurations, traffic scenarios, etc. 

The contributions of the Markov model are the following:  
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[TC.1.1] Definition of services in term of the 5G QoS of New Radio. The Markov model includes 

the definition of services in terms of the Guaranteed Bit Rate (GBR), Allocation and Retention 

Priority (ARP) indicator and the 5G QoS Identifier (5QI) parameters. These QoS parameters 

play a fundamental role in the definition of the RRM functions included in the model. 

[TC.1.2]  Definition and assessment of Admission Control policies for RAN slicing. The Markov 

model allows studying the impact of AC policies at layer 3 in RAN slicing scenarios, where the 

admission control is performed at user level. AC policies with and without RAN slicing 

capabilities have been defined that allow achieving isolation between the admission of users 

belonging to different RAN slices.  

[TC.1.3] Definition and assessment of a radio resource allocation model for RAN slicing. At layer 

2, a statistical model that allows capturing 5G scenarios with variate radio propagation 

conditions has been included in the Markov model to characterize the radio resource allocation. 

The statistical model allows deriving the probability density function (pdf) of both the required 

resources and the assigned resources in multi-tenant and multi-service scenarios based on the 

QoS requirements.  

[TC.1.4] Definition of Key Performance Indicators (KPIs) for the RRM policies assessment. A 

wide range of performance indicators have been defined that allow analysing the performance 

of the proposed RRM policies within the Markov model.  

[TC.1.5] Validation of the model against a system-level simulator. The validity of the Markov 

model, which has been developed in MATLAB, has been assessed by using a system-level 

simulator that allows capturing multi-tenant and multi-service scenarios.  

[TC.1.6] Evaluation of the RRM under different 5G relevant use cases and multiple cell 

deployment scenarios. The Markov model has allowed the assessment of the proposed RRM 

policies for eMBB and Mission Critical (MC) use cases under multiple cell deployments (e.g., 

urban microcell, rural macrocell), considering diverse QoS requirements of the services.   

[TC.2] Conception, development and evaluation of a methodology to estimate the required radio 

resources by a RAN slice to support the SAC functionality. The proposed methodology supports 

the decision on the admission/rejection of slice admission requests when considering jointly the 

estimation of the required radio resources by a RAN slice and the available radio resources in a cell. 

The main contributions of the proposed methodology are the following:  

[TC.2.1] Definition of a data analytics function to extract data information. The estimation 

procedure relies on the extraction of data analytics information from the cell performance 

measurements, which is fully aligned with the 3GPP vision for NG-RAN management.  
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[TC.2.2] Definition and assessment of the radio resource requirement estimation methodology 

for GBR and non-GBR services. The definition of the estimation methodology estimates the 

required radio resources by GBR and non-GBR services in order to satisfy the SLA of a RAN 

slice. This is performed by a statistical model that computes the pdf of the required resources 

by each service based on data analytics.  

[TC.2.3] Evaluation of the estimation methodology considering diverse cell environments and 

services types. The estimation methodology has been assessed considering diverse service 

requirements under diverse cell environments, including 3GPP reference models and also 

representative cells and performance measurements extracted from a real network deployment.  

[TC.3] Conception, development and evaluation of a Deep Reinforcement Learning-based Capacity 

sharing solution based on MARL and DQN for multi-tenant and multi-cell scenarios. The solution 

is able to dynamically provide the capacities to each tenant in the different cells in order to satisfy the 

fluctuating traffic demands of each tenant, satisfy the SLA established for each tenant and make an 

efficient use of the resources in each of the cells of the scenario. The main contributions of the proposed 

model are the following:  

[TC.3.1] Definition a multi-agent scheme to deal with the capacity sharing problem with multiple 

tenants. In the proposed MARL approach, a DQN agent learns the policy for jointly assigning 

the capacities to be provided to a tenant in the different cells of the scenario. The different DQN-

based agents operate in a synchronous and cooperative manner since their decisions are 

performed at the same time and each agent is designed to find a solution that benefits jointly all 

the tenants. 

[TC.3.2] Definition of the DRL-based capacity sharing solution as a SON function. The 

practicality of the proposed approach is enforced with respect to previous capacity sharing 

solutions by formulating the solution as a SON function, which is integrated in a RAN slicing 

management framework well aligned with the on-going 3GPP standardisation work on 

management and orchestration of network slicing. 

[TC.3.3] Validation of the DRL-based capacity sharing solution. The performance solution has 

been validated against reference solutions for capacity sharing in RAN slicing scenarios as well 

as against the optimum solution obtained through an exhaustive search algorithm.  

[TC.3.4] Evaluation of the DRL-based capacity sharing solution under multiple scenarios. The 

solution has been assessed considering diverse cell deployments considering different 

requirements of the tenants. Also, diverse traffic distributions of the tenants among cells have 

been considered for the evaluation of the solution.  

[TC.3.5] Assessment on the scalability of the solution. The evaluation of the MARL model has 

shown that the learning process can be conducted by a single agent and then the learnt policy 
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can be generalised and directly applied by the other agents, thus reducing the complexity of 

training in multi-agent scenarios and enhancing the scalability of the solution.   

[TC.4]  Assessment of implementation aspects of DRL-based capacity sharing solutions for RAN 

slicing management. A practical perspective on how to deploy the DRL-based capacity sharing 

solution for the RAN slicing management in the real network is provided, contributing as follows:   

[TC.4.1] Compatibility analysis of RL-based solutions with the standards. Considerations on the 

definition of a compliant solution with the standardization held by 3GPP and O-RAN are 

provided and a compatible framework with these standards is proposed for the DRL-based 

capacity sharing solution.  

[TC.4.2] Definition and evaluation of a methodology for analysing the impact of training on 

performance of the learnt polices by DRL-based capacity sharing solutions for RAN slicing. 

The defined methodology provides insights on the features and requirements of the data used 

for building training datasets and their impact on the achieved performance of the learnt policies 

during training and inference stages.  

[TC.4.3] Design of the development and production stages of the DRL-based capacity sharing 

solution to be deployed in a real network environment. Insights into the software developed 

for the DRL-based capacity sharing solution based on Python and RL libraries are provided 

jointly with the design of a production solution to deploy the DRL-based capacity sharing 

solution in a real environment, which relies on containerization and the implementation of the 

required interfaces and protocols.  

1.2.1. List of Publications 

The above-listed contributions of the thesis have been published and/or submitted for publication in journals 

(J) and conferences (C). These dissemination activities and their relation to the above thesis’ contributions 

are listed in the following:  

1.2.1.1. Journals  

[J1] I. Vilà, O. Sallent, A. Umbert, J. Pérez-Romero, "An Analytical Model for Multi-Tenant Radio Access 

Networks Supporting Guaranteed Bit Rate Services," in IEEE Access, vol. 7, pp. 57651-57662, April, 

2019. Related to contribution [TC.1]. 

[J2] I. Vilà, J. Pérez-Romero, O. Sallent, A. Umbert, " Characterisation of Radio Access Network Slicing 

Scenarios with 5G QoS Provisioning," in IEEE Access, vol. 8, pp. 51414 - 51430, March, 2020. 

Related to contribution [TC.1]. 

[J3] R. Ferrús, J. Pérez-Romero, O. Sallent, I. Vilà, R. Agustí, “Machine learning-assisted cross-slice radio 

resource optimization: Implementation framework and algorithmic solution,” in ITU Journal on future 
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and evolving technologies, vol. 1, nº1, pp.1-18, Dec. 2020.  Related to contributions [TC.3] and 

[TC.4.1].  

[J4] I. Vilà, J. Pérez-Romero, O. Sallent, A. Umbert, “A Multi-Agent Reinforcement Learning Approach 

for Capacity Sharing in Multi-tenant Scenarios,” in IEEE Transactions on Vehicular Technology, vol. 

70, no. 9, pp. 9450-9465, July 2021. Related to contribution [TC.3]. 

1.2.1.2. Conferences 

[C1] I. Vilà, O. Sallent, A. Umbert and J. Pérez-Romero, "Guaranteed Bit Rate Traffic Prioritisation and 

Isolation in Multi-tenant Radio Access Networks," 2018 IEEE 23rd International Workshop on 

Computer Aided Modelling and Design of Communication Links and Networks (CAMAD), Barcelona, 

2018, pp. 1-6. Related to contribution [TC.1]. 

[C2] E. Jimeno, J. Pérez-Romero, I. Vilà, B. Blanco, A. Sanchoyerto and J. F. Hidalgo, "5G Framework 

for automated network adaptation in Mission Critical Services," 2018 IEEE Conference on Network 

Function Virtualization and Software Defined Networks (NFV-SDN), Verona, Italy, 2018, pp. 1-5. 

Related to contribution [TC.1]. 

[C3] I. Vilà, J. Pérez-Romero, O. Sallent, A. Umbert and R. Ferrús, "Performance Measurements-Based 

Estimation of Radio Resource Requirements for Slice Admission Control," 2019 IEEE 90th Vehicular 

Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 2019, pp. 1-6. Related to contribution 

[TC.2]. 

[C4] J. Pérez-Romero, I. Vilà, O. Sallent, B. Blanco, A. Sanchoyerto, R. Solozábal, F. Liberal, “Supporting 

Mission Critical Services through Radio Access Network Slicing,” in 6th International Conference 

on Information and Communication Technologies for Disaster Management (ICT-DM’2019), Paris, 

France, Dec. 2019. Related to contribution [TC.2]. 

[C5] I. Vilà, J. Pérez-Romero, O. Sallent, A. Umbert, “A Novel Approach for Dynamic Capacity Sharing 

in Multitenant Scenarios,” 31st International Symposium on Personal, Indoor and Mobile Radio 

Communications (PIMRC2020-Fall), London, England (Online) Sept. 2020. Related to contribution 

[TC.3]. 

[C6] I. Vilà, J. Pérez-Romero, O. Sallent, A. Umbert, ”A Deep Q-Network Approach for Radio Access 

Network Slicing,” XXXV Simposium Nacional de la Unión Científica Internacional de Radio (URSI 

2020), Málaga, Spain (Online). Sept. 2020. Related to contribution [TC.3]. 

[C7] I. Vilà, J. Pérez-Romero, O. Sallent, A. Umbert,” Evaluation of a Multi-cell and Multi-tenant Capacity 

Sharing Solution under Heterogeneous Traffic Distributions,” 2019 IEEE 93th Vehicular Technology 

Conference (VTC2021-Spring), Helsinki, Finland (Online), April 2021. Related to contribution 

[TC.3]. 
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[C8] I. Vilà, J. Pérez-Romero, O. Sallent, A. Umbert, “Impact Analysis of Training in Deep Reinforcement 

Learning-based Radio Access Network Slicing,” 2022 IEEE Consumer Communications and 

Networking Conference (CCNC 2022), Las Vegas (Online), January 2022. Related to contribution 

[TC.4.2]. 

1.2.2. Awards 

The published articles in conferences have been recognised by the following awards:  

 Best Paper Runner Up Award in recognition of the paper “Supporting Mission Critical Services 

through Radio Access Network Slicing” by 6th International Conference on Information and 

Communication Technologies for Disaster Management (ICT-DM’2019), Paris, December 2019. 

 Best Paper Runner Up Young Scientists Award in recognition of the paper “A Deep Q-Network 

Approach for Radio Access Network Slicing” by XXXV Simposio Nacional de la Unión Científica 

Internacional de Radio (URSI 2020), Málaga, September 2020. 

1.2.3. Relation to Research Projects 

The work carried out during the thesis has been related to the following research projects funded by both 

Spanish and European Union entities:  

 5G-CLARITY: “Beyond 5G multi-tenant private networks integrating Cellular, WiFi, and LiFi, 

Powered by ARtificial Intelligence and Intent Based PolicY”, funded by the Commission of European 
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Chapter 1. Introduction  

 14 

1.3. Thesis Outline 

This thesis is organized in 6 chapters, whose structure is graphically summarized in Fig. 5.  

Chapter 2 presents the Markov model characterisation of the RAN slicing problem in multi-cell and multi-

service scenarios. After detailing the analytical definition of the Markov model, RRM policies with RAN 

slicing capabilities are defined at different layers of the protocol stack. At layer 3, an Admission Control 

policy that includes per-tenant capabilities is presented while a statistical model for modelling the resource 

allocation is formulated at layer 2. To assess the behaviour of these policies, several key performance 

metrics are formulated for the Markov model. The results extracted from the proposed solution are validated 

against those of a system level model. Furthermore, the proposed solution is evaluated considering different 

5G use cases (eMBB and MC) and a wide range of scenarios in terms of the number of tenants and services, 

cell deployment, load conditions, etc.  

Chapter 3 treats the SAC problem by proposing a methodology for estimating the required resources by a 

RAN slice based on data analytics. The problem of SAC is introduced and, accordingly, a functional 

framework for the analytics-based SAC functionality is proposed that is aligned with 3GPP work on 

network slices management. Afterwards, the different steps of the estimation methodology of the required 

radio resources by a RAN slice are described. In this regard, details on how data analytics are used to 

process the performance measurements extracted from cells are provided. Also, the resource estimation of 

the required resources by GBR and non-GBR services is formulated. The estimation methodology is 

evaluated in diverse cell environment, including both simulated-based cell environments and cells selected 

from a real LTE deployment. In addition, the potential of the methodology is highlighted by applying it on 

a relevant 5G use case scenario for supporting a Mission Critical Push to Talk (MC PTT) service during an 

emergence.  

Chapter 4 deals with the problem of capacity sharing in RAN slicing scenarios by proposing a DRL-based 

solution, based on MARL and DQN. The problem of capacity sharing is presented and the DRL-based 

capacity sharing solution is formulated as a SON function. The validity of the solution is discussed by 

comparing the results to some reference solutions and the optimum solution obtained by an exhaustive 

search algorithm. Also, the proposed solution is evaluated considering single cell and multi-cell 

deployments and under diverse traffic demands conditions and distributions among cells. 

Chapter 5 discusses on different aspects related to the implementation of DRL-based capacity sharing 

solutions for RAN slicing. First, the chapter highlights the relevance of defining DRL-based solutions that 

are compliant with the 3GPP and O-RAN standards and provides a plausible integration of the DRL-based 

capacity sharing solution proposed in Chapter 4 with these standards. Afterwards, an impact analysis of the 

training on the achieved performance of the learnt policies is conducted by defining a methodology to build 

training datasets with given features, whose performance is assessed for the proposed DRL-based capacity 

sharing solution based on defined performance metrics. Furthermore, insights into the development and 

production stages of the DRL-based capacity sharing solutions are provided, detailing the developed 
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software solution for the proposed DRL-based capacity sharing solution, as well as the proposed approach 

to deploy the solution in a real production environment.  

Finally, Chapter 6 summarizes the work presented in this thesis and extracts the most important 

conclusions. Furthermore, future possible research directions are discussed related to the extension of the 

DRL-based capacity sharing and application of DRL solutions for the management of the RAN. 

 

 

Fig. 5. Organisation of this Thesis. 
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Chapter 2. Analytical modelling of Radio 

Resource Management policies for RAN 

slicing 

2.1. Introduction 

This chapter addresses the RAN slicing problem from a modelling perspective by proposing and developing 

a Markov model characterisation of RAN slicing in multi-tenant and multi-service scenarios. The solution 

aims at assessing the performance of different Radio Resource Management (RRM) policies for RAN 

slicing at different layers of the protocol stack and establishing relationships among the different 

dimensions of the RAN slicing problem, including aspects of the radio environment, services types and 

configurations, traffic scenarios, etc. Specifically, the solution includes a Markov chain model to assess the 

behaviour of Admission Control (AC) policies at layer 3, where the admission control is performed at user 

level. Moreover, a resource allocation at layer 2 is also included, which relies on the statistical modelling 

of the required and assigned resources considering 5G scenarios with variate radio propagation conditions 

(i.e. diverse spectral efficiencies can be perceived by the different users in the system). The considered 

RRM policies have been properly characterised to provide slicing capabilities, so that isolation between 

slices is achieved both in the admission of users and the allocation of resources, and to support the definition 

of Guaranteed Bit Rate (GBR) and non-Guaranteed Bit Rate (non-GBR) services in terms of its 

corresponding 5G QoS parameters such as the Allocation and Retention Priority (ARP) and the 5G QoS 

Identifier (5QI) parameters. To assess the solution, key performance metrics of interest have been defined 

based on the analytical model. Based on these, the proposed model has been validated and evaluated under 

different RAN slicing scenarios, considering a wide variety of service-types and cell deployments.  

The rest of the chapter is organized as follows. Section 2.2 provides the literature review of the RAN slicing 

problem from a RRM perspective. Afterwards, Section 2.3 describes the analytical model for RAN slicing 

scenarios by describing the considered system model in Section 2.3.1 and the Markov model approach in 

Section 2.3.2. The introduction of the considered admission control strategy and the resource allocation 

statistical model follow in sections 2.3.3 and 2.3.4, respectively. Then, Section 2.4 presents different 

performance metrics that can be extracted from the model, followed by a description of the implementation 

of the model in Section 2.5 and the validation of the model in Section 2.6. Section 2.7 includes the 
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evaluation of the model considering different scenarios and 5G use cases. Finally, Section 2.8 summarizes 

the main conclusions extracted from this chapter.  

2.2. Literature review 

Network slicing in the NG-RAN has been studied from multiple angles, ranging from virtualisation 

techniques and programmable platforms with slice-aware traffic differentiation and protection mechanisms 

[17][18][19] to algorithms for dynamic resource sharing across slices [20]. Similarly, [15] analyses the 

RAN slicing problem in a multi-cell network in relation to RRM functionalities and [21] proposes an 

adaptation algorithm for resource allocation, which is based on the deviations from requirements. In turn, 

[12] proposes a set of vendor-agnostic configuration descriptors intended to characterise the features, 

policies and resources to be put in place across the radio protocol layers of a NG-RAN node for the 

realisation of concurrent RAN slices. Also, [22] proposes a procedure to establish the level of centralisation 

of different RRM functions while [23] presents an adaptive inter-slice TDD allocation algorithm, where 

resources are assigned by minimising costs and interferences.  Some other works focus on the network slice 

admission control for slices requests that need to support a given number of users for a certain time, such 

as [24][25], which target to optimise the infrastructure providers’ revenue, or [26], which optimises the 

network utilisation by incorporating traffic forecasting capabilities. Moreover, frameworks for the 

realisation and study of network slicing have been implemented and tested such as in [27], which designs 

a system for the management of RAN slices and the provisioning of radio resources to slices based on their 

requirements in Long Term Evolution (LTE) technology, considering its extension to 5G NR. 

In the above context, the RAN slicing problem is addressed here from a modelling perspective by proposing 

and developing a Markov model characterisation of RAN slicing in multi-tenant and multi-service 

scenarios. The Markov Chain theory is a statistical tool that allows studying the behaviour of systems before 

they are actually built by defining all the possible states in the system and their probabilistically based 

relations. By using this theory and appropriate numerical methods, it is possible to obtain relevant 

performance metrics of the system without the need of building it, allowing the prior refining of system 

aspects.  Markovian approaches have been widely used to characterise the utilisation of resources in many 

fields, such as in mobility [28], cloud computing [29], Call Admission Control (CAC) scheme for 3G [30] 

or for heterogeneous networks RAT policies [31]. More recently, works in the field of 5G exploit Markov 

modelling to approach a proactive resource allocation scheme in highly mobile networks [32], the 

management of AC for handoff requests between small cell and macro cell domains [33], the computation 

of the estimated spectrum requirement [34] and the management of slices’ creation [35]. Markov chain 

models have also been considered in [36] for spectrum sharing schemes and primary/secondary scenarios 

[37][38][39]. None of the above papers have considered the use of Markov chain models to study the 

performance of different RRM policies for RAN slicing at different layers of the protocol stack, which is 

treated in this chapter.  
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2.3. Analytical model for RAN slicing scenarios 

2.3.1. System model 

A scenario comprised of a common radio infrastructure shared by N tenants is assumed. Each tenant 

operates in a RAN slice, which has already been created and deployed by the Operations, Administration 

and Management (OAM) system among the RAN infrastructure by means of the Network Slice Subnet 

Management Function (NSSMF) [16]. The n-th tenant provides Mn service types, which can be either GBR 

or non-GBR services. The service type indicator Ts,n  takes value 0 if the s-th service of the n-th tenant is 

GBR and 1 if it is non-GBR. The QoS profile is given by the GBR value (i.e., the bit rate to be provided to 

the user of a GBR service, also referred to as Guaranteed Flow Bit Rate (GFBR) in 5G 3GPP’s 

terminology), the ARP indicator [5], which defines the relative importance of the service requesting for 

resources and starts from 1 (highest priority) onwards (for successive lower priority services), and the 

priority level associated with the 5QI. Therefore, for GBR services, the QoS profile is characterised by the 

guaranteed GBRs,n, the ARPs,n and the 5QI priority level PLs,n for s=1,…, Mn and n=1,…,N. In the case of 

non-GBR services, the GBRs,n is set to 0, as no data rate is guaranteed.  

The considered scenario is depicted in Fig. 6. It is comprised of a gNB, which is the NG-RAN node 

operating the 5G NR interface, composed of a cell with a certain bandwidth subdivided in Physical 

Resource Blocks (PRB) of bandwidth B. Hence, the cell has a number of available PRBs Nava at layer 1 to 

serve the User Equipment (UE) traffic demands.  

 
Fig. 6. System model conceptual scheme. 

Fig. 6 also illustrates the different layers of the radio interface protocol stack at the gNB that determine how 

the user plane information and the control plane signalling is transferred between the UE and the gNB. 

Specifically, the transfer of the user plane information (e.g. IP packets associated to the services of the UE) 
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is carried out through the Service Data Adaptation Protocol (SDAP), Packet Data Convergence Protocol 

(PDCP), Radio Link Control (RLC), Medium Access Control (MAC) and physical (PHY) layers. In turn, 

the control plane signalling can be either generated at the Radio Resource Control (RRC) layer (e.g. for 

measurement reporting) or at upper layer Non Access Stratum (NAS) protocols for signalling between the 

UE and the 5GC network (e.g. for session establishment). In both cases, signalling is transferred between 

UE and gNB using the PDCP, RLC, MAC and PHY layers. Further details on the functionalities of each 

layer can be found in [6].  

In order to efficiently use the radio resources and ensure the QoS requirements of the users in the system 

when transferring the information through the different layers of the protocol stack, the gNB includes a set 

of RRM functionalities, namely the AC function at Layer 3 (L3) and the resource allocation at Layer 2 

(L2), which are briefly described in the following.  

Whenever a new session of a service (i.e. a new QoS flow in 3GPP terminology) is established for 

transferring user data through the 5G system for a given UE, the 5GC network requests the gNB to set up 

resources to support this QoS flow at the radio interface. The 5GC network provides the gNB with the slice 

identifier of the tenant, i.e. the Single Network Slice Selection Assistance Information (S-NSSAI) [5], and 

the QoS parameters of the service. At the gNB, the SDAP layer maps the QoS flow to a Data Radio Bearer 

(DRB) that enables data transfer through the different layers of the radio interface protocol stack according 

to the expected QoS [4]. For this reason, and to make sure that the cell will have sufficient resources to 

support the requested QoS, the AC function at L3 is required to determine the acceptance or rejection of the 

new DRB in accordance with its QoS parameters and the available capacity.  

Let us consider that each UE is provided with a single DRB and that, as a result of the AC function, the 

number of admitted DRB, and thus users, of the s-th service of the n-th tenant in the cell is us,n. Then, the 

resource allocation function is associated to the MAC layer at L2 and is in charge of dynamically assigning 

the Nava available PRBs in the cell among the admitted DRBs, thus determining how the data of these DRBs 

travels through the physical layer.  

In order to configure the multi-tenant behaviour of the AC and resource allocation functions, the OAM 

provides the RRM policy information to the gNB [16], including guidance for the split of radio resources 

among the different RAN slices. Specifically, let us assume that the OAM provides each gNB with the per-

tenant parameters required to configure the RRM functionalities, as described in the detailed models for 

the L3 admission control and L2 resource allocation functions that are given in sections 2.2.3 and 2.2.4, 

respectively. 

2.3.2. Markov model characterization 

Assuming that users generate sessions of exponential duration according to a Poisson arrival process, the 

dynamic evolution of the number of admitted users of each service type and tenant can be characterised in 

general by a Continuous Time Markov Chain (CTMC) with (M1+M2+…+MN)-dimensional states. Let us 
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define S(u1,1,…,uM1,1
,u1,2,…,uM2,2

,…,u1,N,…,uMN,N
) as the state in which u1,1,…,uM1,1,u1,2,…,uM2,2,…,u1,N,…,uMN,N

  

users are admitted in the system. The state space is defined as:   
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S S |u U   

(1) 

where Umax,s,n is the maximum allowed number of users of the s-th service of the n-th tenant, which is 

established for hardware limitation purposes (processor, memory, power). It is worth mentioning that the 

AC can further restrict the number of users per service to a value lower than Umax,s,n depending on how the 

AC policy is specified. 

Transitions between states occur due to session arrivals or session departures. In this respect, it is considered 

that session arrivals are generated with rate λs,n for the s-th service of the n-th tenant, while the average 

session duration of this service is 1/μs,n. Moreover, since AC in L3 is in charge of admitting or rejecting 

users’ requests depending on the system occupation, it also affects the transitions between states. In this 

respect, let us define AC(u1,1,…,uMN,N
)

 s,n
 as the binary AC indicator for the arrivals of the s-th service and n-th 

tenant, taking the value 1 if the new service request is accepted and 0 otherwise. It is worth mentioning that, 

since transitions can only occur due to the admission of a new session or the finalisation of an existing 

session, they can only increase or decrease the number of admitted users in one unit, meaning that 

transitions are only possible between neighbouring states. Therefore, the transition rate qx,y from a state x 

to another state yx is given by: 
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where transitions to states with one more user (i.e. first condition in (2)) depend on the AC(u1,1,…,uMN,N
)

 s,n
 

indicator and λs,n while the transitions to a state with one less user (i.e. second condition in (2)) depend on 

the number of users of the service that decreases and μs,n. The rest of transitions from/to states with more 

or less than one user are not allowed (i.e. third condition in (2)).  

Fig. 7 illustrates a state transition diagram with all the possible transitions to/from a given state 

S(u1,1,…,us,n,…,uMN,N
) when increasing or decreasing one user of each of the services. From the state transition 

diagram, the general Steady-State Balance Equation (SSBE) is given by: 

, ,M , M ,1,1 1,1

( ,..., 1,..., ), M ,1,1

, , ,M , M ,1,1 1,1 1,1

,
, , ,( ,..., ,..., ) ( ,..., ,..., )

, ,

,
,( ,..., 1,..., ) ( ,..., 1,..., ) ( ,..., 1,...

,

[ ]
s n s nN NN N

u u us n NN

s n s n s nN NN N

s n
s n s n s nu u u u u u

s n s n
S S

s n
s nu u u u u u u u

s n

P u AC

P AC P

 



 

  

 



 

 M ,

( ,..., 1,..., ), M ,1,1

, ,, )
,

( 1)
NN

u u us n NN

s n s nu
s n

S S

u 

 


 

(3) 



2.3. Analytical model for RAN slicing scenarios 

 

 

21 

where P(u1,1,…,us,n,…,uMN,N
) corresponds to the steady-state probability of being in state S(u1,1,…,us,n,…,uMN,N

). 

When the SSBEs are obtained for all the states, the steady-state probabilities can be computed by using 

numerical methods capable of solving the system of equations composed by the different SSBEs and the 

following normalisation constraint: 
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Fig. 7. State transition diagram with all the transitions from/to a given state S(u1,1,…,us,n,…,uMN,N

) with u1,1,…,us,n,…,uMN,N
 users. 

2.3.3. Admission control at Layer 3 

The AC function at L3 decides on the acceptance or rejection of users initiating new sessions depending on 

their requested QoS and the already admitted users in the cell. Since the QoS requirements have different 

nature for GBR and non-GBR services, the considered AC policy behaves differently in each case.  

For GBR services (Ts,n=0) the admission or rejection decision of a new user from the s-th service of the n-

th tenant considers its requested GBRs,n and ARPs,n parameters and those of the already admitted GBR users 

of the same tenant, together with a per-tenant capacity threshold Cmax,n defined as the maximum aggregate 

GBR that can be admitted for tenant n. This threshold Cmax,n is provided by the OAM as the RRM policy 

information to be enforced by the AC. Correspondingly, the new GBR user can be admitted if the aggregate 

GBR considering both the new user and the already accepted users of tenant n with higher or equal priority 

than the new user (i.e. with ARP lower or equal than ARPs,n) does not exceed the threshold Cmax,n. It is worth 

noting that, in practice, Cmax,n could be dynamically adjusted, e.g. through a Self-Organizing Network 

(SON) function [40], to account for the spectral efficiency conditions experienced by the users in the cell.   
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In contrast, for non-GBR services (Ts,n=1) the system is not committed to guarantee any GBR value. 

Therefore, the AC in this case only checks that the number of admitted users does not exceed the maximum 

threshold Umax,s,n.  

Based on these considerations, the AC decision for a new user of the s-th service of the n-th tenant is given 

by: 
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(5) 

Note that the considered AC function is performed independently for each tenant, in the sense that the 

admission of a new user belonging to a certain tenant only depends on this tenant’s parameters and 

occupation. Also, notice that the time scale at which AC is triggered depends on the session generation rate 

of the users λs,n, which will typically be in the order of seconds. 

2.3.4. Radio resource allocation at Layer 2 

From the perspective of the Markov model, admissions at L3 and session finalisations generate state 

transitions. In turn, within the sojourn time of a given state, the resource allocation at L2 defines how the 

Nava available PRBs in the cell are assigned to the admitted users in a given state. In practice, this is 

performed by the Packet Scheduler (PS), which dictates in a short time basis (millisecond time scale) the 

user allocation of PRBs to transmit data packets by considering the QoS constraints and the actual radio 

conditions associated with each user. Here, the PS behaviour is characterised in accordance with the sojourn 

time of the Markov model states (i.e., typically few seconds) and, consequently, all the short time scale 

components of the PS (e.g. fast fading) will be averaged out in the resource allocation model.  

Fig. 8 shows the considered resource allocation process. It is performed independently for each tenant n 

and assuming a maximum number of PRBs, Nth,n, to be allocated to this tenant, which is also determined 

by the OAM and provided to the gNB as RRM policy information. As depicted in Fig. 8, the process firstly 

allocates PRBs among the admitted users of GBR services. For this purpose, let us denote as arp(1,n), 

arp(2,n),...,arp(Mn,n) the list of ARP values in increasing order for the GBR services of tenant n, i.e. starting 

by arp(1,n)=mins|Ts,n=0ARPs,n and ending with arp(Mn,n)=maxs|Ts,n=0ARPs,n. Then, the process firstly 

allocates the PRBs required by all the GBR services with arp(1,n), then with arp(2,n), and so on. As long 

as there are available PRBs to serve the users of an ARP value, resources are assigned. Instead, when not 

enough PRBs are available (i.e. there is congestion), the procedure proportionally distributes the available 

PRBs among the users of that ARP value. Other criteria might be adopted for handling persistent congestion 

situations such as the use of congestion control functions. However, they are out of the scope of this work.  

After this process, the remaining PRBs are allocated among the admitted users of non-GBR services. Both 

phases are further developed in the following. 
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Fig. 8. Resource allocation procedure. 

2.3.4.1. Resource allocation to GBR services 

For a given state x=S(u1,1,…,uMN,N
), the target here is to model the aggregate number of assigned PRBs to the 

users of a given GBR service s of tenant n, denoted as ax,s,n. To obtain ax,s,n, the first stage is to compute the 

number of required PRBs by the us,n users. Then, the procedure of Fig. 8 is needed to allocate the Nth,n 

available PRBs among the Mn service types, considering that the required PRBs of each service can be 

different and that the ARPs establish a prioritisation among services. The number of required PRBs by a 

user of the GBR service s of tenant n is given by:  

 ,
, , ·

s n
req s n

eff

GBR
N

S B
  

(6) 

where Seff is the spectral efficiency, measured in b/s/Hz, and B is the PRB bandwidth. Since Seff fluctuates 

depending on the propagation conditions that users experience when moving around the cell, it will be in 

general treated as a random variable. The resource allocation characterization has been conducted by 

considering two different assumptions regarding Seff, firstly by considering Seff as an average and, secondly, 

by considering the statistical distribution of Seff, which are described in the following.  

The first assumption considers Seff as the average spectral efficiency that users would observe in the 

scenario, which allowed a low complexity formulation of the resource allocation. Under this assumption, 

ax,s,n  is computed by iteratively performing the procedure in Fig. 8 for GBR users, starting by the users of 

lower ARP to the ones with higher ARP. As long as there are available resources to serve the users of a 

given ARP, each user gets the required resources Nreq,s,n and the available number of resources are reduced 

accordingly before moving to the next ARP. If ARPmax is reached, the spare resources remain unused. 

Instead, when there are not sufficient available resources to serve all the users of a given ARP (i.e., there is 
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congestion), the number of assigned resources ax,s,n to each user of this ARP is obtained by proportionally 

reducing ax,s,n  according to the obtained ARP resource excess, given by: 
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The implications and accuracy of this first assumption are discussed in Appendix 1, which compares the 

results of the Markov model with a system level simulator that allows defining realistic scenarios where 

different scenarios can be configured in terms of cell deployment, propagation conditions and mobility. 

The comparison showed the validity of considering Seff as an average holds for scenarios with low variation 

of Seff. Instead, larger discrepancies are obtained between the results in the simulator and the Markov model 

for scenarios with large fluctuations on Seff, indicating that the Markov model is not enough accurate for 

these cases.   

Therefore, the second assumption considered the statistical distribution of Seff. Specifically, based on 

measurements collected from the different users in the cell, it is possible to derive the pdf of the random 

variable Y=1/(Seff·B), denoted as fY(y). This pdf is obtained by gathering samples of the wideband Channel 

Quality Indicator (CQI) distribution [41]. The CQI is an integer index that indicates the modulation and 

coding scheme available to user in accordance to its experienced propagation conditions. The wideband 

CQI distribution is computed by the gNB from the CQI reports provided by the different users, and it is 

reported to a Management and Data Analytics Function (MDAF) [42] with a given periodicity (e.g. 15 

minutes). The MDAF gathers samples of this distribution and averages them for a longer time period in 

order to get the adequate statistical validity to be representative of the cell conditions. Then, the averaged 

distribution of the CQI indices can be directly mapped to the distribution of the Seff according to the tables 

in Section 5.2.2 of [43]. Specifically, the probability density function (pdf) of Seff, denoted as fSeff(y), is 

obtained by associating the probability of a CQI index to the probability of the Seff value corresponding to 

this CQI index. Based on fSeff(y), the pdf of Y, fY(y) can be extracted based on fSeff(y) as:  
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Correspondingly, the number of required resources Nreq,s,n is another random variable, whose pdf is: 
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Assuming that each user experiences independent propagation conditions, the pdf of the aggregate number 

of required PRBs rx,s,n of the s-th service of the n-th tenant in state x can be computed as: 
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where * represents the convolution operator. 

As seen in Fig. 8, the allocation of resources to GBR users is performed in accordance with the priorities 

established by the ARP values of each service in the tenant, treating all the services with the same arp(m,n) 

together. Correspondingly, let us denote as Rarp(m,n)=[rx,s’,n| ARPs’,n=arp(m,n), Ts’,n=0] the vector of required 

resources for the GBR services of tenant n with the same arp(m,n). Considering independence between 

requirements of different services, the joint pdf of the rx,s,n variables in Rarp(m,n) is:  
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In turn, let us denote as Zarp(m,n) the random variable representing the aggregated number of PRBs already 

assigned to the GBR services in tenant n of ARP lower than arp(m,n) and f
Zarp(m,n)

(z) its pdf. For arp(1,n), 

since no resources have been yet assigned, f
Zarp(1,n)

=δ(z), where δ(·) is the Dirac delta function.  

Then, the pdf of the assigned resources ax,s,n of the s-th service of the n-th tenant with ARPs,n=arp(m,n), 

denoted as f
ax,s,n

(k), can be computed by conditioning the value of assigned resources ax,s,n to the 

requirements Rarp(m,n) of the services with the same arp(m,n) and to the already assigned resources by GBR 

services Zarp(m,n). Then, by applying the law of the total probability, this yields to:   
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where f
ax,s,n|Rarp(m,n),Zarp(m,n)

(k|Rarp(m,n),z) is the pdf of ax,s,n conditioned to Rarp(m,n) and Zarp(m,n), which is given 

by:  
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The first condition in (13) considers the case that the number of available resources for the tenant is higher 

than the required resources given by Rarp(m,n) vector. Then, each user gets the required resources, i.e. the 

aggregate resources are ax,s,n = rx,s,n. In turn, the second condition in (13) considers the case that there are 

not sufficient resources for the tenant to fulfil the requirements of all the users of arp(m,n) (i.e. there is 
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congestion). In this case, the assigned resources are proportionally distributed among these users as 

ax,s,n=arp(m,n)·rx,s,n with: 
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(14) 

Once the computation of f
ax,s,n

(k) for each of the services with arp(m,n) is completed, the pdfs for the 

subsequent ARP value arp(m+1,n) need to be derived. Then, the pdf  f
Zarp(m+1,n)

(z) is computed based on 

f
Zarp(m,n)

(z) and the aggregate resources that have been assigned to the services with arp(m,n), denoted by 

the random variable Aarp(m,n). This yields to: 
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where f
Aarp(m,n)|Zarp(m,n)

(t|z) is the pdf of Aarp(m,n) conditioned to Zarp(m,n) given by: 
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where f
Karp(m,n)

(z) is the pdf of the aggregate required resources for all the GBR services of arp(m,n), given 

by:  
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Note that, for the case m=Mn, which corresponds to the maximum ARP value among the GBR services in 

tenant n, expression (15) gives the pdf of the random variable ZGBR,n that represents the aggregate PRBs 

assigned to all the GBR services in that tenant, i.e. 
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2.3.4.2. Resource allocation to non-GBR services 

As seen in Fig. 8, the remaining PRBs after the allocation to GBR users of tenant n are distributed among 

the users of non-GBR services of the tenant. This distribution is carried out proportionally based on the 5QI 

priority level and the number of admitted users us,n of each service, with the proportional constant σs,n, 

defined as: 
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(20) 

Consequently, the assigned PRBs to the non-GBR service s of tenant n are given by ax,s,n=(Nth,n –ZGBR,n)·σs,n. 

Therefore, the pdf of ax,s,n can be obtained by using the pdf of the assigned resources after GBR allocation 

f
ZGBR

(z) as:  
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2.4. Performance metrics 

Based on the steady-state probabilities, this section develops the different performance metrics of interest 

for the evaluation of the considered RRM strategies for layer 2 and 3.   

2.4.1. Blocking probability 

Blocking states are those in which the acceptance of a new user of a given service is not possible. 

Specifically, the set of blocking states for users of the s-th service of the n-th tenant is denoted as Ss,n
b , 

defined as:  
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Similarly, the set of blocking states for the n-th tenant, Sn
b, are those states in which the acceptance of one 

user from any of the services of this tenant is not possible. Therefore, it is defined as the intersection of the 

sets of blocking states for the services of this tenant, i.e. Sn
b=S1,n

b ∩S2,n
b ∩…∩SMn,n

b . Similarly, the set of all 

blocking states in the system Sb is expressed as the intersection of the set of blocking states of each 

tenant/service. 

Based on the blocking states, the blocking probability computed per service and per tenant is given by: 
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(23) 

This can be easily extended to compute the blocking probability per tenant or the global blocking 

probability by considering Sn
b or Sb, respectively, in the summation of (23). 

2.4.2. Occupancy metrics 

Given the steady-state probabilities P(u1,1,…,uMN,N
), it is also possible to compute different metrics that 

provide information about the occupancy of the system. The average number of admitted users  Us,n
̅̅ ̅̅ ̅ of the 

s-th service of the n-th tenant is given by: 
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The average number of admitted users per tenant can be computed by adding the average number of users 

per service, i.e. Un
̅̅̅̅ =U1,n

̅̅ ̅̅ ̅+U2,n
̅̅ ̅̅ ̅+...+UMn,n

̅̅ ̅̅ ̅̅ ̅. Similarly, the global system average number of admitted users 

U̅ would be computed as the sum of the average number of users for all services and tenants. 

Another system occupancy metric that can be obtained from the model is the average PRB utilisation as,n̅̅ ̅̅  

aggregated per each service. The average aggregated PRB utilisation in a given state x=S(u1,1,…,uMN,N
) for 

the s-th service and the n-th tenant ax,s,n̅̅ ̅̅ ̅̅  is:  
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Then, the system average aggregated PRB utilisation per service as,n̅̅ ̅̅  can be computed by considering all 

the states ax,s,n̅̅ ̅̅ ̅̅  and the steady-state probabilities as: 
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Accordingly, the average PRB utilisation per tenant results from an̅=a1,n̅̅ ̅̅̅+a2,n̅̅ ̅̅̅+…+aMn,n
̅̅ ̅̅ ̅̅  while the global 

system PRB utilisation  a̅ can be computed by adding the average PRB utilisation of each tenant. Then, the 

average normalised PRB utilisation of the s-th service of the n-th tenant ωs,n̅̅ ̅̅ ̅ is expressed as: 
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Similarly to the other metrics, the average normalised PRB utilisation per tenant ωn̅̅̅̅  and the global average 

normalised PRB utilisation ω̅ result from adding the average normalised PRB utilisation of the tenant’s 

services or all the services, respectively. 

2.4.3. Average aggregated throughput 

For a state x=S(u1,1,…,uMN,N
), the average aggregated throughput for the s-th service of the n-th tenant Thx,s,n̅̅ ̅̅ ̅̅ ̅̅  

is computed differently for GBR and non-GBR services. In the case of GBR services, Thx,s,n̅̅ ̅̅ ̅̅ ̅̅  is computed 

as:  
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where f
Thx,s,n|Rarp(m,n),Zarp(m,n)

(k|Rarp(m,n),z) is the pdf of the aggregated throughput Thx,s,n̅̅ ̅̅ ̅̅ ̅̅  for the GBR service 

s from tenant n conditioned to Rarp(m,n) and Zarp(m,n) , given by:  
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Expression (29) follows the same principle as (13), considering that, when the number of available PRBs 

is higher than the number of required PRBs (first condition in (29)), all users get the required PRBs and 

thus the throughput of each user is GBRs,n. Instead, when there are not sufficient resources (second condition 

in (29)), the assigned PRBs are just a fraction arp(m,n) of the required ones and thus the throughput of each 

user is arp(m,n)·GBRs,n· 

Regarding non-GBR services and considering that the number of assigned PRBs to the non-GBR users 

depends on the spare PRBs after the allocation to GBR users, the average aggregated throughput Thx,s,n̅̅ ̅̅ ̅̅ ̅̅  for 

non-GBR users is independent of its actual spectral efficiency and is given by: 

, , , , · ·x s n x s n effTh a S B  (30) 

where Seff̅̅ ̅̅  is the average of the spectral efficiency Seff, derived from measurements in a similar way as 

variable Y. 

The system average aggregated throughput Ths,n̅̅ ̅̅ ̅̅  for the s-th service of the n-th tenant can be computed by 

considering Thx,s,n̅̅ ̅̅ ̅̅ ̅̅  for all services and the steady-state probability as:  
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The average aggregated throughput for the n-th tenant Thn̅̅ ̅̅̅ and the average global system aggregated 

throughput Th result from the summation of the average aggregated throughputs of the tenant’s services or 

all the services in the system, respectively.  

2.4.4. Degradation probability 

Degradation occurs when congestion is reached and some GBR admitted users cannot be assigned with 

their required resources to provide GBRs,n. Instead, they are assigned with a lower number of resources 

according to the considered resource allocation criteria. 

For a given state x, the degradation probability of the GBR service s-th of the n-th tenant with ARPs,n= 

arp(m,n) can be obtained by the following expression: 
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(32) 

where H(·) is defined in (17) and allows considering in the computation only those cases in which there are 

not enough resources to satisfy the service requirements (i.e. the second condition in (13)). 

Based on the degradation at state level and the steady-state probabilities, the degradation probability of the 

s-th of the n-th tenant at system level is given by: 
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Note that the degradation probability is not computed for non-GBR services, as GBRs,n is not established 

for them. 

2.5. Model implementation 

Regarding the implemented method to compute the state probabilities and solving the SSBE, the model has 

been approached as a CTMC, so the following equation needs to be solved: 

 T π ·Q 0  (34) 

where π is a column vector containing all the steady-state probabilities P(u1,1,,…,uMN,N
), the superscript T 

denotes the transposed operation, and 0 is a row vector with all elements equal to 0. The matrix Q is the 

state transition rate matrix, considering that rows define the origin state x and the columns the destination 

state y. The elements of Q, referred to qx,y, are defined by expression (2) for yx, while for y=x are given 

by q
x,y

=-∑ q
x,zzϵS, z≠x . 

The Gauss-Seidel method [44] has been selected to solve the SSBE system of equations (3) and compute 

the steady-state probabilities. This method avoids the discretisation of the CTMC transition rate matrix and 

provides a good compromise between accuracy and complexity in comparison to other methods. By 

employing the Gauss-Seidel method, expression (34) is transposed, leading to QT·π=0T and then the matrix 

QT is decomposed as: 

 TQ = D-(L+ U)  (35) 

where D matrix is the diagonal of QT while L and U are, respectively, the strictly lower and upper triangular 

matrices of QT. Then, the iterative matrix HGS can be constructed according to:  

 -1
GSH = (D-L) U  (36) 
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Based on this matrix, the Gauss-Seidel method applies an iterative method that computes the state’s 

probabilities in each iteration until reaching convergence. Specifically, the state probability at the k-th 

iteration, denoted as π(k), is computed as: 

 ( ) ( )


k +1 k

GSπ H π  (37) 

where the initial probability vector π(0) is set randomly. Convergence is achieved at the first iteration k that 

fulfils the following condition based on the norm of successive iterates:  

 ( ) ( )


k k-1
π - π  (38) 

where ε is the desired accuracy.  

2.6. Model validation 

The proposed model has been validated by comparing its results to the ones obtained with a custom made 

system-level simulator. The results from the Markov model have been extracted by developing it on 

MATLAB.  

The system-level simulator used for the validation allows defining 5G multi-tenant and multi-service 

scenarios with diverse cell deployments and with different QoS requirements for each service. Sessions 

generation follow a Poisson distribution with exponentially distributed session duration. The implemented 

RRM functionalities in terms of AC and resource allocation in the simulator follow the same principles as 

in the Markov model, considering for the resource allocation the assumption that the spectral efficiency is 

statistically modelled as a random variable based on the measurements collected from the different users in 

the cell.  

The adopted validation scenarios consider N=2 tenants, referred to Tenant 1 and Tenant 2, where Tenant 1 

provides M1=3 different services while Tenant 2 provides M2=2 services. The QoS parameters of the 

different services are summarized in Table I, which have been specified according to the QoS model of [5]. 

The included parameters consist of the ARP, the PL and the GFBR, which specifies the GBR value to be 

provided to a QoS flow. The NG-RAN is composed by one gNB with a single cell. Two different radio 

environments are considered: a Urban Micro-cell (UMi) and a Rural Macro-cell (RMa) according to [45]. 

The configured parameters used to obtain the validation results for the UMi and RMa scenarios are 

summarized in Table II. Considering the defined 5G NR numerologies and channel bandwidth constraints 

for the different 5G NR bands [46], the largest channel bandwidth allowed to the considered RMa 

environment operating in the 700 MHz band is 20 MHz. Then, in order to ease the comparison of results in 

both RMa and UMi, the same 20 MHz bandwidth has been selected for both environments, which is 

composed by 51 PRBs [47], each one of B=360 kHz corresponding to 12 Orthogonal Frequency-Division 

Multiple Access (OFDMA) subcarriers with subcarrier separation of 30 kHz. Notice that, for both of the 

environments, the spectral efficiency samples of the different users are generated by mapping the Signal to 
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Interference Ratio (SINR) of users to spectral efficiency values according to the link-level model of section 

5.2.7 of [48], which includes a parameter α to model modem implementation losses and link conditions 

such as the effects of error rates and retransmissions.  

TABLE I. SERVICES PER TENANT FOR THE VALIDATION SCENARIO.  

Tenant id (n) Service id (s) Type GFBR ARP PL 

1 

1 GBR 5 Mb/s 1 30 

2 GBR 2 Mb/s 2 40 

3 Non-GBR - 3 70 

2 
1 Non-GBR - 3 80 

2 Non-GBR - 3 60 

 

TABLE II. MODEL CONFIGURATION PARAMETERS. 

Environment UMi RMa 

ISD (Inter-Site distance)  200 m 1735 m 

gNB height  10 m 35 m 

UE height  1.5 m 1.5 m 

Minimum gNB-UE distance  10 m 35 m 

Path Loss and Shadowing model Model of sec. 7.4 of [45]  

Shadowing standard deviation in Line of Sight 
(LOS) 

4 4 

Shadowing standard deviation in Non-Line of 
Sight (NLOS) 

7.82 8 

Frequency  3.6 GHz 704 MHz 

Total gNB transmitted power 37 dBm 45 dBm 

gNB antenna Gain Omnidirectional antenna with 5 dBi gain 

UE noise figure 9 dB 

Link-level model to map SINR and bit rate 
Model in section. 5.2.7 of [48] with maximum spectral efficiency of 5.97 b/s/Hz 

(corresponding to SINR= 30 dB) and minimum SINR= -10 dB with α=0.6. 

Number of spectral efficiency samples for fY(y) 
generation 

107 samples obtained by simulating users at different random positions 
uniformly distributed within the cell and measuring their spectral efficiency. 

Average Spectral Efficiency  5.7 b/s/Hz 5.1 b/s/Hz 

Cell available PRBs (Nava) 51 PRBs 

PRB Bandwidth (B) 360 kHz 

Cell maximum number of users Umax,s,n=50 users for s,n=1,2 

Cell total capacity 104 Mb/s 94 Mb/s 

L3 Maximum Capacity Threshold Tenant 1 
(Cmax,1) 

62.4 Mb/s (corresponds to the 60% of 
the cell capacity) 

56.4 Mb/s (corresponds to the 60% of 
the cell capacity) 

L3 Maximum Capacity Threshold Tenant 2 
(Cmax,2) 

N/A (only non-GBR services) 

L2 Maximum number of resources per tenant 
(Nth,1) 

35.7 PRBs (corresponds to the 70% of the total cell PRBs) 

L2 Maximum number of resources per tenant 
(Nth,2) 

15.3 PRBs (corresponds to the 30% of the total cell PRBs) 

Average session generation rate Tenant 1 
varied from 0.001 to 0.1 sessions/s (corresponds to 0.27 Mb/s to 27.6 Mb/s of 

traffic offered load by GBR services)  

Average session generation rate Tenant 2 0.04 sessions/s  

Average session duration 120 s 

Session generation distribution Tenant 1 30% of session arrivals are of service 1, 40% of service 2 and 30% of service 3. 

Session generation distribution Tenant 2 40% of session arrivals are of service 1 and 60% of service 2. 

 

Table III contains the absolute percentage of error of the simulator results with respect to the Markov model 

results for all the services in the system for two session generation rates of Tenant 1. The small error 

percentages obtained show the suitability of the analytical model to evaluate RAN slicing scenarios with 

multiple tenants and services when considering diverse environments in terms of cell deployment (cell 

radius, transmitted power, etc.) and different traffic loads. 



2.7. Performance evaluation 

 

 

33 

 

TABLE III. COMPARISON OF RESULTS BETWEEN MARKOV MODEL AND SIMULATOR. 

Tenant id (n) Service id (s) 
Tenant 1 

Session generation 
rates 

UMi RMa 

% Error 
(Ps,n

b ) 

% Error 
(as,n̅̅ ̅̅ ) 

% Error 
(Ths,n̅̅ ̅̅ ̅̅ ) 

% Error 
(Ps,n

b ) 
% Error 

(as,n̅̅ ̅̅ ) 
% Error 

(Ths,n̅̅ ̅̅ ̅̅ ) 

1 

1 
0.02 0% 2.6% 3.3% 0% 1.9% 3.3% 

0.1 2.6% 0.6% 0.4% 2.0% 1.3% 0.5% 

2 
0.02 0% 2.5% 1.5% 0% 2.2% 1.5% 

0.1 1.4% 1.7% 0.8% 0.2% 0.3% 0.7% 

3 
0.02 - 0.0% 0.1% - 0% 0.2% 

0.1 - 0.7% 0.6% - 1.6% 1.8% 

2 

1 
0.02 - 0.1% 0.0% - 0.1% 0.1% 

0.1 - 0.2% 0.3% - 0.7% 0.6% 

2 
0.02 - 0.1% 0.1% - 0.1% 0.2% 

0.1 - 0.0% 0.2% - 0.4% 0.6% 

 

2.7. Performance evaluation 

This section provides the performance evaluation of the proposed model when considering different multi-

tenant and multi-service scenarios under diverse cell environments. First, the proposed AC solution is 

compared to an AC benchmarking solution, which does not consider isolation among slices. Second, the 

model has been analyzed when considering a relevant use case envisaged for 5G, where GBR enhanced 

mobile broadband (eMBB) and GBR Mission Citical (MC) services provided by different tenants are 

analysed under standard and disaster traffic conditions. Third, the potential of the solution to deal with 

scenarios with different cell environments is assessed by evaluating the solution in a scenario with two 

tenants providing GBR and non-GBR services over urban micro cell and rural macro cell environments. 

Finally, the discussion of the impact of including a new tenant is provided.  

2.7.1. Benchmarking of admission control strategy 

The proposed AC solution in Section 2.3.3, which considers the per-tenant capacity threshold Cmax,n as well 

as the GBRs,n and ARPs,n parameters for the admission of a new GBR user, has been compared to a 

benchmarking AC solution, denoted as priority-based AC, which only considers the GBRs,n and ARPs,n 

parameters for the admission of a new user. Specifically, the priority-based AC considers a common 

admission control threshold Cmax established for all the tenants, in addition to the GBRs,n and ARPs,n 

parameters, for the admission of a new GBR user from the s-th service of the n-th tenant, according to:  
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(39) 

The assumed scenario for the benchmarking analysis is comprised of a single cell that serves the users from 

N=2 Tenants providing Mn=2 GBR services each one. The configured parameters are summarised in Table 
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IV. For this analysis, the resource allocation considers the assumption that spectral efficiency is modelled 

as an average.  

TABLE IV. MODEL CONFIGURATION PARAMETERS. 

Parameter Value 

Number of available PRBs 

(Nava) 
25 PRB 

PRB Bandwidth (B) 180kHz 

Average Spectral Efficiency 

(Seff) 
5.6 b/s/Hz. 

Data rate per PRB 1 Mbps/PRB 

Cell capacity 25 Mbps 

Guaranteed Bit Rate (GBR) GBRs,n=3Mbps for s,n=1,2 

Allocation and Retention 

Priority (ARP) 

Configuration 1 ARP1,1=1, ARP2,1=2, ARP1,2=3, ARP2,2=4. 

Configuration 2 ARP1,1=1, ARP2,1=4, ARP1,2=1, ARP2,2=3. 

Configuration 3 ARP1,1=1, ARP2,1=3, ARP1,2=2, ARP2,2=3. 

Average session generation 

rate 

Tenant 1: varied from 0.001 to 0.06 sessions/s (corresponds to a variation from 0.36 Mb/s to 

21.6 Mb/s) 

Tenant 2:  

- Low load: 0.02 session/s (corresponds to 7.2 Mbps) 

- High load: 0.035 sessions/s (corresponds to 12.6 Mb/s) 

Average session duration 120 s 

Tenant generation distribution 
Tenant 1: 30% of generated traffic for service 1 and 70% for service 2.  

Tenant 2: 40% of generated traffic for service 1 and 60% for service 2 

 

2.7.1.1. Priority analysis 

For evaluating the effect of the ARP value on the performance, the ARP configurations in Table II have 

been tested for the benchmarking priority-based AC policy with the relative capacity threshold ωmax=0.8, 

where ωmax is the ratio between Cmax and the cell capacity. The offered load by Tenant 2 is set to the Low 

load level of Table I while Tenant 1’s load is varied to observe different system load situations.  

Fig. 9 shows the results obtained for the different services in the system considering the proposed ARP 

configuration in terms of blocking and degradation probability, both expressed in %. The comparison of 

the blocking probability of the different services reveals that higher blocking percentages are reached for 

those services with higher ARP value. This is the case of service 2 from Tenant 1 in configuration 1 or 

service 2 from Tenant 2 in configuration 2. In configuration 3, as services 2 from both Tenants share the 

same ARP value, which is the highest one in the system, the same performance in terms of blocking 

probability is found. 

Focusing on the degradation probability, it is observed that the reached values are quite low (i.e. less than 

3.5%) even for the highest considered load. This means that the guaranteed GBR of the admitted users is 

satisfactorily preserved. However, when the load is high, some differences can be perceived depending on 

the priority assigned to each of the services. Services with low ARP values are slightly degraded while 

services with high ARP values suffer from higher degradation. In addition, the effect of different loads can 

be noticed from Fig. 9f, where service 2 from Tenant 1 suffers from higher degradation than service 2 from 

Tenant 2, although both services have the same ARP value. The reason of this is that service 2 from Tenant 
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1 is more demanding because, as seen in Table I, 70% of the traffic from Tenant 1 belongs to service 2 

while the traffic belonging to service 2 from Tenant 2 represents only 60%.  

Based on these results, it can be concluded that the priority-based AC policy is capable of providing the 

required GBR to the admitted users with reduced degradation while differentiating between each service 

priority according to its ARP. 

 
Fig. 9. Blocking probabilities for the different ARP configurations (a), (b), (c) and degradation probabilities for each 

configuration (d), (e), (f). 

2.7.1.2. Priority and isolation analysis 

The impact of proposed AC policy in Section 2.3.3 on the achieved performance has been analysed by 

comparing different load conditions for two different AC per-tenant threshold configurations: configuration 

1 sets ωmax,1=0.4 for Tenant 1 and ωmax,2=0.4 for Tenant 2 while configuration 2 sets ωmax,1=0.6 and 

ωmax,2=0.2, where ωmax,n is the ratio between Cmax,n and the cell capacity. The selected ARP configuration 

corresponds to configuration 3 in  Table IV and both the Low and High load levels of Tenant 2 have been 

studied. 

By comparing the results obtained for Tenant 1 and 2, it is clearly seen that, with this AC policy, and as a 

difference from the benchmark priority-based AC policy, the load variation of Tenant 1 has no impact on 

the blocking probability of Tenant 2, which remains constant for all the offered loads of Tenant 1 (see Fig. 

10c, Fig. 10d). Moreover, no variation is found in the performance of Tenant 1 (see Fig. 10a, Fig. 10b) for 

the Low and High load values of Tenant 2. These results reflect the isolation achieved between tenants 

when the proposed AC policy is applied.  

Focusing on the effect of the per-tenant AC threshold variation, it is observed that blocking probabilities of 

Tenant 1 are higher when the threshold configuration 1 is used, as the AC threshold ωmax,1 is lower, so less 

Tenant 1 users can be admitted to the system. On the contrary, blocking probabilities for Tenant 2 are lower 

for the threshold configuration 1, since the value of ωmax,2 is higher for this configuration.  
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As expected, the effect of ARP values is also observed in the provided results, as service 2 from both 

Tenants, which has the higher ARP value, also perceives higher blocking probabilities than service 1. When 

comparing the results for Low Tenant 2 load and configuration 1 in Fig. 10 and the results in Fig. 9c, it can 

be noticed that the blocking probabilities of Tenant 1 for the priority and isolation-based AC policy are in 

general higher than for the priority-based AC policy. This is because in the later approach, Tenant 1 

improves its performance at the expense of Tenant 2 since no distinction in the resources used by each 

tenant is performed in the AC, while in the priority and isolation-based AC, admissions of Tenant 1 only 

consider the threshold defined for that tenant. Therefore, performance is dependent on how this threshold 

is configured. For example, with configuration 2 (see Fig. 10a, Fig. 10b), performance is improved as ωmax,1 

better fits with the actual Tenant 1 load. 

According to this, AC thresholds need to be configured according to the expected load for the tenant. The 

above observations reflect that the proposed AC policy in Section 2.3.3 effectively avoids that the overload 

in one Tenant may affect the other tenant while still respecting the priority established to each of the services 

of a Tenant. However, AC thresholds need to be properly defined in relation to the tenant traffic load.   

 
Fig. 10. Blocking probabilities for (a) service 1 and (b) service from Tenant 1 and (c) service 1 and (d) service 2 from Tenant 

2 for configurations 1 and 2. 

2.7.2. Assessment of the solution for GBR eMBB and MC services 

The Markov solution has also been analysed in a relevant 5G use case scenario that considers a commercial 

operator that has deployed a NG-RAN in order to provide eMBB services to its users. Meanwhile, the 

commercial operator leases its infrastructure to a public safety operator serving MC communications. 

Therefore, the NG-RAN serves two different tenants, referring the commercial operator as Tenant 1 and 

the public safety operator as Tenant 2. In addition, each operator provides two different GBR services: 

Tenant 1 includes two video profiles, a basic profile with a standard quality and a premium profile with 

High Definition (HD) quality, whereas Tenant 2 provides two MC services, namely, MC Video and MC 

Push to Talk (MC PTT).  
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For each of the services, the QoS parameters summarised in Table V have been specified according to the 

QoS model of [5]. The included parameters consist of the ARP and the GFBR.  

TABLE V. SERVICES PER TENANT. 

Tenant Tenant id (n) Service Service id (s) Type ARP GFBR 

Commercial operator 1 
Premium – Video HD 1 GBR 2 10 Mb/s 

Basic - Video 2 GBR 3 3 Mb/s 

Public safety operator 2 
MC Video 1 GBR 2 5 Mb/s 

MC PTT 2 GBR 1 48 kb/s 

 

The NG-RAN is composed by one gNB, with a single cell operating in a 20 MHz channel composed by 51 

PRBs [46], each one of B=360 kHz corresponding to 12 OFDMA subcarriers with subcarrier separation of 

30 kHz, which is one of the numerologies defined for 5G NR [47]. The configured parameters used to 

obtain the different results included in this section are summarised in Table VI. For the resource allocation, 

the spectral efficiency has been considered as an average. 

TABLE VI. MODEL CONFIGURATION PARAMETERS. 

Parameter Value 

Number of available PRBs (Nava) 51 PRB 

PRB Bandwidth (B)  360 kHz 

Spectral Efficiency (Seff) 8.5 b/s/Hz 

Data rate per PRB 3 Mb/s/PRB 

Cell Maximum number of users  Umax,s,n=50 users for s,n=1,2 

Cell total capacity 156 Mb/s 

Scenario 1: Standard 

Average session generation rate 
Tenant 1 

Varied from 0.001 to 0.12 sessions/s (corresponds to a variation of 
0.6Mb/s to 82.8 Mb/s) 

Tenant 2 0.05 session/s (corresponds to 6.2 Mb/s) 

Average session duration 120 s 

Maximum capacity threshold 
Tenant 1 Cmax,1=93.6Mb/s (corresponds to the 60% of the total capacity) 

Tenant 2 Cmax,2=31.2 Mb/s (corresponds to the 20% of the total capacity) 

Tenant generation distribution 
Tenant 1 40% of session arrivals are of service 1 and 60% of service 2 

Tenant 2 20% of session arrivals are of service 1 and 80% of service 2 

Scenario 2: Disaster 

Average session generation rate 

Tenant 1 0.04 session/s (corresponds to 17.76 Mb/s) 

Tenant 2 
Varied from 0.001 to 0.25 sessions/s (corresponds to a variation of 
0.36 Mb/s to 88 Mb/s) 

Average session duration 120 s 

Maximum capacity threshold 
Tenant 1 Cmax,1=46.8 Mb/s (corresponds to the 30% of the total capacity) 

Tenant 2 Cmax,2=78 Mb/s (corresponds to the 50% of the total capacity) 

Tenant generation distribution 
Tenant 1 10% of session arrivals are of service 1 and 90% of service 2 

Tenant 2 60% of session arrivals are of service 1 and 40% of service 2 

 

Two different scenarios are defined in terms of load: a standard scenario, in which the traffic coming from 

the public safety operator is low while the traffic from the commercial operator is progressively increased, 

and a scenario representing a situation when an emergency or disaster has occurred and therefore the public 

safety traffic generated is varied until reaching high values whereas the traffic from the commercial operator 

remains moderate. Different maximum tenant capacity thresholds Cmax,n are configured: for the standard 
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scenario Cmax,1 of the commercial operator is higher whilst in the disaster scenario it is reduced, allowing 

more resources to be devoted to the public safety operator (i.e., Cmax,2 higher). 

The standard and disaster scenarios have been compared based on the analysis of different performance 

metrics obtained by means of the Markov model. Specifically, the impact of the ARP indicator and the 

tenant capacity thresholds of the selected AC policy on the system performance under different load 

conditions is discussed.  

Fig. 11 depicts the blocking probabilities for the different services in the standard (Fig. 11a) and the disaster 

(Fig. 11b) scenarios as a function of Tenant 1 and Tenant 2 offered loads, respectively, understood as the 

generated traffic load for each of the tenants. For the standard scenario, it can be observed how eMBB 

services blocking probabilities grow when Tenant 1’s offered load is increased. Higher blocking 

probabilities are observed for the eMBB Basic Video compared to the Premium Video due to the higher 

ARP value (i.e., lower priority) of the former. In turn, MC services present low blocking probabilities as a 

result of the low offered load associated with Tenant 2. Specifically, the MC PTT attains almost 0% 

blocking because the service is granted with the highest priority (i.e., ARP=1). It is also worth noting that, 

for public safety services, the blocking probabilities remain constant as the eMBB traffic increases, thus 

reflecting that the AC policy, which establishes capacity thresholds on a per-tenant basis, provides isolation 

between Tenant 1 and Tenant 2. 

In the disaster scenario, and given that Fig. 11b considers variable load for Tenant 2, the contrary case is 

found: blocking probability grows for MC services while eMBB services remain invariable. The low 

blocking probabilities observed for Tenant 1 result from the moderate offered loads, which do not exceed 

its maximum capacity (i.e., Cmax,1=46.8 Mb/s). Regarding the public safety services, the MC Video can 

reach substantial blocking in case the traffic grows significantly, whereas the MC PTT service is able to 

maintain low blocking probabilities. 

Blocking probability results can be contrasted by analysing the state probability distribution when setting 

a fixed load for each Tenant. In particular, Fig. 12 shows the steady-state probability distribution for each 

of the tenants when Tenant 1’s traffic generation rate is set to 0.12 sessions/s (which corresponds to 82.8 

Mb/s) in the standard scenario and Tenant 2’s traffic generation is set to 0.25 session/s (which corresponds 

to 88 Mb/s) in the disaster scenario. The axes of the graphs reflect the number of users of each tenant for 

each represented state probability. For the standard scenario and Tenant 1 (Fig. 12a), the states with highest 

probability are mostly those with an intermediate number of users for the eMBB Premium video service, 

while for Tenant 2 (Fig. 12b), the highest probabilities correspond to states with a low number of users in 

relation to its maximum. This explains that the blocking probability for Tenant 1 is relatively high in Fig. 

11a, while for Tenant 2, it is lower.  
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Fig. 11. Blocking probability of each service in (a) standard and (b) disaster scenarios. 

 
Fig. 12. Probability distribution for each of the tenants in the standard scenario (Tenant 1 traffic generation rate set to 0.12 

sessions/s) and disaster scenario (Tenant 2 traffic generation rate set to 0.25 sessions/s). 

For the disaster scenario, the state space for Tenant 1 (Fig. 12c) is reduced in comparison to the standard 

scenario case because the Cmax,1 threshold has been set to a lower value (i.e., Cmax,1=46.8 Mb/s compared to 

Cmax,1=93.6Mb/s in the standard scenario). Therefore, the highest probability is concentrated in states with 

a low number of users, which is consistent with the low blocking probabilities found in Fig. 11b for Tenant 

1. Regarding Tenant 2, the range of possible states is increased as the maximum tenant capacity threshold 

has been increased to Cmax,2=78 Mb/s. In that case, the highest probability concentrates in states with a large 

number of users for MC Video service and low number of users for MC PTT service, which results in the 

large Tenant 2 blocking probability found in Fig. 11b for MC Video and low probabilities for MC PTT. 

Although not included graphically, the analysis of the degradation probability reveals that both of the 

studied scenarios present negligible degradation probabilities (i.e., lower than 3·10-7 for the standard 

scenario and 2·10-11 for the disaster scenario), implying that the admitted users in the system are provided 

with its GBR requirements satisfactorily most of the time.  
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Additionally, the average aggregated throughput per service has been analysed in Fig. 13. For the standard 

scenario (Fig. 13a), the offered load of eMBB services is increased, so its average throughput for eMBB 

services grows until achieving high loads, where the system starts overloading. This is directly related to 

the high blocking probabilities observed for those services in high load conditions in Fig. 11a. In contrast, 

MC services average throughput remains constant for all loads, as a result of its constant offered load and 

the low blocking probabilities achieved in the standard scenario. In the case of the disaster scenario (Fig. 

13b), eMBB services and MC PTT throughput stay invariable as its corresponding low blocking 

probabilities (Fig. 11b) whereas MC Video throughput grows until reaching high loads, when the 

throughput reduces its growing speed as a consequence of the high blocking probabilities obtained for MC-

Video in this scenario. By observing the graphs and considering that negligible degradation probabilities 

are obtained, it can be considered that the increase of offered load in one tenant does not affect the other 

tenant’s throughput.  

 

Fig. 13 Average aggregated throughput and offered load of each service in (a) standard and (b) disaster scenarios. 

Finally, an analysis in terms of the system occupation is conducted for each of the scenarios by considering 

the average normalised PRB utilisation. For the standard scenario (Fig. 14a), higher PRB utilisation is found 

for eMBB services than for MC services, which are barely affected when Tenant 1’s load is varied. In 

contrast, higher PRB utilisation is achieved for MC services than for eMBB services in the disaster scenario 

(Fig. 14b). The reason for this can be found in the variation of the maximum capacity thresholds per tenant 

for each of the scenarios, as in the standard scenario, higher occupation is allowed to Tenant 1, and in the 

disaster scenario, the reverse situation is configured. Another relevant effect regarding the results is that the 

PRB utilisation of MC PTT is truly low, given its low GFBR requirements. 
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Fig. 14. Average occupation per tenant and service for the standard and disaster scenarios. 

2.7.3. Assessment of the solution with GBR and non-GBR services 

While previous sections 2.7.1 and 2.7.2 have analyzed the performance of the Markov model considering 

only GBR services, this section analyses the solution for scenarios where tenants provide both GBR and 

non-GBR services. Moreover, the analysis has been conducted under the assumption that the spectral 

efficiency is modelled as a random variable according to the statistical model proposed for the resource 

allocation in Section 2.3.4. The scenario under test considers N=2 tenants, referred to as Tenant 1 and 

Tenant 2. Tenant 1 provides M1=3 different services while Tenant 2 provides M2=2 services. For each of 

the services, the QoS parameters correspond to the used for the model validation in summarised in Table I 

in terms of the ARP, the PL and the GFBR [5].  

The NG-RAN is composed by one gNB with a single cell. Two different radio environments are considered: 

an UMi and a RMa, which have been configured according to the parameters used for the model validation 

in Table II. The considered scenarios have been analysed both at state and global system levels. Moreover, 

a discussion of the impact of introducing a new tenant closes this analysis. 

2.7.3.1. State level analysis 

In order to analyse the behaviour of the proposed radio resource allocation procedure in L2, two states have 

been selected and the procedure of Section 2.3.4 has been followed. State #1 comprises u1,1=4, u2,1=10 and 

u3,1=12 users belonging to Tenant 1 and u1,2=6 and u2,2=6 belonging to Tenant 2. State #2 is composed of 

u1,1=7, u2,1=12 and u3,1=12 users belonging Tenant 1 and u1,2=9 and u2,2=6 users belonging to Tenant 2. 

Notice that State #2 has higher GBR requirements than State #1. Both states have been evaluated in both 

UMi and RMa environments, defined in Table II.   

Regarding the resource allocation of Tenant 1, Fig. 15, Fig. 16 and Fig. 17 include the pdfs of the assigned 

resources f
ax,s,n

(k) in both states and environments for all services of Tenant 1. The impact of the 

environment can be appreciated: the pdfs for the UMi environment are narrower than the ones for the RMa 

environment. This reveals that the UMi has better radio propagation conditions than the RMa and less 

variability in terms of spectral efficiency given the more confined coverage area. In this sense, the peak 

observed in the obtained pdfs, which is produced by those users having the maximum spectral efficiency 

available in the system, is much prominent for the pdfs belonging to the UMi scenario. 
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Fig. 15. Pdf of assigned resources to service 1 for State # 1 and State # 2 in UMi and RMa scenarios. 

 

Fig. 16. Pdf of assigned resources to service 2 for State # 1 and State # 2 in UMi and RMa scenarios. 

 

Fig. 17. Pdf of assigned resources to service 3 for State # 1 and State # 2 in UMi and RMa scenarios. 

The effect of increasing the number of GBR users can be observed in Fig. 15 and Fig. 16 when comparing 

the pdfs of States # 1 and # 2 of services 1 and 2, respectively (i.e. u1,1=4 and u2,1=10 in State # 1 and u1,1=7 

and u2,1=12 in State # 2). As expected, the pdfs in State #2 are shifted to a higher number of assigned PRBs, 
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as a result of having a greater resource demand. Moreover, a peak at 35.7 PRBs appears for service 1 in 

State # 2 in the RMa environment, reflecting that there exists a probability that all the resources available 

for Tenant 1 (i.e., 35.7 PRBs) are assigned to service 1. In this case, given that service 1 has the lowest 

ARP (i.e. the highest priority), this means that no resources can be assigned to service 2, which is evidenced 

by the peak at 0 assigned PRBs that appears in Fig. 16.  

In the case of service 3, as it is a non-GBR service, it is provided with the remaining resources after the 

allocation to GBR services (i.e. service 1 and service 2), as shown in  Fig. 17. This explains the fact that in 

State # 1 the pdf is centred in a higher number of resources than in State # 2. Furthermore, the peaks in the 

pdfs appear at the right hand side instead of the left hand side observed for GBR services, reflecting that 

service 3 is granted with lower priority and is assigned with the spare radio resources. Table VII presents 

the state average aggregated PRB utilisation, ax,s,n̅̅ ̅̅ ̅̅ , and the state average aggregated throughput, Thx,s,n̅̅ ̅̅ ̅̅ ̅̅ , for 

States # 1 and # 2 and all the services in the system in both UMi and RMa environments. In the case of 

Tenant 2, given that both services are non-GBR, no requirements in terms of resources are established, so 

the pdf of the assigned PRBs does not depend on the spectral efficiency or the environment. Consequently, 

the same values in terms of  ax,s,n̅̅ ̅̅ ̅̅   are observed for UMi and RMa environments. From these values, the 

effect of the proportional sharing constant σs,n is appreciated, which depends on both the PL and the number 

of users. For State # 1, service 1’s average aggregated PRB utilisation is lower than the one obtained for 

service 2, as the latter has a lower PL (higher priority) and both services have the same number of users. 

The contrary case is obtained in State # 2, where service 1’s average aggregated PRB utilisation is higher 

than the one obtained for service 2 as a result of the higher number of users of service 1. In terms of the 

average aggregated throughput of Tenant 2’s services, higher throughput is achieved in the UMi scenario 

thanks to its better propagation conditions. 

TABLE VII. AVERAGE AGGREGATED ASSIGNED PRBS AND THROUGHPUT. 

Environment 
UMi RMa 

ax,s,n̅̅ ̅̅ ̅̅  (PRB) Thx,s,n
̅̅ ̅̅ ̅̅ ̅̅  (Mb/s) ax,s,n̅̅ ̅̅ ̅̅  (PRB) Thx,s,n

̅̅ ̅̅ ̅̅ ̅̅  (Mb/s) 

        State #1 

Tenant 1 

Service 1 10.05 19.99 11.94 19.99 

Service 2 9.98 19.88 11.85 19.88 

Service 3 15.67 32.02 12.09 22.31 

Tenant 2 
Service 1 6.55 13.39 6.55 12.09 

Service 2 8.74 17.86 8.74 16.13 

        State #2 

Tenant 1 

Service 1 17.58 35 20.83 34.94 

Service 2 11.94 23.95 12.92 22 

Service 3 6.24 12.74 3 5.53 

Tenant 2 
Service 1 8.1 16.55 8.1 14.95 

Service 2 7.2 14.7 7.2 13.28 

 

Furthermore, in order to get a deeper insight into the behaviour of the resource allocation procedure from 

a multi-state perspective, Fig. 18 presents the average aggregated PRBs utilisation ax,s,n̅̅ ̅̅ ̅̅  in the RMa 

environment for each of the services in the different states, given by the number of users us,n of each 

tenant/service. Regarding Tenant 1, Fig. 18a shows that the resource allocation for service 1 is performed 
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independently of the number of users of service 2. This is because service 1 is the first provided with 

resources as it has the lowest ARP value (i.e. higher priority). Differently, the resource allocation for service 

2 depends on the number of users of service 1 (Fig. 18b), as its PRB allocation is performed after the 

allocation to service 1. Therefore, the PRB utilisation of service 2 increases when reducing the number of 

users of service 1. Nevertheless, service 2’s PRB utilisation values are lower than in the case of service 1, 

as the GBR requirement is also lower. Moreover, Fig. 18c proves that service 3 is provided with the 

remaining resources after the allocation of PRBs of services 1 and 2, so the highest PRB utilisation of 

service 3 is achieved when the number of users of services 1 and 2 is low. This happens because service 3 

is the one with lowest priority (i.e. highest ARP) and is a non-GBR service. Besides, Fig. 18d and Fig. 18e 

show how the PRBs available to Tenant 2, Nth,2, are distributed among the non-GBR services 1 and 2 

according to the proportional sharing constant σs,n. In this sense, both graphs are complementary to each 

other, i.e. in states with no users of service 1 all the PRBs are allocated to service 2 while in states without 

users of service 2 all the PRBs are allocated to service 1. 

 

Fig. 18. Average aggregated PRB utilisation in the different states for (a) Service 1 of Tenant 1, (b) Service 2 of Tenant 1, (c) 

Service 3 of Tenant 1 (d) Service 1 of Tenant 2 and (e) Service 2 of Tenant 2.  

2.7.3.2. System level analysis 

This section discusses the global system performance in both RMa and UMi scenarios in Table II, focusing 

on the behaviour of the RRM procedures considered for L3 and L2 and the capability of the overall system 

to adopt diverse configurations. Results have been generated according to the configuration in Table II, by 

varying the session generation rate of Tenant 1, which also implies the variation of its GBR services’ traffic 

offered load, and keeping constant the rate of Tenant 2. Traffic offered load by the GBR services of the n-

th tenant is defined as: 

(a) (b) 

(d) (e) 

(c) 
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To analyse the RRM at L3, Fig. 19 represents the blocking probability of the GBR services in the system 

(i.e. services 1 and 2 from Tenant 1) in both considered environments as a function of their offered load. 

For high offered loads, blocking probabilities for service 2 are slightly higher than for service 1 in both 

environments, exhibiting that it has a higher ARP (i.e. less priority) than service 1. Anyway, the blocking 

probabilities remain in low values (i.e. less than 1.5%) for the considered offered loads, which are lower 

than the maximum capacity threshold in both UMi and RMa environments (i.e. Cmax,1=62.6 Mb/s for UMi 

and Cmax,1=56.2 Mb/s in RMa). In addition, higher blocking probabilities of service 2 are found for the RMa 

environment. In this case, the admission of a user implies a higher number of required resources, so a lower 

number of users can be admitted in the system. It is worth pointing out that this effect is not noticed for 

service 1 due to its higher priority. For non-GBR services, all users are admitted as the maximum number 

of users Umax,s,n is not reached, which is the only constraint considered for them.  

 
Fig. 19. Blocking probability of GBR services in RMA and UMi environments. 

The RRM at L2 is analysed in terms of the system average PRB utilisation, as,n̅̅ ̅̅ , and throughput Ths,n̅̅ ̅̅ ̅̅ , both 

aggregated per service. Fig. 20 represents the system average aggregated PRB utilisation by each of the 

services for the RMa and UMi environments, as a function of Tenant 1’s GBR services offered load. Similar 

to the previous section, the average aggregated PRB utilisation of GBR services is greater in the RMa 

scenario as a result of worse propagation conditions, which leads to a higher resource demand. Moreover, 

the PRB utilisation of GBR services (i.e. service1 and 2 of Tenant 1) is consistent with the configured GBR 

and ARP values. For instance, the average aggregated PRB utilisation of service 1 of Tenant 1 is greater 

than the one for service 2 of the same tenant, as service 1 has a larger GBR requirement (i.e. GBR1,1=5 Mb/s 

vs GBR2,1=2 Mb/s) and lower ARP (i.e. more priority). Apart from this, when varying the traffic offered 

load of Tenant 1, the PRB utilisation of services belonging to Tenant 2 remain constant, showing the 

isolation capability of the resource allocation procedure included in the model. 
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Fig. 20. Average assigned PRBs aggregated per service in the RMa and UMi environments. 

In terms of the system average aggregated throughput, Ths,n̅̅ ̅̅ ̅̅ , GBR services present equivalent results to the 

ones obtained for the PRB utilisation. For GBR services, the obtained average aggregated throughput is 

proportional to the GBR value and the average number of users in the system. This proportionality is 

achieved thanks to the low degradation probabilities that are obtained in the considered scenarios 

(maximums of 0.001% for UMi and of 2% in the RMa).  

However, the mentioned proportionality is not found for non-GBR services, so its throughput dynamics 

deserve a deeper analysis. Fig. 21 shows the behaviour of the average aggregated throughput in both RMa 

and UMi scenarios for non-GBR services, this time as a function of Tenant 1’s session generation rate, 

which embraces all Tenant 1’s services. For all non-GBR services, higher average aggregated throughput 

is given in the UMi scenario provided its better propagation conditions. This occurs in spite that the average 

PRB utilisation of all the services of Tenant 2 in Fig. 20 is the same for both environments and, in the case 

of service 3 of Tenant 1, it is larger for the RMa environment. This reflects that the throughput metric for 

non-GBR does not only depend on the number of assigned resources but also on the propagation conditions 

in each scenario. 

 
Fig. 21. Average aggregated throughput to non-GBR services in the RMa and UMi environments. 

Besides, as a result of the isolation capability achieved at layer 2, Fig. 21 also shows that the aggregated 

average throughput of Tenant 2 services remains constant when increasing the session generation rate of 

Tenant 1. The effect of the PL is also noticeable as higher throughput is provided to service 2, which has 

the lowest PL (i.e. higher priority). Instead, the throughput of service 3 of Tenant 1 experiences a different 

trend depending on the session generation rate of this tenant. Specifically, the average throughput of this 
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service increases with the session generation rate up to approximately 0.05 sessions/s. The reason for this 

is that increasing the session rate raises the probability of having at least one user of this service that can 

exploit all the PRBs left by GBR users. However, for traffic generation rates higher than 0.05 sessions/s, 

the average throughput starts to decrease as there are less available resources to service 3, which is caused 

by a higher resource requirement of GBR services. 

2.7.3.3. Analysis of the introduction of a new tenant 

One key feature of network slicing is the flexibility to create, re-configure and release network slices. The 

creation of a network slice implies the allocation of a suitable capacity to support the traffic of a new tenant. 

In case that the existing tenants do not consume all the capacity in the system, the L3 maximum capacity 

Cmax,n and L2 maximum number of PRBs Nth,n of the new slice can be configured to provide the required 

capacity from the remaining part. If no capacity is available, as it is the case in the example of previous 

section, where Tenant 1 and Tenant 2 already consume 100% of the PRBs of the gNB, the simplest approach 

would be to extend the system capacity e.g., through extending the assigned bandwidth. In case that this is 

not feasible, due to e.g. hardware constraints or spectrum limitation, the re-configuration of the existing 

slices so that the actual capacity is redistributed among all the tenants could be explored. In order to 

illustrate these approaches, this section discusses the addition of a new tenant in the considered scenario.  

Let us assume that the new tenant, denoted as Tenant 3, provides two GBR services with GBR1,3=1 Mb/s 

and GBR2,3=0.5 Mb/s, both of them with the same priority ARP1,3=ARP2,3=2. The average session 

generation rate of this tenant is 0.07 sessions/s, the average session duration is 120s, and 70% of sessions 

belong to service 1 and 30% to service 2.  

The first solution to create the new slice, denoted as Solution A, increases the PRB availability in the gNB, 

by increasing the cell bandwidth from 20 to 25 MHz, which results in an increase of available PRBs from 

Nava=51 to Nava=65 PRBs [46]. Then, Tenant 3 is configured to use part of this additional capacity by 

configuring the values of the thresholds L3 maximum capacity Cmax,3 and L2 maximum number of PRBs 

Nth,3 as in Table V. The corresponding thresholds of Tenants 1 and 2 remain unchanged with respect to 

Table II. In contrast, the second solution, denoted as Solution B, re-configures the values of Cmax,n and Nth,n 

for the existing tenants. Specifically, given that Tenant 2 only carries non-GBR services, the selected re-

configuration consists in reducing the value of Nth,2 without modifying the slicing thresholds of Tenant 1, 

as seen in Table VIII. For the new Tenant 3 the same thresholds as in Solution A are used.  
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TABLE VIII. SLICING THRESHOLDS FOR THE PROPOSED SOLUTIONS TO INCLUDE TENANT 3. 

Tenant id (n) Nava 
RMa UMi 

Cmax,n Nth,n Cmax,n Nth,n 

Solution A: Increase PRB availability 

1 

65 PRBs 

62.4 Mb/s  35.7 PRBs  56.4 Mb/s  35.7 PRBs  

2 
N/A (only non-GBR 

services) 
15.3 PRBs  

N/A (only non-GBR 

services) 
15.3 PRBs  

3 20.8 Mb/s  10 PRBs  18.8 Mb/s  10 PRBs  

Solution B: Re-configure slicing thresholds 

1 

51 PRBs 

62.4 Mb/s 35.7 PRBs 56.4 Mb/s 35.7 PRBs 

2 
N/A (only non-GBR 

services) 
5.1 PRBs 

N/A (only non-GBR 

services) 
5.1 PRBs 

3 20.8 Mb/s 10 PRBs 18.8 Mb/s 10 PRBs 

 

Regarding RRM L3, the blocking probability Ps,n
b  of all the GBR services in the system has been obtained 

for Solution A and Solution B when the session generation rate of Tenant 1 is 0.1 sessions/s. Results are 

presented in Table IX. Since the value of Cmax,1 and Cmax,3 is the same in both solutions, the obtained blocking 

probabilities for all GBR services of Tenants 1 and 3 are also the same. It is observed that the blocking 

probabilities of Tenant 1 do not change with the introduction of Tenant 3, i.e. they are the same as in Fig. 

19. This shows that the AC algorithm provides isolation in the admission of GBR users. Regarding Tenant 

3, although blocking probabilities are low for both UMi and RMa, the lowest blocking probabilities are 

achieved once again in the UMi environment. Moreover, blocking probabilities of service 1 are higher than 

those of service 2 although both services have the same ARP value. The reason is that the traffic offered 

for service 1 of Tenant 3 is higher than that of service 2. 

TABLE IX BLOCKING PROBABILITY OF GBR SERVICES FOR SOLUTION A AND B. 

Tenant (n) Service (s) 

Blocking probability Ps,n
b  (%) 

Solution A Solution B 

RMa UMi RMa UMi 

1 
1 0.282 0.282 0.282 0.282 

2 1.351 0.788 1.351 0.788 

3 
1 0.014 0.002 0.014 0.002 

2 0.011 0.001 0.011 0.001 

 
The analysis of the proposed solutions for including Tenant 3 has also been analysed in relation to RRM at 

L2 by means of the PRB utilisation as,n̅̅ ̅̅  and the average aggregated throughput Ths,n̅̅ ̅̅ ̅̅ , also for a session 

generation rate of Tenant 1 equal to 0.1 sessions/s. Fig. 22 contains the comparison of the PRB utilisation 

values obtained for each of the services for Solutions A and B in the RMa and UMi environments. It is 

observed that the PRB utilisation of Tenant 1 and Tenant 3 is the same for both solutions, because the 

thresholds Nth,1 and Nth,3 of these tenants are the same. Instead, when comparing the PRB utilisation of 

services 1 and 2 of Tenant 2 in Solution A and B, significant differences are obtained. In fact, the PRB 

utilisation for Solution B is 66.6% lower than the one obtained for Solution A in both RMa and UMi, which 

matches the reduction of Tenant 2 Nth,2 threshold (i.e., from Nth,2=15.3 PRBs in Solution A to Nth,2=5.1 PRBs 

in Solution B). In terms of the PRB utilisation of the Tenant 3 services, higher utilisation is obtained for 
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service 1 than for service 2, due to the fact that the GBR requirement of the former is twice the GBR 

requirement of the latter and the session generation of service 1 is also higher.  

 
Fig. 22.  Average assigned PRBs aggregated per service in the RMa and UMi environments for Solution A and B.  

The decrease of Tenant 2 PRB utilisation has as a consequence a reduction in its aggregated throughput 

Ths,n̅̅ ̅̅ ̅̅ , as shown in Fig. 23, which shows the average aggregated throughput for non-GBR services with 

Solutions A and B. The performance of service 3 of Tenant 1 is the same for both solutions given that Tenant 

1 thresholds remain unchanged, while Tenant 2 services present a 66.6% reduction with Solution B in 

comparison to Solution A, which is the same decrement observed in the PRB utilisation. Therefore, the 

realization of Solution B may be subject to a renegotiation of the Service Level Agreement terms with 

Tenant 2.  

Regarding GBR services, the aggregated average throughput is shown in Table VII. In this case, as GBR 

values are provided almost always and low degradation probabilities are achieved for all services, the 

resulting throughput Ths,n̅̅ ̅̅ ̅̅  is approximately the product of the average number of users  Us,n
̅̅ ̅̅ ̅ of each GBR 

service and the GBR value.  Since the Cmax,n of Tenant 1 and Tenant 3 have not been changed for Solutions 

A and B, the obtained  Us,n
̅̅ ̅̅ ̅ and  Ths,n̅̅ ̅̅ ̅̅  of each service is the same, so Table VII does not present separate 

results for each solution. Besides, it is also observed that very small differences are obtained in the results 

of the UMi and RMa environments.  

   
Fig. 23. Average aggregated throughput to non-GBR services in the RMa and UMi environments for Solution A and B.  
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TABLE X. AVERAGE NUMBER OF USERS AND AVERAGE AGGREGATED THROUGHPUT FOR GBR SERVICES IN THE 

SYSTEM. 

Tenant id (n) Service id (s) 
RMa UMi 

Us,n
̅̅ ̅̅ ̅ (users) Ths,n

̅̅ ̅̅ ̅̅  (Mb/s) Us,n
̅̅ ̅̅ ̅ (users) Ths,n

̅̅ ̅̅ ̅̅  (Mb/s) 

1 
1 3.60 18.01 3.60 18.02 

2 4.74 9.41 4.74 9.53 

3 
1 5.91 5.89 5.92 5.91 

2 2.52 1.26 2.53 1.27 

 

2.8. Summary 

This chapter has presented a Markov model that characterises the resource sharing in RAN slicing 

scenarios, where multiple tenants can provide GBR and non-GBR services. The model includes diverse 

RRM functions in terms of admission control at layer 3 and radio resource allocation at layer 2. In terms of 

admission control, which determines the transition probabilities between the different states in the model, 

a slice-aware admission control policy has been selected. The model has also been provided with a slice-

aware resource allocation procedure. This procedure has been initially defined in average terms but has 

been upgraded to variable propagation conditions by deriving the pdfs of both the required and assigned 

resources according to the service’s QoS parameters. 

The Markov model has been validated by contrasting the its performance with that achieved through system 

level simulations under different environments and load levels. The results have shown that the model is 

suitable to obtain reliable results to study RAN slicing when considering diverse environments in terms of 

cell deployment (cell radius, transmitted power, etc.) and different traffic loads, given the low percentage 

errors obtained (i.e. maximum relative errors of 3%) when comparing the model’s results with the ones 

obtained with the system level simulator.  

Moreover, the effect of the considered RRM functions has been studied by evaluating different performance 

metrics (blocking probability, degradation probability, throughput, occupation, etc.) in a wide range of 

scenarios. The scenarios under evaluation have ranged in the considered services types (i.e., GBR and non-

GBR services types), the QoS requirements, cell deployment and traffic load conditions and have also 

covered relevant use cases envisaged for 5G that embrace eMBB and MC services. The obtained results 

have revealed that:  

(i) The considered admission control policy and resource allocation procedure are able to achieve 

isolation between the different slices, so that overload situations in one slice do not affect the 

performance of the other slices while preserving the maximum capacity allowed to each of the 

slices. 

(ii) ARP priorities are respected by providing better performance to those GBR services with lower 

ARP (higher priority).  
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(iii) The proposed admission control policy provides negligible degradation rates to GBR services, 

which implies that the requested GBR values are provided to the admitted users in the system.  

(iv) Non-GBR services are provided with the remaining resources after the allocation to GBR 

services according to its priority level, so that better performance is given to those non-GBR 

services with higher priority (lower priority level); 

(v) The introduction of new tenants into the system can be performed by re-configuring the 

maximum capacity and maximum PRBs to be provided to each of the tenants, although the re-

configuration of these values may impact on the performance of already operating tenants if 

the total amount of PRBs is not modified. 

(vi) The model is able to satisfactorily capture the radio propagation effects, enabling the analysis 

of different performance metrics in 5G environments of interest. 

Overall, the proposed framework has proven to be an appropriate platform for the evaluation and the 

analytical characterisation of RAN slicing aspects in wide range of use case scenarios, allowing the 

establishment of relationships between the different dimensions of the RAN slicing problem.  
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Chapter 3. A data analytics-based Slice 

Admission Control methodology  

3.1. Introduction 

This chapter addresses the problem of Slice Admission Control (SAC) by proposing a novel methodology 

for estimating the required radio resources by a RAN slice based on data analytics. The estimated required 

radio resources are used by the SAC to determine the acceptance or rejection of a new RAN slice creation 

request, so that the Service Level Agreement (SLA) established between the service provider (e.g. the 

Infrastructure Provider (InP) and the customer (e.g. a Mobile Virtual Network Operator (MVNO)) is 

ensured. The proposed approach is based on the extraction of data analytics information from the cell 

performance measurements collected at the management plane and is fully aligned with the 3GPP vision 

for Next Generation RAN (NG-RAN) management exploiting Management Data Analytics Function 

(MDAF) and RAN Slicing Management Function (RSMF). The methodology relies on an extension of the 

statistical model developed in Section 2.3.4 that allows deriving the pdf of the required and assigned 

resources by a RAN slice, considering both Guaranteed Bit Rate (GBR) and non-GBR services.  

The methodology has been evaluated under diverse cell environments, including simulation environments 

based on 3GPP reference models as well as some representative cells and performance measurements 

extracted from a real LTE commercial network. Moreover, the methodology has been applied to a Mission 

Critical (MC) scenario, considered by the 5G ESSENCE project. 

The rest of the chapter is organized as follows. Section 3.2 provides the literature review of the SAC 

problem. Section 3.3 identifies the problem of SAC and Section 3.4 describes the considered functional 

framework for analytics-based RAN slicing management encompassing SAC. Then, Section 3.5 presents 

the proposed methodology to estimate the amount of required resources by a RAN slice whereas Section 

3.6 includes the results obtained for different cell deployment and load scenarios. Finally, Section 3.7 

summarizes the conclusions of this chapter.  

3.2. Literature review 

The slice admission control (SAC) problem in 5G has been addressed at different levels in the literature 

such as in [49], which identifies SAC as one of the stages of slice creation and establishes the information 

required for this function or in [35], which proposes a Markov model for asynchronous SAC considering 

slice required resources as general units with an assigned cost. Similarly, [50] presents an economic model 
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that evaluates the profit of the MNO for accepting a certain slice and [51] maximises the time-average 

revenue by a SAC for delay-tolerant slices. In relation to RAN slicing, RAN SAC for slice requests that 

need to support a given number of users for a certain time is proposed in [24] and [25], aiming at optimising 

the infrastructure providers’ revenue, and in [26], which optimises the network utilisation by incorporating 

traffic forecasting capabilities. In the above-mentioned works, the amount of required radio resources for a 

given slice is either taken as an input parameter or computed assuming a fixed capacity per cell. However, 

the variability in the radio propagation and interference conditions experienced by the users when operating 

in different cells, the cell location (e.g., indoor, urban, rural environments), the cell deployment (e.g., cell 

radius, transmitted power, frequency of operation, modulation, antennas, etc.) together with the diverse 

users’ mobility patterns is considered here, given its high impact on the cell’s capacity and, consequently, 

the amount of required radio resources to support a given RAN slice.  

3.3. Problem identification  

A multi-tenant scenario with a common NG-RAN infrastructure operated by a InP is considered [4]. The 

NG-RAN infrastructure is composed of multiple cell sites with different deployment characteristics. The 

InP provides each tenant with a RAN Slice Instance (RSI) encompassing a set of cell sites during a certain 

time and is responsible of the Lifecycle Management (LCM) of the different RSIs deployed in the NG-

RAN infrastructure. Each tenant n can provide Guaranteed Bit Rate (GBR) services, which ensure its users 

with a bit rate value GBRn (also referred to as Guaranteed Flow Bit Rate (GFBR) in 5G New Radio’s (NR) 

terminology), and non-GBR services. The SLA established between the InP and the n-th tenant comprises 

the following system level indicators:  

 Maximum number of GBR and non-GBR services per cell: each cell has to support uGBR,n GBR 

flows and unGBR,n non-GBR flows. 

 Degradation probability of GBR services: The percentage of session time that GBR services may 

experience transfer bit rates lower than its requirement GBRn must not exceed a maximum value, 

defined as a degradation probability Pd,GBR,n
max .  

 Average throughput of non-GBR services:  non-GBR flows with buffered traffic need to be 

provided with a minimum average throughput ThnGBR,n
min̅̅ ̅̅ ̅̅ ̅̅ ̅̅  measured over a certain averaging window 

time.  

When a tenant requires to be allocated with a new RSI, the SAC function determines its acceptance or 

rejection based on the estimation of the required radio resources by the RSI and on the resource occupancy 

in the NG-RAN infrastructure. Assuming 5G NR technology, radio resource requirements are expressed in 

terms of the number of Physical Resource Blocks (PRB). If the required PRBs can be utilised in the NG-

RAN infrastructure without impacting on the SLAs of already established RSIs, the SAC function admits 

the new RSI. Otherwise, the RSI is rejected.   
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3.4. Functional framework for Analytics-based RAN slicing management 

Fig. 24 depicts the functional framework for the management of network slicing in a NG-RAN 

infrastructure leveraging data analytics functions for supporting RAN SAC. 

 

Fig. 24.Proposed functional framework for analytics-based RAN SAC. 

The core functionality consists of a set of management functions, collectively referred to as RAN Slicing 

Management Function (RSMF). The RSMF is in charge of the LCM of the RSIs, including the admission 

control of new RSIs to be allocated in the NG-RAN infrastructure and its further creation, modification and 

termination. In this regard, the RSMF is expected to expose a set of management services for provisioning, 

performance monitoring and fault management of the RSIs. Accordingly, and in line with the terminology 

and service-based management concepts adopted by 3GPP, the RSMF plays the role of a producer of 

management services that can be accessed by one or multiple management service consumers. On the other 

hand, in order to interact with the underlying infrastructure components and carry out the SAC and LCM 

of RSIs, the RSMF has to be able to consume the services provided by the diverse management systems 

specific to each of the function types composing the NG-RAN infrastructure (i.e. gNB functions, Network 

Function Virtualisation Infrastructure (NFVI), Radio Frequency (RF) systems and Transport Network (TN) 

nodes). In this respect, for the management of the gNB Network Functions (NFs), the 3GPP specifications 

include the Network Resource Model (NRM) definitions that, apart from attributes used for configuring the 

operation of the NR cells (e.g. cell identifiers, channel frequencies), contains also attributes for the 

configuration of the network slicing behaviour of gNB NFs [52].   

As part of the 3GPP management system, the Management Data Analytics Function (MDAF) is the 

component in charge of providing Management Data Analytics Services (MDAS). For example, the MDAF 

can retrieve Operations, Administration and Management (OAM) data from the network functions and 

produce management analytics information that can be used to recommend appropriate management actions 

to the network operator. In turn, with the advances in Machine Learning (ML) and big data technologies 

for the implementation of MDAS, the 5G management functions might have access to a richer set of MDAS 
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information extracted from raw data collected over days, weeks, months and even beyond. In this sense, 

the data analytics services delivered by the MDAS are proposed to be used here for supporting the SAC 

function at the RSMF. Specifically, the MDAF will provide the statistical characterisation of the spectral 

efficiency in the different cells of the NG-RAN, which can be derived from OAM performance 

measurements collected from gNB NFs [41]. This information will be consumed by the RSMF to estimate 

the PRB requirements of the new RSIs. 

3.5. Estimation methodology 

This section describes the proposed methodology for the estimation of the required PRBs to fulfil the SLA 

of a new RSI admission request associated to tenant n under the described management framework. This 

number of required PRBs is denoted as Nth,n. Given that the new RSI may operate in diverse cell sites with 

variety of deployment characteristics and, consequently, users experience different propagation conditions, 

the proposed methodology is performed on a per cell-basis using the cell characterisation provided by the 

MDAF. Given that requirements of GBR and non-GBR services are of different nature, the methodology 

assumes that Nth,n is decoupled into NGBR,n and NnGBR,n, which are the required PRBs to fulfil GBR and non-

GBR requirements, respectively, so that Nth,n = NGBR,n + NnGBR,n.  

Considering the above, and taking into account the SLA terms specified in Section 3.3, the proposed 

methodology is devised as a three-step procedure:  

 Step 1 – Data analytics: The MDAF gathers information from the cell environment, processes it 

and provides it to the RSMF. 

 Step 2 – Resource estimation of GBR services: NGBR,n is determined by considering that the uGBR,n 

GBR flows need to be always provided with GBRn while respecting a maximum degradation 

probability Pd,GBR,n
max .  

 Step 3 – Resource estimation of non-GBR services: Additionally to the obtained NGBR,n, some 

extra PRBs NnGBR,n may be needed to fulfil the average ThnGBR,n
min̅̅ ̅̅ ̅̅ ̅̅ ̅̅  requirement of the unGBR,n non-

GBR flows.  

In the following, more insights into the three steps of the proposed methodology are provided, which rely 

on an extension of the statistical model developed for resource allocation in Section 2.3.4.   

3.5.1. Step 1: Data analytics 

The MDAF is in charge of providing the cell characterisation to the RSMF for the estimation of the required 

PRBs. The deployment and configuration of a certain cell within the NG-RAN infrastructure (radius, 

transmitted power, location, frequency operation, etc.) and the propagation conditions that users experience 

in different cell locations result in fluctuations in the spectral efficiency Seff (bits/s/Hz). Therefore, Seff can 

be treated as a random variable, which is used for the characterisation of each cell environment.  
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The probability density function (pdf) of the Seff, fSeff(y), is obtained by the MDAF based on the gathering 

and averaging of samples of the wideband CQI distribution computed in each cell, according to the 

procedure described in Section 2.3.4.1. Based on fSeff(s), the MDAF computes the following metrics to be 

provided to the RSMF carrying out the subsequent steps 2 and 3 of the PRB estimation process: (a) average 

spectral efficiency Seff̅̅ ̅̅  of the cell, (b) the pdf of the random variable Y=1/(Seff·B), denoted as fY(y), and 

computed according to equation (8), where B is the PRB bandwidth.  

3.5.2. Step 2: Resource estimation of GBR services 

The required PRB estimation performed in the RSMF firstly computes the required NGBR,n to fulfil the GBR 

services requirements. To achieve GBRn, each GBR flow requires a number of PRB Nreq,GBR,n, which is 

obtained by equation (6) and it is a random variable since it depends on Y. The pdf of Nreq,GBR,n is derived 

by equation (9) and, based on this pdf and assuming that each user experiences independent propagation 

conditions, the pdf of the aggregate number of required PRBs rGBR,n by the uGBR,n GBR flows of the n-th 

tenant, f
rGBR,n

(r) can be computed by equation (10).  

Considering that the degradation probability is given by the probability of requesting more PRBs than the 

available ones (i.e. rGBR,n > NGBR,n), the NGBR,n value that fulfils the Pd,GBR,n
max  requirement is taken as the 

minimum value that satisfies the following condition: 
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(41) 

3.5.3. Step 3: Resource estimation of non-GBR services 

Once NGBR,n has been obtained, the following step is to determine if the tenant n is required to be provided 

with some additional PRBs NnGBR,n to satisfy the requirements of non-GBR services, which need to be 

provided with ThnGBR,n
min̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . In this sense, the average throughput of a non-GBR flow is defined as follows:  
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Th

u
  (42) 

where  anGBR,n̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average aggregated assigned PRBs to all the unGBR,n non-GBR flows of tenant n and 

Seff̅̅ ̅̅  has been provided by the MDAF. Then, in order to fulfil the minimum throughput requirement ThnGBR,n̅̅ ̅̅ ̅̅ ̅̅ ̅̅

≥ThnGBR,n
min̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , the minimum average aggregated assigned PRBs that should be available to non-GBR flows of 

tenant n, anGBR,n
min̅̅ ̅̅ ̅̅ ̅̅ ̅,is given  by:  

min
, ,min
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To make this computation, the average aggregated assigned PRBs anGBR,n̅̅ ̅̅ ̅̅ ̅̅ ̅ to non-GBR flows is derived by 

equation (25), which relies on the computation of the pdf of the aggregated assigned PRBs to all non-GBR 
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flows of tenant n, f
anGBR,n

(k). The computation of f
anGBR,n

(k) assumes that the allocation criteria allocates the 

remaining PRBs after the allocation of GBR flows to the non-GBR flows and depends on the pdf of the 

aggregated assigned PRBs to all GBR flows,  f
aGBR,n

(k), given by:  

, , ,

,

, ,
( ) ( )· ( , ) ( )· ( )

GBR n GBR n GBR n

GBR n

a r rGBR n GBR n
N

f k f k H k N k N f t dt


   
 

(44) 

where δ(·) is the Dirac delta function and H(x,y) is defined according to equation (17). Note that equation 

(44) corresponds to a simplified version of equations for the case of not considering ARP priorities among 

GBR services. In this equation, f
aGBR,n

(k) equals f
rGBR,n

(k) for all those values lower or equal than NGBR,n, as each 

flow gets the required resources (i.e. aGBR,n = rGBR,n). In turn, when the aggregated required PRBs exceed 

NGBR,n (i.e. rGBR,n> aGBR,n) the aggregated assigned PRBs are aGBR,n = NGBR,n, as no more PRBs are available. 

Consequently, all f
rGBR,n

(k) values where rGBR,n > NGBR,n are cumulated in aGBR,n =NGBR,n. Once f
aGBR,n

(k) has been 

obtained, f
anGBR,n

(k) can be derived by considering the remaining PRBs after the allocation of GBR flow (i.e., 

NGBR,n –aGBR,n). Accordingly, f
anGBR,n

(k) is defined as: 

, , , ,( ) ( )
nGBR n GBR na a GBR n nGBR nf k f N N k     (45) 

where NnGBR,n is added to NGBR,n in order that f
anGBR,n

(k) satisfies the  anGBR,n
min̅̅ ̅̅ ̅̅ ̅̅ ̅ requirement, so that anGBR,n̅̅ ̅̅ ̅̅ ̅̅ ̅ ≥

anGBR,n
min̅̅ ̅̅ ̅̅ ̅̅ ̅. Then, the additional PRBs, NnGBR,n, can be obtained by performing the iterative procedure in 

Algorithm 1, where NnGBR,n is progressively increased in steps of Δ until fulfilling the anGBR,n
min̅̅ ̅̅ ̅̅ ̅̅ ̅ requirement.  

Algorithm 1 Iterative procedure for NnGBR,n computation 

1 Initialisation 

2 Set NnGBR,n=0 and the PRB iteration step Δ 

3 Iteration 

4   Obtain the pdf f
anGBR,n

(k) by (45) 

5   Calculate anGBR,n̅̅ ̅̅ ̅̅ ̅̅ ̅ by (25) 

6   If (anGBR,n̅̅ ̅̅ ̅̅ ̅̅ ̅ < anGBR,n
min̅̅ ̅̅ ̅̅ ̅̅ ̅) 

7     Upgrade NnGBR,n= NnGBR,n+Δ 

8   Else 

9     Exit iteration loop 

10   End if 

11 End 

 

3.6. Performance evaluation 

In this section, the performance of the proposed estimation methodology of the PRB requirements for new 

RSI admission requests has been evaluated. First, the methodology has been evaluated in diverse cell 

environments, including simulated-based cell environments and cells selected from a real LTE deployment 

dataset. Secondly, the methodology has been applied to a relevant 5G use case scenario to estimate the PRB 

requirement of a RAN slice supporting a Mission Critical Push To Talk (MC PTT) service during an 

emergence.  
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3.6.1. Evaluation of the solution in diverse cell environments 

3.6.1.1. Considered scenario 

The scenario under test considers that two new tenants, referred to as Tenant 1 and Tenant 2, request the 

allocation of a RSI in the NG-RAN infrastructure of an InP. Both tenants intend to use the RSI to provide 

GBR and non-GBR services with the SLA parameters summarised in Table XI. Note that different values 

of the maximum number of flows per cell are considered in the assessment. 

The analysis has been performed in the following selected types of cells: an Indoor Hotspot (InH), a Urban 

Micro-cell (UMi), a Urban Macro-cell (UMa) and a Rural Macro-cell (RMa) [45]. The cell configuration 

parameters are summarised in Table XII. The Seff distribution of these cells configurations have been 

obtained by simulating users at different random positions uniformly distributed within the cells and 

extracting their spectral efficiency.  

Additionally, a LTE network deployment in a large European city has been considered in the study. From 

the available dataset, which includes the CQI distribution of about 60 cells, three representative cells, 

referred to as cell#1, cell#2 and cell#3, have been selected. These cells correspond to a UMa-like 

environment.   

TABLE XI. SERVICES PER TENANT. 

Service Type SLA/QoS  Tenant 1 Tenant 2 

GBR  

GBRn 10 Mb/s 5 Mb/s 

Pd,GBR,n
max  1% 5% 

uGBR,n From 20 flows to 50 flows. 

Non-GBR 
ThnGBR,n

min̅̅ ̅̅ ̅̅ ̅̅ ̅̅  1 Mb/s 0.5 Mb/s 

unGBR,n From 20 flows to 50 flows. 

 

TABLE XII. CELL ENVIRONMENTS CONFIGURATION. 

Environment InH UMi UMa RMa 

ISD (Inter-Site distance)  20 m 200 m 500 m 1732 m 

gNB height  3 m 10 m 25 m 35 m 

UE height  1 m 1.5 m 1.5m 1.5 m 

Minimum gNB-UE distance  0 m 10 m 35m 35 m 

Average building height (h) - - - 5 m 

Average Street width (W) - - - 20 m 

Path Loss and Shadowing model Model of Sec. 7.4 of [45]  

Shadowing standard deviation in 

LOS 
3 4 4 4 

Shadowing standard deviation in 

NLOS 
8.03 7.82 6 8 

Frequency  24.9 GHz 3.6 GHz 3.6 GHz 704 MHz 

gNB transmitted power 

(dBm/PRB) 
-3 dBm 11 dBm  22 dBm 20 dBm 

gNB antenna Gain Omnidirectional antenna with 5 dBi gain 

UE noise figure 9 dB 9 dB 9 dB 9 dB 

Average Spectral efficiency (Seff
̅̅ ̅̅ ) 5.8 b/s/Hz 5 b/s/Hz 4.5 b/s/Hz 4.1 b/s/Hz 

Link-level model to map SINR 

and bit rate 

Model in Sec. 5.2.7 of [48] with maximum SINR= 30 

dB and minimum SINR= -10 dB with alpha 

parameter=0.6 

Nº of spectral efficiency samples 

for f
Seff

(s) generation 107 samples  

PRB Bandwidth (B) 360 kHz  
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3.6.1.2. Results 

In order to gain a first insight of the PRB estimation methodology behaviour, Fig. 25 and Fig. 26 show the 

required values of Nth,1 for Tenant 1 and Nth,2 for Tenant 2 when increasing the maximum number of GBR 

and non-GBR flows in the InH cell. Results show the implications of the SLA requirements in Table XI on 

the proposed methodology. On the one hand, it is observed that Nth,1 and Nth,2 experience a greater impact 

due to the increase of the number of GBR flows than due to the increase of non-GBR flows. The reason is 

that, since the average throughput requirement ThnGBR,n
min̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for both tenants is low, just a small value of NnGBR,n 

in addition to the already computed NGBR,n is enough to fulfil the ThnGBR,n
min̅̅ ̅̅ ̅̅ ̅̅ ̅̅  requirement. On the other hand, 

it can be observed that the PRB requirement Nth,n of Tenant 1 is higher than that of Tenant 2. For instance, 

for uGBR,1=unGBR,1= uGBR,2= unGBR,2=50 flows, Tenant 1 requires Nth,1=280 PRBs whereas Tenant 2 requires 

Nth,2=140 PRBs. This is due to two main factors: firstly, the  GBR services of Tenant 1 have a higher GBRn 

requirement than those of Tenant 2 and, secondly, the maximum degradation Pd,GBR,n
max

 allowed to Tenant 1 

is stricter than that of Tenant 2. 

 

Fig. 25. Required resources for Tenant 1 Nth,1 for InH environment. 

 
Fig. 26. Required resources for Tenant 2 Nth,2 for InH environment. 

In order to gain further insight, the effect of the cell environment is analysed in Fig. 27, which includes the 

PRB requirements Nth,1 and Nth,2 for each of the tenants in the different cells of Table XII and in the selected 
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cells from the LTE dataset (i.e.  cell#1, cell#2 and cell#3) for a fixed number of flows uGBR,1=20, unGBR,1=20 

for Tenant 1 and uGBR,2=20, unGBR,2=20 for Tenant 2. In the figures, Nth,n has been decoupled into the required 

PRBs due to GBR requirements NGBR,n and to non-GBR requirements NnGBR,n. As previously observed, 

Tenant 1 has higher PRB requirement than Tenant 2 for all the selected cells due to its higher GBRn and 

stricter Pd,GBR,n
max  values.  

Furthermore, Fig. 27 reveals that the PRB requirement Nth,n of a tenant can vary considerably among 

different cells. Differences are highly notable when comparing the results for the diverse simulation-based 

cells of Table XII. Taking as reference the InH cell, which is the cell with the best propagation conditions 

(i.e. higher Seff) and, consequently, lower PRB requirement, significant differences of 50% and 55% are 

obtained in comparison with UMi and UMa cells, respectively. Differences grow until around 100% when 

comparing with the RMa cell, which is the one with the worst propagation conditions. As a matter of fact, 

PRB requirements of cells #1, #2 and #3 selected from the real LTE deployment dataset also present large 

differences among them, even though all could be assimilated to an UMa environment. For example, the 

PRB requirement in cells #1 and #3 only differs a 10%, but a difference of 30% is observed between cells 

#1 and #2.  

The results obtained emphasise that the estimation of PRB requirements not only suffers variations when 

considering different environment cells, but also significant differences can take place between cells in the 

same environment. Consequently, the consideration of data analytics fed by CQI measurements extracted 

on a per cell basis allows an estimation of the required PRBs by a tenant tailored to the specificities of each 

cell.  

  
Fig. 27. NGBR,n and NnGBR,n required PRBs per cell and tenant.  

NnGBR,1

NnGBR,2
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3.6.2. Application to the solution for mission critical services  

3.6.2.1. Considered scenario 

The considered scenario under evaluation in this section has been defined under the scope of the 5G 

ESSENCE project, which considers a use case to address the support of public safety services. Specifically, 

the project defines a scenario that involves one public safety communications provider with a Mission 

Critical Push to Talk (MC PTT) service and one commercial communications provider (e.g. offering a 

video streaming service). The two service providers share the resources available at a deployed cellular 

infrastructure. The challenge consists on providing the required RAN slice in order to allocate the radio 

resources to the critical actors (e.g., the first responders), who inherently need services with prioritized and 

high quality requirements.  

For the scenario configuration, 5G ESSENCE considers an incident in the central train station of a medium 

sized city. The public safety resources of the city involve three fire stations, three emergency services 

offices, three hospitals, the transport police that operates in the train station and the emergency coordination 

centre (112 headquarter). The communication between the participants in the incident is performed through 

the MC PTT service. In this context, the deployment of the cellular network includes 4 zones that divide 

the city into 4 coverage areas: 

 Zone 1: includes the Fire Station 1, the Emergency Services Office 1 and the Hospital 1. 

 Zone 2: includes the Fire Station 2, the Emergency Services Office 2 and the Hospital 2. 

 Zone 3: includes the Fire Station 3, the Emergency Services Office 3, the Hospital 3, the Transport 

Police Headquarters and the Emergency Coordination. 

 Zone 4: includes the Train station. 

With this layout, the scenario is organised in three stages. Initially, only the basic personnel are deployed 

for surveillance operations. The occurrence of an incident triggers the transition to the second stage, 

attracting first responders to the scene and therefore, increasing communication requirements. Finally, the 

events lead to the declaration of an emergency state in the third stage, which involves another 

reconfiguration of the network to guarantee the communication between the PS forces. Table XIII 

summarizes the number of user connections (i.e., MC PTT calls) for Stages 1-3 as a result of the incident, 

which abruptly increase in zone 4 where the train station is located. For further details of the development 

of the incident and the calls between the different PS bodies, the reader is referred to [C4].    

TABLE XIII. TOTAL NUMBER OF USER CONNECTIONS FOR EACH OF THE STAGES. 

Stage Zone 1 Zone 2 Zone 3 Zone 4 

Stage 1 (Initial situation) 8 8 10 2 

Stage 2 (The incident occurs) 12 8 7 30 

Stage 3 (State of emergence) 12 13 7 60 
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Let us assume that the public safety communications provider of the MC PTT service makes use of a RAN 

Slice Instance (RSI) deployed on the shared cellular infrastructure that provides coverage in the different 

zones of the scenario. MC PTT service requirements are given in terms of the GBRn value to be ensured to 

each MC PTT call and the maximum degradation probability Pd,GBR,n
max , which represents an important 

requirement for MC PTT services, due to its mission critical nature. Then, assuming that each one of the 

four zones of the scenario is covered by a different cell, the proposed methodology for the estimation of the 

required PRB resources is considered for dimensioning the PRB requirements of the MC PTT RSI. The 

considered configuration parameters of the cells are shown in Table XIV. The MC PTT service 

requirements are given by GBRn=50 kb/s and different values of Pd,GBR,n
max  will be considered in the results. 

TABLE XIV. CELL CONFIGURATION PARAMETERS. 

Parameter Value 

Cell radius  288 m 

gNB height  25 m 

UE height  1.5 m 

Minimum gNB-UE distance  35 m 

Path Loss and Shadowing model Urban Macrocell model of Sec. 7.4 of [45] 

Shadowing standard deviation in LOS 4 dB 

Shadowing standard deviation in NLOS 6 dB 

Frequency  3.6 GHz 

gNB transmitted power (dBm/PRB) 18 dBm 

gNB antenna Gain Omnidirectional antenna with 5 dBi gain 

UE noise figure 9 dB 

Average Spectral efficiency (Seff
̅̅ ̅̅ ) 4.45 b/s/Hz 

Link-level model to map SINR and bit rate 
Model in Sec. 5.2.7 of [48] with maximum SINR= 30 dB and 

minimum SINR= -10 dB with alpha parameter=0.6 

PRB Bandwidth (B) 180 kHz, corresponding to subcarrier spacing 15 kHz [43]  

Number of PRBs per cell 106, corresponding to cell bandwidth 20 MHz [46] 

 

3.6.2.2. Results 

Fig. 28 plots the number of PRBs Nth required by the MC PTT RSI in each cell to support the traffic 

conditions existing in each stage of the scenario. The cell number corresponds to the zone number. Results 

are obtained for a maximum degradation probability Pd,GBR,n
max =0.1%. The figure shows that the impact of 

the traffic increase associated to the emergency incident is particularly relevant in the case of the cell 4 that 

provides service to the train station where the incident has occurred. Specifically, under normal conditions 

(stage 1) one single PRB is sufficient to serve the MC PTT communication needs. This PRB will be 

dynamically assigned by the scheduler to the different users on a short (i.e. 1 ms) so that each user gets on 

average the required GBRn. In turn, with the traffic increase associated to the incident occurrence (stage 2) 

and the declaration of the emergency state (stage 3), this PRB becomes insufficient to serve all the users, 

thus requiring the extension of the MC PTT RSI capacity in the cell 4 with additional PRBs. Comparing 

the number of PRBs for this cell in Fig. 28 with the number of user connections indicated in  Table XIII for 
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the different stages, it can be noticed that the number of required PRBs does not scale linearly with the 

number of users. 

As for the rest of cells, even though the different stages of the incident involve some traffic increase, this 

can still be properly served in cells 1 and 3 with the same number of PRBs as during the normal operational 

conditions (stage 1), so RSI reconfiguration is not needed in these cells. For cell 2, an additional PRB is 

required in stage 3.     

 
Fig. 28. Number of required PRBs for the MC PTT RSI in the different cells and stages for Pd,GBR,n

max =0.1%. 

To analyse the impact of the service requirements, Fig. 29 plots the number of PRBs required by the MC 

PTT RSI in cell 4 for different values of the maximum degradation probability Pd,GBR,n
max . It is observed that 

the number of PRBs increases when reducing the value of Pd,GBR,n
max , which corresponds to more stringent 

requirements. In any case, the observed increase is quite moderate, as observed from the fact that in stages 

2 and 3 a reduction of the degradation probability in two orders of magnitude from 1% down to 0.01% can 

be just achieved with two additional PRBs. 

 
Fig. 29 Number of required PRBs for the MC PTT RSI in cell 4 for the different stages of the incident and with different 

values of Pd,GBR,n
max . 

The impact of the increase of PRB requirements in the MC PTT RSI for the different stages of the incident 

over the performance obtained by the RSI of the commercial service provider is shown in Fig. 30. The 

figure plots the aggregate average throughput available in cell 4 for the different stages. The throughput is 

progressively reduced as more PRBs are allocated to the MC PTT RSI, since, for every reconfiguration of 
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this slice, the commercial RSI will have less PRBs available from the total in the cell. However, the 

reduction is relatively small, e.g. for the case Pd,GBR,n
max =0.01% the throughput in stage 3 is only 5.8% lower 

than the throughput in stage 1. This is due to the low GBR demanded by MC PTT calls, which allows 

supporting a large number of users with a relatively low number of PRBs.   

 
Fig. 30 Aggregate throughput available for the commercial RAN slice in cell 4 for different stages of the incident and 

different values of Pd,GBR,n
max . 

3.7. Summary 

This chapter has proposed an analytical methodology for estimating the required number of PRBs by a 

RAN slice for slice admission control decision making. To capture the cell specificities in the estimation, 

the characterisation of each cell in terms of spectral efficiency probability density function is derived by 

means of data analytics, after gathering and processing OAM cell performance measurements. Based on 

the obtained cell characterisation, the estimation of the required PRBs is performed on a per-cell basis in 

order to meet the SLA requirements of both GBR and non-GBR services. 

The proposed methodology has been evaluated considering four different simulation-based cell 

environments (i.e. indoor hot-spot, urban micro-cell, urban macro-cell and rural-macro cell) and three cells 

selected from a real LTE deployment dataset. Results have revealed large differences in the estimated PRB 

requirements among different cell environments, presenting much lower PRB requirements the indoor hot-

spot than the rural macro-cell. Also, significant differences can occur in cells with similar environments, 

particularly when data from real scenarios are considered. Therefore, the cell-tailored estimation of the 

required radio resources, as achieved with the proposed methodology fed by cell CQI measurements, is a 

must for proper SAC.   

Moreover, the proposed PRB requirements estimation methodology has been applied to the dimensioning 

of the RAN slice instance that supports the MC PTT services. The analysed scenario, which has been 

defined in the 5G ESSENCE project, consists in an emergency scenario characterized by different stages 

that involve increasing communication needs associated to the occurrence of an incident and the eventual 

declaration of the emergency state. The results have shown that the traffic increase associated to the 

emergency occurrence involves reconfigurations in the MC PTT RAN slice to increase the number of 

allocated PRBs.   
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Chapter 4. Deep Reinforcement Learning-

based framework for capacity sharing in 

RAN slicing scenarios 

4.1. Introduction 

In this section, a Deep Reinforcement Learning (DRL)-based solution to deal with the problem of capacity 

sharing in multi-tenant and multi-cell scenarios is proposed. The solution is able to dynamically provide 

the capacities to each tenant in the different cells in order to satisfy the fluctuating traffic demands of each 

tenant, satisfy the Service Level Agreement (SLA) established for each tenant and make an efficient use of 

the resources in each of the cells of the scenario. Specifically, the proposed solution is approach as a Multi-

Agent Reinforcement Learning (MARL) solution that associates one Deep Q-Network (DQN)-based agent 

to each tenant, which learns the policy for jointly assigning the capacities to be provided to the tenant in 

the different cells of the scenario. The different DQN-based agents operate in a synchronous and 

cooperative manner since their decisions are performed at the same time and each agent is designed to find 

a solution that benefits jointly all the tenants. Furthermore, the solution has been formulated as a Self-

Organising Network (SON) function, which is integrated in a RAN slicing management framework well 

aligned with the on-going 3GPP standardisation work on management and orchestration of network slicing. 

The proposed solution has been evaluated considering diverse scenarios with different number of cells and 

traffic distributions among them. After illustrating the behaviour of the solution, the impact of the 

configuration parameters on the training and performance behaviour has been analysed. Also, the capability 

of generalization of the trained policies has been proved and illustrated when adding new tenants in a given 

scenario. Furthermore, the solution has been compared against the optimum solution obtained by an 

exhaustive search algorithm. Finally, the capability of the solution to deal with different levels of 

heterogeneity of the distribution of the traffic demands of the tenants among cells has been assessed.  

The chapter has been organized as follows: Section 4.2 includes the literature review regarding capacity 

sharing solutions for RAN slicing scenarios. Section 4.3 describes the system model while Section 4.4 

defines the MARL approach based on DQN. The definition of some performance metrics to analyse the 

model and the performance evaluation of the proposed solution follow in Section 4.5 and Section 4.6, 

respectively. Finally, Section 4.7 summarizes the main conclusions extracted from this chapter.  
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4.2. Literature review 

The problem of capacity sharing in RAN slicing scenarios has been addressed by some prior works using 

different techniques and under different assumptions. The capacity sharing from a single cell perspective 

has been considered in [53]-[57]. Specifically, the problem is addressed in [53] by defining an exponential 

smoothing model, while in [54] it is formulated as an optimisation problem based on Karush Kuhn Tucker 

(KKT) conditions, and in [55] a biconvex problem is solved considering jointly the radio resources, caching 

and backhaul capacities in the RAN slicing process. Moreover, [56] and [57] establish the capacity provided 

to each tenant in a cell based on market-oriented models that aim at maximising the infrastructure provider’s 

revenue. Other solutions address the problem of capacity sharing in multi-cell scenarios by using heuristic 

approaches [58]-[61]. In particular, capacity sharing is modelled in [58] as a winner bid problem solved by 

means of dynamic programming, while [59] uses an integer mathematical program and proposes a low 

complexity heuristic algorithm for associating resources to users. In turn, [60] proposes a fisher market 

game and [61] an iterative algorithm that adjusts the per-cell capacity provided to each tenant to be used 

for admission control.  

Given the complexity of 5G networks and the inherent dynamic uncertainty of the wireless environment, 

Reinforcement Learning (RL) methods are potential candidates to deal with the capacity sharing problem, 

as they allow optimising dynamic decision-making problems in real time [62]. Among these methods, Deep 

Reinforcement Learning (DRL) approaches, which combine deep neural networks (DNNs) with RL, are 

particularly promising due to their capability to support large state and action spaces. The success of DRL 

started with the Deep Q-Network (DQN) [63] that combines DNN with Q-learning and since its launch 

successive extensions have been proposed such as Double DQN (DDQN) [64] and prioritized experience 

replay [65], among others, which mainly aim at enhancing the speed of learning and the stability of DQN 

but at the cost of increasing the complexity of the solution and the number of hyperparameters to configure 

[66]. Moreover, going beyond Q-learning, DNN have also been applied to other RL approaches, like the 

policy gradient-based methods used for continuous action spaces, such as the Deep Deterministic Policy 

Gradients (DDPG) algorithm [67], or actor-critic algorithms, such as the Asynchronous Advantage Actor 

Critic (A3C) algorithm [68].  

DRL methods have already been used to approach the capacity sharing problem in multi-cell RAN slicing 

scenarios in some previous works [69]-[79]. In [69] and [70] the aggregated capacity reserved to each slice 

at network level is provided, respectively, by means of DQN and Deterministic Policy Gradients (DPG) 

combined with K-Nearest Neighbours (K-NN). A similar problem is addressed in [71] through Generative 

Adversarial Network (GAN)-DDQN. In turn, [72] and [73] provide the cell capacity share by first 

computing the aggregate capacity reserved to each slice at network level using a DQN agent associated to 

each slice and, then, applying a heuristic algorithm to obtain the cell capacity for each slice. Similarly, [74] 

provides the aggregate capacity allocated to each tenant at network level by means of a DQN agent and, 

then, the cell capacity for each tenant is computed by a knapsack algorithm. In [75], a DQN agent is used 
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to assign the cell capacity to all tenants in a single cell with virtualised Device to Device (D2D) 

communications. In [76] the RAN slice configuration and PRB allocation in a cell is performed by a two-

level hierarchy scheme by using, respectively, DDPG and DDQN agents. The allocation of the cell capacity 

to all tenants in a single cell when considering DQN, DDQN and DDPG-based agents is assessed in [77]. 

Moreover, [78] and [79] propose an Ape-X-based approach to solve the capacity sharing problem, where 

the capacity provided to each slice in a single cell is provided by a different actor and all the actors base 

their policy on a common learner.  

While the DRL-based capacity sharing approaches in [69]-[71] and [75]-[77] propose a single-agent to 

provide the joint solution for all the tenants, the approaches in [72]-[74], [78] and [79] tackle the problem 

as a Multi-Agent Reinforcement Learning (MARL) approach [80]. In MARL, multiple agents interact with 

a common environment in order to learn each agent’s policy according to RL methods. The use of MARL 

to tackle the capacity sharing problem by associating one agent to each tenant exhibits relevant advantages 

with respect to a single-agent approach that allocates the capacity to all the tenants. On the one hand, it is 

more scalable as it allows easily adding/removing new tenants in the scenario simply by adding/removing 

the corresponding agent and without modifying the structure of the DNN, which in the single-agent case 

would depend on the number of tenants. On the other hand, it increases the speed of learning, since the 

dimensions of the state-action spaces are more reduced as the agent only needs to account for the states and 

actions related to the tenant and the training of the different agents can be performed independently of the 

others. The benefits of MARL have been exploited in [72]-[74], where each agent determines the 

aggregated assigned capacity over all the cells to a tenant, as well as in [78] and [79], where each agent 

determines the capacity assigned to a tenant in a single cell. However, none of the previous works have 

proposed a MARL approach where an agent is able to directly provide the capacities assigned to its 

associated tenant in the different cells in a multi-cell scenario. This is relevant for the management of RAN 

slices in multi-cell scenarios from a system-level perspective because, on the one hand, Service Level 

Agreements (SLA) are defined for geographical areas covering multiple cells and, on the other hand, the 

traffic of one tenant across the different cells may exhibit time and space heterogeneities. Therefore, it is 

important that an agent learns how to make joint decisions for multiple cells and the proposed MARL 

approach intends to fill this gap. Besides, another gap to be filled is that the previous MARL-based 

approaches in [72]- [74] provide limited insights about multi-agent design features that are relevant from a 

practical perspective, such as the interaction between the different agents or the training-related aspects of 

the multi-agent approach. Only the work in [78] and [79] provides some details in this respect for the Ape-

X solution, but being restricted to the operation on a single cell basis. 

The main contributions of the solution proposed in this chapterand its novelties with respect to previous 

works are the following: 

 In the proposed MARL approach, a DQN agent learns the policy for jointly assigning the capacities 

to be provided to a tenant in the different cells of the scenario. This is a difference with respect to 
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prior multi-agent approaches in which an agent either assigns the capacity for a single cell, [78] 

and [79],  or assigns the aggregate capacity for all cells, [72]-[74]. Furthermore, a synchronous and 

cooperative operation of the different agents is considered in the proposed solution since their 

decisions are performed at the same time and each agent is designed to find a solution that benefits 

jointly all the tenants. This also constitutes a relevant difference with respect to other approaches, 

such as [72] and [73]. 

 The proposed MARL approach addresses the capacity sharing when considering the SLA for each 

tenant as an aggregate across the multiple cells in the scenario in order to capture the total amount 

of capacity to be provided to each tenant. Instead, other approaches such as [69]- [79]  just consider 

the SLA specified in terms of the QoS parameters defined at user level, but without enforcing any 

aggregate capacity per tenant. In this way, the definition of the state in the MARL solution proposed 

here includes the parameters of the SLA, which allows the agents to adapt to different SLA 

requirements without the need of performing a new training when the SLA values change, as 

required in [72]-[75]. 

 A key feature of the proposed solution is that the policy learning process can be conducted by a 

single agent and then the learnt policy can be generalised and directly applied by the other agents, 

thus reducing the complexity of training in multi-agent scenarios. This leads to a scalable solution 

where e.g., the addition of a new tenant does not require any re-training. To the author best 

knowledge, little effort has been conducted by previous works on capacity sharing to address these 

training-related aspects in detail. In this respect, [78] and [79] use Ape-X for learning a single 

policy that jointly uses the experiences of multiple tenants. Instead, the general policy considered 

in the present work can be learnt based on the experiences of a single tenant, thus simplifying the 

learning process. 

 The practicality of the proposed approach is enforced with respect to previous capacity sharing 

solutions by formulating the solution as a Self-Organising Network (SON) function, which is 

integrated in a RAN slicing management framework well aligned with the on-going 3GPP 

standardisation work on management and orchestration of network slicing [52], [81], [82].  

4.3. System model 

Let us consider an Infrastructure Provider (InP) that owns a NG-RAN infrastructure, which is composed of 

N cells with diverse deployment characteristics (i.e., cell radius, transmission power, frequency of 

operation). Assuming 5G New Radio (NR) technology, each cell n has a total of Wn Physical Resource 

Blocks (PRBs) with a PRB bandwidth Bn, which provide a total cell capacity cn (b/s), defined as 

cn=Wn·Bn·Sn, where Sn is the average spectral efficiency at cell n. Then, the total system capacity C is 

obtained by aggregating cn for all the cells n=1…N. The InP shares its NG-RAN infrastructure among K 
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tenants by providing each tenant k with a RAN Slice Instance (RSI), which corresponds to the Network 

Slice Subnet Instance (NSSI) for the RAN part in the 3GPP terminology.  

In order to satisfy the service requirements, a SLA is established between the InP and each of the tenants. 

Based on this SLA, the following requirements are established for the k-th tenant:   

 Scenario Aggregated Guaranteed Bit Rate (SAGBRk): the aggregated capacity to be provided across 

all cells to tenant k, if requested.  

 Maximum Cell Bit Rate (MCBRk,n): Maximum bit rate that can be provided to tenant k in cell n. 

This parameter is defined by the InP to avoid that a single tenant uses all the capacity in a cell under 

highly extreme heterogeneous spatial load distributions of tenants demanding excessive capacity 

in certain cells.  

These requirements are considered in the creation process of each RSI and its fulfilment is responsibility 

of the InP. For this purpose, it relies on the RSI Lifecycle Management (LCM) for creating, modifying, 

optimising and terminating RSIs. According to the 3GPP management model [52], the RSI LCM falls under 

the scope of the Network Slice Subnet Management Function (NSSMF) for the RAN part of a network 

slice, denoted hereafter as RAN NSSMF.  

The RAN NSSMF is in charge of the correct operation and dynamic configuration of the RSIs. In particular, 

the proposed capacity sharing function is considered as a part of the RAN NSSMF to optimise the amount 

of radio resources (and associated capacity) to be provided to each RSI, which is a challenging task. This 

provided capacity needs to be dynamically updated depending on the RSI traffic demands, which are not 

homogeneous among the different cells in the NG-RAN and they can fluctuate over the time. Therefore, 

the capacity sharing solution considered here is designed as a SON function that automatically and 

dynamically adjusts the capacity provided to each RAN slice across the different cells. Indeed, this vision 

is aligned with the recent study conducted at 3GPP on the SON functionalities for 5G [81]. This study 

identifies the so-called cross-slice network resource optimization use case intended to optimise the 

allocation of physical and virtual resources across multiple network slice instances. Therefore, the proposed 

capacity sharing solution can be regarded as a specific solution to this use case for the RAN.  

Specifically, the proposed capacity sharing SON function dynamically tunes the capacity share for each 

tenant in time steps of duration Δt (in the order of minutes) in order to adapt to the spatial and temporal 

traffic variations among the different cells, minimise SLA breaches (i.e., violations) in the system and 

optimise the resource utilisation of the different cells in the system. The capacity share σk(t) of tenant k in 

time step t is defined as σk(t)=[ σk,1(t),…, σk,n(t), …, σk,N(t)], where each component σk,n(t) corresponds to 

the proportion of the total capacity (i.e. proportion of the total PRBs Wn) in cell n provided to that tenant 

during time step t and ranges 0≤σk,n(t)≤ MCBRk,n/cn. Note that the capacity share solution in a cell cannot 

exceed the total capacity of the cell, so that ∑ σk,n(t)K
k=1 ≤1. The capacity share σk(t) needs to be upgraded 

periodically on a per-minutes basis in order to adapt to the traffic demands. Following the current 5G 
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Network Resource Model (NRM) defined by 3GPP [52] the capacity share can be configured on a cell 

using the RRMPolicyRatio attribute, which specifies the percentage of radio resources (e.g., PRBs) to be 

allocated on a per-slice basis, which is further discussed in Section 5.2. The basic notations of the proposed 

capacity sharing SON function are summarized in Table XV. 

TABLE XV. LIST OF ABBREVIATIONS AND NOTATIONS. 

Notation Definition 

N Total number of cells. 

Wn Total number of PRBs in cell n. 

Bn PRBs' bandwidth in cell n. 

cn Total capacity in cell n. 

Sn Average spectral efficiency in cell n. 

C System capacity. 

K Total number of tenants. 

SAGBRk Scenario Aggregated Guaranteed Bit Rate to tenant k. 

MCBRk,n Maximum Cell Bit Rate to tenant k in cell n. 

Δt Duration of a time step. 

σk(t) Capacity share of tenant k in time step t. 

σk,n(t) Proportion of cn of cell n provided to tenant k during time step t. 

πk Policy learnt by the agent associated to tenant k. 

ok,n(t) Offered load of tenant k in cell n.  

ρk,n(t) Resource usage of tenant k in cell n. 

Tk(t) Aggregated throughput of tenant k across all cells.  

sk(t) State of tenant k in time step t. 

sk,n(t) State of tenant k in cell n in time step t. 

ak(t) Action selected for tenant k in time step t. 

ak,n(t) Action selected for tenant k in cell n in time step t. 

Δ Action increase step. 

rk(t) Reward obtained by tenant k in time step t. 

ρ
n
A(t) Fraction of available PRBs not used by any tenant in the cell. 

𝜎n
A(t) Available capacity share in cell n not assigned to any tenant. 

δk
(1)

(t), δk
(2)

(t) Reward factors. 

φ1, φ2 Reward factors’ weights. 

Ok(t) Aggregated offered load of tenant k across all cells.  

O(t) Aggregated offered load of all tenants in all cells.  

β
k
(t) Guaranteed capacity not required by other tenants at time step t. 

γ Discount factor. 

Qk(sk,ak,θk) Q-network associated to tenant k with weights θk. 

Dk
l  Experience dataset of agent associated to tenant k with length l. 

U(Dk
l ) Mini-batch of experiences. 

πk
ε  ε-Greedy policy with probability of selecting a random action ε.  

L(𝜃k) Average mean squared error loss. 

𝜏 Learning rate. 

ek,j Experience j of tenant k. 

Ak(t) Assigned capacity to tenant k at time step t. 

Rk Average reward of tenant k. 

SSk Average SLA satisfaction of tenant k. 

U Average system utilization. 

 

4.4. Multi-agent reinforcement learning approach for capacity sharing 

The capacity sharing SON function has been addressed as a MARL approach in order to deal with the 

complexity of the computation of σk(t) in multi-cell scenarios. In the proposed approach, each RL agent is 

associated to a tenant k in the system and centrally learns the policy πk to tune σk(t) dynamically by 

interacting with the environment. The selected RL method for deriving the policy πk at the k-th agent is the 

DQN algorithm due to three main reasons. First, DQN has been designed to support high dimension state 
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and action spaces, which is achieved with the use of DNN. This is convenient for the capacity sharing 

problem since the consideration of multiple cells and the randomness in the traffic demands in each of the 

cells can result in large state and action spaces. Second, the learning in DQN is performed by bootstrapping, 

i.e., the policy is progressively updated by considering single samples of experience instead of considering 

all the samples until reaching a certain goal or finishing an episode, like in Monte Carlo simulations [83]. 

This is suitable for the case of capacity sharing since a continuous learning of πk is desired, rather than in 

episodes. Third, in relation to other DRL approaches such as DDQN or DDPG, preliminary results in a 

previous study [77] showed that, despite having differences in terms of the practicality of the 

implementation (e.g., speed of the training process, number of hyperparameters to configure, etc.), their 

performance in a single-agent and single-cell scenario was very similar to that of DQN. In this respect, 

DQN was considered as a good design choice, considering the trade-off between practicality and achieved 

performance.  

The scheme of the proposed solution is shown in Fig. 31. The proposed capacity sharing SON function falls 

within the scope of the RAN NSSMF of the 3GPP management system. The function is composed of K 

DQN agents, each one associated to one tenant. The InP provides as input the service profile parameters 

associated to each tenant, which include the SLA parameters. Moreover, the SON function includes a 

monitoring module, which collects performance measurements of the tenants in the different cells and 

provides them to the processing module. The performance measurements of each tenant can be obtained in 

each time step e.g., using the NSSI performance data file reporting service defined in [82] through 

Performance Management (PM) services interface. The performance measurements considered here for 

tenant k include: 

 Offered load (ok,n(t)): Requested capacity by the tenant in the n-th cell during the last time step, i.e. 

period (t-Δt,t]. This parameter is obtained by aggregating the capacity requirement by all the users 

in cell n that belong to tenant k. 

 Resource usage (ρk,n(t)): Fraction of PRBs occupied by the k-th tenant in the n-th cell during the 

last time step. It is computed as min(σk,n(t), ok,n(t)/cn). 

 Throughput (Tk(t)): Aggregated throughput experienced by tenant k across all cells during the last 

time step. This is obtained by aggregating the throughput in each cell n given by min(ok,n(t), 

σk,n(t)·cn).   

Furthermore, a pre-processing module is also proposed to be included within the SON function, which 

computes the inputs to each DQN agent based on the performance measurements provided by the 

monitoring module and on the allocated capacity share σk(t-1) during the last time step t-1.     
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Fig. 31. MARL solution scheme. 

Then, at each time step t, the DQN agent associated to tenant k obtains the state sk(t) of the environment. 

Based on sk(t), the agent selects an action ak(t) according to the trained policy πk by the DQN agent. Once 

all the actions for all the agents have been obtained, the capacity sharing computation module computes the 

resulting σk(t) for all the tenants, avoiding unfeasible σk(t) solutions (e.g., allocation of more capacity than 

available in a cell). Next, the computed capacity sharing values σk(t) are communicated to the different cells 

in the NG-RAN environment through 3GPP interfaces for NSSI provisioning management services [16]. 

Moreover, the k-th agent is also provided with the reward signal rk(t) as a result of the last performed action 

ak(t-1), which jointly with the sk(t) are used for training the DQN agent associated to tenant k. The specific 

definitions of the state, action and reward signals in the proposed DQN agents and the operation of the 

capacity sharing computation module are described in the following.  

4.4.1. State 

The state obtained by the k-th tenant’s agent at time t from the network environment is denoted as sk(t) = 

[sk,1(t),…, sk,n(t), …,sk,N(t), SAGBRk/C,  ∑ SAGBRk'
K

k
'
=1,k'≠k

/C], where each component sk,n(t) corresponds to 

the state of the tenant in cell n, given by < ρk,n(t), ρn
A(t), σk,n(t-1),𝜎n

A(t-1), MCBRk,n/cn >. The component ρ
n
A(t) 

is the fraction of available PRBs not used by any tenant in the cell, that is:  
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ρ
n
A(t)=1-∑ ρ

k,n
(t)

K

k=1

 (46) 

Similarly, 𝜎n
A(t) is the available capacity share in cell n not assigned to any tenant, given by:  

𝜎n
A(t)=1-∑ σk,n(t)

K

k=1

 (47) 

4.4.2. Action 

At time t, the k-th tenant’s agent selects the joint action ak(t)= [ak,1(t), …, ak,n(t), …, ak,N(t)], which is 

composed of the cell-specific actions ak,n(t) for each cell n=1...N. The cell-specific action determines the 

variation in the capacity share σk,n(t) to be applied in the following time step t in cell n. In order to achieve 

a gradual tuning of the capacity share, the cell-specific action can take three possible values ak,n(t)ϵ{Δ,0,-

Δ}, corresponding to increasing the capacity share in a step of Δ, maintaining it or decreasing it in a step of 

Δ. Consequently, the action space for ak(t) corresponds to all the possible combination vectors of the three 

possible action values for each of the cells, which results in 3N possible actions for each tenant. It is worth 

noting that other approaches in which the cell-specific action could take more than three possible values 

could also be feasible. However, they would imply a much larger action space, and thus, a longer process 

for learning the policy πk. The actions ak(t) are provided to the capacity sharing computation module to 

obtain the resulting capacity share solution σk(t), as detailed in Section 4.4.5.  

4.4.3. Reward 

In order to assess to what extent the last action ak(t-1) was adequate for the previous state sk(t-1), a reward 

rk(t) is provided to the k-th tenant agent, which is defined as:  

rk(t)=δk
(1)

(t)
φ1

·δk
(2)

(t)
φ2

 (48) 

which considers two main factors, δk
(1)

(t) and δk
(2)

(t), defined in the following, and their corresponding 

weights, φ1 and φ2. These weights φ1 and φ2 are assumed to be defined by the InP according to its own 

criteria in establishing the importance of the factors δk
(1)

(t) and δk
(2)

(t).  

The first factor, denoted as δk
(1)

(t), intends to promote the satisfaction of the SLA of tenant k and the 

provisioning of enough capacity to satisfy its offered load. It is defined as:  

δk
(1)

(t) =

{
 
 

 
 Tk(t)

Ok(t)
if  O(t)≤C

min(
Tk(t)

min(SAGBRk+βk(t),Ok(t))
,1) Otherwise

 (49) 

where Ok(t) corresponds to the aggregated offered load of tenant k among all the cells at time step t, bounded 

by the MCBRk,n of each of the cells, given by:  
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Ok(t)=∑ min( k,n(t),MCBRk,n)
N

n=1
 (50) 

Moreover, O(t) in (49) corresponds to the aggregated offered load Ok(t) of all tenants at time step t while 

β
k
(t) captures the guaranteed capacity not required by other tenants at time step t, given by: 

β
k
(t)=∑ max(SAGBRk' -Ok'(t),0)

K

k'=1

k
'
≠k

 (51) 

which reaches β
k
(t)=0 when the offered load Ok(t) of all the tenants is higher or equal than their SAGBRk.  

Based on these parameters, the definition of δk
(1)

(t) in (49) considers two different situations. The first 

condition in (49) considers the situation when there is enough capacity to satisfy the offered load of all the 

tenants O(t) and, hence, δk
(1)

(t) is given by the ratio between the throughput obtained by tenant k and its 

offered load, being maximum, i.e., δk
(1)

(t)=1, when the throughput equals the offered load. In turn, the 

second condition in (49) considers the situation when the total system capacity C is not enough to satisfy 

the offered load requirement of all the tenants O(t). In this situation, δk
(1)

(t) is given by the ratio between 

the throughput of tenant k and the minimum between its offered load and its SAGBRk increased by the 

unused capacity left by the other tenants β
k
(t). Then, in this case δk

(1)
(t) will be maximum (i.e., δk

(1)
(t)=1) 

when the throughput equals the offered load Ok(t) or, in the case that the offered load is higher than  

SAGBRk + βk(t) when at least the throughput ensures this later value.   

The fact that the definition of δk
(1)

(t) depends on the aggregated offered load of all tenants O(t) contributes 

to a collaborative behaviour between tenants, as in situations of overload this factor will promote actions 

that allow assuring the SLA of all tenants, avoiding those actions that would only benefit the k-th tenant at 

the cost of degrading the performance of the rest. 

The second factor in the reward, δk
(2)

(t), aims at measuring the degree of capacity overprovisioning and is 

defined by the ratio between the system throughput provided to the k-th tenant Tk(t) and its provided 

capacity during the last time step, that is:  

δk
(2)

(t)=
Tk(t)

∑ cn·σk,n(t-1)N
n=1

 (52) 

4.4.4. DQN Agent 

The DQN agent of tenant k centrally learns the policy πk that determines the actions to be executed in each 

cell. The proposed DQN agent executes the DQN algorithm of [63] but particularised to the state, action 

and reward signals previously introduced.  

The objective of DQN, as a value-based RL algorithm, is to find the optimal policy πk* that maximises the 

discounted cumulative future reward dk(t), computed as:  
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  dk(t)=∑ γjrk(t+j+1)

∞

j=0

 (53) 

where γ is the discount factor, which ranges 0≤ γ ≤1, used to place more emphasis on immediate rewards. 

Finding πk* can be performed by obtaining the optimal action-value function  

Qk
*(sk,ak), which is the maximum expected discounted cumulative reward starting at time step t from sk, 

taking the action ak and following the policy πk:  

Q
k

*(s , a )= max
πk

E [dk(t)|
s ( )=s 

a ( )=a 

πk

] (54) 

This last expression can be decomposed into the Bellman Equation, which allows expressing Qk*(sk,ak) in 

a recursive form: 

Q
k
*(s , a ) = E [rk(t+1)+γ max

a '
 Q

k
*(s ( +1),a ')|

s ( )=s 

a ( )=a 
] (55) 

According to Qk
*(sk, ak), the optimal policy can be found by selecting a( ) greedily for each state sk that is:  

πk*= argmax
a 

Q
k
*(s ,a ) (56) 

Generally, RL algorithms approximate the optimal Qk
*(sk, ak) by updating the approximated function  

Qk(sk, ak) iteratively based on the time difference (TD) error at each time t. The TD error is defined as the 

difference between rk(t+1)+γ max
a '

 Q
k
*(s ( +1),a '), denoted as TD target, and the approximated value 

Qk(sk,ak). In the case of DQN, a non-linear approximation of Qk
*(sk,ak) is performed by using a DNN, 

denoted as Q-network, with weights θk, so that Qk
*(sk,ak)  Qk(sk,ak,θk). The inputs of the Q-network are the 

different components of the state sk, while the outputs correspond to the values of Qk(sk,ak,θk) for each 

possible action ak. Therefore, the policy πk selects the action that maximises the output of the Q-network 

as:   

πk= argmax
a 

Q
k
(s ,a ,𝜃k) (57) 

The use of a DNN to approximate Qk
*(sk,ak) allows dealing with large state and action spaces. However, 

the use of non-linear approximation functions such as DNNs can imply instabilities or even divergence in 

the learning process due to: (i) correlations in sequential observations; (ii) correlations between action-

values Qk(sk,ak,θk) and the TD-target; (iii) the fact that small updates of Qk(sk,ak,θk) may change the policy, 

dramatically, which can lead to changes of the distribution of the data collected from the environment. In 

order to avoid these effects, a DQN agent is composed of different elements, listed in the following:  

 Evaluation DNN (Qk(sk,ak,θk)): corresponds to the main approximation function of the expected 

reward function Qk(sk,ak). This function is trained off-line and is used to extract the policy πk to 
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select the actions to be performed in the environment. When starting the learning process, the 

weights θk are initialised randomly.   

 Target DNN (Qk(sk,ak, k
 -)): this is another Q-network with the same structure as the evaluation 

DNN but with weightsk
-. It is used to obtain the TD-Target as rk(t)+γ max

a '
 Q

k
(s ( ),a ',𝜃k

-). Instead 

of updating the weights k
- every time step, they are updated every M time steps with the weights 

of the evaluation DNN k
-=k. Consequently, the computation of the TD error, which depends on 

the target DNN, is no longer dependant on rapidly fluctuating estimates of the Q-values, as the 

target DNN only changes every M time steps but remains fixed the rest of the time.   

 Experience Dataset (Dk
l ): a dataset Dk

l  of length l is used to store the experiences of each agent. 

The stored experience for the agent associated to tenant k at time step t is represented by the 

experience tuple <s ( -1), a ( -1),rk(t),s ( ) >. The use of the dataset allows randomly selecting 

mini-batches of experiences U(Dk
l ) with length J to update of the weights θk of the evaluation DNN. 

The use of Dk
l  and the random minibatches for the learning of Qk(sk,ak,θk) is called Experience 

Replay and has several benefits. First, randomly selecting experiences from the dataset Dk
l  breaks 

the temporal correlations in the training data, which may lead to an inefficient learning. Second, 

past experiences can be reused, allowing for a greater data efficiency. Third, when not using 

experience replay and updating Qk(sk,ak,θk) on-policy, i.e. based on real time experiences, the 

current values of Qk(sk,ak,θk) determine the action that will lead to the next state, which will be used 

to update θk and will determine all the future experiences. This may lead to unwanted feedback 

loops where the values Qk(sk,ak,θk) can get stuck in poor local minimum or diverge. This effect is 

smoothed when using experience replay, since the data used for training is averaged over many of 

the previous states.  

The training operation of the different DQN agents in the MARL approach has been summarized in 

Algorithm 2. The process of training of each DQN agent can be split into two main processes: the data 

collection (lines 4-13 of Algorithm 2) and the update of the weights θk of the evaluation DNN (lines 14-22 

of Algorithm 2). 

For the DQN agent associated to tenant k, the process of data collection consists in gathering experiences 

from the network environment and storing them in the experience dataset Dk
l , which is performed in time 

steps of t. For each time step t, the DQN agent observes the state of the environment sk(t) and, accordingly, 

triggers an action ak(t) based on an ε-Greedy policy πk
ε  that chooses actions according to (57) with 

probability 1- ε and a random action with probability ε. By using the ε-Greedy policy πk
ε , the agent can 

explore new states that would not be visited, which improves the learning behaviour of the policy πk.  

Moreover, the reward rk(t) is obtained, which assesses the suitability of the last performed action ak(t-1) for 

the last state sk(t-1). Then, the experience < s ( -1), a ( -1), rk(t), s ( ) > is stored in the dataset Dk
l . When 
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the dataset Dk
l  is full (i.e., l experiences are stored), old experiences are removed from the dataset to save 

new ones. Note that during the initial steps of the data collection, the actions are selected completely 

randomly (i.e., ε=1 is considered in the πk
ε) from the environment in order to explore several states and start 

filling the dataset Dk
l  with experiences. 

Algorithm 2. MARL DQN training 
1 Initialize DNN counter m=0. 
2 For t=0… MaxNumberOfTrainingSteps 
3   For k=0…K 
4     Collect global state sk(t) by obtaining sk,n(t) for n=1…N cells. 

5     Generate random ε’ (ε’=1 for the initial steps). 
6     If ε’<ε 
7       Choose randomly action a ( ). 
8     Else 
9       Obtain action according to πk  in (57). 
10     End if 
11     Obtain reward rk(t) as a result of last action ak(t-1). 
12     If Dl(k) is full (l samples are stored), remove the oldest one. 
13     Store experience < s ( -1), a ( -1), rk(t), s ( ) > in Dk

l . 
14     Randomly sample a minibatch of experiences U(Dk

l ) from Dk
l  of length J. 

15     Compute the loss function L(𝜃k) by (58). 
16     Compute the mini-batch gradient descent ∇L(𝜃k) by (59). 
17     Update weights θk of evaluation DNN by (60). 
18     If m==M 
19       Update the weights of target DNN k

-=k and set m=0. 
20     Else 
21       m=m+1 
22     End if 
23   End for 
24   Compute σk(t) for k=1…K by applying Algorithm 3 for all cells. 
25  End for 

 

The process of updating the weights 𝜃k of the evaluation DNN is based on the experiences stored in the 

experience dataset. For each update of Qk(sk,ak,θk), a minibatch of J experiences U(Dk
l ) is firstly selected 

from the dataset Dk
l . This selection is performed by randomly choosing experiences  

ek,j=< s ,j, a ,j, rk,j, s ,j* > for j=1…J. Then, Qk(sk,ak,θk) is updated based on the mini-batch gradient descent 

of U(Dk
l ). For this purpose, the average mean squared error (MSE) loss over all the J experiences ek,j in 

U(Dk
l ), denoted as L(𝜃k), is firstly computed as:  

  L(𝜃k)= E
ek,j ∈ U(Dk

l
)
[(rk,j+γ maxa ′Qk

(s ,j*,a ′,𝜃k
-
)- Q

k
(s ,j, a ,j,𝜃k))

2
] (58) 

Then, the mini-batch gradient descent of L(𝜃k), denoted as ∇L(𝜃k), is obtained by differentiating L(𝜃k) with 

respect to θk, which yields:  

 ∇L(𝜃k)=Eek,j ∈ U(Dk
l
)
[(rk,j+γ maxa ′Qk

(s ,j*,a ′,𝜃k
-
)- Q

k
(s ,j, a ,j,𝜃k))∇θQk

(s ,j, a ,j,𝜃k)] (59) 

Finally, the weights in the Qk(sk,ak,θk) network are updated according to:  
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𝜃k→𝜃k+ τ∇L(𝜃k) (60) 

where 𝜏 is the learning rate. After each update of θk, the obtained Qk(sk,ak,θk) can be used by the ε-Greedy 

policy to trigger actions in the network environment. Moreover, during the update of weights θk, the DQN 

agent has a counter m of the number of time steps since the last target DNN update and, when m=M, the 

weights in the target DNN are updated as θk 
-= θk and m is initialised again. 

4.4.5. Capacity Sharing computation 

In the considered MARL approach, the DQN agents associated to the different tenants in the system interact 

with a common network environment in a collaborative and coordinated manner in order to trigger the 

actions that the capacity sharing computation module will use to configure the capacity share σk(t) of each 

tenant.  

Initially, the capacity shares of each tenant in each of the cells σk,n(t=0) are initialised proportionally to the 

SAGBRk of the tenant, according to: 

σk,n(t=0)=SAGBRk/(∑ SAGBRk')

K

k'=1

 (61) 

Then, σk,n(t) is dynamically tuned according to the selected actions ak(t) by each agent at each time step.  

Even though the process of data collection by each DQN agent is performed independently of the others, 

the different DQN agents trigger their actions and store the experiences synchronously. At each time step 

t, each agent k is provided with its state sk(t) and accordingly selects an action ak(t) as previously explained. 

Next, the capacity sharing computation module gathers the selected actions ak(t) by all the agents and 

computes the resulting capacity share solution σk(t). Specifically, the capacity share of tenant k at cell n, 

σk,n(t), is updated according to:  

σk,n(t)={
σk,n(t-1)+ak,n(t) if 0≤σk,n(t-1)+ak,n(t)≤

MCBRk,n

cn
σk,n(t-1) Otherwise

 (62) 

The formulation of (62) assures that σk,n(t) is within its bounds and considers that the last capacity share 

value σk,n(t-1) is maintained when ak,n(t) forces σk,n(t) to be out of its bounds.  

In some special situations, the fact that the actions of each tenant are triggered independently can lead to 

capacity sharing solutions that excess the total cell capacity in some cells (i.e. ∑ σk,n(t)
K
k=1 >1). When this 

occurs in any cell, the capacity sharing computation module obtains the capacity shares in the cell by 

executing Algorithm 3. The algorithm firstly applies the actions of tenants aiming at decreasing or 

maintaining the capacity share in the cell (i.e., ak,n(t) ϵ{-Δ,0}) and computes the resulting available cell 

capacity 𝜎n
A(t) (lines 1-2). If there is no available capacity (i.e., 𝜎n

A(t)=0), the actions of tenants willing to 

increase its capacity in the cell are not applied (lines 3-4). In turn, when there is available capacity (i.e., 
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𝜎n
A(t)>0), the capacity share is obtained by distributing 𝜎n

A(t) among those tenants with ak,n(t)= Δ 

proportionally to their SAGBRk value as long as they are not already provided with more than SAGBRk (lines 

5-6)  according to:  

σk,n(t)=σk,n(t-1)+
𝜎n
A(t)·SAGBRk

∑ SAGBRk'
K

k'=1
at(k',n)=∆,

Tt(k')≤SAGBRk'

 
(63) 

Algorithm 3. Capacity sharing computation for cell n for cell capacity excess situations 

1 Compute σk,n(t) of tenants with ak,n(t) ϵ{-Δ,0} according to (62). 

2 Compute available cell capacity share 𝜎n
A(t) according to (47). 

3 If 𝜎n
A(t)=0 

4 Set σk,n(t)= σk,n(t-1) of tenants with ak,n(t)=Δ. 

5 Else 

6 

Compute σk,n(t) by distributing 𝜎n
A(t) among tenants with 

ak,n(t)=Δ and Tk(t)≤ SAGBRk proportionally to their SAGBRk 

according to (63). 

7 End if 

 

4.5. Performance metrics 

In this section, different KPIs are defined in order to assess the performance of the model:  

 Assigned capacity to tenant k at time step t (Ak(t)): It is measured in bps and is obtained from the 

capacity share σk(t) provided by the SON function and the capacity of each cell cn as: 

 Ak(t) =∑ cn·σk,n(t)

N

n=1

 (64) 

 Average reward of tenant k (Rk): It is computed as the average of the reward rk(t) obtained by the tenant 

over a duration of G time steps.  

 Rk=
1

G
∑ rk(t)

G-1

t=0

 (65) 

 SLA satisfaction ratio (ssk(t)): It measures the ratio between the provided throughput Tk(t) to tenant k 

and the minimum between the aggregated offered load of the tenant Ok(t) and its SAGBRk value that is: 

ssk(t) = min (
Tk(t)

min(Ok(t), SAGBRk)
,1) (66) 

which ranges 0≤ssk(t)≤1, taking ssk(t)=0 value when the SLA is not satisfied and ssk(t) when it is fully 

satisfied. Note that the definition of ssk(t) considers that when Ok(t) is lower than the SAGBRk, Ok(t) 

needs to be provided, whereas in the case that Ok(t) is greater than SAGBRk, at least SAGBRk needs to 

be provided. 
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 Average SLA satisfaction of tenant k (SSk): It measures the average of SLA satisfaction ratio ssk(t) over 

a duration of G time steps, that is: 

 SSk = 
1

G
∑ ssk(t) 

G-1

t=0

 (67) 

 Average system utilization (U): It is computed as the average ratio between the aggregated throughput 

provided to all tenants and the total system capacity C over a duration of G time steps, that is:  

 U=
1

G
∑

1

C
∑ Tk(t)

K

k=1

G-1

t=0

 (68) 

4.6. Performance evaluation 

This section provides the performance evaluation of the proposed SON function for capacity sharing when 

considering diverse multi-tenant scenarios with different number of cells and diverse traffic distribution 

among cells. First, in Section 4.6.1 the behaviour of SON function is discussed under a single-cell scenario 

and, then, it is compared to two reference capacity sharing solutions, which highlights the benefits of the 

proposed solution. Second, the SON function is assessed in a multi-cell scenario with homogeneously 

distributed traffic among cells in Section 4.6.2. In this scenario, the capability of the agent of one tenant to 

learn a general policy applicable to any other tenant in the system is firstly assessed. This is followed by a 

discussion of the scalability of the solution by adding a new tenant in the considered scenario for evaluation. 

Afterwards, the impact of different model parameter configurations on the achieved performance and an 

analysis on the optimality of the SON function are provided. Finally, the robustness of the SON solution to 

deal with heterogeneities of the traffic distributions in multi-cell environments is analysed in Section 4.6.2 

by considering diverse levels of spatial and temporal heterogeneity in the traffic distributions of the tenants 

in a multi-cell scenario and by analysing the impact of the SLA parameters in these situations.  

4.6.1. Performance under a single-cell scenario 

4.6.1.1. Scenario under consideration 

The considered scenario is composed of a single cell that provides service to two different tenants, denoted 

Tenant 1 and Tenant 2. The scenario is characterised and configured as indicated in Table XVI.  

The training has been performed by considering a training dataset for the DQN agents to learn how to 

behave under different traffic load conditions. This dataset is composed of 330 synthetic offered load 

patterns of the two tenants during a day in the cell of Table XVI, which has been proved to be sufficient for 

the training of the model for the considered scenario. In each of the patterns, the offered load is computed 

in periods of 3 minutes, so each pattern consists of 480 steps. The different patterns of each tenant have 

been combined in order that the DQN agents can visit several states so that the learning can be achieved. 

The simulation parameters for the training of the DQN agents are detailed in Table XVII. The results have 

been obtained by developing the whole model with the library TF-Agents [84]. 
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TABLE XVI. SCENARIO CONFIGURATION. 

Parameter Cell configuration 

PRB Bandwidth (Bn) 360 kHz 

Number of available PRBs (Wn) 51 PRBs 

Average spectral efficiency (Sn) 5 b/s/Hz 

Total cell capacity (cn) 91.8 Mb/s 

SAGBRk 
Tenant 1 55Mb/s (corresponding to 60% of available capacity) 

Tenant 2 36Mb/s (corresponding to 40% of available capacity) 

MCBRk,n 
Tenant 1 

73 Mb/s (corresponding to 80% of available capacity) 
Tenant 2 

 

TABLE XVII. SIMULATION PARAMETERS FOR TRAINING. 

Parameter Value 

Initial collect steps 2000 

Maximum number of training steps for learning  160000 

Experience Replay buffer maximum length (l) 100000 

Mini-batch size (J) 100 

Discount factor(γ) 0.9 

Learning rate (𝜏) 0.001 

ɛ value (ɛ-Greedy) 0.1 

DNN configuration Single layer with 100 

Time step duration (Δt) 3 min 

Action step (Δ) 0.03 

 

4.6.1.2. SON function behaviour  

The evaluation of the trained model has been performed by considering two situations, denoted as Situation 

A and Situation B, with the different offered load patterns included in Fig. 32 and Fig. 33, respectively, 

which show the temporal evolution of the aggregated offered load Ok(t) by the two tenants in the cell during 

a day. Situation A corresponds to an offered load pattern where Tenant 1 requires more capacity than Tenant 

2 during the morning while the contrary case is given during the afternoon. Situation B presents the contrary 

case, where the roles of Tenant 1 and Tenant 2 are reversed. Notice that, in Situation A, the aggregated load 

by both tenants does not exceed the total cell capacity (cn=91.8Mb/s) at any time while in Situation B the 

total capacity is exceeded for a long period of time.  

 
Fig. 32. Offered load of Tenant 1 and Tenant 2 in Situation A.    
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Fig. 33. Offered load of Tenant 1 and Tenant 2 in Situation B.    

Fig. 34 and Fig. 35 compare the assigned capacity Ak(t) with the offered load Ok(t) and the SAGBRk for 

Tenant 1 and Tenant 2 in Situation A and Situation B, respectively. In Situation A, the offered load of both 

tenants is generally served as there is enough capacity to fulfil the both of them. The capacity sharing 

mechanism provides the demanded capacity to both tenants, including those cases when the offered loads 

of Tenant 1 and Tenant 2 exceed SAGBR1 and SAGBR2, respectively, making efficient use of the available 

capacity and exhibiting the capability to exploit the complementarities in the traffic profiles between both 

tenants. In Situation B, similar behaviour is observed but lower assigned capacity than offered is obtained 

during the periods where more capacity than available is requested. In those periods, the required capacity 

is given to the tenants whose offered load Ok(t) is lower than SAGBRk, which shows that the capacity sharing 

function assures the SAGBRk established in the SLA.  

 
Fig. 34. Offered load Ok(t) vs assigned capacity Ak(t) in Situation A. 

 
Fig. 35. Offered load Ok(t) vs assigned capacity Ak(t) in Situation B. 
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considers that both tenants share the overall capacity independently on SAGBRk and in the case that more 

capacity than the available is requested, the capacity is distributed among tenants according to their offered 

load. Fig. 36 and Fig. 37 show the cumulative density function (CDF) of SLA satisfaction ratio ssk for 

Tenant 1 and Tenant 2, respectively. While Reference 1 always fulfils the SLA, Reference 2 presents much 

lower SLA satisfaction, given that both tenants are provided with lower throughput than required when the 

offered load exceeds the total capacity. The proposed MARL approach is able to improve the SLA 

satisfaction of Reference 2 by serving all the offered load Ok(t) as long as it is lower than SAGBRk.  

 
Fig. 36. CDF of SLA satisfaction ratio of Tenant 1 in Situation B. 

Fig. 37. CDF of SLA satisfaction ratio of Tenant 2 in Situation B. 

Moreover, Fig. 38 compares the CDF of the percentage of the system utilisation of the three approaches. 

The system utilisation is defined as the ratio between the aggregate throughput of the two tenants and the 

total cell capacity. Reference 1 presents the lowest system utilisation, as no more than SAGBRk is provided 

even though there is enough capacity unused in the system to satisfy the offered load Ok(t). However, the 

proposed MARL approach substantially improves the utilisation, with a performance very close to 

Reference 2. These results show how the presented approach allows satisfying the SLA and making efficient 

use of the resources, achieving a good trade-off between the two benchmarking schemes. 
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Fig. 38. CDF of overall system utilization of in Situation B. 

4.6.2. Performance under a multi-cell scenario with homogeneous traffic distribution among cells 

4.6.2.1. Scenario under consideration 

The assumed scenario comprises a NG-RAN infrastructure with five cells that serve the users of two 

different tenants, denoted as Tenant 1 and Tenant 2. The configuration of the scenario is presented in Table 

XVIII, including the cells configuration and the SLA parameters established for each tenant.  

TABLE XVIII. SCENARIO CONFIGURATION. 

Parameter Value 

Number of tenants (K) 2 

Number of cells (N) 5 

PRB Bandwidth (Bn) 360 kHz 

Number of cell available PRBs (Wn ) 65 PRBs 

Average spectral efficiency (Sn) 5 b/s/Hz 

Total cell capacity (cn) 117 Mb/s 

Total system capacity (C) 585 Mb/s 

SAGBRk 
Tenant 1 351Mb/s (corresponding to 60% of C) 

Tenant 2 234Mb/s (corresponding to 40% of C) 

MCBRk,n 
Tenant 1 

93.6 Mb/s (corresponding to 80% of cn) 
Tenant 2 

 

The model has been trained according to the parameters of Table XIX. The dataset considered for training 

is composed of 1400 synthetically generated offered load patterns of Tenant 1 and Tenant 2 in the different 

cells during one day, considering different combinations of SAGBRk values for both tenants.  

After the model has been trained, the resulting policies πk are evaluated using the offered load patterns 

shown in Fig. 39. The figure plots the aggregated offered loads among all the cells of Tenant 1, O1(t), and 

Tenant 2, O2(t), during one day. The figure also includes the values of SAGBR1 and SAGBR2, the total 

system capacity C and the aggregated offered loads of both tenants O(t). Note that the offered loads of both 

tenants exceed their SAGBRk at some point during the day and the system offered load O(t) is higher than 

C during the time period from 900 min to 1300 min. Moreover, a uniform distribution of the load among 

the different cells has been considered.  
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TABLE XIX. DRL-BASED MODEL PARAMETERS. 

Parameter Value 

Initial collect steps 5000 

Maximum number of time steps for 

training 
2·106 

Experience Replay buffer maximum 

length (l) 
107 

Mini-batch size (J) 256 

Learning rate (𝜏) 0.0001 

Discount factor(γ) 0.9 

ɛ value (ɛ-Greedy) 0.1 

DNN configuration 

Input layer: 17 nodes 

1 full connected layer: 100 nodes 

Output layer: 243 nodes 

Reward weights  
φ1 0.5 

φ2 0.4 

Time step duration Δt 3 min 

Action step Δ 0.03 

 

 

Fig. 39. Offered loads of Tenant 1 and 2 during a day. 

Regarding the complexity of the proposed approach, it has been assessed in terms of the execution time of 

the MARL approach over a machine with 2 CPU AMD Opteron 4386 operating with Ubuntu 18.04, 

configured to use 2 cores and 8G RAM. Specifically, the execution of one trained DQN agent in one time 

step during evaluation stage lasts 3.8 ms on average, which is a sufficiently low value that would enable 

the operation in a practical system. Concerning the training stage, it is obtained that the execution of a time 

step lasts approximately 36 ms. The larger duration of the time step in the training stage compared to the 

evaluation stage is motivated by the additional operations required during the training for updating the 

weights of the DNNs. 

4.6.2.2. Generalization of the learnt policies 

According to the proposed approach, the DQN agent of each tenant learns its own policy during the training 

and then this policy is applied during the evaluation. However, considering that the training of the different 

tenants has been done under very different situations of their own load and the load of the others and for 

different SLA parameters, in this section, we intend to analyse to what extent there are significant 

differences between the policies learnt by the different tenants. In this way, the main goal is to assess 
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whether it is possible or not to generalise a policy leant by one tenant so that it can be also used by another 

tenant. 

To conduct the analysis, the capacity sharing solution for the offered loads of Fig. 39 is obtained under two 

different policy application modes. In Mode A, the DQN agent of each tenant applies its trained policy, i.e., 

the DQN agent of Tenant 1 applies policy π1, and the DQN agent of Tenant 2 applies policy π2. Both policies 

are the ones obtained after 200·104 training steps. In turn, Mode B considers that the DQN agents of both 

Tenant 1 and Tenant 2 apply the same policy π1 learnt for Tenant 1.  

Fig. 40 presents the temporal evolution of the offered load of Tenant 2 against its assigned capacity A2(t) 

for policy application Mode A and Mode B. In addition, the SAGBR2 of Tenant 2 is included. The assigned 

capacity for both policy application modes generally adapts to the offered load for all the situations where 

the total offered load O(t) (seen in Fig. 39) does not exceed the system capacity C. In turn, when O(t) 

exceeds the system capacity, the assigned capacity to Tenant 2 is kept in the SAGBR2 value. The figure 

shows that very little differences are observed in the assigned capacity A2(t) when applying the policies 

according to Mode A and Mode B.  

 

Fig. 40. Offered load vs assigned capacity for Tenant 2 for tenant policy application Mode A and B. 

Moreover, to quantitatively assess the differences between both modes, Table XX provides the average 

reward Rk and the SLA satisfaction SSk for Tenant 1 and Tenant 2 in addition to the average system 

utilisation U. The obtained values show that the achieved performance for both policy application modes 

is very similar, with differences lower than 1% for all the analysed KPIs. 

TABLE XX. KPIS FOR BOTH POLICY APPLICATION MODES. 

Policy application mode Mode A Mode B 

Average reward 
Tenant 1 (R1) 0.9673 0.9674 

Tenant 2 (R2) 0.9541 0.9483 

SLA Satisfaction  
Tenant 1 (SS1) 0.9725 0.9742 

Tenant 2 (SS2) 0.9705 0.9577 

Average utilisation (U) 0.8885 0.8861 

 

It is worth pointing out that for the case of Tenant 1 there are some slight differences in Table XX although 

the policy applied for this tenant is the same in both modes. The reason is that the actions taken by the DQN 
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agent of Tenant 2, which can be slightly different when changing the applied policy, impact on the state 

seen by the DQN agent of Tenant 1 and, thus, on the selected actions by this tenant. In any case, the impact 

of these different actions on the performance is negligible as seen in the table. 

Concerning Tenant 2, the reason that similar behaviour is obtained for policy application Mode A and  

Mode B is that, although the training of policies π1 and π2 has been performed independently for both 

tenants, this has considered a dataset composed of several offered load situations, exploring different 

complementarities between the two tenants, jointly with diverse combinations of SAGBRk and MCBRk,n 

values. This allows the agents to learn equivalent policies that can be generalised to many offered load 

situations and SLA requirements. This observation has important positive implications on the practicality 

of the proposed approach, because it means that a single training process carried out by one DQN agent 

using a dataset that covers a wide range of offered load situations and SLA requirements can be sufficient 

to obtain a policy that is valid for multiple tenants. As a consequence, a reduction of the complexity of the 

training process will be achieved in a multi-agent scenario. Moreover, this also facilitates the scalability of 

the model to add new tenants in the scenario, because the addition of a tenant can be done without retraining 

the previous learnt policies, as it will be studied in the next sub-section. 

4.6.2.3. Addition of a new tenant 

Following the generalization capability of the trained policies that has been observed in previous section, 

this section aims at assessing the association of already trained policies to new tenants that are added in the 

scenario, without neither training new policies for the new tenants nor retraining (i.e., training again) the 

policies from the existing tenants. To this end, a new tenant, denoted as Tenant 3, is introduced to the 

scenario of Table XVIII. Instead of performing a separate training for the new Tenant 3, the previously 

trained policy for Tenant 1, π1, is used for this new tenant as well as for Tenant 1 and 2. Since the SAGBRk 

of Tenants 1 and 2 use the total system capacity of Table XVIII, in order to support the new tenant, the 

capacity in the system is extended by increasing the cell bandwidth from 25 MHz to 30 MHz. As a result, 

the number of PRBs in each cell is increased to Wn=78 PRBs, providing a total cell capacity cn =143.2 Mb/s 

and, thus, a total system capacity of C =716 Mb/s. The SLA established for Tenant 3 considers 

SAGBR3=93.6 Mb/s and MCBR3,n=114.56 Mb/s, corresponding to 80% of the cell capacity. The SAGBRk 

of Tenant 1 and 2 remain the same as in Table XVIII, whereas the MCBRk,n of those tenants is updated to 

MCBR1,n=MCBR2,n= 114.56Mb/s given that the cell capacity has increased.  

The offered loads considered for evaluation during one day are plotted in Fig. 41 together with the SAGBRk 

values, the aggregated offered load in the system O(t) and the total system capacity C. The offered loads of 

Tenant 1 and Tenant 2, O1(t) and O2(t), are the same as in Fig. 39, and the offered load of Tenant 3, O3(t), 

presents lower values than the other tenants, reaching its higher values at t=570 min and t=880 min when 

its SAGBR3 is exceeded. Despite introducing Tenant 3, the total offered load of the three tenants only 

slightly exceeds the system capacity from t=1000 min to t=1200 min.  
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Fig. 41. Offered load of Tenant 1, 2 and 3 during a day. 

Fig. 42 shows the offered loads Ok(t) against the assigned capacity Ak(t) of Tenant 1, 2 and 3, in addition to 

their SAGBRk values. Since most of time there is enough capacity to fulfil the offered load of the three 

tenants, the offered loads are satisfied nearly all the day. When the overall offered load O(t) exceeds the 

system capacity, the tenants that required more capacity than their SAGBRk are assigned with lower capacity 

than their offered load, such as Tenant 2 from t=1035 min to t=1115 min. In the case of Tenant 3, the 

offered load O3(t) is generally satisfied since in the periods when the O3(t) is larger than SAGBR3, there is 

enough capacity in the system to satisfy all the tenants. These results show qualitatively that the policy 

learnt by one tenant is general enough to properly assign the capacity to the other tenants according to their 

offered loads and SLA requirements and, additionally, performs satisfactorily in front of changes in the 

system capacity, since the internal parameters of the DQN agent (i.e., state, reward factors, actions, etc.) 

are defined in relative values. This highlights the capability of scaling of the proposed solution, as the 

trained policies can be used by new tenants in the scenario without the need of performing a separated 

training for each of tenants or the need of re-training when the capacity in the system changes. These results 

also provide evidence of the advantage of a multi-agent approach with respect to a single-agent approach, 

where a single agent manages all the tenants and the addition of a new tenant would imply the training of 

the whole solution again. Moreover, this would require a larger training duration due to the larger state and 

action spaces resulting from the additional state and action dimensions for the new tenant. Instead, in the 

proposed approach, a new tenant can be added just by associating an already trained policy.  

 

Fig. 42. Offered load vs assigned capacity for Tenant 1, 2 and 3. 
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To further illustrate the scaling capability of the proposed approach, the performance achieved when 

applying the policy π1 for all tenants is compared against the case of applying the policies π1, π2 and π3 

specifically trained for each tenant. To this end, policies π1, π2 and π3 have been trained according to model 

parameters detailed in Table XIX by considering the scenario with Tenant 3 and extended capacity. Table 

XXI includes the resulting average SLA satisfaction SSk and the average reward for Tenant 1, 2 and 3 and 

the average system utilisation U when applying the specifically trained polices for each tenant and when 

applying the policy π1. Once again, the achieved values for the different assessed indicators for both cases 

are really close, presenting differences below 1.5% for all indicators. This highlights the scaling capability 

of the proposed approach since the application of a previously trained policy is able to adapt to the offered 

loads of the new tenant and the loads of the other tenants when the system capacity increases.   

Regarding the achieved values for the different analysed performance indicators in Table XXI, although 

high values are obtained for all the tenants, Tenant 1 achieves the highest, closely followed by Tenant 2, 

and Tenant 3 presents the lowest values. The reason is that the offered load values of Tenant 3 are much 

lower than the ones for Tenant 1 and Tenant 2, and thus, the analysed performance indicators are more 

affected by the increases and decreases in steps of Δ. This means that decreasing the assigned capacity of 

Tenant 1 by Δ=0.03 has a lower impact on Rk and SSk of Tenant 1 than for Tenant 3. Since the offered load 

levels of Tenant 2 are similar to the ones of Tenant 1, lower differences are obtained between them as a 

result of this effect. Therefore, in order to achieve higher performance values for Tenant 3, lower values of 

Δ would be more appropriate since they would have a lower impact on the assessed parameters. This reveals 

that the selection of Δ needs to jointly consider the traffic type and levels of all tenants in order to choose 

a value that best satisfies all of them given the clear impact of Δ on the achieved performance, as is studied 

in the following section. 

TABLE XXI. PERFORMANCE PARAMETERS. 

Performance metrics Tenant- specific policies Tenant 1 policy 

Average reward 

Tenant 1 (R1) 
0.964 0.967 

Tenant 2 (R2) 
0.939 0.949 

Tenant 3 (R3) 
0.873 0.859 

SLA Satisfaction 

Tenant 1 (SS1) 
0.986 0.979 

Tenant 2 (SS2) 
0.957 0.961 

Tenant 3 (SS3) 
0.901 0.893 

Average utilisation (U) 0.843 0.845 

 

4.6.2.4. Impact of action and time step 

This section aims at analyzing the impact of the values of time step duration Δt and action 

increment/decrement step Δ on the proposed SON function. For this purpose, the policy π1 of Tenant 1 has 

been trained in the scenario of Table XVIII by considering different parameter configurations. The assessed 

configurations include all the combinations between time step duration Δt={1, 3, 5, 15} min and action 
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step Δ={0.01, 0.02, 0.03, 0.05, 0.07, 0.09}. The rest of the parameters used for training are those specified 

in Table XIX .  

First, the impact Δt and Δ on the training evolution process is studied. To this end, the policy π1 for  

Tenant 1 obtained by the training every 104 time steps has been evaluated by applying it on the offered load 

of Tenant 1 of Fig. 39. This allows capturing how the training process progressively updates the learnt 

policy when increasing the number of training steps. Fig. 43 and Fig. 44 show the evolution of the average 

reward R1 of Tenant 1 for Δt={1, 3, 5, 15} min when considering, respectively, a small action step Δ=0.01 

and a large action step Δ=0.07. For both values of Δ, higher average reward is achieved when reducing Δt, 

since the policy is triggered more frequently and thus it can more easily react to changes. However, evident 

differences are observed between the training evolution when using Δ=0.01 and Δ=0.07. For Δ=0.07, the 

average reward presents an initial period of around 50·104 training time steps where it increases and 

presents high fluctuations until the average reward stabilises to a value in the range between 0.94 and 0.96 

depending on Δt and the fluctuations decrease drastically, reflecting that the algorithm has achieved 

convergence. Instead, for Δ=0.01, the average reward keeps increasing during the whole analysed training 

period and it exhibits larger fluctuations than for Δ=0.07, so convergence takes longer. The reason is that 

with low values of Δ, the actions at each time step have a low impact on the next state and the reward 

obtained, so the training has more difficulties to converge.  

 

Fig. 43. Average aggregated reward every 10000 time steps during the training for Δ=0.01 and Δt={1,3,5,15} min.  

 

Fig. 44. Average aggregated reward every 10000 time steps during the training for Δ=0.07 and Δt={1,3,5,15} min. 

Fig. 45 depicts the average reward R1 of Tenant 1 obtained between 100·104 and 200·104 training time steps 

for the different analysed combinations of Δt and Δ. The highest reward is observed for Δt=1 min and the 
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reward decreases when increasing Δt. Regarding the effect of the action step Δ, the highest reward is 

achieved for Δ=0.02 for Δt=1 min while the maximum is achieved for Δ=0.03 for the rest of time step 

durations and, for higher values than Δ=0.03, a decreasing trend is observed. This occurs since large values 

of Δ make more difficult the adjustment of the assigned capacity to the offered load of Tenant 1 in Fig. 39. 

These results together with the fluctuations obtained in Fig. 43 and Fig. 44 reveal that a trade-off exists 

when selecting the value of Δ: a higher reward is achieved for low values of Δ but at the cost of slower 

convergence. In addition, Fig. 45 shows that the combination of large values of Δt with low values of Δ 

(e.g., Δ=0.01 and Δt=15 min) lead to poor performance as those combinations do not allow adapting to the 

dynamics of the offered load. 

 

Fig. 45. Average aggregated reward between 100·104 and 200·104 training time steps for the different configurations. 

Finally, the impact of Δ and Δt on the performance metrics is analysed in Table XXII. It presents the average 

SLA satisfaction SSk and system utility U obtained for different values of Δ and Δt when applying the 

trained policies for Tenant 1 after 200·104 training time steps to the offered loads of Tenant 1 and Tenant 2 

in Fig. 39. Focusing on the average SLA satisfaction, the capacity sharing SON function achieves high 

values above 0.9 for both tenants and all the combinations of Δ and Δt. Higher values are generally obtained 

for combinations with low values of Δ and Δt, since they adapt better to the changes in the offered loads. 

Also, a decreasing trend in the SLA satisfaction is observed when increasing Δ for values of Δ beyond 0.03. 

Comparing the SLA satisfaction obtained for Tenant 1 and Tenant 2, slight differences are obtained between 

them. About the impact of Δ and Δt on the average system utilization U, similar effects than in the case of 

the SLA satisfaction are obtained, achieving the highest values for Δ=0.02 for all values of Δt in exception 

of Δt=15 min, which the maximum is achieved for Δ=0.03, and being the utilization reduced when 

increasing Δ beyond the maximum.   

Based on the obtained results, it is concluded that the selection of the Δ and Δt values has a clear impact on 

the training evolution of the policies and their achieved performance and an adequate selection of these 

values that jointly considers the specific traffic dynamics of the different tenants is fundamental for ensuring 

an accurate learning process and a good compromise between the different KPIs achieved by the capacity 

sharing SON function. 
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TABLE XXII. KPIS FOR THE DIFFERENT COMBINATIONS OF ∆ AND ∆T. 

Action 

step 

value (∆) 

Average SLA satisfaction 
Average system Utilisation (U) 

Tenant 1 (SS1) Tenant 2 (SS2) 

∆t=1min ∆t=3min ∆t=5min ∆t=15min ∆t=1min ∆t=3min ∆t=5min ∆t=15min ∆t=1min ∆t=3min ∆t=5min ∆t=15min 

0.01 0.972 0.972 0.960 0.933 0.961 0.976 0.958 0.971 0.877 0.879 0.848 0.823 

0.02 0.984 0.978 0.982 0.956 0.972 0.976 0.974 0.969 0.897 0.894 0.884 0.855 

0.03 0.982 0.974 0.973 0.975 0.973 0.958 0.966 0.979 0.894 0.886 0.881 0.883 

0.05 0.981 0.973 0.973 0.960 0.956 0.944 0.946 0.958 0.885 0.878 0.873 0.856 

0.07 0.963 0.970 0.968 0.959 0.934 0.935 0.916 0.949 0.861 0.869 0.863 0.865 

0.09 0.942 0.960 0.952 0.961 0.919 0.908 0.908 0.922 0.822 0.848 0.843 0.850 

 

4.6.2.5. Optimality analysis 

In this section, the optimality of the capacity sharing SON function is analyzed by comparing its 

performance to the optimum. The optimum has been obtained by an exhaustive search algorithm that 

evaluates in each time step all the possible values of capacity share σk(t) of Tenant 1 and Tenant 2, 

discretized in steps of Δ, and selects the one that achieves the maximum aggregate reward of both tenants. 

To assess the optimality in a wide range of offered load situations, results have been obtained for a set of 

240 offered load temporal patterns of one-day duration, which include diverse offered load behaviours with 

diverse complementarities between the offered loads of Tenant 1 and Tenant 2. For each pattern, results 

have been obtained using the scenario configuration in Table XVIII and by applying the trained policy π1 

of Tenant 1 to both tenants. For each pattern, results are obtained in terms of the optimality ratio, which is 

defined as the average of the aggregate reward of Tenant 1 and Tenant 2 obtained with the SON function 

divided by the average optimum reward over all the time steps in an offered load pattern.   

Fig. 46 presents the evolution of the optimality ratio during the training process for the offered load pattern 

of Fig. 39. This has been obtained by evaluating the policy π1 every 5·104 training steps and computing the 

optimality ratio. It is observed that, initially, the optimality ratio increases abruptly with the number of 

training steps and, after approximately 5·104 training steps, it achieves values higher than 0.94. Then, it 

increases slowly with the number of training steps and stabilises to a value of around 0.97, corresponding 

to the situation when the algorithm has converged. The figure also reflects that no significant improvements 

are obtained by increasing the number of training steps beyond 50·104.  

 

Fig. 46. Optimality ratio during training. 
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To analyze the optimality ratio under a broader range of situations, Fig. 47 shows the CDF of the optimality 

ratios obtained for the different offered load patterns with the policy learnt after 200·104 time steps. Results 

reveal that the optimality ratio for all the analysed offered load patterns range between 0.94 and 0.98. 

Moreover, it has been obtained that the average optimality ratio is 0.96. Overall, results reveal that the 

proposed MARL approach achieves a behaviour very close to the optimum and highlight the capability of 

the trained policy π1 to adapt to diverse offered loads. It is also worth noting that this near optimal results 

are obtained with very small execution times of the trained policy, as previously discussed in  

Section 4.6.2.1, while the exhaustive search method requires to assess all the combinations for each time 

step, which is highly time consuming and requires execution times higher in several orders of magnitude 

than the MARL approach.  

 

Fig. 47.  Cumulative Density Function (CDF) of optimality ratio.  

4.6.3. Performance under a multi-cell scenario with heterogeneous traffic distribution among cells 

4.6.3.1. Scenario under consideration 

The scenario considered for evaluation is comprised of a NG-RAN infrastructure in a 3 km x 3 km area 

with N=5 cells, which serve the users of K=2 tenants, denoted as Tenant 1 and Tenant 2. The scenario has 

been configured according to the parameters in Table XXIII, which includes the cells configuration, their 

position in the area under consideration and the SLA parameters of each tenant.   

TABLE XXIII. SCENARIO CONFIGURATION. 

Parameter Value 

Number of tenants (K) 2 

Number of cells (N) 5 

Area 3 km x 3 km  

Cell position (km) 

Cell n=1 (1.5,1.5) 

Cell n=2 (0.5, 2.5) 

Cell n=3 (2.5, 2.5)  

Cell n=4 (0.5,0.5)  

Cell n=5 (2.5,0.5)  

PRB Bandwidth (Bn) 360 kHz  

Number of PRBs per cell (Wn ) 78 PRBs 

Average spectral efficiency 5 b/s/Hz 

Cell capacity (cn) 140 Mb/s 

Total system capacity (C) 700 Mb/s 

SAGBRk 
Tenant 1 420 Mb/s (60% of system capacity) 

Tenant 2 280 Mb/s (40% of system capacity) 

MCBRk,n Tenant 1 112 Mb/s (80% of cell capacity cn) 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

C
D

F

Optimality ratio

CDF  of Optimality Ratio



Chapter 4. Deep Reinforcement Learning-based framework for capacity sharing in RAN slicing scenarios  

 94 

To generate heterogeneous spatial and temporal distributions of the offered load of the two tenants in the 

different cells, it is assumed that at time step t the offered load density (Mb/s/km2) of tenant k is spatially 

distributed according to the sum of a constant offered load density μk and a bivariate Gaussian distribution 

centred at the position (xk(t),yk(t)) with standard deviation dk and offered load density in the center mk. The 

center of the Gaussian distribution (xk(t),yk(t)) moves horizontally along the scenario with speed vk. Then, 

the offered load of tenant k in cell n at time step t, ok,n(t), is obtained by aggregating the offered load density 

over the cell service area determined by the Voronoi tessellation.  

Based on this methodology, the MARL model has been evaluated under four different offered load 

situations that reflect different levels of heterogeneity, denoted as Situations 1-4, whose configuration 

parameters have been included in Table XXIV. For each situation, the offered load of each tenant in each 

cell has been obtained during a day. The level of heterogeneity in the different situations is varied through 

the values of offered load density in the center mk and deviation dk. As a result, Situation 1 corresponds to 

a situation where the spatial distribution of the offered load of one tenant among the different cells is nearly 

homogeneous. Then, the level of heterogeneity is increased in Situations 2-4, being Situation 4 the one with 

the most unbalanced load among cells. To illustrate this, Fig. 48 plots the maps with the offered load 

densities for Tenant 1 and Tenant 2 in Situation 4 at some illustrative times. The black triangles indicate 

the positions of the 5 cells. 

TABLE XXIV. CONFIGURATION OF OFFERED LOAD SITUATIONS. 

Parameter Tenant 1 Tenant 2 

Initial position(xk(0),yk(0)) (km) (0, 0.5) (1.5, 2.5) 

Speed (vk) (km/h) 0.125 -0.29 

Offered load density configuration 

(mk(Mb/s/km2), dk(km) )  

Situation 1 (24, 5) (16, 5) 

Situation 2 (28, 3) (24, 3) 

Situation 3 (36, 1) (36, 1) 

Situation 4 (72, 1) (96, 0.5) 

Constant offered load density (μk) (Mb/s/km2) 20 16 

 

 

Fig. 48. Offered load density maps of Tenant 1 and 2 during a day. 



4.6. Performance evaluation 

 

 

95 

The MARL model has been trained considering a time step duration Δt = 5 min and Δ = 0.03. The rest of 

DQN parameters have been configured according to Table XIX. The data used for the training has been 

generated by obtaining a wide range of spatial and temporal distributions of the offered loads of both 

tenants, obtained by modifying the values of the parameters of the Gaussian distributions of Tenant 1 and 

Tenant 2, including their initial position and speed, and diverse combinations of their SLA parameters.  

4.6.3.2. Performance under different heterogeneity levels 

In order to evaluate the capability of the policies learnt by the DQN agents of the two tenants to adapt to 

different levels of heterogeneity, they have been applied to the offered loads ok,n(t) in the Situations 1-4. 

Fig. 49 compares the resulting average offered load and the average assigned capacity (both expressed as a 

percentage of the cell capacity cn) in the different cells for Tenant 1 and Tenant 2 in Situations 1-4. The 

aggregated offered load and the aggregated assigned capacity of each tenant at system level (i.e., among all 

cells) is also included as a percentage of the total capacity. Results reveal that the assigned capacity takes 

close values to the offered load requirements both at cell and system levels for the different situations, 

regardless of the level of heterogeneity. In fact, the obtained differences between the offered loads and the 

assigned capacities are lower than 8% for all cases, which are mainly due to the incremental action design, 

which makes that the assigned capacity fluctuates around the offered load within a margin between Δ and 

-Δ. The highest differences are observed for cell 4 in Situations 2 and 3 and for cells 2 and 5 in Situation 4, 

since their total offered load in these cells exceeds cn during some periods, so the offered load of both 

tenants in those cells cannot be satisfied all the time (this can be seen when looking at the period between 

19 hours and 22 hours of the second graph of Fig. 50 in the next section that depicts the cell offered load 

normalized to the cell capacity against the assigned capacity for cell 2). Moreover, results show that in 

certain cases when the traffic among cells is unbalanced and, in some cells, the offered load is higher than 

the relative SAGBRk, the policy is able to support this load by smartly distributing the assigned capacity in 

accordance with the spatial traffic distribution. For example, the average offered load of Tenant 1 in 

Situation 4 in cells 4 and 5 exceeds the relative SAGBRk of 60% but the policy is able to support it since the 

offered load in the rest of cells is much lower than 60%. These results highlight the capability of the 

proposed solution to satisfactorily adapt to diverse levels of offered load heterogeneity among cells. 
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Fig. 49 Average offered load and assigned capacity per cell and at system level for each considered situation.  

Table XXV includes the average reward, the average SLA satisfaction SSk and the average assigned 

capacity ratio, which is defined as the ratio between the assigned cell capacity and the cell offered load over 

all the cells in the scenario. These metrics have been obtained for both tenants considering the average over 

one day. Results show that the learnt policies achieve high average reward for both tenants in all situations. 

The good performance is also reflected in the values of SLA satisfaction, which are higher than 0.96 for 

Tenant 1 and 0.93 for Tenant 2. The fact that slightly lower SLA satisfaction is obtained for Tenant 2 is 

that the traffic level of Tenant 2 is generally lower than that of Tenant 1, so the SLA satisfaction is more 

affected by the increases and decreases in action steps Δ than in the case of Tenant 1.  Finally, in relation 

to the assigned capacity ratio, the obtained values are close to 1, with maximum deviations of 8%. This 

indicates that the assigned capacity properly matches the offered load with little overprovisioning.  

TABLE XXV. SYSTEM-LEVEL PERFORMANCE INDICATORS. 

Performance Indicator Situation 1 Situation 2 Situation 3 Situation 4 

Av. Reward Tenant 1 0.96 0.97 0.96 0.96 

Tenant 2 0.95 0.94 0.94 0.94 

Av. SLA satisfaction (SSk) Tenant 1 0.97 0.98 0.97 0.96 

Tenant 2 0.94 0.97 0.95 0.93 

Av. assigned capacity ratio Tenant 1 1.04 1.01 1.01 1.08 

Tenant 2 1.04 1.02 1.08 1.05 
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4.6.3.3. SLA parameters impact 

In this section, the impact of the SLA parameters on achieved behaviour of the proposed approach in the 

highly unbalanced Situation 4 is discussed.  

Fig. 50 compares the temporal evolution of the capacity shares σk,n(t) in cell 2 for Situation 4 from 12 hours 

to 24 hours against the cell offered load ok,n(t) normalized to the cell capacity cn. Results are shown for 

different values of MCBRk,n considering that the same MCBRk,n is configured for all cells and tenants. The 

rest of the parameters have been configured according to Table XVIII. During the analyzed period, the 

offered load of Tenant 2 presents very high values between 19 hours until 21 hours, requiring nearly all the 

capacity in the cell. Instead, the offered load of Tenant 1 remains low, requiring around 35% of the cell 

capacity. Results show that the trained policies are able to assign the capacity without exceeding the 

MCBRk,n limit in any case. It is observed that depending on the MCBRk,n value, the assigned capacity shares 

of the tenants are differently distributed. While for MCBRk,n=60% and MCBRk,n =80%, the assigned 

capacity of Tenant 2 is limited and the offered load of Tenant 1 is satisfied, for MCBRk,n=100%, the offered 

load of Tenant 1 is not satisfied since nearly all the capacity is assigned to Tenant 2. Also, it is observed 

that for MCBRk,n=60% the capacity in the cell is not efficiently assigned since around 15% of the cell 

capacity remains unused from 18 hours to 23 hours, although this capacity could have been assigned to 

Tenant 2. These results show the relevance of including the MCBRk,n parameter in the SLA to deal with 

unbalanced offered loads among cells, contributing to a more efficient and fairer distribution when is 

adequately configured.  

 

Fig. 50. Capacity shares vs offered load of tenants for cell 2 in Situation 4 and for diverse values of MCBR. 
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of MCBRk,n for the same period of Fig. 50. The SAGBRk values expressed as percentages of the system 

capacity are also depicted. For a low value of MCBRk,n, such as MCBRk,n=60%, the aggregated offered loads 

of both tenants at system level are not satisfied, leading to an inefficient use of the system capacity, since 

no more than the 60% of the cell capacity can be assigned to any tenant. In turn, when the value of MCBRk,n 

is increased the aggregated capacity shares Ak(t) of both tenants take closer values to Ok(t). However, Ak(t) 

still presents lower values than Ok(t), since in some cells there is not enough capacity to satisfy both tenants. 

Quantitatively, the average system utilization (i.e. the average of the ratio between the summation of Ak(t) 

of both tenants and the system capacity) for MCBRk,n=60% is 77% while for MCBRk,n=80% and 

MCBRk,n=100% is 83% and 82%, respectively. Also, good average SLA satisfaction ratios are obtained for 

both tenants, ranging from 0.9 up to 0.97 for the different analysed MCBRk,n values. The obtained results 

reinforce the relevance of choosing an appropriate value of MCBRk,n since it also affects the performance 

at system level. 

 

Fig. 51. Aggregated offered loads and assigned capacities in the system. 
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This chapter has presented a DRL-based capacity sharing solution for multi-tenant and multi-cell scenarios. 

The proposed solution consists in a collaborative MARL approach, where each agent is based on the DQN 

algorithm. The different DQN agents learn the policy to provide the capacity to be assigned to their 

associated tenant in each of the cells of the network environment to satisfy the SLA of the tenant and make 

an efficient use of the available resources. The solution considers that the DQN agents interact with a 

common network environment in a coordinated and cooperative manner. Moreover, the approach has been 

contextualised within the 3GPP management framework and has been proposed as a SON function.  
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The behaviour of the proposed capacity sharing SON function has been assessed in diverse scenarios 

considering different numbers of cells and temporal and spatial traffic distributions among cells. Results 

have shown that: 

(i) The capacity sharing SON function satisfactorily adapts the capacity assigned to each tenant to 

their traffic requirements and SLA requirements and achieves making an efficient use of the 

resources. This is achieved for the different scenarios considered for evaluation, which shows the 

robustness of the solution to deal with diverse levels of heterogeneity of the traffic distribution 

among cells.  

(ii) The solution has achieved a good trade-off between the two benchmarking capacity sharing 

schemes considered for comparison achieving the high SLA satisfaction of capacity sharing 

solutions with hard-slicing (i.e., SAGBRk is the maximum capacity that can be provided to a tenant) 

and high resource utilization efficiency of non-slicing solutions (i.e., all the capacity is shared 

independently of SAGBRk). Moreover, the solution achieves results very close to the optimum when 

they are applied to diverse offered load patterns. 

(iii) The policies learnt by the agents associated to each tenant can be generalizable to any tenant when 

the dataset used for training is composed of a wide range of traffic requirement situations and SLA 

requirements.  

(iv) The proposed approach is easily scalable to deal with the addition of new tenants simply by 

associating to the new tenant a new DQN agent with a previously learnt policy and to support the 

operation when the system capacity changes. 

(v) The values of actions and the time step need to be jointly configured to better adapt to the variability 

characteristics of the traffic requirements of the different tenants in order to improve the SLA 

satisfaction and maximise the utilisation of the available resources. 

(vi) The maximum cell bit rate parameter in the SLA is relevant since it contributes to a more efficient 

and fair capacity assignment under highly unbalanced traffic situations.  
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Chapter 5. Implementation aspects of the 

DRL-based solution for capacity sharing in 

RAN slicing scenarios 

5.1. Introduction 

The process that includes the creation, development and operation of Machine Learning (ML)-based 

solutions, differs from the process used for traditional heuristic and optimisation solutions [96][97]. The 

main difference is that ML-based logic is not explicitly programmed but rather automatically created based 

on data. Also, another difference is that multiple feedback cycles between the different stages of the process 

are required for ML-based solutions, such as model training and model evaluation. Moreover, the process 

from the model creation until its deployment depends on the ML-type. While the process for supervised an 

unsupervised ML types rely on the data collection and processing, as described in [96] and [97], 

Reinforcement Learning (RL) depends on the interaction with an environment, which introduces some 

differences on the development process of RL solutions.  

Fig. 52. presents the workflow that is followed for the modelling, development and production stages, 

particularized for RL-based solutions, which is described as follows.  

 

Fig. 52. Workflow covering modelling, development and production of RL-based solutions. 

The process starts by the modelling stage of the solution. In this stage, the problem under consideration is 

firstly defined, which embraces the analysis of the problem, the definition of the requirements and goals of 

the solution, as well as the metrics that will allow evaluating it. After defining the problem, it is assessed 

which RL algorithm is the most suitable for the solution based on the problem type, action and state spaces 

dimensions, training duration requirements, the type of interaction with the environment, complexity level, 

etc. Once a RL algorithm is selected, the RL model can be formulated by particularizing the selected RL 

algorithm for the specific problem under consideration. This may include the definition of states, actions 

and rewards or the model scheme (e.g., single agent, multiple agents).  
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The second stage consists in the model development. The first step of the development process is the coding 

of the formulated model. There are several libraries available for developing RL-based algorithms, such as 

Tensorflow RL Agents [84], Keras RL[98], OpenAI Baselines[99] or Tensorforce [100], which mainly differ 

in the programming language, implemented RL algorithms, the quality of the documentation or the 

possibility to deploy your own environment. The selection of a library should take into account the 

requirements and features of the defined RL-model. Since the learning in RL is achieved through the trial-

and-error interaction of a RL agent with an environment, the environment used for both the training and 

the evaluation of the developed RL solution needs to be specified. The environment during development 

will usually be a simulation-based environment that captures the behaviour of the real environment where 

the solution will be finally deployed. The simulation-based environment can be based on available 

environments suites, such as those in Open AI Gym [101] or MATLAB [102], or can be customized by 

developing them. Moreover, the environments can be supplied with datasets or functions that allow 

specifying and controlling the states visited by RL agent during the training and evaluation. After this, the 

developed model is trained in the training environment and the trained model is evaluated in the evaluation 

environment. This process allows identifying problems in the RL model definition, its coding or its 

interaction with the environment, which contributes to the model improvement and optimisation. Moreover, 

as RL solutions include several hyperparameters, these are tuned at this point in order to booster the model 

performance.  

Finally, the production stage consists in the model deployment and the continuous model monitoring. The 

model deployment includes all those activities that allow operating the trained RL model in the real 

environment. This may include the integration of the model with the platform where the solution will be 

executed or the development of the interfaces required for the model to satisfactorily communicate with the 

real environment. While the trained model operates in the real environment, which is known as inference, 

the performance of the solution needs to be continuously monitored to detect possible degradations or errors 

that may arise. Based on this, the model formulation and the developed code can be modified or the solution 

can be re-trained.   

Considering the above stages, this chapter discusses on diverse relevant implementation aspects for the 

deployment of DRL-based solutions that support the management of RAN slicing in real networks, taking 

as a reference the proposed DRL-based capacity sharing solution in the previous chapter. First, given that 

the implementation of RL-based solutions for RAN management must comply with the standards, Section 

5.2 provides an overview on the standardization work held by 3GPP and O-RAN and proposes a compatible 

framework for the integration of the proposed DRL-based capacity sharing solution with their standards. 

Second, Section 5.3 discusses on the training stage of RL-based solutions for capacity sharing and conducts 

an impact analysis of the features of the data used for training on the performance during both the training 

and inference stages by considering the DRL-based capacity sharing solution in the previous chapter. 

Section 5.4 details the development and production stages for the particular case of the proposed DRL-

based capacity sharing solution, which covers the description of the tools and technologies required to 
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develop the solution and the interfaces according to the specified technologies by O-RAN. Finally, Section 

5.5 summarizes the main conclusions extracted from this chapter.   

5.2. Compatibility of DRL-based capacity sharing solutions for RAN slicing 

scenarios with 3GPP and O-RAN standards.  

A relevant aspect for the application of DRL-based solutions for RAN management in real network 

environments is its compatibility with current standardization work for 5G networks. On the one hand, the 

O-RAN alliance is working on the standardisation of an open architecture that will support the virtualisation 

of the RAN and the usage of ML-based solutions for the RAN at different levels. Therefore, the integration 

and compliance of the DRL-based solutions for RAN slicing management with the standardized 

architecture by O-RAN provide the solutions with a robust framework to train and deploy them. On the 

other hand, the 3GPP has included a set of information models, which represent SLAs, network instances’ 

features and slicing-related configuration parameters of 5G base stations, as well as management services 

for the management of the lifecycle of network slices. Also, 3GPP provides performance management (PM) 

services that allow the collection of performance measurements and KPIs, required for the monitoring of 

the network. The compliance of DRL-based solutions for RAN slicing management with the 3GPP 

information models and PM services provides them with standardized input and outputs to be integrated in 

real deployments.   

This section firstly provides an overview of the main elements of O-RAN architecture and the application 

of ML-based assisted solutions in the architecture in Section 5.2.1. Then, the 3GPP information models and 

management services related to capacity sharing in RAN slicing scenarios are described in Section 5.2.2. 

Finally, a framework for the integration of the DRL-based capacity sharing solution proposed in the 

previous chapter with the 3GPP information models and management services as well as O-RAN 

architecture and procedures is provided in Section 5.2.3. 

5.2.1. O-RAN architecture overview 

O-RAN Alliance is working on the development of a more open, smarter, interoperable and scalable RAN. 

The O-RAN architecture aims at being the foundation for building a virtualized RAN on open hardware 

and cloud with embedded AI, which will empower network intelligence through open and standardised 

interfaces in multi-vendor networks [85]. This architecture is based on O-RAN Alliance standards, which 

are supported and complementary to 3GPP standards and other industry standard organizations.  

The O-RAN logical architecture is depicted in Fig. 53, which shows the different O-RAN functions and 

interfaces as well as 3GPP interfaces integrated in the architecture [86]. The Service Management and 

Orchestration (SMO) function is responsible for the management of the rest of O-RAN functions and the 

O-Cloud. These are the O-RAN Central Unit – Control Plane (O-CU-CP), O-RAN Central Unit – User 

Plane (O-CU-UP), the O-RAN Distributed Unit (O-DU), the O-RAN Radio Unit (O-RU) and the O-RAN 

eNB (O-eNB), which can be deployed whether as Virtualized Network Functions (VNFs), such as virtual 

machines or containers, or as Physical NF (PNFs) utilizing customized hardware. Four key interfaces are 
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introduced, namely A1, O1, Open Fronthaul (FH) M-plane and O2, that connect the SMO with the rest of 

O-RAN functions and the O-Cloud. To support AI in the framework, the near-real-time RAN Intelligent 

Controller (near-RT RIC) function is included that is in charge of the control of the radio protocol of the 

stack processing within the O-CU-CP/UP and O-DU via the E2 interface, providing enhanced AI-powered 

RRM functionalities. Also, the SMO contains the non-real-time RAN Intelligent Controller (non-RT RIC) 

function, responsible for the policy management, RAN analytics and ML model management and delivery 

of enriched information for near-RT RIC operation through the A1 interface. For further details on O-RAN 

functions and interfaces, the reader is referred to [86].  

 

Fig. 53. O-RAN Logical Architecture [86]. 

Building upon the O-RAN architecture, the O-RAN alliance is working on the definition of an open 

framework for the applicability of ML-assisted solutions [87], which defines the required AI/ML 

components as well as procedures and interfaces for the ML-assisted solutions lifecycle. Fig. 54 shows a 

simplified model of the main components and relations under O-RAN for the training and inference of ML-

assisted solutions. The ML training host is a network function which hosts the training of the model, 

including offline and online training based on data collected from the RIC, the O-DU or the O-RU. Instead, 

the ML inference host hosts the ML model during inference mode (which includes both the model execution 

as well as any online learning if applicable) and informs the actor about the output of the ML algorithm. 

The actor takes the decision based on output provided by the ML inference host. The actor and the ML-

Inference host often coincide. The location of the elements in Fig. 54 in the O-RAN Architecture of Fig. 

53 depends on the ML solution and solution types. In the case of RL-based solutions, diverse options are 

devised to place the different components (i.e., ML training host, ML Inference Host and Actor) in the non-

RT-RIC of SMO or Near-RT-RIC, which depend on the training needs of the solution i.e., online training, 

offline training, separated training and inference, etc.  
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Fig. 54. ML components and relations for ML-assisted solutions within O-RAN [87]. 

5.2.2. 3GPP vision on capacity sharing for RAN slicing 

Support for network slicing has been firstly introduced by 3GPP as part of the first release of the Fifth 

Generation (5G) system specifications (Release 15), with multiple enhancements included in Releases 16-

18 [88]-[92].  

The problem of capacity sharing treated by the DRL-based capacity sharing solution described in Chapter 

4 has been identified by 3GPP as a use case in the context of Self-Organizing Network (SON) feasibility 

studies [81], referred to as “cross-slice network resource utilization”. This SON service supports the 

management of network slices by adjusting the policies and resource adjustment according to the 

requirements of these slices, not only considering the dynamic allocation of radio resources to slices but 

also the distribution of other resources such as storage or computing resources.  

Regarding the management of the network slices, 3GPP provides specifications on the management of 

network slicing, including information model definitions, referred to as Network Resource Models 

(NRMs), for the characterization of network slices [52] together with a set of management services (MnS) 

for network slice lifecycle management (e.g. network slice provisioning MnS for network slice creation, 

modification and termination, performance monitoring services per slice, etc.) [16].  

3GPP information model includes definitions for “network slice NRM” [52], that include two information 

object classes (IOC), named NetworkSlice and NetworkSliceSubnet, to represent the managerial 

representation of the network slice within the Network Slice Provider (NSP) OSS. The NetworkSlice IOC 

and the NetworkSliceSubnet IOC represent, respectively, the properties of a network slice instance (NSI) 

and a network slice subnet instance (NSSI) in a 5G network. Note that the realization of a NSI may be tied 

to the realization of several NSSIs (e.g. a NSI composed of RAN NSSI and a 5G Core NSSI) or only a 
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single domain (e.g., NSI consisting of a single RAN-only NSSI). Within the NetworkSlice IOC and 

NetworkSubnetSlice IOC, the set of attributes that define the requirements to be supported by the NSI and 

the NSSI slice requirements are named, respectively, ServiceProfile and SliceProfile. The attributes 

included in the include ServiceProfile and SliceProfile can be directly inherited from the standardized list 

for network slices provided by the GSMA GST [93] as well as additional attributes to capture more specific 

requirements derived from the service performance requirements defined in [94][95]. For the case of the 

DRL-based capacity sharing solution in Chapter 4, let us introduce here three attributes included in the 

ServiceProfile of the solution: 

 dlThptPerSlice: It defines the achievable aggregate downlink data rate of the network slice.   

 dlThptPerUe: It defines the average data rate delivered by the network slice per UE.  

 termDensity: It specifies the maximum user density over the coverage area of the network slice. 

Moreover, 3GPP also provides information model definitions for “New Radio NRM” [52], where different 

RAN management parameters are defined to configure the behavior of the RAN nodes with regard to the 

operation of the established network slices. In this respect, Fig. 55 provides a simplified view of the classes 

and attributes of the “New Radio NRM” model for the characterization of the RRM policies for the resource 

allocation to the slices. On the top, the RRMPolicyManagedEntity proxy class represents the different RAN 

managed components (e.g., cell resources managed at DU, cell resources managed at CU functions, DU 

functions, etc.) that are subject to the RRM policies. Then, the RRMPolicy_ IOC represents the properties 

of an abstract RRMPolicy that defines two attributes: the resourceType attribute, used to define the type of 

resource (e.g. PRB, RRC connected users, etc.) and the rRMPolicyMemberList attribute, used to indicate 

the associated network slice or group of network slices that is subject to this policy. The associated network 

slices are specified here in terms of slice identifiers such as the Single Network Slice Selection Assistance 

Information (S-NSSAI) and Public Land Mobile Network Identifier (PLMNid).  

On this basis, the RRMPolicyRatio IOC represents a particular realization of an RRMPolicy that establishes 

a resource model for resource distribution among slices based on three resource categories: shared resources 

(shared among slices with no specific guarantees per slice), prioritized resources (guaranteed for use by 

associated slices but still usable for other slices when free) and dedicated resources (only used for the 

associated slices). Accordingly, the following attributes are included in the RRMPolicyRatio IOC:  

 rRMPolicyDedicatedRatio, defines the dedicated resource usage quota for the associated network 

slice(s), including dedicated resources. The sum of the rRMPolicyDedicatedRatio values shall be less 

or equal than 100.  

 rRMPolicyMinRatio, defines the minimum resource usage quota for the associated network slice(s), 

including prioritized resources and dedicated resources, which means the resources quota that need 

to be guaranteed for use. The sum of the rRMPolicyMinRatio values shall be less or equal than 100.  
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 rRMPolicyMaxRatio, defines the maximum resource usage quota for the associated network slice(s), 

including shared resources, prioritized resources and dedicated resources. The sum of the 

rRMPolicyMaxRatio values can be greater than 100. 

 

Fig. 55. Simplified representation of the classes and attributes for configuration of RAN functions subject to RRM policies 

for slice management. 

Moreover, 3GPP provides specification for the performance assurance-related management services for 5G 

networks, including network slicing, that allow the collection of real-time performance measurements that 

can be consumed by analytic applications such as SON to take appropriate actions [82]. The provisioning 

of performance measurements can be reported per NSSI or per NF based on two main services: 

 Performance data file reporting service, which enables an authorized PM consumer to get a 

performance data file of a NSSI/NF. The PM consumer is notified with a notifyFileReady notification 

when a performance data file is available in order to download it by using FTP or SFTP.  

 Performance data streaming service, which enables an authorized PM consumer to receive the 

performance data stream of NSSI/NF.  

To support these Performance Management (PM) services, 3GPP specifies performance measurements for 

NG-RAN including network slicing in [41], and based on these, end-to-end Key Performance indicators 

(KPIs) in [103]. For the case of the DRL-based capacity sharing solution in Chapter 4, the following PM 

measurements and KPIs are considered:  

 “DL PRB used for data traffic”, which measures the number of PRBs used in average for data 

traffic in a given slice and cell. This performance measurement is defined in [41]. 

 “DL total available PRB”, which measures the number of available PRBs in the cell. This 

performance measurement is defined in [41].  
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 “Downstream throughput for Single Network Slice Instance”, which captures the aggregated 

throughput per slice across all the cells. This KPI is defined in [103]. 

5.2.3. Compliance of the DRL-based capacity sharing solution for RAN slicing scenarios with 

3GPP/O-RAN framework.  

Considering the above, this section describes the compatibility of the DRL-based capacity sharing solution 

proposed in Chapter 4 with the O-RAN and 3GPP standards. The 3GPP/O-RAN compatible framework of 

the DRL-based capacity sharing solution is illustrated in Fig. 56. The DRL-based capacity sharing solution 

is conceived to be deployed as part of the RAN SMO as a SON function for cross-slice resource 

optimization solution.  The DQN-based agents of the MARL approach are trained on the ML training host 

based on real or synthetic data in the network. Once trained, the policies associated to each slice are 

deployed in the ML inference host, which is co-located with the actor, where the DRL-based capacity 

sharing inference module takes place.  

The DRL-based capacity sharing inference makes dynamic decisions on the configuration of 

rRMPolicyDedicatedRatio attribute of each cell on a per RAN slice basis every t minutes. This 

configuration is conducted via the management provisioning services offered by the O1 interface. In 

particular, since the rRMPolicyDedicatedRatio attribute establishes the resource usage quota assigned to 

the RAN slice defined in terms of the fraction of Physical Resource Blocks (PRBs) that can be used by this 

slice, the attribute is configured in the O-DU unit, so that the MAC layer can take this resource usage quota 

into account when allocating PRBs to the users of the RAN slice in the cell. The rRMPolicyDedicatedRatio 

is mapped with the capacity share σk,n(t) of the DRL-based capacity sharing solution in Chapter 4. To make 

the configuration on a per-slice basis, an rRMPolicyMemberList is specified for each RAN slice, being 

composed of a single member with the S-NSSAI and PLMNid of the RAN slice. Then, the 

rRMPolicyDedicatedRatio is configured per rRMPolicyMemberList in each cell. 

Moreover, the requirements of each RAN slice are specified by means of the three ServiceProfile 

parameters explained in Section 5.2.2, namely dlThptPerSlice, dlThptPerUe and termDensity. These 

parameters are related to the SLA parameters established for each tenant in the DRL-based capacity sharing 

solution. The SAGBRk corresponds to the dlThptPerSlice whereas the MCBRk,n is obtained by the product 

of the dlThptPerUe, the termDensity and the cell n service area.  

The decisions on the rRMPolicyDedicatedRatio for each RAN slice are taken based on the state. According 

to the definition of the state of the DRL-based capacity sharing solution in Section 4.4.1, the state relies on 

the parameters in the ServiceProfile and the rRMPolicyDedicatedRatio for each of the cells, which are 

available by the DRL-based capacity sharing inference module. Moreover, the state requires of performance 

measurements for the computation of the resource usage ρk,n(t) and the fraction of PRB not used by any 

tenant in the cell ρ
n
A(t). The ρk,n(t) and ρ

n
A(t) correspond to the the “DL PRB used for data traffic” and the 

“DL total available PRB” performance measurements defined in [41], respectively, both normalized to the 
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total number of PRBs in the cell Wn. Based on the state, the policy associated to the different RAN slice are 

executed and then, the resource usage quota computation function computes the rRMPolicyDedicatedRatio 

of each RAN slice in each cell, according to the procedure described in Section 4.4.5, which ensures the 

MCBRk,n is not exceeded and that the aggregated resource usage quota for all the slices in a cell after 

applying the actions does not exceed 1 in order not to exceed the cell capacity. This function relies on the 

aggregated throughput experienced by the slice across all cells, Tk(t), which can be measured by the KPI 

“Downstream throughput for Single Network Slice Instance” defined in [103]. Note that the performance 

measurements and KPIs can be obtained by consuming PM services, whether by using a Performance data 

file reporting service or a Performance data streaming service depending on the duration of t.  

 

Fig. 56. 3GPP/ORAN compatibility of DRL-based capacity sharing solution. 

Overall, the framework in  Fig. 56 presents a plausible integration of the DRL-based capacity sharing 

solution with the 3GPP information models and management services as well as O-RAN architecture and 

procedures. This is essential for the application of the solution in real network environments given that 

equipments and platforms that are 3GPP-compliant and O-RAN standard are expected to be adopted for 

the RAN virtualization and the integration of ML-based solutions.  

5.3. Training of DRL-based capacity sharing solutions for RAN slicing 

scenarios 

Although a solid background has been generated on methods and algorithmic solutions for DRL-based 

capacity sharing solutions [69]-[79], the detailed analysis of the state-of-the-art allows identifying a key 

research gap, namely, how the training stage of DRL is conducted and how training is distinguished from 
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the inference stage (i.e., the execution of a trained policy on the real network). Indeed, previous DRL-based 

solutions for capacity sharing in [69]-[77] have not explicitly distinguished the training and inference 

stages. Only the works in [78] and [79] make this distinction and discuss on the generalization capability 

of the learnt policies when doing the training with a large number of situations. However, none of the above 

works has provided insights into the features and requirements of the data used for training and their impact 

on the achieved performance. 

This section fills this gap by performing a quantitative analysis of the impact of training on the performance 

of the policies learned by DRL-based capacity sharing solutions. To this end, the features that characterise 

training datasets used for DRL-based capacity sharing solutions are identified and, then, a methodology for 

building training datasets with given features is introduced in Section 5.3.1 that allows properly configuring 

the training environment. In addition, several metrics to quantify the impact of the built training datasets 

are defined. Afterwards, results assessing the methodology when applied to the DRL-based capacity sharing 

solution proposed in Chapter 4 are provided in Section 5.3.2.  

5.3.1. Methodology for training impact analysis 

The intrinsic online learning behaviour of DRL becomes a major challenge for its application in the capacity 

sharing problem. Due to the high impact of capacity sharing decisions on the network performance and 

efficiency, erroneous actions selected by DRL agents during the trial-and-error learning process may lead 

to unacceptable performance degradations in the real network. Also, since capacity sharing solutions 

operate at time scales in the order of seconds to minutes, long training durations would be required for the 

DRL agents to experience a sufficient variety of situations in the real network. To tackle this problem, it is 

possible to train the DRL agent in a simulated training environment that emulates the behaviour of the real 

network. The training environment is configured by means of a training dataset that determines the 

situations that the DRL agent will experience during the training. In this way, the agent can accumulate 

sufficient experience in a wide variety of situations in order to learn the decision-making policy that will 

be later on applied on the real network during the so-called inference stage.  

An adequate training needs to ensure that a sufficiently representative number of situations are encountered 

by the DRL agent during the training stage, so that it can properly generalize from them in order to make 

the best decisions during the inference stage. In the case of capacity sharing, since DRL agents decide on 

the capacity assigned to each tenant according to their traffic needs during time, the configuration of the 

training environment should be based on the time evolution of the traffic demand (i.e., offered load) of each 

tenant. In this thesis, we model this evolution as a temporal pattern of one-day duration. Then, a training 

dataset is defined as a set of temporal patterns that will be used as inputs to the training environment and 

experienced by the DRL agents during the training stage. The way to generate this dataset and the metrics 

for analysing the impact of training is described in the following. 
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5.3.1.1. Training stage 

Let us consider the availability of J temporal patterns, where each pattern j represents the time evolution of 

the offered load of a tenant during a day, Oj(t), in a cell. The offered load is the required capacity in bits/s 

of a tenant normalized to the total cell capacity, so that it falls in the range [0,1]. It is obtained for t=0…T 

in time steps of duration Δt. Offered load temporal patterns can be based on historic real data extracted 

from the real network or can be generated synthetically.  

Every temporal pattern is characterized in terms of two features: (1) Dynamic Range (D), which is the 

difference between the maximum and the minimum values of Oj(t); (2) Level (L), which corresponds to the 

average value of Oj(t). For both features, the temporal patterns are classified into High and Low, leading to 

the four categories depicted in Fig. 57, where each one is given by a combination of classes of D and L, 

e.g., a category is {D=High, L=High}. The number of patterns in each category should be sufficiently 

represented. In the case that the available temporal patterns are not enough, which may occur e.g., when 

scarce real data measurements are used, the number of patterns can be augmented by adding a random 

component (e.g., uniformly distributed) to each of the available temporal patterns, emulating the traffic 

fluctuations.  

 

Fig. 57. Temporal patterns classification. 

The available J temporal patterns are used to build the training dataset. Since capacity assignment decisions 

for a tenant depend on both the offered load of that tenant and the offered loads of the rest of the tenants, 

the training of a DRL agent considers the offered load of a target tenant, denoted as tenant 1, and the 

aggregate offered load of the rest of the tenants, which for simplicity can be referred here to as tenant 2. 

Hence, the training dataset is composed of a total of Q pairs of one temporal pattern for tenant 1 and another 

one for tenant 2, which are selected from the set of J patterns. The Q pairs are randomly ordered to generate 

the time evolution of the offered load that is injected to the simulated environment during the training 

process.  

The features of the selected patterns for each tenant determine the actual offered load values of tenant 1, o1, 

and tenant 2, o2, that are included in the training dataset. Then, to assess the range of offered load values in 

the training dataset, the coverage of a dataset, COV, is defined. It is the ratio between the number of offered 
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loads (o1,o2) included in the training dataset over the space of possible load values, which considers the 

load in the range [0,1] and discretized in steps of Δo. A training dataset with COV value close to 100% will 

allow that the DRL agent experiences almost all the possible offered load pairs of both tenants during the 

training stage. 

During the training stage, the DRL agent will be making decisions in accordance with the experienced 

offered load values included in the dataset and progressively updating the decision-making policy based on 

the outcome of these decisions. This process is executed until the DRL agent achieves convergence in the 

learnt policy. To define the convergence condition, the well-known loss metric (see definition in equation 

(58)) is considered. The loss tends to decrease and stabilize (i.e., loss fluctuations are small) when the DRL 

agent successfully learns a good approximation of the optimum policy, and thus, convergence is achieved. 

To quantify convergence, the loss is averaged in periods of M training time steps. Then, the loss variation 

v(m,W) at period m over the window of the last W periods is defined as the difference between the maximum 

and the minimum average loss during the last W periods divided by the total average loss over all the W 

periods. Based on this, the criterion considered here is that convergence is achieved at period m when 

v(m,W), is lower than a given threshold vth. The number of time steps until reaching this condition 

determines the convergence time, tc. Moreover, to assess the training stability, the standard deviation of the 

average loss in the window [t,t+WS), denoted as σ(t,WS), is also obtained. 

5.3.1.2. Inference stage 

After the training is completed, the policy can be applied in the real network environment to assign the 

capacity to the tenants according to their actual experienced offered loads. The achieved performance of 

the policy during inference depends on the generalization capability of the trained policy to adapt to offered 

load situations not included in the training dataset but also on the similarity between the offered loads 

included in the training dataset and those experienced during inference. To measure this similarity, the 

percentage of coincidence, PC, is defined as the percentage of the observed offered load values (o1, o2) 

during inference that had been included in the training dataset more than dmin times. For illustrative 

purposes, Fig. 58 shows the offered loads experienced during an inference stage, represented as bullets, on 

top of a training dataset 2D-histogram. The training dataset contains patterns that belong to the category 

{D=Low, L=Low} for both tenants and presents a COV=22.6%. The offered load values experienced during 

inference present a high similarity to the ones included in the training dataset, achieving a PC=95% when 

dmin=100.  

During the inference stage, the performance of the trained policy is also assessed by obtaining the 

aggregated reward of both tenants at each time step t, R(t), which rates how good were the capacity 

allocation decisions for tenant 1 and tenant 2 for the actual experienced loads.  
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Fig. 58. Training dataset vs inference stage experienced load.  

5.3.2. Impact analysis results 

5.3.2.1. Considered scenario and datasets 

The DRL-based capacity sharing solution proposed in Chapter 4 has been considered for studying the 

impact of training. The scenario considered for evaluation is comprised of a single cell, which serves the 

users of K=2 tenants, denoted as Tenant 1 and Tenant 2. The scenario considers that the cell has a capacity 

cn=117 Mb/s and the established SLAs are SAGBR1=70.2 Mb/s and SAGBR2=46.8 Mb/s, corresponding to 

the 60% and the 40% of the cell capacity, respectively, and MCBR1= MCBR2=93.6 Mb/s, corresponding to 

the 80% of cn. The DQN parameters considered for training are a time step duration Δt = 3 min and an 

action step Δ=0.03. The rest of DQN parameters used for training are those of Table XIX.  

To build the training datasets, a total of J=8400 offered load temporal patterns of one-day duration have 

been considered and classified according to the dynamic range D and offered load level L. For illustrative 

purposes, Fig. 59 includes two offered load temporal patterns considered in the dataset that present different 

features: the offered load temporal pattern j=10 has a low dynamic range and low offered load level while 

the offered load temporal pattern j=4 presents a high dynamic range and achieves high offered load levels. 

Moreover,  Fig. 60 depicts a representative set of the available temporal patterns, the central mark on each 

box indicating the median of temporal pattern, the bottom and top edges of the box indicating the 25th and 

75th percentiles, respectively, and the whiskers extending to the most extreme data points. The 

representation of Fig. 60 shows that temporal patterns with diverse dynamic ranges and offered load levels 

are included in the dataset. For instance, the pattern j=18 belongs to the category {D=High, L=Low} and 

the pattern j=9 to {D=Low, L=Low}. The rest of patterns have been obtained from those of Fig. 60 by 

adding a random component uniformly distributed in the range [-0.05,0.05] until having a total of 2100 

patterns for each of the possible 4 categories. 
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Fig. 59. Offered load temporal patterns j=10 and j=4. 

 
Fig. 60. Temporal patterns analysis. 

5.3.2.2. Impact of the training dataset on the training stage 

This section studies the impact of the features of training datasets on the training process. To this end, the 

training of the DRL-based capacity sharing solution has been performed for two datasets, denoted as 

Dataset 1 and Dataset 2, both of them with Q=4200 pairs of temporal patterns of each tenant. Dataset 1 is 

a specific dataset that includes temporal patterns that only belong to the category {D=Low, L=Low} for 

both tenants. Instead, Dataset 2 consists in a generic dataset that includes temporal patterns belonging to 

all the categories. The coverages of Datasets 1 and 2 are COV=22.57% and COV=92%, respectively. The 

training of both datasets has been performed 50 times, each time with a different order of the pairs of 

patterns included in the datasets. This allows mitigating potential effects that the random order in which the 

offered loads are experienced by the DQN agent and the randomness of the ε-Greedy policy, which selects 

a random action with probability ε, may have on the training evolution.  

Table XXVI includes the 95th percentile of the convergence time tc and the average and 95th percentile of 

the standard deviation of loss σ(t,WS) over the different executions of the training for datasets 1 and 2. The 

computations assume a loss average period M=5000 time steps, a variation window W=10·104 time steps, 

a convergence time threshold vth=0.06 and a standard deviation window WS=50·104 time steps. Results 

indicate that convergence is faster with Dataset 1 than with Dataset 2, being the 95th percentile of the 

convergence time with Dataset 1 approximately 25% less than with Dataset 2. The reason is that Dataset 

1, which only includes patterns from a specific category, covers a lower number of states than Dataset 2, 
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so a shorter number of iterations are required to go through all of them. It is also observed that the standard 

deviation of the loss is also smaller when using Dataset 1 than when using the Dataset 2. Both the average 

and the 95th percentile obtained with Dataset 2 are approximately twice than those with Dataset 1, which 

reflects that a much more stable learning is achieved for Dataset 1 due to its smaller coverage. Therefore, 

it is concluded that the coverage of a dataset, and thus, its level of specificity or generality, has a direct 

impact on the process of training, achieving faster convergence and higher stability those datasets with low 

COV.  

TABLE XXVI. PERFORMANCE OF THE TRAINING STAGE. 

Performance Metrics Dataset 1 Dataset 2 

95th percentile of time to converge tc (time steps) 75·104 105·104 

Average standard deviation of loss σ(t,WS) 9.25·10-4 21·10-4 

95th percentile of standard deviation of loss σ(t,WS) 20·10-4 56·10-4 

 

5.3.2.3. Impact of the training dataset on the inference stage 

In this section, an impact analysis of the features of the training dataset on the learnt policy is conducted. 

To perform this analysis considering a variety of coverage values, 16 training datasets have been defined, 

exhibiting levels of COV ranging from as low as 0.04% to as high as 92%. Then, the policy learnt with each 

training dataset has been analysed during the inference stage. For the inference stage, a simulator of the real 

network has been considered that takes as input 80 different pairs of temporal patterns for tenant 1 and 

tenant 2 that belong to a wide range of dynamic ranges and offered load levels.  

In order to assess the performance of a policy during the inference stage, the assigned capacity share by the 

policy in each time step is compared to the optimum value, obtained by means of an exhaustive search 

algorithm. Specifically, in each time step the aggregate reward of both tenants is computed for all the 

possible values of capacity shares of Tenant 1 and Tenant 2, discretized in steps of Δ. Then, the one that 

achieves the maximum aggregate reward of both tenants is selected as the optimum. Based on this, the 

optimality ratio, defined as the ratio between the aggregate instant reward R(t) obtained by the learnt policy 

and the optimum aggregate instant reward, is computed in each time step.  The optimality ratio is recorded 

for each pair of offered loads of tenant 1 and 2 (discretized in steps of Δo=0.02) observed during the 

inference stage. Then, we define the metric denoted as P0.9 as the percentage of offered load pairs with 

optimality ratio higher than 0.9. 

Fig. 61 shows the value of P0.9 for each learnt policy as a function of the coverage COV of the training 

dataset used to obtain the policy. The trend line of Fig. 61 reveals that, for COV smaller than approximately 

25%, P0.9 grows when increasing COV, while for COV higher than 25%, it flattens at around 80%. This 

reflects the strong generalization capability of the considered DQN approach since with a training dataset 

of relatively low COV value such as 25%, it achieves a performance close to the optimum for most of the 

offered load levels in the inference stage. In other words, for COV above 25%, during the execution of the 
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DQN-based algorithm in a practical scenario, appropriate decisions will be taken even though the actual 

offered loads levels have not been observed during the training stage. 

 

Fig. 61. P0.9 with respect to COV. 

Fig. 61  also shows that the performance in terms of P0.9 for datasets with low COV is much worse, and 

suffers strong variations depending on the actual offered loads that were included in the training dataset. In 

this case, the percentage of coincidence PC metric between the offered loads in the inference stage and the 

training datasets becomes especially relevant for the analysis. To show this, the learnt policy for a training 

dataset with COV=8% has been assessed for the case of experiencing a PC=100% and PC=32% during the 

inference stage, considering dmin=100 in the computation of PC. It is obtained that for the case of PC=100%, 

P0.9=94% is achieved whereas for the case of PC=32%, only P0.9=48% is obtained. This proves that the 

achieved performance for datasets with low COV has high dependency on the PC. 

5.4. Development and production stages of DRL-based capacity sharing 

solution for RAN slicing scenarios 

Between the definition of a RL-based solution and its application in a real production environment, the 

solution needs to go through different stages to be successfully implemented. After the modelling of the 

RL-based solution at algorithmic level, the development stage follows, which aims at providing a validated 

and robust software solution. Next, the production stage takes place, which allows the satisfactorily 

deployment and operation of the developed software solution in the production environment.  

Relate to the above, this section describes the development and production stages of the DRL-based 

capacity sharing solution proposed in Chapter 4. Specifically, Section 5.4.1 introduces the main software 

tools that have been employed in the DRL-based capacity sharing solution’ development and provides a 

high-level overview of the developed solution. Afterwards, Section 5.4.2 describes the production stage of 

the solution, which includes an overview of the technologies required for the deployment of the solution in 

a production environment as well as the description of the adopted solution for the production stage.   

5.4.1. Development phase of DRL-based capacity sharing solution for RAN slicing scenarios 

In this section, the development stage of the DRL-based capacity sharing solution modelled in Chapter 4 is 

described. The model has been developed in Python by using the library Tensorflow RL Agents [84], also 

known as TF-Agents. This library has been selected because it provides open-source implementations of 

most of the current state of the art DRL algorithms and it allows defining multi-agent schemes and 
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customized environments, as required for the model development. Also, the library includes several 

tutorials and documentation as well as an extensive community, which ease the development and 

customization of the different elements of the solution.  

Fig. 62 shows the system overview of the TF-Agents system. The system separates the collection of 

experiences from the training of the agents. The collection of experiences is performed in an environment, 

which can be based on available environment suites (e.g., Open AI Gym, Atari) or a self-customized 

environment developed in Python. Also, the environment defines the possible states and actions and, in 

each time step, computes and stores the reward and new state for a selected action. The system allows the 

definition of multiple environments in parallel, where the data collection is controlled by the driver. The 

driver also gathers the different trajectories (i.e, experiences), which are collected in the replay buffer (i.e., 

experience replay). Then, the training stage is performed by batching the data in the replay buffer and using 

it to update the agent’s model, e.g., the deep neural network in DQN. Based on this, the updated policy is 

collected by the driver to select the actions sent to the environment for data collection. The policy can be 

collected as an ε-Greedy policy to conduct the training or as a Greedy policy to be used for the inference.  

 

Fig. 62. TF-Agents system overview [104]. 

Based on this system, Fig. 63 shows the developed solution for the training of the DRL-based capacity 

sharing solution by using the DQN implementation of TF-agents library. Specifically, the solution includes 

a DQN Agent for each tenant in the scenario. To support the DQN Agent of each tenant, a separate 

experience replay and Tensor Flow environment, referred to TF-environment, is created. This is required 

since each TF-Environment allows the interaction with the DQN Agent and contains the states and rewards 

for each of the tenants. Each DQN Agent is trained independently based on the experiences in its own 

experience replay. To manage the different agents, a Driver is included that collects the policies of the 

different agents in addition to training metrics (e.g., loss). The driver uses the collected policies to trigger 

the actions according to the state in the TF-Environment of each agent in a per-time step basis. The different 

TF-Environments interact with a common Python environment that has been self-developed and simulates 

a network deployment. It is composed of a scenario controller and N cells. The scenario controller has two 
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main tasks. First, it communicates with the different TF-Environments, receiving the actions that configure 

the capacity sharing parameters in the scenario and providing each TF-Environment with the states and 

rewards as a result of their actions. Second, it acts as a manager of the different cells, configuring them 

according to the actions provided by the TF-Environments and gathering the required data to compute the 

state and rewards provided to the TF-Environments. The cells include all the operations required to compute 

the tenant and cell level performance according to the capacity sharing configuration at each time step and 

the traffic demands in the cell by each tenant. In addition, the Python environment includes a module for 

reporting and monitoring the KPI evolution at system and cell levels.  

 

Fig. 63. DRL-based capacity sharing solution development scheme for training. 

The solution gets as input parameters the DQN Agents configuration, which includes the DQN Agents 

hyperparameters, as well as the scenario configuration, which includes the number of cells and tenants 

included in the solution, the service profile parameters for each of the tenants, the cells’ configuration as 

well as the parameters for the per-cell offered load evolutions. The hyperparameters can be set by 

performing the tuning, which is held by testing diverse combinations of values of the different DQN Agents 

hyperparameters and selecting that combination of values that have the best behaviour according to some 

criteria (e.g., lowest number of steps to obtain a loss variation lower than a threshold as in Section 5.2). 

During the execution of the developed solution, the learnt policies can be obtained as well as training 

evolution results (e.g., reward, loss) and the KPI evolution (e.g., SLA satisfaction, throughput, assigned 

capacity), which are usually obtained periodically to monitor the evolution of training.  

Note that the self-developed Python environment has been considered in the solution in order to easily 

validate and evaluate the DRL-based capacity sharing solution through simulations during the development 

phase. The developed environment provides a full control and customized configuration of the network, 
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which has allowed studying the behaviour of the DRL-based capacity sharing solution under a wide range 

of scenarios and network conditions, which is not feasible to be performed on a real network environment.  

Fig. 64 illustrates the developed scheme for the evaluation of the already learnt polices stored in the policy 

database during the training phase. In this case, the policies of each tenant can be loaded and tested in a 

target evaluation scenario of interest. To this end, a TF-Environment is created for each tenant as an 

interface between the tenant’s policy and the Python environment, since actions and states cannot be 

triggered directly from the policy to the Python environment.  The driver is also included to manage the 

different TF-Environments. The Python environment for evaluation is the same as the one during training 

and it is configured according to the scenario and offered loads conditions desired for evaluation. In this 

case, only KPI results from the scenario are obtained as an output. Notice that the scheme for evaluation 

simulates the inference phase of the solution, but instead of applying the learnt policies in the real network, 

they are applied in a controlled simulated network environment.  

 

Fig. 64. DRL-based capacity sharing solution development scheme for evaluation. 

5.4.2. Production phase of the DRL-based capacity sharing solution for RAN slicing scenarios 

The deployment of DRL-based solutions in real production environments requires their preparation to be 

run in a target production framework and be provided with the required interfaces to interact with the real 

environment. In the case of the DRL-based capacity sharing solution in Chapter 4, the compatibility 

requirements with the 3GPP and O-RAN systems discussed in Section 5.2 need to be considered. On the 

one hand, the developed DRL-based capacity sharing solution requires to be executed during the inference 

of the learnt policies on the ML inference host of the SMO platform of the O-RAN architecture. To this 

end and considering the current virtualization trends for Virtual Network Functions (VNFs), the DRL-based 

capacity sharing solution is containerized by using Dockers. On the other hand, the O1 interface for the 

communication to configure the O-DU NF of gNBs and obtain performance measurements needs to be 

implemented according to the O-RAN and 3GPP specifications. In the following, the description of 
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containers and the details of the O1 interface that need to be developed are provided. Finally, the section 

ends with the description of the DRL-based capacity sharing solution adopted for production using 

containers and the required connections integrated in the O1 interface.   

5.4.2.1.  Containerization 

Building upon the ETSI NFV reference architecture [105], the O-RAN architecture considers the 

cloudification of network functions, where O-RAN network functions and its components can be deployed 

as Virtual Network Functions (VNFs) in the form of Virtual Machines (VMs) or containers on commercial 

off-the shelf (COTS) hardware [106]. Only the virtualization of the O-RU function remains as a future 

study item. Although VMs are extensively used, containers are gaining attention for the deployment of 

VNFs. In fact, current developments within the O-RAN Software Community [107], which work in the 

development of O-RAN functions, rely on containers.  

Containerization is a virtualization approach through which applications are run as isolated software units 

called containers, all using the same shared operation system (OS) and managed by a container engine. Fig. 

65 shows the high-level architecture of a containerized solution. Each container packages up all the required 

code, libraries, binaries, configuration files and dependencies required by the application to be run. This is 

encapsulated and isolated so that the application can be easily deployed and is portable from one computing 

environment to another [108]. Containers are lightweight since they do not contain OS, which allows their 

quickly deployment.  

 

Fig. 65. High-level architecture of a containerized solution. 

The container engine is responsible for the automatization of the applications deployment inside software 

containers. In this regard, Docker is a popular open-source container engine based on Linux containers, 

which has been widely adopted for the deployment of containers. The architecture of Docker consists in a 

client-server scheme that allows building container images, which contain code and dependencies of the 

application, and running them as containers in a standardized manner. In addition, the option to distribute 

the created containers is available [109]. The Docker client and server communicate according to a provided 

Docker REST API, and the deployment of applications consisting of multiple containers can be performed 

through Docker-compose.  
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Based on the above, the lightweight, agile, and scalable features of containers make them a potential 

technology for VNF deployment since they allow more easily adapting to the rapidly evolving infrastructure 

of virtualized RAN [110]. Hence, containers are identified as a potential technology for the production 

solution of the DRL-based capacity sharing, since they would ease the deployment and operation of the 

solution in a production environment, e.g., a neutral host where different SMO applications are running. 

Fig. 66 illustrates the particularization of a container for the DRL-based capacity sharing solution. The app 

in this case corresponds to the DRL-based capacity sharing code. To be able to run the code in the container, 

the container performs the installation of Python and all the libraries required to run the code, such as TF-

Agents. Note that in the case of using Docker as a container engine, the Docker container for the DRL-

based capacity sharing would be executed by firstly creating a container image for the DRL-based capacity 

sharing container. This image would be generated by creating a “Dockerfile” specifying the version of 

Python and the code to execute in the container, jointly with the libraries and the respective versions to 

install. Then, the DRL-based capacity sharing container would be built based on this image.  

 

Fig. 66. Illustrative container components for the DRL-based capacity sharing solution.  

5.4.2.2. O1 Interface implementation 

Within the O-RAN architecture depicted in Fig. 53, the O1 interface is between the SMO and the O-RAN 
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simple mechanism through which a network device can be managed, configuration data information can be 

retrieved, and new configuration data can be uploaded and manipulated. It has a simple layered architecture 

as shown in Fig. 67, where the core is a simple Remote Procedure Call (RPC) layer transported over secure 

transports such as SSH, TLS, SOAP or BEEP, being SSH mandatory [112]. The protocol operates 

according to a service-client scheme, where the MnS Provider has the role of the server and the MnS 

Consumer the role of the client. Moreover, NETCONF defines a set of base protocol operations, which 

include the edit-config operation that allows the MnS Consumer to modify the configuration of MnS 

Producer parameters through a XML-encoded file that specifies the desired values of the configuration 

parameters. The configurations of the MnS Producer are defined by using YANG, which is a data modelling 

language for NETCONF that allow expressing the structure and semantics of configuration information in 

a vendor-neutral format and in a readable and compact way. In YANG, the definitions are structured in 

modules, which are provided with a name and a XML namespace, and the configuration parameters are 

defined in leafs or lists. YANG comes with YIN, which is a XML representation of YANG so that standard 

XML tools can be used to process YANG data models definitions.  

 

Fig. 67. NETCONF protocol layers. 

By using the edit-config operation of NETCONF, MnS Consumer can modify the MOI attributes of MOI 

in the MnS Producer according to the procedure depicted in Fig. 68. After establishing the NETCONF 

session, the MnS Consumer sends a RPC request to edit the configuration of the MOI attributes at the MnS 

Provider according to the YANG module definitions of the MOI. Then, the MnS Provider replies whether 

confirming the MOI configuration or notifying an error. Finally, the NETCONF connection terminates. 

Regarding the DRL-based capacity sharing solution, the SMO (MnS Consumer) could modify the 

rRMPolicyDedicatedRatio attribute for each NSSI in the O-DU at each cell (MnS Producer) based on this 

procedure.  
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Fig. 68. Simplified Modify MOI Attributes procedure based on [111]. 

The second service to be implemented for the O1 interface for the DRL-based capacity sharing solution 

deployment is the Performance Assurance Management Services, which allows a MnS Provider to report 

Performance Measurements (PM) data to a MnS consumer. Performance data can be provided through PM 

data files or PM Data streaming modes through the procedures in Fig. 69 and Fig. 70, respective. In the 

case of PM data file reporting, the MnS Provider sends an asynchronous notifyFileReadyNotification to the 

MnS Consumer over HTTP/TLS when a new PM data file is available. This notification includes the name 

and location of the new PM data file. The PM data file consists in a XML-based file that is defined according 

to the 3GPP formats defined in [82] and PM definitions in [41]. Then, the MnS Consumer can retrieve the 

file from the specified location through SFTP or STPeS. In the case of PM Data Streaming, the MnS 

Provider requests to establish a WebSocket connection to begin streaming PM data and provides MetaData 

about the streams that will be sent on the connection. Next, the MnS Consumer accepts the request to 

upgrade the connection to a WebSocket and the MnS Provider starts transmitting binary encoded data to 

the MnS Consumer while the connection is active.  

 

Fig. 69. PM Data File Reporting. 

 
Fig. 70. PM Data Streaming. 
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5.4.2.3. Production solution description 

Based on the above components, the design of the production solution of the DRL-based capacity sharing 

is presented in this section. Fig. 71 depicts the designed production solution that allows the inference of the 

learnt policies by the DRL-based capacity sharing solution in a production environment. The code for the 

DRL-based capacity sharing solution is packed as a Docker container located in the ML inference host, 

where the container includes all the associated libraries, such as Python or TF-agents, and required 

dependencies for the operation of the DRL-based capacity sharing code, as illustrated in Fig. 66. This 

container is responsible for the continuous operation of all those steps required to infer the learnt policies 

to configure capacity sharing solution in the different cells of the scenario. Moreover, the container has 

access to a database with the already learnt policies to load them for the inference. The policies in the 

database correspond to those trained during the development phase as described in Section 5.4.1 but also 

those resulting from possible re-training of the initial learnt policies if low performance of the initially 

trained policies is detected.  

The DRL-based capacity sharing container is able to interact with the O-DU NF of N cells through the O1 

interface established for each of them. The cells need to be compliant with the information models of 3GPP 

and the standardization of the O-DU by the O-RAN to be able to establish the O1 interface [113]. The O1 

interface for n-th cell considers that the DRL-based capacity sharing container and the ODU-NF of the cell 

have the roles of the MnS Consumer and MnS Providers, respectively, and that the interface is composed 

of two connections. First, a NETCONF connection to configure the RRMPolicyRatio attribute per NSSI of 

the O-DU NF of the cell. To support this connection, the O-DU NF of the cell contains a NETCONF server, 

which stores the configurations according to the YANG models, and a NETCONF client needs to be 

included in the DRL-based capacity sharing container for each cell to send modification requests of the 

RRMPolicyRatio attribute per NSSI to the O-DU NF NETCONF server according to the procedure in  Fig. 

68. Second, a HTTP/TLS and SFTP connection is created for the provisioning of performance 

measurements from the cell to the DRL-based capacity sharing container. The designed production solution 

considers that the performance measurements are provided according to PM Data File Reporting mode 

since measurements are required in the order of minutes, so the PM streaming mode could be more 

appropriate if lower operation times were required. Therefore, the O-DU NF of each cell also contains a 

PM server that collects PM files that are transferred to the PM client for that cell located at the DRL-based 

capacity sharing container according to the procedure in Fig. 69.  
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Fig. 71. Containerized solution with O1 interface interaction to N cells. 

Algorithm 4 summarizes the operations performed by the DRL-based capacity sharing container. Initially, 

the NETCONF and HTTP/TLS sessions are established between the O-DU NF of each cell n=1…N (lines 

1-2 of Algorithm 4). As a generality and considering that actions for the NSSI associated to each tenant are 

obtained independently, a policy for each NSSI is loaded from the policies database (line 3 of Algorithm 

4).  Then, periodically the DRL-based capacity sharing container receives the notifyFileReady notification 

from all cells, which is sent by the PM server of the O-DU NF of each cell when the PM files are available, 

providing the location from where the PM files can be obtained (line 5 of Algorithm 4). The PM files are 

transferred from the provided location in the notifyFileReady to the DRL-based capacity sharing container 

via SFTP and are processed to compute the state for each agent for all cells (lines 6-7 of Algorithm 4). 

After, the actions for each NSSI are obtained by applying the policy for the computed state (line 8 of 

Algorithm 4). Based on the obtained actions, the rRMPolicyDedicatedRatio per NSSI is computed for each 

cell and is sent through the NETCONF session as a NETCONF modify attribute request through a XML 

file according to the YANG model in the cell (lines 9-10 of Algorithm 4). The operations in lines 5-10 of 

Algorithm 4 are repeated periodically every Δt seconds.  

Algorithm 4 – DRL-based capacity sharing container operation  

1 Establish NETCONF session for each cell n=1…N. 

2 Establish HTTP/TLS session for each cell n=1…N.  

3 Load saved policy from policies database.  

4 Periodically (Loop):  

5   Receive notifyFileReady notification through HTTP/TLS for all cells n=1…N. 

6   Obtain PM measurements through SFTP for each cell n=1…N. 

7   Compute state from PM measurements for each NSSI. 

8   Obtain actions by applying the policies for each NSSI. 

9   Obtain the rRMPolicyDedicatedRatio based on action for each NSSI and each cell n=1…N. 

10   Send rRMPolicyDedicatedRatio per NSSI through NETCONF modify attribute request for each    

  cell n=1…N. 
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Although the scope of this thesis in regard to the production solution of the DRL-based capacity sharing 

solution is its design and the identification of the main elements and technologies that support it, the first 

implementation steps of the designed production solution have been taken with the aim to get familiarized 

with the involved technologies and assess the feasibility and complexity of the designed production 

solution. Details on the conducted implementation and testing are included in Appendix 2. Moreover, it is 

worth mentioning that the implementation of the production solution is devised as a future work within the 

scope of the project “Proof Of concept of a Radio access neTwoRk slicing solution based on Artificial 

InTelligence (PORTRAIT)” with reference PDC2021-120797-I00 funded by 

MCIN/AEI/10.13039/501100011033 and by European Union Next GenerationEU/PRTR. This project 

includes a proof of concept of the DRL-based solution in the 5GCAT pilot [114], which includes the 

deployment of 5G small cells for testing solutions on a neutral host network and was launched at the end 

of 2019.  

5.5. Summary 

Taking as a reference the DRL-based capacity sharing solution presented in the previous chapter, this 

chapter has discussed on diverse implementation aspects regarding the development and production stages 

of RL-based solutions for RAN slicing that are essential for its deployment in the real network. 

First, Section 5.2 has highlighted the need of defining RL-based solutions for RAN according to the 

standardization work held by O-RAN and 3GPP. An overview of the main elements of the O-RAN 

architecture and the application of ML-based assisted solutions in the architecture has been provided, as 

well as an identification of the 3GPP information models and management services related to capacity 

sharing in RAN slicing environments. After this, a plausible framework for the integration of the DRL-

based capacity sharing solution with the 3GPP information models and management services as well as 

with the O-RAN architecture and procedures has been proposed, which provides the solution with 

standardized input and outputs for in real deployments compliant with O-RAN and 3GPP.  

Second, in Section 5.3 the relevance of adequately model data used for training RL-based solution has been 

discussed by conducting an impact analysis of training in the DRL-based capacity sharing solution. To this 

end, a methodology that allows specifying how to create training datasets with given features to train DRL 

models for simulation-based training environments has been proposed, jointly with a set of performance 

metrics that allow assessing the impact of the training datasets on the training and on the inference stages. 

The methodology has been used to assess the performance the DRL-based capacity sharing solution. 

Results have shown that: (a) The coverage of states of the training dataset affects the convergence time and 

the convergence stability: training datasets with low coverages achieve lower convergence times and more 

stability than datasets with large coverages of states. Specifically, it has been obtained that a dataset with 

COV of about 22% achieves convergence in 75% of the time than a dataset with COV of 92%. (b) Training 

datasets with coverage values of around 25% are sufficient to achieve a satisfactory training process that 

provides good performing policies. In this respect, it has been able to achieve optimality ratios higher than 
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0.9 in around 80% of the observed offered load levels during the inference. (c) In general, training datasets 

with low coverage values below 25% lead to poor performing policies. In this case, the performance is 

highly dependent on the percentage of coincidence between the offered loads of the training dataset and 

those experienced during the inference stage. 

Third and final, Section 5.4 has focused on the development and production stages of the DRL-based 

capacity sharing solution. Regarding the development stage, a high-level overview of the developed 

software solution that relies on the TF-Agents tool both for the training and the evaluation phases has been 

provided. For the production stage, the required upgrades for the preparation of the developed software 

solution to be deployed in the real network have been identified. These include the containerization of the 

solution and the implementation of the standardized interface O1 that allow the interaction of the solution 

with the network nodes, which relies on the NETCONF protocol for the configuration of network devices 

and HTTP/TLS and SFTP for the gathering of performance measurements. The design of the DRL-based 

capacity sharing solution to be deployed in the production environment has been finally described, 

specifying the operation of the containerized solution with the required interfaces’ protocols.  

Overall, the implementation aspects treated in this chapter for the DRL-based capacity sharing solution 

allow providing a practical perspective of the implementation of RL-based solutions for the RAN 

management in general. This represents relevant contribution of this thesis since solutions for the practical 

challenges of applying RL-based solutions for the RAN in the real RAN have been discussed and provided. 
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Chapter 6. Concluding remarks and future 

directions 

6.1. Conclusions 

Network slicing has emerged as a key feature of the 5G architecture that will allow multiple tenants to serve 

their users with the services envisaged for 5G over a common network infrastructure at the same time. The 

realization of RAN slices is especially challenging since the common pool of radio resources available at 

the different NG-RAN nodes needs to be adequately managed in order to provide multiple and diverse 

behaviours associated to the different RAN slices operating on it, so that their requirements are fulfilled 

and an efficient use of the available resources in the different RAN nodes is achieved. To cope with this 

complexity, functionalities that allow the proper management of the different slices as well as the 

configuration the NG-RAN nodes to support RAN slicing are required. Potential solutions to this 

requirement include the adaptation of existing Radio Resource Management (RRM) functionalities to 

incorporate RAN slicing parameters and the development of Self-Organizing Network (SON) functions 

that enable the automatisation of the lifecycle management of RAN slices (i.e., creation, modification and 

termination of RAN slices), for which Artificial Intelligent (AI) techniques are expected to be a key enabler. 

In this context, this thesis has contributed to the need of new functionalities for the realization of RAN 

slicing by defining, developing and evaluating different RRM and AI-based functionalities for RAN slicing. 

The thesis provides a wide view of the RAN slicing problem, which has allowed identifying the 

requirements and limitations of RAN slicing solutions at different levels and providing insights into the 

capabilities of AI-based solutions to deal with RAN slicing from the modelling to the implementation 

perspective.  

Firstly, an assessment of slice-aware RRM functions at different levels of the protocol stack has been 

performed by means of a Markov model that has allowed the characterisation of multi-tenant and multi-

service scenarios (Chapter 2). The model includes RRM functions in terms of admission control at layer 3 

and radio resource allocation at layer 2, where both include per-tenant parameters and consider the 

definition of Guaranteed Bit Rate (GBR) and non-GBR services in terms of their Guaranteed Flow Bit Rate 

(GFBR), the Allocation and Retention Priority (ARP) indicator and the 5G QoS Identifier (5QI) parameters. 

The defined radio resource allocation function has been defined by two different approaches: first, in 

average terms and second, considering a statistical distribution of the spectral efficiency in the cell, which 

allows capturing the variable propagation conditions of the radio environment. The evaluation of the RRM 
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function has been performed in a wide range of 5G scenarios of interest (i.e., diverse services requirements, 

cell deployments, traffic load conditions, etc.) in terms of different performance metrics (blocking 

probability, degradation probability, throughput, occupation, etc.). Based on the obtained results, the 

capability of the defined slice-aware RRM functions to achieve isolation in the admission of users and in 

the allocation of resources among RAN slices has been proven, so that the traffic requirements of a tenant 

associated to a RAN slice does not affect the achieved performance of the rest of RAN slices. Moreover, 

the need to consider the radio resource allocation approach that captures the propagation conditions to 

achieve accurate results in cell scenarios with high variation of the spectral efficiency is found (Appendix 

1). Also, the performed studies have shown the capability of the defined slice-aware RRM functions to 

operate according to the QoS requirements of different services. In this respect, negligible degradation rates 

are achieved for GBR services, obtaining those GBR services with higher priorities (lower ARP) better 

performance. Regarding non-GBR services, they are provided with the available resources after the 

allocation to GBR services according to the priority level parameter in the 5QI. Furthermore, the capability 

to introduce new tenants in the scenario has been demonstrated, for which the proper re-configuration of 

the per-tenant parameters is fundamental to achieve high performance of the different tenants operating in 

the scenario. Considering the above, the usefulness of the proposed Markov model for the evaluation and 

analytical characterisation of the problem of RAN slicing with regard to RRM functions has been proven, 

allowing the establishment of relationships between the different dimensions of the RAN slicing problem.  

Secondly, this thesis has addressed the problem Slice Admission Control (SAC) by proposing a data 

analytics-based methodology for the estimation of the required radio resources by a RAN slice (Chapter 3). 

The proposed methodology can be used by the SAC function to determine the acceptance or rejection of a 

new RAN slice creation requests. The methodology for estimating radio resources relies on the computation 

of the probability density function (pdf) of the required radio resources by a RAN slice, which at the same 

time, relies on the extraction of data analytics information from collected cell performance measurements. 

The radio resource estimation is carried out in a cell-basis in order to meet the Service Level Agreement 

(SLA) of both GBR and non-GBR services included in the RAN slice. In addition, the solution has been 

contextualized within the 3GPP framework for the management of RAN slicing. The evaluation of the 

proposed methodology has been conducted under various cell deployments, including simulated-based cells 

and real LTE cell data, and has been applied to different service types, including eMBB services and 

Mission Critical Push to Talk (MC PTT) services. From the evaluation, evidences of the relevance of using 

the methodology based on collected measurements from the real cell environment to achieve a proper SAC 

operation have been provided, achieving more accurate results when the proposed methodology is fed by 

cell Channel Quality Indicator (CQI) measurements rather than by simulated-based data. Furthermore, 

evaluations have shown that the methodology can also be used to adapt the RAN slice configuration in 

emergency scenarios in order to guarantee the SLA of MC PTT services during such situations, which 

require a high reliability.  



6.1. Conclusions 

 

 

129 

Thirdly, this thesis has addressed the problem of capacity sharing in RAN slicing scenarios by proposing a 

Deep Reinforcement Learning (DRL)-based capacity sharing solution for multi-tenant and multi-cell 

scenarios (Chapter 4). The DRL-based capacity sharing solution has been approached as a Multi-Agent 

Reinforcement Learning (MARL) solution, where each agent is associated to a different tenant and learns 

the policy to tune the capacity assigned to the associated tenant in each of the cells of the scenario based on 

the Deep Q-Network (DQN) algorithm. Moreover, the solution has been contextualized within the 3GPP 

management framework as a SON function. The DRL-based capacity sharing solution has been evaluated 

in a wide range of scenarios with different number of cells and under diverse traffic demands and traffic 

demands distributions among cells. The potential of the DRL-based capacity sharing solution to adapt the 

assigned capacity to each tenant to the traffic demands of each of them while achieving high SLA 

satisfaction and efficient use of the resources available in the different cells has been proved for the 

considered scenarios for evaluation. Moreover, the solution has achieved a good trade-off between 

benchmarking capacity sharing schemes, achieving the high SLA satisfaction of capacity sharing solutions 

with hard-slicing (i.e., a fixed maximum capacity is reserved to each tenant) and the high resource 

utilization efficiency of non-slicing solutions (i.e., all the capacity is shared among all tenants without 

reserving any capacity to each tenant). Also, the DRL-based capacity sharing solution has shown a close to 

optimal performance. Furthermore, the scalability of the solution to easily introduce new tenants has been 

highlighted by showing the generalization capability of the learnt policy for a tenant to be applied to any 

other tenant, which allows the introduction of new tenants simply by associating a previously learnt policy 

to the new tenant.  

Finally, implementation considerations for the deployment the DRL-based capacity sharing solution in real 

network environment have been discussed from different perspectives (Chapter 5), which has allowed 

identifying the different requirements, challenges and required stages for the deployment of this type of 

solutions.  

One perspective has been the compliance of the DRL-based solution with the standardization work of 3GPP 

and O-RAN. In this regard, a plausible 3GPP and O-RAN compliant framework that integrates the designed 

DRL-based capacity solution has been proposed, placing the DRL-based solution within the elements of 

O-RAN architecture and mapping the parameters of the DRL-based solution with the 3GPP information 

models parameters related to capacity sharing and 3GPP performance measurements.  

Furthermore, implementation aspects have been considered from the perspective of the training by 

conducting an impact analysis of the data used during the training on the achieved performance of the DRL-

based capacity sharing solution during the training and inference (i.e., application of the policies in the 

environment once trained) stages. To this end, a methodology for creating training datasets with given 

features has been introduced jointly with a set of performance metrics to conduct the impact analysis. The 

performed impact analysis for the DRL-based capacity sharing solution has shown that datasets with low 

coverages (i.e., percentage of included states over the total number of possible states) achieve higher 
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convergence during training but their performance during the inference have a higher dependence on the 

similarity between the data included in the training dataset and the experienced during inference. However, 

training datasets with coverages around 25% were sufficient to achieve high performance during inference. 

From this impact analysis, the importance of adequately model the data included in training dataset to 

guarantee the performance of the learnt policies during the inference has been emphasized.  

As a final implementation perspective, the development and production stages for the DRL-based capacity 

sharing solution have been described. For the development stage, a high-level overview of the developed 

software solution that relies on the tool TF-Agents has been provided. For the production stage, the designed 

production solution to deploy the solution in a real production environment has been described, which 

consists in a containerized solution that is able to communicate via the O1 interfaces of the O-RAN 

architecture, which relies on NETCONF, HTTP and SFTP protocols.  

6.2. Future directions 

This thesis has designed a production solution for the deployment of the DRL-based capacity sharing 

solution in Chapter 4 in a real network environment. As future work, the implementation of the production 

solution is envisaged, which is included in the project “Proof Of concept of a Radio access neTwoRk slicing 

solution based on Artificial InTelligence (PORTRAIT)” with reference PDC2021-120797-I00 funded by 

MCIN/AEI/10.13039/501100011033 and by European Union Next GenerationEU/PRTR. In this project, 

the designed production solution for the DRL-based capacity sharing solution is expected to be tested in 

the 5GCAT pilot [114]. This will enable the assessment of the solution in a real environment, which will 

allow assessing its feasibility and identifying further requirements and limitations of the solution from a 

practical perspective.  

Moreover, given that the DRL-based capacity sharing solution has been initially designed to support eMBB 

services, another future direction is to extend the solution to include other types of services, such as URLLC 

and mMTC services. These services types typically have strong requirements in terms of latency and 

reliability. Therefore, adjustments in the definition of the solution, such as the state or reward signals as 

well as the SLA requirements, should be included to enable the solution to properly behave when services 

types different to eMBB are considered.  

Furthermore, while the current DRL-based capacity sharing solution has been approached by considering 

MARL, where each agent operates according to DQN, the exploration of the benefits of expanding the 

current solution to adopt other machine learning techniques is also considered as future work. For instance, 

upgrades of the DQN algorithm could be considered, such as DDQN or prioritized DQN, which would 

optimize the training stage but would not contribute to an improvement of the performance of the learnt 

policies. Also, other machine learning solutions such as Transfer Learning or Federated Learning, which 

are currently gaining momentum, could be also studied.  
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Finally, this thesis has identified requirements and limitations for the application of DRL techniques 

focusing on the problem of capacity sharing in RAN slicing scenarios, providing guidelines for the 

development and production stages of this kind of solutions. As a future work, the extension of the findings 

in this thesis with regard to DRL techniques to be applied to other RAN management problems is also 

devised, which will be of high relevance for the future 6G networks since they are envisaged to be AI-

embedded systems.  
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Appendix 1.Validation of the average 

spectral efficiency assumption 

The results of the Markov model when considering the spectral efficiency Seff as average spectral efficiency 

that users would observe in the environment for the resource allocation have been compared with the output 

of a system-level simulator that allows defining realistic scenarios where different environments can be 

configured in terms of cell deployment, propagation conditions and mobility. User’s sessions are generated 

following a Poisson distribution, while session durations are modelled by an exponential distribution. The 

AC and resource allocation procedures implemented in the simulator follow the same principles as in the 

Markov model in Chapter 2, thus placing the focus on assessing the impact that propagation, velocity and 

traffic load have in terms of predicted performance metrics. The simulator operates on a discrete-time basis 

with time steps of 1 s. Simulation statistics are measured by averaging discrete samples taken during the 

simulation time. 

TABLE XXVII. MODEL CONFIGURATION PARAMETERS. 

Parameter Value 

Number of available PRBs (Nava) 51 PRB 

PRB Bandwidth (B)  360 kHz 

Spectral Efficiency (Seff) 8.5 b/s/Hz 

Data rate per PRB 3 Mb/s/PRB 

Cell Maximum number of users  Umax,s,n=50 users for s,n=1,2 

Cell total capacity 156 Mb/s 

Scenario 1: Standard 

Average session generation rate 
Tenant 1 

varied from 0.001 to 0.12 sessions/s (corresponds to a variation of 
0.6Mb/s to 82.8 Mb/s) 

Tenant 2 0.05 session/s (corresponds to 6.2 Mb/s) 

Average session duration 120 s 

Maximum capacity threshold 
Tenant 1 Cmax,1=93.6Mb/s (corresponds to the 60% of the total capacity) 

Tenant 2 Cmax,2=31.2 Mb/s (corresponds to the 20% of the total capacity) 

Tenant generation distribution 
Tenant 1 40% of session arrivals are of service 1 and 60% of service 2 

Tenant 2 20% of session arrivals are of service 1 and 80% of service 2 

Scenario 2: Disaster 

Average session generation rate 

Tenant 1 0.04 session/s (corresponds to 17.76 Mb/s) 

Tenant 2 
varied from 0.001 to 0.25 sessions/s (corresponds to a variation of 
0.36 Mb/s to 88 Mb/s) 

Average session duration 120 s 

Maximum capacity threshold 
Tenant 1 Cmax,1=46.8 Mb/s (corresponds to the 30% of the total capacity) 

Tenant 2 Cmax,2=78 Mb/s (corresponds to the 50% of the total capacity) 

Tenant generation distribution 
Tenant 1 10% of session arrivals are of service 1 and 90% of service 2 

Tenant 2 60% of session arrivals are of service 1 and 40% of service 2 
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TABLE XXVIII. ENVIRONMENT’S CELL CONFIGURATION. 

Environment UMi UMa RMa 

ISD (Inter-Site distance)  200 m 500 m 1735 m 

gNB height  10 m 25 m 35 m 

UE height  1.5 m 1.5 m 1.5 m 

Minimum gNB-UE distance  10 m 35 m 35 m 

Path Loss and Shadowing model Model of sec. 7.4 of [45]. 

Shadowing standard deviation in Line of Sight (LOS) 4 4 4 

Shadowing standard deviation in Non-Line of Sight 
(NLOS) 

7.82 6 8 

Frequency  3.6 GHz 

Total gNB transmitted power 44 dBm 49 dBm 52 dBm 

gNB antenna Gain Omnidirectional antenna with 5 dBi gain 

UE noise figure 9 dB 

Link-level model to map Signal to Interference and 
Noise Ratio (SINR) and bit rate 

Model in section A.F of [48] with maximum spectral efficiency of 9.96 
b/s/Hz (corresponding to SINR=30 dB) and minimum SINR=-10 dB 

Average Spectral Efficiency  8.5 b/s/Hz 6.9 b/s/Hz 6.3 b/s/Hz 

Cell total capacity 156 Mb/s 126.7 Mb/s 115.6 Mb/s 

Maximum Capacity Threshold Tenant 1 (Cmax,1) 93.6 Mb/s 76 Mb/s 69.4 Mb/s 

Maximum Capacity Threshold Tenant 2 (Cmax,2) 31.2 Mb/s 25.3 Mb/s 23.1 Mb/s 

Simulation duration λ1 =0.05 15·106 s 2.5·106 s 8·105 s 

Simulation duration λ1 =0.1 7.5·106 s 1.25·106 s 4·105 s 

 

To study the validity of the Markov model, the simulator has been configured according to the parameters 

of the scenario 1 described in Table XXVII. Three different environments are considered: Urban Micro-

cell (UMi), Urban Macro-cell (UMa) and Rural Macro-cell (RMa) [45]. The configuration of each 

environment is detailed in Table XXVIII. Additionally, pedestrian (3 km/h), urban (30 km/h) and high-

speed (120 km/h) mobility patterns have been studied, where the User Equipment (UE) position is updated 

every 5 s following a random-walk model. The simulation duration has been set to ensure the observation 

of at least 100 blocking events for each service along a simulation (except for the MC PTT service that does 

not experience blockings in any of the considered cases). In Table XXIX, the results obtained through both 

the simulator and the Markov model (values in parenthesis) are compared. 

In terms of blocking probability, very few differences are found between the Markov model and the 

simulator for all the studied environments. Indeed, the main assumption affecting the accuracy of the 

Markov model is the consideration of Seff as the average spectral efficiency that users would observe in the 

environment. Correspondingly, the comparison in terms of PRB utilisation shows more accurate results for 

those environments with lower variations on the spectral efficiency (i.e., lower cell range such as, e.g., 

UMi). Similarly, for the aggregated throughput per slice, the biggest discrepancies are found for the RMa 

environment where users can experience high spectral efficiency variability. 
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TABLE XXIX. COMPARISON OF RESULTS OBTAINED VIA THE SYSTEM-LEVEL SIMULATOR IN DIFFERENT SCENARIOS 

AND THE MARKOV MODEL (IN PARENTHESES). 

Env. 
Speed 

(km/h) 

λ 

Tenant 

1 

PRB utilisation(%) Blocking probability (%) 
Throughput per 

slice (Mb/s) 

eMBB- 

Premium 

video 

eMBB- 

Basic 

Video 

MC- 

Video 

MC- 

PTT 

eMBB- 

Premium 

video 

eMBB- 

Basic 

Video 

MC- 

Video 

MC- 

PTT 
eMBB MC 

UMi 

3 
0.05 

16.56 
(15.36) 

7.45 
(6.92) 

4.13 
(3.84) 

0.16 
(0.15) 

0.06  
(0.06) 

0.21 
(0.21) 

0.12 
(0.13) 

0 (0) 34.96 
(34.78) 

6.25 
(6.23) 

0.1 
32.02 

(29.79) 
13.19 

(12.23) 
4.17 

(3.85) 
0.16 

(0.15) 
3.12  

(3.15) 
11.67 

(11.68) 
0.15 

(0.13) 
0 (0) 65.83 

(65.58) 
6.3 

(6.25) 

30 

0.05 
15.76 

(15.36) 
7.09 

(6.92) 
3.93 

(3.84) 
0.15 

(0.15) 
0.06  

(0.06) 
0.21 

(0.21) 
0.12 

(0.13) 
0 (0) 34.96 

(34.78) 
6.25 

(6.23) 

0.1 
30.46 

(29.79) 
12.56 

(12.23) 
3.96 

(3.85) 
0.15 

(0.15) 
3.12  

(3.15) 
11.67 

(11.68) 
0.15 

(0.13) 
0 (0) 65.83 

(65.58) 
6.3 

(6.25) 

UMa 

3 

0.05 
21.49 

(18.79) 
9.63 

(8.42) 
5.47  
(4.7) 

0.21 
(0.18) 

0.96  
(0.83) 

1.36 
(1.37) 

0.98 
(0.86) 

0 (0) 34.58 
(34.48) 

6.3 
(6.18) 

0.1 
38.71 

(33.79) 
15.27 

(13.21) 
5.31  
(4.7) 

0.21 
(0.18) 

10.57  
(10.81) 

22.52 
(22.58) 

0.85 
(0.87) 

0 (0) 59.99 
(59.54) 

6.12 
(6.19) 

30 
0.05 

16.56 
(15.36) 

7.45 
(6.92) 

4.13 
(3.84) 

0.16 
(0.15) 

0.06  
(0.06) 

0.21 
(0.21) 

0.12 
(0.13) 

0 (0) 34.96 
(34.78) 

6.25 
(6.23) 

0.1 
32.02 

(29.79) 
13.19 

(12.23) 
4.17 

(3.85) 
0.16 

(0.15) 
3.12  

(3.15) 
11.67 

(11.68) 
0.15 

(0.13) 
0 (0) 65.83 

(65.58) 
6.3 

(6.25) 

RMa 120 

0.05 
15.76 

(15.36) 
7.09 

(6.92) 
3.93 

(3.84) 
0.15 

(0.15) 
0.06  

(0.06) 
0.21 

(0.21) 
0.12 

(0.13) 
0 (0) 34.96 

(34.78) 
6.25 

(6.23) 

0.1 
30.46 

(29.79) 
12.56 

(12.23) 
3.96 

(3.85) 
0.15 

(0.15) 
3.12  

(3.15) 
11.67 

(11.68) 
0.15 

(0.13) 
0 (0) 65.83 

(65.58) 
6.3 

(6.25) 

 

From the mobility point of view, under a given environment higher speeds present a better match in the 

throughput and PRB utilisation results obtained with the simulator and the Markov model. This is because 

in environments with higher speed, more variated samples in terms of user position are obtained, which 

contributes to reach more averaged results, presenting more similarities to the ones obtained through the 

Markov model.  

Bearing the above results in mind, it is concluded that the theoretical model provides accurate performance 

results in a good number of representative realistic environments. For environments with larger fluctuation 

on Seff, the model requires to be further extended by considering Seff as a random variable with a certain 

statistical distribution.  
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Appendix 2. Initial implementation and testing for the 

production stage 

This appendix contains the first implementation steps of the designed production solution for the DRL-

based capacity sharing solution, which aim at familiarizing with the technologies of containers, specifically 

by using Docker, and the interaction of the O1 interface of the O-RAN that rely on NETCONF and SFTP 

protocols.  

 The implementation presented here corresponds to a basic communication through the O1 interface using 

Docker containers. The DRL-based capacity sharing container in Fig. 71 requires to include a NETCONF 

and SFTP clients for each of the cells in the environment in order to be able to configure the 

rRMPolicyDedicatedRatio per NSSI and obtain performance measurements. In this regard, two Python 

scripts that play the role of NETCONF and SFTP clients have been created, which use the Python libraries 

ncclient and pysft, respectively. At the cell side, given that a real cell is not available for testing, a simple 

O-DU NF simulator with the minimum functionality of the O-DU NF in a real cell has been implemented 

for the testing of the O1 interaction, even though the implementation of the O-DU NF is out of the scope 

of the production solution of the DRL-based capacity sharing solution.  

The O-DU NF simulator contains a NETCONF server container, which has been built based on the image 

of an NETCONF server image available in [115] as a part of the ONAP NF simulator. The considered 

NETCONF server container allows loading YANG modules and performing operations for reading 

configurations (get-config operation) and editing them via XML files (edit-config operation). The 

considered NETCONF server container relies on two more containers called “kafka”, which is used for the 

messaging with the NETCONF server and the subscription to YANG modules, and “zookeeper”, for the 

storage of configurations of the YANG module. Moreover, the O-DU NF simulator contains a SFTP server 

to store PM measurement files and make them available. To easily visualize and upload PM files in the 

SFTP server, a Filezilla container is used, which is a SFTP client with a user interface. In order to build the 

different containers in the O-DU NF simulator in a practical manner, a Docker-compose file has been 

created that indicates, for each container, the image to build, the ports to interact with the container, the 

volumes of the container in the local server and the dependencies between containers. By executing the 

Docker-compose file, all the containers in the O-DU NF can be started at the same time (i.e., the containers 

do not need to be started one by one). Considering the above, Fig. 72 shows the list of the different 

containers that compose the O-DU NF simulator after running the Docker-compose file, which correspond 
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to those grouped under the stack called “docker_poc”. Note that an additional container called “portainer” 

is also running, which is the platform that is used to visualize and manage the different containers.  

 

Fig. 72. Screenshot of the running containers that compose the O-DU NF simulator. 

 In order to test the NETCONF connection, the NETCONF server has been provided with the standardised 

YANG module for the RRMpolicyratio object (see in Section 5.2.2) called “_3gpp-nr-nrm-

rrmpolicy.yang”, which is available in the section E.5.26 of 3GPP TS 28.541. This YANG module defines 

the attributes (i.e., elements to configure) that can be configured for the RRMPolicyRatio object. For the 

case of the DRL-based capacity sharing solution, the attributes to configure correspond to the 

rRMpolicyDedicatedRatio, which is defined for a rRMPolicyMemberList. The rRMPolicyMemberList 

contains the RRMPolicyMember(s), defined by the sNSSAI information (i.e., the Slice/Service type (SST) 

and the Slice Differentiator (SD) as defined in 3GPP TS 23.003) and the pLMNId information (i.e., the 

Mobile Country Code (MCC) and the Mobile Network Code (MNC)).  

To configure the YANG model, the sample XML file in Fig. 73 has been created, which configures the 

rRMpolicyDedicatedRatio of two tenants, denoted as Tenant 1 and Tenant 2, by defining two 

RRMPolicyRatio elements, each for one tenant. The rRMpolicyDedicatedRatio is established to 60% and 

40% to Tenant 1 and Tenant 2, respectively. Note that the rRMpolicyMaxRatio and rRMpolicyMinRatio 

are defined although they are not needed since they must be defined, which are set to 100% and 0%, 

respectively, for both tenants. This configuration has been loaded to the NETCONF server container as 

initial configuration of the yang module _3gpp-nr-nrm-rrmpolicy.yang. Also, it is worth mentioning that 

for the creation of the XML file, a sample XML file based on the module _3gpp-nr-nrm-rrmpolicy.yang 

has been created by using the tool pyang and the correctness of XML file for the _3gpp-nr-nrm-

rrmpolicy.yang has been validated by using a tool called yang-tools.  
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To test the NETCONF communication with the NETCONF server, a simple NETCONF client that is able 

to obtain the current configuration of the module _3gpp-nr-nrm-rrmpolicy.yang and modify it has been 

developed in Python. This NETCONF client relies on the Python library ncclient that allows sending 

requests to a NETCONF server, such as the get-config and edit-config operations tested here.  

 

Fig. 73. Sample XML file for the configuration of module _3gpp-nr-nrm-rrmpolicy.yang. 

Firstly, the get-config operation of the NETCONF client has been tested. Fig. 74 includes the NETCONF 

client code in Python that has been developed for the get-config operation to obtain the current 

configuration of the rRMpolicyDedicatedRatio of Tenant 1 and Tenant 2 in the NETCONF server. As an 

output of this script, the XML configuration in Fig. 75 is obtained, where the rRMpolicyDedicatedRatio of 

Tenant 1 and Tenant 2 are 60% and 40%, respectively. This configuration corresponds to the initial 

configuration in Fig. 73 that had been loaded to the NETCONF server as the initial configuration, which 

proves that the NETCONF client is able to get the current configuration of the rRMpolicyDedicatedRatio 

in the NETCONF server satisfactorily. Secondly, the edit-config operation of the NETCONF client has 

been tested. Fig. 76 includes the developed NETCONF client code for the edit-config operation to modify 

the rRMpolicyDedicatedRatio of Tenant 1 and Tenant 2 to 10% both in the NETCONF server. After running 

this script and, afterwards, executing again the get-config code in Fig. 74, the new configuration in Fig. 77 

has been obtained, which shows that current configuration of the rRMpolicyDedicatedRatio for Tenant 1 

<?xml version='1.0' encoding='UTF-8'?> 

<RRMPolicyRatio xmlns="urn:3gpp:sa5:_3gpp-nr-nrm-rrmpolicy"> 

  <id>1</id> 

  <attributes> 

    <resourceType>PRB</resourceType> 

    <rRMPolicyMemberList> 

      <mcc>214</mcc> 

      <mnc>01</mnc> 

      <sd>FFFFFF</sd> 

      <sst>1</sst> 

    </rRMPolicyMemberList> 

    <rRMPolicyMaxRatio>100</rRMPolicyMaxRatio> 

    <rRMPolicyMinRatio>0</rRMPolicyMinRatio> 

    <rRMPolicyDedicatedRatio>60</rRMPolicyDedicatedRatio> 

  </attributes> 

</RRMPolicyRatio> 

<RRMPolicyRatio xmlns="urn:3gpp:sa5:_3gpp-nr-nrm-rrmpolicy"> 

  <id>2</id> 

  <attributes> 

    <resourceType>PRB</resourceType> 

    <rRMPolicyMemberList> 

      <mcc>214</mcc> 

      <mnc>02</mnc> 

      <sd>FFFFFF</sd> 

      <sst>1</sst> 

    </rRMPolicyMemberList> 

    <rRMPolicyMaxRatio>100</rRMPolicyMaxRatio> 

    <rRMPolicyMinRatio>0</rRMPolicyMinRatio> 

    <rRMPolicyDedicatedRatio>40</rRMPolicyDedicatedRatio> 

  </attributes> 

</RRMPolicyRatio> 
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and Tenant 2 to 10% both as configured in the edit-config code. This indicates that the edit-config operation 

has been performed satisfactorily.  

 

Fig. 74. NETCONF client Python code for get-config operation to obtain the rRMPolicyDedicatedRatio. 

 
Fig. 75. Obtained configuration after the execution of the code in Fig. 74.  

  
Fig. 76. NETCONF client Python code for edit-config operation to modify the rRMPolicyDedicatedRatio configuration. 

from ncclient import manager 

 

Host_IP=’XX.XX.XX.XX’ 

Port='830' 

User='XXXX' 

 

subtree_filter_RRMPolicy_dedicated_ratio_all='''<RRMPolicyRatio 

xmlns="urn:3gpp:sa5:_3gpp-nr-nrm-

rrmpolicy"><id/><attributes><rRMPolicyDedicatedRatio/></attributes></RRMPolicyRatio>''' 

 

def demo(host, port, user, password,expr): 

    with manager.connect(host=host, port=port, username=user, password=password, 

hostkey_verify=False) as m: 

        assert(":xpath" in m.server_capabilities) 

        c = m.get_config(source='running', filter=('subtree',expr)).data_xml 

        with open("%s_test_get_config.xml" % host, 'w') as f: 

            f.write(c) 

 

if __name__ == '__main__': 

    demo(Host_IP, Port,User, User, subtree_filter_RRMPolicy_dedicated_ratio_all) 

 

from ncclient import manager 

 

Host_IP=’XX.XX.XX.XX’ 

Port='830' 

User='XXXX' 

Pw='****' 

 

val1=10 

val2=10 

 

def demo(host, port, user, password, v1, v2): 

  snippet ='''<config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"><RRMPolicyRatio 

xmlns="urn:3gpp:sa5:_3gpp-nr-nrm-

rrmpolicy"><id>1</id><attributes><rRMPolicyDedicatedRatio>%d</rRMPolicyDedicatedRatio></a

ttributes></RRMPolicyRatio><RRMPolicyRatio xmlns="urn:3gpp:sa5:_3gpp-nr-nrm-

rrmpolicy"><id>2</id><attributes><rRMPolicyDedicatedRatio>%d</rRMPolicyDedicatedRatio></a

ttributes></RRMPolicyRatio></config>''' % (v1,v2) 

   

  with manager.connect(host=host, port=port, username=user, password=password, 

hostkey_verify=False) as m: 

    assert(":validate" in m.server_capabilities) 

    m.edit_config(target='running', config=snippet, format = 'xml',test_option="set") 
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Fig. 77. Obtained configuration by executing Fig. 74 running the edit-config code in Fig. 76. 

Regarding the SFTP connection, a test has been conducted that consists in a SFTP client that downloads 

and processes PM measurements from the SFTP server. In the SFTP server, a PM file that includes the 

required measurements to run the DRL-based capacity sharing solution is generated. These performance 

measurements are based in those standardized in 3GPP specification TS 28.552 and are the following:  

 “Mean DL PRB used for data traffic”: This measurement provides the number of physical resource 

blocks (PRBs) in average used in downlink for data traffic, which can be provided per supported S-

NSSAI. The measurement is needed for the computation of the occupation of a tenant in a cell included 

in the state definition of the DRL-based capacity sharing solution. The name of the measurement in the 

PM files is RRU.PrbUsedDl.SNSSAI.  

 “DL total available PRB”: This measurement provides the total number of physical resource blocks 

(PRBs) in average available downlink. The measurement is needed for the computation of  the PRBs 

available in the cell not used by any tenant included in the state definition of the DRL-based capacity 

sharing solution. The name of the measurement in the PM files is RRU.PrbAvailDl. 

 “DL PDCP PDU Data Volume”: This measurement provides the Data Volume (amount of PDCP PDU 

bits) in the downlink delivered from GNB-CU to GNB-DU, which can be provided per supported S-

NSSAI. The measurement is required for the computation of the throughput of a tenant in a the cell, 

which is used by the solution to compute the capacity sharing solution. The name of the measurement 

in the PM file is QosFlow.PdcpPduVolumeDL_Filter. 

The PM file that includes these measurements is formatted according to the XML schema file 

“measData.xsd” available in the 3GPP specification TS 28.550, which contains the validation tools and the 

format of the PM XML files. Moreover, the TS 28.550 specifies the different fields in the “measData.xsd”. 

Considering this format, a XML PM file has been created manually that is shown in Fig. 78. In the PM file, 

the PM of two tenants, Tenant 1 and Tenant 2, are provided where the performance measurements referring 

to each of them are indicated by a “.1” and “.2”, respectively (i.e. the RRU.PrbUsedDl for Tenant 1 is 

RRU.PrbUsedDl.1), as indicated to the specification in TS 28.552. Therefore, the values in the PM file are 

RRU.PrbUsedDl.1=20 PRBs, RRU.PrbUsedDl.2=25 PRBs, RRU.PrbAvailDl= 20 PRBS, 

QosFlow.PdcpPduVolumeDL.1= 32327 Mbits and QosFlow.PdcpPduVolumeDL.2= 40751 Mbits. 
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Moreover, the PM file indicates that the measurements started on the 1/12/2021 at 8:00 and finished at 

1/12/2021 at 8:15, with a duration of 900 seconds, as indicated by the “PT900S” code in the PM file.  

 

Fig. 78. PM file generated according to the format in measData.xsd in 3GPP TS 28.550.  

To perform the testing of the SFTP connection, this XML PM file has been uploaded to the SFTP server 

container under the file name xml_PM_report_simple.xml and a simple SFTP client that downloads and 

processes the file has been developed in Python by using the libraries pysftp, which supports the SFTP 

connection, and xml, which allows processing the XML file. Fig. 79 includes an screenshot of the Filezilla 

container that shows that at the remote site folder (in the right), which corresponds to the SFTP server 

container, the xml_PM_report_simple.xml is available to download. The developed code for the SFTP client 

is shown in Fig. 80, which firstly establishes the SFTP connection with the SFTP server, then downloads 

the xml_PM_report_simple.xml file and finally reads the file and outputs the configuration of the different 

performance metrics of interest. These outputs are displayed in Fig. 81, which proves that the SFTP client 

is able to download the PM file and read the required parameters names and values. While this test displays 

these values in the screen, the values could be used for the inference of the DRL-based capacity sharing 

solution.  
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Fig. 79. Screenshot of the Filezilla SFTP client showing that the SFTP server has the PM file.  

 

Fig. 80. SFTP client code for downloading the XML file and process it.  
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Fig. 81. Output to the code in Fig. 80. 

To sum up, the performed implementations have allowed testing the NETCONF and SFTP connections as 

well as identifying and gaining knowledge of the different tools and protocols that are involved in both 

connections. The development of the O-DU NF simulator, which includes the containers for the NETCONF 

and SFTP servers, has involved working with Dockers, for which has been found particularly useful the 

use of Docker-compose file to start running the different containers together, as well as stopping them to 

make modifications. Moreover, insights into the NETCONF protocol and usage of YANG models 

previously defined by 3GPP and the generation of XML files that configure them have been provided. In 

this regard, the use of pyang and yang-tools has been fundamental for the creation and validation of XML 

files for configuration of the YANG module. Also, the performed testing has included the definition of PM 

files, defined by XML schemas in .xsd format by 3GPP. The use of both the configuration YANG modules 

and the generation of PM files have implied strong efforts to analyse the 3GPP standards. Finally, to create 

the NETCONF and SFTP client codes, the use of the existing ncclient, pysftp and xml libraries has notably 

eased the development due to the large availability of documentation and examples, making them a feasible 

option for the development of designed production solution of the DRL-based capacity sharing solution, 

included as a future work in the scope of the PORTRAIT project (reference PDC2021-120797-I00). 
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